

STORY 1: What is Einstein's "curved spacetime"?

Newton's Inference

In the Principia (1687), Newton states:

"there is a power of gravity pertaining to all bodies,

proportional to the ... quantities of matter which they contain."

$$F = G \frac{M_a M_b}{r^2}$$

Why Wonder @ Gravity?

1) Mercury's "extra" precession

Newton - 531 arcsecs

Actual - 574 arcsecs

2) No such thing as coincidence Balance b/w inertia~acceleration

3) How fast is gravity?

"instant propagation" (Newton)
or

"delayed information" (Einstein)

An Alternative Explanation

Say the magic word "gedanken" and we can make gravity disappear...

Step back and recognize that "gravity" is not a force, but an experience. It is a collection of observed actions and behaviors and a set of personal experiences. The role of science is to provide a theory to coherently explain what is behind all these observations and experiences.

Newton provided one explanation -- a propagating force inherent in mass.

Einstein provided an alternative explanation -- mass follows the curvature of spacetime.

Matter follows the structure of spacetime. Where spacetime is curved by a mass, other masses will follow that curve.

STORY 2: What is Gravity Probe B? How does it work?

Einstein's General Relativity 1916

Yes, spacetime must be curved to produce orbital paths and equivalent accelerations...

Leonard Schiff 1960

Forty years later, Leonard Schiff and colleagues propose the "relativity gyroscope experiment" to test Einstein's theory

GP-B has four requirements:

- 1. Build a perfect straight line that can orbit the Earth stably.
- 2. Align it with a distant star.
- 3. Protect it from all forces, except for "gravity" (or curved spacetime).
- 4. Watch it very carefully for one year.

1) Build a perfect straight line that can orbit the Earth stably.

We have four requirements:

- 1. Build a perfect straight line that can orbit the Earth stably.
- 2. Align it with a distant star.
- Protect it from all forces, except for "gravity" (or curved spacetime).
- 4. Watch it very carefully for one year.

A GYROSCOPE

a gyroscope's spin axis maintains its orientation as long as it is spinning

What makes a perfect gyroscope?

sphericity

+

balance

homogeneity

World's Best Gyroscope

"roundest object ever made" Guinness Book of World Records

Material Fused quartz spheres, coated with niobium metal **Sphericity** < 0.3 millionths of an inch (40 atomic layers)

Homogeneity < 2 parts per million

2) Align it with a distant star.

We have four requirements:

- 1. Build a perfect straight line that can orbit the Earth stably.
- 2. Align it with a distant star.
- 3. Protect it from all forces, except for "gravity" (or curved spacetime).
- 4. Watch it very carefully for one year.

3) Protect from all forces...

except "gravity"

- Build a perfect straight line that can orbit the Earth stably.
- 2. Align it with a distant star.
- Protect it from all forces, except for "gravity" (or curved spacetime).
- Watch it very carefully for one year.

- •Dust
- •Atmospheric "wavetops"
- •Heat
- •Magnetic field

- •Weakest thrusters ever!
- •Supercooled helium (2K)
- Lead bags

4) Watch very carefully for one year

We have four requirements:

- 1. Build a perfect straight line that can orbit the Earth stably.
- 2. Align it with a distant star.
- 3. Protect it from all forces, except for "gravity" (or curved spacetime).
- 4. Watch it very carefully for one year.

Superconducting metal generates magnetic field when spinning

Must sense any tilt in spin axis > 0.5 milliarcseconds

(~ 2 ten-millionths of a single degree)

EQUIVALENT TO...

...measuring the width of a human hair (~100 microns) from 25 miles!

...measuring Lincoln's head on a US penny from 3,000 miles (San Francisco to New York)!

...spotting an angle 50 million times smaller than a single minute on a clock face!

Was Einstein right?

Find out in 2006...