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ABSTRACT
Internet measurement research frequently needs to map infras-
tructure components, such as routers, to their physical locations.
Although public and commercial geolocation services are often
used for this purpose, their accuracy when applied to network
infrastructure has not been sufficiently assessed. Prior work fo-
cused on evaluating the overall accuracy of geolocation databases,
which is dominated by their performance on end-user IP addresses.
In this work, we evaluate the reliability of router geolocation in
databases. We use a dataset of about 1.64M router interface IP
addresses extracted from the CAIDA Ark dataset to examine the
country- and city-level coverage and consistency of popular public
and commercial geolocation databases. We also create and provide
a ground-truth dataset of 16,586 router interface IP addresses and
their city-level locations, and use it to evaluate the databases’ ac-
curacy with a regional breakdown analysis. Our results show that
the databases are not reliable for geolocating routers and that there
is room to improve their country- and city-level accuracy. Based
on our results, we present a set of recommendations to researchers
concerning the use of geolocation databases to geolocate routers.
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1 INTRODUCTION
IP geolocation services map IP addresses to physical locations such
as a country, city, or geographic coordinates. Many commercial
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entities use these services to customize content delivery and ad-
vertisements for their users. Networking research uses geolocation
services to study the geographic deployment of Internet resources
and their utilization. Studying and visualizing routing phenomena
to detect BGP threats [31], estimating the geographic presence of
Autonomous Systems and detecting routing paths that experience a
detour-paths that start and end in the same country but visit other
countries in between [28], and studying censorship and monitoring
that happens in different countries [25] are just a few examples.

All these studies rely heavily on the accuracy of geolocation
services especially for IP addresses that are used for Internet infras-
tructure (e.g., routers, switches). Quantifying the error margins and
identifying regions where geolocation services fail can substantially
improve the quality of such studies. Geolocation services are typi-
cally available as third-party databases, publicly available [6, 19, 20]
or paid [8, 17, 21]. Delay-based geolocation, where delay measure-
ments are mapped to location constraints [14, 22, 24, 32, 33], is
another viable option, especially with more public measurement
platforms becoming available [7, 11, 23]. However, many users
might still prefer the available ready to use geolocation databases.

Previous work on evaluating databases focused on their overall
accuracy [13, 15, 26, 29, 30]. However, such work is biased towards
evaluating endpoints geolocation since there are far more endpoints
than infrastructure in the Internet. Given the importance of router
geolocation in understanding geographic aspects of the Internet
infrastructure, our work focuses on router geolocation in both
public and commercial databases.

Researchers who use geolocation databases to learn the loca-
tions of routers need to know how reliable they are in terms of
their country- and city-level coverage (i.e., the fraction of addresses
a database has country- and city-level resolutions for, respectively),
and their accuracy throughout the world. In this work, we study
four popular geolocation databases, two of which are free: MaxMind
GeoLite2 [19], and IP2Location DB11.Lite [20], and two are com-
mercial: MaxMind GeoIP2 [17], and Digital Envoy NetAcuity [8].
We explain why these databases are selected in §2.2.

Our main contributions in this paper are: (1) we show that the
studied databases have many inconsistencies, especially at city-
level. We use a set of 1.64M router interface addresses extracted
from CAIDA’s Ark dataset (§2.1) to study all 4 databases incon-
sistencies and coverage; (2) we create a ground truth dataset1 of
16,586 router interface addresses and their locations with city-level
accuracy. We create our ground truth using two approaches, a DNS-
based approach proposed by Huffaker et al. [16] and a delay-based

1Our ground truth data is available via IMPACT: https://www.impactcybertrust.org/
dataset_view?idDataset=792
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approach that utilizes the RIPE Atlas built-in measurements [23]; (3)
we use the ground truth dataset to evaluate the databases’ country-
and city-level accuracy regionally. The results show that all the
databases have room to improve their accuracy, even at country-
level; (4) our final contribution is a set of recommendations for
using the geolocation databases to geolocate routers.

2 DATASETS
2.1 CAIDA Topology Dataset
We use the CAIDA topology dataset [2] collected using CAIDA’s
Ark measurement infrastructure. Ark monitors around the world
collect traceroute data for randomly selected IP addresses from all
routed /24 IPv4 prefixes. Using one week of the topology dataset
starting fromMarch 9, 2016, we extract a dataset of 1,638K router in-
terface IP addresses, which map to an estimated number of 485K dis-
tinct routers according to CAIDA’s ITDK alias mapping results [3].
We treat this dataset at IP-level since the geolocation services are
supposed to geolocate all IP addresses regardless of their alias reso-
lution. We refer to this dataset as the Ark-topo-router dataset. We
use this dataset to evaluate the country- and city-level coverage
and consistency across the geolocation databases.

2.2 Geolocation Databases
We compare and assess router geolocation reliability in four popular
geolocation databases: MaxMind GeoIP2 (referred to as MaxMind-
Paid in this paper), MaxMind GeoLite2 (referred to as MaxMind-
GeoLite), IP2Location DB11-Lite (referred to as IP2Location-Lite),
and Digital Element NetAcuity (referred to as NetAcuity). We chose
the NetAcuity and MaxMind commercial databases as they are
widely considered among the leaders in the geolocation business [15,
29]. On the other hand, comparing the free and commercial versions
of MaxMind’s databases provides a measure of the improvement
between the two. Finally, the IP2Location database is known for
providing city-level resolution for most of the IP address space and
it appears often in geolocation comparative studies.

2.3 Ground Truth Data
Our ground truth data is basically a set of router interface addresses
and their locations at city-level accuracy. We extract our ground
truth using two methods as explained next. We discuss the correct-
ness of the ground truth data in §3.

2.3.1 DNS-Based Ground Truth Data. Huffaker et al. [16] geolo-
cate routers by decoding location hints in their hostnames. They
inferred an extensive dictionary that maps location strings such as
airport codes to physical coordinates, then using domain-specific
rules they search for and decode location hints in hostnames to
infer their locations. They generated domain-specific rules for 1,398
domains but we only use 7 domains for which they have ground
truth rules from the domains’ operators. Performing reverse DNS
(rDNS) lookups to the Ark-topo-router addresses on May 15, 2016,
results in 905K addresses with hostnames, about 13.5K of which
belong to the ground truth domains in [16], from which we are able
to geolocate 11,857 addresses from the 7 domains: belwue.de (23
addresses), cogentco.com (6,462), digitalwest.net (29), ntt.net (2,331),
peak10.net (170), seabone.net (1,405), and pnap.net (1,437).

2.3.2 RTT-Proximity Ground Truth Data. We use RIPE Atlas
built-in measurements [23] to create our second part of the ground
truth. These measurements are issued by most of the probes to-
ward well known targets like DNS root servers. We use traceroute
measurements collected on May 25th, 2016. The measurements
are provided in JSON format that specify the measurement ori-
gin, target, intermediate hops and their observed RTTs. Since a
0.5ms RTT between two locations maps to a distance of at most 50
km—likely much less due to inflation in RTT measurement—, we
use 0.5ms threshold to find all the hops guaranteed to be within
50 km of their probes. We associate such hops with their probes’
locations. We find 4960 router interface IP addresses that satisfy
our 0.5ms threshold but we only keep 4838 addresses due to the
reasons we explain in §3.2. We refer to the set of 4838 IP addresses
and their locations as the RTT-proximity ground truth dataset. Note
that while some of the gathered IP addresses could belong to home
routers, more than 80% are at least 2 hops away from their probes
indicating otherwise.

2.3.3 Ground Truth Data Regional And Topological Distribution.
Table 1 shows statistics for our two ground truth datasets including
the total number of addresses (column 2), number of unique coun-
tries where the addresses are located (column 3), number of unique
coordinates (column 4), and the number of addresses found in each
regional Internet registry (RIR) (columns 5 to 9). The RIR for each
address is learned from querying Team Cymru whois database [5].
According to CAIDA’S AS rank [1], transit ASes announce 74.5%
of addresses in our RTT-inferred ground truth set and 99.9% of
addresses in our DNS-based ground truth set.

3 GROUND TRUTH DATA CORRECTNESS
3.1 DNS-Based Data Correctness
We validate part of the DNS-based dataset using two latency mea-
surement datasets including our RTT-proximity dataset, and an-
other similar dataset provided to us by Giotsas et al. [12]. Despite
the small intersection between the datasets, we see very positive
signs for correctness as we explain next.

We identify 109 common addresses between the DNS-based and
the RTT-proximity ground truth datasets. The datasets agree within
10 km on the locations of 105 of the addresses and within 43 km on
the remaining 4 addresses.

Giotsas et al. router geolocation dataset [12] was gathered about
10 months after our DNS-based dataset. Giotsas et al. looked for
RIPE Atlas probes within 1ms from a set of routers of interest,
hereby referred to as 1ms-RTT-proximity dataset. The 1ms-RTT-
proximity dataset has about 20.5K router interfaces, but only 384
are common with the DNS-based dataset. Pairwise comparisons
show that for 355 addresses (92.45%), the locations from the two
datasets are less than 100 km apart. Given the 1ms threshold used
to create the 1ms-RTT-proximity dataset, these locations are fairly
compatible; in fact, the locations of 337 addresses (87.8%) are less
than 40 km apart.

Interestingly, out of the remaining 29 IP addresses with incom-
patible locations, we find that 19 addresses are likely reassigned
to hosts at different locations. We observe this change in their
rDNS records. For example, the rDNS lookup result for one IP
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Table 1: Location statistics and regional distribution of the DNS-based and RTT-proximity router interface addresses.

Ground Truth Total Countries lat/lon ARIN APNIC AFRINIC LACNIC RIPENCC
DNS-based 11,857 53 238 9,588 560 0 0 1,709

RTT-proximity 4,838 118 1,347 1,123 372 131 52 3,160

address was ae-5.r23.dllstx09.us.bb.gin.ntt.net on May 2016 and ae-
3.a01.miamfl02.us.bb.gin.ntt.net on September 2017. The location
hint in the prior one indicates the location Dallas, TX, while the
later indicates Miami, FL. All 19 addresses would have similar ge-
olocation to that in the 1ms-RTT-proximity dataset given their
updated hostnames, that said, we do not know when exactly the
hostnames have changed and if that happened before creating the
1ms-RTT-proximity set. The location disagreement for some of the
remaining 10 addresses might be a result of reassigning addresses
to hosts at a different location without updating their hostnames
leading to misleading location hints. Few RIPE Atlas probes may
also have incorrect geolocation.

Overall, between May 2016 and September 2017, 8,197 (69.1%)
of the 11,857 DNS-based addresses kept the same hostnames, 2,848
(24%) have different hostnames, and 6.9% no longer have rDNS
records. Not all hostnames changes indicate location changes. Ge-
olocating the 2,848 addresseswith different hostnames usingDRoP’s
domain-specific ground truth rules shows that 1,927 (67.7%) still
have the same location, 877 (30.8%) have different location—i.e.,
7.4% of all DNS-based addresses in about 16 months—, and 44 (1.5%)
no longer have location hints that match any of the rules.

3.2 RTT-Proximity Data Correctness
The correctness of the RTT-proximity data is dependent on the
accuracy of the RIPE Atlas probes locations, which are mostly
crowdsourcing-based. While the probes’ hosts can easily provide
correct city-level locations, it is not guaranteed that they always
do. Additionally, a probe might be moved without updating its
public location. RIPE Atlas operators informed us that they do
some manual checking but nothing structural to validate probes’
locations. To increase the confidence in the RTT-proximity data we
use twomethods to disqualify probes that appear to have inaccurate
geolocation.

First, we identify and remove all probes assigned default country
coordinates. These coordinates are typically near the geographic
center of a country [4, 9, 18] and are often located in unpopulated
areas (e.g., N51°00′00′′ E09°00′00′′ in Germany). Such coordinates
are often assigned to IP addresses due to the lack of specific location
information. From the set of 1,387 probes associated with our 0.5ms
threshold data, we find 19 probes within 5 km of their known
country coordinates. Using traceroute measurements we are able
to prove that many of these probes indeed have bad geolocation.
We find and remove 109 IP addresses associated with these probes.

Our second method is based on the insight that multiple probes
near the same router should also be near each other. We call such
a group of probes RTT-nearby probes. Given our 0.5ms threshold,
any two RTT-nearby probes should be within a distance of 100
km. We find 495 addresses in the remaining RTT-proximity data
with RTT-nearby groups of 2 or more probes, out of which, only
12 addresses (2.4%) have RTT-nearby probes with inconsistent lo-
cations. For example, two probes in Mozambique are RTT-nearby
to an IP address but their locations are 867 km apart, which means

at least one of them has incorrect geolocation. We find 3 other
RTT-nearby groups that have prominent location inconsistencies.
The 8 remaining addresses have relatively small disagreements of
less than 128 km between any two probes in one RTT-nearby group.
One probe in Italy is responsible for 7 of those location disagree-
ments. Overall, we have 223 different probes that are part of one or
more RTT-nearby groups, out of which, we only disqualify 5 probes
(2.2%) and remove 13 interface addresses associated with them. As
a result, the final RTT-proximity dataset has 4,838 addresses.

Wematch the RTT-proximity and the 1ms-RTT-proximity datasets
and find an intersection of 1,661 addresses. Comparing the loca-
tions from the two datasets for each common IP address shows
that 96.8% and 97.4% of the addresses agree within 40 km and 100
km respectively. The small fraction with location disagreements
might be a result of IP addresses reassignment to hosts at different
locations during the time separating the two datasets.

4 METHODOLOGY
In this paper we seek to answer these questions: (a) what is the
probability to find an answer for a router address geolocation query
and what would be the resolution of the answer? (b) how consistent
are the answers across different databases at both country- and
city-level resolution? (c) what is the probability that the database
answer is correct? We next explain how we answer these questions.

To evaluate the coverage and consistency of the participating
databases, we use the Ark-topo-router dataset (§2.1). To evaluate a
database coverage we find the percentage of addresses with location
information in each database for both country- and city-level. We
also evaluate the pairwise consistency at both resolutions.

While country-level consistency evaluation is as simple as com-
paring standard ISO alpha-2 or alpha-3 country codes in databases,
the city-level consistency evaluation can be tricky, in part because
different databases may use different city names. Rather than com-
paring city names, we compute the distance between one IP address
locations (coordinates) in any two databases and check if it is within
city range. Comparing coordinates invokes two questions: (a) does
the database provide correct city-level coordinates for a given city
in a location record? (2) what radius is acceptable as a city range?.

We compare each database coordinates for a given city with the
city coordinates from a third party geographical database called
GeoNames [9]. Since multiple cities can have the same name, we
also include the region and country in the matching process. We
observe that the distance between city coordinates from any of the
geolocation databases and GeoNames is within 40 km more than
99% of the time, indicating that the databases are indeed assigning
city-level coordinates when a city name exists in the location record.

Answering the question about city range is tricky, mainly be-
cause different cities can have drastically different areas. Previous
work [29] used 40 km as their city range, while [15, 16] used the
same distance as their threshold to identify if two locations are
co-located. However, we note that different databases may assign
different coordinates to the same city. We examine the distance
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between coordinates assigned to the same city across the databases,
and find that one city coordinates from any two databases are more
than 99% of the time within 40 km. We conclude it is reasonable to
consider any two databases’ coordinates within 40 km to be within
the same city circumference.

Finally, we evaluate the overall databases router geolocation
accuracy using our ground truth of 16,586 interface addresses with
city-level accuracy. We also evaluate the accuracy by region where
we breakdown the ground truth addresses by their RIRs and report
the results for each region at country- and city-level ( §5.2.2).

5 RESULTS
5.1 Databases Coverage and Consistency
Using the Ark-topo-router dataset, we analyze databases router
geolocation coverage and consistency at country- and city-level.
All the databases are accessed shortly after creating the Ark-topo-
router set to geolocate its addresses. We find that IP2Location-Lite
and NetAcuity both provide near perfect coverage for all interface
addresses in the Ark-topo-router dataset at both country- and city-
level. The MaxMind-GeoLite and MaxMind-Paid databases both
cover about 99.3% of the addresses at country-level, but only 43%
and 61.6% of the addresses at the city-level respectively.

Pairwise country-level comparison shows that the MaxMind
databases agree on the location of 99.6% of the 1.64M interface
IP addresses, while all other pairwise comparisons’ agreements
range between 97.0% and 97.6%. The overall country-level agree-
ment between all databases is about 95.8% (1.57M addresses). The
agreement between the databases might suggest more confidence
in the geolocation results, it might also indicate a common incorrect
source of the geolocation information (e.g., registry data).

We now turn to city-level resolution comparisons. Figure 1 shows
pairwise comparison of databases locations (i.e., coordinates) for
the Ark-topo-router addresses. For each pair of databases, we com-
pute the distance between the locations from the two databases for
each IP address. We then plot the distance distribution for all the
addresses. Only the addresses with city-level and (latitude, longi-
tude) coordinates in all databases are included (i.e., around 692K IP
addresses). The pairwise comparison of the twoMaxMind databases
shows mostly small differences. 470K addresses (68%) have identi-
cal coordinates in the two databases and are truncated from their
pairwise distance CDF. But for 11.4% of the addresses, the distance
is more than 40 km, indicating that the IP address is likely geolo-
cated to different cities. Other pairwise comparisons show more
discrepancies where more than 29% of the addresses are geolocated
by different databases to locations more than 40 km apart. The
CDFs for IP2Location-Lite and NetAcuity vs. MaxMind-GeoLite are
omitted since they are similar to those vs. MaxMind-Paid.

5.2 Evaluation Using Ground Truth Data
Using our ground truth of 16,586 interface addresses (see §2.3), we
evaluate the coverage and accuracy of all databases at country-
and city-level. The databases are accessed again on early July 2016,
to geolocate the ground truth (i.e., about 50 days after creating
the DNS-based set). We observe that 7.4% of our DNS-based set
addresses likely moved during a 16 months period (see §3.1). The
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movement is likely much less in 50 days (i.e., one-tenth of the 16
months) and is unlikely to affect our conclusions.

5.2.1 Databases Coverage and Accuracy Over the Ground Truth.
IP2Location-Lite and NetAcuity show near perfect country- and
city-level coverage for the addresses in the ground truth. MaxMind-
GeoLite and MaxMind-Paid have around 95.4% country-level cov-
erage, and only 30.4% and 41.3% city-level coverage respectively.

The country-level geolocation accuracy is usually reported at
higher than 97% by the geolocation service providers [29] (e.g.,
MaxMind GeoIP2 reports 99.8% accuracy [18]). However, our results
over ground truth data show less accuracy for router geolocation.
NetAcuity outperforms the other databases at only 89.4% accuracy
while IP2Location-Lite and MaxMind databases are comparable
with 77.5% to 78.6% accuracy. We discuss country-level accuracy in
more depth when we break down results by RIR next in §5.2.2.

Figure 2 shows the distribution of the geolocation error for each
database vs. the ground truth for the addresses with city-level
geolocation. The vertical red line (at x = 40 km) is our city range
threshold. NetAcuity has clearly better accuracy compared to other
databases but still incorrectly geolocates some interfaces hundreds
of kilometers away from their actual locations. IP2Location-Lite is
the least accurate but has much better city-level coverage compared
to both MaxMind databases.

5.2.2 Regional Evaluation. To study the accuracy of the databases
regionally, we break down the ground truth addresses by their RIRs.
Figure 3 shows the country-level accuracy by region. Each column
in the graph shows the number of correctly and incorrectly geolo-
cated addresses for each database. The percentage over each column
shows the fraction of incorrectly geolocated addresses. From the
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graph we see that NetAcuity is the most accurate in all regions but
there is still room to improve. We also observe that IP2Location-Lite
and the two MaxMind databases’ country-level accuracy results
are comparable in all regions except for APNIC.

6.2% 6.1% 6.1% 6.1% 
19.8% 7.3% 7.2% 6.4% 

23.0% 21.1% 19.6% 11.4% 

0.0% 0.0% 0.0% 0.0% 

22.6% 29.5% 29.1% 10.0% 

0

2,000

4,000

6,000

8,000

10,000

12,000

IP2Loc-Lite MM-GeoLite MM-Paid NetAquity

N
um

be
r	o

f	r
ou
te
r	I
nt
er
fa
ce
s

RIPENCC-Inc.
RIPENCC-Cor.
LACNIC-Inc.
LACNIC-Cor.
ARIN-Inc.
ARIN-Cor.
APNIC-Inc.
APNIC-Cor.
AFRINIC-Inc.
AFRINIC-Cor.

Incorrect

Correct

Percent incorrect

Figure 3: Country-level accuracy breakdown by RIR for
ground truth. NetAcuity is the most accurate in all regions.

We go one step further and compare country-level accuracy
for individual countries. Figure 4 shows the fraction of addresses
correctly geolocated for the 20 countries with most addresses in
the ground truth (country code and the number of addresses are
depicted on the x-axis). While all databases show better than 94%
accuracy for addresses in the United States (US) and Russia, their
accuracy in most other countries is relatively low, especially the
IP2Location-Lite and the two MaxMind databases, which show sur-
prisingly low accuracy in western countries like France and the
Netherlands. IP2Location-Light, MaxMind-GeoLite, and MaxMind-
Paid agree on the (incorrect) location of 2,277 addresses, which
corresponds to around 61%, 64%, and 67% of their incorrectly ge-
olocated addresses respectively. NetAcuity shows the most reliable
results with at least 74% country-level accuracy in all 20 countries.
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Figure 4: Databases’ country-level accuracy is unreliable in
most countries but NetAcuity is relatively consistent.

Finally, we evaluate city-level accuracy by region. Figures (5a,
5b) respectively show the distribution of geolocation error with
breakdown by RIR for the MaxMind-Paid and NetAcuity against
the ground truth data.2 IP2Location-Lite has almost perfect city-
level coverage but the accuracy is lacking, especially for ARIN
addresses. Apart from ARIN, MaxMind seems to provide city-level
geolocation only when it has some confidence in it, which could
explain their low city-level coverage and relatively good city-level
accuracy. For example, MaxMind-Paid city-level accuracy for the
RIPENCC addresses is 78.9% with only 31.3% coverage compared to
only 70.9% country-level accuracy and 93.3% coverage. NetAcuity,
again, shows consistent coverage and accuracy results, but like the
other databases, it is less reliable for the ARIN addresses.
2IP2Location-Lite and MaxMind-GeoLite graphs are omitted for space.

5.2.3 Poor City-level Accuracy at ARIN. The worst city-level
accuracy for all the databases is observed for ARIN addresses. We
use MaxMind-Paid as a case study to understand reasons for such
poor accuracy. ARIN has 10,608 addresses (64%) of the ground truth.
2,793 of those addresses are not located in the US—according to the
ground truth data. However, MaxMind-Paid, possibly relying on
registry data, geolocates 1,955 of them (70%) to the US. We find that
519 (26.6% of the 1,955 addresses) have city-level geolocation in
MaxMind, most of them (504 addresses) have disagreements greater
than 1,000 km with the ground truth locations.

Total ground truth addresses located in the US is 8,304 (7,815
from ARIN and 489 from other RIRs). Total ARIN addresses located
in the US with city-level information is 3,897, of which 2,267 (58.2%)
have geolocation error > 40 km—our city-range. About 91% of them
have block-level—/24 block or larger—locations compared to about
78% of the correctly geolocated addresses at city-level. Block-level
location assignments can be responsible for large geolocation errors
for interface addresses not co-located with the other addresses in
their block. We do not investigate blocks co-locality in this work.

5.2.4 Databases vs. Separate Ground Truth Datasets. We evalu-
ate the databases city-level accuracy against the DNS-based and the
RTT-proximity datasets separately to find if they take advantage of
the location hints in the hostnames of all the DNS-based dataset
addresses. The RTT-proximity dataset has 1,335 addresses (27.6% of
RTT-proximity data) that do not have DNS names. We do not know
how many of the remaining RTT-proximity addresses have useful
city-level location hints in their hostnames. Note that we include
the 109 common addresses between the two datasets only as part
of the DNS-based dataset. Overall, a database that uses DNS-based
techniques to decode location hints in hostnames is expected to
perform better on the DNS-based ground truth dataset.

NetAcuity is the only database that shows better city-level accu-
racy results over the DNS-based data compared to results over the
RTT-proximity data. Considering our city-range threshold of 40
km, NetAcuity has 70.1% overall city-level accuracy over the RTT-
proximity data and a better 74.2% accuracy over the DNS-based
data. All other databases do worse over the DNS-based compared
to the RTT-proximity data. MaxMind-Paid, for example, has only
43.9% overall accuracy over the DNS-based data and 66.5% over the
RTT-proximity data. Regionally, NetAcuity shows better accuracy
in all regions over the DNS-based data. For example, NetAcuity has
55.1% accuracy for ARIN addresses in the RTT-proximity data, and
about 70.6% for ARIN addresses in the DNS-based data. According
to these results, NetAcuity is the only database that might be using
some DNS-based techniques to infer location hints from hostnames.

While the databases results over the RTT-proximity data look
more competitive, NetAcuity still outperforms other databases over
this dataset considering both accuracy and coverage. NetAcuity
has a 70.1% and 99.6% city-level accuracy and coverage respectively.
The closest rival, MaxMind-Paid, has a comparable 66.5% accuracy
but only 50.3% city-level coverage.

6 RECOMMENDATIONS
Based on our analysis of the geolocation databases using our datasets
described in §2, we present our recommendations for using the
databases with two thoughts in mind. First, our recommendations
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Figure 5: Databases vs. ground truth geolocation error breakdown by RIR. Only routers with city information are included.

are mostly meaningful in ARIN and RIPENCC—where most of our
ground truth IP addresses are located—and to a less degree in AP-
NIC regions. Second, NetAcuity might have benefited from the
nature of the DNS-based ground truth data (see §5.2.4), but we still
argue that it has the best accuracy and city-level coverage as the
results over both ground truth datasets show. With that in mind,
here are the recommendations:

• If using a geolocation database is the only available option,
we recommend NetAcuity to geolocate routers. Note that
we think of NetAcuity city-level accuracy of 74.2% over the
DNS-based data as an upper bound for its overall accuracy.
NetAcuity appears to benefit from the location hints encoded
in the hostnames of the DNS-based dataset IP addresses.

• We do not recommend MaxMind databases if high city-level
accuracy and coverage are required. The city-level accuracy
is especially bad in the ARIN region. But we do see relatively
good city-level results for MaxMind-Paid in RIPENCC and
APNIC regions. However, the city-level coverage is very low.

• The commercial version of MaxMind is recommended over
the public version if city-level accuracy and better coverage
are required.

• We do not recommend IP2Location-Lite, the overall accuracy
is too low especially at city-level.

• If price is a problem and an overall 78% country-level accu-
racy is acceptable, the IP2Location-Lite and both versions of
MaxMind were comparable. That said, the accuracy can be
very low for some countries (see Figure 4).

• We recommend users not to trust city-level accuracy in ARIN
regardless of the database used. NetAcuity was the most
accurate there, but only 66% of the ground truth interface
addresses there are geolocated to within 40 km of their actual
locations.

7 RELATEDWORK
Several studies have shown that public and commercial databases
have coarse-grained granularity and are not reliable at city-level
resolution [10, 15, 26, 29, 30]. Poese et al. [26] studied the relation-
ship between prefixes in several databases and those advertised by a
large European ISP. They found that databases split large ISP blocks
into smaller ones for more accuracy. However, they reported that
this did not improve accuracy. Huffaker et al. [15] used majority
vote across all participating databases to pick the location of a given
block of IP addresses and then evaluated the databases according to

the resulting location. Shavitt et al. [29] examined the coherency of
databases using a ground truth dataset of IP addresses with known
PoP (Points of Presence). They also used a majority vote across
all databases to infer the location of a PoP and then compared all
databases to the inferred location. While these studies evaluate the
overall accuracy of the geolocation databases, our work focuses
on evaluating router geolocation in databases. Our ground truth
is not specific to an ISP or region or PoPs as in [26] and [29]. We
also do not use delay measurements as in [13] and [10] to study the
geographic span and co-locality of IP blocks.

Another category of related work is the DNS-based geolocation
that infers location hints fromDNS names. Huffaker et al.work [16],
discussed is §2.3.1, is one example. Scheitle et al.work[27] is similar
to [16] where location hints are extracted from DNS names and
then verified or disqualified using latency measurement. While
DNS-based methods can provide good accuracy results, their scope
is limited since not all router addresses have DNS names, and not
all names have useful geolocation hints. In our work we used [16]
to create part of our ground truth dataset.

8 CONCLUSIONS
In this paper, we evaluate router geolocation in four widely used
geolocation databases. We examine their consistency and coverage
using a dataset of 1.64M router interface addresses. We show that
the databases generally agree on the country-level (95.8% of the
time), but the databases—from different vendors— show more dis-
crepancy at city-level with more than 29% pairwise disagreements.
However, we show that agreement among the databases does not
imply correctness. We evaluate the accuracy of the databases with
a ground truth dataset we created using DNS-based and latency-
based methods. We show that the databases are not accurate in
geolocating routers at neither country- nor city-level, even if they
agree significantly among each other. A breakdown by RIR of the
ground truth shows that the databases are less reliable at the city-
level resolution in ARIN compared to other regions. NetAcuity
shows the best combination of coverage and accuracy. MaxMind
shows relatively good city-level accuracy in regions other than
ARIN but it lacks extensive city-level coverage. Overall, compar-
ing our router geolocation accuracy results with previous work on
databases evaluation suggests databases geolocate routers with less
accuracy compared to end hosts. Researchers need to pay extra cau-
tion when using geolocation databases and understand the impact
of the databases accuracy on their results.
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