The 2019 Mw 6.4 and Mw 7.1 Ridgecrest, California earthquakes and implications for the Walker Lane

Rich D. Koehler Nevada Bureau of Mines and Geology

Presented at the Nevada-Utah Earthquake Summit Eldorado Resort Casino October, 16, 2019

M

Collaborators Ian Pierce, Colin Chupik, UNR Alana Williams, Arizona State University Sinan Akciz, CSU Fullerton PG&E

Geotechnical Extreme Events Reconnaissance California Geological Survey U.S. Geological Survey

science for a changing world

California

Department of Conservation

The Nevada Seismological Laboratory

Preliminary Report on Engineering and Geological Effects of the July 2019 Ridgecrest Earthquake Sequence

http://www.geerassociation.org/

Tectonic setting

Southern Walker Lane/Eastern CA shear zone accomodates 20-25% of the plate motion.
Individual fault slip rates <5 mm/yr on major faults.

Nevada Geodetic Laboratory MAGNET network

1992 M7.3 Landers earthquake

INSTRUMENTAL INTENSITY	1	11-10	IV	V	VI	VII	VIII	IX	X+
PEAK VEL.(am/s)	<0.1	0.1-1.1	1.1-3.4	3.4-8.1	8.1-16	16-31	31-60	60-116	>116
PEAK ACC.(%g)	<.17	.17-1.4	1.4-3.9	3.9-9.2	9.2-18	18-34	34-65	65-124	>124
POTENTIAL DAMAGE	none	none	none	Very light	Light	Moderate	Moderate/Heavy	Heavy	Very Heavy
PERCEIVED	Notfelt	Weak	Light	Moderate	Strong	Very strong	Severe	Violent	Extreme

- Rupture of multiple faults
 - Johnson V., Homestead V., Emerson, and Camp Rock faults
- Extensive surface rupture
- Pattern similar to Ridgecrest earthquakes

1999 M7.1 Hector Mine earthquake

The 2019 Mw 6.4 and Mw 7.1 Ridgecrest, California earthquakes

Patton, 2019

M6.4 event

- July 4, 2019
- NE oriented left-lateral strike-slip fault.
- Hypocentral depth of ~11 km
- Rupture length or ~15 km.
- Unilaterally ruptured to the southwest.
- Max lateral displacements >1 m.

The 2019 Mw 6.4 and Mw 7.1 Ridgecrest, California earthquakes

M7.1 event

~\$100 M

- July 5, 2019, 8:19 PM
- NW oriented right-lateral strike-slip fault.
- Hypocentral depth of ~8 km
- Rupture length of >50 km.
- Bilaterally ruptured to the NW and SE.
- Max lateral displacements >4.5 m.
- Rupture distributed over 2.5 km

Patton, 2019

InSAR data from JAXA ALOS2 satellite images showing multiple fault strands and distributed deformation. Color bands = 4.5 in. (NASA/JPL/CalTech, 2019)

Pixel tracking and image cross-correlation of Planetlabs satellite imagery shows more distributed deformation towards rupture tips (Milliner, 2019)

Jascha Polet, CalPoly

Jascha Polet, CalPoly

Why do rapid reconnaissance?

M6.4 around 5 AM, July 5th

No sleep, M5+ aftershock

M6.4 rupture observations points (8 miles)

Mw6.4 surface rupture

Mw6.4 surface rupture

M7.1 Earthquake, 8:19 PM

Highway 178

M7.1 rupture observations points (12 miles)

Mw7.1 surface rupture

High resolution drone imagery and orthophotographs

Mw7.1 surface rupture

Mw7.1 surface rupture

Photo credits USGS and CGS

Large displacements on the NAWS

Average slip vs. rupture length

Average slip in the Ridgecrest earthquakes generally fits with the global dataset For strike-slip faults

Wesnousky, 2008

Future work and ongoing research

Soils and OSL analyses of faulted alluvial fans within the Spangler Hills

Future work and ongoing research

Geochronology of pluvial Lake Searles Shorelines, Recurrence, timing

Future work and ongoing research

Width of rupture and off fault deformation

Critical component to fault displacement hazard analyses
Immature faults have up to 40% of deformation off-fault

Stages of strike-slip fault growth from experiments in wet clay. Hatem et al. (2017)

Implications for the Walker Lane

Southern Walker Lane

Central Walker Lane

Implications for the Walker Lane

Southern Walker Lane

Central Walker Lane

Nine Mile Ranch Earthquake sequence Dec. 28, 2016

3 Mw 5.4-5.6 events

5 km

vada Seismologica

Growclust and Hypoinverse Relocations - 6354 Events

-118°54'

-118°48'

-118°42'

-119°06'

-119°00'

Normal

-118°36'

Northern Walker Lane

Northern Walker Lane

Northern Walker Lane

Figure 9. (A) Log of Petersen Mountain trench exposure (south wall) showing stratigraphic and structural relations. Open circles show unit numbers, solid circles are OSL samples, and letters are fracture attitude locations. (B) Interpreted photomosaic. (C) Uninterpreted photomosaic.

