
Developer Guide

Amazon Simple Queue Service

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon Simple Queue Service Developer Guide

Amazon Simple Queue Service: Developer Guide

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

Amazon Simple Queue Service Developer Guide

Table of Contents

What is Amazon SQS? ... 1
Benefits of using Amazon SQS .. 1
Basic architecture ... 1

Distributed queues .. 2
Message lifecycle ... 2

Differences between Amazon SQS, Amazon MQ, and Amazon SNS .. 4
Setting up .. 6

Step 1: Create an AWS account and IAM user ... 6
Sign up for an AWS account .. 6
Create a user with administrative access ... 7

Step 2: Grant programmatic access ... 8
Step 3: Get ready to use the example code ... 10
Next steps .. 11

Getting started .. 12
Prerequisites .. 12
Understanding the Amazon SQS console ... 12
Queue types .. 13

Implementing request-response systems in Amazon SQS ... 15
Creating a standard queue ... 15

Create a queue .. 15
Send a message .. 18

Creating a FIFO queue .. 18
Create a queue .. 18
Send a message .. 21

Common tasks .. 21
Managing a queue ... 23

Prerequisites .. 12
Understanding the Amazon SQS console ... 12
Editing a queue .. 24
Receiving and deleting a message ... 25
Confirming a queue is empty .. 26
Deleting a queue .. 27
Purging a queue ... 28

Standard queues .. 30

iii

Amazon Simple Queue Service Developer Guide

Amazon SQS at-least-once delivery ... 30
Queue and message identifiers ... 31

Identifiers for standard queues ... 31
FIFO queues ... 33

FIFO queue key terms ... 34
FIFO delivery logic ... 35
Exactly-once processing .. 37
Moving from a standard queue to a FIFO queue .. 37
FIFO queue and Lambda concurrency behavior .. 39

FIFO queue message grouping .. 39
Lambda concurrency with FIFO queues ... 39
Use case example ... 40

High throughput for FIFO queues .. 40
Use cases .. 41
Partitions and data distribution .. 41
Enabling high throughput for FIFO queues .. 44

Queue and message identifiers ... 45
Identifiers for FIFO queues ... 31
Additional identifiers for FIFO queues ... 47

Quotas .. 48
FIFO queue quotas ... 48

Amazon SQS quotas ... 48
Standard queue quotas ... 49
Message quotas .. 51
Policy quotas ... 56

Features and capabilities .. 58
Dead-letter queues .. 58

Using policies for dead-letter queues .. 59
Understanding message retention periods for dead-letter queues .. 59
Configuring a dead-letter queue ... 60
Configuring a dead-letter queue redrive ... 60
CloudTrail update and permission requirements ... 67
Create alarms for dead-letter queues using Amazon CloudWatch ... 71

Message metadata for Amazon SQS ... 71
Message attributes ... 72
Message system attributes ... 76

iv

Amazon Simple Queue Service Developer Guide

Resources required to process messages .. 76
List queue pagination .. 77
Cost allocation tags ... 77
Short and long polling ... 78

Consuming messages using short polling ... 79
Consuming messages using long polling .. 80
Differences between long and short polling .. 80

Visibility timeout .. 80
In flight messages ... 82
Setting the visibility timeout ... 83
Changing the visibility timeout for a message ... 84
Terminating the visibility timeout for a message .. 85

Delay queues ... 85
Temporary queues ... 86

Virtual queues ... 87
Request-response messaging pattern (virtual queues) ... 88
Example scenario: Processing a login request .. 89
Cleaning up queues .. 91

Message timers ... 92
Accessing EventBridge pipes .. 92
Managing large messages .. 94

Using the Extended Client Library for Java .. 94
Using the Extended Client Library for Python ... 104

Configuring Amazon SQS .. 107
ABAC for Amazon SQS ... 107

What is ABAC? ... 107
Why should I use ABAC in Amazon SQS? .. 108
Tagging for access control .. 109
Creating IAM users and Amazon SQS queues .. 109
Testing attribute-based access control .. 113

Configuring queue parameters ... 114
Configuring an access policy ... 116
Configuring SSE-SQS for a queue .. 117
Configuring SSE-KMS for a queue ... 118
Configuring tags for a queue .. 119
Subscribing a queue to a topic ... 120

v

Amazon Simple Queue Service Developer Guide

Configuring a Lambda trigger ... 121
Prerequisites .. 122

Automating notifications using EventBridge ... 123
Message attributes .. 123

Best practices ... 125
Error handling and problematic messages ... 125

Handling request errors in Amazon SQS ... 125
Capturing problematic messages in Amazon SQS ... 126
Setting-up dead-letter queue retention in Amazon SQS ... 126

Message deduplication and grouping ... 127
Avoiding inconsistent message processing in Amazon SQS .. 127
Using the message deduplication ID .. 127
Using the message group ID .. 129
Using the receive request attempt ID .. 131

Message processing and timing .. 131
Processing messages in a timely manner in Amazon SQS ... 131
Setting-up long polling in Amazon SQS ... 132
Using the appropriate polling mode in Amazon SQS ... 133

Java SDK examples .. 134
Using server-side encryption ... 134

Adding SSE to an existing queue .. 134
Disabling SSE for a queue .. 135
Creating a queue with SSE ... 135
Retrieving SSE attributes .. 136

Configuring tags ... 137
Listing tags ... 137
Adding or updating tags ... 137
Removing tags ... 138

Sending message attributes .. 139
Defining attributes ... 139
Sending a message with attributes .. 141

Using APIs .. 142
Making query API requests using AWS JSON protocol .. 143

Constructing an endpoint ... 144
Making a POST request ... 145
Interpreting Amazon SQS JSON API responses ... 145

vi

Amazon Simple Queue Service Developer Guide

Amazon SQS AWS JSON protocol FAQs .. 147
Making query API requests using AWS query protocol ... 150

Constructing an endpoint ... 150
Making a GET request ... 151
Making a POST request ... 145
Interpreting Amazon SQS XML API responses ... 152

Authenticating requests ... 154
Basic authentication process with HMAC-SHA ... 154
Part 1: The request from the user .. 156
Part 2: The response from AWS .. 157

Batch actions .. 157
Batching message actions .. 158
Enabling client-side buffering and request batching with Amazon SQS 159
Increasing throughput using horizontal scaling and action batching with Amazon SQS 167

Working with AWS SDKs .. 180
Using JMS ... 182

Prerequisites .. 182
Using the Java Messaging Library .. 184

Creating a JMS connection ... 184
Creating an Amazon SQS queue ... 185
Sending messages synchronously ... 186
Receiving messages synchronously ... 187
Receiving messages asynchronously .. 189
Using client acknowledge mode ... 190
Using unordered acknowledge mode ... 191

Using the JMS Client with other Amazon SQS clients ... 191
Working Java examples for using JMS with standard queues .. 193

ExampleConfiguration.java ... 193
TextMessageSender.java .. 196
SyncMessageReceiver.java ... 198
AsyncMessageReceiver.java ... 199
SyncMessageReceiverClientAcknowledge.java .. 201
SyncMessageReceiverUnorderedAcknowledge.java ... 205
SpringExampleConfiguration.xml .. 209
SpringExample.java .. 210
ExampleCommon.java .. 212

vii

Amazon Simple Queue Service Developer Guide

Supported JMS 1.1 implementations .. 214
Supported common interfaces .. 214
Supported message types .. 214
Supported message acknowledgment modes .. 215
JMS-defined headers and reserved properties ... 215

Tutorials ... 217
Creating an Amazon SQS queue using AWS CloudFormation .. 217
Sending a message from a VPC ... 219

Step 1: Create an Amazon EC2 key pair .. 219
Step 2: Create AWS resources ... 220
Step 3: Confirm that your EC2 instance isn't publicly accessible .. 221
Step 4: Create an Amazon VPC endpoint for Amazon SQS ... 222
Step 5: Send a message to your Amazon SQS queue .. 223

Code examples ... 225
Actions .. 235

AddPermission ... 236
ChangeMessageVisibility ... 237
ChangeMessageVisibilityBatch ... 243
CreateQueue ... 245
DeleteMessage ... 265
DeleteMessageBatch ... 275
DeleteQueue ... 283
GetQueueAttributes ... 293
GetQueueUrl ... 300
ListDeadLetterSourceQueues ... 307
ListQueues .. 308
PurgeQueue .. 320
ReceiveMessage .. 321
RemovePermission ... 338
SendMessage ... 339
SendMessageBatch ... 355
SetQueueAttributes ... 363

Scenarios .. 374
Create and publish to a FIFO topic .. 375
Publish messages to queues .. 387
Send and receive batches of messages ... 483

viii

Amazon Simple Queue Service Developer Guide

Serverless examples .. 488
Invoke a Lambda function from an Amazon SQS trigger .. 489
Reporting batch item failures for Lambda functions with an Amazon SQS trigger 497

Cross-service examples ... 507
Create a messaging application .. 507
Create a messenger application .. 508
Create an Amazon Textract explorer application ... 509
Detect people and objects in a video .. 511
Use the AWS Message Processing Framework for .NET with Amazon SQS 512

Troubleshooting ... 513
Access denied error ... 513

Amazon SQS queue policy and IAM policy ... 514
AWS Key Management Service (AWS KMS) permissions .. 515
VPC endpoint policy .. 516
Organization service control policy .. 517

API errors ... 517
QueueDoesNotExist error ... 517
InvalidAttributeValue error ... 518
ReceiptHandle error ... 518

DLQ and DLQ redrive issues .. 519
DLQ issues .. 520
DLQ-redrive issues .. 521

FIFO throttling issues .. 523
Messages not returned for a ReceiveMessage API call .. 524

Empty queue ... 524
In flight limit reached .. 525
Message delay ... 525
Message is in flight .. 525
Polling method ... 525

Network errors .. 526
ETIMEOUT error .. 526
UnknownHostException error .. 527

Troubleshooting queues using X-Ray .. 528
Security .. 529

Data protection .. 529
Data encryption .. 530

ix

Amazon Simple Queue Service Developer Guide

Internetwork traffic privacy .. 542
Identity and access management ... 544

Audience ... 544
Authenticating with identities ... 545
Managing access using policies ... 548
Overview ... 550
How Amazon Simple Queue Service works with IAM ... 557
AWS managed policies .. 564
Troubleshooting .. 566
Using policies ... 568

Logging and monitoring .. 614
Logging API calls using CloudTrail ... 615
Monitoring queues using CloudWatch ... 628

Compliance validation .. 642
Resilience ... 644

Distributed queues ... 644
Infrastructure security ... 645
Best practices .. 645

Make sure that queues aren't publicly accessible .. 646
Implement least-privilege access .. 646
Use IAM roles for applications and AWS services which require Amazon SQS access 647
Implement server-side encryption .. 647
Enforce encryption of data in transit ... 647
Consider using VPC endpoints to access Amazon SQS ... 647

Related resources .. 649
Documentation history ... 650

x

Amazon Simple Queue Service Developer Guide

What is Amazon Simple Queue Service

Amazon Simple Queue Service (Amazon SQS) offers a secure, durable, and available hosted queue
that lets you integrate and decouple distributed software systems and components. Amazon SQS
offers common constructs such as dead-letter queues and cost allocation tags. It provides a generic
web services API that you can access using any programming language that the AWS SDK supports.

Topics

• Benefits of using Amazon SQS

• Basic Amazon SQS architecture

• Differences between Amazon SQS, Amazon MQ, and Amazon SNS

Benefits of using Amazon SQS

• Security – You control who can send messages to and receive messages from an Amazon SQS
queue. You can choose to transmit sensitive data by protecting the contents of messages in
queues by using default Amazon SQS managed server-side encryption (SSE), or by using custom
SSE keys managed in AWS Key Management Service (AWS KMS).

• Durability – For the safety of your messages, Amazon SQS stores them on multiple servers.
Standard queues support at-least-once message delivery, and FIFO queues support exactly-once
message processing and high-throughput mode.

• Availability – Amazon SQS uses redundant infrastructure to provide highly-concurrent access to
messages and high availability for producing and consuming messages.

• Scalability – Amazon SQS can process each buffered request independently, scaling
transparently to handle any load increases or spikes without any provisioning instructions.

• Reliability – Amazon SQS locks your messages during processing, so that multiple producers can
send and multiple consumers can receive messages at the same time.

• Customization – Your queues don't have to be exactly alike—for example, you can set a default
delay on a queue. You can store the contents of messages larger than 256 KB using Amazon
Simple Storage Service (Amazon S3) or Amazon DynamoDB, with Amazon SQS holding a pointer
to the Amazon S3 object, or you can split a large message into smaller messages.

Basic Amazon SQS architecture

Benefits of using Amazon SQS 1

Amazon Simple Queue Service Developer Guide

This section outlines the parts of a distributed messaging system and explains the lifecycle of an
Amazon SQS message.

Distributed queues

There are three main parts in a distributed messaging system: the components of your distributed
system, your queue (distributed on Amazon SQS servers), and the messages in the queue.

In the following scenario, your system has several producers (components that send messages
to the queue) and consumers (components that receive messages from the queue). The queue
(which holds messages A through E) redundantly stores the messages across multiple Amazon SQS
servers.

Message lifecycle

The following scenario describes the lifecycle of an Amazon SQS message in a queue, from creation
to deletion.

Distributed queues 2

Amazon Simple Queue Service Developer Guide

A producer (component 1) sends message A to a queue, and the message is distributed across the
Amazon SQS servers redundantly.

When a consumer (component 2) is ready to process messages, it consumes messages from the
queue, and message A is returned. While message A is being processed, it remains in the queue and
isn't returned to subsequent receive requests for the duration of the visibility timeout.

Message lifecycle 3

Amazon Simple Queue Service Developer Guide

The consumer (component 2) deletes message A from the queue to prevent the message from
being received and processed again when the visibility timeout expires.

Note

Amazon SQS automatically deletes messages that have been in a queue for more than
the maximum message retention period. The default message retention period is 4
days. However, you can set the message retention period to a value from 60 seconds to
1,209,600 seconds (14 days) using the SetQueueAttributes action.

Differences between Amazon SQS, Amazon MQ, and Amazon
SNS

Amazon SQS, Amazon SNS, and Amazon MQ offer highly scalable and easy-to-use managed
messaging services, each designed for specific roles within distributed systems. Here's an enhanced
overview of the differences between these services:

Amazon SQS decouples and scales distributed software systems and components as a queue
service. It processes messages through a single subscriber typically, ideal for workflows where order
and loss prevention are critical. For wider distribution, integrating Amazon SQS with Amazon SNS
enables a fanout messaging pattern, effectively pushing messages to multiple subscribers at once.

Amazon SNS allows publishers to send messages to multiple subscribers through topics, which
serve as communication channels. Subscribers receive published messages using a supported
endpoint type, such as Amazon Data Firehose, Amazon SQS, Lambda, HTTP, email, mobile
push notifications, and mobile text messages (SMS). This service is ideal for scenarios requiring
immediate notifications, such as real-time user engagement or alarm systems. To prevent message
loss when subscribers are offline, integrating Amazon SNS with Amazon SQS queue messages
ensures consistent delivery.

Amazon MQ fits best with enterprises looking to migrate from traditional message brokers,
supporting standard messaging protocols like AMQP and MQTT, along with Apache ActiveMQ and
RabbitMQ. It offers compatibility with legacy systems needing stable, reliable messaging without
significant reconfiguration.

The following chart provides an overview of each services' resource type:

Differences between Amazon SQS, Amazon MQ, and Amazon SNS 4

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SetQueueAttributes.html
https://aws.amazon.com/sns/
https://aws.amazon.com/amazon-mq/
https://aws.amazon.com/getting-started/hands-on/send-fanout-event-notifications/
https://docs.aws.amazon.com/firehose/latest/dev/what-is-this-service.html
https://docs.aws.amazon.com/lambda/latest/dg/welcome.html
http://activemq.apache.org/
https://www.rabbitmq.com/

Amazon Simple Queue Service Developer Guide

Resource type Amazon SNS Amazon SQS Amazon MQ

Synchronous No No Yes

Asynchronous Yes Yes Yes

Queues No Yes Yes

Publisher-subscriber
messaging

Yes No Yes

Message brokers No No Yes

Both Amazon SQS and Amazon SNS are recommended for new applications that can benefit from
nearly unlimited scalability and simple APIs. They generally offer more cost-effective solutions
for high-volume applications with their pay-as-you-go pricing. We recommend Amazon MQ for
migrating applications from existing message brokers that rely on compatibility with APIs such
as JMS or protocols such as Advanced Message Queuing Protocol (AMQP), MQTT, OpenWire, and
Simple Text Oriented Message Protocol (STOMP).

Differences between Amazon SQS, Amazon MQ, and Amazon SNS 5

Amazon Simple Queue Service Developer Guide

Setting up Amazon SQS

Before you can use Amazon SQS for the first time, you must complete the following steps.

Topics

• Step 1: Create an AWS account and IAM user

• Step 2: Grant programmatic access

• Step 3: Get ready to use the example code

• Next steps

Step 1: Create an AWS account and IAM user

To access any AWS service, you first need to create an AWS account, an Amazon.com account that
can use AWS products. You can use your AWS account to view your activity and usage reports and
to manage authentication and access.

To avoid using your AWS account root user for Amazon SQS actions, it is a best practice to create
an IAM user for each person who needs administrative access to Amazon SQS.

Sign up for an AWS account

If you do not have an AWS account, complete the following steps to create one.

To sign up for an AWS account

1. Open https://portal.aws.amazon.com/billing/signup.

2. Follow the online instructions.

Part of the sign-up procedure involves receiving a phone call and entering a verification code
on the phone keypad.

When you sign up for an AWS account, an AWS account root user is created. The root user
has access to all AWS services and resources in the account. As a security best practice, assign
administrative access to a user, and use only the root user to perform tasks that require root
user access.

Step 1: Create an AWS account and IAM user 6

https://aws.amazon.com/
https://portal.aws.amazon.com/billing/signup
https://docs.aws.amazon.com/accounts/latest/reference/root-user-tasks.html
https://docs.aws.amazon.com/accounts/latest/reference/root-user-tasks.html

Amazon Simple Queue Service Developer Guide

AWS sends you a confirmation email after the sign-up process is complete. At any time, you can
view your current account activity and manage your account by going to https://aws.amazon.com/
and choosing My Account.

Create a user with administrative access

After you sign up for an AWS account, secure your AWS account root user, enable AWS IAM Identity
Center, and create an administrative user so that you don't use the root user for everyday tasks.

Secure your AWS account root user

1. Sign in to the AWS Management Console as the account owner by choosing Root user and
entering your AWS account email address. On the next page, enter your password.

For help signing in by using root user, see Signing in as the root user in the AWS Sign-In User
Guide.

2. Turn on multi-factor authentication (MFA) for your root user.

For instructions, see Enable a virtual MFA device for your AWS account root user (console) in
the IAM User Guide.

Create a user with administrative access

1. Enable IAM Identity Center.

For instructions, see Enabling AWS IAM Identity Center in the AWS IAM Identity Center User
Guide.

2. In IAM Identity Center, grant administrative access to a user.

For a tutorial about using the IAM Identity Center directory as your identity source, see
Configure user access with the default IAM Identity Center directory in the AWS IAM Identity
Center User Guide.

Sign in as the user with administrative access

• To sign in with your IAM Identity Center user, use the sign-in URL that was sent to your email
address when you created the IAM Identity Center user.

Create a user with administrative access 7

https://aws.amazon.com/
https://console.aws.amazon.com/
https://docs.aws.amazon.com/signin/latest/userguide/console-sign-in-tutorials.html#introduction-to-root-user-sign-in-tutorial
https://docs.aws.amazon.com/IAM/latest/UserGuide/enable-virt-mfa-for-root.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/get-set-up-for-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html

Amazon Simple Queue Service Developer Guide

For help signing in using an IAM Identity Center user, see Signing in to the AWS access portal in
the AWS Sign-In User Guide.

Assign access to additional users

1. In IAM Identity Center, create a permission set that follows the best practice of applying least-
privilege permissions.

For instructions, see Create a permission set in the AWS IAM Identity Center User Guide.

2. Assign users to a group, and then assign single sign-on access to the group.

For instructions, see Add groups in the AWS IAM Identity Center User Guide.

Step 2: Grant programmatic access

To use Amazon SQS actions (for example, using Java or through the AWS Command Line Interface),
you need an access key ID and a secret access key.

Note

The access key ID and secret access key are specific to AWS Identity and Access
Management. Don't confuse them with credentials for other AWS services, such as Amazon
EC2 key pairs.

Users need programmatic access if they want to interact with AWS outside of the AWS
Management Console. The way to grant programmatic access depends on the type of user that's
accessing AWS.

To grant users programmatic access, choose one of the following options.

Which user needs
programmatic access?

To By

Workforce identity Use temporary credentials to
sign programmatic requests

Following the instructions for
the interface that you want to
use.

Step 2: Grant programmatic access 8

https://docs.aws.amazon.com/signin/latest/userguide/iam-id-center-sign-in-tutorial.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/get-started-create-a-permission-set.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/addgroups.html

Amazon Simple Queue Service Developer Guide

Which user needs
programmatic access?

To By

(Users managed in IAM
Identity Center)

to the AWS CLI, AWS SDKs, or
AWS APIs.

• For the AWS CLI, see
Configuring the AWS
CLI to use AWS IAM
Identity Center in the AWS
Command Line Interface
User Guide.

• For AWS SDKs, tools, and
AWS APIs, see IAM Identity
Center authentication in
the AWS SDKs and Tools
Reference Guide.

IAM Use temporary credentials to
sign programmatic requests
to the AWS CLI, AWS SDKs, or
AWS APIs.

Following the instructions in
Using temporary credentia
ls with AWS resources in the
IAM User Guide.

Step 2: Grant programmatic access 9

https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-sso.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-sso.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-sso.html
https://docs.aws.amazon.com/sdkref/latest/guide/access-sso.html
https://docs.aws.amazon.com/sdkref/latest/guide/access-sso.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html

Amazon Simple Queue Service Developer Guide

Which user needs
programmatic access?

To By

IAM (Not recommended)
Use long-term credentials to
sign programmatic requests
to the AWS CLI, AWS SDKs, or
AWS APIs.

Following the instructions for
the interface that you want to
use.

• For the AWS CLI, see
Authenticating using IAM
user credentials in the AWS
Command Line Interface
User Guide.

• For AWS SDKs and tools,
see Authenticate using
long-term credentials in
the AWS SDKs and Tools
Reference Guide.

• For AWS APIs, see
Managing access keys for
IAM users in the IAM User
Guide.

Step 3: Get ready to use the example code

This guide includes examples that use the AWS SDK for Java. To run the example code, follow the
set-up instructions in Getting Started with AWS SDK for Java 2.0.

You can develop AWS applications in other programming languages, such as Go, JavaScript, Python
and Ruby. For more information, see Tools to Build on AWS.

Note

You can explore Amazon SQS without writing code with tools such as the AWS Command
Line Interface (AWS CLI) or Windows PowerShell. You can find AWS CLI examples in
the Amazon SQS section of the AWS CLI Command Reference. You can find Windows

Step 3: Get ready to use the example code 10

https://docs.aws.amazon.com/cli/latest/userguide/cli-authentication-user.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-authentication-user.html
https://docs.aws.amazon.com/sdkref/latest/guide/access-iam-users.html
https://docs.aws.amazon.com/sdkref/latest/guide/access-iam-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/
https://aws.amazon.com/developer/tools/#sdk
https://docs.aws.amazon.com/cli/latest/reference/sqs/index.html

Amazon Simple Queue Service Developer Guide

PowerShell examples in the Amazon Simple Queue Service section of the AWS Tools for
PowerShell Cmdlet Reference.

Next steps

You are now ready for Getting started with managing Amazon SQS queues and messages using the
AWS Management Console.

Next steps 11

https://docs.aws.amazon.com/powershell/latest/reference/
https://docs.aws.amazon.com/powershell/latest/reference/

Amazon Simple Queue Service Developer Guide

Getting started with Amazon SQS

In this section, you'll learn how to create standard or FIFO queues using the Amazon SQS console.

Topics

• Prerequisites

• Understanding the Amazon SQS console

• Amazon SQS queue types

• Creating an Amazon SQS standard queue and sending a message

• Creating an Amazon SQS FIFO queue and sending a message

• Common tasks for getting started with Amazon SQS

Prerequisites

Before you begin, complete the steps in Setting up Amazon SQS.

Understanding the Amazon SQS console

When you open the Amazon SQS console, choose Queues from the navigation pane. The Queues
page provides information about all of your queues in the active region.

Each queue entry provides essential information about the queue, including its type and key
attributes. Standard queues, optimized for maximum throughput and best-effort message
ordering, are distinguished from First-In-First-Out (FIFO) queues, which prioritize message ordering
and uniqueness for applications requiring strict message sequencing.

Interactive elements and actions

From the Queues page, you have multiple options for managing your queues:

Prerequisites 12

Amazon Simple Queue Service Developer Guide

1. Quick Actions – Adjacent to each queue name, a dropdown menu offers quick access to
common actions such as sending messages, viewing or deleting messages, configuring triggers,
and deleting the queue itself.

2. Detailed View and Configuration – Clicking on a queue name opens its Details page, where you
can delve deeper into queue settings and configurations. Here, you can adjust parameters like
message retention period, visibility timeout, and maximum message size to tailor the queue to
your application's requirements.

Region selection and resource tags

Ensure you're in the correct AWS Region to access and manage your queues effectively.
Additionally, consider utilizing resource tags to organize and categorize your queues, enabling
better resource management, cost allocation, and access control within your AWSshared
environment.

By leveraging the features and functionalities offered within the Amazon SQS console, you can
efficiently manage your messaging infrastructure, optimize queue performance, and ensure reliable
message delivery for your applications.

Amazon SQS queue types

Amazon SQS supports two types of queues – standard queues and FIFO queues. Use the
information from the following table to choose the right queue for your situation. To learn more
about Amazon SQS queues, see Amazon SQS standard queues and Amazon SQS FIFO queues.

Queue types 13

Amazon Simple Queue Service Developer Guide

Standard queues FIFO queues

Unlimited Throughput – Standard queues
support a nearly unlimited number of API calls
per second, per API action (SendMessage ,
ReceiveMessage , or DeleteMessage).

At-Least-Once Delivery – A message is
delivered at least once, but occasionally more
than one copy of a message is delivered.

Best-Effort Ordering – Occasionally, messages
are delivered in an order different from which
they were sent.

High Throughput – If you use batching,
FIFO queues support up to 3,000 messages
per second, per API method (SendMessa
geBatch , ReceiveMessage , or
DeleteMessageBatch). The 3,000
messages per second represent 300 API calls,
each with a batch of 10 messages. To request
a quota increase, submit a support request.
Without batching, FIFO queues support up
to 300 API calls per second, per API method
(SendMessage , ReceiveMessage , or
DeleteMessage).

Exactly-Once Processing – A message is
delivered once and remains available until a
consumer processes and deletes it. Duplicates
aren't introduced into the queue.

First-In-First-Out Delivery – The order in
which messages are sent and received is
strictly preserved.

Send data between applications when the
throughput is important, for example:

• Decouple live user requests from intensive
background work: let users upload media
while resizing or encoding it.

Send data between applications when the
order of events is important, for example:

• Make sure that user-entered commands are
run in the right order.

• Display the correct product price by sending
price modifications in the right order.

Queue types 14

https://console.aws.amazon.com/support/home#/case/create?issueType=service-limit-increase&limitType=service-code-sqs

Amazon Simple Queue Service Developer Guide

Standard queues FIFO queues

• Allocate tasks to multiple worker nodes:
process a high number of credit card
validation requests.

• Batch messages for future processing:
schedule multiple entries to be added to a
database.

• Prevent a student from enrolling in a course
before registering for an account.

Implementing request-response systems in Amazon SQS

When implementing a request-response or remote procedure call (RPC) system, keep the following
best practices in mind:

• Create Reply Queues on Start-Up: Instead of creating reply queues per message, create them
on start-up, per producer. Use a correlation ID message attribute to map replies to requests
efficiently.

• Avoid Sharing Reply Queues Among Producers: Ensure that each producer has its own reply
queue. Sharing reply queues can result in a producer receiving response messages intended for
another producer.

For more information about implementing the request-response pattern using the Temporary
Queue Client, see Request-response messaging pattern (virtual queues).

Creating an Amazon SQS standard queue and sending a
message

This is how to create a standard queue for Amazon SQS.

Create a queue using the Amazon SQS console

You can use the Amazon SQS console to create standard queues. The console provides default
values for all settings except for the queue name.

Implementing request-response systems in Amazon SQS 15

Amazon Simple Queue Service Developer Guide

Important

On August 17, 2022, default server-side encryption (SSE) was applied to all Amazon SQS
queues.
Do not add personally identifiable information (PII) or other confidential or sensitive
information in queue names. Queue names are accessible to many Amazon Web Services,
including billing and CloudWatch logs. Queue names are not intended to be used for
private or sensitive data.

To create an Amazon SQS standard queue

1. Open the Amazon SQS console at https://console.aws.amazon.com/sqs/.

2. Choose Create queue.

3. For Type, the Standard queue type is set by default.

Note

You can't change the queue type after you create the queue.

4. Enter a Name for your queue.

5. (Optional) The console sets default values for the queue configuration parameters. Under
Configuration, you can set new values for the following parameters:

a. For Visibility timeout , enter the duration and units. The range is from 0 seconds to 12
hours. The default value is 30 seconds.

b. For Message retention period, enter the duration and units. The range is from 1 minute to
14 days. The default value is 4 days.

c. For Delivery delay, enter the duration and units. The range is from 0 seconds to 15
minutes. The default value is 0 seconds.

d. For Maximum message size, enter a value. The range is from 1 KB to 256 KB. The default
value is 256 KB.

e. For Receive message wait time, enter a value. The range is from 0 to 20 seconds. The
default value is 0 seconds, which sets short polling. Any non-zero value sets long polling.

6. (Optional) Define an Access policy. The access policy defines the accounts, users, and roles
that can access the queue. The access policy also defines the actions (such as SendMessage,

Create a queue 16

https://console.aws.amazon.com/sqs/

Amazon Simple Queue Service Developer Guide

ReceiveMessage, or DeleteMessage) that the users can access. The default policy allows
only the queue owner to send and receive messages.

To define the access policy, do one of the following:

• Choose Basic to configure who can send messages to the queue and who can receive
messages from the queue. The console creates the policy based on your choices and displays
the resulting access policy in the read-only JSON panel.

• Choose Advanced to modify the JSON access policy directly. This allows you to specify a
custom set of actions that each principal (account, user, or role) can perform.

7. For Redrive allow policy, choose Enabled. Select one of the following: Allow all, By queue,
or Deny all. When choosing By queue, specify a list of up to 10 source queues by the Amazon
Resource Name (ARN).

8. Amazon SQS provides managed server-side encryption by default. To choose an encryption
key type, or to disable Amazon SQS managed server-side encryption, expand Encryption.
For more on encryption key types, see Configuring server-side encryption for a queue using
SQS-managed encryption keys and Configuring server-side encryption for a queue using the
Amazon SQS console.

Note

With SSE enabled, anonymous SendMessage and ReceiveMessage requests to the
encrypted queue will be rejected. Amazon SQS security best practises recommend
against using anonymous requests. If you wish to send anonymous requests to an
Amazon SQS queue, make sure to disable SSE.

9. (Optional) To configure a dead-letter queue to receive undeliverable messages, expand Dead-
letter queue.

10. (Optional) To add tags to the queue, expand Tags.

11. Choose Create queue. Amazon SQS creates the queue and displays the queue's Details page.

Amazon SQS propagates information about the new queue across the system. Because Amazon
SQS is a distributed system, you might experience a slight delay before the console displays the
queue on the Queues page.

Create a queue 17

Amazon Simple Queue Service Developer Guide

Send a message

After you create your queue, you can send a message to it.

1. From the left navigation pane, choose Queues. From the queue list, select the queue that you
created.

2. From Actions, choose Send and receive messages.

The console displays the Send and receive messages page.

3. In the Message body, enter the message text.

4. For a standard queue, you can enter a value for Delivery delay and choose the units. For
example, enter 60 and choose seconds. For more information, see Amazon SQS message
timers.

5. Choose Send message.

When your message is sent, the console displays a success message. Choose View details to
display information about the sent message.

Creating an Amazon SQS FIFO queue and sending a message

This is how to create a FIFO queue for Amazon SQS.

Create a queue

You can use the Amazon SQS console to create FIFO queues. The console provides default values
for all settings except for the queue name.

Important

On August 17, 2022, default server-side encryption (SSE) was applied to all Amazon SQS
queues.
Do not add personally identifiable information (PII) or other confidential or sensitive
information in queue names. Queue names are accessible to many Amazon Web Services,
including billing and CloudWatch logs. Queue names are not intended to be used for
private or sensitive data.

Send a message 18

Amazon Simple Queue Service Developer Guide

To create an Amazon SQS FIFO queue

1. Open the Amazon SQS console at https://console.aws.amazon.com/sqs/.

2. Choose Create queue.

3. For Type, the Standard queue type is set by default. To create a FIFO queue, choose FIFO.

Note

You can't change the queue type after you create the queue.

4. Enter a Name for your queue.

The name of a FIFO queue must end with the .fifo suffix. The suffix counts towards the 80-
character queue name quota. To determine whether a queue is FIFO, you can check whether
the queue name ends with the suffix.

5. (Optional) The console sets default values for the queue configuration parameters. Under
Configuration, you can set new values for the following parameters:

a. For Visibility timeout , enter the duration and units. The range is from 0 seconds to 12
hours. The default value is 30 seconds.

b. For Message retention period, enter the duration and units. The range is from 1 minute to
14 days. The default value is 4 days.

c. For Delivery delay, enter the duration and units. The range is from 0 seconds to 15
minutes. The default value is 0 seconds.

d. For Maximum message size, enter a value. The range is from 1 KB to 256 KB. The default
value is 256 KB.

e. For Receive message wait time, enter a value. The range is from 0 to 20 seconds. The
default value is 0 seconds, which sets short polling. Any non-zero value sets long polling.

f. For a FIFO queue, choose Content-based deduplication to enable content-based
deduplication. The default setting is disabled.

g. (Optional) For a FIFO queue to enable higher throughput for sending and receiving
messages in the queue, choose Enable high throughput FIFO.

Choosing this option changes the related options (Deduplication scope and FIFO
throughput limit) to the required settings for enabling high throughput for FIFO queues.
If you change any of the settings required for using high throughput FIFO, normal

Create a queue 19

https://console.aws.amazon.com/sqs/

Amazon Simple Queue Service Developer Guide

throughput is in effect for the queue, and deduplication occurs as specified. For more
information, see High throughput for FIFO queues in Amazon SQS and Amazon SQS
message quotas.

6. (Optional) Define an Access policy. The access policy defines the accounts, users, and roles
that can access the queue. The access policy also defines the actions (such as SendMessage,
ReceiveMessage, or DeleteMessage) that the users can access. The default policy allows
only the queue owner to send and receive messages.

To define the access policy, do one of the following:

• Choose Basic to configure who can send messages to the queue and who can receive
messages from the queue. The console creates the policy based on your choices and displays
the resulting access policy in the read-only JSON panel.

• Choose Advanced to modify the JSON access policy directly. This allows you to specify a
custom set of actions that each principal (account, user, or role) can perform.

7. For Redrive allow policy, choose Enabled. Select one of the following: Allow all, By queue,
or Deny all. When choosing By queue, specify a list of up to 10 source queues by the Amazon
Resource Name (ARN).

8. Amazon SQS provides managed server-side encryption by default. To choose an encryption
key type, or to disable Amazon SQS managed server-side encryption, expand Encryption.
For more on encryption key types, see Configuring server-side encryption for a queue using
SQS-managed encryption keys and Configuring server-side encryption for a queue using the
Amazon SQS console.

Note

With SSE enabled, anonymous SendMessage and ReceiveMessage requests to the
encrypted queue will be rejected. Amazon SQS security best practises recommend
against using anonymous requests. If you wish to send anonymous requests to an
Amazon SQS queue, make sure to disable SSE.

9. (Optional) To configure a dead-letter queue to receive undeliverable messages, expand Dead-
letter queue.

10. (Optional) To add tags to the queue, expand Tags.

11. Choose Create queue. Amazon SQS creates the queue and displays the queue's Details page.

Create a queue 20

Amazon Simple Queue Service Developer Guide

Amazon SQS propagates information about the new queue across the system. Because Amazon
SQS is a distributed system, you might experience a slight delay before the console displays the
queue on the Queues page.

After creating a queue, you can send messages to it, and receive and delete messages. You can also
edit any of the queue configuration settings except the queue type.

Send a message

After you create your queue, you can send a message to it.

1. From the left navigation pane, choose Queues. From the queue list, select the queue that you
created.

2. From Actions, choose Send and receive messages.

The console displays the Send and receive messages page.

3. In the Message body, enter the message text.

4. For a First-In-First-Out (FIFO) queue, enter a Message group ID. For more information, see
FIFO queue delivery logic in Amazon SQS.

5. (Optional) For a FIFO queue, you can enter a Message deduplication ID. If you enabled
content-based deduplication for the queue, the message deduplication ID isn't required. For
more information, see FIFO queue delivery logic in Amazon SQS.

6. FIFO queues does not support timers on individual messages. For more information, see
Amazon SQS message timers.

7. Choose Send message.

When your message is sent, the console displays a success message. Choose View details to
display information about the sent message.

Common tasks for getting started with Amazon SQS

Now that you've created a queue and learned how to send, receive, and delete messages and how
to delete a queue, you might want to try the following:

• To trigger a Lambda function, see Configuring an Amazon SQS queue to trigger an AWS Lambda
function.

• Learn how to configure queues, including SSE and other features.

Send a message 21

Amazon Simple Queue Service Developer Guide

• Learn how to send a message with attributes.

• Learn how to send a message from a VPC.

• To discover the functionality and architecture of Amazon SQS, see Amazon SQS queue types and
Basic Amazon SQS architecture.

• To find out the guidelines and caveats that will help you make the most of Amazon SQS, see
Amazon SQS best practices.

• Explore the Amazon SQS examples for one of the AWS SDKs, such as the AWS SDK for Java 2.x
Developer Guide.

• To learn about Amazon SQS AWS CLI commands, see the AWS CLI Command Reference.

• To learn about Amazon SQS actions, see the Amazon Simple Queue Service API Reference.

• Learn how to interact with Amazon SQS programmatically: Read Working with APIs and explore
the AWS Development Center:

• Java

• JavaScript

• PHP

• Python

• Ruby

• Windows & .NET

• Learn about keeping an eye on costs and resources in the Troubleshooting issues in Amazon SQS
section.

• Learn about protecting your data and access to it in the Security section.

• Learn more about the Amazon SQS workflow in the Amazon SQS access control process
workflow section.

Common tasks 22

https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/
https://docs.aws.amazon.com/cli/latest/reference/sqs/index.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/
https://aws.amazon.com/developer/
https://aws.amazon.com/java/
https://aws.amazon.com/javascript/
https://aws.amazon.com/php/
https://aws.amazon.com/python/
https://aws.amazon.com/ruby/
https://aws.amazon.com/net/

Amazon Simple Queue Service Developer Guide

Managing an Amazon SQS queue

This section helps you become more familiar with Amazon SQS by showing you how to manage
queues and messages using the Amazon SQS console.

Prerequisites

Before you begin, complete the steps in Setting up Amazon SQS.

Understanding the Amazon SQS console

When you open the console, choose Queues from the navigation pane to display the Queues page.
The Queues page provides information about all of your queues in the active region.

The entry for each queue shows the queue type and other information about the queue. The Type
column helps you distinguish standard queues from First-In-First Out (FIFO) queues at a glance.

From the Queues page, there are two ways to perform actions on a queue. You can choose the
option next to the queue name and then choose the action you want to perform on the queue.

You can also choose the queue name, which open the Details page for the queue. The Details page
includes the same actions as the Queues page. In addition, you can choose one of the tabs below
the Details section to view additional configuration details and actions.

Prerequisites 23

Amazon Simple Queue Service Developer Guide

Editing an Amazon SQS queue using the console

You can use the Amazon SQS console to edit any queue configuration parameters (except the
queue type) and add or remove queue features.

To edit an Amazon SQS queue (console)

1. Open the Queues page of the Amazon SQS console.

2. Select a queue, and then choose Edit.

3. (Optional) Under Configuration, update the queue's configuration parameters.

4. (Optional) To update the access policy, under Access policy, modify the JSON policy.

5. (Optional) To update a dead-letter queue redrive allow policy, expand Redrive allow policy.

6. (Optional) To update or remove encryption, expand Encryption.

7. (Optional) To add, update, or remove a dead-letter queue (which allows you to receive
undeliverable messages), expand Dead-letter queue.

8. (Optional) To add, update, or remove the tags for the queue, expand Tags.

9. Choose Save.

The console displays the Details page for the queue.

Editing a queue 24

https://console.aws.amazon.com/sqs/#/queues

Amazon Simple Queue Service Developer Guide

Receiving and deleting a message in Amazon SQS

After you send messages to an Amazon SQS queue, you have the option to receive and delete
them. When requesting messages from a queue, you cannot specify individual messages. Instead,
you determine the maximum number of messages you wish to retrieve, up to a limit of 10.

Amazon SQS operates as a distributed system, which can occasionally result in an empty response
when retrieving messages from a queue with few messages. If this happens, simply rerun your
request. To optimize message retrieval and minimize empty responses, consider using long polling.
Long polling delays the response until a message becomes available or the poll times out, reducing
unnecessary polling costs and improving efficiency.

Messages are not automatically deleted after retrieval because Amazon SQS ensures that you do
not lose access to a message due to processing failures, such as issues with your application or
network disruptions. To permanently remove a message from the queue, you must explicitly send a
delete request after processing the message to confirm successful receipt and handling.

When messages are retrieved via the Amazon SQS console, they are immediately made visible
again for re-retrieval. This default behavior ensures messages are not inadvertently lost during
manual operations but can lead to repeated processing. In automated environments, adjust the
visibility timeout setting to control how long a message remains invisible to other consumers
after being retrieved. This setting is crucial for coordinating message processing across multiple
consumers and ensuring that messages are processed only once.

For more detailed operations on receiving and deleting messages, see the Amazon SQS API
Reference Guide. This guide offers comprehensive information on API endpoints, including
parameters that manage complex message handling scenarios effectively.

To receive and delete a message using the console

1. Open the Amazon SQS console at https://console.aws.amazon.com/sqs/.

2. In the navigation pane, choose Queues.

3. On the Queues page, select a queue, and then choose Send and receive messages.

Receiving and deleting a message 25

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_Operations.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_Operations.html
https://console.aws.amazon.com/sqs/

Amazon Simple Queue Service Developer Guide

4. On the Send and receive messages page, choose Poll for messages.

Amazon SQS begins to poll for messages in the queue. The progress bar on the right side of
the Receive messages section displays the duration of polling.

The Messages section displays a list of the received messages. For each message, the list
displays the message ID, Sent date, Size, and Receive count.

5. To delete messages, choose the messages that you want to delete, and then choose Delete.

6. In the Delete Messages dialog box, choose Delete.

Confirming that an Amazon SQS queue is empty

In most cases, you can use long polling to determine if a queue is empty. In rare cases, you might
receive empty responses even when a queue still contains messages, especially if you specified a
low value for Receive message wait time when you created the queue. This section describes how
to confirm that a queue is empty.

To confirm that a queue is empty (console)

1. Stop all producers from sending messages.

2. Open the Amazon SQS console at https://console.aws.amazon.com/sqs/.

3. In the navigation pane, choose Queues.

4. On the Queues page, choose a queue.

5. Choose the Monitoring tab.

6. At the top right of the Monitoring dashboards, choose the down arrow next to the Refresh
symbol. From the dropdown menu, choose Auto refresh. Leave the Refresh interval at 1
Minute.

7. Observe the following dashboards:

• Approximate Number Of Messages Delayed

Confirming a queue is empty 26

https://console.aws.amazon.com/sqs/

Amazon Simple Queue Service Developer Guide

• Approximate Number Of Messages Not Visible

• Approximate Number Of Messages Visible

When all of them show 0 values for several minutes, the queue is empty.

To confirm that a queue is empty (AWS CLI, AWS API)

1. Stop all producers from sending messages.

2. Repeatedly run one of the following commands:

• AWS CLI: get-queue-attributes

• AWS API: GetQueueAttributes

3. Observe the metrics for the following attributes:

• ApproximateNumberOfMessagesDelayed

• ApproximateNumberOfMessagesNotVisible

• ApproximateNumberOfMessagesVisible

When all of them are 0 for several minutes, the queue is empty.

If you rely on Amazon CloudWatch metrics, make sure that you see multiple consecutive zero data
points before considering that queue empty. For more information on CloudWatch metrics, see
Available CloudWatch metrics for Amazon SQS.

Deleting an Amazon SQS queue

If you no longer use an Amazon SQS queue and don't foresee using it in the near future, we
recommend deleting it.

Tip

If you want to verify that a queue is empty before you delete it, see Confirming that an
Amazon SQS queue is empty.

Deleting a queue 27

https://docs.aws.amazon.com/cli/latest/reference/get-queue-attributes.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_GetQueueAttributes.html

Amazon Simple Queue Service Developer Guide

You can delete a queue even when it isn't empty. To delete the messages in a queue but not the
queue itself, purge the queue.

To delete a queue (console)

1. Open the Amazon SQS console at https://console.aws.amazon.com/sqs/.

2. In the navigation pane, choose Queues.

3. On the Queues page, choose the queue to delete.

4. Choose Delete.

5. In the Delete queue dialog box, confirm the deletion by entering delete.

6. Choose Delete.

To delete a queue (AWS CLI and API)

You can use one of the following commands to delete a queue:

• AWS CLI: aws sqs delete-queue

• AWS API: DeleteQueue

Purging messages from an queue using the Amazon SQS
console

If you don't want to delete an Amazon SQS queue but need to delete all of the messages from it,
purge the queue. The message deletion process takes up to 60 seconds. We recommend waiting for
60 seconds regardless of your queue's size.

Important

When you purge a queue, you can't retrieve any of the deleted messages.

To purge a queue (console)

1. Open the Amazon SQS console at https://console.aws.amazon.com/sqs/.

2. In the navigation pane, choose Queues.

3. On the Queues page, choose the queue to purge.

Purging a queue 28

https://console.aws.amazon.com/sqs/
https://docs.aws.amazon.com/cli/latest/reference/sqs/delete-queue.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_DeleteQueue.html
https://console.aws.amazon.com/sqs/

Amazon Simple Queue Service Developer Guide

4. From Actions, choose Purge.

5. In the Purge queue dialog box, confirm the purge by entering purge and choosing Purge.

All messages are purged from the queue. The console displays a confirmation banner.

Purging a queue 29

Amazon Simple Queue Service Developer Guide

Amazon SQS standard queues

Amazon SQS provides standard queues as the default queue type, supporting a nearly
unlimited number of API calls per second for actions like SendMessage, ReceiveMessage, and
DeleteMessage. Standard queues ensure at-least-once message delivery, but due to the highly
distributed architecture, more than one copy of a message might be delivered, and messages
may occasionally arrive out of order. Despite this, standard queues make a best-effort attempt to
maintain the order in which messages are sent.

When you send a message using SendMessage, Amazon SQS redundantly stores the message in
multiple availability zones (AZs) before acknowledging it. This redundancy ensures that no single
computer, network, or AZ failure can render the messages inaccessible.

You can create and configure queues using the Amazon SQS console. For detailed instructions, see
Create a queue using the Amazon SQS console. For Java-specific examples, see Amazon SQS Java
SDK examples.

Use cases for standard queues

Standard message queues are suitable for various scenarios, as long as your application can handle
messages that might arrive more than once or out of order. Examples include:

• Decoupling live user requests from intensive background work – Users can upload media while
the system resizes or encodes it in the background.

• Allocating tasks to multiple worker nodes – For example, handling a high volume of credit card
validation requests.

• Batching messages for future processing – Scheduling multiple entries to be added to a
database at a later time.

For information on quotas related to standard queues, see Amazon SQS standard queue quotas.

For best practices of working with standard queues, see Amazon SQS best practices.

Amazon SQS at-least-once delivery

Amazon SQS stores copies of your messages on multiple servers for redundancy and high
availability. On rare occasions, one of the servers that stores a copy of a message might be
unavailable when you receive or delete a message.

Amazon SQS at-least-once delivery 30

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SendMessage.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ReceiveMessage.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_DeleteMessage.html

Amazon Simple Queue Service Developer Guide

If this occurs, the copy of the message isn't deleted on the server that is unavailable, and you
might get that message copy again when you receive messages. Design your applications to be
idempotent (they should not be affected adversely when processing the same message more than
once).

Amazon SQS queue and message identifiers

This section describes the identifiers of standard and FIFO queues. These identifiers can help you
find and manipulate specific queues and messages.

Identifiers for Amazon SQS standard queues

For more information about the following identifiers, see the Amazon Simple Queue Service API
Reference.

Queue name and URL

When you create a new queue, you must specify a queue name unique for your AWS account and
region. Amazon SQS assigns each queue you create an identifier called a queue URL that includes
the queue name and other Amazon SQS components. Whenever you want to perform an action on
a queue, you provide its queue URL.

The following is the queue URL for a queue named MyQueue owned by a user with the AWS
account number 123456789012.

https://sqs.us-east-2.amazonaws.com/123456789012/MyQueue

You can retrieve the URL of a queue programmatically by listing your queues and parsing the string
that follows the account number. For more information, see ListQueues.

Message ID

Each message receives a system-assigned message ID that Amazon SQS returns to you in the
SendMessage response. This identifier is useful for identifying messages. The maximum length of
a message ID is 100 characters.

Receipt handle

Every time you receive a message from a queue, you receive a receipt handle for that message.
This handle is associated with the action of receiving the message, not with the message itself. To

Queue and message identifiers 31

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ListQueues.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SendMessage.html

Amazon Simple Queue Service Developer Guide

delete the message or to change the message visibility, you must provide the receipt handle (not
the message ID). Thus, you must always receive a message before you can delete it (you can't put
a message into the queue and then recall it). The maximum length of a receipt handle is 1,024
characters.

Important

If you receive a message more than once, each time you receive it, you get a different
receipt handle. You must provide the most recently received receipt handle when you
request to delete the message (otherwise, the message might not be deleted).

The following is an example of a receipt handle (broken across three lines).

MbZj6wDWli+JvwwJaBV+3dcjk2YW2vA3+STFFljTM8tJJg6HRG6PYSasuWXPJB+Cw
Lj1FjgXUv1uSj1gUPAWV66FU/WeR4mq2OKpEGYWbnLmpRCJVAyeMjeU5ZBdtcQ+QE
auMZc8ZRv37sIW2iJKq3M9MFx1YvV11A2x/KSbkJ0=

Identifiers for standard queues 32

Amazon Simple Queue Service Developer Guide

Amazon SQS FIFO queues

FIFO (First-In-First-Out) queues have all the capabilities of the standard queues, but are designed
to enhance messaging between applications when the order of operations and events is critical, or
where duplicates can't be tolerated.

The most important features of FIFO queues are FIFO (First-In-First-Out) delivery and exactly-once
processing:

• The order in which messages are sent and received is strictly preserved and a message is
delivered once and remains unavailable until a consumer processes and deletes it.

• Duplicates aren't introduced into the queue.

Additionally, FIFO queues support message groups that allow multiple ordered message groups
within a single queue. There is no quota to the number of message groups within a FIFO queue.

Examples of situations where you might use FIFO queues include the following:

1. E-commerce order management system where order is critical

2. Integrating with a third-party systems where events need to be processed in order

3. Processing user-entered inputs in the order entered

4. Communications and networking – Sending and receiving data and information in the same
order

5. Computer systems – Making sure that user-entered commands are run in the right order

6. Educational institutes – Preventing a student from enrolling in a course before registering for an
account

7. Online ticketing system – Where tickets are distributed on a first come first serve basis

Note

FIFO queues also provide exactly-once processing, but have a limited number of
transactions per second (TPS). You can use Amazon SQS high throughput mode with your
FIFO queue to increase your transaction limit. For details on using high throughput mode,
see High throughput for FIFO queues in Amazon SQS. For information on throughput
quotas, see the section called “Message quotas”.

33

Amazon Simple Queue Service Developer Guide

Amazon SQS FIFO queues are available in all Regions where Amazon SQS is available.

For more on using FIFO queues with complex ordering, see Solving Complex Ordering Challenges
with Amazon SQS FIFO Queues.

For information about how to create and configure queues using the Amazon SQS console, see
Create a queue using the Amazon SQS console. For Java examples, see Amazon SQS Java SDK
examples.

For best practices for working with FIFO queues, see Amazon SQS best practices.

Amazon SQS FIFO queue key terms

The following key terms can help you better understand the functionality of FIFO queues. For more
information, see the Amazon Simple Queue Service API Reference.

Clients

The Amazon SQS Buffered Asynchronous Client doesn't currently support FIFO queues.

Message deduplication ID

The token used for deduplication of sent messages. If a message with a particular message
deduplication ID is sent successfully, any messages sent with the same message deduplication
ID are accepted successfully but aren't delivered during the 5-minute deduplication interval.

Note

Amazon SQS continues to keep track of the message deduplication ID even after the
message is received and deleted.

Message group ID

The tag that specifies that a message belongs to a specific message group. Messages that
belong to the same message group are always processed one by one, in a strict order relative
to the message group (however, messages that belong to different message groups might be
processed out of order).

Receive request attempt ID

The token used for deduplication of ReceiveMessage calls.

FIFO queue key terms 34

https://aws.amazon.com/blogs/compute/solving-complex-ordering-challenges-with-amazon-sqs-fifo-queues/
https://aws.amazon.com/blogs/compute/solving-complex-ordering-challenges-with-amazon-sqs-fifo-queues/
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/

Amazon Simple Queue Service Developer Guide

Sequence number

The large, non-consecutive number that Amazon SQS assigns to each message.

Services

If your application uses multiple AWS services, or a mix of AWS and external services, it is
important to understand which service functionality doesn't support FIFO queues.

Some AWS or external services that send notifications to Amazon SQS might not be compatible
with FIFO queues, despite allowing you to set a FIFO queue as a target.

The following features of AWS services aren't currently compatible with FIFO queues:

• Amazon S3 Event Notifications

• Auto Scaling Lifecycle Hooks

• AWS IoT Rule Actions

• AWS Lambda Dead-Letter Queues

For information about compatibility of other services with FIFO queues, see your service
documentation.

FIFO queue delivery logic in Amazon SQS

The following concepts can help you better understand the sending of messages to and receiving
messages from FIFO.

Sending messages

If multiple messages are sent in succession to a FIFO queue, each with a distinct message
deduplication ID, Amazon SQS stores the messages and acknowledges the transmission. Then,
each message can be received and processed in the exact order in which the messages were
transmitted.

In FIFO queues, messages are ordered based on message group ID. If multiple hosts (or different
threads on the same host) send messages with the same message group ID to a FIFO queue,
Amazon SQS stores the messages in the order in which they arrive for processing. To make sure
that Amazon SQS preserves the order in which messages are sent and received, each producer
should use a unique message group ID to send all its messages.

FIFO delivery logic 35

https://docs.aws.amazon.com/AmazonS3/latest/dev/NotificationHowTo.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/lifecycle-hooks.html
https://docs.aws.amazon.com/iot/latest/developerguide/iot-rule-actions.html
https://docs.aws.amazon.com/lambda/latest/dg/invocation-async.html#invocation-dlq

Amazon Simple Queue Service Developer Guide

FIFO queue logic applies only per message group ID. Each message group ID represents a
distinct ordered message group within an Amazon SQS queue. For each message group ID,
all messages are sent and received in strict order. However, messages with different message
group ID values might be sent and received out of order. You must associate a message group
ID with a message. If you don't provide a message group ID, the action fails. If you require a
single group of ordered messages, provide the same message group ID for messages sent to the
FIFO queue.

Receiving messages

You can't request to receive messages with a specific message group ID.

When receiving messages from a FIFO queue with multiple message group IDs, Amazon SQS
first attempts to return as many messages with the same message group ID as possible. This
allows other consumers to process messages with a different message group ID. When you
receive a message with a message group ID, no more messages for the same message group ID
are returned unless you delete the message or it becomes visible.

Note

It is possible to receive up to 10 messages in a single call using the
MaxNumberOfMessages request parameter of the ReceiveMessage action. These
messages retain their FIFO order and can have the same message group ID. Thus, if
there are fewer than 10 messages available with the same message group ID, you might
receive messages from another message group ID, in the same batch of 10 messages,
but still in FIFO order.

Retrying multiple times

FIFO queues allow the producer or consumer to attempt multiple retries:

• If the producer detects a failed SendMessage action, it can retry sending as many times as
necessary, using the same message deduplication ID. Assuming that the producer receives at
least one acknowledgement before the deduplication interval expires, multiple retries neither
affect the ordering of messages nor introduce duplicates.

• If the consumer detects a failed ReceiveMessage action, it can retry as many times as
necessary, using the same receive request attempt ID. Assuming that the consumer receives at
least one acknowledgement before the visibility timeout expires, multiple retries don't affect
the ordering of messages.

FIFO delivery logic 36

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ReceiveMessage.html

Amazon Simple Queue Service Developer Guide

• When you receive a message with a message group ID, no more messages for the same
message group ID are returned unless you delete the message or it becomes visible.

Exactly-once processing in Amazon SQS

Unlike standard queues, FIFO queues don't introduce duplicate messages. FIFO queues help you
avoid sending duplicates to a queue. If you retry the SendMessage action within the 5-minute
deduplication interval, Amazon SQS doesn't introduce any duplicates into the queue.

To configure deduplication, you must do one of the following:

• Enable content-based deduplication. This instructs Amazon SQS to use a SHA-256 hash
to generate the message deduplication ID using the body of the message—but not the
attributes of the message. For more information, see the documentation on the CreateQueue,
GetQueueAttributes, and SetQueueAttributes actions in the Amazon Simple Queue
Service API Reference.

• Explicitly provide the message deduplication ID (or view the sequence number) for the message.
For more information, see the documentation on the SendMessage, SendMessageBatch, and
ReceiveMessage actions in the Amazon Simple Queue Service API Reference.

Moving from a standard queue to a FIFO queue in Amazon SQS

If your existing application uses standard queues and you want to take advantage of the ordering
or exactly-once processing features of FIFO queues, you need to configure both the queue and your
application correctly.

Key considerations

• Creating a FIFO Queue: You cannot convert an existing standard queue into a FIFO queue. You
must either create a new FIFO queue for your application or delete the existing standard queue
and recreate it as a FIFO queue.

• Delay Parameter: FIFO queues do not support per-message delays, only per-queue delays. If
your application sets the DelaySeconds parameter on each message, you must modify it to set
DelaySeconds on the entire queue instead.

• Message Group ID: Provide a message group ID for every sent message. This ID enables parallel
processing of messages while maintaining their respective order. Use a granular business

Exactly-once processing 37

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_CreateQueue.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_GetQueueAttributes.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SetQueueAttributes.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SendMessage.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SendMessageBatch.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ReceiveMessage.html

Amazon Simple Queue Service Developer Guide

dimension for the message group ID to better scale with FIFO queues. The more message group
IDs you distribute messages to, the greater the number of messages available for consumption.

• High Throughput Mode: Use the recommended high throughput mode for FIFO queues to
achieve increased throughput. For more information on messaging quotas, see Amazon SQS
message quotas.

Checklist for moving to FIFO queues

Before sending messages to a FIFO queue, confirm the following:

1. Configure delay settings

• Modify your application to remove per-message delays.

• Set the DelaySeconds parameter on the entire queue.

2. Set message group IDs

• Organize messages into message groups by specifying a message group ID based on a
business dimension.

• Use more granular business dimensions to improve scalability.

3. Handle message deduplication

• If your application can send messages with identical message bodies, provide a unique
message deduplication ID for each message.

• If your application sends messages with unique message bodies, enable content-based
deduplication.

4. Configure the consumer

• Generally, no code changes are needed for the consumer.

• If processing messages takes a long time and the visibility timeout is set high, consider
adding a receive request attempt ID to each ReceiveMessage action. This helps retry receive
attempts in case of networking failures and prevents queues from pausing due to failed
receive attempts.

By following these steps, you can ensure your application works correctly with FIFO queues,
taking full advantage of their ordering and exactly-once processing features. For more detailed
information, see the Amazon Simple Queue Service API Reference.

Moving from a standard queue to a FIFO queue 38

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/

Amazon Simple Queue Service Developer Guide

Amazon SQS FIFO queue and Lambda concurrency behavior

By using a FIFO (First-In-First-Out) queue with Lambda, you can ensure ordered processing of
messages within each message group. The Lambda function will not run multiple instances for the
same message group simultaneously, thereby maintaining the order. However, it can scale up to
handle multiple message groups in parallel, ensuring efficient processing of your queue's workload.
The following points describe the behavior of Lambda functions when processing messages from
an Amazon SQS FIFO queue with respect to message group IDs:

• Single instance per message group: At any point in time, only one Lambda instance will be
processing messages from a specific message group ID. This ensures that messages within the
same group are processed in order, maintaining the integrity of the FIFO sequence.

• Concurrent processing of different groups: Lambda can concurrently process messages from
different message group IDs using multiple instances. This means that while one instance of
the Lambda function is handling messages from one message group ID, other instances can
simultaneously handle messages from other message group IDs, leveraging the concurrency
capabilities of Lambda to process multiple groups in parallel.

FIFO queue message grouping

FIFO queues ensure that messages are processed in the exact order they are sent. They use a
message group ID to group messages that should be processed sequentially.

Messages within the same message group are processed in order, and only one message from each
group is processed at a time to maintain this order.

Lambda concurrency with FIFO queues

After you create your queue, you can send a message to it.

When you set up a Lambda function to process messages from an Amazon SQS FIFO queue,
Lambda respects the ordering guarantees provided by the FIFO queue. The following points
describe the behavior of Lambda functions in terms of concurrency and scaling when processing
messages from an Amazon SQS FIFO queue when using message group IDs.

• Concurrency within message groups: Only one Lambda instance processes messages for a
particular message group ID at a time. This ensures that messages within a group are handled
sequentially.

FIFO queue and Lambda concurrency behavior 39

Amazon Simple Queue Service Developer Guide

• Scaling and multiple message groups:While Lambda can scale up to process messages
concurrently, this scaling occurs across different message groups. If you have multiple message
groups, Lambda can process multiple groups in parallel, with each group being handled by a
separate Lambda instance.

For more information, see Scaling and concurrency in Lambda in the AWS Lambda Operator Guide.

Use case example

Suppose your FIFO queue receives messages with the same message group ID, and your Lambda
function has a high concurrency limit (up to 1000).

If a message from group ID 'A' is being processed and another message from group ID 'A' arrives,
the second message will not trigger a new Lambda instance until the first message is fully
processed.

However, if messages from group IDs 'A' and 'B' arrive, both messages can be processed
concurrently by separate Lambda instances.

High throughput for FIFO queues in Amazon SQS

High throughput FIFO queues in Amazon SQS efficiently manage high message throughput while
maintaining strict message order, ensuring reliability and scalability for applications processing
numerous messages. This solution is ideal for scenarios demanding both high throughput and
ordered message delivery.

Amazon SQS high throughput FIFO queues are not necessary in scenarios where strict message
ordering is not crucial and where the volume of incoming messages is relatively low or sporadic.
For instance, if you have a small-scale application that processes infrequent or non-sequential
messages, the added complexity and cost associated with high throughput FIFO queues may not
be justified. Additionally, if your application does not require the enhanced throughput capabilities
provided by high throughput FIFO queues, opting for a standard Amazon SQS queue might be
more cost-effective and simpler to manage.

To enhance request capacity in high throughput FIFO queues, increasing the number of message
groups is recommended. For more information on high throughput message quotas, see Amazon
SQS service quotas in the Amazon Web Services General Reference.

Use case example 40

https://docs.aws.amazon.com/lambda/latest/operatorguide/scaling-concurrency.html
https://docs.aws.amazon.com/general/latest/gr/sqs-service.html#limits_sqs.html
https://docs.aws.amazon.com/general/latest/gr/sqs-service.html#limits_sqs.html

Amazon Simple Queue Service Developer Guide

For information per-queue quotas and data distribution strategies, see Amazon SQS message
quotas and Partitions and data distribution for high throughput for SQS FIFO queues.

Topics

• Use cases for high throughput for Amazon SQS FIFO queues

• Partitions and data distribution for high throughput for SQS FIFO queues

• Enabling high throughput for FIFO queues in Amazon SQS

Use cases for high throughput for Amazon SQS FIFO queues

The following use cases highlight the diverse applications of high throughput FIFO queues,
showcasing their effectiveness across industries and scenarios:

1. Real-time data processing: Applications dealing with real-time data streams, such as event
processing or telemetry data ingestion, can benefit from high throughput FIFO queues to handle
the continuous influx of messages while preserving their order for accurate analysis.

2. E-commerce order processing: In e-commerce platforms where maintaining the order of
customer transactions is critical, high throughput FIFO queues ensure that orders are processed
sequentially and without delays, even during peak shopping seasons.

3. Financial services: Financial institutions handling high-frequency trading or transactional data
rely on high throughput FIFO Queues to process market data and transactions with minimal
latency while adhering to strict regulatory requirements for message ordering.

4. Media streaming: Streaming platforms and media distribution services utilize high throughput
FIFO queues to manage the delivery of media files and streaming content, ensuring smooth
playback experiences for users while maintaining the correct order of content delivery.

Partitions and data distribution for high throughput for SQS FIFO
queues

Amazon SQS stores FIFO queue data in partitions. A partition is an allocation of storage for a queue
that is automatically replicated across multiple Availability Zones within an AWS Region. You don't
manage partitions. Instead, Amazon SQS handles partition management.

For FIFO queues, Amazon SQS modifies the number of partitions in a queue in the following
situations:

Use cases 41

Amazon Simple Queue Service Developer Guide

• If the current request rate approaches or exceeds what the existing partitions can support,
additional partitions are allocated until the queue reaches the regional quota. For information on
quotas, see Amazon SQS message quotas.

• If the current partitions have low utilization, the number of partitions may be reduced.

Partition management occurs automatically in the background and is transparent to your
applications. Your queue and messages are available at all times.

Distributing data by message group IDs

To add a message to a FIFO queue, Amazon SQS uses the value of each message’s message group
ID as input to an internal hash function. The output value from the hash function determines which
partition stores the message.

The following diagram shows a queue that spans multiple partitions. The queue’s message group
ID is based on item number. Amazon SQS uses its hash function to determine where to store a new
item; in this case, it's based on the hash value of the string item0. Note that the items are stored
in the same order in which they are added to the queue. Each item's location is determined by the
hash value of its message group ID.

Partitions and data distribution 42

Amazon Simple Queue Service Developer Guide

Note

Amazon SQS is optimized for uniform distribution of items across a FIFO queue's partitions,
regardless of the number of partitions. AWS recommends that you use message group IDs
that can have a large number of distinct values.

Optimizing partition utilization

Each partition supports up to 3,000 messages per second with batching, or up to 300 messages per
second for send, receive, and delete operations in supported regions. For more information on high
throughput message quotas, see Amazon SQS service quotas in the Amazon Web Services General
Reference.

When using batch APIs, each message is routed based on the process described in Distributing data
by message group IDs. Messages that are routed to the same partition are grouped and processed
in a single transaction.

To optimize partition utilization for the SendMessageBatch API, AWS recommends batching
messages with the same message group IDs when possible.

To optimize partition utilization for the DeleteMessageBatch and
ChangeMessageVisibilityBatch APIs, AWS recommends using ReceiveMessage requests
with the MaxNumberOfMessages parameter set to 10, and batching the receipt-handles returned
by a single ReceiveMessage request.

In the following example, a batch of messages with various message group IDs is sent. The batch is
split into three groups, each of which counts against the quota for the partition.

Partitions and data distribution 43

https://docs.aws.amazon.com/general/latest/gr/sqs-service.html#limits_sqs.html

Amazon Simple Queue Service Developer Guide

Note

Amazon SQS only guarantees that messages with the same message group ID's internal
hash function are grouped within a batch request. Depending on the output of the internal
hash function and the number of partitions, messages with different message group IDs
might be grouped. Since the hash function or number of partitions can change at any time,
messages that are grouped at one point may not be grouped later.

Enabling high throughput for FIFO queues in Amazon SQS

You can enable high throughput for any new or existing FIFO queue. The feature includes three
new options when you create and edit FIFO queues:

• Enable high throughput FIFO – Makes higher throughput available for messages in the current
FIFO queue.

• Deduplication scope – Specifies whether deduplication occurs at the queue or message group
level.

• FIFO throughput limit – Specifies whether the throughput quota on messages in the FIFO queue
is set at the queue or message group level.

Enabling high throughput for FIFO queues 44

Amazon Simple Queue Service Developer Guide

To enable high throughput for a FIFO queue (console)

1. Start creating or editing a FIFO queue.

2. When specifying options for the queue, choose Enable high throughput FIFO.

Enabling high throughput for FIFO queues sets the related options as follows:

• Deduplication scope is set to Message group, the required setting for using high
throughput for FIFO queues.

• FIFO throughput limit is set to Per message group ID, the required setting for using high
throughput for FIFO queues.

If you change any of the settings required for using high throughput for FIFO queues, normal
throughput is in effect for the queue, and deduplication occurs as specified.

3. Continue specifying all options for the queue. When you finish, choose Create queue or Save.

After creating or editing the FIFO queue, you can send messages to it and receive and delete
messages, all at a higher TPS. For high throughput quotas, see Message throughput in Amazon SQS
message quotas.

FIFO queue and message identifiers in Amazon SQS

This section describes the identifiers of FIFO queues. These identifiers can help you find and
manipulate specific queues and messages.

Topics

• Identifiers for FIFO queues in Amazon SQS

• Additional identifiers for Amazon SQS FIFO queues

Identifiers for FIFO queues in Amazon SQS

For more information about the following identifiers, see the Amazon Simple Queue Service API
Reference.

Queue and message identifiers 45

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/

Amazon Simple Queue Service Developer Guide

Queue name and URL

When you create a new queue, you must specify a queue name unique for your AWS account and
region. Amazon SQS assigns each queue you create an identifier called a queue URL that includes
the queue name and other Amazon SQS components. Whenever you want to perform an action on
a queue, you provide its queue URL.

The name of a FIFO queue must end with the .fifo suffix. The suffix counts towards the 80-
character queue name quota. To determine whether a queue is FIFO, you can check whether the
queue name ends with the suffix.

The following is the queue URL for a FIFO queue named MyQueue owned by a user with the AWS
account number 123456789012.

https://sqs.us-east-2.amazonaws.com/123456789012/MyQueue.fifo

You can retrieve the URL of a queue programmatically by listing your queues and parsing the string
that follows the account number. For more information, see ListQueues.

Message ID

Each message receives a system-assigned message ID that Amazon SQS returns to you in the
SendMessage response. This identifier is useful for identifying messages. The maximum length of
a message ID is 100 characters.

Receipt handle

Every time you receive a message from a queue, you receive a receipt handle for that message.
This handle is associated with the action of receiving the message, not with the message itself. To
delete the message or to change the message visibility, you must provide the receipt handle (not
the message ID). Thus, you must always receive a message before you can delete it (you can't put
a message into the queue and then recall it). The maximum length of a receipt handle is 1,024
characters.

Important

If you receive a message more than once, each time you receive it, you get a different
receipt handle. You must provide the most recently received receipt handle when you
request to delete the message (otherwise, the message might not be deleted).

Identifiers for FIFO queues 46

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ListQueues.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SendMessage.html

Amazon Simple Queue Service Developer Guide

The following is an example of a receipt handle (broken across three lines).

MbZj6wDWli+JvwwJaBV+3dcjk2YW2vA3+STFFljTM8tJJg6HRG6PYSasuWXPJB+Cw
Lj1FjgXUv1uSj1gUPAWV66FU/WeR4mq2OKpEGYWbnLmpRCJVAyeMjeU5ZBdtcQ+QE
auMZc8ZRv37sIW2iJKq3M9MFx1YvV11A2x/KSbkJ0=

Additional identifiers for Amazon SQS FIFO queues

For more information about the following identifiers, see Exactly-once processing in Amazon SQS
and the Amazon Simple Queue Service API Reference.

Message deduplication ID

The token used for deduplication of sent messages. If a message with a particular message
deduplication ID is sent successfully, any messages sent with the same message deduplication ID
are accepted successfully but aren't delivered during the 5-minute deduplication interval.

Message group ID

The tag that specifies that a message belongs to a specific message group. Messages that belong
to the same message group are always processed one by one, in a strict order relative to the
message group (however, messages that belong to different message groups might be processed
out of order).

Sequence number

The large, non-consecutive number that Amazon SQS assigns to each message.

Additional identifiers for FIFO queues 47

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/

Amazon Simple Queue Service Developer Guide

Amazon SQS quotas

This topic lists quotas within Amazon Simple Queue Service (Amazon SQS).

Topics

• Amazon SQS FIFO queue quotas

• Amazon SQS standard queue quotas

• Amazon SQS message quotas

• Amazon SQS policy quotas

Amazon SQS FIFO queue quotas

Amazon SQS quotas

The following table lists quotas related to FIFO queues.

Quota Description

Delay queue The default (minimum) delay for a queue is 0 seconds.
The maximum is 15 minutes.

Listed queues 1,000 queues per ListQueues request.

Long polling wait time The maximum long polling wait time is 20 seconds.

Message groups There is no quota to the number of message groups
within a FIFO queue.

Messages per queue (backlog) The number of messages that an Amazon SQS queue
can store is unlimited.

Messages per queue (in flight) For FIFO queues, there can be a maximum of 20,000 in
flight messages (received from a queue by a consumer,
but not yet deleted from the queue). If you reach this
quota, Amazon SQS returns no error messages.

FIFO queue quotas 48

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ListQueues.html

Amazon Simple Queue Service Developer Guide

Quota Description

Queue name The name of a FIFO queue must end with the .fifo
suffix. The suffix counts towards the 80-character queue
name quota. To determine whether a queue is FIFO, you
can check whether the queue name ends with the suffix.

We don't recommend adding more than 50 tags to a
queue. Tagging supports Unicode characters in UTF-8.

The tag Key is required, but the tag Value is optional.

The tag Key and tag Value are case-sensitive.

The tag Key and tag Value can include Unicode
alphanumeric characters in UTF-8 and whitespaces. The
following special characters are allowed: _ . : / = +
- @

The tag Key or Value must not include the reserved
prefix aws: (you can't delete tag keys or values with this
prefix).

The maximum tag Key length is 128 Unicode characters
in UTF-8. The tag Key must not be empty or null.

The maximum tag Value length is 256 Unicode
characters in UTF-8. The tag Value may be empty or
null.

Queue tag

Tagging actions are limited to 30 TPS per AWS account.
If your application requires a higher throughput, submit
a request.

Amazon SQS standard queue quotas

The following table lists quotas related to standard queues.

Standard queue quotas 49

https://console.aws.amazon.com/support/home#/case/create?issueType=service-limit-increase&limitType=service-code-sqs
https://console.aws.amazon.com/support/home#/case/create?issueType=service-limit-increase&limitType=service-code-sqs

Amazon Simple Queue Service Developer Guide

Quota Description

Delay queue The default (minimum) delay for a queue is 0 seconds.
The maximum is 15 minutes.

Listed queues 1,000 queues per ListQueues request.

Long polling wait time The maximum long polling wait time is 20 seconds.

Messages per queue (backlog) The number of messages that an Amazon SQS queue
can store is unlimited.

Messages per queue (in flight) For most standard queues (depending on queue traffic
and message backlog), there can be a maximum of
approximately 120,000 in flight messages (received
from a queue by a consumer, but not yet deleted from
the queue). If you reach this quota while using short
polling, Amazon SQS returns the OverLimit error
message. If you use long polling, Amazon SQS returns
no error messages. To avoid reaching the quota, you
should delete messages from the queue after they're
processed. You can also increase the number of queues
you use to process your messages. To request a quota
increase, submit a support request.

Queue name A queue name can have up to 80 characters. The
following characters are accepted: alphanumeric
characters, hyphens (-), and underscores (_).

Note

Queue names are case-sensitive (for example,
Test-queue and test-queue are different
queues).

Queue tag We don't recommend adding more than 50 tags to a
queue. Tagging supports Unicode characters in UTF-8.

Standard queue quotas 50

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ListQueues.html
https://console.aws.amazon.com/support/home#/case/create?issueType=service-limit-increase&limitType=service-code-sqs

Amazon Simple Queue Service Developer Guide

Quota Description

The tag Key is required, but the tag Value is optional.

The tag Key and tag Value are case-sensitive.

The tag Key and tag Value can include Unicode
alphanumeric characters in UTF-8 and whitespaces. The
following special characters are allowed: _ . : / = +
- @

The tag Key or Value must not include the reserved
prefix aws: (you can't delete tag keys or values with
this prefix).

The maximum tag Key length is 128 Unicode characters
in UTF-8. The tag Key must not be empty or null.

The maximum tag Value length is 256 Unicode
characters in UTF-8. The tag Value may be empty or
null.

Tagging actions are limited to 30 TPS per AWS account.
If your application requires a higher throughput, submit
a request.

Amazon SQS message quotas

The following table lists quotas related to messages.

Quota Description

Batched message ID A batched message ID can have up to 80 characters.
The following characters are accepted: alphanumeric
characters, hyphens (-), and underscores (_).

Message attributes A message can contain up to 10 metadata attributes.

Message quotas 51

https://console.aws.amazon.com/support/home#/case/create?issueType=service-limit-increase&limitType=service-code-sqs
https://console.aws.amazon.com/support/home#/case/create?issueType=service-limit-increase&limitType=service-code-sqs

Amazon Simple Queue Service Developer Guide

Quota Description

Message batch A single message batch request can include a maximum
of 10 messages. For more information, see Configuring
AmazonSQSBufferedAsyncClient in the Amazon SQS
batch actions section.

Message content A message can include only XML, JSON, and unformatt
ed text. The following Unicode characters are allowed:
#x9 | #xA | #xD | #x20 to #xD7FF | #xE000 to #xFFFD |
#x10000 to #x10FFFF

Any characters not included in this list are rejected.
For more information, see the W3C specification for
characters.

Message group ID Consume messages from the backlog to avoid building
up a large backlog of messages with the same message
group ID.

MessageGroupId is required for FIFO queues. You
can't use it for Standard queues.

You must associate a non-empty MessageGroupId
with a message. If you don't provide a MessageGr
oupId , the action fails.

The length of MessageGroupId is 128 characters.
Valid values: alphanumeric characters and punctuation
(!"#$%&'()*+,-./:;<=>?@[\]^_`{|}~) .

Message retention By default, a message is retained for 4 days. The
minimum is 60 seconds (1 minute). The maximum is
1,209,600 seconds (14 days).

Message throughput Standard queues support a nearly unlimited number of
API calls per second, per API action (SendMessage ,
ReceiveMessage , or DeleteMessage).

Message quotas 52

https://www.w3.org/TR/REC-xml/#charsets
https://www.w3.org/TR/REC-xml/#charsets

Amazon Simple Queue Service Developer Guide

Quota Description

FIFO queues

• FIFO queues support a quota of 300 transactions per
second, per API action (SendMessage , ReceiveMe
ssage , and DeleteMessage).

• If you use batching, FIFO queues support up to 3,000
messages per second, per API action (SendMessage ,
ReceiveMessage , and DeleteMessage). The
3,000 messages per second represent 300 API calls,
each with a batch of 10 messages.

Message quotas 53

Amazon Simple Queue Service Developer Guide

Quota Description

High throughput for FIFO queues

• Without batching (SendMessage , ReceiveMe
ssage , and DeleteMessage), high throughput for
FIFO queues process up to 70,000 transactions per
second, per API action in US East (N. Virginia), US West
(Oregon), and Europe (Ireland) Regions.

• For US East (Ohio) and Europe (Frankfurt) Regions, the
default throughput is 18,000 transactions per second
per API action.

• For Asia Pacific (Mumbai), Asia Pacific (Singapore),
Asia Pacific (Sydney) and Asia Pacific (Tokyo) Regions,
the default throughput is 9,000 transactions per
second per API action.

• For Europe (London) and South America (São Paulo),
the default throughput is 4,500 transactions per
second per API action.

• For maximum throughput, increase the number of
message group IDs you use for messages sent without
batching.

• You can increase throughput up to 700,000 messages
per second by using batching APIs (SendMessa
geBatch and DeleteMessageBatch)in US East
(N. Virginia), US West (Oregon), and Europe (Ireland)
Regions. The 700,000 messages per second represent
s 70,000 transactions per second, each with a batch of
10 messages.

For Europe (Frankfurt) and US East (Ohio) Regions,
you can achieve up to 180,000 messages per second
by using batching APIs. The 180,000 messages per
second represents 18,000 transactions per second,
each with a batch of 10 messages.

Message quotas 54

Amazon Simple Queue Service Developer Guide

Quota Description

For Asia Pacific (Mumbai), Asia Pacific (Singapore),
Asia Pacific (Sydney) and Asia Pacific (Tokyo) Regions,
you can achieve up to 90,000 messages per second
with batching. To achieve the maximum throughput
when using SendMessageBatch and DeleteMes
sageBatch , all messages in a batch request must
use the same message group ID.

• For Europe (London) and South America (São Paulo),
regions, you can achieve up to 45,000 messages
per second with batching. To achieve the maximum
throughput when using SendMessageBatch and
DeleteMessageBatch , all messages in a batch
request must use the same message group ID.

• In all other AWS Regions, maximum throughput is
2,400 (without batching) or 24,000 (using batching)
messages per second, per API action.

• To request an increase above the region limit, contact
the AWS Support Center for assistance.

• For more information, see Partitions and data
distribution for high throughput for SQS FIFO queues.

Message timer The default (minimum) delay for a message is 0 seconds.
The maximum is 15 minutes.

Message quotas 55

https://console.aws.amazon.com/support/home#/

Amazon Simple Queue Service Developer Guide

Quota Description

Message size The minimum message size is 1 byte (1 character). The
maximum is 262,144 bytes (256 KiB).

To send messages larger than 256 KiB, you can use the
Amazon SQS Extended Client Library for Java and the
Amazon SQS Extended Client Library for Python. This
library allows you to send an Amazon SQS message that
contains a reference to a message payload in Amazon
S3. The maximum payload size is 2 GB.

Note

This extended library works only for synchrono
us clients.

Message visibility timeout The default visibility timeout for a message is 30
seconds. The minimum is 0 seconds. The maximum is 12
hours.

Policy information The maximum quota is 8,192 bytes, 20 statements, 50
principals, or 10 conditions. For more information, see
Amazon SQS policy quotas.

Amazon SQS policy quotas

The following table lists quotas related to policies.

Name Maximum

Bytes 8,192

Conditions 10

Principals 50

Policy quotas 56

https://github.com/awslabs/amazon-sqs-java-extended-client-lib
https://github.com/awslabs/amazon-sqs-python-extended-client-lib

Amazon Simple Queue Service Developer Guide

Name Maximum

Statements 20

Actions per statement 7

Policy quotas 57

Amazon Simple Queue Service Developer Guide

Amazon SQS features and capabilities

This topic provides commonly used features in Amazon SQS for managing message queues,
optimizing performance, ensuring reliable message delivery, and handling message processing
efficiently.

Topics

• Using dead-letter queues in Amazon SQS

• Message metadata for Amazon SQS

• Resources required to process Amazon SQS messages

• Amazon SQS list queue pagination

• Amazon SQS cost allocation tags

• Amazon SQS short and long polling

• Amazon SQS visibility timeout

• Amazon SQS delay queues

• Amazon SQS temporary queues

• Amazon SQS message timers

• Accessing Amazon EventBridge Pipes through the Amazon SQS console

• Managing large Amazon SQS messages with Extended Client Library and Amazon Simple
Storage Service

Using dead-letter queues in Amazon SQS

Amazon SQS supports dead-letter queues (DLQs), which source queues can target for messages
that are not processed successfully. DLQs are useful for debugging your application because you
can isolate unconsumed messages to determine why processing did not succeed. For optimal
performance, it is a best practice to keep the source queue and DLQ within the same AWS account
and Region. Once messages are in a dead-letter queue, you can:

• Examine logs for exceptions that might have caused messages to be moved to a dead-letter
queue.

• Analyze the contents of messages moved to the dead-letter queue to diagnose application
issues.

Dead-letter queues 58

Amazon Simple Queue Service Developer Guide

• Determine whether you have given your consumer sufficient time to process messages.

• Move messages out of the dead-letter queue using dead-letter queue redrive.

You must first create a new queue before configuring it as a dead-letter queue. For information
about configuring a dead-letter queue using the Amazon SQS console, see Learn how to configure
a dead-letter queue using the Amazon SQS console. For help with dead-letter queues, such as how
to configure an alarm for any messages moved to a dead-letter queue, see Create alarms for dead-
letter queues using Amazon CloudWatch.

Using policies for dead-letter queues

Use a redrive policy to specify the maxReceiveCount. The maxReceiveCount is the number of
times a consumer can receive a message from a source queue before it is moved to a dead-letter
queue. For example, if the maxReceiveCount is set to a low value such as 1, one failure to receive
a message would cause the message to move to the dead-letter queue. To ensure that your system
is resilient against errors, set the maxReceiveCount high enough to allow for sufficient retries.

The redrive allow policy specifies which source queues can access the dead-letter queue. You can
choose whether to allow all source queues, allow specific source queues, or deny all source queues
use of the dead-letter queue. The default allows all source queues to use the dead-letter queue.
If you choose to allow specific queues using the byQueue option, you can specify up to 10 source
queues using the source queue Amazon Resource Name (ARN). If you specify denyAll, the queue
cannot be used as a dead-letter queue.

Understanding message retention periods for dead-letter queues

For standard queues, the expiration of a message is always based on its original enqueue
timestamp. When a message is moved to a dead-letter queue, the enqueue timestamp is
unchanged. The ApproximateAgeOfOldestMessage metric indicates when the message moved
to the dead-letter queue, not when the message was originally sent. For example, assume that
a message spends 1 day in the original queue before it's moved to a dead-letter queue. If the
dead-letter queue's retention period is 4 days, the message is deleted from the dead-letter queue
after 3 days and the ApproximateAgeOfOldestMessage is 3 days. Thus, it is a best practice to
always set the retention period of a dead-letter queue to be longer than the retention period of
the original queue.

For FIFO queues, the enqueue timestamp resets when the message is moved to a dead-letter
queue. The ApproximateAgeOfOldestMessage metric indicates when the message moved to

Using policies for dead-letter queues 59

Amazon Simple Queue Service Developer Guide

the dead-letter queue. In the same example above, the message is deleted from the dead-letter
queue after 4 days and the ApproximateAgeOfOldestMessage is 4 days.

Learn how to configure a dead-letter queue using the Amazon SQS
console

A dead-letter queue is a queue which source queues can target for messages that are not processed
successfully. For more information, see Using dead-letter queues in Amazon SQS .

Amazon SQS does not create the dead-letter queue automatically. You must first create the queue
before using it as a dead-letter queue. For instructions on creating a queue to use as a dead letter
queue, see Create a queue using the Amazon SQS console.

The dead-letter queue of a FIFO queue must also be a FIFO queue. Similarly, the dead-letter queue
of a standard queue must also be a standard queue.

When you create or edit a queue, you can configure a dead-letter queue.

To configure a dead-letter queue for an existing queue (console)

1. Open the Amazon SQS console at https://console.aws.amazon.com/sqs/.

2. In the navigation pane, choose Queues.

3. Select a queue and choose Edit.

4. Scroll to the Dead-letter queue section and choose Enabled.

5. Choose the Amazon Resource Name (ARN) of an existing Dead Letter Queue that you want to
associate with this source queue.

6. To configure the number of times that a message can be received before being sent to a dead-
letter queue, set Maximum receives to a value between 1 and 1,000.

7. When you finish configuring the dead-letter queue, choose Save.

After you save the queue, the console displays the Details page for your queue. On the Details
page, the Dead-letter queue tab displays the Maximum Receives and Dead Letter Queue ARN
in the Dead-letter queue.

Learn how to configure a dead-letter queue redrive in Amazon SQS

You can use dead-letter queue redrive to move unconsumed messages out of an existing dead-
letter queue. By default, dead-letter queue redrive moves messages from a dead-letter queue

Configuring a dead-letter queue 60

https://console.aws.amazon.com/sqs/

Amazon Simple Queue Service Developer Guide

to a source queue. However, you can also configure any other queue as the redrive destination
if both queues are the same type. For example, if the dead-letter queue is a FIFO queue, the
redrive destination queue must be a FIFO queue as well. Additionally, you can configure the redrive
velocity to set the rate at which Amazon SQS moves messages.

Note

When a message is moved from a FIFO queue to a FIFO DLQ, the original message's
deduplication ID will be replaced with the original message's ID. This is to make sure that
the DLQ deduplication will not prevent storing of two independent messages that happen
to share a deduplication ID.

Dead-letter queues redrive messages in the order they are received, starting with the oldest
message. However, the destination queue ingests the redriven messages, as well as new messages
from other producers, according to the order in which it receives them. For example, if a producer
is sending messages to a source FIFO queue when simultaneously receiving redriven messages
from a dead letter queue, the redriven messages will interweave with the new messages from the
producer.

Note

The redrive task resets the retention period. All redriven messages are considered new
messages with a new messageID and enqueueTime are assigned to redriven messages.

Topics

• Configuring a dead-letter queue redrive for an existing standard queue using the Amazon SQS
API

• Configuring a dead-letter queue redrive for an existing standard queue using the Amazon SQS
console

• Configuring queue permissions for dead-letter queue redrive

Configuring a dead-letter queue redrive 61

Amazon Simple Queue Service Developer Guide

Configuring a dead-letter queue redrive for an existing standard queue using the
Amazon SQS API

You can configure a dead-letter queue redrive using the SendMessageBatch, ReceiveMessage,
and DeleteMessageBatch API actions:

API action Description

StartMessageMoveTask Starts an asynchronous task to move
messages from a specified source queue to a
specified destination queue.

ListMessageMoveTasks Gets the most recent message movement
tasks (up to 10) under a specific source queue.

CancelMessageMoveTask Cancels a specified message movement task.
A message movement can only be cancelled
when the current status is RUNNING.

Configuring a dead-letter queue redrive for an existing standard queue using the
Amazon SQS console

1. Open the Amazon SQS console at https://console.aws.amazon.com/sqs/.

2. In the navigation pane, choose Queues.

3. Choose the name of queue that you have configured as a dead-letter queue.

4. Choose Start DLQ redrive.

5. Under Redrive configuration, for Message destination, do either of the following:

• To redrive messages to their source queue, choose Redrive to source queue(s).

• To redrive messages to another queue, choose Redrive to custom destination. Then, enter
the Amazon Resource Name (ARN) of an existing destination queue.

6. Under Velocity control settings, choose one of the following:

• System optimized - Redrive dead-letter queue messages at the maximum number of
messages per second.

Configuring a dead-letter queue redrive 62

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_StartMessageMoveTask.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ListMessageMoveTasks.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_CancelMessageMoveTask.html
https://console.aws.amazon.com/sqs/

Amazon Simple Queue Service Developer Guide

• Custom max velocity - Redrive dead-letter queue messages with a custom maximum rate of
messages per second. The maximum allowed rate is 500 messages per second.

• It is recommended to start with a small value for Custom max velocity and verify that the
source queue doesn't get overwhelmed with messages. From there, gradually ramp-up the
Custom max velocity value, continuing to monitor the state of the source queue.

7. When you finish configuring the dead-letter queue redrive, choose Redrive messages.

Important

Amazon SQS doesn't support filtering and modifying messages while redriving them
from the dead-letter queue.
A dead-letter queue redrive task can run a maximum of 36 hours. Amazon SQS
supports a maximum of 100 active redrive tasks per account.

8. If you want to cancel the message redrive task, on the Details page for your queue, choose
Cancel DLQ redrive. When canceling an in progress message redrive, any messages that
have already been successfully moved to their move destination queue will remain in the
destination queue.

Configuring queue permissions for dead-letter queue redrive

You can give user access to specific dead-letter queue actions by adding permissions to your policy.
The minimum required permissions for a dead-letter queue redrive are as follows:

Minimum
Permissions

Required API methods

To start a
message redrive

•
Add the sqs:StartMessageMoveTask , sqs:ReceiveMessage

, sqs:DeleteMessage , and sqs:GetQueueAttributes of
the dead-letter queue. If either the dead-letter queue or the original
 source queue are encrypted (also known as an SSE queue), kms:Decry
pt for any KMS key that has been used to encrypt the messages is also
required.

•

Configuring a dead-letter queue redrive 63

Amazon Simple Queue Service Developer Guide

Minimum
Permissions

Required API methods

Add the sqs:SendMessage of the destination queue. If the destinati
on queue is encrypted, kms:GenerateDataKey and kms:Decrypt
are also required.

To cancel an in-
progress message
redrive

•
Add the sqs:CancelMessageMoveTask , sqs:ReceiveMessage

, sqs:DeleteMessage , and sqs:GetQueueAttributes of the
dead-letter queue. If the dead-letter queue is encrypted (also known as
 an SSE queue), kms:Decrypt is also required.

To show a
message move
status

•
Add the sqs:ListMessageMoveTasks and sqs:GetQu
eueAttributes of the dead-letter queue.

To configure permissions for an encrypted queue pair (a source queue with a dead-letter
queue)

Use the following steps to configure minimum permissions for a dead-letter queue redrive:

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, choose Policies.

3. Create a policy with the following permissions and attach it to your login IAM user or role:

• sqs:StartMessageMoveTask

• sqs:CancelMessageMoveTask

• sqs:ListMessageMoveTasks

• sqs:ListDeadLetterSourceQueues

• sqs:ReceiveMessage

• sqs:DeleteMessage

• sqs:GetQueueAttributes

• The Resource ARN of the dead-letter queue (for example,
"arn:aws:sqs:<DLQ_region>:<DLQ_accountId>:<DLQ_name>").

Configuring a dead-letter queue redrive 64

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html

Amazon Simple Queue Service Developer Guide

• sqs:SendMessage

• The Resource ARN of the destination queue (for example,
"arn:aws:sqs:<DestQueue_region>:<DestQueue_accountId>:<DestQueue_name>").

• kms:Decrypt – Allows decryption action.

• kms:GenerateDataKey

• The Resource ARN(s) of any KMS encryption key that has been used
to encrypt the messages in the original source queue (for example,
"arn:aws:kms:<region>:<accountId>:key/<keyId_used to encrypt the message
body>").

• The Resource ARN of the KMS encryption key that is used for the redrive destination
queue (for example, "arn:aws:kms:<region>:<accountId>:key/<keyId_used for the
destination queue>").

Your access policy should resemble the following:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "sqs:StartMessageMoveTask",
 "sqs:CancelMessageMoveTask",
 "sqs:ListMessageMoveTasks",
 "sqs:ReceiveMessage",
 "sqs:DeleteMessage",
 "sqs:GetQueueAttributes",
 "sqs:ListDeadLetterSourceQueues"
],
 "Resource": "arn:aws:sqs:<DLQ_region>:<DLQ_accountId>:<DLQ_name>"
 },
 {
 "Effect": "Allow",
 "Action": "sqs:SendMessage",
 "Resource":
 "arn:aws:sqs:<DestQueue_region>:<DestQueue_accountId>:<DestQueue_name>"
 },
 {
 "Effect": "Allow",

Configuring a dead-letter queue redrive 65

Amazon Simple Queue Service Developer Guide

 "Action": [
 "kms:Decrypt",
 "kms:GenerateDataKey"
],
 "Resource": "arn:aws:kms:<region>:<accountId>:key/<keyId>"
 }
]
}

To configure permissions using a non-encrypted queue pair (a source queue with a dead-letter
queue)

Use the following steps to configure minimum permissions for a standard unencrypted dead-letter
queue. Required minimum permissions are to receive, delete and get attributes from the dead-letter
queue, and send attributes to the source queue.

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, choose Policies.

3. Create a policy with the following permissions and attach it to your login IAM user or role:

• sqs:StartMessageMoveTask

• sqs:CancelMessageMoveTask

• sqs:ListMessageMoveTasks

• sqs:ListDeadLetterSourceQueues

• sqs:ReceiveMessage

• sqs:DeleteMessage

• sqs:GetQueueAttributes

• The Resource ARN of the dead-letter queue (for example,
"arn:aws:sqs:<DLQ_region>:<DLQ_accountId>:<DLQ_name>") .

• sqs:SendMessage

• The Resource ARN of the destination queue (for example,
"arn:aws:sqs:<DestQueue_region>:<DestQueue_accountId>:<DestQueue_name>").

Your access policy should resemble the following:

Configuring a dead-letter queue redrive 66

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html

Amazon Simple Queue Service Developer Guide

{
"Version": "2012-10-17",
 "Statement": [
 {
"Effect": "Allow",
 "Action": [
 "sqs:StartMessageMoveTask",
 "sqs:CancelMessageMoveTask",
 "sqs:ListMessageMoveTasks",
 "sqs:ReceiveMessage",
 "sqs:DeleteMessage",
 "sqs:GetQueueAttributes",
 "sqs:ListDeadLetterSourceQueues"
],
 "Resource": "arn:aws:sqs:<DLQ_region>:<DLQ_accountId>:<DLQ_name>"
 },
 {
"Effect": "Allow",
 "Action": "sqs:SendMessage",
 "Resource":
 "arn:aws:sqs:<DestQueue_region>:<DestQueue_accountId>:<DestQueue_name>"
 }
]
}

CloudTrail update and permission requirements for Amazon SQS dead-
letter queue redrive

On June 8, 2023, Amazon SQS introduced dead-letter queue (DLQ) redrive for AWS SDK and AWS
Command Line Interface (CLI). This capability is an addition to the already supported DLQ redrive
for the AWS console. If you've previously used the AWS console to redrive dead-letter queue
messages, you may be affected by the following changes:

• CloudTrail event renaming for dead-letter queue redrive

• Updated permissions for dead-letter queue redrive

CloudTrail update and permission requirements 67

Amazon Simple Queue Service Developer Guide

CloudTrail event renaming

On October 15, 2023, the CloudTrail event names for dead-letter queue redrive will change on the
Amazon SQS console. If you've set alarms for these CloudTrail events, you must update them now.
The following are the new CloudTrail event names for DLQ redrive:

Previous event name New event name

CreateMoveTask StartMessageMoveTask

CancelMoveTask CancelMessageMoveTask

Updated permissions

Included with the SDK and CLI release, Amazon SQS has also updated queue permissions for DLQ
redrive to adhere to security best practices. Use the following queue permission types to redrive
messages from your DLQs.

1. Action-based permissions (update for the DLQ API actions)

2. Managed Amazon SQS policy permissions

3. Permission policy that uses sqs:* wildcard

Important

To use the DLQ redrive for SDK or CLI, you are required to have a DLQ redrive permission
policy that matches one of the above options.

If your queue permissions for DLQ redrive don't match one of the options above, you must update
your permissions by August 31, 2023. Between now and August 31, 2023, your account will be
able to redrive messages using the permissions you configured using the AWS console only in the
regions where you have previously used the DLQ redrive. For example, say you had "Account A" in
both us-east-1 and eu-west-1. "Account A" was used to redrive messages on the AWS console in
us-east-1 prior to June 8, 2023, but not in eu-west-1. Between June 8, 2023 and August 31, 2023,
if "Account A’s" policy permissions don't match one of the options above, it can only be used to
redrive messages on the AWS console in us-east-1, and not in eu-west-1.

CloudTrail update and permission requirements 68

Amazon Simple Queue Service Developer Guide

Important

If your DLQ redrive permissions do not match one of these options after August 31, 2023,
your account will no longer be able to redrive DLQ messages using the AWS console.
However, if you used the DLQ redrive feature on the AWS Console during August 2023, you
have an extension until October 15, 2023 to adopt the new permissions according to one of
these options.
For more information, see the section called “Identifying impacted policies”.

The following are queue permission examples for each DLQ redrive option. When using server-side
encrypted (SSE) queues, the corresponding AWS KMS key permission is required.

Action-based

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "sqs:ReceiveMessage",
 "sqs:DeleteMessage",
 "sqs:GetQueueAttributes",
 "sqs:StartMessageMoveTask",
 "sqs:ListMessageMoveTasks",
 "sqs:CancelMessageMoveTask"
],
 "Resource": "arn:aws:sqs:<DLQ_region>:<DLQ_accountId>:<DLQ_name>"
 },
 {
 "Effect": "Allow",
 "Action": "sqs:SendMessage",
 "Resource":
 "arn:aws:sqs:<DestQueue_region>:<DestQueue_accountId>:<DestQueue_name>"
 }
]
}

Managed policy

CloudTrail update and permission requirements 69

Amazon Simple Queue Service Developer Guide

The following managed policies contain the required updated permissions:

• AmazonSQSFullAccess – Includes the following dead-letter queue redrive tasks: start, cancel,
and list.

• AmazonSQSReadOnlyAccess – Provides read-only access, and includes the list dead-letter queue
redrive task.

Permission Policy that uses sqs* wildcard

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "sqs:*",
 "Resource": "*"
 }
]
}

CloudTrail update and permission requirements 70

Amazon Simple Queue Service Developer Guide

Identifying impacted policies

If you are using customer managed policies (CMPs), you can use AWS CloudTrail and IAM to identify
the policies impacted by the queue permissions update.

Note

If you are using AmazonSQSFullAccess and AmazonSQSReadOnlyAccess, no further
action is required.

1. Sign in to the AWS CloudTrail console.

2. On the Event history page, under Look up attributes, use the drop down menu to select Event
name. Then, search for CreateMoveTask.

3. Choose an event to open the Details page. In the Event records section, retrieve the
UserName or RoleName from the userIdentity ARN.

4. Sign into IAM console.

• For users, choose Users. Select the user with the UserName identified in the previous step.

• For roles, choose Roles. Search for the user with the RoleName identified in the previous
step.

5. On the Details page, in the Permissions section, review any policies with the sqs: prefix in
Action, or review policies that have Amazon SQS queue defined in Resource.

Create alarms for dead-letter queues using Amazon CloudWatch

You can configure an alarm for any messages moved to a dead-letter queue using Amazon
CloudWatch and the metric ApproximateNumberOfMessagesVisible. For more information,
see Creating CloudWatch alarms for Amazon SQS metrics. After you receive an alert that messages
have been sent to the dead-letter queue, you can review the messages using polling to receive the
message.

Message metadata for Amazon SQS

You can use message attributes to attach custom metadata to Amazon SQS messages for your
applications. You can use message system attributes to store metadata for other AWS services,
such as AWS X-Ray.

Create alarms for dead-letter queues using Amazon CloudWatch 71

Amazon Simple Queue Service Developer Guide

Topics

• Amazon SQS message attributes

• Amazon SQS message system attributes

Amazon SQS message attributes

Amazon SQS lets you include structured metadata (such as timestamps, geospatial data,
signatures, and identifiers) with messages using message attributes. Each message can have up
to 10 attributes. Message attributes are optional and separate from the message body (however,
they are sent alongside it). Your consumer can use message attributes to handle a message in a
particular way without having to process the message body first. For information about sending
messages with attributes using the Amazon SQS console, see Sending a message with attributes
using Amazon SQS.

Note

Don't confuse message attributes with message system attributes: Whereas you can
use message attributes to attach custom metadata to Amazon SQS messages for your
applications, you can use message system attributes to store metadata for other AWS
services, such as AWS X-Ray.

Topics

• Message attribute components

• Message attribute data types

• Calculating the MD5 message digest for message attributes

Message attribute components

Important

All components of a message attribute are included in the 256 KB message size restriction.
The Name, Type, Value, and the message body must not be empty or null.

Each message attribute consists of the following components:

Message attributes 72

Amazon Simple Queue Service Developer Guide

• Name – The message attribute name can contain the following characters: A-Z, a-z, 0-9,
underscore (_), hyphen (-), and period (.). The following restrictions apply:

• Can be up to 256 characters long

• Can't start with AWS. or Amazon. (or any casing variations)

• Is case-sensitive

• Must be unique among all attribute names for the message

• Must not start or end with a period

• Must not have periods in a sequence

• Type – The message attribute data type. Supported types include String, Number, and Binary.
You can also add custom information for any data type. The data type has the same restrictions
as the message body (for more information, see SendMessage in the Amazon Simple Queue
Service API Reference). In addition, the following restrictions apply:

• Can be up to 256 characters long

• Is case-sensitive

• Value – The message attribute value. For String data types, the attribute values has the same
restrictions as the message body.

Message attribute data types

Message attribute data types instruct Amazon SQS how to handle the corresponding message
attribute values. For example, if the type is Number, Amazon SQS validates numerical values.

Amazon SQS supports the logical data types String, Number, and Binary with optional custom
data type labels with the format .custom-data-type

• String – String attributes can store Unicode text using any valid XML characters.

• Number – Number attributes can store positive or negative numerical values. A number can have
up to 38 digits of precision, and it can be between 10^-128 and 10^+126.

Note

Amazon SQS removes leading and trailing zeroes.

• Binary – Binary attributes can store any binary data such as compressed data, encrypted data, or
images.

Message attributes 73

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SendMessage.html

Amazon Simple Queue Service Developer Guide

• Custom – To create a custom data type, append a custom-type label to any data type. For
example:

• Number.byte, Number.short, Number.int, and Number.float can help distinguish
between number types.

• Binary.gif and Binary.png can help distinguish between file types.

Note

Amazon SQS doesn't interpret, validate, or use the appended data.
The custom-type label has the same restrictions as the message body.

Calculating the MD5 message digest for message attributes

If you use the AWS SDK for Java, you can skip this section. The MessageMD5ChecksumHandler
class of the SDK for Java supports MD5 message digests for Amazon SQS message attributes.

If you use either the Query API or one of the AWS SDKs that doesn't support MD5 message digests
for Amazon SQS message attributes, you must use the following guidelines to perform the MD5
message digest calculation.

Note

Always include custom data type suffixes in the MD5 message-digest calculation.

Overview

The following is an overview of the MD5 message digest calculation algorithm:

1. Sort all message attributes by name in ascending order.

2. Encode the individual parts of each attribute (Name, Type, and Value) into a buffer.

3. Compute the message digest of the entire buffer.

The following diagram shows the encoding of the MD5 message digest for a single message
attribute:

Message attributes 74

Amazon Simple Queue Service Developer Guide

To encode a single Amazon SQS message attribute

1. Encode the name: the length (4 bytes) and the UTF-8 bytes of the name.

2. Encode the data type: the length (4 bytes) and the UTF-8 bytes of the data type.

3. Encode the transport type (String or Binary) of the value (1 byte).

Note

The logical data types String and Number use the String transport type.
The logical data type Binary uses the Binary transport type.

a. For the String transport type, encode 1.

b. For the Binary transport type, encode 2.

4. Encode the attribute value.

a. For the String transport type, encode the attribute value: the length (4 bytes) and the
UTF-8 bytes of the value.

b. For the Binary transport type, encode the attribute value: the length (4 bytes) and the
raw bytes of the value.

Message attributes 75

Amazon Simple Queue Service Developer Guide

Amazon SQS message system attributes

Whereas you can use message attributes to attach custom metadata to Amazon SQS messages for
your applications, you can use message system attributes to store metadata for other AWS services,
such as AWS X-Ray. For more information, see the MessageSystemAttribute request parameter
of the SendMessage and SendMessageBatch API actions, the AWSTraceHeader attribute of
the ReceiveMessage API action, and the MessageSystemAttributeValue data type in the
Amazon Simple Queue Service API Reference.

Message system attributes are structured exactly like message attributes, with the following
exceptions:

• Currently, the only supported message system attribute is AWSTraceHeader. Its type must be
String and its value must be a correctly formatted AWS X-Ray trace header string.

• The size of a message system attribute doesn't count towards the total size of a message.

Resources required to process Amazon SQS messages

To help you estimate the resources you need to process queued messages, Amazon SQS can
determine the approximate number of delayed, visible, and not visible messages in a queue. For
more information about visibility, see Amazon SQS visibility timeout.

Note

For some metrics, the result is approximate because of the distributed architecture of
Amazon SQS. In most cases, the count should be close to the actual number of messages in
the queue.

The following table lists the attribute name to use with the GetQueueAttributes action:

Task Attribute name

Get the approximate number of messages
available for retrieval from the queue.

ApproximateNumberOfMessages
Visible

Get the approximate number of messages in
the queue that are delayed and not available

ApproximateNumberOfMessages
Delayed

Message system attributes 76

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SendMessage.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SendMessageBatch.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ReceiveMessage.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_MessageSystemAttributeValue.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_GetQueueAttributes.html

Amazon Simple Queue Service Developer Guide

Task Attribute name

for reading immediately. This can happen
when the queue is configured as a delay queue
or when a message has been sent with a delay
parameter.

Get the approximate number of messages
that are in flight. Messages are considered to
be in flight if they have been sent to a client
but have not yet been deleted or have not yet
reached the end of their visibility window.

ApproximateNumberOfMessages
NotVisible

Amazon SQS list queue pagination

The listQueues and listDeadLetterQueues API methods support optional pagination
controls. By default, these API methods return up to 1000 queues in the response message. You
can set the MaxResults parameter to return fewer results in each response.

Set parameter MaxResults in the listQueues or listDeadLetterQueues request to specify
the maximum number of results to be returned in the response. If you do not set MaxResults, the
response includes a maximum of 1,000 results and the NextToken value in the response is null.

If you set MaxResults, the response includes a value for NextToken if there are additional results
to display. Use NextToken as a parameter in your next request to listQueues to receive the next
page of results. If there are no additional results to display, the NextToken value in the response is
null.

Amazon SQS cost allocation tags

To organize and identify your Amazon SQS queues for cost allocation, you can add metadata tags
that identify a queue's purpose, owner, or environment. This is especially useful when you have
many queues. To configure tags using the Amazon SQS console, see the section called “Configuring
tags for a queue”

You can use cost allocation tags to organize your AWS bill to reflect your own cost structure. To do
this, sign up to get your AWS account bill to include tag keys and values. For more information, see
Setting Up a Monthly Cost Allocation Report in the AWS Billing User Guide.

List queue pagination 77

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ListQueues.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ListDeadLetterSourceQueues.html
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/configurecostallocreport.html#allocation-report

Amazon Simple Queue Service Developer Guide

Each tag consists of a key-value pair that you define. For example, you can easily identify your
production and testing queues if you tag your queues as follows:

Queue Key Value

MyQueueA QueueType Production

MyQueueB QueueType Testing

Note

When you use queue tags, keep the following guidelines in mind:

• We don't recommend adding more than 50 tags to a queue. Tagging supports Unicode
characters in UTF-8.

• Tags don't have any semantic meaning. Amazon SQS interprets tags as character strings.

• Tags are case-sensitive.

• A new tag with a key identical to that of an existing tag overwrites the existing tag.

• Tagging actions are limited to 30 TPS per AWS account. If your application requires a
higher throughput, submit a request.

For a full list of tag restrictions, see Amazon SQS standard queue quotas.

Amazon SQS short and long polling

Amazon SQS offers short and long polling options for receiving messages from a queue. Consider
your application's requirements for responsiveness and cost efficiency when choosing between
these two polling options:

• Short polling (default) – The ReceiveMessage request queries a subset of servers (based on
a weighted random distribution) to find available messages and sends an immediate response,
even if no messages are found.

• Long polling – ReceiveMessage queries all servers for messages, sending a response once at
least one message is available, up to the specified maximum. An empty response is sent only

Short and long polling 78

https://console.aws.amazon.com/support/home#/case/create?issueType=service-limit-increase&limitType=service-code-sqs
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ReceiveMessage.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ReceiveMessage.html

Amazon Simple Queue Service Developer Guide

if the polling wait time expires. This option can reduce the number of empty responses and
potentially lower costs.

The following sections explain the details of short polling and long polling.

Topics

• Consuming messages using short polling

• Consuming messages using long polling

• Differences between long and short polling

Consuming messages using short polling

When you consume messages from a queue (FIFO or standard) using short polling, Amazon SQS
samples a subset of its servers (based on a weighted random distribution) and returns messages
from only those servers. Thus, a particular ReceiveMessage request might not return all of your
messages. However, if you have fewer than 1,000 messages in your queue, a subsequent request
will return your messages. If you keep consuming from your queues, Amazon SQS samples all of its
servers, and you receive all of your messages.

The following diagram shows the short-polling behavior of messages returned from a standard
queue after one of your system components makes a receive request. Amazon SQS samples several
of its servers (in gray) and returns messages A, C, D, and B from these servers. Message E isn't
returned for this request, but is returned for a subsequent request.

Consuming messages using short polling 79

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ReceiveMessage.html

Amazon Simple Queue Service Developer Guide

Consuming messages using long polling

When the wait time for the ReceiveMessage API action is greater than 0, long polling is in
effect. The maximum long polling wait time is 20 seconds. Long polling helps reduce the cost of
using Amazon SQS by eliminating the number of empty responses (when there are no messages
available for a ReceiveMessage request) and false empty responses (when messages are available
but aren't included in a response). For information about enabling long polling for a new or
existing queue using the Amazon SQS console, see the Configuring queue parameters using the
Amazon SQS console. For best practices, see Setting-up long polling in Amazon SQS.

Long polling offers the following benefits:

• Reduce empty responses by allowing Amazon SQS to wait until a message is available in
a queue before sending a response. Unless the connection times out, the response to the
ReceiveMessage request contains at least one of the available messages, up to the maximum
number of messages specified in the ReceiveMessage action. In rare cases, you might receive
empty responses even when a queue still contains messages, especially if you specify a low value
for the ReceiveMessageWaitTimeSeconds parameter.

• Reduce false empty responses by querying all—rather than a subset of—Amazon SQS servers.

• Return messages as soon as they become available.

For information about how to confirm that a queue is empty, see Confirming that an Amazon SQS
queue is empty.

Differences between long and short polling

Short polling occurs when the WaitTimeSeconds parameter of a ReceiveMessage request is set
to 0 in one of two ways:

• The ReceiveMessage call sets WaitTimeSeconds to 0.

• The ReceiveMessage call doesn’t set WaitTimeSeconds, but the queue attribute
ReceiveMessageWaitTimeSeconds is set to 0.

Amazon SQS visibility timeout

When a consumer receives and processes a message from a queue, the message remains in
the queue. Amazon SQS doesn't automatically delete the message. Because Amazon SQS is a

Consuming messages using long polling 80

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ReceiveMessage.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ReceiveMessage.html#SQS-ReceiveMessage-request-WaitTimeSeconds
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ReceiveMessage.html#SQS-ReceiveMessage-request-WaitTimeSeconds
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ReceiveMessage.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SetQueueAttributes.html

Amazon Simple Queue Service Developer Guide

distributed system, there's no guarantee that the consumer actually receives the message (for
example, due to a connectivity issue, or due to an issue in the consumer application). Thus, the
consumer must delete the message from the queue after receiving and processing it.

Immediately after a message is received, it remains in the queue. To prevent other consumers
from processing the message again, Amazon SQS sets a visibility timeout, a period of time during
which Amazon SQS prevents all consumers from receiving and processing the message. The default
visibility timeout for a message is 30 seconds. The minimum is 0 seconds. The maximum is 12
hours. For information about configuring visibility timeout for a queue using the console, see
Configuring queue parameters using the Amazon SQS console.

Note

For standard queues, the visibility timeout isn't a guarantee against receiving a message
twice. For more information, see Amazon SQS at-least-once delivery.
FIFO queues allow the producer or consumer to attempt multiple retries:

• If the producer detects a failed SendMessage action, it can retry sending as many times
as necessary, using the same message deduplication ID. Assuming that the producer
receives at least one acknowledgement before the deduplication interval expires,
multiple retries neither affect the ordering of messages nor introduce duplicates.

• If the consumer detects a failed ReceiveMessage action, it can retry as many times
as necessary, using the same receive request attempt ID. Assuming that the consumer
receives at least one acknowledgement before the visibility timeout expires, multiple
retries don't affect the ordering of messages.

• When you receive a message with a message group ID, no more messages for the same
message group ID are returned unless you delete the message or it becomes visible.

Visibility timeout 81

Amazon Simple Queue Service Developer Guide

Topics

• In flight messages

• Setting the visibility timeout

• Changing the visibility timeout for a message

• Terminating the visibility timeout for a message

In flight messages

An Amazon SQS message has three basic states:

1. Sent to a queue by a producer.

2. Received from the queue by a consumer.

3. Deleted from the queue.

A message is considered to be stored after it is sent to a queue by a producer, but not yet received
from the queue by a consumer (that is, between states 1 and 2). There is no quota to the number
of stored messages. A message is considered to be in flight after it is received from a queue by a
consumer, but not yet deleted from the queue (that is, between states 2 and 3). There is a quota to
the number of in flight messages.

Important

Quotas that apply to in flight messages are unrelated to the unlimited number of stored
messages.

For most standard queues (depending on queue traffic and message backlog), there can be a
maximum of approximately 120,000 in flight messages (received from a queue by a consumer,
but not yet deleted from the queue). If you reach this quota while using short polling, Amazon
SQS returns the OverLimit error message. If you use long polling, Amazon SQS returns no error
messages. To avoid reaching the quota, you should delete messages from the queue after they're
processed. You can also increase the number of queues you use to process your messages. To
request a quota increase, submit a support request.

In flight messages 82

https://console.aws.amazon.com/support/home#/case/create?issueType=service-limit-increase&limitType=service-code-sqs

Amazon Simple Queue Service Developer Guide

For FIFO queues, there can be a maximum of 20,000 in flight messages (received from a queue by
a consumer, but not yet deleted from the queue). If you reach this quota, Amazon SQS returns no
error messages.

Important

When working with FIFO queues, DeleteMessage operations will fail if the request is
received outside of the visibility timeout window. If the visibility timeout is 0 seconds,
the message must be deleted within the same millisecond it was sent, or it is considered
abandoned. This can cause Amazon SQS to include duplicate messages in the same
response to a ReceiveMessage operation if the MaxNumberOfMessages parameter is
greater than 1. For additional details see How the Amazon SQS FIFO API Works.

Setting the visibility timeout

The visibility timeout begins when Amazon SQS returns a message. During this time, the consumer
processes and deletes the message. However, if the consumer fails before deleting the message
and your system doesn't call the DeleteMessage action for that message before the visibility
timeout expires, the message becomes visible to other consumers and the message is received
again. If a message must be received only once, your consumer should delete it within the duration
of the visibility timeout.

Every Amazon SQS queue has the default visibility timeout setting of 30 seconds. You can change
this setting for the entire queue. Typically, you should set the visibility timeout to the maximum
time that it takes your application to process and delete a message from the queue. When receiving
messages, you can also set a special visibility timeout for the returned messages without changing
the overall queue timeout. For more information, see the best practices in the Processing messages
in a timely manner in Amazon SQS section.

If you don't know how long it takes to process a message, create a heartbeat for your consumer
process: Specify the initial visibility timeout (for example, 2 minutes) and then—as long as your
consumer still works on the message—keep extending the visibility timeout by 2 minutes every
minute.

Setting the visibility timeout 83

https://aws.amazon.com/blogs/developer/how-the-amazon-sqs-fifo-api-works/
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_DeleteMessage.html

Amazon Simple Queue Service Developer Guide

Important

The maximum visibility timeout is 12 hours from the time that Amazon SQS receives the
ReceiveMessage request. Extending the visibility timeout does not reset the 12 hour
maximum.
Additionally, you may be unable to set the timeout on an individual message to the full
12 hours (e.g. 43,200 seconds) since the ReceiveMessage request initiates the timer.
For example, if you receive a message and immediately set the 12 hour maximum by
sending a ChangeMessageVisibility call with VisibilityTimeout equal to 43,200
seconds, it will likely fail. However, using a value of 43,195 seconds will work unless there
is a significant delay between requesting the message via ReceiveMessage and updating
the visibility timeout. If your consumer needs longer than 12 hours, consider using Step
Functions.

Changing the visibility timeout for a message

When you receive a message from a queue and begin to process it, the visibility timeout for
the queue may be insufficient (for example, you might need to process and delete a message).
You can shorten or extend a message's visibility by specifying a new timeout value using the
ChangeMessageVisibility action.

For example, if the default timeout for a queue is 60 seconds, 15 seconds have elapsed
since you received the message, and you send a ChangeMessageVisibility call with
VisibilityTimeout set to 10 seconds, the 10 seconds begin to count from the time that you
make the ChangeMessageVisibility call. Thus, any attempt to change the visibility timeout
or to delete that message 10 seconds after you initially change the visibility timeout (a total of 25
seconds) might result in an error.

Note

The new timeout period takes effect from the time you call the
ChangeMessageVisibility action. In addition, the new timeout period applies only to
the particular receipt of the message. ChangeMessageVisibility doesn't affect the
timeout of later receipts of the message or later queues.

Changing the visibility timeout for a message 84

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ChangeMessageVisibility.html

Amazon Simple Queue Service Developer Guide

Terminating the visibility timeout for a message

When you receive a message from a queue, you might find that you actually don't want to process
and delete that message. Amazon SQS allows you to terminate the visibility timeout for a specific
message. This makes the message immediately visible to other components in the system and
available for processing.

To terminate a message's visibility timeout after calling ReceiveMessage, call
ChangeMessageVisibility with VisibilityTimeout set to 0 seconds.

Amazon SQS delay queues

Delay queues let you postpone the delivery of new messages to consumers for a number
of seconds, for example, when your consumer application needs additional time to process
messages. If you create a delay queue, any messages that you send to the queue remain invisible
to consumers for the duration of the delay period. The default (minimum) delay for a queue is 0
seconds. The maximum is 15 minutes. For information about configuring delay queues using the
console see Configuring queue parameters using the Amazon SQS console.

Note

For standard queues, the per-queue delay setting is not retroactive—changing the setting
doesn't affect the delay of messages already in the queue.
For FIFO queues, the per-queue delay setting is retroactive—changing the setting affects
the delay of messages already in the queue.

Delay queues are similar to visibility timeouts because both features make messages unavailable to
consumers for a specific period of time. The difference between the two is that, for delay queues,
a message is hidden when it is first added to queue, whereas for visibility timeouts a message is
hidden only after it is consumed from the queue. The following diagram illustrates the relationship
between delay queues and visibility timeouts.

Terminating the visibility timeout for a message 85

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ChangeMessageVisibility.html

Amazon Simple Queue Service Developer Guide

To set delay seconds on individual messages, rather than on an entire queue, use message timers to
allow Amazon SQS to use the message timer's DelaySeconds value instead of the delay queue's
DelaySeconds value.

Amazon SQS temporary queues

Temporary queues help you save development time and deployment costs when using common
message patterns such as request-response. You can use the Temporary Queue Client to create
high-throughput, cost-effective, application-managed temporary queues.

The client maps multiple temporary queues—application-managed queues created on demand for
a particular process—onto a single Amazon SQS queue automatically. This allows your application
to make fewer API calls and have a higher throughput when the traffic to each temporary queue
is low. When a temporary queue is no longer in use, the client cleans up the temporary queue
automatically, even if some processes that use the client aren't shut down cleanly.

The following are the benefits of temporary queues:

• They serve as lightweight communication channels for specific threads or processes.

• They can be created and deleted without incurring additional cost.

• They are API-compatible with static (normal) Amazon SQS queues. This means that existing
code that sends and receives messages can send messages to and receive messages from virtual
queues.

Topics

• Virtual queues

Temporary queues 86

https://github.com/awslabs/amazon-sqs-java-temporary-queues-client

Amazon Simple Queue Service Developer Guide

• Request-response messaging pattern (virtual queues)

• Example scenario: Processing a login request

• On the client side

• On the server side

• Cleaning up queues

Virtual queues

Virtual queues are local data structures that the Temporary Queue Client creates. Virtual queues let
you combine multiple low-traffic destinations into a single Amazon SQS queue. For best practices,
see Avoid reusing the same message group ID with virtual queues.

Note

• Creating a virtual queue creates only temporary data structures for consumers to receive
messages in. Because a virtual queue makes no API calls to Amazon SQS, virtual queues
incur no cost.

• TPS quotas apply to all virtual queues across a single host queue. For more information,
see Amazon SQS message quotas.

The AmazonSQSVirtualQueuesClient wrapper class adds support for attributes related to
virtual queues. To create a virtual queue, you must call the CreateQueue API action using the
HostQueueURL attribute. This attribute specifies the existing queue that hosts the virtual queues.

The URL of a virtual queue is in the following format.

https://sqs.us-east-2.amazonaws.com/123456789012/MyQueue#MyVirtualQueueName

When a producer calls the SendMessage or SendMessageBatch API action on a virtual queue
URL, the Temporary Queue Client does the following:

1. Extracts the virtual queue name.

2. Attaches the virtual queue name as an additional message attribute.

3. Sends the message to the host queue.

Virtual queues 87

Amazon Simple Queue Service Developer Guide

While the producer sends messages, a background thread polls the host queue and sends received
messages to virtual queues according to the corresponding message attributes.

While the consumer calls the ReceiveMessage API action on a virtual queue URL, the Temporary
Queue Client blocks the call locally until the background thread sends a message into the virtual
queue. (This process is similar to message prefetching in the Buffered Asynchronous Client: a single
API action can provide messages to up to 10 virtual queues.) Deleting a virtual queue removes any
client-side resources without calling Amazon SQS itself.

The AmazonSQSTemporaryQueuesClient class turns all queues it creates into temporary
queues automatically. It also creates host queues with the same queue attributes automatically,
on demand. These queues' names share a common, configurable prefix (by default,
__RequesterClientQueues__) that identifies them as temporary queues. This allows the client
to act as a drop-in replacement that optimizes existing code which creates and deletes queues. The
client also includes the AmazonSQSRequester and AmazonSQSResponder interfaces that allow
two-way communication between queues.

Request-response messaging pattern (virtual queues)

The most common use case for temporary queues is the request-response messaging pattern,
where a requester creates a temporary queue for receiving each response message. To avoid
creating an Amazon SQS queue for each response message, the Temporary Queue Client lets you
create and delete multiple temporary queues without making any Amazon SQS API calls. For more
information, see Implementing request-response systems.

The following diagram shows a common configuration using this pattern.

Request-response messaging pattern (virtual queues) 88

Amazon Simple Queue Service Developer Guide

Example scenario: Processing a login request

The following example scenario shows how you can use the AmazonSQSRequester and
AmazonSQSResponder interfaces to process a user's login request.

On the client side

public class LoginClient {

 // Specify the Amazon SQS queue to which to send requests.
 private final String requestQueueUrl;

 // Use the AmazonSQSRequester interface to create
 // a temporary queue for each response.
 private final AmazonSQSRequester sqsRequester =
 AmazonSQSRequesterClientBuilder.defaultClient();

 LoginClient(String requestQueueUrl) {
 this.requestQueueUrl = requestQueueUrl;

Example scenario: Processing a login request 89

Amazon Simple Queue Service Developer Guide

 }

 // Send a login request.
 public String login(String body) throws TimeoutException {
 SendMessageRequest request = new SendMessageRequest()
 .withMessageBody(body)
 .withQueueUrl(requestQueueUrl);

 // If no response is received, in 20 seconds,
 // trigger the TimeoutException.
 Message reply = sqsRequester.sendMessageAndGetResponse(request,
 20, TimeUnit.SECONDS);

 return reply.getBody();
 }
}

Sending a login request does the following:

1. Creates a temporary queue.

2. Attaches the temporary queue's URL to the message as an attribute.

3. Sends the message.

4. Receives a response from the temporary queue.

5. Deletes the temporary queue.

6. Returns the response.

On the server side

The following example assumes that, upon construction, a thread is created to poll the queue
and call the handleLoginRequest() method for every message. In addition, doLogin() is an
assumed method.

public class LoginServer {

 // Specify the Amazon SQS queue to poll for login requests.
 private final String requestQueueUrl;

 // Use the AmazonSQSResponder interface to take care
 // of sending responses to the correct response destination.
 private final AmazonSQSResponder sqsResponder =

Example scenario: Processing a login request 90

Amazon Simple Queue Service Developer Guide

 AmazonSQSResponderClientBuilder.defaultClient();

 LoginServer(String requestQueueUrl) {
 this.requestQueueUrl = requestQueueUrl;
 }

 // Process login requests from the client.
 public void handleLoginRequest(Message message) {

 // Process the login and return a serialized result.
 String response = doLogin(message.getBody());

 // Extract the URL of the temporary queue from the message attribute
 // and send the response to the temporary queue.
 sqsResponder.sendResponseMessage(MessageContent.fromMessage(message),
 new MessageContent(response));
 }
}

Cleaning up queues

To make sure that Amazon SQS reclaims any in-memory resources used by virtual queues, when
your application no longer needs the Temporary Queue Client, it should call the shutdown()
method. You can also use the shutdown() method of the AmazonSQSRequester interface.

The Temporary Queue Client also provides a way to eliminate orphaned host queues. For each
queue that receives an API call over a period of time (by default, five minutes), the client uses the
TagQueue API action to tag a queue that remains in use.

Note

Any API action taken on a queue marks it as non-idle, including a ReceiveMessage action
that returns no messages.

The background thread uses the ListQueues and ListTags API actions to check all queues with
the configured prefix, deleting any queues that haven't been tagged for at least five minutes. In
this way, if one client doesn't shut down cleanly, the other active clients clean up after it. In order
to reduce the duplication of work, all clients with the same prefix communicate through a shared,
internal work queue named after the prefix.

Cleaning up queues 91

Amazon Simple Queue Service Developer Guide

Amazon SQS message timers

Message timers let you specify an initial invisibility period for a message added to a queue. For
example, if you send a message with a 45-second timer, the message isn't visible to consumers
for its first 45 seconds in the queue. The default (minimum) delay for a message is 0 seconds. The
maximum is 15 minutes. For information about sending messages with timers using the console,
see Send a message.

Note

FIFO queues don't support timers on individual messages.

To set a delay period on an entire queue, rather than on individual messages, use delay queues.
A message timer setting for an individual message overrides any DelaySeconds value on an
Amazon SQS delay queue.

Accessing Amazon EventBridge Pipes through the Amazon SQS
console

Amazon EventBridge Pipes connect sources to targets. Pipes are intended for point-to-point
integrations between supported sources and targets, with support for advanced transformations
and enrichment. EventBridge Pipes provide a highly scalable way to connect your Amazon SQS
queue to AWS services such as Step Functions, Amazon SQS, and API Gateway, as well as third-
party software as a service (SaaS) applications like Salesforce.

To set up a pipe, you choose the source, add optional filtering, define optional enrichment, and
choose the target for the event data.

On the details page for an Amazon SQS queue, you can view the pipes that use that queue as their
source. From there, you can also:

• Launch the EventBridge console to view pipe details.

• Launch the EventBridge console to create a new pipe with the queue as its source.

Message timers 92

Amazon Simple Queue Service Developer Guide

For more information on configuring an Amazon SQS queue as a pipe source, see Amazon SQS
queue as a source in the Amazon EventBridge User Guide. For more information about EventBridge
Pipes in general, see EventBridge Pipes.

To access EventBridge pipes for a given Amazon SQS queue

1. Open the Queues page of the Amazon SQS console.

2. Select a queue.

3. On the queue detail page, choose the EventBridge Pipes tab.

The EventBridge Pipes tab includes a list of any pipes currently configured to use the selected
queue as a source, including:

• pipe name

• current status

• pipe target

• when the pipe was last modified

4. View more pipe details or create a new pipe, if desired:

• To access more details about a pipe:

Choose the pipe name.

This launches the Pipe details page of the EventBridge console.

• To create a new pipe:

Choose Connect Amazon SQS queue to pipe.

This launches the Create pipe page of the EventBridge console, with the Amazon SQS queue
specified as the pipe source. For more information, see Creating an EventBridge pipe in the
Amazon EventBridge User Guide.

Important

A message on an Amazon SQS queue is read by a single pipe and then deleted from
the queue after being processed, whether or not the message matches the filter you
can configured for that pipe. Proceed with caution when configuring multiple pipes to
use the same queue as their source.

Accessing EventBridge pipes 93

https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-pipes-sqs.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-pipes-sqs.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-pipes.html
https://console.aws.amazon.com/sqs/#/queues
https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-pipes-create.html

Amazon Simple Queue Service Developer Guide

Managing large Amazon SQS messages with Extended Client
Library and Amazon Simple Storage Service

You can use the Amazon SQS Extended Client Library for Java and the Amazon SQS Extended
Client Library for Python to send large messages. This is especially useful for consuming large
message payloads, from 256 KB and up to 2 GB. Both libraries save the message payload to an
Amazon Simple Storage Service bucket, and send the reference of the stored Amazon S3 object to
the Amazon SQS queue.

Note

The Amazon SQS Extended Client Libraries are compatible with both Standard and FIFO
queues.

Topics

• Managing large Amazon SQS messages using Java and Amazon S3

• Managing large Amazon SQS messages using Python and Amazon S3

Managing large Amazon SQS messages using Java and Amazon S3

You can use the Amazon SQS Extended Client Library for Java and Amazon Simple Storage Service
(Amazon S3) to manage large Amazon Simple Queue Service (Amazon SQS) messages. This is
especially useful for consuming large message payloads, from 256 KB and up to 2 GB. The library
saves the message payload to an Amazon S3 bucket and sends a message containing a reference of
the stored Amazon S3 object to an Amazon SQS queue.

You can use the Amazon SQS Extended Client Library for Java to do the following:

• Specify whether messages are always stored in Amazon S3 or only when the size of a message
exceeds 256 KB

• Send a message that references a single message object stored in an S3 bucket

• Retrieve the message object from an Amazon S3 bucket

• Delete the message object from an Amazon S3 bucket

Managing large messages 94

https://github.com/awslabs/amazon-sqs-java-extended-client-lib

Amazon Simple Queue Service Developer Guide

Prerequisites

The following example uses the AWS Java SDK. To install and set up the SDK, see Set up the AWS
SDK for Java in the AWS SDK for Java Developer Guide.

Before you run the example code, configure your AWS credentials. For more information, see Set
up AWS Credentials and Region for Development in the AWS SDK for Java Developer Guide.

The SDK for Java and Amazon SQS Extended Client Library for Java require the J2SE Development
Kit 8.0 or later.

Note

You can use the Amazon SQS Extended Client Library for Java to manage Amazon SQS
messages using Amazon S3 only with the AWS SDK for Java. You can't do this with the AWS
CLI, the Amazon SQS console, the Amazon SQS HTTP API, or any of the other AWS SDKs.

AWS SDK for Java 2.x Example: Using Amazon S3 to manage large Amazon SQS
messages

The following AWS SDK for Java 2.x example creates an Amazon S3 bucket with a random name
and adds a lifecycle rule to permanently delete objects after 14 days. It also creates a queue named
MyQueue and sends a random message that is stored in an S3 bucket and is more than 256 KB to
the queue. Finally, the code retrieves the message, returns information about it, and then deletes
the message, the queue, and the bucket.

/*
 * Copyright 2010-2024 Amazon.com, Inc. or its affiliates. All Rights Reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License").
 * You may not use this file except in compliance with the License.
 * A copy of the License is located at
 *
 * https://aws.amazon.com/apache2.0
 *
 * or in the "license" file accompanying this file. This file is distributed
 * on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
 * express or implied. See the License for the specific language governing
 * permissions and limitations under the License.
 *

Using the Extended Client Library for Java 95

https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/setup-install.html
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/setup-install.html
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/setup.html#setup-credentials
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/setup.html#setup-credentials
https://aws.amazon.com/sdkforjava/

Amazon Simple Queue Service Developer Guide

 */

import com.amazon.sqs.javamessaging.AmazonSQSExtendedClient;
import com.amazon.sqs.javamessaging.ExtendedClientConfiguration;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3ClientBuilder;
import com.amazonaws.services.s3.model.*;
import com.amazonaws.services.sqs.AmazonSQS;
import com.amazonaws.services.sqs.AmazonSQSClientBuilder;
import com.amazonaws.services.sqs.model.*;
import org.joda.time.DateTime;
import org.joda.time.format.DateTimeFormat;

import java.util.Arrays;
import java.util.List;
import java.util.UUID;

public class SQSExtendedClientExample {

// Create an Amazon S3 bucket with a random name.
private final static String S3_BUCKET_NAME = UUID.randomUUID() + "-"
 + DateTimeFormat.forPattern("yyMMdd-hhmmss").print(new DateTime());

public static void main(String[] args) {

 /*
 * Create a new instance of the builder with all defaults (credentials
 * and region) set automatically. For more information, see
 * Creating Service Clients in the AWS SDK for Java Developer Guide.
 */
 final AmazonS3 s3 = AmazonS3ClientBuilder.defaultClient();

 /*
 * Set the Amazon S3 bucket name, and then set a lifecycle rule on the
 * bucket to permanently delete objects 14 days after each object's
 * creation date.
 */
 final BucketLifecycleConfiguration.Rule expirationRule =
 new BucketLifecycleConfiguration.Rule();
 expirationRule.withExpirationInDays(14).withStatus("Enabled");
 final BucketLifecycleConfiguration lifecycleConfig =
 new BucketLifecycleConfiguration().withRules(expirationRule);

 // Create the bucket and allow message objects to be stored in the bucket.

Using the Extended Client Library for Java 96

https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/creating-clients.html

Amazon Simple Queue Service Developer Guide

 s3.createBucket(S3_BUCKET_NAME);
 s3.setBucketLifecycleConfiguration(S3_BUCKET_NAME, lifecycleConfig);
 System.out.println("Bucket created and configured.");

 /*
 * Set the Amazon SQS extended client configuration with large payload
 * support enabled.
 */
 final ExtendedClientConfiguration extendedClientConfig =
 new ExtendedClientConfiguration()
 .withLargePayloadSupportEnabled(s3, S3_BUCKET_NAME);

 final AmazonSQS sqsExtended =
 new AmazonSQSExtendedClient(AmazonSQSClientBuilder
 .defaultClient(), extendedClientConfig);

 /*
 * Create a long string of characters for the message object which will
 * be stored in the bucket.
 */
 int stringLength = 300000;
 char[] chars = new char[stringLength];
 Arrays.fill(chars, 'x');
 final String myLongString = new String(chars);

 // Create a message queue for this example.
 final String QueueName = "MyQueue" + UUID.randomUUID().toString();
 final CreateQueueRequest createQueueRequest =
 new CreateQueueRequest(QueueName);
 final String myQueueUrl = sqsExtended
 .createQueue(createQueueRequest).getQueueUrl();
 System.out.println("Queue created.");

 // Send the message.
 final SendMessageRequest myMessageRequest =
 new SendMessageRequest(myQueueUrl, myLongString);
 sqsExtended.sendMessage(myMessageRequest);
 System.out.println("Sent the message.");

 // Receive the message.
 final ReceiveMessageRequest receiveMessageRequest =
 new ReceiveMessageRequest(myQueueUrl);
 List<Message> messages = sqsExtended
 .receiveMessage(receiveMessageRequest).getMessages();

Using the Extended Client Library for Java 97

Amazon Simple Queue Service Developer Guide

 // Print information about the message.
 for (Message message : messages) {
 System.out.println("\nMessage received.");
 System.out.println(" ID: " + message.getMessageId());
 System.out.println(" Receipt handle: " + message.getReceiptHandle());
 System.out.println(" Message body (first 5 characters): "
 + message.getBody().substring(0, 5));
 }

 // Delete the message, the queue, and the bucket.
 final String messageReceiptHandle = messages.get(0).getReceiptHandle();
 sqsExtended.deleteMessage(new DeleteMessageRequest(myQueueUrl,
 messageReceiptHandle));
 System.out.println("Deleted the message.");

 sqsExtended.deleteQueue(new DeleteQueueRequest(myQueueUrl));
 System.out.println("Deleted the queue.");

 deleteBucketAndAllContents(s3);
 System.out.println("Deleted the bucket.");
}

private static void deleteBucketAndAllContents(AmazonS3 client) {

 ObjectListing objectListing = client.listObjects(S3_BUCKET_NAME);

 while (true) {
 for (S3ObjectSummary objectSummary : objectListing
 .getObjectSummaries()) {
 client.deleteObject(S3_BUCKET_NAME, objectSummary.getKey());
 }

 if (objectListing.isTruncated()) {
 objectListing = client.listNextBatchOfObjects(objectListing);
 } else {
 break;
 }
 }

 final VersionListing list = client.listVersions(
 new ListVersionsRequest().withBucketName(S3_BUCKET_NAME));

 for (S3VersionSummary s : list.getVersionSummaries()) {

Using the Extended Client Library for Java 98

Amazon Simple Queue Service Developer Guide

 client.deleteVersion(S3_BUCKET_NAME, s.getKey(), s.getVersionId());
 }

 client.deleteBucket(S3_BUCKET_NAME);
}
}

AWS SDK for Java 2.x Example: Using Amazon S3 to manage large Amazon SQS
messages

The following AWS SDK for Java 2.x example creates an Amazon S3 bucket with a random name
and adds a lifecycle rule to permanently delete objects after 14 days. It also creates a queue named
MyQueue and sends a random message that is stored in an S3 bucket and is more than 256 KB to
the queue. Finally, the code retrieves the message, returns information about it, and then deletes
the message, the queue, and the bucket.

/*
 * Copyright 2010-2024 Amazon.com, Inc. or its affiliates. All Rights Reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License").
 * You may not use this file except in compliance with the License.
 * A copy of the License is located at
 *
 * https://aws.amazon.com/apache2.0
 *
 * or in the "license" file accompanying this file. This file is distributed
 * on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
 * express or implied. See the License for the specific language governing
 * permissions and limitations under the License.
 *
 */

 import com.amazon.sqs.javamessaging.AmazonSQSExtendedClient;
import com.amazon.sqs.javamessaging.ExtendedClientConfiguration;
import org.joda.time.DateTime;
import org.joda.time.format.DateTimeFormat;
import software.amazon.awssdk.services.s3.S3Client;
import software.amazon.awssdk.services.s3.model.BucketLifecycleConfiguration;
import software.amazon.awssdk.services.s3.model.CreateBucketRequest;
import software.amazon.awssdk.services.s3.model.DeleteBucketRequest;
import software.amazon.awssdk.services.s3.model.DeleteObjectRequest;
import software.amazon.awssdk.services.s3.model.ExpirationStatus;

Using the Extended Client Library for Java 99

Amazon Simple Queue Service Developer Guide

import software.amazon.awssdk.services.s3.model.LifecycleExpiration;
import software.amazon.awssdk.services.s3.model.LifecycleRule;
import software.amazon.awssdk.services.s3.model.LifecycleRuleFilter;
import software.amazon.awssdk.services.s3.model.ListObjectVersionsRequest;
import software.amazon.awssdk.services.s3.model.ListObjectVersionsResponse;
import software.amazon.awssdk.services.s3.model.ListObjectsV2Request;
import software.amazon.awssdk.services.s3.model.ListObjectsV2Response;
import software.amazon.awssdk.services.s3.model.PutBucketLifecycleConfigurationRequest;
import software.amazon.awssdk.services.sqs.SqsClient;
import software.amazon.awssdk.services.sqs.model.CreateQueueRequest;
import software.amazon.awssdk.services.sqs.model.CreateQueueResponse;
import software.amazon.awssdk.services.sqs.model.DeleteMessageRequest;
import software.amazon.awssdk.services.sqs.model.DeleteQueueRequest;
import software.amazon.awssdk.services.sqs.model.Message;
import software.amazon.awssdk.services.sqs.model.ReceiveMessageRequest;
import software.amazon.awssdk.services.sqs.model.ReceiveMessageResponse;
import software.amazon.awssdk.services.sqs.model.SendMessageRequest;

import java.util.Arrays;
import java.util.List;
import java.util.UUID;

/**
 * Examples of using Amazon SQS Extended Client Library for Java 2.x
 *
 */
public class SqsExtendedClientExamples {
 // Create an Amazon S3 bucket with a random name.
 private final static String S3_BUCKET_NAME = UUID.randomUUID() + "-"
 + DateTimeFormat.forPattern("yyMMdd-hhmmss").print(new DateTime());

 public static void main(String[] args) {

 /*
 * Create a new instance of the builder with all defaults (credentials
 * and region) set automatically. For more information, see
 * Creating Service Clients in the AWS SDK for Java Developer Guide.
 */
 final S3Client s3 = S3Client.create();

 /*
 * Set the Amazon S3 bucket name, and then set a lifecycle rule on the
 * bucket to permanently delete objects 14 days after each object's

Using the Extended Client Library for Java 100

Amazon Simple Queue Service Developer Guide

 * creation date.
 */
 final LifecycleRule lifeCycleRule = LifecycleRule.builder()
 .expiration(LifecycleExpiration.builder().days(14).build())
 .filter(LifecycleRuleFilter.builder().prefix("").build())
 .status(ExpirationStatus.ENABLED)
 .build();
 final BucketLifecycleConfiguration lifecycleConfig =
 BucketLifecycleConfiguration.builder()
 .rules(lifeCycleRule)
 .build();

 // Create the bucket and configure it
 s3.createBucket(CreateBucketRequest.builder().bucket(S3_BUCKET_NAME).build());

 s3.putBucketLifecycleConfiguration(PutBucketLifecycleConfigurationRequest.builder()
 .bucket(S3_BUCKET_NAME)
 .lifecycleConfiguration(lifecycleConfig)
 .build());
 System.out.println("Bucket created and configured.");

 // Set the Amazon SQS extended client configuration with large payload support
 enabled
 final ExtendedClientConfiguration extendedClientConfig = new
 ExtendedClientConfiguration().withPayloadSupportEnabled(s3, S3_BUCKET_NAME);

 final SqsClient sqsExtended = new
 AmazonSQSExtendedClient(SqsClient.builder().build(), extendedClientConfig);

 // Create a long string of characters for the message object
 int stringLength = 300000;
 char[] chars = new char[stringLength];
 Arrays.fill(chars, 'x');
 final String myLongString = new String(chars);

 // Create a message queue for this example
 final String queueName = "MyQueue-" + UUID.randomUUID();
 final CreateQueueResponse createQueueResponse =
 sqsExtended.createQueue(CreateQueueRequest.builder().queueName(queueName).build());
 final String myQueueUrl = createQueueResponse.queueUrl();
 System.out.println("Queue created.");

 // Send the message
 final SendMessageRequest sendMessageRequest = SendMessageRequest.builder()

Using the Extended Client Library for Java 101

Amazon Simple Queue Service Developer Guide

 .queueUrl(myQueueUrl)
 .messageBody(myLongString)
 .build();
 sqsExtended.sendMessage(sendMessageRequest);
 System.out.println("Sent the message.");

 // Receive the message
 final ReceiveMessageResponse receiveMessageResponse =
 sqsExtended.receiveMessage(ReceiveMessageRequest.builder().queueUrl(myQueueUrl).build());
 List<Message> messages = receiveMessageResponse.messages();

 // Print information about the message
 for (Message message : messages) {
 System.out.println("\nMessage received.");
 System.out.println(" ID: " + message.messageId());
 System.out.println(" Receipt handle: " + message.receiptHandle());
 System.out.println(" Message body (first 5 characters): " +
 message.body().substring(0, 5));
 }

 // Delete the message, the queue, and the bucket
 final String messageReceiptHandle = messages.get(0).receiptHandle();

 sqsExtended.deleteMessage(DeleteMessageRequest.builder().queueUrl(myQueueUrl).receiptHandle(messageReceiptHandle).build());
 System.out.println("Deleted the message.");

 sqsExtended.deleteQueue(DeleteQueueRequest.builder().queueUrl(myQueueUrl).build());
 System.out.println("Deleted the queue.");

 deleteBucketAndAllContents(s3);
 System.out.println("Deleted the bucket.");

 }

 private static void deleteBucketAndAllContents(S3Client client) {
 ListObjectsV2Response listObjectsResponse =
 client.listObjectsV2(ListObjectsV2Request.builder().bucket(S3_BUCKET_NAME).build());

 listObjectsResponse.contents().forEach(object -> {

 client.deleteObject(DeleteObjectRequest.builder().bucket(S3_BUCKET_NAME).key(object.key()).build());
 });

Using the Extended Client Library for Java 102

Amazon Simple Queue Service Developer Guide

 ListObjectVersionsResponse listVersionsResponse =
 client.listObjectVersions(ListObjectVersionsRequest.builder().bucket(S3_BUCKET_NAME).build());

 listVersionsResponse.versions().forEach(version -> {

 client.deleteObject(DeleteObjectRequest.builder().bucket(S3_BUCKET_NAME).key(version.key()).versionId(version.versionId()).build());
 });

 client.deleteBucket(DeleteBucketRequest.builder().bucket(S3_BUCKET_NAME).build());
 }
}

You can use Apache Maven to configure and build Amazon SQS Extended Client for your Java
project, or to build the SDK itself. Specify individual modules from the SDK that you use in your
application.

<properties>
 <aws-java-sdk.version>2.20.153</aws-java-sdk.version>
</properties>

<dependencies>
 <dependency>
 <groupId>software.amazon.awssdk</groupId>
 <artifactId>sqs</artifactId>
 <version>${aws-java-sdk.version}</version>
 </dependency>
 <dependency>
 <groupId>software.amazon.awssdk</groupId>
 <artifactId>s3</artifactId>
 <version>${aws-java-sdk.version}</version>
 </dependency>
 <dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>amazon-sqs-java-extended-client-lib</artifactId>
 <version>2.0.4</version>
 </dependency>

 <dependency>
 <groupId>joda-time</groupId>
 <artifactId>joda-time</artifactId>

Using the Extended Client Library for Java 103

https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/setup-project-maven.html

Amazon Simple Queue Service Developer Guide

 <version>2.12.6</version>
 </dependency>
</dependencies>

Managing large Amazon SQS messages using Python and Amazon S3

You can use the Amazon Simple Queue Service Extended Client Library for Python and Amazon
Simple Storage Service to manage large Amazon SQS messages. This is especially useful for
consuming large message payloads, from 256 KB and up to 2 GB. The library saves the message
payload to an Amazon S3 bucket and sends a message containing a reference of the stored
Amazon S3 object to an Amazon Amazon SQS queue.

You can use the Extended Client Library for Python to do the following:

• Specify whether payloads are always stored in Amazon S3, or only stored in S3 when a payload
size exceeds 256 KB

• Send a message that references a single message object stored in an Amazon S3 bucket

• Retrieve the corresponding payload object from an Amazon S3 bucket

• Delete the corresponding payload object from an Amazon S3 bucket

Prerequisites

The following are the prerequisites for using the Amazon SQS Extended Client Library for Python:

• An AWS account with the necessary credentials. To create an AWS account, navigate to the AWS
home page , and then choose Create an AWS Account . Follow the instructions. For information
about credentials, see Credentials.

• An AWS SDK: The example on this page uses AWS Python SDK Boto3. To install and set up the
SDK, see the AWS SDK for Python documentation in the AWS SDK for Python Developer Guide

• Python 3.x (or later) and pip.

• The Amazon SQS Extended Client Library for Python, available from PyPI

Note

You can use the Amazon SQS Extended Client Library for Python to manage Amazon SQS
messages using Amazon S3 only with the AWS SDK for Python. You can't do this with the

Using the Extended Client Library for Python 104

https://github.com/awslabs/amazon-sqs-python-extended-client-lib
https://aws.amazon.com/
https://aws.amazon.com/
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/credentials.html
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/quickstart.html
https://pypi.org/project/amazon-sqs-extended-client/

Amazon Simple Queue Service Developer Guide

AWS CLI, the Amazon SQS console, the Amazon SQS HTTP API, or any of the other AWS
SDKs.

Configuring message storage

The Amazon SQS Extended Client makes uses the following message attributes to configure the
Amazon S3 message storage options:

• large_payload_support: The Amazon S3 bucket name to store large messages.

• always_through_s3: If True, then all messages are stored in Amazon S3. If False, messages
smaller than 256 KB will not be serialized to the s3 bucket. The default is False.

• use_legacy_attribute: If True, all published messages use the Legacy reserved message
attribute (SQSLargePayloadSize) instead of the current reserved message attribute
(ExtendedPayloadSize).

Managing large Amazon SQS messages with Extended Client Library for Python

The following example creates an Amazon S3 bucket with a random name. It then creates an
Amazon SQS queue named MyQueue and sends a message that is stored in an S3 bucket and is
more than 256 KB to the queue. Finally, the code retrieves the message, returns information about
it, and then deletes the message, the queue, and the bucket.

import boto3
import sqs_extended_client

#Set the Amazon SQS extended client configuration with large payload.
sqs_extended_client = boto3.client("sqs", region_name="us-east-1")
sqs_extended_client.large_payload_support = "S3_BUCKET_NAME"
sqs_extended_client.use_legacy_attribute = False

Create an SQS message queue for this example. Then, extract the queue URL.
queue = sqs_extended_client.create_queue(
 QueueName = "MyQueue"
)
queue_url = sqs_extended_client.get_queue_url(
 QueueName = "MyQueue"

Using the Extended Client Library for Python 105

Amazon Simple Queue Service Developer Guide

)['QueueUrl']

Create the S3 bucket and allow message objects to be stored in the bucket.
sqs_extended_client.s3_client.create_bucket(Bucket=sqs_extended_client.large_payload_support)

Sending a large message
small_message = "s"
large_message = small_message * 300000 # Shall cross the limit of 256 KB

send_message_response = sqs_extended_client.send_message(
 QueueUrl=queue_url,
 MessageBody=large_message
)
assert send_message_response['ResponseMetadata']['HTTPStatusCode'] == 200

Receiving the large message
receive_message_response = sqs_extended_client.receive_message(
 QueueUrl=queue_url,
 MessageAttributeNames=['All']
)
assert receive_message_response['Messages'][0]['Body'] == large_message
receipt_handle = receive_message_response['Messages'][0]['ReceiptHandle']

Deleting the large message
Set to True for deleting the payload from S3
sqs_extended_client.delete_payload_from_s3 = True
delete_message_response = sqs_extended_client.delete_message(
 QueueUrl=queue_url,
 ReceiptHandle=receipt_handle
)

assert delete_message_response['ResponseMetadata']['HTTPStatusCode'] == 200

Deleting the queue
delete_queue_response = sqs_extended_client.delete_queue(
 QueueUrl=queue_url
)

assert delete_queue_response['ResponseMetadata']['HTTPStatusCode'] == 200

Using the Extended Client Library for Python 106

Amazon Simple Queue Service Developer Guide

Configuring Amazon SQS queues using the Amazon SQS
console

Use the Amazon SQS console to configure and manage Amazon Simple Queue Service (Amazon
SQS) queues and features. You can also use the console to configure features such as server-
side encryption, associate a dead-letter queue with your queue, or set a trigger to invoke an AWS
Lambda function.

Topics

• Attribute-based access control for Amazon SQS

• Configuring queue parameters using the Amazon SQS console

• Configuring an access policy in Amazon SQS

• Configuring server-side encryption for a queue using SQS-managed encryption keys

• Configuring server-side encryption for a queue using the Amazon SQS console

• Configuring cost allocation tags for a queue using the Amazon SQS console

• Subscribing a queue to an Amazon SNS topic using the Amazon SQS console

• Configuring an Amazon SQS queue to trigger an AWS Lambda function

• Automating notifications from AWS services to Amazon SQS using Amazon EventBridge

• Sending a message with attributes using Amazon SQS

Attribute-based access control for Amazon SQS

What is ABAC?

Attribute-based access control (ABAC) is an authorization process that defines permissions based
on tags that are attached to users and AWS resources. ABAC provides granular and flexible access
control based on attributes and values, reduces security risk related to reconfigured role-based
policies, and centralizes auditing and access policy management. For more details about ABAC, see
What is ABAC for AWS in the IAM User Guide.

Amazon SQS supports ABAC by allowing you to control access to your Amazon SQS queues based
on the tags and aliases that are associated with an Amazon SQS queue. The tag and alias condition

ABAC for Amazon SQS 107

https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction_attribute-based-access-control.html

Amazon Simple Queue Service Developer Guide

keys that enable ABAC in Amazon SQS authorize IAM principals to use Amazon SQS queues without
editing policies or managing grants. To learn more about ABAC condition keys, see Condition keys
for Amazon SQS in the Service Authorization Reference.

With ABAC, you can use tags to configure IAM access permissions and policies for your Amazon
SQS queues, which helps you to scale your permissions management. You can create a single
permissions policy in IAM using tags that you add to each business role—without having to update
the policy each time you add a new resource. You can also attach tags to IAM principals to create
an ABAC policy. You can design ABAC policies to allow Amazon SQS operations when the tag on
the IAM user role that's making the call matches the Amazon SQS queue tag. To learn more about
tagging in AWS, see AWS Tagging Strategies and Amazon SQS cost allocation tags.

Note

ABAC for Amazon SQS is currently available in all AWS Commercial Regions where Amazon
SQS is available, with the following exceptions:

• Asia Pacific (Hyderabad)

• Asia Pacific (Melbourne)

• Europe (Spain)

• Europe (Zurich)

Why should I use ABAC in Amazon SQS?

Here are some benefits of using ABAC in Amazon SQS:

• ABAC for Amazon SQS requires fewer permissions policies. You don't have to create different
policies for different job functions. You can use resource and request tags that apply to more
than one queue, which reduces operational overhead.

• Use ABAC to scale teams quickly. Permissions for new resources are automatically granted based
on tags when resources are appropriately tagged during their creation.

• Use permissions on the IAM principal to restrict resource access. You can create tags for the
IAM principal and use them to restrict access to specific actions that match the tags on the IAM
principal. This helps you to automate the process of granting request permissions.

• Track who's accessing your resources. You can determine the identity of a session by looking at
user attributes in AWS CloudTrail.

Why should I use ABAC in Amazon SQS? 108

https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonsqs.html#amazonsqs-policy-keys
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonsqs.html#amazonsqs-policy-keys
https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html

Amazon Simple Queue Service Developer Guide

Topics

• Tagging for access control in Amazon SQS

• Creating IAM users and Amazon SQS queues

• Testing attribute-based access control in Amazon SQS

Tagging for access control in Amazon SQS

The following is an example of how to use tags for access control. The IAM policy restricts an IAM
user to all Amazon SQS actions for all queues that include a resource tag with the key environment
and the value production. For more information, see Attribute-based access control with tags and
AWS Organizations.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "DenyAccessForProd",
 "Effect": "Deny",
 "Action": "sqs:*",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "aws:ResourceTag/environment": "prod"
 }
 }
 }
]
}

Creating IAM users and Amazon SQS queues

The following examples explain how to create an ABAC policy to control access to Amazon SQS
using the AWS Management Console and AWS CloudFormation.

Using the AWS Management Console

Create an IAM user

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

Tagging for access control 109

https://docs.aws.amazon.com/organizations/latest/userguide/orgs_tagging_abac.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_tagging_abac.html
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

Amazon Simple Queue Service Developer Guide

2. Choose User from the left navigation pane.

3. Choose Add Users and enter a name in the User name text box.

4. Select the Access key - Programmatic access box and choose Next:Permissions.

5. Choose Next:Tags.

6. Add the tag key as environment and the tag value as beta.

7. Choose Next:Review and then choose Create user.

8. Copy and store the access key ID and secret access key in a secure location.

Add IAM user permissions

1. Select the IAM user that you created.

2. Choose Add inline policy.

3. On the JSON tab, paste the following policy:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowAccessForSameResTag",
 "Effect": "Allow",
 "Action": [
 "sqs:SendMessage",
 "sqs:ReceiveMessage",
 "sqs:DeleteMessage"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "aws:ResourceTag/environment": "${aws:PrincipalTag/environment}"
 }
 }
 },
 {
 "Sid": "AllowAccessForSameReqTag",
 "Effect": "Allow",
 "Action": [
 "sqs:CreateQueue",
 "sqs:DeleteQueue",
 "sqs:SetQueueAttributes",

Creating IAM users and Amazon SQS queues 110

Amazon Simple Queue Service Developer Guide

 "sqs:tagqueue"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "aws:RequestTag/environment": "${aws:PrincipalTag/environment}"
 }
 }
 },
 {
 "Sid": "DenyAccessForProd",
 "Effect": "Deny",
 "Action": "sqs:*",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "aws:ResourceTag/stage": "prod"
 }
 }
 }
]
}

4. Choose Review policy.

5. Choose Create policy.

Using AWS CloudFormation

Use the following sample AWS CloudFormation template to create an IAM user with an inline
policy attached and an Amazon SQS queue:

AWSTemplateFormatVersion: "2010-09-09"
Description: "CloudFormation template to create IAM user with custom inline policy"
Resources:
 IAMPolicy:
 Type: "AWS::IAM::Policy"
 Properties:
 PolicyDocument: |
 {
 "Version": "2012-10-17",
 "Statement": [
 {

Creating IAM users and Amazon SQS queues 111

Amazon Simple Queue Service Developer Guide

 "Sid": "AllowAccessForSameResTag",
 "Effect": "Allow",
 "Action": [
 "sqs:SendMessage",
 "sqs:ReceiveMessage",
 "sqs:DeleteMessage"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "aws:ResourceTag/environment": "${aws:PrincipalTag/
environment}"
 }
 }
 },
 {
 "Sid": "AllowAccessForSameReqTag",
 "Effect": "Allow",
 "Action": [
 "sqs:CreateQueue",
 "sqs:DeleteQueue",
 "sqs:SetQueueAttributes",
 "sqs:tagqueue"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "aws:RequestTag/environment": "${aws:PrincipalTag/
environment}"
 }
 }
 },
 {
 "Sid": "DenyAccessForProd",
 "Effect": "Deny",
 "Action": "sqs:*",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "aws:ResourceTag/stage": "prod"
 }
 }
 }
]

Creating IAM users and Amazon SQS queues 112

Amazon Simple Queue Service Developer Guide

 }

 Users:
 - "testUser"
 PolicyName: tagQueuePolicy

 IAMUser:
 Type: "AWS::IAM::User"
 Properties:
 Path: "/"
 UserName: "testUser"
 Tags:
 -
 Key: "environment"
 Value: "beta"

Testing attribute-based access control in Amazon SQS

The following examples show you how to test attribute-based access control in Amazon SQS.

Create a queue with the tag key set to environment and the tag value set to prod

Run this AWS CLI command to test creating the queue with the tag key set to environment and
the tag value set to prod. If you don't have AWS CLI, you can download and configure it for your
machine.

aws sqs create-queue --queue-name prodQueue —region us-east-1 —tags "environment=prod"

You receive an AccessDenied error from the Amazon SQS endpoint:

An error occurred (AccessDenied) when calling the CreateQueue operation: Access to the
 resource <queueUrl> is denied.

This is because the tag value on the IAM user does not match the tag passed in the CreateQueue
API call. Remember that we applied a tag to the IAM user with the key set to environment and
the value set to beta.

Create a queue with the tag key set to environment and the tag value set to beta

Run the this CLI command to test creating a queue with the tag key set to environment and the
tag value set to beta.

Testing attribute-based access control 113

https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html

Amazon Simple Queue Service Developer Guide

aws sqs create-queue --queue-name betaQueue —region us-east-1 —tags "environment=beta"

You receive a message confirming the successful creation of the queue, similar to the one below.

{
"QueueUrl": "<queueUrl>“
}

Sending a message to a queue

Run this CLI command to test sending a message to a queue.

aws sqs send-message --queue-url <queueUrl> --message-body testMessage

The response shows a successful message delivery to the Amazon SQS queue. The IAM user
permission allows you to send a message to a queue that has a beta tag. The response includes
MD5OfMessageBody and MessageId containing the message.

{
"MD5OfMessageBody": "<MD5OfMessageBody>",
"MessageId": "<MessageId>"
}

Configuring queue parameters using the Amazon SQS console

When you create or edit a queue, you can configure the following parameters:

• Visibility timeout – The length of time that a message received from a queue (by one consumer)
won't be visible to the other message consumers. For more information, see Visibility timeout.

Note

Using the console to configure the visibility timeout configures the timeout value for all
of the messages in the queue. To configure the timeout for single or multiple messages,
you must use one of the AWS SDKs.

• Message retention period – The amount of time that Amazon SQS retains messages that remain
in the queue. By default, the queue retains messages for four days. You can configure a queue to
retain messages for up to 14 days. For more information, see Message retention period.

Configuring queue parameters 114

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SetQueueAttributes.html

Amazon Simple Queue Service Developer Guide

• Delivery delay – The amount of time that Amazon SQS will delay before delivering a message
that is added to the queue. For more information, see Delivery delay.

• Maximum message size – The maximum message size for this queue. For more information, see
Maximum message size.

• Receive message wait time – The maximum amount of time that Amazon SQS waits for
messages to become available after the queue gets a receive request. For more information, see
Amazon SQS short and long polling.

• Enable content-based deduplication – Amazon SQS can automatically create deduplication IDs
based on the body of the message. For more information, see Amazon SQS FIFO queues.

• Enable high throughput FIFO – Use to enable high throughput for messages in the queue.
Choosing this option changes the related options (Deduplication scope and FIFO throughput
limit) to the required settings for enabling high throughput for FIFO queues. For more
information, see High throughput for FIFO queues in Amazon SQS and Amazon SQS message
quotas.

• Redrive allow policy: defines which source queues can use this queue as the dead-letter queue.
For more information, see Using dead-letter queues in Amazon SQS .

To configure queue parameters for an existing queue (console)

1. Open the Amazon SQS console at https://console.aws.amazon.com/sqs/.

2. In the navigation pane, choose Queues. Choose a queue and choose Edit.

3. Scroll to the Configuration section.

4. For Visibility timeout , enter the duration and units. The range is 0 seconds to 12 hours. The
default value is 30 seconds.

5. For Message retention period, enter the duration and units. The range is 1 minute to 14 days.
The default value is 4 days.

6. For a standard queue, enter a value for Receive message wait time. The range is 0 to 20
seconds. The default value is 0 seconds, which sets short polling. Any non-zero value sets long
polling.

7. For Delivery delay, enter the duration and units. The range is 0 seconds to 15 minutes. The
default value is 0 seconds.

8. For Maximum message size, enter a value. The range is 1 KB to 256 KB. The default value is
256 KB.

Configuring queue parameters 115

https://console.aws.amazon.com/sqs/

Amazon Simple Queue Service Developer Guide

9. For a FIFO queue, choose Enable content-based deduplication to enable content-based
deduplication. The default setting is disabled.

10. (Optional) For a FIFO queue to enable higher throughput for sending and receiving messages
in the queue, choose Enable high throughput FIFO.

Choosing this option changes the related options (Deduplication scope and FIFO throughput
limit) to the required settings for enabling high throughput for FIFO queues. If you change any
of the settings required for using high throughput FIFO, normal throughput is in effect for the
queue, and deduplication occurs as specified. For more information, see High throughput for
FIFO queues in Amazon SQS and Amazon SQS message quotas.

11. For Redrive allow policy, choose Enabled. Select from the following: Allow all (default), By
queue or Deny all. When choosing By queue, specify a list of up to 10 source queues by the
Amazon Resource Name (ARN).

12. When you finish configuring the queue parameters, choose Save.

Configuring an access policy in Amazon SQS

When you edit a queue, you can configure its access policy.

The access policy defines the accounts, users, and roles that can access the queue. The access policy
also defines the actions (such as SendMessage, ReceiveMessage, or DeleteMessage) that the
users can access. The default policy allows only the queue owner to send and receive messages.

To configure the access policy for an existing queue (console)

1. Open the Amazon SQS console at https://console.aws.amazon.com/sqs/.

2. In the navigation pane, choose Queues.

3. Choose a queue and choose Edit.

4. Scroll to the Access policy section.

5. Edit the access policy statements in the input box. For more on access policy statements, see
Identity and access management in Amazon SQS.

6. When you finish configuring the access policy, choose Save.

Configuring an access policy 116

https://console.aws.amazon.com/sqs/

Amazon Simple Queue Service Developer Guide

Configuring server-side encryption for a queue using SQS-
managed encryption keys

In addition to the default Amazon SQS managed server-side encryption (SSE) option, Amazon
SQS managed SSE (SSE-SQS) lets you create custom managed server-side encryption that uses
SQS-managed encryption keys to protect sensitive data sent over message queues. With SSE-SQS,
you don't need to create and manage encryption keys, or modify your code to encrypt your data.
SSE-SQS lets you transmit data securely and helps you meet strict encryption compliance and
regulatory requirements at no additional cost.

SSE-SQS protects data at rest using 256-bit Advanced Encryption Standard (AES-256) encryption.
SSE encrypts messages as soon as Amazon SQS receives them. Amazon SQS stores messages in
encrypted form and decrypts them only when sending them to an authorized consumer.

Note

• The default SSE option is only effective when you create a queue without specifying
encryption attributes.

• Amazon SQS allows you to turn off all queue encryption. Therefore, turning off KMS-SSE,
will not automatically enable SQS-SSE. If you wish to enable SQS-SSE after turning off
KMS-SSE, you must add an attribute change in the request.

To configure SSE-SQS encryption for a queue (console)

Note

Any new queue created using the HTTP (non-TLS) endpoint will not enable SSE-SQS
encryption by default. It is a security best practice to create Amazon SQS queues using
HTTPS or Signature Version 4 endpoints.

1. Open the Amazon SQS console at https://console.aws.amazon.com/sqs/.

2. In the navigation pane, choose Queues.

3. Choose a queue, and then choose Edit.

4. Expand Encryption.

Configuring SSE-SQS for a queue 117

https://docs.aws.amazon.com/general/latest/gr/signature-version-4.html
https://console.aws.amazon.com/sqs/

Amazon Simple Queue Service Developer Guide

5. For Server-side encryption, choose Enabled (default).

Note

With SSE enabled, anonymous SendMessage and ReceiveMessage requests to the
encrypted queue will be rejected. Amazon SQS security best practises recommend
against using anonymous requests. If you wish to send anonymous requests to an
Amazon SQS queue, make sure to disable SSE.

6. Select Amazon SQS key (SSE-SQS). There is no additional fee for using this option.

7. Choose Save.

Configuring server-side encryption for a queue using the
Amazon SQS console

To protect the data in a queue’s messages, Amazon SQS has server-side encryption (SSE) enabled
by default for all newly created queues. Amazon SQS integrates with the Amazon Web Services Key
Management Service (Amazon Web Services KMS) to manage KMS keys for server-side encryption
(SSE). For information about using SSE, see Encryption at rest in Amazon SQS.

The KMS key that you assign to your queue must have a key policy that includes permissions for all
principals that are authorized to use the queue. For information, see Key Management.

If you aren't the owner of the KMS key, or if you log in with an account that doesn't have
kms:ListAliases and kms:DescribeKey permissions, you won't be able to view information
about the KMS key on the Amazon SQS console. Ask the owner of the KMS key to grant you these
permissions. For more information, see Key Management.

When you create or edit a queue, you can configure SSE-KMS.

To configure SSE-KMS for an existing queue (console)

1. Open the Amazon SQS console at https://console.aws.amazon.com/sqs/.

2. In the navigation pane, choose Queues.

3. Choose a queue, and then choose Edit.

4. Expand Encryption.

Configuring SSE-KMS for a queue 118

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys
https://console.aws.amazon.com/sqs/

Amazon Simple Queue Service Developer Guide

5. For Server-side encryption, choose Enabled (default).

Note

With SSE enabled, anonymous SendMessage and ReceiveMessage requests to the
encrypted queue will be rejected. Amazon SQS security best practises recommend
against using anonymous requests. If you wish to send anonymous requests to an
Amazon SQS queue, make sure to disable SSE.

6. Select AWS Key Management Service key (SSE-KMS).

The console displays the Description, the Account, and the KMS key ARN of the KMS key.

7. Specify the KMS key ID for the queue. For more information, see Key terms.

a. Choose the Choose a KMS key alias option.

b. The default key is the Amazon Web Services managed KMS key for Amazon SQS. To use
this key, choose it from the KMS key list.

c. To use a custom KMS key from your Amazon Web Services account, choose it from the
KMS key list. For instructions on creating custom KMS keys, see Creating Keys in the
Amazon Web Services Key Management Service Developer Guide.

d. To use a custom KMS key that is not in the list, or a custom KMS key from another Amazon
Web Services account, choose Enter the KMS key alias and enter the KMS key Amazon
Resource Name (ARN).

8. (Optional) For Data key reuse period, specify a value between 1 minute and 24 hours. The
default is 5 minutes. For more information, see Understanding the data key reuse period.

9. When you finish configuring SSE-KMS, choose Save.

Configuring cost allocation tags for a queue using the Amazon
SQS console

To help organize and identify your Amazon SQS queues, you can add cost allocation tags to them.
For more information, see Amazon SQS cost allocation tags.

On the Details page for a queue, the Tagging tab displays the tags for the queue.

When you create or edit a queue, you can configure tags for it.

Configuring tags for a queue 119

https://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html

Amazon Simple Queue Service Developer Guide

To configure tags for an existing queue (console)

1. Open the Amazon SQS console at https://console.aws.amazon.com/sqs/.

2. In the navigation pane, choose Queues.

3. Choose a queue and choose Edit.

4. Scroll to the Tags section.

5. Add, modify, or remove the queue tags:

a. To add a tag, choose Add new tag, enter a Key and Value, and then choose Add new tag.

b. To update a tag, change its Key and Value.

c. To remove a tag, choose Remove next to its key-value pair.

6. When you finish configuring the tags, choose Save.

Subscribing a queue to an Amazon SNS topic using the Amazon
SQS console

You can subscribe one or more Amazon SQS queues to an Amazon Simple Notification Service
(Amazon SNS) topic. When you publish a message to a topic, Amazon SNS sends the message
to each of the subscribed queues. Amazon SQS manages the subscription and any necessary
permissions. For more information about Amazon SNS, see What is Amazon SNS? in the Amazon
Simple Notification Service Developer Guide.

When you subscribe an Amazon SQS queue to an SNS topic, Amazon SNS uses HTTPS to forward
messages to Amazon SQS. For information about using Amazon SNS with encrypted Amazon SQS
queues, see Configure KMS permissions for AWS services.

Important

Amazon SQS supports a maximum of 20 statements per access policy. Subscribing to an
Amazon SNS topic adds one such statement. Exceeding this amount will result in a failed
topic subscription delivery.

To subscribe a queue to an SNS topic (console)

1. Open the Amazon SQS console at https://console.aws.amazon.com/sqs/.

Subscribing a queue to a topic 120

https://console.aws.amazon.com/sqs/
https://docs.aws.amazon.com/sns/latest/dg/welcome.html
https://console.aws.amazon.com/sqs/

Amazon Simple Queue Service Developer Guide

2. In the navigation pane, choose Queues.

3. From the list of queues, choose the queue to subscribe to the SNS topic.

4. From Actions, choose Subscribe to Amazon SNS topic.

5. From the Specify an Amazon SNS topic available for this queue menu, choose the SNS topic
for your queue.

If the SNS topic isn't listed in the menu, choose Enter Amazon SNS topic ARN and then enter
the topic's Amazon Resource Name (ARN).

6. Choose Save.

7. To verify the result of the subscription, publish to the topic and then view the message that
the topic sends to the queue. For more information, see Amazon SNS message publishing in
the Amazon Simple Notification Service Developer Guide.

If your Amazon SQS queue and SNS topic are in different AWS accounts, the topic owner must first
confirm the subscription. For more information, see Confirm the subscription in the Amazon Simple
Notification Service Developer Guide.

For information on subscribing to a cross-region SNS topic, see Sending Amazon SNS messages
to an Amazon SQS queue or AWS Lambda function in a different Region in the Amazon Simple
Notification Service Developer Guide

Configuring an Amazon SQS queue to trigger an AWS Lambda
function

You can use an AWS Lambda function to process messages in an Amazon SQS queue. Lambda polls
the queue and invokes your Lambda function synchronously with an event that contains queue
messages. To allow your function time to process each batch of records, set the source queue's
visibility timeout to at least six times the timeout that you configure on your function. The extra
time allows for Lambda to retry if your function is throttled while processing a previous batch.

You can specify another queue to act as a dead-letter queue for messages that your Lambda
function can't process.

A Lambda function can process items from multiple queues (using one Lambda event source for
each queue). You can use the same queue with multiple Lambda functions.

Configuring a Lambda trigger 121

https://docs.aws.amazon.com/sns/latest/dg/sns-publishing.html
https://docs.aws.amazon.com/sns/latest/dg/SendMessageToHttp.confirm.html
https://docs.aws.amazon.com/sns/latest/dg/sns-cross-region-delivery.html
https://docs.aws.amazon.com/sns/latest/dg/sns-cross-region-delivery.html
https://docs.aws.amazon.com/lambda/latest/dg/configuration-function-common.html#configuration-common-summary

Amazon Simple Queue Service Developer Guide

If you associate an encrypted queue with a Lambda function but Lambda doesn't poll for
messages, add the kms:Decrypt permission to your Lambda execution role.

Note the following restrictions:

• Your queue and the Lambda function must be in the same AWS Region.

• An encrypted queue that uses the default key (AWS managed KMS key for Amazon SQS) cannot
invoke a Lambda function in a different AWS account.

For information about implementing the Lambda function, see Using AWS Lambda with Amazon
SQS in the AWS Lambda Developer Guide.

Prerequisites

To configure Lambda function triggers, you must meet the following requirements:

• If you use a user, your Amazon SQS role must include the following permissions:

• lambda:CreateEventSourceMapping

• lambda:ListEventSourceMappings

• lambda:ListFunctions

• The Lambda execution role must include the following permissions:

• sqs:DeleteMessage

• sqs:GetQueueAttributes

• sqs:ReceiveMessage

• If you associate an encrypted queue with a Lambda function, add the kms:Decrypt permission
to the Lambda execution role.

For more information, see Overview of managing access in Amazon SQS.

To configure a queue to trigger a Lambda function (console)

1. Open the Amazon SQS console at https://console.aws.amazon.com/sqs/.

2. In the navigation pane, choose Queues.

3. On the Queues page, choose the queue to configure.

4. On the queue's page, choose the Lambda triggers tab.

Prerequisites 122

https://docs.aws.amazon.com/lambda/latest/dg/with-sqs.html
https://docs.aws.amazon.com/lambda/latest/dg/with-sqs.html
https://console.aws.amazon.com/sqs/

Amazon Simple Queue Service Developer Guide

5. On the Lambda triggers page, choose a Lambda trigger.

If the list doesn't include the Lambda trigger that you need, choose Configure Lambda
function trigger. Enter the Amazon Resource Name (ARN) of the Lambda function or choose
an existing resource. Then choose Save.

6. Choose Save. The console saves the configuration and displays the Details page for the queue.

On the Details page, the Lambda triggers tab displays the Lambda function and its status. It
takes approximately 1 minute for the Lambda function to become associated with your queue.

7. To verify the results of the configuration, send a message to your queue and then view the
triggered Lambda function in the Lambda console.

Automating notifications from AWS services to Amazon SQS
using Amazon EventBridge

Amazon EventBridge lets you automate AWS services and respond to system events such as
application availability issues or resource changes. Events from AWS services are delivered to
EventBridge nearly in real time. You can write simple rules to indicate which events are of interest
to you and what automated actions to take when an event matches a rule.

EventBridge lets you set a variety of targets—such as Amazon SQS standard and FIFO queues—
which receive events in JSON format. For more information, see Amazon EventBridge targets in the
Amazon EventBridge User Guide.

Sending a message with attributes using Amazon SQS

For standard and FIFO queues, you can include structured metadata (such as timestamps,
geospatial data, signatures, and identifiers) with messages. For more information, see Amazon SQS
message attributes.

To send a message with attributes to a queue using the Amazon SQS console

1. Open the Amazon SQS console at https://console.aws.amazon.com/sqs/.

2. In the navigation pane, choose Queues.

3. On the Queues page, choose a queue.

4. Choose Send and receive messages.

Automating notifications using EventBridge 123

https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-targets.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/
https://console.aws.amazon.com/sqs/

Amazon Simple Queue Service Developer Guide

5. Enter the message attribute parameters.

a. In the name text box, enter a unique name of up to 256 characters.

b. For the attribute type, choose String, Number, or Binary.

c. (Optional) Enter a custom data type. For example, you could add byte, int, or float as
custom data types for Number.

d. In the value text box, enter the message attribute value.

6. To add another message attribute., choose Add new attribute.

7. You can modify the attribute values any time before sending the message.

8. To delete an attribute, choose Remove. To delete the first attribute, close Message attributes.

9. When you finish adding attributes to the message, choose Send message. Your message is
sent and the console displays a success message. To view information about the message
attributes of the sent message, choose View details. Choose Done to close the Message
details dialog box.

Message attributes 124

Amazon Simple Queue Service Developer Guide

Amazon SQS best practices

Amazon SQS manages and processes message queues, facilitating smooth communication
between different parts of an application and ensuring scalable and reliable message handling.
This guide covers essential operational best practices for Amazon SQS, including using long
polling to minimize empty responses, implementing dead-letter queues for processing errors,
and optimizing queue permissions for security. The goal is to provide a concrete and actionable
approach to operating and troubleshooting Amazon SQS messaging.

Topics

• Amazon SQS error handling and problematic messages

• Amazon SQS message deduplication and grouping

• Amazon SQS message processing and timing

Amazon SQS error handling and problematic messages

This topic provides detailed instructions on managing and mitigating errors in Amazon SQS,
including techniques for handling request errors, capturing problematic messages, and configuring
dead-letter queue retention to ensure message reliability.

Topics

• Handling request errors in Amazon SQS

• Capturing problematic messages in Amazon SQS

• Setting-up dead-letter queue retention in Amazon SQS

Handling request errors in Amazon SQS

To handle request errors, use one of the following strategies:

• If you use an AWS SDK, you already have automatic retry and backoff logic at your disposal. For
more information, see Error Retries and Exponential Backoff in AWS in the Amazon Web Services
General Reference.

• If you don't use the AWS SDK features for retry and backoff, allow a pause (for example, 200
ms) before retrying the ReceiveMessage action after receiving no messages, a timeout, or an

Error handling and problematic messages 125

https://docs.aws.amazon.com/general/latest/gr/api-retries.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ReceiveMessage.html

Amazon Simple Queue Service Developer Guide

error message from Amazon SQS. For subsequent use of ReceiveMessage that gives the same
results, allow a longer pause (for example, 400 ms).

Capturing problematic messages in Amazon SQS

To capture all messages that can't be processed, and to collect accurate CloudWatch metrics,
configure a dead-letter queue.

• The redrive policy redirects messages to a dead-letter queue after the source queue fails to
process a message a specified number of times.

• Using a dead-letter queue decreases the number of messages and reduces the possibility of
exposing you to poison pill messages (messages that are received but can't be processed).

• Including a poison pill message in a queue can distort the ApproximateAgeOfOldestMessage
CloudWatch metric by giving an incorrect age of the poison pill message. Configuring a dead-
letter queue helps avoid false alarms when using this metric.

Setting-up dead-letter queue retention in Amazon SQS

For standard queues, the expiration of a message is always based on its original enqueue
timestamp. When a message is moved to a dead-letter queue, the enqueue timestamp is
unchanged. The ApproximateAgeOfOldestMessage metric indicates when the message moved
to the dead-letter queue, not when the message was originally sent. For example, assume that
a message spends 1 day in the original queue before it's moved to a dead-letter queue. If the
dead-letter queue's retention period is 4 days, the message is deleted from the dead-letter queue
after 3 days and the ApproximateAgeOfOldestMessage is 3 days. Thus, it is a best practice to
always set the retention period of a dead-letter queue to be longer than the retention period of
the original queue.

For FIFO queues, the enqueue timestamp resets when the message is moved to a dead-letter
queue. The ApproximateAgeOfOldestMessage metric indicates when the message moved to
the dead-letter queue. In the same example above, the message is deleted from the dead-letter
queue after 4 days and the ApproximateAgeOfOldestMessage is 4 days.

Capturing problematic messages in Amazon SQS 126

Amazon Simple Queue Service Developer Guide

Amazon SQS message deduplication and grouping

This topic provides best practices for ensuring consistent message processing in Amazon SQS,
including the use of message deduplication ID and message group ID properties to prevent
duplicate messages and manage message groups effectively.

Topics

• Avoiding inconsistent message processing in Amazon SQS

• Using the Amazon SQS message deduplication ID

• Using the Amazon SQS message group ID

• Using the Amazon SQS receive request attempt ID

Avoiding inconsistent message processing in Amazon SQS

Because Amazon SQS is a distributed system, it is possible for a consumer to not receive a message
even when Amazon SQS marks the message as delivered while returning successfully from a
ReceiveMessage API method call. In this case, Amazon SQS records the message as delivered at
least once, although the consumer has never received it. Because no additional attempts to deliver
messages are made under these conditions, we don't recommend setting the number of maximum
receives to 1 for a dead-letter queue.

Using the Amazon SQS message deduplication ID

Message deduplication ID is the token used for deduplication of sent messages. If a message with a
particular message deduplication ID is sent successfully, any messages sent with the same message
deduplication ID are accepted successfully but aren't delivered during the 5-minute deduplication
interval.

Note

Amazon SQS continues to keep track of the message deduplication ID even after the
message is received and deleted.

Message deduplication and grouping 127

Amazon Simple Queue Service Developer Guide

Providing the message deduplication ID in Amazon SQS

The producer should provide message deduplication ID values for each message in the following
scenarios:

• Messages sent with identical message bodies that Amazon SQS must treat as unique.

• Messages sent with identical content but different message attributes that Amazon SQS must
treat as unique.

• Messages sent with different content (for example, retry counts included in the message body)
that Amazon SQS must treat as duplicates.

Enabling deduplication for a single-producer/consumer system in Amazon SQS

If you have a single producer and a single consumer and the messages are unique because an
application-specific message ID is included in the body of the message, follow these best practices:

• Enable content-based deduplication for the queue (each of your messages has a unique body).
The producer can omit the message deduplication ID.

• When content-based deduplication is enabled for an Amazon SQS FIFO queue, and a message
is sent with a deduplication ID, the SendMessage deduplication ID overrides the generated
content-based deduplication ID.

• Although the consumer isn't required to provide a receive request attempt ID for each request,
it's a best practice because it allows fail-retry sequences to execute faster.

• You can retry send or receive requests because they don't interfere with the ordering of
messages in FIFO queues.

Designing for outage recovery scenarios in Amazon SQS

The deduplication process in FIFO queues is time-sensitive. When designing your application, make
sure that both the producer and the consumer can recover in case of a client or network outage.

• The producer must be aware of the deduplication interval of the queue. Amazon SQS has a
deduplication interval of 5 minutes. Retrying SendMessage requests after the deduplication
interval expires can introduce duplicate messages into the queue. For example, a mobile device
in a car sends messages whose order is important. If the car loses cellular connectivity for a
period of time before receiving an acknowledgement, retrying the request after regaining
cellular connectivity can create a duplicate.

Using the message deduplication ID 128

Amazon Simple Queue Service Developer Guide

• The consumer must have a visibility timeout that minimizes the risk of being unable to process
messages before the visibility timeout expires. You can extend the visibility timeout while the
messages are being processed by calling the ChangeMessageVisibility action. However, if
the visibility timeout expires, another consumer can immediately begin to process the messages,
causing a message to be processed multiple times. To avoid this scenario, configure a dead-letter
queue.

Working with visibility timeouts in Amazon SQS

For optimal performance, set the visibility timeout to be larger than the AWS SDK read timeout.
This applies to using the ReceiveMessage API action with either short polling or long polling.

Using the Amazon SQS message group ID

MessageGroupId is the tag that specifies that a message belongs to a specific message group.
Messages that belong to the same message group are always processed one by one, in a strict
order relative to the message group (however, messages that belong to different message groups
might be processed out of order).

Interleaving multiple ordered message groups in Amazon SQS

To interleave multiple ordered message groups within a single FIFO queue, use message group
ID values (for example, session data for multiple users). In this scenario, multiple consumers can
process the queue, but the session data of each user is processed in a FIFO manner.

Note

When messages that belong to a particular message group ID are invisible, no other
consumer can process messages with the same message group ID.

Avoiding processing duplicates in a multiple-producer/consumer system in
Amazon SQS

To avoid processing duplicate messages in a system with multiple producers and consumers where
throughput and latency are more important than ordering, the producer should generate a unique
message group ID for each message.

Using the message group ID 129

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SendMessage.html

Amazon Simple Queue Service Developer Guide

Note

In this scenario, duplicates are eliminated. However, the ordering of message can't be
guaranteed.
Any scenario with multiple producers and consumers increases the risk of inadvertently
delivering a duplicate message if a worker doesn't process the message within the visibility
timeout and the message becomes available to another worker.

Avoid having a large backlog of messages with the same message group ID in
Amazon SQS

For FIFO queues, there can be a maximum of 20,000 in flight messages (received from a queue
by a consumer, but not yet deleted from the queue). If you reach this quota, Amazon SQS returns
no error messages. A FIFO queue looks through the first 20k messages to determine available
message groups. This means that if you have a backlog of messages in a single message group, you
can't consume messages from other message groups that were sent to the queue at a later time
until you successfully consume the messages from the backlog.

Note

A backlog of messages that have the same message group ID might build up because of a
consumer that can't successfully process a message. Message processing issues can occur
because of an issue with the content of a message or because of a technical issue with the
consumer.
To move away messages that can't be processed repeatedly, and to unblock the processing
of other messages that have the same message group ID, consider setting up a dead-letter
queue policy.

Avoid reusing the same message group ID with virtual queues in Amazon SQS

To prevent messages with the same message group ID sent to different virtual queues with the
same host queue from blocking each other, avoid reusing the same message group ID with virtual
queues.

Using the message group ID 130

Amazon Simple Queue Service Developer Guide

Using the Amazon SQS receive request attempt ID

The receive request attempt ID is the token used for deduplication of ReceiveMessage calls.

During a long-lasting network outage that causes connectivity issues between your SDK and
Amazon SQS, it's a best practice to provide the receive request attempt ID and to retry with the
same receive request attempt ID if the SDK operation fails.

Amazon SQS message processing and timing

This topic provides a comprehensive guidance on optimizing the speed and efficiency of message
handling in Amazon SQS, including strategies for timely message processing, selecting the best
polling mode, and configuring long polling for improved performance.

Topics

• Processing messages in a timely manner in Amazon SQS

• Setting-up long polling in Amazon SQS

• Using the appropriate polling mode in Amazon SQS

Processing messages in a timely manner in Amazon SQS

Setting the visibility timeout depends on how long it takes your application to process and delete
a message. For example, if your application requires 10 seconds to process a message and you
set the visibility timeout to 15 minutes, you must wait for a relatively long time to attempt to
process the message again if the previous processing attempt fails. Alternatively, if your application
requires 10 seconds to process a message but you set the visibility timeout to only 2 seconds, a
duplicate message is received by another consumer while the original consumer is still working on
the message.

To make sure that there is sufficient time to process messages, use one of the following strategies:

• If you know (or can reasonably estimate) how long it takes to process a message, extend the
message's visibility timeout to the maximum time it takes to process and delete the message. For
more information, see Configuring the Visibility Timeout.

• If you don't know how long it takes to process a message, create a heartbeat for your consumer
process: Specify the initial visibility timeout (for example, 2 minutes) and then—as long as your

Using the receive request attempt ID 131

Amazon Simple Queue Service Developer Guide

consumer still works on the message—keep extending the visibility timeout by 2 minutes every
minute.

Important

The maximum visibility timeout is 12 hours from the time that Amazon SQS receives the
ReceiveMessage request. Extending the visibility timeout does not reset the 12 hour
maximum.
Additionally, you may be unable to set the timeout on an individual message to the full
12 hours (e.g. 43,200 seconds) since the ReceiveMessage request initiates the timer.
For example, if you receive a message and immediately set the 12 hour maximum by
sending a ChangeMessageVisibility call with VisibilityTimeout equal to 43,200
seconds, it will likely fail. However, using a value of 43,195 seconds will work unless
there is a significant delay between requesting the message via ReceiveMessage and
updating the visibility timeout. If your consumer needs longer than 12 hours, consider
using Step Functions.

Setting-up long polling in Amazon SQS

When the wait time for the ReceiveMessage API action is greater than 0, long polling is in
effect. The maximum long polling wait time is 20 seconds. Long polling helps reduce the cost of
using Amazon SQS by eliminating the number of empty responses (when there are no messages
available for a ReceiveMessage request) and false empty responses (when messages are available
but aren't included in a response). For more information, see Amazon SQS short and long polling.

For optimal message processing, use the following strategies:

• In most cases, you can set the ReceiveMessage wait time to 20 seconds. If 20 seconds is too
long for your application, set a shorter ReceiveMessage wait time (1 second minimum). If you
don't use an AWS SDK to access Amazon SQS, or if you configure an AWS SDK to have a shorter
wait time, you might have to modify your Amazon SQS client to either allow longer requests or
use a shorter wait time for long polling.

• If you implement long polling for multiple queues, use one thread for each queue instead of
a single thread for all queues. Using a single thread for each queue allows your application to
process the messages in each of the queues as they become available, while using a single thread
for polling multiple queues might cause your application to become unable to process messages

Setting-up long polling in Amazon SQS 132

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ReceiveMessage.html

Amazon Simple Queue Service Developer Guide

available in other queues while the application waits (up to 20 seconds) for the queue which
doesn't have any available messages.

Important

To avoid HTTP errors, make sure that the HTTP response timeout for ReceiveMessage
requests is longer than the WaitTimeSeconds parameter. For more information, see
ReceiveMessage.

Using the appropriate polling mode in Amazon SQS

• Long polling lets you consume messages from your Amazon SQS queue as soon as they become
available.

• To reduce the cost of using Amazon SQS and to decrease the number of empty receives to an
empty queue (responses to the ReceiveMessage action which return no messages), enable
long polling. For more information, see Amazon SQS Long Polling.

• To increase efficiency when polling for multiple threads with multiple receives, decrease the
number of threads.

• Long polling is preferable over short polling in most cases.

• Short polling returns responses immediately, even if the polled Amazon SQS queue is empty.

• To satisfy the requirements of an application that expects immediate responses to the
ReceiveMessage request, use short polling.

• Short polling is billed the same as long polling.

Using the appropriate polling mode in Amazon SQS 133

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ReceiveMessage.html

Amazon Simple Queue Service Developer Guide

Amazon SQS Java SDK examples

You can use the AWS SDK for Java to build Java applications that interact with Amazon Simple
Queue Service (Amazon SQS) and other AWS services. To install and set up the SDK, see Getting
started in the AWS SDK for Java 2.x Developer Guide.

For examples of basic Amazon SQS queue operations, such as how to create a queue or send a
message, see Working with Amazon SQS Message Queues in the AWS SDK for Java 2.x Developer
Guide.

The examples in this topic demonstrate additional Amazon SQS features, such as server-side
encryption (SSE), cost-allocation tags, and message attributes.

Topics

• Using server-side encryption with Amazon SQS queues

• Configuring tags for an Amazon SQS queue

• Sending message attributes to an Amazon SQS queue

Using server-side encryption with Amazon SQS queues

You can use the AWS SDK for Java to add server-side encryption (SSE) to an Amazon SQS queue.
Each queue uses an AWS Key Management Service (AWS KMS) KMS key to generate the data
encryption keys. This example uses the AWS managed KMS key for Amazon SQS. For more
information about using SSE and the role of the KMS key, see Encryption at rest in Amazon SQS.

Adding SSE to an existing queue

To enable server-side encryption for an existing queue, use the SetQueueAttributes method to
set the KmsMasterKeyId attribute.

The following code example sets the AWS KMS key as the AWS managed KMS key for Amazon SQS.
The example also sets the AWS KMS key reuse period to 140 seconds.

Before you run the example code, make sure that you have set your AWS credentials. For more
information, see Set up AWS Credentials and Region for Development in the AWS SDK for Java 2.x
Developer Guide.

// Create an SqsClient for the specified Region.

Using server-side encryption 134

https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/getting-started.html
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/getting-started.html
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/sqs-examples.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SetQueueAttributes.html
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/setup.html#setup-credentials

Amazon Simple Queue Service Developer Guide

SqsClient sqsClient = SqsClient.builder().region(Region.US_WEST_1).build();

// Get the URL of your queue.
String myQueueName = "my queue";
GetQueueUrlResponse getQueueUrlResponse =

 sqsClient.getQueueUrl(GetQueueUrlRequest.builder().queueName(myQueueName).build());
String queueUrl = getQueueUrlResponse.queueUrl();

// Create a hashmap for the attributes. Add the key alias and reuse period to the
 hashmap.
HashMap<QueueAttributeName, String> attributes = new HashMap<QueueAttributeName,
 String>();
final String kmsMasterKeyAlias = "alias/aws/sqs"; // the alias of the AWS managed KMS
 key for Amazon SQS.
attributes.put(QueueAttributeName.KMS_MASTER_KEY_ID, kmsMasterKeyAlias);
attributes.put(QueueAttributeName.KMS_DATA_KEY_REUSE_PERIOD_SECONDS, "140");

// Create the SetQueueAttributesRequest.
SetQueueAttributesRequest set_attrs_request = SetQueueAttributesRequest.builder()
 .queueUrl(queueUrl)
 .attributes(attributes)
 .build();

sqsClient.setQueueAttributes(set_attrs_request);

Disabling SSE for a queue

To disable server-side encryption for an existing queue, set the KmsMasterKeyId attribute to an
empty string using the SetQueueAttributes method.

Important

null isn't a valid value for KmsMasterKeyId.

Creating a queue with SSE

To enable SSE when you create the queue, add the KmsMasterKeyId attribute to the
CreateQueue API method.

Disabling SSE for a queue 135

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_CreateQueue.html

Amazon Simple Queue Service Developer Guide

The following example creates a new queue with SSE enabled. The queue uses the AWS managed
KMS key for Amazon SQS. The example also sets the AWS KMS key reuse period to 160 seconds.

Before you run the example code, make sure that you have set your AWS credentials. For more
information, see Set up AWS Credentials and Region for Development in the AWS SDK for Java 2.x
Developer Guide.

// Create an SqsClient for the specified Region.
SqsClient sqsClient = SqsClient.builder().region(Region.US_WEST_1).build();

// Create a hashmap for the attributes. Add the key alias and reuse period to the
 hashmap.
HashMap<QueueAttributeName, String> attributes = new HashMap<QueueAttributeName,
 String>();
final String kmsMasterKeyAlias = "alias/aws/sqs"; // the alias of the AWS managed KMS
 key for Amazon SQS.
attributes.put(QueueAttributeName.KMS_MASTER_KEY_ID, kmsMasterKeyAlias);
attributes.put(QueueAttributeName.KMS_DATA_KEY_REUSE_PERIOD_SECONDS, "140");

// Add the attributes to the CreateQueueRequest.
CreateQueueRequest createQueueRequest =
 CreateQueueRequest.builder()
 .queueName(queueName)
 .attributes(attributes)
 .build();
sqsClient.createQueue(createQueueRequest);

Retrieving SSE attributes

For information about retrieving queue attributes, see Examples in the Amazon Simple Queue
Service API Reference.

To retrieve the KMS key ID or the data key reuse period for a particular queue,
run the GetQueueAttributes method and retrieve the KmsMasterKeyId and
KmsDataKeyReusePeriodSeconds values.

Retrieving SSE attributes 136

https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/setup.html#setup-credentials
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_GetQueueAttributes.html#API_GetQueueAttributes_Examples
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_GetQueueAttributes.html

Amazon Simple Queue Service Developer Guide

Configuring tags for an Amazon SQS queue

Use cost-allocation tags to help organize and identify your Amazon SQS queues. The following
examples show how to configure tags using the AWS SDK for Java. For more information, see
Amazon SQS cost allocation tags.

Before you run the example code, make sure that you have set your AWS credentials. For more
information, see Set up AWS Credentials and Region for Development in the AWS SDK for Java 2.x
Developer Guide.

Listing tags

To list the tags for a queue, use the ListQueueTags method.

// Create an SqsClient for the specified region.
SqsClient sqsClient = SqsClient.builder().region(Region.US_WEST_1).build();

// Get the queue URL.
String queueName = "MyStandardQ1";
GetQueueUrlResponse getQueueUrlResponse =

 sqsClient.getQueueUrl(GetQueueUrlRequest.builder().queueName(queueName).build());
String queueUrl = getQueueUrlResponse.queueUrl();

// Create the ListQueueTagsRequest.
final ListQueueTagsRequest listQueueTagsRequest =

 ListQueueTagsRequest.builder().queueUrl(queueUrl).build();

// Retrieve the list of queue tags and print them.
final ListQueueTagsResponse listQueueTagsResponse =
 sqsClient.listQueueTags(listQueueTagsRequest);
System.out.println(String.format("ListQueueTags: \tTags for queue %s are %s.\n",
 queueName, listQueueTagsResponse.tags()));

Adding or updating tags

To add or update tag values for a queue, use the TagQueue method.

 // Create an SqsClient for the specified Region.

Configuring tags 137

https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/setup.html#setup-credentials

Amazon Simple Queue Service Developer Guide

SqsClient sqsClient = SqsClient.builder().region(Region.US_WEST_1).build();

// Get the queue URL.
String queueName = "MyStandardQ1";
GetQueueUrlResponse getQueueUrlResponse =

 sqsClient.getQueueUrl(GetQueueUrlRequest.builder().queueName(queueName).build());
String queueUrl = getQueueUrlResponse.queueUrl();

// Build a hashmap of the tags.
final HashMap<String, String> addedTags = new HashMap<>();
 addedTags.put("Team", "Development");
 addedTags.put("Priority", "Beta");
 addedTags.put("Accounting ID", "456def");

//Create the TagQueueRequest and add them to the queue.
final TagQueueRequest tagQueueRequest = TagQueueRequest.builder()
 .queueUrl(queueUrl)
 .tags(addedTags)
 .build();
sqsClient.tagQueue(tagQueueRequest);

Removing tags

To remove one or more tags from the queue, use the UntagQueue method. The following example
removes the Accounting ID tag.

// Create the UntagQueueRequest.
final UntagQueueRequest untagQueueRequest = UntagQueueRequest.builder()
 .queueUrl(queueUrl)
 .tagKeys("Accounting ID")
 .build();

// Remove the tag from this queue.
sqsClient.untagQueue(untagQueueRequest);

Removing tags 138

Amazon Simple Queue Service Developer Guide

Sending message attributes to an Amazon SQS queue

You can include structured metadata (such as timestamps, geospatial data, signatures, and
identifiers) with messages using message attributes. For more information, see Amazon SQS
message attributes.

Before you run the example code, make sure that you have set your AWS credentials. For more
information, see Set up AWS Credentials and Region for Development in the AWS SDK for Java 2.x
Developer Guide.

Defining attributes

To define an attribute for a message, add the following code, which uses the
MessageAttributeValue data type. For more information, see Message attribute components
and Message attribute data types.

The AWS SDK for Java automatically calculates the message body and message attribute
checksums and compares them with the data that Amazon SQS returns. For more information, see
the AWS SDK for Java 2.x Developer Guide and Calculating the MD5 message digest for message
attributes for other programming languages.

String

This example defines a String attribute named Name with the value Jane.

final Map<String, MessageAttributeValue> messageAttributes = new HashMap<>();
messageAttributes.put("Name", new MessageAttributeValue()
.withDataType("String")
.withStringValue("Jane"));

Number

This example defines a Number attribute named AccurateWeight with the value
230.000000000000000001.

final Map<String, MessageAttributeValue> messageAttributes = new HashMap<>();
messageAttributes.put("AccurateWeight", new MessageAttributeValue()
.withDataType("Number")
.withStringValue("230.000000000000000001"));

Sending message attributes 139

https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/setup.html#setup-credentials
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_MessageAttributeValue.html
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/

Amazon Simple Queue Service Developer Guide

Binary

This example defines a Binary attribute named ByteArray with the value of an uninitialized
10-byte array.

final Map<String, MessageAttributeValue> messageAttributes = new HashMap<>();
messageAttributes.put("ByteArray", new MessageAttributeValue()
.withDataType("Binary")
.withBinaryValue(ByteBuffer.wrap(new byte[10])));

String (custom)

This example defines the custom attribute String.EmployeeId named EmployeeId with the
value ABC123456.

final Map<String, MessageAttributeValue> messageAttributes = new HashMap<>();
messageAttributes.put("EmployeeId", new MessageAttributeValue()
.withDataType("String.EmployeeId")
.withStringValue("ABC123456"));

Number (custom)

This example defines the custom attribute Number.AccountId named AccountId with the
value 000123456.

final Map<String, MessageAttributeValue> messageAttributes = new HashMap<>();
messageAttributes.put("AccountId", new MessageAttributeValue()
.withDataType("Number.AccountId")
.withStringValue("000123456"));

Note

Because the base data type is Number, the ReceiveMessage method returns 123456.

Binary (custom)

This example defines the custom attribute Binary.JPEG named ApplicationIcon with the
value of an uninitialized 10-byte array.

final Map<String, MessageAttributeValue> messageAttributes = new HashMap<>();

Defining attributes 140

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ReceiveMessage.html

Amazon Simple Queue Service Developer Guide

messageAttributes.put("ApplicationIcon", new MessageAttributeValue()
.withDataType("Binary.JPEG")
.withBinaryValue(ByteBuffer.wrap(new byte[10])));

Sending a message with attributes

This example adds the attributes to the SendMessageRequest before sending the message.

// Send a message with an attribute.
final SendMessageRequest sendMessageRequest = new SendMessageRequest();
sendMessageRequest.withMessageBody("This is my message text.");
sendMessageRequest.withQueueUrl(myQueueUrl);
sendMessageRequest.withMessageAttributes(messageAttributes);
sqs.sendMessage(sendMessageRequest);

Important

If you send a message to a First-In-First-Out (FIFO) queue, make sure that the
sendMessage method executes after you provide the message group ID.
If you use the SendMessageBatch method instead of SendMessage, you must specify
message attributes for each message in the batch.

Sending a message with attributes 141

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SendMessageBatch.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SendMessage.html

Amazon Simple Queue Service Developer Guide

Using APIs with Amazon SQS

This section provides information about constructing Amazon SQS endpoints, making query API
requests using the GET and POST methods, and using batch API actions. For detailed information
about Amazon SQS actions—including parameters, errors, examples, and data types, see the
Amazon Simple Queue Service API Reference.

To access Amazon SQS using a variety of programming languages, you can also use AWS SDKs,
which contain the following automatic functionality:

• Cryptographically signing your service requests

• Retrying requests

• Handling error responses

For more information, see the section called “Working with AWS SDKs”.

For command line tool information, see the Amazon SQS sections in the AWS CLI Command
Reference and the AWS Tools for PowerShell Cmdlet Reference.

Amazon SQS APIs with AWS JSON protocol

Amazon SQS uses AWS JSON protocol as the transport mechanism for all Amazon SQS APIs on
the specified AWS SDK versions. AWS JSON protocol provides a higher throughput, lower latency,
and faster application-to-application communication. AWS JSON protocol is more efficient in
serialization/deserialization of requests and responses when compared to AWS query protocol. If
you still prefer to use the AWS query protocol with SQS APIs, see What languages are supported
for AWS JSON protocol used in Amazon SQS APIs? for the AWS SDK versions that support Amazon
SQS AWS query protocol.

Amazon SQS uses AWS JSON protocol to communicate between AWS SDK clients (for example,
Java, Python, Golang, JavaScript) and the Amazon SQS server. An HTTP request of an Amazon
SQS API operation accepts JSON formatted input. The Amazon SQS operation is executed, and the
execution response is sent back to the SDK client in JSON format. Compared to AWS query, AWS
JSON is simpler, faster, and more efficient to transport data between client and server.

• AWS JSON protocol acts as a mediator between the Amazon SQS client and server.

• The server doesn’t understand the programming language in which the Amazon SQS operation is
created, but it understands the AWS JSON protocol.

142

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_Operations.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_Types.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/
https://aws.amazon.com/tools/#sdk
https://docs.aws.amazon.com/cli/latest/reference/sqs/index.html
https://docs.aws.amazon.com/cli/latest/reference/sqs/index.html
https://docs.aws.amazon.com/powershell/latest/reference/

Amazon Simple Queue Service Developer Guide

• The AWS JSON protocol uses the serialization (convert object to JSON format) and de-
serialization (convert JSON format to object) between Amazon SQS client and server.

For more information about AWS JSON protocol with Amazon SQS, see Amazon SQS AWS JSON
protocol FAQs.

AWS JSON protocol is available on the specified AWS SDK version. To review SDK version and
release dates across language variants, see the AWS SDKs and Tools version support matrix in the
AWS SDKs and Tools Reference Guide

Topics

• Making query API requests using AWS JSON protocol in Amazon SQS

• Making query API requests using AWS query protocol in Amazon SQS

• Authenticating requests for Amazon SQS

• Amazon SQS batch actions

• Using Amazon SQS with an AWS SDK

Making query API requests using AWS JSON protocol in
Amazon SQS

In this section you learn how to construct an Amazon SQS endpoint, make POST requests, and
interpret responses.

Note

AWS JSON protocol is supported for most language variants. For a full list of supported
language variants, see What languages are supported for AWS JSON protocol used in
Amazon SQS APIs?.

Topics

• Constructing an endpoint

• Making a POST request

• Interpreting Amazon SQS JSON API responses

Making query API requests using AWS JSON protocol 143

https://docs.aws.amazon.com/sdkref/latest/guide/version-support-matrix.html

Amazon Simple Queue Service Developer Guide

• Amazon SQS AWS JSON protocol FAQs

Constructing an endpoint

To work with Amazon SQS queues, you must construct an endpoint. For information about Amazon
SQS endpoints, see the following pages in the Amazon Web Services General Reference:

• Regional endpoints

• Amazon Simple Queue Service endpoints and quotas

Every Amazon SQS endpoint is independent. For example, if two queues are named MyQueue
and one has the endpoint sqs.us-east-2.amazonaws.com while the other has the endpoint
sqs.eu-west-2.amazonaws.com, the two queues don't share any data with each other.

The following is an example of an endpoint that makes a request to create a queue.

POST / HTTP/1.1
Host: sqs.us-west-2.amazonaws.com
X-Amz-Target: AmazonSQS.CreateQueue
X-Amz-Date: <Date>
Content-Type: application/x-amz-json-1.0
Authorization: <AuthParams>
Content-Length: <PayloadSizeBytes>
Connection: Keep-Alive
{
 "QueueName":"MyQueue",
 "Attributes": {
 "VisibilityTimeout": "40"
 },
 "tags": {
 "QueueType": "Production"
 }
}

Note

Queue names and queue URLs are case sensitive.
The structure of AUTHPARAMS depends on the signature of the API request. For more
information, see Signing AWS API Requests in the Amazon Web Services General Reference.

Constructing an endpoint 144

https://docs.aws.amazon.com/general/latest/gr/rande.html#regional-endpoints
https://docs.aws.amazon.com/general/latest/gr/sqs-service
https://docs.aws.amazon.com/general/latest/gr/signing_aws_api_requests.html

Amazon Simple Queue Service Developer Guide

Making a POST request

An Amazon SQS POST request sends query parameters as a form in the body of an HTTP request.

The following is an example of an HTTP header with X-Amz-Target set to
AmazonSQS.<operationName>, and an HTTP header with Content-Type set to application/
x-amz-json-1.0.

POST / HTTP/1.1
Host: sqs.<region>.<domain>
X-Amz-Target: AmazonSQS.SendMessage
X-Amz-Date: <Date>
Content-Type: application/x-amz-json-1.0
Authorization: <AuthParams>
Content-Length: <PayloadSizeBytes>
Connection: Keep-Alive
{
 "QueueUrl": "https://sqs.<region>.<domain>/<awsAccountId>/<queueName>/",
 "MessageBody": "This is a test message",
}

This HTTP POST request sends a message to an Amazon SQS queue.

Note

Both HTTP headers X-Amz-Target and Content-Type are required.
Your HTTP client might add other items to the HTTP request, according to the client's HTTP
version.

Interpreting Amazon SQS JSON API responses

In response to an action request, Amazon SQS returns a JSON data structure that contains the
results of the request. For more information, see the individual actions in the Amazon Simple Queue
Service API Reference and Amazon SQS AWS JSON protocol FAQs.

Topics

• Successful JSON response structure

• JSON error response structure

Making a POST request 145

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/

Amazon Simple Queue Service Developer Guide

Successful JSON response structure

If the request is successful, the main response element is x-amzn-RequestId, which contains
the Universal Unique Identifier (UUID) of the request, as well as other appended response field(s).
For example, the following CreateQueue response contains the QueueUrl field, which, in turn,
contains the URL of the created queue.

HTTP/1.1 200 OK
x-amzn-RequestId: <requestId>
Content-Length: <PayloadSizeBytes>
Date: <Date>
Content-Type: application/x-amz-json-1.0
{
 "QueueUrl":"https://sqs.us-east-1.amazonaws.com/111122223333/MyQueue"
}

JSON error response structure

If a request is unsuccessful, Amazon SQS returns the main response, including the HTTP header
and the body.

In the HTTP header, x-amzn-RequestId contains the UUID of the request. x-amzn-query-
error contains two pieces of information: the type of error, and whether the error was a producer
or consumer error.

In the response body, "__type" indicates other error details, and Message indicates the error
condition in a readable format.

The following is an example error response in JSON format:

HTTP/1.1 400 Bad Request
x-amzn-RequestId: 66916324-67ca-54bb-a410-3f567a7a0571
x-amzn-query-error: AWS.SimpleQueueService.NonExistentQueue;Sender
Content-Length: <PayloadSizeBytes>
Date: <Date>
Content-Type: application/x-amz-json-1.0
{
 "__type": "com.amazonaws.sqs#QueueDoesNotExist",
 "message": "The specified queue does not exist."
}

Interpreting Amazon SQS JSON API responses 146

Amazon Simple Queue Service Developer Guide

Amazon SQS AWS JSON protocol FAQs

Frequently asked questions about using AWS JSON protocol with Amazon SQS.

What is AWS JSON protocol, and how does it differ from existing Amazon SQS API
requests and responses?

JSON is one of the most widely used and accepted wiring methods for communication between
heterogeneous systems. Amazon SQS uses JSON as a medium to communicate between an AWS
SDK client (for example, Java, Python, Golang, JavaScript) and Amazon SQS server. An HTTP
request of an Amazon SQS API operation accepts input in the form of JSON. The Amazon SQS
operation is executed and the response of execution is shared back to the SDK client in the form
of JSON. Compared to AWS query, JSON is more efficient at transporting data between client and
server.

• Amazon SQS AWS JSON protocol acts as a mediator between Amazon SQS client and server.

• The server doesn’t understand the programming language in which the Amazon SQS operation is
created, but it understands the AWS JSON protocol.

• The Amazon SQS AWS JSON protocol uses the serialization (convert object to JSON format) and
deserialization (convert JSON format to object) between the Amazon SQS client and server.

How do I get started with AWS JSON protocols for Amazon SQS?

To get started with the latest AWS SDK version to achieve faster messaging for Amazon SQS,
upgrade your AWS SDK to the specified version or any subsequent version. To learn more about
SDK clients, see the Guide column in the table below.

The following is a list of SDK versions across language variants for AWS JSON protocol for use with
Amazon SQS APIs:

Language SDK client repository Required SDK client
version

Guide

C++ aws/aws-sdk-cpp 1.11.98 AWS SDK for C++

Golang 1.x aws/aws-sdk-go v1.47.7 AWS SDK for Go

Amazon SQS AWS JSON protocol FAQs 147

https://github.com/aws/aws-sdk-cpp
https://github.com/aws/aws-sdk-cpp/releases/tag/1.11.198
https://aws.amazon.com/sdk-for-cpp/
https://github.com/aws/aws-sdk-go
https://github.com/aws/aws-sdk-go/releases/tag/v1.47.7
https://aws.amazon.com/sdk-for-go/

Amazon Simple Queue Service Developer Guide

Language SDK client repository Required SDK client
version

Guide

Golang 2.x aws/aws-sdk-go-v2 v1.28.0 AWS SDK for Go V2

Java 1.x aws/aws-sdk-java 1.12.585 AWS SDK for Java

Java 2.x aws/aws-sdk-java-v2 2.21.19 AWS SDK for Java

JavaScript v2.x aws/aws-sdk-js v2.1492.0 JavaScript on AWS

JavaScript v3.x aws/aws-sdk-js-v3 v3.447.0 JavaScript on AWS

.NET aws/aws-sdk-net 3.7.681.0 AWS SDK for .NET

PHP aws/aws-sdk-php 3.285.2 AWS SDK for PHP

Python-boto3 boto/boto3 1.28.82 AWS SDK for Python
(Boto3)

Python-botocore boto/botocore 1.31.82 AWS SDK for Python
(Boto3)

awscli AWS CLI 1.29.82 AWSCommand Line
Interface

Ruby aws/aws-sdk-ruby 1.67.0 AWS SDK for Ruby

What are the risks of enabling JSON protocol for my Amazon SQS workloads?

If you are using a custom implementation of AWS SDK or a combination of custom clients and AWS
SDK to interact with Amazon SQS that generates AWS Query based (aka XML-based) responses, it
may be incompatible with AWS JSON protocol. If you encounter any issues, contact AWS Support.

Amazon SQS AWS JSON protocol FAQs 148

https://github.com/aws/aws-sdk-go-v2
https://github.com/aws/aws-sdk-go-v2/blob/release-2023-11-09/service/sqs/CHANGELOG.md#v1270-2023-11-09
https://aws.github.io/aws-sdk-go-v2/docs/
https://github.com/aws/aws-sdk-java
https://github.com/aws/aws-sdk-java/releases/tag/1.12.585
https://aws.amazon.com/sdk-for-java/
https://github.com/aws/aws-sdk-java-v2
https://github.com/aws/aws-sdk-java-v2/releases/tag/2.21.19
https://aws.amazon.com/sdk-for-java/
https://github.com/aws/aws-sdk-js
https://github.com/aws/aws-sdk-java-v2/releases/tag/2.1492.0
https://aws.amazon.com/developer/language/javascript/
https://github.com/aws/aws-sdk-js-v3
https://github.com/aws/aws-sdk-js-v3/releases/tag/v3.447.0
https://aws.amazon.com/developer/language/javascript/
https://github.com/aws/aws-sdk-net
https://github.com/aws/aws-sdk-net/releases/tag/3.7.681.0
https://aws.amazon.com/sdk-for-net/
https://github.com/aws/aws-sdk-php
https://github.com/aws/aws-sdk-php/releases/tag/3.285.2
https://aws.amazon.com/sdk-for-php/
https://github.com/boto/boto3
https://github.com/boto/boto3/releases/tag/1.28.82
https://aws.amazon.com/sdk-for-python/
https://aws.amazon.com/sdk-for-python/
https://github.com/boto/botocore/
https://github.com/boto/botocore/releases/tag/1.31.82
https://aws.amazon.com/sdk-for-python/
https://aws.amazon.com/sdk-for-python/
https://github.com/aws/aws-cli
https://github.com/aws/aws-cli/releases/tag/1.29.82
https://aws.amazon.com/cli/
https://aws.amazon.com/cli/
https://github.com/aws/aws-sdk-ruby
https://rubygems.org/gems/aws-sdk-sqs/versions/1.67.0
https://aws.amazon.com/sdk-for-ruby/

Amazon Simple Queue Service Developer Guide

What if I am already on the latest AWS SDK version, but my open sourced solution
does not support JSON?

You must change your SDK version to the version previous to what you are using. See How do I get
started with AWS JSON protocols for Amazon SQS? for more information. AWS SDK versions listed
in How do I get started with AWS JSON protocols for Amazon SQS? uses JSON wire protocol for
Amazon SQS APIs. If you change your AWS SDK to the previous version, your Amazon SQS APIs will
use the AWS query.

What languages are supported for AWS JSON protocol used in Amazon SQS APIs?

Amazon SQS supports all language variants where AWS SDKs are generally available (GA).
Currently, we don't support Kotlin, Rust, or Swift. To learn more about other language variants, see
Tools to Build on AWS.

What regions are supported for AWS JSON protocol used in Amazon SQS APIs

Amazon SQS supports AWS JSON protocol in all AWS regions where Amazon SQS is available.

What latency improvements can I expect when upgrading to the specified AWS
SDK versions for Amazon SQS using the AWS JSON protocol?

AWS JSON protocol is more efficient at serialization and deserialization of requests and responses
when compared to AWS query protocol. Based on AWS performance tests for a 5 KB message
payload, JSON protocol for Amazon SQS reduces end-to-end message processing latency by up to
23%, and reduces application client side CPU and memory usage.

Will AWS query protocol be deprecated?

AWS query protocol will continue to be supported. You can continue using AWS query protocol as
long as your AWS SDK version is set any previous version other that what is listed in How do I get
started with AWS JSON protocols for Amazon SQS.

Where can I find more information about AWS JSON protocol?

You can find more information about JSON protocol at AWS JSON 1.0 protocol in the Smithy
documentation. For more about Amazon SQS API requests using AWS JSON protocol, see Making
query API requests using AWS JSON protocol in Amazon SQS.

Amazon SQS AWS JSON protocol FAQs 149

https://aws.amazon.com/developer/tools/
https://docs.aws.amazon.com/general/latest/gr/sqs-service.html
https://smithy.io/2.0/aws/protocols/aws-json-1_0-protocol.html

Amazon Simple Queue Service Developer Guide

Making query API requests using AWS query protocol in
Amazon SQS

In this section you learn how to construct an Amazon SQS endpoint, make GET and POST requests,
and interpret responses.

Topics

• Constructing an endpoint

• Making a GET request

• Making a POST request

• Interpreting Amazon SQS XML API responses

Constructing an endpoint

In order to work with Amazon SQS queues, you must construct an endpoint. For information about
Amazon SQS endpoints, see the following pages in the Amazon Web Services General Reference:

• Regional endpoints

• Amazon Simple Queue Service endpoints and quotas

Every Amazon SQS endpoint is independent. For example, if two queues are named MyQueue
and one has the endpoint sqs.us-east-2.amazonaws.com while the other has the endpoint
sqs.eu-west-2.amazonaws.com, the two queues don't share any data with each other.

The following is an example of an endpoint which makes a request to create a queue.

https://sqs.eu-west-2.amazonaws.com/
?Action=CreateQueue
&DefaultVisibilityTimeout=40
&QueueName=MyQueue
&Version=2012-11-05
&AUTHPARAMS

Note

Queue names and queue URLs are case sensitive.

Making query API requests using AWS query protocol 150

https://docs.aws.amazon.com/general/latest/gr/rande.html#sqs_region
https://docs.aws.amazon.com/general/latest/gr/sqs-service

Amazon Simple Queue Service Developer Guide

The structure of AUTHPARAMS depends on the signature of the API request. For more
information, see Signing AWS API Requests in the Amazon Web Services General Reference.

Making a GET request

An Amazon SQS GET request is structured as a URL which consists of the following:

• Endpoint – The resource that the request is acting on (the queue name and URL), for example:
https://sqs.us-east-2.amazonaws.com/123456789012/MyQueue

• Action – The action that you want to perform on the endpoint. A question mark (?) separates
the endpoint from the action, for example: ?Action=SendMessage&MessageBody=Your
%20Message%20Text

• Parameters – Any request parameters. Each parameter is separated by an ampersand (&), for
example: &Version=2012-11-05&AUTHPARAMS

The following is an example of a GET request that sends a message to an Amazon SQS queue.

https://sqs.us-east-2.amazonaws.com/123456789012/MyQueue
?Action=SendMessage&MessageBody=Your%20message%20text
&Version=2012-11-05
&AUTHPARAMS

Note

Queue names and queue URLs are case sensitive.
Because GET requests are URLs, you must URL-encode all parameter values. Because spaces
aren't allowed in URLs, each space is URL-encoded as %20. The rest of the example isn't
URL-encoded to make it easier to read.

Making a POST request

An Amazon SQS POST request sends query parameters as a form in the body of an HTTP request.

The following is an example of an HTTP header with Content-Type set to application/x-
www-form-urlencoded.

Making a GET request 151

https://docs.aws.amazon.com/general/latest/gr/signing_aws_api_requests.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_Operations.html

Amazon Simple Queue Service Developer Guide

POST /123456789012/MyQueue HTTP/1.1
Host: sqs.us-east-2.amazonaws.com
Content-Type: application/x-www-form-urlencoded

The header is followed by a form-urlencoded GET request that sends a message to an Amazon
SQS queue. Each parameter is separated by an ampersand (&).

Action=SendMessage
&MessageBody=Your+Message+Text
&Expires=2020-10-15T12%3A00%3A00Z
&Version=2012-11-05
&AUTHPARAMS

Note

Only the Content-Type HTTP header is required. The AUTHPARAMS is the same as for the
GET request.
Your HTTP client might add other items to the HTTP request, according to the client's HTTP
version.

Interpreting Amazon SQS XML API responses

In response to an action request, Amazon SQS returns an XML data structure that contains the
results of the request. For more information, see the individual actions in the Amazon Simple Queue
Service API Reference.

Topics

• Successful XML response structure

• XML error response structure

Successful XML response structure

If the request is successful, the main response element is named after the action, with Response
appended (for example, ActionNameResponse).

This element contains the following child elements:

Interpreting Amazon SQS XML API responses 152

https://www.w3.org/MarkUp/html-spec/html-spec_8.html#SEC8.2
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/

Amazon Simple Queue Service Developer Guide

• ActionNameResult – Contains an action-specific element. For example, the
CreateQueueResult element contains the QueueUrl element which, in turn, contains the URL
of the created queue.

• ResponseMetadata – Contains the RequestId which, in turn, contains the Universal Unique
Identifier (UUID) of the request.

The following is an example successful response in XML format:

<CreateQueueResponse
 xmlns=https://sqs.us-east-2.amazonaws.com/doc/2012-11-05/
 xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance
 xsi:type=CreateQueueResponse>
 <CreateQueueResult>
 <QueueUrl>https://sqs.us-east-2.amazonaws.com/770098461991/queue2</QueueUrl>
 </CreateQueueResult>
 <ResponseMetadata>
 <RequestId>cb919c0a-9bce-4afe-9b48-9bdf2412bb67</RequestId>
 </ResponseMetadata>
</CreateQueueResponse>

XML error response structure

If a request is unsuccessful, Amazon SQS always returns the main response element
ErrorResponse. This element contains an Error element and a RequestId element.

The Error element contains the following child elements:

• Type – Specifies whether the error was a producer or consumer error.

• Code – Specifies the type of error.

• Message – Specifies the error condition in a readable format.

• Detail – (Optional) Specifies additional details about the error.

The RequestId element contains the UUID of the request.

The following is an example error response in XML format:

<ErrorResponse>
 <Error>
 <Type>Sender</Type>

Interpreting Amazon SQS XML API responses 153

Amazon Simple Queue Service Developer Guide

 <Code>InvalidParameterValue</Code>
 <Message>
 Value (quename_nonalpha) for parameter QueueName is invalid.
 Must be an alphanumeric String of 1 to 80 in length.
 </Message>
 </Error>
 <RequestId>42d59b56-7407-4c4a-be0f-4c88daeea257</RequestId>
</ErrorResponse>

Authenticating requests for Amazon SQS

Authentication is the process of identifying and verifying the party that sends a request. During the
first stage of authentication, AWS verifies the identity of the producer and whether the producer
is registered to use AWS (for more information, see Step 1: Create an AWS account and IAM user).
Next, AWS abides by the following procedure:

1. The producer (sender) obtains the necessary credential.

2. The producer sends a request and the credential to the consumer (receiver).

3. The consumer uses the credential to verify whether the producer sent the request.

4. One of the following happens:

• If authentication succeeds, the consumer processes the request.

• If authentication fails, the consumer rejects the request and returns an error.

Topics

• Basic authentication process with HMAC-SHA

• Part 1: The request from the user

• Part 2: The response from AWS

Basic authentication process with HMAC-SHA

When you access Amazon SQS using the Query API, you must provide the following items to
authenticate your request:

• The AWS Access Key ID that identifies your AWS account, which AWS uses to look up your Secret
Access Key.

Authenticating requests 154

https://aws.amazon.com/

Amazon Simple Queue Service Developer Guide

• The HMAC-SHA request signature, calculated using your Secret Access Key (a shared secret
known only to you and AWS—for more information, see RFC2104). The AWS SDK handles the
signing process; however, if you submit a query request over HTTP or HTTPS, you must include a
signature in every query request.

1. Derive a Signature Version 4 Signing Key. For more information, see Deriving the Signing Key
with Java.

Note

Amazon SQS supports Signature Version 4, which provides improved SHA256-based
security and performance over previous versions. When you create new applications
that use Amazon SQS, use Signature Version 4.

2. Base64-encode the request signature. The following sample Java code does this:

package amazon.webservices.common;

// Define common routines for encoding data in AWS requests.
public class Encoding {

 /* Perform base64 encoding of input bytes.
 * rawData is the array of bytes to be encoded.
 * return is the base64-encoded string representation of rawData.
 */
 public static String EncodeBase64(byte[] rawData) {
 return Base64.encodeBytes(rawData);
 }
}

• The timestamp (or expiration) of the request. The timestamp that you use in the request must
be a dateTime object, with the complete date, including hours, minutes, and seconds. For
example: 2007-01-31T23:59:59Z Although this isn't required, we recommend providing the
object using the Coordinated Universal Time (Greenwich Mean Time) time zone.

Note

Make sure that your server time is set correctly. If you specify a timestamp (rather than
an expiration), the request automatically expires 15 minutes after the specified time

Basic authentication process with HMAC-SHA 155

http://www.faqs.org/rfcs/rfc2104.html
https://aws.amazon.com/code/
https://docs.aws.amazon.com/general/latest/gr/signature-v4-examples.html#signature-v4-examples-java
https://docs.aws.amazon.com/general/latest/gr/signature-v4-examples.html#signature-v4-examples-java
http://www.w3.org/TR/xmlschema-2/#dateTime

Amazon Simple Queue Service Developer Guide

(AWS doesn't process requests with timestamps more than 15 minutes earlier than the
current time on AWS servers).
If you use .NET, you must not send overly specific timestamps (because of different
interpretations of how extra time precision should be dropped). In this case, you should
manually construct dateTime objects with precision of no more than one millisecond.

Part 1: The request from the user

The following is the process you must follow to authenticate AWS requests using an HMAC-SHA
request signature.

1. Construct a request to AWS.

2. Calculate a keyed-hash message authentication code (HMAC-SHA) signature using your Secret
Access Key.

3. Include the signature and your Access Key ID in the request, and then send the request to AWS.

Part 1: The request from the user 156

Amazon Simple Queue Service Developer Guide

Part 2: The response from AWS

AWS begins the following process in response.

1. AWS uses the Access Key ID to look up your Secret Access Key.

2. AWS generates a signature from the request data and the Secret Access Key, using the same
algorithm that you used to calculate the signature you sent in the request.

3. One of the following happens:

• If the signature that AWS generates matches the one you send in the request, AWS considers
the request to be authentic.

• If the comparison fails, the request is discarded, and AWS returns an error.

Amazon SQS batch actions

Amazon SQS provides batch actions to help you reduce costs and manipulate up to 10 messages
with a single action. These batch actions include:

Part 2: The response from AWS 157

Amazon Simple Queue Service Developer Guide

• SendMessageBatch

• DeleteMessageBatch

• ChangeMessageVisibilityBatch

Using batch actions, you can perform multiple operations in a single API call, which helps optimize
performance and reduce costs. You can take advantage of batch functionality using the query API
or any AWS SDK that supports Amazon SQS batch actions.

Important Details

• Message Size Limit: The total size of all messages sent in a single SendMessageBatch call
cannot exceed 262,144 bytes (256 KiB).

• Permissions: You cannot set permissions explicitly for SendMessageBatch,
DeleteMessageBatch, or ChangeMessageVisibilityBatch. Instead, setting permissions
for SendMessageBatch, DeleteMessageBatch, or ChangeMessageVisibilityBatch sets
permissions for the corresponding batch versions of the actions.

• Console Support: The Amazon SQS console does not support batch actions. You must use the
query API or an AWS SDK to perform batch operations.

Batching message actions

To further optimize costs and efficiency, consider the following best practices for batching message
actions:

• Batch API Actions: Use the Amazon SQS batch API actions actions to send, receive, and delete
messages, and to change the message visibility timeout for multiple messages with a single
action. This reduces the number of API calls and associated costs.

• Client-Side Buffering and Long Polling: Combine client-side buffering with request batching by
using long polling together with the buffered asynchronous client included with the AWS SDK
for Java. This approach helps to minimize the number of requests and optimizes the handling of
large volumes of messages.

Note

The Amazon SQS Buffered Asynchronous Client doesn't currently support FIFO queues.

Batching message actions 158

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SendMessageBatch.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_DeleteMessageBatch.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ChangeMessageVisibilityBatch.html

Amazon Simple Queue Service Developer Guide

Enabling client-side buffering and request batching with Amazon SQS

The AWS SDK for Java includes AmazonSQSBufferedAsyncClient which accesses Amazon SQS.
This client allows for simple request batching using client-side buffering—calls made from the
client are first buffered and then sent as a batch request to Amazon SQS.

Client-side buffering allows up to 10 requests to be buffered and sent as a batch request,
decreasing your cost of using Amazon SQS and reducing the number of sent requests.
AmazonSQSBufferedAsyncClient buffers both synchronous and asynchronous calls. Batched
requests and support for long polling can also help increase throughput. For more information, see
Increasing throughput using horizontal scaling and action batching with Amazon SQS.

Because AmazonSQSBufferedAsyncClient implements the same interface
as AmazonSQSAsyncClient, migrating from AmazonSQSAsyncClient to
AmazonSQSBufferedAsyncClient typically requires only minimal changes to your existing code.

Note

The Amazon SQS Buffered Asynchronous Client doesn't currently support FIFO queues.

Topics

• Using AmazonSQSBufferedAsyncClient

• Configuring AmazonSQSBufferedAsyncClient

Using AmazonSQSBufferedAsyncClient

Before you begin, complete the steps in Setting up Amazon SQS.

Important

The AWS SDK for Java 2.x isn't currently compatible with the
AmazonSQSBufferedAsyncClient.

You can create a new AmazonSQSBufferedAsyncClient based on AmazonSQSAsyncClient,
for example:

Enabling client-side buffering and request batching with Amazon SQS 159

https://aws.amazon.com/sdkforjava/

Amazon Simple Queue Service Developer Guide

// Create the basic Amazon SQS async client
final AmazonSQSAsync sqsAsync = new AmazonSQSAsyncClient();

// Create the buffered client
final AmazonSQSAsync bufferedSqs = new AmazonSQSBufferedAsyncClient(sqsAsync);

After you create the new AmazonSQSBufferedAsyncClient, you can use it to send multiple
requests to Amazon SQS (just as you can with AmazonSQSAsyncClient), for example:

final CreateQueueRequest createRequest = new
 CreateQueueRequest().withQueueName("MyQueue");

final CreateQueueResult res = bufferedSqs.createQueue(createRequest);

final SendMessageRequest request = new SendMessageRequest();
final String body = "Your message text" + System.currentTimeMillis();
request.setMessageBody(body);
request.setQueueUrl(res.getQueueUrl());

final Future<SendMessageResult> sendResult = bufferedSqs.sendMessageAsync(request);

final ReceiveMessageRequest receiveRq = new ReceiveMessageRequest()
 .withMaxNumberOfMessages(1)
 .withQueueUrl(queueUrl);
final ReceiveMessageResult rx = bufferedSqs.receiveMessage(receiveRq);

Configuring AmazonSQSBufferedAsyncClient

AmazonSQSBufferedAsyncClient is preconfigured with settings that work for most use cases.
You can further configure AmazonSQSBufferedAsyncClient, for example:

1. Create an instance of the QueueBufferConfig class with the required configuration
parameters.

2. Provide the instance to the AmazonSQSBufferedAsyncClient constructor.

// Create the basic Amazon SQS async client
final AmazonSQSAsync sqsAsync = new AmazonSQSAsyncClient();

final QueueBufferConfig config = new QueueBufferConfig()
 .withMaxInflightReceiveBatches(5)

Enabling client-side buffering and request batching with Amazon SQS 160

Amazon Simple Queue Service Developer Guide

 .withMaxDoneReceiveBatches(15);

// Create the buffered client
final AmazonSQSAsync bufferedSqs = new AmazonSQSBufferedAsyncClient(sqsAsync, config);

QueueBufferConfig configuration parameters

Parameter Default value Description

longPoll true
When longPoll is set
to true, AmazonSQS
BufferedAsyncClient
attempts to use long polling
when it consumes messages.

longPollWaitTimeou
tSeconds

20 s
The maximum amount of
time (in seconds) which a
 ReceiveMessage call
blocks off on the server, w
aiting for messages to appear
in the queue before returning
 with an empty receive result.

Note

When long polling is
disabled, this setting
has no effect.

maxBatchOpenMs 200 ms
The maximum amount of
time (in milliseconds) that an
outgoing call waits for other
calls with which it batches
messages of the same type.

Enabling client-side buffering and request batching with Amazon SQS 161

Amazon Simple Queue Service Developer Guide

Parameter Default value Description

The higher the setting, the
fewer batches are required to
 perform the same amount of
work (however, the first call in
a batch has to spend a longer
time waiting).

When you set this parameter
to 0, submitted requests
don't wait for other requests,
effectively disabling batching
.

maxBatchSize 10 requests per batch
The maximum number of
messages that are batched
together in a single request.
The higher the setting, the
fewer batches are required to
carry out the same number of
requests.

Note

10 requests per batch
is the maximum
allowed value for
 Amazon SQS.

Enabling client-side buffering and request batching with Amazon SQS 162

Amazon Simple Queue Service Developer Guide

Parameter Default value Description

maxBatchSizeBytes 256 KiB
The maximum size of a
message batch, in bytes, that
the client attempts to send
to Amazon SQS.

Note

256 KiB is the
maximum allowed
value for Amazon
SQS.

Enabling client-side buffering and request batching with Amazon SQS 163

Amazon Simple Queue Service Developer Guide

Parameter Default value Description

maxDoneReceiveBatc
hes

10 batches
The maximum number
of receive batches that
 AmazonSQSBufferedA
syncClient prefetches
and stores client-side.

The higher the setting, the
more receive requests can be
 satisfied without having to
make a call to Amazon SQS
(however, the more messages
are prefetched, the longer
they remain in the buffer,
causing their own visibility
timeout to expire).

Note

0 indicates that
all message pre-
fetching is disabled
and messages are
consumed only on
demand.

Enabling client-side buffering and request batching with Amazon SQS 164

Amazon Simple Queue Service Developer Guide

Parameter Default value Description

maxInflightOutboun
dBatches

5 batches
The maximum number of
active outbound batches that
can be processed at the same
time.

The higher the setting, the
faster outbound batches can
be sent (subject to quotas
such as CPU or bandwidth
) and the more threads are
consumed by AmazonSQS
BufferedAsyncClient .

Enabling client-side buffering and request batching with Amazon SQS 165

Amazon Simple Queue Service Developer Guide

Parameter Default value Description

maxInflightReceive
Batches

10 batches
The maximum number of
active receive batches that
can be processed at the same
time.

The higher the setting,
the more messages can be
received (subject to quotas
such as CPU or bandwidth
), and the more threads are
consumed by AmazonSQS
BufferedAsyncClient .

Note

0 indicates that
all message pre-
fetching is disabled
and messages are
consumed only on
demand.

Enabling client-side buffering and request batching with Amazon SQS 166

Amazon Simple Queue Service Developer Guide

Parameter Default value Description

visibilityTimeoutS
econds

-1
When this parameter is set
to a positive, non-zero value,
the visibility timeout set
here overrides the visibility
timeout set on the queue
from which messages are
consumed.

Note

-1 indicates that
the default setting
is selected for the
queue.
You can't set visibility
timeout to 0.

Increasing throughput using horizontal scaling and action batching
with Amazon SQS

Amazon SQS queues can deliver very high throughput. For information on throughput quotas, see
Amazon SQS message quotas.

To achieve high throughput, you must scale message producers and consumers horizontally (add
more producers and consumers).

Topics

• Horizontal scaling

• Action batching

• Working Java example for single-operation and batch requests

Increasing throughput using horizontal scaling and action batching with Amazon SQS 167

Amazon Simple Queue Service Developer Guide

Horizontal scaling

Because you access Amazon SQS through an HTTP request-response protocol, the request latency
(the interval between initiating a request and receiving a response) limits the throughput that
you can achieve from a single thread using a single connection. For example, if the latency from
an Amazon EC2-based client to Amazon SQS in the same region averages 20 ms, the maximum
throughput from a single thread over a single connection averages 50 TPS.

Horizontal scaling involves increasing the number of message producers (which make
SendMessage requests) and consumers (which make ReceiveMessage and DeleteMessage
requests) in order to increase your overall queue throughput. You can scale horizontally in three
ways:

• Increase the number of threads per client

• Add more clients

• Increase the number of threads per client and add more clients

When you add more clients, you achieve essentially linear gains in queue throughput. For example,
if you double the number of clients, you also double the throughput.

Note

As you scale horizontally, make sure that your Amazon SQS client has enough connections
or threads to support the number of concurrent message producers and consumers that
send requests and receive responses. For example, by default, instances of the AWS SDK for
Java AmazonSQSClient class maintain at most 50 connections to Amazon SQS. To create
additional concurrent producers and consumers, you must adjust the maximum number of
allowable producer and consumer threads on an AmazonSQSClientBuilder object, for
example:

final AmazonSQS sqsClient = AmazonSQSClientBuilder.standard()
 .withClientConfiguration(new ClientConfiguration()
 .withMaxConnections(producerCount + consumerCount))
 .build();

For AmazonSQSAsyncClient, you also must make sure that enough threads are available.
This example only works for Java v. 1.x.

Increasing throughput using horizontal scaling and action batching with Amazon SQS 168

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SendMessage.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ReceiveMessage.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_DeleteMessage.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/sqs/AmazonSQSClient.html
https://docs.aws.amazon.com/sdk-for-java/v1/reference/com/amazonaws/services/sqs/AmazonSQSAsyncClient.html

Amazon Simple Queue Service Developer Guide

Action batching

Batching performs more work during each round trip to the service (for example, when you send
multiple messages with a single SendMessageBatch request). The Amazon SQS batch actions are
SendMessageBatch, DeleteMessageBatch, and ChangeMessageVisibilityBatch. To take
advantage of batching without changing your producers or consumers, you can use the Amazon
SQS Buffered Asynchronous Client.

Note

Because ReceiveMessage can process 10 messages at a time, there is no
ReceiveMessageBatch action.

Batching distributes the latency of the batch action over the multiple messages in a batch request,
rather than accept the entire latency for a single message (for example, a SendMessage request).
Because each round trip carries more work, batch requests make more efficient use of threads and
connections, improving throughput.

You can combine batching with horizontal scaling to provide throughput with fewer threads,
connections, and requests than individual message requests. You can use batched Amazon SQS
actions to send, receive, or delete up to 10 messages at a time. Because Amazon SQS charges by
the request, batching can substantially reduce your costs.

Batching can introduce some complexity for your application (for example, you application must
accumulate messages before sending them, or it sometimes must wait longer for a response).
However, batching can be still effective in the following cases:

• Your application generates many messages in a short time, so the delay is never very long.

• A message consumer fetches messages from a queue at its discretion, unlike typical message
producers that need to send messages in response to events they don't control.

Important

A batch request might succeed even though individual messages in the batch failed.
After a batch request, always check for individual message failures and retry the action if
necessary.

Increasing throughput using horizontal scaling and action batching with Amazon SQS 169

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SendMessageBatch.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_DeleteMessageBatch.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ChangeMessageVisibilityBatch.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ReceiveMessage.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SendMessage.html

Amazon Simple Queue Service Developer Guide

Working Java example for single-operation and batch requests

Prerequisites

Add the aws-java-sdk-sqs.jar, aws-java-sdk-ec2.jar, and commons-logging.jar
packages to your Java build class path. The following example shows these dependencies in a
Maven project pom.xml file.

<dependencies>
 <dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-java-sdk-sqs</artifactId>
 <version>LATEST</version>
 </dependency>
 <dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-java-sdk-ec2</artifactId>
 <version>LATEST</version>
 </dependency>
 <dependency>
 <groupId>commons-logging</groupId>
 <artifactId>commons-logging</artifactId>
 <version>LATEST</version>
 </dependency>
</dependencies>

SimpleProducerConsumer.java

The following Java code example implements a simple producer-consumer pattern. The main
thread spawns a number of producer and consumer threads that process 1 KB messages for
a specified time. This example includes producers and consumers that make single-operation
requests and those that make batch requests.

/*
 * Copyright 2010-2024 Amazon.com, Inc. or its affiliates. All Rights Reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License").
 * You may not use this file except in compliance with the License.
 * A copy of the License is located at
 *
 * https://aws.amazon.com/apache2.0
 *

Increasing throughput using horizontal scaling and action batching with Amazon SQS 170

Amazon Simple Queue Service Developer Guide

 * or in the "license" file accompanying this file. This file is distributed
 * on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
 * express or implied. See the License for the specific language governing
 * permissions and limitations under the License.
 *
 */

import com.amazonaws.AmazonClientException;
import com.amazonaws.ClientConfiguration;
import com.amazonaws.services.sqs.AmazonSQS;
import com.amazonaws.services.sqs.AmazonSQSClientBuilder;
import com.amazonaws.services.sqs.model.*;
import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;

import java.math.BigInteger;
import java.util.ArrayList;
import java.util.List;
import java.util.Random;
import java.util.Scanner;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.atomic.AtomicBoolean;
import java.util.concurrent.atomic.AtomicInteger;

/**
 * Start a specified number of producer and consumer threads, and produce-consume
 * for the least of the specified duration and 1 hour. Some messages can be left
 * in the queue because producers and consumers might not be in exact balance.
 */
public class SimpleProducerConsumer {

 // The maximum runtime of the program.
 private final static int MAX_RUNTIME_MINUTES = 60;
 private final static Log log = LogFactory.getLog(SimpleProducerConsumer.class);

 public static void main(String[] args) throws InterruptedException {

 final Scanner input = new Scanner(System.in);

 System.out.print("Enter the queue name: ");
 final String queueName = input.nextLine();

 System.out.print("Enter the number of producers: ");
 final int producerCount = input.nextInt();

Increasing throughput using horizontal scaling and action batching with Amazon SQS 171

Amazon Simple Queue Service Developer Guide

 System.out.print("Enter the number of consumers: ");
 final int consumerCount = input.nextInt();

 System.out.print("Enter the number of messages per batch: ");
 final int batchSize = input.nextInt();

 System.out.print("Enter the message size in bytes: ");
 final int messageSizeByte = input.nextInt();

 System.out.print("Enter the run time in minutes: ");
 final int runTimeMinutes = input.nextInt();

 /*
 * Create a new instance of the builder with all defaults (credentials
 * and region) set automatically. For more information, see Creating
 * Service Clients in the AWS SDK for Java Developer Guide.
 */
 final ClientConfiguration clientConfiguration = new ClientConfiguration()
 .withMaxConnections(producerCount + consumerCount);

 final AmazonSQS sqsClient = AmazonSQSClientBuilder.standard()
 .withClientConfiguration(clientConfiguration)
 .build();

 final String queueUrl = sqsClient
 .getQueueUrl(new GetQueueUrlRequest(queueName)).getQueueUrl();

 // The flag used to stop producer, consumer, and monitor threads.
 final AtomicBoolean stop = new AtomicBoolean(false);

 // Start the producers.
 final AtomicInteger producedCount = new AtomicInteger();
 final Thread[] producers = new Thread[producerCount];
 for (int i = 0; i < producerCount; i++) {
 if (batchSize == 1) {
 producers[i] = new Producer(sqsClient, queueUrl, messageSizeByte,
 producedCount, stop);
 } else {
 producers[i] = new BatchProducer(sqsClient, queueUrl, batchSize,
 messageSizeByte, producedCount,
 stop);
 }
 producers[i].start();

Increasing throughput using horizontal scaling and action batching with Amazon SQS 172

Amazon Simple Queue Service Developer Guide

 }

 // Start the consumers.
 final AtomicInteger consumedCount = new AtomicInteger();
 final Thread[] consumers = new Thread[consumerCount];
 for (int i = 0; i < consumerCount; i++) {
 if (batchSize == 1) {
 consumers[i] = new Consumer(sqsClient, queueUrl, consumedCount,
 stop);
 } else {
 consumers[i] = new BatchConsumer(sqsClient, queueUrl, batchSize,
 consumedCount, stop);
 }
 consumers[i].start();
 }

 // Start the monitor thread.
 final Thread monitor = new Monitor(producedCount, consumedCount, stop);
 monitor.start();

 // Wait for the specified amount of time then stop.
 Thread.sleep(TimeUnit.MINUTES.toMillis(Math.min(runTimeMinutes,
 MAX_RUNTIME_MINUTES)));
 stop.set(true);

 // Join all threads.
 for (int i = 0; i < producerCount; i++) {
 producers[i].join();
 }

 for (int i = 0; i < consumerCount; i++) {
 consumers[i].join();
 }

 monitor.interrupt();
 monitor.join();
 }

 private static String makeRandomString(int sizeByte) {
 final byte[] bs = new byte[(int) Math.ceil(sizeByte * 5 / 8)];
 new Random().nextBytes(bs);
 bs[0] = (byte) ((bs[0] | 64) & 127);
 return new BigInteger(bs).toString(32);
 }

Increasing throughput using horizontal scaling and action batching with Amazon SQS 173

Amazon Simple Queue Service Developer Guide

 /**
 * The producer thread uses {@code SendMessage}
 * to send messages until it is stopped.
 */
 private static class Producer extends Thread {
 final AmazonSQS sqsClient;
 final String queueUrl;
 final AtomicInteger producedCount;
 final AtomicBoolean stop;
 final String theMessage;

 Producer(AmazonSQS sqsQueueBuffer, String queueUrl, int messageSizeByte,
 AtomicInteger producedCount, AtomicBoolean stop) {
 this.sqsClient = sqsQueueBuffer;
 this.queueUrl = queueUrl;
 this.producedCount = producedCount;
 this.stop = stop;
 this.theMessage = makeRandomString(messageSizeByte);
 }

 /*
 * The producedCount object tracks the number of messages produced by
 * all producer threads. If there is an error, the program exits the
 * run() method.
 */
 public void run() {
 try {
 while (!stop.get()) {
 sqsClient.sendMessage(new SendMessageRequest(queueUrl,
 theMessage));
 producedCount.incrementAndGet();
 }
 } catch (AmazonClientException e) {
 /*
 * By default, AmazonSQSClient retries calls 3 times before
 * failing. If this unlikely condition occurs, stop.
 */
 log.error("Producer: " + e.getMessage());
 System.exit(1);
 }
 }
 }

Increasing throughput using horizontal scaling and action batching with Amazon SQS 174

Amazon Simple Queue Service Developer Guide

 /**
 * The producer thread uses {@code SendMessageBatch}
 * to send messages until it is stopped.
 */
 private static class BatchProducer extends Thread {
 final AmazonSQS sqsClient;
 final String queueUrl;
 final int batchSize;
 final AtomicInteger producedCount;
 final AtomicBoolean stop;
 final String theMessage;

 BatchProducer(AmazonSQS sqsQueueBuffer, String queueUrl, int batchSize,
 int messageSizeByte, AtomicInteger producedCount,
 AtomicBoolean stop) {
 this.sqsClient = sqsQueueBuffer;
 this.queueUrl = queueUrl;
 this.batchSize = batchSize;
 this.producedCount = producedCount;
 this.stop = stop;
 this.theMessage = makeRandomString(messageSizeByte);
 }

 public void run() {
 try {
 while (!stop.get()) {
 final SendMessageBatchRequest batchRequest =
 new SendMessageBatchRequest().withQueueUrl(queueUrl);

 final List<SendMessageBatchRequestEntry> entries =
 new ArrayList<SendMessageBatchRequestEntry>();
 for (int i = 0; i < batchSize; i++)
 entries.add(new SendMessageBatchRequestEntry()
 .withId(Integer.toString(i))
 .withMessageBody(theMessage));
 batchRequest.setEntries(entries);

 final SendMessageBatchResult batchResult =
 sqsClient.sendMessageBatch(batchRequest);
 producedCount.addAndGet(batchResult.getSuccessful().size());

 /*
 * Because SendMessageBatch can return successfully, but
 * individual batch items fail, retry the failed batch items.

Increasing throughput using horizontal scaling and action batching with Amazon SQS 175

Amazon Simple Queue Service Developer Guide

 */
 if (!batchResult.getFailed().isEmpty()) {
 log.warn("Producer: retrying sending "
 + batchResult.getFailed().size() + " messages");
 for (int i = 0, n = batchResult.getFailed().size();
 i < n; i++) {
 sqsClient.sendMessage(new
 SendMessageRequest(queueUrl, theMessage));
 producedCount.incrementAndGet();
 }
 }
 }
 } catch (AmazonClientException e) {
 /*
 * By default, AmazonSQSClient retries calls 3 times before
 * failing. If this unlikely condition occurs, stop.
 */
 log.error("BatchProducer: " + e.getMessage());
 System.exit(1);
 }
 }
 }

 /**
 * The consumer thread uses {@code ReceiveMessage} and {@code DeleteMessage}
 * to consume messages until it is stopped.
 */
 private static class Consumer extends Thread {
 final AmazonSQS sqsClient;
 final String queueUrl;
 final AtomicInteger consumedCount;
 final AtomicBoolean stop;

 Consumer(AmazonSQS sqsClient, String queueUrl, AtomicInteger consumedCount,
 AtomicBoolean stop) {
 this.sqsClient = sqsClient;
 this.queueUrl = queueUrl;
 this.consumedCount = consumedCount;
 this.stop = stop;
 }

 /*
 * Each consumer thread receives and deletes messages until the main
 * thread stops the consumer thread. The consumedCount object tracks the

Increasing throughput using horizontal scaling and action batching with Amazon SQS 176

Amazon Simple Queue Service Developer Guide

 * number of messages that are consumed by all consumer threads, and the
 * count is logged periodically.
 */
 public void run() {
 try {
 while (!stop.get()) {
 try {
 final ReceiveMessageResult result = sqsClient
 .receiveMessage(new
 ReceiveMessageRequest(queueUrl));

 if (!result.getMessages().isEmpty()) {
 final Message m = result.getMessages().get(0);
 sqsClient.deleteMessage(new
 DeleteMessageRequest(queueUrl,
 m.getReceiptHandle()));
 consumedCount.incrementAndGet();
 }
 } catch (AmazonClientException e) {
 log.error(e.getMessage());
 }
 }
 } catch (AmazonClientException e) {
 /*
 * By default, AmazonSQSClient retries calls 3 times before
 * failing. If this unlikely condition occurs, stop.
 */
 log.error("Consumer: " + e.getMessage());
 System.exit(1);
 }
 }
 }

 /**
 * The consumer thread uses {@code ReceiveMessage} and {@code
 * DeleteMessageBatch} to consume messages until it is stopped.
 */
 private static class BatchConsumer extends Thread {
 final AmazonSQS sqsClient;
 final String queueUrl;
 final int batchSize;
 final AtomicInteger consumedCount;
 final AtomicBoolean stop;

Increasing throughput using horizontal scaling and action batching with Amazon SQS 177

Amazon Simple Queue Service Developer Guide

 BatchConsumer(AmazonSQS sqsClient, String queueUrl, int batchSize,
 AtomicInteger consumedCount, AtomicBoolean stop) {
 this.sqsClient = sqsClient;
 this.queueUrl = queueUrl;
 this.batchSize = batchSize;
 this.consumedCount = consumedCount;
 this.stop = stop;
 }

 public void run() {
 try {
 while (!stop.get()) {
 final ReceiveMessageResult result = sqsClient
 .receiveMessage(new ReceiveMessageRequest(queueUrl)
 .withMaxNumberOfMessages(batchSize));

 if (!result.getMessages().isEmpty()) {
 final List<Message> messages = result.getMessages();
 final DeleteMessageBatchRequest batchRequest =
 new DeleteMessageBatchRequest()
 .withQueueUrl(queueUrl);

 final List<DeleteMessageBatchRequestEntry> entries =
 new ArrayList<DeleteMessageBatchRequestEntry>();
 for (int i = 0, n = messages.size(); i < n; i++)
 entries.add(new DeleteMessageBatchRequestEntry()
 .withId(Integer.toString(i))
 .withReceiptHandle(messages.get(i)
 .getReceiptHandle()));
 batchRequest.setEntries(entries);

 final DeleteMessageBatchResult batchResult = sqsClient
 .deleteMessageBatch(batchRequest);
 consumedCount.addAndGet(batchResult.getSuccessful().size());

 /*
 * Because DeleteMessageBatch can return successfully,
 * but individual batch items fail, retry the failed
 * batch items.
 */
 if (!batchResult.getFailed().isEmpty()) {
 final int n = batchResult.getFailed().size();
 log.warn("Producer: retrying deleting " + n
 + " messages");

Increasing throughput using horizontal scaling and action batching with Amazon SQS 178

Amazon Simple Queue Service Developer Guide

 for (BatchResultErrorEntry e : batchResult
 .getFailed()) {

 sqsClient.deleteMessage(
 new DeleteMessageRequest(queueUrl,
 messages.get(Integer
 .parseInt(e.getId()))
 .getReceiptHandle()));

 consumedCount.incrementAndGet();
 }
 }
 }
 }
 } catch (AmazonClientException e) {
 /*
 * By default, AmazonSQSClient retries calls 3 times before
 * failing. If this unlikely condition occurs, stop.
 */
 log.error("BatchConsumer: " + e.getMessage());
 System.exit(1);
 }
 }
 }

 /**
 * This thread prints every second the number of messages produced and
 * consumed so far.
 */
 private static class Monitor extends Thread {
 private final AtomicInteger producedCount;
 private final AtomicInteger consumedCount;
 private final AtomicBoolean stop;

 Monitor(AtomicInteger producedCount, AtomicInteger consumedCount,
 AtomicBoolean stop) {
 this.producedCount = producedCount;
 this.consumedCount = consumedCount;
 this.stop = stop;
 }

 public void run() {
 try {
 while (!stop.get()) {

Increasing throughput using horizontal scaling and action batching with Amazon SQS 179

Amazon Simple Queue Service Developer Guide

 Thread.sleep(1000);
 log.info("produced messages = " + producedCount.get()
 + ", consumed messages = " + consumedCount.get());
 }
 } catch (InterruptedException e) {
 // Allow the thread to exit.
 }
 }
 }
}

Monitoring volume metrics from the example run

Amazon SQS automatically generates volume metrics for sent, received, and deleted messages.
You can access those metrics and others through the Monitoring tab for your queue or on the
CloudWatch console.

Note

The metrics can take up to 15 minutes after the queue starts to become available.

Using Amazon SQS with an AWS SDK

AWS software development kits (SDKs) are available for many popular programming languages.
Each SDK provides an API, code examples, and documentation that make it easier for developers to
build applications in their preferred language.

SDK documentation Code examples

AWS SDK for C++ AWS SDK for C++ code examples

AWS CLI AWS CLI code examples

AWS SDK for Go AWS SDK for Go code examples

AWS SDK for Java AWS SDK for Java code examples

AWS SDK for JavaScript AWS SDK for JavaScript code examples

Working with AWS SDKs 180

https://console.aws.amazon.com/cloudwatch/home
https://docs.aws.amazon.com/sdk-for-cpp
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp
https://docs.aws.amazon.com/cli
https://docs.aws.amazon.com/code-library/latest/ug/cli_2_code_examples.html
https://docs.aws.amazon.com/sdk-for-go
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2
https://docs.aws.amazon.com/sdk-for-java
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2
https://docs.aws.amazon.com/sdk-for-javascript
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3

Amazon Simple Queue Service Developer Guide

SDK documentation Code examples

AWS SDK for Kotlin AWS SDK for Kotlin code examples

AWS SDK for .NET AWS SDK for .NET code examples

AWS SDK for PHP AWS SDK for PHP code examples

AWS Tools for PowerShell Tools for PowerShell code examples

AWS SDK for Python (Boto3) AWS SDK for Python (Boto3) code examples

AWS SDK for Ruby AWS SDK for Ruby code examples

AWS SDK for Rust AWS SDK for Rust code examples

AWS SDK for SAP ABAP AWS SDK for SAP ABAP code examples

AWS SDK for Swift AWS SDK for Swift code examples

Example availability

Can't find what you need? Request a code example by using the Provide feedback link at
the bottom of this page.

Working with AWS SDKs 181

https://docs.aws.amazon.com/sdk-for-kotlin
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin
https://docs.aws.amazon.com/sdk-for-net
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3
https://docs.aws.amazon.com/sdk-for-php
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/php
https://docs.aws.amazon.com/powershell
https://docs.aws.amazon.com/code-library/latest/ug/powershell_4_code_examples.html
https://docs.aws.amazon.com/pythonsdk
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python
https://docs.aws.amazon.com/sdk-for-ruby
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby
https://docs.aws.amazon.com/sdk-for-rust
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/rustv1
https://docs.aws.amazon.com/sdk-for-sapabap
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/sap-abap
https://docs.aws.amazon.com/sdk-for-swift
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/swift

Amazon Simple Queue Service Developer Guide

Using JMS with Amazon SQS

The Amazon SQS Java Messaging Library is a Java Message Service (JMS) interface for Amazon SQS
that lets you take advantage of Amazon SQS in applications that already use JMS. The interface
lets you use Amazon SQS as the JMS provider with minimal code changes. Together with the
AWS SDK for Java, the Amazon SQS Java Messaging Library lets you create JMS connections and
sessions, as well as producers and consumers that send and receive messages to and from Amazon
SQS queues.

The library supports sending and receiving messages to a queue (the JMS point-to-point model)
according to the JMS 1.1 specification. The library supports sending text, byte, or object messages
synchronously to Amazon SQS queues. The library also supports receiving objects synchronously or
asynchronously.

For information about features of the Amazon SQS Java Messaging Library that support the JMS
1.1 specification, see Amazon SQS supported JMS 1.1 implementations and the Amazon SQS FAQs.

Topics

• Prerequisites for working with JMS and Amazon SQS

• Using the Amazon SQS Java Messaging Library

• Using the Java Message Service with other Amazon SQS clients

• Working Java examples for using JMS with Amazon SQS standard queues

• Amazon SQS supported JMS 1.1 implementations

Prerequisites for working with JMS and Amazon SQS

Before you begin, you must have the following prerequisites:

• SDK for Java

There are two ways to include the SDK for Java in your project:

• Download and install the SDK for Java.

• Use Maven to get the Amazon SQS Java Messaging Library.

Prerequisites 182

http://docs.oracle.com/javaee/6/api/javax/jms/package-summary.html
https://aws.amazon.com/sqs/faqs/

Amazon Simple Queue Service Developer Guide

Note

The SDK for Java is included as a dependency.
The SDK for Java and Amazon SQS Extended Client Library for Java require the J2SE
Development Kit 8.0 or later.

For information about downloading the SDK for Java, see SDK for Java.

• Amazon SQS Java Messaging Library

If you don't use Maven, you must add the amazon-sqs-java-messaging-lib.jar package
to the Java class path. For information about downloading the library, see Amazon SQS Java
Messaging Library.

Note

The Amazon SQS Java Messaging Library includes support for Maven and the Spring
Framework.
For code samples that use Maven, the Spring Framework, and the Amazon SQS Java
Messaging Library, see Working Java examples for using JMS with Amazon SQS standard
queues.

<dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>amazon-sqs-java-messaging-lib</artifactId>
 <version>1.0.4</version>
 <type>jar</type>
</dependency>

• Amazon SQS Queue

Create a queue using the AWS Management Console for Amazon SQS, the CreateQueue API, or
the wrapped Amazon SQS client included in the Amazon SQS Java Messaging Library.

• For information about creating a queue with Amazon SQS using either the AWS Management
Console or the CreateQueue API, see Creating a Queue.

• For information about using the Amazon SQS Java Messaging Library, see Using the Amazon
SQS Java Messaging Library.

Prerequisites 183

https://aws.amazon.com/sdkforjava/
https://aws.amazon.com/sdkforjava/
https://github.com/awslabs/amazon-sqs-java-messaging-lib
https://github.com/awslabs/amazon-sqs-java-messaging-lib
http://maven.apache.org/
http://projects.spring.io/spring-framework/
http://projects.spring.io/spring-framework/

Amazon Simple Queue Service Developer Guide

Using the Amazon SQS Java Messaging Library

To get started using the Java Message Service (JMS) with Amazon SQS, use the code examples in
this section. The following sections show how to create a JMS connection and a session, and how to
send and receive a message.

The wrapped Amazon SQS client object included in the Amazon SQS Java Messaging Library checks
if an Amazon SQS queue exists. If the queue doesn't exist, the client creates it.

Creating a JMS connection

Before you begin, see the prerequisites in Prerequisites for working with JMS and Amazon SQS.

1. Create a connection factory and call the createConnection method against the factory.

// Create a new connection factory with all defaults (credentials and region) set
 automatically
SQSConnectionFactory connectionFactory = new SQSConnectionFactory(
 new ProviderConfiguration(),
 AmazonSQSClientBuilder.defaultClient()
);

// Create the connection.
SQSConnection connection = connectionFactory.createConnection();

The SQSConnection class extends javax.jms.Connection. Together with the JMS
standard connection methods, SQSConnection offers additional methods, such as
getAmazonSQSClient and getWrappedAmazonSQSClient. Both methods let you perform
administrative operations not included in the JMS specification, such as creating new queues.
However, the getWrappedAmazonSQSClient method also provides a wrapped version of the
Amazon SQS client used by the current connection. The wrapper transforms every exception
from the client into an JMSException, allowing it to be more easily used by existing code that
expects JMSException occurrences.

2. You can use the client objects returned from getAmazonSQSClient and
getWrappedAmazonSQSClient to perform administrative operations not included in the
JMS specification (for example, you can create an Amazon SQS queue).

If you have existing code that expects JMS exceptions, then you should use
getWrappedAmazonSQSClient:

Using the Java Messaging Library 184

Amazon Simple Queue Service Developer Guide

• If you use getWrappedAmazonSQSClient, the returned client object transforms all
exceptions into JMS exceptions.

• If you use getAmazonSQSClient, the exceptions are all Amazon SQS exceptions.

Creating an Amazon SQS queue

The wrapped client object checks if an Amazon SQS queue exists.

If a queue doesn't exist, the client creates it. If the queue does exist, the function doesn't
return anything. For more information, see the "Create the queue if needed" section in the
TextMessageSender.java example.

To create a standard queue

// Get the wrapped client
AmazonSQSMessagingClientWrapper client = connection.getWrappedAmazonSQSClient();

// Create an SQS queue named MyQueue, if it doesn't already exist
if (!client.queueExists("MyQueue")) {
 client.createQueue("MyQueue");
}

To create a FIFO queue

// Get the wrapped client
AmazonSQSMessagingClientWrapper client = connection.getWrappedAmazonSQSClient();

// Create an Amazon SQS FIFO queue named MyQueue.fifo, if it doesn't already exist
if (!client.queueExists("MyQueue.fifo")) {
 Map<String, String> attributes = new HashMap<String, String>();
 attributes.put("FifoQueue", "true");
 attributes.put("ContentBasedDeduplication", "true");
 client.createQueue(new
 CreateQueueRequest().withQueueName("MyQueue.fifo").withAttributes(attributes));
}

Note

The name of a FIFO queue must end with the .fifo suffix.

Creating an Amazon SQS queue 185

Amazon Simple Queue Service Developer Guide

For more information about the ContentBasedDeduplication attribute, see Exactly-
once processing in Amazon SQS.

Sending messages synchronously

1. When the connection and the underlying Amazon SQS queue are ready, create a
nontransacted JMS session with AUTO_ACKNOWLEDGE mode.

// Create the nontransacted session with AUTO_ACKNOWLEDGE mode
Session session = connection.createSession(false, Session.AUTO_ACKNOWLEDGE);

2. To send a text message to the queue, create a JMS queue identity and a message producer.

// Create a queue identity and specify the queue name to the session
Queue queue = session.createQueue("MyQueue");

// Create a producer for the 'MyQueue'
MessageProducer producer = session.createProducer(queue);

3. Create a text message and send it to the queue.

• To send a message to a standard queue, you don't need to set any additional parameters.

// Create the text message
TextMessage message = session.createTextMessage("Hello World!");

// Send the message
producer.send(message);
System.out.println("JMS Message " + message.getJMSMessageID());

• To send a message to a FIFO queue, you must set the message group ID. You can also set a
message deduplication ID. For more information, see Amazon SQS FIFO queue key terms.

// Create the text message
TextMessage message = session.createTextMessage("Hello World!");

// Set the message group ID
message.setStringProperty("JMSXGroupID", "Default");

// You can also set a custom message deduplication ID

Sending messages synchronously 186

Amazon Simple Queue Service Developer Guide

// message.setStringProperty("JMS_SQS_DeduplicationId", "hello");
// Here, it's not needed because content-based deduplication is enabled for the
 queue

// Send the message
producer.send(message);
System.out.println("JMS Message " + message.getJMSMessageID());
System.out.println("JMS Message Sequence Number " +
 message.getStringProperty("JMS_SQS_SequenceNumber"));

Receiving messages synchronously

1. To receive messages, create a consumer for the same queue and invoke the start method.

You can call the start method on the connection at any time. However, the consumer doesn't
begin to receive messages until you call it.

// Create a consumer for the 'MyQueue'
MessageConsumer consumer = session.createConsumer(queue);
// Start receiving incoming messages
connection.start();

2. Call the receive method on the consumer with a timeout set to 1 second, and then print the
contents of the received message.

• After receiving a message from a standard queue, you can access the contents of the
message.

// Receive a message from 'MyQueue' and wait up to 1 second
Message receivedMessage = consumer.receive(1000);

// Cast the received message as TextMessage and display the text
if (receivedMessage != null) {
 System.out.println("Received: " + ((TextMessage) receivedMessage).getText());
}

• After receiving a message from a FIFO queue, you can access the contents of the message
and other, FIFO-specific message attributes, such as the message group ID, message
deduplication ID, and sequence number. For more information, see Amazon SQS FIFO queue
key terms.

Receiving messages synchronously 187

Amazon Simple Queue Service Developer Guide

// Receive a message from 'MyQueue' and wait up to 1 second
Message receivedMessage = consumer.receive(1000);

// Cast the received message as TextMessage and display the text
if (receivedMessage != null) {
 System.out.println("Received: " + ((TextMessage) receivedMessage).getText());
 System.out.println("Group id: " +
 receivedMessage.getStringProperty("JMSXGroupID"));
 System.out.println("Message deduplication id: " +
 receivedMessage.getStringProperty("JMS_SQS_DeduplicationId"));
 System.out.println("Message sequence number: " +
 receivedMessage.getStringProperty("JMS_SQS_SequenceNumber"));
}

3. Close the connection and the session.

// Close the connection (and the session).
connection.close();

The output looks similar to the following:

JMS Message ID:8example-588b-44e5-bbcf-d816example2
Received: Hello World!

Note

You can use the Spring Framework to initialize these objects.
For additional information, see SpringExampleConfiguration.xml,
SpringExample.java, and the other helper classes in ExampleConfiguration.java
and ExampleCommon.java in the Working Java examples for using JMS with Amazon SQS
standard queues section.

For complete examples of sending and receiving objects, see TextMessageSender.java and
SyncMessageReceiver.java.

Receiving messages synchronously 188

Amazon Simple Queue Service Developer Guide

Receiving messages asynchronously

In the example in Using the Amazon SQS Java Messaging Library, a message is sent to MyQueue
and received synchronously.

The following example shows how to receive the messages asynchronously through a listener.

1. Implement the MessageListener interface.

class MyListener implements MessageListener {

 @Override
 public void onMessage(Message message) {
 try {
 // Cast the received message as TextMessage and print the text to
 screen.
 System.out.println("Received: " + ((TextMessage) message).getText());
 } catch (JMSException e) {
 e.printStackTrace();
 }
 }
}

The onMessage method of the MessageListener interface is called when you receive a
message. In this listener implementation, the text stored in the message is printed.

2. Instead of explicitly calling the receive method on the consumer, set the message listener of
the consumer to an instance of the MyListener implementation. The main thread waits for
one second.

// Create a consumer for the 'MyQueue'.
MessageConsumer consumer = session.createConsumer(queue);

// Instantiate and set the message listener for the consumer.
consumer.setMessageListener(new MyListener());

// Start receiving incoming messages.
connection.start();

// Wait for 1 second. The listener onMessage() method is invoked when a message is
 received.
Thread.sleep(1000);

Receiving messages asynchronously 189

Amazon Simple Queue Service Developer Guide

The rest of the steps are identical to the ones in the Using the Amazon SQS Java
Messaging Library example. For a complete example of an asynchronous consumer, see
AsyncMessageReceiver.java in Working Java examples for using JMS with Amazon SQS
standard queues.

The output for this example looks similar to the following:

JMS Message ID:8example-588b-44e5-bbcf-d816example2
Received: Hello World!

Using client acknowledge mode

The example in Using the Amazon SQS Java Messaging Library uses AUTO_ACKNOWLEDGE mode
where every received message is acknowledged automatically (and therefore deleted from the
underlying Amazon SQS queue).

1. To explicitly acknowledge the messages after they're processed, you must create the session
with CLIENT_ACKNOWLEDGE mode.

// Create the non-transacted session with CLIENT_ACKNOWLEDGE mode.
Session session = connection.createSession(false, Session.CLIENT_ACKNOWLEDGE);

2. When the message is received, display it and then explicitly acknowledge it.

// Cast the received message as TextMessage and print the text to screen. Also
 acknowledge the message.
if (receivedMessage != null) {
 System.out.println("Received: " + ((TextMessage) receivedMessage).getText());
 receivedMessage.acknowledge();
 System.out.println("Acknowledged: " + message.getJMSMessageID());
}

Note

In this mode, when a message is acknowledged, all messages received before this
message are implicitly acknowledged as well. For example, if 10 messages are received,
and only the 10th message is acknowledged (in the order the messages are received),
then all of the previous nine messages are also acknowledged.

Using client acknowledge mode 190

Amazon Simple Queue Service Developer Guide

The rest of the steps are identical to the ones in the Using the Amazon SQS Java Messaging Library
example. For a complete example of a synchronous consumer with client acknowledge mode, see
SyncMessageReceiverClientAcknowledge.java in Working Java examples for using JMS
with Amazon SQS standard queues.

The output for this example looks similar to the following:

JMS Message ID:4example-aa0e-403f-b6df-5e02example5
Received: Hello World!
Acknowledged: ID:4example-aa0e-403f-b6df-5e02example5

Using unordered acknowledge mode

When using CLIENT_ACKNOWLEDGE mode, all messages received before an explicitly-
acknowledged message are acknowledged automatically. For more information, see Using client
acknowledge mode.

The Amazon SQS Java Messaging Library provides another acknowledgement mode. When using
UNORDERED_ACKNOWLEDGE mode, all received messages must be individually and explicitly
acknowledged by the client, regardless of their reception order. To do this, create a session with
UNORDERED_ACKNOWLEDGE mode.

// Create the non-transacted session with UNORDERED_ACKNOWLEDGE mode.
Session session = connection.createSession(false, SQSSession.UNORDERED_ACKNOWLEDGE);

The remaining steps are identical to the ones in the Using client acknowledge mode example.
For a complete example of a synchronous consumer with UNORDERED_ACKNOWLEDGE mode, see
SyncMessageReceiverUnorderedAcknowledge.java.

In this example, the output looks similar to the following:

JMS Message ID:dexample-73ad-4adb-bc6c-4357example7
Received: Hello World!
Acknowledged: ID:dexample-73ad-4adb-bc6c-4357example7

Using the Java Message Service with other Amazon SQS clients

Using the Amazon SQS Java Message Service (JMS) Client with the AWS SDK limits Amazon SQS
message size to 256 KB. However, you can create a JMS provider using any Amazon SQS client. For

Using unordered acknowledge mode 191

Amazon Simple Queue Service Developer Guide

example, you can use the JMS Client with the Amazon SQS Extended Client Library for Java to send
an Amazon SQS message that contains a reference to a message payload (up to 2 GB) in Amazon
S3. For more information, see Managing large Amazon SQS messages using Java and Amazon S3.

The following Java code example creates the JMS provider for the Extended Client Library.

See the prerequisites in Prerequisites for working with JMS and Amazon SQS before testing this
example.

AmazonS3 s3 = new AmazonS3Client(credentials);
Region s3Region = Region.getRegion(Regions.US_WEST_2);
s3.setRegion(s3Region);

// Set the Amazon S3 bucket name, and set a lifecycle rule on the bucket to
// permanently delete objects a certain number of days after each object's creation
 date.
// Next, create the bucket, and enable message objects to be stored in the bucket.
BucketLifecycleConfiguration.Rule expirationRule = new
 BucketLifecycleConfiguration.Rule();
expirationRule.withExpirationInDays(14).withStatus("Enabled");
BucketLifecycleConfiguration lifecycleConfig = new
 BucketLifecycleConfiguration().withRules(expirationRule);

s3.createBucket(s3BucketName);
s3.setBucketLifecycleConfiguration(s3BucketName, lifecycleConfig);
System.out.println("Bucket created and configured.");

// Set the SQS extended client configuration with large payload support enabled.
ExtendedClientConfiguration extendedClientConfig = new ExtendedClientConfiguration()
 .withLargePayloadSupportEnabled(s3, s3BucketName);

AmazonSQS sqsExtended = new AmazonSQSExtendedClient(new AmazonSQSClient(credentials),
 extendedClientConfig);
Region sqsRegion = Region.getRegion(Regions.US_WEST_2);
sqsExtended.setRegion(sqsRegion);

The following Java code example creates the connection factory:

// Create the connection factory using the environment variable credential provider.
// Pass the configured Amazon SQS Extended Client to the JMS connection factory.
SQSConnectionFactory connectionFactory = new SQSConnectionFactory(
 new ProviderConfiguration(),
 sqsExtended

Using the JMS Client with other Amazon SQS clients 192

Amazon Simple Queue Service Developer Guide

);

// Create the connection.
SQSConnection connection = connectionFactory.createConnection();

Working Java examples for using JMS with Amazon SQS
standard queues

The following code examples show how to use the Java Message Service (JMS) with Amazon SQS
standard queues. For more information about working with FIFO queues, see To create a FIFO
queue, Sending messages synchronously, and Receiving messages synchronously. (Receiving
messages synchronously is the same for standard and FIFO queues. However, messages in FIFO
queues contain more attributes.)

See the prerequisites in Prerequisites for working with JMS and Amazon SQS before testing the
following examples.

ExampleConfiguration.java

The following Java SDK v 1.x code example sets the default queue name, the region, and the
credentials to be used with the other Java examples.

/*
 * Copyright 2010-2024 Amazon.com, Inc. or its affiliates. All Rights Reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License").
 * You may not use this file except in compliance with the License.
 * A copy of the License is located at
 *
 * https://aws.amazon.com/apache2.0
 *
 * or in the "license" file accompanying this file. This file is distributed
 * on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
 * express or implied. See the License for the specific language governing
 * permissions and limitations under the License.
 *
 */

public class ExampleConfiguration {
 public static final String DEFAULT_QUEUE_NAME = "SQSJMSClientExampleQueue";

Working Java examples for using JMS with standard queues 193

Amazon Simple Queue Service Developer Guide

 public static final Region DEFAULT_REGION = Region.getRegion(Regions.US_EAST_2);

 private static String getParameter(String args[], int i) {
 if(i + 1 >= args.length) {
 throw new IllegalArgumentException("Missing parameter for " + args[i]);
 }
 return args[i+1];
 }

 /**
 * Parse the command line and return the resulting config. If the config parsing
 fails
 * print the error and the usage message and then call System.exit
 *
 * @param app the app to use when printing the usage string
 * @param args the command line arguments
 * @return the parsed config
 */
 public static ExampleConfiguration parseConfig(String app, String args[]) {
 try {
 return new ExampleConfiguration(args);
 } catch (IllegalArgumentException e) {
 System.err.println("ERROR: " + e.getMessage());
 System.err.println();
 System.err.println("Usage: " + app + " [--queue <queue>] [--region
 <region>] [--credentials <credentials>] ");
 System.err.println(" or");
 System.err.println(" " + app + " <spring.xml>");
 System.exit(-1);
 return null;
 }
 }

 private ExampleConfiguration(String args[]) {
 for(int i = 0; i < args.length; ++i) {
 String arg = args[i];
 if(arg.equals("--queue")) {
 setQueueName(getParameter(args, i));
 i++;
 } else if(arg.equals("--region")) {
 String regionName = getParameter(args, i);
 try {
 setRegion(Region.getRegion(Regions.fromName(regionName)));
 } catch(IllegalArgumentException e) {

ExampleConfiguration.java 194

Amazon Simple Queue Service Developer Guide

 throw new IllegalArgumentException("Unrecognized region " +
 regionName);
 }
 i++;
 } else if(arg.equals("--credentials")) {
 String credsFile = getParameter(args, i);
 try {
 setCredentialsProvider(new
 PropertiesFileCredentialsProvider(credsFile));
 } catch (AmazonClientException e) {
 throw new IllegalArgumentException("Error reading credentials from
 " + credsFile, e);
 }
 i++;
 } else {
 throw new IllegalArgumentException("Unrecognized option " + arg);
 }
 }
 }

 private String queueName = DEFAULT_QUEUE_NAME;
 private Region region = DEFAULT_REGION;
 private AWSCredentialsProvider credentialsProvider = new
 DefaultAWSCredentialsProviderChain();

 public String getQueueName() {
 return queueName;
 }

 public void setQueueName(String queueName) {
 this.queueName = queueName;
 }

 public Region getRegion() {
 return region;
 }

 public void setRegion(Region region) {
 this.region = region;
 }

 public AWSCredentialsProvider getCredentialsProvider() {
 return credentialsProvider;
 }

ExampleConfiguration.java 195

Amazon Simple Queue Service Developer Guide

 public void setCredentialsProvider(AWSCredentialsProvider credentialsProvider) {
 // Make sure they're usable first
 credentialsProvider.getCredentials();
 this.credentialsProvider = credentialsProvider;
 }
}

TextMessageSender.java

The following Java code example creates a text message producer.

/*
 * Copyright 2010-2024 Amazon.com, Inc. or its affiliates. All Rights Reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License").
 * You may not use this file except in compliance with the License.
 * A copy of the License is located at
 *
 * https://aws.amazon.com/apache2.0
 *
 * or in the "license" file accompanying this file. This file is distributed
 * on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
 * express or implied. See the License for the specific language governing
 * permissions and limitations under the License.
 *
 */

public class TextMessageSender {
 public static void main(String args[]) throws JMSException {
 ExampleConfiguration config =
 ExampleConfiguration.parseConfig("TextMessageSender", args);

 ExampleCommon.setupLogging();

 // Create the connection factory based on the config
 SQSConnectionFactory connectionFactory = new SQSConnectionFactory(
 new ProviderConfiguration(),
 AmazonSQSClientBuilder.standard()
 .withRegion(config.getRegion().getName())
 .withCredentials(config.getCredentialsProvider())
);

TextMessageSender.java 196

Amazon Simple Queue Service Developer Guide

 // Create the connection
 SQSConnection connection = connectionFactory.createConnection();

 // Create the queue if needed
 ExampleCommon.ensureQueueExists(connection, config.getQueueName());

 // Create the session
 Session session = connection.createSession(false, Session.AUTO_ACKNOWLEDGE);
 MessageProducer producer =
 session.createProducer(session.createQueue(config.getQueueName()));

 sendMessages(session, producer);

 // Close the connection. This closes the session automatically
 connection.close();
 System.out.println("Connection closed");
 }

 private static void sendMessages(Session session, MessageProducer producer) {
 BufferedReader inputReader = new BufferedReader(
 new InputStreamReader(System.in, Charset.defaultCharset()));

 try {
 String input;
 while(true) {
 System.out.print("Enter message to send (leave empty to exit): ");
 input = inputReader.readLine();
 if(input == null || input.equals("")) break;

 TextMessage message = session.createTextMessage(input);
 producer.send(message);
 System.out.println("Send message " + message.getJMSMessageID());
 }
 } catch (EOFException e) {
 // Just return on EOF
 } catch (IOException e) {
 System.err.println("Failed reading input: " + e.getMessage());
 } catch (JMSException e) {
 System.err.println("Failed sending message: " + e.getMessage());
 e.printStackTrace();
 }
 }
}

TextMessageSender.java 197

Amazon Simple Queue Service Developer Guide

SyncMessageReceiver.java

The following Java code example creates a synchronous message consumer.

/*
 * Copyright 2010-2024 Amazon.com, Inc. or its affiliates. All Rights Reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License").
 * You may not use this file except in compliance with the License.
 * A copy of the License is located at
 *
 * https://aws.amazon.com/apache2.0
 *
 * or in the "license" file accompanying this file. This file is distributed
 * on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
 * express or implied. See the License for the specific language governing
 * permissions and limitations under the License.
 *
 */

public class SyncMessageReceiver {
public static void main(String args[]) throws JMSException {
 ExampleConfiguration config =
 ExampleConfiguration.parseConfig("SyncMessageReceiver", args);

 ExampleCommon.setupLogging();

 // Create the connection factory based on the config
 SQSConnectionFactory connectionFactory = new SQSConnectionFactory(
 new ProviderConfiguration(),
 AmazonSQSClientBuilder.standard()
 .withRegion(config.getRegion().getName())
 .withCredentials(config.getCredentialsProvider())
);

 // Create the connection
 SQSConnection connection = connectionFactory.createConnection();

 // Create the queue if needed
 ExampleCommon.ensureQueueExists(connection, config.getQueueName());

 // Create the session
 Session session = connection.createSession(false, Session.CLIENT_ACKNOWLEDGE);

SyncMessageReceiver.java 198

Amazon Simple Queue Service Developer Guide

 MessageConsumer consumer =
 session.createConsumer(session.createQueue(config.getQueueName()));

 connection.start();

 receiveMessages(session, consumer);

 // Close the connection. This closes the session automatically
 connection.close();
 System.out.println("Connection closed");
}

private static void receiveMessages(Session session, MessageConsumer consumer) {
 try {
 while(true) {
 System.out.println("Waiting for messages");
 // Wait 1 minute for a message
 Message message = consumer.receive(TimeUnit.MINUTES.toMillis(1));
 if(message == null) {
 System.out.println("Shutting down after 1 minute of silence");
 break;
 }
 ExampleCommon.handleMessage(message);
 message.acknowledge();
 System.out.println("Acknowledged message " + message.getJMSMessageID());
 }
 } catch (JMSException e) {
 System.err.println("Error receiving from SQS: " + e.getMessage());
 e.printStackTrace();
 }
}
}

AsyncMessageReceiver.java

The following Java code example creates an asynchronous message consumer.

/*
 * Copyright 2010-2024 Amazon.com, Inc. or its affiliates. All Rights Reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License").
 * You may not use this file except in compliance with the License.
 * A copy of the License is located at

AsyncMessageReceiver.java 199

Amazon Simple Queue Service Developer Guide

 *
 * https://aws.amazon.com/apache2.0
 *
 * or in the "license" file accompanying this file. This file is distributed
 * on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
 * express or implied. See the License for the specific language governing
 * permissions and limitations under the License.
 *
 */

public class AsyncMessageReceiver {
 public static void main(String args[]) throws JMSException, InterruptedException {
 ExampleConfiguration config =
 ExampleConfiguration.parseConfig("AsyncMessageReceiver", args);

 ExampleCommon.setupLogging();

 // Create the connection factory based on the config
 SQSConnectionFactory connectionFactory = new SQSConnectionFactory(
 new ProviderConfiguration(),
 AmazonSQSClientBuilder.standard()
 .withRegion(config.getRegion().getName())
 .withCredentials(config.getCredentialsProvider())
);

 // Create the connection
 SQSConnection connection = connectionFactory.createConnection();

 // Create the queue if needed
 ExampleCommon.ensureQueueExists(connection, config.getQueueName());

 // Create the session
 Session session = connection.createSession(false, Session.CLIENT_ACKNOWLEDGE);
 MessageConsumer consumer =
 session.createConsumer(session.createQueue(config.getQueueName()));

 // No messages are processed until this is called
 connection.start();

 ReceiverCallback callback = new ReceiverCallback();
 consumer.setMessageListener(callback);

 callback.waitForOneMinuteOfSilence();
 System.out.println("Returning after one minute of silence");

AsyncMessageReceiver.java 200

Amazon Simple Queue Service Developer Guide

 // Close the connection. This closes the session automatically
 connection.close();
 System.out.println("Connection closed");
 }

 private static class ReceiverCallback implements MessageListener {
 // Used to listen for message silence
 private volatile long timeOfLastMessage = System.nanoTime();

 public void waitForOneMinuteOfSilence() throws InterruptedException {
 for(;;) {
 long timeSinceLastMessage = System.nanoTime() - timeOfLastMessage;
 long remainingTillOneMinuteOfSilence =
 TimeUnit.MINUTES.toNanos(1) - timeSinceLastMessage;
 if(remainingTillOneMinuteOfSilence < 0) {
 break;
 }
 TimeUnit.NANOSECONDS.sleep(remainingTillOneMinuteOfSilence);
 }
 }

 @Override
 public void onMessage(Message message) {
 try {
 ExampleCommon.handleMessage(message);
 message.acknowledge();
 System.out.println("Acknowledged message " +
 message.getJMSMessageID());
 timeOfLastMessage = System.nanoTime();
 } catch (JMSException e) {
 System.err.println("Error processing message: " + e.getMessage());
 e.printStackTrace();
 }
 }
 }
}

SyncMessageReceiverClientAcknowledge.java

The following Java code example creates a synchronous consumer with client acknowledge mode.

SyncMessageReceiverClientAcknowledge.java 201

Amazon Simple Queue Service Developer Guide

/*
 * Copyright 2010-2024 Amazon.com, Inc. or its affiliates. All Rights Reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License").
 * You may not use this file except in compliance with the License.
 * A copy of the License is located at
 *
 * https://aws.amazon.com/apache2.0
 *
 * or in the "license" file accompanying this file. This file is distributed
 * on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
 * express or implied. See the License for the specific language governing
 * permissions and limitations under the License.
 *
 */

/**
 * An example class to demonstrate the behavior of CLIENT_ACKNOWLEDGE mode for received
 messages. This example
 * complements the example given in {@link SyncMessageReceiverUnorderedAcknowledge} for
 UNORDERED_ACKNOWLEDGE mode.
 *
 * First, a session, a message producer, and a message consumer are created. Then, two
 messages are sent. Next, two messages
 * are received but only the second one is acknowledged. After waiting for the
 visibility time out period, an attempt to
 * receive another message is made. It's shown that no message is returned for this
 attempt since in CLIENT_ACKNOWLEDGE mode,
 * as expected, all the messages prior to the acknowledged messages are also
 acknowledged.
 *
 * This ISN'T the behavior for UNORDERED_ACKNOWLEDGE mode. Please see {@link
 SyncMessageReceiverUnorderedAcknowledge}
 * for an example.
 */
public class SyncMessageReceiverClientAcknowledge {

 // Visibility time-out for the queue. It must match to the one set for the queue
 for this example to work.
 private static final long TIME_OUT_SECONDS = 1;

 public static void main(String args[]) throws JMSException, InterruptedException {
 // Create the configuration for the example

SyncMessageReceiverClientAcknowledge.java 202

Amazon Simple Queue Service Developer Guide

 ExampleConfiguration config =
 ExampleConfiguration.parseConfig("SyncMessageReceiverClientAcknowledge", args);

 // Setup logging for the example
 ExampleCommon.setupLogging();

 // Create the connection factory based on the config
 SQSConnectionFactory connectionFactory = new SQSConnectionFactory(
 new ProviderConfiguration(),
 AmazonSQSClientBuilder.standard()
 .withRegion(config.getRegion().getName())
 .withCredentials(config.getCredentialsProvider())
);

 // Create the connection
 SQSConnection connection = connectionFactory.createConnection();

 // Create the queue if needed
 ExampleCommon.ensureQueueExists(connection, config.getQueueName());

 // Create the session with client acknowledge mode
 Session session = connection.createSession(false, Session.CLIENT_ACKNOWLEDGE);

 // Create the producer and consume
 MessageProducer producer =
 session.createProducer(session.createQueue(config.getQueueName()));
 MessageConsumer consumer =
 session.createConsumer(session.createQueue(config.getQueueName()));

 // Open the connection
 connection.start();

 // Send two text messages
 sendMessage(producer, session, "Message 1");
 sendMessage(producer, session, "Message 2");

 // Receive a message and don't acknowledge it
 receiveMessage(consumer, false);

 // Receive another message and acknowledge it
 receiveMessage(consumer, true);

 // Wait for the visibility time out, so that unacknowledged messages reappear
 in the queue

SyncMessageReceiverClientAcknowledge.java 203

Amazon Simple Queue Service Developer Guide

 System.out.println("Waiting for visibility timeout...");
 Thread.sleep(TimeUnit.SECONDS.toMillis(TIME_OUT_SECONDS));

 // Attempt to receive another message and acknowledge it. This results in
 receiving no messages since
 // we have acknowledged the second message. Although we didn't explicitly
 acknowledge the first message,
 // in the CLIENT_ACKNOWLEDGE mode, all the messages received prior to the
 explicitly acknowledged message
 // are also acknowledged. Therefore, we have implicitly acknowledged the first
 message.
 receiveMessage(consumer, true);

 // Close the connection. This closes the session automatically
 connection.close();
 System.out.println("Connection closed.");
 }

 /**
 * Sends a message through the producer.
 *
 * @param producer Message producer
 * @param session Session
 * @param messageText Text for the message to be sent
 * @throws JMSException
 */
 private static void sendMessage(MessageProducer producer, Session session, String
 messageText) throws JMSException {
 // Create a text message and send it
 producer.send(session.createTextMessage(messageText));
 }

 /**
 * Receives a message through the consumer synchronously with the default timeout
 (TIME_OUT_SECONDS).
 * If a message is received, the message is printed. If no message is received,
 "Queue is empty!" is
 * printed.
 *
 * @param consumer Message consumer
 * @param acknowledge If true and a message is received, the received message is
 acknowledged.
 * @throws JMSException
 */

SyncMessageReceiverClientAcknowledge.java 204

Amazon Simple Queue Service Developer Guide

 private static void receiveMessage(MessageConsumer consumer, boolean acknowledge)
 throws JMSException {
 // Receive a message
 Message message =
 consumer.receive(TimeUnit.SECONDS.toMillis(TIME_OUT_SECONDS));

 if (message == null) {
 System.out.println("Queue is empty!");
 } else {
 // Since this queue has only text messages, cast the message object and
 print the text
 System.out.println("Received: " + ((TextMessage) message).getText());

 // Acknowledge the message if asked
 if (acknowledge) message.acknowledge();
 }
 }
}

SyncMessageReceiverUnorderedAcknowledge.java

The following Java code example creates a synchronous consumer with unordered acknowledge
mode.

/*
 * Copyright 2010-2024 Amazon.com, Inc. or its affiliates. All Rights Reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License").
 * You may not use this file except in compliance with the License.
 * A copy of the License is located at
 *
 * https://aws.amazon.com/apache2.0
 *
 * or in the "license" file accompanying this file. This file is distributed
 * on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
 * express or implied. See the License for the specific language governing
 * permissions and limitations under the License.
 *
 */

/**
 * An example class to demonstrate the behavior of UNORDERED_ACKNOWLEDGE mode for
 received messages. This example

SyncMessageReceiverUnorderedAcknowledge.java 205

Amazon Simple Queue Service Developer Guide

 * complements the example given in {@link SyncMessageReceiverClientAcknowledge} for
 CLIENT_ACKNOWLEDGE mode.
 *
 * First, a session, a message producer, and a message consumer are created. Then, two
 messages are sent. Next, two messages
 * are received but only the second one is acknowledged. After waiting for the
 visibility time out period, an attempt to
 * receive another message is made. It's shown that the first message received in the
 prior attempt is returned again
 * for the second attempt. In UNORDERED_ACKNOWLEDGE mode, all the messages must be
 explicitly acknowledged no matter what
 * the order they're received.
 *
 * This ISN'T the behavior for CLIENT_ACKNOWLEDGE mode. Please see {@link
 SyncMessageReceiverClientAcknowledge}
 * for an example.
 */
public class SyncMessageReceiverUnorderedAcknowledge {

 // Visibility time-out for the queue. It must match to the one set for the queue
 for this example to work.
 private static final long TIME_OUT_SECONDS = 1;

 public static void main(String args[]) throws JMSException, InterruptedException {
 // Create the configuration for the example
 ExampleConfiguration config =
 ExampleConfiguration.parseConfig("SyncMessageReceiverUnorderedAcknowledge", args);

 // Setup logging for the example
 ExampleCommon.setupLogging();

 // Create the connection factory based on the config
 SQSConnectionFactory connectionFactory = new SQSConnectionFactory(
 new ProviderConfiguration(),
 AmazonSQSClientBuilder.standard()
 .withRegion(config.getRegion().getName())
 .withCredentials(config.getCredentialsProvider())
);

 // Create the connection
 SQSConnection connection = connectionFactory.createConnection();

 // Create the queue if needed
 ExampleCommon.ensureQueueExists(connection, config.getQueueName());

SyncMessageReceiverUnorderedAcknowledge.java 206

Amazon Simple Queue Service Developer Guide

 // Create the session with unordered acknowledge mode
 Session session = connection.createSession(false,
 SQSSession.UNORDERED_ACKNOWLEDGE);

 // Create the producer and consume
 MessageProducer producer =
 session.createProducer(session.createQueue(config.getQueueName()));
 MessageConsumer consumer =
 session.createConsumer(session.createQueue(config.getQueueName()));

 // Open the connection
 connection.start();

 // Send two text messages
 sendMessage(producer, session, "Message 1");
 sendMessage(producer, session, "Message 2");

 // Receive a message and don't acknowledge it
 receiveMessage(consumer, false);

 // Receive another message and acknowledge it
 receiveMessage(consumer, true);

 // Wait for the visibility time out, so that unacknowledged messages reappear
 in the queue
 System.out.println("Waiting for visibility timeout...");
 Thread.sleep(TimeUnit.SECONDS.toMillis(TIME_OUT_SECONDS));

 // Attempt to receive another message and acknowledge it. This results in
 receiving the first message since
 // we have acknowledged only the second message. In the UNORDERED_ACKNOWLEDGE
 mode, all the messages must
 // be explicitly acknowledged.
 receiveMessage(consumer, true);

 // Close the connection. This closes the session automatically
 connection.close();
 System.out.println("Connection closed.");
 }

 /**
 * Sends a message through the producer.
 *

SyncMessageReceiverUnorderedAcknowledge.java 207

Amazon Simple Queue Service Developer Guide

 * @param producer Message producer
 * @param session Session
 * @param messageText Text for the message to be sent
 * @throws JMSException
 */
 private static void sendMessage(MessageProducer producer, Session session, String
 messageText) throws JMSException {
 // Create a text message and send it
 producer.send(session.createTextMessage(messageText));
 }

 /**
 * Receives a message through the consumer synchronously with the default timeout
 (TIME_OUT_SECONDS).
 * If a message is received, the message is printed. If no message is received,
 "Queue is empty!" is
 * printed.
 *
 * @param consumer Message consumer
 * @param acknowledge If true and a message is received, the received message is
 acknowledged.
 * @throws JMSException
 */
 private static void receiveMessage(MessageConsumer consumer, boolean acknowledge)
 throws JMSException {
 // Receive a message
 Message message =
 consumer.receive(TimeUnit.SECONDS.toMillis(TIME_OUT_SECONDS));

 if (message == null) {
 System.out.println("Queue is empty!");
 } else {
 // Since this queue has only text messages, cast the message object and
 print the text
 System.out.println("Received: " + ((TextMessage) message).getText());

 // Acknowledge the message if asked
 if (acknowledge) message.acknowledge();
 }
 }
}

SyncMessageReceiverUnorderedAcknowledge.java 208

Amazon Simple Queue Service Developer Guide

SpringExampleConfiguration.xml

The following XML code example is a bean configuration file for SpringExample.java.

<!--
 Copyright 2010-2024 Amazon.com, Inc. or its affiliates. All Rights Reserved.

 Licensed under the Apache License, Version 2.0 (the "License").
 You may not use this file except in compliance with the License.
 A copy of the License is located at

 https://aws.amazon.com/apache2.0

 or in the "license" file accompanying this file. This file is distributed
 on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
 express or implied. See the License for the specific language governing
 permissions and limitations under the License.
-->

<?xml version="1.0" encoding="UTF-8"?>
<beans
 xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:util="http://www.springframework.org/schema/util"
 xmlns:p="http://www.springframework.org/schema/p"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans http://www.springframework.org/
schema/beans/spring-beans-3.0.xsd
 http://www.springframework.org/schema/util http://www.springframework.org/
schema/util/spring-util-3.0.xsd
 ">

 <bean id="CredentialsProviderBean"
 class="com.amazonaws.auth.DefaultAWSCredentialsProviderChain"/>

 <bean id="ClientBuilder" class="com.amazonaws.services.sqs.AmazonSQSClientBuilder"
 factory-method="standard">
 <property name="region" value="us-east-2"/>
 <property name="credentials" ref="CredentialsProviderBean"/>
 </bean>

 <bean id="ProviderConfiguration"
 class="com.amazon.sqs.javamessaging.ProviderConfiguration">

SpringExampleConfiguration.xml 209

Amazon Simple Queue Service Developer Guide

 <property name="numberOfMessagesToPrefetch" value="5"/>
 </bean>

 <bean id="ConnectionFactory"
 class="com.amazon.sqs.javamessaging.SQSConnectionFactory">
 <constructor-arg ref="ProviderConfiguration" />
 <constructor-arg ref="ClientBuilder" />
 </bean>

 <bean id="Connection" class="javax.jms.Connection"
 factory-bean="ConnectionFactory"
 factory-method="createConnection"
 init-method="start"
 destroy-method="close" />

 <bean id="QueueName" class="java.lang.String">
 <constructor-arg value="SQSJMSClientExampleQueue"/>
 </bean>
</beans>

SpringExample.java

The following Java code example uses the bean configuration file to initialize your objects.

/*
 * Copyright 2010-2024 Amazon.com, Inc. or its affiliates. All Rights Reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License").
 * You may not use this file except in compliance with the License.
 * A copy of the License is located at
 *
 * https://aws.amazon.com/apache2.0
 *
 * or in the "license" file accompanying this file. This file is distributed
 * on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
 * express or implied. See the License for the specific language governing
 * permissions and limitations under the License.
 *
 */

public class SpringExample {
 public static void main(String args[]) throws JMSException {
 if(args.length != 1 || !args[0].endsWith(".xml")) {

SpringExample.java 210

Amazon Simple Queue Service Developer Guide

 System.err.println("Usage: " + SpringExample.class.getName() + " <spring
 config.xml>");
 System.exit(1);
 }

 File springFile = new File(args[0]);
 if(!springFile.exists() || !springFile.canRead()) {
 System.err.println("File " + args[0] + " doesn't exist or isn't
 readable.");
 System.exit(2);
 }

 ExampleCommon.setupLogging();

 FileSystemXmlApplicationContext context =
 new FileSystemXmlApplicationContext("file://" +
 springFile.getAbsolutePath());

 Connection connection;
 try {
 connection = context.getBean(Connection.class);
 } catch(NoSuchBeanDefinitionException e) {
 System.err.println("Can't find the JMS connection to use: " +
 e.getMessage());
 System.exit(3);
 return;
 }

 String queueName;
 try {
 queueName = context.getBean("QueueName", String.class);
 } catch(NoSuchBeanDefinitionException e) {
 System.err.println("Can't find the name of the queue to use: " +
 e.getMessage());
 System.exit(3);
 return;
 }

 if(connection instanceof SQSConnection) {
 ExampleCommon.ensureQueueExists((SQSConnection) connection, queueName);
 }

 // Create the session
 Session session = connection.createSession(false, Session.CLIENT_ACKNOWLEDGE);

SpringExample.java 211

Amazon Simple Queue Service Developer Guide

 MessageConsumer consumer =
 session.createConsumer(session.createQueue(queueName));

 receiveMessages(session, consumer);

 // The context can be setup to close the connection for us
 context.close();
 System.out.println("Context closed");
 }

 private static void receiveMessages(Session session, MessageConsumer consumer) {
 try {
 while(true) {
 System.out.println("Waiting for messages");
 // Wait 1 minute for a message
 Message message = consumer.receive(TimeUnit.MINUTES.toMillis(1));
 if(message == null) {
 System.out.println("Shutting down after 1 minute of silence");
 break;
 }
 ExampleCommon.handleMessage(message);
 message.acknowledge();
 System.out.println("Acknowledged message");
 }
 } catch (JMSException e) {
 System.err.println("Error receiving from SQS: " + e.getMessage());
 e.printStackTrace();
 }
 }
}

ExampleCommon.java

The following Java code example checks if an Amazon SQS queue exists and then creates one if it
doesn't. It also includes example logging code.

/*
 * Copyright 2010-2024 Amazon.com, Inc. or its affiliates. All Rights Reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License").
 * You may not use this file except in compliance with the License.
 * A copy of the License is located at
 *

ExampleCommon.java 212

Amazon Simple Queue Service Developer Guide

 * https://aws.amazon.com/apache2.0
 *
 * or in the "license" file accompanying this file. This file is distributed
 * on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
 * express or implied. See the License for the specific language governing
 * permissions and limitations under the License.
 *
 */

public class ExampleCommon {
 /**
 * A utility function to check the queue exists and create it if needed. For most
 * use cases this is usually done by an administrator before the application is
 run.
 */
 public static void ensureQueueExists(SQSConnection connection, String queueName)
 throws JMSException {
 AmazonSQSMessagingClientWrapper client =
 connection.getWrappedAmazonSQSClient();

 /**
 * In most cases, you can do this with just a createQueue call, but
 GetQueueUrl
 * (called by queueExists) is a faster operation for the common case where the
 queue
 * already exists. Also many users and roles have permission to call
 GetQueueUrl
 * but don't have permission to call CreateQueue.
 */
 if(!client.queueExists(queueName)) {
 client.createQueue(queueName);
 }
 }

 public static void setupLogging() {
 // Setup logging
 BasicConfigurator.configure();
 Logger.getRootLogger().setLevel(Level.WARN);
 }

 public static void handleMessage(Message message) throws JMSException {
 System.out.println("Got message " + message.getJMSMessageID());
 System.out.println("Content: ");
 if(message instanceof TextMessage) {

ExampleCommon.java 213

Amazon Simple Queue Service Developer Guide

 TextMessage txtMessage = (TextMessage) message;
 System.out.println("\t" + txtMessage.getText());
 } else if(message instanceof BytesMessage){
 BytesMessage byteMessage = (BytesMessage) message;
 // Assume the length fits in an int - SQS only supports sizes up to 256k so
 that
 // should be true
 byte[] bytes = new byte[(int)byteMessage.getBodyLength()];
 byteMessage.readBytes(bytes);
 System.out.println("\t" + Base64.encodeAsString(bytes));
 } else if(message instanceof ObjectMessage) {
 ObjectMessage objMessage = (ObjectMessage) message;
 System.out.println("\t" + objMessage.getObject());
 }
 }
}

Amazon SQS supported JMS 1.1 implementations

The Amazon SQS Java Messaging Library supports the following JMS 1.1 implementations.
For more information about the supported features and capabilities of the Amazon SQS Java
Messaging Library, see the Amazon SQS FAQ.

Supported common interfaces

• Connection

• ConnectionFactory

• Destination

• Session

• MessageConsumer

• MessageProducer

Supported message types

• ByteMessage

• ObjectMessage

• TextMessage

Supported JMS 1.1 implementations 214

http://docs.oracle.com/javaee/6/api/javax/jms/package-summary.html
https://aws.amazon.com/sqs/faqs/

Amazon Simple Queue Service Developer Guide

Supported message acknowledgment modes

• AUTO_ACKNOWLEDGE

• CLIENT_ACKNOWLEDGE

• DUPS_OK_ACKNOWLEDGE

• UNORDERED_ACKNOWLEDGE

Note

The UNORDERED_ACKNOWLEDGE mode isn't part of the JMS 1.1 specification. This mode
helps Amazon SQS allow a JMS client to explicitly acknowledge a message.

JMS-defined headers and reserved properties

For sending messages

When you send messages, you can set the following headers and properties for each message:

• JMSXGroupID (required for FIFO queues, not allowed for standard queues)

• JMS_SQS_DeduplicationId (optional for FIFO queues, not allowed for standard queues)

After you send messages, Amazon SQS sets the following headers and properties for each
message:

• JMSMessageID

• JMS_SQS_SequenceNumber (only for FIFO queues)

For receiving messages

When you receive messages, Amazon SQS sets the following headers and properties for each
message:

• JMSDestination

• JMSMessageID

• JMSRedelivered

Supported message acknowledgment modes 215

Amazon Simple Queue Service Developer Guide

• JMSXDeliveryCount

• JMSXGroupID (only for FIFO queues)

• JMS_SQS_DeduplicationId (only for FIFO queues)

• JMS_SQS_SequenceNumber (only for FIFO queues)

JMS-defined headers and reserved properties 216

Amazon Simple Queue Service Developer Guide

Amazon SQS tutorials

This section provides tutorials that you can use to explore Amazon SQS features and functionality.

Topics

• Creating an Amazon SQS queue using AWS CloudFormation

• Tutorial: Sending a message to an Amazon SQS queue from Amazon Virtual Private Cloud

Creating an Amazon SQS queue using AWS CloudFormation

You can use the AWS CloudFormation console and a JSON (or YAML) template to create an Amazon
SQS queue. For more information, see Working with AWS CloudFormation Templates and the
AWS::SQS::Queue Resource in the AWS CloudFormation User Guide.

To use AWS CloudFormation to create an Amazon SQS queue.

1. Copy the following JSON code to a file named MyQueue.json. To create a standard queue,
omit the FifoQueue and ContentBasedDeduplication properties. For more information
on content-based deduplication, see Exactly-once processing in Amazon SQS.

Note

The name of a FIFO queue must end with the .fifo suffix.

{
 "AWSTemplateFormatVersion": "2010-09-09",
 "Resources": {
 "MyQueue": {
 "Properties": {
 "QueueName": "MyQueue.fifo",
 "FifoQueue": true,
 "ContentBasedDeduplication": true
 },
 "Type": "AWS::SQS::Queue"
 }
 },
 "Outputs": {

Creating an Amazon SQS queue using AWS CloudFormation 217

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/template-guide.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-sqs-queue.html

Amazon Simple Queue Service Developer Guide

 "QueueName": {
 "Description": "The name of the queue",
 "Value": {
 "Fn::GetAtt": [
 "MyQueue",
 "QueueName"
]
 }
 },
 "QueueURL": {
 "Description": "The URL of the queue",
 "Value": {
 "Ref": "MyQueue"
 }
 },
 "QueueARN": {
 "Description": "The ARN of the queue",
 "Value": {
 "Fn::GetAtt": [
 "MyQueue",
 "Arn"
]
 }
 }
 }
}

2. Sign in to the AWS CloudFormation console, and then choose Create Stack.

3. On the Specify Template panel, choose Upload a template file, choose your MyQueue.json
file, and then choose Next.

4. On the Specify Details page, type MyQueue for Stack Name, and then choose Next.

5. On the Options page, choose Next.

6. On the Review page, choose Create.

AWS CloudFormation begins to create the MyQueue stack and displays the
CREATE_IN_PROGRESS status. When the process is complete, AWS CloudFormation displays
the CREATE_COMPLETE status.

Creating an Amazon SQS queue using AWS CloudFormation 218

https://console.aws.amazon.com/cloudformation

Amazon Simple Queue Service Developer Guide

7. (Optional) To display the name, URL, and ARN of the queue, choose the name of the stack and
then on the next page expand the Outputs section.

Tutorial: Sending a message to an Amazon SQS queue from
Amazon Virtual Private Cloud

In this tutorial, you learn how to send messages to an Amazon SQS queue over a secure, private
network. This network consists of a VPC that contains an Amazon EC2 instance. The instance
connects to Amazon SQS through an interface VPC endpoint, allowing you to connect to the
Amazon EC2 instance and send messages to the Amazon SQS queue even though the network is
disconnected from the public internet. For more information, see Amazon Virtual Private Cloud
endpoints for Amazon SQS.

Important

• You can use Amazon Virtual Private Cloud only with HTTPS Amazon SQS endpoints.

• When you configure Amazon SQS to send messages from Amazon VPC, you must enable
private DNS and specify endpoints in the format sqs.us-east-2.amazonaws.com.

• Private DNS doesn't support legacy endpoints such as queue.amazonaws.com or us-
east-2.queue.amazonaws.com.

Topics

• Step 1: Create an Amazon EC2 key pair

• Step 2: Create AWS resources

• Step 3: Confirm that your EC2 instance isn't publicly accessible

• Step 4: Create an Amazon VPC endpoint for Amazon SQS

• Step 5: Send a message to your Amazon SQS queue

Step 1: Create an Amazon EC2 key pair

A key pair lets you connect to an Amazon EC2 instance. It consists of a public key that encrypts your
login information and a private key that decrypts it.

Sending a message from a VPC 219

Amazon Simple Queue Service Developer Guide

1. Sign in to the Amazon EC2 console.

2. On the navigation menu, under Network & Security, choose Key Pairs.

3. Choose Create Key Pair.

4. In the Create Key Pair dialog box, for Key pair name, enter SQS-VPCE-Tutorial-Key-Pair,
and then choose Create.

5. Your browser downloads the private key file SQS-VPCE-Tutorial-Key-Pair.pem
automatically.

Important

Save this file in a safe place. EC2 does not generate a .pem file for the same key pair a
second time.

6. To allow an SSH client to connect to your EC2 instance, set the permissions for your private key
file so that only your user can have read permissions for it, for example:

chmod 400 SQS-VPCE-Tutorial-Key-Pair.pem

Step 2: Create AWS resources

To set up the necessary infrastructure, you must use an AWS CloudFormation template, which is
a blueprint for creating a stack comprised of AWS resources, such as Amazon EC2 instances and
Amazon SQS queues.

The stack for this tutorial includes the following resources:

• A VPC and the associated networking resources, including a subnet, a security group, an internet
gateway, and a route table

• An Amazon EC2 instance launched into the VPC subnet

• An Amazon SQS queue

1. Download the AWS CloudFormation template named SQS-VPCE-Tutorial-
CloudFormation.yaml from GitHub.

2. Sign in to the AWS CloudFormation console.

3. Choose Create Stack.

Step 2: Create AWS resources 220

https://console.aws.amazon.com/ec2/
https://github.com/aws-samples/amazon-sqs-samples/blob/master/templates/SQS-VPCE-Tutorial-CloudFormation.yaml
https://github.com/aws-samples/amazon-sqs-samples/blob/master/templates/SQS-VPCE-Tutorial-CloudFormation.yaml
https://console.aws.amazon.com/cloudformation/

Amazon Simple Queue Service Developer Guide

4. On the Select Template page, choose Upload a template to Amazon S3, select the SQS-
VPCE-SQS-Tutorial-CloudFormation.yaml file, and then choose Next.

5. On the Specify Details page, do the following:

a. For Stack name, enter SQS-VPCE-Tutorial-Stack.

b. For KeyName, choose SQS-VPCE-Tutorial-Key-Pair.

c. Choose Next.

6. On the Options page, choose Next.

7. On the Review page, in the Capabilities section, choose I acknowledge that AWS
CloudFormation might create IAM resources with custom names., and then choose Create.

AWS CloudFormation begins to create the stack and displays the CREATE_IN_PROGRESS status.
When the process is complete, AWS CloudFormation displays the CREATE_COMPLETE status.

Step 3: Confirm that your EC2 instance isn't publicly accessible

Your AWS CloudFormation template launches an EC2 instance named SQS-VPCE-Tutorial-EC2-
Instance into your VPC. This EC2 instance doesn't allow outbound traffic and isn't able to send
messages to Amazon SQS. To verify this, you must connect to the instance, try to connect to a
public endpoint, and then try to message Amazon SQS.

1. Sign in to the Amazon EC2 console.

2. On the navigation menu, under Instances, choose Instances.

3. Select SQS-VPCE-Tutorial-EC2Instance.

4. Copy the hostname under Public DNS (IPv4), for example, ec2-203-0-113-0.us-
west-2.compute.amazonaws.com.

5. From the directory that contains the key pair that you created earlier, connect to the instance
using the following command, for example:

ssh -i SQS-VPCE-Tutorial-Key-Pair.pem ec2-user@ec2-203-0-113-0.us-
east-2.compute.amazonaws.com

6. Try to connect to any public endpoint, for example:

ping amazon.com

Step 3: Confirm that your EC2 instance isn't publicly accessible 221

https://console.aws.amazon.com/ec2/

Amazon Simple Queue Service Developer Guide

The connection attempt fails, as expected.

7. Sign in to the Amazon SQS console.

8. From the list of queues, select the queue created by your AWS CloudFormation template, for
example, VPCE-SQS-Tutorial-Stack-CFQueue-1ABCDEFGH2IJK.

9. On the Details table, copy the URL, for example, https://sqs.us-
east-2.amazonaws.com/123456789012/.

10. From your EC2 instance, try to publish a message to the queue using the following command,
for example:

aws sqs send-message --region us-east-2 --endpoint-url https://sqs.us-
east-2.amazonaws.com/ --queue-url https://sqs.us-east-2.amazonaws.com/123456789012/
 --message-body "Hello from Amazon SQS."

The sending attempt fails, as expected.

Important

Later, when you create a VPC endpoint for Amazon SQS, your sending attempt will
succeed.

Step 4: Create an Amazon VPC endpoint for Amazon SQS

To connect your VPC to Amazon SQS, you must define an interface VPC endpoint. After you add
the endpoint, you can use the Amazon SQS API from the EC2 instance in your VPC. This allows you
to send messages to a queue within the AWS network without crossing the public internet.

Note

The EC2 instance still doesn't have access to other AWS services and endpoints on the
internet.

1. Sign in to the Amazon VPC console.

2. On the navigation menu, choose Endpoints.

3. Choose Create Endpoint.

Step 4: Create an Amazon VPC endpoint for Amazon SQS 222

https://console.aws.amazon.com/sqs/
https://console.aws.amazon.com/vpc/

Amazon Simple Queue Service Developer Guide

4. On the Create Endpoint page, for Service Name, choose the service name for Amazon SQS.

Note

The service names vary based on the current AWS Region. For example, if you are in US
East (Ohio), the service name is com.amazonaws.us-east-2.sqs.

5. For VPC, choose SQS-VPCE-Tutorial-VPC.

6. For Subnets, choose the subnet whose Subnet ID contains SQS-VPCE-Tutorial-Subnet.

7. For Security group, choose Select security groups, and then choose the security group whose
Group Name contains SQS VPCE Tutorial Security Group.

8. Choose Create endpoint.

The interface VPC endpoint is created and its ID is displayed, for example,
vpce-0ab1cdef2ghi3j456k.

9. Choose Close.

The Amazon VPC console opens the Endpoints page.

Amazon VPC begins to create the endpoint and displays the pending status. When the process is
complete, Amazon VPC displays the available status.

Step 5: Send a message to your Amazon SQS queue

Now that your VPC includes an endpoint for Amazon SQS, you can connect to your EC2 instance
and send messages to your queue.

1. Reconnect to your EC2 instance, for example:

ssh -i SQS-VPCE-Tutorial-Key-Pair.pem ec2-user@ec2-203-0-113-0.us-
east-2.compute.amazonaws.com

2. Try to publish a message to the queue again using the following command, for example:

aws sqs send-message --region us-east-2 --endpoint-url https://sqs.us-
east-2.amazonaws.com/ --queue-url https://sqs.us-east-2.amazonaws.com/123456789012/
 --message-body "Hello from Amazon SQS."

Step 5: Send a message to your Amazon SQS queue 223

Amazon Simple Queue Service Developer Guide

The sending attempt succeeds and the MD5 digest of the message body and the message ID
are displayed, for example:

{
 "MD5OfMessageBody": "a1bcd2ef3g45hi678j90klmn12p34qr5",
 "MessageId": "12345a67-8901-2345-bc67-d890123e45fg"
}

For information about receiving and deleting the message from the queue created by your AWS
CloudFormation template (for example, VPCE-SQS-Tutorial-Stack-CFQueue-1ABCDEFGH2IJK),
see Receiving and deleting a message in Amazon SQS .

For information about deleting your resources, see the following:

• Deleting a VPC Endpoint in the Amazon VPC User Guide

• Deleting an Amazon SQS queue

• Terminate Your Instance in the Amazon EC2 User Guide

• Deleting Your VPC in the Amazon VPC User Guide

• Deleting a Stack on the AWS CloudFormation Console in the AWS CloudFormation User Guide

• Deleting Your Key Pair in the Amazon EC2 User Guide

Step 5: Send a message to your Amazon SQS queue 224

https://docs.aws.amazon.com/vpc/latest/userguide/delete-vpc-endpoint.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/terminating-instances.html
https://docs.aws.amazon.com/vpc/latest/userguide/delete-vpc.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-console-delete-stack.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html#delete-key-pair

Amazon Simple Queue Service Developer Guide

Code examples for Amazon SQS using AWS SDKs

The following code examples show how to use Amazon SQS with an AWS software development
kit (SDK).

Actions are code excerpts from larger programs and must be run in context. While actions show you
how to call individual service functions, you can see actions in context in their related scenarios and
cross-service examples.

Scenarios are code examples that show you how to accomplish a specific task by calling multiple
functions within the same service.

Cross-service examples are sample applications that work across multiple AWS services.

For a complete list of AWS SDK developer guides and code examples, see Using Amazon SQS with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Get started

Hello Amazon SQS

The following code examples show how to get started using Amazon SQS.

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

using Amazon.SQS;
using Amazon.SQS.Model;

namespace SQSActions;

public static class HelloSQS

225

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/cross-service/TopicsAndQueues#code-examples

Amazon Simple Queue Service Developer Guide

{
 static async Task Main(string[] args)
 {
 var sqsClient = new AmazonSQSClient();

 Console.WriteLine($"Hello Amazon SQS! Following are some of your
 queues:");
 Console.WriteLine();

 // You can use await and any of the async methods to get a response.
 // Let's get the first five queues.
 var response = await sqsClient.ListQueuesAsync(
 new ListQueuesRequest()
 {
 MaxResults = 5
 });

 foreach (var queue in response.QueueUrls)
 {
 Console.WriteLine($"\tQueue Url: {queue}");
 Console.WriteLine();
 }
 }
}

• For API details, see ListQueues in AWS SDK for .NET API Reference.

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Code for the CMakeLists.txt CMake file.

Set the minimum required version of CMake for this project.
cmake_minimum_required(VERSION 3.13)

226

https://docs.aws.amazon.com/goto/DotNetSDKV3/sqs-2012-11-05/ListQueues
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/sqs/hello_sqs#code-examples

Amazon Simple Queue Service Developer Guide

Set the AWS service components used by this project.
set(SERVICE_COMPONENTS sqs)

Set this project's name.
project("hello_sqs")

Set the C++ standard to use to build this target.
At least C++ 11 is required for the AWS SDK for C++.
set(CMAKE_CXX_STANDARD 11)

Use the MSVC variable to determine if this is a Windows build.
set(WINDOWS_BUILD ${MSVC})

if (WINDOWS_BUILD) # Set the location where CMake can find the installed
 libraries for the AWS SDK.
 string(REPLACE ";" "/aws-cpp-sdk-all;" SYSTEM_MODULE_PATH
 "${CMAKE_SYSTEM_PREFIX_PATH}/aws-cpp-sdk-all")
 list(APPEND CMAKE_PREFIX_PATH ${SYSTEM_MODULE_PATH})
endif ()

Find the AWS SDK for C++ package.
find_package(AWSSDK REQUIRED COMPONENTS ${SERVICE_COMPONENTS})

if(WINDOWS_BUILD AND AWSSDK_INSTALL_AS_SHARED_LIBS)
 # Copy relevant AWS SDK for C++ libraries into the current binary directory
 for running and debugging.

 # set(BIN_SUB_DIR "/Debug") # If you are building from the command line you
 may need to uncomment this
 # and set the proper subdirectory to the executables' location.

 AWSSDK_CPY_DYN_LIBS(SERVICE_COMPONENTS ""
 ${CMAKE_CURRENT_BINARY_DIR}${BIN_SUB_DIR})
endif()

add_executable(${PROJECT_NAME}
 hello_sqs.cpp)

target_link_libraries(${PROJECT_NAME}
 ${AWSSDK_LINK_LIBRARIES})

227

Amazon Simple Queue Service Developer Guide

Code for the hello_sqs.cpp source file.

#include <aws/core/Aws.h>
#include <aws/sqs/SQSClient.h>
#include <aws/sqs/model/ListQueuesRequest.h>
#include <iostream>

/*
 * A "Hello SQS" starter application that initializes an Amazon Simple Queue
 Service
 * (Amazon SQS) client and lists the SQS queues in the current account.
 *
 * main function
 *
 * Usage: 'hello_sqs'
 *
 */

int main(int argc, char **argv) {
 Aws::SDKOptions options;
 // Optionally change the log level for debugging.
// options.loggingOptions.logLevel = Utils::Logging::LogLevel::Debug;
 Aws::InitAPI(options); // Should only be called once.
 {
 Aws::Client::ClientConfiguration clientConfig;
 // Optional: Set to the AWS Region (overrides config file).
 // clientConfig.region = "us-east-1";

 Aws::SQS::SQSClient sqsClient(clientConfig);

 Aws::Vector<Aws::String> allQueueUrls;
 Aws::String nextToken; // Next token is used to handle a paginated
 response.
 do {
 Aws::SQS::Model::ListQueuesRequest request;

 Aws::SQS::Model::ListQueuesOutcome outcome =
 sqsClient.ListQueues(request);

 if (outcome.IsSuccess()) {
 const Aws::Vector<Aws::String> &pageOfQueueUrls =
 outcome.GetResult().GetQueueUrls();
 if (!pageOfQueueUrls.empty()) {

228

Amazon Simple Queue Service Developer Guide

 allQueueUrls.insert(allQueueUrls.cend(),
 pageOfQueueUrls.cbegin(),
 pageOfQueueUrls.cend());
 }
 }
 else {
 std::cerr << "Error with SQS::ListQueues. "
 << outcome.GetError().GetMessage()
 << std::endl;
 break;
 }
 nextToken = outcome.GetResult().GetNextToken();
 } while (!nextToken.empty());

 std::cout << "Hello Amazon SQS! You have " << allQueueUrls.size() << "
 queue"
 << (allQueueUrls.size() == 1 ? "" : "s") << " in your account."
 << std::endl;

 if (!allQueueUrls.empty()) {
 std::cout << "Here are your queue URLs." << std::endl;
 for (const Aws::String &queueUrl: allQueueUrls) {
 std::cout << " * " << queueUrl << std::endl;
 }
 }
 }

 Aws::ShutdownAPI(options); // Should only be called once.
 return 0;
}

• For API details, see ListQueues in AWS SDK for C++ API Reference.

229

https://docs.aws.amazon.com/goto/SdkForCpp/sqs-2012-11-05/ListQueues

Amazon Simple Queue Service Developer Guide

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

package main

import (
 "context"
 "fmt"
 "log"

 "github.com/aws/aws-sdk-go-v2/config"
 "github.com/aws/aws-sdk-go-v2/service/sqs"
)

// main uses the AWS SDK for Go V2 to create an Amazon Simple Queue Service
// (Amazon SQS) client and list the queues in your account.
// This example uses the default settings specified in your shared credentials
// and config files.
func main() {
 sdkConfig, err := config.LoadDefaultConfig(context.TODO())
 if err != nil {
 fmt.Println("Couldn't load default configuration. Have you set up your AWS
 account?")
 fmt.Println(err)
 return
 }
 sqsClient := sqs.NewFromConfig(sdkConfig)
 fmt.Println("Let's list the queues for your account.")
 var queueUrls []string
 paginator := sqs.NewListQueuesPaginator(sqsClient, &sqs.ListQueuesInput{})
 for paginator.HasMorePages() {
 output, err := paginator.NextPage(context.TODO())
 if err != nil {
 log.Printf("Couldn't get queues. Here's why: %v\n", err)

230

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2/sqs#code-examples

Amazon Simple Queue Service Developer Guide

 break
 } else {
 queueUrls = append(queueUrls, output.QueueUrls...)
 }
 }
 if len(queueUrls) == 0 {
 fmt.Println("You don't have any queues!")
 } else {
 for _, queueUrl := range queueUrls {
 fmt.Printf("\t%v\n", queueUrl)
 }
 }
}

• For API details, see ListQueues in AWS SDK for Go API Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.sqs.SqsClient;
import software.amazon.awssdk.services.sqs.model.SqsException;
import software.amazon.awssdk.services.sqs.paginators.ListQueuesIterable;

/**
 * Before running this Java V2 code example, set up your development
 * environment, including your credentials.
 *
 * For more information, see the following documentation topic:
 *
 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html
 */

231

https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/sqs#Client.ListQueues
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/sqs#readme

Amazon Simple Queue Service Developer Guide

public class HelloSQS {
 public static void main(String[] args) {
 SqsClient sqsClient = SqsClient.builder()
 .region(Region.US_WEST_2)
 .build();

 listQueues(sqsClient);
 sqsClient.close();
 }

 public static void listQueues(SqsClient sqsClient) {
 try {
 ListQueuesIterable listQueues = sqsClient.listQueuesPaginator();
 listQueues.stream()
 .flatMap(r -> r.queueUrls().stream())
 .forEach(content -> System.out.println(" Queue URL: " +
 content.toLowerCase()));

 } catch (SqsException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }
}

• For API details, see ListQueues in AWS SDK for Java 2.x API Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Initialize an Amazon SQS client and list queues.

import { SQSClient, paginateListQueues } from "@aws-sdk/client-sqs";

232

https://docs.aws.amazon.com/goto/SdkForJavaV2/sqs-2012-11-05/ListQueues
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/sqs#code-examples

Amazon Simple Queue Service Developer Guide

export const helloSqs = async () => {
 // The configuration object (`{}`) is required. If the region and credentials
 // are omitted, the SDK uses your local configuration if it exists.
 const client = new SQSClient({});

 // You can also use `ListQueuesCommand`, but to use that command you must
 // handle the pagination yourself. You can do that by sending the
 `ListQueuesCommand`
 // with the `NextToken` parameter from the previous request.
 const paginatedQueues = paginateListQueues({ client }, {});
 const queues = [];

 for await (const page of paginatedQueues) {
 if (page.QueueUrls?.length) {
 queues.push(...page.QueueUrls);
 }
 }

 const suffix = queues.length === 1 ? "" : "s";

 console.log(
 `Hello, Amazon SQS! You have ${queues.length} queue${suffix} in your
 account.`,
);
 console.log(queues.map((t) => ` * ${t}`).join("\n"));
};

• For API details, see ListQueues in AWS SDK for JavaScript API Reference.

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

package com.kotlin.sqs

233

https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/sqs/command/ListQueuesCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/sqs#code-examples

Amazon Simple Queue Service Developer Guide

import aws.sdk.kotlin.services.sqs.SqsClient
import aws.sdk.kotlin.services.sqs.paginators.listQueuesPaginated
import kotlinx.coroutines.flow.transform

suspend fun main() {
 listTopicsPag()
}

suspend fun listTopicsPag() {
 SqsClient { region = "us-east-1" }.use { sqsClient ->
 sqsClient
 .listQueuesPaginated { }
 .transform { it.queueUrls?.forEach { queue -> emit(queue) } }
 .collect { queue ->
 println("The Queue URL is $queue")
 }
 }
}

• For API details, see ListQueues in AWS SDK for Kotlin API reference.

Code examples

• Actions for Amazon SQS using AWS SDKs

• Use AddPermission with an AWS SDK or CLI

• Use ChangeMessageVisibility with an AWS SDK or CLI

• Use ChangeMessageVisibilityBatch with an AWS SDK or CLI

• Use CreateQueue with an AWS SDK or CLI

• Use DeleteMessage with an AWS SDK or CLI

• Use DeleteMessageBatch with an AWS SDK or CLI

• Use DeleteQueue with an AWS SDK or CLI

• Use GetQueueAttributes with an AWS SDK or CLI

• Use GetQueueUrl with an AWS SDK or CLI

• Use ListDeadLetterSourceQueues with an AWS SDK or CLI

• Use ListQueues with an AWS SDK or CLI

• Use PurgeQueue with an AWS SDK or CLI

• Use ReceiveMessage with an AWS SDK or CLI

234

https://sdk.amazonaws.com/kotlin/api/latest/index.html

Amazon Simple Queue Service Developer Guide

• Use RemovePermission with an AWS SDK or CLI

• Use SendMessage with an AWS SDK or CLI

• Use SendMessageBatch with an AWS SDK or CLI

• Use SetQueueAttributes with an AWS SDK or CLI

• Scenarios for Amazon SQS using AWS SDKs

• Create and publish to a FIFO Amazon SNS topic using an AWS SDK

• Publish Amazon SNS messages to Amazon SQS queues using an AWS SDK

• Send and receive batches of messages with Amazon SQS using an AWS SDK

• Serverless examples for Amazon SQS using AWS SDKs

• Invoke a Lambda function from an Amazon SQS trigger

• Reporting batch item failures for Lambda functions with an Amazon SQS trigger

• Cross-service examples for Amazon SQS using AWS SDKs

• Create a web application that sends and retrieves messages by using Amazon SQS

• Create a messenger application with Step Functions

• Create an Amazon Textract explorer application

• Detect people and objects in a video with Amazon Rekognition using an AWS SDK

• Use the AWS Message Processing Framework for .NET to publish and receive Amazon SQS
messages

Actions for Amazon SQS using AWS SDKs

The following code examples demonstrate how to perform individual Amazon SQS actions
with AWS SDKs. These excerpts call the Amazon SQS API and are code excerpts from larger
programs that must be run in context. Each example includes a link to GitHub, where you can find
instructions for setting up and running the code.

The following examples include only the most commonly used actions. For a complete list, see the
Amazon Simple Queue Service (Amazon SQS) API Reference.

Examples

• Use AddPermission with an AWS SDK or CLI

• Use ChangeMessageVisibility with an AWS SDK or CLI

• Use ChangeMessageVisibilityBatch with an AWS SDK or CLI

Actions 235

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/Welcome.html

Amazon Simple Queue Service Developer Guide

• Use CreateQueue with an AWS SDK or CLI

• Use DeleteMessage with an AWS SDK or CLI

• Use DeleteMessageBatch with an AWS SDK or CLI

• Use DeleteQueue with an AWS SDK or CLI

• Use GetQueueAttributes with an AWS SDK or CLI

• Use GetQueueUrl with an AWS SDK or CLI

• Use ListDeadLetterSourceQueues with an AWS SDK or CLI

• Use ListQueues with an AWS SDK or CLI

• Use PurgeQueue with an AWS SDK or CLI

• Use ReceiveMessage with an AWS SDK or CLI

• Use RemovePermission with an AWS SDK or CLI

• Use SendMessage with an AWS SDK or CLI

• Use SendMessageBatch with an AWS SDK or CLI

• Use SetQueueAttributes with an AWS SDK or CLI

Use AddPermission with an AWS SDK or CLI

The following code examples show how to use AddPermission.

CLI

AWS CLI

To add a permission to a queue

This example enables the specified AWS account to send messages to the specified queue.

Command:

aws sqs add-permission --queue-url https://sqs.us-
east-1.amazonaws.com/80398EXAMPLE/MyQueue --label SendMessagesFromMyQueue --aws-
account-ids 12345EXAMPLE --actions SendMessage

Output:

None.

AddPermission 236

Amazon Simple Queue Service Developer Guide

• For API details, see AddPermission in AWS CLI Command Reference.

PowerShell

Tools for PowerShell

Example 1: This example allows the specified AWS account to send messages from the
specified queue.

Add-SQSPermission -Action SendMessage -AWSAccountId 80398EXAMPLE
 -Label SendMessagesFromMyQueue -QueueUrl https://sqs.us-
east-1.amazonaws.com/80398EXAMPLE/MyQueue

• For API details, see AddPermission in AWS Tools for PowerShell Cmdlet Reference.

For a complete list of AWS SDK developer guides and code examples, see Using Amazon SQS with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use ChangeMessageVisibility with an AWS SDK or CLI

The following code examples show how to use ChangeMessageVisibility.

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 Aws::Client::ClientConfiguration clientConfig;
 // Optional: Set to the AWS Region (overrides config file).
 // clientConfig.region = "us-east-1";

//! Changes the visibility timeout of a message in an Amazon Simple Queue Service
//! (Amazon SQS) queue.

ChangeMessageVisibility 237

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/sqs/add-permission.html
https://docs.aws.amazon.com/powershell/latest/reference
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/sqs#code-examples

Amazon Simple Queue Service Developer Guide

/*!
 \param queueUrl: An Amazon SQS queue URL.
 \param messageReceiptHandle: A message receipt handle.
 \param visibilityTimeoutSeconds: Visibility timeout in seconds.
 \param clientConfiguration: AWS client configuration.
 \return bool: Function succeeded.
 */
bool AwsDoc::SQS::changeMessageVisibility(
 const Aws::String &queue_url,
 const Aws::String &messageReceiptHandle,
 int visibilityTimeoutSeconds,
 const Aws::Client::ClientConfiguration &clientConfiguration) {
 Aws::SQS::SQSClient sqsClient(clientConfiguration);

 Aws::SQS::Model::ChangeMessageVisibilityRequest request;
 request.SetQueueUrl(queue_url);
 request.SetReceiptHandle(messageReceiptHandle);
 request.SetVisibilityTimeout(visibilityTimeoutSeconds);

 auto outcome = sqsClient.ChangeMessageVisibility(request);
 if (outcome.IsSuccess()) {
 std::cout << "Successfully changed visibility of message " <<
 messageReceiptHandle << " from queue " << queue_url <<
 std::endl;
 }
 else {
 std::cout << "Error changing visibility of message from queue "
 << queue_url << ": " <<
 outcome.GetError().GetMessage() << std::endl;
 }

 return outcome.IsSuccess();
}

• For API details, see ChangeMessageVisibility in AWS SDK for C++ API Reference.

CLI

AWS CLI

To change a message's timeout visibility

ChangeMessageVisibility 238

https://docs.aws.amazon.com/goto/SdkForCpp/sqs-2012-11-05/ChangeMessageVisibility

Amazon Simple Queue Service Developer Guide

This example changes the specified message's timeout visibility to 10 hours (10 hours * 60
minutes * 60 seconds).

Command:

aws sqs change-message-visibility --queue-url https://sqs.us-
east-1.amazonaws.com/80398EXAMPLE/MyQueue --receipt-handle AQEBTpyI...t6HyQg== --
visibility-timeout 36000

Output:

None.

• For API details, see ChangeMessageVisibility in AWS CLI Command Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Receive an Amazon SQS message and change its timeout visibility.

import {
 ReceiveMessageCommand,
 ChangeMessageVisibilityCommand,
 SQSClient,
} from "@aws-sdk/client-sqs";

const client = new SQSClient({});
const SQS_QUEUE_URL = "queue_url";

const receiveMessage = (queueUrl) =>
 client.send(
 new ReceiveMessageCommand({
 AttributeNames: ["SentTimestamp"],
 MaxNumberOfMessages: 1,

ChangeMessageVisibility 239

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/sqs/change-message-visibility.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/sqs#code-examples

Amazon Simple Queue Service Developer Guide

 MessageAttributeNames: ["All"],
 QueueUrl: queueUrl,
 WaitTimeSeconds: 1,
 }),
);

export const main = async (queueUrl = SQS_QUEUE_URL) => {
 const { Messages } = await receiveMessage(queueUrl);

 const response = await client.send(
 new ChangeMessageVisibilityCommand({
 QueueUrl: queueUrl,
 ReceiptHandle: Messages[0].ReceiptHandle,
 VisibilityTimeout: 20,
 }),
);
 console.log(response);
 return response;
};

• For API details, see ChangeMessageVisibility in AWS SDK for JavaScript API Reference.

SDK for JavaScript (v2)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Receive an Amazon SQS message and change its timeout visibility.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region to us-west-2
AWS.config.update({ region: "us-west-2" });

// Create the SQS service object
var sqs = new AWS.SQS({ apiVersion: "2012-11-05" });

var queueURL = "https://sqs.REGION.amazonaws.com/ACCOUNT-ID/QUEUE-NAME";

ChangeMessageVisibility 240

https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/sqs/command/ChangeMessageVisibilityCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascript/example_code/sqs#code-examples

Amazon Simple Queue Service Developer Guide

var params = {
 AttributeNames: ["SentTimestamp"],
 MaxNumberOfMessages: 1,
 MessageAttributeNames: ["All"],
 QueueUrl: queueURL,
};

sqs.receiveMessage(params, function (err, data) {
 if (err) {
 console.log("Receive Error", err);
 } else {
 // Make sure we have a message
 if (data.Messages != null) {
 var visibilityParams = {
 QueueUrl: queueURL,
 ReceiptHandle: data.Messages[0].ReceiptHandle,
 VisibilityTimeout: 20, // 20 second timeout
 };
 sqs.changeMessageVisibility(visibilityParams, function (err, data) {
 if (err) {
 console.log("Delete Error", err);
 } else {
 console.log("Timeout Changed", data);
 }
 });
 } else {
 console.log("No messages to change");
 }
 }
});

• For more information, see AWS SDK for JavaScript Developer Guide.

• For API details, see ChangeMessageVisibility in AWS SDK for JavaScript API Reference.

PowerShell

Tools for PowerShell

Example 1: This example changes the visibility timeout for the message with the
specified receipt handle in the specified queue to 10 hours (10 hours * 60 minutes * 60
seconds = 36000 seconds).

ChangeMessageVisibility 241

https://docs.aws.amazon.com/sdk-for-javascript/v2/developer-guide/sqs-examples-managing-visibility-timeout.html#sqs-examples-managing-visibility-timeout-setting
https://docs.aws.amazon.com/goto/AWSJavaScriptSDK/sqs-2012-11-05/ChangeMessageVisibility

Amazon Simple Queue Service Developer Guide

Edit-SQSMessageVisibility -QueueUrl https://sqs.us-
east-1.amazonaws.com/8039EXAMPLE/MyQueue -ReceiptHandle AQEBgGDh...J/Iqww== -
VisibilityTimeout 36000

• For API details, see ChangeMessageVisibility in AWS Tools for PowerShell Cmdlet Reference.

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

require "aws-sdk-sqs" # v2: require 'aws-sdk'
Replace us-west-2 with the AWS Region you're using for Amazon SQS.
sqs = Aws::SQS::Client.new(region: "us-west-2")

begin
 queue_name = "my-queue"
 queue_url = sqs.get_queue_url(queue_name: queue_name).queue_url

 receive_message_result_before = sqs.receive_message({
 queue_url: queue_url,
 max_number_of_messages: 10 # Receive up to 10 messages, if there are that
 many.
 })

 puts "Before attempting to change message visibility timeout: received
 #{receive_message_result_before.messages.count} message(s)."

 receive_message_result_before.messages.each do |message|
 sqs.change_message_visibility({
 queue_url: queue_url,
 receipt_handle: message.receipt_handle,
 visibility_timeout: 30 # This message will not be visible for 30 seconds
 after first receipt.
 })

ChangeMessageVisibility 242

https://docs.aws.amazon.com/powershell/latest/reference
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/sqs#code-examples

Amazon Simple Queue Service Developer Guide

 end

 # Try to retrieve the original messages after setting their visibility timeout.
 receive_message_result_after = sqs.receive_message({
 queue_url: queue_url,
 max_number_of_messages: 10
 })

 puts "\nAfter attempting to change message visibility timeout: received
 #{receive_message_result_after.messages.count} message(s)."

rescue Aws::SQS::Errors::NonExistentQueue
 puts "Cannot receive messages for a queue named '#{receive_queue_name}', as it
 does not exist."
end

• For API details, see ChangeMessageVisibility in AWS SDK for Ruby API Reference.

For a complete list of AWS SDK developer guides and code examples, see Using Amazon SQS with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use ChangeMessageVisibilityBatch with an AWS SDK or CLI

The following code examples show how to use ChangeMessageVisibilityBatch.

CLI

AWS CLI

To change multiple messages' timeout visibilities as a batch

This example changes the 2 specified messages' timeout visibilities to 10 hours (10 hours *
60 minutes * 60 seconds).

Command:

aws sqs change-message-visibility-batch --queue-url https://sqs.us-
east-1.amazonaws.com/80398EXAMPLE/MyQueue --entries file://change-message-
visibility-batch.json

ChangeMessageVisibilityBatch 243

https://docs.aws.amazon.com/goto/SdkForRubyV3/sqs-2012-11-05/ChangeMessageVisibility

Amazon Simple Queue Service Developer Guide

Input file (change-message-visibility-batch.json):

[
 {
 "Id": "FirstMessage",
 "ReceiptHandle": "AQEBhz2q...Jf3kaw==",
 "VisibilityTimeout": 36000
 },
 {
 "Id": "SecondMessage",
 "ReceiptHandle": "AQEBkTUH...HifSnw==",
 "VisibilityTimeout": 36000
 }
]

Output:

{
 "Successful": [
 {
 "Id": "SecondMessage"
 },
 {
 "Id": "FirstMessage"
 }
]
}

• For API details, see ChangeMessageVisibilityBatch in AWS CLI Command Reference.

PowerShell

Tools for PowerShell

Example 1: This example changes the visibility timeout for 2 messages with the specified
receipt handles in the specified queue. The first message's visibility timeout is changed
to 10 hours (10 hours * 60 minutes * 60 seconds = 36000 seconds). The second message's
visibility timeout is changed to 5 hours (5 hours * 60 minutes * 60 seconds = 18000
seconds).

ChangeMessageVisibilityBatch 244

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/sqs/change-message-visibility-batch.html

Amazon Simple Queue Service Developer Guide

$changeVisibilityRequest1 = New-Object
 Amazon.SQS.Model.ChangeMessageVisibilityBatchRequestEntry
$changeVisibilityRequest1.Id = "Request1"
$changeVisibilityRequest1.ReceiptHandle = "AQEBd329...v6gl8Q=="
$changeVisibilityRequest1.VisibilityTimeout = 36000

$changeVisibilityRequest2 = New-Object
 Amazon.SQS.Model.ChangeMessageVisibilityBatchRequestEntry
$changeVisibilityRequest2.Id = "Request2"
$changeVisibilityRequest2.ReceiptHandle = "AQEBgGDh...J/Iqww=="
$changeVisibilityRequest2.VisibilityTimeout = 18000

Edit-SQSMessageVisibilityBatch -QueueUrl https://sqs.us-
east-1.amazonaws.com/80398EXAMPLE/MyQueue -Entry $changeVisibilityRequest1,
 $changeVisibilityRequest2

Output:

Failed Successful

------ ----------

{} {Request2, Request1}

• For API details, see ChangeMessageVisibilityBatch in AWS Tools for PowerShell Cmdlet
Reference.

For a complete list of AWS SDK developer guides and code examples, see Using Amazon SQS with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use CreateQueue with an AWS SDK or CLI

The following code examples show how to use CreateQueue.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code examples:

• Publish messages to queues

• Send and receive batches of messages

CreateQueue 245

https://docs.aws.amazon.com/powershell/latest/reference

Amazon Simple Queue Service Developer Guide

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Create a queue with a specific name.

 /// <summary>
 /// Create a queue with a specific name.
 /// </summary>
 /// <param name="queueName">The name for the queue.</param>
 /// <param name="useFifoQueue">True to use a FIFO queue.</param>
 /// <returns>The url for the queue.</returns>
 public async Task<string> CreateQueueWithName(string queueName, bool
 useFifoQueue)
 {
 int maxMessage = 256 * 1024;
 var queueAttributes = new Dictionary<string, string>
 {
 {
 QueueAttributeName.MaximumMessageSize,
 maxMessage.ToString()
 }
 };

 var createQueueRequest = new CreateQueueRequest()
 {
 QueueName = queueName,
 Attributes = queueAttributes
 };

 if (useFifoQueue)
 {
 // Update the name if it is not correct for a FIFO queue.
 if (!queueName.EndsWith(".fifo"))
 {
 createQueueRequest.QueueName = queueName + ".fifo";
 }

CreateQueue 246

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/cross-service/TopicsAndQueues#code-examples

Amazon Simple Queue Service Developer Guide

 // Add an attribute for a FIFO queue.
 createQueueRequest.Attributes.Add(
 QueueAttributeName.FifoQueue, "true");
 }

 var createResponse = await _amazonSQSClient.CreateQueueAsync(
 new CreateQueueRequest()
 {
 QueueName = queueName
 });
 return createResponse.QueueUrl;
 }

Create an Amazon SQS queue and send a message to it.

 using System;
 using System.Collections.Generic;
 using System.Threading.Tasks;
 using Amazon;
 using Amazon.SQS;
 using Amazon.SQS.Model;

 public class CreateSendExample
 {
 // Specify your AWS Region (an example Region is shown).
 private static readonly string QueueName = "Example_Queue";
 private static readonly RegionEndpoint ServiceRegion =
 RegionEndpoint.USWest2;
 private static IAmazonSQS client;

 public static async Task Main()
 {
 client = new AmazonSQSClient(ServiceRegion);
 var createQueueResponse = await CreateQueue(client, QueueName);

 string queueUrl = createQueueResponse.QueueUrl;

 Dictionary<string, MessageAttributeValue> messageAttributes = new
 Dictionary<string, MessageAttributeValue>
 {

CreateQueue 247

Amazon Simple Queue Service Developer Guide

 { "Title", new MessageAttributeValue { DataType = "String",
 StringValue = "The Whistler" } },
 { "Author", new MessageAttributeValue { DataType = "String",
 StringValue = "John Grisham" } },
 { "WeeksOn", new MessageAttributeValue { DataType = "Number",
 StringValue = "6" } },
 };

 string messageBody = "Information about current NY Times fiction
 bestseller for week of 12/11/2016.";

 var sendMsgResponse = await SendMessage(client, queueUrl,
 messageBody, messageAttributes);
 }

 /// <summary>
 /// Creates a new Amazon SQS queue using the queue name passed to it
 /// in queueName.
 /// </summary>
 /// <param name="client">An SQS client object used to send the message.</
param>
 /// <param name="queueName">A string representing the name of the queue
 /// to create.</param>
 /// <returns>A CreateQueueResponse that contains information about the
 /// newly created queue.</returns>
 public static async Task<CreateQueueResponse> CreateQueue(IAmazonSQS
 client, string queueName)
 {
 var request = new CreateQueueRequest
 {
 QueueName = queueName,
 Attributes = new Dictionary<string, string>
 {
 { "DelaySeconds", "60" },
 { "MessageRetentionPeriod", "86400" },
 },
 };

 var response = await client.CreateQueueAsync(request);
 Console.WriteLine($"Created a queue with URL : {response.QueueUrl}");

 return response;
 }

CreateQueue 248

Amazon Simple Queue Service Developer Guide

 /// <summary>
 /// Sends a message to an SQS queue.
 /// </summary>
 /// <param name="client">An SQS client object used to send the message.</
param>
 /// <param name="queueUrl">The URL of the queue to which to send the
 /// message.</param>
 /// <param name="messageBody">A string representing the body of the
 /// message to be sent to the queue.</param>
 /// <param name="messageAttributes">Attributes for the message to be
 /// sent to the queue.</param>
 /// <returns>A SendMessageResponse object that contains information
 /// about the message that was sent.</returns>
 public static async Task<SendMessageResponse> SendMessage(
 IAmazonSQS client,
 string queueUrl,
 string messageBody,
 Dictionary<string, MessageAttributeValue> messageAttributes)
 {
 var sendMessageRequest = new SendMessageRequest
 {
 DelaySeconds = 10,
 MessageAttributes = messageAttributes,
 MessageBody = messageBody,
 QueueUrl = queueUrl,
 };

 var response = await client.SendMessageAsync(sendMessageRequest);
 Console.WriteLine($"Sent a message with id : {response.MessageId}");

 return response;
 }
 }

• For API details, see CreateQueue in AWS SDK for .NET API Reference.

CreateQueue 249

https://docs.aws.amazon.com/goto/DotNetSDKV3/sqs-2012-11-05/CreateQueue

Amazon Simple Queue Service Developer Guide

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 Aws::Client::ClientConfiguration clientConfig;
 // Optional: Set to the AWS Region (overrides config file).
 // clientConfig.region = "us-east-1";

//! Create an Amazon Simple Queue Service (Amazon SQS) queue.
/*!
 \param queueName: An Amazon SQS queue name.
 \param clientConfiguration: AWS client configuration.
 \return bool: Function succeeded.
 */
bool AwsDoc::SQS::createQueue(const Aws::String &queueName,
 const Aws::Client::ClientConfiguration
 &clientConfiguration) {
 Aws::SQS::SQSClient sqsClient(clientConfiguration);

 Aws::SQS::Model::CreateQueueRequest request;
 request.SetQueueName(queueName);

 const Aws::SQS::Model::CreateQueueOutcome outcome =
 sqsClient.CreateQueue(request);
 if (outcome.IsSuccess()) {
 std::cout << "Successfully created queue " << queueName << " with a queue
 URL "
 << outcome.GetResult().GetQueueUrl() << "." << std::endl;
 }
 else {
 std::cerr << "Error creating queue " << queueName << ": " <<
 outcome.GetError().GetMessage() << std::endl;
 }

 return outcome.IsSuccess();
}

CreateQueue 250

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/sqs#code-examples

Amazon Simple Queue Service Developer Guide

• For API details, see CreateQueue in AWS SDK for C++ API Reference.

CLI

AWS CLI

To create a queue

This example creates a queue with the specified name, sets the message retention period to
3 days (3 days * 24 hours * 60 minutes * 60 seconds), and sets the queue's dead letter queue
to the specified queue with a maximum receive count of 1,000 messages.

Command:

aws sqs create-queue --queue-name MyQueue --attributes file://create-queue.json

Input file (create-queue.json):

{
 "RedrivePolicy": "{\"deadLetterTargetArn\":\"arn:aws:sqs:us-
east-1:80398EXAMPLE:MyDeadLetterQueue\",\"maxReceiveCount\":\"1000\"}",
 "MessageRetentionPeriod": "259200"
}

Output:

{
 "QueueUrl": "https://queue.amazonaws.com/80398EXAMPLE/MyQueue"
}

• For API details, see CreateQueue in AWS CLI Command Reference.

CreateQueue 251

https://docs.aws.amazon.com/goto/SdkForCpp/sqs-2012-11-05/CreateQueue
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/sqs/create-queue.html

Amazon Simple Queue Service Developer Guide

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

// SqsActions encapsulates the Amazon Simple Queue Service (Amazon SQS) actions
// used in the examples.
type SqsActions struct {
 SqsClient *sqs.Client
}

// CreateQueue creates an Amazon SQS queue with the specified name. You can
 specify
// whether the queue is created as a FIFO queue.
func (actor SqsActions) CreateQueue(queueName string, isFifoQueue bool) (string,
 error) {
 var queueUrl string
 queueAttributes := map[string]string{}
 if isFifoQueue {
 queueAttributes["FifoQueue"] = "true"
 }
 queue, err := actor.SqsClient.CreateQueue(context.TODO(), &sqs.CreateQueueInput{
 QueueName: aws.String(queueName),
 Attributes: queueAttributes,
 })
 if err != nil {
 log.Printf("Couldn't create queue %v. Here's why: %v\n", queueName, err)
 } else {
 queueUrl = *queue.QueueUrl
 }

 return queueUrl, err
}

CreateQueue 252

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2/workflows/topics_and_queues#code-examples

Amazon Simple Queue Service Developer Guide

• For API details, see CreateQueue in AWS SDK for Go API Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.sqs.SqsClient;
import software.amazon.awssdk.services.sqs.model.ChangeMessageVisibilityRequest;
import software.amazon.awssdk.services.sqs.model.CreateQueueRequest;
import software.amazon.awssdk.services.sqs.model.DeleteMessageRequest;
import software.amazon.awssdk.services.sqs.model.GetQueueUrlRequest;
import software.amazon.awssdk.services.sqs.model.GetQueueUrlResponse;
import software.amazon.awssdk.services.sqs.model.ListQueuesRequest;
import software.amazon.awssdk.services.sqs.model.ListQueuesResponse;
import software.amazon.awssdk.services.sqs.model.Message;
import software.amazon.awssdk.services.sqs.model.ReceiveMessageRequest;
import software.amazon.awssdk.services.sqs.model.SendMessageBatchRequest;
import software.amazon.awssdk.services.sqs.model.SendMessageBatchRequestEntry;
import software.amazon.awssdk.services.sqs.model.SendMessageRequest;
import software.amazon.awssdk.services.sqs.model.SqsException;
import java.util.List;

/**
 * Before running this Java V2 code example, set up your development
 * environment, including your credentials.
 *
 * For more information, see the following documentation topic:
 *
 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html
 */
public class SQSExample {
 public static void main(String[] args) {

CreateQueue 253

https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/sqs#Client.CreateQueue
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/sqs#readme

Amazon Simple Queue Service Developer Guide

 String queueName = "queue" + System.currentTimeMillis();
 SqsClient sqsClient = SqsClient.builder()
 .region(Region.US_WEST_2)
 .build();

 // Perform various tasks on the Amazon SQS queue.
 String queueUrl = createQueue(sqsClient, queueName);
 listQueues(sqsClient);
 listQueuesFilter(sqsClient, queueUrl);
 List<Message> messages = receiveMessages(sqsClient, queueUrl);
 sendBatchMessages(sqsClient, queueUrl);
 changeMessages(sqsClient, queueUrl, messages);
 deleteMessages(sqsClient, queueUrl, messages);
 sqsClient.close();
 }

 public static String createQueue(SqsClient sqsClient, String queueName) {
 try {
 System.out.println("\nCreate Queue");

 CreateQueueRequest createQueueRequest = CreateQueueRequest.builder()
 .queueName(queueName)
 .build();

 sqsClient.createQueue(createQueueRequest);

 System.out.println("\nGet queue url");

 GetQueueUrlResponse getQueueUrlResponse = sqsClient

 .getQueueUrl(GetQueueUrlRequest.builder().queueName(queueName).build());
 return getQueueUrlResponse.queueUrl();

 } catch (SqsException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 return "";
 }

 public static void listQueues(SqsClient sqsClient) {

 System.out.println("\nList Queues");
 String prefix = "que";

CreateQueue 254

Amazon Simple Queue Service Developer Guide

 try {
 ListQueuesRequest listQueuesRequest =
 ListQueuesRequest.builder().queueNamePrefix(prefix).build();
 ListQueuesResponse listQueuesResponse =
 sqsClient.listQueues(listQueuesRequest);
 for (String url : listQueuesResponse.queueUrls()) {
 System.out.println(url);
 }

 } catch (SqsException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }

 public static void listQueuesFilter(SqsClient sqsClient, String queueUrl) {
 // List queues with filters
 String namePrefix = "queue";
 ListQueuesRequest filterListRequest = ListQueuesRequest.builder()
 .queueNamePrefix(namePrefix)
 .build();

 ListQueuesResponse listQueuesFilteredResponse =
 sqsClient.listQueues(filterListRequest);
 System.out.println("Queue URLs with prefix: " + namePrefix);
 for (String url : listQueuesFilteredResponse.queueUrls()) {
 System.out.println(url);
 }

 System.out.println("\nSend message");
 try {
 sqsClient.sendMessage(SendMessageRequest.builder()
 .queueUrl(queueUrl)
 .messageBody("Hello world!")
 .delaySeconds(10)
 .build());

 } catch (SqsException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }

CreateQueue 255

Amazon Simple Queue Service Developer Guide

 public static void sendBatchMessages(SqsClient sqsClient, String queueUrl) {

 System.out.println("\nSend multiple messages");
 try {
 SendMessageBatchRequest sendMessageBatchRequest =
 SendMessageBatchRequest.builder()
 .queueUrl(queueUrl)

 .entries(SendMessageBatchRequestEntry.builder().id("id1").messageBody("Hello
 from msg 1").build(),

 SendMessageBatchRequestEntry.builder().id("id2").messageBody("msg
 2").delaySeconds(10)
 .build())
 .build();
 sqsClient.sendMessageBatch(sendMessageBatchRequest);

 } catch (SqsException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }

 public static List<Message> receiveMessages(SqsClient sqsClient, String
 queueUrl) {

 System.out.println("\nReceive messages");
 try {
 ReceiveMessageRequest receiveMessageRequest =
 ReceiveMessageRequest.builder()
 .queueUrl(queueUrl)
 .maxNumberOfMessages(5)
 .build();
 return sqsClient.receiveMessage(receiveMessageRequest).messages();

 } catch (SqsException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 return null;
 }

 public static void changeMessages(SqsClient sqsClient, String queueUrl,
 List<Message> messages) {

CreateQueue 256

Amazon Simple Queue Service Developer Guide

 System.out.println("\nChange Message Visibility");
 try {

 for (Message message : messages) {
 ChangeMessageVisibilityRequest req =
 ChangeMessageVisibilityRequest.builder()
 .queueUrl(queueUrl)
 .receiptHandle(message.receiptHandle())
 .visibilityTimeout(100)
 .build();
 sqsClient.changeMessageVisibility(req);
 }

 } catch (SqsException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }

 public static void deleteMessages(SqsClient sqsClient, String queueUrl,
 List<Message> messages) {
 System.out.println("\nDelete Messages");

 try {
 for (Message message : messages) {
 DeleteMessageRequest deleteMessageRequest =
 DeleteMessageRequest.builder()
 .queueUrl(queueUrl)
 .receiptHandle(message.receiptHandle())
 .build();
 sqsClient.deleteMessage(deleteMessageRequest);
 }
 } catch (SqsException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }
}

• For API details, see CreateQueue in AWS SDK for Java 2.x API Reference.

CreateQueue 257

https://docs.aws.amazon.com/goto/SdkForJavaV2/sqs-2012-11-05/CreateQueue

Amazon Simple Queue Service Developer Guide

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Create an Amazon SQS standard queue.

import { CreateQueueCommand, SQSClient } from "@aws-sdk/client-sqs";

const client = new SQSClient({});
const SQS_QUEUE_NAME = "test-queue";

export const main = async (sqsQueueName = SQS_QUEUE_NAME) => {
 const command = new CreateQueueCommand({
 QueueName: sqsQueueName,
 Attributes: {
 DelaySeconds: "60",
 MessageRetentionPeriod: "86400",
 },
 });

 const response = await client.send(command);
 console.log(response);
 return response;
};

Create an Amazon SQS queue with long polling.

import { CreateQueueCommand, SQSClient } from "@aws-sdk/client-sqs";

const client = new SQSClient({});
const SQS_QUEUE_NAME = "queue_name";

export const main = async (queueName = SQS_QUEUE_NAME) => {
 const response = await client.send(
 new CreateQueueCommand({

CreateQueue 258

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/sqs#code-examples

Amazon Simple Queue Service Developer Guide

 QueueName: queueName,
 Attributes: {
 // When the wait time for the ReceiveMessage API action is greater than
 0,
 // long polling is in effect. The maximum long polling wait time is 20
 // seconds. Long polling helps reduce the cost of using Amazon SQS by,
 // eliminating the number of empty responses and false empty responses.
 // https://docs.aws.amazon.com/AWSSimpleQueueService/latest/
SQSDeveloperGuide/sqs-short-and-long-polling.html
 ReceiveMessageWaitTimeSeconds: "20",
 },
 }),
);
 console.log(response);
 return response;
};

• For more information, see AWS SDK for JavaScript Developer Guide.

• For API details, see CreateQueue in AWS SDK for JavaScript API Reference.

SDK for JavaScript (v2)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Create an Amazon SQS standard queue.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create an SQS service object
var sqs = new AWS.SQS({ apiVersion: "2012-11-05" });

var params = {
 QueueName: "SQS_QUEUE_NAME",
 Attributes: {

CreateQueue 259

https://docs.aws.amazon.com/sdk-for-javascript/v3/developer-guide/sqs-examples-using-queues.html#sqs-examples-using-queues-create-queue
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/sqs/command/CreateQueueCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascript/example_code/sqs#code-examples

Amazon Simple Queue Service Developer Guide

 DelaySeconds: "60",
 MessageRetentionPeriod: "86400",
 },
};

sqs.createQueue(params, function (err, data) {
 if (err) {
 console.log("Error", err);
 } else {
 console.log("Success", data.QueueUrl);
 }
});

Create an Amazon SQS queue that waits for a message to arrive.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create the SQS service object
var sqs = new AWS.SQS({ apiVersion: "2012-11-05" });

var params = {
 QueueName: "SQS_QUEUE_NAME",
 Attributes: {
 ReceiveMessageWaitTimeSeconds: "20",
 },
};

sqs.createQueue(params, function (err, data) {
 if (err) {
 console.log("Error", err);
 } else {
 console.log("Success", data.QueueUrl);
 }
});

• For more information, see AWS SDK for JavaScript Developer Guide.

• For API details, see CreateQueue in AWS SDK for JavaScript API Reference.

CreateQueue 260

https://docs.aws.amazon.com/sdk-for-javascript/v2/developer-guide/sqs-examples-using-queues.html#sqs-examples-using-queues-create-queue
https://docs.aws.amazon.com/goto/AWSJavaScriptSDK/sqs-2012-11-05/CreateQueue

Amazon Simple Queue Service Developer Guide

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

suspend fun createQueue(queueNameVal: String): String {
 println("Create Queue")
 val createQueueRequest =
 CreateQueueRequest {
 queueName = queueNameVal
 }

 SqsClient { region = "us-east-1" }.use { sqsClient ->
 sqsClient.createQueue(createQueueRequest)
 println("Get queue url")

 val getQueueUrlRequest =
 GetQueueUrlRequest {
 queueName = queueNameVal
 }

 val getQueueUrlResponse = sqsClient.getQueueUrl(getQueueUrlRequest)
 return getQueueUrlResponse.queueUrl.toString()
 }
}

• For API details, see CreateQueue in AWS SDK for Kotlin API reference.

PowerShell

Tools for PowerShell

Example 1: This example creates a queue with the specified name.

New-SQSQueue -QueueName MyQueue

CreateQueue 261

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/sqs#code-examples
https://sdk.amazonaws.com/kotlin/api/latest/index.html

Amazon Simple Queue Service Developer Guide

Output:

https://sqs.us-east-1.amazonaws.com/80398EXAMPLE/MyQueue

• For API details, see CreateQueue in AWS Tools for PowerShell Cmdlet Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

def create_queue(name, attributes=None):
 """
 Creates an Amazon SQS queue.

 :param name: The name of the queue. This is part of the URL assigned to the
 queue.
 :param attributes: The attributes of the queue, such as maximum message size
 or
 whether it's a FIFO queue.
 :return: A Queue object that contains metadata about the queue and that can
 be used
 to perform queue operations like sending and receiving messages.
 """
 if not attributes:
 attributes = {}

 try:
 queue = sqs.create_queue(QueueName=name, Attributes=attributes)
 logger.info("Created queue '%s' with URL=%s", name, queue.url)
 except ClientError as error:
 logger.exception("Couldn't create queue named '%s'.", name)
 raise error
 else:
 return queue

CreateQueue 262

https://docs.aws.amazon.com/powershell/latest/reference
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/sqs#code-examples

Amazon Simple Queue Service Developer Guide

• For API details, see CreateQueue in AWS SDK for Python (Boto3) API Reference.

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

This code example demonstrates how to create a queue in Amazon Simple Queue
 Service (Amazon SQS).

require "aws-sdk-sqs"

@param sqs_client [Aws::SQS::Client] An initialized Amazon SQS client.
@param queue_name [String] The name of the queue.
@return [Boolean] true if the queue was created; otherwise, false.
@example
exit 1 unless queue_created?(
Aws::SQS::Client.new(region: 'us-west-2'),
'my-queue'
)
def queue_created?(sqs_client, queue_name)
 sqs_client.create_queue(queue_name: queue_name)
 true
rescue StandardError => e
 puts "Error creating queue: #{e.message}"
 false
end

Full example call:
Replace us-west-2 with the AWS Region you're using for Amazon SQS.
def run_me
 region = "us-west-2"
 queue_name = "my-queue"
 sqs_client = Aws::SQS::Client.new(region: region)

CreateQueue 263

https://docs.aws.amazon.com/goto/boto3/sqs-2012-11-05/CreateQueue
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/sqs#code-examples

Amazon Simple Queue Service Developer Guide

 puts "Creating the queue named '#{queue_name}'..."

 if queue_created?(sqs_client, queue_name)
 puts "Queue created."
 else
 puts "Queue not created."
 end
end

Example usage:
run_me if $PROGRAM_NAME == __FILE__

• For API details, see CreateQueue in AWS SDK for Ruby API Reference.

SAP ABAP

SDK for SAP ABAP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Create an Amazon SQS standard queue.

 TRY.
 oo_result = lo_sqs->createqueue(iv_queuename = iv_queue_name). "
 oo_result is returned for testing purposes. "
 MESSAGE 'SQS queue created.' TYPE 'I'.
 CATCH /aws1/cx_sqsqueuedeldrecently.
 MESSAGE 'After deleting a queue, wait 60 seconds before creating another
 queue with the same name.' TYPE 'E'.
 CATCH /aws1/cx_sqsqueuenameexists.
 MESSAGE 'A queue with this name already exists.' TYPE 'E'.
 ENDTRY.

Create an Amazon SQS queue that waits for a message to arrive.

CreateQueue 264

https://docs.aws.amazon.com/goto/SdkForRubyV3/sqs-2012-11-05/CreateQueue
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/sap-abap/services/sqs#code-examples

Amazon Simple Queue Service Developer Guide

 TRY.
 DATA lt_attributes TYPE /aws1/cl_sqsqueueattrmap_w=>tt_queueattributemap.
 DATA ls_attribute TYPE /aws1/
cl_sqsqueueattrmap_w=>ts_queueattributemap_maprow.
 ls_attribute-key = 'ReceiveMessageWaitTimeSeconds'. " Time
 in seconds for long polling, such as how long the call waits for a message to
 arrive in the queue before returning. "
 ls_attribute-value = NEW /aws1/cl_sqsqueueattrmap_w(iv_value =
 iv_wait_time).
 INSERT ls_attribute INTO TABLE lt_attributes.
 oo_result = lo_sqs->createqueue(" oo_result is returned
 for testing purposes. "
 iv_queuename = iv_queue_name
 it_attributes = lt_attributes
).
 MESSAGE 'SQS queue created.' TYPE 'I'.
 CATCH /aws1/cx_sqsqueuedeldrecently.
 MESSAGE 'After deleting a queue, wait 60 seconds before creating another
 queue with the same name.' TYPE 'E'.
 CATCH /aws1/cx_sqsqueuenameexists.
 MESSAGE 'A queue with this name already exists.' TYPE 'E'.
 ENDTRY.

• For API details, see CreateQueue in AWS SDK for SAP ABAP API reference.

For a complete list of AWS SDK developer guides and code examples, see Using Amazon SQS with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use DeleteMessage with an AWS SDK or CLI

The following code examples show how to use DeleteMessage.

DeleteMessage 265

https://docs.aws.amazon.com/sdk-for-sap-abap/v1/api/latest/index.html

Amazon Simple Queue Service Developer Guide

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Receive a message from an Amazon SQS queue and then delete the message.

 public static async Task Main()
 {
 // If the AWS Region you want to use is different from
 // the AWS Region defined for the default user, supply
 // the specify your AWS Region to the client constructor.
 var client = new AmazonSQSClient();
 string queueName = "Example_Queue";

 var queueUrl = await GetQueueUrl(client, queueName);
 Console.WriteLine($"The SQS queue's URL is {queueUrl}");

 var response = await ReceiveAndDeleteMessage(client, queueUrl);

 Console.WriteLine($"Message: {response.Messages[0]}");
 }

 /// <summary>
 /// Retrieve the queue URL for the queue named in the queueName
 /// property using the client object.
 /// </summary>
 /// <param name="client">The Amazon SQS client used to retrieve the
 /// queue URL.</param>
 /// <param name="queueName">A string representing name of the queue
 /// for which to retrieve the URL.</param>
 /// <returns>The URL of the queue.</returns>
 public static async Task<string> GetQueueUrl(IAmazonSQS client, string
 queueName)
 {
 var request = new GetQueueUrlRequest
 {
 QueueName = queueName,

DeleteMessage 266

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/SQS#code-examples

Amazon Simple Queue Service Developer Guide

 };

 GetQueueUrlResponse response = await
 client.GetQueueUrlAsync(request);
 return response.QueueUrl;
 }

 /// <summary>
 /// Retrieves the message from the quque at the URL passed in the
 /// queueURL parameters using the client.
 /// </summary>
 /// <param name="client">The SQS client used to retrieve a message.</
param>
 /// <param name="queueUrl">The URL of the queue from which to retrieve
 /// a message.</param>
 /// <returns>The response from the call to ReceiveMessageAsync.</returns>
 public static async Task<ReceiveMessageResponse>
 ReceiveAndDeleteMessage(IAmazonSQS client, string queueUrl)
 {
 // Receive a single message from the queue.
 var receiveMessageRequest = new ReceiveMessageRequest
 {
 AttributeNames = { "SentTimestamp" },
 MaxNumberOfMessages = 1,
 MessageAttributeNames = { "All" },
 QueueUrl = queueUrl,
 VisibilityTimeout = 0,
 WaitTimeSeconds = 0,
 };

 var receiveMessageResponse = await
 client.ReceiveMessageAsync(receiveMessageRequest);

 // Delete the received message from the queue.
 var deleteMessageRequest = new DeleteMessageRequest
 {
 QueueUrl = queueUrl,
 ReceiptHandle = receiveMessageResponse.Messages[0].ReceiptHandle,
 };

 await client.DeleteMessageAsync(deleteMessageRequest);

 return receiveMessageResponse;
 }

DeleteMessage 267

Amazon Simple Queue Service Developer Guide

 }

• For API details, see DeleteMessage in AWS SDK for .NET API Reference.

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 Aws::Client::ClientConfiguration clientConfig;
 // Optional: Set to the AWS Region (overrides config file).
 // clientConfig.region = "us-east-1";

//! Delete a message from an Amazon Simple Queue Service (Amazon SQS) queue.
/*!
 \param queueUrl: An Amazon SQS queue URL.
 \param messageReceiptHandle: A message receipt handle.
 \param clientConfiguration: AWS client configuration.
 \return bool: Function succeeded.
 */
bool AwsDoc::SQS::deleteMessage(const Aws::String &queueUrl,
 const Aws::String &messageReceiptHandle,
 const Aws::Client::ClientConfiguration
 &clientConfiguration) {
 Aws::SQS::SQSClient sqsClient(clientConfiguration);

 Aws::SQS::Model::DeleteMessageRequest request;
 request.SetQueueUrl(queueUrl);
 request.SetReceiptHandle(messageReceiptHandle);

 const Aws::SQS::Model::DeleteMessageOutcome outcome =
 sqsClient.DeleteMessage(
 request);
 if (outcome.IsSuccess()) {
 std::cout << "Successfully deleted message from queue " << queueUrl

DeleteMessage 268

https://docs.aws.amazon.com/goto/DotNetSDKV3/sqs-2012-11-05/DeleteMessage
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/sqs#code-examples

Amazon Simple Queue Service Developer Guide

 << std::endl;
 }
 else {
 std::cerr << "Error deleting message from queue " << queueUrl << ": " <<
 outcome.GetError().GetMessage() << std::endl;
 }

 return outcome.IsSuccess();
}

• For API details, see DeleteMessage in AWS SDK for C++ API Reference.

CLI

AWS CLI

To delete a message

This example deletes the specified message.

Command:

aws sqs delete-message --queue-url https://sqs.us-
east-1.amazonaws.com/80398EXAMPLE/MyQueue --receipt-handle AQEBRXTo...q2doVA==

Output:

None.

• For API details, see DeleteMessage in AWS CLI Command Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

DeleteMessage 269

https://docs.aws.amazon.com/goto/SdkForCpp/sqs-2012-11-05/DeleteMessage
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/sqs/delete-message.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/sqs#readme

Amazon Simple Queue Service Developer Guide

 try {
 for (Message message : messages) {
 DeleteMessageRequest deleteMessageRequest =
 DeleteMessageRequest.builder()
 .queueUrl(queueUrl)
 .receiptHandle(message.receiptHandle())
 .build();
 sqsClient.deleteMessage(deleteMessageRequest);
 }
 } catch (SqsException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }

• For API details, see DeleteMessage in AWS SDK for Java 2.x API Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Receive and delete Amazon SQS messages.

import {
 ReceiveMessageCommand,
 DeleteMessageCommand,
 SQSClient,
 DeleteMessageBatchCommand,
} from "@aws-sdk/client-sqs";

const client = new SQSClient({});
const SQS_QUEUE_URL = "queue_url";

const receiveMessage = (queueUrl) =>
 client.send(

DeleteMessage 270

https://docs.aws.amazon.com/goto/SdkForJavaV2/sqs-2012-11-05/DeleteMessage
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/sqs#code-examples

Amazon Simple Queue Service Developer Guide

 new ReceiveMessageCommand({
 AttributeNames: ["SentTimestamp"],
 MaxNumberOfMessages: 10,
 MessageAttributeNames: ["All"],
 QueueUrl: queueUrl,
 WaitTimeSeconds: 20,
 VisibilityTimeout: 20,
 }),
);

export const main = async (queueUrl = SQS_QUEUE_URL) => {
 const { Messages } = await receiveMessage(queueUrl);

 if (!Messages) {
 return;
 }

 if (Messages.length === 1) {
 console.log(Messages[0].Body);
 await client.send(
 new DeleteMessageCommand({
 QueueUrl: queueUrl,
 ReceiptHandle: Messages[0].ReceiptHandle,
 }),
);
 } else {
 await client.send(
 new DeleteMessageBatchCommand({
 QueueUrl: queueUrl,
 Entries: Messages.map((message) => ({
 Id: message.MessageId,
 ReceiptHandle: message.ReceiptHandle,
 })),
 }),
);
 }
};

• For API details, see DeleteMessage in AWS SDK for JavaScript API Reference.

DeleteMessage 271

https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/sqs/command/DeleteMessageCommand

Amazon Simple Queue Service Developer Guide

SDK for JavaScript (v2)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Receive and delete Amazon SQS messages.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create an SQS service object
var sqs = new AWS.SQS({ apiVersion: "2012-11-05" });

var queueURL = "SQS_QUEUE_URL";

var params = {
 AttributeNames: ["SentTimestamp"],
 MaxNumberOfMessages: 10,
 MessageAttributeNames: ["All"],
 QueueUrl: queueURL,
 VisibilityTimeout: 20,
 WaitTimeSeconds: 0,
};

sqs.receiveMessage(params, function (err, data) {
 if (err) {
 console.log("Receive Error", err);
 } else if (data.Messages) {
 var deleteParams = {
 QueueUrl: queueURL,
 ReceiptHandle: data.Messages[0].ReceiptHandle,
 };
 sqs.deleteMessage(deleteParams, function (err, data) {
 if (err) {
 console.log("Delete Error", err);
 } else {
 console.log("Message Deleted", data);
 }

DeleteMessage 272

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascript/example_code/sqs#code-examples

Amazon Simple Queue Service Developer Guide

 });
 }
});

• For more information, see AWS SDK for JavaScript Developer Guide.

• For API details, see DeleteMessage in AWS SDK for JavaScript API Reference.

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

suspend fun deleteMessages(queueUrlVal: String) {
 println("Delete Messages from $queueUrlVal")

 val purgeRequest =
 PurgeQueueRequest {
 queueUrl = queueUrlVal
 }

 SqsClient { region = "us-east-1" }.use { sqsClient ->
 sqsClient.purgeQueue(purgeRequest)
 println("Messages are successfully deleted from $queueUrlVal")
 }
}

suspend fun deleteQueue(queueUrlVal: String) {
 val request =
 DeleteQueueRequest {
 queueUrl = queueUrlVal
 }

 SqsClient { region = "us-east-1" }.use { sqsClient ->
 sqsClient.deleteQueue(request)
 println("$queueUrlVal was deleted!")

DeleteMessage 273

https://docs.aws.amazon.com/sdk-for-javascript/v2/developer-guide/sqs-examples-send-receive-messages.html#sqs-examples-send-receive-messages-receiving
https://docs.aws.amazon.com/goto/AWSJavaScriptSDK/sqs-2012-11-05/DeleteMessage
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/sqs#code-examples

Amazon Simple Queue Service Developer Guide

 }
}

• For API details, see DeleteMessage in AWS SDK for Kotlin API reference.

PowerShell

Tools for PowerShell

Example 1: This example deletes the message with the specified receipt handle from the
specified queue.

Remove-SQSMessage -QueueUrl https://sqs.us-east-1.amazonaws.com/80398EXAMPLE/
MyQueue -ReceiptHandle AQEBd329...v6gl8Q==

• For API details, see DeleteMessage in AWS Tools for PowerShell Cmdlet Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

def delete_message(message):
 """
 Delete a message from a queue. Clients must delete messages after they
 are received and processed to remove them from the queue.

 :param message: The message to delete. The message's queue URL is contained
 in
 the message's metadata.
 :return: None
 """
 try:
 message.delete()

DeleteMessage 274

https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://docs.aws.amazon.com/powershell/latest/reference
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/sqs#code-examples

Amazon Simple Queue Service Developer Guide

 logger.info("Deleted message: %s", message.message_id)
 except ClientError as error:
 logger.exception("Couldn't delete message: %s", message.message_id)
 raise error

• For API details, see DeleteMessage in AWS SDK for Python (Boto3) API Reference.

For a complete list of AWS SDK developer guides and code examples, see Using Amazon SQS with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use DeleteMessageBatch with an AWS SDK or CLI

The following code examples show how to use DeleteMessageBatch.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code examples:

• Publish messages to queues

• Send and receive batches of messages

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 /// <summary>
 /// Delete a batch of messages from a queue by its url.
 /// </summary>
 /// <param name="queueUrl">The url of the queue.</param>
 /// <returns>True if successful.</returns>

DeleteMessageBatch 275

https://docs.aws.amazon.com/goto/boto3/sqs-2012-11-05/DeleteMessage
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/cross-service/TopicsAndQueues#code-examples

Amazon Simple Queue Service Developer Guide

 public async Task<bool> DeleteMessageBatchByUrl(string queueUrl,
 List<Message> messages)
 {
 var deleteRequest = new DeleteMessageBatchRequest()
 {
 QueueUrl = queueUrl,
 Entries = new List<DeleteMessageBatchRequestEntry>()
 };
 foreach (var message in messages)
 {
 deleteRequest.Entries.Add(new DeleteMessageBatchRequestEntry()
 {
 ReceiptHandle = message.ReceiptHandle,
 Id = message.MessageId
 });
 }

 var deleteResponse = await
 _amazonSQSClient.DeleteMessageBatchAsync(deleteRequest);

 return deleteResponse.Failed.Any();
 }

• For API details, see DeleteMessageBatch in AWS SDK for .NET API Reference.

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 Aws::Client::ClientConfiguration clientConfig;
 // Optional: Set to the AWS Region (overrides config file).
 // clientConfig.region = "us-east-1";

 Aws::SQS::SQSClient sqsClient(clientConfiguration);

DeleteMessageBatch 276

https://docs.aws.amazon.com/goto/DotNetSDKV3/sqs-2012-11-05/DeleteMessageBatch
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/cross-service/topics_and_queues#code-examples

Amazon Simple Queue Service Developer Guide

 Aws::SQS::Model::DeleteMessageBatchRequest request;
 request.SetQueueUrl(queueURLS[i]);
 int id = 1; // Ids must be unique within a batch delete request.
 for (const Aws::String &receiptHandle: receiptHandles) {
 Aws::SQS::Model::DeleteMessageBatchRequestEntry entry;
 entry.SetId(std::to_string(id));
 ++id;
 entry.SetReceiptHandle(receiptHandle);
 request.AddEntries(entry);
 }

 Aws::SQS::Model::DeleteMessageBatchOutcome outcome =
 sqsClient.DeleteMessageBatch(request);

 if (outcome.IsSuccess()) {
 std::cout << "The batch deletion of messages was successful."
 << std::endl;
 }
 else {
 std::cerr << "Error with SQS::DeleteMessageBatch. "
 << outcome.GetError().GetMessage()
 << std::endl;
 cleanUp(topicARN,
 queueURLS,
 subscriptionARNS,
 snsClient,
 sqsClient);

 return false;
 }

• For API details, see DeleteMessageBatch in AWS SDK for C++ API Reference.

CLI

AWS CLI

To delete multiple messages as a batch

This example deletes the specified messages.

Command:

DeleteMessageBatch 277

https://docs.aws.amazon.com/goto/SdkForCpp/sqs-2012-11-05/DeleteMessageBatch

Amazon Simple Queue Service Developer Guide

aws sqs delete-message-batch --queue-url https://sqs.us-
east-1.amazonaws.com/80398EXAMPLE/MyQueue --entries file://delete-message-
batch.json

Input file (delete-message-batch.json):

[
 {
 "Id": "FirstMessage",
 "ReceiptHandle": "AQEB1mgl...Z4GuLw=="
 },
 {
 "Id": "SecondMessage",
 "ReceiptHandle": "AQEBLsYM...VQubAA=="
 }
]

Output:

{
 "Successful": [
 {
 "Id": "FirstMessage"
 },
 {
 "Id": "SecondMessage"
 }
]
}

• For API details, see DeleteMessageBatch in AWS CLI Command Reference.

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

DeleteMessageBatch 278

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/sqs/delete-message-batch.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2/workflows/topics_and_queues#code-examples

Amazon Simple Queue Service Developer Guide

// SqsActions encapsulates the Amazon Simple Queue Service (Amazon SQS) actions
// used in the examples.
type SqsActions struct {
 SqsClient *sqs.Client
}

// DeleteMessages uses the DeleteMessageBatch action to delete a batch of
 messages from
// an Amazon SQS queue.
func (actor SqsActions) DeleteMessages(queueUrl string, messages []types.Message)
 error {
 entries := make([]types.DeleteMessageBatchRequestEntry, len(messages))
 for msgIndex := range messages {
 entries[msgIndex].Id = aws.String(fmt.Sprintf("%v", msgIndex))
 entries[msgIndex].ReceiptHandle = messages[msgIndex].ReceiptHandle
 }
 _, err := actor.SqsClient.DeleteMessageBatch(context.TODO(),
 &sqs.DeleteMessageBatchInput{
 Entries: entries,
 QueueUrl: aws.String(queueUrl),
 })
 if err != nil {
 log.Printf("Couldn't delete messages from queue %v. Here's why: %v\n",
 queueUrl, err)
 }
 return err
}

• For API details, see DeleteMessageBatch in AWS SDK for Go API Reference.

DeleteMessageBatch 279

https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/sqs#Client.DeleteMessageBatch

Amazon Simple Queue Service Developer Guide

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import {
 ReceiveMessageCommand,
 DeleteMessageCommand,
 SQSClient,
 DeleteMessageBatchCommand,
} from "@aws-sdk/client-sqs";

const client = new SQSClient({});
const SQS_QUEUE_URL = "queue_url";

const receiveMessage = (queueUrl) =>
 client.send(
 new ReceiveMessageCommand({
 AttributeNames: ["SentTimestamp"],
 MaxNumberOfMessages: 10,
 MessageAttributeNames: ["All"],
 QueueUrl: queueUrl,
 WaitTimeSeconds: 20,
 VisibilityTimeout: 20,
 }),
);

export const main = async (queueUrl = SQS_QUEUE_URL) => {
 const { Messages } = await receiveMessage(queueUrl);

 if (!Messages) {
 return;
 }

 if (Messages.length === 1) {
 console.log(Messages[0].Body);
 await client.send(

DeleteMessageBatch 280

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/sqs#code-examples

Amazon Simple Queue Service Developer Guide

 new DeleteMessageCommand({
 QueueUrl: queueUrl,
 ReceiptHandle: Messages[0].ReceiptHandle,
 }),
);
 } else {
 await client.send(
 new DeleteMessageBatchCommand({
 QueueUrl: queueUrl,
 Entries: Messages.map((message) => ({
 Id: message.MessageId,
 ReceiptHandle: message.ReceiptHandle,
 })),
 }),
);
 }
};

• For API details, see DeleteMessageBatch in AWS SDK for JavaScript API Reference.

PowerShell

Tools for PowerShell

Example 1: This example deletes 2 messages with the specified receipt handles from the
specified queue.

$deleteMessageRequest1 = New-Object
 Amazon.SQS.Model.DeleteMessageBatchRequestEntry
$deleteMessageRequest1.Id = "Request1"
$deleteMessageRequest1.ReceiptHandle = "AQEBX2g4...wtJSQg=="

$deleteMessageRequest2 = New-Object
 Amazon.SQS.Model.DeleteMessageBatchRequestEntry
$deleteMessageRequest2.Id = "Request2"
$deleteMessageRequest2.ReceiptHandle = "AQEBqOVY...KTsLYg=="

Remove-SQSMessageBatch -QueueUrl https://sqs.us-
east-1.amazonaws.com/80398EXAMPLE/MyQueue -Entry $deleteMessageRequest1,
 $deleteMessageRequest2

DeleteMessageBatch 281

https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/sqs/command/DeleteMessageBatchCommand

Amazon Simple Queue Service Developer Guide

Output:

Failed Successful

------ ----------

{} {Request1, Request2}

• For API details, see DeleteMessageBatch in AWS Tools for PowerShell Cmdlet Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

def delete_messages(queue, messages):
 """
 Delete a batch of messages from a queue in a single request.

 :param queue: The queue from which to delete the messages.
 :param messages: The list of messages to delete.
 :return: The response from SQS that contains the list of successful and
 failed
 message deletions.
 """
 try:
 entries = [
 {"Id": str(ind), "ReceiptHandle": msg.receipt_handle}
 for ind, msg in enumerate(messages)
]
 response = queue.delete_messages(Entries=entries)
 if "Successful" in response:
 for msg_meta in response["Successful"]:
 logger.info("Deleted %s",
 messages[int(msg_meta["Id"])].receipt_handle)
 if "Failed" in response:

DeleteMessageBatch 282

https://docs.aws.amazon.com/powershell/latest/reference
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/sqs#code-examples

Amazon Simple Queue Service Developer Guide

 for msg_meta in response["Failed"]:
 logger.warning(
 "Could not delete %s",
 messages[int(msg_meta["Id"])].receipt_handle
)
 except ClientError:
 logger.exception("Couldn't delete messages from queue %s", queue)
 else:
 return response

• For API details, see DeleteMessageBatch in AWS SDK for Python (Boto3) API Reference.

For a complete list of AWS SDK developer guides and code examples, see Using Amazon SQS with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use DeleteQueue with an AWS SDK or CLI

The following code examples show how to use DeleteQueue.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code examples:

• Publish messages to queues

• Send and receive batches of messages

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Delete a queue by using its URL.

DeleteQueue 283

https://docs.aws.amazon.com/goto/boto3/sqs-2012-11-05/DeleteMessageBatch
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/cross-service/TopicsAndQueues#code-examples

Amazon Simple Queue Service Developer Guide

 /// <summary>
 /// Delete a queue by its URL.
 /// </summary>
 /// <param name="queueUrl">The url of the queue.</param>
 /// <returns>True if successful.</returns>
 public async Task<bool> DeleteQueueByUrl(string queueUrl)
 {
 var deleteResponse = await _amazonSQSClient.DeleteQueueAsync(
 new DeleteQueueRequest()
 {
 QueueUrl = queueUrl
 });
 return deleteResponse.HttpStatusCode == HttpStatusCode.OK;
 }

• For API details, see DeleteQueue in AWS SDK for .NET API Reference.

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 Aws::Client::ClientConfiguration clientConfig;
 // Optional: Set to the AWS Region (overrides config file).
 // clientConfig.region = "us-east-1";

//! Delete an Amazon Simple Queue Service (Amazon SQS) queue.
/*!
 \param queueURL: An Amazon SQS queue URL.
 \param clientConfiguration: AWS client configuration.
 \return bool: Function succeeded.
 */
bool AwsDoc::SQS::deleteQueue(const Aws::String &queueURL,
 const Aws::Client::ClientConfiguration
 &clientConfiguration) {

DeleteQueue 284

https://docs.aws.amazon.com/goto/DotNetSDKV3/sqs-2012-11-05/DeleteQueue
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/sqs#code-examples

Amazon Simple Queue Service Developer Guide

 Aws::SQS::SQSClient sqsClient(clientConfiguration);
 Aws::SQS::Model::DeleteQueueRequest request;
 request.SetQueueUrl(queueURL);

 const Aws::SQS::Model::DeleteQueueOutcome outcome =
 sqsClient.DeleteQueue(request);
 if (outcome.IsSuccess()) {
 std::cout << "Successfully deleted queue with url " << queueURL <<
 std::endl;
 }
 else {
 std::cerr << "Error deleting queue " << queueURL << ": " <<
 outcome.GetError().GetMessage() << std::endl;
 }
 return outcome.IsSuccess();
}

• For API details, see DeleteQueue in AWS SDK for C++ API Reference.

CLI

AWS CLI

To delete a queue

This example deletes the specified queue.

Command:

aws sqs delete-queue --queue-url https://sqs.us-
east-1.amazonaws.com/80398EXAMPLE/MyNewerQueue

Output:

None.

• For API details, see DeleteQueue in AWS CLI Command Reference.

DeleteQueue 285

https://docs.aws.amazon.com/goto/SdkForCpp/sqs-2012-11-05/DeleteQueue
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/sqs/delete-queue.html

Amazon Simple Queue Service Developer Guide

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

// SqsActions encapsulates the Amazon Simple Queue Service (Amazon SQS) actions
// used in the examples.
type SqsActions struct {
 SqsClient *sqs.Client
}

// DeleteQueue deletes an Amazon SQS queue.
func (actor SqsActions) DeleteQueue(queueUrl string) error {
 _, err := actor.SqsClient.DeleteQueue(context.TODO(), &sqs.DeleteQueueInput{
 QueueUrl: aws.String(queueUrl)})
 if err != nil {
 log.Printf("Couldn't delete queue %v. Here's why: %v\n", queueUrl, err)
 }
 return err
}

• For API details, see DeleteQueue in AWS SDK for Go API Reference.

DeleteQueue 286

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2/workflows/topics_and_queues#code-examples
https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/sqs#Client.DeleteQueue

Amazon Simple Queue Service Developer Guide

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.sqs.SqsClient;
import software.amazon.awssdk.services.sqs.model.GetQueueUrlRequest;
import software.amazon.awssdk.services.sqs.model.DeleteQueueRequest;
import software.amazon.awssdk.services.sqs.model.SqsException;

/**
 * Before running this Java V2 code example, set up your development
 * environment, including your credentials.
 *
 * For more information, see the following documentation topic:
 *
 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html
 */
public class DeleteQueue {
 public static void main(String[] args) {
 final String usage = """

 Usage: <queueName>

 Where:
 queueName - The name of the Amazon SQS queue to delete.

 """;

 if (args.length != 1) {
 System.out.println(usage);
 System.exit(1);
 }

 String queueName = args[0];

DeleteQueue 287

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/sqs#readme

Amazon Simple Queue Service Developer Guide

 SqsClient sqs = SqsClient.builder()
 .region(Region.US_WEST_2)
 .build();

 deleteSQSQueue(sqs, queueName);
 sqs.close();
 }

 public static void deleteSQSQueue(SqsClient sqsClient, String queueName) {
 try {
 GetQueueUrlRequest getQueueRequest = GetQueueUrlRequest.builder()
 .queueName(queueName)
 .build();

 String queueUrl = sqsClient.getQueueUrl(getQueueRequest).queueUrl();
 DeleteQueueRequest deleteQueueRequest = DeleteQueueRequest.builder()
 .queueUrl(queueUrl)
 .build();

 sqsClient.deleteQueue(deleteQueueRequest);

 } catch (SqsException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }
}

• For API details, see DeleteQueue in AWS SDK for Java 2.x API Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Delete an Amazon SQS queue.

DeleteQueue 288

https://docs.aws.amazon.com/goto/SdkForJavaV2/sqs-2012-11-05/DeleteQueue
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/sqs#code-examples

Amazon Simple Queue Service Developer Guide

import { DeleteQueueCommand, SQSClient } from "@aws-sdk/client-sqs";

const client = new SQSClient({});
const SQS_QUEUE_URL = "test-queue-url";

export const main = async (queueUrl = SQS_QUEUE_URL) => {
 const command = new DeleteQueueCommand({ QueueUrl: queueUrl });

 const response = await client.send(command);
 console.log(response);
 return response;
};

• For more information, see AWS SDK for JavaScript Developer Guide.

• For API details, see DeleteQueue in AWS SDK for JavaScript API Reference.

SDK for JavaScript (v2)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Delete an Amazon SQS queue.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create an SQS service object
var sqs = new AWS.SQS({ apiVersion: "2012-11-05" });

var params = {
 QueueUrl: "SQS_QUEUE_URL",
};

sqs.deleteQueue(params, function (err, data) {
 if (err) {
 console.log("Error", err);

DeleteQueue 289

https://docs.aws.amazon.com/sdk-for-javascript/v3/developer-guide/sqs-examples-using-queues.html#sqs-examples-using-queues-delete-queue
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/sqs/command/DeleteQueueCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascript/example_code/sqs#code-examples

Amazon Simple Queue Service Developer Guide

 } else {
 console.log("Success", data);
 }
});

• For more information, see AWS SDK for JavaScript Developer Guide.

• For API details, see DeleteQueue in AWS SDK for JavaScript API Reference.

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

suspend fun deleteMessages(queueUrlVal: String) {
 println("Delete Messages from $queueUrlVal")

 val purgeRequest =
 PurgeQueueRequest {
 queueUrl = queueUrlVal
 }

 SqsClient { region = "us-east-1" }.use { sqsClient ->
 sqsClient.purgeQueue(purgeRequest)
 println("Messages are successfully deleted from $queueUrlVal")
 }
}

suspend fun deleteQueue(queueUrlVal: String) {
 val request =
 DeleteQueueRequest {
 queueUrl = queueUrlVal
 }

 SqsClient { region = "us-east-1" }.use { sqsClient ->
 sqsClient.deleteQueue(request)

DeleteQueue 290

https://docs.aws.amazon.com/sdk-for-javascript/v2/developer-guide/sqs-examples-using-queues.html#sqs-examples-using-queues-delete-queue
https://docs.aws.amazon.com/goto/AWSJavaScriptSDK/sqs-2012-11-05/DeleteQueue
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/sqs#code-examples

Amazon Simple Queue Service Developer Guide

 println("$queueUrlVal was deleted!")
 }
}

• For API details, see DeleteQueue in AWS SDK for Kotlin API reference.

PowerShell

Tools for PowerShell

Example 1: This example deletes the specified queue.

Remove-SQSQueue -QueueUrl https://sqs.us-east-1.amazonaws.com/80398EXAMPLE/
MyQueue

• For API details, see DeleteQueue in AWS Tools for PowerShell Cmdlet Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

def remove_queue(queue):
 """
 Removes an SQS queue. When run against an AWS account, it can take up to
 60 seconds before the queue is actually deleted.

 :param queue: The queue to delete.
 :return: None
 """
 try:
 queue.delete()
 logger.info("Deleted queue with URL=%s.", queue.url)
 except ClientError as error:

DeleteQueue 291

https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://docs.aws.amazon.com/powershell/latest/reference
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/sqs#code-examples

Amazon Simple Queue Service Developer Guide

 logger.exception("Couldn't delete queue with URL=%s!", queue.url)
 raise error

• For API details, see DeleteQueue in AWS SDK for Python (Boto3) API Reference.

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

require "aws-sdk-sqs" # v2: require 'aws-sdk'
Replace us-west-2 with the AWS Region you're using for Amazon SQS.
sqs = Aws::SQS::Client.new(region: "us-west-2")

sqs.delete_queue(queue_url: URL)

• For API details, see DeleteQueue in AWS SDK for Ruby API Reference.

SAP ABAP

SDK for SAP ABAP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 TRY.
 lo_sqs->deletequeue(iv_queueurl = iv_queue_url).

DeleteQueue 292

https://docs.aws.amazon.com/goto/boto3/sqs-2012-11-05/DeleteQueue
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/sqs#code-examples
https://docs.aws.amazon.com/goto/SdkForRubyV3/sqs-2012-11-05/DeleteQueue
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/sap-abap/services/sqs#code-examples

Amazon Simple Queue Service Developer Guide

 MESSAGE 'SQS queue deleted' TYPE 'I'.
 ENDTRY.

• For API details, see DeleteQueue in AWS SDK for SAP ABAP API reference.

For a complete list of AWS SDK developer guides and code examples, see Using Amazon SQS with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use GetQueueAttributes with an AWS SDK or CLI

The following code examples show how to use GetQueueAttributes.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Publish messages to queues

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 /// <summary>
 /// Get the ARN for a queue from its URL.
 /// </summary>
 /// <param name="queueUrl">The URL of the queue.</param>
 /// <returns>The ARN of the queue.</returns>
 public async Task<string> GetQueueArnByUrl(string queueUrl)
 {
 var getAttributesRequest = new GetQueueAttributesRequest()
 {
 QueueUrl = queueUrl,
 AttributeNames = new List<string>() { QueueAttributeName.QueueArn }

GetQueueAttributes 293

https://docs.aws.amazon.com/sdk-for-sap-abap/v1/api/latest/index.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/cross-service/TopicsAndQueues#code-examples

Amazon Simple Queue Service Developer Guide

 };

 var getAttributesResponse = await
 _amazonSQSClient.GetQueueAttributesAsync(
 getAttributesRequest);

 return getAttributesResponse.QueueARN;
 }

• For API details, see GetQueueAttributes in AWS SDK for .NET API Reference.

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 Aws::Client::ClientConfiguration clientConfig;
 // Optional: Set to the AWS Region (overrides config file).
 // clientConfig.region = "us-east-1";

 Aws::SQS::SQSClient sqsClient(clientConfiguration);

 Aws::SQS::Model::GetQueueAttributesRequest request;
 request.SetQueueUrl(queueURL);

 request.AddAttributeNames(Aws::SQS::Model::QueueAttributeName::QueueArn);

 Aws::SQS::Model::GetQueueAttributesOutcome outcome =
 sqsClient.GetQueueAttributes(request);

 if (outcome.IsSuccess()) {
 const Aws::Map<Aws::SQS::Model::QueueAttributeName, Aws::String>
 &attributes =
 outcome.GetResult().GetAttributes();
 const auto &iter = attributes.find(
 Aws::SQS::Model::QueueAttributeName::QueueArn);

GetQueueAttributes 294

https://docs.aws.amazon.com/goto/DotNetSDKV3/sqs-2012-11-05/GetQueueAttributes
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/sqs#code-examples

Amazon Simple Queue Service Developer Guide

 if (iter != attributes.end()) {
 queueARN = iter->second;
 std::cout << "The queue ARN '" << queueARN
 << "' has been retrieved."
 << std::endl;
 }

 }
 else {
 std::cerr << "Error with SQS::GetQueueAttributes. "
 << outcome.GetError().GetMessage()
 << std::endl;

 }

• For API details, see GetQueueAttributes in AWS SDK for C++ API Reference.

CLI

AWS CLI

To get a queue's attributes

This example gets all of the specified queue's attributes.

Command:

aws sqs get-queue-attributes --queue-url https://sqs.us-
east-1.amazonaws.com/80398EXAMPLE/MyQueue --attribute-names All

Output:

{
 "Attributes": {
 "ApproximateNumberOfMessagesNotVisible": "0",
 "RedrivePolicy": "{\"deadLetterTargetArn\":\"arn:aws:sqs:us-
east-1:80398EXAMPLE:MyDeadLetterQueue\",\"maxReceiveCount\":1000}",
 "MessageRetentionPeriod": "345600",
 "ApproximateNumberOfMessagesDelayed": "0",
 "MaximumMessageSize": "262144",
 "CreatedTimestamp": "1442426968",

GetQueueAttributes 295

https://docs.aws.amazon.com/goto/SdkForCpp/sqs-2012-11-05/GetQueueAttributes

Amazon Simple Queue Service Developer Guide

 "ApproximateNumberOfMessages": "0",
 "ReceiveMessageWaitTimeSeconds": "0",
 "DelaySeconds": "0",
 "VisibilityTimeout": "30",
 "LastModifiedTimestamp": "1442426968",
 "QueueArn": "arn:aws:sqs:us-east-1:80398EXAMPLE:MyNewQueue"
 }
}

This example gets only the specified queue's maximum message size and visibility timeout
attributes.

Command:

aws sqs get-queue-attributes --queue-url https://sqs.us-
east-1.amazonaws.com/80398EXAMPLE/MyNewQueue --attribute-
names MaximumMessageSize VisibilityTimeout

Output:

{
 "Attributes": {
 "VisibilityTimeout": "30",
 "MaximumMessageSize": "262144"
 }
}

• For API details, see GetQueueAttributes in AWS CLI Command Reference.

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

// SqsActions encapsulates the Amazon Simple Queue Service (Amazon SQS) actions

GetQueueAttributes 296

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/sqs/get-queue-attributes.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2/workflows/topics_and_queues#code-examples

Amazon Simple Queue Service Developer Guide

// used in the examples.
type SqsActions struct {
 SqsClient *sqs.Client
}

// GetQueueArn uses the GetQueueAttributes action to get the Amazon Resource Name
 (ARN)
// of an Amazon SQS queue.
func (actor SqsActions) GetQueueArn(queueUrl string) (string, error) {
 var queueArn string
 arnAttributeName := types.QueueAttributeNameQueueArn
 attribute, err := actor.SqsClient.GetQueueAttributes(context.TODO(),
 &sqs.GetQueueAttributesInput{
 QueueUrl: aws.String(queueUrl),
 AttributeNames: []types.QueueAttributeName{arnAttributeName},
 })
 if err != nil {
 log.Printf("Couldn't get ARN for queue %v. Here's why: %v\n", queueUrl, err)
 } else {
 queueArn = attribute.Attributes[string(arnAttributeName)]
 }
 return queueArn, err
}

• For API details, see GetQueueAttributes in AWS SDK for Go API Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import { GetQueueAttributesCommand, SQSClient } from "@aws-sdk/client-sqs";

GetQueueAttributes 297

https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/sqs#Client.GetQueueAttributes
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/sqs#code-examples

Amazon Simple Queue Service Developer Guide

const client = new SQSClient({});
const SQS_QUEUE_URL = "queue-url";

export const getQueueAttributes = async (queueUrl = SQS_QUEUE_URL) => {
 const command = new GetQueueAttributesCommand({
 QueueUrl: queueUrl,
 AttributeNames: ["DelaySeconds"],
 });

 const response = await client.send(command);
 console.log(response);
 // {
 // '$metadata': {
 // httpStatusCode: 200,
 // requestId: '747a1192-c334-5682-a508-4cd5e8dc4e79',
 // extendedRequestId: undefined,
 // cfId: undefined,
 // attempts: 1,
 // totalRetryDelay: 0
 // },
 // Attributes: { DelaySeconds: '1' }
 // }
 return response;
};

• For API details, see GetQueueAttributes in AWS SDK for JavaScript API Reference.

PowerShell

Tools for PowerShell

Example 1: This example lists all attributes for the specified queue.

Get-SQSQueueAttribute -AttributeName All -QueueUrl https://sqs.us-
east-1.amazonaws.com/80398EXAMPLE/MyQueue

Output:

VisibilityTimeout : 30
DelaySeconds : 0
MaximumMessageSize : 262144

GetQueueAttributes 298

https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/sqs/command/GetQueueAttributesCommand

Amazon Simple Queue Service Developer Guide

MessageRetentionPeriod : 345600
ApproximateNumberOfMessages : 0
ApproximateNumberOfMessagesNotVisible : 0
ApproximateNumberOfMessagesDelayed : 0
CreatedTimestamp : 2/11/2015 5:53:35 PM
LastModifiedTimestamp : 12/29/2015 2:23:17 PM
QueueARN : arn:aws:sqs:us-
east-1:80398EXAMPLE:MyQueue
Policy :
 {"Version":"2008-10-17","Id":"arn:aws:sqs:us-east-1:80398EXAMPLE:MyQueue/
SQSDefaultPolicy","Statement":[{"Sid":"Sid14

 495134224EX","Effect":"Allow","Principal":
{"AWS":"*"},"Action":"SQS:SendMessage","Resource":"arn:aws:sqs:us-east-1:80
 398EXAMPLE:MyQueue","Condition":
{"ArnEquals":{"aws:SourceArn":"arn:aws:sns:us-east-1:80398EXAMPLE:MyTopic"}}},
{"Sid":

 "SendMessagesFromMyQueue","Effect":"Allow","Principal":
{"AWS":"80398EXAMPLE"},"Action":"SQS:SendMessage","Resource":"
 arn:aws:sqs:us-
east-1:80398EXAMPLE:MyQueue"}]}
Attributes : {[QueueArn, arn:aws:sqs:us-
east-1:80398EXAMPLE:MyQueue], [ApproximateNumberOfMessages, 0],
 [ApproximateNumberOfMessagesNotVisible,
 0], [ApproximateNumberOfMessagesDelayed, 0]...}

Example 2: This example lists separately only the specified attributes for the specified
queue.

Get-SQSQueueAttribute -AttributeName MaximumMessageSize, VisibilityTimeout -
QueueUrl https://sqs.us-east-1.amazonaws.com/80398EXAMPLE/MyQueue

Output:

VisibilityTimeout : 30
DelaySeconds : 0
MaximumMessageSize : 262144
MessageRetentionPeriod : 345600
ApproximateNumberOfMessages : 0
ApproximateNumberOfMessagesNotVisible : 0
ApproximateNumberOfMessagesDelayed : 0
CreatedTimestamp : 2/11/2015 5:53:35 PM

GetQueueAttributes 299

Amazon Simple Queue Service Developer Guide

LastModifiedTimestamp : 12/29/2015 2:23:17 PM
QueueARN : arn:aws:sqs:us-
east-1:80398EXAMPLE:MyQueue
Policy :
 {"Version":"2008-10-17","Id":"arn:aws:sqs:us-east-1:80398EXAMPLE:MyQueue/
SQSDefaultPolicy","Statement":[{"Sid":"Sid14

 495134224EX","Effect":"Allow","Principal":
{"AWS":"*"},"Action":"SQS:SendMessage","Resource":"arn:aws:sqs:us-east-1:80
 398EXAMPLE:MyQueue","Condition":
{"ArnEquals":{"aws:SourceArn":"arn:aws:sns:us-east-1:80398EXAMPLE:MyTopic"}}},
{"Sid":

 "SendMessagesFromMyQueue","Effect":"Allow","Principal":
{"AWS":"80398EXAMPLE"},"Action":"SQS:SendMessage","Resource":"
 arn:aws:sqs:us-
east-1:80398EXAMPLE:MyQueue"}]}
Attributes : {[MaximumMessageSize, 262144],
 [VisibilityTimeout, 30]}

• For API details, see GetQueueAttributes in AWS Tools for PowerShell Cmdlet Reference.

For a complete list of AWS SDK developer guides and code examples, see Using Amazon SQS with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use GetQueueUrl with an AWS SDK or CLI

The following code examples show how to use GetQueueUrl.

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 using System;

GetQueueUrl 300

https://docs.aws.amazon.com/powershell/latest/reference
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/SQS#code-examples

Amazon Simple Queue Service Developer Guide

 using System.Threading.Tasks;
 using Amazon.SQS;
 using Amazon.SQS.Model;

 public class GetQueueUrl
 {
 /// <summary>
 /// Initializes the Amazon SQS client object and then calls the
 /// GetQueueUrlAsync method to retrieve the URL of an Amazon SQS
 /// queue.
 /// </summary>
 public static async Task Main()
 {
 // If the Amazon SQS message queue is not in the same AWS Region as
 your
 // default user, you need to provide the AWS Region as a parameter to
 the
 // client constructor.
 var client = new AmazonSQSClient();

 string queueName = "New-Example-Queue";

 try
 {
 var response = await client.GetQueueUrlAsync(queueName);

 if (response.HttpStatusCode == System.Net.HttpStatusCode.OK)
 {
 Console.WriteLine($"The URL for {queueName} is:
 {response.QueueUrl}");
 }
 }
 catch (QueueDoesNotExistException ex)
 {
 Console.WriteLine(ex.Message);
 Console.WriteLine($"The queue {queueName} was not found.");
 }
 }
 }

• For API details, see GetQueueUrl in AWS SDK for .NET API Reference.

GetQueueUrl 301

https://docs.aws.amazon.com/goto/DotNetSDKV3/sqs-2012-11-05/GetQueueUrl

Amazon Simple Queue Service Developer Guide

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 Aws::Client::ClientConfiguration clientConfig;
 // Optional: Set to the AWS Region (overrides config file).
 // clientConfig.region = "us-east-1";

//! Get the URL for an Amazon Simple Queue Service (Amazon SQS) queue.
/*!
 \param queueName: An Amazon SQS queue name.
 \param clientConfiguration: AWS client configuration.
 \return bool: Function succeeded.
 */
bool AwsDoc::SQS::getQueueUrl(const Aws::String &queueName,
 const Aws::Client::ClientConfiguration
 &clientConfiguration) {
 Aws::SQS::SQSClient sqsClient(clientConfiguration);

 Aws::SQS::Model::GetQueueUrlRequest request;
 request.SetQueueName(queueName);

 const Aws::SQS::Model::GetQueueUrlOutcome outcome =
 sqsClient.GetQueueUrl(request);
 if (outcome.IsSuccess()) {
 std::cout << "Queue " << queueName << " has url " <<
 outcome.GetResult().GetQueueUrl() << std::endl;
 }
 else {
 std::cerr << "Error getting url for queue " << queueName << ": " <<
 outcome.GetError().GetMessage() << std::endl;
 }

 return outcome.IsSuccess();
}

GetQueueUrl 302

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/sqs#code-examples

Amazon Simple Queue Service Developer Guide

• For API details, see GetQueueUrl in AWS SDK for C++ API Reference.

CLI

AWS CLI

To get a queue URL

This example gets the specified queue's URL.

Command:

aws sqs get-queue-url --queue-name MyQueue

Output:

{
 "QueueUrl": "https://queue.amazonaws.com/80398EXAMPLE/MyQueue"
}

• For API details, see GetQueueUrl in AWS CLI Command Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 GetQueueUrlResponse getQueueUrlResponse = sqsClient

 .getQueueUrl(GetQueueUrlRequest.builder().queueName(queueName).build());
 return getQueueUrlResponse.queueUrl();

• For API details, see GetQueueUrl in AWS SDK for Java 2.x API Reference.

GetQueueUrl 303

https://docs.aws.amazon.com/goto/SdkForCpp/sqs-2012-11-05/GetQueueUrl
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/sqs/get-queue-url.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/sqs#readme
https://docs.aws.amazon.com/goto/SdkForJavaV2/sqs-2012-11-05/GetQueueUrl

Amazon Simple Queue Service Developer Guide

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Get the URL for an Amazon SQS queue.

import { GetQueueUrlCommand, SQSClient } from "@aws-sdk/client-sqs";

const client = new SQSClient({});
const SQS_QUEUE_NAME = "test-queue";

export const main = async (queueName = SQS_QUEUE_NAME) => {
 const command = new GetQueueUrlCommand({ QueueName: queueName });

 const response = await client.send(command);
 console.log(response);
 return response;
};

• For more information, see AWS SDK for JavaScript Developer Guide.

• For API details, see GetQueueUrl in AWS SDK for JavaScript API Reference.

SDK for JavaScript (v2)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Get the URL for an Amazon SQS queue.

// Load the AWS SDK for Node.js

GetQueueUrl 304

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/sqs#code-examples
https://docs.aws.amazon.com/sdk-for-javascript/v3/developer-guide/sqs-examples-using-queues.html#sqs-examples-using-queues-get-queue-url
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/sqs/command/GetQueueUrlCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascript/example_code/sqs#code-examples

Amazon Simple Queue Service Developer Guide

var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create an SQS service object
var sqs = new AWS.SQS({ apiVersion: "2012-11-05" });

var params = {
 QueueName: "SQS_QUEUE_NAME",
};

sqs.getQueueUrl(params, function (err, data) {
 if (err) {
 console.log("Error", err);
 } else {
 console.log("Success", data.QueueUrl);
 }
});

• For more information, see AWS SDK for JavaScript Developer Guide.

• For API details, see GetQueueUrl in AWS SDK for JavaScript API Reference.

PowerShell

Tools for PowerShell

Example 1: This example lists the URL of the queue with the specified name.

Get-SQSQueueUrl -QueueName MyQueue

Output:

https://sqs.us-east-1.amazonaws.com/80398EXAMPLE/MyQueue

• For API details, see GetQueueUrl in AWS Tools for PowerShell Cmdlet Reference.

GetQueueUrl 305

https://docs.aws.amazon.com/sdk-for-javascript/v2/developer-guide/sqs-examples-using-queues.html#sqs-examples-using-queues-get-queue-url
https://docs.aws.amazon.com/goto/AWSJavaScriptSDK/sqs-2012-11-05/GetQueueUrl
https://docs.aws.amazon.com/powershell/latest/reference

Amazon Simple Queue Service Developer Guide

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

def get_queue(name):
 """
 Gets an SQS queue by name.

 :param name: The name that was used to create the queue.
 :return: A Queue object.
 """
 try:
 queue = sqs.get_queue_by_name(QueueName=name)
 logger.info("Got queue '%s' with URL=%s", name, queue.url)
 except ClientError as error:
 logger.exception("Couldn't get queue named %s.", name)
 raise error
 else:
 return queue

• For API details, see GetQueueUrl in AWS SDK for Python (Boto3) API Reference.

SAP ABAP

SDK for SAP ABAP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

GetQueueUrl 306

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/sqs#code-examples
https://docs.aws.amazon.com/goto/boto3/sqs-2012-11-05/GetQueueUrl
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/sap-abap/services/sqs#code-examples

Amazon Simple Queue Service Developer Guide

 TRY.
 oo_result = lo_sqs->getqueueurl(iv_queuename = iv_queue_name). "
 oo_result is returned for testing purposes. "
 MESSAGE 'Queue URL retrieved.' TYPE 'I'.
 CATCH /aws1/cx_sqsqueuedoesnotexist.
 MESSAGE 'The requested queue does not exist.' TYPE 'E'.
 ENDTRY.

• For API details, see GetQueueUrl in AWS SDK for SAP ABAP API reference.

For a complete list of AWS SDK developer guides and code examples, see Using Amazon SQS with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use ListDeadLetterSourceQueues with an AWS SDK or CLI

The following code examples show how to use ListDeadLetterSourceQueues.

CLI

AWS CLI

To list dead letter source queues

This example lists the queues that are associated with the specified dead letter source
queue.

Command:

aws sqs list-dead-letter-source-queues --queue-url https://sqs.us-
east-1.amazonaws.com/80398EXAMPLE/MyDeadLetterQueue

Output:

{
 "queueUrls": [
 "https://queue.amazonaws.com/80398EXAMPLE/MyQueue",
 "https://queue.amazonaws.com/80398EXAMPLE/MyOtherQueue"
]
}

ListDeadLetterSourceQueues 307

https://docs.aws.amazon.com/sdk-for-sap-abap/v1/api/latest/index.html

Amazon Simple Queue Service Developer Guide

• For API details, see ListDeadLetterSourceQueues in AWS CLI Command Reference.

PowerShell

Tools for PowerShell

Example 1: This example lists the URLs of any queues that rely on the specified queue as
their dead letter queue.

Get-SQSDeadLetterSourceQueue -QueueUrl https://sqs.us-
east-1.amazonaws.com/80398EXAMPLE/MyDeadLetterQueue

Output:

https://sqs.us-east-1.amazonaws.com/80398EXAMPLE/MyQueue
https://sqs.us-east-1.amazonaws.com/80398EXAMPLE/MyOtherQueue

• For API details, see ListDeadLetterSourceQueues in AWS Tools for PowerShell Cmdlet
Reference.

For a complete list of AWS SDK developer guides and code examples, see Using Amazon SQS with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use ListQueues with an AWS SDK or CLI

The following code examples show how to use ListQueues.

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 Aws::Client::ClientConfiguration clientConfig;

ListQueues 308

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/sqs/list-dead-letter-source-queues.html
https://docs.aws.amazon.com/powershell/latest/reference
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/sqs#code-examples

Amazon Simple Queue Service Developer Guide

 // Optional: Set to the AWS Region (overrides config file).
 // clientConfig.region = "us-east-1";

//! List the Amazon Simple Queue Service (Amazon SQS) queues within an AWS
 account.
/*!
 \param clientConfiguration: AWS client configuration.
 \return bool: Function succeeded.
 */
bool
AwsDoc::SQS::listQueues(const Aws::Client::ClientConfiguration
 &clientConfiguration) {
 Aws::SQS::SQSClient sqsClient(clientConfiguration);

 Aws::SQS::Model::ListQueuesRequest listQueuesRequest;

 Aws::String nextToken; // Used for pagination.
 Aws::Vector<Aws::String> allQueueUrls;

 do {
 if (!nextToken.empty()) {
 listQueuesRequest.SetNextToken(nextToken);
 }
 const Aws::SQS::Model::ListQueuesOutcome outcome = sqsClient.ListQueues(
 listQueuesRequest);
 if (outcome.IsSuccess()) {
 const Aws::Vector<Aws::String> &queueUrls =
 outcome.GetResult().GetQueueUrls();
 allQueueUrls.insert(allQueueUrls.end(),
 queueUrls.begin(),
 queueUrls.end());

 nextToken = outcome.GetResult().GetNextToken();
 }
 else {
 std::cerr << "Error listing queues: " <<
 outcome.GetError().GetMessage() << std::endl;
 return false;
 }

 } while (!nextToken.empty());

 std::cout << allQueueUrls.size() << " Amazon SQS queue(s) found." <<
 std::endl;

ListQueues 309

Amazon Simple Queue Service Developer Guide

 for (const auto &iter: allQueueUrls) {
 std::cout << " " << iter << std::endl;
 }

 return true;
}

• For API details, see ListQueues in AWS SDK for C++ API Reference.

CLI

AWS CLI

To list queues

This example lists all queues.

Command:

aws sqs list-queues

Output:

{
 "QueueUrls": [
 "https://queue.amazonaws.com/80398EXAMPLE/MyDeadLetterQueue",
 "https://queue.amazonaws.com/80398EXAMPLE/MyQueue",
 "https://queue.amazonaws.com/80398EXAMPLE/MyOtherQueue",
 "https://queue.amazonaws.com/80398EXAMPLE/TestQueue1",
 "https://queue.amazonaws.com/80398EXAMPLE/TestQueue2"
]
}

This example lists only queues that start with "My".

Command:

aws sqs list-queues --queue-name-prefix My

Output:

ListQueues 310

https://docs.aws.amazon.com/goto/SdkForCpp/sqs-2012-11-05/ListQueues

Amazon Simple Queue Service Developer Guide

{
 "QueueUrls": [
 "https://queue.amazonaws.com/80398EXAMPLE/MyDeadLetterQueue",
 "https://queue.amazonaws.com/80398EXAMPLE/MyQueue",
 "https://queue.amazonaws.com/80398EXAMPLE/MyOtherQueue"
]
}

• For API details, see ListQueues in AWS CLI Command Reference.

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

package main

import (
 "context"
 "fmt"
 "log"

 "github.com/aws/aws-sdk-go-v2/config"
 "github.com/aws/aws-sdk-go-v2/service/sqs"
)

// main uses the AWS SDK for Go V2 to create an Amazon Simple Queue Service
// (Amazon SQS) client and list the queues in your account.
// This example uses the default settings specified in your shared credentials
// and config files.
func main() {
 sdkConfig, err := config.LoadDefaultConfig(context.TODO())
 if err != nil {
 fmt.Println("Couldn't load default configuration. Have you set up your AWS
 account?")

ListQueues 311

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/sqs/list-queues.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2/sqs#code-examples

Amazon Simple Queue Service Developer Guide

 fmt.Println(err)
 return
 }
 sqsClient := sqs.NewFromConfig(sdkConfig)
 fmt.Println("Let's list the queues for your account.")
 var queueUrls []string
 paginator := sqs.NewListQueuesPaginator(sqsClient, &sqs.ListQueuesInput{})
 for paginator.HasMorePages() {
 output, err := paginator.NextPage(context.TODO())
 if err != nil {
 log.Printf("Couldn't get queues. Here's why: %v\n", err)
 break
 } else {
 queueUrls = append(queueUrls, output.QueueUrls...)
 }
 }
 if len(queueUrls) == 0 {
 fmt.Println("You don't have any queues!")
 } else {
 for _, queueUrl := range queueUrls {
 fmt.Printf("\t%v\n", queueUrl)
 }
 }
}

• For API details, see ListQueues in AWS SDK for Go API Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 String prefix = "que";

 try {

ListQueues 312

https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/sqs#Client.ListQueues
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/sqs#readme

Amazon Simple Queue Service Developer Guide

 ListQueuesRequest listQueuesRequest =
 ListQueuesRequest.builder().queueNamePrefix(prefix).build();
 ListQueuesResponse listQueuesResponse =
 sqsClient.listQueues(listQueuesRequest);
 for (String url : listQueuesResponse.queueUrls()) {
 System.out.println(url);
 }

 } catch (SqsException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }

• For API details, see ListQueues in AWS SDK for Java 2.x API Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

List your Amazon SQS queues.

import { paginateListQueues, SQSClient } from "@aws-sdk/client-sqs";

const client = new SQSClient({});

export const main = async () => {
 const paginatedListQueues = paginateListQueues({ client }, {});

 /** @type {string[]} */
 const urls = [];
 for await (const page of paginatedListQueues) {
 const nextUrls = page.QueueUrls?.filter((qurl) => !!qurl) || [];
 urls.push(...nextUrls);
 urls.forEach((url) => console.log(url));
 }

ListQueues 313

https://docs.aws.amazon.com/goto/SdkForJavaV2/sqs-2012-11-05/ListQueues
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/sqs#code-examples

Amazon Simple Queue Service Developer Guide

 return urls;
};

• For more information, see AWS SDK for JavaScript Developer Guide.

• For API details, see ListQueues in AWS SDK for JavaScript API Reference.

SDK for JavaScript (v2)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

List your Amazon SQS queues.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create an SQS service object
var sqs = new AWS.SQS({ apiVersion: "2012-11-05" });

var params = {};

sqs.listQueues(params, function (err, data) {
 if (err) {
 console.log("Error", err);
 } else {
 console.log("Success", data.QueueUrls);
 }
});

• For more information, see AWS SDK for JavaScript Developer Guide.

• For API details, see ListQueues in AWS SDK for JavaScript API Reference.

ListQueues 314

https://docs.aws.amazon.com/sdk-for-javascript/v3/developer-guide/sqs-examples-using-queues.html#sqs-examples-using-queues-listing-queues
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/sqs/command/ListQueuesCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascript/example_code/sqs#code-examples
https://docs.aws.amazon.com/sdk-for-javascript/v2/developer-guide/sqs-examples-using-queues.html#sqs-examples-using-queues-listing-queues
https://docs.aws.amazon.com/goto/AWSJavaScriptSDK/sqs-2012-11-05/ListQueues

Amazon Simple Queue Service Developer Guide

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

suspend fun listQueues() {
 println("\nList Queues")

 val prefix = "que"
 val listQueuesRequest =
 ListQueuesRequest {
 queueNamePrefix = prefix
 }

 SqsClient { region = "us-east-1" }.use { sqsClient ->
 val response = sqsClient.listQueues(listQueuesRequest)
 response.queueUrls?.forEach { url ->
 println(url)
 }
 }
}

• For API details, see ListQueues in AWS SDK for Kotlin API reference.

PowerShell

Tools for PowerShell

Example 1: This example lists all queues.

Get-SQSQueue

Output:

https://sqs.us-east-1.amazonaws.com/80398EXAMPLE/MyQueue

ListQueues 315

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/sqs#code-examples
https://sdk.amazonaws.com/kotlin/api/latest/index.html

Amazon Simple Queue Service Developer Guide

https://sqs.us-east-1.amazonaws.com/80398EXAMPLE/AnotherQueue
https://sqs.us-east-1.amazonaws.com/80398EXAMPLE/DeadLetterQueue
https://sqs.us-east-1.amazonaws.com/80398EXAMPLE/MyOtherQueue
https://sqs.us-east-1.amazonaws.com/80398EXAMPLE/MyDeadLetterQueue

Example 2: This example lists any queues that start with the specified name.

Get-SQSQueue -QueueNamePrefix My

Output:

https://sqs.us-east-1.amazonaws.com/80398EXAMPLE/MyQueue
https://sqs.us-east-1.amazonaws.com/80398EXAMPLE/MyOtherQueue
https://sqs.us-east-1.amazonaws.com/80398EXAMPLE/MyDeadLetterQueue

• For API details, see ListQueues in AWS Tools for PowerShell Cmdlet Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

def get_queues(prefix=None):
 """
 Gets a list of SQS queues. When a prefix is specified, only queues with names
 that start with the prefix are returned.

 :param prefix: The prefix used to restrict the list of returned queues.
 :return: A list of Queue objects.
 """
 if prefix:
 queue_iter = sqs.queues.filter(QueueNamePrefix=prefix)
 else:
 queue_iter = sqs.queues.all()
 queues = list(queue_iter)

ListQueues 316

https://docs.aws.amazon.com/powershell/latest/reference
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/sqs#code-examples

Amazon Simple Queue Service Developer Guide

 if queues:
 logger.info("Got queues: %s", ", ".join([q.url for q in queues]))
 else:
 logger.warning("No queues found.")
 return queues

• For API details, see ListQueues in AWS SDK for Python (Boto3) API Reference.

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

require "aws-sdk-sqs"
require "aws-sdk-sts"

@param sqs_client [Aws::SQS::Client] An initialized Amazon SQS client.
@example
list_queue_urls(Aws::SQS::Client.new(region: 'us-west-2'))
def list_queue_urls(sqs_client)
 queues = sqs_client.list_queues

 queues.queue_urls.each do |url|
 puts url
 end
rescue StandardError => e
 puts "Error listing queue URLs: #{e.message}"
end

Lists the attributes of a queue in Amazon Simple Queue Service (Amazon SQS).
#
@param sqs_client [Aws::SQS::Client] An initialized Amazon SQS client.
@param queue_url [String] The URL of the queue.

ListQueues 317

https://docs.aws.amazon.com/goto/boto3/sqs-2012-11-05/ListQueues
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/sqs#code-examples

Amazon Simple Queue Service Developer Guide

@example
list_queue_attributes(
Aws::SQS::Client.new(region: 'us-west-2'),
'https://sqs.us-west-2.amazonaws.com/111111111111/my-queue'
)
def list_queue_attributes(sqs_client, queue_url)
 attributes = sqs_client.get_queue_attributes(
 queue_url: queue_url,
 attribute_names: ["All"]
)

 attributes.attributes.each do |key, value|
 puts "#{key}: #{value}"
 end

rescue StandardError => e
 puts "Error getting queue attributes: #{e.message}"
end

Full example call:
Replace us-west-2 with the AWS Region you're using for Amazon SQS.
def run_me
 region = "us-west-2"
 queue_name = "my-queue"

 sqs_client = Aws::SQS::Client.new(region: region)

 puts "Listing available queue URLs..."
 list_queue_urls(sqs_client)

 sts_client = Aws::STS::Client.new(region: region)

 # For example:
 # 'https://sqs.us-west-2.amazonaws.com/111111111111/my-queue'
 queue_url = "https://sqs." + region + ".amazonaws.com/" +
 sts_client.get_caller_identity.account + "/" + queue_name

 puts "\nGetting information about queue '#{queue_name}'..."
 list_queue_attributes(sqs_client, queue_url)
end

• For API details, see ListQueues in AWS SDK for Ruby API Reference.

ListQueues 318

https://docs.aws.amazon.com/goto/SdkForRubyV3/sqs-2012-11-05/ListQueues

Amazon Simple Queue Service Developer Guide

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Retrieve the first Amazon SQS queue listed in the Region.

async fn find_first_queue(client: &Client) -> Result<String, Error> {
 let queues = client.list_queues().send().await?;
 let queue_urls = queues.queue_urls();
 Ok(queue_urls
 .first()
 .expect("No queues in this account and Region. Create a queue to
 proceed.")
 .to_string())
}

• For API details, see ListQueues in AWS SDK for Rust API reference.

SAP ABAP

SDK for SAP ABAP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 TRY.
 oo_result = lo_sqs->listqueues(). " oo_result is returned for
 testing purposes. "
 MESSAGE 'Retrieved list of queues.' TYPE 'I'.
 ENDTRY.

ListQueues 319

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/rustv1/examples/sqs#code-examples
https://docs.rs/releases/search?query=aws-sdk
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/sap-abap/services/sqs#code-examples

Amazon Simple Queue Service Developer Guide

• For API details, see ListQueues in AWS SDK for SAP ABAP API reference.

For a complete list of AWS SDK developer guides and code examples, see Using Amazon SQS with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use PurgeQueue with an AWS SDK or CLI

The following code examples show how to use PurgeQueue.

CLI

AWS CLI

To purge a queue

This example deletes all messages in the specified queue.

Command:

aws sqs purge-queue --queue-url https://sqs.us-east-1.amazonaws.com/80398EXAMPLE/
MyNewQueue

Output:

None.

• For API details, see PurgeQueue in AWS CLI Command Reference.

PowerShell

Tools for PowerShell

Example 1: This example deletes all messages from the specified queue.

Clear-SQSQueue -QueueUrl https://sqs.us-east-1.amazonaws.com/80398EXAMPLE/MyQueue

• For API details, see PurgeQueue in AWS Tools for PowerShell Cmdlet Reference.

PurgeQueue 320

https://docs.aws.amazon.com/sdk-for-sap-abap/v1/api/latest/index.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/sqs/purge-queue.html
https://docs.aws.amazon.com/powershell/latest/reference

Amazon Simple Queue Service Developer Guide

For a complete list of AWS SDK developer guides and code examples, see Using Amazon SQS with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use ReceiveMessage with an AWS SDK or CLI

The following code examples show how to use ReceiveMessage.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code examples:

• Publish messages to queues

• Send and receive batches of messages

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Receive messages from a queue by using its URL.

 /// <summary>
 /// Receive messages from a queue by its URL.
 /// </summary>
 /// <param name="queueUrl">The url of the queue.</param>
 /// <returns>The list of messages.</returns>
 public async Task<List<Message>> ReceiveMessagesByUrl(string queueUrl, int
 maxMessages)
 {
 // Setting WaitTimeSeconds to non-zero enables long polling.
 // For information about long polling, see
 // https://docs.aws.amazon.com/AWSSimpleQueueService/latest/
SQSDeveloperGuide/sqs-short-and-long-polling.html
 var messageResponse = await _amazonSQSClient.ReceiveMessageAsync(
 new ReceiveMessageRequest()

ReceiveMessage 321

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/cross-service/TopicsAndQueues#code-examples

Amazon Simple Queue Service Developer Guide

 {
 QueueUrl = queueUrl,
 MaxNumberOfMessages = maxMessages,
 WaitTimeSeconds = 1
 });
 return messageResponse.Messages;
 }

Receive a message from an Amazon SQS queue, and then delete the message.

 public static async Task Main()
 {
 // If the AWS Region you want to use is different from
 // the AWS Region defined for the default user, supply
 // the specify your AWS Region to the client constructor.
 var client = new AmazonSQSClient();
 string queueName = "Example_Queue";

 var queueUrl = await GetQueueUrl(client, queueName);
 Console.WriteLine($"The SQS queue's URL is {queueUrl}");

 var response = await ReceiveAndDeleteMessage(client, queueUrl);

 Console.WriteLine($"Message: {response.Messages[0]}");
 }

 /// <summary>
 /// Retrieve the queue URL for the queue named in the queueName
 /// property using the client object.
 /// </summary>
 /// <param name="client">The Amazon SQS client used to retrieve the
 /// queue URL.</param>
 /// <param name="queueName">A string representing name of the queue
 /// for which to retrieve the URL.</param>
 /// <returns>The URL of the queue.</returns>
 public static async Task<string> GetQueueUrl(IAmazonSQS client, string
 queueName)
 {
 var request = new GetQueueUrlRequest
 {
 QueueName = queueName,
 };

ReceiveMessage 322

Amazon Simple Queue Service Developer Guide

 GetQueueUrlResponse response = await
 client.GetQueueUrlAsync(request);
 return response.QueueUrl;
 }

 /// <summary>
 /// Retrieves the message from the quque at the URL passed in the
 /// queueURL parameters using the client.
 /// </summary>
 /// <param name="client">The SQS client used to retrieve a message.</
param>
 /// <param name="queueUrl">The URL of the queue from which to retrieve
 /// a message.</param>
 /// <returns>The response from the call to ReceiveMessageAsync.</returns>
 public static async Task<ReceiveMessageResponse>
 ReceiveAndDeleteMessage(IAmazonSQS client, string queueUrl)
 {
 // Receive a single message from the queue.
 var receiveMessageRequest = new ReceiveMessageRequest
 {
 AttributeNames = { "SentTimestamp" },
 MaxNumberOfMessages = 1,
 MessageAttributeNames = { "All" },
 QueueUrl = queueUrl,
 VisibilityTimeout = 0,
 WaitTimeSeconds = 0,
 };

 var receiveMessageResponse = await
 client.ReceiveMessageAsync(receiveMessageRequest);

 // Delete the received message from the queue.
 var deleteMessageRequest = new DeleteMessageRequest
 {
 QueueUrl = queueUrl,
 ReceiptHandle = receiveMessageResponse.Messages[0].ReceiptHandle,
 };

 await client.DeleteMessageAsync(deleteMessageRequest);

 return receiveMessageResponse;
 }
 }

ReceiveMessage 323

Amazon Simple Queue Service Developer Guide

• For API details, see ReceiveMessage in AWS SDK for .NET API Reference.

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 Aws::Client::ClientConfiguration clientConfig;
 // Optional: Set to the AWS Region (overrides config file).
 // clientConfig.region = "us-east-1";

//! Receive a message from an Amazon Simple Queue Service (Amazon SQS) queue.
/*!
 \param queueUrl: An Amazon SQS queue URL.
 \param clientConfiguration: AWS client configuration.
 \return bool: Function succeeded.
 */
bool AwsDoc::SQS::receiveMessage(const Aws::String &queueUrl,
 const Aws::Client::ClientConfiguration
 &clientConfiguration) {
 Aws::SQS::SQSClient sqsClient(clientConfiguration);

 Aws::SQS::Model::ReceiveMessageRequest request;
 request.SetQueueUrl(queueUrl);
 request.SetMaxNumberOfMessages(1);

 const Aws::SQS::Model::ReceiveMessageOutcome outcome =
 sqsClient.ReceiveMessage(
 request);
 if (outcome.IsSuccess()) {

 const Aws::Vector<Aws::SQS::Model::Message> &messages =
 outcome.GetResult().GetMessages();
 if (!messages.empty()) {

ReceiveMessage 324

https://docs.aws.amazon.com/goto/DotNetSDKV3/sqs-2012-11-05/ReceiveMessage
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/sqs#code-examples

Amazon Simple Queue Service Developer Guide

 const Aws::SQS::Model::Message &message = messages[0];
 std::cout << "Received message:" << std::endl;
 std::cout << " MessageId: " << message.GetMessageId() << std::endl;
 std::cout << " ReceiptHandle: " << message.GetReceiptHandle() <<
 std::endl;
 std::cout << " Body: " << message.GetBody() << std::endl <<
 std::endl;
 }
 else {
 std::cout << "No messages received from queue " << queueUrl <<
 std::endl;

 }
 }
 else {
 std::cerr << "Error receiving message from queue " << queueUrl << ": "
 << outcome.GetError().GetMessage() << std::endl;
 }
 return outcome.IsSuccess();
}

• For API details, see ReceiveMessage in AWS SDK for C++ API Reference.

CLI

AWS CLI

To receive a message

This example receives up to 10 available messages, returning all available attributes.

Command:

aws sqs receive-message --queue-url https://sqs.us-
east-1.amazonaws.com/80398EXAMPLE/MyQueue --attribute-names All --message-
attribute-names All --max-number-of-messages 10

Output:

{
 "Messages": [

ReceiveMessage 325

https://docs.aws.amazon.com/goto/SdkForCpp/sqs-2012-11-05/ReceiveMessage

Amazon Simple Queue Service Developer Guide

 {
 "Body": "My first message.",
 "ReceiptHandle": "AQEBzbVv...fqNzFw==",
 "MD5OfBody": "1000f835...a35411fa",
 "MD5OfMessageAttributes": "9424c491...26bc3ae7",
 "MessageId": "d6790f8d-d575-4f01-bc51-40122EXAMPLE",
 "Attributes": {
 "ApproximateFirstReceiveTimestamp": "1442428276921",
 "SenderId": "AIDAIAZKMSNQ7TEXAMPLE",
 "ApproximateReceiveCount": "5",
 "SentTimestamp": "1442428276921"
 },
 "MessageAttributes": {
 "PostalCode": {
 "DataType": "String",
 "StringValue": "ABC123"
 },
 "City": {
 "DataType": "String",
 "StringValue": "Any City"
 }
 }
 }
]
}

This example receives the next available message, returning only the SenderId and
SentTimestamp attributes as well as the PostalCode message attribute.

Command:

aws sqs receive-message --queue-url https://sqs.us-
east-1.amazonaws.com/80398EXAMPLE/MyQueue --attribute-
names SenderId SentTimestamp --message-attribute-names PostalCode

Output:

{
 "Messages": [
 {
 "Body": "My first message.",
 "ReceiptHandle": "AQEB6nR4...HzlvZQ==",
 "MD5OfBody": "1000f835...a35411fa",

ReceiveMessage 326

Amazon Simple Queue Service Developer Guide

 "MD5OfMessageAttributes": "b8e89563...e088e74f",
 "MessageId": "d6790f8d-d575-4f01-bc51-40122EXAMPLE",
 "Attributes": {
 "SenderId": "AIDAIAZKMSNQ7TEXAMPLE",
 "SentTimestamp": "1442428276921"
 },
 "MessageAttributes": {
 "PostalCode": {
 "DataType": "String",
 "StringValue": "ABC123"
 }
 }
 }
]
}

• For API details, see ReceiveMessage in AWS CLI Command Reference.

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

// SqsActions encapsulates the Amazon Simple Queue Service (Amazon SQS) actions
// used in the examples.
type SqsActions struct {
 SqsClient *sqs.Client
}

// GetMessages uses the ReceiveMessage action to get messages from an Amazon SQS
 queue.
func (actor SqsActions) GetMessages(queueUrl string, maxMessages int32, waitTime
 int32) ([]types.Message, error) {
 var messages []types.Message

ReceiveMessage 327

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/sqs/receive-message.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2/workflows/topics_and_queues#code-examples

Amazon Simple Queue Service Developer Guide

 result, err := actor.SqsClient.ReceiveMessage(context.TODO(),
 &sqs.ReceiveMessageInput{
 QueueUrl: aws.String(queueUrl),
 MaxNumberOfMessages: maxMessages,
 WaitTimeSeconds: waitTime,
 })
 if err != nil {
 log.Printf("Couldn't get messages from queue %v. Here's why: %v\n", queueUrl,
 err)
 } else {
 messages = result.Messages
 }
 return messages, err
}

• For API details, see ReceiveMessage in AWS SDK for Go API Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 try {
 ReceiveMessageRequest receiveMessageRequest =
 ReceiveMessageRequest.builder()
 .queueUrl(queueUrl)
 .maxNumberOfMessages(5)
 .build();
 return sqsClient.receiveMessage(receiveMessageRequest).messages();

 } catch (SqsException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 return null;

ReceiveMessage 328

https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/sqs#Client.ReceiveMessage
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/sqs#readme

Amazon Simple Queue Service Developer Guide

• For API details, see ReceiveMessage in AWS SDK for Java 2.x API Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Receive a message from an Amazon SQS queue.

import {
 ReceiveMessageCommand,
 DeleteMessageCommand,
 SQSClient,
 DeleteMessageBatchCommand,
} from "@aws-sdk/client-sqs";

const client = new SQSClient({});
const SQS_QUEUE_URL = "queue_url";

const receiveMessage = (queueUrl) =>
 client.send(
 new ReceiveMessageCommand({
 AttributeNames: ["SentTimestamp"],
 MaxNumberOfMessages: 10,
 MessageAttributeNames: ["All"],
 QueueUrl: queueUrl,
 WaitTimeSeconds: 20,
 VisibilityTimeout: 20,
 }),
);

export const main = async (queueUrl = SQS_QUEUE_URL) => {
 const { Messages } = await receiveMessage(queueUrl);

 if (!Messages) {

ReceiveMessage 329

https://docs.aws.amazon.com/goto/SdkForJavaV2/sqs-2012-11-05/ReceiveMessage
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/sqs#code-examples

Amazon Simple Queue Service Developer Guide

 return;
 }

 if (Messages.length === 1) {
 console.log(Messages[0].Body);
 await client.send(
 new DeleteMessageCommand({
 QueueUrl: queueUrl,
 ReceiptHandle: Messages[0].ReceiptHandle,
 }),
);
 } else {
 await client.send(
 new DeleteMessageBatchCommand({
 QueueUrl: queueUrl,
 Entries: Messages.map((message) => ({
 Id: message.MessageId,
 ReceiptHandle: message.ReceiptHandle,
 })),
 }),
);
 }
};

Receive a message from an Amazon SQS queue using long-poll support.

import { ReceiveMessageCommand, SQSClient } from "@aws-sdk/client-sqs";

const client = new SQSClient({});
const SQS_QUEUE_URL = "queue-url";

export const main = async (queueUrl = SQS_QUEUE_URL) => {
 const command = new ReceiveMessageCommand({
 AttributeNames: ["SentTimestamp"],
 MaxNumberOfMessages: 1,
 MessageAttributeNames: ["All"],
 QueueUrl: queueUrl,
 // The duration (in seconds) for which the call waits for a message
 // to arrive in the queue before returning. If a message is available,
 // the call returns sooner than WaitTimeSeconds. If no messages are
 // available and the wait time expires, the call returns successfully
 // with an empty list of messages.

ReceiveMessage 330

Amazon Simple Queue Service Developer Guide

 // https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/
API_ReceiveMessage.html#API_ReceiveMessage_RequestSyntax
 WaitTimeSeconds: 20,
 });

 const response = await client.send(command);
 console.log(response);
 return response;
};

• For API details, see ReceiveMessage in AWS SDK for JavaScript API Reference.

SDK for JavaScript (v2)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Receive a message from an Amazon SQS queue using long-poll support.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create the SQS service object
var sqs = new AWS.SQS({ apiVersion: "2012-11-05" });

var queueURL = "SQS_QUEUE_URL";

var params = {
 AttributeNames: ["SentTimestamp"],
 MaxNumberOfMessages: 1,
 MessageAttributeNames: ["All"],
 QueueUrl: queueURL,
 WaitTimeSeconds: 20,
};

sqs.receiveMessage(params, function (err, data) {
 if (err) {

ReceiveMessage 331

https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/sqs/command/ReceiveMessageCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascript/example_code/sqs#code-examples

Amazon Simple Queue Service Developer Guide

 console.log("Error", err);
 } else {
 console.log("Success", data);
 }
});

• For more information, see AWS SDK for JavaScript Developer Guide.

• For API details, see ReceiveMessage in AWS SDK for JavaScript API Reference.

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

suspend fun receiveMessages(queueUrlVal: String?) {
 println("Retrieving messages from $queueUrlVal")

 val receiveMessageRequest =
 ReceiveMessageRequest {
 queueUrl = queueUrlVal
 maxNumberOfMessages = 5
 }

 SqsClient { region = "us-east-1" }.use { sqsClient ->
 val response = sqsClient.receiveMessage(receiveMessageRequest)
 response.messages?.forEach { message ->
 println(message.body)
 }
 }
}

• For API details, see ReceiveMessage in AWS SDK for Kotlin API reference.

ReceiveMessage 332

https://docs.aws.amazon.com/sdk-for-javascript/v2/developer-guide/sqs-examples-enable-long-polling.html#sqs-examples-enable-long-polling-on-receive-message
https://docs.aws.amazon.com/goto/AWSJavaScriptSDK/sqs-2012-11-05/ReceiveMessage
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/sqs#code-examples
https://sdk.amazonaws.com/kotlin/api/latest/index.html

Amazon Simple Queue Service Developer Guide

PowerShell

Tools for PowerShell

Example 1: This example lists information for up to the next 10 messages to be received
for the specified queue. The information will contain values for the specified message
attributes, if they exist.

Receive-SQSMessage -AttributeName SenderId, SentTimestamp -MessageAttributeName
 StudentName, StudentGrade -MessageCount 10 -QueueUrl https://sqs.us-
east-1.amazonaws.com/80398EXAMPLE/MyQueue

Output:

Attributes : {[SenderId, AIDAIAZKMSNQ7TEXAMPLE], [SentTimestamp,
 1451495923744]}
Body : Information about John Doe's grade.
MD5OfBody : ea572796e3c231f974fe75d89EXAMPLE
MD5OfMessageAttributes : 48c1ee811f0fe7c4e88fbe0f5EXAMPLE
MessageAttributes : {[StudentGrade, Amazon.SQS.Model.MessageAttributeValue],
 [StudentName, Amazon.SQS.Model.MessageAttributeValue]}
MessageId : 53828c4b-631b-469b-8833-c093cEXAMPLE
ReceiptHandle : AQEBpfGp...20Q5cg==

• For API details, see ReceiveMessage in AWS Tools for PowerShell Cmdlet Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

def receive_messages(queue, max_number, wait_time):
 """
 Receive a batch of messages in a single request from an SQS queue.

 :param queue: The queue from which to receive messages.

ReceiveMessage 333

https://docs.aws.amazon.com/powershell/latest/reference
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/sqs#code-examples

Amazon Simple Queue Service Developer Guide

 :param max_number: The maximum number of messages to receive. The actual
 number
 of messages received might be less.
 :param wait_time: The maximum time to wait (in seconds) before returning.
 When
 this number is greater than zero, long polling is used.
 This
 can result in reduced costs and fewer false empty
 responses.
 :return: The list of Message objects received. These each contain the body
 of the message and metadata and custom attributes.
 """
 try:
 messages = queue.receive_messages(
 MessageAttributeNames=["All"],
 MaxNumberOfMessages=max_number,
 WaitTimeSeconds=wait_time,
)
 for msg in messages:
 logger.info("Received message: %s: %s", msg.message_id, msg.body)
 except ClientError as error:
 logger.exception("Couldn't receive messages from queue: %s", queue)
 raise error
 else:
 return messages

• For API details, see ReceiveMessage in AWS SDK for Python (Boto3) API Reference.

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

ReceiveMessage 334

https://docs.aws.amazon.com/goto/boto3/sqs-2012-11-05/ReceiveMessage
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/sqs#code-examples

Amazon Simple Queue Service Developer Guide

require "aws-sdk-sqs"
require "aws-sdk-sts"

Receives messages in a queue in Amazon Simple Queue Service (Amazon SQS).
#
@param sqs_client [Aws::SQS::Client] An initialized Amazon SQS client.
@param queue_url [String] The URL of the queue.
@param max_number_of_messages [Integer] The maximum number of messages
to receive. This number must be 10 or less. The default is 10.
@example
receive_messages(
Aws::SQS::Client.new(region: 'us-west-2'),
'https://sqs.us-west-2.amazonaws.com/111111111111/my-queue',
10
)
def receive_messages(sqs_client, queue_url, max_number_of_messages = 10)

 if max_number_of_messages > 10
 puts "Maximum number of messages to receive must be 10 or less. " \
 "Stopping program."
 return
 end

 response = sqs_client.receive_message(
 queue_url: queue_url,
 max_number_of_messages: max_number_of_messages
)

 if response.messages.count.zero?
 puts "No messages to receive, or all messages have already " \
 "been previously received."
 return
 end

 response.messages.each do |message|
 puts "-" * 20
 puts "Message body: #{message.body}"
 puts "Message ID: #{message.message_id}"
 end

rescue StandardError => e
 puts "Error receiving messages: #{e.message}"
end

ReceiveMessage 335

Amazon Simple Queue Service Developer Guide

Full example call:
Replace us-west-2 with the AWS Region you're using for Amazon SQS.
def run_me
 region = "us-west-2"
 queue_name = "my-queue"
 max_number_of_messages = 10

 sts_client = Aws::STS::Client.new(region: region)

 # For example:
 # 'https://sqs.us-west-2.amazonaws.com/111111111111/my-queue'
 queue_url = "https://sqs." + region + ".amazonaws.com/" +
 sts_client.get_caller_identity.account + "/" + queue_name

 sqs_client = Aws::SQS::Client.new(region: region)

 puts "Receiving messages from queue '#{queue_name}'..."

 receive_messages(sqs_client, queue_url, max_number_of_messages)
end

Example usage:
run_me if $PROGRAM_NAME == __FILE__

• For API details, see ReceiveMessage in AWS SDK for Ruby API Reference.

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

async fn receive(client: &Client, queue_url: &String) -> Result<(), Error> {
 let rcv_message_output =
 client.receive_message().queue_url(queue_url).send().await?;

 println!("Messages from queue with url: {}", queue_url);

ReceiveMessage 336

https://docs.aws.amazon.com/goto/SdkForRubyV3/sqs-2012-11-05/ReceiveMessage
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/rustv1/examples/sqs#code-examples

Amazon Simple Queue Service Developer Guide

 for message in rcv_message_output.messages.unwrap_or_default() {
 println!("Got the message: {:#?}", message);
 }

 Ok(())
}

• For API details, see ReceiveMessage in AWS SDK for Rust API reference.

SAP ABAP

SDK for SAP ABAP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Receive a message from an Amazon SQS queue.

 TRY.
 oo_result = lo_sqs->receivemessage(iv_queueurl = iv_queue_url). "
 oo_result is returned for testing purposes. "
 DATA(lt_messages) = oo_result->get_messages().
 MESSAGE 'Message received from SQS queue.' TYPE 'I'.
 CATCH /aws1/cx_sqsoverlimit.
 MESSAGE 'Maximum number of in-flight messages reached.' TYPE 'E'.
 ENDTRY.

Receive a message from an Amazon SQS queue using long-poll support.

 TRY.
 oo_result = lo_sqs->receivemessage(" oo_result is returned for
 testing purposes. "
 iv_queueurl = iv_queue_url

ReceiveMessage 337

https://docs.rs/releases/search?query=aws-sdk
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/sap-abap/services/sqs#code-examples

Amazon Simple Queue Service Developer Guide

 iv_waittimeseconds = iv_wait_time " Time in seconds for long
 polling, such as how long the call waits for a message to arrive in the queue
 before returning. "
).
 DATA(lt_messages) = oo_result->get_messages().
 MESSAGE 'Message received from SQS queue.' TYPE 'I'.
 CATCH /aws1/cx_sqsoverlimit.
 MESSAGE 'Maximum number of in-flight messages reached.' TYPE 'E'.
 ENDTRY.

• For API details, see ReceiveMessage in AWS SDK for SAP ABAP API reference.

For a complete list of AWS SDK developer guides and code examples, see Using Amazon SQS with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use RemovePermission with an AWS SDK or CLI

The following code examples show how to use RemovePermission.

CLI

AWS CLI

To remove a permission

This example removes the permission with the specified label from the specified queue.

Command:

aws sqs remove-permission --queue-url https://sqs.us-
east-1.amazonaws.com/80398EXAMPLE/MyQueue --label SendMessagesFromMyQueue

Output:

None.

• For API details, see RemovePermission in AWS CLI Command Reference.

RemovePermission 338

https://docs.aws.amazon.com/sdk-for-sap-abap/v1/api/latest/index.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/sqs/remove-permission.html

Amazon Simple Queue Service Developer Guide

PowerShell

Tools for PowerShell

Example 1: This example removes the permission settings with the specified label from
the specified queue.

Remove-SQSPermission -Label SendMessagesFromMyQueue -QueueUrl https://sqs.us-
east-1.amazonaws.com/80398EXAMPLE/MyQueue

• For API details, see RemovePermission in AWS Tools for PowerShell Cmdlet Reference.

For a complete list of AWS SDK developer guides and code examples, see Using Amazon SQS with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use SendMessage with an AWS SDK or CLI

The following code examples show how to use SendMessage.

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Create an Amazon SQS queue and send a message to it.

 using System;
 using System.Collections.Generic;
 using System.Threading.Tasks;
 using Amazon;
 using Amazon.SQS;
 using Amazon.SQS.Model;

 public class CreateSendExample
 {

SendMessage 339

https://docs.aws.amazon.com/powershell/latest/reference
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/SQS#code-examples

Amazon Simple Queue Service Developer Guide

 // Specify your AWS Region (an example Region is shown).
 private static readonly string QueueName = "Example_Queue";
 private static readonly RegionEndpoint ServiceRegion =
 RegionEndpoint.USWest2;
 private static IAmazonSQS client;

 public static async Task Main()
 {
 client = new AmazonSQSClient(ServiceRegion);
 var createQueueResponse = await CreateQueue(client, QueueName);

 string queueUrl = createQueueResponse.QueueUrl;

 Dictionary<string, MessageAttributeValue> messageAttributes = new
 Dictionary<string, MessageAttributeValue>
 {
 { "Title", new MessageAttributeValue { DataType = "String",
 StringValue = "The Whistler" } },
 { "Author", new MessageAttributeValue { DataType = "String",
 StringValue = "John Grisham" } },
 { "WeeksOn", new MessageAttributeValue { DataType = "Number",
 StringValue = "6" } },
 };

 string messageBody = "Information about current NY Times fiction
 bestseller for week of 12/11/2016.";

 var sendMsgResponse = await SendMessage(client, queueUrl,
 messageBody, messageAttributes);
 }

 /// <summary>
 /// Creates a new Amazon SQS queue using the queue name passed to it
 /// in queueName.
 /// </summary>
 /// <param name="client">An SQS client object used to send the message.</
param>
 /// <param name="queueName">A string representing the name of the queue
 /// to create.</param>
 /// <returns>A CreateQueueResponse that contains information about the
 /// newly created queue.</returns>
 public static async Task<CreateQueueResponse> CreateQueue(IAmazonSQS
 client, string queueName)
 {

SendMessage 340

Amazon Simple Queue Service Developer Guide

 var request = new CreateQueueRequest
 {
 QueueName = queueName,
 Attributes = new Dictionary<string, string>
 {
 { "DelaySeconds", "60" },
 { "MessageRetentionPeriod", "86400" },
 },
 };

 var response = await client.CreateQueueAsync(request);
 Console.WriteLine($"Created a queue with URL : {response.QueueUrl}");

 return response;
 }

 /// <summary>
 /// Sends a message to an SQS queue.
 /// </summary>
 /// <param name="client">An SQS client object used to send the message.</
param>
 /// <param name="queueUrl">The URL of the queue to which to send the
 /// message.</param>
 /// <param name="messageBody">A string representing the body of the
 /// message to be sent to the queue.</param>
 /// <param name="messageAttributes">Attributes for the message to be
 /// sent to the queue.</param>
 /// <returns>A SendMessageResponse object that contains information
 /// about the message that was sent.</returns>
 public static async Task<SendMessageResponse> SendMessage(
 IAmazonSQS client,
 string queueUrl,
 string messageBody,
 Dictionary<string, MessageAttributeValue> messageAttributes)
 {
 var sendMessageRequest = new SendMessageRequest
 {
 DelaySeconds = 10,
 MessageAttributes = messageAttributes,
 MessageBody = messageBody,
 QueueUrl = queueUrl,
 };

 var response = await client.SendMessageAsync(sendMessageRequest);

SendMessage 341

Amazon Simple Queue Service Developer Guide

 Console.WriteLine($"Sent a message with id : {response.MessageId}");

 return response;
 }
 }

• For API details, see SendMessage in AWS SDK for .NET API Reference.

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 Aws::Client::ClientConfiguration clientConfig;
 // Optional: Set to the AWS Region (overrides config file).
 // clientConfig.region = "us-east-1";

//! Send a message to an Amazon Simple Queue Service (Amazon SQS) queue.
/*!
 \param queueUrl: An Amazon SQS queue URL.
 \param messageBody: A message body.
 \param clientConfiguration: AWS client configuration.
 \return bool: Function succeeded.
 */
bool AwsDoc::SQS::sendMessage(const Aws::String &queueUrl,
 const Aws::String &messageBody,
 const Aws::Client::ClientConfiguration
 &clientConfiguration) {
 Aws::SQS::SQSClient sqsClient(clientConfiguration);

 Aws::SQS::Model::SendMessageRequest request;
 request.SetQueueUrl(queueUrl);
 request.SetMessageBody(messageBody);

SendMessage 342

https://docs.aws.amazon.com/goto/DotNetSDKV3/sqs-2012-11-05/SendMessage
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/sqs#code-examples

Amazon Simple Queue Service Developer Guide

 const Aws::SQS::Model::SendMessageOutcome outcome =
 sqsClient.SendMessage(request);
 if (outcome.IsSuccess()) {
 std::cout << "Successfully sent message to " << queueUrl <<
 std::endl;
 }
 else {
 std::cerr << "Error sending message to " << queueUrl << ": " <<
 outcome.GetError().GetMessage() << std::endl;
 }

 return outcome.IsSuccess();
}

• For API details, see SendMessage in AWS SDK for C++ API Reference.

CLI

AWS CLI

To send a message

This example sends a message with the specified message body, delay period, and message
attributes, to the specified queue.

Command:

aws sqs send-message --queue-url https://sqs.us-
east-1.amazonaws.com/80398EXAMPLE/MyQueue --message-body "Information about the
 largest city in Any Region." --delay-seconds 10 --message-attributes file://
send-message.json

Input file (send-message.json):

{
 "City": {
 "DataType": "String",
 "StringValue": "Any City"
 },
 "Greeting": {
 "DataType": "Binary",
 "BinaryValue": "Hello, World!"

SendMessage 343

https://docs.aws.amazon.com/goto/SdkForCpp/sqs-2012-11-05/SendMessage

Amazon Simple Queue Service Developer Guide

 },
 "Population": {
 "DataType": "Number",
 "StringValue": "1250800"
 }
}

Output:

{
 "MD5OfMessageBody": "51b0a325...39163aa0",
 "MD5OfMessageAttributes": "00484c68...59e48f06",
 "MessageId": "da68f62c-0c07-4bee-bf5f-7e856EXAMPLE"
}

• For API details, see SendMessage in AWS CLI Command Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import software.amazon.awssdk.auth.credentials.ProfileCredentialsProvider;
import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.sqs.SqsClient;
import software.amazon.awssdk.services.sqs.model.CreateQueueRequest;
import software.amazon.awssdk.services.sqs.model.GetQueueUrlRequest;
import software.amazon.awssdk.services.sqs.model.SendMessageRequest;
import software.amazon.awssdk.services.sqs.model.SqsException;

/**
 * Before running this Java V2 code example, set up your development
 * environment, including your credentials.
 *
 * For more information, see the following documentation topic:
 *

SendMessage 344

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/sqs/send-message.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/sqs#readme

Amazon Simple Queue Service Developer Guide

 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html
 */
public class SendMessages {
 public static void main(String[] args) {
 final String usage = """

 Usage: <queueName> <message>

 Where:
 queueName - The name of the queue.
 message - The message to send.
 """;

 if (args.length != 2) {
 System.out.println(usage);
 System.exit(1);
 }

 String queueName = args[0];
 String message = args[1];
 SqsClient sqsClient = SqsClient.builder()
 .region(Region.US_WEST_2)
 .build();
 sendMessage(sqsClient, queueName, message);
 sqsClient.close();
 }

 public static void sendMessage(SqsClient sqsClient, String queueName, String
 message) {
 try {
 CreateQueueRequest request = CreateQueueRequest.builder()
 .queueName(queueName)
 .build();
 sqsClient.createQueue(request);

 GetQueueUrlRequest getQueueRequest = GetQueueUrlRequest.builder()
 .queueName(queueName)
 .build();

 String queueUrl = sqsClient.getQueueUrl(getQueueRequest).queueUrl();
 SendMessageRequest sendMsgRequest = SendMessageRequest.builder()
 .queueUrl(queueUrl)
 .messageBody(message)

SendMessage 345

Amazon Simple Queue Service Developer Guide

 .delaySeconds(5)
 .build();

 sqsClient.sendMessage(sendMsgRequest);

 } catch (SqsException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }
}

• For API details, see SendMessage in AWS SDK for Java 2.x API Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Send a message to an Amazon SQS queue.

import { SendMessageCommand, SQSClient } from "@aws-sdk/client-sqs";

const client = new SQSClient({});
const SQS_QUEUE_URL = "queue_url";

export const main = async (sqsQueueUrl = SQS_QUEUE_URL) => {
 const command = new SendMessageCommand({
 QueueUrl: sqsQueueUrl,
 DelaySeconds: 10,
 MessageAttributes: {
 Title: {
 DataType: "String",
 StringValue: "The Whistler",
 },
 Author: {

SendMessage 346

https://docs.aws.amazon.com/goto/SdkForJavaV2/sqs-2012-11-05/SendMessage
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/sqs#code-examples

Amazon Simple Queue Service Developer Guide

 DataType: "String",
 StringValue: "John Grisham",
 },
 WeeksOn: {
 DataType: "Number",
 StringValue: "6",
 },
 },
 MessageBody:
 "Information about current NY Times fiction bestseller for week of
 12/11/2016.",
 });

 const response = await client.send(command);
 console.log(response);
 return response;
};

• For more information, see AWS SDK for JavaScript Developer Guide.

• For API details, see SendMessage in AWS SDK for JavaScript API Reference.

SDK for JavaScript (v2)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Send a message to an Amazon SQS queue.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create an SQS service object
var sqs = new AWS.SQS({ apiVersion: "2012-11-05" });

var params = {
 // Remove DelaySeconds parameter and value for FIFO queues

SendMessage 347

https://docs.aws.amazon.com/sdk-for-javascript/v3/developer-guide/sqs-examples-send-receive-messages.html#sqs-examples-send-receive-messages-sending
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/sqs/command/SendMessageCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascript/example_code/sqs#code-examples

Amazon Simple Queue Service Developer Guide

 DelaySeconds: 10,
 MessageAttributes: {
 Title: {
 DataType: "String",
 StringValue: "The Whistler",
 },
 Author: {
 DataType: "String",
 StringValue: "John Grisham",
 },
 WeeksOn: {
 DataType: "Number",
 StringValue: "6",
 },
 },
 MessageBody:
 "Information about current NY Times fiction bestseller for week of
 12/11/2016.",
 // MessageDeduplicationId: "TheWhistler", // Required for FIFO queues
 // MessageGroupId: "Group1", // Required for FIFO queues
 QueueUrl: "SQS_QUEUE_URL",
};

sqs.sendMessage(params, function (err, data) {
 if (err) {
 console.log("Error", err);
 } else {
 console.log("Success", data.MessageId);
 }
});

• For more information, see AWS SDK for JavaScript Developer Guide.

• For API details, see SendMessage in AWS SDK for JavaScript API Reference.

SendMessage 348

https://docs.aws.amazon.com/sdk-for-javascript/v2/developer-guide/sqs-examples-send-receive-messages.html#sqs-examples-send-receive-messages-sending
https://docs.aws.amazon.com/goto/AWSJavaScriptSDK/sqs-2012-11-05/SendMessage

Amazon Simple Queue Service Developer Guide

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

suspend fun sendMessages(
 queueUrlVal: String,
 message: String,
) {
 println("Sending multiple messages")
 println("\nSend message")
 val sendRequest =
 SendMessageRequest {
 queueUrl = queueUrlVal
 messageBody = message
 delaySeconds = 10
 }

 SqsClient { region = "us-east-1" }.use { sqsClient ->
 sqsClient.sendMessage(sendRequest)
 println("A single message was successfully sent.")
 }
}

suspend fun sendBatchMessages(queueUrlVal: String?) {
 println("Sending multiple messages")

 val msg1 =
 SendMessageBatchRequestEntry {
 id = "id1"
 messageBody = "Hello from msg 1"
 }

 val msg2 =
 SendMessageBatchRequestEntry {
 id = "id2"
 messageBody = "Hello from msg 2"

SendMessage 349

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/sqs#code-examples

Amazon Simple Queue Service Developer Guide

 }

 val sendMessageBatchRequest =
 SendMessageBatchRequest {
 queueUrl = queueUrlVal
 entries = listOf(msg1, msg2)
 }

 SqsClient { region = "us-east-1" }.use { sqsClient ->
 sqsClient.sendMessageBatch(sendMessageBatchRequest)
 println("Batch message were successfully sent.")
 }
}

• For API details, see SendMessage in AWS SDK for Kotlin API reference.

PowerShell

Tools for PowerShell

Example 1: This example sends a message with the specified attributes and message
body to the specified queue with message delivery delayed for 10 seconds.

$cityAttributeValue = New-Object Amazon.SQS.Model.MessageAttributeValue
$cityAttributeValue.DataType = "String"
$cityAttributeValue.StringValue = "AnyCity"

$populationAttributeValue = New-Object Amazon.SQS.Model.MessageAttributeValue
$populationAttributeValue.DataType = "Number"
$populationAttributeValue.StringValue = "1250800"

$messageAttributes = New-Object System.Collections.Hashtable
$messageAttributes.Add("City", $cityAttributeValue)
$messageAttributes.Add("Population", $populationAttributeValue)

Send-SQSMessage -DelayInSeconds 10 -MessageAttributes $messageAttributes -
MessageBody "Information about the largest city in Any Region." -QueueUrl
 https://sqs.us-east-1.amazonaws.com/80398EXAMPLE/MyQueue

Output:

SendMessage 350

https://sdk.amazonaws.com/kotlin/api/latest/index.html

Amazon Simple Queue Service Developer Guide

MD5OfMessageAttributes MD5OfMessageBody MessageId

---------------------- ---------------- ---------

1d3e51347bc042efbdf6dda31EXAMPLE 51b0a3256d59467f973009b73EXAMPLE c35fed8f-
c739-4d0c-818b-1820eEXAMPLE

• For API details, see SendMessage in AWS Tools for PowerShell Cmdlet Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

def send_message(queue, message_body, message_attributes=None):
 """
 Send a message to an Amazon SQS queue.

 :param queue: The queue that receives the message.
 :param message_body: The body text of the message.
 :param message_attributes: Custom attributes of the message. These are key-
value
 pairs that can be whatever you want.
 :return: The response from SQS that contains the assigned message ID.
 """
 if not message_attributes:
 message_attributes = {}

 try:
 response = queue.send_message(
 MessageBody=message_body, MessageAttributes=message_attributes
)
 except ClientError as error:
 logger.exception("Send message failed: %s", message_body)
 raise error
 else:

SendMessage 351

https://docs.aws.amazon.com/powershell/latest/reference
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/sqs#code-examples

Amazon Simple Queue Service Developer Guide

 return response

• For API details, see SendMessage in AWS SDK for Python (Boto3) API Reference.

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

require "aws-sdk-sqs"
require "aws-sdk-sts"

@param sqs_client [Aws::SQS::Client] An initialized Amazon SQS client.
@param queue_url [String] The URL of the queue.
@param message_body [String] The contents of the message to be sent.
@return [Boolean] true if the message was sent; otherwise, false.
@example
exit 1 unless message_sent?(
Aws::SQS::Client.new(region: 'us-west-2'),
'https://sqs.us-west-2.amazonaws.com/111111111111/my-queue',
'This is my message.'
)
def message_sent?(sqs_client, queue_url, message_body)
 sqs_client.send_message(
 queue_url: queue_url,
 message_body: message_body
)
 true
rescue StandardError => e
 puts "Error sending message: #{e.message}"
 false
end

SendMessage 352

https://docs.aws.amazon.com/goto/boto3/sqs-2012-11-05/SendMessage
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/sqs#code-examples

Amazon Simple Queue Service Developer Guide

Full example call:
Replace us-west-2 with the AWS Region you're using for Amazon SQS.
def run_me
 region = "us-west-2"
 queue_name = "my-queue"
 message_body = "This is my message."

 sts_client = Aws::STS::Client.new(region: region)

 # For example:
 # 'https://sqs.us-west-2.amazonaws.com/111111111111/my-queue'
 queue_url = "https://sqs." + region + ".amazonaws.com/" +
 sts_client.get_caller_identity.account + "/" + queue_name

 sqs_client = Aws::SQS::Client.new(region: region)

 puts "Sending a message to the queue named '#{queue_name}'..."

 if message_sent?(sqs_client, queue_url, message_body)
 puts "Message sent."
 else
 puts "Message not sent."
 end
end

Example usage:
run_me if $PROGRAM_NAME == __FILE__

• For API details, see SendMessage in AWS SDK for Ruby API Reference.

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

SendMessage 353

https://docs.aws.amazon.com/goto/SdkForRubyV3/sqs-2012-11-05/SendMessage
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/rustv1/examples/sqs#code-examples

Amazon Simple Queue Service Developer Guide

async fn send(client: &Client, queue_url: &String, message: &SQSMessage) ->
 Result<(), Error> {
 println!("Sending message to queue with URL: {}", queue_url);

 let rsp = client
 .send_message()
 .queue_url(queue_url)
 .message_body(&message.body)
 // If the queue is FIFO, you need to set .message_deduplication_id
 // and message_group_id or configure the queue for
 ContentBasedDeduplication.
 .send()
 .await?;

 println!("Send message to the queue: {:#?}", rsp);

 Ok(())
}

• For API details, see SendMessage in AWS SDK for Rust API reference.

SAP ABAP

SDK for SAP ABAP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 TRY.
 oo_result = lo_sqs->sendmessage(" oo_result is returned for
 testing purposes. "
 iv_queueurl = iv_queue_url
 iv_messagebody = iv_message
).
 MESSAGE 'Message sent to SQS queue.' TYPE 'I'.
 CATCH /aws1/cx_sqsinvalidmsgconts.
 MESSAGE 'Message contains non-valid characters.' TYPE 'E'.

SendMessage 354

https://docs.rs/releases/search?query=aws-sdk
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/sap-abap/services/sqs#code-examples

Amazon Simple Queue Service Developer Guide

 CATCH /aws1/cx_sqsunsupportedop.
 MESSAGE 'Operation not supported.' TYPE 'E'.
 ENDTRY.

• For API details, see SendMessage in AWS SDK for SAP ABAP API reference.

For a complete list of AWS SDK developer guides and code examples, see Using Amazon SQS with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use SendMessageBatch with an AWS SDK or CLI

The following code examples show how to use SendMessageBatch.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Send and receive batches of messages

CLI

AWS CLI

To send multiple messages as a batch

This example sends 2 messages with the specified message bodies, delay periods, and
message attributes, to the specified queue.

Command:

aws sqs send-message-batch --queue-url https://sqs.us-
east-1.amazonaws.com/80398EXAMPLE/MyQueue --entries file://send-message-
batch.json

Input file (send-message-batch.json):

[
 {
 "Id": "FuelReport-0001-2015-09-16T140731Z",

SendMessageBatch 355

https://docs.aws.amazon.com/sdk-for-sap-abap/v1/api/latest/index.html

Amazon Simple Queue Service Developer Guide

 "MessageBody": "Fuel report for account 0001 on 2015-09-16 at 02:07:31
 PM.",
 "DelaySeconds": 10,
 "MessageAttributes": {
 "SellerName": {
 "DataType": "String",
 "StringValue": "Example Store"
 },
 "City": {
 "DataType": "String",
 "StringValue": "Any City"
 },
 "Region": {
 "DataType": "String",
 "StringValue": "WA"
 },
 "PostalCode": {
 "DataType": "String",
 "StringValue": "99065"
 },
 "PricePerGallon": {
 "DataType": "Number",
 "StringValue": "1.99"
 }
 }
 },
 {
 "Id": "FuelReport-0002-2015-09-16T140930Z",
 "MessageBody": "Fuel report for account 0002 on 2015-09-16 at 02:09:30
 PM.",
 "DelaySeconds": 10,
 "MessageAttributes": {
 "SellerName": {
 "DataType": "String",
 "StringValue": "Example Fuels"
 },
 "City": {
 "DataType": "String",
 "StringValue": "North Town"
 },
 "Region": {
 "DataType": "String",
 "StringValue": "WA"
 },

SendMessageBatch 356

Amazon Simple Queue Service Developer Guide

 "PostalCode": {
 "DataType": "String",
 "StringValue": "99123"
 },
 "PricePerGallon": {
 "DataType": "Number",
 "StringValue": "1.87"
 }
 }
 }
]

Output:

{
 "Successful": [
 {
 "MD5OfMessageBody": "203c4a38...7943237e",
 "MD5OfMessageAttributes": "10809b55...baf283ef",
 "Id": "FuelReport-0001-2015-09-16T140731Z",
 "MessageId": "d175070c-d6b8-4101-861d-adeb3EXAMPLE"
 },
 {
 "MD5OfMessageBody": "2cf0159a...c1980595",
 "MD5OfMessageAttributes": "55623928...ae354a25",
 "Id": "FuelReport-0002-2015-09-16T140930Z",
 "MessageId": "f9b7d55d-0570-413e-b9c5-a9264EXAMPLE"
 }
]
}

• For API details, see SendMessageBatch in AWS CLI Command Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

SendMessageBatch 357

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/sqs/send-message-batch.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/sqs#readme

Amazon Simple Queue Service Developer Guide

 SendMessageBatchRequest sendMessageBatchRequest =
 SendMessageBatchRequest.builder()
 .queueUrl(queueUrl)

 .entries(SendMessageBatchRequestEntry.builder().id("id1").messageBody("Hello
 from msg 1").build(),

 SendMessageBatchRequestEntry.builder().id("id2").messageBody("msg
 2").delaySeconds(10)
 .build())
 .build();
 sqsClient.sendMessageBatch(sendMessageBatchRequest);

• For API details, see SendMessageBatch in AWS SDK for Java 2.x API Reference.

PowerShell

Tools for PowerShell

Example 1: This example sends 2 messages with the specified attributes and message
bodies to the specified queue. Delivery is delayed for 15 seconds for the first message
and 10 seconds for the second message.

$student1NameAttributeValue = New-Object Amazon.SQS.Model.MessageAttributeValue
$student1NameAttributeValue.DataType = "String"
$student1NameAttributeValue.StringValue = "John Doe"

$student1GradeAttributeValue = New-Object Amazon.SQS.Model.MessageAttributeValue
$student1GradeAttributeValue.DataType = "Number"
$student1GradeAttributeValue.StringValue = "89"

$student2NameAttributeValue = New-Object Amazon.SQS.Model.MessageAttributeValue
$student2NameAttributeValue.DataType = "String"
$student2NameAttributeValue.StringValue = "Jane Doe"

$student2GradeAttributeValue = New-Object Amazon.SQS.Model.MessageAttributeValue
$student2GradeAttributeValue.DataType = "Number"
$student2GradeAttributeValue.StringValue = "93"

$message1 = New-Object Amazon.SQS.Model.SendMessageBatchRequestEntry
$message1.DelaySeconds = 15

SendMessageBatch 358

https://docs.aws.amazon.com/goto/SdkForJavaV2/sqs-2012-11-05/SendMessageBatch

Amazon Simple Queue Service Developer Guide

$message1.Id = "FirstMessage"
$message1.MessageAttributes.Add("StudentName", $student1NameAttributeValue)
$message1.MessageAttributes.Add("StudentGrade", $student1GradeAttributeValue)
$message1.MessageBody = "Information about John Doe's grade."

$message2 = New-Object Amazon.SQS.Model.SendMessageBatchRequestEntry
$message2.DelaySeconds = 10
$message2.Id = "SecondMessage"
$message2.MessageAttributes.Add("StudentName", $student2NameAttributeValue)
$message2.MessageAttributes.Add("StudentGrade", $student2GradeAttributeValue)
$message2.MessageBody = "Information about Jane Doe's grade."

Send-SQSMessageBatch -QueueUrl https://sqs.us-east-1.amazonaws.com/80398EXAMPLE/
MyQueue -Entry $message1, $message2

Output:

Failed Successful

------ ----------

{} {FirstMessage, SecondMessage}

• For API details, see SendMessageBatch in AWS Tools for PowerShell Cmdlet Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

def send_messages(queue, messages):
 """
 Send a batch of messages in a single request to an SQS queue.
 This request may return overall success even when some messages were not
 sent.
 The caller must inspect the Successful and Failed lists in the response and

SendMessageBatch 359

https://docs.aws.amazon.com/powershell/latest/reference
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/sqs#code-examples

Amazon Simple Queue Service Developer Guide

 resend any failed messages.

 :param queue: The queue to receive the messages.
 :param messages: The messages to send to the queue. These are simplified to
 contain only the message body and attributes.
 :return: The response from SQS that contains the list of successful and
 failed
 messages.
 """
 try:
 entries = [
 {
 "Id": str(ind),
 "MessageBody": msg["body"],
 "MessageAttributes": msg["attributes"],
 }
 for ind, msg in enumerate(messages)
]
 response = queue.send_messages(Entries=entries)
 if "Successful" in response:
 for msg_meta in response["Successful"]:
 logger.info(
 "Message sent: %s: %s",
 msg_meta["MessageId"],
 messages[int(msg_meta["Id"])]["body"],
)
 if "Failed" in response:
 for msg_meta in response["Failed"]:
 logger.warning(
 "Failed to send: %s: %s",
 msg_meta["MessageId"],
 messages[int(msg_meta["Id"])]["body"],
)
 except ClientError as error:
 logger.exception("Send messages failed to queue: %s", queue)
 raise error
 else:
 return response

• For API details, see SendMessageBatch in AWS SDK for Python (Boto3) API Reference.

SendMessageBatch 360

https://docs.aws.amazon.com/goto/boto3/sqs-2012-11-05/SendMessageBatch

Amazon Simple Queue Service Developer Guide

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

require "aws-sdk-sqs"
require "aws-sdk-sts"

#
@param sqs_client [Aws::SQS::Client] An initialized Amazon SQS client.
@param queue_url [String] The URL of the queue.
@param entries [Hash] The contents of the messages to be sent,
in the correct format.
@return [Boolean] true if the messages were sent; otherwise, false.
@example
exit 1 unless messages_sent?(
Aws::SQS::Client.new(region: 'us-west-2'),
'https://sqs.us-west-2.amazonaws.com/111111111111/my-queue',
[
{
id: 'Message1',
message_body: 'This is the first message.'
},
{
id: 'Message2',
message_body: 'This is the second message.'
}
]
)
def messages_sent?(sqs_client, queue_url, entries)
 sqs_client.send_message_batch(
 queue_url: queue_url,
 entries: entries
)
 true
rescue StandardError => e

SendMessageBatch 361

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/sqs#code-examples

Amazon Simple Queue Service Developer Guide

 puts "Error sending messages: #{e.message}"
 false
end

Full example call:
Replace us-west-2 with the AWS Region you're using for Amazon SQS.
def run_me
 region = "us-west-2"
 queue_name = "my-queue"
 entries = [
 {
 id: "Message1",
 message_body: "This is the first message."
 },
 {
 id: "Message2",
 message_body: "This is the second message."
 }
]

 sts_client = Aws::STS::Client.new(region: region)

 # For example:
 # 'https://sqs.us-west-2.amazonaws.com/111111111111/my-queue'
 queue_url = "https://sqs." + region + ".amazonaws.com/" +
 sts_client.get_caller_identity.account + "/" + queue_name

 sqs_client = Aws::SQS::Client.new(region: region)

 puts "Sending messages to the queue named '#{queue_name}'..."

 if messages_sent?(sqs_client, queue_url, entries)
 puts "Messages sent."
 else
 puts "Messages not sent."
 end
end

• For API details, see SendMessageBatch in AWS SDK for Ruby API Reference.

SendMessageBatch 362

https://docs.aws.amazon.com/goto/SdkForRubyV3/sqs-2012-11-05/SendMessageBatch

Amazon Simple Queue Service Developer Guide

For a complete list of AWS SDK developer guides and code examples, see Using Amazon SQS with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use SetQueueAttributes with an AWS SDK or CLI

The following code examples show how to use SetQueueAttributes.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Publish messages to queues

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Set the policy attribute of a queue for a topic.

 /// <summary>
 /// Set the policy attribute of a queue for a topic.
 /// </summary>
 /// <param name="queueArn">The ARN of the queue.</param>
 /// <param name="topicArn">The ARN of the topic.</param>
 /// <param name="queueUrl">The url for the queue.</param>
 /// <returns>True if successful.</returns>
 public async Task<bool> SetQueuePolicyForTopic(string queueArn, string
 topicArn, string queueUrl)
 {
 var queuePolicy = "{" +
 "\"Version\": \"2012-10-17\"," +
 "\"Statement\": [{" +
 "\"Effect\": \"Allow\"," +
 "\"Principal\": {" +

SetQueueAttributes 363

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/cross-service/TopicsAndQueues#code-examples

Amazon Simple Queue Service Developer Guide

 $"\"Service\": " +
 "\"sns.amazonaws.com\"" +
 "}," +
 "\"Action\": \"sqs:SendMessage\"," +
 $"\"Resource\": \"{queueArn}\"," +
 "\"Condition\": {" +
 "\"ArnEquals\": {" +
 $"\"aws:SourceArn\":
 \"{topicArn}\"" +
 "}" +
 "}" +
 "}]" +
 "}";
 var attributesResponse = await _amazonSQSClient.SetQueueAttributesAsync(
 new SetQueueAttributesRequest()
 {
 QueueUrl = queueUrl,
 Attributes = new Dictionary<string, string>() { { "Policy",
 queuePolicy } }
 });
 return attributesResponse.HttpStatusCode == HttpStatusCode.OK;
 }

• For API details, see SetQueueAttributes in AWS SDK for .NET API Reference.

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 Aws::Client::ClientConfiguration clientConfig;
 // Optional: Set to the AWS Region (overrides config file).
 // clientConfig.region = "us-east-1";

//! Set the value for an attribute in an Amazon Simple Queue Service (Amazon SQS)
 queue.

SetQueueAttributes 364

https://docs.aws.amazon.com/goto/DotNetSDKV3/sqs-2012-11-05/SetQueueAttributes
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/sqs#code-examples

Amazon Simple Queue Service Developer Guide

/*!
 \param queueUrl: An Amazon SQS queue URL.
 \param attributeName: An attribute name enum.
 \param attribute: The attribute value as a string.
 \param clientConfiguration: AWS client configuration.
 \return bool: Function succeeded.
 */
bool AwsDoc::SQS::setQueueAttributes(const Aws::String &queueURL,
 Aws::SQS::Model::QueueAttributeName
 attributeName,
 const Aws::String &attribute,
 const Aws::Client::ClientConfiguration
 &clientConfiguration) {
 Aws::SQS::SQSClient sqsClient(clientConfiguration);

 Aws::SQS::Model::SetQueueAttributesRequest request;
 request.SetQueueUrl(queueURL);
 request.AddAttributes(
 attributeName,
 attribute);

 const Aws::SQS::Model::SetQueueAttributesOutcome outcome =
 sqsClient.SetQueueAttributes(
 request);
 if (outcome.IsSuccess()) {
 std::cout << "Successfully set the attribute " <<

 Aws::SQS::Model::QueueAttributeNameMapper::GetNameForQueueAttributeName(
 attributeName)
 << " with value " << attribute << " in queue " <<
 queueURL << "." << std::endl;
 }
 else {
 std::cout << "Error setting attribute for queue " <<
 queueURL << ": " << outcome.GetError().GetMessage() <<
 std::endl;
 }

 return outcome.IsSuccess();
}

Configure a dead-letter queue.

SetQueueAttributes 365

Amazon Simple Queue Service Developer Guide

 Aws::Client::ClientConfiguration clientConfig;
 // Optional: Set to the AWS Region (overrides config file).
 // clientConfig.region = "us-east-1";

//! Connect an Amazon Simple Queue Service (Amazon SQS) queue to an associated
//! dead-letter queue.
/*!
 \param srcQueueUrl: An Amazon SQS queue URL.
 \param deadLetterQueueARN: The Amazon Resource Name (ARN) of an Amazon SQS
 dead-letter queue.
 \param maxReceiveCount: The max receive count of a message before it is sent to
 the dead-letter queue.
 \param clientConfiguration: AWS client configuration.
 \return bool: Function succeeded.
 */
bool AwsDoc::SQS::setDeadLetterQueue(const Aws::String &srcQueueUrl,
 const Aws::String &deadLetterQueueARN,
 int maxReceiveCount,
 const Aws::Client::ClientConfiguration
 &clientConfiguration) {
 Aws::String redrivePolicy = MakeRedrivePolicy(deadLetterQueueARN,
 maxReceiveCount);

 Aws::SQS::SQSClient sqsClient(clientConfiguration);

 Aws::SQS::Model::SetQueueAttributesRequest request;
 request.SetQueueUrl(srcQueueUrl);
 request.AddAttributes(
 Aws::SQS::Model::QueueAttributeName::RedrivePolicy,
 redrivePolicy);

 const Aws::SQS::Model::SetQueueAttributesOutcome outcome =
 sqsClient.SetQueueAttributes(request);
 if (outcome.IsSuccess()) {
 std::cout << "Successfully set dead letter queue for queue " <<
 srcQueueUrl << " to " << deadLetterQueueARN << std::endl;
 }
 else {
 std::cerr << "Error setting dead letter queue for queue " <<
 srcQueueUrl << ": " << outcome.GetError().GetMessage() <<
 std::endl;
 }

SetQueueAttributes 366

Amazon Simple Queue Service Developer Guide

 return outcome.IsSuccess();
}

//! Make a redrive policy for a dead-letter queue.
/*!
 \param queueArn: An Amazon SQS ARN for the dead-letter queue.
 \param maxReceiveCount: The max receive count of a message before it is sent to
 the dead-letter queue.
 \return Aws::String: Policy as JSON string.
 */
Aws::String MakeRedrivePolicy(const Aws::String &queueArn, int maxReceiveCount) {
 Aws::Utils::Json::JsonValue redrive_arn_entry;
 redrive_arn_entry.AsString(queueArn);

 Aws::Utils::Json::JsonValue max_msg_entry;
 max_msg_entry.AsInteger(maxReceiveCount);

 Aws::Utils::Json::JsonValue policy_map;
 policy_map.WithObject("deadLetterTargetArn", redrive_arn_entry);
 policy_map.WithObject("maxReceiveCount", max_msg_entry);

 return policy_map.View().WriteReadable();
}

Configure an Amazon SQS queue to use long polling.

 Aws::Client::ClientConfiguration clientConfig;
 // Optional: Set to the AWS Region (overrides config file).
 // clientConfig.region = "us-east-1";

//! Set the wait time for an Amazon Simple Queue Service (Amazon SQS) queue poll.
/*!
 \param queueUrl: An Amazon SQS queue URL.
 \param pollTimeSeconds: The receive message wait time in seconds.
 \param clientConfiguration: AWS client configuration.
 \return bool: Function succeeded.
 */
bool AwsDoc::SQS::setQueueLongPollingAttribute(const Aws::String &queueURL,
 const Aws::String
 &pollTimeSeconds,
 const
 Aws::Client::ClientConfiguration &clientConfiguration) {

SetQueueAttributes 367

Amazon Simple Queue Service Developer Guide

 Aws::SQS::SQSClient sqsClient(clientConfiguration);

 Aws::SQS::Model::SetQueueAttributesRequest request;
 request.SetQueueUrl(queueURL);
 request.AddAttributes(
 Aws::SQS::Model::QueueAttributeName::ReceiveMessageWaitTimeSeconds,
 pollTimeSeconds);

 const Aws::SQS::Model::SetQueueAttributesOutcome outcome =
 sqsClient.SetQueueAttributes(
 request);
 if (outcome.IsSuccess()) {
 std::cout << "Successfully updated long polling time for queue " <<
 queueURL << " to " << pollTimeSeconds << std::endl;
 }
 else {
 std::cout << "Error updating long polling time for queue " <<
 queueURL << ": " << outcome.GetError().GetMessage() <<
 std::endl;
 }

 return outcome.IsSuccess();
}

• For API details, see SetQueueAttributes in AWS SDK for C++ API Reference.

CLI

AWS CLI

To set queue attributes

This example sets the specified queue to a delivery delay of 10 seconds, a maximum
message size of 128 KB (128 KB * 1,024 bytes), a message retention period of 3 days (3
days * 24 hours * 60 minutes * 60 seconds), a receive message wait time of 20 seconds, and
a default visibility timeout of 60 seconds. This example also associates the specified dead
letter queue with a maximum receive count of 1,000 messages.

Command:

SetQueueAttributes 368

https://docs.aws.amazon.com/goto/SdkForCpp/sqs-2012-11-05/SetQueueAttributes

Amazon Simple Queue Service Developer Guide

aws sqs set-queue-attributes --queue-url https://sqs.us-
east-1.amazonaws.com/80398EXAMPLE/MyNewQueue --attributes file://set-queue-
attributes.json

Input file (set-queue-attributes.json):

{
 "DelaySeconds": "10",
 "MaximumMessageSize": "131072",
 "MessageRetentionPeriod": "259200",
 "ReceiveMessageWaitTimeSeconds": "20",
 "RedrivePolicy": "{\"deadLetterTargetArn\":\"arn:aws:sqs:us-
east-1:80398EXAMPLE:MyDeadLetterQueue\",\"maxReceiveCount\":\"1000\"}",
 "VisibilityTimeout": "60"
}

Output:

None.

• For API details, see SetQueueAttributes in AWS CLI Command Reference.

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

// SqsActions encapsulates the Amazon Simple Queue Service (Amazon SQS) actions
// used in the examples.
type SqsActions struct {
 SqsClient *sqs.Client
}

SetQueueAttributes 369

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/sqs/set-queue-attributes.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2/workflows/topics_and_queues#code-examples

Amazon Simple Queue Service Developer Guide

// AttachSendMessagePolicy uses the SetQueueAttributes action to attach a policy
 to an
// Amazon SQS queue that allows the specified Amazon SNS topic to send messages
 to the
// queue.
func (actor SqsActions) AttachSendMessagePolicy(queueUrl string, queueArn string,
 topicArn string) error {
 policyDoc := PolicyDocument{
 Version: "2012-10-17",
 Statement: []PolicyStatement{{
 Effect: "Allow",
 Action: "sqs:SendMessage",
 Principal: map[string]string{"Service": "sns.amazonaws.com"},
 Resource: aws.String(queueArn),
 Condition: PolicyCondition{"ArnEquals": map[string]string{"aws:SourceArn":
 topicArn}},
 }},
 }
 policyBytes, err := json.Marshal(policyDoc)
 if err != nil {
 log.Printf("Couldn't create policy document. Here's why: %v\n", err)
 return err
 }
 _, err = actor.SqsClient.SetQueueAttributes(context.TODO(),
 &sqs.SetQueueAttributesInput{
 Attributes: map[string]string{
 string(types.QueueAttributeNamePolicy): string(policyBytes),
 },
 QueueUrl: aws.String(queueUrl),
 })
 if err != nil {
 log.Printf("Couldn't set send message policy on queue %v. Here's why: %v\n",
 queueUrl, err)
 }
 return err
}

// PolicyDocument defines a policy document as a Go struct that can be serialized
// to JSON.
type PolicyDocument struct {
 Version string
 Statement []PolicyStatement
}

SetQueueAttributes 370

Amazon Simple Queue Service Developer Guide

// PolicyStatement defines a statement in a policy document.
type PolicyStatement struct {
 Effect string
 Action string
 Principal map[string]string `json:",omitempty"`
 Resource *string `json:",omitempty"`
 Condition PolicyCondition `json:",omitempty"`
}

// PolicyCondition defines a condition in a policy.
type PolicyCondition map[string]map[string]string

• For API details, see SetQueueAttributes in AWS SDK for Go API Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import { SetQueueAttributesCommand, SQSClient } from "@aws-sdk/client-sqs";

const client = new SQSClient({});
const SQS_QUEUE_URL = "queue-url";

export const main = async (queueUrl = SQS_QUEUE_URL) => {
 const command = new SetQueueAttributesCommand({
 QueueUrl: queueUrl,
 Attributes: {
 DelaySeconds: "1",
 },
 });

 const response = await client.send(command);
 console.log(response);

SetQueueAttributes 371

https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/sqs#Client.SetQueueAttributes
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/sqs#code-examples

Amazon Simple Queue Service Developer Guide

 return response;
};

Configure an Amazon SQS queue to use long polling.

import { SetQueueAttributesCommand, SQSClient } from "@aws-sdk/client-sqs";

const client = new SQSClient({});
const SQS_QUEUE_URL = "queue_url";

export const main = async (queueUrl = SQS_QUEUE_URL) => {
 const command = new SetQueueAttributesCommand({
 Attributes: {
 ReceiveMessageWaitTimeSeconds: "20",
 },
 QueueUrl: queueUrl,
 });

 const response = await client.send(command);
 console.log(response);
 return response;
};

Configure a dead-letter queue.

import { SetQueueAttributesCommand, SQSClient } from "@aws-sdk/client-sqs";

const client = new SQSClient({});
const SQS_QUEUE_URL = "queue_url";
const DEAD_LETTER_QUEUE_ARN = "dead_letter_queue_arn";

export const main = async (
 queueUrl = SQS_QUEUE_URL,
 deadLetterQueueArn = DEAD_LETTER_QUEUE_ARN,
) => {
 const command = new SetQueueAttributesCommand({
 Attributes: {
 RedrivePolicy: JSON.stringify({
 // Amazon SQS supports dead-letter queues (DLQ), which other
 // queues (source queues) can target for messages that can't
 // be processed (consumed) successfully.

SetQueueAttributes 372

Amazon Simple Queue Service Developer Guide

 // https://docs.aws.amazon.com/AWSSimpleQueueService/latest/
SQSDeveloperGuide/sqs-dead-letter-queues.html
 deadLetterTargetArn: deadLetterQueueArn,
 maxReceiveCount: "10",
 }),
 },
 QueueUrl: queueUrl,
 });

 const response = await client.send(command);
 console.log(response);
 return response;
};

• For API details, see SetQueueAttributes in AWS SDK for JavaScript API Reference.

PowerShell

Tools for PowerShell

Example 1: This example shows how to set a policy subscribing a queue to an SNS topic.
When a message is published to the topic, a message is sent to the subscribed queue.

create the queue and topic to be associated
$qurl = New-SQSQueue -QueueName "myQueue"
$topicarn = New-SNSTopic -Name "myTopic"

get the queue ARN to inject into the policy; it will be returned
in the output's QueueARN member but we need to put it into a variable
so text expansion in the policy string takes effect
$qarn = (Get-SQSQueueAttribute -QueueUrl $qurl -AttributeName
 "QueueArn").QueueARN

construct the policy and inject arns
$policy = @"
{
 "Version": "2008-10-17",
 "Id": "$qarn/SQSPOLICY",
 "Statement": [
 {
 "Sid": "1",
 "Effect": "Allow",

SetQueueAttributes 373

https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/sqs/command/SetQueueAttributesCommand

Amazon Simple Queue Service Developer Guide

 "Principal": "*",
 "Action": "SQS:SendMessage",
 "Resource": "$qarn",
 "Condition": {
 "ArnEquals": {
 "aws:SourceArn": "$topicarn"
 }
 }
 }
]
}
"@

set the policy
Set-SQSQueueAttribute -QueueUrl $qurl -Attribute @{ Policy=$policy }

Example 2: This example sets the specified attributes for the specified queue.

Set-SQSQueueAttribute -Attribute @{"DelaySeconds" = "10"; "MaximumMessageSize" =
 "131072"} -QueueUrl https://sqs.us-east-1.amazonaws.com/80398EXAMPLE/MyQueue

• For API details, see SetQueueAttributes in AWS Tools for PowerShell Cmdlet Reference.

For a complete list of AWS SDK developer guides and code examples, see Using Amazon SQS with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Scenarios for Amazon SQS using AWS SDKs

The following code examples show you how to implement common scenarios in Amazon SQS with
AWS SDKs. These scenarios show you how to accomplish specific tasks by calling multiple functions
within Amazon SQS. Each scenario includes a link to GitHub, where you can find instructions on
how to set up and run the code.

Examples

• Create and publish to a FIFO Amazon SNS topic using an AWS SDK

• Publish Amazon SNS messages to Amazon SQS queues using an AWS SDK

• Send and receive batches of messages with Amazon SQS using an AWS SDK

Scenarios 374

https://docs.aws.amazon.com/powershell/latest/reference

Amazon Simple Queue Service Developer Guide

Create and publish to a FIFO Amazon SNS topic using an AWS SDK

The following code examples show how to create and publish to a FIFO Amazon SNS topic.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

This example

• creates an Amazon SNS FIFO topic, two Amazon SQS FIFO queues, and one Standard
queue.

• subscribes the queues to the topic and publishes a message to the topic.

The test verifies the receipt of the message to each queue. The complete example also
shows the addition of access policies and deletes the resources at the end.

public class PriceUpdateExample {
 public final static SnsClient snsClient = SnsClient.create();
 public final static SqsClient sqsClient = SqsClient.create();

 public static void main(String[] args) {

 final String usage = "\n" +
 "Usage: " +
 " <topicName> <wholesaleQueueFifoName> <retailQueueFifoName>
 <analyticsQueueName>\n\n" +
 "Where:\n" +
 " fifoTopicName - The name of the FIFO topic that you want to
 create. \n\n" +
 " wholesaleQueueARN - The name of a SQS FIFO queue that will be
 created for the wholesale consumer. \n\n"
 +
 " retailQueueARN - The name of a SQS FIFO queue that will
 created for the retail consumer. \n\n" +

Create and publish to a FIFO topic 375

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/sns#readme
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/sns/src/test/java/com/example/sns/PriceUpdateExampleTest.java
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/sns/src/main/java/com/example/sns/PriceUpdateExample.java

Amazon Simple Queue Service Developer Guide

 " analyticsQueueARN - The name of a SQS standard queue that
 will be created for the analytics consumer. \n\n";
 if (args.length != 4) {
 System.out.println(usage);
 System.exit(1);
 }

 final String fifoTopicName = args[0];
 final String wholeSaleQueueName = args[1];
 final String retailQueueName = args[2];
 final String analyticsQueueName = args[3];

 // For convenience, the QueueData class holds metadata about a queue:
 ARN, URL,
 // name and type.
 List<QueueData> queues = List.of(
 new QueueData(wholeSaleQueueName, QueueType.FIFO),
 new QueueData(retailQueueName, QueueType.FIFO),
 new QueueData(analyticsQueueName, QueueType.Standard));

 // Create queues.
 createQueues(queues);

 // Create a topic.
 String topicARN = createFIFOTopic(fifoTopicName);

 // Subscribe each queue to the topic.
 subscribeQueues(queues, topicARN);

 // Allow the newly created topic to send messages to the queues.
 addAccessPolicyToQueuesFINAL(queues, topicARN);

 // Publish a sample price update message with payload.
 publishPriceUpdate(topicARN, "{\"product\": 214, \"price\": 79.99}",
 "Consumables");

 // Clean up resources.
 deleteSubscriptions(queues);
 deleteQueues(queues);
 deleteTopic(topicARN);
 }

 public static String createFIFOTopic(String topicName) {
 try {

Create and publish to a FIFO topic 376

Amazon Simple Queue Service Developer Guide

 // Create a FIFO topic by using the SNS service client.
 Map<String, String> topicAttributes = Map.of(
 "FifoTopic", "true",
 "ContentBasedDeduplication", "false");

 CreateTopicRequest topicRequest = CreateTopicRequest.builder()
 .name(topicName)
 .attributes(topicAttributes)
 .build();

 CreateTopicResponse response = snsClient.createTopic(topicRequest);
 String topicArn = response.topicArn();
 System.out.println("The topic ARN is" + topicArn);

 return topicArn;

 } catch (SnsException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 return "";
 }

 public static void subscribeQueues(List<QueueData> queues, String topicARN) {
 queues.forEach(queue -> {
 SubscribeRequest subscribeRequest = SubscribeRequest.builder()
 .topicArn(topicARN)
 .endpoint(queue.queueARN)
 .protocol("sqs")
 .build();

 // Subscribe to the endpoint by using the SNS service client.
 // Only Amazon SQS queues can receive notifications from an Amazon
 SNS FIFO
 // topic.
 SubscribeResponse subscribeResponse =
 snsClient.subscribe(subscribeRequest);
 System.out.println("The queue [" + queue.queueARN + "] subscribed to
 the topic [" + topicARN + "]");
 queue.subscriptionARN = subscribeResponse.subscriptionArn();
 });
 }

Create and publish to a FIFO topic 377

Amazon Simple Queue Service Developer Guide

 public static void publishPriceUpdate(String topicArn, String payload, String
 groupId) {

 try {
 // Create and publish a message that updates the wholesale price.
 String subject = "Price Update";
 String dedupId = UUID.randomUUID().toString();
 String attributeName = "business";
 String attributeValue = "wholesale";

 MessageAttributeValue msgAttValue = MessageAttributeValue.builder()
 .dataType("String")
 .stringValue(attributeValue)
 .build();

 Map<String, MessageAttributeValue> attributes = new HashMap<>();
 attributes.put(attributeName, msgAttValue);
 PublishRequest pubRequest = PublishRequest.builder()
 .topicArn(topicArn)
 .subject(subject)
 .message(payload)
 .messageGroupId(groupId)
 .messageDeduplicationId(dedupId)
 .messageAttributes(attributes)
 .build();

 final PublishResponse response = snsClient.publish(pubRequest);
 System.out.println(response.messageId());
 System.out.println(response.sequenceNumber());
 System.out.println("Message was published to " + topicArn);

 } catch (SnsException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }

• For API details, see the following topics in AWS SDK for Java 2.x API Reference.

• CreateTopic

• Publish

• Subscribe

Create and publish to a FIFO topic 378

https://docs.aws.amazon.com/goto/SdkForJavaV2/sns-2010-03-31/CreateTopic
https://docs.aws.amazon.com/goto/SdkForJavaV2/sns-2010-03-31/Publish
https://docs.aws.amazon.com/goto/SdkForJavaV2/sns-2010-03-31/Subscribe

Amazon Simple Queue Service Developer Guide

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Create an Amazon SNS FIFO topic, subscribe Amazon SQS FIFO and standard queues to the
topic, and publish a message to the topic.

def usage_demo():
 """Shows how to subscribe queues to a FIFO topic."""
 print("-" * 88)
 print("Welcome to the `Subscribe queues to a FIFO topic` demo!")
 print("-" * 88)

 sns = boto3.resource("sns")
 sqs = boto3.resource("sqs")
 fifo_topic_wrapper = FifoTopicWrapper(sns)
 sns_wrapper = SnsWrapper(sns)

 prefix = "sqs-subscribe-demo-"
 queues = set()
 subscriptions = set()

 wholesale_queue = sqs.create_queue(
 QueueName=prefix + "wholesale.fifo",
 Attributes={
 "MaximumMessageSize": str(4096),
 "ReceiveMessageWaitTimeSeconds": str(10),
 "VisibilityTimeout": str(300),
 "FifoQueue": str(True),
 "ContentBasedDeduplication": str(True),
 },
)
 queues.add(wholesale_queue)
 print(f"Created FIFO queue with URL: {wholesale_queue.url}.")

 retail_queue = sqs.create_queue(

Create and publish to a FIFO topic 379

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/sns#code-examples

Amazon Simple Queue Service Developer Guide

 QueueName=prefix + "retail.fifo",
 Attributes={
 "MaximumMessageSize": str(4096),
 "ReceiveMessageWaitTimeSeconds": str(10),
 "VisibilityTimeout": str(300),
 "FifoQueue": str(True),
 "ContentBasedDeduplication": str(True),
 },
)
 queues.add(retail_queue)
 print(f"Created FIFO queue with URL: {retail_queue.url}.")

 analytics_queue = sqs.create_queue(QueueName=prefix + "analytics",
 Attributes={})
 queues.add(analytics_queue)
 print(f"Created standard queue with URL: {analytics_queue.url}.")

 topic = fifo_topic_wrapper.create_fifo_topic("price-updates-topic.fifo")
 print(f"Created FIFO topic: {topic.attributes['TopicArn']}.")

 for q in queues:
 fifo_topic_wrapper.add_access_policy(q, topic.attributes["TopicArn"])

 print(f"Added access policies for topic: {topic.attributes['TopicArn']}.")

 for q in queues:
 sub = fifo_topic_wrapper.subscribe_queue_to_topic(
 topic, q.attributes["QueueArn"]
)
 subscriptions.add(sub)

 print(f"Subscribed queues to topic: {topic.attributes['TopicArn']}.")

 input("Press Enter to publish a message to the topic.")

 message_id = fifo_topic_wrapper.publish_price_update(
 topic, '{"product": 214, "price": 79.99}', "Consumables"
)

 print(f"Published price update with message ID: {message_id}.")

 # Clean up the subscriptions, queues, and topic.
 input("Press Enter to clean up resources.")
 for s in subscriptions:

Create and publish to a FIFO topic 380

Amazon Simple Queue Service Developer Guide

 sns_wrapper.delete_subscription(s)

 sns_wrapper.delete_topic(topic)

 for q in queues:
 fifo_topic_wrapper.delete_queue(q)

 print(f"Deleted subscriptions, queues, and topic.")

 print("Thanks for watching!")
 print("-" * 88)

class FifoTopicWrapper:
 """Encapsulates Amazon SNS FIFO topic and subscription functions."""

 def __init__(self, sns_resource):
 """
 :param sns_resource: A Boto3 Amazon SNS resource.
 """
 self.sns_resource = sns_resource

 def create_fifo_topic(self, topic_name):
 """
 Create a FIFO topic.
 Topic names must be made up of only uppercase and lowercase ASCII
 letters,
 numbers, underscores, and hyphens, and must be between 1 and 256
 characters long.
 For a FIFO topic, the name must end with the .fifo suffix.

 :param topic_name: The name for the topic.
 :return: The new topic.
 """
 try:
 topic = self.sns_resource.create_topic(
 Name=topic_name,
 Attributes={
 "FifoTopic": str(True),
 "ContentBasedDeduplication": str(False),
 },
)
 logger.info("Created FIFO topic with name=%s.", topic_name)

Create and publish to a FIFO topic 381

Amazon Simple Queue Service Developer Guide

 return topic
 except ClientError as error:
 logger.exception("Couldn't create topic with name=%s!", topic_name)
 raise error

 @staticmethod
 def add_access_policy(queue, topic_arn):
 """
 Add the necessary access policy to a queue, so
 it can receive messages from a topic.

 :param queue: The queue resource.
 :param topic_arn: The ARN of the topic.
 :return: None.
 """
 try:
 queue.set_attributes(
 Attributes={
 "Policy": json.dumps(
 {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "test-sid",
 "Effect": "Allow",
 "Principal": {"AWS": "*"},
 "Action": "SQS:SendMessage",
 "Resource": queue.attributes["QueueArn"],
 "Condition": {
 "ArnLike": {"aws:SourceArn": topic_arn}
 },
 }
],
 }
)
 }
)
 logger.info("Added trust policy to the queue.")
 except ClientError as error:
 logger.exception("Couldn't add trust policy to the queue!")
 raise error

Create and publish to a FIFO topic 382

Amazon Simple Queue Service Developer Guide

 @staticmethod
 def subscribe_queue_to_topic(topic, queue_arn):
 """
 Subscribe a queue to a topic.

 :param topic: The topic resource.
 :param queue_arn: The ARN of the queue.
 :return: The subscription resource.
 """
 try:
 subscription = topic.subscribe(
 Protocol="sqs",
 Endpoint=queue_arn,
)
 logger.info("The queue is subscribed to the topic.")
 return subscription
 except ClientError as error:
 logger.exception("Couldn't subscribe queue to topic!")
 raise error

 @staticmethod
 def publish_price_update(topic, payload, group_id):
 """
 Compose and publish a message that updates the wholesale price.

 :param topic: The topic to publish to.
 :param payload: The message to publish.
 :param group_id: The group ID for the message.
 :return: The ID of the message.
 """
 try:
 att_dict = {"business": {"DataType": "String", "StringValue":
 "wholesale"}}
 dedup_id = uuid.uuid4()
 response = topic.publish(
 Subject="Price Update",
 Message=payload,
 MessageAttributes=att_dict,
 MessageGroupId=group_id,
 MessageDeduplicationId=str(dedup_id),
)
 message_id = response["MessageId"]
 logger.info("Published message to topic %s.", topic.arn)

Create and publish to a FIFO topic 383

Amazon Simple Queue Service Developer Guide

 except ClientError as error:
 logger.exception("Couldn't publish message to topic %s.", topic.arn)
 raise error
 return message_id

 @staticmethod
 def delete_queue(queue):
 """
 Removes an SQS queue. When run against an AWS account, it can take up to
 60 seconds before the queue is actually deleted.

 :param queue: The queue to delete.
 :return: None
 """
 try:
 queue.delete()
 logger.info("Deleted queue with URL=%s.", queue.url)
 except ClientError as error:
 logger.exception("Couldn't delete queue with URL=%s!", queue.url)
 raise error

• For API details, see the following topics in AWS SDK for Python (Boto3) API Reference.

• CreateTopic

• Publish

• Subscribe

SAP ABAP

SDK for SAP ABAP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Create and publish to a FIFO topic 384

https://docs.aws.amazon.com/goto/boto3/sns-2010-03-31/CreateTopic
https://docs.aws.amazon.com/goto/boto3/sns-2010-03-31/Publish
https://docs.aws.amazon.com/goto/boto3/sns-2010-03-31/Subscribe
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/sap-abap/services/sns#code-examples

Amazon Simple Queue Service Developer Guide

Create a FIFO topic, subscribe an Amazon SQS FIFO queue to the topic, and publish a
message to an Amazon SNS topic.

 " Creates a FIFO topic. "
 DATA lt_tpc_attributes TYPE /aws1/
cl_snstopicattrsmap_w=>tt_topicattributesmap.
 DATA ls_tpc_attributes TYPE /aws1/
cl_snstopicattrsmap_w=>ts_topicattributesmap_maprow.
 ls_tpc_attributes-key = 'FifoTopic'.
 ls_tpc_attributes-value = NEW /aws1/cl_snstopicattrsmap_w(iv_value =
 'true').
 INSERT ls_tpc_attributes INTO TABLE lt_tpc_attributes.

 TRY.
 DATA(lo_create_result) = lo_sns->createtopic(
 iv_name = iv_topic_name
 it_attributes = lt_tpc_attributes
).
 DATA(lv_topic_arn) = lo_create_result->get_topicarn().
 ov_topic_arn = lv_topic_arn. "
 ov_topic_arn is returned for testing purposes. "
 MESSAGE 'FIFO topic created' TYPE 'I'.
 CATCH /aws1/cx_snstopiclimitexcdex.
 MESSAGE 'Unable to create more topics. You have reached the maximum
 number of topics allowed.' TYPE 'E'.
 ENDTRY.

 " Subscribes an endpoint to an Amazon Simple Notification Service (Amazon
 SNS) topic. "
 " Only Amazon Simple Queue Service (Amazon SQS) FIFO queues can be subscribed
 to an SNS FIFO topic. "
 TRY.
 DATA(lo_subscribe_result) = lo_sns->subscribe(
 iv_topicarn = lv_topic_arn
 iv_protocol = 'sqs'
 iv_endpoint = iv_queue_arn
).
 DATA(lv_subscription_arn) = lo_subscribe_result->get_subscriptionarn().
 ov_subscription_arn = lv_subscription_arn. "
 ov_subscription_arn is returned for testing purposes. "
 MESSAGE 'SQS queue was subscribed to SNS topic.' TYPE 'I'.
 CATCH /aws1/cx_snsnotfoundexception.

Create and publish to a FIFO topic 385

Amazon Simple Queue Service Developer Guide

 MESSAGE 'Topic does not exist.' TYPE 'E'.
 CATCH /aws1/cx_snssubscriptionlmte00.
 MESSAGE 'Unable to create subscriptions. You have reached the maximum
 number of subscriptions allowed.' TYPE 'E'.
 ENDTRY.

 " Publish message to SNS topic. "
 TRY.
 DATA lt_msg_attributes TYPE /aws1/
cl_snsmessageattrvalue=>tt_messageattributemap.
 DATA ls_msg_attributes TYPE /aws1/
cl_snsmessageattrvalue=>ts_messageattributemap_maprow.
 ls_msg_attributes-key = 'Importance'.
 ls_msg_attributes-value = NEW /aws1/cl_snsmessageattrvalue(iv_datatype =
 'String' iv_stringvalue = 'High').
 INSERT ls_msg_attributes INTO TABLE lt_msg_attributes.

 DATA(lo_result) = lo_sns->publish(
 iv_topicarn = lv_topic_arn
 iv_message = 'The price of your mobile plan has been increased from
 $19 to $23'
 iv_subject = 'Changes to mobile plan'
 iv_messagegroupid = 'Update-2'
 iv_messagededuplicationid = 'Update-2.1'
 it_messageattributes = lt_msg_attributes
).
 ov_message_id = lo_result->get_messageid(). "
 ov_message_id is returned for testing purposes. "
 MESSAGE 'Message was published to SNS topic.' TYPE 'I'.
 CATCH /aws1/cx_snsnotfoundexception.
 MESSAGE 'Topic does not exist.' TYPE 'E'.
 ENDTRY.

• For API details, see the following topics in AWS SDK for SAP ABAP API reference.

• CreateTopic

• Publish

• Subscribe

Create and publish to a FIFO topic 386

https://docs.aws.amazon.com/sdk-for-sap-abap/v1/api/latest/index.html
https://docs.aws.amazon.com/sdk-for-sap-abap/v1/api/latest/index.html
https://docs.aws.amazon.com/sdk-for-sap-abap/v1/api/latest/index.html

Amazon Simple Queue Service Developer Guide

For a complete list of AWS SDK developer guides and code examples, see Using Amazon SQS with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Publish Amazon SNS messages to Amazon SQS queues using an AWS
SDK

The following code examples show how to:

• Create topic (FIFO or non-FIFO).

• Subscribe several queues to the topic with an option to apply a filter.

• Publish messages to the topic.

• Poll the queues for messages received.

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Run an interactive scenario at a command prompt.

/// <summary>
/// Console application to run a workflow scenario for topics and queues.
/// </summary>
public static class TopicsAndQueues
{
 private static bool _useFifoTopic = false;
 private static bool _useContentBasedDeduplication = false;
 private static string _topicName = null!;
 private static string _topicArn = null!;

 private static readonly int _queueCount = 2;
 private static readonly string[] _queueUrls = new string[_queueCount];
 private static readonly string[] _subscriptionArns = new string[_queueCount];

Publish messages to queues 387

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/cross-service/TopicsAndQueues#code-examples

Amazon Simple Queue Service Developer Guide

 private static readonly string[] _tones = { "cheerful", "funny", "serious",
 "sincere" };
 public static SNSWrapper SnsWrapper { get; set; } = null!;
 public static SQSWrapper SqsWrapper { get; set; } = null!;
 public static bool UseConsole { get; set; } = true;
 static async Task Main(string[] args)
 {
 // Set up dependency injection for Amazon EventBridge.
 using var host = Host.CreateDefaultBuilder(args)
 .ConfigureLogging(logging =>
 logging.AddFilter("System", LogLevel.Debug)
 .AddFilter<DebugLoggerProvider>("Microsoft",
 LogLevel.Information)
 .AddFilter<ConsoleLoggerProvider>("Microsoft",
 LogLevel.Trace))
 .ConfigureServices((_, services) =>
 services.AddAWSService<IAmazonSQS>()
 .AddAWSService<IAmazonSimpleNotificationService>()
 .AddTransient<SNSWrapper>()
 .AddTransient<SQSWrapper>()
)
 .Build();

 ServicesSetup(host);
 PrintDescription();

 await RunScenario();

 }

 /// <summary>
 /// Populate the services for use within the console application.
 /// </summary>
 /// <param name="host">The services host.</param>
 private static void ServicesSetup(IHost host)
 {
 SnsWrapper = host.Services.GetRequiredService<SNSWrapper>();
 SqsWrapper = host.Services.GetRequiredService<SQSWrapper>();
 }

 /// <summary>
 /// Run the scenario for working with topics and queues.
 /// </summary>
 /// <returns>True if successful.</returns>

Publish messages to queues 388

Amazon Simple Queue Service Developer Guide

 public static async Task<bool> RunScenario()
 {
 try
 {
 await SetupTopic();

 await SetupQueues();

 await PublishMessages();

 foreach (var queueUrl in _queueUrls)
 {
 var messages = await PollForMessages(queueUrl);
 if (messages.Any())
 {
 await DeleteMessages(queueUrl, messages);
 }
 }
 await CleanupResources();

 Console.WriteLine("Messaging with topics and queues workflow is
 complete.");
 return true;
 }
 catch (Exception ex)
 {
 Console.WriteLine(new string('-', 80));
 Console.WriteLine($"There was a problem running the scenario:
 {ex.Message}");
 await CleanupResources();
 Console.WriteLine(new string('-', 80));
 return false;
 }
 }

 /// <summary>
 /// Print a description for the tasks in the workflow.
 /// </summary>
 /// <returns>Async task.</returns>
 private static void PrintDescription()
 {
 Console.WriteLine(new string('-', 80));
 Console.WriteLine($"Welcome to messaging with topics and queues.");

Publish messages to queues 389

Amazon Simple Queue Service Developer Guide

 Console.WriteLine(new string('-', 80));
 Console.WriteLine($"In this workflow, you will create an SNS topic and
 subscribe {_queueCount} SQS queues to the topic." +
 $"\r\nYou can select from several options for
 configuring the topic and the subscriptions for the 2 queues." +
 $"\r\nYou can then post to the topic and see the
 results in the queues.\r\n");

 Console.WriteLine(new string('-', 80));
 }

 /// <summary>
 /// Set up the SNS topic to be used with the queues.
 /// </summary>
 /// <returns>Async task.</returns>
 private static async Task<string> SetupTopic()
 {
 Console.WriteLine(new string('-', 80));
 Console.WriteLine($"SNS topics can be configured as FIFO (First-In-First-
Out)." +
 $"\r\nFIFO topics deliver messages in order and support
 deduplication and message filtering." +
 $"\r\nYou can then post to the topic and see the
 results in the queues.\r\n");

 _useFifoTopic = GetYesNoResponse("Would you like to work with FIFO
 topics?");

 if (_useFifoTopic)
 {
 Console.WriteLine(new string('-', 80));
 _topicName = GetUserResponse("Enter a name for your SNS topic: ",
 "example-topic");
 Console.WriteLine(
 "Because you have selected a FIFO topic, '.fifo' must be appended
 to the topic name.\r\n");

 Console.WriteLine(new string('-', 80));
 Console.WriteLine($"Because you have chosen a FIFO topic,
 deduplication is supported." +
 $"\r\nDeduplication IDs are either set in the
 message or automatically generated " +
 $"\r\nfrom content using a hash function.\r\n" +

Publish messages to queues 390

Amazon Simple Queue Service Developer Guide

 $"\r\nIf a message is successfully published to an
 SNS FIFO topic, any message " +
 $"\r\npublished and determined to have the same
 deduplication ID, " +
 $"\r\nwithin the five-minute deduplication
 interval, is accepted but not delivered.\r\n" +
 $"\r\nFor more information about deduplication, " +
 $"\r\nsee https://docs.aws.amazon.com/sns/latest/
dg/fifo-message-dedup.html.");

 _useContentBasedDeduplication = GetYesNoResponse("Use content-based
 deduplication instead of entering a deduplication ID?");
 Console.WriteLine(new string('-', 80));
 }

 _topicArn = await SnsWrapper.CreateTopicWithName(_topicName,
 _useFifoTopic, _useContentBasedDeduplication);

 Console.WriteLine($"Your new topic with the name {_topicName}" +
 $"\r\nand Amazon Resource Name (ARN) {_topicArn}" +
 $"\r\nhas been created.\r\n");

 Console.WriteLine(new string('-', 80));
 return _topicArn;
 }

 /// <summary>
 /// Set up the queues.
 /// </summary>
 /// <returns>Async task.</returns>
 private static async Task SetupQueues()
 {
 Console.WriteLine(new string('-', 80));
 Console.WriteLine($"Now you will create {_queueCount} Amazon Simple Queue
 Service (Amazon SQS) queues to subscribe to the topic.");

 // Repeat this section for each queue.
 for (int i = 0; i < _queueCount; i++)
 {
 var queueName = GetUserResponse("Enter a name for an Amazon SQS
 queue: ", $"example-queue-{i}");
 if (_useFifoTopic)
 {
 // Only explain this once.

Publish messages to queues 391

Amazon Simple Queue Service Developer Guide

 if (i == 0)
 {
 Console.WriteLine(
 "Because you have selected a FIFO topic, '.fifo' must be
 appended to the queue name.");
 }

 var queueUrl = await SqsWrapper.CreateQueueWithName(queueName,
 _useFifoTopic);

 _queueUrls[i] = queueUrl;

 Console.WriteLine($"Your new queue with the name {queueName}" +
 $"\r\nand queue URL {queueUrl}" +
 $"\r\nhas been created.\r\n");

 if (i == 0)
 {
 Console.WriteLine(
 $"The queue URL is used to retrieve the queue ARN,\r\n" +
 $"which is used to create a subscription.");
 Console.WriteLine(new string('-', 80));
 }

 var queueArn = await SqsWrapper.GetQueueArnByUrl(queueUrl);

 if (i == 0)
 {
 Console.WriteLine(
 $"An AWS Identity and Access Management (IAM) policy must
 be attached to an SQS queue, enabling it to receive\r\n" +
 $"messages from an SNS topic");
 }

 await SqsWrapper.SetQueuePolicyForTopic(queueArn, _topicArn,
 queueUrl);

 await SetupFilters(i, queueArn, queueName);
 }
 }

 Console.WriteLine(new string('-', 80));
 }

Publish messages to queues 392

Amazon Simple Queue Service Developer Guide

 /// <summary>
 /// Set up filters with user options for a queue.
 /// </summary>
 /// <param name="queueCount">The number of this queue.</param>
 /// <param name="queueArn">The ARN of the queue.</param>
 /// <param name="queueName">The name of the queue.</param>
 /// <returns>Async Task.</returns>
 public static async Task SetupFilters(int queueCount, string queueArn, string
 queueName)
 {
 if (_useFifoTopic)
 {
 Console.WriteLine(new string('-', 80));
 // Only explain this once.
 if (queueCount == 0)
 {
 Console.WriteLine(
 "Subscriptions to a FIFO topic can have filters." +
 "If you add a filter to this subscription, then only the
 filtered messages " +
 "will be received in the queue.");

 Console.WriteLine(
 "For information about message filtering, " +
 "see https://docs.aws.amazon.com/sns/latest/dg/sns-message-
filtering.html");

 Console.WriteLine(
 "For this example, you can filter messages by a" +
 "TONE attribute.");
 }

 var useFilter = GetYesNoResponse($"Filter messages for {queueName}'s
 subscription to the topic?");

 string? filterPolicy = null;
 if (useFilter)
 {
 filterPolicy = CreateFilterPolicy();
 }
 var subscriptionArn = await
 SnsWrapper.SubscribeTopicWithFilter(_topicArn, filterPolicy,
 queueArn);
 _subscriptionArns[queueCount] = subscriptionArn;

Publish messages to queues 393

Amazon Simple Queue Service Developer Guide

 Console.WriteLine(
 $"The queue {queueName} has been subscribed to the topic
 {_topicName} " +
 $"with the subscription ARN {subscriptionArn}");
 Console.WriteLine(new string('-', 80));
 }
 }

 /// <summary>
 /// Use user input to create a filter policy for a subscription.
 /// </summary>
 /// <returns>The serialized filter policy.</returns>
 public static string CreateFilterPolicy()
 {
 Console.WriteLine(new string('-', 80));
 Console.WriteLine(
 $"You can filter messages by one or more of the following" +
 $"TONE attributes.");

 List<string> filterSelections = new List<string>();

 var selectionNumber = 0;
 do
 {
 Console.WriteLine(
 $"Enter a number to add a TONE filter, or enter 0 to stop adding
 filters.");
 for (int i = 0; i < _tones.Length; i++)
 {
 Console.WriteLine($"\t{i + 1}. {_tones[i]}");
 }

 var selection = GetUserResponse("", filterSelections.Any() ? "0" :
 "1");
 int.TryParse(selection, out selectionNumber);
 if (selectionNumber > 0 && !
filterSelections.Contains(_tones[selectionNumber - 1]))
 {
 filterSelections.Add(_tones[selectionNumber - 1]);
 }
 } while (selectionNumber != 0);

 var filters = new Dictionary<string, List<string>>

Publish messages to queues 394

Amazon Simple Queue Service Developer Guide

 {
 { "tone", filterSelections }
 };
 string filterPolicy = JsonSerializer.Serialize(filters);
 return filterPolicy;
 }

 /// <summary>
 /// Publish messages using user settings.
 /// </summary>
 /// <returns>Async task.</returns>
 public static async Task PublishMessages()
 {
 Console.WriteLine("Now we can publish messages.");

 var keepSendingMessages = true;
 string? deduplicationId = null;
 string? toneAttribute = null;
 while (keepSendingMessages)
 {
 Console.WriteLine();
 var message = GetUserResponse("Enter a message to publish.", "This is
 a sample message");

 if (_useFifoTopic)
 {
 Console.WriteLine("Because you are using a FIFO topic, you must
 set a message group ID." +
 "\r\nAll messages within the same group will be
 received in the order " +
 "they were published.");

 Console.WriteLine();
 var messageGroupId = GetUserResponse("Enter a message group ID
 for this message:", "1");

 if (!_useContentBasedDeduplication)
 {
 Console.WriteLine("Because you are not using content-based
 deduplication, " +
 "you must enter a deduplication ID.");

 Console.WriteLine("Enter a deduplication ID for this
 message.");

Publish messages to queues 395

Amazon Simple Queue Service Developer Guide

 deduplicationId = GetUserResponse("Enter a deduplication ID
 for this message.", "1");
 }

 if (GetYesNoResponse("Add an attribute to this message?"))
 {
 Console.WriteLine("Enter a number for an attribute.");
 for (int i = 0; i < _tones.Length; i++)
 {
 Console.WriteLine($"\t{i + 1}. {_tones[i]}");
 }

 var selection = GetUserResponse("", "1");
 int.TryParse(selection, out var selectionNumber);

 if (selectionNumber > 0 && selectionNumber < _tones.Length)
 {
 toneAttribute = _tones[selectionNumber - 1];
 }
 }

 var messageID = await SnsWrapper.PublishToTopicWithAttribute(
 _topicArn, message, "tone", toneAttribute, deduplicationId,
 messageGroupId);

 Console.WriteLine($"Message published with id {messageID}.");
 }

 keepSendingMessages = GetYesNoResponse("Send another message?",
 false);
 }
 }

 /// <summary>
 /// Poll for the published messages to see the results of the user's choices.
 /// </summary>
 /// <returns>Async task.</returns>
 public static async Task<List<Message>> PollForMessages(string queueUrl)
 {
 Console.WriteLine(new string('-', 80));
 Console.WriteLine($"Now the SQS queue at {queueUrl} will be polled to
 retrieve the messages." +
 "\r\nPress any key to continue.");
 if (UseConsole)

Publish messages to queues 396

Amazon Simple Queue Service Developer Guide

 {
 Console.ReadLine();
 }

 var moreMessages = true;
 var messages = new List<Message>();
 while (moreMessages)
 {
 var newMessages = await SqsWrapper.ReceiveMessagesByUrl(queueUrl,
 10);

 moreMessages = newMessages.Any();
 if (moreMessages)
 {
 messages.AddRange(newMessages);
 }
 }

 Console.WriteLine($"{messages.Count} message(s) were received by the
 queue at {queueUrl}.");

 foreach (var message in messages)
 {
 Console.WriteLine("\tMessage:" +
 $"\n\t{message.Body}");
 }

 Console.WriteLine(new string('-', 80));
 return messages;
 }

 /// <summary>
 /// Delete the message using handles in a batch.
 /// </summary>
 /// <returns>Async task.</returns>
 public static async Task DeleteMessages(string queueUrl, List<Message>
 messages)
 {
 Console.WriteLine(new string('-', 80));
 Console.WriteLine("Now we can delete the messages in this queue in a
 batch.");
 await SqsWrapper.DeleteMessageBatchByUrl(queueUrl, messages);
 Console.WriteLine(new string('-', 80));
 }

Publish messages to queues 397

Amazon Simple Queue Service Developer Guide

 /// <summary>
 /// Clean up the resources from the scenario.
 /// </summary>
 /// <returns>Async task.</returns>
 private static async Task CleanupResources()
 {
 Console.WriteLine(new string('-', 80));
 Console.WriteLine($"Clean up resources.");

 try
 {
 foreach (var queueUrl in _queueUrls)
 {
 if (!string.IsNullOrEmpty(queueUrl))
 {
 var deleteQueue =
 GetYesNoResponse($"Delete queue with url {queueUrl}?");
 if (deleteQueue)
 {
 await SqsWrapper.DeleteQueueByUrl(queueUrl);
 }
 }
 }

 foreach (var subscriptionArn in _subscriptionArns)
 {
 if (!string.IsNullOrEmpty(subscriptionArn))
 {
 await SnsWrapper.UnsubscribeByArn(subscriptionArn);
 }
 }

 var deleteTopic = GetYesNoResponse($"Delete topic {_topicName}?");
 if (deleteTopic)
 {
 await SnsWrapper.DeleteTopicByArn(_topicArn);
 }
 }
 catch (Exception ex)
 {
 Console.WriteLine($"Unable to clean up resources. Here's why:
 {ex.Message}.");
 }

Publish messages to queues 398

Amazon Simple Queue Service Developer Guide

 Console.WriteLine(new string('-', 80));
 }

 /// <summary>
 /// Helper method to get a yes or no response from the user.
 /// </summary>
 /// <param name="question">The question string to print on the console.</
param>
 /// <param name="defaultAnswer">Optional default answer to use.</param>
 /// <returns>True if the user responds with a yes.</returns>
 private static bool GetYesNoResponse(string question, bool defaultAnswer =
 true)
 {
 if (UseConsole)
 {
 Console.WriteLine(question);
 var ynResponse = Console.ReadLine();
 var response = ynResponse != null &&
 ynResponse.Equals("y",
 StringComparison.InvariantCultureIgnoreCase);
 return response;
 }
 // If not using the console, use the default.
 return defaultAnswer;
 }

 /// <summary>
 /// Helper method to get a string response from the user through the console.
 /// </summary>
 /// <param name="question">The question string to print on the console.</
param>
 /// <param name="defaultAnswer">Optional default answer to use.</param>
 /// <returns>True if the user responds with a yes.</returns>
 private static string GetUserResponse(string question, string defaultAnswer)
 {
 if (UseConsole)
 {
 var response = "";
 while (string.IsNullOrEmpty(response))
 {
 Console.WriteLine(question);
 response = Console.ReadLine();
 }

Publish messages to queues 399

Amazon Simple Queue Service Developer Guide

 return response;
 }
 // If not using the console, use the default.
 return defaultAnswer;
 }
}

Create a class that wraps Amazon SQS operations.

/// <summary>
/// Wrapper for Amazon Simple Queue Service (SQS) operations.
/// </summary>
public class SQSWrapper
{
 private readonly IAmazonSQS _amazonSQSClient;

 /// <summary>
 /// Constructor for the Amazon SQS wrapper.
 /// </summary>
 /// <param name="amazonSQS">The injected Amazon SQS client.</param>
 public SQSWrapper(IAmazonSQS amazonSQS)
 {
 _amazonSQSClient = amazonSQS;
 }

 /// <summary>
 /// Create a queue with a specific name.
 /// </summary>
 /// <param name="queueName">The name for the queue.</param>
 /// <param name="useFifoQueue">True to use a FIFO queue.</param>
 /// <returns>The url for the queue.</returns>
 public async Task<string> CreateQueueWithName(string queueName, bool
 useFifoQueue)
 {
 int maxMessage = 256 * 1024;
 var queueAttributes = new Dictionary<string, string>
 {
 {
 QueueAttributeName.MaximumMessageSize,
 maxMessage.ToString()
 }

Publish messages to queues 400

Amazon Simple Queue Service Developer Guide

 };

 var createQueueRequest = new CreateQueueRequest()
 {
 QueueName = queueName,
 Attributes = queueAttributes
 };

 if (useFifoQueue)
 {
 // Update the name if it is not correct for a FIFO queue.
 if (!queueName.EndsWith(".fifo"))
 {
 createQueueRequest.QueueName = queueName + ".fifo";
 }

 // Add an attribute for a FIFO queue.
 createQueueRequest.Attributes.Add(
 QueueAttributeName.FifoQueue, "true");
 }

 var createResponse = await _amazonSQSClient.CreateQueueAsync(
 new CreateQueueRequest()
 {
 QueueName = queueName
 });
 return createResponse.QueueUrl;
 }

 /// <summary>
 /// Get the ARN for a queue from its URL.
 /// </summary>
 /// <param name="queueUrl">The URL of the queue.</param>
 /// <returns>The ARN of the queue.</returns>
 public async Task<string> GetQueueArnByUrl(string queueUrl)
 {
 var getAttributesRequest = new GetQueueAttributesRequest()
 {
 QueueUrl = queueUrl,
 AttributeNames = new List<string>() { QueueAttributeName.QueueArn }
 };

 var getAttributesResponse = await
 _amazonSQSClient.GetQueueAttributesAsync(

Publish messages to queues 401

Amazon Simple Queue Service Developer Guide

 getAttributesRequest);

 return getAttributesResponse.QueueARN;
 }

 /// <summary>
 /// Set the policy attribute of a queue for a topic.
 /// </summary>
 /// <param name="queueArn">The ARN of the queue.</param>
 /// <param name="topicArn">The ARN of the topic.</param>
 /// <param name="queueUrl">The url for the queue.</param>
 /// <returns>True if successful.</returns>
 public async Task<bool> SetQueuePolicyForTopic(string queueArn, string
 topicArn, string queueUrl)
 {
 var queuePolicy = "{" +
 "\"Version\": \"2012-10-17\"," +
 "\"Statement\": [{" +
 "\"Effect\": \"Allow\"," +
 "\"Principal\": {" +
 $"\"Service\": " +
 "\"sns.amazonaws.com\"" +
 "}," +
 "\"Action\": \"sqs:SendMessage\"," +
 $"\"Resource\": \"{queueArn}\"," +
 "\"Condition\": {" +
 "\"ArnEquals\": {" +
 $"\"aws:SourceArn\":
 \"{topicArn}\"" +
 "}" +
 "}" +
 "}]" +
 "}";
 var attributesResponse = await _amazonSQSClient.SetQueueAttributesAsync(
 new SetQueueAttributesRequest()
 {
 QueueUrl = queueUrl,
 Attributes = new Dictionary<string, string>() { { "Policy",
 queuePolicy } }
 });
 return attributesResponse.HttpStatusCode == HttpStatusCode.OK;
 }

 /// <summary>

Publish messages to queues 402

Amazon Simple Queue Service Developer Guide

 /// Receive messages from a queue by its URL.
 /// </summary>
 /// <param name="queueUrl">The url of the queue.</param>
 /// <returns>The list of messages.</returns>
 public async Task<List<Message>> ReceiveMessagesByUrl(string queueUrl, int
 maxMessages)
 {
 // Setting WaitTimeSeconds to non-zero enables long polling.
 // For information about long polling, see
 // https://docs.aws.amazon.com/AWSSimpleQueueService/latest/
SQSDeveloperGuide/sqs-short-and-long-polling.html
 var messageResponse = await _amazonSQSClient.ReceiveMessageAsync(
 new ReceiveMessageRequest()
 {
 QueueUrl = queueUrl,
 MaxNumberOfMessages = maxMessages,
 WaitTimeSeconds = 1
 });
 return messageResponse.Messages;
 }

 /// <summary>
 /// Delete a batch of messages from a queue by its url.
 /// </summary>
 /// <param name="queueUrl">The url of the queue.</param>
 /// <returns>True if successful.</returns>
 public async Task<bool> DeleteMessageBatchByUrl(string queueUrl,
 List<Message> messages)
 {
 var deleteRequest = new DeleteMessageBatchRequest()
 {
 QueueUrl = queueUrl,
 Entries = new List<DeleteMessageBatchRequestEntry>()
 };
 foreach (var message in messages)
 {
 deleteRequest.Entries.Add(new DeleteMessageBatchRequestEntry()
 {
 ReceiptHandle = message.ReceiptHandle,
 Id = message.MessageId
 });
 }

Publish messages to queues 403

Amazon Simple Queue Service Developer Guide

 var deleteResponse = await
 _amazonSQSClient.DeleteMessageBatchAsync(deleteRequest);

 return deleteResponse.Failed.Any();
 }

 /// <summary>
 /// Delete a queue by its URL.
 /// </summary>
 /// <param name="queueUrl">The url of the queue.</param>
 /// <returns>True if successful.</returns>
 public async Task<bool> DeleteQueueByUrl(string queueUrl)
 {
 var deleteResponse = await _amazonSQSClient.DeleteQueueAsync(
 new DeleteQueueRequest()
 {
 QueueUrl = queueUrl
 });
 return deleteResponse.HttpStatusCode == HttpStatusCode.OK;
 }
}

Create a class that wraps Amazon SNS operations.

/// <summary>
/// Wrapper for Amazon Simple Notification Service (SNS) operations.
/// </summary>
public class SNSWrapper
{
 private readonly IAmazonSimpleNotificationService _amazonSNSClient;

 /// <summary>
 /// Constructor for the Amazon SNS wrapper.
 /// </summary>
 /// <param name="amazonSQS">The injected Amazon SNS client.</param>
 public SNSWrapper(IAmazonSimpleNotificationService amazonSNS)
 {
 _amazonSNSClient = amazonSNS;
 }

 /// <summary>

Publish messages to queues 404

Amazon Simple Queue Service Developer Guide

 /// Create a new topic with a name and specific FIFO and de-duplication
 attributes.
 /// </summary>
 /// <param name="topicName">The name for the topic.</param>
 /// <param name="useFifoTopic">True to use a FIFO topic.</param>
 /// <param name="useContentBasedDeduplication">True to use content-based de-
duplication.</param>
 /// <returns>The ARN of the new topic.</returns>
 public async Task<string> CreateTopicWithName(string topicName, bool
 useFifoTopic, bool useContentBasedDeduplication)
 {
 var createTopicRequest = new CreateTopicRequest()
 {
 Name = topicName,
 };

 if (useFifoTopic)
 {
 // Update the name if it is not correct for a FIFO topic.
 if (!topicName.EndsWith(".fifo"))
 {
 createTopicRequest.Name = topicName + ".fifo";
 }

 // Add the attributes from the method parameters.
 createTopicRequest.Attributes = new Dictionary<string, string>
 {
 { "FifoTopic", "true" }
 };
 if (useContentBasedDeduplication)
 {
 createTopicRequest.Attributes.Add("ContentBasedDeduplication",
 "true");
 }
 }

 var createResponse = await
 _amazonSNSClient.CreateTopicAsync(createTopicRequest);
 return createResponse.TopicArn;
 }

 /// <summary>
 /// Subscribe a queue to a topic with optional filters.
 /// </summary>

Publish messages to queues 405

Amazon Simple Queue Service Developer Guide

 /// <param name="topicArn">The ARN of the topic.</param>
 /// <param name="useFifoTopic">The optional filtering policy for the
 subscription.</param>
 /// <param name="queueArn">The ARN of the queue.</param>
 /// <returns>The ARN of the new subscription.</returns>
 public async Task<string> SubscribeTopicWithFilter(string topicArn, string?
 filterPolicy, string queueArn)
 {
 var subscribeRequest = new SubscribeRequest()
 {
 TopicArn = topicArn,
 Protocol = "sqs",
 Endpoint = queueArn
 };

 if (!string.IsNullOrEmpty(filterPolicy))
 {
 subscribeRequest.Attributes = new Dictionary<string, string>
 { { "FilterPolicy", filterPolicy } };
 }

 var subscribeResponse = await
 _amazonSNSClient.SubscribeAsync(subscribeRequest);
 return subscribeResponse.SubscriptionArn;
 }

 /// <summary>
 /// Publish a message to a topic with an attribute and optional deduplication
 and group IDs.
 /// </summary>
 /// <param name="topicArn">The ARN of the topic.</param>
 /// <param name="message">The message to publish.</param>
 /// <param name="attributeName">The optional attribute for the message.</
param>
 /// <param name="attributeValue">The optional attribute value for the
 message.</param>
 /// <param name="deduplicationId">The optional deduplication ID for the
 message.</param>
 /// <param name="groupId">The optional group ID for the message.</param>
 /// <returns>The ID of the message published.</returns>
 public async Task<string> PublishToTopicWithAttribute(
 string topicArn,
 string message,
 string? attributeName = null,

Publish messages to queues 406

Amazon Simple Queue Service Developer Guide

 string? attributeValue = null,
 string? deduplicationId = null,
 string? groupId = null)
 {
 var publishRequest = new PublishRequest()
 {
 TopicArn = topicArn,
 Message = message,
 MessageDeduplicationId = deduplicationId,
 MessageGroupId = groupId
 };

 if (attributeValue != null)
 {
 // Add the string attribute if it exists.
 publishRequest.MessageAttributes =
 new Dictionary<string, MessageAttributeValue>
 {
 { attributeName!, new MessageAttributeValue() { StringValue =
 attributeValue, DataType = "String"} }
 };
 }

 var publishResponse = await
 _amazonSNSClient.PublishAsync(publishRequest);
 return publishResponse.MessageId;
 }

 /// <summary>
 /// Unsubscribe from a topic by a subscription ARN.
 /// </summary>
 /// <param name="subscriptionArn">The ARN of the subscription.</param>
 /// <returns>True if successful.</returns>
 public async Task<bool> UnsubscribeByArn(string subscriptionArn)
 {
 var unsubscribeResponse = await _amazonSNSClient.UnsubscribeAsync(
 new UnsubscribeRequest()
 {
 SubscriptionArn = subscriptionArn
 });
 return unsubscribeResponse.HttpStatusCode == HttpStatusCode.OK;
 }

Publish messages to queues 407

Amazon Simple Queue Service Developer Guide

 /// <summary>
 /// Delete a topic by its topic ARN.
 /// </summary>
 /// <param name="topicArn">The ARN of the topic.</param>
 /// <returns>True if successful.</returns>
 public async Task<bool> DeleteTopicByArn(string topicArn)
 {
 var deleteResponse = await _amazonSNSClient.DeleteTopicAsync(
 new DeleteTopicRequest()
 {
 TopicArn = topicArn
 });
 return deleteResponse.HttpStatusCode == HttpStatusCode.OK;
 }
}

• For API details, see the following topics in AWS SDK for .NET API Reference.

• CreateQueue

• CreateTopic

• DeleteMessageBatch

• DeleteQueue

• DeleteTopic

• GetQueueAttributes

• Publish

• ReceiveMessage

• SetQueueAttributes

• Subscribe

• Unsubscribe

Publish messages to queues 408

https://docs.aws.amazon.com/goto/DotNetSDKV3/sqs-2012-11-05/CreateQueue
https://docs.aws.amazon.com/goto/DotNetSDKV3/sns-2010-03-31/CreateTopic
https://docs.aws.amazon.com/goto/DotNetSDKV3/sqs-2012-11-05/DeleteMessageBatch
https://docs.aws.amazon.com/goto/DotNetSDKV3/sqs-2012-11-05/DeleteQueue
https://docs.aws.amazon.com/goto/DotNetSDKV3/sns-2010-03-31/DeleteTopic
https://docs.aws.amazon.com/goto/DotNetSDKV3/sqs-2012-11-05/GetQueueAttributes
https://docs.aws.amazon.com/goto/DotNetSDKV3/sns-2010-03-31/Publish
https://docs.aws.amazon.com/goto/DotNetSDKV3/sqs-2012-11-05/ReceiveMessage
https://docs.aws.amazon.com/goto/DotNetSDKV3/sqs-2012-11-05/SetQueueAttributes
https://docs.aws.amazon.com/goto/DotNetSDKV3/sns-2010-03-31/Subscribe
https://docs.aws.amazon.com/goto/DotNetSDKV3/sns-2010-03-31/Unsubscribe

Amazon Simple Queue Service Developer Guide

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 Aws::Client::ClientConfiguration clientConfig;
 // Optional: Set to the AWS Region (overrides config file).
 // clientConfig.region = "us-east-1";

//! Workflow for messaging with topics and queues using Amazon SNS and Amazon
 SQS.
/*!
 \param clientConfig Aws client configuration.
 \return bool: Successful completion.
 */
bool AwsDoc::TopicsAndQueues::messagingWithTopicsAndQueues(
 const Aws::Client::ClientConfiguration &clientConfiguration) {
 std::cout << "Welcome to messaging with topics and queues." << std::endl;
 printAsterisksLine();
 std::cout << "In this workflow, you will create an SNS topic and subscribe "
 << NUMBER_OF_QUEUES <<
 " SQS queues to the topic." << std::endl;
 std::cout
 << "You can select from several options for configuring the topic and
 the subscriptions for the "
 << NUMBER_OF_QUEUES << " queues." << std::endl;
 std::cout << "You can then post to the topic and see the results in the
 queues."
 << std::endl;

 Aws::SNS::SNSClient snsClient(clientConfiguration);

 printAsterisksLine();

 std::cout << "SNS topics can be configured as FIFO (First-In-First-Out)."
 << std::endl;
 std::cout

Publish messages to queues 409

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/cross-service/topics_and_queues#code-examples

Amazon Simple Queue Service Developer Guide

 << "FIFO topics deliver messages in order and support deduplication
 and message filtering."
 << std::endl;
 bool isFifoTopic = askYesNoQuestion(
 "Would you like to work with FIFO topics? (y/n) ");

 bool contentBasedDeduplication = false;
 Aws::String topicName;
 if (isFifoTopic) {
 printAsterisksLine();
 std::cout << "Because you have chosen a FIFO topic, deduplication is
 supported."
 << std::endl;
 std::cout
 << "Deduplication IDs are either set in the message or
 automatically generated "
 << "from content using a hash function." << std::endl;
 std::cout
 << "If a message is successfully published to an SNS FIFO topic,
 any message "
 << "published and determined to have the same deduplication ID, "
 << std::endl;
 std::cout
 << "within the five-minute deduplication interval, is accepted
 but not delivered."
 << std::endl;
 std::cout
 << "For more information about deduplication, "
 << "see https://docs.aws.amazon.com/sns/latest/dg/fifo-message-
dedup.html."
 << std::endl;
 contentBasedDeduplication = askYesNoQuestion(
 "Use content-based deduplication instead of entering a
 deduplication ID? (y/n) ");
 }

 printAsterisksLine();

 Aws::SQS::SQSClient sqsClient(clientConfiguration);
 Aws::Vector<Aws::String> queueURLS;
 Aws::Vector<Aws::String> subscriptionARNS;

 Aws::String topicARN;
 {

Publish messages to queues 410

Amazon Simple Queue Service Developer Guide

 topicName = askQuestion("Enter a name for your SNS topic. ");

 // 1. Create an Amazon SNS topic, either FIFO or non-FIFO.
 Aws::SNS::Model::CreateTopicRequest request;

 if (isFifoTopic) {
 request.AddAttributes("FifoTopic", "true");
 if (contentBasedDeduplication) {
 request.AddAttributes("ContentBasedDeduplication", "true");
 }
 topicName = topicName + FIFO_SUFFIX;

 std::cout
 << "Because you have selected a FIFO topic, '.fifo' must be
 appended to the topic name."
 << std::endl;
 }

 request.SetName(topicName);

 Aws::SNS::Model::CreateTopicOutcome outcome =
 snsClient.CreateTopic(request);

 if (outcome.IsSuccess()) {
 topicARN = outcome.GetResult().GetTopicArn();
 std::cout << "Your new topic with the name '" << topicName
 << "' and the topic Amazon Resource Name (ARN) " <<
 std::endl;
 std::cout << "'" << topicARN << "' has been created." << std::endl;

 }
 else {
 std::cerr << "Error with TopicsAndQueues::CreateTopic. "
 << outcome.GetError().GetMessage()
 << std::endl;

 cleanUp(topicARN,
 queueURLS,
 subscriptionARNS,
 snsClient,
 sqsClient);

 return false;
 }

Publish messages to queues 411

Amazon Simple Queue Service Developer Guide

 }

 printAsterisksLine();

 std::cout << "Now you will create " << NUMBER_OF_QUEUES
 << " SQS queues to subscribe to the topic." << std::endl;
 Aws::Vector<Aws::String> queueNames;
 bool filteringMessages = false;
 bool first = true;
 for (int i = 1; i <= NUMBER_OF_QUEUES; ++i) {
 Aws::String queueURL;
 Aws::String queueName;
 {
 printAsterisksLine();
 std::ostringstream ostringstream;
 ostringstream << "Enter a name for " << (first ? "an" : "the next")
 << " SQS queue. ";
 queueName = askQuestion(ostringstream.str());

 // 2. Create an SQS queue.
 Aws::SQS::Model::CreateQueueRequest request;
 if (isFifoTopic) {

 request.AddAttributes(Aws::SQS::Model::QueueAttributeName::FifoQueue,
 "true");
 queueName = queueName + FIFO_SUFFIX;

 if (first) // Only explain this once.
 {
 std::cout
 << "Because you are creating a FIFO SQS queue,
 '.fifo' must "
 << "be appended to the queue name." << std::endl;
 }
 }

 request.SetQueueName(queueName);
 queueNames.push_back(queueName);

 Aws::SQS::Model::CreateQueueOutcome outcome =
 sqsClient.CreateQueue(request);

 if (outcome.IsSuccess()) {
 queueURL = outcome.GetResult().GetQueueUrl();

Publish messages to queues 412

Amazon Simple Queue Service Developer Guide

 std::cout << "Your new SQS queue with the name '" << queueName
 << "' and the queue URL " << std::endl;
 std::cout << "'" << queueURL << "' has been created." <<
 std::endl;
 }
 else {
 std::cerr << "Error with SQS::CreateQueue. "
 << outcome.GetError().GetMessage()
 << std::endl;

 cleanUp(topicARN,
 queueURLS,
 subscriptionARNS,
 snsClient,
 sqsClient);

 return false;
 }
 }
 queueURLS.push_back(queueURL);

 if (first) // Only explain this once.
 {
 std::cout
 << "The queue URL is used to retrieve the queue ARN, which is
 "
 << "used to create a subscription." << std::endl;
 }

 Aws::String queueARN;
 {
 // 3. Get the SQS queue ARN attribute.
 Aws::SQS::Model::GetQueueAttributesRequest request;
 request.SetQueueUrl(queueURL);

 request.AddAttributeNames(Aws::SQS::Model::QueueAttributeName::QueueArn);

 Aws::SQS::Model::GetQueueAttributesOutcome outcome =
 sqsClient.GetQueueAttributes(request);

 if (outcome.IsSuccess()) {
 const Aws::Map<Aws::SQS::Model::QueueAttributeName, Aws::String>
 &attributes =
 outcome.GetResult().GetAttributes();

Publish messages to queues 413

Amazon Simple Queue Service Developer Guide

 const auto &iter = attributes.find(
 Aws::SQS::Model::QueueAttributeName::QueueArn);
 if (iter != attributes.end()) {
 queueARN = iter->second;
 std::cout << "The queue ARN '" << queueARN
 << "' has been retrieved."
 << std::endl;
 }
 else {
 std::cerr
 << "Error ARN attribute not returned by
 GetQueueAttribute."
 << std::endl;

 cleanUp(topicARN,
 queueURLS,
 subscriptionARNS,
 snsClient,
 sqsClient);

 return false;
 }
 }
 else {
 std::cerr << "Error with SQS::GetQueueAttributes. "
 << outcome.GetError().GetMessage()
 << std::endl;

 cleanUp(topicARN,
 queueURLS,
 subscriptionARNS,
 snsClient,
 sqsClient);

 return false;
 }
 }

 if (first) {
 std::cout
 << "An IAM policy must be attached to an SQS queue, enabling
 it to receive "
 "messages from an SNS topic." << std::endl;
 }

Publish messages to queues 414

Amazon Simple Queue Service Developer Guide

 {
 // 4. Set the SQS queue policy attribute with a policy enabling the
 receipt of SNS messages.
 Aws::SQS::Model::SetQueueAttributesRequest request;
 request.SetQueueUrl(queueURL);
 Aws::String policy = createPolicyForQueue(queueARN, topicARN);
 request.AddAttributes(Aws::SQS::Model::QueueAttributeName::Policy,
 policy);

 Aws::SQS::Model::SetQueueAttributesOutcome outcome =
 sqsClient.SetQueueAttributes(request);

 if (outcome.IsSuccess()) {
 std::cout << "The attributes for the queue '" << queueName
 << "' were successfully updated." << std::endl;
 }
 else {
 std::cerr << "Error with SQS::SetQueueAttributes. "
 << outcome.GetError().GetMessage()
 << std::endl;

 cleanUp(topicARN,
 queueURLS,
 subscriptionARNS,
 snsClient,
 sqsClient);

 return false;
 }
 }

 printAsterisksLine();

 {
 // 5. Subscribe the SQS queue to the SNS topic.
 Aws::SNS::Model::SubscribeRequest request;
 request.SetTopicArn(topicARN);
 request.SetProtocol("sqs");
 request.SetEndpoint(queueARN);
 if (isFifoTopic) {
 if (first) {
 std::cout << "Subscriptions to a FIFO topic can have
 filters."

Publish messages to queues 415

Amazon Simple Queue Service Developer Guide

 << std::endl;
 std::cout
 << "If you add a filter to this subscription, then
 only the filtered messages "
 << "will be received in the queue." << std::endl;
 std::cout << "For information about message filtering, "
 << "see https://docs.aws.amazon.com/sns/latest/dg/
sns-message-filtering.html"
 << std::endl;
 std::cout << "For this example, you can filter messages by a
 \""
 << TONE_ATTRIBUTE << "\" attribute." << std::endl;
 }

 std::ostringstream ostringstream;
 ostringstream << "Filter messages for \"" << queueName
 << "\"'s subscription to the topic \""
 << topicName << "\"? (y/n)";

 // Add filter if user answers yes.
 if (askYesNoQuestion(ostringstream.str())) {
 Aws::String jsonPolicy = getFilterPolicyFromUser();
 if (!jsonPolicy.empty()) {
 filteringMessages = true;

 std::cout << "This is the filter policy for this
 subscription."
 << std::endl;
 std::cout << jsonPolicy << std::endl;

 request.AddAttributes("FilterPolicy", jsonPolicy);
 }
 else {
 std::cout
 << "Because you did not select any attributes, no
 filter "
 << "will be added to this subscription." <<
 std::endl;
 }
 }
 } // if (isFifoTopic)
 Aws::SNS::Model::SubscribeOutcome outcome =
 snsClient.Subscribe(request);

Publish messages to queues 416

Amazon Simple Queue Service Developer Guide

 if (outcome.IsSuccess()) {
 Aws::String subscriptionARN =
 outcome.GetResult().GetSubscriptionArn();
 std::cout << "The queue '" << queueName
 << "' has been subscribed to the topic '"
 << "'" << topicName << "'" << std::endl;
 std::cout << "with the subscription ARN '" << subscriptionARN <<
 "."
 << std::endl;
 subscriptionARNS.push_back(subscriptionARN);
 }
 else {
 std::cerr << "Error with TopicsAndQueues::Subscribe. "
 << outcome.GetError().GetMessage()
 << std::endl;

 cleanUp(topicARN,
 queueURLS,
 subscriptionARNS,
 snsClient,
 sqsClient);

 return false;
 }
 }

 first = false;
 }

 first = true;
 do {
 printAsterisksLine();

 // 6. Publish a message to the SNS topic.
 Aws::SNS::Model::PublishRequest request;
 request.SetTopicArn(topicARN);
 Aws::String message = askQuestion("Enter a message text to publish. ");
 request.SetMessage(message);
 if (isFifoTopic) {
 if (first) {
 std::cout
 << "Because you are using a FIFO topic, you must set a
 message group ID."
 << std::endl;

Publish messages to queues 417

Amazon Simple Queue Service Developer Guide

 std::cout
 << "All messages within the same group will be received
 in the "
 << "order they were published." << std::endl;
 }
 Aws::String messageGroupID = askQuestion(
 "Enter a message group ID for this message. ");
 request.SetMessageGroupId(messageGroupID);
 if (!contentBasedDeduplication) {
 if (first) {
 std::cout
 << "Because you are not using content-based
 deduplication, "
 << "you must enter a deduplication ID." << std::endl;
 }
 Aws::String deduplicationID = askQuestion(
 "Enter a deduplication ID for this message. ");
 request.SetMessageDeduplicationId(deduplicationID);
 }
 }

 if (filteringMessages && askYesNoQuestion(
 "Add an attribute to this message? (y/n) ")) {
 for (size_t i = 0; i < TONES.size(); ++i) {
 std::cout << " " << (i + 1) << ". " << TONES[i] << std::endl;
 }
 int selection = askQuestionForIntRange(
 "Enter a number for an attribute. ",
 1, static_cast<int>(TONES.size()));
 Aws::SNS::Model::MessageAttributeValue messageAttributeValue;
 messageAttributeValue.SetDataType("String");
 messageAttributeValue.SetStringValue(TONES[selection - 1]);
 request.AddMessageAttributes(TONE_ATTRIBUTE, messageAttributeValue);
 }

 Aws::SNS::Model::PublishOutcome outcome = snsClient.Publish(request);

 if (outcome.IsSuccess()) {
 std::cout << "Your message was successfully published." << std::endl;
 }
 else {
 std::cerr << "Error with TopicsAndQueues::Publish. "
 << outcome.GetError().GetMessage()
 << std::endl;

Publish messages to queues 418

Amazon Simple Queue Service Developer Guide

 cleanUp(topicARN,
 queueURLS,
 subscriptionARNS,
 snsClient,
 sqsClient);

 return false;
 }

 first = false;
 } while (askYesNoQuestion("Post another message? (y/n) "));

 printAsterisksLine();

 std::cout << "Now the SQS queue will be polled to retrieve the messages."
 << std::endl;
 askQuestion("Press any key to continue...", alwaysTrueTest);

 for (size_t i = 0; i < queueURLS.size(); ++i) {
 // 7. Poll an SQS queue for its messages.
 std::vector<Aws::String> messages;
 std::vector<Aws::String> receiptHandles;
 while (true) {
 Aws::SQS::Model::ReceiveMessageRequest request;
 request.SetMaxNumberOfMessages(10);
 request.SetQueueUrl(queueURLS[i]);

 // Setting WaitTimeSeconds to non-zero enables long polling.
 // For information about long polling, see
 // https://docs.aws.amazon.com/AWSSimpleQueueService/latest/
SQSDeveloperGuide/sqs-short-and-long-polling.html
 request.SetWaitTimeSeconds(1);
 Aws::SQS::Model::ReceiveMessageOutcome outcome =
 sqsClient.ReceiveMessage(request);

 if (outcome.IsSuccess()) {
 const Aws::Vector<Aws::SQS::Model::Message> &newMessages =
 outcome.GetResult().GetMessages();
 if (newMessages.empty()) {
 break;
 }
 else {
 for (const Aws::SQS::Model::Message &message: newMessages) {

Publish messages to queues 419

Amazon Simple Queue Service Developer Guide

 messages.push_back(message.GetBody());
 receiptHandles.push_back(message.GetReceiptHandle());
 }
 }
 }
 else {
 std::cerr << "Error with SQS::ReceiveMessage. "
 << outcome.GetError().GetMessage()
 << std::endl;

 cleanUp(topicARN,
 queueURLS,
 subscriptionARNS,
 snsClient,
 sqsClient);

 return false;
 }
 }

 printAsterisksLine();

 if (messages.empty()) {
 std::cout << "No messages were ";
 }
 else if (messages.size() == 1) {
 std::cout << "One message was ";
 }
 else {
 std::cout << messages.size() << " messages were ";
 }
 std::cout << "received by the queue '" << queueNames[i]
 << "'." << std::endl;
 for (const Aws::String &message: messages) {
 std::cout << " Message : '" << message << "'."
 << std::endl;
 }

 // 8. Delete a batch of messages from an SQS queue.
 if (!receiptHandles.empty()) {
 Aws::SQS::Model::DeleteMessageBatchRequest request;
 request.SetQueueUrl(queueURLS[i]);
 int id = 1; // Ids must be unique within a batch delete request.
 for (const Aws::String &receiptHandle: receiptHandles) {

Publish messages to queues 420

Amazon Simple Queue Service Developer Guide

 Aws::SQS::Model::DeleteMessageBatchRequestEntry entry;
 entry.SetId(std::to_string(id));
 ++id;
 entry.SetReceiptHandle(receiptHandle);
 request.AddEntries(entry);
 }

 Aws::SQS::Model::DeleteMessageBatchOutcome outcome =
 sqsClient.DeleteMessageBatch(request);

 if (outcome.IsSuccess()) {
 std::cout << "The batch deletion of messages was successful."
 << std::endl;
 }
 else {
 std::cerr << "Error with SQS::DeleteMessageBatch. "
 << outcome.GetError().GetMessage()
 << std::endl;
 cleanUp(topicARN,
 queueURLS,
 subscriptionARNS,
 snsClient,
 sqsClient);

 return false;
 }
 }
 }

 return cleanUp(topicARN,
 queueURLS,
 subscriptionARNS,
 snsClient,
 sqsClient,
 true); // askUser
}

bool AwsDoc::TopicsAndQueues::cleanUp(const Aws::String &topicARN,
 const Aws::Vector<Aws::String> &queueURLS,
 const Aws::Vector<Aws::String>
 &subscriptionARNS,
 const Aws::SNS::SNSClient &snsClient,
 const Aws::SQS::SQSClient &sqsClient,

Publish messages to queues 421

Amazon Simple Queue Service Developer Guide

 bool askUser) {
 bool result = true;
 printAsterisksLine();
 if (!queueURLS.empty() && askUser &&
 askYesNoQuestion("Delete the SQS queues? (y/n) ")) {

 for (const auto &queueURL: queueURLS) {
 // 9. Delete an SQS queue.
 Aws::SQS::Model::DeleteQueueRequest request;
 request.SetQueueUrl(queueURL);

 Aws::SQS::Model::DeleteQueueOutcome outcome =
 sqsClient.DeleteQueue(request);

 if (outcome.IsSuccess()) {
 std::cout << "The queue with URL '" << queueURL
 << "' was successfully deleted." << std::endl;
 }
 else {
 std::cerr << "Error with SQS::DeleteQueue. "
 << outcome.GetError().GetMessage()
 << std::endl;
 result = false;
 }
 }

 for (const auto &subscriptionARN: subscriptionARNS) {
 // 10. Unsubscribe an SNS subscription.
 Aws::SNS::Model::UnsubscribeRequest request;
 request.SetSubscriptionArn(subscriptionARN);

 Aws::SNS::Model::UnsubscribeOutcome outcome =
 snsClient.Unsubscribe(request);

 if (outcome.IsSuccess()) {
 std::cout << "Unsubscribe of subscription ARN '" <<
 subscriptionARN
 << "' was successful." << std::endl;
 }
 else {
 std::cerr << "Error with TopicsAndQueues::Unsubscribe. "
 << outcome.GetError().GetMessage()
 << std::endl;
 result = false;

Publish messages to queues 422

Amazon Simple Queue Service Developer Guide

 }
 }
 }

 printAsterisksLine();
 if (!topicARN.empty() && askUser &&
 askYesNoQuestion("Delete the SNS topic? (y/n) ")) {

 // 11. Delete an SNS topic.
 Aws::SNS::Model::DeleteTopicRequest request;
 request.SetTopicArn(topicARN);

 Aws::SNS::Model::DeleteTopicOutcome outcome =
 snsClient.DeleteTopic(request);

 if (outcome.IsSuccess()) {
 std::cout << "The topic with ARN '" << topicARN
 << "' was successfully deleted." << std::endl;
 }
 else {
 std::cerr << "Error with TopicsAndQueues::DeleteTopicRequest. "
 << outcome.GetError().GetMessage()
 << std::endl;
 result = false;
 }
 }

 return result;
}

//! Create an IAM policy that gives an SQS queue permission to receive messages
 from an SNS topic.
/*!
 \sa createPolicyForQueue()
 \param queueARN: The SQS queue Amazon Resource Name (ARN).
 \param topicARN: The SNS topic ARN.
 \return Aws::String: The policy as JSON.
 */
Aws::String AwsDoc::TopicsAndQueues::createPolicyForQueue(const Aws::String
 &queueARN,
 const Aws::String
 &topicARN) {
 std::ostringstream policyStream;
 policyStream << R"({

Publish messages to queues 423

Amazon Simple Queue Service Developer Guide

 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "sns.amazonaws.com"
 },
 "Action": "sqs:SendMessage",
 "Resource": ")" << queueARN << R"(",
 "Condition": {
 "ArnEquals": {
 "aws:SourceArn": ")" << topicARN << R"("
 }
 }
 }
]
 })";

 return policyStream.str();
}

• For API details, see the following topics in AWS SDK for C++ API Reference.

• CreateQueue

• CreateTopic

• DeleteMessageBatch

• DeleteQueue

• DeleteTopic

• GetQueueAttributes

• Publish

• ReceiveMessage

• SetQueueAttributes

• Subscribe

• Unsubscribe

Publish messages to queues 424

https://docs.aws.amazon.com/goto/SdkForCpp/sqs-2012-11-05/CreateQueue
https://docs.aws.amazon.com/goto/SdkForCpp/sns-2010-03-31/CreateTopic
https://docs.aws.amazon.com/goto/SdkForCpp/sqs-2012-11-05/DeleteMessageBatch
https://docs.aws.amazon.com/goto/SdkForCpp/sqs-2012-11-05/DeleteQueue
https://docs.aws.amazon.com/goto/SdkForCpp/sns-2010-03-31/DeleteTopic
https://docs.aws.amazon.com/goto/SdkForCpp/sqs-2012-11-05/GetQueueAttributes
https://docs.aws.amazon.com/goto/SdkForCpp/sns-2010-03-31/Publish
https://docs.aws.amazon.com/goto/SdkForCpp/sqs-2012-11-05/ReceiveMessage
https://docs.aws.amazon.com/goto/SdkForCpp/sqs-2012-11-05/SetQueueAttributes
https://docs.aws.amazon.com/goto/SdkForCpp/sns-2010-03-31/Subscribe
https://docs.aws.amazon.com/goto/SdkForCpp/sns-2010-03-31/Unsubscribe

Amazon Simple Queue Service Developer Guide

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Run an interactive scenario at a command prompt.

const FIFO_SUFFIX = ".fifo"
const TONE_KEY = "tone"

var ToneChoices = []string{"cheerful", "funny", "serious", "sincere"}

// MessageBody is used to deserialize the body of a message from a JSON string.
type MessageBody struct {
 Message string
}

// ScenarioRunner separates the steps of this scenario into individual functions
 so that
// they are simpler to read and understand.
type ScenarioRunner struct {
 questioner demotools.IQuestioner
 snsActor *actions.SnsActions
 sqsActor *actions.SqsActions
}

func (runner ScenarioRunner) CreateTopic() (string, string, bool, bool) {
 log.Println("SNS topics can be configured as FIFO (First-In-First-Out) or
 standard.\n" +
 "FIFO topics deliver messages in order and support deduplication and message
 filtering.")
 isFifoTopic := runner.questioner.AskBool("\nWould you like to work with FIFO
 topics? (y/n) ", "y")

 contentBasedDeduplication := false
 if isFifoTopic {
 log.Println(strings.Repeat("-", 88))

Publish messages to queues 425

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2/workflows/topics_and_queues#code-examples

Amazon Simple Queue Service Developer Guide

 log.Println("Because you have chosen a FIFO topic, deduplication is supported.
\n" +
 "Deduplication IDs are either set in the message or are automatically
 generated\n" +
 "from content using a hash function. If a message is successfully published to
\n" +
 "an SNS FIFO topic, any message published and determined to have the same\n" +
 "deduplication ID, within the five-minute deduplication interval, is accepted
\n" +
 "but not delivered. For more information about deduplication, see:\n" +
 "\thttps://docs.aws.amazon.com/sns/latest/dg/fifo-message-dedup.html.")
 contentBasedDeduplication = runner.questioner.AskBool(
 "\nDo you want to use content-based deduplication instead of entering a
 deduplication ID? (y/n) ", "y")
 }
 log.Println(strings.Repeat("-", 88))

 topicName := runner.questioner.Ask("Enter a name for your SNS topic. ")
 if isFifoTopic {
 topicName = fmt.Sprintf("%v%v", topicName, FIFO_SUFFIX)
 log.Printf("Because you have selected a FIFO topic, '%v' must be appended to
\n"+
 "the topic name.", FIFO_SUFFIX)
 }

 topicArn, err := runner.snsActor.CreateTopic(topicName, isFifoTopic,
 contentBasedDeduplication)
 if err != nil {
 panic(err)
 }
 log.Printf("Your new topic with the name '%v' and Amazon Resource Name (ARN)
 \n"+
 "'%v' has been created.", topicName, topicArn)

 return topicName, topicArn, isFifoTopic, contentBasedDeduplication
}

func (runner ScenarioRunner) CreateQueue(ordinal string, isFifoTopic bool)
 (string, string) {
 queueName := runner.questioner.Ask(fmt.Sprintf("Enter a name for the %v SQS
 queue. ", ordinal))
 if isFifoTopic {
 queueName = fmt.Sprintf("%v%v", queueName, FIFO_SUFFIX)
 if ordinal == "first" {

Publish messages to queues 426

Amazon Simple Queue Service Developer Guide

 log.Printf("Because you are creating a FIFO SQS queue, '%v' must "+
 "be appended to the queue name.\n", FIFO_SUFFIX)
 }
 }
 queueUrl, err := runner.sqsActor.CreateQueue(queueName, isFifoTopic)
 if err != nil {
 panic(err)
 }
 log.Printf("Your new SQS queue with the name '%v' and the queue URL "+
 "'%v' has been created.", queueName, queueUrl)

 return queueName, queueUrl
}

func (runner ScenarioRunner) SubscribeQueueToTopic(
 queueName string, queueUrl string, topicName string, topicArn string, ordinal
 string,
 isFifoTopic bool) (string, bool) {

 queueArn, err := runner.sqsActor.GetQueueArn(queueUrl)
 if err != nil {
 panic(err)
 }
 log.Printf("The ARN of your queue is: %v.\n", queueArn)

 err = runner.sqsActor.AttachSendMessagePolicy(queueUrl, queueArn, topicArn)
 if err != nil {
 panic(err)
 }
 log.Println("Attached an IAM policy to the queue so the SNS topic can send " +
 "messages to it.")
 log.Println(strings.Repeat("-", 88))

 var filterPolicy map[string][]string
 if isFifoTopic {
 if ordinal == "first" {
 log.Println("Subscriptions to a FIFO topic can have filters.\n" +
 "If you add a filter to this subscription, then only the filtered messages\n"
 +
 "will be received in the queue.\n" +
 "For information about message filtering, see\n" +
 "\thttps://docs.aws.amazon.com/sns/latest/dg/sns-message-filtering.html\n" +
 "For this example, you can filter messages by a \"tone\" attribute.")
 }

Publish messages to queues 427

Amazon Simple Queue Service Developer Guide

 wantFiltering := runner.questioner.AskBool(
 fmt.Sprintf("Do you want to filter messages that are sent to \"%v\"\n"+
 "from the %v topic? (y/n) ", queueName, topicName), "y")
 if wantFiltering {
 log.Println("You can filter messages by one or more of the following \"tone\"
 attributes.")

 var toneSelections []string
 askAboutTones := true
 for askAboutTones {
 toneIndex := runner.questioner.AskChoice(
 "Enter the number of the tone you want to filter by:\n", ToneChoices)
 toneSelections = append(toneSelections, ToneChoices[toneIndex])
 askAboutTones = runner.questioner.AskBool("Do you want to add another tone to
 the filter? (y/n) ", "y")
 }
 log.Printf("Your subscription will be filtered to only pass the following
 tones: %v\n", toneSelections)
 filterPolicy = map[string][]string{TONE_KEY: toneSelections}
 }
 }

 subscriptionArn, err := runner.snsActor.SubscribeQueue(topicArn, queueArn,
 filterPolicy)
 if err != nil {
 panic(err)
 }
 log.Printf("The queue %v is now subscribed to the topic %v with the subscription
 ARN %v.\n",
 queueName, topicName, subscriptionArn)

 return subscriptionArn, filterPolicy != nil
}

func (runner ScenarioRunner) PublishMessages(topicArn string, isFifoTopic bool,
 contentBasedDeduplication bool, usingFilters bool) {
 var message string
 var groupId string
 var dedupId string
 var toneSelection string
 publishMore := true
 for publishMore {
 groupId = ""

Publish messages to queues 428

Amazon Simple Queue Service Developer Guide

 dedupId = ""
 toneSelection = ""
 message = runner.questioner.Ask("Enter a message to publish: ")
 if isFifoTopic {
 log.Println("Because you are using a FIFO topic, you must set a message group
 ID.\n" +
 "All messages within the same group will be received in the order they were
 published.")
 groupId = runner.questioner.Ask("Enter a message group ID: ")
 if !contentBasedDeduplication {
 log.Println("Because you are not using content-based deduplication,\n" +
 "you must enter a deduplication ID.")
 dedupId = runner.questioner.Ask("Enter a deduplication ID: ")
 }
 }
 if usingFilters {
 if runner.questioner.AskBool("Add a tone attribute so this message can be
 filtered? (y/n) ", "y") {
 toneIndex := runner.questioner.AskChoice(
 "Enter the number of the tone you want to filter by:\n", ToneChoices)
 toneSelection = ToneChoices[toneIndex]
 }
 }

 err := runner.snsActor.Publish(topicArn, message, groupId, dedupId, TONE_KEY,
 toneSelection)
 if err != nil {
 panic(err)
 }
 log.Println(("Your message was published."))

 publishMore = runner.questioner.AskBool("Do you want to publish another
 messsage? (y/n) ", "y")
 }
}

func (runner ScenarioRunner) PollForMessages(queueUrls []string) {
 log.Println("Polling queues for messages...")
 for _, queueUrl := range queueUrls {
 var messages []types.Message
 for {
 currentMsgs, err := runner.sqsActor.GetMessages(queueUrl, 10, 1)
 if err != nil {
 panic(err)

Publish messages to queues 429

Amazon Simple Queue Service Developer Guide

 }
 if len(currentMsgs) == 0 {
 break
 }
 messages = append(messages, currentMsgs...)
 }
 if len(messages) == 0 {
 log.Printf("No messages were received by queue %v.\n", queueUrl)
 } else if len(messages) == 1 {
 log.Printf("One message was received by queue %v:\n", queueUrl)

 } else {
 log.Printf("%v messages were received by queue %v:\n", len(messages),
 queueUrl)
 }
 for msgIndex, message := range messages {
 messageBody := MessageBody{}
 err := json.Unmarshal([]byte(*message.Body), &messageBody)
 if err != nil {
 panic(err)
 }
 log.Printf("Message %v: %v\n", msgIndex+1, messageBody.Message)
 }

 if len(messages) > 0 {
 log.Printf("Deleting %v messages from queue %v.\n", len(messages), queueUrl)
 err := runner.sqsActor.DeleteMessages(queueUrl, messages)
 if err != nil {
 panic(err)
 }
 }
 }
}

// RunTopicsAndQueuesScenario is an interactive example that shows you how to use
 the
// AWS SDK for Go to create and use Amazon SNS topics and Amazon SQS queues.
//
// 1. Create a topic (FIFO or non-FIFO).
// 2. Subscribe several queues to the topic with an option to apply a filter.
// 3. Publish messages to the topic.
// 4. Poll the queues for messages received.
// 5. Delete the topic and the queues.
//

Publish messages to queues 430

Amazon Simple Queue Service Developer Guide

// This example creates service clients from the specified sdkConfig so that
// you can replace it with a mocked or stubbed config for unit testing.
//
// It uses a questioner from the `demotools` package to get input during the
 example.
// This package can be found in the ..\..\demotools folder of this repo.
func RunTopicsAndQueuesScenario(
 sdkConfig aws.Config, questioner demotools.IQuestioner) {
 resources := Resources{}
 defer func() {
 if r := recover(); r != nil {
 log.Println("Something went wrong with the demo.\n" +
 "Cleaning up any resources that were created...")
 resources.Cleanup()
 }
 }()
 queueCount := 2

 log.Println(strings.Repeat("-", 88))
 log.Printf("Welcome to messaging with topics and queues.\n\n"+
 "In this workflow, you will create an SNS topic and subscribe %v SQS queues to
 the\n"+
 "topic. You can select from several options for configuring the topic and the
\n"+
 "subscriptions for the queues. You can then post to the topic and see the
 results\n"+
 "in the queues.\n", queueCount)

 log.Println(strings.Repeat("-", 88))

 runner := ScenarioRunner{
 questioner: questioner,
 snsActor: &actions.SnsActions{SnsClient: sns.NewFromConfig(sdkConfig)},
 sqsActor: &actions.SqsActions{SqsClient: sqs.NewFromConfig(sdkConfig)},
 }
 resources.snsActor = runner.snsActor
 resources.sqsActor = runner.sqsActor

 topicName, topicArn, isFifoTopic, contentBasedDeduplication :=
 runner.CreateTopic()
 resources.topicArn = topicArn
 log.Println(strings.Repeat("-", 88))

Publish messages to queues 431

Amazon Simple Queue Service Developer Guide

 log.Printf("Now you will create %v SQS queues and subscribe them to the topic.
\n", queueCount)
 ordinals := []string{"first", "next"}
 usingFilters := false
 for _, ordinal := range ordinals {
 queueName, queueUrl := runner.CreateQueue(ordinal, isFifoTopic)
 resources.queueUrls = append(resources.queueUrls, queueUrl)

 _, filtering := runner.SubscribeQueueToTopic(queueName, queueUrl, topicName,
 topicArn, ordinal, isFifoTopic)
 usingFilters = usingFilters || filtering
 }

 log.Println(strings.Repeat("-", 88))
 runner.PublishMessages(topicArn, isFifoTopic, contentBasedDeduplication,
 usingFilters)
 log.Println(strings.Repeat("-", 88))
 runner.PollForMessages(resources.queueUrls)

 log.Println(strings.Repeat("-", 88))

 wantCleanup := questioner.AskBool("Do you want to remove all AWS resources
 created for this scenario? (y/n) ", "y")
 if wantCleanup {
 log.Println("Cleaning up resources...")
 resources.Cleanup()
 }

 log.Println(strings.Repeat("-", 88))
 log.Println("Thanks for watching!")
 log.Println(strings.Repeat("-", 88))
}

Define a struct that wraps Amazon SNS actions used in this example.

// SnsActions encapsulates the Amazon Simple Notification Service (Amazon SNS)
 actions
// used in the examples.
type SnsActions struct {
 SnsClient *sns.Client

Publish messages to queues 432

Amazon Simple Queue Service Developer Guide

}

// CreateTopic creates an Amazon SNS topic with the specified name. You can
 optionally
// specify that the topic is created as a FIFO topic and whether it uses content-
based
// deduplication instead of ID-based deduplication.
func (actor SnsActions) CreateTopic(topicName string, isFifoTopic bool,
 contentBasedDeduplication bool) (string, error) {
 var topicArn string
 topicAttributes := map[string]string{}
 if isFifoTopic {
 topicAttributes["FifoTopic"] = "true"
 }
 if contentBasedDeduplication {
 topicAttributes["ContentBasedDeduplication"] = "true"
 }
 topic, err := actor.SnsClient.CreateTopic(context.TODO(), &sns.CreateTopicInput{
 Name: aws.String(topicName),
 Attributes: topicAttributes,
 })
 if err != nil {
 log.Printf("Couldn't create topic %v. Here's why: %v\n", topicName, err)
 } else {
 topicArn = *topic.TopicArn
 }

 return topicArn, err
}

// DeleteTopic delete an Amazon SNS topic.
func (actor SnsActions) DeleteTopic(topicArn string) error {
 _, err := actor.SnsClient.DeleteTopic(context.TODO(), &sns.DeleteTopicInput{
 TopicArn: aws.String(topicArn)})
 if err != nil {
 log.Printf("Couldn't delete topic %v. Here's why: %v\n", topicArn, err)
 }
 return err
}

Publish messages to queues 433

Amazon Simple Queue Service Developer Guide

// SubscribeQueue subscribes an Amazon Simple Queue Service (Amazon SQS) queue to
 an
// Amazon SNS topic. When filterMap is not nil, it is used to specify a filter
 policy
// so that messages are only sent to the queue when the message has the specified
 attributes.
func (actor SnsActions) SubscribeQueue(topicArn string, queueArn string,
 filterMap map[string][]string) (string, error) {
 var subscriptionArn string
 var attributes map[string]string
 if filterMap != nil {
 filterBytes, err := json.Marshal(filterMap)
 if err != nil {
 log.Printf("Couldn't create filter policy, here's why: %v\n", err)
 return "", err
 }
 attributes = map[string]string{"FilterPolicy": string(filterBytes)}
 }
 output, err := actor.SnsClient.Subscribe(context.TODO(), &sns.SubscribeInput{
 Protocol: aws.String("sqs"),
 TopicArn: aws.String(topicArn),
 Attributes: attributes,
 Endpoint: aws.String(queueArn),
 ReturnSubscriptionArn: true,
 })
 if err != nil {
 log.Printf("Couldn't susbscribe queue %v to topic %v. Here's why: %v\n",
 queueArn, topicArn, err)
 } else {
 subscriptionArn = *output.SubscriptionArn
 }

 return subscriptionArn, err
}

// Publish publishes a message to an Amazon SNS topic. The message is then sent
 to all
// subscribers. When the topic is a FIFO topic, the message must also contain a
 group ID

Publish messages to queues 434

Amazon Simple Queue Service Developer Guide

// and, when ID-based deduplication is used, a deduplication ID. An optional key-
value
// filter attribute can be specified so that the message can be filtered
 according to
// a filter policy.
func (actor SnsActions) Publish(topicArn string, message string, groupId string,
 dedupId string, filterKey string, filterValue string) error {
 publishInput := sns.PublishInput{TopicArn: aws.String(topicArn), Message:
 aws.String(message)}
 if groupId != "" {
 publishInput.MessageGroupId = aws.String(groupId)
 }
 if dedupId != "" {
 publishInput.MessageDeduplicationId = aws.String(dedupId)
 }
 if filterKey != "" && filterValue != "" {
 publishInput.MessageAttributes = map[string]types.MessageAttributeValue{
 filterKey: {DataType: aws.String("String"), StringValue:
 aws.String(filterValue)},
 }
 }
 _, err := actor.SnsClient.Publish(context.TODO(), &publishInput)
 if err != nil {
 log.Printf("Couldn't publish message to topic %v. Here's why: %v", topicArn,
 err)
 }
 return err
}

Define a struct that wraps Amazon SQS actions used in this example.

// SqsActions encapsulates the Amazon Simple Queue Service (Amazon SQS) actions
// used in the examples.
type SqsActions struct {
 SqsClient *sqs.Client
}

Publish messages to queues 435

Amazon Simple Queue Service Developer Guide

// CreateQueue creates an Amazon SQS queue with the specified name. You can
 specify
// whether the queue is created as a FIFO queue.
func (actor SqsActions) CreateQueue(queueName string, isFifoQueue bool) (string,
 error) {
 var queueUrl string
 queueAttributes := map[string]string{}
 if isFifoQueue {
 queueAttributes["FifoQueue"] = "true"
 }
 queue, err := actor.SqsClient.CreateQueue(context.TODO(), &sqs.CreateQueueInput{
 QueueName: aws.String(queueName),
 Attributes: queueAttributes,
 })
 if err != nil {
 log.Printf("Couldn't create queue %v. Here's why: %v\n", queueName, err)
 } else {
 queueUrl = *queue.QueueUrl
 }

 return queueUrl, err
}

// GetQueueArn uses the GetQueueAttributes action to get the Amazon Resource Name
 (ARN)
// of an Amazon SQS queue.
func (actor SqsActions) GetQueueArn(queueUrl string) (string, error) {
 var queueArn string
 arnAttributeName := types.QueueAttributeNameQueueArn
 attribute, err := actor.SqsClient.GetQueueAttributes(context.TODO(),
 &sqs.GetQueueAttributesInput{
 QueueUrl: aws.String(queueUrl),
 AttributeNames: []types.QueueAttributeName{arnAttributeName},
 })
 if err != nil {
 log.Printf("Couldn't get ARN for queue %v. Here's why: %v\n", queueUrl, err)
 } else {
 queueArn = attribute.Attributes[string(arnAttributeName)]
 }
 return queueArn, err
}

Publish messages to queues 436

Amazon Simple Queue Service Developer Guide

// AttachSendMessagePolicy uses the SetQueueAttributes action to attach a policy
 to an
// Amazon SQS queue that allows the specified Amazon SNS topic to send messages
 to the
// queue.
func (actor SqsActions) AttachSendMessagePolicy(queueUrl string, queueArn string,
 topicArn string) error {
 policyDoc := PolicyDocument{
 Version: "2012-10-17",
 Statement: []PolicyStatement{{
 Effect: "Allow",
 Action: "sqs:SendMessage",
 Principal: map[string]string{"Service": "sns.amazonaws.com"},
 Resource: aws.String(queueArn),
 Condition: PolicyCondition{"ArnEquals": map[string]string{"aws:SourceArn":
 topicArn}},
 }},
 }
 policyBytes, err := json.Marshal(policyDoc)
 if err != nil {
 log.Printf("Couldn't create policy document. Here's why: %v\n", err)
 return err
 }
 _, err = actor.SqsClient.SetQueueAttributes(context.TODO(),
 &sqs.SetQueueAttributesInput{
 Attributes: map[string]string{
 string(types.QueueAttributeNamePolicy): string(policyBytes),
 },
 QueueUrl: aws.String(queueUrl),
 })
 if err != nil {
 log.Printf("Couldn't set send message policy on queue %v. Here's why: %v\n",
 queueUrl, err)
 }
 return err
}

// PolicyDocument defines a policy document as a Go struct that can be serialized
// to JSON.
type PolicyDocument struct {
 Version string
 Statement []PolicyStatement

Publish messages to queues 437

Amazon Simple Queue Service Developer Guide

}

// PolicyStatement defines a statement in a policy document.
type PolicyStatement struct {
 Effect string
 Action string
 Principal map[string]string `json:",omitempty"`
 Resource *string `json:",omitempty"`
 Condition PolicyCondition `json:",omitempty"`
}

// PolicyCondition defines a condition in a policy.
type PolicyCondition map[string]map[string]string

// GetMessages uses the ReceiveMessage action to get messages from an Amazon SQS
 queue.
func (actor SqsActions) GetMessages(queueUrl string, maxMessages int32, waitTime
 int32) ([]types.Message, error) {
 var messages []types.Message
 result, err := actor.SqsClient.ReceiveMessage(context.TODO(),
 &sqs.ReceiveMessageInput{
 QueueUrl: aws.String(queueUrl),
 MaxNumberOfMessages: maxMessages,
 WaitTimeSeconds: waitTime,
 })
 if err != nil {
 log.Printf("Couldn't get messages from queue %v. Here's why: %v\n", queueUrl,
 err)
 } else {
 messages = result.Messages
 }
 return messages, err
}

// DeleteMessages uses the DeleteMessageBatch action to delete a batch of
 messages from
// an Amazon SQS queue.
func (actor SqsActions) DeleteMessages(queueUrl string, messages []types.Message)
 error {
 entries := make([]types.DeleteMessageBatchRequestEntry, len(messages))

Publish messages to queues 438

Amazon Simple Queue Service Developer Guide

 for msgIndex := range messages {
 entries[msgIndex].Id = aws.String(fmt.Sprintf("%v", msgIndex))
 entries[msgIndex].ReceiptHandle = messages[msgIndex].ReceiptHandle
 }
 _, err := actor.SqsClient.DeleteMessageBatch(context.TODO(),
 &sqs.DeleteMessageBatchInput{
 Entries: entries,
 QueueUrl: aws.String(queueUrl),
 })
 if err != nil {
 log.Printf("Couldn't delete messages from queue %v. Here's why: %v\n",
 queueUrl, err)
 }
 return err
}

// DeleteQueue deletes an Amazon SQS queue.
func (actor SqsActions) DeleteQueue(queueUrl string) error {
 _, err := actor.SqsClient.DeleteQueue(context.TODO(), &sqs.DeleteQueueInput{
 QueueUrl: aws.String(queueUrl)})
 if err != nil {
 log.Printf("Couldn't delete queue %v. Here's why: %v\n", queueUrl, err)
 }
 return err
}

• For API details, see the following topics in AWS SDK for Go API Reference.

• CreateQueue

• CreateTopic

• DeleteMessageBatch

• DeleteQueue

• DeleteTopic

• GetQueueAttributes

• Publish

• ReceiveMessage

• SetQueueAttributes

Publish messages to queues 439

https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/sqs#Client.CreateQueue
https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/sns#Client.CreateTopic
https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/sqs#Client.DeleteMessageBatch
https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/sqs#Client.DeleteQueue
https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/sns#Client.DeleteTopic
https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/sqs#Client.GetQueueAttributes
https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/sns#Client.Publish
https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/sqs#Client.ReceiveMessage
https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/sqs#Client.SetQueueAttributes

Amazon Simple Queue Service Developer Guide

• Subscribe

• Unsubscribe

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

package com.example.sns;

import
 software.amazon.awssdk.auth.credentials.EnvironmentVariableCredentialsProvider;
import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.sns.SnsClient;
import software.amazon.awssdk.services.sns.model.CreateTopicRequest;
import software.amazon.awssdk.services.sns.model.CreateTopicResponse;
import software.amazon.awssdk.services.sns.model.DeleteTopicRequest;
import software.amazon.awssdk.services.sns.model.DeleteTopicResponse;
import software.amazon.awssdk.services.sns.model.MessageAttributeValue;
import software.amazon.awssdk.services.sns.model.PublishRequest;
import software.amazon.awssdk.services.sns.model.PublishResponse;
import
 software.amazon.awssdk.services.sns.model.SetSubscriptionAttributesRequest;
import software.amazon.awssdk.services.sns.model.SnsException;
import software.amazon.awssdk.services.sns.model.SubscribeRequest;
import software.amazon.awssdk.services.sns.model.SubscribeResponse;
import software.amazon.awssdk.services.sns.model.UnsubscribeRequest;
import software.amazon.awssdk.services.sns.model.UnsubscribeResponse;
import software.amazon.awssdk.services.sqs.SqsClient;
import software.amazon.awssdk.services.sqs.model.CreateQueueRequest;
import software.amazon.awssdk.services.sqs.model.DeleteMessageBatchRequest;
import software.amazon.awssdk.services.sqs.model.DeleteMessageBatchRequestEntry;
import software.amazon.awssdk.services.sqs.model.DeleteQueueRequest;
import software.amazon.awssdk.services.sqs.model.GetQueueAttributesRequest;
import software.amazon.awssdk.services.sqs.model.GetQueueAttributesResponse;
import software.amazon.awssdk.services.sqs.model.GetQueueUrlRequest;

Publish messages to queues 440

https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/sns#Client.Subscribe
https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/sns#Client.Unsubscribe
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/usecases/topics_and_queues#readme

Amazon Simple Queue Service Developer Guide

import software.amazon.awssdk.services.sqs.model.GetQueueUrlResponse;
import software.amazon.awssdk.services.sqs.model.Message;
import software.amazon.awssdk.services.sqs.model.QueueAttributeName;
import software.amazon.awssdk.services.sqs.model.ReceiveMessageRequest;
import software.amazon.awssdk.services.sqs.model.SetQueueAttributesRequest;
import software.amazon.awssdk.services.sqs.model.SqsException;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.Scanner;
import com.google.gson.Gson;
import com.google.gson.JsonArray;
import com.google.gson.JsonObject;
import com.google.gson.JsonPrimitive;

/**
 * Before running this Java V2 code example, set up your development
 * environment, including your credentials.
 *
 * For more information, see the following documentation topic:
 *
 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html
 *
 * This Java example performs these tasks:
 *
 * 1. Gives the user three options to choose from.
 * 2. Creates an Amazon Simple Notification Service (Amazon SNS) topic.
 * 3. Creates an Amazon Simple Queue Service (Amazon SQS) queue.
 * 4. Gets the SQS queue Amazon Resource Name (ARN) attribute.
 * 5. Attaches an AWS Identity and Access Management (IAM) policy to the queue.
 * 6. Subscribes to the SQS queue.
 * 7. Publishes a message to the topic.
 * 8. Displays the messages.
 * 9. Deletes the received message.
 * 10. Unsubscribes from the topic.
 * 11. Deletes the SNS topic.
 */
public class SNSWorkflow {
 public static final String DASHES = new String(new char[80]).replace("\0",
 "-");

 public static void main(String[] args) {

Publish messages to queues 441

Amazon Simple Queue Service Developer Guide

 final String usage = "\n" +
 "Usage:\n" +
 " <fifoQueueARN>\n\n" +
 "Where:\n" +
 " accountId - Your AWS account Id value.";

 // if (args.length != 1) {
 // System.out.println(usage);
 // System.exit(1);
 // }

 SnsClient snsClient = SnsClient.builder()
 .region(Region.US_EAST_1)

 .credentialsProvider(EnvironmentVariableCredentialsProvider.create())
 .build();

 SqsClient sqsClient = SqsClient.builder()
 .region(Region.US_EAST_1)

 .credentialsProvider(EnvironmentVariableCredentialsProvider.create())
 .build();

 Scanner in = new Scanner(System.in);
 String accountId = "814548047983";
 String useFIFO;
 String duplication = "n";
 String topicName;
 String deduplicationID = null;
 String groupId = null;

 String topicArn;
 String sqsQueueName;
 String sqsQueueUrl;
 String sqsQueueArn;
 String subscriptionArn;
 boolean selectFIFO = false;

 String message;
 List<Message> messageList;
 List<String> filterList = new ArrayList<>();
 String msgAttValue = "";

 System.out.println(DASHES);

Publish messages to queues 442

Amazon Simple Queue Service Developer Guide

 System.out.println("Welcome to messaging with topics and queues.");
 System.out.println("In this workflow, you will create an SNS topic and
 subscribe an SQS queue to the topic.\n" +
 "You can select from several options for configuring the topic
 and the subscriptions for the queue.\n" +
 "You can then post to the topic and see the results in the
 queue.");
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println("SNS topics can be configured as FIFO (First-In-First-
Out).\n" +
 "FIFO topics deliver messages in order and support deduplication
 and message filtering.\n" +
 "Would you like to work with FIFO topics? (y/n)");
 useFIFO = in.nextLine();
 if (useFIFO.compareTo("y") == 0) {
 selectFIFO = true;
 System.out.println("You have selected FIFO");
 System.out.println(" Because you have chosen a FIFO topic,
 deduplication is supported.\n" +
 " Deduplication IDs are either set in the message or
 automatically generated from content using a hash function.\n"
 +
 " If a message is successfully published to an SNS
 FIFO topic, any message published and determined to have the same deduplication
 ID,\n"
 +
 " within the five-minute deduplication interval, is
 accepted but not delivered.\n" +
 " For more information about deduplication, see
 https://docs.aws.amazon.com/sns/latest/dg/fifo-message-dedup.html.");

 System.out.println(
 "Would you like to use content-based deduplication instead of
 entering a deduplication ID? (y/n)");
 duplication = in.nextLine();
 if (duplication.compareTo("y") == 0) {
 System.out.println("Please enter a group id value");
 groupId = in.nextLine();
 } else {
 System.out.println("Please enter deduplication Id value");
 deduplicationID = in.nextLine();
 System.out.println("Please enter a group id value");

Publish messages to queues 443

Amazon Simple Queue Service Developer Guide

 groupId = in.nextLine();
 }
 }
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println("2. Create a topic.");
 System.out.println("Enter a name for your SNS topic.");
 topicName = in.nextLine();
 if (selectFIFO) {
 System.out.println("Because you have selected a FIFO topic, '.fifo'
 must be appended to the topic name.");
 topicName = topicName + ".fifo";
 System.out.println("The name of the topic is " + topicName);
 topicArn = createFIFO(snsClient, topicName, duplication);
 System.out.println("The ARN of the FIFO topic is " + topicArn);

 } else {
 System.out.println("The name of the topic is " + topicName);
 topicArn = createSNSTopic(snsClient, topicName);
 System.out.println("The ARN of the non-FIFO topic is " + topicArn);

 }
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println("3. Create an SQS queue.");
 System.out.println("Enter a name for your SQS queue.");
 sqsQueueName = in.nextLine();
 if (selectFIFO) {
 sqsQueueName = sqsQueueName + ".fifo";
 }
 sqsQueueUrl = createQueue(sqsClient, sqsQueueName, selectFIFO);
 System.out.println("The queue URL is " + sqsQueueUrl);
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println("4. Get the SQS queue ARN attribute.");
 sqsQueueArn = getSQSQueueAttrs(sqsClient, sqsQueueUrl);
 System.out.println("The ARN of the new queue is " + sqsQueueArn);
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println("5. Attach an IAM policy to the queue.");

Publish messages to queues 444

Amazon Simple Queue Service Developer Guide

 // Define the policy to use. Make sure that you change the REGION if you
 are
 // running this code
 // in a different region.
 String policy = "{\n" +
 " \"Statement\": [\n" +
 " {\n" +
 " \"Effect\": \"Allow\",\n" +
 " \"Principal\": {\n" +
 " \"Service\": \"sns.amazonaws.com\"\n" +
 " },\n" +
 " \"Action\": \"sqs:SendMessage\",\n" +
 " \"Resource\": \"arn:aws:sqs:us-east-1:" +
 accountId + ":" + sqsQueueName + "\",\n" +
 " \"Condition\": {\n" +
 " \"ArnEquals\": {\n" +
 " \"aws:SourceArn\": \"arn:aws:sns:us-east-1:" +
 accountId + ":" + topicName + "\"\n" +
 " }\n" +
 " }\n" +
 " }\n" +
 "]\n" +
 " }";

 setQueueAttr(sqsClient, sqsQueueUrl, policy);
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println("6. Subscribe to the SQS queue.");
 if (selectFIFO) {
 System.out.println(
 "If you add a filter to this subscription, then only the
 filtered messages will be received in the queue.\n"
 +
 "For information about message filtering, see
 https://docs.aws.amazon.com/sns/latest/dg/sns-message-filtering.html\n"
 +
 "For this example, you can filter messages by a
 \"tone\" attribute.");
 System.out.println("Would you like to filter messages for " +
 sqsQueueName + "'s subscription to the topic "
 + topicName + "? (y/n)");
 String filterAns = in.nextLine();

Publish messages to queues 445

Amazon Simple Queue Service Developer Guide

 if (filterAns.compareTo("y") == 0) {
 boolean moreAns = false;
 System.out.println("You can filter messages by one or more of the
 following \"tone\" attributes.");
 System.out.println("1. cheerful");
 System.out.println("2. funny");
 System.out.println("3. serious");
 System.out.println("4. sincere");
 while (!moreAns) {
 System.out.println("Select a number or choose 0 to end.");
 String ans = in.nextLine();
 switch (ans) {
 case "1":
 filterList.add("cheerful");
 break;
 case "2":
 filterList.add("funny");
 break;
 case "3":
 filterList.add("serious");
 break;
 case "4":
 filterList.add("sincere");
 break;
 default:
 moreAns = true;
 break;
 }
 }
 }
 }
 subscriptionArn = subQueue(snsClient, topicArn, sqsQueueArn, filterList);
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println("7. Publish a message to the topic.");
 if (selectFIFO) {
 System.out.println("Would you like to add an attribute to this
 message? (y/n)");
 String msgAns = in.nextLine();
 if (msgAns.compareTo("y") == 0) {
 System.out.println("You can filter messages by one or more of the
 following \"tone\" attributes.");
 System.out.println("1. cheerful");

Publish messages to queues 446

Amazon Simple Queue Service Developer Guide

 System.out.println("2. funny");
 System.out.println("3. serious");
 System.out.println("4. sincere");
 System.out.println("Select a number or choose 0 to end.");
 String ans = in.nextLine();
 switch (ans) {
 case "1":
 msgAttValue = "cheerful";
 break;
 case "2":
 msgAttValue = "funny";
 break;
 case "3":
 msgAttValue = "serious";
 break;
 default:
 msgAttValue = "sincere";
 break;
 }

 System.out.println("Selected value is " + msgAttValue);
 }
 System.out.println("Enter a message.");
 message = in.nextLine();
 pubMessageFIFO(snsClient, message, topicArn, msgAttValue,
 duplication, groupId, deduplicationID);

 } else {
 System.out.println("Enter a message.");
 message = in.nextLine();
 pubMessage(snsClient, message, topicArn);
 }
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println("8. Display the message. Press any key to continue.");
 in.nextLine();
 messageList = receiveMessages(sqsClient, sqsQueueUrl, msgAttValue);
 for (Message mes : messageList) {
 System.out.println("Message Id: " + mes.messageId());
 System.out.println("Full Message: " + mes.body());
 }
 System.out.println(DASHES);

Publish messages to queues 447

Amazon Simple Queue Service Developer Guide

 System.out.println(DASHES);
 System.out.println("9. Delete the received message. Press any key to
 continue.");
 in.nextLine();
 deleteMessages(sqsClient, sqsQueueUrl, messageList);
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println("10. Unsubscribe from the topic and delete the queue.
 Press any key to continue.");
 in.nextLine();
 unSub(snsClient, subscriptionArn);
 deleteSQSQueue(sqsClient, sqsQueueName);
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println("11. Delete the topic. Press any key to continue.");
 in.nextLine();
 deleteSNSTopic(snsClient, topicArn);

 System.out.println(DASHES);
 System.out.println("The SNS/SQS workflow has completed successfully.");
 System.out.println(DASHES);
 }

 public static void deleteSNSTopic(SnsClient snsClient, String topicArn) {
 try {
 DeleteTopicRequest request = DeleteTopicRequest.builder()
 .topicArn(topicArn)
 .build();

 DeleteTopicResponse result = snsClient.deleteTopic(request);
 System.out.println("Status was " +
 result.sdkHttpResponse().statusCode());

 } catch (SnsException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }

 public static void deleteSQSQueue(SqsClient sqsClient, String queueName) {
 try {
 GetQueueUrlRequest getQueueRequest = GetQueueUrlRequest.builder()

Publish messages to queues 448

Amazon Simple Queue Service Developer Guide

 .queueName(queueName)
 .build();

 String queueUrl = sqsClient.getQueueUrl(getQueueRequest).queueUrl();
 DeleteQueueRequest deleteQueueRequest = DeleteQueueRequest.builder()
 .queueUrl(queueUrl)
 .build();

 sqsClient.deleteQueue(deleteQueueRequest);
 System.out.println(queueName + " was successfully deleted.");

 } catch (SqsException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }

 public static void unSub(SnsClient snsClient, String subscriptionArn) {
 try {
 UnsubscribeRequest request = UnsubscribeRequest.builder()
 .subscriptionArn(subscriptionArn)
 .build();

 UnsubscribeResponse result = snsClient.unsubscribe(request);
 System.out.println("Status was " +
 result.sdkHttpResponse().statusCode()
 + "\nSubscription was removed for " +
 request.subscriptionArn());

 } catch (SnsException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }

 public static void deleteMessages(SqsClient sqsClient, String queueUrl,
 List<Message> messages) {
 try {
 List<DeleteMessageBatchRequestEntry> entries = new ArrayList<>();
 for (Message msg : messages) {
 DeleteMessageBatchRequestEntry entry =
 DeleteMessageBatchRequestEntry.builder()
 .id(msg.messageId())
 .build();

Publish messages to queues 449

Amazon Simple Queue Service Developer Guide

 entries.add(entry);
 }

 DeleteMessageBatchRequest deleteMessageBatchRequest =
 DeleteMessageBatchRequest.builder()
 .queueUrl(queueUrl)
 .entries(entries)
 .build();

 sqsClient.deleteMessageBatch(deleteMessageBatchRequest);
 System.out.println("The batch delete of messages was successful");

 } catch (SqsException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }

 public static List<Message> receiveMessages(SqsClient sqsClient, String
 queueUrl, String msgAttValue) {
 try {
 if (msgAttValue.isEmpty()) {
 ReceiveMessageRequest receiveMessageRequest =
 ReceiveMessageRequest.builder()
 .queueUrl(queueUrl)
 .maxNumberOfMessages(5)
 .build();
 return
 sqsClient.receiveMessage(receiveMessageRequest).messages();
 } else {
 // We know there are filters on the message.
 ReceiveMessageRequest receiveRequest =
 ReceiveMessageRequest.builder()
 .queueUrl(queueUrl)
 .messageAttributeNames(msgAttValue) // Include other
 message attributes if needed.
 .maxNumberOfMessages(5)
 .build();

 return sqsClient.receiveMessage(receiveRequest).messages();
 }

 } catch (SqsException e) {

Publish messages to queues 450

Amazon Simple Queue Service Developer Guide

 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 return null;
 }

 public static void pubMessage(SnsClient snsClient, String message, String
 topicArn) {
 try {
 PublishRequest request = PublishRequest.builder()
 .message(message)
 .topicArn(topicArn)
 .build();

 PublishResponse result = snsClient.publish(request);
 System.out
 .println(result.messageId() + " Message sent. Status is " +
 result.sdkHttpResponse().statusCode());

 } catch (SnsException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }

 public static void pubMessageFIFO(SnsClient snsClient,
 String message,
 String topicArn,
 String msgAttValue,
 String duplication,
 String groupId,
 String deduplicationID) {

 try {
 PublishRequest request;
 // Means the user did not choose to use a message attribute.
 if (msgAttValue.isEmpty()) {
 if (duplication.compareTo("y") == 0) {
 request = PublishRequest.builder()
 .message(message)
 .messageGroupId(groupId)
 .topicArn(topicArn)
 .build();
 } else {

Publish messages to queues 451

Amazon Simple Queue Service Developer Guide

 request = PublishRequest.builder()
 .message(message)
 .messageDeduplicationId(deduplicationID)
 .messageGroupId(groupId)
 .topicArn(topicArn)
 .build();
 }

 } else {
 Map<String, MessageAttributeValue> messageAttributes = new
 HashMap<>();
 messageAttributes.put(msgAttValue,
 MessageAttributeValue.builder()
 .dataType("String")
 .stringValue("true")
 .build());

 if (duplication.compareTo("y") == 0) {
 request = PublishRequest.builder()
 .message(message)
 .messageGroupId(groupId)
 .topicArn(topicArn)
 .build();
 } else {
 // Create a publish request with the message and attributes.
 request = PublishRequest.builder()
 .topicArn(topicArn)
 .message(message)
 .messageDeduplicationId(deduplicationID)
 .messageGroupId(groupId)
 .messageAttributes(messageAttributes)
 .build();
 }
 }

 // Publish the message to the topic.
 PublishResponse result = snsClient.publish(request);
 System.out
 .println(result.messageId() + " Message sent. Status was " +
 result.sdkHttpResponse().statusCode());

 } catch (SnsException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);

Publish messages to queues 452

Amazon Simple Queue Service Developer Guide

 }
 }

 // Subscribe to the SQS queue.
 public static String subQueue(SnsClient snsClient, String topicArn, String
 queueArn, List<String> filterList) {
 try {
 SubscribeRequest request;
 if (filterList.isEmpty()) {
 // No filter subscription is added.
 request = SubscribeRequest.builder()
 .protocol("sqs")
 .endpoint(queueArn)
 .returnSubscriptionArn(true)
 .topicArn(topicArn)
 .build();

 SubscribeResponse result = snsClient.subscribe(request);
 System.out.println("The queue " + queueArn + " has been
 subscribed to the topic " + topicArn + "\n" +
 "with the subscription ARN " + result.subscriptionArn());
 return result.subscriptionArn();
 } else {
 request = SubscribeRequest.builder()
 .protocol("sqs")
 .endpoint(queueArn)
 .returnSubscriptionArn(true)
 .topicArn(topicArn)
 .build();

 SubscribeResponse result = snsClient.subscribe(request);
 System.out.println("The queue " + queueArn + " has been
 subscribed to the topic " + topicArn + "\n" +
 "with the subscription ARN " + result.subscriptionArn());

 String attributeName = "FilterPolicy";
 Gson gson = new Gson();
 String jsonString = "{\"tone\": []}";
 JsonObject jsonObject = gson.fromJson(jsonString,
 JsonObject.class);
 JsonArray toneArray = jsonObject.getAsJsonArray("tone");
 for (String value : filterList) {
 toneArray.add(new JsonPrimitive(value));
 }

Publish messages to queues 453

Amazon Simple Queue Service Developer Guide

 String updatedJsonString = gson.toJson(jsonObject);
 System.out.println(updatedJsonString);
 SetSubscriptionAttributesRequest attRequest =
 SetSubscriptionAttributesRequest.builder()
 .subscriptionArn(result.subscriptionArn())
 .attributeName(attributeName)
 .attributeValue(updatedJsonString)
 .build();

 snsClient.setSubscriptionAttributes(attRequest);
 return result.subscriptionArn();
 }

 } catch (SnsException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 return "";
 }

 // Attach a policy to the queue.
 public static void setQueueAttr(SqsClient sqsClient, String queueUrl, String
 policy) {
 try {
 Map<software.amazon.awssdk.services.sqs.model.QueueAttributeName,
 String> attrMap = new HashMap<>();
 attrMap.put(QueueAttributeName.POLICY, policy);

 SetQueueAttributesRequest attributesRequest =
 SetQueueAttributesRequest.builder()
 .queueUrl(queueUrl)
 .attributes(attrMap)
 .build();

 sqsClient.setQueueAttributes(attributesRequest);
 System.out.println("The policy has been successfully attached.");

 } catch (SnsException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }

Publish messages to queues 454

Amazon Simple Queue Service Developer Guide

 public static String getSQSQueueAttrs(SqsClient sqsClient, String queueUrl) {
 // Specify the attributes to retrieve.
 List<QueueAttributeName> atts = new ArrayList<>();
 atts.add(QueueAttributeName.QUEUE_ARN);

 GetQueueAttributesRequest attributesRequest =
 GetQueueAttributesRequest.builder()
 .queueUrl(queueUrl)
 .attributeNames(atts)
 .build();

 GetQueueAttributesResponse response =
 sqsClient.getQueueAttributes(attributesRequest);
 Map<String, String> queueAtts = response.attributesAsStrings();
 for (Map.Entry<String, String> queueAtt : queueAtts.entrySet())
 return queueAtt.getValue();

 return "";
 }

 public static String createQueue(SqsClient sqsClient, String queueName,
 Boolean selectFIFO) {
 try {
 System.out.println("\nCreate Queue");
 if (selectFIFO) {
 Map<QueueAttributeName, String> attrs = new HashMap<>();
 attrs.put(QueueAttributeName.FIFO_QUEUE, "true");
 CreateQueueRequest createQueueRequest =
 CreateQueueRequest.builder()
 .queueName(queueName)
 .attributes(attrs)
 .build();

 sqsClient.createQueue(createQueueRequest);
 System.out.println("\nGet queue url");
 GetQueueUrlResponse getQueueUrlResponse = sqsClient

 .getQueueUrl(GetQueueUrlRequest.builder().queueName(queueName).build());
 return getQueueUrlResponse.queueUrl();
 } else {
 CreateQueueRequest createQueueRequest =
 CreateQueueRequest.builder()
 .queueName(queueName)
 .build();

Publish messages to queues 455

Amazon Simple Queue Service Developer Guide

 sqsClient.createQueue(createQueueRequest);
 System.out.println("\nGet queue url");
 GetQueueUrlResponse getQueueUrlResponse = sqsClient

 .getQueueUrl(GetQueueUrlRequest.builder().queueName(queueName).build());
 return getQueueUrlResponse.queueUrl();
 }

 } catch (SqsException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 return "";
 }

 public static String createSNSTopic(SnsClient snsClient, String topicName) {
 CreateTopicResponse result;
 try {
 CreateTopicRequest request = CreateTopicRequest.builder()
 .name(topicName)
 .build();

 result = snsClient.createTopic(request);
 return result.topicArn();

 } catch (SnsException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 return "";
 }

 public static String createFIFO(SnsClient snsClient, String topicName, String
 duplication) {
 try {
 // Create a FIFO topic by using the SNS service client.
 Map<String, String> topicAttributes = new HashMap<>();
 if (duplication.compareTo("n") == 0) {
 topicAttributes.put("FifoTopic", "true");
 topicAttributes.put("ContentBasedDeduplication", "false");
 } else {
 topicAttributes.put("FifoTopic", "true");
 topicAttributes.put("ContentBasedDeduplication", "true");

Publish messages to queues 456

Amazon Simple Queue Service Developer Guide

 }

 CreateTopicRequest topicRequest = CreateTopicRequest.builder()
 .name(topicName)
 .attributes(topicAttributes)
 .build();

 CreateTopicResponse response = snsClient.createTopic(topicRequest);
 return response.topicArn();

 } catch (SnsException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 return "";
 }
}

• For API details, see the following topics in AWS SDK for Java 2.x API Reference.

• CreateQueue

• CreateTopic

• DeleteMessageBatch

• DeleteQueue

• DeleteTopic

• GetQueueAttributes

• Publish

• ReceiveMessage

• SetQueueAttributes

• Subscribe

• Unsubscribe

Publish messages to queues 457

https://docs.aws.amazon.com/goto/SdkForJavaV2/sqs-2012-11-05/CreateQueue
https://docs.aws.amazon.com/goto/SdkForJavaV2/sns-2010-03-31/CreateTopic
https://docs.aws.amazon.com/goto/SdkForJavaV2/sqs-2012-11-05/DeleteMessageBatch
https://docs.aws.amazon.com/goto/SdkForJavaV2/sqs-2012-11-05/DeleteQueue
https://docs.aws.amazon.com/goto/SdkForJavaV2/sns-2010-03-31/DeleteTopic
https://docs.aws.amazon.com/goto/SdkForJavaV2/sqs-2012-11-05/GetQueueAttributes
https://docs.aws.amazon.com/goto/SdkForJavaV2/sns-2010-03-31/Publish
https://docs.aws.amazon.com/goto/SdkForJavaV2/sqs-2012-11-05/ReceiveMessage
https://docs.aws.amazon.com/goto/SdkForJavaV2/sqs-2012-11-05/SetQueueAttributes
https://docs.aws.amazon.com/goto/SdkForJavaV2/sns-2010-03-31/Subscribe
https://docs.aws.amazon.com/goto/SdkForJavaV2/sns-2010-03-31/Unsubscribe

Amazon Simple Queue Service Developer Guide

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

This is the entry point for this workflow.

import { SNSClient } from "@aws-sdk/client-sns";
import { SQSClient } from "@aws-sdk/client-sqs";

import { TopicsQueuesWkflw } from "./TopicsQueuesWkflw.js";
import { Prompter } from "@aws-doc-sdk-examples/lib/prompter.js";
import { SlowLogger } from "@aws-doc-sdk-examples/lib/slow-logger.js";

export const startSnsWorkflow = () => {
 const noLoggerDelay = process.argv.find((arg) => arg === "--no-logger-delay");
 const snsClient = new SNSClient({});
 const sqsClient = new SQSClient({});
 const prompter = new Prompter();
 const logger = noLoggerDelay ? console : new SlowLogger(25);

 const wkflw = new TopicsQueuesWkflw(snsClient, sqsClient, prompter, logger);

 wkflw.start();
};

The preceding code provides the necessary dependencies and starts the workflow. The next
section contains the bulk of the example.

const toneChoices = [
 { name: "cheerful", value: "cheerful" },
 { name: "funny", value: "funny" },
 { name: "serious", value: "serious" },
 { name: "sincere", value: "sincere" },

Publish messages to queues 458

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cross-services/wkflw-topics-queues#code-examples

Amazon Simple Queue Service Developer Guide

];

export class TopicsQueuesWkflw {
 // SNS topic is configured as First-In-First-Out
 isFifo = true;

 // Automatic content-based deduplication is enabled.
 autoDedup = false;

 snsClient;
 sqsClient;
 topicName;
 topicArn;
 subscriptionArns = [];
 /**
 * @type {{ queueName: string, queueArn: string, queueUrl: string, policy?:
 string }[]}
 */
 queues = [];
 prompter;

 /**
 * @param {import('@aws-sdk/client-sns').SNSClient} snsClient
 * @param {import('@aws-sdk/client-sqs').SQSClient} sqsClient
 * @param {import('../../libs/prompter.js').Prompter} prompter
 * @param {import('../../libs/logger.js').Logger} logger
 */
 constructor(snsClient, sqsClient, prompter, logger) {
 this.snsClient = snsClient;
 this.sqsClient = sqsClient;
 this.prompter = prompter;
 this.logger = logger;
 }

 async welcome() {
 await this.logger.log(MESSAGES.description);
 }

 async confirmFifo() {
 await this.logger.log(MESSAGES.snsFifoDescription);
 this.isFifo = await this.prompter.confirm({
 message: MESSAGES.snsFifoPrompt,
 });

Publish messages to queues 459

Amazon Simple Queue Service Developer Guide

 if (this.isFifo) {
 this.logger.logSeparator(MESSAGES.headerDedup);
 await this.logger.log(MESSAGES.deduplicationNotice);
 await this.logger.log(MESSAGES.deduplicationDescription);
 this.autoDedup = await this.prompter.confirm({
 message: MESSAGES.deduplicationPrompt,
 });
 }
 }

 async createTopic() {
 await this.logger.log(MESSAGES.creatingTopics);
 this.topicName = await this.prompter.input({
 message: MESSAGES.topicNamePrompt,
 });
 if (this.isFifo) {
 this.topicName += ".fifo";
 this.logger.logSeparator(MESSAGES.headerFifoNaming);
 await this.logger.log(MESSAGES.appendFifoNotice);
 }

 const response = await this.snsClient.send(
 new CreateTopicCommand({
 Name: this.topicName,
 Attributes: {
 FifoTopic: this.isFifo ? "true" : "false",
 ...(this.autoDedup ? { ContentBasedDeduplication: "true" } : {}),
 },
 }),
);

 this.topicArn = response.TopicArn;

 await this.logger.log(
 MESSAGES.topicCreatedNotice
 .replace("${TOPIC_NAME}", this.topicName)
 .replace("${TOPIC_ARN}", this.topicArn),
);
 }

 async createQueues() {
 await this.logger.log(MESSAGES.createQueuesNotice);
 // Increase this number to add more queues.
 let maxQueues = 2;

Publish messages to queues 460

Amazon Simple Queue Service Developer Guide

 for (let i = 0; i < maxQueues; i++) {
 await this.logger.log(MESSAGES.queueCount.replace("${COUNT}", i + 1));
 let queueName = await this.prompter.input({
 message: MESSAGES.queueNamePrompt.replace(
 "${EXAMPLE_NAME}",
 i === 0 ? "good-news" : "bad-news",
),
 });

 if (this.isFifo) {
 queueName += ".fifo";
 await this.logger.log(MESSAGES.appendFifoNotice);
 }

 const response = await this.sqsClient.send(
 new CreateQueueCommand({
 QueueName: queueName,
 Attributes: { ...(this.isFifo ? { FifoQueue: "true" } : {}) },
 }),
);

 const { Attributes } = await this.sqsClient.send(
 new GetQueueAttributesCommand({
 QueueUrl: response.QueueUrl,
 AttributeNames: ["QueueArn"],
 }),
);

 this.queues.push({
 queueName,
 queueArn: Attributes.QueueArn,
 queueUrl: response.QueueUrl,
 });

 await this.logger.log(
 MESSAGES.queueCreatedNotice
 .replace("${QUEUE_NAME}", queueName)
 .replace("${QUEUE_URL}", response.QueueUrl)
 .replace("${QUEUE_ARN}", Attributes.QueueArn),
);
 }
 }

Publish messages to queues 461

Amazon Simple Queue Service Developer Guide

 async attachQueueIamPolicies() {
 for (const [index, queue] of this.queues.entries()) {
 const policy = JSON.stringify(
 {
 Statement: [
 {
 Effect: "Allow",
 Principal: {
 Service: "sns.amazonaws.com",
 },
 Action: "sqs:SendMessage",
 Resource: queue.queueArn,
 Condition: {
 ArnEquals: {
 "aws:SourceArn": this.topicArn,
 },
 },
 },
],
 },
 null,
 2,
);

 if (index !== 0) {
 this.logger.logSeparator();
 }

 await this.logger.log(MESSAGES.attachPolicyNotice);
 console.log(policy);
 const addPolicy = await this.prompter.confirm({
 message: MESSAGES.addPolicyConfirmation.replace(
 "${QUEUE_NAME}",
 queue.queueName,
),
 });

 if (addPolicy) {
 await this.sqsClient.send(
 new SetQueueAttributesCommand({
 QueueUrl: queue.queueUrl,
 Attributes: {
 Policy: policy,
 },

Publish messages to queues 462

Amazon Simple Queue Service Developer Guide

 }),
);
 queue.policy = policy;
 } else {
 await this.logger.log(
 MESSAGES.policyNotAttachedNotice.replace(
 "${QUEUE_NAME}",
 queue.queueName,
),
);
 }
 }
 }

 async subscribeQueuesToTopic() {
 for (const [index, queue] of this.queues.entries()) {
 /**
 * @type {import('@aws-sdk/client-sns').SubscribeCommandInput}
 */
 const subscribeParams = {
 TopicArn: this.topicArn,
 Protocol: "sqs",
 Endpoint: queue.queueArn,
 };
 let tones = [];

 if (this.isFifo) {
 if (index === 0) {
 await this.logger.log(MESSAGES.fifoFilterNotice);
 }
 tones = await this.prompter.checkbox({
 message: MESSAGES.fifoFilterSelect.replace(
 "${QUEUE_NAME}",
 queue.queueName,
),
 choices: toneChoices,
 });

 if (tones.length) {
 subscribeParams.Attributes = {
 FilterPolicyScope: "MessageAttributes",
 FilterPolicy: JSON.stringify({
 tone: tones,
 }),

Publish messages to queues 463

Amazon Simple Queue Service Developer Guide

 };
 }
 }

 const { SubscriptionArn } = await this.snsClient.send(
 new SubscribeCommand(subscribeParams),
);

 this.subscriptionArns.push(SubscriptionArn);

 await this.logger.log(
 MESSAGES.queueSubscribedNotice
 .replace("${QUEUE_NAME}", queue.queueName)
 .replace("${TOPIC_NAME}", this.topicName)
 .replace("${TONES}", tones.length ? tones.join(", ") : "none"),
);
 }
 }

 async publishMessages() {
 const message = await this.prompter.input({
 message: MESSAGES.publishMessagePrompt,
 });

 let groupId, deduplicationId, choices;

 if (this.isFifo) {
 await this.logger.log(MESSAGES.groupIdNotice);
 groupId = await this.prompter.input({
 message: MESSAGES.groupIdPrompt,
 });

 if (this.autoDedup === false) {
 await this.logger.log(MESSAGES.deduplicationIdNotice);
 deduplicationId = await this.prompter.input({
 message: MESSAGES.deduplicationIdPrompt,
 });
 }

 choices = await this.prompter.checkbox({
 message: MESSAGES.messageAttributesPrompt,
 choices: toneChoices,
 });
 }

Publish messages to queues 464

Amazon Simple Queue Service Developer Guide

 await this.snsClient.send(
 new PublishCommand({
 TopicArn: this.topicArn,
 Message: message,
 ...(groupId
 ? {
 MessageGroupId: groupId,
 }
 : {}),
 ...(deduplicationId
 ? {
 MessageDeduplicationId: deduplicationId,
 }
 : {}),
 ...(choices
 ? {
 MessageAttributes: {
 tone: {
 DataType: "String.Array",
 StringValue: JSON.stringify(choices),
 },
 },
 }
 : {}),
 }),
);

 const publishAnother = await this.prompter.confirm({
 message: MESSAGES.publishAnother,
 });

 if (publishAnother) {
 await this.publishMessages();
 }
 }

 async receiveAndDeleteMessages() {
 for (const queue of this.queues) {
 const { Messages } = await this.sqsClient.send(
 new ReceiveMessageCommand({
 QueueUrl: queue.queueUrl,
 }),
);

Publish messages to queues 465

Amazon Simple Queue Service Developer Guide

 if (Messages) {
 await this.logger.log(
 MESSAGES.messagesReceivedNotice.replace(
 "${QUEUE_NAME}",
 queue.queueName,
),
);
 console.log(Messages);

 await this.sqsClient.send(
 new DeleteMessageBatchCommand({
 QueueUrl: queue.queueUrl,
 Entries: Messages.map((message) => ({
 Id: message.MessageId,
 ReceiptHandle: message.ReceiptHandle,
 })),
 }),
);
 } else {
 await this.logger.log(
 MESSAGES.noMessagesReceivedNotice.replace(
 "${QUEUE_NAME}",
 queue.queueName,
),
);
 }
 }

 const deleteAndPoll = await this.prompter.confirm({
 message: MESSAGES.deleteAndPollConfirmation,
 });

 if (deleteAndPoll) {
 await this.receiveAndDeleteMessages();
 }
 }

 async destroyResources() {
 for (const subscriptionArn of this.subscriptionArns) {
 await this.snsClient.send(
 new UnsubscribeCommand({ SubscriptionArn: subscriptionArn }),
);
 }

Publish messages to queues 466

Amazon Simple Queue Service Developer Guide

 for (const queue of this.queues) {
 await this.sqsClient.send(
 new DeleteQueueCommand({ QueueUrl: queue.queueUrl }),
);
 }

 if (this.topicArn) {
 await this.snsClient.send(
 new DeleteTopicCommand({ TopicArn: this.topicArn }),
);
 }
 }

 async start() {
 console.clear();

 try {
 this.logger.logSeparator(MESSAGES.headerWelcome);
 await this.welcome();
 this.logger.logSeparator(MESSAGES.headerFifo);
 await this.confirmFifo();
 this.logger.logSeparator(MESSAGES.headerCreateTopic);
 await this.createTopic();
 this.logger.logSeparator(MESSAGES.headerCreateQueues);
 await this.createQueues();
 this.logger.logSeparator(MESSAGES.headerAttachPolicy);
 await this.attachQueueIamPolicies();
 this.logger.logSeparator(MESSAGES.headerSubscribeQueues);
 await this.subscribeQueuesToTopic();
 this.logger.logSeparator(MESSAGES.headerPublishMessage);
 await this.publishMessages();
 this.logger.logSeparator(MESSAGES.headerReceiveMessages);
 await this.receiveAndDeleteMessages();
 } catch (err) {
 console.error(err);
 } finally {
 await this.destroyResources();
 }
 }
}

• For API details, see the following topics in AWS SDK for JavaScript API Reference.

Publish messages to queues 467

Amazon Simple Queue Service Developer Guide

• CreateQueue

• CreateTopic

• DeleteMessageBatch

• DeleteQueue

• DeleteTopic

• GetQueueAttributes

• Publish

• ReceiveMessage

• SetQueueAttributes

• Subscribe

• Unsubscribe

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

package com.example.sns

import aws.sdk.kotlin.services.sns.SnsClient
import aws.sdk.kotlin.services.sns.model.CreateTopicRequest
import aws.sdk.kotlin.services.sns.model.DeleteTopicRequest
import aws.sdk.kotlin.services.sns.model.PublishRequest
import aws.sdk.kotlin.services.sns.model.SetSubscriptionAttributesRequest
import aws.sdk.kotlin.services.sns.model.SubscribeRequest
import aws.sdk.kotlin.services.sns.model.UnsubscribeRequest
import aws.sdk.kotlin.services.sqs.SqsClient
import aws.sdk.kotlin.services.sqs.model.CreateQueueRequest
import aws.sdk.kotlin.services.sqs.model.DeleteMessageBatchRequest
import aws.sdk.kotlin.services.sqs.model.DeleteMessageBatchRequestEntry
import aws.sdk.kotlin.services.sqs.model.DeleteQueueRequest
import aws.sdk.kotlin.services.sqs.model.GetQueueAttributesRequest

Publish messages to queues 468

https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/sqs/command/CreateQueueCommand
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/sns/command/CreateTopicCommand
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/sqs/command/DeleteMessageBatchCommand
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/sqs/command/DeleteQueueCommand
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/sns/command/DeleteTopicCommand
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/sqs/command/GetQueueAttributesCommand
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/sns/command/PublishCommand
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/sqs/command/ReceiveMessageCommand
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/sqs/command/SetQueueAttributesCommand
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/sns/command/SubscribeCommand
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/sns/command/UnsubscribeCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/usecases/topics_and_queues#code-examples

Amazon Simple Queue Service Developer Guide

import aws.sdk.kotlin.services.sqs.model.GetQueueUrlRequest
import aws.sdk.kotlin.services.sqs.model.Message
import aws.sdk.kotlin.services.sqs.model.QueueAttributeName
import aws.sdk.kotlin.services.sqs.model.ReceiveMessageRequest
import aws.sdk.kotlin.services.sqs.model.SetQueueAttributesRequest
import com.google.gson.Gson
import com.google.gson.JsonObject
import com.google.gson.JsonPrimitive
import java.util.Scanner

/**
Before running this Kotlin code example, set up your development environment,
including your AWS credentials.

For more information, see the following documentation topic:
https://docs.aws.amazon.com/sdk-for-kotlin/latest/developer-guide/setup.html

This Kotlin example performs the following tasks:

 1. Gives the user three options to choose from.
 2. Creates an Amazon Simple Notification Service (Amazon SNS) topic.
 3. Creates an Amazon Simple Queue Service (Amazon SQS) queue.
 4. Gets the SQS queue Amazon Resource Name (ARN) attribute.
 5. Attaches an AWS Identity and Access Management (IAM) policy to the queue.
 6. Subscribes to the SQS queue.
 7. Publishes a message to the topic.
 8. Displays the messages.
 9. Deletes the received message.
 10. Unsubscribes from the topic.
 11. Deletes the SNS topic.
 */

val DASHES: String = String(CharArray(80)).replace("\u0000", "-")
suspend fun main() {
 val input = Scanner(System.`in`)
 val useFIFO: String
 var duplication = "n"
 var topicName: String
 var deduplicationID: String? = null
 var groupId: String? = null
 val topicArn: String?
 var sqsQueueName: String
 val sqsQueueUrl: String?
 val sqsQueueArn: String

Publish messages to queues 469

Amazon Simple Queue Service Developer Guide

 val subscriptionArn: String?
 var selectFIFO = false
 val message: String
 val messageList: List<Message?>?
 val filterList = ArrayList<String>()
 var msgAttValue = ""

 println(DASHES)
 println("Welcome to the AWS SDK for Kotlin messaging with topics and
 queues.")
 println(
 """
 In this workflow, you will create an SNS topic and subscribe an
 SQS queue to the topic.
 You can select from several options for configuring the topic and
 the subscriptions for the queue.
 You can then post to the topic and see the results in the queue.
 """.trimIndent(),
)
 println(DASHES)

 println(DASHES)
 println(
 """
 SNS topics can be configured as FIFO (First-In-First-Out).
 FIFO topics deliver messages in order and support deduplication
 and message filtering.
 Would you like to work with FIFO topics? (y/n)
 """.trimIndent(),
)
 useFIFO = input.nextLine()
 if (useFIFO.compareTo("y") == 0) {
 selectFIFO = true
 println("You have selected FIFO")
 println(
 """ Because you have chosen a FIFO topic, deduplication is supported.
 Deduplication IDs are either set in the message or automatically
 generated from content using a hash function.
 If a message is successfully published to an SNS FIFO topic, any message
 published and determined to have the same deduplication ID,
 within the five-minute deduplication interval, is accepted but not
 delivered.
 For more information about deduplication, see https://
docs.aws.amazon.com/sns/latest/dg/fifo-message-dedup.html.""",

Publish messages to queues 470

Amazon Simple Queue Service Developer Guide

)

 println("Would you like to use content-based deduplication instead of
 entering a deduplication ID? (y/n)")
 duplication = input.nextLine()
 if (duplication.compareTo("y") == 0) {
 println("Enter a group id value")
 groupId = input.nextLine()
 } else {
 println("Enter deduplication Id value")
 deduplicationID = input.nextLine()
 println("Enter a group id value")
 groupId = input.nextLine()
 }
 }
 println(DASHES)

 println(DASHES)
 println("2. Create a topic.")
 println("Enter a name for your SNS topic.")
 topicName = input.nextLine()
 if (selectFIFO) {
 println("Because you have selected a FIFO topic, '.fifo' must be appended
 to the topic name.")
 topicName = "$topicName.fifo"
 println("The name of the topic is $topicName")
 topicArn = createFIFO(topicName, duplication)
 println("The ARN of the FIFO topic is $topicArn")
 } else {
 println("The name of the topic is $topicName")
 topicArn = createSNSTopic(topicName)
 println("The ARN of the non-FIFO topic is $topicArn")
 }
 println(DASHES)

 println(DASHES)
 println("3. Create an SQS queue.")
 println("Enter a name for your SQS queue.")
 sqsQueueName = input.nextLine()
 if (selectFIFO) {
 sqsQueueName = "$sqsQueueName.fifo"
 }
 sqsQueueUrl = createQueue(sqsQueueName, selectFIFO)
 println("The queue URL is $sqsQueueUrl")

Publish messages to queues 471

Amazon Simple Queue Service Developer Guide

 println(DASHES)

 println(DASHES)
 println("4. Get the SQS queue ARN attribute.")
 sqsQueueArn = getSQSQueueAttrs(sqsQueueUrl)
 println("The ARN of the new queue is $sqsQueueArn")
 println(DASHES)

 println(DASHES)
 println("5. Attach an IAM policy to the queue.")
 // Define the policy to use.
 val policy = """{
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "sns.amazonaws.com"
 },
 "Action": "sqs:SendMessage",
 "Resource": "$sqsQueueArn",
 "Condition": {
 "ArnEquals": {
 "aws:SourceArn": "$topicArn"
 }
 }
 }
]
 }"""
 setQueueAttr(sqsQueueUrl, policy)
 println(DASHES)

 println(DASHES)
 println("6. Subscribe to the SQS queue.")
 if (selectFIFO) {
 println(
 """If you add a filter to this subscription, then only the filtered
 messages will be received in the queue.
For information about message filtering, see https://docs.aws.amazon.com/sns/
latest/dg/sns-message-filtering.html
For this example, you can filter messages by a "tone" attribute.""",
)
 println("Would you like to filter messages for $sqsQueueName's
 subscription to the topic $topicName? (y/n)")
 val filterAns: String = input.nextLine()

Publish messages to queues 472

Amazon Simple Queue Service Developer Guide

 if (filterAns.compareTo("y") == 0) {
 var moreAns = false
 println("You can filter messages by using one or more of the
 following \"tone\" attributes.")
 println("1. cheerful")
 println("2. funny")
 println("3. serious")
 println("4. sincere")
 while (!moreAns) {
 println("Select a number or choose 0 to end.")
 val ans: String = input.nextLine()
 when (ans) {
 "1" -> filterList.add("cheerful")
 "2" -> filterList.add("funny")
 "3" -> filterList.add("serious")
 "4" -> filterList.add("sincere")
 else -> moreAns = true
 }
 }
 }
 }
 subscriptionArn = subQueue(topicArn, sqsQueueArn, filterList)
 println(DASHES)

 println(DASHES)
 println("7. Publish a message to the topic.")
 if (selectFIFO) {
 println("Would you like to add an attribute to this message? (y/n)")
 val msgAns: String = input.nextLine()
 if (msgAns.compareTo("y") == 0) {
 println("You can filter messages by one or more of the following
 \"tone\" attributes.")
 println("1. cheerful")
 println("2. funny")
 println("3. serious")
 println("4. sincere")
 println("Select a number or choose 0 to end.")
 val ans: String = input.nextLine()
 msgAttValue = when (ans) {
 "1" -> "cheerful"
 "2" -> "funny"
 "3" -> "serious"
 else -> "sincere"
 }

Publish messages to queues 473

Amazon Simple Queue Service Developer Guide

 println("Selected value is $msgAttValue")
 }
 println("Enter a message.")
 message = input.nextLine()
 pubMessageFIFO(message, topicArn, msgAttValue, duplication, groupId,
 deduplicationID)
 } else {
 println("Enter a message.")
 message = input.nextLine()
 pubMessage(message, topicArn)
 }
 println(DASHES)

 println(DASHES)
 println("8. Display the message. Press any key to continue.")
 input.nextLine()
 messageList = receiveMessages(sqsQueueUrl, msgAttValue)
 if (messageList != null) {
 for (mes in messageList) {
 println("Message Id: ${mes.messageId}")
 println("Full Message: ${mes.body}")
 }
 }
 println(DASHES)

 println(DASHES)
 println("9. Delete the received message. Press any key to continue.")
 input.nextLine()
 if (messageList != null) {
 deleteMessages(sqsQueueUrl, messageList)
 }
 println(DASHES)

 println(DASHES)
 println("10. Unsubscribe from the topic and delete the queue. Press any key
 to continue.")
 input.nextLine()
 unSub(subscriptionArn)
 deleteSQSQueue(sqsQueueName)
 println(DASHES)

 println(DASHES)
 println("11. Delete the topic. Press any key to continue.")
 input.nextLine()

Publish messages to queues 474

Amazon Simple Queue Service Developer Guide

 deleteSNSTopic(topicArn)
 println(DASHES)

 println(DASHES)
 println("The SNS/SQS workflow has completed successfully.")
 println(DASHES)
}

suspend fun deleteSNSTopic(topicArnVal: String?) {
 val request = DeleteTopicRequest {
 topicArn = topicArnVal
 }

 SnsClient { region = "us-east-1" }.use { snsClient ->
 snsClient.deleteTopic(request)
 println("$topicArnVal was deleted")
 }
}

suspend fun deleteSQSQueue(queueNameVal: String) {
 val getQueueRequest = GetQueueUrlRequest {
 queueName = queueNameVal
 }

 SqsClient { region = "us-east-1" }.use { sqsClient ->
 val queueUrlVal = sqsClient.getQueueUrl(getQueueRequest).queueUrl
 val deleteQueueRequest = DeleteQueueRequest {
 queueUrl = queueUrlVal
 }

 sqsClient.deleteQueue(deleteQueueRequest)
 println("$queueNameVal was successfully deleted.")
 }
}

suspend fun unSub(subscripArn: String?) {
 val request = UnsubscribeRequest {
 subscriptionArn = subscripArn
 }
 SnsClient { region = "us-east-1" }.use { snsClient ->
 snsClient.unsubscribe(request)
 println("Subscription was removed for $subscripArn")
 }
}

Publish messages to queues 475

Amazon Simple Queue Service Developer Guide

suspend fun deleteMessages(queueUrlVal: String?, messages: List<Message>) {
 val entriesVal: MutableList<DeleteMessageBatchRequestEntry> = mutableListOf()
 for (msg in messages) {
 val entry = DeleteMessageBatchRequestEntry {
 id = msg.messageId
 }
 entriesVal.add(entry)
 }

 val deleteMessageBatchRequest = DeleteMessageBatchRequest {
 queueUrl = queueUrlVal
 entries = entriesVal
 }

 SqsClient { region = "us-east-1" }.use { sqsClient ->
 sqsClient.deleteMessageBatch(deleteMessageBatchRequest)
 println("The batch delete of messages was successful")
 }
}

suspend fun receiveMessages(queueUrlVal: String?, msgAttValue: String):
 List<Message>? {
 if (msgAttValue.isEmpty()) {
 val request = ReceiveMessageRequest {
 queueUrl = queueUrlVal
 maxNumberOfMessages = 5
 }
 SqsClient { region = "us-east-1" }.use { sqsClient ->
 return sqsClient.receiveMessage(request).messages
 }
 } else {
 val receiveRequest = ReceiveMessageRequest {
 queueUrl = queueUrlVal
 waitTimeSeconds = 1
 maxNumberOfMessages = 5
 }
 SqsClient { region = "us-east-1" }.use { sqsClient ->
 return sqsClient.receiveMessage(receiveRequest).messages
 }
 }
}

suspend fun pubMessage(messageVal: String?, topicArnVal: String?) {

Publish messages to queues 476

Amazon Simple Queue Service Developer Guide

 val request = PublishRequest {
 message = messageVal
 topicArn = topicArnVal
 }

 SnsClient { region = "us-east-1" }.use { snsClient ->
 val result = snsClient.publish(request)
 println("${result.messageId} message sent.")
 }
}

suspend fun pubMessageFIFO(
 messageVal: String?,
 topicArnVal: String?,
 msgAttValue: String,
 duplication: String,
 groupIdVal: String?,
 deduplicationID: String?,
) {
 // Means the user did not choose to use a message attribute.
 if (msgAttValue.isEmpty()) {
 if (duplication.compareTo("y") == 0) {
 val request = PublishRequest {
 message = messageVal
 messageGroupId = groupIdVal
 topicArn = topicArnVal
 }

 SnsClient { region = "us-east-1" }.use { snsClient ->
 val result = snsClient.publish(request)
 println(result.messageId.toString() + " Message sent.")
 }
 } else {
 val request = PublishRequest {
 message = messageVal
 messageDeduplicationId = deduplicationID
 messageGroupId = groupIdVal
 topicArn = topicArnVal
 }

 SnsClient { region = "us-east-1" }.use { snsClient ->
 val result = snsClient.publish(request)
 println(result.messageId.toString() + " Message sent.")
 }

Publish messages to queues 477

Amazon Simple Queue Service Developer Guide

 }
 } else {
 val messAttr = aws.sdk.kotlin.services.sns.model.MessageAttributeValue {
 dataType = "String"
 stringValue = "true"
 }

 val mapAtt: Map<String,
 aws.sdk.kotlin.services.sns.model.MessageAttributeValue> =
 mapOf(msgAttValue to messAttr)
 if (duplication.compareTo("y") == 0) {
 val request = PublishRequest {
 message = messageVal
 messageGroupId = groupIdVal
 topicArn = topicArnVal
 }

 SnsClient { region = "us-east-1" }.use { snsClient ->
 val result = snsClient.publish(request)
 println(result.messageId.toString() + " Message sent.")
 }
 } else {
 // Create a publish request with the message and attributes.
 val request = PublishRequest {
 topicArn = topicArnVal
 message = messageVal
 messageDeduplicationId = deduplicationID
 messageGroupId = groupIdVal
 messageAttributes = mapAtt
 }

 SnsClient { region = "us-east-1" }.use { snsClient ->
 val result = snsClient.publish(request)
 println(result.messageId.toString() + " Message sent.")
 }
 }
 }
}

// Subscribe to the SQS queue.
suspend fun subQueue(topicArnVal: String?, queueArnVal: String, filterList:
 List<String?>): String? {
 val request: SubscribeRequest
 if (filterList.isEmpty()) {

Publish messages to queues 478

Amazon Simple Queue Service Developer Guide

 // No filter subscription is added.
 request = SubscribeRequest {
 protocol = "sqs"
 endpoint = queueArnVal
 returnSubscriptionArn = true
 topicArn = topicArnVal
 }

 SnsClient { region = "us-east-1" }.use { snsClient ->
 val result = snsClient.subscribe(request)
 println(
 "The queue " + queueArnVal + " has been subscribed to the topic "
 + topicArnVal + "\n" +
 "with the subscription ARN " + result.subscriptionArn,
)
 return result.subscriptionArn
 }
 } else {
 request = SubscribeRequest {
 protocol = "sqs"
 endpoint = queueArnVal
 returnSubscriptionArn = true
 topicArn = topicArnVal
 }

 SnsClient { region = "us-east-1" }.use { snsClient ->
 val result = snsClient.subscribe(request)
 println("The queue $queueArnVal has been subscribed to the topic
 $topicArnVal with the subscription ARN ${result.subscriptionArn}")

 val attributeNameVal = "FilterPolicy"
 val gson = Gson()
 val jsonString = "{\"tone\": []}"
 val jsonObject = gson.fromJson(jsonString, JsonObject::class.java)
 val toneArray = jsonObject.getAsJsonArray("tone")
 for (value: String? in filterList) {
 toneArray.add(JsonPrimitive(value))
 }

 val updatedJsonString: String = gson.toJson(jsonObject)
 println(updatedJsonString)
 val attRequest = SetSubscriptionAttributesRequest {
 subscriptionArn = result.subscriptionArn
 attributeName = attributeNameVal

Publish messages to queues 479

Amazon Simple Queue Service Developer Guide

 attributeValue = updatedJsonString
 }

 snsClient.setSubscriptionAttributes(attRequest)
 return result.subscriptionArn
 }
 }
}

suspend fun setQueueAttr(queueUrlVal: String?, policy: String) {
 val attrMap: MutableMap<String, String> = HashMap()
 attrMap[QueueAttributeName.Policy.toString()] = policy

 val attributesRequest = SetQueueAttributesRequest {
 queueUrl = queueUrlVal
 attributes = attrMap
 }

 SqsClient { region = "us-east-1" }.use { sqsClient ->
 sqsClient.setQueueAttributes(attributesRequest)
 println("The policy has been successfully attached.")
 }
}

suspend fun getSQSQueueAttrs(queueUrlVal: String?): String {
 val atts: MutableList<QueueAttributeName> = ArrayList()
 atts.add(QueueAttributeName.QueueArn)

 val attributesRequest = GetQueueAttributesRequest {
 queueUrl = queueUrlVal
 attributeNames = atts
 }
 SqsClient { region = "us-east-1" }.use { sqsClient ->
 val response = sqsClient.getQueueAttributes(attributesRequest)
 val mapAtts = response.attributes
 if (mapAtts != null) {
 mapAtts.forEach { entry ->
 println("${entry.key} : ${entry.value}")
 return entry.value
 }
 }
 }
 return ""
}

Publish messages to queues 480

Amazon Simple Queue Service Developer Guide

suspend fun createQueue(queueNameVal: String?, selectFIFO: Boolean): String? {
 println("\nCreate Queue")
 if (selectFIFO) {
 val attrs = mutableMapOf<String, String>()
 attrs[QueueAttributeName.FifoQueue.toString()] = "true"

 val createQueueRequest = CreateQueueRequest {
 queueName = queueNameVal
 attributes = attrs
 }

 SqsClient { region = "us-east-1" }.use { sqsClient ->
 sqsClient.createQueue(createQueueRequest)
 println("\nGet queue url")

 val urlRequest = GetQueueUrlRequest {
 queueName = queueNameVal
 }

 val getQueueUrlResponse = sqsClient.getQueueUrl(urlRequest)
 return getQueueUrlResponse.queueUrl
 }
 } else {
 val createQueueRequest = CreateQueueRequest {
 queueName = queueNameVal
 }

 SqsClient { region = "us-east-1" }.use { sqsClient ->
 sqsClient.createQueue(createQueueRequest)
 println("Get queue url")

 val urlRequest = GetQueueUrlRequest {
 queueName = queueNameVal
 }

 val getQueueUrlResponse = sqsClient.getQueueUrl(urlRequest)
 return getQueueUrlResponse.queueUrl
 }
 }
}

suspend fun createSNSTopic(topicName: String?): String? {
 val request = CreateTopicRequest {

Publish messages to queues 481

Amazon Simple Queue Service Developer Guide

 name = topicName
 }

 SnsClient { region = "us-east-1" }.use { snsClient ->
 val result = snsClient.createTopic(request)
 return result.topicArn
 }
}

suspend fun createFIFO(topicName: String?, duplication: String): String? {
 val topicAttributes: MutableMap<String, String> = HashMap()
 if (duplication.compareTo("n") == 0) {
 topicAttributes["FifoTopic"] = "true"
 topicAttributes["ContentBasedDeduplication"] = "false"
 } else {
 topicAttributes["FifoTopic"] = "true"
 topicAttributes["ContentBasedDeduplication"] = "true"
 }

 val topicRequest = CreateTopicRequest {
 name = topicName
 attributes = topicAttributes
 }
 SnsClient { region = "us-east-1" }.use { snsClient ->
 val response = snsClient.createTopic(topicRequest)
 return response.topicArn
 }
}

• For API details, see the following topics in AWS SDK for Kotlin API reference.

• CreateQueue

• CreateTopic

• DeleteMessageBatch

• DeleteQueue

• DeleteTopic

• GetQueueAttributes

• Publish

• ReceiveMessage

• SetQueueAttributes

Publish messages to queues 482

https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://sdk.amazonaws.com/kotlin/api/latest/index.html

Amazon Simple Queue Service Developer Guide

• Subscribe

• Unsubscribe

For a complete list of AWS SDK developer guides and code examples, see Using Amazon SQS with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Send and receive batches of messages with Amazon SQS using an AWS
SDK

The following code example shows how to:

• Create an Amazon SQS queue.

• Send batches of messages to the queue.

• Receive batches of messages from the queue.

• Delete batches of messages from the queue.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Create functions to wrap Amazon SQS message functions.

import logging
import sys

import boto3
from botocore.exceptions import ClientError

import queue_wrapper

logger = logging.getLogger(__name__)

Send and receive batches of messages 483

https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/sqs#code-examples

Amazon Simple Queue Service Developer Guide

sqs = boto3.resource("sqs")

def send_messages(queue, messages):
 """
 Send a batch of messages in a single request to an SQS queue.
 This request may return overall success even when some messages were not
 sent.
 The caller must inspect the Successful and Failed lists in the response and
 resend any failed messages.

 :param queue: The queue to receive the messages.
 :param messages: The messages to send to the queue. These are simplified to
 contain only the message body and attributes.
 :return: The response from SQS that contains the list of successful and
 failed
 messages.
 """
 try:
 entries = [
 {
 "Id": str(ind),
 "MessageBody": msg["body"],
 "MessageAttributes": msg["attributes"],
 }
 for ind, msg in enumerate(messages)
]
 response = queue.send_messages(Entries=entries)
 if "Successful" in response:
 for msg_meta in response["Successful"]:
 logger.info(
 "Message sent: %s: %s",
 msg_meta["MessageId"],
 messages[int(msg_meta["Id"])]["body"],
)
 if "Failed" in response:
 for msg_meta in response["Failed"]:
 logger.warning(
 "Failed to send: %s: %s",
 msg_meta["MessageId"],
 messages[int(msg_meta["Id"])]["body"],
)
 except ClientError as error:
 logger.exception("Send messages failed to queue: %s", queue)
 raise error

Send and receive batches of messages 484

Amazon Simple Queue Service Developer Guide

 else:
 return response

def receive_messages(queue, max_number, wait_time):
 """
 Receive a batch of messages in a single request from an SQS queue.

 :param queue: The queue from which to receive messages.
 :param max_number: The maximum number of messages to receive. The actual
 number
 of messages received might be less.
 :param wait_time: The maximum time to wait (in seconds) before returning.
 When
 this number is greater than zero, long polling is used.
 This
 can result in reduced costs and fewer false empty
 responses.
 :return: The list of Message objects received. These each contain the body
 of the message and metadata and custom attributes.
 """
 try:
 messages = queue.receive_messages(
 MessageAttributeNames=["All"],
 MaxNumberOfMessages=max_number,
 WaitTimeSeconds=wait_time,
)
 for msg in messages:
 logger.info("Received message: %s: %s", msg.message_id, msg.body)
 except ClientError as error:
 logger.exception("Couldn't receive messages from queue: %s", queue)
 raise error
 else:
 return messages

def delete_messages(queue, messages):
 """
 Delete a batch of messages from a queue in a single request.

 :param queue: The queue from which to delete the messages.
 :param messages: The list of messages to delete.

Send and receive batches of messages 485

Amazon Simple Queue Service Developer Guide

 :return: The response from SQS that contains the list of successful and
 failed
 message deletions.
 """
 try:
 entries = [
 {"Id": str(ind), "ReceiptHandle": msg.receipt_handle}
 for ind, msg in enumerate(messages)
]
 response = queue.delete_messages(Entries=entries)
 if "Successful" in response:
 for msg_meta in response["Successful"]:
 logger.info("Deleted %s",
 messages[int(msg_meta["Id"])].receipt_handle)
 if "Failed" in response:
 for msg_meta in response["Failed"]:
 logger.warning(
 "Could not delete %s",
 messages[int(msg_meta["Id"])].receipt_handle
)
 except ClientError:
 logger.exception("Couldn't delete messages from queue %s", queue)
 else:
 return response

Use the wrapper functions to send and receive messages in batches.

def usage_demo():
 """
 Shows how to:
 * Read the lines from this Python file and send the lines in
 batches of 10 as messages to a queue.
 * Receive the messages in batches until the queue is empty.
 * Reassemble the lines of the file and verify they match the original file.
 """

 def pack_message(msg_path, msg_body, msg_line):
 return {
 "body": msg_body,
 "attributes": {

Send and receive batches of messages 486

Amazon Simple Queue Service Developer Guide

 "path": {"StringValue": msg_path, "DataType": "String"},
 "line": {"StringValue": str(msg_line), "DataType": "String"},
 },
 }

 def unpack_message(msg):
 return (
 msg.message_attributes["path"]["StringValue"],
 msg.body,
 int(msg.message_attributes["line"]["StringValue"]),
)

 print("-" * 88)
 print("Welcome to the Amazon Simple Queue Service (Amazon SQS) demo!")
 print("-" * 88)

 queue = queue_wrapper.create_queue("sqs-usage-demo-message-wrapper")

 with open(__file__) as file:
 lines = file.readlines()

 line = 0
 batch_size = 10
 received_lines = [None] * len(lines)
 print(f"Sending file lines in batches of {batch_size} as messages.")
 while line < len(lines):
 messages = [
 pack_message(__file__, lines[index], index)
 for index in range(line, min(line + batch_size, len(lines)))
]
 line = line + batch_size
 send_messages(queue, messages)
 print(".", end="")
 sys.stdout.flush()
 print(f"Done. Sent {len(lines) - 1} messages.")

 print(f"Receiving, handling, and deleting messages in batches of
 {batch_size}.")
 more_messages = True
 while more_messages:
 received_messages = receive_messages(queue, batch_size, 2)
 print(".", end="")
 sys.stdout.flush()
 for message in received_messages:

Send and receive batches of messages 487

Amazon Simple Queue Service Developer Guide

 path, body, line = unpack_message(message)
 received_lines[line] = body
 if received_messages:
 delete_messages(queue, received_messages)
 else:
 more_messages = False
 print("Done.")

 if all([lines[index] == received_lines[index] for index in
 range(len(lines))]):
 print(f"Successfully reassembled all file lines!")
 else:
 print(f"Uh oh, some lines were missed!")

 queue.delete()

 print("Thanks for watching!")
 print("-" * 88)

• For API details, see the following topics in AWS SDK for Python (Boto3) API Reference.

• CreateQueue

• DeleteMessageBatch

• DeleteQueue

• ReceiveMessage

• SendMessageBatch

For a complete list of AWS SDK developer guides and code examples, see Using Amazon SQS with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Serverless examples for Amazon SQS using AWS SDKs

The following code examples show how to use Amazon SQS with AWS SDKs.

Examples

• Invoke a Lambda function from an Amazon SQS trigger

Serverless examples 488

https://docs.aws.amazon.com/goto/boto3/sqs-2012-11-05/CreateQueue
https://docs.aws.amazon.com/goto/boto3/sqs-2012-11-05/DeleteMessageBatch
https://docs.aws.amazon.com/goto/boto3/sqs-2012-11-05/DeleteQueue
https://docs.aws.amazon.com/goto/boto3/sqs-2012-11-05/ReceiveMessage
https://docs.aws.amazon.com/goto/boto3/sqs-2012-11-05/SendMessageBatch

Amazon Simple Queue Service Developer Guide

• Reporting batch item failures for Lambda functions with an Amazon SQS trigger

Invoke a Lambda function from an Amazon SQS trigger

The following code examples show how to implement a Lambda function that receives an event
triggered by receiving messages from an SQS queue. The function retrieves the messages from the
event parameter and logs the content of each message.

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming an SQS event with Lambda using .NET.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
using Amazon.Lambda.Core;
using Amazon.Lambda.SQSEvents;

// Assembly attribute to enable the Lambda function's JSON input to be converted
 into a .NET class.
[assembly:
 LambdaSerializer(typeof(Amazon.Lambda.Serialization.SystemTextJson.DefaultLambdaJsonSerializer))]

namespace SqsIntegrationSampleCode
{
 public async Task FunctionHandler(SQSEvent evnt, ILambdaContext context)
 {
 foreach (var message in evnt.Records)
 {
 await ProcessMessageAsync(message, context);
 }

 context.Logger.LogInformation("done");

Invoke a Lambda function from an Amazon SQS trigger 489

https://github.com/aws-samples/serverless-snippets/tree/main/integration-sqs-to-lambda

Amazon Simple Queue Service Developer Guide

 }

 private async Task ProcessMessageAsync(SQSEvent.SQSMessage message,
 ILambdaContext context)
 {
 try
 {
 context.Logger.LogInformation($"Processed message {message.Body}");

 // TODO: Do interesting work based on the new message
 await Task.CompletedTask;
 }
 catch (Exception e)
 {
 //You can use Dead Letter Queue to handle failures. By configuring a
 Lambda DLQ.
 context.Logger.LogError($"An error occurred");
 throw;
 }

 }
}

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming an SQS event with Lambda using Go.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
package integration_sqs_to_lambda

import (
 "fmt"

Invoke a Lambda function from an Amazon SQS trigger 490

https://github.com/aws-samples/serverless-snippets/tree/main/integration-sqs-to-lambda

Amazon Simple Queue Service Developer Guide

 "github.com/aws/aws-lambda-go/events"
 "github.com/aws/aws-lambda-go/lambda"
)

func handler(event events.SQSEvent) error {
 for _, record := range event.Records {
 err := processMessage(record)
 if err != nil {
 return err
 }
 }
 fmt.Println("done")
 return nil
}

func processMessage(record events.SQSMessage) error {
 fmt.Printf("Processed message %s\n", record.Body)
 // TODO: Do interesting work based on the new message
 return nil
}

func main() {
 lambda.Start(handler)
}

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming an SQS event with Lambda using Java.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
import com.amazonaws.services.lambda.runtime.Context;
import com.amazonaws.services.lambda.runtime.RequestHandler;

Invoke a Lambda function from an Amazon SQS trigger 491

https://github.com/aws-samples/serverless-snippets/tree/main/integration-sqs-to-lambda#readme

Amazon Simple Queue Service Developer Guide

import com.amazonaws.services.lambda.runtime.events.SQSEvent;
import com.amazonaws.services.lambda.runtime.events.SQSEvent.SQSMessage;

public class Function implements RequestHandler<SQSEvent, Void> {
 @Override
 public Void handleRequest(SQSEvent sqsEvent, Context context) {
 for (SQSMessage msg : sqsEvent.getRecords()) {
 processMessage(msg, context);
 }
 context.getLogger().log("done");
 return null;
 }

 private void processMessage(SQSMessage msg, Context context) {
 try {
 context.getLogger().log("Processed message " + msg.getBody());

 // TODO: Do interesting work based on the new message

 } catch (Exception e) {
 context.getLogger().log("An error occurred");
 throw e;
 }

 }
}

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming an SQS event with Lambda using JavaScript.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
exports.handler = async (event, context) => {

Invoke a Lambda function from an Amazon SQS trigger 492

https://github.com/aws-samples/serverless-snippets/blob/main/integration-sqs-to-lambda

Amazon Simple Queue Service Developer Guide

 for (const message of event.Records) {
 await processMessageAsync(message);
 }
 console.info("done");
};

async function processMessageAsync(message) {
 try {
 console.log(`Processed message ${message.body}`);
 // TODO: Do interesting work based on the new message
 await Promise.resolve(1); //Placeholder for actual async work
 } catch (err) {
 console.error("An error occurred");
 throw err;
 }
}

Consuming an SQS event with Lambda using TypeScript.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
import { SQSEvent, Context, SQSHandler, SQSRecord } from "aws-lambda";

export const functionHandler: SQSHandler = async (
 event: SQSEvent,
 context: Context
): Promise<void> => {
 for (const message of event.Records) {
 await processMessageAsync(message);
 }
 console.info("done");
};

async function processMessageAsync(message: SQSRecord): Promise<any> {
 try {
 console.log(`Processed message ${message.body}`);
 // TODO: Do interesting work based on the new message
 await Promise.resolve(1); //Placeholder for actual async work
 } catch (err) {
 console.error("An error occurred");
 throw err;
 }

Invoke a Lambda function from an Amazon SQS trigger 493

Amazon Simple Queue Service Developer Guide

}

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming an SQS event with Lambda using PHP.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
<?php

using bref/bref and bref/logger for simplicity

use Bref\Context\Context;
use Bref\Event\InvalidLambdaEvent;
use Bref\Event\Sqs\SqsEvent;
use Bref\Event\Sqs\SqsHandler;
use Bref\Logger\StderrLogger;

require __DIR__ . '/vendor/autoload.php';

class Handler extends SqsHandler
{
 private StderrLogger $logger;
 public function __construct(StderrLogger $logger)
 {
 $this->logger = $logger;
 }

 /**
 * @throws InvalidLambdaEvent
 */
 public function handleSqs(SqsEvent $event, Context $context): void
 {

Invoke a Lambda function from an Amazon SQS trigger 494

https://github.com/aws-samples/serverless-snippets/tree/main/integration-sqs-to-lambda

Amazon Simple Queue Service Developer Guide

 foreach ($event->getRecords() as $record) {
 $body = $record->getBody();
 // TODO: Do interesting work based on the new message
 }
 }
}

$logger = new StderrLogger();
return new Handler($logger);

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming an SQS event with Lambda using Python.

Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
SPDX-License-Identifier: Apache-2.0
def lambda_handler(event, context):
 for message in event['Records']:
 process_message(message)
 print("done")

def process_message(message):
 try:
 print(f"Processed message {message['body']}")
 # TODO: Do interesting work based on the new message
 except Exception as err:
 print("An error occurred")
 raise err

Invoke a Lambda function from an Amazon SQS trigger 495

https://github.com/aws-samples/serverless-snippets/tree/main/integration-sqs-to-lambda

Amazon Simple Queue Service Developer Guide

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming an SQS event with Lambda using Ruby.

Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
SPDX-License-Identifier: Apache-2.0
def lambda_handler(event:, context:)
 event['Records'].each do |message|
 process_message(message)
 end
 puts "done"
end

def process_message(message)
 begin
 puts "Processed message #{message['body']}"
 # TODO: Do interesting work based on the new message
 rescue StandardError => err
 puts "An error occurred"
 raise err
 end
end

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Invoke a Lambda function from an Amazon SQS trigger 496

https://github.com/aws-samples/serverless-snippets/tree/main/integration-sqs-to-lambda
https://github.com/aws-samples/serverless-snippets/tree/main/integration-sqs-to-lambda

Amazon Simple Queue Service Developer Guide

Consuming an SQS event with Lambda using Rust.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
use aws_lambda_events::event::sqs::SqsEvent;
use lambda_runtime::{run, service_fn, Error, LambdaEvent};

async fn function_handler(event: LambdaEvent<SqsEvent>) -> Result<(), Error> {
 event.payload.records.iter().for_each(|record| {
 // process the record
 tracing::info!("Message body: {}",
 record.body.as_deref().unwrap_or_default())
 });

 Ok(())
}

#[tokio::main]
async fn main() -> Result<(), Error> {
 tracing_subscriber::fmt()
 .with_max_level(tracing::Level::INFO)
 // disable printing the name of the module in every log line.
 .with_target(false)
 // disabling time is handy because CloudWatch will add the ingestion
 time.
 .without_time()
 .init();

 run(service_fn(function_handler)).await
}

For a complete list of AWS SDK developer guides and code examples, see Using Amazon SQS with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Reporting batch item failures for Lambda functions with an Amazon
SQS trigger

The following code examples show how to implement partial batch response for Lambda functions
that receive events from an SQS queue. The function reports the batch item failures in the
response, signaling to Lambda to retry those messages later.

Reporting batch item failures for Lambda functions with an Amazon SQS trigger 497

Amazon Simple Queue Service Developer Guide

.NET

AWS SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Reporting SQS batch item failures with Lambda using .NET.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
using Amazon.Lambda.Core;
using Amazon.Lambda.SQSEvents;

// Assembly attribute to enable the Lambda function's JSON input to be converted
 into a .NET class.
[assembly:
 LambdaSerializer(typeof(Amazon.Lambda.Serialization.SystemTextJson.DefaultLambdaJsonSerializer))]
namespace sqsSample;

public class Function
{
 public async Task<SQSBatchResponse> FunctionHandler(SQSEvent evnt,
 ILambdaContext context)
 {
 List<SQSBatchResponse.BatchItemFailure> batchItemFailures = new
 List<SQSBatchResponse.BatchItemFailure>();
 foreach(var message in evnt.Records)
 {
 try
 {
 //process your message
 await ProcessMessageAsync(message, context);
 }
 catch (System.Exception)
 {
 //Add failed message identifier to the batchItemFailures list
 batchItemFailures.Add(new
 SQSBatchResponse.BatchItemFailure{ItemIdentifier=message.MessageId});
 }

Reporting batch item failures for Lambda functions with an Amazon SQS trigger 498

https://github.com/aws-samples/serverless-snippets/tree/main/lambda-function-sqs-report-batch-item-failures

Amazon Simple Queue Service Developer Guide

 }
 return new SQSBatchResponse(batchItemFailures);
 }

 private async Task ProcessMessageAsync(SQSEvent.SQSMessage message,
 ILambdaContext context)
 {
 if (String.IsNullOrEmpty(message.Body))
 {
 throw new Exception("No Body in SQS Message.");
 }
 context.Logger.LogInformation($"Processed message {message.Body}");
 // TODO: Do interesting work based on the new message
 await Task.CompletedTask;
 }
}

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Reporting SQS batch item failures with Lambda using Go.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
package main

import (
 "context"
 "encoding/json"
 "fmt"
 "github.com/aws/aws-lambda-go/events"
 "github.com/aws/aws-lambda-go/lambda"
)

Reporting batch item failures for Lambda functions with an Amazon SQS trigger 499

https://github.com/aws-samples/serverless-snippets/tree/main/lambda-function-sqs-report-batch-item-failures

Amazon Simple Queue Service Developer Guide

func handler(ctx context.Context, sqsEvent events.SQSEvent)
 (map[string]interface{}, error) {
 batchItemFailures := []map[string]interface{}{}

 for _, message := range sqsEvent.Records {

 if /* Your message processing condition here */ {
 batchItemFailures = append(batchItemFailures, map[string]interface{}
{"itemIdentifier": message.MessageId})
 }
 }

 sqsBatchResponse := map[string]interface{}{
 "batchItemFailures": batchItemFailures,
 }
 return sqsBatchResponse, nil
}

func main() {
 lambda.Start(handler)
}

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Reporting SQS batch item failures with Lambda using Java.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
import com.amazonaws.services.lambda.runtime.Context;
import com.amazonaws.services.lambda.runtime.RequestHandler;
import com.amazonaws.services.lambda.runtime.events.SQSEvent;
import com.amazonaws.services.lambda.runtime.events.SQSBatchResponse;

Reporting batch item failures for Lambda functions with an Amazon SQS trigger 500

https://github.com/aws-samples/serverless-snippets/tree/main/lambda-function-sqs-report-batch-item-failures#readme

Amazon Simple Queue Service Developer Guide

import java.util.ArrayList;
import java.util.List;

public class ProcessSQSMessageBatch implements RequestHandler<SQSEvent,
 SQSBatchResponse> {
 @Override
 public SQSBatchResponse handleRequest(SQSEvent sqsEvent, Context context) {

 List<SQSBatchResponse.BatchItemFailure> batchItemFailures = new
 ArrayList<SQSBatchResponse.BatchItemFailure>();
 String messageId = "";
 for (SQSEvent.SQSMessage message : sqsEvent.getRecords()) {
 try {
 //process your message
 messageId = message.getMessageId();
 } catch (Exception e) {
 //Add failed message identifier to the batchItemFailures list
 batchItemFailures.add(new
 SQSBatchResponse.BatchItemFailure(messageId));
 }
 }
 return new SQSBatchResponse(batchItemFailures);
 }
}

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Reporting SQS batch item failures with Lambda using JavaScript.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
export const handler = async (event, context) => {
 const batchItemFailures = [];

Reporting batch item failures for Lambda functions with an Amazon SQS trigger 501

https://github.com/aws-samples/serverless-snippets/tree/main/lambda-function-sqs-report-batch-item-failures

Amazon Simple Queue Service Developer Guide

 for (const record of event.Records) {
 try {
 await processMessageAsync(record, context);
 } catch (error) {
 batchItemFailures.push({ itemIdentifier: record.messageId });
 }
 }

 return { batchItemFailures };
};

async function processMessageAsync(record, context) {
 if (record.body && record.body.includes("error")) {
 throw new Error("There is an error in the SQS Message.");
 }
 console.log(`Processed message: ${record.body}`);
}

Reporting SQS batch item failures with Lambda using TypeScript.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
import { SQSEvent, SQSBatchResponse, Context, SQSBatchItemFailure, SQSRecord }
 from 'aws-lambda';

export const handler = async (event: SQSEvent, context: Context):
 Promise<SQSBatchResponse> => {
 const batchItemFailures: SQSBatchItemFailure[] = [];

 for (const record of event.Records) {
 try {
 await processMessageAsync(record);
 } catch (error) {
 batchItemFailures.push({ itemIdentifier: record.messageId });
 }
 }

 return {batchItemFailures: batchItemFailures};
};

async function processMessageAsync(record: SQSRecord): Promise<void> {
 if (record.body && record.body.includes("error")) {
 throw new Error('There is an error in the SQS Message.');

Reporting batch item failures for Lambda functions with an Amazon SQS trigger 502

Amazon Simple Queue Service Developer Guide

 }
 console.log(`Processed message ${record.body}`);
}

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Reporting SQS batch item failures with Lambda using PHP.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
<?php

use Bref\Context\Context;
use Bref\Event\Sqs\SqsEvent;
use Bref\Event\Sqs\SqsHandler;
use Bref\Logger\StderrLogger;

require __DIR__ . '/vendor/autoload.php';

class Handler extends SqsHandler
{
 private StderrLogger $logger;
 public function __construct(StderrLogger $logger)
 {
 $this->logger = $logger;
 }

 /**
 * @throws JsonException
 * @throws \Bref\Event\InvalidLambdaEvent
 */
 public function handleSqs(SqsEvent $event, Context $context): void
 {

Reporting batch item failures for Lambda functions with an Amazon SQS trigger 503

https://github.com/aws-samples/serverless-snippets/tree/main/lambda-function-sqs-report-batch-item-failures

Amazon Simple Queue Service Developer Guide

 $this->logger->info("Processing SQS records");
 $records = $event->getRecords();

 foreach ($records as $record) {
 try {
 // Assuming the SQS message is in JSON format
 $message = json_decode($record->getBody(), true);
 $this->logger->info(json_encode($message));
 // TODO: Implement your custom processing logic here
 } catch (Exception $e) {
 $this->logger->error($e->getMessage());
 // failed processing the record
 $this->markAsFailed($record);
 }
 }
 $totalRecords = count($records);
 $this->logger->info("Successfully processed $totalRecords SQS records");
 }
}

$logger = new StderrLogger();
return new Handler($logger);

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Reporting SQS batch item failures with Lambda using Python.

Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
SPDX-License-Identifier: Apache-2.0

def lambda_handler(event, context):
 if event:
 batch_item_failures = []

Reporting batch item failures for Lambda functions with an Amazon SQS trigger 504

https://github.com/aws-samples/serverless-snippets/tree/main/lambda-function-sqs-report-batch-item-failures

Amazon Simple Queue Service Developer Guide

 sqs_batch_response = {}

 for record in event["Records"]:
 try:
 # process message
 except Exception as e:
 batch_item_failures.append({"itemIdentifier":
 record['messageId']})

 sqs_batch_response["batchItemFailures"] = batch_item_failures
 return sqs_batch_response

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Reporting SQS batch item failures with Lambda using Ruby.

Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
SPDX-License-Identifier: Apache-2.0
require 'json'

def lambda_handler(event:, context:)
 if event
 batch_item_failures = []
 sqs_batch_response = {}

 event["Records"].each do |record|
 begin
 # process message
 rescue StandardError => e
 batch_item_failures << {"itemIdentifier" => record['messageId']}
 end
 end

 sqs_batch_response["batchItemFailures"] = batch_item_failures

Reporting batch item failures for Lambda functions with an Amazon SQS trigger 505

https://github.com/aws-samples/serverless-snippets/tree/main/integration-sqs-to-lambda-with-batch-item-handling

Amazon Simple Queue Service Developer Guide

 return sqs_batch_response
 end
end

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Reporting SQS batch item failures with Lambda using Rust.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
use aws_lambda_events::{
 event::sqs::{SqsBatchResponse, SqsEvent},
 sqs::{BatchItemFailure, SqsMessage},
};
use lambda_runtime::{run, service_fn, Error, LambdaEvent};

async fn process_record(_: &SqsMessage) -> Result<(), Error> {
 Err(Error::from("Error processing message"))
}

async fn function_handler(event: LambdaEvent<SqsEvent>) ->
 Result<SqsBatchResponse, Error> {
 let mut batch_item_failures = Vec::new();
 for record in event.payload.records {
 match process_record(&record).await {
 Ok(_) => (),
 Err(_) => batch_item_failures.push(BatchItemFailure {
 item_identifier: record.message_id.unwrap(),
 }),
 }
 }

 Ok(SqsBatchResponse {

Reporting batch item failures for Lambda functions with an Amazon SQS trigger 506

https://github.com/aws-samples/serverless-snippets/tree/main/lambda-function-sqs-report-batch-item-failures

Amazon Simple Queue Service Developer Guide

 batch_item_failures,
 })
}

#[tokio::main]
async fn main() -> Result<(), Error> {
 run(service_fn(function_handler)).await
}

For a complete list of AWS SDK developer guides and code examples, see Using Amazon SQS with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Cross-service examples for Amazon SQS using AWS SDKs

The following sample applications use AWS SDKs to combine Amazon SQS with other AWS
services. Each example includes a link to GitHub, where you can find instructions on how to set up
and run the application.

Examples

• Create a web application that sends and retrieves messages by using Amazon SQS

• Create a messenger application with Step Functions

• Create an Amazon Textract explorer application

• Detect people and objects in a video with Amazon Rekognition using an AWS SDK

• Use the AWS Message Processing Framework for .NET to publish and receive Amazon SQS
messages

Create a web application that sends and retrieves messages by using
Amazon SQS

The following code examples show how to create a messaging application by using Amazon SQS.

Cross-service examples 507

Amazon Simple Queue Service Developer Guide

Java

SDK for Java 2.x

Shows how to use the Amazon SQS API to develop a Spring REST API that sends and
retrieves messages.

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

Services used in this example

• Amazon Comprehend

• Amazon SQS

Kotlin

SDK for Kotlin

Shows how to use the Amazon SQS API to develop a Spring REST API that sends and
retrieves messages.

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

Services used in this example

• Amazon Comprehend

• Amazon SQS

For a complete list of AWS SDK developer guides and code examples, see Using Amazon SQS with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Create a messenger application with Step Functions

The following code example shows how to create an AWS Step Functions messenger application
that retrieves message records from a database table.

Create a messenger application 508

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/usecases/creating_message_application
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/usecases/creating_message_application

Amazon Simple Queue Service Developer Guide

Python

SDK for Python (Boto3)

Shows how to use the AWS SDK for Python (Boto3) with AWS Step Functions to create a
messenger application that retrieves message records from an Amazon DynamoDB table and
sends them with Amazon Simple Queue Service (Amazon SQS). The state machine integrates
with an AWS Lambda function to scan the database for unsent messages.

• Create a state machine that retrieves and updates message records from an Amazon
DynamoDB table.

• Update the state machine definition to also send messages to Amazon Simple Queue
Service (Amazon SQS).

• Start and stop state machine runs.

• Connect to Lambda, DynamoDB, and Amazon SQS from a state machine by using service
integrations.

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

Services used in this example

• DynamoDB

• Lambda

• Amazon SQS

• Step Functions

For a complete list of AWS SDK developer guides and code examples, see Using Amazon SQS with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Create an Amazon Textract explorer application

The following code examples show how to explore Amazon Textract output through an interactive
application.

Create an Amazon Textract explorer application 509

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/cross_service/stepfunctions_messenger

Amazon Simple Queue Service Developer Guide

JavaScript

SDK for JavaScript (v3)

Shows how to use the AWS SDK for JavaScript to build a React application that uses Amazon
Textract to extract data from a document image and display it in an interactive web page.
This example runs in a web browser and requires an authenticated Amazon Cognito identity
for credentials. It uses Amazon Simple Storage Service (Amazon S3) for storage, and
for notifications it polls an Amazon Simple Queue Service (Amazon SQS) queue that is
subscribed to an Amazon Simple Notification Service (Amazon SNS) topic.

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

Services used in this example

• Amazon Cognito Identity

• Amazon S3

• Amazon SNS

• Amazon SQS

• Amazon Textract

Python

SDK for Python (Boto3)

Shows how to use the AWS SDK for Python (Boto3) with Amazon Textract to detect text,
form, and table elements in a document image. The input image and Amazon Textract
output are shown in a Tkinter application that lets you explore the detected elements.

• Submit a document image to Amazon Textract and explore the output of detected
elements.

• Submit images directly to Amazon Textract or through an Amazon Simple Storage Service
(Amazon S3) bucket.

• Use asynchronous APIs to start a job that publishes a notification to an Amazon Simple
Notification Service (Amazon SNS) topic when the job completes.

• Poll an Amazon Simple Queue Service (Amazon SQS) queue for a job completion message
and display the results.

Create an Amazon Textract explorer application 510

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cross-services/textract-react

Amazon Simple Queue Service Developer Guide

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

Services used in this example

• Amazon S3

• Amazon SNS

• Amazon SQS

• Amazon Textract

For a complete list of AWS SDK developer guides and code examples, see Using Amazon SQS with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Detect people and objects in a video with Amazon Rekognition using an
AWS SDK

The following code examples show how to detect people and objects in a video with Amazon
Rekognition.

Python

SDK for Python (Boto3)

Use Amazon Rekognition to detect faces, objects, and people in videos by starting
asynchronous detection jobs. This example also configures Amazon Rekognition to notify an
Amazon Simple Notification Service (Amazon SNS) topic when jobs complete and subscribes
an Amazon Simple Queue Service (Amazon SQS) queue to the topic. When the queue
receives a message about a job, the job is retrieved and the results are output.

This example is best viewed on GitHub. For complete source code and instructions on how to
set up and run, see the full example on GitHub.

Services used in this example

• Amazon Rekognition

• Amazon SNS

• Amazon SQS

Detect people and objects in a video 511

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/cross_service/textract_explorer
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/rekognition

Amazon Simple Queue Service Developer Guide

For a complete list of AWS SDK developer guides and code examples, see Using Amazon SQS with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use the AWS Message Processing Framework for .NET to publish and
receive Amazon SQS messages

The following code example shows how to create applications that publish and receive Amazon
SQS messages using the AWS Message Processing Framework for .NET.

.NET

AWS SDK for .NET

Provides a tutorial for the AWS Message Processing Framework for .NET. The tutorial creates
a web application that allows the user to publish an Amazon SQS message and a command-
line application that receives the message.

For complete source code and instructions on how to set up and run, see the full tutorial in
the AWS SDK for .NET Developer Guide and the example on GitHub.

Services used in this example

• Amazon SQS

For a complete list of AWS SDK developer guides and code examples, see Using Amazon SQS with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use the AWS Message Processing Framework for .NET with Amazon SQS 512

https://docs.aws.amazon.com/sdk-for-net/latest/developer-guide/msg-proc-fw-get-started.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/cross-service/MessageProcessingFramework

Amazon Simple Queue Service Developer Guide

Troubleshooting issues in Amazon SQS

The following topics provide troubleshooting advice for common errors and issues that you might
encounter when using the Amazon SQS console, Amazon SQS API, or other tools with Amazon
SQS. If you find an issue that is not listed here, you can use the Feedback button on this page to
report it.

For more troubleshooting advice and answers to common support questions, visit the AWS
Knowledge Center.

Topics

• Troubleshoot an access denied error in Amazon SQS

• Troubleshoot Amazon SQS API errors

• Troubleshoot Amazon SQS dead-letter queue and DLQ redrive issues

• Troubleshoot FIFO throttling issues in Amazon SQS

• Troubleshoot messages not returned for an Amazon SQS ReceiveMessage API call

• Troubleshoot Amazon SQS network errors

• Troubleshooting Amazon Simple Queue Service queues using AWS X-Ray

Troubleshoot an access denied error in Amazon SQS

The following topics cover the most common causes of AccessDenied or
AccessDeniedException errors on Amazon SQS API calls. For more information on how to
troubleshoot these errors, see How do I troubleshoot "AccessDenied" or "AccessDeniedException"
errors on Amazon SQS API calls? in the AWS Knowledge Center Guide.

Error message examples:

An error occurred (AccessDenied) when calling the SendMessage operation: Access to
 the resource https://sqs.us-east-1.amazonaws.com/ is denied.

- or -

An error occurred (KMS.AccessDeniedException) when calling the SendMessage

Access denied error 513

https://aws.amazon.com/premiumsupport/knowledge-center/
https://aws.amazon.com/premiumsupport/knowledge-center/
https://repost.aws/knowledge-center/sqs-accessdenied-errors
https://repost.aws/knowledge-center/sqs-accessdenied-errors

Amazon Simple Queue Service Developer Guide

 operation: User: arn:aws:iam::xxxxx:user/xxxx is not authorized to perform:
 kms:GenerateDataKey on resource: arn:aws:kms:us-east-1:xxxx:key/xxxx with an
 explicit
 deny.

Topics

• Amazon SQS queue policy and IAM policy

• AWS Key Management Service permissions

• VPC endpoint policy

• Organization service control policy

Amazon SQS queue policy and IAM policy

To verify if the requester has proper permissions to perform an Amazon SQS operation, do the
following:

• Identify the IAM principal that’s making the Amazon SQS API call. If the IAM principal is from
the same account, then either the Amazon SQS queue policy or the AWS Identity and Access
Management (IAM) policy must include permissions to explicitly allow access for the action.

• If the principal is an IAM entity:

• You can identify your IAM user or role by checking the upper-right corner of the AWS
Management Console, or by using the aws sts get-caller-identity command.

• Check the IAM policies that are related to the IAM user or role. You can use one of the
following methods:

• Test IAM policies with the IAM Policy Simulator.

• Review the different IAM policy types.

• If needed, edit your IAM user policy.

• Check the queue policy and edit if required.

• If the principal is an AWS service, then the Amazon SQS queue policy must explicitly allow
access.

• If the principal is a cross-account principal, then both the Amazon SQS queue policy and the IAM
policy must explicitly allow access.

• If the policy uses a condition element, then check that the condition restricts access.

Amazon SQS queue policy and IAM policy 514

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/sts/get-caller-identity.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_testing-policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#access_policy-types
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage-edit.html

Amazon Simple Queue Service Developer Guide

Important

An explicit deny in either policy overrides an explicit allow. Here are some basic examples of
Amazon SQS policies.

AWS Key Management Service permissions

If your Amazon SQS queue has server-side encryption (SSE) turned on with a customer managed
AWS KMS key, then permissions must be granted to both producers and consumers. To confirm if
a queue is encrypted, you can use the GetQueueAttributes API KmsMasterKeyId attribute, or
from the queue console under Encryption.

• Required permissions for producers:

{
"Effect": "Allow",
"Action": [
 "kms:GenerateDataKey",
 "kms:Decrypt"
],
"Resource": "<Key ARN>"
}

• Required permissions for consumers:

{
"Effect": "Allow",
"Action": [
 "kms:Decrypt"
],
"Resource": "<Key ARN>"
}

• Required permissions for cross-account access:

{
"Effect": "Allow",
"Action": [
 "kms:DescribeKey",
 "kms:Decrypt",

AWS Key Management Service (AWS KMS) permissions 515

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_GetQueueAttributes.html

Amazon Simple Queue Service Developer Guide

 "kms:ReEncrypt",
 "kms:GenerateDataKey"
],
"Resource": "<Key ARN>"
}

You can use any of the following to enable encryption for an Amazon SQS queue:

• SSE-Amazon SQS (Encryption key created and managed by the Amazon SQS service.)

• AWS managed default key (alias/aws/sqs)

• Customer managed key

However, if you are using an AWS-managed KMS key, you can't modify the default key policy.
Therefore, to provide access to other services and cross-accounts, use customer managed key.
Doing this allows you to edit the key policy.

VPC endpoint policy

If you access Amazon SQS through an Amazon Virtual Private Cloud (Amazon VPC) endpoint, the
Amazon SQS VPC endpoint policy must allow access. You can create a policy for Amazon VPC
endpoints for Amazon SQS, where you can specify the following:

1. The principal that can perform actions.

2. The actions that can be performed.

3. The resources on which actions can be performed.

In the following example, the VPC endpoint policy specifies that the IAM user MyUser is allowed
to send messages to the Amazon SQS queue MyQueue. Other actions, IAM users, and Amazon SQS
resources are denied access through the VPC endpoint.

{
 "Statement": [{
 "Action": ["sqs:SendMessage"],
 "Effect": "Allow",
 "Resource": "arn:aws:sqs:us-east-2:123456789012:MyQueue",
 "Principal": {
 "AWS": "arn:aws:iam:123456789012:user/MyUser"
 }

VPC endpoint policy 516

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#aws-managed-cmk
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#customer-cmk

Amazon Simple Queue Service Developer Guide

 }]
}

Organization service control policy

If your AWS account belongs to an organization, AWS Organizations policies can block you from
accessing your Amazon SQS queues. By default, AWS Organizations policies do not block any
requests to Amazon SQS. However, make sure that your AWS Organizations policies haven’t been
configured to block access to Amazon SQS queues. For instructions on how to check your AWS
Organizations policies, see Listing all policies in the AWS Organizations User Guide.

Troubleshoot Amazon SQS API errors

The following topics cover the most common errors returned when making Amazon SQS API calls,
and how to troubleshoot them.

Topics

• QueueDoesNotExist error

• InvalidAttributeValue error

• ReceiptHandle error

QueueDoesNotExist error

This error will be returned when the Amazon SQS service can't find the mentioned queue for the
Amazon SQS action.

Possible causes and mitigations:

• Incorrect region: Review the Amazon SQS client configuration to confirm that you configured
the correct Region on the client. When you don't configure a Region on the client, then the SDK
or AWS CLI chooses the Region from the configuration file or the environment variable. If the
SDK doesn't find a Region in the configuration file, then the SDK sets the Region to us-east-1 by
default.

• Queue might be recently deleted: If the queue was deleted before the API call was made, then
the API call will return this error. Check CloudTrail for any DeleteQueue operations before the
time of the error.

Organization service control policy 517

https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_info-operations.html#list-all-pols-in-org
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-files.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_DeleteQueue.html

Amazon Simple Queue Service Developer Guide

• Permission issues: If the requesting AWS Identity and Access Management (IAM) user or role
doesn't have the required permissions, then you might receive the following error:

The specified queue does not exist or you do not have access to it.

Check the permissions, and make the API call with correct permissions.

For more details on troubleshooting the QueueDoesNotExist error, see How do I troubleshoot
the QueueDoesNotExist error when I make API calls to my Amazon SQS queue? in the AWS
Knowledge Center Guide.

InvalidAttributeValue error

This error will be returned upon updating the Amazon SQS queue resource policy, or properties
with an incorrect policy or a principal.

Possible causes and mitigations:

• Invalid resource policy: Check that the resource policy has all the required fields. For more
information, see IAM JSON policy elements reference and Validating IAM policies. You can also
use the IAM policy generator to create and test an Amazon SQS resource policy. Make sure that
the policy is in JSON format.

• Invalid principal: Ensure that the Principal element exists in the resource policy and that the
value is valid. If your Amazon SQS resource policy Principal element includes an IAM entity,
make sure that the entity exists before you use the policy. Amazon SQS validates the resource
policy and checks for the IAM entity. If the IAM entity doesn't exist, you will receive an error. To
confirm IAM entities, use the GetRole and GetUser APIs.

For additional information on how to troubleshoot an InvalidAttributeValue error, see How
do I troubleshoot the QueueDoesNotExist error when I make API calls to my Amazon SQS queue? in
the AWS Knowledge Center Guide.

ReceiptHandle error

Upon making a DeleteMessage API call, the error ReceiptHandleIsInvalid or
InvalidParameterValue might be returned if the receipt handle is incorrect or expired.

InvalidAttributeValue error 518

https://repost.aws/knowledge-center/sqs-queuedoesnotexist-errors
https://repost.aws/knowledge-center/sqs-queuedoesnotexist-errors
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_policy-validator.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-policy-generation.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetRole.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetUser.html
https://repost.aws/knowledge-center/sqs-invalid-parameter-policy
https://repost.aws/knowledge-center/sqs-invalid-parameter-policy
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_DeleteMessage.html

Amazon Simple Queue Service Developer Guide

• ReceiptHandleIsInvalid error: If the receipt handle is incorrect, you'll receive an error similar to
this example:

An error occurred (ReceiptHandleIsInvalid) when calling the DeleteMessage operation:
 The input receipt handle <YOUR RECEIPT HANDLE> is not a valid receipt handle.

• InvalidParameterValue error: If the receipt handle is expired, you'll receive an error similar to
this example:

An error occurred (InvalidParameterValue) when calling the DeleteMessage operation:
 Value <YOUR RECEIPT HANDLE> for parameter ReceiptHandle is invalid. Reason: The
 receipt handle has expired.

Possible causes and mitigations:

The receipt handle is created for every received message, and is only valid for the visibility timeout
period. When the visibility timeout period expires, the message becomes visible on the queue for
consumers. When you receive the message again from the consumer, you receive a new receipt
handle. To prevent incorrect or expired receipt handle errors, use the correct receipt handle to
delete the message within the Amazon SQS queue visibility timeout period.

For additional information on how to troubleshoot a ReceiptHandle error, see How do I
troubleshoot "ReceiptHandleIsInvalid" and "InvalidParameterValue" errors when I use the Amazon
SQS DeleteMessage API call? in the AWS Knowledge Center Guide.

Troubleshoot Amazon SQS dead-letter queue and DLQ redrive
issues

The following topics cover the most common causes of Amazon SQS DLQ and DLQ redrive issues,
and how to troubleshoot them. For more information, see How do I troubleshoot Amazon SQS DLQ
redrive issues? in the AWS Knowledge Center Guide.

Topics

• DLQ issues

• DLQ-redrive issues

DLQ and DLQ redrive issues 519

https://repost.aws/knowledge-center/sqs-receipt-handle-error
https://repost.aws/knowledge-center/sqs-receipt-handle-error
https://repost.aws/knowledge-center/sqs-receipt-handle-error
https://repost.aws/knowledge-center/sqs-dead-letter-queue-redrive
https://repost.aws/knowledge-center/sqs-dead-letter-queue-redrive

Amazon Simple Queue Service Developer Guide

DLQ issues

Learn about common DLQ issues and how to solve them.

Topics

• Viewing messages using the console might cause messages to be moved to a dead-letter queue

• The NumberOfMessagesSent and NumberOfMessagesReceived for a dead-letter queue don't
match

• Creating and configuring a dead-letter queue redrive

• Standard and FIFO queue message failure handling

Viewing messages using the console might cause messages to be moved to a
dead-letter queue

Amazon SQS counts viewing a message in the console against the corresponding queue's redrive
policy. Therefore, if you view a message in the console the number of times specified in the
corresponding queue's redrive policy, the message is moved to the corresponding queue's dead-
letter queue.

To adjust this behavior, you can do one of the following:

• Increase the Maximum Receives setting for the corresponding queue's redrive policy.

• Avoid viewing the corresponding queue's messages in the console.

The NumberOfMessagesSent and NumberOfMessagesReceived for a dead-
letter queue don't match

If you send a message to a dead-letter queue manually, it is captured by the
NumberOfMessagesSent metric. However, if a message is sent to a dead-letter queue as a result
of a failed processing attempt, it isn't captured by this metric. Therefore, it's possible for the values
of NumberOfMessagesSent and NumberOfMessagesReceived to be different.

Creating and configuring a dead-letter queue redrive

Dead-letter queue redrive requires you to set appropriate permissions for Amazon SQS to receive
messages from the dead-letter queue, and send messages to the destination queue. If you don't

DLQ issues 520

Amazon Simple Queue Service Developer Guide

have the correct permissions, the dead-letter queue redrive task can fail. You can view the status of
your message redrive task to remediate the issues, and try again.

Standard and FIFO queue message failure handling

Standard queues keep processing messages until the expiration of the retention period. This
continuous processing minimizes chances of the queue being blocked by unconsumed messages.
Having a large number of messages that the consumer repeatedly fails to delete can increase costs,
and place extra load on the hardware. To keep costs down, move failed messages to the dead-
letter queue.

Standard queues also allow a high number of in-flight messages. If the majority of your messages
can't be consumed, and aren't sent to a dead-letter queue, your rate of processing messages can
slow down. To maintain the efficiency of your queue, make sure that your application correctly
handles message processing.

FIFO queues provide exactly-once processing by consuming messages in sequence from a message
group. Therefore, although the consumer can continue to retrieve ordered messages from another
message group, the first message group remains unavailable until the message blocking the queue
is processed successfully or moved to a dead-letter queue.

Additionally, FIFO queues allow a lower number of in-flight messages. To keep your FIFO queue
from getting blocked by a message, make sure that your application correctly handles message
processing.

For more information, see Amazon SQS message quotas and Amazon SQS best practices.

DLQ-redrive issues

Learn about common DLQ-redrive issues and how to solve them.

Topics

• AccessDenied permission issue

• NonExistentQueue error

• CouldNotDetermineMessageSource error

DLQ-redrive issues 521

Amazon Simple Queue Service Developer Guide

AccessDenied permission issue

The AccessDenied error occurs when the DLQ redrive fails because the AWS Identity and Access
Management (IAM) entity doesn't have the required permissions.

Example error message:

Failed to create redrive task. Error code: AccessDenied - Queue Permissions to Redrive.

The following API permissions are required to make DLQ redrive requests:

To start a message redrive:

• Dead-letter queue permissions:

• sqs:StartMessageMoveTask

• sqs:ReceiveMessage

• sqs:DeleteMessage

• sqs:GetQueueAttributes

• kms:Decrypt – When either the dead-letter queue or the original source queue are
encrypted.

• Destination queue permissions:

• sqs:SendMessage

• kms:GenerateDataKey – When the destination queue is encrypted.

• kms:Decrypt – When the destination queue is encrypted.

To cancel an in-progress message redrive:

• Dead-letter queue permissions:

• sqs:CancelMessageMoveTask

• sqs:ReceiveMessage

• sqs:DeleteMessage

• sqs:GetQueueAttributes

• kms:Decrypt – When either the dead-letter queue or the original source queue are
encrypted.

DLQ-redrive issues 522

Amazon Simple Queue Service Developer Guide

To show a message move status:

• Dead-letter queue permissions:

• sqs:ListMessageMoveTasks

• sqs:GetQueueAttributes

NonExistentQueue error

The NonExistentQueue error occurs when the Amazon SQS source queue doesn't exist, or was
deleted. Check and redrive to an Amazon SQS queue that is present.

Example error message:

Failed: AWS.SimpleQueueService.NonExistentQueue

CouldNotDetermineMessageSource error

The CouldNotDetermineMessageSource error occurs when you attempt to start a DLQ redrive
with the following scenarios:

• An Amazon SQS message sent directly to the DLQ with SendMessage API.

• A message from the Amazon Simple Notification Service (Amazon SNS) topic or AWS Lambda
function with the DLQ configured.

To resolve this error, choose Redrive to a custom destination when you start the redrive. Then,
enter the Amazon SQS queue ARN to move all messages from the DLQ to the destination queue.

Example error message:

Failed: CouldNotDetermineMessageSource

Troubleshoot FIFO throttling issues in Amazon SQS

By default, FIFO queues support 300 transactions per second, per API action for SendMessage,
ReceiveMessage, and DeleteMessage. Requests over 300 TPS get the ThrottlingException
error even if messages in the queue are available. To mitigate this, you can use following methods:

• Enabling high throughput for FIFO queues in Amazon SQS.

FIFO throttling issues 523

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SendMessage.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SendMessage.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ReceiveMessage.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_DeleteMessage.html

Amazon Simple Queue Service Developer Guide

• Use the Amazon SQS API batch actions SendMessageBatch, DeleteMessageBatch, and
ChangeMessageVisibilityBatch to increase the TPS limit of up to 3,000 messages
per second per API action, and to reduce cost. For the ReceiveMessage API, set the
MaxNumberofMessages parameter to receive up to ten messages per transaction. For more
information, see Amazon SQS batch actions.

• For FIFO queues with high throughput, follow the recommendations to optimize partition
utilization. Send messages with the same message group IDs in batches. Delete messages, or
change the message visibility timeout values in batches with receipt handles from the same
ReceiveMessage API requests.

• Increase the number of unique MessageGroupId values. This allows for an even distribution
across FIFO queue partitions. For more information, see Using the Amazon SQS message group
ID.

For more information, see Why doesn't my Amazon SQS FIFO queue return all messages or
messages in other message groups? in the AWS Knowledge Center Guide.

Troubleshoot messages not returned for an Amazon SQS
ReceiveMessage API call

The following topics cover the most common causes why an Amazon SQS message may not be
returned to consumers, and how to troubleshoot them. For more information, see Why can't I
receive messages from my Amazon SQS queue? in the AWS Knowledge Center Guide.

Topics

• Empty queue

• In flight limit reached

• Message delay

• Message is in flight

• Polling method

Empty queue

To determine if a queue is empty, use long polling to call the ReceiveMessage
API. You can also use the ApproximateNumberOfMessagesVisible,

Messages not returned for a ReceiveMessage API call 524

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SendMessage.html#SQS-SendMessage-request-MessageGroupId
https://repost.aws/knowledge-center/sqs-fifo-messages-not-returned
https://repost.aws/knowledge-center/sqs-fifo-messages-not-returned
https://repost.aws/knowledge-center/sqs-queue-message
https://repost.aws/knowledge-center/sqs-queue-message
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ReceiveMessage.html

Amazon Simple Queue Service Developer Guide

ApproximateNumberOfMessagesNotVisible, and
ApproximateNumberOfMessagesDelayed CloudWatch metrics. If all the metric values are set to
0 for several minutes, the queue is considered empty.

In flight limit reached

If you use long polling and if the queue’s in flight limit (20000 for FIFO, 120000 for standard by
default) is breached, Amazon SQS won't return error messages that exceed quota limits.

Message delay

If the Amazon SQS queue is configured as a delay queue, or the messages were sent with message
timers, then the messages aren't visible until the delay time ends. To verify if a queue is configured
as a delay queue, use the GetQueueAttributes API DelaySeconds attribute, or from the queue
console under Delivery delay. Check the ApproximateNumberOfMessagesDelayed CloudWatch
metric to understand if any messages are delayed.

Message is in flight

If a different consumer has polled the message, the message will be in flight or invisible for
the visibility timeout period. The additional polls might return an empty receive. Check the
ApproximateNumberOfMessagesVisible CloudWatch metric to understand the number of messages
that are available to be received. In the case of FIFO queues, if a message with the message
group ID is in flight, then no more messages will be returned unless you delete the message, or it
becomes visible. This is because message ordering is maintained at the message group level in a
FIFO queue.

Polling method

If you are using short polling, (WaitTimeSeconds is 0) Amazon SQS samples a subset of its servers,
and returns messages from only those servers. Therefore, you might not get the messages even if
they are available for to be received. Subsequent poll requests will return the messages.

If you are using long polling, Amazon SQS polls all the servers and sends a response after
collecting at least one available message, and up to the maximum number that's specified. If the
value for ReceiveMessage WaitTimeSeconds is too low, you might not receive all the available
messages.

In flight limit reached 525

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_GetQueueAttributes.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ReceiveMessage.html#API_ReceiveMessage_RequestSyntax
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ReceiveMessage.html#API_ReceiveMessage_RequestSyntax

Amazon Simple Queue Service Developer Guide

Troubleshoot Amazon SQS network errors

The following topics cover the most common causes for network issues in Amazon SQS, and how
to troubleshoot them.

Topics

• ETIMEOUT error

• UnknownHostException error

ETIMEOUT error

The ETIMEOUT error occurs when the client can't establish a TCP connection to an Amazon SQS
endpoint.

Troubleshooting:

• Check the network connection

Test your network connection to Amazon SQS by running commands like telnet.

Example: telnet sqs.us-east-1.amazonaws.com 443

• Check network settings

• Make sure that your local firewall rules, routes, and access control lists (ACLs) allow traffic on
the port that you use.

• The security group outbound (egress) rules must allow traffic to the port 80 or 443.

• The network ACL outbound (egress) rules must allow traffic to TCP port 80 or 443.

• The network ACL inbound (ingress) rules must allow traffic on TCP ports 1024-65535.

• Amazon Elastic Compute Cloud (Amazon EC2) instances that connect to the public internet
must have internet connectivity.

• Amazon Virtual Private Cloud (Amazon VPC) endpoints

If you access Amazon SQS through an Amazon VPC endpoint, then the endpoints security group
must allow inbound traffic to the clients security group on port 443. The network ACL associated
with the subnet of the VPC endpoint must have this configuration:

Network errors 526

https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Internet_Gateway.html#vpc-igw-internet-access

Amazon Simple Queue Service Developer Guide

• The network ACL outbound (egress) rules must allow traffic on TCP ports 1024-65535
(ephemeral ports).

• The network ACL inbound (ingress) rules must allow traffic on port 443.

Also, the Amazon SQS VPC endpoint AWS Identity and Access Management (IAM) policy must allow
access. The following example VPC endpoint policy specifies that the IAM user MyUser is allowed
to send messages to the Amazon SQS queue MyQueue. Other actions, IAM users, and Amazon SQS
resources are denied access through the VPC endpoint.

{
 "Statement": [{
 "Action": ["sqs:SendMessage"],
 "Effect": "Allow",
 "Resource": "arn:aws:sqs:us-east-2:123456789012:MyQueue",
 "Principal": {
 "AWS": "arn:aws:iam:123456789012:user/MyUser"
 }
 }]
}

UnknownHostException error

The UnknownHostException error occurs when the host IP address couldn't be determined.

Troubleshooting:

Use the nslookup utility to return the IP address associated with the host name:

• Windows and Linux OS

nslookup sqs.<region>.amazonaws.com

• AWS CLI or SDK for Python legacy endpoints:

nslookup <region>.queue.amazonaws.com

If you received an unsuccessful output, follow the instructions in How does DNS work and how do I
troubleshoot partial or intermittent DNS failures? in the AWS Knowledge Center Guide.

UnknownHostException error 527

https://repost.aws/knowledge-center/sqs-connection-error
https://repost.aws/knowledge-center/sqs-connection-error

Amazon Simple Queue Service Developer Guide

If you received a valid output, then it is likely to be an application-level issue. To resolve
application-level issues, try the following methods:

• Restart your application.

• Confirm that your Java application doesn't have a bad DNS cache. If possible, configure your
application to adhere to the DNS TTL. For more information, see Setting the JVM TTL for DNS
name lookups.

For additional information on how to troubleshoot network errors, see How do I troubleshoot
Amazon SQS “ETIMEOUT” and “UnknownHostException” connection errors? in the AWS Knowledge
Center Guide.

Troubleshooting Amazon Simple Queue Service queues using
AWS X-Ray

AWS X-Ray collects data about requests that your application serves and lets you view and filter
data to identify potential issues and opportunities for optimization. For any traced request to your
application, you can see detailed information about the request, the response, and the calls that
your application makes to downstream AWS resources, microservices, databases and HTTP web
APIs.

To send AWS X-Ray trace headers through Amazon SQS, you can do one of the following:

• Use the X-Amzn-Trace-Id tracing header.

• Use the AWSTraceHeader message system attribute.

To collect data on errors and latency, you must instrument the AmazonSQS client using the AWS X-
Ray SDK.

You can use the AWS X-Ray console to view the map of connections between Amazon SQS and
other services that your application uses. You can also use the console to view metrics such as
average latency and failure rates. For more information, see Amazon SQS and AWS X-Ray in the
AWS X-Ray Developer Guide.

Troubleshooting queues using X-Ray 528

https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/jvm-ttl-dns.html
https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/jvm-ttl-dns.html
https://repost.aws/knowledge-center/sqs-connection-error
https://repost.aws/knowledge-center/sqs-connection-error
https://docs.aws.amazon.com/xray/latest/devguide/xray-concepts.html#xray-concepts-tracingheader
https://docs.aws.amazon.com/sdk-for-java/latest/reference/index.html?com/amazonaws/services/sqs/AmazonSQSClient.html
https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/index.html
https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/index.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-services-sqs.html

Amazon Simple Queue Service Developer Guide

Security in Amazon SQS

This section provides information about Amazon SQS security, authentication and access control,
and the Amazon SQS Access Policy Language.

Topics

• Data protection in Amazon SQS

• Identity and access management in Amazon SQS

• Logging and monitoring in Amazon SQS

• Compliance validation for Amazon SQS

• Resilience in Amazon SQS

• Infrastructure security in Amazon SQS

• Amazon SQS security best practices

Data protection in Amazon SQS

The AWS shared responsibility model applies to data protection in Amazon Simple Queue Service.
As described in this model, AWS is responsible for protecting the global infrastructure that runs all
of the AWS Cloud. You are responsible for maintaining control over your content that is hosted on
this infrastructure. You are also responsible for the security configuration and management tasks
for the AWS services that you use. For more information about data privacy, see the Data Privacy
FAQ. For information about data protection in Europe, see the AWS Shared Responsibility Model
and GDPR blog post on the AWS Security Blog.

For data protection purposes, we recommend that you protect AWS account credentials and set
up individual users with AWS IAM Identity Center or AWS Identity and Access Management (IAM).
That way, each user is given only the permissions necessary to fulfill their job duties. We also
recommend that you secure your data in the following ways:

• Use multi-factor authentication (MFA) with each account.

• Use SSL/TLS to communicate with AWS resources. We require TLS 1.2 and recommend TLS 1.3.

• Set up API and user activity logging with AWS CloudTrail.

• Use AWS encryption solutions, along with all default security controls within AWS services.

Data protection 529

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/data-privacy-faq
https://aws.amazon.com/compliance/data-privacy-faq
https://aws.amazon.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr/
https://aws.amazon.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr/

Amazon Simple Queue Service Developer Guide

• Use advanced managed security services such as Amazon Macie, which assists in discovering and
securing sensitive data that is stored in Amazon S3.

• If you require FIPS 140-2 validated cryptographic modules when accessing AWS through a
command line interface or an API, use a FIPS endpoint. For more information about the available
FIPS endpoints, see Federal Information Processing Standard (FIPS) 140-2.

We strongly recommend that you never put confidential or sensitive information, such as your
customers' email addresses, into tags or free-form text fields such as a Name field. This includes
when you work with Amazon SQS or other AWS services using the console, API, AWS CLI, or AWS
SDKs. Any data that you enter into tags or free-form text fields used for names may be used for
billing or diagnostic logs. If you provide a URL to an external server, we strongly recommend that
you do not include credentials information in the URL to validate your request to that server.

The following sections provide information about data protection in Amazon SQS.

Topics

• Data encryption in Amazon SQS

• Internetwork traffic privacy in Amazon SQS

Data encryption in Amazon SQS

Data protection refers to protecting data while in-transit (as it travels to and from Amazon SQS)
and at rest (while it is stored on disks in Amazon SQS data centers). You can protect data in
transit using Secure Sockets Layer (SSL) or client-side encryption. By default, Amazon SQS stores
messages and files using disk encryption. You can protect data at rest by requesting Amazon SQS
to encrypt your messages before saving them to the encrypted file system in its data centers.
Amazon SQS recommends using SSE for optimized data encryption.

Topics

• Encryption at rest in Amazon SQS

• Amazon SQS Key management

Encryption at rest in Amazon SQS

Server-side encryption (SSE) lets you transmit sensitive data in encrypted queues. SSE protects the
contents of messages in queues using SQS-managed encryption keys (SSE-SQS) or keys managed

Data encryption 530

https://aws.amazon.com/compliance/fips/

Amazon Simple Queue Service Developer Guide

in the AWS Key Management Service (SSE-KMS). For information about managing SSE using the
AWS Management Console, see the following:

• Configuring SSE-SQS for a queue (console)

• Configuring SSE-KMS for a queue (console)

For information about managing SSE using the AWS SDK for Java (and the CreateQueue,
SetQueueAttributes, and GetQueueAttributes actions), see the following examples:

• Using server-side encryption with Amazon SQS queues

• Configuring KMS permissions for AWS services

SSE encrypts messages as soon as Amazon SQS receives them. The messages are stored in
encrypted form and Amazon SQS decrypts messages only when they are sent to an authorized
consumer.

Important

All requests to queues with SSE enabled must use HTTPS and Signature Version 4.
An encrypted queue that uses the default key (AWS managed KMS key for Amazon SQS)
cannot invoke a Lambda function in a different AWS account.
Some features of AWS services that can send notifications to Amazon SQS using the AWS
Security Token Service AssumeRole action are compatible with SSE but work only with
standard queues:

• Auto Scaling Lifecycle Hooks

• AWS Lambda Dead-Letter Queues

For information about compatibility of other services with encrypted queues, see Configure
KMS permissions for AWS services and your service documentation.

AWS KMS combines secure, highly available hardware and software to provide a key management
system scaled for the cloud. When you use Amazon SQS with AWS KMS, the data keys that encrypt
your message data are also encrypted and stored with the data they protect.

Data encryption 531

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_CreateQueue.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SetQueueAttributes.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_GetQueueAttributes.html
https://docs.aws.amazon.com/general/latest/gr/signature-version-4.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/lifecycle-hooks.html
https://docs.aws.amazon.com/lambda/latest/dg/dlq.html

Amazon Simple Queue Service Developer Guide

The following are benefits of using AWS KMS:

• You can create and manage AWS KMS keys yourself.

• You can also use the AWS managed KMS key for Amazon SQS, which is unique for each account
and region.

• The AWS KMS security standards can help you meet encryption-related compliance
requirements.

For more information, see What is AWS Key Management Service? in the AWS Key Management
Service Developer Guide.

Topics

• Encryption scope

• Key terms

Encryption scope

SSE encrypts the body of a message in an Amazon SQS queue.

SSE doesn't encrypt the following:

• Queue metadata (queue name and attributes)

• Message metadata (message ID, timestamp, and attributes)

• Per-queue metrics

Encrypting a message makes its contents unavailable to unauthorized or anonymous users. With
SSE enabled, anonymous SendMessage and ReceiveMessage requests to the encrypted queue
will be rejected. Amazon SQS security best practices recommends against using anonymous
requests. If you wish to send anonymous requests to an Amazon SQS queue, make sure you disable
SSE. This doesn't affect the normal functioning of Amazon SQS:

• A message is encrypted only if it is sent after the encryption of a queue is enabled. Amazon SQS
doesn't encrypt backlogged messages.

• Any encrypted message remains encrypted even if the encryption of its queue is disabled.

Moving a message to a dead-letter queue doesn't affect its encryption:

Data encryption 532

https://docs.aws.amazon.com/kms/latest/developerguide/overview.html

Amazon Simple Queue Service Developer Guide

• When Amazon SQS moves a message from an encrypted source queue to an unencrypted dead-
letter queue, the message remains encrypted.

• When Amazon SQS moves a message from an unencrypted source queue to an encrypted dead-
letter queue, the message remains unencrypted.

Key terms

The following key terms can help you better understand the functionality of SSE. For detailed
descriptions, see the Amazon Simple Queue Service API Reference.

Data key

The key (DEK) responsible for encrypting the contents of Amazon SQS messages.

For more information, see Data Keys in the AWS Key Management Service Developer Guide in the
AWS Encryption SDK Developer Guide.

Data key reuse period

The length of time, in seconds, for which Amazon SQS can reuse a data key to encrypt or
decrypt messages before calling AWS KMS again. An integer representing seconds, between
60 seconds (1 minute) and 86,400 seconds (24 hours). The default is 300 (5 minutes). For more
information, see Understanding the data key reuse period.

Note

In the unlikely event of being unable to reach AWS KMS, Amazon SQS continues to use
the cached data key until a connection is reestablished.

KMS key ID

The alias, alias ARN, key ID, or key ARN of an AWS managed KMS key or a custom KMS key
—in your account or in another account. While the alias of the AWS managed KMS key for
Amazon SQS is always alias/aws/sqs, the alias of a custom KMS key can, for example, be
alias/MyAlias. You can use these KMS keys to protect the messages in Amazon SQS queues.

Note

Keep the following in mind:

Data encryption 533

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#data-keys

Amazon Simple Queue Service Developer Guide

• If you don't specify a custom KMS key, Amazon SQS uses the AWS managed KMS key
for Amazon SQS.

• The first time you use the AWS Management Console to specify the AWS managed
KMS key for Amazon SQS for a queue, AWS KMS creates the AWS managed KMS key
for Amazon SQS.

• Alternatively, the first time you use the SendMessage or SendMessageBatch action
on a queue with SSE enabled, AWS KMS creates the AWS managed KMS key for
Amazon SQS.

You can create KMS keys, define the policies that control how KMS keys can be used, and audit
KMS key usage using the Customer managed keys section of the AWS KMS console or the
CreateKey AWS KMS action. For more information, see KMS keys and Creating Keys in the
AWS Key Management Service Developer Guide. For more examples of KMS key identifiers, see
KeyId in the AWS Key Management Service API Reference. For information about finding KMS key
identifiers, see Find the Key ID and ARN in the AWS Key Management Service Developer Guide.

Important

There are additional charges for using AWS KMS. For more information, see Estimating
AWS KMS costs and AWS Key Management Service Pricing.

Envelope Encryption

The security of your encrypted data depends in part on protecting the data key that can decrypt
it. Amazon SQS uses the KMS key to encrypt the data key and then the encrypted data key is
stored with the encrypted message. This practice of using a KMS key to encrypt data keys is
known as envelope encryption.

For more information, see Envelope Encryption in the AWS Encryption SDK Developer Guide.

Amazon SQS Key management

Amazon SQS integrates with the AWS Key Management Service (KMS) to manage KMS keys for
server-side encryption (SSE). See Encryption at rest in Amazon SQS for SSE information and key
management definitions. Amazon SQS uses KMS keys to validate and secure the data keys that

Data encryption 534

https://docs.aws.amazon.com/kms/latest/APIReference/API_CreateKey.html
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys
https://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_DescribeKey.html#API_DescribeKey_RequestParameters
https://docs.aws.amazon.com/kms/latest/developerguide/viewing-keys.html#find-cmk-id-arn
https://aws.amazon.com/kms/pricing
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/how-it-works.html#envelope-encryption
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys

Amazon Simple Queue Service Developer Guide

encrypt and decrypt the messages. The following sections provide information about working with
KMS keys and data keys in the Amazon SQS service.

Topics

• Configuring AWS KMS permissions

• Understanding the data key reuse period

• Estimating AWS KMS costs

• AWS KMS errors

Configuring AWS KMS permissions

Every KMS key must have a key policy. Note that you cannot modify the key policy of an AWS
managed KMS key for Amazon SQS. The policy for this KMS key includes permissions for all
principals in the account (that are authorized to use Amazon SQS) to use encrypted queues.

For a customer managed KMS key, you must configure the key policy to add permissions for each
queue producer and consumer. To do this, you name the producer and consumer as users in the
KMS key policy. For more information about AWS KMS permissions, see AWS KMS resources and
operations or AWS KMS API permissions reference in the AWS Key Management Service Developer
Guide.

Alternatively, you can specify the required permissions in an IAM policy assigned to the principals
that produce and consume encrypted messages. For more information, see Using IAM Policies with
AWS KMS in the AWS Key Management Service Developer Guide.

Note

While you can configure global permissions to send to and receive from Amazon SQS,
AWS KMS requires explicitly naming the full ARN of KMS keys in specific regions in the
Resource section of an IAM policy.

Configure KMS permissions for AWS services

Several AWS services act as event sources that can send events to Amazon SQS queues. To allow
these event sources to work with encrypted queues, you must create a customer managed KMS key
and add permissions in the key policy for the service to use the required AWS KMS API methods.
Perform the following steps to configure the permissions.

Data encryption 535

https://docs.aws.amazon.com/kms/latest/developerguide/control-access-overview.html#kms-resources-operations
https://docs.aws.amazon.com/kms/latest/developerguide/control-access-overview.html#kms-resources-operations
https://docs.aws.amazon.com/kms/latest/developerguide/kms-api-permissions-reference.html
https://docs.aws.amazon.com/kms/latest/developerguide/iam-policies.html
https://docs.aws.amazon.com/kms/latest/developerguide/iam-policies.html

Amazon Simple Queue Service Developer Guide

Warning

When changing the KMS key for encrypting your Amazon SQS messages, be aware that
existing messages encrypted with the old KMS key will remain encrypted with that key. To
decrypt these messages, you must retain the old KMS key and ensure that its key policy
grants Amazon SQS the permissions for kms:Decrypt and kms:GenerateDataKey. After
updating to a new KMS key for encrypting new messages, ensure all existing messages
encrypted with the old KMS key are processed and removed from the queue before
deleting or disabling the old KMS key.

1. Create a customer managed KMS key. For more information, see Creating Keys in the AWS Key
Management Service Developer Guide.

2. To allow the AWS service event source to use the kms:GenerateDataKey and kms:Decrypt
API methods, add the following statement to the KMS key policy.

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Principal": {
 "Service": "service.amazonaws.com"
 },
 "Action": [
 "kms:GenerateDataKey",
 "kms:Decrypt"
],
 "Resource": "*"
 }]
}

Replace "service" in the above example with the Service name of the event source. Event
sources include the following services.

Event source Service name

Amazon CloudWatch Events events.amazonaws.com

Data encryption 536

https://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/events/Create-CloudWatch-Events-Rule.html

Amazon Simple Queue Service Developer Guide

Event source Service name

Amazon S3 event notifications s3.amazonaws.com

Amazon SNS topic subscriptions sns.amazonaws.com

3. Configure an existing SSE queue using the ARN of your KMS key.

4. Provide the ARN of the encrypted queue to the event source.

Configure AWS KMS permissions for producers

When the data key reuse period expires, the producer's next call to SendMessage or
SendMessageBatch also triggers calls to kms:GenerateDataKey and kms:Decrypt. The call to
kms:Decrypt is to verify the integrity of the new data key before using it. Therefore, the producer
must have the kms:GenerateDataKey and kms:Decrypt permissions for the KMS key.

Add the following statement to the IAM policy of the producer. Remember to use the correct ARN
values for the key resource and the queue resource.

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Action": [
 "kms:GenerateDataKey",
 "kms:Decrypt"
],
 "Resource": "arn:aws:kms:us-
east-2:123456789012:key/1234abcd-12ab-34cd-56ef-1234567890ab"
 }, {
 "Effect": "Allow",
 "Action": [
 "sqs:SendMessage"
],
 "Resource": "arn:aws:sqs:*:123456789012:MyQueue"
 }]
}

Data encryption 537

https://docs.aws.amazon.com/AmazonS3/latest/dev/NotificationHowTo.html
https://docs.aws.amazon.com/sns/latest/dg/sns-tutorial-create-subscribe-endpoint-to-topic.html

Amazon Simple Queue Service Developer Guide

Configure AWS KMS permissions for consumers

When the data key reuse period expires, the consumer's next call to ReceiveMessage also triggers
a call to kms:Decrypt, to verify the integrity of the new data key before using it. Therefore, the
consumer must have the kms:Decrypt permission for any KMS key that is used to encrypt the
messages in the specified queue. If the queue acts as a dead-letter queue, the consumer must also
have the kms:Decrypt permission for any KMS key that is used to encrypt the messages in the
source queue. Add the following statement to the IAM policy of the consumer. Remember to use
the correct ARN values for the key resource and the queue resource.

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Action": [
 "kms:Decrypt"
],
 "Resource": "arn:aws:kms:us-
east-2:123456789012:key/1234abcd-12ab-34cd-56ef-1234567890ab"
 }, {
 "Effect": "Allow",
 "Action": [
 "sqs:ReceiveMessage"
],
 "Resource": "arn:aws:sqs:*:123456789012:MyQueue"
 }]
}

Configure AWS KMS permissions with confused deputy protection

When the principal in a key policy statement is an AWS service principal, you can use the
aws:SourceArn or aws:SourceAccount global condition keys to protect against the confused
deputy scenario. To use these condition keys, set the value to the Amazon Resource Name
(ARN) of the resource that is being encrypted. If you don't know the ARN of the resource, use
aws:SourceAccount instead.

In this KMS key policy, a specific resource from service that is owned by account 111122223333 is
allowed to call KMS for Decrypt and GenerateDataKey actions, which occur during SSE usage of
Amazon SQS.

{

Data encryption 538

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html#principal-services
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourcearn
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourceaccount
https://docs.aws.amazon.com/IAM/latest/UserGuide/confused-deputy.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/confused-deputy.html

Amazon Simple Queue Service Developer Guide

 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Principal": {
 "Service": "<replaceable>service</replaceable>.amazonaws.com"
 },
 "Action": [
 "kms:GenerateDataKey",
 "kms:Decrypt"
],
 "Resource": "*",
 "Condition": {
 "ArnEquals": {
 "aws:SourceArn": [
 "arn:aws:service::111122223333:resource"
]
 }
 }
 }]
}

When using SSE enabled Amazon SQS queues, the following services support aws:SourceArn:

• Amazon SNS

• Amazon S3

• CloudWatch Events

• AWS Lambda

• CodeBuild

• Amazon Connect Customer Profiles

• AWS Auto Scaling

• Amazon Chime

Understanding the data key reuse period

The data key reuse period defines the maximum duration for Amazon SQS to reuse the same
data key. When the data key reuse period ends, Amazon SQS generates a new data key. Note the
following guidelines about the reuse period.

Data encryption 539

Amazon Simple Queue Service Developer Guide

• A shorter reuse period provides better security but results in more calls to AWS KMS, which
might incur charges beyond the Free Tier.

• Although the data key is cached separately for encryption and for decryption, the reuse period
applies to both copies of the data key.

• When the data key reuse period ends, the next call to SendMessage or SendMessageBatch
typically triggers a call to the AWS KMS GenerateDataKey method to get a new data key.
Also, the next calls to SendMessage and ReceiveMessage will each trigger a call to AWS KMS
Decrypt to verify the integrity of the data key before using it.

• Principals (AWS accounts or users) don't share data keys (messages sent by unique principals
always get unique data keys). Therefore, the volume of calls to AWS KMS is a multiple of the
number of unique principals in use during the data key reuse period.

Estimating AWS KMS costs

To predict costs and better understand your AWS bill, you might want to know how often Amazon
SQS uses your KMS key.

Note

Although the following formula can give you a very good idea of expected costs, actual
costs might be higher because of the distributed nature of Amazon SQS.

To calculate the number of API requests (R) per queue, use the following formula:

R = (B / D) * (2 * P + C)

B is the billing period (in seconds).

D is the data key reuse period (in seconds).

P is the number of producing principals that send to the Amazon SQS queue.

C is the number of consuming principals that receive from the Amazon SQS queue.

Important

In general, producing principals incur double the cost of consuming principals. For more
information, see Understanding the data key reuse period.

Data encryption 540

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html#Principal
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html#Principal

Amazon Simple Queue Service Developer Guide

If the producer and consumer have different users, the cost increases.

The following are example calculations. For exact pricing information, see AWS Key Management
Service Pricing.

Example 1: Calculating the number of AWS KMS API calls for 2 principals and 1 queue

This example assumes the following:

• The billing period is January 1-31 (2,678,400 seconds).

• The data key reuse period is set to 5 minutes (300 seconds).

• There is 1 queue.

• There is 1 producing principal and 1 consuming principal.

(2,678,400 / 300) * (2 * 1 + 1) = 26,784

Example 2: Calculating the number of AWS KMS API calls for multiple producers and consumers
and 2 queues

This example assumes the following:

• The billing period is February 1-28 (2,419,200 seconds).

• The data key reuse period is set to 24 hours (86,400 seconds).

• There are 2 queues.

• The first queue has 3 producing principals and 1 consuming principal.

• The second queue has 5 producing principals and 2 consuming principals.

(2,419,200 / 86,400 * (2 * 3 + 1)) + (2,419,200 / 86,400 * (2 * 5 + 2)) = 532

AWS KMS errors

When you work with Amazon SQS and AWS KMS, you might encounter errors. The following
references describe the errors and possible troubleshooting solutions.

• Common AWS KMS errors

Data encryption 541

https://aws.amazon.com/kms/pricing/
https://aws.amazon.com/kms/pricing/
https://docs.aws.amazon.com/kms/latest/APIReference/CommonErrors.html

Amazon Simple Queue Service Developer Guide

• AWS KMS Decrypt errors

• AWS KMS GenerateDataKey errors

Internetwork traffic privacy in Amazon SQS

An Amazon Virtual Private Cloud (Amazon VPC) endpoint for Amazon SQS is a logical entity within
a VPC that allows connectivity only to Amazon SQS. The VPC routes requests to Amazon SQS and
routes responses back to the VPC. The following sections provide information about working with
VPC endpoints and creating VPC endpoint policies.

Topics

• Amazon Virtual Private Cloud endpoints for Amazon SQS

• Creating an Amazon VPC endpoint policy for Amazon SQS

Amazon Virtual Private Cloud endpoints for Amazon SQS

If you use Amazon VPC to host your AWS resources, you can establish a connection between your
VPC and Amazon SQS. You can use this connection to send messages to your Amazon SQS queues
without crossing the public internet.

Amazon VPC lets you launch AWS resources in a custom virtual network. You can use a VPC to
control your network settings, such as the IP address range, subnets, route tables, and network
gateways. For more information about VPCs, see the Amazon VPC User Guide.

To connect your VPC to Amazon SQS, you must first define an interface VPC endpoint, which lets
you connect your VPC to other AWS services. The endpoint provides reliable, scalable connectivity
to Amazon SQS without requiring an internet gateway, network address translation (NAT) instance,
or VPN connection. For more information, see Tutorial: Sending a message to an Amazon SQS
queue from Amazon Virtual Private Cloud and Example 5: Deny access if it isn't from a VPC
endpoint in this guide and Interface VPC Endpoints (AWS PrivateLink) in the Amazon VPC User
Guide.

Important

• You can use Amazon Virtual Private Cloud only with HTTPS Amazon SQS endpoints.

• When you configure Amazon SQS to send messages from Amazon VPC, you must enable
private DNS and specify endpoints in the format sqs.us-east-2.amazonaws.com.

Internetwork traffic privacy 542

https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html#API_Decrypt_Errors
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html#API_GenerateDataKey_Errors
https://docs.aws.amazon.com/vpc/latest/userguide/
https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html

Amazon Simple Queue Service Developer Guide

• Private DNS doesn't support legacy endpoints such as queue.amazonaws.com or us-
east-2.queue.amazonaws.com.

Creating an Amazon VPC endpoint policy for Amazon SQS

You can create a policy for Amazon VPC endpoints for Amazon SQS in which you specify the
following:

• The principal that can perform actions.

• The actions that can be performed.

• The resources on which actions can be performed.

For more information, see Controlling Access to Services with VPC Endpoints in the Amazon VPC
User Guide

The following example VPC endpoint policy specifies that the user MyUser is allowed to send
messages to the Amazon SQS queue MyQueue.

{
 "Statement": [{
 "Action": ["sqs:SendMessage"],
 "Effect": "Allow",
 "Resource": "arn:aws:sqs:us-east-2:123456789012:MyQueue",
 "Principal": {
 "AWS": "arn:aws:iam:123456789012:user/MyUser"
 }
 }]
}

The following are denied:

• Other Amazon SQS API actions, such as sqs:CreateQueue and sqs:DeleteQueue.

• Other users and rules which attempt to use this VPC endpoint.

• MyUser sending messages to a different Amazon SQS queue.

Internetwork traffic privacy 543

https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints-access.html

Amazon Simple Queue Service Developer Guide

Note

The user can still use other Amazon SQS API actions from outside the VPC. For more
information, see Example 5: Deny access if it isn't from a VPC endpoint.

Identity and access management in Amazon SQS

AWS Identity and Access Management (IAM) is an AWS service that helps an administrator securely
control access to AWS resources. IAM administrators control who can be authenticated (signed in)
and authorized (have permissions) to use Amazon SQS resources. IAM is an AWS service that you
can use with no additional charge.

Audience

How you use AWS Identity and Access Management (IAM) differs, depending on the work that you
do in Amazon SQS.

Service user – If you use the Amazon SQS service to do your job, then your administrator provides
you with the credentials and permissions that you need. As you use more Amazon SQS features to
do your work, you might need additional permissions. Understanding how access is managed can
help you request the right permissions from your administrator. If you cannot access a feature in
Amazon SQS, see Troubleshooting Amazon Simple Queue Service identity and access.

Service administrator – If you're in charge of Amazon SQS resources at your company, you
probably have full access to Amazon SQS. It's your job to determine which Amazon SQS features
and resources your service users should access. You must then submit requests to your IAM
administrator to change the permissions of your service users. Review the information on this page
to understand the basic concepts of IAM. To learn more about how your company can use IAM with
Amazon SQS, see How Amazon Simple Queue Service works with IAM.

IAM administrator – If you're an IAM administrator, you might want to learn details about how you
can write policies to manage access to Amazon SQS. To view example Amazon SQS identity-based
policies that you can use in IAM, see Policy best practices.

Identity and access management 544

Amazon Simple Queue Service Developer Guide

Authenticating with identities

Authentication is how you sign in to AWS using your identity credentials. You must be
authenticated (signed in to AWS) as the AWS account root user, as an IAM user, or by assuming an
IAM role.

You can sign in to AWS as a federated identity by using credentials provided through an identity
source. AWS IAM Identity Center (IAM Identity Center) users, your company's single sign-on
authentication, and your Google or Facebook credentials are examples of federated identities.
When you sign in as a federated identity, your administrator previously set up identity federation
using IAM roles. When you access AWS by using federation, you are indirectly assuming a role.

Depending on the type of user you are, you can sign in to the AWS Management Console or the
AWS access portal. For more information about signing in to AWS, see How to sign in to your AWS
account in the AWS Sign-In User Guide.

If you access AWS programmatically, AWS provides a software development kit (SDK) and a
command line interface (CLI) to cryptographically sign your requests by using your credentials. If
you don't use AWS tools, you must sign requests yourself. For more information about using the
recommended method to sign requests yourself, see Signing AWS API requests in the IAM User
Guide.

Regardless of the authentication method that you use, you might be required to provide additional
security information. For example, AWS recommends that you use multi-factor authentication
(MFA) to increase the security of your account. To learn more, see Multi-factor authentication in the
AWS IAM Identity Center User Guide and Using multi-factor authentication (MFA) in AWS in the IAM
User Guide.

AWS account root user

When you create an AWS account, you begin with one sign-in identity that has complete access to
all AWS services and resources in the account. This identity is called the AWS account root user and
is accessed by signing in with the email address and password that you used to create the account.
We strongly recommend that you don't use the root user for your everyday tasks. Safeguard your
root user credentials and use them to perform the tasks that only the root user can perform. For
the complete list of tasks that require you to sign in as the root user, see Tasks that require root
user credentials in the IAM User Guide.

Authenticating with identities 545

https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-signing.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/enable-mfa.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/root-user-tasks.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/root-user-tasks.html

Amazon Simple Queue Service Developer Guide

Federated identity

As a best practice, require human users, including users that require administrator access, to use
federation with an identity provider to access AWS services by using temporary credentials.

A federated identity is a user from your enterprise user directory, a web identity provider, the AWS
Directory Service, the Identity Center directory, or any user that accesses AWS services by using
credentials provided through an identity source. When federated identities access AWS accounts,
they assume roles, and the roles provide temporary credentials.

For centralized access management, we recommend that you use AWS IAM Identity Center. You can
create users and groups in IAM Identity Center, or you can connect and synchronize to a set of users
and groups in your own identity source for use across all your AWS accounts and applications. For
information about IAM Identity Center, see What is IAM Identity Center? in the AWS IAM Identity
Center User Guide.

IAM users and groups

An IAM user is an identity within your AWS account that has specific permissions for a single person
or application. Where possible, we recommend relying on temporary credentials instead of creating
IAM users who have long-term credentials such as passwords and access keys. However, if you have
specific use cases that require long-term credentials with IAM users, we recommend that you rotate
access keys. For more information, see Rotate access keys regularly for use cases that require long-
term credentials in the IAM User Guide.

An IAM group is an identity that specifies a collection of IAM users. You can't sign in as a group. You
can use groups to specify permissions for multiple users at a time. Groups make permissions easier
to manage for large sets of users. For example, you could have a group named IAMAdmins and give
that group permissions to administer IAM resources.

Users are different from roles. A user is uniquely associated with one person or application, but
a role is intended to be assumable by anyone who needs it. Users have permanent long-term
credentials, but roles provide temporary credentials. To learn more, see When to create an IAM user
(instead of a role) in the IAM User Guide.

IAM roles

An IAM role is an identity within your AWS account that has specific permissions. It is similar to an
IAM user, but is not associated with a specific person. You can temporarily assume an IAM role in
the AWS Management Console by switching roles. You can assume a role by calling an AWS CLI or

Authenticating with identities 546

https://docs.aws.amazon.com/singlesignon/latest/userguide/what-is.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#rotate-credentials
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#rotate-credentials
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_groups.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html

Amazon Simple Queue Service Developer Guide

AWS API operation or by using a custom URL. For more information about methods for using roles,
see Using IAM roles in the IAM User Guide.

IAM roles with temporary credentials are useful in the following situations:

• Federated user access – To assign permissions to a federated identity, you create a role
and define permissions for the role. When a federated identity authenticates, the identity
is associated with the role and is granted the permissions that are defined by the role. For
information about roles for federation, see Creating a role for a third-party Identity Provider
in the IAM User Guide. If you use IAM Identity Center, you configure a permission set. To control
what your identities can access after they authenticate, IAM Identity Center correlates the
permission set to a role in IAM. For information about permissions sets, see Permission sets in
the AWS IAM Identity Center User Guide.

• Temporary IAM user permissions – An IAM user or role can assume an IAM role to temporarily
take on different permissions for a specific task.

• Cross-account access – You can use an IAM role to allow someone (a trusted principal) in a
different account to access resources in your account. Roles are the primary way to grant cross-
account access. However, with some AWS services, you can attach a policy directly to a resource
(instead of using a role as a proxy). To learn the difference between roles and resource-based
policies for cross-account access, see Cross account resource access in IAM in the IAM User Guide.

• Cross-service access – Some AWS services use features in other AWS services. For example, when
you make a call in a service, it's common for that service to run applications in Amazon EC2 or
store objects in Amazon S3. A service might do this using the calling principal's permissions,
using a service role, or using a service-linked role.

• Forward access sessions (FAS) – When you use an IAM user or role to perform actions in
AWS, you are considered a principal. When you use some services, you might perform an
action that then initiates another action in a different service. FAS uses the permissions of the
principal calling an AWS service, combined with the requesting AWS service to make requests
to downstream services. FAS requests are only made when a service receives a request that
requires interactions with other AWS services or resources to complete. In this case, you must
have permissions to perform both actions. For policy details when making FAS requests, see
Forward access sessions.

• Service role – A service role is an IAM role that a service assumes to perform actions on your
behalf. An IAM administrator can create, modify, and delete a service role from within IAM. For
more information, see Creating a role to delegate permissions to an AWS service in the IAM
User Guide.

Authenticating with identities 547

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/permissionsetsconcept.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_forward_access_sessions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html

Amazon Simple Queue Service Developer Guide

• Service-linked role – A service-linked role is a type of service role that is linked to an AWS
service. The service can assume the role to perform an action on your behalf. Service-linked
roles appear in your AWS account and are owned by the service. An IAM administrator can
view, but not edit the permissions for service-linked roles.

• Applications running on Amazon EC2 – You can use an IAM role to manage temporary
credentials for applications that are running on an EC2 instance and making AWS CLI or AWS API
requests. This is preferable to storing access keys within the EC2 instance. To assign an AWS role
to an EC2 instance and make it available to all of its applications, you create an instance profile
that is attached to the instance. An instance profile contains the role and enables programs that
are running on the EC2 instance to get temporary credentials. For more information, see Using
an IAM role to grant permissions to applications running on Amazon EC2 instances in the IAM
User Guide.

To learn whether to use IAM roles or IAM users, see When to create an IAM role (instead of a user)
in the IAM User Guide.

Managing access using policies

You control access in AWS by creating policies and attaching them to AWS identities or resources.
A policy is an object in AWS that, when associated with an identity or resource, defines their
permissions. AWS evaluates these policies when a principal (user, root user, or role session) makes
a request. Permissions in the policies determine whether the request is allowed or denied. Most
policies are stored in AWS as JSON documents. For more information about the structure and
contents of JSON policy documents, see Overview of JSON policies in the IAM User Guide.

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

By default, users and roles have no permissions. To grant users permission to perform actions on
the resources that they need, an IAM administrator can create IAM policies. The administrator can
then add the IAM policies to roles, and users can assume the roles.

IAM policies define permissions for an action regardless of the method that you use to perform the
operation. For example, suppose that you have a policy that allows the iam:GetRole action. A
user with that policy can get role information from the AWS Management Console, the AWS CLI, or
the AWS API.

Managing access using policies 548

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose_role
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#access_policies-json

Amazon Simple Queue Service Developer Guide

Identity-based policies

Identity-based policies are JSON permissions policy documents that you can attach to an identity,
such as an IAM user, group of users, or role. These policies control what actions users and roles can
perform, on which resources, and under what conditions. To learn how to create an identity-based
policy, see Creating IAM policies in the IAM User Guide.

Identity-based policies can be further categorized as inline policies or managed policies. Inline
policies are embedded directly into a single user, group, or role. Managed policies are standalone
policies that you can attach to multiple users, groups, and roles in your AWS account. Managed
policies include AWS managed policies and customer managed policies. To learn how to choose
between a managed policy or an inline policy, see Choosing between managed policies and inline
policies in the IAM User Guide.

Resource-based policies

Resource-based policies are JSON policy documents that you attach to a resource. Examples of
resource-based policies are IAM role trust policies and Amazon S3 bucket policies. In services that
support resource-based policies, service administrators can use them to control access to a specific
resource. For the resource where the policy is attached, the policy defines what actions a specified
principal can perform on that resource and under what conditions. You must specify a principal
in a resource-based policy. Principals can include accounts, users, roles, federated users, or AWS
services.

Resource-based policies are inline policies that are located in that service. You can't use AWS
managed policies from IAM in a resource-based policy.

Access control lists (ACLs)

Access control lists (ACLs) control which principals (account members, users, or roles) have
permissions to access a resource. ACLs are similar to resource-based policies, although they do not
use the JSON policy document format.

Amazon S3, AWS WAF, and Amazon VPC are examples of services that support ACLs. To learn more
about ACLs, see Access control list (ACL) overview in the Amazon Simple Storage Service Developer
Guide.

Managing access using policies 549

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#choosing-managed-or-inline
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#choosing-managed-or-inline
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/acl-overview.html

Amazon Simple Queue Service Developer Guide

Other policy types

AWS supports additional, less-common policy types. These policy types can set the maximum
permissions granted to you by the more common policy types.

• Permissions boundaries – A permissions boundary is an advanced feature in which you set
the maximum permissions that an identity-based policy can grant to an IAM entity (IAM user
or role). You can set a permissions boundary for an entity. The resulting permissions are the
intersection of an entity's identity-based policies and its permissions boundaries. Resource-based
policies that specify the user or role in the Principal field are not limited by the permissions
boundary. An explicit deny in any of these policies overrides the allow. For more information
about permissions boundaries, see Permissions boundaries for IAM entities in the IAM User Guide.

• Service control policies (SCPs) – SCPs are JSON policies that specify the maximum permissions
for an organization or organizational unit (OU) in AWS Organizations. AWS Organizations is a
service for grouping and centrally managing multiple AWS accounts that your business owns. If
you enable all features in an organization, then you can apply service control policies (SCPs) to
any or all of your accounts. The SCP limits permissions for entities in member accounts, including
each AWS account root user. For more information about Organizations and SCPs, see How SCPs
work in the AWS Organizations User Guide.

• Session policies – Session policies are advanced policies that you pass as a parameter when you
programmatically create a temporary session for a role or federated user. The resulting session's
permissions are the intersection of the user or role's identity-based policies and the session
policies. Permissions can also come from a resource-based policy. An explicit deny in any of these
policies overrides the allow. For more information, see Session policies in the IAM User Guide.

Multiple policy types

When multiple types of policies apply to a request, the resulting permissions are more complicated
to understand. To learn how AWS determines whether to allow a request when multiple policy
types are involved, see Policy evaluation logic in the IAM User Guide.

Overview of managing access in Amazon SQS

Every AWS resource is owned by an AWS account, and permissions to create or access a resource
are governed by permissions policies. An account administrator can attach permissions policies
to IAM identities (users, groups, and roles), and some services (such as Amazon SQS) also support
attaching permissions policies to resources.

Overview 550

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_boundaries.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_about-scps.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_about-scps.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#policies_session
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic.html

Amazon Simple Queue Service Developer Guide

Note

An account administrator (or administrator user) is a user with administrative privileges. For
more information, see IAM Best Practices in the IAM User Guide.

When granting permissions, you specify what users get permissions, the resource they get
permissions for, and the specific actions that you want to allow on the resource.

Topics

• Amazon Simple Queue Service resource and operations

• Understanding resource ownership

• Managing access to resources

• Specifying policy elements: Actions, effects, resources, and principals

Amazon Simple Queue Service resource and operations

In Amazon SQS, the only resource is the queue. In a policy, use an Amazon Resource Name (ARN) to
identify the resource that the policy applies to. The following resource has a unique ARN associated
with it:

Resource type ARN format

Queue arn:aws:sqs: region:account_i
d :queue_name

The following are examples of the ARN format for queues:

• An ARN for a queue named my_queue in the US East (Ohio) region, belonging to AWS Account
123456789012:

arn:aws:sqs:us-east-2:123456789012:my_queue

• An ARN for a queue named my_queue in each of the different regions that Amazon SQS
supports:

Overview 551

https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html

Amazon Simple Queue Service Developer Guide

arn:aws:sqs:*:123456789012:my_queue

• An ARN that uses * or ? as a wildcard for the queue name. In the following examples, the ARN
matches all queues prefixed with my_prefix_:

arn:aws:sqs:*:123456789012:my_prefix_*

You can get the ARN value for an existing queue by calling the GetQueueAttributes action. The
value of the QueueArn attribute is the ARN of the queue. For more information about ARNs, see
IAM ARNs in the IAM User Guide.

Amazon SQS provides a set of actions that work with the queue resource. For more information,
see Amazon SQS API permissions: Actions and resource reference.

Understanding resource ownership

The AWS account owns the resources that are created in the account, regardless of who created
the resources. Specifically, the resource owner is the AWS account of the principal entity (that is,
the root account, a user , or an IAM role) that authenticates the resource creation request. The
following examples illustrate how this works:

• If you use the root account credentials of your AWS account to create an Amazon SQS queue,
your AWS account is the owner of the resource (in Amazon SQS, the resource is the Amazon SQS
queue).

• If you create a user in your AWS account and grant permissions to create a queue to the user,
the user can create the queue. However, your AWS account (to which the user belongs) owns the
queue resource.

• If you create an IAM role in your AWS account with permissions to create an Amazon SQS queue,
anyone who can assume the role can create a queue. Your AWS account (to which the role
belongs) owns the queue resource.

Managing access to resources

A permissions policy describes the permissions granted to accounts. The following section explains
the available options for creating permissions policies.

Overview 552

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_GetQueueAttributes.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_identifiers.html#identifiers-arns

Amazon Simple Queue Service Developer Guide

Note

This section discusses using IAM in the context of Amazon SQS. It doesn't provide detailed
information about the IAM service. For complete IAM documentation, see What is IAM? in
the IAM User Guide. For information about IAM policy syntax and descriptions, see AWS IAM
Policy Reference in the IAM User Guide.

Policies attached to an IAM identity are referred to as identity-based policies (IAM policies) and
policies attached to a resource are referred to as resource-based policies.

Identity-based policies

There are two ways to give your users permissions to your Amazon SQS queues: using the Amazon
SQS policy system and using the IAM policy system. You can use either system, or both, to attach
policies to users or roles. In most cases, you can achieve the same result using either system. For
example, you can do the following:

• Attach a permission policy to a user or a group in your account – To grant user permissions
to create an Amazon SQS queue, attach a permissions policy to a user or group that the user
belongs to.

• Attach a permission policy to a user in another AWS account – To grant user permissions to
create an Amazon SQS queue, attach an Amazon SQS permissions policy to a user in another
AWS account.

Cross-account permissions don't apply to the following actions:

• AddPermission

• CancelMessageMoveTask

• CreateQueue

• DeleteQueue

• ListMessageMoveTask

• ListQueues

• ListQueueTags

• RemovePermission

• SetQueueAttributes

• StartMessageMoveTask

Overview 553

https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_AddPermission.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_CancelMessageMoveTask.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_CreateQueue.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_DeleteQueue.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ListMessageMoveTasks.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ListQueues.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ListQueueTags.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_RemovePermission.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SetQueueAttributes.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_StartMessageMoveTask.html

Amazon Simple Queue Service Developer Guide

• TagQueue

• UntagQueue

• Attach a permission policy to a role (grant cross-account permissions) – To grant cross-
account permissions, attach an identity-based permissions policy to an IAM role. For example,
the AWS account A administrator can create a role to grant cross-account permissions to AWS
account B (or an AWS service) as follows:

• The account A administrator creates an IAM role and attaches a permissions policy — that
grants permissions on resources in account A — to the role.

• The account A administrator attaches a trust policy to the role that identifies account B as the
principal who can assume the role.

• The account B administrator delegates the permission to assume the role to any users in
account B. This allows users in account B to create or access queues in account A.

Note

If you want to grant the permission to assume the role to an AWS service, the principal
in the trust policy can also be an AWS service principal.

For more information about using IAM to delegate permissions, see Access Management in the IAM
User Guide.

While Amazon SQS works with IAM policies, it has its own policy infrastructure. You can use an
Amazon SQS policy with a queue to specify which AWS Accounts have access to the queue. You can
specify the type of access and conditions (for example, a condition that grants permissions to use
SendMessage, ReceiveMessage if the request is made before December 31, 2010). The specific
actions you can grant permissions for are a subset of the overall list of Amazon SQS actions. When
you write an Amazon SQS policy and specify * to "allow all Amazon SQS actions," it means that a
user can perform all actions in this subset.

The following diagram illustrates the concept of one of these basic Amazon SQS policies that
covers the subset of actions. The policy is for queue_xyz, and it gives AWS Account 1 and AWS
Account 2 permissions to use any of the allowed actions with the specified queue.

Overview 554

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_TagQueue.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_UntagQueue.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access.html

Amazon Simple Queue Service Developer Guide

Note

The resource in the policy is specified as 123456789012/queue_xyz, where
123456789012 is the AWS Account ID of the account that owns the queue.

With the introduction of IAM and the concepts of Users and Amazon Resource Names (ARNs), a few
things have changed about SQS policies. The following diagram and table describe the changes.

For information about giving permissions to users in different accounts, see Tutorial: Delegate
Access Across AWS Accounts Using IAM Roles in the IAM User Guide.

The subset of actions included in * has expanded. For a list of allowed actions, see Amazon SQS
API permissions: Actions and resource reference.

Overview 555

https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_cross-account-with-roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_cross-account-with-roles.html

Amazon Simple Queue Service Developer Guide

You can specify the resource using the Amazon Resource Name (ARN), the standard means of
specifying resources in IAM policies. For information about the ARN format for Amazon SQS
queues, see Amazon Simple Queue Service resource and operations.

For example, according to the Amazon SQS policy in the preceding diagram, anyone who possesses
the security credentials for AWS Account 1 or AWS Account 2 can access queue_xyz. In addition,
Users Bob and Susan in your own AWS Account (with ID 123456789012) can access the queue.

Before the introduction of IAM, Amazon SQS automatically gave the creator of a queue full control
over the queue (that is, access to all of the possible Amazon SQS actions on that queue). This is
no longer true, unless the creator uses AWS security credentials. Any user who has permissions
to create a queue must also have permissions to use other Amazon SQS actions in order to do
anything with the created queues.

The following is an example policy that allows a user to use all Amazon SQS actions, but only with
queues whose names are prefixed with the literal string bob_queue_.

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Action": "sqs:*",
 "Resource": "arn:aws:sqs:*:123456789012:bob_queue_*"
 }]
}

For more information, see Using policies with Amazon SQS, and Identities (Users, Groups, and
Roles) in the IAM User Guide.

Specifying policy elements: Actions, effects, resources, and principals

For each Amazon Simple Queue Service resource, the service defines a set of actions. To grant
permissions for these actions, Amazon SQS defines a set of actions that you can specify in a policy.

Overview 556

https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_Operations.html

Amazon Simple Queue Service Developer Guide

Note

Performing an action can require permissions for more than one action. When granting
permissions for specific actions, you also identify the resource for which the actions are
allowed or denied.

The following are the most basic policy elements:

• Resource – In a policy, you use an Amazon Resource Name (ARN) to identify the resource to
which the policy applies.

• Action – You use action keywords to identify resource actions that you want to allow or deny.
For example, the sqs:CreateQueue permission allows the user to perform the Amazon Simple
Queue Service CreateQueue action.

• Effect – You specify the effect when the user requests the specific action—this can be either
allow or deny. If you don't explicitly grant access to a resource, access is implicitly denied. You
can also explicitly deny access to a resource, which you might do to make sure that a user can't
access it, even if a different policy grants access.

• Principal – In identity-based policies (IAM policies), the user that the policy is attached to is the
implicit principal. For resource-based policies, you specify the user, account, service, or other
entity that you want to receive permissions (applies to resource-based policies only).

To learn more about Amazon SQS policy syntax and descriptions, see AWS IAM Policy Reference in
the IAM User Guide.

For a table of all Amazon Simple Queue Service actions and the resources that they apply to, see
Amazon SQS API permissions: Actions and resource reference.

How Amazon Simple Queue Service works with IAM

Before you use IAM to manage access to Amazon SQS, learn what IAM features are available to use
with Amazon SQS.

How Amazon Simple Queue Service works with IAM 557

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies.html

Amazon Simple Queue Service Developer Guide

IAM features you can use with Amazon Simple Queue Service

IAM feature Amazon SQS support

Identity-based policies Yes

Resource-based policies Yes

Policy actions Yes

Policy resources Yes

Policy condition keys (service-specific) Yes

ACLs No

ABAC (tags in policies) Partial

Temporary credentials Yes

Forward access sessions (FAS) Yes

Service roles Yes

Service-linked roles No

To get a high-level view of how Amazon SQS and other AWS services work with most IAM features,
see AWS services that work with IAM in the IAM User Guide.

Access control

Access control lists (ACLs) control which principals (account members, users, or roles) have
permissions to access a resource. ACLs are similar to resource-based policies, although they do not
use the JSON policy document format.

Amazon S3, AWS WAF, and Amazon VPC are examples of services that support ACLs. To learn more
about ACLs, see Access control list (ACL) overview in the Amazon Simple Storage Service Developer
Guide.

How Amazon Simple Queue Service works with IAM 558

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/acl-overview.html

Amazon Simple Queue Service Developer Guide

Note

It is important to understand that all AWS accounts can delegate their permissions to
users under their accounts. Cross-account access allows you to share access to your AWS
resources without having to manage additional users. For information about using cross-
account access, see Enabling Cross-Account Access in the IAM User Guide.
See Limitations of Amazon SQS custom policies for further details on cross-content
permissions and condition keys within Amazon SQS custom policies.

Identity-based policies for Amazon SQS

Supports identity-based policies: Yes

Identity-based policies are JSON permissions policy documents that you can attach to an identity,
such as an IAM user, group of users, or role. These policies control what actions users and roles can
perform, on which resources, and under what conditions. To learn how to create an identity-based
policy, see Creating IAM policies in the IAM User Guide.

With IAM identity-based policies, you can specify allowed or denied actions and resources as well
as the conditions under which actions are allowed or denied. You can't specify the principal in an
identity-based policy because it applies to the user or role to which it is attached. To learn about all
of the elements that you can use in a JSON policy, see IAM JSON policy elements reference in the
IAM User Guide.

Identity-based policy examples for Amazon SQS

To view examples of Amazon SQS identity-based policies, see Policy best practices.

Resource-based policies within Amazon SQS

Supports resource-based policies: Yes

Resource-based policies are JSON policy documents that you attach to a resource. Examples of
resource-based policies are IAM role trust policies and Amazon S3 bucket policies. In services that
support resource-based policies, service administrators can use them to control access to a specific
resource. For the resource where the policy is attached, the policy defines what actions a specified
principal can perform on that resource and under what conditions. You must specify a principal

How Amazon Simple Queue Service works with IAM 559

https://docs.aws.amazon.com/IAM/latest/UserGuide/Delegation.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html

Amazon Simple Queue Service Developer Guide

in a resource-based policy. Principals can include accounts, users, roles, federated users, or AWS
services.

To enable cross-account access, you can specify an entire account or IAM entities in another
account as the principal in a resource-based policy. Adding a cross-account principal to a resource-
based policy is only half of establishing the trust relationship. When the principal and the resource
are in different AWS accounts, an IAM administrator in the trusted account must also grant
the principal entity (user or role) permission to access the resource. They grant permission by
attaching an identity-based policy to the entity. However, if a resource-based policy grants access
to a principal in the same account, no additional identity-based policy is required. For more
information, see Cross account resource access in IAM in the IAM User Guide.

Policy actions for Amazon SQS

Supports policy actions: Yes

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Action element of a JSON policy describes the actions that you can use to allow or deny
access in a policy. Policy actions usually have the same name as the associated AWS API operation.
There are some exceptions, such as permission-only actions that don't have a matching API
operation. There are also some operations that require multiple actions in a policy. These
additional actions are called dependent actions.

Include actions in a policy to grant permissions to perform the associated operation.

To see a list of Amazon SQS actions, see Resources Defined by Amazon Simple Queue Service in the
Service Authorization Reference.

Policy actions in Amazon SQS use the following prefix before the action:

sqs

To specify multiple actions in a single statement, separate them with commas.

"Action": [
 "sqs:action1",
 "sqs:action2"

How Amazon Simple Queue Service works with IAM 560

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_amazonsqs.html#amazonsqs-resources-for-iam-policies

Amazon Simple Queue Service Developer Guide

]

To view examples of Amazon SQS identity-based policies, see Policy best practices.

Policy resources for Amazon SQS

Supports policy resources: Yes

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Resource JSON policy element specifies the object or objects to which the action applies.
Statements must include either a Resource or a NotResource element. As a best practice,
specify a resource using its Amazon Resource Name (ARN). You can do this for actions that support
a specific resource type, known as resource-level permissions.

For actions that don't support resource-level permissions, such as listing operations, use a wildcard
(*) to indicate that the statement applies to all resources.

"Resource": "*"

To see a list of Amazon SQS resource types and their ARNs, see Actions Defined by Amazon Simple
Queue Service in the Service Authorization Reference. To learn with which actions you can specify
the ARN of each resource, see Resources Defined by Amazon Simple Queue Service.

To view examples of Amazon SQS identity-based policies, see Policy best practices.

Policy condition keys for Amazon SQS

Supports service-specific policy condition keys: Yes

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Condition element (or Condition block) lets you specify conditions in which a statement
is in effect. The Condition element is optional. You can create conditional expressions that use

How Amazon Simple Queue Service works with IAM 561

https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_amazonsqs.html#amazonsqs-actions-as-permissions
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_amazonsqs.html#amazonsqs-actions-as-permissions
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_amazonsqs.html#amazonsqs-resources-for-iam-policies

Amazon Simple Queue Service Developer Guide

condition operators, such as equals or less than, to match the condition in the policy with values in
the request.

If you specify multiple Condition elements in a statement, or multiple keys in a single
Condition element, AWS evaluates them using a logical AND operation. If you specify multiple
values for a single condition key, AWS evaluates the condition using a logical OR operation. All of
the conditions must be met before the statement's permissions are granted.

You can also use placeholder variables when you specify conditions. For example, you can grant
an IAM user permission to access a resource only if it is tagged with their IAM user name. For more
information, see IAM policy elements: variables and tags in the IAM User Guide.

AWS supports global condition keys and service-specific condition keys. To see all AWS global
condition keys, see AWS global condition context keys in the IAM User Guide.

To see a list of Amazon SQS condition keys, see Condition Keys for Amazon Simple Queue Service
in the Service Authorization Reference. To learn with which actions and resources you can use a
condition key, see Resources Defined by Amazon Simple Queue Service.

To view examples of Amazon SQS identity-based policies, see Policy best practices.

ACLs in Amazon SQS

Supports ACLs: No

Access control lists (ACLs) control which principals (account members, users, or roles) have
permissions to access a resource. ACLs are similar to resource-based policies, although they do not
use the JSON policy document format.

ABAC with Amazon SQS

Supports ABAC (tags in policies): Partial

Attribute-based access control (ABAC) is an authorization strategy that defines permissions based
on attributes. In AWS, these attributes are called tags. You can attach tags to IAM entities (users or
roles) and to many AWS resources. Tagging entities and resources is the first step of ABAC. Then
you design ABAC policies to allow operations when the principal's tag matches the tag on the
resource that they are trying to access.

ABAC is helpful in environments that are growing rapidly and helps with situations where policy
management becomes cumbersome.

How Amazon Simple Queue Service works with IAM 562

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_variables.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_amazonsqs.html#amazonsqs-policy-keys
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_amazonsqs.html#amazonsqs-resources-for-iam-policies

Amazon Simple Queue Service Developer Guide

To control access based on tags, you provide tag information in the condition element of a policy
using the aws:ResourceTag/key-name, aws:RequestTag/key-name, or aws:TagKeys
condition keys.

If a service supports all three condition keys for every resource type, then the value is Yes for the
service. If a service supports all three condition keys for only some resource types, then the value is
Partial.

For more information about ABAC, see What is ABAC? in the IAM User Guide. To view a tutorial with
steps for setting up ABAC, see Use attribute-based access control (ABAC) in the IAM User Guide.

Using temporary credentials with Amazon SQS

Supports temporary credentials: Yes

Some AWS services don't work when you sign in using temporary credentials. For additional
information, including which AWS services work with temporary credentials, see AWS services that
work with IAM in the IAM User Guide.

You are using temporary credentials if you sign in to the AWS Management Console using
any method except a user name and password. For example, when you access AWS using your
company's single sign-on (SSO) link, that process automatically creates temporary credentials. You
also automatically create temporary credentials when you sign in to the console as a user and then
switch roles. For more information about switching roles, see Switching to a role (console) in the
IAM User Guide.

You can manually create temporary credentials using the AWS CLI or AWS API. You can then use
those temporary credentials to access AWS. AWS recommends that you dynamically generate
temporary credentials instead of using long-term access keys. For more information, see
Temporary security credentials in IAM.

Forward access sessions for Amazon SQS

Supports forward access sessions (FAS): Yes

When you use an IAM user or role to perform actions in AWS, you are considered a principal.
When you use some services, you might perform an action that then initiates another action in a
different service. FAS uses the permissions of the principal calling an AWS service, combined with
the requesting AWS service to make requests to downstream services. FAS requests are only made
when a service receives a request that requires interactions with other AWS services or resources to

How Amazon Simple Queue Service works with IAM 563

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction_attribute-based-access-control.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_attribute-based-access-control.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp.html

Amazon Simple Queue Service Developer Guide

complete. In this case, you must have permissions to perform both actions. For policy details when
making FAS requests, see Forward access sessions.

Service roles for Amazon SQS

Supports service roles: Yes

A service role is an IAM role that a service assumes to perform actions on your behalf. An IAM
administrator can create, modify, and delete a service role from within IAM. For more information,
see Creating a role to delegate permissions to an AWS service in the IAM User Guide.

Warning

Changing the permissions for a service role might break Amazon SQS functionality. Edit
service roles only when Amazon SQS provides guidance to do so.

Service-linked roles for Amazon SQS

Supports service-linked roles: No

A service-linked role is a type of service role that is linked to an AWS service. The service can
assume the role to perform an action on your behalf. Service-linked roles appear in your AWS
account and are owned by the service. An IAM administrator can view, but not edit the permissions
for service-linked roles.

For details about creating or managing service-linked roles, see AWS services that work with IAM.
Find a service in the table that includes a Yes in the Service-linked role column. Choose the Yes
link to view the service-linked role documentation for that service.

Amazon SQS updates to AWS managed policies

To add permissions to users, groups, and roles, it is easier to use AWS managed policies than to
write policies yourself. It takes time and expertise to create IAM customer managed policies that
provide your team with only the permissions they need. To get started quickly, you can use our
AWS managed policies. These policies cover common use cases and are available in your AWS
account. For more information about AWS managed policies, see AWS managed policies in the IAM
User Guide.

AWS managed policies 564

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_forward_access_sessions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies

Amazon Simple Queue Service Developer Guide

AWS services maintain and update AWS managed policies. You can't change the permissions in
AWS managed policies. Services occasionally add additional permissions to an AWS managed
policy to support new features. This type of update affects all identities (users, groups, and roles)
where the policy is attached. Services are most likely to update an AWS managed policy when
a new feature is launched or when new operations become available. Services do not remove
permissions from an AWS managed policy, so policy updates won't break your existing permissions.

Additionally, AWS supports managed policies for job functions that span multiple services. For
example, the ReadOnlyAccess AWS managed policy provides read-only access to all AWS services
and resources. When a service launches a new feature, AWS adds read-only permissions for new
operations and resources. For a list and descriptions of job function policies, see AWS managed
policies for job functions in the IAM User Guide.

AWS managed policy: AmazonSQSFullAccess

You can attach the AmazonSQSFullAccess policy to your Amazon SQS identities. This policy
grants permissions that allow full access to Amazon SQS.

To view the permissions for this policy, see AmazonSQSFullAccess in the AWS Managed Policy
Reference.

AWS managed policy: AmazonSQSReadOnlyAccess

You can attach the AmazonSQSReadOnlyAccess policy to your Amazon SQS identities. This policy
grants permissions that allow read-only access to Amazon SQS.

To view the permissions for this policy, see AmazonSQSReadOnlyAccess in the AWS Managed Policy
Reference.

Amazon SQS updates to AWS managed policies

View details about updates to AWS managed policies for Amazon SQS since this service began
tracking these changes. For automatic alerts about changes to this page, subscribe to the RSS feed
on the Amazon SQS Document history page.

Change Description Date

AmazonSQSReadOnlyAccess Amazon SQS added the
ListQueueTags action,
which retrieves all tags

June 20, 2024

AWS managed policies 565

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AmazonSQSFullAccess.html
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AmazonSQSReadOnlyAccess.html
https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/AmazonSQSReadOnlyAccess

Amazon Simple Queue Service Developer Guide

Change Description Date

associated with a specified
Amazon SQS queue. It allows
you to view the key-value
pairs that have been assigned
to the queue for organizat
ional or metadata purposes.
 This action is associated with
the ListQueueTags API
 operation.

AmazonSQSReadOnlyAccess Amazon SQS added a new
action that allows you to list
the most recent message
movement tasks (up to 10)
under a specific source qu
eue. This action is associate
d with the ListMessa
geMoveTasks API opera
tion.

June 9, 2023

Troubleshooting Amazon Simple Queue Service identity and access

Use the following information to help you diagnose and fix common issues that you might
encounter when working with Amazon SQS and IAM.

Topics

• I am not authorized to perform an action in Amazon SQS

• I am not authorized to perform iam:PassRole

• I want to allow people outside of my AWS account to access my Amazon SQS resources

I am not authorized to perform an action in Amazon SQS

If you receive an error that you're not authorized to perform an action, your policies must be
updated to allow you to perform the action.

Troubleshooting 566

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ListQueueTags.html
https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/AmazonSQSReadOnlyAccess
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ListMessageMoveTasks.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ListMessageMoveTasks.html

Amazon Simple Queue Service Developer Guide

The following example error occurs when the mateojackson user tries to use the console to
view details about a fictional my-example-widget resource but does not have the fictional
sqs:GetWidget permissions.

User: arn:aws:iam::123456789012:user/mateojackson is not authorized to perform:
 sqs:GetWidget on resource: my-example-widget

In this case, Mateo's policy must be updated to allow him to access the my-example-widget
resource using the sqs:GetWidget action.

If you need help, contact your AWS administrator. Your administrator is the person who provided
you with your sign-in credentials.

I am not authorized to perform iam:PassRole

If you receive an error that you're not authorized to perform the iam:PassRole action, your
policies must be updated to allow you to pass a role to Amazon SQS.

Some AWS services allow you to pass an existing role to that service instead of creating a new
service role or service-linked role. To do this, you must have permissions to pass the role to the
service.

The following example error occurs when an IAM user named marymajor tries to use the console
to perform an action in Amazon SQS. However, the action requires the service to have permissions
that are granted by a service role. Mary does not have permissions to pass the role to the service.

User: arn:aws:iam::123456789012:user/marymajor is not authorized to perform:
 iam:PassRole

In this case, Mary's policies must be updated to allow her to perform the iam:PassRole action.

If you need help, contact your AWS administrator. Your administrator is the person who provided
you with your sign-in credentials.

I want to allow people outside of my AWS account to access my Amazon SQS
resources

You can create a role that users in other accounts or people outside of your organization can use to
access your resources. You can specify who is trusted to assume the role. For services that support

Troubleshooting 567

Amazon Simple Queue Service Developer Guide

resource-based policies or access control lists (ACLs), you can use those policies to grant people
access to your resources.

To learn more, consult the following:

• To learn whether Amazon SQS supports these features, see How Amazon Simple Queue Service
works with IAM.

• To learn how to provide access to your resources across AWS accounts that you own, see
Providing access to an IAM user in another AWS account that you own in the IAM User Guide.

• To learn how to provide access to your resources to third-party AWS accounts, see Providing
access to AWS accounts owned by third parties in the IAM User Guide.

• To learn how to provide access through identity federation, see Providing access to externally
authenticated users (identity federation) in the IAM User Guide.

• To learn the difference between using roles and resource-based policies for cross-account access,
see Cross account resource access in IAM in the IAM User Guide.

Using policies with Amazon SQS

This topic provides examples of identity-based policies in which an account administrator can
attach permissions policies to IAM identities (users, groups, and roles).

Important

We recommend that you first review the introductory topics that explain the basic concepts
and options available for you to manage access to your Amazon Simple Queue Service
resources. For more information, see Overview of managing access in Amazon SQS.
With the exception of ListQueues, all Amazon SQS actions support resource-level
permissions. For more information, see Amazon SQS API permissions: Actions and resource
reference.

Topics

• Using Amazon SQS and IAM policies

• Permissions required to use the Amazon SQS console

• Identity-based policy examples for Amazon SQS

• Basic examples of Amazon SQS policies

Using policies 568

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_aws-accounts.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html

Amazon Simple Queue Service Developer Guide

• Using custom policies with the Amazon SQS Access Policy Language

Using Amazon SQS and IAM policies

There are two ways to give your users permissions to your Amazon SQS resources: using the
Amazon SQS policy system and using the IAM policy system. You can use one or the other, or both.
For the most part, you can achieve the same result with either one.

For example, the following diagram shows an IAM policy and an Amazon SQS policy equivalent
to it. The IAM policy grants the rights to the Amazon SQS ReceiveMessage and SendMessage
actions for the queue called queue_xyz in your AWS Account, and the policy is attached to users
named Bob and Susan (Bob and Susan have the permissions stated in the policy). This Amazon SQS
policy also gives Bob and Susan rights to the ReceiveMessage and SendMessage actions for the
same queue.

Note

The following example shows simple policies without conditions. You can specify a
particular condition in either policy and get the same result.

There is one major difference between IAM and Amazon SQS policies: the Amazon SQS policy
system lets you grant permission to other AWS Accounts, whereas IAM doesn't.

Using policies 569

Amazon Simple Queue Service Developer Guide

It is up to you how you use both of the systems together to manage your permissions. The
following examples show how the two policy systems work together.

• In the first example, Bob has both an IAM policy and an Amazon SQS policy that apply to his
account. The IAM policy grants his account permission for the ReceiveMessage action on
queue_xyz, whereas the Amazon SQS policy gives his account permission for the SendMessage
action on the same queue. The following diagram illustrates the concept.

If Bob sends a ReceiveMessage request to queue_xyz, the IAM policy allows the action. If Bob
sends a SendMessage request to queue_xyz, the Amazon SQS policy allows the action.

• In the second example, Bob abuses his access to queue_xyz, so it becomes necessary to remove
his entire access to the queue. The easiest thing to do is to add a policy that denies him access
to all actions for the queue. This policy overrides the other two because an explicit deny always
overrides an allow. For more information about policy evaluation logic, see Using custom
policies with the Amazon SQS Access Policy Language. The following diagram illustrates the
concept.

Using policies 570

Amazon Simple Queue Service Developer Guide

You can also add an additional statement to the Amazon SQS policy that denies Bob any type
of access to the queue. It has the same effect as adding an IAM policy that denies Bob access
to the queue. For examples of policies that cover Amazon SQS actions and resources, see Basic
examples of Amazon SQS policies. For more information about writing Amazon SQS policies, see
Using custom policies with the Amazon SQS Access Policy Language.

Permissions required to use the Amazon SQS console

A user who wants to work with the Amazon SQS console must have the minimum set of
permissions to work with the Amazon SQS queues in the user's AWS account. For example, the
user must have the permission to call the ListQueues action to be able to list queues, or the
permission to call the CreateQueue action to be able to create queues. In addition to Amazon SQS
permissions, to subscribe an Amazon SQS queue to an Amazon SNS topic, the console also requires
permissions for Amazon SNS actions.

If you create an IAM policy that is more restrictive than the minimum required permissions, the
console might not function as intended for users with that IAM policy.

You don't need to allow minimum console permissions for users that make calls only to the AWS
CLI or Amazon SQS actions.

Using policies 571

Amazon Simple Queue Service Developer Guide

Identity-based policy examples for Amazon SQS

By default, users and roles don't have permission to create or modify Amazon SQS resources. They
also can't perform tasks by using the AWS Management Console, AWS Command Line Interface
(AWS CLI), or AWS API. To grant users permission to perform actions on the resources that they
need, an IAM administrator can create IAM policies. The administrator can then add the IAM
policies to roles, and users can assume the roles.

To learn how to create an IAM identity-based policy by using these example JSON policy
documents, see Creating IAM policies in the IAM User Guide.

For details about actions and resource types defined by Amazon SQS, including the format of the
ARNs for each of the resource types, see Actions, Resources, and Condition Keys for Amazon Simple
Queue Service in the Service Authorization Reference.

Note

When you configure lifecycle hooks for Amazon EC2 Auto Scaling, you don't need to write a
policy to send messages to an Amazon SQS queue. For more information, see Amazon EC2
Auto Scaling Lifecycle Hooks in the Amazon EC2 User Guide.

Topics

• Policy best practices

• Using the Amazon SQS console

• Allow users to view their own permissions

• Allow a user to create queues

• Allow developers to write messages to a shared queue

• Allow managers to get the general size of queues

• Allow a partner to send messages to a specific queue

Policy best practices

Identity-based policies determine whether someone can create, access, or delete Amazon SQS
resources in your account. These actions can incur costs for your AWS account. When you create or
edit identity-based policies, follow these guidelines and recommendations:

Using policies 572

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_amazonsqs.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_amazonsqs.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/lifecycle-hooks.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/lifecycle-hooks.html

Amazon Simple Queue Service Developer Guide

• Get started with AWS managed policies and move toward least-privilege permissions – To
get started granting permissions to your users and workloads, use the AWS managed policies
that grant permissions for many common use cases. They are available in your AWS account. We
recommend that you reduce permissions further by defining AWS customer managed policies
that are specific to your use cases. For more information, see AWS managed policies or AWS
managed policies for job functions in the IAM User Guide.

• Apply least-privilege permissions – When you set permissions with IAM policies, grant only the
permissions required to perform a task. You do this by defining the actions that can be taken on
specific resources under specific conditions, also known as least-privilege permissions. For more
information about using IAM to apply permissions, see Policies and permissions in IAM in the
IAM User Guide.

• Use conditions in IAM policies to further restrict access – You can add a condition to your
policies to limit access to actions and resources. For example, you can write a policy condition to
specify that all requests must be sent using SSL. You can also use conditions to grant access to
service actions if they are used through a specific AWS service, such as AWS CloudFormation. For
more information, see IAM JSON policy elements: Condition in the IAM User Guide.

• Use IAM Access Analyzer to validate your IAM policies to ensure secure and functional
permissions – IAM Access Analyzer validates new and existing policies so that the policies
adhere to the IAM policy language (JSON) and IAM best practices. IAM Access Analyzer provides
more than 100 policy checks and actionable recommendations to help you author secure and
functional policies. For more information, see IAM Access Analyzer policy validation in the IAM
User Guide.

• Require multi-factor authentication (MFA) – If you have a scenario that requires IAM users
or a root user in your AWS account, turn on MFA for additional security. To require MFA when
API operations are called, add MFA conditions to your policies. For more information, see
Configuring MFA-protected API access in the IAM User Guide.

For more information about best practices in IAM, see Security best practices in IAM in the IAM User
Guide.

Using the Amazon SQS console

To access the Amazon Simple Queue Service console, you must have a minimum set of permissions.
These permissions must allow you to list and view details about the Amazon SQS resources in your
AWS account. If you create an identity-based policy that is more restrictive than the minimum

Using policies 573

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-policy-validation.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html

Amazon Simple Queue Service Developer Guide

required permissions, the console won't function as intended for entities (users or roles) with that
policy.

You don't need to allow minimum console permissions for users that are making calls only to the
AWS CLI or the AWS API. Instead, allow access to only the actions that match the API operation
that they're trying to perform.

To ensure that users and roles can still use the Amazon SQS console, also attach the Amazon SQS
AmazonSQSReadOnlyAccess AWS managed policy to the entities. For more information, see
Adding permissions to a user in the IAM User Guide.

Allow users to view their own permissions

This example shows how you might create a policy that allows IAM users to view the inline and
managed policies that are attached to their user identity. This policy includes permissions to
complete this action on the console or programmatically using the AWS CLI or AWS API.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ViewOwnUserInfo",
 "Effect": "Allow",
 "Action": [
 "iam:GetUserPolicy",
 "iam:ListGroupsForUser",
 "iam:ListAttachedUserPolicies",
 "iam:ListUserPolicies",
 "iam:GetUser"
],
 "Resource": ["arn:aws:iam::*:user/${aws:username}"]
 },
 {
 "Sid": "NavigateInConsole",
 "Effect": "Allow",
 "Action": [
 "iam:GetGroupPolicy",
 "iam:GetPolicyVersion",
 "iam:GetPolicy",
 "iam:ListAttachedGroupPolicies",
 "iam:ListGroupPolicies",
 "iam:ListPolicyVersions",

Using policies 574

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_change-permissions.html#users_change_permissions-add-console

Amazon Simple Queue Service Developer Guide

 "iam:ListPolicies",
 "iam:ListUsers"
],
 "Resource": "*"
 }
]
}

Allow a user to create queues

In the following example, we create a policy for Bob that lets him access all Amazon SQS actions,
but only with queues whose names are prefixed with the literal string alice_queue_.

Amazon SQS doesn't automatically grant the creator of a queue permissions to use the queue.
Therefore, we must explicitly grant Bob permissions to use all Amazon SQS actions in addition to
CreateQueue action in the IAM policy.

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Action": "sqs:*",
 "Resource": "arn:aws:sqs:*:123456789012:alice_queue_*"
 }]
}

Allow developers to write messages to a shared queue

In the following example, we create a group for developers and attach a policy that lets the group
use the Amazon SQS SendMessage action, but only with the queue that belongs to the specified
AWS account and is named MyCompanyQueue.

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Action": "sqs:SendMessage",
 "Resource": "arn:aws:sqs:*:123456789012:MyCompanyQueue"
 }]
}

Using policies 575

Amazon Simple Queue Service Developer Guide

You can use * instead of SendMessage to grant the following actions to a principal on a shared
queue: ChangeMessageVisibility, DeleteMessage, GetQueueAttributes, GetQueueUrl,
ReceiveMessage, and SendMessage.

Note

Although * includes access provided by other permission types, Amazon SQS considers
permissions separately. For example, it is possible to grant both * and SendMessage
permissions to a user, even though a * includes the access provided by SendMessage.
This concept also applies when you remove a permission. If a principal has only a *
permission, requesting to remove a SendMessage permission doesn't leave the principal
with an everything-but permission. Instead, the request has no effect, because the principal
doesn't possess an explicit SendMessage permission. To leave the principal with only the
ReceiveMessage permission, first add the ReceiveMessage permission and then remove
the * permission.

Allow managers to get the general size of queues

In the following example, we create a group for managers and attach a policy that lets the group
use the Amazon SQS GetQueueAttributes action with all of the queues that belong to the
specified AWS account.

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Action": "sqs:GetQueueAttributes",
 "Resource": "*"
 }]
}

Allow a partner to send messages to a specific queue

You can accomplish this task using an Amazon SQS policy or an IAM policy. If your partner has an
AWS account, it might be easier to use an Amazon SQS policy. However, any user in the partner's
company who possesses the AWS security credentials can send messages to the queue. If you want
to limit access to a particular user or application, you must treat the partner like a user in your own
company and use an IAM policy instead of an Amazon SQS policy.

Using policies 576

Amazon Simple Queue Service Developer Guide

This example performs the following actions:

1. Create a group called WidgetCo to represent the partner company.

2. Create a user for the specific user or application at the partner's company who needs access.

3. Add the user to the group.

4. Attach a policy that gives the group access only to the SendMessage action for only the queue
named WidgetPartnerQueue.

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Action": "sqs:SendMessage",
 "Resource": "arn:aws:sqs:*:123456789012:WidgetPartnerQueue"
 }]
}

Basic examples of Amazon SQS policies

This section shows example policies for common Amazon SQS use cases.

You can use the console to verify the effects of each policy as you attach the policy to the user.
Initially, the user doesn't have permissions and won't be able to do anything in the console. As you
attach policies to the user, you can verify that the user can perform various actions in the console.

Note

We recommend that you use two browser windows: one to grant permissions and the
other to sign into the AWS Management Console using the user's credentials to verify
permissions as you grant them to the user.

Example 1: Grant one permission to one AWS account

The following example policy grants AWS account number 111122223333 the SendMessage
permission for the queue named 444455556666/queue1 in the US East (Ohio) region.

{
 "Version": "2012-10-17",

Using policies 577

Amazon Simple Queue Service Developer Guide

 "Id": "Queue1_Policy_UUID",
 "Statement": [{
 "Sid":"Queue1_SendMessage",
 "Effect": "Allow",
 "Principal": {
 "AWS": [
 "111122223333"
]
 },
 "Action": "sqs:SendMessage",
 "Resource": "arn:aws:sqs:us-east-2:444455556666:queue1"
 }]
}

Example 2: Grant two permissions to one AWS account

The following example policy grants AWS account number 111122223333 both the SendMessage
and ReceiveMessage permission for the queue named 444455556666/queue1.

{
 "Version": "2012-10-17",
 "Id": "Queue1_Policy_UUID",
 "Statement": [{
 "Sid":"Queue1_Send_Receive",
 "Effect": "Allow",
 "Principal": {
 "AWS": [
 "111122223333"
]
 },
 "Action": [
 "sqs:SendMessage",
 "sqs:ReceiveMessage"
],
 "Resource": "arn:aws:sqs:*:444455556666:queue1"
 }]
}

Example 3: Grant all permissions to two AWS accounts

The following example policy grants two different AWS accounts numbers (111122223333 and
444455556666) permission to use all actions to which Amazon SQS allows shared access for the
queue named 123456789012/queue1 in the US East (Ohio) region.

Using policies 578

Amazon Simple Queue Service Developer Guide

{
 "Version": "2012-10-17",
 "Id": "Queue1_Policy_UUID",
 "Statement": [{
 "Sid":"Queue1_AllActions",
 "Effect": "Allow",
 "Principal": {
 "AWS": [
 "111122223333",
 "444455556666"
]
 },
 "Action": "sqs:*",
 "Resource": "arn:aws:sqs:us-east-2:123456789012:queue1"
 }]
}

Example 4: Grant cross-account permissions to a role and a username

The following example policy grants role1 and username1 under AWS account number
111122223333 cross-account permission to use all actions to which Amazon SQS allows shared
access for the queue named 123456789012/queue1 in the US East (Ohio) region.

Cross-account permissions don't apply to the following actions:

• AddPermission

• CancelMessageMoveTask

• CreateQueue

• DeleteQueue

• ListMessageMoveTask

• ListQueues

• ListQueueTags

• RemovePermission

• SetQueueAttributes

• StartMessageMoveTask

• TagQueue

• UntagQueue

Using policies 579

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_AddPermission.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_CancelMessageMoveTask.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_CreateQueue.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_DeleteQueue.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ListMessageMoveTasks.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ListQueues.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ListQueueTags.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_RemovePermission.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SetQueueAttributes.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_StartMessageMoveTask.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_TagQueue.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_UntagQueue.html

Amazon Simple Queue Service Developer Guide

{
 "Version": "2012-10-17",
 "Id": "Queue1_Policy_UUID",
 "Statement": [{
 "Sid":"Queue1_AllActions",
 "Effect": "Allow",
 "Principal": {
 "AWS": [
 "arn:aws:iam::111122223333:role/role1",
 "arn:aws:iam::111122223333:user/username1"
]
 },
 "Action": "sqs:*",
 "Resource": "arn:aws:sqs:us-east-2:123456789012:queue1"
 }]
}

Example 5: Grant a permission to all users

The following example policy grants all users (anonymous users) ReceiveMessage permission for
the queue named 111122223333/queue1.

{
 "Version": "2012-10-17",
 "Id": "Queue1_Policy_UUID",
 "Statement": [{
 "Sid":"Queue1_AnonymousAccess_ReceiveMessage",
 "Effect": "Allow",
 "Principal": "*",
 "Action": "sqs:ReceiveMessage",
 "Resource": "arn:aws:sqs:*:111122223333:queue1"
 }]
}

Example 6: Grant a time-limited permission to all users

The following example policy grants all users (anonymous users) ReceiveMessage permission for
the queue named 111122223333/queue1, but only between 12:00 p.m. (noon) and 3:00 p.m. on
January 31, 2009.

{

Using policies 580

Amazon Simple Queue Service Developer Guide

 "Version": "2012-10-17",
 "Id": "Queue1_Policy_UUID",
 "Statement": [{
 "Sid":"Queue1_AnonymousAccess_ReceiveMessage_TimeLimit",
 "Effect": "Allow",
 "Principal": "*",
 "Action": "sqs:ReceiveMessage",
 "Resource": "arn:aws:sqs:*:111122223333:queue1",
 "Condition" : {
 "DateGreaterThan" : {
 "aws:CurrentTime":"2009-01-31T12:00Z"
 },
 "DateLessThan" : {
 "aws:CurrentTime":"2009-01-31T15:00Z"
 }
 }
 }]
}

Example 7: Grant all permissions to all users in a CIDR range

The following example policy grants all users (anonymous users) permission to use all possible
Amazon SQS actions that can be shared for the queue named 111122223333/queue1, but only if
the request comes from the 192.0.2.0/24 CIDR range.

{
 "Version": "2012-10-17",
 "Id": "Queue1_Policy_UUID",
 "Statement": [{
 "Sid":"Queue1_AnonymousAccess_AllActions_AllowlistIP",
 "Effect": "Allow",
 "Principal": "*",
 "Action": "sqs:*",
 "Resource": "arn:aws:sqs:*:111122223333:queue1",
 "Condition" : {
 "IpAddress" : {
 "aws:SourceIp":"192.0.2.0/24"
 }
 }
 }]
}

Using policies 581

Amazon Simple Queue Service Developer Guide

Example 8: Allowlist and blocklist permissions for users in different CIDR ranges

The following example policy has two statements:

• The first statement grants all users (anonymous users) in the 192.0.2.0/24 CIDR range
(except for 192.0.2.188) permission to use the SendMessage action for the queue named
111122223333/queue1.

• The second statement blocks all users (anonymous users) in the 12.148.72.0/23 CIDR range
from using the queue.

{
 "Version": "2012-10-17",
 "Id": "Queue1_Policy_UUID",
 "Statement": [{
 "Sid":"Queue1_AnonymousAccess_SendMessage_IPLimit",
 "Effect": "Allow",
 "Principal": "*",
 "Action": "sqs:SendMessage",
 "Resource": "arn:aws:sqs:*:111122223333:queue1",
 "Condition" : {
 "IpAddress" : {
 "aws:SourceIp":"192.0.2.0/24"
 },
 "NotIpAddress" : {
 "aws:SourceIp":"192.0.2.188/32"
 }
 }
 }, {
 "Sid":"Queue1_AnonymousAccess_AllActions_IPLimit_Deny",
 "Effect": "Deny",
 "Principal": "*",
 "Action": "sqs:*",
 "Resource": "arn:aws:sqs:*:111122223333:queue1",
 "Condition" : {
 "IpAddress" : {
 "aws:SourceIp":"12.148.72.0/23"
 }
 }
 }]
}

Using policies 582

Amazon Simple Queue Service Developer Guide

Using custom policies with the Amazon SQS Access Policy Language

If you want to allow Amazon SQS access based only on an AWS account ID and basic permissions
(such as for SendMessage or ReceiveMessage), you don't need to write your own policies. You
can just use the Amazon SQS AddPermission action.

If you want to explicitly deny or allow access based on more specific conditions (such as the time
the request comes in or the IP address of the requester), you need to write your own Amazon
SQS policies and upload them to the AWS system using the Amazon SQS SetQueueAttributes
action.

Topics

• Amazon SQS access control architecture

• Amazon SQS access control process workflow

• Amazon SQS Access Policy Language key concepts

• Amazon SQS Access Policy Language evaluation logic

• Relationships between explicit and default denials in the Amazon SQS Access Policy Language

• Limitations of Amazon SQS custom policies

• Custom Amazon SQS Access Policy Language examples

Amazon SQS access control architecture

The following diagram describes the access control for your Amazon SQS resources.

Using policies 583

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SendMessage.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ReceiveMessage.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_AddPermission.html

Amazon Simple Queue Service Developer Guide

You, the resource owner.

Your resources contained within the AWS service (for example, Amazon SQS queues).

Your policies. It is a good practice to have one policy per resource. The AWS service provides an API
you use to upload and manage your policies.

Requesters and their incoming requests to the AWS service.

The access policy language evaluation code. This is the set of code within the AWS service that
evaluates incoming requests against the applicable policies and determines whether the requester
is allowed access to the resource.

Using policies 584

Amazon Simple Queue Service Developer Guide

Amazon SQS access control process workflow

The following diagram describes the general workflow of access control with the Amazon SQS
access policy language.

You write an Amazon SQS policy for your queue.

You upload your policy to AWS. The AWS service provides an API that you use to upload your
policies. For example, you use the Amazon SQS SetQueueAttributes action to upload a policy
for a particular Amazon SQS queue.

Someone sends a request to use your Amazon SQS queue.

Amazon SQS examines all available Amazon SQS policies and determines which ones are
applicable.

Amazon SQS evaluates the policies and determines whether the requester is allowed to use your
queue.

Based on the policy evaluation result, Amazon SQS either returns an Access denied error to the
requester or continues to process the request.

Using policies 585

Amazon Simple Queue Service Developer Guide

Amazon SQS Access Policy Language key concepts

To write your own policies, you must be familiar with JSON and a number of key concepts.

Allow

The result of a Statement that has Effect set to allow.

Action

The activity that the Principal has permission to perform, typically a request to AWS.

Default-deny

The result of a Statement that has no Allow or Explicit-deny settings.

Condition

Any restriction or detail about a Permission. Typical conditions are related to date and time and
IP addresses.

Effect

The result that you want the Statement of a Policy to return at evaluation time. You specify the
deny or allow value when you write the policy statement. There can be three possible results
at policy evaluation time: Default-deny, Allow, and Explicit-deny.

Explicit-deny

The result of a Statement that has Effect set to deny.

Evaluation

The process that Amazon SQS uses to determine whether an incoming request should be
denied or allowed based on a Policy.

Issuer

The user who writes a Policy to grant permissions to a resource. The issuer, by definition
is always the resource owner. AWS doesn't permit Amazon SQS users to create policies for
resources they don't own.

Key

The specific characteristic that is the basis for access restriction.

Using policies 586

http://json.org/

Amazon Simple Queue Service Developer Guide

Permission

The concept of allowing or disallowing access to a resource using a Condition and a Key.

Policy

The document that acts as a container for one or more statements.

Amazon SQS uses the policy to determine whether to grant access to a user for a resource.

Principal

The user who receives Permission in the Policy.

Resource

The object that the Principal requests access to.

Statement

The formal description of a single permission, written in the access policy language as part of a
broader Policy document.

Requester

The user who sends a request for access to a Resource.

Amazon SQS Access Policy Language evaluation logic

At evaluation time, Amazon SQS determines whether a request from someone other than the
resource owner should be allowed or denied. The evaluation logic follows several basic rules:

• By default, all requests to use your resource coming from anyone but you are denied.

• An Allow overrides any Default-deny.

Using policies 587

Amazon Simple Queue Service Developer Guide

• An Explicit-deny overrides any allow.

• The order in which the policies are evaluated isn't important.

The following diagram describes in detail how Amazon SQS evaluates decisions about access
permissions.

The decision starts with a default-deny.

The enforcement code evaluates all the policies that are applicable to the request (based on the

Using policies 588

Amazon Simple Queue Service Developer Guide

resource, principal, action, and conditions). The order in which the enforcement code evaluates the
policies isn't important.

The enforcement code looks for an explicit-deny instruction that can apply to the request. If it
finds even one, the enforcement code returns a decision of deny and the process finishes.

If no explicit-deny instruction is found, the enforcement code looks for any allow instructions that
can apply to the request. If it finds even one, the enforcement code returns a decision of allow and
the process finishes (the service continues to process the request).

If no allow instruction is found, then the final decision is deny (because there is no explicit-deny or
allow, this is considered a default-deny).

Relationships between explicit and default denials in the Amazon SQS Access Policy Language

If an Amazon SQS policy doesn't directly apply to a request, the request results in a Default-deny.
For example, if a user requests permission to use Amazon SQS but the only policy that applies to
the user can use DynamoDB, the requests results in a default-deny.

If a condition in a statement isn't met, the request results in a default-deny. If all conditions in a
statement are met, the request results in either an Allow or an Explicit-deny based on the value
of the Effect element of the policy. Policies don't specify what to do if a condition isn't met, so the
default result in this case is a default-deny. For example, you want to prevent requests that come
from Antarctica. You write Policy A1 that allows a request only if it doesn't come from Antarctica.
The following diagram illustrates the Amazon SQS policy.

If a user sends a request from the U.S., the condition is met (the request isn't from Antarctica), and
the request results in an allow. However, if a user sends a request from Antarctica, the condition

Using policies 589

Amazon Simple Queue Service Developer Guide

isn't met and the request defaults to a default-deny. You can change the result to an explicit-
deny by writing Policy A2 that explicitly denies a request if it comes from Antarctica. The following
diagram illustrates the policy.

If a user sends a request from Antarctica, the condition is met and the request results in an
explicit-deny.

The distinction between a default-deny and an explicit-deny is important because an allow can
overwrite the former but not the latter. For example, Policy B allows requests if they arrive on June
1, 2010. The following diagram compares combining this policy with Policy A1 and Policy A2.

Using policies 590

Amazon Simple Queue Service Developer Guide

In Scenario 1, Policy A1 results in a default-deny and Policy B results in an allow because the
policy allows requests that come in on June 1, 2010. The allow from Policy B overrides the default-
deny from Policy A1, and the request is allowed.

In Scenario 2, Policy B2 results in an explicit-deny and Policy B results in an allow. The explicit-
deny from Policy A2 overrides the allow from Policy B, and the request is denied.

Using policies 591

Amazon Simple Queue Service Developer Guide

Limitations of Amazon SQS custom policies

Cross-account access

Cross-account permissions don't apply to the following actions:

• AddPermission

• CancelMessageMoveTask

• CreateQueue

• DeleteQueue

• ListMessageMoveTask

• ListQueues

• ListQueueTags

• RemovePermission

• SetQueueAttributes

• StartMessageMoveTask

• TagQueue

• UntagQueue

Condition keys

Currently, Amazon SQS supports only a limited subset of the condition keys available in IAM. For
more information, see Amazon SQS API permissions: Actions and resource reference.

Custom Amazon SQS Access Policy Language examples

The following are examples of typical Amazon SQS access policies.

Example 1: Give permission to one account

The following example Amazon SQS policy gives AWS account 111122223333 permission to send
to and receive from queue2 owned by AWS account 444455556666.

{
 "Version": "2012-10-17",

Using policies 592

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_AddPermission.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_CancelMessageMoveTask.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_CreateQueue.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_DeleteQueue.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ListMessageMoveTasks.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ListQueues.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ListQueueTags.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_RemovePermission.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SetQueueAttributes.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_StartMessageMoveTask.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_TagQueue.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_UntagQueue.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html#AvailableKeys

Amazon Simple Queue Service Developer Guide

 "Id": "UseCase1",
 "Statement" : [{
 "Sid": "1",
 "Effect": "Allow",
 "Principal": {
 "AWS": [
 "111122223333"
]
 },
 "Action": [
 "sqs:SendMessage",
 "sqs:ReceiveMessage"
],
 "Resource": "arn:aws:sqs:us-east-2:444455556666:queue2"
 }]
}

Example 2: Give permission to one or more accounts

The following example Amazon SQS policy gives one or more AWS accounts access to queues
owned by your account for a specific time period. It is necessary to write this policy and to upload
it to Amazon SQS using the SetQueueAttributes action because the AddPermission action
doesn't permit specifying a time restriction when granting access to a queue.

{
 "Version": "2012-10-17",
 "Id": "UseCase2",
 "Statement" : [{
 "Sid": "1",
 "Effect": "Allow",
 "Principal": {
 "AWS": [
 "111122223333",
 "444455556666"
]
 },
 "Action": [
 "sqs:SendMessage",
 "sqs:ReceiveMessage"
],
 "Resource": "arn:aws:sqs:us-east-2:444455556666:queue2",
 "Condition": {
 "DateLessThan": {

Using policies 593

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SetQueueAttributes.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_AddPermission.html

Amazon Simple Queue Service Developer Guide

 "AWS:CurrentTime": "2009-06-30T12:00Z"
 }
 }
 }]
}

Example 3: Give permission to requests from Amazon EC2 instances

The following example Amazon SQS policy gives access to requests that come from Amazon
EC2 instances. This example builds on the "Example 2: Give permission to one or more accounts"
example: it restricts access to before June 30, 2009 at 12 noon (UTC), it restricts access to the IP
range 203.0.113.0/24. It is necessary to write this policy and to upload it to Amazon SQS using
the SetQueueAttributes action because the AddPermission action doesn't permit specifying
an IP address restriction when granting access to a queue.

{
 "Version": "2012-10-17",
 "Id": "UseCase3",
 "Statement" : [{
 "Sid": "1",
 "Effect": "Allow",
 "Principal": {
 "AWS": [
 "111122223333"
]
 },
 "Action": [
 "sqs:SendMessage",
 "sqs:ReceiveMessage"
],
 "Resource": "arn:aws:sqs:us-east-2:444455556666:queue2",
 "Condition": {
 "DateLessThan": {
 "AWS:CurrentTime": "2009-06-30T12:00Z"
 },
 "IpAddress": {
 "AWS:SourceIp": "203.0.113.0/24"
 }
 }
 }]
}

Using policies 594

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SetQueueAttributes.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_AddPermission.html

Amazon Simple Queue Service Developer Guide

Example 4: Deny access to a specific account

The following example Amazon SQS policy denies a specific AWS account access to your queue.
This example builds on the "Example 1: Give permission to one account" example: it denies access
to the specified AWS account. It is necessary to write this policy and to upload it to Amazon SQS
using the SetQueueAttributes action because the AddPermission action doesn't permit deny
access to a queue (it allows only granting access to a queue).

{
 "Version": "2012-10-17",
 "Id": "UseCase4",
 "Statement" : [{
 "Sid": "1",
 "Effect": "Deny",
 "Principal": {
 "AWS": [
 "111122223333"
]
 },
 "Action": [
 "sqs:SendMessage",
 "sqs:ReceiveMessage"
],
 "Resource": "arn:aws:sqs:us-east-2:444455556666:queue2"
 }]
}

Example 5: Deny access if it isn't from a VPC endpoint

The following example Amazon SQS policy restricts access to queue1: 111122223333 can perform
the SendMessage and ReceiveMessage actions only from the VPC endpoint ID vpce-1a2b3c4d
(specified using the aws:sourceVpce condition). For more information, see Amazon Virtual
Private Cloud endpoints for Amazon SQS.

Note

• The aws:sourceVpce condition doesn't require an ARN for the VPC endpoint resource,
only the VPC endpoint ID.

• You can modify the following example to restrict all actions to a specific VPC endpoint
by denying all Amazon SQS actions (sqs:*) in the second statement. However, such a

Using policies 595

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SetQueueAttributes.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_AddPermission.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SendMessage.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ReceiveMessage.html

Amazon Simple Queue Service Developer Guide

policy statement would stipulate that all actions (including administrative actions needed
to modify queue permissions) must be made through the specific VPC endpoint defined
in the policy, potentially preventing the user from modifying queue permissions in the
future.

{
 "Version": "2012-10-17",
 "Id": "UseCase5",
 "Statement": [{
 "Sid": "1",
 "Effect": "Allow",
 "Principal": {
 "AWS": [
 "111122223333"
]
 },
 "Action": [
 "sqs:SendMessage",
 "sqs:ReceiveMessage"
],
 "Resource": "arn:aws:sqs:us-east-2:111122223333:queue1"
 },
 {
 "Sid": "2",
 "Effect": "Deny",
 "Principal": "*",
 "Action": [
 "sqs:SendMessage",
 "sqs:ReceiveMessage"
],
 "Resource": "arn:aws:sqs:us-east-2:111122223333:queue1",
 "Condition": {
 "StringNotEquals": {
 "aws:sourceVpce": "vpce-1a2b3c4d"
 }
 }
 }
]
}

Using policies 596

Amazon Simple Queue Service Developer Guide

Using temporary security credentials with Amazon SQS

In addition to creating users with their own security credentials, IAM also allows you to grant
temporary security credentials to any user, allowing the user to access your AWS services and
resources. You can manage users who have AWS accounts. You can also manage users for your
system who don't have AWS accounts (federated users). In addition, applications that you create to
access your AWS resources can also be considered to be "users."

You can use these temporary security credentials to make requests to Amazon SQS. The API
libraries compute the necessary signature value using those credentials to authenticate your
request. If you send requests using expired credentials, Amazon SQS denies the request.

Note

You can't set a policy based on temporary credentials.

Prerequisites

1. Use IAM to create temporary security credentials:

• Security token

• Access Key ID

• Secret Access Key

2. Prepare your string to sign with the temporary Access Key ID and the security token.

3. Use the temporary Secret Access Key instead of your own Secret Access Key to sign your Query
API request.

Note

When you submit the signed Query API request, use the temporary Access Key ID instead of
your own Access Key ID and to include the security token. For more information about IAM
support for temporary security credentials, see Granting Temporary Access to Your AWS
Resources in the IAM User Guide.

Using policies 597

https://docs.aws.amazon.com/IAM/latest/UserGuide/TokenBasedAuth.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/TokenBasedAuth.html

Amazon Simple Queue Service Developer Guide

To call an Amazon SQS Query API action using temporary security credentials

1. Request a temporary security token using AWS Identity and Access Management. For more
information, see Creating Temporary Security Credentials to Enable Access for IAM Users in the
IAM User Guide.

IAM returns a security token, an Access Key ID, and a Secret Access Key.

2. Prepare your query using the temporary Access Key ID instead of your own Access Key ID and
include the security token. Sign your request using the temporary Secret Access Key instead of
your own.

3. Submit your signed query string with the temporary Access Key ID and the security token.

The following example demonstrates how to use temporary security credentials to
authenticate an Amazon SQS request. The structure of AUTHPARAMS depends on the signature
of the API request. For more information, see Signing AWS API Requests in the Amazon Web
Services General Reference.

https://sqs.us-east-2.amazonaws.com/
?Action=CreateQueue
&DefaultVisibilityTimeout=40
&QueueName=MyQueue
&Attribute.1.Name=VisibilityTimeout
&Attribute.1.Value=40
&Expires=2020-12-18T22%3A52%3A43PST
&SecurityToken=wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY
&AWSAccessKeyId=AKIAIOSFODNN7EXAMPLE
&Version=2012-11-05
&AUTHPARAMS

The following example uses temporary security credentials to send two messages using the
SendMessageBatch action.

https://sqs.us-east-2.amazonaws.com/
?Action=SendMessageBatch
&SendMessageBatchRequestEntry.1.Id=test_msg_001
&SendMessageBatchRequestEntry.1.MessageBody=test%20message%20body%201
&SendMessageBatchRequestEntry.2.Id=test_msg_002
&SendMessageBatchRequestEntry.2.MessageBody=test%20message%20body%202
&SendMessageBatchRequestEntry.2.DelaySeconds=60
&Expires=2020-12-18T22%3A52%3A43PST

Using policies 598

https://docs.aws.amazon.com/IAM/latest/UserGuide/CreatingSessionTokens.html
https://docs.aws.amazon.com/general/latest/gr/signing_aws_api_requests.html

Amazon Simple Queue Service Developer Guide

&SecurityToken=je7MtGbClwBF/2Zp9Utk/h3yCo8nvbEXAMPLEKEY
&AWSAccessKeyId=AKIAI44QH8DHBEXAMPLE
&Version=2012-11-05
&AUTHPARAMS

Access management for encrypted Amazon SQS queues with least privilege policies

You can use Amazon SQS to exchange sensitive data between applications by using server-side
encryption (SSE) integrated with AWS Key Management Service (KMS). With the integration of
Amazon SQS and AWS KMS, you can centrally manage the keys that protect Amazon SQS, as well
as the keys that protect your other AWS resources.

Multiple AWS services can act as event sources that send events to Amazon SQS. To enable an
event source to access the encrypted Amazon SQS queue, you need to configure the queue with a
customer-managed AWS KMS key. Then, use the key policy to allow the service to use the required
AWS KMS API methods. The service also requires permissions to authenticate access to enable the
queue to send events. You can achieve this by using an Amazon SQS policy, which is a resource-
based policy that you can use to control access to the Amazon SQS queue and its data.

The following sections provide information on how to control access to your encrypted Amazon
SQS queue through the Amazon SQS policy and the AWS KMS key policy. The policies in this guide
will help you achieve least privilege.

This guide also describes how resource-based policies address the confused-deputy problem
by using the aws:SourceArn, aws:SourceAccount, and aws:PrincipalOrgID global IAM
condition context keys.

Topics

• Overview

• Least privilege key policy for Amazon SQS

• Amazon SQS policy statements for the dead-letter queue

• Prevent the cross-service confused deputy problem

• Use IAM Access Analyzer to review cross-account access

Overview

In this topic, we will walk you through a common use case to illustrate how you can build the key
policy and the Amazon SQS queue policy. This use case is shown in the following image.

Using policies 599

https://docs.aws.amazon.com/kms/latest/developerguide/overview.html
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#customer-cmk
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#grant-least-privilege
https://docs.aws.amazon.com/IAM/latest/UserGuide/confused-deputy.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourcearn
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourceaccount
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-principalorgid

Amazon Simple Queue Service Developer Guide

In this example, the message producer is an Amazon Simple Notification Service (SNS) topic, which
is configured to fanout messages to your encrypted Amazon SQS queue. The message consumer
is a compute service, such as an AWS Lambda function, an Amazon Elastic Compute Cloud (EC2)
instance, or an AWS Fargate container. Your Amazon SQS queue is then configured to send failed
messages to a Dead-letter Queue (DLQ). This is useful for debugging your application or messaging
system because DLQs let you isolate unconsumed messages to determine why their processing
didn't succeed. In the solution defined in this topic, a compute service such as a Lambda function is
used to process messages stored in the Amazon SQS queue. If the message consumer is located in
a virtual private cloud (VPC), the DenyReceivingIfNotThroughVPCE policy statement included
in this guide lets you restrict message reception to that specific VPC.

Note

This guide contains only the required IAM permissions in the form of policy statements. To
construct the policy, you need to add the statements to your Amazon SQS policy or your
AWS KMS key policy. This guide doesn't provide instructions on how to create the Amazon
SQS queue or the AWS KMS key. For instructions on how to create these resources, see
Creating an Amazon SQS queue and Creating keys.
The Amazon SQS policy defined in this guide doesn’t support redriving messages directly
to the same or a different Amazon SQS queue.

Using policies 600

https://docs.aws.amazon.com/sns/latest/dg/welcome.html
https://docs.aws.amazon.com/lambda/latest/dg/welcome.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/concepts.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/AWS_Fargate.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-dead-letter-queues.html
https://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html

Amazon Simple Queue Service Developer Guide

Least privilege key policy for Amazon SQS

In this section, we describe the required least privilege permissions in AWS KMS for the customer-
managed key that you use to encrypt your Amazon SQS queue. With these permissions, you can
limit access to only the intended entities while implementing least privilege. The key policy must
consist of the following policy statements, which we describe in detail below:

• Grant administrator permissions to the AWS KMS key

• Grant read-only access to the key metadata

• Grant Amazon SNS KMS permissions to Amazon SNS to publish messages to the queue

• Allow consumers to decrypt messages from the queue

Grant administrator permissions to the AWS KMS key

To create an AWS KMS key, you need to provide AWS KMS administrator permissions to the IAM
role that you use to deploy the AWS KMS key. These administrator permissions are defined in the
following AllowKeyAdminPermissions policy statement. When you add this statement to your
AWS KMS key policy, make sure to replace <admin-role ARN> with the Amazon Resource Name
(ARN) of the IAM role used to deploy the AWS KMS key, manage the AWS KMS key, or both. This
can be the IAM role of your deployment pipeline, or the administrator role for your organization in
your AWS Organizations.

{
 "Sid": "AllowKeyAdminPermissions",
 "Effect": "Allow",
 "Principal": {
 "AWS": [
 "<admin-role ARN>"
]
 },
 "Action": [
 "kms:Create*",
 "kms:Describe*",
 "kms:Enable*",
 "kms:List*",
 "kms:Put*",
 "kms:Update*",
 "kms:Revoke*",
 "kms:Disable*",
 "kms:Get*",

Using policies 601

https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_accounts_access.html
https://aws.amazon.com/organizations/

Amazon Simple Queue Service Developer Guide

 "kms:Delete*",
 "kms:TagResource",
 "kms:UntagResource",
 "kms:ScheduleKeyDeletion",
 "kms:CancelKeyDeletion"
],
 "Resource": "*"
}

Note

In an AWS KMS key policy, the value of the Resource element needs to be *, which means
"this AWS KMS key". The asterisk (*) identifies the AWS KMS key to which the key policy is
attached.

Grant read-only access to the key metadata

To grant other IAM roles read-only access to your key metadata, add the
AllowReadAccessToKeyMetaData statement to your key policy. For example, the following
statement lets you list all of the AWS KMS keys in your account for auditing purposes. This
statement grants the AWS root user read-only access to the key metadata. Therefore, any IAM
principal in the account can have access to the key metadata when their identity-based policies
have the permissions listed in the following statement: kms:Describe*, kms:Get*, and
kms:List*. Make sure to replace <account-ID> with your own information.

{
 "Sid": "AllowReadAcesssToKeyMetaData",
 "Effect": "Allow",
 "Principal": {
 "AWS": [
 "arn:aws:iam::<accountID>:root"
]
 },
 "Action": [
 "kms:Describe*",
 "kms:Get*",
 "kms:List*"
],
 "Resource": "*"

Using policies 602

Amazon Simple Queue Service Developer Guide

}

Grant Amazon SNS KMS permissions to Amazon SNS to publish messages to the queue

To allow your Amazon SNS topic to publish messages to your encrypted Amazon SQS queue, add
the AllowSNSToSendToSQS policy statement to your key policy. This statement grants Amazon
SNS permissions to use the AWS KMS key to publish to your Amazon SQS queue. Make sure to
replace <account-ID> with your own information.

Note

The Condition in the statement limits access to only the Amazon SNS service in the same
AWS account.

{
 "Sid": "AllowSNSToSendToSQS",
 "Effect": "Allow",
 "Principal": {
 "Service": [
 "sns.amazonaws.com"
]
 },
 "Action": [
 "kms:GenerateDataKey",
 "kms:Decrypt"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "aws:SourceAccount": "<account-id>"
 }
 }
}

Allow consumers to decrypt messages from the queue

The following AllowConsumersToReceiveFromTheQueue statement grants the Amazon SQS
message consumer the required permissions to decrypt messages received from the encrypted
Amazon SQS queue. When you attach the policy statement, replace <consumer's runtime
role ARN> with the IAM runtime role ARN of the message consumer.

Using policies 603

Amazon Simple Queue Service Developer Guide

{
 "Sid": "AllowConsumersToReceiveFromTheQueue",
 "Effect": "Allow",
 "Principal": {
 "AWS": [
 "<consumer's execution role ARN>"
]
 },
 "Action": [
 "kms:Decrypt"
],
 "Resource": "*"
}

Least privilege Amazon SQS policy

This section walks you through the least privilege Amazon SQS queue policies for the use case
covered by this guide (for example, Amazon SNS to Amazon SQS). The defined policy is designed
to prevent unintended access by using a mix of both Deny and Allow statements. The Allow
statements grant access to the intended entity or entities. The Deny statements prevent other
unintended entities from accessing the Amazon SQS queue, while excluding the intended entity
within the policy condition.

The Amazon SQS policy includes the following statements, which we describe in detail below:

• Restrict Amazon SQS management permissions

• Restrict Amazon SQS queue actions from the specified organization

• Grant Amazon SQS permissions to consumers

• Enforce encryption in transit

• Restrict message transmission to a specific Amazon SNS topic

• (Optional) Restrict message reception to a specific VPC endpoint

Restrict Amazon SQS management permissions

The following RestrictAdminQueueActions policy statement restricts the Amazon SQS
management permissions to only the IAM role or roles that you use to deploy the queue, manage
the queue, or both. Make sure to replace the <placeholder values> with your own information.
Specify the ARN of the IAM role used to deploy the Amazon SQS queue, as well as the ARNs of any
administrator roles that should have Amazon SQS management permissions.

Using policies 604

Amazon Simple Queue Service Developer Guide

{
 "Sid": "RestrictAdminQueueActions",
 "Effect": "Deny",
 "Principal": {
 "AWS": "*"
 },
 "Action": [
 "sqs:AddPermission",
 "sqs:DeleteQueue",
 "sqs:RemovePermission",
 "sqs:SetQueueAttributes"
],
 "Resource": "<SQS Queue ARN>",
 "Condition": {
 "StringNotLike": {
 "aws:PrincipalARN": [
 "arn:aws:iam::<account-id>:role/<deployment-role-name>",
 "<admin-role ARN>"
]
 }
 }
}

Restrict Amazon SQS queue actions from the specified organization

To help protect your Amazon SQS resources from external access (access by an entity outside of
your AWS organization), use the following statement. This statement limits Amazon SQS queue
access to the organization that you specify in the Condition. Make sure to replace <SQS queue
ARN> with the ARN of the IAM role used to deploy the Amazon SQS queue; and the <org-id>,
with your organization ID.

{
 "Sid": "DenyQueueActionsOutsideOrg",
 "Effect": "Deny",
 "Principal": {
 "AWS": "*"
 },
 "Action": [
 "sqs:AddPermission",
 "sqs:ChangeMessageVisibility",
 "sqs:DeleteQueue",
 "sqs:RemovePermission",

Using policies 605

https://docs.aws.amazon.com/organizations/latest/userguide/orgs_introduction.html

Amazon Simple Queue Service Developer Guide

 "sqs:SetQueueAttributes",
 "sqs:ReceiveMessage"
],
 "Resource": "<SQS queue ARN>",
 "Condition": {
 "StringNotEquals": {
 "aws:PrincipalOrgID": [
 "<org-id>"
]
 }
 }
}

Grant Amazon SQS permissions to consumers

To receive messages from the Amazon SQS queue, you need to provide the message consumer with
the necessary permissions. The following policy statement grants the consumer, which you specify,
the required permissions to consume messages from the Amazon SQS queue. When adding the
statement to your Amazon SQS policy, make sure to replace <consumer's IAM runtime role
ARN> with the ARN of the IAM runtime role used by the consumer; and <SQS queue ARN>, with
the ARN of the IAM role used to deploy the Amazon SQS queue.

{
 "Sid": "AllowConsumersToReceiveFromTheQueue",
 "Effect": "Allow",
 "Principal": {
 "AWS": "<consumer's IAM execution role ARN>"
 },
 "Action": [
 "sqs:ChangeMessageVisibility",
 "sqs:DeleteMessage",
 "sqs:GetQueueAttributes",
 "sqs:ReceiveMessage"
],
 "Resource": "<SQS queue ARN>"
}

To prevent other entities from receiving messages from the Amazon SQS queue, add the
DenyOtherConsumersFromReceiving statement to the Amazon SQS queue policy. This
statement restricts message consumption to the consumer that you specify—allowing no other

Using policies 606

Amazon Simple Queue Service Developer Guide

consumers to have access, even when their identity-permissions would grant them access. Make
sure to replace <SQS queue ARN> and <consumer’s runtime role ARN> with your own
information.

{
 "Sid": "DenyOtherConsumersFromReceiving",
 "Effect": "Deny",
 "Principal": {
 "AWS": "*"
 },
 "Action": [
 "sqs:ChangeMessageVisibility",
 "sqs:DeleteMessage",
 "sqs:ReceiveMessage"
],
 "Resource": "<SQS queue ARN>",
 "Condition": {
 "StringNotLike": {
 "aws:PrincipalARN": "<consumer's execution role ARN>"
 }
 }
}

Enforce encryption in transit

The following DenyUnsecureTransport policy statement enforces the consumers and producers
to use secure channels (TLS connections) to send and receive messages from the Amazon SQS
queue. Make sure to replace <SQS queue ARN> with the ARN of the IAM role used to deploy the
Amazon SQS queue.

{
 "Sid": "DenyUnsecureTransport",
 "Effect": "Deny",
 "Principal": {
 "AWS": "*"
 },
 "Action": [
 "sqs:ReceiveMessage",
 "sqs:SendMessage"
],
 "Resource": "<SQS queue ARN>",

Using policies 607

Amazon Simple Queue Service Developer Guide

 "Condition": {
 "Bool": {
 "aws:SecureTransport": "false"
 }
 }
}

Restrict message transmission to a specific Amazon SNS topic

The following AllowSNSToSendToTheQueue policy statement allows the specified Amazon SNS
topic to send messages to the Amazon SQS queue. Make sure to replace <SQS queue ARN> with
the ARN of the IAM role used to deploy the Amazon SQS queue; and <SNS topic ARN>, with the
Amazon SNS topic ARN.

{
 "Sid": "AllowSNSToSendToTheQueue",
 "Effect": "Allow",
 "Principal": {
 "Service": "sns.amazonaws.com"
 },
 "Action": "sqs:SendMessage",
 "Resource": "<SQS queue ARN>",
 "Condition": {
 "ArnLike": {
 "aws:SourceArn": "<SNS topic ARN>"
 }
 }
}

The following DenyAllProducersExceptSNSFromSending policy statement prevents other
producers from sending messages to the queue. Replace <SQS queue ARN> and <SNS topic
ARN> with your own information.

{
 "Sid": "DenyAllProducersExceptSNSFromSending",
 "Effect": "Deny",
 "Principal": {
 "AWS": "*"
 },

Using policies 608

Amazon Simple Queue Service Developer Guide

 "Action": "sqs:SendMessage",
 "Resource": "<SQS queue ARN>",
 "Condition": {
 "ArnNotLike": {
 "aws:SourceArn": "<SNS topic ARN>"
 }
 }
}

(Optional) Restrict message reception to a specific VPC endpoint

To restrict the receipt of messages to only a specific VPC endpoint, add the following policy
statement to your Amazon SQS queue policy. This statement prevents a message consumer from
receiving messages from the queue unless the messages are from the desired VPC endpoint.
Replace <SQS queue ARN> with the ARN of the IAM role used to deploy the Amazon SQS queue;
and <vpce_id> with the ID of the VPC endpoint.

{
 "Sid": "DenyReceivingIfNotThroughVPCE",
 "Effect": "Deny",
 "Principal": "*",
 "Action": [
 "sqs:ReceiveMessage"
],
 "Resource": "<SQS queue ARN>",
 "Condition": {
 "StringNotEquals": {
 "aws:sourceVpce": "<vpce id>"
 }
 }
}

Amazon SQS policy statements for the dead-letter queue

Add the following policy statements, identified by their statement ID, to your DLQ access policy:

• RestrictAdminQueueActions

• DenyQueueActionsOutsideOrg

• AllowConsumersToReceiveFromTheQueue

Using policies 609

https://aws.amazon.com/about-aws/whats-new/2018/12/amazon-sqs-vpc-endpoints-aws-privatelink/

Amazon Simple Queue Service Developer Guide

• DenyOtherConsumersFromReceiving

• DenyUnsecureTransport

In addition to adding the preceding policy statements to your DLQ access policy, you should also
add a statement to restrict message transmission to Amazon SQS queues, as described in the
following section.

Restrict message transmission to Amazon SQS queues

To restrict access to only Amazon SQS queues from the same account, add the following
DenyAnyProducersExceptSQS policy statement to the DLQ queue policy. This statement doesn't
limit message transmission to a specific queue because you need to deploy the DLQ before you
create the main queue, so you won't know the Amazon SQS ARN when you create the DLQ. If
you need to limit access to only one Amazon SQS queue, modify the aws:SourceArn in the
Condition with the ARN of your Amazon SQS source queue when you know it.

{
 "Sid": "DenyAnyProducersExceptSQS",
 "Effect": "Deny",
 "Principal": {
 "AWS": "*"
 },
 "Action": "sqs:SendMessage",
 "Resource": "<SQS DLQ ARN>",
 "Condition": {
 "ArnNotLike": {
 "aws:SourceArn": "arn:aws:sqs:<region>:<account-id>:*"
 }
 }
}

Important

The Amazon SQS queue policies defined in this guide don't restrict the sqs:PurgeQueue
action to a certain IAM role or roles. The sqs:PurgeQueue action enables you to delete
all messages in the Amazon SQS queue. You can also use this action to make changes
to the message format without replacing the Amazon SQS queue. When debugging
an application, you can clear the Amazon SQS queue to remove potentially erroneous
messages. When testing the application, you can drive a high message volume through the

Using policies 610

Amazon Simple Queue Service Developer Guide

Amazon SQS queue and then purge the queue to start fresh before entering production.
The reason for not restricting this action to a certain role is that this role might not be
known when deploying the Amazon SQS queue. You will need to add this permission to the
role’s identity-based policy to be able to purge the queue.

Prevent the cross-service confused deputy problem

The confused deputy problem is a security issue where an entity that doesn't have permission to
perform an action can coerce a more privileged entity to perform the action. To prevent this, AWS
provides tools that help you protect your account if you provide third parties (known as cross-
account) or other AWS services (known as cross-service) access to resources in your account. The
policy statements in this section can help you prevent the cross-service confused deputy problem.

Cross-service impersonation can occur when one service (the calling service) calls another service
(the called service). The calling service can be manipulated to use its permissions to act on another
customer's resources in a way it shouldn’t otherwise have permission to access. To help protect
against this issue, the resource-based policies defined in this post use the aws:SourceArn,
aws:SourceAccount, and aws:PrincipalOrgID global IAM condition context keys. This
limits the permissions that a service has to a specific resource, a specific account, or a specific
organization in AWS Organizations.

Use IAM Access Analyzer to review cross-account access

You can use AWS IAM Access Analyzer to review your Amazon SQS queue policies and AWS KMS
key policies and alert you when an Amazon SQS queue or a AWS KMS key grants access to an
external entity. IAM Access Analyzer helps identify resources in your organization and accounts that
are shared with an entity outside the zone of trust. This zone of trust can be an AWS account or the
organization within AWS Organizations that you specify when you enable IAM Access Analyzer.

IAM Access Analyzer identifies resources shared with external principals by using logic-based
reasoning to analyze the resource-based policies in your AWS environment. For each instance
of a resource shared outside of your zone of trust, Access Analyzer generates a finding. Findings
include information about the access and the external principal granted to it. Review the findings
to determine whether the access is intended and safe, or whether the access is unintended and a
security risk. For any unintended access, review the affected policy and fix it. Refer to this blog post
for more information on how AWS IAM Access Analyzer identifies unintended access to your AWS
resources.

Using policies 611

https://docs.aws.amazon.com/IAM/latest/UserGuide/confused-deputy.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourcearn
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourceaccount
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-principalorgid
https://docs.aws.amazon.com/IAM/latest/UserGuide/what-is-access-analyzer.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-resources.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-findings.html
https://aws.amazon.com/blogs/aws/identify-unintended-resource-access-with-aws-identity-and-access-management-iam-access-analyzer/

Amazon Simple Queue Service Developer Guide

For more information on AWS IAM Access Analyzer, see the AWS IAM Access Analyzer
documentation.

Amazon SQS API permissions: Actions and resource reference

When you set up Access control and write permissions policies that you can attach to an IAM
identity, you can use the following table as a reference. The list includes each Amazon Simple
Queue Service action, the corresponding actions for which you can grant permissions to perform
the action, and the AWS resource for which you can grant the permissions.

Specify the actions in the policy's Action field, and the resource value in the policy's Resource
field. To specify an action, use the sqs: prefix followed by the action name (for example,
sqs:CreateQueue).

Currently, Amazon SQS supports the global condition context keys available in IAM.

Amazon Simple Queue Service API and required permissions for actions

AddPermission

Action(s): sqs:AddPermission

Resource: arn:aws:sqs:region:account_id:queue_name

ChangeMessageVisibility

Action(s): sqs:ChangeMessageVisibility

Resource: arn:aws:sqs:region:account_id:queue_name

ChangeMessageVisibilityBatch

Action(s): sqs:ChangeMessageVisibilityBatch

Resource: arn:aws:sqs:region:account_id:queue_name

CreateQueue

Action(s): sqs:CreateQueue

Resource: arn:aws:sqs:region:account_id:queue_name

DeleteMessage

Action(s): sqs:DeleteMessage

Using policies 612

https://docs.aws.amazon.com/IAM/latest/UserGuide/what-is-access-analyzer.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/what-is-access-analyzer.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_AddPermission.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ChangeMessageVisibility.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ChangeMessageVisibilityBatch.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_CreateQueue.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_DeleteMessage.html

Amazon Simple Queue Service Developer Guide

Resource: arn:aws:sqs:region:account_id:queue_name

DeleteMessageBatch

Action(s): sqs:DeleteMessageBatch

Resource: arn:aws:sqs:region:account_id:queue_name

DeleteQueue

Action(s): sqs:DeleteQueue

Resource: arn:aws:sqs:region:account_id:queue_name

GetQueueAttributes

Action(s): sqs:GetQueueAttributes

Resource: arn:aws:sqs:region:account_id:queue_name

GetQueueUrl

Action(s): sqs:GetQueueUrl

Resource: arn:aws:sqs:region:account_id:queue_name

ListDeadLetterSourceQueues

Action(s): sqs:ListDeadLetterSourceQueues

Resource: arn:aws:sqs:region:account_id:queue_name

ListQueues

Action(s): sqs:ListQueues

Resource: arn:aws:sqs:region:account_id:queue_name

ListQueueTags

Action(s): sqs:ListQueueTags

Resource: arn:aws:sqs:region:account_id:queue_name

PurgeQueue

Action(s): sqs:PurgeQueue

Resource: arn:aws:sqs:region:account_id:queue_name

Using policies 613

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_DeleteMessageBatch.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_DeleteQueue.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_GetQueueAttributes.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_GetQueueUrl.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ListDeadLetterSourceQueues.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ListQueues.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ListQueueTags.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_PurgeQueue.html

Amazon Simple Queue Service Developer Guide

ReceiveMessage

Action(s): sqs:ReceiveMessage

Resource: arn:aws:sqs:region:account_id:queue_name

RemovePermission

Action(s): sqs:RemovePermission

Resource: arn:aws:sqs:region:account_id:queue_name

SendMessage and SendMessageBatch

Action(s): sqs:SendMessage

Resource: arn:aws:sqs:region:account_id:queue_name

SetQueueAttributes

Action(s): sqs:SetQueueAttributes

Resource: arn:aws:sqs:region:account_id:queue_name

TagQueue

Action(s): sqs:TagQueue

Resource: arn:aws:sqs:region:account_id:queue_name

UntagQueue

Action(s): sqs:UntagQueue

Resource: arn:aws:sqs:region:account_id:queue_name

Logging and monitoring in Amazon SQS

This section provides information about logging and monitoring options for Amazon SQS,
including how to use CloudTrail to capture API calls, and CloudWatch metrics to gain insights into
queue activity and performance.

Topics

• Logging Amazon SQS API calls using AWS CloudTrail

• Monitoring Amazon SQS queues using CloudWatch

Logging and monitoring 614

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ReceiveMessage.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_RemovePermission.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SendMessage.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SendMessageBatch.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SetQueueAttributes.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_TagQueue.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_UntagQueue.html

Amazon Simple Queue Service Developer Guide

Logging Amazon SQS API calls using AWS CloudTrail

Amazon SQS is integrated with AWS CloudTrail to record the Amazon SQS calls from a user,
role, or AWS service. CloudTrail captures API calls related to Amazon SQS standard and FIFO
queues as events, including interactions initiated through the Amazon SQS console as well as
programmatically via calls to the Amazon SQS APIs.

Topics

• Amazon SQS information in CloudTrail

• Management events in CloudTrail

• Data events in CloudTrail

• Examples: CloudTrail management events for Amazon SQS

• Examples: CloudTrail data events for Amazon SQS

Amazon SQS information in CloudTrail

CloudTrail is turned on by default when you create your AWS account. When a supported Amazon
SQS event activity occurs, it is recorded in a CloudTrail event, along with other AWS service events,
in the event history. You can view, search, and download recent events for your AWS account. For
more information, see Viewing Events with CloudTrail Event History in the AWS CloudTrail User
Guide.

Amazon SQS APIs that call queue management operations, such as AddPermission are
categorized as management events and are logged in CloudTrail by default. Amazon SQS APIs
that are high volume operations performed on an Amazon SQS queue, such as SendMessage are
categorized as data events and are logged after you opt-in with CloudTrail.

Using the information that CloudTrail collects, you can identify a specific request to an Amazon
SQS API, the IP address or identity of the requester, and the date and time of the request. If you
configure a CloudTrail trail, you can continuously deliver CloudTrail events to an Amazon S3
bucket with an optional delivery to Amazon CloudWatch Logs and AWS EventBridge. If you do
not configure a trail, you can only view the event history of management events in events in the
CloudTrail console. For more information, see Overview for Creating a Trail in the AWS CloudTrail
User Guide.

Management events in CloudTrail

Amazon SQS logs the following API actions as management events:

Logging API calls using CloudTrail 615

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/view-cloudtrail-events.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-and-update-a-trail.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/

Amazon Simple Queue Service Developer Guide

• AddPermission

• CreateQueue

• CancelMessageMoveTask

• DeleteQueue

• ListMessageMoveTasks

• PurgeQueue

• RemovePermission

• SetQueueAttributes

• StartMessageMoveTask

• TagQueue

• UntagQueue

The following Amazon SQS APIs are not supported for CloudTrail logging:

• GetQueueAttributes

• GetQueueUrl

• ListDeadLetterSourceQueues

• ListQueueTags

• ListQueues

Data events in CloudTrail

Data events provide information about the resource operations performed on or in a resource, such
as sending or receiving an Amazon SQS message to and from an Amazon SQS queue. Data events
are high-volume activities that CloudTrail does not log by default. You can enable data events API
action logging for your SQS queue by using CloudTrail APIs. For more information, see Logging
data events in the AWS CloudTrail User Guide.

With CloudTrail, you can use advanced event selectors to decide which Amazon SQS API activities
are logged and recorded. To log Amazon SQS data events, you must include the resource type
AWS::SQS::Queue. Once this is set, you can refine your logging preferences further by selecting
specific data events for recording, such as using the eventName filter to track SendMessage
events. For more information, see AdvancedEventSelector in the AWS CloudTrail API Reference.

Logging API calls using CloudTrail 616

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_AddPermission.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_CreateQueue.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_CancelMessageMoveTask.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_DeleteQueue.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ListMessageMoveTasks.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_PurgeQueue.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_RemovePermission.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SetQueueAttributes.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_StartlMessageMoveTask.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_TagQueue.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_UntagQueue.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_GetQueueAttributes.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_GetQueueUrl.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ListDeadLetterSourceQueues.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ListQueueTags.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ListQueues.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/logging-data-events-with-cloudtrail.html#logging-data-events.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/logging-data-events-with-cloudtrail.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/logging-data-events-with-cloudtrail.html
https://docs.aws.amazon.com/awscloudtrail/latest/APIReference/API_AdvancedEventSelector.html

Amazon Simple Queue Service Developer Guide

Amazon SQS data events:

• SendMessage

• SendMessageBatch

• ReceiveMessage

• DeleteMessage

• DeleteMessageBatch

• ChangeMessageVisibility

• ChangeMessageVisibilityBatch

Additional charges apply for data events. For more information, see AWS CloudTrail Pricing.

Examples: CloudTrail management events for Amazon SQS

The following examples show CloudTrail log entries for supported APIs:

AddPermission

The following example shows a CloudTrail log entry for an AddPermission API call.

{
 "Records": [
 {
 "eventVersion": "1.06",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "AKIAI44QH8DHBEXAMPLE",
 "arn": "arn:aws:iam::123456789012:user/Alice",
 "accountId": "123456789012",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE",
 "userName": "Alice"
 },
 "eventTime": "2018-06-28T22:23:46Z",
 "eventSource": "sqs.amazonaws.com",
 "eventName": "AddPermission",
 "awsRegion": "us-east-2",
 "sourceIPAddress": "203.0.113.0",
 "userAgent": "Mozilla/5.0 (X11; Linux x86_64; rv:24.0) Gecko/20100101
 Firefox/24.0",
 "requestParameters": {

Logging API calls using CloudTrail 617

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SendMessage.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SendMessageBatch.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ReceiveMessage.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_DeleteMessage.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_DeleteMessageBatch.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ChangeMessageVisibility.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ChangeMessageVisibilityBatch.html
https://aws.amazon.com/cloudtrail/pricing/

Amazon Simple Queue Service Developer Guide

 "actions": [
 "SendMessage"
],
 "AWSAccountIds": [
 "123456789012"
],
 "label": "MyLabel",
 "queueUrl": "https://sqs.us-east-2.amazon.com/123456789012/MyQueue"
 },
 "responseElements": null,
 "requestID": "123abcde-f4gh-50ij-klmn-60o789012p30",
 "eventID": "0987g654-32f1-09e8-d765-c4f3fb2109fa"
 }
]
 }

CreateQueue

The following example shows a CloudTrail log entry for a CreateQueue API call.

{
 "Records": [
 {
 "eventVersion": "1.06",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "AKIAI44QH8DHBEXAMPLE",
 "arn": "arn:aws:iam::123456789012:user/Alejandro",
 "accountId": "123456789012",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE",
 "userName": "Alejandro"
 },
 "eventTime": "2018-06-28T22:23:46Z",
 "eventSource": "sqs.amazonaws.com",
 "eventName": "CreateQueue",
 "awsRegion": "us-east-2",
 "sourceIPAddress": "203.0.113.1",
 "userAgent": "Mozilla/5.0 (X11; Linux x86_64; rv:24.0) Gecko/20100101
 Firefox/24.0",
 "requestParameters": {
 "queueName": "MyQueue"
 },
 "responseElements": {
 "queueUrl": "https://sqs.us-east-2.amazon.com/123456789012/MyQueue"

Logging API calls using CloudTrail 618

Amazon Simple Queue Service Developer Guide

 },
 "requestID": "123abcde-f4gh-50ij-klmn-60o789012p30",
 "eventID": "0987g654-32f1-09e8-d765-c4f3fb2109fa"
 }
]
 }

DeleteQueue

The following example shows a CloudTrail log entry for a DeleteQueue API call.

{
 "Records": [
 {
 "eventVersion": "1.06",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "AKIAI44QH8DHBEXAMPLE",
 "arn": "arn:aws:iam::123456789012:user/Carlos",
 "accountId": "123456789012",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE",
 "userName": "Carlos"
 },
 "eventTime": "2018-06-28T22:23:46Z",
 "eventSource": "sqs.amazonaws.com",
 "eventName": "DeleteQueue",
 "awsRegion": "us-east-2",
 "sourceIPAddress": "203.0.113.2",
 "userAgent": "Mozilla/5.0 (X11; Linux x86_64; rv:24.0) Gecko/20100101
 Firefox/24.0",
 "requestParameters": {
 "queueUrl": "https://sqs.us-east-2.amazon.com/123456789012/MyQueue"
 },
 "responseElements": null,
 "requestID": "123abcde-f4gh-50ij-klmn-60o789012p30",
 "eventID": "0987g654-32f1-09e8-d765-c4f3fb2109fa"
 }
]
 }

RemovePermission

The following example shows a CloudTrail log entry for a RemovePermission API call.

Logging API calls using CloudTrail 619

Amazon Simple Queue Service Developer Guide

{
 "Records": [
 {
 "eventVersion": "1.06",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "AKIAI44QH8DHBEXAMPLE",
 "arn": "arn:aws:iam::123456789012:user/Jane",
 "accountId": "123456789012",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE",
 "userName": "Jane"
 },
 "eventTime": "2018-06-28T22:23:46Z",
 "eventSource": "sqs.amazonaws.com",
 "eventName": "RemovePermission",
 "awsRegion": "us-east-2",
 "sourceIPAddress": "203.0.113.3",
 "userAgent": "Mozilla/5.0 (X11; Linux x86_64; rv:24.0) Gecko/20100101
 Firefox/24.0",
 "requestParameters": {
 "label": "label",
 "queueUrl": "https://sqs.us-east-2.amazon.com/123456789012/MyQueue"
 },
 "responseElements": null,
 "requestID": "123abcde-f4gh-50ij-klmn-60o789012p30",
 "eventID": "0987g654-32f1-09e8-d765-c4f3fb2109fa"
 }
]
 }

SetQueueAttributes

The following example shows a CloudTrail log entry for SetQueueAttributes:

{
 "Records": [
 {
 "eventVersion": "1.06",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "AKIAI44QH8DHBEXAMPLE",
 "arn": "arn:aws:iam::123456789012:user/Maria",
 "accountId": "123456789012",

Logging API calls using CloudTrail 620

Amazon Simple Queue Service Developer Guide

 "accessKeyId": "AKIAIOSFODNN7EXAMPLE",
 "userName": "Maria"
 },
 "eventTime": "2018-06-28T22:23:46Z",
 "eventSource": "sqs.amazonaws.com",
 "eventName": "SetQueueAttributes",
 "awsRegion": "us-east-2",
 "sourceIPAddress": "203.0.113.4",
 "userAgent": "Mozilla/5.0 (X11; Linux x86_64; rv:24.0) Gecko/20100101
 Firefox/24.0",
 "requestParameters": {
 "attributes": {
 "VisibilityTimeout": "100"
 },
 "queueUrl": "https://sqs.us-east-2.amazon.com/123456789012/MyQueue"
 },
 "responseElements": null,
 "requestID": "123abcde-f4gh-50ij-klmn-60o789012p30",
 "eventID": "0987g654-32f1-09e8-d765-c4f3fb2109fa"
 }
]
 }

Examples: CloudTrail data events for Amazon SQS

The following are examples of CloudTrail events specific to Amazon SQS data event APIs:

SendMessage

The following example shows a CloudTrail data event for SendMessage.

 {
 "eventVersion": "1.09",
 "userIdentity": {
 "type": "AssumedRole",
 "principalId": "EXAMPLE_PRINCIPAL_ID",
 "arn": "arn:aws:sts::123456789012:assumed-role/RoleToBeAssumed/SessionName",
 "accountId": "123456789012",
 "accessKeyId": "ACCESS_KEY_ID",
 "sessionContext": {
 "sessionIssuer": {
 "type": "Role",

Logging API calls using CloudTrail 621

Amazon Simple Queue Service Developer Guide

 "principalId": "AKIAI44QH8DHBEXAMPLE",
 "arn": "arn:aws:sts::123456789012:assumed-role/RoleToBeAssumed",
 "accountId": "123456789012",
 "userName": "RoleToBeAssumed"
 },
 "attributes": {
 "creationDate": "2023-11-07T22:13:06Z",
 "mfaAuthenticated": "false"
 }
 }
 },
 "eventTime": "2023-11-07T23:59:11Z",
 "eventSource": "sqs.amazonaws.com",
 "eventName": "SendMessage",
 "awsRegion": "ap-southeast-4",
 "sourceIPAddress": "10.0.118.80",
 "userAgent": "aws-cli/1.29.16 md/Botocore#1.31.16 ua/2.0 os/
linux#5.4.250-173.369.amzn2int.x86_64 md/arch#x86_64 lang/python#3.8.17 md/
pyimpl#CPython cfg/retry-mode#legacy botocore/1.31.16",
 "requestParameters": {
 "queueUrl": "https://sqs.ap-southeast-4.amazonaws.com/123456789012/MyQueue",
 "messageBody": "HIDDEN_DUE_TO_SECURITY_REASONS",
 "messageDeduplicationId": "MsgDedupIdSdk1ae1958f2-bbe8-4442-83e7-4916e3b035aa",
 "messageGroupId": "MsgGroupIdSdk16"
 },
 "responseElements": {
 "mD5OfMessageBody": "9a4e3f7a614d9dd9f8722092dbda17a2",
 "mD5OfMessageSystemAttributes": "f88f0587f951b7f5551f18ae699c3a9d",
 "messageId": "93bb6e2d-1090-416c-81b0-31eb1faa8cd8",
 "sequenceNumber": "18881790870905840128"
 },
 "requestID": "c4584600-fe8a-5aa3-a5ba-1bc42f055fae",
 "eventID": "98c735d8-70e0-4644-9432-b6ced4d791b1",
 "readOnly": false,
 "resources": [
 {
 "accountId": "123456789012",
 "type": "AWS::SQS::Queue",
 "ARN": "arn:aws:sqs:ap-southeast-4:123456789012:MyQueue"
 }
],
 "eventType": "AwsApiCall",
 "managementEvent": false,
 "recipientAccountId": "123456789012",

Logging API calls using CloudTrail 622

Amazon Simple Queue Service Developer Guide

 "eventCategory": "Data",
 "tlsDetails": {
 "tlsVersion": "TLSv1.2",
 "cipherSuite": "ECDHE-RSA-AES128-GCM-SHA256",
 "clientProvidedHostHeader": "sqs.ap-southeast-4.amazonaws.com"
 }

ReceiveMessage

The following example shows a CloudTrail data event for ReceiveMessage.

 {
 "eventVersion": "1.09",
 "userIdentity": {
 "type": "AssumedRole",
 "principalId": "EXAMPLE_PRINCIPAL_ID",
 "arn": "arn:aws:sts::123456789012:assumed-role/RoleToBeAssumed/SessionName",
 "accountId": "123456789012",
 "accessKeyId": "ACCESS_KEY_ID",
 "sessionContext": {
 "sessionIssuer": {
 "type": "Role",
 "principalId": "AKIAI44QH8DHBEXAMPLE",
 "arn": "arn:aws:sts::123456789012:assumed-role/RoleToBeAssumed",
 "accountId": "123456789012",
 "userName": "RoleToBeAssumed"
 },
 "attributes": {
 "creationDate": "2023-11-07T22:13:06Z",
 "mfaAuthenticated": "false"
 }
 }
 },
 "eventTime": "2023-11-07T23:59:24Z",
 "eventSource": "sqs.amazonaws.com",
 "eventName": "ReceiveMessage",
 "awsRegion": "ap-southeast-4",
 "sourceIPAddress": "10.0.118.80",
 "userAgent": "aws-cli/1.29.16 md/Botocore#1.31.16 ua/2.0 os/
linux#5.4.250-173.369.amzn2int.x86_64 md/arch#x86_64 lang/python#3.8.17 md/
pyimpl#CPython cfg/retry-mode#legacy botocore/1.31.16",
 "requestParameters": {

Logging API calls using CloudTrail 623

Amazon Simple Queue Service Developer Guide

 "queueUrl": "https://sqs.ap-southeast-4.amazonaws.com/123456789012/MyQueue",
 "maxNumberOfMessages": 10
 },
 "responseElements": null,
 "requestID": "8b4d4643-8f49-52cd-a6e8-1b875ed54b99",
 "eventID": "f3f23ab7-b0a4-4b71-afc0-141209c49206",
 "readOnly": true,
 "resources": [
 {
 "accountId": "123456789012",
 "type": "AWS::SQS::Queue",
 "ARN": "arn:aws:sqs:ap-southeast-4:123456789012:MyQueue"
 }
],
 "eventType": "AwsApiCall",
 "managementEvent": false,
 "recipientAccountId": "123456789012",
 "eventCategory": "Data",
 "tlsDetails": {
 "tlsVersion": "TLSv1.2",
 "cipherSuite": "ECDHE-RSA-AES128-GCM-SHA256",
 "clientProvidedHostHeader": "sqs.ap-southeast-4.amazonaws.com"
 }
}

DeleteMessageBatch

The following example shows a CloudTrail data event for DeleteMessageBatch.

 {
 "eventVersion": "1.09",
 "userIdentity": {
 "type": "AssumedRole",
 "principalId": "EXAMPLE_PRINCIPAL_ID",
 "arn": "arn:aws:sts::123456789012:assumed-role/RoleToBeAssumed/SessionName",
 "accountId": "123456789012",
 "accessKeyId": "ACCESS_KEY_ID",
 "sessionContext": {
 "sessionIssuer": {
 "type": "Role",
 "principalId": "AKIAI44QH8DHBEXAMPLE",
 "arn": "arn:aws:sts::123456789012:assumed-role/RoleToBeAssumed",

Logging API calls using CloudTrail 624

Amazon Simple Queue Service Developer Guide

 "accountId": "123456789012",
 "userName": "RoleToBeAssumed"
 },
 "attributes": {
 "creationDate": "2023-11-07T22:13:06Z",
 "mfaAuthenticated": "false"
 }
 }
 },
 "eventTime": "2023-11-07T23:59:24Z",
 "eventSource": "sqs.amazonaws.com",
 "eventName": "DeleteMessageBatch",
 "awsRegion": "ap-southeast-4",
 "sourceIPAddress": "10.0.118.80",
 "userAgent": "aws-cli/1.29.16 md/Botocore#1.31.16 ua/2.0 os/
linux#5.4.250-173.369.amzn2int.x86_64 md/arch#x86_64 lang/python#3.8.17 md/
pyimpl#CPython cfg/retry-mode#legacy botocore/1.31.16",
 "requestParameters": {
 "queueUrl": "https://sqs.ap-southeast-4.amazonaws.com/123456789012/MyQueue",
 "entries": [
 {
 "id": "0",
 "receiptHandle": "AQEBefxM1O4zyZGF87DehbRbmri91w2W7mMdD0GrBjQa8e/
hpb4RbXHPZ9tLBVleECbChQIE5NtaDuoZhZPOkTy0eN46EyRR4jXDzE3AlkbPlX1mA9f2fUuTrXx8aeCoCA3I3woNg3fXXAoo5ctLgci0Z/
hlLS94tjAZqV2krc4BaC2pYgjyHWcW019HwIV8T/bjNMIeZoQwOM5V
+o9vHPfewz5QGr5SKpDo7uE7Umyk5n5CJZvcn1efp/
mrwtaCIb9M7cCQUYcZm2ZmZDnIO9XpGTAi3m2dQ0M83pnNh0nvDfpkHpoa+hX1TrUmxCupCWHJwA8HFJ1O/
CCJsodMNFthLBA9S57dkBZCsw41G8jAmgQ0MkvZ0UL5mg0OFQQd1Yrw0zvthjCgiwdzn0yXoMzxIZMBxkY14E4nVVZ7N5XEMtMmgxsI1XF/
h8oRk2C7gByzg2kYJ0LnUvLJFT8DQE28JZppEC9klvrdR/BWiPT7asc="
 }
]
 },
 "responseElements": {
 "successful": [
 {
 "id": "0"
 }
],
 "failed": []
 },
 "requestID": "fe423091-5642-5ba5-9256-6d5587de52f1",
 "eventID": "88c8020d-d769-4985-8ecb-ee0b59acc418",
 "readOnly": false,
 "resources": [

Logging API calls using CloudTrail 625

Amazon Simple Queue Service Developer Guide

 {
 "accountId": "123456789012",
 "type": "AWS::SQS::Queue",
 "ARN": "arn:aws:sqs:ap-southeast-4:123456789012:MyQueue"
 }
],
 "eventType": "AwsApiCall",
 "managementEvent": false,
 "recipientAccountId": "123456789012",
 "eventCategory": "Data",
 "tlsDetails": {
 "tlsVersion": "TLSv1.2",
 "cipherSuite": "ECDHE-RSA-AES128-GCM-SHA256",
 "clientProvidedHostHeader": "sqs.ap-southeast-4.amazonaws.com"
 }
}

ChangeMessageVisibilityBatch

The following example shows a CloudTrail data event for ChangeMessageVisibilityBatch.

 {
 "eventVersion": "1.09",
 "userIdentity": {
 "type": "AssumedRole",
 "principalId": "EXAMPLE_PRINCIPAL_ID",
 "arn": "arn:aws:sts::123456789012:assumed-role/RoleToBeAssumed/SessionName",
 "accountId": "123456789012",
 "accessKeyId": "ACCESS_KEY_ID",
 "sessionContext": {
 "sessionIssuer": {
 "type": "Role",
 "principalId": "AKIAI44QH8DHBEXAMPLE",
 "arn": "arn:aws:sts::123456789012:assumed-role/RoleToBeAssumed",
 "accountId": "123456789012",
 "userName": "RoleToBeAssumed"
 },
 "attributes": {
 "creationDate": "2023-11-07T22:13:06Z",
 "mfaAuthenticated": "false"
 }
 }

Logging API calls using CloudTrail 626

Amazon Simple Queue Service Developer Guide

 },
 "eventTime": "2023-11-07T23:59:01Z",
 "eventSource": "sqs.amazonaws.com",
 "eventName": "ChangeMessageVisibilityBatch",
 "awsRegion": "ap-southeast-4",
 "sourceIPAddress": "10.0.118.80",
 "userAgent": "aws-cli/1.29.16 md/Botocore#1.31.16 ua/2.0 os/
linux#5.4.250-173.369.amzn2int.x86_64 md/arch#x86_64 lang/python#3.8.17 md/
pyimpl#CPython cfg/retry-mode#legacy botocore/1.31.16",
 "requestParameters": {
 "visibilityTimeout": 0,
 "entries": [
 {
 "id": "0",
 "receiptHandle":
 "AQEB2M5cVYg5gslhWME6537hdjcaPnOYPA5M0W460TTb0DzPle631yPWm8qxd4O1hDj/
B4ntTMnsgBTa95t14tNx7Vn96jKJ5rIoZ7iI8TRmkT1caKodKIPs8w9yndZq50c2FPQxtyH+2L3UHf/
abV3szqVWXOLZR4PwX8zZkWVQGNCNnY2q2lGCG586F8QwvrOFYoXNwB8ymd1t77e1PDPknq1Io3JFuzkEsndkkETy4fV1QqVCSTR1izaTKF44f/
l5PHX17nXxaC+DURVlMPXOuSFACGmWqAoyk50HKwGOjLQgpySL/
TcnQXClvFq8kNXGwyVzJsbwHpOHxI7oce69vaD6DaWFP75d3hx+PJeG9pauQCKzVP3skt3Hw/
zDC7YfKcALD3aCwMmeNDwT3w0BUG6XZdG5lYhtFtTQYV7YuS3i/
Jh3HShGbtm07JKOEFiPkxv2+XNaAX3gFEpbng6zamTanfyMXCJIiglAEqiyWHQ=",
 "visibilityTimeout": 2271
 }
],
 "queueUrl": "https://sqs.ap-southeast-4.amazonaws.com/123456789012/MyQueue"
 },
 "responseElements": {
 "successful": [
 {
 "id": "0"
 }
]
 },
 "requestID": "d49ab65f-9dc7-54b8-875c-eb9b4c42988b",
 "eventID": "ca16c8c2-c4ba-4eb5-a54c-e650a10266d4",
 "readOnly": false,
 "resources": [
 {
 "accountId": "123456789012",
 "type": "AWS::SQS::Queue",
 "ARN": "arn:aws:sqs:ap-southeast-4:123456789012:MyQueue"
 }
],

Logging API calls using CloudTrail 627

Amazon Simple Queue Service Developer Guide

 "eventType": "AwsApiCall",
 "managementEvent": false,
 "recipientAccountId": "123456789012",
 "eventCategory": "Data",
 "tlsDetails": {
 "tlsVersion": "TLSv1.2",
 "cipherSuite": "ECDHE-RSA-AES128-GCM-SHA256",
 "clientProvidedHostHeader": "sqs.ap-southeast-4.amazonaws.com"
 }
}

Monitoring Amazon SQS queues using CloudWatch

Amazon SQS and Amazon CloudWatch are integrated so you can use CloudWatch to view and
analyze metrics for your Amazon SQS queues. You can view and analyze your queues' metrics from
the Amazon SQS console, the CloudWatch console, using the AWS CLI, or using the CloudWatch
API. You can also set CloudWatch alarms for Amazon SQS metrics.

CloudWatch metrics for your Amazon SQS queues are automatically collected and pushed to
CloudWatch at one-minute intervals. These metrics are gathered on all queues that meet the
CloudWatch guidelines for being active. CloudWatch considers a queue to be active for up to six
hours if it contains any messages, or if any action accesses it.

When an Amazon SQS queue is inactive for more than six hours, the Amazon SQS service is
considered asleep and stops delivering metrics to the CloudWatch service. Missing data, or data
representing zero, can't be visualized in the CloudWatch metrics for Amazon SQS for the time
period that your Amazon SQS queue was inactive.

Note

• An Amazon SQS queue can be activated when the user calling an API against the queue is
not authorized, and the request fails.

• The Amazon SQS console performs a GetQueueAttributes API call when the queue’s
page is opened. The GetQueueAttributes API request activates the queue.

• A delay of up to 15 minutes occurs in CloudWatch metrics when a queue is activated
from an inactive state.

Monitoring queues using CloudWatch 628

Amazon Simple Queue Service Developer Guide

• There is no charge for the Amazon SQS metrics reported in CloudWatch. They're provided
as part of the Amazon SQS service.

• CloudWatch metrics are supported for both standard and FIFO queues.

Topics

• Accessing CloudWatch metrics for Amazon SQS

• Creating CloudWatch alarms for Amazon SQS metrics

• Available CloudWatch metrics for Amazon SQS

Accessing CloudWatch metrics for Amazon SQS

Amazon SQS and Amazon CloudWatch are integrated so you can use CloudWatch to view and
analyze metrics for your Amazon SQS queues. You can view and analyze your queues' metrics from
the Amazon SQS console, the CloudWatch console, using the AWS CLI, or using the CloudWatch
API. You can also set CloudWatch alarms for Amazon SQS metrics.

Amazon SQS console

1. Sign in to the Amazon SQS console.

2. In the list of queues, choose (check) the boxes for the queues that you want to access metrics
for. You can show metrics for up to 10 queues.

3. Choose the Monitoring tab.

Various graphs are displayed in the SQS metrics section.

4. To understand what a particular graph represents, hover over

next to the desired graph, or see Available CloudWatch metrics for Amazon SQS.

5. To change the time range for all of the graphs at the same time, for Time Range, choose the
desired time range (for example, Last Hour).

6. To view additional statistics for an individual graph, choose the graph.

7. In the CloudWatch Monitoring Details dialog box, select a Statistic, (for example, Sum). For a
list of supported statistics, see Available CloudWatch metrics for Amazon SQS.

8. To change the time range and time interval that an individual graph displays (for example,
to show a time range of the last 24 hours instead of the last 5 minutes, or to show a time

Monitoring queues using CloudWatch 629

https://console.aws.amazon.com/sqs/

Amazon Simple Queue Service Developer Guide

period of every hour instead of every 5 minutes), with the graph's dialog box still displayed, for
Time Range, choose the desired time range (for example, Last 24 Hours). For Period, choose
the desired time period within the specified time range (for example, 1 Hour). When you're
finished looking at the graph, choose Close.

9. (Optional) To work with additional CloudWatch features, on the Monitoring tab, choose View
all CloudWatch metrics, and then follow the instructions in the Amazon CloudWatch console
procedure.

Amazon CloudWatch console

1. Sign in to the CloudWatch console.

2. On the navigation panel, choose Metrics.

3. Select the SQS metric namespace.

4. Select the Queue Metrics metric dimension.

5. You can now examine your Amazon SQS metrics:

• To sort the metrics, use the column heading.

Monitoring queues using CloudWatch 630

https://console.aws.amazon.com/cloudwatch/

Amazon Simple Queue Service Developer Guide

• To graph a metric, select the check box next to the metric.

• To filter by metric, choose the metric name and then choose Add to search.

For more information and additional options, see Graph Metrics and Using Amazon CloudWatch
Dashboards in the Amazon CloudWatch User Guide.

AWS Command Line Interface

To access Amazon SQS metrics using the AWS CLI, run the get-metric-statistics command.

For more information, see Get Statistics for a Metric in the Amazon CloudWatch User Guide.

CloudWatch API

To access Amazon SQS metrics using the CloudWatch API, use the GetMetricStatistics action.

For more information, see Get Statistics for a Metric in the Amazon CloudWatch User Guide.

Creating CloudWatch alarms for Amazon SQS metrics

CloudWatch lets you trigger alarms based on a metric threshold. For example, you can create
an alarm for the NumberOfMessagesSent metric. For example, if more than 100 messages are

Monitoring queues using CloudWatch 631

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/graph_metrics.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch_Dashboards.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch_Dashboards.html
https://docs.aws.amazon.com/cli/latest/reference/cloudwatch/get-metric-statistics.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/getting-metric-statistics.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/APIReference/API_GetMetricStatistics.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/getting-metric-statistics.html

Amazon Simple Queue Service Developer Guide

sent to the MyQueue queue in 1 hour, an email notification is sent out. For more information, see
Creating Amazon CloudWatch Alarms in the Amazon CloudWatch User Guide.

1. Sign in to the AWS Management Console and open the CloudWatch console at https://
console.aws.amazon.com/cloudwatch/.

2. Choose Alarms, and then choose Create Alarm.

3. In the Select Metric section of the Create Alarm dialog box, choose Browse Metrics, SQS.

4. For SQS > Queue Metrics, choose the QueueName and Metric Name for which to set an
alarm, and then choose Next. For a list of available metrics, see Available CloudWatch metrics
for Amazon SQS.

In the following example, the selection is for an alarm for the NumberOfMessagesSent
metric for the MyQueue queue. The alarm triggers when the number of sent messages exceeds
100.

5. In the Define Alarm section of the Create Alarm dialog box, do the following:

a. Under Alarm Threshold, type the Name and Description for the alarm.

b. Set is to > 100.

c. Set for to 1 out of 1 datapoints.

d. Under Alarm preview, set Period to 1 Hour.

e. Set Statistic to Standard, Sum.

f. Under Actions, set Whenever this alarm to State is ALARM.

If you want CloudWatch to send a notification when the alarm is triggered, select an
existing Amazon SNS topic or choose New list and enter email addresses separated by
commas.

Note

If you create a new Amazon SNS topic, the email addresses must be verified
before they receive any notifications. If the alarm state changes before the email
addresses are verified, the notifications aren't delivered.

6. Choose Create Alarm.

The alarm is created.

Monitoring queues using CloudWatch 632

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/AlarmThatSendsEmail.html
https://console.aws.amazon.com/cloudwatch/
https://console.aws.amazon.com/cloudwatch/

Amazon Simple Queue Service Developer Guide

Available CloudWatch metrics for Amazon SQS

Amazon SQS sends the following metrics to CloudWatch.

Note

For some metrics, the result is approximate because of the distributed architecture of
Amazon SQS. In most cases, the count should be close to the actual number of messages in
the queue.

Amazon SQS metrics

The AWS/SQS namespace includes the following metrics.

Metric Description

ApproximateAgeOfOldestMessage The approximate age of the oldest non-
deleted message in the queue.

Note

•
After a message is received
three times (or more) and
not processed, the message
is moved to the back of the
queue and the Approxima
teAgeOfOldestMessage
metric points at the second-
oldest message that hasn't
 been received more than three
times. This action occurs even
if the queue has a redrive
 policy.

•
Because a single poison-pill
message (received multiple

Monitoring queues using CloudWatch 633

Amazon Simple Queue Service Developer Guide

Metric Description

times but never deleted) can
distort this metric, the age
of a poison-pill message isn't
 included in the metric until
the poison-pill message is
consumed successfully.

•
When the queue has a redrive
policy, the message is moved
to a dead-letter queue after
the configured maximum
number of receives. When
the message is moved to
the dead-letter queue, the
 ApproximateAgeOfOl
destMessage metric
 of the dead-letter queue
represents the time when t
he message was moved to the
dead-letter queue (not the
original time the message was
 sent).

•
For FIFO queues, the message
is not moved to the back
of the queue because this
will break the FIFO order
guarantee. The message will
instead go to the DLQ if there
is one configured. Otherwise
it will block the message group
until successfully deleted or
until it expires.

Monitoring queues using CloudWatch 634

Amazon Simple Queue Service Developer Guide

Metric Description

Reporting criteria: A non-negative value
is reported if the queue is active.

Units: Seconds

Valid statistics: Average, Minimum,
Maximum, Sum, Data Samples (displays
as Sample Count in the Amazon SQS
console)

ApproximateNumberOfGroupsWithInfligh
tMessages

The approximate number of message
groups with in flight messages, where
a message is considered to be in flight
 after it's received from a queue by a
consumer, but not yet deleted from
the queue. This metric can help you
troubleshoot and optimize your FIFO
queue throughput by either increasing
 FIFO message groups, or scaling your
consumers.

Reporting criteria: A non-negative value
is reported if the queue is active.

Units: Count

Valid statistics: Average, Minimum,
Maximum, Sum, Data Samples (displays
as Sample Count in the Amazon SQS
console)
 For current FIFO throughput and in
flight limits, see Amazon SQS message
quotas.

Monitoring queues using CloudWatch 635

Amazon Simple Queue Service Developer Guide

Metric Description

ApproximateNumberOfMessagesDelayed The number of messages in the queue
that are delayed and not available for
reading immediately. This can happen
when the queue is configured as a delay
queue or when a message has been sent
with a delay parameter.

Reporting criteria: A non-negative value
is reported if the queue is active.

Units: Count

Valid statistics: Average, Minimum,
Maximum, Sum, Data Samples (displays
as Sample Count in the Amazon SQS
console)

ApproximateNumberOfMessagesNotVisibl
e

The number of messages that are in
flight. Messages are considered to be in
flight if they have been sent to a client
but have not yet been deleted or have
not yet reached the end of their visibilit
y window.

Reporting criteria: A non-negative value
is reported if the queue is active.

Units: Count

Valid statistics: Average, Minimum,
Maximum, Sum, Data Samples (displays
as Sample Count in the Amazon SQS
console)

Monitoring queues using CloudWatch 636

Amazon Simple Queue Service Developer Guide

Metric Description

ApproximateNumberOfMessagesVisible The number of messages to be processed
.

Reporting criteria: A non-negative value
is reported if the queue is active.

Units: Count

Valid statistics: Average, Minimum,
Maximum, Sum, Data Samples (displays
as Sample Count in the Amazon SQS
console)
There is no limit on the number of
messages to processes, however you
 can subject this backlog to a retention
period.

NumberOfEmptyReceives ¹ The number of ReceiveMessage API
calls that did not return a message.

Reporting criteria: A non-negative value
is reported if the queue is active.

Units: Count

Valid statistics: Average, Minimum,
Maximum, Sum, Data Samples (displays
as Sample Count in the Amazon SQS
console)

Monitoring queues using CloudWatch 637

Amazon Simple Queue Service Developer Guide

Metric Description

NumberOfDeduplicatedSentMessages The number of messages sent to a queue
that were deduplicated. This metric can
help determine if a producer is sending
duplicate messages to an Amazon SQS
FIFO queue.

Reporting criteria: A non-negative value
is reported if the queue is active.

Units: Count

Valid statistics: Average, Minimum,
Maximum, Sum, Data Samples (displays
as Sample Count in the Amazon SQS
console)

Monitoring queues using CloudWatch 638

Amazon Simple Queue Service Developer Guide

Metric Description

NumberOfMessagesDeleted ¹ The number of messages deleted from
the queue.

Reporting criteria: A non-negative value
is reported if the queue is active.

Units: Count

Valid statistics: Average, Minimum,
Maximum, Sum, Data Samples (displays
as Sample Count in the Amazon SQS
console)
Amazon SQS emits the NumberOfM
essagesDeleted metric for every
 successful deletion operation that
uses a valid receipt handle, including
duplicate deletions. The following
scenarios might cause the value of the
 NumberOfMessagesDeleted metric
to be higher than expected:

•
Calling the DeleteMessage action
on different receipt handles that
belong to the same message: If the
message is not processed before
the visibility timeout expires, the
message becomes available to other
consumers that can process it and
delete it again, increasing the value of
the NumberOfMessagesDeleted
 metric.

•
Calling the DeleteMessage action
on the same receipt handle: If the

Monitoring queues using CloudWatch 639

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-queue-message-identifiers.html#receipt-handle
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-visibility-timeout.html

Amazon Simple Queue Service Developer Guide

Metric Description

message is processed and deleted but
you call the DeleteMessage action
again using the same receipt handle,
a success status is returned, incre
asing the value of the NumberOfM
essagesDeleted metric.

NumberOfMessagesReceived ¹ The number of messages returned by
calls to the ReceiveMessage action.

Reporting criteria: A non-negative value
is reported if the queue is active.

Units: Count

Valid statistics: Average, Minimum,
Maximum, Sum, Data Samples (displays
as Sample Count in the Amazon SQS
console)

Monitoring queues using CloudWatch 640

Amazon Simple Queue Service Developer Guide

Metric Description

 NumberOfMessagesSent ¹ The number of messages added to a
queue.

If you send a message to a dead-letter
queue manually, it is captured by the
NumberOfMessagesSent metric.
However, if a message is sent to a dead-
letter queue as a result of a failed
processing attempt, it is not captured
by this metric. Thus, it is possible for the
values of NumberOfMessagesSent
and NumberOfMessagesReceived
to be different.

Reporting criteria: A non-negative value
is reported if the queue is active.

Units: Count

Valid statistics: Average, Minimum,
Maximum, Sum, Data Samples (displays
as Sample Count in the Amazon SQS
console)

Monitoring queues using CloudWatch 641

Amazon Simple Queue Service Developer Guide

Metric Description

 SentMessageSize ¹ The size of messages added to a queue.

Reporting criteria: A non-negative value
is reported if the queue is active.

Units: Bytes

Valid statistics: Average, Minimum,
Maximum, Sum, Data Samples (displays
as Sample Count in the Amazon SQS
console)

Note

SentMessageSize does not
display as an available metric in
the CloudWatch console until at
least one message is sent to the
corresponding queue.

¹ These metrics are calculated from a service perspective, and can include retries. Don't rely on the
absolute values of these metrics, or use them to estimate current queue status.

Dimensions for Amazon SQS metrics

The only dimension that Amazon SQS sends to CloudWatch is QueueName. This means that all
available statistics are filtered by QueueName.

Compliance validation for Amazon SQS

To learn whether an AWS service is within the scope of specific compliance programs, see AWS
services in Scope by Compliance Program and choose the compliance program that you are
interested in. For general information, see AWS Compliance Programs.

Compliance validation 642

https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/programs/

Amazon Simple Queue Service Developer Guide

You can download third-party audit reports using AWS Artifact. For more information, see
Downloading Reports in AWS Artifact.

Your compliance responsibility when using AWS services is determined by the sensitivity of your
data, your company's compliance objectives, and applicable laws and regulations. AWS provides the
following resources to help with compliance:

• Security and Compliance Quick Start Guides – These deployment guides discuss architectural
considerations and provide steps for deploying baseline environments on AWS that are security
and compliance focused.

• Architecting for HIPAA Security and Compliance on Amazon Web Services – This whitepaper
describes how companies can use AWS to create HIPAA-eligible applications.

Note

Not all AWS services are HIPAA eligible. For more information, see the HIPAA Eligible
Services Reference.

• AWS Compliance Resources – This collection of workbooks and guides might apply to your
industry and location.

• AWS Customer Compliance Guides – Understand the shared responsibility model through the
lens of compliance. The guides summarize the best practices for securing AWS services and map
the guidance to security controls across multiple frameworks (including National Institute of
Standards and Technology (NIST), Payment Card Industry Security Standards Council (PCI), and
International Organization for Standardization (ISO)).

• Evaluating Resources with Rules in the AWS Config Developer Guide – The AWS Config service
assesses how well your resource configurations comply with internal practices, industry
guidelines, and regulations.

• AWS Security Hub – This AWS service provides a comprehensive view of your security state within
AWS. Security Hub uses security controls to evaluate your AWS resources and to check your
compliance against security industry standards and best practices. For a list of supported services
and controls, see Security Hub controls reference.

• Amazon GuardDuty – This AWS service detects potential threats to your AWS accounts,
workloads, containers, and data by monitoring your environment for suspicious and malicious
activities. GuardDuty can help you address various compliance requirements, like PCI DSS, by
meeting intrusion detection requirements mandated by certain compliance frameworks.

Compliance validation 643

https://docs.aws.amazon.com/artifact/latest/ug/downloading-documents.html
https://aws.amazon.com/quickstart/?awsf.filter-tech-category=tech-category%23security-identity-compliance
https://docs.aws.amazon.com/whitepapers/latest/architecting-hipaa-security-and-compliance-on-aws/welcome.html
https://aws.amazon.com/compliance/hipaa-eligible-services-reference/
https://aws.amazon.com/compliance/hipaa-eligible-services-reference/
https://aws.amazon.com/compliance/resources/
https://d1.awsstatic.com/whitepapers/compliance/AWS_Customer_Compliance_Guides.pdf
https://docs.aws.amazon.com/config/latest/developerguide/evaluate-config.html
https://docs.aws.amazon.com/securityhub/latest/userguide/what-is-securityhub.html
https://docs.aws.amazon.com/securityhub/latest/userguide/securityhub-controls-reference.html
https://docs.aws.amazon.com/guardduty/latest/ug/what-is-guardduty.html

Amazon Simple Queue Service Developer Guide

• AWS Audit Manager – This AWS service helps you continuously audit your AWS usage to simplify
how you manage risk and compliance with regulations and industry standards.

Resilience in Amazon SQS

The AWS global infrastructure is built around AWS Regions and Availability Zones. AWS Regions
provide multiple physically separated and isolated Availability Zones, which are connected with
low-latency, high throughput, and highly redundant networking. With Availability Zones, you
can design and operate applications and databases that automatically fail over between zones
without interruption. Availability Zones are more highly available, fault tolerant, and scalable than
traditional single or multiple data center infrastructures. For more information about AWS Regions
and Availability Zones, see AWS Global Infrastructure.

In addition to the AWS global infrastructure, Amazon SQS offers distributed queues.

Distributed queues

There are three main parts in a distributed messaging system: the components of your distributed
system, your queue (distributed on Amazon SQS servers), and the messages in the queue.

In the following scenario, your system has several producers (components that send messages
to the queue) and consumers (components that receive messages from the queue). The queue
(which holds messages A through E) redundantly stores the messages across multiple Amazon SQS
servers.

Resilience 644

https://docs.aws.amazon.com/audit-manager/latest/userguide/what-is.html
https://aws.amazon.com/about-aws/global-infrastructure/

Amazon Simple Queue Service Developer Guide

Infrastructure security in Amazon SQS

As a managed service, Amazon SQS is protected by the AWS global network security procedures
described in the Amazon Web Services: Overview of Security Processes whitepaper.

You use AWS published API actions to access Amazon SQS through the network. Clients must
support Transport Layer Security (TLS) 1.2 or later. Clients must also support cipher suites with
Perfect Forward Secrecy (PFS), such as Ephemeral Diffie-Hellman (DHE) or Elliptic Curve Ephemeral
Diffie-Hellman (ECDHE).

You must sign requests using an access key ID and a secret access key associated with an IAM
principal. Alternatively, you can use the AWS Security Token Service (AWS STS) to generate
temporary security credentials for signing requests.

You can call these API actions from any network location, but Amazon SQS supports resource-
based access policies, which can include restrictions based on the source IP address. You can also
use Amazon SQS policies to control access from specific Amazon VPC endpoints or specific VPCs.
This effectively isolates network access to a given Amazon SQS queue from only the specific VPC
within the AWS network. For more information, see Example 5: Deny access if it isn't from a VPC
endpoint.

Amazon SQS security best practices

AWS provides many security features for Amazon SQS, which you should review in the context of
your own security policy. The following are preventative security best practices for Amazon SQS.

Note

The specific implementation guidance provided is for common use cases and
implementations. We suggest that you view these best practices in the context of your
specific use case, architecture, and threat model.

Topics

• Make sure that queues aren't publicly accessible

• Implement least-privilege access

• Use IAM roles for applications and AWS services which require Amazon SQS access

Infrastructure security 645

https://d0.awsstatic.com/whitepapers/Security/AWS_Security_Whitepaper.pdf
https://docs.aws.amazon.com/STS/latest/APIReference/Welcome.html

Amazon Simple Queue Service Developer Guide

• Implement server-side encryption

• Enforce encryption of data in transit

• Consider using VPC endpoints to access Amazon SQS

Make sure that queues aren't publicly accessible

Unless you explicitly require anyone on the internet to be able to read or write to your Amazon
SQS queue, you should make sure that your queue isn't publicly accessible (accessible by everyone
in the world or by any authenticated AWS user).

• Avoid creating policies with Principal set to "".

• Avoid using a wildcard (*). Instead, name a specific user or users.

Implement least-privilege access

When you grant permissions, you decide who receives them, which queues the permissions are for,
and specific API actions that you want to allow for these queues. Implementing least privilege is
important to reducing security risks and reducing the effect of errors or malicious intent.

Follow the standard security advice of granting least privilege. That is, grant only the permissions
required to perform a specific task. You can implement this using a combination of security
policies.

Amazon SQS uses the producer-consumer model, requiring three types of user account access:

• Administrators – Access to creating, modifying, and deleting queues. Administrators also control
queue policies.

• Producers – Access to sending messages to queues.

• Consumers – Access to receiving and deleting messages from queues.

For more information, see the following sections:

• Identity and access management in Amazon SQS

• Amazon SQS API permissions: Actions and resource reference

• Using custom policies with the Amazon SQS Access Policy Language

Make sure that queues aren't publicly accessible 646

Amazon Simple Queue Service Developer Guide

Use IAM roles for applications and AWS services which require Amazon
SQS access

For applications or AWS services such as Amazon EC2 to access Amazon SQS queues, they must
use valid AWS credentials in their AWS API requests. Because these credentials aren't rotated
automatically, you shouldn't store AWS credentials directly in the application or EC2 instance.

You should use an IAM role to manage temporary credentials for applications or services that need
to access Amazon SQS. When you use a role, you don't have to distribute long-term credentials
(such as a username, password, and access keys) to an EC2 instance or AWS service such as AWS
Lambda. Instead, the role supplies temporary permissions that applications can use when they
make calls to other AWS resources.

For more information, see IAM Roles and Common Scenarios for Roles: Users, Applications, and
Services in the IAM User Guide.

Implement server-side encryption

To mitigate data leakage issues, use encryption at rest to encrypt your messages using a key stored
in a different location from the location that stores your messages. Server-side encryption (SSE)
provides data encryption at rest. Amazon SQS encrypts your data at the message level when it
stores it, and decrypts the messages for you when you access them. SSE uses keys managed in AWS
Key Management Service. As long as you authenticate your request and have access permissions,
there is no difference between accessing encrypted and unencrypted queues.

For more information, see Encryption at rest in Amazon SQS and Amazon SQS Key management.

Enforce encryption of data in transit

Without HTTPS (TLS), a network-based attacker can eavesdrop on network traffic or manipulate
it, using an attack such as man-in-the-middle. Allow only encrypted connections over HTTPS (TLS)
using the aws:SecureTransport condition in the queue policy to force requests to use SSL.

Consider using VPC endpoints to access Amazon SQS

If you have queues that you must be able to interact with but which must absolutely not be
exposed to the internet, use VPC endpoints to queue access to only the hosts within a particular
VPC. You can use queue policies to control access to queues from specific Amazon VPC endpoints
or from specific VPCs.

Use IAM roles for applications and AWS services which require Amazon SQS access 647

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html#Conditions_Boolean

Amazon Simple Queue Service Developer Guide

Amazon SQS VPC endpoints provide two ways to control access to your messages:

• You can control the requests, users, or groups that are allowed through a specific VPC endpoint.

• You can control which VPCs or VPC endpoints have access to your queue using a queue policy.

For more information, see Amazon Virtual Private Cloud endpoints for Amazon SQS and Creating
an Amazon VPC endpoint policy for Amazon SQS.

Consider using VPC endpoints to access Amazon SQS 648

Amazon Simple Queue Service Developer Guide

Related Amazon SQS resources

The following table lists related resources that you might find useful as you work with this service.

Resource Description

Amazon Simple Queue Service API
Reference

Descriptions of actions, parameters, and data types and
a list of errors that the service returns.

Amazon SQS in the AWS CLI
Command Reference

Descriptions of the AWS CLI commands that you can use
to work with queues.

Regions and Endpoints Information about Amazon SQS regions and endpoints

Product Page The primary web page for information about Amazon
SQS.

Discussion Forum A community-based forum for developers to discuss
technical questions related to Amazon SQS.

AWS Premium Support Information The primary web page for information about AWS
Premium Support, a one-on-one, fast-response support
channel to help you build and run applications on AWS
infrastructure services.

649

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/
https://docs.aws.amazon.com/cli/latest/reference/sqs/index.html
https://docs.aws.amazon.com/cli/latest/reference/sqs/index.html
https://docs.aws.amazon.com/general/latest/gr/rande.html#sqs_region
https://aws.amazon.com/sqs
https://forums.aws.amazon.com/forum.jspa?forumID=12
https://aws.amazon.com/premiumsupport/

Amazon Simple Queue Service Developer Guide

Documentation history

The following table describes the important changes to the Amazon Simple Queue Service
Developer Guide since Jan 2019. For notifications about updates to this documentation, subscribe
to the RSS feed.

Service features are sometimes rolled out incrementally to the AWS Regions where a service is
available. We update this documentation for the first release only. We don't provide information
about Region availability or announce subsequent Region rollouts. For information about Region
availability of service features and to subscribe to notifications about updates, see What's New with
AWS?.

Change Description Date

FIFO metrics update Support for NumberOfD
eduplicatedSentMes
sages and Approxima
teNumberOfGroupsWi
thInflightMessages
added to Amazon SQS FIFO
metrics.

July 3, 2024

ListQueueTags action
supported in the AmazonSQS
ReadOnlyAccess managed
policy

The AmazonSQSReadOnlyA
ccess managed policy
supports ListQueueTags
to retrieve all tags associated
with a specified Amazon SQS
queue.

May 2, 2024

AWS JSON protocol Make API requests using AWS
JSON protocol.

July 27, 2023

New section describing AWS
managed policies for Amazon
SQS and updates to these
policies

Amazon SQS added a new
action that allows you to list
the most recent message
movement tasks (up to 10)
under a specific source queue.

June 7, 2023

650

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/recent-updates.rss
https://aws.amazon.com/new
https://aws.amazon.com/new
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-available-cloudwatch-metrics.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-access-policy-aws-managed-policies.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-access-policy-aws-managed-policies.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-access-policy-aws-managed-policies.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-access-policy-aws-managed-policies.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-making-api-requests-json.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-access-policy-aws-managed-policies.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-access-policy-aws-managed-policies.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-access-policy-aws-managed-policies.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-access-policy-aws-managed-policies.html

Amazon Simple Queue Service Developer Guide

This action is associated with
the ListMessageMoveTas
ks API operation.

Dead-letter queue redrive
using APIs

Configure dead-letter queue
redrives using Amazon SQS
APIs.

June 7, 2023

ABAC for Amazon SQS Attribute-based access control
(ABAC) using queue tags for
flexible and scalable access
permissions.

November 10, 2022

FIFO high throughput limit
increases

Increased default quotas
for FIFO high throughput
mode in commercial Regions,
plus FIFO high throughput
document optimization.

October 20, 2022

Default server-side encryptio
n (SSE) is available

Server-side encryption (SSE)
using SQS-owned encryption
(SSE-SQS) by default.

September 26, 2022

Amazon SQS confused
deputy protection support is
available

Confused deputy protectio
n allows you to specify new
headers in their requests,
which are checked against
conditions in the KMS policy
when using Amazon SQS
managed SSE.

December 29, 2021

Managed SSE is available Amazon SQS managed
SSE (SSE-SQS) is managed
server-side encryption that
uses Amazon SQS-owned
 encryption keys to protect
sensitive data sent over
message queues.

November 23, 2021

651

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_StartMessageMoveTask.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_StartMessageMoveTask.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-abac.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-getting-started.html#step-create-standard-queue
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-getting-started.html#step-create-standard-queue
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-getting-started.html#step-create-standard-queue
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-getting-started.html#step-create-standard-queue
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-key-management.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-key-management.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-key-management.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-configure-sqs-sse-queue.html

Amazon Simple Queue Service Developer Guide

Dead-letter queue redrive is
available

Amazon SQS supports dead-
letter queue redrive for
standard queues.

November 10, 2021

High throughput for
messages in FIFO queues is
available

High throughput for Amazon
SQS FIFO queues provides a
higher number of transacti
ons per second (TPS) for
messages in FIFO queues. For
information on throughput
quotas, see Quotas related to
messages.

May 27, 2021

High throughput for
messages in FIFO queues is
available in preview release

High throughput for Amazon
SQS FIFO queues is in preview
release and is subject to
change. This feature provides
a higher number of transacti
ons per second (TPS) for
messages in FIFO queues. For
information on throughput
quotas, see Quotas related to
messages.

December 17, 2020

New Amazon SQS console
design

To simplify development and
production workflows, the
Amazon SQS console has a
new user experience.

July 8, 2020

Amazon SQS supports
pagination for listQueues and
listDeadLetterSourceQueues

You can specify the maximum
number of results to return
from a listQueues or listDeadL
etterSourceQueues request.

June 22, 2020

652

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-dead-letter-queues.html#sqs-dead-letter-queues-redrive
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-dead-letter-queues.html#sqs-dead-letter-queues-redrive
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-configure-dead-letter-queue-redrive.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-configure-dead-letter-queue-redrive.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/high-throughput-fifo.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/high-throughput-fifo.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/high-throughput-fifo.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/quotas-messages.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/quotas-messages.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/high-throughput-fifo.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/high-throughput-fifo.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/high-throughput-fifo.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/quotas-messages.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/quotas-messages.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-configuring.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-configuring.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-configuring.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ListQueues.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ListQueues.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ListQueues.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ListQueues.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ListDeadLetterSourceQueues.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ListDeadLetterSourceQueues.html

Amazon Simple Queue Service Developer Guide

Amazon SQS supports 1-
minute Amazon CloudWatc
h metrics in all AWS Regions,
except the AWS GovCloud
(US) Regions

The one-minute CloudWatc
h metric for Amazon SQS
is available in all Regions,
except the AWS GovCloud
(US) Regions.

January 9, 2020

Amazon SQS supports 1-
minute CloudWatch metrics

The one-minute CloudWatc
h metric for Amazon SQS is
currently available only in
the following Regions: US
East (Ohio), Europe (Ireland),
Europe (Stockholm), and Asia
Pacific (Tokyo).

November 25, 2019

AWS Lambda triggers for
Amazon SQS FIFO queues are
available

You can configure messages
arriving in a FIFO queue as a
Lambda function trigger.

November 25, 2019

Server-side encryption (SSE)
for Amazon SQS is available
in the China Regions

SSE for Amazon SQS is
available in the China
Regions.

November 13, 2019

FIFO queues are available
in the Middle East (Bahrain)
Region

FIFO queues are available
in the Middle East (Bahrain)
Region.

October 10, 2019

Amazon Virtual Private Cloud
(Amazon VPC) endpoints for
Amazon SQS are available in
the AWS GovCloud (US-East)
and AWS GovCloud (US-West)
Regions

You can send messages to
your Amazon SQS queues
from Amazon VPC in the AWS
GovCloud (US-East) and AWS
GovCloud (US-West) Regions.

September 5, 2019

653

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-available-cloudwatch-metrics.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-available-cloudwatch-metrics.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-available-cloudwatch-metrics.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-available-cloudwatch-metrics.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-available-cloudwatch-metrics.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-available-cloudwatch-metrics.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-available-cloudwatch-metrics.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-configure-lambda-function-trigger.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-configure-lambda-function-trigger.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-configure-lambda-function-trigger.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-server-side-encryption.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-server-side-encryption.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-server-side-encryption.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-fifo-queues.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-fifo-queues.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-fifo-queues.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-internetwork-traffic-privacy.html#sqs-vpc-endpoints
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-internetwork-traffic-privacy.html#sqs-vpc-endpoints
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-internetwork-traffic-privacy.html#sqs-vpc-endpoints
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-internetwork-traffic-privacy.html#sqs-vpc-endpoints
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-internetwork-traffic-privacy.html#sqs-vpc-endpoints
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-internetwork-traffic-privacy.html#sqs-vpc-endpoints

Amazon Simple Queue Service Developer Guide

Amazon SQS allows troublesh
ooting of queues using AWS
X-Ray using message system
attributes

You can troubleshoot
messages passing through
Amazon SQS queues
using X-Ray. This release
adds the MessageSy
stemAttribute request
parameter (which lets you
send X-Ray trace headers
through Amazon SQS) to
the SendMessage and
SendMessageBatch API
operations, the AWSTraceH
eader attribute to
the ReceiveMessage
API operation, and the
MessageSystemAttri
buteValue data type.

August 28, 2019

You can tag Amazon SQS
queues upon creation

You can use a single Amazon
SQS API call, AWS SDK
function, or AWS Command
Line Interface (AWS CLI)
command to simultaneously
create a queue and specify
its tags. In addition, Amazon
SQS supports the aws:TagKe
ys and aws:RequestTag
AWS Identity and Access
Management (IAM) keys.

August 22, 2019

654

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-troubleshooting-using-x-ray.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-troubleshooting-using-x-ray.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-troubleshooting-using-x-ray.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-troubleshooting-using-x-ray.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ReceiveMessage.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_CreateQueue.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_CreateQueue.html

Amazon Simple Queue Service Developer Guide

The temporary queue client
for Amazon SQS is now
available

Temporary queues help you
save development time and
deployment costs when using
common message patterns
such as request-response.
You can use the Temporary
 Queue Client to create
high-throughput, cost-effe
ctive, application-managed
temporary queues.

July 25, 2019

SSE for Amazon SQS
is available in the AWS
GovCloud (US-East) Region

Server-side encryption (SSE)
for Amazon SQS is available
in the AWS GovCloud (US-
East) Region.

June 20, 2019

FIFO queues are available
in the Asia Pacific (Hong
Kong), China (Beijing), AWS
GovCloud (US-East), and AWS
GovCloud (US-West) Regions

FIFO queues are available
in the Asia Pacific (Hong
Kong), China (Beijing), AWS
GovCloud (US-East), and AWS
GovCloud (US-West) Regions.

May 15, 2019

Amazon VPC endpoint
policies are available for
Amazon SQS

You can create Amazon VPC
endpoint policies for Amazon
SQS.

April 4, 2019

FIFO queues are available in
the Europe (Stockholm) and
China (Ningxia) Regions

FIFO queues are available in
the Europe (Stockholm) and
China (Ningxia) Regions.

March 14, 2019

655

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-temporary-queues.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-temporary-queues.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-temporary-queues.html
https://github.com/awslabs/amazon-sqs-java-temporary-queues-client
https://github.com/awslabs/amazon-sqs-java-temporary-queues-client
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-server-side-encryption.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-server-side-encryption.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-server-side-encryption.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-fifo-queues.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-fifo-queues.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-fifo-queues.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-fifo-queues.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-fifo-queues.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-internetwork-traffic-privacy.html#sqs-vpc-endpoint-policy
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-internetwork-traffic-privacy.html#sqs-vpc-endpoint-policy
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-internetwork-traffic-privacy.html#sqs-vpc-endpoint-policy
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-fifo-queues.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-fifo-queues.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-fifo-queues.html

Amazon Simple Queue Service Developer Guide

FIFO queues are available in
all Regions where Amazon
SQS is available

FIFO queues are available in
the US East (Ohio), US East
(N. Virginia), US West (N.
California), US West (Oregon),
Asia Pacific (Mumbai), Asia
Pacific (Seoul), Asia Pacific
(Singapore), Asia Pacific
(Sydney), Asia Pacific (Tokyo),
Canada (Central), Europe
(Frankfurt), Europe (Ireland)
, Europe (London), Europe
(Paris), and South America
(São Paulo) Regions.

February 7, 2019

656

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-fifo-queues.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-fifo-queues.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-fifo-queues.html

	Amazon Simple Queue Service
	Table of Contents
	What is Amazon Simple Queue Service
	Benefits of using Amazon SQS
	Basic Amazon SQS architecture
	Distributed queues
	Message lifecycle

	Differences between Amazon SQS, Amazon MQ, and Amazon SNS

	Setting up Amazon SQS
	Step 1: Create an AWS account and IAM user
	Sign up for an AWS account
	Create a user with administrative access

	Step 2: Grant programmatic access
	Step 3: Get ready to use the example code
	Next steps

	Getting started with Amazon SQS
	Prerequisites
	Understanding the Amazon SQS console
	Amazon SQS queue types
	Implementing request-response systems in Amazon SQS

	Creating an Amazon SQS standard queue and sending a message
	Create a queue using the Amazon SQS console
	Send a message

	Creating an Amazon SQS FIFO queue and sending a message
	Create a queue
	Send a message

	Common tasks for getting started with Amazon SQS

	Managing an Amazon SQS queue
	Prerequisites
	Understanding the Amazon SQS console
	Editing an Amazon SQS queue using the console
	Receiving and deleting a message in Amazon SQS
	Confirming that an Amazon SQS queue is empty
	Deleting an Amazon SQS queue
	Purging messages from an queue using the Amazon SQS console

	Amazon SQS standard queues
	Amazon SQS at-least-once delivery
	Amazon SQS queue and message identifiers
	Identifiers for Amazon SQS standard queues
	Queue name and URL
	Message ID
	Receipt handle

	Amazon SQS FIFO queues
	Amazon SQS FIFO queue key terms
	FIFO queue delivery logic in Amazon SQS
	Exactly-once processing in Amazon SQS
	Moving from a standard queue to a FIFO queue in Amazon SQS
	Amazon SQS FIFO queue and Lambda concurrency behavior
	FIFO queue message grouping
	Lambda concurrency with FIFO queues
	Use case example

	High throughput for FIFO queues in Amazon SQS
	Use cases for high throughput for Amazon SQS FIFO queues
	Partitions and data distribution for high throughput for SQS FIFO queues
	Distributing data by message group IDs
	Optimizing partition utilization

	Enabling high throughput for FIFO queues in Amazon SQS

	FIFO queue and message identifiers in Amazon SQS
	Identifiers for FIFO queues in Amazon SQS
	Queue name and URL
	Message ID
	Receipt handle

	Additional identifiers for Amazon SQS FIFO queues
	Message deduplication ID
	Message group ID
	Sequence number

	Amazon SQS quotas
	Amazon SQS FIFO queue quotas
	Amazon SQS quotas

	Amazon SQS standard queue quotas
	Amazon SQS message quotas
	Amazon SQS policy quotas

	Amazon SQS features and capabilities
	Using dead-letter queues in Amazon SQS
	Using policies for dead-letter queues
	Understanding message retention periods for dead-letter queues
	Learn how to configure a dead-letter queue using the Amazon SQS console
	Learn how to configure a dead-letter queue redrive in Amazon SQS
	Configuring a dead-letter queue redrive for an existing standard queue using the Amazon SQS API
	Configuring a dead-letter queue redrive for an existing standard queue using the Amazon SQS console
	Configuring queue permissions for dead-letter queue redrive

	CloudTrail update and permission requirements for Amazon SQS dead-letter queue redrive
	CloudTrail event renaming
	Updated permissions
	Identifying impacted policies

	Create alarms for dead-letter queues using Amazon CloudWatch

	Message metadata for Amazon SQS
	Amazon SQS message attributes
	Message attribute components
	Message attribute data types
	Calculating the MD5 message digest for message attributes
	Overview
	To encode a single Amazon SQS message attribute

	Amazon SQS message system attributes

	Resources required to process Amazon SQS messages
	Amazon SQS list queue pagination
	Amazon SQS cost allocation tags
	Amazon SQS short and long polling
	Consuming messages using short polling
	Consuming messages using long polling
	Differences between long and short polling

	Amazon SQS visibility timeout
	In flight messages
	Setting the visibility timeout
	Changing the visibility timeout for a message
	Terminating the visibility timeout for a message

	Amazon SQS delay queues
	Amazon SQS temporary queues
	Virtual queues
	Request-response messaging pattern (virtual queues)
	Example scenario: Processing a login request
	On the client side
	On the server side

	Cleaning up queues

	Amazon SQS message timers
	Accessing Amazon EventBridge Pipes through the Amazon SQS console
	Managing large Amazon SQS messages with Extended Client Library and Amazon Simple Storage Service
	Managing large Amazon SQS messages using Java and Amazon S3
	Prerequisites
	AWS SDK for Java 2.x Example: Using Amazon S3 to manage large Amazon SQS messages
	AWS SDK for Java 2.x Example: Using Amazon S3 to manage large Amazon SQS messages

	Managing large Amazon SQS messages using Python and Amazon S3
	Prerequisites
	Configuring message storage
	Managing large Amazon SQS messages with Extended Client Library for Python

	Configuring Amazon SQS queues using the Amazon SQS console
	Attribute-based access control for Amazon SQS
	What is ABAC?
	Why should I use ABAC in Amazon SQS?
	Tagging for access control in Amazon SQS
	Creating IAM users and Amazon SQS queues
	Using the AWS Management Console
	Using AWS CloudFormation

	Testing attribute-based access control in Amazon SQS
	Create a queue with the tag key set to environment and the tag value set to prod
	Create a queue with the tag key set to environment and the tag value set to beta
	Sending a message to a queue

	Configuring queue parameters using the Amazon SQS console
	Configuring an access policy in Amazon SQS
	Configuring server-side encryption for a queue using SQS-managed encryption keys
	Configuring server-side encryption for a queue using the Amazon SQS console
	Configuring cost allocation tags for a queue using the Amazon SQS console
	Subscribing a queue to an Amazon SNS topic using the Amazon SQS console
	Configuring an Amazon SQS queue to trigger an AWS Lambda function
	Prerequisites

	Automating notifications from AWS services to Amazon SQS using Amazon EventBridge
	Sending a message with attributes using Amazon SQS

	Amazon SQS best practices
	Amazon SQS error handling and problematic messages
	Handling request errors in Amazon SQS
	Capturing problematic messages in Amazon SQS
	Setting-up dead-letter queue retention in Amazon SQS

	Amazon SQS message deduplication and grouping
	Avoiding inconsistent message processing in Amazon SQS
	Using the Amazon SQS message deduplication ID
	Providing the message deduplication ID in Amazon SQS
	Enabling deduplication for a single-producer/consumer system in Amazon SQS
	Designing for outage recovery scenarios in Amazon SQS
	Working with visibility timeouts in Amazon SQS

	Using the Amazon SQS message group ID
	Interleaving multiple ordered message groups in Amazon SQS
	Avoiding processing duplicates in a multiple-producer/consumer system in Amazon SQS
	Avoid having a large backlog of messages with the same message group ID in Amazon SQS
	Avoid reusing the same message group ID with virtual queues in Amazon SQS

	Using the Amazon SQS receive request attempt ID

	Amazon SQS message processing and timing
	Processing messages in a timely manner in Amazon SQS
	Setting-up long polling in Amazon SQS
	Using the appropriate polling mode in Amazon SQS

	Amazon SQS Java SDK examples
	Using server-side encryption with Amazon SQS queues
	Adding SSE to an existing queue
	Disabling SSE for a queue
	Creating a queue with SSE
	Retrieving SSE attributes

	Configuring tags for an Amazon SQS queue
	Listing tags
	Adding or updating tags
	Removing tags

	Sending message attributes to an Amazon SQS queue
	Defining attributes
	Sending a message with attributes

	Using APIs with Amazon SQS
	Making query API requests using AWS JSON protocol in Amazon SQS
	Constructing an endpoint
	Making a POST request
	Interpreting Amazon SQS JSON API responses
	Successful JSON response structure
	JSON error response structure

	Amazon SQS AWS JSON protocol FAQs
	What is AWS JSON protocol, and how does it differ from existing Amazon SQS API requests and responses?
	How do I get started with AWS JSON protocols for Amazon SQS?
	What are the risks of enabling JSON protocol for my Amazon SQS workloads?
	What if I am already on the latest AWS SDK version, but my open sourced solution does not support JSON?
	What languages are supported for AWS JSON protocol used in Amazon SQS APIs?
	What regions are supported for AWS JSON protocol used in Amazon SQS APIs
	What latency improvements can I expect when upgrading to the specified AWS SDK versions for Amazon SQS using the AWS JSON protocol?
	Will AWS query protocol be deprecated?
	Where can I find more information about AWS JSON protocol?

	Making query API requests using AWS query protocol in Amazon SQS
	Constructing an endpoint
	Making a GET request
	Making a POST request
	Interpreting Amazon SQS XML API responses
	Successful XML response structure
	XML error response structure

	Authenticating requests for Amazon SQS
	Basic authentication process with HMAC-SHA
	Part 1: The request from the user
	Part 2: The response from AWS

	Amazon SQS batch actions
	Batching message actions
	Enabling client-side buffering and request batching with Amazon SQS
	Using AmazonSQSBufferedAsyncClient
	Configuring AmazonSQSBufferedAsyncClient

	Increasing throughput using horizontal scaling and action batching with Amazon SQS
	Horizontal scaling
	Action batching
	Working Java example for single-operation and batch requests
	Prerequisites
	SimpleProducerConsumer.java
	Monitoring volume metrics from the example run

	Using Amazon SQS with an AWS SDK

	Using JMS with Amazon SQS
	Prerequisites for working with JMS and Amazon SQS
	Using the Amazon SQS Java Messaging Library
	Creating a JMS connection
	Creating an Amazon SQS queue
	To create a standard queue
	To create a FIFO queue

	Sending messages synchronously
	Receiving messages synchronously
	Receiving messages asynchronously
	Using client acknowledge mode
	Using unordered acknowledge mode

	Using the Java Message Service with other Amazon SQS clients
	Working Java examples for using JMS with Amazon SQS standard queues
	ExampleConfiguration.java
	TextMessageSender.java
	SyncMessageReceiver.java
	AsyncMessageReceiver.java
	SyncMessageReceiverClientAcknowledge.java
	SyncMessageReceiverUnorderedAcknowledge.java
	SpringExampleConfiguration.xml
	SpringExample.java
	ExampleCommon.java

	Amazon SQS supported JMS 1.1 implementations
	Supported common interfaces
	Supported message types
	Supported message acknowledgment modes
	JMS-defined headers and reserved properties
	For sending messages
	For receiving messages

	Amazon SQS tutorials
	Creating an Amazon SQS queue using AWS CloudFormation
	Tutorial: Sending a message to an Amazon SQS queue from Amazon Virtual Private Cloud
	Step 1: Create an Amazon EC2 key pair
	Step 2: Create AWS resources
	Step 3: Confirm that your EC2 instance isn't publicly accessible
	Step 4: Create an Amazon VPC endpoint for Amazon SQS
	Step 5: Send a message to your Amazon SQS queue

	Code examples for Amazon SQS using AWS SDKs
	Hello Amazon SQS
	Actions for Amazon SQS using AWS SDKs
	Use AddPermission with an AWS SDK or CLI
	Use ChangeMessageVisibility with an AWS SDK or CLI
	Use ChangeMessageVisibilityBatch with an AWS SDK or CLI
	Use CreateQueue with an AWS SDK or CLI
	Use DeleteMessage with an AWS SDK or CLI
	Use DeleteMessageBatch with an AWS SDK or CLI
	Use DeleteQueue with an AWS SDK or CLI
	Use GetQueueAttributes with an AWS SDK or CLI
	Use GetQueueUrl with an AWS SDK or CLI
	Use ListDeadLetterSourceQueues with an AWS SDK or CLI
	Use ListQueues with an AWS SDK or CLI
	Use PurgeQueue with an AWS SDK or CLI
	Use ReceiveMessage with an AWS SDK or CLI
	Use RemovePermission with an AWS SDK or CLI
	Use SendMessage with an AWS SDK or CLI
	Use SendMessageBatch with an AWS SDK or CLI
	Use SetQueueAttributes with an AWS SDK or CLI

	Scenarios for Amazon SQS using AWS SDKs
	Create and publish to a FIFO Amazon SNS topic using an AWS SDK
	Publish Amazon SNS messages to Amazon SQS queues using an AWS SDK
	Send and receive batches of messages with Amazon SQS using an AWS SDK

	Serverless examples for Amazon SQS using AWS SDKs
	Invoke a Lambda function from an Amazon SQS trigger
	Reporting batch item failures for Lambda functions with an Amazon SQS trigger

	Cross-service examples for Amazon SQS using AWS SDKs
	Create a web application that sends and retrieves messages by using Amazon SQS
	Create a messenger application with Step Functions
	Create an Amazon Textract explorer application
	Detect people and objects in a video with Amazon Rekognition using an AWS SDK
	Use the AWS Message Processing Framework for .NET to publish and receive Amazon SQS messages

	Troubleshooting issues in Amazon SQS
	Troubleshoot an access denied error in Amazon SQS
	Amazon SQS queue policy and IAM policy
	AWS Key Management Service permissions
	VPC endpoint policy
	Organization service control policy

	Troubleshoot Amazon SQS API errors
	QueueDoesNotExist error
	InvalidAttributeValue error
	ReceiptHandle error

	Troubleshoot Amazon SQS dead-letter queue and DLQ redrive issues
	DLQ issues
	Viewing messages using the console might cause messages to be moved to a dead-letter queue
	The NumberOfMessagesSent and NumberOfMessagesReceived for a dead-letter queue don't match
	Creating and configuring a dead-letter queue redrive
	Standard and FIFO queue message failure handling

	DLQ-redrive issues
	AccessDenied permission issue
	NonExistentQueue error
	CouldNotDetermineMessageSource error

	Troubleshoot FIFO throttling issues in Amazon SQS
	Troubleshoot messages not returned for an Amazon SQS ReceiveMessage API call
	Empty queue
	In flight limit reached
	Message delay
	Message is in flight
	Polling method

	Troubleshoot Amazon SQS network errors
	ETIMEOUT error
	UnknownHostException error

	Troubleshooting Amazon Simple Queue Service queues using AWS X-Ray

	Security in Amazon SQS
	Data protection in Amazon SQS
	Data encryption in Amazon SQS
	Encryption at rest in Amazon SQS
	Encryption scope
	Key terms

	Amazon SQS Key management
	Configuring AWS KMS permissions
	Configure KMS permissions for AWS services
	Configure AWS KMS permissions for producers
	Configure AWS KMS permissions for consumers
	Configure AWS KMS permissions with confused deputy protection

	Understanding the data key reuse period
	Estimating AWS KMS costs
	Example 1: Calculating the number of AWS KMS API calls for 2 principals and 1 queue
	Example 2: Calculating the number of AWS KMS API calls for multiple producers and consumers and 2 queues

	AWS KMS errors

	Internetwork traffic privacy in Amazon SQS
	Amazon Virtual Private Cloud endpoints for Amazon SQS
	Creating an Amazon VPC endpoint policy for Amazon SQS

	Identity and access management in Amazon SQS
	Audience
	Authenticating with identities
	AWS account root user
	Federated identity
	IAM users and groups
	IAM roles

	Managing access using policies
	Identity-based policies
	Resource-based policies
	Access control lists (ACLs)
	Other policy types
	Multiple policy types

	Overview of managing access in Amazon SQS
	Amazon Simple Queue Service resource and operations
	Understanding resource ownership
	Managing access to resources
	Identity-based policies

	Specifying policy elements: Actions, effects, resources, and principals

	How Amazon Simple Queue Service works with IAM
	Access control
	Identity-based policies for Amazon SQS
	Identity-based policy examples for Amazon SQS

	Resource-based policies within Amazon SQS
	Policy actions for Amazon SQS
	Policy resources for Amazon SQS
	Policy condition keys for Amazon SQS
	ACLs in Amazon SQS
	ABAC with Amazon SQS
	Using temporary credentials with Amazon SQS
	Forward access sessions for Amazon SQS
	Service roles for Amazon SQS
	Service-linked roles for Amazon SQS

	Amazon SQS updates to AWS managed policies
	AWS managed policy: AmazonSQSFullAccess
	AWS managed policy: AmazonSQSReadOnlyAccess
	Amazon SQS updates to AWS managed policies

	Troubleshooting Amazon Simple Queue Service identity and access
	I am not authorized to perform an action in Amazon SQS
	I am not authorized to perform iam:PassRole
	I want to allow people outside of my AWS account to access my Amazon SQS resources

	Using policies with Amazon SQS
	Using Amazon SQS and IAM policies
	Permissions required to use the Amazon SQS console
	Identity-based policy examples for Amazon SQS
	Policy best practices
	Using the Amazon SQS console
	Allow users to view their own permissions
	Allow a user to create queues
	Allow developers to write messages to a shared queue
	Allow managers to get the general size of queues
	Allow a partner to send messages to a specific queue

	Basic examples of Amazon SQS policies
	Example 1: Grant one permission to one AWS account
	Example 2: Grant two permissions to one AWS account
	Example 3: Grant all permissions to two AWS accounts
	Example 4: Grant cross-account permissions to a role and a username
	Example 5: Grant a permission to all users
	Example 6: Grant a time-limited permission to all users
	Example 7: Grant all permissions to all users in a CIDR range
	Example 8: Allowlist and blocklist permissions for users in different CIDR ranges

	Using custom policies with the Amazon SQS Access Policy Language
	Amazon SQS access control architecture
	Amazon SQS access control process workflow
	Amazon SQS Access Policy Language key concepts
	Amazon SQS Access Policy Language evaluation logic
	Relationships between explicit and default denials in the Amazon SQS Access Policy Language
	Limitations of Amazon SQS custom policies
	Cross-account access
	Condition keys

	Custom Amazon SQS Access Policy Language examples
	Example 1: Give permission to one account
	Example 2: Give permission to one or more accounts
	Example 3: Give permission to requests from Amazon EC2 instances
	Example 4: Deny access to a specific account
	Example 5: Deny access if it isn't from a VPC endpoint
	Using temporary security credentials with Amazon SQS
	Prerequisites
	To call an Amazon SQS Query API action using temporary security credentials

	Access management for encrypted Amazon SQS queues with least privilege policies
	Overview
	Least privilege key policy for Amazon SQS
	Grant administrator permissions to the AWS KMS key
	Grant read-only access to the key metadata
	Grant Amazon SNS KMS permissions to Amazon SNS to publish messages to the queue
	Allow consumers to decrypt messages from the queue
	Least privilege Amazon SQS policy
	Restrict Amazon SQS management permissions
	Restrict Amazon SQS queue actions from the specified organization
	Grant Amazon SQS permissions to consumers
	Enforce encryption in transit
	Restrict message transmission to a specific Amazon SNS topic
	(Optional) Restrict message reception to a specific VPC endpoint

	Amazon SQS policy statements for the dead-letter queue
	Restrict message transmission to Amazon SQS queues

	Prevent the cross-service confused deputy problem
	Use IAM Access Analyzer to review cross-account access

	Amazon SQS API permissions: Actions and resource reference

	Logging and monitoring in Amazon SQS
	Logging Amazon SQS API calls using AWS CloudTrail
	Amazon SQS information in CloudTrail
	Management events in CloudTrail
	Data events in CloudTrail
	Examples: CloudTrail management events for Amazon SQS
	Examples: CloudTrail data events for Amazon SQS

	Monitoring Amazon SQS queues using CloudWatch
	Accessing CloudWatch metrics for Amazon SQS
	Amazon SQS console
	Amazon CloudWatch console
	AWS Command Line Interface
	CloudWatch API

	Creating CloudWatch alarms for Amazon SQS metrics
	Available CloudWatch metrics for Amazon SQS
	Amazon SQS metrics
	Dimensions for Amazon SQS metrics

	Compliance validation for Amazon SQS
	Resilience in Amazon SQS
	Distributed queues

	Infrastructure security in Amazon SQS
	Amazon SQS security best practices
	Make sure that queues aren't publicly accessible
	Implement least-privilege access
	Use IAM roles for applications and AWS services which require Amazon SQS access
	Implement server-side encryption
	Enforce encryption of data in transit
	Consider using VPC endpoints to access Amazon SQS

	Related Amazon SQS resources
	Documentation history

