
DoD Data & Analysis Center for Software

Information Assurance Technology Analysis Center (IATAC)
Data and Analysis Center for Software (DACS)

Joint endeavor by IATAC with DACS

Software Security
Assurance
State-of-the-Art Report (SOAR)
July 31, 2007

IATAC Authors:
Karen Mercedes Goertzel
Theodore Winograd
Holly Lynne McKinley
Lyndon Oh
Michael Colon

DACS Authors:
Thomas McGibbon
Elaine Fedchak
Robert Vienneau

Coordinating Editor:
Karen Mercedes Goertzel

Copy Editors:
Margo Goldman
Linda Billard
Carolyn Quinn

Creative Directors:
Christina P. McNemar
K. Ahnie Jenkins

Art Director, Cover, and Book Design:
Don Rowe

Production:
Brad Whitford

Illustrations:
Dustin Hurt
Brad Whitford

Software Security Assurance State-of-the-Art Report (SOAR) i

Karen Mercedes Goertzel
Information Assurance Technology Analysis Center (IATAC)
Karen Mercedes Goertzel is a subject matter expert in software security
assurance and information assurance, particularly multilevel secure systems and
cross-domain information sharing. She supports the Department of Homeland
Security Software Assurance Program and the National Security Agency’s Center
for Assured Software, and was lead technologist for 3 years on the Defense
Information Systems Agency (DISA) Application Security Program. Ms. Goertzel
is currently lead author of a report on the state-of-the-art in software security
assurance, and has also led in the creation of state-of-the-art reports for the
Department of Defense (DoD) on information assurance and computer network
defense technologies and research. She was also involved in requirements
elicitation and architectural design of several high-assurance trusted guard and
trusted server applications for the defense departments of the United States,
Canada, and Australia; for the North Atlantic Treaty Organization; and for the US
Departments of State and Energy; the Internal Revenue Service; and the Federal
Bureau of Investigation. Ms. Goertzel holds a Certified Information Systems
Security Professional (CISSP) and a BA from Duke University.

About the Authors

Software Security Assurance State-of-the-Art Report (SOAR)ii

About the Authors

Theodore Winograd (IATAC)
Theodore Winograd supports the Department of Homeland Security’s Software
Assurance Program, serving as a contributing author to Security in the Software
Lifecycle. He also supports the National Institute of Standards and Technology’s
Computer Security Resource Center, for which he has been the lead author of
several Special Publications (SP), including SP 800-95, the Guide to Secure Web
Services. He has provided support to the DISA Application Security Program,
where he was a primary author of the Java 2 Enterprise Edition Security
Checklist and the Developer’s Guide to Secure Web Services. Mr. Winograd
holds a Global Information Assurance Certification (GIAC) Security Essentials
Certification (GSEC). He holds a BS in Computer Engineering from the Virginia
Polytechnic Institute and State University (Virginia Tech).

Holly Lynne McKinley (IATAC)
Holly Lynne McKinley is certified as a Systems Security Certified Practitioner
(SSCP) and has earned the GSEC. Concentrating on software assurance,
her client projects have ranged from technical research and guidance
development to web and database programming. Ms. McKinley is a member
of the Computer Security Institute and has attended conferences and
presented seminars on software security, including the Institute for Applied
Network Security Mid-Atlantic Forum and the Annual Computer Security
Applications Conference. She holds an MS in Information Technology
Systems with an Information Security concentration from Johns Hopkins
University and a BS in Business Information Technology with an E-Business
concentration from Virginia Tech.

Lyndon J. Oh (IATAC)
Lyndon J. Oh covers a broad range of intelligence analysis issues, including
counterterrorism. He has previously worked on site in the information
operations center of a US Government intelligence agency, where he focused
on vulnerabilities in global telecommunications networks. He has previously
served as an intern with the US Department of State’s Office of Burma,
Cambodia, Laos, Thailand, and Vietnam Affairs. He holds an MSc (with merit)
in International Relations from the London School of Economics and a BA from
Wesleyan University in Middletown, CT.

Michael Colon (IATAC)
Michael Colon has over 16 years of experience providing software engineering
solutions to the commercial, aerospace, and defense industries. Mr. Colon
specializes in secure systems engineering and has broad knowledge of and
experience in object-oriented development, service-oriented architecture,
and intelligent agent-based computing. He managed software engineering
projects for the Assistant Secretary of Defense for Networks and Information

Software Security Assurance State-of-the-Art Report (SOAR) iii

About the Authors

Integration (ASD NII), US Army Information and Intelligence Warfare
Directorate (I2WD), US Army Communication-Electronics Command
(CECOM), DISA, National Security Agency (NSA), Farberware, and Hoffritz.
Mr. Colon holds a BS in Computer Science and is a member of the
Upsilon Phi Epsilon Computer Science Honor Society.

Thomas McGibbon
Data and Analysis Center for Software (DACS)
Thomas McGibbon has served as the Director of DACS since 1994. He has over
30 years of experience in software development, systems development, and
software project management. He is author of several DACS state-of-the-art
reports on software engineering topics. He holds an MS in Software Engineering
from Southern Methodist University and a BS in Mathematics from Clarkson
University. He is a Certified Software Development Professional (CSDP).

Elaine Fedchak (DACS)
Elaine Fedchak has most recently worked with the Cyber Operations Group,
supporting research in developing tools and systems for network and enterprise
defense. Her association with DACS began in 1983. She has been involved in
numerous aspects of software engineering evolution and research, from
DoD-STD-2167 and the first concepts of software engineering environments,
to Ada, to leveraging web technologies in support of DACS functions. She has
written several state-of-the-art reports and other technical papers. Ms. Fedchak
currently holds a CISSP.

Robert Vienneau (DACS)
Robert Vienneau has assisted in developing a system for measuring the
performance of Net-Centric Enterprise Services (NCES) in a tactical environment;
an identification and authentication architecture for the Information Management
Core Services (IMCS) project; a processor for space-based radar; a real-time,
high-resolution synthetic aperture radar image formation system; an automated
intrusion detection environment; and systems supporting research in multichannel
signal processing simulation and detection. Mr. Vienneau has supported the
DACS for more than two decades, including in analyses of software metrics data,
in designing web page interfaces to DACS databases, in designing and conducting
experiments, and in writing and editing state-of-the-art reports. He holds an
MS in software development and management from the Rochester Institute of
Technology and a BS in mathematics from Rensselaer Polytechnic Institute. Mr.
Vienneau is a member of the Institute of Electrical and Electronic Engineers (IEEE).

Software Security Assurance State-of-the-Art Report (SOAR)iv

Software Security Assurance State-of-the-Art Report (SOAR) v

The Information Assurance Technology Analysis Center (IATAC) provides the
Department of Defense (DoD) with emerging scientific and technical information
to support defensive information operations. IATAC’s mission is to provide
DoD with a central point of access for information on emerging technologies
in information assurance (IA). Areas of study include system vulnerabilities,
research and development, models, and analysis to support the effective defense
against information warfare (IW) attacks. IATAC focuses on all defensive activities
related to the use of information, information-based processes, and information
systems (IS). One of 20 Information Analysis Centers (IACs) sponsored by DoD,
IATAC is managed by the Defense Technical Information Center (DTIC).

IATAC’s basic services provide the infrastructure to support defensive
information operations. These services include collecting, analyzing,
and disseminating IA scientific and technical information; supporting
user inquiries; database operations; current awareness activities (e.g., the
IAnewsletter); and developing critical review and technology assessment and
state-of-the-art reports (SOAR).

About IATAC

Software Security Assurance State-of-the-Art Report (SOAR)vi

About IATAC

SOARs provide in-depth analyses of current technologies, evaluate and
synthesize the latest information resulting from research and development
activities, and provide a comprehensive assessment of IA technologies. Topic
areas for SOARs are solicited from the IA community to ensure applicability to
emerging warfighter needs.

Inquiries about IATAC capabilities, products, and services may be addressed to:
Gene Tyler, Director
13200 Woodland Park Road, Suite 6031
Herndon, VA 20171
Phone: 703/984-0775
Fax: 703/984-0773
Email: iatac@dtic.mil
URL: http://iac.dtic.mil/iatac
SIPRNET: https://iatac.dtic.smil.mil

http://iac.dtic.mil/iatac
https://iatac.dtic.smil.mil

Software Security Assurance State-of-the-Art Report (SOAR) vii

Software Security Assurance State-of-the-Art Report (SOAR)viii

Software Security Assurance State-of-the-Art Report (SOAR)xvi

Software Security Assurance State-of-the-Art Report (SOAR) xvii

Executive Summary

Secure software is software that is able to resist most attacks, tolerate the
majority of attacks it cannot resist, and recover quickly with a minimum of
damage from the very few attacks it cannot tolerate.

There are three main objectives of attacks on software: they either try to
sabotage the software by causing it to fail or otherwise become unavailable, to
subvert the software by changing how it operates (by modifying it or by executing
malicious logic embedded in it), or to learn more about the software’s operation
and environment so that the software can be targeted more effectively.

The subversion and sabotage of software always results in the violation
of the software’s security, as well as some if not all of the software’s other
required properties. These include such properties as correctness, predictable
operation, usability, interoperability, performance, dependability, and safety.

Software assurance has as its goal the ability to provide to software
acquirers and users the justifiable confidence that software will consistently
exhibit its required properties. Among these properties, security is what
enables the software to exhibit those properties even when the software
comes under attack.

The problem with most software today is that it contains numerous
flaws and errors that are often located and exploited by attackers to
compromise the software’s security and other required properties. Such

Software Security Assurance State-of-the-Art Report (SOAR)xviii

Executive Summary

exploitable flaws and errors, because they make the software vulnerable to
attack, are referred to as vulnerabilities.

According to The National Strategy to Secure Cyberspace:

A...critical area of national exposure is the many flaws that exist
in critical infrastructure due to software vulnerabilities. New
vulnerabilities emerge daily as use of software reveals flaws that
malicious actors can exploit. Currently, approximately 3,500
vulnerabilities are reported annually. Corrections are usually
completed by the manufacturer in the form of a patch and made
available for distribution to fix the flaws.

Many known flaws, for which solutions are available, remain
uncorrected for long periods of time. For example, the top ten known
vulnerabilities account for the majority of reported incidents of
cyber attacks. This happens for multiple reasons. Many system
administrators may lack adequate training or may not have time
to examine every new patch to determine whether it applies to
their system. The software to be patched may affect a complex set of
interconnected systems that take a long time to test before a patch
can be installed with confidence. If the systems are critical, it could be
difficult to shut them down to install the patch.

Unpatched software in critical infrastructures makes those
infrastructures vulnerable to penetration and exploitation. Software
flaws are exploited to propagate “worms” that can result in denial of
service, disruption, or other serious damage. Such flaws can be used
to gain access to and control over physical infrastructure. Improving
the speed, coverage, and effectiveness of remediation of these
vulnerabilities is important for both the public and private sector.

To achieve its main goal, the discipline of software assurance must
provide various means by which the number and exposure of vulnerabilities
in software are reduced to such a degree that justifiable confidence in the
software’s security and other required properties can be attained. These means
range from to defining new criteria and procedures for how the software is
acquired, to changing the processes, methods, and tools used to specify, build,
assess, and test the software, to adding anti-attack preventive and reactive
countermeasures to the environment in which software is deployed.

This state-of-the-art report (SOAR) identifies the current “state-of-the-art”
in software security assurance. It provides an overview of the current state of
the environment in which defense and national security software must operate;
then provides a survey of current and emerging activities and organizations
involved in promoting various aspects of software security assurance; and

Software Security Assurance State-of-the-Art Report (SOAR) xix

Executive Summary

describes the variety of techniques and technologies in use in government,
industry, and academia for specifying, acquiring, producing, assessing, and
deploying software that can, with a justifiable degree of confidence, be said
to be secure. Finally, the SOAR presents some observations about noteworthy
trends in software security assurance as a discipline.

Introduction
1

Software Security Assurance State-of-the-Art Report (SOAR) 1

Section 1 Introduction

The objective of software assurance is to establish a basis for
gaining justifiable confidence (trust, if you will) that software

will consistently demonstrate one or more desirable properties.
These include such properties as quality, reliability, correctness,
dependability, usability, interoperability, safety, fault tolerance,
and—of most interest for purposes of this document—security.
The assurance of security as a property of software is known as
software security assurance (or simply software assurance).

Ideally, secure software will not contain faults or weaknesses that
can be exploited either by human attackers or by malicious code.
However, all software—even secure software—relies on people,
processes, and technologies, all of which can result in vulnerabilities.
As a practical matter, to be considered secure, software should be able
to resist most attacks and tolerate the majority of those attacks it
cannot resist. If neither resistance nor tolerance is possible and the
software is compromised, it should be able to isolate itself from the
attack source and degrade gracefully, with the damage from the attack
contained and minimized to the greatest possible extent. After the
compromise, the software should recover as quickly as possible to an
acceptable level of operational capability.

The focus of this document is the assurance of security as a
consistently demonstrated property in software. This state-of-the-art
report (SOAR) describes current and emerging activities, approaches,
technologies, and entities that are in some way directly contributing to
the discipline of software security, i.e., the art and science of
producing secure software.

Software Security Assurance State-of-the-Art Report (SOAR)2

Section 1 Introduction

Secure software is software that is in and of itself robust against attack.
This means that software will remain dependable even when that dependability
is threatened. Secure software cannot be subverted or sabotaged. In practical
terms, this software lacks faults or weaknesses that can be exploited either by
human attackers or by malicious code.

Compared with other software properties, security is still not well
understood: at no point in the software development life cycle (SDLC) are
developers or users able to determine with 100 percent certainty that the
software is secure nor, to the extent that it is considered secure, what makes
it so. Software security is a dynamic property—software that is secure in a
particular environment within a particular threat landscape may no longer be
secure if that environment or threat landscape changes or if the software itself
changes. In terms of “testability,” security is also difficult to gauge. Software
testers can run 10,000 hours of testing and ultimately be very confident that
the software that passes those tests will operate reliably. The same cannot be
said for the software’s security. Security testing techniques for software are still
immature and collectively represent an incomplete patchwork of coverage of all
security issues that need to be tested for.

The state-of-the-art in software security assurance then is much less
mature than the state-of-the-art for corollary disciplines of software quality
assurance and software safety assurance. This said, the software security
discipline has been evolving extremely quickly in the past 10 years—the
number of initiatives, standards, resources, methodologies, tools, and
techniques available to software practitioners to help them recognize,
understand, and begin to mitigate the security issues in their software has
increased exponentially.

This state-of-the-art report (SOAR) provides a snapshot of the current status
of the software security assurance discipline, not so much to compare it against
10 years past, but to highlight what software practitioners can do to improve
software security. It could be very interesting to take a similar snapshot 10 years
from now, when software security assurance as a discipline reaches the level of
maturity that software quality and safety assurance are at today.

1.1 Background
In 1991, the US National Academies of Science Computer Science and
Telecommunications Board published its widely quoted Computers at Risk. [1]
This book included an entire chapter that described a programming
methodology for secure systems. In that chapter, the authors asked the
question, “What makes secure software different?” The authors then proceeded
to answer that question by offering a set of findings that mirror many of the
secure software design, coding, and testing principles and practices repeated
a decade or more later in the proliferation of books, articles, and courses on
secure software development.

Software Security Assurance State-of-the-Art Report (SOAR) 3

Section 1 Introduction

In August 1999, the US Congress General Accounting Office (GAO, now
the Government Accountability Office) published a report to the Secretary
of Defense entitled DoD Information Security: Serious Weaknesses Continue
to Place Defense Operations at Risk. [2] In the area of “Application Software
Development and Change Controls,” GAO reported that—

Structured methodologies for designing, developing, and maintaining
applications were inadequate or nonexistent. There was no
requirement for users to document the planning and review of
application changes and to test them to ensure that the system
functioned as intended. Also, application programs were not
adequately documented with a full description of the purpose and
function of each module, which increases the risk that a developer
making program changes will unknowingly subvert new or existing
application controls…. We found that application programmers,
users, and computer operators had direct access to production
resources, increasing the risk that unauthorized changes to production
programs and data could be made and not detected.

Additional report findings included—
u Segregation of duties was not enforced—the same individuals were

functioning both as programmers and security administrators.
u Security exposures were created by inadequate system software

maintenance procedures, such as allowing uncontrolled insertions of
code (including malicious code) into privileged system libraries, and
not applying security updates and patches.

The report recommended that the US Department of Defense (DoD)
accelerate the implementation of its Department-wide information security
program. Specific recommendations to mitigate the above problems included—

u Require sensitive data files and critical production programs to
be identified and successful and unsuccessful access to them to
be monitored.

u Strengthen security software standards in critical areas, such as by
preventing the reuse of passwords and ensuring that security software
is implemented and maintained in accordance with the standards.

u Determine who is given access to computer systems applications.
u Ensure that locally designed software application program changes are

in accordance with prescribed policies and procedures.

Software Security Assurance State-of-the-Art Report (SOAR)4

Section 1 Introduction

Consistent with the nature of these findings, DoD’s interest in
software security assurance can be said to have emerged from two related
but distinct concerns—

u The DoD information assurance (IA) community’s concerns about the
integrity and availability of the software used in its mission-critical,
high assurance, and trusted computing systems

u The DoD application development community’s increasing concern
about the dependability of DoD applications that, for the first time in
DoD history, were being exposed to the constantly proliferating threats
present on the Internet [either directly or indirectly via “backend”
connections between the Internet and the Non-Sensitive Internet
Protocol Routed Network (NIPRNet)].

In September 1999, the INFOSEC (information security) Research Council
(IRC) [3] published its first INFOSEC Research Hard Problems List, [4] which
included four hard problems related to software and application security—

u Security of Foreign and Mobile Code: Provide users of IT systems with the
ability to execute software of unknown or hostile origin without putting
sensitive information and resources at risk of disclosure, modification,
or destruction.

u Application Security: Provide tools and techniques that will support the
economical development of IT applications that enforce their own
security policies with high assurance.

u Secure System Composition: Develop techniques for building highly
secure systems in the case where few components or no components at
all are designed to achieve a high level of security.

u High Assurance Development: Develop and apply techniques for building IT
components whose security properties are known with high confidence.

In December of that year, the Defense Science Board (DSB) Task Force
on Globalization and Security released its Final Report, [5] which included
among its findings—

u Software is the commercial sector upon which DoD is currently most
dependent. Commercial software is pervasive, whether embedded
within integrated weapons systems, as components or subsystems, or
purchased directly by the Department as full-up information
systems…. Many of DoD’s most critical future systems are based at
least partly on commercial software.

u The report described in detail the security risks posed by this reliance on
commercial software, and provided recommendations for mitigating
that risk. Among its six key recommendations, the report stated—

The Department must act aggressively to ensure the integrity of critical
software-intensive systems.

Software Security Assurance State-of-the-Art Report (SOAR) 5

Section 1 Introduction

To this end, the report made several recommendations, including—
u The Secretary of Defense should affirm the Assistant Secretary of

Defense (ASD) [Command, Control, Communications and Intelligence
(C3I)] as responsible for ensuring the pre-operational integrity of
essential software systems. In turn, the ASD(C3I) should develop and
promulgate an Essential System Software Assurance Program (which
the report goes on to describe in detail).

u DoD should enhance security and counter-intelligence programs to
deal with the new challenges presented by relying on commercially
purchased systems and subsystems of foreign manufacture.

DoD’s Software Assurance Initiative (see Section 6.1.1) was formed, at
least in part, in response to these recommendations. Prior to that, in December
2001, DoD established the Software Protection Initiative (SPI) to prevent
reconnaissance, misuse, and abuse of deployed national security application
software by America’s adversaries.

The Open Web Application Security Project (OWASP) published its Top
Ten Most Critical Web Application Security Vulnerabilities (see Section 3.1.3)
at about the same time that the Defense Information Systems Agency (DISA)
established the Application Security Project within the Applications Division of
its Center for Information Assurance Engineering (CIAE) (see Section 6.1.7). The
Application Security Project used the OWASP Top Ten as a baseline for defining
the set of application security issues the project needed to address.

In February 2003, the White House published The National Strategy to
Secure Cyberspace. The second of its five priorities called for establishing a
national-scale threat and vulnerability reduction program that would attempt,
in part, to “reduce and remediate software vulnerabilities.” The Strategy
specified among its list of actions and recommendations (A/R)—

DHS (the Department of Homeland Security) will facilitate a national
public-private effort to promulgate best practices and methodologies
that promote integrity, security, and reliability in software code
development, including processes and procedures that diminish the
possibilities of erroneous code, malicious code, or trap doors that could
be introduced during development.

In response to this directive, the DHS Software Assurance Program (see
Section 6.1.9) was established. From its inception, the DHS Program has closely
coordinated its efforts with the DoD Software Assurance Initiative, with DHS taking
the broad view prescribed by the National Strategy. DoD focused on those aspects
of the software security assurance problem that SPI personnel did not feel were
being adequately addressed by the DHS efforts, and also refined the products of
DHS-sponsored activities so that they would directly address DoD-specific issues.

Software Security Assurance State-of-the-Art Report (SOAR)6

Section 1 Introduction

In 2005, the President’s Information Technology Advisory Committee
(PITAC) published its report Cyber Security: A Crisis of Prioritization. In this
report, PITAC observed that software is a major source of vulnerabilities in US
networks and computing systems—

Network connectivity provides “door-to-door” transportation for
attackers, but vulnerabilities in the software residing in computers
substantially compound the cyber security problem…. Today, as with
cancer, vulnerable software can be invaded and modified to cause
damage to previously healthy software, and infected software can
replicate itself and be carried across networks to cause damage in other
systems. Like cancer, these damaging processes may be invisible to the
lay person even though experts recognize that their threat is growing.
And as in cancer, both preventive actions and research are critical,
the former to minimize damage today and the latter to establish a
foundation of knowledge and capabilities that will assist the cyber
security professionals of tomorrow reduce risk and minimize damage
for the long term. Vulnerabilities in software that are introduced by
mistake or poor practices are a serious problem today. In the future, the
Nation may face an even more challenging problem as adversaries—
both foreign and domestic—become increasingly sophisticated in their
ability to insert malicious code into critical software.

This statement by the PITAC was adopted as a driving business case by both
DoD’s and DHS’ Software Assurance initiatives to justify expansion of those efforts.

In November 2005, the INFOSEC Research Council (IRC) published its
second Hard Problems List. [6] In Appendix C of this list, the IRC reported its
reflections on its Hard Problems List of 1999. With regard to each of the four
“hard problems” it had identified in 1999, the 2005 report made observations
about the progress of research since 1999 as well as noted key areas in which
further research was needed—

1. Security of Foreign and Mobile Code:
 The need for difficult research remains.

which deserve further emphasis.

can protect themselves against untrustworthy applications.
2. Application Security

tolerant applications that can function in the presence of flawed
components, and which rely less than traditional applications do on
the protection of an underlying Trusted Computing Base (TCB).

Software Security Assurance State-of-the-Art Report (SOAR) 7

Section 1 Introduction

Research is still needed to make these techniques work in
distributed, asynchronous, time-critical environments.

compels emphasis on achieving a truly trustworthy TCB that can be
used in the creation of scalable secure systems.

3. Secure System Composition

e.g., just adding firewalls
and intrusion detection systems; increasing the length of static
passwords) has finally been acknowledged.

Systems” focuses on finding new approaches to building predictably
secure systems. These approaches include use of formal methods
and other promising techniques for composing secure systems from
trustworthy components.

4. High-Assurance Development

Automated Secure Software Engineering Environment (CASSEE)
to address the need for scalable tools for high-assurance systems
development.

The IRC’s observations are being proven accurate in some cases and
inaccurate in others through the work of numerous software and security
experts involved with the software security assurance initiatives described
in Section 6.1, and by the extensive research, in academia, industry, and
government, in the United States and abroad (see Sections 6.2 and 6.3).

Section 6.1 expands on the above description of DoD and civilian
government software assurance activities.

1.2 Purpose
In the 6 years since the 1999 GAO report, the field of software security assurance
(and its associated disciplines) has changed radically. Once a niche specialty of
software reliability and information assurance practitioners, software security is
now one of the most widely recognized, actively pursued challenges in both the
software engineering and information assurance communities.

This SOAR identifies and describes the current state-of-the-art in software
security assurance. This SOAR is not intended to be prescriptive; instead it provides
a discussion of software security assurance trends in the following areas—

u Techniques that are now being used or are being published (e.g., as
standards) to produce—or increase the likelihood of producing—
secure software. Examples: process models, life cycle models,
methodologies, best practices.

Software Security Assurance State-of-the-Art Report (SOAR)8

Section 1 Introduction

u Technologies that exist or are emerging to address some part of the
software security challenge, such as virtualized execution
environments, “safe” and secure versions of programming languages
and libraries, and tools for assessment and testing of software’s security.

u Current activities and organizations in government, industry, and
academia, in the United States and abroad, that are devoted to
systematic improvement of the security of software.

u Research sector trends—both academic and non-academic, US and
non-US—that are intended to further the current activities and state-of-
the-art for software security.

Readers of this SOAR should gain the following—
u A better understanding of the issues involved in software security and

security-focused software assurance to the extent that they can start to
evaluate their own software, processes, tools, etc., with regard to how
secure, security enhancing, and security assuring they may or may not be.

u Enough information on security-enhancing software development
techniques, tools, and resources to enable them to start recognizing
gaps in their own knowledge, processes and practices, and tools. Also,
the reader should be enabled to determine which of the existing or
emerging security-enhancing techniques, tools, and resources might
assist them in making needed improvements to their own software
knowledge, processes/practices, and tools.

u Enough information to form the basis for developing criteria for
determining whether a given technique, tool, etc., is consistent with the
their organization’s current knowledge level, processes, and practices, i.e.,
to determine which techniques, tools, etc., are worth further investigation.

u Information on how to participate in existing software security
activities or to establish new ones.

u The basis for developing a roadmap of incremental improvements to the
processes, tools, and philosophy by which her organization develops
software. This includes a basis for planning a training/education strategy
for the organization’s software and security practitioners.

1.3 Intended Audience
The intended primary and secondary audiences for this document can be best
described in terms of the readers’ professional roles.

1.3.1 Primary Audience
The primary audience for this document includes—

u Software practitioners involved in the conception, implementation, and
assessment of software, especially software used in DoD and other US

Software Security Assurance State-of-the-Art Report (SOAR) 9

Section 1 Introduction

Federal Government agencies, or in the improvement of processes by
which such software is conceived, implemented, and assessed.

u Researchers in academia, industry, and government who are
investigating methods, processes, techniques, or technologies for
producing software that is secure, or for assuring the security of
software during and/or after its creation.

1.3.2 Secondary Audiences
Readers in the following roles are the intended secondary audiences for
this document—

u Systems Engineers and Integrators: This document should expand the
knowledge of these readers, enabling them to broaden and deepen
their systems- or architectural-level view of software-intensive systems
to include both the recognition and understanding of the security
properties, threats, and vulnerabilities to which the individual software
components that compose their systems are subject, as well as the
impact of those properties, threats, and vulnerabilities on the security
of the system as a whole.

u Information Assurance Practitioners: These include developers of policy
and guidance, risk managers, certifiers and accreditors, auditors, and
evaluators. The main objective for such readers is to expand their
understanding of information security risks to include a recognition
and understanding of the threats and vulnerabilities that are unique to
the software components of an information system. Specifically, this
audience should be able to understand how vulnerable software can be
subverted or sabotaged in order to compromise the confidentiality,
integrity, or availability of the information processed by the system.

u Cyber Security and Network Security Practitioners: The objective of these
readers is to recognize and understand how network operations can be
compromised by threats at the application layer—threats not
addressed by countermeasures at the network and transport layers. Of
particular interest to such readers will be an understanding of
application security, a discipline within software security assurance,
and also the benefit that software assurance activities, techniques, and
tools offer in terms of mitigating the malicious code risk.

u Acquisition Personnel: The objectives for readers in the system and
software acquisition community are trifold: to obtain a basis for defining
security evaluation criteria in solicitations for commercial software
applications, components, and systems, and contracted software
development services; to identify security evaluation techniques that
should be applied to candidate software products and services before
acquiring them; to understand the specific security concerns associated

Software Security Assurance State-of-the-Art Report (SOAR)10

Section 1 Introduction

with offshore development of commercial and open source software,
and with outsourcing of development services to non-US firms.

u Managers and Executives in Software Development Organizations and
Software User Organizations: This document should help them recognize
and understand the software security issues that they will need to
address, and subsequently develop and implement effective plans and
allocate adequate resources for dealing with those issues.

1.4 Scope
This SOAR focuses on the numerous techniques, tools, programs, initiatives,
etc., that have been demonstrated to successfully—

u Produce secure software, or
u Assure that secure software has been produced (whether by a

commercial or open source supplier or a custom-developer).

Also covered are techniques, tools, etc., that have been proposed by a
respected individual or organization (e.g., a standards body) as being likely to
be successful, if adopted, in achieving either of the two objectives above.

Techniques and tools for implementing information security functions
(such as authentication, authorization, access control, encryption/
decryption, etc.) in software-intensive systems will not be discussed, except
to the extent that such techniques and tools can be applied, either “as is” or
with adaptations or extensions, to secure the software itself rather than the
information it process. For example, a tool for digitally signing electronic
documents would be considered out of scope unless that tool could also be
used for code signing of binary executables before their distribution. Out of
scope entirely is how to assure information security functions in software-
based systems at certain Common Criteria (CC) Evaluation Assurance Levels
(EAL). Techniques, tools, etc., that focus on improving software quality,
reliability, or safety are considered in scope only when they are used with the
express purpose of improving software security.

To keep this document focused and as concise as possible, we have
excluded discussions of techniques that are expressly intended and only used to
achieve or assure another property in software (e.g., quality, safety) regardless of
the fact that sometimes, as a purely coincidental result, use of such techniques
also benefits the software’s security.

In short, this document discusses only those methodologies, techniques,
and tools that have been conceived for or adapted/reapplied for improving
software security. Each SOAR discussion of an adapted/reapplied method,
technique, or tool will include—

u A brief overview of the tool/technique as originally conceived, in terms
of its nature and original purpose. This overview is intended to provide
context so that the reader has a basis for understanding the difference

Software Security Assurance State-of-the-Art Report (SOAR) 11

Section 1 Introduction

between the technique/tool as originally conceived and its software
security-oriented adaptation.

u A longer description of how the tool/technique has been adapted and can
now help the developer achieve one or more software security objectives.
This description represents the main focus and content of the discussion.

This SOAR also reports on numerous initiatives, activities, and projects
in the public and private sectors who focus on some aspects of software
security assurance.

The software addressed in this SOAR is of all types, system-level and
application-level, information system and noninformation system, individual
components and whole software-intensive systems, embedded and nonembedded.

1.5 Assumptions and Constraints
The state-of-the-art reported in this SOAR reflects the timeframe in which the
source information was collected: 2002–2007. The SOAR specifically reports
on activities, practices, technologies, tools, and initiatives whose intended
benefactors are the developers of software (including requirements analysts,
architects, designers, programmers, and testers). The SOAR does not address
acquisition issues except to the extent that developers are involved in guiding
acquisition decisions. Also excluded is discussion of the physical environment
in which software is created or operated. The SOAR also does not address
operational and personnel security considerations and nontechnical risk
management considerations except to the extent that the developer is involved
in software maintenance and patch generation. The impact of budget and
balancing priorities for software on its ability to achieve adequate assurance is
mentioned but not considered in depth.

Finally, the SOAR does not address how the business purpose or mission
for which a software-intensive system has been developed may influence
the nature of its threats or its likelihood to be targeted. Regardless of whether
the mission is of high consequence—and, thus, high confidence or high
assurance—or more routine in nature, the practices, tools, and knowledge
required of its developers are presumed to be essentially the same. To the extent
that these factors necessarily differ, the SOAR may acknowledge that difference
but does not discuss the unique considerations of any particular type of
software application or system in any depth.

1.6 Context
This SOAR is the first known effort to provide a truly comprehensive snapshot of
the activities of the software security assurance community, the security-enhanced
software life cycle processes and methodologies they have described, the secure
development practices they espouse, the standards they are striving to define and
adopt, the technologies and tools that have emerged to support developers in the

Software Security Assurance State-of-the-Art Report (SOAR)12

Section 1 Introduction

production of secure software, and the research activities underway to continue
improving the state-of-the-art for software security and its assurance.

Earlier efforts to capture and describe the state-of-the-art in software
security assurance have been much more limited in scope than this SOAR,
focusing on only a small subset of available methods, practices, or tools. These
efforts have resulted in the following presentations and papers—

u Robert A. Martin, MITRE Corporation, Software Assurance Programs
Overview (presentation to the Software Assurance Information Session
of the Object Management Group’s [OMG’s] Technical Meeting,
Washington, DC, December 7, 2006).

u Mohammad Zulkernine (Queen’s University) and Sheikh Iqbal Ahamed,
(Marquette University), “Software Security Engineering: Toward
Unifying Software Engineering and Security Engineering,” Chap. XIV of
Enterprise Information Systems Assurance and System Security:
Managerial and Technical Issues, Merrill Warkentin and Rayford B.
Vaughn, eds., Idea Group Publishing (March 2006).

u Noopur Davis, Carnegie Mellon University (CMU) Software
Engineering Institute (SEI), Secure Software Development Life Cycle
Processes: A Technology Scouting Report, technical note CMU/SEI-2005-
TN-024 (December 2005).

u K.R. Jayaram and Aditya P. Mathur (Purdue University Center for
Education and Research in Information Assurance and Security
[CERIAS] and Software Engineering Research Center [SERC]), Software
Engineering for Secure Software—State of the Art: A Survey CERIAS, tech
report 2005-67 (September 19, 2005).

u Software Assurance Initiative, Software Assurance: Mitigating Software
Risks in the Department of Defense (DoD) Information Technology (IT)
and National Security Systems (NSS) (October 6, 2004).

u Samuel T. Redwine, Jr. and Noopur Davis, eds., Vol I of Processes to
Produce Secure Software—Towards More Secure Software, a Report of the
National Cyber Security Summit Software Process Subgroup of the Task
Force on Security Across the Software Development Lifecycle (March 2004).

On October 14, 2004, the OASD/NII forwarded to the Committee on
National Security Systems (CNSS) its report entitled Software Assurance:
Mitigating Software Risks in Department of Defense (DoD) Information
Technology (IT) and National Security Systems (NSS) specifying reasons
why DoD should acknowledge rather than continue to ignore the need for
software assurance. This report addressed topics covered in greater depth
in this SOAR, including risk management for software-intensive systems,
acquisition of software, software life cycle processes, software vulnerabilities,
security assessment of software, training of software practitioners, and software
assurance research and development.

Software Security Assurance State-of-the-Art Report (SOAR) 13

Section 1 Introduction

Draft Version 1.2 of DHS’ Security in the Software Life Cycle [7] includes
descriptions of a number of secure software process models, software
methodologies (security-enhanced and not), threat modeling/risk assessment
techniques, and security testing techniques, with information current as
of fall 2006. However, future versions of the DHS document will omit these
descriptions to avoid redundancy with DHS’ Software Assurance Landscape,
report described below, and with this SOAR.

The DHS’ Software Assurance Landscape and a parallel Landscape from
the National Security Agency’s (NSA) Center for Assured Software (CAS)—are
currently underway to address an even broader scope of activities, practices,
and technologies associated with software security assurance than those
covered in this SOAR. Both Landscapes will differ from this SOAR in that their
objective will be to discuss software security assurance within several larger
contexts, including information assurance and general software assurance.
The Landscapes have also been conceived as “living,” and are thus likely to
be produced as online knowledge bases rather than “fixed point in time”
documents. The SOAR also differs from these Landscapes in its higher level of
analysis and commentary on the various activities, practices, and tools.

The managers of both the DHS and NSA CAS Landscape efforts are
coordinating their efforts with the authors of this SOAR, with the intent that the
SOAR will provide a good basis of information to be included in the Landscape
knowledge bases.

1.7 Document Structure
This SOAR comprises nine sections and six appendices, which are described below.

Section 1 Introduction
The Introduction provides the rationale for publishing this SOAR and describes
its intended audience and content.

Section 2 Definitions of Software Assurance and Secure Software
Several definitions of “software assurance” are in wide circulation. Section 2
comments on and compares and contrasts those definitions in the context of
the definition used in this SOAR. Section 2 also defines “secure software” as
referred to in this SOAR.

Section 3 Why Is Software at Risk?
Attacks targeting software have become extremely sophisticated, exploiting
unforeseen sequences of multiple, often non-contiguous faults throughout the
software. As more exploitable faults, vulnerabilities and weaknesses are discovered
in the targeted software, more effective attacks can be crafted. Many resources
consulted in developing this SOAR—notably DHS’ Security in the Software Life
Cycle, agree that threats can manifest themselves at any point in the software life
cycle, including development, distribution, deployment, or operation.

Software Security Assurance State-of-the-Art Report (SOAR)14

Section 1 Introduction

Section 4 Secure Systems Engineering
Software is increasingly becoming part of a larger system, requiring system
engineers to understand the security issues associated with the software
components of a larger secure system. Secure systems engineering is a well-
studied field, with many process models available to the systems engineer for
developing the system.

Section 5 SDLC Processes and Methods and the Security of
Software
Most software assurance research has been geared toward developing
software from scratch, as project control can be asserted when the entire
process is available. That said, organizations increasingly use turnkey
solutions instead of custom-developing software to satisfy a particular
organizational need. Purchasing turnkey software is often cheaper and
involves less business risk than developing software from scratch. Through
regulations and awareness activities, organizations are becoming more
aware of the additional costs associated with insecure software. In spite of
being a very active research field, no software engineering methodology
exists to ensure that security exists in the development of large scale software
systems. In addition to the security-enhanced lifecycle processes discussed
later in this summary, efforts have focused on developing software-specific
risk management methodologies and tools. Most existing risk management
techniques are not easily adaptable to software security, and system security
risk management is limited by focusing on operational risks.

Section 6 Software Assurance Initiatives, Activities, and
Organizations
In the past five years, DoD, NSA, DHS, and the National Institute of Standards
and Technology (NIST) have become increasingly active in pursuit of software
security assurance and application security objectives. To this end, these
agencies have established a number of programs to produce guidance and
tools, perform security assessments, and provide other forms of support
to software and security practitioners. These organizations also regularly
participate in national and international standards activities that address
various aspects of software security assurance. The private sector has also
become very active, not just in terms of commercial offerings of tools and
services, but in establishing consortia to collectively address different software
security and application security challenges.

Section 7 Resources
The surge of interest and activity in software security and application security has
brought with it a surge of online and print information about these topics, leading
to Web sites and journals associated with software security assurance. Universities,
domestically and internationally, are offering courses and performing research in

Software Security Assurance State-of-the-Art Report (SOAR) 15

Section 1 Introduction

secure software development—along with researching effective ways to deliver
knowledge of software security to students. There are also professional training
courses and certifications available for those already in the workforce.

Section 8 Observations
Observations made as a result of analysis of the data gathered for this report
show that the software security assurance field is still being explored, and has
exposed some of the “hard problems” of software security.

Appendix A Abbreviations and Acronyms
Section 9 lists and amplifies all abbreviations and acronyms used in this SOAR.

Appendix B Definitions
Defines key terms used in this SOAR.

Appendix C Types of Software under Threat
This appendix identifies and describes the main types of critical (or
high-consequence) software systems the security of which is likely to be
intentionally threatened.

Appendix D DoD/FAA Proposed Safety and Security Extensions to
iCMM and CMMI
This appendix provides information on the safety and security extensions proposed
by the joint Federal Aviation Administration (FAA) and DoD Safety and Security
Extension Project Team to add security activities to two integrated capability
maturity models (CMM), the FAA’s integrated CMM (iCMM) and the Carnegie
Mellon University Software Engineering Institute CMM-Integration (CMMI).

Appendix E Security Functionality
This appendix describes some key security functions often implemented in
software-intensive information systems.

Appendix F Agile Methods: Issues for Secure Software
Development
This appendix augments the brief discussion in Section 5.1.8.1 of agile methods
and secure software development with a longer, more detailed discussion of
the security issues associated with agile development, as well as some of the
security benefits that might accrue from use of agile methods.

Appendix G Comparison of Security-Enhanced SDLC
Methodologies
This appendix provides a side-by-side comparison of the activities comprising
the different security-enhanced software development life cycle methodologies
discussed in Section 5.

Software Security Assurance State-of-the-Art Report (SOAR)16

Section 1 Introduction

Appendix H Software Security Research in Academia
This appendix provides an extensive listing of academic research projects in
software security and assurance topics.

1.8 Acknowledgements
This SOAR was planned and executed under the guidance of—

u Dr. Steven King, Associated Director for Information Assurance, Office
of the Deputy Under Secretary of Defense (Science and Technology)
[DUSD(S&T)], representing the Steering Committee of the Information
Assurance Technology Analysis Center (IATAC);

u Mr. Robert Gold, Associated Director for Software and Embedded Systems,
Office of the Deputy Under Secretary of Defense (Science & Technology)
[DUSD(S&T)], representing the Steering Committee of the Data and
Analysis Center for Software (DACS);

u Ms. Nancy Pfeil, Deputy Program Manager for the Information Analysis
Center Program Management Office (IAC PMO), and the IATAC
Contracting Officers Representative (COR).

This SOAR was provided for review to a number of organizations across
DoD and the civil agencies, industry, and academia. We would also like
to thank the following individuals for their incisive and extremely helpful
comments on the drafts of this document: Mr. Mitchell Komaroff of the Office
of the Assistant Secretary of Defense (Network and Information Integration)
(ASD/NII); Mr. Joe Jarzombek of the Department of Homeland Security Cyber
Security and Communications National Cyber Security Division (DHS CS&C
NCSD); Dr. Larry Wagoner of the NSA CAS; Dr. Paul Black of the NIST; Mr.
David A. Wheeler of the Institute for Defense Analyses (IDA); Dr. Matt Bishop,
University of California at Davis; Dr. Carol Wood (and Dr. Robert Seacord of
the Carnegie Mellon University Software Engineering Institute (CMU SEI);
Mr. Robert Martin of The MITRE Corporation and software assurance subject-
matter experts from Booz Allen Hamilton.

The research methodology and content of this SOAR were presented and
discussed at the following conferences and workshops—

u DHS Software Assurance Working Group meetings, Arlington, Virginia
(May 15-17, 2007)

u Object Management Group (OMG) Software Assurance Workshop,
Fairfax, Virginia (March 5-7, 2007)

u DoD/DHS Software Assurance Forum, Fairfax, Virginia
(March 8-9, 2007)

u Institute for Applied Network Security Mid-Atlantic Information
Security Forum, Tysons Corner, Virginia (March 5-6, 2007)

Software Security Assurance State-of-the-Art Report (SOAR) 17

Section 1 Introduction

u Defense Intelligence Agency Joint Information Operations Technical
Working Group Cyber Security Conference, Crystal City, Virginia
(February 5-6, 2007)

u Meeting of the Society for Software Quality (SSQ) Washington D.C.
Chapter (April 19, 2006).

In addition, the content of this SOAR was described in the following article—
u Goertzel, Karen Mercedes. An IATAC/DACS State-of-the-Art Report on

Software Security Assurance. IAnewsletter. Spring 2007; 10(1):24-25.

References

1 National Research Council (NRC), Computers at Risk: Safe Computing In the Information Age
(Washington, DC: National Academy Press, 1991).
Available from: http://books.nap.edu/books/0309043883/html

2 Government Accountability Office (GAO), DoD Information Security: Serious Weaknesses Continue to
Place Defense Operations at Risk, report no. GAO/AIMD-99-107 (Washington, DC: GAO, August 1999).
Available from: http://www.gao.gov/cgi-bin/getrpt?GAO/AIMD-99-107

3 The IRC’s members include several DoD organizations, including the Defense Advanced Research
Projects Agency (DARPA); the National Security Agency; the Office of the Secretary of Defense (OSD);
and the Departments of the Army, Navy, and Air Force; as well as civilian organizations, including the
National Institute of Standards and Technology (NIST), the Department of Energy (DOE), and the Central
Intelligence Agency (CIA).

4 IRC, National Scale INFOSEC Research Hard Problems List, vers. 1.0 (September 21, 1999).
Available from: http://www.infosec-research.org/docs_public/IRC-HPL-as-released-990921.doc

5 Defense Science Board, Final Report of the Defense Science Board Task Force on Globalization and
Security, (December 1999).
Available from: http://www.acq.osd.mil/dsb/reports/globalization.pdf

6 IRC, National Scale INFOSEC Research Hard Problems List, vers. 2.0 (November 30, 2005).
Available from: http://www.infosec-research.org/docs_public/20051130-IRC-HPL-FINAL.pdf

7 Karen Mercedes Goertzel, et al., Security in the Software Lifecycle: Making Software Development
Processes—and Software Produced by Them—More Secure, draft vers. 1.2 (Washington, DC: DHS
CS&C NCSD, August 2006).
Available from: https://buildsecurityin.us-cert.gov/daisy/bsi/resources/dhs/87.html

http://books.nap.edu/books/0309043883/html
http://www.gao.gov/cgi-bin/getrpt?GAO/AIMD-99-107
http://www.infosec-research.org/docs_public/IRC-HPL-as-released-990921.doc
http://www.acq.osd.mil/dsb/reports/globalization.pdf
http://www.infosec-research.org/docs_public/20051130-IRC-HPL-FINAL.pdf
https://buildsecurityin.us-cert.gov/daisy/bsi/resources/dhs/87.html

Definitions
2

Software Security Assurance State-of-the-Art Report (SOAR) 19

Section 2 Definitions

The readers’ comprehension of two terms is key to their
understanding of this document: “software assurance” (or, to be

more precise, “software security assurance”) and “secure software.”
The first term has been defined in several ways throughout the
software assurance community. Section 2.1 discusses these various
definitions and compares their key features. The definition of the
second term, and that of its closely related construction,“ software
security,” are discussed in Section 2.2.

2.1 Definition 1: Software Assurance
Until recently, the term software assurance was most commonly relating two
software properties: quality (i.e., “software assurance” as the short form of
“software quality assurance”), and reliability (along with reliability’s most
stringent quality—safety). Only in the past 5 years or so has the term software
assurance been adopted to express the idea of the assured security of software
(comparable to the assured security of information that is expressed by the
term “information assurance”).

The discipline of software assurance can be defined in many ways. The
most common definitions complement each other but differ slightly in terms of
emphasis and approach to the problem of assuring the security of software.

In all cases, all definitions of software assurance convey the thought that
software assurance must provide a reasonable level of justifiable confidence that
the software will function correctly and predictably in a manner consistent with
its documented requirements. Additionally, the function of software cannot be
compromised either through direct attack or through sabotage by maliciously
implanted code to be considered assured. Some definitions of software assurance
characterize that assurance in terms of the software’s trustworthiness or “high-
confidence.” Several leading definitions of software assurance are discussed below.

Instead of choosing a single definition of software assurance for this report,
we synthesized them into a definition that most closely reflects software security
assurance as we wanted it to be understood in the context of this report—

Software Security Assurance State-of-the-Art Report (SOAR)20

Section 2 Definitions

Software security assurance: The basis for gaining justifiable
confidence that software will consistently exhibit all properties
required to ensure that the software, in operation, will continue to
operate dependably despite the presence of sponsored (intentional)
faults. In practical terms, such software must be able to resist most
attacks, tolerate as many as possible of those attacks it cannot resist,
and contain the damage and recover to a normal level of operation as
soon as possible after any attacks it is unable to resist or tolerate.

2.1.1 CNSS Definition
The ability to establish confidence in the security as well as the predictability
of software is the focus of the Committee on National Security Systems (CNSS)
definitions of software assurance in its National Information Assurance
Glossary. [8] The glossary defines software assurance as—

The level of confidence that software is free from vulnerabilities,
regardless of whether they are intentionally designed into the software
or accidentally inserted later in its life cycle, and that the software
functions in the intended manner.

This understanding of software assurance is consistent with the use of
the term in connection with information, i.e., information assurance (IA). By
adding the term software assurance to its IA glossary, CNSS has acknowledged
that software is directly relevant to the ability to achieve information assurance.

The CNSS definition is purely descriptive: it describes what software must
be to achieve the level of confidence at which its desired characteristics—lack
of vulnerabilities and predictable execution—can be said to be assured. The
definition does not attempt to prescribe the means by which that assurance
can, should, or must be achieved.

2.1.2 DoD Definition
The Department of Defense’s (DoD) Software Assurance Initiative’s definition is
identical in meaning to that of the CNSS, although more succinct—

The level of confidence that software functions as intended and is free
of vulnerabilities, either intentionally or unintentionally designed or
inserted as part of the software. [9]

2.1.3 NASA Definition
The National Aeronautics and Space Administration (NASA) defines software
assurance as—

Software Security Assurance State-of-the-Art Report (SOAR) 21

Section 2 Definitions

The planned and systematic set of activities that ensure that
software processes and products conform to requirements,
standards, and procedures.

The “planned and systematic set of activities” envisioned by NASA include—
u Requirements specification
u Testing
u Validation
u Reporting.

The application of these functions “during a software development life cycle is
called software assurance.” [10]

The NASA software assurance definition predates the CNSS definition
but similarly reflects the primary concern of its community—in this case,
safety. Unlike the CNSS definition, NASA’s definition is both descriptive and
prescriptive in its emphasis on the importance of a “planned and systematic
set of activities.” Furthermore, NASA’s definition states that assurance must
be achieved not only for the software itself but also the processes by which
it is developed, operated, and maintained. To be assured, both software and
processes must “conform to requirements, standards, and procedures.”

2.1.3 DHS Definition
Like CNSS, the Department of Homeland Security (DHS) definition of software
assurance emphasizes the properties that must be present in the software for it
to be considered “assured,” i.e.—

u Trustworthiness, which DHS defines, like CNSS, in terms of the
absence of exploitable vulnerabilities whether maliciously or
unintentionally inserted

u Predictable execution, which “provides justifiable confidence that the
software, when executed, will function as intended. [11]

Like NASA, DHS’s definition explicitly states that “a planned and systematic
set of multidisciplinary activities” must be applied to ensure the conformance of
both software and processes to “requirements, standards, and procedures.” [12]

2.1.4 NIST Definition
The National Institute of Standards and Technology (NIST) defines software
assurance in the same terms as NASA, whereas the required properties to be
achieved are those included in the DHS definition: trustworthiness and predictable
execution. NIST essentially fuses the NASA and DHS definitions into a single
definition, thereby clarifying the cause-and-effect relationship between “the
planned and systematic set of activities” and the expectation that such activities
will achieve software that is trustworthy and predictable in its execution. [13]

Software Security Assurance State-of-the-Art Report (SOAR)22

Section 2 Definitions

2.2 Definition 2: Secure Software
DHS’s Security in the Software Life Cycle defines secure software in terms that
have attempted to incorporate concepts from all of the software assurance
definitions discussed in Section 2.1 as well as reflect both narrow-focused and
holistic views of what constitutes secure software. The document attempts
to provide a “consensus” definition that has, in fact, been vetted across the
software security assurance community [or at least that part that participates in
meetings of the DHS Software Assurance Working Groups (WG) and DoD/DHS
Software Assurance Forums]. According to Security in the Software Life Cycle—

Secure software cannot be intentionally subverted or forced to fail. It
is, in short, software that remains correct and predictable in spite of
intentional efforts to compromise that dependability.

Security in the Software Life Cycle elaborates on this definition—

Secure software is designed, implemented, configured, and supported
in ways that enable it to:
u Continue operating correctly in the presence of most attacks by

either resisting the exploitation of faults or other weaknesses in the
software by the attacker, or tolerating the errors and failures that
result from such exploits

u Isolate, contain, and limit the damage resulting from any failures
caused by attack-triggered faults that the software was unable to resist
or tolerate, and recover as quickly as possible from those failures.

The document then enumerates the different security properties that
characterize secure software and clearly associates the means by which
software has been developed with its security:

Secure software has been developed such that—
u Exploitable faults and other weaknesses are avoided by

well-intentioned developers.
u The likelihood is greatly reduced or eliminated that malicious

developers can intentionally implant exploitable faults and
weaknesses or malicious logic into the software.

u The software will be attack-resistant or attack-tolerant,
and attack-resilient.

u The interactions among components within the software-intensive
system, and between the system and external entities, do not
contain exploitable weaknesses.

Definitions of other key terms used in this SOAR are provided in Appendix B.

Software Security Assurance State-of-the-Art Report (SOAR) 23

Section 2 Definitions

2.3 Software Security vs. Application Security
The increased targeting by attackers of vulnerable applications has led to a
gradual recognition that the network- and operating system-level protections
that are now commonplace for protecting Internet-accessible systems are no
longer sufficient for that purpose. This recognition has given use to emerging
application security measures to augment system and network security
measures. Application security protections and mitigations are specified almost
exclusively at the level of the system and network architecture rather than the
individual application’s software architecture. They are primarily implemented
during the application’s deployment and operation.

Application security combines system engineering techniques, such as
defense-in-depth (DiD) measures (e.g., application layer firewalls, eXtensible
Markup Language (XML) security gateways, sandboxing, code signing) and
secure configurations, with operational security practices, including patch
management and vulnerability management. Application security DiD
measures operate predominately by using boundary protections to recognize
and block attack patterns, and using constrained execution environments to
isolate vulnerable applications, thus minimizing their exposure to attackers
and their interaction with more trustworthy components. Operational security
measures are focused on reducing the number or exposure of vulnerabilities
in the applications (i.e., through patching), and by repeatedly reassessing the
number and severity of residual vulnerabilities, and of the threats that may
target and exploit them, so that the DiD measures can be adjusted accordingly
to maintain their required level of effectiveness.

Application security falls short of providing an adequate basis for software
security assurance comparable to the quality and safety assurances that can
be achieved through use of established quality assurance practices and fault
tolerance techniques respectively.

While application security practitioners acknowledge that the way in
which the application is designed and built is significant in terms of reducing
the likelihood and number of vulnerabilities the application will contain, these
practitioners are not directly concerned with the application’s development
life cycle. By contrast, software security requires security to be seen as a critical
property of the software itself—a property that is best assured if it is specified
from the very beginning of the software’s development process.

Software security assurance is addressed holistically and systematically,
in the same way as quality and safety. In fact, security shares many of the
same constituent dependability properties that must be exhibited in software
for which safety and quality are to be assured. These properties include
correctness, predictability, and fault tolerance (or, in the case of security, attack
tolerance). The analogy between safety and security is particularly close. The
main difference is that safety-relevant faults are stochastic (i.e., unintentional or

Software Security Assurance State-of-the-Art Report (SOAR)24

Section 2 Definitions

accidental), whereas security-relevant faults are “sponsored,” i.e., intentionally
created and activated through conscious and intentional human agency.

The ability of software to continue to operate dependably despite the
presence of sponsored faults is what makes it secure. This ability is based largely
on the software’s lack of vulnerability to those sponsored faults, which may be
activated by direct attacks that exploit known or suspected vulnerabilities, or by
the execution of embedded malicious code. This is why most definitions of secure
software emphasize the absence of malicious logic and exploitable vulnerabilities.

2.4 Software Security vs. Quality, Reliability, and Safety
The difference between software security and software quality, reliability, and
safety is not their objectives: the objective of each is to assure that software will
be dependable despite the presence of certain internal and external stimuli,
influences, and circumstances. Rather the difference lies in the nature of those
stimuli, influences, and circumstances.

These differences can be characterized in terms of threats to whichever
property is desired. The main threat to quality is internal, i.e., the presence
in the software itself of flaws and defects that threaten its ability to operate
correctly and predictably. Because such flaws and defects result from errors in
judgment or execution by the software’s developer, tester, installer, or operator,
they are often termed unintentional threats.

The main threats to reliability are internal and external. They include
the threats to quality augmented by threats from the software’s execution
environment when it behaves unpredictably (for whatever reason). The threats
to safety are the same as those for reliability, with the distinction that the
outcome of those threats, if they are realized, will be catastrophic to human
beings, who may be killed, maimed, or suffer significant damage to their health
or physical environment as a result.

The faults that unintentionally threaten the quality, reliability, and safety
can also be intentionally exploited by human agents (attackers) or malicious
software agents (malware). Security threats are differentiated from safety,
reliability, and quality threats by their intentionality. A flaw in source code
that threatens the compiled software’s reliability can also make that software
vulnerable to an attacker who knows how to exploit that vulnerability to
compromise the dependable execution of the software.

Security threats to software are intentional. The presence of the vulnerabilities
that enable security threats to achieve their objectives may not be intentional, but
the targeting and exploitation of those vulnerabilities are intentional.

Security threats to software usually manifest either as direct attacks
on, or execution of malicious code embedded in, operational software, or as
implantations of malicious logic or intentional vulnerabilities in software under
development. John McDermott of the Naval Research Laboratory’s Center
for High Assurance Computer Systems (NRL CHACS) [14] characterizes the

Software Security Assurance State-of-the-Art Report (SOAR) 25

Section 2 Definitions

difference between threats to security on the one hand and threats to safety,
reliability, quality, etc., on the other. He characterizes the threats in terms of
stochastic (unintentional) faults in the software vs. sponsored (intentional)
faults. Stochastic faults may cause software to become vulnerable to attacks, but
unlike sponsored faults, their existence is not intentional.

References

8 Committee on National Security Systems, National Information Assurance (IA) Glossary, CNSS
instruction No. 4009 (revised June 2006).
Available from: http://www.cnss.gov/Assets/pdf/cnssi_4009.pdf

9 Mitchell Komaroff (ASD/NII) and Kristin Baldwin (OSD/AT&L), DoD Software Assurance Initiative
(September 13, 2005).
Available from: https://acc.dau.mil/CommunityBrowser.aspx?id=25749

10 National Aeronautics and Space Administration (NASA), Software Assurance Standard, Standard No.
NASA-STD-2201-93 (Washington, DC: NASA, November 10, 1992).
Available from: http://satc.gsfc.nasa.gov/assure/assurepage.html

11 National Institute of Standards and Technology, “SAMATE—Software Assurance Metrics and Tool
Evaluation” [portal page] (Gaithersburg, MD: NIST).
Available from: http://samate.nist.gov

12 US Computer Emergency Response Team, “Build Security In” [portal page] (Washington, DC).
Available from: https://buildsecurityin.us-cert.gov

13 “SAMATE” [portal page] op. cit.

14 John McDermott (Naval Research Laboratory Center for High Assurance Computer Systems), “Attack-
Potential-based Survivability Modeling for High-Consequence Systems,” in Proceedings of the Third
International Information Assurance Workshop, March 2005, 119–130.
Available from: http://chacs.nrl.navy.mil/publications/CHACS/2005/2005mcdermott-IWIA05preprint.pdf

http://www.cnss.gov/Assets/pdf/cnssi_4009.pdf
https://acc.dau.mil/CommunityBrowser.aspx?id=25749
http://satc.gsfc.nasa.gov/assure/assurepage.html
http://samate.nist.gov
https://buildsecurityin.us-cert.gov
http://chacs.nrl.navy.mil/publications/CHACS/2005/2005mcdermott-IWIA05preprint.pdf

Why is Software
at Risk?

3

Software Security Assurance State-of-the-Art Report (SOAR) 27

Section 3 Why is Software at Risk?

Security in the context of software and software-intensive systems [15]
usually pertains to the software’s functional ability to protect the

information it handles. With software as a conduit to sensitive
information, risk managers have determined that, to the extent that the
software itself might be targeted to access otherwise inaccessible
data, the availability and integrity of the software must be preserved
and protected against compromise.

In the past, the software considered most likely to be targeted
was operating system level software and software that performed
critical security functions, such as authenticating users and encrypting
sensitive data. Over time, however, the nature of both threats and
targets changed, largely as a result of virtually universal Internet
connectivity and use of web technologies.

The exponential increase in the exposure of software-intensive
systems (i.e., applications together with the middleware, operating
systems, and hardware that compose their platforms, and the often
sensitive data they are intended to manipulate) coincided with the
increased recognition by attackers of the potential for a whole new
category of attacks that exploited the multitude of bugs, errors, and
faults typically present in the vast majority of software. The exploitability
of these faults as vulnerabilities was not widely recognized before these
software-intensive systems were exposed to the Internet. As noted in
The National Strategy to Secure Cyberspace—

…the infrastructure that makes up cyberspace—software and
hardware—is global in its design and development. Because of the
global nature of cyberspace, the vulnerabilities that exist are open
to the world and available to anyone, anywhere, with sufficient
capability to exploit them.

Software Security Assurance State-of-the-Art Report (SOAR)28

Section 3 Why is Software at Risk?

The Strategy further observes—

Identified computer security vulnerabilities—faults in software and
hardware that could permit unauthorized network access or allow an
attacker to cause network damage—increased significantly from 2000
to 2002, with the number of vulnerabilities going from 1,090 to 4,129.

Statistics like this reflect the events that spurred major customers of
commercial software firms, and most notably Microsoft, to start demanding
improvements in the security of their software products. This customer
demand is what drove Microsoft to undertake its Trustworthy Computing
Initiative (see Section 7.2.2).

3.1 What Makes Software Vulnerable?
In his research statement for the University of Cambridge (UK), Andy Ozment,
a software security researcher, suggests three primary causes of vulnerabilities
and weaknesses in software [16]—

u Lack of Developer Motivation: Because consumers reward software
vendors for being first to market and adding new features to their
products, rather than for producing software that is better or more
secure, [17] vendors have no financial incentive to do the latter.

u Lack of Developer Knowledge: Software is so complex; it exceeds the
human ability to fully comprehend it, or to recognize and learn how
to avoid all of its possible faults, vulnerabilities, and weaknesses. This
factor, combined with lack of developer motivation, is often used
as an excuse for not even teaching developers how to avoid those
faults, vulnerabilities, and weaknesses that are within their ability to
comprehend and avoid.

u Lack of Technology: Current tools are inadequate to assist the developer
in producing secure software or even to reliably determine whether the
software the developer has produced is secure.

Ozment goes on to state that neither lack of motivation nor lack of
knowledge is defensible, and asks—

The problems of software insecurity, viruses, and worms are frequently
in the headlines. Why does the potential damage to vendors’
reputations not motivate them to invest in more secure software?

Until recently, Ozment’s question was valid—reputation was not enough
to motivate software vendors because it was not enough to motivate software
buyers. As with buyers of used automobiles, buyers of software had no way to
ascertain that software actually was secure. They had to accept the vendors’

Software Security Assurance State-of-the-Art Report (SOAR) 29

Section 3 Why is Software at Risk?

claims largely on faith. Given this, why should they pay a premium for vendor-
claimed security when they had no way to independently evaluate it? With no
customer demand, vendors saw no market for more secure software, and were
not inclined to invest the additional time and resources required to produce it.

This situation changed to some extent when Microsoft launched its
Trustworthy Computing Initiative and adopted its Security Development Lifecycle
(SDL, see Section 5.1.3.1). Compelled to acknowledge that the multiplicity of highly
publicized security exploits that targeted vulnerabilities in its products had taken
its toll, Microsoft—the world’s largest commercial software vendor—publicly
announced that the security exploits that targeted vulnerabilities in its products,
had led some of the firm’s most valued customers (e.g., those in the financial sector)
to begin voting with their pocketbooks. Valuable customers were rejecting new
versions and new products from Microsoft.

Microsoft has always known that reputation matters. As a result, they
changed their development practices with the explicit objective of producing
software that contained fewer exploitable vulnerabilities and weaknesses. And
they widely publicized their efforts. By improving the security of its products,
Microsoft began to regain the confidence of its customers. It also influenced the
practices of other software vendors, even those whose products’ security was not
yet being questioned by their customers.

With respect to lack of developer knowledge, Ozment suggests that
“most software contains security flaws that its creators were readily capable
of preventing.” But they lacked the motivation to do so. As the President’s
Information Technology Advisory Committee (PITAC) report observes—

The software development methods that have been the norm fail to
provide the high-quality, reliable, and secure software that the IT
infrastructure requires. Software development is not yet a science or a
rigorous discipline, and the development process by and large is not
controlled to minimize the vulnerabilities that attackers exploit.

The methodology for building secure software is not widely taught in
software engineering and computer science programs at the undergraduate or
even the postgraduate level (although this is changing, as noted in Section 7.2).
This means many university-educated software developers graduate without a
clear understanding of the difference between software security functionality
and security as a property of software. Developers are unable to recognize the
security implications of their design choices and coding errors, and of their
neglect of the need to remove debugging hooks and other backdoors from code
before it is deployed. They do not understand how the variances in assumptions
among components, functions, application programming interfaces (API), and
services can result in unintentional vulnerabilities in the software that contains
them. Nor do they know how to recognize malicious logic that may have been
intentionally introduced into the code base by another developer.

Software Security Assurance State-of-the-Art Report (SOAR)30

Section 3 Why is Software at Risk?

Many software engineering students are never taught about the inherent
security inadequacies of popular processing models that they will use
(e.g., peer-to-peer, service oriented architecture), programming languages
(e.g., C, C++, VisualBasic), programmatic interfaces (e.g., remote procedure
calls), communication protocols [e.g., Simple Object Access Protocol (SOAP),
Hyper Text Transfer Protocol (HTTP)], technologies (e.g., ColdFusion, web
browsers), and tools (e.g., code generators, language libraries). Nor do they learn
to recognize the threats to software, how those threats are realized (as attacks)
during development or deployment, or how to leverage their understanding of
threats and common exploitable weaknesses and faults (i.e., vulnerabilities) when
specifying requirements for their software’s functionality, functional constraints,
and security controls. They often take on faith that software that conforms
with a standard for security functionality [such as Secure Socket Layer (SSL) or
eXtensible Markup Language Digital Signature (XML Dsig)] will be secure in terms
of robustness against threats, which is not necessarily the case. Finally, they are
not taught secure design principles and implementation techniques that will
produce software that can detect attack patterns and contribute to its own ability
to resist, tolerate, and recover from attacks.

Finally, vulnerabilities can also originate in the incorrect configuration of the
software or its execution environment. An example is the incorrect configuration
of the jar files and sandboxes in the Java Virtual Machine (JVM) environment that
prevents the software from constraining the execution of untrusted code (e.g.,
mobile code) as it is intended to. A Java-based system incorrectly configured in this
way would be said to have a vulnerability, not because the JVM is inherently weak,
but because of the error(s) in its configuration.

3.1.1 The Relationship Between Faults and Vulnerabilities
Read any book or article on software security, and the author will assert that
the majority of vulnerabilities in software originate in design defects and
coding flaws that manifest, in the compiled software, as exploitable faults.
Faults become exploitable, and thus represent vulnerabilities, only if they are
accessible by an attacker. The more faults that are exposed, the more potential
entry points into the software are available to attackers.

Attacks targeting software faults have become extremely sophisticated.
They often exploit unexpected sequences of multiple, often noncontiguous faults
(referred to as byzantine faults) throughout the software. Reconnaissance attacks
provide the attacker with information on the location, nature, and relationships
among vulnerabilities and weaknesses in the targeted software. This knowledge
then enables the attacker to craft even more effective attacks (see Section 3.2 for
more information on the threats and attacks to which software is subject).

Section 3.1.3 describes a number of efforts to systematically characterize
and categorize common vulnerabilities and weaknesses in software.

Software Security Assurance State-of-the-Art Report (SOAR) 31

Section 3 Why is Software at Risk?

3.1.2 Vulnerability Reporting
It is generally expected that a software vendor’s quality assurance process
will entail testing for vulnerabilities. Customers who report vulnerabilities
back to vendors may be given credit, as is the case when Microsoft receives
vulnerability notifications “under responsible disclosure” from its customers.
There are also several organizations and initiatives for finding, tracking, and
reporting vulnerabilities, both in the private sector and in Federal Government
departments and agencies. Examples of the latter include DoD’s Information
Assurance Vulnerability Alert (IAVA) system.

In the public domain, some noteworthy vulnerability tracking/reporting
systems include—

u National Institute of Standards and Technology (NIST) National
Vulnerability Database (NVD)
Available from: http://nvd.nist.gov

u US Computer Emergency Response Team (US-CERT) Vulnerability
Notes Database
Available from: http://www.kb.cert.org/vuls

u Open Source Vulnerability Database
Available from: http://osvdb.org

u eEye Research Zero-Day Tracker
Available from: http://research.eeye.com/html/alerts/zeroday/index.html

u MITRE Common Vulnerabilities and Exposures (CVE)
Available from: http://cve.mitre.org (The CVE is not a vulnerability
tracking/reporting system but rather a repository of information about
common vulnerabilities tracked and reported by others.)

A number of commercial firms offer vulnerability alert/tracking and
management services for a fee. Several of these are frequently cited in the press
because of their track record of being the first to discover and report critical
vulnerabilities in popular software products. Some of the most notable of
such firms are Secunia, Next Generation Security Software (NGSS), Symantec,
Talisker, and iDefense Labs.

In 2002, iDefense Labs undertook a new approach to vulnerability detection.
The iDefense Vulnerability Contributor Program (VCP) [18] was originally
envisioned by iDefense as a 3-year program whereby iDefense would pay private,
often anonymous, “researchers” (read: blackhats, i.e., hackers or crackers) for the
exclusive rights to advance notifications about as-yet-unpublished Internet-based
system vulnerabilities and exploit code. In 2005, iDefense released a set of reverse
engineering and vulnerability detection tools for VCP participants to use. iDefense
estimates that upwards of 80 percent of its vulnerability reports originated with
information it had purchased through the VCP program.

It has been estimated by eEye Digital (iDefense’s competitor and operator
of the recently established zero-day vulnerability tracker) that the fee paid

http://nvd.nist.gov
http://www.kb.cert.org/vuls
http://osvdb.org
http://research.eeye.com/html/alerts/zeroday/index.html
http://cve.mitre.org

Software Security Assurance State-of-the-Art Report (SOAR)32

Section 3 Why is Software at Risk?

by iDefense for each vulnerability report increased from $400 when the VCP
started to approximately $3,000 per vulnerability by 2005. The VCP is not
without its critics, including eEye Digital. They are mostly concerned that
by setting a precedent of paying for vulnerability information, iDefense has
increased the likelihood of bidding wars between firms that are competing
to obtain such information—information that is also highly valued by cyber
criminals and other threatening entities.

The problem of vulnerability disclosure is a widely considered subject
in academia, with researchers investigating the ethical, legal, and economic
implications. The whitepapers cited below are typical examples of these
investigations. In September 2004, the Organization for Internet Safety
published Version 2.0 of its Guidelines for Security Vulnerability Reporting and
Response Process. [19] Similar guidelines for ethical vulnerability reporting have
been published by NGSS and other organizations.

For Further Reading

Nizovtsev, Dmitri (Washburn University); Thursby, Marie C. (Georgia Institute of Technology)
To Disclose or Not?: an Analysis of Software User Behavior. Social Science Research Network eLibrary:
2006 April.
Available from: http://papers.ssrn.com/sol3/papers.cfm?abstract_id=899863
Arora, Ashish; Telang, Rahul; Xu, Hao (CMU). Optimal Policy for Software Vulnerability Disclosure.
Paper presented at: Center on Employment and Economic Growth Social Science and Technology Seminar;
2006 May 31.
Available from: http://siepr.stanford.edu/programs/SST_Seminars/disclosure05_04.pdf
Wattal, Sunil; Telang, Rahul (CMU): Effect of Vulnerability Disclosures on Market Value of Software
Vendors: an Event Study Analysis. The 2004 Workshop on Information Systems and Economics; 2004
December 11.
Available from: http://opim.wharton.upenn.edu/wise2004/sat622.pdf
Arora, Ashish Arora (CMU). Release in Haste and Patch at Leisure: The Economics of Software
Vulnerabilities, Patches, and Disclosure. Paper presented at: Center on Employment and Economic Growth
Social Science and Technology Seminar; 2006 May 31.
Available from: http://siepr.stanford.edu/programs/SST_Seminars/MS_forthcoming.pdf
Finland: University of Oulu. Vulnerability Disclosure Publications and Discussion Tracking.
Available from: http://www.ee.oulu.fi/research/ouspg/sage/disclosure-tracking/index.html
Ozment, Andy [University of Cambridge (UK)]. Bug Auctions: Vulnerability Markets Reconsidered.
Third Workshop on the Economics of Information Security; 2004 May 14.
Available from: http://www.cl.cam.ac.uk/~jo262/papers/weis04-ozment-bugauc.pdf
Ozment, Andy [University of Cambridge (UK)]: The Likelihood of Vulnerability Rediscovery and the Social
Utility of Vulnerability Hunting. Fourth Workshop on the Economics of Information Security; 2005 June 2-3.
Available from: http://www.cl.cam.ac.uk/~jo262/papers/weis05-ozment-vulnrediscovery.pdf

3.1.3 Vulnerability Classifications and Taxonomies
The categorization and classification (“taxonomization”) of security
vulnerabilities and weaknesses in software and software-intensive systems has
been one of the most persistently active areas of software security assurance
research. Indeed, this area of research began formally as far back as the
1970s, and the number of research efforts has been significantly greater than

http://papers.ssrn.com/sol3/papers.cfm?abstract_id=899863
http://siepr.stanford.edu/programs/SST_Seminars/disclosure05_04.pdf
http://opim.wharton.upenn.edu/wise2004/sat622.pdf
http://siepr.stanford.edu/programs/SST_Seminars/MS_forthcoming.pdf
http://www.ee.oulu.fi/research/ouspg/sage/disclosure-tracking/index.html
http://www.cl.cam.ac.uk/~jo262/papers/weis04-ozment-bugauc.pdf
http://www.cl.cam.ac.uk/~jo262/papers/weis05-ozment-vulnrediscovery.pdf

Software Security Assurance State-of-the-Art Report (SOAR) 33

Section 3 Why is Software at Risk?

comparable efforts to categorize and classify threats and attack patterns. The
remainder of this section reports on some of the early taxonomy efforts as well
as more recent taxonomies, then describes some current efforts to define a set
of standard software vulnerability definitions, categories, and classifications.

3.1.3.1 Background
Research into defining and classifying software security defects dates back to
1972, with the then National Bureau of Standards’ initiation of its Research
into Secure Operating Systems (RISOS) project. [20] Conducted by Lawrence
Livermore National Laboratory at the University of California, the RISOS project
attempted to define a taxonomy of operating system security defects that
included seven major categories of flaws, five of which are still cited as software
vulnerability categories (the other two were categories of information, rather
than software, security vulnerabilities)—

u Inconsistent parameter validation
u Incomplete parameter validation
u Asynchronous validation or inadequate serialization (i.e., race condition)
u Violable prohibition or limit (i.e., failure to handle bounds conditions

correctly, or incorrect pointer arithmetic, both of which can lead to
buffer overflows)

u Other exploitable logic errors.

Almost two decades after RISOS, researchers of the Naval Research
Laboratory’s (NRLs) Center for High Assurance Computer System (CHACS)
published A Taxonomy of Computer Program Security Flaws, with Examples.
[21] This document proposed a taxonomy of security flaws that would classify
flaws according to how, when, and where they were introduced into the
software. This report also thoroughly documented 50 examples of security
flaws so that the software development community could benefit and learn the
author’s research. This research served as the base for much work to come in
the area of identifying and documenting software specific flaws.

In 1996, a year after publishing his own A Taxonomy of Unix System and
Network Vulnerabilities in May 1995, [22] Matthew Bishop and his colleague
D. Bailey at the University of California at Davis published A Critical Analysis
of Vulnerability Taxonomies. [23] This document was one of the first attempts
to describe and critique the major vulnerability taxonomy and classification
efforts up to that point.

Throughout the 1990s, other researchers at Purdue’s Computer
Operations, Audit, and Security Technology (COAST) Laboratory continued
to pursue the categorization of computer system and software vulnerabilities,
culminating in 1998 with the presentation by Wenliang Du and Aditya Mathur
of their paper, Categorization of Software Errors that Led to Security Breaches
[24] at the National Information Systems Security Conference in Arlington,
Virginia. In retrospect, the paper is interesting less for the authors’ own attempt

Software Security Assurance State-of-the-Art Report (SOAR)34

Section 3 Why is Software at Risk?

to identify and categorize security-relevant software flaws than for its critical
descriptions of several previous software vulnerability and software flaw
categorization and taxonomy efforts, including Matt Bishop’s.

As a natural evolution from the multiplicity of efforts from the 1970s through
the 1990s to develop a definitive taxonomy of software (or software system) security
vulnerabilities, the 21st century brought a new wave of collaboration initiatives
among members of the software security assurance community. Through
their discussions, it became apparent that there was still a need for a software
vulnerability taxonomy that was not only definitive but also standard.

Table 3-1 lists the most noteworthy software vulnerability taxonomies
published since 2001.

Table 3-1. Recent Vulnerability Classification and Taxonomy Efforts

Year Authors Name Observations

2002 Open Web
Applications
Security
Project
(OWASP)

OWASP Top Ten
Most Critical
Web Application
Security
Vulnerabilities
2002 [25]

Published in response to SysAdmin, Audit,
Networking, and Security (SANS) Top Ten. [26]

Typical of many vulnerability lists in its
confusing vulnerabilities, attacks, threats,
and outcomes. Makes no distinction between
software, system, or data security issues, or
technical, policy, or process issues.

2002 Frank Piessens,
Catholic
University
of Leuven
(Belgium)

A Taxonomy
of Software
Vulnerabilities
in Internet
Software [27]

2-tiered hierarchy mapping to the software
development lifecycle. Based on several of the
same taxonomies used by MITRE in defining
the CVE [28], Carl Landwehr et al., John Viega,
and Gary McGraw et al. Purpose is to educate
developers of Internet-based applications.

2005 John Viega Comprehensive
Lightweight
Application
Security
Process (CLASP)
Vulnerability
Root Cause
Classification [29]

Augments classification axes from Landwehr
et al. with 2 new axes, Consequence and
Problem Type. Unlike Landwehr et al., does
not limit number of root causes (or Problem
Types) to one per vulnerability.

2005 Michael
Howard, David
LeBlanc, John
Viega

19 Deadly Sins
of Software
Security [30]

Lists 19 categories of “common, well-
understood” coding errors that lead to 95 per
cent of software vulnerabilities. Makes no
attempt to differentiate between software,
system, and information security issues,
nor between vulnerabilities, attacks, and
outcomes. Over half the “deadly sins” are
system-level design issues. Cited by numerous
research papers and projects, including
MITRE’s Common Weakness Enumeration
(CWE) project (see Section 3.1.3.2).

Software Security Assurance State-of-the-Art Report (SOAR) 35

Section 3 Why is Software at Risk?

Table 3-1. Recent Vulnerability Classification and Taxonomy Efforts - continued

Year Authors Name Observations
2005 Katrina

Tsipenyuk,
Brian Chess,
Gary McGraw

Seven
Pernicious
Kingdoms [31]

Borrows taxonomical terminology from
biology (e.g., kingdom, phylum). 7 kingdoms
represent 7 categories of exploitable coding
errors possible in C++, Java, C#, and ASP,
plus an 8th kingdom, Configuration and
Environment, unrelated to coding errors.
Used as a key reference for the CWE (see
Section 3.1.3.2). In Software Security:
Building Security In, [32] Gary McGraw
compares the Seven Pernicious Kingdoms
with 19 Deadly Sins and OWASP Top Ten.

2005 Sam Weber,
Paul. A Karger,
Amit Paradkar
(IBM Thomas
J. Watson
Research
Center)

IBM Software
Security Flaw
Taxonomy [33]

Expressly intended for tool developers.
Developed because “existing suitable
taxonomies are sadly out-of-date, and do not
adequately represent security flaws that are
found in modern software.” Correlated with
available information about current, high
priority security threats.

2005 Herbert
Thompson,
Scott Chase

Software
Vulnerability
Guide
Vulnerability
Categories [34]

Does not distinguish between software-
level and system-level vulnerabilities, but
characterizes both from developer’s point of
view, i.e., in terms of whether developer can
avoid them or needs to design around them.

2006 Fortify Software
Security
Research
Group, Gary
McGraw

Fortify Taxonomy
of Software
Security Errors
[35]

Describes each vulnerability category in
detail, with references to original sources, plus
example code excerpts. In essence, the subset
of the Seven Pernicious Kingdoms that can be
detected by Fortify’s source code analysis tools.

2006 Mark
Dowd, John
McDonald,
Justin Schuh

Art of Software
Security
Assessment
[36] Software
Vulnerabilities

Describes several categories of exploitable
coding errors and system-level vulnerabilities.

2007 OWASP OWASP Top Ten
2007 [37]

Completed public comment period February
2007; publication anticipated Spring 2007.
No longer includes software-specific
vulnerabilities. Instead lists 5 attack patterns
and 5 system-level vulnerabilities related to
access control, identity or location spoofing,
or sensitive data disclosure. Preface states:
“A secure coding initiative must deal with all
stages of a program’s lifecycle. Secure web
applications are only possible when a secure
software development life cycle (SDLC) is
used. Secure programs are secure by design,
during development, and by default.”

Software Security Assurance State-of-the-Art Report (SOAR)36

Section 3 Why is Software at Risk?

For Further Reading

TrustedConsultant: Threat and Vulnerabilities Classification, Taxonomies. Writing Secure Software blog;
c2005 December 26.
Available from: http://securesoftware.blogspot.com/2005/12/threat-vulnerabilities-classification.html
Younan, Yves. An Overview of Common Programming Security Vulnerabilities [thesis]. [Brussels,
Belgium]: Vrije University of Brussels; 2003.
Available from: http://www.fort-knox.be/files/thesis.pdf
Seacord, Robert; Householder, A.D. (CMU SEI). Final Report. A Structured Approach to Classifying
Vulnerabilities. CMU SEI; 2005. Report No. CMU/SEI-2005-TN-003.
Meunier, Pascal. Wiley Handbook of Science and Technology for Homeland Security. Hoboken:
Wiley and Sons; 2007. Classes of Vulnerabilities and Attacks.

3.1.3.2 MITRE CWE
By 2005, there was a growing recognition among software assurance
practitioners and tool vendors that the sheer number of software vulnerability
lists and taxonomies was beginning to degrade their usefulness. The users of
such lists and taxonomies either had to arbitrarily commit to only one or spend
an increasing amount of time and effort to—

u Pinpoint the software-specific vulnerabilities in larger security
vulnerabilities lists

u Correlate, rationalize, and fuse the different names, definitions, and
classifications assigned to the same vulnerabilities.

The MITRE CVE [38] project had already made significant progress
in addressing the second of these needs (one reason why CVE was being
increasingly adopted by vulnerability assessment tool vendors and computer
and cyber security incident response teams).

Influenced in part by the success of the CVE, Robert Martin, MITRE’s
project lead for the CVE effort, acknowledged the need to map CVE entries
into categories of vulnerability types, thus enabling CVE users to more easily
identify those vulnerabilities of interest to them. To address this need, MITRE
produced a draft Preliminary List of Vulnerabilities Examples for Researchers
(PLOVER) [39] which included in its CVE mapping several vulnerability
categories of interest to software practitioners and researchers. The directors
of the Software Assurance Metrics and Tool Evaluation (SAMATE) program,
spearheaded by Department of Homeland Security (DHS) and NIST (see
Section 6.1.10) and the DHS Software Assurance Program were so enthusiastic
about PLOVER that DHS established and funded the CWE project, [40] which
used PLOVER as a starting point for members of the software assurance
community to collaboratively expand and refine into a dictionary of software-
specific security vulnerability definitions. In addition to PLOVER, CWE derives
vulnerability categories from software and application security taxonomies
such as the Seven Pernicious Kingdoms and the OWASP Top Ten.

http://securesoftware.blogspot.com/2005/12/threat-vulnerabilities-classification.html
http://www.fort-knox.be/files/thesis.pdf

Software Security Assurance State-of-the-Art Report (SOAR) 37

Section 3 Why is Software at Risk?

The CWE is intended to provide “a formal list of software weaknesses”
that is standardized and definitive, as well as a set of classification trees to help
define a taxonomy for categorizing those weaknesses according to software
flaw. The CWE taxonomy will include elements that describe and differentiate
between the specific effects, behaviors, exploitation mechanisms, and software
implementation details associated with the various weakness categories.

The CWE will provide—
u Common language for describing software security weaknesses in

architecture, design, and code
u Standard metric for software security tools that target those weaknesses
u Common baseline standard for identification, mitigation, and

prevention of weaknesses
u As many real-world examples of the vulnerabilities and weaknesses it

defines as possible.

Future products of the CWE project will include a formal schema defining
a metadata structure to support other software security assurance-related
activities, including software security metrics and measurement, software
security tool evaluations and surveys, and methodologies for validating the
product claims of software security tool vendors.

Though the CWE project is still in its early stages, given the success of the
CVE, it is expected that the CWE will prove similarly useful and will eventually
gain comparable exposure and adoption.

For Further Reading

Robert A. Martin (MITRE Corporation), Being Explicit About Security Weaknesses, CrossTalk: The
Journal of Defense Software Engineering, (March, 2007)
Available from: http://www.stsc.hill.af.mil/CrossTalk/2007/03/0703Martin.pdf

3.1.4 Vulnerability Metadata and Markup Languages
Several vulnerability taxonomists have acknowledged that one of the most
significant consumers of their efforts will be developers of automated
vulnerability assessment and software security testing tools, as well as other
automated tools, such as intrusion detection and prevention systems, application
security gateways and firewalls. The need to characterize and exchange
vulnerability information in standard, machine-readable syntax and formats had
already been widely acknowledged, as demonstrated by the widespread adoption
of the CVE by tool vendors, technology developers, and incident response teams.

Perhaps for the first time in the history of software, a technology has
emerged for which standards are being defined coincidental with, if not
before, implementations emerge—web services. A strong standards-oriented
mentality in the web services industry led to the formation of the Organization
for the Advancement of Structured Information Standards (OASIS), which is a

http://www.stsc.hill.af.mil/CrossTalk/2007/03/0703Martin.pdf

Software Security Assurance State-of-the-Art Report (SOAR)38

Section 3 Why is Software at Risk?

standards body devoted extensively to this technology. This means that for each
challenge in design or implementation of web services applications, there is
likely to be at least one proposed standard (and in some cases, more than one)
to address it. The challenge of expressing and exchanging information about
web service vulnerabilities among vulnerability scanners and other automated
tools resulted in the proposed Application Vulnerability Description Language
(AVDL) standard. AVDL, which was limited to expressing and exchanging
information about application-level vulnerabilities (vs. system- and network-
level vulnerabilities), was adopted by a number of commercial vendors; but
the OASIS Technical Committee responsible for its adoption was disbanded in
January 2006 due to lack of community participation.

The AVDL situation can be attributed, at least in part, to the success
of MITRE’s competing standard, the Open Vulnerability and Assessment
Language (OVAL), described below.

3.1.4.1 OVAL
MITRE Corporation began defining OVAL [41] to provide a standard schema and
language for expressing information about the publicly known vulnerabilities
and exposures defined and categorized in the CVE. OVAL is now a de facto
international standard in which vulnerability information is expressed in both
XML and Structured Query Language (SQL), using standard CVE names and
descriptions. By standardizing a formal XML-based language for capturing
vulnerability and flaw information, OVAL eliminates the multiplicity of
inconsistent descriptions currently written in plaintext that can lead to multiple
redundant analyses and assessments of what often turns out to be the same flaw.

Unlike OASIS’ AVDL, OVAL, because it is intended for use in concert with
the CVE, is not limited to expressing application-level vulnerability information.
Also unlike AVDL, the focus of OVAL is not exchange of such information
between automated tools. Finally, OVAL differs from AVDL in a third significant
way: it specifies a baseline vulnerability assessment methodology that must
be implemented by all OVAL-compliant vulnerability assessment tools and
vulnerability scanners (and which may also be used manually). This three-step
assessment methodology represents a significant portion of OVAL’s intellectual
capital. The three OVAL assessment steps are—

u Collection in a predefined OVAL XML schema of the assessment and
scanning data about target system configuration (e.g., installed
operating system and software applications and their configuration
settings, including registry key settings, file system attributes,
configuration files

u Inspection and checking for specific OVAL-defined vulnerabilities,
configuration issues, and/or patches

u Capture in a predefined OVAL XML schema of reported scan/
assessment results.

Software Security Assurance State-of-the-Art Report (SOAR) 39

Section 3 Why is Software at Risk?

The assessor then uses the output of the OVAL assessment to identify and
obtain appropriate remediation and patch information from the automated
vulnerability assessment/scanning tools, the target system’s vendor(s), and/
or research databases and websites. By defining a standard vulnerability
assessment process, OVAL is intended to increase consistency and repeatability
of both the process and its report results.

In short, OVAL provides XML-based definitions of how to evaluate whether a
specific vulnerability is present or how to check whether a system is configured in a
particular manner. In conjunction with XML Configuration Checklist Data Format
(XCCDF), OVAL can be used to describe low-level system configuration policy.

DoD has formally adopted both OVAL and CVE, and has mandated that
all vulnerability tools acquired by DoD entities must be compatible with both
CVE and OVAL.

3.1.4.2 VEDEF and SFDEF
In 2004, the UK’s National Infrastructure Security Co-ordination Centre (NISCC)
Capability Development and Research (CD&R) Group spun off an IA Metadata
Team to develop a Vulnerability and Exploit Description and Exchange Format
(VEDEF) [42] as part of a broader initiative to define 11 XML-based IA data
exchange formats. VEDEF is also intended to fill what the CD&R Group perceived as
a gap in the OVAL technology: lack of a formatting mechanism to enable “the free
exchange of information on new vulnerabilities and exploits amongst responsible
vendors, Computer Security Incident Response Teams (CSIRT), and their user
communities.” According to the CD&R Group researchers, OVAL was limited in
usefulness to the storage of vulnerability data, but not its active exchange among
automated systems; the CD&R Group researchers also claim that OVAL is more
appropriately categorized as an exchange format for penetration testing data rather
than vulnerability data. As of 2006, MITRE reportedly agreed with NISCC’s position
and with the need for a technology such as VEDEF.

What VEDEF does have in common with OVAL is the objective of defining
a single standard format for expressing vulnerability information, and thereby
eliminating the inconsistent proprietary expressions used across the numerous
tools and CSIRTs in the European Community (EC). The CD&R Group cites
several other European efforts to produce such a standard format; and after
further examination, has determined that no obvious convergence path exist
between the formats. Additionally, no readily apparent business need exists
among the CSIRTs, who are responsible for the development and adoption of the
various formats, for such a convergence. Instead, the group has presented two
options to the EC Task Force-Computer Security Incident Response Teams (TF-
CSIRT) VEDEF WG, to either maintain a mapping between the various formats
or produce a common subset derived from across the formats that could then
be used by tool vendors. What VEDEF is intended to provide, then, is a metadata
interchange format for CVE and OVAL data as well as Common Malware

Software Security Assurance State-of-the-Art Report (SOAR)40

Section 3 Why is Software at Risk?

Enumeration (CME) data (see Section 3.2.3.2), and incident and vulnerability
data in several other formats in use by CSIRTs in Europe and the United States.

The NISCC’s intention from the start of the VEDEF project was to propose
the resulting VEDEF as a standard for adoption by the Internet Engineering
Task Force (IETF). The UK Central Sponsor for Information Assurance (CSIA),
which funds the NISCC efforts, and the NISSC are also coordinating the VEDEF
activities with related efforts by MITRE and NIST in the United States.

Susceptibility and Flaw Definition (SFDEF) is a more recent initiative by
the NISCC, to define a metadata interchange format for CWE data, comparable
to the VEDEF metadata interchange format for CVE, OVAL, and CME data.

For Further Reading

Ian Bryant (VEDEF WG Co-Chair), Vulnerability and Exploit Description and Exchange Format (VEDEF)
TF-CSIRT Progress Update, (January 24, 2006).
Available from: http://www.terena.nl/activities/tf-csirt/meeting18/20060526_TF-CSIRT_VEDEF-WG.pdf
Ibid. VEDEF TF-CSIRT Progress Update, (May 26, 2006).
Available from: http://www.terena.nl/activities/tf-csirt/meeting17/vedef-bryant.pdf

3.2 Threats to Software
The adversary who finds and exploits a vulnerability in commercial software
may be a blackhat seeking to publish a high-profile incident or vulnerability
report that will reported in the news. The software company’s only recourse is to
rush and fix the reported problem, rapidly shipping out a patch. This is a never-
ending cycle, because such blackhats appear to be endlessly motivated by the
combination of ego and desire for intellectual challenge.

Unfortunately, an even greater number of attacks originate from malicious
or criminal (or worse) individuals seeking to harm systems or steal data or money.
Most of their efforts go unreported and all too often undetected. Nor is there any
easy way for end users to recognize, when their personal information is stolen
from their online bank records, that the vulnerability that made the identity theft
possible originated in a faulty piece of code in the online banking application.

When software operates in a networked environment, virtually every
fault becomes a potential security vulnerability. If the attacker can trigger the
particular code path to the fault, that fault becomes a denial of service (DoS)
attack waiting to happen—or worse. Attacks targeting or exploiting software
bugs have increased exponentially with the coincidental proliferation of
software-intensive systems, services, applications, and portals connected to
the Internet and wireless-addressable embedded devices, such as cell phones,
global positioning systems, and even medical devices. All of these systems
are expected to operate continuously, not allowing for interruptions for such
inconveniences as downloading of security patches.

http://www.terena.nl/activities/tf-csirt/meeting18/20060526_TF-CSIRT_VEDEF-WG.pdf
http://www.terena.nl/activities/tf-csirt/meeting17/vedef-bryant.pdf

Software Security Assurance State-of-the-Art Report (SOAR) 41

Section 3 Why is Software at Risk?

Table 3-2 lists four categories of threats to software. Interception is listed
separately here, but can also be seen as a form of subversion: one in which the
usage of the software, rather than the software’s own behavior, deviates from
what is intended.

Table 3-2. Categories of Threats to Software

Threat
Category Description

Property
Compromised Objectives

Sabotage The software’s
execution is suspended
or terminated or
its performance is
degraded
or
The executable is
deleted or destroyed

Availability u DoS

Subversion The software
executable is
intentionally modified
(tampered with or
corrupted) or replaced
by an unauthorized
party
or
Unauthorized logic
(most often malicious
code) is inserted into
the executable

Integrity u Transformation of the
software into a suborned proxy
to do the attacker’s bidding
u Prevent the software from
performing its intended functions
correctly or predictably (a form of
sabotage as well as subversion)

Interception The software (or a
restricted function
within it) is accessed by
an unauthorized entity

Access
Control

u Unauthorized execution
u Illegal copying or theft of the
executable

Disclosure The software’s
technological and
implementation details
are revealed through
reverse engineering
(e.g., decompilation,
disassembly)

Confidentiality u Pre-attack reconnaissance
u Obtain knowledge of
proprietary intellectual property

The sources of threats to software fall into three general categories—
u external attackers
u malicious insiders who intentionally abuse the software
u nonmalicious insiders who intentionally misuse the software, because

they are either frustrated by limitations of correct usage that inhibit
their ability to get their jobs done efficiently, or are simply curious
about how the software might respond to certain inputs or actions.

Software Security Assurance State-of-the-Art Report (SOAR)42

Section 3 Why is Software at Risk?

Threat sources in the latter two categories are consistent with the
malicious, human-made faults described by Avizienis et al. [43]

A number of software security practitioners suggest that there is a fourth
source of threats—the benign insider who accidentally submits input or performs
an action that duplicates an attack pattern. Such accidental incidents usually
originate from the user’s misunderstanding of the software’s functionality and
constraints (such misunderstanding is often exacerbated by poorly designed user
interfaces, lack of input validation, etc.). Because “accidental attack patterns” have
human agency they cannot be termed “hazards” in the sense of “acts of God” or
other non-human-sponsored events. And though they are unintentional, their
outcome is the same as that of intentional attacks. As such, they are considered
threats to the system. Fortunately, as long as they are not implemented only at the
external boundaries of the system (e.g., where the enterprise network interfaces
with the Internet), the security measures that enable software to resist or withstand
intentional threats will also enable them to resist or withstand unintentional ones.

The most frequently cited motivations for threats include military
advantage, terrorism, activism, criminal gain, blackmail and intimidation,
political or economic espionage, competitive advantage, vandalism, and
mischief. Several books have been published that discuss the motivations and
psychology of cyber attackers, including—

u George Mohay, et al., Computer and Intrusion Forensics, (Norwood,
MA: Artech House Publishers, 2006).

u Eric Greenberg, Mission-Critical Security Planner: When Hackers Won’t
Take No for an Answer, (Hoboken, NJ: Wiley Publishing, 2003).

u Winn Schwartau, Cybershock: Surviving Hackers, Phreakers, Identity
Thieves, Internet Terrorists and Weapons of Mass Disruption,
(New York, NY: Thunder’s Mouth Press, 2000).

u Paul A. Taylor, Hackers, (Abingdon Oxford, UK: Routledge, 1999).
u David Icove, Karl Seger, William VonStorch, Computer Crime: A

Crimefighter’s Handbook, (Sebastopol, CA: O’Reilly & Associates, 1995).

NOTE: We have only reviewed those portions of the cited books that address the motivations of attackers and
malicious insiders. The overall quality and accuracy of these books should not be inferred from their inclusion here.

Appendix C discusses the types of software that are most likely to come
under threat.

Also contributing to the problem is the fact that many organizations lack
adequate security programs for their information systems. Deficiencies include
poor management, technical, and operational controls over enterprise information
technology (IT) operations. Such problems in the Federal Government arena have
been repeatedly reported by the Government Accountability Office since at least
1997. While these problems do not pose direct threats to software, they create
an environment in which the levels of concern, resources, and commitment to
security of software-intensive information systems are insufficient.

Software Security Assurance State-of-the-Art Report (SOAR) 43

Section 3 Why is Software at Risk?

3.2.1 Threats From Offshoring and Outsourcing
Commercial software vendors are increasingly outsourcing the development of
some or all of their software products to software houses outside of their borders,
most often in developing countries in Asia, in Eastern Europe, and in South
America. An ACM report, Globalization and Offshoring of Software, defines nine
different reasons that lead corporations to outsource development, including
lower costs of labor or an increased talent pool. In addition, many of these
firms suggest that US immigration policy is prohibitive to bringing in talented
IT professionals from overseas, and that the demand for IT professionals is
increasing so fast that the US labor market cannot keep up with it.

This level of globalization often prevents US software firms from being
able to determine or disclose (due to convoluted supply chain) geographical
locations or national origins of developers (subcontractors or subsidiaries).

The practice of offshore outsourcing is starting to be recognized for
its potential to jeopardize the security of the systems in which the offshore-
developed software components are used. [44] But the concern about software
of unknown pedigree (SOUP) is not limited to software that is known or
suspected to have offshore origins. It is not uncommon for foreign nationals
to work on software products within the United States. It is also conceivable
that some US citizens working on software projects may be subverted. These
concerns are not limited to the US Government—corporations are also
concerned with the risks. In the March 2003 issue of CIO Magazine,
Gary Beach [45] outlined many of the concerns associated with offshoring.

While there are risks associated with offshoring, it is in many ways an
extension of the current business model for the US Government and that of
many other countries, which have long-standing traditions of outsourcing—
i.e., contracting—the development and integration of their software-intensive
systems, including security-critical, safety-critical, and mission-critical systems.
The contractors that build software-intensive systems for the US Government
are usually US Corporations; nevertheless, some of the reduced visibility and
difficulty in establishing, verifying, and sustaining security controls that plague
offshore outsourcing apply equally to software projects within the United States.

The “use commercial off-the-shelf (COTS)” imperative and increasing
acceptance of open source software for use in government projects mean that
the software-intensive systems developed under contract to DoD and other
government agencies necessarily contain large amounts of SOUP, much of
which may have been developed offshore. Many COTS vendors perform some
level of off-shoring. Even for a COTS product developed wholly within the
United States, the company may subsequently be purchased and managed by a
foreign corporation [e.g., the purchase by Lenovo (based in China) of the IBM PC
division, or the attempted purchase by Checkpoint (based in Israel) of Sourcefire].
Increasingly, there are cases where foreign developers or corporations are more
capable than their US counterparts of producing quality software for a particular
market—making a strong case for the benefits of offshoring in those instances.

Software Security Assurance State-of-the-Art Report (SOAR)44

Section 3 Why is Software at Risk?

The SOUP problem is compounded by the fact that it can be difficult to
determine the pedigree of a COTS product. Some COTS vendors may not be
willing to divulge that information, whereas others may be unaware because
some code was acquired through purchasing another company and the
software pedigree may have been lost in the shuffle. Some companies, such
as Blackduck Software and Palamida, are beginning to offer tools that can
determine the pedigree of source code, and in some cases of binary executables,
by comparing the code files to a database of code collected from open source
projects. The efforts to improve the security of acquired software may result in
improved mechanisms for assuring the supply chain.

Similarly, budget and schedule constraints may result in contractor-produced
software that has not undergone sufficient (if any) design security reviews, code
reviews, or software security (vs. functional security) tests. Such constraints are
often the result of poor project management—deviation from the initial project
plan, reluctance of management to refactor schedule and budget estimates, scope
creep, etc. As a result, the essential but low-visibility tasks such as security testing
and evaluation are performed at a minimal level, if at all—minimized in favor of
activities that have more visible and immediate impact, such as implementing new
functionality. Because many software firms and integrators operating in the United
States hire non-US citizens, [46] DoD and other government agencies that contract
with such firms are concerned that software produced by these contractors may be
more vulnerable to sabotage by rogue developers.

DoD and other government agencies are realizing that globalization will
only accelerate the offshoring trend. Significant cost-savings can be gained
from offshoring and, potentially, quality improvements. In fact, in 2003 India
had 75 percent of the world’s Secure Systems Engineering–Capability Maturity
Model (SSE-CMM) Level 5 certified software centers. [47] However, the more
complex software supply chain associated with globalization increases software’s
vulnerability to a rogue developer (either a foreign national or subverted US
developer) implanting malicious logic. As noted in the December 1999 Defense
Science Board (DSB) Task Force on Globalization and Security’s final report [48]—

The principal risk associated with commercial acquisition is
that DoD’s necessary, inevitable, and ever-increasing reliance on
commercial software—often developed offshore and/or by software
engineers who owe little, if any, allegiance to the United States—is
likely amplifying DoD vulnerability to information operations
against all systems incorporating such software.

Commercial software products—within which malicious code can
be hidden—are becoming foundations of DoD’s future command
and control, weapons, logistics, and business operational systems
(e.g., contracting and weapon system support). Such malicious code,

Software Security Assurance State-of-the-Art Report (SOAR) 45

Section 3 Why is Software at Risk?

which would facilitate system intrusion, would be all but impossible
to detect through testing, primarily because of software’s extreme
and ever-increasing complexity. Moreover, adversaries need not
be capable of or resort to implanting malicious code to penetrate
commercial software-based DoD systems. They can readily exploit
inadvertent vulnerabilities (bugs, flaws) in DoD systems based on
commercial software developed by others…. In either case, the trend
toward universal networking increases the risk. Inevitably, increased
functionality means increased vulnerability…

Unfortunately, DoD has little if any market or legal leverage to compel
greater security in today’s commercial software market.

Annex IV of the DSB report, entitled Vulnerability of Critical US Systems
Incorporating Commercial Software, provided a more detailed discussion
of the risks associated with commercial software acquisition, and the
recommendations for risk mitigation.

Reports from the Government Accountability Office (GAO) in 2005
and 2006 [49] reinforced the DSB’s message that the software used in US
government systems is increasingly being developed by outsourced entities,
including entities in countries whose governments have ambivalent or even
adversarial relations with the United States. GAO found that “the combination
of technological advances, available human capital, and foreign government
policies has created a favorable environment for offshoring.” However, GAO
also found that analysts have a wide range of views of offshoring, leaving some
uncertainty regarding how offshoring affects the US economy. The relevant
excerpts of these GAO reports are included in DHS’s Security in the Software
Life Cycle. It is important to note, however, that GAO has identified government
computer security and procurement as high-risk issues for more than ten years.
Security issues related to the recent offshoring phenomenon can be considered
an extension of these risks. According to the January 2007 update of GAO’s High
Risk Series, [50] DoD supply chain management, acquisition, and contract
management have been considered high risk since 1990.

In Appendix C of its 2005 Hard Problems List, [51] the Infosec Research
Council makes the following observations about the offshoring threat—

u Even domestic production of software is being outsourced to
firms offshore.

u Even at reputable software companies, insiders can be bought to plant
malicious code into key products used by the US Government.

u The focus of security attention for foreign and mobile code seems best
shifted to the challenge of developing trustworthy software in the first
place, and in conducting extensive static analysis of all critical
software—especially foreign and mobile code.

Software Security Assurance State-of-the-Art Report (SOAR)46

Section 3 Why is Software at Risk?

Organizations outside of the US Government are starting to research the
threat of rogue developers to understand and mitigate this threat. Many US
corporations are concerned about rogue offshore developers stealing intellectual
property. In March 2007, the Center for Strategic and International Studies (CSIS)
released Foreign Influence on Software Risks and Responses. [52] According to
the CSIS report, “The global supply chain conflicts with old notions of trust and
security. The United States could ‘trust’ a product that came from US factories
and workers. Many would say that we cannot extend the same degree of trust to
a product that comes from a foreign and perhaps anonymous source.” The CSIS
report notes that while this threat is possible, some common software development
trends reduce the risks associated with rogue developers, including [53]—

u In a distributed development environment, individual groups do not
necessarily know how their code will fit with the rest of the system.

u Companies limit information shared with offshore teams to reduce the
likelihood that intellectual property will be stolen.

u Most companies audit any changes made to code and track who made
that change. Similarly, most companies use authorization software to
limit developers to changing only the code they are responsible for.

u Many companies use some sort of software assurance tool and/or rely
on security review teams for code review and/or security testing.

CSIS provides several suggestions for reducing the risks of foreign
influence. These suggestions range from improving US leadership in advanced
technology to increased R&D to encouraging acquisition efforts to focus on the
software’s assurance rather than on potential foreign influence. In addition,
CSIS recommends improving existing certification processes for software to
address software assurance.

In 2006, the Association for Computing Machinery’s (ACM) Job Migration
Task Force published a report, Globalization and Offshoring of Software, [54]
which outlines a number of risks magnified and created through offshoring. These
findings mirror those of other organizations. Businesses engaging in offshoring
increase the risk of intellectual property theft, failures due to longer supply
chains, and complexity introduced by conflicting legal arguments. Similarly, US
Government participation in offshoring increases risks to national security: the use
of offshoring for COTS technologies makes it difficult to determine the pedigree of
code, potentially allowing hostile nations or nongovernmental hostile agents
(e.g., terrorists and criminals) to compromise these systems.

The report recommends that businesses and nations employ strategies to
mitigate these risks—

u Security and data privacy plans certified to meet certain standards
u No outsourcing of services without explicit customer approval
u Careful vetting of offshore provider
u Encrypted data transmissions and tight access controls on databases to

minimize inappropriate access by offshore operations

Software Security Assurance State-of-the-Art Report (SOAR) 47

Section 3 Why is Software at Risk?

u Stronger privacy policies and investment in research for strong
technical methods to secure data and systems

u Nations in particular should implement bilateral and international
treaties on correct handling of sensitive data and security compromises.

As shown by the ACM and CSIS, many corporations have concerns similar
to those of the US Government in regard to outsourcing and offshoring. In fact,
many of the access control measures discussed in Appendix E, Section E.3, are
being applied to prevent rogue developers from stealing intellectual property.
In particular, limiting developer access to the code base and reviewing all code
before it is committed are necessary to adequately protect intellectual property
and assure the software security. However, the goal for intellectual property
protection is to limit the information that the outsourced developers receive,
whereas the goal for security is to ensure that they are not supplying malicious
code—so the practices currently employed may need to be modified slightly
to provide adequate protection from both threats. Also, ACM, CSIS, and the
US Government agree that existing software certification mechanisms are
inadequate to assure software security.

A task force of the DSB is preparing a report that is expected to suggest
a variety of foreign pedigree detection measures and constraints and
countermeasures for SOUP used by the US Government. However, the report
will apparently stop short of stating that all software acquired by US defense
agencies and military services should originate in the United States.

Offshoring firms are working to alleviate these concerns lest large software
vendors stop relying on them. These firms increasingly employ security practices
such as International Standards Organization (ISO)-certified security processes
(e.g., ISO 17799 and ISO 26001), strict access controls, IPSec virtual private
networks for communicating with customers, nondisclosure agreements, and
background checks [55]. In general, these strategies are geared more towards
preventing intellectual property theft—but this shows that these firms are willing
to alter their practices to satisfy their customers. In the future, offshoring firms
may implement more stringent protections against rogue developers on their
own. In fact, it is possible that enough demand will cause the offshoring market
to address the rogue developer concern. Outsource2India, an outsourcing
management firm, is certain security will be adequately addressed by Indian
firms because “in the instance of a single security breach, the publicity created
will not only destroy the reputation of the concerned company, but of India’s well
established name as the foremost outsourcing destination.” [56]

In summary, offshore sourcing of software products and outsourcing of
software development services pose the following potential problems—

u Presence of SOUP in software systems built from outsourced
components makes assurance of the dependability and security of that
software very difficult.

Software Security Assurance State-of-the-Art Report (SOAR)48

Section 3 Why is Software at Risk?

u Software developers in developing countries, such as India, the
Philippines, China, and Russia, are frequently subject to government
influence, pressure, or direct control.

u It is difficult to obtain verified knowledge of developer identities or to
achieve developer accountability; in the case of COTS and open source
software (OSS) software, these are often impossible to obtain.

For Further Reading

Ellen Walker (DACS), “Software Development Security: A Risk Management Perspective”. DoD
SoftwareTech News 8, no. 2 (July 2, 2005).
Available from: http://www.softwaretechnews.com/stn8-2/walker.html

3.2.2 When are Threats to Software Manifested?
As noted in the DHS’s draft Security in the Software Life Cycle, threats to software
dependability can manifest during the software’s development, distribution,
deployment, or operation.

The source of threats to software under development is primarily insiders,
usually from a rogue developer who wishes to sabotage or subvert the software
by tampering with or corrupting one or more of the following—

u Software requirements, design, or architecture
u Source code or binary components (custom-developed or acquired)
u Test plan or test results
u Installation procedures or configuration parameters
u End user documentation
u Tools or processes used in developing the software.

A rogue developer does not necessarily have to belong to the organization
that is distributing or deploying the software system. That person could work
for one of the commercial software vendors or open source development teams
whose components were acquired for use in the software system.

With so much development work being outsourced to smaller or foreign
companies or through acquisitions and mergers by large software development
firms, it is often difficult, if not impossible, to discover where software was actually
built. SOUP is being distributed by well-known commercial software companies
and integrators. SOUP is often used in critical software systems in the Federal
Government, DoD, and critical infrastructure companies. The insider threat is not
limited to rogue developers within the corporation that built the software—the
SOUP problem makes it impossible to know exactly who is responsible for creating
most of the components used in DoD and other government software systems.

Threats to software during its distribution may originate from the
distributor (e.g., inclusion of hidden malicious logic in the executable when
it is moved to the distribution/download server or copied to the distribution
medium). Or such threats may come from external attackers who intercept and

http://www.softwaretechnews.com/stn8-2/walker.html

Software Security Assurance State-of-the-Art Report (SOAR) 49

Section 3 Why is Software at Risk?

tamper with download transmissions, or use cross-site scripting to redirect
unsuspecting software customers to malicious download sites.

Threats to software during its operation can come from either insiders
(authorized users) or external attackers. They are usually targeted at
software systems that are accessible via a network and that contain known
vulnerabilities that attackers understand how to exploit.

Fortunately, it appears that so far, the software industry, though highly
globalized and drawing on a geographically diverse workforce, is implementing
controls and extraordinary means to protect the integrity of their source code to
ensure that it is not tainted with open source or unauthorized components. The
design, implementation, and daily execution of global supply chains of many
software firms involve a rigorous quality/risk management process.

3.2.3 How are Threats to Software Manifested?
Threats to software are manifested in two basic ways—

u Human attackers who target or exploit vulnerabilities
u Execution of malicious code embedded or inserted in the software.

In the former case, the attacker may directly attack the software that is his
or her ultimate target, or may attack something contiguous to that software—
either a component of the software’s execution environment, or of an external
system that interoperates with the targeted software.

In the latter case, the malicious code acts as a kind of proxy on behalf of
the attacker, to cause the software to operate in a manner that is inconsistent
with its specification and its users’ expectations, but which achieves some
objective of the attacker who originally planted or delivered the malicious code.

3.2.3.1 Common Attacks and Attack Patterns
Common attacks and attack patterns have been widely studied and well
documented for operating systems, network devices, database management
systems, web applications, and web services, but have not yet been well
established for software-specific based attacks. The root cause for the majority
of the application, network, and operating system vulnerabilities exists in
flaws inherent in the software code itself. Software security attack patterns are
currently being researched and developed, and are being designed to expose
exploited code development flaws and to describe the common methods,
techniques, and logic that attackers use to exploit software.

Technologically, software attack patterns are a derivative of the software
design patterns used by developers when architecting code. Instead of focusing
on specifying desirable features or attributes for software, attack patterns attempt
to describe the mechanisms used to compromise those features and attributes.
The following is an example of an attack pattern for a buffer overflow: [57]

Software Security Assurance State-of-the-Art Report (SOAR)50

Section 3 Why is Software at Risk?

Buffer Overflow Attack Pattern:
Goal: Exploit buffer overflow vulnerability to perform malicious function on
target system
Precondition: Attacker can execute certain programs on target system
Attack: and

1. Identify executable program on target system susceptible to buffer
overflow vulnerability

2. Identify code that will perform malicious function when it executes
with program’s privilege

3. Construct input value that will force code to be in program’s address space
4. Execute program in a way that makes it jump to address at which

code resides

Postcondition: Target system performs malicious function

Attack patterns are being used in the education of developers and in the
development of risk assessments and threat models for software systems.

The first notable effort to enumerate attack patterns that specifically target
software (rather than data or networks) was documented by Greg Hoglund and
Gary McGraw in their book, Exploiting Software: How to Break Code. [58] The
authors identified 48 software-based attack patterns and provided detailed
explanations and examples of each. Since this publication, there have been several
attempts at categorizing and classifying software based attack patterns, including—

u CAPEC: Initiated by the DHS Software Assurance Program in 2006, the
Common Attack Pattern Enumeration and Classification (CAPEC)
project will define a standard taxonomy of definitions, classifications,
and categorizations of software-targeting attack patterns. The first draft
CAPEC taxonomy is expected to be released in 2007.

u WASC Threat Classification: An effort by members of Web Application
Security Consortium (WASC) to classify and describe security threats to
web applications. The main objective of the threat classification effort
is “to develop and promote industry standard terminology for
describing these issues. Application developers, security professionals,
software vendors, and compliance auditors will have the ability to
access a consistent language for web security related issues.”

u SearchSecurity.com Web Application Attacks Learning Guide: [59] An
informal taxonomy of web application and web service attacks that is
tutorial in nature. It is essentially a compendium of attack-related
information (including definitions and descriptions of individual
categories of attacks, and recommended attack countermeasures; the
Guide also provides general application security recommendations).
Authored by SearchSecurity.com editors and contributors, the Guide
includes material from numerous other print and online sources.

Software Security Assurance State-of-the-Art Report (SOAR) 51

Section 3 Why is Software at Risk?

For Further Reading

US CERT, Attack Patterns, (Washington, DC: US CERT)
Available from: https://buildsecurityin.us-cert.gov/daisy/bsi/articles/knowledge/attack.html

3.2.3.2 Malicious Code
In Guidance for Addressing Malicious Code Risk, National Security Agency (NSA)
defines malicious code, or malware, as—

Software or firmware intended to perform an unauthorized process
that will have adverse impact on the confidentiality, integrity,
availability or accountability of an information system. Also known as
malicious software.

 Significant amounts of activity and effort in the software security
assurance community are directed towards defining techniques and developing
tools for the detection and eradication of malicious code, during both the
development and deployment phases of the software/system life cycle, and
during software/system operation.

Recently, the DHS Software Assurance Program has shone a light on
the threat of malicious code to the dependability of software and systems by
establishing a Malware WG (described in Section 6.1.9).

More recently, MITRE’s CME initiative has begun working to define a
standard set of identifiers for both common and new malicious code threats.
CME is not attempting to replace individual virus scanner vendor and test tool
vendor designations for viruses and other forms of malware. Instead, through
CME, MITRE seeks to foster the adoption of a shared, neutral indexing capability
for malware that will mitigate public confusion arising from malware incidents.

For Further Reading

malware.org v.4.0.
Available from: http://www.malware.org
SANS Institute, Malware FAQ [frequently asked questions], (August 27, 2004).
Available from: http://www.sans.org/resources/malwarefaq
iDefense WebCast, Rootkits and Other Concealment Techniques in Malicious Code.
Available from: http://complianceandprivacy.com/AV-Media/iDefense-rootkits-malicious-code-replay.html
Bryan Sullivan (SPI Dynamics), Malicious Code Injection: It’s Not Just for SQL Anymore.
Available from: http://www.spidynamics.com/spilabs/education/articles/code-injection.html

3.2.3.2.1 Anti-Malware Guidance
Several organizations and individuals have published guidance on how to address
the malicious code threat. A great deal of this guidance is directed at system and
network administrators, computer security incident response teams, and in
some cases, desktop system end users. The focus is primarily or exclusively on

https://buildsecurityin.us-cert.gov/daisy/bsi/articles/knowledge/attack.html
http://www.malware.org
http://www.sans.org/resources/malwarefaq
http://complianceandprivacy.com/AV-Media/iDefense-rootkits-malicious-code-replay.html
http://www.spidynamics.com/spilabs/education/articles/code-injection.html

Software Security Assurance State-of-the-Art Report (SOAR)52

Section 3 Why is Software at Risk?

prevention of and incident response to virus and worm “infections” and spyware
insertions in operational systems. Typical of such guidance are NIST Special
Publication (SP) 800-83, Guide to Malware Incident Prevention and Handling, and
other anti-malware guidance published by NIST; the NISCC’s Mitigating the Risk
of Malicious Software; the online newsletter Virus Bulletin; [60] and Skoudis and
Zeltser’s book, Malware: Fighting Malicious Code.

This said, a small but growing number of guidance publications are
intended also or exclusively for developers and/or integrators, and focus on
malicious code insertion during the software development process. In June
2006, NSA’s Malicious Code Tiger Team (established by the NSA Information
Systems Security Engineering organization, with members also invited from
the NSA Center for Assured Software) began work on Guidance for Addressing
Malicious Code Risk. The primary purpose of this document is to provide
guidance on which safeguards and assurances should be used throughout the
software life cycle to reduce—

u The likelihood the malicious code will be inserted in software
under development

u The impact (in terms of extent and intensity of damage) of malicious
code that is present in software in deployment.

This guidance is intended, at a minimum, to make an adversary work harder
and take more risks to mount a successful malicious code attack. Malicious
code for which this guidance is aimed can take many forms, depending on an
attacker’s motives, accessibility, and the consequences of getting caught. The
guidance describes protection mechanisms that may prevent not only current
malicious code attacks, but as-yet-undefined future attacks.

The software development life cycle in Guidance for Addressing Malicious
Code Risk is organized according to ISO/IEC 12207, Software Life Cycle Processes.
ISO/IEC 12207 and 15288, System Life Cycle Processes, are also being used to
define the life cycle in DoD’s systems assurance guidebook (see Section 6.1.1 for a
description), which will provide easy traceability between these two documents.

The document’s express audience is DoD software and system development
organizations. It provides guidance for mitigating the threat of malicious code
in systems developed for use by DoD, including national security systems.
While the guidance is applicable for all types of DoD software, the scenarios and
associated levels of precaution in the document are limited to security-enforcing
and security-relevant [61] software used under a variety of environmental and
operational conditions. However, while it is intended primarily for DoD, the
document, which was published in April 2007, is available in the public domain
through the NSA website (http://www.nsa.gov).

http://www.nsa.gov

Software Security Assurance State-of-the-Art Report (SOAR) 53

Section 3 Why is Software at Risk?

For Further Reading

Gary McGraw, Greg Morrisett, Attacking Malicious Code: A Report to the Infosec Research Council.,
final report, (Infosec Research Council (IRC) Malicious Code Infosec Science and Technology Study Group,
September/October, 2000).
Available from: http://www.infosec-research.org/docs_public/ISTSG-MC-report.pdf or
http://www.cigital.com/irc/ or http://www.cs.cornell.edu/home/jgm/cs711sp02/maliciouscode.pdf
Edward Skoudis, Thwarting the Ultimate Inside Job: Malware Introduced in the Software Development
Process, SearchSecurity.com. (circa April 1, 2004).
Available from: http://searchappsecurity.techtarget.com/tip/0%2C289483%2Csid92_gci1157960%2C00.html
Rodney L. Brown, (University of Houston at Clear Lake), Non-Developmental Item Computer
Systems and the Malicious Software Threat, (circa April, 1991).
Available from: http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19910016319_1991016319.pdf
Donald J. Reifer, et al., (Reifer Consultants Inc.), COTS-Based Software Systems, (Springer; 2005).
Understanding Malicious Content Mitigation for Web Developers. CMU CERT Coordination Center.
Available from: http://www.cert.org/tech_tips/malicious_code_mitigation.html
Sam Nitzberg, et al., (InnovaSafe, Inc.), Trusting Software: Malicious Code Analyses, (InnovaSafe,
Inc). Available from: http://www.innovasafe.com/doc/Nitzberg.doc
NISSC, Final Report, The Importance of Code Signing, Report no. 01089, TN02/2005 (NISCC,
December 14, 2005).
Available from: http://www.niscc.gov.uk/niscc/docs/re-20051214-01089.pdf
In addition, Guidance for Addressing Malicious Code Risk will be published on the NSA website:
Available from:(http://www.nsa.gov) later in 2007.

3.2.3.2.2 Anti-Malware Education
Academic curricula are also beginning to reflect the significance of malicious
software to the security and dependability of software-intensive systems,
and particularly network-based systems. Courses on computer, system,
information, network, cyber, and Internet security; information assurance;
intrusion detection; attacks and countermeasures; etc., routinely include
lectures and readings on malicious code, albeit often focusing predominantly
(if not exclusively) on the varieties that are typically delivered/replicated over
networks (e.g., viruses, worms, and increasingly, spyware).

More recently, courses that focus solely on malicious code have begun to
emerge, such as the “Malware Seminar” at University of Virginia, “Computer Virus
and Malicious Software” at the Rochester Institute of Technology, “Mobile Code
Security” at Syracuse University, “Malicious Code and Forensics” at Portland
State University (Oregon), and “Malicious Software” at Capitol College (Laurel,
Maryland)—though again, the focus is often predominantly on network delivered/
replicating varieties and operational detection, prevention, and recovery (vs.
detection of malicious logic inserted into software under development).

With tongue in cheek, Scott Craver, an assistant professor in the Department
of Electrical and Computing Engineering at Binghamton University (New York)
and a specialist in cryptography, information hiding (steganography), digital
watermarking, and digital rights management, established what may be the
world’s only security-related programming contest—the Underhanded C Contest.
To date, there have been two Underhanded C Contests, [62]—2005 and 2006—in

http://www.infosec-research.org/docs_public/ISTSG-MC-report.pdf
http://www.cigital.com/irc/
http://www.cs.cornell.edu/home/jgm/cs711sp02/maliciouscode.pdf
http://searchappsecurity.techtarget.com/tip/0%2C289483%2Csid92_gci1157960%2C00.html
http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19910016319_1991016319.pdf
http://www.cert.org/tech_tips/malicious_code_mitigation.html
http://www.innovasafe.com/doc/Nitzberg.doc
http://www.nsa.gov

Software Security Assurance State-of-the-Art Report (SOAR)54

Section 3 Why is Software at Risk?

which developers were challenged to write C-language programs that appeared to
be innocuous, but which in fact implemented malicious behavior. Submissions to
the Underhanded C Contest and to a number of other not specifically malicious
code-oriented Obfuscated Code Contests demonstrate how much complexity can
be intentionally written into source code so that even a skilled code reviewer will
not be able to determine the code’s true purpose.

Section 7.2 provides a general discussion of academic education and
professional training and certification in the software security assurance domain.

3.2.3.2.3 Anti-Malware Research
Researchers in academia and in the antivirus/antispyware industry are
investigating more effective, holistic technological solutions for reducing
malicious code threats to software in deployment. Stephen Posniak delivered
a presentation entitled Combined Hardware/Software Solutions to Malware
and Spam Control [63] to the 2005 Virus Bulletin Conference that provides
a reasonable survey of current solutions in this area. The problem of
detection and eradication of malicious code embedded in software during its
development is also being investigated by several researchers.

From 2002–2003, researchers in the Princeton [University] Architecture
Laboratory for Multimedia and Security published the results of their efforts to
develop a hardware-based secure return address stack [64] that would prevent
malicious code insertions that resulted from buffer overflows, and a runtime
execution monitor [65] that would detect and prevent execution of malicious
code embedded in operational software.

More recently, the Function Extraction for Malicious Code (FX/MC)
project [66] within the Survivable Systems Engineering group at the Carnegie
Mellon University Software Engineering Institute (CMU SEI) has applied
formal methods and function theory to the problem of performing automated
calculations of program behaviors to define behavior signatures, with the goal
of obtaining precise information on structure and functionality of malicious
code so that anti-malware strategies can be more effectively tailored. The SEI
researchers intend for the core FX technology to be more widely applicable to
the analysis of software, e.g., for the detection of errors and vulnerabilities, and
for the validation of the “goodness” of authentication, encryption, filtering, and
other security functions implemented by software.

Researchers in New Mexico Tech’s IA Center of Excellence are researching
advanced static analysis techniques for detection of malicious code and analysis
of malicious executables.[67]

The Hiding and Finding Malicious Code [68] project at the Johns Hopkins
University did not attack the problem of detecting and preventing malicious code
head on, but instead investigated techniques for creating and hiding malicious
code, with the objective of gaining a better understanding of such techniques in
order to enable the creation of more effective malicious code detection measures.

Software Security Assurance State-of-the-Art Report (SOAR) 55

Section 3 Why is Software at Risk?

A great deal of malicious code research is being done under the larger
umbrella of research into security and trustworthiness of electronic and
Internet-based voting.

References

15 We have adapted Ross Anderson’s definition of “system” in Ross Anderson, Security Engineering: a
Guide to Building Dependable Systems (New York: John Wiley and Sons, 2001). “A software-intensive
system is a collection of products or components predominantly implemented in software.” These
products/components may include application, data, communications, middleware, and operating
system products/components as well as the firmware and hardware products/components of the
physical platforms on which those software components are hosted. According to Anderson, a system
also includes the people that interact with, oversee, regulate, or otherwise observe the system, and the
processes, procedures, policies that govern and in� uence the operations of the system’s technological
and non-technological elements. For purposes of this document, unless otherwise stated, “system”
refers to the technological elements of the system, and excludes the non-technological elements.

16 Andy Ozment, “Research Statement” [web page] (Cambridge, UK: University of Cambridge, ca. 2006).
Available from: http://www.cl.cam.ac.uk/~jo262/research.html

17 This is not a new problem. It was documented by Andy Ozment of the University of Cambridge in his
research statement, and almost 10 years earlier in virtually identical language by Ed Felten, et al. in
Edward Felten and Drew Dean (Princeton University), Secure Mobile Code: Where Do We Go From
Here?, in Proceedings of the DARPA Workshop on Foundations for Secure Mobile Code, March 1997.
Felten and Dean wrote, “The market is (for the moment, at least) asking for feature-packed, quickly
developed, insecure software. Until the market changes, little progress will be made commercially.”

18 Ryan Naraine, “Paying for Flaws Pays Off for iDefense,” eWeek (March 3, 2005).
Available from: http://www.eweek.com/article2/0,1759,1772418,00.asp

19 Organization for Internet Safety (OIS), “Guidelines for Security Vulnerability Reporting and Response,
V2.0” [web page] (Houston, TX: OIS).
Available from: http://www.oisafety.org/guidelines/

20 Robert P. Abbott, et al. (National Bureau of Standards), The RISOS Project: Security Analysis and
Enhancements of Computer Operating Systems, interagency report no. NBSIR 76-1041 (Gaithersburg,
MD: National Bureau of Standards, April 1976).

21 Carl E. Landwehr, et al., A Taxonomy of Computer Program Security Flaws, With Examples, report no.
NRL/FR/5542-93-9591 (Washington, DC: Naval Research Laboratory, November 19, 1993).
Available from: http://chacs.nrl.navy.mil/publications/CHACS/1994/1994landwehr-acmcs.pdf.

 Also published in: ACM Computing Surveys 26, no.3 (September 1994).
Available from: http://doi.acm.org/10.1145/185403.185412

22 Bishop’s paper was published only a few months before Taimur Aslam published his master’s
dissertation with a nearly identical title: Taimur Aslam, “A Taxonomy of Security Faults in the Unix
Operating System” (PhD dissertation, Purdue University, Lafayette, IN, August 1995).

23 Matt Bishop and D.A.. Bailey, A Critical Analysis of Vulnerability Taxonomies, tech. report no. CSE-96-
11 (Davis, CA: University of California, September 1996).
Available from: http://seclab.cs.ucdavis.edu/projects/vulnerabilities/scriv/ucd-ecs-96-11.pdf or
http://www.cs.ucdavis.edu/research/tech-reports/1996/CSE-96-11.pdf.

 In late 2005, the anonymous author of the “Writing Secure Software” blog published a less formal
analysis of the various vulnerability taxonomies in circulation. See “Trusted Consultant, Threat and
Vulnerabilities Classification, Taxonomies,” “Writing Secure Software” blog, December 26, 2006.
Available from: http://securesoftware.blogspot.com/2005/12/threat-vulnerabilities-classification.html

http://www.cl.cam.ac.uk/~jo262/research.html
http://www.eweek.com/article2/0,1759,1772418,00.asp
http://www.oisafety.org/guidelines/
http://chacs.nrl.navy.mil/publications/CHACS/1994/1994landwehr-acmcs.pdf
http://doi.acm.org/10.1145/185403.185412
http://seclab.cs.ucdavis.edu/projects/vulnerabilities/scriv/ucd-ecs-96-11.pdf
http://www.cs.ucdavis.edu/research/tech-reports/1996/CSE-96-11.pdf
http://securesoftware.blogspot.com/2005/12/threat-vulnerabilities-classification.html

Software Security Assurance State-of-the-Art Report (SOAR)56

Section 3 Why is Software at Risk?

24 Wenliang Du and Aditya Mathur, “Categorization of Software Errors That Led to Security Breaches,” in
Proceedings of the National Information Systems Security Conference, 1998.
Available from: http://www.cis.syr.edu/~wedu/Research/paper/nissc98.ps

25 “OWASP Top Ten Project” [web page] (Columbia, MD: Open Web Application Security Project).
Available from: http://www.owasp.org/index.php/OWASP_Top_Ten_Project

26 SANS Institute, How to Eliminate the Ten Most Critical Internet Security Threats, Version 1.32
(Bethesda, MD: The SANS Institute, January 18, 2001).
Available from: http://www.sans.org/top20/2000/10threats.doc or
http://www.sans.org/top20/2000/10threats.rtf.

 In 2004, SANS published a revised version: SANS Top 20 Internet Security Vulnerabilities, Version 5.0
(Bethesda, MD: The SANS Institute, October 8, 2004).
Available from: http://www.sans.org/top20/2004/

27 Frank Piessens (Catholic University of Leuven), A Taxonomy (With Examples) of Software Vulnerabilities
in Internet Software, report no. CW 346 (Leuven, Belgium: Catholic University of Leuven, 2002).
Available from: http://www.cs.kuleuven.ac.be/publicaties/rapporten/cw/CW346.abs.html

28 The MITRE Corporation, “CVE: Common Vulnerabilities and Exposures” [website] (Bedford, MA:
MITRE). Available from: http://cve.mitre.org/

29 Fortify Software Inc., “CLASP: Comprehensive, Light Application Security Process” [web page]
(Palo Alto, CA: Fortify Software Inc.)
Available from: http://www.fortifysoftware.com/security-resources/clasp.jsp

30 Michael Howard, David LeBlanc, and John Viega, 19 Deadly Sins of Software Security: Programming
Flaws and How to Fix Them, 1st ed. (Emeryville, CA: McGraw-Hill/Osborne, 2005).

31 Katrina Tsipenyuk, Brian Chess, and Gary McGraw, “Seven Pernicious Kingdoms: a Taxonomy of
Software Security Errors,” IEEE Security and Privacy 6 (November–December 3, 2005).
Available from: http://vulncat.fortifysoftware.com/docs/tcm_taxonomy_submission.pdf

32 Gary McGraw (Digital), “Software Security: Building Security In,” [website] (Herndon, VA).
Available from: http://www.swsec.com/

33 Sam Weber, Paul A. Karger, and Amit Paradkar, “A Software Flaw Taxonomy: Aiming Tools at Security,”
ACM SIGSOFT Software Engineering Notes 4 (July 30, 2005).
Available from: http://portal.acm.org/citation.cfm?id=1082983.1083209&coll=GUIDE&dl=GUIDE&CFID=
15151515&CFTOKEN=6184618

34 Herbert Thompson and Scott Chase, The Software Vulnerability Guide (Boston, MA: Charles River
Media, 2005).

35 Fortify Software, “Fortify Taxonomy: Software Security Errors” [web page] (Palo Alto, CA: Fortify Software).
Available from: http://www.fortifysoftware.com/vulncat/

36 Mark Dowd, John McDonald, and Justin Schuh, The Art of Software Security Assessment, Identifying
and Preventing Software Vulnerabilities, 1st ed. (Boston, MA: Addison-Wesley Professional, 2006).

37 “OWASP Top Ten Project” [web page], op cit.

38 “CVE” [website], op cit.

39 Steve Christey (MITRE Corporation), PLOVER: Preliminary List of Vulnerability Examples for
Researchers, version 0.14 (Bedford, MA: The MITRE Corporation, August 2, 2005).
Available from: http://www.cve.mitre.org/docs/plover/

40 “CWE: Common Weakness Enumeration” [website] (Bedford MA: The MITRE Corporation).
Available from: http://cwe.mitre.org/

41 “OVAL: Open Vulnerability Assessment Language” [website] (Bedford MA: The MITRE Corporation).
Available from: http://oval.mitre.org/

http://www.cis.syr.edu/~wedu/Research/paper/nissc98.ps
http://www.owasp.org/index.php/OWASP_Top_Ten_Project
http://www.sans.org/top20/2000/10threats.doc
http://www.sans.org/top20/2000/10threats.rtf
http://www.sans.org/top20/2004/
http://www.cs.kuleuven.ac.be/publicaties/rapporten/cw/CW346.abs.html
http://cve.mitre.org/
http://www.fortifysoftware.com/security-resources/clasp.jsp
http://vulncat.fortifysoftware.com/docs/tcm_taxonomy_submission.pdf
http://www.swsec.com/
http://portal.acm.org/citation.cfm?id=1082983.1083209&coll=GUIDE&dl=GUIDE&CFID=15151515&CFTOKEN=6184618
http://portal.acm.org/citation.cfm?id=1082983.1083209&coll=GUIDE&dl=GUIDE&CFID=15151515&CFTOKEN=6184618
http://www.fortifysoftware.com/vulncat/
http://www.cve.mitre.org/docs/plover/
http://cwe.mitre.org/
http://oval.mitre.org/

Software Security Assurance State-of-the-Art Report (SOAR) 57

Section 3 Why is Software at Risk?

42 “VEDEF: Vulnerability and Exploit Description and Exchange Format” [website] (Amsterdam, The
Netherlands: Trans European Research and Academic Networks Association [TERENA] Task Force-
Computer Security Incident Response Team [TF-CSIRT]).
Available from: http://www.vedef.org/ or
http://www.secdef.org/vedef/. (As of 2 April 2007, neither of these web sites was accessible,
apparently due to reconfigurations in progress.)

43 Algirdas Avizienis, et al., “Basic Concepts and Taxonomy of Dependable and Secure Computing,” IEEE
Transactions on Dependable and Secure Computing 1, no. 1 (January–March 2004).

44 GAO, Defense Acquisitions: Knowledge of Software Suppliers Needed to Manage Risk, report no.
GAO-04-678 (Washington, DC: GAO, May 2004).
Available from: http://www.gao.gov/docdblite/summary.php?rptno=GAO-04-678&accno=A10177, and

 Defense Science Board, Final Report of the Defense Science Board Task Force on Globalization and
Security, annex IV of Vulnerability of Essential US Systems Incorporating Commercial Software
(Washington, DC: OUSD/AT&L, December 1999).
Available from: http://www.acq.osd.mil/dsb/reports/globalization.pdf

45 Gary Beach, “Offshore Costs,” CIO Magazine (March 1, 2003).
Available from: http://www.cio.com/archive/030103/publisher.html

46 Such foreign employees may be holders of permanent resident green cards or of temporary worker [H1-
B], business [B-1], student [F-1], or exchange [J-1] visas. Note that Federal procurement rules, except
for those covering national security systems, are not allowed to restrict vendors to employing only US
citizens. Nonetheless, since September 11, 2001, immigration restrictions have been imposed that
have greatly curtailed the number of foreign workers admitted into the United States from countries
whose governments are hostile to the United States. As a result, many firms that used to hire such
workers have begun complaining about the negative impact such restrictions are having in terms of the
available labor pool and reduced productivity.

47 Navyug Mohnat, “Why ‘India Inside’ Spells Quality,” DataQuest (October 27, 2003).
Available from: http://www.dqindia.com/content/advantage/103102703.asp

48 Defense Science Board, Final Report of the Defense Science Board Task Force on Globalization
and Security, op cit.

49 GAO. Offshoring of Services: an Overview of the Issues, report no. GAO-06-5 (Washington, DC: GAO,
November 2005).
Available from: http://www.gao.gov/docdblite/summary.php?rptno=GAO-06-5&accno=A42097, and

 GAO, Offshoring: US Semiconductor and Software Industries Increasingly Produce in China and India,
report no. GAO-06-423 (Washington, DC: GAO, September 2006).
Available from: http://www.gao.gov/new.items/d06423.pdf

50 GAO, High-Risk Series (Washington, DC: GAO, January 2007).
Available from: http://www.gao.gov/new.items/d07310.pdf

51 IRC, Hard Problems List, Version 2.0, op cit.

52 James A. Lewis, Foreign Influence on Software Risks and Recourse (Washington, DC: Center for
Strategic and International Studies Press, March 2007).
Available from: http://www.csisbookstore.org/index.asp?PageAction=VIEWPROD&ProdID=166

53 Ibid. 20.

54 William Aspray, Frank Mayadas, and Moshe Y. Vardi, eds., Globalization and Offshoring of Software: a
Report of the ACM Job Migration Task Force, report no. ACM 0001-0782/06/0200 (New York, NY:
Association for Computing Machinery, 2006).
Available from: http://www.acm.org/globalizationreport/

http://www.vedef.org/
http://www.secdef.org/vedef/.
http://www.gao.gov/docdblite/summary.php?rptno=GAO-04-678&accno=A10177
http://www.acq.osd.mil/dsb/reports/globalization.pdf
http://www.cio.com/archive/030103/publisher.html
http://www.dqindia.com/content/advantage/103102703.asp
http://www.gao.gov/docdblite/summary.php?rptno=GAO-06-5&accno=A42097
http://www.gao.gov/new.items/d06423.pdf
http://www.gao.gov/new.items/d07310.pdf
http://www.csisbookstore.org/index.asp?PageAction=VIEWPROD&ProdID=166
http://www.acm.org/globalizationreport/

Software Security Assurance State-of-the-Art Report (SOAR)58

Section 3 Why is Software at Risk?

55 Eric Rongley, “Using China for Offshore Software Development,” China Tech News (January 22, 2007).
Available from: http://www.chinatechnews.com/2007/01/22/4882-using-china-for-offshore-software-
development-eric-rongley-ceo-of-bleum/, and

 “IT Infrastructure and Security” [web page] (North Vancouver, British Columbia, Canada: InnoInco).
Available from: http://www.innoinco.com/how_we_work/infrastructure.html

56 “Data Privacy and Security Concerns in Outsourcing” [web page] “India: Outsource2India.”
Available from: http://www.outsource2india.com/why_india/articles/data_privacy.asp

57 Andrew P. Moore, Robert J. Ellison, and Richard C. Linger (Carnegie Mellon University Software
Engineering Institute [CMU SEI]), Attack Modeling for Information Security and Survivability, technical
note no. CMU/SEI-2001-TN-001 (Pittsburgh, PA: CMU SEI, March 2001).
Available from: http://www.sei.cmu.edu/pub/documents/01.reports/pdf/01tn001.pdf

58 Greg Hoglund and Gary McGraw, “Exploiting Software: How to Break Code,” Chapter 2, Boston, MA:
Addison-Wesley, 2004.

59 Stephen Posniak, “Combined Hardware/Software Solutions to Malware and Spam Control” (paper
presented at the Virus Bulletin Conference, October 2003).
Available from: http://csrc.nist.gov/fasp/FASPDocs/network-security/Posniak-VB05.pdf

60 “Virus Bulletin” [website] (Abingdon, Oxfordshire, UK: Virus Bulletin Ltd.).
Available from: http://www.virusbtn.com/

61 “Security relevant” software is a portion of software that (based on system architecture) does not itself
function to enforce system security policy but can subvert the enforcement of it.

62 “The Underhanded C Contest” [website] (Binghamton, NY: Binghamton University).
Available from: http://bingweb.binghamton.edu/~scraver/underhanded/ or
http://www.brainhz.com/underhanded/

63 Posniak, Combined Hardware/Software Solutions to Malware and Spam Control, op cit.

64 Ruby B. Lee, et al., “Enlisting Hardware Architecture to Thwart Malicious Code Injection,” in Proceedings
of the International Conference on Security in Pervasive Computing, March 2003, 237–252.
Available from: http://palms.ee.princeton.edu/PALMSopen/lee03enlisting.pdf

65 A. Murat Fiskiran and Ruby B. Lee, “Runtime Execution Monitoring (REM) to Detect and Prevent
Malicious Code Execution,” in Proceedings of the International Conference on Computer Design,
October 2004: 452–457.
Available from: http://palms.ee.princeton.edu/PALMSopen/fiskiran04runtime.pdf

66 CMU SEI (Pittsburgh, PA) “Function Extraction for Malicious Code (FX/MC)” [web page]
Available from: http://www.cert.org/sse/fxmc.html

67 “Malware Analysis and Malicious Code Detection” [web page] (Socorro: New Mexico Tech Computer
Science Department).
Available from: http://www.cs.nmt.edu/research.html#malware

68 Lucas Ballard, et al., Group 2 Report on Hiding Code (November 11, 2005).
Available from: http://www.cs.jhu.edu/~sdoshi/index_files/Task2.pdf

http://www.chinatechnews.com/2007/01/22/4882-using-china-for-offshore-software-development-eric-rongley-ceo-of-bleum/
http://www.chinatechnews.com/2007/01/22/4882-using-china-for-offshore-software-development-eric-rongley-ceo-of-bleum/
http://www.innoinco.com/how_we_work/infrastructure.html
http://www.outsource2india.com/why_india/articles/data_privacy.asp
http://www.sei.cmu.edu/pub/documents/01.reports/pdf/01tn001.pdf%20
http://csrc.nist.gov/fasp/FASPDocs/network-security/Posniak-VB05.pdf
http://www.virusbtn.com/
http://bingweb.binghamton.edu/~scraver/underhanded/
http://www.brainhz.com/underhanded/
http://palms.ee.princeton.edu/PALMSopen/lee03enlisting.pdf
http://www.cert.org/sse/fxmc.html
http://www.cs.nmt.edu/research.html#malware
http://www.cs.jhu.edu/~sdoshi/index_files/Task2.pdf

Software Security Assurance State-of-the-Art Report (SOAR) 59

Section 3 Why is Software at Risk?

Secure Systems
Engineering

4

Software Security Assurance State-of-the-Art Report (SOAR) 61

Section 4 Secure Systems Engineering

This SOAR focuses primarily on current activities, techniques,
technologies, standards, and organizations that have as their

main objective the production and/or sustainment of secure software.
However, software is typically an element or part of a larger system,
whether it is a software-intensive system or a system that is
composed of both hardware and software elements. The perspective
of this section, then, is that of the systems engineer(s) who seeks to
understand the security issues associated with the software
components of a larger secure system.

As noted in Section 2.2, in defining system, we have adapted Ross
Anderson’s definition by focusing only on the technological elements of a
system, i.e., its hardware, software, and communications components.

Within this section, we will summarize typical issues, topics,
and techniques used by systems engineers to build secure systems,
with a view towards clarifying the relationships between those
issues, topics, and techniques and those that pertain specifically to
secure software development.

Note: Unless otherwise noted, the source for the information in this section is Anderson’s Security Engineering.

According to Anderson—

Security engineering is about building systems to remain dependable
in the face of malice, error, or mischance. As a discipline, it focuses
on the tools, processes, and methods needed to design, implement,
and test complete systems, and to adapt existing systems as their
environment evolves….

Security engineering requires cross-disciplinary expertise,
ranging from cryptography and computer security, to hardware

Software Security Assurance State-of-the-Art Report (SOAR)62

Section 4 Secure Systems Engineering

tamper-resistance and formal methods, to applied psychology,
organizational and audit methods and the law…

Security requirements differ greatly from one system to another. One
typically needs some combination of user authentication, transaction
integrity and accountability, fault-tolerance, message secrecy, and
covertness. But many systems fail because their designers protect the
wrong things, or protect the right things but in the wrong way.

To create a context for discussing the development of secure software,
Section 4.1 describes the technical processes associated with the development
of secure systems, and the relationship between the technical aspects of secure
systems engineering and those of software development as it occurs within
secure systems engineering.

The remaining subsections of Section 4 discuss the technical systems
engineering activities involved in building secure systems:

u Section 4.2 addresses the development of systems requirements.
u Section 4.3 discusses the development of secure systems designs.
u Section 4.4 addresses the integration of subsystem components.
u Section 4.5 discusses testing of systems and subsystems.

To continually improve on the process for developing secure systems,
one must follow a rigorous and secure systems development process, which is
described in Section 4.6 as the Secure Systems Engineering–Capability Maturity
Model (SSE-CMM).

4.1 The Relationship Between Systems Engineering Processes
and Software Engineering Processes
Many process models are available to the systems engineer for developing
the system, such as the waterfall and spiral models. Given that a risk-centric
approach is needed for security engineering, a spiral systems development
model, which is a risk-driven approach for development of products or systems,
is ideal. However, as a mean for understanding the relationships of systems to
software engineering and testing and validation, one of the most illustrative
systems process models is the “Vee” process model conceived by Forsberg and
Mooz, [69] who assert that it depicts the “technical aspect of the project cycle.”
Figure 4-1 is derived from this Vee model to demonstrate the relationship
between secure systems engineering and secure software engineering.

Software Security Assurance State-of-the-Art Report (SOAR) 63

Section 4 Secure Systems Engineering

Figure 4-1. “Vee” Process Model Applied to Secure Systems Engineering

In the Vee model, the left downward side depicts the major technical
phases (reading from left to right) involved in transforming systems
requirements into a functioning software system. The right upward side
depicts the technical phases of testing, integration, and validation associated
with each phase on the left side. The dotted red arrows show how artifacts of
the decomposition and definition phases (e.g., system security requirements
analyses, system security design analyses) provide input to the test cases used
in the integration and verification phases.

The system security analysis phase represents the system requirements
analysis and system design phases of development. System requirements
analysis is described elsewhere in this section. Relative to system design,
systems engineers are responsible for design of a total systems solution. As
discussed in other subsections, to design the system for security, [70] many
hardware and software design options are available. Risk-aware tradeoffs need
to be performed to achieve the right secure system solutions. Many systems
design are at a broad, hierarchical block level.

During the security requirements allocation phase, systems engineers
allocate system requirements to hardware, software, etc. Concerning software
considerations during system design, a recent report by the National Defense
Industrial Association (NDIA), Top Software Engineering Issues within the
Department of Defense and Defense Industry [71], observes that in many
organizations, system engineering decisions are made without full participation

Software Security Assurance State-of-the-Art Report (SOAR)64

Section 4 Secure Systems Engineering

of software engineering. This may result in systems solutions, from a security
perspective, that do not adequately address software faults that cause security
vulnerabilities in the resulting system design.

The requirements allocated to software are then handed-off to software
engineering (and requirements allocated to hardware are handed-off to hardware
engineering) for further software requirements analysis, design, etc. These SDLC
activities, as they pertain to the production of secure software, are discussed in
Section 5. In the Vee diagram, this represents the phases from software security
requirements analysis, down to coding and then up to product integration and test.

Systems engineering then receives finished components from software
and, if applicable, hardware. System engineering is responsible for necessary
subsystem and system integration and test and finally acceptance testing. These
activities are described elsewhere in this section.

4.2 Developing Systems Security Requirements
This section addresses software security requirements engineering. The
methodologies described here are also applicable at the system level.

Users may not be totally aware of the security risks, risks to the mission,
and vulnerabilities associated with their system. To define requirements,
systems engineers may, in conjunction with users, perform a top-down and
bottom-up analysis of possible security failures that could cause risk to the
organization as well as define requirements to address vulnerabilities.

Fault tree analysis for security (sometimes referred to as threat tree or
attack tree analysis) is a top-down approach to identifying vulnerabilities. In a
fault tree, the attacker’s goal is placed at the top of the tree. Then, the analyst
documents possible alternatives for achieving that attacker goal. For each
alternative, the analyst may recursively add precursor alternatives for achieving
the subgoals that compose the main attacker goal. This process is repeated for
each attacker goal. By examining the lowest level nodes of the resulting attack
tree, the analyst can then identify all possible techniques for violating the
system’s security; preventions for these techniques could then be specified as
security requirements for the system.

Failure Modes and Effects Analysis (FMEA) is a bottom-up approach for
analyzing possible security failures. The consequences of a simultaneous failure
of all existing or planned security protection mechanisms are documented, and
the impact of each failure on the system’s mission and stakeholders is traced.

Other techniques for developing system security requirements include
threat modeling and misuse and abuse cases. Both of these techniques
are described in Section 5.2.3.1. Requirements may also be derived from
system security policy models and system security targets that describe the
system’s required protection mechanisms [e.g., the Target of Evaluation (TOE)
descriptions produced for Common Criteria (CC) evaluations].

Software Security Assurance State-of-the-Art Report (SOAR) 65

Section 4 Secure Systems Engineering

Attack tree analyses and FMEAs augment and complement the security
requirements derived from the system’s threat models, security policy models,
and/or security targets. The results of the system security requirements
analysis can be used as the basis for security test case scenarios to be used
during integration or acceptance testing.

4.3 Secure Systems Design
In the design of secure systems, several key design features must be
incorporated to address typical system vulnerabilities: security protocol design,
password management design, access control, addressing distributed system
issues, concurrency control, fault tolerance, and failure recovery. Appendix E
describes security functions that are typically incorporated in secure systems.
This is not meant to be an exhaustive list, but rather to provide illustrative
examples. The following sections discuss two significant design issues with
security implications, which are not directly related to security functionality.

4.3.1 Timing and Concurrency Issues in Distributed Systems
As noted by Anderson, in large distributed systems (i.e., systems of systems),
scale-up problems related to security are not linear because there may be a
large change in complexity. A systems engineer may not have total control or
awareness over all systems that make up a distributed system. This is particularly
true when dealing with concurrency, fault tolerance, and recovery. Problems in
these areas are magnified when dealing with large distributed systems.

Controlling the concurrency of processes (whereby two or more processes
execute simultaneously) presents a security issue in the form of potential
for denial of service by an attacker who intentionally exploits the system’s
concurrency problems to interfere with or lock up processes that run on behalf
of other principals. Concurrency design issues may exist at any level of the
system, from hardware to application. Some examples of and best practices for
dealing with specific concurrency problems, includes—

u Processes Using Old Data (e.g., out of date credentials, cookies):
Propagating security state changes is a way to address this problem.

u Con� icting Resource Updates: Locking to prevent inconsistent updates
(resulting from two programs simultaneously updating the same
resource) is a way to address this.

u Order of Update in Transaction-Oriented Systems and Databases: Order of
arrival and update needs to be considered in transaction-oriented
system designs.

u System Deadlock, in which concurrent processes or systems are waiting for
each other to act (often one process is waiting for another to release
resources): This is a complex issue, especially in dealing with lock
hierarchies across multiple systems. However, note that there are four
necessary conditions, known as the Coffman conditions (first identified by

Software Security Assurance State-of-the-Art Report (SOAR)66

Section 4 Secure Systems Engineering

E.G. Coffman in 1971)[72] that must be present for a deadlock to occur—
mutual exclusion, hold and wait, no preemption, and circular wait.

u Nonconvergence in Transaction-Oriented Systems: Transaction-based
systems rely on the ACID (atomic, consistent, isolated, and durable)
properties of transactions (e.g., the accounting books must balance).
Convergence is a state in transaction systems; when the volume of
transactions subsides, there will be a consistent state in the system. In
practice, when nonconvergence is observed, recovery from failures
must be addressed by the systems design.

u Inconsistent or Inaccurate Time Across the System: Clock synchronization
protocols, such as the Network Time Protocol or Lamport’s logical
locks, can be run to address this issue.

The above list is merely illustrative. A number of other concurrency issues
can arise in software-intensive systems.

4.3.2 Fault Tolerance and Failure Recovery
In spite of all efforts to secure a system, failures may occur because of physical
disasters or from security failures. Achieving system resilience through failure
recovery and fault tolerance is an important part of a system engineer’s job,
especially as it relates to recovery from malicious attacks. Fault tolerance and failure
recovery make denial of service attacks more difficult and thus less attractive.

As noted by B. Selic [73], dealing with faults involves error detection, damage
confinement, error recovery, and fault treatment. Error detection detects that
something in the system has failed. Damage confinement isolates the failure. Error
recovery removes the effects of the error by restoring the system to a valid state.
Fault treatment involves identifying and removing the root cause of the defect.

Failure models of the types of attacks that can be anticipated need to be
developed by the systems engineer. Resilience can then be achieved through
fail-stop processors and redundancy to protect the integrity of the data on a
system and constrain the failure rates.

A fail-stop processor automatically halts in response to any internal failure
and before the effects of that failure become visible. [74]

The systems engineer typically applies a combination of the following to
achieve redundancy at multiple levels.

u Redundancy at the hardware level, through multiple processors,
mirrored disks, multiple server farms, or redundant arrays of
independent disks (RAID).

u At the next level up, process redundancy allows software to be run
simultaneously on multiple geographically distributed locations, with
voting on results. It can prevent attacks where the attacker gets physical
control of a machine, inserts unauthorized software, or alters data.

Software Security Assurance State-of-the-Art Report (SOAR) 67

Section 4 Secure Systems Engineering

u At the next level is systems backup to unalterable media at regular
intervals. For transaction-based systems, transaction journaling can
also be performed.

u At the application level, the fallback system is typically a less capable
system that can be used if the main system is compromised or unavailable.

Note that while redundancy can improve the speed of recovery from a
security incident, none of the techniques described above provide protection
against attack or malicious code insertion.

For Further Reading

“IEEE Computer Society Technical Committee on Dependable Computing and Fault-Tolerance” and “IFIP
WG 10.4 on Dependable Computing and Fault Tolerance” [portal page]
Available from: http://www.dependability.org
Christ Inacio, (CMU SEI), Software Fault Tolerance, (Pittsburgh, PA: CMU SEI, Spring, 1998).
Available from: http://www.ece.cmu.edu/~koopman/des_s99/sw_fault_tolerance/
CMU SEI, A Conceptual Framework for System Fault Tolerance, (Gaithersburg, MD: NIST, March 30,1995).
Available from: http://hissa.nist.gov/chissa/SEI_Framework/framework_1.html

4.4 System Integration
To be effectively addressed during the integration phase, system security
issues must first be identified during the requirements and design phases. In
today’s large distributed systems, system components typically interface with
outside systems whose security characteristics are uncertain or questionable.
The security of an integrated system is built on the behavior and interactions
of its components and subsystems. On the basis of a risk analysis of systems
components, systems engineers must build in necessary protection mechanisms

As noted in DHS’s draft Security in the Software Lifecycle:

Determining whether the system that contains a given component,
module, or program is secure requires an analysis of how that
component/module/program is used in the system, and how the
system as a whole will mitigate the impact of any compromise of
its individual components that may arise from a successful attack
on those components or on the interfaces between them. Risks of
insecurity can be reduced through:

1. Vetting all acquired, reused, and from-scratch components prior to
acceptance and integration into the whole system;

2. Examining interfaces, observation of instances of trust
relationships, and implementing wrappers when needed;

3. Security testing of the system as a whole.

http://www.ece.cmu.edu/~koopman/des_s99/sw_fault_tolerance/
http://hissa.nist.gov/chissa/SEI_Framework/framework_1.html

Software Security Assurance State-of-the-Art Report (SOAR)68

Section 4 Secure Systems Engineering

Certain systems design architectures and frameworks (e.g., application
frameworks, publish/subscribe architectures) can minimize the likelihood
of security problems being introduced through improper integration of
application components.

Issues associated with the use of nondevelopmental [e.g., commercial-off-
the-shelf (COTS), open source software (OSS), legacy] components are discussed
in Sections 3.2.1 and 5.1.1.2. The same issues apply when selecting and integrating
components at the whole system level, rather than specifically at the software level.

4.5 System Testing
In A Practical Guide to Security Engineering and Information Assurance, [75]
Debra Herrmann recommends that because attackers are not biased by
knowledge of a systems design or security protection mechanisms, testing of
the integrated system by the system’s engineers be augmented by independent
testing by a disinterested third party.

Tests to discover design defects are difficult to develop. Like the systems
engineers developing security designs, the testing group (whether independent
or not), will be able to construct test cases based on understanding the
psychology of the attackers and knowledge of typical software, hardware, and
other system fault types. Additional sources of information for development of
test cases and scripts include—

u Misuse and abuse cases
u Threat tree analysis reports
u Threat models
u FMEA reports
u Security policy models
u Security targets
u System security requirements.

At a minimum, testing the resiliency of a system design to attack
would include—

u Testing for transient faults, such as an unusual combination or
sequence of events, degradation of the operating environment
(temporary saturation of the network, power losses, environmental
changes), or induced temporary loss of synchronization among
components of a system

u Testing for the ability of the system to withstand password guessing,
masquerading, etc.

u Creative “what if” testing.

Section 4.5 describes a number of security testing techniques that can be
applied to software. Some of these techniques are also useful, and in the case of
penetration testing, best performed at the system level.

Software Security Assurance State-of-the-Art Report (SOAR) 69

Section 4 Secure Systems Engineering

4.6 SSE-CMM

Note: This section will be of the most use to readers already familiar with the Systems Engineering (SE) CMM.

The SSE-CMM process reference model augments project and
organizational process areas from the SE CMM with security engineering process
areas for improving and assessing the maturity of the security engineering
processes used to produce information security products, trusted systems,
and security capabilities in information systems. The scope of the processes
addressed by the SSE-CMM encompasses all activities of the system security
engineering life cycle, including concept definition, requirements analysis,
design, development, integration, installation, operation, maintenance, and
decommissioning. The SSE-CMM includes requirements for product developers,
secure systems developers and integrators, and organizations that provide
computer security services and/or computer security engineering, including
organizations in the commercial, government, and academic realms.

The SSE-CMM is predicated on the view that security is pervasive across all
engineering disciplines (e.g., systems, software, and hardware), and the Common
Feature coordinate security practices has been defined to address the integration
of security with all disciplines and groups involved on a project or within an
organization (see Table 4-1). Similarly, the Process Area (PA) coordinate security
defines the objectives and mechanisms to be used in coordinating the security
engineering activities with all other engineering activities and teams.

Table 4-1. SSE-CMM Security Engineering Process Areas and Goals

Security Engineering PA PA Goals

Administer security controls Ensure that security controls are properly configured and used.

Assess impact Reach an understanding of the security risk associated with
operating the system within a defined environment.

Assess security risk Identify system vulnerabilities and determine their potential for
exploitation.

Assess threat Reach an understanding of threats to the security of the system.

Assess vulnerability Reach an understanding of the system’s security vulnerabilities.

Build assurance argument Ensure that the work artifacts and processes clearly provide the
evidence that the customer’s security needs have been met.

Coordinate security Ensure that all members of the project team are aware of
and involved with security engineering activities to the extent
necessary to perform their functions; coordinate and communicate
all decisions and recommendations related to security.

Software Security Assurance State-of-the-Art Report (SOAR)70

Section 4 Secure Systems Engineering

Table 4-1. SSE-CMM Security Engineering Process Areas and Goals - continued

Security Engineering PA PA Goals

Monitor security posture Detect and track internal and external security-related events;
respond to incidents in accordance with policy; identify
and handle changes to the operational security posture in
accordance with security objectives.

Provide security input Review all system issues for security implications and resolve
those issues in accordance with security goals; ensure that all
members of the project team understand security so they can
perform their functions; ensure that the solution reflects the
provided security input.

Specify security needs All applicable parties, including the customer, reach a common
understanding of security needs.

Verify and validate
security

Ensure that the solutions satisfy all of their security requirements
and meet the customer’s operational security needs.

The SSE-CMM and the method for applying the model (i.e., the appraisal
method) are intended to be used as a—

u Tool that enables engineering organizations to evaluate their security
engineering practices and define improvements to them

u Method by which security engineering evaluation organizations, such as
certifiers and evaluators, can establish confidence in the organizational
capability as one input to system or product security assurance

u Standard mechanism for customers to evaluate a provider’s security
engineering capability.

As long as the users of the SSE-CMM model and appraisal methods
thoroughly understand their proper application and inherent limitations, the
appraisal techniques can be used in applying the model for self-improvement
and in selecting suppliers.

An alternative approach to a secure CMM is described in the Federal
Aviation Administration (FAA)/Department of Defense (DoD) Proposed Safety
and Security Extensions to iCMM and CMMI (see Appendix D).

For Further Reading

Mary Schanken, Charles G. Menk III, James P. Craft, (NSA and United States Agency for International
Development), US Government Use of the Systems Security Engineering Capability Maturity Model, (SSE-
CMM), (presentation at the National Information Systems Security Conference, October 19, 1999).
Available from: http://csrc.nist.gov/nissc/1999/program/act10.htm

http://csrc.nist.gov/nissc/1999/program/act10.htm

Software Security Assurance State-of-the-Art Report (SOAR) 71

Section 4 Secure Systems Engineering

4.7 System Security C&A and Software Assurance
Certification and accreditation (C&A) processes for government information
systems are intended to ensure that before a deployed system becomes operational,
the system includes security controls and countermeasures that adequately
mitigate identified risks. For a C&A to be truly effective, however, activities to
prepare for that C&A should begin early in the system development cycle.

Unfortunately, the Federal Information Security Management Act (FISMA)
and the superseded-but-still-used Defense Information Technology Security
Certification and Accreditation Process (DITSCAP) initiate C&A during the
system’s integration testing phase. Moreover, the Security Test and Evaluation
(ST&E) activity within the C&A process is primarily concerned with determining
the system’s level of compliance with management, operational, and technical
controls, and involves very little testing of the system’s technical security controls.
The depth of analysis, particularly of the system’s software components, is minimal.

By contrast with FISMA and DITSCAP, DoD Information Assurance
Certification and Accreditation Process (DIACAP), Director, Central Intelligence
Directive (DCID) 6/3; and National Institute of Standards and Technology
(NIST), Special Publication (SP) 800-64, Security Considerations in the
Information System Development Life Cycle (which maps FISMA-driven C&A
activities described in NIST SP 800-37, Guide for the Security Certification
and Accreditation of Federal Information Systems, to each phase of the system
development life cycle) mandate activities that must occur early in the life cycle.
For example, DCID 6/3, requires three key activities at the beginning of the
system development life cycle—

u Establish protection levels for system components
u Document system security requirements, threats, and countermeasures
u Develop a system security plan and test procedures.

Even these early life cycle activities are limited to what are, in effect,
documentation exercises. Reviews and evaluations still begin late in the system
life cycle; none of the C&A methodologies cited here include security reviews
of the system design or code reviews during system implementation. The code
reviews that do occur are solely at the Designated Approving Authority’s (DAA)
discretion, and performed during the post-integration ST&E phase.

The documentation-oriented approach to C&A tends to influence the
approach to system architecture. For example, the DoD Architecture Framework
(DoDAF) specifies different architectural “views” for capturing different
required properties of the system, including security. This may make sense from
the point of view of a security certifier, who is only interested in the system’s
security; but it is not effective for specifying an overall system architecture
that can form the basis for a cohesive design with security deeply embedded.
Unfortunately, the cost of documentation is already seen as too high, so there

Software Security Assurance State-of-the-Art Report (SOAR)72

Section 4 Secure Systems Engineering

is often little incentive for system development teams to then integrate their
separate security architecture views into the overall system architecture view.

Because it is system oriented, C&A reflects one of the weaknesses of system
engineering approaches to the software security challenge. Because individual
system components are seen as “black boxes,” activities within the software
development life cycle are often treated as “black boxes” as well, with regard to
how they map to the overall system life cycle. In DoD in particular, the problem
is compounded by the frequent use of the Life Cycle Framework view described
in the Defense Acquisition Guidebook as the basis for structuring the activities
and artifacts of the actual system development process. The problem with this
is the fact that this framework view was intended as an abstraction of system
development that would be meaningful for acquisition managers, not as a
practical methodology for structuring system or software development projects.

During C&A, the holistic view of the system and the consideration of
individual components as black boxes mean that the certifier focuses mainly
on each component’s external interactions with its host platform, connected
network, and users, and to a lesser extent with the other black boxes that
compose the system. The behaviors and security deficiencies within each black
box component are not examined. Nor do system C&A artifacts and reviews
provide sufficiently detailed information about the individual components
to enable the certifier to trace system security vulnerabilities to the faults and
weaknesses of individual software components. [76]

Finally, lack of component-level detail in system C&A documentation
renders such documentation inadequate as a template after which software
security assurance cases might be modeled.

4.8 CC Evaluations and Software Assurance
In the United States, a significant portion of the software security assurance
community (including its initiatives, research, and tools) originated not in
the software safety/reliability arena, but in the information assurance/cyber
security arena. In the United States, CC artifacts are frequently suggested for use
as a basis for defining software assurance cases.

Information system security assurance cases for certain types of
information systems components were defined even earlier than safety cases.
In pursuit of Trusted Computer System Evaluation Criteria (TCSEC) or CC
evaluations or Federal Information Processing Standard (FIPS) 140-1 or 140-
2 certifications for their security-enforcing IT products, vendors are required
not only to submit assurance claims for those products to the independent
evaluation or certification facility but to provide complete assurance cases that
provide a sufficient basis for the facility to verify those assurance claims.

The inadequacies of the TCSEC have been perpetuated in the CC, in that
the CC does not provide a meaningful basis for documentation of assurance
cases that can be used to verify security as a property of software (vs. the

Software Security Assurance State-of-the-Art Report (SOAR) 73

Section 4 Secure Systems Engineering

correctness of the security functionality provided by system components). Also
perpetuated in the CC are the inadequacies of the evaluation processes [e.g., the
National Information Assurance Partnership (NIAP) CC Evaluation Program]
with regard to their omission of direct vulnerability testing of the software
components of systems under evaluation. Moreover, the vulnerability analyses
that are done focus solely on system-level vulnerabilities in security functions
of the system, rather than on the types of software vulnerabilities that may be
exploited to compromise the system’s overall dependendability. Fortunately,
these (and other) inadequacies of the CC and its associated evaluation schemes
have been widely acknowledged, not least by The National Strategy to Secure
Cyberspace which, among its actions and recommendations, stated:

…the Federal Government will be conducting a comprehensive
review of the National Information Assurance Partnership (NIAP),
to determine the extent to which it is adequately addressing the
continuing problem of security flaws in commercial software products.

In 2005, the DHS CS&C NCSD contracted the Institute for Defense
Analyses (IDA) to undertake a major review of the NIAP, [77] and to
recommend improvements that would make NIAP’s CC evaluations more
timely, effective, and relevant.

The most significant issues are the lack of criteria pertaining to the
characteristics of software that are considered essential to its security, i.e., lack
of exploitable vulnerabilities and weaknesses and ability to continue operating
dependably when under attack. The current CC and its evaluation process
take a system level, rather than software component level view. Moreover,
CC evaluation assurance levels (EAL) indicate only the degree of confidence
that can be achieved concerning the claims the product’s vendor makes in
the security target (ST) document about the conformance of the product’s (or
target of evaluation’s) security-enforcing and security-relevant functionality
with security policy rules defined for the TOE. STs say nothing about the
robustness against attacks of, and lack of vulnerabilities in, the software
that implements those security functions. With this as its objective, it is not
surprising that the CC evaluation does not include analysis or testing of the TOE
for implementation faults that may lead to vulnerabilities.

Unlike safety cases, ST documents (which are, in essence, security
cases) are not intended to demonstrate the TOE’s own inherent security
robustness, but only its conformance to security policy. For this reason,
CC STs are considered by those who are developing standards for software
security assurance cases (see Section 5.1.4) to provide only a limited amount
of meaningful security evidence for supporting security claims made in the
context of software security assurance cases.

Software Security Assurance State-of-the-Art Report (SOAR)74

Section 4 Secure Systems Engineering

References

69 Kevin Forsberg and Harold Mooz, “The Relationship of System Engineering to the Project Cycle,” in
Proceedings of the First Annual Symposium of National Council on System Engineering,
October 1991: 57–65.

70 Besides security, systems engineers also need to balance the designs to achieve needed reliability,
maintainability, usability, supportability, producibility, affordability, disposability, and other “-ilities.”

71 National Defense Industrial Association (NDIA) Systems Engineering Division, Top Software
Engineering Issues Within Department of Defense and Defense Industry, draft vers. 5a.
(NDIA, September 26, 2006).
Available from: http://www.ndia.org/Content/ContentGroups/Divisions1/Systems_Engineering/
PDFs18/NDIA_Top_SW_Issues_2006_Report_v5a_final.pdf

72 E.G. Coffman, M.J. Elphick, and A. Shoshani, “System Deadlocks,” ACM Computing Surveys 3, no.2
(1971): 67–78.
Available from: http://www.cs.umass.edu/~mcorner/courses/691J/papers/TS/coffman_deadlocks/
coffman_deadlocks.pdf

73 Brian Selic, “Fault Tolerance Techniques for Distributed Systems,” IBM DeveloperWorks (July 27, 2004).
Available from: http://www-128.ibm.com/developerworks/rational/library/114.html

74 Elisabeth A. Strunk, John C. Knight, and M. Anthony Aiello, “Assured Reconfiguration of Fail-Stop
Systems,” in Proceedings of the International Conference on Dependable Systems and Networks, 2005.
Available from: http://www.cs.virginia.edu/papers/01467774.pdf

75 Debra Herrmann, A Practical Guide to Security Engineering and Information Assurance,
(Auerbach Publications, 2002)

76 Thus the accreditor is forced to accept risks without fully understanding why they exist, why many
conventional system-level countermeasures do not adequately mitigate those risks, or what alternative
countermeasures might be possible. Again, the “too late in the life cycle” problem means that even if
the accreditor does understand that the only effective mitigation for a particular risk may entail
reengineering a software component, the cost of implementing such a change when the risk is
discovered so late in the system life cycle is usually prohibitive. For this reason, it would behoove
accreditors to become better informed about the threats, vulnerabilities, and mitigations that are
unique to the software components of the systems they evaluate, and to mandate inclusion of secure
development practices and security reviews starting in the earliest stages of the life cycle so that he/
she can put pressure on the system developer and increase the likelihood that through security
engineering, the system, by the time it enters formal C&A evaluation, will be inherently more secure,
with fewer residual risks for the accreditor to accept and manage.

77 Edward Schneider and William. A Simpson, “Comprehensive Review of the National Information Assurance
Partnership” (paper presented at the Annual Computer Security Applications Conference, 2005).

http://www.ndia.org/Content/ContentGroups/Divisions1/Systems_Engineering/PDFs18/NDIA_Top_SW_Issues_2006_Report_v5a_final.pdf
http://www.ndia.org/Content/ContentGroups/Divisions1/Systems_Engineering/PDFs18/NDIA_Top_SW_Issues_2006_Report_v5a_final.pdf
http://www.cs.umass.edu/~mcorner/courses/691J/papers/TS/coffman_deadlocks/coffman_deadlocks.pdf
http://www.cs.umass.edu/~mcorner/courses/691J/papers/TS/coffman_deadlocks/coffman_deadlocks.pdf
http://www-128.ibm.com/developerworks/rational/library/114.html
http://www.cs.virginia.edu/papers/01467774.pdf

Software Security Assurance State-of-the-Art Report (SOAR) 75

Section 4 Secure Systems Engineering

SDLC Processes and
Methods and the
Security of Software

5

Software Security Assurance State-of-the-Art Report (SOAR) 77

Section 5 SDLC Processes and Methods and the Security of Software

Integrating security activities into software engineering life cycle
processes involves adding security practices (e.g., penetration

testing) and principles (e.g., a design that enforces least privilege) to
the activities and practices (such as requirements engineering,
modeling, and model-based testing) in each phase of the traditional
software development life cycle (SDLC).

As noted by Mouratidis and Giorgini, [78] in spite of active
research, no software engineering methodology exists to ensure that
security exists in the development of large-scale software systems.
No matter what life cycle model is followed, current research
indicates that security should be considered from the early stages of
the software life cycle. Section 5.1 discusses security considerations
that affect the whole SDLC (or at least multiple SDLC phases),
including the SDLC methodology used and how risk management,
security measurement, quality assurance, and configuration
management are performed.

Security requirements should be considered simultaneously with
other requirements, including those pertaining to functionality,
performance, usability, etc. As Charles Haley et al. [79] have observed,
“Security requirements often con� ict with each other, as well as with
other requirements,” and indeed their research, along with that of
several others, focuses on the combination (or composition) of a
software system’s security requirements with its functional as well as
other nonfunctional requirements in an effort to minimize such
con� icts in the resulting requirements specification. This research is
discussed in Section 5.2.

Software Security Assurance State-of-the-Art Report (SOAR)78

Section 5 SDLC Processes and Methods and the Security of Software

Many security weaknesses in software-intensive systems arise from inadequate
architectures and poor design choices. Section 5.3 discusses the concepts,
techniques, and tools in use for developing and verifying secure software
architectures and designs.

Security concerns also need to be addressed as part of the software
team’s and project’s choice of programming languages, coding practices, and
implementation tools. Secure implementation issues, techniques, and tools
are discussed in Section 5.3, followed by a discussion of software security
assessment and testing techniques and tools in Section 5.4.

5.1 Whole Life Cycle Security Concerns
Unlike the remainder of Section 5, Section 5.1 focuses on software security
concerns, influences, and activities that span the whole SDLC or multiple
phases of the SDLC. Specifically, this section discusses—

u Security implications of the various ways in which software enters
the enterprise

u Security benefits and limitations of formal methods
u Security concerns associated with agile methods
u Risk management for secure software
u Software security assurance cases, metrics, and measurement
u Secure software configuration management
u Quality assurance for secure software
u Security-enhanced SDLC methodologies.

5.1.1 Software Security and How Software Enters the Enterprise
Software-intensive systems come into existence in four different ways:

u Acquisition—Acquisition refers to purchase, licensing, or leasing of
nondevelopmental software packages and components [80] produced
by entities other than the acquirer. Such nondevelopmental software
may be used “as is,” or may be integrated or reengineered by the
acquirer (or by a third party under contract to the acquirer).
Nondevelopmental software includes shrink-wrapped commercial off-
the-shelf (COTS), government off-the-shelf (GOTS), and MOTS
(modified off-the-shelf) software packages, and open source software
(OSS), shareware, and freeware components. For purposes of this
SOAR, obtaining and reusing legacy components is also considered
“acquisition” of non developmental software, even though it does not
involve acquisition as defined by the Federal Acquisition Regulation
(FAR) and Defense FAR Supplement (DFARS).

u Integration or Assembly—If software items must be combined to achieve
the desired functionality of the system, that system comes into existence
through integration or through assembly. The software items to be
combined may be nondevelopmental or customized, or a combination

Software Security Assurance State-of-the-Art Report (SOAR) 79

Section 5 SDLC Processes and Methods and the Security of Software

of the two. In some cases, integration may entail custom development of
code to implement interfaces between software items. In other cases,
nondevelopmental items may need to be modified or extended through
reengineering (see below). If the software items to be combined are
components (i.e., self-contained with standard interfaces), the
integration process is referred to as component assembly.

u Custom Development—Custom-developed software is purpose-built for
the specific system in which it will be used. It is written by the same
organization that will use it or by another organization under
contractor to the user organization. Very few large information systems
are completely custom developed; most are the result of integration
and include at least some nondevelopmental components.

u Software Reengineering—Existing software is modified so that one or more
of its components can be modified/extended, replaced, or eliminated.

Each of the above approaches to software conception and implementation
has its own advantages and disadvantages with regard to the software’s cost,
support, and technical effectiveness—which are usually the driving factors
organizations use when deciding which approach to take. Most development
organizations do not consider security assurance to be a driving factor; security
is often seen as something to be considered only as the application is being
prepared for deployment or for approval to operate. Too often, software security
assurance is not even considered until a security incident occurs that can be
directly associated with a vulnerability in the software.

5.1.1.1 Security Issues Associated With Acquired
Nondevelopmental Software
Many organizations increasingly turn to turnkey systems and applications rather
than custom-developing software for a particular organizational need. Purchasing
turnkey software is often cheaper and involves less business risk than developing
software from scratch. When purchasing COTS software, “a large portion of the
design and test work has already been done by the vendors, and that cost is spread
among all those who license the software” [81] rather than a single organization.
Additionally, COTS software is the result of a successful software development
project; in 2003, research by the Standish Group found that 34 percent of corporate
software projects were successful, [82] which indicates it is very likely that custom-
built software often exceeds budget, and the development project not meet its
deadline. With COTS software, the cost is clearer.

Nevertheless, the properties and capabilities delivered in acquired
software do not always map directly to the requirements of the organization
acquiring that software, particularly with regard to security requirements. Many
commercial developers have admitted that security is not considered a major
requirement because of the current practices in acquisition to accept software

Software Security Assurance State-of-the-Art Report (SOAR)80

Section 5 SDLC Processes and Methods and the Security of Software

that satisfies functionality with little regard for achieving and assuring security
properties. Few organizations ask “how do you know the product is secure?”
so vendors do not perceive a demand for secure products. According to Jeremy
Epstein of webMethods—

Despite the failure of users to ask, vendors are actually quite willing,
able, and eager in many cases to provide and demonstrate the
improved security in their products, the problem is that they are not
offered incentives to do so, because purchasers have not expressly
stated requirements for security. In other words, there is adequate
supply. The problem is that there is insufficient demand, at least as
expressed in buying decisions. [83]

Efforts inside and outside the Federal Government are underway to evolve
current acquisition practices to include security concerns. While purchasing
secure software requires more upfront costs than traditional COTS software,
organizations are becoming more aware of the additional costs associated with
insecure software: according to Mark Graff and Ken van Wyk, [84] the cost of
lost time and resources to maintain a vulnerable software component can be
as much as three times the initial purchase of secure software. In response,
many organizations are working to develop the necessary language, regulations,
policies, and tools to improve the security of acquired software.

In response to the increasing costs of patching vulnerable software—and
the dwindling “mean time between security breaches” of unpatched systems
connected to the Internet—the US Air Force contracted with Microsoft to
supply securely configured software. In June 2005, the Air Force began testing
the securely configured software that would be distributed service-wide. [85] By
requiring Microsoft to supply securely configured software, the Air Force could
potentially save $100 million by streamlining the patching process.

On September 30, 2005, FAR 7.105(b)(17) was modified to include the
following language: “For information technology acquisitions, discuss how
agency information security requirements will be met.” [86] This change was
seen by many as a step in the right direction. The security discussions now
mandated by the FAR can include software assurance strategies based on initial
software assurance risk assessment and software assurance requirements.

On October 3, 2005, the Department of Homeland Security (DHS), Cyber
Security and Communications (CS&C), National Cyber Security Division,
(NCSD) and the Department of Defense (DoD) Office of the Chief Information
Officer for Information Management and Technology began jointly sponsoring
the software acquisition working group (WG), which is addressing how to
leverage the procurement process to ensure the safety, security, reliability and
dependability of software. This WG is developing a document entitled Software
Assurance (SwA) in Acquisition [87] (see Section 6.1.9).

Software Security Assurance State-of-the-Art Report (SOAR) 81

Section 5 SDLC Processes and Methods and the Security of Software

Nongovernmental efforts to improve the security of acquired software
are gaining steam as well. In 2006, the Open Web Application Security Project
(OWASP) Legal Project began supporting the OWASP Secure Software Contract
Annex, which helps “software developers and their clients negotiate and
capture important contractual terms and conditions related to the security of
the software to be developed or delivered.” [88] The Contract Annex provides
a sample contract that defines the life cycle activities, security requirements,
development environment, assurance, and other aspects of software
acquisition and development to result in a more secure COTS product.

An important aspect for acquiring software is certification and
testing. Several efforts are aimed at improving the certification and testing
environment for software:

u International Organization for Standardization/International
Electrotechnical Commission (ISO/IEC) 15408, The Common Criteria,
provides a framework for evaluating how well software has met a set of
security requirements.

u The National Institute of Standards and Technology (NIST)
Cryptographic Module Verification Program certifies products against
Federal Information Processing Standard (FIPS) 140-1 and 140-2
requirements for cryptographic software.

u Federal, DoD, and Intelligence Community certification and
accreditation (C&A) processes, ensure that information systems
conform to mandated security policies [e.g., DoD Directive (DoDD)
8500.1, Federal Information Security Management Act (FISMA),
Director of Central Intelligence Directive (DCID) 6/3].

While these certifications do not focus on software security, organizations
are beginning to include software assurance requirements in the assessment
process used by these and other certification processes.

5.1.1.2 Security Issues Associated With Component-Based
Software Engineering
For many organizations, turnkey software applications do not provide the
necessary functionality or flexibility to support their mission. Under pressure
to produce systems more quickly using state-of-the-art software products and
technologies, software engineers are forced to use third-party components
about whose underlying security properties they have little or no knowledge.
Software engineers generally lack confidence in COTS (and to a lesser extent
open source) components because they cannot assess the compatibility
between the components’ security properties and the security requirements
of their own applications.

In component-based software engineering, a software-intensive system
is composed of several stand-alone software components acquired from

Software Security Assurance State-of-the-Art Report (SOAR)82

Section 5 SDLC Processes and Methods and the Security of Software

COTS or open source suppliers. In a component-based system, the developer
needs to achieve both the security compatibility between pairs of interacting
components and the security objectives of the entire system.

Software components range from individual procedure and object
libraries to turnkey applications that may be composed of other, smaller
components. Regardless, as they are considered for assembly into a new
component-based system, each component’s security properties need to be
defined to be sufficient and meaningful to the other components to which
those properties will be exposed, i.e., the other components with which the
component will interact.

Over its life time, the same component may play a variety of roles
in a variety of systems running in a variety of environments. The security
properties exhibited by the component will seldom satisfy the security
requirements for all these possible combinations; the component may be
proved secure in one application in a particular operating environment,
but insecure when used in a different application and/or environment. For
example, a component considered reasonably secure in an application for a
car manufacturing plant may not be secure when used in an air traffic control
system because although the component’s functionality provided by the
component remains same for both applications the use contexts and security
requirements for the applications differ.

In a well-designed software application, it should be possible to isolate
various components and identify those that need to be examined in depth. For
example, a component used to perform authentication of users, such as a UNIX
pluggable authentication module (PAM), should have strictly defined inputs and
outputs while interfacing with only a small portion of the application. In this
case, in-depth security testing can be performed on the component itself in place
of the entire login system used by the application. If a system is not designed
to separate components, the entire system must be examined—which is often
infeasible. By using a strictly defined interface, it is possible to generate a test
component that will test how the application interfaces with the component,
providing assurance that the integrated system will function as expected.
However, complex component interfaces or multipurpose components may be
necessary for a particular system, limiting the effectiveness of testing individual
components or how the application interfaces with the component.

Similarly, components should communicate using open standards.
According to David A. Wheeler of the Institute for Defense Analyses (IDA),
open standards “create economic conditions necessary for creating secure
components.” [89] Similarly, Jerome Saltzer and Michael Schroeder identified
the need for openness in 1973: “This decoupling of protection mechanisms from
protection keys permits the mechanisms to be examined by many reviewers
without concern that the review may itself compromise the safeguards.” [90]
Using open standards is beneficial for security for several reasons: multiple

Software Security Assurance State-of-the-Art Report (SOAR) 83

Section 5 SDLC Processes and Methods and the Security of Software

components can be tested and compared using the same tests, and a vulnerable
component may be replaced with another component easily. Finally, the ability
to replace components can prove immeasurably useful when responding to
vulnerabilities because it introduces diversity into the system.

For Further Reading

(DHS), “BuildSecurityIn Portal”, “Assembly, Integration, and Evolution”, (DHS).
Available from: https://buildsecurityin.us-cert.gov/daisy/bsi/articles/best-practices/assembly.html
Arlene F. Minkiewicz, “Security in a COTS-Based Software System”, CrossTalk, (November).
Available from: http://www.stsc.hill.af.mil/crosstalk/2005/11/0511Minkiewicz.html
Davide Balzarotti, Mattia Monda, and Sabrina Sicari (Milan Polytechnic, University of Milan
and University of Catania), “Assessing the Risk of Using Vulnerable Components”, in Springer, Quality
of Protection: Security Measurements and Metrics, Advances in Information Security; 2006.
Available from: http://homes.dico.unimi.it/~monga/lib/qop.pdf

5.1.1.2.1 Assuring the Security of Component-Based Systems
Even if the security of all of the system’s individual components can be
established, this will not be enough to predict whether their secure behavior
will continue to be exhibited when they interact with other components in a
larger component-based system. Nor will it help predict the overall security
of the system assembled from those components. A security claim for a single
component (e.g., a CC ST) in a system assembled from multiple components is
of little help in determining the assurance of that system.

Individual component security evaluations focus on the component
in isolation (and CC evaluations, as noted in Section 4.7, focus solely on the
correctness of the component’s security functionality rather than its continued
dependability in the face of threats). Examining a component in isolation cannot
reveal the security conflicts that will arise as a result of interactions between
components. Such conflicts, often referred to as security mismatches, usually
originate in an inconsistency between the security assumptions one component
has about another’s security properties, functionality, policy rules, constraints,
etc., and those that the second component actually exhibits. The problem is
complicated by the need to periodically add or change the functionality of
individual components or the system as a whole, often necessitating changes to
the assembly’s design, as well as to the individual components.

Research into assuring systems assembled from components dates as
far back as 1973 with the Stanford Research Institute (SRI) Computer Science
Lab’s (CSL) Provably Secure Operating System (PSOS). [91] The PSOS project
demonstrated how a complex system of small modular components could be
predictably composed and analyzed using formal specifications and examining
dependencies. According to Peter Neumann, principal scientist at SRI’s CSL
and one of the researchers involved with PSOS, “One of the biggest problems
(associated with trustworthy systems) is the composition problem—how do we
combine components into systems that predictably enhance trustworthiness.” [92]

https://buildsecurityin.us-cert.gov/daisy/bsi/articles/best-practices/assembly.html
http://www.stsc.hill.af.mil/crosstalk/2005/11/0511Minkiewicz.html
http://homes.dico.unimi.it/~monga/lib/qop.pdf

Software Security Assurance State-of-the-Art Report (SOAR)84

Section 5 SDLC Processes and Methods and the Security of Software

Neumann and the CSL, through the Defense Advanced Research Projects Agency
(DARPA) Composable High-Assurance Trustworthy Systems (CHATS) project,
published guidelines for composing a secure system in December 2004. [93]

With some of the same objectives, the Carnegie Mellon University
(CMU) Software Engineering Institute (SEI) sponsors the Predictable
Assembly from Certifiable Components (PACC) project, which aims to
develop methods for predicting the behavior of a component-based
system prior to implementation. [94] In addition the US Naval Research
Laboratory (NRL) sponsors the Center for High Assurance Computer
Systems (CHACS), which is investigating techniques for developing highly-
assured building blocks (i.e., components) from which trustworthy systems
can be assembled. [95]

Each of these projects is developing techniques for identifying the effects
of individual components on the system as a whole. Most of this research is
difficult; success stories, such as PSOS, tend to rely on highly assured custom-
developed components rather than on commodity COTS components.

Assured component assembly is becoming an increasingly popular research
topic for survivable systems engineering. Robert Ellison of the CMU CERT provides
an overview of the composition problem with respect to systems engineering on
the DHS BuildSecurityIn portal. The CMU CERT Survivable Systems Engineering
team is sponsoring a number of research activities related to assured component
assembly, in particular the automated component composition for developing
reliable systems project, which aims to define methods for automatically
calculating the composite behavior of components of a system.

Testing and certification are becoming an important factor in assessing
the security of component assemblies—both to ensure the security of
components and to ensure their interoperability.

The DoD Software Assurance Tiger Team (see Section 6.1) is developing
a DoD Software Assurance Concept of Operations (CONOPS) explaining how
to securely integrate low assurance COTS components into DoD systems to
minimize the amount of high assurance software that needs be developed. This
activity is in its early phases, as of December 2006, the 180 implementation
planning phase was closing out, and the pilot phase was under way. The
Software Assurance CONOPS will begin research into Engineering in Depth
(EiD), which minimizes the number of critical components in a system and
manages the risk inherent in using less assured products. Critical components
will be supplied by assured suppliers, who will provide DoD with sufficient
documentation to document how much risk—such as foreign control of
suppliers—is inherent in the supply chain. DoD will leverage this information
when awarding contracts for critical high assurance components. [96]

To complement the CONOPS, the National Defense Industrial Association
(NDIA), under sponsorship of the DoD Software Assurance Program, is
developing a System Assurance Guidebook that will provide guidance to NDIA

Software Security Assurance State-of-the-Art Report (SOAR) 85

Section 5 SDLC Processes and Methods and the Security of Software

members and partners in government, industry, and academia. The guidance in
the Systems Engineering Guidebook is intended to supplement:

u ISO/IEC 15288, System Life Cycle Processes
u DoD Acquisition Guidebook
u IEEE STD 1220, Application and Management of the Systems

Engineering Process.

The Guidebook will describe the activities necessary to address concerns
for maliciousness, reducing uncertainty and providing a basis for justified
confidence in the resulting system. The Guidebook should be released in early
fiscal year 2007 (FY07).

The SEI’s website and the DHS BuildSecurityIn portal provide a wealth of
information discussing component assembly. [97] The Assembly, Integration,
and Evolution section of the DHS BuildSecurityIn portal provides insight into the
security issues associated with assembly of component-based software systems.

For Further Reading

Arlene F. Minkiewicz, “Security in a COTS-Based Software System”, CrossTalk, (November, 2005).
Available from: http://www.stsc.hill.af.mil/crosstalk/2005/11/0511Minkiewicz.html
Peter G. Neumann (SRI), Principled Assuredly Trustworthy Composable Architectures (December, 2004).
Available from: http://www.csl.sri.com/users/Neumann/chats4.html
Peter G. Neumann and Richard J. Feiertag, “PSOS Revisited”, in Proceedings of the Annual Computer
Security Applications Conference (ACSAC 2003), (December, 2003),
Available from: http://www.csl.sri.com/users/neumann/psos03.pdf
“NRL CHACS” [website].
Available from: http://chacs.nrl.navy.mil
Robert J. Ellison (CMU SEI), Trustworthy Composition: The System is Not Always the Sum of Its Parts
(September 2003).
Available from: https://buildsecurityin.us-cert.gov/daisy/bsi/50.html?branch=1&language=1

5.1.1.2.2 Research Into Engineering of Secure
Component-Based Software
Significant research has been done since the late 1990s to address the problems
associated with achieving security in component-based software systems. This
research has focused on the following challenges:

u How to expose component security properties in a way that is usable by
other components

u How to reconcile one component’s expectations of the security
functions (and associated data outputs and formats) it needs from
another component versus the security functionality (and associated
data/formats) actually provided by the second component

u How to predict and measure the security properties and assurance
levels of individual components and the impact on those properties
and measurements

http://www.stsc.hill.af.mil/crosstalk/2005/11/0511Minkiewicz.html
http://www.csl.sri.com/users/Neumann/chats4.html
http://www.csl.sri.com/users/neumann/psos03.pdf
http://chacs.nrl.navy.mil
https://buildsecurityin.us-cert.gov/daisy/bsi/50.html?branch=1&language=1

Software Security Assurance State-of-the-Art Report (SOAR)86

Section 5 SDLC Processes and Methods and the Security of Software

u How to predict and measure the security properties and assurance levels
of a system assembled from components based on the security
properties, measurements, and assurance levels of the system’s individual
components as they interact to achieve their required functionality

u How to engineer component-based systems in ways that minimize the
exposure and impact of individual components’ vulnerabilities and
intercomponent security mismatches.

Much of this research has used information security criteria as the basis for
designating an individual component or component-based system secure. The
assumption is that component-based systems are most likely to be information
systems (most recently, web services). Therefore, the security properties that
must be exhibited are information security properties: confidentiality, integrity,
and availability of information, and accountability of users.

To the extent that requirements for integrity and availability extend
to the software system that handles the information, they may be seen as
software security properties. However the problems most often examined
and the examples most often given in the research literature revolve around
how to achieve, across a system composed of components with different
security properties or assurance levels, the secure, cohesive implementation
of functionality for user identification and authentication (I&A), trust
establishment among components (based on authenticated identity and
authorization attributes, as in the WS-Trust standard), and access control
and confidential exchange of data. Unsurprisingly, Common Criteria (CC),
Evaluation Assurance Levels (EAL), are often suggested as the basis for defining
component-level and system-level assurance.

Although such research may yield useful concepts for addressing software
security challenges in component-based systems, the specific techniques,
technologies, and tools produced by the researchers may not be directly useful
or easily adaptable. This said, the following papers provide a representative
sampling of the research that has been done, and is being done, in this area—

u Scott Hissam and Daniel Plakosh, (CMU SEI) COTS in the Real World:
a Case Study in Risk Discovery and Repair, technical note number
CMU/SEI-99-TN-003, (Pittsburgh PA): CMU SEI, (June, 1999).
Available from: http://www.sei.cmu.edu/publications/documents/99.reports/
99tn003/99tn003abstract.html

u Ulf Lindqvist and Erland Jonsson (Chalmers University of Technology),
“A Map of Security Risks Associated with Using COTS”, IEEE Computer,
31(1998) 60–66.
Available from: http://www.windowsecurity.com/uplarticle/1/cots98.pdf

u Khaled M. Khan, (University of Western Sydney), Jun Han (Swinburne
University of Technology), “Assessing Security Properties of Software
Components: a Software Engineer’s Perspective”, in Proceedings of the

http://www.sei.cmu.edu/publications/documents/99.reports/99tn003/99tn003abstract.html
http://www.sei.cmu.edu/publications/documents/99.reports/99tn003/99tn003abstract.html
http://www.windowsecurity.com/uplarticle/1/cots98.pdf

Software Security Assurance State-of-the-Art Report (SOAR) 87

Section 5 SDLC Processes and Methods and the Security of Software

Australian Software Engineering Conference, Sydney, Australia,
April 18–21 2006.

u Ibid; “Security Characterisation of Software Components and Their
Composition”, in Proceedings of the 36th IEEE International Conference
on Technology of Object-Oriented Languages and Systems, Xi’an, China,
October 30–November 4 2000.
Available from: http://www.it.swin.edu.au/personal/jhan/jhanPub.html#security

u Manasi Kelkar, Rob Perry, Todd Gamble and Amit Walvekar
(University of Tulsa), “The Impact of Certification Criteria on Integrated
COTS-based Systems,” in Proceedings of the Sixth International
Conference on COTS-Based Software Systems. Banff, Alberta, Canada,
February 26–March 2 2007.
Available from: http://www.seat.utulsa.edu/papers/ICCBSS07-Kelkar.pdf

5.1.1.3 Security Issues Associated With Custom
Developed Software
Rather than acquire a COTS or OSS product, or assemble a system out of
existing components, many organizations develop software from scratch.
This provides the organization with software that meets its exact needs while
also enabling tight ongoing control of the software during its operation and
maintenance/support phases. To this point, most software assurance research
and the knowledge base has been in the area of custom-built software. This is
primarily because when an organization is developing custom software, it can
directly control all aspects of the SDLC.

At the beginning of the SDLC, an initial system-level risk assessment
focusing on the business assets, threats, likelihood of risks, and their potential
business impacts can provide input to the requirements specification and define
the context for the security aspects of the software’s architecture and design. The
software’s architectural risk assessment then refines the system risk assessment
by analyzing how well the software addresses the system risks, suggesting
mitigation strategies, and identifying additional risks that are added by the
software architecture. Applied iteratively through the development life cycle
phases, these methods can help refine the understanding of risk with increasing
degrees of detail and granularity. Several software risk assessment (i.e., threat
modeling) methodologies have been developed and used within the software
development industry. These methodologies are described in Section 5.2.3.1.

In addition to threat modeling and other security risk analysis
methodologies, testing tools are available for developers of custom-built
software. Section 5.5 describes software security testing methodologies.

For the implementation phase of the SDLC, many organizations
have adopted programming languages, development tools, and execution
environment protections to increase the security of their software. These are
discussed in Section 5.4.

http://www.it.swin.edu.au/personal/jhan/jhanPub.html#security
http://www.seat.utulsa.edu/papers/ICCBSS07-Kelkar.pdf

Software Security Assurance State-of-the-Art Report (SOAR)88

Section 5 SDLC Processes and Methods and the Security of Software

To take full advantage of the security tools available throughout the
SDLC, several organizations have developed security enhancements to
existing methodologies or new security-focused methodologies. These are
discussed in Section 5.1.3.

In addition to security-enhanced life cycle methodologies, attempts
have been made to define a process capability maturity model (CMM) that
includes security activities and checkpoints to increase the likelihood that
secure software or systems will be engineered under those processes. The most
noteworthy examples of security-enhanced CMMs are—

u Systems Security Engineering Capability Maturity Model (SSE-CMM)—[98]
Originally defined by the National Security Agency (NSA), and now an
international standard (ISO/IEC 21827), SSE-CMM enables a system
development organization to add security practices into their systems
engineering (SE) CMM process. SSE-CMM augments the process areas
in the SE CMM by adding security engineering process areas that
address various aspects of security engineering. See Section 4.6 for a
description of SSE-CMM.

u Federal Aviation Administration (FAA)/DoD Proposed Safety and Security
Extensions to integrated Capability Maturity Model (iCMM) and Capability
Maturity Model Integration (CMMI)—The security extensions add
security activities to iCMM and CMMI process areas in the same way
that the SSE-CMM adds security activities to the process areas of the
SE-CMM. (See Appendix D for a description of the proposed safety
and security extensions.)

Although there are a wealth of tools and methodologies available to
improve the security of custom-built software, there is little empirical evidence
showing the return on investment (ROI) or success of these various techniques.
Organizations like SEI, DHS, and DoD are looking into methods to estimate the
ROI of the various techniques to aid organizations in deciding what security
methodologies should be embraced to secure their custom-built software.

5.1.1.4 Security Issues Associated With Software Reengineering
The reengineering of software was described by E.J. Chikofsky and A.H. Cross in
1990. [99] Software reengineering is the modification of existing software so that
components can be changed, replaced, or removed to make the software more
effective or efficient. According to Chikofsky and Cross, reengineering usually
involves some level of reverse engineering, along with forward engineering.
Often, portions of the software system may need to be reverse engineered to
give an organization a more abstract understanding of the existing system. The
reverse engineering is generally followed by forward engineering to reconstitute
components or to add functionality to the system.

Software Security Assurance State-of-the-Art Report (SOAR) 89

Section 5 SDLC Processes and Methods and the Security of Software

Reengineered software brings with it many of the risks associated with
acquired software, custom-built software, and assembled software. The new
or modified functionality may be provided by COTS or custom-built software;
regardless, some modifications or custom-developed code may be required to
integrate the new functionality with the unmodified portions of the software.

Additionally, reengineering software may introduce new vulnerabilities
into a system because of an incomplete understanding of the original software
design. For example, updating a library to provide enhanced or improved
features may inadvertently affect the software using the library. Some portions
of the software may somehow depend on the original implementation of the
library; the software may modify the library results as a result of a defect in the
library. Without a full understanding of the original system, the software may
modify the now-correct output with unexpected results.

Similarly, reengineering software may introduce new vulnerabilities
by increasing the complexity of the system. By adding a component to the
software, its library dependencies may result in unexpected behavior from
other components, or it may not be aware of the entire range of output or input
supported by the other components. Any unexpected behavior in the overall
system may manifest itself as a security vulnerability.

Although little security research activity is performed in the specific realm
of software reengineering, practitioners benefit from security research in software
composition, acquisition, and custom development, as well as reverse engineering.
Another factor affecting the security research activity in this field is that much of
the research is in developing structured reengineering processes, such as those
being developed by the CMU SEI and the University of Queensland (Australia).

For Further Reading

“Legacy Systems” [website].
Available from: https://buildsecurityin.us-cert.gov/daisy/bsi/articles/best-practices/legacy.html
IEEE Computer Society Technical Council on Software Engineering, Reengineering Bibliography.
Available from : http://www-static.cc.gatech.edu/reverse/bibliography
CMU SEI, Reengineering.
Available from: http://www.sei.cmu.edu/reengineering
“Reengineering Forum” [website].
Available from: http://www.reengineer.org

5.1.1.5 Why Good Software Engineering Does Not Guarantee
Secure Software
Good software engineering is essential for producing secure software, but it is
not sufficient. This is because most software engineering is oriented toward
functionality, quality, or reliability. It can be argued that for software, security
is an essential aspect of quality and reliability—but this has not always been
considered the case, so most quality- and reliability-oriented software processes

https://buildsecurityin.us-cert.gov/daisy/bsi/articles/best-practices/legacy.html
http://www-static.cc.gatech.edu/reverse/bibliography
http://www.sei.cmu.edu/reengineering
http://www.reengineer.org

Software Security Assurance State-of-the-Art Report (SOAR)90

Section 5 SDLC Processes and Methods and the Security of Software

omit many of the activities necessary for security. If the software is 100 percent
reliable but relies on Data Encryption Standard (DES) for encryption, it must
still be considered insecure.

Multiple quality- and reliability-focused system and software engineering
techniques are available. ISO/IEC 15288, CMM, and CMMI are examples of system
engineering processes that focus on the generic processes that an organization
performs when developing software. These methodologies provide frameworks
through which organizations can define repeatable processes that can potentially
be measured and improved to improve the quality and cost of the development
process. If security is provided as a requirement up front, it is possible for
organizations to use these models to improve the security of their software while
improving the quality of software. However, many of the activities required to
improve the security of a system are separate from those routinely performed to
assess the quality of a system. Consequently many organizations have proposed
extending ISO/IEC 15288 and the SEI CMMI to address security activities.

Similarly, the developers [100] of an application may not have made
appropriate assumptions about security. Because many universities do not
teach the importance of security—or the activities necessary to develop secure
software—many developers are untrained in security. To remedy this, DHS is
sponsoring the development of Software Assurance: A Guide to the Common
Body of Knowledge to Produce, Acquire, and Sustain Secure Software (often
referred to simply as the CBK) to serve as input in curricula for university
and college courses. DHS is also developing a comparable Essential Body of
Knowledge (EBK) as the basis for developing or enhancing professional training
courses for software programmers, testers, and others.

Note: Academic and industry concerns about the DHS CBK and EBK are discussed in Section 7.2.2.

Developers trained in security may still make inappropriate assumptions.
One common assumption is that security is dealt with at a different level of the
system or in a different phase of development. Related assumptions include—

u The operating system supports mandatory access control, so the
software does not have to be secure.

u The software’s host is on a classified network, so the software does not
have to be secure.

u The software is a prototype; security will be addressed later.
u The software encrypts data before transmitting it, so the software is

adequately secure.
u The software is written in a type-safe language (e.g., Java or C#); therefore,

buffer overflows are impossible and security has been addressed.

For a small subset of software, such assumptions may be valid. However, it is
likely that the assumptions may become invalid by the end of the SDLC: mandatory
access controls may be disabled on the production system, the trusted network may

Software Security Assurance State-of-the-Art Report (SOAR) 91

Section 5 SDLC Processes and Methods and the Security of Software

begin to allow untrusted entities to access it, the prototype may so impress the client
that it enters production, the encryption may be strong but attackers could bypass it
by attacking the user interface instead, or the Java software may have a command-
injection vulnerability. Therefore, it is important to periodically review the software
in its current state to determine whether the original security assumptions have
been invalidated and if so, to make the necessary adjustments to ensure that the
assumption mismatches (between the software-as-designed and the software-as-
operated) have not introduced new security vulnerabilities into the system.

5.1.2 Using Formal Methods to Achieve Secure Software
Formal methods are an adaptation to software development of certain aspects
of mathematics developed in 19th and 20th century mathematics. A formal
system consists of four elements:

1. A set of symbols.
2. Rules for constructing well-formed formulas in the language.
3. Axioms for formulae postulated to be true.
4. Inference rules, expressed in a metalanguage. Each inference rule

states that a formula, called a consequent, can be inferred from other
formulae, called premises.

Formal methods are not just disciplined methods, but rather the
incorporation of mathematically based techniques for the specification,
development, and verification of software. Inasmuch as vulnerabilities can
result from functionally incorrect implementations, formal methods, in general,
improve software security (at a cost).

An example of a successful implementation of formal methods to further
software security is type checking. An integral feature of modern programming
languages like Java, C#, and Ada95, type checking is a particularly successful
and familiar implementation of formal methods. Type checking increases the
detection rate of many types of faults and weaknesses at compile time and runtime.
The “specification” contains the type information programmers provide when
declaring variables. The “verification” of the specification is achieved through use of
algorithms (such as Robin Milner [101]) to infer types elsewhere in the code, and to
ensure that overall typing is internally consistent. The outcome of the verification is
“assurance” (contingent on an absence of extrinsic interventions) of—

u The integrity of how raw bits are interpreted in software as abstract values.
u The integrity of the access pathways to those values. Type checking

affects all software engineering practices using modern languages.

It remains a research challenge to develop formal methods for the
specification and verification of non-trace security properties in software, such
as non-subvertability of processes and predictability of software behavior under
unexpectedly changing environment conditions associated with malicious
input, malicious code insertions, or intentional faults.

Software Security Assurance State-of-the-Art Report (SOAR)92

Section 5 SDLC Processes and Methods and the Security of Software

At a high level, the main uses for formal methods in the SDLC include—
u Writing the software’s formal specification
u Proving properties about the software’s formal specification
u Constructing the software program through mathematical

manipulation of its formal specification
u Using mathematical arguments and proofs to verify the properties

of a program.

Note: The majority of formal methods focus either on formal construction or on after-the-fact verification, but not both.

Formal methods have applications throughout the SDLC. Figure 5-1 maps
possible uses of formal methods to each phase of the SDLC. Because formal
methods can be used for correctness, independently of security concerns, the
life cycle phases are not labeled in terms of security concerns.

Figure 5-1. Formal Methods in the SDLC

Table 5-1 describes each of the formal methods activities in the diagram,
indicating the SDLC phases to which each activity pertains.

Software Security Assurance State-of-the-Art Report (SOAR) 93

Section 5 SDLC Processes and Methods and the Security of Software

Table 5-1. Formal Methods Activities and SDLC Phases

Formal Method Activity Description SDLC Phases in Which Undertaken

Formal models of user behavior:
often describe sequences in which users invoke
the functionality of a system. For example,
decision tables, finite state machines,
Markov models, or Petri nets can
characterize user actions.

u system analysis
u system requirements allocation
u software requirements also useful in

generating test cases during:

Formal specifications:
rigorously describe the functionality of a system
or system component. Languages used, such as
in the Vienna Development Method (VDM) and Z,
often involve extensions of a mixture of predicate
logic and set theory.

u system analysis
u system requirements allocation
u software requirements
u architecture design

Consistency proofs:
examine the components of a system in a formal
specification developed at a single level of
abstraction. They are useful at every phase in
which a formal model is developed.

u system analysis
u system requirements allocation
u software requirements
u software architecture design
u software detailed design
u coding

Proofs of properties:
prove that some proposition regarding states or
combinations of states in the system is always
maintained as true. For example, a formal method
for safety might include the proof that some state
never arises in a system.

u system analysis
u system requirements allocation
u software requirements
u software architecture design
u software detailed design
u coding

Model checking:
a practical technique for automated formal
verification. Model checking tools use symbolic
expressions in propositional logic to explore a
large state space. Model checking can be used
in the same phases in which formal verification
is used. With some analysis, it is possible to
determine whether a model checking result is
trustworthy enough to form the basis for positive
assurance; however, such a determination is not
intrinsic to the technique.

u software requirements
u software architecture design
u software detailed design
u coding

Prototyping:
not necessarily a formal method. However some
formal method tools can be used to generate a
prototype, particularly if an operational semantics
is used. (Prototyping can be accomplished without
as high a degree of automation and formality.)

u system analysis
u system requirements allocation
u software requirements
u software architecture design
u software detailed design

Software Security Assurance State-of-the-Art Report (SOAR)94

Section 5 SDLC Processes and Methods and the Security of Software

Table 5-1. Formal Methods Activities and SDLC Phases - continued

Formal Method Activity Description SDLC Phases in Which Undertaken

Model-driven architecture (MDA):
automatic generation of an architecture from a
Unified Modeling Language (UML) specification
of a system.

u software architecture design

Model-driven development (MDD):
supports the construction of a system or system
component by transforming a formal or semi-
formal model into an implementation.

u software detailed design
u coding

Black box testing:
entails the development of test cases based
on specifications of the system or system
component being tested, as opposed to the
development of test cases based on knowledge
of internal implementation of the system or
component. Because the specification is formal,
formal techniques can be used in generating
black box test cases.

u system integration and testing
u subsystem integration and testing
u product integration and test

Model-based testing:
the automatic generation of efficient test cases
from models of requirements and functionality,
given a formal model of the user developed in the
corresponding requirements phase.

u system integration and testing
u subsystem integration and testing
u product integration and test

For Further Reading

Constance Heitmeyer (NRL), Applying Practical Formal Methods to the Specification and Analysis of
Security Properties, (May, 2001).
Available from: http://chacs.nrl.navy.mil/publications/CHACS/2001/2001heitmeyer-MMM-ACNS.pdf
Jeannette M. Wing (CMU SEI), A Symbiotic Relationship Between Formal Methods and Security,
CMU-CS-98-188, (December, 1998).
Available from: http://reports-archive.adm.cs.cmu.edu/anon/1998/abstracts/98-188.html
D. Richard Kuhn, Ramaswamy Chandramouli, and Ricky W. Butler (NIST, NASA Langley
Research Center), “Cost Effective Use of Formal Methods in Verification and Validation”, in Proceedings
of the Foundations 02 Workshop on Verification and Validation, (October, 2002).
Available from: http://csrc.nist.gov/staff/kuhn/kuhn-chandramouli-butler-02.pdf
Formal Methods Virtual Library.
Available from: http://vl.fmnet.info
Michael Huth and Mark Ryan, Logic in Computer Science: Modelling and Reasoning About Systems,
2nd ed, (Cambridge University Press, 2004).
Available from: http://www.cambridge.org/us/catalogue/catalogue.asp?isbn=052154310x
Jonathan P. Bowen and Michael G. Hinchey, “The Use of Industrial-Strength Formal Methods,” in:
Proceedings of the 21st International Computer Software and Applications Conference (COMPSAC 97).
1997. Available from: http://www.jpbowen.com/pub/compsac97.pdf
Robert L. Vienneau, (Data and Analysis Center for Software), A Review of Formal Methods, (May 26 1993).
Available from: http://www.dacs.dtic.mil/techs/fmreview/title.html

http://chacs.nrl.navy.mil/publications/CHACS/2001/2001heitmeyer-MMM-ACNS.pdf
http://reports-archive.adm.cs.cmu.edu/anon/1998/abstracts/98-188.html
http://csrc.nist.gov/staff/kuhn/kuhn-chandramouli-butler-02.pdf
http://vl.fmnet.info
http://www.jpbowen.com/pub/compsac97.pdf
http://www.dacs.dtic.mil/techs/fmreview/title.html

Software Security Assurance State-of-the-Art Report (SOAR) 95

Section 5 SDLC Processes and Methods and the Security of Software

5.1.2.1 Limitations of Formal Methods for Assuring
Software Security
Formal methods have limitations of scale, training, and applicability in
principle. To compensate for the limitations of scale, formal methods have
been applied to selected parts or properties of a software project, in contrast
to applying them to the entire system. As for training limitations, it may be
difficult to find developers with the needed expertise in formal logic, the range
of appropriate formal methods for an application, or appropriate automated
software development tools for implementing formal methods. Finally, not
all formal methods are equally applicable on all systems. Formal languages
without modularization capabilities and scope-delimiting rules are difficult to
use on large systems at any but the highest level of abstraction.

Formal methods also have limitations in principle. A formal verification
can prove that an abstract description of an implementation satisfies a formal
specification or that some formal property is satisfied in the implementation.
However a formal method cannot prove that a formal specification captures a
user’s intuitive understanding of a system and furthermore cannot prove that
an implementation runs correctly on every physical machine. As restated by
Barry W. Boehm, [102] formal methods are sometimes useful for verifying a
system, but they cannot be used in validating a system. Validation shows that a
system will satisfy its operational mission. Verification shows that each step in
the development satisfies the requirements imposed by previous steps.

DHS’ Security in the Software Life Cycle observes that because software
security properties are often expressed in negative terms (i.e., what the software
must not do) it is particularly difficult to specify requirements for those
properties (formally or informally), and then to mathematically prove that
those requirements have been correctly satisfied in the implemented software.
The same is true of both security and safety properties, which are both a form of
universal statement that “nothing bad will happen.”

Formal methods for design have been mandated for software that must
meet high assurance levels, for example, at CC EAL 7 and above. Formal
methods have also proven successful in specifying and checking small, well
structured systems such as embedded systems, cryptographic algorithms,
operating system reference models, and security protocols.

5.1.3 Security Risk Management in the SDLC
The term software risk management is generally used with regard to management
of project risk or risk to software quality. This is the how the term is understood in
ISO/IEC 16085:2004, Systems and software engineering—Life cycle processes—Risk
management. Most software project and quality risk management methodologies
and tools are not easily adaptable to security risk concerns.

System security risk management methods and tools would seem to be
more directly useful for software security risk management, but are limited in

Software Security Assurance State-of-the-Art Report (SOAR)96

Section 5 SDLC Processes and Methods and the Security of Software

the same way their component risk assessment methods are limited when
used for software security risk assessments. The view they tend to take is
system-level/architectural, with the focus on operational risks. They address
software-specific risks, especially those that emerge in the software’s
development process rather than after deployment.

Only recently has management of security risks throughout the software
life cycle become a topic of widespread discussion, with techniques and
tools emerging to support it, and the integration of project and security risk
management for software development projects. This is an area in which the
software security and reliability consulting firm Cigital has been active for a
number of years. In the chapter “Managing Software Security Risk” in
Building Secure Software, [103] Cigital’s Gary McGraw and John Viega suggest
the following activities as the components of a security risk management
process within the SDLC (versus the software operational life cycle):

u Security requirements derivation/elicitation and specification (Section 5.2)
u Security risk assessment (Section 5.2.3.1)
u Secure architecture and design (Section 5.3)
u Secure implementation (Section 5.4)
u Security testing (Section 5.5)
u Security assurance (Section 5.5.4).

Cigital’s viewpoint is, of course, not the only one. Like Cigital, Marco
Morana of Foundstone suggests an activity-driven approach. However, his
approach combines both long-term, holistic software security approaches to
mitigating risk with short-term, issue-specific application security approaches.
He also recommends considering software security and information security
risks in tandem, rather than separately.

Morana outlines a set of risk management activities that map directly to
the main phases of the SDLC: [104]

1. Requirements—Security requirements engineering, setting of
compliance goals, application of industry/organizational standards,
specification of technical security requirements, threat modeling, and
security measurements (Section 5.2)

2. Architecture and Design—Threat modeling, architecture and design
security patterns, security test planning, architecture and design
security reviews, and security measurements (Section 5.3)

3. Development—Code reviews, use of security patterns, flaw and bug
mitigation, unit security testing, update of threat models, and security
measurements (Section 5.4)

4. Testing—Use of attack patterns, automated black box and white
box testing, regression testing, stress testing, third-party security
assessments, updating of threat models, and security measurements
(Section 5.5)

Software Security Assurance State-of-the-Art Report (SOAR) 97

Section 5 SDLC Processes and Methods and the Security of Software

5. Deployment—Deployment and operational security measures, patch
management, incident management, update of threat models, and
security measurements (Section 5.6).

Across all of these life cycle phases, policy, training, tools, and metrics
are applied. Morana also recommends the use of security-enhancing life cycle
process models, such as Comprehensive Lightweight Application Security
Process (CLASP) or Microsoft’s Security Development Lifecycle (SDL), Gary
McGraw’s Seven Touch Points, SEI’s TSP-Secure, as well as security best
practices, and automated tools.

Yet another vulnerability-oriented viewpoint is presented by Charles Le
Grand in “Managing Software Risk,” [105] identifying four key activities for
software security risk management:

1. Risk Assessment—Determination of the extent of vulnerabilities;
estimation of the probability of losses caused by exploits; includes
intrusion detection/prevention, risk/attack assessment of network-
facing systems, and cost-benefit analysis of countermeasures

2. Vulnerability Management—Identification, measurement and
remediation of specific vulnerabilities

3. Adherence to Security Standards and Policies for Development and
Deployment—Prevents the introduction of vulnerabilities

4. Assessment, Monitoring, and Assurance—Ongoing audits and monitoring
of risk levels to ensure that they remain within acceptable thresholds;
also determine the effectiveness of software security risk management
measures in achieving legal, regulatory, and security policy compliance.

Le Grand also emphasizes the executive’s role in security risk management
because “any enterprise-wide program for managing software risk requires
executive-level sponsorship and leadership.”

For Further Reading

“Risk Management”.
Available from: https://buildsecurityin.us-cert.gov/daisy/bsi/articles/best-practices/risk.html
Idongesit Mkpong-Ruffin and David A. Umphress, PhD (Auburn University), “High-Leverage
Techniques for Software Security”, CrossTalk, (March, 2007).
Available from: http://www.stsc.hill.af.mil/CrossTalk/2007/03/0703RuffinUmphress.html

5.1.3.1 Risk Management Frameworks
The use of risk management frameworks (RMF) for managing enterprise/
organizational risk has been prevalent for years. More recently, the framework
approach has been applied to security risk management, and even more
recently, specifically to software/application security risk management.

In 2004, Microsoft described its concept of security risk management,
including its own Security RMF, [106] which maps to its larger Microsoft Solutions

https://buildsecurityin.us-cert.gov/daisy/bsi/articles/best-practices/risk.html
http://www.stsc.hill.af.mil/CrossTalk/2007/03/0703RuffinUmphress.html

Software Security Assurance State-of-the-Art Report (SOAR)98

Section 5 SDLC Processes and Methods and the Security of Software

Framework (MSF). The MSF maps risk management activities to the phases of a
life cycle process it calls the MSF Process Model, as depicted in Table 5-2.

Table 5-2. Microsoft Security Risk Management Framework

MSF Process Phase Risk Management Framework Activities

Initiation Initiation of project definition: All parties involved in security
management must define goals, assumptions, and constraints.
Outcome: Approval of project vision and scope

Planning Assessment and analysis of security management processes: includes
organizational assessment, asset valuation, threat identification,
vulnerability assessment, security risk assessment, countermeasure/
security remediation planning. Outcome: Approval of project plan

Building Development of security remediations: development, unit testing, and
quality validation of countermeasures. Outcome: Completion of scoping

Stabilizing Security remediation testing and resource functionality testing: involves
detection and severity rating of security bugs. Outcome: Approval of
release readiness

Deploying Security policy and countermeasure deployment: includes enterprise-
wide, centralized, and site-specific policies, countermeasures and
security components. Outcome: Completion of deployment and
re-entry into beginning of life cycle, with conveyance of security risk
management knowledge and lessons learned

Like many of Microsoft’s security processes (e.g., SDL), its security risk
management framework is strongly oriented toward turnkey software product
development, rather than software integration, so it would have to be expressly
adapted for reuse by integrators of noncommercial software systems.

The software security and reliability consulting firm Cigital has used its
proprietary Cigital RMF for more than a decade. Under contract to DHS, Cigital
developed the BuildSecurityIn (BSI) RMF, a condensed version of the Cigital
RMF. The BSI RMF consists of five-phases of risk management activities:

1. Understanding the business context in which software risk
management will occur.

2. Identifying and linking the business and technical risks within the
business context to clarify and quantify the likelihood that certain
events will directly affect business goals. This activity includes analyses
of software and development artifacts.

3. Synthesizing and ranking the risks.
4. Defining a cost-effective risk mitigation strategy.
5. Carrying out and validating the identified fixes for security risks.

Surrounding all of these activities is a sixth, pervasive activity,
Measurement and Reporting. According to Gary McGraw, whose article on the
BSI RMF appears on the DHS BuildSecurityIn portal: [107]

Software Security Assurance State-of-the-Art Report (SOAR) 99

Section 5 SDLC Processes and Methods and the Security of Software

As we converge on and describe software risk management activities
in a consistent manner, the basis for measurement and common
metrics emerges. Such metrics are sorely needed and should allow
organizations to better manage business and technical risks given
particular quality goals; make more informed, objective business
decisions regarding software (e.g., whether an application is ready to
release); and improve internal software development processes so that
they in turn better manage software risks.

According to McGraw, typical risk metrics include, but are not limited to,
risk likelihood, risk impact, risk severity, and the number of risks that emerge
and are mitigated over time.

Like McGraw, Morana of Foundstone is also a proponent of what he terms
Software Security Frameworks, such as that depicted in Figure 5-2.

Figure 5-2. Notional Software Security Framework [108]

Software Security Assurance State-of-the-Art Report (SOAR)100

Section 5 SDLC Processes and Methods and the Security of Software

5.1.3.2 Tools for Software Security Risk Management
In his paper, Security Risks: Management and Mitigation in the Software
Life Cycle, [109] David Gilliam of The National Aeronautics and Space
Administrations (NASA) Jet Propulsion Laboratory (JPL), describes a formal
approach to managing and mitigating security risks in the SDLC that requires
integration of a software security checklist and assessment tools with a security risk
management and mitigation tool, and used iteratively throughout the software life
cycle. The tools Gilliam describes using at JPL are the Software Security Assessment
Instrument (SSAI), developed by the NASA Reducing Software Security Risk (RSSR)
program, and JPL’s Defect Detection and Prevention (DDP) tool. [110]

Since the development of the SSAI and DDP, several commercial tools
vendors have introduced integrated, centrally managed software and/or
application security risk management tool suites (e.g., Radware’s APSolute
Application Security solution suite; SPI Dynamics’ Assessment Management
Platform) that include tools that support capabilities including code review,
vulnerability assessment, black box and penetration testing, attack/intrusion
monitoring and detection, security compliance testing/verification, security
policy management, application firewalls, encryption, vulnerability management,
and even patch management. Examples include those described below.

5.1.4 Software Security Assurance Cases
As noted in Section 2.1.3, according to DHS, software assurance provides
“a basis for justified confidence” in a required property of software (or of a
software-intensive system). This basis for justified confidence may take the
form of an assurance case. T. Scott Ankrum and Charles Howell [111] define
an assurance case as—

A documented body of evidence that provides a convincing and
valid argument that a specified set of critical claims regarding a
system’s properties are adequately justified for a given application
in a given environment.

An assurance case documents assurance arguments and assurance claims
about a software component, product, or system, and provides the necessary
evidence of the validity of those arguments and claims sufficient to reduce
uncertainty to an acceptable level, thus providing the grounds for justified
confidence that the software exhibits all of its required properties. For this
document, the required property of interest is security.

The assurance case should be developed alongside the software
component or system itself. The information added to the assurance case at
each life cycle phase will vary based on the level of assurance that is sought.

There is an increasing emphasis, in the software assurance community, on
defining standards for the content and evaluation of security assurance cases

Software Security Assurance State-of-the-Art Report (SOAR) 101

Section 5 SDLC Processes and Methods and the Security of Software

for software. The only claim that can be realistically made for software security
assurance cases at this point is that they will provide a useful mechanism for
communicating information about software risk. To date, there has been little if
any empirical evidence that assurance cases can or will improve the security of
software or increase the level of trust between users and software suppliers.

The most mature of the emerging software security assurance case
standards, SafSec (see Section 5.1.4.2.1), has only been tested in two case
studies. As of April 2007, the next stage of SafSec evaluation, which involves
applying the methodology on a system under development, was still underway.
It would seem that so far, assurance case proponents have based their
expectation of the effectiveness of security assurance cases on an extrapolation
from the success of safety cases (see Section 5.1.4.1) and to a lesser extent from
CC STs (discussed in Section 4.8).

For Further Reading

Assurance Cases.
Available from: https://buildsecurityin.us-cert.gov/daisy/bsi/articles/knowledge/assurance.html
Elisabeth A. Strunk and John C. Knight, “The Essential Synthesis of Problem Frames and Assurance
Cases”, in Proceedings of the Second International Workshop on Applications and Advances in Problem
Frames, May 23 2006.
CMU SEI, Assurance Case and Plan Preparation.
Available from: http://www.sei.cmu.edu/pcs/acprep.html
J. McDermott, “Abuse Case-Based Assurance Arguments”, in Proceedings of the 17th Annual Computer
Security Applications Conference, December 2001: 366-374.
Available from: http://www.acsa-admin.org/2001/abstracts/thu-1530-b-mcdermott.html

5.1.4.1 Safety Cases as a Basis for Security Assurance Cases
The concept of an assurance case originated with the safety case. In response
to several significant catastrophes that were traced to the failure of certain
physical systems (e.g., space shuttles, off-shore petroleum drilling facilities),
multiple safety standards and regulations emerged in the 1990s [e.g.,
Radio Technical Commission for Aeronautics (RTCA) DO-178B Software
Considerations in Airborne Systems and Equipment Certification, ISO 14971
Application of Risk Management to Medical Devices, MIL-STD-882D DoD
Standard Practice for System Safety, UK Defence Standard 00-56 Safety
Management Requirements for Defence Systems] specifying requirements for the
verification of reliability and fault-tolerance in safety-critical systems.

Safety-critical systems constitute physical systems or devices
(e.g., airplanes, nuclear power stations, medical devices), including their
software-based monitoring and control components. These software
components are either embedded within or networked to the physical system
they monitor or control. [An example of the former is an electric flight control
system; an example of the latter is software in an air traffic control system or the

https://buildsecurityin.us-cert.gov/daisy/bsi/articles/knowledge/assurance.html
http://www.sei.cmu.edu/pcs/acprep.html
http://www.acsa-admin.org/2001/abstracts/thu-1530-b-mcdermott.html

Software Security Assurance State-of-the-Art Report (SOAR)102

Section 5 SDLC Processes and Methods and the Security of Software

Supervisory Control and Data Acquisition (SCADA, see Appendix C) software for
climate monitoring and control in nuclear power plants].

To satisfy the mandates of the new safety standards and regulations,
safety cases were conceived [112] to provide a formal documentary basis that
regulators, auditors, etc., needed to verify with high levels of justified confidence
the reliability and fault-tolerance of safety-critical systems. A new term was
coined for systems and software that required the exhibition of critical properties
(such as reliability, safety, and survivability) [113] to be verified with a high level of
confidence: high confidence (as in High Confidence Software and Systems).

In addition to regulatory, standards, or policy compliance, safety cases can be
a prerequisite of third-party certification, approvals to operate, licensing, and other
situations in which a compelling case needs to be made that the system satisfies its
critical properties for use in specific contexts, such as healthcare or avionics.

There is a growing academic trend in Europe whereby software safety
research is being extended to include software security. Consistent with this
trend, most research by into software security assurance case methodologies
and tools is being done at European institutions that have long been engaged in
software safety research. (Appendix H lists specific examples of such research)

Just as many other practices from the software safety and information
assurance communities have proven adaptable for purposes of assuring
security (e.g., formal methods, fault injection), so the notion of assurance cases
for establishing confidence in the security of software has emerged.

Most currently defined software security assurance cases include—
u One or more claims about the required security attributes of the software
u A body of evidence supporting those claims
u Arguments that clearly link the evidence to the claims.

Depending on the nature of its evidence and the persuasiveness of its
arguments, an assurance case can reduce uncertainty and lead to justified
confidence in the software’s security, or it may provide grounds for a rational
lack of confidence.

The body of evidence that supports each part of the assurance case can come
in many forms. This evidence may reflect either direct analysis of the software (e.g.,
test results, code review results, mathematical proofs from formal methods) or
review of indirect indicators that the claims are likely to be true, such as the nature
of the development process used, the reputation of the development organization,
and the trustworthiness and expertise of the individual developers.

5.1.4.2 Software Assurance Case Standards
Some significant efforts are underway in the research community to develop such
tools, or to extend, adapt, and refine safety case tools to also accommodate the
particular requirements of security assurance cases. Efforts are also underway to
standardize the software assurance process and its relationship to the software and

Software Security Assurance State-of-the-Art Report (SOAR) 103

Section 5 SDLC Processes and Methods and the Security of Software

system development processes, as well as the required content and structure of
assurance case artifacts. The most significant of these efforts are described below.

5.1.4.2.1 UK Ministry of Defence SafSec
SafSec [114] is an assurance methodology developed by Praxis High Integrity
Systems in response to the requests of its sponsors in the UK Ministry of
Defence (MOD) for a program that would “reduce the cost and effort of safety
certification and security accreditation for future military Avionics systems.”
Praxis’ response was to develop the SafSec standard and guidance documents,
which define a standard structure for producing and evaluating a combined
assurance case for software safety/reliability and security. In this way, SafSec
provides an integrated view of assurance: not only do safety, reliability, and
security converge in the C&A domain, they converge in the development
domain, as illustrated in Figure 5-3.

Figure 5-3. SafSec Convergence of Safety, Reliability, and Security Assurance

The SafSec standard seeks to overcome the following problems associated
with other software assurance processes:

u It ensures completeness.
u It minimizes overlap and duplication of evidence, and thus reduces

the evaluation effort and the associated costs. Evidence that supports
both safety/reliability and security assurance claims needs to be
generated only once.

Software Security Assurance State-of-the-Art Report (SOAR)104

Section 5 SDLC Processes and Methods and the Security of Software

u It provides a single methodology and framework that supports both
safety and security certification and accreditation of both products and
systems, including highly modular systems.

The SafSec assurance case can be said to be an integrated dependability case
in which safety and security are handled in parallel. The inclusion of reliability
and maintainability concerns in the assurance argument and evidence ensures
that all aspects of dependability are addressed. SafSec emphasizes the need
to concentrate on the product rather than the processes. Justification of the
means or processes by which the product was produced is less important
than ensuring that the system itself is assured. For this reason, SafSec uses the
assurance case as a structure for evidence about the product alone.

SafSec’s implementation process incorporates three phases:
1. Unified Risk Management—The risk model is developed, taking into

account safety hazards, security threats, and operational requirements
of the target system.

2. Risk-Directed Design—The system’s architectural design is produced and
then used in conjunction with the risk model to define the required
dependability properties and functionalities for all system modules.

3. Modular Certification—Each module’s dependability properties and
functionalities (documented in clear specifications) are used as the
basis for building the supporting assurance arguments and evidence,
to justify the certification/accreditation of the module. Based on the
evaluation of the arguments and evidence, a set of safety and security
certificates is produced.

SafSec assurance activities are initiated during the earliest phases of the
software/system development life cycle, and are predicated on the
collaboration of representatives of the safety, security, and program
management domains.

5.1.4.2.2 ISO/IEC and IEEE 15026
In 2001, ISO/IEC began revising ISO/IEC 15026, System and Software
Engineering—System and Software Assurance. The revised standard was to
incorporate the concept of an “assurance case” for justifying confidence that
the system/software exhibits all of its required critical properties (e.g., security,
safety, reliability). Because the assurance case is considered a life cycle artifact,
the revised 15026 also specified how it should be defined, maintained, and
revised throughout the system/software life cycle.

Unfortunately, by 2006, the ISO/IEC project reached its deadline without
producing a 15026 revision considered ready for balloting. At the same time,
The Institute of Electrical and Electronic Engineers (IEEE) initiated project
P15026 [115] to take over work on the 15026 revision, although it is not clear
whether IEEE’s project has replaced the ISO/IEC effort or is being run parallel

Software Security Assurance State-of-the-Art Report (SOAR) 105

Section 5 SDLC Processes and Methods and the Security of Software

to it. The latest ISO/IEC draft of the revised standard defines the following life
cycle process expectations and their associated outcomes:

1. Plan assurance activities
2. Establish and maintain the assurance case
3. Monitor and control assurance activities and products.

Figure 5-4 illustrates the relationship of the proposed new 15026 activities
and those of the ISO/IEC life cycle and risk management activities to which
15026 is meant to provide assurance support.

Note: This diagram is the latest version available in the IEEE P15026 Working Document Revision 6,
which is the most recent version of the proposed revision.

Figure 5-4. IEEE P15026

5.1.4.3 Workshops on Assurance Cases for Security
The Workshop on Assurance Cases for Security (hosted by the CMU SEI)
grew out of the recognition by the previous Workshop on Assurance Cases
(in June 2004), Best Practices, Possible Obstacles, and Future Opportunities,
that security assurance cases presented a challenge that deserved further
consideration and discussion.

The 2005 workshop brought together practitioners and researchers
from the safety, reliability, and security communities. Participants came from
government, academic, and industry organizations from several countries.
Their objective was to visualize assurance cases for security, to explore the
challenges they presented, and to propose viable technical approaches to
realize them. A report entitled Assurance Cases for Security [116] was produced Assurance Cases for Security [116] w as produc ed Assurance Cases for Security
from technical output of the workshop.

Software Security Assurance State-of-the-Art Report (SOAR)106

Section 5 SDLC Processes and Methods and the Security of Software

The 2005 Workshop was followed up in March 2006 with the Workshop on
Assurance Cases for Security: Communicating Risks in Infrastructures, which
brought together the core group of attendees from the two previous workshops
with experts from the risk assessment and network communications industries,
including a representative of a critical UK nuclear infrastructure organization
who was responsible for justifying the security of critical information and
communications technology systems.

The most important conclusion from this workshop was the recognition
of the need to support communication of risks between stakeholders involved
in critical infrastructures: assurance cases appear to be a workable solution
because they can be applied to the different elements of the infrastructure,
including individual components, whole systems, processes, and organizations.
The assurance cases for different types of elements might have different
objectives, forms, and sources of evidence. The workshop participants,
however, came to the conclusion that it should be possible to develop a single
theoretical and methodological basis for all types of assurance cases.

The next workshop on Assurance Cases for Security is subtitled “The Metrics
Challenge” and will be held in conjunction with the International Conference on
Dependable Systems and Networks (DSN 2007) [117] in Edinburgh, Scotland. For
more information on past Assurance Cases for Security workshops, see Robin
E. Bloomfield, et al., “International Working Group on Assurance Cases (for
Security)” in the May/June 2006 issue of IEEE Security & Privacy.

5.1.4.4 Inherent Problems With Current Assurance Cases
There are acknowledged problems with the current state of assurance argument
development, evidence gathering, and assurance case evaluation. According
to T. Scott Ankrum and Charles Howell, [118] these problems have numerous
sources, including (but not limited to)—

u The volume and nature of evidence to be considered.
u The lack of explicit relationships among assurance claims, assurance

arguments, and supporting evidence.
u The lack of support for structuring the information. Most assurance

case information is presented in free text, making it tedious to review,
and difficult to discern linkages and patterns, or to locate key results
within the sheer volume of evidence presented.

u The lack of a standard set of “rules of evidence.”
u Exclusive emphasis in current guidance for assurance case development

on the format of the information (often described in intricate detail).
u The lack of guidance on how to gather, merge, and review arguments

and evidence, requiring both developers and evaluators of assurance
cases to develop their own ad hoc criteria.

u The lack of explicit guidance for weighing conflicting or inconsistent
evidence.

Software Security Assurance State-of-the-Art Report (SOAR) 107

Section 5 SDLC Processes and Methods and the Security of Software

u Difficulty in comprehending the often-complex impacts of changes
because of the immense volume of information to be considered. Changes
to assurance cases may be triggered by invalidity of claims and/or
evidence, or the availability of new evidence, thus enabling new claims. In
either case, such changes can render existing assurance arguments invalid,
requiring revalidation (with significant associated cost).

It has been suggested (primarily by researchers and vendors who are
developing such tools) that at least some these problems can be mitigated by
improving the tools that support software assurance case development and
assessment activities.

5.1.5 Software Security Metrics and Measurement
Software security and application security have become big business.
Advocates of different security-enhanced software processes, software
security best practices, and a variety of supporting techniques and tools all
suggest that those who adopt them will reap great benefits in terms of more
secure (or at least less vulnerable) software. However, the fact is that there
are few concrete metrics by which to precisely and objectively measure
the effectiveness (innate and comparative) of all these different processes,
practices, techniques, and tools. Moreover, there is active debate underway in
the metrics and measurement community, which is attempting to define such
metrics, regarding exactly what can and should be measured as a meaningful
indicator that software is actually secure (or not vulnerable).

In August 2006, the first-ever conference devoted to security metrics,
Metricon 1.0, [119] was held in Vancouver, British Columbia, Canada. Steve
Bellovin, one of the “greybeards” of the information and network security
community, summed up the problem nicely in his keynote address to Metricon.
He argued that for software, meaningful security metrics are not yet possible:

Safes are rated for how long they’ll resist attack under given
circumstances. Can we do the same for software?…It’s well
known that any piece of software can be buggy, including security
software…This means that whatever the defense, a single well-placed
blow can shatter it. We can layer defenses, but once a layer is broken
the next layer is exposed; it, of course, has the same problem…The
strength of each layer approximates zero; adding these together
doesn’t help. We need layers of assured strength; we don’t have them. I
thus very reluctantly conclude that security metrics are chimeras for
the foreseeable future. We can develop probabilities of vulnerability,
based on things like Microsoft’s Relative Attack Surface Quotient, the
effort expended in code audits, and the like, but we cannot measure
strength until we overcome brittleness.

Software Security Assurance State-of-the-Art Report (SOAR)108

Section 5 SDLC Processes and Methods and the Security of Software

By Bellovin’s criteria metrics for software security are impossible because
100 percent security of software is not possible, i.e., one cannot measure what
cannot possible exist. During the software security metrics track that followed
Bellovin’s keynote (and the very fact that there was such a track implicitly
refuted Bellovin’s argument), Jeremy Epstein of webMethods implicitly agreed
with Bellovin that absolute security of software is probably not possible, [120]
but disagreed that it was impossible to collect some combination of statistics
about software—measurements that are already being taken—and then to
determine which of these metrics (alone or in combination with others)
actually says something meaningful about the security of the software. In short,
given a statistic such as number of faults detected in source code, is it possible
to extrapolate something about the influence of that statistic on the security
of software compiled from that source code, i.e., do fewer faults in source code
mean software that is less vulnerable? (Incidentally, this is the premise upon
which the whole source code analysis tools industry is based.)

Of course one can reasonably argue, as Bellovin has, that even a single
implementation fault, if exploited, can compromise the software. Even were
there no implementation faults, the software could exhibit overall weakness due
to inadequacies in its design and architecture. This type of inadequacy is much
harder to pinpoint, let alone to measure.

Researchers involved in defining metrics for software security do not
pretend they can define measurements of absolute security. The best they can
hope for is to measure different characteristics and properties of software that
can be interpreted in aggregate as indicating the relative security of that software,
when compared either with itself operating under different conditions, or with
other comparable software (operating under the same or different conditions).

Along the lines of Epstein’s suggestion, i.e., to gather statistics that one
knows can be gathered, then to consider them in terms of their indications
for software security, quite a bit of the software security metrics work to date
has, in fact, involved investigating already-defined information security and
software quality and reliability metrics, to determine whether any of these can
be applied to the problem of measuring software security assurance (and, if so,
which metrics). This is the approach of the DHS Software Assurance Program’s
Measurement WG, for example (see Section 6.1.9.1). The WG’s approach is
typical in its attempt to “leverage” metrics from the software quality arena
(e.g., CMMI) and the information security arena (e.g., CC, SSE-CMM, [121] NIST
Special Publication (SP) 800-55, ISO/IEC 27004).

One software security metric that is already in use is Microsoft’s Relative
Attack Surface Quotient (RASQ), referred to by Steve Bellovin in his Metricon
address. Developed with the assistance of CMU to compensate for the lack
of common standards for software security metrics, RASQ measures the
“attackability” of a system, i.e., the likelihood that an attack on the system will occur
and be successful. A RASQ score is calculated by finding the root attack vectors,

Software Security Assurance State-of-the-Art Report (SOAR) 109

Section 5 SDLC Processes and Methods and the Security of Software

which are features of the targeted system that positively or negatively affect its
security. Each root attack vector has an associated attack bias value between 0
and 1, indicating the level of risk that a compromise will be achieved by the attack
vector, and an effective attack surface, indicating the number of attack surfaces
within the root attack vector. The final RASQ score for a system is the product of the
sum of all effective attack surfaces multiplied by the root vector’s attack bias.

According to a study by Ernst & Young, [122] the RASQ for an out-of-the-box
Windows 2000 Server running Internet Information Server (IIS) is 341.20, a high
attackability rating (based on the number of vulnerabilities found in Windows
2000 Server since its release). By contrast, the RASQ for Windows Server 2003
running IIS was significantly lower—156.60, providing evidence that Microsoft has
addressed many of the security shortfalls in the earlier Windows Server version.

The Ernst & Young study notes that RASQ’s usefulness is limited only to
comparing relative attack surface rates between Microsoft operating system
versions, because RASQ relies heavily on parameters that are only meaningful
within those operating systems. In addition, the study stressed that RASQ
does not measure a system’s vulnerability to attack or its overall level of
security risk. Nevertheless, building and configuring a system to lower its
RASQ score will reduce the number of potentially vulnerable attack surfaces,
thereby reducing its overall risk level.

In addition to RASQ, several other software security metrics have been
proposed, and are under development, by researchers in industry, government,
and academia. The following are some examples (this is by no means a
comprehensive list):

u Relative Vulnerability Metric—[123] Developed by Crispin Cowan of
Novell, Inc., this metric compares the calculated ratio of exploitable
vulnerabilities detected in a system’s software components when an
intrusion prevention system (IPS) is present, against the same ratio
calculated when the IPS is not present.

u Static Analysis Tool Effectiveness Metric—[124] Devised by Katrina Tsipenyuk
and Brian Chess of Fortify Software, this metric combines the actual
number of flaws (true positive rate) with the tool’s false positive and false
negative rates, and then weights the result according to the intended
audience for the resulting measurements, i.e., tool vendors wishing to
improve the accuracy of the tool, or the auditors attempting to avoid false
negatives, or software developers trying to minimize false positives.

u Relative Attack Surface Metric—[125] Under development by Pratyusa K.
Manadhata and Jeannette M. Wing of CMU, this metric extends CMU’s
work on the Microsoft RASQ to define a metric that will indicate
whether the size of a system’s attack surface is proportional to size of
the system overall, i.e., if A > B, is the attack surface of A larger than the
attack surface of B? The metric will define a mathematical model for
calculating the attack surface of a system based on an entry point and

Software Security Assurance State-of-the-Art Report (SOAR)110

Section 5 SDLC Processes and Methods and the Security of Software

exit point framework for defining the individual entry and exit points of
a system. These entry and exit points contribute to the attack surface
according to their accessibility, attack weight, damage potential, effort,
and attackability. The CMU metric is more generic than RASQ and thus
applicable to a wider range of software types. In their paper,
Manadhata and Wing calculate the attack surface for two versions of a
hypothetical e-mail server. However, the CMU attack surface metric is
also significantly more complex than RASQ and requires further
development before it will be ready for practical use.

u Predictive Undiscovered Vulnerability Density Metric—[126] O.H. Alhazmi, Y.K.
Malaiya, and I. Ray at Colorado State University are adapting quantitative
reliability metrics to the problem of predicting the vulnerability density of
future software releases. By analyzing data on vulnerabilities found in
popular operating systems, the researchers have attempted to determine
whether “vulnerability density” is a useful metric at all, then whether it is
possible to pinpoint the fraction of overall software defects with security
implications (i.e., those that are vulnerabilities). From this analysis, they
produced a “vulnerability discovery rate” metric. Based on this metric, i.e.,
the quantity of discovered vulnerabilities, they are now attempting to
extrapolate a metric for estimating the number of undiscovered (i.e.,
hypothetical) vulnerabilities.

u Flaw Severity and Severity-to-Complexity Metric—[127] Pravir Chandra of
Foundstone (formerly of Secure Software Inc.) is researching a set of
metrics for: (1) rating reported software flaws as critical, high, medium,
or low severity; (2) determining whether flaw reports in general affect a
product’s market share, and if so whether reporting of low severity flaws
reduce market share less than reporting of high severity flaws; and (3)
determining whether it is it possible to make a direct correlation between
the number and severity of detected vulnerabilities and bugs and the
complexity of the code that contains them.

u Security Scoring Vector (S-vector) for Web Applications—[128] Under
development by a team of researchers from Pennsylvania State
University, Polytechnic University, and SAP as a “a means to compare
the security of different applications, and the basis for assessing if an
application meets a set of prescribed security requirements.” The
S-vector metric will be used rate a web application’s implementation
against its requirements for: (1) technical capabilities (i.e., security
functions), (2) structural protection (i.e., security properties), and
(3) procedural methods (i.e., processes used in developing, validating,
and deploying/configuring the application) in order to produce an
overall security score (i.e., the S-vector) for the application.

u Practical Security Measurement (PSM) for Software and Systems—[129] In
February 2004, the PSM Technical WG on Safety and Security began
work to tailor the ISO/IEC 15939 PSM framework to accommodate the

Software Security Assurance State-of-the-Art Report (SOAR) 111

Section 5 SDLC Processes and Methods and the Security of Software

measurement of several aspects of software-intensive system security,
including (1) compliance with policy, standards, best practices, etc.;
(2) management considerations (resources/costs, schedule, project
progress); (3) security engineering concerns (e.g., conformance with
requirements, constraints, security properties, stability, architectural
and design security, security of functionality and components,
verification and test results); (4) outcome (in terms of security
performance, risk reduction, customer satisfaction); (5) risk
management considerations (e.g., threat modeling, attack surface,
vulnerability assessment, countermeasure design/implementation,
and trade-offs); and (7) assurance (in support of assurance cases,
independent product evaluations, etc.).

u Measuring Framework for Software Security Properties—[130] Another
framework, this one proposed by the DistriNet research team at Catholic
University of Leuven (Belgium). Starting with two lists of security
principles and practices—M. Graff and K. van Wyk’s Secure Coding:
Principles and Practices (O’Reilly, 2003) and NIST SP 800-27, Engineering
Principles for Information Technology Security—the researchers
produced an initial short list of five properties that could realistically be
measured: (1) smallness and simplicity; (2) separation of concerns; (3)
defense in depth; (4) minimization of critical functions/components;
and (5) accountability. In future research, the team plans to identify more
measurable properties and to identify meaningful metrics that can be
used for such measurements, e.g., the Goal Question Metric. [131]

u Metrics Associated With Security Patterns—[132] Thomas Heyman and
Christophe Huygens, also of Catholic University of Leuven (Belgium), are
investigating ways in which security metrics can be directly associated
with software security patterns in order to measure the effectiveness of
those patterns in securing the software system. In this case, as discussed in
Section 5.3.3, the security patterns they are considering are those that
describe software security functionality, so it is likely that the metrics the
team defines will measure effectiveness of those security functions in
terms of policy enforcement or intrusion/compromise prevention.

u Quantitative Attack-potential-based Survivability Modeling for
High-consequence Systems—In 2005, John McDermott of the NRL
CHACS published an extensive paper [133] on his team’s work on
methodology for using Performance Evaluation Process Algebra (PEPA)
to mathematically model and quantify the survivability of a software-
based system to what he terms “human sponsored” (rather than
stochastic) faults. Quantification is achieved using mean time to
discovery of a vulnerability [134] as the metric, i.e., the longer a
vulnerability goes undiscovered due to lack of activation of the
associated fault, the longer the software system is considered to have
survived in the undetected presence of that fault.

Software Security Assurance State-of-the-Art Report (SOAR)112

Section 5 SDLC Processes and Methods and the Security of Software

In October 2006, the Second ACM Workshop on Quality of Protection
was held in Alexandria, Virginia; it included a session devoted to software
security metrics during which other research into software security metrics was
presented. In June 2007, the third Workshop on Assurance Cases for Security
will focus on security assurance metrics, including metrics for software security
assurance. See Section 5.1.4.3 for more information on these workshops.

To date the efforts of the NIST Software Assurance Metrics and Tools
Evaluation (SAMATE) program (see Section 6.1.10) have focused almost
exclusively on tools evaluation, although it is expected that they will become
more active in pursuing the metrics and measurement portion of their charter.

For Further Reading

“Measurement.”
Available from: https://buildsecurityin.us-cert.gov/daisy/bsi/articles/best-practices/measurement.html
“NIST Information Technology Laboratory Software Diagnostics and Conformance Testing: Metrics and
Measures.”
Available from: http://samate.nist.gov/index.php/Metrics_and_Measures
Andy Ozment and Stuart E. Schechter (Massachusetts Institute of Technology), “Milk or Wine:
Does Software Security Improve with Age?”, in Proceedings of the 15th Usenix Security Symposium,
July 31–August 4 2006.
Available from: http://www.cl.cam.ac.uk/~jo262/papers/Ozment_and_Schechter-Milk_Or_Wine-
Usenix06.pdf
Andy Ozment (University of Cambridge [UK]), “Software Security Growth Modeling: Examining
Vulnerabilities with Reliability Growth Models”, in: Quality of Protection: Security Measurements and
Metrics, Dieter Gollman, Fabio Massacci and Yautsiukhin, Artsiom.
Available from: http://www.cl.cam.ac.uk/~jo262/papers/qop2005-ozment-security_growth_modeling.pdf
MITRE Corporation, “Making Security Measurable” [portal page], This portal provides a “collection of
information security community standardization activities and initiatives” provides a portal to all the
different MITRE security that are guided by the informal mission statement on the portal page: “MITRE’s
approach to improving the measurability of security is through enumerating baseline security data,
providing standardized languages as means for accurately communicating the information, and
encouraging the sharing of the information with users by developing repositories.”
Available from: http://makingsecuritymeasurable.mitre.org/ or http://measurablesecurity.mitre.org/.

5.1.6 Secure Software Configuration Management
Because uncontrolled software development activities make it easier for those
with malicious intent to tamper with specifications or source code, potentially
inserting malicious code into source code or binary executables, all software
development artifacts should be kept under configuration management
(CM) control. Under strict version control, it becomes difficult for developers,
testers, or external attackers to tamper with the source code or executables. CM
activities place additional control over a project, intentionally separating the
role for managing configurable items from the developer or tester.

Security for software configuration management (SCM) practices and
systems has been the subject of a number of papers and guidelines dating at
least as far back as 1988, when the NSA’s National Computer Security Center
(NCSC) published A Guide to Understanding Configuration Management in

https://buildsecurityin.us-cert.gov/daisy/bsi/articles/best-practices/measurement.html
http://samate.nist.gov/index.php/Metrics_and_Measures
http://www.cl.cam.ac.uk/~jo262/papers/Ozment_and_Schechter-Milk_Or_Wine-Usenix06.pdf
http://www.cl.cam.ac.uk/~jo262/papers/Ozment_and_Schechter-Milk_Or_Wine-Usenix06.pdf
http://www.cl.cam.ac.uk/~jo262/papers/qop2005-ozment-security_growth_modeling.pdf
http://measurablesecurity.mitre.org/

Software Security Assurance State-of-the-Art Report (SOAR) 113

Section 5 SDLC Processes and Methods and the Security of Software

Trusted Systems (NCSC-TG-006, also known as the “Amber Book”). [135] To
date, many of the recommendations in that guide are still valid in general,
although the specific technical approaches suggested may have become
obsolete. Both the Amber Book and Section B.2 of NIST’s SP-800-64, Security
Considerations in the Information System Development Life Cycle (2004)
suggest that SCM requirements include those for methods that preserve the
security of software. These methods include—

u Increasing developer accountability for software development artifacts
by increasing the traceability of software development activities

u Ongoing impact analyses and control of changes to software
development artifacts

u Minimization of undesirable changes that may affect the security
of the software.

Since the Amber Book was published, advances in SCM technology and
techniques have enabled configuration managers to improve upon the paper-
trail-based SCM methods described in the Amber Book. Further improvements
are still being researched, recommended, and implemented.

DHS’s Security in the Software Life Cycle includes a significant discussion
of the current state-of-the-art in secure SCM practices, as well as summary of
“security enhancements” that can be added to current SCM practices, such as—

u Access control for development artifacts, including but not limited to
threat models, and use/misuse/abuse cases; requirements, architecture,
and design specifications; source code, binary executables; test
plans/scenarios/reports/oracles, code review findings, and vulnerability
assessment results; installation/configuration guides, scripts, and tools;
administrator and end user documentation; Independent Verification
and Validation (IV&V) documents (e.g., C&A documents, CC ST);
security patches and other fixes

u Time stamping and digital signature of all configuration items upon
check-in to the SCM system

u Baselining of all configuration items before they are checked out for
review or testing

u Storage of a digitally signed copy of the configuration item with its
configuration item progress verification report

u Separation of roles/access privileges, and least privilege enforcement,
for SCM system users

u Separation of roles and duties (developing, testing, etc.) within the
software development team

u Authentication of developers and other users before granting access to
the SCM system

u Audit of all SCM system access attempts, check-ins, check-outs,
configuration changes, traceability between related components as
they evolve, and details of other work done.

Software Security Assurance State-of-the-Art Report (SOAR)114

Section 5 SDLC Processes and Methods and the Security of Software

Some other capabilities have been suggested in other sources as necessary
for SCM to be truly secure. These include—

u Flexible but carefully controlled delegation [136] of SCM administrator
privileges

u No remote access, or remote access only via encrypted, authenticated
interfaces [137]

u Reporting of differences between security aspects of previous and
subsequent versions and releases.

In Software Configuration Management Handbook, [138] Alexis
Leon identifies security criteria that should be applied to the selection
of development artifacts that should, at a minimum, be placed under
configuration manager’s control as configuration items. These include—

u Items that are mission critical, security critical, safety critical, or high risk
u Items that, if they failed or malfunctioned, would adversely affect

security, human safety, or mission accomplishment, or would have a
significant financial impact

u Items for which an exact configuration and status of changes must be
known at all times.

In practical terms, Leon is suggesting that, at a minimum, the
development artifacts of high-consequence software should always be
designated as configuration items.

5.1.6.1 Secure SCM Systems
The interest in secure SCM has led to the emergence of secure software version
control systems and repositories, such as MKS’ (formerly Mortice Kern Systems)
MKS Integrity [139] and the Oracle Developer Suite 10g Software Configuration
Manager [140]. In addition, the Information Systems Security Operation
research team at Sparta, Inc. is working to move secure SCM technology
forward with its prototype Secure Protected Development Repository. [141]

As part of the Better SCM Initiative, Schlomi Fish, an Israeli open source
programmer, compared the features, capabilities, and technical characteristics
of 16 different open source SCM systems. [142] Two of the aspects he compared
were directly relevant to the systems’ ability to support secure SCM:

1. Ability to assign access permissions to users and to restrict access to
the repository based on those permission assignments

2. Ability to limit read and write accesses (check-ins and check-outs) to a
single directory.

Software Security Assurance State-of-the-Art Report (SOAR) 115

Section 5 SDLC Processes and Methods and the Security of Software

5.1.6.2 SCM and Nondevelopmental Components
CM of software systems that include acquired or reused components presents a
complex challenge. The schedules and frequency of new releases, updates, and
security (and nonsecurity) patches, and response times for technical support
by acquired or reused software suppliers, are beyond the control of both
developers and the configuration manager.

In the case of security patches, developers can never be sure when or even
if the supplier of a particular software component will release a needed security
patch for a reported vulnerability that might render a selected component
otherwise unacceptable for use in the software system. Nor can the developer
predict whether a particular security patch may invalidate the security
assumptions that other components in the component-based system have
about the component to be patched.

Given five COTS components, all on different release schedules, all with
vulnerabilities reported and patches released at different times, the ability to
“freeze” the component-based software system at an acceptable baseline may
confound even the most flexible development team. Developers may have to
sacrifice the freedom to adopt every new version of every nondevelopmental
component and may, in some cases, have to replace components for which security
fixes are not forthcoming with more secure alternatives from other suppliers.

Security enhancements and patches announced by suppliers should be
investigated and evaluated by developers as early in the software life cycle as
possible to allow sufficient time for risk assessment and impact analysis. This
is particularly important for new versions of or replacements for software
components that perform security functions or other critical trusted function,
because such new versions and replacements will also have implications for
system recertification and reaccreditation.

If a particular nondevelopmental component is not kept up to date according
to the supplier’s release schedule, the developer and configuration manager need
to keep track of the minutiae of the supplier’s support agreement or contract to
determine whether there is a point in time at which a non-updated/non-patched
version of the software becomes “no longer supportable.” The risks associated with
using unsupported software have to be weighed against the risks of adopting new
versions or applying patches that have significant impacts on the system’s security
assumptions (or of adopting an alternative product from a different supplier). A
supplier’s willingness to support older versions for a fee may be worth negotiating
during the product’s acquisition, as are custom modifications by the supplier to
counteract security vulnerabilities that might not be deemed significant enough,
by the supplier, to warrant issuing a standard patch.

Vulnerability reports issued by the United States Computer Emergency
Readiness Team (US-CERT) and DoD’s Information Assurance Vulnerability Alert
(IAVA) program and entries in the NIST National Vulnerability Database (NVD)
and the Common Vulnerabilities and Exposures (CVE) represent reliable sources

Software Security Assurance State-of-the-Art Report (SOAR)116

Section 5 SDLC Processes and Methods and the Security of Software

of information about software product vulnerabilities. The software configuration
manager should monitor those sources and download all necessary patches
indicated by in the vulnerability reports, and then work with the developers to
determine the impact of adopting those patches and the risk of not adopting them.

It is extremely critical for configuration managers to determine and
understand how the security of the component-based system may be
affected by new behaviors or interfaces introduced by patches applied to
individual components. Suppliers often include other features that have no
vulnerability-mitigating purpose in security patches, using the patch as a
chance to introduce features that will later appear in their next full release
of the software. Unfortunately, these features are seldom documented or
even announced when delivered with the patch, making the need for impact
analysis of such features impossible to recognize.

Secure SCM should track all fixes, patches, updates, and new releases
by the suppliers of COTS and OSS components. It will be a challenge to both
project and configuration managers to define a release schedule for systems
that contain several such components so that as many of those components as
possible can be brought “up to date” in terms of security (and other) patches
prior to the system’s release, in hopes of reducing the amount of patching that
will be needed soon after the system has been deployed.

The patch management solution typically used for post-deployment
patching may not be flexible enough for patching during the development
of component-based software. The patch management solution used during
development needs to support the types of impact analyses that must be
performed prior to assembly of patched components or integration of software
products, including analysis of the patch’s impact on other components’
security assumptions.

If the system is shipped with custom-developed installation scripts, the
developer needs to verify that these scripts do not overwrite security patches
already installed on the target hosts. For example, when developing installation
scripts for hosts running Microsoft operating systems, the developer can
run Microsoft’s Baseline Security Analyzer to ensure that the script will not
overwrite patches already applied in the intended target environment.

Software Security Assurance State-of-the-Art Report (SOAR) 117

Section 5 SDLC Processes and Methods and the Security of Software

For Further Reading

Klaus Keus and Thomas Gast, “Configuration Management in Security related Software Engineering
Processes”, in: Proceedings of the 1996 National Information Systems Security Conference, 1996.
Available from: http://csrc.nist.gov/nissc/1996/papers/NISSC96/paper035/scm_kk96.pdf
Premkumar T. Devanbu, M. Gertz, and Stuart Stubblebine, “Security for Automated, Distributed
Configuration Management”, in: Proceedings of the Workshop on Software Engineering over the Internet
at the 21st International Conference on Software Engineering, 1999.
Available from: http://www.stubblebine.com/99icse-workshop-stubblebine.pdf
Bob Aiello, “Behaviorally Speaking: Systems Security—CM is the Missing Link!!!” CM//Crossroads.
June 1, 2003.
David A. Wheeler, Software Configuration Management (SCM) Security, (May 6, 2005).
Mark Curphey and Rudolph Araujo, “Do Configuration Management During Design and Development”,
in: Software Mag: The IT Software Journa, (October, 2005).
Available from: http://www.softwaremag.com/L.cfm?doc=2005-10/2005-10-config-man
Tom Olzak, “Web Application Security: Application Denial of Service and Insecure Configuration
Management”, podcast, August 2006.
Available from: http://adventuresinsecurity.com/Podcasts/AISSeries/ShowNotes/AdventuresinSecurity_
Episode_37.pdf

5.1.7 Software Security and Quality Assurance
It has become a truism in the software security assurance community that to
the extent that software quality (or, more specifically, its constituent properties
of correctness and predictability) is a prerequisite of software security, “vanilla”
software quality assurance (QA) practices can be expected to aid in the
assurance of software security.

Within both the software security assurance and QA communities, the
relationship between security assurance and quality assurance for software is
being considered from two directions:

u Addition of Security Risk Management to QA of Secure Software—Which
security risk management practices should be added to the QA process,
and how should those additions be accomplished?

u QA of Secure SDLC Practices—Which QA practices will be the most useful
for assuring the quality of secure software life cycle practices?

Addition of security testing to quality-oriented software testing is a
frequent theme of QA-for-secure-software discussions.

These are questions that are being discussed at the highest executive levels
of organizations in the software security, software development, and software
quality arenas. For example, in September 2006, Ed Adams, Chief Executive Officer
of Security Innovations (a software security firm) and founder of the Application
Security Industry Consortium, gave a keynote speech at the International
Conference on Practical Software Quality and Testing in Minneapolis entitled
What Does Security Mean to My Business: the Quest for Security Testing and ROI.
Six months later, in April 2007, Dr. Sachar Paulus, Chief Security Officer of the SAP
Group, gave a keynote address on Measuring Security at the Software and Systems
Quality Conferences International 2007 in Zurich (Switzerland).

http://csrc.nist.gov/nissc/1996/papers/NISSC96/paper035/scm_kk96.pdf
http://www.stubblebine.com/99icse-workshop-stubblebine.pdf
http://www.softwaremag.com/L.cfm?doc=2005-10/2005-10-config-man

Software Security Assurance State-of-the-Art Report (SOAR)118

Section 5 SDLC Processes and Methods and the Security of Software

The Standard of Good Practice, [143] published by the Information
Security Forum, is typical in its approach to QA of secure software and system
development practices. The Standard states that—

Quality assurance of key security activities should be performed
during the development life cycle…to provide assurance that security
requirements are defined adequately, agreed security controls are
developed, and security requirements are met.

Section SD1.3.2 of the Standard lists key security activities that should be
subjected to QA reviews and controls during the SDLC. These activities are—

1. Assessment of development risks (i.e., those related to running a
development project, which would typically include risks associated
with business requirements, benefits, technology, technical
performance, costing, and timescale)

2. Ensuring that security requirements have been defined adequately
3. Ensuring that security controls agreed to during the risk assessment

process (e.g., policies, methods, procedures, devices or programmed
mechanisms intended to protect the confidentiality, integrity or
availability of information) have been developed

4. Determining whether security requirements are being met effectively.

Section SD1.3.3 of the standard goes on to specify how QA of key security
activities should be performed. This includes making sure QA starts early
in the SDLC and is documented and reviewed at all key stages of the SDLC.
Section SD1.3.4 goes on to state that security risk should be minimized
through the revision of project plans (including schedule, budget, and staffing)
and resources whenever it is discovered that security requirements are not
being effectively satisfied, to the extent that development activities should
be cancelled if security requirements still cannot be satisfied after such
adjustments are made.

In Best Practices on Incorporating Quality Assurance into Your Software
Development Life Cycle, [144] Katya Sadovsky et al. identify a number of security
risk management measures to be included among broader QA activities in the
different phases of the SDLC, as shown in Table 5-3.

Software Security Assurance State-of-the-Art Report (SOAR) 119

Section 5 SDLC Processes and Methods and the Security of Software

Table 5-3. Security-Relevant QA Activities Throughout the SDLC

Life Cycle Phase QA Activities

Requirements Identification of acceptable levels of down time and data loss
Identification of security requirements

Design Identification and provision of countermeasures to vulnerabilities
Design to reflect needs of forensics and disaster recovery
activities, and the ability to test for both

Implementation Automation of nightly code scans, application and database
vulnerability scans, and network and configuration scans
Documentation and use of manual security test procedures

Testing Addition of penetration testing and black box testing to functional,
compatibility, and regression testing

Deployment Security training of help desk, system administration,
and support staff
Identification of security policy issues
Establishment of schedule and procedures for system and data
backups, and disaster recovery

Operations/Maintenance Repetition of “routine” security reviews and vulnerability scans
Secure change control

Decommissioning Sanitization of media
Proper disposal of hardware and software

For Further Reading

John D. McGregor (Clemson University), Secure Software. Journal of Object Technology, (May 2005).
Available from: http://www.jot.fm/issues/issue_2005_05/column3
Mark Willoughby, “Quality Software Means More Secure Software”, Computerworld (March 17 2004).
Available from: http://www.computerworld.com/securitytopics/security/story/0,10801,91316,00.html
Ryan English (SPI Dynamics), “Incorporating Web Application Security Testing Into Your Quality
Assurance Process”, IISresources.com, July 26 2006.
Available from: http://www.iis-resources.com/modules/AMS/article.php?storyid=586

5.1.8 Software Life Cycle Models and Methods
Over the years, various attempts have been made to define the most effective
model for organizing the technical, management, and organizational activities
of the SDLC.

Table 5-4 lists all the major SDLC models, with examples of each.

http://www.jot.fm/issues/issue_2005_05/column3
http://www.computerworld.com/securitytopics/security/story/0,10801,91316,00.html
http://www.iis-resources.com/modules/AMS/article.php?storyid=586

Software Security Assurance State-of-the-Art Report (SOAR)120

Section 5 SDLC Processes and Methods and the Security of Software

Table 5-4. SDLC Models

Model Implementation Examples

Waterfall
(Linear Sequential)

Winston Royce, [145] DoD-STD-2167A [146]

Iterative and
incremental

Joint Application Design (JAD), [147] MIL-STD-498 [148]

Evolutionary [149] Tom Gilb’s original Evolutionary Life Cycle (which has evolved
into Evolutionary Systems Delivery, or Evo), [150] Rapid Iterative
Production Prototyping (RIPP), Rapid Application Development
(RAD), [151] Genova [152]

Spiral Barry Boehm [153]

Concurrent Release Cascade Model or Reparenting Model [154]

Unified Process [155] Rational Unified Process (RUP), [156] Agile Unified Process
(AUP), [157] Enterprise Unified Process (EUP) [158]

Agile See Appendix F

For Further Reading

David Russo (University of Texas at Dallas), Software Process Planning and Management, Process Models.
Available from: http://www.utdallas.edu/~dtr021000/cse4381/processOverView.ppt
John Petlicki (De Paul University), Software Development Life Cycle (SDLC).
Available from: http://condor.depaul.edu/~jpetlick/extra/394/Session2.ppt

5.1.8.1 Agile Methods and Secure Software Development
Agile methods are characterized by achievement of customer satisfaction through
early and frequent delivery of workable and usable software (i.e., short iterations),
iterative development, acceptance of late requirements changes, integration of
the customer and business people in the development environment, parallel
development of multiple releases, and self-organizing teams.

According to Philippe Kruchten and Konstantin Beznosov, [159] agile
methods are iterative in nature; they do not follow the traditional linear
development method of requirements development, design, implementation
and testing phases. Instead, agile methods repeat the “traditional” development
sequence many times. In this way, agile methods can be likened to the spiral
model. However, agile methods also emphasize an evolutionary approach to
software production (“build a little, test a little, field a little”), with many life
cycle activities occurring concurrently.

As characterized by the Agile Manifesto, all agile methods have a single
overriding goal: to produce functionally correct software as quickly as possible.
For this reason, agile methods avoid life cycle activities that—

http://www.utdallas.edu/~dtr021000/cse4381/processOverView.ppt
http://condor.depaul.edu/~jpetlick/extra/394/Session2.ppt

Software Security Assurance State-of-the-Art Report (SOAR) 121

Section 5 SDLC Processes and Methods and the Security of Software

u Do not directly involve the production of software, (i.e., other artifacts
such as documentation, which is needed for most security evaluations
and validations).

u Cannot be performed by members of the software team, and
concurrently with other life cycle activities. For example, agile methods
do not accommodate IV&V.

u Require specialist expertise beyond that expected from the developers
in the software team. Agile methods do not allow for the inclusion of
security experts or other non-developer personnel on software teams.

u Focus on any objective other than producing correct software quickly.
Agile projects have difficulty incorporating other nonfunctional
objectives, such as safety, dependability, and security.

u Must be performed in an environment with constraints on who works
on the project, in what role, and under what working conditions. Agile
projects do not include or easily accommodate concepts such as
separation of roles and separation of duties, least privilege, and role-
based access control of development artifacts.

Much discussion and debate has occurred regarding whether it is possible
for software projects using agile methods to produce secure software. Appendix
F discusses the security issues frequently cited in connection with agile
development, as well as counterarguments for how agile methods can benefit
software security. Appendix F also describes some efforts to define “adapted”
agile methods that are more security supportive.

For Further Reading

Rocky Heckman, Is Agile Development Secure?, CNET Builder.au., August 8. 2005.
Available from: http://www.builderau.com.au/manage/project/soa/Is_Agile_development_secure_
/0,39024668,39202460,00.htm or
http://www.builderau.com.au/architect/sdi/soa/Is_Agile_development_secure_/0,39024602,39202460,00.htm
M. Siponen, R. Baskerville and T. Kuivalainen, Extending Security in Agile Software Development
Methods, In: Integrating Security and Software Engineering: Advances and Future Visions, Idea (Group
Publishing, 2007).
X. Ge, R.F. Paige, F.A.C. Polack, H. Chivers and P.J. Brooke, “Agile Development of Secure Web
Applications”, in Proceedings of the ACM International Conference on Web Engineering, 2006.
L. Williams, R.R. Kessler, W. Cunningham and E. Jeffries, “Strengthening the Case for Pair-
Programming”, in IEEE Software 17, no.4 (July-August 2000): 19-25.

5.1.8.2 Security-Enhanced Development Methodologies
A security-enhanced software development methodology provides an
integrated framework, or in some instances, phase-by-phase guidance for
promoting security-enhanced development of software throughout the
life cycle phases. The methodologies described here either modify traditional
SDLC activities, or insert new activities into the SDLC, with the objective

http://www.builderau.com.au/manage/project/soa/Is_Agile_development_secure_/0,39024668,39202460,00.htm
http://www.builderau.com.au/manage/project/soa/Is_Agile_development_secure_/0,39024668,39202460,00.htm
http://www.builderau.com.au/architect/sdi/soa/Is_Agile_development_secure_/0,39024602,39202460,00.htm

Software Security Assurance State-of-the-Art Report (SOAR)122

Section 5 SDLC Processes and Methods and the Security of Software

of reducing the number of weaknesses and vulnerabilities in software and
increasing software’s dependency in the face of threats.

The methodologies described in Sections 5.1.8.2.1 through 5.1.8.2.5 have been
used successfully in either multiple real-world development projects or multiple
academic pilots. Appendix G provides an overview of how the main security
enhancements in these five methodologies map into a standard life cycle model.

Section 5.1.8.2.6 describes additional methodologies that have been
developed by researchers, but that have not yet had extensive enough use
in pilots or real-world development projects to justify confidence in the
researchers’ claims for their effectiveness.

For Further Reading

Noopur Davis (CMU SEI), Secure Software Development Life Cycle Processes, (Washington, DC US
CERT, July 5, 2006).
Available from: https://buildsecurityin.us-cert.gov/daisy/bsi/326.html?branch=1&language=1

5.1.8.2.1 Microsoft Trustworthy Computing SDL
Microsoft’s formally established its security-enhanced software development
process, the SDL, during its “security pushes” of 2002 [160] as a means of
modifying its traditional software development processes by integrating tasks
and checkpoints expressly intended to improved the security of the software
produced by those processes. SDL’s goals are twofold:

1. To reduce the number of security-related design and coding defects in
Microsoft software

2. To reduce the severity of the impact of any residual defects.

Microsoft has stated that its software developed under the SDL process
initially demonstrated a 50-percent reduction in security bulletins on its
major products compared with versions of the same products developed
prior to SDL; more recent Microsoft estimates claim up to an 87-percent
reduction in security bulletins.

The SDL method proceeds along phases, mapping security-relevant tasks and
deliverables into the existing SDLC. The following describes each of the phases:

1. Requirements—The team reviews how security will be integrated into
the development process, identifies critical objectives, and considers
how security features will affect or be affected by other software likely
to be used concurrently.

2. Design—Key participants—architects, developers, and designers—
perform feature design, including design specification that details the
technical elements of implementation.

3. Implementation/Development—The product team codes, tests, and
integrates the software. Developers use security tools, security
checklists, and secure coding best practices.

https://buildsecurityin.us-cert.gov/daisy/bsi/326.html?branch=1&language=1

Software Security Assurance State-of-the-Art Report (SOAR) 123

Section 5 SDLC Processes and Methods and the Security of Software

4. Verification—The software is functionally complete and enters beta
testing. The product team may conduct penetration testing at this
point to provide additional assurance that the software will be resistant
to threats after its release.

5. Release—Software is subject to a final security review. The central
security team evaluates the software before shipping and may ask
safety check questions on a questionnaire. The final security review
(FSR) also tests the software’s ability to withstand newly reported
vulnerabilities affecting similar software.

6. Support and Servicing—The product team conducts any necessary
evaluations post-production, reporting vulnerabilities and taking action as
necessary, such as updating the SDL process, education and tools usage.

Microsoft has published extensive and detailed information on SDL
for the benefit of other software organizations that may want to adopt its
approach. Questions have been raised among systems integrators, particularly in
government, regarding whether SDL is well suited for noncommercial software
projects, given its focus on development, distribution, patching, maintenance, and
customer support for turnkey products. SDL does not include activities related
to installation and deployment, operation, or disposal, which are key phases in
DoD and other government system life cycles. It may, however, be possible to
follow SDL in the development of individual components, while following a more
integration-oriented system life cycle process for the system as a whole.

Microsoft itself has acknowledged that education and trust of its
developers are both key to the success of SDL-guided projects. This points
to the need for adding and enforcing criteria to government request for
proposals (RFP) and statement of work (SOW) related to individual developer
knowledge, expertise, and education and contractor commitment to ongoing
developer education and training.

Finally, SDL does not explicitly address business and other nontechnical
inputs to the software process, such as inputs driven by Federal, DoD, or
individual combatant command, service, or agency policy. The SDL view of
security risk management is technically focused, so provisions would have
to be made to ensure that security risk management within the SDL-guided
software project dovetailed smoothly with less technical risk management
methods used in many government software projects, which are defined
mainly in terms of C&A concerns.

Even if SDL does not prove to be adaptable for use in government software
projects, however, the fact that the methodology has been so well documented
provides the acquisition officer with unprecedented insight into the software
process followed by one of the government’s major software suppliers. This
visibility into Microsoft’s development process provides exactly the type of
assurance evidence acquisition officers should seek to attain from all of their
suppliers of critical software.

Software Security Assurance State-of-the-Art Report (SOAR)124

Section 5 SDLC Processes and Methods and the Security of Software

For Further Reading

Michael Howard and Steve Lipner, The Security Development Lifecycle, (Redmond, WA Microsoft
Press, 2006).
Michael Howard (Microsoft Corp.), “How Do They Do It?: A Look Inside the Security Development
Lifecycle at Microsoft” MSDN Magazine, (November, 2005).
Available from: http://msdn.microsoft.com/msdnmag/issues/05/11/SDL/default.aspx
Steve Lipner and Michael Howard (Microsoft Corp.), “The Trustworthy Computing Security
Development Lifecycle”, [web page], (Redmond, WA: Microsoft Corporation).
Available from: http://msdn.microsoft.com/security/sdl or
http://msdn.microsoft.com/security/default.aspx?pull=/library/en-us/dnsecure/html/sdl.asp
Steve Lipner (Microsoft Corp.), “Practical Assurance: Evolution of a Security Development Lifecycle,”
[web page] in Proceedings of the 20th Annual Computer Security Applications Conference, 2004
December 6-10; Tucson, AZ.
Available from: http://www.acsa-admin.org/2004/papers/Lipner.pdf
Microsoft Corp, “Application Security Best Practices at Microsoft: The Microsoft IT Group Shares Its
Experiences”, January 2003.
Available from: http://download.microsoft.com/download/0/d/3/0d30736a-a537-480c-bfce-5c884a2fff6c/
AppSecurityWhitePaper.doc

5.1.8.2.2 Oracle Software Security Assurance Process [161]
Like Microsoft, Oracle Corporation claims to have adopted a secure development
process in which all developers are required to follow secure coding standards
and use standard libraries of security functions (authentication, cryptography),
and to perform extensive security testing that includes penetration testing,
automated vulnerability scanning, validations against security checklists, and
third-party (government and industry) security IV&V.

As does Microsoft, Oracle claims to ensure that all of its developers are “security
aware” throughout the development process (presumably, through training). Oracle
products are shipped with secure configuration guidelines, and the company’s
vulnerability management practices include critical patch deliveries along with
fixes to the main code base, both of which are then used to inform revisions to
Oracle’s security standards in order to reflect their lessons learned from vulnerability
discoveries and security incident reports. Indeed, the main emphasis of the Software
Security Assurance Process appears to be on security patch distribution.

By contrast with Microsoft’s SDL, however, Oracle does not appear to consider
its Software Security Assurance Process to be widely usable or adaptable by other
software firms, and especially not by software development teams not involved
in commercial software product development. It provides some guidance for
consumers of its products, primarily in support of database security configuration
and vulnerability assessment, and patch management. Guidance for developers of
applications or systems that incorporate Oracle databases is not provided.

In contrast with the more than 350-page book by Microsoft’s Michael
Howard and Steve Lipner detailing their SDL, and dozens of pages of SDL
resources on Microsoft’s various portals, websites, and blogs, Oracle has
published a 12-page whitepaper, along with other information and resources on
the Software Security Assurance Process.

http://msdn.microsoft.com/msdnmag/issues/05/11/SDL/default.aspx
http://msdn.microsoft.com/security/sdl
http://msdn.microsoft.com/security/default.aspx?pull=/library/en-us/dnsecure/html/sdl.asp
http://www.acsa-admin.org/2004/papers/Lipner.pdf
http://download.microsoft.com/download/0/d/3/0d30736a-a537-480c-bfce-5c884a2fff6c/AppSecurityWhitePaper.doc
http://download.microsoft.com/download/0/d/3/0d30736a-a537-480c-bfce-5c884a2fff6c/AppSecurityWhitePaper.doc

Software Security Assurance State-of-the-Art Report (SOAR) 125

Section 5 SDLC Processes and Methods and the Security of Software

5.1.8.2.3 CLASP
Developed by software security expert John Viega, chief security architect
and vice-president of McAfee, Inc., CLASP [162] is designed to insert security
methodologies into each life cycle phase. CLASP has been released under an
open source license. Its core feature is a set of 30 security-focused activities
that can be integrated into any software development process. CLASP offers a
prescriptive approach and provides ongoing documentation of activities that
organizations should perform to enhance security. Some of the 30 key activities
include the following:

u Monitor security metrics
u Identify user roles and requirements
u Research and assess security solutions
u Perform security analysis of system design
u Identify and implement security tests.

While the above activities are designed to cover the entire software
development cycle, they also enable an organization to skip tasks that are not
appropriate to their development efforts. The program also provides users a
detailed implementation guide to help determine which activities are the
most appropriate including—

u Activity Assessment—CLASP Activity Assessment lessens the burden on
a project manager and his/her process engineering team by giving
guidance to help assess the appropriateness of CLASP activities. The
Assessment provides the following information for each activity:
information on activity applicability; information on risks of omitting
the activity; implementation costs in terms of frequency of activity,
calendar time and staff-hours per iteration.

u Vulnerability Catalog—CLASP contains a comprehensive vulnerability
catalog. It helps development teams avoid or remediate specific design
or coding errors that can lead to exploitation. The basis of the catalog is
a highly flexible classification structure that enables development
teams to quickly locate information from many perspectives: problem
types, categories of problem types, exposure periods, avoidance and
mitigation periods, consequences of exploited vulnerabilities, affected
platforms and programming languages, and risk assessment.

u CLASP and RUP—CLASP is available as a plug-in to the RUP
development methodology, or as a reference guide to a stand alone
development process. In 2005, IBM/Rational released a CLASP plug-in
to RUP that included a notation language for diagramming system
architectures, and a suggested set of UML extensions for describing
system security elements.

Software Security Assurance State-of-the-Art Report (SOAR)126

Section 5 SDLC Processes and Methods and the Security of Software

For Further Reading

John Viega, “Security in the Software Development Lifecycle”, IBM DeveloperWorks, (October 15, 2004)
Available from: http://www-128.ibm.com/developerworks/rational/library/content/RationalEdge/oct04/
viega/#N100AF

5.1.8.2.4 Seven Touchpoints for Software Security
Part II of Gary McGraw’s Software Security: Building Security In (Addison-
Wesley, 2006) is devoted to describing “Seven Touchpoints for Software
Security” (see Figure 5-5), which are “lightweight” best practices to be applied
to various software development artifacts. (He uses artifacts, rather than life
cycle phases, as the basis for his touchpoints to ensure that they are as process-
agnostic as possible.) He numbers these practices—or touchpoints—according
to what he perceives to be their effectiveness and importance.

Figure 5-5. Seven Touchpoints for Software Security

In addition to the seven touchpoints, McGraw identifies an eighth,
“bonus” touchpoint: External Analysis, in which analysts from outside
the software’s development team perform independent security reviews,
assessments, and/or tests of the software’s design and implementation.

As McGraw repeatedly reminds his readers, none of the 7+1 touchpoints
are sufficient on their own to achieve secure software. They are intended to be
used collectively.

http://www-128.ibm.com/developerworks/rational/library/content/RationalEdge/oct04/viega/#N100AF
http://www-128.ibm.com/developerworks/rational/library/content/RationalEdge/oct04/viega/#N100AF

Software Security Assurance State-of-the-Art Report (SOAR) 127

Section 5 SDLC Processes and Methods and the Security of Software

5.1.8.2.5 TSP-Secure
CMU’s SEI and CERT Coordination Center (CERT/CC) developed the Team
Software Process for Secure Software Development (TSP-Secure). [163]
TSP-Secure’s goals are to reduce or eliminate software vulnerabilities that
result from software design and implementation mistakes, and to provide the
capability to predict the likelihood of vulnerabilities in delivered software. Built
on the SEI’s TSP, TSP-Secure’s core philosophy incorporates two core values:

1. Engineers and managers need to establish and maintain an effective
teamwork environment. TSP’s operational processes help create
engineering teams and foster a team-oriented environment.

2. TSP is designed to guide engineers through the engineering process,
reducing the likelihood that they will inadvertently skip steps,
organize steps in an unproductive order, or spend unnecessary time
figuring out the next move.

The TSP includes a systematic way to train software developers and
managers to introduce the methods into an organization. TSP is well-established
and in use by several organizations, with observed metrics for quality
improvement published in SEI reports. TSP-Secure inserts security practices
throughout the SDLC and provides techniques and practices for the following:

u Establishment of operational procedures, organizational policies,
management oversight, resource allocation, training, and project
planning and tracking, all in support of secure software production

u Vulnerability analysis by defect type
u Establishment of security-related predictive process metrics,

checkpoints, and measurement
u Risk management and feedback, including asset identification,

development of abuse/misuse cases, and threat modeling
u Secure design process, that includes conformance to security design

principles, use of design patterns for avoiding common vulnerabilities,
and design security reviews

u Quality management for secure programming, including use of secure
language subsets and coding standards, and code reviews using static
and dynamic analysis tools

u Security review, inspection, and verification processes, that include
development of security test plans, white and black box testing, and
test defect reviews/vulnerability analyses by defect type

u Removal of vulnerabilities from legacy software.

TSP-Secure adopters attend an SEI workshop in which they are introduced
to the common causes of vulnerabilities and to practices that will enable them
to avoid or mitigate vulnerabilities. After training, the team is ready to plan its
software development work. Along with business and feature goals, the team

Software Security Assurance State-of-the-Art Report (SOAR)128

Section 5 SDLC Processes and Methods and the Security of Software

defines the security goals for the software system and then measures and
tracks those security goals throughout the development life cycle. One team
member assumes the role of security manager and is responsible for ensuring
that the team addresses security requirements and concerns through all of
its development activities. In a series of proofs-of-concept and pilot projects,
researchers at the SEI observed that, through use of TSP-Secure, they were able
to produce software that was nearly free of defects.

5.1.8.2.6 Research Models
The following models, developed by academic researchers, have undergone
only limited testing in pilot projects. The researchers who have defined these
models do not consider them complete and are still working on modifications,
refinements, and further piloting.

Appropriate and Effective Guidance In Information Security
Appropriate and Effective Guidance in Information Security (AEGIS) [164] is a
software engineering method developed by researchers at University College
London. AEGIS first emerged within the software development community
as developers observed the multiple complexities of achieving secure design
throughout the life cycle. Complications arose as developers undertook projects
with conflicting requirements, such as functionality, usability, efficiency, and
simplicity. Each of those attributes tends to compete with the others, and with
the system’s security goals.

AEGIS uses context regeneration based on contextual design and risk
analysis. It is aimed at supporting developers in addressing security and
usability requirements in system design. The process involves stakeholders
in the high-level risk analysis and selection of countermeasures. AEGIS is
UML-based, providing a uniform basis on which to discuss and bind the
separate areas of usability, risk management, and technical design.

AEGIS uses a spiral model of software development to integrate
security and usability with UML. It ensures usability by relying on contextual
regeneration, while maintaining functions in asset modeling and risk analysis.

AEGIS’ core value is to base all security decisions on knowledge of assets
in the system. Some studies have suggested that AEGIS can take place over a
series of four design sessions between developers and stakeholders. Depending
on the level of security needed and experience of the developers, security
experts can assist with the identification of threats and selection/design of
countermeasures.

AEGIS proceeds along design sessions, described as follows:
1. Identifying Assets and Security Requirements—Using the model of the

assets, scenarios are devised in which properties of a security asset are
compromised—the resulting analysis defines security requirements.

Software Security Assurance State-of-the-Art Report (SOAR) 129

Section 5 SDLC Processes and Methods and the Security of Software

2. Risk Analysis and Security Design—This design session focuses on
clarifying the asset model of the system and security requirements.

3. Identifying the Risks, Vulnerabilities, and Threats to the System—AEGIS
suggests the use of a lightweight risk analysis method that allows the rapid
assessment of human and technical risks and threats. The design process
involves determining social and technical vulnerabilities, assessing costs
and likelihood of attacks, and the selection of countermeasures.

The final output of the design sessions is a design document detailing the
architecture of the system together with all the countermeasures that have been
agreed on, including training and motivation of personnel. This documentation
can serve as the foundation for future iterations.

University College London researchers report having performed a case
study that demonstrated AEGIS’ effectiveness in the development of software
for the European Grid of Solar Observations.

Rational Unified Process-Secure
Rational Unified Process-Secure (RUPSec) was developed by researchers at
the Amirkabir University of Technology (Tehran Polytechnic) to build security
extensions to the highly popular and successful RUP methodology. The
security extensions are aimed at adding and integrating activities, roles, and
artifacts to RUP for capturing, modeling, and documenting the threats to and
security requirements of a software system, and to ensure that those security
requirements are addressed in all subsequent development phases (i.e., design,
implementation, and testing).

To accomplish these goals, RUPSec proposes new artifacts and activities
that build on the use case-driven approach of RUP. RUPsec proposes adding a
misuse case model extension to RUP to help developers through the iterative
process of defining or reusing misuse cases and then developing solutions to
counter each threat identified in those misuse cases.

Specifically, RUPSec adds security extensions to the following RUP activities:
u Maintain Business Rules
u Find Business Actors and Use Cases—document security aspects

and use cases
u Find Business Workers and Entities—define access level of workers to entities
u Define Automation Requirement—capture business security requirements

from security policy
u Detail Software Requirements—refine security requirements.

Software Security Assurance State-of-the-Art Report (SOAR)130

Section 5 SDLC Processes and Methods and the Security of Software

For Further Reading

Pooya Jaferian et al, (Amirkabir University of Technology/Tehran Polytechnic), “RUPSec:
Extending Business Modeling and Requirements Disciplines of RUP for Developing Secure Systems”,
presentation at the 31st IEEE EuroMicro Conference on Software Engineering and Advanced Applications,
August 3–September 2005, 232-239.
Available from: http://ce.aut.ac.ir/~jaferian/files/publications/WECRUPSec.doc or
http://ieeexplore.ieee.org/xpls/abs_all.jsp?tp=&arnumber=1517747&isnumber=32500
Mohammad Reza Ayatollahzadeh Shirazi et al, (Amirkabir University of Technology/Tehran
Polytechnic), “RUPSec: An Extension on RUP for Developing Secure Systems”, World Enformatika
Society Transactions on Engineering, Computing, and Technology, (February 4, 2005)
Available from: http://www.enformatika.org/data/v4/v4-51.pdf

Secure Software Development Model
Secure Software Development Model (SSDM) was defined by Simon Adesina
Sodiya, a researcher at the Nigerian University of Agriculture [165] in response
to security problems in the development processes by software organizations.
SSDM integrates security engineering into the software development process
through use of a unified model that comprises a number of existing techniques
for producing secure software.

SSDM defines a secure four-phase workflow within the software
engineering process:

1. Security Training—Provide stakeholders adequate security education in
software development. Training concepts include security awareness,
knowledge of attackers on previous related applications, understanding
of attackers’ interests, and knowledge of secure development practices.

2. Threat Modeling—Provide users an understanding of the attributes of
the software, identify attackers within the given operating environment
and their goals and techniques, and identify possible future patterns
and behaviors. The threat model is used to construct an attack profile.
Vulnerabilities are then identified based on the attack history and
threat model results.

3. Security Specification—Lists attacks, defines potential protection
measures against issues such as development errors, guides security
implementation, assists monitoring of security postures, and helps
make system adaptable to the changing landscape of security.

4. Review of Security Specification—Ensures design content of the software
is in accordance with its security specification. This phase also includes
penetration testing that initiates all identified attacks and future attack
patterns online into the software.

SSDM has been used in real-world applications. An accounting program
in Nigeria known as “Standard Accounting” successfully implemented SSDM
engineering principles. The components of Standard Accounting are general
ledger, sales and purchase ledger, and payroll. The SSDM team identified 129
security breaches and classified them under three categories according to the

http://ce.aut.ac.ir/~jaferian/files/publications/WECRUPSec.doc
http://ieeexplore.ieee.org/xpls/abs_all.jsp?tp=&arnumber=1517747&isnumber=32500
http://www.enformatika.org/data/v4/v4-51.pdf

Software Security Assurance State-of-the-Art Report (SOAR) 131

Section 5 SDLC Processes and Methods and the Security of Software

security properties compromised: confidentiality, integrity, and availability. The
old package was then replaced with a system developed according to SSDM
principles. In the year since that replacement occurred, no security incidents
have been recorded. The Nigerian University of Agriculture researchers are
currently working to further improve the SSDM methodology.

Waterfall-Based Software Security Engineering Process Model
In their paper Software Security Engineering, [166] Mohammad Zulkernine and
Sheikh Ahamed describe a waterfall-based software security engineering process
model based on the standard waterfall model first suggested by Dr. Winston W.
Royce, [167] and later modified by Barry Boehm in his groundbreaking book
Software Engineering Economics. The Zulkernine/Ahamed model is based on the
original five-phase version of the waterfall in which some phases are renamed,
and the implied recursions between phases suggested by both Royce and Boehm
are eliminated (i.e., the simplified waterfall flows in only one direction) as are the
verifications, tests, and validations suggested by Royce and integrated into each
of the life cycle phases in Boehm and in DoD-STD-2167A (possibly the most
widely used specific waterfall model). Zulkernine and Ahamed do not explain
the reason for their renamings and omissions.

Zulkernine and Ahamed suggest that security engineering activities
and artifacts that should be added to the functionality-focused development
activities at each phase of their adapted waterfall model. The security
engineering activities they suggest are identified in Table 5-5.

Table 5-5. Waterfall-Based Software Security Engineering Process Model

Life Cycle Phase Added Security Engineering Activities

System Engineering u Analyze security threats
u Define security needs and constraints of software elements

of the system
u Produce informal security requirements

Requirements
Specification

u Identify attack scenarios
u Produce formal security specification
u Reconcile and integrate security and functional requirements
u Produce combined formal software and security requirements

specification

Software Design u Define scenario-based compositional architecture, including
attack scenarios

Software Security Assurance State-of-the-Art Report (SOAR)132

Section 5 SDLC Processes and Methods and the Security of Software

Table 5-5. Waterfall-Based Software Security Engineering Process Model - continued

Life Cycle Phase Added Security Engineering Activities

Program
Implementation

u Identify security flaws
u Refactor code to address security flaws and add self-protection

ability to control vulnerabilities against attacks

System Operation u Monitor and detect unexpected behaviors, failures, and intrusions
u Generate new attack specifications
u Reconcile and integrate new attack specifications into formal

requirements specification

With the exception of “Identify security flaws” in the Program
Implementation phase (implying the need for code review and/or security
testing) and “Detect of unexpected behaviors, failures, and intrusions” in
the final System Operation phase, Zulkernine and Ahamed not only exclude
testing, verification, or validation from their waterfall model but from their list
of security engineering activities. This omission is interesting because security
reviews, tests, verifications, and validations (starting early in the software life
cycle) are integral to most other “security-enhanced” methodologies.

Proposed Security Extensions to MBASE [168]
In 1999, the University of California’s (USC) Center for Software Engineering
introduced Model-Based Architecting and Software Engineering (MBASE),
an extension of the spiral life cycle model also introduced by USC in 1983.
[169] MBASE is intended to be a comprehensive, risk-driven methodology
that combines four models of software-intensive systems—a property model,
a process model, a product model, and a success model—and demonstrates
their feasibility and compatibility. MBASE is a documentation-based process
that comprises two phases:

1. Inception and Elaboration (IE)
2. Construction, Transition, and Support (CTS).

A 2004 case study by USC researchers in which MBASE was evaluated
in terms of its effectiveness for addressing software security risk revealed its
shortcomings when used in this context. As a result, the researchers proposed
adding a set of security extensions to the documents produced during the first
(IE) phase of MBASE. (It was felt that security extensions to the CTS phase
documentation would not be helpful.)

The two major documentation milestones produced during the IE
phase are a set of documents that define the system’s Life Cycle Objectives
(LCO) (produced during Inception), and elaborations, refinements, and risk
mitigations of those documents to produce the Life Cycle Architecture (LCA).

Software Security Assurance State-of-the-Art Report (SOAR) 133

Section 5 SDLC Processes and Methods and the Security of Software

The security extensions to MBASE, then, take the form of security extensions to
the LCO and LCA documents.

It does not appear that the proposed MBASE extensions have been adopted
by USC; no new “security-enhanced” version of MBASE has yet been published.

Secure Software Engineering
Secure Software engineering (S2e)[170] is a process-based methodology
developed by reverse engineering expert Dr. Thorsten Schneider, founder and
managing director of the International Institute for Training, Assessment, and
Certification (IITAC), and of Dissection Labs. S2e leverages existing whitehat
and blackhat knowledge areas and methodologies, while also incorporating
management and business considerations into what Schneider calls
“development philosophy-independent,” adaptable set of processes to be
integrated into an organization’s existing SDLC process. The objective of S2e is to
significantly reduce the number of vulnerabilities in the software that results. S2e
is also intended to benchmarked using a CMM such as ISO/IEC 21827 SSE-CMM.

In defining the secure software processes to be added to the SDLC, S2e
considers four viewpoints:

1. Software Engineering Viewpoint—Regardless of what life cycle model or
methodology (what Schneider terms “philosophy”) the organization
uses (e.g., waterfall, spiral, incremental-iterative, agile, etc.), every
software project can be reduced to four basic activities (or phases): (1)
requirements; (2) design; (3) implementation; (4) testing. Security cannot
be addressed at any single phase, but must be addressed at all phases.

2. Management Viewpoint—Management needs to expend more effort on
achieving one goal: the security optimization of the software to mitigate
its potential vulnerabilities over the longest possible period of time.

3. Whitehat Viewpoint—By applying known attack patterns whitehats are
able to optimize their protection processes. This includes integrating
blackhat processes into their own defined and managed processes,
which include—
a. Threat modeling
b. Security modeling
c. Malware analysis
d. Secure design testing
e. Secure code construction
f. Secure code testing
g. Integration and development of protections
h. Secure software syllogisms
i. Secure software patterns.

4. Blackhat viewpoint—Given that most recent developments in attack
techniques for compromising software systems originated from
blackhats, it makes sense to direct the constructive, legitimate use
of such techniques toward the production of software that will be

Software Security Assurance State-of-the-Art Report (SOAR)134

Section 5 SDLC Processes and Methods and the Security of Software

more robust against those techniques. Blackhat techniques to be
standardized into the S2e process include—

According to Schneider, the S2e processes are being evaluated in a small-
scale software development project that involves server-side development. In
addition, subsets of specific processes are being evaluated by an organization of
more than 700 developers. Both evaluations are still in progress, so case studies or
empirical data regarding the effectiveness of S2e are not yet available. However,
Schneider has such confidence in the methodology that the IITAC has set up a
Secure Software Engineering portal http://www.secure-software-engineering.com as
well as the Secure Software Engineering Journal, which began publication this
year (2007) to promote it, at least indirectly.

For Further Reading

Thorsten Schneider, “Secure Software Engineering Processes: Improving the Software Development
Life Cycle to Combat Vulnerability”, Software Quality Professional 8, no. 1 (December 2006).
Available from: http://www.asq.org/pub/sqp/past/vol9_issue1/sqpv9i1schneider.pdf

5.2 Requirements for Secure Software
Requirements for security functionality in software-intensive systems are often
confused with requirements for secure software. The first category includes
functions that implement a security policy, such as an information security
policy in a software-intensive information system. These are the functional
areas of access control, identification, authentication and authorization, and
the functions that perform encryption, decryption, and key management These
functions prevent the violation of the security properties of the system or the
information it processes, such as unauthorized access, modification, denial of
service, disclosure, etc. They are also known as security service requirements.

The second category of requirements directly affects the likelihood that
the software itself will be secure. These are the nonfunctional—or property—
requirements that collectively ensure that the system will remain dependable
even when that dependability is threatened. These requirements are often
directed toward reducing or eliminating vulnerabilities in the software. They
are more closely tied to process, to the software development plan, and to
project management direction. These requirements deal with things like input
validation, exception handling, sandboxing, etc.

http://www.secure-software-engineering.com
http://www.asq.org/pub/sqp/past/vol9_issue1/sqpv9i1schneider.pdf

Software Security Assurance State-of-the-Art Report (SOAR) 135

Section 5 SDLC Processes and Methods and the Security of Software

Microsoft calls the second category Security Objectives and recommends Security Objectives a n d re c o m m e n d s Security Objectives
that developers define security objectives and security requirements early in the
process. Security objectives are goals and constraints that affect the confidentiality,
integrity, and availability of the data and the application software. [171]

Significantly influencing both categories of requirements is an
understanding of the threat environment, calculations of risk, and
identification of mitigation strategies.

5.2.1 Software Requirements Engineering
The software requirements phase covers everything that needs to occur before
design begins. Inputs may include the system specification, with functions
allocated to software, and a software development/project plan. Inputs come
from many sources, including the customer, users, management, QA and
test groups, and as systems requirements allocated to software. The main
output of the requirements phase is the requirements specification that
defines both functional and nonfunctional aspects of the software. The end
of phase is marked by acceptance of the specification by the customer and
other stakeholders. The requirements may be modified in the course of the
development effort as needs for changes are identified.

Figure 5-6 shows a high-level view of the tasks and artifacts involved in the
requirements phase of a software development effort.

Figure 5-6. Requirements Engineering for Survivable Systems [172]

Software Security Assurance State-of-the-Art Report (SOAR)136

Section 5 SDLC Processes and Methods and the Security of Software

There is a rich body of work and results on requirements engineering, as
well as tools and techniques to support the processes. Unfortunately, most of this
work does not explicitly consider security. Work that does is usually concerned
with security requirements in the sense of requirements engineering for the
security functionality in a system, such as access controls. Our concern, however,
is the engineering of requirements for security as an emergent property of a
software system. Although the implementation of security functionality may
coincidentally satisfy many requirements for security as a software property,
different analyses will be needed to attain these different objectives.

The purpose of this section is to highlight differences between
requirements phase activities as they are normally performed and how they
could be adapted and augmented to increase the security of the software under
development. Figure 5-7 shows examples of additional activities and artifacts
for increasing software security overlaid on the generic requirements process.

Figure 5-7. Secure Software Additions to Requirements Engineering Process

For Further Reading

“Requirements Engineering” [web page], (Washington DC: US CERT)
Available from: https://buildsecurityin.us-cert.gov/daisy/bsi/articles/best-practices/requirements.html

5.2.1.1 Traditional Requirements Methods and
Secure Software Specification
To begin with, the source of security requirements problems are not limited
to the security domain. Many software security problems originate in the
inadequate or inaccurate specification of the requirements for the software
or from the mismatch between the interpretation of the requirements during

https://buildsecurityin.us-cert.gov/daisy/bsi/articles/best-practices/requirements.html

Software Security Assurance State-of-the-Art Report (SOAR) 137

Section 5 SDLC Processes and Methods and the Security of Software

development and their actual intent. [173] Requirements engineering is hard to
do, and harder to do well. The number of requirements needed to adequately
define even a small software project can be very large. That number grows
exponentially with the effects of large size, complexity, and integration into
evolving operational environments.

Some of the security-specific issues involved in requirements engineering
that have been cited by various authors include—

u The people involved are not likely to know or care (in a conscious
sense) about nonfunctional requirements. They will not bring them up
on their own. Stakeholders have a tendency to take for granted
nonfunctional security needs.

u Traditional techniques and guidelines tend to be more focused on
functional requirements.

u Security controls are perceived to limit functionality or interfere
with usability.

u It is more difficult to specify what a system should not do than what
it should do.

u Stakeholders must understand the threats facing a system in order to
build defenses against them, but the threat environment faced by the
delivered system will be different from the threat environment existing at
the time of requirements development because the threats are evolving.

u The users who help define the system are not typically the abusers from
whom the system must be protected.

u It requires creativity, experience, and a different mindset to define the
bad things that could happen.

u There may be security issues involving development team personnel,
including access to security-competent development or integration
contract services. Parts of the development may be outsourced or
offshored. Risk assessment and/or vulnerability information may be
classified, precluding access by developers without clearances.

u There may be lack of understanding of how a component fits into the
larger system, i.e., a component that may behave securely when
operating in stand alone made may not behave securely when
assembled with other components (see Section 5.1.1.2 for more
information on security issues of component-based development).

u There are questions of who will be held accountable (professionally
and/or contractually/legally) for software that turns out to be insecure.
Currently, developers bear (at least some) responsibility for failed
functionality (i.e., functional requirements that are not satisfied in the
implemented system). Can this already-accepted accountability be
expanded to include comparable failures in security (i.e., security was
specified, but not achieved in the implemented system)? What about
responsibility for not specifying security requirements in the first place,

Software Security Assurance State-of-the-Art Report (SOAR)138

Section 5 SDLC Processes and Methods and the Security of Software

even when the intended execution environment for the software is
known to be high-risk? If accountability can be enforced, who should
be held responsible? The developer? The accreditor?

Secure software requirements engineering can usefully draw on work in
related disciplines, such as—

u Software safety, e.g., medical devices, nuclear power
u Software survivability (also referred to as fault tolerance), e.g.,

telephone systems
u Embedded systems, e.g., space applications, weapons systems
u Software reliability (unreliable software contains defects that become

vulnerabilities)
u Information systems (in particular, requirements for availability and

integrity, also accountability and nonrepudiation).

The techniques and solutions in these disciplines are not sufficient for
software security as is, because they tend to defend against natural dangers,
i.e., hazards, whereas software must defend against malicious users and hostile
attacks, i.e., threats. The threat landscape is more dynamic and much less
predictable than hazards are.

Security has generally been included with the other nonfunctional
requirements for software, such as performance and quality requirements.
During the requirements phase, nonfunctional security requirements are
captured and defined as attributes of the software, but the process does not
end there. The nonfunctional security requirements need to be mapped to
functional requirements so that they can be built into the software and tested
appropriately. For example, a requirement such as “The software must not be
susceptible to buffer overflows” could be mapped to functional requirements
for input validation and for use of only type-safe/memory-safe programming
languages. Some of the use case adaptations to abuse and misuse cases (see
Section 5.2.3.2.1) make this mapping step explicit.

By mapping the nonfunctional to functional requirements, the security
requirements become a part of the overall requirements analysis process.
Potential conflicts with other functional requirements can be identified (and
resolved). Not all of the nonfunctional requirements may be addressable as
software functions, and so may need to be allocated back to the system level.
Certain types of pervasive security requirements may be best addressed as part of
the system’s security policy, e.g., “All input from users must be validated to ensure
its conformance with the expected format and length of that type of input.”

Software Security Assurance State-of-the-Art Report (SOAR) 139

Section 5 SDLC Processes and Methods and the Security of Software

5.2.1.2 Security Experts on the Requirements Team
Although not all of the roles listed below will have the same level of
involvement, all should have input and should be able to review the results.
Unlike the conventional requirements team members—stakeholders, users,
developers, project managers, software architects, quality assurance and
testing—these additional roles serve more as consultants and advisors:

u Security Engineers—Security engineers can serve as liaisons to the
systems-level, to resolve issues of what security can be incorporated
into software and what is outside.

u Risk Analysts—Risk assessment and threat analysis are key sources for
requirements that affect the security of the software, especially for later
in the analysis and prioritization of security.

u Certifiers and Accreditors—Software that is to be certified or accredited
must meet the requirements for the particular certification’s standard
or assurance level.

u Information Assurance (IA) Experts—IA experts with experience in
defending and repairing existing software can provide insight on how
to define and build new software.

5.2.2 “Good” Requirements and Good Security Requirements
Table 5-6 contains a generally-accepted set of characteristics that good
requirements possess, coupled with how those characteristics may be expanded
or expressed in requirements for secure software.

Table 5-6. Characteristics of Effective Requirement Statements

Conventional concepts of goodness
Software assurance community
concepts of goodness

Correctness
(Does It
Say What It
Means?)

u The functionality to be delivered is
accurately described

u There are no conflicts with other
requirements

u Requirement describes how
it should behave when it
fails—exception handling

u Constraints on other
requirements may be identified

Feasibility
(Can It Do
What It Says?)

u Each requirement can be
implemented within known
capabilities and limitations of the
system and its environment

u Threats are included in the list
of known limitations

Necessary
(Is It Needed?)

u Requirement documents something
that customers really need or is
required for conformance

u Functionality is required for
secure software

Software Security Assurance State-of-the-Art Report (SOAR)140

Section 5 SDLC Processes and Methods and the Security of Software

Table 5-6. Characteristics of Effective Requirement Statements - continued

Conventional concepts of goodness
Software assurance community
concepts of goodness

Supportable
(Why is the
Requirement
Important?)

u Rationale to support the need/
purpose for the requirement is
documented

u The justifications are important
for building the assurance
case

u Documenting the security
rationale helps ensure the
requirement is not assigned
too low a priority to be
implemented

Prioritized
(Is It More
or Less
Important
Than Others?)

u How essential is each requirement,
feature, or use case to a specific
product release is defined

u Typical prioritization: HIGH = next
product release; MEDIUM = defer
to future release; LOW = nice to
have, but not a need

u Threat analysis and risk
assessments will affect the
prioritization

Unambiguous
(Can It Be
Interpreted
in Only One
Way?)

u Only one interpretation can be
drawn

Verifiable
(Can It Be
Tested,
Traced and
Measured?)

u Ability to test or inspect that
each requirement is properly
implemented

u Ability to trace each requirement
between phases is implemented

u Ability to measure/demonstrate
that each requirement has been
met is implemented

u Tests are needed to
demonstrate that certain
behaviors are not implemented,
that x doesn’t happen (in the
face of y)

u Tests need to demonstrate that
constraints are also met.

Software requirements by and large are requirements for functionality, and
in some cases, they are requirements for performance constraints (e.g.,
“the function must be completed within n microseconds”); they tend to be
expressed in positive terms, e.g., “the system must…”

By contrast, security requirements, particularly in software security, tend
to be either constraints on functionality or a statement of a needed property
(or attribute), that will be manifested by a software behavior. At least initially
during requirements capture, they will often be stated in negative terms.

As with all software, the requirements process for secure software may require
multiple iterations of elicitation and analysis. Requirements engineers should not
feel constrained by conventions that avoid the statement of negative requirements
or the inclusion of non-actionable requirements. These need to be captured and
then analyzed and converted to actionable, positive, functional requirements.
For example, the requirement that “Software must not be susceptible to buffer

Software Security Assurance State-of-the-Art Report (SOAR) 141

Section 5 SDLC Processes and Methods and the Security of Software

overflows,” is both negative and non-actionable, but is necessary for software to be
secure. It would therefore need to be expressed as requirements for functionality
that prevents buffer overflows from happening, i.e., validation of input, good
memory allocation and management, exception handling functionality, etc.

5.2.2.1 Where Do Software Security Requirements Originate?
DHS’s Software Assurance (CBK) describes several categories of needs that
should be mined for security requirements:

u Stakeholders’ Security-Related Needs—

u Attack Resistance and Survivability Needs—

A need is not a requirement. Once identified, needs must be analyzed,
prioritized, and specified before they become requirements.

Table 5-7 shows how conventional methods for requirements elicitation
and analysis are being used to support specification of software security
requirements.

Table 5-7. Extensions to Conventional Requirements Methods

Conventional Method Security Extension/Example

CONOPS “Development Work on a CONOPS for Security” [174]

Quality Function
Deployment

(no corollary)

Functional Decomposition Identification of threats along data flows

Object-Oriented
Decomposition

Aspect-oriented methods

Use Case Development Misuse and abuse cases

Trade Studies Identification of threats and attacks unique to the application
domain (such as web application)

Software Security Assurance State-of-the-Art Report (SOAR)142

Section 5 SDLC Processes and Methods and the Security of Software

Table 5-7. Extensions to Conventional Requirements Methods - continued

Conventional Method Security Extension/Example

Simulations “Simulation-Based Acquisition” is a major DoD thrust [175]

Modeling Threat modeling, also aspect-oriented modeling

Prototyping Data-oriented methods

(no corollary) Threat/attack trees [MS TR-2005]

In 2003, A. Rashid [176] et al. proposed the use of aspect-oriented software
development for mapping one or more functional requirements to each
nonfunctional requirement that affects the functional requirements, with
security treated as just one of several types of nonfunctional requirement.

Axel van Lamsweerde et al. [177] proposed the KAOS method for modeling
security and safety requirements through the use of anti-goals (the converse of
goals, such as availability and integrity). Anti-goals describe the vulnerabilities that
make satisfaction of the system’s stated goals impossible. The resulting security
requirements are expressed in terms of “avoiding” anti-goals in order to eliminate
the vulnerabilities that would prevent the system from achieving its goals.

Ian Alexander [178] takes a similar approach of avoiding vulnerabilities, but
relies on misuse cases instead of “anti-goals,” as do G. Sindre and A.L. Opdahl,
[179] while John McDermott [180] substitutes abuse cases for misuse cases. By
contrast, H. In and Barry Boehm have adapted the Win-Win quality management
framework [181] to include security requirements. C.L. Heitmeyer made similar
adaptations to NRL’s Software Cost Reduction (SCR) methodology. [182]

Charles Haley et al. [183] propose representing security requirements
as crosscutting threat descriptions, which then aid in the composition of
these requirements with the system’s functional requirements; the resulting
specification defines a set of constraints on the functional requirements. These
constraints are the “security requirements.” Haley’s work is in response to what
he sees as several problems with the other approaches to integrating security
requirements into overall system requirements:

1. There is no single definition of what is meant by “security requirement.”
In some cases, the term “security requirements” refers to requirements
for security functionality. In other cases, it refers to “constraints” on
functionality. In yet other cases, it pertains to the need for functionality
to operate consistent with a governing security policy. In addition,
security requirements are increasingly being seen as “anti-requirements”
or “anti-patterns,” defined in terms of avoiding a vulnerability that would
prevent the system from satisfying its other, nonsecurity requirements.
This profusion of definitions of security requirement makes it difficult to
determine which requirements engineering approach is best suited for a
particular requirements engineering problem.

Software Security Assurance State-of-the-Art Report (SOAR) 143

Section 5 SDLC Processes and Methods and the Security of Software

2. Security requirements, when they are defined, are inconsistent, and the
criteria for determining whether they have been satisfied are difficult to
understand.

3. There is still no clear path for deriving security requirements from
business goals or needs.

John Wilander and Jens Gustavsson [184] agree with Haley that the
“current practice in security requirements is poor.” They further observe that
“Security is mainly treated as a functional aspect composed of security features
such as login, backup, and access control. Requirements on how to secure
systems through assurance measures are left out.” Wilander and Gustavsson
elaborate on this observation by identifying some key defects they have
observed in the majority of security requirements they studied:

u Most security requirements are either absent or poorly specified
because of an inadequate understanding by most requirements
engineers of security in general, and security as a property in particular.

u The selection of security requirements is inconsistent, with the
majority being functional requirements. Across those functional
security requirements, there is further inconsistency, because some
requirements are included while other requirements, often
requirements on which those included directly depend, are omitted.

u The level of detail across requirements statements is inconsistent.
u Nonreliance on security standards results in unnecessary custom

solutions that are usually limited in effectiveness because of the
inadequate security expertise of the developers.

In later work, [185] Haley describes a security requirements framework that
addresses these problems by combining what he identifies as a requirements
engineering approach with a security engineering approach. In the framework,
security goals are defined that express the need to protect system assets from
harm by threats. These goals are “operationalized” into security requirements,
which are, in essence, constraints on functional requirements that result in the
necessary level of protection. Finally, the framework specifies the need to develop
“satisfaction arguments” that demonstrate the system’s ability to function
consistent with its security requirements.

Two types of documentation are produced in the requirements phase:
1. The specification, which is the end-product of the work.
2. The justifications that document the process, and the decisions that

led to the specification. The justifications are used in building the
assurance case, but are also useful throughout the development
whenever requirements changes are proposed.

Software Security Assurance State-of-the-Art Report (SOAR)144

Section 5 SDLC Processes and Methods and the Security of Software

Requirements remain important throughout the development life
cycle. Table 5-8 shows the security interpretation of post-requirements phase
requirements-related activities and concerns.

Table 5-8. Requirements Throughout the Life cycle

Requirements Concern Security Interpretation

Traceability, i.e., making sure all the
elements of the design and code are
derived from some requirement(s)

Prevents delivered software from having unspecified
functions

Verification that the design and code
implement all the requirements

Ensures the delivered software will have all the
security features and properties that were specified

Change control and management Analyzes how proposed changes may affect security,
directly or via a ripple effect

Update of documentation to reflect
changes

Keeps the threat analysis updated to reflect changes
in threat environment

For Further Reading

Paco Hope, Gary McGraw and Annie I. Anton, Misuse and Abuse Cases: Getting Past the Positive.
IEEE Security & Privacy, (March-April 2004) 2(3).
Available from: http://www.cigital.com/papers/download/bsi2-misuse.pdf

5.2.2.1.1 Policies and Standards as a Source of Software
Security Requirements
Software security requirements may be driven by existing information security,
system security, or software policies, some of which may be mandated by
legislation. For DoD software, such policies include DoD Directive 8500.1 and
DoD Instruction 8500.2, DCID 6/3, DoD’s policies on use of mobile code and open
source software, and policies mandated by Federal laws, such as the Sarbanes-Oxley
Act, the FISMA, and the Healthcare Information Portability and Accountability Act
(HIPAA). (Other legislation that may be relevant is listed in Section 6.4.)

These policies and laws vary in scope and purpose, but each provides
vital statements regarding what is or is not permitted, and any exceptions or
mitigations that may be applicable. Each policy or law provides statements
that can be translated into explicit or implicit requirements for the functions,
controls, and properties of the software elements of information systems.

The quantity and scope of requirements that can be derived from policy
or law depend on the scope and purpose of that policy or law. The language
of such mandates is usually very limited in terms of explicit discussion of
or reference to secure software. It is more likely that language pertaining to
secure information and/or information systems will need to be interpreted and
adapted in order to establish secure software requirements.

http://www.cigital.com/papers/download/bsi2-misuse.pdf

Software Security Assurance State-of-the-Art Report (SOAR) 145

Section 5 SDLC Processes and Methods and the Security of Software

For example, there are three items in DoD Instruction (DoDI) 8500.2 that
are directly relevant to software security:

u Security Design and Configuration Integrity: DCSQ-1, Software Quality
u Security Design and Configuration Integrity: DCSS-2, System

State Changes
u Security Design and Configuration Integrity: DCMC-1, Mobile Code.

DCID 6/3 has a slightly larger number of software security relevant
statements (e.g., “Mobile Code and Executable Content,” “Protected
Hardware, Software and Firmware”). The document correlates requirements
to system protection levels (PL) and then categorizes policy statements
according to their applicability at each PL.

In the NIST FIPS Publication 200, Minimum Security Requirements for
Federal Information and Information Systems, the following items can be
construed as relevant to software assurance:

u System and Services Acquisition—“Organizations must…(ii) employ
system development life cycle processes that incorporate information
security considerations; (iii) employ software usage and installation
restrictions; and (iv) ensure that third-party providers employ adequate
security measures to protect information, applications, and/or services
outsourced from the organization.”

u System and Communications Protection—“Organizations must…(ii)
employ architectural designs, software development techniques, and
systems engineering principles that promote effective information
security within organizational information systems.”

u System and Information Integrity—“Organizations must: (i) identify, report,
and correct information and information system flaws in a timely
manner; (ii) provide protection from malicious code at appropriate
locations within organizational information systems.”

NIST SP 800-53, Recommended Security Controls for Federal Information
Systems, elaborates on the FIPS 200 requirements, but it does not represent a
policy or mandated standard.

At this point, more extensive, useful language is likely to be found in
published guidance documents, such as NIST SP 800-53 and the Defense
Information Systems Agency (DISA) Application Security Project’s Application
Security Checklist [186] and Reference Set of Application Security Requirements.

As with FIPS 200, other information security standards, most notably the
CC, [187] represent another potential source for software security requirements,
though only althrough careful interpretation. (Refer to the Section 5.1.4
discussion of the shortcomings of the CC with regard their lack of language
pertaining to software security assurance.)

Software Security Assurance State-of-the-Art Report (SOAR)146

Section 5 SDLC Processes and Methods and the Security of Software

5.2.3 Methods, Techniques, and Tools for Secure Software
Requirements Engineering
This section describes methods that are being used in real-world development
projects or very successful research pilots (and that are therefore considered
ready for technology transfer), to address security in software requirements,
along with tools that implement or support the techniques.

Looking critically, many of these techniques seek the same information.
They may perform similarities, but use different names, or have different
emphases. It is not a matter of choosing one in favor the others. Different
techniques will result in different views of the problem and complement
each other. For example, one needs to know about threats in order to define
defenses. Paco Hope et al.[188] suggest using attack patterns to drive the search
for misuse cases. Some techniques focus more on elicitation, others on analysis,
and still others on specification, documentation, verification, or management
of requirements across the life cycle.

The DHS BuildSecurityIn portal includes results of work (including
case studies) done to define a method for choosing among the available
techniques. Selection criteria include such elements as the learning curve for
the technique and the availability of computer-aided software engineering
(CASE) tool support. [189]

The adoption of one technique over another may depend on the software
methodology used. Some methodologies require techniques that produce
artifacts that are more easily reused or transitioned into what is needed for later
phases, e.g., as input to some CASE tool. In some cases, the essential process
defined in the methodology is the same, but the specific implementation,
terminology, notation, or degree of rigor required is different.

5.2.3.1 Threat, Attack, and Vulnerability Modeling and
Assessment
Modeling is a well-known approach for discovering and learning about the
requirements for software. It provides a way to envision the workings and
interactions of the proposed software within its intended environment. The
more closely the model reflects the intended environment, the more useful the
modeling approach becomes. Therefore, secure software development benefits
from modeling that explicitly incorporates security threats.

The primary issues in modeling are—
1. Doing it well
2. Doing it thoroughly enough
3. Knowing what to do with the results, e.g., how to transform the analysis

into a metric and/or otherwise usable decision point.

Software Security Assurance State-of-the-Art Report (SOAR) 147

Section 5 SDLC Processes and Methods and the Security of Software

There are several threat, attack, and vulnerability modeling tools and
techniques. Microsoft, in particular, has emphasized this type of modeling in its
secure software initiative. In addition, multiple methodologies have emerged to
enable developers to conduct threat modeling and risk assessment of software.
These are described below.

For Further Reading

Suvda Myagmar, Adam J. Lee and William Yurcik, “Threat Modeling as a Basis for Security
Requirements”, (presented at the symposium etc.) Symposium on Requirements Engineering for
Information Security, August 29, 2005.
Available from: http://www.projects.ncassr.org/sift/papers/sreis05.pdf

5.2.3.1.1 Microsoft Threat Modeling
The core element of Microsoft’s program is the threat model—a detailed
textual description and graphical depiction of significant threats to the
software system being modeled. The threat model captures the ways in
which the software’s functions and architecture may be targeted and
identifies the potential threat agents, i.e., vectors for delivering
threat-associated attacks.

Version 1: “STRIDE/DREAD” Model
To help define threat scenarios in its Version 1, the acronym STRIDE helps
the user envision potential threat scenario from an attacker’s perspective:
Spoofing, Tampering, Repudiation, Information disclosure, Denial of
service, Elevation of privilege. To complement STRIDE, a risk calculation
methodology known as DREAD, named for the acronym that encapsulates
answers to potential question about risk: Damage potential, Reproducibility,
Exploitability, Affected users, Discoverability. DREAD helps rate threats and
prioritizes the importance of their countermeasures and mitigations. Once
a threat’s attributes are ranked, a mean of the five attributes is taken, with
the resulting value representing the overall perceived risk associated with
the threat. This process is repeated for all identified threats, which are then
prioritized by descending order of overall risk value.

For Further Reading

Frank Swiderski and Window Snyder, Threat Modeling, (Microsoft Press, 2004).
P. Torr (Microsoft Corporation), Guerrilla Threat Modeling.
Available from: http://blogs.msdn.com/ptorr/archive/2005/02/22/GuerillaThreatModelling.aspx

http://www.projects.ncassr.org/sift/papers/sreis05.pdf
http://blogs.msdn.com/ptorr/archive/2005/02/22/GuerillaThreatModelling.aspx

Software Security Assurance State-of-the-Art Report (SOAR)148

Section 5 SDLC Processes and Methods and the Security of Software

Version 2: Microsoft Threat Analysis and Modeling
Microsoft’s revision of its Threat Modeling methodology, now named Microsoft
Threat Analysis and Modeling, released by Microsoft in March 2006, provides
two key features:

1. A new threat modeling methodology and process intended to be
more user-friendly for software developers, architects, and other
stakeholders who are not security experts to understand and execute

2. A completely reengineered Threat Modeling application tool.

To make threat modeling more user-friendly, Microsoft eliminated the
STRIDE and DREAD tools from Threat Modeling Version 1 (v1) and shifted the
perspective from the attacker to the defender. The user identifies closely with
threats, rather than attacks, reflecting Microsoft’s belief that the defender can
better understand threats to the system than the attacker.

As with Threat Modeling v1, the Threat Modeling and Analysis process is
iterative process, adding layers of detail to an initial high-level threat model as
the design progresses into subsequent phases of the life cycle. However, it more
strictly defines a threat as an event that results in negative business or mission
impact. The new threat model attempts to clarify the distinction between
threats, attacks, and vulnerabilities. Microsoft Threat Analysis and Modeling
also incorporates predefined attack libraries describing effective mitigations
to each attack type associated with each threat, auto-generating threat models
based on a defined application context. The model then maps those threat
models to relevant countermeasures.

For Further Reading

“Threat Modeling”, MSDN Developer Center.
Available from: http://msdn2.microsoft.com/en-us/security/aa570411.aspx
“Microsoft Application Threat Modeling” [weblog].
Available from: http://blogs.msdn.com/threatmodeling/
“Microsoft Threat Analysis & Modeling” [download page].
Available from: http://www.microsoft.com/downloads/details.aspx?familyid=59888078-9daf-4e96-b7d1-9
44703479451&displaylang=en

5.2.3.1.2 PTA Practical Threat Analysis Calculative Threat
Modeling Methodology
Practical Threat Analysis (PTA) Technologies developed Calculative Threat
Modeling Methodology (CTMM), a risk management methodology aimed at
refining and expanding on Microsoft Threat Modeling v1. PTA Technologies
identifies the following as limitations:

u No support for relating threats to financial losses caused by attacks
u No ranking or prioritization of countermeasures according to their

effectiveness in reducing risk

http://msdn2.microsoft.com/en-us/security/aa570411.aspx
http://blogs.msdn.com/threatmodeling/
http://www.microsoft.com/downloads/details.aspx?familyid=59888078-9daf-4e96-b7d1-944703479451&displaylang=en
http://www.microsoft.com/downloads/details.aspx?familyid=59888078-9daf-4e96-b7d1-944703479451&displaylang=en

Software Security Assurance State-of-the-Art Report (SOAR) 149

Section 5 SDLC Processes and Methods and the Security of Software

u Reliance on “predefined” cases, making the tool difficult to adapt for
modeling other threat scenarios

u No support for a complete system view for threat analysis or
risk management

u Limited reporting and collaboration capabilities.

Note: Microsoft Threat Analysis and Modeling may render the need for CTMM’s enhancements to Threat
Modeling v1 unnecessary.

To address shortcomings in Microsoft Threat Modeling v1, CTMM
builds a body of knowledge through iterative interaction between threat
analysts and software developers. It enables analysts to maintain a growing
database of threats, create documentation for security reviews, and produce
reports showing the importance of various threats and the priorities of
corresponding countermeasures. PTA automatically recalculates those threats
and countermeasure priorities, and provides decision-makers with an updated
action item list that reflects changes in the threat landscape.

For Further Reading

PTA Technologies, Practical Threat Analysis for Securing Computerized Systems.
Available from: http://www.ptatechnologies.com/

5.2.3.1.3 Threat Modeling Based on Attacking Path
USC’s Threat Modeling based on Attacking Path analysis (T-MAP) is a risk
management approach that quantifies total severity weights of relevant attacking
paths for COTS-based systems. T-MAP’s strengths lie in its ability to maintain
sensitivity to an organization’s business value priorities and Information
Technology (IT) environment, to prioritize and estimate security investment
effectiveness and evaluate performance, and to communicate executive-friendly
vulnerability details as threat profiles to help evaluate cost efficiency.

The T-MAP framework is value driven, utilizing an attack path concept
to characterize possible scenarios in which an attacker could jeopardize
organizational values. It maintains two key assumptions:

1. The more security holes left open for an (IT) system, the less secure it is.
2. Different IT servers might have different levels of importance in terms

of supporting the business’ core values.

With its awareness of a value’s relative importance, T-MAP calculates the
severity weight of each attack path based on both technical severity and value
impacts. T-MAP then quantifies the IT system threat with the total weight of all
possible attacking paths.

T-MAP uses a graph analysis to define evaluate and attack scenario. The
attack is based on Bruce Schneier’s “attack path” approach [190] and incorporates

http://www.ptatechnologies.com/

Software Security Assurance State-of-the-Art Report (SOAR)150

Section 5 SDLC Processes and Methods and the Security of Software

a classic IT risk management framework consisting of Attacker, Asset,
Vulnerability, and Impact. Attack tree nodes are structured into five layers:

1. Stakeholder values, e.g., productivity, privacy, reputation
2. IT hosts that uphold stakeholder values
3. COTS software installed on IT hosts
4. Vulnerabilities in the COTS software
5. Possible attackers, e.g., malicious insiders, external hackers, etc.

T-MAP defines a set of threat-relevant attributes for each of the above
layers or nodes. These attributes can be classified as either probability-relevant,
size-of-loss relevant, or descriptive. These class attributes are primarily derived
from NIST SP 800-30, Risk Management Guide for Information Technology
Systems, and the Common Vulnerability Scoring System (CVSS). [191]

T-MAP assigns estimated values to various attacker groups based on
attributes such as skill level, group size, and motivation. T-MAP can then apply
those attribute values to score the severity of the attack path with a numeric
weight. Based on the classic risk calculation formula

Risk = Probability * Size of Loss

the user can calculate the weight of each attack path by multiplying its
relevant attributes ratings together. This quantitative ranking enables security
managers to prioritize the allocation of measures based on his/her ranking
of vulnerabilities. Furthermore, the amount of manual effort required can be
greatly reduced through use of the automated Tiramisu ranking tool.

T-MAP defines a formal framework to measure COTS system security
based on attack path weights. Its strength lies in its three key features: distillation
of technical details of published software vulnerabilities into executive-
friendly information, providing an automated ranking system, and generating
prioritized outcomes. Note, however, that for maximum impact, the T-MAP
requires comprehensive, accurate, and up-to-date vulnerability information.
Furthermore, it quantifies security threats only for published software
vulnerabilities; the system is not sensitive to those that are unpublished.

For Further Reading

Yue Chen (University of Southern California), “Stakeholder Value Driven Threat Modeling for Off the
Shelf Based Systems: 2006”, Presentation at the ACM International Conference on Software Engineering,
December 11, 2006.
Available from: http://sunset.usc.edu/csse/TECHRPTS/2006/usccse2006-620/usccse2006-620.pdf
Yue Chen, Barry Boehm and Luke Sheppard (University of Southern California), “Measuring
Security Investment Benefit for COTS Based Systems—A Stakeholder Value Driven Approach”, 2006.
Presentation at the ACM International Conference on Software Engineering, September 8, 2006.
Available from: http://sunset.usc.edu/csse/TECHRPTS/2006/usccse2006-609/usccse2006-609.pdf

http://sunset.usc.edu/csse/TECHRPTS/2006/usccse2006-620/usccse2006-620.pdf
http://sunset.usc.edu/csse/TECHRPTS/2006/usccse2006-609/usccse2006-609.pdf

Software Security Assurance State-of-the-Art Report (SOAR) 151

Section 5 SDLC Processes and Methods and the Security of Software

5.2.3.1.4 Trike
Trike is an open source conceptual framework, methodology, and toolset
designed to autogenerate repeatable threat models. Its methodology
enables the risk analyst to accurately and completely describe the security
characteristics of the system, from high-level architecture to low-level
implementation of details. Its consistent conceptual framework provides a
standard language enabling communication among members of a security
analysis team and between the security team other system stakeholders. It
features three key tools:

1. Threat-Model Generation—Trike generates a threat model using the
Trike toolset. The input to the threat model includes two additional
Trike-generated models, a requirements model and an implementation
model, along with notes on system risk and workflows. The tool also
provides threat and attack graphs.

2. Automation—Trike provides high levels of automation. Unlike most
offensive-based threat methodologies, it is based on a defensive
perspective, imposing a greater degree of formalism on the threat
modeling process.

3. Unified Conceptual Framework—Trike is a unified conceptual framework
for security auditing. The unity of the framework enables team
members to communicate with one another fluidly.

For Further Reading

“Trike: A Conceptual Framework for Threat Modeling”.
Available from: http://dymaxion.org/trike
Demo Versions of Trike.
Available from: http://www.octotrike.org

5.2.3.1.5 Consultative Objective Risk Analysis System
The European Union (EU)-funded Consultative Objective Risk Analysis
System (CORAS) project established an iterative framework for developing
customizable, component-based roadmaps to aid the early discovery of security
vulnerabilities, inconsistencies, and redundancies. It integrated existing risk
assessment methods to yield six methodological results,

1. Model-Based Risk Assessment—The CORAS methodology for model-
based risk assessment applies standard modeling technique ML to
form input models to risk analysis methods used in a risk management
process. The process is based on the Australian/New Zealand
Standard (AS/NZS) 4360:1999, and is aimed at assessment of security-
critical systems. The CORAS model has been tested successfully on
telemedicine and e-commerce systems.

http://dymaxion.org/trike
http://www.octotrike.org

Software Security Assurance State-of-the-Art Report (SOAR)152

Section 5 SDLC Processes and Methods and the Security of Software

2. UML Profile for Security Assessment—The CORAS UML profile allows
nonexpert users to understand UML diagrams and preserve the
well-defined nature of UML. The profile also provides rules and
constraints for risk assessment relevant system documentation.

3. Library of Reusable Experiences Packages—The CORAS project
documented existing risk analysis processes to create a library of best
practices.The library enables the user to recapture general practices
from “experience elements” built into the library; examples of these
practices include UML diagrams, checklists, and patterns. The
experience elements also contain guidelines and recommendations
derived from practices.

4. CORAS Integration Platform—The CORAS integration platform is the main
computerized component of the CORAS framework. It stores results
from ongoing and completed security analyses in two repositories: the
Assessment Repository for analysis results and the Reusable Elements
Repository for the reusable elements. The platform provides the end
user with administrative functionality, such as creating new security
analysis projects and applying the reusable elements and experience
packages toward their own security goals.

5. CORAS Mark-Up for Security Assessment—The XML mark-up addressed
the absence of a standardized meta-data format. Meta-data
descriptions of core risk assessments can be used for consistency
checking between different items on repositories provided by the
CORAS integration platform. The mark-up also facilitates integration of
risk analysis tools with the CORAS integration platform.

6. Vulnerability Assessment Report—The CORAS Vulnerability Assessment
Report Format aims to standardize data reporting formats for
describing network vulnerabilities. The format addresses existing
reporting differences on currently available tools.

Secure Information Systems
The Research Council of Norway’s model-driven development and analysis for
Secure Information Systems (SECURIS) project aimed to establish computerized
methodology for the development of secure IT systems targeting security from
an overall business perspective, emphasizing the organizational and business
context to the same extent as the actual technology. It is a trial-driven, iterative
process, building on the established results of the CORAS project. Its own results
will attempt to develop prototype tools that will produce—

u Capture and formalization of security requirements
u Model-driven specification and implementation of security policies
u Model-driven specification and development of security architectures
u Model-driven security assessment.

The project will also attempt to develop a methodology handbook.

Software Security Assurance State-of-the-Art Report (SOAR) 153

Section 5 SDLC Processes and Methods and the Security of Software

For Further Reading

CORAS: A Tool-Supported Methodology for Model-Based Risk Analysis of Security Critical Systems.
Available from: http://heim.ifi.uio.no/~ketils/coras/
The CORAS Project.
Available from: http://coras.sourceforge.net/
CORAS: A Platform for Risk Analysis of Security Critical Systems.
Available from: http://www2.nr.no/coras/
SECURIS: Model-Driven Development and Analysis of Secure Information System.
Available from: http://www.sintef.no/content/page1____1824.aspx
The SECURIS Project: Model-Driven Development and Analysis of Secure Information Systems.
Available from: http://heim.ifi.uio.no/~ketils/securis/index.htm

5.2.3.1.7 Attack Trees, Threat Trees, and Attack Graphs
Attack trees, threat trees, and attack graphs are visual representations of
possible attacks against given targets that help visualize more complex series of
events (attack patterns) that may be combined to cause a security compromise
(see Section 3.2 on threats to software). Attack and threat trees and attack
graphs provide alternative formats for capturing abuse case and misuse case
information. The holistic view provided by the trees and graphs also clarifies the
dependencies between attack patterns that exploit software vulnerabilities and
those that target vulnerabilities at other levels (e.g., system, network, personnel,
procedure). This view can increase the understanding of risk managers so
that they can better target and coordinate the countermeasures to these
vulnerabilities across all layers of the system.

The following is an example of a non-graphical version of an attack tree [192]
that includes several attack patterns that exploit software vulnerabilities:

Goal—Fake Reservation
1. Persuade an employee to add a reservation.

1.1 Blackmail an employee.
1.2 Threaten an employee.

2. Access and modify the flight database.
2.1 Perform SQL injection from the web page (V1).
2.2 Log into the database.

2.2.1 Guess the password.
2.2.2 Sniff the password (V7).
2.2.3 Steal the password from the web server (AND).

2.2.3.1 Get an account on the web server.
2.2.3.1.1 Exploit a buffer overflow (V2).
2.2.3.1.2 Get access to an employee account.

2.2.3.2 Exploit a race condition to access a protected file (V3).

Figure 5-8 similarly illustrates an attack graph [193] that includes several
attack patterns that exploit software vulnerabilities.

http://heim.ifi.uio.no/~ketils/coras/
http://coras.sourceforge.net/
http://www2.nr.no/coras/
http://www.sintef.no/content/page1____1824.aspx
http://heim.ifi.uio.no/~ketils/securis/index.htm

Software Security Assurance State-of-the-Art Report (SOAR)154

Section 5 SDLC Processes and Methods and the Security of Software

Figure 5-8. Example of an Attack Graph

Not all attack and threat trees and attack graphs lend themselves to manual
analysis because of their sheer size and complexity. Some trees and graphs have
been generated to depict real-world distributed attacks targeting large networked
systems; these trees and graphs have included hundreds and even thousands of
simultaneous different branches and paths leading to the completion of the attack.

According to some who have attempted to use attack and threat trees,
they are difficult if not impossible to use by anyone who is not a security expert.
Because a tree is a “list of security-related preconditions,” it is unrealistic to
expect a non-expert to accurately generate an appropriate list of security-
related preconditions. Microsoft is one software development organization
that has discovered that painstakingly generated security-related preconditions
(attack or threat trees) actually form patterns that can then be standardized as patterns th at c an th en be standardized as patterns
reusable attack patterns (or, in Microsoft parlance, “threat tree patterns”) that
are easily comprehensible by non-security-expert developers. This pattern-
based approach is rapidly supplanting use of attack and threat trees and graphs
as a preferred threat modeling approach in many development organizations.
See Section 3.2.3.1 for a discussion of the ways in which attack patterns can and
are being used throughout the software life cycle.

Software Security Assurance State-of-the-Art Report (SOAR) 155

Section 5 SDLC Processes and Methods and the Security of Software

For Further Reading

“Attack Trees”, (Washington, DC: US CERT).
Available from: https://buildsecurityin.us-cert.gov/daisy/bsi/articles/best-practices/requirements/236.html
Bruce Schneier, “Attack Trees—Modeling Security Threats”, Dr. Dobb’s Journal, (December, 1999).
Available from: http://www.schneier.com/paper-attacktrees-ddj-ft.html
Oleg Sheyner, et al., Automated Generation and Analysis of Attack Graphs: 2002, Presentation at the
IEEE Symposium on Security and Privacy, (May 2002).
Available from: http://www-2.cs.cmu.edu/afs/cs.cmu.edu/project/calder/www/sp02.html
Oleg Sheyner and Jeannette M. Wing, “Tools for Generating and Analyzing Attack Graphs: 2003”
Presentation at the Workshop on Formal Methods for Components and Objects, 2004: 344–371.
Available from: http://www-2.cs.cmu.edu/~wing/publications/SheynerWing04.pdf

5.2.3.1.8 System Risk Assessment Methods and Software-
Intensive Systems
Even though system risk assessment methods cover a broad range of
information security concerns, they also usually include adequate mechanisms
and techniques for incorporating detailed software security assessments and
threat modeling scenarios into a larger system security risk assessment. The
challenge is that system risk assessment is in and of itself such a demanding,
time-consuming activity that there are often no time, resources, or motivation
to extend the risk assessment to the lower level of granularity required to assess
individual software components of the system.

Systems risk analysts, then, generally proceed without consulting the
software engineers who build those components. The result is that several
security threats, vulnerabilities, and countermeasures that are unique to
software components and best understood by software developers are not
reflected in the system risk assessment. The result is, at best, an inaccurate
report of the actual risks to the software intensive system.

This said, until recently, the absence of software-specific risk
assessment and threat modeling techniques and tools left only one option
to software teams: attempt to apply system-level risk assessment techniques
(and supporting tools) to software components (and development projects).
The following are the most popular, well-established of the system security
risk assessment techniques. All of these are have been used in software
security risk assessments.

u Automated Security Self-Evaluation Tool (ASSET)—[194] NIST’s ASSET
provides automated self-assessments against its own established criteria
for security controls. ASSET is, in essence, an automated version of the
questionnaire in NIST SP 800-26, Guide for Information Security Program
Assessments and System Reporting Form. ASSET differs from other tools
in that it is aimed only at facilitating Federal agency compliance with
security assurance provisions mandated by law (e.g., FISMA), policy
(e.g., DoDD 8500.1), and standards (e.g., FIPS 200).

https://buildsecurityin.us-cert.gov/daisy/bsi/articles/best-practices/requirements/236.html
http://www.schneier.com/paper-attacktrees-ddj-ft.html
http://www-2.cs.cmu.edu/afs/cs.cmu.edu/project/calder/www/sp02.html
http://www-2.cs.cmu.edu/~wing/publications/SheynerWing04.pdf

Software Security Assurance State-of-the-Art Report (SOAR)156

Section 5 SDLC Processes and Methods and the Security of Software

u Central Communication and Telecommunication Agency (CCTA) Risk Analysis
and Management Method (CRAMM)—[195] Developed by Siemens
Corporation and Insight Consulting, offers both quantitative and
qualitative measurements of risk. Its distinguishing feature is its
Controls Database of more than 3,000 security controls defined by a
variety of security agencies and standard bodies. For each control, the
database describes where the control would be appropriate and
ascertains its cost and effectiveness against a variety of security
breaches. The program delineates costs to the user and enables the
user to rank or prioritize controls.

u Mission Oriented Risk and Design Analysis (MORDA)—[196] The MORDA
methodology was developed by the NSA to provide a state-of-the-art
quantitative risk assessment method. MORDA employs a variety of tools
to execute a comprehensive risk management approach: attack tree
models, IA models, and multiple-objective decision analysis. Each model
yields mathematical outputs capturing figures such as estimated losses
from attacks, predicted attack frequency, and effectiveness of
countermeasures. Those quantitative outputs inform investment
decisions aimed at enhancing security controls, reengineering, and
upgrades or downgrades of existing system features. MORDA is the
methodology that has been mandated for use in risk assessment of DoD
Global Information Grid (GIG) applications and enterprise services.

u Operationally Critical Threat, Asset, and Vulnerability Evaluation (OCTAVE)—[197]
The SEI’s OCTAVE differs from MORDA in that it offers a qualitative
approach. OCTAVE inventories critical assets, threats to those assets,
vulnerabilities associated with those assets, and risk levels. The user is
guided through a step-by-step process to catalog risk and generate
relevant “Threat Profiles,” which map a critical asset to its sources of
potential risk through flowcharts. Analysts from all parts of the
organization are involved in the assessment process.

5.2.3.2 Requirements Specification and Modeling Methods
Because requirements specifications are a bridge between multiple audiences, it
may be necessary to prepare (and maintain) multiple versions of them. A version
that is understandable to the end user would not need the same level of detail
as one that is useful for the developers. Neither version would be understood
by automated tools. The CONOPS document has been suggested as particularly
helpful for the user. Specifications in formal notation are useable by verification
tools, conversely, specifications that may be understandable to development
tools, may not be readable. The CONOPS is also helpful for the developer in
that it fleshes out requirements to achieve the level of understanding needed
to avoid being surprised by the system that is ultimately developed from those
requirements. Spiral development methods are also helpful in eliminating the

Software Security Assurance State-of-the-Art Report (SOAR) 157

Section 5 SDLC Processes and Methods and the Security of Software

“surprise factor.” Requirements are too abstract for developers to be able to
conceptualize the usage of the system based on them. The problem is similar
to the one a car buyer would have if, based on a parts list, he had to decide
whether he wanted to drive the car once it was built. Thus, the CONOPS enables
developers to get a better understanding of what the end user will be doing with
the system than can be extrapolated from requirements alone.

Consistency then becomes an issue (i.e., does the formal notation
faithfully contain everything in the CONOPS?) and remains an issue
throughout the SDLC (i.e., are the changes made to one view of the
specification replicated in all the views?)

Many software engineering toolsets include the concept of a repository,
i.e., a database or similar system that contains artifacts from the development
process. A requirements repository would contain each requirement (that has
been elicited, analyzed, prioritized, and specified), as an individually retrievable
object. The repository will usefully contain additional information related to the
actual requirements, such as the justifications, needed to build the assurance
case, and documentation of the analysis and prioritization tasks that led to the
specified requirements. It is especially important to keep this information for
those requirements that are related to the security of the software and that grew
out of the threat analyses and risk management work.

A key to making the repository useful is to ensure that it stores
information at the individual requirement level so that the individual
requirements can be entered, iterated, approved, placed under CM,
published, managed, and traced. Then, by using an appropriate tool, it is
possible to automatically, easily, and inexpensively generate various types
of high-quality requirements specifications that are tailored to meet the
individual needs of their various audiences. [198]

5.2.3.2.1 Use Cases, Misuse Cases, and Abuse Cases
A very promising set of approaches to developing requirements that address
software security is the adaptation of use cases. These approaches have been
given several names to distinguish them from standard use cases: abuse
cases, misuse cases, hostile use cases, and dependability cases (these focus on
exceptions). What they have in common is that they view the software from
the perspective of an adversary. There are differences in their details, but for
purposes of this document, they are the same.

In the same way that use cases are used successfully for eliciting
requirements, misuse cases are used to identify potential threats from which
it becomes possible to elicit security requirements or security use cases. The
authorized user interaction with the system is diagrammed simultaneously
with the hostile user’s interactions. Where the connections between actor and
actions in a use case are labeled with terms like “extends” and “includes,” the
connections in a misuse case are labeled “threatens” and “mitigates.” Misuse

Software Security Assurance State-of-the-Art Report (SOAR)158

Section 5 SDLC Processes and Methods and the Security of Software

cases form the basis for constructing a set of security use cases to counter each
of the threats. As with their use case counterparts, each misuse case drives a
requirement and corresponding test scenario for the software. Much of the
work in building misuse cases is therefore in developing requirements for
security functionality. The analysis technique, however, provides a way to elicit
nonfunctional requirements for protecting the software itself.

A good introduction to and motivation for misuse cases is found in Misuse
and Abuse Cases: Getting Past the Positive [199] by Paco Hope et al. The article
makes a distinction between misuse cases describing unintentional misuse and
abuse cases describing intentional (hostile) misuse. The distinction is similarly
to that between hazards and threats, but that is not a standard distinction. The
article also suggests that attack patterns should be employed to help identify
misuse cases. This task should be performed by teams involving both software
developers (subject matter experts) and security and reliability experts.

A concise description of the technique is contained in Meledath
Damodaran’s article Secure Software Development Using Use Cases and Misuse
Cases [200], which is excerpted here:

Essential description of how misuse cases are constructed: For
each use case, brainstorm and identify how negative agents would
attempt to defeat its purpose or thwart some of the steps in the use
case description; this leads to the major misuse cases. During the
brainstorm sessions the focus should be to identify as many ways an
attacker could cause harm in the service provided by the use case in
focus; details of such attacks may be determined later. Each of these
modes of attacks becomes a candidate misuse case.

The goal is to identify security threats against each of the functions,
areas, processes, data, and transactions involved in the use case from
different potential risks such as unauthorized access from within and
without, denial of service attacks, privacy violations, confidentiality
and integrity violations, and malicious hacking attacks. In addition
to modes of attacks, the process should also try to uncover possible
user mistakes and the system responses to them. Often these mistakes
could cause serious issues in the functioning or security of the system.
By identifying all inappropriate actions that could be taken, we would
capture all actions of abnormal system use—by genuine users in terms
of accidental or careless mistakes and by attackers trying to break or
harm the system function.

Some of the abuse case work has been derived from the domain of
software safety, where safety requirements are elicited from safety cases.

Software Security Assurance State-of-the-Art Report (SOAR) 159

Section 5 SDLC Processes and Methods and the Security of Software

For Further Reading

Ian Alexander, “Misuse Cases Help to Elicit Non-Functional Requirements”, The IET (Institution of
Engineering and Technology) Computing and Control Engineering, 14, no 1 (February, 2003): 40-45.
Available at: http://easyweb.easynet.co.uk/~iany/consultancy/misuse_cases/misuse_cases.htm or
http://swt.cs.tu-berlin.de/lehre/saswt/ws0304/unterlagen/MisuseCasesHelptoNon-Functional.pdf
Ian Alexander, “Misuse Cases: Use Cases with Hostile Intent”, IEEE Software.
(January/February 2003): 58-66.
Available at: http://easyweb.easynet.co.uk/~iany/consultancy/misuse_cases_hostile_intent/misuse_
cases_hostile_intent.htm
G. Sindre and A. L. Opdahl, “Eliciting Security Requirements by Misuse Cases: 2000”, (Presentation at
the International Conference on Technology of Object-Oriented Languages and Systems, 2000): 120-131.
Available at: http://www.nik.no/2001/21-sindre.pdf
Donald G. Firesmith, “Security Use Cases”, Journal of Object-Technology. 2, no.3 (May 2003): 53-64.
Available at: http://www.jot.fm/issues/issue_2003_05/column6.pdf

5.2.3.2.2 Goal-Oriented Requirements Engineering
In goal-oriented requirements engineering, a goal is an objective that the
software under consideration should achieve. Goal formulations thus refer
to intended properties to be ensured. Goals may be formulated at different
levels of abstraction. Goals also cover different types of concerns: functional
concerns associated with the services to be provided, and nonfunctional
concerns associated with quality of service—such as safety, security, accuracy,
performance, and so forth. Therefore, goal-oriented approaches can be useful
in developing requirements for secure software.

Goal-oriented methods can be applied to all activities within the
requirements phase, including elicitation, analysis, prioritization, and
specification. For example, goal modeling and specification can be used
to support some form of goal-based reasoning for requirements-related
subprocesses such as requirements elaboration, consistency and completeness
checking, alternative selection, and change management. The nonfunctional
requirements (NFR) framework provides qualitative reasoning procedures for
soft goals, including security. This procedure determines the degree to which
a goal is either satisfied or denied by lower-level goals or requirements. The
general idea is to propagate satisfied links from the bottom-up, from lower-level
nodes (i.e., requirements) to higher-level nodes (i.e., goals).

The NFR framework is an attempt to define a concrete framework for
integrating nonfunctional requirements into the software development process.
The authors of this approach recognize that it needs much more research to be
theoretically sound, but also that, in the interim, it offers an adoptable solution
that can be put to immediate use in an area that is in great need of concepts,
methodologies, and tools. Since the NFR framework was proposed, it has been
referenced and built upon extensively within the research community, as in the
example above, where it provides structure for the goal-oriented approach.

The Méthodes d’Ingenierie de Logicels Securisés (MILOS, i.e., Secure
Software Engineering Methods) [201] project at the Catholic University of

http://easyweb.easynet.co.uk/~iany/consultancy/misuse_cases/misuse_cases.htm
http://swt.cs.tu-berlin.de/lehre/saswt/ws0304/unterlagen/MisuseCasesHelptoNon-Functional.pdf
http://easyweb.easynet.co.uk/~iany/consultancy/misuse_cases_hostile_intent/misuse_cases_hostile_intent.htm
http://easyweb.easynet.co.uk/~iany/consultancy/misuse_cases_hostile_intent/misuse_cases_hostile_intent.htm
http://www.nik.no/2001/21-sindre.pdf
http://www.jot.fm/issues/issue_2003_05/column6.pdf

Software Security Assurance State-of-the-Art Report (SOAR)160

Section 5 SDLC Processes and Methods and the Security of Software

Leuven (Belgium) is developing methodologies for goal-oriented security
requirements engineering. These methodologies range from “application-
specific security requirements engineering to secure architecture design to
secure programming platform implementation.”

The MILOS security model starts with a set of generic specification
patterns that map to the desired security properties of information systems:
confidentiality, integrity, availability, privacy, authentication, authorization,
and nonrepudiation. These security patterns are then abstracted as goals, and a
correlated “anti-model” is developed that captures a set of attacker “anti-goals”
that, if achieved, would prevent achievement of the system security goals. MILOS’
researchers claim their approach is unique among goal-oriented requirements
methods in its modeling of requirements from the point of view of the attacker.

For Further Reading

Pierre-Jean Fontaine, Goal-Oriented Elaboration of Security Requirements (c2001).
Available from: http://citeseer.ist.psu.edu/fontaine01goaloriented.html
Xiaomeng Su, Damiano Bolzoni, Pascal van Eck and Roel Wieringa, Understanding and Specifying
Information Security Requirements, (c2006).
Available from: http://arxiv.org/PS_cache/cs/pdf/0603/0603129.pdf

5.2.3.2.3 Security Quality Requirements Engineering and SCR
The CERT program at CMU is working on a Security Quality Requirements
Engineering (SQUARE) process that is aimed at providing methods, tools, case
study results, etc. that consider and address security for every aspect of the
requirements process. [202] Table 5-9 is a summary of the process defined so
far. The evolution of this work can followed on the DHS BuildSecurityIn portal.

Table 5-9. Steps in the SQUARE Process

Step #/
Activity Input Techniques Participants Output

1
Agree on
definitions

Candidate
definitions from
IEEE and other
standards

Structured
interviews,
focus groups

Stakeholders,
requirements
team

Agreed-to
definitions

2
Identify
security goals

Definitions,
candidate goals,
business drivers,
policies and
procedures, and
examples

Facilitated
work
sessions,
surveys,
interviews

Stakeholders,
requirements
engineer

Goals

http://citeseer.ist.psu.edu/fontaine01goaloriented.html

Software Security Assurance State-of-the-Art Report (SOAR) 161

Section 5 SDLC Processes and Methods and the Security of Software

Table 5-9. Steps in the SQUARE Process - continued

Step #/
Activity Input Techniques Participants Output

3
Develop
artifacts
to support
security
requirements
definition

Potential
artifacts
(e.g., scenarios,
misuse cases,
templates, forms)

Work session Requirements
engineer

Needed artifacts:
scenarios, misuse
cases, models,
templates, and
forms

4
Perform risk
assessment

Misuse cases,
scenarios, and
security goals

Risk
assessment
method,
analysis of
anticipated
risk against
organizational
risk tolerance,
including
threat
analysis

Requirements
engineer,
risk expert,
stakeholders

Risk assessment
results

5
Select
elicitation
techniques

Goals, definitions,
candidate
techniques,
expertise of
stakeholders,
organizational
style, culture,
level of security
needed, cost
benefit analysis,
etc.

Work session Requirements
engineer

Selected
elicitation
techniques

6
Elicit security
requirements

Artifacts, risk
assessment
results, and
selected
techniques

Joint
Application
Development
(JAD),
interviews,
surveys,
model-based
analysis,
checklists,
lists of
reusable
requirements
types,
document
reviews

Stakeholders
facilitated by
requirements
engineer

Initial cut
at security
requirements

Software Security Assurance State-of-the-Art Report (SOAR)162

Section 5 SDLC Processes and Methods and the Security of Software

Table 5-9. Steps in the SQUARE Process - continued

Step #/
Activity Input Techniques Participants Output

7
Categorize
requirements
by level
(system,
software,
etc.) and
whether
they are
requirements
or other kinds
of constraints

Initial
requirements,
and architecture

Work session
using a
standard set
of categories

Requirements
engineer, other
specialists as
needed

Categorized
requirements

8
Prioritize
requirements

Categorized
requirements
and risk
assessment
results

Prioritization
methods
such as
Triage, Win-
Win

Stakeholders
facilitated by
requirements
engineer

Prioritized
requirements

9
Requirements
inspection

Prioritized
requirements,
and candidate
formal inspection
technique

Inspection
method such
as Fagan,
peer reviews

Inspection team Initial selected
requirements, and
documentation of
decision-making
process and
rationale

The NRL SCR [203] model was originally developed in 1978 as a
requirements methodology to be used for building high assurance control
systems. Since then, SCR has been widely accepted and used by many
software projects to develop software requirements in systems ranging from
telephone networks and SCADA systems to military and commercial flight
control systems. SCR was designed to be understandable by all participants in
a software project, from engineers to high-level managers. The methodology
is based in formal methods, enabling SCR-derived requirements to be
mathematically proved via consistency and model-checking analyses. SCR is
supported by a suite of tools, including a requirements specification editor, a
dependency graph browser, a simulator for validating the specification, and
verification tools that check that the requirements specification satisfies a
defined set of critical design properties. Though not originally intended for
software security requirements engineering, SCR has been used effectively for
many years for specifying high assurance systems. Like secure software, such
system have requirements for integrity and availability as well as dependability
(which may include fault tolerance and safety).

Software Security Assurance State-of-the-Art Report (SOAR) 163

Section 5 SDLC Processes and Methods and the Security of Software

5.2.3.2.4 Object-Oriented and Aspect-Oriented Modeling
Object-oriented analysis and modeling has benefited from the introduction
of a standard notation, UML. [204] What had been a number of conflicting
techniques has become a common practice. The widespread use of UML
has also increased awareness of how valuable modeling is for dealing with
complexity. In MDA and MDD, UML models are the primary artifacts of the
software architecture and design phases. Automated tools are then used to
transform the models into code (and back).

It has been observed that one weakness of object-oriented modeling is
that it focuses on security properties only as they relate to specific software
functionalities, but cannot efficiently capture crosscutting security properties
that hold true across the system. For example, UML does not include such a
construct as a misuse case or an abuse case, which makes it difficult to use UML
to capture such properties as “resilience after a successful attack” or “reliability
in the face of an intentional fault or weakness,” although it is well-suited to
capturing functionality-related properties such as “self-correction capability” or
“detection of unintentional faults and weaknesses.”

MDA is being used in developing secure software in the commercial
sector as well. Object Security offers SecureMDA, which provides a consistent
architecture for modeling, generating, and enforcing security policies via
MDA. For modeling and application development, SecureMDA integrates with
SecureMiddleware, an open source secure Common Object Request Broker
Architecture (CORBA) implementation sponsored by Object Security. For security
policy enforcement, SecureMDA integrates with OpenPMF, a central policy
management framework offered by Object Security. Security policies generated
by SecureMDA are enforced at the middleware level, preventing any malicious or
improper components from affecting the rest of the distributed system. Although
SecureMDA only enforces security models at the middleware layer, it is an
important step in using modeling to develop high assurance systems.

By contrast with other UML-based object-oriented modeling methods
such as MDA and RUP, Aspect Oriented Modeling (AOM—the first phase of
Aspect Oriented Software Development [AOSD]) is a MDD technique that
specifically addresses the difficulty of capturing and depicting crosscutting
properties such as security. AOM separates the design for the nonfunctional
concerns from the main functionality design and then composes the separate
models together to create a comprehensive solution model. One typically has
several models, each built for a specific purpose. A primary model embodies
a solution that meets the most important functional requirements. One or
more aspect models each embodies a solution that meets a nonfunctional
requirement, such as a security or fault tolerance concern. The aspect models
are composed with the primary model, according to a set of composition rules,
to produce a more comprehensive solution model.

Software Security Assurance State-of-the-Art Report (SOAR)164

Section 5 SDLC Processes and Methods and the Security of Software

The following are UML security profiles that are available in the
public domain:

u UMLSec—[205] The emphasis of the Security and Safety in Software
Engineering WG lies in the methodological development of
security-critical systems, including the use of formal methods under the
aspect of official certification. This group, at the Technical University of
Munich, developed both UMLSec and an extension of the AutoFocus
CASE tool that adds security information. The AutoFocus extension
allows the seamless consideration of security aspects in the
development process with support of modeling, simulation, consistence
checking, code generation, verification, and testing. The formal
specifications in both UMLSec and AutoFocus can be used to verify
security requirements. This allows certification on the highest degree,
i.e., CC, EAL 7. UMLSec is intended to encourage developers to consider
system security requirements starting at the outset of the architectural
design phase. The modeling language enables the developer to evaluate
UML specifications for security vulnerabilities in the system design
based on established rules of secure engineering encapsulated in a
checklist. Because it is based on standard UML, UMLSec is intended to
be useful to developers who are not specialists in secure systems
development. Used in conjunction with AOM, UMLSec can be used to
add semantic meaning to aspects. Integrity, confidentiality, and
authentication are examples given by UMLSec’s inventor of security
properties that can be expressed in UMLSec extensions, and therefore
used as specification elements by AOM security models.

u SecureUML—[206] Conceived by Torsten Lodderstedt, David Basin,
and Jürgen Doser at the Institute for Computer Science at the
University of Freiburg (Germany), and applied practically by
Foundstone in designing secure authorization systems, SecureUML is a
UML-based modeling language for expressing role-based access
control (RBAC) and authorization constraints in the overall design of
software systems. Although UML lends itself to modeling the many
types of software security properties such as integrity, availability, non-
compromisability, non-exploitability, and resilience, SecureUML
focuses primarily on authorization and access control, and thus is
unlikely to be helpful for expressing security extensions in the
modeling of software dependability properties.

u CORAS UML Profile—Unlike UMLsec and SecureUML, the CORAS UML
Profile for security assessment is directly relevant to modeling software
security properties (versus system security functions that happen to
be implemented in software). Developed by the CORAS Project
(see Section 5.2.3.2.4), the CORAS UML profile provides a meta-model
that defines an abstract language for modeling threats such as buffer
overflow exploits, as well as associated “treatments” (countermeasures)

Software Security Assurance State-of-the-Art Report (SOAR) 165

Section 5 SDLC Processes and Methods and the Security of Software

for those threats. The profile maps classes in the meta-model to
modeling elements in the Object Management Group (OMG) UML
standard. The CORAS UML profile was accepted as a recommended
standard by the OMG in November 2003 and is being finalized.

Increasingly AOM is being adopted for capturing software security
requirements. Aspects are a modeling construct that captures system
behaviors and other nonfunctional characteristics, referred to in AOM
terminology as “crosscutting properties,” which cannot be represented
effectively in purely functionality-oriented models. Some frequently-cited
examples of such aspects include synchronization, component interaction,
persistence, fault tolerance, quality of service, dependability, and security.
AOM is intended to be used in conjunction with functionally-oriented UML
(with or without extensions such as UMLSec or SecureUML), with AOM used
to map crosscutting aspects to transformational model entities. Research
into the use of AOM for modeling software dependability requirements and
design aspects, and to model security policies for software-based systems
has been underway at the University of Colorado since the early 2000s in the
university’s Model-Based Software Development Group. [207]

For Further Reading

Jan Jürjens publications page.
Available from: http://www4.in.tum.de/~juerjens/publications.html
C. B. Haley, R. C. Laney and B. Nuseibeh, “Deriving Security Requirements from Crosscutting Threat
Descriptions: 2004”, (Presentation at the 3rd International Conference on Aspect-Oriented Software
Development, 2004): 112-121.
Available from: http://portal.acm.org/citation.cfm?id=976270.976285
Robert B. France et al., (Colorado State University), “Evaluating Competing Dependability Concern
Realizations in an Aspect-Oriented Modeling Framework: 2003”, Presentation at the 14th IEEE
International Symposium on Software Reliability Engineering: (November 17-20, 2003).
Available from: http://www.chillarege.com/fastabstracts/issre2003/150-FA-2003.pdf

5.2.3.2.5 Formal Methods and Requirements Engineering
Formal methods can be used to precisely specify requirements such that
one can later prove an implementation meets those requirements. Formal
languages used in requirements, such as Z (pronounced “Zed”), the
specification language in the Vienna Development Method, and Larch, often
come with tools. For requirements analysis, the attraction of formal methods is
that the outputs are amenable to manipulation by machine and analysis tools.
Praxis High Integrity Systems’ Correctness by Construction [208] method, for
example (which has been in use for more than 15 years in the UK) focuses on
the accurate specification of mathematically verifiable requirements.

The emphasis of Correctness by Construction in the requirements
phase is to make a clear distinction between user requirements, system
specifications, and domain knowledge. “Satisfaction arguments” are then used

http://www4.in.tum.de/~juerjens/publications.html
http://portal.acm.org/citation.cfm?id=976270.976285
http://www.chillarege.com/fastabstracts/issre2003/150-FA-2003.pdf

Software Security Assurance State-of-the-Art Report (SOAR)166

Section 5 SDLC Processes and Methods and the Security of Software

to demonstrate that each user requirement can be satisfied by an appropriate
combination of system specification and domain knowledge. Praxis asserts
that this emphasis on domain knowledge is key: it cites studies showing that
half of all requirements errors are related to domain, and then asserts that
the vast majority of requirements processes do not explicitly address domain
issues. This is one of several ways in which Correctness by Construction differs
from other requirements elicitation, specification, and verification methods.
In the architecture and design stages, mathematical (or formal) methods and
notations are used to precisely define the behavior of the software, consistent
with its requirements, and to model its properties and attributes.

One obvious drawback to formal notation is that, being mathematically
based, it is not communicable to the vast majority of stakeholders and
other developers. This necessitates the generation of a parallel version in
human-readable form, which must be kept synchronized with the formally
notated version. A second drawback is in the level of effort needed to translate
the requirements into the formalisms. Thus formal methods, while promising,
are only feasible for small projects or small, critical subsets of projects, or when
mandated, i.e., for software that must meet higher assurance levels.

There is promise, because the benefits of formal methods make
them attractive to researchers, that more usable tools and techniques for
“lightweight” formal methods will emerge, and will enable more practitioners
to reap their benefits at a reasonable cost. The use of formal specifications can
result in fewer requirements errors. This benefit may exist, as Bertrand Meyer
demonstrates, [209] even when the final specification is expressed in a natural
language (e.g., English) rather than a formal language.

Security concerns are sometimes introduced into formal specifications in
a manner similar to the introduction of safety concerns. For example, a formal
specification may mandate that some system state, as defined by values of state
variables, can never arise.

5.2.3.2.6 Security Requirements Patterns
Research into security requirements patterns arose in parallel with research into
security design patterns (see Section 5.3.3), which share the same basic foundation
and premise. As of today, however, there are no standards or best practices for
specification or use of security requirements patterns. Also in common with
security design patterns, the research in security requirements patterns has
focused on patterns for information security functionality (the work by Miroslav
Kis, cited under “For Further Reading” below, is typical), rather than security for
preserving dependability properties. This said, Sascha Konrad et al. [210] have
done some promising work with their definition and analysis of security patterns
for requirements and design, which includes introducing several new fields of
security requirements, including behavior, constraints, and supported security
principles, into the base design pattern template.

Software Security Assurance State-of-the-Art Report (SOAR) 167

Section 5 SDLC Processes and Methods and the Security of Software

For Further Reading

Miroslav Kis, “Information Security Antipatterns in Software Requirements Engineering, 2002”,
(Presentation at the 9th Conference on Pattern Language of Programs, September 8-12, 2002).
Available from: http://jerry.cs.uiuc.edu/~plop/plop2002/final/mkis_plop_2002.pdf

5.2.3.2.7 Security-Aware Tropos
Tropos [211] is a full life cycle methodology for development agent-based
software systems. Created by researchers at the University of Trento (Italy),
Tropos uses Goal-oriented Requirements Language (GRL) to model the
required aspects of the agent-based system, and then proceeds through design,
implementation, and testing phases, during which the system’s specified
functionality is refined and ultimately mapped back to the early requirements
captured in GRL. Although Tropos was not originally conceived for capturing
security requirements, researchers at the University of Trento and the University
of Sheffield (UK) have defined security extensions that enable Tropos to be
used for modeling both functional and nonfunctional security requirements
and designing security aspects for both security functionality and security
properties, such as those associated with trust management. [212]

5.3 Software Architecture and Design
Architecture design, sometimes called preliminary or high-level design,
allocates requirements to components identified in the design phase. An
architecture describes components at an abstract level, while leaving their
implementation details unspecified. Some components may be modeled,
prototyped, or elaborated at lower levels of abstraction, if, for example,
analysis reveals a risk that the functions to be performed by such elaborated
components are infeasible within performance, safety, or security constraints.
High-level design activities might also include the design of interfaces among
components in the architecture and a database design. Documents produced
during the architectural design phase can include—

u Documentation of models, prototypes, and simulations
u Preliminary user’s manual
u Preliminary test requirements
u Documentation of feasibility analyses
u Documentation of analyses of the consistency of components and of

different representations of the architecture
u Documentation of the traceability of requirements to the

architecture design.

Detailed design activities define data structures, algorithms, and control
information for each component in a software system. Details of the interfaces
between components are identified.

http://jerry.cs.uiuc.edu/~plop/plop2002/final/mkis_plop_2002.pdf

Software Security Assurance State-of-the-Art Report (SOAR)168

Section 5 SDLC Processes and Methods and the Security of Software

Attention to security issues, such as those captured in the threat models and
analyses developed during the requirements and early architecture phases, can
decrease the likelihood that the software’s design will contain weaknesses that
will make the software implemented from that design vulnerable to attack. [213]

A decrease in the number of vulnerabilities is a side effect of verifiable
correctness. Correctness can be largely ensured by adopting rigorous formal
methods, but at high cost. Semiformal modeling is a lower cost analysis method
for increasing the likelihood of correctness.

Whether vulnerabilities exist often depends on the implementation details
of the components identified in the design. Furthermore, exploits often attempt
to change the environment and inputs to a system in ways that are difficult to
formally model and predict. Nevertheless, some general principles for secure
design can decrease the probability that exploits will exist in those components
and that any remaining vulnerabilities will be exploitable throughout the system.
Furthermore, a few design patterns at the architecture design level identify
components—particularly components for input validation and escaping
output—that ensure the absence of today’s most common vulnerabilities.

The composition of systems (at least partially) from existing components
presents particular challenges to secure software architecture design. A reused
component may be exposed to inputs with which it has not been previously
been tested. Thus, it may introduce vulnerabilities into the new system. In one
case study, vulnerabilities were minimized by designing a “system (that) places
no reliance on COTS correctness for critical security properties.” [214]

Figures 5-9 and 5-10 illustrate the architectural and detailed design phases
of a standard software life cycle (in this case, that depicted in IEEE Standard
1074-2006) with security assurance activities and artifacts added.

Software Security Assurance State-of-the-Art Report (SOAR) 169

Section 5 SDLC Processes and Methods and the Security of Software

Figure 5-9. Inputs and Outputs of Architecture Design Activities With Assurance Concerns

Figure 5-10. Inputs and Outputs of Detailed Design Activities With Assurance Concerns

Software Security Assurance State-of-the-Art Report (SOAR)170

Section 5 SDLC Processes and Methods and the Security of Software

5.3.1 Design Principles and Objectives for Secure Software
To resist attack, software needs to be expressly designed according to secure
design principles. The number of books, white papers, articles, and websites
that suggest and describe general design principles for secure software
(including advice on secure software architecture) is proliferating.

Saltzer and Schroeder’s The Protection of Information in Computer
Systems [215] identified a set of access control and other protection principles
that should be applied when designing a secure system. In DHS’ Secure
Software, [216] the Saltzer and Schroeder principles were analyzed, and the
following subset was identified as directly relevant to software security assurance:

u Least Privilege—Least privilege is a principle whereby each principal
(user, process, or device) is granted the most restrictive set of privileges
needed for the performance of each of its authorized tasks. A more
recent corollary is least-authorization, which is less transactional.

u Complete Mediation—Before granting access to a resource or execution
of a process, the user or process requesting that access or execution
should be checked for proper authorization, and the request should be
rejected if the requestor is not appropriately authorized.

u Fail-Safe Defaults—This principle calls for defaulting, in security-
relevant decision-making, toward denial rather than permission. Thus,
the default situation will be to deny all requests that do not explicitly
conform to the conditions under which such requests are permitted.

u Separation of Privilege—A high-assurance or otherwise high-consequence
function should require two keys to unlock it (i.e., to cause its execution).
By requiring two keys, no single accident, deception, or breach of trust
will be sufficient to compromise the trusted function. In practical
application, code signatures provide this type of separation: code cannot
be executed by one entity unless it has been signed using a certificate
from a valid Certificate Authority, and moreover, that signature can be
validated by a second entity (i.e., a certificate validation service).

u Open Design—Security should not depend on security-through-
obscurity, i.e., the ignorance of potential attackers, but rather on
assurance of dependability and/or the possession by users of specific,
easily protected, authorization credentials. This permits the software to
be examined by a number of reviewers without concern that the review
may itself compromise the software’s security. The practice of openly
exposing one’s design to scrutiny is not universally accepted. The
notion that security should not depend on attacker ignorance is
generally accepted, [217] but some would argue that obfuscation and
hiding of both design and implementation has advantages: they raise
the cost to the attacker of compromising the system.

u Recording of Compromises—If the software behaves suspiciously or is
compromised, trails of evidence can aid in determining whether the

Software Security Assurance State-of-the-Art Report (SOAR) 171

Section 5 SDLC Processes and Methods and the Security of Software

behavior or compromise resulted from an intentional attack, and if so,
in understanding the attack patterns so as to better resist or tolerate it.
After compromises, evidence trails also aid resilience, i.e., recovery,
diagnosis and repair, forensics, and accountability. Records of
legitimate behaviors also have value, because they provide a “normal”
baseline against which anomalous behavior can be compared.

u Defense in Depth—Defense-in-depth is a strategy in which the human,
technological, and operational capabilities that comprise a system are
integrated to establish variable protective barriers across multiple
layers and dimensions of that system. This principle ensures that an
attacker must penetrate more than one element of the overall system to
successfully compromise that system. Diversity of mechanisms can
make the attacker’s efforts even more difficult. The increased cost of an
attack may dissuade an attacker from continuing the attack. Note that
composition of multiple less expensive but weak mechanisms is
subject to the same composability issues as other software: combining
them is unlikely to create a barrier that is stronger than the least secure
of its individual parts, let alone the sum of its parts.

u Work Factor—The cost of a countermeasure or mitigation for a
vulnerability or weakness (or of an overall increase in the level of security,
which should eliminate a number of vulnerabilities and weaknesses)
should be commensurate with the cost of the loss that would result were
an attack to successfully exploit that vulnerability or weakness.

u Economy of Mechanism—“Keep the design as simple and small as
possible” applies to any aspect of a system, but it deserves emphasis for
trusted software. This principle minimizes the likelihood of errors in
the code and directly aids its analyzability.

u Analyzability—Systems whose behavior is analyzable from their
engineering descriptions such as design specifications and code have a
greater chance of performing correctly because relevant aspects of
their behavior can be predicted in advance.

In addition to the principles identified by Schroeder and Saltzer, software
should also provide—

u Security-Aware Error and Exception Handling—Software needs to correctly
handle exceptions so that active faults that are triggered by attack
patterns will not result in a software crash (denial of service). The
software needs to validate all user input to ensure it is not too large for
the memory buffer allocated to receive it and does not contain
segments of executable code.

u Mutual Suspicion—Components should not trust other components
except when they are explicitly intended to. Each component in an
interacting pair should always be prepared to protect itself against an
attack from the other.

Software Security Assurance State-of-the-Art Report (SOAR)172

Section 5 SDLC Processes and Methods and the Security of Software

u Isolation and Constraint of Untrusted Processes—Sandboxing, virtual
machines, trusted processor modules, and access control
configurations can be used to isolate untrusted processes so that their
misbehavior does not affect trusted processes or grant access to
restricted memory areas to malicious code or human attackers.

u Isolation of Trusted/High Consequence Processes—In high-risk
environments especially, it may be sensible to also isolate trusted and
other high-consequence processes, to protect their integrity and
availability from potential threats posed by untrusted processes and
external entities. Trusted Processor Modules (TPM) were expressly
conceived for this purpose, i.e., for hosting trusted processes (such as
cryptographic functions) in a physically separate execution
environment with only tightly controlled interfaces to the rest of the
software application or system.

In addition to the principles and objectives listed above, Morrie Gasser
[218] suggested two additional secure design principles for software-intensive
computer systems.

1. The system design should anticipate future security requirements.
2. The developer should consider security from the start of the

design process.

DHS’ Software Assurance (CBK) identifies a number of other secure
software architecture and design objectives and design principles gleaned from
several sources. These include:

u The architectural design should ease creation and maintenance of an
assurance case.

u The architectural design should ease traceability, verification,
validation, and evaluation.

u The architecture should eliminate possibilities for violations.
u The architectural design should help ensure certification and

accreditation of the operational system.
u The architecture should provide predictable execution behavior.
u The design should avoid and work around any security-endangering

weaknesses in the environment or development tools.
u The number of components to be trusted should be minimized.
u The system should be designed to do only what the specification calls

for and nothing else.
u The system should be designed to tolerate security violations.
u The designer should make weak assumptions.
u The system should not cause security problems for other systems in the

environment.
u The system should be designed for survivability.

Software Security Assurance State-of-the-Art Report (SOAR) 173

Section 5 SDLC Processes and Methods and the Security of Software

Most books and other guidance on secure coding or secure programming
include lists of secure design principles as well as secure implementation
principles without making a clear distinction between the two.

For Further Reading

Brian Snow (NSA), “We Need Assurance!” (Presentation at the: Annual Computer Security Applications
Conference; 2005).
Available from: http://www.acsac.org/2005/papers/Snow.pdf
Design Guidelines, (Washington, DC: US CERT).
Available from: https://buildsecurityin.us-cert.gov/daisy/bsi/articles/knowledge/guidelines.html
Software Security Principles, (Washington, DC: US CERT).
Available from: https://buildsecurityin.us-cert.gov/daisy/bsi/articles/knowledge/principles.html
Thomas Hrustka, Safe C++ Design Principles, (CubicleSoft, c2006).
Available from: http://www.cubiclesoft.com/SafeCPPDesign/

5.3.2 Architecture Modeling
A number of notations and techniques are available for modeling various
characteristics of software architectures. UML and related technologies provide
a currently popular approach to modeling. In modeling, one describes the
architecture from the viewpoint of different stakeholders and their concerns.
Different viewpoints require different descriptions. UML 2.0 supports this need
by providing 13 different graphical representations of a system.

Some UML diagrams are useful in the analysis of the security of an
architecture. Use cases can be used to define interactions with a system, a
useful step in defining the capabilities of system users and in understanding
possible attacks. Some find previous modeling approaches insufficient for
a comprehensive security analysis of an architecture. Jie Ren and Richard
Taylor at University of California at Irvine have defined xADL (eXtensible
Architecture Description Language) [219] for modeling subjects, resources,
privileges, safeguards, and policies. xADL models are also intended to facilitate
the detection of architectural vulnerabilities. Michael Shin, a researcher at
Texas Tech University, approaches the modeling of security requirements in
terms of connectors in the software architecture. [220] In Shin’s approach,
security requirements are captured and refined separately from functional
requirements. (See Section 5.2.3.2.4 for information on UML security profiles
designed to model various elements of secure software-intensive systems.)

http://www.acsac.org/2005/papers/Snow.pdf
https://buildsecurityin.us-cert.gov/daisy/bsi/articles/knowledge/guidelines.html
https://buildsecurityin.us-cert.gov/daisy/bsi/articles/knowledge/principles.html
http://www.cubiclesoft.com/SafeCPPDesign/

Software Security Assurance State-of-the-Art Report (SOAR)174

Section 5 SDLC Processes and Methods and the Security of Software

For Further Reading

Eduardo B. Fernandez, “A Methodology for Secure Software Design: 2004”, (Presentation at the
International Symposium on Web Services and Applications, June 21–24, 2004)
Available from: http://www.cse.fau.edu/~ed/EFLVSecSysDes1.pdf
Christian Damsgaard Jensen, “Secure Software Architectures: 1998”, (Presentation at the 8th Nordic
Workshop on Programming Environment Research, August 1998).
Available from: http://citeseer.ist.psu.edu/cache/papers/cs/8957/http:zSzzSzwww.ifi.uib.nozSzkonfzSznw
per98zSzpaperszSzjensen.pdf/secure-software-architectures.pdf
Dianxiang Xu and Joshua J. Pauli, Publications on threat-driven design and misuse case-based secure
software architectures.
Available from: http://www.homepages.dsu.edu/paulij/pubs/ or http://cs.ndsu.edu/~dxu/publications

5.3.3 Security (vs. Secure) Design Patterns
As noted by the authors of the DHS BuildSecurityIn portal’s Attack Pattern
Glossary, “In software engineering, a design pattern is a general repeatable
solution to a recurring software engineering problem.” [221] As is typical in the
area of security design patterns, Security Patterns [222] by Markus Schumacher
et al. contains no design patterns that are expressly intended to contribute
to a less vulnerable, more attack-resistant/attack-tolerant software design.
Currently, security design patterns are limited to security functions and controls
at the system, communication, and information (data) levels.

In 2001, 4 years before Security Patterns was published, researchers Darrell
Kienzle, Ph.D. MITRE Corporation, Matthew Elder, Ph.D. University of Virginia’s
Software Engineering Research Group, James Edwards-Hewitt of Surety, Inc.,
David Tyree of the University of South Florida, and James Croall of McAfee
undertook the development of a repository of 29 web application security design
patterns, [223] under a project sponsored by DARPA. Although the majority of the
security design patterns included in their repository focused on system security
functionality and information protection, there were a number of key patterns
the objective whose was the protection of the application software itself, rather
than its data or communications paths. These patterns included—

u Hidden Implementation, which hides the internal workings of the software
application as a countermeasure to reverse-engineering attacks

u Partitioned Application, which splits a large, complex application into
smaller, simpler components in order to assign privileges at the lowest
possible level of granularity, thus enforcing least privilege for
application processes and components

u Secure Assertion, which disseminates security assumption checks
throughout the application to continually monitor the program for
correct behavior and detect evidence of attack patterns and misuse

u Server Sandbox, which implements a virtual machine sandboxing
mechanism to protect the web server in order to constrain damage
resulting from an undetected vulnerability or fault in the server software.

http://www.cse.fau.edu/~ed/EFLVSecSysDes1.pdf
http://citeseer.ist.psu.edu/cache/papers/cs/8957/http:zSzzSzwww.ifi.uib.nozSzkonfzSznwper98zSzpaperszSzjensen.pdf/secure-software-architectures.pdf
http://citeseer.ist.psu.edu/cache/papers/cs/8957/http:zSzzSzwww.ifi.uib.nozSzkonfzSznwper98zSzpaperszSzjensen.pdf/secure-software-architectures.pdf
http://www.homepages.dsu.edu/paulij/pubs/
http://cs.ndsu.edu/~dxu/publications

Software Security Assurance State-of-the-Art Report (SOAR) 175

Section 5 SDLC Processes and Methods and the Security of Software

Moreover, unlike any of the other widely recognized security design
pattern sources, the DARPA-funded repository included a set of Procedural
Patterns whose objective is to promote secure system development practices.
Noteworthy among these are—

u Choose the Right Stuff, which entails using security as a criterion in the
selection of nondevelopmental (COTS, OSS, etc.) components
(including determination of whether a custom-developed component
would be preferable), programming languages, and development tools

u Build the Server From the Ground Up, which ensures that unnecessary
services are removed from the server that hosts the application, and
vulnerable services are identified for ongoing risk management

u Document the Server Configuration, both the initial configuration of the
server, including all applications hosted on it, and any changes to those
configurations

u Patch Proactively by applying patches when they become available, not
waiting until exploits occur

u Red Team the Design, performing an independent security evaluation of
the design before implementing the application.

The final report of the DARPA project [224] not only described these
patterns in more detail, as well as the outcomes of using the patterns in
a web application proof-of-concept, it lists several other security pattern
efforts predating the DARPA effort, including the Visual Network Rating
Methodology (NRM) project at the NRL CHACS, which defined and applied
“argument patterns” written in Category Abstract Machine Language (CAML)
to the formal verification of security-critical software. To date, the DARPA-
funded repository appears to be the only security design patterns effort that
gives equal consideration to software security and system, information, and
communication security needs.

The Open Group’s Technical Guide: Security Design Patterns [225] is clear
in its objective to describe system-level security design patterns. This said, the
“System of Security Patterns” by which the Patterns Catalog in the document
is organized is noteworthy in its inclusion in the two categories of patterns it
defines, of a category devoted to availability (“Available System Patterns”), albeit
at the whole-system level. The availability patterns defined (Checkpointed
System, Standby, Comparator-Checked Fault-Tolerant System, Replicated
System, Error Detection/Correction) are standard mechanisms that will directly
contribute to attack-resilience in a software-intensive system. The other
category, “Protection System Patterns,” is concerned exclusively with access
control, security policy enforcement, subject (user/process) authentication,
association of security attributes (e.g., privileges) with subjects, secure
communications and message protection, and the establishment of security
activities and contexts (privileges, etc.) of proxies acting on behalf of subjects—
in short, the types of security functions that are the typical focus of security

Software Security Assurance State-of-the-Art Report (SOAR)176

Section 5 SDLC Processes and Methods and the Security of Software

design patterns. [Note also that the Open Group design patterns appear to be
derived, in large part, from the CORBA security model.]

In their book Core Security Patterns, [226] Christopher Steel et al. include a
catalogue of what they term “Core Security Patterns” for designing web services
that run in the Java 2 Enterprise Edition (J2EE) environment. While the majority
of the design patterns they describe are concerned with implementing system,
communication, and information security functions, such as user-to-service or
service-to-service authentication and authorization, session, message, and “pipe”
encryption, event auditing, etc., the book’s catalog does include one pattern,
labeled the Intercepting Validator pattern. This pattern performs input validation
to prevent attacks that attempt to leverage the web service’s lack of input
parameter checking, e.g., lack of checks for buffer overflows, SQL injections, etc.

In their paper, A Practical Evaluation of Security Patterns, [227] Spyros
Halkidis et al. apply the STRIDE threat modeling criteria to the evaluation of two
web applications, one of which was developed without use of the security design
patterns, and another that was developed with a subset of the security design
patterns described in Core Security Patterns. Using various security testing tools
to launch attack patterns at each of the applications, the evaluators observed
whether the number of vulnerabilities in the first application was significantly
reduced, and its attack resistance enhanced, when security design patterns were
applied to it. The specific attack patterns the evaluators employed were—

u Structured Query Language (SQL) injection
u Cross-site scripting
u Race conditions for servlet member variables
u Hypertext Transfer Protocol (HTTP) response splitting (exploits

inadequate input validation)
u Eavesdropping.

Their findings revealed that—

…proper use of the security patterns leads to the remediation of all major
security flaws. The flaws that are not confronted are…unencrypted SSL
parameters…and servlet member variable race conditions…existing
security patterns do not confront these kind of problems.

The design pattern that appeared to have the most significant effect on
the robustness of the application against the above attacks was, predictably,
the Intercepting Validator pattern. The Intercepting Validator, in some sense,
generalizes the Input Validation pattern, a defense against SQL injection, to
standardize and to increase the maintainability of input validation. Using
STRIDE (in essence a simple taxonomy of system-level and information
security threats, i.e., Spoofing of identity, Tampering with data, Repudiability,
Information disclosure, Denial of service, Elevation of privilege) as the basis
 for their evaluation necessarily weighted the findings of Halkidis et al. toward

Software Security Assurance State-of-the-Art Report (SOAR) 177

Section 5 SDLC Processes and Methods and the Security of Software

the benefits of security design patterns which are expressly intended to address
those types of threats. However, the evaluators’ actual methodology focused
more on software security problems than their claimed use of STRIDE would
suggest, so their findings are significant as evidence of the effectiveness of
security patterns such as the Intercepting Validator pattern in reducing the
vulnerability of software to certain types of attacks.

In September 2007, the first International Workshop on Secure Systems
Methodologies Using Patterns (SPattern ’07) [228] will be held in Regensburg,
Germany. The workshop Call for Papers states that it will focus on secure
software methodologies, with papers sought that describe individual security
patterns, new methodologies and new aspects of existing methodologies,
pattern languages to use in the methodologies, reference architectures and
blueprints, and related aspects, and especially experiences in applying these
methodologies in real-world development projects.

For Further Reading

Eduardo B. Fernandez and Maria M. Larrondo-Petrie (Florida Atlantic University), “A
Methodology to Build Secure Systems Using Patterns: 2006”, (Presentation at the 22nd Annual Computer
Security Applications Conference, December 11-15, 2006).
Available from: http://www.acsac.org/2006/wip/ACSAC-WiP06-03-Fernandez-EF-ACSAC06.pdf

5.3.4 Formal Methods and Software Design
In the design phase, formal methods are used to build and refine the software’s
formal design specification. Because the specification is expressed in
mathematical syntax and semantics, it is precise (by contrast with nonformal
and even semiformal specifications, which are open to reinterpretation).
The correctness of the specification’s syntax and semantics can be achieved
independently of the use of tools, and its consistency and completeness can be
verified through mathematical proofs.

Formal specification languages, of which there are dozens—many of
which are limited in scope to the specification of a particular type of software
or system (e.g., security protocols, communications protocols, encryption
algorithms)—fall into three classes:

u Model-Oriented—Support the specification of a system by constructing
a mathematical model of it. Examples: Z, VDM.

u Logical—Close to (or identical with) logical languages not originally
intended for specifying information systems. The use of these
languages reflects the belief sometimes held that formal specification is
special only in its use of formal notations, not in the kinds of logic or
mathematics that it employs. Example; Z.

u Constructive—Constructive logical systems (usually type theories) are
particularly concerned with the ability to realize (in an informal as well
as a technical sense). Whereas in classical mathematics the notion of a
function is very broad and includes many functions that could never be

http://www.acsac.org/2006/wip/ACSAC-WiP06-03-Fernandez-EF-ACSAC06.pdf

Software Security Assurance State-of-the-Art Report (SOAR)178

Section 5 SDLC Processes and Methods and the Security of Software

evaluated by a computer, constructive mathematics is concerned only
with functions that can be effectively computed. Examples: Program/
Proof Refinement Logic (PRL).

u Algebraic/Property-Oriented—Specify information systems using
methods derived from abstract algebra or category theory. Examples:
Larch, Common Algebraic Specification Language (CASL), OBJ.

u Process Model—Are used for describing concurrent systems. These
languages are sometimes implicitly based on a specific (though
perhaps nonexplicit) model for concurrency. Examples: Calculus of
Communicating Systems (CCS), Communicating Sequential Processes
(CSP), ϖ-calculus.

u Broad Spectrum—Suitable for use at all stages in the development of an
information system from conception through specification, design,
implementation, and verification. Examples: Rigorous Approach to
Industrial Software Engineering (RAISE) Specification Language (RSL),
LOTOS (language for specifying communications protocols).

For Further Reading

M. G. Hinchey and J. P. Bown, High-Integrity System Specification and Design, (Springer, 1999).
Markus Roggenbach, Formal Methods in Software Design, (c2001).
Available from: http://www.informatik.uni-bremen.de/mmiss/TEKS/formalMethods.pdf
R. B. Jones, Formal Specification Languages, (c1996).
Available from: http://www.rbjones.com/rbjpub/cs/csfm02.htm

5.3.4.1 Formal Methods and Architectural Design
Formal methods can be used in the architecture phase—

u Specify architectures, including security aspects of an architectural
design

u Verify that an architecture satisfies the specification produced during
the previous phase, if that specification itself is in a formal language

u Establish that an architectural design is internally consistent
u Automatically generate prototypes
u Automatically generate a platform-dependent architecture.

The literature provides some examples of uses of formal methods in
architecture design. Because IA applications frequently must meet mandatory
assurance requirements, examples are easier to find of the use of formal methods
for IA applications than for many other types of applications. Formal methods
used in assuring IA applications, however, have wider applications in assuring
correctness for those willing to incur the costs. In IA applications, formal methods
have been used to prove correctness of security functionalities (e.g., authentication,
secure input/output, mandatory access control) and security-related trace
properties (e.g., secrecy). It is more difficult to prove non-trace security properties.

http://www.informatik.uni-bremen.de/mmiss/TEKS/formalMethods.pdf
http://www.rbjones.com/rbjpub/cs/csfm02.htm

Software Security Assurance State-of-the-Art Report (SOAR) 179

Section 5 SDLC Processes and Methods and the Security of Software

A variety of automated tools are available to assist developers adopting formal
methods. Theorem provers are used to construct or check proofs. The latter task
is easier to implement in a tool, but the former is more useful. Theorem provers
differ in how much the user can direct them in constructing proofs. Model checkers
are a recent class of theorem provers that has extended the practicality of formal
methods. Another range of automated tools are associated with MDA and MDD
(which are considered semiformal rather than formal methods).

In Correctness by Construction [229] Anthony Hall and Roderick
Chapman [230] describe the development of a secure Certificate Authority, an IA
application. The formal top-level specification (architecture design) was derived
from the functionality defined in the user requirements, constraints identified in
the formal security policy model, and results from the prototype user interface.
Praxis used a type checker to automatically verify the syntax in the formal
top-level specification and reviews to check the top-level specification against
the requirements. The formal security policy model and the formal top-level
specification are written in Z, a formal specification language, while the detailed
design derived from the top-level specification is written in CSP.

In E-Process Design and Assurance Using Model Checking [231] W. Wang et
al. describe the application of Verisoft and Spin, two model checkers, to verify
an E-commerce application. The specification uses temporal logic, while the
implementation uses C or Promela, depending on which model-checker is
being used. Model checking, in this case, identified a specification flaw and a
vulnerability that made the implementation open to a denial-of-service attack.

In Modeling and Analysis of Security Protocols [232] Peter Ryan et al. describe
their use of Failure Divergence Refinement (FDR), a model-checking tool
available from Formal Systems Ltd., the Caspar compiler, and CSP. They use these
tools to model and analyze Yahalom (a protocol for distributing the symmetric
shared keys used by trusted servers and for mutual entity authentication).

Further applications of formal methods are mentioned in Security in
the Software Life Cycle. These include applications by Kestrel and Praxis.
Technology described includes SLAM (Software specification, Language,
Analysis, and Model-checking, which is Microsoft’s model checking tool), the
Standard Annotation Language (SAL), and Fugue.

5.3.4.2 Formal Methods and Detailed Design
Typically, the formal methods (see Section 5.1.2) used in detailed design
and implementation differ from those used in system engineering, software
requirements, and software architecture. Formal methods adopted during
earlier phases support the specification of systems and system components
and the verification of high-level designs. For example, the previous section
mentions the use in architecture design of model checkers, VDM, and formal
specification languages such as Z. Formal methods commonly used in detailed
design and implementation are typically older methods, such as Edsger

Software Security Assurance State-of-the-Art Report (SOAR)180

Section 5 SDLC Processes and Methods and the Security of Software

Dijkstra’s predicate transformers [233] and Harlan Mill’s functional specification
approach. [234] C.A.R. Hoare’s CSP [235] might be used in both detailed design
and in previous phases.

These formal methods for detailed design are most appropriate for—
u Verifying the functionality specified formally in the architecture design

phase is correctly implemented in the detailed design or
implementation phases

u Documenting detailed designs and source code.

For example, under Dijkstra’s approach, one would document a function
by specifying pre- and post-conditions. Preconditions and post-conditions are
predicates such that if the precondition correctly characterizes a program’s state
on entry to the function, the post-condition is established upon exiting. An
invariant is another important concept from this early work on formal methods.
An invariant is a predicate whose truth is maintained by each execution of a
loop or for all uses of a data structure. A possible approach to documentation
includes stating invariants for loops and abstract data types.

Without explicit and executable identification of preconditions,
post-conditions, and invariants for modules, formal methods in detailed design
are most appropriate for verifying correctness when the interaction between
system components is predefined and well-understood. In a Service-Oriented
Architecture (SOA), [236] by contrast, the order and interactions of components
vary dynamically. Such software-intensive systems impose new challenges on
the use of formal methods to verify the correctness of a design. [237]

5.3.4.2.1 Design by Contract
Design by Contract (DbC) is an approach to providing components that can
be used and reused in dynamically varying contexts. In DbC, classes have
executable preconditions, post-conditions, and invariants. Exceptions are
raised when any of these predicates are violated in an execution. In principle,
some assurance of correct behavior is provided by incomplete contracts. DbC
was first developed by Bertrand Meyer [238] for the Eiffel [239] programming
language. Since then, tools have been developed to provide wrappers to support
DbC in other programming languages.

For example, Stephen Edwards et al. [240] describe an approach for C++. Yves
Le Traon et al. [241] report on a recent measure of the impact of DbC on
(1) vigilance (i.e., the probability that system contracts dynamically detect
erroneous states that if left undetected would have provoked a failure), and
(2) the ability to diagnose (i.e., the effort needed to locate a fault in a system that is
known to have caused a failure in that system). Le Troan et al. also illustrate the use
of DbC with the Object Constraint Language (OCL), a formal language related to
UML. Jean-Marc Jezequel and Bertrand Meyer [242] present a particularly striking
case where DbC could have detected a $500 million error. They argue that the

Software Security Assurance State-of-the-Art Report (SOAR) 181

Section 5 SDLC Processes and Methods and the Security of Software

failure of an Ariane 5 rocket launcher was not caused by defective management,
processes, designs, implementation, or testing, but rather a reuse specification
error. Although presumably, DbC helps prevent hackers from exploiting
vulnerabilities, no research or case studies was found justifying this claim.

DHS’s CBK describes the use of DbC-like properties for dependability and
suggests SafSec. (See Section 5.1.4.2.1 as an example of such usage.)

5.3.5 Design Review Activities
Verification activities are typically conducted during the design phases at a
number of types of reviews:

u Structured inspections, [243] conducted on parts or views of the high-
level design throughout the phase

u IV&V reviews
u A preliminary design review conducted at the end of the architecture

design phase and before entry into the detailed design phase
u A critical design review conducted at the end of the detailed design

phase and before entry into the coding and unit testing phase.

Some IEEE standards treat specific review activities individually,
including—

u IEEE Std. 730-2002, Software quality assurance
u IEEE Std. 828-2005, Software configuration management
u IEEE Standard 829-1998, Software test documentation
u IEEE Std. 1008-1987, Software unit testing
u IEEE Std. 1012-2004, Software verification and validation
u IEEE Std. 1028-1988, Software reviews and audits.

IEEE/EIA 12207.0 section 6.3, Quality assurance, 6.4, Verification, 6.5,
Validation, and 6.6 Joint review processes, apply across life cycle phases. Section
6.4 of the standard, in addition to providing a general description of verification
activities, provides criteria specific to design verification:

Design Verification–The design shall be verified considering the criteria
listed below:

u The design is correct and consistent with and traceable to
requirements.

u The design implements proper sequence of events, inputs, outputs,
interfaces, logic flow, allocation of timing and sizing budgets, and error
definition, isolation, and recovery.

u The selected design can be derived from requirements.
u The design implements safety, security, and other critical requirements

correctly as shown by suitably rigorous methods.

Which reviews will be conducted and their definition is decided with
the design of life cycle processes (see section A.5 of IEEE Std. 1074-2006,

Software Security Assurance State-of-the-Art Report (SOAR)182

Section 5 SDLC Processes and Methods and the Security of Software

Standard for Developing a Software Project Life Cycle Process). Such definitions
typically include entry criteria, exit criteria, the roles of participants, the
process to be followed, and data to be collected during each review. The
choice of reviews, particularly those performed as part of IV and V, is partly
guided by the evaluation requirements at the CC EAL being sought (if any).
The processes for reviewing the architecture and detailed design should also
accommodate later reviews of architecture and design modifications.

For Further Reading

Architectural Risk Analysis, (Washington, DC: US CERT).
Available from: https://buildsecurityin.us-cert.gov/daisy/bsi/articles/best-practices/architecture.html
Gary McGraw, The Role of Architectural Risk Analysis in Software Security, (Addison-Wesley
Professional, c2006).
Available from: http://www.awprofessional.com/articles/article.asp?p=446451&seqNum=1&rl=1
Michael Charles Gegick, “Analyzing Security Attacks to Generate Signatures from Vulnerable
Architectural Patterns” (thesis, North Carolina State University, 2004).
Available from: http://www.lib.ncsu.edu/theses/available/etd-08202004-171053/unrestricted/etd.pdf
Michael Gegick and Laurie Williams (North Carolina State University), “Matching Attack Patterns
to Security Vulnerabilities in Software-Intensive System Designs: 2005,” (Presentation at the Workshop
on Software Engineering for Secure Systems at the ACM International Conference on Software
Engineering; 2005.)
Available from: http://portal.acm.org/citation.cfm?id=1083200.1083211

5.3.6 Assurance Case Input in the Architecture and Design Phase
Material that might be included in the assurance case during the software’s
architecture and design phase includes—

u A modular, layered, and simple architecture
u A formal or semiformal presentation of the architectural design
u A formal or semiformal demonstration, including a requirements

traceability analysis, that the architectural design fulfills the
requirements, including the security policy

u A formal or semiformal presentation of the low-level design
u A formal or semiformal demonstration, including a requirements

traceability analysis, that the detailed design implements the
architecture design, including the security policy

u Evidence of a developer search for vulnerabilities within the
architecture, including a search for covert channels

u Evidence of the continued maintenance of environment development
controls, including physical security and controls
on the staffing of designers

u Evidence of the continued use of a configuration management process,
helping to ensure unauthorized modifications, additions, or deletions
to the design.

Section 5.1.4.2, which discusses software security assurance cases,
describes the limitations of the CC as a basis for defining assurance levels

https://buildsecurityin.us-cert.gov/daisy/bsi/articles/best-practices/architecture.html
http://www.awprofessional.com/articles/article.asp?p=446451&seqNum=1&rl=1
http://www.lib.ncsu.edu/theses/available/etd-08202004-171053/unrestricted/etd.pdf
http://portal.acm.org/citation.cfm?id=1083200.1083211

Software Security Assurance State-of-the-Art Report (SOAR) 183

Section 5 SDLC Processes and Methods and the Security of Software

for software security, as well as recent work to define an assurances case
methodology that overcomes these limitations.

5.4 Secure Coding
Coding transforms the functions and modules of the detailed design into
executable software. The resultant code is tested to show that it works, and
that it implements the design. The other primary output of this phase is
documentation, of both the code and the test results.

The implementation phase of the software life cycle is a concept, rather
than a particular slice of time. Depending on the software development process
or method in use, the project schedule, and the work breakdown for design
and development, coding, and testing may be done multiple times, may be
done at different times for different parts of the software, or may be done
simultaneously with activities from other phases.

Security issues for the coding activities of the software implementation
phase include—

u Language choice
u Compiler, library, and execution environment choices
u Coding conventions and rules
u Comments
u Documentation of security-sensitive code, constructs, and

implementation decisions
u Integration of non-developmental software
u Need for filters and wrappers.

In virtually all software methods, testing is integrated into the coding
phase, at a minimum debugging and unit testing. There are security issues to be
considered at all levels and in all types of testing. For this SOAR, however, these
are discussed separately in Section 5.5.

The software implementation phase will also include some mechanism
for iteration and feedback. Often, coding or testing reveals a flaw from
earlier in the development life cycle. The security of the software depends
on how such flaws are remedied, including updating the previous artifacts:
requirements specifications, design documents, test cases, traceability
matrices, etc., to reflect any changes made.

5.4.1 Secure Coding Principles and Practices
There is a lot of information published on specific techniques for writing
secure code. Some of it is organized by language or platform. A lot of it
aimed at a mass audience and does not presume any knowledge of software
engineering. As a result, many of the guidelines include design or project-level
suggestions, such as compartmentalization, in which security-sensitive code
is separated from other functionality.

Software Security Assurance State-of-the-Art Report (SOAR)184

Section 5 SDLC Processes and Methods and the Security of Software

Virtually every article or book on secure coding, secure programming,
secure application development, etc., includes its own list of secure coding
principles and/or practices. Some of these are language, technology,
and environment neutral, while others are language, technology, and/or
environment specific, although many of the principles and practices described
in the latter are broadly relevant.

The following is a representative sampling of lists of secure coding
principles and practices:

u Language and Environment Neutral:
Security in the Software Life Cycle

(Draft Version 1.2)

Wyk: Secure Coding: Principles and Practices

LeBlanc: Writing Secure Code, Second Edition
Secure Coding Principles.

Available from: http://www.owasp.org/index.php/Secure_Coding_
Principles

Secure Programming Standards Methodology Manual, Version 0.5.1,
May 2002.
Available from: http://www.isecom.org/projects/spsmm.shtml.

u Language-Specific:
Java Security Code Guidelines.

Available from: http://java.sun.com/security/seccodeguide.html
Secure Coding Guide.

Available from: http://developer.apple.com/documentation/Security/
Conceptual/SecureCodingGuide/

Secure Coding Guidelines for the .NET Framework.
Available from: http://msdn2.microsoft.com/en-us/library/aa302372.aspx
FreeBSD [Free Berkeley System Distribution] [244] Developers’
Handbook. Chapter 3, Secure Programming.
Available from: http://www.freebsd.org/doc/en_US.ISO8859-1/books/
developers-handbook/secure.html

Secure Coding in C and C++

Available from: http://www.cgisecurity.com/lib/php-secure-coding.html.
u Environment-Specific:

Available from: http://www.dwheeler.com/secure-programs/ Secure-
Programs-HOWTO/index.html or http://www.dwheeler.com/secure-
programs/Secure-Programs-HOWTO.pdf.

http://www.owasp.org/index.php/Secure_Coding_Principles
http://www.owasp.org/index.php/Secure_Coding_Principles
http://www.isecom.org/projects/spsmm.shtml
http://java.sun.com/security/seccodeguide.html
http://developer.apple.com/documentation/Security/Conceptual/SecureCodingGuide/
http://developer.apple.com/documentation/Security/Conceptual/SecureCodingGuide/
http://msdn2.microsoft.com/en-us/library/aa302372.aspx
http://www.freebsd.org/doc/en_US.ISO8859-1/books/developers-handbook/secure.html
http://www.freebsd.org/doc/en_US.ISO8859-1/books/developers-handbook/secure.html
http://www.cgisecurity.com/lib/php-secure-coding.html
http://www.dwheeler.com/secure-programs/Secure-Programs-HOWTO.pdf
http://www.dwheeler.com/secure-programs/Secure-Programs-HOWTO.pdf

Software Security Assurance State-of-the-Art Report (SOAR) 185

Section 5 SDLC Processes and Methods and the Security of Software

Many of these and other “secure coding” and “secure programming”
resources do not, however, make a clear-cut distinction between principles and
practices to be used in the design of the software, and those to be used during
the implementation of the software. Many secure coding lists include principles
such as “Practice defense-in-depth” or “Compartmentalize” (cited by McGraw
and Viega [245] and Cinnabar Networks’ tutorial on secure programming and
development practices, [246] among numerous other sources), both of which
are principles achieved at the architecture and design levels rather than the
coding level. Then, if the system is coded and integrated strictly according to its
design, the resulting implementation should reflect these and any other secure
design principles incorporated into that design.

A number of other secure coding principles are, in fact, system security
and information security principles, such as “secure the weakest link,”
“promote privacy,” “hiding secrets is hard,” and “be reluctant to trust” (all cited
in Viega and McGraw’s Building Secure Software), and the numerous principles
related to handling of passwords, and to user authentication and access control
functions included in many secure programming guides.

In all cases, the authors seldom make clear whether their lists of secure
coding principles are, in fact, most effectively addressed at the implementation
level or whether, in fact, they are better addressed at the design or architecture
level, or in some cases the secure deployment configuration level.

Table 5-10 attempts to extract those principles cited by most if not all of
the above lists that are, in fact, secure coding vs. secure architecture/design or
secure configuration principles.

Table 5-10. Generally Accepted Secure Coding Principles

Principle Amplification

Input validation The program should validate the length, format, correct termination,
and characters (allowed vs. disallowed) of all input data,
environment variables, and other externally sourced data (e.g.,
filenames, URLs) and reject or filter those that do not pass validation

Least privilege All processes should run with the minimal possible privileges and
should retain those privileges for the minimal amount of time possible

Segregation of
trusted from untrusted
processes

The software should not invoke untrusted processes from within
trusted processes

Small trusted
processes

Trusted processes should be as simple and small as possible

No hard-coded
credentials

Do not include authentication credentials or other sensitive data in
the program’s source code

No publicly accessible
temp files

The program should write all of its data, configuration, and temporary
files to non-public locations

Software Security Assurance State-of-the-Art Report (SOAR)186

Section 5 SDLC Processes and Methods and the Security of Software

Table 5-10. Generally Accepted Secure Coding Principles - continued

Principle Amplification

Frequent purging of
temporary data

Cache and other temporary data should be purged frequently, ideally
immediately after it has been used by the program

Never escape to
system

Never call or escape to the system command line or shell from within
an application program

Avoid unsafe coding
constructs

Do not use commands, library routines, or coding constructs that are
known to cause security problems

Security-aware
error and exception
handling

Implement error and exception handling so that all conceivable events
are explicitly handled in ways consistent with the attack resistance,
attack tolerance, and fail-secure requirements of the software

Fail-secure If the software must fail, it should do so gracefully and securely. It should
not simply crash or hang, and its failure should not result in a core dump,
nor expose system resources, sensitive data, or trusted code to any type
of access (read, write, execute, or delete) by users or external processes

Non-informative error
messages

To deter reconnaissance attacks, error messages should report only
the fact that an error occurred, not the nature or cause of the error

Smallness and
Simplicity

Every process should be as small and simple as possible, ideally with
a single entry point and as few exit points as possible. Smallness
and simplicity makes it easier to analyze the implemented code to
determine whether any flaws or vulnerabilities are present

Use safe/secure
languages and
libraries

Use type-safe languages or security measures that reduce the risks
associated with nontype-safe languages, such as compiler checking.
Use alternatives to library functions in nontype-safe languages that
are known to have vulnerabilities (e.g., printf in C)

Safe memory
allocation and
management

Programs should self-limit their own resource consumption
(e.g., memory, processing time). Initial values for buffers (and for all
other variables) should be set correctly

Along with principles for creating the code, proper documentation
contributes to the security of software. Thorough documentation of the code
includes data dictionaries that fully define both allowable inputs and outputs
for functions and allowable ranges and types of values for all variables. [247]

Special attention needs to be paid to comments surrounding any code
that is included or implemented specifically for security reasons, so that
protections and checks that may have been implemented originally are not
inadvertently removed or changed when the code is revised.

For Further Reading

Coding Practices, (Washington, DC: US CERT).
Available from: https://buildsecurityin.us-cert.gov/daisy/bsi/articles/knowledge/coding.html

https://buildsecurityin.us-cert.gov/daisy/bsi/articles/knowledge/coding.html

Software Security Assurance State-of-the-Art Report (SOAR) 187

Section 5 SDLC Processes and Methods and the Security of Software

5.4.1.1 Secure Coding Standards
The use and enforcement of well-documented coding standards is increasingly
seen as an essential element of secure software development. Coding standards
are intended to encourage programmers to follow a uniform set of rules and
guidelines determined by the requirements of the project and organization,
rather than by the programmer’s familiarity or preference. Once established,
these standards can be used as a metric to evaluate source code (using manual
or automated processes) to determine compliance with the standard. At one
extreme, a secure coding standard is developed for a particular release of a
compiler from a particular vendor. At the other extreme, a standard may be
both compiler- and language-independent.

The secure coding standards proposed by the CMU CERT are based on
documented standard language versions as defined by official or de facto standards
organizations, as well as on applicable technical corrigenda and documented
language extensions, such as the ISO/IEC TR 24731 extensions to the C library. To
date, the CERT has published secure coding standards for C (ISO/IEC 9899:1999)
and C++ (ISO/IEC 9899:1999), [248] with plans to publish additional standards
for Sun Microsystems’ Java2 Platform Standard Edition 5.0 API Specification and
Microsoft’s C# programming language (ISO/IEC 23270:2003).

For Further Reading

Coding Rules, (Washington, DC: US CERT).
Available from: https://buildsecurityin.us-cert.gov/daisy/bsi/76.html

5.4.1.2 Secure Programming Languages and Coding Tools
Assuming the coder has a say in what programming language(s) will be used, the
choice of language can have an effect on the security of code. Some languages
are inherently safer than others. C and C++ are notoriously vulnerable to memory
corruption attacks, while others, such as Ada, Standard ML [249] (SML), Pascal,
Java, and C# exhibit the properties of type safety (i.e., operations in these
languages can handle only data types deemed compatible with those operations)
and memory safety (i.e., operations in those languages can write data only to
those memory locations that have explicitly been allocated for those operations,
once authorized, to write to).

Some languages (most notably Java and C#) are also tightly coupled with their
own execution environments [e.g., the Java Virtual Machine (JVM)] which provide
software security mechanisms, such as code signing (to verify the authenticity of
code before executing it) and sandboxing of untrusted code (to isolate it from other
code and data, in case of its misbehavior during execution).

A lot of research has gone into the development of safe languages or safe
versions of existing languages. Many (although not all) of these are variants on
C and C++ that add type- and memory-safety (as well as other safe and secure
execution features in some cases). Some of these include—

Software Security Assurance State-of-the-Art Report (SOAR)188

Section 5 SDLC Processes and Methods and the Security of Software

u MISRA C [250]
u Safe-C [251]
u CCured [252]
u Cyclone [253]
u Vault [254]
u Control-C [255]
u Fail-Safe C [256]
u SaferC [257]
u SafeJava [258]
u SPARKAda [259]
u Hermes [260]
u E [261]
u Oz-E [262]
u Clay [263]

One way that safe languages work is by using runtime checks to provide
memory safety. Such checks are made for many different properties such as array
bounds checking, null pointer references, and type conversions. Some of them also
rely on runtime garbage collection to ensure the safety of pointer references. Safe
languages, however, have some limitations. First, the language does not prevent
all vulnerabilities. It is still possible to write insecure code in a safe language. For
example, one could write a process that accepts user input without checking its
validity. Second, the safety properties often cause performance, flexibility, or other
constraints that require trade-offs with other requirements. This is particularly true
for real-time applications, and embedded control systems. Secure coding practices
as a whole need to be traded off against other requirements.

In addition to safe, secure languages, “safe” versions of C and C++ libraries
are available (e.g., the Safe C String Library, [264] Libsafe, [265] and the safe
libraries in Microsoft’s Visual Studio 2005) from which library calls associated
with issues such as buffer overflows have been removed and replaced with less
risky alternatives. Use of template-based collections of type-safe C and C++
pointers [266] can also help minimize memory-related vulnerabilities. Another
problem noted by Les Hatton, Chair of Forensic Software Engineering at the
University of Kingston (UK), [267] is that many of the rules in coding standards
or secure language subsets have no justification in terms of quantitative data
(in many cases they are simply stylistic rules instead of rules that counter actual
security problems), and often raise false warnings in code that is actually safe.

Compilers and compiler extensions are also available that check code for
type, memory, and/or synchronization issues. Safe-Secure C/C++, [268] the Safe C
Compiler, [269] and the Memory Safe C Compiler, [270] for example, are “software
component(s) that can be integrated into compilers and software analysis tools to
detect and prevent buffer overflows and other common security vulnerabilities in C
and C++ programs.” Stack canaries and operating system-level stack randomization
(available in gnu/Linux and Windows Vista) are aimed at making it more difficult

Software Security Assurance State-of-the-Art Report (SOAR) 189

Section 5 SDLC Processes and Methods and the Security of Software

for attackers to exploit buffer overflows. In addition, the x86_64 instruction set
supports marking portions of memory as non-executable, which implements heap
and stack overflow prevention at the processor level rather than at the language or
compiler level. The x86_64 instruction set is supported by gnu/Linux, BSD Unix,
Mac OS X, and Windows XP Service Pack 2 and later.

The NIST SAMATE Project has identified classes of tools that aid the
developer in following good and safe software development practices or in finding
and highlighting errors in the code as it is being written. In addition to classes of
tools that support model checking, code review and analysis, and software security
analysis and testing (code analysis and testing tool categories are listed in
Table 5-13 and 5-14), SAMATE has also identified four classes of tools that aid in
producing secure code or remediating (vs. detecting) code-level vulnerabilities:

u Error-checking compilers
u Safety-enforcing compilers
u Wrappers
u Constructive approaches.

A variety of these secure coding tools (both for analysis and remediation)
are now offered as plug-ins to compilers or integrated development
environments. For example, Microsoft’s Visual Studio 2005 now includes
PREfast (a static source code analysis tool), PREfix (a dynamic analysis tool),
FxCop (a design analysis tool), AppVerifier (a runtime verification tool), and
Safe CRT (safe C/C++ run-time) libraries. For Java, many security tools are
available as plug-ins to the open source Eclipse development environment.

For Further Reading

Les Hatton, Safer Subsets.
Available from: http://www.leshatton.org/index_SA.html

5.5 Software Security Analysis and Testing
Security analyses and tests, including code review and vulnerability assessment,
collectively represent the most widespread of best practices for software security
assurance. The number of software code analysis and security testing tools vendors
has increased exponentially in the past decade and continues to grow, as do the
number of open source tools, both independently developed and released as
“teasers” by commercial tool vendors. Security testing services are becoming a
standard offering of firms that specialize not only in software security or application
security, but in software QA; software reliability; software development; IA; network,
Internet, and cyber security; and IT services in general. Moreover, several firms have
emerged that specialize in nothing but third-party independent security testing.
Books on how to test for the security of software are proliferating as well: four titles
were published in 2006 alone. [271] Software security test techniques and tools have
become regular topics in software testing publications and at testing conferences.
Professional training for software security testers is widely available.

http://www.leshatton.org/index_SA.html

Software Security Assurance State-of-the-Art Report (SOAR)190

Section 5 SDLC Processes and Methods and the Security of Software

5.5.1 What Are Software Security Analysis and Testing?
Unlike functional correctness testing of security function software, security
analysis and testing of software is performed regardless of the type of functionality
that software implements. Its function is to assess the security properties and
behaviors of that software as it interacts with external entities (human users, its
environment, other software), and as its own components interact with each other.
The main objective of software security analysis and testing is the verification that
the software exhibits the following properties and behaviors:

1. Its behavior is predictable and secure.
2. It exposes no vulnerabilities or weaknesses (ideally it contains no

vulnerabilities or weaknesses, exposed or not).
3. Its error and exception handling routines enable it to maintain a secure

state when confronted by attack patterns or intentional faults.
4. It satisfies all of its specified and implicit nonfunctional security

requirements.
5. It does not violate any specified security constraints.
6. As much of its runtime-interpretable source code and byte code as

possible has been obscured or obfuscated to deter reverse engineering.

Note that the Testing section of DHS’ Security in the Software Life Cycle
lists some key indicators of root causes for software’s inability to exhibit the
above properties and behaviors during testing.

To yield meaningful results, software security test plans should include a
combination of techniques and scenarios sufficient to collectively determine
(to whatever level of assurance is desired) whether the software does indeed
exhibit the properties and behaviors listed above. The security test plan should
be included in the overall software test plan, and should define—

u Security test cases or scenarios (based on misuse and abuse cases)
u Test data, including attack patterns (see Section 3.2)
u Test oracle (if one is to be used)
u Test tools (white box and black box, static and dynamic)
u Analyses to be performed to interpret, correlate, and synthesize the

results from the various tests and outputs from the various tools.

The security test plan should acknowledge that the security assumptions
that were valid when the software’s requirements were specified will probably
have changed by the time the software is deployed. The threat environment in
which the software will actually operate is unlikely to have remained static. New
threats and attack patterns are continually emerging. Also emerging are new
versions of nondevelopmental components and patches to those components.
These changes all have the potential to invalidate at least some of the security
assumptions under which the original requirements were specified.

Software Security Assurance State-of-the-Art Report (SOAR) 191

Section 5 SDLC Processes and Methods and the Security of Software

For Further Reading

Security Testing, Washington (DC): US CERT.
Available from: https://buildsecurityin.us-cert.gov/daisy/bsi/articles/best-practices/testing.html
Brian Chess and Jacob West, Improving Software Security Using Static Source Code Analysis,
(Addison-Wesley Professional, 2007).
Maura van der Linden, Testing Code Security, (Auerbach Publishers, 2007).
Chris Wysopal, Lucas Nelson, Dino Dai Zovi and Elfriede Dustin, The Art of Software Security
Testing, (Addison Wesley/Symantec Press, 2007).
Mike Andrews and James A. Whittaker, How to Break Web Software: Functional and Security Testing
of Web Applications and Web Services, (Addison-Wesley Professional, 2006).
Mark Dowd, John McDonald and Justin Schuh, The Art of Software Security Assessment:
Identifying and Preventing Software Vulnerabilities, (Addison-Wesley Professional, 2006).
Greg Hoglund and Gary McGraw, Exploiting Software: How to Break Code, (Addison-Wesley, 2004).
Irfan A. Chaudhry, et al., Web Application Security Assessment, (Microsoft Press, 2003).
James A. Whittaker and Herbert H. Thompson, How to Break Software Security, (Addison Wesley, 2003).

5.5.1.1 When to Perform Analyses and Tests
It is safe to assert that all software security practitioners would agree that the
common practice of postponing security analyses and tests until after the
software has been implemented and integrated, and even until after it has been
deployed (i.e., during its acceptance phase), makes it extremely difficult to
address in a cost-effective, timely manner any vulnerabilities and weaknesses
discovered during the analysis and testing. The experiences of software security
analysts and testers mirror those of their counterparts in the software safety
community: a far greater number of the most significant security faults in
software originate in the inadequate specification of its requirements and
flaws in its architecture and design, rather than from errors in its coding or
configuration. As the software progresses through its development life cycle,
these early-life cycle security problems propagate and expand, becoming
broadly and deeply embedded in the very fabric of the software. As a result,
they have a great impact on the security assumptions under which later
development phases are performed. Inadequate security requirements lead to
deficient architectures, deficient architectures to defective designs, and so on.
To avoid this progression, software security analysis and testing need to begin
very early in the software’s life cycle. To increase the likelihood that security
problems will be caught as early as possible, developers should include security
tests in their regime of daily builds and smoke testing.

This is not to say that late-stage “tiger team” or “red team” type security
reviews and tests are not useful, particularly as an assurance validation measure,
whether in the context of the Security Test and Evaluation (ST&T) phase of a
government C&A, a third-party IV&V, or a commercial “security push.”

As illustrated in Table 5-11, a range of security reviews, analyses, and
tests can be mapped to the different software life cycle phases starting with the
requirements phase.

Software Security Assurance State-of-the-Art Report (SOAR)192

Section 5 SDLC Processes and Methods and the Security of Software

Table 5-11. Security Reviews and Tests throughout the SDLC

Life Cycle Phase Reviews/tests

Requirements Security review of requirements and abuse/misuse cases

Architecture/Product
Design

Architectural risk analysis (including external reviews)

Detailed Design Security review of design. Development of test plans, including
security tests.

Coding/Unit Testing Code review (static and dynamic analysis), white box testing

Assembly/Integration
Testing

Black box testing (fault injection, fuzz testing)

System Testing Black box testing, vulnerability scanning

Distribution/
Deployment

Penetration testing (by software testing expert), vulnerability
scanning, impact analysis of patches

Maintenance/support (Feedback loop into previous phases), impact analysis of patches
and updates

In preparation for analysis and testing, the software, test plan, test data,
and test oracles (if used) are migrated from the development environment
into a separate, isolated test environment. All security test cases should be run
to ensure the adherence of the assembled and integrated system to all of its
security requirements (including those for security properties and attributes,
secure behaviors, self-protecting characteristics, and not just security
functionality). Particular attention should be paid to the security of interfaces
within the software system, between peer components (or peer services in a
SOA), and between the system and external (environment and user) entities.

5.5.2 Security Analysis and Test Techniques
The following sections describe security analysis and testing techniques used
to verify the security (or non-vulnerability) of software and software-intensive
systems. Not discussed here are techniques and tools for review and verification
of requirements, architecture, and design specifications, which were discussed
in Sections 5.2 and 5.3.

Note: While the automated source code scanners and application vulnerability scanners described in Sections
5.5.2.1 and 5.5.2.2 are able to review very large programs in a short time and also to report metrics (e.g., how
many of each type of vulnerability has been located), the findings of such tools are necessarily only as complete
as the set of patterns they have been programmed (or configured) to seek. When such tools are relied upon, there
is a potential for a number of security vulnerabilities and weaknesses to go undetected. This is due, in large part,
to the fact that such tools implement pattern matching. Pattern matching is effective for detecting simple
implementation faults (and in the case of application vulnerability scanners, configuration vulnerabilities). It is not
effective at finding architectural and design weaknesses, or byzantine implementation faults.

Software Security Assurance State-of-the-Art Report (SOAR) 193

Section 5 SDLC Processes and Methods and the Security of Software

Nor will all of the patterns flagged by the automated scanner necessarily
be vulnerabilities. Automated scanners can produce high rates of “false
positives,” i.e., patterns that appear to be vulnerabilities but which, in the
context of the actual program, are not. The usual approach to reducing
the false positive rate is for the tester to configure the scanner to look for
fewer patterns. The problem with this approach is that it increases the
scanner’s “false negative” rate, i.e., not finding vulnerabilities that exist,
but whose patterns have been “turned off” in the tool. In all cases, as with
all tools, it is up to the tester to interpret the results to determine whether
each finding is, in fact, indicative of a real vulnerability.

5.5.2.1 “White Box” Techniques
“White box” tests and analyses, by contrast with “black box” tests and
analyses, are performed on the source code. Specific types of white box
analyses and tests include—

u Static Analysis: Also referred to as “code review,” static analysis analyses
source code before it is compiled, to detect coding errors, insecure
coding constructs, and other indicators of security vulnerabilities or
weaknesses that are detectable at the source code level. Static analyses
can be manual or automated. In a manual analysis, the reviewer
inspects the source code without the assistance of tools. In an
automated analysis, a tool (or tools) is used to scan the code to locate
specific “problem” patterns (text strings) defined to it by the analyst via
programming or configuration, which the tool then highlights or flags.
This enables the reviewer to narrow the focus of his/her manual code
inspection to those areas of the code in which the patterns highlighted
or flagged in the scanner’s output appear.

u Direct Code Analysis: Direct code analysis extends static analysis by
using tools that focus not on finding individual errors but on verifying
the code’s overall conformance to a set of predefined properties, which
can include security properties such as noninterference and
separability, persistent_BNDC, noninference, forward-correctability,
and nondeductibility of outputs.

u Property-Based Testing: [272] The purpose of property-based testing is to
establish formal validation results through testing. To validate that a
program satisfies a property, the property must hold whenever the
program is executed. Property-based testing assumes that the specified
property captures everything of interest in the program and assumes
that the completeness of testing can be measured structurally in terms
of source code. The testing only validates the specified property, using
the property’s specification to guide dynamic analysis of the program.
Information derived from the specification determines which points in
the program need to be tested and whether each test execution is

Software Security Assurance State-of-the-Art Report (SOAR)194

Section 5 SDLC Processes and Methods and the Security of Software

correct. A metric known as Iterative Contexts Coverage uses these test
execution points to determine when testing is complete. Checking the
correctness of each execution together with a description of all the
relevant executions results in the validation of the program with
respect to the property being tested, thus validating that the final
product is free of any flaws specific to that property.

u Source Code Fault Injection: A form of dynamic analysis in which the
source code is “instrumented” by inserting changes, then compiling
and executing the instrumented code to observe the changes in state
and behavior that emerge when the instrumented portions of code are
executed. In this way, the tester can determine and even quantify how
the software reacts when it is forced into anomalous states, such as
those triggered by intentional faults. This technique has proved
particularly useful for detecting the incorrect use of pointers and
arrays, and the presence of dangerous calls and race conditions. Fault
injection is a complex testing process and thus tends to be limited to
code that requires very high assurance.

u Fault Propagation Analysis: This involves two techniques for fault
injection of source code: extended propagation analysis and interface
propagation analysis. The objective is not only to observe individual
state changes that result from a given fault, but to trace how those state
changes propagate throughout a fault tree that has been generated
from the program’s source code. Extended propagation analysis entails
injecting a fault into the fault tree and then tracing how the fault
propagates through the tree. The tester then extrapolates outward to
predict the impact a particular fault may have on the behavior of the
software module or component, and ultimately the system, as a whole.
In interface propagation analysis, the tester perturbs the states that
propagate via the interfaces between the module or component and its
environment. To do this, the tester injects anomalies into the data feeds
between the two levels of components and then watches to see how the
resulting faults propagate and whether any new anomalies result.
Interface propagation analysis enables the tester to determine how a
failure in one component may affect its neighboring components.

u Pedigree Analysis: While not a security testing technique in itself, the
detection of pedigree indicators in open source code can be helpful in
drawing attention to the presence of components that have known
vulnerabilities, pinpointing them as high-risk targets in need of
additional testing. This is a fairly new area of code analysis that was
sparked by concerns regarding open source licensing and intellectual
property violations.

u Dynamic Analysis of Source Code: Dynamic analysis involves both the
source code and the binary executable generated from the source code.
The compiled executable is run and “fed” a set of sample inputs while

Software Security Assurance State-of-the-Art Report (SOAR) 195

Section 5 SDLC Processes and Methods and the Security of Software

the reviewer monitors and analyzes the data (variables) the program
produces as a result. With this better understanding of how the
program behaves, the analyst can use a binary-to-source map to trace
the location in the source code that corresponds with each point of
execution in the running program, and more effectively locate faults,
failures, and vulnerabilities. In The Concept of Dynamic Analysis, [273]
T. Ball describes two analyses:
1. Coverage concept analysis
2. Frequency spectrum analysis.

Coverage concept analysis attempts to produce “dynamic control flow
invariants” for a set of executions, which can be compared with statically derived
invariants in order to identify desirable changes to the test suite that will enable
it to produce better test results. Frequency spectrum analysis counts the number
of executions of each path through each function during a single run of the
program. The reviewer can then compare and contrast these separate program
parts in terms of higher versus lower frequency, similarity of frequencies, or
specific frequencies. The first analysis reveals any interactions between different
parts of the program, while the second analysis reveals any dependencies
between the program parts. The third analysis allows the developer to look for
specific patterns in the program’s execution, such as uncaught exceptions, assert
failures, dynamic memory errors, and security problems. A number of dynamic
analysis tools have been built to elicit or verify system-specific properties in
source code, including call sequences and data invariants.

For Further Reading

Code Analysis, (Washington, DC: US CERT).
Available from: https://buildsecurityin.us-cert.gov/daisy/bsi/articles/best-practices/code.html
White Box Testing, (Washington, DC: US CERT).
Available from: https://buildsecurityin.us-cert.gov/daisy/bsi/articles/best-practices/white-box.html
Michael Howard (Microsoft Corporation), “A Process for Performing Security Code Reviews”, IEEE
Security & Privacy, 4, no.4 (July/August 2006): 74-79.
Available from: http://doi.ieeecomputersociety.org/10.1109/MSP.2006.84
Shostack, Adam, Security Code Review Guidelines.
Available from: http://www.homeport.org/~adam/review.html

5.5.2.2 “Black Box” Security Analysis and Test Techniques
“Black box” analyses and tests are performed directly on compiled binary
executables, see Section 5.5.2.4). With the exception of static analysis of
binaries, black box tests are performed on executing software and use a variety
of input types to simulate the behaviors of attackers and other misusers and
abusers of the software. The tests provide a view of the software from its outside,
revealing the behaviors and outputs that result from the test inputs.

https://buildsecurityin.us-cert.gov/daisy/bsi/articles/best-practices/code.html
https://buildsecurityin.us-cert.gov/daisy/bsi/articles/best-practices/white-box.html
http://doi.ieeecomputersociety.org/10.1109/MSP.2006.84

Software Security Assurance State-of-the-Art Report (SOAR)196

Section 5 SDLC Processes and Methods and the Security of Software

Black box techniques are the only techniques available for analyzing and
testing nondevelopmental binary executables without first decompiling or
disassembling them. Black box tests are not limited in utility to COTS and other
executable packages: they are equally valuable for testing compiled custom-
developed and open source code, enabling the tester to observe the software’s
actual behaviors during execution and compare them with behaviors that could
only be speculated upon based on extrapolation from indicators in the source
code. Black box testing also allows for examination of the software’s interactions
with external entities (environment, users, attackers)—a type of examination that
is impossible in white box analyses and tests. One exception is the detection of
malicious code. On the other hand, because black box testing can only observe the
software as it runs and “from the outside in,” it also provides an incomplete picture.

For this reason, both white and black box testing should be used together,
the former during the coding and unit testing phase to eliminate as many
problems as possible from the source code before it is compiled, and the latter
later in the integration and assembly and system testing phases to detect the
types of byzantine faults and complex vulnerabilities that only emerge as a
result of runtime interactions of components with external entities. Specific
types of black box tests include—

u Binary Security Analysis: This technique examines the binary machine
code of an application for vulnerabilities. Binary security analysis tools
usually occur in one of two forms. In the first form, the analysis tool
monitors the binary as it executes, and may inject malicious input to
simulate attack patterns intended to subvert or sabotage the binary’s
execution, in order to determine from the software’s response whether
the attack pattern was successful. This form of binary analysis is
commonly used by web application vulnerability scanners.The second
form of binary analysis tool models the binary executable (or some
aspect of it) and then scans the model for potential vulnerabilities. For
example, the tool may model the data flow of an application to
determine whether it validates input before processing it and returning a
result. This second form of binary analysis tool is most often used in Java
bytecode scanners to generate a structured format of the Java program
that is often easier to analyze than the original Java source code. [274]

u Software Penetration Testing: Applies a testing technique long used in
network security testing to the software components of the system or
to the software-intensive system as a whole. Just as network
penetration testing requires testers to have extensive network security
expertise, software penetration testing requires testers who are experts
in the security of software and applications. The focus is on
determining whether intra-or inter-component vulnerabilities are
exposed to external access, and whether they can be exploited to
compromise the software, its data, or its environment and resources.
Penetration testing can be more extensive in its coverage and also test

Software Security Assurance State-of-the-Art Report (SOAR) 197

Section 5 SDLC Processes and Methods and the Security of Software

for more complex problems, than other, less sophisticated (and less
costly) black box security tests, such as fault injection, fuzzing, and
vulnerability scanning. The penetration tester acts, in essence, as an
“ethical hacker.” As with network penetration testing, the effectiveness
of software penetration tests is necessarily constrained by the amount
of time, resources, stamina, and imagination available to the testers.

u Fault Injection of Binary Executables: This technique was originally
developed by the software safety community to reveal safety-threatening
faults undetectable through traditional testing techniques. Safety fault
injection induces stresses in the software, creates interoperability
problems among components, and simulates faults in the execution
environment. Security fault injection uses a similar approach to simulate
the types of faults and anomalies that would result from attack patterns or
execution of malicious logic, and from unintentional faults that make the
software vulnerable. Fault injection as an adjunct to penetration testing
enables the tester to focus in more detail on the software’s specific
behaviors in response to attack patterns. Runtime fault injection involves
data perturbation. The tester modifies the data passed by the execution
environment to the software, or by one software component to another.
Environment faults in particular have proven useful to simulate because
they are the most likely to reflect real-world attack scenarios. However,
injected faults should not be limited to those that simulate real-world
attacks. To get the most complete understanding of all of the software’s
possible behaviors and states, the tester should also inject faults that
simulate highly unlikely, even “impossible,” conditions. As noted earlier,
because of the complexity of the fault injection testing process, it tends to
be used only for software that requires very high confidence or assurance.

u Fuzz Testing: Like fault injection, fuzz testing involves the input of
invalid data via the software’s environment or an external process. In
the case of fuzz testing, however, the input data is random (to the
extent that computer-generated data can be truly random): it is
generated by tools called fuzzers, which usually work by copying and
corrupting valid input data. Many fuzzers are written to be used on
specific programs or applications and are not easily adaptable. Their
specificity to a single target, however, enables them to help reveal
security vulnerabilities that more generic tools cannot.

u Byte Code, Assembler Code, and Binary Code Scanning: This is comparable
to source code scanning but targets the software’s uninterpreted byte
code, assembler code, or compiled binary executable before it is
installed and executed. There are no security-specific byte code or
binary code scanners. However, a handful of such tools do include
searches for certain security-relevant errors and defects; see
http://samate.nist.gov/index.php/Byte_Code_Scanners for a fairly
comprehensive listing.

http://samate.nist.gov/index.php/Byte_Code_Scanners

Software Security Assurance State-of-the-Art Report (SOAR)198

Section 5 SDLC Processes and Methods and the Security of Software

u Automated Vulnerability Scanning: Automated vulnerability scanning of
operating system and application level software involves use of
commercial or open source scanning tools that observe executing
software systems for behaviors associated with attack patterns that
target specific known vulnerabilities. Like virus scanners, vulnerability
scanners rely on a repository of “signatures,” in this case indicating
recognizable vulnerabilities. Like automated code review tools,
although many vulnerability scanners attempt to provide some
mechanism for aggregating vulnerabilities, they are still unable to
detect complex vulnerabilities or vulnerabilities exposed only as a
result of unpredictable (combinations of) attack patterns. In addition
to signature-based scanning, most vulnerability scanners attempt to
simulate the reconnaissance attack patterns used by attackers to
“probe” software for exposed, exploitable vulnerabilities.

Vulnerability scanners can be either network-based or host-based.
Network-based scanners target the software from a remote platform across the
network, while host-based scanners must be installed on the same host as the
target. Host-based scanners generally perform more sophisticated analyses,
such as verification of secure configurations, while network-based scanners
more accurately simulate attacks that originate outside of the targeted system
(i.e., the majority of attacks in most environments).

Vulnerability scanning is fully automated, and the tools typically have
the high false positive rates that typify most pattern-matching tools, as well as
the high false-negative rates that plague other signature-based tools. It is up to
the tester to both configure and calibrate the scanner to minimize both false
positives and false negatives to the greatest possible extent, and to meaningfully
interpret the results to identify real vulnerabilities and weaknesses. As with
virus scanners and intrusion detection systems, the signature repositories of
vulnerability scanners need to be updated frequently.

For testers who wish to write their own exploits, the open source
Metasploit Project http://www.metasploit.com publishes blackhat information
and tools for use by penetration testers, intrusion detection system signature
developers, and researchers. The disclaimer on the Metasploit web site is
careful to state:

This site was created to fill the gaps in the information publicly
available on various exploitation techniques and to create a useful
resource for exploit developers. The tools and information on this site
are provided for legal security research and testing purposes only.

http://www.metasploit.com

Software Security Assurance State-of-the-Art Report (SOAR) 199

Section 5 SDLC Processes and Methods and the Security of Software

For Further Reading

Konstantin Rozinov, “Efficient Static Analysis of Executables for Detecting Malicious Behaviors” (thesis,
Polytechnic University, May 9, 2005.)
Available from: http://rozinov.sfs.poly.edu/papers/efficient_static_analysis_of_executables_for_
detecting_malicious_behaviors.pdf
Penetration Testing, (Washington, DC: US CERT).
Available from: https://buildsecurityin.us-cert.gov/daisy/bsi/articles/best-practices/penetration.html

5.5.2.3 Compile Time Fault Detection and Program Verification
Compilers are routinely expected to detect, flag, and even eliminate certain
type-errors in source code before compiling it. Such compiler checks, as a
follow-up to code review, can be useful for detecting simple faults overlooked
by the reviewer. Compilers cannot, however, be relied on to perform more
sophisticated detection of byzantine faults that are often indicative of complex
vulnerabilities, although other tools do exist to help developers detect such
problems (e.g., Compuware DevPartner).

Some compilers include extensions that perform full formal verification
of complex security properties based on formal specifications generated prior
to compilation. This type of formal verification can detect errors and dangerous
constructs in both the program itself and its libraries. Other compile time
program verification tools rely on the developer having annotated the source
code with type qualifiers that then enable the compiler to formally verify
the program as being free of recognizable faults. Such type qualifiers may be
language-independent and enable the detection of unsafe system calls (which
must then be examined by the developer). Other type qualifiers are language-
specific and help detect vulnerabilities such as use of buffer overflow prone C
and C++ library functions such as printf.

Still other compilers perform taint analysis, in which specific input data
types are flagged as tainted, causing them to be validated before they are
accepted by the compiled program.

5.5.2.4 Reverse Engineering: Disassembly and Decompilation
Reverse engineering of binary executables is performed as a precursor to white
box testing of software that is only available in binary form. Two techniques are
used in reverse engineering of binary code: disassembly and decompilation. In
disassembly, an attempt is made to transform the binary code back into assembler
code form. This enables a tester who is conversant in the specific assembly
language generated by the disassembler to locate the signs of security-relevant
coding errors and vulnerabilities that are detectable at the assembly code level.

By contrast with disassembly, decompilation attempts to generate
standard source code from the binary executable. This source code can then
be subjected to the same white box testing techniques used on other source
code, with the limitation that decompiled source code is rarely as structured,

http://rozinov.sfs.poly.edu/papers/efficient_static_analysis_of_executables_for_detecting_malicious_behaviors.pdf
http://rozinov.sfs.poly.edu/papers/efficient_static_analysis_of_executables_for_detecting_malicious_behaviors.pdf
https://buildsecurityin.us-cert.gov/daisy/bsi/articles/best-practices/penetration.html

Software Security Assurance State-of-the-Art Report (SOAR)200

Section 5 SDLC Processes and Methods and the Security of Software

navigable, and comprehensible as original source code. Note that the
optimizers within most compilers can make analysis of disassembled code
difficult because part of the optimization process involves rearranging the code
to make it execute more efficiently. This can result in vulnerabilities arising at
the binary level that did not exist at the source code level.

Because they are labor intensive, both techniques are likely to be practical
only for trusted or high-assurance software that is considered very high risk,
e.g., because of suspicious pedigree. Because of intellectual property protection
concerns, many commercial software products use obfuscation techniques
to deter reverse-engineering; such techniques can increase the level of effort
required for disassembly and decompilation testing, making such techniques
impractical. In many cases, commercial software distribution licenses also
explicitly prohibit reverse-engineering.

The blackhat community is a rich source of information, tools, and
techniques for reverse engineering which, increasingly, whitehat organizations
are adopting to make their software and systems more robust against them.
Indeed, as they mature, many erstwhile blackhats are getting jobs as ethical
hackers, penetration testers, and security consultants. There is even a Blackhat
organization [275] devoted to the awareness and training of security practitioners
in the mentality, techniques, and tools employed by their adversaries.

For Further Reading

Müller, Hausi A.; Storey, Margaret-Anne; Jahnke, Jens H. [University of Victoria (Canada)];
Smith, Dennis B. (CMU SEI); Tilley, Scott R. (University of California at Riverside); Wong, Kenny
[University of Alberta (Canada)], Reverse Engineering: A Roadmap.
Available from: http://www.cs.ucl.ac.uk/staff/A.Finkelstein/fose/finalmuller.pdf
Mike Perry and Nasko Oskov, Introduction to Reverse Engineering Software.
Available from: http://www.acm.uiuc.edu/sigmil/RevEng
M. G. J.van den Brand and P. Klint (University of Amsterdam, Netherlands), Reverse Engineering
and System Renovation: An Annotated Bibliography.
Available from: http://www.cs.vu.nl/~x/reeng/REanno.html
Jussi Koskinen (University of Jyväskylä), Bibliography of Reverse Engineering Techniques.
Available from: http://www.cs.jyu.fi/~koskinen/bibre.htm
The Reverse Engineering Community.
Available from: http://www.reverse-engineering.net
French Reverse Engineering Team.
Available from: http://www.binary-reverser.org
Reverser’s Playground. Crackmes.de.
Available from: http://www.crackmes.de
CodeBreakers Journal.
Available from: http://www.codebreakers-journal.com

http://www.cs.ucl.ac.uk/staff/A.Finkelstein/fose/finalmuller.pdf
http://www.acm.uiuc.edu/sigmil/RevEng
http://www.cs.jyu.fi/~koskinen/bibre.htm
http://www.reverse-engineering.net
http://www.binary-reverser.org
http://www.crackmes.de
http://www.codebreakers-journal.com

Software Security Assurance State-of-the-Art Report (SOAR) 201

Section 5 SDLC Processes and Methods and the Security of Software

5.5.2.5 Forensic Security Analysis
Forensic security analysis of software, supported by static and dynamic analysis
tools, is comparable to other computer forensic analyses. After deployed
software is successfully compromised, a forensic analysis can help reveal the
vulnerabilities that were exploited by the attacker. Forensic analysis of software
comprises three different analyses: intra-component, inter-component,
and extra-component. Intra-component forensic analysis is used when the
exploited vulnerability is suspected to lie within the component itself.

Inter-component analysis is used when the suspected location of the
vulnerability lies in the interface between two components. The analysis
tools examine the communication and messaging and programmatic
interface mechanisms and protocols used by the components, and reveal any
incompatibilities between the different components’ implementations those
interface mechanisms and protocols.

Extra-component analysis is used when the vulnerability is suspected to
lie either in the execution environment or in the dynamics of the whole system’s
behavior not traceable to a single component or interface. The analysis includes
reviewing audit and event logs to find indications of security-relevant whole-
system behaviors that indicate vulnerabilities caused by configuration problems
or system and environment interactions that were targeted by the attacker.

5.5.3 Software Security Analysis and Testing Tools
Most tools that support software security analysis and testing implement
either white box or black box techniques, and many are limited to a single
technique, such as static analysis or fuzzing. However, vendors have recently
started to produce tool sets or suites whereby control of the tools is integrated
via a central console. Some tool suites also include attack prevention and
protection tools such as intrusion detectors and application firewalls. Examples
include Fortify Software’s tool suite, Ounce Labs’ Ounce Solution, Compuware’s
DevPartner SecurityChecker, Klocwork’s 7, and Coverity’s Prevent. Microsoft
also integrates software security analysis, test, and implementation tools into
its larger Visual Studio 2005 integrated development environment, including a
code review tool, a fuzzer, a secure C library, and other software security tools
used by the company’s own developers.

As Kris Britton of the NSA Center for Assured Software (CAS) has
observed, [276] the level of integration of such tools has not extended nearly as
far as supporting “meta-analysis,” i.e., the ability of different tools to interpret,
rank, and increase the confidence in the results of other tools. Meta-analysis
cannot be achieved without the ability to fuse, correlate, and normalize the
outputs of the constituent tools in a toolset/tool suite. These capabilities are
beyond the realm of what is offered by the tools in toolsets and suites from
a single vendor, let alone by tools obtained from multiple vendors and open
sources. (This is, in fact, one of the main research objectives of the NSA CAS.)

Software Security Assurance State-of-the-Art Report (SOAR)202

Section 5 SDLC Processes and Methods and the Security of Software

To this end, the OMG Software Assurance Special Interest Group (SwA SIG)
is developing the Software Assurance Ecosystem, “a formal framework for analysis
and exchange of information related to software security and trustworthiness”
[277] This ecosystem will leverage related OMG specifications such as the
Knowledge Discovery Metamodel (KDM), the Semantics of Business Vocabulary
and Rules (SBVR), and the upcoming Software Assurance Meta-model. By
improving interoperability among software assurance tools, organizations will be
able to better automate their evaluation processes and incorporate results from
a variety of tools—from static code analysis tools to formal method verifiers to
application vulnerability scanners—into a single coherent assurance case.

NIST SAMATE has been tasked with developing standards against which
software and software assurance tools can be measured. In its first phase,
SAMATE is focusing on source code analysis tools. The project has produced a
reference dataset against which users can test source code analysis tools to see
how effective they are at detecting various types of coding errors. In addition,
SAMATE is working on a draft functional specification for source code analysis
tools. Through the SAMATE project, tool vendors will be able to use a common
taxonomy to describe their capabilities. [278]

To aid in this, SAMATE has produced a classification and taxonomy of
software assurance tools, many of which are testing tools. The SAMATE tool
classification is essentially a refinement and extension of the tool categorization
in the market surveys of application security testing tools produced by the
DISA Application Security Project in 2002, 2003, and 2004 (see Section 6.1.7).
The classes of software testing tools identified by SAMATE are listed in Table
5-12 below. These tools are not strictly limited to security testing tools; they
also encompass general software testing tools which can (and in many cases
have been) applied to software vulnerability detection or security property
verification. Based on a broad survey of the security testing tool market,
additional tool classes have been identified that are not included in the
SAMATE classification; these additional classes are listed in Table 5-13.

In addition to software testing tools, the SAMATE classification
includes tools for testing for security vulnerabilities, or verifying the
security properties or secure configuration of components of the software’s
execution environment (e.g., network operating systems, web servers, etc.),
and for testing system-level security functions performed between software
components (e.g., verification of correctness of WS-Security implementations)
and security of communications between software components (e.g., secure
exchange of SOAP messages between web services). These tool classes are
listed in Table 5-13, as are additional classes of tools in this category.

In both tables, tool classes that are strictly security-focused are
indicated with an “X”. All others are broader-spectrum tools that either
include some security-specific test capabilities, or general testing tools that
can be used for security testing.

Software Security Assurance State-of-the-Art Report (SOAR) 203

Section 5 SDLC Processes and Methods and the Security of Software

Table 5-12. Classes of Software Security Test Tools

SAMATE Classes

Web application vulnerability scanners (and assessment proxies) X

Dynamic (binary) analysis tools

Compiler error checking and safety enforcement

Source code security (static) analyzers X

Byte code scanners

Binary code scanners

Code review assistants

Additional Classes
Compiler-based program verification

Property-based testers

Property-based testers

Source code fault injectors

Binary fault injectors

Fuzzers

Penetration testers X

Buffer overrun detectors

Race detectors

Input validation checkers

Tools for detection of malicious code in source code X

Pedigree analysis tools

Code security checklists X

Software Security Assurance State-of-the-Art Report (SOAR)204

Section 5 SDLC Processes and Methods and the Security of Software

Table 5-13. Classes of Execution Environment and System-Level Test Tools

SAMATE Classes

Network (vulnerability) scanners X

Web services network scanners

Database (vulnerability) scanners X

Intrusion detection tools X

Antispyware (detection) tools X

Additional Classes
Operating system vulnerability scanners X

Web server vulnerability scanners X

Patch verification tools

Virus scanners X

Both NIST SAMATE and NSA CAS are involved in the evaluation of
software security tools. These efforts are described in Sections 6.1.2 (CAS) and
6.1.10 (SAMATE).

For Further Reading

Source Code Analysis Tools. Washington (DC): US CERT.
Available from: https://buildsecurityin.us-cert.gov/daisy/bsi/articles/tools/code.html
Black Box Security Testing Tools. Washington (DC): US CERT.
Available from: https://buildsecurityin.us-cert.gov/daisy/bsi/articles/tools/black-box.html
Fong, Elizabeth, editor. NIST SP 500-264, Proceedings of Defining the State of the Art in Software
Security Tools Workshop. c2005.
Available from: http://samate.nist.gov/docs/NIST_Special_Publication_500-264.pdf

5.5.3.1 Software Security Checklists
Software engineers have found checklists useful in conducting reviews ever
since, at least, Michael Fagan [279] invented formal inspections. Gary McGraw,
in Software Security, recommends the checklists in Jay Ramachandran’s
Designing Security Architecture Solutions (John Wiley and Sons, 2002) and
that published by J.D. Meier et al. [280] Several other software security and
application security checklists are also available in the public domain; these are
listed in Table 5-14 below. In addition, David Gilliam et al. [281] have defined
guidelines for developing one’s own software security checklists.

https://buildsecurityin.us-cert.gov/daisy/bsi/articles/tools/code.html
https://buildsecurityin.us-cert.gov/daisy/bsi/articles/tools/black-box.html
http://samate.nist.gov/docs/NIST_Special_Publication_500-264.pdf

Software Security Assurance State-of-the-Art Report (SOAR) 205

Section 5 SDLC Processes and Methods and the Security of Software

Table 5-14. Software and Application Security Checklists

Checklist URL

DISA: Application Security
Checklist Version 2, Release 1.9
(November 24, 2006)

http://iase.disa.mil/stigs/checklist/app-security-checklist-
v2r19-24Nov06.doc

NASA Software Security
Checklist

Contact David Gilliam, david.p.gilliam@jpl.nasa.gov

OWASP: Web Application
Penetration Checklist v1.1
(Version 2 is due for release
December 31, 2006. The OWASP
Design Review Checklist is no
longer available; it is not clear
whether a revision is underway)

http://prdownloads.sourceforge.net/owasp/OWASPWebAp
pPenTestList1.1.pdf?download (in English)
http://www.owasp.org/index.php/Category:OWASP_
Testing_Project (in Spanish and Italian)

Charles H. Le Grand, CHL
Associates: Software Security
Assurance: A Framework
for Software Vulnerability
Management and Audit

http://www.ouncelabs.com/audit/

Visa U.S.A.: CISP Payment
Application Best Practices
checklist

http://usa.visa.com/download/business/accepting_visa/
ops_risk_management/cisp_payment_application_best_
practices.doc

Djenana Campara: Secure
Software: A Manager’s
Checklist (June 20, 2005)

http://www.klocwork.com/company/downloads/SecureSoft
wareManagerChecklist.pdf

Australian Computer
Emergency Response Team
(AusCERT): Secure Unix
Programming Checklist (July
2002 version)

http://www.auscert.org.au/render.html?it=1975

Don O’Neill Consulting:
Standard of Excellence product
checklists (include a security
checklist)

http://members.aol.com/ONeillDon2/special_checklist_
frames.html

Microsoft Corp./b-sec
Consulting Pty Ltd. Business
Application Security Assurance
Program (BASAP) Application
Security Assurance Framework,
Version 2.2 (June 22, 2005)

http://www.b-sec.com.au/basap/Application%20Security
per cent20Assurance%20Framework%20v2.2.pdf

BASAP Secure Development
Process Framework, Version 2.1
(June 21, 2005)

http://www.b-sec.com.au/basap/Secure%20Development%
20Process%20Framework%20v2.1.pdf

Apple Computer: Secure Coding
Guide Security Development
Checklists

http://developer.apple.com/documentation/Security/
Conceptual/SecureCodingGuide/Articles/DevSecSoftware.
html#//apple_ref/doc/uid/TP40002495-DontLinkElementID_29

http://iase.disa.mil/stigs/checklist/app-security-checklist-v2r19-24Nov06.doc
http://iase.disa.mil/stigs/checklist/app-security-checklist-v2r19-24Nov06.doc
http://prdownloads.sourceforge.net/owasp/OWASPWebAppPenTestList1.1.pdf?download
http://prdownloads.sourceforge.net/owasp/OWASPWebAppPenTestList1.1.pdf?download
http://www.owasp.org/index.php/Category:OWASP_Testing_Project
http://www.owasp.org/index.php/Category:OWASP_Testing_Project
http://www.ouncelabs.com/audit/
http://usa.visa.com/download/business/accepting_visa/ops_risk_management/cisp_payment_application_best_practices.doc
http://usa.visa.com/download/business/accepting_visa/ops_risk_management/cisp_payment_application_best_practices.doc
http://usa.visa.com/download/business/accepting_visa/ops_risk_management/cisp_payment_application_best_practices.doc
http://www.klocwork.com/company/downloads/SecureSoftwareManagerChecklist.pdf%20
http://www.klocwork.com/company/downloads/SecureSoftwareManagerChecklist.pdf%20
http://www.auscert.org.au/render.html?it=1975
http://members.aol.com/ONeillDon2/special_checklist_frames.html
http://members.aol.com/ONeillDon2/special_checklist_frames.html
http://www.b-sec.com.au/basap/Secure%20Development%20Process%20Framework%20v2.1.pdf
http://www.b-sec.com.au/basap/Secure%20Development%20Process%20Framework%20v2.1.pdf
http://developer.apple.com/documentation/Security/Conceptual/SecureCodingGuide/Articles/DevSecSoftware.html#//apple_ref/doc/uid/TP40002495-DontLinkElementID_29
http://developer.apple.com/documentation/Security/Conceptual/SecureCodingGuide/Articles/DevSecSoftware.html#//apple_ref/doc/uid/TP40002495-DontLinkElementID_29
http://developer.apple.com/documentation/Security/Conceptual/SecureCodingGuide/Articles/DevSecSoftware.html#//apple_ref/doc/uid/TP40002495-DontLinkElementID_29

Software Security Assurance State-of-the-Art Report (SOAR)206

Section 5 SDLC Processes and Methods and the Security of Software

5.5.4 System C&A and Software Security Assurance
The trend of malicious attacks has shifted focus from network systems to
software vulnerabilities. It is also true that no software can be impervious to
attack, and there is no “quick fix” or “canned solution” that clearly defines a
practice, process, or methodology for implementing security practices that
provide for software assurance. The ultimate goal is to produce secure software
that contains properties of repeated regularity and reliability, and this can be
accomplished by establishing and maintaining a stringent and accepted set of
processes that recognize, minimize, and mitigate vulnerabilities.

There is an obvious need to establish a set of criteria for the
implementation, documentation, certification, and accreditation of software
accomplished through a formal evaluation approach similar to the C&A
process for network systems [e.g., DoD Information Assurance Certification
and Accreditation Process (DIACAP), DCID 6/3, National Information
Assurance Certification and Accreditation Process (NIACAP), FISMA, NIST].
While software assurance may be addressed as a component of the current
mandated C&A processes, it is not nearly inclusive enough to ensure software
assurance or software security.

Several models exist today, but a general set of criteria would—
u Help establish a set of defined steps and processes
u Facilitate management oversight for secure programming practices
u Help in the recognition of design patterns for vulnerabilities
u Provide for security verification that security mechanisms have been

implemented
u Provide a testing process so the removal of vulnerabilities can be

demonstrated
u Support the certification, formal review, and acceptance of software by a

designated manager such as a Designated Approving Authority (DAA).

The CC evaluation and C&A disciplines do not provide an adequate
basis for assuring software security for many reasons. Most notably, there is
a chasm between the disciplines of software assurance and the CC and C&A
bodies of knowledge. The tools used for system evaluation in the separate
disciplines of CC and C&A consider software assurance as a minor goal in
the overall certification of the whole system. (C&A typically assesses security
only at the whole-system level.) C&A focuses mainly on infrastructure and
architecture models of access control and risk mitigation; these may or may
not benefit software security assurance.

One reason for this information gap is that there is very little language in
the CC or in standard C&A documentation that specifically addresses software
assurance concerns. The separate views can be contributed to differing levels
of importance concerning the correctness of information, security controls,
and policy enforcement. Software assurance specific language was added to

Software Security Assurance State-of-the-Art Report (SOAR) 207

Section 5 SDLC Processes and Methods and the Security of Software

the draft of CC Version 3. However, before the new version could be approved
by ISO/IEC, the consultation period expired, [282] and the future of Version 3
remains undetermined.

In the current version of the CC (Version 2), systems evaluated at EAL4
and below [283] do not require rigorous security engineering practices. The vast
majority of COTS software, if evaluated at all, is evaluated at or below EAL4. In
addition to these specific reasons for the gap between the studies of software
assurance and the CC, not all software is eligible for CC evaluation, and in that
case, the software would not need to be evaluated by the CC resulting in a lack
of evaluation of security controls altogether.

The C&A discipline, from a security standpoint, deals with many objects
such as systems, networks, and application life cycles. In short, the C&A process
audits and ensures policies, procedures, controls, and contingency planning.
While some information security reports can be obtained about systems from
various forms of testing (penetration tests and code reviews), this level of
testing is not indicative of software security policies and procedures that alone
will provide adequate software assurance.

The main objective of system ST&E is to determine whether the system
as a whole satisfies its information system security requirements, i.e., those
for the functionalities and constraints that ensure the preservation of the
confidentiality, integrity, and availability of data, and the accountability of
users. Software security properties, both at the levels of the whole system and
of individual components, are seldom considered because C&A is driven by
the need of systems to conform with governing information security policy. To
date, DoD has neither added software security language to DoDD 8500.1, nor
mandated a separate, comparable policy governing security for software.

Even if the certifier wishes to verify the security properties of the
components of COTS-based systems, the C&A documents required for DIACAP
[which, because its activities begin earlier in the system’s life cycle than did
their counterparts in DoD Information Technology Security Certification
and Accreditation Process (DITSCAP), is thought to more strongly influence
systems engineers to begin security engineering at the outset of the life
cycle, rather than attempting to “tack security on” at the integration phase],
DCID 6/3, NIACAP, and FISMA do not include C&A criteria specific to COTS-
based systems. Nor do COTS components generally expose the security
information that will enable the certifier exact assessment of each component’s
conformance even to the stated C&A criteria, let alone the assessment of the
security conflicts between components, and the impact of those conflicts on
the overall security of the system.

The C&A process does not look deep enough, or extensively at enough of
the individual software components to comfortably address software assurance.
In many cases, conducting or providing for code review of COTS products
is not feasible or likely. Further, such tests, no matter the extent, depth, or
thoroughness of the testing, are often at the discretion of the DAA. The results of

Software Security Assurance State-of-the-Art Report (SOAR)208

Section 5 SDLC Processes and Methods and the Security of Software

these tests as part of a C&A process are often times looked upon as a tertiary or
an objective step towards the overall accreditation of the system or network and
are not used or even authorized.

The inadequacy of CC evaluation artifacts and C&A artifacts as the basis
for establishing software security assurance is addressed further in Section 5.1.4
on assurance cases.

5.6 Secure Software Distribution and Configuration
The principles (if not the practices) for trusted distribution of software and
systems defined in NCSC-TG-008 Guide to Understanding Trusted Distribution
in Trusted Systems (the “Dark Lavender Book”) are still broadly applicable to
software distributions today. The objective of secure distribution is to minimize
the opportunities for malicious or nefarious actors to gain access to and tamper
with software during its transmittal (via physical media shipment or network
download) from its supplier to its consumer.

Secure distribution mechanisms that have become standard as intellectual
property rights protections for commercial software are increasingly being
used to protect integrity for purposes of security. Such mechanisms include
tamperproof or tamper-resistant packaging, read-only media, secure and
verifiable distribution channels [e.g., Secure Sockets Layer (SSL)-encrypted links
for downloads, registered mail deliveries], and digital integrity mechanisms
(hashes or, increasingly, digital watermarks, and/or code signatures).

In addition to the software itself, the software’s installation and
configuration procedures, routines, tools, and interfaces are also, increasingly,
being protected through authentication of installer, cryptographically protected
communication channels, separate distribution paths, etc.

DHS has been in discussion with NIST about the need for a standard
defining the characteristics of a minimum acceptable “secure” default
configuration for commercial software. Increasingly, major commercial vendors
are shipping their software with such secure default configurations, a practice
originated by manufacturers of security systems such as firewalls and trusted
operating systems.

DoD and other government departments and agencies produce secure
configuration guidelines and checklists for widely used commercial software
products. A number of these can be found at—

u NSA Security Configuration Guides.
Available from: http://www.nsa.gov/snac

u DISA Security Technical Implementation Guides (STIG) and Checklists.
Available from: http://www.nist.gov/cgi-bin/exit_nist.cgi?url=http://iase.disa.
mil/stigs/index.html

u NIST Security Configuration Checklists for IT Products.
Available from: http://csrc.nist.gov/checklists

http://www.nsa.gov/snac
http://www.nist.gov/cgi-bin/exit_nist.cgi?url=http://iase.disa.mil/stigs/index.html
http://www.nist.gov/cgi-bin/exit_nist.cgi?url=http://iase.disa.mil/stigs/index.html
http://csrc.nist.gov/checklists

Software Security Assurance State-of-the-Art Report (SOAR) 209

Section 5 SDLC Processes and Methods and the Security of Software

In addition to these, the SysAdmin, Audit, Networking and Security (SANS)
Institute and the Center for Internet Security has established the Security
Consensus Operational Readiness Evaluation (SCORE) [284] program, which
is enlisting security professionals from a number of organizations to develop
minimum acceptable secure configuration checklists for a number of popular
types of systems (e.g., web applications, UNIX and UNIX-derived operating
systems) as well as specific implementations of those systems.

References

78 H. Mouratidis and P. Giorgini,” Integrating Security and Software Engineering: an Introduction,” chap. I
in Integrating Security and Software Engineering, H. Mouratidis and P. Giorgini, eds. (Hershey, PA: Idea
Group Publishing, 2007).

79 Charles B. Haley, Robin C. Laney, and Bashar Nuseibeh, “Deriving Security Requirements From
Crosscutting Threat Descriptions,” in Proceedings of the Third International Conference on Aspect-
Oriented Software Development, March 22–26, 2004: 112–121.
Available from: http://mcs.open.ac.uk/cbh46/papers/AOSD04.pdf

80 The term “acquisition” in the context of this specific discussion, focuses on how software comes into
existence within a given organization or system. For this reason, it does not include acquisition of
contractor development services. However, contractors may be responsible for the integration,
assembly, custom development, and/or reengineering of software.

81 L. David Balk and Ann Kedia, “PPT: a COTS Integration Case Study,” in Proceedings of the 22nd
International Conference on Software Engineering, July 2000.

82 Nicholas G. Carr, “Does Not Compute,” The New York Times (January 22, 2000).
Available from: http://www.nytimes.com/2005/01/22/opinion/22carr.html

83 Jeremy Epstein, “SOA Security: The Only Thing We Have to Fear Is Fear Itself,” SOA Web Services
Journal (December 3, 2005).
Available from: http://webservices.sys-con.com/read/155630.htm

84 Mark G. Graff and Kenneth R. Van Wyk, Secure Coding, Principles and Practices (Sebastopol, CA:
O’Reilly and Associates, 2003).

85 Frank Tiboni, “Air Force Handles Network Security,” Federal Computer Week (June 13, 2005).
Available from: http://www.fcw.com/article89159-06-13-05-Print

86 This observation was made by Joe Jarzombek, Director of Software Assurance, DHS CS&C NCSD, at
the kick-off of the DHS Software Assurance Program’s Acquisition Working Group meeting of October
2005. Compare the two versions of Federal Acquisition Regulations (FARS), Part 1, subchapter A,.
Available from: http://www.acquisition.gov/far/05-06/html/FARtoHTML.htm with that available from:
http://www.acquisition.gov/far/05-05r1/html/FARtoHTML.htm

87 Mary Linda Polydys (CMU SEI) and Stan Wisseman (Booz Allen Hamilton), SwA Acquisition Working
Group, Software Assurance (SwA) in Acquisition: Mitigating Risks to the Enterprise—
Recommendations of the Multi-agency, Public/Private Sector, draft vers. 0.9 (Washington, DC: DHS
CS&C NCSD, February 9, 2007).

88 “OWASP Secure Software Contract Annex” [web page] (Columbia, MD: OWASP).
Available from: http://www.owasp.org/index.php/OWASP_Secure_Software_Contract_Annex

89 David A. Wheeler, “Open Standards and Security” (presentation, July 12, 2006).
Available from: http://www.dwheeler.com/essays/open-standards-security.pdf

90 Jerome H. Saltzer and Michael D. Schroeder, “The Protection of Information in Computer Systems,” in
Proceedings of the Symposium on Operating System Principals, October 1973.
Available from: http://www.cs.virginia.edu/~evans/cs551/saltzer/

http://mcs.open.ac.uk/cbh46/papers/AOSD04.pdf
http://www.nytimes.com/2005/01/22/opinion/22carr.html
http://webservices.sys-con.com/read/155630.htm
http://www.fcw.com/article89159-06-13-05-Print
http://www.acquisition.gov/far/05-06/html/FARtoHTML.htm
http://www.acquisition.gov/far/05-05r1/html/FARtoHTML.htm
http://www.owasp.org/index.php/OWASP_Secure_Software_Contract_Annex
http://www.dwheeler.com/essays/open-standards-security.pdf
http://www.cs.virginia.edu/~evans/cs551/saltzer/

Software Security Assurance State-of-the-Art Report (SOAR)210

Section 5 SDLC Processes and Methods and the Security of Software

91 Peter Neumann (SRI International) and Richard Feiertag (Cougaar Software, Inc.), “PSOS Revisited,” in
Proceedings of the 19th Annual Computer Security Applications Conference, Las Vegas, NV, December
8–12, 2003: 208–216.
Available from: http://www.csl.sri.com/neumann/psos03.pdf

92 Laurianne McLaughlin, “Winning the Game of Risk,” IEEE Security and Privacy 3, no. 6,
(November–December 2005): 9–12.

93 Peter Neumann (SRI International), Principled Assuredly Trustworthy Composable Architectures, Final
Report, report no. CDRL A001 (December 28, 2004).
Available from: http://www.csl.sri.com/users/neumann/chats4.html

94 “SEI Predictable Assembly From Certifiable Components (PACC)” [web page] (Pittsburgh, PA: CMU SEI).
Available from: http://www.sei.cmu.edu/pacc/

95 “Center for High Assurance Computer Systems (CHACS),” web page (Washington, DC: Naval Research
Laboratory).
Available from: http://chacs.nrl.navy.mil

96 Mitchell Komaroff (OSD/OCIO), “DoD Software Assurance Concept of Operations Overview”
(slides presented at the OMG Software Assurance Special Interest Group [SwA SIG] meeting,
December 9, 2006, Washington, DC [Revised 2007 March]).

97 “Build Security In” portal page.

98 “SSE-CMM: Systems Security Engineering–Capability Maturity Model” [web site] (Herndon, VA:
International Systems Security Engineering Association [ISSEA]).
Available from: http://www.sse-cmm.org/index.html

99 E.J. Chikofsky and J.H. Cross, “Reverse Engineering and Design Recovery: a Taxonomy,”
IEEE Software 7, no. 1 (January 7, 1990): 13–17.

100 Requirements analysts, system designers and software architects are included within the broad
category of “developer.”

101 Robin Milner (University of Edinburgh), “A Theory of Type Polymorphism in Programming,” The Journal
of Computer and System Sciences (April 19, 1978).
Available from: http://www.diku.dk/undervisning/2006-2007/2006-2007_b2_246/milner78theory.pdf

102 Barry W. Boehm, Software Engineering Economics (Upper Saddle River, NJ: Prentice-Hall, 1981).

103 John Viega and Gary McGraw, Building Secure Software: How to Avoid Security Problems the Right
Way (Boston, MA: Addison-Wesley, 2001).

104 Marco M. Morana (Foundstone Professional Services), “Building Security into the Software Life Cycle:
a Business Case” (paper presented at BlackHat USA, Las Vegas, NV, August 2–3, 2006)..

105 Charles H. LeGrand (CHL Global Associates), Managing Software Risk: an Executive Call to Action
(Waltham, MA: Ounce Labs, September 21, 2005).

106 Microsoft Corporation, “Understanding the Security Risk Management Discipline,” revised May 31, 2006,
chap. 3 in Securing Windows 2000 Server (Redmond, WA: Microsoft Corporation, November 17, 2004.
Available from: http://www.microsoft.com/technet/security/prodtech/windows2000/secwin2k/
swin2k03.mspx

107 Gary E. McGraw (Cigital Inc.), Risk Management Framework (RMF) (Washington, DC: US CERT,
September 21, 2005).
Available from: https://buildsecurityin.us-cert.gov/daisy/bsi/articles/best-practices/risk/250.html

108 Morana, Building Security into the Software Life Cycle, op. cit.

109 David P. Gilliam (NASA Jet Propulsion Laboratory), “Security Risks: Management and Mitigation in
the Software Life Cycle,” in Proceedings of the Thirteenth IEEE International Workshop on Enabling
Technologies, June 14-16, 2004: 211–216.

http://www.csl.sri.com/neumann/psos03.pdf
http://www.csl.sri.com/users/neumann/chats4.html
http://www.sei.cmu.edu/pacc/
http://chacs.nrl.navy.mil
http://www.sse-cmm.org/index.html
http://www.diku.dk/undervisning/2006-2007/2006-2007_b2_246/milner78theory.pdf
http://www.microsoft.com/technet/security/prodtech/windows2000/secwin2k/swin2k03.mspx
http://www.microsoft.com/technet/security/prodtech/windows2000/secwin2k/swin2k03.mspx
https://buildsecurityin.us-cert.gov/daisy/bsi/articles/best-practices/risk/250.html

Software Security Assurance State-of-the-Art Report (SOAR) 211

Section 5 SDLC Processes and Methods and the Security of Software

110 “Defect Detection and Prevention (DDP)” [web site] (Pasadena, CA: NASA JPL at California Institute of
Technology).
Available from: http://ddptool.jpl.nasa.gov/

111 T. Scott Ankrum and Alfred H. Kromholz (The MITRE Corporation), “Structured Assurance Cases: Three
Common Standards” (slides presented at the Association for Software Quality [ASQ] Section 509
Software Special Interest Group meeting, McLean, VA, January 23, 2006).
Available from: http://www.asq509.org/ht/action/GetDocumentAction/id/2132

112 In the nuclear power industry, as long ago as 1965, the UK’s Nuclear Installations Act was adopted,
which required the submission of a safety case as part of a nuclear facility’s application for a license to
operate. See Peter Wilkinson (Australian Department of Industry, Tourism and Resources), “Safety
Cases, Success or Failure?” (seminar paper, May 2, 2002).
Available from: http://www.ohs.anu.edu.au/publications/pdf/seminar_paper_2.pdf.

 See also, Dr. Robin Pitblado and Dr. Edward Smith (DNV London), “Safety Cases for Aviation. Lessons
from Other Industries,” in Proceedings of the International Symposium on Precision Approach and
Automatic Landing, July 18–20, 2000.
Available from: http://www.dnv.com/binaries/SafetyCasesAviation_tcm4-85501.pdf and

 Lord Cullen, “The Development of Safety Legislation” (lecture at the Royal Academy of Engineering and
Royal Society of Edinburgh, 2006).
Available from: http://www.royalsoced.org.uk/events/reports/rae_1996.pdf

113 The term may have first been applied to software in the context of the Strategic Defense Initiative. See
US Congress Office of Technology Assessment, SDI, Technology, Survivability, and Software, report no.
OTA-ISC-353 (Washington, DC: US Government Printing Office, May 1988).
Available from: http://govinfo.library.unt.edu/ota/Ota_3/DATA/1988/8837.PDF

114 “SafSec” [web page] (Bath, Somerset, UK: Praxis High Integrity Systems Ltd.).
Available from: http://www.praxis-his.com/safsec/index.asp

115 Sherry Hampton, New York, letter to Paul Croll, King George, VA, June 8, 2006 (approval by IEEE
Standards Board of new Project P15026).
Available from: http://standards.ieee.org/board/nes/projects/15026.pdf

116 Robin E. Bloomfield, et al., Assurance Cases for Security: Report of the Workshop on Assurance Cases
for Security, vers. 01c (January 17, 2006).
Available from: http://www.csr.city.ac.uk/AssuranceCases/Assurance_Case_WG_Report_180106_v10.pdf

117 “The 37th Annual IEEE/IFIP International Conference on Dependable Systems and Networks” [web
page] (New York, NY: IEEE and Graz, Austria: International Federation for Information Processing [IFIP]).
Available from: http://www.dsn.org/call/index.htm

118 T. Scott Ankrum and Charles Howell (The MITRE Corporation), “Looking for a Good Argument:
Assurance Case Frameworks” (presentation to the meeting of the Software Special Interest Group of
the American Society for Quality, Washington, DC, and Maryland Metro Section 509, May 2003).
Available from: http://www.asq509.org/ht/action/GetDocumentAction/id/476

119 Since Metricon 1.0, a second “mini-Metricon” was held in February 2007 at the University of San
Francisco. See “Metricon 1.0” web page. securitymetrics.org [Last updated September 20, 2006, by
Andrew Jaquith].
Available from: http://www.securitymetrics.org/content/Wiki.jsp?page=Metricon1.0

120 The same can be said about the safety of safes. Although the physical space and the testing methods
of safes are much more mature than they are for software, safe security ratings are actually fairly
crude and heavily reliant on the disclaimer that the ratings apply only “under given circumstances.”
New attacks or tailored attacks against different safes (of which, compared with different software
packages, there are extremely few) are sometimes discovered or developed as the attack tools or
techniques advance, e.g., drilling a particular spot on the safe will release the locking mechanism;
unless that spot is known, having a strong drill bit will not in and of itself make the attack possible.

http://ddptool.jpl.nasa.gov/
http://www.asq509.org/ht/action/GetDocumentAction/id/2132
http://www.ohs.anu.edu.au/publications/pdf/seminar_paper_2.pdf
http://www.dnv.com/binaries/SafetyCasesAviation_tcm4-85501.pdf
http://www.royalsoced.org.uk/events/reports/rae_1996.pdf
http://govinfo.library.unt.edu/ota/Ota_3/DATA/1988/8837.PDF
http://www.praxis-his.com/safsec/index.asp
http://standards.ieee.org/board/nes/projects/15026.pdf
http://www.csr.city.ac.uk/AssuranceCases/Assurance_Case_WG_Report_180106_v10.pdf
http://www.dsn.org/call/index.htm
http://www.asq509.org/ht/action/GetDocumentAction/id/476
http://www.securitymetrics.org/content/Wiki.jsp?page=Metricon1.0

Software Security Assurance State-of-the-Art Report (SOAR)212

Section 5 SDLC Processes and Methods and the Security of Software

121 “SSE-CMM Security Metrics” [web page] (Herndon, VA: International Systems Security Engineering
Association [ISSEA]).
Available from: http://www.sse-cmm.org/metric/metric.asp

122 Ernst and Young, Using Attack Surface Area and Relative Attack Surface Quotient to Identify
Attackability (New York, NY: Ernst and Young Security and Technology Solutions, May 6, 2003).
Available from: http://www.microsoft.com/windowsserver2003/docs/AdvSec.pdf

123 Crispin Cowan, “Relative Vulnerability: An Empirical Assurance Metric”, Presented at the 44th
International Federation for Information Processing Working Group 10.4 Workshop on Measuring
Assurance in Cyberspace (Monterey, CA, 25-29 June 2003)

124 Brian Chess and Tsipenyuk Katrina, “A Metric for Evaluating Static Analysis Tools”, Presented at
Metricon 1.0 (Vancouver, BC, Canada, 1 August 2006).

125 Pratsuya Manadhata and Jeannette M. Wing (CMU), An Attack Surface Metric (Pittsburgh, PA: CMU,
July 2005).
Available from: http://www.cs.cmu.edu/~wing/publications/CMU-CS-05-155.pdf

126 O.H. Alhazmi, Y. K. Malaiya, and I. Ray (Colorado State University), “Security Vulnerabilities in Software
Systems: a Quantitative Perspective,” in Proceedings of the IFIP WG 11.3 Working Conference on Data
and Applications Security, Storrs, CT, August 2005.
Available from: http://www.cs.colostate.edu/~malaiya/635/IFIP-10.pdf

127 Pravir Chandra, “Code Metrics”, Presented at Metricon 1.0 (Vancouver, BC, Canada, 1 August 2006).

128 Russell R. Barton, William J. Hery, and Peng Liu (Pennsylvania State University), “An S-vector for Web
Application Security Management,” working paper (Pennsylvania State University, University Park, PA,
January 2004).
Available from: http://www.smeal.psu.edu/cdt/ebrcpubs/res_papers/2004_01.pdf

129 John Murdoch (University of York), “Security Measurement White Paper,” vers. 3.0. (Washington, DC:
Practical Software and Systems Measurement [PSM] Safety and Security Technical Working Group,
January 13, 2006).
Available from: http://www.psmsc.com/Downloads/TechnologyPapers/SecurityWhitePaper_v3.0.pdf

130 Riccardo Scandariato, Bart De Win, and Wouter Joosen (Catholic University of Leuven), “Towards a
Measuring Framework for Security Properties of Software,” in Proceedings of the Second ACM
Workshop on Quality of Protection, October 27–30, 2006.

131 Victor R. Basili and Gianluigi Caldiera (University of Maryland), and H. Dieter Rombach (University of
Kaiserslautern), The Goal Question Metric Approach (1994).
Available from: http://wwwagse.informatik.uni-kl.de/pubs/repository/basili94b/encyclo.gqm.pdf

132 Thomas Heyman and Huygens Christophe, Catholic University of Leuven; “Software Security Patterns
and Risk”, Presented at Metricon 1.0 (Vancouver, BC, Canada, 1 August 2006).

133 McDermott, Attack-Potential-Based Survivability Modeling for High-Consequence Systems, op. cit.

134 A metric first proposed in F. Stevens, “Validation of an Intrusion-Tolerant Information System Using
Probabilistic Modeling” (MS thesis, University of Illinois, Urbana-Champaign, IL, 2004).
Available from: http://www.crhc.uiuc.edu/PERFORM/Papers/USAN_papers/04STE01.pdf

135 National Computer Security Center (NCSC), A Guide to Understanding Configuration Management in Trusted
Systems, report no. NCSC-TG-006-88 (Fort Meade, MD: National Security Agency, March 28, 1988).
Available from: http://csrc.nist.gov/secpubs/rainbow/tg006.txt or
http://www.fas.org/irp/nsa/rainbow/tg006.htm or
http://www.iwar.org.uk/comsec/resources/standards/rainbow/NCSC-TG-006.html

http://www.sse-cmm.org/metric/metric.asp
http://www.microsoft.com/windowsserver2003/docs/AdvSec.pdf
http://www.cs.cmu.edu/~wing/publications/CMU-CS-05-155.pdf
http://www.cs.colostate.edu/~malaiya/635/IFIP-10.pdf
http://www.smeal.psu.edu/cdt/ebrcpubs/res_papers/2004_01.pdf
http://www.psmsc.com/Downloads/TechnologyPapers/SecurityWhitePaper_v3.0.pdf
http://wwwagse.informatik.uni-kl.de/pubs/repository/basili94b/encyclo.gqm.pdf
http://www.crhc.uiuc.edu/PERFORM/Papers/USAN_papers/04STE01.pdf
http://csrc.nist.gov/secpubs/rainbow/tg006.txt
http://www.fas.org/irp/nsa/rainbow/tg006.htm
http://www.iwar.org.uk/comsec/resources/standards/rainbow/NCSC-TG-006.html

Software Security Assurance State-of-the-Art Report (SOAR) 213

Section 5 SDLC Processes and Methods and the Security of Software

136 Premkumar T. Devanbu and Stuart Stubblebine, “Software Engineering for Security: a Roadmap,” in
Proceedings of the Conference on the Future of Software Engineering, Limerick, Ireland,
June 4–11, 2000: 227–239.
Available from: http://www.stubblebine.com/00icse.pdf or http://www.cs.ucdavis.edu/~devanbu/files/
dec14.pdf

137 J.D. Meier, et al. (Microsoft Corporation), Improving Web Application Security: Threats and
Countermeasures Roadmap (Redmond, WA: Microsoft Corporation, June 2003).
Available from: http://msdn2.microsoft.com/en-us/library/aa302420.aspx#c04618429_009

138 Alexis Leon, “Configuration Item Selection,” chap. 7, sec. 7.4 in Software Configuration Management
Handbook, 2nd ed. (Boston, MA: Artech House Publishers, 2004).

139 “MKS Integrity” [web page] (Waterloo, ON, Canada): MKS Inc.).
Available from: http://www.mks.com/products/index.jsp

140 “Oracle Developer Suite 10g Software Configuration Manager (SCM)” [web page] (Redwood Shores,
CA: Oracle Corporation).
Available from: http://www.oracle.com/technology/products/repository/index.html

141 Sparta, Inc., “Information System Security Operation,” from Secure Protected Development Repository
[data sheet] (Columbia, MD: Sparta, Inc.
Available from: http://www.isso.sparta.com/documents/spdr.pdf

142 Schlomi Fish (Better SCM Initiative), “Version Control System Comparison” [web page].
Available from: http://better-scm.berlios.de/comparison/

143 Information Security Forum, The Standard of Good Practice for Information Security, vers. 4.1 (London,
UK: Information Security Forum, January 2005).
Available from: http://www.isfsecuritystandard.com/

144 Katya Sadovsky, Carmen Roode, and Marina Arseniev (University of California at Irvine), “Best
Practices on Incorporating Quality Assurance into Your Software Development Life Cycle” (paper
presented at EDUCAUSE 2006, Dallas, TX, October 9–12, 2006).
Available from: http://www.educause.edu/content.asp?page_id=666&ID=EDU06277&bhcp=1

145 Winston W. Royce, “Managing the Development of Large Software Systems, Concepts and
Techniques,” in Proceedings of IEEE Wescon, Los Angeles, CA, 1970 August 1–9, 1970.
Available from: http://www.cs.umd.edu/class/spring2003/cmsc838p/Process/waterfall.pdf

146 “Defense System Software Development: MIL-STD-2167A” [web page].
Available from: http://www2.umassd.edu/SWPI/DOD/MIL-STD-2167A/DOD2167A.html

147 Mei C. Yatoco (University of Missouri-St. Louis), Joint Application Design/Development (fall 1999).
Available from: http://www.umsl.edu/~sauter/analysis/JAD.html

148 Software Development and Documentation, MIL-STD-498 (Washington, DC: US Department of
Defense, November 8, 1994).
Available from: http://www.pogner.demon.co.uk/mil_498/ and

 Jane Radatz, Myrna Olson, and Stuart Campbell (Logicon). CrossTalk: The Journal of Defense Software
Engineering, MIL-STD-498 (February 1995).
Available from: http://www.stsc.hill.af.mil/crosstalk/frames.asp?uri=1995/02/MILSTD.asp

149 Evolutionary development has itself evolved into agile development.

150 “Evolutionary Delivery” [web page] (Bilthoven, The Netherlands: N.R. Malotaux Consultancy).
Available from: http://www.malotaux.nl/nrm/Evo/

151 Walter Maner (Bowling Green State University), Rapid Application Development (Bowling Green, OH:
Bowling Green State University Computer Science Dept., March 15, 1997).
Available from: http://csweb.cs.bgsu.edu/maner/domains/RAD.htm

http://msdn2.microsoft.com/en-us/library/aa302420.aspx#c04618429_009
http://www.mks.com/products/index.jsp
http://www.oracle.com/technology/products/repository/index.html
http://www.isso.sparta.com/documents/spdr.pdf
http://better-scm.berlios.de/comparison/
http://www.isfsecuritystandard.com/
http://www.educause.edu/content.asp?page_id=666&ID=EDU06277&bhcp=1
http://www2.umassd.edu/SWPI/DOD/MIL-STD-2167A/DOD2167A.html
http://www.umsl.edu/~sauter/analysis/JAD.html
http://www.pogner.demon.co.uk/mil_498/
http://www.stsc.hill.af.mil/crosstalk/frames.asp?uri=1995/02/MILSTD.asp
http://www.malotaux.nl/nrm/Evo/
http://csweb.cs.bgsu.edu/maner/domains/RAD.htm

Software Security Assurance State-of-the-Art Report (SOAR)214

Section 5 SDLC Processes and Methods and the Security of Software

152 Erik Arisholm and Dag I.K. Sjøberg (University of Oslo), and Jon Skandsen and Knut Sagli (Genera AS),
“Improving an Evolutionary Development Process—a Case Study” (paper presented at European
Software Process Improvement (EuropSPI99), Pori, Finland, October 25–27, 1999).
Available from: http://www.iscn.at/select_newspaper/process-models/genera.html

153 Barry W. Boehm, et al., “A Software Development Environment for Improving Productivity,”
IEEE Computer 17, no. 6 (June 1984): 30–44.

154 Sun Microsystems, “Workspace Hierarchy Strategies for Software Development and Release,” chap. in
Sun WorkShop TeamWare 2.0 Solutions Guide, and “Concurrent Development,” sec. in Guide
(Mountain View, CA: Sun Microsystems, Inc., 1996).
Available from: http://w3.mit.edu/sunsoft_v5.1/www/teamware/solutions_guide/hierarchy.doc.html#214

155 Scott W. Ambler, (Toronto, ON, Canada: Ambysoft, Inc., December 15, 2006).
Available from: http://www.ambysoft.com/unifiedprocess/

156 IBM/Rational, “Rational Unified Process Best Practices for Software Development Teams,” Rational
Software White Paper, no. TP026B Rev 11/012001 (November 2001).
Available from: http://www-128.ibm.com/developerworks/rational/library/content/
03July/1000/1251/1251_bestpractices_TP026B.pdf

157 Scott W. Ambler, The Agile Unified Process (Toronto, ON, Canada: Ambysoft, Inc., June 12, 2006).
Available from: http://www.ambysoft.com/unifiedprocess/agileUP.html

158 Scott W. Ambler, “Enterprise Unified Process (EUP)” [home page] (Toronto, ON, Canada: Ambysoft, Inc.,
March 1, 2006).
Available from: http://www.enterpriseunifiedprocess.com/

159 Konstantin Beznosov and Philippe Kruchten, “Towards Agile Security Assurance,” in Proceedings of the
11th ACM Workshop on New Security Paradigms, Nova Scotia, Canada, September 2004.
Available from: http://konstantin.beznosov.net/professional/papers/Towards_Agile_Security_
Assurance.html

160 During a security push, the entire product team focuses on updating the product’s threat models,
performing code reviews and security testing, and revising documentation. The objective of the
security push is to confirm the validity of the product’s security architecture documentation through a
focused, intensive effort, uncovering any deviations of the product from that architecture, and identify
and remediate any residual security vulnerabilities. A security push compresses activities that would
normally be distributed across multiple SDLC phases into a single relatively short time period.

161 “Oracle Software Security Assurance” [web page] (Redwood Shores, CA: Oracle Corporation).
Available from: http://www.oracle.com/security/software-security-assurance.html

162 “CLASP” [web page], op cit.

163 James W. Over (CMU SEI), “TSP for Secure Systems Development” (presentation at CMU SEI,
Pittsburgh, PA).
Available from: http://www.sei.cmu.edu/tsp/tsp-secure-presentation/

164 Ivan Flechais (Oxford University), and Cecilia Mascolo and M. Angela Sasse (University College
London), “Integrating Security and Usability into the Requirements and Design Process,” in Proceedings
of the Second International Conference on Global E-Security, London, UK, April 2006.
Available from: http://www.softeng.ox.ac.uk/personal/Ivan.Flechais/downloads/icges.pdf

165 Sodiya, Adesina Simon; Onashoga, Sadia Adebukola; Ajayi, Olutayo Bamidele. Towards building
secure software systems. In: Proceedings of Issues in Informing Science and Information Technology;
2006 June 25-28; Salford, Greater Manchester, England. Vol. 3. Available from: http://
informingscience.org/proceedings/InSITE2006/IISITSodi143.pdf

166 Mohammad Zulkernine (Queen’s University), and Sheikh Iqbal Ahamed (Marquette University),
“Software Security Engineering: Toward Unifying Software Engineering and Security Engineering,”
chap. XIV in Enterprise Information Systems Assurance and System Security: Managerial and Technical
Issues, Merrill Warkentin and Rayford B. Vaughn, eds. (Hershey, PA: Idea Group Publishing, 2006).

http://www.iscn.at/select_newspaper/process-models/genera.html
http://www.ambysoft.com/unifiedprocess/
http://www-128.ibm.com/developerworks/rational/library/content/03July/1000/1251/1251_bestpractices_TP026B.pdf
http://www-128.ibm.com/developerworks/rational/library/content/03July/1000/1251/1251_bestpractices_TP026B.pdf
http://www.ambysoft.com/unifiedprocess/agileUP.html
http://www.enterpriseunifiedprocess.com/
http://konstantin.beznosov.net/professional/papers/Towards_Agile_Security_Assurance.html
http://konstantin.beznosov.net/professional/papers/Towards_Agile_Security_Assurance.html
http://www.oracle.com/security/software-security-assurance.html
http://www.sei.cmu.edu/tsp/tsp-secure-presentation/
http://www.softeng.ox.ac.uk/personal/Ivan.Flechais/downloads/icges.pdf
http://informingscience.org/proceedings/InSITE2006/IISITSodi143.pdf
http://informingscience.org/proceedings/InSITE2006/IISITSodi143.pdf

Software Security Assurance State-of-the-Art Report (SOAR) 215

Section 5 SDLC Processes and Methods and the Security of Software

167 Royce, Managing the Development of Large Software Systems, op cit.

168 Dan Wu, Ivana Naeymi-Rad, and Ed Colbert (University of Southern California), “Extending MBASE to
Support the Development of Secure Systems,” in Proceedings of the Software Process Workshop,
Beijing, China, May 25–27, 2005.
Available from: http://www.cnsqa.com/cnsqa/jsp/html/spw/download/Copy%20of%20MBASE_Sec_
Ext_danwu_abstract%5B1%5D.v1.revisedv2.1.pdf

169 Dan Wu, Ivana Naeymi-Rad, and Ed Colbert, “Extending Mbase to Support the Development of Secure
Systems,” in Proceedings of the Software Process Workshop, Beijing, China, May 25–27, 2006.
Available from: http://www.cnsqa.com/cnsqa/jsp/html/spw/download/Copy%20of%20MBASE_Sec_
Ext_danwu_abstract%5B1%5D.v1.revisedv2.1.pdf

170 Secure Software Engineering portal.
Available from: http://www.secure-software-engineering.com/

171 Microsoft Corporation, Security Engineering Explained (Redmond, WA: Microsoft Corporation Patterns
and Practices Developer Center, October 2005).
Available from: http://msdn2.microsoft.com/en-us/library/ms998382.aspx

172 Nancy R. Mead (CMU SEI), Requirements Engineering for Survivable Systems, tech. note no. CMU/SEI-
2003-TN-013, Figure 1, “Coarse-Grain Requirements Engineering Process” (Pittsburgh, PA: CMU SEI,
September 2003): 2.
Available from: http://www.cert.org/archive/pdf/03tn013.pdf

173 Jim Johnson (The Standish Group), “Return on Requirements” (presentation at Choas University, Half
Moon Bay, CA, February 29–March 3, 2004). Johnson asserts that half of all project failures are caused
by faulty or inadequate requirements.

174 Darwin Ammala, “A New Application of CONOPS in Security Requirements Engineering,” CrossTalk:
The Journal of Defense Software Engineering (August 2000).
Available from: http://www.stsc.hill.af.mil/Crosstalk/2000/08/ammala.html

175 Philip E. Coyle (OSD Operational Test and Evaluation), “Simulation-Based Acquisition for Information
Technology” (presentation at the Academia, Industry, Government Crosstalk Conference, Washington,
DC, May 18, 1999).
Available from: http://www.dote.osd.mil/presentations/Coyle051899/sld001.htm

176 A. Rashid, A.M.D. Moreira, and J. Araújo, “Modularisation and Composition of Aspectual
Requirements,” in Proceedings of the Second International Conference on Aspect-Oriented Software
Development, Boston, MA, March 17–21, 2003: 11–20; and A. Rashid, A.M.D. Moreira, P. Sawyer, and
J. Araújo, “Early Aspects: a Model for Aspect-Oriented Requirement Engineering,” in Proceedings of
the IEEE Joint International Conference on Requirements Engineering, Essen, Germany,
September 9–13, 2002: 199–202.

177 Axel van Lamsweerde, Simon Brohez, Renaud De Landtsheer, and David Janssens, “From System Goals
to Intruder Anti-Goals: Attack Generation and Resolution for Security Requirements Engineering,” in
Proceedings of the Requirements for High Assurance Workshop, Monterey Bay, CA, September 8,
2003, 49–56. [Also of interest in the same Proceedings: Sascha Konrad, et al., “Using Security Patterns
to Model and Analyze Security Requirements”: 13–22.]
Available from: http://www.sei.cmu.edu/community/rhas-workshop/rhas03-proceedings.pdf or
http://publica.fhg.de/documents/N-20881.html and

 Axel van Lamsweerde and E. Handling Letier, “Obstacles in Goal-Oriented Requirements Engineering,”
IEEE Transactions on Software Engineering 26, no. 10 (October 2000): 978–1005.

178 Ian Alexander, Modelling the Interplay of Con� icting Goals With Use and Misuse Cases, in Proceedings
of 8th International Workshop on Requirements Engineering Foundation for Software Quality, Essen,
Germany, September 9–10, 2002: 145–152.

http://www.cnsqa.com/cnsqa/jsp/html/spw/download/Copy%20of%20MBASE_Sec_Ext_danwu_abstract%5B1%5D.v1.revisedv2.1.pdf
http://www.cnsqa.com/cnsqa/jsp/html/spw/download/Copy%20of%20MBASE_Sec_Ext_danwu_abstract%5B1%5D.v1.revisedv2.1.pdf
http://www.cnsqa.com/cnsqa/jsp/html/spw/download/Copy%20of%20MBASE_Sec_Ext_danwu_abstract%5B1%5D.v1.revisedv2.1.pdf
http://www.cnsqa.com/cnsqa/jsp/html/spw/download/Copy%20of%20MBASE_Sec_Ext_danwu_abstract%5B1%5D.v1.revisedv2.1.pdf
http://www.secure-software-engineering.com/
http://msdn2.microsoft.com/en-us/library/ms998382.aspx
http://www.cert.org/archive/pdf/03tn013.pdf
http://www.stsc.hill.af.mil/Crosstalk/2000/08/ammala.html
http://www.dote.osd.mil/presentations/Coyle051899/sld001.htm
http://www.sei.cmu.edu/community/rhas-workshop/rhas03-proceedings.pdf
http://publica.fhg.de/documents/N-20881.html

Software Security Assurance State-of-the-Art Report (SOAR)216

Section 5 SDLC Processes and Methods and the Security of Software

179 G. Sindre and A.L. Opdahl, “Eliciting Security Requirements by Misuse Cases,” in Proceedings of the
37th International Conference on Technology of Object-Oriented Languages and Systems, Sydney,
Australia, November 20-23, 2000: 120–131; and ibid., “Templates for Misuse Case Description,” in
Proceedings of the Seventh International Workshop on Requirements Engineering Foundation for
Software Quality, Interlaken, Switzerland, June 4–5, 2001.

180 John J. McDermott (NRL CHACS), “Abuse–Case-Based Assurance Arguments,” in Proceedings of the
17th Annual Computer Security Applications Conference, New Orleans, LA, December 10–14, 2001:
366–374.

181 H. In and Barry W. Boehm, “Using Win-Win Quality Requirements Management Tools: a Case Study,”
Annals of Software Engineering 11 no. 1 (November 2001): 141–174.

182 C.L. Heitmeyer, “Applying ‘Practical’ Formal Methods to the Specification and Analysis of Security
Properties,” in Proceedings of the International Workshop on Information Assurance in Computer
Networks, Methods, Models, and Architectures for Network Computer Security, St. Petersburg, Russia,
May 21–23, 2001: 84–89.

183 Charles B. Haley, Robin C. Laney, and Bashar Nuseibeh (The Open University), “Deriving Security
Requirements From Crosscutting Threat Descriptions,” in Proceedings of the Third International
Conference on Aspect-Oriented Software Development, Lancaster, UK, March 22–26, 2004: 112–121.
Available from: http://mcs.open.ac.uk/cbh46/papers/AOSD04.pdf

184 John Wilander and Jens Gustavsson (Linköpings University), “Security Requirements: a Field Study of
Current Practice,” in Proceedings of the Third Symposium on Requirements Engineering for Information
Security, Paris, France, August 29, 2005.
Available from: http://www.ida.liu.se/~johwi/research_publications/paper_sreis2005_wilander_
gustavsson.pdf

185 Charles B. Haley, Jonathan D. Moffett, Robin Laney, and Bashar Nuseibeh (The Open University), “A
Framework for Security Requirements Engineering,” in Proceedings of the Second Software
Engineering for Secure Systems Workshop, Shanghai, China, May 20–21, 2006: 5–42.
Available from: http://mcs.open.ac.uk/cbh46/papers/Haley-SESS06-p35.pdf

186 Defense Information Systems Agency (DISA), Application Security Checklist, vers. 2, Release 1.9
(Chambersburg, PA: DISA Field Security Operation, November 24, 2006).
Available from: http://iase.disa.mil/stigs/checklist/app-security-checklist-v2r19-24Nov06.doc

187 Monika Vetterling, Guido Wimmel, and Alexander Wißpeintner, “Secure Systems Development Based
on the Common Criteria,” in Proceedings of the 10th International Symposium on the Foundations of
Software Engineering (FSE-10), 2000.
Available from: http://www4.in.tum.de/~wimmel/papers/VWW02_FSE.pdf.

 [Also of interest: Indongesit Mkpong-Ruffin and David A. Umphress, “High-Leverage Techniques for
Software Security,” CrossTalk: The Journal of Defense Software Engineering 20, no. 3 (March 2007):
18–21. Available from: http://www.stsc.hill.af.mil/CrossTalk/2007/03/0703RuffinUmphress.html]

188 Paco Hope and Gary McGraw (Cigital, Inc.), and Annie I. Antón (North Carolina State University), “Misuse
and Abuse Cases: Getting Past the Positive,” IEEE Security and Privacy (May-June 2004): 32–34.
Available from: http://www.cigital.com/papers/download/bsi2-misuse.pdf

189 Nancy R. Mead (CMU SEI), Requirements Elicitation Introduction (Washington, DC: US CERT,
September 22, 2006).
Available from: https://buildsecurityin.us-cert.gov/daisy/bsi/articles/best-practices/requirements/533.
html; and

 ibid., Requirements Elicitation Case Studies Using IBIS, JAD, and ARM (Washington, DC: US CERT,
September 22, 2006).
Available from: https://buildsecurityin.us-cert.gov/daisy/bsi/articles/best-practices/requirements/532.html

190 Bruce Schneier, “Attack Trees,” Dr. Dobbs Journal (December 1999).
Available from: http://www.schneier.com/paper-attacktrees-ddj-ft.html

http://mcs.open.ac.uk/cbh46/papers/AOSD04.pdf
http://www.ida.liu.se/~johwi/research_publications/paper_sreis2005_wilander_gustavsson.pdf
http://www.ida.liu.se/~johwi/research_publications/paper_sreis2005_wilander_gustavsson.pdf
http://mcs.open.ac.uk/cbh46/papers/Haley-SESS06-p35.pdf
http://iase.disa.mil/stigs/checklist/app-security-checklist-v2r19-24Nov06.doc
http://www4.in.tum.de/~wimmel/papers/VWW02_FSE.pdf
http://www.stsc.hill.af.mil/CrossTalk/2007/03/0703RuffinUmphress.html
http://www.cigital.com/papers/download/bsi2-misuse.pdf
https://buildsecurityin.us-cert.gov/daisy/bsi/articles/best-practices/requirements/533.html
https://buildsecurityin.us-cert.gov/daisy/bsi/articles/best-practices/requirements/533.html
https://buildsecurityin.us-cert.gov/daisy/bsi/articles/best-practices/requirements/532.html
http://www.schneier.com/paper-attacktrees-ddj-ft.html

Software Security Assurance State-of-the-Art Report (SOAR) 217

Section 5 SDLC Processes and Methods and the Security of Software

191 “Common Vulnerability Scoring System Special Interest Group” [web page] (Mountain View, CA: Forum
of Incident Response and Security Teams).
Available from: http://www.first.org/cvss/

192 Davide Balzarotti (Milan Polytechnic), Mattia Monda (University of Milan), and Sabrina Sicari
(University of Catania), “Assessing the Risk of Using Vulnerable Components,” chap. in Quality of
Protection: Security Measurements and Metrics, Dieter Gollmann, Fabio Massacci, and Artsiom
Yautsiukhin eds. (New York, NY: Springer, 2006).
Available from: http://homes.dico.unimi.it/~monga/lib/qop.pdf

193 Saurabh Bagchi (Purdue University), “Achieving High Survivability in Distributed Systems Through
Automated Intrusion Response” (presentation at the meeting of IFIP Working Group 10.4, San
Francisco, CA, July 2, 2004).
Available from: http://cobweb.ecn.purdue.edu/~dcsl/Presentations/2006/ifip_irs_070206.pdf

194 “Automated Security Self-Evaluation Tool” [web page] (Gaithersburg, MD: NIST Computer Security
Division Computer Security Resource Center).
Available from: http://csrc.nist.gov/asset/

195 “CRAMM” [web page] (Walton-on-Thames, Surrey, UK: Siemens Insight Consulting).
Available from: http://www.cramm.com/

196 Donald L. Buckshaw (Cyber Defense Agency), et al., “Mission Oriented Risk and Design Analysis of
Critical Information Systems,” Military Operations Research 10, no. 2 (November 2005).
Available from: http://www.mors.org/awards/mor/2006.pdf

197 “OCTAVE” [web page] (Pittsburgh, PA: CMU SEI CERT).
Available from: http://www.cert.org/octave/

198 Donald Firesmith (CMU SEI), “Modern Requirements Specification,” Journal of Object Technology 2, no.
2 (March–April 2003): 53–64.
Available from: http://www.jot.fm/issues/issue_2003_03/column6

199 Paco Hope and Gary McGraw (Cigital, Inc.), and Annie I. Antón (North Carolina State University), “Misuse
and Abuse Cases: Getting Past the Positive,” IEEE Security and Privacy (May-June 2004): 32–34.
Available from: http://www.cigital.com/papers/download/bsi2-misuse.pdf

200 Meledath Damodaran, “Secure Software Development Using Use Cases and Misuse Cases,” Issues in
Information Systems VII, no. 1 (2006): 150–154.
Available from: http://www.iacis.org/iis/2006_iis/PDFs/Damodaran.pdf

201 Lamsweerde, et al., From System Goals to Intruder Anti-Goals, op cit.

202 Nancy R. Mead (CMU SEI), SQUARE: Requirements Engineering for Improved Systems Security
(Pittsburgh, PA: CMU SEI CERT, April 21, 2006).
Available from: http://www.cert.org/sse/square.html

203 Constance L. Heitmeyer, Software Cost Reduction (Washington, DC: NRL CHACS, 2002).
Available from: http://chacs.nrl.navy.mil/publications/CHACS/2002/2002heitmeyer-encse.pdf

204 Object Management Group (OMG), “Unified Modeling Language: UML Resource Page,” (Needham,
MA: OMG [last updated January 2, 2007].
Available from: http://www.uml.org/

205 “Security and Safety in Software Engineering” [web page] (Munich, Germany: Technical
University of Munich).
Available from: http://www4.in.tum.de/~juerjens/secse/

206 “Software Application Security Services (SASS) Tools: SecureUML” [web page] (Mission Viejo, CA:
McAfee Foundstone Division, August 3, 2005).
Available from: http://www.foundstone.com/index.htm?subnav=resources/navigation.
htm&subcontent=/resources/proddesc/secureuml.htm

http://www.first.org/cvss/
http://homes.dico.unimi.it/~monga/lib/qop.pdf
http://cobweb.ecn.purdue.edu/~dcsl/Presentations/2006/ifip_irs_070206.pdf
http://csrc.nist.gov/asset/
http://www.cramm.com/
http://www.mors.org/awards/mor/2006.pdf
http://www.cert.org/octave/
http://www.jot.fm/issues/issue_2003_03/column6
http://www.cigital.com/papers/download/bsi2-misuse.pdf
http://www.iacis.org/iis/2006_iis/PDFs/Damodaran.pdf
http://www.cert.org/sse/square.html
http://chacs.nrl.navy.mil/publications/CHACS/2002/2002heitmeyer-encse.pdf
http://www.uml.org/
http://www4.in.tum.de/~juerjens/secse/
http://www.foundstone.com/index.htm?subnav=resources/navigation.htm&subcontent=/resources/proddesc/secureuml.htm
http://www.foundstone.com/index.htm?subnav=resources/navigation.htm&subcontent=/resources/proddesc/secureuml.htm

Software Security Assurance State-of-the-Art Report (SOAR)218

Section 5 SDLC Processes and Methods and the Security of Software

207 For examples of their work, see Geri Georg, Siv Hilde Houmb, and Indrakshi Ray, “Aspect-Oriented Risk
Driven Development of Secure Applications” (paper submitted to the 20th Annual IFIP 11.3 Working
Conference on Data and Applications Security, Sophia Antipolis, France, July 31–August 2, 2006).
Available from: http://www.idi.ntnu.no/grupper/su/publ/siv/DBSEC_georg.pdf; and

 Geri Georg and Siv Hilde Houmb, “The Aspect-Oriented Risk-Driven Development (AORDD)
Framework,” in Proceedings of the International Conference on Software Development, Reykjavik,
Iceland, June 2005: 81–91.
Available from: http://www.idi.ntnu.no/grupper/su/publ/siv/swde-2005-houmb.pdf; and

 Geri Georg, Indrakshi Ray, and Robert France, “Using Aspects to Design a Secure System” in
Proceedings of the Eighth IEEE International Conference on Engineering of Complex Computer Systems,
Greenbelt, MD, December 2–4, 2002.
Available from: http://www.cs.colostate.edu/~georg/aspectsPub/ICECCS02.pdf

208 Martin Croxford and Roderick Chapman (Praxis High Integrity Systems), “Correctness by Construction: a
Manifesto for High-Integrity Software,” CrossTalk: The Journal of Defense Software Engineering 18,
no. 12 (December 2005).
Available from: http://www.stsc.hill.af.mil/CrossTalk/2005/12/0512CroxfordChapman.html’ and

 Martin Croxford and Roderick Chapman (Praxis High Integrity Systems), “The Challenge of Low Defect,
Secure Software: Too Difficult and Too Expensive?” DoD Software Tech News 8, no. 2 (July 2005).
Available from: http://www.softwaretechnews.com/stn8-2/praxis.html

209 Bertrand Meyer, “On Formalism in Specifications,” IEEE Software 2, no. 1 (January 1985): 6–26.

210 Sascha Konrad, et al., Using Security Patterns to Model and Analyze Security Requirements.

211 “Tropos Requirements-Driven Development for Agent Software” [web page] (Trento, Italy: Università
degli Studi di Trento [Last updated March 4, 2007].
Available from: http://www.troposproject.org/

212 Paolo Giorgini, et al. (University of Trento), Requirements Engineering Meets Trust Management:
Model, Methodology, and Reasoning, tech. report no. DIT-04-016 (Trento, Italy: University of Trento,
2004). Available from: http://eprints.biblio.unitn.it/archive/00000534/ and

 Haralambos Mouratidis and Gordon Manson (University of Sheffield), and Paolo Giorgini (University of
Trento), “An Ontology for Modelling Ssecurity: the Tropos Approach,” in Proceedings of the Seventh
International Conference on Knowledge-Based Intelligent Information and Engineering Systems,
Oxford, UK, September 4, 2003.
Available from: http://dit.unitn.it/~pgiorgio/papers/omasd03.pdf

213 Joshua J. Pauli and Dianxiang Xu (Dakota State University), “Misuse Case-Based Design and Analysis
of Secure Software Architecture,” in Proceedings of the International Conference on Information
Technology, Coding and Computing 2, April 4-6, 2005: 398–403.
Available from: http://www.cs.ndsu.nodak.edu/~dxu/publications/pauli-xu-ITCC05.pdf

214 Anthony Hall and Roderick Chapman (Praxis High Integrity Systems), “Correctness by Construction:
Developing a Commercial Secure System,” IEEE Software (January–February 2002): 18–25.

215 Saltzer and Schroeder, The Protection of Information in Computer Systems.

216 Samuel T. Redwine, Jr., ed., Secure Software: a Guide to the Common Body of Knowledge to Produce,
Acquire, and Sustain Secure Software, draft vers. 1.1 (Washington, DC: US CERT, August 31, 2006). A
subsequent version, draft vers. 1.1, dated April 2, 2007,
Available from: https://buildsecurityin.us-cert.gov/daisy/bsi/resources/dhs/95.
html?branch=1&language=1

217 The practice of openly exposing one’s design and algorithms to scrutiny is widely accepted in the
cryptographic community, with the exception of NSA and possibly some of NSA’s counterparts in other
countries.

218 Morrie Gasser, Building a Secure Computer System (New York, NY: Van Nostrand Reinhold, 1988).

http://www.idi.ntnu.no/grupper/su/publ/siv/DBSEC_georg.pdf
http://www.idi.ntnu.no/grupper/su/publ/siv/swde-2005-houmb.pdf
http://www.cs.colostate.edu/~georg/aspectsPub/ICECCS02.pdf
http://www.stsc.hill.af.mil/CrossTalk/2005/12/0512CroxfordChapman.html
http://www.softwaretechnews.com/stn8-2/praxis.html
http://www.troposproject.org/
http://eprints.biblio.unitn.it/archive/00000534/
http://dit.unitn.it/~pgiorgio/papers/omasd03.pdf
http://www.cs.ndsu.nodak.edu/~dxu/publications/pauli-xu-ITCC05.pdf
https://buildsecurityin.us-cert.gov/daisy/bsi/resources/dhs/95.html?branch=1&language=1
https://buildsecurityin.us-cert.gov/daisy/bsi/resources/dhs/95.html?branch=1&language=1

Software Security Assurance State-of-the-Art Report (SOAR) 219

Section 5 SDLC Processes and Methods and the Security of Software

219 “xADL 2.0” [home page] (Irvine, CA: University of California Institute for Software Research, 2000–
2005). Available from: http://www.isr.uci.edu/projects/xarchuci/

220 Michael E. Shin (Texas Tech University), “Modeling of Evolution to Secure Application System: From
Requirements Model to Software Architecture,” in Proceedings of the International Conference on
Software Engineering Research and Practice, Las Vegas, NV, June 26–29, 2006.
Available from: http://ww1.ucmss.com/books/LFS/CSREA2006/SER5235.pdf

221 Sean Barnum and Amit Sethi (Cigital, Inc.), Attack Pattern Glossary (Washington, DC: US CERT,
November 11, 2006).
Available from: https://buildsecurityin.us-cert.gov/daisy/bsi/articles/knowledge/attack/590.html

222 Markus Schumacher, et al., Security Patterns: Integrating Security and Systems Engineering (New York,
NY: John Wiley & Sons, 2005).
For more information, see http://www.securitypatterns.org/

223 The respository is no longer maintained online, but its contents have been published privately by two
of the the researchers involved, in the following paper: Darrell M. Kienzle, et al., Security Patterns
Repository Version 1.0.
Available from: http://www.modsecurity.org/archive/securitypatterns/dmdj_repository.pdf or
http://www.scrypt.net/~celer/securitypatterns/repository.pdf.

224 Darrell M. Kienzle and Matthew C. Elder, Security Patterns for Web Application Development, Final
Technical Report (November 4, 2003).
Available from: http://www.modsecurity.org/archive/securitypatterns/dmdj_final_report.pdf or
http://www.scrypt.net/~celer/securitypatterns/final per cent20report.pdf

225 Bob Blakley (IBM) and Craig Heath (Symbian), Technical Guide to Security Design Patterns, cat. no.
G031 (San Francisco, CA: The Open Group, April 2004).
Available from: http://www.opengroup.org/products/publications/catalog/g031.htm

226 Christopher Steel, Ramesh Nagappan, and Ray Lai, Core Security Patterns: Best Practices and
Strategies for J2EE, Web Services, and Identity Management (Indianapolis, IN: Prentice Hall
Professional Technical Reference, 2006).
For more information see: http://www.coresecuritypatterns.com/

227 Spyros T. Halkidis, Alexander Chatzigeorgiou, and George Stephanides (University of Macedonia), “A
Practical Evaluation of Security Patterns,” in Proceedings of the Sixth International Conference on
Artificial Intelligence and Digital Communications, Thessaloniki, Greece, August 18–20, 2006.
Available from: http://www.inf.ucv.ro/~aidc/proceedings/2006/5 per cent20shalkidis.pdf

228 “First International Workshop on Secure Systems Methodologies Using Patterns” [web page]
(Regensburg, Germany: University of Regensburg).
Available from: http://www-ifs.uni-regensburg.de/spattern07/

229 Peter Amey (Praxis High Integrity Systems), Correctness by Construction (Washington, DC: US CERT,
December 5, 2006).
Available from: https://buildsecurityin.us-cert.gov/daisy/bsi/articles/knowledge/sdlc/613.
html?branch=1&language=1

230 Hall and Chapman, Correctness by Construction: Developing a Commercial Secure System, op cit.

231 W. Wang, et al., “e-Process Design and Assurance Using Model Checking,” IEEE Computer 33, no. 10
(October 2000): 48–53.

232 Peter Ryan, et al., Modelling and Analysis of Security Protocols, 2nd ed. (Addison-Wesley
Professional, 2001).

233 Edsger W. Dijkstra (Burroughs Corporation), “Guarded Commands, Nondeterminacy and Formal
Derivation of Programs,” Communications of the ACM 18, no. 8 (August 1975): 453–457.

234 Harlan D. Mills, Software Productivity (New York, NY: Dorset House Publishing, 1988).

http://www.isr.uci.edu/projects/xarchuci/
http://ww1.ucmss.com/books/LFS/CSREA2006/SER5235.pdf
https://buildsecurityin.us-cert.gov/daisy/bsi/articles/knowledge/attack/590.html
http://www.securitypatterns.org/
http://www.modsecurity.org/archive/securitypatterns/dmdj_repository.pdf
http://www.scrypt.net/~celer/securitypatterns/repository.pdf
http://www.modsecurity.org/archive/securitypatterns/dmdj_final_report.pdf
http://www.opengroup.org/products/publications/catalog/g031.htm
http://www.coresecuritypatterns.com/
http://www-ifs.uni-regensburg.de/spattern07/
https://buildsecurityin.us-cert.gov/daisy/bsi/articles/knowledge/sdlc/613.html?branch=1&language=1
https://buildsecurityin.us-cert.gov/daisy/bsi/articles/knowledge/sdlc/613.html?branch=1&language=1

Software Security Assurance State-of-the-Art Report (SOAR)220

Section 5 SDLC Processes and Methods and the Security of Software

235 Tony Hoare (Microsoft Research), Communication Sequential Processes (Upper Saddle River, NJ:
Prentice-Hall International, 1985).
Available from: http://www.usingcsp.com/

236 For those unfamiliar with the concept of SOA, helpful background information can be found at: the “Web
Services and Service-Oriented Architectures” web site. (Burnsville, MN: Barry & Associates, Inc.).
Available from: http://www.service-architecture.com/index.html; and in

 Organization for the Advancement of Structured Information Standards (OASIS), Reference Model for
Service Oriented Architecture, vers. 1.0 [Approved] (August 2, 2006).
Available from: http://www.oasis-open.org/committees/download.php/19679/soa-rm-cs.pdf; and in

 “World Wide Web Consortium (W3C): Web Services Architecture,” working group note (February 11, 2004).
Available from: http://www.w3.org/TR/ws-arch/

237 José Luíz Fiadeiro.” Designing for Software’s Social Complexity,” IEEE Computer 40, no. 1
(January 1, 2007): 34–39.

238 Bertrand Meyer, Design by Contract, tech. report no. TR-EI-12/CO (Santa Barbara, CA: Eiffel Software
Inc. [formerly Interactive Software Engineering Inc.], 1986).

239 “Eiffel Software” [web site] (Goleta (CA): Eiffel Software Inc.).
Available from: http://www.eiffel.com/ ; and

 Bertrand Meyer, Basic Eiffel Language Mechanisms (August 2006).
Available from: http://se.ethz.ch/~meyer/publications/online/eiffel/basic.html; and

 Ecma International (formerly the European Computer Manufacturers Association), Eiffel: Analysis,
Design and Programming Language, standard ECMA-367, 2nd ed. (June 2006). (Note that the Eiffel
standard was also approved by ISO/IEC as ISO/IEC 25436.).
Available from: http://www.ecma-international.org/publications/standards/Ecma-367.htm

240 Stephen H. Edwards, M. Sitaraman, B.W. Weide, and E. Hollingsworth (Virginia Tech), “Contract-
Checking Wrappers for C++ Classes,” IEEE Transactions on Software Engineering 30, no. 11
(November 2004): 794–810.

241 Yves Le Traon, Benoit Baudry, and Jean-Marc Jezequel, “Design by Contract to Improve Software
Vigilance,” IEEE Transactions on Software Engineering 32, no. 8 (August 2006): 571–586.

242 Jean-Marc Jezequel and Bertrand Meyer, “Design by Contract: the Lessons of Ariane,” IEEE Computer
(January 1997): 129–130.

243 Sometimes called Fagan inspections, after Michael Fagan who is credited with inventing formal
software inspections.

244 BSD = Berkeley Software Distribution.

245 Viega and McGraw, Building Secure Software, op cit.

246 Mike Sues, Wendy-Anne Daniel, and Marcel Gingras (Cinnabar Networks, Inc.), “Secure Programming
and Development Practices,” slide presentation (Ottawa, ON, Canada: Cinnabar Networks, Inc., 2001).
Available from: http://www.cinnabar.ca/library/SecureProgramingTutorial.ppt

247 M.E. Kabay (Norwich University), “Programming for Security,” part 1 of Network World Security
Newsletter (June 4, 2001).
Available from: http://www.networkworld.com/newsletters/sec/2001/00853827.html.

 Programming for security, Part 2. Network World Security Newsletter. 2001 June 6.
Available from: http://www.networkworld.com/newsletters/sec/2001/00853837.html.

 Programming for security, Part 3. Network World Security Newsletter. 2001 June 11.
Available from: http://www.networkworld.com/newsletters/sec/2001/00871502.html.

 Programming for security, Part 4. Network World Security Newsletter. 2001 June 13.
Available from: http://www.networkworld.com/newsletters/sec/2001/00871525.html.

http://www.usingcsp.com/
http://www.service-architecture.com/index.html
http://www.oasis-open.org/committees/download.php/19679/soa-rm-cs.pdf
http://www.w3.org/TR/ws-arch/
http://www.eiffel.com/
http://se.ethz.ch/~meyer/publications/online/eiffel/basic.html
http://www.ecma-international.org/publications/standards/Ecma-367.htm
http://www.cinnabar.ca/library/SecureProgramingTutorial.ppt
http://www.networkworld.com/newsletters/sec/2001/00853827.html
http://www.networkworld.com/newsletters/sec/2001/00853837.html
http://www.networkworld.com/newsletters/sec/2001/00871502.html

Software Security Assurance State-of-the-Art Report (SOAR) 221

Section 5 SDLC Processes and Methods and the Security of Software

 Revised version of all four parts. 2004.
Available from: http://www2.norwich.edu/mkabay/overviews/programming.pdf.

 See also: “Mailbag: Programming for Security,” Network World Security Newsletter (September 1,
2001). Available from: http://www.networkworld.com/newsletters/sec/2001/00991582.html

248 Robert J. Seacord (CMU SEI), “Secure Coding Standard” [web page] (Pittsburgh, PA: CMU SEI CERT).
Available from: http://www.securecoding.cert.org/

249 “Information about Standard ML” [web page] (Pittsburgh, PA: CMU School of Computer Science). Available
from: http://www.cs.cmu.edu/afs/cs.cmu.edu/project/fox/mosaic/sml.html. Note that ML = metalanguage.

250 “MISRA C” [web site] (Nuneaton, Warwickshire, UK: Motor Industry Software Reliability Association
[MISRA]).
Available from: http://www.misra-c2.com/

251 T.M. Austin, S.E. Breach, and G.S. Sohi, “Efficient Detection of All Pointer and Array Access Errors,”
in Proceedings of the ACM SIGPLAN’94 Conference on Programming Language Design and
Implementation, Orlando, FL, June 20–24, 1994.

252 CCured “adds a minimal number of run-time checks (in C) to C programs “to prevent all memory safety
violations. The resulting program is memory safe, meaning that it will stop rather than overrun a buffer
or scribble over memory that it shouldn’t touch.” For more information, see: “CCured Documentatio”
[web page] (Berkeley, CA: University of California).
Available from: http://manju.cs.berkeley.edu/ccured; and

 George C.. Necula, et al. (University of California at Berkeley), CCured: Type-Safe Retrofitting of Legacy
Software, ACM Transactions on Programming Languages and Systems 27, no.3 (May 2005): 477–526.
Available from: http://www.cs.berkeley.edu/~necula/Papers/ccured_toplas.pdf

253 Originally developed by Michael Hicks, University of Maryland. For more information see: “CYCLONE
Project” website. Available from: http://cyclone.thelanguage.org/

254 “Vault: a Programming Language for Reliable Systems Project” [web page] (Redmond, WA: Microsoft
Research).
Available from: http://research.microsoft.com/vault/

255 Sumant Kowshik, Dinakar Dhurjati, and Vikram Adve (University of Illinois at Urbana-Champaign),
“Ensuring Code Safety Without Runtime Checks for Real-Time Control Systems,” in Proceedings of the
International Conference on Compilers, Architecture, and Synthesis for Embedded Systems, Grenoble,
France, October 8–11, 2002: 288-297.

256 Fail-Safe C “disallows any unsafe memory operation in full ANSI C standard (including casts and
unions).” For more information, see: “Fail-Safe C Project” web page (Tokyo, Japan: National Institute of
Advanced Industrial Science and Technology Research Center for Information Security).
Available from: http://www.rcis.aist.go.jp/project/FailSafeC-en.html and

 “Fail-Safe C version 1.0” [web page] (Japan: Tatsurou Sekiguchi, March 29, 2005).
Available from: http://homepage.mac.com/t.sekiguchi/fsc/index.html

257 Les Hatton, Safer C: Developing Software in High Integrity and Safety-Critical Systems (Maidenhead,
Berkshire, UK: McGraw-Hill Book Company Europe, 1995).

258 Chandrasekhar Boyapati (Massachusetts Institute of Technology), “SafeJava: a Unified Type System for
Safe Preprogramming” (PhD thesis, Massachusetts Institute of Technology, Cambridge, MA, February
2004). Available from: http://www.pmg.lcs.mit.edu/~chandra/publications/phd.pdf

259 SPARKAda was designed “for high integrity applications in which many errors are impossible and
which has decades of proven results.” Available from: “SparkADA” [web page] (Bath, Somerset, UK:
Praxis High Integrity Systems Ltd).
Available from: http://www.praxis-his.com/sparkada/

http://www2.norwich.edu/mkabay/overviews/programming.pdf
http://www.networkworld.com/newsletters/sec/2001/00991582.html
http://www.misra-c2.com/
http://manju.cs.berkeley.edu/ccured
http://www.cs.berkeley.edu/~necula/Papers/ccured_toplas.pdf
http://cyclone.thelanguage.org/
http://research.microsoft.com/vault/
http://www.rcis.aist.go.jp/project/FailSafeC-en.html
http://homepage.mac.com/t.sekiguchi/fsc/index.html
http://www.pmg.lcs.mit.edu/~chandra/publications/phd.pdf
http://www.praxis-his.com/sparkada/

Software Security Assurance State-of-the-Art Report (SOAR)222

Section 5 SDLC Processes and Methods and the Security of Software

260 Hermes publications web page (Hawthorne, NY: IBM Watson Research Center).
Available from: http://www.research.ibm.com/people/d/dfb/hermes-publications.html and

 Willard Korfhage (Polytechnic University), “Hermes Language Experiences,” Software: Practice and
Experience 25, no. 4 (April 1995): 389-402.
Available from: http://www.cs.ubc.ca/local/reading/proceedings/spe91-95/spe/vol25/issue4/
spe950wk.pdf

261 “ERights.org” [home page] (California: ERights.org).
Available from: http://www.erights.org/ and

 Stiegler, Marc. The E language in a walnut. Draft. 2000.
Available from: http://www.skyhunter.com/marcs/ewalnut.html

262 Fred Spiessens and Peter Van Roy (Catholic University of Leuven), “The Oz-E Project: Design Guidelines
for a Secure Multiparadigm Programming Language,” in Proceedings of the Second International
Conference on Multiparadigm Programming in Mozart/OZ, Charleroi, Belgium, October 7–8, 2004, Peter
Van Roy (Catholic University of Leuven), ed. (Berlin, Germany: Springer-Verlag, 2005): 3389.
Available from: http://www.info.ucl.ac.be/~pvr/oze.pdf or
http://www.info.ucl.ac.be/people/PVR/oze.pdf

263 Chris Hawblitzel (Dartmouth University), “Clay Research Activities and Findings” [web page] (Hanover,
NH: Dartmouth University Computer Science Department).
Available from: http://www.cs.dartmouth.edu/research/node101.html

264 Matt Messier and John Viega, “Safe C String Library v1.0.3” [web page] (January 30, 2005).
Available from: http://www.zork.org/safestr/

265 “Libsafe Research” [web page] (Basking Ridge, NJ: Avaya Labs).
Available from: http://www.research.avayalabs.com/gcm/usa/en-us/initiatives/all/nsr.
htm&Filter=ProjectTitle:Libsafe&Wrapper=LabsProjectDetails&View=LabsProjectDetails

266 For example, the Template-Based Classes for Microsoft’s Visual C++. For more information, see:
Microsoft Corporation, “Template-based Classes,” in Visual Studio 2005 Version 8.0 (Redmond, WA:
MSDN Library).
Available from: http://msdn2.microsoft.com/en-us/library/f728cbk3(VS.80).aspx and

 “MAXcode, Template-based Programming” (The Code Project, March 25, 2002).
Available from: http://www.codeproject.com/cpp/maxcode.asp

267 Les Hatton, “Safer Language Subsets: an Overview and a Case History—MISRA C.,” Information and
Software Technology 46 (2004): 465–472.
Available from: http://www.leshatton.org/IST_1103.html

268 “SSCC: The Plum Hall Safe-Secure C/C++ Project” [web page] (Kamuela, HI: Plum Hall Inc.).
Available from: http://www.plumhall.com/sscc.html

269 “SCC: The Safe C Compiler” [web page] (Madison, WI: University of Wisconsin Department of
Computer Science [Last updated September 26, 1995]).
Available from: http://www.cs.wisc.edu/~austin/scc.html

270 “Memory Safe C Compiler” [web page] (Stony Brook, NY: State University of New York Secure Systems
Laboratory; 1999–2002).
Available from: http://www.seclab.cs.sunysb.edu/mscc/

271 Dowd, et al., The Art of Software Security Assessment, Identifying and Preventing Software
Vulnerabilities. Also see: Chris Wysopal, et al., The Art of Software Security Testing: Identifying
Software Security Flaws, 1st ed. (Boston, MA: Addison-Wesley Professional, 2006). Also see: Andres
Andreu, Professional Pen Testing for Web Applications (Indianapolis, IN: Wrox/Wiley Publishing Inc.,
2006). Also see: Tom Gallagher, et al., Hunting Security Bugs (Redmond, WA: Microsoft Press, 200).

http://www.research.ibm.com/people/d/dfb/hermes-publications.html
http://www.cs.ubc.ca/local/reading/proceedings/spe91-95/spe/vol25/issue4/spe950wk.pdf
http://www.cs.ubc.ca/local/reading/proceedings/spe91-95/spe/vol25/issue4/spe950wk.pdf
http://www.erights.org/
http://www.skyhunter.com/marcs/ewalnut.html
http://www.info.ucl.ac.be/~pvr/oze.pdf
http://www.info.ucl.ac.be/people/PVR/oze.pdf
http://www.cs.dartmouth.edu/research/node101.html
http://www.zork.org/safestr/
http://www.research.avayalabs.com/gcm/usa/en-us/initiatives/all/nsr.htm&Filter=ProjectTitle:Libsafe&Wrapper=LabsProjectDetails&View=LabsProjectDetails
http://www.research.avayalabs.com/gcm/usa/en-us/initiatives/all/nsr.htm&Filter=ProjectTitle:Libsafe&Wrapper=LabsProjectDetails&View=LabsProjectDetails
http://msdn2.microsoft.com/en-us/library/f728cbk3(VS.80).aspx
http://www.codeproject.com/cpp/maxcode.asp
http://www.leshatton.org/IST_1103.html
http://www.plumhall.com/sscc.html
http://www.cs.wisc.edu/~austin/scc.html
http://www.seclab.cs.sunysb.edu/mscc/

Software Security Assurance State-of-the-Art Report (SOAR) 223

Section 5 SDLC Processes and Methods and the Security of Software

272 George Fink and Matt Bishop (University of California at Davis), “Property-based Testing: a New
Approach to Testing for Assurance,” ACM SIGSOFT Software Engineering Notes 22, no. 4 (July 1997):
74–80. Available from: http://nob.cs.ucdavis.edu/~bishop/papers/1997-sen/

273 T. Ball, “The Concept of Dynamic Analysis,” in Proceedings of the ACM SIGSOFT Symposium on the
Foundations of Software Engineering, Toulouse, France, September 1999: 216–234.

274 Note that many Java source code analysis tools actually analyze the bytecode generated from the Java
source code rather than the source code itself. Scanners for platform-specific bytecode (e.g., x86
machine language) are less capable than their JVM counterparts because the low-level platform-
specific code incorporates few high-level language constructs. For this reason, the binary analysis tool
must reconstruct this logic from the machine code, which takes large amounts of processing power and
potentially produces incorrect results. Nevertheless, binary analyzers are continuing to improve in their
capabilities and can be beneficial in analyzing the security of closed source COTS products.

275 “Black Hat Digital Self-Defense” [web site] (Seattle, WA: Black Hat).
Available from: http://www.blackhat.com/

276 Kris Britton (NSA CAS), “NSA Center for Assured Software” (presentation to the Director of Central
Intelligence’s Information Security and Privacy Advisory Board, Gaithersburg, MD: NIST Computer
Security Division Computer Security Resource Center, 2006 March 21, 2006).
Available from: http://csrc.nist.gov/ispab/2006-03/March-2006.html

277 Djenana Campara, “Software Assurance Ecosystem Infrastructure” (presentation at the OMG Software
Assurance Special Interest Group meeting, Washington, DC, December 9, 2006).
Available from: http://swa.omg.org/docs/swa_washington_2006/ OMG_SwA_AB_SIG_Focus_
Direction_n_Next_Steps.pdf

278 “SAMATE” [portal page] op cit.

279 Michael E. Fagan, “Design and Code Inspections to Reduce Errors in Program Development,” IBM
Systems Journal 15, no. 3 (1976): 258–287 and Michael E. Fagan, “Advances in Software Inspections,”
IEEE Transactions on Software Engineering SE-12, no. 7 (July 1986): 744–751.

280 J.D. Meier, et al. (Microsoft Corporation), “Improving Web Application Security: Threats and
Countermeasures,” NET Framework Security (Redmond, WA: MSDN Developer Center, June 2003.
Available from: http://msdn2.microsoft.com/en-us/library/ms994921.aspx

281 David P. Gilliam, Thomas L. Wolfe, Josef S. Sherif, and Matt Bishop, “Software Security Checklist for
the Software Life Cycle,” in Proceedings of the Twelfth International Workshop on Enabling
Technologies, Infrastructure for Collaborative Enterprises, Linz, Austria, June 9–11, 2003: 243.

282 “Unofficial Common Criteria and the Common Evaluation Methodology” [web page], Common Criteria
Project.
Available from: http://www.commoncriteriaportal.org/public/expert/index.php?menu=3

283 NIST and UK Government Communications Head Quarters Communications-Electronics Security Group
(CESG), Common Criteria for Information Technology Security Evaluation User Guide (Fleet, Hampshire,
UK: Syntegra UK, February 21, 2002): 9.
Available from: http://www.commoncriteriaportal.org/public/files/ccusersguide.pdf

284 “Security Consensus Operational Readiness Evaluation (SCORE)” [web page] (Bethesda, MD: SANS Institute).
Available from: http://www.sans.org/score/

http://nob.cs.ucdavis.edu/~bishop/papers/1997-sen/
http://www.blackhat.com/
http://csrc.nist.gov/ispab/2006-03/March-2006.html
http://msdn2.microsoft.com/en-us/library/ms994921.aspx
http://www.commoncriteriaportal.org/public/expert/index.php?menu=3
http://www.commoncriteriaportal.org/public/files/ccusersguide.pdf
http://www.sans.org/score/

Software Assurance
Initiatives, Activities,
and Organizations

6

Software Security Assurance State-of-the-Art Report (SOAR) 225

Section 6 Software Assurance Initiatives, Activities, and Organizations

In the past 5 years, the Department of Defense (DoD) has become
increasingly active in pursuit of software security assurance and

application security objectives. To this end, it has established a number
of programs to provide guidance, security assessments, and other
forms of support in these areas. The most significant of these
initiatives are described in Section 6.1.

DoD is not alone in its efforts. The Department of Homeland
Security (DHS) and the National Institute of Standards and Technology
(NIST) are both very involved in these areas of study, and their
activities are also described in Section 6.2.

The private sector has also become very active, not just in terms
of commercial offerings of tools and services, but in establishing
consortia to collectively address different software security and
application security challenges. The most noteworthy of these industry
initiatives are described in Section 6.1.9.

Section 6.3 describes several international standards under
development to address various software security assurance concerns.

Section 6.4 describes legislation with software security elements
or implications at the Federal and state levels in the United States.

Note that the United States appears to be alone in the world in
establishing software security assurance initiatives at the national
government level.

6.1 US Government Initiatives
The following software assurance, software security, and application security
initiatives are being sponsored within the US Government.

Software Security Assurance State-of-the-Art Report (SOAR)226

Section 6 Software Assurance Initiatives, Activities, and Organizations

6.1.1 DoD Software Assurance Initiative
The roots of the DoD Software Assurance Initiative are the recommendations
in the Defense Science Board (DSB) Task Force on Globalization and Security’s
final report of December 1999. These recommendations included a call for the
Secretary of Defense to set up a software assurance program at the Assistant
Secretary of Defense (ASD) level, and for DoD to enhance its security and
counter-intelligence activities to deal with the potential threats introduced by
DoD’s reliance on commercial software of foreign manufacture.

These recommendations were addressed in July 2003, when the ASD/NII
established a Software Assurance Initiative to examine challenges associated
with evaluating the assurance risks of commercially acquired software in
advance of deployment in government environments. As a follow-on to this
initiative, ASD/Networks and Information Integration (NII) formed a Software
Assurance Tiger Team in December 2004—in partnership with the Office
of the Under Secretary of Defense/Aquisition Technology and Logistics
(OUSD/AT&L)—with the goal of developing a holistic strategy to reduce
the Federal Government’s susceptibility to these risks.

According to the common definition of software assurance proposed by
the Software Assurance Tiger Team:

Software assurance (SwA) relates to the level of confidence that software
functions as intended and is free of vulnerabilities, either intentionally
or unintentionally designed or inserted as part of the software.

Through a rigorous outreach initiative to both government and industry
stakeholders, the Tiger Team further proposed a stratagem of guiding principles
as the foundation for reducing software assurance risks:

u Understand the problem(s) from a systems perspective
u Tailor responses to the scope of the identified risk
u Ensure responses are sensitive to potential negative impacts, e.g.:

u Exploit and extend relationships with—

e.g., trusted integrated circuits and information
assurance (IA).

The DoD Software Assurance Tiger Team developed a concept of
operations for addressing the issue, focusing on the following areas:

u Prioritization (of systems and components)
u Engineering-in-depth

Software Security Assurance State-of-the-Art Report (SOAR) 227

Section 6 Software Assurance Initiatives, Activities, and Organizations

u Supplier assurance
u Science and technology.

The Tiger Team’s approach is to address software security issues at the system
level. This approach reflects the Tiger Team’s belief that some (many?) threats to
software security cannot be addressed cost-effectively at the software level.

The Tiger Team collaborates with the National Defense Industrial
Association (NDIA) to lead the industry effort for integrating secure system
engineering practices into software product development, focusing on the
impact of software assurance on information technology implementations.
NDIA hosts Software Assurance Summits and coordinates the authoring
efforts of the Guidebook (see Section 6.1.1.2). Industry standards that
NDIA promotes include International Standards Organization (ISO)/
International Electrotechnical Commission (IEC) 15278, American National
Standards Institute (ANSI) 632, IEEE 1220, Electronics Industry Association
(EIA) 731, and CMMI.

With OUSD/AT&L and ASD/NII oversight and brokering, the Software
Assurance Tiger Team has extended its reach into several forums in an
attempt to coordinate a suite of community-driven and community-
adopted software assurance methodologies, as well as designate leadership
roles for advancing the objectives of the initiative. The overarching goal of
the outreach initiative is to “partner with industry to create a competitive
market that is building demonstrably vulnerability-free software.” This
goal requires coordination among industry, academia, and national and
international partners to address shared elements of the problems related
to assessing software assurance risk. With a shared understanding of the
problems, the Tiger Team aims to focus science and technology on research
and development of technologies that effectively improve upon existing
development tools, strengthen standards for modularizing software, and
enhance the ability to discover software vulnerabilities.

Beyond OUSD/AT&L, ASD/NII, and NDIA, major executive contributors to
the Software Assurance Tiger Team currently include—

u Aerospace Industries Association (AIA):
Role: Best practices in aviation pathfinder sector; build upon
concepts in ARINC 653
Responsibilities: Help integrate software assurance processes into
mainstream integration activities

u Government Electronics and Information Technology Association (GEIA):
Role: Product manufacturing and development standards for core
systems; e.g., ISO 9126, ISO 12119
Responsibilities: Share lessons learned and collaborate with other
stakeholders to develop new processes

Software Security Assurance State-of-the-Art Report (SOAR)228

Section 6 Software Assurance Initiatives, Activities, and Organizations

u Object Management Group (OMG):
Role: Set software modeling and interface standards for software
modularity and partitioning; e.g., leverage ISO 150408 for
EAL 6/7 target
Responsibilities: Leverage ongoing standards activities to advance
Tiger Team goals.

6.1.1.1 Tiger Team Activities
The activity groupings within the Tiger Team were established to ensure
fulfillment of the DoD Software Assurance CONOPS. These activities include—

u Prioritization: Processes for stakeholder prioritization (through
deliberation) of the criticality of systems are being established. In the
short term, prioritization will focus on new high-risk acquisitions, such
as major DoD acquisitions, systems connected to classified networks,
classified programs, and systems identified by DoD leadership.
Prioritization is to occur early in the requirements/acquisition phase of
the SDLC. The prioritization activity has identified a notional
component criticality definition for four levels of assurance:

High+: Technology where compromise could result in
catastrophically degraded mission capability or mission failure of
the system (e.g., cryptographic algorithms or cross-domain
information solutions)
High: Technology where compromise could result in seriously
degraded mission capability of the system (e.g., system monitoring
capability or need-to-know control within a security domain)
Medium+: Technology where compromise could result in partial or
identifiable degradation of mission capability of the system
(e.g., IT components of a major business application)
Medium: Technology where compromise could result in
inconvenience (e.g., office automation tools).

u Engineering in Depth (EiD): EiD applies systems engineering approaches
to minimize the number and criticality of components that require
greater assurance and to manage the residual risks inherent in the use
of less assured products. EiD includes implementing risk-mitigating
design techniques, such as graceful degradation, isolation,
multipathing, and replaceable modules.

u Supplier Assurance: Supplier assurance uses all-source information to
characterize suppliers according to the level of threat they present to
the DoD. Issues of concern include foreign control of suppliers by
Countries of Concern and outsourcing of technology/product
development. The threat data collected is based on intelligence data
and supplier-provided information. The supplier assurance activity has
defined the supplier assurance requirements for the four levels of

Software Security Assurance State-of-the-Art Report (SOAR) 229

Section 6 Software Assurance Initiatives, Activities, and Organizations

component criticality defined by the prioritization activity (all four
levels require a security-related engineering process and some level of
source threat assessment performed):

High+Assurance: US-owned corporation or authorized US
Government (USG) contractor with only cleared US citizens involved
High Assurance: US-owned corporation or authorized USG
contractor with only US citizens involved
Medium+Assurance: US-owned corporation or authorized USG
contractor with software design and engineering control functions
primarily under control of US citizens or citizens of countries with
historically close ties to the US whereas software development may
be performed in a foreign country by foreign nationals

u Science and Technology (S&T): S&T aims to achieve transformational
solutions to software assurance problems and to provide state-of-the-
art technical resources to the EiD process. S&T also works with industry
to develop standards to satisfy EiD needs, and coordinates research
and development (R&D) efforts for vulnerability prevention, detection,
and mitigation tools and technologies.

u Industry Outreach: Industry outreach extends the DoD community to
industry by engaging NDIA (systems assurance committee), OMG
(software assurance committee), AIA, and GEIA. Additional activities of
this bin include:

Systems Assurance Handbook (NDIA leadership)

standards and requirements, and product-level assurance properties.

While there are some key private sector participants in this bin, there is a
noticeable lack of broader industry commitment or participation.

6.1.1.2 Products
As noted above, the NDIA Systems Assurance Committee, co-chaired by Kristen
Baldwin (OUSD/AT&L), Mitchell Komaroff (ASD/NII), and Paul Croll (Computer
Sciences Corporation), is producing Systems Assurance: Delivering Mission
Success in the Face of Developing Threats—A Guidebook. [285] This Guidebook
describes the differences between traditional secure systems engineering that
addresses concerns about malicious developers, administrators, and users,
and the need to reduce uncertainty and provide an explicit basis for justifiable
stakeholder confidence in software, as well as decision making about software
acquisitions and engineering approaches. Intended for multiple audiences,
the Guidebook bases its consolidated approach on a variety of current secure
system engineering practices, policies, and recommendations.

Software Security Assurance State-of-the-Art Report (SOAR)230

Section 6 Software Assurance Initiatives, Activities, and Organizations

6.1.2 NSA Center for Assured Software
The National Security Agency (NSA) Center for Assured Software (CAS) was
established in November 2005 as a focal point for software assurance issues
in the NSA and DoD. The CAS collaborates closely with the DoD Software
Assurance Tiger Teams and the DHS-sponsored Software Assurance Working
Groups (WG), most notably the Tools and Technology WG. The CAS is also
coordinating its tool evaluation efforts with the NIST Software Assurance
Metrics and Tool Evaluation (SAMATE) program.

With its overarching mission of minimizing the number of exploitable
software vulnerabilities in critical DoD information systems, the CAS is
spearheading collaboration efforts across government, academia, and industry
to research, coordinate, and prioritize software assurance activities throughout
the software assurance community.

In addition to a broader collaboration role, the CAS is attempting to
establish methodologies and leverage tools for comprehensively establishing
and evaluating software trustworthiness throughout the software life cycle,
including COTS and government-developed software utilized in critical DoD
systems and networks. As a result of its evaluation activities, the CAS hopes to
offer recommendations to the DoD, the Intelligence Community, other Federal
agencies, and industry standards bodies (e.g., ISO/IEC, OMG), with respect to
changes in policy and standards that may permanently improve or enhance the
level of assurance, and the ability to measure the level of assurance inherent to
commercial or government-developed software.

In defining a consistently repeatable full life cycle process for evaluating
software, the CAS is also identifying the testable software properties that will
provide measurable levels of justifiable confidence (i.e., assurance) that—

u The software will securely, appropriately, and predictably perform its
intended functions.

u The software will not perform any unauthorized functions.
u The software does not contain exploitable implementation

flaws, regardless of whether those flaws were intentionally or
accidentally included.

6.1.2.1 Activities
The CAS is refining a software assurance evaluation methodology based on use
of existing software code review and testing tools. CAS has also undertaken a
series of tool evaluations to determine the suitability and effectiveness of the
existing tools for supporting their evaluation methodology. The methodology
consists of five evaluation phases, each supported by tools:

1. Acceptance: Determine whether tools and techniques exist for
evaluating the software, and identify and fill capability gaps between
evaluation capability needed and tools/techniques available.

Software Security Assurance State-of-the-Art Report (SOAR) 231

Section 6 Software Assurance Initiatives, Activities, and Organizations

2. Extraction/Inspection: Apply available tools and techniques that extract
relevant data and metadata from the software (e.g., complexity
metrics, module dependencies, reverse-engineered source code).
CAS will also work to foster integration of tools, and promote further
research in this area.

3. Analysis: Apply available tools and techniques that query the extracted
metadata for properties or indicators of assurance, such as presence of
buffer overflow vulnerabilities or race conditions, improper memory
management/object reuse, unexpected functionality, etc. In this area,
CAS will also work to improve the quality of analysis tools, with particular
focus on reducing the number of false positives in the tool results.

4. Meta-Analysis: Integrate outputs from analytical tools to rank the
relevance of the identified indicators. To perform analytical tests that
are beyond the capability of any one tool, and because some tools may
increase the confidence in the results from another tool, CAS will work
to “weave together” tools into a scalable meta-analysis methodology.
This may involve using one tool to focus the analysis of a following tool
or filter the results of a preceding tool, using independent indicators
to help rank the results and integrate output from multiple analytical
tools and techniques into a single meta-output that will enable the
analyst to discern higher order assurance indicators.

5. Reporting: Transform analytical results into a variety of comprehensible
reports that focus on different aspects of the analytical results. CAS will
also work to define a set of customer-focused report formats.

The CAS strategy for finalizing and implementing its full life cycle
software assurance evaluation methodology is to participate in public software
assurance standards activities to influence the technological direction of the
commercial and open source tools and techniques available to support the
methodology. In addition, the CAS will define internal software assurance
standards for NSA, and ensure compliance to those standards; among these
is the forthcoming Guidance for Addressing Malicious Code Risk described
in Section 6.1.2.1.1. Finally, through outreach to government, industry, and
academia, CAS seeks to both influence and benefit from the software assurance
practices, technologies, and research in those communities.

6.1.2.1.1 CAMP
The Code Assessment Methodology Project (CAMP) addresses the Government’s
need for greater software assurance and protection from unintentional and
intentionally inserted malicious code by laying the foundation for the development
of a software evaluation methodology to analyze untrusted code. The project will
address the risk of malicious code (i.e., code that introduces deliberate subversive
behavior in software) and maliciously introduced software vulnerabilities.

Software Security Assurance State-of-the-Art Report (SOAR)232

Section 6 Software Assurance Initiatives, Activities, and Organizations

6.1.3 DoD Anti-Tamper/Software Protection Initiative
Within the Air Force Rome Laboratories (AFRL) Sensors Directorate, the DoD
Anti-Tamper and Software Protection Initiative (AT/SPI) [286] was established
to thwart US adversaries attempts to reverse engineer and compromise
software components and applications within national security systems. The
AT/SPI is determining requirements for and guiding development of protection
techniques for software.

A main focus of the AT/SPI is on technology that prevents the
unauthorized distribution, tampering, or denial of service of critical national
security software. The objectives of the SPI include —

u Insertion of protection measures into existing DoD software
components, applications, and systems

u Measurement of the effectiveness of current protection measures
u Research into new software protection technology
u Education of the software development community on the SPI software

protection philosophy
u Raising awareness of the threat to high-end software and the need for

its protection
u Collaboration with the commercial sector on software protection methods
u Research into current software protection policies and development

of new policies.

To date, AT/SPI efforts have yielded several important technological
advances, including the development of a Secure Development Environment
(SDE) to ensure total life cycle protection of software, and the development of
tools to simulate attacks and accurately measure the level of protection afforded
within a given threat environment.

The SPI has also established the Software Protection Center (SPC), a
validated set of tools that support development of code in a secure environment
and the application of software protections to that code prior to distribution
and deployment. The toolbox contains a wide array of approved technologies
to automate the process of software protection; these technologies can be
implemented alone or in parallel.

For Further Reading

Jeff Hughes and Martin R. Stytz (AFRL/SN T-SPI Technology Office), Advancing Software Security:
the Software Protection Initiative.
Available from: http://www.preemptive.com/documentation/SPI_software_Protection_Initative.pdf
Hardware-assisted Software Anti-Tamper.
Available from: http://www.dodsbir.net/sitis/archives_display_topic.asp?Bookmark=29477
Deobfuscating tools for the validation and verification of tamper-proofed software.
Available from: http://www.dodsbir.net/sitis/archives_display_topic.asp?Bookmark=28950

http://www.preemptive.com/documentation/SPI_software_Protection_Initative.pdf
http://www.dodsbir.net/sitis/archives_display_topic.asp?Bookmark=29477
http://www.dodsbir.net/sitis/archives_display_topic.asp?Bookmark=28950

Software Security Assurance State-of-the-Art Report (SOAR) 233

Section 6 Software Assurance Initiatives, Activities, and Organizations

6.1.4 DSB Task Force on Mission Impact of Foreign In� uence
on DoD Software
The DSB Task Force on Mission Impact of Foreign Influence on DoD Software
was established in October 2005. [287] Inspired by the DSB Microelectronic Task
Force’s publication of a report on the national security implications of migration
of semiconductor design and manufacturing to foreign countries, the USD/
AT&L, ASD/NII, and Commander of US Strategic Command (USSTRATCOM)
announced their co-sponsorship of the task force’s report on the impact and
influence of foreign suppliers on the trustworthiness and assurability of the
software components of DoD systems.

The task force report, which will be published in spring 2007, will
characterize the causes for and level of DoD dependence on foreign-sourced
software. It will assess the risks presented by that dependence. Whereas the
DSB report on the implications of migration of semiconductor design and
manufacturing focused on two threats (the risk that the Unites States could
be denied access to the supply of chips and the risk that the chips could be
maliciously modified), this report will focus primarily on the risk of malicious
modifications in DoD software. The report acknowledges the threat that
suppliers could deny access to the maintenance of legacy code, but the task
force suggests that greater risk is posed by malicious code (though the attack
vectors to be considered are not limited to those unique to foreign suppliers).

The report will also—
u Provide recommendations for managing the economics and risks

involved in acquiring commercial-off-the-shelf (COTS) and foreign
software, specifying the types of applications for which this is an
acceptable risk as well those which necessitate cleared US citizens;

u Prioritize DoD software components according to their need for high
levels of trustworthiness

u Identify requirements for employing EiD, which specifies assurance
requirements for various components in a software-intensive system
based on the criticality of a component

u Identify requirements for intelligence gathering to better characterize
and monitor the threat from foreign suppliers

u Identify requirements for supplier assurance so that suppliers may be
assessed for their trustworthiness

u Identify policies or technological research that can be undertaken to
improve the ability to determine and sustain the trustworthiness and
assurability of software, and when necessary to improve it

u Provide recommendations for improving the quality and assurance of
COTS and open source software (OSS), such as improving the National
Information Assurance Partnership (NIAP) evaluation process.

Software Security Assurance State-of-the-Art Report (SOAR)234

Section 6 Software Assurance Initiatives, Activities, and Organizations

The task force comprises a chairman plus four members, all from private
industry, as well as an executive secretary (currently Robert Lentz of ASD/
NII). There are also four government advisors to the task force—two from DHS
Cyber Security and Communications (CS&C) National Cyber Security Division
(NCSD), one from NSA, and one from the Defense Information Systems Agency
(DISA), as well as a representative of the DSB Secretariat in an oversight role.

In its first 6 months, the task force members were primarily engaged
in data gathering, in part through reports of relevant initiatives in industry
and government, including the Intel Trusted Computing Initiative, the NSA
prototype of a trusted platform architecture for software (consistent with the
DoD SPI), and the DHS Software Assurance Program.

6.1.5 GIG Lite
The most widely stated concern associated with use of software of unknown
pedigree (SOUP) is the potential presence of malicious code (or malware).
The difficulty stems from lack of effective automated malware detection
technologies as well as the unwillingness of government project managers
to increase the costs of software acquisitions to accommodate the detailed,
extensive code reviews and security tests needed to manually locate malicious
logic. Indeed, as briefed by Chris Gunderson, a researcher at the Naval
Postgraduate School, at the December 2006 meeting of the DHS Software
Assurance Program’s Tools and Technology WG, DoD is seeking to model its
security evaluation cycles after software industry testing cycles. Gunderson
is researching the feasibility of doing this in a research initiative called GIG
Lite. Funded by the Joint Interoperability Test Command, GIG Lite seeks to
shorten the time involved with certifying and accrediting services and software
applications for use in the Global Information Grid (GIG).

The objective of GIG Lite is to speed up the acquisition and certification
and accreditation (C&A) schedules, enabling DoD to adopt new products
far more quickly, in timeframes comparable to those achieved in the private
sector. GIG Lite suggests establishing a small community of vendor-run
and independent test labs to create a major test range for the rapid study,
prototyping, demonstration, and evaluation of software components and
services. Evaluations will focus on proving the value proposition that the target
component/service brings and its trustworthiness (from both information
assurance and software assurance perspectives). GIG Lite seeks to create
an approved products list of components and services that have assigned
trustworthiness ratings. The program also plans to develop the means by
which potential users of evaluated components/services can map their own
requirements against the attributes of products in the list so they can discover
those products that come closest to satisfying those requirements.

Recognizing the potential for an increased level of risk that DoD will
have to assume to accomplish the shorter testing and C&A cycle, GIG Lite

Software Security Assurance State-of-the-Art Report (SOAR) 235

Section 6 Software Assurance Initiatives, Activities, and Organizations

recommends employing a secure environment that uses IA (including
computer network defense) and software assurance measures to detect, isolate,
and minimize the impact of any security violations, including those that may
result from execution of badly behaved software.

6.1.6 NRL CHACS
The Center for High Assurance Computing Systems (CHACS) [288] within the
NRL Information Technology Division conducts research activities in the focus
areas of “security, safety, availability and timely delivery of computational
results.” Major CHACS activities focus on formal methods to support the
accuracy and preservation of critical system properties.

Of CHACS’ six major research sections, three focus on aspects of software
security assurance:

u Formal Methods: Researching formal methods for modeling, analysis,
and verification of critical properties, e.g., verifying compilers, formal
verifications of pseudocode, formally based software tools

u Software Engineering: Researching software intrusion tolerance and
survivability, e.g., “Attack-potential-based survivability modeling for
high-consequence systems” and “Merging Paradigms of Survivability
and Security: Stochastic Faults and Designed Faults”

u Computer Security: Developing high-assurance building blocks,
e.g., “situation-aware middleware,” such as survivable intelligent
software agents.

6.1.7 DISA Application Security Project
The DISA Application Security Project was established in 2002 within
the Applications Division of the DISA Center for Information Assurance
Engineering (CIAE), to insert application security best practices into DISA’s (and
its contractors’) web and database application development processes. The
project had multiple objectives:

u Produce guidance for developers to help them produce more secure
web and database applications

u Survey automated web application and database vulnerability
assessment tools to identify “best of breed,” and collect these into a
toolkit, to be hosted on a “portable assessment unit”

u Use the vulnerability assessment toolkit to perform real-world
vulnerability assessments on web and database applications developed
by other DISA programs

u Provide application security subject matter expert consulting
support as directed.

After its first year, the project’s scope expanded to address the security
of web services. In years 2 and 3 of the project, the developer guidance was

Software Security Assurance State-of-the-Art Report (SOAR)236

Section 6 Software Assurance Initiatives, Activities, and Organizations

updated and expanded, and additional guidance documents were produced. As
of October 31, 2004, the project had produced the following documents:

u Application Security Requirements Engineering Methodology (2004)
u Reference Set of Application Security Requirements (2002, 2003, 2004)
u A series of Application Security Developer’s Guides (2002, 2003,

2004) comprising—

 Developer’s Guide to Software Security Testing

u Java 2 Execution Environment (J2EE) Container Security Checklist (2004)
u Application Vulnerability Assessment Tool Market Survey (2002, 2003, 2004)
u Application Vulnerability Assessment Methodology (2002, 2003, 2004).

All versions of these documents remain in draft status. Early versions of the
Reference Set and the Developer’s Guide were posted on the Information Assurance
Support Environment (IASE) website, but the 2004 revisions were never posted to
replace them. Of all the documents produced by the project, only the Reference Set
Version 2.0 was still available on the IASE website as of January 2006.

In addition to producing these documents, the project acquired,
integrated, and used the application vulnerability assessment toolkit to perform
two security assessments of DoD web applications, the Defense Logistics
Agency’s Enterprise Mission Assurance Support System (eMASS), and the DISA
Global Command Support System (GCSS).

A reorganization in DISA resulted in the transfer of the Application
Security Project to the Field Security Operation (FSO). Since that time, the
Application Security Project has ceased to exist as a separate effort. Instead,
FSO extracted and adapted much of the content of the developer’s guidance to
produce four documents:

u Application Services Security Technical Implementation Guide (latest
version: Version 1, Release 1, 17 January 2006; adapted from original
J2EE Container Security Checklist)

u Application Services Checklist (latest version: Version 1, Release 1.1, 31
July 2006; adapted from original J2EE Container Security Checklist)

u Application Security Checklist (latest version: Version 2, Release 1.9, 24
November 2006; adapted from original Reference Set of Application
Security Requirements and Application Security Developer’s Guides)

Software Security Assurance State-of-the-Art Report (SOAR) 237

Section 6 Software Assurance Initiatives, Activities, and Organizations

u Application Security and Development STIG (latest version: Version 1,
Release 1, 20 April 2007; adapted from original Reference Set of Application
Security Requirements and Application Security Developer’s Guides);

As of November 2006, FSO still implemented DISA’s application-related
STIGs and Checklists, which are posted on the DISA IASE website. In addition, a
significant portion of the content of the Application Security Project’s documents
formed the basis for DHS’s Security in the Software Life Cycle, whereas NIST used
the categorization of vulnerability assessment tools in the DISA market surveys as
one of the bases for its SAMATE tools classification and taxonomy.

6.1.8 Other DoD Initiatives
The initiatives discussed in the following section were established recently, or
are in the process of being established.

6.1.8.1 DoDIIS Software Assurance Initiative
Managed under the auspices of the Applications Solutions Branch (ESI-3A) of
the Defense Intelligence Agency (DIA), the newly established DoD Intelligence
Information System (DoDIIS) Software Assurance Initiative intends to promote
secure coding by all DoDIIS developers. The initiative will also finalize the
Agile Development Environment (ADE) being defined for use by all DoDIIS
developers. The ADE will provide a single standard set of tools and methods,
including the open source GForge code repository. The initiative also intends to
integrate secure development practices into all DoDIIS development projects’
SDLCs. The initiative’s guidance and products will be used by DIA and all other
defense intelligence components (e.g., National Geospatial Intelligence Agency,
National Reconnaissance Office), and by the military services’ intelligence
branches (e.g., Air Force Intelligence Agency).

6.1.8.2 US Army CECOM Software Vulnerability Assessments
and Malicious Code Analyses
The Security Assessment and Risk Analysis Laboratory of the US Army
Communications-Electronics Command’s (CECOM) Software Engineering
Center has established a software vulnerability assessment and malicious code
analysis capability in support of the US Army Command and Control Protect
Program. The CECOM assessment team has evaluated and compared three
different methodologies for software vulnerability and malicious code analysis,
and employs each selectively:

u Primarily manual analysis of source code using static analysis tools
u Semi-automated analysis using tools

Software Security Assurance State-of-the-Art Report (SOAR)238

Section 6 Software Assurance Initiatives, Activities, and Organizations

u Tools and methods (many still in the research stage) for fully
automated vulnerability and malicious code detection and analysis in
both source code and executable binaries.

For Further Reading

Samuel Nitzberg, et al. (InnovaSafe, Inc.), Trusting Software: Malicious Code Analyses (February 18, 2004).
Available from: http://www.innovasafe.com/doc/Nitzberg.doc

6.1.8.3 Air Force Application Security Pilot and Software
Security Workshop
From January to November 2006, the 554th Electronic Systems Wing (554
ELSW) at Gunter Air Force Base ran an application security pilot in which
they evaluated a range of vulnerability assessment, source code analysis,
and application virtualization and defense tools for their potential utility in
securing US Air Force application systems. The categories of tools and solutions
evaluated during the pilot included:

u Source Code Analysis: Tools from two vendors were used to assess eight
Java applications, revealing over 30,000 instances of common
vulnerabilities and nonsecure coding practices. After the pilot ended,
the 554 ELSW purchased tool licenses and used them in assessing a
major application system. The same source code analysis tools, with
customized rule sets, are expected to be used for code audits, in which
they will scan the entire application code base prior to build. Code
audits were not performed during the pilot.

u Runtime Analysis: The pilot included a demonstration of a runtime
analysis tool tracing the propagation of vulnerabilities throughout the
base, with reporting of runtime code coverage metrics.

u Penetration Testing: A tool with scripted “hacks” was demonstrated
against an application executing in a controlled environment. The 554
ELSW is considering implementing penetration testing as part of their
standard application regression testing.

u Application Virtualization: This pilot kicked off at the end of the
Application Security Pilot period (i.e., October 26, 2006), using a
personal computer virtual machine (VM) product that enabled running
of both Microsoft and Java applications, to secure desktop systems in
instances in which legacy applications were incompatible with the
security policy requirements of the Air Force’s Standard Desktop
Configuration. When the pilot ended, additional pilots were being
considered for the 554 ELSW at Wright-Patterson Air Force Base and
one or more sites in US Air Force-Europe.

u Application Defense: The pilot included implementation of a Honey
Pot, as well as intrusion detection, monitoring, and prevention
techniques and solutions.

http://www.innovasafe.com/doc/Nitzberg.doc

Software Security Assurance State-of-the-Art Report (SOAR) 239

Section 6 Software Assurance Initiatives, Activities, and Organizations

u Centralized Project Management: All other tools and solutions used in the
pilot were centrally managed through a web-based management
“dashboard” that implemented standardized vulnerability reporting
across all mission areas and program management offices.

On April 11–12, 2007, the Air Force Materiel Command 754th Electronic
Systems Group at Gunter AFB co-sponsored an Armed Forces Communications
Electronics Association Software Security Workshop, at Auburn University
in Montgomery, Alabama. The papers presented focused on software and
application security threat, vulnerability, risk, and remediation issues during
the various phases of the SDLC used by the 554 ELSW-WP as an organizing
principle for their Applications Security Pilot. Those phases include define,
design, code, test, and monitor.

6.1.9 DHS Software Assurance Program
The DHS Software Assurance Program provides a framework and
comprehensive strategy for addressing people, process, technology, and
acquisition throughout the SDLC. The program seeks to transition from patch
management as the standard approach for dealing with security weaknesses
and vulnerabilities to the broad ability to routinely develop and deploy software
products that start out trustworthy, high in quality, and secure, and remain so
throughout their lifetimes.

Through the hosting and co-sponsoring of various meetings and
forums, the DHS Software Assurance Program leverages public-private WG
collaborations to generate a broad range of guidance documents and other
products described in Sections 6.1.9.1 and 6.1.9.2.

6.1.9.1 Software Assurance Working Groups
The DHS Software Assurance Program currently sponsors seven working groups
(WG), which meet every other month (and more frequently, if a particular
concern needs to be addressed).

1. Business Case (Marketing & Outreach): This WG focuses on advancing the
awareness, understanding, and demand for assured software. This WG
is establishing a consistent message that can be presented in different
formats and at different levels of understanding to express the need
for information assurance. In September 2006, this WG collaborated
with the CIO Executive Council to develop the survey that focused on
“Software Assurance” (via the terms “Reliability” and “Stability”), the
findings of which are being assessed by the WG to form the basis for the
emphases of its future activities.

2. Technology, Tools, and Product Evaluation: This WG focuses on the
technology aspect of software assurance. This WG is looking at product
evaluations and the tools necessary to accomplish this objective.

Software Security Assurance State-of-the-Art Report (SOAR)240

Section 6 Software Assurance Initiatives, Activities, and Organizations

Currently, this WG tracks and influences the activities of the DHS-
sponsored NIST SAMATE program, the MITRE Common Weakness
Enumeration (CWE), and efforts of the NSA CAS.

3. Acquisition: This WG focuses on requirements for ensuring the
acquisition of secure software. This WG is looking at enhancing
software supply chain management through improved risk mitigation
and contracting for secure software. The first product of this WG is a
draft guidance document to assist acquisition managers in drafting
software assurance-relevant language in procurement documents
(e.g., requests for proposal, statements of work) for software products
and services, establishing security evaluation criteria for solicitation
responses, and using those criteria in the assessment of those
solicitation responses. The Acquisition Management Guide for Software
Assurance is being jointly developed by contributors from academia,
industry, and government, and will address concerns of all parties
involved in acquisition. The Guide will include—

successful models

that includes provisions on liability

efforts by eliciting information about the software supply chain.
4. Processes and Practices: This WG focuses on improving software

development processes to increase their likelihood of producing
secure software. The WG is specifically identifying and, in some cases,
producing guidance, standards, practice examples, configuration
guidance, and conformance checks that help promote secure SDLC
activities. The main activities of this WG have been the production of
the Security in the Software Life Cycle document, and the tracking and
influencing of ISO/IEC, Institute of Electrical and Electronics Engineers
(IEEE), and OMG software assurance-relevant standards initiatives.

5. Workforce, Education, and Training: This WG produced the draft Common
Body of Knowledge (CBK) as a basis from which academic instructors
can develop secure software engineering curricula for universities,
community colleges, and other academic institutions. Draft Version
1.1 of the CBK was released in August 2006, publicly reviewed, and
discussed at a specially convened workshop for software engineering
and information assurance academics in fall 2006. The draft CBK
is expected to be published shortly after a final revision that will
address public and workshop comments. The WG has also drafted a
counterpart “essential body of knowledge” (EBK) that will be offered as
the basis for development of workforce training programs and classes.

6. Measurement: This WG includes representatives from government,
industry (including members and executives of the International

Software Security Assurance State-of-the-Art Report (SOAR) 241

Section 6 Software Assurance Initiatives, Activities, and Organizations

Systems Security Engineering Association), and academia. The WG is
chartered to consider ways in which the degree of assurance provided
by software can be assessed using quantitative and qualitative
methods and techniques. The WG has just released for review within
the DHS Software Assurance Program Practical Guidance for Software
Assurance and Information Security Measurement (Draft Version 2.0).
This document defines an approach for quantifying and assessing the
degree to which software assurance techniques have been integrated
into SDLC processes, and for evaluating the effectiveness of such
integration in terms of the level of increased trustworthiness of the
software produced by those processes. The document also seeks to
facilitate compatibility of outputs from existing network-, system-,
and software-level testing, assessment, and monitoring tools, and
metrics from measurement approaches such as CMMi; Practical
Software Measurement (PSM); NIST SP 800-55, Security Metrics Guide
for Information Technology Systems; and the draft of ISO/IEC 27004,
Information Security Management Measurement. In addition to its work
on the Guide, the WG also contributed to the OMG request for proposal
to develop a software metrics metamodel.

7. Malware: This, the most recently formed of the WGs, has to date focused
on enumerating the attributes of malicious software (“malware”),
so that the different types of malware can be characterized and the
attribute-base characterizations can be combined with the emerging
legal definitions for the different types of malware. Using the glossary
published by the Anti-Spyware Coalition’s Working Report, [289] the
Malware WG’s efforts are intended to complement those of the Common
Malware Enumeration (CME) initiative described in Section 3.2.3.2.

The activities of the DHS Software Assurance WGs are briefed at the twice-
yearly Software Assurance Forums co-sponsored by DHS and DoD.

6.1.9.2 Other Products and Activities
The DHS Software Assurance Program also sponsors a number of activities and
artifacts not directly linked to specific WGs.

u US-CERT BuildSecurityIn Portal: Located on the World Wide Web at
https://buildsecurityin.us-cert.gov/, the BuildSecurityIn portal is a
compendium of theoretical background and practical guidance
information developed and assembled by multiple contributors
throughout the software development, software assurance, and
software security communities, and directed towards an audience of
software developers, architects, and security practitioners.

u Software Assurance Landscape: The Software Assurance Landscape has
been envisioned to provide a single place for interested parties to find

https://buildsecurityin.us-cert.gov/

Software Security Assurance State-of-the-Art Report (SOAR)242

Section 6 Software Assurance Initiatives, Activities, and Organizations

descriptions of past, current, and planned activities, organizations,
practices, and technologies that characterize the current “landscape” of
the software assurance community. In addition to identifying a wide
range of information resources, the Landscape will identify gaps in the
current landscape that are hindering the universal adoption of software
assurance ethos, processes, and practices, and will suggest solutions to
close those gaps. An annotated outline of the Landscape was released for
public discussion on October 16, 2006. The anticipated size, scope, and
volatility of the Landscape’s content have led DHS to consider publishing
it in the form of an online knowledge base, rather than as a document. A
second draft was briefed at the Software Assurance Forum in early March
2007, after which development of the Landscape’s content was begun. To
minimize duplication of effort and maximize consistency, the Landscape
project team is coordinating its efforts with the authors of the DHS
Security in the Software Life Cycle. It is also anticipated that the
Landscape developers will use this SOAR as a key source.

6.1.10 NIST SAMATE
The DHS Software Assurance Program and NIST are jointly funding and
overseeing the SAMATE project, [290] which they established to accomplish two
primary objectives:

u Develop metrics to gauge the effectiveness of existing software
assurance tools

u Assess current software assurance methodologies and tools to identify
deficiencies that may introduce software vulnerabilities or contribute
to software failures.

Specifically, the SAMATE project is intended to address concerns related to
assessing “confidence” in software products—i.e., quantifying through
well-established metrics the level of assurance in software products with
respect to security, correctness of operation, and robustness. This goal extended
to assessing “confidence” in the effectiveness of existing software assurance
tools—namely the accuracy of reporting features and the incidence of false
positives and negatives. Due to the variability across tool suites, however,
a standard testing methodology was needed to establish a structured and
repeatable baseline for evaluating software effectiveness.

The project has established a publicly accessible, web-based Software
Reference Dataset (SRD) of more than 1,700 examples for evaluating tools.
These examples include contributions from academia, government, and
security researchers, as well as examples written for specific tests. The SRD
contains code with known weaknesses and, to assist in measuring false positive
rates in testing tools, code without weaknesses. Most of the examples are short
pieces of code written in C, with some examples in Java and C++, and some

Software Security Assurance State-of-the-Art Report (SOAR) 243

Section 6 Software Assurance Initiatives, Activities, and Organizations

larger code examples extracted from public software packages. The SRD also
includes sample designs in Unified Modeling Language (UML), requirement
specifications, and executable code.

In an attempt to thoroughly scope the problem of measuring software
assurance confidence and tool effectiveness and achieve vendor community
buy-in, the SAMATE project has defined an approach roadmap that relies on
several community feedback loops, including workshops focused on helping SA
tool developers, researchers, and users prioritize particular software assurance tool
functions and define metrics for measuring the effectiveness of these functions.

Products and activities to be produced by SAMATE include—
u Taxonomy of classes of software assurance tool functions
u Workshops for software assurance tool developers and researchers and

users to prioritize particular software assurance tool functions
u Specifications of software assurance tool functions
u Detailed testing methodologies
u Workshops to define and study metrics for the effectiveness of software

assurance functions
u A set of reference applications with known vulnerabilities
u Papers in support of SAMATE metrics, including a methodology for

defining functional specifications, test suites, and software assurance
tool evaluation metrics.

Informally announced at the DHS Software Assurance WG meetings in
late January 2007, a Software Assurance Labs Consortium is also being planned
to fall under the umbrella of SAMATE activities. This consortium will represent
both private and government test labs involved in the evaluation or assurance
of software product security, with possible future objective of establishing
standard software assurance “ratings” for software-intensive systems and
commercial software products.

6.1.11 NASA RSSR
The National Aeronautics and Space Administration (NASA) Reducing
Software Security Risk (RSSR) program [291] sponsored by the NASA
Software IV&V Facility is working to define a formal analytical approach for
integrating security into existing and emerging practices for developing high-
quality software and systems. The RSSR seeks to address several problems
typically associated with security in the SDLC. From November 2000 to
December 2005, engineers from NASA Jet Propulsion Laboratory (JPL) (at the
California Institute of Technology) and from University of California at Davis
collaborated under the RSSR through an Integrated Approach project [292] to
develop the Software Security Assessment Instrument (SSAI) (referred to in
Section 5.1.3.2), which seeks to address the following problems:

Software Security Assurance State-of-the-Art Report (SOAR)244

Section 6 Software Assurance Initiatives, Activities, and Organizations

u Absence of security in software and system engineering
u High cost of formally specifying security properties
u Cycle of “penetrate and patch”
u Predominantly piecemeal approach to security assurance.

To address these problems, the SSAI includes the following tools,
procedures, and instruments:

u Software security checklist
u Vulnerability matrix
u Modeling instrument
u Property-based testing tool
u Training.

These tools and instruments can be used individually or in tandem to
support the following functionality:

u Model-Checking: The SSAI’s model checking involves building a state-
based model of the system, identifying properties to be verified, and
checking the model for violations of specified properties. Its flexible
modeling framework features adaptability to early life cycle events. The
SSAI includes a model-based verification and a flexible modeling
framework that provides newly discovered vulnerability scenarios to
VMatrix, a matrix of known vulnerability probabilities. Model-based
verification also provides life cycle verification results to the property-
based tester (PBT).

u Property-Based Testing: Using an instrumenter, test execution monitor,
and program verifier, PBT employs a code-slicing technique to
iteratively test software for violations of security properties. PBT
examines data from program executions to assess as many control
paths within the Java, C, or C++ source code as possible. The verifier is
used subsequently to ensure that security property violations have not
been reintroduced into source code during later coding.

With the cooperation of PatchLink Corporation, the NASA Independent
Verification and Validation (IV&V) Center successfully used the SSAI to verify
the security properties of PatchLink’s Java-based UNIX agent. PatchLink is using
the findings of the NASA assessment to improve the security of the product.

6.1.11.1 Recent Research Results
Since the release of the SSAI in 2005, RSSR has focused on—

u Achieving a higher level of automation in the SSAI.
u Release of an updated version of the PBT, and definition of future

enhancements to the tool.

Software Security Assurance State-of-the-Art Report (SOAR) 245

Section 6 Software Assurance Initiatives, Activities, and Organizations

u Integration of a mechanism to automatically transform natural
language security requirements into formal specifications of those
requirements that can then be model checked using the Spin model
checker. The Spin model checker results would then be verified by the
PBT to ensure they are not violated in the actual code. (Completion of
this effort depends on release by NASA of further funding.).

u Improved specification and validation of formal models, simulations,
and measurements.

u Improved techniques for defect detection and prediction.
u Normalization of various modeling artifacts of the to enable

improved analysis.
u Enhanced scope and capabilities of the software IV&V tools used by NASA.

Though not all of these projects specifically focus on software security,
NASA anticipates that the resulting improvements in software quality and
dependability will also benefit security.

6.2 Private Sector Initiatives
The following initiatives have been undertaken in the private sector, typically as
consortia with membership primarily from the commercial sector (e.g., software
tool vendors, major software suppliers), but also with significant participation by
organizations and individuals in the academic and government sectors.

6.2.1 OWASP
Open Web Application Security Project (OWASP) [293] defines itself as “an
open source community” of software and application security practitioners
dedicated to helping organizations in the private and public sectors develop,
purchase, and maintain trustworthy application software. OWASP produces
tools and documents, and sponsors forums and chapters. Its products are
distributed under approved open source license to any interested party.

OWASP promotes the notion of web application security as a composite
of people, processes, and technology. The extensive information and software
it produces are developed collaboratively by OWASP members and outside
participants. OWASP warrants that the information in its publications is
independent of any individual commercial or proprietary interest.

OWASP projects are organized as collections of related tasks with a
single defined roadmap and team leader; the team leader is responsible for
defining the vision, roadmap, and tasking for the project. OWASP projects
have produced artifacts ranging from guidance documents, to tools, teaching
environments, checklists, and other materials.

Software Security Assurance State-of-the-Art Report (SOAR)246

Section 6 Software Assurance Initiatives, Activities, and Organizations

6.2.1.1 Tools
To date, OWASP has released two significant tools:

u WebGoat: This deliberately insecure, interactive web application is
designed to be used in a tutorial context. As it runs, WebGoat prompts
users to demonstrate their knowledge of security by exploiting
vulnerabilities in the WebGoat application.

u WebScarab: This vulnerability assessment framework is used to analyze
web applications and web services. Written in Java and thus portable to
many platforms, WebScarab’s various modes of operation are
implemented by a number of plugins.

6.2.1.2 Documents and Knowledge Bases
OWASP has also published extensive tutorial and guidance material, including—

u AppSec FAQ: This FAQ answers common developer questions about web
application security. Its content is not specific to a particular platform
or language; instead, it addresses the most common threats to all web
applications regardless of language or platform.

u Guide to Building Secure Web Applications: This document is a
comprehensive manual on designing, developing, and deploying
secure web applications. Now in its second version, the OWASP Guide
has served as a key source of guidance for many architects, developers,
consultants, and auditors. According to OWASP, the Guide has been
downloaded more than 2 million times since its publication in 2002
and is referenced by several leading government, financial, and
corporate security and coding standards.

u Legal knowledge base: This project has established a knowledge base of
materials on the legal aspects of secure software, including contracting,
liability, and compliance.

u Top Ten Web Application Security Vulnerabilities: This is the first of
OWASP’s major projects, and the one that brought the organization
into international prominence. The Top Ten identifies and describes a
broad consensus of opinion on the most critical security vulnerabilities
and weaknesses in web applications. The 2002 Top Ten has been widely
cited as a minimum standard for web application security, providing
the basis upon which a number of other application and software
security vulnerability taxonomies have been defined. All of the major
vendors of application vulnerability scanners advertise their products’
ability to detect the vulnerabilities listed in the OWASP Top Ten. OWASP
published a new version of the Top Ten in May 2007.

Software Security Assurance State-of-the-Art Report (SOAR) 247

Section 6 Software Assurance Initiatives, Activities, and Organizations

6.2.2 OMG SwA SIG
The OMG SwA Special Interest Group (SIG) [294] works with the OMG Platform
and Domain Task Forces and several external software industry organizations
to coordinate and establish a common framework for analysis and exchange of
information to promote software trustworthiness. The larger framework can be
broken down into the following components:

u A framework of software properties that can be used to present any/all
classes of software so software suppliers and acquirers can represent
their claims and arguments

u Verification of products, ensuring satisfactory characteristics for system
integrators who will use those products to build larger assured systems

u Enablement of industry, improving visibility into the current status of
software assurance, and developing automated tools that support the
common framework.

The SwA SIG is able to leverage related OMG specifications, such
as Knowledge-Driven Modernization and Software Process Engineering
Metamodel, and particularly the various quality and maturity models for
security with OMG specifications. The SwA SIG is working to identify scenarios
in which the OMG Software Assurance Framework can be applied

6.2.2.1 Products
A noteworthy SwA SIG project is the development of the Software Assurance
Ecosystem, which is emerging as a framework and infrastructure for the exchange
of information related to software assurance claims, arguments, and evidence.
Initially, the Software Assurance Ecosystem infrastructure integrates tools and
outputs from three different realms of software engineering: formal methods,
reverse engineering, and static analysis. The purpose of the Ecosystem is manifold:

u To provide an effective vehicle for communications of assurance
information between developers and stakeholders on the one hand,
and certifiers and evaluators on the other

u To provide a repository for gathering assurance claims and arguments
u To improve the objectivity and accuracy of evidence collection
u To enable the rapid evaluation of evidence and building of evidence

correlation models
u To automate validation of claims against evidence, based on arguments
u To enable more accurate and highly automated risk assessments.

6.2.3 WASC
Web Application Security (WASC) [295] was founded in January 2004 by a
group of web application security tools vendors (Application Security, KaVaDo,
Sanctum, SPI Dynamics, and WhiteHat Security) with the stated objective of
establishing, refining, and promoting Internet security standards.

Software Security Assurance State-of-the-Art Report (SOAR)248

Section 6 Software Assurance Initiatives, Activities, and Organizations

The consortium’s members, which include not only corporations but
individual experts and industry practitioners as well as noncommercial
organizational representatives, collaborate on research, discussion, and
publication of information about web application security issues and
countermeasures to specific threats. Their intended audience includes
individuals as well as enterprises.

WASC also acts as an advocate for Internet users in general, and for
web application security practitioners in particular. Though WASC welcomes
corporate members, it claims to be vendor neutral. WASC also differentiate
itself from OWASP, which appears to share many of the same objectives.
According to WASC, its main objectives—to provide a public resource for
industry guidance, freely exchangeable literature (no open source license
is required), and documented standards, and to promote web application
security standards and best practices—differ from OWASP’s, which WASC
considers more “goal-oriented” in its multiplicity of open-source web security
software development projects and documentation initiatives. (Interestingly,
in November 2005, WASC published its Web Security Threat Classification,
apparently an answer to the OWASP Top Ten.)

Some industry insiders, however, have suggested that WASC was started
by former OWASP members who were unhappy with the level of influence a
few corporate members had in that organization. WASC detractors in OWASP,
on the other hand, have criticized WASC for being little more than a marketing
platform for its corporate founders. They also deplore WASC’s overall tone as
promoting fear, uncertainty, and doubt (FUD).

Ultimately, as one blogger put it, “How is WASC going to play with OWASP?
Time will tell, but in my opinion the more Web application security awareness
the better.” Indeed, several individuals and organizations see value in both
consortia, and belong to both.

6.2.4 AppSIC
The Application Security Industry Consortium (AppSIC) [296] is a nonprofit
organization founded in 2005 as a “community of security and industry thought
leaders” consisting of experts, technologists, industry analysts, and consumers
in the application security sector. The organization’s goal is to establish and
define international cross-industry security metrics and guidelines to help
organizations measure security return on investment (ROI) and apply metrics
to buying security products.

AppSIC aims to serve as a bridge between the academic, industrial,
vendor, and business user communities on application security. It seeks
to produce business and technically relevant results. AppSIC distinguishes
itself from other consortiums by synthesizing the views of a diverse range
of companies and experts. Founding members include executive-level
representatives of Security Innovation, Microsoft, Red Hat, Oracle, IDC, Gartner,

Software Security Assurance State-of-the-Art Report (SOAR) 249

Section 6 Software Assurance Initiatives, Activities, and Organizations

Internationale Nederlanden Groep (ING), Systems Applications and Products
(SAP), Compuware, Secure Software, the Florida Institute of Technology, and
Yoran Associates. Other significant organizations have joined, including Ounce
Labs and Credit Suisse. AppSIC membership is open to all interested parties;
the consortium charges no membership fee.

The broader goals of AppSIC include—
u Developing metrics for effectiveness of secure software

development processes
u Generating application security assessment criteria
u Developing guidelines to help software development organizations

address application security issues in their life cycle processes
u Developing business metrics for measuring ROI for application

security spending.

AppSIC’s first deliverable, in July 2006, was a position paper entitled
What Security Means to My Business that attempts to capture a business case
for software security and to lay the foundation for metrics for measuring
business risk that stems from insecure software, with a view towards
substantively mitigating that risk.

6.2.5 SSF
Launched in February 2005, the Secure Software Forum (SSF) [297] is a
collaborative initiative between major commercial software vendors to provide
a starting place for cross-industry discussions and education on how best to
implement Application Security Assurance Programs (ASAP). The forum at
inception was co-sponsored by Microsoft Corp., Fortify Software, Information
Systems Security Association, and Mercury Interactive Corp. Its sponsorship has
since expanded to include SPI Dynamics, Visa, and Wintellect.

The forum is designed to facilitate the sharing of industry best
practices and key issues that must be solved to ensure more secure software
development. Their key efforts to date have been—

u Sponsorship of SSF events for executive-level attendees involved in
security operations, software development, and quality assurance

u A 2005 survey on the state of software security awareness and practices
among their events’ attendees (Results of this survey are discussed in
Section 7.2.3.2)

u Publication of a white paper reporting the activities and successes of
SSF’s members to date

u Drafting by SPI Dynamics of a guidance document for use by software
firms that are seeking to implement ASAPs.

Software Security Assurance State-of-the-Art Report (SOAR)250

Section 6 Software Assurance Initiatives, Activities, and Organizations

6.2.5.1 “State of the Industry” White Paper
In 2006, SSF contracted Reavis Consulting Group to draft Developing Secure
Software: The State of the Industry as Determined by the Secure Software
Forum. This white paper describes the findings of SSF-sponsored industry
collaboration events (roundtables, workshop, and webcast events) conducted
throughout 2005 with information security and application development
executives from Global 2000 organizations.

The paper surveys industry problems in software development and
suggests aspects of available solutions. Specific topics addressed include—

u Threats caused by insecure software
u Common software development methodologies
u Progress to date of Microsoft’s Trustworthy Computing Initiative,

including the firm’s use of its SDL
u Efforts to improve software security through adoption of SPI Dynamics’

concept of the ASAP, with a proposed Maturity Model to help drive
ASAP adoption.

6.2.5.2 ASAPs
The SSF is promoting the creation of ASAPs by organizations that produce
application software. According to the SSF, these ASAPs should embrace the
following set of broad principles to improve the security of software:

u There must be executive level commitment to secure software.
u Security must be a consideration from the very beginning of the

software development life cycle.
u Secure software development must encompass people, processes,

and technology.
u Metrics must be adopted to measure security improvements and

enforce accountability.
u Education is a key enabler of security improvements.

Beyond stating these principles, the ASAP guidance provided in the Developing
Secure Software white paper does not suggest a specific process improvement model
or SDLC methodology, nor does it even identify the required features such a model
or methodology would need to help accomplish ASAP objectives.

The SSF is now discussing a proposal to further refine the ASAP Maturity
Model proposed by SPI Dynamics to help drive adoption of ASAPs. This model
is described in Developing Secure Software.

6.2.6 Task Force on Security Across the Software
Development Life Cycle
In 2003, DHS co-sponsored the first National Cyber Security Summit, an
assembly of public and private sector leaders convened to discuss how the DHS
CS&C NCSD should move forward in implementing the President’s National

Software Security Assurance State-of-the-Art Report (SOAR) 251

Section 6 Software Assurance Initiatives, Activities, and Organizations

Strategy to Secure Cyberspace, released in February 2003. The Summit was
co-hosted by four leading industry associations: the US Chamber of Commerce,
the Business Software Alliance, the Information Technology Association of
America, and TechNet. Collectively, these industry organizations formed
themselves into the National Cyber Security Partnership (NCSP).

Coincidentally with the summit, at the behest of the DHS, the NCSP
established a Task Force on Security Across the Software Development Life
Cycle composed of four subgroups:

1. Education: Focused on present and future developers, this subgroup
recommended that—

programs at the university level with sufficient resources to build
the academic capacity to improve secure software development

established for IT professionals

The Education subgroup produced a set of recommendations.
2. Process: Looked into developing and sharing best practices to improve

the quality of software as well as the production processes so systems
are more resilient to attack. The subgroup produced a report entitled
Processes to Produce Secure Software, [298] which documented software
development practices, tools, and strategies that software producers
could use to produce (more) secure software.

3. Incentives: Focused on identifying incentives that—

of software development

software vendors

The Incentives subgroup produced an Incentives Framework outlining
recommendations to aid policymakers, developers, companies, and others in
developing effective strategies and incentives for producing, acquiring, and
using software in ways that increases its security.

4. Patching: Focused on defining steps that can be taken to enhance the
patching process to reduce complexity, increase its effectiveness,
improve reliability, and ultimately, minimize costs and risk. The
subgroup identified and categorized specific recommendations
for technology providers, critical infrastructure providers, and
independent software vendors.

Software Security Assurance State-of-the-Art Report (SOAR)252

Section 6 Software Assurance Initiatives, Activities, and Organizations

In 2004, the Security Across the Software Development Life Cycle Task
Force published a report entitled Improving Security across the Software
Development Life Cycle. [299] This report summarized the activities of the
summit, and the recommendations of the task force’s four subgroups.

The DHS Software Assurance Program’s WGs can be seen as successors to
the task force’s four subgroups.

6.2.7 New Private Sector Initiatives
As with the new DoD initiatives documented in Section 6.1.8, the following new
private sector initiatives have only recently been announced or established, and
thus there is little to report as yet on their activities.

6.2.7.1 Software Assurance Consortium
Announced by Concurrent Technologies Corporation at the DHS Software
Assurance WG plenary on January 24, 2007, and chartered on March 8, 2007, the
objective of the Software Assurance Consortium will be to engage a significant
sector that has not been involved in any of the other software assurance activities
or consortia now in existence, i.e., the software consumer. The “consumer” in this
context is represented by CIOs in the public and private sectors.

The governing constraint on the charter of the Software Assurance
Consortium is that all activities will be consumer driven and consumer
focused. The consortium’s steering committee and officers will all come from
consumer organizations, and legally enforceable criteria will be defined to
govern the participation of consumer organizations that are also involved
in the production of software (e.g., systems integrators, organizations that
develop software for their own use).

The Software Assurance Consortium will not duplicate the efforts of
other existing consortia, such as the Secure Software Forum or OWASP.
Instead, it will provide a framework in which existing and emerging consortia
representing other communities (e.g., software producers, tools vendors,
test labs, standards groups) can come together to pursue discussions and
activities of joint interest as long as those discussions/activities have the
explicit objective of benefiting the software consumer.

Some of the activities planned or under consideration for the
consortium include—

u Gather and coordinate consumer software assurance needs,
requirements, concerns, and priorities

u Define requirements for risk assessment and testing of software; do so
using language that includes standard representations of software
vulnerabilities (e.g., Common Vulnerabilities and Exposure (CVE), CWE)

u Identify and provide information about end-user tools that can solve
specific user/consumer software security problems (e.g., anti-malware,
anti-spyware)

Software Security Assurance State-of-the-Art Report (SOAR) 253

Section 6 Software Assurance Initiatives, Activities, and Organizations

u Establish a scheme for rating software products’ security, quality, assurance
u Identify software best practices, guidance, etc., of benefit from a

consumer perspective
u Fund research that will benefit consumers and fill perceived R&D gaps.

The consortium will have several desired outcomes:
u Consumers will become more explicit, specific, comprehensive, and

consistent in expressing requirements for software that is dependable
and secure.

u Consumers will have a better basis (in terms of knowledge, motivation,
and tools) for acquiring software that is secure, and for securely
using/managing their current and future software.

u Output from the consortium will inform the choices, activities, and
strategic and tactical directions of other software communities
(vendors, integrators, test labs, acquisition organizations, policy
authors, standards bodies, academics).

In March 2007, it was announced that Dan Wolf, formerly the Director of
NSA Information Assurance Directorate and initiator of the NSA CAS, had agreed
to take on the role of Executive Director of the Software Assurance Consortium.

6.3 Standards Activities
A number of mainly process-oriented standards activities are focused on
achieving security assurance in the software development life cycle. OMG
standards are addressed in Section 6.2.2.

6.3.1 IEEE Revision of ISO/IEC 15026: 2006
This standard is discussed in Section 5.1.4.2.2.

6.3.2 IEEE Standard. 1074-2006
IEEE Standard 1074-2006 is a revision of the IEEE Std. 1074-1997, Developing
Software Project Life Cycle Processes, intended to add support for prioritization
and integration of appropriate levels of security controls into software and
systems. The new standard adds a small number of security-focused activities
to the SDLC process defined in the 1997 version of the standard.

IEEE Std. 1074-1997 formed the basis for developing ISO/IEC 12207.1, Standard
for Information Technology–Software Life Cycle Processes; and 12207.2, Software
Life Cycle Processes–Life Cycle Data. The main objective of both the IEEE and ISO/
IEC standards is to define a quality-driven SDLC process. Neither standard contains
specific security guidance, although ISO/IEC 12207 does suggest the need for security
activities and references the very few security standards in existence when 1074-1997
and 12207 were first adopted that pertained to the software or system life cycle.

Software Security Assurance State-of-the-Art Report (SOAR)254

Section 6 Software Assurance Initiatives, Activities, and Organizations

Unlike ISO/IEC 12207, IEEE 1074-2006 includes documentation of security
risks and solutions throughout the SDLC; to do so, it leverages Common
Criteria assurance principles and assets, defines a security profile for evaluation
of software integrity as well as documentation needed to ensure secure
operations, and generally covers security areas not addressed in ISO/IEC 12207
(e.g., the security risks inherent in system and software change control).

As the source for new security activities or artifacts to be added to
IEEE 1074-1997 Project Activities, the IEEE team that undertook revision of
the standard started by analyzing ISO/IEC 17799:2000, Code of Practice for
Information Security Management and ISO/IEC 15408 Common Criteria for
Information Technology Security Evaluation. The resulting new 1074 Project Life
Cycle Process Framework elevates the visibility and priority of security to that of
other compelling business needs.

The IEEE team also ensured that IEEE Std. 1074-2006 aligns with several
quality assurance and improvement standards:

u QuEST Forum’s TL 9000, the telecommunication industry’s extension to
ISO 9000 (IEEE 1074-2006 requires the definition of a user’s software life
cycle consistent with this standard)

u ISO 9001, Quality Management Systems—Requirements, Section 7.1,
“Planning of Product Realization”

u ISO/IEC 9003 (superseded by ISO 9001:2000)
u CMMI Organizational Process Definition, which requires the

establishment of standard processes, life cycle model descriptions,
tailoring criteria and guidelines, and establishment of a measurement
repository and process asset library)

u ISO/IEC 15288, Systems Engineering Life Cycle
u ISO/IEC 12207, Software Life Cycle.

Unlike these earlier quality-driven standards, however, the new IEEE
Std. 1074-2006 includes guidance for prioritizing security and supporting
security measurement for both software projects and software products. The
revised standard provides a systematic approach to defining specific security
requirements and producing quality security artifacts for each discreet life cycle
activity, as well as ongoing audit, improvement, and maintenance of product
and process security. The standard supports acceptance testing and validation
of security, and requires that products attain security accreditation by an
independent security/integrity auditor. The guidance in IEEE Std. 1074-2006
was intentionally structured to be easily adapted for tools-based conformance
measurement. The standard also defines enhanced security training activities.

6.3.3 ISO/IEC Project 22.24772
The Other Working Group on Vulnerabilities within the ISO/IEC Joint
Technical Committee on Information Technology (JTC1) SubCommittee
on Programming Languages (SC22) has been assigned responsibility for

Software Security Assurance State-of-the-Art Report (SOAR) 255

Section 6 Software Assurance Initiatives, Activities, and Organizations

project 22.24772. [300] The mandate of this Project, which is currently being
organized, is to produce a technical report (TR) [301] entitled Guidance
to Avoiding Vulnerabilities in Programming Languages Through Language
Selection and Use. This TR, scheduled for publication in January 2009, will
provide guidance for programmers on how to avoid the vulnerabilities
that exist in the programming languages selected for use on their software
projects. While it is not the explicit purpose of the TR, the guidance is
expected to help programmers select the most appropriate languages for
their projects and choose tools that may help them evaluate and avoid known
language vulnerabilities. The vulnerabilities to be identified in the TR will be
derived from various non-ISO efforts underway to identify and categorize
vulnerabilities and other forms of weaknesses, including the MITRE CWE.

For routine vulnerabilities, the TR will suggest alternative coding
patterns that are equally effective but which avoid the vulnerability or
otherwise improve the predictability of the compiled program’s execution.
When such measures are not possible, the TR may suggest static analysis
techniques for detecting vulnerabilities and guidance for coding in a manner
that will improve the effectiveness of this analysis. When static analysis is not
feasible, the TR may suggest the use of other testing or verification techniques.
Whenever possible, the report will help users understand the costs and
benefits risk avoidance, and the nature of residual risks.

In addition to publishing the TR explaining the different kinds of
vulnerabilities and how they can be avoided in different programming languages,
Project 22.24772 is considering liaison with the ISO/IEC standards committees
responsible for individual programming language standards to determine what
issues might be examined in those languages. The project is also examining
several existing coding guidelines as potential sources for its TR, including (but
not limited to) the CMU CERT’s Secure Coding Standards for C and C++; the US
Nuclear Regulatory Commission’s Review Guidelines for Software Languages
for Use in Nuclear Power Plant Safety Systems: Final Report (Nuclear Regulation
NUREG/CR-6463, Rev. 1, 1997); and ISO/IEC TR 15942:2000, Guide for the Use of
the Ada Programming Language in High Integrity Systems.

6.3.4 ISO/IEC TR 24731
ISO/IEC JTC1/SC22 WG 14 is focused on defining safety and security
standards for programming languages. One of the first products of its
efforts is TR 24731, Information Technology–Programming Languages,
Their Environments and System Software Interfaces–Extensions to the C
Library–Part I: Bounds-checking Interfaces. [302] TR 24731 defines a set of
standard extensions to the C programming language (standardized in ISO/IEC
9899:1999) that will add memory bounds checking capability, thus reducing
the risk of buffer overflows in programs written in C.

Software Security Assurance State-of-the-Art Report (SOAR)256

Section 6 Software Assurance Initiatives, Activities, and Organizations

6.3.5 IEEE Standard P2600 Section 9.9.2
Section 9.2.2 of the draft IEEE Std. P2600, Hardcopy System and Device Security, is
[303] entitled “Methodologies and Processes for the Development of Secure HCDs
(hardcopy devices).” Section 9.2.2 provides informative (rather than normative)
guidance on principles, risk management considerations, and life cycle processes,
methodologies, and practices that, if undertaken by developers and managers, are
intended to produce secure software for use in hardcopy devices and systems.

It is interesting to note that the P2600 WG, peopled solely by representatives
from hardcopy device/system vendors, included in the P2600 standard guidance
that reflects current secure software engineering best practices gleaned from
several of the most frequently cited software security books and resources. The
inclusion of software security guidance in P2600 is an encouraging indicator
that software security awareness efforts and publications are having a positive
influence on the broader community of software practitioners.

6.4 Legislation Relevant to Software Security Assurance
Developers’ liability for insecure products is not addressed in current legislation
either at the Federal or state levels. However, prohibitions on certain activities
that affect the security of software (e.g., tampering, denial of service, malicious
code) are included in a number of laws pertaining to computer security or
Internet security. The relevant language in these laws is identified in Table 6-1.

Table 6-1. Legislation with Software Security Relevance

Prohibition Federal Code State Code

Against tampering
with and denial
of service
to software
programs

u 18 United States
Code (U.S.C.) Part I,
Chapter 47, Section
(§) 1030(5)(A)(i)

u Note that language
in the earlier
Subsection (g)
expressly absolves
vendors of all
responsibility
for producing
vulnerable
software, to whit:

 “No action may be
brought under this
subsection for the
negligent design
or manufacture
of computer
hardware,
computer software,
or firmware.”

- Alaska Statute § 11.46.740
- Arizona Revised Statute § 13-2316
- Arkansas Code § 5-41-202
- California Penal Code § 502
- Colorado Revised Statute § 18-5.5-102
- Illinois Criminal Code Chapter 720 -Illinois

Compiled Statutes (ILCS), 5/16D-3
- Michigan Compiled Laws § 752.795
- Minnesota Statute § 609.88
- Nebraska Revised Statute § 28-1345
- Nevada Revised Statute § 205.4765
- New Jersey Statute Annotated § 2C:20-25
- New Mexico Statute § 30-45-4
- North Carolina General Statute § 14-455
- Ohio Revised Code Annotated § 2909.07
- 18 Pennsylvania Consolidated Statute

Annotated § 7611, 7612, 7615
- South Carolina Code Annotated § 16-16-20
- Tennessee Code § 39-14-602
- Texas Penal Code § 33.02
- West Virginia Code § 61-3C-7

Software Security Assurance State-of-the-Art Report (SOAR) 257

Section 6 Software Assurance Initiatives, Activities, and Organizations

Table 6-1. Legislation with Software Security Relevance - continued

Prohibition Federal Code State Code
Against
intellectual
property violations
that involve
tampering, denial
of service, or
unauthorized
copying,
disclosure, or
distribution of
software

17 U.S.C. § 1201 - Florida Statute § 815.04
- Mississippi Statute § 97-45-9
- 18 Pennsylvania Consolidated Statute

Annotated § 7614

Against
distribution
and/or installation
of malware
(including
spyware)

None known - Arkansas Code § 5-41-202
- Colorado Revised Statute § 18-5.5-102
- Georgia Code Annotated § 16-9-153
- Florida Statute § 815.04
- Maine Revised Statute Title 17-A, § 433
- Michigan Compiled Laws § 752.795
- Minnesota Statute § 609.88
- Nebraska Revised Statute § 28-1345
- Nevada Revised Statute § 205.4765
- New Hampshire Revised Statute § 638:17
- North Carolina General Statute § 14-455
- North Dakota Cent. Code § 12.1-06.1-08
- Ohio Revised Code Annotated § 2909.07
- 18 Pennsylvania Consolidated Statute

Annotated § 7616
- South Carolina Code Annotated § 16-16-20
- Tennessee Code § 39-14-602
- West Virginia Code § 61-3C-7

Not all states have established legislation, and it is very common
for legislation that restricts technology use to lag behind the technology’s
development. In this case, the technology is a computer or the Internet.
Violations of legislation and policies are considered as high as Class III felonies,
depending on the severity of the violation.

Software purchasers, including government purchasers, are increasingly
holding the software industry accountable for its software, especially when
software’s vulnerability leads to or contributes to security breaches. In his
doctoral dissertation, Jari Råman argues: “Without appropriate regulatory
intervention, the level of security of software will not improve to meet the
needs of the networked society as a whole.” [304] He further asserts that the
incentives necessary to entice software companies are not being provided,
and that required activities such as vulnerability disclosure should be
implemented consistently.

In her article, Who is Liable for Insecure Systems, [305] Nancy Mead of
the CMU SEI provides an overview of key published opinions in the United
States about legal liability for software security problems. Mead notes that

Software Security Assurance State-of-the-Art Report (SOAR)258

Section 6 Software Assurance Initiatives, Activities, and Organizations

the issue is being considered by two different communities—those also
considering liability for poor software quality, and those involved with
legal liability for computer security, cyber security, and Internet security
breaches. Mead suggests that though a standard for a reasonable level of
due diligence by software developers has yet to be established, it is likely
that civil liability suits will start to appear on court dockets, with software
development firms as the defendants. Mead’s own recommendations
focus on preemptively motivating and empowering software developers to
produce higher quality, more secure software before the threat of liability
lawsuits becomes commonplace.

In Europe, the TrustSoft Institute at the University of Oldenburg (in
Germany) routinely educates developers about legal liabilities for developing
faulty software. . This curriculum includes information on warranty, liability,
scope, and personal consequences for the individual programmer. Though the
law on which the TrustSoft Institute curriculum is based is specific to Germany,
it provides a model for other universities and colleges to follow.

For Further Reading

Nancy Mead (CMU SEI), “Who is Liable for Insecure Systems?” IEEE Computer. (July 24): 27-34.
Bruce Schneier, “Sue Companies, Not Coders.” Wired. (October 20, 2005),.
Available from: http://www.schneier.com/essay-092.html

References

285 “Systems Assurance Committee” [web page] (Arlington, VA: NDIA).
Available from: http://www.ndia.org/Template.cfm?Section=Systems_Engineering&Template=/
ContentManagement/ContentDisplay.cfm&ContentID=17472&FusePreview=True

286 “AFRL/SNT (Anti-Tamper Program & Software Protection Initiative) fact sheet” [web page]
(Dayton, OH: Wright-Patterson Air Force Base).
Available from: http://www.wpafb.af.mil/library/factsheets/factsheet.asp?id=6308

287 Kenneth J. Krieg (OUSD/AT&L), memorandum to Chairman, Defense Science Board, Subject:
“Terms of Reference—Defense Science Board Task Force on Mission Impact of Foreign In� uence on
DoD Software,” Washington, DC, October 5, 2005.
Available from: http://www.acq.osd.mil/dsb/tors/TOR-2005-10-05-MIFIDS.pdf

288 “NRL CHACS” [portal page] (Washington, DC: NRL CHACS).
Available from: http://chacs.nrl.navy.mil/

289 Anti-Spyware Coalition. Definitions and Supporting Documents, working report (June 29, 2006).
Available from: http://www.antispywarecoalition.org/documents/index.htm (Scroll down to “Definition
and Supporting Documents”.)

290 “SAMATE” [portal page] op cit.

291 “Reducing Software Security Risk Through an Integrated Approach Research Program Results”
[web page] (Fairmont, WV: NASA IV&V Facility).
Available from: http://sarpresults.ivv.nasa.gov/ViewResearch/60.jsp

292 “Reducing Software Security Risk Through an Integrated Approach Project” [web page]
(Davis, CA: University of California at Davis Computer Security Laboratory).
Available from: http://seclab.cs.ucdavis.edu/projects/testing/toc.html

http://www.schneier.com/essay-092.html
http://www.ndia.org/Template.cfm?Section=Systems_Engineering&Template=/ContentManagement/ContentDisplay.cfm&ContentID=17472&FusePreview=True
http://www.ndia.org/Template.cfm?Section=Systems_Engineering&Template=/ContentManagement/ContentDisplay.cfm&ContentID=17472&FusePreview=True
http://www.wpafb.af.mil/library/factsheets/factsheet.asp?id=6308
http://www.acq.osd.mil/dsb/tors/TOR-2005-10-05-MIFIDS.pdf
http://chacs.nrl.navy.mil/
http://www.antispywarecoalition.org/documents/index.htm
http://sarpresults.ivv.nasa.gov/ViewResearch/60.jsp
http://seclab.cs.ucdavis.edu/projects/testing/toc.html

Software Security Assurance State-of-the-Art Report (SOAR) 259

Section 6 Software Assurance Initiatives, Activities, and Organizations

293 “OWASP” [portal page] (Columbia, MD: OWASP).
Available from: http://www.owasp.org/

294 “OMG Software Assurance Special Interest Group (SwA SIG)”[web page] (Needham, MA: Object
Management Group).
Available from: http://swa.omg.org/

295 “Web Application Security Consortium” [portal page] (Web Application Security Consortium [WASC]).
Available from: http://www.webappsec.org/

296 “Application Security Industry Consortium” [portal page] (Wilmington, MA: Application Security
Industry Consortium [AppSIC]).
Available from: http://www.appsic.org/

297 “Secure Software Forum” [portal page] (Atlanta, GA: SPI Dynamics Inc.).
Available from: http://www.securesoftwareforum.com

298 Samuel T. Redwine, Jr., and Noopur Davis, eds., “Processes to Produce Secure Software: Towards
More Secure Software,” in Report of the Software Process Subgroup of the Task Force on Security
across the Software Development Lifecycle to the National Security Summit, March 2004: 1.
Available from: http://www.cigital.com/papers/download/secure_software_process.pdf

299 DHS Security Across the Software Development Lifecycle Task Force, Improving Security Across the
Software Development Lifecycle, Task Force Report (Washington, DC: DHS CS&C NCSD, April 1, 2004).
Available from: http://www.itaa.org/software/docs/SDLCPaper.pdf

300 “ISO/IEC Project 22.24772” [web page] (New York, NY: ISO/IEC JTC 1/SC 22 Secretariat).
Available from: http://aitc.aitcnet.org/isai/ and
proposal for a new work item: Guidance to Avoiding Vulnerabilities in Programming Languages Through
Language Selection and Use (New York, NY: ISO/IEC JTC 1/SC 22 Secretariat, June 23, 2005).
Available from: http://www.open-std.org/jtc1/sc22/open/n3913.htm

301 By contrast with ISO/IEC standards, which define requirements, ISO/IEC TRs provide non-normative guidance.

302 ISO/IEC JTC 1/SC 22, “Information Technology—Programming Languages,Their Environments and
System Software Interfaces—Extensions to the C library,” part I of Bounds-Checking Interfaces, doc.
ref. no. ISO/IEC TR 24731 (New York, NY: ISO/IEC JTC 1/SC 22 Secretariat, October 25, 2005).
Available from: http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1146.pdf and

 ISO/IEC JTC 1/SC 22, “Rationale for TR 24731 Extensions to the C library,” part I of Bounds-Checking
Interfaces, doc. ref. no. ISO/IEC TR 24731 (New York, NY: ISO/IEC JTC 1/SC 22 Secretariat, October 26, 2005).
Available from: http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1147.pdf

303 IEEE, “IEEE P2600/D25c Draft Standard for Information Technology: Hardcopy System and Device
Security,” in Methodologies and Processes for the Development of Secure HCDs, doc. no. IEEE P2600/
D24c. 9.2.2 (New York, NY: IEEE, December 2006).
Available from: http://grouper.ieee.org/groups/2600/drafts/FullSpec/IEEE_P2600_v24c.pdf

304 Jari Råman, “Regulating Secure Software Development: Analysing the Potential Regulatory Solutions for
the Lack of Security in Software” (dissertation, University of Lapland, Rovaniemi Finland, May 26, 2006).
Available from: http://www.ulapland.fi/includes/file_download.asp?deptid=22713&fileid=9480&file=20
061023140353.pdf&pdf=1 and

 Jari Råman, “Contracting Over the Quality Aspect of Security in Software Product Markets,” in
Proceedings of the Second ACM Workshop on Quality of Protection, Alexandria, VA, 2006.

305 Nancy Mead (CMU SEI), “Who Is Liable for Insecure Systems?,” IEEE Computer 37, no. 7 (July 2004):27–34.

306 Daniel Winteler (University of Oldenburg), Liability of Programmers for Defects in Software
(Oldenburg, Germany: University of Oldenburg TrustSoft Institute, June 7, 2005).
Available from: http://trustsoft.uni-oldenburg.de/Members/daniel/Microsoft per cent20PowerPoint-
Liability-TRUSTSOFT.pdf

http://www.owasp.org/
http://swa.omg.org/
http://www.webappsec.org/
http://www.appsic.org/
http://www.securesoftwareforum.com
http://www.cigital.com/papers/download/secure_software_process.pdf
http://www.itaa.org/software/docs/SDLCPaper.pdf
http://aitc.aitcnet.org/isai/
http://www.open-std.org/jtc1/sc22/open/n3913.htm
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1146.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1147.pdf
http://grouper.ieee.org/groups/2600/drafts/FullSpec/IEEE_P2600_v24c.pdf
http://www.ulapland.fi/includes/file_download.asp?deptid=22713&fileid=9480&file=20061023140353.pdf&pdf=1
http://www.ulapland.fi/includes/file_download.asp?deptid=22713&fileid=9480&file=20061023140353.pdf&pdf=1

Resources
7

Software Security Assurance State-of-the-Art Report (SOAR) 261

Section 7 Resources

7.1 Software Security Assurance Resources
The surge of interest and activity in software security and application security
has brought with it a surge of online and print information about these
topics. The following sections highlight those that are most often cited by
practitioners in these fields.

7.1.1 Online Resources
None of the online resources listed here require registration or payment of
fees prior to use. While a number of other resources available do require
registration (e.g., the Ounce Labs Library), we have chosen not to include them
here to avoid the appearance of promoting the sponsoring organizations’
commercial activities.

7.1.1.1 Portals, Websites, and Document Archives
Some of the most extensive and noteworthy online resources are maintained by
the organizations whose initiatives are described in Section 7. These include—

u US Computer Emergency Response Team (US-CERT)
BuildSecurityIn portal.
Available from: https://buildsecurityin.us-cert.gov

u National Institute of Standards and Technology (NIST) Software
Assurance Metrics and Tools Evaluation (SAMATE) portal.
Available from: http://samate.nist.gov

 NOTE: SAMATE’s email discussion list can be subscribed to from this portal.
u Open Web Application Security Project (OWASP) portal.

Available from: http://www.owasp.org

In addition to these portals, individual software vendors (including
software security tools vendors) and software security experts mantain a
number of online resources. Among the most extensive are—

u Microsoft Security Developer Center.
Available from: http://msdn2.microsoft.com/en-us/security/default.aspx

u SearchAppSecurity.com.
Available from: http://searchappsecurity.techtarget.com

https://buildsecurityin.us-cert.gov
http://samate.nist.gov
http://www.owasp.org
http://msdn2.microsoft.com/en-us/security/default.aspx
http://searchappsecurity.techtarget.com

Software Security Assurance State-of-the-Art Report (SOAR)262

Section 7 Resources

u Secure Programming.com.
Available from: http://www.secureprogramming.com

u SPI Dynamics Software Security Training Tools.
Available from: http://www.spidynamics.com/spilabs/education/index.html

u Fortify Security Resources.
Available from: http://www.fortifysoftware.com/security-resources

u Secure Software Inc. Resources.
Available from: http://www.securesoftware.com/resources

u Cigital Inc. Resources.
Available from: http://www.cigital.com/resources

u PHP Security Consortium.
Available from: http://phpsec.org

u SysAdmin, Audit, Networking, and Security (SANS) Reading Room.
Available from: http://www.sans.org/reading_room—see the categories on
“Application/Database Sec,” “Best Practices,” “Auditing &
Assessment,” “Malicious Code,” “Scripting Tips,” “Securing Code,”
and “Threats/Vulnerabilities.”

7.1.1.2 Weblogs
The following blogs maintain updated resources and ideas on security topics.
These are independent blogs. None of them are operated by software security
tool vendors.

u Dana Epps (SilverStr’s Sanctuary).
Available from: http://silverstr.ufies.org/blog

u Michael Howard.
Available from: http://blogs.msdn.com/michael_howard

u Gunnar Peterson (1 Raindrop).
Available from: http://1raindrop.typepad.com

u Rocky Heckman (RockyH—Security First).
Available from: http://www.rockyh.net

u “TrustedConsultant” (Writing Secure Software).
Available from: http://securesoftware.blogspot.com

u David A. Wheeler.
Available from: http://www.dwheeler.com/blog

7.1.1.3 Electronic Mailing Lists
The following electronic mailing lists provide open forum discussion on
security topics:

u Secure Coding List (SC-L), moderated by Ken Van Wyk, co-author of
Secure Coding: Principles and Practices.
Available from: http://www.securecoding.org/list

u Web Application Security (webappsec), operated by OWASP.
Available from: http://lists.owasp.org/mailman/listinfo/webappsec

http://www.secureprogramming.com
http://www.spidynamics.com/spilabs/education/index.html
http://www.fortifysoftware.com/security-resources
http://www.securesoftware.com/resources
http://www.cigital.com/resources
http://phpsec.org
http://www.sans.org/reading_room
http://silverstr.ufies.org/blog
http://blogs.msdn.com/michael_howard
http://1raindrop.typepad.com
http://www.rockyh.net
http://securesoftware.blogspot.com
http://www.dwheeler.com/blog
http://www.securecoding.org/list
http://lists.owasp.org/mailman/listinfo/webappsec

Software Security Assurance State-of-the-Art Report (SOAR) 263

Section 7 Resources

u Web Security Mailing List (websecurity), operated by WASC.
Available from: http://www.webappsec.org/lists/websecurity

u The archives of several now-defunct SecurityFocus mailing lists.
These include the SECPROG (secure programming), VulnDev
(undeveloped vulnerabilities), and Web Application Security mailing
lists. SecurityFocus maintains the BugTraq database of software flaw
and error reports.
Archives are available from: http://www.securityfocus.com/archive.

In addition to these, a number of the organizations whose initiatives
and projects are discussed in Section 7 run their own e-mail discussion lists
for participants and other interested parties. Those mailing lists are usually
publicized on the projects’ web pages/portals.

7.1.2 Books
The number of books published annually on software security has increased
steadily since the early 2000s, with some coming out in their second editions.
The following are books (printed, not electronic) published on software
security topics, listed by year of publication in reverse chronological order.

2008 (Scheduled for Publication)
u Alan Krassowski, and Pascal Meunier, Secure Software Engineering:

Designing, Writing, and Maintaining More Secure Code
(Addison-Wesley, 2008).

2007 (Some of These Are Only Scheduled for Publication)
u Brian Chess and Jacob West, Security Matters: Improving Software

Security Using Static Source Code Analysis (Addison-Wesley
Professional, 2007).

u MichaelCross, Developer’s Guide to Web Application Security
(Syngress Publishing, 2007).

u Eduardo Fernandez-Buglioni, Ehud Gudes, and Martin S. Olivier,
Security in Software Systems (Addison Wesley, 2007).

u Donald G. Firesmith, Security and Safety Requirements for
Software-Intensive Systems (Auerbach Publishers, 2007).

u Michael Howard and David LeBlanc, Designing Secure Software
(McGraw-Hill, February 2007).

u Michael Howard, Writing Secure Code for Windows Vista
(Microsoft Press, 2007).

u Haralambos Mouratidis and Paolo Giorgini, eds., Integrating Security
and Software Engineering: Advances and Future Visions
(Idea Group Publishing, 2007).

u Herbert Thompson, Protecting the Business: Software Security
Compliance (John Wiley & Sons, 2007).

http://www.webappsec.org/lists/websecurity
http://www.securityfocus.com/archive

Software Security Assurance State-of-the-Art Report (SOAR)264

Section 7 Resources

u Maura van der Linden, Testing Code Security (Auerbach Publishers, 2007).
u Chris Wysopal, et al., The Art of Software Security Testing (Addison

Wesley/Symantec Press, 2007).

2006
u Mike Andrews and James A. Whittaker, How to Break Web Software:

Functional and Security Testing of Web Applications and Web Services
(Addison-Wesley Professional, 2006).

u Dominick Baier, Developing More Secure ASP.NET 2.0 Applications
(Microsoft Press, 2006).

u Neil Daswani and Anita Kesavan, eds., What Every Programmer Needs
to Know About Security (Springer-Verlag, 2006).

u Mark Dowd, John McDonald, and Justin Schuh, The Art of Software
Security Assessment: Identifying and Preventing Software Vulnerabilities
(Addison-Wesley Professional, 2006).

u Michael Howard and Steve Lipner, The Security Development Lifecycle
(Microsoft Press, 2006).

u Gary McGraw, Software Security: Building Security In (Addison-
Wesley, 2006).

2005
u Clifford J. Berg, High Assurance Design: Architecting Secure and Reliable

Enterprise Applications (Addison-Wesley, 2005).
u Eldad Eilam, Reversing: Secrets of Reverse Engineering (John Wiley &

Sons, 2005).
u James C. Foster, et al., Buffer Overflow Attacks: Detect, Exploit, Prevent

(Syngress Publishing, 2005)
u Michael Howard, David LeBlanc, and John Viega, 19 Deadly Sins of

Software Security (McGraw-Hill Osborne Media, 2005).
u Robert Seacord, Secure Coding in C and C++ (Addison-Wesley

Professional, 2005).
u Herbert H. Thompson and Scott G. Chase, The Software Vulnerability

Guide (Charles River Media, 2005).

2004
u Mark Burnett, Hacking the Code, ASP.NET Web Application Security

(Syngress Publishing, 2004).
u Greg Hoglund and Gary McGraw, Exploiting Software: How to Break

Code (Addison-Wesley, 2004).
u Sverre H. Huseby, Innocent Code: A Security Wake-Up Call for Web

Programmers (John Wiley & Sons, 2004).

Software Security Assurance State-of-the-Art Report (SOAR) 265

Section 7 Resources

u Jan Jürjens, Secure Systems Development With UML (Springer, 2004).
u Jack Koziol, et al., The Shellcoder’s Handbook: Discovering and

Exploiting Security Holes (John Wiley & Sons, 2004).
u Vladimir Vasilievitch Lipaev, Functional Security of Software Systems

(Synteg, 2004).
u Frank Swiderski and Window Snyder, Threat Modeling

(Microsoft Press, 2004).
u Paul Watters, Michael Howard, and Steven Dewhurst, Writing Secure

Applications Using C++ (Osborne/McGraw-Hill, 2004).

2003
u John Barnes, High Integrity Software: The SPARK Approach to Safety and

Security (Addison Wesley, 2003).
u Matt Bishop, Chapter 29, “Program Security,” Computer Security:

Art and Science (Addison-Wesley Professional, 2003).
u Irfan A. Chaudhry, et al., Web Application Security Assessment

(Microsoft Press, 2003).
u Simson Garfinkel, Gene Spafford, and Alan Schwartz, Chapter 16,

“Secure Programming Techniques,” and Chapter 23, “Protecting
Against Programmed Threats,” Practical Unix & Internet Security, 3rd
Ed. (O’Reilly & Associates, 2003).

u Mark G. Graff and Kenneth R. Van Wyk, Secure Coding: Principles and
Practices (O’Reilly Media, 2003).
Available from: http://www.securecoding.org/

u Microsoft Corporation, Improving Web Application Security: Threats
and Countermeasures (Microsoft Press, 2003).

u John Viega and Matt Messier, Secure Programming Cookbook for C and
C++ (O’Reilly Media, 2003).

u James A. Whittaker and Herbert H. Thompson, How to Break Software
Security (Addison Wesley, 2003).

2002
u Pavol Cerven, Crackproof Your Software (No Starch Press, 2002).
u Michael Howard and David LeBlanc, Writing Secure Code, 2nd Ed.,

(Microsoft Press, 2002).
u Art Taylor, Brian Buege, and Randy Layman, Hacking Exposed: J2EE &

Java—Developing Secure Web Applications with Java Technology
(McGraw-Hill/Osborne Media, 2002).

2001
u Ross J. Anderson, Security Engineering: A Guide to Building Dependable

Distributed Systems (John Wiley & Sons, 2001).

http://www.securecoding.org/

Software Security Assurance State-of-the-Art Report (SOAR)266

Section 7 Resources

u Gary McGraw and John Viega, Building Secure Software: How to Avoid
Security Problems the Right Way (Addison-Wesley Professional, 2001).

u Ryan Russell, Hack Proofing Your Web Applications: The Only Way to
Stop a Hacker Is to Think Like One (Syngress Media, 2001).

2000
u Gary McGraw and Edward W. Felten, Securing Java: Getting Down to

Business with Mobile Code, 2nd Ed. (John Wiley & Sons, 1999).
u Michael Howard, Designing Secure Web-Based Applications for

Microsoft Windows 2000 (Microsoft Press, 2000)

1999 and before
u Simson Garfinkel and Gene Spafford, Chapter 11, “Protecting Against

Programmed Threats” and Chapter 23, “Writing Secure SUID and
Network Programs,” Practical Unix & Internet Security 2nd Ed.,
(O’Reilly & Associates, 1996).

u Steven M. Bellovin, “Security and Software Engineering,” Practical
Reusable Unix Software, B. Krishnamurthy, ed. (John Wiley & Sons, 1995).

u Morrie Gasser, Building a Secure Computer System (Van Nostrand
Reinhold, 1988).

7.1.3 Magazines and Journals With Significant Software
Security Content
The following publications are either devoted to software security, have
columns or sections devoted to software security, or frequently publish articles
on software security topics:

u Secure Software Engineering Journal, peer-reviewed European journal
devoted to security in the software development life cycle, established
in 2007 by the developer of S2e (the last research methodology
discussed in Section 5.1.8.2.6).
Available from: http://www.secure-software-engineering.com

u CrossTalk: The Journal of Defense Software Engineering, publishes
semi-annual issues devoted to software assurance (and sponsored by
the DHS Software Assurance Program).
Available from: http://www.stsc.hill.af.mil/crosstalk

u IEEE Security and Privacy, includes a monthly “BuildSecurityIn”
column that focuses predominantly on software security issues.
Available from: http://www.computer.org/portal/site/security

u IEEE Transactions on Dependable and Secure Computing; scholarly
journal that includes at least one paper each month on research in
software security tools and techniques.
Available from: http://www.computer.org/portal/site/transactions/menuitem.a6
6ec5ba52117764cfe79d108bcd45f3/index.jsp?&pName=tdsc_home/&

http://www.secure-software-engineering.com
http://www.stsc.hill.af.mil/crosstalk
http://www.computer.org/portal/site/security
http://www.computer.org/portal/site/transactions/menuitem.a66ec5ba52117764cfe79d108bcd45f3/index.jsp?&pName=tdsc_home/&
http://www.computer.org/portal/site/transactions/menuitem.a66ec5ba52117764cfe79d108bcd45f3/index.jsp?&pName=tdsc_home/&

Software Security Assurance State-of-the-Art Report (SOAR) 267

Section 7 Resources

u Dr. Dobbs Journal, includes a “Security” department that covers both
software and information security issues.
Available from: http://www.ddj.com

7.1.4 Conferences, Workshops, etc.
The following is a listing of conferences, workshops, and fora devoted to secure
software themes.

u DoD/DHS Software Assurance Forum
Available from: https://buildsecurityin.us-cert.gov/daisy/bsi/events.html

u OWASP Application Security Conference
Available from: http://www.owasp.org/index.php/Category:OWASP_
AppSec_Conference

u Software Security Summit
Available from: http://www.s-3con.com

u International Workshop on Software Engineering for Secure Systems
Available from: http://homes.dico.unimi.it/~monga/sess07.html

u International Workshop on Secure Software Engineering
Available from: http://www.ares-conference.eu/conf/index.php?option=com_c
ontent&task=view&id=26&Itemid=33

u IEEE International Workshop on Security in Software Engineering
Available from: http://conferences.computer.org/compsac/2007/
workshops/IWSSE.html

u Secure Systems Methodologies Using Patterns
Available from: http://www-ifs.uni-regensburg.de/spattern07

u German Society of Informatics Special Interest Group on Security
Intrusion Detection and Response Conference on Detection of
Intrusions and Malware and Vulnerability Assessment
Available from: http://www.gi-ev.de/fachbereiche/sicherheit/fg/sidar/dimva

In March 2006, the first IEEE International Symposium on Secure Software
Engineering (available from: http://www.jmu.edu/iiia/issse/) was held in Arlington,
Virginia; and the Workshop on Secure Software Engineering Education and
Training was held a month later in Honolulu, Hawaii. In March 2007, the first
OMG Software Assurance Workshop (available from: http://www.omg.org/news/
meetings/SWA2007/index.htm) was held in Fairfax, Virginia. It is not clear whether
any of these events will be repeated.

Several conferences and workshops that focus on system , information,
or network/cyber security, or software dependability topics include significant
software security content in their programs. These include—

u Internet Society Network and Distributed System Security Symposium
Available from: http://www.isoc.org/isoc/conferences/ndss

u Annual Computer Security Applications Conference
Available from: http://www.acsac.org

http://www.ddj.com
https://buildsecurityin.us-cert.gov/daisy/bsi/events.html
http://www.owasp.org/index.php/Category:OWASP_AppSec_Conference
http://www.owasp.org/index.php/Category:OWASP_AppSec_Conference
http://www.s-3con.com
http://homes.dico.unimi.it/~monga/sess07.html
http://www.ares-conference.eu/conf/index.php?option=com_content&task=view&id=26&Itemid=33
http://www.ares-conference.eu/conf/index.php?option=com_content&task=view&id=26&Itemid=33
http://conferences.computer.org/compsac/2007/workshops/IWSSE.html
http://conferences.computer.org/compsac/2007/workshops/IWSSE.html
http://www-ifs.uni-regensburg.de/spattern07
http://www.gi-ev.de/fachbereiche/sicherheit/fg/sidar/dimva
http://www.jmu.edu/iiia/issse/
http://www.omg.org/news/meetings/SWA2007/index.htm
http://www.omg.org/news/meetings/SWA2007/index.htm
http://www.isoc.org/isoc/conferences/ndss
http://www.acsac.org

Software Security Assurance State-of-the-Art Report (SOAR)268

Section 7 Resources

u USENIX Security Symposium
Available from: http://www.usenix.org/events/sec07

u Black Hat Briefings & Training
Available from: http://www.blackhat.com/html/bh-link/briefings.html

u Workshops on Assurance Cases for Security (see Section 5.1.4.3)

7.2 Secure Software Education, Training, and Awareness
In The Economic Impacts of Inadequate Infrastructure for Software Testing, [307]
a May 2002 report prepared for NIST, the author estimated that the annual
cost of software defects in the United States was $59.5 billion. Each defect that
remains undetected until after a software product has shipped can cost the
supplier tens of thousands of dollars to address and patch; the cost to users of
the product is often orders of magnitude higher.

Further exacerbating the problem is the fact, noted by Roger Pressman
in his book Software Engineering: A Practitioner’s Approach, that the cost of
fixing a fault that originated in the software’s requirements definition phase
is multiplied by a factor of 10 with each subsequent life cycle phase. Another
unsettling statistic: According to research done by Microsoft, 64 percent of in-
house business software developers have admitted that they lack confidence in
their own ability to write secure applications.

All the secure software processes, practices, technologies, and tools in the
world will be of little use to the developer who has no idea how to use them or
even why they are necessary. Recognizing this, software assurance practitioners in
academia, government, and industry have begun redefining the components of
software engineering education and software developer and programmer training
and certification. Some of the fruits of their efforts are described in this section.

For Further Reading

US CERT, Training and Awareness, (Washington (DC): US CERT).
Available from: https://buildsecurityin.us-cert.gov/daisy/bsi/articles/best-practices/training.html

7.2.1 Academic Education in Secure Software Engineering
Most traditional university-level software engineering courses have not included
specific content on software security. The majority of these security courses
offered as part of computer science or software engineering programs have
focused on system security engineering and/or information assurance. However,
consistent with the overall increase of interest and activity in secure software
engineering and software security assurance, a growing number of colleges
and universities have begun to include content in current courses, and even
dedicated courses, on security topics directly pertaining to secure software.

Courses on secure software development, secure programming, etc., typically
begin by introducing common attacks against software-intensive information
systems and the vulnerabilities targeted by those attacks, then progress to

http://www.usenix.org/events/sec07
http://www.blackhat.com/html/bh-link/briefings.html
https://buildsecurityin.us-cert.gov/daisy/bsi/articles/best-practices/training.html

Software Security Assurance State-of-the-Art Report (SOAR) 269

Section 7 Resources

modeling, design, coding, and testing practices that software developers can adopt
to reduce the likelihood that exploitable vulnerabilities will appear in the software
they produce. The following is a representative sampling of such courses:

u Arizona State University: Software Security
u Ben-Gurion University (Beer-Sheva, Israel): Security of Software Systems
u Carnegie Mellon University (CMU) and University of Ontario (Canada):

Secure Software Systems
u George Mason University: Secure Software Design and Programming
u George Washington University: Security and Programming Languages
u Catholic University of Leuven (Belgium): Development of Secure Software
u New Mexico Tech: Secure Software Construction
u North Dakota State University: Engineering Secure Software
u Northeastern University: Engineering Secure Software Systems
u Northern Kentucky University, Rochester Institute of Technology, and

University of Denver: Secure Software Engineering
u Polytechnic University: Application Security
u Purdue University: Secure Programming
u Queen’s University (Kingston, ON, Canada): Software Reliability

and Security
u Santa Clara University: Secure Coding in C and C++
u University of California at Berkeley, Walden University (online): Secure

Software Development
u University of California at Santa Cruz: Software Security Testing
u University of Canterbury (New Zealand): Secure Software
u University of Nice Sophia-Antipolis (Nice, France): Formal Methods

and Secure Software
u University of Oxford (UK): Design for Security
u University of South Carolina: Building Secure Software.

As noted earlier, other schools offer lectures on secure coding and other
software security relevant topics within their larger software engineering or
computer security course offerings. At least two universities—the University
of Texas at San Antonio and University of Dublin (Ireland)—have established
reading groups [308] focusing on software security.

As part of its Trustworthy Computing initiative, Microsoft Research
has established its Trustworthy Computing Curriculum program [309] for
promoting university development of software security curricula. Interested
institutions submit proposals to Microsoft, and those that are selected are
provided seed funding for course development.

Another recent trend is post-graduate degree programs with specialties
or concentrations in secure software engineering (or security engineering for
software-intensive systems). Some of these are standard degree programs,
while others are specifically designed for the continuing education of working
professionals. The following are typical examples:

Software Security Assurance State-of-the-Art Report (SOAR)270

Section 7 Resources

u James Madison University: Master of Science in Computer Science with
a Concentration in Secure Software Engineering

u Northern Kentucky University: Graduate Certificate in Secure
Software Engineering

u Stanford University: Online Computer Security Certificate in Designing
Secure Software From the Ground Up

u University of Colorado at Colorado Springs: Graduate Certificate in
Secure Software Systems

u Walden University (online): Master of Science in Software Engineering
with a Specialization in Secure Computing

u University of Central England at Birmingham: Master of Science in
Software Development and Security

u Chalmers University (Gothenburg, Sweden): Master of Science in
Secure and Dependable Computer Systems.

In another interesting trend (to date, exclusively in non-US schools),
entire academic departments—and in one case a whole graduate school—are
being devoted to teaching and research in software dependability, including
security, e.g.—

u University of Oldenburg (Germany) TrustSoft Graduate School of
Trustworthy Software Systems

u Fraunhofer Institute for Experimental Software Engineering (IESE)
(Kaiserslautern, Germany): Department of Security and Safety

u Bond University (Queensland, Australia): Centre for Software Assurance.

An impressive amount of research in a wide range of software security
topics is also underway at colleges and universities worldwide. This research is
discussed in Section 7.3.

As noted in Section 6.1.9.1, to support academics in adding software
security to their curricula, the DHS Software Assurance Program’s Education
and Workforce Working Group (WG) drafted the Software Assurance CBK. No
doubt, DHS had no idea how controversial this draft CBK would be among
academics and industry software assurance practitioners. While the draft
CBK has been praised by a number of software assurance practitioners and
educators, and even in draft form has been adopted as the basis for modifying
existing curricula at some schools, a significant number of detractors in
academia and industry have voiced their concerns that the draft CBK is not only
questionable in terms of its utility but also potentially damaging if used for its
intended purpose. In response to these critics, DHS’s Education and Workforce
WG has undertaken consultations with academia and is reviewing a major
revision to the draft CBK that is intended to address many of their concerns. As
this new edition has yet to be publicly released, it remains to be seen whether it
will be less controversial than the last.

Software Security Assurance State-of-the-Art Report (SOAR) 271

Section 7 Resources

For Further Reading

Rose Shumba (Indiana University of Pennsylvania), et al., “Teaching the Secure Development
Lifecycle: Challenges and Experiences: 2006,” Proceedings of the 10th Colloquium for Information
Systems Security Education, June 5-8, 2006, 116-123.
Available from: http://www.cisse.info/colloquia/cisse10/proceedings10/pdfs/papers/S04P02.pdf
Eduardo B. Fernandez and Maria M. Larrondo-Petrie (Florida Atlantic University), “A Set of
Courses for Teaching Secure Software Development: 2006,” Proceedings of the 19th Conference on
Software Engineering Education and Training Workshops; April 19-21, 2006, 23.
Available from: http://doi.ieeecomputersociety.org/10.1109/CSEETW.2006.4
James Walden and Charles E. Frank (Northern Kentucky University), “Secure Software
Engineering Teaching Modules: 2006,” Proceedings of the 3rd Annual Conference on Information Security
Curriculum Development, September 2006, 19-23.
Available from: http://portal.acm.org/citation.cfm?id=1231052&coll=Portal&dl=ACM&CFID=18481565
Zhaoji Chen (Arizona State University) and Stephen S. Yau, “Software Security: Integrating Secure
Software Engineering in Graduate Computer Science Curriculum: 2006,” Proceedings of the 10th
Colloquium for Information Systems Security Education, June 5-8, 2006, 124-130.
Available from: http://www.cisse.info/colloquia/cisse10/proceedings10/pdfs/papers/S04P03.pdf
William Arthur Conklin (University of Houston) and Glenn Deitrich (University of Texas at San
Antonio), “Secure Software Engineering: A New Paradigm,” Proceedings of the 40th Annual Hawaii
International Conference on System Sciences, 272.
Available from: http://doi.ieeecomputersociety.org/10.1109/HICSS.2007.477
Andy Ju An Wang (Southern Polytechnic State University), “Security Testing in Software
Engineering Courses: 2004,” Proceedings of the 34th ASEE/IEEE Frontiers in Education Conference,
October 20-23, 2004.
Available from: http://fie.engrng.pitt.edu/fie2004/papers/1221.pdf
Kurt Stirewalt, [Mississippi State University (MSU)], Integrating Threat Modeling into the Software
Design Course at MSU.
Available from: http://www.cse.msu.edu/~enbody/ThreatModeling.htm
Linda A. Walters (Norfolk State University), Integration of Software Security Model in Existing
Introductory Technology Courses (TR NSUCS-2004-004).
Available from: http://www.cs.nsu.edu/research/techdocs/TR004_Linda_Walters.pdf
Brian Roberts, Doug Cress, and John Simmons, [University of Maryland Baltimore Campus
(UMBC)], A Strategy to Include Defensive Programming Tactics in the Undergraduate Computer Science
Curriculum at UMBC, CMSC 791 Information Assurance Project, c2003.
Available from: http://www.cs.umbc.edu/~cress1/cmsc791.html

7.2.2 Professional Training
The professional technical training community is also offering individuals and
organizations an increasing number of courses on application security, secure
programming, and related topics.

A number of professional training classes and seminars are being offered
in software security by commercial training firms, software development or
security services/consulting firms, software tools vendors, and academic
institutions. For example (these lists are representative)—

u Consulting Firms: Security Compass, Aspect Security, Security
Innovation, Systems and Software Consortium, KrVW (Kenneth R. Van
Wyk) Associates, Secure Software, EnGarde Systems.

u Tools Vendors: Foundstone, Symantec, LogiGear, Microsoft, Paladion
Networks, Next Generation Security Software, Siegeworks, Netcraft

http://www.cisse.info/colloquia/cisse10/proceedings10/pdfs/papers/S04P02.pdf
http://doi.ieeecomputersociety.org/10.1109/CSEETW.2006.4
http://portal.acm.org/citation.cfm?id=1231052&coll=Portal&dl=ACM&CFID=18481565
http://www.cisse.info/colloquia/cisse10/proceedings10/pdfs/papers/S04P03.pdf
http://doi.ieeecomputersociety.org/10.1109/HICSS.2007.477
http://fie.engrng.pitt.edu/fie2004/papers/1221.pdf
http://www.cse.msu.edu/~enbody/ThreatModeling.htm
http://www.cs.nsu.edu/research/techdocs/TR004_Linda_Walters.pdf
http://www.cs.umbc.edu/~cress1/cmsc791.html

Software Security Assurance State-of-the-Art Report (SOAR)272

Section 7 Resources

u Training Firms: SANS Institute, Security University, Software
Quality Engineering

u Academic Institutions: Catholic University of Leuven (Belgium).

Typical of the types of courses being offered are those in the Security
Training series offered by Software Quality Engineering:

u Software Security Testing and Quality Assurance (2 days)
u Risk-Based Security Testing (1 day)
u Software Security Fundamentals (2 days)
u Creating Secure Code (2 days)
u How to Break Software Security (2 days)
u How to Break Web Software Security (2 days)
u Creating Secure Code for C/C++ (1 day)
u Creating Secure Code for ASP.NET (1 day)
u Creating Secure Code for Java (1 day)
u Architecting Secure Solutions (2 days)

As noted in Section 6.1.9.1, consistent with its mission to increase
awareness and knowledge, the DHS Software Assurance Program’s Education
and Workforce WG is developing an Essential Body of Knowledge (EBK) as a
counterpart to its draft Common Body of Knowledge (CBK). The intent is to
provide professional training organizations and departments with a basis for
developing classes, seminars, and workshops on secure software engineering.

7.2.2.2 Professional Certifications
A handful of security certification and technology training organizations have
established professional certifications that validate competency in secure
software development or knowledge of information security issues as they
pertain to software (or software-intensive system) development.

The first of these professional certifications was announced by the
International Council of Electronic Commerce Consultants (EC-Council): the
EC-Council Certified Secure Programmer and Certified Secure Application
Developer certifications. [310] More recently, Security University has begun
offering a Software Security Engineer Certification [311] to people who attend
Security University’s regime of a half-dozen courses on secure software topics.

In mid-2006 the SANS Institute announced its national Secure
Programming Skills Assessment (SPSA), [312] an examination to be rolled out
nationwide in 2007 (a multi-institution test of the SPSA was undertaken in
2006, to refine it in preparation for worldwide release). There will, in fact, be
four versions of the SPSA examination, which is intended to help employers in
government and industry gauge how well their programmers have mastered
knowledge about common software programming flaws that manifest as
vulnerabilities, and how to avoid or correct them. These are—

Software Security Assurance State-of-the-Art Report (SOAR) 273

Section 7 Resources

u Secure programming skills using C and C++
u Secure programming skills using Java and JSP
u Secure programming skills using Perl and PHP
u Secure programming skills using .NET [313] and ASP.

In March 2007, SANS established its new Software Security Institute
and announced that the Institute would award one of three levels of Certified
Application Security Professional (CASP) certification to anyone who passes the
SANS-administered SPSA exam. The three CASP levels represent three secure
programming skill levels: 1 = minimally skilled, 2= advanced, and 3 = expert.

The SPSA examinations will be offered in three ways: (1) three annual
exams administered by SANS at designated testing sites; (2) enterprise-licensed
exams for SANS’s Secure Programming Enterprise Partners (private and public
organizations that contract with SANS) administered by SANS at the Partner
facility; (3) self-assessments available at any time online. Self-assessments are
not formally administered; they are intended for study/practice only and will
not earn the test-taker a CASP.

Prior to establishing the SPSA and the Software Security Institute, SANS,
in coordination with the Global Information Assurance Consortium (GIAC),
had already established three certification specialties in domains relevant to
software security:

u Level 5 Web Application Security
u Level 6 Reverse Engineering Malware
u Level 6 Security Malware.

Microsoft Corporation, which has been very active in its promotion
of developer education as part of its own Trustworthy Computing Initiative
Security Development Lifecycle initiative, now offers two optional exams for
developers attempting to achieve Microsoft Certified Application Developer
(MCAD) or Microsoft Certified Software Developer (MCSD) certifications:
Implementing Security for Applications with Microsoft Visual Basic .NET,
and Implementing Security for Applications with Microsoft Visual C# .NET.
Unfortunately, at this time neither of these software security-relevant exams
is mandatory, nor may either exam be counted as one of the four core exams
required to attain an MCAD or MCSD certification.

The Canadian Engineering Qualifications Board of the Canadian Council
of Professional Engineers Examination Syllabus for Software Engineering
includes an elective exam on security/safety.

The Certification Labs of the International Institute for Training,
Assessment, and Certification (http:/www.IITAC.org) offer a Certified Secure
Software Engineering Professional certification as well as Certified Reverse
Code Engineering Professional and Certified Exploit and Shell Code
Development Professional. These certifications, which can be attained entirely

http:/www.IITAC.org

Software Security Assurance State-of-the-Art Report (SOAR)274

Section 7 Resources

via web-based training, are structured in compliance with ISO/IEC 17024,
General Requirements for Bodies Operating Certification of Persons.

7.2.3 Efforts to Raise Awareness
In recent years, several initiatives have been undertaken to raise awareness about
software security. These initiatives include a number of surveys of organizations
that are large consumers of software and those that are major producers. The
purpose of such surveys is to raise awareness at the executive level of the software
security issues that affect their businesses, to gauge current levels of awareness
of and activity to address those issues, and to establish a basis for identifying
and prioritizing additional needed software security practices. Of the three
most recent surveys, one was administered in the user community [represented
by the Chief Information Officer (CIO) Executive Council], the second in the
vendor community (represented by the Secure Software Forum), and the third by
independent academic researchers (at the University of Glasgow). These surveys
are described in Sections 7.2.3.1, 7.2.3.2, and 7.2.3.3, respectively.

In addition to surveying, other strategies have been undertaken for
building software security awareness in the public and private sectors. Those
of the DoD, DHS, and Software Assurance Forum are described in Section 7.
Two additional awareness campaigns of note have been undertaken by very
influential organizations in the financial services sector—the first as a joint
effort by two trade associations, BITS and the Financial Services Roundtable,
and the second by Visa International. These activities are described in Sections
7.2.3.4 and 7.2.3.5 respectively.

The Gartner Group, which has long been a bellwether for “hot” technology
concerns, has since the mid-2000s focused a significant amount of attention
on application security and secure software and has published four oft-quoted,
frequently cited reports on these topics in the past 3 years:

u John Pescatore, Management Update. Keys to Achieving Secure Software
Systems, September 22, 2004.

u Amrit T. Williams and Neil MacDonald, Organizations Should
Implement Web Application Security Scanning, September 21, 2005.

u Amrit T. Williams, Implement Source Code Security Scanning Tools to
Improve Application Security, April 4, 2006

u Rich Mogull, et al., Hype Cycle for Data and Application Security 2007,
December 21, 2006

Other respected research groups (e.g., the Burton Group, which has
established Application and Content Security as a research focus area that includes
a specialization in Malware) are also focusing on application/software security.

The DHS software assurance program formed the Business Case WG at
the March 2006 DHS Software Assurance Forum. The Business Case WG aims
to advance the awareness and understanding of and the demand for assured

Software Security Assurance State-of-the-Art Report (SOAR) 275

Section 7 Resources

software within the IT community. By providing a forum for academia,
industry, and government to work together, DHS has established a dialog that
can be joined by other government agencies and industry partners. One of
the first activities the Business Case WG undertook was to reach out to the
CIO Executive Council to gather information about the opinions of industry
as a whole on the current state of the practice of software development. See
Section 6.1.9.1 for more information on this WG.

The DoD Software Assurance Program’s Outreach tiger team seeks to
improve the state of commercial-off-the-shelf (COTS) products through
supplier assurance. This tiger team is discussed in Section 6.1.1. By reaching out
to industry and academia, DoD aims to improve the state of software security
assurance through constructive dialog rather than through regulation. The tiger
team is developing a Systems Assurance Whitepaper outlining DoD’s concerns
with respect to software security and discussing solutions DoD is currently
researching. By sharing this information with industry and academia, the
tiger team will be able to test the waters before recommending any changes to
existing DoD policy. In addition, the Industry Outreach tiger team produced
several documents describing DoD’s vision for improving the state of software
security assurance: a Software Assurance CONOPS (see Section 5.1.1.2.1) and (2)
Systems Assurance guidebook (see Section 6.1.1.2).

Several private sector outreach activities are described below.

7.2.3.1 CIO Executive Council Poll
Established in the United States in April 2004, the CIO Executive Council aims to
promote collaboration and exchange of views on technology issues among chief
information officers around the world. It serves as a nexus point for CIOs to act
as resources for one another and mutually advance the CIO position in industries
worldwide, and comprises hundreds of CIOs worldwide. All council members
must serve as the senior-most IT executive in their organization and have purchase
authority for their organization’s information technology products and services.

In September 2006, the CIO Executive Council held a poll [314] to gauge
its members’ opinions on the state of security in software development. The
respondents, 84 CIOs around the country, were nearly universal (95 percent) in
their agreement that reliability and not functionality or “features,” as is widely
claimed by software vendors, is the software attribute most important to their
organizations. [315] The respondents also shared a lack of confidence in the
security of their current software, including its ability to function free of flaws,
vulnerabilities, and malicious code. The poll indicated that 86 percent of CIOs
rate the software used by their firms as “vulnerable” or “extremely vulnerable.”

The CIOs also indicated that they would welcome improved practices
within the software vendor community, including certifying that the software
they distribute meets a designated security target and providing evidence that
the software has been scanned for flaws and security vulnerabilities using

Software Security Assurance State-of-the-Art Report (SOAR)276

Section 7 Resources

qualified tools. Just under half of the CIOs also said they would like vendors
to provide a list of the flaws and security vulnerabilities that they know to be
inherent to their software.

Finally, the CIOs were in agreement about the impact of software
vulnerabilities on their organizations’ productivity, mainly due to the need
to redeploy staff to deal with incidents caused by software faults, exploits,
and malicious code. A majority of respondents also reported an increase in
associated IT costs and a reduction in the productivity yielded by their IT
systems as a result of such incidents.

7.2.3.2 SSF Survey
During its 2005 conference, the Secure Software Forum (SSF) (see Section 6.2.5)
surveyed its executive members to determine the existing level of industry
effort to improve the security of commercial software products. [316] The
survey reported overall shortcomings across the industry in the security of its
software development processes. While over a third of respondents reported
having implemented developer training programs in secure coding practices,
only 30 percent reported having established a security assurance program in
their own development process, while even fewer, only 25 percent, had adopted
a software security testing process using sophisticated tools. This despite the
fact that 82 percent of respondents’ firms develop software for use outside
of their own organizations, thus acknowledging that their software security
failures affected not only themselves, but their customers.

7.2.3.3 University of Glasgow Survey
The computer science department of the University of Glasgow (UK) is active
in research into techniques and tools for security engineering in software-
intensive systems. From July–August 2005, Glasgow researchers administered
their Web Engineering Security Application Survey [317] to 16 employees in
several technical roles in the security department of a Fortune 500 financial
services firm that was chosen as being representative of a major corporation
that counted heavily on dependability in its software.

When asked a range of questions about their firm’s application life cycle
development process, the respondents conveyed a largely negative view
of the role security plays in that process. Through the survey, the Glasgow
researchers confirmed the existence of a conflict between the firm’s application
developers and those responsible for implementing best security practices.
Respondents reported that application development projects seldom reached
their predetermined goals; developers’ perception that the need for security
presented an obstacle to goal-fulfilment was perceived as the main reason.
Half of the survey respondents complained that developers were not held
accountable or penalized when they did not abide by established secure

Software Security Assurance State-of-the-Art Report (SOAR) 277

Section 7 Resources

development practices. The same number of respondents believed security
should play a larger role in the organization’s development environment.

7.2.3.4 BITS/Financial Services Roundtable Software Security
and Patch Management Initiative
BITS established its Software Security and Patch Management Initiative for its
member financial institutions. The Initiative has three primary goals:

u Encourage software vendors that sell to critical infrastructure
industries to undertake a higher “duty of care”

u Promote the compliance of software products with security
requirements before those products are released

u Make the patch-management process more secure and efficient, and
less costly to software customer organizations.

A fourth goal of the initiative is to foster dialogue between BITS
members and the software industry to produce solutions to software
security and patch management problems that are effective, equitable,
and achievable in the near term.

BITS is acting jointly with the Financial Services Roundtable to encourage
the financial services companies that make up their collective membership to—

u Develop best practices for managing software patches
u Communicate to software vendors clear industry business

requirements for secure software products
u Facilitate CEO-to-CEO dialogue between the software industry and the

financial services industry and also critical infrastructure sectors
u Analyze costs associated with software security and patch

management; communicate to the Federal Government the
importance of investing to protect critical infrastructure industries

u Explore potential legislative and regulatory remedies.

As part of the initiative, BITS has established the BITS Product
Certification Program (BPCP) that tests software applications and supporting
infrastructure products used by financial institutions against a set of baseline
security criteria established by the financial services industry and aligned
with the Common Criteria. The BPCP was established in hopes of influencing
the vendor community to include security considerations in its development
processes, and to improve the security of software products used in the
financial services industry. The outcome of a successful BPCP test is a BITS
Tested Mark that certifies that the tested product passed BITS BPCP testing.

Together, BITS and the Financial Services Roundtable have also issued
what they call their Software Security and Patch Management Toolkit. [318]
This “toolkit” is a set of documents that provide recommended security
requirements, a template for a cover e-mail message, and procurement

Software Security Assurance State-of-the-Art Report (SOAR)278

Section 7 Resources

language for ensuring that security and patch management requirements are
incorporated in the procurement documents issued by financial institutions
to their potential software suppliers. The toolkit also includes a set of talking
points and background information designed to help executives of financial
institutions communicate with their software suppliers and the media about
software security and patch management.

Finally, BITS and the Financial Services Roundtable are encouraging the
software industry to notify companies about vulnerabilities as early as possible.

7.2.3.5 Visa USA Payment Application Best Practices
As part of its Cardholder Information Security Program (CISP), the credit card
company Visa USA developed a set of Payment Application Best Practices
(PABP) [319] to assist the software vendors of payment applications in
developing those applications to support their users’ (i.e., merchants and
service providers, including those who operate online) compliance with the
Payment Card Industry Data Security Standard.

Visa promotes its best practices through a combination of software vendor
education and a certification scheme whereby a software vendor contracts with
a Qualified Data Security Company (QDSC) designated by Visa to audit the
application for conformance with the PABP.

Applications that pass the QDSC audit are added to Visa’s widely
publicized list of CISP-Validated Payment Applications. To maintain their
applications on the list, the vendors must also undergo an Annual On-Site
Security Reassessment by a QDSC. Visa also mails out letters and publishes
other awareness information for their member merchants and service providers
strongly encouraging them to use only PABC-validated, Payment Card Industry
Data Security Standard-compliant applications.

7.3 Research
The following sections describe observed trends in academic research in a
number of software security-relevant areas, both regarding the location of research
organizations and projects, and the most active topic areas being pursued by them.

7.3.1 Where Software Security Research is Being Done
The proliferation of research centers, labs, and groups, in both US and non-
US institutions, devoted to software security research reflects the broadening
of focus by researchers formerly concerned primarily with software safety,
reliability, or quality. For example, research centers, laboratories, and groups
at the following universities (listed in alphabetical order) have expanded their
activities to include significant research in software security areas:

u Bond University (Queensland, Australia): Centre for Software Assurance
u Carnegie Mellon University: Software Engineering Institute
u City University (London, UK): Centre for Software Reliability

Software Security Assurance State-of-the-Art Report (SOAR) 279

Section 7 Resources

u Fraunhofer Institute for Experimental Software Engineering (IESE)
(Kaiserslautern, Germany): Department of Security and Safety

u Queen’s University (Kingston, Ontario, Canada): Queen’s Reliable
Software Technology group

u Radboud University Nijmegen (The Netherlands): Laboratory for
Quality Software

u Swinburne University of Technology (Melbourne, Australia) Reliable
Software Systems group

u Technical University of Munich (Germany): WG on Security and Safety
in Software Engineering

u University of California at Santa Barbara: Reliable Software group
u University of Idaho: Center for Secure and Dependable Systems
u University of Mannheim (Germany): Laboratory for Dependable

Distributed Systems
u University of Newcastle upon Tyne (UK): Centre for Software Reliability
u University of Mannheim (Germany): Dependable Distributed

Systems group
u University of Stuttgart (Germany): Software Reliability and Security group
u University of Virginia: Dependability Research group.

Software security research has also evolved from research in the areas of
IA, system security, and computer security. The following universities (again
listed in alphabetical order) have research centers, groups, and labs with
significant software security research projects underway:

u Auburn State University Samuel Ginn College of Engineering:
Information Assurance Laboratory

u Catholic University of Leuven (Belgium) Department
Elektrotechniek-ESAT: Computer Security and Industrial
Cryptography group

u Catholic University of Leuven (Belgium) DistriNet Research Group:
Security WG

u Fraunhofer Institute for Experimental Software Engineering
(Germany): Department. of Security and Safety

u Naval Postgraduate School: Center for Information Systems Security
Studies and Research

u Pennsylvania State University: Systems and Internet Infrastructure
Security Laboratory

u Purdue University: Center for Education and Research in Information
Assurance and Security

u Radboud University Nijmegen Laboratory for Quality Software:
Security of Systems group

u State University of New York (SUNY) at Stony Brook: Secure
Systems Laboratory

u Stevens Institute of Technology: Secure Systems Laboratory

Software Security Assurance State-of-the-Art Report (SOAR)280

Section 7 Resources

u Technical University of Denmark at Lyngby: Safe and Secure IT
Systems group

u Technical University of Munich Competence Center in IT: Security,
Software and Systems Engineering group

u University of Auckland (New Zealand): Secure Systems group
u University of California at Davis: Computer Security Laboratory
u University of Cambridge (UK) Computer Laboratory: Security group
u University of Idaho: Center for Secure and Dependable Systems
u University of Illinois at Urbana-Champaign: Information Trust Institute
u University of Maryland at College Park: Institute for Advanced

Computer Studies Center for Human Enhanced Secure Systems
u University of Texas at Dallas: Cybersecurity Research Center and

Security Analysis and Information Assurance Laboratory
u University of Tokyo (Japan) Yonezawa Group: Secure Computing Project.

A large number of universities support dedicated secure software and
secure programming research groups. This is not surprising considering
many of the vulnerabilities discovered on an almost daily basis result from
programming errors. Examples of universities with such research groups are—

u CMU: CyLab Software Assurance Interest Group
u Fraunhofer Institute for Experimental Software Engineering

(Germany): Department of Security and Safety
u German Research Center for Artificial Intelligence: Secure Software group
u Northeastern University: Software and Architecture Security group

within the Institute for Information Assurance
u Princeton University: Secure Internet Programming group
u Purdue University CERIAS: Software Vulnerabilities Testing, Secure

Patch Distribution, and Secure Software Systems (S3) groups
u Tokyo Institute of Technology Programming Systems Group (Japan):

Subgroup on Implementation Schemes for Secure Software
u University of Bremen (Germany): Security and Safety in Software

Engineering WG
u University of Oulu (Finland): Secure Programming Group
u University of Stuttgart (Germany) Institute for Formal Methods in

Computer Science: Secure and Reliable Software Systems Group.

While most academic research in software assurance and software security
is being pursued in North America and Europe, several research projects are
underway on other continents in countries as far flung as Australia and New
Zealand, Japan, Iran, Tunisia, and Nigeria.

In addition to academic institutions, commercial firms and government
agencies often sponsor dedicated research organizations, a number of which are
actively researching aspects of application and software security. The Naval Research

Software Security Assurance State-of-the-Art Report (SOAR) 281

Section 7 Resources

Laboratory’s (NRL’s) Center for High Assurance Computer Systems in particular has
been engaged in a number of projects with software security assurance dimensions.
In the private sector, research establishments exist both within large corporations
such as Microsoft Research and IBM Research’s Secure Software and Services Group
and in small firms such as Cigital and Next Generation Security Software.

7.3.2 Active Areas of Research
In the United States where the software security community is populated
primarily by entities originally involved in information assurance or software
quality, the predomination of research activities tends to reflect this. For example,
US institutions dominate in academic research devoted to vulnerability and
malicious code classification and detection, reverse engineering, and security
risk assessment and threat modeling for software. The United States also has a
near-monopoly on research into extending software security concerns to the
development of high-assurance information systems and the application of
high-assurance system development approaches to the development of secure
software or execution environments. Typical projects of this type are underway at
the Naval Postgraduate School (High Assurance Security Program) and University
of Idaho [Multiple Independent Levels of Security (MILS)].

Outside the United States and particularly in Europe, research trends
reflect the emergence of security as an extension of software safety: the
majority of European software security research is being performed by
institutions long active in software safety research. Many of these research
projects focus on extending software safety concepts, methodologies, and
technologies to also address the security property of software. Government
agencies in Europe have also long relied on safety cases as the basis for
approving safety-critical systems for operation. The same research institutions
that have been involved in safety case research are now adapting or extending
those software safety cases to serve as software security assurance cases.

Research into application of formal methods to software security is being
conducted primarily in the United States, Europe, and Australasia. Not only
have Formal methods have not only long been used in the development of
safety-critical software but also in the evaluation of cryptographic algorithms,
cryptosystems, security protocols, and trusted kernels. The requirement for
formal models and proofs is the most significant differentiating prerequisite
for TOEs aspiring to the highest Common Criteria (CC) Evaluation Assurance
Level (EAL) (EAL 7), as it was previously for systems aspiring to evaluation
at Trusted Computer System Evaluation Criteria (TCSEC) Class A1. (From
an academic standpoint, formal methods provide an excellent teaching tool
as they represent an unambiguous application of pure mathematics to the
problem of system and software engineering.)

Trusted hosts [e.g., Trusted Processor Modules (TPM), MILS] and constrained
execution environments (e.g., virtual machines, sandboxes) are subjects of

Software Security Assurance State-of-the-Art Report (SOAR)282

Section 7 Resources

significant research in the United States and Japan, while research into software
tamperproofing and obfuscation is being pursued in North America, Europe, and
Australasia, often initially in the context of intellectual property protection and only
afterward in the context of its applicability to software security assurance.

The most technology transfer from academic research into commercial
products appears in the areas of software security testing (especially static
analysis) techniques and tools. Many leading commercial and open source tools
originated in academic research projects. Upon graduation, the researchers
either formed their own companies or joined existing tool vendors or software
security/application security firms to continue evolving their academic
prototypes and open source distributions into commercial products. Over
time, the same commercial firms have continued to collaborate with and fund
academia to pursue additional research that ultimately yields enhancements for
those commercial products as well as improves the state-of-the-art of software
security testing in general.

Other software security research areas of significant activity include—
u Language-based security, including secure compilers and compilation

techniques, type and memory safety, secure languages and variants on
standard languages, and proof- and model-carrying code (which
applies formal methods to language-based security). By far the most
active area of research, with significant projects in more than 20
institutions across the globe.

u Component-based development of secure software systems.
u Reverse engineering and reengineering for security.
u Vulnerability and malware detection, analysis, and prevention.
u Security of mobile code and mobile software agents; when the research

areas specific to software security concerns are augmented by research
into secure agent computing frameworks and secure inter-agent
communications, this becomes one of the most active areas of software
and application security research.

u Secure SDLC processes and methodologies, which can be phase specific
(e.g., requirements analysis and specification, architectural modeling)
or whole-life cycle (for examples of the latter, see Section 5.1.8).

u Software security metrics for measuring both security of software
itself and impact of different life cycle processes on the ability to
achieve secure software.

Security of embedded software is an area that is apparently of limited
interest (notable projects can be found at Princeton University and Radboud
University Nijmegen in the Netherlands). Similarly, very few institutions are
conducting significant research in the application of artificial intelligence
techniques (e.g., artificial immunology) or in software diversity, though the latter
has been pursued by the University of Virginia [under funding by the Defense
Advanced Research Projects Agency (DARPA) Information Processing Technology

Software Security Assurance State-of-the-Art Report (SOAR) 283

Section 7 Resources

Office’s (IPTO)] Self-Regenerative Systems program, and by University of
California at Davis and the State University of New York at Stony Brook.

Appendix H provides an extensive listing of significant (unclassified)
academic research projects throughout the world devoted to software security
assurance (as of February 2007).

Few attempts appear to have been made to document the trends in the
area of software security research. An exception is the 2006 National Research
Council (NRC) of Canada’s report undertaken by George Yee, a researcher in
the NRC’s Institute for Information Technology. Yee’s report [320] attempted
to characterize secure software research over the nearly 25 year period from
1981–2005. Using key-phrase searches, Mr. Yee retrieved papers from the ACM
and IEEE document archives that contained either the phrase “secure software”
or the phrase “application security.” He assigned the research projects described
in those papers to categories of topics, including “Vulnerability Identification,”
“Threat Identification,” “Coding Methods,” “Testing,” “Integrity Verification,”
etc., then counted the number of projects in each category. Unfortunately,
Yee’s methodology is so seriously flawed—by searching only on those two key
phrases, his document retrievals omitted the many, many relevant research
papers that contained neither phrase. In so doing, Yee rendered the NRC report
findings highly suspect in terms of completeness, accuracy, or meaningfulness
of the research trends it purports to characterize.

References

307 G. Tassey (Research Triangle Institute), The Economic Impacts of Inadequate Infrastructure for Software
Testing, planning rep. no. 02-3 (Gaithersburg, MD: NIST Program Office Strategic Planning and
Economic Analysis Group, May 2002).
Available from: http://www.nist.gov/director/prog-ofc/report02-3.pdf

308 At University of Texas, a Secure Software Reading Group; at University of Dublin, a Formal Methods
and Security Reading Group.

309 “Trustworthy Computing Curriculum 2005 Request for Proposals (RFP) Awards” [web page] (Redmond,
WA: Microsoft Research).
Available from: http://research.microsoft.com/ur/us/fundingopps/RFPs/TWC_Curriculum_2005_RFP_
Awards.aspx and

 “Trustworthy Computing Curriculum 2004 RFP Awards” [web page] (Redmond, WA: Microsoft Research).
Available from: http://research.microsoft.com/ur/us/fundingopps/TWC_CurriculumRFPAwards.aspx

310 “EC-Council Certified Secure Programmer (CSP) and Certified Secure Application Developer (CSAD)”
[web page] (Albuquerque, NM: International Council of Electronic Commerce Consultants [EC-Council]).
Available from: http://www.eccouncil.org/ecsp/index.htm

311 “Secure University Software Security Expert Bootcamp” [web page] (Stamford, CT: Security University).
Available from: http://www.securityuniversity.net/classes_SI_SoftwareSecurity_Bootcamp.php

312 “SANS Software Security Institute” [portal page] (Bethesda, MD: SANS Institute).
Available from: http://www.sans-ssi.org/

313 It is not clear whether or not the .NET exam will include C#.

314 Conducted between September 12 and 24, 2006, among CIO Council members and deputy members.

http://www.nist.gov/director/prog-ofc/report02-3.pdf
http://research.microsoft.com/ur/us/fundingopps/RFPs/TWC_Curriculum_2005_RFP_Awards.aspx
http://research.microsoft.com/ur/us/fundingopps/RFPs/TWC_Curriculum_2005_RFP_Awards.aspx
http://research.microsoft.com/ur/us/fundingopps/TWC_CurriculumRFPAwards.aspx
http://www.eccouncil.org/ecsp/index.htm
http://www.securityuniversity.net/classes_SI_SoftwareSecurity_Bootcamp.php
http://www.sans-ssi.org/

Software Security Assurance State-of-the-Art Report (SOAR)284

Section 7 Resources

315 Karen Fogerty, “New CIO Executive Council poll reveals CIOs Lack Confidence in Software,”. press
release (Framingham, MA: CIO Executive Council, October 11, 2006).
Available from: https://www.cioexecutivecouncil.com/nb/?nid=9422bb8:434a3b6:8c77c:dd04c:80cdf83
990

316 Stacy Simpson (Merrit Group), and Ashley Vandiver (SPI Dynamics Inc.), “Findings Reveal Organizations
Are Taking Steps to Implement Security Assurance Programs but Most Programs Are Still Immature,”
press release (Atlanta, GA: SPI Dynamics Inc. for Secure Software Forum, February 15, 2006).
Available from: http://www.securesoftwareforum.com/SSF2006/press.html

317 William Bradley Glisson and Ray Welland (University of Glasgow), Web Engineering Security (WES)
Application Survey, tech. report No. TR-2006-226 (Glasgow, Scotland: University of Glasgow Dept. of
Computer Science, August 24, 2006).
Available from: http://www.dcs.gla.ac.uk/publications/paperdetails.cfm?id=8287

318 BITS/Financial Services Roundtable, BITS/FSR Software Security Toolkit (Washington, DC: BITS,
February 2004).
Available from: http://www.bitsinfo.org/downloads/Publications%20Page/bitssummittoolkit.pdf

319 “Cardholder Information Security Program Payment Applications” [web page] (San Francisco, CA: VISA USA.).
Available from: http://usa.visa.com/business/accepting_visa/ops_risk_management/cisp_payment_
applications.html.

 Note that the PABP are presented in an application security checklist that includes descriptions of best
practice requirements and provides test procedures for verifying that PABP practices have been
satisfied in applications. The objective of the PABP is to ensure that applications comply with the PCI
Data Security Standard; the majority of the 13 PABP best practices and supporting sub-practices focus
on data protection, although three best practices directly address software security issues: Best
Practice #5, Develop Secure Applications; Best Practice #7, Test Applications to Address
Vulnerabilities; and Best Practice #10, Facilitate Secure Remote Software Updates.

320 George Yee (National Research Council Canada), Recent Research in Secure Software, report no. NRC/
ERB-1134 (Fredericton, NB, Canada: NRC Institute for Information Technology, March 2006).
Available from: http://iit-iti.nrc-cnrc.gc.ca/publications/nrc-48478_e.html

https://www.cioexecutivecouncil.com/nb/?nid=9422bb8:434a3b6:8c77c:dd04c:80cdf83990
https://www.cioexecutivecouncil.com/nb/?nid=9422bb8:434a3b6:8c77c:dd04c:80cdf83990
http://www.securesoftwareforum.com/SSF2006/press.html
http://www.dcs.gla.ac.uk/publications/paperdetails.cfm?id=8287
http://www.bitsinfo.org/downloads/Publications%20Page/bitssummittoolkit.pdf
http://usa.visa.com/business/accepting_visa/ops_risk_management/cisp_payment_applications.html
http://usa.visa.com/business/accepting_visa/ops_risk_management/cisp_payment_applications.html
http://iit-iti.nrc-cnrc.gc.ca/publications/nrc-48478_e.html

Software Security Assurance State-of-the-Art Report (SOAR) 285

Section 7 Resources

Observations
8

Software Security Assurance State-of-the-Art Report (SOAR) 287

Section 8 Observations

The state-of-the-art of software security assurance has been
constantly improving since research in the field began in the 1970s.

Nevertheless, there are a number of particularly intractable challenges
identified as far back as 1999 by the Government Accountability Office
(in its report, DoD Information Security: Serious Weaknesses Continue to
Place Defense Operations at Risk) and the INFOSEC Research Council
(in its first National Scale INFOSEC Research Hard Problems List).

The general observations below highlight significant
achievements, trends, anomalies, and deficiencies associated with the
activities, standards, methodologies, techniques, and technologies
described in Sections 2–8 of this SOAR.

8.1 What “Secure Software” Means
As recently as 2006, Gary McGraw felt the need to remind his readers that,
“We must first agree that software security is not security software.” The
problem arising from the confusion of these terms [321] is that it can lead
to two incorrect conclusions:

u The only software that needs to be secure is software that performs
security functions.

u Implementing security functions will make software secure.

An unscientific survey of recent articles, books, papers, presentations,
blogs, and other discussions on “software security” and “secure software”
indicate that the distinction between security software and secure software is,
at last, becoming widely understood…at least in theory. Providing developers
with examples of what is meant by secure software, e.g., software that does not
contain buffer overflows, race conditions, and other exploitable faults, is one
way in which the confusion about these distinct concepts has been clarified.

When it comes to practical advice, however, this distinction still seems
muddy. A significant amount of literature and teaching about “secure software

Software Security Assurance State-of-the-Art Report (SOAR)288

Section 8 Observations

engineering” still includes equal parts advice on how to avoid vulnerabilities
and guidance on how to implement security functions in software
applications. The discussion below on security design patterns includes
a specific example of a technique for implementing security functions
in software that is frequently, and incorrectly, discussed in the context of
producing software that is in and of itself secure. [322]

8.2 Outsourcing and Offshore Development Risks
As indicated by the increasing number of articles, studies, and reports on
outsourcing and offshoring risks, the Government particularly, but also
increasingly, industry is still primarily concerned with the potential security
threat posed by foreign software developers and suppliers. In some cases, that
threat is expressed solely in terms of the possibility of a foreign-influenced
developer implanting malicious code in software-for-export. Far less attention
has been paid to the problem of the insider threat, i.e., bad actors within
US-based software development and integration firms. When the insider threat
is raised, the focus is primarily on the problem of foreign workers in US firms.
Little attention is being paid to the possibility of US developers being suborned
by hostile foreign governments, criminal organizations, etc.

The main response to the increasing alarm regarding the risks posed by
foreign-sourced software has been to rethink how acquisition is done and to
provide guidance (although not yet policy or legislation) to aid the acquirer
in attaining some level of confidence in the trustworthiness of the software
supplier. In the technological realm, solutions such as those from Palamida
and Blackduck Software have been developed to discover information about
pedigree or provenance of software (mainly in source code form) for purposes
of license enforcement and intellectual property protection (mainly for open
source software [OSS]) or reengineering of legacy code. These solutions are
being expanded and recast as security analysis techniques for software, either in
deployment or in pre-acquisition evaluation. However, because many commercial
software licenses prohibit reverse engineering for any purpose, it is not clear that
this approach can be adopted without violating license agreements for analysis of
anything but noncommercial binary code, which severely limits its usefulness.

8.3 Malicious Code in the SDLC
Hand in hand with concern about offshore-developed software is concern
regarding the potential for malicious code entering the user’s environment not
only through operational means (i.e., network-based viruses, worms, spyware,
etc.), but through implanting malicious code (Trojan horses, logic and time
bombs, malicious bots, etc.) in software prior to its distribution. In this area, at
least, the possibility of the US-based developer as an insider threat has been
considered. Still unresolved, at least to some extent, is the definition of what
code actually is malicious. Definitions that designate any undocumented

Software Security Assurance State-of-the-Art Report (SOAR) 289

Section 8 Observations

code as malicious require Easter eggs, spyware, and adware to be considered
malicious in all cases. Other definitions base their designation of malicious
code on the code’s intent (either stated or apparent). However, intent can be
extremely difficult to determine; moreover, even if the code itself is benign,
the fact that it is present and undocumented makes it a high value target for
attackers seeking hard-to-detect entry points into the system.

An increasing amount of guidance for addressing malicious code
(malware) includes discussions of detecting and blocking the inclusion of
malicious code during the software’s development life cycle, rather than only
after its deployment. In academia, a significant amount of research is being
devoted to devising technologies for detecting the presence of malicious code
(or malicious logic) in source code under development, as well as in binary
executables prior to installation.

8.4 Vulnerability Reporting
One of the most active areas of research and practical application focuses on
reporting vulnerabilities in software. Over the past 5 years, there has been a
move to standardize and centralize the collection of vulnerability reporting
data, culminating with the MITRE Corporation’s Common Vulnerabilities
and Exposures (CVE) and the National Institute of Standards and Technology
(NIST) National Vulnerability Database (NVD). The ability to make the vast
amount of collected vulnerability data easier for specific audiences to analyze
and act upon has led to classification, taxonomy, and metadata efforts such
as the Common Weakness Enumeration (CWE) and Vulnerability Exploit
Description and Exchange Format (VEDEF).

In an attempt to move the state-of-the-art of vulnerability knowledge
forward to allow whitehats compete with black hats and criminals has led to
the initiation of schemes whereby vulnerability researchers are paid royalties
for exclusive intellectual property rights to their reports. These schemes have
raised questions regarding the ethics and efficacy of such financial incentives.
Some critics are concerned that such efforts will lead to bidding wars with cyber
criminals. In fact, the fees offered per vulnerability were more than seven times
their initial 2002 value after only 3 years.

What is not yet clear is whether many more security violations reported
to various Computer Emergency Response Teams (CERT), Computer Security
Incident Response Team (CSIRT), could be unambiguously attributed to the
exploitation of vulnerabilities in software, and whether the various vulnerability
databases and classifications described here do, in fact, accurately reflect the
real state of vulnerabilities in software. The CWE effort was launched to help
address this problem.

Software Security Assurance State-of-the-Art Report (SOAR)290

Section 8 Observations

8.5 Developer Liability for Vulnerable Software
On both sides of the Atlantic, the need to overcome the impracticality of
holding software suppliers, and even individual developers, liable for the poor
quality and vulnerability of their software has been widely debated. Academics
are investigating possible approaches, both regulatory and contractual,
to achieve some level of developer and supplier liability and regulation,
comparable to that in other engineering disciplines. However, unless and until
software quality and security metrics are defined that are precise, meaningful,
and reliable enough to hold up in court, it is doubtful that any real progress can
be made toward regulating the software industry in this way.

8.6 Attack Patterns
Research and use of attack patterns is being pursued primarily in government and
industry, and to a lesser extent in academia. Initially investigated in the context
of information system vulnerability assessment and threat modeling, [323] attack
patterns are now being promoted (e.g., by Cigital) as providing a useful basis for
security analyses throughout the software life cycle, specifically to—

u Specify explicit requirements for resistance of, tolerance of, and
resilience to specific attack patterns

u Avoid design and implementation problems that would make the
software vulnerable to specific attack patterns

u Include attack pattern-based criteria and checks in design and
code reviews, security tests, and post-deployment vulnerability
assessments [324] so that the rate of vulnerability detection and
the effectiveness of vulnerability mitigations are increased.

To date, only known attack patterns have been used in the definition of
abuse/misuse cases, threat models, attack graphs and trees, etc. This limitation
of focus to known attack patterns presents problems, however. Attackers are
very near to their “holy grail”—the routine production of zero-day exploits—
novel, and thus unknown, attacks that target and exploit vulnerabilities that
have yet to be publicly reported let alone mitigated through patches or other
countermeasures. While there is consensus that the improved discovery,
avoidance, and mitigation of vulnerabilities to known attack patterns will
improve the security of software, they will not be effective when the software
is confronted with unknown attack patterns. Currently, research into the
application of fault tolerance, autonomic computing, artificial immunology,
and other techniques to address the challenge of making software less
vulnerable to unknown attack patterns is still in its infancy.

Software Security Assurance State-of-the-Art Report (SOAR) 291

Section 8 Observations

8.7 Secure Software Life Cycle Processes
In the vast majority of organizations, the security of the software they used was
taken on faith, at least until Microsoft publicly acknowledged vulnerabilities in
some of its key strategic products and very publicly undertook to modify not
only its products, but the software development life cycle (SDLC) processes
by which those products were built, to reduce their overall vulnerability rates.
At the same time, a growing number of other secure software process models
and methodologies have been published, mainly in academia, but also in the
private sector by software security luminaries John Viega and Gary McGraw.

With the exception of Microsoft’s Security Development Lifecycle (SDL)
and Oracle’s Software Security Assurance Process, there is no documented
evidence that any of these secure software methodologies has been used in real-
world software development beyond a few relatively small pilot projects (either
purely academic, or under the auspices of academic–industry partnerships).
Microsoft alone has published some crude metrics (comparing numbers of
vulnerabilities in pre-SDL and post-SDL versions of strategic software products)
as indicative of the effectiveness of its methodology.

The process improvement community has not been negligent in this area,
either. Back in 2002, the Department of Defense (DoD) and Federal Aviation
Administration (FAA) established a joint project to define safety and security
extensions to the Integrated Capability Maturity Model (iCMM) and Capability
Maturity Model Integration (CMMI), [325] and the efforts by International
Standards Organization (ISO)/International Electrotechnical Commission
(IEC) and Institute of Electrical and Electronics Engineers (IEEE) to revise
ISO/IEC 15026, System and Software Engineering—System and Software
Assurance, focus on adding security assurance activities to the system and
SDLCs defined in ISO/IEC 12207 and 15288. However, as of this writing, the
DoD/FAA “extensions” document is still only a proposal that does not appear
to even be under consideration for adoption in DoD, while the ISO/IEC 15026
revision is still under development; even when (if) it is approved by ISO/IEC, as
an international standard, its acceptance by DoD is far from guaranteed. The
other potential problem with process standards is that they must apply in the
majority of cases to have any hope of widespread adoption. For this reason,
they tend to reflect the lowest common denominator of agreed best practices.
They should be seen, then, as providing high-level frameworks into which more
specific, extensive methodologies and practices can be inserted and integrated.

What is interesting is that despite all of the uncertainty about specific
security-enhanced methods and process models, the simple philosophy of
“fix the process, and you’ll fix the software” is being increasingly touted as
self-evident. [326] A major shift is underway, both among software suppliers
and software users, moving them away from exclusive reliance on application
security (defense-in-depth [DiD]) measures and “penetrate-and-patch”
activities toward the recognition that the way to deal with vulnerabilities

Software Security Assurance State-of-the-Art Report (SOAR)292

Section 8 Observations

in software is by changing the way it is specified, designed, implemented,
compiled, tested, and distributed to reduce the likelihood that such
vulnerabilities will be present in the first place. When, how, and to what extent
this shift in mindset will translate into the widespread, disciplined adoption of
security-enhanced development practices and processes is still unclear.

8.8 Using Formal Methods for Secure Software Development
Formal methods have long been the subject of academic study (they appear to
provide an ideal teaching tool because they bridge the gap between theoretical
mathematics and practical computer science), but have been limited in
their practical use to assuring the correctness of cryptographic algorithms
and security protocols, and of small high-consequence software programs,
such as embedded safety-critical software programs and trusted operating
system kernels. Only recently have formal methods started to be discussed as
a means for assuring the required security properties of software-intensive
systems. Also emerging are several “semi-formal” methods (e.g., Praxis High
Integrity Systems’ Correctness by Construction) that add aspects of formalism
to otherwise non-formal structured development processes. Perhaps most
significant of all is the increasing amount of work in the formal methods
community to automate as many formal activities as possible to make these
otherwise extremely arcane, labor-intensive activities practical for use by
nonexperts in assuring the safety and security of larger software systems.

8.9 Requirements Engineering for Secure Software
It is widely argued that the reason software is not secure is that adequate
requirements for software security are never specified. It is also a widely accepted
rule that negative and nonfunctional requirements, because they are not
“testable” or “actionable,” should not be documented. The problem is, to capture
requirements that will result in secure software, the requirements analyst must
feel free to go through a mental process that includes stating all of the negative
and nonfunctional requirements that are crucial to defining the constraints on
software behavior that results in its being secure. The next step, then, is to analyze
those negative and nonfunctional requirements in order to map them to positive
functional requirements that will enable the software to satisfy them. This is,
in fact, true whether the negative and nonfunctional requirements pertain to
security, reliability, performance, or any other required software property.

Unfortunately, the evolution of negative/nonfunctional requirements
into positive functional requirements is still an unresolved “hard problem” for
which, although it is widely acknowledged and actively researched, there has
still been no practical solution proposed outside of academia.

Software Security Assurance State-of-the-Art Report (SOAR) 293

Section 8 Observations

8.10 Security Design Patterns
The definition and use of design patterns—a concept that originated in
architecture in the late 1970s, and 10 years later was suggested for achieving
reuse at a higher level of abstraction than source code, i.e., reusable designs
for common software functions—for security functions in information
systems and software applications was first proposed in the mid-2000s,
and was soon the focus of a number of books [327], websites [328], and
other publications. [329] To date, this work has focused exclusively on
design patterns for common security functionality (e.g., authentication,
authorization, encryption, digital signature, etc.). There have yet to emerge
any definitions of reusable design patterns for functions that would directly
contribute to the security of software, such as input validation, [330] attack
pattern detection, fault tolerant exception handling, etc. Nor does there
appear to be any research underway on this topic. This is noteworthy because
much of the guidance on secure software development recommends the use
of security design patterns without reconciling or even acknowledging the
conflict between what security design patterns actually are (i.e., patterns
for security functions) and the types of design patterns that would actually
contribute to the attack-resistance, tolerance, and resilience of software.

8.11 Security of Component-Based Software
As with security design patterns, the majority of research into the
“composability of assurance” for component-based software has used
information system security (i.e., confidentiality, integrity, and availability of
information processed by the system) as the basis for its concept of whether
a system is “secure.” The focus of security for component-based development
has been on issues like security of information flows across intercomponent
interfaces and what the composite assurance level of a system assembled
from components with different Common Criteria (CC) Evaluation Assurance
Levels (EAL) will be. The research most directly relevant to secure software
development has focused on how components reveal their security
properties and assumptions to each other and how component-based
systems interact with, and receive security protection from, their execution
environments. Also, the significant attention paid to issues of security
of commercial-off-the-shelf (COTS), OSS, and other nondevelopmental
software products is directly relevant, because such software products are
often used as components of larger software-intensive systems.

8.12 Secure Coding
If the numerous books and other guidance resources on secure coding are
indicative, “coding” is a term that is not very precisely understood. While
most definitions equate “coding” with “programming,” which is defined as an
implementation-phase activity, most guidance on secure coding and secure

Software Security Assurance State-of-the-Art Report (SOAR)294

Section 8 Observations

programming not only includes information but does little to distinguish among
secure design principles (mapped to the design phase of the SDLC), secure
coding practices (mapped to the implementation phase of the SDLC), and
security testing techniques including post-compilation (blackbox) techniques
(late coding phase for whitebox, testing/integration phase for blackbox).

The problem is that because they attempt to cover so much of the
life cycle, these broad-scope secure coding guides tend to provide their
recommendations at a level of detail that may be right for an architect or
designer, but is too high level and imprecise to be of much help to the actual
coder. At best, this case of false advertising means that the programmer who
plans to invest in one or more of these “secure coding” guides should first
review them thoroughly to determine whether, in fact, the information they
contain is at a level of detail and extensive enough (secure coding guides
should, ideally, include actual source code examples) to be of practical use.

At a lower level, compilers and programming libraries are working to
improve the security of software code. Several “safe” versions of the C library
are available—and Microsoft provides one with new versions of its Visual Studio
compiler. Similarly, modern C compilers will detect-and-correct or detect-
and-flag a number of well-known coding errors that have historically led to
vulnerabilities in software. Because developers routinely rely on compilers
to detect syntax errors, using a similar interface for security errors improves
security without modifying the programmer’s workflow.

8.13 Development and Testing Tools for Secure Software
The current focus of many commercial and open source software security
testing tools is finding problems that are indicative of vulnerabilities in source
code that has already been written. The majority of these tools fall into the
category of static analysis tools, although the number of tools for fuzzing
and fault injection is increasing, as is the number of verifying compilers that
perform security checks.

There are an increasing number of “safe” and “secure” programming
languages. Many of these are variants on C and C++ that compensate for the
lack of type-safety and memory-safety in those languages. One of the most
widely used is Microsoft’s C#. Even more widely used is Java, which is frequently
cited as an inherently secure language, due to both its built-in type safety and
its supporting Java Virtual Machine (JVM) environment. (C# similarly benefits
from the code security features of the .NET environment which, because they
are even more tightly integrated into the overall execution environment, are
seen as having some advantages over the JVM in ease of use.)

Software Security Assurance State-of-the-Art Report (SOAR) 295

Section 8 Observations

8.14 Software Security Testing
Trends in software security testing are the adaptation of several techniques from
the software safety, software quality, and blackhat communities for use in software
security testing (e.g., fuzzing, fault injection, reverse engineering). Significant effort
within both the NIST Software Assurance Metrics and Tool Evaluation (SAMATE)
and National Security Agency (NSA) Center for Assured Software (CAS) programs
has gone into the classification, taxonomization, and comparison of these and
other types of security testing tools (and even some development tools).

As the listing on the NIST SAMATE website attests, the number of software
security testing tools is continually increasing. These tend to be test type,
language, and platform specific. Even so, a first level of tool integration has been
achieved, through use of central management “consoles” that provide a single
interface to control the operation of a variety of testing tools (albeit usually
from a single vendor). The result is a kind of multifunction tool “framework.”
As yet, however, there are few if any individual tools that are multifunction.
Nor are there either individual tools or frameworks that are multilingual and
multiplatform, i.e., able to run a variety of tests that target software written in
different languages and hosted on different platforms.

Another level of tool integration that seems far from being achieved is
the correlation, fusion, and normalization of test results from different types
and brands of software testing tools, as well as across test tools at the software,
system, and network levels. Object Management Group’s (OMG) Software
Assurance Ecosystem represents a first step toward this second level of tool
integration, although it is still questionable whether the approach of using
a meta-language to normalize test results from different tools will require
capturing those results at such a high level of abstraction as to cause the loss of
important lower-level results.

Tools and techniques for building security test cases for software are
becoming increasingly advanced. Unified Modeling Language (UML)-based
misuse and abuse case modeling, threat modeling (whether based on Microsoft’s
methodology, or any of several others), attack patterns, trees, and graphs are
all techniques that have emerged as equally useful for helping specify security
requirements and architectures for software, and for defining security test cases
for implemented software. It is increasingly true that software security testing is
increasing in sophistication and scope beyond simple verification against generic
application security checklists (such as those listed in Section 5.5.3.1).

8.15 Security Assurance Cases
As with formal methods, assurance cases are routinely used for the verification
of safety-critical systems and high-assurance security systems. The first
assurance cases were, in fact, safety cases for physical systems—in this case,
nuclear facilities—mandated by law in Europe in the late 1960s. Other European
safety laws followed regulating railroads, avionics, etc., and all mandating safety

Software Security Assurance State-of-the-Art Report (SOAR)296

Section 8 Observations

cases. In the United States, no similar reliance on safety cases emerged to verify
compliance with safety regulations. However, the concept of security assurance
cases has become inculcated through the CC evaluation process, where they
take the form of Security Target documents.

The need for assurance cases is widely acknowledged in the software
assurance community, where they are seen as a means for software producers
to make claims about the security of their software and to provide evidence
supporting those claims. Assurance cases are looked to as providing the basis
for security evaluations of software products. Significant effort has already been
expended by three important standards bodies (ISO/IEC, IEEE, and OMG) to
define standards for (1) the content of assurance cases for software and (2) the
process by which those assurance cases can be verified. At the same time, the
software safety community has begun to adapt and extend its standards for
software safety cases to also address the need to establish and verify software
security properties. The SafSec standard developed by Praxis High Integrity
Systems for the United Kingdom Ministry of Defence (UK MOD) is an example
of such a standard for a “hybrid” safety/security assurance case for software.

8.16 Software Security Metrics
How much security is enough? At present, there appears to be no way to answer
that question. Most software security guidance is either excessively pragmatic
(do only just enough to get by) or excessively rigorous (do it all, or you’ll still
have vulnerable software). In short, without means to measure the effectiveness
not just of whole processes but of individual practices and techniques, under
specific circumstances and in particular environments, software security still
appears to be a daunting all-or-nothing proposition.

Currently, existing and proposed software security metrics focus almost
exclusively on counting and comparing vulnerabilities in implemented software,
measuring the attack surface, or measuring complexity. No one has yet determined
whether the comparison of numbers of vulnerabilities in earlier vs. later versions of
software programs (the Microsoft metric) or the average number of vulnerabilities
per x lines of code are, in fact, meaningful metrics in terms of indicating whether
efforts to produce more secure software have succeeded, or for predicting the
likelihood that software that appears to be secure in the development environment
will, in fact, prove to be secure “in the wild” (i.e., in deployment).

Both the information security and the software engineering communities
appear to be looking at the problem of defining meaningful metrics for measuring
the security of software. The metrics they are researching are based on existing
metrics for system security measurement, and software quality, reliability, and
safety measurement. The Department of Homeland Security’s (DHS) Working
Group on security metrics and measurement seems to be focused mainly on
metrics adapted from the information security community. SAMATE, despite the
“Metrics” in its name, has to date focused on the “TE” (tools evaluation) portion of
its charter, and so has yet to begin pursuing work in this area.

Software Security Assurance State-of-the-Art Report (SOAR) 297

Section 8 Observations

8.17 Secure Software Distribution
The notion of “trusted distribution” defined by the Trust Computer System
Evaluation Criteria (TCSEC) has been revived, although the focus now is on
distribution via network-based downloads rather than physical media. One
of the most noteworthy trends is the use of digital watermarking and digital
rights management technologies initially developed for intellectual property
protection and license enforcement as integrity and authorization techniques
for downloaded software executables. Because these technologies were initially
conceived for widespread usage in environments that lack any kind of security
infrastructure, they are increasingly replacing or augmenting digital signature
and cryptographic hashes as integrity mechanisms on software. The problem
of trustworthy download source identification (i.e., making sure the site from
which software is downloaded is, in fact, a valid supplier site) is beginning to
be addressed through authentication of download channels and through code
signatures using certificates issued by trusted certification authorities.

8.18 Software Assurance Initiatives
During the last month in which this SOAR was being written, the Defense
Intelligence Agency (DIA) and the Air Force both initiated software assurance
initiatives. This is indicative of the rapidly increasing interest in software
security assurance. Moreover, an unprecedented level of coordination and
communication exists between existing software assurance initiatives across
DoD and DHS, ensuring that duplication of effort is minimized and use of
limited resources is optimized. What has not yet been achieved, however, is a
similarly close coordination (beyond some specific projects, such as the iCMM/
CMMI safety and security extensions) with the software assurance programs
of other agencies such as the National Aeronautics and Space Administration
(NASA), the FAA, and the Department of Energy. Even less communication
and coordination appears to exist between US government and foreign allied
government programs, which raises the question of the implications of this lack
of cooperation for multinational coalitions and partners in the war on terror.
For instance, if regulation and legislation and licensing of developers is ever
achieved, without international cooperation, it is doubtful that it will have any
impact given the global nature of the software industry.

Activities across the whole DoD/DHS software assurance community
range from development of secure development toolsets for use across a single
department (DoD) to definition of international standards (that are expected
to benefit DoD and DHS). By nature of its mission, the focus of the DoD
software assurance program is somewhat more parochial than that of DHS:
DoD is focusing on its own needs and problems, while DHS, with its charter
to secure the nation’s critical infrastructures (including its cyber information
infrastructure), necessarily takes a much broader view in defining the scope of
its Software Assurance Program’s activities.

Software Security Assurance State-of-the-Art Report (SOAR)298

Section 8 Observations

Starting with application security consortia such as Open Web Application
Security Project (OWASP) and Application Security Industry Consortium
(AppSIC), and now expanding into software security consortia such as
the Secure Software Forum and the newly-chartered Software Assurance
Consortium, industry has also become increasingly and actively engaged in
community-wide software security programs and activities.

8.19 Resources on Software Security
The number of books, websites, portals, blogs, and particularly papers and
articles on software security topics has reached a point where it is impossible
to effectively survey them all. As of January 2007, there is now even a magazine
solely devoted to secure software engineering. This said, the accuracy, currency,
and quality of content across this multiplicity of resources varies widely. Much
is left online and on bookshelves that has, in fact, been superseded by later
publications (often by the same authors); a handful of the earliest resources even
carry disclaimers stating that they are probably no longer completely valid, and
that the reader should seek more recent information. [331] Perhaps someday
a researcher will undertake a semantic web-based portal through which all
reviews and commentaries on print and online software security resources can be
centrally accessed (and, ideally, appended with Amazon.com or TripAdvisor style
ratings) to aid those seeking the best resources in locating them.

8.20 Knowledge for Secure Software Engineering
Particularly in the agile development community, the hotly debated question is
how to inject the required security knowledge into software projects. The agile
approach is predicated on the establishment of teams of developers who are all
equally knowledgeable in the practices, techniques, and technologies needed
throughout the agile life cycle to produce software that functions correctly.
Agile development teams reject the idea of including specialists on their teams:
there is not enough time or resources to accommodate team members who
cannot contribute fully to all life cycle activities. The question of how security
knowledge is acquired by software development teams is not limited to agile
developers. Many development teams (including agile teams that are willing
to accommodate specialists) hope that by adding a security expert or two to
their ranks, they can “offload” responsibility for all software security concerns
to those experts, while they themselves continue to write software as they have
always done. Nevertheless, there is growing consensus within the software
security assurance community that all participants in a software development
project (including managers) need at least some knowledge of security.

Unlike systems engineering, where specialist security architects can to a
great extent “overlay” security components and interfaces on top of business
logic components and interfaces, secure software engineering entails the
amplification and adaptation of good software engineering principles, practices,

Software Security Assurance State-of-the-Art Report (SOAR) 299

Section 8 Observations

and techniques rather than the addition of a whole separate and unrelated set of
“secure” principles, practices, and techniques. In other words, secure software
engineering is really a matter of adapting existing principles, practices, and
techniques used in developing high-quality software. The question is how to best
impart the knowledge developers need to know, which principles, practices, and
techniques to adapt, and how to make those adaptations.

If Microsoft’s example is salubrious, a combination of security specialists
and experts on software teams and increased developer security knowledge is
needed. The developer knowledge will focus on how to improve the practices,
etc. the developer already uses, while the experts will be relied on to verify
the security of the resulting software, and also to consult with the developers
throughout the software process to continue reinforcing their new knowledge.

8.21 Software Security Education and Training
There is still widespread disagreement throughout academia about the best way
to add software security to existing software engineering curricula, courses, and
lectures. The problem most frequently cited is the perception that the software
security subject matter can only be added to already full curricula, and this will
be at the expense of other subjects. Few academics are yet willing to reassess
the content of their existing curricula to determine whether it is all as important
as (1) it was when their curricula were originally conceived and as
(2) the software security subject matter that they are convinced must displace it.
Further, there is disagreement on how best to teach software security: should be
a separate course, an addendum to every course, or an augmentation similar to
English departments’ grammar clinics.

In the realm of professional training and certification, the number of
courses on secure programming, security testing, and other practical aspects
of software security is growing, as is the number of professional certifications
for “secure programmers,” “secure application developers,” and “secure
software engineers.” DoD has already stated its intention to begin requiring
developers of security-critical DoD systems to hold the certification associated
with the SysAdmin, Audit, Networking, and Security (SANS) National Secure
Programming Skills Assessment.

8.22 Software Security Research Trends
A caveat on the research trends reported in this SOAR: The majority of data
on research trends comes from academia. Far less information is publicly
available about research in industry and government in general, and about
classified research in particular. Because this SOAR is unclassified, it avoids
making any observations on classified research programs or projects. In any
case, much of what is termed “government research” is, in fact, accomplished
through government funding of academic and private research institutions. The
apparent lack of coordination and communication between research teams and

Software Security Assurance State-of-the-Art Report (SOAR)300

Section 8 Observations

laboratories (vs. individual researchers) across academia, and in some cases
even within the same institution, [332] appears to be typical of how research
in academia is conducted. One can only speculate on possible reasons for
this lack of cooperation and communication. Perhaps there is a belief among
academics that good results are more likely to emerge if more researchers work
independently to solve a given problem than if fewer, albeit larger, coordinated
groups of researchers collaborate to do so. (If this belief indeed explains the lack
of cross-institution collaborations, it would be interesting to determine whether
it arises simply from a “gut feeling” or whether empirical evidence supports
it.) Another possibility is that within the context of teaching institutions, the
need to monitor, mentor, and grade individual student researchers within
research teams would be unacceptably difficult were the team to span multiple
institutions. (In that case, it would be interesting to find out how professors
who do manage this challenge feel about the additional level of effort, if in fact
there is any.) A less savory possibility is that individual researchers’ desire for
credit and/or concern about retaining intellectual property rights to their work
outweighs their desire to pursue the most optimal approach (i.e., collaboration
with other institutions) for attaining their research goals. [333]

References

321 Gary McGraw, Software Security: Building Security In (Boston, MA: Addison-Wesley; 2006).

322 The following article provides a classic example of confusing security software with software security: Kevin
Sloan and Mike Ormerod, “How a Variety of Information Assurance Methods Deliver Software Security in
the United Kingdom,” CrossTalk: The Journal of Defense Software Engineering (2007 March 2007): 13–17.
Available from: http://www.stsc.hill.af.mil/CrossTalk/2007/03/0703SloanOrmerod.html

323 Bruce Schneier, in Attack Trees, Modeling Security Threats, was one of the first to suggest using attack
patterns for this purpose.

324 The following paper describes a typical application of this concept to software vulnerability
assessment: Michael Gegick and Laurie Williams, “Matching Attach Patterns to Security
Vulnerabilities in Software-Intensive Systems Designs,” in Proceedings of the Workshop on Software
Engineering for Secure Systems, St. Louise, MO, May 15–16. (Published as ACM SIGSOFT Software
Engineering Notes 30, no. 4 [[New York, NY: ACM Press 2005]).

325 Keep in mind that a process improvement model, even a security-enhanced one, will only be as
successful in improving the state of the resulting software as the process it is meant to codify and
discipline. It is just as possible to codify a bad process, and to repeat it with quasi-mechanical
discipline and rigor, as it is a good process.

326 This is, in fact, true of the growing interest in software security generally. It is widely reported that no
real business case has been made to justify investment in software security, and no return-on-
investment statistics have yet been captured. And yet the level of discussion, publication, and activity
(i.e., buzz”) about software security continues to grow along what appears to be an increasingly steep
upward trajectory. Is it a matter of the tail wagging the dog? Is all the “buzz” actually creating an
illusion of a business case where one does not actually exist?

327 For example: Steel, et al.,. Core Security Patterns.

http://www.stsc.hill.af.mil/CrossTalk/2007/03/0703SloanOrmerod.html

Software Security Assurance State-of-the-Art Report (SOAR) 301

Section 8 Observations

328 For example: “SecurityPatterns.Org” [web portal].
Available from: http://www.securitypatterns.org and

 “Identity Management Security Patterns” [home page] (Santa Clara, CA: Sun Microsystems, Inc.)
“Java.Net Project” [website].
Available from: https://identitypatterns.dev.java.net

329 For example, the Open Group Technical Guide to Security Design Patterns and Joseph Yoder (University
of Illinois at Urbana-Champaign), and Jeffrey Barcalow (Reuters Information Technology),
“Architectural Patterns for Enabling Application Security,” in Proceedings of the Fifth Pattern Language
of Programming Conference, Monticello, IL, September 3–5 1997.
Available from: http://st-www.cs.uiuc.edu/~hanmer/PLoP-97/Proceedings/yoder.pdf

330 It should be noted, however, that several application frameworks now provide standard input validation
support for applications that run within them.

331 One cannot help but wonder, given these caveats, why the authors of these earlier works continue to
keep them online. Historical interest? Ego gratification?

332 For example, the CyLab and SEI at CMU are both pursuing software assurance research in parallel but
without any coordination or cooperation between them.

333 Either that, or the disincentives in terms of concerns over intellectual property and patent rights
outweigh any incentives in terms of benefiting from other researchers’ findings and techniques before
they are published.

http://www.securitypatterns.org
https://identitypatterns.dev.java.net
http://st-www.cs.uiuc.edu/~hanmer/PLoP-97/Proceedings/yoder.pdf

The following is a list of all abbreviations and acronyms used in this document,
with their amplifications.

AA Application Area
ACID Atomic, Consistent, Isolated, and Durable
ACM Association for Computing Machinery
ACSAC Annual Computer Security Applications Conference
ADE Agile Development Environment
AEGIS Appropriate and Effective Guidance in Information Security
AFB Air Force Base
AFRL Air Force Rome Laboratories
AIA Aerospace Industries Association
ANSI American National Standards Institute
ANUBIS Analyzing Unknown Binaries
AOM Aspect Oriented Modeling
AOSD Aspect Oriented Software Development
API Application Programming Interface
AppSIC Application Security Industry Consortium
ARINC Aeronautical Radio, Incorporated
AS/NZS Australian/New Zealand Standard

Acronyms
A

Software Security Assurance State-of-the-Art Report (SOAR)302

Software Security Assurance State-of-the-Art Report (SOAR) 303

Appendix A Acronyms

ASAP Application Security Assurance Program
ASASI Environment for Addressing Software Application Security Issues
ASD Assistant Secretary of Defense
ASD Adaptive Software Development
ASP Active Server Pages
ASP Agile Software Process
ASSET Automated Security Self-Evaluation Tool
AT&L Acquisition Technology and Logistics
AT/SPI Anti-Tamper and Software Protection Initiative
AUP Agile Unified Process
AusCERT Australian CERT
AVDL Application Vulnerability Description Language
BAN Burrows-Abadi-Needham
BASAP Business Application Security Assurance Program
BPCP BITS Product Certification Program
BSD Berkeley Software Distribution
BSI Build Security In
C&A Certification and Accreditation
CAML Categorical Abstract Machine Language
CAMP Code Assessment Methodology Project
CAPEC Common Attack Pattern Enumeration and Classification
CAS Center for Assured Software
CASE Computer Aided Software Engineering
CASL Common Algebraic Specification Language
CASP Certified Application Security Professional
CASSEE Computer Automated Secure Software Engineering Environment
CBK Common Body of Knowledge
CC Common Criteria
C3I Command, Control, Communications and Intelligence
CCS Calculus of Communicating Systems
CCTA Central Communication and Telecommunication Agency
CD&R Capability Development and Research
CECOM Communications-Electronics Command
CERIAS Center for Education and Research in Information Assurance

and Security
CERT Computer Emergency Response Team
CERT/CC Computer Emergency Response Team Coordination Center
CHACS Center for High Assurance Computer Systems
CHATS Composable High-Assurance Trustworthy Systems
CHESS Center Human Enhanced Secure Systems
CIAE Center for Information Assurance Engineering
CISP Cardholder Information Security Program
CISSP Certified Information Systems Security Professional

Software Security Assurance State-of-the-Art Report (SOAR)304

Appendix A Acronyms

CLASP Comprehensive Lightweight Application Security Process
CM Configuration Management
CME Common Malware Enumeration
CMM Capability Maturity Model
CMMI Capability Maturity Model Integrated
CMU Carnegie Mellon University
CNSS Committee on National Security Systems
COAST Computer Operations, Audit, and Security Technology
CONOPS Concept of Operations
CORAS Consultative Objective Risk Analysis System
CORBA Common Object Request Broker Architecture
COSIC COmputer Security and Industrial Cryptography
COTS Commercial Off-The-Shelf
CRAMM CCTA Risk Analysis and Management Method
CS&C Cyber Security and Communications
CSDP Certified Software Development Professional
CSDS Center for Secure and Dependable Systems
CSIA Central Sponsor for Information Assurance
CSIRT Computer Security Incident Response Team
CSIS Center for Strategic and International Studies
CSL Computer Science Lab
CSP Communicating Sequential Processes
CSSC Control Systems Security Center
CSSE Center for Systems and Software Engineering
CTMM Calculative Threat Modeling Methodology
CTS Construction, Transition, and Support
CVE Common Vulnerabilities and Exposures
CVSS Common Vulnerability Scoring System
CWE Common Weakness Enumeration
DAA Designated Approving Authority
DACS Data and Analysis Center for Software
DARPA Defense Advanced Research Projects Agency
DbC Design by Contract
DCID Director, Central Intelligence Directive
DDP Defect Detection and Prevention
DDR&E Director of Defense Research and Engineering
DES Data Encryption Standard
DFARS Defense Federal Acquisition Regulation Supplement
DHS Department of Homeland Security
DIA Defense Intelligence Agency
DIACAP DoD Information Assurance Certification and Accreditation Process
DiD Defense-in-Depth
DISA Defense Information Systems Agency

Software Security Assurance State-of-the-Art Report (SOAR) 305

Appendix A Acronyms

DITSCAP Defense Information Technology Security Certification
and Accreditation Process

DOC Detector of Obfuscated Calls
DoD Department of Defense
DoDAF DoD Architecture Framework
DoDD DoD Directive
DoDI DoD Instruction
DoDIIS Department of Defense Intelligence Information System
DoS Denial of Service
DOVES Database of Vulnerabilities, Exploits, and Signatures
DREAD Damage potential, Reproducibility, Exploitability, Affected users,

Discoverability
DSB Defense Science Board
DSDM Dynamic System Development Method
DTIC Defense Technical Information Center
EAL Evaluation Assurance Level
EBK Essential Body of Knowledge
EC European Community
EC-Council International Council of Electronic Commerce Consultants
EIA Electronic Industries Association
EiD Engineering in Depth
EIS Electronics and Information Systems (department)
ELSW Electronic Systems Wing
eMASS Enterprise Mission Assurance Support System
EU European Union
EUP Enterprise Unified Process
FAA Federal Aviation Administration
FAQ Frequently Asked Questions
FAR Federal Acquisition Regulation
FDD Feature-Driven Development
FDR Failure Divergence Refinement
FIPS Federal Information Processing Standards
FISMA Federal Information Security Management Act
FMEA Failure Modes and Effects Analysis
FSO Field Security Operations
FSR Final Security Review
FUD Fear, Uncertainty, and Doubt
FX/MC Function Extraction for Malicious Code
GAO Government Accountability Office
GCSS Global Communication Support System
GEIA Government Electronics and Information Technology Association
GIAC Global Information Assurance Consortium
GIG Global Information Grid
GOTS Government Off-The-Shelf

Software Security Assurance State-of-the-Art Report (SOAR)306

Appendix A Acronyms

GRL Goal-oriented Requirements Language
GSEC (GIAC) Security Essentials Certification
HBAL Heap Bounded Assembly Language
HCD Hard Copy Device
HIPAA Healthcare Information Portability and Accountability Act
HTTP HyperText Transfer Protocol
I&A Identification and Authentication
IA Information Assurance
IAC Information Assurance Center
I2WD Information and Intelligence Warfare Directorate
IASE Information Assurance Support Environment
IATAC Information Assurance Technology Analysis Center
IAVA Information Assurance Vulnerability Alert
iCMM Integrated Capability Maturity Model
IDA Institute for Defense Analyses
IE Inception and Elaboration
IEC International Electrotechnical Commission
IEEE Institute of Electrical and Electronics Engineers
IESE Institute for Experimental Software Engineering
IET Institute of Engineering and Technology
IETF Internet Engineering Task Force
IFIP International Federation for Information Processing
IIS Internet Information Server
IITAC International Institute for Training, Assessment, and Certification
ILCS Illinois Compiled Statutes
IMCS Information Management Core Services
INFOSEC Information Security
ING Internationale Nederlanden Groep
INRIA Institut National de Recherche en Informatique et en Automatique
IPS Intrusion Prevention System
IPSec Internet Protocol Security
IPTO Information Processing Technology Office
IRC INFOSEC Research Council
ISO International Standards Organization
ISTLab Information Systems Technologies Laboratory
IT Information Technology
ITI Information Trust Institute
IV&V Independent Verification and Validation
IW Information Warfare
JAD Joint Application Design
JAD Joint Application Development
J2EE Java 2 Enterprise Edition
JPL Jet Propulsion Lab
JSP Java Server Pages

Software Security Assurance State-of-the-Art Report (SOAR) 307

Appendix A Acronyms

JTC Joint Technical Committee
JVM Java Virtual Machine
KDM Knowledge Discovery Metamodel
LaQuSo Laboratory for Quality Software
LCA Life Cycle Architecture
LCO Life Cycle Objectives
LD Lean Development
MAFTIA Malicious and Accidental Fault Tolerance for Internet Applications
MBASE Model-Based Architecting and Software Engineering
MCAD Microsoft Certified Application Developer
MCC Model-Carrying Code
MCSD Microsoft Certified Software Developer
MDA Model Driven Architecture
MDD Model Driven Development
MILOS Méthodes d’Ingenierie de Logicels Securisés
MILS Multiple Independent Levels of Security
MISRA Motor Industry Software Reliability Association
MIT Massachusetts Institute of Technolgoy
MOD Ministry of Defense
MORDA Mission Oriented Risk and Design Analysis
MOTS Modified Off-The-Shelf
MSF Microsoft Solutions Framework
MYSEA Monterey Security Architecture
NASA National Aeronautics and Space Administration
NCES Net-Centric Enterprise Services
NCSC National Computer Security Center
NCSD National Cyber Security Division
NCSP National Cyber Security Partnership
NDA Non-Disclosure Agreement
NDIA National Defense Industrial Association
NFR Non-Functional Requirement
NGSS Next Generation Security Software
NIACAP National Information Assurance Certification and

Accreditation Process
NIAP National Information Assurance Partnership
NII Networks and Information Integration
NIPRNet Non-Sensitive Internet Protocol Network
NISCC National Infrastructure Security Co-ordination Centre
NIST National Institute of Standards and Technology
NRC National Research Council
NRL Naval Research Laboratory
NRM Network Rating Methodology
NSA National Security Agency
NSS National Security System

Software Security Assurance State-of-the-Art Report (SOAR)308

Appendix A Acronyms

NSTB National SCADA Test Bed
NUREG Nuclear Regulation
NVD National Vulnerability Database
OASIS Organization for the Advancement of Structured

Information Standards
OCL Object Constraint Language
OCTAVE Operationally Critical Threat, Asset, and Vulnerability Evaluation
OMG Object Management Group
OSD Office of the Secretary of Defense
OSS Open Source Software
OUSD Office of the Under Secretary of Defense
OVAL Open Vulnerability and Assessment Language
OWASP Open Web Application Security Project
PA Process Area
PABP Payment Application Best Practices
PACC Predicable Assembly from Certifiable Components
PAG Program Analysis Group
PAM Pluggable Authentication Module
PBT Property-Based Tester
PELAB Programming Environments Laboratory
PEPA Performance Evaluation Process Algebra
PITAC President’s Information Technology Advisory Committee
PL Protection Level
PLOVER Preliminary List of Vulnerabilities Examples for Researchers
PRL Program/Proof Refinement Logic
PSM Practical Security Management
PSM Practical Software Measurement
PSOS Provably Secure Operating System
PTA Practical Threat Analysis
QA Quality Assurance
QDSC Qualified Data Security Company
QRST Queen’s Reliable Software Technology (group)
R&D Research and Development
RAD Rapid Application Development
RAID Redundant Array of Independent Disks
RAISE Rigorous Approach to Industrial Software Engineering
RASQ Relative Attack Surface Quotient
RBAC Role-Based Access Control
RESE Reconfigurable Reliability and Security Engine
RFID Radio Frequency Identification
RFP Request for Proposal
RIPP Rapid Iterative Production Prototyping
RISOS Research into Secure Operating Systems
RM Reference Model

Software Security Assurance State-of-the-Art Report (SOAR) 309

Appendix A Acronyms

RMF Risk Management Framework
ROI Return on Investment
RSL RAISE Specification Language
RSSR Reducing Software Security Risk
RTCA Radio Technical Commission for Aeronautics
RUP Rational Unified Process
RUPSec Rational Unified Process-Secure
S&S Safety and Security
S&T Science and Technoloy
S2e Secure Software Engineering
S3 Secure Software Systems (group)
SAFECode Static Analysis For safe Execution of Code
SafeCRT Safe C/C++ Run-Time
SAL Standard Annotation Language
SAMATE Software Assurance Metrics and Tools Evaluation
SAML Security Assertion Markup Language
SANS SysAdmin, Audit, Networking, and Security
SAP Systems Applications and Products
SBVR Semantics of Business Vocabulary and Rules
SC Subcommittee
SCADA Supervisory Control and Data Acquisition
SC-L Secure Coding List
SCM Software Configuration Management
SCORE Security Consensus Operational Readiness Evaluation
SCR Software Cost Reduction
SDE Secure Development Environment
SDL Security Development Lifecycle
SDLC Software Development Life Cycle
SE Systems Engineering
SECPROG Secure Programming
SECURIS Secure Information Systems
SEI Software Engineering Institute
SENSE Software Engineering and Security
SERC Software Engineering Research Center
SFDEF Susceptibility and Flaw Definition
SIDAR Security Intrusion Detection and Response
SiES Security in Embedded Systems
SIG Special Interest Group
SLAM Software specification, Language, Analysis, and Model-checking
SML Standard ML
SOA Service-Oriented Architecture
SOAP Simple Object Access Protocol
SOAR State-of-the-Art Report
SoS Security of Systems (group)

Software Security Assurance State-of-the-Art Report (SOAR)310

Appendix A Acronyms

SOUP Software of Unknown Pedigree
SOW Statement of Work
SP Special Publication
SPattern Secure Systems Methodologies Using Patterns
SPC Software Protection Center
SPI Software Protection Initiative
SPSA Secure Programming Skills Assessment
SQL Structured Query Language
SQUARE Secure Quality Requirements Engineering
SRD Software Reference Dataset
SRI Stanford Research Institute
SSAA System Security Authorization Agreement
SSAI Software Security Assessment Instrument
SSCP Systems Security Certified Practitioner
SSDM Secure Software Development Model
SSE-CMM Secure Systems Engineering Capability Maturity Model
SSF Secure Software Forum
SSL Secure Sockets Layer
SSO Single Sign-on
ST Security Target
ST&E Security Test and Evaluation
STIG Security Technical Implementation Guide
STRIDE Spoofing, Tampering, Repudiation, Information disclosure,

Denial of service, Elevation of Privilege
SUNY State University of New York
SwA Software Assurance
TAMPER Tamper and Monitoring Protection Engineering Research (Lab)
TCB Trusted Computing Base
TCP/IP Transmission Control Protocol/Internet Protocol
TCSEC Trusted Computer System Evaluation Criteria
TCX Trusted Computer Exemplar
TDD Test-Driven Development
TF-CSIRT Task Force-Computer Security Incident Response Team
T-MAP Threat Modeling based on Attacking Path
TOE Target of Evaluation
TPM Trusted Processor Module
TR Technical Report
TSP Team Software Process
TSP-Secure Team Software Process for Secure Software Development
UI User Interface
UMBC University of Maryland Baltimore Campus
UML Unified Modeling Language
URL Uniform Resource Locator
USC University of Southern California

Software Security Assurance State-of-the-Art Report (SOAR) 311

Appendix A Acronyms

USG US Government
USSTRATCOM US Strategic Command
V&V Verification and Validation
VCP Vulnerability Contributor Program
VINCS Virtual Infrastructure for Networked Computers
VDM Vienna Development Method
VEDEF Vulnerability Exploit Description and Exchange Format
VM Virtual Machine
WASC Web Application Security Consortium
WG Working Group
WISDOM Whitewater Interactive System Development with Object Models
WS Web Services
xADL eXtensible Architecture Description Language
XCCDF XML Configuration Checklist Data Format
XML eXtensible Markup Language
XP eXtreme Programming

The following are key terms used in this document and their definitions as
those terms are meant to be understood in this document.

Abuse | Malicious misuse, usually with the objective of alteration, disruption, or destruction.

Assurance | Justifiable grounds for confidence that the required properties of the software have
been adequately exhibited. In some definitions, assurance also incorporates the activities that
enable the software to achieve a state in which its required properties can be verified or assured.

Attack | An attempt to gain unauthorized access to a system’s services or to compromise one of
the system’s required properties (integrity, availability, correctness, predictability, reliability, etc.).
When a software-intensive system or component is the target, the attack will most likely manifest
as an intentional error or fault that exploits a vulnerability or weakness in the targeted software.

Availability | The degree to which the services of a system or component are operational and
accessible when needed by their intended users. When availability is considered as a security
property, the intended users must be authorized to access the specific services they attempt to
access, and to perform the specific actions they attempt to perform. The need for availability
generates the requirements that the system or component be able to resist or withstand attempts
to delete, disconnect, or otherwise render the system or component inoperable or inaccessible,

Definitions
B

Software Security Assurance State-of-the-Art Report (SOAR)312

Software Security Assurance State-of-the-Art Report (SOAR) 313

Appendix B Definitions

regardless of whether those attempts are intentional or accidental. The violation of availability is
referred to as Denial of Service or sabotage.

Blackhat | A person who gains unauthorized access to and/or otherwisecompromises the
security of a computer system or network.

Component | A part or element within a larger system. A component may be constructed of
hardware or software and may be divisible into smaller components. In the strictest definition, a
component must have —

u A contractually specified interface (or interfaces)
u Explicit context dependencies
u The ability to be deployed independently
u The ability to be assembled or composed with other components by someone other

than its developer.

In the less restrictive definition used in this SOAR, a component may also be a code module
or code unit. A code unit is either one of the following:
u A separately testable element of a software component
u A software component that cannot be further decomposed into constituent components
u A logically separable part of a computer program.

A code module is one of the following:
u A program unit that is discrete and identifiable with respect to compilation, combination

with other units, and loading, i.e., a code unit
u A logically separable part of a computer program, i.e., a code unit.

Compromise | A violation of the security policy of a system, or an incident in which any of the
security properties of the system are violated.

Correctness | The property that ensures that software performs all of its intended functions as
specified. Correctness can be seen as the degree to which any one of the following is true:

u Software is free from faults in its specification, design, and implementation.
u Software, documentation, and other development artifacts satisfy their

specified requirements.
u Software, documentation, and other development artifacts meet user needs and

expectations, regardless of whether those needs and expectations are specified or not.

In simple terms, software that is correct is (1) free of faults, and (2) consistent with
its specification.

Countermeasure | An action, device, procedure, technique, or other measure that reduces the
vulnerability or weakness of a component or system.

Software Security Assurance State-of-the-Art Report (SOAR)314

Appendix B Definitions

Critical Software | Software the failure of which could have a negative impact on national
security or human safety, or could result in a large financial or social loss. Critical software is also
referred to as high-consequence software.

Denial of Service (DoS) | The intentional violation of the software’s availability resulting from
an action or series of actions that has one of the following outcomes:

u The system’s intended users cannot gain access to the system.
u One or more of the system’s time-critical operations is delayed.
u A critical function in the system fails.

Also referred to as sabotage.

Dependability | The ability of a system to perform its intended functionality or deliver its
intended service correctly and predictably whenever it is called upon to do so. The following
properties of software directly contribute to its dependability:

u Availability
u Integrity
u Reliability
u Survivability
u Trustworthiness
u Security
u Safety.

Execution Environment | The aggregation of hardware, software, and networking entities
surrounding the software that directly affects or in� uences its execution.

Error | (1) Deviation of one of the software’s states from correct to incorrect. (2) Discrepancy
between the condition or value actually computed, observed, or measured by the software, and the
true, specified, or theoretically correct value or condition. Some sources give a third meaning for
error: (3) a human action that leads to a failure. For clarity, this SOAR uses the word mistake to
convey this third meaning.

Failure | (1) Non-performance by a system or component of an intended function or service.
(2) Deviation of the system’s performance from its specified, expected parameters (such as its
timing constraints).

Fault | The adjudged or hypothesized cause of an error.

Flaw | A mistake of commission, omission, or oversight in the creation of the software’s
requirements, architecture, or design specification that results in an inadequate and often weak
design, or in one or more errors in its implementation. Some software assurance practitioners
object to the word “� aw” because it is often confused with “error,” “fault,” and “defect.” (Just as
“defect” is sometimes similarly confused with “� aw.”)

Software Security Assurance State-of-the-Art Report (SOAR) 315

Appendix B Definitions

Formal | Based on mathematics. (This narrow definition is used in this SOAR to avoid the
confusion that arises when “formal” is used both to mean “mathematically based” and as a
synonym for “structured” or “disciplined.”)

Formal Method | A process by which the system architecture or design is mathematically modeled and
specified, and/or the high-level implementation of the system is verified, through use of mathematical
proofs, to be consistent with its specified requirements, architecture, design, or security policy.

Independent Verification and Validation (IV&V) | Verification and validation performed by a
third party, i.e., an entity that is neither the developer of the system being verified and validated,
nor the acquirer or user of that system.

Integrity | The property of a system or component that re� ects its logical correctness and reliability,
completeness, and consistency. Integrity as a security property generates the requirement for the
system or component to be protected against intentional attempts to do one of the following:

u Alter or modify the software in an improper or unauthorized manner. (Note that attempts
to destroy the software in an improper or unauthorized manner are considered attacks on
the system’s availability, i.e., Denial of Service attacks)

u Through improper or unauthorized manipulation to cause the software to either perform
its intended function(s) in a manner inconsistent with the system’s specifications and the
intended users’ expectations, or to perform undocumented or unexpected functions.

Least Privilege | The principle whereby each subject (i.e., actor) in the system is granted only
the most restrictive set of privileges needed by the subject to perform its authorized tasks, and
whereby the subject is allowed to retain those privileges for no longer than it needs them.

Malicious Code | Undocumented software or firmware intended to perform an unauthorized or
unanticipated process that will have adverse impact on the dependability of a component or
system. Malicious code may be self-contained (as with viruses, worms, malicious bots, and Trojan
horses), or it may be embedded in another software component (as with logic bombs, time bombs,
and some Trojan horses). Also referred to as malware.

Mistake | An error committed by a person as the result of a bad or incorrect decision or judgment
by that person. Contrast with “error,” which is used in this document to indicate the result of a
“mistake” committed by software (i.e., as the result of an incorrect calculation or manipulation).

Misuse | Usage that deviates from what is expected (with expectation usually based on the
software’s specification).

Quality | The degree to which a component, system, or process meets its specified requirements
and/or stated or implied user, customer, or stakeholder needs and expectations.

Predictability | The properties, states, and behaviors of the system or component never deviate
from what is expected.

Software Security Assurance State-of-the-Art Report (SOAR)316

Appendix B Definitions

Problem | Used interchangeably with anomaly, although “problem” has a more negative
connotation and implies that the anomaly is, or results from, a � aw, defect, fault, error, or failure.

Reliability | The probability of failure-free (or otherwise satisfactory) software operation for a
specified or expected period or interval of time, or for a specified or expected number of operations,
in a specified or expected environment under specified or expected operating conditions.

Risk | The likelihood that a particular threat will adversely affect a system by exploiting a
particular vulnerability.

Robustness | The degree to which a component or system can function correctly in the
presence of invalid inputs or stressful environmental conditions, including inputs or conditions
that are malicious in origin.

Sabotage | See Denial of Service.

Safety | Persistence of dependability in the face of realized hazards (unsponsored, unplanned
events, accidents, mishaps) that result in death, injury, illness, damage to the environment, or
significant loss or destruction of property.

Sandboxing | A method of isolating application-level components into distinct execution domains,
the separation of which is enforced by software. When run in a sandbox, all of the component’s code
and data accesses are confined to memory segments within that sandbox. In this way, sandboxes
provide a greater level of isolation of executing processes than can be achieved when processes run
in the same virtual address space. The most frequent use of sandboxing is to isolate the execution of
untrusted programs (e.g., mobile code, programs written in potentially unsafe languages such as C)
so that each program is unable to directly access the same memory and disk segments used by other
programs, including trusted programs. Virtual machines (VM) are sometimes used to implement
sandboxing, with each VM providing an isolated execution domain.

Secure State | The condition in which no subject can access another entity in an unauthorized
manner for any purpose.

Security | Protection against disclosure, subversion, or sabotage. To be considered secure,
software’s dependability (including all constituent properties of that dependability) must be
preserved in the face of threats. At the system level, security manifests as the ability of the system
to protect itself from sponsored faults, regardless of whether those faults are malicious.

Service | A set of one or more functions, tasks, or activities performed to achieve one or more
objectives that benefit a user (human or process).

Software Security Assurance State-of-the-Art Report (SOAR) 317

Appendix B Definitions

Software Security Assurance | Justifiable grounds for confidence that software’s security
property, including all of security’s constituent properties (e.g., attack-resistance, attack-tolerance,
attack-resilience, lack of vulnerabilities, lack of malicious logic, dependability despite the presence
of sponsored faults, etc.), has been adequately exhibited. Often abbreviated to software assurance.

Software-Intensive System | A system in which the majority of components are implemented
in/by software, and in which the functional objectives of the system are achieved primarily by its
software components.

State | (1) A condition or mode of existence that a system or component may be in, for example
the input state of a given channel. (2) The values assumed at a given instant by the variables that
define the characteristics of a component or system.

Subversion | The intentional violation of the software’s integrity.

Survivability | The ability to continue correct, predictable operation despite the presence of
realized hazards and threats.

System | A collection of components organized to accomplish a specific function or set of functions.

Threat | Any entity, circumstance, or event with the potential to harm the software system or
component through its unauthorized access, destruction, modification, and/or denial of service.

Trustworthiness | Logical basis for assurance (i.e., justifiable confidence) that the system will
perform correctly, which includes predictably behaving in conformance with all of its required
critical properties, such as security, reliability, safety, survivability, etc., in the face of wide ranges
of threats and accidents, and will contain no exploitable vulnerabilities either of malicious or
unintentional origin. Software that contains exploitable faults or malicious logic cannot justifiably
be trusted to “perform correctly” or to “predictably satisfy all of its critical requirements” because
its compromisable nature and the presence of unspecified malicious logic would make prediction of
its correct behavior impossible.

User | Any person or process authorized to access an operational system.

Verification And Validation (V&V) | The process of confirming, by examination and provision of
objective evidence, that —

u Each step in the process of building or modifying the software yields the right products
(verification). Verification asks and answers the question “Was the software built right?”
(i.e., correctness).

u The software being developed or modified will satisfy its particular requirements
(functional and nonfunctional) for its specific intended use (validation). Validation asks
and answers the question “Was the right software built?” (i.e., suitability).

In practical terms, the differences between verification and validation are unimportant

Software Security Assurance State-of-the-Art Report (SOAR)318

Appendix B Definitions

except to the theorist. Practitioners use the term V&V to refer to all of the activities that are
undertaken to ensure that the software will function according to its specification. V&V is
intended to be a systematic and technical evaluation of software and associated products of
the development and maintenance processes. Independent V&V is a process whereby the
products of the software development life cycle are reviewed, verified, and validated by an
entity that is neither the developer nor the acquirer of the software, which is technically,
managerially, and financially independent of the developer and acquirer, and which has no
stake in the success or failure of the software.

Vulnerability | A development fault or weakness in deployed software that can be exploited with
malicious intent by a threat with the objective of subverting (violation of integrity) or sabotaging
(violation of availability) the software, often as a step toward gaining unauthorized access to the
information handled by that software. Vulnerabilities can originate from weaknesses in the
software’s design, faults in its implementation, or problems in its operation.

Weakness | A � aw, defect, or anomaly in software that has the potential of being exploited as a
vulnerability when the software is operational. A weakness may originate from a � aw in the
software’s security requirements or design, a defect in its implementation, or an inadequacy in its
operational and security procedures and controls. The distinction between “weakness” and
“vulnerability” originated with the MITRE Corporation Common Weaknesses and Exposures (CWE)
project (http://cve.mitre.org/cwe/about/index.html).

Whitehat | A person who is ethically opposed to the abuse of computer systems. Motivated by that
opposition, the whitehat frequently uses the blackhat’s techniques and tools in order to confound
blackhat compromise attempts and to protect the systems and networks targeted by them.

http://cve.mitre.org/cwe/about/index.html

Software Security Assurance State-of-the-Art Report (SOAR) 319

Appendix B Definitions

The majority of literature, activity, and research in the software security
community focuses on information systems software, especially application
software, although some consideration is also given to middleware and
operating system software, not least thanks to the publicity garnered by
Microsoft’s Trustworthy Computing Initiative, [334] a process improvement
initiative adopted by Microsoft in 2002 to improve the security, privacy, and
reliability both of its software products and its business practices.

Less attention is being paid to the security of networking software outside
of wireless and mobile networks, or to the security of security-enforcing software,
such as firewalls, intrusion detection systems, virtual machine monitors, operating
system kernels, etc., even though this software is often depended on to compensate
for vulnerabilities and weaknesses in other software. This is not to say that software
in these categories is not under threat: only that it appears to receive less explicit
attention from software assurance practitioners, initiatives, vendors, etc.

Note: The authors recognize that there is a great deal of activity focused on developing and establishing
techniques, technologies, tools, etc. for improving other dependability properties (reliability, safety, quality) in
all software and software-intensive systems, including those that fall into the categories discussed here—
enough activity, in fact, to fill several additional State-of-the-Art Reports. It has been clearly demonstrated
that concentration on these other properties can coincidentally improve the security of software. However, as
the Purpose of the document states, the focus of this SOAR is narrowly on those activities, initiatives, etc.,
that are primarily or exclusively concerned with security as a property of software.

Types of Software
Under Threat

C

Software Security Assurance State-of-the-Art Report (SOAR)320

Software Security Assurance State-of-the-Art Report (SOAR) 321

Appendix C Types of Software Under Threat

When information system software is targeted by an attacker, the
ultimate objective is most often to bypass or exploit the privileges and
mechanisms that enable the targeted software to access information the
attacker has no authorization to access.

Some software-intensive systems are considered “high consequence.”
Failure of the software in such systems (whether accidental or intentionally
induced) is expected to have effects with great and even catastrophic
consequences. These effects may be immediately apparent, e.g., the crash
of a plane resulting from a failure in air traffic control system software, or
the effects may only propagate over time, gradually increasing to a critical
level. For example, consider the fairly new category of information system,
the electronic voting system. It is difficult to quantify the long-term effect a
compromise of dependability would have in such a system. However—and
possibly because it is so difficult—many experts believe that tampering with
electronically captured election results could have a political impact over time
that is both critical and long-lasting.

The potential threat of political corruption through electronic voting
system compromise is taken seriously enough for a number of standards bodies,
government and private organizations, and academic institutions [335] to be
working intensely on the means to develop highly reliable, secure software for
electronic voting systems and the means to assure the reliability and security of
that software with a high degree of confidence. As “high consequence” software,
electronic voting software joins safety-critical and mission-critical national
security software, both in terms of the criticality of its dependable functioning,
and the need for an extremely high level of assurance in that dependability.

Of course, not all software is found in information systems. Software is also
used in systems that do not process or control information but rather monitor,
measure, and control physical processes, e.g., the Supervisory Control and Data
Acquisition (SCADA) systems within large distributed critical infrastructure
systems (e.g., chemical, physical transport, municipal water supply, electric power
distribution and generation, gas and oil pipeline, nuclear power systems). [336]

Numerous SCADA security initiatives have been undertaken to address
the vulnerable nature of SCADA systems. Valuable contributions have been
made by all of the stakeholders in improving SCADA security: system owners,
vendors, consultants, academic institutions, national laboratories, independent
associations and bodies, and government organizations. Two most significant
initiatives are: National SCADA Test Bed (NSTB) at Idaho National Laboratory
and Sandia National Laboratory, and Control Systems Security Center (CSSC),
which is managed by the Idaho National Laboratory.

The NSTB program is funded by Department of Energy, while the CSSC is
funded by the Department of Homeland Security. Both programs use the same
facilities and testbeds. The NSTB program is focused on reducing vulnerabilities
of the electrical sector, while the CSSC program is concerned with all of the
critical infrastructures in the United States.

Software Security Assurance State-of-the-Art Report (SOAR)322

Appendix C Types of Software Under Threat

Security of SCADA systems, including concern regarding the
exploitability of vulnerabilities in their software components, has become a
major focal point of several security organizations. In September 2006, the
National Institute of Standards and Technology (NIST) published the initial
public draft of Special Publication 800-82, Guide to Supervisory Control and
Data Acquisition (SCADA) and Industrial Control Systems Security. [337] A
year earlier, Idaho National Laboratory proposed a set of Cyber Assessment
Methods for SCADA Security [338] that includes consideration of software
vulnerabilities. Idaho National Laboratory is also a key participant in the New
York State Office of Cyber Security and Critical Infrastructure Coordination’s
SCADA and Control Systems Procurement Project. [339]

In 2006, the latter project formed a working group (WG) with
representatives of major utilities and control system software vendors to
draft a set of guidelines and specific requirements for acquisition of SCADA
systems. [340] Cyber Security Procurement Language for Control Systems is
intended to elevate security to an explicit element of contractual negotiations
between customers and suppliers of critical infrastructure systems software and
hardware. The level of concern regarding SCADA software security has been
elevated enough to inspire the emergence of a small industry of vendors who
specialize in secure SCADA software. Spearheaded by RealFlex Technologies
[341] and Hexatec, [342] more established software suppliers and tools vendors
such as Symantec [343] are also taking on the SCADA security challenge.

At a smaller scale are embedded systems, in which software and
firmware is used to control the physical operations and interactions of devices
ranging from military, aerospace, and commercial vehicles to weapons
systems to medical devices to communications devices (from satellites to
cellular telephones), as well as a host of other physical devices, many of which
have safety-critical aspects. As their name implies, “safety-critical” systems
are those wherein people’s lives and health depend directly on the system’s
(including its software’s) reliability.

Firmware and embedded software are becoming increasingly present
in commercial off-the-shelf (COTS) devices that previously had no software
components. It is not uncommon for a network controller, such as a wireless
Ethernet card, to host full-blown embedded systems that control their
communications and user interface functionality. The increased use of
firmware in COTS network devices presents a security risk. The firmware
is rarely, if ever, patched, and wireless networking devices are particularly
susceptible to remote attack. In response to this increased threat, a small
segment of the open source software community is militating against the
inclusion of binary-only firmware in the Linux kernel because it is empirically
destabilizing to the operating system’s reliability and security. [344]

In Chapter 7 of Exploiting Software, [345] Greg Hoglund and Gary McGraw
effectively describe the threat to embedded systems:

Software Security Assurance State-of-the-Art Report (SOAR) 323

Appendix C Types of Software Under Threat

For no valid technical reasons, people seem to believe that embedded
systems are invulnerable to remote software-based attacks. One
common misconception runs that because a device does not include
an interactive shell out of the box, then accessing or using “shell code”
is not possible. This is probably why some people (wrongly) explain
that the worst thing that an attacker can do to most embedded
systems is merely to crash the device. The problem with this line of
reasoning is that injected code is, in fact, capable of executing any set
of instructions, including an entire shell program that encompasses
and packages up for convenient use standard, supporting [operating
system]-level functions. It does not matter that such code does not ship
with the device. Clearly, this kind of code can simply be placed into
the target during an attack. Just for the record, an attack of this sort
may not need to insert a complete interactive TCP/IP shell. Instead, the
attack might simply wipe out a configuration file or alter a password.

There are any number of complex programs that can be inserted via
a remote attack on an embedded system. Shell code is only one of
them. Even the most esoteric of equipment can be reverse engineered,
debugged, and played with. It does not really matter what processor
or addressing scheme is being used, because all an attacker needs
to do is to craft operational code for the target hardware. Common
embedded hardware is (for the most part) well documented, and
such documents are widely available.

One of the most widely publicized successful attacks on an embedded
system was the 2002 hack of the flash memory of the Microsoft XBox game
cube in order to access the algorithm used by the game cube’s cryptosystem to
decrypt and verify its bootloader. [346]

The vast majority of software-intensive embedded systems were conceived
as non-networked, standalone systems, while most software-intensive
control systems were, if networked at all, connected only to private dial-up
links. However, an increasing number of such systems are being connected
to and remotely administered and operated via Internet links or other public
networks. Even embedded controllers in automobiles are being monitored via
wireless network-based systems such as OnStar. It is widely believed that it is
only a matter of time before the same network-based systems now limited to
monitoring or information update and reporting functions will be used to reset
embedded processors, reconfigure embedded software, and download new
software and firmware versions. Embedded software in implanted medical
devices is now accessible via radio frequency identification (RFID) interfaces,
[347] while in telemedicine applications, software-controlled surgical robots are
being controlled via satellite uplinks between in-theater medical facilities and
US-based military hospitals. [348]

Software Security Assurance State-of-the-Art Report (SOAR)324

Appendix C Types of Software Under Threat

Network connectivity means that these software-intensive systems are
being exposed to threats that the systems’ designers never anticipated, and
the impact of a compromise made possible by such new exposure is likely to
be catastrophic. In a weapons system, for example, subversion of the software
that performs the latitude/longitude calculations for targeting could render the
system ineffective or even cause it to target friends rather than foes. Subversion
or sabotage of a software-based temperature control in a nuclear power plant
could result in a meltdown, while sabotage of avionic software in a fighter jet
could result not only in the crash and loss of the jet, but the death of the pilot.

To date, the approach to preventing software’s susceptibility to attack has
started with the understanding of the various types of sources of threats to that
software, how those threats manifest as attacks, and the nature and exposure
of vulnerabilities and weaknesses that are typically targeted by those attacks.
Methodologies have been developed to identify and model threats, attacks, and
vulnerabilities, including Microsoft Threat Modeling, the European Community’s
CORAS, PTA Technologies’ CTMM, the open source Trike methodology, USC’s T-
MAP, and SEI’s OCTAVE, all of which are discussed in Section 5.2.3.1.

For Further Reading

“Threats to Voting Systems.” NIST.
Available from: http://vote.nist.gov/threats
Aviel David Rubin, Brave New Ballot: The Battle to Safeguard Democracy in the Age of Electronic
Voting, (Morgan Road Books, 2006).
Available from: http://www.bravenewballot.org
“Avi Rubin’s E-voting Security page”.
Available from: http://avirubin.com/vote
Cameron Barr, “Security of Electronic Voting is Condemned,” The Washington Post (December 1, 2006).
Available from: http://www.washingtonpost.com/wp-dyn/content/article/2006/11/30/AR2006113001637.html
Bruce Schneier, “The Problem with Electronic Voting Machines,” Schneier on Security (November 10, 2004).
Available from: http://www.schneier.com/blog/archives/2004/11/the_problem_wit.html
Dan S. Wallach, “Hack-a-Vote: Demonstrating Security Issues with Electronic Voting Systems,” IEEE
Security & Privacy 2, no.1 (January/February 2004): 32–37.
Available from: http://www.cs.rice.edu/%7Edwallach/pub/hackavote2004.pdf
Control Systems Cyber Security Awareness, (United States Computer Emergency Readiness Team.
Circa July 7, 2005).
Available from: http://www.us-cert.gov/reading_room/Control_System_Security.pdf
Sandia National Laboratories Center for SCADA Security.
Available from: http://www.sandia.gov/scada/home.htm
United Kingdom (UK) National Infrastructure Security Coordination Centre (NISCC),
“Vulnerabilities in Embedded Software,” The Quarterly, 4 (April 2004).
Available from: http://www.niscc.gov.uk/niscc/docs/re-20041231-00959.pdf
Srivaths Ravi, Anand Raghunathan, Paul Cocher, and Sunil Hattangady, “Security in Embedded
Systems: Design Challenges,” ACM Transactions on Embedded Computing Systems 3, no.3 (August 2004): 461–491.
Available from: http://portal.acm.org/citation.cfm?id=1015049
Warren Webb, Hack This: Secure Embedded Systems, (EDN, July 22, 2004).
Available from: http://www.edn.com/article/CA434871.html

http://vote.nist.gov/threats
http://www.bravenewballot.org
http://avirubin.com/vote
http://www.washingtonpost.com/wp-dyn/content/article/2006/11/30/AR2006113001637.html
http://www.schneier.com/blog/archives/2004/11/the_problem_wit.html
http://www.us-cert.gov/reading_room/Control_System_Security.pdf
http://www.sandia.gov/scada/home.htm
http://www.niscc.gov.uk/niscc/docs/re-20041231-00959.pdf
http://portal.acm.org/citation.cfm?id=1015049
http://www.edn.com/article/CA434871.html

Software Security Assurance State-of-the-Art Report (SOAR) 325

Appendix C Types of Software Under Threat

References

334 “Trustworthy Computing” [home page] (Redmond, WA: Microsoft Corporation).
Available from: http://www.microsoft.com/mscorp/twc/default.mspx

335 Examples include: “NIST Improving US Voting Systems Project” [web page] (Gaithersburg, MD: NIST).
Available from: http://vote.nist.gov and

 “ACCURATE Project” [portal page] (Washington, DC: National Science Foundation CyberTrust Program).
Available from: http://accurate-voting.org and

 “Voting System Standards” [web page] (San Francisco, CA: Verified Voting Foundation).
Available from: http://www.verifiedvotingfoundation.org/article.php?list=type&type=89 and

 “Electronic Voting Machine Project” [portal page] (Granite Bay, CA: Open Voting Consortium).
Available from: http://evm2003.sourceforge.net/

336 Marc Maiffret (eEye Digital Security), “Cyber-terrorism: Is the Nation’s Critical Infrastructure
Adequately Protected?” (testimony to the US House Subcommittee on Government Efficiency, Financial
Management, and Intergovernmental Relations Oversight, July 24, 2002).
Available from: http://research.eeye.com/html/Papers/download/Maiffret-Congress-Infrastructure.pdf and

 Samuel G. Varnado (Sandia National Laboratories), “SCADA and the Terrorist Threat: Protecting the
Nation’s Critical Control Systems” (statement to the US House Committee on Homeland Security,
Subcommittee on Economic Security, Infrastructure Protection, and Cyber Security and the
Subcommittee on Emergency Preparedness, Science, and Technology, October 18, 2005).
Available from: http://www.sandia.gov/news/resources/testimony/pdf/051018.pdf and

 Dana A. Shea. (Congressional Research Service), Critical Infrastructure: Control Systems and the
Terrorist Threat, report for Congress, order code RL31534 (Washington, DC: Congressional Research
Service, January 20, 2004).
Available from: http://www.fas.org/sgp/crs/homesec/RL31534.pdf

337 Keith Stouffer, Joe Falco, and Karen Kent (NIST). Guide to Supervisory Control and Data Acquisition
(SCADA) and Industry Control Systems Security, initial public draft, special pub. 800-82 (Gaithersburg,
MD: NIST Computer Security Division, September 2006)..
Available from: http://csrc.nist.gov/publications/drafts/800-82/Draft-SP800-82.pdf

338 May Robin Permann and Kenneth Rohde (Idaho National Laboratory). Cyber Assessment Methods for
SCADA Security” (presentation at the 15th Annual Joint Instrumentation, Systems and Automation
Society POWID/EPRI Controls and Instrumentation Conference, Nashville, TN, 2005 June 5–10, 2005).
Available from: http://www.oe.energy.gov/DocumentsandMedia/Cyber_Assessment_Methods_for_
SCADA_Security_Mays_ISA_Paper.pdf

339 “SCADA and Control Systems Procurement Project” [web page] (New York: Multi-State Information
Sharing and Analysis Center [MS-ISAC)]).
Available from: http://www.msisac.org/scada/

340 Robert Lemos, “SCADA System Makers Pushed Toward Security,” SecurityFocus (July 26, 2006).
Available from: http://www.securityfocus.com/news/11402

341 “RealFlex Technologies Ltd.” [web page]
Available from: http://www.real� ex.com/

342 “Hexatec” [web page].
Available from: http://www.hexatec.co.uk/

343 Symantec Canada, “Symantec and AREVA T&D Partner to Deliver SCADA Security Solutions for Electric
Power Industry,” press release (Vancouver, BC, Canada: Symantec Canada, June 14, 2004).
Available from: http://www.symantec.com/region/can/eng/press/2004/n040614.html

http://www.microsoft.com/mscorp/twc/default.mspx
http://vote.nist.gov
http://accurate-voting.org
http://www.verifiedvotingfoundation.org/article.php?list=type&type=89
http://evm2003.sourceforge.net/
http://research.eeye.com/html/Papers/download/Maiffret-Congress-Infrastructure.pdf
http://www.sandia.gov/news/resources/testimony/pdf/051018.pdf%20
http://www.fas.org/sgp/crs/homesec/RL31534.pdf
http://csrc.nist.gov/publications/drafts/800-82/Draft-SP800-82.pdf
http://www.oe.energy.gov/DocumentsandMedia/Cyber_Assessment_Methods_for_SCADA_Security_Mays_ISA_Paper.pdf
http://www.oe.energy.gov/DocumentsandMedia/Cyber_Assessment_Methods_for_SCADA_Security_Mays_ISA_Paper.pdf
http://www.msisac.org/scada/
http://www.securityfocus.com/news/11402
http://www.realflex.com/
http://www.hexatec.co.uk/
http://www.symantec.com/region/can/eng/press/2004/n040614.html

Software Security Assurance State-of-the-Art Report (SOAR)326

Appendix C Types of Software Under Threat

344 For a discussion of this specific issue, see the following articles: Mike Barton (InfoWorld, San
Francisco, CA: mike_barton@infoworld.com), “Researchers Hack Wi-Fi Driver to Breach Laptop,”
in Slashdot [Internet blog] [operated by the Open Source Technology Group, Inc., Fremont, CA]:
June 22, 2006, 01:08 a.m.
Available from: http://it.slashdot.org/article.pl?sid=06/06/22/0312240 and

 Timothy (timothy@monkey.org), “Less Than a Minute to Hijack a MacBook’s Wireless,” in Slashdot
[Internet blog] [operated by the Open Source Technology Group, Inc., Fremont, CA]: August 3, 2003,
08:10 a.m.
Available from: http://it.slashdot.org/article.pl?sid=06/08/03/129234 and

 Zonk (zonk@slashdot.org), “Wi-Fi Exploits Coming to Metasploit,” in Slashdot [Internet blog]
[operated by the Open Source Technology Group, Inc., Fremont, CA]: October 26, 2006, 05:23 p.m.
Available from: http://it.slashdot.org/article.pl?sid=06/10/26/2052223 and

 Zonk (zonk@slashdot.org), “Code Execution Bug in Broadcom Wi-Fi Driver,” in Slashdot [Internet blog]
[operated by the Open Source Technology Group, Inc., Fremont, CA]: November 12, 2006, 07:10 a.m.
Available from: http://it.slashdot.org/article.pl?sid=06/11/12/0824250

345 Greg Hoglund and Gary McGraw, Exploiting Software: How to Break Code (Boston, MA:
Addison-Wesley, 2004).
Available from: http://www.exploitingsoftware.com/

346 Andrew “Bunnie” Huang, “Keeping Secrets in Hardware: the Microsoft XBox Case Study,”
Massachussetts Institute of Technology AI Memo, no. 2002-008 (May 2002).
Available from: http://web.mit.edu/bunnie/www/proj/anatak/AIM-2002-008.pdf

347 T.J. Becker, “Improving Medical Devices: Georgia Tech Research Center Expands Testing Capabilities
to Help Reduce Potential Interference,” Georgia Tech Research News (July 25, 2006).
Available from: http://www.gtresearchnews.gatech.edu/newsrelease/eas-center.htm

348 Robert K. Ackerman, “Telemedicine Reaches Far and Wide,” SIGNAL Magazine (March 2005).
Available from: http://www.afcea.org/signal/articles/anmviewer.asp?a=693&print=yes and

 H., Shimizu Murakami, et al. (Tohoku University Sendai), “Telemedicine Using Mobile Satellite
Communication,” IEEE Transactions on Biomedical Engineering 41, no. 5 (May 1994): 488–497.

http://it.slashdot.org/article.pl?sid=06/06/22/0312240
http://it.slashdot.org/article.pl?sid=06/08/03/129234
http://it.slashdot.org/article.pl?sid=06/10/26/2052223
http://it.slashdot.org/article.pl?sid=06/11/12/0824250
http://www.exploitingsoftware.com/
http://web.mit.edu/bunnie/www/proj/anatak/AIM-2002-008.pdf
http://www.gtresearchnews.gatech.edu/newsrelease/eas-center.htm
http://www.afcea.org/signal/articles/anmviewer.asp?a=693&print=yes

Software Security Assurance State-of-the-Art Report (SOAR) 327

Appendix C Types of Software Under Threat

The Safety and Security Extension Project Team jointly established by the Federal
Aviation Administration (FAA) and the Department of Defense (DoD) produced
the draft report Safety and Security Extensions to Integrated Capability Maturity
Models [349] in September 2004. The report defined a Safety and Security (S&S)
Application Area (AA) to be used in combination with either the FAA’s Integrated
Capability Maturity Model (iCMM) or the Software Engineering Institute’s (SEI)
Capability Maturity Model Integration (CMMI) to achieve process improvements
that would improve the safety and security of software produced by software
development life cycle (SDLC) processes guided by the iCMM or CMMI.

The new Safety and Security (S&S) Application Area (AA) extension
implements practices within the relevant iCMM and CMMI Process Areas (PA)
of the iCMM and CMMI. The additional practices were derived from existing US
DoD and UK MOD, National Institute of Standards and Technology (NIST), and
ISO/IEC security and safety standards, including ISO/IEC 21827, SSE-CMM, and
ISO/IEC 17799, Code of Practices for Information Security Management.

In the case of CMMI, the methodology for mapping the safety/security
practices to the appropriate PAs sometimes required the insertion of an iCMM PA
into the CMMI when no comparable CMMI PA existed or the existing CMMI PA
was inadequate in achieving the desired safety or security practice.

Table D-1 illustrates the mapping of iCMM and CMMI PAs to the new
S&S AA practices.

DoD/FAA Proposed
Safety and Security
Extensions to ICMM
and CMMI

D

Software Security Assurance State-of-the-Art Report (SOAR)328

Software Security Assurance State-of-the-Art Report (SOAR) 329

Appendix D DoD/FAA Proposed Safety and Security Extensions to ICMM and CMMI

Table D-1. Safety and Security Extensions to iCMM/CMMI

ICMM PA CMMI PA S&S AA Pratice
PA 22: Training Organizational Training AP01.01: Ensure S&S Competency

PA 19: Work Environment Work Environment AP01.01: Ensure S&S Competency
AP01.02: Establish Qualified Work
 Environment
AP01.05: Ensure Business
 Continuity
AP01.11: Objectively Evaluate
 Products

PA 17: Information
 Management

(add iCMM PA 17 to CMMI) AP01.03: Control Information
AP01.12: Establish S&S Assurance
 Argument

PA 10: Operation and
 Support

(add iCMM PA 10 to CMMI) AP01.04: Monitor Operations and
 Report Incidents
AP01.10: Develop and Deploy Safe
 and Secure Products
 and Services

PA 13: Risk Management Risk Management AP01.05: Ensure Business Continuity
AP01.06: Identify S&S Risks
AP01.07: Analyze and Prioritize Risks
AP01.08: Determine, Implement,
 and Monitor Risk
 Mitigation Plan
AP01.14: Establish a S&S Plan

PA 00: Integrated
 Enterprise
 Management

Organizational
Environment for Integration
Organizational Innovation
and Deployment (add
iCMM PA 00)

AP01.05: Ensure Business Continuity
AP01.09: Identify Regulatory
 Requirements, Laws, and
 Standards
AP01.13: Establish Independent
 S&S Reporting
AP01.14: Establish an S&S Plan
AP01.16: Monitor and Control
 Activities and Products

PA 01: Needs
PA 02: Requirements

Requirements Development
Requirements Management

AP01.09: Identify Regulatory
 Requirements, Laws,
 and Standards
AP01.10: Develop and Deploy Safe
 and Secure Products
 and Services

PA 03: Design
PA 06: Design
 Implementation

Technical Solution AP01.10: Develop and Deploy Safe
 and Secure Products
 and Services

PA 08: Evaluation Verification Validation AP01.11: Objectively Evaluate
 Products
AP01.12: Establish S&S Assurance
 Argument

Software Security Assurance State-of-the-Art Report (SOAR)330

Appendix D DoD/FAA Proposed Safety and Security Extensions to ICMM and CMMI

Table D-1. Safety and Security Extensions to iCMM/CMMI - continued

ICMM PA CMMI PA S&S AA Pratice
PA 15: Quality Assurance
 and Management

Process and Product
Quality Assurance

AP01.12: Establish S&S Assurance
 Argument
AP01.13: Establish Independent
 S&S Reporting
AP01.16: Monitor and Control
 Activities and Products

PA 11: Project
 Management

Project Planning
Project Monitoring and
Control
Integrated Project
Management
Quantitative Project
Management

AP01.01: Ensure S&S Competency
AP01.13: Establish Independent
 S&S Reporting
AP01.14: Establish a S&S Plan
AP01.16: Monitor and Control
 Activities and Products

PA 16: Configuration
 Management

Configuration Management AP01.16: Monitor and Control
 Activities and Products

PA 18: Measurement and
 Analysis

Measurement and Analysis AP01.16: Monitor and Control
 Activities and Products

PA 05: Outsourcing
PA 12: Supplier
 Agreement
 Management
PA 09: Deployment,
 Transition, and
 Disposal

Supplier Agreement
Management
Integrated Supplier
Management

AP01.15: Select and Manage
 Suppliers, Products,
 and Services
AP01.10: Develop and Deploy Safe
 and Secure Products
 and Services

PA 21: Process
 Improvement

Organizational Process
Focus

AP01.16: Monitor and Control
 Activities and Products

The FAA report goes on to provide extensive information on the activities,
typical work products associated with each AA, and recommended practices for
achieving the objectives of each AA as it is integrated with the iCMM or CMMI
process of the organization. Sixteen of the activities in the FAA’s Safety and
Security Extensions were also integrated into the proposed revision of ISO/IEC
15026 (see Section 5.1.4.2.2).

For Further Reading

Linda Ibrahim, (FAA). “Sixteen Standards-Based Practices for Safety and Security,” CrossTalk: The
Journal of Defense Software Engineering (October, 2005).
Available from: http://www.stsc.hill.af.mil/CrossTalk/2005/10/0510Ibrahim.html

http://www.stsc.hill.af.mil/CrossTalk/2005/10/0510Ibrahim.html

Software Security Assurance State-of-the-Art Report (SOAR) 331

Appendix D DoD/FAA Proposed Safety and Security Extensions to ICMM and CMMI

References

349 Linda Ibrahim, et al., Safety and Security Extensions for Integrated Capability Maturity Models
(Washington, DC: Federal Aviation Administration (FAA), September 2004).
Available from: http://www.faa.gov/about/office_org/headquarters_offices/aio/documents/media/
SafetyandSecurityExt-FINAL-web.pdf

http://www.faa.gov/about/office_org/headquarters_offices/aio/documents/media/SafetyandSecurityExt-FINAL-web.pdf
http://www.faa.gov/about/office_org/headquarters_offices/aio/documents/media/SafetyandSecurityExt-FINAL-web.pdf

This does not purport to be a comprehensive list of system security functions.
Instead, it identifies and describes security functions that are implemented in
the majority of software-intensive information systems.

E.1 Security Protocols and Cryptographic Mechanisms
The design of secure systems typically involves the design, selection, and use of
cryptographic mechanisms and security protocols for protecting the confidentiality
and integrity of information (e.g., application data, user authentication credentials)
stored by the system or transmitted between the system and its users or other
entities. Most security protocols include cryptographic elements, and as a result,
need to be designed to manage cryptographic keys. Even in the many secure
system designs that still use passwords as the user authentication credential,
encryption of passwords both at rest and in transit is critical to the integrity of the
authentication process. Authentication devices, such as tokens and smart cards
(typically used to store user credentials such as digital certificates or biometric
templates), are also becoming increasingly typical in secure systems. A common
cause of security protocol failure is a changing environment. Environment
changes often result in the invalidation of at least some of the system’s underlying
assumptions about that environment; such changes can make it impossible for a
security protocol to cope with new threats.

Security
Functionality

E

Software Security Assurance State-of-the-Art Report (SOAR)332

Software Security Assurance State-of-the-Art Report (SOAR) 333

Appendix E Security Functionality

To verify the correctness of protocols and implementations of cryptographic
algorithms, systems engineers and researchers may apply formal methods. An
example is BAN (Burrows-Abadi-Needham) logic, [350] which provides a formal
method for reasoning about the logic of belief of principals in cryptographic
protocols. Formal methods can also be used to find bugs in security protocol
designs. Formal methods are discussed in Sections 5.1.2, 5.2.3.2.5, and 5.3.4.1.
Systems engineers also typically rely on the National Institute of Standards and
Technology (NIST) Federal Information Processing Standard (FIPS) 140-1 and
FIPS 140-2 Cryptographic Module Validation Lists, [351] which list all commercial
cryptographic modules that have successfully been validated as conforming
to either FIPS 140-1 or FIPS 140-2. NIST also publishes validation lists for
cryptographic algorithms. [352]

E.2 Authentication, Identity Management, and Trust Management
Trust management incorporates several security functions, including identity
management, user authentication, authorization, and access control. Trust
management specifically enables the sharing of these functions among
different domains (e.g., domains belonging to different business or trading
partners). Trust management is effectively a sophisticated version of single
sign-on (SSO) that comprises several functional security components:

u Identity Management—the means of managing user identity and account
information that will be used as the basis for identifying, authenticating,
and authorizing the user’s access to a system or resource. Information
managed by the identity management component of a trust management
system includes the user’s personal information, encrypted passwords,
biometric data, financial information, security clearance, organizational
roles, history of access/usage, etc.

u Authentication—Each user’s identity must be authenticated before the
user is allowed to access a system or resource. This authentication is
based on the presentation by the user of a unique identifier plus one or
more credentials, such as a password, a digital certificate, or a biometric,
to the authentication component of the trust management system. In a
federated trust management system, each organization in a partnership
is responsible for authenticating its own users, while trusting the other
partners to do the same. In most cases, the different organizations’
systems convey evidence of each authentication [e.g., in a Security
Assertion Markup Language (SAML) assertion] to the other systems.

u Authorization—Authorization to access specific systems, applications,
services, or resources is granted according to a security policy, which is
represented as a set of rules that can be dynamically interpreted by the
authorization component of the trust management system. This
enables the trust management system to decide whether an
authenticated user is authorized to access a restricted service or

Software Security Assurance State-of-the-Art Report (SOAR)334

Appendix E Security Functionality

protected resource. The policy for authorization may be based on the
matching of required access privileges with the privileges associated
with the user’s individual identity (as in discretionary access control),
the user’s role (as in role-based access control), the user’s clearance
(as in mandatory access control), the perceived level of risk the access
poses to the system (as in risk-adaptive access control), or some other
attribute or combination of attributes (as in attribute-based access
control). See Section E.3 for a discussion of access control.

Systems that rely on external trust management systems (or only on
trust management subsystems such as identity management systems or SSO
authentication systems) may require certain capabilities and interfaces, such
as ability to interface with a public key infrastructure, ability to parse SAML
assertions, etc. If passwords are used as authentication credentials, the system
may need to incorporate its own password management capability. Password
management is a difficult design problem for the systems engineer in developing
secure systems. Physical control devices, passwords, and biometrics are the
typical authentication methods. Devising a password protection scheme typically
involves understanding the psychology of users and of the attackers, and judging
whether a password scheme is sound by considering the type of attacks it must
defend against. Consideration also needs to given of whether attackers will target
particular accounts or target any account possible. Technical protection issues,
such as whether passwords can be snooped by malicious software or network
eavesdropping, also need to be considered.

E.3 Access Control
Systems engineers are responsible for defining and designing access control
methods for systems. According to Ross Anderson in Security Engineering,
access control’s “function is to control which principals (persons, processes,
machines)…have access to which resources in the system…”

Access controls are required at multiple levels in a system:
1. Application—Access control mechanisms may be provided at this level

to implement complex security policies involving third-party trust
establishment, user authorization, etc.

2. Middleware—Application frameworks (such as .NET and Java Enterprise
Edition), database management systems, web servers, and public
key infrastructures are three types of middleware that provide access
control mechanisms. [353]

3. Operating System— The operating system, from a security perspective,
provides mechanisms for—

one or more access control models, including discretionary,
mandatory, role-based, attribute-based, risk-adaptive)

Software Security Assurance State-of-the-Art Report (SOAR) 335

Appendix E Security Functionality

integrity protection to augment access control.
4. Hardware—Computer chip architectures are designed to control access

to memory addresses, thus preventing one process from interfering
with another process or overwriting the second process’ data. Certain
trusted operating systems tightly link their access controls with the
underlying hardware architecture. [354] Another form of hardware-
based access control is the Trusted Platform Module (TPM). A TPM is a
hardware component that supports process isolation (similar in intent
to the process isolation provided by virtual machines, but with stronger
enforcement because of the reliance on hardware). TPM process
isolation enables trusted software processes, their resources, and data
to be physically isolated from untrusted processes and their resources
and data. The result is that execution of the untrusted processes, with
any coincidental insecure behaviors, cannot affect the execution or
environment of the trusted processes. The most widely used TPMs are
those that conform to Trusted Computing Group standards.

References

350 Michael Burrows, Martin Abadi, and Roger Needham (Digital Equipment Corp.), A Logic of
Authentication, DEC SRC research rpt. No. 39 (February 28, 1989).
Available from: http://ftp.digital.com/pub/DEC/SRC/research-reports/abstracts/src-rr-039.html) and

 Kyntaja, Timo (Helsinki University of Technology), A Logic of authentication by Burrows, Abadi and
Needham. 1995.
Available from: http://www.tml.tkk.fi/Opinnot/Tik-110.501/1995/ban.html

351 NIST, “Validation Lists for Cryptographic Modules” [web page] (Gaithersbur, MD: NIST Computer
Security Division).
Available from: http://csrc.nist.gov/cryptval/140-1/1401val.htm

352 NIST, Validation Lists for Cryptographic Algorithm Standards (Gaithersburg, MD: NIST Computer
Security Division).
Available from: http://csrc.nist.gov/cryptval/140-1/avallists.htm

353 Virtualization is emerging as a capability at other layers as well. Long provided in the IBM VM
operating system (“VM” is, in fact, an acronym for “virtual machine”), it is now provided as a standard
feature in the latest version of Linux. Unix “chroot jails” and Solaris containers may also be referredn
as operating system-level VM mechanisms. Virtualization is also provided at the hardware level as a
standard feature of the latest 64-bit computer chips.

354 The BAE/DigitalNet XTS-400’s STOP operating system and Aesec’s GEMSOS operating system provide
discrete software “rings” that are isolated by the kernel’s mandatory access control policy
enforcement; each operating system ring maps one-for-one (in the case of STOP) or two-for-one (in the
case of GEMSOS) into a hardware ring of the underlying Intel chip architecture.

http://ftp.digital.com/pub/DEC/SRC/research-reports/abstracts/src-rr-039.html
http://www.tml.tkk.fi/Opinnot/Tik-110.501/1995/ban.html
http://csrc.nist.gov/cryptval/140-1/1401val.htm
http://csrc.nist.gov/cryptval/140-1/avallists.htm

The following are some further considerations with regard to use of agile
methods to produce secure software.

F.1 Mismatches Between Agile Methods and Secure
Software Practices
With one exception, the agile methods listed in Table F-1 reflect their creators’
formal commitment to support the core principles of the Agile Manifesto. [355]

Table F-1. Agile Methods

Method Acronym Creator/Affiliation
Agile Software Process ASP Mikio Aoyama/Nanzan University and Fujitsu (Japan)

eXtreme Programming XP Kent Beck, Ward Cunningham/Tektronix;
Ron Jeffries/Object Mentor and XProgramming.com

Crystal Family of Methods None Alistair Cockburn/IBM

Adaptive Software
Development

ASD Jim Highsmith, Sam Bayer/Cutter Consortium

Scrum None Ken Schwaber/Advanced Development Methods;
Jeff Sutherland/PatientKeeper

Agile Methods:
Issues for Secure
Software Development

F

Software Security Assurance State-of-the-Art Report (SOAR)336

Software Security Assurance State-of-the-Art Report (SOAR) 337

Appendix F Agile Methods: Issues for Secure Software Development

Table F-1. Agile Methods - continued

Method Acronym Creator/Affiliation
Feature-Driven
Development

FDD Jeff De Luca/Nebulon

Dynamic System
Development Method

DSDM DSDM Consortium (UK)

Lean Development * LD Bob Charette/ITABHI Corp. *

Whitewater Interactive
System Development
with Object Models

Wisdom Nuno Jardim Nunes/Universidade da Madeira;
João Falcão e Cunha/Universidade dão Porto

* not committed to the Agile Manifesto

The Agile Manifesto’s core principles are listed in Table F-2, which originally
appeared in DHS’ Security in the Software Life Cycle, lists the security implications
of each core principle. Those principles not listed are completely neutral regarding
security. This table is copied from Security in the Software Lifecycle.

Table F-2. Core Principles of the Agile Manifesto that Have Security Implications

No. Principle Implication for Security
1 The highest priority of agile developers

is to satisfy the customer. This is to be
achieved through early and continuous
delivery of valuable software.

Negative, unless customer is highly
security-aware. There is a particular risk
that security testing will be inadequate
or excluded because of “early delivery”
imperatives.

2 Agile developers welcome changing
requirements, even late in the development
process. Indeed, agile processes are
designed to leverage change to the
customer’s competitive advantage.

Negative, unless customer is careful
to assess the security impact of all
new/changing requirements and include
related requirements for new risk
mitigations when necessary.

3 Agile projects produce frequent working
software deliveries. Ideally, there will be a
new delivery every few weeks or, at most,
every few months. Preference is given to
the shortest delivery timescale possible.

Negative, unless customer refuses
to allow schedule imperatives to take
precedence over security.

4 The project will be built around the
commitment and participation of
motivated individual contributors.

Neutral. Could be Negative when the
individual contributors are either unaware
of or resistant to security priorities.

5 Customers, managers, and developers
must collaborate daily, throughout the
development project.

Neutral. Could be Positive when all
participants include security stakeholders
(e.g., risk managers) and have security as
a key objective.

Software Security Assurance State-of-the-Art Report (SOAR)338

Appendix F Agile Methods: Issues for Secure Software Development

Table F-2. Core Principles of the Agile Manifesto that Have Security Implications - continued

No. Principle Implication for Security
6 Agile developers must have the

development environment and support
they need.

Neutral. Could be Positive when that
environment is expressly intended to
enhance security.

7 Developers will be trusted by both
management and customers to get
the job done.

Negative, unless developers are strongly
committed and prepared to ensure
security is incorporated into their process
and products.

8 The most efficient and effective method
of conveying information to and within a
development team is through face-to-face
communication.

Negative, as the assurance process for
software is predicated on documented
evidence that can be independently
assessed by experts outside of the
software project team.

9 The production of working software is the
primary measure of success.

Negative, unless “working software” is
defined to mean “software that always
functions correctly and securely.”

12 Agility is enhanced by continuous
attention to technical excellence and
good design.

Positive, especially when “technical
excellence and good design” reflect
strong expertise in and commitment to
software security.

13 Simplicity, which is defined as the art of
maximizing the amount of work not done,
is essential to successful projects and
good software.

Positive, if simplicity is extended to the
design and code of the software. Simplicity
of design and code will make them easier
to analyze and their security implications
and issues easier to recognize.

In addition to those listed above, other significant mismatches have
been identified by various writers and panelists. (Several of these authors
and panelists produced resources listed under “For Further Reading” at the
end of Section 5.1.8.1.) These mismatches include—

u Project Management Mismatches

development team members, which precludes inclusion of
security experts on the development team.

accommodated in agile project planning processes.

team having access to all software artifacts, including those not
developed by them. This runs counter to the imperatives of
separation of roles and separation of duties, and the ability to
perform secure configuration management. It also implies a need
for security background checks and a comparable level of
clearance and need-to-know for all developers, thus potentially
increasing the costs associated with staffing.

Software Security Assurance State-of-the-Art Report (SOAR) 339

Appendix F Agile Methods: Issues for Secure Software Development

other agile methods, which entails one developer continually
reviewing a second developer’s code as it is being written (a kind
of “on the fly” code review), is not possible in organizations in
which workstation sharing is not permitted.

u Requirements Engineering Mismatches

assurance requirements.

necessitates constant impact analyses, and runs counter to the
need to establish an unchanging security baseline for purposes
of Certification and Accreditation (C&A) or Common Criteria
(CC) evaluation.

accommodate capture of nonfunctional requirements.

u Design and Implementation Mismatches

decisions made “on the fly.”
u Testing Mismatches

Agile testing does not extend to penetration testing or other
nonfunctional security tests, and it does not include key activities
of software security testing.

or security-focused code reviews.

test-driven development (TDD) do not accommodate software
security (vs. functional security) tests.

deliveries does not realistically allow for independent, third-party
security assessments because these would have to be planned
and budgeted iteratively and repeatedly throughout the agile life
cycle. Options for security independent verification and
validation (IV&V) do not exist in agile methods.

in the conflicting need for independence of security reviewers
and testers.

Software Security Assurance State-of-the-Art Report (SOAR)340

Appendix F Agile Methods: Issues for Secure Software Development

u Other Mismatches

communication clashes with the requirements of C&A and CC
evaluations for extensive software documentation. It also makes IV&V
impractical—independent testers rely on written documentation to
become familiar with the system they are to test, because they must
avoid direct contact with the system’s developers in order to maintain
their objectivity and independence.

not understand the importance of software security. Attaining this
comprehension may be difficult for them, because security
compromises core principles of the Agile Manifesto.

F.2 Suggested Approaches to Using Agile Methods for Secure
Software Development
The state-of-the-art in using agile methods to develop secure software revolves
around extending existing agile methods to accommodate security practices, and
adapting security practices so they more easily “fit” into existing agile methods.

For example, TDD (a.k.a. continuous testing) is a cornerstone of all agile
methods. TDD requires every specified requirement to be verified through a
test case before coding of the implementation of that requirement can begin.
TDD is automated to the greatest extent possible to make it easier to run the
continuous, iterative series of test cases against code as it is developed. In
Towards Agile Security in Web Applications, [356] Vidar Kongsli noted that the
benefits of automatic testing created a high degree of acceptance, but that
manual testing was still required for verification of some requirements.

Equivalent security-benefiting practices are not found in all agile methods.
To date, the only way that proponents of security-enhancing agile methods
appear to have determined that their particular agile development method of
choice could be effectively adapted to achieve software security objectives was
through trial and error, i.e., they adapted the agile method by adding security
training, modeling, analyses, reviews, and testing to various phases of the SDLC
as it is defined by the method. A question of importance to agile advocates is
whether such a security-enhanced methodology, if it must allow for too many
extra activities, can still be considered “agile.”

At this point, most of the suggested additions to agile methods are
talking points, which have not been proven through practical application in
agile development projects. Some of these suggested additions include those
identified in Table F-3 (with attribution for each recommendation).

Software Security Assurance State-of-the-Art Report (SOAR) 341

Appendix F Agile Methods: Issues for Secure Software Development

Table F-3. Recommended Security Extensions to Agile Methods

Addition to Agile Method Source of Recommendation
Increasing security awareness and ownership of security
issues by the development team.

Kongsli [357]

Adding a security engineer role to the development team to
inform and educate the other team members.

Wäyrynen et al. [358]

Developing security-related (and customer-specified) user or
misuse stories (XP). Modeled misuse stories could be related
to the user story. If the misuse story can be described as an
acceptance test, the acceptance test is the formal security
requirement that needs to be implemented.

Wäyrynen et al., Kongsli

Integrating the security solution with the customer’s
environment early in the project.

Beznosov [359]

Performing security reviews through pair programming (XP). Wäyrynen et al.

Implementing of code scanning tools and security testing tools,
allowing testing to define what the “good enough” security
solution is and help to gain confidence in its quality as well as
functionality.

Cornell, [360] Beznosov

Adhering to common coding standards and security guidelines. Cornell

When closing an iteration, running automated customer
acceptance tests but making sure to include negative testing
for identified threats.

Cornell

Recent research efforts combine agile approaches with security
engineering in hopes of producing a kind of secure agile engineering method.
It has been suggested that “agile security engineering” can be achieved by
introducing agile software engineering values to the traditional practice of
mitigating security risks in software. This approach is suggested by Tappenden
et al. [361] who assert that by applying security elements to agile development
life cycle phases (perhaps in parallel and without all the steps necessarily being
included), secure software can be developed in an agile manner.

It has also been suggested that security-enhancement may be easier for
feature-driven development (FDD), a methodology that follows the general
principles of agile development but which also provides scalability and
planning support that agile methods do not. Table F-4 summarizes possible
security enhancements to both agile methods and FDD.

Software Security Assurance State-of-the-Art Report (SOAR)342

Appendix F Agile Methods: Issues for Secure Software Development

Table F-4. Summary of Security Enhancements to Agile Methods and FDD

Life Cycle Phase Enhancement to Agile Methods Enhancements to FDD
Requirements
Analysis

u Identify and list key, security-
sensitive assets of the
organization.

u Make listed items candidate
security objects denoted in
the appropriate agile method
notation (e.g., security-enriched
use cases).

u Identify and list organizational
authorized users.

u Make listed persons candidate
security subjects and actors in
the appropriate agile method
notation.

u Establish rank order for each
organization the security objects
from most sensitive (Top Secret)
to least sensitive (Unclassified).

u Analyze which security
actors have access to which
security objects by applying
use case notation. Check for
completeness.

u Analyze potential threats using
abuse cases.

u Estimate cost of recovery from
an attack against listed security
objects within the abuse case
scenario.

u Perform risk analysis of abuse
cases and cost of recovery data.

u Capture requirements with use
cases that identify security
subjects and security objects

u Identify and document
abuse cases

u Develop an overall model of
the system

u Construct candidate classes
from use cases

u Derive security levels of classes
from use cases and incorporate
into classes

u Build a feature list
u Specify abuse case scenarios
u Specify countermeasures to

prevent abuse cases
u Relate use cases to abuse cases

to features
u Classify features into feature

sets based on activity

Design u Using selected agile design
diagrams, include security
subjects (actors) and security
objects.

u Include the security
classification of actors and
objects in the modeling notation.

u Using risk management,
prioritize features.

u Plan by feature
u Define order of features to be

developed and tested
u Prioritize security

countermeasures (features)
u Design by feature
u Incorporate security elements

and security classification into
objects as attributes

u Sketch sequence diagram of
each security feature

Software Security Assurance State-of-the-Art Report (SOAR) 343

Appendix F Agile Methods: Issues for Secure Software Development

Table F-4. Summary of Security Enhancements to Agile Methods and FDD - continued

Life Cycle Phase Enhancement to Agile Methods Enhancements to FDD
Implementation u Implement countermeasures

and design according to
sensitivity.

u Prioritize functions to be
implemented.

u Unit test the highest priority
functions first.

u Build by feature
u Implement in security

countermeasure feature priority
order, adding the most important
security measures first

Testing u Examine use cases and abuse
cases to develop test strategy.

u Prioritize the test list based on
risk analysis.

u Test highest priority items first.

u Test abuse case scenarios that
are most sensitive first

u Test based on security
countermeasure feature
priority list

References

355 Kent Beck, et al., Manifesto for Agile Software Development (2001).
Available from: http://agilemanifesto.org/

356 Vidar Kongsli, “Towards Agile Security in Web Applications,” in Proceedings of the ACM SIGPLAN
International Conference on Object-Oriented Programming, Systems, Languages, and Applications,
Portland, OR, October 22-26, 2006.

357 Ibid.

358 J. Wäyrynen, M. Bodén, and G. Boström, “Security Engineering and eXtreme Programming: an
Impossible Marriage?” in Extreme Programming and Agile Methods—XP/Agile Universe 2004, C.
Zannier, H. Erdogmus, and L. Lindstrom, eds. (Berlin, Germany: Springer-Verlag, 2004): 117–128.

359 Beznosov Konstantin, “Extreme Security Engineering: on Employing XP Practices to Achieve ‘Good
Enough Security’ Without Defining It” (presentation at the First ACM Workshop on Business Driven
Security Engineering, Washington, DC, October 31, 2003).
Available from: http://konstantin.beznosov.net/professional/doc/papers/eXtreme_Security_
Engineering-BizSec-paper.pdf

360 Michelle Davidson, “Secure Agile Software Development an Oxymoron?,” SearchAppSecurity.com
(October 25, 2006).
Available from: http://searchappsecurity.techtarget.com/originalContent/0,289142,sid92_
gci1226109,00.html

361 A. Tappenden, P. Beatty, and J. Miller (University of Alberta), and A. Geras and M. Smith (University of
Calgary), “Agile Security Testing of Web-based Systems Via HTTPUnit,” in Proceedings of the AGILE
2005 Conference, Denver, CO, July 24–29, 2005.

http://agilemanifesto.org/
http://konstantin.beznosov.net/professional/doc/papers/eXtreme_Security_Engineering-BizSec-paper.pdf
http://konstantin.beznosov.net/professional/doc/papers/eXtreme_Security_Engineering-BizSec-paper.pdf
http://searchappsecurity.techtarget.com/originalContent/0,289142,sid92_gci1226109,00.html
http://searchappsecurity.techtarget.com/originalContent/0,289142,sid92_gci1226109,00.html

Tables G-1 and G-2 illustrate how the main security enhancements of the most
mature of the software development life cycle (SDLC) methodologies described in
Sections 5.1.8.2.1 through 5.1.8.2.5 map into the activities of a standard SDLC. In this
case, the life cycle model used is that illustrated by the lower right quadrant of Barry
Boehm’s spiral development model, with some minor modifications for purposes of
clarity. The life cycle phases in this table do not include a Disposal (or Retirement or
Decommissioning) phase because one or the other of the following is true—

u None is included in the Boehm spiral model.
u None of the five security-enhanced methodologies defines specific

activities for such a phase.

Legend for Tables

[1] Corresponds with the project management (vs. technical) planning activities in the lower left
quadrant of the Spiral Model

[2] Maps to Organizational Life Cycle Processes or Supporting Processes in ISO/IEC 12207
lifecycle model

[3] Includes code review and unit testing, explicitly or implicitly, in most models
[4] Includes integration testing, explicitly or implicitly, in some models
[5] Refers to whole-system testing in some models, integration testing in others
[6] Falls within the Implementation phase of Boehm’s Spiral Model

Comparison of
Security Enhanced
SDLC Methodologies

G

Software Security Assurance State-of-the-Art Report (SOAR)344

Software Security Assurance State-of-the-Art Report (SOAR) 345

Appendix G Comparison of Security Enhanced SDLC Methodologies

Ta
bl

e
G-

1.
 M

an
ag

em
en

t a
nd

 O
rg

an
iza

tio
na

l A
ct

iv
iti

es

M
ic

ro
so

ft
SD

L
Or

ac
le

 S
ec

ur
e

So
ftw

ar
e

As
su

ra
nc

e
CL

AS
P

M
cG

ra
w

’s
7

To
uc

hp
oi

nt
s

TS
P-

Se
cu

re

Pr
oj

ec
t P

la
nn

in
g

[1
]

Ho
ld

 s
ec

ur
ity

 k
ic

ko
ff

Re
gi

st
er

 w
ith

se

cu
rit

y
te

am

En
su

re
 d

ev
el

op
er

se

cu
rit

y
aw

ar
en

es
s

In
st

itu
te

 s
ec

ur
ity

aw

ar
en

es
s

pr
og

ra
m

De
fin

e
op

er
at

io
na

l
pr

oc
ed

ur
es

 fo
r s

ec
ur

e
so

ftw
ar

e
pr

od
uc

tio
n

Es
ta

bl
ish

 o
rg

an
iza

tio
na

l
po

lic
ie

s,
m

an
ag

em
en

t
ov

er
sig

ht
, r

es
ou

rc
es

,
tra

in
in

g,
 p

ro
je

ct
 p

la
n

pr
oc

ed
ur

es
 a

nd

m
ec

ha
ni

sm
s,

an
d

tra
ck

in
g

M
ul

tip
ha

se

Ac
tiv

iti
es

 [2
]

M
on

ito
r s

ec
ur

ity
 m

et
ric

s
M

an
ag

e
ce

rti
fic

at
io

n
pr

oc
es

s
M

an
ag

e
Sy

st
em

 S
ec

ur
ity

Au

th
or

iza
tio

n
Ag

re
em

en
t

(S
SA

A)

Co
nd

uc
t r

is
k

tra
ck

in
g,

m

on
ito

rin
g,

 a
nd

 a
na

ly
si

s
Us

e
se

cu
rit

y-
re

la
te

d
pr

ed
ic

tiv
e

m
ea

su
re

s
(m

ay
 in

cl
ud

e
pr

ed
ic

tiv
e

pr
oc

es
s

m
et

ric
s,

ch

ec
kp

oi
nt

s)
Us

e
op

er
at

io
na

l
pr

oc
ed

ur
es

 fo
r s

ec
ur

e
so

ftw
ar

e
pr

od
uc

tio
n,

in

cl
ud

in
g

pr
oj

ec
t

ris
k

m
an

ag
em

en
t,

m
ea

su
re

m
en

t,
an

d
fe

ed
ba

ck

Software Security Assurance State-of-the-Art Report (SOAR)346

Appendix G Comparison of Security Enhanced SDLC Methodologies

Ta
bl

e
G-

2.
 D

ev
el

op
m

en
t A

ct
iv

iti
es

M
ic

ro
so

ft
SD

L
Or

ac
le

 S
ec

ur
e

So
ftw

ar
e

As
su

ra
nc

e
CL

AS
P

M
cG

ra
w

’s
7

To
uc

hp
oi

nt
s

TS
P-

Se
cu

re

N
ee

ds
 a

nd

Re
qu

ire
m

en
ts

Id
en

tif
y

as
se

ts
De

ve
lo

p
“a

ss
et

co

m
pr

om
is

e
ca

se
s”

(c

om
pa

ra
bl

e
to

 m
is

us
e/

ab
us

e
ca

se
s)

Id
en

tif
y

se
cu

rit
y

re
qu

ire
m

en
ts

Co
nd

uc
t r

is
k

an
al

ys
is

 o
f

re
qu

ire
m

en
ts

En
su

re
 d

ev
el

op
er

se

cu
rit

y
aw

ar
en

es
s

Sp
ec

ify
 o

pe
ra

tio
na

l
en

vi
ro

nm
en

t
Id

en
tif

y
gl

ob
al

 s
ec

ur
ity

po

lic
y

Id
en

tif
y

us
er

 ro
le

s,

re
qu

ire
m

en
ts

De
ta

il
m

is
us

e
ca

se
s

Pe
rfo

rm
 s

ec
ur

ity

an
al

ys
is

 o
f r

eq
ui

re
m

en
ts

Bu
ild

 a
bu

se
 c

as
es

De
ve

lo
p

se
cu

rit
y

re
qu

ire
m

en
ts

sp

ec
ifi

ca
tio

n

De
ve

lo
p

se
cu

rit
y

sp
ec

ifi
ca

tio
ns

Id
en

tif
y

as
se

t
De

ve
lo

p
us

e
ca

se
s

De
ve

lo
p

ab
us

e
ca

se
s

Ar
ch

ite
ct

ur
e/

Pr

od
uc

t D
es

ig
n

Ap
pl

y
se

cu
rit

y
de

si
gn

be

st
 p

ra
ct

ic
es

De
ve

lo
p

se
cu

rit
y

ar
ch

ite
ct

ur
e

Re
vi

ew
 a

tta
ck

 s
ur

fa
ce

(C

on
du

ct
 th

re
at

 m
od

el
in

g)

Do
cu

m
en

t s
ec

ur
ity

de

si
gn

 a
ss

um
pt

io
ns

Sp
ec

ify
 re

so
ur

ce
-b

as
ed

se

cu
rit

y
pr

op
er

tie
s

(A
dd

re
ss

 re
pe

at
ed

se

cu
rit

y
is

su
es

)

Co
nd

uc
t r

is
k

an
al

ys
is

of

 a
rc

hi
te

ct
ur

e
Us

e
se

cu
re

de

si
gn

 p
ro

ce
ss

Co
nd

uc
t t

hr
ea

t m
od

el
in

g

Software Security Assurance State-of-the-Art Report (SOAR) 347

Appendix G Comparison of Security Enhanced SDLC Methodologies

Ta
bl

e
G-

2.
 D

ev
el

op
m

en
t A

ct
iv

iti
es

 -
co

nt
in

ue
d

M
ic

ro
so

ft
SD

L
Or

ac
le

 S
ec

ur
e

So
ftw

ar
e

As
su

ra
nc

e
CL

AS
P

M
cG

ra
w

’s
7

To
uc

hp
oi

nt
s

TS
P-

Se
cu

re

De
ta

ile
d

De
si

gn
Us

e
se

cu
rit

y
de

si
gn

be

st
 p

ra
ct

ic
es

Co
nd

uc
t t

hr
ea

t m
od

el
in

g

Ap
pl

y
se

cu
rit

y
pr

in
ci

pl
es

to

 d
es

ig
n

Re
se

ar
ch

 a
nd

 a
ss

es
s

se
cu

rit
y

so
lu

tio
ns

Bu
ild

 in
fo

rm
at

io
n

la
be

lin
g

sc
he

m
es

De
si

gn
 u

se
r i

nt
er

fa
ce

s
(U

I)
fo

r s
ec

ur
ity

fu

nc
tio

ns
Sp

ec
ify

 d
at

ab
as

e
se

cu
rit

y
co

nfi
gu

ra
tio

n
Co

nd
uc

t s
ec

ur
ity

 a
na

lys
is

of

 sy
st

em
 d

es
ig

n
Im

pl
em

en
t a

nd
/o

r
el

ab
or

at
e

on
 re

so
ur

ce

po
lic

ie
s

Ad
dr

es
s

re
pe

at
ed

se

cu
rit

y
is

su
es

Co
nd

uc
t r

is
k

an
al

ys
is

of

 d
es

ig
n

Us
e

se
cu

re
 d

es
ig

n
pr

oc
es

s
(m

ay
 in

cl
ud

e
co

nf
or

m
an

ce
 to

 s
ec

ur
ity

de

si
gn

 p
rin

ci
pl

es
,

de
si

gn
 p

at
te

rn
s

to
 a

vo
id

co

m
m

on
 v

ul
ne

ra
bi

lit
ie

s)
Re

vi
ew

 d
es

ig
n

se
cu

rit
y

Software Security Assurance State-of-the-Art Report (SOAR)348

Appendix G Comparison of Security Enhanced SDLC Methodologies

Ta
bl

e
G-

2.
 D

ev
el

op
m

en
t A

ct
iv

iti
es

 -
co

nt
in

ue
d

M
ic

ro
so

ft
SD

L
Or

ac
le

 S
ec

ur
e

So
ftw

ar
e

As
su

ra
nc

e
CL

AS
P

M
cG

ra
w

’s
7

To
uc

hp
oi

nt
s

TS
P-

Se
cu

re

Co
di

ng
 [3

]
Us

e
se

cu
rit

y
de

ve
lo

pm
en

t t
oo

ls
Us

e
se

cu
rit

y
be

st

pr
ac

tic
es

 fo
r

de
ve

lo
pm

en
t a

nd
 u

ni
t

te
st

in
g

Us
e

se
cu

re

co
di

ng
 s

ta
nd

ar
ds

Us
e

st
an

da
rd

 li
br

ar
ie

s
of

se

cu
rit

y
fu

nc
tio

ns

(Im
pl

em
en

t a
nd

/o
r

el
ab

or
at

e
on

re

so
ur

ce
 p

ol
ic

ie
s)

(Im
pl

em
en

t i
nt

er
fa

ce

co
nt

ra
ct

s)
Ad

dr
es

s
re

pe
at

ed

se
cu

rit
y

is
su

es
Re

vi
ew

 s
ou

rc
e-

le
ve

l
se

cu
rit

y
Co

nd
uc

t s
of

tw
ar

e
se

cu
rit

y
fa

ul
t i

nj
ec

tio
n

te
st

in
g

Co
nd

uc
t s

ta
tic

 a
na

ly
si

s
an

d
co

de
 re

vi
ew

Co
nd

uc
t r

is
k-

ba
se

d
un

it
te

st
in

g

Us
e

se
cu

re

im
pl

em
en

ta
tio

n
pr

oc
es

s
(m

ay
 in

cl
ud

e
se

cu
re

pr

og
ra

m
m

in
g,

 a
nd

 u
se

of

 s
ec

ur
e

la
ng

ua
ge

su

bs
et

s,
 c

od
in

g
st

an
da

rd
s,

 a
nd

 q
ua

lit
y

m
an

ag
em

en
t p

ra
ct

ic
es

fo

r s
ec

ur
e

pr
og

ra
m

m
in

g)
Re

vi
ew

 c
od

e
us

in
g

st
at

ic

an
d

dy
na

m
ic

 a
na

ly
si

s
to

ol
s

In
te

gr
at

io
n

[4
]

Us
e

se
cu

rit
y

de
ve

lo
pm

en
t t

oo
ls

Us
e

se
cu

rit
y

be
st

pr

ac
tic

es
 fo

r
de

ve
lo

pm
en

t a
nd

in

te
gr

at
io

n
te

st
in

g
Cr

ea
te

 s
ec

ur
ity

do

cu
m

en
ta

tio
n

an
d

to
ol

s
fo

r p
ro

du
ct

De
ve

lo
p

se
cu

re

co
nfi

gu
ra

tio
n

gu
id

el
in

es
(S

pe
ci

fy
 d

at
ab

as
e

se
cu

rit
y c

on
fig

ur
at

io
n)

In
te

gr
at

e
se

cu
rit

y a
na

lys
is

in
to

 b
ui

ld
 p

ro
ce

ss
Im

pl
em

en
t a

nd
/o

r
el

ab
or

at
e

re
so

ur
ce

po

lic
ie

s
Im

pl
em

en
t i

nt
er

fa
ce

co

nt
ra

ct
s

(C
on

du
ct

 s
ec

ur
ity

fu

nc
tio

na
lit

y
us

ab
ili

ty

te
st

in
g)

(R
ev

ie
w

 so
ur

ce
-le

ve
l

se
cu

rit
y)

(C
on

du
ct

 s
of

tw
ar

e
se

cu
rit

y
fa

ul
t i

nj
ec

tio
n

te
st

in
g)

Bu
ild

 o
pe

ra
tio

na
l s

ec
ur

ity

gu
id

e

Co
nd

uc
t r

is
k-

ba
se

d
in

te
gr

at
io

n
te

st
in

g
Us

e
se

cu
re

im

pl
em

en
ta

tio
n

pr
oc

es
s

(m
ay

 in
cl

ud
e

re
m

ov
in

g
vu

ln
er

ab
ili

tie
s

fro
m

le

ga
cy

 s
of

tw
ar

e)

Software Security Assurance State-of-the-Art Report (SOAR) 349

Appendix G Comparison of Security Enhanced SDLC Methodologies

Ta
bl

e
G-

2.
 D

ev
el

op
m

en
t A

ct
iv

iti
es

 -
co

nt
in

ue
d

M
ic

ro
so

ft
SD

L
Or

ac
le

 S
ec

ur
e

So
ftw

ar
e

As
su

ra
nc

e
CL

AS
P

M
cG

ra
w

’s
7

To
uc

hp
oi

nt
s

TS
P-

Se
cu

re

Te
st

in
g

[5
]

Us
e

se
cu

rit
y

te
st

in
g

to
ol

s
Fo

llo
w

 s
ec

ur
ity

 b
es

t
pr

ac
tic

es
 fo

r t
es

tin
g

Pr
ep

ar
e

se
cu

rit
y

re
sp

on
se

 p
la

n
Pe

rfo
rm

 “
Se

cu
rit

y
Pu

sh
”

[3
62

]
Co

nd
uc

t p
en

et
ra

tio
n

te
st

in
g

Co
nd

uc
t p

en
et

ra
tio

n
te

st
in

g
Co

nd
uc

t v
ul

ne
ra

bi
lit

y
sc

an
ni

ng
Va

lid
at

e
ag

ai
ns

t s
ec

ur
ity

ch

ec
kl

is
ts

Co
nd

uc
t t

hi
rd

-p
ar

ty

se
cu

rit
y

IV
&

V

Co
nd

uc
t s

ec
ur

ity

fu
nc

tio
na

lit
y u

sa
bi

lit
y

te
st

in
g

(R
ev

ie
w

 so
ur

ce
-le

ve
l

se
cu

rit
y)

(C
on

du
ct

 so
ftw

ar
e

se
cu

rit
y f

au
lt

in
je

ct
io

n
te

st
in

g)
Id

en
tif

y a
nd

 im
pl

em
en

t
se

cu
rit

y t
es

ts
Ve

rif
y s

ec
ur

ity
 a

ttr
ib

ut
es

of

 re
so

ur
ce

s

Co
nd

uc
t r

is
k-

ba
se

d
se

cu
rit

y
te

st
in

g
Co

nd
uc

t p
en

et
ra

tio
n

te
st

in
g

Co
nd

uc
t e

xt
er

na
l

an
al

ys
is

Us
e

se
cu

re
 re

vi
ew

 a
nd

in

sp
ec

tio
n

pr
oc

es
s

Us
e

se
cu

re
 te

st
 p

ro
ce

ss

(m
ay

 in
cl

ud
e

se
cu

rit
y

te
st

 p
la

ns
, w

hi
te

 b
ox

 a
nd

bl

ac
k

bo
x

te
st

in
g,

 te
st

de

fe
ct

 re
vi

ew
 a

nd
/o

r
vu

ln
er

ab
ili

ty
 a

na
ly

si
s

by

de
fe

ct
 ty

pe
, a

nd
 s

ec
ur

ity

ve
rifi

ca
tio

n
te

ch
ni

qu
es

)

Di
st

rib
ut

io
n/

De

pl
oy

m
en

t [
6]

Co
nd

uc
t fi

na
l s

ec
ur

ity

re
vi

ew
Us

e
co

de
 s

ig
ni

ng

M
ai

nt
en

an
ce

/
Su

pp
or

t [
6]

Se
cu

rit
y

se
rv

ic
in

g
Re

sp
on

se
 e

xe
cu

tio
n

Vu
ln

er
ab

ili
ty

m

an
ag

em
en

t
Cr

iti
ca

l p
at

ch
 d

el
iv

er
ie

s
Ap

pl
y

se
cu

rit
y

fix
es

 to

m
ai

n
co

de
 b

as
e

M
an

ag
e

se
cu

rit
y

is
su

e
di

sc
lo

su
re

 p
ro

ce
ss

So
lic

it
fe

ed
ba

ck
 fr

om

se
cu

rit
y

op
er

at
io

ns
(M

ay
 in

cl
ud

e
re

m
ov

in
g

vu
ln

er
ab

ili
tie

s
fro

m

le
ga

cy
 s

of
tw

ar
e)

Software Security Assurance State-of-the-Art Report (SOAR)350

Appendix G Comparison of Security Enhanced SDLC Methodologies

References

362 As described by Michael Howard in his article “A Look Inside the Security Development Lifecycle at
Microsoft,” MSDN Magazine (November 2005), a “Security Push” is “a team-wide focus on threat
model updates, code review, testing, and documentation scrub.... [I]t is a concerted effort to confirm
the validity of the information in the Security Architecture documentation, to uncover changes that may
have occurred during the development process, and to identify and remediate any remaining security
vulnerabilities…[T]he push duration is ultimately determined by the amount of code that needs to be
reviewed for security.”

Software Security Assurance State-of-the-Art Report (SOAR) 351

Appendix G Comparison of Security Enhanced SDLC Methodologies

The listing in Table H-1 provides some indication of the extent and variety of
current academic software security and application security research being
pursued worldwide.

The methodology for gathering this information was as follows—
1. Compiled an extensive set of software security assurance keywords,

keyphrases, and keyword/keyphrase combinations (e.g., malware;
“software engineering;” software + vulnerabilities + “static analysis”) that
was used to search for academic research papers and articles in the online
document archives of the Association for Computing Machinery (ACM),
Institute for Electrical and Electronics Engineering (IEEE), and CiteSeer.

2. Quickly scanned the papers and articles identified by the search
and reviewed in more depth those papers that seemed most relevant
to determine—

least the subject of the research was noted.

papers and articles were also noted.

Software Security
Research in Academia

H

Software Security Assurance State-of-the-Art Report (SOAR)352

Software Security Assurance State-of-the-Art Report (SOAR) 353

Appendix H Software Security Research in Academia

3. Visited the websites of the authors’ universities identified in step 1
(as well as those identified from the bibliographies). As necessary,
navigated the university site to find the appropriate schools (e.g.,
Engineering), and within those schools the appropriate departments
(e.g., Computer Science), research laboratories or pages, and so on
until the pages of individual research projects, and in some cases
individual researchers were found.

4. Reviewed all software security relevant research projects found,
and also followed links from those pages to other research teams,
laboratories, and projects in the same schools and at different schools.

5. Refined our set of software security assurance keywords and performed
further searches to locate additional research teams/projects—

to .ps, .pdf, .doc, and .ppt files—the file types most likely to be
associated with research papers and presentations.

organizations, including Defense Advanced Research Projects Agency
(DARPA), Air Force Rome Laboratories (AFRL), Naval Research
Laboratory (NRL), the National Academies of Science, the National
Research Councils of United States and Canada, INRIA (Institut
National de Recherche en Informatique et en Automatique), etc.

6. We then quickly scanned our search results to identify those
documents and web pages that merited further investigation. In all
documents, we noted the data points listed in step 2.

7. We contacted a number of academic researchers and asked for
additional “leads,” and followed those leads in the same way.

Given the unscientific nature of this methodology, the listing of research groups,
laboratories, and projects in Table H-1 does not purport to be comprehensive.
As indicated at the beginning of this appendix, the data provided here is merely
representative, and is provided only for illustrative purposes.

Software Security Assurance State-of-the-Art Report (SOAR)354

Appendix H Software Security Research in Academia

Ta
bl

e
H-

1
 S

of
tw

ar
e

Se
cu

rit
y

Re
se

ar
ch

 in
 A

ca
de

m
ia

Sc
ho

ol
/D

ep
ar

tm
en

t o
r C

en
te

r/G
ro

up
 o

r L
ab

So
ftw

ar
e

Se
cu

rit
y

Gr
ou

p,
 L

ab
, o

r P
ro

je
ct

UR
L

Un
ite

d
St

at
es

 o
f A

m
er

ic
a

Au
bu

rn
 S

ta
te

 U
ni

ve
rs

ity
/S

am
ue

l G
in

n
Co

lle
ge

 o
f

En
gi

ne
er

in
g/

Ce
nt

er
 fo

r I
nn

ov
at

io
ns

 in
 M

ob
ile

,
Pe

rv
as

iv
e,

 a
nd

 A
gi

le
 C

om
pu

tin
g

Te
ch

no
lo

gi
es

/
In

fo
rm

at
io

n
As

su
ra

nc
e

La
bo

ra
to

ry

1.

So
ftw

ar
e

Vu
ln

er
ab

ili
ty

 A
ss

ur
an

ce
: S

of
tw

ar
e

Ar
ch

ite
ct

ur
e

An
al

ys
is

, D
ec

om
pi

lin
g

an
d

Di
sa

ss
em

bl
y,

Ta
m

pe
r-p

ro
ofi

ng
, O

pe
n

So
ur

ce

At
ta

ck
 D

at
ab

as
es

2.

So
ftw

ar
e

Pr
oc

es
s

fo
r S

ec
ur

e
So

ftw
ar

e
De

ve
lo

pm
en

t
3.

AI

 fo
r V

ul
ne

ra
bi

lit
y

As
se

ss
m

en
t:

Ge
ne

tic

Al
go

rit
hm

s
fo

r P
ar

am
et

er
 A

na
ly

si
s

4.

fin
ds

sv
: s

ta
tic

 a
na

ly
si

s
of

 e
xe

cu
ta

bl
es

[w

ith
 W

es
te

rn
 Il

lin
oi

s
Un

iv
er

si
ty

]

ht
tp

://
w

w
w

.e
ng

.a
ub

ur
n.

ed
u/

us
er

s/
ha

m
ilt

on
/s

ec
ur

ity
/

In
fo

rm
at

io
n_

As
su

ra
nc

e_
La

bo
ra

to
ry

_R
es

ea
rc

h_
Ar

ea
s_

De
c_

20
03

.h
tm

l

Ba
ll

St
at

e
Un

iv
er

si
ty

/S
of

tw
ar

e
En

gi
ne

er
in

g

Re
se

ar
ch

 C
en

te
r

M
ea

su
rin

g
th

e
Ef

fe
ct

 o
f S

of
tw

ar
e

De
si

gn
 o

n

So
ftw

ar
e

Se
cu

rit
y

ht
tp

://
w

w
w

.s
er

c.
ne

t/w
eb

/re
se

ar
ch

/in
de

x.
as

p

Ca
lif

or
ni

a
St

at
e

Un
iv

er
si

ty
 a

t E
as

t B
ay

/D
ep

ar
tm

en
t o

f
M

at
h

an
d

Co
m

pu
te

r S
ci

en
ce

1.

N
ov

el
 c

od
e

ob
fu

sc
at

io
n

al
go

rit
hm

s
2.

JH

id
e:

 C
od

e
Ob

fu
sc

at
io

n
To

ol
ki

t
1.

ht

tp
://

w
w

w
.m

cs
.c

su
ha

yw
ar

d.
ed

u/
~l

er
ta

ul
/

SE
R3

01
2.

pd
f

2.

ht
tp

://
w

w
w

.m
cs

.c
su

ha
yw

ar
d.

ed
u/

~l
er

ta
ul

/J
Hi

de

Ca
rn

eg
ie

 M
el

lo
n

Un
iv

er
si

ty
/C

yL
ab

 a
nd

 S
of

tw
ar

e
En

gi
ne

er
in

g
In

st
itu

te
 (S

EI
)/S

EI
 C

om
pu

te
r E

m
er

ge
nc

y
Re

sp
on

se
 Te

am
 (C

ER
T)

 C
oo

rd
in

at
io

n
Ce

nt
er

1.

Cy
La

b
So

ftw
ar

e
As

su
ra

nc
e

In
te

re
st

 G
ro

up
2.

Te

am
 S

of
tw

ar
e

Pr
oc

es
s

(T
SP

) S
ec

ur
e

3.

Se
cu

re
 Q

ua
lit

y
Re

qu
ire

m
en

ts
 E

ng
in

ee
rin

g
(S

QU
AR

E)
4.

Co

m
pu

ta
tio

na
l S

ec
ur

ity
 A

ttr
ib

ut
es

1.

ht
tp

://
w

w
w

.c
yl

ab
.c

m
u.

ed
u/

de
fa

ul
t.a

sp
x?

id
=1

77
2.

ht

tp
://

w
w

w
.s

ei
.c

m
u.

ed
u/

ts
p/

ts
p-

se
cu

rit
y.h

tm
l

3.

ht
tp

://
w

w
w

.c
er

t.o
rg

/s
se

/s
qu

ar
e.

ht
m

l
4.

ht

tp
://

w
w

w
.c

er
t.o

rg
/s

se
/c

sa
.h

tm
l a

nd

ht
tp

://
w

w
w

.s
ei

.c
m

u.
ed

u/
pu

b/
do

cu
m

en
ts

/0
6.

re
po

rts
/p

df
/0

6t
r0

21
.p

df

Co
rn

el
l U

ni
ve

rs
ity

/D
ep

ar
tm

en
t o

f
Co

m
pu

te
r S

ci
en

ce
La

ng
ua

ge
-B

as
ed

 S
ec

ur
ity

ht
tp

://
w

w
w

.c
s.

co
rn

el
l.e

du
/In

fo
/P

eo
pl

e/
jg

m
/la

ng
-

ba
se

d-
se

cu
rit

y/
in

de
x.

ht
m

http://www.eng.auburn.edu/users/hamilton/security/Information_Assurance_Laboratory_Research_Areas_Dec_2003.html
http://www.eng.auburn.edu/users/hamilton/security/Information_Assurance_Laboratory_Research_Areas_Dec_2003.html
http://www.eng.auburn.edu/users/hamilton/security/Information_Assurance_Laboratory_Research_Areas_Dec_2003.html
http://www.serc.net/web/research/index.asp
http://www.mcs.csuhayward.edu/~lertaul/SER3012.pdf
http://www.mcs.csuhayward.edu/~lertaul/SER3012.pdf
http://www.mcs.csuhayward.edu/~lertaul/JHide
http://www.cylab.cmu.edu/default.aspx?id=177
http://www.sei.cmu.edu/tsp/tsp-security.html
http://www.cert.org/sse/square.html
http://www.cert.org/sse/csa.html
http://www.sei.cmu.edu/pub/documents/06.reports/pdf/06tr021.pdf
http://www.sei.cmu.edu/pub/documents/06.reports/pdf/06tr021.pdf
http://www.cs.cornell.edu/Info/People/jgm/lang-based-security/index.htm
http://www.cs.cornell.edu/Info/People/jgm/lang-based-security/index.htm

Software Security Assurance State-of-the-Art Report (SOAR) 355

Appendix H Software Security Research in Academia

Ta
bl

e
H-

1
 S

of
tw

ar
e

Se
cu

rit
y

Re
se

ar
ch

 in
 A

ca
de

m
ia

 -
co

nt
in

ue
d

Sc
ho

ol
/D

ep
ar

tm
en

t o
r C

en
te

r/G
ro

up
 o

r L
ab

So
ftw

ar
e

Se
cu

rit
y

Gr
ou

p,
 L

ab
, o

r P
ro

je
ct

UR
L

Un
ite

d
St

at
es

 o
f A

m
er

ic
a

Da
ko

ta
 S

ta
te

 U
ni

ve
rs

ity
/C

en
te

r o
f E

xc
el

le
nc

e
in

Co

m
pu

te
r I

nf
or

m
at

io
n

Sy
st

em
s

Us
e/

M
is

us
e

ca
se

s
fo

r S
ec

ur
e

So
ftw

ar
e

Re
qu

ire
m

en
ts

 a
nd

 A
rc

hi
te

ct
ur

e
ht

tp
://

w
w

w
.h

om
ep

ag
es

.d
su

.e
du

/p
au

lij
/p

ub
s

De
Pa

ul
 U

ni
ve

rs
ity

/S
ch

oo
l o

f C
om

pu
te

r S
ci

en
ce

,
Te

le
co

m
m

un
ic

at
io

ns
 a

nd
 In

fo
rm

at
io

n
Sy

st
em

s/
Fo

un
da

tio
ns

 o
f P

ro
gr

am
m

in
g

La
ng

ua
ge

s
Gr

ou
p

Te
m

po
ra

l A
sp

ec
ts

 [w
ith

 A
lc

at
el

-L
uc

en
t B

el
l L

ab
s]

ht
tp

://
te

as
p.

or
g

Dr
ex

el
 U

ni
ve

rs
ity

/S
of

tw
ar

e
En

gi
ne

er
in

g

Re
se

ar
ch

 G
ro

up
ht

tp
://

se
rg

.c
s.

dr
ex

el
.e

du
/p

ro
je

ct
s

Fl
or

id
a

At
la

nt
ic

 U
ni

ve
rs

ity
/D

ep
ar

tm
en

t o
f

Co
m

pu
te

r S
ci

en
ce

 a
nd

 E
ng

in
ee

rin
g/

Se
cu

re
 S

ys
te

m
s

Re
se

ar
ch

 G
ro

up

1.

Se
cu

re
 d

es
ig

n
pa

tte
rn

s
fo

r s
of

tw
ar

e-
in

te
ns

iv
e

sy
st

em
s

2.

Ap
pl

ic
at

io
n

se
cu

rit
y/

ap
pl

ic
at

io
n

de
fe

ns
e

1.

no
ne

 a
va

ila
bl

e
2.

ht

tp
://

tc
n.

cs
e.

fa
u.

ed
u/

as
f/a

sf
.h

tm

Ge
or

ge
 M

as
on

 U
ni

ve
rs

ity
/D

ep
ar

tm
en

t o
f I

nf
or

m
at

io
n

an
d

So
ftw

ar
e

En
gi

ne
er

in
g

Ha
rd

w
ar

e/
So

ftw
ar

e
Ap

pr
oa

ch
es

 to

So
ftw

ar
e

Se
cu

rit
y

ht
tp

://
w

w
w

.s
ea

s.
gw

u.
ed

u/
~n

ar
ah

ar
i/r

es
ea

rc
h.

ht
m

l#
co

de
-s

ec
ur

ity

Ge
or

gi
a

In
st

itu
te

 o
f T

ec
hn

ol
og

y/
Co

lle
ge

 o
f

Co
m

pu
tin

g/
So

ftw
ar

e
En

gi
ne

er
in

g,
 P

ro
gr

am
m

in
g

La
ng

ua
ge

s,
 A

na
ly

si
s,

 R
ea

so
ni

ng
, a

nd

Co
m

pi
le

rs
 g

ro
up

Co
m

pi
le

r M
an

ag
em

en
t f

or
 Ta

m
pe

r-R
es

is
ta

nc
e

an
d

Pe
rfo

rm
an

ce
no

ne
 a

va
ila

bl
e

Ha
rv

ar
d

Un
iv

er
si

ty
/E

ng
in

ee
rin

g
an

d
Ap

pl
ie

d
Sc

ie
nc

es
/C

om
pu

te
r S

ci
en

ce
1.

Cy

cl
on

e
(p

ro
gr

am
m

in
g

la
ng

ua
ge

)
[w

ith
 U

ni
ve

rs
ity

 o
f W

as
hi

ng
to

n]
2.

Pi

ttS
FI

el
d

(s
an

db
ox

in
g)

 [w
ith

 M
IT

]

1.

ht
tp

://
w

w
w

.e
ec

s.
ha

rv
ar

d.
ed

u/
~g

re
g/

cy
cl

on
e/

ol
d_

cy
cl

on
e.

ht
m

l a
nd

 h
ttp

://
cy

cl
on

e.
th

el
an

gu
ag

e.
or

g
2.

ht

tp
://

pa
g.

cs
ai

l.m
it.

ed
u/

~s
m

cc
/p

ro
je

ct
s/

pi
tts

fie
ld

http://www.homepages.dsu.edu/paulij/pubs
http://teasp.org
http://serg.cs.drexel.edu/projects
http://tcn.cse.fau.edu/asf/asf.htm
http://www.seas.gwu.edu/~narahari/research.html#code-security
http://www.seas.gwu.edu/~narahari/research.html#code-security
http://www.eecs.harvard.edu/~greg/cyclone/old_cyclone.html
http://www.eecs.harvard.edu/~greg/cyclone/old_cyclone.html
http://cyclone.thelanguage.org
http://pag.csail.mit.edu/~smcc/projects/pittsfield

Software Security Assurance State-of-the-Art Report (SOAR)356

Appendix H Software Security Research in Academia

Ta
bl

e
H-

1
 S

of
tw

ar
e

Se
cu

rit
y

Re
se

ar
ch

 in
 A

ca
de

m
ia

 -
co

nt
in

ue
d

Sc
ho

ol
/D

ep
ar

tm
en

t o
r C

en
te

r/G
ro

up
 o

r L
ab

So
ftw

ar
e

Se
cu

rit
y

Gr
ou

p,
 L

ab
, o

r P
ro

je
ct

UR
L

Un
ite

d
St

at
es

 o
f A

m
er

ic
a

Io
w

a
St

at
e

Un
iv

er
si

ty
/C

ol
le

ge
 o

f E
ng

in
ee

rin
g

no
ne

 a
va

ila
bl

e

M
as

sa
ch

us
et

ts
 In

st
itu

te
 o

f T
ec

hn
ol

og
y

(M
IT

)/
Pr

og
ra

m
 A

na
ly

si
s

Gr
ou

p
(P

AG
)

Pi
ttS

FI
el

d
(s

an
db

ox
in

g)
 [w

ith
 H

ar
va

rd
]

ht
tp

://
pa

g.
cs

ai
l.m

it.
ed

u/
~s

m
cc

/p
ro

je
ct

s/
pi

tts
fie

ld

N
av

al
 P

os
t G

ra
du

at
e

Sc
ho

ol
/C

en
te

r f
or

 In
fo

rm
at

io
n

Sy
st

em
s

Se
cu

rit
y

St
ud

ie
s

an
d

Re
se

ar
ch

1.

Hi
gh

 A
ss

ur
an

ce
 S

ec
ur

ity
 P

ro
gr

am
2.

Tr

us
te

d
Co

m
pu

tin
g

Ex
em

pl
ar

 (T
CX

)
3.

M

on
te

re
y

Se
cu

rit
y

Ar
ch

ite
ct

ur
e

(M
YS

EA
)

1.

ht
tp

://
ci

sr
.n

ps
.e

du
/p

ro
je

ct
s/

ha
sp

.h
tm

l
2.

ht

tp
://

ci
sr

.n
ps

.n
av

y.m
il/

pr
oj

ec
ts

/tc
x.

ht
m

l
3.

ht

tp
://

ci
sr

.n
ps

.n
av

y.m
il/

pr
oj

ec
ts

/m
ys

ea
.h

tm
l

N
ew

 M
ex

ic
o

Te
ch

/C
om

pu
te

r S
ci

en
ce

 D
ep

ar
tm

en
t

1.

M
al

w
ar

e
An

al
ys

is
 a

nd
 M

al
ic

io
us

 C
od

e
De

te
ct

io
n

2.

Se
cu

re
 S

of
tw

ar
e

Co
ns

tru
ct

io
n

1.

ht
tp

://
w

w
w

.c
s.

nm
t.e

du
/re

se
ar

ch
.h

tm
l#

m
al

w
ar

e
2.

ht

tp
://

w
w

w
.c

s.
nm

t.e
du

/re
se

ar
ch

.h
tm

l#
se

cu
re

N
or

th
 C

ar
ol

in
a

St
at

e
Un

iv
er

si
ty

/C
ol

le
ge

 o
f

En
gi

ne
er

in
g/

 C
om

pu
te

r S
ci

en
ce

 D
ep

ar
tm

en
t

Te
st

-D
riv

en
 D

ev
el

op
m

en
t o

f S
ec

ur
e

an
d

Re
lia

bl
e

So
ftw

ar
e

Ap
pl

ic
at

io
ns

no
ne

 a
va

ila
bl

e

N
or

th
 D

ak
ot

a
St

at
e

Un
iv

er
si

ty
/D

ep
ar

tm
en

t o
f

Co
m

pu
te

r S
ci

en
ce

Se
cu

re
 S

of
tw

ar
e

En
gi

ne
er

in
g:

 A
 T

hr
ea

t-D
riv

en

Ap
pr

oa
ch

ht
tp

://
cs

.n
ds

u.
ed

u/
~d

xu
/re

se
ar

ch
/s

ec
ur

ity
.h

tm
l

Pe
nn

sy
lv

an
ia

 S
ta

te
 U

ni
ve

rs
ity

/D
ep

ar
tm

en
t o

f
Co

m
pu

te
r S

ci
en

ce
 a

nd
 E

ng
in

ee
rin

g/
Sy

st
em

s

an
d

In
te

rn
et

 In
fra

st
ru

ct
ur

e
Se

cu
rit

y
La

bo
ra

to
ry

an

d
Sm

ea
l C

ol
le

ge
 o

f B
us

in
es

s/
eB

us
in

es
s

Re
se

ar
ch

Ce

nt
er

1.

Se
cu

re
-ty

pe
d

la
ng

ua
ge

s
2.

Ha

rd
w

ar
e

se
cu

rit
y

3.

Se
cu

rit
y A

sp
ec

ts
: D

es
ig

n
(a

nd
 Im

pl
em

en
ta

tio
n

To
ol

s)
 fo

r S
ec

ur
ity

 [w
ith

 W
es

te
rn

 Il
lin

oi
s U

ni
ve

rs
ity

]
4.

An

 S
-v

ec
to

r f
or

 W
eb

 A
pp

lic
at

io
n

Se
cu

rit
y

M
an

ag
em

en
t [

w
ith

 P
ol

yt
ec

hn
ic

 U
ni

ve
rs

ity
]

1.

ht
tp

://
si

is
.c

se
.p

su
.e

du
/lb

s.
ht

m
l

2.

ht
tp

://
si

is
.c

se
.p

su
.e

du
/h

w
.h

tm
l

3.

ht
tp

://
w

w
w

.c
se

.p
su

.e
du

/~
tja

eg
er

/re
se

ar
ch

/
as

pe
ct

s.
ht

m
l

4.

ht
tp

://
w

w
w

.s
m

ea
l.p

su
.e

du
/c

dt
/e

br
cp

ub
s/

re
s_

pa
pe

rs
/2

00
4_

01
.p

df

http://pag.csail.mit.edu/~smcc/projects/pittsfield
http://cisr.nps.edu/projects/hasp.html
http://cisr.nps.navy.mil/projects/tcx.html
http://cisr.nps.navy.mil/projects/mysea.html
http://www.cs.nmt.edu/research.html#malware
http://www.cs.nmt.edu/research.html#secure
http://cs.ndsu.edu/~dxu/research/security.html
http://siis.cse.psu.edu/lbs.html
http://siis.cse.psu.edu/hw.html
http://www.cse.psu.edu/~tjaeger/research/aspects.html
http://www.cse.psu.edu/~tjaeger/research/aspects.html
http://www.smeal.psu.edu/cdt/ebrcpubs/res_papers/2004_01.pdf
http://www.smeal.psu.edu/cdt/ebrcpubs/res_papers/2004_01.pdf

Software Security Assurance State-of-the-Art Report (SOAR) 357

Appendix H Software Security Research in Academia

Ta
bl

e
H-

1
 S

of
tw

ar
e

Se
cu

rit
y

Re
se

ar
ch

 in
 A

ca
de

m
ia

 -
co

nt
in

ue
d

Sc
ho

ol
/D

ep
ar

tm
en

t o
r C

en
te

r/G
ro

up
 o

r L
ab

So
ftw

ar
e

Se
cu

rit
y

Gr
ou

p,
 L

ab
, o

r P
ro

je
ct

UR
L

Un
ite

d
St

at
es

 o
f A

m
er

ic
a

Po
ly

te
ch

ni
c

Un
iv

er
si

ty
An

 S
-v

ec
to

r f
or

 W
eb

 A
pp

lic
at

io
n

Se
cu

rit
y

M
an

ag
em

en
t [

w
ith

 P
en

n
St

at
e]

ht
tp

://
w

w
w

.s
m

ea
l.p

su
.e

du
/c

dt
/e

br
cp

ub
s/

re
s_

pa
pe

rs
/2

00
4_

01
.p

df

Pr
in

ce
to

n
Un

ive
rs

ity
/D

ep
ar

tm
en

t o
f C

om
pu

te
r S

ci
en

ce
Se

cu
re

 In
te

rn
et

 P
ro

gr
am

m
in

g
gr

ou
p

ht
tp

://
w

w
w

.c
s.

pr
in

ce
to

n.
ed

u/
si

p/

Pu
rd

ue
 U

ni
ve

rs
ity

/C
en

te
r f

or
 E

du
ca

tio
n

an
d

Re
se

ar
ch

 in
 In

fo
rm

at
io

n
As

su
ra

nc
e

an
d

Se

cu
rit

y
(C

ER
IA

S)

1.

CE
RI

AS
 V

ul
ne

ra
bi

lit
y

Da
ta

ba
se

2.

Se
cu

re
 P

at
ch

 D
is

tri
bu

tio
n

Gr
ou

p
3.

Se

cu
re

 P
ro

gr
am

m
in

g
Ed

uc
at

io
na

l M
at

er
ia

l

1.

ht
tp

://
w

w
w

.c
er

ia
s.p

ur
du

e.
ed

u/
ab

ou
t/h

ist
or

y/
co

as
t/

pr
oj

ec
ts

/v
ul

n_
te

st
.h

tm
l a

nd
 h

ttp
://

w
w

w
.c

er
ia

s.
pu

rd
ue

.e
du

/a
bo

ut
/h

ist
or

y/
co

as
t/p

ro
je

ct
s/

vd
b.

ph
p

2.

ht
tp

://
w

w
w

.c
er

ia
s.

pu
rd

ue
.e

du
/a

bo
ut

/h
is

to
ry

/
co

as
t/p

ro
je

ct
s/

pa
tc

h.
ph

p
3.

ht

tp
://

pr
oj

ec
ts

.c
er

ia
s.

pu
rd

ue
.e

du
/s

ec
pr

og

Pu
rd

ue
 U

ni
ve

rs
ity

/D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Se
cu

re
 S

of
tw

ar
e

Sy
st

em
s

(S
3)

 g
ro

up
ht

tp
://

w
w

w
.c

s.
pu

rd
ue

.e
du

/s
3/

St
at

e
Un

iv
er

si
ty

 o
f N

ew
 Y

or
k

at
 S

to
ny

 B
ro

ok
/

De
pa

rtm
en

t o
f C

om
pu

te
r S

ci
en

ce
/S

ec
ur

e

Sy
st

em
s

La
b

fo
r s

ec
ur

ity

Sy
st

em
s

in
 In

fo
rm

at
io

n
As

su
ra

nc
e

ht
tp

://
se

cl
ab

.c
s.

su
ny

sb
.e

du
/s

ec
la

b/
re

se
ar

ch
/

pr
oj

ec
ts

/p
ro

je
ct

s.
ht

m

http://www.smeal.psu.edu/cdt/ebrcpubs/res_papers/2004_01.pdf
http://www.smeal.psu.edu/cdt/ebrcpubs/res_papers/2004_01.pdf
http://www.cs.princeton.edu/sip/
http://www.cerias.purdue.edu/about/history/coast/projects/patch.php
http://www.cerias.purdue.edu/about/history/coast/projects/patch.php
http://projects.cerias.purdue.edu/secprog
http://www.cs.purdue.edu/s3/
http://seclab.cs.sunysb.edu/seclab/research/projects/projects.htm
http://seclab.cs.sunysb.edu/seclab/research/projects/projects.htm

Software Security Assurance State-of-the-Art Report (SOAR)358

Appendix H Software Security Research in Academia

Ta
bl

e
H-

1
 S

of
tw

ar
e

Se
cu

rit
y

Re
se

ar
ch

 in
 A

ca
de

m
ia

 -
co

nt
in

ue
d

Sc
ho

ol
/D

ep
ar

tm
en

t o
r C

en
te

r/G
ro

up
 o

r L
ab

So
ftw

ar
e

Se
cu

rit
y

Gr
ou

p,
 L

ab
, o

r P
ro

je
ct

UR
L

Un
ite

d
St

at
es

 o
f A

m
er

ic
a

St
ev

en
s

In
st

itu
te

 o
f T

ec
hn

ol
og

y/
Se

cu
re

Sy

st
em

s
La

b
1.

La

ng
ua

ge
-b

as
ed

 s
ec

ur
ity

(e

.g
.,

pr
oo

f-c
ar

ry
in

g
co

de
)

2.

He
ap

 B
ou

nd
ed

 A
ss

em
bl

y
La

ng
ua

ge
 (H

BA
L)

1.

no
ne

 a
va

ila
bl

e
2.

ht

tp
://

w
w

w
.c

s.
st

ev
en

s.
ed

u/
~a

bc
/h

ba
l

Un
iv

er
si

ty
 o

f A
riz

on
a/

De
pa

rtm
en

t o
f

Co
m

pu
te

r S
ci

en
ce

1.

Sa
nd

m
ar

k:
 A

 To
ol

 fo
r t

he
 S

tu
dy

 o
f S

of
tw

ar
e

Pr

ot
ec

tio
n

Al
go

rit
hm

s
2.

Dy

na
m

ic
 P

ro
gr

am
 A

na
ly

si
s

fo
r S

ec
ur

e
an

d

Re
lia

bl
e

Co
m

pu
tin

g

1.

ht
tp

://
sa

nd
m

ar
k.

cs
.a

riz
on

a.
ed

u
2.

ht

tp
://

w
w

w
.c

s.
ar

izo
na

.e
du

/~
gu

pt
a/

re
se

ar
ch

/
Pr

oj
ec

ts
/s

lic
e.

ht
m

l

Un
iv

er
si

ty
 o

f C
al

ifo
rn

ia
 a

t B
er

ke
le

y/
De

pa
rtm

en
t o

f
Co

m
pu

te
r S

ci
en

ce
1.

So

ftw
ar

e
Se

cu
rit

y
Pr

oj
ec

t
2.

Cq

ua
l

3.

Sa
fe

Dr
iv

e

1.

ht
tp

://
w

w
w

.c
s.

be
rk

el
ey

.e
du

/~
da

w
/re

se
ar

ch
/s

s
2.

ht
tp

://
w

w
w

.c
s.b

er
ke

le
y.e

du
/R

es
ea

rc
h/

Ai
ke

n/
cq

ua
l

3.

ht
tp

://
iv

y.c
s.

be
rk

el
ey

.e
du

/s
af

ed
riv

e

Un
iv

er
si

ty
 o

f C
al

ifo
rn

ia
 a

t D
av

is
/D

ep
ar

tm
en

t o
f

Co
m

pu
te

r S
ci

en
ce

/C
om

pu
te

r S
ec

ur
ity

 L
ab

or
at

or
y

1.

Se
cu

re
 P

ro
gr

am
m

in
g

Cl
in

ic
2.

Vu

ln
er

ab
ili

ty
 a

na
ly

si
s

3.

DO
VE

S:
 D

at
ab

as
e

of
 V

ul
ne

ra
bi

lit
ie

s,
 E

xp
lo

its
,

an
d

Si
gn

at
ur

es
4.

Pr

op
er

ty
-b

as
ed

 te
st

in
g

1.

ht
tp

://
tw

in
pe

ak
s.

cs
.u

cd
av

is
.e

du
/c

lin
ic

/
2.

ht
tp

://
se

cl
ab

.c
s.u

cd
av

is.
ed

u/
pr

oj
ec

ts
/

Vu
ln

er
ab

ilit
ie

s.h
tm

l
3.

ht

tp
://

se
cl

ab
.c

s.
uc

da
vi

s.
ed

u/
pr

oj
ec

ts
/D

OV
ES

/
4.

ht
tp

://
se

cl
ab

.c
s.u

cd
av

is.
ed

u/
pr

oj
ec

ts
/N

AS
A-

JP
Ls

um
.h

tm
l

Un
iv

er
si

ty
 o

f C
al

ifo
rn

ia
 a

t I
rv

in
e/

In
st

itu
te

 fo
r

So
ftw

ar
e

Re
se

ar
ch

Ar
ch

ite
ct

ur
e-

Ba
se

d
Se

cu
rit

y
an

d
Tr

us
t

ht
tp

://
w

w
w

.is
r.u

ci
.e

du
/a

rc
hi

te
ct

ur
e/

ar
ch

sn
t.h

tm
l

Un
iv

er
si

ty
 o

f D
el

aw
ar

e/
De

pa
rtm

en
t o

f C
om

pu
te

r
an

d
In

fo
rm

at
io

n
Sc

ie
nc

es
/S

of
tw

ar
e

En
gi

ne
er

in
g

Re
se

ar
ch

 P
ro

gr
am

/H
ip

er
Sp

ac
e

1.

M
ob

ile
 C

od
e

Va
lid

at
io

n
th

ro
ug

h
St

at
ic

Pr

og
ra

m
 A

na
ly

si
s,

 S
te

ga
no

gr
ap

hy
, a

nd

Tr
an

sf
or

m
at

io
n

Co
nt

ro
l

2.

Te
st

in
g

Pr
og

ra
m

-B
as

ed
 S

ec
ur

ity
 M

ec
ha

ni
sm

s

1.

ht
tp

://
w

w
w

.c
is

.u
de

l.e
du

/%
7E

hi
pe

r/p
ro

je
ct

s/
in

te
gr

ity
.h

tm
l

2.

ht
tp

://
w

w
w

.c
is

.u
de

l.e
du

/%
7E

hi
pe

r/p
ro

je
ct

s/
se

c-
m

ec
h-

te
st

.h
tm

l

http://www.cs.stevens.edu/~abc/hbal
http://sandmark.cs.arizona.edu
http://www.cs.arizona.edu/~gupta/research/Projects/slice.html
http://www.cs.arizona.edu/~gupta/research/Projects/slice.html
http://www.cs.berkeley.edu/~daw/research/ss
http://www.cs.berkeley.edu/Research/Aiken/cqual%20
http://ivy.cs.berkeley.edu/safedrive
http://twinpeaks.cs.ucdavis.edu/clinic/
http://seclab.cs.ucdavis.edu/projects/Vulnerabilities.html
http://seclab.cs.ucdavis.edu/projects/Vulnerabilities.html
http://seclab.cs.ucdavis.edu/projects/DOVES/
http://seclab.cs.ucdavis.edu/projects/NASA-JPLsum.html
http://seclab.cs.ucdavis.edu/projects/NASA-JPLsum.html
http://www.isr.uci.edu/architecture/archsnt.html
http://www.cis.udel.edu/%7Ehiper/projects/integrity.html
http://www.cis.udel.edu/%7Ehiper/projects/integrity.html
http://www.cis.udel.edu/%7Ehiper/projects/sec-mech-test.html
http://www.cis.udel.edu/%7Ehiper/projects/sec-mech-test.html

Software Security Assurance State-of-the-Art Report (SOAR) 359

Appendix H Software Security Research in Academia

Ta
bl

e
H-

1
 S

of
tw

ar
e

Se
cu

rit
y

Re
se

ar
ch

 in
 A

ca
de

m
ia

 -
co

nt
in

ue
d

Sc
ho

ol
/D

ep
ar

tm
en

t o
r C

en
te

r/G
ro

up
 o

r L
ab

So
ftw

ar
e

Se
cu

rit
y

Gr
ou

p,
 L

ab
, o

r P
ro

je
ct

UR
L

Un
ite

d
St

at
es

 o
f A

m
er

ic
a

Un
iv

er
si

ty
 o

f I
lli

no
is

 a
t C

hi
ca

go
/D

ep
ar

tm
en

t o
f

El
ec

tri
ca

l a
nd

 C
om

pu
te

r E
ng

in
ee

rin
g

1.

Ar
ch

ite
ct

ur
e

Su
pp

or
t f

or
 S

of
tw

ar
e

Pr
ot

ec
tio

n
2.

Pr

og
ra

m
 C

ou
nt

er
 E

nc
od

in
g

fo
r S

ys
te

m
 H

ar
de

ni
ng

1.

ht
tp

://
ar

ch
.e

ce
.u

ic
.e

du
/s

ec
ur

ity
/v

al
id

at
in

g-
co

nt
ro

l-
flo

w
.h

tm
2.

ht

tp
://

ar
ch

.e
ce

.u
ic

.e
du

/s
ec

ur
ity

/p
c-

en
co

di
ng

.h
tm

Un
iv

er
si

ty
 o

f I
lli

no
is

 a
t U

rb
an

a-
Ch

am
pa

ig
n/

In
fo

rm
at

io
n

Tr
us

t I
ns

tit
ut

e
(IT

I)
3.

Re

co
nfi

gu
ra

bl
e

Re
lia

bi
lit

y
an

d
Se

cu
rit

y
En

gi
ne

(R

ES
E)

4.

Fo
rm

al
 R

ea
so

ni
ng

 o
n

Se
cu

rit
y

Vu
ln

er
ab

ili
tie

s
Us

in
g

Po
in

te
r T

ai
nt

ed
ne

ss
 S

em
an

tic
s

5.

SA
FE

co
de

: S
ta

tic
 A

na
ly

si
s

Fo
r s

af
e

Ex

ec
ut

io
n

of
 C

od
e

3.

ht
tp

://
w

w
w

.c
rh

c.
ui

uc
.e

du
/D

EP
EN

D/

ra
nd

se
ng

in
e.

ht
m

4.

ht

tp
://

w
w

w
.it

i.u
iu

c.
ed

u/
se

m
in

ar
s/

20
04

-1
2-

03
/

Ac
hi

ev
in

g_
Tr

us
te

d_
Sy

st
em

s_
by

_P
ro

vi
di

ng
_

Se
cu

rit
y_

an
d_

Re
lia

bi
lit

y.p
df

5.

ht

tp
://

sa
fe

co
de

.c
s.

ui
uc

.e
du

Un
iv

er
si

ty
 o

f I
da

ho
/C

en
te

r f
or

 S
ec

ur
e

an
d

De
pe

nd
ab

le
 S

ys
te

m
s

(C
SD

S)
M

ul
tip

le
 In

de
pe

nd
en

t L
ev

el
s

of
 S

ec
ur

ity
 (M

IL
S)

ht
tp

://
w

w
w

.c
sd

s.
ui

da
ho

.e
du

/m
ils

.s
ht

m
l

Un
iv

er
si

ty
 o

f L
ou

is
ia

na
 a

t L
af

ay
et

te
/C

en
te

r f
or

Ad

va
nc

ed
 C

om
pu

te
r S

tu
di

es
/S

of
tw

ar
e

Re
se

ar
ch

La

bo
ra

to
ry

1.

Vi
lo

: M
al

w
ar

e
Se

ar
ch

 a
nd

 A
na

ly
si

s
Ca

pa
bi

lit
ie

s
2.

DO

C:
 D

et
ec

to
r o

f O
bf

us
ca

te
d

Ca
lls

1.

ht
tp

://
w

w
w

.c
ac

s.
lo

ui
si

an
a.

ed
u/

la
bs

/S
RL

/v
ilo

.h
tm

l
2.

ht

tp
://

w
w

w
.c

ac
s.

lo
ui

si
an

a.
ed

u/
la

bs
/S

RL
/d

oc
.h

tm
l

Un
iv

er
si

ty
 o

f L
ou

is
ia

na
 a

t L
af

ay
et

te
/S

pe
ci

al

In
te

re
st

 G
ro

up
 o

n
Cy

be
rs

ec
ur

ity
/S

ys
te

m
s

Se
cu

rit
y

Re
se

ar
ch

 G
ro

up

1.
Fo

rm
al

 m
et

ho
ds

 fo
r s

ec
ur

ity
2.

Bu
ffe

r o
ve

rfl
ow

 d
et

ec
tio

n,
 p

re
ve

nt
io

n
3.

Fo
rm

al
 m

et
ho

ds
, p

ro
gr

am
 a

na
lys

is,
 a

nd
 re

ve
rs

e
en

gi
ne

er
in

g
of

 b
in

ar
ie

s f
or

 m
al

ic
io

us
 c

od
e

de
te

ct
io

n

ht
tp

://
w

w
w

.c
ac

s.
lo

ui
si

an
a.

ed
u/

cy
be

rs
ec

ur
ity

/
re

se
ar

ch
/s

ys
re

s.
ht

m
l

Un
iv

er
si

ty
 o

f M
ar

yl
an

d
at

 C
ol

le
ge

 P
ar

k/
In

st
itu

te

fo
r A

dv
an

ce
d

Co
m

pu
te

r S
tu

di
es

 C
en

te
r f

or
 H

um
an

En

ha
nc

ed
 S

ec
ur

e
Sy

st
em

s
(C

HE
SS

)

Hu
m

an
 E

nh
an

ce
d

Co
de

 A
na

ly
si

s
an

d
De

ve
lo

pm
en

t
ht

tp
://

ch
es

s.
um

ia
cs

.u
m

d.
ed

u/
re

se
ar

ch
_c

ad
.h

tm

http://arch.ece.uic.edu/security/validating-control-flow.htm
http://arch.ece.uic.edu/security/validating-control-flow.htm
http://arch.ece.uic.edu/security/pc-encoding.htm
http://www.iti.uiuc.edu/seminars/2004-12-03/Achieving_Trusted_Systems_by_Providing_Security_and_Reliability.pdf
http://www.iti.uiuc.edu/seminars/2004-12-03/Achieving_Trusted_Systems_by_Providing_Security_and_Reliability.pdf
http://www.iti.uiuc.edu/seminars/2004-12-03/Achieving_Trusted_Systems_by_Providing_Security_and_Reliability.pdf
http://safecode.cs.uiuc.edu
http://www.csds.uidaho.edu/mils.shtml
http://www.cacs.louisiana.edu/labs/SRL/vilo.html
http://www.cacs.louisiana.edu/labs/SRL/doc.html
http://www.cacs.louisiana.edu/cybersecurity/research/sysres.html
http://www.cacs.louisiana.edu/cybersecurity/research/sysres.html
http://chess.umiacs.umd.edu/research_cad.htm

Software Security Assurance State-of-the-Art Report (SOAR)360

Appendix H Software Security Research in Academia

Ta
bl

e
H-

1
 S

of
tw

ar
e

Se
cu

rit
y

Re
se

ar
ch

 in
 A

ca
de

m
ia

 -
co

nt
in

ue
d

Sc
ho

ol
/D

ep
ar

tm
en

t o
r C

en
te

r/G
ro

up
 o

r L
ab

So
ftw

ar
e

Se
cu

rit
y

Gr
ou

p,
 L

ab
, o

r P
ro

je
ct

UR
L

Un
ite

d
St

at
es

 o
f A

m
er

ic
a

Un
iv

er
si

ty
 o

f P
en

ns
yl

va
ni

a/
De

pa
rtm

en
t o

f C
om

pu
te

r
an

d
In

fo
rm

at
io

n
Sc

ie
nc

e
Se

cu
rit

y-
Or

ie
nt

ed
 L

an
gu

ag
es

ht
tp

://
w

w
w

.c
is

.u
pe

nn
.e

du
/~

st
ev

ez
/s

ol

Un
iv

er
si

ty
 o

f S
ou

th
er

n
Ca

lif
or

ni
a/

Ce
nt

er
 fo

r S
ys

te
m

s
an

d
So

ftw
ar

e
En

gi
ne

er
in

g
(C

SS
E)

Co
st

in
g

So
ftw

ar
e

Se
cu

rit
y

ht
tp

://
cs

se
.u

sc
.e

du
/c

se
/p

ub
/re

se
ar

ch
/s

of
tw

ar
e_

se
cu

rit
y

ht
tp

://
su

ns
et

.u
sc

.e
du

/c
ss

e/
TE

CH
RP

TS
/2

00
6/

us
cc

se
20

06
-6

00
/u

sc
cs

e2
00

6-
60

0.
pd

f

Un
iv

er
si

ty
 o

f T
ex

as
 a

t A
rli

ng
to

n/
De

pa
rtm

en
t o

f
Co

m
pu

te
r S

ci
en

ce
M

al
w

ar
e

an
al

ys
is

 (C
ob

ra
, S

Pi
KE

, V
AM

Pi
RE

)
ht

tp
://

da
ta

.u
ta

.e
du

/%
7E

ra
m

es
h/

pu
bs

/IE
EE

-
Co

br
a.

pd
f ht
tp

://
da

ta
.u

ta
.e

du
/%

7E
ra

m
es

h/
pu

bs
/

AC
SC

06
-S

Pi
KE

.p
df

ht
tp

://
da

ta
.u

ta
.e

du
/%

7E
ra

m
es

h/
pu

bs
/

AC
SA

C0
5-

VA
M

Pi
RE

.p
df

Un
iv

er
si

ty
 o

f T
ex

as
 a

t D
al

la
s/

Cy
be

rs
ec

ur
ity

 R
es

ea
rc

h
Ce

nt
er

 a
nd

 S
ec

ur
ity

 A
na

ly
si

s
an

d
In

fo
rm

at
io

n
As

su
ra

nc
e

La
bo

ra
to

ry

no
ne

 a
va

ila
bl

e

Un
iv

er
si

ty
 o

f T
ul

sa
/S

of
tw

ar
e

En
gi

ne
er

in
g

an
d

Ar

ch
ite

ct
ur

e
Te

am
Se

cu
re

 c
om

po
ne

nt
 a

ss
em

bl
y

ht
tp

://
w

w
w

.s
ea

t.u
tu

ls
a.

ed
u/

ch
ro

no
lo

gi
ca

l.p
hp

http://www.cis.upenn.edu/~stevez/sol
http://csse.usc.edu/cse/pub/research/software_security
http://csse.usc.edu/cse/pub/research/software_security
http://sunset.usc.edu/csse/TECHRPTS/2006/usccse2006-600/usccse2006-600.pdf
http://sunset.usc.edu/csse/TECHRPTS/2006/usccse2006-600/usccse2006-600.pdf
http://data.uta.edu/%7Eramesh/pubs/IEEE-Cobra.pdf%20
http://data.uta.edu/%7Eramesh/pubs/IEEE-Cobra.pdf%20
http://data.uta.edu/%7Eramesh/pubs/ACSC06-SPiKE.pdf
http://data.uta.edu/%7Eramesh/pubs/ACSC06-SPiKE.pdf
http://data.uta.edu/%7Eramesh/pubs/ACSAC05-VAMPiRE.pdf
http://data.uta.edu/%7Eramesh/pubs/ACSAC05-VAMPiRE.pdf
http://www.seat.utulsa.edu/chronological.php

Software Security Assurance State-of-the-Art Report (SOAR) 361

Appendix H Software Security Research in Academia

Ta
bl

e
H-

1
 S

of
tw

ar
e

Se
cu

rit
y

Re
se

ar
ch

 in
 A

ca
de

m
ia

 -
co

nt
in

ue
d

Sc
ho

ol
/D

ep
ar

tm
en

t o
r C

en
te

r/G
ro

up
 o

r L
ab

So
ftw

ar
e

Se
cu

rit
y

Gr
ou

p,
 L

ab
, o

r P
ro

je
ct

UR
L

Un
ite

d
St

at
es

 o
f A

m
er

ic
a

Un
iv

er
si

ty
 o

f V
irg

in
ia

/D
ep

ar
tm

en
t o

f C
om

pu
te

r
Sc

ie
nc

e/
De

pe
nd

ab
ili

ty
 R

es
ea

rc
h

Gr
ou

p
1.

Ge

ne
si

s:
 A

 F
ra

m
ew

or
k

fo
r A

ch
ie

vi
ng

 C
om

po
ne

nt

Di
ve

rs
ity

2.

PH
Pr

ev
en

t:
Au

to
m

at
ic

al
ly

 H
ar

de
ni

ng
 W

eb

Ap
pl

ic
at

io
ns

3.

N
-V

ar
ia

nt
 S

ys
te

m
s

Fr
am

ew
or

k

1.

ht
tp

://
de

pe
nd

ab
ili

ty
.c

s.
vi

rg
in

ia
.e

du
/in

fo
/G

en
es

is
2.

ht

tp
://

de
pe

nd
ab

ili
ty

.c
s.

vi
rg

in
ia

.e
du

/in
fo

/
PH

Pr
ev

en
t

3.

ht
tp

://
de

pe
nd

ab
ili

ty
.c

s.
vi

rg
in

ia
.e

du
/in

fo
/N

-
Va

ria
nt

_S
ys

te
m

s_
Fr

am
ew

or
k

Un
iv

er
si

ty
 o

f W
as

hi
ng

to
n/

De
pa

rtm
en

t o
f C

om
pu

te
r

Sc
ie

nc
e

an
d

En
gi

ne
er

in
g/

Ad
va

nc
ed

 S
ys

te
m

s

fo
r P

ro
gr

am
m

in
g

1.

De
na

li:
 L

ig
ht

w
ei

gh
t v

irt
ua

l m
ac

hi
ne

s
2.

Cy

cl
on

e
(p

ro
gr

am
m

in
g

la
ng

ua
ge

) [
w

ith
 H

ar
va

rd
]

1.

ht
tp

 //
de

na
li.

cs
.w

as
hi

ng
to

n.
ed

u
2.

ht

tp
//c

yc
lo

ne
.th

el
an

gu
ag

e.
or

g/
 a

nd

ht
tp

://
w

w
w

.e
ec

s.
ha

rv
ar

d.
ed

u/
~g

re
g/

cy
cl

on
e/

ol
d_

cy
cl

on
e.

ht
m

l

W
es

te
rn

 Il
lin

oi
s

Un
iv

er
si

ty
/D

ep
ar

tm
en

t o
f

Co
m

pu
te

r S
ci

en
ce

1.

Se
cu

rit
y

As
pe

ct
s:

 D
es

ig
n

(a
nd

 Im
pl

em
en

ta
tio

n
To

ol
s)

 fo
r S

ec
ur

ity
 [w

ith
 P

en
n

St
at

e]
2.

fin

ds
sv

: s
ta

tic
 a

na
ly

si
s

of
 e

xe
cu

ta
bl

es

[w
ith

 A
ub

ur
n

St
at

e]

1.

ht
tp

://
w

w
w

.c
se

.p
su

.e
du

/~
tja

eg
er

/re
se

ar
ch

/
as

pe
ct

s.
ht

m
l

2.

n/
a

Ca
na

da

Qu
ee

n’s
 U

ni
ve

rs
ity

 (K
in

gs
to

n,
 O

N
)/S

ch
oo

l o
f

Co
m

pu
tin

g/
So

ftw
ar

e
Te

ch
no

lo
gy

 L
ab

or
at

or
y/

Qu
ee

n’s

Re
lia

bl
e

So
ftw

ar
e

Te
ch

no
lo

gy
 G

ro
up

 (Q
RS

T)

1.

Un
ify

in
g

So
ftw

ar
e

En
gi

ne
er

in
g

an
d

Se
cu

rit
y

En
gi

ne
er

in
g

2.

In
tru

si
on

 D
et

ec
tio

n-
Aw

ar
e

So
ftw

ar
e

Sy
st

em
s

no
ne

 a
va

ila
bl

e

Un
iv

er
si

ty
 o

f R
eg

in
a/

De
pa

rtm
en

t o
f

Co
m

pu
te

r S
ci

en
ce

Is
oM

od
 d

is
cr

et
io

na
ry

 c
ap

ab
ili

ty
 c

on
fin

em
en

t s
ys

te
m

fo

r t
he

 J
av

a
Vi

rtu
al

 M
ac

hi
ne

 (J
VM

)
ht

tp
://

w
w

w
2.

cs
.u

re
gi

na
.c

a/
~p

w
lfo

ng
/P

ub
/

es
or

ic
s2

00
6.

pd
f

Un
ite

d
Ki

ng
do

m

Ci
ty

 U
ni

ve
rs

ity
 (L

on
do

n)
/S

ch
oo

l o
f I

nf
or

m
at

ic
s/

Ce
nt

re
 fo

r S
of

tw
ar

e
Re

lia
bi

lit
y

In
te

rn
at

io
na

l W
or

ki
ng

 G
ro

up
 o

n
As

su
ra

nc
e

Ca
se

s
(in

cl
ud

in
g

so
ftw

ar
e

se
cu

rit
y

as
su

ra
nc

e
ca

se
s)

ht
tp

://
w

w
w

.c
sr

.c
ity

.a
c.

uk
/A

ss
ur

an
ce

Ca
se

s

http://dependability.cs.virginia.edu/info/Genesis
http://dependability.cs.virginia.edu/info/PHPrevent
http://dependability.cs.virginia.edu/info/PHPrevent
http://dependability.cs.virginia.edu/info/N-Variant_Systems_Framework
http://dependability.cs.virginia.edu/info/N-Variant_Systems_Framework
http://http//cyclone.thelanguage.org/
http://www.eecs.harvard.edu/~greg/cyclone/old_cyclone.html
http://www.eecs.harvard.edu/~greg/cyclone/old_cyclone.html
http://www.cse.psu.edu/~tjaeger/research/aspects.html
http://www.cse.psu.edu/~tjaeger/research/aspects.html
http://www2.cs.uregina.ca/~pwlfong/Pub/esorics2006.pdf
http://www2.cs.uregina.ca/~pwlfong/Pub/esorics2006.pdf
http://www.csr.city.ac.uk/AssuranceCases

Software Security Assurance State-of-the-Art Report (SOAR)362

Appendix H Software Security Research in Academia

Ta
bl

e
H-

1
 S

of
tw

ar
e

Se
cu

rit
y

Re
se

ar
ch

 in
 A

ca
de

m
ia

 -
co

nt
in

ue
d

Sc
ho

ol
/D

ep
ar

tm
en

t o
r C

en
te

r/G
ro

up
 o

r L
ab

So
ftw

ar
e

Se
cu

rit
y

Gr
ou

p,
 L

ab
, o

r P
ro

je
ct

UR
L

Un
ite

d
Ki

ng
do

m

Un
iv

er
si

ty
 o

f C
am

br
id

ge
/C

om
pu

te
r L

ab
or

at
or

y/
Se

cu
rit

y
Gr

ou
p

1.

Ec
on

om
ic

s
of

 in
fo

rm
at

io
n

an
d

so
ftw

ar
e

se
cu

rit
y

2.

TA
M

PE
R

(T
am

pe
r A

nd
 M

on
ito

rin
g

Pr
ot

ec
tio

n
En

gi
ne

er
in

g
Re

se
ar

ch
) L

ab

1.

ht
tp

://
w

w
w

.c
l.c

am
.a

c.
uk

/~
rja

14
/e

co
ns

ec
.h

tm
l

2.

ht
tp

://
w

w
w

.c
l.c

am
.a

c.
uk

/re
se

ar
ch

/s
ec

ur
ity

/ta
m

pe
r

Un
iv

er
si

ty
 o

f N
ew

ca
st

le
 u

po
n

Ty
ne

/C
en

tre
 fo

r
So

ftw
ar

e
Re

lia
bi

lit
y

M
AF

TI
A:

 M
al

ic
io

us
-a

nd
 A

cc
id

en
ta

l-F
au

lt
To

le
ra

nc
e

fo
r I

nt
er

ne
t A

pp
lic

at
io

ns
ht

tp
://

w
w

w
.c

sr
.n

cl
.a

c.
uk

/p
ro

je
ct

s/
pr

oj
ec

tD
et

ai
ls

.
ph

p?
ta

rg
et

Id
=1

01

Fi
nl

an
d

Ou
lu

 U
ni

ve
rs

ity
/C

om
pu

te
r E

ng
in

ee
rin

g
La

bo
ra

to
ry

Se
cu

re
 P

ro
gr

am
m

in
g

Gr
ou

p
ht

tp
://

w
w

w
.e

e.
ou

lu
.fi

/re
se

ar
ch

/o
us

pg

Un
iv

er
si

ty
 o

f L
ap

la
nd

/In
st

itu
te

 fo
r L

eg
al

 In
fo

rm
at

ic
s

Re
gu

la
tin

g
Se

cu
re

 S
of

tw
ar

e
De

ve
lo

pm
en

t
ht

tp
://

w
w

w
.u

la
pl

an
d.

fi/
?n

ew
si

d=
64

40
&

de
pt

id
=1

15
89

&

sh
ow

m
od

ul
=4

7&
la

ng
ua

ge
id

=4
&

ne
w

s=
1

al
so

: h
ttp

://
w

w
w

.u
la

pl
an

d.
fi/

in
cl

ud
es

/fi
le

_d
ow

nl
oa

d.
as

p?
de

pt
id

=2
27

13
&

fil
ei

d=
94

80
&

fil
e=

20
06

10
23

14
03

53
.

pd
f&

pd
f=

1

Sw
ed

en

Li
nd

kö
pi

ng
s

Un
iv

er
si

ty
 (S

w
ed

en
)/D

ep
ar

tm
en

t
of

 C
om

pu
te

r a
nd

 In
fo

rm
at

io
n

Sc
ie

nc
e

(ID
A)

/
Pr

og
ra

m
m

in
g

En
vi

ro
nm

en
ts

 L
ab

or
at

or
y

(P
EL

AB
)

De
pe

nd
en

ce
 g

ra
ph

s
fo

r m
od

el
in

g
an

d
vi

su
al

izi
ng

so

ftw
ar

e
an

d
so

ur
ce

 c
od

e
se

cu
rit

y
pr

op
er

tie
s

ht
tp

://
w

w
w

.id
a.

liu
.s

e/
~j

oh
w

i/r
es

ea
rc

h_
pu

bl
ic

at
io

ns

De
nm

ar
k

Te
ch

ni
ca

l U
ni

ve
rs

ity
 o

f D
en

m
ar

k
(L

yn
gb

y)
/S

af
e

an
d

Se
cu

re
 IT

 S
ys

te
m

s/
La

ng
ua

ge
-B

as
ed

 Te
ch

no
lo

gy
Si

ES
: S

ec
ur

ity
 in

 E
m

be
dd

ed
 S

ys
te

m
s

ht
tp

://
w

w
w

.im
m

.d
tu

.d
k/

En
gl

is
h/

Re
se

ar
ch

/S
af

e_
an

d_
Se

cu
re

_I
T_

Sy
st

em
s/

Pr
oj

ec
ts

.a
sp

x

Be
lg

iu
m

Gh
en

t U
ni

ve
rs

ity
/E

le
ct

ro
ni

cs
 a

nd
 In

fo
rm

at
io

n
Sy

st
em

s
(E

IS
) d

ep
ar

tm
en

t/P
AR

IS
 re

se
ar

ch
 g

ro
up

Co
or

di
na

te
d

Re
se

ar
ch

 o
f P

ro
gr

am
 O

bf
us

ca
tio

n
ht

tp
://

w
w

w
.e

lis
.u

ge
nt

.b
e/

ob
fu

s/
 a

nd
 h

ttp
://

tra
pp

is
t.

el
is

.u
ge

nt
.b

e/
~m

m
ad

ou
/d

ru
pa

l

http://www.cl.cam.ac.uk/~rja14/econsec.html
http://www.cl.cam.ac.uk/research/security/tamper
http://www.csr.ncl.ac.uk/projects/projectDetails.php?targetId=101
http://www.csr.ncl.ac.uk/projects/projectDetails.php?targetId=101
http://www.ee.oulu.fi/research/ouspg
http://www.ulapland.fi/includes/file_download.asp?deptid=22713&fileid=9480&file=20061023140353.pdf&pdf=1
http://www.ulapland.fi/includes/file_download.asp?deptid=22713&fileid=9480&file=20061023140353.pdf&pdf=1
http://www.ulapland.fi/includes/file_download.asp?deptid=22713&fileid=9480&file=20061023140353.pdf&pdf=1
http://www.ida.liu.se/~johwi/research_publications
http://www.imm.dtu.dk/English/Research/Safe_and_Secure_IT_Systems/Projects.aspx
http://www.imm.dtu.dk/English/Research/Safe_and_Secure_IT_Systems/Projects.aspx

Software Security Assurance State-of-the-Art Report (SOAR) 363

Appendix H Software Security Research in Academia

Ta
bl

e
H-

1
 S

of
tw

ar
e

Se
cu

rit
y

Re
se

ar
ch

 in
 A

ca
de

m
ia

 -
co

nt
in

ue
d

Sc
ho

ol
/D

ep
ar

tm
en

t o
r C

en
te

r/G
ro

up
 o

r L
ab

So
ftw

ar
e

Se
cu

rit
y

Gr
ou

p,
 L

ab
, o

r P
ro

je
ct

UR
L

Be
lg

iu
m

Ca
th

ol
ic

 U
ni

ve
rs

ity
 o

f L
eu

ve
n/

De
pa

rtm
en

t o
f

Co
m

pu
te

r S
ci

en
ce

/D
ist

riN
et

 R
es

ea
rc

h
Gr

ou
p/

Se
cu

rit
y

W
or

kin
g

Gr
ou

p
an

d
CO

SI
C

(C
Om

pu
te

r S
ec

ur
ity

 a
nd

In

du
st

ria
l C

ry
pt

og
ra

ph
y)

 R
es

ea
rc

h
Gr

ou
p

1.

So
Be

N
eT

: S
of

tw
ar

e
Se

cu
rit

y
fo

r N
et

w
or

k
Ap

pl
ic

at
io

ns
2.

AG

IL
E:

 A
gi

le
 S

of
tw

ar
e

De
ve

lo
pm

en
t o

f
Em

be
dd

ed
 S

ys
te

m
s

3.

M
ea

su
rin

g
fra

m
ew

or
k

fo
r s

of
tw

ar
e

se
cu

rit
y

pr
op

er
tie

s

1.

ht
tp

://
so

be
ne

t.c
s.

ku
le

uv
en

.b
e/

in
de

x.
js

p
2.

ht

tp
://

w
w

w
.c

s.
ku

le
uv

en
.a

c.
be

/c
w

is
/re

se
ar

ch
/

di
st

rin
et

/p
ub

lic
/re

se
ar

ch
/s

ho
w

pr
oj

ec
t.

ph
p?

AB
BR

EV
=A

GI
LE

3.

no
ne

 a
va

ila
bl

e

Th
e

N
et

he
rla

nd
s

Ra
db

ou
d

Un
iv

er
si

ty
 N

ijm
eg

en
/In

st
itu

te
 fo

r
Co

m
pu

tin
g

an
d

In
fo

rm
at

io
n

Sc
ie

nc
es

/L
ab

or
at

or
y

fo
r Q

ua
lit

y
So

ftw
ar

e
(L

aQ
uS

o)
/S

ec
ur

ity
 o

f S
ys

te
m

s
(S

oS
) G

ro
up

PI
ON

IE
R

(p
ro

gr
am

 s
ec

ur
ity

 a
nd

 c
or

re
ct

ne
ss

)
ht

tp
://

w
w

w
.n

w
o.

nl
/p

ro
je

ct
en

.n
sf

/p
ag

es
/1

60
01

11
39

6

[in
 D

ut
ch

]
al

so
: h

ttp
://

w
w

w
.c

s.
ru

.n
l/~

ba
rt/

Pi
on

ie
r

Ge
rm

an
y

Ge
rm

an
 R

es
ea

rc
h

Ce
nt

er
 fo

r A
rti

fic
ia

l I
nt

el
lig

en
ce

(T

ra
ns

fe
r C

en
te

r)/
Fo

rm
al

 M
et

ho
ds

 g
ro

up
1.

Se

cu
re

 S
of

tw
ar

e
gr

ou
p

2.

Ve
rifi

ca
tio

n
Su

pp
or

t E
nv

iro
nm

en
t

1.

ht
tp

://
w

w
w

.d
fk

i.d
e/

si
so

 [
in

 G
er

m
an

]
2.

ht

tp
://

w
w

w
.d

fk
i.d

e/
vs

e/
pr

oj
ec

ts
/v

se
-s

ho
rt.

ht
m

l

Fr
au

nh
of

er
 In

st
itu

te
 fo

r E
xp

er
im

en
ta

l S
of

tw
ar

e
En

gi
ne

er
in

g
(IE

SE
) (

Ka
is

er
sl

au
te

rn
)/D

ep
ar

tm
en

t o
f

Se
cu

rit
y

an
d

Sa
fe

ty
an

d
so

ftw
ar

e
sy

st
em

s
fo

r r
el

ev
an

t s
ec

ur
ity

 a
nd

sa

fe
ty

 c
ha

ra
ct

er
is

tic
s.

ph
as

es
 in

 th
e

de
ve

lo
pm

en
t o

f s
af

et
y-

 o
r s

ec
ur

ity
-

cr
iti

ca
l s

ys
te

m
s

no
ne

 a
va

ila
bl

e

Te
ch

ni
ca

l U
ni

ve
rs

ity
 o

f D
re

sd
en

/C
om

pu
te

r S
ci

en
ce

De

pa
rtm

en
t/S

ys
te

m
s

En
gi

ne
er

in
g

Gr
ou

p
Au

to
Pa

tc
h

ht
tp

://
w

w
w

se
.in

f.t
u-

dr
es

de
n.

de
/A

ut
oP

at
ch

/

http://sobenet.cs.kuleuven.be/index.jsp
http://www.cs.kuleuven.ac.be/cwis/research/distrinet/public/research/showproject.php?ABBREV=AGILE
http://www.cs.kuleuven.ac.be/cwis/research/distrinet/public/research/showproject.php?ABBREV=AGILE
http://www.cs.kuleuven.ac.be/cwis/research/distrinet/public/research/showproject.php?ABBREV=AGILE
http://www.cs.ru.nl/~bart/Pionier
http://www.dfki.de/siso
http://www.dfki.de/vse/projects/vse-short.html
http://wwwse.inf.tu-dresden.de/AutoPatch/

Software Security Assurance State-of-the-Art Report (SOAR)364

Appendix H Software Security Research in Academia

Ta
bl

e
H-

1
 S

of
tw

ar
e

Se
cu

rit
y

Re
se

ar
ch

 in
 A

ca
de

m
ia

 -
co

nt
in

ue
d

Sc
ho

ol
/D

ep
ar

tm
en

t o
r C

en
te

r/G
ro

up
 o

r L
ab

So
ftw

ar
e

Se
cu

rit
y

Gr
ou

p,
 L

ab
, o

r P
ro

je
ct

UR
L

Ge
rm

an
y

Te
ch

ni
ca

l U
ni

ve
rs

ity
 o

f M
un

ic
h/

Ch
ai

r f
or

 T
he

or
et

ic
al

Co

m
pu

te
r S

ci
en

ce
 a

nd
 F

ou
nd

at
io

ns
 o

f A
rti

fic
ia

l
In

te
lli

ge
nc

e/
Fo

rm
al

 M
et

ho
ds

 a
nd

 T
he

or
y

Gr
ou

p

So
ftw

ar
e

Se
cu

rit
y

ht
tp

://
w

w
w

.m
od

el
.in

fo
rm

at
ik

.tu
-m

ue
nc

he
n.

de
/

re
se

ar
ch

/p
ro

je
ct

s/
de

ta
il/

in
de

x.
ph

p?
id

=p
ro

je
ct

s.
de

ta
il&

ar
g=

18

Te
ch

ni
ca

l U
ni

ve
rs

ity
 o

f M
un

ic
h/

Fa
cu

lty
 fo

r
In

fo
rm

at
ic

s
Ch

ai
r I

V/
Co

m
pe

te
nc

e
Ce

nt
er

 in
 IT

/
Se

cu
rit

y,
So

ftw
ar

e,
 a

nd
 S

ys
te

m
s

En
gi

ne
er

in
g

W
or

ki
ng

 G
ro

up
 o

n
Se

cu
rit

y
an

d
Sa

fe
ty

 in
 S

of
tw

ar
e

En
gi

ne
er

in
g

ht
tp

://
w

w
w

4.
in

.tu
m

.d
e/

~s
ec

se
/g

ro
up

.h
tm

l

Un
iv

er
si

ty
 o

f D
ui

sb
ur

g
Es

se
n/

De
pa

rtm
en

t o
f

Co
m

pu
te

r S
ci

en
ce

 a
nd

 A
pp

lie
d

Co
gn

iti
ve

 S
ci

en
ce

/
So

ftw
ar

e
En

gi
ne

er
in

g
W

or
kg

ro
up

so

ftw
ar

e
de

ve
lo

pm
en

t
no

ne
 a

va
ila

bl
e

Un
iv

er
si

ty
 o

f M
an

nh
ei

m
/L

ab
or

at
or

y
fo

r D
ep

en
da

bl
e

Di
st

rib
ut

ed
 S

ys
te

m
s

Ha
rd

w
ar

e-
So

ftw
ar

e
in

te
ra

ct
io

ns
 a

nd
 th

ei
r S

ec
ur

ity

is
su

es
: D

ep
en

da
bi

lit
y

(in
cl

ud
in

g
se

cu
rit

y)
 M

et
ric

s
ht

tp
://

pi
1.

in
fo

rm
at

ik
.u

ni
-m

an
nh

ei
m

.d
e/

in
de

x.
ph

p?
pa

ge
co

nt
en

t=
si

te
/R

es
ea

rc
h.

m
en

u/
Pr

oj
ec

ts
.

pa
ge

/D
ep

en
da

bi
lit

y%
20

M
et

ric
s.

pa
ge

&
sh

ow
=t

ru
e

Un
iv

er
si

ty
 o

f S
tu

ttg
ar

t/I
ns

tit
ut

e
fo

r F
or

m
al

 M
et

ho
ds

in

 C
om

pu
te

r S
ci

en
ce

So
ftw

ar
e

Re
lia

bi
lit

y
an

d
Se

cu
rit

y
Gr

ou
p

ht
tp

://
w

w
w

.fm
i.u

ni
-s

tu
ttg

ar
t.d

e/
sz

s/
in

de
x.

en
.s

ht
m

l

Sw
itz

er
la

nd

Un
iv

er
si

ty
 o

f L
ug

an
o/

Fa
cu

lty
 o

f I
nf

or
m

at
ic

s
De

te
ct

io
n

of
 S

ec
ur

ity
 F

la
w

s
an

d
Vu

ln
er

ab
ili

tie
s

by

Gu
id

ed
 M

od
el

 C
he

ck
in

g
ht

tp
://

w
w

w
.in

f.u
ni

si
.c

h/
re

se
ar

ch
/#

DS
FV

http://www.model.informatik.tu-muenchen.de/research/projects/detail/index.php?id=projects.detail&arg=18
http://www.model.informatik.tu-muenchen.de/research/projects/detail/index.php?id=projects.detail&arg=18
http://www.model.informatik.tu-muenchen.de/research/projects/detail/index.php?id=projects.detail&arg=18
http://www4.in.tum.de/~secse/group.html%20
http://pi1.informatik.uni-mannheim.de/index.php?pagecontent=site/Research.menu/Projects.page/Dependability%20Metrics.page&show=true
http://pi1.informatik.uni-mannheim.de/index.php?pagecontent=site/Research.menu/Projects.page/Dependability%20Metrics.page&show=true
http://pi1.informatik.uni-mannheim.de/index.php?pagecontent=site/Research.menu/Projects.page/Dependability%20Metrics.page&show=true
http://www.fmi.uni-stuttgart.de/szs/index.en.shtml
http://www.inf.unisi.ch/research/#DSFV

Software Security Assurance State-of-the-Art Report (SOAR) 365

Appendix H Software Security Research in Academia

Ta
bl

e
H-

1
 S

of
tw

ar
e

Se
cu

rit
y

Re
se

ar
ch

 in
 A

ca
de

m
ia

 -
co

nt
in

ue
d

Sc
ho

ol
/D

ep
ar

tm
en

t o
r C

en
te

r/G
ro

up
 o

r L
ab

So
ftw

ar
e

Se
cu

rit
y

Gr
ou

p,
 L

ab
, o

r P
ro

je
ct

UR
L

Au
st

ria

Te
ch

ni
ca

l U
ni

ve
rs

ity
 V

ie
nn

a/
Di

st
rib

ut
ed

 S
ys

te
m

s
an

d
Au

to
m

at
io

n
Sy

st
em

s
Gr

ou
ps

/S
ec

ur
e

Sy

st
em

s
La

b

1.

An
ub

is
: A

na
ly

zin
g

Un
kn

ow
n

Bi
na

rie
s

(S

of
tw

ar
e

Se
cu

rit
y

th
ro

ug
h

Bi
na

ry
 A

na
ly

si
s)

2.
Pa

th
fin

de
r:

M
al

ic
io

us
 C

od
e

An
al

ys
is

an
d

De
te

ct
io

n
3.

So

ftw
ar

e
Se

cu
rit

y
Au

di
t u

si
ng

 R
ev

er
se

En

gi
ne

er
in

g

1.

ht
tp

://
an

al
ys

is
.s

ec
la

b.
tu

w
ie

n.
ac

.a
t

Gr
ee

ce

At
he

ns
 U

ni
ve

rs
ity

 o
f E

co
no

m
ic

s a
nd

 B
us

in
es

s/
De

pa
rtm

en
t o

f M
an

ag
em

en
t S

ci
en

ce
 a

nd
 Te

ch
no

lo
gy

/
In

fo
rm

at
io

n
Sy

st
em

s T
ec

hn
ol

og
ie

s L
ab

 (I
ST

La
b)

SE
N

SE
 -

So
ftw

ar
e

En
gi

ne
er

in
g

an
d

Se
cu

rit
y

ht
tp

://
ist

la
b.

dm
st

.a
ue

b.
gr

/c
on

te
nt

/g
ro

up
s/

g_
se

ns
e-

de
ta

ils
.h

tm
l

Ru
ss

ia

Ru
ss

ia
n

Ac
ad

em
y

of
 S

ci
en

ce
s/

In
st

itu
te

 fo
r S

ys
te

m

Pr
og

ra
m

m
in

g/
DM

A
gr

ou
p

In
ve

st
ig

at
io

n
of

 a
lg

or
ith

m
ic

 m
et

ho
ds

 o
f

pr
og

ra
m

 p
ro

te
ct

io
n

ht
tp

://
is

pr
as

.ru
/g

ro
up

s/
dm

a/
pr

oj
ec

ts
.h

tm
l?

1#
1

Au
st

ra
lia

Bo
nd

 U
ni

ve
rs

ity
 (Q

ue
en

sl
an

d)
/C

en
tre

 fo
r

So
ftw

ar
e

As
su

ra
nc

e
M

od
el

-B
as

ed
 Te

st
in

g
fo

r S
of

tw
ar

e
Se

cu
rit

y
no

ne
 a

va
ila

bl
e

Sw
in

bu
rn

e
Un

iv
er

si
ty

 o
f T

ec
hn

ol
og

y
(M

el
bo

ur
ne

)/
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

an
d

Co
m

m
un

ic
at

io
n

Te
ch

no
lo

gi
es

/C
en

tre
 fo

r I
nf

or
m

at
io

n
Te

ch
no

lo
gy

Re

se
ar

ch
/R

el
ia

bl
e

So
ftw

ar
e

Sy
st

em
s

gr
ou

p
an

d
Co

m
po

ne
nt

 S
of

tw
ar

e
an

d
En

te
rp

ris
e

Sy
st

em
s

gr
ou

p

1.

Ch
ar

ac
te

riz
at

io
n

an
d

co
m

po
si

tio
na

l s
ec

ur
ity

an

al
ys

is
 fo

r s
of

tw
ar

e
sy

st
em

s
2.

Se

cu
rit

y
En

gi
ne

er
in

g
fo

r C
om

po
ne

nt
-B

as
ed

So

ftw
ar

e

1.

ht
tp

://
w

w
w

.s
w

in
.e

du
.a

u/
ic

t/r
es

ea
rc

h/
ci

tr/
rs

s.
ht

m
2.

ht

tp
://

w
w

w
.it

.s
w

in
.e

du
.a

u/
ce

nt
re

s/
ce

cs
es

/
pr

oj
ec

ts
.h

tm
l#

se
cu

rit
y

an
d

ht
tp

://
w

w
w

.it
.s

w
in

.
ed

u.
au

/p
er

so
na

l/j
ha

n/
jh

an
Pu

b.
ht

m
l

N
ew

 Z
ea

la
nd

Un
iv

er
si

ty
 o

f A
uc

kl
an

d/
De

pa
rtm

en
t o

f C
om

pu
te

r
Sc

ie
nc

e/
Se

cu
re

 S
ys

te
m

s
Gr

ou
p

So
ftw

ar
e

ob
fu

sc
at

io
n,

 w
at

er
m

ar
ki

ng
,

ta
m

pe
rp

ro
ofi

ng
ht

tp
://

w
w

w
.c

s.
au

ck
la

nd
.a

c.
nz

/re
se

ar
ch

/g
ro

up
s/

ss
g

http://analysis.seclab.tuwien.ac.at
http://istlab.dmst.aueb.gr/content/groups/g_sense-details.html%20
http://istlab.dmst.aueb.gr/content/groups/g_sense-details.html%20
http://ispras.ru/groups/dma/projects.html?1#1
http://www.swin.edu.au/ict/research/citr/rss.htm
http://www.cs.auckland.ac.nz/research/groups/ssg

Software Security Assurance State-of-the-Art Report (SOAR)366

Appendix H Software Security Research in Academia

Ta
bl

e
H-

1
 S

of
tw

ar
e

Se
cu

rit
y

Re
se

ar
ch

 in
 A

ca
de

m
ia

 -
co

nt
in

ue
d

Sc
ho

ol
/D

ep
ar

tm
en

t o
r C

en
te

r/G
ro

up
 o

r L
ab

So
ftw

ar
e

Se
cu

rit
y

Gr
ou

p,
 L

ab
, o

r P
ro

je
ct

UR
L

Ja
pa

n

To
ky

o
In

st
itu

te
 o

f T
ec

hn
ol

og
y/

Pr
og

ra
m

m
in

g

Sy
st

em
s

Gr
ou

p
Im

pl
em

en
ta

tio
n

Sc
he

m
es

 fo
r S

ec
ur

e
So

ftw
ar

e
ht

tp
://

an
ze

n.
is

.ti
te

ch
.a

c.
jp

/in
de

x-
e.

ht
m

l

Un
ive

rs
ity

 o
f T

ok
yo

/Y
on

ez
aw

a
La

b
fo

r I
nf

or
m

at
io

n
Sc

ie
nc

e/
Yo

ne
za

w
a

Gr
ou

p/
Se

cu
re

 C
om

pu
tin

g
Pr

oj
ec

t
an

d
Vi

rtu
al

 In
fra

st
ru

ct
ur

e
fo

r N
et

w
or

ke
d

Co
m

pu
te

rs

(V
IN

CS
) P

ro
je

ct
 a

nd
 Ty

pe
d

Co
m

pu
tin

g
Pr

oj
ec

t

1.

Fa
il-

sa
fe

 C
 C

om
pi

le
r:

A
m

em
or

y-
sa

fe
 A

N
SI

-C

Co
m

pi
le

r
2.

Sp

ec
SB

: A
 S

an
db

ox
in

g
Sy

st
em

 th
at

 E
xe

cu
te

s
Sp

ec
ul

at
iv

e
Se

cu
rit

y
Ch

ec
ks

3.

M
at

SB
: A

 S
an

db
ox

 S
ys

te
m

 fo
r P

ro
te

ct
in

g

Se
cu

rit
y

Sy
st

em
s

4.

G’
Ca

m
l:

ev
al

ua
tio

n
w

ith
 ty

pe
s

1.
ht

tp
://

ve
nu

s.i
s.s

.u
-to

ky
o.

ac
.jp

/~
oi

w
a/

Fa
ilS

af
e-

C.
ht

m
l

2.

ht
tp

://
w

w
w

.y
l.i

s.
s.

u-
to

ky
o.

ac
.jp

/p
ro

je
ct

s/
sp

ec
sb

3.

ht
tp

://
w

w
w

.y
l.i

s.
s.

u-
to

ky
o.

ac
.jp

/p
ro

je
ct

s/
m

at
sb

4.

ht
tp

://
w

eb
.y

l.i
s.

s.
u-

to
ky

o.
ac

.jp
/~

fu
ru

se
/g

ca
m

l

Ta
iw

an

In
st

itu
te

 o
f I

nf
or

m
at

io
n

Sc
ie

nc
e

Ac
ad

em
ia

 S
in

ic
a

W
eb

 A
pp

lic
at

io
n

So
ftw

ar
e

Se
cu

rit
y

(e

sp
. v

ul
ne

ra
bi

lit
y

as
se

ss
m

en
t)

ht
tp

://
w

w
w

.ii
s.

si
ni

ca
.e

du
.tw

Ira
n

Am
irk

ab
ir

Un
iv

er
si

ty
 o

f T
ec

hn
ol

og
y

(T
eh

ra
n)

/
De

pa
rtm

en
t o

f C
om

pu
te

r E
ng

in
ee

rin
g

an
d

In

fo
rm

at
io

n
Te

ch
no

lo
gy

RU
PS

ec
se

e
Se

ct
io

n
5.

1.
8.

2.
6

un
de

r “
RU

PS
ec

”

Tu
ni

si
a

Un
iv

er
si

ty
 o

f M
an

ou
ba

En
vi

ro
nm

en
t f

or
 A

dd
re

ss
in

g
So

ftw
ar

e
Ap

pl
ic

at
io

n
Se

cu
rit

y
Is

su
es

 (A
SA

SI
)

ht
tp

://
ie

ee
xp

lo
re

.ie
ee

.o
rg

/x
pl

/fr
ee

ab
s_

al
l.j

sp
?i

sn
um

b
er

=4
04

15
09

&
ar

nu
m

be
r=

40
41

53
4&

co
un

t=
77

&
in

de
x=

23

N
ig

er
ia

Un
iv

er
si

ty
 o

f A
gr

ic
ul

tu
re

 (A
be

ok
ut

a)
Se

cu
re

 S
of

tw
ar

e
De

ve
lo

pm
en

t M
od

el
 (S

SD
M

)
se

e
Se

ct
io

n
5.

1.
8.

2.
6

un
de

r “
SS

DM
”

http://anzen.is.titech.ac.jp/index-e.html
http://venus.is.s.u-tokyo.ac.jp/~oiwa/FailSafe-C.html
http://www.yl.is.s.u-tokyo.ac.jp/projects/specsb
http://www.yl.is.s.u-tokyo.ac.jp/projects/matsb
http://web.yl.is.s.u-tokyo.ac.jp/~furuse/gcaml
http://www.iis.sinica.edu.tw
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?isnumber=4041509&arnumber=4041534&count=77&index=23
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?isnumber=4041509&arnumber=4041534&count=77&index=23

