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ABSTRACT
Anomaly-based intrusion detection systems are tasked with iden-

tifying deviations from established benign network behaviors, as-

suming such deviations to be indicators of malicious intent. Deep

AutoEncoders (DAEs) have become increasingly popular in these

systems due to their exceptional ability to model benign behavior

with high accuracy, particularly in static, offline settings where the

network’s benign activity pattern is presumed to remain constant.

However, this static approach becomes less effective as network

behavior naturally evolves, leading to challenges in distinguish-

ing new, benign activities from genuine threats. This evolution

raises a critical question: How can we enhance offline DAEs to

accurately identify threats while avoiding false alarms caused by

benign behavior changes?

To address this question, we propose Mateen, an online learning

framework designed to augment the capabilities of offline DAEs,

enabling them to recognize and adapt to changing benign network

behaviors efficiently and with minimal overhead. Mateen leverages

an ensemble of DAEs to monitor and adjust to these changes. It

optimizes resource usage by selecting only a few representative

samples for updates and reduces the overall framework’s complex-

ity by retaining only the relevant models.

We evaluate the effectiveness of Mateen on five network intru-

sion datasets, each exhibiting different types of benign behavior

evolution. The results demonstrate that Mateen consistently en-

hances offline DAE performance across various evolution types. For

instance, Mateen boosts the F1-score on the IDS17 dataset, which

exhibits light change, by 4.13%, and on the Kitsune dataset, charac-

terized by heavy change, by 72.6%, while only necessitating labeling

for 1% of the incoming samples.
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1 INTRODUCTION
Securing computer networks requires balancing security with us-

ability, a complex task managed by various strategies. One such

strategy is using Network Intrusion Detection Systems (NIDS),

based on whitelisting principles, which flag deviations from pre-

defined rules as suspicious. However, formulating these rules is

resource-intensive and lacks scalability, as it necessitates manual

analysis of the network traffic’s benign behavior. Fortunately, break-

throughs in unsupervised machine learning, notably with DAEs,

offer a scalable alternative by automating benign traffic modeling.

DAEs refine network data analysis through compression and re-

construction, effortlessly learning benign behavior patterns, thus

easing the deployment of whitelisting-based NIDS across diverse

networks. Recent research into whitelisting-based security frame-

works, often termed one-class anomaly detection, predominantly

harnesses DAEs, leading to substantial enhancements in detection

performance [17, 27, 40, 42, 60, 73, 77, 85, 86, 91].

However, these promising results arise from an offline context in

which models are fixed post-training, predicated on the belief that

the distribution of testing data will mirror that of training data. This

premise falls short in security scenarios where defense applications

are deployed in dynamic, hostile environments [7, 16, 39]. Here,

they confront testing data potentially at odds with the training

data, giving rise to what is known as distribution shifts [7, 8, 81, 90].

Such shifts can stem from various factors, including changes in

adversary tactics or in legitimate user behaviors. In this context,

offline DAEs are naturally less sensitive to changes in malicious

traffic patterns because their training is based exclusively on benign

traffic samples [39]. However, DAEs may suffer when faced with

shifts in benign traffic distribution, henceforth referred to as benign
shift, since this no longer matches the training set distribution. As a

result, an offline DAE model may begin to mistakenly flag instances

of benign shift as malicious, thereby becoming outdated.

Updating an outdated DAE presents three main challenges. The

first challenge is detecting benign shifts in a whitelisting setting. In

this context, the DAE, trained exclusively on benign instances (Fig-

ure 1a), interprets deviations as potential malicious behaviors. This

introduces complexity, as illustrated in Figure 1b, where deviations

may indicate malicious activities, benign shifts, or a combination

of both. The second challenge is selecting from the shifted distribu-

tion a small set of representative samples, to be labelled manually

https://creativecommons.org/licenses/by/4.0/
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Figure 1: Key challenges in adapting to benign shifts.

and used for updating the DAE. Figure 1d illustrates the potential

adverse effects of updating the model with non-representative sam-

ples. Uncertain samples located far from the decision boundary

fail to capture the entire distribution of the benign shifts (Figure

1c). A model updated with such samples might not effectively cap-

ture the full distribution, risking the misclassification of malicious

samples as benign (Figure 1d), or incorrectly identifying benign

shift samples, especially those significantly different from the ones

chosen for manual labelling, as malicious. The third challenge lies

in effectively adapting the DAE to the shifted distribution without

losing knowledge of the old distribution, given that only a limited

number of samples will be selected and labeled.

In response to the abovementioned challenges, this paper in-

troduces Mateen, a framework designed for DAEs-based NIDS to

detect and adapt to intricate and varied changes in benign traf-

fic patterns. Mateen addresses the first challenge by employing a

statistical analysis method to detect shift that demonstrates lower

sensitivity to the distribution’s tail. This approach allows Mateen

to focus on deviations near the center of the distribution, where

benign shifts are likely to occur. To address the second challenge,

Mateen leverages a new sample selection technique designed to

construct a compact coreset from the new data distribution in an un-

supervised fashion. This coreset is carefully selected to encapsulate

the entirety of the new distribution, thereby significantly enhanc-

ing the model’s capacity to generalize across it. To address the

third challenge, Mateen implements an ensemble of DAEs updated

collaboratively and selectively to adapt to shifts. In this process,

a long-lived DAE is updated with newly selected benign samples

and historical data. Concurrently, a temporary DAE, derived from

the long-lived DAE, is trained exclusively on the new benign sam-

ples. By doing so, Mateen ensures that the ensemble models remain

diverse and relevant to both historical and recently captured distri-

butions. Finally, Mateen keeps the ensemble as compact as possible

by merging high-performing DAE(s) and discarding underperform-

ing ones. In this way, Mateen streamlines ensemble complexity

without sacrificing performance.

We carried out a comprehensive evaluation of Mateen, using

five NIDS datasets—namely CICIDS2017 (IDS17) [29, 89], CSE-CIC-

IDS2018 (IDS18) [64, 89], the IoT-focused Kitsune dataset [73], and

two variants of Kitsune—under various shift conditions.
1
We com-

pared Mateen against recent state-of-the-art methods in NIDS dis-

tribution shift management: INSOMNIA [4] for supervised learning

1
Operational network data with a meaningful number of security events is rarely

available for public research. Our use of synthetic datasets is consistent with recent

work on NIDS [4, 22, 33, 36, 42, 56, 59] that uses exclusively synthetic datasets, most

frequently IDS17 and IDS18.

adaptation, CADE [101] for out-of-distribution detection and sam-

ple selection, and OWAD [39] for unsupervised detection and adap-

tation to benign shifts. The results reveal that Mateen consistently

outperforms these methods across a range of detection metrics, ef-

fectively handling various types of shifts. Notably, Mateen achieves

AUC-ROC scores of 96.79% for IDS17, 98.17% for IDS18, and 94.76%

for a modified version of Kitsune (mKitsune), exceeding the high-

performing baseline by 2.23%, 4.36%, and 14.78% respectively. We

also conducted an ablation study to analyze the contributions of

each sub-component within Mateen, in addition to a hyperparame-

ter sensitivity analysis to assess how different configurations affect

its performance. Our results reveal that every element within Ma-

teen plays a crucial role in its overall effectiveness. Furthermore,

Mateen demonstrates robust performance, maintaining high levels

of effectiveness even when operating with sub-optimal hyperpa-

rameters.

In summary, the contributions of this paper are:

• We designed a new adaptive ensemble learning approach,

explicitly crafted to address the challenge of various forms

of benign shift effectively.

• We enhanced the adaptive ensemble learning approach with

three techniques focused on benign shift detection, sam-

ple selection, and ensemble complexity reduction, each con-

tributing to a more robust and effective system.

• We incorporated these components into Mateen, a unified
framework designed to allow an offline DAE to detect and

adapt to benign shifts at the lowest possible cost. We have

made the code publicly available
2
, facilitating future research

in this field.

• To the best of our knowledge, we provide the first evaluation

of drift-aware NIDS on different scenarios of benign shift.

We demonstrate the ability of Mateen to adapt to varying

distributions, and explore the impact of its key components.

2 PRELIMINARIES
In this section, we provide an overview of anomaly detection and

distribution shift for computer networks, coupled with a concise

summary of ensemble learning and sample selection techniques.

2.1 Anomaly Detection
Anomaly Detection (AD) is the process of finding deviations from

a defined pattern. The pattern can be only benign behaviors where

the aim is to detect malicious ones (one-class AD), as seen in

whitelisting-based NIDS [39, 73, 95], or can be a combination of

both benign and malicious behaviors where the aim is to identify

emerging malicious behaviors (multi-class AD), which is common

in the detection of new types of network attacks [16, 18, 78, 101].

Reconstruction-based methods are the prevalent approach for

one-class AD, typically involving the training of a DAE model,

to minimize the reconstruction error of benign instances. The

underlying rationale is that the model, honed to accurately re-

construct benign instances, will exhibit increased reconstruction

errors when encountering malicious data [39, 73, 95]. Distance-

based methods are the primary approach for multi-class AD, with

contrastive learning-based strategies being especially prevalent

2
https://github.com/ICL-ml4csec/Mateen/
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Figure 2: Distribution shift examples: (a) Training Distri-
bution - Data on which the model was initially trained. (b)
Covariate Shift - benign data distribution changes, but the de-
cision boundary remains the same. (c) Ratio Shift - Reduction
in benign data and increase in malicious data. (d) Concept
Shift - a new concept that changes the decision boundary.

[16, 18, 23, 55, 101]. These strategies minimize the distance be-

tween samples of the same class while maximizing the separation

between distinct classes. The core concept is that newly emerging

malicious samples, such as those from new classes of attacks, will

exhibit a significant distance from the samples in the established

training classes.

2.2 Deep AutoEncoders
A Deep AutoEncoder (DAE) [9] is fundamentally composed of two

interconnected multi-layer perceptrons (MLPs). The first part, the

encoder, is responsible for mapping input data into a latent space,

representing a compressed version of the data. The second part,

the decoder, aims to reconstruct the original data from these latent

representations. The optimization of the DAE focuses on minimiz-

ing the reconstruction error, a measure of the difference between

the original data and its reconstructed form. Commonly used loss

functions for this purpose include Mean Squared Error (MSE) and

Root Mean Squared Error (RMSE). In security applications, DAEs

are frequently employed for AD, particularly for identifying secu-

rity incidents in a one-class fashion where the model is trained

exclusively on benign data. For example, OWAD [39] utilizes a

single DAE to identify malicious activities, Kitsune [73] uses an

ensemble of DAEs to detect IoT network attacks, and Enidrift [95]

employs a dynamic pool of DAEs for detecting network attacks.

2.3 Distribution Shift
Distribution shift refers to the change in the joint probability dis-

tribution 𝑃 (𝑥,𝑦), where 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑌 , between the training

and testing phases [35, 66, 75]. This means that the probability dis-

tribution during training, denoted as 𝑃train (𝑥,𝑦), differs from the

distribution during testing, 𝑃test (𝑥,𝑦). The shift can be categorized

into covariate shift, ratio shift, and concept shift (see Figure 2).

Covariate Shift occurs when there is a change in the probability

distribution of the input variables, 𝑝 (𝑥), but the conditional proba-
bility distribution 𝑃 (𝑦 |𝑥) remains the same. For example, in NIDS

that are trained on packet payloads to identify attacks, a covariate

shift might occur when attackers change these payloads to achieve

the same objective, such as employing alternative syntax or hex

encoding in SQL injection attacks. This leads to a distribution shift,

illustrated in Figure 2b, without altering the decision boundary.

Mathematically, it is represented as a change in 𝑃train (𝑥) ≠ 𝑃test (𝑥),
while 𝑃train (𝑦 |𝑥) = 𝑃test (𝑦 |𝑥).
Ratio Shift is the converse of covariate shift, where the change

occurs in the probability distribution of the output variable, 𝑝 (𝑦),
while the conditional probability distribution 𝑃 (𝑥 |𝑦) remains the

same. An example is shown in Figure 2c, demonstrating a change

in the ratio of malicious to benign instances, such as a rise in

Denial of Service (DoS) attacks during inference. It is described as

𝑃train (𝑦) ≠ 𝑃test (𝑦), but 𝑃train (𝑥 |𝑦) = 𝑃test (𝑥 |𝑦).
Concept Shift represents a shift in the joint probability distribu-

tion 𝑃 (𝑥,𝑦), leading to modifications in the decision boundary, as

depicted in Figure 2d. This shift may arise from the introduction

of new classes during inference. In binary classifications, if such

new classes are correctly classified (for example, recognizing a new

attack as malicious), the model’s performance may not significantly

deteriorate [10, 45]. Conversely, in multi-class settings, identify-

ing, labeling, and adjusting the classifier to accommodate the new

class becomes essential [101]. Concept shift is thus a change where

𝑃train (𝑥,𝑦) ≠ 𝑃test (𝑥,𝑦) in a more general sense.

These types can also be classified by their temporal patterns,

including gradual shifts, where changes occur progressively over

time; sudden shifts, where the distribution changes abruptly and

unpredictably; and recurring shifts, characterized by brief, repetitive
changes throughout time [35, 66, 75].

2.4 Ensemble Learning
Ensemble learning refers to the use of multiple base models, often

referred to as learners, to form one predictive model. The one pre-

dictive model is derived by aggregating the outputs of individual

learners through methods like weighted voting, majority voting, or

selecting the best performer. Typically, these learners are developed

in an offline setting, trained once on a substantial dataset, and then

deployed without subsequent updates. However, in environments

characterized by frequent distribution shifts, such static learners

quickly become outdated. Adaptive ensemble learning addresses

this issue by updating the learners to adapt to new data distri-

butions. Updates can be implemented in various ways, including

incremental updates (enriching the training set with data from the

new distribution before retraining) [3, 48] or through batch-based

learning, where a new learner is trained for each data batch that

meets certain criteria [25, 28, 68, 95, 99, 103], such as evidence of

distribution shifts [99, 103] or a decline in detection performance

[25, 28]. The new learner is added to a model pool. Subsequently,

this pool leverages techniques such as weighted voting to predict

incoming data [68, 95, 99, 103].

2.5 Sample Selection
Sample selection consists of selecting particular examples from a

dataset to boost a model’s accuracy, and is applicable to both labeled

and unlabeled datasets. For labeled datasets, sample selection aims

to identify a subset of samples that trains amodel tomatch or exceed

the performance of one trained on the full dataset, similarly to

coreset selection or training-set reduction [5, 19, 50, 51, 62, 74, 102].

To achieve this, the selected subset must accurately represent the

full dataset characteristics. With unlabeled datasets, the focus is

on selecting data points that, once labeled, significantly enhance
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Dataset Description Model Description
𝐵𝑖 The incoming batch of data at step 𝑖 . 𝐼𝑁𝐶𝑖 The incremental model trained on D𝑖 .

S𝑖
𝑏

Samples selected from 𝐵𝑖 and manually labelled as benign. 𝑇𝑖 A temporary model exclusively trained on S𝑖
𝑏
.

D𝑖 Incremental dataset at step 𝑖: D𝑖 = D𝑖−1 ∪ S𝑖𝑏 . 𝑇⊎ The merged model averaging 𝑇1 and 𝑇2.

Figure 3: Overview of Mateen.

model performance, balancing informativeness, representativeness,

and diversity [84]. This involves evaluating the inherent qualities

of data or using the model feedback on these points [4, 16, 84].

Active learning, also often associated with selection from un-

labeled datasets, involves querying a pool of unlabeled samples

to identify those that require labeling [84, 87]. This selection pro-

cess can occur once or iteratively on an n-by-n basis, where n
represents either one sample or a batch of samples. This iterative

approach integrates model feedback at each step, allowing for con-

tinuous refinement of the selection process. The most common

active learning technique in security applications is uncertainty

sampling [4, 16, 101]. It focuses on choosing samples that present

the highest degree of uncertainty to the model. Such uncertainty

is typically derived from various metrics, including low probabil-

ity scores [4], low fitness scores (e.g., high distance to established

training classes) [16, 101], and high reconstruction errors [39].

3 THE MATEEN FRAMEWORK
This section presents Mateen, a framework that detects and adapts

to benign shifts in DAE-based NIDS. Mateen comprises four sub-

modules: the shift detection module, responsible for detecting be-

nign shifts; the sample selection module, which selects relevant

samples for labeling and updates; the adaptive ensemble learning

module, responsible for shift adaptation; and a complexity reduction

module, designed to decrease Mateen’s overall complexity.

3.1 Overview and Simplified Example
Figure 3 illustrates the high-level workflow of Mateen. Mateen

operates in an online manner, predicting incoming samples as they

arrive and adapting to benign shifts. Mateen classifies incoming

samples by using the model that showed the best performance

during the previous update round. Simultaneously, these samples

are aggregated into a count-based batch 𝐵𝑖 . When 𝐵𝑖 reaches full

capacity, Mateen performs hypothesis testing to determine whether

a shift has occurred statistically, checking if the distribution of 𝐵𝑖
aligns with that of the previous training data D𝑖−1 (Figure 3, 1○).

If the distributions are aligned, no update is needed. If instead a

distribution shift is detected, Mateen selects a stratified subset from

𝐵𝑖 that accurately represents the overall distribution, as illustrated

in Figure 3 2○, for annotation by human experts. This labeled subset

is then employed to update the models.

Mateen performs two types of updates on its ensemble of models:

a major update and a minor update (Figure 3, 3○). In the major

update, a new temporary model, 𝑇𝑖 , is created and trained on the

benign samples from the labeled subset, denoted asS𝑖
𝑏
. In the minor

update, Mateen augments the training data to include S𝑖
𝑏
, resulting

in D𝑖 , and retrains the previous incremental model, 𝐼𝑁𝐶𝑖−1, on
D𝑖 , to produce 𝐼𝑁𝐶𝑖 . Finally, Mateen optimizes the complexity of

the ensemble by enforcing a maximum size limit (Figure 3, 4○).

Upon reaching this limit, high-performing models are combined in

a merged model 𝑇⊎, and low-performing ones are discarded.

3.2 Shift Detection
The Mateen shift detection module is designed to identify occur-

rences of benign shift. In contrast to existing methods that operate

in a supervised setting—where an instance is compared against

both malicious and benign baselines [16, 55, 101]—Mateen func-

tions within a one-class AD framework. Hence, we need to identify

shift occurrences without relying on a direct comparison to a mali-

cious baseline. Our strategy is to compare the distribution of two

sets of equal size: the incoming batch of data 𝐵𝑖 and a control set

D𝑐 . The control set comprises the most recent samples from D𝑖−1,
ensuring it has the same number of samples as 𝐵𝑖 . However, it is

hard to derive a strong distribution comparison using the sample

features, because of the high dimensionality. Instead, we leverage

the current DAE (the highest-performing model from the most
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recent update cycle) to map each sample to a single dimension. We

calculate the MSE score for each sample 𝑥𝑖 as follows:

MSE =
1

𝑑

𝑑∑︁
𝑗=1

(𝑥𝑖 𝑗 − DAE(𝑥𝑖 ) 𝑗 )2 (1)

With the one-dimensional scores for each set in hand, our objec-

tive is to statistically compare their distributions. The null hypothe-

sis is thatD𝑐 and 𝐵𝑖 originate from the same distribution, indicating

no shift. Note that, D𝑐 is presumed to be benign, as it comprises

instances that have been collected, labeled, and filtered to ensure

they represent only benign behavior. In contrast, we cannot assert

that 𝐵𝑖 contains only benign instances. Indeed, if 𝐵𝑖 comprises a

mix of malicious and non-shifted benign instances (i.e., benign

samples drawn from the same distribution as D𝑐 ), the comparative

analysis of the distributions forD𝑐 and 𝐵𝑖 might reveal a significant

divergence, indicating that shift has occurred.

To compare distributions, we use the two-sample Kolmogorov-

Smirnov (KS) test. Although it has been criticized for being less

sensitive to outlier values at the tails of a distribution, such as

extreme values [31, 70, 71], this characteristic is actually advanta-

geous in our specific context. Typically, malicious instances exhibit

high MSE scores, but occur less frequently than benign instances.

Thus, the KS test’s lower sensitivity to such extreme values allows

for an equitable comparison across the full spectrum of both distri-

butions, ensuring that rare, extreme malicious samples do not bias

the results.

Let 𝐹D𝑐
(𝑟 ) and 𝐹𝐵𝑖

(𝑟 ) represent the empirical cumulative distri-

bution functions (ECDFs) corresponding to the MSE scores derived

from the control set D𝑐 and the incoming batch 𝐵𝑖 , respectively,

where 𝑟 denotes the MSE score values for which the ECDFs are

calculated. We calculate the KS test as follows:

𝐾𝑆D𝑐 ,𝐵𝑖
= sup

𝑟 ∈R

��𝐹D𝑐
(𝑟 ) − 𝐹𝐵𝑖

(𝑟 )
��

(2)

The term sup𝑟 ∈R indicates the supremum, or the maximum de-

viation, between the two ECDFs across all possible values of MSE

scores observed in both D𝑐 and 𝐵𝑖 . The resulting p-value from

the KS test is then compared against the conventional significance

threshold of 0.05. In statistical terms, a p-value below this threshold

typically suggests a significant difference [24, 46, 63, 79, 104], hence

supporting the alternative hypothesis that a distributional shift

has occurred. Conversely, a p-value above this threshold would

support the null hypothesis, indicating no significant shift between

the distributions. Analysts may adjust the threshold value to better

reflect the malicious-to-benign ratio in the specific network being

secured, thus tailoring the sensitivity of the test to the context of

their network. For instance, by setting a higher significance thresh-

old (e.g. 0.1), the test becomes more permissive, thereby increasing

its sensitivity to smaller deviations between distributions.

3.3 Adaptive Ensemble Learning
To adapt to distribution shifts, Mateen employs adaptive ensemble

learning, a method that generates new models to encompass emerg-

ing distributions. While various approaches have been devised to

apply this concept across different scenarios, they often fall short

in the context of DAE-based NIDS for a crucial reason.

Commonly, these approaches generate a new model using the

entirety of the incoming data batch [25, 28, 68, 95, 99, 103]. This

batch may be processed in two ways: either by being labeled and

cleansed of malicious instances before training [68, 95], or by allow-

ing the model to update itself in an unsupervised manner without

any prior filtering [99, 103]. The challenge with the former is the

impracticality of labeling every piece of incoming data, while the

latter poses a risk of self-poisoning, potentially causing the model to

incorrectly classify malicious activity as benign. Furthermore, limit-

ing the model’s training to a small set of labeled benign samples can

cause overfitting, where the model fails to generalize well beyond

the specific instances it was trained on. Our approach, detailed

below and illustrated in Figure 4, mitigates these issues.

If data batch 𝐵𝑖 exhibits a distribution shift, we employ the se-

lection method outlined in Section 3.4 to select a subset S𝑖 of repre-
sentative samples for manual labeling. S𝑖 is then used to assess the

need for updating the ensemble. If the model’s performance on S𝑖 ,
measured using the F1 score, surpasses a predefined threshold 𝑡 , no

update is necessary
3
. Otherwise, the samples from S𝑖 are filtered

to eliminate instances of attacks, obtaining the benign-only subset

S𝑖
𝑏
, which is utilized for two types of updates: minor and major.

For the minor update, we augment the benign data accumulated

so far with S𝑖
𝑏
, resulting in an updated dataset D𝑖 = D𝑖−1∪ S𝑖𝑏 .

We then update 𝐼𝑁𝐶𝑖−1 using D𝑖 to obtain 𝐼𝑁𝐶𝑖 (Figure 4, 3○).

This incremental model is capable of adapting to minor distribution

shifts, such as covariate shifts, because it continuously learns from

a growing dataset and only needs to adjust to changes within the

feature space. For instance, if a user’s browsing behavior changes,

𝐼𝑁𝐶𝑖 can reassess the importance of the features to establish a more

effective decision boundary.

For the major update, we clone 𝐼𝑁𝐶𝑖−1 and fine-tune it on S𝑖
𝑏

to obtain the new temporary model 𝑇𝑖 , which we add to the ensem-

ble (see 1○ and 2○ in Figure 4). Leveraging the weights from the

incremental model, instead of initializing 𝑇𝑖 with random weights,

allows 𝐼𝑁𝐶𝑖−1 to transfer its deep understanding of benign traffic

patterns to 𝑇𝑖 , avoiding the pitfall of learning from scratch, which

can lead to overfitting. This strategy presents multiple advantages.

It prepares the temporary models to efficiently manage new data

distributions, or concept shifts, despite having limited data for train-

ing. This capability starkly contrasts with the incremental model,

which, due to empirical risk minimization principles, may display a

bias towards the dominant patterns within the training data. More-

over, not every statistical representation benefits from fine-tuning,

leaving some statistics unchanged and thus still reflective of prior

distributions. As a result, the temporary models, even after adapta-

tion, are expected to make fewer mistakes on previous distributions

compared to models that begin with random weights.

After the updates, we select the model that achieves the highest

F1 score on the S𝑖 labeled samples for use as the reference model

in the next prediction and shift detection cycle.

3.4 Selection Method
The adaptive ensemble learning module necessitates a labeled

dataset for its update step. Due to the impracticality of labeling

3
We set 𝑡 at 99%, as this level of performance is typically observed when evaluating

the model on network data from the same distribution (e.g., [1, 42, 85]).
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Figure 4: Mateen’s adaptive ensemble learning module.
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Figure 5: The proposed sample selection method.

an entire batch 𝐵, we need a method for selecting a representative

subset S from 𝐵. For the update to be effective, this S needs to

satisfy three key criteria: it must encompass samples from every

segment of 𝐵’s distribution, ensuring a comprehensive representa-

tion; the selected samples need to be highly informative to enhance

the learning process; and the sample set must display adequate di-

versity to reduce any potential bias towards overly specific patterns

in the data.

To construct S, Mateen introduces a new selection method tai-

lored to fulfill these requirements. The intuition is illustrated in

Figure 5 and the procedure is sketched in Algorithm 1. As an initial

step, we partition 𝐵 into mini-batches 𝑀𝐵𝑛 of size 𝜌 (step 3○ in

Figure 5). Specifically, we first calculate the MSE score for every

individual sample in 𝐵. Following this, we arrange the samples in

ascending order according to their MSE scores. Then, we distribute

these ordered samples into the mini-batches𝑀𝐵𝑛 in a sequential

manner. By selecting samples from each mini-batch, we ensure

comprehensive representation across the entire distribution of 𝐵

(Figure 5, 4○).

To perform selection from each mini-batch, we compute two

key metrics: informativeness (𝐼 ) and uniqueness (𝑈 ), as outlined

in Algorithm 1. Informativeness is designed to measure a sample’s

value to the overall learning process, indicating that a highly in-

formative sample is expected to significantly decrease the model’s

error. Uniqueness assesses how distinct a sample is relative to oth-

ers, with a unique sample potentially introducing novel and less

common patterns from 𝐵. In the rest of this Section, we detail our

approach to calculate 𝐼 and𝑈 , and the criteria for selecting samples

based on these scores.

3.4.1 Informativeness. This metric is designed to meet the second

criterion: the identification of informative samples that contribute

to a reduction in model error. Since we lack access to the actual

labels of the entire batch, we cannot directly measure model er-

ror. Instead, we assess the informativeness of samples through a

distance-based measure. The underlying assumption here is that

Algorithm 1 Pseudocode for Mateen’s selection method.

Input: a batch of data 𝐵, a model𝑀 , the size of minibatch 𝜌 , the

retention rate 𝜎 , and the selection rate 𝛿 .

Output: The subset S of 𝐵 to be labeled.

1: functionMateenSelector(𝐵,𝑀 , 𝜌 , 𝜎 , 𝛿)

2: ⊲ Initialise S
3: S ← empty list

4: ⊲ Distribute 𝐵 into bins of size 𝜌

5: 𝐼𝐷𝑋𝑏𝑎𝑡𝑐ℎ ← DataToBins(𝑀 , 𝐵, 𝜌)

6: ⊲ Iterate over each bin index 𝑗 in 𝐼𝐷𝑋𝑏𝑎𝑡𝑐ℎ
7: for 𝑗 ∈ 𝐼𝐷𝑋𝑏𝑎𝑡𝑐ℎ do
8: ⊲ Get the minibatch𝑀𝐵 𝑗 from 𝐵 using the index 𝑗

9: 𝑀𝐵 𝑗 ← 𝐵 [ 𝑗]
10: ⊲ Calculate the number of samples to select from𝑀𝐵 𝑗
11: 𝑁 ← ⌊𝛿 × 𝜌⌋
12: ⊲ Get𝑀𝐵−

𝑗
of𝑀𝐵 𝑗 based on a retention rate 𝜎

13: ⊲Calculate informativeness scores 𝐼 for samples in𝑀𝐵−
𝑗

14: 𝑀𝐵−
𝑗
, 𝐼 ← Informativeness(𝑀 ,𝑀𝐵 𝑗 , 𝜎)

15: ⊲ Calculate uniqueness scores𝑈 for samples in𝑀𝐵−
𝑗

16: 𝑈 ← Uniqeness(𝑀 ,𝑀𝐵−
𝑗
)

17: ⊲ Normalize 𝐼 and𝑈 using min-max scaling

18: 𝐼 ← 𝐼−min(𝐼 )
max(𝐼 )−min(𝐼 )

19: 𝑈 ← 𝑈 −min(𝑈 )
max(𝑈 )−min(𝑈 )

20: ⊲ Calculate the combined weight𝑊 using𝑈 and 𝐼

21: 𝑊 ← 𝜆0 ·𝑈 + 𝜆1 · 𝐼
22: ⊲ Selects the samples with the highest values in𝑊

23: 𝐼𝐷𝑋𝑡𝑜𝑝 ← {𝑖 |𝑊 [𝑖] ∈ top 𝑁 highest values in𝑊 }
24: S ← S ∪{𝑀𝐵−

𝑗
[𝑖] | 𝑖 ∈ 𝐼𝐷𝑋𝑡𝑜𝑝 }

25: end for
26: return S
27: end function

samples that are more similar to a larger group of other samples

are more informative because they represent a greater portion of

the data. However, relying solely on similarity can be problematic

as it is sensitive to noise and may lead to over-selecting samples

from similar patterns, thus missing out on diverse, yet informative

samples from other patterns.

To address this, we use a selective method to ensure a broad

representation of informative samples. We iteratively select the

first sample from each distinct pattern, based on its temporal order,
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while removing samples that are too similar to it beyond a specific

threshold. Consequently, a sample is deemed informative if its

selection results in the removal of many other similar samples.

Setting the threshold can be challenging due to the variability

in similarity levels across mini-batches. Therefore, we employ a

binary search algorithm to determine the threshold that allows us

to select a specific percentage, 𝜎 , of samples from each mini-batch

𝑀𝐵 𝑗 , thereby creating a condensed mini-batch 𝑀𝐵−
𝑗
. The choice

of 𝜎 is flexible, tailored to the user’s needs, and can be adjusted

based on the desired balance between redundancy and the degree

of similarity among the data in the given network.

For a sample 𝑠 , let 𝜙 (𝑠) be its reconstruction via 𝐷𝐴𝐸 (𝑠), and
let 𝜖 (𝑠) be its feature error vector, where each component 𝜖 𝑗 (𝑠) is
computed as | |𝑠 𝑗 − DAE(𝑠) 𝑗 | |2 for each feature index 𝑗 . Given two

samples 𝑠1 and 𝑠2, our similarity measure is the Euclidean distance

| |𝜙 (𝑠1)::𝜖 (𝑠1) − 𝜙 (𝑠2)::𝜖 (𝑠2) | |2 (3)

where :: denotes vector concatenation.

We include the feature error vector 𝜖 term because of the dy-

namics of our ensemble update process, where we repeatedly train

our incremental model (𝐼𝑁𝐶) on a growing, large dataset, and train

the temporary models (𝑇 ) on small sets of samples. This could lead

to the latent representations, or the reconstructions 𝜙 , of different

inputs to be too similar to each other [20, 82]. In such cases, 𝜖 serves

as a critical measure, capturing the genuine discrepancy between

the feature space of a sample, 𝑠 , and its reconstructed form via

DAE(𝑠).

3.4.2 Uniqueness. This metric is crafted to fulfill the third criterion:

identifying a diverse set of samples to ensure that the model trained

on this set is not biased towards specific data patterns. Given the

samples within𝑀𝐵−
𝑗
, we compute a uniqueness value, 𝑢, for each

sample, 𝑠 , as follows:

𝑢 (𝑠, 𝑀𝐵−𝑗 ) =
∑︁

𝑠′∈𝑀𝐵−
𝑗
\{𝑠 }
| |𝜖 (𝑠) − 𝜖 (𝑠′) | | (4)

Here, 𝑢 represents the cumulative distance of sample 𝑠 to all

other samples in𝑀𝐵−
𝑗
. A higher 𝑢 score indicates that the sample

is distinct compared to others in the batch.

3.4.3 Selection. We derive a vector 𝑈 , where each element corre-

sponds to the𝑢 value for each 𝑠 within𝑀𝐵−
𝑗
. Similarly, we compute

a vector 𝐼 of informativeness values. Each value in 𝐼 indicates the

number of samples excluded by informativeness due to their simi-

larity or redundancy with the corresponding sample in𝑀𝐵−
𝑗
.

Both vectors𝑈 and 𝐼 are normalized using min-max scaling to

obtain𝑈 and 𝐼 . The final weights for each sample in a condensed

mini-batch are calculated using the formula 𝜆0𝑈 +𝜆1𝐼 , where 𝜆0 and
𝜆1 are hyperparameters that adjust the balance between uniqueness

and informativeness. Samples with the highest weights from each

minibatch are chosen based on a user-specified selection rate (𝛿),

resulting in a subset S that represents the entire distribution of 𝐵.

3.5 Complexity Reduction
The proposed adaptive learning module in Mateen faces a key

challenge: as time progresses, the number of models in the ensemble

increases. On the one hand, discarding models risks losing valuable

insights; on the other hand, retaining all models leads to increased

complexity. Hence, a balanced approach is necessary. We, therefore,

propose a dynamic scheme that balances the retention of valuable

knowledge against the escalating complexity through selective

model merging and elimination.

Suppose the number of the models reaches a critical number. In

that case, we reduce the models’ number to 3, keeping the incre-

mental model 𝐼𝑁𝐶𝑖 , the temporary model 𝑇𝑖 (trained on the most

recent data S𝑖
𝑏
), and adding a new merged model 𝑇⊎.

To obtain 𝑇⊎, we start by evaluating the F1 scores of the re-

maining temporary models on the latest subset S𝑖 , arranging these

models in descending order based on their scores (𝑇 0, . . . ,𝑇𝑘 ). We

then proceed with a recursive merging process for those 𝑛 ≤ 𝑘
models whose performance is within 10% of the highest-scoring

model, denoted 𝑇 0
. This emphasis on F1 scores is due to the like-

lihood that models with similar performance metrics share akin

parameter spaces and exhibit similar detection errors, rendering

them nearly equivalent [76]. Thus, merging these models into a

unified global model is expected to maintain overall performance

on distributions learned from its constituent models and decrease

redundancy within the pool [61, 72, 103].

The merging process employs the parameter averaging tech-

nique [72, 103], but adds a weighting mechanism. The merger is

formalized by the recursive equations:

𝑇 0

⊎ = 𝑇 0,

𝑇
𝑗+1
⊎ = 𝛼 ·𝑇 𝑗

⊎ + (1 − 𝛼) ·𝑇
𝑗+1, for 𝑗 = 0, 1, . . . , 𝑛 − 1

(5)

Here, 𝛼 is the weighting coefficient, optimized to refine 𝑇⊎’s
performance on the recent subset S𝑖 , ensuring the global model

effectively encapsulates the strengths of its components while being

specifically attuned to the latest distribution. To find the best 𝛼 , we

employ a direct empirical method: testing values from 0 to 1 in 0.01

increments. For each value, we calculate the F1 score against the

subset S𝑖 . The 𝛼 that delivers the highest F1 score is selected.

The models which fall outside the 10% performance margin

are eliminated. While this might be perceived as a loss of valuable

knowledge, the incremental model 𝐼𝑁𝐶𝑖 still retains insights gained

from data corresponding to the removed models.

4 EVALUATION
We evaluated Mateen along with the related baselines using five

network datasets in various distribution shift scenarios. In the fol-

lowing, we detail our experimental setup and discuss our results.

4.1 Experimental Setup
4.1.1 Datasets. Our dataset selection was guided by two key cri-

teria: they must have been captured over time, and encompass a

variety of both attack and benign sources. We chose three well-

known datasets: Kitsune [73], IDS17 [29, 89], and IDS18 [64, 89].

The Kitsune dataset contains nine attack-specific files, each cap-

tured independently alongside its benign traffic. When a model is

trained on a single file and tested on the others, its performance

significantly deteriorates. This occurs because each file is designed

for a distinct attack scenario and captured in a unique environment,

resulting in concept shifts within both attack and benign activities.

The IDS17 dataset features a mix of both benign and malicious
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traffic gathered from the same network over five days. The IDS18

dataset provides a mix of traffic captured over three weeks from a

larger network. IDS17 and IDS18 exhibit covariate shifts in benign

traffic, marked by gradual and subtle changes in traffic properties

over time, and concept shifts, defined by the sudden appearance of

new attack patterns as time evolves.

Data Split. We divided each dataset into training and testing sets,

adopting time-aware settings to mitigate bias, as recommended in

[6, 81]. The Kitsune dataset lacks timestamps, so we used the first

file (ARP MitM) for training, and the remaining files for testing.

For IDS17, we used the initial two days as the training set, and the

following three days for testing. For IDS18, we used the first week

for training and the following week for testing. The testing sets

were then sequentially divided into batches, each comprising 50,000

samples, as in [4, 39]. The benign-to-malicious ratio changes across

batches, hence we can say that each dataset also demonstrates a

ratio shift.

Shift Scenarios. The testing sets illustrate two types of benign shift:

covariate and ratio shifts, as seen in IDS17 and IDS18, and concept

and ratio shifts, as seen in Kitsune. We also created additional simu-

lated shift scenarios. From IDS18 (covariate shift), we removed the

effect of ratio shift to focus solely on analyzing the impact of co-

variate shift. Specifically, we first calculate the benign-to-malicious

sample ratio within the entire testing set. Subsequently, the testing

set is partitioned into sequential batches, each comprising 50,000

samples, while maintaining the same ratio. For example, given an

80:20 benign-to-malicious ratio, each batch is formed by sequen-

tially selecting 40,000 benign and 10,000 malicious samples. The

first batch includes the initial benign and malicious samples as per

the ratio, the second batch comprises the next sequence of benign

and malicious samples, and this pattern continues with each batch

until the testing set is fully segmented.

From Kitsune, we created a scenario maintaining a constant

malicious-to-benign ratio (mKitsune), and another designed to repli-

cate a recurring concept (rKitsune). For mKitsune, we adjusted the

Kitsune testing set for a uniform ratio, distributing attacks across

batches akin to our IDS18 strategy, allowing us to compare Kitsune

and mKitsune results to assess the ratio shift impact on adaptation

results. For rKitsune, we created a test set by mixing ARP MitM

and Active Wiretap files, interspersing two Active Wiretap batches

after every four ARP MitM batches, aiming to test the frameworks’

ability to maintain old valid distributions (ARP MitM file) while

adapting to new ones (Active Wiretap file).

Table 1 presents the statistical breakdown of the datasets post-

processing, while Appendix A offers further details on the datasets

and their processing steps.

4.1.2 Baselines. We compare Mateen to four baselines. The first
baseline is No-Update, which is an offline one-class DAE that is

trained on benign data from the training set and does not con-

duct any updates to address shifts. The second baseline is OWAD

[39], which stands out as the only framework specifically aimed

at detecting and adapting to benign shifts in security contexts. It

uses a fixed-size memory, periodically updated by replacing out-

dated training samples for new benign shift samples upon detecting

Dataset

Train Test

# Samples # Samples # Batches

IDS17 693K 1.4M 29

IDS18 2.5M 7.5M 151

Kitsune 751K 5.3M 107

mKitsune 751K 5.3M 107

rKitsune 751K 1.7M 35

Table 1: Statistical information of the datasets.

shifts. The model is retrained with this updated memory. To pre-

vent catastrophic forgetting, OWAD employs a customized version

of UNLEARN [27], ensuring crucial parameters for previous valid

distributions remain constant while updating less critical ones for

new distributions.

The third baseline is INSOMNIA [4], which is a supervised frame-

work designed specifically for adapting to distribution shifts in

multi-class NIDS. INSOMNIA does not employ a shift detection

mechanism; instead, it updates the model with every incoming

batch of data. It utilizes US to select the least confident samples for

human labeling. These selected samples are then incorporated into

the training set for model retraining.

The fourth baseline is CADE, which is considered the state of

the art in out-of-distribution detection and sample selection for

multi-class security applications. CADE utilizes supervised con-

trastive loss [38] to minimize the distance between samples sharing

the same label while increasing the distance between samples with

different labels. After training, samples that are distant from all

label clusters are flagged as shifts, with those exhibiting the highest

distance chosen for labeling. Note that CADE is used only for com-

parison with our selection method, as it focuses on shift detection

and sample selection.

Training and Updates. All models are given the same training set

and batches of testing data but vary in their training and sample

selection strategies for updates. Each adaptive framework utilizes a

unique method to select an identical number of samples (𝛿), form-

ing a subset that is then labeled by humans, and used for updates.

OWAD and Mateen initialize with the No-Update model, which is

exclusively trained on benign samples from the training set. Sub-

sequently, they update their underlying DAE(s) to address benign

shifts, using only the benign samples from the selected subset. IN-

SOMNIA and CADE, as supervised frameworks, are trained on the

complete training set, covering both malicious and benign samples.

Their updates involve the full selected subset, integrating samples

from both classes.

For a detailed description of the baselines, the hyperparame-

ter search strategy, and the hyperparameters used, please refer to

Appendix B.

4.1.3 Experimental Design. Our experimental design encompasses

five key elements, each addressing a distinct aspect of our frame-

work’s performance and characteristics:

• End-to-End Performance (Section 4.3.1): We examine the

end-to-end performance of Mateen alongside adaptive learn-

ing baselines under diverse distribution shift conditions and

varying selection rates (𝛿).
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Figure 6: Adaptation performance over 𝐵𝑛 .

• Learning Under Latency (Section 4.3.2): We examine the

effects of update latency and restricted sample size on adap-

tation performance.

• Learning Under Label Noise (Section 4.3.3) We assess the

impact of mislabeling the selected samples on adaptation

performance.

• Sub-Component Analysis (Section 4.3.4): We perform an

ablation study to assess the impact of our proposed adap-

tive learning strategy, complexity reduction module, and

selection method.

• Hyperparameter Impact (Appendix B.4): We analyze the

effects of varying hyperparameters, such as 𝜌 , 𝜎%, maximum

ensemble size, and 𝜆0, on Mateen’s performance.

4.1.4 Evaluation Metrics. We set the threshold for the DAE-based

models at the 95th percentile and computed three key metrics at

this threshold: F1-Score, the harmonic mean of precision and recall;

Macro F1-Score, averaging the F1-Scores for each class; and Accu-

racy, the proportion of correct predictions. To mitigate potential

bias from the threshold setting, we also included the Area under

the ROC Curve (AUC-ROC) as a metric, assessing the model’s abil-

ity to differentiate between classes across various thresholds. For

the threshold-dependent metrics, we sequentially combined predic-

tions from all batches into a single file. Next, we directly compared

this consolidated predictions file with the actual labels to calculate

the metrics. Concurrently, the AUC-ROC was calculated for each

data batch, and the overall score was derived by averaging these

individual batch scores.

It should be noted that in our process, after predicting a batch of

data with a model, we stored these initial predictions for metrics

calculation. If a shift was detected within this batch, we updated

the model accordingly. However, we did not reapply the updated

model to the same batch of data for a second round of predictions.

This procedure ensures that our evaluation remains consistent with

the principles of the test-then-train scheme [34].

4.2 Computing Platform
The experiments were conducted on a Linux-based system (Ubuntu

22.04.3 LTS) with an Intel Xeon Processor (Skylake), featuring 16

cores across two NUMA nodes. The system was equipped with dual

NVIDIA Tesla T4 GPUs, each offering 16 GB of memory, and was

supported by 128 GB of RAM. All frameworks have been imple-

mented using PyTorch version 2.0.1 [80], utilizing CUDA version

12.2 and operating on Python 3.11.3.

(a) IDS17 (Covariate & Prior)

Framework F1-Score mF1-Score Accuracy AUC-ROC

No-Update 88.09 80.53 83.46 94.56

INSOMNIA 78.45 49.99 64.55 49.76

OWAD 85.1 71.59 78.01 94.4

Mateen 92.22 88.48 89.69 96.79
(b) IDS18 (Covariate & Fixed Ratio)

No-Update 94.74 78.68 90.78 93.81

INSOMNIA 96.92 84.56 94.46 78.32

OWAD 85.01 56.24 85.01 91.97

Mateen 97.03 91.32 95.63 98.17
(c) Kitsune (Concept Shift & Prior)

No-Update 24.50 27.72 27.86 63.98

INSOMNIA 87.23 51.38 77.81 47.31

OWAD 91.28 67.21 84.89 70.97

Mateen 97.1 91.6 95.2 72.15
(d) mKitsune (Concept Shift & Fixed Ratio)

No-Update 24.50 27.72 27.86 72.58

INSOMNIA 88.11 50.14 79.06 50.65

OWAD 93.59 81.82 89.44 79.98

Mateen 95.86 87.41 93.09 94.76
(e) rKitsune (Recurring Concept Shift)

No-Update 86.02 77.18 80.61 88.43

INSOMNIA 86.84 67.79 79.06 65.24

OWAD 91.09 82.89 86.82 87.14

Mateen 94.52 89.63 91.93 93.47
Table 2: End-to-End adaptation performance.

4.3 Results and Discussion
4.3.1 End-to-End Performance. In this experiment, we assess the

end-to-end performance of Mateen—specifically, howwell it detects

anomalies after adapting to benign shifts—under various scenarios

of distribution shifts. We compared Mateen against three baselines:

a non-updated DAE, OWAD, and INSOMNIA. The non-updated

DAE (No-update) represents the initial model that was trained

on a large dataset before being utilized by OWAD and Mateen.

We report two results: the first details the overall performance

aggregated across all batches (Table 2); the second result visualizes

the adaptation performance over time, which is calculated from

individual batches (Figure 6). For updates, eachmodel was restricted

to selecting only 500 samples from batch 𝐵, equivalent to a selection

rate (𝛿) of 1%. It is important to note that Mateen and OWAD initiate
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updates only upon detecting shifts, whereas INSOMNIA performs

updates with each new batch of data.

Covariate Shift Adaptation. The results of end-to-end adaptation for

the covariate shift datasets IDS17 and IDS18 are presented in Tables

2a and 2b, respectively. Notably, Mateen significantly surpasses

all baseline models in both datasets across all the metrics. More

importantly, Mateen shows a notable performance improvement

compared to the No-Update; for instance, it increases the F1-Score

by 4.13% on the IDS17 dataset, while OWAD reduces the perfor-

mance by 2.99%. Further examinations, illustrated in Figures 6a and

6b, demonstrate that OWAD consistently underperforms compared

to No-Update across most batches. In contrast, Mateen consistently

enhances performance.

We can also notice that Mateen significantly improves the mF1-

Score when compared to all the baselines. This metric underscores

Mateen’s ability to balance precision and recall across both be-

nign and malicious classes. For example, on the IDS17 dataset,

Mateen achieves an mF1-score of 88.48, outperforming the highest-

performing baseline (No-Update) by 7.95%. More importantly, other

baselines, in contrast to Mateen, demonstrate a bias toward the

more common class (i.e., the benign class), marked by high F1

scores but notably lower mF1-scores, with a discrepancy exceed-

ing 10%. This indicates that they classify a significant number of

malicious samples as benign.

We further analyzed the technical design choices of each frame-

work to understand their impact on adaptation outcomes. Both

OWAD and INSOMNIA employ incremental updates, whereby se-

lected samples from the batch are combined with historical samples

prior to retraining the model on this enriched dataset. However,

OWAD utilizes a memory-based strategy that necessitates the re-

moval of some historical samples to accommodate new ones. We

identified two main reasons why this approach may lead to reduced

performance. First, historical samples may remain relevant for fu-

ture batches; thus, removing them can result in the loss of valuable

knowledge. Second, addressing covariate shift by integrating both

all the historical and new data is more effective, as it enables the

model to learn patterns that more accurately represent both past

and current data.

On the other hand, INSOMNIA is hindered by its binary su-

pervised framework. More specifically, in contrast to OWAD and

Mateen, it adapts to shifts in both malicious and benign classes.

Within this context, malicious classes demonstrate concept shifts

across both datasets. Consequently, the performance is significantly

affected by the manner in which attacks are represented in these

datasets. To be specific, INSOMNIA performs exceptionally well

on the IDS18 dataset, where the attacks exhibit semantic similari-

ties—for instance, the training set includes FTP brute force attacks,

whereas the testing set features web brute force attacks. Addition-

ally, the attacks are distributed over multiple batches. In contrast,

the IDS17 dataset presents challenges, as the attacks significantly

differ semantically from those in the testing set (e.g., brute force

attacks compared to DDoS), and certain attacks are confined to a

single batch.

Concept Shift Adaptation. Table 2 presents the performance of Ma-

teen and the baselines on the Kitsune (c) and mKitsune (d) datasets.

Mateen demonstrates strong performance across both datasets,

except the AUC-ROC score for the Kitsune dataset. The lower AUC-

ROC score in Kitsune is due to its structure, which only includes

two batches suitable for AUC-ROC calculation, as these are the only

batches containing a mixture of benign and malicious instances.

We can also notice that OWAD andMateen significantly enhance

the evaluation metrics compared to the quickly outdated No-Update

baseline, which suffers from concept shifts in benign traffic. Specifi-

cally, OWAD improves accuracy in most batches within the Kitsune

dataset, as illustrated in Figure 6d. In this scenario, the memory-

based approach proves beneficial, as it discards outdated concepts

that no longer match the incoming data concepts. However, Ma-

teen exhibits even stronger performance, surpassing OWAD in the

majority of batches across both the mKitsune and Kitsune datasets,

as evidenced in Figures 6c and 6d, respectively.

INSOMNIA, on the other hand, struggles with concept shifts,

exhibiting a mF1-Score around 50%. This issue originates from its

incremental learning approach, which incorporates only a small

number of samples (500 per shifted batch) into the already large

training set. As a result, the classifier is retrained predominantly

with outdated, less relevant data and a minimal number of new

distribution samples. This causes the model to focus on minimizing

errors for the larger, outdated dataset, in alignment with empirical

risk minimization principles.

Recurring Concept Adaptation. Table 2e and Figure 6e present the
performance of Mateen and the baselines on the rKitsune dataset.

We can notice that Mateen is outperforming the baselines, which

suggests that Mateen can handle short concept shift data without

sacrificing the performance on the consistent concept. For exam-

ple, Mateen’s AUC-ROC score is 93.47, surpassing OWAD’s 87.14.

More importantly, both OWAD and Mateen show improvements

in evaluation metrics over the No-Update, although OWAD’s AUC-

ROC score decreases slightly by 1.29%. However, it is crucial to

note that the rKitsune dataset offers limited data (only 2 out of 35

batches) for AUC-ROC calculation. On the other hand, INSOMNIA,

while generally less effective, demonstrates improved performance

compared to its results on the Kitsune dataset. This improvement

is attributed to its incremental learning method, which effectively

keeps the classifier up-to-date with consistent concepts. However,

its performance in adapting to concept shifts remains compromised.

Selection Rate Impact. We here evaluate the effect of varying the 𝛿

value on the end-to-end adaptation results, utilizing the IDS17, mK-

itsune, and rKitsune datasets with 𝛿 values of 0.5%, 1%, 5%, and 10%.

These percentages correspond to the frameworks being updated

with 250, 500, 2500, or 5000 samples per batch upon detecting shifts.

We assessed the frameworks based on Accuracy and AUC-ROC

scores, as illustrated in Figure 7.

We can observe three main findings. First, Mateen consistently

outperforms all baseline frameworks across the entire range of

𝛿 values. Second, it exhibits strong performance even when only

0.5% of the samples from each shifted batch require labeling. Most

notably, Mateen’s performance with a 𝛿 of 0.5% surpasses that of all

baseline models across their full spectrum of 𝛿 values. This indicates

that Mateen can achieve superior performance with fewer required

labels. For example, in the mKitsune dataset, Mateen achieves an ac-

curacy of 93.09% with only 250 labeled samples (equivalent to a 𝛿 of
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Figure 7: End-to-End adaptation performance with 𝛿 of 0.5%, 1%, 5%, and 10%.
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Figure 8: The impact of latency and limited sample selection
on performance.

0.5%), while OWAD and INSOMNIA, despite requiring 5000 labeled

samples, attain accuracies of just 90.01% and 78.98%, respectively.

4.3.2 Learning Under Latency. The previous experiments do not

consider latency and assume that ground truth labels are immedi-

ately available and the model updates instantaneously. In reality,

both manual labeling and model updates will introduce delays, and

new samples continue to arrive before the update is completed. To

more accurately simulate these real-world conditions, we introduce

latency and a limited labeling budget into the process.

Assume updating amodel takes as long as accumulating𝑛 batches

of data. When a distribution shift is detected within a batch 𝐵 𝑗 , we

continue using the current model𝑀𝑘 to classify the next n batches,

and in the meantime we create the updated model𝑀𝑘+1, which will

replace 𝑀𝑘 for 𝐵 𝑗+𝑛 . For updates, we use a selection rate of 0.5%,

which equates to selecting only 250 samples for manual labeling

and updating. Once updated, the processed batches (n batches) are

excluded from the shift detection and sample selection steps. We

test this setup with n set at 1, 5, and 10. For the entire testing set of

IDS17, this configuration requires analysts to label 3,500 samples

for n=1, 1,500 for n=5, and 750 for n=10.
Figure 8 shows the results of this experiment using IDS17 and

mKitsune datasets. Generally, as expected, Mateen’s performance

declines with increasing delays. However, it is noteworthy that

even with significant delays (i.e., n=10) and a very low number of

manually labeled samples (approximately 0.05% of the testing set),

Mateen still outperforms the baseline models. Conversely, OWAD

shows improved performance with delays in the IDS17 dataset,

benefiting from retaining old, still-valid samples.
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Figure 9: The impact of mislabeling on performance.

4.3.3 Learning Under Label Noise. Security analysts can mistak-

enly mislabel samples. To simulate this, we randomly changed the

ground-truth labels for 10%, 30%, or 50% of the samples in each

selected subset, while the rest remained correctly labeled. We then

used these subsets, containing both accurate and inaccurate labels,

to update the model and evaluate its performance under label noise

conditions. Figure 9 presents the results for Mateen and OWAD

on the IDS17 and mKitsune datasets. The performance of the non-

updated model (No-Update) is also included, as it does not undergo

updates and is thus unaffected by mislabeling. This shows whether

noisy updates cause the frameworks to perform worse than their

non-updated counterpart.

On the IDS17 dataset, Mateen’s performance gradually declines

as noise increases, yet it still outperforms both OWAD and the non-

updated model. In contrast, OWAD shows a significant decrease in

performance with increasing label noise. On the mKitsune dataset,

despite the noise, both Mateen and OWAD are still better than the

non-updated model. However, OWAD’s performance is particularly

affected by the highest noise level (50%). Overall, Mateen proves to

be the most robust under label noise conditions.

4.3.4 Sub-Component Analysis. We undertook ablation studies to

dissect and assess the individual contributions of Mateen’s com-

ponents. Our focus was particularly on evaluating the effects of

the adaptive learning component and the efficacy of our proposed

selection method.

Adaptive Learning Strategies. We evaluate the proposed adaptive

learning strategy by contrasting Mateen with four setups: an incre-

mentally updated DAE (𝐼𝑁𝐶), solely temporary models (𝑇 ), Mateen

without its transfer learning component (No Transfer), and Mateen

without its merging component (No Merge). The No Merge setup
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IDS17 (Covariate & Prior)

Method F1-Score mF1-Score Accuracy AUC-ROC

𝐼𝑁𝐶 92.73 89.03 90.48 96.69

𝑇 78.32 50.28 66.1 65.29

No Transfer 91.31 87.04 88.45 96.51

No Merge 92.43 88.75 89.96 96.61

Mateen 92.22 88.48 89.69 96.79
mKitsune (Concept Shift & Fixed Ratio)

𝐼𝑁𝐶 24.03 27.69 27.88 73.9

𝑇 79.86 57.6 69.29 78.3

No Transfer 79.95 59.23 69.77 82.95

No Merge 95.5 86.72 92.53 94.01

Mateen 95.86 87.41 93.09 94.76
Table 3: Comparison of the ensemble components.

specifically excludes Mateen’s complexity reduction module. Com-

parative results for the IDS17 and mKitsune datasets are detailed

in Table 3.

We can notice three important observations. Firstly, Mateen

demonstrates consistently high performance across both datasets,

though the efficacy of its integral components, 𝐼𝑁𝐶 and 𝑇 , varies

with the type of data shift. Specifically, 𝐼𝑁𝐶’s performance on the

covariate shift is marginally better than Mateen’s overall perfor-

mance; however, it is significantly worse than all baselines on the

concept shift. This discrepancy arises because the 𝐼𝑁𝐶 model uti-

lizes its large and growing dataset to learn patterns more effectively

in the covariate shift scenario. Conversely, this extensive dataset

hampers its adaptability in the concept shift scenario, as acquiring

representative patterns of diverse concepts proves challenging. On

the other hand, the temporary models, 𝑇 , underperform relative to

most baselines in both datasets. This underperformance is attrib-

uted to their limited training data, which compromises their ability

to learn the task adequately. Specifically, each model is provided

with only 500 labeled samples (a 𝛿 of 1%), an amount insufficient to

accurately represent the task’s distribution, thereby predisposing

the models to overfit.

Secondly, the transfer learning component significantly influ-

ences the effectiveness of learning. The results clearly demonstrate

that models lacking transfer learning capabilities underperform

markedly on the concept shift dataset compared to the complete

Mateen framework, underscoring the vital role of transfer learning

in improving model generalizability. However, this benefit does not

apply to the covariate shift dataset. This is primarily because our

best-performing model selection strategy tends to favor the 𝐼𝑁𝐶

model over the 𝑇 model for most batches, owing to the low perfor-

mance of the latter. Thirdly, Mateen’s performance closely matches

that of the No-Merge approach, indicating that our complexity

reduction module is key to both preserving an optimal ensemble

size and retaining essential knowledge. This suggests the module’s

effectiveness extends beyond simple size management to ensuring

that critical insights are not sacrificed for efficiency.

Selection Method Comparison. In this experiment, we evaluate three

baseline methods – CADE, Uncertainty Sampling (US), and OWAD

– in comparison to our sample selection method on the adaptive

learning approach of Mateen. CADE and US both target the most

IDS17 (Covariate & Prior)

Method F1-Score mF1-Score Accuracy AUC-ROC

US 83.64 68.97 75.91 79.29

CADE 91.1 86.6 88.11 95.21

OWAD 91.56 87.27 88.71 96.5

Mateen 92.22 88.48 89.69 96.79
mKitsune (Concept Shift & Fixed Ratio)

US 90.82 76.9 85.29 78.9

CADE 81.54 66.31 73.2 87.28

OWAD 95.29 87.45 92.35 93.85

Mateen 95.86 87.41 93.09 94.76
Table 4: Comparison of the selection methods.

uncertain samples for updates, differing in their strategies for assess-

ing uncertainty. CADE, specifically, utilizes a contrastive learning

approach during training and selects samples most distant from

the centroids of the training classes for adaptation. US, tailored to

our context, chooses samples based on the highest reconstruction

scores. Conversely, OWAD operates at a distribution level, com-

paring reconstruction error scores between the training data and

the incoming batch data distributions. It selects samples from the

batch of data that show significant deviations from the training

distribution.

Table 4 presents the outcomes of this comparison for the IDS17

and mKitsune datasets. The US strategy emerges as the least ef-

fective, primarily because it selects samples with high MSE scores,

which are predominantly malicious. This selection hinders the adap-

tive learning approach’s capacity to adapt to new distributions and

adversely affects the identification of the best-performing model.

However, CADE demonstrates better performance compared to US

in the adaptive learning ensemble, despite being a form of uncer-

tainty sampling. Our analysis indicates that CADE’s contrastive

loss results in both benign and malicious shifted samples being

distanced from the training data, facilitating the selection of shifted

samples from both classes. Nonetheless, the Mateen and OWAD se-

lectionmethods exhibit significantly superior results, particularly in

the mKitsune dataset, with Mateen slightly outperforming OWAD.

For instance, in the mKitsune dataset, Mateen, OWAD, and CADE

achieve AUC-ROC scores of 94.76, 93.85, and 87.28, respectively.

5 DISCUSSION AND FUTUREWORK
Hyper-parameter sensitivity. We conducted a sensitivity analysis of

hyperparameters and have documented the default configuration of

Mateen, along with the configurations of the considered baselines,

in Appendix B. Through our extensive analysis, we discovered that

Mateen consistently delivers robust performance across a range

of hyperparameter combinations. For example, different hyperpa-

rameter combinations for IDS17 resulted in an average of 96.19

and a standard deviation of 0.64 concerning AUC-ROC scores. This

observation suggests that Mateen can achieve strong results even

when the optimal hyperparameters are not precisely identified. We

also provide guidance on how to set these values and the factors

that need to be considered in Appendix C.
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Costs of Manual Labeling. Mateen adopts the most dependable up-

dating strategy by using only a few labeled samples, a method

well-regarded in security contexts [16, 39, 55, 95, 101]. However,

this presents a significant challenge in highly dynamic networks

where labeling even a small number of samples can become pro-

hibitively expensive due to frequent shifts occurring in short spans

of time. Recent research efforts have investigated learning without

reliance on ground-truth labels, employing label estimators instead

[4, 98]. Nonetheless, this method has been found to inadvertently

lead to self-poisoning of models, as inaccurately labeled samples

can degrade model performance [47]. This issue arises from the

direct use of estimated labels for model updates without verifying

their accuracy. Consequently, our future work aims to investigate

learning from high-quality estimated labels, seeking methods to

ensure the reliability of these labels before model integration.

Latency and Mislabeling. Manual labeling introduces two key chal-

lenges: latency and error risk. Latency occurs because analysts

need time to manually label samples, and during this period, the

non-updated ensemble continues to make predictions, which may

not be accurate due to shifts in data. Additionally, there is a risk of

error, as analysts might mislabel some samples. These inaccuracies

can lead to updates with incorrect data, resulting in degraded per-

formance of the ensemble. Despite these challenges, our findings

indicate that even with high latency and a significant level of misla-

beling, Mateen still outperforms both the best baseline model and

the non-updated version. In future work, we aim to further reduce

the impact of latency and error risks. To achieve this, we plan to

investigate three interconnected research areas: label estimation

[4, 47, 98], learning from noisy data [14, 32, 96, 97], and advanced

labeling strategies [37].

Adversarial Machine Learning. Mateen is purpose-built to effec-

tively handle benign shifts and improve the DAE’s performance.

This design incorporates an updating mechanism that carefully

selects samples for human labeling. However, this mechanism is a

potential vector for poisoning the ensemble [52, 97, 100]. Analysts

might inadvertently mislabel non-poisonous samples, as previously

mentioned, or attackers could introduce poisonous samples, such as

through label flipping and backdoor attacks [88, 92, 100], to deceive

analysts and compromise the ensemble. Therefore, in our future

research, we plan to investigate the effects of advanced poisoning

attacks and explore defensive strategies, such as robust learning

[65, 69, 83], to mitigate their impact. Additionally, Mateen may be

vulnerable to evasive samples [41, 43, 54, 105], where adversaries

attempt to disguise attacks as benign behaviors to evade detection.

However, this susceptibility depends on the design of the underly-

ing DAE and its associated feature space. In future work, we plan to

investigate the interplay between feature space, DAE architecture,

and Mateen when confronted with evasive inputs, considering the

potential impact on anomaly detection accuracy and robustness.

6 RELATEDWORK
Distribution Shift in Security Applications. Generally, two key ap-

proaches are employed to address distribution shift in security:

learning from robust features [2, 13, 21, 23, 53, 94, 106] and contin-

uous shift adaptation [4, 16, 39, 101]. The first approach focuses on

defining robust features that minimize the impact of distribution

shifts. However, this approach cannot be considered a universal

solution, as it is complex to define the nature of future attacks. The

second approach seeks to mitigate the impact of shifts by updat-

ing the learning framework with samples that represent the shift.

Building upon this approach, our work introduces a framework

specifically designed to adapt well to various types of benign shifts

(e.g., covariate, concept, etc.), utilizing a minimal number of labeled

representative samples. Additionally, our framework demonstrates

superior performance with fewer labeled samples compared to the

baselines and exhibits less sensitivity to shift types, unlike each

baseline, which excels in specific shift scenarios.

Batch-based Ensemble Learning. Batch-based ensemble learning

diverges from the common ensemble approach by avoiding depen-

dence on a fixed set of models trained on the same dataset. It instead

continuously trains a new sub-model for each incoming batch of

data, incorporating it into a growing pool of models. Various batch

learning strategies exist [11, 25, 28, 30, 44, 67, 68, 99, 103], distin-

guishable by factors such as batch formulation, with examples

including fixed-batching [25, 28, 99, 103] and dynamic-batching

[11, 12, 68, 95]. This learning strategy trains on every sample from

incoming data batches using either unsupervised batch training

[99, 103] or focusing on labeled benign samples [95]. Unsupervised

training can lead to self-poisoning by indiscriminately incorporat-

ing all data, including potentially harmful anomalies. Conversely,

focusing solely on benign samples requires accessible labels, pre-

senting challenges in security applications such as NIDS, where

comprehensive labeling is expensive. A straightforward solution

is to select the most uncertain samples from each batch to train

new sub-models. However, our results indicate that this approach

falls short for batch-based learning in NIDS, as the small size of the

chosen samples leads to inadequate generalization. To overcome

this issue, we utilize transfer learning combined with a coreset-like

selection method, enabling effective generalization of sub-models

even when trained with a small number of samples.

7 CONCLUSION
In this paper, we present Mateen, a novel framework designed for

detecting and adapting to benign shifts within single-class DAE-

based NIDS. Mateen utilizes a hybrid ensemble learning strategy

incorporating an incremental model that is capable of adjusting to

minor shifts, such as covariate shifts, alongside temporary models

designed to tackle major shifts, including concept shifts. This frame-

work successfully mitigates the reliance of batch-based learning on

extensive labeled data sets through the application of transfer learn-

ing and a coreset-like selection strategy. Additionally, a complexity

reduction module is employed to optimize the size of the ensemble,

ensuring that performance remains uncompromised. When eval-

uated across five network datasets, Mateen exhibits exceptional

adaptability, effectively maintaining the relevance of the DAE while

requiring minimal labeled data.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their insightful critiques and

the shepherd for his invaluable guidance during revisions. Alotaibi’s

research is funded by a scholarship from the Deanship of Scientific

Research at Najran University, Kingdom of Saudi Arabia.



RAID 2024, September 30–October 02, 2024, Padua, Italy Alotaibi and Maffeis

REFERENCES
[1] Andrea Agiollo, Enkeleda Bardhi, Mauro Conti, Riccardo Lazzeretti, Eleonora

Losiouk, and Andrea Omicini. 2023. GNN4IFA: Interest flooding attack detection

with graph neural networks. In Proc. of EuroS&P.
[2] Almuthanna Alageel and Sergio Maffeis. 2022. EARLYCROW: Detecting APT

Malware Command and Control over HTTP (S) Using Contextual Summaries.

In Proc. of ISC.
[3] Giuseppina Andresini, Annalisa Appice, Corrado Loglisci, Vincenzo Belvedere,

Domenico Redavid, and Donato Malerba. 2021. A network intrusion detection

system for concept drifting network traffic data. In Proc. of DS.
[4] Giuseppina Andresini, Feargus Pendlebury, Fabio Pierazzi, Corrado Loglisci,

Annalisa Appice, and Lorenzo Cavallaro. 2021. INSOMNIA: Towards Concept-

Drift Robustness in Network Intrusion Detection. In Proc. of AISec@CCS.
[5] Fabrizio Angiulli. 2007. Fast Nearest Neighbor Condensation for Large Data Sets

Classification. IEEE Transactions on Knowledge and Data Engineering (2007).

[6] Giovanni Apruzzese, Pavel Laskov, and Johannes Schneider. 2023. SoK: Prag-

matic Assessment of Machine Learning for Network Intrusion Detection. In

Proc. of EuroS&P.
[7] Daniel Arp, Erwin Quiring, Feargus Pendlebury, Alexander Warnecke, Fabio

Pierazzi, Christian Wressnegger, Lorenzo Cavallaro, and Konrad Rieck. 2022.

Dos and Don’ts of Machine Learning in Computer Security. In Proc. of USENIX
Security.

[8] Daniel Arp, Erwin Quiring, Feargus Pendlebury, Alexander Warnecke, Fabio

Pierazzi, Christian Wressnegger, Lorenzo Cavallaro, and Konrad Rieck. 2023.

Lessons Learned on Machine Learning for Computer Security. IEEE Security &
Privacy Magazine (2023).

[9] Dor Bank, Noam Koenigstein, and Raja Giryes. 2023. Autoencoders. Machine
Learning for Data Science Handbook: Data Mining and Knowledge Discovery
Handbook (2023), 353–374.

[10] Federico Barbero, Feargus Pendlebury, Fabio Pierazzi, and Lorenzo Cavallaro.

2022. Transcending TRANSCEND: Revisiting Malware Classification in the

Presence of Concept Drift. In Proc. of S&P.
[11] Albert Bifet and Ricard Gavaldà. 2007. Learning from Time-Changing Data

with Adaptive Windowing. In Proc. of SDM.

[12] Albert Bifet, Geoffrey Holmes, and Bernhard Pfahringer. 2010. Leveraging

Bagging for Evolving Data Streams. In Proc. of ECML PKDD.
[13] Haipeng Cai. 2020. Assessing and Improving Malware Detection Sustainability

through App Evolution Studies. ACM Transactions on Software Engineering and
Methodology (2020).

[14] Jian Chen, Ruiyi Zhang, Tong Yu, Rohan Sharma, Zhiqiang Xu, Tong Sun, and

Changyou Chen. 2024. Label-retrieval-augmented diffusion models for learning

from noisy labels. Proc. of NeurIPS (2024).
[15] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. 2020.

A simple framework for contrastive learning of visual representations. In Proc.
of ICML.

[16] Yizheng Chen, Zhoujie Ding, and David A. Wagner. 2023. Continuous Learning

for Android Malware Detection. In Proc. of USENIX Security.
[17] Zekai Chen, Dingshuo Chen, Xiao Zhang, Zixuan Yuan, and Xiuzhen Cheng.

2022. Learning Graph StructuresWith Transformer for Multivariate Time-Series

Anomaly Detection in IoT. IEEE Internet of Things Journal (2022).
[18] Hyunsoo Cho, Jinseok Seol, and Sang-goo Lee. 2021. Masked Contrastive

Learning for Anomaly Detection. In Proc. of IJCAI.
[19] Cody Coleman, Christopher Yeh, Stephen Mussmann, Baharan Mirzasoleiman,

Peter Bailis, Percy Liang, Jure Leskovec, and Matei Zaharia. 2020. Selection via

Proxy: Efficient Data Selection for Deep Learning. In Proc. of ICLR.
[20] Steve Dias Da Cruz, Bertram Taetz, Thomas Stifter, and Didier Stricker. 2022.

Autoencoder Attractors for Uncertainty Estimation. In Proc. of ICPR.
[21] Lei Cui, Jiancong Cui, Yuede Ji, Zhiyu Hao, Lun Li, and Zhenquan Ding. 2023.

API2Vec: Learning Representations of API Sequences for Malware Detection. In

Proc. of ISSTA.
[22] Tiago Fontes Dias, João Vitorino, Tiago Fonseca, Isabel Praça, Eva Maia, and

Maria João Viamonte. 2023. Unravelling Network-Based Intrusion Detection: A

Neutrosophic Rule Mining and Optimization Framework. In Proc. of ESORICS.
[23] Mirabelle Dib, Sadegh Torabi, Elias Bou-Harb, Nizar Bouguila, and Chadi Assi.

2022. EVOLIoT: A Self-Supervised Contrastive Learning Framework for De-

tecting and Characterizing Evolving IoT Malware Variants. In Proc. of ASIA
CCS.

[24] Simone Disabato and Manuel Roveri. 2019. Learning Convolutional Neural

Networks in presence of Concept Drift. In Proc. of IJCNN.
[25] Gregory Ditzler and Robi Polikar. 2013. Incremental Learning of Concept Drift

from Streaming Imbalanced Data. IEEE Transactions on Knowledge and Data
Engineering (2013).

[26] Gerard Draper-Gil, Arash Habibi Lashkari, Mohammad Saiful Islam Mamun,

and Ali A. Ghorbani. 2016. Characterization of Encrypted and VPN Traffic using

Time-related Features. In Proc. of ICISSP.
[27] Min Du, Zhi Chen, Chang Liu, Rajvardhan Oak, and Dawn Song. 2019. Lifelong

Anomaly Detection Through Unlearning. In Proc. of CCS.

[28] Ryan Elwell and Robi Polikar. 2011. Incremental Learning of Concept Drift in

Nonstationary Environments. IEEE Transactions on Neural Networks (2011).
[29] Gints Engelen, Vera Rimmer, and Wouter Joosen. 2021. Troubleshooting an

Intrusion Detection Dataset: the CICIDS2017 Case Study. In Proc. of S&P Work-
shops.

[30] Dewan Md. Farid, Li Zhang, M. Alamgir Hossain, Chowdhury Mofizur Rahman,

Rebecca Strachan, Graham Sexton, and Keshav P. Dahal. 2013. An adaptive

ensemble classifier for mining concept drifting data streams. Expert Systems
with Applications (2013).

[31] Helmut Finner and Veronika Gontscharuk. 2018. Two-sample Kolmogorov–

Smirnov-type tests revisited: old and new tests in terms of local levels. The
Annals of Statistics (2018).

[32] Fahimeh Fooladgar, Minh Nguyen Nhat To, Parvin Mousavi, and Purang Abol-

maesumi. 2024. Manifold DivideMix: A semi-supervised contrastive learning

framework for severe label noise. In Proc. of CVPR.
[33] Chuanpu Fu, Qi Li, Ke Xu, and Jianping Wu. 2023. Point Cloud Analysis for

ML-Based Malicious Traffic Detection: Reducing Majorities of False Positive

Alarms. In Proc. of CCS.
[34] João Gama, Raquel Sebastião, and Pedro Pereira Rodrigues. 2013. On evaluating

stream learning algorithms. Machine learning (2013).

[35] João Gama, Indre Zliobaite, Albert Bifet, Mykola Pechenizkiy, and Abdelhamid

Bouchachia. 2014. A survey on concept drift adaptation. Comput. Surveys
(2014).

[36] Dimitrios Giagkos, Orestis Kompougias, Antonis Litke, and Nikolaos Papadakis.

2023. ZeekFlow: Deep Learning-Based Network Intrusion Detection a Multi-

modal Approach. In Proc. of ESORICS.
[37] Jorge Luis Guerra, Carlos Catania, and Eduardo Veas. 2022. Datasets are not

enough: Challenges in labeling network traffic. Computers & Security (2022).

[38] Raia Hadsell, Sumit Chopra, and Yann LeCun. 2006. Dimensionality Reduction

by Learning an Invariant Mapping. In Proc. of CVPR.
[39] Dongqi Han, Zhiliang Wang, Wenqi Chen, Kai Wang, Rui Yu, Su Wang, Han

Zhang, Zhihua Wang, Minghui Jin, Jiahai Yang, Xingang Shi, and Xia Yin. 2023.

Anomaly Detection in the Open World: Normality Shift Detection, Explanation,

and Adaptation. In Proc. of NDSS.
[40] Dongqi Han, Zhiliang Wang, Wenqi Chen, Ying Zhong, Su Wang, Han Zhang,

Jiahai Yang, Xingang Shi, and Xia Yin. 2021. DeepAID: Interpreting and Improv-

ing Deep Learning-based Anomaly Detection in Security Applications. In Proc.
of CCS.

[41] Dongqi Han, Zhiliang Wang, Ying Zhong, Wenqi Chen, Jiahai Yang, Shuqiang

Lu, Xingang Shi, and Xia Yin. 2021. Evaluating and Improving Adversarial

Robustness of Machine Learning-Based Network Intrusion Detectors. IEEE
Journal on Selected Areas in Communications (2021).

[42] Zijun Hang, Yuliang Lu, Yongjie Wang, and Yi Xie. 2023. Flow-MAE: Leverag-

ing Masked AutoEncoder for Accurate, Efficient and Robust Malicious Traffic

Classification. In Proc. of RAID.
[43] Mohammad J. Hashemi, Greg Cusack, and Eric Keller. 2019. Towards Evaluation

of NIDSs in Adversarial Setting. In Proc. of Big-DAMA@CoNEXT.
[44] Adriana S. Iwashita, Victor Hugo C. de Albuquerque, and João Paulo Papa. 2019.

Learning concept drift with ensembles of optimum-path forest-based classifiers.

Future Generation Computer Systems (2019).
[45] Roberto Jordaney, Kumar Sharad, Santanu Kumar Dash, Zhi Wang, Davide

Papini, Ilia Nouretdinov, and Lorenzo Cavallaro. 2017. Transcend: Detecting

Concept Drift in Malware Classification Models. In Proc. of USENIX Security.
[46] Md. Alamgir Kabir, Jacky W. Keung, Kwabena Ebo Bennin, and Miao Zhang.

2019. Assessing the Significant Impact of Concept Drift in Software Defect

Prediction. In Proc. of COMPSAC.
[47] Zeliang Kan, Feargus Pendlebury, Fabio Pierazzi, and Lorenzo Cavallaro. 2021.

Investigating Labelless Drift Adaptation for Malware Detection. In Proc. of
AISec@CCS.

[48] ElMouatez Billah Karbab and Mourad Debbabi. 2021. Petadroid: Adaptive

android malware detection using deep learning. In Proc. of DIMVA.
[49] Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna, Yonglong Tian,

Phillip Isola, Aaron Maschinot, Ce Liu, and Dilip Krishnan. 2020. Supervised

contrastive learning. Proc. of NeurIPS (2020).
[50] Krishnateja Killamsetty, Sivasubramanian Durga, Ganesh Ramakrishnan, Abir

De, and Rishabh Iyer. 2021. Grad-match: Gradient matching based data subset

selection for efficient deep model training. In Proc. of ICML.
[51] Krishnateja Killamsetty, Durga Sivasubramanian, Ganesh Ramakrishnan, and

Rishabh Iyer. 2021. Glister: Generalization based data subset selection for

efficient and robust learning. In Proc. of AAAI.
[52] Marius Kloft and Pavel Laskov. 2010. Online Anomaly Detection under Adver-

sarial Impact. In Proc. of AISTATS.
[53] Ke Kong, Zhichao Zhang, Ziyuan Yang, and Zhaoxin Zhang. 2022. FCSCNN: Fea-

ture centralized Siamese CNN-based android malware identification. Computers
& Security (2022).

[54] Aditya Kuppa, Slawomir Grzonkowski, Muhammad Rizwan Asghar, and Nhien-

An Le-Khac. 2019. Black Box Attacks on Deep Anomaly Detectors. In Proc. of
ARES.



Mateen: Adaptive Ensemble Learning for Network Anomaly Detection RAID 2024, September 30–October 02, 2024, Padua, Italy

[55] Aditya Kuppa and Nhien-An Le-Khac. 2022. Learn to adapt: Robust drift detec-

tion in security domain. Computers and Electrical Engineering (2022).

[56] Maxime Lanvin, Pierre-François Gimenez, Yufei Han, Frédéric Majorczyk, Lu-

dovic Mé, and Eric Totel. 2023. Towards understanding alerts raised by unsu-

pervised network intrusion detection systems. In Proc. of RAID.
[57] Arash Habibi Lashkari, Gerard Draper-Gil, Mohammad Saiful Islam Mamun,

and Ali A. Ghorbani. 2017. Characterization of Tor Traffic using Time based

Features. In Proc. of ICISSP.
[58] Christophe Leys, Christophe Ley, Olivier Klein, Philippe Bernard, and Laurent

Licata. 2013. Detecting outliers: Do not use standard deviation around the

mean, use absolute deviation around the median. Journal of experimental social
psychology (2013).

[59] Ruoyu Li, Qing Li, Yu Zhang, Dan Zhao, Yong Jiang, and Yong Yang. 2024.

Interpreting Unsupervised Anomaly Detection in Security via Rule Extraction.

Proc. of NeurIPS (2024).
[60] XuKui Li, Wei Chen, Qianru Zhang, and Lifa Wu. 2020. Building Auto-Encoder

Intrusion Detection System based on random forest feature selection. Computers
& Security (2020).

[61] Xiang Li, Kaixuan Huang, Wenhao Yang, Shusen Wang, and Zhihua Zhang.

2020. On the Convergence of FedAvg on Non-IID Data. In Proc. of ICLR.
[62] Yuhua Li and Liam P. Maguire. 2011. Selecting Critical Patterns Based on Local

Geometrical and Statistical Information. IEEE Transactions on Pattern Analysis
and Machine Intelligence (2011).

[63] Anjin Liu, Jie Lu, Feng Liu, and Guangquan Zhang. 2018. Accumulating re-

gional density dissimilarity for concept drift detection in data streams. Pattern
Recognition (2018).

[64] Lisa Liu, Gints Engelen, Timothy M. Lynar, Daryl Essam, and Wouter Joosen.

2022. Error Prevalence in NIDS datasets: A Case Study on CIC-IDS-2017 and

CSE-CIC-IDS-2018. In Proc. of CNS.
[65] Sheng Liu, Jonathan Niles-Weed, Narges Razavian, and Carlos Fernandez-

Granda. 2020. Early-learning regularization prevents memorization of noisy

labels. Proc. of NeurIPS (2020).
[66] Jie Lu, Anjin Liu, Fan Dong, Feng Gu, João Gama, and Guangquan Zhang. 2019.

Learning under Concept Drift: A Review. IEEE Transactions on Knowledge and
Data Engineering (2019).

[67] Yang Lu, Yiu-ming Cheung, and Yuan Yan Tang. 2017. Dynamic Weighted

Majority for Incremental Learning of Imbalanced Data Streams with Concept

Drift. In Proc. of IJCAI.
[68] Yang Lu, Yiu-Ming Cheung, and Yuan Yan Tang. 2020. Adaptive Chunk-Based

Dynamic Weighted Majority for Imbalanced Data Streams With Concept Drift.

IEEE Transactions on Neural Networks and Learning Systems (2020).
[69] Xingjun Ma, Hanxun Huang, Yisen Wang, Simone Romano, Sarah Erfani, and

James Bailey. 2020. Normalized loss functions for deep learning with noisy

labels. In Proc. of ICML.
[70] AA Makarov and GI Simonova. 2016. Some properties of two-sample

kolmogorov–smirnov test in the case of contamination of one of the samples.

Journal of Mathematical Sciences (2016).
[71] David M Mason and John H Schuenemeyer. 1983. A modified Kolmogorov-

Smirnov test sensitive to tail alternatives. The Annals of Statistics (1983).
[72] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and

Blaise Agüera y Arcas. 2017. Communication-Efficient Learning of Deep Net-

works from Decentralized Data. In Proc. of AISTATS.
[73] Yisroel Mirsky, Tomer Doitshman, Yuval Elovici, and Asaf Shabtai. 2018. Kitsune:

An Ensemble of Autoencoders for Online Network Intrusion Detection. In Proc.
of NDSS.

[74] Baharan Mirzasoleiman, Jeff Bilmes, and Jure Leskovec. 2020. Coresets for

data-efficient training of machine learning models. In Proc. of ICML.
[75] Jose G. Moreno-Torres, Troy Raeder, Rocío Alaíz-Rodríguez, Nitesh V. Chawla,

and Francisco Herrera. 2012. A unifying view on dataset shift in classification.

Pattern Recognition (2012).

[76] Behnam Neyshabur, Hanie Sedghi, and Chiyuan Zhang. 2020. What is being

transferred in transfer learning? Proc. of NeurIPS (2020).
[77] Quoc Phong Nguyen, Kar Wai Lim, Dinil Mon Divakaran, Kian Hsiang Low,

and Mun Choon Chan. 2019. GEE: A Gradient-based Explainable Variational

Autoencoder for Network Anomaly Detection. In Proc. of CNS.
[78] Guansong Pang, Kai Ming Ting, and DavidW. Albrecht. 2015. LeSiNN: Detecting

Anomalies by Identifying Least Similar Nearest Neighbours. In Proc. of ICDMW.

[79] Cheong Hee Park and Youngsoon Kang. 2016. An active learning method for

data streams with concept drift. In Proc. of BigData.
[80] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-

gory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al.

2019. Pytorch: An imperative style, high-performance deep learning library.

Proc. of NeurIPS (2019).
[81] Feargus Pendlebury, Fabio Pierazzi, Roberto Jordaney, Johannes Kinder, and

Lorenzo Cavallaro. 2019. TESSERACT: Eliminating Experimental Bias in Mal-

ware Classification across Space and Time. In Proc. of USENIX Security.
[82] Adityanarayanan Radhakrishnan, Mikhail Belkin, and Caroline Uhler. 2020.

Overparameterized neural networks implement associative memory. Proc. Natl.

Acad. Sci. USA (2020).

[83] Mengye Ren, Wenyuan Zeng, Bin Yang, and Raquel Urtasun. 2018. Learning to

reweight examples for robust deep learning. In Proc. of ICML.
[84] Pengzhen Ren, Yun Xiao, Xiaojun Chang, Po-Yao Huang, Zhihui Li, Brij B.

Gupta, Xiaojiang Chen, and Xin Wang. 2022. A Survey of Deep Active Learning.

Comput. Surveys (2022).
[85] Phillip Rieger, Marco Chilese, Reham Mohamed, Markus Miettinen, Hossein

Fereidooni, and Ahmad-Reza Sadeghi. 2023. ARGUS: Context-Based Detection

of Stealthy IoT Infiltration Attacks. In Proc. of USENIX Security.
[86] Peter Schneider and Konstantin Böttinger. 2018. High-Performance Unsuper-

vised Anomaly Detection for Cyber-Physical System Networks. In Proc. of
CPS-SPC@CCS.

[87] Burr Settles. 2009. Active learning literature survey. (2009).

[88] Ali Shafahi, W Ronny Huang, Mahyar Najibi, Octavian Suciu, Christoph Studer,

Tudor Dumitras, and Tom Goldstein. 2018. Poison frogs! targeted clean-label

poisoning attacks on neural networks. Proc. of NeurIPS (2018).
[89] Iman Sharafaldin, Arash Habibi Lashkari, and Ali A. Ghorbani. 2018. Toward

Generating a New Intrusion Detection Dataset and Intrusion Traffic Characteri-

zation. In Proc. of ICISSP.
[90] Robin Sommer and Vern Paxson. 2010. Outside the Closed World: On Using

Machine Learning for Network Intrusion Detection. In Proc. of S&P.
[91] Ruming Tang, Zheng Yang, Zeyan Li, Weibin Meng, Haixin Wang, Qi Li,

Yongqian Sun, Dan Pei, Tao Wei, Yanfei Xu, and Yan Liu. 2020. ZeroWall:

Detecting Zero-Day Web Attacks through Encoder-Decoder Recurrent Neural

Networks. In Proc. of INFOCOM.

[92] Zhiyi Tian, Lei Cui, Jie Liang, and Shui Yu. 2022. A comprehensive survey on

poisoning attacks and countermeasures in machine learning. Comput. Surveys
55, 8 (2022), 1–35.

[93] Robert Tibshirani, Trevor Hastie, Balasubramanian Narasimhan, and Gilbert

Chu. 2002. Diagnosis of multiple cancer types by shrunken centroids of gene

expression. Proc. of PNAS (2002).
[94] Liang Tong, Bo Li, Chen Hajaj, Chaowei Xiao, Ning Zhang, and Yevgeniy Vorob-

eychik. 2019. Improving Robustness of ML Classifiers against Realizable Evasion

Attacks Using Conserved Features. In Proc. of USENIX Security.
[95] Xian Wang. 2022. ENIDrift: A Fast and Adaptive Ensemble System for Network

Intrusion Detection under Real-world Drift. In Proc. of ACSAC.
[96] Hongxin Wei, Huiping Zhuang, Renchunzi Xie, Lei Feng, Gang Niu, Bo An, and

Yixuan Li. 2023. Mitigating memorization of noisy labels by clipping the model

prediction. In Proc. of ICML.
[97] Xian Wu, Wenbo Guo, Jia Yan, Baris Coskun, and Xinyu Xing. 2023. From Grim

Reality to Practical Solution: Malware Classification in Real-World Noise. In

Proc. of S&P.
[98] Ke Xu, Yingjiu Li, Robert H. Deng, Kai Chen, and Jiayun Xu. 2019. DroidEvolver:

Self-Evolving Android Malware Detection System. In Proc. of EuroS&P.
[99] Lijuan Xu, Xiao Ding, Haipeng Peng, Dawei Zhao, and Xin Li. 2023. ADTCD:

An Adaptive Anomaly Detection Approach Towards Concept-Drift in IoT. IEEE
Internet of Things Journal (2023).

[100] Limin Yang, Zhi Chen, Jacopo Cortellazzi, Feargus Pendlebury, Kevin Tu, Fabio

Pierazzi, Lorenzo Cavallaro, and Gang Wang. 2023. Jigsaw Puzzle: Selective

Backdoor Attack to Subvert Malware Classifiers. In Proc. of S&P.
[101] Limin Yang, Wenbo Guo, Qingying Hao, Arridhana Ciptadi, Ali Ahmadzadeh,

Xinyu Xing, and Gang Wang. 2021. CADE: Detecting and Explaining Concept

Drift Samples for Security Applications. In Proc. of USENIX Security.
[102] Yu Yang, Hao Kang, and Baharan Mirzasoleiman. 2023. Towards Sustainable

Learning: Coresets for Data-efficient Deep Learning. In Proc. of ICML.
[103] Susik Yoon, Youngjun Lee, Jae-Gil Lee, and Byung Suk Lee. 2022. Adaptive

Model Pooling for Online Deep Anomaly Detection from a Complex Evolving

Data Stream. In Proc. of KDD.
[104] Shujian Yu and Zubin Abraham. 2017. Concept Drift Detection with Hierarchical

Hypothesis Testing. In Proc. of SDM.

[105] Chaoyun Zhang, Xavier Costa-Pérez, and Paul Patras. 2020. Tiki-Taka: Attacking

and Defending Deep Learning-based Intrusion Detection Systems. In Proc. of
CCSW.

[106] Xiaohan Zhang, Yuan Zhang, Ming Zhong, Daizong Ding, Yinzhi Cao, Yukun

Zhang, Mi Zhang, and Min Yang. 2020. Enhancing State-of-the-art Classifiers

with API Semantics to Detect Evolved Android Malware. In Proc. of CCS.

A DATASETS PROCESSING
In the following, we provide additional details about the datasets

utilized and the methods employed in their processing.

IDS17. We used an improved version of the IDS17 dataset, initially

developed by the Canadian Institute for Cybersecurity [29]. The

original dataset [89], which included packet captures and network
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Figure 10: Reconstruction error (MSE) for benign samples using an offline DAE: This graph illustrates the performance of a
model trained exclusively on the training dataset, with no further updates after the initial training. It presents the average and
standard deviations of the reconstruction error, highlighting the training set in blue and testing set batches in green.

flows extracted with the CICFlowMeter tool [26, 57], had inaccura-

cies in feature extraction and labeling. To overcome these issues,

Engelen et al. [29] released a revised version, which we adopted to

enhance the accuracy and reliability of our findings.

For the purposes of our experiments, the dataset was divided

into two segments: the training segment and the testing segment.

The training segment, covering the first two days of data, contained

693,702 network flows. This portion was primarily benign traffic

(99%), but it also included instances of two network attacks: FTP-

Patator and SSH-Patator. The testing segment covered the last three

days of data, comprising 1,406,274 network flows, with 64.55% being

benign traffic alongside a variety of network attacks (13 different

types). The testing segment was divided into batches of 50,000

network flows, resulting in a total of 29 batches of network flows.

Crucially, to ensure integrity and objectivity in our analysis, we

omitted certain features from the dataset that were used as a basis

for original labeling. These included ’id’, ’Flow ID’, ’Src IP’, ’Src Port’,

’Dst IP’, and ’Timestamp’. This step was taken to avoid any bias,

such as the potential for models to use these features as shortcuts

in classification and anomaly detection.

IDS18. IDS18, an extended version of the IDS17 dataset, incorporates
data from over 450 machines across five departments, including

50 machines designated for attack simulations, collected over a

three-week period. Similar to the original IDS17, this larger dataset

initially suffered from flaws in the labeling and feature extraction

process. However, these issues were addressed in a revised version,

as detailed in [64], which we used for our experiments. Our exper-

imental design was tailored to accommodate the substantial size

of the dataset. We partitioned the data from the initial two weeks

into training and testing segments. The training segment, including

data from February 14th to 16th, consisted of over 10 million flows

before processing. The testing segment covered data from February

20th to 23rd. Due to the large size of both datasets, we implemented

a strategic sampling approach, randomly selecting 30% of flows

from each label in every file. This selection was carried out in a

time-based sequential order to avoid temporal bias [6, 81].

Post-processing, the training set was reduced to 2,548,780 flows,

among which 1.47% were classified as attacks across six distinct

classes. Likewise, the testing set was reduced to 7,501,307 flows,

with 12.70% identified as attacks. These attacks span 10 classes,

all of which differ from those in the training set. We segmented

the test set into batches, each containing 50,000 flows, resulting in

a total of 151 batches. To ensure unbiased analysis, we removed

features that were used for labeling, specifically ’id’, ’Flow ID’, ’Src

IP’, ’Src Port’, ’Dst IP’, and ’Timestamp’. Furthermore, we adjusted

the testing batches to consist of a fixed benign-to-malicious ratio

to eliminate the impact of ratio shifts.

Kitsune. The Kitsune dataset [73], tailored for IoT network analysis,

comprises 115 statistical features derived from network packets. It

is organized into separate files by attack type, each containing a

mix of benign and attack-specific records. In total, the combined

files yield over 21 million records, presenting a significant compu-

tational challenge. To manage this, we adopted the same approach

as with the IDS18 dataset, randomly sampling 30% of records from

each label within each file. Due to the absence of timestamps in

Kitsune, we arbitrarily selected the ARP Man-in-the-Middle file for

training, which, after post-processing, contained 751,280 records,

with 45% classified as malicious traffic. For testing, we chose other

files, resulting in 5,324,759 records, of which 20.86% were identi-

fied as attacks. Segmenting the test set into batches of 50,000 each

yielded a total of 107 batches.

Additionally, we created two new testing sets: one with a fixed

malicious-to-benign ratio (mKitsune), and another designed to sim-

ulate a recurring concept (rKitsune). For mKitsune, we adjusted

the already generated testing set to maintain this ratio, distributing

attacks evenly across batches in line with the methodology em-

ployed in our processing of IDS18. For rKitsune, we generated a

new test set by sampling 50% from both the original ARP Man-in-

the-Middle and Active Wiretap datasets. We then interspersed two

batches of Active Wiretap after every four batches of ARP Man-in-

the-Middle. This arrangement produced a recurring concept test

set with 1,739,344 records, which, when divided, yielded 35 batches.

Visualization of benign shift. Figure 10 presents a comparison of

MSE scores between the training set and the testing set’s benign

sample batches across all datasets. Clearly, the testing set exhibits

higher reconstruction errors across all datasets when compared to

the training set. This increase in error indicates a potential for the

model to mistakenly identify these samples as malicious, especially

since the training set MSE is often calibrated at a certain threshold

to separate malicious from benign samples. The magnitude of this

increase, however, varies among datasets.

For instance, the IDS17 dataset shows a modest and steady in-

crease in MSE scores, with the training set’s average MSE around

0.01 and a standard deviation slightly over 0.02. In contrast, the B7



Mateen: Adaptive Ensemble Learning for Network Anomaly Detection RAID 2024, September 30–October 02, 2024, Padua, Italy

dataset’s average MSE nears 0.02, and B20’s average approaches

0.04. This variance suggests that while the model may perform

adequately with B7 samples, it is likely to encounter considerable

difficulties with B20. The IDS18 dataset, on the other hand, presents

an even more minimal increase in MSE, a factor that aligns with the

strong performance metrics observed in the experiments detailed

in Section 4.3.1. The Kitsune and mKitsune datasets manifest a sig-

nificant shift, leading to a heightened risk of benign samples being

incorrectly classified as malicious. This substantial discrepancy un-

derscores the potential obsolescence of the model, as evidenced by

the findings presented in Section 4.3.1. rKitsune, however, presents

a different pattern due to the recurring concept shifts, where cer-

tain batch intervals exhibit significantly higher MSE averages than

others.

B HYPERPARAMETERS SEARCH & ANALYSIS
In the following sections, we provide detailed information on the

baselines (Section B.1), the architecture used for each model (Sec-

tion B.2), our approach to conducting a hyperparameter search

for each baseline (Section B.3), and conclude with an analysis of

hyperparameter sensitivity for Mateen (Section B.4).

B.1 Baselines Details
In this subsection, we provide detailed descriptions of each baseline

utilized. Emphasis is placed on their high-level functions, specifi-

cally how they detect, select, and adapt to shift samples.

OWAD. OWAD is an adaptive framework designed specifically for

detecting, selecting, and adapting to benign shifts in one-class AD

security applications. It employs a distribution-based shift detection

method, comparing the data distribution of new upcoming batches

against a control set derived from the training data. Upon detecting

a shift, OWAD uses a custom optimization function to identify the

top 𝛿 most significant samples for labeling and adaptation. This

function is designed to align the distribution of the control set with

that of the incoming batch, achieved by substituting portions of

the control set’s samples with samples from the incoming batch.

After labeling the top 𝛿 most critical samples, OWAD updates the

underlying DAE through a customized version of the UNLEARN

framework [27]. In this framework, UNLEARN precisely regulates

updates to the neural network weights, striking a balance between

preventing catastrophic forgetting of the old distribution and adapt-

ing to the new one.

INSOMNIA. INSOMNIA is an adaptive, incremental learning frame-

work specifically designed to improve the performance of multi-

class NIDS amidst changing data distributions. Initially tailored

for softmax classifiers, its flexibility allows for extension to any

binary classification model that can generate probability scores. IN-

SOMNIA offers two variants: the first requires human intervention,

wherein the top 𝛿 most uncertain samples in each batch are manu-

ally labeled, added to the training set, and followed by retraining of

the classifier. The second variant streamlines the process by using

a Nearest Centroid Neighbor classifier [93] to estimate labels for

new batches, thereby enabling automatic retraining. It is important

to highlight that in both variants, shifts are not detected; instead,

updates occur with each incoming batch of data. Comparative eval-

uations conducted by the authors of INSOMNIA underscore the

benefits of manual labeling in significantly improving classifier ac-

curacy. Accordingly, we have chosen the manually labeled version

of INSOMNIA as the standard for our experiments.

CADE. CADE is a framework designed for detecting, selecting, and

explaining shifts within multi-class security applications. It specif-

ically targets concept shifts by identifying new classes, choosing

relevant samples for adaptation, and providing explanations for

why these samples are marked as shifts. At the heart of the CADE

framework is supervised contrastive learning, particularly through

the use of DrLIM [38]. This approach trains DrLIM in conjunction

with a DAE to optimize the latent space by minimizing distances

between samples of the same class while maximizing the distances

between different classes. Once trained, CADE employs the Median

Absolute Deviation (MAD) [58] method to detect shifted samples.

This involves measuring the distance of each sample from the cen-

troids of each training class and applying a class-specific MAD

criterion to determine whether a sample significantly diverges from

existing classes. A sample is flagged as a shift if it deviates signif-

icantly from all the training classes. The samples exhibiting the

most significant distance from the classes’ centroids are selected, in

accordance with the 𝛿 selection rate, for labeling and subsequent

adaptation. It should be noted that CADE itself does not introduce

a novel adaptation function; rather, it employs the standard incre-

mental learning approach to demonstrate the significance of its

detection and selection mechanisms.

B.2 Architecture and Training
In both OWAD and Mateen, we employed an identical DAE archi-

tecture. Specifically, the encoder followed a progressive reduction

in dimensions: from the original dimensions to 75%, then to 50%,

followed by 25%, and finally 10%. Conversely, the decoder mirrored

this structure in reverse. Each layer was coupled with a Rectified

Linear Unit (ReLU) activation function, except for the encoder in-

put and the decoder output layers. It is important to note that this

architectural configuration is consistent with the one originally

proposed by OWAD, which was inherited from Kitsune [73]. We

then trained the DAE utilizing the MSE loss function. The DAE

was trained with a batch size of 1024 for 100 epochs, employing the

Adam optimizer with a learning rate of 0.00001. Regarding CADE,

we adopted the training hyperparameters specified by the authors,

with the exception being the architectural design, which remains

consistent with that of OWAD and Mateen. These hyperparameters

were retained due to their proven effectiveness in a contrastive

learning setting, where, for instance, training with longer batches

(e.g., 250) is advantageous [15, 16, 49].

Regarding the softmax classifier (INSOMNIA), we followed the

hyperparameter search methodology outlined by the authors [4].

This search aimed to determine the best combinations of batch size,

learning rate, dropout rate, and the number of neurons per hidden

layer, with a limitation of 3 layers. The classifier is trained for 150

epochs using the Adam optimizer, with early stopping conducted

after 10 epochs on the validation set.

When it came to updating the models, we configured the number

of epochs to be 10% of the original training epochs.
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B.3 Hyper-parameter Space and Configuration
The baseline frameworks, OWAD and CADE, require hyperpa-

rameter fine-tuning to optimize performance. Consequently, we

undertook the following hyperparameter search:

OWAD. We explored the hyperparameter space of the OWAD se-

lection method, with a primary focus on weight hyperparameters.

These weights, namely ’acc_wgt,’ ’ohd_wgt,’ and ’det_wgt,’ corre-

spond to ensuring accurate representation of the shifted distribu-

tion, reducing the need for manual labeling in test samples, and

emphasizing deterministic selection. We conducted empirical evalu-

ations across various combinations, including the original values (5,

10, and 1, respectively), represented as (acc_wgt, ohd_wgt, det_wgt),

as well as other configurations such as (3, 3, 3), (2, 3, 5), (3, 2, 5), (5,

2, 3), (5, 3, 2), (3, 5, 2), and (2, 5, 3). The most effective configurations,

for a 𝛿 of 1%, were identified, such as (3, 2, 5) for IDS17, (3, 5, 2) for

IDS18, (5, 10, 1) for Kitsune, (3, 5, 2) for mKitsune, and (2, 5, 3) for

rKitsune. We also conducted the same empirical searches for all the

considered 𝛿 values and experimental scenarios.

CADE. CADE’s primary principle is that well-separated label clus-

ters improve the accuracy of detecting shift samples. To achieve

this, CADE combines MSE loss and contrastive loss [38], thereby

creating distinct representations in latent space. This approach

introduces two crucial hyperparameters: 𝑚 and 𝜆. The parame-

ter𝑚 controls the separation distance between representations of

different classes, while 𝜆 adjusts the contribution of contrastive

loss to the overall objective. To optimize CADE, we conducted a

hyperparameter search with a focus on the separation of class clus-

ters and the compactness of individual clusters. For this purpose,

we employed the Dunn Index, a metric measuring the smallest

inter-cluster distance against the largest intra-cluster distance. Our

search explored various combinations of𝑚 values (1, 5, 10, 15, 20)

and 𝜆 values (1, 0.1, 0.01, 0.001) to identify the optimal settings that

maximize the Dunn Index. The most effective hyperparameters

were found to be𝑚 = 1.0 and 𝜆 = 1.0 for IDS 17, and𝑚 = 10.0 and

𝜆 = 0.01 for mKitsune.

B.4 Hyper-parameter Sensitivity
We conducted an empirical hyperparameter search for Mateen,

starting by setting the ensemble size to 3 and fixing 𝜆0 at 0.1. Recog-

nizing that representativeness more accurately mirrors the distribu-

tion than uniqueness, we uniformly set 𝜆1 to 1.0. This was followed

by a grid search covering 𝜎% of values 30%, 50%, and 90%, and 𝜌 of

values 500, 1000, and 1500. Utilizing the optimal values obtained, we

further explored the best setting for 𝜆0 (considering values 0.5 and

1.0), and then determined the most effective ensemble size (options

being 5 and 7).

In the following sections, we present the results of our hyper-

parameter search across the datasets at a 𝛿 of 1%, and include a

comparison of sensitivity between Mateen and OWAD.

IDS17. Table 5 presents the impact of different 𝜎% and 𝜌 combina-

tions. The most effective combination was identified as a 𝜎% of 30%

with a 𝜌 of value 1000. Further analysis was conducted on 𝜆0 with

values of 0.5 and 1.0, yielding results of 96.43 and 94.26, respectively.

However, the initially set value of 0.1 for 𝜆0 proved to be superior.

Additionally, we explored varying ensemble sizes, specifically 5

𝜌 𝜎% AUC-ROC

500 30%, 50%, 90% 96.42, 96.39, 95.87

1000 30%, 50%, 90% 96.79, 95.85, 95.65
1500 30%, 50%, 90% 96.23, 96.63, 95.66

Table 5: The impact of 𝜎% and 𝜌 values on IDS17.

𝜌 𝜎% AUC-ROC

500 30%, 50%, 90% 98.17, 97.41, 97.49
1000 30%, 50%, 90% 97.83, 97.64, 97.22

1500 30%, 50%, 90% 97.32, 98.11, 96.92,

Table 6: The impact of 𝜎% and 𝜌 values on IDS18.

𝜌 𝜎% F1-Score

500 30%, 50%, 90% 96.72, 96.72, 96.61

1000 30%, 50%, 90% 96.79, 96.80, 96.56

1500 30%, 50%, 90% 97.04, 97.10, 96.90
Table 7: The impact of 𝜎% and 𝜌 values on Kitsune.

and 7, and found that an ensemble size of 3 yielded the best results.

In detail, the original ensemble size of 3 achieved an AUC-ROC of

96.79, while sizes of 5 and 7 resulted in AUC-ROCs of 96.69 and

96.49, respectively. The final optimal parameters were determined

as: 𝜆0 at 0.1, a 𝜎% value of 30%, an ensemble size of 3, and a 𝜌 of

value 1000.

IDS18. Table 6 illustrates the effects of various combinations of 𝜎%

and 𝜌 . The optimal combination was found to be 30% for 𝜎 and 500

for 𝜌 . Subsequent evaluations of 𝜆0 at 0.5 and 1.0 produced scores of

97.44 and 97.17, respectively. Therefore, the initial 𝜆0 setting of 0.1

was deemed most effective. Investigations into different ensemble

sizes, notably 5 and 7, revealed that a smaller ensemble of 3 was

most efficacious, with an original ensemble size of 3 reaching an

AUC-ROC score of 98.17, compared to the 97.42 and 97.76 achieved

by ensemble sizes of 5 and 7, respectively. Ultimately, the best-

performing parameters were identified as 𝜆0 set at 0.1, 𝜎 at 30%, an

ensemble size of 3, and 𝜌 valued at 500.

Kitsune. Table 7 shows the F1 scores from the hyperparameter op-

timization performed on the Kitsune dataset. In this analysis, the

AUC-ROC score was not considered a primary metric due to the

limited number of batches containing a mix of labels. Nonetheless,

for reference, the average and standard deviation of the AUC-ROC

scores are provided in Table 10. The F1 results indicate only minor

variations, with the lowest score recorded at 96.56 and the highest

at 97.10, achieved with a 𝜌 of value 1500 and a 𝜎% value of 50%.

Further assessment was made on the influence of 𝜆0 and the ensem-

ble size. 𝜆0 values of 0.5 and 1.0 yielded scores of 96.55 and 97.05

respectively, while ensemble sizes of 5 and 7 led to scores of 96.43

and 96.57 respectively. The initial combination, featuring 𝜆0 at 0.1

and an ensemble size of 3, continued to show the strongest perfor-

mance. Consequently, the optimal configuration for this dataset

was determined to be a 𝜌 value of 1500, a 𝜎% value of 50%, 𝜆0 set at

0.1, and an ensemble size of 3.
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𝜌 𝜎% AUC-ROC

500 30%, 50%, 90% 94.17, 93.90, 93.79

1000 30%, 50%, 90% 93.90, 93.85, 94.39

1500 30%, 50%, 90% 94.42, 93.78, 94.00
Table 8: The impact of 𝜎% and 𝜌 values on mKitsune.

𝜌 𝜎% F1

500 30%, 50%, 90% 93.95, 92.87, 94.11

1000 30%, 50%, 90% 93.40, 93.81, 94.13
1500 30%, 50%, 90% 93.32, 92.90, 93.20

Table 9: The impact of 𝜎% and 𝜌 values on rKitsune.

mKitsune. Table 8 showcases the AUC-ROC outcomes from the

hyperparameter optimization conducted on the mKitsune dataset.

The highest AUC-ROC value observed was 94.42, achieved with a

𝜌 of value 1500 and a 𝜎% value of 30%. Subsequent analysis focused

on various combinations of 𝜆0 and ensemble size. A 𝜆0 value of

0.5 yielded a superior AUC-ROC score of 94.76, surpassing both

the initial setting of 94.42 and the score obtained with 𝜆0 at 1.0

(94.02). In terms of ensemble size, the initial value of 3 proved to be

the most effective, outperforming sizes of 5 and 7, which resulted

in scores of 94.54 and 94.66, respectively. Thus, the final optimal

settings for this dataset were determined to be a 𝜌 of value 1500, a

𝜎% value of 30%, 𝜆0 at 0.5, and an ensemble size of 3.

rKitsune. Table 9 presents the F1 scores obtained from the rKitsune

dataset, which encounters a similar challenge to the Kitsune dataset:

a limited number of batches is suitable for AUC-ROC computation,

primarily due to the prevalence of batches dominated by a single

label. Despite this, the average and standard deviation of AUC-ROC

for this dataset are available in Table 10 for reference.

Regarding the hyperparameter combinations tested, the pairing

of a 𝜌 of value 1000 with a 𝜎% value of 90% emerged as the most

effective, achieving an F1 score of 94.13. Subsequent evaluation of

𝜆0 values revealed that both 0.5 and 1.0 offered slight performance

improvements. Specifically, a 𝜆0 value of 0.5 resulted in an F1 score

of 94.38, while a value of 1.0 achieved a score of 94.20. Further

analysis of the ensemble size indicated that a size of 7, with an

F1 score of 94.52, outperformed the initial value of 3 (F1 score of

94.38). In contrast, an ensemble size of 5 yielded an F1 score of

93.75. Therefore, the final optimal configuration for this dataset is

identified as a 𝜌 of value 1000, a 𝜎% value of 90%, 𝜆0 set at 0.5, and

an ensemble size of 7.

Dataset

OWAD Mateen

AUC-ROC F1-Score AUC-ROC F1-Score

IDS17 93.75±0.24 83.69±0.54 96.19±0.64 91.93±0.42
IDS18 90.80±0.97 91.97±0.26 97.61±0.39 97.41±0.04
Kitsune 66.09±3.01 50.29-±25.33 70.39±2.22 96.80±0.22
mKitsune 77.37±2.42 71.21±20.35 94.22±0.34 95.83±0.38
rKitsune 87.10±0.46 89.52±1.14 92.55±0.99 93.80±0.52

Table 10: Comparative evaluation of hyperparameter sensi-
tivity: Mateen vs. OWAD.

Sensitivity Comparison. Table 10 presents the comparative results

of the AUC-ROC and F1-Score from the hyperparameter sensitivity

analysis of Mateen versus OWAD. The results reveal that Mateen

consistently outperforms OWAD across all datasets, as indicated by

the higher average scores and lower standard deviations. Notably,

Mateen demonstrates minimal variability in its performance, with

the exception of the AUC-ROC on the Kitsune dataset, which can

be attributed to the limited number of batches containing a mix of

labels. We can also observe that OWAD’s performance diminishes

on datasets with concept shifts, contrasting its relatively stable per-

formance on datasets with covariate shifts. Overall, Mateen exhibits

robustness to variations in its hyperparameters, often maintaining

strong performance even with suboptimal settings.

C GUIDELINES FOR HYPERPARAMETER
SELECTION

Mateen includes multiple hyperparameters that can be adjusted for

different scenarios. Below, we provide guidance on how to set these

values.

Performance threshold (𝑡 ): This describes the acceptable per-

formance level. Specifically, if the ensemble’s performance on a

selected subset exceeds a threshold 𝑡 , no update is needed. This

threshold can be set low (e.g., 90%), resulting in fewer updates, or

high (e.g., 99%), leading to more frequent updates. The choice of

this value balances desired performance against the computational

cost of updates. If computational cost is not a concern, setting a

higher threshold is recommended.

Maximum Ensemble Size: This establishes a maximum size for

the ensemble. Once this limit is reached, the complexity module

activates to merge and remove temporary models. Setting a lower

limit, such as 3, means the module activates more often, optimizing

the ensemble for recent shifts and potentially enhancing perfor-

mance. However, this requires additional processing. Conversely,

a higher limit, such as 10, results in less frequent activations but

requires more storage to maintain more models.

Selection Rate (𝛿): This parameter sets the percentage of sam-

ples from a shifted batch that are selected for manual labeling. A

higher setting (e.g., 10%) selects more samples, which can improve

ensemble performance but increases the risk of mislabeling, latency,

and labor costs. A lower setting (e.g., 0.5%) results in fewer labeled

samples, which might lower performance but also reduces labor

costs, likelihood of errors, and latency. Our findings indicate that

the performance difference between high and low settings is slight,

so selecting the lower value is recommended.

Mini-Batch Size (𝜌): This represents the size of the mini-batches

created from each shifted batch of data. Specifically, we divide each

shifted batch into mini-batches of size 𝜌 and then select a few sam-

ples from eachmini-batch using distance-based measures. A smaller

mini-batch size, such as 500, lowers computational costs, whereas

a larger size, such as 1500, increases them. The impact on perfor-

mance varies with the dataset. For instance, the smallest batch size

achieves good performance at lower costs in the IDS17 and mKit-

sune datasets, but larger sizes can slightly improve performance if

resources permit.

Retention Rate (𝜎%): This specifies the percentage of samples

kept from a mini-batch to create a condensed version. We form
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this condensed mini-batch by retaining 𝜎% of the samples and

discarding the remaining 100% − 𝜎%, which are similar and thus

redundant. The choice of 𝜎 is based on the level of redundancy

observed in the network. For the datasets examined in this paper,

setting 𝜎 at 30% generally results in good performance. However,

it is important to note that this setting results in the removal of a

substantial portion of the samples, specifically 70%.

Uniqueness vs. Informativeness (𝜆0 & 𝜆1): These parameters

assign weights to Uniqueness (𝑈 ) and Informativeness (𝐼 ) during

the sample selection process for manual labeling. 𝐼 indicates how

many samples are similar to a particular sample, while𝑈 measures

how distinct a sample is from the rest. Setting 𝑈 to a high value

and 𝐼 to a low value prioritizes the selection of outliers. Conversely,

setting 𝐼 high and 𝑈 low focuses the selection on more common,

similar samples. Typically, 𝐼 is set high (e.g., 1) to ensure the model

learns from the majority of data, and𝑈 is set low (e.g., 0.1 or 0.5)

to select only a few outliers.
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