
UCL Tutorial on: 
Deep Belief Nets

(An updated and extended version of my 2007 NIPS tutorial)

Geoffrey Hinton
Canadian Institute for Advanced Research

&
Department of Computer Science

University of Toronto



Schedule for the Tutorial

• 2.00 – 3.30  Tutorial part 1
• 3.30 – 3.45   Questions

• 3.45 - 4.15    Tea Break

• 4.15 – 5.45   Tutorial part 2
• 5.45 – 6.00   Questions



Some things you will learn in this tutorial

• How to learn multi-layer generative models of unlabelled 
data by learning one layer of features at a time.
– How to add Markov Random Fields in each hidden layer.

• How to use generative models to make discriminative 
training methods work much better for classification and 
regression.
– How to extend this approach to Gaussian Processes and 

how to learn complex,  domain-specific kernels for a 
Gaussian Process.

• How to perform non-linear dimensionality reduction on very 
large datasets
– How to learn binary, low-dimensional codes and how to 

use them for very fast document retrieval.
• How to learn multilayer generative models of high-

dimensional sequential data.



A spectrum of machine learning tasks

• Low-dimensional data (e.g. 
less than 100 dimensions)

• Lots of noise in the data 

• There is not much structure in 
the data, and what structure 
there is, can be represented by 
a fairly simple model.

• The main problem is 
distinguishing true structure 
from noise. 

• High-dimensional data (e.g. 
more than 100 dimensions)

• The noise is not sufficient to 
obscure the structure in the 
data if we process it right.

• There is a huge amount of 
structure in the data, but the 
structure is too complicated to 
be represented by a simple 
model.

• The main problem is figuring 
out a way to represent the 
complicated structure so that it 
can be learned.

Typical Statistics------------Artificial Intelligence



Historical background:
First generation neural networks

• Perceptrons (~1960) 
used a layer of hand-
coded features and tried 
to recognize objects by 
learning how to weight 
these features.
– There was a neat 

learning algorithm for 
adjusting the weights.

– But perceptrons are 
fundamentally limited 
in what they can learn 
to do.

non-adaptive
hand-coded
features

output units  
e.g. class labels

input units 
e.g. pixels

Sketch of a typical 
perceptron from the 1960’s

Bomb Toy



Second generation neural networks (~1985)

input vector

hidden 
layers

outputs

Back-propagate  
              error 
signal to get 
derivatives for 
learning

Compare outputs with 
correct answer to get 
error signal



A temporary digression

• Vapnik and his co-workers developed a very clever type 
of perceptron called a Support Vector Machine.
– Instead of hand-coding the layer of non-adaptive 

features, each training example is used to create a 
new feature using a fixed recipe.

• The feature computes how similar a test example is to that 
training example. 

– Then a clever optimization technique is used to select 
the best subset of the features and to decide how to 
weight each feature when classifying a test case.

• But its just a perceptron and has all the same limitations.
• In the 1990’s, many researchers abandoned neural 

networks with multiple adaptive hidden layers because 
Support Vector Machines worked better.



What is wrong with back-propagation?

• It requires labeled training data.
– Almost all data is unlabeled.

• The learning time does not scale well
– It is very slow in networks with multiple 

hidden layers.
• It can get stuck in poor local optima.

– These are often quite good, but for deep 
nets they are far from optimal.



Overcoming the limitations of  back-
propagation

• Keep the efficiency and simplicity of using a 
gradient method for adjusting the weights, but use 
it for modeling the structure of the sensory input.
– Adjust the weights to maximize the probability 

that a generative model would have produced 
the sensory input. 

– Learn p(image)  not  p(label | image)
• If you want to do computer vision, first learn 

computer graphics
• What kind of generative model should we learn?



 Belief Nets
• A belief net is a directed 

acyclic graph composed of 
stochastic variables.

• We get to observe some of 
the variables and we would 
like to solve two problems:

• The inference problem: Infer 
the states of the unobserved 
variables.

• The learning problem: Adjust 
the interactions between 
variables to make the 
network more likely to 
generate the observed data.

stochastic
hidden       
 cause

visible 
effect

We will use nets composed of 
layers of stochastic binary variables 
with weighted connections.  Later, 
we will generalize to other types of 
variable.



Stochastic binary units
(Bernoulli variables)

• These have a state of 1 
or 0.

• The probability of 
turning on is determined 
by the weighted input 
from other units (plus a 
bias)

0
0

1

∑−−+
==

j
jiji

i wsb
sp

)exp(1
)( 1
1

∑+
j

jiji wsb

)( 1=isp



 Learning Deep Belief Nets
• It is easy to generate an 

unbiased example at the 
leaf nodes, so we can see 
what kinds of data the 
network believes in. 

• It is hard to infer the 
posterior distribution over 
all  possible configurations 
of hidden causes.

• It is hard to even get  a 
sample from the posterior.

• So how can we learn deep 
belief nets that have 
millions of parameters?

stochastic
hidden       
 cause

visible 
effect



The learning rule for sigmoid belief nets

• Learning is easy if we can 
get an unbiased sample 
from the posterior 
distribution over hidden 
states given the observed 
data.

• For each unit, maximize 
the log probability that its 
binary state in the sample 
from the posterior would be 
generated by the sampled 
binary states of its parents. 

∑−+
==≡

j
jij

ii ws
spp

)exp(1
)( 1
1

j

i

jiw

)( iijji pssw −=∆ ε

is

js

learning 
rate



Explaining away (Judea Pearl)

• Even if two hidden causes are independent, they can 
become dependent when we observe an effect that they can 
both influence. 
– If we learn that there was an earthquake it reduces the 

probability that the house jumped because of a truck.

truck hits house earthquake

house jumps

20 20

-20

-10 -10

 
p(1,1)=.0001
p(1,0)=.4999
p(0,1)=.4999
p(0,0)=.0001

posterior



Why it is usually very hard to learn     
sigmoid belief nets one layer at a time

• To learn W, we need the posterior 
distribution in the first hidden layer.

• Problem 1: The posterior is typically 
complicated because of “explaining 
away”.

• Problem 2: The posterior depends 
on the prior as well as the likelihood. 
– So to learn W, we need to know 

the weights in higher layers, even 
if we are only approximating the 
posterior. All the weights interact.

• Problem 3: We need to integrate 
over all possible configurations of 
the higher variables to get the prior 
for first hidden layer. Yuk!

          data

hidden variables

hidden variables

hidden variables

  likelihood W

prior



Some methods of learning 
deep belief nets

• Monte Carlo methods can be used to sample 
from the posterior.
– But its painfully slow for large, deep models.

• In the 1990’s people developed variational 
methods for learning deep belief nets
– These only get approximate samples from the 

posterior. 
– Nevetheless, the learning is still guaranteed to 

improve a variational  bound on the log 
probability of generating the observed data.



The breakthrough that makes deep 
learning efficient

• To learn deep nets efficiently, we need to learn one layer 
of features at a time. This does not work well if we 
assume that the latent variables are independent in the 
prior :
– The latent variables are not independent in the 

posterior  so inference is hard for non-linear models.
–  The learning tries to find independent causes using 

one hidden layer which is not usually possible.
• We need a way of learning one layer at a time that takes 

into account  the fact that we will be learning more 
hidden layers later.
– We solve this problem by using an undirected model.



Two types of generative neural network

• If we connect binary stochastic neurons in a 
directed acyclic graph we get a Sigmoid Belief 
Net (Radford Neal 1992).

• If we connect binary stochastic neurons using 
symmetric connections we get a Boltzmann 
Machine (Hinton & Sejnowski, 1983).
– If we restrict the connectivity in a special way, 

it is easy to learn a Boltzmann machine.



Restricted Boltzmann Machines
(Smolensky ,1986, called them “harmoniums”)

• We restrict the connectivity to make 
learning easier.
– Only one layer of hidden units.

• We will deal with more layers later
– No connections between hidden units.

• In an RBM, the hidden units are 
conditionally independent given the 
visible states.  
– So we can quickly get an unbiased 

sample from the posterior distribution 
when given a data-vector.

– This is a big advantage over directed 
belief nets

hidden

i

j

visible



The Energy of a joint configuration
(ignoring terms to do with biases)

∑−=
ji

ijji whvv,hE
,

)(

weight between 
units i and j

Energy with configuration 
v on the visible units and 
h on the hidden units

binary state of 
visible unit i

binary state of 
hidden unit j

ji
ij

hv
w
hvE =

∂
∂− ),(



Weights  Energies  Probabilities

• Each possible joint configuration of the visible 
and hidden units has an energy
–  The energy is determined by the weights and 

biases (as in a Hopfield net).
• The energy of a joint configuration of the visible 

and hidden units determines its probability:

• The probability of a configuration over the visible 
units is found by summing the probabilities of all 
the joint configurations that contain it. 

),(),( hvEhvp e−∝



Using energies to define probabilities

• The probability of a joint 
configuration over both visible 
and hidden units depends on 
the energy of that joint 
configuration compared with 
the energy of all other joint 
configurations.

• The probability of a 
configuration of the visible 
units is the sum of the 
probabilities of all the joint 
configurations that contain it.

∑ −

−
=

gu

guE

hvE

e
ehvp

,

),(

),(
),(

∑
∑

−

−

=

gu

guE
h

hvE

e

e
vp

,

),(

),(

)(

partition 
function



A picture of the maximum likelihood learning 
algorithm for an RBM

0>< jihv
∞>< jihv

i

j

i

j

i

j

i

j

t = 0                 t = 1                  t = 2                               t = infinity

∞><−><=
∂

∂
jiji

ij
hvhv

w
vp 0)(log

Start with a training vector on the visible units.

Then alternate between updating all the hidden units in 
parallel and updating all the visible units in parallel.

a fantasy



A quick way to learn an RBM

0>< jihv 1>< jihv

i

j

i

j

t = 0                 t = 1   

)( 10 ><−><=∆ jijiij hvhvw ε

Start with a training vector on the 
visible units.

Update all the hidden units in 
parallel

Update the all the visible units in 
parallel to get a “reconstruction”.

Update the hidden units again. 

This is not following the gradient of the log likelihood. But it 
works well. It is approximately following the gradient of another 
objective function (Carreira-Perpinan & Hinton, 2005).

reconstructiondata



How to learn a set of features that are good for 
reconstructing images of the digit 2 

50 binary 
feature 
neurons 

16 x 16 
pixel     
image 

50 binary 
feature 
neurons 

16 x 16 
pixel     
image 

Increment weights 
between an active 
pixel and an active 
feature

Decrement weights 
between an active 
pixel and an active 
feature

  data 
(reality)

   reconstruction    
(better than reality)



The final 50 x 256 weights

Each neuron grabs a different feature. 



Reconstruction 
from activated 
binary featuresData

Reconstruction 
from activated 
binary featuresData

How well can we reconstruct the digit images 
from the binary feature activations?

New test images from 
the digit class that the 
model was trained on

Images from an 
unfamiliar digit class 
(the network tries to see 
every image as a 2)



Three ways to combine probability density 
models (an underlying theme of the tutorial)

• Mixture:  Take a weighted average of the distributions.
– It can never be sharper than the individual distributions. 

It’s a very weak way to combine models.
• Product: Multiply the distributions at each point and then 

renormalize (this is how an RBM combines the distributions defined 
by each hidden unit)
– Exponentially more powerful than a mixture. The 

normalization makes maximum likelihood learning 
difficult, but approximations allow us to learn anyway.

• Composition: Use the values of the latent variables of one 
model as the data for the next model.
– Works well for learning multiple layers of representation, 

but only if the individual models are undirected.



Training a deep network
(the main reason RBM’s are interesting)

• First train a layer of features that receive input directly 
from the pixels.

• Then treat the activations of the trained features as if 
they were pixels and learn features of features in a 
second hidden layer.

• It can be proved that each time we add another layer of 
features we improve a variational lower bound on the log 
probability of the training data.
– The proof is slightly complicated. 
– But it is based on a neat equivalence between an 

RBM and a deep directed model (described later)



The generative model after learning 3 layers

• To generate data: 
1. Get an equilibrium sample 

from the top-level RBM by 
performing alternating Gibbs 
sampling for a long time.

2. Perform a top-down pass to 
get states for all the other 
layers.

     So the lower level bottom-up 
connections  are not part of 
the generative model. They 
are just used for inference.

         h2

      data

          h1

        h3

2W

3W

1W



Why does greedy learning work?        
An aside: Averaging factorial distributions      

  
• If you average some factorial distributions, you 

do NOT get a factorial distribution.
– In an RBM, the posterior over the hidden units 

is factorial for each visible vector.
– But the aggregated posterior over all training 

cases is not factorial (even if the data was 
generated by the RBM itself).



Why does greedy learning work?
• Each RBM converts its data distribution 

into an aggregated posterior distribution 
over its hidden units. 

• This divides the task of modeling its 
data into two tasks:
– Task 1: Learn generative weights 

that can convert the aggregated 
posterior distribution over the hidden 
units back into the data distribution.

– Task 2: Learn to model the 
aggregated posterior distribution 
over the hidden units.

– The RBM does a good job of task 1 
and a moderately good job of task 2.

• Task 2 is easier (for the next RBM) than 
modeling the original data because the 
aggregated posterior distribution is 
closer to a distribution that an RBM can 
model perfectly.

data distribution 
on visible units

     aggregated    
posterior distribution    
 on hidden units 

)|( Whp

),|( Whvp

Task 2

Task 1



Why does greedy learning work?

∑=
h

hvphpvp )|()()(

The weights, W,  in the bottom level RBM define 
p(v|h) and they also, indirectly, define p(h).

So we can express the RBM model as

If we leave p(v|h) alone and improve p(h), we will 
improve p(v). 

To improve p(h), we need it to be a better model of 
the aggregated posterior distribution over hidden 
vectors produced by applying W to the data.



Which distributions are factorial in a 
directed belief net?

• In a directed belief net with one hidden layer, the 
posterior over the hidden units  p(h|v) is non-
factorial (due to explaining away).
– The aggregated posterior is factorial if the 

data was generated by the directed model.
• It’s the opposite way round from an undirected 

model which has factorial posteriors and a non-
factorial prior  p(h) over the hiddens. 

• The intuitions that people have from using directed 
models are very misleading for undirected models.



Why does greedy learning fail in a directed module?

• A directed module also converts its data 
distribution into an aggregated  posterior 
– Task 1 The learning is now harder 

because the posterior for each training 
case is non-factorial.

– Task 2 is performed using an 
independent prior. This is a very bad 
approximation unless the aggregated 
posterior is close to factorial.

• A directed module attempts to make the 
aggregated posterior factorial in one step. 
– This is too difficult and leads to a bad 

compromise. There is also no 
guarantee that the aggregated 
posterior is easier to model than the 
data distribution.

data distribution 
on visible units

)|( 2Whp

),|( 1Whvp

Task 2

Task 1

     aggregated    
posterior distribution    
 on hidden units 



A model of digit recognition

2000 top-level neurons

500 neurons

500 neurons 

28 x 28 
pixel     
image 

10 label 
neurons 

The model learns to generate 
combinations of labels and images. 

To perform recognition we start with a 
neutral state of the label units and do 
an up-pass from the image followed 
by a few iterations of the top-level 
associative memory.

The top two layers form an 
associative memory  whose  
energy landscape models the low 
dimensional manifolds of the 
digits.

The energy valleys have names



Fine-tuning with a contrastive version of the 
“wake-sleep” algorithm

    After learning many layers of features, we can fine-tune 
the features to improve generation.

1.  Do a stochastic bottom-up pass
– Adjust the top-down weights to be good at 

reconstructing the feature activities in the layer below.
3. Do a few iterations of sampling in the top level RBM

-- Adjust the weights in the top-level RBM.
4. Do a stochastic top-down pass

– Adjust the bottom-up weights to be good at 
reconstructing the feature activities in the layer above.



Show the movie of the network 
generating digits

 (available at www.cs.toronto/~hinton)



Samples generated by letting the associative 
memory run with one label clamped. There are 
1000 iterations of alternating Gibbs sampling 

between samples.



Examples of correctly recognized handwritten digits
that the neural network had never seen before           

Its very 
good



How well does it discriminate on MNIST test set with 
no extra information about geometric distortions?

• Generative model based on RBM’s                   1.25%
• Support Vector Machine  (Decoste et. al.)    1.4%   
• Backprop with 1000 hiddens (Platt)                 ~1.6%
• Backprop with 500 -->300 hiddens                  ~1.6%
• K-Nearest Neighbor                                        ~ 3.3%
• See Le Cun et. al. 1998 for more results

• Its better than backprop and much more neurally plausible 
because the neurons only need to send one kind of signal, 
and the teacher can be another sensory input.



Unsupervised “pre-training” also helps for 
models that have more data and better priors

• Ranzato et. al. (NIPS 2006) used an additional 
600,000 distorted digits.

• They also used convolutional multilayer neural 
networks that have some built-in, local 
translational invariance.

Back-propagation alone:                  0.49% 

Unsupervised layer-by-layer
pre-training followed by backprop:   0.39% (record)



Another view of why layer-by-layer    
learning works (Hinton, Osindero & Teh 2006)

• There is an unexpected equivalence between 
RBM’s and directed networks with many layers 
that all use the same weights.
– This equivalence also gives insight into why 

contrastive divergence learning works.



An infinite sigmoid belief net 
that is equivalent to an RBM

• The distribution generated by this 
infinite directed net with replicated 
weights is the equilibrium distribution 
for a compatible pair of conditional 
distributions: p(v|h) and p(h|v) that 
are both defined by W
– A top-down pass of the directed 

net is exactly equivalent to letting 
a Restricted Boltzmann Machine 
settle to equilibrium.

– So this infinite directed net  
defines the same distribution as 
an RBM.

W
    v1

         h1

    v0

         h0

    v2

         h2

TW

TW

TW

W

W

etc.



• The variables in h0 are conditionally 
independent given v0.
– Inference is trivial. We just 

multiply v0 by W transpose.
– The model above h0 implements 

a complementary prior.
– Multiplying v0 by W transpose 

gives the product of the likelihood 
term and the prior term.

• Inference in the directed net is 
exactly equivalent to letting a 
Restricted Boltzmann Machine settle 
to equilibrium starting at the data.

Inference in a directed net 
with replicated weights

W
      v1

         h1

    v0

            h0

    v2

         h2

TW

TW

TW

W

W

etc.

+

+

+

+



• The learning rule for a sigmoid belief 
net is:

• With replicated weights this becomes:

W
   v1

        h1

   v0

        h0

   v2

        h2

TW

TW

TW

W

W

etc.

0
is

0
js

1
js

2
js

1
is

2
is

∞∞

+−

+−

+−

ij

iij

jji

iij

ss

sss

sss

sss

...)(

)(

)(

211

101

100

TW

TW

TW

W

W

)ˆ( iijij sssw −∝∆



• First learn with all the weights tied
– This is exactly equivalent to 

learning an RBM
– Contrastive divergence learning 

is equivalent to ignoring the small 
derivatives contributed by the tied 
weights between deeper layers.

Learning a deep directed 
network

W

W
    v1

         h1

    v0

         h0

    v2

         h2

TW

TW

TW

W

etc.

    v0

         h0

W



• Then freeze the first layer of weights 
in both directions and learn the 
remaining weights (still tied 
together).
– This is equivalent to learning 

another RBM, using the 
aggregated posterior distribution 
of h0 as the data.

W
    v1

         h1

    v0

         h0

    v2

         h2

TW

TW

TW

W

etc.

frozenW

    v1

         h0

W

T
frozenW



How many layers should we use and how 
wide should they be? 

• There is no simple answer. 
– Extensive experiments by Yoshua Bengio’s group 

(described later) suggest that several hidden layers is 
better than one. 

– Results are fairly robust against changes in the size of a 
layer, but the top layer should be big.

• Deep belief nets give their creator a lot of freedom. 
– The best way to use that freedom depends on the task.
– With enough narrow layers we can model any distribution 

over binary vectors (Sutskever & Hinton, 2007)



What happens when the weights in higher layers 
become different from the weights in the first layer?

• The higher layers no longer implement a complementary 
prior.
– So performing inference using the frozen weights in 

the first layer is no longer correct.  But its still pretty 
good.

– Using this incorrect inference procedure gives a 
variational  lower bound on the log probability of the 
data. 

• The higher layers learn a prior that is closer to the 
aggregated posterior distribution of the first hidden layer.
– This improves the network’s model of the data.

• Hinton, Osindero and Teh (2006) prove that this 
improvement is always bigger than the loss in the variational 
bound caused by using less accurate inference.



An improved version of Contrastive 
Divergence learning (if time permits)

• The main worry with CD is that there will be deep 
minima of the energy function far away from the 
data. 
– To find these we need to run the Markov chain for 

a long time (maybe thousands of steps). 
– But we cannot afford to run the chain for too long 

for each update of the weights.
• Maybe we can run the same Markov chain over 

many weight updates? (Neal, 1992)
– If the learning rate is very small, this should be 

equivalent to running the chain for many steps 
and then doing a bigger weight update.



Persistent CD
(Tijmen Teileman, ICML 2008 & 2009)

• Use minibatches of 100 cases to estimate the 
first term in the gradient. Use a single batch of 
100 fantasies to estimate the second term in the 
gradient. 

 
• After each weight update, generate the new 

fantasies from the previous fantasies by using 
one alternating Gibbs update.
– So the fantasies can get far from the data.



Contrastive divergence as an 
adversarial game

• Why does persisitent CD work so well with only 
100 negative examples to characterize the 
whole partition function?

– For all interesting problems the partition 
function is highly multi-modal.

– How does it manage to find all the modes 
without starting at the data? 



The learning causes very fast mixing

• The learning interacts with the Markov chain.

• Persisitent Contrastive Divergence cannot be 
analysed by viewing the learning as an outer loop.
– Wherever the fantasies outnumber the 

positive data, the free-energy surface is 
raised. This makes the fantasies rush around 
hyperactively.



How persistent CD moves between the 
modes of the model’s distribution

• If a mode has more fantasy 
particles than data, the free-
energy surface is raised until 
the fantasy particles escape.
– This can overcome  free-

energy barriers that would 
be too high for the Markov 
Chain to jump.

• The free-energy surface is 
being changed to help 
mixing in addition to defining 
the model.



Summary so far

• Restricted Boltzmann Machines provide a simple way to 
learn a layer of features without any supervision.
– Maximum likelihood learning is computationally 

expensive because of the normalization term, but 
contrastive divergence learning is fast and usually 
works well.

• Many layers of representation can be learned by treating 
the hidden states of one RBM as the visible data for 
training the next RBM (a composition of experts).

• This creates good generative models that can then be 
fine-tuned.
– Contrastive wake-sleep can fine-tune generation.



BREAK



Overview of the rest of the tutorial
• How to fine-tune a greedily trained generative 

model to be better at discrimination.
• How to learn a kernel for a Gaussian process.
• How to use deep belief nets for non-linear 

dimensionality reduction and document retrieval.
• How to learn a generative hierarchy of 

conditional random fields.
• A more advanced learning module for deep 

belief nets that contains multiplicative 
interactions.

• How to learn deep models of sequential data.



Fine-tuning for discrimination

• First learn one layer at a time greedily.
• Then treat this as “pre-training” that finds a good 

initial set of weights which can be fine-tuned by  
a local search procedure.
– Contrastive wake-sleep is one way of fine-

tuning the model to be better at generation.
• Backpropagation can be used to fine-tune the 

model for better discrimination.
– This overcomes many of the limitations of 

standard backpropagation.



Why backpropagation works better with 
greedy pre-training: The optimization view

• Greedily learning one layer at a time scales well 
to really big networks, especially if we have 
locality in each layer.

• We do not start backpropagation until we already 
have sensible feature detectors that should 
already be very helpful for the discrimination task.
– So the initial gradients are sensible and 

backprop only needs to perform a local search 
from a sensible starting point.



Why backpropagation works better with 
greedy pre-training: The overfitting view

• Most of the information in the final weights comes from 
modeling the distribution of input vectors. 
– The input vectors  generally contain a lot more 

information than the labels.
– The precious information in the labels is only used for 

the final fine-tuning. 
– The fine-tuning only modifies the features slightly to get 

the category boundaries right. It does not need to 
discover features.

• This type of backpropagation works well even if most of 
the training data is unlabeled. 
– The unlabeled data is still very useful for discovering 

good features.



First, model the distribution of digit images

2000 units

500 units 

500 units 

28 x 28 
pixel     
image 

The network learns a density model for 
unlabeled digit images. When we generate 
from the model we get things that look like 
real digits of all classes. 

But do the hidden features really help with 
digit discrimination? 

Add 10 softmaxed units to the top and do 
backpropagation.

The top two layers form a restricted 
Boltzmann machine whose free energy 
landscape should model the low 
dimensional manifolds of the digits.



Results on permutation-invariant MNIST task

• Very carefully trained backprop net with      1.6% 
one or two hidden layers (Platt; Hinton)

• SVM (Decoste & Schoelkopf, 2002)                       1.4%

• Generative model of joint density of             1.25% 
images and labels (+ generative fine-tuning)

• Generative model of unlabelled digits          1.15% 
followed by gentle backpropagation                 
(Hinton & Salakhutdinov, Science 2006)



Learning Dynamics of Deep Nets
the next 4 slides describe work by Yoshua Bengio’s group

Before fine-tuning After fine-tuning



Effect of Unsupervised Pre-training

65

Erhan et. al.    AISTATS’2009 



Effect of Depth

66

w/o pre-training
with pre-trainingwithout pre-training



Learning Trajectories in Function Space 
(a 2-D visualization produced with t-SNE)

• Each point is a 
model in function 
space

• Color = epoch
• Top: trajectories      

without pre-training. 
Each trajectory 
converges to a 
different local min.

• Bottom: Trajectories 
with pre-training. 

• No overlap!

Erhan et. al.    AISTATS’2009 



Why unsupervised pre-training makes sense

stuff

image label

stuff

image label

If image-label pairs were 
generated this way, it 
would make sense to try 
to go straight from 
images to labels.  
For example,  do the 
pixels have even parity?

If image-label pairs are 
generated this way, it 
makes sense to first learn 
to recover the stuff that 
caused the image by 
inverting the high 
bandwidth pathway.

high 
bandwidth

low 
bandwidth



Modeling real-valued data

• For images of digits it is possible to represent 
intermediate intensities as if they were probabilities by 
using “mean-field” logistic units.
– We can treat intermediate values as the probability 

that the pixel is inked.
• This will not work for real images.

– In a real image, the intensity of a pixel is almost 
always almost exactly the average of the neighboring 
pixels.

– Mean-field logistic units cannot represent precise 
intermediate values.



Replacing binary variables by 
integer-valued variables

     (Teh and Hinton, 2001)

• One way to model an integer-valued variable is 
to make N identical copies of a binary unit. 

• All copies have the same probability,                    
           of being “on” :  p = logistic(x)
– The total number of “on” copies is like the 

firing rate of a neuron.
– It has a  binomial distribution with mean N p 

and variance N p(1-p)



A better way to implement integer values

• Make many copies of a binary unit. 
• All copies have the same weights and the same 

adaptive bias, b, but they have different fixed offsets to 
the bias:

....,5.3,5.2,5.1,5.0 −−−− bbbb

→x



A fast approximation

• Contrastive divergence learning works well for the sum of 
binary units with offset biases.

• It also works for rectified linear units. These are much faster 
to compute than the sum of many logistic units.
output = max(0,  x + randn*sqrt(logistic(x))  )

)1log()5.0(logistic
1

x
n

n

enx +≈−+∑
∞=

=



How to train a bipartite network of rectified 
linear units

• Just use contrastive divergence to lower the energy of 
data and raise the energy of nearby configurations that 
the model prefers to the data.

data>< jihv
recon>< jihv

i

j

i

j

)( recondata ><−><=∆ jijiij hvhvw ε

Start with a training vector on the 
visible units.

Update all hidden units in parallel 
with sampling noise

Update the visible units in parallel 
to get a “reconstruction”.

Update the hidden units again reconstructiondata



   3D Object Recognition: The NORB dataset
   Stereo-pairs of grayscale images of toy objects.

- 6 lighting conditions, 162 viewpoints
-Five object instances per class in the training set
- A different set of five instances per class in the test set
- 24,300 training cases, 24,300 test cases

Animals

Humans

Planes

Trucks

Cars

Normalized-
uniform 
version of 
NORB



Simplifying the data

• Each training case is a stereo-pair of 96x96 images.
– The object is centered.
– The edges of the image are mainly blank.
– The background is uniform and bright.

• To make learning faster I used simplified the data:
– Throw away one image.
– Only use the middle 64x64 pixels of the other 

image.
– Downsample to 32x32 by averaging 4 pixels.



Simplifying the data even more so that it can 
be modeled by rectified linear units

• The intensity histogram for each 32x32 image has a 
sharp peak for the bright background.

• Find this peak and call it zero.
• Call all intensities brighter than the background zero.
• Measure intensities downwards from the background 

intensity.

0



Test set error rates on NORB after greedy 
learning of one or two hidden layers using 

rectified linear units 
Full NORB (2 images of 96x96)
• Logistic regression on the raw pixels                20.5%
• Gaussian SVM (trained by Leon Bottou)           11.6%
• Convolutional neural net  (Le Cun’s group)        6.0%
 (convolutional nets have knowledge of translations built in)    

                                       
Reduced NORB (1 image 32x32)
• Logistic regression on the raw pixels                 

30.2%
• Logistic regression on first hidden layer            14.9% 
• Logistic regression on second hidden layer      10.2%



The 
receptive 
fields of 
some 
rectified 
linear 
hidden 
units.



A standard type of real-valued visible unit

• We can model pixels as 
Gaussian variables. 
Alternating Gibbs 
sampling is still easy, 
though learning needs to 
be much slower.

ijj
ji i
iv

hidj
jj

visi i

ii whhbbv,E ∑∑∑ −−−=
,

2

2

2
)()(

σ
εε σ

hv

E
 

energy-gradient 
produced by the total 
input to a visible unit 

parabolic 
containment 
function

→ii vb

Welling et. al. (2005) show how to extend RBM’s to the 
exponential family. See also Bengio et. al. (2007)



A random sample of 10,000 binary filters learned 
by Alex Krizhevsky on a million 32x32 color images.



Combining deep belief nets with Gaussian processes

• Deep belief nets can benefit a lot from unlabeled data 
when labeled data is scarce.
– They just use the labeled data for fine-tuning.

• Kernel methods, like Gaussian processes, work well on 
small labeled training sets but are slow for large training 
sets.

• So when there is a lot of unlabeled data and only a little 
labeled data, combine the two approaches:
– First learn a deep belief net without using the labels.
– Then apply a Gaussian process model to the deepest 

layer of features. This works better than using the raw 
data.

– Then use GP’s to get the derivatives that are back-
propagated through the deep belief net. This is a 
further win. It allows GP’s to fine-tune complicated 
domain-specific kernels.



Learning to extract the orientation of a face patch 
(Salakhutdinov & Hinton, NIPS 2007)



The training and test sets for predicting 
face orientation

11,000 unlabeled cases100, 500, or 1000 labeled cases

face patches from new people



The root mean squared error in the orientation 
when combining GP’s with deep belief nets

22.2         17.9          15.2

17.2         12.7            7.2

16.3         11.2            6.4

GP on 
the 
pixels

GP on 
top-level 
features

GP on top-level 
features with 
fine-tuning

  100 labels

  500 labels

1000 labels

Conclusion: The deep features are much better 
than the pixels. Fine-tuning helps a lot.



Deep Autoencoders
(Hinton & Salakhutdinov, 2006)

• They always looked like a really 
nice way to do non-linear 
dimensionality reduction:
– But it is very difficult to 

optimize deep autoencoders 
using backpropagation.

• We now have a much better way 
to optimize them:
– First train a stack of 4 RBM’s
– Then “unroll” them.  
– Then fine-tune with backprop.

      1000  neurons

500 neurons

500 neurons 

250 neurons 

250 neurons 

30  

      1000  neurons

28x28

28x28

1

2

3

4

4

3

2

1

W

W

W

W

W

W

W

W

T

T

T

T

linear 
units



A comparison of methods for compressing 
digit images to 30 real numbers.

real              
data

30-D       
deep auto

30-D logistic 
PCA

30-D         
PCA



Retrieving documents that are similar 
to a query document

• We can use an autoencoder to find low-
dimensional codes for documents that allow 
fast and accurate retrieval of similar 
documents from a large set.

• We start by converting each document into a 
“bag of words”.  This a 2000 dimensional 
vector that contains the counts for each of the 
2000 commonest words.



How to compress the count vector 

• We train the neural 
network to reproduce its 
input vector as its output

• This forces it to 
compress as much 
information as possible 
into the 10 numbers in 
the central bottleneck.

• These 10 numbers are 
then a good way to 
compare documents.

 2000  reconstructed counts

500 neurons

     2000  word counts

500 neurons 

250 neurons 

250 neurons 

10  

input 
vector

output 
vector



Performance of the autoencoder at 
document retrieval

• Train on bags of 2000 words for 400,000 training cases 
of business documents.
– First train a stack of RBM’s. Then fine-tune with 

backprop.
• Test on a separate 400,000 documents. 

– Pick one test document as a query. Rank order all the 
other test documents by using the cosine of the angle 
between codes. 

– Repeat this using each of the 400,000 test documents 
as the query (requires 0.16 trillion comparisons).

• Plot the number of retrieved documents against the 
proportion that are in the same hand-labeled class as the 
query document. 



Proportion of retrieved documents in same class as query

Number of documents retrieved



First compress all documents to 2 numbers using a type of PCA  
                             Then use different colors for different 
document categories



              First compress all documents to 2 numbers.                   
      Then use different colors for different document categories



Finding binary codes for documents

• Train an auto-encoder using 30 
logistic units for the code layer.

• During the fine-tuning stage, 
add noise to the inputs to the 
code units.
– The “noise” vector for each 

training case is fixed. So we 
still get a deterministic 
gradient. 

– The noise forces their 
activities  to become bimodal 
in order to resist the effects 
of the noise.

– Then we simply round the 
activities of the 30 code units 
to 1 or 0.

 2000  reconstructed counts

500 neurons

     2000  word counts

500 neurons 

250 neurons 

250 neurons 

30 
 noise



Semantic hashing: Using a deep autoencoder as a 
hash-function for finding approximate matches 

(Salakhutdinov & Hinton, 2007)

hash 
function

“supermarket search”



How good is a shortlist found this way? 

• We have only implemented it for a million 
documents with 20-bit codes --- but what could 
possibly go wrong?
– A 20-D hypercube allows us to capture enough 

of the similarity structure of our document set. 
• The shortlist found using binary codes actually 

improves the precision-recall curves of TF-IDF.
– Locality sensitive hashing (the fastest other 

method) is 50 times slower and has worse 
precision-recall curves.



Generating the parts of an object 

• One way to maintain the 
constraints between the parts is 
to generate each part very 
accurately
– But this would require a lot of 

communication bandwidth.
• Sloppy top-down specification of 

the parts is less demanding 
– but it messes up relationships 

between features
– so use redundant features 

and use lateral interactions to 
clean up the mess.

• Each transformed feature helps 
to locate the others
– This allows a noisy channel

sloppy  top-down 
activation of parts

clean-up using 
known interactions

pose parameters 

features with 
top-down 
support

“square” +

Its like soldiers on 
a parade ground



Semi-restricted Boltzmann Machines
• We restrict the connectivity to make 

learning easier.
• Contrastive divergence learning requires 

the hidden units to be in conditional 
equilibrium with the visibles.
– But it does not require the visible units 

to be in conditional equilibrium with the 
hiddens.

– All we require is that the visible units 
are closer to equilibrium in the 
reconstructions than in the data.

• So we can allow connections between 
the visibles.

hidden

i

j

visible



Learning a semi-restricted Boltzmann Machine

0>< jihv 1>< jihv

i

j

i

j

t = 0                                                      t = 1   

)( 10 ><−><=∆ jijiij hvhvw ε

1. Start with a 
training vector on the 
visible units.

2. Update all of the 
hidden units in 
parallel

3. Repeatedly update 
all of the visible units 
in parallel using 
mean-field updates 
(with the hiddens 
fixed) to get a 
“reconstruction”.

4. Update all of the 
hidden units again. 

reconstructiondata

)( 10 ><−><=∆ kikiik vvvvl ε

k i ik k k

update for a 
lateral weight



Learning in Semi-restricted Boltzmann 
Machines 

• Method 1: To form a reconstruction, cycle 
through the visible units updating each in turn 
using the top-down input from the hiddens plus 
the lateral input from the other visibles. 

• Method 2: Use “mean field” visible units that 
have real values. Update them all in parallel.
– Use damping to prevent oscillations

)()(11
i

t
i

t
i xpp σλλ −+=+

total input to idamping



Results on modeling natural image patches 
using a stack of RBM’s (Osindero and Hinton) 

• Stack of RBM’s learned one at a time.
• 400 Gaussian visible units that see 

whitened image patches
– Derived from 100,000 Van Hateren 

image patches, each 20x20 
• The hidden units are all binary.

–  The lateral connections are 
learned when they are the visible 
units of their RBM.

• Reconstruction involves letting the 
visible units of each RBM settle using 
mean-field dynamics.
– The already decided states in the 

level above determine the effective 
biases during mean-field settling. 

Directed Connections

Directed Connections

Undirected Connections

400 
Gaussian 
units 

Hidden 
MRF with 
2000 units

Hidden 
MRF with 
500 units

1000 top-
level units. 
No MRF.



Without lateral connections
real data samples from model



With lateral connections
real data samples from model



A funny way to use an MRF

• The lateral connections form an MRF.
• The MRF is used during learning and generation.
• The MRF is not used for inference.

– This is  a novel idea so vision researchers don’t like it.
• The MRF enforces constraints. During inference, 

constraints do not need to be enforced because the data 
obeys them.
– The constraints only need to be enforced during 

generation.
• Unobserved hidden units cannot enforce constraints.

– To enforce constraints requires lateral connections or 
observed descendants.



Why do we whiten data?

• Images typically have strong pair-wise correlations.
• Learning higher order statistics is difficult when there are 

strong pair-wise correlations.
– Small changes in parameter values that improve the 

modeling of higher-order statistics may be rejected 
because they form a slightly worse model of the much 
stronger pair-wise statistics.

• So we often remove the second-order statistics before 
trying to learn the higher-order statistics.



Whitening the learning signal instead 
of the data

• Contrastive divergence learning can remove the effects 
of the second-order statistics on the learning without 
actually changing the data.
– The lateral connections model the second order 

statistics
– If a pixel can be reconstructed correctly using second 

order statistics, its will be the same in the 
reconstruction as in the data. 

– The hidden units can then focus on modeling high-
order structure that cannot be predicted by the lateral 
connections.

• For example, a pixel close to an edge, where interpolation 
from nearby pixels causes incorrect smoothing.



Towards a more powerful, multi-linear 
stackable learning module

• So far, the states of the units in one layer have only been 
used to determine the effective biases of the units in the 
layer below.

• It would be much more powerful to modulate the pair-wise 
interactions in the layer below. 
– A good way to design a hierarchical system is to allow 

each level to determine the objective function of the level 
below. 

• To modulate pair-wise interactions we need higher-order 
Boltzmann machines. 



Higher order Boltzmann machines 
(Sejnowski, ~1986)

• The usual energy function is quadratic in the states:

• But we could use higher order interactions: 

ijj
ji
i wsstermsbiasE ∑

<
−=

ijkkj
kji
i wssstermsbiasE ∑

<<
−=

• Unit k acts as a switch. When unit k is on, it switches 
in the pairwise interaction between unit i and unit j. 
– Units i and j can also be viewed as switches that 

control the pairwise interactions between j and k 
or between i and k.



Using higher-order Boltzmann machines to 
model image transformations 

(the unfactored version)

• A global transformation specifies which pixel 
goes to which other pixel.

• Conversely, each pair of similar intensity pixels, 
one in each image, votes for a particular global 
transformation.

image(t) image(t+1)

image transformation



Factoring three-way            
multiplicative interactions

∑ ∑

∑

=−

=−

f
hfjfifhj

hji
i

ijhhj
hji
i

wwwsssE

wsssE

,,

,,

 factored        
 with linearly 
many parameters 
per factor.

unfactored
with cubically 
many parameters



A picture of the low-rank tensor 
contributed by factor f

ifw

jfw

hfw

Each layer is a scaled version 
of the same matrix. 

The basis matrix is specified 
as an outer product with 
typical term

So each active hidden unit 
contributes a scalar,         
times the matrix specified by 
factor f .

jfif ww

hfw



Inference with factored three-way 
multiplicative interactions

[ ] 





















=−

=−

∑∑

∑

==

j
jfjif

i
ihfhfhf

hfjfifhj
hji
if

wswswsEsE

wwwsssE

)()( 10

,,

How changing the binary state 
of unit h changes the energy 
contributed by factor f.

What unit h needs 
to know in order to 
do Gibbs sampling

The energy 
contributed by 
factor f.



Belief propagation

ifw jfw

hfw

f

i j

h

The outgoing message 
at each vertex of the 
factor is the product of 
the weighted sums at 
the other two vertices.



Learning with factored three-way 
multiplicative interactions

delmodata

modeldata

h
fh

h
fh

hf

f

hf

f
hf

j
jfjif

i
i

h
f

msms

w
E

w
E

w

wswsm

−=

∂
∂

−−
∂
∂

−∝∆























= ∑∑

message 
from factor f 
to unit h



Roland data



Modeling the correlational structure of a static image 
by using two copies of the image

ifw jfw

hfw

f

i j

h
Each factor sends the 
squared output of a linear 
filter to the hidden units.

It is exactly the standard 
model of simple and 
complex cells. It allows 
complex cells to extract 
oriented energy.

The standard model drops 
out of doing belief 
propagation for  a factored 
third-order energy function. Copy 1 Copy 2



An advantage of modeling correlations 
between pixels rather than pixels

• During generation, a “vertical edge” unit can turn off 
the horizontal interpolation in a region without 
worrying about exactly where the intensity 
discontinuity will be.
– This gives some translational invariance
– It also gives a lot of invariance to brightness and 

contrast.
– So the “vertical edge” unit is like a complex cell.

• By modulating the correlations between pixels rather 
than the pixel intensities, the generative model can 
still allow interpolation parallel to the edge.



A principle of hierarchical systems

• Each level in the hierarchy should not try to 
micro-manage the level below.

• Instead, it should create an objective function for 
the level below and leave the level below to 
optimize it.
– This allows the fine details of the solution to 

be decided locally where the detailed 
information is available.

• Objective functions are a good way to do 
abstraction. 



Time series models

• Inference is difficult in directed models of time 
series if we use non-linear distributed 
representations in the hidden units.
– It is hard to fit Dynamic Bayes Nets to high-

dimensional sequences (e.g motion capture 
data). 

• So people tend to avoid distributed 
representations and use much weaker methods 
(e.g. HMM’s).



Time series models

• If we really need distributed representations (which we 
nearly always do), we can make inference much simpler 
by using three tricks:
– Use an RBM for the interactions between hidden and 

visible variables. This ensures that the main source of 
information wants the posterior to be factorial.

– Model short-range temporal information by allowing 
several previous frames to provide input to the hidden 
units and to the visible units.

• This leads to a temporal module that can be stacked
– So we can use greedy learning to learn deep models 

of temporal structure. 



An application to modeling 
motion capture data 

(Taylor, Roweis & Hinton, 2007)
• Human motion can be captured by placing 

reflective markers on the joints and then using 
lots of infrared cameras to track the 3-D 
positions of the markers.

• Given a skeletal model, the 3-D positions of the 
markers can be converted into the joint angles 
plus 6 parameters that describe the 3-D position  
and the roll, pitch and yaw of the pelvis.
– We only represent changes in yaw because physics 

doesn’t care about its value and we want to avoid 
circular variables.



The conditional RBM model 
(a partially observed CRF)

• Start with a generic RBM.
• Add two types of conditioning 

connections.
• Given the data, the hidden units 

at time t are conditionally 
independent.

• The autoregressive weights can 
model most short-term temporal 
structure very well, leaving the 
hidden units to model nonlinear 
irregularities (such as when the 
foot hits the ground).   t-2        t-1        t

i

j

h

v



Causal generation from a learned model

• Keep the previous visible states fixed.
– They provide a time-dependent 

bias for the hidden units.
• Perform alternating Gibbs sampling 

for a few iterations between the 
hidden units and the most recent 
visible units.
– This picks new hidden and visible 

states that are compatible with 
each other and with the recent 
history.

i

j



Higher level models

• Once we have trained the model, we can 
add layers like in a Deep Belief Network.

• The previous layer CRBM is kept, and its 
output, while driven by the data is treated 
as a new kind of “fully observed” data.

• The next level CRBM has the same 
architecture as the first (though we can 
alter the number of units it uses) and is 
trained the same way.

• Upper levels of the network model more 
“abstract” concepts.

• This greedy learning procedure can be 
justified using a variational bound.

i

j

k

  t-2        t-1        t



Learning with “style” labels

• As in the generative model of 
handwritten digits (Hinton et al. 
2006), style labels can be 
provided as part of the input to 
the top layer.

• The labels are represented by 
turning on one unit in a group of 
units, but they can also be 
blended.

i

j

  t-2       t-1        t

k

€  

l



Show demo’s of multiple styles of 
walking

These can be found at 
www.cs.toronto.edu/~gwtaylor/



Readings on deep belief nets

A reading list (that is still being updated) can be 
found at 

www.cs.toronto.edu/~hinton/deeprefs.html


