Stronger security bounds
for Wegman-Carter-Shoup authenticators

Daniel J. Bernstein *

Department of Mathematics, Statistics, and Computer Science (M/C 249)
The University of Illinois at Chicago
Chicago, 1L 60607—-7045
djb@cr.yp.to

Abstract. Shoup proved that various message-authentication codes of
the form (n,m) — h(m) + f(n) are secure against all attacks that see at
most m authenticated messages. Here m is a message; n is a nonce
chosen from a public group G; f is a secret uniform random permutation
of G; h is a secret random function; and € is a differential probability
associated with h.

Shoup’s result implies that if AES is secure then various state-of-the-art
message-authentication codes of the form (n, m) — h(m)+ AES(n) are
secure up to \/T/G authenticated messages. Unfortunately, m is only
about 2°° for some state-of-the-art systems, so Shoup’s result provides
no guarantees for long-term keys.

This paper proves that security of the same systems is retained up to
V#G authenticated messages. In a typical state-of-the-art system, #G
is 2%%. The heart of the paper is a very general “one-sided” security
theorem: (n,m) — h(m)+ f(n) is secure if there are small upper bounds
on differential probabilities for A and on interpolation probabilities for

f.

Keywords: mode of operation, authentication, MAC, Wegman-Carter,
provable security

1 Introduction

This paper proves that various state-of-the-art 128-bit authenticators are secure
against all attacks that see at most 264 authenticated messages. Previous proofs
broke down at a smaller number of messages, often below 2°°.

* The author was supported by the National Science Foundation under grant CCR—
9983950, and by the Alfred P. Sloan Foundation. Date of this document: 2005.02.27.
Permanent ID of this document: 2d603727£69542f£30f7da2832240c1ad. This version
is final and may be freely cited. Priority dates: The first version of this document
was posted 2004.10.19.

A typical example

Here is a well-known polynomial-evaluation message-authentication code over a
field of size 2128,

Each message is a polynomial in one variable over the field. The polynomial’s
constant coefficient is required to be 0. One authenticates the polynomial by
evaluating it at a point and adding a function of the message number: the sender’s
nth message, say m,,, is transmitted as (n, m,, my,(r) + f(n)). Here r and f are
secrets shared by the sender and the receiver.

It is easy to prove information-theoretic security of this system if r and f
are independent, r is a uniform random element of the field, and f is a uniform
random function from {n} to the field—in other words, if r, f(1), f(2),... are
independent uniform random elements of the field. The attacker’s chance of
successfully forging a message is at most LD/2'2% where L is the maximum
degree of a message and D is the number of forgeries attempted. The idea of the
proof is that m,,(r) + f(n) leaks no information about m.,,(r).

What if f is a uniform random injective function—in other words, what
if (1), f(2),... are chosen to be distinct? What is the attacker’s chance of
successfully forging a message? Here are three answers:

e The easy bound: Say the sender transmits only C' messages, where C'is small.
Then f(1), f(2),..., f(C) are nearly independent, and one can easily prove
that the attacker’s chance of success is at most LD/212® 4+ C(C —1)/2'29.
This bound becomes useless as C' approaches 264,

e Another bound: Shoup proved in [19, Theorem 2] that the attacker’s chance
of success is at most 2L.D /218 if C' < 264 //L.

e A better bound: This paper proves that the attacker’s chance of success is
below 1.002LD /228 if C < 2%0 and below 1.7LD /2?8 if C < 2%4] and below
3000LD /2128 if C < 296,

For example, say the sender authenticates C' = 20 messages, the attacker tries
D = 259 forgeries, and the maximum message degree is L = 2'6. The easy bound
is about 1/2% which is not at all comforting. Shoup’s bound is inapplicable. The
bound in this paper is 1.002/252.

Consequences for AES-based authenticators

Despite the high speed and information-theoretic security of m,, (r)+ f(n), users
often prefer my,(r) +AESk(n). Why? Because r, k occupy only 32 bytes, whereas
r, f(1), f(2),... occupy an additional 16 bytes for each message.

Define 4 as the attacker’s chance of distinguishing AESy from f, where f is
a uniform random injective function on 16-byte blocks. The important feature
of AES for this paper is that & is believed to be extremely small, even after 264
or more queries, even for an attacker with incredible computational resources.
This was an explicit design goal of AES: [2, Section 4] identified “the extent to
which the algorithm output is indistinguishable from [the output of]| a [uniform]
random permutation” as one of the “most important” factors in evaluating AES

proposals, and [17, Table 1] shows that AES evaluators considered many attacks
aimed at this feature.

The attacker’s success chance against m,, (r) + AES;(n) is at most 0 plus
the attacker’s success chance against m,,(r) + f(n). The point of this paper is
that the second chance is extremely small, even for C = 2%4. Consequently,
my(r) + AES(n) is secure if 4 is small, i.e., if AES, meets its design goals.

In short, this paper guarantees that m,(r) + AES;(n) is as secure as AES
up to 2%4 messages. The best previous results did not handle nearly as many
messages.

The importance of injectivity

Suppose that, in the above discussion of AES, I modify the definition of f by
omitting the word “injective.” Does the rest of the argument lead to the same
security guarantee? No!

It is still true that the attacker’s success chance against m,, (r) + AESg(n) is
bounded by the sum of two chances: first, the attacker’s chance of distinguishing
AES;, from f; second, the attacker’s success chance against m,(r) + f(n). It is
still true—and easy to prove, without the new techniques in this paper—that
the second chance is small. But it is not true that AES was designed to make
the first chance small. In fact, for C' = 254, the first chance is not small. The
attacker has a good chance of distinguishing AES, from f by trying 26¢ inputs
and checking for collisions.

The importance of injectivity in this context was highlighted by Shoup in
[19, Section 1] nearly ten years ago. As C' and D grow, the usual theorems say
“nothing at all about the security of the message authentication scheme,” Shoup
wrote, pointing out examples of this problem in the literature.

Unfortunately, the literature has continued to sprout problems of this type.
Example: [9, Section 6.1] claims, for one message-authentication code, that any
attack with success probability larger than “about 27°” has been “rigorously
proven” to imply an attack that distinguishes AES from “a [uniform] family
of random permutations.” In fact, the security analysis considered the uniform
distribution on all functions, not the uniform distribution on permutations; see
[16, page 15]. The error is below 27 if C + D < 234, but neither [16] nor [9]
puts any such limit on C'+ D. Apparently the security “guarantee” in [9] has
not been proven.

Generalization

This paper considers much more general message-authentication codes of the
form (n,m) — h(m) + f(n). The main theorem of this paper, Theorem 5.1, is
that h(m) + f(n) is secure if (1) differential probabilities for h are small and (2)
interpolation probabilities for f are small.

The “differential probabilities for " are probabilities of the form Pr[h(m’) =
h(m) + g|. The “interpolation probabilities for f” are probabilities of the form

Pr[(f(n1),..., f(nk)) = (x1,...,2k)]. See Appendix A for further discussion of
terminology.

In particular, assume that f is a uniform random injective function from {n}
to a finite commutative group G, and that the differential probabilities for h
are small. Then h(m) + f(n) is secure against all attacks that see at most /#G
authenticated messages. As a special case, if G is the set of 16-byte strings with a
group structure, then h(m) + f(n) is secure against all attacks that see at most
264 authenticated messages. Consequently h(m) + AES.(n) is secure against
any attacker who cannot break AES and who sees at most 254 authenticated
messages.

The form h(m) @ f(n) for an authenticator, where f is a uniform random
function, was introduced by Wegman and Carter in [22, Section 4]. Here & is
vector addition modulo 2. Brassard in [10] considered h(m) @ f(n) where f is a
random function determined by a short key. Shoup in [19], as discussed above,
considered h(m) @ f(n) where f is a uniform random injective function.

There are many choices of h in the literature. The choices for any particular
output size (say 128 bits) vary in speed, entropy (e.g., 128 bits), maximum
differential probability € (e.g., L/2128), et al. For example, Gilbert, MacWilliams,
and Sloane in [12] proposed my,ma, ..., mp — miry +maore+---+mpry, which
has € = 1/2'2® but a very long © = (r1,72,...,71). This is, at first glance, just
as fast as univariate polynomial evaluation, but in practice the large r creates a
huge speed penalty: cache misses become much more common and much more
expensive. Evaluating a polynomial in a few variables over a larger field achieves
the same € with a much smaller speed penalty. The larger field means a larger
output size, but Bierbrauer, Johansson, Kabatianskii, and Smeets in [7, page
336] pointed out that the result could be safely truncated after an appropriate
twist; the bandwidth savings of truncation may justify the computation cost of
the twist. There is much more to say about the choice of h; see [4, Section 10]
for a survey.

The more general shape h(m)+ f(n) for an authenticator, where + can be any
commutative group operation, accommodates choices of h that rely on addition
in large characteristic rather than characteristic 2—in particular, functions that
can take advantage of the high-speed multiplication circuits included in common
CPUs. Several examples of such functions are “MMH,” “hash127,” “UMAC,”
“CWC-HASH,” and my new “Poly1305”; see [13], [4], [16], [15], and [5].

Shoup stated his theorems only for &, but his proof technique can be used
in the same level of generality as mine. His proof technique breaks down as
C' passes \/r/e, where € is the maximum differential probability of A, whereas
mine continues working until /#G, where G is the authenticator group. The
magnitude of the improvement depends on how far € is from 1/#G. In the
Gilbert-MacWilliams-Sloane system, for example, ¢ = 1/#G and there is no
improvement; in Poly1305, € ~ 22°L /#G and there is a large improvement.

All of the security proofs in the literature rely on two-sided bounds for the
interpolation probabilities for f. One computes lower bounds on the probability
of any particular sequence of authenticators; one computes nearby upper bounds

on the probability of that sequence of authenticators given h; one deduces that
the authenticators reveal very little information about h, and hence very little
information about the authenticator for a new message. See, e.g., [22, Section
4, Theorem] and [19, Appendix A, Lemma 1]. The heart of the improvement in
this paper is a new “one-sided” proof strategy that moves directly from upper
bounds for f and h to upper bounds on the attacker’s chance of success.

2

Protocol

This section describes a very general message-authentication protocol. Section 3
formalizes the notion of an attack on the protocol. Section 5 analyzes the success
chance of all attacks.

The protocol has several parameters:

GG, a finite commutative group of authenticators. I will always write the
group operation as +. (More general groups, or even loops, would suffice,
but I see no application of the extra generality.) Typical example: G is the
set of 16-byte strings, with the group operation being exclusive-or. Another
example: G is the set {0,1,2,...,2'2% — 1} with the group operation being
addition modulo 2128,

M, a nonempty set of messages. Typical example: M is the set of all strings
of bytes. Another example: M is the set of all strings of at most 1024 bytes.
N, a finite set of nonces, with #N < #G. Typical example: N is the set
{1,2,3,...,2% — 1}. Another example: N is the set of 16-byte strings.

The protocol has several participants:

A message generator creates messages.

A nonce generator accepts messages m from the message generator and
attaches a nonce n to each message m. The nonce generator must never
use the same nonce for two different messages: if it generates (ni,m) and
(ng,ms), and if my # mo, then n; must not equal ny. This uniqueness rule
is automatically satisfied if the nonce generator uses nonce 1 for the first
message, nonce 2 for the second message, etc.

A sender accepts pairs (n,m) from the nonce generator and attaches an
authenticator a to each pair, as discussed below.

A network accepts a sequence of vectors (n,m,a) from the sender and
transmits a sequence of vectors (n’,m’, a’). Perhaps the sequence of vectors
transmitted is the same as the sequence of vectors sent; perhaps not.

A receiver receives vectors (n’,m’,a’) from the network. It accepts (n’,m’)
if @’ is the authenticator that the sender would have attached to (n’,m’);
otherwise it discards (n/,m’).

If the network transmits exactly what the sender sent, then the pairs (n,m)

accepted by the receiver are exactly the pairs (n,m) given to the sender; but
what if the network makes changes? The objective of the protocol is forgery

elimination: ensuring that each pair (n’,m’) accepted by the receiver is one of
the pairs (n,m) that was authenticated by the sender.
Users also want additional protocol features:

e The receiver should notice if the network repeats messages or transmits
messages out of order. One standard way to do this is for the nonce generator
to use increasing nonces (in some specified ordering of the set N), and for
the receiver to discard (n/,m’,a’) unless n' is larger than the last accepted
nonce.

e The receiver should notice if the network loses a message. There’s no way
to recover if the network is losing all messages, but there are retransmission
protocols that eventually succeed in transmitting all data if the network
delivers (e.g.) 1% of all messages.

But this paper focuses on the cryptographic problem of forgery elimination.

The sender’s authenticator for a pair (n,m) is h(m) + f(n): i.e., the sender
gives (n,m,h(m) + f(n)) to the network. Here h is a random function from
M to G, and f is a random function from N to G. The pair (f,h) is a secret
shared by the sender and receiver; this means that the actions of the message
generator, nonce generator, and network are independent of (f, h). In particular,
if the message generator encrypts messages, it does so using a key independent
of (f,h). The proof strategy in this paper can be extended to cover protocols
that reuse f for encryption, as long as separate f inputs are used for encryption
and for authentication; but that extension is not included in the statement of
Theorem 5.1.

3 Attacks

The combined behavior of the message generator, nonce generator, and network
is called an “attack.” The attack creates messages; it creates nonces, subject
to the rule that nonces never repeat; it inspects the authenticators provided by
the sender; and it provides some number of forgery attempts to the receiver.
The network is presumed to be able to provide data to the message generator
and nonce generator, so each message can depend on previous authenticators.
The attacker is presumed to be able to tell whether the receiver has accepted a
forgery attempt.

More formally: An attack is an algorithm given oracle access to two functions
S and R. The algorithm feeds chosen messages to the first oracle:

e The algorithm chooses a nonce n; and message my. The algorithm issues
the query (ni,m;) and receives an authenticator a; = S(ny,mq).

e The algorithm then chooses a nonce ny and message mo, obeying the rule
that ne # ny if mg # my. The algorithm issues the query (ng,ms) and
receives an authenticator as = S(ng, ms).

e The algorithm then chooses a nonce ng and message mgs, obeying the rule
that n3 # nq if mg # mq, and the rule that ng # ngy if m3z # mso. The

algorithm issues the query (ns,ms) and receives an authenticator az =
S (’I’Lg, ms) .
e The algorithm continues in this way for any number of messages.

Meanwhile, the algorithm feeds any number of forgery attempts (n',m’,a’) to
the second oracle, receiving responses R(n’,m/, da’).

The attack succeeds against S and R if at least one forgery attempt
(n',m’,a’) has R(n',m’,a’) = 1 with (n’,m’) different from the previous queries
(n1,mq), (n2, ma),... to the first oracle.

Attacks against this system

Take, in particular, S(n,m) = h(m)+ f(n) and R(n,m,a) = [a = h(m) + f(n)];
ie, R(n,m,a) =1if a = h(m) + f(n) and R(n,m,a) = 0 if a # h(m) + f(n).
Is there an attack that succeeds against S and R with noticeable probability?

Theorem 5.1 states, under certain assumptions on f and h, that the answer
is no. The receiver is overwhelmingly likely to discard every forgery—mno matter
how the message generator chooses messages; no matter how the nonce generator
chooses unique nonces; no matter how the network chooses forgeries.

The rest of this section discusses the strength of this theorem, under the
same assumptions on f and h.

Forgeries versus selective forgeries

A selective forgery is a forged message chosen in advance by the attacker. Some
protocols prevent selective forgeries but allow attackers to find authenticators
for random-looking messages. These protocols assume—often incorrectly—that
random-looking messages will not cause any damage. In contrast, h(m) + f(n)
rejects all forgeries.

Attacks versus blind attacks

Some protocols prevent blind attacks but allow forgeries when attackers can
inspect authenticated messages. (Trivial example: use a secret password as an
authenticator for every message.) In contrast, h(m) + f(n) rejects all forgeries
even after the attacker sees a large number of authenticated messages.

Chosen messages versus known messages

Some protocols are secure for some message generators but insecure for others.
An attacker who can influence the message generator can often obtain enough
information to forge messages. In contrast, h(m) + f(n) rejects all forgeries no
matter what the message generator does.

Of course, if an attacker can convince the message generator to produce a
message, then he does not need to forge an authenticator for that message. An
easily corrupted message generator is often a problem. It is, however, not the
cryptographic problem considered in this paper.

Receiver interaction

As pointed out by Bellare, Goldreich, and Mityagin in [3], some (admittedly
unrealistic) protocols are secure against an attacker carrying out a single forgery
attempt but insecure against an attacker that tries several forgery attempts. In
contrast, the security bound for h(m) + f(n) is linear in the number of forgery
attempts.

The crucial point, as emphasized by Bellare et al., is that the attacker can
recognize all (n’,m’ a’) that will be accepted by the receiver without being
forgeries: namely, the results (n1,mq,a1), (n2, ma,as), ... already obtained from
the sender. In other words, the only way an attacker can learn anything new
from the receiver is by succeeding at a forgery. Thus receiver interaction does not
improve the attacker’s success probability. Receiver interaction can change the
number of successful forgeries if the attacker succeeds, but this paper guarantees
that the attacker will not succeed in the first place.

4 Interpolation probabilities

Let f be a random function from N to G. The hypothesis on f in Section 5 is that
f has maximum k-interpolation probability on the scale of 1/#G?*, for various
k€ {0,1,...,#N}. Here the maximum k-interpolation probability of f is
the maximum, for all x1,x9,...,2r € G and all distinct ny,ng,...,nx € N, of
the probability that (f(n1), f(n2),..., f(ng)) = (z1,T2,. .., xg).

This section proves that this condition is satisfied by a uniform random
function and by a uniform random injective function.

Theorem 4.1. Let f be a uniform random function from a finite set N to a
finite set G. Assume that #N < #G. Then [has maximum k-interpolation
probability 1/#G* for each k € {0,1,...,#N}.

Proof. (f(n1), f(na),...,f(nx)) = (21,22, ...,xx) with probability 1/#G*. 0O

Theorem 4.2. Let f be a uniform random injective function from a finite set N
to a finite set G. Assume that #N < #G. Then f has mazimum k-interpolation
probability at most (1 — (k — 1)/#G) %2 J#G* for each k € {0,1,... ,#N}.

Proof. Fix distinct ny,ns,...,ng € N. Fix 1, 29,...,2 € G.

Case 1: There are collisions in z1,zs,...,25. Then (f(n1),..., f(ng)) =
(21,...,2)) with probability 0.

Case 2: There are no collisions. Then f(nq) = z; with probability 1/#G;
if that happens then f(n2) = z with conditional probability 1/(#G — 1);
if that happens then f(n3) = x3 with conditional probability 1/(#G — 2);
and so on. The probability that (f(ni), f(n2),...,f(ng)) = (x1,22,...,2k) is

exactly [[ocicp—1 1/(#G — 1) = \/Hogigkq 1/(#G —)#HG - (k—1-1)) <
Vozizio VH#G?P(— (k= 1)/#6) = VI = (k= D/#C)F/H#GO™. O

5 The main theorem

Theorem 5.1 is the main theorem of this paper: (n,m) — h(m)+ f(n) is secure if
h has small differential probabilities and f has small interpolation probabilities.
Theorems 5.2 and 5.3 consider two special cases: a uniform random function
f, and a uniform random injective function f.
Theorem 5.4 proves that (n,m) — h(m) + AESg(n) is secure if h has small
differential probabilities and AESy, is secure, i.e., AES;, is difficult to distinguish
from a uniform random injective function.

Theorem 5.1. Let h be a random function from a nonempty set M to a finite
commutative group G. Let f be a random function from a finite set N to G. Let
C and D be positive integers. Assume that C +1 < #N < #G. Assume, for all
g € G and all distinct m,m’ € M, that h(m) = h(m')+g with probability at most
€. Assume that f has mazimum C-interpolation probability at most §/#G€ and
mazimum (C + 1)-interpolation probability at most de/#GC. Assume that h and
f are independent. Then any attack using at most C' distinct chosen messages
and at most D forgery attempts succeeds against (n,m) — h(m) + f(n) and
(n,m,a) — [a = h(m) + f(n)] with probability at most Dde.

Proof. Standard reduction #1: It suffices to consider D = 1, for the following
reason. For D > 1, split the attack into two pieces:

e The first piece is the original attack with one change: it stops immediately
after the first forgery attempt (if there are any forgery attempts). This piece
uses at most C' distinct chosen messages and at most 1 forgery attempt.

e The second piece is the original attack with one change: it simulates the
the first forgery attempt internally (if there are any forgery attempts) rather
than sending the forgery attempt as an oracle query. The simulator returns 1
if the forgery attempt n’, m’, a’ matches an authenticator a’ already provided
in response to a chosen message m’ with nonce n’; otherwise the simulator
returns 0. This piece uses at most C' distinct chosen messages and at most
D — 1 forgery attempts.

Success of the original attack on its first forgery attempt is equivalent to success
of the first piece—which occurs with probability at most de. Failure of the original
attack on its first forgery attempt, but success on a subsequent attempt, implies
success of the second piece—which, by induction on D, occurs with probability
at most (D — 1)de. Therefore the original attack succeeds with probability at
most Die.

Standard reduction #2: If there are no forgery attempts then the attack
succeeds with probability 0 < de. Assume from now on that there is exactly one
forgery attempt.

Standard reduction #3: If the attack chooses any messages after the forgery
attempt, modify it to discard those oracle queries; this has no effect on the
attack’s success chance. Assume from now on that all chosen messages are issued
before the forgery attempt.

Standard reduction #4: If the attack might use fewer than C' distinct chosen
messages, modify it to use additional chosen messages with new nonces and to
discard the results; new nonces are available since #N > C, and at least one
message is available since #M > 1. Assume from now on that the attack uses
exactly C' distinct chosen messages.

Standard reduction #b5: If the attack might repeat chosen messages, modify
it to cache queries and responses to the sender oracle. Assume from now on that
the attack does not repeat chosen messages.

Write (n;,m;) for the ith query to the sender oracle. Then nq,no,...,nc
are distinct. Write a; for the ith response from the oracle, when the attack is
applied to (n,m) — h(m)+ f(n); then a; = h(m;) + f(n;). Write (n’,m’,a’) for
the attempted forgery.

Everything that the attack does is determined by (1) an infinite sequence b
of coin flips, by definition independent of h and f, and (2) the sequence of sender
responses ai,as,...,ac. In particular, ni,na,...,nc,mi,ma,...,mg,n’,m’,a
are equal to various functions evaluated at b, ay,as,...,ac. Furthermore, f(n;)
is determined by a; and h(m;), so f(n;) is equal to a function evaluated at
h,b,a1,as,...,ac.

Fix (g1,92,...,9c) € G¢. Define X as the following event: (n’,m’,a’) is a
successful forgery and (ay,as,...,ac) = (91,92, --,9c). It suffices to show that
event X has probability at most de/#GC.

(A referee suggests some added emphasis: I am considering the probability
that the forgery attempt succeeds and the authenticators match (g1, g2, ..., 9c).
Previous proofs considered the probability that the forgery attempt succeeds
given that the authenticators match (g1, go,...,9c).)

Define p as the probability that b satisfies the following measurable constraint:
if (a1,az,...,a¢c) = (91,92,---,9c) then n’ & {ny,na,...,nc}. I claim, for each
b satisfying the constraint and for each h, that f has conditional probability at
most de/#GC of producing event X.

Indeed, assume that b satisfies the constraint, that (n’,m’,a’) is a successful
forgery, and that (ai,as,...,ac) = (91,92,--.,9c). Then #{nq,...,nc,n’'} =
C +1, and the pairs (n1, f(n1)),..., (nc, f(ne)), (n’, f(n')) are equal to various
functions evaluated at h, b, g1, g2, . . ., gc. By hypothesis, f is independent of h; f
is also independent of b; and ¢4, g2, . .., gc are fixed. The conditional probability
of f interpolating those pairs is at most the maximum (C' + 1)-interpolation
probability of f, which by hypothesis is at most de/#GC.

I also claim, for each b not satisfying the constraint, that h has conditional
probability at most € of satisfying a necessary differential condition; and, for
each b and each qualifying h, that f has conditional probability at most §/#G¢
of producing event X.

Indeed, assume that b does not satisfy the constraint, that (ay,as,...,ac) =
(91,92,---,9c), and that (n’,m’,a’) is a successful forgery. Then n’ = n; for a
unique 7; note that m’ # m;. Next o’ = h(m’) + f(n;) and a; = h(m;) + f(n;) so
h(m;) — h(m’) = a; — a’. The inputs m;, m’ and the output a; — a’ are equal to
various functions evaluated at b, g1, g2, . . . , go, and thus are independent of h; by

hypothesis, h satisfies the condition h(m;) — h(m') = a; — o’ with probability at
most e. Furthermore, the pairs (n1, f(n1)), (n2, f(n2)), ..., (nc, f(nc)) are equal
to various functions evaluated at h,b, g1, g2, ..., gc; f is once again independent
of h,b,91,92,...,9c; so the conditional probability of f interpolating those pairs
is at most the maximum C-interpolation probability of f, which by hypothesis
is at most 6 /#GC.

The total probability of event X is at most p(de/#G)+(1—p)(€)(§/#G)
Se/#GC.

o

Theorem 5.2. Let h be a random function from a nonempty set M to a finite
commutative group G. Let f be a uniform random function from a finite set
N to G. Let C and D be positive integers. Assume that C +1 < #N < #G.
Assume, for all g € G and all distinct m,m’ € M, that h(m) = h(m’) + g
with probability at most €. Assume that h and f are independent. Assume that
e > 1/#G. Then any attack using at most C distinct chosen messages and at
most D forgery attempts succeeds against (n,m) — h(m)+ f(n) and (n,m,a) —
l[a = h(m) + f(n)] with probability at most De.

The condition € > 1/#G is redundant if #M > 2: any distinct m,m’ € M
have #G possibilities for h(m) — h(m'), each occurring with probability at most
€ by hypothesis, so 1 < e#G.

Proof. Write § = 1. Then f has maximum C-interpolation probability 1/#G¢ =
§/#GC, and maximum (C + 1)-interpolation probability 1/#GC+! < fe/#GC,
by Theorem 4.1. By Theorem 5.1, the attack succeeds with probability at most
Dde = De. O

Theorem 5.3. Let h be a random function from a nonempty set M to a finite
commutative group G. Let f be a uniform random injective function from a finite
set N to G. Let C' and D be positive integers. Assume that C +1 < #N < #G.
Assume, for all g € G and all distinct m,m’ € M, that h(m) = h(m’) + g
with probability at most €. Assume that h and f are independent. Assume that
€ > 1/#G. Then any attack using at most C' distinct chosen messages and at
most D forgery attempts succeeds against (n,m) — h(m)+ f(n) and (n,m,a) —

[a = h(m) + f(n)] with probability at most D(1 — C/#G)~(C+T1/2¢,

In the special case C' = L\/#GJ , the extra factor (1—C/#G)~(C+1D/2 is below
1.7 for all reasonably large G it converges to exp(1/2) ~ 1.64872 as #G — cc.

Proof. Write § = (1 — C/#G)~(¢+1/2_ By Theorem 4.2, f has maximum C-
interpolation probability at most (1 — (C' — 1)/#G)~¢/2/#G¢ < §/#GC. By
Theorem 4.2 again, f has maximum (C + 1)-interpolation probability at most
(1 — C/#G)~(CHV/2/4GCH < §e/#GC. By Theorem 5.1, the attack succeeds
with probability at most Dde. O

Theorem 5.4. Let G be the set of 16-byte strings with a group structure. Let k
be a random AES key. Let h be a random function from a nonempty set M to G.
Assume that the distribution of h is computable. Let C' and D be positive integers.

Assume that C + 1 < 2128, Assume, for all g € G and all distinct m,m’ € M,
that h(m) = h(m') + g with probability at most €. Assume that h and k are
independent. Assume that € > 1/2128. Let A be an attack using at most C' distinct
chosen messages and at most D forgery attempts. Assume that A succeeds against
(n,m) — h(m)+AESk(n) and (n,m,a) — [a = h(m)+AESg(n)] with probability
~. Define A’ as the algorithm that, given an oracle for a function f, chooses h
randomly, applies A to (n,m) — h(m)+ f(n) and (n,m,a) — [a = h(m)+ f(n)],
and prints 1 if A succeeded. Then A’ distinguishes AESy, from a uniform random
permutation of G with probability at least v — D(1 — C/212%)=(C+D/2¢ using at
most C' + D oracle queries.

Consequently, A succeeds against (n,m) — h(m)+ AESk(n) and (n,m,a) —
[a = h(m) + AES,(n)] with probability at most § + D(1 — C/2'28)=(C+1)/2¢,
where ¢ is the probability that an algorithm as fast as A’ can distinguish AESy
from a uniform random permutation of G.

Proof. A’ makes one oracle query for each chosen message from A, and one oracle
query for each attempted forgery from A, for a total of at most C' + D oracle
queries.

When A’ is given an oracle for AESy, it applies A to (n,m) +— h(m) +
AESk(n) and (n,m,a) — [a = h(m) + AESk(n)], so it prints 1 with probability
~ by hypothesis.

When A’ is given an oracle for a uniform random permutation f of G, it
applies A to (n,m) — h(m)+ f(n) and (n,m,a) — [a = h(m) + f(n)], so it
prints 1 with probability at most D(1 — C/2'28)~(€+1)/2¢ by Theorem 5.3.

Therefore A’ distinguishes AES; from a uniform random permutation of G
with probability at least v — D(1 — C/2128)=(C+1)/2¢, 0

References

1. —, 20th annual symposium on foundations of computer science, IEEE Computer
Society, New York, 1979. MR 82a:68004.

2. —, Announcing request for candidate algorithm nominations for the Advanced En-
cryption Standard (AES) (1997). URL: http://csrc.nist.gov/CryptoToolkit/
aes/pre-roundl/aes_9709.htm.

3. Mihir Bellare, Oded Goldreich, Anton Mityagin, The power of verification queries
in message authentication and authenticated encryption (2004). URL: http://
eprint.iacr.org/2004/309.

4. Daniel J. Bernstein, Floating-point arithmetic and message authentication, to be
incorporated into author’s High-speed cryptography book. URL: http://cr.yp.to/
papers.html#hash127. ID dabadd3095644704c5cbe9690ea3738e.

5. Daniel J. Bernstein, The Poly1305-AES message-authentication code (2005); Pro-
ceedings of Fast Software Encryption 2005, to appear. URL: http://cr.yp.to/
papers.html#poly1305. ID 0018d9551b5546d97c340e0dd8cb5750.

6. Daniel J. Bernstein, A short proof of the unpredictability of cipher block chaining
(2005). URL: http://cr.yp.to/papers.html#easycbc. ID 24120a1£f8b92722b5el
5fbb6a86521a0.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Jurgen Bierbrauer, Thomas Johansson, Gregory Kabatianskii, Ben Smeets, On
families of hash functions via geometric codes and concatenation, in [20] (1994),
331-342. URL: http://cr.yp.to/bib/entries.html#1994/bierbrauer.

. Eli Biham (editor), Fast Software Encryption ’97, Lecture Notes in Computer

Science, 1267, Springer-Verlag, Berlin, 1997. ISBN 3-540-63247—6.

John Black, Shai Halevi, Alejandro Hevia, Hugo Krawczyk, Ted Krovetz, Phillip
Rogaway, UMAC: message authentication code using universal hashing (2004).
URL: http://www.cs.ucdavis.edu/ "rogaway/umac/index.html.

Gilles Brassard, On computationally secure authentication tags requiring short
secret shared keys, in [11] (1983), 79-86. URL: http://cr.yp.to/bib/entries.
html#1983/brassard.

David Chaum, Ronald L. Rivest, Alan T. Sherman (editors), Advances in cryptol-
ogy: proceedings of Crypto 82, Plenum Press, New York, 1983. ISBN 0-306-41366—
3. MR 84j:94004.

Edgar N. Gilbert, F. Jessie MacWilliams, Neil J. A. Sloane, Codes which detect
deception, Bell System Technical Journal 53 (1974), 405-424. ISSN 0005-8580. MR
55:5306. URL: http://cr.yp.to/bib/entries.html#1974/gilbert.

Shai Halevi, Hugo Krawczyk, MMH: software message authentication in the
Gbit/second rates, in [8] (1997), 172-189. URL: http://www.research.ibm.com/
people/s/shaih/pubs/mmh.html.

Neal Koblitz (editor), Advances in cryptology—CRYPTO ’96, Lecture Notes in
Computer Science, 1109, Springer-Verlag, Berlin, 1996.

Tadayoshi Kohno, John Viega, Doug Whiting, CWC: a high-performance con-
ventional authenticated encryption mode (2004). URL: http://www.cs.ucsd.edu/
users/tkohno/papers/CWC/.

Theodore Krovetz, Software-optimized universal hashing and message authen-
tication, Ph.D. thesis, University of California at Davis, 2000. URL: http://
www.cs.ucdavis.edu/ “rogaway/umac/.

James Nechvatal, Elaine Barker, Lawrence Bassham, William Burr, Morris
Dworkin, James Foti, Edward Roback, Report on the development of the Advanced
Encryption Standard (AES), Journal of Research of the National Institute of Stan-
dards and Technology 106 (2001). URL: http://nvl.nist.gov/pub/nistpubs/
jres/106/3/cnt106-3.htm.

Victor Shoup, On fast and provably secure message authentication based on uni-
versal hashing, in [14] (1996), 313-328; see also newer version [19].

Victor Shoup, On fast and provably secure message authentication based on uni-
versal hashing (1996); see also older version [18]. URL: http://www.shoup.net/
papers.

Douglas R. Stinson (editor), Advances in cryptology—CRYPTO ’93: 13th annual
international cryptology conference, Santa Barbara, California, USA, August 22—
26, 1993, proceedings, Lecture Notes in Computer Science, 773, Springer-Verlag,
Berlin, 1994. ISBN 3-540-57766—-1, 0-387-57766—1. MR 95b:94002.

Mark N. Wegman, J. Lawrence Carter, New classes and applications of hash func-
tions, in [1] (1979), 175-182; see also newer version [22]. URL: http://cr.yp.to/
bib/entries.html#1979/wegman.

Mark N. Wegman, J. Lawrence Carter, New hash functions and their use in au-
thentication and set equality, Journal of Computer and System Sciences 22 (1981),
265-279; see also older version [21]. ISSN 0022-0000. MR 82i:68017. URL: http://
cr.yp.to/bib/entries.html#1981/wegman.

A Appendix: General terminology

This section discusses various conflicts between (1) the terminology used in some
cryptographic papers and (2) the standard terminology of probability theory
used by a much larger community of mathematicians. This section also discusses
my choice of terminology for a few concepts that are more specialized.

“Random” versus “uniform random?”

A random element v of a finite set S is uniform if Prjv = s] = 1/#S for each
s € S. This terminology is standard in probability theory and is used in this
paper.

Examples: A coin flip ¢—a random bit—is uniform if Pr[c = 0] = 1/2 and
Pr[c = 1] = 1/2. If k is a uniform random 16-byte string then (k,0) is a non-
uniform random 17-byte string; k[0], the first byte of k, is a uniform random
byte; AESy is a non-uniform random permutation of the set of 16-byte strings.

Some cryptographic papers use the word “random” to mean uniform random.
If these papers state theorems regarding a “random element of S,” for example,
then those theorems don’t apply to a random element of {0,1,2,...,2'27 — 2}
that’s 0 twice as often as anything else—even though this slightly non-uniform
distribution is much more widely used than the uniform distribution. If these
papers state theorems regarding a “random RSA key” then those theorems are
incompatible with every prime-generation algorithm that’s actually used.

Some people try to work around this terminological deficiency by viewing all
random variables as images of uniform random variables. My random element
of {0, 1,2,...,2127 — 2} might be viewed as the reduction modulo 227 — 1 of
a uniform random element of {0, 1,2,...,2%%6 — 1}; maybe this is how it was
generated in the first place.

The big problem with this workaround is that it buries every random variable
in a pointless thicket of notation—one has to introduce an irrelevant input set
and an irrelevant function instead of simply focusing on the resulting variable.
For example, rather than simply stating a theorem for a random function A from
messages to 16-byte strings, I’d have to state a theorem for a (uniform) random
element r of some set R together with some function H that, for each r, gives
me a function from messages to 16-byte strings.

“Random” versus “discrete random?”

The set of values of a random variable is not required to be finite, or even
countable. A discrete random variable is a random element of a countable set.
This terminology is standard in probability theory and is used in this paper.

Consider, for example, the coin flips provided as an auxiliary input to a
probabilistic algorithm: an infinite random sequence of bits b = (by, bo, b3, .. .).
This random sequence is a non-discrete random variable; it has uncountably
many values.

As a concrete example, consider the usual probabilistic algorithm to generate
a uniform random element of {1,2,3}: flip two coins; if the results are (0,1) or
(1,0) or (1,1), print 1 or 2 or 3 correspondingly and stop; otherwise try again.
It is easy to prove that this algorithm succeeds with probability 1 (i.e., that
b = (0,0,0,0,...) with probability 0), that the algorithm flips 8/3 coins on
average, etc. These are statements about non-discrete probabilities.

Some cryptographic papers use the word “random” to mean discrete random,
thus excluding such fundamental objects as coin-flip sequences. This restriction
is intolerable for any serious discussion of probabilistic algorithms.

Warning to undergraduates: Pr[b € S], the probability that b is in S, is
defined only for some sets S, namely the measurable sets. Here are the rules:

(1) the empty set is measurable;

(2) if S is measurable then its complement S is measurable;

(3) if Sy, S9,... are measurable then S; U Sy U - - - is measurable;
(4) if S is measurable then Pr[b € S] > 0;

(5) if S is measurable then Pr[b € S] + Pr[b € S] = 1;

(6)

PI‘[b eESTUSU--] = PI‘[b € Sl] + PI‘[b < 82] + o if 51,52, ... are disjoint
measurable sets;
(7) if uy, ..., ux are bits then {b: (b1,...,bx) = (u1,...,ux)} is measurable and

Prl(br, ... bk) = (ur, .., up)] = 1/25;
(8) nothing is measurable except as guaranteed above.

“Random” versus “independent random”

Random variables u, v, w are independent if the distribution of (u, v, w) is the
product of the distribution of u, the distribution of v, and the distribution of w:
ie., Pr[(u,v,w) € Ax BxC] = Pr[u € A]Pr[v € B]Pr[w € C] for all measurable
sets A, B, C. This terminology is standard in probability theory and is used in
this paper.

For example, if k is a uniform random 16-byte string, then k[0], k[1], and
k[2] are independent uniform random bytes; k[0], k[1], and k[0] & k[1] are non-
independent uniform random bytes; k[0] and k[0] @ k[1] are independent uniform
random bytes; (k[0],0) and (k[1],0) are independent non-uniform random 2-byte
strings.

Suppose Theorem X says “Let u and v be independent random bytes. Then
u and v satisfy” T can apply Theorem X to the independent random bytes
k[1], k[2]. I can apply it to the independent random bytes k[0], k[0] @ k[1]. I simply
have to say “k[0] and k[0] @ k[1] are independent; therefore, by Theorem X, k0]
and k[0] @ k[1] satisfy”

Some cryptographic papers omit the word “independent” in many situations.
For example, Theorem X would say “Let u and v be random bytes. Then u and
v satisfy ...” implicitly also requiring that u and v be independent. The scope
of this implicit independence is unclear to me: for example, if the proof begins
“Note that if r is a random byte then ...,” then is r implicitly required to be
independent of v and v? The obvious way to avoid confusion is to make all
independence assumptions explicit.

Distributions versus random variables

What is a random variable?

A random element v of X is, intuitively, a function to X from the set of
possible universes. The value that v takes in a possible universe u is exactly the
function value v(u). For example, a coin flip is a function that assigns 0 to some
possible universes and 1 to other possible universes.

To formalize this, we fix a probability space Pr—intuitively, the set of possible
universes, although this intuition does not constrain the definition. A random
element of X, where X is a measurable space, is a measurable function from
Pr to X. This terminology is standard in probability theory and is used in this
paper.

(Notes for undergraduates: A measurable space is a set together with a
designated collection of measurable subsets satisfying rules 1, 2, 3 above. A
probability space is a set together with a designated collection of measurable
subsets S and probabilities Pr[S] satisfying rules 1, 2, 3, 4, 5, 6 above. A function
v is measurable if {u € Pr: v(u) € S} is measurable for every measurable set
S.)

Random variables can be combined to produce new random variables. For
example, if v is a random element of X and w is a random element of Y then
(v, w), the function that takes u to (v(u),w(u)), is a random element of X x Y.
Similarly, if ¢ is a measurable function from X to Y, then ¢(v), the function
that takes u to ¢(v(u)), is a random element of Y.

Consider, for example, the measurable function s — s[0] that extracts the
first byte of a 16-byte string. This function induces a function k — k[0] that
extracts a random byte from a random 16-byte string: the composition of k (a
function from Pr to 16-byte strings) with [0] (a function from 16-byte strings to
bytes) is k[0] (a function from Pr to bytes).

Some cryptographers forbid all use of random variables. For example, one
is forbidden from considering a random function f and defining the maximum
2-interpolation probability of f as the maximum, over all x1, x5 and all distinct
n1,ne, of Pr[(f(n1), f(n2)) = (z1,x2)]. One is forced to use distributions instead:
consider a distribution F' on the set of functions, and define the maximum 2-
interpolation probability of F' as the maximum, over all x1,z5 and all distinct
n1,ne, of the fraction of functions f in F' such that (f(n1), f(n2)) = (1, z2).

The most glaring deficiency in this approach is its inability to discuss the
dependence of separate random variables. The independence of p and ¢ is not
determined by the distribution of p and the distribution of ¢; in any situation
where p and ¢ might be dependent, these papers are forced to start from the
distribution of the pair (p,). How, then, does one feed p by itself to a lower-level
theorem? One has to average the joint distribution to obtain the distribution of
p, then apply the lower-level theorem, then undo the averaging; or generalize the
lower-level theorem to allow a joint distribution as input—effectively reinventing
the concept of random variables but with a much less pleasant notation.

Interpolation probabilities, collision probabilities, differential
probabilities

The following concepts are much more specialized than the fundamental concepts
of probability theory discussed earlier in this appendix. They are nevertheless
sufficiently common that the community would benefit from settling on good
terminology for them.

Let f be a random function from a set X to a finite set Y. Consider the
probability that f interpolates the points (x1,v1), (z2,%2),. .., (Tk, yx), where
x1,%2,...,T) are distinct: i.e., that (f(z1), f(z2),..., f(zk)) = (Y1, Y2, -, Yk)-
This is what I call an interpolation probability, and more specifically a k-
interpolation probability.

Now consider the sum of 2-interpolation probabilities along the diagonal:
fix distinct x1,29 € X, and consider the probability that f(z1) = f(x2). This
is what I call a collision probability. More generally, assume that Y is a
commutative group, fix g € Y, and consider the probability that f(z1)— f(z2) =
g. This is what I call a differential probability.

In the context of message authentication, it is useful to have upper bounds
on interpolation probabilities and upper bounds on differential probabilities, as
illustrated by this paper. Other authenticators can use upper bounds on collision
probabilities. It is also useful to have lower bounds on interpolation probabilities,
as illustrated by [6].

Many papers write “h is e-almost-universal” (sometimes replacing h by its
distribution) to mean that all collision probabilities of h are below e. There are
several flaws in this “e-almost-universal” terminology:

e The phrase “almost universal” is highly non-descriptive. Readers who have
not seen the definition cannot even begin to guess what it refers to. Readers
who have seen the definition need to expend unnecessary mental energy to
remember it.

e The phrase “almost universal” provides no way to refer to individual collision
probabilities, lower bounds for collision probabilities, etc. The same papers
often end up talking about “collision probabilities” anyway.

e The phrase “almost universal” begs the question of what “almost” refers
to. The answer is that “h is universal” is reserved for the special case ¢ =
1/#Y, which is close to (although not exactly) the minimum achievable.
This terminology misleads readers into believing that the special case is
important; in fact, the general case is far more important.

Some papers on Wegman-Carter authenticators use the phrase “h is e-almost-
xor-universal” to mean that all differential probabilities of h are below e, in the
special case of the group operation being @. Similar criticisms apply to this
phrase. A few papers refer to the general case using the phrase “h is e-almost-
A-universal,” which is a poor choice of terminology for yet another reason: the
letter A is part of the terminology, not a modifiable variable name.

