
8 PERVASIVE computing Published by the IEEE CS 1536-1268/16/$33.00 © 2016 IEEE

I n the past decade, the growing
demand for compute-intensive visual

computing applications (applications
that synthesize, manipulate, and inter-
pret images and videos) has spurred the
development of mobile graphics and
image-processing architectures that
achieve exceptional levels of energy
efficiency. Today, hundreds of millions
of smartphones operate within a power
budget of only a few watts while fea-
turing GPUs offering close to a quarter
teraflop of compute capability. These
energy-optimized mobile GPUs, whose
performance now exceeds that of older-
generation game consoles (such as the
XBox 360 or Playstation 3), render
complex 3D scenes at high frame rates
for high-pixel-density displays.

The programmable execution units
in mobile GPUs, together with image
signal processors (ISPs) and multicore
mobile CPUs, also form a platform for
rapid innovation in consumer digital
photography. High-frame-rate video,
high-dynamic-range imaging, and
interactive photo-stitching on 1080p
and higher video streams are now
common features on many devices.
Perhaps even more important, in
the coming years, these systems will
increasingly be tasked with not only
generating and manipulating images
but also interpreting them. Applica-
tions relying on high-performance,
energy-efficient computer vision and
image understanding capabilities
are becoming increasingly prevalent
on consumer smartphones and in a

broad array of “always on” embedded
platforms used in automotive, robot-
ics, security, and smart-city sensing
scenarios.

The world’s demand for increas-
ingly capable mobile visual comput-
ing applications running on a range of
low-energy computing platforms shows
no sign of slowing down for the fore-
seeable future. Therefore, it’s helpful
for engineers to understand the tech-
nologies and solutions used to deliver

efficient platforms today, and to look
ahead at the challenges these emerging
workloads will present to system archi-
tects in the years to come.

WHAT IS MOBILE VISUAL
COMPUTING?
Not long ago, mobile graphics engi-
neers struggled to meet the challenges
of delivering responsive user interfaces
for multitouch devices, supporting
simple OpenGL-based 3D graphics,
and playing back a feature-length HD
movie on a single battery charge. Mod-
ern mobile computing applications
present a significantly more demanding
set of requirements.

High-Resolution 3D Graphics
Games developed for smartphones
and tablets now feature elaborate
3D scenes with complex geometry,
materials, and lighting. These appli-
cations require nearly the same set of
GPU functionality as AAA game titles
developed for desktop-graphics APIs
(such as OpenGL 4 or Direct3D 11).
As a result, the difference between
mobile and desktop 3D graphics is
now largely one of performance, not
critical feature set, as evidenced by
popular game engine frameworks
(such as Unity and Unreal Engine) tar-
geting both desktop and mobile plat-
forms with the same tools.

Although 3D graphics workloads
involve many operations that are best
carried out by fixed-function process-
ing (texture mapping, tessellation, ras-
terization, and surface occlusion), the
most expensive operations are applica-
tion-programmable “shading” opera-
tions that evaluate the color of each
screen pixel. These operations, which
simulate the physics of light reflecting
off the surface visible in each pixel, are
highly data-parallel and must be car-
ried out using floating-point arithme-
tic (although half-precision floating-
point operations are often suitable).

Computational Photography
Capturing high-quality photographs
and videos is an essential feature of
any modern smartphone. Many camera
applications rely on computational
photography methods, which digitally

The Rise of Mobile Visual
Computing Systems
Kayvon Fatahalian, Carnegie Mellon University

Smartphones
Editor: Nayeem Islam Qualcomm nayeem.islam@gmail.com

The world’s demand for
increasingly capable mobile

visual computing applications
running on a range of low-energy

computing platforms shows
no sign of slowing down.

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

M OB ILE A N D U B IQ U ITOUS SYSTE M S

M OB ILE A N D U B IQ U ITOUS SYSTE M S

APRIL–JUNE 2016 PERVASIVE computing 9

manipulate image sensor output to
obtain higher quality photographs or
to synthesize new photographs that
can’t be acquired directly due to the
physical limitations of a smartphone
camera’s optical system. For example,
modern smartphones perform sophis-
ticated image enhancements (including
denoising, white-balance, and contrast
enhancement) on raw sensor output to
produce images that rival the quality
of low-end digital single-lens reflex
(DSLR) cameras. Applications also
manipulate and combine multiple shots
to simulate DSLR effects (such as lens
defocus blur), synthesize high-dynamic
range images, remove the effects of
camera shake, automatically stitch
images together to create panoramas,
and even help photographers capture
the right moment by selecting the best
shot in a burst-mode sequence.

In all cases, these operations must
complete in near real time to ensure a
high-quality user experience. For effi-
ciency, it’s often sufficient to perform
many computational photography oper-
ations using half-precision floating-point
or low-precision fixed-point operations.

Real-Time Computer Vision and
Image Understanding
Rapid recent advances in computer
vision algorithms are making it pos-
sible for computers to intelligently
interpret the contents of images and
videos. Soon, applications will be able
to track and identify people, objects, or
potential obstacles in the camera’s envi-
ronment, detect (even predict) human
activities, and reconstruct the 3D geom-
etry of a dynamic scene. These image-
understanding operations dwarf the
sophistication of today’s simple image
analysis tasks (such as reading QR
codes or identifying books from photo-
graphs of their covers), and they will be
key functionalities expected in mobile
devices in the coming years.

Computer vision workloads involve
a range of operations, from low-
level image-processing tasks, such
as feature extraction and motion

estimation, to compute-intensive
operations, such as the evaluation of
deep neural networks and classifiers.
These operations must proceed in
real time on video streams and over
extended recording durations.

HETEROGENEOUS PARALLEL
PROCESSING
A modern system on chip (SoC) executes
visual computing tasks using a heteroge-
neous collection of processing resources.
Many of these processing resources are
specialized to achieve high performance
per watt for a specific class of workloads,
giving application developers a choice of
what resource to use for a particular
task. A sketch of a typical system archi-
tecture is given in Figure 1.

This system features a multicore
mobile CPU supporting throughput-
oriented short-vector instructions
(such as ARM’s 128-bit NEON
instructions). The system also has a
GPU featuring both 3D-rendering
specific logic blocks and a collection
of application-programmable cores.

While the CPU’s cores are well suited
for instruction streams with complex
control flow, GPU cores provide high
floating-point instruction throughput
for data-parallel computations. Shad-
ing computations for OpenGL-based
3D graphics are the principle workload
executed on the GPU’s cores, but these
processors can also serve as a platform
for high-performance pixel manipula-
tion in computational photography
and computer vision applications.

The compute capability of the pro-
grammable CPU and GPU cores is aug-
mented by an ISP, which is designed to
efficiently execute the pipeline of image-
processing operations that convert raw
image sensor output into common
YUV or RGB image formats (demosa-
icing, dead-pixel correction, and so on).
Although ISP blocks have traditionally
supported only limited programma-
bility (if at all), increasing sophistica-
tion and diversity in image-processing
algorithms is now motivating more
versatile, programmable ISP designs.
For example, Qualcomm’s Snapdragon

Figure 1. System on chip (SoC) processing resources used by visual computing
apps. A modern SoC features a heterogeneous collection of processing resources,
which present application and runtime system developers with the challenge of
determining which resources most efficiently execute different visual computing
workloads. GPU core designs achieve high throughput by aggressively employing
single-instruction multiple-data (SIMD) processing.

CPU core
(short-SIMD)

CPU core CPU core

CPU core

Image signal processor (ISP)
(high throughput,

low-precision fixed-point
computation)

Image/video
encode/decode

GPU core (high
throughput fp16/fp32,

wide SIMD)

GPU core

GPU core

GPU core

GPU core

GPU core

GPU core

GPU core

GPU work distribution/scheduling/tiling

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

M OB ILE A N D U B IQ U ITOUS SYSTE M S

M OB ILE A N D U B IQ U ITOUS SYSTE M S

10 PERVASIVE computing www.computer.org/pervasive

SMARTPHONES

SMARTPHONES

820 SoC provides a programmable ISP
(Hexagon 680) capable of executing
integer vector instructions specific to
high-efficiency image processing. In
addition to CPU, GPU, and ISP blocks,
modern SoCs also retain specialized
hardware engines for image and video
compression and decompression tasks
(JPG, H.264, and so on).

MOBILE GPU PROGRAMMABLE
RESOURCES
A significant fraction of the compute
capability in a modern SoC lies within the
programmable cores of the GPU. In many
high-end smartphones, these highly ver-
satile but throughput-optimized process-
ing units provide over a quarter teraflop
of single-precision floating-point perfor-
mance. Although low-level architectural
details vary across vendors (and are main-
tained as trade secrets by some), modern
mobile GPU core designs all share several
key characteristics.

Wide SIMD Execution
GPU core designs achieve high through-
put by aggressively employing single-
instruction multiple-data (SIMD)
processing to pack cores densely with
arithmetic logic units (ALUs). Modern
designs range from 4-wide SIMD execu-
tion (ARM Mali) to 16-wide (Imagination

PowerVR) and 32-wide (NVIDIA
Tegra) configurations. Designs also
mix wide SIMD execution with limited
superscalar (or very long instruction
word) execution to achieve additional
parallelism. For example, an Imagina-
tion 7-Series GPU core decodes up to
two single-precision (fp32) instructions
per clock and executes each on a 16-wide
group of SIMD ALUs. Similarly, each of
the two cores in the NVIDIA Tegra X1
GPU execute up to four 32-wide fp32
instructions per clock.

Accelerated Half-Precision
Floating Point
In contrast to desktop GPU designs,
mobile GPU cores place heavy empha-
sis on support for energy-efficient,
half-precision floating-point arithmetic
(fp16). Many designs can perform fp16
operations at twice the throughput of
single-precision operations. As a result,
using half-precision instructions has
both performance and energy-efficiency
benefits. Mobile application developers
are heavily encouraged to use lower-
precision fp16 instructions when they’re
sufficient for an application’s needs.

Multithreaded Execution
To compute the color of output pixels,
shading computations in the OpenGL

graphics pipeline access data stored in
large DRAM-resident buffers called
textures. Mobile GPUs employ tradi-
tional caching mechanisms and on-chip
static RAMs to reduce memory traffic
as much as possible, but like their desk-
top GPU counterparts, they also use a
large degree of hardware multithread-
ing to avoid ALU stalls by hiding the
latency of off-chip data access.

Table 1 summarizes the architectural
features and peak compute capability of
several recent mobile GPU designs and
compares these designs with that of a
high-end discrete GPU (NVIDIA GTX
980) as well as the GPU in the XBox
360 gaming console. (The Imagination
and ARM mobile GPUs are representa-
tive of parts in the iPhone 6s and Gal-
axy 6S smartphones, respectively.) Peak
throughput for the mobile GPUs is com-
puted using a 650 MHz clock, although
actual clock rates in shipping devices can
dynamically vary well below or above
this estimate. The compute capabilities
of the mobile GPUs exceed that of the
XBox 360, and in several designs, fp16
performance exceeds a half a teraflop.
The NVIDIA Tegra X1 GPU is targeted
at higher end mobile devices, such as
gaming tablets or vehicular systems.
When running at 1 GHz (a plausible
clock rate in a more energy-plentiful
computing environment, such as a vehi-
cle), the GPU can deliver over 1 Tflop of
fp16 performance.

BANDWIDTH-EFFICIENT
3D GRAPHICS
Implementations of the OpenGL 3D
graphics pipeline on mobile GPUs
serve as telling examples of the extent
to which visual computing tasks must
be reoptimized for energy efficiency.
These implementations reflect a key
design principle of energy-optimized
system design: reduce or eliminate off-
chip data access whenever possible.
The pursuit of bandwidth-efficient ren-
dering in the mobile setting has led to
notable differences in graphics pipeline
implementation between mobile and
desktop GPUs.

TABLE 1
Mobile GPUs employ multicore, single-instruction multiple-data (SIMD) designs
to deliver high-peak floating-point throughput. Many designs attain even higher

peak throughput for half-precision floating-point (fp16) operations.

SIMD width

Arithmetic logic
units/core (fp32
multiply-add)

Cores/
GPU Gflops (fp32/fp16)

Imagination
GT7600

16 32 6 250/500*

PowerVR 4 20 + 2 dot† 8 176/166*

ARM Mali
T760MP8

32 128 2 332/664*

NVIDIA Tegra
X1 NVIDIA
GeForce GTX
980 (discrete)

32 128 16 4612/ — (1.1 GHz)

Xbox 360 ATI
Xenos (console)

16 80 3 240/ — (500 MHz)

* Gflops for mobile GPUs computed using 650 MHz core clock
† Mali ALUs: not multiply-add ALUs—2 pipelines/core × (5 mul + 5 add + fp32 vec4 dot product) per pipeline

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

M OB ILE A N D U B IQ U ITOUS SYSTE M S

M OB ILE A N D U B IQ U ITOUS SYSTE M S

APRIL–JUNE 2016 PERVASIVE computing 11

SMARTPHONES

Tiled Rendering to Reduce
Memory Bandwidth
The most notable difference between
current desktop and mobile GPU imple-
mentations is the use of bandwidth-
preserving tiled rendering techniques
in mobile GPU designs. (Imagination,
ARM, and Qualcomm GPUs all employ
forms of tiled rendering.) As illustrated
in Figure 2a, in a nontiled rendering
pipeline implementation, the GPU
immediately processes geometry pro-
vided by the application. The GPU will
load a geometric primitive (such as a tri-
angle) from memory, execute the entire
OpenGL rendering pipeline on this
primitive, and then potentially update
pixels in the output image. While access
to input geometry data is bandwidth
efficient (primitives are only loaded
from memory once), updating output
image pixels can incur a high bandwidth
cost, because a high-resolution output
image is too large to remain resident in
local, on-chip storage.

In contrast, tiled rendering systems
(Figure 2b) reorganize the rendering
pipeline into two phases that reduce
memory traffic by increasing the tempo-
ral locality of accesses to output image
pixels. The first phase of rendering par-
titions the screen into disjoint regions

called tiles and sorts scene primitives
according to the tiles they overlap. In
the second phase, each tile is indepen-
dently rendered using only the scene
primitives determined (in phase 1) to
be visible in that region of the screen.

The advantage of tiled rendering
is that tiles can be sized to ensure all
pixel data for a tile remains resident in
on-chip storage (for example, small tile
sizes, such as 16 × 16 or 32 × 32 pixels,
are common). As a result, when render-
ing a tile, all updates to pixels in the tile
(for the entire scene’s worth of geom-
etry) can be serviced without incurring
off-chip memory traffic. Only when a
tile has been fully rendered must final
pixel values be transferred to memory
for subsequent display.

Tiled rendering incurs the overhead
of two phases of computation and
must store intermediate results (per-
tile primitive lists) to memory between
phases. However, because current
mobile graphics workloads feature
only a modest number of scene primi-
tives and are rendered to extremely
high pixel count displays, improving
the locality of access to pixel data often
yields significant energy-efficiency ben-
efits. Evolution of mobile 3D graphics
workloads toward increasingly high

geometric complexity scenes will
require mobile GPU architects to
reevaluate the efficiency of their cur-
rent tiling methods. For example,
Qualcomm’s Adreno mobile GPUs
already features the ability to dynami-
cally select between tiled and non-tiled
rendering methods based on character-
istics of the 3D rendering workload.

Hardware-Accelerated Data
Compression
Mobile GPUs also reduce the band-
width requirements of 3D graphics
using extensive hardware support for
data compression. While all GPUs (both
desktop and mobile) contain hardware
for compressing texture and output
image pixel data prior to transfer to
or from main memory, advanced tech-
niques that achieve higher compression
ratios, such as ARM’s Adaptive Scalable
Texture Compression (ASTC), have been
aggressively developed and adopted by
mobile GPU vendors. Data-compression
hardware is not only present in the GPU
but also in display hardware. It’s com-
mon for rendered images to be stored
and transferred to the display in a
compressed form to save bandwidth,
and then to be decompressed directly
by the display hardware.

Figure 2. An (a) untiled and (b) tiled graphics pipeline. Tiled rendering systems achieve bandwidth-efficient (and therefore
energy-efficient) operation by reorganizing the rendering computation into a two-phase process. Primitives are first sorted
into tiles by the screen region they overlap. Then, the geometry in each tile is rendered on a per-tile basis. By restructuring the
rendering computation to proceed in tile order, rather than primitive order, tiled rendering systems improve the locality of access
to pixel data, significantly reducing the bandwidth required to render an image.

Nontiled graphics pipeline:

Tiled graphics pipeline:

Geometry
processingInput primitives

Tile 1

Tile 2 Tile 4

Tile 3

Pixel
coverage

Pixel
processing

For each tile:

On-chip
tile buffer

Tile
overlap

Phase 1: Assign primitives to tiles Phase 2: Render primitives into each tile

Geometry
processing

Pixel
coverage

Pixel
processing

Input primitives
Output image
(stored in DRAM)

(a)

(b)

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

M OB ILE A N D U B IQ U ITOUS SYSTE M S

M OB ILE A N D U B IQ U ITOUS SYSTE M S

12 PERVASIVE computing www.computer.org/pervasive

SMARTPHONES

SMARTPHONES

Aggressive Discarding
of Rendering Work
Mobile GPUs further conserve memory
bandwidth and reduce overall energy
consumption by seeking to perform
as little work as possible to render an
image. Mobile GPUs aggressively dis-
card primitives (or pieces of primitives)
from the rendering pipeline when it’s
determined that they won’t contribute
to the final image. For example, it’s
wasteful for a GPU to compute per-
pixel lighting and shading computa-
tions (and access off-chip texture data
required by these computations) for an
object that is later determined to be
occluded by another object in the scene.

One popular technique for avoiding
nearly all unnecessary per-pixel shading
computations is to defer shading compu-
tations until after the visibility of all scene
geometry in a tile (or screen region) is
known. In desktop graphics applications,
these deferred shading optimizations are
typically implemented by applications on
top of the OpenGL pipeline implementa-
tion. On mobile platforms, they’re often
directly accelerated by GPU hardware,
because it’s efficient to perform deferred
shading as part of tiled OpenGL pipe-
line implementations. Mobile GPUs also
perform additional work-elimination
optimizations such as skipping updates
to pixels that don’t change from frame
to frame (for example, ARM’s memory
transaction elimination).

A NEED FOR NEW
PROGRAMMING
ABSTRACTIONS
Mobile GPU architects have succeeded
at aggressively optimizing the implemen-
tation of mobile 3D rendering pipelines,
because abstractions for describing 3D
graphics computations are well estab-
lished, stable, and standardized across the
industry. Today, a major question facing
application developers and system imple-
menters is how to establish similar, unify-
ing high-level abstractions for a broader
set of visual computing applications, such
as image processing, computational pho-
tography, and computer vision.

One recent success is the Halide lan-
guage, originally developed at MIT,
which enables image-processing algo-
rithms to be described concisely using
high-level functional abstractions. Halide
greatly simplifies the process of mapping
(or “scheduling”) an image-processing
algorithm onto the multicore and SIMD
execution resources of modern proces-
sors, such as CPUs and mobile GPUs.
Halide is now in use at Google to author
high-performance implementations of
computational photography applications,
such as the HDR+ application in hundreds
of millions of Android smartphones.

The design and success of shading
languages for 3D graphics has inspired
interest in creating new data-parallel
programming languages that simplify
the process of running code on a mobile
GPU’s programmable cores. Kronos’s
OpenCL, Apple’s Metal, and Android’s
Renderscript all seek to provide data-
parallel—but not 3D-rendering
specific—applications access to high-
throughput GPU processing.

At the other end of the spectrum, SoC
vendors continue to expose the compute
capabilities of their platforms through
domain-specific libraries. For example,
Qualcomm’s FastCV or NVIDIA’s
VisionWorks provide applications with
heavily optimized image processing and
computer vision kernels. Deep neural-
network implementations (key kernels
used by many modern computer vision
algorithms) are also provided to appli-
cations as black-box libraries, such as
NVIDIA’s CUDA Deep Neural Net-
work (cuDNN) library.

As both the compute resources on an
SoC and the complexity and workload
diversity of visual computing applica-
tions continues to grow, it will become
increasingly challenging for mobile
application developers to harness the
power and efficiency of these systems.
For example, future programmable
ISPs will likely join CPUs and GPUs
as a third type of programmable com-
pute unit available on most platforms,
further complicating the challenge fac-
ing application developers (or parallel

runtime developers) of selecting the
best execution platform for a particular
visual computing task. Future applica-
tions will surely involve the integration
of several classes of workloads, requir-
ing tight synchronization and data
transfer between the different system
components. New domain-specific
programming frameworks, tailored
specifically to the needs of specific areas
of visual computing (as opposed to gen-
eral, heterogeneous parallel computing
languages), are the most likely approach
to successfully meeting the goals of
programmer productivity and high-
efficiency execution in these contexts.

HARDWARE TRENDS
Until recently, mobile hardware archi-
tects have focused on increasing sys-
tem efficiency to achieve higher perfor-
mance and deliver functionality present
in traditional computing platforms (for
example, 64-bit addressing, virtualiza-
tion support, and feature parity in 3D
graphics). In the near future, interest
will likely shift toward tighter integra-
tion of the powerful compute engines
on the SoC—a unique challenge that
hasn’t already been addressed in the
desktop setting. For example, ongoing
efforts to facilitate CPU and GPU com-
munication via a single address space
might be extended to address coher-
ence issues and grow to include addi-
tional IP blocks such as a program-
mable ISP. Efficient hardware support
for synchronizing these heterogeneous
units and enabling fine-grained com-
munication through on-chip buffers
(rather than off-chip memory) will also
be of high interest.

Another vector of future innovation
will explore new types of specialized
compute engines for the SoC. The
programmable ISP for image process-
ing and computational photography
is one clear direction for additional
specialization. Recently, Imagination
announced plans to include hard-
ware units that accelerate ray-tracing
operations (in addition to traditional
OpenGL graphics operations) in future

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

M OB ILE A N D U B IQ U ITOUS SYSTE M S

M OB ILE A N D U B IQ U ITOUS SYSTE M S

APRIL–JUNE 2016 PERVASIVE computing 13

SMARTPHONES

PowerVR GPUs. Also, growing interest
in always-on speech recognition and
computer vision is motivating many
research efforts to design dedicated
hardware that accelerates deep neural
network evaluation.

I n the coming decade, emerging media
platforms, such as virtual reality and

augmented reality systems, will place
immense demands on mobile 3D graph-
ics systems to synthesize high-resolution
images. Computational photography
applications will continue to provide
more intelligent and rich ways for con-
sumers to capture and share life events.
Cameras are rapidly becoming common-
place in vehicles to help drivers (both
human and autonomous) interpret and
safely navigate the world. Organiza-
tions, both public and private, are using
extended duration video capture to pro-
vide security (via security cameras and
body-mounted police cameras) and to
measure and understand the behavior of
the world (urban governments seek to use
image analysis to count traffic, measure
pollution, find available parking spots,
and more efficiently manage cities).

In all of these cases, visual computing
tasks serve as a driving force for mak-
ing high-throughput, low-energy com-
puting ubiquitous in the real world. This
domain will continue to operationalize
as much computing capability as archi-
tects can provide, and will push the lim-
its of high-efficiency mobile computing
for years to come.

Selected CS articles and columns
are also available for free at
http://ComputingNow.computer.org.

Kayvon Fatahalian is an

assistant professor of com-

puter science at Carnegie

Mellon University. Contact

him at kayvonf@cs.cmu.

edu.

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

M OB ILE A N D U B IQ U ITOUS SYSTE M S

M OB ILE A N D U B IQ U ITOUS SYSTE M S

__

