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I n the past decade, the growing 
demand for compute-intensive visual 

computing applications (applications 
that synthesize, manipulate, and inter-
pret images and videos) has spurred the 
development of mobile graphics and 
image-processing architectures that 
achieve exceptional levels of energy 
efficiency. Today, hundreds of millions 
of smartphones operate within a power 
budget of only a few watts while fea-
turing GPUs offering close to a quarter 
teraflop of compute capability. These 
energy-optimized mobile GPUs, whose 
performance now exceeds that of older-
generation game consoles (such as the 
XBox 360 or Playstation 3), render 
complex 3D scenes at high frame rates 
for high-pixel-density displays.

The programmable execution units 
in mobile GPUs, together with image 
signal processors (ISPs) and multicore 
mobile CPUs, also form a platform for 
rapid innovation in consumer digital 
photography. High-frame-rate video, 
high-dynamic-range imaging, and 
interactive photo-stitching on 1080p 
and higher video streams are now 
common features on many devices. 
Perhaps even more important, in 
the coming years, these systems will 
increasingly be tasked with not only 
generating and manipulating images 
but also interpreting them. Applica-
tions relying on high-performance, 
energy-efficient computer vision and 
image understanding capabilities 
are becoming increasingly prevalent 
on consumer smartphones and in a 

broad array of “always on” embedded 
platforms used in automotive, robot-
ics, security, and smart-city sensing 
scenarios.

The world’s demand for increas-
ingly capable mobile visual comput-
ing applications running on a range of 
low-energy computing platforms shows 
no sign of slowing down for the fore-
seeable future. Therefore, it’s helpful 
for engineers to understand the tech-
nologies and solutions used to deliver 

efficient platforms today, and to look 
ahead at the challenges these emerging 
workloads will present to system archi-
tects in the years to come.

WHAT IS MOBILE VISUAL 
COMPUTING?
Not long ago, mobile graphics engi-
neers struggled to meet the challenges 
of delivering responsive user interfaces 
for multitouch devices, supporting 
simple OpenGL-based 3D graphics, 
and playing back a feature-length HD 
movie on a single battery charge. Mod-
ern mobile computing applications 
present a significantly more demanding 
set of requirements.

High-Resolution 3D Graphics
Games developed for smartphones 
and tablets now feature elaborate 
3D scenes with complex geometry, 
materials, and lighting. These appli-
cations require nearly the same set of 
GPU functionality as AAA game titles 
developed for desktop-graphics APIs 
(such as OpenGL 4 or Direct3D 11). 
As a result, the difference between 
mobile and desktop 3D graphics is 
now largely one of performance, not 
critical feature set, as evidenced by 
popular game engine frameworks 
(such as Unity and Unreal Engine) tar-
geting both desktop and mobile plat-
forms with the same tools.

Although 3D graphics workloads 
involve many operations that are best 
carried out by fixed-function process-
ing (texture mapping, tessellation, ras-
terization, and surface occlusion), the 
most expensive operations are applica-
tion-programmable “shading” opera-
tions that evaluate the color of each 
screen pixel. These operations, which 
simulate the physics of light reflecting 
off the surface visible in each pixel, are 
highly data-parallel and must be car-
ried out using floating-point arithme-
tic (although half-precision floating-
point operations are often suitable).

Computational Photography
Capturing high-quality photographs 
and videos is an essential feature of 
any modern smartphone. Many camera 
applications rely on computational 
photography methods, which digitally 
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manipulate image sensor output to 
obtain higher quality photographs or 
to synthesize new photographs that 
can’t be acquired directly due to the 
physical limitations of a smartphone 
camera’s optical system. For example, 
modern smartphones perform sophis-
ticated image enhancements (including 
denoising, white-balance, and contrast 
enhancement) on raw sensor output to 
produce images that rival the quality 
of low-end digital single-lens reflex 
(DSLR) cameras. Applications also 
manipulate and combine multiple shots 
to simulate DSLR effects (such as lens 
defocus blur), synthesize high-dynamic 
range images, remove the effects of 
camera shake, automatically stitch 
images together to create panoramas, 
and even help photographers capture 
the right moment by selecting the best 
shot in a burst-mode sequence.

In all cases, these operations must 
complete in near real time to ensure a 
high-quality user experience. For effi-
ciency, it’s often sufficient to perform 
many computational photography oper-
ations using half-precision floating-point 
or low-precision fixed-point operations.

Real-Time Computer Vision and 
Image Understanding
Rapid recent advances in computer 
vision algorithms are making it pos-
sible for computers to intelligently 
interpret the contents of images and 
videos. Soon, applications will be able 
to track and identify people, objects, or 
potential obstacles in the camera’s envi-
ronment, detect (even predict) human 
activities, and reconstruct the 3D geom-
etry of a dynamic scene. These image-
understanding operations dwarf the 
sophistication of today’s simple image 
analysis tasks (such as reading QR 
codes or identifying books from photo-
graphs of their covers), and they will be 
key functionalities expected in mobile 
devices in the coming years.

Computer vision workloads involve 
a range of operations, from low-
level image-processing tasks, such 
as feature extraction and motion 

estimation, to compute-intensive 
operations, such as the evaluation of 
deep neural networks and classifiers. 
These operations must proceed in 
real time on video streams and over 
extended recording durations.

HETEROGENEOUS PARALLEL 
PROCESSING
A modern system on chip (SoC) executes 
visual computing tasks using a heteroge-
neous collection of processing resources. 
Many of these processing resources are 
specialized to achieve high performance 
per watt for a specific class of workloads, 
giving application developers a choice of 
what resource to use for a particular 
task. A sketch of a typical system archi-
tecture is given in Figure 1.

This system features a multicore 
mobile CPU supporting throughput-
oriented short-vector instructions 
(such as ARM’s 128-bit NEON 
instructions). The system also has a 
GPU featuring both 3D-rendering 
specific logic blocks and a collection 
of application-programmable cores. 

While the CPU’s cores are well suited 
for instruction streams with complex 
control flow, GPU cores provide high 
floating-point instruction throughput 
for data-parallel computations. Shad-
ing computations for OpenGL-based 
3D graphics are the principle workload 
executed on the GPU’s cores, but these 
processors can also serve as a platform 
for high-performance pixel manipula-
tion in computational photography 
and computer vision applications.

The compute capability of the pro-
grammable CPU and GPU cores is aug-
mented by an ISP, which is designed to 
efficiently execute the pipeline of image-
processing operations that convert raw 
image sensor output into common 
YUV or RGB image formats (demosa-
icing, dead-pixel correction, and so on). 
Although ISP blocks have traditionally 
supported only limited programma-
bility (if at all), increasing sophistica-
tion and diversity in image-processing 
algorithms is now motivating more 
versatile, programmable ISP designs. 
For example, Qualcomm’s Snapdragon 

Figure 1. System on chip (SoC) processing resources used by visual computing 
apps. A modern SoC features a heterogeneous collection of processing resources, 
which present application and runtime system developers with the challenge of 
determining which resources most efficiently execute different visual computing 
workloads. GPU core designs achieve high throughput by aggressively employing 
single-instruction multiple-data (SIMD) processing.
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820 SoC provides a programmable ISP 
(Hexagon 680) capable of executing 
integer vector instructions specific to 
high-efficiency image processing. In 
addition to CPU, GPU, and ISP blocks, 
modern SoCs also retain specialized 
hardware engines for image and video 
compression and decompression tasks 
(JPG, H.264, and so on).

MOBILE GPU PROGRAMMABLE
RESOURCES
A significant fraction of the compute 
capability in a modern SoC lies within the 
programmable cores of the GPU. In many 
high-end smartphones, these highly ver-
satile but throughput-optimized process-
ing units provide over a quarter teraflop 
of single-precision floating-point perfor-
mance. Although low-level architectural 
details vary across vendors (and are main-
tained as trade secrets by some), modern 
mobile GPU core designs all share several 
key characteristics.

Wide SIMD Execution
GPU core designs achieve high through-
put by aggressively employing single-
instruction multiple-data (SIMD) 
processing to pack cores densely with 
arithmetic logic units (ALUs). Modern 
designs range from 4-wide SIMD execu-
tion (ARM Mali) to 16-wide (Imagination 

PowerVR) and 32-wide (NVIDIA 
Tegra) configurations. Designs also 
mix wide SIMD execution with limited 
superscalar (or very long instruction 
word) execution to achieve additional 
parallelism. For example, an Imagina-
tion 7-Series GPU core decodes up to 
two single-precision (fp32) instructions 
per clock and executes each on a 16-wide 
group of SIMD ALUs. Similarly, each of 
the two cores in the NVIDIA Tegra X1 
GPU execute up to four 32-wide fp32 
instructions per clock.

Accelerated Half-Precision 
Floating Point
In contrast to desktop GPU designs, 
mobile GPU cores place heavy empha-
sis on support for energy-efficient, 
half-precision floating-point arithmetic 
(fp16). Many designs can perform fp16 
operations at twice the throughput of 
single-precision operations. As a result, 
using half-precision instructions has 
both performance and energy-efficiency 
benefits. Mobile application developers 
are heavily encouraged to use lower-
precision fp16 instructions when they’re 
sufficient for an application’s needs.

Multithreaded Execution
To compute the color of output pixels, 
shading computations in the OpenGL 

graphics pipeline access data stored in 
large DRAM-resident buffers called 
textures. Mobile GPUs employ tradi-
tional caching mechanisms and on-chip 
static RAMs to reduce memory traffic 
as much as possible, but like their desk-
top GPU counterparts, they also use a 
large degree of hardware multithread-
ing to avoid ALU stalls by hiding the 
latency of off-chip data access.

Table 1 summarizes the architectural 
features and peak compute capability of 
several recent mobile GPU designs and 
compares these designs with that of a 
high-end discrete GPU (NVIDIA GTX 
980) as well as the GPU in the XBox 
360 gaming console. (The Imagination 
and ARM mobile GPUs are representa-
tive of parts in the iPhone 6s and Gal-
axy 6S smartphones, respectively.) Peak 
throughput for the mobile GPUs is com-
puted using a 650 MHz clock, although 
actual clock rates in shipping devices can 
dynamically vary well below or above 
this estimate. The compute capabilities 
of the mobile GPUs exceed that of the 
XBox 360, and in several designs, fp16 
performance exceeds a half a teraflop. 
The NVIDIA Tegra X1 GPU is targeted 
at higher end mobile devices, such as 
gaming tablets or vehicular systems. 
When running at 1 GHz (a plausible 
clock rate in a more energy-plentiful 
computing environment, such as a vehi-
cle), the GPU can deliver over 1 Tflop of 
fp16 performance.

BANDWIDTH-EFFICIENT 
3D GRAPHICS
Implementations of the OpenGL 3D 
graphics pipeline on mobile GPUs 
serve as telling examples of the extent 
to which visual computing tasks must 
be reoptimized for energy efficiency. 
These implementations reflect a key 
design principle of energy-optimized 
system design: reduce or eliminate off-
chip data access whenever possible. 
The pursuit of bandwidth-efficient ren-
dering in the mobile setting has led to 
notable differences in graphics pipeline 
implementation between mobile and 
desktop GPUs.

TABLE 1
Mobile GPUs employ multicore, single-instruction multiple-data (SIMD) designs 
to deliver high-peak floating-point throughput. Many designs attain even higher 

peak throughput for half-precision floating-point (fp16) operations.

SIMD width

Arithmetic logic 
units/core (fp32 
multiply-add)

Cores/
GPU Gflops (fp32/fp16)

Imagination 
GT7600

16 32 6 250/500*

PowerVR 4 20 + 2 dot† 8 176/166*

ARM Mali 
T760MP8

32 128 2 332/664*

NVIDIA Tegra 
X1 NVIDIA 
GeForce GTX 
980 (discrete)

32 128 16 4612/ — (1.1 GHz)

Xbox 360 ATI 
Xenos (console)

16 80 3 240/ — (500 MHz)

* Gflops for mobile GPUs computed using 650 MHz core clock
† Mali ALUs: not multiply-add ALUs—2 pipelines/core × (5 mul + 5 add + fp32 vec4 dot product) per pipeline
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Tiled Rendering to Reduce 
Memory Bandwidth
The most notable difference between 
current desktop and mobile GPU imple-
mentations is the use of bandwidth-
preserving tiled rendering techniques 
in mobile GPU designs. (Imagination, 
ARM, and Qualcomm GPUs all employ 
forms of tiled rendering.) As illustrated 
in Figure 2a, in a nontiled rendering 
pipeline implementation, the GPU 
immediately processes geometry pro-
vided by the application. The GPU will 
load a geometric primitive (such as a tri-
angle) from memory, execute the entire 
OpenGL rendering pipeline on this 
primitive, and then potentially update 
pixels in the output image. While access 
to input geometry data is bandwidth 
efficient (primitives are only loaded 
from memory once), updating output 
image pixels can incur a high bandwidth 
cost, because a high-resolution output 
image is too large to remain resident in 
local, on-chip storage.

In contrast, tiled rendering systems 
(Figure 2b) reorganize the rendering 
pipeline into two phases that reduce 
memory traffic by increasing the tempo-
ral locality of accesses to output image 
pixels. The first phase of rendering par-
titions the screen into disjoint regions 

called tiles and sorts scene primitives 
according to the tiles they overlap. In 
the second phase, each tile is indepen-
dently rendered using only the scene 
primitives determined (in phase 1) to 
be visible in that region of the screen.

The advantage of tiled rendering 
is that tiles can be sized to ensure all 
pixel data for a tile remains resident in 
on-chip storage (for example, small tile 
sizes, such as 16 × 16 or 32 × 32 pixels, 
are common). As a result, when render-
ing a tile, all updates to pixels in the tile 
(for the entire scene’s worth of geom-
etry) can be serviced without incurring 
off-chip memory traffic. Only when a 
tile has been fully rendered must final 
pixel values be transferred to memory 
for subsequent display.

Tiled rendering incurs the overhead 
of two phases of computation and 
must store intermediate results (per-
tile primitive lists) to memory between 
phases. However, because current 
mobile graphics workloads feature 
only a modest number of scene primi-
tives and are rendered to extremely 
high pixel count displays, improving 
the locality of access to pixel data often 
yields significant energy-efficiency ben-
efits. Evolution of mobile 3D graphics 
workloads toward increasingly high 

geometric complexity scenes will 
require mobile GPU architects to 
reevaluate the efficiency of their cur-
rent tiling methods. For example, 
Qualcomm’s Adreno mobile GPUs 
already features the ability to dynami-
cally select between tiled and non-tiled 
rendering methods based on character-
istics of the 3D rendering workload.

Hardware-Accelerated Data 
Compression
Mobile GPUs also reduce the band-
width requirements of 3D graphics 
using extensive hardware support for 
data compression. While all GPUs (both 
desktop and mobile) contain hardware 
for compressing texture and output 
image pixel data prior to transfer to 
or from main memory, advanced tech-
niques that achieve higher compression 
ratios, such as ARM’s Adaptive Scalable 
Texture Compression (ASTC), have been 
aggressively developed and adopted by 
mobile GPU vendors. Data-compression 
hardware is not only present in the GPU 
but also in display hardware. It’s com-
mon for rendered images to be stored 
and transferred to the display in a 
compressed form to save bandwidth, 
and then to be decompressed directly 
by the display hardware.

Figure 2. An (a) untiled and (b) tiled graphics pipeline. Tiled rendering systems achieve bandwidth-efficient (and therefore 
energy-efficient) operation by reorganizing the rendering computation into a two-phase process. Primitives are first sorted 
into tiles by the screen region they overlap. Then, the geometry in each tile is rendered on a per-tile basis. By restructuring the 
rendering computation to proceed in tile order, rather than primitive order, tiled rendering systems improve the locality of access 
to pixel data, significantly reducing the bandwidth required to render an image.
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Aggressive Discarding 
of Rendering Work
Mobile GPUs further conserve memory 
bandwidth and reduce overall energy 
consumption by seeking to perform 
as little work as possible to render an 
image. Mobile GPUs aggressively dis-
card primitives (or pieces of primitives) 
from the rendering pipeline when it’s 
determined that they won’t contribute 
to the final image. For example, it’s 
wasteful for a GPU to compute per-
pixel lighting and shading computa-
tions (and access off-chip texture data 
required by these computations) for an 
object that is later determined to be 
occluded by another object in the scene.

One popular technique for avoiding 
nearly all unnecessary per-pixel shading 
computations is to defer shading compu-
tations until after the visibility of all scene 
geometry in a tile (or screen region) is 
known. In desktop graphics applications, 
these deferred shading optimizations are 
typically implemented by applications on 
top of the OpenGL pipeline implementa-
tion. On mobile platforms, they’re often 
directly accelerated by GPU hardware, 
because it’s efficient to perform deferred 
shading as part of tiled OpenGL pipe-
line implementations. Mobile GPUs also 
perform additional work-elimination 
optimizations such as skipping updates 
to pixels that don’t change from frame 
to frame (for example, ARM’s memory 
transaction elimination).

A NEED FOR NEW
PROGRAMMING 
ABSTRACTIONS
Mobile GPU architects have succeeded 
at aggressively optimizing the implemen-
tation of mobile 3D rendering pipelines, 
because abstractions for describing 3D 
graphics computations are well estab-
lished, stable, and standardized across the 
industry. Today, a major question facing 
application developers and system imple-
menters is how to establish similar, unify-
ing high-level abstractions for a broader 
set of visual computing applications, such 
as image processing, computational pho-
tography, and computer vision.

One recent success is the Halide lan-
guage, originally developed at MIT, 
which enables image-processing algo-
rithms to be described concisely using 
high-level functional abstractions. Halide 
greatly simplifies the process of mapping 
(or “scheduling”) an image-processing 
algorithm onto the multicore and SIMD 
execution resources of modern proces-
sors, such as CPUs and mobile GPUs. 
Halide is now in use at Google to author 
high-performance implementations of 
computational photography applications, 
such as the HDR+ application in hundreds 
of millions of Android smartphones.

The design and success of shading 
languages for 3D graphics has inspired 
interest in creating new data-parallel 
programming languages that simplify 
the process of running code on a mobile 
GPU’s programmable cores. Kronos’s 
OpenCL, Apple’s Metal, and Android’s 
Renderscript all seek to provide data-
parallel—but not 3D-rendering 
specific—applications access to high-
throughput GPU processing.

At the other end of the spectrum, SoC 
vendors continue to expose the compute 
capabilities of their platforms through 
domain-specific libraries. For example, 
Qualcomm’s FastCV or NVIDIA’s 
VisionWorks provide applications with 
heavily optimized image processing and 
computer vision kernels. Deep neural-
network implementations (key kernels 
used by many modern computer vision 
algorithms) are also provided to appli-
cations as black-box libraries, such as 
NVIDIA’s CUDA Deep Neural Net-
work (cuDNN) library.

As both the compute resources on an 
SoC and the complexity and workload 
diversity of visual computing applica-
tions continues to grow, it will become 
increasingly challenging for mobile 
application developers to harness the 
power and efficiency of these systems. 
For example, future programmable 
ISPs will likely join CPUs and GPUs 
as a third type of programmable com-
pute unit available on most platforms, 
further complicating the challenge fac-
ing application developers (or parallel 

runtime developers) of selecting the 
best execution platform for a particular 
visual computing task. Future applica-
tions will surely involve the integration 
of several classes of workloads, requir-
ing tight synchronization and data 
transfer between the different system 
components. New domain-specific 
programming frameworks, tailored 
specifically to the needs of specific areas 
of visual computing (as opposed to gen-
eral, heterogeneous parallel computing 
languages), are the most likely approach 
to successfully meeting the goals of 
programmer productivity and high-
efficiency execution in these contexts.

HARDWARE TRENDS
Until recently, mobile hardware archi-
tects have focused on increasing sys-
tem efficiency to achieve higher perfor-
mance and deliver functionality present 
in traditional computing platforms (for 
example, 64-bit addressing, virtualiza-
tion support, and feature parity in 3D 
graphics). In the near future, interest 
will likely shift toward tighter integra-
tion of the powerful compute engines 
on the SoC—a unique challenge that 
hasn’t already been addressed in the 
desktop setting. For example, ongoing 
efforts to facilitate CPU and GPU com-
munication via a single address space 
might be extended to address coher-
ence issues and grow to include addi-
tional IP blocks such as a program-
mable ISP. Efficient hardware support 
for synchronizing these heterogeneous 
units and enabling fine-grained com-
munication through on-chip buffers 
(rather than off-chip memory) will also 
be of high interest.

Another vector of future innovation 
will explore new types of specialized 
compute engines for the SoC. The 
programmable ISP for image process-
ing and computational photography 
is one clear direction for additional 
specialization. Recently, Imagination 
announced plans to include hard-
ware units that accelerate ray-tracing 
operations (in addition to traditional 
OpenGL graphics operations) in future 
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PowerVR GPUs. Also, growing interest 
in always-on speech recognition and 
computer vision is motivating many 
research efforts to design dedicated 
hardware that accelerates deep neural 
network evaluation.

I n the coming decade, emerging media 
platforms, such as virtual reality and 

augmented reality systems, will place 
immense demands on mobile 3D graph-
ics systems to synthesize high-resolution 
images. Computational photography 
applications will continue to provide 
more intelligent and rich ways for con-
sumers to capture and share life events. 
Cameras are rapidly becoming common-
place in vehicles to help drivers (both 
human and autonomous) interpret and 
safely navigate the world. Organiza-
tions, both public and private, are using 
extended duration video capture to pro-
vide security (via security cameras and 
body-mounted police cameras) and to 
measure and understand the behavior of 
the world (urban governments seek to use 
image analysis to count traffic, measure 
pollution, find available parking spots, 
and more efficiently manage cities).

In all of these cases, visual computing 
tasks serve as a driving force for mak-
ing high-throughput, low-energy com-
puting ubiquitous in the real world. This 
domain will continue to operationalize 
as much computing capability as archi-
tects can provide, and will push the lim-
its of high-efficiency mobile computing 
for years to come. 

Selected CS articles and columns 
are also available for free at 
http://ComputingNow.computer.org.
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