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Abstract. Network Intrusion Detection Systems (NIDSs) based on
Deep Neural Network have demonstrated impressive performance in
multi-class, closed-world settings, where training and test data follow the
same distribution. However, when deployed in real networks, these sys-
tems have a limited ability to detect novel attacks which do not belong to
already known classes. In this work, we aim to tackle semantic shift, that
is the emergence of unknown classes, by proposing a two-phase approach
to detect new classes and integrate them into the classification model,
while minimising the need for human intervention. While contrastive
learning is a promising techniques to tackle semantic shift, it has high
computational cost and it is sensitive to imbalanced data. We propose a
novel contrastive learning approach based on synthetic centroids which
has low computational cost and is robust to class imbalance, making it
suitable for application to NIDS. To integrate the shifted samples in the
existing model, we also design a novel adaptation method that combines
manual labeling and pseudo-labeling to reduce labeling costs. We eval-
uate our system, Rasd, on two NIDS datasets, finding it excels in both
detection and adaptation. For example Rasd improves on the nearest
detection baseline F1-score by 6.83% for IDS 2017 and 19.21% for IDS
2018.
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1 Introduction

Computer networks are vital for modern organizations, facilitating efficient infor-
mation and resource exchange. However, they are often targets of cyberattacks,
with 39% of UK organizations experiencing cybersecurity incidents [5]. Protect-
ing these networks is essential to safeguard sensitive data and restrict unautho-
rized access. Network Intrusion Detection Systems (NIDS) are commonly used
for security, but their traditional signature-based approach, involving threat col-
lection, analysis, and periodic off-line NIDS updating, is becoming increasingly
challenging due to the growing complexity of network communication and attack
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patterns. To address these limitations, Machine Learning (ML) techniques are
being employed to automate NIDS. However, designing an effective ML-based
NIDS still demands significant manual effort in modeling attacks and defining
relevant features. Deep Neural Networks (DNNs) offer a solution by learning
from raw data, and recent research shows promising results in developing DNN-
based NIDS (e.g. [9]).

DNN-based NIDS typically operate on the closed-world assumption, mean-
ing that training and testing data come from the same distribution [1,9]. This
assumption is violated by network security data. Network traffic is diverse and
unpredictable, influenced by a mix of benign and malicious activities which fre-
quently lead to distribution changes. Such variability degrades the performance
of learning-based systems in real-world scenarios, as these systems are not funda-
mentally designed to adapt to constant changes [1]. These changes are known as
distribution shift, and can be divided into covariate shift (changes in the distri-
bution of features within a class) and semantic shift (emergence of new classes).
Distribution shift has been proven to impact learning-based security applications
severely [1,4,7,11,15]. In security settings, both types of shift are prevalent.

Covariate shift typically represents changes in behaviour from known users
or attackers. It is believed to be a consequence of not defining a robust feature
space, and results in slow model performance degradation [11]. While semantic
shift may have a limited adverse impact on binary classification, it severely
impacts multi-classification as new classes will be predicted as one of the training
classes. In NIDS multi-classification settings, this can result in new attacks being
incorrectly identified as known attacks or, worse, as benign. This challenge leads
us to focus on the identification of new classes, and their integration into a multi-
class NIDS classifier. Suppose we have a classifier M which has been trained on
classes C = {C1, . . . , Cn}. During inference, M encounters a mixture of both
familiar classes from C and a new class Cn+1. The key problems to solve are
how to effectively differentiate samples of the new class Cn+1 from those of the
existing classes in C, and how to subsequently update M to incorporate Cn+1.

Our solution is the Rasd framework, which integrates a shift detector along-
side an existing NIDS classifier. Rasd identifies key semantic shifts for human
labeling, trains a pseudo-labeler with these labeled samples, and uses the pseudo-
labeler to label the remaining shift samples. Both labeled and pseudo-labeled
samples are then used to retrain the original classifier, enabling it to adapt to
emerging threats.

Our main contributions are:

– We designed a novel shift detection model, that accurately detects semanti-
cally shifted network flows with high recall and diversity, based on a novel
cost-effective contrastive learning approach relying on synthetic centroids.

– We defined a new semantic shift adaptation model that selects the most infor-
mative shifted samples for human labeling using the Farthest-First Traver-
sal algorithm and leverages these labeled samples to pseudo-label the non-
selected samples.
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– We implemented our models as the Rasd framework for shift detection and
adaptation. We evaluated Rasd on two NIDS datasets, showing that it outper-
forms baselines and related approaches. For instance, on the IDS2018 dataset
[13], Rasd improves the detection F1-score by at least 19.21% and the adap-
tation macro F1-score by at least 8.24%, with only 1% of samples requiring
human labeling.

Section 2 provides an overview of the relevant background and related liter-
ature. Section 3 describes Rasd methodology. Section 4 presents the evaluation
results of Rasd and the related baselines. Finally, Sect. 5 concludes the paper.

2 Background

Distribution shift refers to a change in the underlying probability distribution
between the training and test sets. In the context of NIDS, distribution shift
occurs when the network data in the training set does not accurately represent
the data observed during deployment. It can occur as both covariate and seman-
tic scenarios [8]. Covariate shift occurs when the distribution of features changes
while the underlying concept remains the same. For example, when an attacker
strategically alters their behavior to manipulate the feature space, the classi-
fier is deceived into misinterpreting this malicious behavior as benign. Semantic
shift represents a fundamental change in the underlying concept, such as the
emergence of a new attack or a concept flip (e.g., malicious features turn to be
benign and vice-versa).

Contrastive learning is a type of representation learning that focuses on
learning robust representations by contrasting and comparing different exam-
ples [3,14]. It aims to choose an anchor sample and reduce its distance to sim-
ilar samples, or positives (e.g. those with the same label as the anchor), while
increasing its distance from dissimilar samples, or negatives (e.g. those with
different labels). It is applicable in both supervised and unsupervised learning
contexts. In unsupervised settings, such as in the SimCLR framework [3], it lever-
ages data augmentation to learn effective data representations without labels.
Conversely, in supervised learning, such as in the Lifted Structured Loss (LSL)
framework [14], it utilizes labels to push same-label samples together and push
them from different label samples.

2.1 Related Work

Semantic shift poses two major challenges: firstly, detecting the shifted samples,
and secondly, adapting to these samples with minimal human effort.

To detect shifts, two main approaches have been proposed recently:
confidence-based [1] and distance-based [15]. Confidence-based methods rely on
the confidence scores of a DNN to pinpoint uncertain predictions as potential
semantic shifts. Yet, this method faces limitations, as DNNs tend to be over-
confident in unrelated inputs [10]. Distance-based methods, such as contrastive
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Fig. 1. Overview of the Rasd framework.

learning, develop a distance function for identifying semantic shifts. Although
effective [4,15], these demand significant computational resources for extensive
training on large batches and prefer balanced data to generate robust represen-
tations [3].

To adapt these shifts, pseudo-labeling [1] and prioritization [15] have been
suggested. Pseudo-labeling, as used in [1], employs a binary model trained on
known classes to categorize shifted samples as either malicious or benign. This
technique relies on the nearest centroid for pseudo-label assignment but requires
robust feature engineering and faces challenges in translating binary labels to
a multi-classification context. Conversely, [15] prioritizes manual labeling for
samples furthest from the centroids, constrained by a user-defined budget. This
approach, however, might struggle with noisy shift, as distant samples in noisy
scenarios often share labels.

3 The Rasd Framework

Rasd encapsulates a supervised network flow classifier and provides a frame-
work for shift detection, pseudo-labeling, and retraining. The diagram in Fig. 1
illustrates the key steps, which are briefly described below.

Inside the Rasd Detector, an encoder is trained to map labeled samples
together by minimizing their distance to the label centroid. The centroid can be
pre-defined automatically or determined manually by data analysts. Following
training, thresholds for each class centroid are set based on the k -th percentile.
During deployment, the distance between the incoming sample and each class
centroid is calculated and compared to the thresholds. If the sample distance
to all the classes exceeds the per-class thresholds, the sample is identified as a
semantic shift sample and stored in a pool.

The pool of semantic shift samples is then processed by the Rasd Adaptation
method, which sequentially divides it into small batches and selects the most
informative samples for manual labeling, while respecting a cost constraint. The
manually-labeled samples are subsequently utilized to train the Pseudo-Labeler
oracle, which will be used to pseudo-label the non-selected samples. By a com-
bination of manual labeling and pseudo-labeling, we thus obtain labels for all of
the semantic shift samples, which can be used to retrain the original classifier
and the detector.
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3.1 Distance Learning for Shift Detection

Learning Robust Latent Representations. At the core of the Rasd Detector
is our novel, cost-effective centroid-based loss. This loss function is inspired by
the principles of contrastive losses [3,4,14,15], but it stands out due to its reduced
computational cost (Table 1) and reduced sensitivity to data imbalance (Table 3).
Our insight is that instead of contrasting class samples with other samples from
other classes, we define a centroid for each class and minimize the distance of
samples to their label centroid, as illustrated in Fig. 2.

Fig. 2. The high-level idea of Rasd loss function for shift detection.

Specifically, our approach employs an Encoder to transform network flows
into low-dimensional latent space representations, thereby addressing the curse
of dimensionality [2]. The Encoder is then optimized to ensure that represen-
tations with identical labels are proximate, while those with differing labels are
distant. To achieve this, we introduce a loss function that incorporates prede-
fined synthetic centroids. Our loss function takes three inputs: Z, Y , and C.
Z represents the set of all latent representations of network flows in a batch,
defined as Z = {z1, z2, . . . , zn}. Y denotes the corresponding set of labels for
these network flows, expressed as Y = {y1, y2, . . . , yn}. C denotes the set of all
pre-defined centroids. Let k be the number of unique labels in the batch, then
C = {c1, c2, . . . , ck}.

For each unique label yj within the batch, the average squared distance of the
elements in Z having that label to their corresponding centroid cyj

is calculated
as follows:

Label Lossyj
(Z, Y,C) =

∑n
i=1

(
δ(yi, yj) × ||zi − cyj

||2)
∑n

i=1 δ(yi, yj)

where δ(yi, yj) is the Kronecker delta function, which is 1 when yi = yj and 0
otherwise, and cyj

is the centroid associated with label yj . Finally, our Rasd loss
is defined as:

Rasd(Z, Y,C) =
1
k

k∑

j=1

Label Lossyj
(Z, Y,C)

Centroids Search. We need to define the synthetic centroids to train the
Encoder using our loss function. To achieve this, we implement a Genetic Algo-
rithm (GA) to maximize the separation between centroids. The GA takes two
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main inputs: a fitness function for optimization and a set of initial centroids as
the starting point. Our fitness function is defined as −min(dist(Ci, Cj)), where
dist refers to the Euclidean distance, and C represents either the initial cen-
troids or the evolving centroids generated during the GA process. To generate
the initial centroids, we use the untrained Encoder to project the training data
into a latent space, then we use KMeans++ to set up the initial centroids. This
step is crucial to avoid numerical instability that might arise from randomly
assigned centroids, as it provides a more stable and representative starting point
for GA optimization. Additionally, we find that a relatively modest number of
GA generations, specifically 50, achieves well-separated centroids with minimal
computational complexity (see Appendix A.2 and Sect. 4.2).

In summary, our learning approach starts with the Encoder –before training–
and KMeans++ for the initial centroid definition, followed by GA optimization
to identify the most distant centroids. After identifying the centroids, we can
proceed to train the Encoder using the Rasd loss function.

Detecting Semantic Shift Samples. Post-training with the Rasd loss, the
Encoder functions as a semantic shift detector. Specifically, before deployment,
we map training samples into latent space using the Encoder. For each class, we
calculate its centroid in Euclidean space and establish a class-specific threshold
at the k -th percentile of the distances between the class sample’s latent repre-
sentations and the centroid. During inference, we map each incoming sample
into latent space and measure its distance to each class centroid. A sample is
identified as a shift if its distance exceeds all the thresholds.

3.2 Semantic Shift Adaptation

The identified samples of semantic shift can be then used in updating both the
classifier and the shift detector. However, given the typically large volume of
these detected samples, manually labeling each one is impractical. To address
this, Rasd employs a two-step approach to minimize the need for human labeling:
first, through sample selection, and second, by applying pseudo-labeling.

Sample Selection. To ensure that the selected samples are both representa-
tive and diverse, covering most of the data distribution and encompassing all
detected classes, we employ the Farthest-First Traversal (FFT) algorithm [12]
from computational geometry. This algorithm starts with a randomly chosen
sample and progressively selects the sample that is farthest from those already
chosen. In this process, we utilize the latent representations generated by the
Detector, employing Euclidean distance to identify the farthest samples.

However, FFT presents two primary challenges: significant computational
demands when processing large data batches and a heightened sensitivity to
outliers. To mitigate these challenges, we adopt a two-phase approach. First,
we partition the detected samples into sequential batches to reduce the compu-
tational cost. Second, to reduce the influence of outliers, we calculate a cosine
similarity score for each sample relative to others in the same batch. Based on
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these scores, we arrange the samples and divide them equally into two groups:
one comprising the most similar (higher scores) and the other containing the
most dissimilar samples (lower scores). FFT is then applied separately to each
group within every batch.

Pseudo-labeling and Retraining. When the selection is done, we construct a
labeled mini-batch that contains the selected samples ground-truth labels, which
are given by a human annotator. We could retrain the classifier using both the
original training data and the mini-batch data. However, since the mini-batch
contains only a few samples from each new class, there is a risk that the classifier
would develop a bias toward the more prevalent, older classes. To mitigate this,
we cannot increase the number of samples selected for manual labeling, as it
would be too expensive. Instead, we use pseudo-labeling: we train an oracle
model on the labeled mini-batch and use this oracle to pseudo-label all detected
unlabeled samples. We then retrain the classifier and the shift detector using
the pseudo-labeled data, mini-batch data, and original training data. In this
way, we leverage all detected samples to update the models, enhancing their
generalizability to new classes.

4 Evaluation

In this Section, we describe the experimental setup and present the main results.
We used the revised IDS2017 [6] and IDS2018 [13] datasets processed as stated
in Appendix A.1. Our code, datasets, and models are publicly available1.

4.1 Experimental Setup

Baselines. For our detection baselines, we chose the cutting-edge semantic shift
detector, CADE [15], and the LSL [14] —a recent contrastive loss— as another
baseline. The process of hyperparameter search for each model is detailed in
Appendix A.2. For thresholding, we set all the methods to accept a 7% error,
which maximizes the relative performance across methods and datasets (see
Fig. 3). We conducted the experiments on a machine with an AMD EPYC Pro-
cessor with 16 cores, 70 GB of RAM, and 2 NVIDIA A30 GPUs with 24 GB of
memory each. To evaluate adaptation strategies, we selected two baselines for
sampling: Uncertainty Sampling (US) as proposed in [1], and the CADE strat-
egy, which selects the farthest samples (FS) to the classes centroid. Specifically,
CADE computes the distance of the detected semantic shift samples to their
nearest centroid and ranks them in descending order. We set sample selection
rates ranging from 1–5%. Since the selected samples are few, we cannot employ a
DNN classifier as an oracle; instead, we used a random forest classifier. To train
the random forest, we relabeled the selected known samples as 0, regardless of
their ground truth labels. For the main classifier retraining, we selected 70%

1 https://github.com/ICL-ml4csec/Rasd.

https://github.com/ICL-ml4csec/Rasd
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Table 1. Semantic shift detection performance of Rasd and baselines.

Dataset System FPR Recall mRecall Precision F1 Diversity Accuracy Train Cost

IDS2017 CADE 8.75 67.82 60.81 68.87 68.34 100 86.03 1.47 h

LSL 9.51 71.24 67.56 68.15 69.66 100 86.21 1.20 h

Rasd 10.84 85.43 89.47 69.24 76.49 100 88.32 40.62 mins

IDS2018 CADE 18 60.25 64.55 52.65 56.19 100 76.57 52.75 mins

LSL 9.16 60.99 57.93 68.86 64.69 100 83.39 41.08 mins

Rasd 12.45 99.35 77.59 72.6 83.9 100 90.49 24.70 mins

of the pseudo-labeled samples for retraining and 30% for testing. We relabeled
the samples predicted as known (i.e., 0) using the current version of the main
classifier (i.e., before retraining).

Evaluation Metrics. We consider the shift samples as positives and the known
samples as negatives. We calculate both global and unweighted metrics. Specif-
ically, for the detection, we calculated precision, recall, diversity (the ratio of
detected unique shift classes to the total unique shift classes in the dataset),
and accuracy as global metrics. Additionally, we calculated macro recall as an
unweighted metric to identify the performance of the detectors on minority
classes. For the adaptation, we focus on unweighted metrics due to the post-
detection imbalance in our dataset, where some classes have few samples. This
avoids bias in performance measures from class frequency-weighted or global
metrics. Therefore, we calculate macro F1, macro precision, and balanced accu-
racy.

4.2 Rasd Detector Performance

We evaluate the Rasd Detector and compare it to the selected baselines. Our
comparison, which is detailed below, shows that Rasd outperforms all baselines
in detection metrics and computational efficiency.

Table 1 presents the detection results of the Rasd and the selected baselines.
Rasd excels among detectors, offering lower computational demands and superior
performance in most detection metrics. Specifically, when looking at the recall at
the IDS2017 dataset, we can notice that Rasd outperformed the closest system
by 14.19%. The difference is even higher when looking at the IDS2018 dataset,
where the difference between Rasd and LSL is 38.36%. The other metrics are
also favoring Rasd, however, with less differences when compared to the recall.
For example, in the IDS2017 dataset, Rasd accuracy outperforms LSL by only
2.11%. However, when looking at the False Positive Rate (FPR), Rasd performs
worse than the baselines.

Threshold rate significantly impacts performance; we explored rates from 1%
to 10%, as shown in Fig. 3. Rasd typically outperforms other methods across most
thresholds, although it can occasionally perform less, particularly at lower rates.
For example, at a 1% threshold in the IDS2018 dataset, LSL surpasses Rasd, but
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Fig. 3. F1 performance of Rasd detector and baselines over different thresholds.

Table 2. Performance comparison of Rasd and the baselines in detecting semantic
shifts, with selecting the best model and a targeted false positive rate of 10%.

Dataset System Recall mRecall Precision F1 score Diversity Accuracy

IDS2017 CADE 87.97 63.69 71.2 78.7 100 89.41

LSL 77.17 76.93 68.13 72.37 100 86.9

Rasd 92.87 91.18 72.26 81.28 100 90.49

IDS2018 CADE 55.91 61.31 64.29 59.81 100 81.25

LSL 61 58.19 66.5 63.63 100 82.61

Rasd 99.22 74.55 76.4 86.32 100 92.16

Rasd performs better in the IDS2017 dataset. Rasd’s best performance, 87.87%
at a 4% rate in IDS2018, notably exceeds the closest baseline, LSL, which reaches
65.78% at 6%.

The detection experiment outcomes might be influenced by the hyperpa-
rameter optimization approach (see Appendix A.2) and false positive rates. As
Table 1 shows, Rasd has a higher FPR, suggesting improved performance in
the other metrics. We thoroughly evaluate and select hyperparameters for each
baseline model based on the best F1 score, then adjust the FPR to a fixed 10%.
This setup, while not entirely realistic, aims to create a controlled environment
to identify the most efficient model through thresholding and hyperparameter
search, keeping the false positive rate constant.

Table 2 shows the detection results of Rasd as well as the considered baselines.
In the IDS2017 dataset, we can notice that all of the baselines’ metrics have
improved when compared to those in Table 1. However, Rasd still has a higher
detection performance. Conversely, the baselines in the IDS2018 are showing
different conclusions. CADE performance has decreased, which is due to fixing
the FPR at 10%, where previously CADE had an FPR of 18% (ref. Table 1).
LSL performance, on the other hand, has increased as the FPR at rate 10% is
higher when compared to the one in Table 1. Rasd has a slight decrease in the
recall metrics, however, with a higher increase in the others, which implies that
Rasd can distinguish semantic shift samples from the known samples accurately.
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Table 3. Evaluation of latent representations quality via clustering metrics.

System IDS2017 IDS2018

SS NMI Acc SS NMI Acc

CADE 69.42 38 64.82 71.17 14.37 34.34

LSL 57.62 59.69 79.85 56.52 66.36 79.02

Rasd 80.59 85.78 96.3 84.58 92.32 98.46

Although we selected the best models for all the baselines, they still per-
formed less than Rasd. We hypothesize that the contrastive functions may not
have effectively differentiated between the classes. This hypothesis aligns with
current research, which suggests that these functions are susceptible to data
imbalances, potentially leading to the misclassification of new classes as existing
ones [4]. To further investigate this hypothesis, we examine the latent repre-
sentation quality of training samples using K-Means++ and clustering metrics.
The underlying assumption is that if these representations are well-separated
by their labels, then they should be clustered with precision. We evaluate using
three metrics: Normalized Mutual Information (NMI), clustering accuracy, and
the intrinsic Silhouette Score (SS). NMI measures the correspondence between
two sets of clusters, while SS assesses the compactness of clusters and their sepa-
ration using predicted labels, irrespective of ground-truth labels. In our analysis,
SS contrasted with accuracy reveals cluster quality. High SS but low accuracy
indicates distinct yet mixed-label clusters, and high NMI suggests a consistent
mislabeling pattern.

Table 3 displays the clustering performance. Rasd consistently excels across
both datasets, exemplifying its excellence in forming distinct clusters and pin-
pointing labels accurately. Take the IDS2018 dataset, for instance: Rasd achieves
an SS of 84.58% coupled with a 98.46% accuracy rate. Furthermore, its notable
NMI score of 92.32% reinforces Rasd’s cluster assignment consistency. CADE’s
performance is inconsistent across datasets. In IDS2017, its SS, accuracy, and
NMI are 69.42%, 64.82%, and 38%, respectively, indicating that 35.18% of its
latent representations are randomly scattered, affecting clustering. In IDS2018,
CADE shows reduced accuracy and NMI, suggesting poor differentiation of
latent representations. In contrast, LSL consistently performs well in both
datasets, with accuracies above 79% and closely aligned SS and NMI scores.
For example, in IDS2018, LSL achieves an SS of 56.52% and an NMI of 66.36%,
indicating effective label discernment but with some potential for misassignments
due to closely packed labels.

4.3 Rasd Adaptation Strategy Performance

We analyze the performance of the Rasd Adaptation strategy against the base-
lines. Our results show that the proposed method demonstrates its effectiveness
in adapting to semantic shift samples.
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Table 4. A comparison of the baseline selection strategies, US and FS, with Rasd.

Batch Size System IDS2017 IDS2018

Diversity mF1 mPrecision bAccuracy Diversity mF1 mPrecision bAccuracy

1000 US 71.42 73.46 78.41 70.55 33.33 50.74 56.07 53.61

FS 85.71 63.23 72.71 64.68 66.66 49.81 53.87 52.3

Rasd 100 75.88 82.21 76.58 83.33 60.13 59.25 62.62

2000 US 85.71 79.44 82.05 78.85 33.33 52.07 56.54 54.12

FS 100 68.21 79.6 69.07 66.66 49.81 53.38 52.3

Rasd 85.71 79.72 85.69 81.25 83.33 62.34 65.09 64.5

3000 US 71.42 63.13 64.89 62.18 33.33 51.36 56.3 53.18

FS 100 74.1 86.5 75.3 66.66 49.65 53.21 52.3

Rasd 100 83.68 88.45 83.11 100 67.85 75.05 70.09

Table 5. Comparing Rasd and baselines using low selection rates of 1% to 4% and a
batch size of 3,000.

Selection Rate Strategy IDS2017 IDS2018

Diversity mF1 mPrecision bAccuracy Diversity mF1 mPrecision bAccuracy

1% US 57.14 60.76 61.75 62.13 33.33 47.43 50.04 53.62

FS 71.42 64.91 72.09 66.86 50 48.54 52.25 51.64

Rasd 85.71 76.9 81.57 76.73 66.66 56.78 61.26 61.45

2% US 71.42 66.57 68.86 66.75 33.33 48.95 51.75 55.04

FS 85.71 62.53 70.41 64.53 66.66 51.95 56.55 52.31

Rasd 85.71 78.72 80.16 79.98 66.66 59.09 57.76 61.57

3% US 71.42 68.12 68.33 69.41 33.33 47.6 51.5 54.11

FS 100 71.75 87.79 70.69 66.66 50.1 53.46 52.53

Rasd 100 80.13 87.02 79.8 83.33 61.05 60.81 64.07

4% US 71.42 68.59 69.81 68.31 33.33 52.67 57.43 54.54

FS 100 71.07 92.75 70.05 66.66 53.2 58.63 53.66

Rasd 100 82.89 88.86 82.74 83.33 65.48 66.39 66.5

Table 4 displays the results of the Rasd strategy compared to selected base-
lines across various batch sizes, with a fixed selection rate of 5%. The results
underscore significant disparities between the datasets. Across all strategies, the
performance on the IDS2017 dataset consistently surpasses that on the IDS2018
dataset. This divergence can be attributed to Rasd’s low micro recall (≈ 78%)
for this dataset, as elaborated in Table 1. This means we have only few samples
detected from minor semantic shift classes.

However, Rasd consistently outperforms all baselines across batch sizes and
datasets. Its best performance is observed at a batch size of 3,000. Yet, at a
batch size of 2000 for the IDS2017 dataset, Rasd exhibits slightly less diversity
compared to FS, but still surpasses FS in other classification metrics. The per-
formance of FS tends to improve with larger batch sizes, except for balanced
accuracy on IDS2018. In contrast, US achieves its optimal performance on the
IDS2017 with the smallest batch size. A consistent observation with US is its
diminished diversity performance, which has been highlighted previously in [1].
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The selection rate signifies a trade-off: while higher rates increase labeling
costs, they also suggest potential system enhancements. Therefore, we assess the
effects of reduced selection rates on the strategies. We concentrate on the batch
size of 3000 while adjusting the selection rates between 1% and 4%.

Table 5 presents the performance of the strategies on both datasets. For
IDS2017, all strategies improved at 1% and 3% selection rates, with minor dif-
ferences between 1–2% and 3–4%. Consider Rasd, which reflects advancements
ranging from 0.56% to 3.25% across most metrics. However, its precision did
register a decline of 1.41%. The disparity between 1% and 4% is more pro-
nounced, leading to an uptick in most classification metrics across all strategies.
For instance, balanced accuracy witnessed increases of 6.01, 3.2, and 6.18 percent
for Rasd, FS, and US, respectively. When contrasting the 4% and 5% rates (see
Table 4), outcomes are contingent on the strategy. Rasd exhibits a slight increase,
FS experiences an uptick in F1 and balanced accuracy (ranging from 3–5%), but
a drop in precision. Conversely, the performance of US deteriorates. The results
from the IDS2018 draw distinct conclusions. While FS and US exhibit marginal
enhancements with an increased selection rate, Rasd experiences a notable boost
at a 4% selection rate compared to 3%. Moreover, when contrasting the 4% and
5% selection rates, the latter evidences a relative increase in classification met-
rics.

5 Conclusion and Future Directions

We presented Rasd, a novel framework comprising two complementary compo-
nents that enable the detection and adaptation of semantically shifted network
flows. Rasd identifies semantic shift samples in real-time and selects the most
informative samples from the detected set for manual labeling, while assigning
pseudo-labels to the remaining non-selected samples. Our evaluation shows that,
on the IDS2018 dataset, the Rasd detector outperforms the baselines by margins
of 7.1%, 38.36%, and 19.21% in accuracy, recall, and F1, respectively. The Rasd
adaptation strategy guarantees high diversity and superior performance com-
pared to baseline approaches. Specifically, a classifier updated with both labeled
and pseudo-labeled samples attains over 80% performance across all considered
metrics when using a 5% selection rate and a batch size of 3,000 on the IDS2017
dataset.

Although we achieved robust results, our approach encountered two primary
challenges. Firstly, some of the pseudo-labels used to update the models were
incorrectly labeled, introducing noise to the updates. Secondly, the selection rates
depended on the detected shift sample size, leading to thousands of samples being
selected for manual labeling in our setting. For example, Rasd identified 368,947
samples as shift samples within the IDS2017 test set, which at a 1% selection rate,
required approximately 3,689 samples for manual labeling. To enhance efficiency
in future efforts, we aim to limit the number of samples selected for human
labeling to just a few dozen, while the remaining non-selected samples will be
labeled using an oracle. However, this strategy could increase the occurrence of
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mislabeled pseudo-labels. We therefore plan to investigate methods to minimize
the impact of these errors when updating the models.

A Appendix

A.1 Datasets Processing

We evaluated the performance using the revised IDS2017 [6] and IDS2018 [13]
datasets. The datasets were divided into two sets: Set 1 of IDS2017 contains
data from the first three days, while Set 2 includes data from the subsequent
two days; Set 1 of IDS2018 consists of data from the first week, and Set 2
comprises data from the second week. Consequently, each set contains different
attacks, representing the semantic shift classes.

For IDS2018, due to its large size (over 16 million flows), we randomly sam-
pled 33% from each label. We also adjusted the high imbalance in Set 2 of
IDS2018 by reducing the benign traffic to 71.42%. Table 6 displays the statistics
and distribution of the data after division. Additionally, we randomly transferred
20% of the data from Set 1 to Set 2, using these modified sets as our training
and testing sets, respectively. This setup allows us to assess the performance of
our framework against both known and new attack types.

Table 6. Datasets distribution and statistics.

Dataset Set Days Distribution Flows No.

IDS2017 1 Mon, Tue, and Wed Benign (84.98%), DoS Hulk (13.31%), DoS GoldenEye (0.63%), FTP-Patator (0.33%), DoS Slowloris (0.33%), SSH-Patator (0.25%), DoS Slowhttptest (0.14%), and Heartbleed (0.0009%) 1,190,531

2 Thu and Fri Benign (71.96%), Port scan (17.48%), DDoS (10.44%), Bot (0.08%), Brute force (0.01%), Infiltration (0.003%), XSS (0.002%), and SQL Injection (0.001%). 910,283

IDS2018 1 02–14, 02–15, 02–16 Benign (83.09%), DoS Hulk (10.02%), FTP-Brute Force (0.0067%), SSH-Brute Force (4.43%), DoS SlowHTTPTest (0.0074%), DoS GoldenEye (1.95%), and DoS Slowloris (0.47%) 698,771

2 02–20, 02–21, 02–22, 02-23 Benign (71.42%), DDoS LOIC-HTTP (19.79%), DDoS HOIC (8.68%), Bot (0.059%), Infiltration (0.020%), DDoS LOIC-UDP (0.0079%), and Brute Force - Web (0.0027%) 960,137

A.2 Hyperparameter Search

For the classifier, we followed the hyperparameter search strategy proposed in
[1]. For the detectors, we used an Encoder comprising three hidden layers sized
at 75%, 50%, and 25% of the input dimension, respectively. The output layer is
set at 10% of the input dimension. The Decoder in CADE mirrors the Encoder
structure. We used the Adam optimizer at a 0.0001 learning rate for 250 epochs
with 1024 batch size, following current contrastive learning studies which suggest
larger batch sizes and longer training improve performance [3,4,15].

In our context, hyperparameter optimization is challenging due to the unre-
liability loss scores. For example, CADE adjusts the contrastive loss weight with
λ and sets dissimilar pair distances with a margin m, increasing the values of
both parameters might lead to elevated loss scores. Our hyperparameters search
strategy evaluates contrastive loss effectiveness in shift detection based on label
sample proximity and clear separation between different label clusters [4,15]. We
use the Dunn Index to identify optimal hyperparameters, measuring the ratio of
the smallest inter-cluster to the largest intra-cluster distance.
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For CADE’s hyperparameter optimization, we conducted a grid search, test-
ing λ and m values as suggested by CADE’s authors. Our search included m
values from {1, 5, 10, 15, 20} and λ values from {1, 0.1, 0.01, 0.001}, resulting
in 20 combinations. The best parameters for the IDS2017 dataset were m = 20
and λ = 1.0, while for IDS2018, were m = 1.0 and λ = 0.1. While tuning hyper-
parameters for LSL, we explored the following range for m: {1.0, 1.25, 1.5, 1.75,
2.0, 2.25, 2.5, 2.75, 3.0}. The best margin for the IDS2017 dataset was 1.5, while
for IDS2018, was 2.25.

Although the Rasd loss lacks a margin value, our centroid optimization uses
a genetic algorithm, focusing on two key hyperparameters: population size and
generations. We fixed the population size at 100 and tested generations across
{50, 100, 150, 200, 250, 300, 350, 450, 500, 550}, finding 50 generations optimal
for both datasets.
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