
User Guide

AWS Amplify Hosting

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.



AWS Amplify Hosting User Guide

AWS Amplify Hosting: User Guide

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service 
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any 
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are 
the property of their respective owners, who may or may not be affiliated with, connected to, or 
sponsored by Amazon.



AWS Amplify Hosting User Guide

Table of Contents

What is AWS Amplify Hosting? ...................................................................................................... 1
Supported frameworks ................................................................................................................................ 1
Amplify Hosting features .......................................................................................................................... 2
Get started with Amplify Hosting ............................................................................................................ 2
Build a backend ............................................................................................................................................ 3
Amplify Hosting pricing ............................................................................................................................. 3

Getting started tutorials ................................................................................................................. 4
Deploy a Next.js app .................................................................................................................................... 4

Step 1: Connect a repository .............................................................................................................. 4
Step 2: Confirm the build settings ...................................................................................................... 5
Step 3: Deploy the application ............................................................................................................ 6
Step 4: (Optional) clean up resources ................................................................................................ 7
Add features to your app ...................................................................................................................... 7

Deploy a Nuxt.js app ................................................................................................................................... 8
Deploy an Astro.js app ................................................................................................................................ 8
Deploy a SvelteKit app ............................................................................................................................. 11

Deploying server-side rendered apps .......................................................................................... 14
Next.js ........................................................................................................................................................... 15

Next.js feature support ........................................................................................................................ 16
Deploying a Next.js SSR app to Amplify ......................................................................................... 17
Migrating a Next.js 11 SSR app to Amplify Hosting compute ..................................................... 20
Adding SSR functionality to a static Next.js app ........................................................................... 21
Making environment variables accessible to server-side runtimes ............................................. 23
Deploying a Next.js app in a monorepo .......................................................................................... 26

Nuxt.js ........................................................................................................................................................... 26
Astro.js .......................................................................................................................................................... 26
SvelteKit ....................................................................................................................................................... 27
Deploy an SSR app to Amplify ............................................................................................................... 27
SSR supported features ............................................................................................................................ 28

Node.js version support for Next.js apps ......................................................................................... 29
Image optimization for SSR apps ..................................................................................................... 29
Amazon CloudWatch Logs for SSR apps ......................................................................................... 30
Amplify Next.js 11 SSR support ........................................................................................................ 30

Pricing for SSR apps .................................................................................................................................. 38

iii



AWS Amplify Hosting User Guide

Troubleshooting SSR deployments ........................................................................................................ 38
Advanced: Open source adapters ........................................................................................................... 39

Deployment specification .................................................................................................................... 39
Deploying an Express server .............................................................................................................. 63
Image optimization for framework authors .................................................................................... 69
Using open source adapters ............................................................................................................... 77

Setting up custom domains .......................................................................................................... 79
Understanding DNS terminology and concepts .................................................................................. 80

DNS terminology ................................................................................................................................... 80
DNS verification .................................................................................................................................... 81
Amplify Hosting custom domain activation process ..................................................................... 81

Using SSL/TLS certificates ....................................................................................................................... 82
Add a custom domain managed by Amazon Route 53 ...................................................................... 83
Add a custom domain managed by a third-party DNS provider ...................................................... 84
Update DNS records for a domain managed by GoDaddy ................................................................ 89
Update DNS records for a domain managed by Google Domains ................................................... 92
Update the SSL/TLS certificate for a domain ...................................................................................... 95
Manage subdomains .................................................................................................................................. 96

To add a subdomain only ................................................................................................................... 96
To add a multilevel subdomain ......................................................................................................... 97
To add or edit a subdomain ............................................................................................................... 97

Wildcard subdomains ................................................................................................................................ 97
To add or delete a wildcard subdomain .......................................................................................... 98

Set up automatic subdomains for an Amazon Route 53 custom domain ...................................... 99
Web previews with subdomains ........................................................................................................ 99

Troubleshooting custom domains ........................................................................................................ 100
Configuring build settings .......................................................................................................... 101

Build specification commands and settings ....................................................................................... 101
Branch-specific build settings ............................................................................................................... 104
Navigating to a subfolder ...................................................................................................................... 104
Deploying the backend with the front end for a Gen 1 app .......................................................... 105
Setting the output folder ...................................................................................................................... 105
Installing packages as part of a build ................................................................................................. 106
Using a private npm registry ................................................................................................................ 106
Installing OS packages ........................................................................................................................... 106
Key-value storage for every build ........................................................................................................ 107

iv



AWS Amplify Hosting User Guide

Skip build for a commit ......................................................................................................................... 107
Disable automatic builds ........................................................................................................................ 107
Enable or disable diff based frontend build and deploy ................................................................. 107
Enable or disable diff based backend builds for a Gen 1 app ........................................................ 108
Monorepo build settings ........................................................................................................................ 109

Monorepo build specification YAML syntax .................................................................................. 110
Setting the AMPLIFY_MONOREPO_APP_ROOT environment variable .................................... 113
Configuring Turborepo and pnpm monorepo apps .................................................................... 115

Feature branch deployments ...................................................................................................... 116
Team workflows with fullstack Amplify Gen 2 apps ........................................................................ 117
Team workflows with fullstack Amplify Gen 1 apps ........................................................................ 117

Feature branch workflow .................................................................................................................. 117
GitFlow workflow ............................................................................................................................... 123
Per-developer sandbox ...................................................................................................................... 123

Pattern-based feature branch deployments ...................................................................................... 125
Pattern-based feature branch deployments for an app connected to a custom domain ..... 126

Automatic build-time generation of Amplify config (Gen 1 apps only) ....................................... 126
Conditional backend builds (Gen 1 apps only) .................................................................................. 128
Use Amplify backends across apps (Gen 1 apps only) ..................................................................... 128

Reuse backends when creating a new app ................................................................................... 129
Reuse backends when connecting a branch to an existing app ................................................ 129
Edit an existing frontend to point to a different backend ......................................................... 130

Building a backend ...................................................................................................................... 132
Create a backend for a Gen 2 app ....................................................................................................... 132
Create a backend for a Gen 1 app ....................................................................................................... 132

Prerequisites ........................................................................................................................................ 132
Step 1: Deploy a frontend ................................................................................................................ 133
Step 2: Create a backend ................................................................................................................. 134
Step 3: Connect the backend to the frontend ............................................................................. 135
Next steps ............................................................................................................................................ 137

Manual deploys ............................................................................................................................ 138
Drag and drop manual deploy .............................................................................................................. 138
Amazon S3 or URL manual deploy ...................................................................................................... 138

Troubleshooting Amazon S3 bucket access .................................................................................. 139
One-click deploy button ............................................................................................................. 140

Add the Deploy to Amplify Hosting button to a repository or blog ............................................. 140

v



AWS Amplify Hosting User Guide

Setting up GitHub access ............................................................................................................ 141
Installing and authorizing the Amplify GitHub App for a new deployment ................................ 141
Migrating an existing OAuth app to the Amplify GitHub App ....................................................... 142
Setting up the Amplify GitHub App for AWS CloudFormation, CLI, and SDK deployments ...... 143
Setting up web previews with the Amplify GitHub App ................................................................. 145

Pull request previews .................................................................................................................. 146
Enable web previews .............................................................................................................................. 146
Web preview access with subdomains ................................................................................................ 148

End-to-end testing ...................................................................................................................... 149
Tutorial: Set up end-to-end tests with Cypress ................................................................................. 149
Add tests to your existing Amplify app .............................................................................................. 149
Disabling tests .......................................................................................................................................... 151

Using redirects ............................................................................................................................. 153
Types of redirects .................................................................................................................................... 153
Creating and editing redirects .............................................................................................................. 154
Order of redirects .................................................................................................................................... 155
Query parameters .................................................................................................................................... 156
Simple redirects and rewrites ............................................................................................................... 156
Redirects for single page web apps (SPA) .......................................................................................... 158
Reverse proxy rewrite ............................................................................................................................. 159
Trailing slashes and clean URLs ............................................................................................................ 159
Placeholders .............................................................................................................................................. 160
Query strings and path parameters ..................................................................................................... 160
Region-based redirects ........................................................................................................................... 161
Wildcard expressions in redirects and rewrites ................................................................................. 161

Restrict access .............................................................................................................................. 163
Environment variables ................................................................................................................ 164

Amplify environment variables ............................................................................................................. 164
Set environment variables ..................................................................................................................... 170
Access environment variables at build time ....................................................................................... 171
Making environment variables accessible to server-side runtimes ................................................ 171
Create a new backend environment with authentication parameters for social sign-in ............ 172
Frontend framework environment variables ...................................................................................... 173
Managing environment secrets ............................................................................................................. 173

Set and access environment secrets for a Gen 1 app ................................................................. 174
Access environment secrets .............................................................................................................. 174

vi



AWS Amplify Hosting User Guide

Amplify environment secrets ........................................................................................................... 174
Custom headers ........................................................................................................................... 176

Custom header YAML format ................................................................................................................ 176
Setting custom headers .......................................................................................................................... 177
Migrating custom headers ..................................................................................................................... 179
Monorepo custom headers .................................................................................................................... 180
Security headers example ...................................................................................................................... 181
Custom Cache-Control headers ............................................................................................................ 181

Incoming webhooks .................................................................................................................... 183
Monitoring ................................................................................................................................... 184

Monitoring with CloudWatch ................................................................................................................ 184
Metrics ................................................................................................................................................... 184
Alarms ................................................................................................................................................... 187
Amazon CloudWatch Logs for SSR apps ....................................................................................... 188

Access logs ................................................................................................................................................ 189
Analyzing access logs ........................................................................................................................ 190

Build notifications ....................................................................................................................... 191
Set up email notifications ...................................................................................................................... 191

Custom builds .............................................................................................................................. 192
Custom build images .............................................................................................................................. 192

Custom build image requirements ................................................................................................. 192
Configuring a custom build image ................................................................................................. 193

Live package updates .............................................................................................................................. 194
Configuring live package updates ................................................................................................... 194

Adding a service role .................................................................................................................. 195
Create a service role ............................................................................................................................... 195
Confused deputy prevention ................................................................................................................. 196

Managing app performance ....................................................................................................... 197
Using headers to control cache duration ........................................................................................... 197

Setting the Cache-Control header to increase app performance ............................................. 197
Logging Amplify API calls using AWS CloudTrail ...................................................................... 199

Amplify information in CloudTrail ....................................................................................................... 199
Understanding Amplify log file entries ............................................................................................... 200

Security ........................................................................................................................................ 204
Identity and Access Management ........................................................................................................ 204

Audience ............................................................................................................................................... 205

vii



AWS Amplify Hosting User Guide

Authenticating with identities ......................................................................................................... 206
Managing access using policies ....................................................................................................... 209
How Amplify works with IAM .......................................................................................................... 211
Identity-based policy examples ....................................................................................................... 218
AWS managed policies ...................................................................................................................... 221
Troubleshooting .................................................................................................................................. 233

Data Protection ........................................................................................................................................ 235
Encryption at rest ............................................................................................................................... 236
Encryption in transit .......................................................................................................................... 236
Encryption key management ........................................................................................................... 236

Compliance Validation ............................................................................................................................ 237
Infrastructure Security ............................................................................................................................ 238
Logging and monitoring ........................................................................................................................ 238
Cross-service confused deputy prevention ......................................................................................... 239
Security best practices ............................................................................................................................ 241

Using cookies with the Amplify default domain ......................................................................... 242
Quotas .......................................................................................................................................... 243
Troubleshooting ........................................................................................................................... 246

General issues ........................................................................................................................................... 246
HTTP 429 status code (Too many requests) ................................................................................. 246

AL2023 build image ................................................................................................................................ 247
How do I run Amplify functions with the Python runtime ........................................................ 247
How do I run commands that require superuser or root privileges ......................................... 248

Custom domains ...................................................................................................................................... 248
I need to verify that my CNAME resolves ..................................................................................... 249
My domain hosted with a third-party is stuck in the Pending Verification state ................... 249
My domain hosted with Amazon Route 53 is stuck in the Pending Verification state .......... 250
I get a CNAMEAlreadyExistsException error ................................................................................. 251
I get an Additional Verification Required error ............................................................................ 252
I get a 404 error on the CloudFront URL ...................................................................................... 252
I get SSL certificate or HTTPS errors when visiting my domain ............................................... 252

Server-side rendering (SSR) ................................................................................................................... 254
You are using a framework adapter ............................................................................................... 254
Edge API routes cause your Next.js build to fail .......................................................................... 254
On-Demand Incremental Static Regeneration isn't working for your app .............................. 254
Your app's build output exceeds the maximum allowed size .................................................... 254

viii



AWS Amplify Hosting User Guide

Your build fails with an out of memory error ................................................................................ 36
The HTTP response size is too large .............................................................................................. 257

AWS Amplify Hosting reference ................................................................................................. 258
AWS CloudFormation support .............................................................................................................. 258
AWS Command Line Interface support ............................................................................................... 258
Resource tagging support ...................................................................................................................... 258
Amplify Hosting API ................................................................................................................................ 258

Document history ........................................................................................................................ 259

ix



AWS Amplify Hosting User Guide

Welcome to AWS Amplify Hosting

Amplify Hosting provides a Git-based workflow for hosting full-stack serverless web applications 
with continuous deployment. Amplify deploys your app to the AWS global content delivery 
network (CDN). This user guide provides the information you need to get started with Amplify 
Hosting.

Supported frameworks

Amplify Hosting supports many common SSR frameworks, single-page application (SPA) 
frameworks, and static site generators, including the following.

SSR frameworks

• Next.js

• Nuxt

• Astro with a community adapter

• SvelteKit with a community adapter

• Any SSR framework with a custom adapter

SPA frameworks

• React

• Angular

• Vue.js

• Ionic

• Ember

Static site generators

• Eleventy

• Gatsby

• Hugo

• Jekyll

Supported frameworks 1



AWS Amplify Hosting User Guide

• VuePress

Amplify Hosting features

Feature branches

Manage production and staging environments for your frontend and backend by connecting 
new branches.

Custom domains

Connect your application to a custom domain.

Pull request previews

Preview changes during code reviews.

End-to-end testing

Improve your app quality with end-to-end tests.

Password protected branches

Password protect your web app so you can work on new features without making them publicly 
accessible.

Redirects and rewrites

Set up rewrites and redirects to maintain SEO rankings and route traffic based on your client 
app requirements.

Atomic deployments

Atomic deployments eliminate maintenance windows by ensuring that your web app is updated 
only after the entire deployment finishes. This eliminates scenarios where files fail to upload 
properly.

Get started with Amplify Hosting

To get started with Amplify Hosting, see the Getting started with deploying an app to Amplify 
Hosting tutorial. After completing the tutorial, you will know how to connect a web app in a Git 
repository (GitHub, BitBucket, GitLab, or AWS CodeCommit) and deploy it to Amplify Hosting with 
continuous deployment.

Amplify Hosting features 2



AWS Amplify Hosting User Guide

Build a backend

AWS Amplify Gen 2 introduces a TypeScript-based, code-first developer experience for defining 
backends. To learn how to use Amplify Gen 2 to build and connect a backend to your app, see Build 
& connect backend in the Amplify docs.

If you are looking for the documentation for building backends for a Gen 1 app, using the CLI and 
Amplify Studio, see Build & connect backend in the Gen 1 Amplify docs.

Amplify Hosting pricing

AWS Amplify is part of the AWS Free Tier. You can get started for free, then pay as you go once you 
exceed Free Tier limits. For information about Amplify Hosting charges, see AWS Amplify Pricing.

Build a backend 3

https://docs.amplify.aws/nextjs/build-a-backend
https://docs.amplify.aws/nextjs/build-a-backend
https://docs.amplify.aws/gen1/react/build-a-backend/
https://aws.amazon.com/amplify/pricing/


AWS Amplify Hosting User Guide

Getting started with deploying an app to Amplify 
Hosting

To help you understand how Amplify Hosting works, the following tutorials walk you through 
building and deploying applications created using common SSR frameworks that Amplify supports.

Tutorials

• Deploy a Next.js app to Amplify Hosting

• Deploy a Nuxt.js app to Amplify Hosting

• Deploy an Astro.js app to Amplify Hosting

• Deploy a SvelteKit app to Amplify Hosting

Deploy a Next.js app to Amplify Hosting

This tutorial walks you through building and deploying a Next.js application from a Git repository.

Before you begin this tutorial, complete the following prerequisites.

Sign up for an AWS account

If you are not already an AWS customer, you need to create an AWS account by following the 
online instructions. Signing up enables you to access Amplify and other AWS services that you 
can use with your application.

Create an application

Create a basic Next.js application to use for this tutorial, using the create-next-app instructions 
in the Next.js documentation.

Create a Git repository

Amplify supports GitHub, Bitbucket, GitLab, and AWS CodeCommit. Push your create-next-
app application to your Git repository.

Step 1: Connect a Git repository

In this step, you connect your Next.js application in a Git repository to Amplify Hosting.

Deploy a Next.js app 4

https://portal.aws.amazon.com/billing/signup#/start/email
https://nextjs.org/docs/app/api-reference/create-next-app


AWS Amplify Hosting User Guide

To connect an app in a Git repository

1. Open the Amplify console.

2. If you are deploying your first app in the current Region, by default you will start from the
AWS Amplify service page.

Choose Create new app at the top of the page.

3. On the Start building with Amplify page, choose your Git repository provider, then choose
Next.

For GitHub repositories, Amplify uses the GitHub Apps feature to authorize Amplify access. 
For more information about installing and authorizing the GitHub App, see Setting up Amplify 
access to GitHub repositories.

Note

After you authorize the Amplify console with Bitbucket, GitLab, or AWS CodeCommit, 
Amplify fetches an access token from the repository provider, but it doesn’t store the 
token on the AWS servers. Amplify accesses your repository using deploy keys installed 
in a specific repository only.

4. On the Add repository branch page do the following:

a. Select the name of the repository to connect.

b. Select the name of the repository branch to connect.

c. Choose Next.

Step 2: Confirm the build settings

Amplify automatically detects the sequence of build commands to run for the branch you are 
deploying. In this step you review and confirm your build settings.

To confirm the build settings for an app

1. On the App settings page, locate the Build settings section.

Verify that the Frontend build command and Build output directory are correct. For this 
Next.js example app, the Build output directory is set to .next.

Step 2: Confirm the build settings 5

https://console.aws.amazon.com/amplify/


AWS Amplify Hosting User Guide

2. The procedure for adding a service role varies depending on whether you want to create a new 
role or use an existing one.

• To create a new role:

• Choose Create and use a new service role.

• To use an existing role:

a. Choose Use an existing role.

b. In the service role list, select the role to use.

3. Choose Next.

Step 3: Deploy the application

In this step you deploy your app to the AWS global content delivery network (CDN).

To save and deploy an app

1. On the Review page, confirm that your repository details and app settings are correct.

2. Choose Save and deploy. Your front end build typically takes 1 to 2 minutes, but can vary 
based on the size of the app.

3. When the deployment is complete, you can view your app using the link to the
amplifyapp.com default domain.

Note

To augment the security of your Amplify applications, the amplifyapp.com domain is 
registered in the Public Suffix List (PSL). For further security, we recommend that you 
use cookies with a __Host- prefix if you ever need to set sensitive cookies in the default 
domain name for your Amplify applications. This practice will help to defend your domain 
against cross-site request forgery attempts (CSRF). For more information see the Set-
Cookie page in the Mozilla Developer Network.

Step 3: Deploy the application 6

https://publicsuffix.org/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie#cookie_prefixes
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie#cookie_prefixes


AWS Amplify Hosting User Guide

Step 4: (Optional) clean up resources

If you no longer need the app you deployed for the tutorial, you can delete it. This step helps 
ensure that you aren't charged for resources that you aren't using.

To delete an app

1. From the App settings menu in the navigation pane, choose General settings.

2. On the General settings page, choose Delete app.

3. In the confirmation window, enter delete. Then choose Delete app.

Add features to your app

Now that you have an app deployed to Amplify, you can explore some of the following features 
that are available to your hosted application.

Environment variables

Applications often need configuration information at runtime. These configurations can be 
database connection details, API keys, or parameters. Environment variables provide a way to 
expose these configurations at build time. For more information, see Environment variables.

Custom domains

In this tutorial, Amplify hosts your app for you on the default amplifyapp.com domain with 
a URL such as https://branch-name.d1m7bkiki6tdw1.amplifyapp.com. When you 
connect your app to a custom domain, users see that your app is hosted on a custom URL, such 
as https://www.example.com. For more information, see Setting up custom domains.

Pull request previews

Web pull request previews offer teams a way to preview changes from pull requests (PRs) 
before merging code to a production or integration branch. For more information, see Web 
previews for pull requests.

Manage multiple environments

To learn how Amplify works with feature branches and GitFlow workflows to support multiple 
deployments, see Feature branch deployments and team workflows.

Step 4: (Optional) clean up resources 7



AWS Amplify Hosting User Guide

Deploy a Nuxt.js app to Amplify Hosting

Use the following instructions to deploy a Nuxt.js application to Amplify Hosting. Nuxt has 
implemented a preset adapter using the Nitro server. This enables you to deploy a Nuxt project 
without any additional configuration.

To deploy a Nuxt app to Amplify Hosting

1. Sign in to the AWS Management Console and open the Amplify console.

2. On the All apps page, choose Create new app.

3. On the Start building with Amplify page, choose your Git repository provider, then choose
Next.

4. On the Add repository branch page, do the following:

a. Select the name of the repository to connect.

b. Select the name of the repository branch to connect.

c. Choose Next.

5. If you want Amplify to be able to deliver app logs to Amazon CloudWatch Logs, you must 
explicitly enable this in the console. Open the Advanced settings section, then choose Enable 
SSR app logs in the  Server-Side Rendering (SSR) deployment section.

6. Choose Next.

7. On the Review page, choose Save and deploy.

Deploy an Astro.js app to Amplify Hosting

Use the following instructions to deploy an Astro.js application to Amplify Hosting. You can use 
an existing application, or create a starter application using one of the official examples that 
Astro provides. To create a starter application, see Use a theme or starter template in the Astro 
documentation.

To deploy an Astro site with SSR to Amplify Hosting, you must add an adapter to your application. 
We do not maintain an Amplify owned adapter for the Astro framework. This tutorial uses the
astro-aws-amplify adapter that was created by a member of the community. This adapter is 
available at github.com/alexnguyennz/astro-aws-amplify on the GitHub website. AWS does not 
maintain this adapter.

Deploy a Nuxt.js app 8

https://console.aws.amazon.com/amplify/
https://docs.astro.build/en/install-and-setup/#use-a-theme-or-starter-template
https://github.com/alexnguyennz/astro-aws-amplify


AWS Amplify Hosting User Guide

To deploy an Astro app to Amplify Hosting

1. On your local computer, navigate to the Astro application to deploy.

2. To install the adapter, open a terminal window and run the following command. This example 
uses the community adapter available at github.com/alexnguyennz/astro-aws-amplify. You 
can replace astro-aws-amplify with the name of the adapter that you are using.

npm install astro-aws-amplify

3. In the project folder for your Astro app, open the astro.config.mjs file. Update the file to 
add the adapter. The file should look like the following.

import { defineConfig } from 'astro/config';
import mdx from '@astrojs/mdx';
import awsAmplify from 'astro-aws-amplify';
 
import sitemap from '@astrojs/sitemap'; 
  
// https://astro.build/config
export default defineConfig({ 
  site: 'https://example.com', 
  integrations: [mdx(), sitemap()], 
  adapter: awsAmplify(), 
  output: 'server',
});

4. Commit the change and push the project to your Git repository.

Now you are ready to deploy your Astro app to Amplify.

5. Sign in to the AWS Management Console and open the Amplify console.

6. On the All apps page, choose Create new app.

7. On the Start building with Amplify page, choose your Git repository provider, then choose
Next.

8. On the Add repository branch page, do the following:

a. Select the name of the repository to connect.

b. Select the name of the repository branch to connect.

c. Choose Next.

Deploy an Astro.js app 9

https://github.com/alexnguyennz/astro-aws-amplify
https://console.aws.amazon.com/amplify/


AWS Amplify Hosting User Guide

9. On the App settings page, locate the Build settings section. For Build output directory enter
.amplify-hosting.

You must also update the app's frontend build commands. At this time, you can't add new 
commands to the build specification at deployment. After you deploy the app, you must 
update the build specification using the instructions in step 13.

10. If you want Amplify to be able to deliver app logs to Amazon CloudWatch Logs, you must 
explicitly enable this in the console. Open the Advanced settings section, then choose Enable 
SSR app logs in the  Server-Side Rendering (SSR) deployment section.

11. Choose Next.

12. On the Review page, choose Save and deploy.

13. After your app is deployed, update the frontend build commands in the build specification. 
Choose Hosting, then choose Build settings.

14. On the Build settings page, choose Edit.

15. In the amplify.yml file, locate the frontend build commands section. Enter mv 
node_modules ./.amplify-hosting/compute/default

Your build settings file should look like the following.

version: 1
frontend: 
    phases: 
        preBuild: 
            commands: 
                - 'npm ci --cache .npm --prefer-offline' 
        build: 
            commands: 
                - 'npm run build' 
                - 'mv node_modules ./.amplify-hosting/compute/default' 
    artifacts: 
        baseDirectory: .amplify-hosting 
        files: 
            - '**/*' 
    cache: 
        paths: 
            - '.npm/**/*' 
             

16. Choose Save.

Deploy an Astro.js app 10



AWS Amplify Hosting User Guide

17. Redeploy the application.

Deploy a SvelteKit app to Amplify Hosting

Use the following instructions to deploy a SvelteKit application to Amplify Hosting. You can use 
your own application, or create a starter app. For more information, see Creating a project in the
SvelteKit documentation.

To deploy a SvelteKit app with SSR to Amplify Hosting, you must add an adapter to your project. 
We do not maintain an Amplify owned adapter for the SvelteKit framework. In this example, we 
are using the amplify-adapter created by a member of the community. The adapter is available 
at github.com/gzimbron/amplify-adapter on the GitHub website. AWS does not maintain this 
adapter.

To deploy a SvelteKit app to Amplify Hosting

1. On your local computer, navigate to the SvelteKit application to deploy.

2. To install the adapter, open a terminal window and run the following command. This example 
uses the community adapter available at github.com/gzimbron/amplify-adapter. If you are 
using a different community adapter, replace amplify-adapter with the name of your 
adapter.

npm install amplify-adapter

3. In the project folder for your SvelteKit app, open the svelte.config.js file. Edit the file to 
use the amplify-adapter or replace 'amplify-adapter' with the name of your adapter. 
The file should look like the following.

import adapter from 'amplify-adapter';
import { vitePreprocess } from '@sveltejs/vite-plugin-svelte'; 

               
/** @type {import('@sveltejs/kit').Config} */
const config = { 
        // Consult https://kit.svelte.dev/docs/integrations#preprocessors 
        // for more information about preprocessors 
        preprocess: vitePreprocess(), 

        kit: { 

Deploy a SvelteKit app 11

https://kit.svelte.dev/docs/creating-a-project
https://github.com/gzimbron/amplify-adapter
https://github.com/gzimbron/amplify-adapter


AWS Amplify Hosting User Guide

                // adapter-auto only supports some environments, see https://
kit.svelte.dev/docs/adapter-auto for a list. 
                // If your environment is not supported, or you settled on a 
 specific environment, switch out the adapter. 
                // See https://kit.svelte.dev/docs/adapters for more information 
 about adapters. 
                adapter: adapter() 
        }
};

export default config;

4. Commit the change and push the application to your Git repository.

5. Now you are ready to deploy your SvelteKit app to Amplify.

Sign in to the AWS Management Console and open the Amplify console.

6. On the All apps page, choose Create new app.

7. On the Start building with Amplify page, choose your Git repository provider, then choose
Next.

8. On the Add repository branch page, do the following:

a. Select the name of the repository to connect.

b. Select the name of the repository branch to connect.

c. Choose Next.

9. On the App settings page, locate the Build settings section. For Build output directory enter
build.

You must also update the app's frontend build commands. At this time, you can't add new 
commands to the build specification at deployment. After you deploy the app, you must 
update the build specification using the instructions in step 13.

10. If you want Amplify to be able to deliver app logs to Amazon CloudWatch Logs, you must 
explicitly enable this in the console. Open the Advanced settings section, then choose Enable 
SSR app logs in the  Server-Side Rendering (SSR) deployment section.

11. Choose Next.

12. On the Review page, choose Save and deploy.

13. After your app is deployed, update the frontend build commands in the build specification. 
Choose Hosting, then choose Build settings.

Deploy a SvelteKit app 12

https://console.aws.amazon.com/amplify/


AWS Amplify Hosting User Guide

14. On the Build settings page, choose Edit.

15. In the amplify.yml file, locate the frontend build commands section. Enter - cd build/
compute/default/ and - npm i --production.

Your build settings file should look like the following.

version: 1
frontend: 
    phases: 
        preBuild: 
            commands: 
                - 'npm ci --cache .npm --prefer-offline' 
        build: 
            commands: 
                - 'npm run build' 
                - 'cd build/compute/default/' 
                - 'npm i --production' 
               
    artifacts: 
        baseDirectory: build 
        files: 
            - '**/*' 
    cache: 
        paths: 
            - '.npm/**/*' 
             

16. Choose Save.

17. Redeploy the application.

Deploy a SvelteKit app 13



AWS Amplify Hosting User Guide

Deploying server-side rendered apps with Amplify 
Hosting

You can use AWS Amplify to deploy and host web apps that use server-side rendering (SSR). 
Amplify Hosting automatically detects applications created using the Next.js framework and you 
don't have to perform any manual configuration in the AWS Management Console.

Amplify also supports any Javascript based SSR framework with an open source build adapter 
that transforms an application's build output into the directory structure that Amplify Hosting 
expects. For example, you can deploy app's created with the Nuxt, Astro, and SvelteKit frameworks 
by installing the available adapters.

Advanced users can use the deployment specification to create a build adapter or configure a post-
build script.

You can deploy the following frameworks to Amplify Hosting with minimal configuration.

Next.js

• Amplify supports Next.js 14 applications without the need for an adapter. To get started, see
Amplify support for Next.js.

Nuxt.js

• Amplify supports Nuxt.js application deployments with a preset adapter. To get started, see
Amplify support for Nuxt.js.

Astro.js

• Amplify supports Astro.js application deployments with a community adapter. To get started, 
see Amplify support for Astro.js.

SvelteKit

• Amplify supports SvelteKit application deployments with a community adapter. To get 
started, see Amplify support for SvelteKit.

Open source adapters

• Use an open source adapter - For instructions on using any adapter that isn't in the 
preceding list, see Using open source adapters .

• Build a framework adapter - Framework authors that want to integrate features that a 
framework provides, can use the Amplify Hosting deployment specification to configure your 

14



AWS Amplify Hosting User Guide

build output to conform to the structure that Amplify expects. For more information, see
Using the Amplify Hosting deployment specification to configure build output.

• Configure a post-build script - You can use the Amplify Hosting deployment specification 
to manipulate your build output as needed for specific scenarios. For more information, 
see Using the Amplify Hosting deployment specification to configure build output. For an 
example, see Deploying an Express server using the deployment manifest.

Topics

• Amplify support for Next.js

• Amplify support for Nuxt.js

• Amplify support for Astro.js

• Amplify support for SvelteKit

• Deploy an SSR app to Amplify

• SSR supported features

• Pricing for SSR apps

• Troubleshooting SSR deployments

• Advanced: Open source adapters

Amplify support for Next.js

Amplify supports deployment and hosting for server-side rendered (SSR) web apps created using 
Next.js. Next.js is a React framework for developing SPAs with JavaScript. You can deploy apps built 
with Next.js 14 with features such as image optimization and middleware.

Developers can use Next.js to combine static site generation (SSG), and SSR in a single project. SSG 
pages are prerendered at build time, and SSR pages are prerendered at request time.

Prerendering can improve performance and search engine optimization. Because Next.js prerenders 
all pages on the server, the HTML content of each page is ready when it reaches the client's 
browser. This content can also load faster. Faster load times improve the end user's experience with 
a website and positively impact the site's SEO ranking. Prerendering also improves SEO by enabling 
search engine bots to find and crawl a website's HTML content easily.

Next.js 15



AWS Amplify Hosting User Guide

Next.js provides built-in analytics support for measuring various performance metrics, such as 
Time to first byte (TTFB) and First contentful paint (FCP). For more information about Next.js, see
Getting started on the Next.js website.

Next.js feature support

Amplify Hosting compute fully manages server-side rendering (SSR) for apps built with Next.js 
12, 13, and 14. If you deployed a Next.js app to Amplify prior to the release of Amplify Hosting 
compute, your app is using Amplify's previous SSR provider, Classic (Next.js 11 only). Amplify 
Hosting compute doesn't support apps created using Next.js version 11 or earlier. We strongly 
recommend that you migrate your Next.js 11 apps to the Amplify Hosting compute managed SSR 
provider.

The following list describes the specific features that the Amplify Hosting compute SSR provider 
supports.

Supported features

• Server-side rendered pages (SSR)

• Static pages

• API routes

• Dynamic routes

• Catch all routes

• SSG (Static generation)

• Incremental Static Regeneration (ISR)

• Internationalized (i18n) sub-path routing

• Internationalized (i18n) domain routing

• Middleware

• Environment variables

• Image optimization

• Next.js 13 app directory

Unsupported features

• Edge API Routes (Edge middleware is not supported)

• On-Demand Incremental Static Regeneration (ISR)

Next.js feature support 16

https://nextjs.org/docs/getting-started


AWS Amplify Hosting User Guide

• Internationalized (i18n) automatic locale detection

• Next.js streaming

• Running middleware on static assets and optimized images

Next.js images

The maximum output size of an image can't exceed 4.3 MB. You can have a larger image file stored 
somewhere and use the Next.js Image component to resize and optimize it into a Webp or AVIF 
format and then serve it as a smaller size.

Note that the Next.js documentation advises you to install the Sharp image processing module 
to enable image optimization to work correctly in production. However, this isn't necessary for 
Amplify deployments. Amplify automatically deploys Sharp for you.

Deploying a Next.js SSR app to Amplify

By default, Amplify deploys new SSR apps using Amplify Hosting's compute service with support 
for Next.js 12, 13, and 14. Amplify Hosting compute fully manages the resources required to 
deploy an SSR app. SSR apps in your Amplify account that you deployed before November 17, 
2022 are using the Classic (Next.js 11 only) SSR provider.

We strongly recommend that you migrate apps using Classic (Next.js 11 only) SSR to the Amplify 
Hosting compute SSR provider. Amplify doesn't perform automatic migrations for you. You must 
manually migrate your app and then initiate a new build to complete the update. For instructions, 
see Migrating a Next.js 11 SSR app to Amplify Hosting compute.

Use the following instructions to deploy a new Next.js SSR app.

To deploy an SSR app to Amplify using the Amplify Hosting compute SSR provider

1. Sign in to the AWS Management Console and open the Amplify console.

2. On the All apps page, choose Create new app.

3. On the Start building with Amplify page, choose your Git repository provider, then choose
Next.

4. On the Add repository branch page, do the following:

a. In the Recently updated repositories list, select the name of the repository to connect.

b. In the Branch list, select the name of the repository branch to connect.

Deploying a Next.js SSR app to Amplify 17

https://console.aws.amazon.com/amplify/


AWS Amplify Hosting User Guide

c. Choose Next.

5. The app requires an IAM service role that Amplify assumes when calling other services on your 
behalf. You can either allow Amplify Hosting compute to automatically create a service role for 
you or you can specify a role that you have created.

• To allow Amplify to automatically create a role and attach it to your app:

• Choose Create and use a new service role.

• To attach a service role that you previously created:

a. Choose Use an existing service role.

b. Select the role to use from the list.

6. Choose Next.

7. On the Review page, choose Save and deploy.

Package.json file settings

When you deploy a Next.js app, Amplify inspects the app's build script in the package.json file.

The following is an example of the build script for a Next.js app. The build script "next build"
indicates that the app supports both SSG and SSR pages.

"scripts": { 
  "dev": "next dev", 
  "build": "next build", 
  "start": "next start"
},

Amplify build settings for a Next.js app

After inspecting your app's package.json file, Amplify checks the build settings for the app. 
You can save build settings in the Amplify console or in an amplify.yml file in the root of your 
repository. For more information, see Configuring build settings.

If Amplify detects that you are deploying a Next.js SSR app, and no amplify.yml file is present, it 
generates a buildspec for the app and sets baseDirectory to .next. If you are deploying an app 
where an amplify.yml file is present, the build settings in the file override any build settings in 
the console. Therefore, you must manually set the baseDirectory to .next in the file.

Deploying a Next.js SSR app to Amplify 18



AWS Amplify Hosting User Guide

The following is an example of the build settings for an app where baseDirectory is set to
.next. This indicates that the build artifacts are for a Next.js app that supports SSG and SSR 
pages.

version: 1
frontend: 
  phases: 
    preBuild: 
      commands: 
        - npm ci 
    build: 
      commands: 
        - npm run build 
  artifacts: 
    baseDirectory: .next 
    files: 
      - '**/*' 
  cache: 
    paths: 
      - node_modules/**/*

If Amplify detects that you are deploying an SSG app, it generates a buildspec for the app and sets
baseDirectory to out. If you are deploying an app where an amplify.yml file is present, you 
must manually set the baseDirectory to out in the file.

The following is an example of the build settings for an app where baseDirectory is set to out. 
This indicates that the build artifacts are for a Next.js app that supports only SSG pages.

version: 1
frontend: 
  phases: 
    preBuild: 
      commands: 
        - npm ci 
    build: 
      commands: 
        - npm run build 
  artifacts: 
    baseDirectory: out 
    files: 
      - '**/*' 
  cache: 

Deploying a Next.js SSR app to Amplify 19



AWS Amplify Hosting User Guide

    paths: 
      - node_modules/**/*

Migrating a Next.js 11 SSR app to Amplify Hosting compute

When you deploy a new Next.js app, by default Amplify uses the most recent supported version of 
Next.js. Currently, the Amplify Hosting compute SSR provider supports Next.js version 14.

The Amplify console detects apps in your account that were deployed prior to the release of the 
Amplify Hosting compute service with full support for Next.js 12, 13, and 14. The console displays 
an information banner identifying apps with branches that are deployed using Amplify's previous 
SSR provider, Classic (Next.js 11 only). We strongly recommend that you migrate your apps to the 
Amplify Hosting compute SSR provider.

You must manually migrate the app and all of its production branches at the same time. An app 
can't contain both Classic (Next.js 11 only) and Next.js 12 or later branches.

Use the following instructions to migrate an app to the Amplify Hosting compute SSR provider.

To migrate an app to the Amplify Hosting compute SSR provider

1. Sign in to the AWS Management Console and open the Amplify console.

2. Choose the Next.js app that you want to migrate.

Note

Before you migrate an app in the Amplify console, you must first update the app's 
package.json file to use Next.js version 12 or later.

3. In the navigation pane, choose App settings, General.

4. On the app homepage, the console displays a banner if the app has branches deployed using 
the Classic (Next.js 11 only) SSR provider. On the banner, choose Migrate.

5. In the migration confirmation window, select the three statements and choose Migrate.

6. Amplify will build and redeploy your app to complete the migration.

Reverting an SSR migration

When you deploy a Next.js app, Amplify Hosting detects the settings in your app and sets the 
internal platform value for the app. There are three valid platform values. An SSG app is set 

Migrating a Next.js 11 SSR app to Amplify Hosting compute 20

https://console.aws.amazon.com/amplify/


AWS Amplify Hosting User Guide

to the platform value WEB. An SSR app using Next.js version 11 is set to the platform value
WEB_DYNAMIC. A Next.js 12 or later SSR app is set to the platform value WEB_COMPUTE.

When you migrate an app using the instructions in the previous section, Amplify changes 
the platform value of your app from WEB_DYNAMIC to WEB_COMPUTE. After the migration to 
Amplify Hosting compute is complete, you can't revert the migration in the console. To revert the 
migration, you must use the AWS Command Line Interface to change the app's platform back to
WEB_DYNAMIC. Open a terminal window and enter the following command, updating the app ID 
and Region with your unique information.

aws amplify update-app --app-id abcd1234 --platform WEB_DYNAMIC --region us-west-2

Adding SSR functionality to a static Next.js app

You can add SSR functionality to an existing static (SSG) Next.js app deployed with Amplify. Before 
you start the process of converting your SSG app to SSR, update the app to use Next.js version 12 
or later and add SSR functionality. Then you will need to perform the following steps.

1. Use the AWS Command Line Interface to change the app's platform type.

2. Add a service role to the app.

3. Update the output directory in the app's build settings.

4. Update the app's package.json file to indicate that the app uses SSR.

Update the platform

There are three valid values for platform type. An SSG app is set to platform type WEB. An SSR app 
using Next.js version 11 is set to platform type WEB_DYNAMIC. For apps deployed to Next.js 12 or 
later using SSR managed by Amplify Hosting compute, the platform type is set to WEB_COMPUTE.

When you deployed your app as an SSG app, Amplify set the platform type to WEB. Use the AWS 
CLI to change the platform for your app to WEB_COMPUTE. Open a terminal window and enter the 
following command, updating the text in red with your unique app id and Region.

aws amplify update-app --app-id abcd1234 --platform WEB_COMPUTE --region us-west-2

Adding SSR functionality to a static Next.js app 21



AWS Amplify Hosting User Guide

Add a service role

A service role is the AWS Identity and Access Management (IAM) role that Amplify assumes when 
calling other services on your behalf. Follow these steps to add a service role to an SSG app that's 
already deployed with Amplify.

To add a service role

1. Sign in to the AWS Management Console and open the Amplify console.

2. If you haven't already created a service role in your Amplify account, see Adding a service role
to complete this prerequisite step.

3. Choose the static Next.js app that you want to add a service role to.

4. In the navigation pane, choose App settings, General.

5. On the App details page, choose Edit

6. For Service role, choose the name of an existing service role or the name of the service role 
that you created in step 2.

7. Choose Save.

Update build settings

Before you redeploy your app with SSR functionality, you must update the build settings for the 
app to set the output directory to .next. You can edit the build settings in the Amplify console or 
in an amplify.yml file stored in your repo. For more information see, Configuring build settings.

The following is an example of the build settings for an app where baseDirectory is set to
.next.

version: 1
frontend: 
  phases: 
    preBuild: 
      commands: 
        - npm ci 
    build: 
      commands: 
        - npm run build 
  artifacts: 
    baseDirectory: .next 

Adding SSR functionality to a static Next.js app 22

https://console.aws.amazon.com/amplify/


AWS Amplify Hosting User Guide

    files: 
      - '**/*' 
  cache: 
    paths: 
      - node_modules/**/*

Update the package.json file

After you add a service role and update the build settings, update the app's package.json file. 
As in the following example, set the build script to "next build" to indicate that the Next.js app 
supports both SSG and SSR pages.

"scripts": { 
  "dev": "next dev", 
  "build": "next build", 
  "start": "next start"
},

Amplify detects the change to the package.json file in your repo and redeploys the app with SSR 
functionality.

Making environment variables accessible to server-side runtimes

Amplify Hosting supports adding environment variables to your application's builds by setting 
them in the project's configuration in the Amplify console. However, a Next.js server component 
doesn't have access to those environment variables by default. This behavior is intentional to 
protect any secrets stored in environment variables that your application uses during the build 
phase.

To make specific environment variables accessible to Next.js, you can modify the Amplify build 
specification file to set them in the environment files that Next.js recognizes. This enables 
Amplify to load these environment variables before it builds the application. The following build 
specification example demonstrates how to add environment variables in the build commands 
section.

version: 1
frontend: 
  phases: 
    preBuild: 

Making environment variables accessible to server-side runtimes 23



AWS Amplify Hosting User Guide

      commands: 
        - npm ci 
    build: 
      commands: 
        - env | grep -e DB_HOST -e DB_USER -e DB_PASS >> .env.production 
        - env | grep -e NEXT_PUBLIC_ >> .env.production 
        - npm run build 
  artifacts: 
    baseDirectory: .next 
    files: 
      - '**/*' 
  cache: 
    paths: 
      - node_modules/**/* 
      - .next/cache/**/*

In this example, the build commands section includes two commands that write environment 
variables to the .env.production file before the application build runs. Amplify Hosting allows 
your application to access these variables when the application receives traffic.

The following line from the build commands section in the preceding example demonstrates how 
to take a specific variable from the build environment and add it to the .env.production file.

- env | grep -e DB_HOST -e DB_USER -e DB_PASS >> .env.production

If the variables exist in your build environment, the .env.production file will contain the 
following environment variables.

DB_HOST=localhost
DB_USER=myuser
DB_PASS=mypassword

The following line from the build commands section in the preceding example demonstrates 
how to add an environment variable with a specific prefix to the .env.production file. In this 
example, all variables with the prefix NEXT_PUBLIC_ are added.

- env | grep -e NEXT_PUBLIC_ >> .env.production

If multiple variables with the NEXT_PUBLIC_ prefix exist in the build environment, the
.env.production file will look similar to the following.

Making environment variables accessible to server-side runtimes 24



AWS Amplify Hosting User Guide

NEXT_PUBLIC_ANALYTICS_ID=abcdefghijk
NEXT_PUBLIC_GRAPHQL_ENDPOINT=uowelalsmlsadf
NEXT_PUBLIC_SEARCH_KEY=asdfiojslf
NEXT_PUBLIC_SEARCH_ENDPOINT=https://search-url

SSR environment variables for monorepos

If you are deploying an SSR app in a monorepo and want to make specific environment variables 
accessible to Next.js, you must prefix the .env.production file with your application root. The 
following example build specification for a Next.js app within a Nx monorepo demonstrates how to 
add environment variables in the build commands section.

version: 1
applications: 
  - frontend: 
      phases: 
        preBuild: 
          commands: 
            - npm ci 
        build: 
          commands: 
            - env | grep -e DB_HOST -e DB_USER -e DB_PASS >> apps/app/.env.production 
            - env | grep -e NEXT_PUBLIC_ >> apps/app/.env.production 
            - npx nx build app 
      artifacts: 
        baseDirectory: dist/apps/app/.next 
        files: 
          - '**/*' 
      cache: 
        paths: 
          - node_modules/**/* 
      buildPath: / 
    appRoot: apps/app

The following lines from the build commands section in the preceding example demonstrate how 
to take specific variables from the build environment and add them to the .env.production file 
for an app in a monorepo with the application root apps/app.

- env | grep -e DB_HOST -e DB_USER -e DB_PASS >> apps/app/.env.production
- env | grep -e NEXT_PUBLIC_ >> apps/app/.env.production

Making environment variables accessible to server-side runtimes 25



AWS Amplify Hosting User Guide

Deploying a Next.js app in a monorepo

Amplify supports apps in generic monorepos as well as apps in monorepos created using npm 
workspace, pnpm workspace, Yarn workspace, Nx, and Turborepo. When you deploy your app, 
Amplify automatically detects the monorepo build framework that you are using. Amplify 
automatically applies build settings for apps in an npm workspace, Yarn workspace or Nx. 
Turborepo and pnpm apps require additional configuration. For more information, see Monorepo 
build settings.

For a detailed Nx example, see the Share code between Next.js apps with Nx on AWS Amplify 
Hosting blog post.

Amplify support for Nuxt.js

Nuxt is a framework for creating full stack web applications with Vue.js.

Adapter

You can deploy a Nuxt.js application to Amplify using a preset adapter with zero configuration. 
For more information about the adapter, see the Nuxt documentation.

Tutorial

To learn how to deploy a Nuxt.js app to Amplify, see Deploy a Nuxt.js app to Amplify Hosting.

Demo

For a video demonstration, see Nuxt Hosting With ZERO Configuration In Minutes (With AWS) on 
YouTube.

Amplify support for Astro.js

Astro is a web framework for creating content-driven web applications.

Adapter

You can deploy an Astro.js application to Amplify using a community adapter. We do not 
maintain an Amplify owned adapter for the Astro framework. However, an adapter is available 
at github.com/alexnguyennz/astro-aws-amplify on the GitHub website. This adapter was 
created by a member of the community and is not maintained by AWS.

Deploying a Next.js app in a monorepo 26

https://aws.amazon.com/blogs/mobile/share-code-between-next-js-apps-with-nx-on-aws-amplify-hosting/
https://aws.amazon.com/blogs/mobile/share-code-between-next-js-apps-with-nx-on-aws-amplify-hosting/
https://nuxt.com/deploy/aws-amplify
https://github.com/alexnguyennz/astro-aws-amplify


AWS Amplify Hosting User Guide

Tutorial

To learn how to deploy an Astro app to Amplify, see Deploy an Astro.js app to Amplify Hosting.

Demo

For a video demonstration, see How to deploy an Astro Website to AWS on the Amazon Web 
Services YouTube channel.

Amplify support for SvelteKit

SvelteKit is a framework for creating full stack web applications with Svelte.

Adapter

You can deploy a SvelteKit application to Amplify using a community adapter. We do not 
maintain an Amplify owned adapter for the SvelteKit framework. However, an adapter is 
available at github.com/gzimbron/amplify-adapter on the GitHub website. This adapter was 
created by a member of the community and is not maintained by AWS.

Tutorial

To learn how to deploy a SvelteKit app to Amplify, see Deploy a SvelteKit app to Amplify 
Hosting.

Demo

For a video demonstration, see How to deploy a SvelteKit website (with API) to AWS on the 
Amazon Web Services YouTube channel.

Deploy an SSR app to Amplify

You can use these instructions to deploy an app created with any framework with a deployment 
bundle that conforms to the build output that Amplify expects. If you're deploying a Next.js 
application, no adapter is needed.

If you're deploying an SSR app that uses a framework adapter, you must first install and configure 
the adapter. For instructions, see Using open source adapters.

SvelteKit 27

https://github.com/gzimbron/amplify-adapter


AWS Amplify Hosting User Guide

To deploy an SSR app to Amplify Hosting

1. Sign in to the AWS Management Console and open the Amplify console.

2. On the All apps page, choose Create new app.

3. On the Start building with Amplify page, choose your Git repository provider, then choose
Next.

4. On the Add repository branch page do the following:

a. Select the name of the repository to connect.

b. Select the name of the repository branch to connect.

c. Choose Next.

5. On the App settings page, Amplify automatically detects Next.js SSR apps.

If you are deploying an SSR app that uses an adapter for another framework, you must 
explicitly enable Amazon CloudWatch Logs. Open the Advanced settings section, then choose
Enable SSR app logs in the  Server-Side Rendering (SSR) deployment section.

6. The app requires an IAM service role that Amplify assumes to deliver logs to your AWS 
account.

The procedure for adding a service role varies depending on whether you want to create a new 
role or use an existing one.

• To create a new role:

• Choose Create and use a new service role.

• To use an existing role:

a. Choose Use an existing role.

b. In the service role list, select the role to use.

7. Choose Next.

8. On the Review page, choose Save and deploy.

SSR supported features

This section provides information about Amplify's support for SSR features.

SSR supported features 28

https://console.aws.amazon.com/amplify/


AWS Amplify Hosting User Guide

Amplify provides Node.js version support to match the version of Node.js that was used to build 
your app.

Amplify provides a built-in image optimization feature that supports all SSR apps. If you 
don't want to use the default image optimization feature, you can implement a custom image 
optimization loader.

Topics

• Node.js version support for Next.js apps

• Image optimization for SSR apps

• Amazon CloudWatch Logs for SSR apps

• Amplify Next.js 11 SSR support

Node.js version support for Next.js apps

When Amplify builds and deploys a Next.js compute app, it uses the Node.js runtime version that 
matches the major version of Node.js that was used to build the app.

You can specify the Node.js version to use in the Live package override feature in the Amplify 
console. For more information about configuring live package updates, see Live package updates. 
You can also specify the Node.js version using other mechanisms, such as nvm commands. If you 
don't specify a version, Amplify defaults to use the current version used by the Amplify build 
container.

Image optimization for SSR apps

Amplify Hosting provides a built-in image optimization feature that supports all SSR apps. With 
Amplify's image optimization, you can deliver high-quality images in the right format, dimension, 
and resolution for the device that is accessing them, while maintaining the smallest possible file 
size.

Currently, you can either use the Next.js Image component to optimize images on-demand or you 
can implement a custom image loader. If you are using Next.js 13 or later, you don't need to take 
any further action to use Amplify's image optimization feature. If you are implementing a custom 
loader, see the following Using a custom image loader topic.

Node.js version support for Next.js apps 29



AWS Amplify Hosting User Guide

Using a custom image loader

If you use a custom image loader, Amplify detects the loader in your application's
next.config.js file and doesn't utilize the built-in image optimization feature. For more 
information about the custom loaders that Next.js supports, see the Next.js images documentation.

Amazon CloudWatch Logs for SSR apps

Amplify sends information about your SSR runtime to Amazon CloudWatch Logs in your AWS 
account. When you deploy an SSR app, the app requires an IAM service role that Amplify assumes 
when calling other services on your behalf. You can either allow Amplify Hosting compute to 
automatically create a service role for you or you can specify a role that you have created.

If you choose to allow Amplify to create an IAM role for you, the role will already have the 
permissions to create CloudWatch Logs. If you create your own IAM role, you will need to add the 
following permissions to your policy to allow Amplify to access Amazon CloudWatch Logs.

logs:CreateLogStream
logs:CreateLogGroup
logs:DescribeLogGroups
logs:PutLogEvents

For more information about service roles, see Adding a service role.

Amplify Next.js 11 SSR support

If you deployed a Next.js app to Amplify prior to the release of Amplify Hosting compute on 
November 17, 2022, your app is using Amplify's previous SSR provider, Classic (Next.js 11 only). 
The documentation in this section applies only to apps deployed using the Classic (Next.js 11 only) 
SSR provider.

Note

We strongly recommend that you migrate your Next.js 11 apps to the Amplify Hosting 
compute managed SSR provider. For more information, see Migrating a Next.js 11 SSR app 
to Amplify Hosting compute.

The following list describes the specific features that the Amplify Classic (Next.js 11 only) SSR 
provider supports.

Amazon CloudWatch Logs for SSR apps 30

https://nextjs.org/docs/pages/api-reference/next-config-js/images


AWS Amplify Hosting User Guide

Supported features

• Server-side rendered pages (SSR)

• Static pages

• API routes

• Dynamic routes

• Catch all routes

• SSG (Static generation)

• Incremental Static Regeneration (ISR)

• Internationalized (i18n) sub-path routing

• Environment variables

Unsupported features

• Image optimization

• On-Demand Incremental Static Regeneration (ISR)

• Internationalized (i18n) domain routing

• Internationalized (i18n) automatic locale detection

• Middleware

• Edge Middleware

• Edge API Routes

Pricing for Next.js 11 SSR apps

When deploying your Next.js 11 SSR app, Amplify creates additional backend resources in your 
AWS account, including:

• An Amazon Simple Storage Service (Amazon S3) bucket that stores the resources for your app's 
static assets. For information about Amazon S3 charges, see Amazon S3 Pricing.

• An Amazon CloudFront distribution to serve the app. For information about CloudFront charges, 
see Amazon CloudFront Pricing.

• Four Lambda@Edge functions to customize the content that CloudFront delivers.

Amplify Next.js 11 SSR support 31

https://aws.amazon.com/s3/pricing/
https://aws.amazon.com/cloudfront/pricing/
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/lambda-at-the-edge.html


AWS Amplify Hosting User Guide

AWS Identity and Access Management permissions for Next.js 11 SSR apps

Amplify requires AWS Identity and Access Management (IAM) permissions to deploy an SSR app. 
Without the required minimum permissions, you will get an error when you try to deploy your SSR 
app. To provide Amplify with the required permissions, you must specify a service role.

To create an IAM service role that Amplify assumes when calling other services on your behalf, 
see Adding a service role. These instructions demonstrate how to create a role that attaches the
AdministratorAccess-Amplify managed policy.

The AdministratorAccess-Amplify managed policy provides access to multiple AWS services, 
including IAM actions. and should be considered as powerful as the AdministratorAccess
policy. This policy provides more permissions than required to deploy your SSR app.

It is recommended that you follow the best practice of granting least privilege and reduce the 
permissions granted to the service role. Instead of granting administrator access permissions to 
your service role, you can create your own customer managed IAM policy that grants only the 
permissions required to deploy your SSR app. See, Creating IAM policies in the IAM User Guide for 
instructions on creating a customer managed policy.

If you create your own policy, refer to the following list of the minimum permissions required to 
deploy an SSR app.

acm:DescribeCertificate
acm:ListCertificates
acm:RequestCertificate
cloudfront:CreateCloudFrontOriginAccessIdentity
cloudfront:CreateDistribution
cloudfront:CreateInvalidation
cloudfront:GetDistribution
cloudfront:GetDistributionConfig
cloudfront:ListCloudFrontOriginAccessIdentities
cloudfront:ListDistributions
cloudfront:ListDistributionsByLambdaFunction
cloudfront:ListDistributionsByWebACLId
cloudfront:ListFieldLevelEncryptionConfigs
cloudfront:ListFieldLevelEncryptionProfiles
cloudfront:ListInvalidations
cloudfront:ListPublicKeys
cloudfront:ListStreamingDistributions
cloudfront:UpdateDistribution
cloudfront:TagResource

Amplify Next.js 11 SSR support 32

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create-console.html


AWS Amplify Hosting User Guide

cloudfront:UntagResource
cloudfront:ListTagsForResource
cloudfront:DeleteDistribution
iam:AttachRolePolicy
iam:CreateRole
iam:CreateServiceLinkedRole
iam:GetRole
iam:PutRolePolicy
iam:PassRole
iam:UpdateAssumeRolePolicy
iam:DeleteRolePolicy
lambda:CreateFunction
lambda:EnableReplication
lambda:DeleteFunction
lambda:GetFunction
lambda:GetFunctionConfiguration
lambda:PublishVersion
lambda:UpdateFunctionCode
lambda:UpdateFunctionConfiguration
lambda:ListTags
lambda:TagResource
lambda:UntagResource
lambda:ListEventSourceMappings
lambda:CreateEventSourceMapping
route53:ChangeResourceRecordSets
route53:ListHostedZonesByName
route53:ListResourceRecordSets
s3:CreateBucket
s3:GetAccelerateConfiguration
s3:GetObject
s3:ListBucket
s3:PutAccelerateConfiguration
s3:PutBucketPolicy
s3:PutObject
s3:PutBucketTagging
s3:GetBucketTagging
sqs:CreateQueue
sqs:DeleteQueue
sqs:GetQueueAttributes
sqs:SetQueueAttributes
amplify:GetApp
amplify:GetBranch
amplify:UpdateApp

Amplify Next.js 11 SSR support 33



AWS Amplify Hosting User Guide

amplify:UpdateBranch

Troubleshooting Next.js 11 SSR deployments

If you experience unexpected issues when deploying a Classic (Next.js 11 only) SSR app with 
Amplify, review the following troubleshooting topics.

Topics

• Your output directory is overridden

• You get a 404 error after deploying your SSR site

• Your app is missing the rewrite rule for CloudFront SSR distributions

• Your app is too large to deploy

• Your build fails with an out of memory error

• Your app has both SSR and SSG branches

• Your app stores static files in a folder with a reserved path

• Your app has reached a CloudFront limit

• Environment variables are not carried through to Lambda functions

• Lambda@Edge functions are created in the US East (N. Virginia) Region

• Your Next.js app uses unsupported features

• Images in your Next.js app aren't loading

• Unsupported Regions

Your output directory is overridden

The output directory for a Next.js app deployed with Amplify must be set to .next. If your app's 
output directory is being overridden, check the next.config.js file. To have the build output 
directory default to .next, remove the following line from the file:

distDir: 'build'

Verify that the output directory is set to .next in your build settings. For information about 
viewing your app's build settings, see Configuring build settings.

The following is an example of the build settings for an app where baseDirectory is set to
.next.

Amplify Next.js 11 SSR support 34



AWS Amplify Hosting User Guide

version: 1
frontend: 
  phases: 
    preBuild: 
      commands: 
        - npm ci 
    build: 
      commands: 
        - npm run build 
  artifacts: 
    baseDirectory: .next 
    files: 
      - '**/*' 
  cache: 
    paths: 
      - node_modules/**/*

You get a 404 error after deploying your SSR site

If you get a 404 error after deploying your site, the issue could be caused by your output directory 
being overridden. To check your next.config.js file and verify the correct build output 
directory in your app's build spec, follow the steps in the previous topic, Your output directory is 
overridden.

Your app is missing the rewrite rule for CloudFront SSR distributions

When you deploy an SSR app, Amplify creates a rewrite rule for your CloudFront SSR distributions. 
If you can't access your app in a web browser, verify that the CloudFront rewrite rule exists for your 
app in the Amplify console. If it's missing, you can either add it manually or redeploy your app.

To view or edit an app's rewrite and redirect rules in the Amplify console, in the navigation pane, 
choose App settings, then Rewrites and redirects. The following screenshot shows an example 
of the rewrite rules that Amplify creates for you when you deploy an SSR app. Notice that in this 
example, a CloudFront rewrite rule exists.

Amplify Next.js 11 SSR support 35



AWS Amplify Hosting User Guide

Your app is too large to deploy

Amplify limits the size of an SSR deployment to 50 MB. If you try to deploy a Next.js SSR 
app to Amplify and get a RequestEntityTooLargeException error, your app is too large 
to deploy. You can attempt to work around this issue by adding cache cleanup code to your
next.config.js file.

The following is an example of code in the next.config.js file that performs cache cleanup.

module.exports = { 
    webpack: (config, { buildId, dev, isServer, defaultLoaders, webpack }) => { 
        config.optimization.splitChunks.cacheGroups = { } 
        config.optimization.minimize = true; 
        return config 
      },
}

Your build fails with an out of memory error

Next.js enables you to cache build artifacts to improve performance on subsequent builds. In 
addition, Amplify's AWS CodeBuild container compresses and uploads this cache to Amazon S3, on 
your behalf, to improve subsequent build performance. This could cause your build to fail with an 
out of memory error.

Perform the following actions to prevent your app from exceeding the memory limit during the 
build phase. First, remove .next/cache/**/* from the cache.paths section of your build settings. 
Next, remove the NODE_OPTIONS environment variable from your build settings file. Instead, set 
the NODE_OPTIONS environment variable in the Amplify console to define the Node maximum 

Amplify Next.js 11 SSR support 36



AWS Amplify Hosting User Guide

memory limit. For more information about setting environment variables using the Amplify 
console, see Set environment variables.

After making these changes, try your build again. If it succeeds, add .next/cache/**/* back to 
the cache.paths section of your build settings file.

For more information about Next.js cache configuration to improve build performance, see AWS 
CodeBuild on the Next.js website.

Your app has both SSR and SSG branches

You can't deploy an app that has both SSR and SSG branches. If you need to deploy both SSR and 
SSG branches, you must deploy one app that uses only SSR branches and another app that uses 
only SSG branches.

Your app stores static files in a folder with a reserved path

Next.js can serve static files from a folder named public that's stored in the project's root 
directory. When you deploy and host a Next.js app with Amplify, your project can't include 
folders with the path public/static. Amplify reserves the public/static path for use when 
distributing the app. If your app includes this path, you must rename the static folder before 
deploying with Amplify.

Your app has reached a CloudFront limit

CloudFront service quotas limit your AWS account to 25 distributions with attached Lambda@Edge 
functions. If you exceed this quota, you can either delete any unused CloudFront distributions from 
your account or request a quota increase. For more information, see Requesting a quota increase in 
the Service Quotas User Guide.

Environment variables are not carried through to Lambda functions

Environment variables that you specify in the Amplify console for an SSR app are not carried 
through to the app's AWS Lambda functions. See, Making environment variables accessible to 
server-side runtimes, for detailed instructions on how to add environment variables that you can 
reference from your Lambda functions.

Lambda@Edge functions are created in the US East (N. Virginia) Region

When you deploy a Next.js app, Amplify creates Lambda@Edge functions to customize the 
content that CloudFront delivers. Lambda@Edge functions are created in the US East (N. Virginia) 
Region, not the Region where your app is deployed. This is a Lambda@Edge restriction. For more 

Amplify Next.js 11 SSR support 37

https://nextjs.org/docs/advanced-features/ci-build-caching#aws-codebuild
https://nextjs.org/docs/advanced-features/ci-build-caching#aws-codebuild
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/cloudfront-limits.html
https://docs.aws.amazon.com/servicequotas/latest/userguide/request-quota-increase.html


AWS Amplify Hosting User Guide

information about Lambda@Edge functions, see Restrictions on edge functions in the Amazon 
CloudFront Developer Guide.

Your Next.js app uses unsupported features

Apps deployed with Amplify support the Next.js major versions up through version 11. For a 
detailed list of the Next.js features that are supported and unsupported by Amplify, see supported 
features.

When you deploy a new Next.js app, Amplify uses the most recent supported version of Next.js by 
default. If you have an existing Next.js app that you deployed to Amplify with an older version of 
Next.js, you can migrate the app to the Amplify Hosting compute SSR provider. For instructions, 
see Migrating a Next.js 11 SSR app to Amplify Hosting compute.

Images in your Next.js app aren't loading

When you add images to your Next.js app using the next/image component, the size of the image 
can't exceed 1 MB. When you deploy the app to Amplify, images that are larger than 1 MB will 
return a 503 error. This is caused by a Lambda@Edge limit that restricts the size of a response that 
is generated by a Lambda function, including headers and body, to 1 MB.

The 1 MB limit applies to other artifacts in your app, such as PDF and document files.

Unsupported Regions

Amplify doesn't support Classic (Next.js 11 only) SSR app deployment in every AWS region where 
Amplify is available. Classic (Next.js 11 only) SSR isn't supported in the following Regions: Europe 
(Milan) eu-south-1, Middle East (Bahrain) me-south-1, and Asia Pacific (Hong Kong) ap-east-1.

Pricing for SSR apps

When you deploy an SSR app, Amplify Hosting compute manages the resources required to deploy 
the SSR app for you. For information about Amplify Hosting compute charges, see AWS Amplify 
Pricing.

Troubleshooting SSR deployments

If you experience unexpected issues when deploying an SSR app with Amplify Hosting compute, 
see Troubleshooting server-side rendered applications in the Amplify troubleshooting chapter.

Pricing for SSR apps 38

https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/edge-functions-restrictions.html
https://aws.amazon.com/amplify/pricing/
https://aws.amazon.com/amplify/pricing/


AWS Amplify Hosting User Guide

Advanced: Open source adapters

Framework authors can use the file system based deployment specification to develop open source 
build adapters customized for their specific frameworks. These adapters will transform an app's 
build output into a deployment bundle that conforms to Amplify Hosting’s expected directory 
structure. This deployment bundle will include all the necessary files and assets to host an app, 
including runtime configuration, such as routing rules.

If you aren't using a framework, you can develop your own solution to generate a build output that 
Amplify expects.

Topics

• Using the Amplify Hosting deployment specification to configure build output

• Deploying an Express server using the deployment manifest

• Image optimization integration for framework authors

• Using open source adapters

Using the Amplify Hosting deployment specification to configure build 
output

The Amplify Hosting deployment specification is a file system based specification that defines the 
directory structure that facilitates deployments to Amplify Hosting. A framework can generate this 
expected directory structure as the output of its build command, enabling the framework to take 
advantage of Amplify Hosting’s service primitives. Amplify Hosting understands the structure of 
the deployment bundle and deploys it accordingly.

For a video demonstration that explains how to use the deployment specification, see How to host 
any website using AWS Amplify on the Amazon Web Services YouTube channel.

The following is an example of the folder structure that Amplify expects for the deployment 
bundle. At a high level, it has a folder named static, a folder named compute and a deployment 
manifest file named deploy-manifest.json.

.amplify-hosting/
### compute/

Advanced: Open source adapters 39



AWS Amplify Hosting User Guide

#   ### default/
#       ### chunks/
#       #   ### app/
#       #       ### _nuxt/
#       #       #   ### index-xxx.mjs
#       #       #   ### index-styles.xxx.js
#       #       ### server.mjs
#       ### node_modules/
#       ### server.js
### static/
#   ### css/
#   #   ### nuxt-google-fonts.css
#   ### fonts/
#   #   ### font.woff2
#   ### _nuxt/
#   #   ### builds/
#   #   #   ### latest.json
#   #   ### entry.xxx.js
#   ### favicon.ico
#   ### robots.txt
### deploy-manifest.json

Amplify SSR primitive support

The Amplify Hosting deployment specification defines a contract that closely maps to the 
following primitives.

Static assets

Provides frameworks with the ability to host static files.

Compute

Provides frameworks with the ability to run a Node.js HTTP server on port 3000.

Image optimization

Provides frameworks with a service to optimize images at runtime.

Routing rules

Provides frameworks with a mechanism to map incoming request paths to specific targets.

Deployment specification 40



AWS Amplify Hosting User Guide

The .amplify-hosting/static directory

You must place all publicly accessible static files that are meant to be served from the application 
URL in the .amplify-hosting/static directory. The files inside this directory are served via the 
static assets primitive.

Static files are accessible at the root (/) of the application URL without any changes to their 
content, file name, or extension. Additionally, subdirectories are preserved in the URL structure and 
appear before the file name. As an example, .amplify-hosting/static/favicon.ico will be 
served from https://myAppId.amplify-hostingapp.com/favicon.ico and .amplify-
hosting/static/_nuxt/main.js will be served from  https://myAppId.amplify-
hostingapp.com/_nuxt/main.js

If a framework supports the ability to modify the base path of the application, it must prepend the 
base path to the static assets inside the .amplify-hosting/static directory. For example, if 
the base path is /folder1/folder2, then the build output for a static asset called main.css will 
be .amplify-hosting/static/folder1/folder2/main.css.

The .amplify-hosting/compute directory

A single compute resource is represented by a single subdirectory named default contained 
within the .amplify-hosting/compute directory. The path is .amplify-hosting/compute/
default. This compute resource maps to Amplify Hosting's compute primitive.

The contents of the default subdirectory must conform to the following rules.

• A file must exist in the root of the default subdirectory, to serve as the entry point to the 
compute resource.

• The entry point file must be a Node.js module and it must start an HTTP server that listens on 
port 3000.

• You can place other files in the default subdirectory and reference them from code in the entry 
point file.

• The contents of the subdirectory must be self-contained. Code in the entry point module 
can't reference any modules outside of the subdirectory. Note that frameworks can bundle 
their HTTP server in any way that they want. If the compute process can be initiated with the
node server.js command, where server.js is is the name of the entry file, from within 
the subdirectory, Amplify considers the directory structure to conform to the deployment 
specification.

Deployment specification 41



AWS Amplify Hosting User Guide

Amplify Hosting bundles and deploys all files inside the default subdirectory to a provisioned 
compute resource. Each compute resource is allocated 512 MB of ephemeral storage. This storage 
isn't shared between execution instances, but is shared among subsequent invocations within 
the same execution instance. Execution instances are limited to a maximum execution time of 
15 minutes, and the only writable path within the execution instance is the /tmp directory. 
The compressed size of each compute resource bundle can't exceed 220 MB. For example, the
.amplify/compute/default subdirectory can't exceed 220 MB when compressed.

The .amplify-hosting/deploy-manifest.json file

Use the deploy-manifest.json file to store the configuration details and metadata for a 
deployment. At a minimum, a deploy-manifest.json file must include a version attribute, 
the routes attribute with a catch-all route specified, and the framework attribute with 
framework metadata specified.

The following object definition demonstrates the configuration for a deployment manifest.

type DeployManifest = { 
  version: 1; 
  routes: Route[]; 
  computeResources?: ComputeResource[]; 
  imageSettings?: ImageSettings; 
  framework: FrameworkMetadata;
};

The following topics describe the details and usage for each attribute in the deployment manifest.

Using the version attribute

The version attribute defines the version of the deployment specification that you are 
implementing. Currently, the only version for the Amplify Hosting deployment specification is 
version 1. The following JSON example demonstrates the usage for the version attribute.

"version": 1

Using the routes attribute

The routes attribute enables frameworks to leverage the Amplify Hosting routing rules primitive. 
Routing rules provide a mechanism for routing incoming request paths to a specific target in the 
deployment bundle. Routing rules only dictate the destination of an incoming request and are 

Deployment specification 42



AWS Amplify Hosting User Guide

applied after the request has been transformed by rewrite and redirect rules. For more information 
about how Amplify Hosting handles rewrites and redirects, see Using redirects.

Routing rules don't rewrite or transform the request. If an incoming request matches the path 
pattern for a route, the request is routed as-is to the route's target.

The routing rules specified in the routes array must conform to the following rules.

• A catch-all route must be specified. A catch-all route has the /* pattern that matches all 
incoming requests.

• The routes array can contain a maximum of 25 items.

• You must specify either a Static route or a Compute route.

• If you specify a Static route, the .amplify-hosting/static directory must exist.

• If you specify a Compute route, the .amplify-hosting/compute directory must exist.

• If you specify an ImageOptimization route, you must also specify a Compute route. This is 
required because image optimization is not yet supported for purely static applications.

The following object definition demonstrates the configuration for the Route object.

type Route = { 
  path: string; 
  target: Target; 
  fallback?: Target;
}

The following table describes the Route object's properties.

Key Type Required Description

path String Yes Defines a pattern 
that matches 
incoming request 
paths (excluding 
querystring).

The maximum 
path length is 255 
characters.

Deployment specification 43



AWS Amplify Hosting User Guide

Key Type Required Description

A path must start 
with the forward 
slash /.

A path can contain 
any of the following 
characters: [A-Z], [a-
z], [0-9],[ _-.*$/~"'@:
+].

For pattern matching, 
only the following 
wildcard characters 
are supported:

• * (matches 0 or 
more characters)

• The /* pattern is 
called a catch-all 
pattern and will 
match all incoming 
requests.

Deployment specification 44



AWS Amplify Hosting User Guide

Key Type Required Description

target Target Yes An object that 
defines the target to 
route the matched 
request to.

If a Compute route is 
specified, a correspon 
ding ComputeRe 
source  must exist.

If an ImageOpti 
mization  route is 
specified, imageSett 
ings  must also be 
specified.

Deployment specification 45



AWS Amplify Hosting User Guide

Key Type Required Description

fallback Target No An object that 
defines the target 
to fallback to if 
the original target 
returns a 404 error.

The target kind 
and the fallback
kind can't be the 
same for a specified 
route. For example, 
fallback from Static
to Static is not 
allowed. Fallbacks 
are only supported 
for GET requests that 
don't have a body. If 
a body is present in 
the request, it will be 
dropped during the 
fallback.

The following object definition demonstrates the configuration for the Target object.

type Target = { 
  kind: TargetKind; 
  src?: string; 
  cacheControl?: string;
}

The following table describes the Target object's properties.

Deployment specification 46



AWS Amplify Hosting User Guide

Key Type Required Description

kind Targetkind Yes An enum that defines 
the target type. 
Valid values are
Static, Compute, 
and ImageOpti 
mization .

src String Yes for Compute

No for other primitive 
s

A string that specifies 
the name of the 
subdirectory in the 
deployment bundle 
that contains the 
primitive's executabl 
e code. Valid and 
required only for the 
Compute primitive.

The value must 
point to one of the 
compute resources 
present in the 
deployment bundle. 
Currently, the only 
supported value for 
this field is default.

cacheControl String No A string that specifies 
the value of the 
Cache-Control header 
to apply to the 
response. Valid only 
for the Static and the 
ImageOptimization 
primitives.

Deployment specification 47



AWS Amplify Hosting User Guide

Key Type Required Description

The specified value is 
overriden by custom 
headers. For more 
information about 
Amplify Hosting 
customer headers, 
see Custom headers.

Note

This Cache-
Control 
header is only 
applied to 
successful 
responses 
with a status 
code set to 
200 (OK).

The following object definition demonstrates the usage for the TargetKind enumeration.

enum TargetKind { 
  Static = "Static", 
  Compute = "Compute", 
  ImageOptimization = "ImageOptimization"
}

The following list specifies the valid values for the TargetKind enum.

Static

Routes requests to the static assets primitive.

Compute

Routes requests to the compute primitive.

Deployment specification 48



AWS Amplify Hosting User Guide

ImageOptimization

Routes requests to the image optimization primitive.

The following JSON example demonstrates the usage for the routes attribute with multiple 
routing rules specified.

"routes": [ 
    { 
      "path": "/_nuxt/image", 
      "target": { 
        "kind": "ImageOptimization", 
        "cacheControl": "public, max-age=3600, immutable" 
      } 
    }, 
    { 
      "path": "/_nuxt/builds/meta/*", 
      "target": { 
        "cacheControl": "public, max-age=31536000, immutable", 
        "kind": "Static" 
      } 
    }, 
    { 
      "path": "/_nuxt/builds/*", 
      "target": { 
        "cacheControl": "public, max-age=1, immutable", 
        "kind": "Static" 
      } 
    }, 
    { 
      "path": "/_nuxt/*", 
      "target": { 
        "cacheControl": "public, max-age=31536000, immutable", 
        "kind": "Static" 
      } 
    }, 
    { 
      "path": "/*.*", 
      "target": { 
        "kind": "Static" 
      }, 
      "fallback": { 
        "kind": "Compute", 

Deployment specification 49



AWS Amplify Hosting User Guide

        "src": "default" 
      } 
    }, 
    { 
      "path": "/*", 
      "target": { 
        "kind": "Compute", 
        "src": "default" 
      } 
    } 
  ]

For more information about specifying routing rules in your deployment manifest, see Best 
practices for configuring routing rules

Using the computeResources attribute

The computeResources attribute enables frameworks to provide metadata about the provisioned 
compute resources. Every compute resource must have a corresponding route associated with it.

The following object definition demonstrates the usage for the ComputeResource object.

type ComputeResource = { 
  name: string; 
  runtime: ComputeRuntime; 
  entrypoint: string;
};

type ComputeRuntime = 'nodejs16.x' | 'nodejs18.x' | 'nodejs20.x';

The following table describes the ComputeResource object's properties.

Key Type Required Description

name String Yes Specifies the name 
of the compute 
resource. The 
name must match 
the name of the 
subdirectory inside 
the .amplify- 

Deployment specification 50



AWS Amplify Hosting User Guide

Key Type Required Description

hosting/
compute 
directory .

For version 1 of the 
deployment specifica 
tion, the only valid 
value is default.

runtime ComputeRuntime Yes Defines the runtime 
for the provisioned 
compute resource.

Valid values are
nodejs16.x ,
nodejs18.x , and
nodejs20.x .

entrypoint String Yes Specifies the name 
of the starting file 
that code will run 
from for the specified 
compute resource. 
The file must exist 
inside the subdirect 
ory that represents a 
compute resource.

If you have a directory structure that looks like the following.

.amplify-hosting
|---compute
|   |---default
|       |---index.js

The JSON for the computeResource attribute will look like the following.

Deployment specification 51



AWS Amplify Hosting User Guide

"computeResources": [ 
    { 
      "name": "default", 
      "runtime": "nodejs16.x", 
      "entrypoint": "index.js", 
    } 
  ]

Using the imageSettings attribute

The imageSettings attribute enables frameworks to customize the behavior of the image 
optimization primitive, that provides on-demand optimization of images at runtime.

The following object definition demonstrates the usage for the ImageSettings object.

type ImageSettings = { 
  sizes: number[]; 
  domains: string[]; 
  remotePatterns: RemotePattern[]; 
  formats: ImageFormat[]; 
  minumumCacheTTL: number; 
  dangerouslyAllowSVG: boolean;
};

type ImageFormat = 'image/avif' | 'image/webp' | 'image/png' | 'image/jpeg';

The following table describes the ImageSettings object's properties.

Key Type Required Description

sizes Number[] Yes An array of supported 
image widths.

domains String[] Yes An array of allowed 
external domains 
that can use image 
optimization. 
Leave the array 
empty to allow only 
the deployment 

Deployment specification 52



AWS Amplify Hosting User Guide

Key Type Required Description

domain to use image 
optimization.

remotePatterns RemotePattern[] Yes An array of allowed 
external patterns 
that can use image 
optimization. Similar 
to domains, but 
provides more control 
with regular expressio 
ns (regex).

formats ImageFormat[] Yes An array of allowed 
output image 
formats.

minimumCacheTTL Number Yes The cache duration 
in seconds for the 
optimized images.

dangerouslyAllowSV 
G

Boolean Yes Allows SVG input 
image URLs. This is 
disabled by default 
for security purposes.

The following object definition demonstrates the usage for the RemotePattern object.

type RemotePattern = { 
  protocol?: 'http' | 'https'; 
  hostname: string; 
  port?: string; 
  pathname?: string;
}

The following table describes the RemotePattern object's properties.

Deployment specification 53



AWS Amplify Hosting User Guide

Key Type Required Description

protocol String No The protocol of the 
allowed remote 
pattern.

Valid values are http
or https.

hostname String Yes The hostname of 
the allowed remote 
pattern.

You can specify a 
literal or wildcard. A 
single `*` matches a 
single subdomain. A 
double `**` matches 
any number of 
subdomains. Amplify 
doesn't allow blanket 
wildcards where only 
`**` is specified.

port String No The port of the 
allowed remote 
pattern.

pathname String No The path name of 
the allowed remote 
pattern.

The following example demonstrates the imageSettings attribute.

"imageSettings": {  
    "sizes": [ 
      100, 
      200 

Deployment specification 54



AWS Amplify Hosting User Guide

    ], 
    "domains": [ 
      "example.com" 
    ], 
    "remotePatterns": [ 
      { 
        "protocol": "https", 
        "hostname": "example.com", 
        "port": "", 
        "pathname": "/**", 
      } 
    ], 
    "formats": [ 
      "image/webp" 
    ], 
    "minumumCacheTTL": 60, 
    "dangerouslyAllowSVG": false 
  }

Using the framework attribute

Use the framework attribute to specify framework metadata.

The following object definition demonstrates the configuration for the FrameworkMetadata
object.

type FrameworkMetadata = { 
  name: string; 
  version: string;
}

The following table describes the FrameworkMetadata object's properties.

Key Type Required Description

name String Yes The name of the 
framework.

version String Yes The version of the 
framework.

Deployment specification 55



AWS Amplify Hosting User Guide

Key Type Required Description

It must be a valid 
semantic versioning 
(semver) string.

Best practices for configuring routing rules

Routing rules provide a mechanism for routing incoming request paths to specific targets in the 
deployment bundle. In a deployment bundle, framework authors can emit files to the build output 
that are deployed to either of the following targets:

• Static assets primitive – Files are contained in the .amplify-hosting/static directory.

• Compute primitive – Files are contained in the .amplify-hosting/compute/default
directory.

Framework authors also provide an array of routing rules in the deploy manifest file. Each rule 
in the array is matched against the incoming request in sequential traversal order, until there’s a 
match. When there’s a matching rule, the request is routed to the target specified in the matching 
rule. Optionally, a fallback target can be specified for each rule. If the original target returns a 404 
error, the request is routed to the fallback target.

The deployment specification requires the last rule in the traversal order to be a catch-all rule. A 
catch-all rule is specified with the /* path. If the incoming request doesn't match with any of the 
previous routes in the routing rules array, the request is routed to the catch-all rule target.

For SSR frameworks like Nuxt.js, the catch-all rule target has to be the compute primitive. This is 
because SSR applications have server-side rendered pages with routes that aren't predictable at 
build time. For example, if a Nuxt.js application has a page at /blog/[slug] where [slug] is a 
dynamic route parameter. The catch-all rule target is the only way to route requests to these pages.

In contrast, specific path patterns can be used to target routes that are known at build time. For 
example, Nuxt.js serves static assets from the /_nuxt path. This means that the /_nuxt/* path 
can be targeted by a specific routing rule that routes requests to the static assets primitive.

Deployment specification 56



AWS Amplify Hosting User Guide

Public folder routing

Most SSR frameworks provide the ability to serve mutable static assets from a public folder. Files 
like favicon.ico and robots.txt are typically kept inside the public folder and are served 
from the application's root URL. For example, the favicon.ico file is served from https://
example.com/favicon.ico. Note that there is no predictable path pattern for these files. They 
are almost entirely dictated by the file name. The only way to target files inside the public folder 
is to use the catch-all route. However, the catch-all route target has to be the compute primitive.

We recommend one of the following approaches for managing your public folder.

1. Use a path pattern to target request paths that contain file extensions. For example, you can use
/*.* to target all request paths that contain a file extension.

Note that this approach can be unreliable. For example, if there are files without file extensions 
inside the public folder, they are not targeted by this rule. Another issue to be aware of with 
this approach is that the application could have pages with periods in their names. For example, 
a page at /blog/2021/01/01/hello.world will be targeted by the /*.*  rule. This is not 
ideal since the page is not a static asset. However, you can add a fallback target to this rule to 
ensure that when there is a 404 error from the static primitive, the request falls back to the 
compute primitive.

{ 
    "path": "/*.*", 
    "target": { 
        "kind": "Static" 
    }, 
    "fallback": { 
        "kind": "Compute", 
        "src": "default" 
    }
}

2. Identify the files in the public folder at build time and emit a routing rule for each file. 
This approach is not scalable since there is a limit of 25 rules imposed by the deployment 
specification.

{ 
    "path": "/favicon.ico", 
    "target": { 
        "kind": "Static" 

Deployment specification 57



AWS Amplify Hosting User Guide

    }
},
{ 
    "path": "/robots.txt", 
    "target": { 
        "kind": "Static" 
    }
}

3. Recommend that your framework users store all mutable static assets inside a sub-folder inside 
the public folder.

In the following example, the user can store all mutable static assets inside the public/assets
folder. Then, a routing rule with the path pattern /assets/* can be used to target all mutable 
static assets inside the public/assets folder.

{ 
    "path": "/assets/*", 
    "target": { 
        "kind": "Static" 
    }
}

4. Specify a static fallback for the catch-all route. This approach has drawbacks that are described 
in more detail in the next Catch-all fallback routing section.

Catch-all fallback routing

For SSR frameworks such as Nuxt.js, where a catch-all route is specified for the compute primitive 
target, framework authors might consider specifying a static fallback for the catch-all route to 
solve the public folder routing problem. However, this type of routing rule breaks server-side 
rendered 404 pages. For example, if the end user visits a page that doesn't exist, the application 
renders a 404 page with a status code of 404. However, if the catch-all route has a static fallback, 
the 404 page isn't be rendered. Instead, the request falls back to the static primitive and still ends 
up with a 404 status code, but the 404 page isn't be rendered.

{ 
    "path": "/*", 
    "target": { 
        "kind": "Compute", 
        "src": "default" 

Deployment specification 58



AWS Amplify Hosting User Guide

    }, 
    "fallback": { 
        "kind": "Static" 
    }
}

Base path routing

Frameworks that offer the ability to modify the base path of the application are expected to 
prepend the base path to the static assets inside the .amplify-hosting/static directory. For 
example, if the base path is /folder1/folder2, then the build output for a static asset called 
main.css will be .amplify-hosting/static/folder1/folder2/main.css.

This means that the routing rules also need to be updated to reflect the base path. For example, 
if the base path is /folder1/folder2, then the routing rule for the static assets in the public
folder will look like the following.

{ 
    "path": "/folder1/folder2/*.*", 
    "target": { 
        "kind": "Static" 
    }
}

Similarly, server-side routes also need to have the base path prepended to them. For example, if 
the base path is /folder1/folder2, then the routing rule for the /api route will look like the 
following.

{ 
    "path": "/folder1/folder2/api/*", 
    "target": { 
        "kind": "Compute", 
        "src": "default" 
    }
}

However, the base path should not be prepended to the catch-all route. For example, if the base 
path is /folder1/folder2, then the catch-all route will remain like the following.

{ 
    "path": "/*", 

Deployment specification 59



AWS Amplify Hosting User Guide

    "target": { 
        "kind": "Compute", 
        "src": "default" 
    }
}

Nuxt.js routes examples

The following is an example deploy-manifest.json file for a Nuxt application that 
demonstrates how to specify routing rules.

{ 
  "version": 1, 
  "routes": [ 
    { 
      "path": "/_nuxt/image", 
      "target": { 
        "kind": "ImageOptimization", 
        "cacheControl": "public, max-age=3600, immutable" 
      } 
    }, 
    { 
      "path": "/_nuxt/builds/meta/*", 
      "target": { 
        "cacheControl": "public, max-age=31536000, immutable", 
        "kind": "Static" 
      } 
    }, 
    { 
      "path": "/_nuxt/builds/*", 
      "target": { 
        "cacheControl": "public, max-age=1, immutable", 
        "kind": "Static" 
      } 
    }, 
    { 
      "path": "/_nuxt/*", 
      "target": { 
        "cacheControl": "public, max-age=31536000, immutable", 
        "kind": "Static" 
      } 
    }, 
    { 

Deployment specification 60



AWS Amplify Hosting User Guide

      "path": "/*.*", 
      "target": { 
        "kind": "Static" 
      }, 
      "fallback": { 
        "kind": "Compute", 
        "src": "default" 
      } 
    }, 
    { 
      "path": "/*", 
      "target": { 
        "kind": "Compute", 
        "src": "default" 
      } 
    } 
  ], 
  "computeResources": [ 
    { 
      "name": "default", 
      "entrypoint": "server.js", 
      "runtime": "nodejs18.x" 
    } 
  ], 
  "framework": { 
    "name": "nuxt", 
    "version": "3.8.1" 
  }
}

The following is an example deploy-manifest.json file for Nuxt that demonstrates how to 
specify routing rules including base paths.

{ 
  "version": 1, 
  "routes": [ 
    { 
      "path": "/base-path/_nuxt/image", 
      "target": { 
        "kind": "ImageOptimization", 
        "cacheControl": "public, max-age=3600, immutable" 
      } 
    }, 

Deployment specification 61



AWS Amplify Hosting User Guide

    { 
      "path": "/base-path/_nuxt/builds/meta/*", 
      "target": { 
        "cacheControl": "public, max-age=31536000, immutable", 
        "kind": "Static" 
      } 
    }, 
    { 
      "path": "/base-path/_nuxt/builds/*", 
      "target": { 
        "cacheControl": "public, max-age=1, immutable", 
        "kind": "Static" 
      } 
    }, 
    { 
      "path": "/base-path/_nuxt/*", 
      "target": { 
        "cacheControl": "public, max-age=31536000, immutable", 
        "kind": "Static" 
      } 
    }, 
    { 
      "path": "/base-path/*.*", 
      "target": { 
        "kind": "Static" 
      }, 
      "fallback": { 
        "kind": "Compute", 
        "src": "default" 
      } 
    }, 
    { 
      "path": "/*", 
      "target": { 
        "kind": "Compute", 
        "src": "default" 
      } 
    } 
  ], 
  "computeResources": [ 
    { 
      "name": "default", 
      "entrypoint": "server.js", 
      "runtime": "nodejs18.x" 

Deployment specification 62



AWS Amplify Hosting User Guide

    } 
  ], 
  "framework": { 
    "name": "nuxt", 
    "version": "3.8.1" 
  }
}

For more information about using the routes attribute, see Using the routes attribute.

Deploying an Express server using the deployment manifest

This example explains how to deploy a basic Express server using the Amplify Hosting deployment 
specification. You can leverage the provided deployment manifest to specify routing, compute 
resources, and other configurations.

Set up an Express server locally before deploying to Amplify Hosting

1. Create a new directory for your project and install Express and Typescript.

mkdir express-app
cd express-app

# The following command will prompt you for information about your project
npm init

# Install express, typescript and types
npm install express --save
npm install typescript ts-node @types/node @types/express --save-dev 
         

2. Add a tsconfig.json file to the root of your project with the following contents.

{ 
  "compilerOptions": { 
    "target": "es6", 
    "module": "commonjs", 
    "outDir": "./dist", 
    "strict": true, 
    "esModuleInterop": true, 
    "skipLibCheck": true, 
    "forceConsistentCasingInFileNames": true 

Deploying an Express server 63



AWS Amplify Hosting User Guide

  }, 
  "include": ["src/**/*.ts"], 
  "exclude": ["node_modules"]
}

3. Create a directory named src in your project root.

4. Create an index.ts file in the src directory. This will be the entry point to the application 
that starts an Express server. The server should be configured to listen on port 3000.

// src/index.ts
import express from 'express';

const app: express.Application = express();
const port = 3000;

app.use(express.text());

app.listen(port, () => { 
  console.log(`server is listening on ${port}`);
});

// Homepage
app.get('/', (req: express.Request, res: express.Response) => { 
  res.status(200).send("Hello World!");
});

// GET
app.get('/get', (req: express.Request, res: express.Response) => { 
  res.status(200).header("x-get-header", "get-header-value").send("get-response-
from-compute");
});

//POST
app.post('/post', (req: express.Request, res: express.Response) => { 
  res.status(200).header("x-post-header", "post-header-
value").send(req.body.toString());
});

//PUT
app.put('/put', (req: express.Request, res: express.Response) => { 
  res.status(200).header("x-put-header", "put-header-
value").send(req.body.toString());
});

Deploying an Express server 64



AWS Amplify Hosting User Guide

//PATCH
app.patch('/patch', (req: express.Request, res: express.Response) => { 
  res.status(200).header("x-patch-header", "patch-header-
value").send(req.body.toString());
});

// Delete
app.delete('/delete', (req: express.Request, res: express.Response) => { 
  res.status(200).header("x-delete-header", "delete-header-value").send();
});

5. Add the following scripts to your package.json file.

"scripts": { 
  "start": "ts-node src/index.ts", 
  "build": "tsc", 
  "serve": "node dist/index.js"
}

6. Create a directory named public in the root of your project. Then create a file named hello-
world.txt with the following contents.

Hello world!

7. Add a .gitignore file to your project root with the following contents.

.amplify-hosting
dist
node_modules

Set up the Amplify deployment manifest

1. Create a file named deploy-manifest.json in your project's root directory.

2. Copy and paste the following manifest into your deploy-manifest.json file.

{ 
  "version": 1, 
  "framework": { "name": "express", "version": "4.18.2" }, 
  "imageSettings": { 
    "sizes": [ 

Deploying an Express server 65



AWS Amplify Hosting User Guide

      100, 
      200, 
      1920 
    ], 
    "domains": [], 
    "remotePatterns": [], 
    "formats": [], 
    "minimumCacheTTL": 60, 
    "dangerouslyAllowSVG": false 
  }, 
  "routes": [ 
    { 
      "path": "/_amplify/image", 
      "target": { 
        "kind": "ImageOptimization", 
        "cacheControl": "public, max-age=3600, immutable" 
      } 
    }, 
    { 
      "path": "/*.*", 
      "target": { 
        "kind": "Static", 
        "cacheControl": "public, max-age=2" 
      }, 
      "fallback": { 
        "kind": "Compute", 
        "src": "default" 
      } 
    }, 
    { 
      "path": "/*", 
      "target": { 
        "kind": "Compute", 
        "src": "default" 
      } 
    } 
  ], 
  "computeResources": [ 
    { 
      "name": "default", 
      "runtime": "nodejs18.x", 
      "entrypoint": "index.js" 
    } 
  ]

Deploying an Express server 66



AWS Amplify Hosting User Guide

}

The manifest describes how Amplify Hosting should handle the deployment of your 
application. The primary settings are the following.

• version – Indicates the version of the deployment specification that you're using.

• framework – Adjust this to specify your Express server setup.

• imageSettings – This section is optional for an Express server unless you're handling image 
optimization.

• routes – These are critical for directing traffic to the right parts of your app. The "kind": 
"Compute" route directs traffic to your server logic.

• computeResources – Use this section to specify your Express server's runtime and entry 
point.

Next, set up a post-build script that moves the built application artifacts into the .amplify-
hosting deployment bundle. The directory structure aligns with the Amplify Hosting deployment 
specification.

Set up the post-build script

1. Create a directory named bin in your project root.

2. Create a file named postbuild.sh in the bin directory. Add the following contents to the
postbuild.sh file.

#!/bin/bash

rm -rf ./.amplify-hosting

mkdir -p ./.amplify-hosting/compute

cp -r ./dist ./.amplify-hosting/compute/default
cp -r ./node_modules ./.amplify-hosting/compute/default/node_modules

cp -r public ./.amplify-hosting/static

cp deploy-manifest.json ./.amplify-hosting/deploy-manifest.json

3. Add a postbuild script to your package.json file. The file should look like the following.

Deploying an Express server 67



AWS Amplify Hosting User Guide

"scripts": { 
  "start": "ts-node src/index.ts", 
  "build": "tsc", 
  "serve": "node dist/index.js", 
  "postbuild": "chmod +x bin/postbuild.sh && ./bin/postbuild.sh"
}

4. Run the following command to build your application.

npm run build

5. (Optional) Adjust your routes for Express. You can modify the routes in your deployment 
manifest to fit your Express server. For example, if you don't have any static assets in the
public directory, you might only need the catch-all route "path": "/*" directing to 
Compute. This will depend on your server's setup.

Your final directory structure should look like the following.

express-app/
### .amplify-hosting/
#   ### compute/
#   #   ### default/
#   #       ### node_modules/
#   #       ### index.js
#   ### static/
#   #   ### hello.txt
#   ### deploy-manifest.json
### bin/
#   ### .amplify-hosting/
#   #   ### compute/
#   #   #   ### default/
#   #   ### static/
#   ### postbuild.sh*
### dist/
#   ### index.js
### node_modules/
### public/
#   ### hello.txt
### src/
#   ### index.ts
### deploy-manifest.json

Deploying an Express server 68



AWS Amplify Hosting User Guide

### package.json
### package-lock.json
### tsconfig.json

Deploy your server

1. Push your code to your Git repository and then deploy your app to Amplify Hosting.

2. Update your build settings to point baseDirectory to .amplify-hosting as follows. 
During the build, Amplify will detect the manifest file in the .amplify-hosting directory 
and deploy your Express server as configured.

version: 1
frontend: 
  phases: 
    preBuild: 
      commands: 
        - nvm use 18 
        - npm install 
    build: 
      commands: 
        - npm run build 
  artifacts: 
    baseDirectory: .amplify-hosting 
    files: 
      - '**/*'

3. To verify that your deployment was successful and that your server is running correctly, visit 
your app at the default URL provided by Amplify Hosting.

Image optimization integration for framework authors

Framework authors can integrate Amplify's image optimization feature by using the Amplify 
Hosting deployment specification. To enable image optimization, your deployment manifest 
must contain a routing rule that targets the image optimization service. The following example 
demonstrates how to configure the routing rule.

// .amplify-hosting/deploy-manifest.json

{ 
  "routes": [ 

Image optimization for framework authors 69



AWS Amplify Hosting User Guide

    { 
      "path": "/images/*", 
      "target": { 
        "kind": "ImageOptimization", 
        "cacheControl": "public, max-age=31536000, immutable" 
      } 
    } 
  ]
}

For more information about configuring image optimization settings using the deployment 
specification, see Using the Amplify Hosting deployment specification to configure build output .

Understanding the Image optimization API

Image optimization can be invoked at runtime via an Amplify app's domain URL, at the path 
defined by the routing rule.

GET https://{appDomainName}/{path}?{queryParams}

Image optimization imposes the following rules on images.

• Amplify can't optimize GIF, APNG and SVG formats or convert them to another format.

• SVG images aren't served unless the dangerouslyAllowSVG setting is enabled.

• The width or height of a source images can't exceed 11 MB or 9,000 pixels.

• The size limit of an optimized image is 4 MB.

• HTTP or HTTPS is the only protocol supported for sourcing images with remote URLs.

HTTP headers

The Accept request HTTP header is used to specify the image formats, expressed as MIME types, 
allowed by the client (usually a web browser). The image optimization service will attempt to 
convert the image to the specified format. The value specified for this header will have a higher 
priority than the format query parameter. For example, a valid value for the Accept header is
image/png, image/webp, */* . The formats setting specified in the Amplify deployment 
manifest will restrict the formats to those in the list. Even if the Accept header asks for a specific 
format, it will be ignored if the format isn't in the allow list.

Image optimization for framework authors 70



AWS Amplify Hosting User Guide

URI request parameters

The following table describes the URI request parameters for Image optimization.

Query 
parameter

Type Required Description Example

url String Yes A relative path 
or absolute URL 
to the source 
image. For a 
remote URL, 
http and https 
protocols are 
supported. Value 
must be URL 
encoded.

?url=http 
s%3A%2F%2 
Fwww.exam 
ple.com%2 
Fbuffalo. 
png

width Number Yes The width in 
pixels of the 
optimized 
image.

?width=800

height Number No The height 
in pixels of 
the optimized 
image. If not 
specified, the 
image will be 
auto scaled 
to match the 
width.

?height=600

fit Enum values:
cover,
contain,
fill, inside,
outside

No How the image 
is resized to fit 
the specified 
width and 
height.

?width=80 
0&height= 
600&fit=c 
over

Image optimization for framework authors 71



AWS Amplify Hosting User Guide

Query 
parameter

Type Required Description Example

position Enum values:
center, top,
right, bottom,
left

No A position to 
be used when 
fit is cover or
contain.

?fit=cont 
ain&posit 
ion=centre

trim Number No Trims pixels 
from all edges 
that contain 
values similar 
to the specified 
 background 
color of the top-
left pixel.

?trim=50

extend Object No Adds pixels to 
the edges of the 
image using the 
color derived 
from the nearest 
edge pixels. 
The format is
{top}_{ri 
ght}_{bot 
tom}_{lef 
t}  where each 
value is the 
number of pixels 
to add.

?extend=1 
0_0_5_0

Image optimization for framework authors 72



AWS Amplify Hosting User Guide

Query 
parameter

Type Required Description Example

extract Object No Crops the image 
to the specified 
rectangle 
delimited by 
top, left, width 
and height. 
The format 
is {left}_{t 
op}_{widt 
h}_{right} where 
each value is the 
number of pixels 
to crop.

?extract= 
10_0_5_0

format String No The desired 
output 
format for 
the optimized 
image.

?format=w 
ebp

quality Number No The quality 
of the image, 
from 1 to 100. 
Only used when 
converting the 
format of the 
image.

?quality=50

rotate Number No Rotates the 
image by the 
specified angle 
in number of 
degrees.

?rotate=45

Image optimization for framework authors 73



AWS Amplify Hosting User Guide

Query 
parameter

Type Required Description Example

flip Boolean No Mirrors the 
image verticall 
y (up-down) on 
the x-axis. This 
always occurs 
before rotation, 
if any.

?flip

flop Boolean No Mirrors the 
image horizonta 
lly (left-right) on 
the y-axis. This 
always occurs 
before rotation, 
if any.

?flop

sharpen Number No Sharpenin 
g enhances 
the definitio 
n of edges in 
the image. 
Valid values 
are between 
0.000001 and 
10.

?sharpen=1

median Number No Applies a 
median filter. 
This removes 
noise or 
smoothes the 
edges of an 
image.

?sharpen=3

Image optimization for framework authors 74



AWS Amplify Hosting User Guide

Query 
parameter

Type Required Description Example

blur Number No Applies a 
Gaussian blur 
of the specified 
sigma. Valid 
values are from 
0.3 to 1,000.

?blur=20

gamma Number No Applies a 
gamma correctio 
n to improve 
the perceived 
brightness of a 
resized image. 
Value must be 
between 1.0 and 
3.0.

?gamma=1

negate Boolean No Inverts the 
colors of the 
image.

?negate

normalize Boolean No Enhances image 
contrast by 
stretching its 
luminance to 
cover a full 
dynamic range.

?normalize

Image optimization for framework authors 75



AWS Amplify Hosting User Guide

Query 
parameter

Type Required Description Example

threshold Number No Replaces any 
pixel in the 
image with a 
black pixel, if 
its intensity 
is less than 
the specified 
threshold. Or 
with a white 
pixel if it's 
greater than 
the threshold. 
Valid values are 
between 0 and 
255.

?threshol 
d=155

tint String No Tints the image 
using the 
provided RGB 
while preservin 
g the image 
luminance.

?tint=#77 
43CE

grayscale Boolean No Turns the image 
into grayscale 
(black and 
white).

?grayscale

Response status codes

The following list describes the response status codes for image optimization.

Success - HTTP status code 200

The request was fullfilled successfully.

Image optimization for framework authors 76



AWS Amplify Hosting User Guide

BadRequest - HTTP status code 400

• An input query parameter was specified incorrectly.

• The remote URL is not listed as allowed in the remotePatterns setting.

• The remote URL doesn't resolve to an image.

• The requested width or height are not listed as allowed in the sizes setting.

• The image requested is SVG but the dangerouslyAllowSvg setting is disabled.

Not Found - HTTP status code 404

The source image was not found.

Content too large - HTTP status code 413

Either the source image or the optimized image exceed the maximum allowed size in bytes.

Caching

Amplify Hosting caches optimized images on our CDN so that subsequent requests to the same 
image, with the same query parameters, are served from the cache. The cache Time to live (TTL) is 
controlled by the Cache-Control header. The following list describes your options for specifying 
the Cache-Control header.

• Using the Cache-Control key within the routing rule that targets image optimization.

• Using custom headers defined in the Amplify app.

• For remote images, the Cache-Control header returned by the remote image is honored.

The minimumCacheTTL specified in the image optimization settings defines the lower bound of 
the Cache-Control max-age directive. For example, if a remote image URL responds with a Cache-
Control s-max-age=10, but the value of minimumCacheTTL is 60, then 60 is used.

Using open source adapters

You can use any SSR framework build adapter that has been created for integration with Amplify 
Hosting. Each framework that offers an adapter determines how the adapter is configured and 
connected to their build process. Typically, you will install the adapter as an npm development 
dependency.

After you create an app with a framework, use the framework's documentation to learn how to 
install the Amplify Hosting adapter and configure it in your application's configuration file.

Using open source adapters 77



AWS Amplify Hosting User Guide

Next, create an amplify.yml file in your project's root directory. In the amplify.yml file, set 
the baseDirectory to your application's build output directory. The framework runs the adapter 
during the build process to transform the output into the Amplify Hosting deployment bundle.

The name of the build output directory can be anything, but the .amplify-hosting filename has 
significance. Amplify first looks for a directory defined as the baseDirectory. If it exists, Amplify 
looks for the build output there. If the directory doesn't exist, Amplify looks for the build output 
inside .amplify-hosting, even if it has not been defined by the customer.

The following is an example of the build settings for an app. The baseDirectory is set to
.amplify-hosting to indicate that the build output is in the .amplify-hosting folder. As 
long as the contents of the .amplify-hosting folder match the Amplify Hosting deployment 
specification, the app will deploy successfully.

version: 1
frontend: 
  preBuild: 
    commands: 
      - npm install 
  build: 
    commands: 
      - npm run build 
  artifacts: 
    baseDirectory: .amplify-hosting

After your app is configured to use a framework adapter, you can deploy it to Amplify Hosting. For 
detailed instructions, see Deploy an SSR app to Amplify

Using open source adapters 78



AWS Amplify Hosting User Guide

Setting up custom domains

You can connect an app that you’ve deployed with Amplify Hosting to a custom domain. When you 
use Amplify to deploy your web app, Amplify hosts it for you on the default amplifyapp.com
domain with a URL such as https://branch-name.d1m7bkiki6tdw1.amplifyapp.com. When 
you connect your app to a custom domain, users see that your app is hosted on a custom URL, such 
as https://www.example.com.

You can purchase a custom domain through an accredited domain registrar such as Amazon 
Route 53 or GoDaddy. Route 53 is Amazon’s Domain Name System (DNS) web service. For 
more information about using Route 53, see What is Amazon Route 53. For a list of third-party 
accredited domain registrars, see the Accredited Registrar Directory at the ICANN website.

When you set up your custom domain, you can use the default managed certificate that Amplify 
provisions for you or you can use your own custom certificate. You can change the certificate in use 
for the domain at any time. For detailed information about managing certificates, see Using SSL/
TLS certificates.

Before you proceed with setting up a custom domain, verify that you have met the following 
prerequisites.

• You own a registered domain name.

• You have a certificate issued by or imported into AWS Certificate Manager.

• You have deployed your app to Amplify Hosting.

For more information about completing this step, see Getting started with deploying an app to 
Amplify Hosting.

• You have a basic knowledge of domains and DNS terminology.

For more information about domains and DNS, see Understanding DNS terminology and 
concepts.

Topics

• Understanding DNS terminology and concepts

• Using SSL/TLS certificates

• Add a custom domain managed by Amazon Route 53

79

https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/Welcome.html
https://www.icann.org/en/accredited-registrars


AWS Amplify Hosting User Guide

• Add a custom domain managed by a third-party DNS provider

• Update DNS records for a domain managed by GoDaddy

• Update DNS records for a domain managed by Google Domains

• Update the SSL/TLS certificate for a domain

• Manage subdomains

• Wildcard subdomains

• Set up automatic subdomains for an Amazon Route 53 custom domain

• Troubleshooting custom domains

Understanding DNS terminology and concepts

If you are unfamiliar with the terms and concepts associated with Domain Name System (DNS), the 
following topics can help you understand the procedures for adding custom domains.

DNS terminology

The following are a list of terms common to DNS. They can help you understand the procedures for 
adding custom domains.

CNAME

A Canonical Record Name (CNAME) is a type of DNS record that masks the domain for a set of 
webpages and makes them appear as though they are located elsewhere. A CNAME points a 
subdomain to a fully qualified domain name (FQDN). For example, you can create a new CNAME 
record to map the subdomain www.example.com, where www is the subdomain, to the FQDN 
domain branch-name.d1m7bkiki6tdw1.cloudfront.net assigned to your app in the Amplify 
console.

ANAME

An ANAME record is like a CNAME record, but at the root level. An ANAME points the root of 
your domain to an FQDN. That FQDN points to an IP address.

Name server

A name server is a server on the internet that's specialized in handling queries regarding the 
location of a domain name’s various services. If you set up your domain in Amazon Route 53, a 
list of name servers are already assigned to your domain.

Understanding DNS terminology and concepts 80



AWS Amplify Hosting User Guide

NS record

An NS record points to name servers that look up your domain details.

DNS verification

A Domain Name System (DNS) is like a phone book that translates human-readable domain names 
into computer-friendly IP addresses. When you type https://google.com into a browser, a 
lookup operation is performed in the DNS provider to find the IP Address of the server that hosts 
the website.

DNS providers contain records of domains and their corresponding IP Addresses. The most 
commonly used DNS records are CNAME, ANAME, and NS records.

Amplify uses a CNAME record to verify that you own your custom domain. If you host your domain 
with Route 53, verification is done automatically on your behalf. However, if you host your domain 
with a third-party provider such as GoDaddy, you have to manually update your domain’s DNS 
settings and add a new CNAME record provided by Amplify.

Amplify Hosting custom domain activation process

When you add a custom domain with Amplify Hosting, there are a number of steps to complete 
before you can view your app using your custom domain. The following list describes each step in 
the domain set up process.

SSL/TLS creation

If you are using a managed certificate, AWS Amplify issues an SSL/TLS certificate for setting up 
a secure custom domain.

SSL/TLS configuration and verification

Before issuing a managed certificate, Amplify verifies that you are the owner of the domain. For 
domains managed by Amazon Route 53, Amplify automatically updates the DNS verification 
record. For domains managed outside of Route 53, you must manually add the DNS verification 
record provided in the Amplify console into your domain with a third-party DNS provider.

If you are using a custom certificate, you are responsible for validating domain ownership.

DNS verification 81



AWS Amplify Hosting User Guide

Domain activation

The domain is successfully verified. For domains managed outside of Route 53, you need to 
manually add the CNAME records provided in the Amplify console into your domain with a 
third-party DNS provider.

Using SSL/TLS certificates

An SSL/TLS certificate is a digital document that allows web browsers to identify and establish 
encrypted network connections to web sites using the secure SSL/TLS protocol. When you set up 
your custom domain, you can use the default managed certificate that Amplify provisions for you 
or you can use your own custom certificate.

With a managed certificate, Amplify issues an SSL/TLS certificate for all domains connected to 
your app so that all traffic is secured through HTTPS/2. The default certificate generated by AWS 
Certificate Manager (ACM) is valid for 13 months and renews automatically as long as your app is 
hosted with Amplify.

Warning

Amplify can't renew the certificate if the CNAME verification record has been modified 
or deleted in the DNS settings with your domain provider. You must delete and add the 
domain again in the Amplify console.

To use a custom certificate, you must obtain a certificate from the third-party certificate authority 
of your choice. Next, import the certificate into AWS Certificate Manager. ACM is a service that lets 
you easily provision, manage, and deploy public and private SSL/TLS certificates for use with AWS 
services and your internal connected resources. Make sure you request or import the certificate in 
the US East (N. Virginia) (us-east-1) Region.

Ensure that your custom certificate covers all of the subdomains you plan to add. You can use a 
wildcard at the beginning of your domain name to cover multiple subdomains. For example, if your 
domain is example.com, you can include the wildcard domain *.example.com. This will cover 
subdomains such as product.example.com and api.example.com.

After your custom certificate is available in ACM, you will be able to select it during the domain set 
up process. For instructions on importing certificates into AWS Certificate Manager, see Importing 
certificates into AWS Certificate Manager in the AWS Certificate Manager User Guide.

Using SSL/TLS certificates 82

https://docs.aws.amazon.com/acm/latest/userguide/import-certificate.html
https://docs.aws.amazon.com/acm/latest/userguide/import-certificate.html


AWS Amplify Hosting User Guide

If you renew or reimport your custom certificate in ACM, Amplify refreshes the certificate data 
associated with your custom domain. In the case of imported certificates, ACM doesn't manage the 
renewals automatically. You are responsible for renewing your custom certificates and importing 
them again.

You can change the certificate in use for a domain at any time. For example, you can switch from 
the default managed certificate to a custom certificate or change from a custom certificate to 
a managed certificate. In addition, you can change the custom certificate in use to a different 
custom certificate. For instructions on updating certificates, see Update the SSL/TLS certificate for 
a domain.

Add a custom domain managed by Amazon Route 53

To add a custom domain managed by Route 53

1. Sign in to the AWS Management Console and open the Amplify console.

2. Choose your app that you want to connect to a custom domain.

3. In the navigation pane, choose Hosting, Custom domains.

4. On the Custom domains page, choose Add domain.

5. Enter the name of your root domain. For example, if the name of your domain is https://
example.com, enter example.com.

As you start typing, any root domains that you already manage in Route 53 appear in the list. 
You can choose the domain you want to use from the list. If you don't already own the domain 
and it is available, you can purchase the domain in Amazon Route 53.

6. After you enter your domain name, choose Configure domain.

7. By default, Amplify automatically creates two subdomain entries for your domain. For 
example, if your domain name is example.com, you will see the subdomains https://
www.example.com and https://example.com with a redirect set up from the root domain to 
the www subdomain.

(Optional) You can modify the default configuration if you want to add subdomains only. To 
change the default configuration, choose Rewrites and redirects from the navigation pane, 
then configure your domain.

8. Choose the SSL/TLS certificate to use. You can either use the default managed certificate that 
Amplify provisions for you, or a custom third-party certificate that you have imported into 
AWS Certificate Manager.

Add a custom domain managed by Amazon Route 53 83

https://console.aws.amazon.com/amplify/
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/domain-register.html


AWS Amplify Hosting User Guide

• Use the default Amplify managed certificate.

• Choose Amplify managed certificate.

• Use a custom third-party certificate.

a. Choose Custom SSL certificate.

b. Select the certificate to use from the list.

9. Choose Add domain.

Note

It can take up to 24 hours for the DNS to propagate and to issue the certificate. For 
help with resolving errors that occur, see Troubleshooting custom domains.

Add a custom domain managed by a third-party DNS provider

If you are not using Amazon Route 53 to manage your domain, you can add a custom domain 
managed by a third-party DNS provider to your app deployed with Amplify.

If you are using GoDaddy or Google Domains, see the section called “Update DNS records for a 
domain managed by GoDaddy” or the section called “Update DNS records for a domain managed 
by Google Domains” for procedures specific to these providers.

To add a custom domain managed by a third-party DNS provider

1. Sign in to the AWS Management Console and open the Amplify console.

2. Choose your app that you want to add a custom domain to.

3. In the navigation pane, choose Hosting, Custom domains.

4. On the Custom domains page, choose Add domain.

5. Enter the name of your root domain. For example, if the name of your domain is https://
example.com, enter example.com.

6. Amplify detects that you are not using a Route 53 domain and gives you the option to create a 
hosted zone in Route 53.

• To create a hosted zone in Route 53

a. Choose Create hosted zone on Route 53.

Add a custom domain managed by a third-party DNS provider 84

https://console.aws.amazon.com/amplify/


AWS Amplify Hosting User Guide

b. Choose Configure domain.

c. Hosted zone name servers are displayed in the console. Go to your DNS provider's 
website and add the name servers to your DNS settings.

d. Select I have added the above name servers to my domain registry.

e. Proceed to step seven.

• To continue with manual configuration

a. Choose Manual configuration

b. Choose Configure domain.

c. Proceed to step seven.

7. By default, Amplify automatically creates two subdomain entries for your domain. For 
example, if your domain name is example.com, you will see the subdomains https://
www.example.com and https://example.com with a redirect set up from the root domain to 
the www subdomain.

(Optional) You can modify the default configuration if you want to add subdomains only. To 
change the default configuration, choose Rewrites and redirects from the navigation pane 
and configure your domain.

8. Choose the SSL/TLS certificate to use. You can either use the default managed certificate that 
Amplify provisions for you, or a custom third-party certificate that you have imported into 
AWS Certificate Manager.

• Use the default Amplify managed certificate.

• Choose Amplify managed certificate.

• Use a custom third-party certificate.

a. Choose Custom SSL certificate.

b. Select the certificate to use from the list.

9. Choose Add domain.

10. If you chose Create hosted zone on Route 53 in step six, proceed to step 15.

If you chose Manual configuration, in step six, you must update your DNS records with your 
third-party domain provider.

On the Actions menu, choose View DNS records. The following screenshot shows the DNS 
records displayed in the console.

Add a custom domain managed by a third-party DNS provider 85



AWS Amplify Hosting User Guide

11. Do one of the following:

• If you're using GoDaddy, go to Update DNS records for a domain managed by GoDaddy.

• If you're using Google Domains, go to Update DNS records for a domain managed by Google 
Domains.

• If you're using a different third-party DNS provider, go to the next step in this procedure.

12. Go to your DNS provider's website, log in to your account, and locate the DNS management 
settings for your domain. You will configure two CNAME records.

13. Configure the first CNAME record to point your subdomain to the AWS validation server.

If the Amplify console displays a DNS record for verifying ownership of your 
subdomain such as _c3e2d7eaf1e656b73f46cd6980fdc0e.example.com, enter only 
_c3e2d7eaf1e656b73f46cd6980fdc0e for the CNAME record subdomain name.

The following screenshot shows the location of the verification record to use.

Add a custom domain managed by a third-party DNS provider 86



AWS Amplify Hosting User Guide

If the the Amplify console displays an ACM validation server record such as
_cjhwou20vhu2exampleuw20vuyb2ovb9.j9s73ucn9vy.acm-validations.aws, enter
_cjhwou20vhu2exampleuw20vuyb2ovb9.j9s73ucn9vy.acm-validations.aws for the 
CNAME record value.

The following screenshot shows the location of the ACM verification record to use.

Add a custom domain managed by a third-party DNS provider 87



AWS Amplify Hosting User Guide

Amplify uses this information to verify ownership of your domain and generate an SSL/TLS 
certificate for your domain. Once Amplify validates ownership of your domain, all traffic will 
be served using HTTPS/2.

Note

The default Amplify certificate generated by AWS Certificate Manager (ACM) is valid 
for 13 months and renews automatically as long as your app is hosted with Amplify. 
Amplify can't renew the certificate if the CNAME verification record has been modified 
or deleted. You must delete and add the domain again in the Amplify console.

Important

It is important that you perform this step soon after adding your custom domain in the 
Amplify console. The AWS Certificate Manager (ACM) immediately starts attempting 
to verify ownership. Over time, the checks become less frequent. If you add or update 
your CNAME records a few hours after you create your app, this can cause your app to 
get stuck in the pending verification state.

14. Configure a second CNAME record to point your subdomains to the Amplify domain. For 
example, if your subdomain is www.example.com, enter www for the subdomain name.

If the Amplify console displays the domain for your app as d111111abcdef8.cloudfront.net, 
enter d111111abcdef8.cloudfront.net for the Amplify domain.

If you have production traffic, we recommended you update this CNAME record after your 
domain status shows as AVAILABLE in the Amplify console.

The following screenshot shows the location of the domain name record to use.

Add a custom domain managed by a third-party DNS provider 88



AWS Amplify Hosting User Guide

15. Configure the ANAME/ALIAS record to point to the root domain of your app (for example
https://example.com). An ANAME record points the root of your domain to a hostname. 
If you have production traffic, we recommended that you update your ANAME record after 
your domain status shows as AVAILABLE in the console. For DNS providers that don't have 
ANAME/ALIAS support, we strongly recommend migrating your DNS to Route 53. For more 
information, see Configuring Amazon Route 53 as your DNS service.

Note

Verification of domain ownership and DNS propagation for third-party domains can take 
up to 48 hours. For help resolving errors that occur, see Troubleshooting custom domains.

Update DNS records for a domain managed by GoDaddy

To add a custom domain managed by GoDaddy

1. Before you can update your DNS records with GoDaddy, complete steps one through nine 
of the procedure the section called “Add a custom domain managed by a third-party DNS 
provider”.

2. Log in to your GoDaddy account.

3. In your list of domains, find the domain to add and choose Manage DNS.

Update DNS records for a domain managed by GoDaddy 89

https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/dns-configuring.html


AWS Amplify Hosting User Guide

4. On the DNS  page, GoDaddy displays a list of records for your domain in the DNS Records
section. You need to add two new CNAME records.

5. Create the first CNAME record to point your subdomains to the Amplify domain.

a. In the DNS Records section, choose Add New Record.

b. For Type, choose CNAME.

c. For Name, enter only the subdomain. For example, if your subdomain is
www.example.com, enter www for Name.

d. For Value, look at your DNS records in the Amplify console and then enter the value. If the 
Amplify console displays the domain for your app as d111111abcdef8.cloudfront.net, 
enter d111111abcdef8.cloudfront.net for Value.

The following screenshot shows the location of the domain name record to use.

e. Choose Save.

6. Create the second CNAME record to point to the AWS Certificate Manager (ACM) validation 
server. A single validated ACM generates an SSL/TLS certificate for your domain.

a. For Type, choose CNAME.

b. For Name, enter the subdomain.

For example, if the DNS record in the Amplify console for verifying ownership of 
your subdomain is _c3e2d7eaf1e656b73f46cd6980fdc0e.example.com, enter only
_c3e2d7eaf1e656b73f46cd6980fdc0e for Name.

Update DNS records for a domain managed by GoDaddy 90



AWS Amplify Hosting User Guide

The following screenshot shows the location of the verification record to use.

c. For Value, enter the ACM validation certificate.

For example, if the validation server is
_cjhwou20vhu2exampleuw20vuyb2ovb9.j9s73ucn9vy.acm-validations.aws, enter
_cjhwou20vhu2exampleuw20vuyb2ovb9.j9s73ucn9vy.acm-validations.aws for Value.

The following screenshot shows the location of the ACM verification record to use.

d. Choose Save.

Update DNS records for a domain managed by GoDaddy 91



AWS Amplify Hosting User Guide

Note

The default Amplify certificate generated by AWS Certificate Manager (ACM) is valid 
for 13 months and renews automatically as long as your app is hosted with Amplify. 
Amplify can't renew the certificate if the CNAME verification record has been modified 
or deleted. You must delete and add the domain again in the Amplify console.

7. This step is not required for subdomains. GoDaddy doesn’t support ANAME/ALIAS records. For 
DNS providers that do not have ANAME/ALIAS support, we strongly recommend migrating 
your DNS to Amazon Route 53. For more information, see Configuring Amazon Route 53 as 
your DNS service.

If you want to keep GoDaddy as your provider and update the root domain, add Forwarding
and set up a domain forward:

a. On the DNS page, locate the menu at the top of the page and choose Forwarding.

b. In the Domain section, choose Add Forwarding.

c. Choose http://, and then enter the name of your subdomain to forward to (for example,
www.example.com) for the Destination URL.

d. For Forward Type, choose Temporary (302).

e. Choose, Save.

Update DNS records for a domain managed by Google Domains

To add a custom domain managed by Google Domains

1. Before you can update your DNS records with Google Domains, complete steps one through 
nine of the procedure To add a custom domain managed by a third-party DNS provider.

2. Log in to your account at https://domains.google.com and choose My domains in the left 
navigation pane.

3. In your list of domains, find the domain to add and choose Manage.

4. In the left navigation pane, choose DNS. Google displays the Resource records for your 
domain. You need to add two new CNAME records.

5. Create the first CNAME record to point all subdomains to the Amplify domain as follows:

Update DNS records for a domain managed by Google Domains 92

https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/dns-configuring.html
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/dns-configuring.html
https://domains.google.com


AWS Amplify Hosting User Guide

a. For Host name, enter only the subdomain name. For example, if your subdomain is
www.example.com, enter www for Host name.

b. For Type, choose CNAME.

c. For Data, enter the value that's available in the Amplify console.

If the Amplify console displays the domain for your app as
d111111abcdef8.cloudfront.net, enter d111111abcdef8.cloudfront.net for Data.

The following screenshot shows the location of the domain name record to use.

6. Create the second CNAME record to point to the AWS Certificate Manager (ACM) validation 
server. A single validated ACM generates an SSL/TLS certificate for your domain.

a. For Host name, enter the subdomain.

For example, if the DNS record in the Amplify console for verifying ownership of 
your subdomain is _c3e2d7eaf1e656b73f46cd6980fdc0e.example.com, enter only
_c3e2d7eaf1e656b73f46cd6980fdc0e for Host name.

The following screenshot shows the location of the verification record to use.

Update DNS records for a domain managed by Google Domains 93



AWS Amplify Hosting User Guide

b. For Type, choose CNAME.

c. For Data, enter the ACM validation certificate.

For example, if the validation server is
_cf1z2npwt9vzexample93c1j4xzc92wl.2te3iym6kzr.acm-validations.aws., enter
_cf1z2npwt9vzexample93c1j4xzc92wl.2te3iym6kzr.acm-validations.aws. for Data.

The following screenshot shows the location of the ACM verification record to use.

7. Choose Save.

Update DNS records for a domain managed by Google Domains 94



AWS Amplify Hosting User Guide

Note

The default Amplify; certificate generated by AWS Certificate Manager (ACM) is valid 
for 13 months and renews automatically as long as your app is hosted with Amplify. 
Amplify can't renew the certificate if the CNAME verification record has been modified 
or deleted. You must delete and add the domain again in the Amplify console.

8. Google Domains support for ANAME/ALIAS records is in preview. For DNS providers that 
don't have ANAME/ALIAS support, we strongly recommend migrating your DNS to Amazon 
Route 53. For more information, see Configuring Amazon Route 53 as your DNS service. If 
you want to keep Google Domains as your provider and update the root domain, set up a 
subdomain forward. Locate the Website page for your Google domain. Then choose Forward 
domain and configure your forwarding on the Web forwarding page.

Note

Updates to your DNS settings for a Google domain can take up to 48 hours to take effect. 
For help with resolving errors that occur, see Troubleshooting custom domains.

Update the SSL/TLS certificate for a domain

You can change the SSL/TLS certificate that is in use for a domain at any time. For example, you 
can change from using a managed certificate to using a custom certificate. You can also change the 
custom certificate that is in use for the domain. For more information about certificates, see Using 
SSL/TLS certificates.

Use the following procedure to update the type of certificate or the custom certificate that is in use 
for a domain.

To update a domain's certificate

1. Sign in to the AWS Management Console and open the Amplify console.

2. Choose your app that you want to update.

3. In the navigation pane, choose Hosting, Custom domains.

4. On the Custom domains page, choose Domain configuration.

Update the SSL/TLS certificate for a domain 95

https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/dns-configuring.html
https://console.aws.amazon.com/amplify/


AWS Amplify Hosting User Guide

5. On the details page for your domain, locate the Custom SSL certificate section. The procedure 
for updating your certificate varies depending on the type of change you want to make.

• To change from a custom certificate to the default Amplify managed certificate

• Choose Amplify managed certificate.

• To change from a managed certificate to a custom certificate

a. Choose Custom SSL certificate.

b. Select the certificate to use from the list.

• To change a custom certificate to a different custom certificate

• For Custom SSL certificate, select the new certificate to use from the list.

6. Choose Save. The status details for the domain will indicate that Amplify has initiated the SSL 
creation process for a managed certificate or the configuration process for a custom certificate.

Manage subdomains

A subdomain is the part of your URL that appears before your domain name. For example, www
is the subdomain of www.amazon.com and aws is the subdomain of aws.amazon.com. If you 
already have a production website, you might want to only connect a subdomain. Subdomains can 
also be multilevel, for example beta.alpha.example.com has the multilevel subdomain beta.alpha.

To add a subdomain only

1. Sign in to the AWS Management Console and open the Amplify console.

2. Choose your app that you want to add a subdomain to.

3. In the navigation pane, choose Hosting, and then choose Custom domains.

4. On the Custom domains page, choose Add domain.

5. Enter the name of your root domain and then choose Configure domain. For example, if the 
name of your domain is https://example.com, enter example.com.

6. Choose Exclude root and modify the name of the subdomain. For example if the domain is
example.com you can modify it to only add the subdomain alpha.

7. Choose Add domain.

Manage subdomains 96

https://console.aws.amazon.com/amplify/


AWS Amplify Hosting User Guide

To add a multilevel subdomain

1. Sign in to the AWS Management Console and open the Amplify console.

2. Choose your app that you want to add a multilevel subdomain to.

3. In the navigation pane, choose Hosting, and then choose Custom domains.

4. On the Custom domains page, choose Add domain.

5. Enter the name of a domain with a subdomain, choose Exclude root, and modify the 
subdomain to add a new level.

For example, if you have a domain called alpha.example.com and you want to create a 
multilevel subdoman beta.alpha.example.com, you would enter beta as the subdomain value.

6. Choose Add domain.

To add or edit a subdomain

After adding a custom domain to an app, you can edit an existing subdomain or add a new 
subdomain.

1. Sign in to the AWS Management Console and open the Amplify console.

2. Choose your app that you want to manage subdomains for.

3. In the navigation pane, choose Hosting, and then choose Custom domains.

4. On the Custom domains page, choose Domain configuration.

5. In the Subdomains section, you can edit your existing subdomains as needed.

6. (Optional) To add a new subdomain, choose Add new.

7. Choose Save.

Wildcard subdomains

Amplify Hosting now supports wildcard subdomains. A wildcard subdomain is a catch-all 
subdomain that enables you to point existing and non-existing subdomains to a specific 
branch of your application. When you use a wildcard to associate all subdomains in an app to a 
specific branch, you can serve the same content to your app's users in any subdomain and avoid 
configuring each subdomain individually.

To add a multilevel subdomain 97

https://console.aws.amazon.com/amplify/
https://console.aws.amazon.com/amplify/


AWS Amplify Hosting User Guide

To create a wildcard subdomain, specify an asterisk (*) as the subdomain name. For example, if you 
specify the wildcard subdomain *.example.com for a specific branch of your app, any URL that 
ends with example.com will be routed to the branch. In this case, requests for dev.example.com
and prod.example.com will be routed to the *.example.com subdomain.

Note that Amplify supports wildcard subdomains only for a custom domain. You can't use this 
feature with the default amplifyapp.com domain.

The following requirements apply to wildcard subdomains:

• The subdomain name must be specified with an asterisk (*) only.

• You can't use a wildcard to replace part of a subdomain name, like this: *domain.example.com.

• You can't replace a subdomain in the middle of a domain name, like this: 
subdomain.*.example.com.

• By default, all Amplify provisioned certificates cover all subdomains for a custom domain.

To add or delete a wildcard subdomain

After adding a custom domain to an app, you can add a wildcard subdomain for an app branch.

1. Sign in to the AWS Management Console and open the Amplify Hosting console.

2. Choose your app that you want to manage wildcard subdomains for.

3. In the navigation pane, choose Hosting, and then choose Custom domains.

4. On the Custom domains page, choose Domain configuration.

5. In the Subdomains section, you can add or delete wildcard subdomains.

• To add a new wildcard subdomain

a. Choose Add new.

b. For the subdomain, enter an *.

c. For your app branch, select a branch name from the list.

d. Choose Save.

• To delete a wildcard subdomain

a. Choose Remove next to the subdomain name. Traffic to a subdomain that is not 
explicitly configured stops, and Amplify Hosting returns a 404 status code to those 
requests.

To add or delete a wildcard subdomain 98

https://console.aws.amazon.com/amplify/


AWS Amplify Hosting User Guide

b. Choose Save.

Set up automatic subdomains for an Amazon Route 53 custom 
domain

After an app is connected to a custom domain in Route 53, Amplify enables you to automatically 
create subdomains for newly connected branches. For example, if you connect your dev branch, 
Amplify can automatically create dev.exampledomain.com. When you delete a branch, any 
associated subdomains are automatically deleted.

To set up automatic subdomain creation for newly connected branches

1. Sign in to the AWS Management Console and open the Amplify console.

2. Choose an app that is connected to a custom domain managed in Route 53.

3. In the navigation pane, choose Hosting, and then choose Custom domains.

4. On the Custom domains page, choose Domain configuration.

5. In the Automatic subdomain creation section, turn on the feature.

Note

This feature is available only for root domains, for example, exampledomain.com. The 
Amplify console doesn't display this check box if your domain is already a subdomain, such 
as  dev.exampledomain.com.

Web previews with subdomains

After you enable Automatic subdomain creation using the preceding instructions, your app’s 
pull request web previews will also be accessible with automatically created subdomains. When a 
pull request is closed, the associated branch and subdomain are automatically deleted. For more 
information on setting up web previews for pull requests, see Web previews for pull requests.

Set up automatic subdomains for an Amazon Route 53 custom domain 99

https://console.aws.amazon.com/amplify/


AWS Amplify Hosting User Guide

Troubleshooting custom domains

If you encounter issues when adding a custom domain to an app in the AWS Amplify console, 
consult Troubleshooting custom domains in the Amplify troubleshooting chapter. If you don't see 
a solution to your issue there, contact AWS Support. For more information, see Creating a support 
case in the AWS Support User Guide.

Troubleshooting custom domains 100

https://docs.aws.amazon.com/awssupport/latest/user/case-management.html#creating-a-support-case
https://docs.aws.amazon.com/awssupport/latest/user/case-management.html#creating-a-support-case


AWS Amplify Hosting User Guide

Configuring build settings

When you deploy an app with Amplify Hosting, it automatically detects the front end framework 
and associated build settings by inspecting the package.json file in your repository. You have the 
following options for storing your app's build settings:

• Save the build settings in the Amplify console - The Amplify console autodetects build settings 
and saves them so that they can be accessed via the Amplify console. Amplify applies these 
settings to all of your branches unless there is an amplify.yml file stored in your repository.

• Save the build settings in your repository - Download the amplify.yml file and add it to the 
root of your repository.

You can edit an app's build settings in the Amplify console by choosing Hosting, then Build 
settings in the navigation pane. The build settings are applied to all the branches in your app, 
except for the branches that have an amplify.yml file saved in the repository.

Note

Build settings is visible in the Amplify console's Hosting menu only when an app is set up 
for continuous deployment and connected to a git repository. For instructions on this type 
of deployment, see Getting started.

Build specification commands and settings

The build specification YAML contains a collection of build commands and related settings that 
Amplify uses to run your build. The following list describes these settings and how they are used.

version

The Amplify YAML version number.

appRoot

The path within the repository that this application resides in. Ignored unless multiple 
applications are defined.

Build specification commands and settings 101



AWS Amplify Hosting User Guide

env

Add environment variables to this section. You can also add environment variables using the 
console.

backend

Run Amplify CLI commands to provision a backend, update Lambda functions, or GraphQL 
schemas as part of continuous deployment.

frontend

Run frontend build commands.

test

Run commands during a test phase. Learn how to add tests to your app.

build phases

The frontend, backend, and test have three phases that represent the commands run during 
each sequence of the build.

• preBuild - The preBuild script runs before the actual build starts, but after Amplify installs 
dependencies.

• build - Your build commands.

• postBuild - The post-build script runs after the build has finished and Amplify has copied all 
the necessary artifacts to the output directory.

buildpath

The path to use to run the build. Amplify uses this path to locate your build artifacts. If you 
don't specify a path, Amplify uses the monorepo app root, for example apps/app.

artifacts>base-directory

The directory in which your build artifacts exist.

artifacts>files

Specify files from your artifacts you want to deploy. Enter **/* to include all files.

cache

The buildspec’s cache field is used to cache build-time dependencies such as the node_modules
folder, and is automatically suggested based on the package manager and framework that the 
customer’s app is built in. During the first build, any paths here are cached, and on subsequent 

Build specification commands and settings 102



AWS Amplify Hosting User Guide

builds we re-inflate the cache and use those cached dependencies where possible to speed up 
build time.

The following example build specification demonstrates the basic YAML syntax:

Build specification YAML syntax

version: 1
env: 
  variables: 
    key: value
backend: 
  phases: 
    preBuild: 
      commands: 
        - *enter command* 
    build: 
      commands: 
        - *enter command* 
    postBuild: 
        commands: 
        - *enter command*
frontend: 
  buildpath: 
  phases: 
    preBuild: 
      commands: 
        - cd react-app 
        - npm ci 
    build: 
      commands: 
        - npm run build 
  artifacts: 
    files: 
        - location 
        - location 
    discard-paths: yes 
    baseDirectory: location 
  cache: 
    paths: 
        - path 
        - path
test: 

Build specification commands and settings 103



AWS Amplify Hosting User Guide

  phases: 
    preTest: 
      commands: 
        - *enter command* 
    test: 
      commands: 
        - *enter command* 
    postTest: 
      commands: 
        - *enter command* 
  artifacts: 
    files: 
        - location 
        - location 
    configFilePath: *location* 
    baseDirectory: *location*

Branch-specific build settings

You can use bash shell scripting to set branch-specific build settings. For example, the following 
script uses the system environment variable $AWS_BRANCH to run one set of commands if the 
branch name is main and a different set of commands if the branch name is dev.

frontend: 
  phases: 
    build: 
      commands: 
        - if [ "${AWS_BRANCH}" = "main" ]; then echo "main branch"; fi 
        - if [ "${AWS_BRANCH}" = "dev" ]; then echo "dev branch"; fi

Navigating to a subfolder

For monorepos, users want to be able to cd into a folder to run the build. After you run the cd
command, it applies to all stages of your build so you don’t need to repeat the command in 
separate phases.

version: 1
env: 
  variables: 
    key: value

Branch-specific build settings 104



AWS Amplify Hosting User Guide

frontend: 
  phases: 
    preBuild: 
      commands: 
        - cd react-app 
        - npm ci 
    build: 
      commands: 
        - npm run build

Deploying the backend with the front end for a Gen 1 app

Note

This section applies to Amplify Gen 1 applications only. A Gen 1 backend is created using 
Amplify Studio and the Amplify command line interface (CLI).

The amplifyPush command is a helper script that helps you with backend deployments. The build 
settings below automatically determine the correct backend environment to deploy for the current 
branch.

version: 1
env: 
  variables: 
    key: value
backend: 
  phases: 
    build: 
      commands: 
        - amplifyPush --simple

Setting the output folder

The following build settings set the output directory to the public folder.

frontend: 
  phases: 
    commands: 
      build: 

Deploying the backend with the front end for a Gen 1 app 105



AWS Amplify Hosting User Guide

        - yarn run build 
  artifacts: 
    baseDirectory: public

Installing packages as part of a build

You can use the npm or yarn commands to install packages during the build.

frontend: 
  phases: 
    build: 
      commands: 
        - npm install -g <package> 
        - <package> deploy 
        - yarn run build 
  artifacts: 
    baseDirectory: public

Using a private npm registry

You can add references to a private registry in your build settings or add it as an environment 
variable.

build: 
  phases: 
    preBuild: 
      commands: 
        - npm config set <key> <value> 
        - npm config set registry https://registry.npmjs.org 
        - npm config set always-auth true 
        - npm config set email hello@amplifyapp.com 
        - yarn install

Installing OS packages

Amplify's AL2023 image runs your code with a non-privileged user named amplify. Amplify 
grants this user privileges to run OS commands using the Linux sudo command. If you want to 
install OS packages for missing dependencies, you can use commands such as yum and rpm with
sudo.

Installing packages as part of a build 106



AWS Amplify Hosting User Guide

The following example build section demonstrates the syntax for installing an OS package using 
the sudo command.

build: 
  phases: 
    preBuild: 
      commands: 
        - sudo yum install -y <package>

Key-value storage for every build

The envCache provides key-value storage at build time. Values stored in the envCache can only 
be modified during a build and can be re-used at the next build. Using the envCache, we can store 
information on the deployed environment and make it available to the build container in successive 
builds. Unlike values stored in the envCache, changes to environment variables during a build are 
not persisted to future builds.

Example usage:

envCache --set <key> <value>
envCache --get <key>

Skip build for a commit

To skip an automatic build on a particular commit, include the text [skip-cd] at the end of the 
commit message.

Disable automatic builds

You can configure Amplify to disable automatic builds on every code commit. To set up, choose
App settings, Branch settings, and then locate the Branches section that lists the connected 
branches. Select a branch, and then choose Actions, Disable auto build. New commits to that 
branch will no longer start a new build.

Enable or disable diff based frontend build and deploy

You can configure Amplify to use diff based frontend builds. If enabled, at the start of each build 
Amplify attempts to run a diff on either your appRoot, or the /src/ folder by default. If Amplify 

Key-value storage for every build 107



AWS Amplify Hosting User Guide

doesn't find any differences, it skips the frontend build, test (if configured), and deploy steps, and 
does not update your hosted app.

To configure diff based frontend build and deploy

1. Sign in to the AWS Management Console and open the Amplify console.

2. Choose the app to configure diff based frontend build and deploy for.

3. In the navigation pane, choose Hosting, Environment variables.

4. In the Environment variables section, choose Manage variables.

5. The procedure for configuring the environment variable varies depending on whether you are 
enabling or disabling diff based frontend build and deploy.

• To enable diff based frontend build and deploy

a. In the Manage variables section, under Variable, enter AMPLIFY_DIFF_DEPLOY.

b. For Value, enter true.

• To disable diff based frontend build and deploy

• Do one of the following:

• In the Manage variables section, locate AMPLIFY_DIFF_DEPLOY. For Value, 
enter false.

• Remove the AMPLIFY_DIFF_DEPLOY environment variable.

6. Choose Save.

Optionally, you can set the AMPLIFY_DIFF_DEPLOY_ROOT environment variable to override the 
default path with a path relative to the root of your repo, such as dist.

Enable or disable diff based backend builds for a Gen 1 app

Note

This section applies to Amplify Gen 1 applications only. A Gen 1 backend is created using 
Amplify Studio and the Amplify command line interface (CLI).

You can configure Amplify Hosting to use diff based backend builds using the
AMPLIFY_DIFF_BACKEND environment variable. When you enable diff based backend builds, at 

Enable or disable diff based backend builds for a Gen 1 app 108

https://console.aws.amazon.com/amplify/


AWS Amplify Hosting User Guide

the start of each build Amplify attempts to run a diff on the amplify folder in your repository. 
If Amplify doesn't find any differences, it skips the backend build step, and doesn't update your 
backend resources. If your project doesn't have an amplify folder in your repository, Amplify 
ignores the value of the AMPLIFY_DIFF_BACKEND environment variable.

If you currently have custom commands specified in the build settings of your backend phase, 
conditional backend builds won't work. If you want those custom commands to run, you must 
move them to the frontend phase of your build settings in your app's amplify.yml file.

To configure diff based backend builds

1. Sign in to the AWS Management Console and open the Amplify console.

2. Choose the app to configure diff based backend builds for.

3. In the navigation pane, choose Hosting, Environment variables.

4. In the Environment variables section, choose Manage variables.

5. The procedure for configuring the environment variable varies depending on whether you are 
enabling or disabling diff based backend builds.

• To enable diff based backend builds

a. In the Manage variables section, under Variable, enter AMPLIFY_DIFF_BACKEND.

b. For Value, enter true.

• To disable diff based backend builds

• Do one of the following:

• In the Manage variables section, locate AMPLIFY_DIFF_BACKEND. For Value, 
enter false.

• Remove the AMPLIFY_DIFF_BACKEND environment variable.

6. Choose Save.

Monorepo build settings

When you store multiple projects or microservices in a single repository, it is called a monorepo. 
You can use Amplify Hosting to deploy applications in a monorepo without creating multiple build 
configurations or branch configurations.

Monorepo build settings 109

https://console.aws.amazon.com/amplify/


AWS Amplify Hosting User Guide

Amplify supports apps in generic monorepos as well as apps in monorepos created using npm 
workspace, pnpm workspace, Yarn workspace, Nx, and Turborepo. When you deploy your app, 
Amplify automatically detects the monorepo build tool that you are using. Amplify automatically 
applies build settings for apps in an npm workspace, Yarn workspace or Nx. Turborepo and pnpm 
apps require additional configuration. For more information, see Configuring Turborepo and pnpm 
monorepo apps.

You can save the build settings for a monorepo in the Amplify console or you can download the
amplify.yml file and add it to the root of your repository. Amplify applies the settings saved in 
the console to all of your branches unless it finds an amplify.yml file in your repository. When an
amplify.yml file is present, its settings override any build settings saved in the Amplify console.

Monorepo build specification YAML syntax

The YAML syntax for a monorepo build specification differs from the YAML syntax for a repo that 
contains a single application. For a monorepo, you declare each project in a list of applications. 
You must provide the following additional appRoot key for each application you declare in your 
monorepo build specification:

appRoot

The root, within the repository, that the application starts in. This key must exist, and have 
the same value as the AMPLIFY_MONOREPO_APP_ROOT environment variable. For instructions 
on setting this environment variable, see Setting the AMPLIFY_MONOREPO_APP_ROOT 
environment variable.

The following monorepo build specification example demonstrates how to declare multiple 
Amplify applications in the same repo. The two apps, react-app, and angular-app are declared 
in the applications list. The appRoot key for each app indicates that the app is located in the
apps root folder in the repo.

The buildpath attribute is set to / to run and build the app from the monorepo project root.

Monorepo build specification YAML syntax

version: 1
applications: 
  - appRoot: apps/react-app 
    env: 
      variables: 

Monorepo build specification YAML syntax 110



AWS Amplify Hosting User Guide

        key: value 
    backend: 
      phases: 
        preBuild: 
          commands: 
            - *enter command* 
        build: 
          commands: 
            - *enter command* 
        postBuild: 
            commands: 
            - *enter command* 
    frontend: 
      buildPath: / # Run install and build from the monorepo project root 
      phases: 
        preBuild: 
          commands: 
            - *enter command* 
            - *enter command* 
        build: 
          commands: 
            - *enter command* 
      artifacts: 
        files: 
            - location 
            - location 
        discard-paths: yes 
        baseDirectory: location 
      cache: 
        paths: 
            - path 
            - path 
    test: 
      phases: 
        preTest: 
          commands: 
            - *enter command* 
        test: 
          commands: 
            - *enter command* 
        postTest: 
          commands: 
            - *enter command* 
      artifacts: 

Monorepo build specification YAML syntax 111



AWS Amplify Hosting User Guide

        files: 
            - location 
            - location 
        configFilePath: *location* 
        baseDirectory: *location* 
  - appRoot: apps/angular-app 
    env: 
      variables: 
        key: value 
    backend: 
      phases: 
        preBuild: 
          commands: 
            - *enter command* 
        build: 
          commands: 
            - *enter command* 
        postBuild: 
            commands: 
            - *enter command* 
    frontend: 
      phases: 
        preBuild: 
          commands: 
            - *enter command* 
            - *enter command* 
        build: 
          commands: 
            - *enter command* 
      artifacts: 
        files: 
            - location 
            - location 
        discard-paths: yes 
        baseDirectory: location 
      cache: 
        paths: 
            - path 
            - path 
    test: 
      phases: 
        preTest: 
          commands: 
            - *enter command* 

Monorepo build specification YAML syntax 112



AWS Amplify Hosting User Guide

        test: 
          commands: 
            - *enter command* 
        postTest: 
          commands: 
            - *enter command* 
      artifacts: 
        files: 
            - location 
            - location 
        configFilePath: *location* 
        baseDirectory: *location* 
     

Setting the AMPLIFY_MONOREPO_APP_ROOT environment variable

When you deploy an app stored in a monorepo, the app's AMPLIFY_MONOREPO_APP_ROOT
environment variable must have the same value as the path of the app root, relative to the root of 
your repository. For example, a monorepo named ExampleMonorepo with a root folder named
apps, that contains, app1, app2, and app3 has the following directory structure:

ExampleMonorepo 
  apps 
    app1 
    app2 
    app3

In this example, the value of the AMPLIFY_MONOREPO_APP_ROOT environment variable for app1 is
apps/app1.

When you deploy a monorepo app using the Amplify console, the console automatically sets 
the AMPLIFY_MONOREPO_APP_ROOT environment variable using the value that you specify 
for the path to the app's root. However, if your monorepo app already exists in Amplify or is 
deployed using AWS CloudFormation, you must manually set the AMPLIFY_MONOREPO_APP_ROOT
environment variable in the Environment variables section in the Amplify console.

Setting the AMPLIFY_MONOREPO_APP_ROOT environment variable 113



AWS Amplify Hosting User Guide

Setting the AMPLIFY_MONOREPO_APP_ROOT environment variable 
automatically during deployment

The following instructions demonstrate how to deploy a monorepo app with the Amplify console. 
Amplify automatically sets the AMPLIFY_MONOREPO_APP_ROOT environment variable using the 
app's root folder that you specify in the console.

To deploy a monorepo app with the Amplify console

1. Sign in to the AWS Management Console and open the Amplify console.

2. Choose Create new app in the upper right corner.

3. On the Start building with Amplify page, choose your Git provider, then choose Next.

4. On the Add repository branch page, do the following:

a. Choose the name of your repository from the list.

b. Choose the name of the branch to use.

c. Select My app is a monorepo

d. Enter the path to your app in your monorepo, for example, apps/app1.

e. Choose Next.

5. On the App settings page, you can use the default settings or customize the build settings for 
your app. In the Environment variables section, Amplify sets AMPLIFY_MONOREPO_APP_ROOT
to the path you specified in step 4d.

6. Choose Next.

7. On the Review page, choose Save and deploy.

Setting the AMPLIFY_MONOREPO_APP_ROOT environment variable for an 
existing app

Use the following instructions to manually set the AMPLIFY_MONOREPO_APP_ROOT environment 
variable for an app that is already deployed to Amplify, or has been created using CloudFormation.

To set the AMPLIFY_MONOREPO_APP_ROOT environment variable for an existing app

1. Sign in to the AWS Management Console and open the Amplify console.

2. Choose the name of the app to set the environment variable for.

3. In the navigation pane, choose Hosting, and then choose Environment variables.

Setting the AMPLIFY_MONOREPO_APP_ROOT environment variable 114

https://console.aws.amazon.com/amplify/
https://console.aws.amazon.com/amplify/


AWS Amplify Hosting User Guide

4. On the Environment variables page, choose Manage variables.

5. In the Manage variables section, do the following:

a. Choose Add new.

b. For Variable, enter the key AMPLIFY_MONOREPO_APP_ROOT.

c. For Value, enter the path to the app, for example apps/app1.

d. For Branch, by default Amplify applies the environment variable to all branches.

6. Choose Save.

Configuring Turborepo and pnpm monorepo apps

The Turborepo and pnpm workspace monorepo build tools get configuration information from
.npmrc files. When you deploy a monorepo app created with one of these tools, you must have an
.npmrc file in your project root directory.

In the .npmrc file, set the linker for installing Node packages to hoisted. You can copy the 
following line to your file.

node-linker=hoisted

For more information about .npmrc files and settings, see pnpm .npmrc in the pnpm 
documentation.

Pnpm is not included in the Amplify default build container. For pnpm workspace and Turborepo 
apps, you must add a command to install pnpm in the preBuild phase of your app's build 
settings.

The following example excerpt from a build specification shows a preBuild phase with a 
command to install pnpm.

version: 1
applications: 
  - frontend: 
      phases: 
        preBuild: 
          commands: 
            - npm install -g pnpm

Configuring Turborepo and pnpm monorepo apps 115

https://pnpm.io/next/npmrc


AWS Amplify Hosting User Guide

Feature branch deployments and team workflows

Amplify Hosting is designed to work with feature branch and GitFlow workflows. Amplify uses Git 
branches to create a new deployment each time you connect a new branch in your repository. After 
you connect your first branch, you create additional feature branches.

To add a branch to an app

1. Choose the app you want to add a branch to.

2. Choose App settings, then Branch settings.

3. On the Branch settings page, choose Add branch.

4. Select a branch from your repository.

5. Choose Add branch.

6. Redeploy your app.

After you add a branch, your app has two deployments available at the Amplify default domains, 
such as https://main.appid.amplifyapp.com and https://dev.appid.amplifyapp.com. This may vary 
from team-to-team, but typically the main branch tracks release code and is your production 
branch. The develop branch is used as an integration branch to test new features. This enables 
beta testers to test unreleased features on the develop branch deployment, without affecting any 
of the production end users on the main branch deployment.

Topics

• Team workflows with fullstack Amplify Gen 2 apps

• Team workflows with fullstack Amplify Gen 1 apps

• Pattern-based feature branch deployments

• Automatic build-time generation of Amplify config (Gen 1 apps only)

• Conditional backend builds (Gen 1 apps only)

• Use Amplify backends across apps (Gen 1 apps only)

116



AWS Amplify Hosting User Guide

Team workflows with fullstack Amplify Gen 2 apps

AWS Amplify Gen 2 introduces a TypeScript-based, code-first developer experience for defining 
backends. To learn about fullstack workflows with Amplify Gen 2 applications, see Fullstack 
workflows in the Amplify docs.

Team workflows with fullstack Amplify Gen 1 apps

A feature branch deployment consists of a frontend, and an optional backend environment. The 
frontend is built and deployed to a global content delivery network (CDN), while the backend is 
deployed by Amplify Studio or the Amplify CLI to AWS. To learn how to set up this deployment 
scenario, see Building a backend for an application.

Amplify Hosting continuously deploys backend resources such as GraphQL APIs and Lambda 
functions with your feature branch deployments. You can use the following branching models to 
deploy your backend and frontend with Amplify Hosting.

Feature branch workflow

• Create prod, test, and dev backend environments with Amplify Studio or the Amplify CLI.

• Map the prod backend to the main branch.

• Map the test backend to the develop branch.

• Team members can use the dev backend environment for testing individual feature branches.

Team workflows with fullstack Amplify Gen 2 apps 117

https://docs.amplify.aws/nextjs/deploy-and-host/fullstack-branching/
https://docs.amplify.aws/nextjs/deploy-and-host/fullstack-branching/


AWS Amplify Hosting User Guide

1. Install the Amplify CLI to initialize a new Amplify project.

npm install -g @aws-amplify/cli

2. Initialize a prod backend environment for your project. If you don’t have a project, create one 
using bootstrap tools like create-react-app or Gatsby.

create-react-app next-unicorn
cd next-unicorn
amplify init 
 ? Do you want to use an existing environment? (Y/n): n 
 ? Enter a name for the environment: prod
...
amplify push

3. Add test and dev backend environments.

amplify env add 
 ? Do you want to use an existing environment? (Y/n): n 
 ? Enter a name for the environment: test
...
amplify push

Feature branch workflow 118



AWS Amplify Hosting User Guide

amplify env add 
 ? Do you want to use an existing environment? (Y/n): n 
 ? Enter a name for the environment: dev
...
amplify push

4. Push code to a Git repository of your choice (in this example we’ll assume you pushed to main).

git commit -am 'Added dev, test, and prod environments'
git push origin main

5. Visit Amplify in the AWS Management Console to see your current backend environment. 
Navigate a level up from the breadcrumb to view a list of all backend environments created in 
the Backend environments tab.

Feature branch workflow 119



AWS Amplify Hosting User Guide

6. Switch to the Frontend environments tab and connect your repository provider and main
branch.

7. On the build settings page, select an existing backend environment to set up continuous 
deployment with the main branch. Choose prod from the list and grant the service role to 

Feature branch workflow 120



AWS Amplify Hosting User Guide

Amplify. Choose Save and deploy. After the build completes you will get a main branch 
deployment available at https://main.appid.amplifyapp.com.

8. Connect develop branch in Amplify (assume develop and main branch are the same at this point). 
Choose the test backend environment.

Feature branch workflow 121



AWS Amplify Hosting User Guide

9. Amplify is now set up. You can start working on new features in a feature branch. Add backend 
functionality by using the dev backend environment from your local workstation.

git checkout -b newinternet
amplify env checkout dev
amplify add api
...
amplify push

10.After you finish working on the feature, commit your code, create a pull request to review 
internally.

git commit -am 'Decentralized internet v0.1'
git push origin newinternet

11.To preview what the changes will look like, go to the Amplify console and connect your feature 
branch. Note: If you have the AWS CLI installed on your system (Not the Amplify CLI), you can 
connect a branch directly from your terminal. You can find your appid by going to App settings > 
General > AppARN: arn:aws:amplify:<region>:<region>:apps/<appid>

aws amplify create-branch --app-id <appid> --branch-name <branchname>
aws amplify start-job --app-id <appid> --branch-name <branchname> --job-type RELEASE

12.Your feature will be accessible at https://newinternet.appid.amplifyapp.com to share with your 
teammates. If everything looks good merge the PR to the develop branch.

git checkout develop
git merge newinternet
git push

13.This will kickoff a build that will update the backend as well as the frontend in Amplify with a 
branch deployment at https://dev.appid.amplifyapp.com. You can share this link with internal 
stakeholders so they can review the new feature.

14.Delete your feature branch from Git, Amplify, and remove the backend environment from the 
cloud (you can always spin up a new one based on by running ‘amplify env checkout prod’ and 
running ‘amplify env add’).

git push origin --delete newinternet
aws amplify delete-branch --app-id <appid> --branch-name <branchname>
amplify env remove dev

Feature branch workflow 122



AWS Amplify Hosting User Guide

GitFlow workflow

GitFlow uses two branches to record the history of the project. The main branch tracks release code 
only, and the develop branch is used as an integration branch for new features. GitFlow simplifies 
parallel development by isolating new development from completed work. New development 
(such as features and non-emergency bug fixes) is done in feature branches. When the developer is 
satisfied that the code is ready for release, the feature branch is merged back into the integration
develop branch. The only commits to the main branch are merges from release branches and hotfix
branches (to fix emergency bugs).

The diagram below shows a recommended setup with GitFlow. You can follow the same process as 
described in the feature branch workflow section above.

Per-developer sandbox

• Each developer in a team creates a sandbox environment in the cloud that is separate from their 
local computer. This allows developers to work in isolation from each other without overwriting 
other team members’ changes.

• Each branch in Amplify has its own backend. This ensures that the Amplify uses the Git 
repository as a single source of truth from which to deploy changes, rather than relying on 

GitFlow workflow 123



AWS Amplify Hosting User Guide

developers on the team to manually push their backend or front end to production from their 
local computers.

1. Install the Amplify CLI to initialize a new Amplify project.

npm install -g @aws-amplify/cli

2. Initialize a mary backend environment for your project. If you don’t have a project, create one 
using bootstrap tools like create-react-app or Gatsby.

Per-developer sandbox 124



AWS Amplify Hosting User Guide

cd next-unicorn
amplify init 
 ? Do you want to use an existing environment? (Y/n): n 
 ? Enter a name for the environment: mary
...
amplify push

3. Push code to a Git repository of your choice (in this example we’ll assume you pushed to main.

git commit -am 'Added mary sandbox'
git push origin main

4. Connect your repo > main to Amplify.

5. The Amplify console will detect backend environments created by the Amplify CLI. Choose
Create new environment from the dropdown and grant the service role to Amplify. Choose
Save and deploy. After the build completes you will get a main branch deployment available 
at https://main.appid.amplifyapp.com with a new backend environment that is linked to the 
branch.

6. Connect develop branch in Amplify (assume develop and main branch are the same at this point) 
and choose Create

Pattern-based feature branch deployments

Pattern-based branch deployments allow you to automatically deploy branches that match a 
specific pattern to Amplify. Product teams using feature branch or GitFlow workflows for their 
releases, can now define patterns such as ‘release**’ to automatically deploy Git branches that 
begin with ‘release’ to a shareable URL. This blog post describes using this feature with different 
team workflows.

1. Choose App settings > Branch settings > Edit.

2. Select Branch autodetection to automatically connect branches to Amplify that match a 
pattern set.

3. In the Branch autodetection - patterns box, enter the patterns for automatically deploying 
branches.

• * – Deploys all branches in your repository.

• release* – Deploys all branches that begin with the word ‘release'.

Pattern-based feature branch deployments 125

https://dev.to/kkemple/branch-based-deployment-strategies-with-aws-amplify-console-1n3c


AWS Amplify Hosting User Guide

• release*/ – Deploys all branches that match a ‘release /’ pattern.

• Specify multiple patterns in a comma-separated list. For example, release*, feature*.

4. Set up automatic password protection for all branches that are automatically created by 
selecting Branch autodetection access control .

5. For Gen 1 applications built with an Amplify backend, you can choose to create a new 
environment for every connected branch, or point all branches to an existing backend.

6. Choose Save.

Pattern-based feature branch deployments for an app connected to a 
custom domain

You can use pattern-based feature branch deployments for an app connected to an Amazon 
Route 53 custom domain.

• For instructions on setting up pattern-based feature branch deployments, see Set up automatic 
subdomains for an Amazon Route 53 custom domain

• For instructions on connecting an Amplify app to a custom domain managed in Route 53, see
Add a custom domain managed by Amazon Route 53

• For more information about using Route 53, see What is Amazon Route 53.

Automatic build-time generation of Amplify config (Gen 1 apps 
only)

Note

The information in this section is for Gen 1 apps only. If you want to automatically deploy 
infrastructure and application code changes from feature branches for a Gen 2 app, see
Fullstack branch deployments in the Amplify docs

Amplify supports the automatic build-time generation of the Amplify config aws-exports.js file 
for Gen 1 apps. By turning off full stack CI/CD deployments, you enable your app to autogenerate 
the aws-exports.js file and ensure that updates are not made to your backend at build-time.

Pattern-based feature branch deployments for an app connected to a custom domain 126

https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/Welcome.html
https://docs.amplify.aws/nextjs/deploy-and-host/fullstack-branching/branch-deployments/


AWS Amplify Hosting User Guide

To autogenerate aws-exports.js at build-time

1. Sign in to the AWS Management Console and open the Amplify console.

2. Choose the app to edit.

3. Choose the Hosting environments tab.

4. Locate the branch to edit and choose Edit.

5. On the Edit target backend page, uncheck Enable full-stack continuous deployments (CI/
CD) to turn off full-stack CI/CD for this backend.

6. Select an existing service role to give Amplify the permissions it requires to make changes 
to your app backend. If you need to create a service role, choose Create new role. For more 
information about creating a service role, see Adding a service role.

7. Choose Save. Amplify applies these changes the next time you build the app.

Automatic build-time generation of Amplify config (Gen 1 apps only) 127

https://console.aws.amazon.com/amplify/


AWS Amplify Hosting User Guide

Conditional backend builds (Gen 1 apps only)

Note

The information in this section is for Gen 1 apps only. Amplify Gen 2 introduces a 
TypeScript-based, code-first developer experience. Therefore, this feature isn't necessary 
for Gen 2 backends.

Amplify supports conditional backend builds on all branches in a Gen 1 app. To configure 
conditional backend builds, set the AMPLIFY_DIFF_BACKEND environment variable to true. 
Enabling conditional backend builds will help speed up builds where changes are made only to the 
frontend.

When you enable diff based backend builds, at the start of each build, Amplify attempts to run a 
diff on the amplify folder in your repository. If Amplify doesn't find any differences, it skips the 
backend build step, and doesn't update your backend resources. If your project doesn't have an
amplify folder in your repository, Amplify ignores the value of the AMPLIFY_DIFF_BACKEND
environment variable. For instructions on setting the AMPLIFY_DIFF_BACKEND environment 
variable, see Enable or disable diff based backend builds for a Gen 1 app.

If you currently have custom commands specified in the build settings of your backend phase, 
conditional backend builds won't work. If you want those custom commands to run, you must 
move them to the frontend phase of your build settings in your app's amplify.yml file. For more 
information about updating the amplify.yml file, see Build specification commands and settings.

Use Amplify backends across apps (Gen 1 apps only)

Note

The information in this section is for Gen 1 apps only. If you want to share backend 
resources for a Gen 2 app, see Share resources across branches in the Amplify docs

Amplify enables you to reuse existing backend environments across all of your Gen 1 apps in a 
given region. You can do this when you create a new app, connect a new branch to an existing app, 
or update an existing frontend to point to a different backend environment.

Conditional backend builds (Gen 1 apps only) 128

https://docs.amplify.aws/nextjs/deploy-and-host/fullstack-branching/share-resources/


AWS Amplify Hosting User Guide

Reuse backends when creating a new app

To reuse a backend when creating a new Amplify app

1. Sign in to the AWS Management Console and open the Amplify console.

2. To create a new backend to use for this example, do the following:

a. In the navigation pane, choose All apps.

b. Choose New app, Build an app.

c. Enter a name for your app, such as Example-Amplify-App.

d. Choose Confirm deployment.

3. To connect a frontend to your new backend, choose the Hosting environments tab.

4. Choose your git provider, and then choose Connect branch.

5. On the Add repository branch page, for Recently updated repositories, choose your 
repository name. For Branch, select the branch from your repository to connect.

6. On the Build settings, page do the following:

a. For App name, select the app to use for adding a backend environment. You can choose 
the current app or any other app in the current region.

b. For Environment, select the name of the backend environment to add. You can use an 
existing environment or create a new one.

c. By default, full-stack CI/CD is turned off. Turning off full-stack CI/CD causes the app 
to run in pull only mode. At build time, Amplify will automatically generate the aws-
exports.js file only, without modifying your backend environment.

d. Select an existing service role to give Amplify the permissions it requires to make changes 
to your app backend. If you need to create a service role, choose Create new role. For 
more information about creating a service role, see Adding a service role.

e. Choose Next.

7. Choose Save and deploy.

Reuse backends when connecting a branch to an existing app

To reuse a backend when connecting a branch to an existing Amplify app

1. Sign in to the AWS Management Console and open the Amplify console.

Reuse backends when creating a new app 129

https://console.aws.amazon.com/amplify/
https://console.aws.amazon.com/amplify/


AWS Amplify Hosting User Guide

2. Choose the app to connect a new branch to.

3. In the navigation pane, choose App Settings, General.

4. In the Branches section, choose Connect a branch.

5. On the Add repository branch page, for Branch, select the branch from your repository to 
connect.

6. For App name, select the app to use for adding a backend environment. You can choose the 
current app or any other app in the current region.

7. For Environment, select the name of the backend environment to add. You can use an existing 
environment or create a new one.

8. If you need to set up a service role to give Amplify the permissions it requires to make changes 
to your app backend, the console prompts you to perform this task. For more information 
about creating a service role, see Adding a service role.

9. By default, full-stack CI/CD is turned off. Turning off full-stack CI/CD causes the app to run in
pull only mode. At build time, Amplify will automatically generate the aws-exports.js file 
only, without modifying your backend environment.

10. Choose Next.

11. Choose Save and deploy.

Edit an existing frontend to point to a different backend

To edit a frontend Amplify app to point to a different backend

1. Sign in to the AWS Management Console and open the Amplify console.

2. Choose the app to edit the backend for.

3. Choose the Hosting environments tab.

4. Locate the branch to edit and choose Edit.

Edit an existing frontend to point to a different backend 130

https://console.aws.amazon.com/amplify/


AWS Amplify Hosting User Guide

5. On the Select a backend environment to use with this branch page, for App name, select the 
frontend app that you want to edit the backend environment for. You can choose the current 
app or any other app in the current region.

6. For Backend environment, select the name of the backend environment to add.

7. By default, full-stack CI/CD is enabled. Uncheck this option to turn off full-stack CI/CD for this 
backend. Turning off full-stack CI/CD causes the app to run in pull only mode. At build time, 
Amplify will automatically generate the aws-exports.js file only, without modifying the 
backend environment.

8. Choose Save. Amplify applies these changes the next time you build the app.

Edit an existing frontend to point to a different backend 131



AWS Amplify Hosting User Guide

Building a backend for an application

With AWS Amplify you can build a fullstack application with data, authentication, storage, and 
frontend hosting that is deployed to AWS.

AWS Amplify Gen 2 introduces a TypeScript-based, code-first developer experience for defining 
backends. To learn how to use Amplify Gen 2 to build and connect a backend to your app, see Build 
& connect backend in the Amplify docs.

If you are looking for the documentation for building a backend for a Gen 1 app, using the CLI and 
Amplify Studio, see Build & connect backend in the Gen 1 Amplify docs.

Topics

• Create a backend for a Gen 2 app

• Create a backend for a Gen 1 app

Create a backend for a Gen 2 app

For a tutorial that guides you through the steps for creating an Amplify Gen 2 fullstack application 
with a TypeScript-based backend, see Get started in the Amplify docs.

Create a backend for a Gen 1 app

In this tutorial, you will set up a fullstack CI/CD workflow with Amplify. You will deploy a frontend 
app to Amplify Hosting. Then you will create a backend using Amplify Studio. Finally, you will 
connect the cloud backend to the frontend app.

Prerequisites

Before you begin this tutorial, complete the following prerequisites.

Sign up for an AWS account

If you are not already an AWS customer, you need to create an AWS account by following the 
online instructions. Signing up enables you to access Amplify and other AWS services that you 
can use with your application.

Create a backend for a Gen 2 app 132

https://docs.amplify.aws/nextjs/build-a-backend
https://docs.amplify.aws/nextjs/build-a-backend
https://docs.amplify.aws/gen1/react/build-a-backend/
https://docs.amplify.aws/react/start/
https://portal.aws.amazon.com/billing/signup#/start/email


AWS Amplify Hosting User Guide

Create a Git repository

Amplify supports GitHub, Bitbucket, GitLab, and AWS CodeCommit. Push your application to 
your Git repository.

Install the Amplify Command Line Interface (CLI)

For instructions, see Install the Amplify CLI in the Amplify Framework Documentation.

Step 1: Deploy a frontend

If you have an existing frontend app in a git repository that you want to use for this example, you 
can proceed to the instructions for deploying a frontend app.

If you need to create a new frontend app to use for this example, you can follow the Create React 
App instructions in the Create React App documentation.

To deploy a frontend app

1. Sign in to the AWS Management Console and open the Amplify console.

2. On the All apps page, choose New app, then Host web app in the upper right corner.

3. Select your GitHub, Bitbucket, GitLab, or AWS CodeCommit repository provider and then 
choose Continue.

4. Amplify authorizes access to your git repository. For GitHub repositories, Amplify now uses the 
GitHub Apps feature to authorize Amplify access.

For more information about installing and authorizing the GitHub App, see Setting up Amplify 
access to GitHub repositories.

5. On the Add repository branch page do the following:

a. In the Recently updated repositories list, select the name of the repository to connect.

b. In the Branch list, select the name of the repository branch to connect.

c. Choose Next.

6. On the Configure build settings page, choose Next.

7. On the Review page, choose Save and deploy. When the deployment is complete, you can 
view your app on the amplifyapp.com default domain.

Step 1: Deploy a frontend 133

https://docs.amplify.aws/gen1/react/start/project-setup/prerequisites/#install-the-amplify-cli
https://create-react-app.dev/docs/getting-started
https://create-react-app.dev/docs/getting-started
https://console.aws.amazon.com/amplify/


AWS Amplify Hosting User Guide

Note

To augment the security of your Amplify applications, the amplifyapp.com domain is 
registered in the Public Suffix List (PSL). For further security, we recommend that you 
use cookies with a __Host- prefix if you ever need to set sensitive cookies in the default 
domain name for your Amplify applications. This practice will help to defend your domain 
against cross-site request forgery attempts (CSRF). For more information see the Set-
Cookie page in the Mozilla Developer Network.

Step 2: Create a backend

Now that you have deployed a frontend app to Amplify Hosting, you can create a backend. Use the 
following instructions to create a backend with a simple database and GraphQL API endpoint.

To create a backend

1. Sign in to the AWS Management Console and open the Amplify console.

2. On the All apps page, select the app that you created in Step 1.

3. On the app homepage, choose the Backend environments tab, then choose Get started. This 
initiates the set up process for a default staging environment.

4. After the set up finishes, choose Launch Studio to access the staging backend environment in 
Amplify Studio.

Amplify Studio is a visual interface to create and manage your backend and accelerate your 
frontend UI development. For more information about Amplify Studio, see the Amplify Studio 
documentation.

Use the following instructions to create a simple database using the Amplify Studio visual backend 
builder interface.

Create a data model

1. On the home page for your app's staging environment, choose Create data model. This opens 
the data model designer.

2. On the Data modeling page, choose Add model.

3. For the title, enter Todo.

Step 2: Create a backend 134

https://publicsuffix.org/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie#cookie_prefixes
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie#cookie_prefixes
https://console.aws.amazon.com/amplify/
https://docs.amplify.aws/gen1/react/tools/console/
https://docs.amplify.aws/gen1/react/tools/console/


AWS Amplify Hosting User Guide

4. Choose Add a field.

5. For Field name, enter Description.

The following screenshot is an example of how your data model will look in the designer.

6. Choose Save and Deploy.

7. Return to the Amplify Hosting console and the staging environment deployment will be in 
progress.

During deployment, Amplify Studio creates all the required AWS resources in the backend, 
including an AWS AppSync GraphQL API to access data and an Amazon DynamoDB table to host 
the Todo items. Amplify uses AWS CloudFormation to deploy your backend, which enables you to 
store your backend definition as infrastructure-as-code.

Step 3: Connect the backend to the frontend

Now that you have deployed a frontend and created a cloud backend that contains a data model, 
you need to connect them. Use the following instructions to pull your backend definition down to 
your local app project with the Amplify CLI.

To connect a cloud backend to a local frontend

1. Open a terminal window and navigate to the root directory of your local project.

2. Run the following command in the terminal window, replacing the red text with the unique 
app ID and backend environment name for your project.

Step 3: Connect the backend to the frontend 135



AWS Amplify Hosting User Guide

amplify pull --appId abcd1234 --envName staging

3. Follow the instructions in the terminal window to complete the project set up.

Now you can configure the build process to add the backend to the continuous deployment 
workflow. Use the following instructions to connect a frontend branch with a backend in the 
Amplify Hosting console.

To connect a frontend app branch and cloud backend

1. On the app homepage, choose the Hosting environments tab.

2. Locate the main branch and choose Edit.

3. In the Edit target backend window, for Environment, select the name of the backend to 
connect. In this example, choose the staging backend that you created in Step 2.

By default, full-stack CI/CD is enabled. Uncheck this option to turn off full-stack CI/CD for this 
backend. Turning off full-stack CI/CD causes the app to run in pull only mode. At build time, 
Amplify will automatically generate the aws-exports.js file only, without modifying your 
backend environment.

4. Next, you must set up a service role to give Amplify the permissions it requires to make 
changes to your app backend. You can either use an existing service role or create a new one. 
For instructions, see Adding a service role.

5. After adding a service role, return to the Edit target backend window and choose Save.

Step 3: Connect the backend to the frontend 136



AWS Amplify Hosting User Guide

6. To finish connecting the staging backend to the main branch of the frontend app, perform a 
new build of your project.

Do one of the following:

• From your git repository, push some code to initiate a build in the Amplify console.

• In the Amplify console, navigate to the app's build details page and choose Redeploy this 
version.

Next steps

Set up feature branch deployments

Follow our recommended workflow to set up feature branch deployments with multiple backend 
environments.

Create a frontend UI in Amplify Studio

Use Studio to build your frontend UI with a set of ready-to-use UI components, and then connect it 
to your app backend. For more information and tutorials, see the user guide for Amplify Studio in 
the Amplify Framework Documentation.

Next steps 137

https://docs.aws.amazon.com/amplify/latest/userguide/multi-environments.html#team-workflows-with-amplify-cli-backend-environments
https://docs.aws.amazon.com/amplify/latest/userguide/multi-environments.html#team-workflows-with-amplify-cli-backend-environments
https://docs.amplify.aws/gen1/react/tools/console/


AWS Amplify Hosting User Guide

Manual deploys

Manual deploys allows you to publish your web app with Amplify Hosting without connecting 
a Git provider. You can drag and drop a folder from your desktop and host your site in seconds. 
Alternatively, you can reference assets in an Amazon S3 bucket or specify a public URL to the 
location where your files are stored.

For Amazon S3, you can also set up AWS Lambda triggers to update your site each time new assets 
are uploaded. See the Deploy files stored on Amazon S3, Dropbox, or your Desktop to the AWS 
Amplify console blog post for more details about setting up this scenario.

Amplify Hosting does not support manual deploys for server-side rendered (SSR) apps. For more 
information, see Deploying server-side rendered apps with Amplify Hosting.

Drag and drop manual deploy

To manually deploy an app using drag and drop

1. Sign in to the AWS Management Console and open the Amplify console.

2. In the upper right corner, choose Create new app.

3. On the Start building with Amplify page, choose Deploy without Git. Then, choose Next.

4. In the Start a manual deployment section, for App name, enter the name of your app.

5. For Branch name, enter a meaningful name, such as development or production.

6. For Method, choose Drag and drop.

7. Either drag and drop a folder from your desktop onto the drop zone or use Choose .zip folder
to select the file from your computer. The file that you drag and drop or select must be a a zip 
folder that contains the contents of your build output.

8. Choose Save and deploy.

Amazon S3 or URL manual deploy

To manually deploy an app from Amazon S3 or a public URL

1. Sign in to the AWS Management Console and open the Amplify console.

2. In the upper right corner, choose Create new app.

Drag and drop manual deploy 138

https://aws.amazon.com/blogs/mobile/deploy-files-s3-dropbox-amplify-console/
https://aws.amazon.com/blogs/mobile/deploy-files-s3-dropbox-amplify-console/
https://console.aws.amazon.com/amplify/
https://console.aws.amazon.com/amplify/


AWS Amplify Hosting User Guide

3. On the Start building with Amplify page, choose Deploy without Git. Then, choose Next.

4. In the Start a manual deployment section, for App name, enter the name of your app.

5. For Branch name, enter a meaningful name, such as development or production.

6. For Method, choose either Amazon S3 or Any URL.

7. The procedure for uploading your files depends on the upload method.

• Amazon S3

a. For Amazon S3 Bucket, select the name of the Amazon S3 bucket from the list. 
Access control lists (ACLs) must be enabled for the bucket you select. For more 
information, see Troubleshooting Amazon S3 bucket access.

b. For Zip file, select the name of the zip file to deploy.

• Any URL

• For Resource URL, enter the URL to the zipped file to deploy.

8. Choose Save and deploy.

Note

When you create the zip folder, make sure you zip the contents of your build output and 
not the top level folder. For example, if your build output generates a folder named “build” 
or “public”, first navigate into that folder, select all of the contents, and zip it from there. 
If you do not do this, you will see an “Access Denied” error because the site's root directory 
will not be initialized properly.

Troubleshooting Amazon S3 bucket access

When you create an Amazon S3 bucket, you use its Amazon S3 Object Ownership setting to control 
whether access control lists (ACLs) are enabled or disabled for the bucket. To manually deploy an 
app to Amplify from an Amazon S3 bucket, ACLs must be enabled on the bucket.

If you get an AccessControlList error when you deploy from an Amazon S3 bucket, the 
bucket was created with ACLs disabled and you must enable them in the Amazon S3 console. For 
instructions, see Setting Object Ownership on an existing bucket in the Amazon Simple Storage 
Service User Guide.

Troubleshooting Amazon S3 bucket access 139

https://docs.aws.amazon.com/AmazonS3/latest/userguide/object-ownership-existing-bucket.html?icmpid=docs_s3_hp-edit-object-ownership-page


AWS Amplify Hosting User Guide

Deploy to Amplify button

The Deploy to Amplify Hosting button enables you to share GitHub projects publicly or within 
your team. The following is an image of the button:

Add the Deploy to Amplify Hosting button to a repository or 
blog

Add the button to your GitHub README.md file, blog post, or any other markup page that renders 
HTML. The button has the following two components:

1. An SVG image located at the URL https://oneclick.amplifyapp.com/button.svg

2. The Amplify console URL with a link to your GitHub repository. Your can either copy your 
repository's URL, such as https://github.com/username/repository, or you can provide 
a deep link into a specific folder, such as https://github.com/username/repository/
tree/branchname/folder. Amplify Hosting will deploy the default branch in your repository. 
Additional branches can be connected after the app is connected.

Use the following example to add the button to a markdown file, such as your GitHub README.md. 
Replace https://github.com/username/repository with the URL to your repository.

[![amplifybutton](https://oneclick.amplifyapp.com/button.svg)](https://
console.aws.amazon.com/amplify/home#/deploy?repo=https://github.com/username/
repository)

Use the following example to add the button to any HTML document. Replace https://
github.com/username/repository with the URL to your repository.

<a href="https://console.aws.amazon.com/amplify/home#/deploy?repo=https://github.com/
username/repository"> 
    <img src="https://oneclick.amplifyapp.com/button.svg" alt="Deploy to Amplify 
 Hosting">
</a>

Add the Deploy to Amplify Hosting button to a repository or blog 140



AWS Amplify Hosting User Guide

Setting up Amplify access to GitHub repositories

Amplify now uses the GitHub Apps feature to authorize Amplify read-only access to GitHub 
repositories. With the Amplify GitHub App, permissions are more fine-tuned, enabling you to grant 
Amplify access to only the repositories that you specify. To learn more about GitHub Apps, see
About GitHub Apps on the GitHub website.

When you connect a new app stored in a GitHub repo, by default Amplify uses the GitHub App to 
access the repo. However, existing Amplify apps that you previously connected from GitHub repos 
use OAuth for access. CI/CD will continue to work for these apps, but we highly recommend that 
you migrate them to use the new Amplify GitHub App.

When you deploy a new app or migrate an existing app using the Amplify console, you are 
automatically directed to the installation location for the Amplify GitHub App. To manually access 
the installation landing page for the app, open a web browser and navigate to the app by region. 
Use the format https://github.com/apps/aws-amplify-REGION, replacing REGION with the 
region where you will deploy your Amplify app. For example, to install the Amplify GitHub App in 
the US West (Oregon) region, navigate to https://github.com/apps/aws-amplify-us-west-2.

Topics

• Installing and authorizing the Amplify GitHub App for a new deployment

• Migrating an existing OAuth app to the Amplify GitHub App

• Setting up the Amplify GitHub App for AWS CloudFormation, CLI, and SDK deployments

• Setting up web previews with the Amplify GitHub App

Installing and authorizing the Amplify GitHub App for a new 
deployment

When you deploy a new app to Amplify from existing code in a GitHub repo, use the following 
instructions to install and authorize the GitHub App.

To install and authorize the Amplify GitHub App

1. Sign in to the AWS Management Console and open the Amplify console.

2. From the All apps page, choose New app, then Host web app.

Installing and authorizing the Amplify GitHub App for a new deployment 141

https://docs.github.com/en/developers/apps/getting-started-with-apps/about-apps#about-github-apps
https://console.aws.amazon.com/amplify/


AWS Amplify Hosting User Guide

3. On the Get started with Amplify Hosting page, choose GitHub, then choose Continue.

4. If this is the first time connecting a GitHub repository, A new page opens in your browser on 
GitHub.com, requesting permission to authorize AWS Amplify in your GitHub account. Choose
Authorize.

5. Next, you must install the Amplify GitHub App in your GitHub account. A page opens on 
Github.com requesting permission to install and authorize AWS Amplify in your GitHub 
account.

6. Select the GitHub account where you want to install the Amplify GitHub App.

7. Do one of the following:

• To apply the installation to all repositories, choose All repositories.

• To limit the installation to the specific repositories that you select, choose Only select 
repositories. Make sure to include the repo for the app that you are migrating in the repos 
that you select.

8. Choose Install & Authorize.

9. You are redirected to the Add repository branch page for your app in the Amplify console.

10. In the Recently updated repositories list, select the name of the repository to connect.

11. In the Branch list, select the name of the repository branch to connect.

12. Choose Next.

13. On the Configure build settings page, choose Next.

14. On the Review page, choose Save and deploy.

Migrating an existing OAuth app to the Amplify GitHub App

Existing Amplify apps that you previously connected from GitHub repositories use OAuth for repo 
access. We strongly recommend that you migrate these apps to use the Amplify GitHub App.

Use the following instructions to migrate an app and delete its corresponding OAuth webhook 
in your GitHub account. Note that the procedure for migrating varies depending on whether 
the Amplify GitHub app is already installed. After you migrate your first app and install and 
authorize the GitHub App, you only need to update the repository permissions for subsequent app 
migrations.

To migrate an app from OAuth to the GitHub App

1. Sign in to the AWS Management Console and open the Amplify console.

Migrating an existing OAuth app to the Amplify GitHub App 142

https://console.aws.amazon.com/amplify/


AWS Amplify Hosting User Guide

2. Choose the app that you want to migrate.

3. On the app's information page, locate the blue Migrate to our GitHub App message and 
choose Start migration.

4. On the Install and authorize GitHub App page, choose Configure GitHub App.

5. A new page opens in your browser on GitHub.com, requesting permission to authorize AWS 
Amplify in your GitHub account. Choose Authorize.

6. Select the GitHub account where you want to install the Amplify GitHub App.

7. Do one of the following:

• To apply the installation to all repositories, choose All repositories.

• To limit the installation to the specific repositories that you select, choose Only select 
repositories. Make sure to include the repo for the app that you are migrating in the 
repositories that you select.

8. Choose Install & Authorize.

9. You are redirected to the Install and authorize GitHub App page for your app in the Amplify 
console. If GitHub authorization was successful, you will see a success message. Choose, Next.

10. On the Complete installation page, choose Complete installation. This step deletes your 
existing webhook, creates a new one, and completes the migration.

Setting up the Amplify GitHub App for AWS CloudFormation, 
CLI, and SDK deployments

Existing Amplify apps that you previously connected from GitHub repositories use OAuth for repo 
access. This can include apps that you deployed using the Amplify Command Line Interface (CLI), 
AWS CloudFormation, or the SDKs. We strongly recommend that you migrate these apps to use 
the new Amplify GitHub App. Migration must be performed in the Amplify console in the AWS 
Management Console. For instructions, see Migrating an existing OAuth app to the Amplify GitHub 
App.

You can use AWS CloudFormation, the Amplify CLI, and the SDKs to deploy a new Amplify app that 
uses the GitHub App for repo access. This process requires that you first install the Amplify GitHub 
App in your GitHub account. Next, you will need to generate a personal access token in your GitHub 
account. Lastly, deploy the app and specify the personal access token.

Setting up the Amplify GitHub App for AWS CloudFormation, CLI, and SDK deployments 143



AWS Amplify Hosting User Guide

Install the Amplify GitHub App in your account

1. Open a web browser and navigate to the installation location for the Amplify GitHub App in 
the AWS Region where you will deploy your app.

Use the format https://github.com/apps/aws-amplify-REGION/installations/
new, replacing REGION with your own input. For example, if you are installing your app in the 
US West (Oregon) region, specify https://github.com/apps/aws-amplify-us-west-2/
installations/new.

2. Select the GitHub account where you want to install the Amplify GitHub app.

3. Do one of the following:

• To apply the installation to all repositories, choose All repositories.

• To limit the installation to the specific repositories that you select, choose Only select 
repositories. Make sure to include the repo for the app that you are migrating in the repos 
that you select.

4. Choose Install.

Generate a personal access token in your GitHub account

1. Sign in to your GitHub account.

2. In the upper right corner, locate your profile photo and choose Settings from the menu.

3. In the left navigation menu, choose Developer settings.

4. On the GitHub Apps page, in the left navigation menu, choose Personal access tokens.

5. On the Personal access tokens page, choose Generate new token.

6. On the New personal access token page, for Note enter a descriptive name for the token.

7. In the Select scopes section, select admin:repo_hook.

8. Choose Generate token.

9. Copy and save the personal access token. You will need to provide it when you deploy an 
Amplify app with the CLI, AWS CloudFormation, or the SDKs.

After the Amplify GitHub app is installed in your GitHub account and you have generated a 
personal access token, you can deploy a new app with the Amplify CLI, AWS CloudFormation, or 
the SDKs. Use the accessToken field to specify the personal access token that you created in 

Setting up the Amplify GitHub App for AWS CloudFormation, CLI, and SDK deployments 144



AWS Amplify Hosting User Guide

the previous procedure. For more information, see CreateApp in the Amplify API reference and
AWS::Amplify::App in the AWS CloudFormation User Guide.

The following CLI command deploys a new Amplify app that uses the GitHub App for repository 
access. Replace myapp-using-githubapp, https://github.com/Myaccount/react-app, 
and MY_TOKEN with your own information.

aws amplify create-app --name myapp-using-githubapp --repository https://github.com/
Myaccount/react-app --access-token MY_TOKEN
   
  

Setting up web previews with the Amplify GitHub App

A web preview deploys every pull request (PR) made to your GitHub repository to a unique preview 
URL. Previews now use the Amplify GitHub App for access to your GitHub repo. For instructions on 
installing and authorizing the GitHub App for web previews, see Enable web previews .

Setting up web previews with the Amplify GitHub App 145

https://docs.aws.amazon.com/amplify/latest/APIReference/API_CreateApp.html#API_CreateApp_RequestSyntax
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-amplify-app.html


AWS Amplify Hosting User Guide

Web previews for pull requests

Web previews offer development and quality assurance (QA) teams a way to preview changes from 
pull requests (PRs) before merging code to a production or integration branch. Pull requests let you 
tell others about changes you’ve pushed to a branch in a repository. After a pull request is opened, 
you can discuss and review the potential changes with collaborators and add follow-up commits 
before your changes are merged into the base branch.

A web preview deploys every pull request made to your repository to a unique preview URL which 
is completely different from the URL your main site uses. For apps with backend environments 
provisioned using the Amplify CLI or Amplify Studio, every pull request (private Git repositories 
only) creates a temporary backend that is deleted when the PR is closed.

When web previews are turned on for your app, each PR counts toward the Amplify quota of 
50 branches per app. To avoid exceeding this quota, make sure to close your PRs. For more 
information about quotas, see Amplify Hosting service quotas.

Note

Currently, the AWS_PULL_REQUEST_ID environment variable is not available when using 
AWS CodeCommit as your repository provider.

Enable web previews

For apps stored in a GitHub repo, previews use the Amplify GitHub App for repo access. If you are 
enabling web previews on an existing Amplify app that you previously deployed from a GitHub 
repo using OAuth for access, you must first migrate the app to use the Amplify GitHub App. For 
migration instructions, see Migrating an existing OAuth app to the Amplify GitHub App.

Important

For security purposes, you can enable web previews on all apps with private repositories, 
but not on all apps with public repositiories. If your Git repository is public, you can set up 
previews only for apps that don't require an IAM service role.
For example, apps with backends and apps that are deployed to the WEB_COMPUTE hosting 
platform require an IAM service role. Therefore, you can't enable web previews for these 
types of apps if their repository is public.

Enable web previews 146



AWS Amplify Hosting User Guide

Amplify enforces this restriction to prevent third parties from submitting arbitrary code 
that would run using your app's IAM role permissions.

To enable web previews for pull requests

1. Choose Hosting, then Previews.

Note

Previews is visible in the App settings menu only when an app is set up for continuous 
deployment and connected to a git repository. For instructions on this type of 
deployment, see Getting started with existing code.

2. For GitHub repositories only, do the following to install and authorize the Amplify GitHub App 
in your account:

a. In the Install GitHub App to enable previews window, choose Install GitHub app.

b. Select the GitHub account where you want to configure the Amplify GitHub App.

c. A page opens on Github.com to configure repository permissions for your account.

d. Do one of the following:

• To apply the installation to all repositories, choose All repositories.

• To limit the installation to the specific repositories that you select, choose Only select 
repositories. Make sure to include the repo for the app that you are enabling web 
previews for in the repositories that you select.

e. Choose Save

3. After you enable previews for your repo, return to the Amplify console to enable previews 
for specific branches. On the Previews page, select a branch from the list and choose Edit 
settings.

4. On the Manage preview settings page, turn on Pull request previews. Then choose Confirm.

5. For fullstack applications do one of the following:

• Choose, Create new backend environment for every Pull Request. This option enables 
you to test changes without impacting production.

• Choose Point all Pull Requests for this branch to an existing environment.

6. Choose Confirm.
Enable web previews 147



AWS Amplify Hosting User Guide

The next time you submit a pull request for the branch, Amplify builds and deploys your PR to 
a preview URL. After the pull request is closed, the preview URL is deleted, and any temporary 
backend environment linked to the pull request is deleted. For GitHub repositories only, you can 
access a preview of your URL directly from the pull request in your GitHub account.

Web preview access with subdomains

Web previews for pull requests are accessible with subdomains for an Amplify app that is 
connected to a custom domain managed by Amazon Route 53. When the pull request is closed, 
branches and subdomains associated with the pull request are automatically deleted. This is the 
default behavior for web previews after you set up pattern-based feature branch deployments for 
your app. For instructions on setting up automatic subdomains, see Set up automatic subdomains 
for an Amazon Route 53 custom domain.

Web preview access with subdomains 148



AWS Amplify Hosting User Guide

Add end-to-end Cypress tests to your Amplify app

You can run end-to-end (E2E) tests in the test phase of your Amplify app to catch regressions 
before pushing code to production. The test phase can be configured in the build specification 
YAML. Currently, you can run only the Cypress testing framework during a build.

Tutorial: Set up end-to-end tests with Cypress

Cypress is a JavaScript-based testing framework that allows you to run E2E tests on a browser. 
For a tutorial that demonstrates how to set up E2E tests, see the blog post Running end-to-end 
Cypress tests for your fullstack CI/CD deployment with Amplify.

Add tests to your existing Amplify app

You can add Cypress tests to an existing app by updating the app's build settings in the Amplify 
console. The build specification YAML contains a collection of build commands and related settings 
that Amplify uses to run your build. Use the test step to run any test commands at build time. For 
E2E tests, Amplify Hosting offers a deeper integration with Cypress that allows you to generate a 
UI report for your tests.

The following list describes the test settings and how they are used.

preTest

Install the dependencies required to run Cypress tests. Amplify Hosting uses mochawesome to 
generate a report to view your test results and wait-on to set up the localhost server during the 
build.

test

Run cypress commands to perform tests using mochawesome.

postTest

The mochawesome report is generated from the output JSON. Note that if you are using Yarn, 
you must run this command in silent mode to generate the mochawesome report. For Yarn, you 
can use the following command.

yarn run --silent mochawesome-merge cypress/report/mochawesome-report/
mochawesome*.json > cypress/report/mochawesome.json 

Tutorial: Set up end-to-end tests with Cypress 149

https://aws.amazon.com/blogs/mobile/run-end-to-end-cypress-tests-for-your-fullstack-ci-cd-deployment-with-amplify-console/
https://aws.amazon.com/blogs/mobile/run-end-to-end-cypress-tests-for-your-fullstack-ci-cd-deployment-with-amplify-console/
https://github.com/adamgruber/mochawesome
https://github.com/jeffbski/wait-on


AWS Amplify Hosting User Guide

                  

artifacts>baseDirectory

The directory from which tests are run.

artifacts>configFilePath

The generated test report data.

artifacts>files

The generated artifacts (screenshots and videos) available for download.

The following example excerpt from a build specification amplify.yml file shows how to add 
Cypress tests to your app.

test: 
  phases: 
    preTest: 
      commands: 
        - npm ci 
        - npm install -g pm2 
        - npm install -g wait-on 
        - npm install mocha mochawesome mochawesome-merge mochawesome-report-generator 
        - pm2 start npm -- start 
        - wait-on http://localhost:3000 
    test: 
      commands: 
        - 'npx cypress run --reporter mochawesome --reporter-options 
 "reportDir=cypress/report/mochawesome-
report,overwrite=false,html=false,json=true,timestamp=mmddyyyy_HHMMss"' 
    postTest: 
      commands: 
        - npx mochawesome-merge cypress/report/mochawesome-report/mochawesome*.json > 
 cypress/report/mochawesome.json 
        - pm2 kill 
  artifacts: 
    baseDirectory: cypress 
    configFilePath: '**/mochawesome.json' 
    files: 
      - '**/*.png' 
      - '**/*.mp4'

Add tests to your existing Amplify app 150



AWS Amplify Hosting User Guide

Disabling tests

After the test configuration has been added to your amplify.yml build settings, the test step 
runs for every build, on every branch. If you want to globally disable tests from running, or only 
run tests for specific branches, you can use the USER_DISABLE_TESTS environment variable 
without modifying your build settings.

To globally disable tests for all branches, add the USER_DISABLE_TESTS environment variable 
with a value of true for all branches. The following screenshot, shows the Environment variables
section in the Amplify console with tests disabled for all branches.

To disable tests for a specific branch, add the USER_DISABLE_TESTS environment variable with a 
value of false for all branches, and then add an override for each branch you want to disable with 
a value of true. In the following screenshot, tests are disabled on the main branch, and enabled 
for every other branch.

Disabling tests 151



AWS Amplify Hosting User Guide

Disabling tests with this variable will cause the test step to be skipped altogether during a build. To 
re-enable tests, set this value to false, or delete the environment variable.

Disabling tests 152



AWS Amplify Hosting User Guide

Using redirects

Redirects enable a web server to reroute navigation from one URL to another. Common reasons for 
using redirects include to customize the appearance of a URL, to avoid broken links, to move the 
hosting location of an app or site without changing its address, and to change a requested URL to 
the form needed by a web app.

Types of redirects

Amplify supports the following redirect types in the console.

Permanent redirect (301)

301 redirects are intended for lasting changes to the destination of a web address. Search engine 
ranking history of the original address applies to the new destination address. Redirection occurs 
on the client-side, so a browser navigation bar shows the destination address after redirection.

Common reasons to use 301 redirects include:

• To avoid a broken link when the address of a page changes.

• To avoid a broken link when a user makes a predictable typo in an address.

Temporary redirect (302)

302 redirects are intended for temporary changes to the destination of a web address. Search 
engine ranking history of the original address doesn’t apply to the new destination address. 
Redirection occurs on the client-side, so a browser navigation bar shows the destination address 
after redirection.

Common reasons to use 302 redirects include:

• To provide a detour destination while repairs are made to an original address.

• To provide test pages for A/B comparison of a user interface.

Note

If your app is returning an unexpected 302 response, the error is likely caused by changes 
you've made to your app’s redirect and custom header configuration. To resolve this 

Types of redirects 153



AWS Amplify Hosting User Guide

issue, verify that your custom headers are valid, and then re-enable the default 404 
rewrite rule for your app.

Rewrite (200)

200 redirects (rewrites) are intended to show content from the destination address as if it were 
served from the original address. Search engine ranking history continues to apply to the original 
address. Redirection occurs on the server-side, so a browser navigation bar shows the original 
address after redirection. Common reasons to use 200 redirects include:

• To redirect an entire site to a new hosting location without changing the address of the site.

• To redirect all traffic to a single page web app (SPA) to its index.html page for handling by a 
client-side router function.

Not Found (404)

404 redirects occur when a request points to an address that doesn’t exist. The destination page of 
a 404 is displayed instead of the requested one. Common reasons a 404 redirect occurs include:

• To avoid a broken link message when a user enters a bad URL.

• To point requests to nonexistent pages of a web app to its index.html page for handling by a 
client-side router function.

Creating and editing redirects

You can create and edit redirects for an app in the Amplify console. Before you get started, you will 
need the following information about the parts of a redirect.

An original address

The address the user requested.

A destination address

The address that actually serves the content that the user sees.

Creating and editing redirects 154



AWS Amplify Hosting User Guide

A redirect type

Types include a permanent redirect (301), a temporary redirect (302), a rewrite (200), or not 
found (404).

A two letter country code (optional)

A value you can include to segment the user experience of your app by geographical region.

To create a redirect in the Amplify console

1. Sign in to the AWS Management Console and open the Amplify console.

2. Choose the app you want to create a redirect for.

3. In the navigation pane, choose Hosting, and then choose Rewrites and redirects.

4. On the Rewrites and redirects page, choose Manage redirects.

5. The procedure for adding a redirect varies depending on whether you want to add rules 
individually or do a bulk edit:

• To create an individual redirect, choose Add rewrite.

a. For Source address, enter the original address the user requested.

b. For Target address, enter the destination address that renders the content to the 
user.

c. For Type, choose the type of redirect from the list.

d. (Optional) For Country code, enter a two letter country code condition.

• To bulk edit redirects, choose Open text editor.

• Manually add or update redirects in the Rewrites and redirects JSON editor.

6. Choose Save.

Order of redirects

Redirects are applied from the top of the list down. Make sure that your ordering has the effect you 
intend. For example, the following order of redirects causes all requests for a given path under /
docs/ to redirect to the same path under /documents/, except /docs/specific-filename.html which 
redirects to /documents/different-filename.html:

/docs/specific-filename.html /documents/different-filename.html 301

Order of redirects 155

https://console.aws.amazon.com/amplify/


AWS Amplify Hosting User Guide

/docs/<*> /documents/<*>

The following order of redirects ignores the redirection of specific-filename.html to different-
filename.html:

/docs/<*> /documents/<*>
/docs/specific-filename.html /documents/different-filename.html 301

Query parameters

You can use query parameters for more control over your URL matches. Amplify forwards all query 
parameters to the destination path for 301 and 302 redirects, with the following exceptions:

• If the original address includes a query string set to a specific value, Amplify doesn't forward 
query parameters. In this case, the redirect only applies to requests to the destination URL with 
the specified query value.

• If the destination address for the matching rule has query parameters, query parameters aren't 
forwarded. For example, if the destination address for the redirect is https://example-
target.com?q=someParam, query parameters aren't passed through.

Simple redirects and rewrites

This section includes example code for common redirect scenarios.

Note

Original address domain matching is case-insensitive.

You can use the following example code to permanently redirect a specific page to a new address.

Original address Destination Address Redirect Type Country Code

/original.html /destinat 
ion.html

permanent 
redirect (301)

 

JSON [{"source": "/original.html", "status": "301", "target": "/destination.html", "condition": null}]

Query parameters 156



AWS Amplify Hosting User Guide

You can use the following example code to redirect any path under a folder to the same path under 
a different folder.

Original address Destination Address Redirect Type Country Code

/docs/<*> /documents/<*> permanent 
redirect (301)

 

JSON [{"source": "/docs/<*>", "status": "301", "target": "/documents/<*>", "condition": null}]

You can use the following example code to redirect all traffic to index.html as a rewrite. In this 
scenario, the rewrite makes it appear to the user that they have arrived at the original address.

Original address Destination Address Redirect Type Country Code

/<*> /index.html rewrite (200)  

JSON [{"source": "/<*>", "status": "200", "target": "/index.html", "condition": null}]

You can use the following example code to use a rewrite to change the subdomain that appears to 
the user.

Original address Destination Address Redirect Type Country Code

https://m 
ydomain.com

https://w 
ww.mydoma 
in.com

rewrite (200)  

JSON [{"source": "https://mydomain.com", "status": "200", "target": "https://www.mydomain.com", "condition": null}]

You can use the following example code to redirect to a different domain with a path prefix.

Original address Destination Address Redirect Type Country Code

https://m 
ydomain.com

https://w 
ww.mydoma 

temporary 
redirect (302)

 

Simple redirects and rewrites 157



AWS Amplify Hosting User Guide

Original address Destination Address Redirect Type Country Code

in.com/do 
cuments

JSON [{"source": "https://mydomain.com", "status": "302", "target": "https://www.mydomain.com/documents/", "condition": null}]

You can use the following example code to redirect paths under a folder that can’t be found to a 
custom 404 page.

Original address Destination Address Redirect Type Country Code

/<*> /404.html not found (404)  

JSON [{"source": "/<*>", "status": "404", "target": "/404.html", "condition": null}]

Redirects for single page web apps (SPA)

Most SPA frameworks support HTML5 history.pushState() to change browser location without 
initiating a server request. This works for users who begin their journey from the root (or /
index.html), but fails for users who navigate directly to any other page.

The following example uses regular expressions to set up a 200 rewrite for all files to index.html, 
except for the file extensions specified in the regular expression.

Original address Destination Address Redirect Type Country Code

</^[^.]+$|\.(?!
(css|gif|ico 
|jpg|js|png|
txt|svg|woff|
woff2|ttf|map|
json|webp)$)([^ 
.]+$)/>

/index.html 200  

Redirects for single page web apps (SPA) 158



AWS Amplify Hosting User Guide

JSON [{"source": "</^[^.]+$|\.(?!(css|gif|ico|jpg|js|png|txt|svg|woff|woff2|ttf|map|json|webp)$)([^.]+$)/>", "status": "200", "target": "/

index.html", "condition": null}]

Reverse proxy rewrite

The following example uses a rewrite to proxy content from another location so that it appears to 
the user that the domain hasn’t changed.

Original address Destination Address Redirect Type Country Code

/images/<*> https://i 
mages.oth 
erdomain.com/
<*>

rewrite (200)  

JSON [{"source": "/images/<*>", "status": "200", "target": "https://images.otherdomain.com/<*>", "condition": null}]

Trailing slashes and clean URLs

To create clean URL structures like about instead of about.html, static site generators such as Hugo 
generate directories for pages with an index.html (/about/index.html). Amplify automatically 
creates clean URLs by adding a trailing slash when required. The table below highlights different 
scenarios:

User inputs in browser URL in the address bar Document served

/about /about /about.html

/about (when about.htm 
l returns 404)

/about/ /about/index.html

/about/ /about/ /about/index.html

Reverse proxy rewrite 159



AWS Amplify Hosting User Guide

Placeholders

You can use the following example code to redirect paths in a folder structure to a matching 
structure in another folder.

Original address Destination Address Redirect Type Country Code

/docs/<year>/
<month>/<date> 
/<itemid>

/documents/
<year>/<month>/
<date>/<it 
emid>

permanent 
redirect (301)

 

JSON [{"source": "/docs/<year>/<month>/<date>/<itemid>", "status": "301", "target": "/documents/<year>/<month>/<date>/

<itemid>", "condition": null}]

Query strings and path parameters

You can use the following example code to redirect a path to a folder with a name that matches 
the value of a query string element in the original address:

Original address Destination Address Redirect Type Country Code

/docs?id=<my-
blog-id-value

/documents/<my-
blog-post-id-
value>

permanent 
redirect (301)

 

JSON [{"source": "/docs?id=<my-blog-id-value>", "status": "301", "target": "/documents/<my-blog-id-value>", "condition": null}]

Note

Amplify forwards all query string parameters to the destination path for 301 and 302 
redirects. However, if the original address includes a query string set to a specific value, as 
demonstrated in this example, Amplify doesn't forward query parameters. In this case, the 
redirect applies only to requests to the destination address with the specified query value
id.

Placeholders 160



AWS Amplify Hosting User Guide

You can use the following example code to redirect all paths that can’t be found at a given level of 
a folder structure to index.html in a specified folder.

Original address Destination Address Redirect Type Country Code

/documents/
<folder>/
<child-folder>/
<grand-child-
folder>

/documents/
index.html

not found (404)  

JSON [{"source": "/documents/<x>/<y>/<z>", "status": "404", "target": "/documents/index.html", "condition": null}]

Region-based redirects

You can use the following example code to redirect requests based on region.

Original address Destination Address Redirect Type Country Code

/documents /documents/us/ temporary 
redirect (302)

<US>

JSON [{"source": "/documents", "status": "302", "target": "/documents/us/", "condition": "<US>"}]

Wildcard expressions in redirects and rewrites

You can use the wildcard expression, <*>, in the original address for a redirect or rewrite. You 
must place the expression at the end of the original address, and it must be unique. Amplify 
ignores original addresses that include more than one wildcard expression, or use it in a different 
placement.

The following is an example of a valid redirect with a wildcard expression.

Region-based redirects 161



AWS Amplify Hosting User Guide

Original address Destination Address Redirect Type Country Code

/docs/<*> /documents/<*> permanent 
redirect (301)

The following two examples demonstrate invalid redirects with wildcard expressions.

Original address Destination Address Redirect Type Country Code

/docs/<*>/
content

/documents/<*>/
content

permanent 
redirect (301)

/docs/<*>/
content/<*>

/documents/<*>/
content/<*>

permanent 
redirect (301)

Wildcard expressions in redirects and rewrites 162



AWS Amplify Hosting User Guide

Restricting access to branches

If you are working on unreleased features, you can password protect feature branches to restrict 
access to specific users. When access control is set on a branch, users are prompted for a user name 
and password when they attempt to access the URL for the branch.

You can set a password that applies to an individual branch or globally to all connected branches. 
When access control is enabled at both the branch and global level, the branch level password 
takes precedence over a global (application) level password.

To set passwords on feature branches

1. Sign in to the AWS Management Console and open the Amplify console.

2. Choose the app you want to set feature branch passwords on.

3. In the navigation pane, choose Hosting, and then choose Access control.

4. In the Access control settings section, choose Manage access.

5. On the Manage access control page, do one of the following.

• To set a username and password that applies to all connected branches

• Turn on Manage access for all branches. For example, if you have main, dev, and
feature branches connected, you can apply the same username and password for all 
branches.

• To apply a username and password to an individual branch

a. Turn off Manage access for all branches.

b. Locate the branch that you want to manage. For Access settings choose Restricted-
password required.

c. For Username, enter a username.

d. For Password, enter a password.

• Choose Save.

6. If you are managing access control for a server-side rendered (SSR) app, redeploy the app by 
performing a new build from your Git repository. This step is required to enable Amplify to 
apply your access control settings.

163

https://console.aws.amazon.com/amplify/


AWS Amplify Hosting User Guide

Environment variables

Environment variables are key-value pairs that you can add to your application's settings to make 
them available to Amplify Hosting. As a best practice, you can use environment variables to expose 
application configuration data. All environment variables that you add are encrypted to prevent 
rogue access.

Amplify enforces the following constraints on the environment variables that you create.

• Amplify doesn't allow you to create environment variable names with an AWS prefix. This prefix is 
reserved for Amplify internal use only.

• The value of an environment variable can't exceed 5500 characters.

Important

Don't use environment variables to store secrets. For a Gen 2 app, use the Secret 
management feature in the Amplify console. For more information, see Secrets and 
environment vars in the Amplify Documentation. For a Gen 1 app, store secrets in an 
environment secret created using the AWS Systems Manager Parameter Store. For more 
information, see Managing environment secrets.

Amplify environment variables

The following environment variables are accessible by default within the Amplify console.

Variable name Description Example value

_BUILD_TIMEOUT The build timeout duration in 
minutes

30

_LIVE_UPDATES The tool will be upgraded to 
the latest version.

[{"name":"Amplify 
CLI","pkg":"@aws-a 
mplify/cli","type" 
:"npm","version":" 
latest"}]

Amplify environment variables 164

https://docs.amplify.aws/react/deploy-and-host/fullstack-branching/secrets-and-vars/
https://docs.amplify.aws/react/deploy-and-host/fullstack-branching/secrets-and-vars/


AWS Amplify Hosting User Guide

Variable name Description Example value

USER_DISABLE_TESTS The test step is skipped 
during a build. You can 
disable tests for all branches 
or specific branches in an app.

This environment variable is 
used for apps that perform 
tests during the build phase. 
For more information about 
setting this variable, see
Disabling tests.

true

AWS_APP_ID The app ID of the current 
build

abcd1234

AWS_BRANCH The branch name of the 
current build

main, develop, beta, v2.0

AWS_BRANCH_ARN The branch Amazon Resource 
Name (ARN) of the current 
build

aws:arn:amplify:us 
-west-2:1234567890 
12:appname/branch/ 
...

AWS_CLONE_URL The clone URL used to fetch 
the git repository contents

git@github.com:<us 
er-name>/<repo-nam 
e>.git

AWS_COMMIT_ID The commit ID of the current 
build

“HEAD” for rebuilds

abcd1234

Amplify environment variables 165



AWS Amplify Hosting User Guide

Variable name Description Example value

AWS_JOB_ID The job ID of the current 
build.

This includes some padding 
of ‘0’ so it always has the 
same length.

0000000001

AWS_PULL_REQUEST_ID The pull request ID of pull 
request web preview build.

This environment variable 
is not available when using 
AWS CodeCommit as your 
repository provider.

1

AWS_PULL_REQUEST_S 
OURCE_BRANCH

The name of the feature 
branch for a pull request 
preview being submitted to 
an application branch in the 
Amplify console.

featureA

AWS_PULL_REQUEST_D 
ESTINATION_BRANCH

The name of the application 
branch in the Amplify console 
that a feature branch pull 
request is being submitted to.

main

AMPLIFY_AMAZON_CLI 
ENT_ID

The Amazon client ID 123456

AMPLIFY_AMAZON_CLI 
ENT_SECRET

The Amazon client secret example123456

AMPLIFY_FACEBOOK_C 
LIENT_ID

The Facebook client ID 123456

AMPLIFY_FACEBOOK_C 
LIENT_SECRET

The Facebook client secret example123456

Amplify environment variables 166



AWS Amplify Hosting User Guide

Variable name Description Example value

AMPLIFY_GOOGLE_CLI 
ENT_ID

The Google client ID 123456

AMPLIFY_GOOGLE_CLI 
ENT_SECRET

The Google client secret example123456

AMPLIFY_DIFF_DEPLOY Enable or disable diff based 
frontend deployment. For 
more information, see Enable 
or disable diff based frontend 
build and deploy.

true

AMPLIFY_DIFF_DEPLO 
Y_ROOT

The path to use for diff 
based frontend deployment 
comparisons, relative to the 
root of your repository.

dist

AMPLIFY_DIFF_BACKEND Enable or disable diff based 
backend builds. This applies 
to Gen 1 apps only. For more 
information, see Enable or 
disable diff based backend 
builds for a Gen 1 app

true

AMPLIFY_BACKEND_PU 
LL_ONLY

Amplify manages this 
environment variable. This 
applies to Gen 1 apps only. 
For more information, see
Edit an existing frontend to 
point to a different backend

true

Amplify environment variables 167



AWS Amplify Hosting User Guide

Variable name Description Example value

AMPLIFY_BACKEND_APP_ID Amplify manages this 
environment variable. This 
applies to Gen 1 apps only. 
For more information, see
Edit an existing frontend to 
point to a different backend

abcd1234

AMPLIFY_SKIP_BACKE 
ND_BUILD

If you do not have a backend 
section in your build specifica 
tion and want to disable 
backend builds, set this 
environment variable to
true. This applies to Gen 1 
apps only.

true

AMPLIFY_ENABLE_DEB 
UG_OUTPUT

Set this variable to true to 
print a stack trace in the logs. 
This is helpful for debugging 
backend build errors.

true

AMPLIFY_MONOREPO_A 
PP_ROOT

The path to use to specify the 
app root of a monorepo app, 
relative to the root of your 
repository.

apps/react-app

AMPLIFY_USERPOOL_ID The ID for the Amazon 
Cognito user pool imported 
for auth

us-west-2_example

Amplify environment variables 168



AWS Amplify Hosting User Guide

Variable name Description Example value

AMPLIFY_WEBCLIENT_ID The ID for the app client to be 
used by web applications

The app client must be 
configured with access to the 
Amazon Cognito user pool 
specified by the AMPLIFY_U 
SERPOOL_ID environment 
variable.

123456

AMPLIFY_NATIVECLIENT_ID The ID for the app client to be 
used by native applications

The app client must be 
configured with access to the 
Amazon Cognito user pool 
specified by the AMPLIFY_U 
SERPOOL_ID environment 
variable.

123456

AMPLIFY_IDENTITYPOOL_ID The ID for the Amazon 
Cognito identity pool

example-identitypo 
ol-id

AMPLIFY_PERMISSION 
S_BOUNDARY_ARN

The ARN for the IAM policy 
to use as a permissions 
boundary that applies to all 
IAM roles created by Amplify. 
For more information, see
IAM Permissions Boundary for 
Amplify-generated roles.

arn:aws:iam::12345 
6789012:policy/exa 
mple-policy

AMPLIFY_DESTRUCTIV 
E_UPDATES

Set this environment variable 
to true to allow a GraphQL 
API to be updated with 
schema operations that can 
potentially cause data loss.

true

Amplify environment variables 169

https://docs.amplify.aws/react/reference/permissions-boundary/#pageMain
https://docs.amplify.aws/react/reference/permissions-boundary/#pageMain


AWS Amplify Hosting User Guide

Note

The AMPLIFY_AMAZON_CLIENT_ID and AMPLIFY_AMAZON_CLIENT_SECRET environment 
variables are OAuth tokens, not an AWS access key and secret key.

Set environment variables

Use the following instructions to set environment variables for an application in the Amplify 
console.

Note

Environment variables is visible in the Amplify console’s App settings menu only when an 
app is set up for continuous deployment and connected to a git repository. For instructions 
on this type of deployment, see Getting started with existing code.

To set environment variables

1. Sign in to the AWS Management Console and open the Amplify console.

2. In the Amplify console, choose Hosting, and then choose Environment variables.

3. On the Environment variables page, choose Manage variables.

4. For Variable, enter your key. For Value, enter your value. By default, Amplify applies the 
environment variables across all branches, so you don’t have to re-enter variables when you 
connect a new branch.

5. (Optional) To customize an environment variable specifically for a branch, add a branch 
override as follows:

a. Choose Actions and then choose Add variable override.

b. You now have a set of environment variables specific to your branch.

6. Choose Save.

Set environment variables 170

https://console.aws.amazon.com/amplify/


AWS Amplify Hosting User Guide

Access environment variables at build time

To access an environment variable during a build, edit your build settings to include the 
environment variable in your build commands.

Each command in your build configuration runs inside a Bash shell. For more information on 
working with environment variables in Bash, see Shell Expansions in the GNU Bash Manual.

To edit build settings to include an environment variable

1. Sign in to the AWS Management Console and open the Amplify console.

2. In the Amplify console, choose Hosting, then choose Build settings.

3. In the App build specification section, choose Edit.

4. Add the environment variable to your build command. You should now be able to access 
your environment variable during your next build. This example changes the npm's behavior 
(BUILD_ENV) and adds an API token (TWITCH_CLIENT_ID) for an external service to an 
environment file for later use.

build: 
  commands: 
    - npm run build:$BUILD_ENV 
    - echo "TWITCH_CLIENT_ID=$TWITCH_CLIENT_ID" >> backend/.env 

5. Choose Save.

Making environment variables accessible to server-side 
runtimes

A Next.js server component doesn't have access to your app's environment variables by default. 
This behavior is intentional to protect any secrets stored in environment variables that your 
application uses during the build phase.

To make specific environment variables accessible to Next.js, you must modify the Amplify build 
specification file to set the environment variables in the environment files that Next.js recognizes. 
This enables Amplify to load the environment variables before it builds the application. For more 
information about modifying your build specification, see examples of how to add environment 
variables in the build commands section.

Access environment variables at build time 171

https://www.gnu.org/software/bash/manual/html_node/Shell-Expansions.html#Shell-Expansions
https://console.aws.amazon.com/amplify/


AWS Amplify Hosting User Guide

Create a new backend environment with authentication 
parameters for social sign-in

To connect a branch to an app

1. Sign in to the AWS Management Console and open the Amplify console.

2. The procedure for connecting a branch to an app varies depending on whether you are 
connecting a branch to a new app or an existing app.

• Connecting a branch to a new app

a. On the Build settings page, locate the Select a backend environment to use with 
this branch section. For Environment, choose Create new environment, and enter 
the name of your backend environment. The following screenshot shows the Select 
a backend environment to use with this branch section of the Build settings page 
with backend entered for the backend environment name.

b. Expand the Advanced settings section on the Build settings page 
and add environment variables for social sign-in keys. For example,
AMPLIFY_FACEBOOK_CLIENT_SECRET is a valid environment variable. For the list of 
Amplify system environment variables that are available by default, see the table in
Amplify environment variables.

• Connecting a branch to an existing app

Create a new backend environment with authentication parameters for social sign-in 172

https://console.aws.amazon.com/amplify/


AWS Amplify Hosting User Guide

a. If you are connecting a new branch to an existing app, set the social sign-in 
environment variables before connecting the branch. In the navigation pane, choose
App Settings, Environment variables.

b. In the Environment variables section, choose Manage variables.

c. In the Manage variables section, choose Add variable.

d. For Variable (key), enter your client ID. For Value, enter your client secret.

e. Choose, Save.

Frontend framework environment variables

If you are developing your app with a frontend framework that supports its own environment 
variables, it is important to understand that these are not the same as the environment variables 
you configure in the Amplify console. For example, React (prefixed REACT_APP) and Gatsby 
(prefixed GATSBY), enable you to create runtime environment variables that those frameworks 
automatically bundle into your frontend production build. To understand the effects of using these 
environment variables to store values, refer to the documentation for the frontend framework you 
are using.

Storing sensitive values, such as API keys, inside these frontend framework prefixed environment 
variables is not a best practice and is highly discouraged. For an example of using Amplify's build 
time environment variables for this purpose, see Access environment variables at build time.

Managing environment secrets

With the release of Amplify Gen 2, the workflow for environment secrets is streamlined to 
centralize the management of secrets and environment variables in the Amplify console. 
For instructions on setting and accessing secrets for an Amplify Gen 2 app, see Secrets and 
environment vars in the Amplify Documentation.

Environment secrets for a Gen 1 app are similar to environment variables, but they are AWS 
Systems Manager Parameter Store key value pairs that can be encrypted. Some values must be 
encrypted, such as the Sign in with Apple private key for Amplify.

Frontend framework environment variables 173

https://docs.amplify.aws/react/deploy-and-host/fullstack-branching/secrets-and-vars/
https://docs.amplify.aws/react/deploy-and-host/fullstack-branching/secrets-and-vars/


AWS Amplify Hosting User Guide

Set and access environment secrets for a Gen 1 app

Use the following instructions to set an environment secret for a Gen 1 Amplify app using the AWS 
Systems Manager console.

To set an environment secret

1. Sign in to the AWS Management Console and open the AWS Systems Manager console.

2. In the navigation pane, choose Application Management, then choose Parameter Store.

3. On the AWS Systems Manager Parameter Store page, choose Create parameter.

4. On the Create parameter page, in the Parameter details section, do the following:

a. For Name, enter a parameter in the format /amplify/{your_app_id}/
{your_backend_environment_name}/{your_parameter_name}.

b. For Type, choose SecureString.

c. For KMS key source, choose My current account to use the default key for your account.

d. For Value, enter your secret value to encrypt.

5. Choose, Create parameter.

Note

Amplify only has access to the keys under the /amplify/{your_app_id}/
{your_backend_environment_name} for the specific environment build. You must 
specify the default AWS KMS key to allow Amplify to decrypt the value.

Access environment secrets

Accessing an environment secret for a Gen 1 app during a build is similar to accessing environment 
variables, except that environment secrets are stored in process.env.secrets as a JSON string.

Amplify environment secrets

Specify an Systems Manager parameter in the format /amplify/{your_app_id}/
{your_backend_environment_name}/AMPLIFY_SIWA_CLIENT_ID.

Set and access environment secrets for a Gen 1 app 174

https://console.aws.amazon.com/systems-manager/


AWS Amplify Hosting User Guide

You can use the following environment secrets that are accessible by default within the Amplify 
console.

Variable name Description Example value

AMPLIFY_SIWA_CLIENT_ID The Sign in with Apple client 
ID

com.yourapp.auth

AMPLIFY_SIWA_TEAM_ID The Sign in with Apple team 
ID

ABCD123

AMPLIFY_SIWA_KEY_ID The Sign in with Apple key ID ABCD123

AMPLIFY_SIWA_PRIVATE_KEY The Sign in with Apple private 
key

-----BEGIN PRIVATE KEY-----

****......

-----END PRIVATE KEY-----

Amplify environment secrets 175



AWS Amplify Hosting User Guide

Custom headers

Custom HTTP headers enable you to specify headers for every HTTP response. Response headers 
can be used for debugging, security, and informational purposes. You can specify headers in the 
Amplify console, or by downloading and editing an app's customHttp.yml file and saving it in the 
project's root directory. For detailed procedures, see Setting custom headers.

Previously, custom HTTP headers were specified for an app either by editing the build specification 
(buildspec) in the AWS Management Console or by downloading and updating the amplify.yml
file and saving it in the project's root directory. Custom headers specified in this way should be 
migrated out of the buildspec and the amplify.yml file. For instructions, see Migrating custom 
headers.

Custom header YAML format

Specify custom headers using the following YAML format:

customHeaders: 
  - pattern: '*.json'
    headers: 
    - key: 'custom-header-name-1'
      value: 'custom-header-value-1'
    - key: 'custom-header-name-2'
      value: 'custom-header-value-2'
  - pattern: '/path/*'
    headers: 
    - key: 'custom-header-name-1'
      value: 'custom-header-value-2'

For a monorepo, use the following YAML format:

applications: 
  - appRoot: app1
    customHeaders: 
    - pattern: '**/*'
      headers: 
      - key: 'custom-header-name-1'
        value: 'custom-header-value-1'
  - appRoot: app2
    customHeaders: 

Custom header YAML format 176



AWS Amplify Hosting User Guide

    - pattern: '/path/*.json'
      headers: 
      - key: 'custom-header-name-2'
        value: 'custom-header-value-2'
    

When you add custom headers to your app, you will specify your own values for the following:

pattern

Custom headers are applied to all URL file paths that match the pattern.

headers

Defines the headers that match the file pattern.

key

The name of the custom header.

value

The value of the custom header.

To learn more about HTTP headers, see Mozilla's list of HTTP Headers.

Setting custom headers

There are two ways to specify custom HTTP headers for an Amplify app. You can specify 
headers in the Amplify console or you can specify headers by downloading and editing an app's
customHttp.yml file and saving it in your project's root directory.

To set custom headers for an app and save them in the console

1. Sign in to the AWS Management Console and open the Amplify console.

2. Choose the app to set custom headers for.

3. In the navigation pane, choose Hosting, then chooseCustom headers.

4. On the Custom headers page, choose Edit.

5. In the Edit custom headers window, enter the information for your custom headers using the
custom header YAML format.

a. For pattern, enter the pattern to match.

Setting custom headers 177

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers
https://console.aws.amazon.com/amplify/


AWS Amplify Hosting User Guide

b. For key, enter the name of the custom header.

c. For value, enter the value of the custom header.

6. Choose Save.

7. Redeploy the app to apply the new custom headers.

• For a CI/CD app, navigate to the branch to deploy and choose Redeploy this version. You 
can also perform a new build from your Git repository.

• For a manual deploy app, deploy the app again in the Amplify console.

To set custom headers for an app and save them in the root of your repository

1. Sign in to the AWS Management Console and open the Amplify console.

2. Choose the app to set custom headers for.

3. In the navigation pane, choose Hosting, then choose Custom headers.

4. On the Custom headers page, choose Download YML.

5. Open the downloaded customHttp.yml file in the code editor of your choice and enter the 
information for your custom headers using the custom header YAML format.

a. For pattern, enter the pattern to match.

b. For key, enter the name of the custom header.

c. For value, enter the value of the custom header.

6. Save the edited customHttp.yml file in your project's root directory. If you are working with 
a monorepo, save the customHttp.yml file in the root of your repo.

7. Redeploy the app to apply the new custom headers.

• For a CI/CD app, perform a new build from your Git repository that includes the new
customHttp.yml file.

• For a manual deploy app, deploy the app again in the Amplify console and include the 
new customHttp.yml file with the artifacts that you upload.

Note

Custom headers set in the customHttp.yml file and deployed in the app's root directory 
override custom headers defined in the Custom headers section in the Amplify console.

Setting custom headers 178

https://console.aws.amazon.com/amplify/


AWS Amplify Hosting User Guide

Migrating custom headers

Previously, custom HTTP headers were specified for an app either by editing the buildspec in the 
Amplify console or by downloading and updating the amplify.yml file and saving it in the project 
's root directory. It is strongly recommended that you migrate your custom headers out of the 
buildspec and the amplify.yml file.

Specify your custom headers in the Custom headers section of the Amplify console or by 
downloading and editing the customHttp.yml file.

To migrate custom headers stored in the Amplify console

1. Sign in to the AWS Management Console and open the  Amplify console.

2. Choose the app to perform the custom header migration on.

3. In the navigation pane, choose Hosting, Build settings. In the App build specification section, 
you can review your app's buildspec.

4. Choose Download to save a copy of your current buildspec. You can reference this copy later if 
you need to recover any settings.

5. When the download is complete, choose Edit.

6. Take note of the custom header information in the file, as you will use it later in step 9. In the
Edit window, delete any custom headers from the file and choose Save.

7. In the navigation pane, choose Hosting, Custom headers.

8. On the Custom headers page, choose Edit.

9. In the Edit custom headers window, enter the information for your custom headers that you 
deleted in step 6.

10. Choose Save.

11. Redeploy any branch that you want the new custom headers to be applied to.

To migrate custom headers from amplify.yml to customHttp.yml

1. Navigate to the amplify.yml file currently deployed in your app's root directory.

2. Open amplify.yml in the code editor of your choice.

3. Take note of the custom header information in the file, as you will use it later in step 8. Delete 
the custom headers in the file. Save and close the file.

4. Sign in to the AWS Management Console and open the Amplify console.

Migrating custom headers 179

https://console.aws.amazon.com/amplify/
https://console.aws.amazon.com/amplify/


AWS Amplify Hosting User Guide

5. Choose the app to set custom headers for.

6. In the navigation pane, choose Hosting, Custom headers.

7. On the Custom headers page, choose Download.

8. Open the downloaded customHttp.yml file in the code editor of your choice and enter the 
information for your custom headers that you deleted from amplify.yml in step 3.

9. Save the edited customHttp.yml file in your project's root directory. If you are working with 
a monorepo, save the file in the root of your repo.

10. Redeploy the app to apply the new custom headers.

• For a CI/CD app, perform a new build from your Git repository that includes the new
customHttp.yml file.

• For a manual deploy app, deploy the app again in the Amplify console and include the 
new customHttp.yml file with artifacts that you upload.

Note

Custom headers set in the customHttp.yml file and deployed in the app's root directory 
override the custom headers defined in the Custom headers section of the Amplify 
console.

Monorepo custom headers

When you specify custom headers for an app in a monorepo, be aware of the following setup 
requirements:

• There is a specific YAML format for a monorepo. For the correct syntax, see Custom header YAML 
format.

• You can specify custom headers for an application in a monorepo using the Custom headers
section of the Amplify console. You must redeploy your application to apply the new custom 
headers.

• As an alternative to using the console, you can specify custom headers for an app in a monorepo 
in a customHttp.yml file. You must save the customHttp.yml file in the root of your repo and 
then redeploy the application to apply the new custom headers. Custom headers specified in the
customHttp.yml file override any custom headers specified using the Custom headers section 
of the Amplify console.

Monorepo custom headers 180



AWS Amplify Hosting User Guide

Security headers example

Custom security headers enable enforcing HTTPS, preventing XSS attacks, and defending your 
browser against clickjacking. Use the following YAML syntax to apply custom security headers to 
your app.

customHeaders: 
  - pattern: '**' 
    headers: 
      - key: 'Strict-Transport-Security' 
        value: 'max-age=31536000; includeSubDomains' 
      - key: 'X-Frame-Options' 
        value: 'SAMEORIGIN' 
      - key: 'X-XSS-Protection' 
        value: '1; mode=block' 
      - key: 'X-Content-Type-Options' 
        value: 'nosniff' 
      - key: 'Content-Security-Policy' 
        value: "default-src 'self'"

Custom Cache-Control headers

Apps hosted with Amplify honor the Cache-Control headers that are sent by the origin, unless 
you override them with custom headers that you define. Amplify only applies Cache-Control 
custom headers for successful responses with a 200 OK status code. This prevents error responses 
from being cached and served to other users that make the same request.

You can manually adjust the s-maxage directive to have more control over the performance and 
deployment availability of your app. For example, to increase the length of time that your content 
stays cached at the edge, you can manually increase the time to live (TTL) by updating s-maxage
to a value longer than the default 600 seconds (10 minutes).

To specify a custom value for s-maxage, use the following YAML format. This example keeps the 
associated content cached at the edge for 3600 seconds (one hour).

customHeaders: 
  - pattern: '/img/*' 
    headers: 
      - key: 'Cache-Control'  

Security headers example 181



AWS Amplify Hosting User Guide

        value: 's-maxage=3600'

For more information about controlling application performance with headers, see Using headers 
to control cache duration.

Custom Cache-Control headers 182



AWS Amplify Hosting User Guide

Incoming webhooks

Set up an incoming webhook in the Amplify console to start a build without committing code to 
your Git repository. You can use webhook triggers with headless CMS tools (such as Contentful or 
GraphCMS) to start a build whenever content changes, or to perform daily builds using services 
such as Zapier.

To create an incoming webhook

1. Sign in to the AWS Management Console and open the Amplify console.

2. Choose the app that you want to create a webhook for.

3. In the navigation pane, choose Hosting, then Build settings.

4. On the Build settings page, scroll down to the Incoming webhooks section and choose Create 
webhook.

5. In the Create webhook dialog box, do the following:

a. For Webhook name enter a name for the webhook.

b. For Branch to build, select the branch to build on incoming webhook requests.

c. Choose Create webhook.

6. In the Incoming webhooks section, do one of the following:

• Copy the webhook URL and provide it to a headless CMS tool or other service to initiate 
builds.

• Run the curl command in a terminal window to start a new build.

183

https://console.aws.amazon.com/amplify/


AWS Amplify Hosting User Guide

Monitoring

AWS Amplify emits metrics through Amazon CloudWatch and provides access logs with detailed 
information about requests made to your app. Use the topics in this section to learn how to use 
these metrics and logs to monitor your app.

Topics

• Monitoring with CloudWatch

• Access logs

Monitoring with CloudWatch

AWS Amplify is integrated with Amazon CloudWatch, allowing you to monitor metrics for your 
Amplify applications in near real-time. You can create alarms that send notifications when a metric 
exceeds a threshold you set. For more information about how the CloudWatch service works, see 
the Amazon CloudWatch User Guide.

Metrics

Amplify supports six CloudWatch metrics in the AWS/AmplifyHosting namespace for monitoring 
traffic, errors, data transfer, and latency for your apps. These metrics are aggregated at one 
minute intervals. CloudWatch monitoring metrics are free of charge and don't count against the
CloudWatch service quotas.

Not all available statistics are applicable for every metric. In the following table, the most relevant 
statistics are listed in the description for each metric.

Metrics Description

Requests The total number of viewer requests received 
by your app.

The most relevant statistic is Sum. Use the Sum
statistic to get the total number of requests.

Monitoring with CloudWatch 184

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/WhatIsCloudWatch.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/cloudwatch_limits.html


AWS Amplify Hosting User Guide

Metrics Description

BytesDownloaded The total amount of data transferred out of 
your app (downloaded) in bytes by viewers for
GET, HEAD, and OPTIONS requests.

The most relevant statistic is Sum.

BytesUploaded The total amount of data transferred into your 
app (uploaded) in bytes using POST and PUT
requests.

The most relevant statistic is Sum.

4XXErrors The number of requests that returned an error 
in the HTTP status code 400-499 range.

The most relevant statistic is Sum. Use the Sum
statistic to get the total occurrences of these 
errors.

5XXErrors The number of requests that returned an error 
in the HTTP status code 500-599 range.

The most relevant statistic is Sum. Use the Sum
statistic to get the total occurrences of these 
errors.

Metrics 185



AWS Amplify Hosting User Guide

Metrics Description

Latency The time to first byte in seconds. This is the 
total time between when Amplify Hosting 
receives a request and when it returns a 
response to the network. This doesn't include 
the network latency encountered for a 
response to reach the viewer's device.

The most relevant statistics are Average,
Maximum, Minimum, p10, p50, p90, p95, and
p100.

Use the Average statistic to evaluate 
expected latencies.

Amplify provides the following CloudWatch metric dimensions.

Dimension Description

App Metric data is provided by app.

AWS account Metric data is provided across all apps in the 
AWS account.

You can access CloudWatch metrics in the AWS Management Console at https:// 
console.aws.amazon.com/cloudwatch/. Alternatively, you can access metrics in the Amplify console 
using the following procedure.

To access metrics in the Amplify console

1. Sign in to the AWS Management Console and open the Amplify console.

2. Choose the app that you want to view metrics for.

3. In the navigation pane, choose App Settings, Monitoring.

4. On the Monitoring page, choose Metrics.

Metrics 186

https://console.aws.amazon.com/cloudwatch/
https://console.aws.amazon.com/cloudwatch/
https://console.aws.amazon.com/amplify/


AWS Amplify Hosting User Guide

Alarms

You can create CloudWatch alarms in the Amplify console that send notifications when specific 
criteria are met. An alarm watches a single CloudWatch metric and sends an Amazon Simple 
Notification Service notification when the metric breaches the threshold for a specified number of 
evaluation periods.

You can create more advanced alarms that use metric math expressions in the CloudWatch console 
or using the CloudWatch APIs. For example, you can create an alarm that notifies you when the 
percentage of 4XXErrors exceeds 15% for three consecutive periods. For more information, see
Creating a CloudWatch Alarm Based on a Metric Math Expression in the Amazon CloudWatch User 
Guide.

Standard CloudWatch pricing applies to alarms. For more information, see Amazon CloudWatch 
pricing.

Use the following procedure to create an alarm in the Amplify console.

To create a CloudWatch alarm for an Amplify metric

1. Sign in to the AWS Management Console and open the Amplify console.

2. Choose the app that you want to set an alarm on.

3. In the navigation pane, choose App Settings, Monitoring.

4. On the Monitoring page, choose Alarms.

5. Choose Create alarm.

6. In the Create alarm window, configure your alarm as follows:

a. For Metric, choose the name of the metric to monitor from the list.

b. For Name of alarm, enter a meaningful name for the alarm. For example, if you are 
monitoring Requests, you could name the alarm HighTraffic. The name must contain 
only ASCII characters.

c. For Set up notifications, do one of the following:

• i. Choose New to set up a new Amazon SNS topic.

ii. For Email address, enter the email address for the recipient of the notifications.

iii. Choose Add new email address to add additional recipients.

• i. Choose Existing to reuse an Amazon SNS topic.

Alarms 187

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/Create-alarm-on-metric-math-expression.html
https://aws.amazon.com/cloudwatch/pricing/
https://aws.amazon.com/cloudwatch/pricing/
https://console.aws.amazon.com/amplify/


AWS Amplify Hosting User Guide

ii. For SNS topic, select the name of an existing Amazon SNS topic from the list.

d. For Whenever the Statistic of Metric, set the conditions for your alarm as follows:

i. Specify whether the metric must be greater than, less than, or equal to the threshold 
value.

ii. Specify the threshold value.

iii. Specify the number of consecutive evaluation periods that must be in the alarm state 
to invoke the alarm.

iv. Specify the length of time of the evaluation period.

e. Choose Create alarm.

Note

Each Amazon SNS recipient that you specify receives a confirmation email from AWS 
Notifications. The email contains a link that the recipient must follow to confirm their 
subscription and receive notifications.

Amazon CloudWatch Logs for SSR apps

Amplify sends information about your Next.js runtime to Amazon CloudWatch Logs in your AWS 
account. When you deploy an SSR app, the app requires an IAM service role that Amplify assumes 
when calling other services on your behalf. You can either allow Amplify Hosting compute to 
automatically create a service role for you or you can specify a role that you have created.

If you choose to allow Amplify to create an IAM role for you, the role will already have the 
permissions to create CloudWatch Logs. If you create your own IAM role, you will need to add the 
following permissions to your policy to allow Amplify to access Amazon CloudWatch Logs.

logs:CreateLogStream
logs:CreateLogGroup
logs:DescribeLogGroups
logs:PutLogEvents

For more information about service roles, see Adding a service role. For more information about 
deploying server-side rendered apps, see Deploying server-side rendered apps with Amplify 
Hosting.

Amazon CloudWatch Logs for SSR apps 188



AWS Amplify Hosting User Guide

Access logs

Amplify stores access logs for all of the apps you host in Amplify. Access logs contain information 
about requests that are made to your hosted apps. Amplify retains all access logs for an app until 
you delete the app. All access logs for an app are available in the Amplify console. However, each 
individual request for access logs is limited to a two week time period that you specify.

Amplify never reuses CloudFront distributions between customers. Amplify creates CloudFront 
distributions in advance so that you don't have to wait for a CloudFront distribution to be created 
when you deploy a new app. Before these distributions are assigned to an Amplify app, they might 
receive traffic from bots. However, they're configured to always respond as Not found before 
they're assigned. If your app's access logs contain entries for a time period before you created your 
app, these entries are related to this activity.

Important

We recommend that you use the logs to understand the nature of the requests for your 
content, not as a complete accounting of all requests. Amplify delivers access logs on a 
best-effort basis. The log entry for a particular request might be delivered long after the 
request was actually processed and, in rare cases, a log entry might not be delivered at 
all. When a log entry is omitted from access logs, the number of entries in the access logs 
won't match the usage that appears in the AWS billing and usage reports.

Use the following procedure to retrieve access logs for an app.

To view access logs

1. Sign in to the AWS Management Console and open the Amplify console.

2. Choose the app that you want to view access logs for.

3. In the navigation pane, choose Hosting, then choose Monitoring.

4. On the Monitoring page, choose Access logs.

5. Choose Edit time range.

6. In the Edit time range window do the following.

a. For Start date, specify the first day of the two week interval to retrieve logs for.

b. For Start time, choose the time on the first day to start the log retrieval.

Access logs 189

https://console.aws.amazon.com/amplify/


AWS Amplify Hosting User Guide

c. Choose Confirm.

7. The Amplify console displays the logs for your specified time range in the Access logs section. 
Choose Download to save the logs in a CSV format.

Analyzing access logs

To analyze access logs you can store the CSV files in an Amazon S3 bucket. One way to analyze 
your access logs is to use Athena. Athena is an interactive query service that can help you analyze 
data for AWS services. You can follow the step-by-step instructions here to create a table. Once 
your table has been created, you can query data as follows.

SELECT SUM(bytes) AS total_bytes
FROM logs
WHERE "date" BETWEEN DATE '2018-06-09' AND DATE '2018-06-11'
LIMIT 100;

Analyzing access logs 190

https://docs.aws.amazon.com/athena/latest/ug/cloudfront-logs.html#create-cloudfront-table


AWS Amplify Hosting User Guide

Email notifications for builds

You can set up email notifications for an AWS Amplify app to alert stakeholders or team members 
when a build succeeds or fails. Amplify Hosting creates an Amazon Simple Notification Service 
(SNS) topic in your account and uses it to configure email notifications. Notifications can be 
configured to apply to all branches or specific branches of an Amplify app.

Set up email notifications

Use the following procedures to set up email notifications for all branches or specific branches of 
an Amplify app.

To set up email notifications for an Amplify app

1. Sign in to the AWS Management Console and open the Amplify console.

2. Choose the app that you want to set up email notifications for.

3. In the navigation pane, choose Hosting, Build notifications. On the Build notifications page, 
choose Manage notifications.

4. On the Manage notifications page, choose Add new.

5. Do one of the following:

• To send notifications for a single branch, for Email, enter the email address to send 
notifications to. For Branch, select the name of the branch to send notifications for.

• To send notifications for all connected branches, for Email, enter the email address to 
send notifications to. For Branch, choose All Branches.

6. Choose Save.

Set up email notifications 191

https://console.aws.amazon.com/amplify/


AWS Amplify Hosting User Guide

Custom build images and live package updates

Topics

• Custom build images

• Live package updates

Custom build images

You can use a custom build image to provide a customized build environment for an Amplify app. 
If you have specific dependencies that take a long time to install during a build using Amplify's 
default container, you can create your own Docker image and reference it during a build. Images 
can be hosted on Amazon Elastic Container Registry Public.

Note

Build settings is visible in the Amplify console’s Hosting menu only when an app is set up 
for continuous deployment and connected to a git repository. For instructions on this type 
of deployment, see Getting started with existing code.

Custom build image requirements

For a custom build image to work as an Amplify build image, it must meet the following 
requirements:

1. A Linux distribution that supports the GNU C Library (glibc), such as Amazon Linux, compiled for 
the x86-64 architecture.

2. cURL: When we launch your custom image, we download our build runner into your container, 
and therefore we require cURL to be present. If this dependency is missing, the build instantly 
fails without any output as our build-runner is unable to produce any output.

3. Git: In order to clone your Git repository we require Git to be installed in the image. If this 
dependency is missing, the Cloning repository step will fail.

4. OpenSSH: In order to securely clone your repository we require OpenSSH to set up the SSH 
key temporarily during the build. The OpenSSH package provides the commands that the build 
runner requires to do this.

Custom build images 192



AWS Amplify Hosting User Guide

5. Bash and The Bourne Shell: These two utilities are used to run commands at build time. If they 
aren't installed, your builds might fail prior to starting.

6. Node.JS+NPM: Our build runner doesn't install Node. Instead, it relies on Node and NPM being 
installed in the image. This is only required for builds that require NPM packages or Node 
specific commands. However, we strongly recommend installing them because when they are 
present, the Amplify build runner can use these tools to improve the build execution. Amplify's 
package override feature uses NPM to install the Hugo-extended package when you set an 
override for Hugo.

The following packages aren't required, but we strongly recommend that you install them.

1. NVM (Node Version Manager): We recommend that you install this version manager if you need 
to handle different versions of Node. When you set an override, Amplify’s package override 
feature uses NVM to change Node.js versions before each build.

2. Wget: Amplify can use the Wget utility to download files during the build process. We 
recommend that you install it in your custom image.

3. Tar: Amplify can use the Tar utility to uncompress downloaded files during the build process. We 
recommend that you install it in your custom image.

Configuring a custom build image

To configure a custom build image hosted in Amazon ECR

1. See Getting started in the Amazon ECR Public User guide to set up an Amazon ECR Public 
repository with a Docker image.

2. Sign in to the AWS Management Console and open the Amplify console.

3. Choose the app that you want to configure a custom build image for.

4. In the navigation pane, choose Hosting, Build settings.

5. On the Build settings page, in the Build image settings section, choose Edit.

6. On the Edit build image settings page, expand the Build image menu, and choose Custom 
Build Image.

7. Enter the name of the Amazon ECR Public repo that you created in step one. This is where your 
build image is hosted. For example, if the name of your repo is ecr-examplerepo, you would 
enter public.ecr.aws/xxxxxxxx/ecr-examplerepo.

Configuring a custom build image 193

https://docs.aws.amazon.com/AmazonECR/latest/public/public-getting-started.html
https://console.aws.amazon.com/amplify/


AWS Amplify Hosting User Guide

8. Choose Save.

Live package updates

Live package updates enable you to specify versions of packages and dependencies to use in 
the Amplify default build image. The default build image comes with several packages and 
dependencies pre-installed (e.g. Hugo, Amplify CLI, Yarn, etc). With live package updates you can 
override the version of these dependencies and specify either a specific version, or ensure that the 
latest version is always installed.

If live package updates is enabled, before your build runs, the build runner first updates (or 
downgrades) the specified dependencies. This increases the build time proportional to the time 
it takes to update the dependencies, but the benefit is that you can ensure the same version of a 
dependency is used to build your app.

Warning

Setting the Node.js version to latest causes builds to fail. Instead, you must specify an exact 
Node.js version, such as 18, 21.5, or v0.1.2.

Configuring live package updates

To configure live package updates

1. Sign in to the AWS Management Console and open the Amplify console.

2. Choose the app that you want to configure live package updates for.

3. In the navigation pane, choose Hosting, Build settings.

4. On the Build settings page, in the Build image settings section, choose Edit.

5. On the Edit build image settings page, Live package updates list, choose Add new.

6. For Package, select the dependency to override.

7. For Version, either keep the default latest or enter a specific version of the dependency. If you 
use latest, the dependency will always be upgraded to the latest version available.

8. Choose Save.

Live package updates 194

https://console.aws.amazon.com/amplify/


AWS Amplify Hosting User Guide

Adding a service role

Amplify requires permissions to deploy backend resources with your front end. You use a service 
role to accomplish this. A service role is the AWS Identity and Access Management (IAM) role 
that Amplify assumes when calling other services on your behalf. In this guide, you will learn 
how to create an Amplify service role that has account administrative permissions and explicity 
allows direct access to resources that Amplify applications require to deploy, create, and manage 
backends.

Create a service role

To create a service role

1. Open the IAM console and choose Roles from the left navigation bar, then choose Create role.

2. On the Select trusted entity page, choose AWS service. For Use case, select Amplify, then 
choose, Next.

3. On the Add permissions page, choose Next.

4. On the Name, view, and create page, for Role name enter a meaningful name, such as
AmplifyConsoleServiceRole-AmplifyRole.

5. Accept all the defaults and choose, Create role.

6. Return to the Amplify console to attach the role to your app.

• If you are in the process of deploying a new app

a. Refresh the list of service roles.

b. Select the role you just created. For this example, it should look like
AmplifyConsoleServiceRole-AmplifyRole

c. Choose Next and follow the steps to complete your app deployment.

• If you have an existing app

a. In the navigation pane, choose App settings, then General settings.

b. On the General settings page, choose Edit.

c. On the Edit general settings page, select the role you just created from the Service 
role list.

d. Choose Save.

Create a service role 195

https://console.aws.amazon.com/iam/home?#/roles


AWS Amplify Hosting User Guide

7. The Amplify console now has permissions to deploy backend resources for your app.

Confused deputy prevention

The confused deputy problem is a security issue where an entity that doesn't have permission to 
perform an action can coerce a more-privileged entity to perform the action. For more information, 
see Cross-service confused deputy prevention.

Currently, the default trust policy for the Amplify-Backend Deployment service role enforces 
the aws:SourceArn and aws:SourceAccount global context condition keys to prevent against 
confused deputy. However, if you previously created an Amplify-Backend Deployment role 
in your account, you can update the role's trust policy to add these conditions to protect against 
confused deputy.

Use the following example to restrict access to apps in your account. Replace the Region and 
application ID in the example with your own information.

"Condition": { 
      "ArnLike": { 
        "aws:SourceArn": "arn:aws:amplify:us-east-1:123456789012:apps/*" 
      }, 
      "StringEquals": { 
        "aws:SourceAccount": "123456789012" 
      } 
    }

For instructions on editing the trust policy for a role using the AWS Management Console, see
Modifying a role (console) in the IAM User Guide.

Confused deputy prevention 196

https://docs.aws.amazon.com/IAM/latest/UserGuide/roles-managingrole-editing-console.html


AWS Amplify Hosting User Guide

Managing app performance

Amplify's default hosting architecture optimizes the balance between hosting performance and 
deployment availability. For most customers, we recommend that you use the default architecture.

If you require finer control over an app's performance, you can manually set the HTTP Cache-
Control header to optimize for hosting performance by keeping content cached at the content 
delivery network (CDN) edge for a longer interval.

Using headers to control cache duration

HTTP Cache-Control header's max-age and s-maxage directives affect the content caching 
duration for your app. The max-age directive tells the browser how long (in seconds) that you 
want content to remain in the cache before it is refreshed from the origin server. The s-maxage
directive overrides max-age and lets you specify how long (in seconds) that you want content to 
remain at the CDN edge before it is refreshed from the origin server.

Apps hosted with Amplify honor the Cache-Control headers that are sent by the origin, unless 
you override them with custom headers that you define. Amplify only applies Cache-Control
custom headers for successful responses with a 200 OK status code. This prevents error responses 
from being cached and served to other users that make the same request.

You can manually adjust the s-maxage directive to have more control over the performance and 
deployment availability of your app. For example, to increase the length of time that your content 
stays cached at the edge, you can manually increase the time to live (TTL) by updating s-maxage
to a value longer than the default 600 seconds (10 minutes).

You can define custom headers for an app in the Custom headers section of the Amplify console. 
For an example of the YAML format, see Custom Cache-Control headers.

Setting the Cache-Control header to increase app performance

Use the following procedure to set the s-maxage directive to keep content cached at the CDN 
edge for 24 hours.

To set a custom Cache-Control header

1. Sign in to the AWS Management Console and open the Amplify console.

Using headers to control cache duration 197

https://console.aws.amazon.com/amplify/


AWS Amplify Hosting User Guide

2. Choose the app to set custom headers for.

3. In the navigation pane, choose Hosting, Custom headers.

4. On the Custom headers page, choose Edit.

5. In the Edit custom headers window, enter the information for your custom header as follows:

a. For pattern, enter **/* for all paths.

b. For key, enter Cache-Control.

c. For value, enter s-maxage=86400.

6. Choose Save.

7. Redeploy the app to apply the new custom header.

Setting the Cache-Control header to increase app performance 198



AWS Amplify Hosting User Guide

Logging Amplify API calls using AWS CloudTrail

AWS Amplify is integrated with AWS CloudTrail, a service that provides a record of actions taken 
by a user, role, or an AWS service in Amplify. CloudTrail captures all API calls for Amplify as 
events. The calls captured include calls from the Amplify console and code calls to the Amplify 
API operations. If you create a trail, you can enable continuous delivery of CloudTrail events to an 
Amazon S3 bucket, including events for Amplify. If you don't configure a trail, you can still view 
the most recent events in the CloudTrail console in Event history. Using the information that 
CloudTrail collects, you can determine the request that was made to Amplify, the IP address from 
which the request was made, who made the request, when it was made, and additional details.

To learn more about CloudTrail, see the AWS CloudTrail User Guide.

Amplify information in CloudTrail

CloudTrail is enabled on your AWS account by default. When activity occurs in Amplify, that activity 
is recorded in a CloudTrail event along with other AWS service events in Event history. You can 
view, search, and download recent events in your AWS account. For more information, see Viewing 
events with CloudTrail Event history in the AWS CloudTrail User Guide.

For an ongoing record of events in your AWS account, including events for Amplify, create a trail. 
A trail enables CloudTrail to deliver log files to an Amazon S3 bucket. By default, when you create 
a trail in the console, the trail applies to all AWS Regions. The trail logs events from all Regions in 
the AWS partition and delivers the log files to the Amazon S3 bucket that you specify. Additionally, 
you can configure other AWS services to further analyze and act upon the event data collected in 
CloudTrail logs. For more information, see the following in the AWS CloudTrail User Guide:

• Creating a trail for your AWS account

• CloudTrail supported services and integrations

• Configuring Amazon SNS notifications for CloudTrail

• Receiving CloudTrail log files from multiple regions and Receiving CloudTrail log files from 
multiple accounts

All Amplify operations are logged by CloudTrail and are documented in the AWS Amplify Console 
API Reference, the AWS Amplify Admin UI API Reference, and the Amplify UI Builder API Reference. 

Amplify information in CloudTrail 199

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-user-guide.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/view-cloudtrail-events.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/view-cloudtrail-events.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-and-update-a-trail.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-aws-service-specific-topics.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/configure-sns-notifications-for-cloudtrail.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/receive-cloudtrail-log-files-from-multiple-regions.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.aws.amazon.com/amplify/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/amplify/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/amplify-admin-ui/latest/APIReference/what-is-admin-ui.html
https://docs.aws.amazon.com/amplifyuibuilder/latest/APIReference/Welcome.html


AWS Amplify Hosting User Guide

For example, calls to the CreateApp, DeleteApp and DeleteBackendEnvironment operations 
generate entries in the CloudTrail log files.

Every event or log entry contains information about who generated the request. The identity 
information helps you determine the following:

• Was the request made with root or AWS Identity and Access Management (IAM) user credentials.

• Was the request made with temporary security credentials for a role or federated user.

• Was the request made by another AWS service.

For more information, see the CloudTrail userIdentity element in the AWS CloudTrail User Guide.

Understanding Amplify log file entries

A trail is a configuration that enables delivery of events as log files to an Amazon S3 bucket that 
you specify. CloudTrail log files contain one or more log entries. An event represents a single 
request from any source and includes information about the requested action, the date and time of 
the action, request parameters, and so on. CloudTrail log files aren't an ordered stack trace of the 
public API calls, so they don't appear in any specific order.

The following example shows a CloudTrail log entry that demonstrates the AWS Amplify Console 
API Reference ListApps operation.

{ 
    "eventVersion": "1.08", 
    "userIdentity": { 
        "type": "IAMUser", 
        "principalId": "AIDACKCEVSQ6C2EXAMPLE", 
        "arn": "arn:aws:iam::444455556666:user/Mary_Major", 
        "accountId": "444455556666", 
        "accessKeyId": "AKIAIOSFODNN7EXAMPLE", 
        "userName": "Mary_Major", 
        "sessionContext": { 
            "sessionIssuer": {}, 
            "webIdFederationData": {}, 
            "attributes": { 
                "mfaAuthenticated": "false", 
                "creationDate": "2021-01-12T05:48:10Z" 
            } 
        } 

Understanding Amplify log file entries 200

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-event-reference-user-identity.html
https://docs.aws.amazon.com/amplify/latest/APIReference/API_ListApps.html


AWS Amplify Hosting User Guide

    }, 
    "eventTime": "2021-01-12T06:47:29Z", 
    "eventSource": "amplify.amazonaws.com", 
    "eventName": "ListApps", 
    "awsRegion": "us-west-2", 
    "sourceIPAddress": "192.0.2.255", 
    "userAgent": "aws-internal/3 aws-sdk-java/1.11.898 
 Linux/4.9.230-0.1.ac.223.84.332.metal1.x86_64 OpenJDK_64-Bit_Server_VM/25.275-b01 
 java/1.8.0_275 vendor/Oracle_Corporation", 
    "requestParameters": { 
        "maxResults": "100" 
    }, 
    "responseElements": null, 
    "requestID": "1c026d0b-3397-405a-95aa-aa43aexample", 
    "eventID": "c5fca3fb-d148-4fa1-ba22-5fa63example", 
    "readOnly": true, 
    "eventType": "AwsApiCall", 
    "managementEvent": true, 
    "eventCategory": "Management", 
    "recipientAccountId": "444455556666"
}

The following example shows a CloudTrail log entry that demonstrates the AWS Amplify Admin UI 
API Reference ListBackendJobs operation.

{ 
    "eventVersion": "1.08", 
    "userIdentity": { 
        "type": "IAMUser", 
        "principalId": "AIDACKCEVSQ6C2EXAMPLE", 
        "arn": "arn:aws:iam::444455556666:user/Mary_Major", 
        "accountId": "444455556666", 
        "accessKeyId": "AKIAIOSFODNN7EXAMPLE", 
        "userName": "Mary_Major", 
        "sessionContext": { 
            "sessionIssuer": {}, 
            "webIdFederationData": {}, 
            "attributes": { 
                "mfaAuthenticated": "false", 
                "creationDate": "2021-01-13T00:47:25Z" 
            } 
        } 
    }, 

Understanding Amplify log file entries 201

https://docs.aws.amazon.com/amplify-admin-ui/latest/APIReference/backend-appid-job-backendenvironmentname.html#backend-appid-job-backendenvironmentnamepost


AWS Amplify Hosting User Guide

    "eventTime": "2021-01-13T01:15:43Z", 
    "eventSource": "amplifybackend.amazonaws.com", 
    "eventName": "ListBackendJobs", 
    "awsRegion": "us-west-2", 
    "sourceIPAddress": "192.0.2.255", 
    "userAgent": "aws-internal/3 aws-sdk-java/1.11.898 
 Linux/4.9.230-0.1.ac.223.84.332.metal1.x86_64 OpenJDK_64-Bit_Server_VM/25.275-b01 
 java/1.8.0_275 vendor/Oracle_Corporation", 
    "requestParameters": { 
        "appId": "d23mv2oexample", 
        "backendEnvironmentName": "staging" 
    }, 
    "responseElements": { 
        "jobs": [ 
            { 
                "appId": "d23mv2oexample", 
                "backendEnvironmentName": "staging", 
                "jobId": "ed63e9b2-dd1b-4bf2-895b-3d5dcexample", 
                "operation": "CreateBackendAuth", 
                "status": "COMPLETED", 
                "createTime": "1610499932490", 
                "updateTime": "1610500140053" 
            }, 
            { 
                "appId": "d23mv2oexample", 
                "backendEnvironmentName": "staging", 
                "jobId": "06904b10-a795-49c1-92b7-185dfexample", 
                "operation": "CreateBackend", 
                "status": "COMPLETED", 
                "createTime": "1610499657938", 
                "updateTime": "1610499704458" 
            } 
        ], 
        "appId": "d23mv2oexample", 
        "backendEnvironmentName": "staging" 
    }, 
    "requestID": "7adfabd6-98d5-4b11-bd39-c7deaexample", 
    "eventID": "68769310-c96c-4789-a6bb-68b52example", 
    "readOnly": false, 
    "eventType": "AwsApiCall", 
    "managementEvent": true, 
    "eventCategory": "Management", 
    "recipientAccountId": "444455556666"

Understanding Amplify log file entries 202



AWS Amplify Hosting User Guide

}

Understanding Amplify log file entries 203



AWS Amplify Hosting User Guide

Security in Amplify

Cloud security at AWS is the highest priority. As an AWS customer, you benefit from data centers 
and network architectures that are built to meet the requirements of the most security-sensitive 
organizations.

Security is a shared responsibility between AWS and you. The shared responsibility model describes 
this as security of the cloud and security in the cloud:

• Security of the cloud – AWS is responsible for protecting the infrastructure that runs AWS 
services in the AWS Cloud. AWS also provides you with services that you can use securely. Third-
party auditors regularly test and verify the effectiveness of our security as part of the AWS 
Compliance Programs. To learn about the compliance programs that apply to AWS Amplify, see
AWS Services in Scope by Compliance Program.

• Security in the cloud – Your responsibility is determined by the AWS service that you use. You 
are also responsible for other factors including the sensitivity of your data, your company’s 
requirements, and applicable laws and regulations.

This documentation helps you understand how to apply the shared responsibility model when 
using Amplify. The following topics show you how to configure Amplify to meet your security and 
compliance objectives. You also learn how to use other AWS services that help you monitor and 
secure your Amplify resources.

Topics

• Identity and Access Management for Amplify

• Data Protection in Amplify

• Compliance Validation for AWS Amplify

• Infrastructure Security in AWS Amplify

• Security event logging and monitoring in Amplify

• Cross-service confused deputy prevention

• Security best practices for Amplify

Identity and Access Management for Amplify

Identity and Access Management 204

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/services-in-scope/


AWS Amplify Hosting User Guide

AWS Identity and Access Management (IAM) is an AWS service that helps an administrator securely 
control access to AWS resources. IAM administrators control who can be authenticated (signed in) 
and authorized (have permissions) to use Amplify resources. IAM is an AWS service that you can use 
with no additional charge.

Topics

• Audience

• Authenticating with identities

• Managing access using policies

• How Amplify works with IAM

• Identity-based policy examples for Amplify

• AWS managed policies for AWS Amplify

• Troubleshooting Amplify identity and access

Audience

How you use AWS Identity and Access Management (IAM) differs, depending on the work that you 
do in Amplify.

Service user – If you use the Amplify service to do your job, then your administrator provides you 
with the credentials and permissions that you need. As you use more Amplify features to do your 
work, you might need additional permissions. Understanding how access is managed can help you 
request the right permissions from your administrator. If you cannot access a feature in Amplify, 
see Troubleshooting Amplify identity and access.

Service administrator – If you're in charge of Amplify resources at your company, you probably 
have full access to Amplify. It's your job to determine which Amplify features and resources your 
service users should access. You must then submit requests to your IAM administrator to change 
the permissions of your service users. Review the information on this page to understand the 
basic concepts of IAM. To learn more about how your company can use IAM with Amplify, see How 
Amplify works with IAM.

IAM administrator – If you're an IAM administrator, you might want to learn details about how you 
can write policies to manage access to Amplify. To view example Amplify identity-based policies 
that you can use in IAM, see Identity-based policy examples for Amplify.

Audience 205



AWS Amplify Hosting User Guide

Authenticating with identities

Authentication is how you sign in to AWS using your identity credentials. You must be
authenticated (signed in to AWS) as the AWS account root user, as an IAM user, or by assuming an 
IAM role.

You can sign in to AWS as a federated identity by using credentials provided through an identity 
source. AWS IAM Identity Center (IAM Identity Center) users, your company's single sign-on 
authentication, and your Google or Facebook credentials are examples of federated identities. 
When you sign in as a federated identity, your administrator previously set up identity federation 
using IAM roles. When you access AWS by using federation, you are indirectly assuming a role.

Depending on the type of user you are, you can sign in to the AWS Management Console or the 
AWS access portal. For more information about signing in to AWS, see How to sign in to your AWS 
account in the AWS Sign-In User Guide.

If you access AWS programmatically, AWS provides a software development kit (SDK) and a 
command line interface (CLI) to cryptographically sign your requests by using your credentials. If 
you don't use AWS tools, you must sign requests yourself. For more information about using the 
recommended method to sign requests yourself, see Signing AWS API requests in the IAM User 
Guide.

Regardless of the authentication method that you use, you might be required to provide additional 
security information. For example, AWS recommends that you use multi-factor authentication 
(MFA) to increase the security of your account. To learn more, see Multi-factor authentication in the
AWS IAM Identity Center User Guide and Using multi-factor authentication (MFA) in AWS in the IAM 
User Guide.

AWS account root user

When you create an AWS account, you begin with one sign-in identity that has complete access to 
all AWS services and resources in the account. This identity is called the AWS account root user and 
is accessed by signing in with the email address and password that you used to create the account. 
We strongly recommend that you don't use the root user for your everyday tasks. Safeguard your 
root user credentials and use them to perform the tasks that only the root user can perform. For 
the complete list of tasks that require you to sign in as the root user, see Tasks that require root 
user credentials in the IAM User Guide.

Authenticating with identities 206

https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-signing.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/enable-mfa.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/root-user-tasks.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/root-user-tasks.html


AWS Amplify Hosting User Guide

Federated identity

As a best practice, require human users, including users that require administrator access, to use 
federation with an identity provider to access AWS services by using temporary credentials.

A federated identity is a user from your enterprise user directory, a web identity provider, the AWS 
Directory Service, the Identity Center directory, or any user that accesses AWS services by using 
credentials provided through an identity source. When federated identities access AWS accounts, 
they assume roles, and the roles provide temporary credentials.

For centralized access management, we recommend that you use AWS IAM Identity Center. You can 
create users and groups in IAM Identity Center, or you can connect and synchronize to a set of users 
and groups in your own identity source for use across all your AWS accounts and applications. For 
information about IAM Identity Center, see What is IAM Identity Center? in the AWS IAM Identity 
Center User Guide.

IAM users and groups

An IAM user is an identity within your AWS account that has specific permissions for a single person 
or application. Where possible, we recommend relying on temporary credentials instead of creating 
IAM users who have long-term credentials such as passwords and access keys. However, if you have 
specific use cases that require long-term credentials with IAM users, we recommend that you rotate 
access keys. For more information, see Rotate access keys regularly for use cases that require long-
term credentials in the IAM User Guide.

An IAM group is an identity that specifies a collection of IAM users. You can't sign in as a group. You 
can use groups to specify permissions for multiple users at a time. Groups make permissions easier 
to manage for large sets of users. For example, you could have a group named IAMAdmins and give 
that group permissions to administer IAM resources.

Users are different from roles. A user is uniquely associated with one person or application, but 
a role is intended to be assumable by anyone who needs it. Users have permanent long-term 
credentials, but roles provide temporary credentials. To learn more, see When to create an IAM user 
(instead of a role) in the IAM User Guide.

IAM roles

An IAM role is an identity within your AWS account that has specific permissions. It is similar to an 
IAM user, but is not associated with a specific person. You can temporarily assume an IAM role in 
the AWS Management Console by switching roles. You can assume a role by calling an AWS CLI or 

Authenticating with identities 207

https://docs.aws.amazon.com/singlesignon/latest/userguide/what-is.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#rotate-credentials
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#rotate-credentials
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_groups.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html


AWS Amplify Hosting User Guide

AWS API operation or by using a custom URL. For more information about methods for using roles, 
see Using IAM roles in the IAM User Guide.

IAM roles with temporary credentials are useful in the following situations:

• Federated user access – To assign permissions to a federated identity, you create a role 
and define permissions for the role. When a federated identity authenticates, the identity 
is associated with the role and is granted the permissions that are defined by the role. For 
information about roles for federation, see  Creating a role for a third-party Identity Provider
in the IAM User Guide. If you use IAM Identity Center, you configure a permission set. To control 
what your identities can access after they authenticate, IAM Identity Center correlates the 
permission set to a role in IAM. For information about permissions sets, see  Permission sets in 
the AWS IAM Identity Center User Guide.

• Temporary IAM user permissions – An IAM user or role can assume an IAM role to temporarily 
take on different permissions for a specific task.

• Cross-account access – You can use an IAM role to allow someone (a trusted principal) in a 
different account to access resources in your account. Roles are the primary way to grant cross-
account access. However, with some AWS services, you can attach a policy directly to a resource 
(instead of using a role as a proxy). To learn the difference between roles and resource-based 
policies for cross-account access, see Cross account resource access in IAM in the IAM User Guide.

• Cross-service access – Some AWS services use features in other AWS services. For example, when 
you make a call in a service, it's common for that service to run applications in Amazon EC2 or 
store objects in Amazon S3. A service might do this using the calling principal's permissions, 
using a service role, or using a service-linked role.

• Forward access sessions (FAS) – When you use an IAM user or role to perform actions in 
AWS, you are considered a principal. When you use some services, you might perform an 
action that then initiates another action in a different service. FAS uses the permissions of the 
principal calling an AWS service, combined with the requesting AWS service to make requests 
to downstream services. FAS requests are only made when a service receives a request that 
requires interactions with other AWS services or resources to complete. In this case, you must 
have permissions to perform both actions. For policy details when making FAS requests, see
Forward access sessions.

• Service role – A service role is an IAM role that a service assumes to perform actions on your 
behalf. An IAM administrator can create, modify, and delete a service role from within IAM. For 
more information, see Creating a role to delegate permissions to an AWS service in the IAM 
User Guide.

Authenticating with identities 208

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/permissionsetsconcept.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_forward_access_sessions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html


AWS Amplify Hosting User Guide

• Service-linked role – A service-linked role is a type of service role that is linked to an AWS 
service. The service can assume the role to perform an action on your behalf. Service-linked 
roles appear in your AWS account and are owned by the service. An IAM administrator can 
view, but not edit the permissions for service-linked roles.

• Applications running on Amazon EC2 – You can use an IAM role to manage temporary 
credentials for applications that are running on an EC2 instance and making AWS CLI or AWS API 
requests. This is preferable to storing access keys within the EC2 instance. To assign an AWS role 
to an EC2 instance and make it available to all of its applications, you create an instance profile 
that is attached to the instance. An instance profile contains the role and enables programs that 
are running on the EC2 instance to get temporary credentials. For more information, see Using 
an IAM role to grant permissions to applications running on Amazon EC2 instances in the IAM 
User Guide.

To learn whether to use IAM roles or IAM users, see When to create an IAM role (instead of a user)
in the IAM User Guide.

Managing access using policies

You control access in AWS by creating policies and attaching them to AWS identities or resources. 
A policy is an object in AWS that, when associated with an identity or resource, defines their 
permissions. AWS evaluates these policies when a principal (user, root user, or role session) makes 
a request. Permissions in the policies determine whether the request is allowed or denied. Most 
policies are stored in AWS as JSON documents. For more information about the structure and 
contents of JSON policy documents, see Overview of JSON policies in the IAM User Guide.

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

By default, users and roles have no permissions. To grant users permission to perform actions on 
the resources that they need, an IAM administrator can create IAM policies. The administrator can 
then add the IAM policies to roles, and users can assume the roles.

IAM policies define permissions for an action regardless of the method that you use to perform the 
operation. For example, suppose that you have a policy that allows the iam:GetRole action. A 
user with that policy can get role information from the AWS Management Console, the AWS CLI, or 
the AWS API.

Managing access using policies 209

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose_role
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#access_policies-json


AWS Amplify Hosting User Guide

Identity-based policies

Identity-based policies are JSON permissions policy documents that you can attach to an identity, 
such as an IAM user, group of users, or role. These policies control what actions users and roles can 
perform, on which resources, and under what conditions. To learn how to create an identity-based 
policy, see Creating IAM policies in the IAM User Guide.

Identity-based policies can be further categorized as inline policies or managed policies. Inline 
policies are embedded directly into a single user, group, or role. Managed policies are standalone 
policies that you can attach to multiple users, groups, and roles in your AWS account. Managed 
policies include AWS managed policies and customer managed policies. To learn how to choose 
between a managed policy or an inline policy, see Choosing between managed policies and inline 
policies in the IAM User Guide.

Resource-based policies

Resource-based policies are JSON policy documents that you attach to a resource. Examples of 
resource-based policies are IAM role trust policies and Amazon S3 bucket policies. In services that 
support resource-based policies, service administrators can use them to control access to a specific 
resource. For the resource where the policy is attached, the policy defines what actions a specified 
principal can perform on that resource and under what conditions. You must specify a principal
in a resource-based policy. Principals can include accounts, users, roles, federated users, or AWS 
services.

Resource-based policies are inline policies that are located in that service. You can't use AWS 
managed policies from IAM in a resource-based policy.

Access control lists (ACLs)

Access control lists (ACLs) control which principals (account members, users, or roles) have 
permissions to access a resource. ACLs are similar to resource-based policies, although they do not 
use the JSON policy document format.

Amazon S3, AWS WAF, and Amazon VPC are examples of services that support ACLs. To learn more 
about ACLs, see Access control list (ACL) overview in the Amazon Simple Storage Service Developer 
Guide.

Managing access using policies 210

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#choosing-managed-or-inline
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#choosing-managed-or-inline
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/acl-overview.html


AWS Amplify Hosting User Guide

Other policy types

AWS supports additional, less-common policy types. These policy types can set the maximum 
permissions granted to you by the more common policy types.

• Permissions boundaries – A permissions boundary is an advanced feature in which you set 
the maximum permissions that an identity-based policy can grant to an IAM entity (IAM user 
or role). You can set a permissions boundary for an entity. The resulting permissions are the 
intersection of an entity's identity-based policies and its permissions boundaries. Resource-based 
policies that specify the user or role in the Principal field are not limited by the permissions 
boundary. An explicit deny in any of these policies overrides the allow. For more information 
about permissions boundaries, see Permissions boundaries for IAM entities in the IAM User Guide.

• Service control policies (SCPs) – SCPs are JSON policies that specify the maximum permissions 
for an organization or organizational unit (OU) in AWS Organizations. AWS Organizations is a 
service for grouping and centrally managing multiple AWS accounts that your business owns. If 
you enable all features in an organization, then you can apply service control policies (SCPs) to 
any or all of your accounts. The SCP limits permissions for entities in member accounts, including 
each AWS account root user. For more information about Organizations and SCPs, see How SCPs 
work in the AWS Organizations User Guide.

• Session policies – Session policies are advanced policies that you pass as a parameter when you 
programmatically create a temporary session for a role or federated user. The resulting session's 
permissions are the intersection of the user or role's identity-based policies and the session 
policies. Permissions can also come from a resource-based policy. An explicit deny in any of these 
policies overrides the allow. For more information, see Session policies in the IAM User Guide.

Multiple policy types

When multiple types of policies apply to a request, the resulting permissions are more complicated 
to understand. To learn how AWS determines whether to allow a request when multiple policy 
types are involved, see Policy evaluation logic in the IAM User Guide.

How Amplify works with IAM

Before you use IAM to manage access to Amplify, learn what IAM features are available to use with 
Amplify.

How Amplify works with IAM 211

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_boundaries.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_about-scps.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_about-scps.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#policies_session
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic.html


AWS Amplify Hosting User Guide

IAM features that you can use with Amplify

IAM feature Amplify support

Identity-based policies Yes

Resource-based policies No

Policy actions Yes

Policy resources Yes

Policy condition keys Yes

ACLs No

ABAC (tags in policies) Partial

Temporary credentials Yes

Forward access sessions (FAS) Yes

Service roles Yes

Service-linked roles No

To get a high-level view of how Amplify and other AWS services work with most IAM features, see
AWS services that work with IAM in the IAM User Guide.

Identity-based policies for Amplify

Supports identity-based policies: Yes

Identity-based policies are JSON permissions policy documents that you can attach to an identity, 
such as an IAM user, group of users, or role. These policies control what actions users and roles can 
perform, on which resources, and under what conditions. To learn how to create an identity-based 
policy, see Creating IAM policies in the IAM User Guide.

With IAM identity-based policies, you can specify allowed or denied actions and resources as well 
as the conditions under which actions are allowed or denied. You can't specify the principal in an 
identity-based policy because it applies to the user or role to which it is attached. To learn about all 

How Amplify works with IAM 212

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html


AWS Amplify Hosting User Guide

of the elements that you can use in a JSON policy, see IAM JSON policy elements reference in the
IAM User Guide.

Identity-based policy examples for Amplify

To view examples of Amplify identity-based policies, see Identity-based policy examples for 
Amplify.

Resource-based policies within Amplify

Supports resource-based policies: No

Resource-based policies are JSON policy documents that you attach to a resource. Examples of 
resource-based policies are IAM role trust policies and Amazon S3 bucket policies. In services that 
support resource-based policies, service administrators can use them to control access to a specific 
resource. For the resource where the policy is attached, the policy defines what actions a specified 
principal can perform on that resource and under what conditions. You must specify a principal
in a resource-based policy. Principals can include accounts, users, roles, federated users, or AWS 
services.

To enable cross-account access, you can specify an entire account or IAM entities in another 
account as the principal in a resource-based policy. Adding a cross-account principal to a resource-
based policy is only half of establishing the trust relationship. When the principal and the resource 
are in different AWS accounts, an IAM administrator in the trusted account must also grant 
the principal entity (user or role) permission to access the resource. They grant permission by 
attaching an identity-based policy to the entity. However, if a resource-based policy grants access 
to a principal in the same account, no additional identity-based policy is required. For more 
information, see Cross account resource access in IAM in the IAM User Guide.

Policy actions for Amplify

Supports policy actions: Yes

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Action element of a JSON policy describes the actions that you can use to allow or deny 
access in a policy. Policy actions usually have the same name as the associated AWS API operation. 

How Amplify works with IAM 213

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html


AWS Amplify Hosting User Guide

There are some exceptions, such as permission-only actions that don't have a matching API 
operation. There are also some operations that require multiple actions in a policy. These 
additional actions are called dependent actions.

Include actions in a policy to grant permissions to perform the associated operation.

For a list of Amplify actions, see Actions defined by AWS Amplify in the Service Authorization 
Reference.

Policy actions in Amplify use the following prefix before the action:

amplify

To specify multiple actions in a single statement, separate them with commas.

"Action": [ 
      "amplify:action1", 
      "amplify:action2" 
         ]

To view examples of Amplify identity-based policies, see Identity-based policy examples for 
Amplify.

Policy resources for Amplify

Supports policy resources: Yes

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Resource JSON policy element specifies the object or objects to which the action applies. 
Statements must include either a Resource or a NotResource element. As a best practice, 
specify a resource using its Amazon Resource Name (ARN). You can do this for actions that support 
a specific resource type, known as resource-level permissions.

For actions that don't support resource-level permissions, such as listing operations, use a wildcard 
(*) to indicate that the statement applies to all resources.

How Amplify works with IAM 214

https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsamplify.html#awsamplify-actions-as-permissions
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html


AWS Amplify Hosting User Guide

"Resource": "*"

For a list of Amplify resource types and their ARNs, see Resource types defined by AWS Amplify in 
the Service Authorization Reference. To learn with which actions you can specify the ARN of each 
resource, see Actions defined by AWS Amplify.

To view examples of Amplify identity-based policies, see Identity-based policy examples for 
Amplify.

Policy condition keys for Amplify

Supports service-specific policy condition keys: Yes

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Condition element (or Condition block) lets you specify conditions in which a statement 
is in effect. The Condition element is optional. You can create conditional expressions that use
condition operators, such as equals or less than, to match the condition in the policy with values in 
the request.

If you specify multiple Condition elements in a statement, or multiple keys in a single
Condition element, AWS evaluates them using a logical AND operation. If you specify multiple 
values for a single condition key, AWS evaluates the condition using a logical OR operation. All of 
the conditions must be met before the statement's permissions are granted.

You can also use placeholder variables when you specify conditions. For example, you can grant 
an IAM user permission to access a resource only if it is tagged with their IAM user name. For more 
information, see IAM policy elements: variables and tags in the IAM User Guide.

AWS supports global condition keys and service-specific condition keys. To see all AWS global 
condition keys, see AWS global condition context keys in the IAM User Guide.

For a list of Amplify condition keys, see Condition keys for AWS Amplify in the Service Authorization 
Reference. To learn with which actions and resources you can use a condition key, see Actions 
defined by AWS Amplify.

To view examples of Amplify identity-based policies, see Identity-based policy examples for 
Amplify.

How Amplify works with IAM 215

https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsamplify.html#awsamplify-resources-for-iam-policies
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsamplify.html#awsamplify-actions-as-permissions
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_variables.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsamplify.html#awsamplify-policy-keys
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsamplify.html#awsamplify-actions-as-permissions
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsamplify.html#awsamplify-actions-as-permissions


AWS Amplify Hosting User Guide

Access control lists (ACLs) in Amplify

Supports ACLs: No

Access control lists (ACLs) control which principals (account members, users, or roles) have 
permissions to access a resource. ACLs are similar to resource-based policies, although they do not 
use the JSON policy document format.

Attribute-based access control (ABAC) with Amplify

Supports ABAC (tags in policies): Partial

Attribute-based access control (ABAC) is an authorization strategy that defines permissions based 
on attributes. In AWS, these attributes are called tags. You can attach tags to IAM entities (users or 
roles) and to many AWS resources. Tagging entities and resources is the first step of ABAC. Then 
you design ABAC policies to allow operations when the principal's tag matches the tag on the 
resource that they are trying to access.

ABAC is helpful in environments that are growing rapidly and helps with situations where policy 
management becomes cumbersome.

To control access based on tags, you provide tag information in the condition element of a policy 
using the aws:ResourceTag/key-name, aws:RequestTag/key-name, or aws:TagKeys
condition keys.

If a service supports all three condition keys for every resource type, then the value is Yes for the 
service. If a service supports all three condition keys for only some resource types, then the value is
Partial.

For more information about ABAC, see What is ABAC? in the IAM User Guide. To view a tutorial with 
steps for setting up ABAC, see Use attribute-based access control (ABAC) in the IAM User Guide.

Using temporary credentials with Amplify

Supports temporary credentials: Yes

Some AWS services don't work when you sign in using temporary credentials. For additional 
information, including which AWS services work with temporary credentials, see AWS services that 
work with IAM in the IAM User Guide.

You are using temporary credentials if you sign in to the AWS Management Console using 
any method except a user name and password. For example, when you access AWS using your 

How Amplify works with IAM 216

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction_attribute-based-access-control.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_attribute-based-access-control.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html


AWS Amplify Hosting User Guide

company's single sign-on (SSO) link, that process automatically creates temporary credentials. You 
also automatically create temporary credentials when you sign in to the console as a user and then 
switch roles. For more information about switching roles, see Switching to a role (console) in the
IAM User Guide.

You can manually create temporary credentials using the AWS CLI or AWS API. You can then use 
those temporary credentials to access AWS. AWS recommends that you dynamically generate 
temporary credentials instead of using long-term access keys. For more information, see
Temporary security credentials in IAM.

Forward access sessions for Amplify

Supports forward access sessions (FAS): Yes

When you use an IAM user or role to perform actions in AWS, you are considered a principal. 
When you use some services, you might perform an action that then initiates another action in a 
different service. FAS uses the permissions of the principal calling an AWS service, combined with 
the requesting AWS service to make requests to downstream services. FAS requests are only made 
when a service receives a request that requires interactions with other AWS services or resources to 
complete. In this case, you must have permissions to perform both actions. For policy details when 
making FAS requests, see Forward access sessions.

Service roles for Amplify

Supports service roles: Yes

A service role is an IAM role that a service assumes to perform actions on your behalf. An IAM 
administrator can create, modify, and delete a service role from within IAM. For more information, 
see Creating a role to delegate permissions to an AWS service in the IAM User Guide.

Warning

Changing the permissions for a service role might break Amplify functionality. Edit service 
roles only when Amplify provides guidance to do so.

Service-linked roles for Amplify

Supports service-linked roles: No

How Amplify works with IAM 217

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_forward_access_sessions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html


AWS Amplify Hosting User Guide

A service-linked role is a type of service role that is linked to an AWS service. The service can 
assume the role to perform an action on your behalf. Service-linked roles appear in your AWS 
account and are owned by the service. An IAM administrator can view, but not edit the permissions 
for service-linked roles.

For details about creating or managing service-linked roles, see AWS services that work with IAM
in the IAM User Guide. Find a service in the table that includes a Yes in the Service-linked role
column. Choose the Yes link to view the service-linked roles documentation for that service.

Identity-based policy examples for Amplify

By default, users and roles don't have permission to create or modify Amplify resources. They also 
can't perform tasks by using the AWS Management Console, AWS Command Line Interface (AWS 
CLI), or AWS API. To grant users permission to perform actions on the resources that they need, an 
IAM administrator can create IAM policies. The administrator can then add the IAM policies to roles, 
and users can assume the roles.

To learn how to create an IAM identity-based policy by using these example JSON policy 
documents, see Creating IAM policies in the IAM User Guide.

For details about actions and resource types defined by Amplify, including the format of the ARNs 
for each of the resource types, see Actions, resources, and condition keys for AWS Amplify in the
Service Authorization Reference.

Topics

• Policy best practices

• Using the Amplify console

• Allow users to view their own permissions

Policy best practices

Identity-based policies determine whether someone can create, access, or delete Amplify resources 
in your account. These actions can incur costs for your AWS account. When you create or edit 
identity-based policies, follow these guidelines and recommendations:

• Get started with AWS managed policies and move toward least-privilege permissions – To 
get started granting permissions to your users and workloads, use the AWS managed policies
that grant permissions for many common use cases. They are available in your AWS account. We 

Identity-based policy examples 218

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create-console.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsamplify.html


AWS Amplify Hosting User Guide

recommend that you reduce permissions further by defining AWS customer managed policies 
that are specific to your use cases. For more information, see AWS managed policies or AWS 
managed policies for job functions in the IAM User Guide.

• Apply least-privilege permissions – When you set permissions with IAM policies, grant only the 
permissions required to perform a task. You do this by defining the actions that can be taken on 
specific resources under specific conditions, also known as least-privilege permissions. For more 
information about using IAM to apply permissions, see  Policies and permissions in IAM in the
IAM User Guide.

• Use conditions in IAM policies to further restrict access – You can add a condition to your 
policies to limit access to actions and resources. For example, you can write a policy condition to 
specify that all requests must be sent using SSL. You can also use conditions to grant access to 
service actions if they are used through a specific AWS service, such as AWS CloudFormation. For 
more information, see  IAM JSON policy elements: Condition in the IAM User Guide.

• Use IAM Access Analyzer to validate your IAM policies to ensure secure and functional 
permissions – IAM Access Analyzer validates new and existing policies so that the policies 
adhere to the IAM policy language (JSON) and IAM best practices. IAM Access Analyzer provides 
more than 100 policy checks and actionable recommendations to help you author secure and 
functional policies. For more information, see IAM Access Analyzer policy validation in the IAM 
User Guide.

• Require multi-factor authentication (MFA) – If you have a scenario that requires IAM users 
or a root user in your AWS account, turn on MFA for additional security. To require MFA when 
API operations are called, add MFA conditions to your policies. For more information, see 
Configuring MFA-protected API access in the IAM User Guide.

For more information about best practices in IAM, see Security best practices in IAM in the IAM User 
Guide.

Using the Amplify console

To access the AWS Amplify console, you must have a minimum set of permissions. These 
permissions must allow you to list and view details about the Amplify resources in your AWS 
account. If you create an identity-based policy that is more restrictive than the minimum required 
permissions, the console won't function as intended for entities (users or roles) with that policy.

You don't need to allow minimum console permissions for users that are making calls only to the 
AWS CLI or the AWS API. Instead, allow access to only the actions that match the API operation 
that they're trying to perform.

Identity-based policy examples 219

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-policy-validation.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html


AWS Amplify Hosting User Guide

With the release of Amplify Studio, deleting an app or a backend requires both amplify and
amplifybackend permissions. If an IAM policy provides only amplify permissions, a user gets 
a permissions error when trying to delete an app. If you are an administrator writing policies, 
determine the correct permissions to give users who need to perform delete actions.

To ensure that users and roles can still use the Amplify console, also attach the Amplify
ConsoleAccess or ReadOnly AWS managed policy to the entities. For more information, see
Adding permissions to a user in the IAM User Guide.

Allow users to view their own permissions

This example shows how you might create a policy that allows IAM users to view the inline and 
managed policies that are attached to their user identity. This policy includes permissions to 
complete this action on the console or programmatically using the AWS CLI or AWS API.

{ 
    "Version": "2012-10-17", 
    "Statement": [ 
        { 
            "Sid": "ViewOwnUserInfo", 
            "Effect": "Allow", 
            "Action": [ 
                "iam:GetUserPolicy", 
                "iam:ListGroupsForUser", 
                "iam:ListAttachedUserPolicies", 
                "iam:ListUserPolicies", 
                "iam:GetUser" 
            ], 
            "Resource": ["arn:aws:iam::*:user/${aws:username}"] 
        }, 
        { 
            "Sid": "NavigateInConsole", 
            "Effect": "Allow", 
            "Action": [ 
                "iam:GetGroupPolicy", 
                "iam:GetPolicyVersion", 
                "iam:GetPolicy", 
                "iam:ListAttachedGroupPolicies", 
                "iam:ListGroupPolicies", 
                "iam:ListPolicyVersions", 
                "iam:ListPolicies", 
                "iam:ListUsers" 

Identity-based policy examples 220

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_change-permissions.html#users_change_permissions-add-console


AWS Amplify Hosting User Guide

            ], 
            "Resource": "*" 
        } 
    ]
}

AWS managed policies for AWS Amplify

An AWS managed policy is a standalone policy that is created and administered by AWS. AWS 
managed policies are designed to provide permissions for many common use cases so that you can 
start assigning permissions to users, groups, and roles.

Keep in mind that AWS managed policies might not grant least-privilege permissions for your 
specific use cases because they're available for all AWS customers to use. We recommend that you 
reduce permissions further by defining  customer managed policies that are specific to your use 
cases.

You cannot change the permissions defined in AWS managed policies. If AWS updates the 
permissions defined in an AWS managed policy, the update affects all principal identities (users, 
groups, and roles) that the policy is attached to. AWS is most likely to update an AWS managed 
policy when a new AWS service is launched or new API operations become available for existing 
services.

For more information, see AWS managed policies in the IAM User Guide.

AWS managed policy: AdministratorAccess-Amplify

You can attach the AdministratorAccess-Amplify policy to your IAM identities. Amplify also 
attaches this policy to a service role that allows Amplify to perform actions on your behalf.

When you deploy a backend in the Amplify console, you must create an Amplify-Backend 
Deployment service role that Amplify uses to create and manage AWS resources. IAM attaches 
the AdministratorAccess-Amplify managed policy to the Amplify-Backend Deployment
service role.

This policy grants account administrative permissions while explicitly allowing direct access to 
resources that Amplify applications require to create and manage backends.

AWS managed policies 221

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#customer-managed-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies


AWS Amplify Hosting User Guide

Permissions details

This policy provides access to multiple AWS services, including IAM actions. These actions allow 
identities with this policy to use AWS Identity and Access Management to create other identities 
with any permissions. This allows permissions escalation and this policy should be considered as 
powerful as the AdministratorAccess policy.

This policy grants the iam:PassRole action permission for all resources. This is required to 
support Amazon Cognito user pools configuration.

To view the permissions for this policy, see AdministratorAccess-Amplify in the AWS Managed 
Policy Reference.

AWS managed policy: AmplifyBackendDeployFullAccess

You can attach the AmplifyBackendDeployFullAccess policy to your IAM identities.

This policy grants Amplify full access permissions to deploy Amplify backend resources using the 
AWS Cloud Development Kit (AWS CDK). Permissions are deferred to the AWS CDK roles that have 
the necessary AdministratorAccess policy permissions.

Permissions details

This policy includes permissions to do the following .

• Amplify– Retrieve metadata about deployed applications.

• AWS CloudFormation– Create, update, and delete Amplify managed stacks.

• SSM– Create, update, and delete Amplify managed SSM Parameter Store String and
SecureString parameters.

• AWS AppSync– Update and retrieve AWS AppSync schema, resolver and function resources. The 
purpose is to support the Gen 2 sandbox hotswapping functionality.

• Lambda– Update and retrieve the configuration for Amplify managed functions. The purpose is 
to support the Gen 2 sandbox hotswapping functionality.

• Amazon S3– Retrieve Amplify deployment assets.

• AWS Security Token Service– Enables the AWS Cloud Development Kit (AWS CDK) CLI to 
assume the deployment role.

• Amazon RDS– Read metadata of DB instances, clusters, and proxies.

• Amazon EC2– Read the availability zone information for a subnet.

AWS managed policies 222

https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AdministratorAccess-Amplify.html


AWS Amplify Hosting User Guide

To view the permissions for this policy, see AmplifyBackendDeployFullAccess in the AWS Managed 
Policy Reference.

Amplify updates to AWS managed policies

View details about updates to AWS managed policies for Amplify since this service began tracking 
these changes. For automatic alerts about changes to this page, subscribe to the RSS feed on the
Document history for AWS Amplify page.

Change Description Date

AmplifyBackendDepl 
oyFullAccess – Update to an 
existing policy

Add read access to the
arn:aws:ssm:*:*:pa 
rameter/cdk-bootst 
rap/*  resource to allow 
Amplify to detect the CDK 
bootstrap version in a 
customer's account.

May 31, 2024

AmplifyBackendDepl 
oyFullAccess – Update to an 
existing policy

Add a new AmplifyDi 
scoverRDSVpcConfig

 policy statement with 
Amazon RDS and Amazon 
EC2 read-only permissions 
scoped by both resource and 
account conditions. These 
permissions support the 
Amplify Gen 2 npx amplify 
generate schema-from-
database  command that 
allows customers to generate 
Typescript data schema from 
an existing SQL database.

Add the rds:Descr 
ibeDBProxies ,
rds:DescribeDBInst 

April 17, 2024

AWS managed policies 223

https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AmplifyBackendDeployFullAccess.html


AWS Amplify Hosting User Guide

Change Description Date

ances , rds:Descr 
ibeDBClusters ,
rds:DescribeDBSubn 
etGroups , and ec2:Descr 
ibeSubnets  permissio 
ns. The npx amplify 
generate schema-fr 
om-database  command 
requires these permissions 
to check whether a specified 
DB host is hosted in Amazon 
RDS and auto-generate the 
Amazon VPC configuration 
required to provision the 
other resources required to 
set up an AWS AppSync API 
backed by a SQL database.

AmplifyBackendDepl 
oyFullAccess – Update to an 
existing policy

Add the cloudform 
ation:DeleteStack
policy action to support 
stack deletion when the
DeleteBranch  API is 
called.

Add the lambda:Ge 
tFunction  policy action 
to support hotswapping 
functions.

Add the lambda:Up 
dateFunctionConfig 
uration  policy action 
to support updates to the 
Lambda function.

April 5, 2024

AWS managed policies 224



AWS Amplify Hosting User Guide

Change Description Date

AdministratorAccess-Amplify
 – Update to an existing policy

Add the cloudform 
ation:TagResource
and cloudformation:UnT 
agResource  permissio 
ns to support calls to AWS 
CloudFormation APIs.

April 4, 2024

AmplifyBackendDepl 
oyFullAccess – Update to an 
existing policy

Add the lambda:In 
vokeFunction  policy 
action to support AWS Cloud 
Development Kit (AWS CDK) 
hotswapping. The AWS 
CDK makes direct calls to a 
Lambda function to perform 
Amazon S3 asset hotswappi 
ng.

Add the lambda:Up 
dateFunctionCode
policy action to support 
hotswapping functions.

January 02, 2024

AmplifyBackendDepl 
oyFullAccess – Update to an 
existing policy

Add policy actions to support 
the UpdateApiKey
operation. This is required 
to enable a successful app 
deployment after exiting 
and restarting the sandbox 
without deleting resources.

November 17, 2023

AmplifyBackendDepl 
oyFullAccess – Update to an 
existing policy

Add the amplify:G 
etBackendEnvironme 
nt  permission to support 
Amplify app deployment.

November 6, 2023

AWS managed policies 225



AWS Amplify Hosting User Guide

Change Description Date

AmplifyBackendDepl 
oyFullAccess – New policy

Amplify added a new policy 
with the minimum permissio 
ns required to deploy Amplify 
backend resources.

October 8, 2023

AdministratorAccess-Amplify
 – Update to an existing policy

Add the ecr:Descr 
ibeRepositories
permission that is required by 
the Amplify Command Line 
Interface (CLI).

June 1, 2023

AWS managed policies 226



AWS Amplify Hosting User Guide

Change Description Date

AdministratorAccess-Amplify
 – Update to an existing policy

Add a policy action to support 
removing tags from an AWS 
AppSync resource.

Add a policy action to support 
the Amazon Polly resource.

Add a policy action to support 
updating the OpenSearch 
domain configuration.

Add a policy action to support 
removing tags from an 
AWS Identity and Access 
Management role.

Add a policy action to support 
removing tags from an 
Amazon DynamoDB resource.

Add the cloudfron 
t:GetCloudFrontOri 
ginAccessIdentity
and cloudfront:GetClou 
dFrontOriginAccess 
IdentityConfig
permissions to the
CLISDKCalls  statement 
block to support the 
Amplify publish and hosting 
workflows.

Add the s3:PutBuc 
ketPublicAccessBlo 
ck  permission to the
CLIManageviaCFNPol 

February 24, 2023

AWS managed policies 227



AWS Amplify Hosting User Guide

Change Description Date

icy  statement block to 
allow the AWS CLI to support 
the Amazon S3 security 
best practice of enabling 
the Amazon S3 Block Public 
Access feature on internal 
buckets.

Add the cloudform 
ation:DescribeStac 
ks  permission to the
CLISDKCalls  statement 
block to support retrieving 
customers’ AWS CloudForm 
ation stacks on retries in the 
Amplify backend processor to 
avoid duplicating executions 
if a stack is updating.

Add the cloudform 
ation:ListStacks
permission to the CLICloudf 
ormationPolicy
statement block. This 
permission is required to fully 
support the CloudFormation 
DescribeStacks action.

AdministratorAccess-Amplify
 – Update to an existing policy

Add policy actions to allow 
the Amplify server-side 
rendering feature to push 
application metrics to 
CloudWatch in a customer's 
AWS account.

August 30, 2022

AWS managed policies 228



AWS Amplify Hosting User Guide

Change Description Date

AdministratorAccess-Amplify
 – Update to an existing policy

Add policy actions to block 
public access to the Amplify 
deployment Amazon S3 
bucket.

April 27, 2022

AdministratorAccess-Amplify
 – Update to an existing policy

Add an action to allow 
customers to delete their 
server-side rendered (SSR) 
apps. This also allows the 
corresponding CloudFront 
distribution to be deleted 
successfully.

Add an action to allow 
customers to specify a 
different Lambda function 
to handle events from an 
existing event source using 
the Amplify CLI. With these 
changes, AWS Lambda will 
be able to perform the
UpdateEventSourceMapping
action.

April 17, 2022

AdministratorAccess-Amplify
 – Update to an existing policy

Add a policy action to enable 
Amplify UI Builder actions on 
all resources.

December 2, 2021

AWS managed policies 229

https://docs.aws.amazon.com/lambda/latest/dg/API_UpdateEventSourceMapping.html


AWS Amplify Hosting User Guide

Change Description Date

AdministratorAccess-Amplify
 – Update to an existing policy

Add policy actions to 
support the Amazon Cognito 
authentication feature that 
uses social identity providers.

Add a policy action to support 
Lambda layers.

Add a policy action to support 
the Amplify Storage category.

November 8, 2021

AWS managed policies 230



AWS Amplify Hosting User Guide

Change Description Date

AdministratorAccess-Amplify
 – Update to an existing policy

Add Amazon Lex actions to 
support the Amplify Interacti 
ons category.

Add Amazon Rekogniti 
on actions to support the 
Amplify Predictions category.

Add an Amazon Cognito 
action to support MFA 
configuration on Amazon 
Cognito user pools.

Add CloudFormation actions 
to support AWS CloudForm 
ation StackSets.

Add Amazon Location Service 
actions to support the 
Amplify Geo category.

Add a Lambda action to 
support Lambda layers in 
Amplify.

Add CloudWatch Logs actions 
to support CloudWatch 
Events.

Add Amazon S3 actions to 
support the Amplify Storage 
category.

Add policy actions to support 
server-side rendered (SSR) 
apps.

September 27, 2021

AWS managed policies 231



AWS Amplify Hosting User Guide

Change Description Date

AdministratorAccess-Amplify
 – Update to an existing policy

Consolidate all Amplify 
actions into a single
amplify:*  action.

Add an Amazon S3 action to 
support encrypting customer 
Amazon S3 buckets.

Add IAM permission boundary 
actions to support Amplify 
apps that have permission 
boundaries enabled.

Add Amazon SNS actions 
to support viewing originati 
on phone numbers, and 
viewing, creating, verifying 
, and deleting destination 
phone numbers.

Amplify Studio: Add Amazon 
Cognito, AWS Lambda, IAM, 
and AWS CloudFormation 
policy actions to enable 
managing backends in the 
Amplify console and Amplify 
Studio.

Add an AWS Systems 
Manager (SSM) policy 
statement to manage Amplify 
environment secrets.

Add an AWS CloudFormation
ListResources  action to 

July 28, 2021

AWS managed policies 232



AWS Amplify Hosting User Guide

Change Description Date

support Lambda layers for 
Amplify apps.

Amplify started tracking 
changes

Amplify started tracking 
changes for its AWS managed 
policies.

July 28, 2021

Troubleshooting Amplify identity and access

Use the following information to help you diagnose and fix common issues that you might 
encounter when working with Amplify and IAM.

Topics

• I am not authorized to perform an action in Amplify

• I am not authorized to perform iam:PassRole

• I want to allow people outside of my AWS account to access my Amplify resources

I am not authorized to perform an action in Amplify

If you receive an error that you're not authorized to perform an action, your policies must be 
updated to allow you to perform the action.

The following example error occurs when the mateojackson IAM user tries to use the console 
to view details about a fictional my-example-widget resource but doesn't have the fictional
amplify:GetWidget permissions.

User: arn:aws:iam::123456789012:user/mateojackson is not authorized to perform: 
 amplify:GetWidget on resource: my-example-widget

In this case, the policy for the mateojackson user must be updated to allow access to the my-
example-widget resource by using the amplify:GetWidget action.

If you need help, contact your AWS administrator. Your administrator is the person who provided 
you with your sign-in credentials.

Troubleshooting 233



AWS Amplify Hosting User Guide

With the release of Amplify Studio, deleting an app or a backend requires both amplify and
amplifybackend permissions. If an administrator has written an IAM policy that provides only
amplify permissions, you will get a permissions error when trying to delete an app.

The following example error occurs when the mateojackson IAM user tries to use the 
console to delete a fictional example-amplify-app resource but does not have the
amplifybackend:RemoveAllBackends permissions.

User: arn:aws:iam::123456789012:user/mateojackson is not authorized to perform: 
 amplifybackend;:RemoveAllBackends on resource: example-amplify-app

In this case, Mateo asks his administrator to update his policies to allow him to access the
example-amplify-app resource using the amplifybackend:RemoveAllBackends action.

I am not authorized to perform iam:PassRole

If you receive an error that you're not authorized to perform the iam:PassRole action, your 
policies must be updated to allow you to pass a role to Amplify.

Some AWS services allow you to pass an existing role to that service instead of creating a new 
service role or service-linked role. To do this, you must have permissions to pass the role to the 
service.

The following example error occurs when an IAM user named marymajor tries to use the console 
to perform an action in Amplify. However, the action requires the service to have permissions that 
are granted by a service role. Mary does not have permissions to pass the role to the service.

User: arn:aws:iam::123456789012:user/marymajor is not authorized to perform: 
 iam:PassRole

In this case, Mary's policies must be updated to allow her to perform the iam:PassRole action.

If you need help, contact your AWS administrator. Your administrator is the person who provided 
you with your sign-in credentials.

I want to allow people outside of my AWS account to access my Amplify resources

You can create a role that users in other accounts or people outside of your organization can use to 
access your resources. You can specify who is trusted to assume the role. For services that support 

Troubleshooting 234



AWS Amplify Hosting User Guide

resource-based policies or access control lists (ACLs), you can use those policies to grant people 
access to your resources.

To learn more, consult the following:

• To learn whether Amplify supports these features, see How Amplify works with IAM.

• To learn how to provide access to your resources across AWS accounts that you own, see
Providing access to an IAM user in another AWS account that you own in the IAM User Guide.

• To learn how to provide access to your resources to third-party AWS accounts, see Providing 
access to AWS accounts owned by third parties in the IAM User Guide.

• To learn how to provide access through identity federation, see Providing access to externally 
authenticated users (identity federation) in the IAM User Guide.

• To learn the difference between using roles and resource-based policies for cross-account access, 
see Cross account resource access in IAM in the IAM User Guide.

Data Protection in Amplify

AWS Amplify conforms to the AWS shared responsibility model, which includes regulations and 
guidelines for data protection. AWS is responsible for protecting the global infrastructure that runs 
all the AWS services. AWS maintains control over data hosted on this infrastructure, including the 
security configuration controls for handling customer content and personal data. AWS customers 
and APN partners, acting either as data controllers or data processors, are responsible for any 
personal data that they put in the AWS Cloud.

For data protection purposes, we recommend that you protect AWS account credentials and set up 
individual users with AWS IAM Identity Center or AWS Identity and Access Management (IAM). That 
way each user is given only the permissions necessary to fulfill their job duties. We also recommend 
that you secure your data in the following ways:

• Use multi-factor authentication (MFA) with each account.

• Use SSL/TLS to communicate with AWS resources.

• Set up API and user activity logging with AWS CloudTrail.

• Use AWS encryption solutions, along with all default security controls within AWS services.

• Use advanced managed security services such as Amazon Macie, which assists in discovering and 
securing personal data that is stored in Amazon S3.

Data Protection 235

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_aws-accounts.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html
https://aws.amazon.com/compliance/shared-responsibility-model/


AWS Amplify Hosting User Guide

We strongly recommend that you never put sensitive identifying information, such as your 
customers' account numbers, into free-form fields such as a Name field. This includes when you 
work with Amplify or other AWS services using the console, API, AWS CLI, or AWS SDKs. Any data 
that you enter into Amplify or other services might get picked up for inclusion in diagnostic logs. 
When you provide a URL to an external server, don't include credentials information in the URL to 
validate your request to that server.

For more information about data protection, see the AWS Shared Responsibility Model and GDPR
blog post on the AWS Security Blog.

Encryption at rest

Encryption at rest refers to protecting your data from unauthorized access by encrypting data 
while stored. Amplify encrypts an app's build artifacts by default using AWS KMS keys for Amazon 
S3 that are managed by the AWS Key Management Service.

Amplify uses Amazon CloudFront to serve your app to your customers. CloudFront uses SSDs 
which are encrypted for edge location points of presence (POPs), and encrypted EBS volumes for 
Regional Edge Caches (RECs). Function code and configuration in CloudFront Functions is always 
stored in an encrypted format on the encrypted SSDs on the edge location POPs, and in other 
storage locations used by CloudFront.

Encryption in transit

Encryption in transit refers to protecting your data from being intercepted while it moves between 
communication endpoints. Amplify Hosting provides encryption for data in-transit by default. 
All communication between customers and Amplify and between Amplify and its downstream 
dependencies is protected using TLS connections that are signed using the Signature Version 4 
signing process. All Amplify Hosting endpoints use SHA-256 certificates that are managed by AWS 
Certificate Manager Private Certificate Authority. For more information, see Signature Version 4 
signing process and What is ACM PCA.

Encryption key management

AWS Key Management Service (KMS) is a managed service for creating and controlling AWS KMS 
keys, the encryption keys used to encrypt customer data. AWS Amplify generates and manages 
cryptographic keys for encrypting data on behalf of customers. There are no encryption keys for 
you to manage.

Encryption at rest 236

https://aws.amazon.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr/
https://docs.aws.amazon.com/general/latest/gr/signature-version-4.html
https://docs.aws.amazon.com/general/latest/gr/signature-version-4.html
https://docs.aws.amazon.com/acm-pca/latest/userguide/PcaWelcome.html


AWS Amplify Hosting User Guide

Compliance Validation for AWS Amplify

Third-party auditors assess the security and compliance of AWS Amplify as part of multiple AWS 
compliance programs. These include SOC, PCI, ISO, HIPAA, MTCS, C5, K-ISMS, ENS High, OSPAR, 
HITRUST CSF, and FINMA.

To learn whether an AWS service is within the scope of specific compliance programs, see AWS 
services in Scope by Compliance Program and choose the compliance program that you are 
interested in. For general information, see AWS Compliance Programs.

You can download third-party audit reports using AWS Artifact. For more information, see
Downloading Reports in AWS Artifact.

Your compliance responsibility when using AWS services is determined by the sensitivity of your 
data, your company's compliance objectives, and applicable laws and regulations. AWS provides the 
following resources to help with compliance:

• Security and Compliance Quick Start Guides – These deployment guides discuss architectural 
considerations and provide steps for deploying baseline environments on AWS that are security 
and compliance focused.

• Architecting for HIPAA Security and Compliance on Amazon Web Services – This whitepaper 
describes how companies can use AWS to create HIPAA-eligible applications.

Note

Not all AWS services are HIPAA eligible. For more information, see the HIPAA Eligible 
Services Reference.

• AWS Compliance Resources – This collection of workbooks and guides might apply to your 
industry and location.

• AWS Customer Compliance Guides – Understand the shared responsibility model through the 
lens of compliance. The guides summarize the best practices for securing AWS services and map 
the guidance to security controls across multiple frameworks (including National Institute of 
Standards and Technology (NIST), Payment Card Industry Security Standards Council (PCI), and 
International Organization for Standardization (ISO)).

• Evaluating Resources with Rules in the AWS Config Developer Guide – The AWS Config service 
assesses how well your resource configurations comply with internal practices, industry 
guidelines, and regulations.

Compliance Validation 237

https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/programs/
https://docs.aws.amazon.com/artifact/latest/ug/downloading-documents.html
https://aws.amazon.com/quickstart/?awsf.filter-tech-category=tech-category%23security-identity-compliance
https://docs.aws.amazon.com/whitepapers/latest/architecting-hipaa-security-and-compliance-on-aws/welcome.html
https://aws.amazon.com/compliance/hipaa-eligible-services-reference/
https://aws.amazon.com/compliance/hipaa-eligible-services-reference/
https://aws.amazon.com/compliance/resources/
https://d1.awsstatic.com/whitepapers/compliance/AWS_Customer_Compliance_Guides.pdf
https://docs.aws.amazon.com/config/latest/developerguide/evaluate-config.html


AWS Amplify Hosting User Guide

• AWS Security Hub – This AWS service provides a comprehensive view of your security state within 
AWS. Security Hub uses security controls to evaluate your AWS resources and to check your 
compliance against security industry standards and best practices. For a list of supported services 
and controls, see Security Hub controls reference.

• Amazon GuardDuty – This AWS service detects potential threats to your AWS accounts, 
workloads, containers, and data by monitoring your environment for suspicious and malicious 
activities. GuardDuty can help you address various compliance requirements, like PCI DSS, by 
meeting intrusion detection requirements mandated by certain compliance frameworks.

• AWS Audit Manager – This AWS service helps you continuously audit your AWS usage to simplify 
how you manage risk and compliance with regulations and industry standards.

Infrastructure Security in AWS Amplify

As a managed service, AWS Amplify is protected by AWS global network security. For information 
about AWS security services and how AWS protects infrastructure, see AWS Cloud Security. To 
design your AWS environment using the best practices for infrastructure security, see Infrastructure 
Protection in Security Pillar AWS Well‐Architected Framework.

You use AWS published API calls to access Amplify through the network. Clients must support the 
following:

• Transport Layer Security (TLS). We require TLS 1.2 and recommend TLS 1.3.

• Cipher suites with perfect forward secrecy (PFS) such as DHE (Ephemeral Diffie-Hellman) or 
ECDHE (Elliptic Curve Ephemeral Diffie-Hellman). Most modern systems such as Java 7 and later 
support these modes.

Additionally, requests must be signed by using an access key ID and a secret access key that is 
associated with an IAM principal. Or you can use the AWS Security Token Service (AWS STS) to 
generate temporary security credentials to sign requests.

Security event logging and monitoring in Amplify

Monitoring is an important part of maintaining the reliability, availability, and performance of 
Amplify and your other AWS solutions. AWS provides the following monitoring tools to watch 
Amplify, report when something is wrong, and take automatic actions when appropriate:

Infrastructure Security 238

https://docs.aws.amazon.com/securityhub/latest/userguide/what-is-securityhub.html
https://docs.aws.amazon.com/securityhub/latest/userguide/securityhub-controls-reference.html
https://docs.aws.amazon.com/guardduty/latest/ug/what-is-guardduty.html
https://docs.aws.amazon.com/audit-manager/latest/userguide/what-is.html
https://aws.amazon.com/security/
https://docs.aws.amazon.com/wellarchitected/latest/security-pillar/infrastructure-protection.html
https://docs.aws.amazon.com/wellarchitected/latest/security-pillar/infrastructure-protection.html
https://docs.aws.amazon.com/STS/latest/APIReference/Welcome.html


AWS Amplify Hosting User Guide

• Amazon CloudWatch monitors in real time your AWS resources and the applications that you 
run on AWS. You can collect and track metrics, create customized dashboards, and set alarms 
that notify you or take actions when a certain metric reaches a threshold that you specify. For 
example, you can have CloudWatch track CPU usage or other metrics of your Amazon Elastic 
Compute Cloud (Amazon EC2) instances and automatically launch new instances when needed. 
For more information about using CloudWatch metrics and alarms with Amplify, see Monitoring.

• Amazon CloudWatch Logs enables you to monitor, store, and access your log files from Amazon 
EC2 instances, AWS CloudTrail, and other sources. CloudWatch Logs can monitor information in 
the log files and notify you when certain thresholds are met. You can also archive your log data 
in highly durable storage. For more information, see the Amazon CloudWatch Logs User Guide.

• AWS CloudTrail captures API calls and related events made by or on behalf of your AWS account 
and delivers the log files to an Amazon Simple Storage Service (Amazon S3) bucket that you 
specify. You can identify which users and accounts called AWS, the source IP address from which 
the calls were made, and when the calls occurred. For more information, see Logging Amplify API 
calls using AWS CloudTrail.

• Amazon EventBridge is a serverless event bus service that makes it easy to connect your 
applications with data from a variety of sources. EventBridge delivers a stream of real-time 
data from your own applications, Software-as-a-Service (SaaS) applications, and AWS services, 
and routes that data to targets such as AWS Lambda. This enables you to monitor events that 
happen in services and build event-driven architectures. For more information, see the Amazon 
EventBridge User Guide.

Cross-service confused deputy prevention

The confused deputy problem is a security issue where an entity that doesn't have permission to 
perform an action can coerce a more-privileged entity to perform the action. In AWS, cross-service 
impersonation can result in the confused deputy problem. Cross-service impersonation can occur 
when one service (the calling service) calls another service (the called service). The calling service 
can be manipulated to use its permissions to act on another customer's resources in a way it should 
not otherwise have permission to access. To prevent this, AWS provides tools that help you protect 
your data for all services with service principals that have been given access to resources in your 
account.

We recommend using the aws:SourceArn and aws:SourceAccount global condition context 
keys in resource policies to limit the permissions that AWS Amplify gives another service to the 
resource. If you use both global condition context keys, the aws:SourceAccount value and the 

Cross-service confused deputy prevention 239

https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/
https://docs.aws.amazon.com/eventbridge/latest/userguide/
https://docs.aws.amazon.com/eventbridge/latest/userguide/
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourcearn
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourceaccount


AWS Amplify Hosting User Guide

account in the aws:SourceArn value must use the same account ID when used in the same policy 
statement.

The value of aws:SourceArn must be the branch ARN of the Amplify app. Specify this 
value in the format arn:Partition:amplify:Region:Account:apps/AppId/
branches/BranchName.

The most effective way to protect against the confused deputy problem is to use the
aws:SourceArn global condition context key with the full ARN of the resource. If you don't know 
the full ARN of the resource or if you are specifying multiple resources, use the aws:SourceArn
global context condition key with wildcards (*) for the unknown portions of the ARN. For example,
arn:aws:servicename::123456789012:*.

The following example shows a role trust policy you can apply to limit access to any Amplify app 
in your account and prevent the confused deputy problem. To use this policy, replace the red 
italicized text in the example policy with your own information.

{ 
  "Version": "2012-10-17", 
  "Statement": { 
    "Sid": "ConfusedDeputyPreventionExamplePolicy", 
    "Effect": "Allow", 
    "Principal": { 
      "Service": [ 
          "amplify.me-south-1.amazonaws.com", 
          "amplify.eu-south-1.amazonaws.com", 
          "amplify.ap-east-1.amazonaws.com", 
          "amplifybackend.amazonaws.com", 
          "amplify.amazonaws.com" 
        ] 
    }, 
    "Action": "sts:AssumeRole", 
    "Condition": { 
      "ArnLike": { 
        "aws:SourceArn": "arn:aws:amplify:us-east-1:123456789012:apps/*" 
      }, 
      "StringEquals": { 
        "aws:SourceAccount": "123456789012" 
      } 
    } 
  }
}

Cross-service confused deputy prevention 240



AWS Amplify Hosting User Guide

The following example shows a role trust policy you can apply to limit access to a specified Amplify 
app in your account and prevent the confused deputy problem. To use this policy, replace the red 
italicized text in the example policy with your own information.

{ 
  "Version": "2012-10-17", 
  "Statement": { 
    "Sid": "ConfusedDeputyPreventionExamplePolicy", 
    "Effect": "Allow", 
    "Principal": { 
      "Service": [ 
          "amplify.me-south-1.amazonaws.com", 
          "amplify.eu-south-1.amazonaws.com", 
          "amplify.ap-east-1.amazonaws.com", 
          "amplifybackend.amazonaws.com", 
          "amplify.amazonaws.com" 
        ] 
    }, 
    "Action": "sts:AssumeRole", 
    "Condition": { 
      "ArnLike": { 
        "aws:SourceArn": "arn:aws:amplify:us-east-1:123456789012:apps/d123456789/
branches/*" 
      }, 
      "StringEquals": { 
        "aws:SourceAccount": "123456789012" 
      } 
    } 
  }
}

Security best practices for Amplify

Amplify provides a number of security features to consider as you develop and implement your 
own security policies. The following best practices are general guidelines and don't represent a 
complete security solution. Because these best practices might not be appropriate or sufficient for 
your environment, treat them as helpful recommendations rather than prescriptions.

Security best practices 241



AWS Amplify Hosting User Guide

Using cookies with the Amplify default domain

When you use Amplify to deploy a web app, Amplify hosts it for you on the default
amplifyapp.com domain. You can view your app on a URL formatted as https://branch-
name.d1m7bkiki6tdw1.amplifyapp.com.

To augment the security of your Amplify applications, the amplifyapp.com domain is registered 
in the Public Suffix List (PSL). For further security, we recommend that you use cookies with a
__Host- prefix if you ever need to set sensitive cookies in the default domain name for your 
Amplify applications. This practice will help to defend your domain against cross-site request 
forgery attempts (CSRF). For more information see the Set-Cookie page in the Mozilla Developer 
Network.

Using cookies with the Amplify default domain 242

https://publicsuffix.org/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie#cookie_prefixes


AWS Amplify Hosting User Guide

Amplify Hosting service quotas

The following are the service quotas for AWS Amplify Hosting. Service quotas (previously referred 
to as limits) are the maximum number of service resources or operations for your AWS account.

New AWS accounts have reduced apps and concurrent jobs quotas. AWS raises these quotas 
automatically based on your usage. You can also request a quota increase.

The Service Quotas console provides information about the quotas for your account. You can use 
the Service Quotas console to view default quotas and request quota increases for adjustable 
quotas. For more information, see Requesting a quota increase in the Service Quotas User Guide.

Name Default Adjustabl 
e

Description

Apps Each supported 
Region: 25

Yes The maximum number of 
apps that you can create 
in AWS Amplify Console 
in this account in the 
current Region.

Branches per app Each supported 
Region: 50

No The maximum number 
of branches per app that 
you can create in this 
account in the current 
Region.

Build artifact size Each supported 
Region: 5 
Gigabytes

No The maximum size (in 
GB) of an app build 
artifact. A build artifact 
is deployed by AWS 
Amplify Console after a 
build.

Cache artifact size Each supported 
Region: 5 
Gigabytes

No The maximum size (in 
GB) of a cache artifact.

243

https://console.aws.amazon.com/servicequotas/home?
https://docs.aws.amazon.com/servicequotas/latest/userguide/request-quota-increase.html
https://console.aws.amazon.com/servicequotas/home/services/amplify/quotas/L-1BED97F3


AWS Amplify Hosting User Guide

Name Default Adjustabl 
e

Description

Concurrent jobs Each supported 
Region: 5

Yes The maximum number of 
concurrent jobs that you 
can create in this account 
in the current Region.

Domains per app Each supported 
Region: 5

Yes The maximum number 
of domains per app that 
you can create in this 
account in the current 
Region.

Environment cache artifact size Each supported 
Region: 5 
Gigabytes

No The maximum size (in 
GB) of the environment 
cache artifact.

Manual deploy ZIP file size Each supported 
Region: 5 
Gigabytes

No The maximum size (in 
GB) of a manual deploy 
ZIP file.

Maximum app creations per hour Each supported 
Region: 25

No The maximum number of 
apps that you can create 
in AWS Amplify Console 
per hour in this account 
in the current Region.

Request tokens per second Each supported 
Region: 20,000

Yes The maximum number 
of request tokens 
per second for an 
app. Amplify Hosting 
allocates tokens to 
requests based on the 
amount of resources 
(processing time and 
data transfer) that they 
consume.

244

https://console.aws.amazon.com/servicequotas/home/services/amplify/quotas/L-2A8ABB91
https://console.aws.amazon.com/servicequotas/home/services/amplify/quotas/L-AD277529
https://console.aws.amazon.com/servicequotas/home/services/amplify/quotas/L-CE88B60E


AWS Amplify Hosting User Guide

Name Default Adjustabl 
e

Description

Subdomains per domain Each supported 
Region: 50

No The maximum number of 
subdomains per domain 
that you can create 
in this account in the 
current Region.

Webhooks per app Each supported 
Region: 50

Yes The maximum number of 
webhooks per app that 
you can create in this 
account in the current 
Region.

For more information about Amplify service quotas, see AWS Amplify endpoints and quotas in the
AWS General Reference.

245

https://console.aws.amazon.com/servicequotas/home/services/amplify/quotas/L-4113FC04
https://docs.aws.amazon.com/general/latest/gr/amplify.html


AWS Amplify Hosting User Guide

Troubleshooting Amplify Hosting

If you encounter errors or deployment issues when working with Amplify Hosting, consult the 
topics in this section.

Topics

• Troubleshooting general Amplify issues

• Troubleshooting Amazon Linux 2023 build image issues

• Troubleshooting custom domains

• Troubleshooting server-side rendered applications

Troubleshooting general Amplify issues

The following information can help you troubleshoot general issues with Amplify Hosting.

Topics

• HTTP 429 status code (Too many requests)

HTTP 429 status code (Too many requests)

Amplify controls the number of requests per second (RPS) to your website based on the 
processing time and data transfer that incoming requests consume. If your application returns 
an HTTP 429 status code, incoming requests are exceeding the amount of processing time 
and data transfer allotted to your application. This application limit is managed by Amplify's
REQUEST_TOKENS_PER_SECOND service quota. For more information about quotas, see Amplify 
Hosting service quotas.

To fix this issue, we recommend optimizing your application to reduce request duration and data 
transfer to increase the app's RPS. For example, with the same 20,000 tokens, a highly optimized 
SSR page that responds within 100 milliseconds can support higher RPS as compared to a page 
with latency higher than 200 milliseconds.

Similarly, an application that returns a 1 MB response size will consume more tokens than an 
application that returns a 250 KB response size.

General issues 246



AWS Amplify Hosting User Guide

We also recommend that you leverage the Amazon CloudFront cache by configuring Cache-Control 
headers that maximize the time that a given response is kept in the cache. Requests that are served 
from the CloudFront cache don't count towards the rate limit. Each CloudFront distribution can 
handle up to 250,000 requests per second, enabling you to scale your app very high using the 
cache. For more information about the CloudFront cache, see Optimizing caching and availability in 
the Amazon CloudFront Developer Guide.

Troubleshooting Amazon Linux 2023 build image issues

The following information can help you troubleshoot issues with the Amazon Linux 2023 (AL2023) 
build image.

Topics

• How do I run Amplify functions with the Python runtime

• How do I run commands that require superuser or root privileges

How do I run Amplify functions with the Python runtime

Amplify Hosting now uses the Amazon Linux 2023 build image by default when you deploy a new 
application. AL2023 comes pre-installed with Python versions 3.8, 3.9, 3.10, and 3.11.

For backwards compatibility with the Amazon Linux 2 image, the AL2023 build image has symlinks 
for older versions of Python pre-installed. Therefore, you no longer need to update the build 
commands in your application's build specification using the instructions available on the Amplify 
Hosting GitHub FAQ.

By default, Python version 3.10 is used globally. To build your functions using a specific Python 
version, run the following commands in your application's build specification file.

version: 1
backend: 
  phases: 
    build: 
      commands: 
        # use a python version globally 
        - pyenv global 3.11 
        # verify python version 
        - python --version 

AL2023 build image 247

https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/ConfiguringCaching.html
https://github.com/aws-amplify/amplify-hosting/blob/main/FAQ.md#how-do-i-run-amplify-functions-with-python-runtime
https://github.com/aws-amplify/amplify-hosting/blob/main/FAQ.md#how-do-i-run-amplify-functions-with-python-runtime


AWS Amplify Hosting User Guide

        # install pipenv 
        - pip install --user pipenv 
        # add to path 
        - export PATH=$PATH:/root/.local/bin 
        # verify pipenv version 
        - pipenv --version 
        - amplifyPush --simple

How do I run commands that require superuser or root privileges

If you are using the Amazon Linux 2023 build image and get an error when running system 
commands that require superuser or root privileges, you must run these commands using the Linux
sudo command. For example, if you get an error running yum install -y gcc, use sudo yum 
install -y gcc.

The Amazon Linux 2 build image used the root user, but Amplify's AL2023 image runs your code 
with a custom amplify user. Amplify grants this user privileges to run commands using the Linux
sudo command. It is a best practice to use sudo for commands that require superuser privileges.

Troubleshooting custom domains

If you encounter issues when connecting a custom domain to your Amplify application, consult the 
topics in this section for help.

If you don't see a solution to your issue here, contact AWS Support. For more information, see
Creating a support case in the AWS Support User Guide.

Topics

• I need to verify that my CNAME resolves

• My domain hosted with a third-party is stuck in the Pending Verification state

• My domain hosted with Amazon Route 53 is stuck in the Pending Verification state

• I get a CNAMEAlreadyExistsException error

• I get an Additional Verification Required error

• I get a 404 error on the CloudFront URL

• I get SSL certificate or HTTPS errors when visiting my domain

How do I run commands that require superuser or root privileges 248

https://docs.aws.amazon.com/awssupport/latest/user/case-management.html#creating-a-support-case


AWS Amplify Hosting User Guide

I need to verify that my CNAME resolves

1. After you update your DNS records with your third-party domain provider, you can use a 
tool such as dig or a free website such as https://www.whatsmydns.net/ to verify that your 
CNAME record is resolving correctly. The following screenshot demonstrates how to use 
whatsmydns.net to check your CNAME record for the domain www.example.com.

2. Choose Search, and whatsmydns.net displays the results for your CNAME. The following 
screenshot is an example of a list of results that verify that the CNAME resolves correctly to a 
cloudfront.net URL.

My domain hosted with a third-party is stuck in the Pending 
Verification state

1. If your custom domain is stuck in the Pending Verification state, verify that your CNAME 
records are resolving. See the previous troubleshooting topic, How do I verify that my CNAME 
resolves, for instructions on performing this task.

2. If your CNAME records are not resolving, confirm that the CNAME entry exists in your DNS 
settings with your domain provider.

Important

It is important to update your CNAME records as soon as you create your custom 
domain. After your app is created in the Amplify console, your CNAME record is 
checked every few minutes to determine if it resolves. If it doesn’t resolve after an 

I need to verify that my CNAME resolves 249

https://en.wikipedia.org/wiki/Dig_(command)
https://www.whatsmydns.net/


AWS Amplify Hosting User Guide

hour, the check is made every few hours, which can lead to a delay in your domain 
being ready to use. If you added or updated your CNAME records a few hours after you 
created your app, this is the most likely cause for your app to get stuck in the Pending 
Verification state.

3. If you have verified that the CNAME record exists, then there may be an issue with your DNS 
provider. You can either contact the DNS provider to diagnose why the DNS verification 
CNAME is not resolving or you can migrate your DNS to Route 53. For more information, see
Making Amazon Route 53 the DNS service for an existing domain.

My domain hosted with Amazon Route 53 is stuck in the Pending 
Verification state

If you transferred your domain to Amazon Route 53, it is possible that your domain has different 
name servers than those issued by Amplify when your app was created. Perform the following 
steps to diagnose the cause of the error.

1. Sign in to the Amazon Route 53 console

2. In the navigation pane, choose Hosted Zones and then choose the name of the domain you 
are connecting.

3. Record the name server values from the Hosted Zone Details section. You need these values 
to complete the next step. The following screenshot of the Route 53 console displays the 
location of the name server values in the lower-right corner.

4. In the navigation pane, choose Registered domains. Verify that the name servers displayed 
on the Registered domains section match the name server values that you recorded in the 
previous step from the Hosted Zone Details section. If they do not match, edit the name 

My domain hosted with Amazon Route 53 is stuck in the Pending Verification state 250

https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/MigratingDNS.html
https://console.aws.amazon.com/route53/home


AWS Amplify Hosting User Guide

server values to match the values in your Hosted Zone. The following screenshot of the 
Route 53 console displays the location of the name server values on the right side.

5. If this doesn't resolve the issue, contact AWS Support. For more information, see Creating a 
support case in the AWS Support User Guide.

I get a CNAMEAlreadyExistsException error

If you get a CNAMEAlreadyExistsException error, this means that one of the host names that 
you tried to connect (a subdomain, or the apex domain) is already deployed to another Amazon 
CloudFront distribution. Perform the following steps to diagnose the cause of the error.

1. Sign in to the Amazon CloudFront console and verify that you don't have this domain 
deployed to any other distribution. A single CNAME record can be attached to one CloudFront 
distribution at a time.

2. If you previously deployed the domain to a CloudFront distribution you must remove it.

a. Choose Distributions on the left navigation menu.

b. Select the name of the distribution to edit.

c. Choose the General tab. In the Settings section, choose Edit.

d. Remove the domain name from Alternate domain name (CNAME). Then choose, Save 
changes.

3. Check to see whether this domain is connected to a different Amplify app that you 
own. If so, make sure you are not trying to reuse one of the hostnames. If you are using
www.example.com for another app, you cannot use www.example.com with the app that you 
are currently connecting. You can use other subdomains, such as blog.example.com.

4. If this domain was successfully connected to another app and then deleted within the last 
hour, try again after at least one hour has passed. If you still see this exception after 6 hours, 

I get a CNAMEAlreadyExistsException error 251

https://docs.aws.amazon.com/awssupport/latest/user/case-management.html#creating-a-support-case
https://docs.aws.amazon.com/awssupport/latest/user/case-management.html#creating-a-support-case
https://console.aws.amazon.com/cloudfront/home?#


AWS Amplify Hosting User Guide

contact AWS Support. For more information, see Creating a support case in the AWS Support 
User Guide.

I get an Additional Verification Required error

If you get an Additional Verification Required error, this means that AWS Certificate Manager 
(ACM) requires additional information to process this certificate request. This can happen as a 
fraud-protection measure, such as when the domain ranks within the Alexa top 1000 websites. To 
provide the required information, use the Support Center to contact AWS Support. If you don't 
have a support plan, post a new thread in the ACM Discussion Forum.

Note

You cannot request a certificate for Amazon-owned domain names such as those ending in 
amazonaws.com, cloudfront.net, or elasticbeanstalk.com.

I get a 404 error on the CloudFront URL

To serve traffic, Amplify Hosting points to a CloudFront URL via a CNAME record. In the process 
of connecting an app to a custom domain, the Amplify console displays the CloudFront URL 
for the app. However, you cannot access your application directly using this CloudFront URL. 
It returns a 404 error. Your application resolves only using the Amplify app URL (for example,
https://main.d5udybEXAMPLE.amplifyapp.com, or your custom domain (for example
www.example.com).

Amplify needs to route requests to the correct deployed branch and uses the hostname to do this. 
For example, you can configure the domain www.example.com that points to the mainline branch 
of an app, but also configure dev.example.com that points to the dev branch of the same app. 
Therefore, you must visit your application based on it's configured subdomains so that Amplify can 
route the requests accordingly.

I get SSL certificate or HTTPS errors when visiting my domain

If you have Certificate Authority Authorization (CAA) DNS records configured with your third-party 
DNS provider, AWS Certificate Manager (ACM) might not be able to update or reissue intermediate 
certificates for your custom domain SSL certificate. To resolve this, you need to add a CAA record 

I get an Additional Verification Required error 252

https://docs.aws.amazon.com/awssupport/latest/user/case-management.html#creating-a-support-case
https://aws.amazon.com/marketplace/pp/Amazon-Web-Services-Alexa-Top-Sites/B07QK2XWNV
https://console.aws.amazon.com/support/home
https://forums.aws.amazon.com/forum.jspa?forumID=206


AWS Amplify Hosting User Guide

to trust at least one of Amazon’s certificate authority domains. The following procedure describes 
the steps you need to perform.

To add a CAA record to trust an Amazon certificate authority

1. Configure a CAA record with your domain provider to trust at least one of Amazon’s certificate 
authority domains. For more information about configuring the CAA record, see Certification 
Authority Authorization (CAA) problems in the AWS Certificate Manager User Guide.

2. Use one of the following methods to update your SSL certificate:

• Manually update using the Amplify console.

Note

This method will cause down time for your custom domain.

a. Sign in to the AWS Management Console and open the Amplify console.

b. Choose your app that you want to add a CAA record to.

c. In the navigation pane, choose App Settings, Domain management.

d. On the Domain management page, delete the custom domain.

e. Connect your app to the custom domain again. This process issues a new SSL 
certificate and its intermediate certificates can now be managed by ACM.

To reconnect your app to your custom domain, use one of the following procedures 
that corresponds to the domain provider you are using.

• Add a custom domain managed by Amazon Route 53.

• Add a custom domain managed by a third-party DNS provider.

• Update DNS records for a domain managed by GoDaddy.

• Update DNS records for a domain managed by Google Domains.

• Contact AWS Support to have your SSL certificate reissued.

I get SSL certificate or HTTPS errors when visiting my domain 253

https://docs.aws.amazon.com/acm/latest/userguide/troubleshooting-caa.html
https://docs.aws.amazon.com/acm/latest/userguide/troubleshooting-caa.html
https://console.aws.amazon.com/amplify/


AWS Amplify Hosting User Guide

Troubleshooting server-side rendered applications

If you experience unexpected issues when deploying an SSR app with Amplify Hosting compute, 
review the following troubleshooting topics. If you don't see a solution to your issue here, see the
SSR web compute troubleshooting guide in the Amplify Hosting GitHub Issues repository.

Topics

• You are using a framework adapter

• Edge API routes cause your Next.js build to fail

• On-Demand Incremental Static Regeneration isn't working for your app

• Your app's build output exceeds the maximum allowed size

• Your build fails with an out of memory error

• The HTTP response size is too large

You are using a framework adapter

If you are having issues deploying an SSR app that uses a framework adapter, see Using open 
source adapters.

Edge API routes cause your Next.js build to fail

Currently, Amplify doesn't support Next.js Edge API Routes. You must use non-edge APIs and 
middleware when hosting your app with Amplify.

On-Demand Incremental Static Regeneration isn't working for your app

Starting with version 12.2.0, Next.js supports Incremental Static Regeneration (ISR) to manually 
purge the Next.js cache for a specific page. However, Amplify doesn't currently support On-
Demand ISR. If your app is using Next.js on-demand revalidation, this feature won't work when you 
deploy your app to Amplify.

Your app's build output exceeds the maximum allowed size

Currently, the maximum build output size that Amplify supports for SSR apps is 220 MB. If you get 
an error message stating that the size of your app's build output exceeds the maximum allowed 
size, you must take steps to reduce it.

Server-side rendering (SSR) 254

https://github.com/aws-amplify/amplify-hosting/blob/main/FAQ.md#ssr-web-compute


AWS Amplify Hosting User Guide

To reduce the size of an app's build output, you can inspect the app's build artifacts and identify 
any large dependencies to update or remove. First, download the build artifacts to your local 
computer. Then, check the size of the directories. For example, the node_modules directory might 
contain binaries such as @swc and @esbuild that are referenced by Next.js server runtime files. 
Since these binaries aren't required in the runtime, you can delete them after the build.

Use the following instructions to download an app's build output and inspect the size of the 
directories using the AWS Command Line Interface (CLI).

To download and inspect the build output for a Next.js app

1. Open a terminal window and run the following command. Change the app id, branch name, 
and job id to your own information. For the job id, use the build number for the failed build 
that you are investigating.

aws amplify get-job --app-id abcd1234 --branch-name main --job-id 2

2. In the terminal output, locate the presigned artifacts URL in the job, steps, stepName: 
"BUILD" section. The URL is highlighted in red in the following example output.

"job": { 
    "summary": { 
        "jobArn": "arn:aws:amplify:us-west-2:111122223333:apps/abcd1234/main/
jobs/0000000002", 
        "jobId": "2", 
        "commitId": "HEAD", 
        "commitTime": "2024-02-08T21:54:42.398000+00:00", 
        "startTime": "2024-02-08T21:54:42.674000+00:00", 
        "status": "SUCCEED", 
        "endTime": "2024-02-08T22:03:58.071000+00:00" 
    }, 
    "steps": [ 
        { 
            "stepName": "BUILD", 
            "startTime": "2024-02-08T21:54:42.693000+00:00", 
            "status": "SUCCEED", 
            "endTime": "2024-02-08T22:03:30.897000+00:00", 
            "logUrl": "https://aws-amplify-prod-us-west-2-artifacts.s3.us-
west-2.amazonaws.com/abcd1234/main/0000000002/BUILD/log.txt?X-Amz-Security-
Token=IQoJb3JpZ2luX2V...Example

Your app's build output exceeds the maximum allowed size 255



AWS Amplify Hosting User Guide

3. Copy and paste the URL into a browser window. An artifacts.zip file is downloaded to 
your local computer. This is your build output.

4. Run the du disk usage command to inspect the size of the directories. The following example 
command returns the size of the compute and static directories.

du -csh compute static

The following is an example of the output with size information for the compute and static
directories.

 29M    compute
3.8M    static 
 33M    total

5. Open the compute directory, and locate the node_modules folder. Review your dependencies 
for files that you can update or remove to decrease the size of the folder.

6. If your app includes binaries that aren't required in the runtime, delete them after the build by 
adding the following commands to the build section of your app's amplify.yml file.

- rm -f node_modules/@swc/core-linux-x64-gnu/swc.linux-x64-gnu.node
- rm -f node_modules/@swc/core-linux-x64-musl/swc.linux-x64-musl.node

The following is an example of the build commands section of an amplify.yml file with 
these commands added after running a production build.

frontend: 
  phases: 
    build: 
      commands: 
         -npm run build 
          
         // After running a production build, delete the files 
         - rm -f node_modules/@swc/core-linux-x64-gnu/swc.linux-x64-gnu.node 
         - rm -f node_modules/@swc/core-linux-x64-musl/swc.linux-x64-musl.node

Your app's build output exceeds the maximum allowed size 256



AWS Amplify Hosting User Guide

Your build fails with an out of memory error

Next.js enables you to cache build artifacts to improve performance on subsequent builds. In 
addition, Amplify's AWS CodeBuild container compresses and uploads this cache to Amazon S3, on 
your behalf, to improve subsequent build performance. This could cause your build to fail with an 
out of memory error.

Perform the following actions to prevent your app from exceeding the memory limit during the 
build phase. First, remove .next/cache/**/* from the cache.paths section of your build settings. 
Next, remove the NODE_OPTIONS environment variable from your build settings file. Instead, set 
the NODE_OPTIONS environment variable in the Amplify console to define the Node maximum 
memory limit. For more information about setting environment variables using the Amplify 
console, see Set environment variables.

After making these changes, try your build again. If it succeeds, add .next/cache/**/* back to 
the cache.paths section of your build settings file.

For more information about Next.js cache configuration to improve build performance, see AWS 
CodeBuild on the Next.js website.

The HTTP response size is too large

Currently, the maximum response size that Amplify supports for Next.js 12 and later apps using the 
Web Compute platform is 5.72 MB. Responses over that limit return 504 errors with no content to 
clients.

Your build fails with an out of memory error 257

https://nextjs.org/docs/advanced-features/ci-build-caching#aws-codebuild
https://nextjs.org/docs/advanced-features/ci-build-caching#aws-codebuild


AWS Amplify Hosting User Guide

AWS Amplify Hosting reference

Use the topics in this section to find detailed reference material for AWS Amplify.

Topics

• AWS CloudFormation support

• AWS Command Line Interface support

• Resource tagging support

• Amplify Hosting API

AWS CloudFormation support

Use AWS CloudFormation templates to provision Amplify resources, enabling repeatable and 
reliable web app deployments. AWS CloudFormation provides a common language for you to 
describe and provision all the infrastructure resources in your cloud environment and simplifies the 
roll out across multiple AWS accounts and/or regions with just a couple of clicks.

For Amplify Hosting, see the Amplify CloudFormation documentation. For Amplify Studio, see the
Amplify UI Builder CloudFormation documentation.

AWS Command Line Interface support

Use the AWS Command Line Interface to create Amplify apps programmatically from the 
command line. For information, see the AWS CLI documentation.

Resource tagging support

You can use the AWS Command Line Interface to tag Amplify resources. For more information, see 
the AWS CLI tag-resource documentation.

Amplify Hosting API

This reference provides descriptions of the actions and data types for the Amplify Hosting API. For 
more information, see the Amplify API reference documentation.

AWS CloudFormation support 258

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/AWS_Amplify.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/AWS_AmplifyUIBuilder.html
https://docs.aws.amazon.com/cli/latest/reference/amplify/index.html
https://docs.aws.amazon.com/cli/latest/reference/amplify/tag-resource.html
https://docs.aws.amazon.com/amplify/latest/APIReference/Welcome.html


AWS Amplify Hosting User Guide

Document history for AWS Amplify

The following table describes the important changes to the documentation since the last release of 
AWS Amplify.

• Latest documentation update: May 31, 2024

Change Description Date

Updated managed policies 
topic

Updated the AWS managed 
policies for AWS Amplify
topic to describe recent 
changes to the AWS managed 
policies for Amplify.

May 31, 2024

Updated managed policies 
topic

Updated the AWS managed 
policies for AWS Amplify
topic to describe recent 
changes to the AWS managed 
policies for Amplify.

April 17, 2024

Updated getting started 
chapter

Updated the Getting started 
with deploying an app to 
Amplify Hosting chapter 
to use a Next.js example 
application in the tutorial.

April 12, 2024

Updated managed policies 
topic

Updated the AWS managed 
policies for AWS Amplify
topic to describe recent 
changes to the AWS managed 
policies for Amplify.

April 5, 2024

Updated managed policies 
topic

Updated the AWS managed 
policies for AWS Amplify
topic to describe recent 

April 4, 2024

259



AWS Amplify Hosting User Guide

Change Description Date

changes to the AWS managed 
policies for Amplify.

New Troubleshooting chapter Added the Troubleshooting 
Amplify Hosting chapter to 
describe how to fix issues that 
you encounter with applicati 
ons deployed to Amplify 
Hosting.

April 2, 2024

New support for custom SSL/
TLS certificates

Added the Using SSL/TLS 
certificates topic to the
Setting up custom domains
chapter to describe Amplify 
support for custom SSL/TLS 
certificates when connecting 
an app to a custom domain.

February 20, 2024

Updated managed policies 
topic

Updated the AWS managed 
policies for AWS Amplify
topic to describe recent 
changes to the AWS managed 
policies for Amplify.

January 2, 2024

New support for SSR 
frameworks

Updated the Deploying 
server-side rendered apps 
with Amplify Hosting topic 
to describe Amplify support 
for any Javascript-based SSR 
framework with an open-sour 
ce adapter.

November 19, 2023

260



AWS Amplify Hosting User Guide

Change Description Date

New support for image 
optimization feature launch

Added the Image optimizat 
ion for SSR apps topic to 
describe the built-in support 
for image optimization for 
server-side rendered apps.

November 19, 2023

Updated managed policies 
topic

Updated the AWS managed 
policies for AWS Amplify
topic to describe recent 
changes to the AWS managed 
policies for Amplify.

November 17, 2023

Updated managed policies 
topic

Updated the AWS managed 
policies for AWS Amplify
topic to describe recent 
changes to the AWS managed 
policies for Amplify.

November 6, 2023

New wildcard subdomains 
topic

Added the Wildcard 
subdomains topic to describe 
support for wildcard 
subdomains on custom 
domains.

November 6, 2023

New managed policy Updated the AWS managed 
policies for AWS Amplify
topic to describe the new 
AmplifyBackendDepl 
oyFullAccess AWS managed 
policy for Amplify.

October 8, 2023

261



AWS Amplify Hosting User Guide

Change Description Date

New support for monorepo 
frameworks feature launch

Updated the Monorepo build 
settings topic to describe 
support for deploying apps 
in monorepos created using 
npm workspace, pnpm 
workspace, Yarn workspace, 
Nx, and Turborepo.

June 19, 2023

Updated managed policies 
topic

Updated the AWS managed 
policies for AWS Amplify
topic to describe recent 
changes to the AWS managed 
policies for Amplify.

June 1, 2023

Updated managed policies 
topic

Updated the AWS managed 
policies for AWS Amplify
topic to describe recent 
changes to the AWS managed 
policies for Amplify.

February 24, 2023

Updated server-side 
rendering chapter

Updated the Deploying 
server-side rendered apps 
with Amplify Hosting chapter 
to describe recent changes to 
Amplify's support for Next.js 
versions 12 and 13.

November 17, 2022

Updated managed policies 
topic

Updated the AWS managed 
policies for AWS Amplify
topic to describe recent 
changes to the AWS managed 
policies for Amplify.

August 30, 2022

262



AWS Amplify Hosting User Guide

Change Description Date

Updated managed policies 
topic

Updated the Building a 
backend for an applicati 
on topic to describe how 
to deploy a backend using 
Amplify Studio.

August 23, 2022

Updated managed policies 
topic

Updated the AWS managed 
policies for AWS Amplify
topic to describe recent 
changes to the AWS managed 
policies for Amplify.

April 27, 2022

Updated managed policies 
topic

Updated the AWS managed 
policies for AWS Amplify
topic to describe recent 
changes to the AWS managed 
policies for Amplify.

April 17, 2022

New GitHub App feature 
launch

Added the Setting up Amplify 
access to GitHub repositor 
ies topic to describe the new 
GitHub App for authorizing 
Amplify access to your GitHub 
repository.

April 5, 2022

New Amplify Studio feature 
launch

Updated the Welcome to 
AWS Amplify Hosting topic 
to describe the updates to 
Amplify Studio that provide 
a visual designer to create 
UI components that you can 
connect to your backend data.

December 2, 2021

263



AWS Amplify Hosting User Guide

Change Description Date

Updated managed policies 
topic

Updated the AWS managed 
policies for AWS Amplify
topic to describe recent 
changes to the AWS managed 
policies for Amplify to 
support Amplify Studio.

December 2, 2021

Updated managed policies 
topic

Updated the AWS managed 
policies for AWS Amplify
topic to describe recent 
changes to the AWS managed 
policies for Amplify.

November 8, 2021

Updated managed policies 
topic

Updated the AWS managed 
policies for AWS Amplify
topic to describe recent 
changes to the AWS managed 
policies for Amplify.

September 27, 2021

New managed policies topic Added the AWS managed 
policies for AWS Amplify
topic to describe the AWS 
managed policies for Amplify 
and recent changes to those 
policies.

July 28, 2021

Updated Server side 
rendering chapter

Updated the Deploying 
server-side rendered apps 
with Amplify Hosting chapter 
to describe new support for 
Next.js version 10.x.x and 
Next.js version 11.

July 22, 2021

264



AWS Amplify Hosting User Guide

Change Description Date

Updated Configuring build 
settings chapter

Added the Monorepo build 
settings topic to describe how 
to configure the build settings 
and the new AMPLIFY_M 
ONOREPO_APP_ROOT
environment variable when 
deploying a monorepo app 
with Amplify.

July 20, 2021

Updated Feature branch 
deployments chapter

Added the Automatic build-
time generation of Amplify 
config (Gen 1 apps only)
topic to describe how to 
autogenerate the aws-
exports.js  file at build-
time. Added the Condition 
al backend builds (Gen 1 
apps only) topic to describe 
how to enable condition 
al backend builds. Added 
the Use Amplify backends 
across apps (Gen 1 apps 
only) topic to describe how 
to reuse existing backends 
when you create a new app, 
connect a new branch to an 
existing app, or update an 
existing frontend to point to a 
different backend environme 
nt.

June 30, 2021

265



AWS Amplify Hosting User Guide

Change Description Date

Updated Security chapter Added the Data Protection 
in Amplify topic to describe 
how to apply the shared 
responsibility model and how 
Amplify uses encryption to 
protect your data at rest and 
in transit.

June 3, 2021

New support for SSR feature 
launch

Added the Deploying server-
side rendered apps with 
Amplify Hosting chapter to 
describe Amplify support for 
web apps that use server-si 
de rendering (SSR) and are 
created with Next.js.

May 18, 2021

New security chapter Added the Security in Amplify
chapter to describe how to 
apply the shared responsib 
ility model when using 
Amplify and how to configure 
Amplify to meet your security 
and compliance objectives.

March 26, 2021

Updated custom builds topic Updated the Custom build 
images and live package 
updates topic to describe how 
to configure a custom build 
image hosted in Amazon 
Elastic Container Registry 
Public.

March 12, 2021

266



AWS Amplify Hosting User Guide

Change Description Date

Updated monitoring topic Updated the Monitoring topic 
to describe how to access 
Amazon CloudWatch metrics 
data and set alarms.

February 2, 2021

New CloudTrail logging topic Added the Logging Amplify 
API calls using AWS CloudTrai 
l topic to describe how AWS 
CloudTrail captures and logs 
all of the API actions for 
the AWS Amplify Console 
API Reference and the 
AWS Amplify Admin UI API 
Reference.

February 2, 2021

New Admin UI feature launch Updated the Welcome to 
AWS Amplify Hosting topic 
to describe the new Admin 
UI that provides a visual 
interface for frontend web 
and mobile developers to 
create and manage app 
backends outside the AWS 
Management Console.

December 1, 2020

New performance mode 
feature launch

Updated the Managing app 
performance topic to describe 
how to enable performance 
mode to optimize for faster 
hosting performance.

November 4, 2020

267



AWS Amplify Hosting User Guide

Change Description Date

Updated the custom headers 
topic

Updated the Custom headers
topic to describe how to 
define custom headers for an 
Amplify app using the console 
or by editing a YML file.

October 28, 2020

New auto subdomains feature 
launch

Added the Set up automatic 
 subdomains for a Route 
53 custom domain topic 
to describe how to use 
pattern-based feature branch 
deployments for an app 
connected to an Amazon 
Route 53 custom domain. 
Added the Web preview 
access with subdomains
topic to describe how to set 
up web previews from pull 
requests to be accessible with 
subdomains.

June 20, 2020

New notifications topic Added the Notifications
topic to describe how to 
set up email notifications 
for an Amplify app to 
alert stakeholders or team 
members when a build 
succeeds or fails.

June 20, 2020

268



AWS Amplify Hosting User Guide

Change Description Date

Updated the custom domains 
topic

Updated the Setting up 
custom domains topic to 
improve the procedures for 
adding custom domains in 
Amazon Route 53, GoDaddy, 
and Google Domains. This 
update also includes new 
troubleshooting informati 
on for setting up custom 
domains.

May 12, 2020

AWS Amplify release This release introduces 
Amplify.

November 26, 2018

269


	AWS Amplify Hosting
	Table of Contents
	Welcome to AWS Amplify Hosting
	Supported frameworks
	Amplify Hosting features
	Get started with Amplify Hosting
	Build a backend
	Amplify Hosting pricing

	Getting started with deploying an app to Amplify Hosting
	Deploy a Next.js app to Amplify Hosting
	Step 1: Connect a Git repository
	Step 2: Confirm the build settings
	Step 3: Deploy the application
	Step 4: (Optional) clean up resources
	Add features to your app

	Deploy a Nuxt.js app to Amplify Hosting
	Deploy an Astro.js app to Amplify Hosting
	Deploy a SvelteKit app to Amplify Hosting

	Deploying server-side rendered apps with Amplify Hosting
	Amplify support for Next.js
	Next.js feature support
	Next.js images

	Deploying a Next.js SSR app to Amplify
	Package.json file settings
	Amplify build settings for a Next.js app

	Migrating a Next.js 11 SSR app to Amplify Hosting compute
	Reverting an SSR migration

	Adding SSR functionality to a static Next.js app
	Update the platform
	Add a service role
	Update build settings
	Update the package.json file

	Making environment variables accessible to server-side runtimes
	SSR environment variables for monorepos

	Deploying a Next.js app in a monorepo

	Amplify support for Nuxt.js
	Amplify support for Astro.js
	Amplify support for SvelteKit
	Deploy an SSR app to Amplify
	SSR supported features
	Node.js version support for Next.js apps
	Image optimization for SSR apps
	Using a custom image loader

	Amazon CloudWatch Logs for SSR apps
	Amplify Next.js 11 SSR support
	Pricing for Next.js 11 SSR apps
	AWS Identity and Access Management permissions for Next.js 11 SSR apps
	Troubleshooting Next.js 11 SSR deployments
	Your output directory is overridden
	You get a 404 error after deploying your SSR site
	Your app is missing the rewrite rule for CloudFront SSR distributions
	Your app is too large to deploy
	Your build fails with an out of memory error
	Your app has both SSR and SSG branches
	Your app stores static files in a folder with a reserved path
	Your app has reached a CloudFront limit
	Environment variables are not carried through to Lambda functions
	Lambda@Edge functions are created in the US East (N. Virginia) Region
	Your Next.js app uses unsupported features
	Images in your Next.js app aren't loading
	Unsupported Regions



	Pricing for SSR apps
	Troubleshooting SSR deployments
	Advanced: Open source adapters
	Using the Amplify Hosting deployment specification to configure build output
	Amplify SSR primitive support
	The .amplify-hosting/static directory
	The .amplify-hosting/compute directory
	The .amplify-hosting/deploy-manifest.json file
	Using the version attribute
	Using the routes attribute
	Using the computeResources attribute
	Using the imageSettings attribute
	Using the framework attribute

	Best practices for configuring routing rules
	Public folder routing
	Catch-all fallback routing
	Base path routing
	Nuxt.js routes examples



	Deploying an Express server using the deployment manifest
	Image optimization integration for framework authors
	Understanding the Image optimization API
	HTTP headers
	URI request parameters
	Response status codes
	Caching


	Using open source adapters


	Setting up custom domains
	Understanding DNS terminology and concepts
	DNS terminology
	DNS verification
	Amplify Hosting custom domain activation process

	Using SSL/TLS certificates
	Add a custom domain managed by Amazon Route 53
	Add a custom domain managed by a third-party DNS provider
	Update DNS records for a domain managed by GoDaddy
	Update DNS records for a domain managed by Google Domains
	Update the SSL/TLS certificate for a domain
	Manage subdomains
	To add a subdomain only
	To add a multilevel subdomain
	To add or edit a subdomain

	Wildcard subdomains
	To add or delete a wildcard subdomain

	Set up automatic subdomains for an Amazon Route 53 custom domain
	Web previews with subdomains

	Troubleshooting custom domains

	Configuring build settings
	Build specification commands and settings
	Build specification YAML syntax

	Branch-specific build settings
	Navigating to a subfolder
	Deploying the backend with the front end for a Gen 1 app
	Setting the output folder
	Installing packages as part of a build
	Using a private npm registry
	Installing OS packages
	Key-value storage for every build
	Skip build for a commit
	Disable automatic builds
	Enable or disable diff based frontend build and deploy
	Enable or disable diff based backend builds for a Gen 1 app
	Monorepo build settings
	Monorepo build specification YAML syntax
	Monorepo build specification YAML syntax

	Setting the AMPLIFY_MONOREPO_APP_ROOT environment variable
	Setting the AMPLIFY_MONOREPO_APP_ROOT environment variable automatically during deployment
	Setting the AMPLIFY_MONOREPO_APP_ROOT environment variable for an existing app

	Configuring Turborepo and pnpm monorepo apps


	Feature branch deployments and team workflows
	Team workflows with fullstack Amplify Gen 2 apps
	Team workflows with fullstack Amplify Gen 1 apps
	Feature branch workflow
	GitFlow workflow
	Per-developer sandbox

	Pattern-based feature branch deployments
	Pattern-based feature branch deployments for an app connected to a custom domain

	Automatic build-time generation of Amplify config (Gen 1 apps only)
	Conditional backend builds (Gen 1 apps only)
	Use Amplify backends across apps (Gen 1 apps only)
	Reuse backends when creating a new app
	Reuse backends when connecting a branch to an existing app
	Edit an existing frontend to point to a different backend


	Building a backend for an application
	Create a backend for a Gen 2 app
	Create a backend for a Gen 1 app
	Prerequisites
	Step 1: Deploy a frontend
	Step 2: Create a backend
	Step 3: Connect the backend to the frontend
	Next steps
	Set up feature branch deployments
	Create a frontend UI in Amplify Studio



	Manual deploys
	Drag and drop manual deploy
	Amazon S3 or URL manual deploy
	Troubleshooting Amazon S3 bucket access


	Deploy to Amplify button
	Add the Deploy to Amplify Hosting button to a repository or blog

	Setting up Amplify access to GitHub repositories
	Installing and authorizing the Amplify GitHub App for a new deployment
	Migrating an existing OAuth app to the Amplify GitHub App
	Setting up the Amplify GitHub App for AWS CloudFormation, CLI, and SDK deployments
	Setting up web previews with the Amplify GitHub App

	Web previews for pull requests
	Enable web previews
	Web preview access with subdomains

	Add end-to-end Cypress tests to your Amplify app
	Tutorial: Set up end-to-end tests with Cypress
	Add tests to your existing Amplify app
	Disabling tests

	Using redirects
	Types of redirects
	Creating and editing redirects
	Order of redirects
	Query parameters
	Simple redirects and rewrites
	Redirects for single page web apps (SPA)
	Reverse proxy rewrite
	Trailing slashes and clean URLs
	Placeholders
	Query strings and path parameters
	Region-based redirects
	Wildcard expressions in redirects and rewrites

	Restricting access to branches
	Environment variables
	Amplify environment variables
	Set environment variables
	Access environment variables at build time
	Making environment variables accessible to server-side runtimes
	Create a new backend environment with authentication parameters for social sign-in
	Frontend framework environment variables
	Managing environment secrets
	Set and access environment secrets for a Gen 1 app
	Access environment secrets
	Amplify environment secrets


	Custom headers
	Custom header YAML format
	Setting custom headers
	Migrating custom headers
	Monorepo custom headers
	Security headers example
	Custom Cache-Control headers

	Incoming webhooks
	Monitoring
	Monitoring with CloudWatch
	Metrics
	Alarms
	Amazon CloudWatch Logs for SSR apps

	Access logs
	Analyzing access logs


	Email notifications for builds
	Set up email notifications

	Custom build images and live package updates
	Custom build images
	Custom build image requirements
	Configuring a custom build image

	Live package updates
	Configuring live package updates


	Adding a service role
	Create a service role
	Confused deputy prevention

	Managing app performance
	Using headers to control cache duration
	Setting the Cache-Control header to increase app performance


	Logging Amplify API calls using AWS CloudTrail
	Amplify information in CloudTrail
	Understanding Amplify log file entries

	Security in Amplify
	Identity and Access Management for Amplify
	Audience
	Authenticating with identities
	AWS account root user
	Federated identity
	IAM users and groups
	IAM roles

	Managing access using policies
	Identity-based policies
	Resource-based policies
	Access control lists (ACLs)
	Other policy types
	Multiple policy types

	How Amplify works with IAM
	Identity-based policies for Amplify
	Identity-based policy examples for Amplify

	Resource-based policies within Amplify
	Policy actions for Amplify
	Policy resources for Amplify
	Policy condition keys for Amplify
	Access control lists (ACLs) in Amplify
	Attribute-based access control (ABAC) with Amplify
	Using temporary credentials with Amplify
	Forward access sessions for Amplify
	Service roles for Amplify
	Service-linked roles for Amplify

	Identity-based policy examples for Amplify
	Policy best practices
	Using the Amplify console
	Allow users to view their own permissions

	AWS managed policies for AWS Amplify
	AWS managed policy: AdministratorAccess-Amplify
	AWS managed policy: AmplifyBackendDeployFullAccess
	Amplify updates to AWS managed policies

	Troubleshooting Amplify identity and access
	I am not authorized to perform an action in Amplify
	I am not authorized to perform iam:PassRole
	I want to allow people outside of my AWS account to access my Amplify resources


	Data Protection in Amplify
	Encryption at rest
	Encryption in transit
	Encryption key management

	Compliance Validation for AWS Amplify
	Infrastructure Security in AWS Amplify
	Security event logging and monitoring in Amplify
	Cross-service confused deputy prevention
	Security best practices for Amplify
	Using cookies with the Amplify default domain


	Amplify Hosting service quotas
	Troubleshooting Amplify Hosting
	Troubleshooting general Amplify issues
	HTTP 429 status code (Too many requests)

	Troubleshooting Amazon Linux 2023 build image issues
	How do I run Amplify functions with the Python runtime
	How do I run commands that require superuser or root privileges

	Troubleshooting custom domains
	I need to verify that my CNAME resolves
	My domain hosted with a third-party is stuck in the Pending Verification state
	My domain hosted with Amazon Route 53 is stuck in the Pending Verification state
	I get a CNAMEAlreadyExistsException error
	I get an Additional Verification Required error
	I get a 404 error on the CloudFront URL
	I get SSL certificate or HTTPS errors when visiting my domain

	Troubleshooting server-side rendered applications
	You are using a framework adapter
	Edge API routes cause your Next.js build to fail
	On-Demand Incremental Static Regeneration isn't working for your app
	Your app's build output exceeds the maximum allowed size
	Your build fails with an out of memory error
	The HTTP response size is too large


	AWS Amplify Hosting reference
	AWS CloudFormation support
	AWS Command Line Interface support
	Resource tagging support
	Amplify Hosting API

	Document history for AWS Amplify

