
User Guide

AWS IoT TwinMaker

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

AWS IoT TwinMaker User Guide

AWS IoT TwinMaker: User Guide

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

AWS IoT TwinMaker User Guide

Table of Contents

What is AWS IoT TwinMaker? ... 1
How it works ... 1
Key concepts and components .. 2

Workspace ... 3
Entity-component model .. 3
Visualization ... 5

Getting started with AWS IoT TwinMaker ... 8
Create and manage a service role for AWS IoT TwinMaker ... 9

Assign trust ... 9
Amazon S3 permissions ... 9
Assign permissions to a specific Amazon S3 bucket ... 10
Permissions for built-in connectors .. 12
Permissions for a connector to an external data source .. 15
Modify your workspace IAM role to use the Athena data connector ... 16

Create a workspace .. 18
Create your first entity ... 20
Setting up an AWS account ... 23

Sign up for an AWS account .. 23
Create a user with administrative access ... 24

Using and creating component types .. 26
Built-in component types ... 26
Core features of AWS IoT TwinMaker component types ... 27
Creating property definitions .. 28
Creating functions .. 29
Example component types ... 30

Alarm (abstract) ... 30
Timestream telemetry ... 32
Alarm (inherits from abstract alarm) .. 32
Equipment examples .. 33

Bulk operations ... 37
Key concepts and terminology .. 37

AWS IoT TwinMaker metadataTransferJob functionality ... 38
Performing bulk import and export operations .. 39

metadataTransferJob prerequisites ... 40

iii

AWS IoT TwinMaker User Guide

IAM permissions .. 40
Run a bulk operation ... 44
Error handling .. 47
Import metadata templates ... 48
AWS IoT TwinMaker metadataTransferJob examples ... 51

AWS IoT TwinMaker metadata transfer job schema ... 53
Data connectors ... 70

Data connectors .. 70
Schema initializer connector .. 71
DataReaderByEntity .. 72
DataReaderByComponentType ... 73
DataReader ... 75
AttributePropertyValueReaderByEntity .. 76
DataWriter .. 77
Examples ... 78

Athena tabular data connector ... 87
AWS IoT TwinMaker Athena data connector prerequisites .. 87
Using the Athena data connector ... 88
Using the Athena tabular data connector JSON reference .. 92
Using the Athena data connector ... 93
Visualize Athena tabular data in Grafana .. 93

AWS IoT TwinMaker time-series data connector ... 95
AWS IoT TwinMaker time-series data connector prerequisites .. 96
Time-series data connector background .. 96
Developing a time-series data connector .. 98
Improving your data connector ... 107
Testing your connector .. 107
Security ... 108
Creating AWS IoT TwinMaker resources .. 108
What's next .. 110
AWS IoT TwinMaker cookie factory data connector ... 110

Creating AWS IoT TwinMaker scenes ... 116
Before creating scenes .. 116

Optimize your resources before importing them into AWS IoT TwinMaker 116
Best practices for performance in AWS IoT TwinMaker ... 117
Learn more ... 117

iv

AWS IoT TwinMaker User Guide

Uploading resources in AWS IoT TwinMaker .. 118
Upload files to the Resource Library using the console ... 118

Create your scenes ... 118
Use 3D navigation in your AWS IoT TwinMaker in scenes ... 119

Add fixed cameras ... 121
Enhanced editing ... 121

Targeted placement of scene objects .. 122
Submodel selection .. 122
Edit entities in the scene hierarchy .. 123
Add annotations to entities ... 124
Add overlays to Tags ... 128

Edit your scenes ... 136
Add models .. 136
Add widgets ... 137
Adding tags .. 141

Optimize your 3D model .. 141
Using 3D Tiles in your scene .. 141

Dynamic scenes .. 144
Static versus dynamic scenes ... 144
Scene component types and entities ... 145
Dynamic scene concepts ... 146

AWS IoT TwinMaker app kit integration .. 147
Switch AWS IoT TwinMaker pricing modes ... 148
Knowledge graph .. 150

AWS IoT TwinMaker knowledge graph core concepts .. 150
Using knowledge graph .. 151
Generate a scene graph ... 153

AWS IoT TwinMaker scene graph prerequisites .. 154
Bind 3D nodes in your scene ... 155
Create a web application .. 157

Knowledge graph Grafana panel .. 159
AWS IoT TwinMaker query editor prerequisites ... 159
Knowledge graph Grafana permissions ... 160

Knowledge graph additional resources ... 164
Asset synchronization with AWS IoT SiteWise .. 178

Using asset sync with AWS IoT SiteWise .. 178

v

AWS IoT TwinMaker User Guide

Using a custom workspace ... 178
Using the IoTSiteWiseDefaultWorkspace ... 184

Differences between custom and default workspaces ... 185
Resources synced from AWS IoT SiteWise .. 185

Custom and default workspaces ... 186
Default workspace only ... 187
Resources not synced .. 187
Use synced entities and component types in AWS IoT TwinMaker .. 188

Analyze sync status and errors ... 189
Sync job statuses .. 189

Delete a sync job ... 191
Asset sync limits ... 192

Setting up Grafana dashboards .. 194
CORS configuration ... 195
Setting up your Grafana environment .. 196

Amazon Managed Grafana ... 196
Self-managed Grafana .. 197

Creating a dashboard role ... 198
Create an IAM policy ... 198
Upload video from the edge ... 201
Add more permissions ... 202
Creating the Grafana Dashboard IAM role .. 203

Creating an AWS IoT TwinMaker Video Player policy .. 204
Scope down access to your resources .. 206
Scope down GET permissions .. 206
Scope down AWS IoT SiteWise BatchPutAssetPropertyValue permission 207

Connect Alarms to Grafana dashboards .. 210
AWS IoT SiteWise alarm configuration prerequisites ... 210
Define the AWS IoT SiteWise alarm component IAM role ... 210
Query and update through the AWS IoT TwinMaker API .. 212
Configure your Grafana dashboard for alarms .. 213
Use Grafana dashboard for alarm visualization .. 215

Matterport integration .. 218
Integration overview ... 219
Matterport integration prerequisites ... 220
Matterport SDK credentials ... 221

vi

AWS IoT TwinMaker User Guide

Store Matterport credentials in AWS Secrets Manager ... 222
Matterport scans in AWS IoT TwinMaker scenes ... 225
Matterport in your AWS IoT TwinMaker Grafana dashboard .. 231
Matterport integration with the AWS IoT app kit .. 231

Streaming video to AWS IoT TwinMaker ... 232
Use the edge connector for Kinesis video stream to stream video in AWS IoT TwinMaker 232

Prerequisites .. 232
Create video components for AWS IoT TwinMaker scenes .. 233

Add video and metadata from Kinesis video stream to a Grafana dashboard 233
Using the AWS IoT TwinMaker Flink library .. 235
Logging and monitoring ... 236

Monitoring with Amazon CloudWatch metrics .. 236
Metrics ... 237

Logging API calls with AWS CloudTrail ... 239
AWS IoT TwinMaker information in CloudTrail .. 240

Security .. 242
Data protection .. 242

Encryption at rest ... 243
Encryption in transit .. 244

Identity and Access Management .. 244
Audience ... 244
Authenticating with identities ... 245
Managing access using policies ... 248
How AWS IoT TwinMaker works with IAM .. 251
Identity-based policy examples ... 257
Troubleshooting .. 260
Using service-linked roles ... 262
AWS managed policies .. 264

VPC endpoints (AWS PrivateLink) .. 268
Considerations for AWS IoT TwinMaker VPC endpoints ... 269
Creating an interface VPC endpoint for AWS IoT TwinMaker ... 270
Accessing AWS IoT TwinMaker through an interface VPC endpoint .. 271
Creating a VPC endpoint policy for AWS IoT TwinMaker ... 273

Compliance Validation .. 274
Resilience ... 275
Infrastructure Security .. 276

vii

AWS IoT TwinMaker User Guide

Endpoints and quotas ... 277
AWS IoT TwinMaker endpoints and quotas ... 277

Additional endpoint information .. 277
Document history .. 278
... cclxxix

viii

AWS IoT TwinMaker User Guide

What is AWS IoT TwinMaker?

AWS IoT TwinMaker is an AWS IoT service that you can use to build operational digital twins of
physical and digital systems. AWS IoT TwinMaker creates digital visualizations using measurements
and analysis from a variety of real-world sensors, cameras, and enterprise applications to help you
keep track of your physical factory, building, or industrial plant. You can use this real-world data to
monitor operations, diagnose and correct errors, and optimize operations.

A digital twin is a live digital representation of a system and all of its physical and digital
components. It is dynamically updated with data to mimic the true structure, state, and behavior of
the system. You can use it to drive business outcomes.

End users interact with data from your digital twin by using a user interface application.

How it works

To fulfill the minimum requirements for creating a digital twin, you must do the following.

• Model devices, equipment, spaces, and processes in a physical location.

• Connect these models to data sources that store important contextual information, such as
sensor data camera feeds.

• Create visualizations that help users understand the data and insights in order to make business
decisions more efficiently.

• Make digital twins available to end users to drive business outcomes.

AWS IoT TwinMaker addresses these challenges by providing the following capabilities.

• Entity component system knowledge graph: AWS IoT TwinMaker provides tools for modeling
devices, equipment, spaces, and processes in a knowledge graph.

This knowledge graph contains metadata about the system and can connect to data in different
locations. AWS IoT TwinMaker provides built-in connectors for data stored in AWS IoT SiteWise
and Kinesis Video Streams. You can also create custom connectors to data stored in other
locations.

The knowledge graph and connectors together provide a single interface for querying data in
disparate locations.

How it works 1

AWS IoT TwinMaker User Guide

• Scene composer: The AWS IoT TwinMaker console provides a scene composition tool for creating
scenes in 3D. You upload your previously built 3D/CAD models, optimized for web display and
converted to .gltf or .glb format. You then use the scene composer to place multiple models in a
single scene, creating visual representations of their operations.

You can also overlay data in the scene. For example, you can create a tag in a scene location that
connects to temperature data from a sensor. This associates the data with the location.

• Applications: AWS IoT TwinMaker provides a plug-in for Grafana and Amazon Managed Grafana
that you can use to build dashboard applications for end users.

• Third-party tools: Mendix partners with AWS IoT TwinMaker to provide complete solutions for
industrial IoT. See the workshop Lean Daily Management Application with Mendix and AWS IoT
TwinMaker to get started with using the Mendix Low Code Application Development Platform
(LCAP) with AWS services like AWS IoT TwinMaker, Kinesis Video Streams and AWS IoT SiteWise.

Key concepts and components

The following diagram illustrates how the key concepts of AWS IoT TwinMaker fit together.

Key concepts and components 2

https://catalog.workshops.aws/lean-daily-management/en-US
https://catalog.workshops.aws/lean-daily-management/en-US

AWS IoT TwinMaker User Guide

Note

Asterisks (*) in the diagram indicate one-to-many relationships. For the quotas for each of
these relationships, see AWS IoT TwinMaker endpoints and quotas.

The following sections describe the concepts illustrated in the diagram.

Workspace

A workspace is a top-level container for your digital twin application. You create a logical set of
entities, components, scene assets, and other resources for your digital twin inside this workspace.
It also serves as a security boundary to manage access to the digital twin application and the
resources it contains. Each workspace is linked to the Amazon S3 bucket where your workspace
data is stored. You use IAM roles to restrict access to your workspace.

A workspace can contain multiple components, entities, scenes and resources. A component type,
entity, scene or resource exists only within one workspace.

Entity-component model

AWS IoT TwinMaker provides tools that you use to model your system by using an entity-
component-based knowledge graph. You can use the entity-component architecture to create
a representation of your physical system. This entity component model consists of entities,
components, and relationships. For more information about entity-component systems, see Entity
component system.

Entity

Entities are digital representations of the elements in a digital twin that capture the capabilities of
that element. This element can be a piece of physical equipment, a concept, or a process. Entities
have components associated with them. These components provide data and context for the
associated entity.

With AWS IoT TwinMaker, you can organize entities into custom hierarchies for more efficient
management. The default view of the entity and component system is hierarchical.

Workspace 3

https://docs.aws.amazon.com/general/latest/gr/iot-twinmaker.html
https://en.wikipedia.org/wiki/Entity_component_system
https://en.wikipedia.org/wiki/Entity_component_system

AWS IoT TwinMaker User Guide

Component

Components provide context and data for entities in a scene. You add components to entities. The
lifetime of a component is tied to the lifetime of an entity.

Components can add static data, such as a list of documents or the coordinates of a geographic
location. They can also have functions that connect to other systems, including systems that
contain time series data such as AWS IoT SiteWise and other time-series cloud historians.

Components are defined by JSON documents that describe the connection between a data source
and AWS IoT TwinMaker. Components can describe external data sources or data sources that are
built in to AWS IoT TwinMaker. A component accesses an external datasource by using a Lambda
function that is specified in the JSON document. A workspace can contain many components.
Components provide data to tags through associated entities.

AWS IoT TwinMaker provides several built-in components that you can add from the console. You
can also create your own custom components to connect to sources of data such as timestream
telemetry and geospatial coordinates. Examples of these include TimeStream Telemetry,
Geospatial components, and connectors to third party data sources such as Snowflake.

AWS IoT TwinMaker provides the following types of built-in components for common use cases:

• Document, such as user manuals or images located at specified URLs.

• Time series, such as sensor data from AWS IoT SiteWise.

• Alarms, such as time-series alarms from external data sources.

• Video, from IP cameras connected to Kinesis Video Streams.

• Custom components to connect to additional data sources. For example, you can create a
custom connector to connect your AWS IoT TwinMaker entities to time-series data stored
externally.

Data sources

A data source is the location of your digital twin’s source data. AWS IoT TwinMaker supports two
types of data sources:

• Hierarchy connectors, which allow you to continually sync an external model to AWS IoT
TwinMaker.

Entity-component model 4

AWS IoT TwinMaker User Guide

• Time-series connectors, which allow you to connect to time-series databases such as AWS IoT
SiteWise.

Property

Properties are the values, both static and time-series backed, contained in components. When you
add components to entities, the properties in the component describe details about the current
state of the entity.

AWS IoT TwinMaker supports three kinds of properties:

• Single value, non-time-series properties— These properties are typically static key-value pairs
and are directly stored in AWS IoT TwinMaker with the metadata of the associated entity.

• Time-series properties— AWS IoT TwinMaker stores a reference to the time-series store for
these properties. This defaults to the latest value.

• Relationship properties— These properties store a reference to another entity or component.
For example, seen_by is a relationship component that might relate a camera entity to another
entity that is directly visualized by that camera.

You can query property values across heterogeneous data sources by using the unified data query
interface.

Visualization

You use AWS IoT TwinMaker to augment a three-dimensional representation of your digital twin,
and then view it in Grafana. To create scenes, use existing CAD or other 3D file types. You then use
data overlays to add relevant data for your digital twin.

Scenes

Scenes are three-dimensional representations that provide visual context for the data connected to
AWS IoT TwinMaker. Scenes can be created by using a single gltf (GL Transmission Format) or glb
3D model for the entire environment, or by using a composition of multiple models. Scenes also
include tags to denote points of interest in the scene.

Scenes are the top level containers for visualizations. A scene consists of one or more nodes.

A workspace can contain multiple scenes. For example, a workspace can contain one scene for each
floor of a facility.

Visualization 5

AWS IoT TwinMaker User Guide

Resources

Scenes display resources, which are displayed as nodes in the AWS IoT TwinMaker console. A scene
can contain many resources.

Resources are images and glTF-based, three-dimensional models used to create a scene. A
resource can represent a single piece of equipment, or a complete site.

You place resources into a scene by uploading a .gltf or .glb file to your workspace resource library
and then adding them to your scene.

Augmented user interface

With AWS IoT TwinMaker you can augment your scenes with data overlays that add important
context and information, such as sensor data, to locations in the scene.

Nodes: Nodes are instances of tags, lights, and three-dimensional models. They can also be empty
to add structure to your scene hierarchy. For example, you can group multiple nodes together
under a single empty node.

Tags: A tag is a type of node that represents data from a component (through an entity). A tag
can be associated with only one component. A tag is an annotation added to a specific x,y,z
coordinate position of a scene. The tag connects this scene part to the knowledge graph by using
an entity property. You can use a tag to configure the behavior or visual appearance of an item in
the scene, such as an alarm.

Lights: You can add lights to a scene to bring certain objects into focus, or cast shadows on objects
to indicate their physical location.

Three-dimensional models: A three-dimensional model is a visual representation of a .gltf or .glb
file imported as a resource.

Note

AWS IoT TwinMaker is not intended for use in, or in association with, the operation of any
hazardous environments or critical systems that may lead to serious bodily injury or death
or cause environmental or property damage.
Data collected through your use of AWS IoT TwinMaker should be evaluated for accuracy
as appropriate for your use case. AWS IoT TwinMaker should not be used as a substitute for

Visualization 6

AWS IoT TwinMaker User Guide

human monitoring of physical systems for purposes of assessing whether such systems are
operating safely.

Visualization 7

AWS IoT TwinMaker User Guide

Getting started with AWS IoT TwinMaker

The topics in this section describe how to do the following.

• Create and set up a new workspace.

• Create an entity and add a component to it.

Prerequisites:

To create your first workspace and scene, you need the following AWS resources.

• An AWS account.

• An IAM service role for AWS IoT TwinMaker. This role is automatically generated by default, when
you create a new AWS IoT TwinMaker workspace in the AWS IoT TwinMaker console.

If you don't choose to let AWS IoT TwinMaker automatically create a new IAM service role, you
must specify one that you have already created.

For instructions on creating and managing this service role, see ???.

For more information about IAM service roles, see Creating a role to delegate permissions to an
AWS service.

Important

This service role must have an attached policy that grants permission for the service to
read and write to an Amazon S3 bucket. AWS IoT TwinMaker uses this role to access other
services on your behalf. You will also need to assign a trust relationship between this role
and AWS IoT TwinMaker so that the service can assume the role. If your twin interacts
with other AWS services, add the necessary permissions for those services as well.

Topics

• Create and manage a service role for AWS IoT TwinMaker

• Create a workspace

• Create your first entity

• Setting up an AWS account

8

http://aws.amazon.com
https://console.aws.amazon.com/iottwinmaker/
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html

AWS IoT TwinMaker User Guide

Create and manage a service role for AWS IoT TwinMaker

AWS IoT TwinMaker requires that you use a service role to allow it to access resources in other
services on your behalf. This role must have a trust relationship with AWS IoT TwinMaker. When
you create a workspace, you must assign this role to the workspace. This topic contains example
policies that show you how to configure permissions for common scenarios.

Assign trust

The following policy establishes a trust relationship between your role and AWS IoT TwinMaker.
Assign this trust relationship to the role that you use for your workspace.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "iottwinmaker.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

Amazon S3 permissions

The following policy allows your role to read and delete from and write to an Amazon S3 bucket.
Workspaces store resources in Amazon S3, so the Amazon S3 permissions are required for all
workspaces.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "s3:GetBucket*",

Create and manage a service role for AWS IoT TwinMaker 9

AWS IoT TwinMaker User Guide

 "s3:GetObject",
 "s3:ListBucket",
 "s3:PutObject"
],
 "Resource": [
 "arn:aws:s3:::*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:DeleteObject"
],
 "Resource": [
 "arn:aws:s3:::*/DO_NOT_DELETE_WORKSPACE_*"
]
 }
]
}

Note

When you create a workspace, AWS IoT TwinMaker creates a file in your Amazon S3
bucket that indicates it's being used by a workspace. This policy gives AWS IoT TwinMaker
permission to delete that file when you delete the workspace.
AWS IoT TwinMaker places other objects related to your workspace. It's your responsibility
to delete these objects when you delete a workspace.

Assign permissions to a specific Amazon S3 bucket

When you create a workspace in the AWS IoT TwinMaker console, you can choose to have AWS IoT
TwinMaker create an Amazon S3 bucket for you. You can find information about this bucket by
using the following AWS CLI command.

 aws iottwinmaker get-workspace --workspace-id workspace name

The following example shows the format of the output of this command.

Assign permissions to a specific Amazon S3 bucket 10

AWS IoT TwinMaker User Guide

{
 "arn": "arn:aws:iottwinmaker:region:account Id:workspace/workspace name",
 "creationDateTime": "2021-11-30T11:30:00.000000-08:00",
 "description": "",
 "role": "arn:aws:iam::account Id:role/service role name",
 "s3Location": "arn:aws:s3:::bucket name",
 "updateDateTime": "2021-11-30T11:30:00.000000-08:00",
 "workspaceId": "workspace name"
}

To update your policy so that it assigns permissions for a specific Amazon S3 bucket, use the value
of bucket name.

The following policy allows your role to read and delete from and write to a specific Amazon S3
bucket.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "s3:GetBucket*",
 "s3:GetObject",
 "s3:ListBucket",
 "s3:PutObject"
],
 "Resource": [
 "arn:aws:s3:::bucket name",
 "arn:aws:s3:::bucket name/*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:DeleteObject"
],
 "Resource": [
 "arn:aws:s3:::iottwinmakerbucket/DO_NOT_DELETE_WORKSPACE_*"
]

Assign permissions to a specific Amazon S3 bucket 11

AWS IoT TwinMaker User Guide

 }
]
}

Permissions for built-in connectors

If your workspace interacts with other AWS services by using built-in connectors, you must include
permissions for those services in this policy. If you use the com.amazon.iotsitewise.connector
component type, you must include permissions for AWS IoT SiteWise. For more information about
component types, see ???.

Note

If you interact with other AWS services by using a custom component type, you must grant
the role permission to run the Lambda function that implements the function in your
component type. For more information, see ???.

The following example shows how to include AWS IoT SiteWise in your policy.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "s3:GetBucket*",
 "s3:GetObject",
 "s3:ListBucket",
 "s3:PutObject"
],
 "Resource": [
 "arn:aws:s3:::bucket name",
 "arn:aws:s3:::bucket name/*"
]
 },
 {
 "Effect": "Allow",
 "Action": [

Permissions for built-in connectors 12

AWS IoT TwinMaker User Guide

 "iotsitewise:DescribeAsset"
],
 "Resource": "asset ARN"
 },
 {
 "Effect": "Allow",
 "Action": [
 "iotsitewise:DescribeAssetModel"
],
 "Resource": "asset model ARN"
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:DeleteObject"
],
 "Resource": [
 "arn:aws:s3:::*/DO_NOT_DELETE_WORKSPACE_*"
]
 }
]
}

If you use the com.amazon.iotsitewise.connector component type and need to read property data
from AWS IoT SiteWise, you must include the following permission in your policy.

...
{
 "Action": [
 "iotsitewise:GetPropertyValueHistory",
],
 "Resource": [
 "AWS IoT SiteWise asset resource ARN"
],
 "Effect": "Allow"
},
...

If you use the com.amazon.iotsitewise.connector component type and need to write property
data to AWS IoT SiteWise, you must include the following permission in your policy.

Permissions for built-in connectors 13

AWS IoT TwinMaker User Guide

...
{
 "Action": [
 "iotsitewise:BatchPutPropertyValues",
],
 "Resource": [
 "AWS IoT SiteWise asset resource ARN"
],
 "Effect": "Allow"
},
...

If you use the com.amazon.iotsitewise.connector.edgevideo component type, you must include
permissions for AWS IoT SiteWise and Kinesis Video Streams. The following example policy shows
how to include AWS IoT SiteWise and Kinesis Video Streams permissions in your policy.

...
{
 "Action": [
 "iotsitewise:DescribeAsset",
 "iotsitewise:GetAssetPropertyValue"
],
 "Resource": [
 "AWS IoT SiteWise asset resource ARN for the Edge Connector for Kinesis Video
 Streams"
],
 "Effect": "Allow"
},
{
 "Action": [
 "iotsitewise:DescribeAssetModel"
],
 "Resource": [
 "AWS IoT SiteWise model resource ARN for the Edge Connector for Kinesis Video
 Streams"
],
 "Effect": "Allow"
},
{

Permissions for built-in connectors 14

AWS IoT TwinMaker User Guide

 "Action": [
 "kinesisvideo:DescribeStream"
],
 "Resource": [
 "Kinesis Video Streams stream ARN"
],
 "Effect": "Allow"
},
...

Permissions for a connector to an external data source

If you create a component type that uses a function that connects to an external data source, you
must give your service role permission to use the Lambda function that implements the function.
For more information about creating component types and functions, see ???.

The following example gives permission to your service role to use a Lambda function.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "s3:GetBucket*",
 "s3:GetObject",
 "s3:ListBucket",
 "s3:PutObject"
],
 "Resource": [
 "arn:aws:s3:::bucket name",
 "arn:aws:s3:::bucket name/*"
]
 },
 {
 "Action": [
 "lambda:invokeFunction"
],
 "Resource": [
 "Lambda function ARN"
],

Permissions for a connector to an external data source 15

AWS IoT TwinMaker User Guide

 "Effect": "Allow"
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:DeleteObject"
],
 "Resource": [
 "arn:aws:s3:::*/DO_NOT_DELETE_WORKSPACE_*"
]
 }
]
}

For more information about creating roles and assigning policies and trust relationships to them by
using the IAM console, the AWS CLI, and the IAM API, see Creating a role to delegate permissions to
an AWS service.

Modify your workspace IAM role to use the Athena data connector

To use the AWS IoT TwinMaker Athena tabular data connector, you must update your AWS IoT
TwinMaker workspace IAM role. Add the following permissions to your workspace IAM role:

Note

This IAM change only works for Athena tabular data stored with AWS Glue and Amazon
S3. To use Athena with other data sources, you must configure an IAM role for Athena, see
Identity and access management in Athena.

{
 "Effect": "Allow",
 "Action": [
 "athena:GetQueryExecution",
 "athena:GetQueryResults",
 "athena:GetTableMetadata",
 "athena:GetWorkGroup",
 "athena:StartQueryExecution",
 "athena:StopQueryExecution"
],

Modify your workspace IAM role to use the Athena data connector 16

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/iot-twinmaker/latest/guide/athena-tabular-data-connector.html
https://docs.aws.amazon.com/athena/latest/ug/security-iam-athena.html

AWS IoT TwinMaker User Guide

 "Resource": [
 "athena resouces arn"
]
},// Athena permission
{
 "Effect": "Allow",
 "Action": [
 "glue:GetTable",
 "glue:GetTables",
 "glue:GetDatabase",
 "glue:GetDatabases"
],
 "Resource": [
 "glue resouces arn"
]
},// This is an example for accessing aws glue
{
 "Effect": "Allow",
 "Action": [
 "s3:ListBucket",
 "s3:GetObject"
],
 "Resource": [
 "Amazon S3 data source bucket resources arn"
]
}, // S3 bucket for storing the tabular data.
{
 "Effect": "Allow",
 "Action": [
 "s3:GetBucketLocation",
 "s3:GetObject",
 "s3:ListBucket",
 "s3:ListBucketMultipartUploads",
 "s3:ListMultipartUploadParts",
 "s3:AbortMultipartUpload",
 "s3:CreateBucket",
 "s3:PutObject",
 "s3:PutBucketPublicAccessBlock"
],
 "Resource": [
 "S3 query result bucket resources arn"
]
} // Storing the query results

Modify your workspace IAM role to use the Athena data connector 17

AWS IoT TwinMaker User Guide

Read the Identity and access management in Athena for more information on Athena IAM
configuration.

Create a workspace

To create and configure your first workspace, use the following steps.

Note

This topic shows you how to create a simple workspace with a single resource. For a
fully featured workspace with multiple resources, try the sample setup in the AWS IoT
TwinMaker samples Github repository.

1. On the AWS IoT TwinMaker console home page, choose Workspaces in the left navigation
pane.

2. On the Workspaces page, choose Create workspace.

3. On the Create a Workspace page, enter a name for your workspace.

4. (Optional) Add a description for your workspace.

5. Under S3 resource, choose Create an S3 bucket. This option creates an Amazon S3 bucket
where AWS IoT TwinMaker stores information and resources related to the workspace. Each
workspace requires its own bucket.

6. Under Execution role, choose either Auto-generate a new role or the custom IAM role that
you created as for this workspace.

If you choose Auto-generate a new role, AWS IoT TwinMaker attaches a policy to the role that
grants permission to the new service role to access other AWS services, including permission to
read and write to the Amazon S3 bucket that you specify in the previous step. For information
about assigning permissions to this role, see ???.

7. Choose Create Workspace. The following banner appears at the top of the Workspaces page.

8. Choose Get json. We recommend you add the IAM policy you see to the IAM role that AWS IoT
TwinMaker created for users and accounts that view the Grafana dashboard. The name of this
role follows this pattern: workspace-nameDashboardRole, For instructions on how to create a
policy and attach it to a role, see Modifying a role permissions policy (console).

Create a workspace 18

https://docs.aws.amazon.com/athena/latest/ug/security-iam-athena.html
https://github.com/aws-samples/aws-iot-twinmaker-samples
https://github.com/aws-samples/aws-iot-twinmaker-samples
https://console.aws.amazon.com/iottwinmaker/home
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.htmlroles-managingrole-editing-console.html#roles-modify_permissions-policy

AWS IoT TwinMaker User Guide

The following example contains the policy to add to the dashboard role.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "s3:GetObject"
],
 "Resource": [
 "arn:aws:s3:::iottwinmaker-workspace-workspace-name-lower-case-account-id",
 "arn:aws:s3:::iottwinmaker-workspace-workspace-name-lower-case-account-id/
*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "iottwinmaker:Get*",
 "iottwinmaker:List*"
],
 "Resource": [
 "arn:aws:iottwinmaker:us-east-1:account-id:workspace/workspace-name",
 "arn:aws:iottwinmaker:us-east-1:account-id:workspace/workspace-name/*"
]
 },
 {
 "Effect": "Allow",
 "Action": "iottwinmaker:ListWorkspaces",
 "Resource": "*"
 }
]
}

You're now ready to start creating a data model for your workspace with your first entity. For
instructions on how to do this, see Create your first entity.

Create a workspace 19

AWS IoT TwinMaker User Guide

Create your first entity

To create your first entity, use the following steps.

1. On the Workspaces page, choose your workspace, and then in the left pane choose Entities.

2. On the Entities page, choose Create, and then choose Create entity.

3. In the Create an entity window, enter a name for your entity. This example uses a
CookieMixer entity.

4. (Optional) Enter a description for your entity.

5. Choose Create entity,

Entities contain data about each item in your workspace. You put data into entities by adding
components. AWS IoT TwinMaker provides the following built-in component types.

• Parameters: Adds a set of key-value properties.

• Document: Adds a name and a URL for a document that contains information about the entity.

• Alarms: Connects to an alarm time-series data source.

Create your first entity 20

AWS IoT TwinMaker User Guide

• SiteWise connector: Pulls time-series properties that are defined in an AWS IoT SiteWise asset.

• Edge Connector for Kinesis Video Streams AWS IoT Greengrass: Pulls video data from the Edge
Connector for KVS AWS IoT Greengrass. For more information, see AWS IoT TwinMaker video
integration.

You can see these component types and their definitions by choosing Component types in the
left pane. You can also create a new component type on the Component types page. For more
information about creating component types, see Using and creating component types.

In this example, we create a simple document component that adds descriptive information about
your entity.

1. On the Entities page, choose the entity, and then choose add component.

2. In the Add component window, enter a name for your component. Since this example uses a
cookie mixer entity, we enter MixerDescription in the Name field.

Create your first entity 21

AWS IoT TwinMaker User Guide

3. Choose Add a doc, then enter values for the doc Name and External Url. With the documents
component, you can store a list of external URLs that contain important information about the
entity.

Create your first entity 22

AWS IoT TwinMaker User Guide

4. Choose Add component.

You're now ready to create your first scene. For instructions on how to do this, see Creating and
editing AWS IoT TwinMaker scenes.

Setting up an AWS account

If you do not have an AWS account, complete the following steps to create one.

To sign up for an AWS account

1. Open https://portal.aws.amazon.com/billing/signup.

2. Follow the online instructions.

Part of the sign-up procedure involves receiving a phone call and entering a verification code
on the phone keypad.

When you sign up for an AWS account, an AWS account root user is created. The root user
has access to all AWS services and resources in the account. As a security best practice, assign
administrative access to a user, and use only the root user to perform tasks that require root
user access.

Sign up for an AWS account

If you do not have an AWS account, complete the following steps to create one.

To sign up for an AWS account

1. Open https://portal.aws.amazon.com/billing/signup.

2. Follow the online instructions.

Part of the sign-up procedure involves receiving a phone call and entering a verification code
on the phone keypad.

When you sign up for an AWS account, an AWS account root user is created. The root user
has access to all AWS services and resources in the account. As a security best practice, assign
administrative access to a user, and use only the root user to perform tasks that require root
user access.

Setting up an AWS account 23

https://portal.aws.amazon.com/billing/signup
https://docs.aws.amazon.com/accounts/latest/reference/root-user-tasks.html
https://docs.aws.amazon.com/accounts/latest/reference/root-user-tasks.html
https://portal.aws.amazon.com/billing/signup
https://docs.aws.amazon.com/accounts/latest/reference/root-user-tasks.html
https://docs.aws.amazon.com/accounts/latest/reference/root-user-tasks.html

AWS IoT TwinMaker User Guide

AWS sends you a confirmation email after the sign-up process is complete. At any time, you can
view your current account activity and manage your account by going to https://aws.amazon.com/
and choosing My Account.

Create a user with administrative access

After you sign up for an AWS account, secure your AWS account root user, enable AWS IAM Identity
Center, and create an administrative user so that you don't use the root user for everyday tasks.

Secure your AWS account root user

1. Sign in to the AWS Management Console as the account owner by choosing Root user and
entering your AWS account email address. On the next page, enter your password.

For help signing in by using root user, see Signing in as the root user in the AWS Sign-In User
Guide.

2. Turn on multi-factor authentication (MFA) for your root user.

For instructions, see Enable a virtual MFA device for your AWS account root user (console) in
the IAM User Guide.

Create a user with administrative access

1. Enable IAM Identity Center.

For instructions, see Enabling AWS IAM Identity Center in the AWS IAM Identity Center User
Guide.

2. In IAM Identity Center, grant administrative access to a user.

For a tutorial about using the IAM Identity Center directory as your identity source, see
Configure user access with the default IAM Identity Center directory in the AWS IAM Identity
Center User Guide.

Sign in as the user with administrative access

• To sign in with your IAM Identity Center user, use the sign-in URL that was sent to your email
address when you created the IAM Identity Center user.

Create a user with administrative access 24

https://aws.amazon.com/
https://console.aws.amazon.com/
https://docs.aws.amazon.com/signin/latest/userguide/console-sign-in-tutorials.html#introduction-to-root-user-sign-in-tutorial
https://docs.aws.amazon.com/IAM/latest/UserGuide/enable-virt-mfa-for-root.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/get-set-up-for-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html

AWS IoT TwinMaker User Guide

For help signing in using an IAM Identity Center user, see Signing in to the AWS access portal in
the AWS Sign-In User Guide.

Assign access to additional users

1. In IAM Identity Center, create a permission set that follows the best practice of applying least-
privilege permissions.

For instructions, see Create a permission set in the AWS IAM Identity Center User Guide.

2. Assign users to a group, and then assign single sign-on access to the group.

For instructions, see Add groups in the AWS IAM Identity Center User Guide.

Create a user with administrative access 25

https://docs.aws.amazon.com/signin/latest/userguide/iam-id-center-sign-in-tutorial.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/get-started-create-a-permission-set.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/addgroups.html

AWS IoT TwinMaker User Guide

Using and creating component types

This topic walks you through the values and structures that you use to create an AWS IoT
TwinMaker component type. It shows you how to create a request object that you can pass to
the CreateComponentType API or by using the component type editor in the AWS IoT TwinMaker
console.

Components provide context for properties and data for their associated entities.

Built-in component types

In the AWS IoT TwinMaker console, when you choose a workspace and then choose Component
types in the left pane, you see the following component types.

• com.amazon.iotsitewise.resourcesync: A component type that automatically syncs your AWS
IoT SiteWise assets and asset models and converts them into AWS IoT TwinMaker entities
components and component types. For more information on using AWS IoT SiteWise asset sync,
see Asset sync with AWS IoT SiteWise.

• com.amazon.iottwinmaker.alarm.basic: A basic alarm component that pulls alarm data from
an external source to an entity. This component doesn't contain a function that connects to a
specific data source. This means that the alarm component is abstract and can be inherited by
another component type that specifies a data source and a function that reads from that source.

• com.amazon.iottwinmaker.documents: A simple mapping of titles to URLs for documents that
contain information about an entity.

• com.amazon.iotsitewise.connector.edgevideo: A component that pulls video from an IoT device
using the Edge Connector for Kinesis Video Streams AWS IoT Greengrass component into an
entity. The Edge Connector for Kinesis Video Streams AWS IoT Greengrass component is not an
AWS IoT TwinMaker component, but rather a prebuilt AWS IoT Greengrass component that is
deployed locally on your IoT device.

• com.amazon.iotsitewise.connector: A component that pulls AWS IoT SiteWise data into an
entity.

• com.amazon.iottwinmaker.parameters: A component that adds static key-value pairs to an
entity.

• com.amazon.kvs.video: A component that pulls video from Kinesis Video Streams into an AWS
IoT TwinMaker entity.

Built-in component types 26

https://docs.aws.amazon.com/iot-twinmaker/latest/apireference/API_CreateComponentType.html
https://docs.aws.amazon.com/iot-twinmaker/latest/guide/tm-sw-asset-sync.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/kvs-edge-connector-component.html

AWS IoT TwinMaker User Guide

Core features of AWS IoT TwinMaker component types

The following list describes the core features of component types.

• Property definitions: The PropertyDefinitionRequest object defines a property that you can
populate in the scene composer or it can be populated with data pulled from external data
sources. Static properties that you set are stored in AWS IoT TwinMaker. Time-series properties
and other properties that are pulled from data sources are stored externally.

You specify property definitions inside a string to the PropertyDefinitionRequest map.
Each string must be unique to the map.

• Functions: The FunctionRequest object specifies a Lambda function that reads from and
potentially writes to an external data source.

A component type that contains a property with a value that is stored externally but that doesn't
have a corresponding function to retrieve the values is an abstract component type. You can
extend concrete component types from an abstract component type. You can't add abstract
component types to an entity. They don't appear in the scene composer.

You specify functions inside a string to FunctionRequest map. The string must specify one of
the following predefined function types.

• dataReader: A function that pulls data from an external source.

• dataReaderByEntity: A function that pulls data from an external source.

When you use this type of data reader, the GetPropertyValueHistory API operation supports
only entity-specific queries for properties in this component type. (You can only request the
property value history for componentName + entityId.)

• dataReaderByComponentType: A function that pulls data from an external source.

Core features of AWS IoT TwinMaker component types 27

https://docs.aws.amazon.com/iot-twinmaker/latest/apireference/API_PropertyDefinitionRequest.html
https://docs.aws.amazon.com/iot-twinmaker/latest/apireference/API_FunctionRequest.html
https://docs.aws.amazon.com/iot-twinmaker/latest/apireference/API_GetPropertyValueHistory.html

AWS IoT TwinMaker User Guide

When you use this type of data reader, the GetPropertyValueHistory API operation supports
only cross-entity queries for properties in this component type. (You can only request the
property value history for componentTypeId.)

• dataWriter: A function that writes data to an external source.

• schemaInitializer: A function that automatically initializes property values whenever you
create an entity that contains the component type.

One of the three types of data reader functions is required in a non-abstract component type.

For an example of a Lambda function that implements time-stream telemetry components,
including alarms, see the data reader in AWS IoT TwinMaker Samples.

Note

Because the alarm connector inherits from the abstract alarm component type, the
Lambda function must return the alarm_key value. If you don't return this value,
Grafana won't recognize it as an alarm. This is required for all components that return
alarms.

• Inheritance: Component types promote code reusability through inheritance. A component type
can inherit up to 10 parent component types.

Use the extendsFrom parameter to specify the component types from which your component
type inherits properties and functions.

• isSingleton: Some components contain properties, such as location coordinates, that can't be
included more than once in an entity. Set the value of the isSingleton parameter to true to
indicate that your component type can be included only once in an entity.

Creating property definitions

The following table describes the parameters of a PropertyDefinitionRequest.

Parameter Description

isExternalId A Boolean that specifies whether the property
is a unique identifier (such as an AWS IoT

Creating property definitions 28

https://docs.aws.amazon.com/iot-twinmaker/latest/apireference/API_GetPropertyValueHistory.html
https://github.com/aws-samples/aws-iot-twinmaker-samples/blob/main/src/modules/timestream_telemetry/lambda_function/udq_data_reader.py

AWS IoT TwinMaker User Guide

Parameter Description

SiteWise asset Id) of a property value that is
stored externally.

The default value of this property is false.

isStoredExternally A Boolean that specifies whether the property
value is stored externally.

The default value of this property is false.

isTimeSeries A Boolean that specifies whether the property
stores time-series data.

The default value of this property is false

isRequiredInEntity A Boolean that specifies whether the property
must have a value in an entity that uses the
component type.

dataType A DataType object that specifies the data type
(such as string, map, list, and unit of measure)
of the property.

defaultValue A DataValue object that specifies the default
value of the property.

configuration A string-to-string map that specifies additiona
l information that you need to connect to an
external data source.

Creating functions

The following table describes the parameters of a FunctionRequest.

Creating functions 29

https://docs.aws.amazon.com/iot-twinmaker/latest/apireference/API_DataType.html
https://docs.aws.amazon.com/iot-twinmaker/latest/apireference/API_DataValue.html

AWS IoT TwinMaker User Guide

Parameter Description

implementedBy A DataConnector object that specifies the
Lambda function that connects to the external
data source.

requiredProperties A list of properties that the function needs in
order to read from and write to an external
data source.

scope The scope of the function. Use Workspace
 for functions with a scope that spans an

entire workspace. Use Entity for functions
with a scope that is limited to the entity that
contains the component.

For examples that show how to create and extend component types, see ???.

Example component types

This topic contains examples that show how to implement key concepts of component types.

Alarm (abstract)

The following example is the abstract alarm component type that appears in the AWS IoT
TwinMaker console. It contains a functions list that consists of a dataReader that has no
implementedBy value.

{
 "componentTypeId": "com.example.alarm.basic:1",
 "workspaceId": "MyWorkspace",
 "description": "Abstract alarm component type",
 "functions": {
 "dataReader": {
 "isInherited": false
 }
 },

Example component types 30

https://docs.aws.amazon.com/iot-twinmaker/latest/apireference/API_DataConnector.html

AWS IoT TwinMaker User Guide

 "isSingleton": false,
 "propertyDefinitions": {
 "alarm_key": {
 "dataType": { "type": "STRING" },
 "isExternalId": true,
 "isRequiredInEntity": true,
 "isStoredExternally": false,
 "isTimeSeries": false
 },
 "alarm_status": {
 "dataType": {
 "allowedValues": [
 {
 "stringValue": "ACTIVE"
 },
 {
 "stringValue": "SNOOZE_DISABLED"
 },
 {
 "stringValue": "ACKNOWLEDGED"
 },
 {
 "stringValue": "NORMAL"
 }
],
 "type": "STRING"
 },
 "isRequiredInEntity": false,
 "isStoredExternally": true,
 "isTimeSeries": true
 }
 }
}

Notes:

Values for componentTypeId and workspaceID are required. The value of componentTypeId
must be unique to your workspace. The value of alarm_key is a unique identifier that a function
can use to retrieve alarm data from an external source. The value of the key is required and stored
in AWS IoT TwinMaker. The alarm_status time series values are stored in the external source.

More examples are available in AWS IoT TwinMaker Samples.

Alarm (abstract) 31

https://github.com/aws-samples/aws-iot-twinmaker-samples

AWS IoT TwinMaker User Guide

Timestream telemetry

The following example is a simple component type that retrieves telemetry data about a specific
type of component (such as an alarm or a cookie mixer) from an external source. It specifies a
Lambda function that component types inherit.

{
 "componentTypeId": "com.example.timestream-telemetry",
 "workspaceId": "MyWorkspace",
 "functions": {
 "dataReader": {
 "implementedBy": {
 "lambda": {
 "arn": "lambdaArn"
 }
 }
 }
 },
 "propertyDefinitions": {
 "telemetryType": {
 "dataType": { "type": "STRING" },
 "isExternalId": false,
 "isStoredExternally": false,
 "isTimeSeries": false,
 "isRequiredInEntity": true
 },
 "telemetryId": {
 "dataType": { "type": "STRING" },
 "isExternalId": false,
 "isStoredExternally": false,
 "isTimeSeries": false,
 "isRequiredInEntity": true
 }
 }
}

Alarm (inherits from abstract alarm)

The following example inherits from both the abstract alarm and the timestream telemetry
component types. It specifies its own Lambda function that retrieves alarm data.

Timestream telemetry 32

AWS IoT TwinMaker User Guide

{
 "componentTypeId": "com.example.cookiefactory.alarm",
 "workspaceId": "MyWorkspace",
 "extendsFrom": [
 "com.example.timestream-telemetry",
 "com.amazon.iottwinmaker.alarm.basic"
],
 "propertyDefinitions": {
 "telemetryType": {
 "defaultValue": {
 "stringValue": "Alarm"
 }
 }
 },
 "functions": {
 "dataReader": {
 "implementedBy": {
 "lambda": {
 "arn": "lambdaArn"
 }
 }
 }
 }
}

Note

Because the alarm connector inherits from the abstract alarm component type, the Lambda
function must return the alarm_key value. If you don't return this value, Grafana won't
recognize it as an alarm. This is required for all components that return alarms.

Equipment examples

The examples in this section show how to model potential pieces of equipment. You can use these
examples to get some ideas about how to model equipment in your own processes.

Equipment examples 33

AWS IoT TwinMaker User Guide

Cookie mixer

The following example inherits from the timestream telemetry component type. It specifies
additional time-series properties for a cookie mixer's rotation rate and temperature.

{
 "componentTypeId": "com.example.cookiefactory.mixer",
 "workspaceId": "MyWorkspace",
 "extendsFrom": [
 "com.example.timestream-telemetry"
],
 "propertyDefinitions": {
 "telemetryType": {
 "defaultValue" : { "stringValue": "Mixer" }
 },
 "RPM": {
 "dataType": { "type": "DOUBLE" },
 "isTimeSeries": true,
 "isStoredExternally": true
 },
 "Temperature": {
 "dataType": { "type": "DOUBLE" },
 "isTimeSeries": true,
 "isStoredExternally": true
 }
 }
}

Water tank

The following example inherits from the timestream telemetry component type. It specifies
additional time-series properties for a water tank's volume and flow rate.

{
 "componentTypeId": "com.example.cookiefactory.watertank",
 "workspaceId": "MyWorkspace",
 "extendsFrom": [
 "com.example.timestream-telemetry"
],

Equipment examples 34

AWS IoT TwinMaker User Guide

 "propertyDefinitions": {
 "telemetryType": {
 "defaultValue" : { "stringValue": "WaterTank" }
 },
 "tankVolume1": {
 "dataType": { "type": "DOUBLE" },
 "isTimeSeries": true,
 "isStoredExternally": true
 },
 "tankVolume2": {
 "dataType": { "type": "DOUBLE" },
 "isTimeSeries": true,
 "isStoredExternally": true
 },
 "flowRate1": {
 "dataType": { "type": "DOUBLE" },
 "isTimeSeries": true,
 "isStoredExternally": true
 },
 "flowrate2": {
 "dataType": { "type": "DOUBLE" },
 "isTimeSeries": true,
 "isStoredExternally": true
 }
 }
}

Space location

The following example contains properties, the values of which are stored in AWS IoT TwinMaker.
Because the values are specified by users and stored internally, no function is required to retrieve
them. The example also uses the RELATIONSHIP data type to specify a relationship with another
component type.

This component provides a lightweight mechanism for adding context to a digital twin. You can use
it to add metadata indicating where something is located. You can also use this information in logic
used for determining which cameras can see a piece of equipment or space, or for knowing how to
dispatch someone to a location.

{

Equipment examples 35

AWS IoT TwinMaker User Guide

 "componentTypeId": "com.example.cookiefactory.space",
 "workspaceId": "MyWorkspace",
 "propertyDefinitions": {
 "position": {"dataType": {"nestedType": {"type": "DOUBLE"},"type": "LIST"}},
 "rotation": {"dataType": {"nestedType": {"type": "DOUBLE"},"type": "LIST"}},
 "bounds": {"dataType": {"nestedType": {"type": "DOUBLE"},"type": "LIST"}},
 "parent_space" : { "dataType": {"type": "RELATIONSHIP"}}
 }
}

Equipment examples 36

AWS IoT TwinMaker User Guide

AWS IoT TwinMaker bulk operations

Use a metadataTransferJob to transfer and manage your AWS IoT TwinMaker resources at scale. A
metadataTransferJob allows you to perform bulk operations and transfer resources between AWS
IoT TwinMaker and AWS IoT SiteWise and Amazon S3.

You can use bulk operations in the following scenarios:

• Mass migration of assets and data between accounts, for example migrating from a development
account to a production account.

• Large scale asset management, such as uploading, and editing AWS IoT assets at scale.

• Mass import of your assets into AWS IoT TwinMaker and AWS IoT SiteWise.

• Bulk import of AWS IoT TwinMaker entities from existing ontology files such as revit or BIM
files.

Topics

• Key concepts and terminology

• Performing bulk import and export operations

• AWS IoT TwinMaker metadata transfer job schema

Key concepts and terminology

AWS IoT TwinMaker bulk operations use the following concepts and terminology:

• Import: The action of moving resources into an AWS IoT TwinMaker workspace. For example,
from a local file, a file in an Amazon S3 bucket, or from AWS IoT SiteWise to an AWS IoT
TwinMaker workspace.

• Export: The action of moving resources from an AWS IoT TwinMaker workspace to a local
machine or an Amazon S3 bucket.

• Source: The starting location from where you want to move resources.

For example, an Amazon S3 bucket is an import source, and an AWS IoT TwinMaker workspace is
an export source.

• Destination: The desired location where you want to move your resources to.

Key concepts and terminology 37

AWS IoT TwinMaker User Guide

For example, an Amazon S3 bucket is an export destination, and an AWS IoT TwinMaker
workspace is an import destination.

• AWS IoT SiteWise Schema: A schema used to import and export resources to and from AWS IoT
SiteWise.

• AWS IoT TwinMaker Schema: A schema used to import and export resources to and from AWS
IoT TwinMaker.

• AWS IoT TwinMaker top-level resources: Resources used in existing APIs. Specifically, an Entity
or a ComponentType.

• AWS IoT TwinMaker sub-level resources: Nested resource types used in metadata definitions.
Specifically, a Component.

• Metadata: Key information required to successfully import or export AWS IoT SiteWise and AWS
IoT TwinMaker resources.

• metadataTransferJob: The object created when you run CreateMetadataTransferJob.

AWS IoT TwinMaker metadataTransferJob functionality

This topic explains the behavior AWS IoT TwinMaker follows when you run a bulk operation– how
a metadataTransferJob is processed. It also explains how to define a schema with the metadata
required to transfer your resources. AWS IoT TwinMaker bulk operations support the following
functionality:

• Top-level resource create or replace: AWS IoT TwinMaker will create new resources or replace all
existing resources that are uniquely identified by a resource ID.

For example, if an entity exists in the system, the entity definition will be replaced by the new
one defined in the template under the Entity key.

• Sub-resource create or replace:

From the EntityComponent level, you can only create or replace a component. The entity must
already exist, otherwise, the action will produce a ValidationException.

From the property or relationship level, you can only create or replace a property or relationship,
and the containing EntityComponent must already exist.

• Sub-resource delete:

AWS IoT TwinMaker metadataTransferJob functionality 38

AWS IoT TwinMaker User Guide

AWS IoT TwinMaker also supports sub-resource deletion. A sub-resource can be a component,
property, or relationship.

If you want to delete a component, you must do it from the entity level.

If you want to delete a property or relationship, you must do it from the Entity or
EntityComponent level.

To delete a sub-resource, you update the higher level resource and omit the definition of the
sub-resource.

• No top-level resource deletion: AWS IoT TwinMaker will never delete top-level resources. A top-
level resource refers to an entity or ComponentType.

• No sub-resource Definitions for the same top-level resource in one template:

You can't provide the full entity definition and sub-resource (like property) definition of the same
entity in the same template.

If an entityId is used in Entity, you cannot use the same ID in Entity, EntityComponent, property,
or relationship.

If an entityId or componentName combination is used in EntityComponent, you cannot use the
same combination in EntityComponent, property, or relationship.

If an entityId, componentName, propertyName combination is used in property or relationship,
you cannot use the same combination in the property or relationship.

• ExternalId is optional for AWS IoT TwinMaker: The ExternalId can be used to help you identify
your resources.

Performing bulk import and export operations

This topic covers how to perform bulk import and export operations and how to handle errors in
your transfer jobs. It provides examples of transfer jobs using CLI commands.

The AWS IoT TwinMaker API Reference contains information on the CreateMetadataTransferJob
and other API actions.

Topics

• metadataTransferJob prerequisites

Performing bulk import and export operations 39

https://docs.aws.amazon.com/iot-twinmaker/latest/apireference/API_CreateMetadataTransferJob.html

AWS IoT TwinMaker User Guide

• IAM permissions

• Run a bulk operation

• Error handling

• Import metadata templates

• AWS IoT TwinMaker metadataTransferJob examples

metadataTransferJob prerequisites

Please complete the following prerequisites before you run a metadataTransferJob:

• Create an AWS IoT TwinMaker workspace. The workspace can be the import destination or
export source for a metadataTransferJob. For information on creating a workspace see, Create a
workspace.

• Create an Amazon S3 bucket to store resources. For more information on using Amazon S3 see,
What is Amazon S3?

IAM permissions

When you perform bulk operations you need to create an IAM policy with permissions to allow for
the exchange of AWS resources between Amazon S3, AWS IoT TwinMaker, AWS IoT SiteWise, and
your local machine. For more information on creating IAM policies, see Creating IAM policies.

The policy statements for AWS IoT TwinMaker, AWS IoT SiteWise and Amazon S3 are listed here:

• AWS IoT TwinMaker policy:

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Action": [
 "s3:PutObject",
 "s3:GetObject",
 "s3:GetBucketLocation",
 "s3:ListBucket",
 "s3:AbortMultipartUpload",
 "s3:ListBucketMultipartUploads",
 "s3:ListMultipartUploadParts"

metadataTransferJob prerequisites 40

https://docs.aws.amazon.com/AmazonS3/latest/userguide/Welcome.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/Welcome.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html

AWS IoT TwinMaker User Guide

],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "iottwinmaker:GetWorkspace",
 "iottwinmaker:CreateEntity",
 "iottwinmaker:GetEntity",
 "iottwinmaker:UpdateEntity",
 "iottwinmaker:GetComponentType",
 "iottwinmaker:CreateComponentType",
 "iottwinmaker:UpdateComponentType",
 "iottwinmaker:ListEntities",
 "iottwinmaker:ListComponentTypes",
 "iottwinmaker:ListTagsForResource",
 "iottwinmaker:TagResource",
 "iottwinmaker:UntagResource"
],
 "Resource": "*"
 }
]
}

• AWS IoT SiteWise policy:

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Action": [
 "s3:PutObject",
 "s3:GetObject",
 "s3:GetBucketLocation",
 "s3:ListBucket",
 "s3:AbortMultipartUpload",
 "s3:ListBucketMultipartUploads",
 "s3:ListMultipartUploadParts"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [

IAM permissions 41

AWS IoT TwinMaker User Guide

 "iotsitewise:CreateAsset",
 "iotsitewise:CreateAssetModel",
 "iotsitewise:UpdateAsset",
 "iotsitewise:UpdateAssetModel",
 "iotsitewise:UpdateAssetProperty",
 "iotsitewise:ListAssets",
 "iotsitewise:ListAssetModels",
 "iotsitewise:ListAssetProperties",
 "iotsitewise:ListAssetModelProperties",
 "iotsitewise:ListAssociatedAssets",
 "iotsitewise:DescribeAsset",
 "iotsitewise:DescribeAssetModel",
 "iotsitewise:DescribeAssetProperty",
 "iotsitewise:AssociateAssets",
 "iotsitewise:DisassociateAssets",
 "iotsitewise:AssociateTimeSeriesToAssetProperty",
 "iotsitewise:DisassociateTimeSeriesFromAssetProperty",
 "iotsitewise:BatchPutAssetPropertyValue",
 "iotsitewise:BatchGetAssetPropertyValue",
 "iotsitewise:TagResource",
 "iotsitewise:UntagResource",
 "iotsitewise:ListTagsForResource"
],
 "Resource": "*"
 }
]
}

• Amazon S3 policy:

{
 "Effect": "Allow",
 "Action": [
 "s3:PutObject",
 "s3:GetObject",
 "s3:GetBucketLocation",
 "s3:ListBucket",
 "s3:AbortMultipartUpload",
 "s3:ListBucketMultipartUploads",
 "s3:ListMultipartUploadParts"
],
 "Resource": "*"
}

IAM permissions 42

AWS IoT TwinMaker User Guide

Alternatively you can scope your Amazon S3 policy to only access a single Amazon S3 bucket, see
the following policy.

Amazon S3 single bucket scoped policy

{
 "Effect": "Allow",
 "Action": [
 "s3:PutObject",
 "s3:GetObject",
 "s3:GetBucketLocation",
 "s3:ListBucket",
 "s3:AbortMultipartUpload",
 "s3:ListBucketMultipartUploads",
 "s3:ListMultipartUploadParts"
],
 "Resource": [
 "arn:aws:s3:::bucket name",
 "arn:aws:s3:::bucket name/*"
]
}

Set access control for a metadataTransferJob

To control what kind of jobs a user can access, add the following IAM policy to the role used to call
AWS IoT TwinMaker.

Note

This policy only allows access to AWS IoT TwinMaker import and export jobs that transfer
resources to and from Amazon S3.

{
 "Effect": "Allow",
 "Action": [
 "iottwinmaker:*DataTransferJob*"
],
 "Resource": "*",
 "Condition": {

IAM permissions 43

AWS IoT TwinMaker User Guide

 "StringLikeIfExists": {
 "iottwinmaker:sourceType": [
 "s3",
 "iottwinmaker"
],
 "iottwinmaker:destinationType": [
 "iottwinmaker",
 "s3"
]
 }
 }
}

Run a bulk operation

This section covers how to perform bulk import and export operations.

Import data from Amazon S3 to AWS IoT TwinMaker

1. Specify the resources you want to transfer using the AWS IoT TwinMaker metadataTransferJob
schema. Create and store your schema file in your Amazon S3 bucket.

For example schemas, see Import metadata templates.

2. Create a request body and save it as a JSON file. The request body specifies the source and
destination for the transfer job. Make sure to specify your Amazon S3 bucket as the source and
your AWS IoT TwinMaker workspace as the destination.

The following is an example of a request body:

{
 "metadataTransferJobId": "your-transfer-job-Id",
 "sources": [{
 "type": "s3",
 "s3Configuration": {
 "location": "arn:aws:s3:::your-S3-bucket-name/your_import_data.json"
 }
 }],
 "destination": {
 "type": "iottwinmaker",
 "iotTwinMakerConfiguration": {
 "workspace": "arn:aws:iottwinmaker:us-
east-1:111122223333:workspace/your-worksapce-name"

Run a bulk operation 44

AWS IoT TwinMaker User Guide

 }
 }
}

Record the file name you gave your request body, you will need it in the next step. In this
example the request body is named createMetadataTransferJobImport.json.

3. Run the following CLI command to invoke CreateMetadataTransferJob (replace the input-
json file name with the name you gave your request body):

aws iottwinmaker create-metadata-transfer-job --region us-east-1 \
--cli-input-json file://createMetadataTransferJobImport.json

This creates a metadataTransferJob and begins the process of the transferring your selected
resources.

Export data from AWS IoT TwinMaker to Amazon S3

1. Create a JSON request body with the appropriate filters to choose the resources you want to
export. For this example we use:

{
 "metadataTransferJobId": "your-transfer-job-Id",
 "sources": [{
 "type": "iottwinmaker",
 "iotTwinMakerConfiguration": {
 "workspace": "arn:aws:iottwinmaker:us-
east-1:111122223333:workspace/your-workspace-name",
 "filters": [{
 "filterByEntity": {
 "entityId": "parent"
 }},
 {
 "filterByEntity": {
 "entityId": "child"
 }},
 {
 "filterByComponentType": {
 "componentTypeId": "component.type.minimal"
 }}
]

Run a bulk operation 45

AWS IoT TwinMaker User Guide

 }
 }],
 "destination": {
 "type": "s3",
 "s3Configuration": {
 "location": "arn:aws:s3:::your-S3-bucket-location"
 }
 }
}

The filters array lets you specify which resources will be exported. In this example we filter
by entity, and componentType.

Make sure to specify your AWS IoT TwinMaker workspace as the source and your Amazon S3
bucket as the destination of the metadata transfer job.

Save your request body and record the file name, you will need it in the next step. For this
example, we named our request body createMetadataTransferJobExport.json.

2. Run the following CLI command to invoke CreateMetadataTransferJob (replace the input-
json file name with the name you gave your request body):

aws iottwinmaker create-metadata-transfer-job --region us-east-1 \
--cli-input-json file://createMetadataTransferJobExport.json

This creates a metadataTransferJob and begins the process of the transferring your selected
resources.

To check or update the status of a transfer job, use the following commands:

• To cancel a job use the CancelMetadataTransferJob API action. When you call
CancelMetadataTransferJob, the API only cancels a running metadataTransferJob, and any
resources already exported or imported are not affected by this API call.

• To retrieve information on a specific job use the GetMetadataTransferJob API action.

Or, you can call GetMetadataTransferJob on an existing transfer job with the following CLI
command:

aws iottwinmaker get-metadata-transfer-job --job-id ExistingJobId

Run a bulk operation 46

https://docs.aws.amazon.com/iot-twinmaker/latest/apireference/API_CancelMetadataTransferJob.html
https://docs.aws.amazon.com/iot-twinmaker/latest/apireference/API_GetMetadataTransferJob.html

AWS IoT TwinMaker User Guide

If you call GetMetadataTransferJob on a non-existing AWS IoT TwinMaker import or export job,
you get a ResourceNotFoundException error in response.

• To list current jobs, use the ListMetadataTransferJobs API action.

Here is a CLI example that calls ListMetadataTransferJobs with AWS IoT TwinMaker as the
destinationType and s3 as the sourceType:

aws iottwinmaker list-metadata-transfer-jobs --destination-type iottwinmaker --
source-type s3

Note

You can change the values for the sourceType and destinationType parameters to match
your import or export job's source and destination.

For more examples of CLI commands that invoke these API actions, see AWS IoT TwinMaker
metadataTransferJob examples.

If you encounter any errors during the transfer job, see Error handling.

Error handling

After you create and run a transfer job, you can call GetMetadataTransferJob to diagnose any
errors that occurred:

aws iottwinmaker get-metadata-transfer-job \
--metadata-transfer-job-id your_metadata_transfer_job_id \
--region us-east-1

Once you see the state of the job turn to COMPLETED, you can verify the results of the job.
GetMetadataTransferJob returns an object called MetadataTransferJobProgress which
contains the following fields:

• failedCount: Indicates the number of resources that failed during the transfer process.

• skippedCount: Indicates the number of resources that were skipped during the transfer process.

• succeededCount: Indicates the number of resources that succeeded during the transfer process.

Error handling 47

https://docs.aws.amazon.com/iot-twinmaker/latest/apireference/API_ListMetadataTransferJobs.html
https://docs.aws.amazon.com/iot-twinmaker/latest/apireference/API_MetadataTransferJobProgress.html

AWS IoT TwinMaker User Guide

• totalCount: Indicates the total count of resources involved in the transfer process.

Additionally, a reportUrl element is returned which contains a pre-signed URL. If your transfer job
has errors you wish to investigate further, then you can download a full error report using this URL.

Import metadata templates

You can import many components, componentTypes, or entities with a single bulk import
operation. The examples in this section show how to do this.

template: Importing entities

Use the following template format for a job that imports entities:

{
 "entities": [
 {
 "description": "string",
 "entityId": "string",
 "entityName": "string",
 "parentEntityId": "string",
 "tags": {
 "string": "string"
 },
 "components": {
 "string": {
 "componentTypeId": "string",
 "description": "string",
 "properties": {
 "string": {
 "definition": {
 "configuration": {
 "string": "string"
 },
 "dataType": "DataType",
 "defaultValue": "DataValue",
 "displayName": "string",
 "isExternalId": "boolean",
 "isRequiredInEntity": "boolean",
 "isStoredExternally": "boolean",
 "isTimeSeries": "boolean"
 },

Import metadata templates 48

AWS IoT TwinMaker User Guide

 "value": "DataValue"
 }
 },
 "propertyGroups": {
 "string": {
 "groupType": "string",
 "propertyNames": [
 "string"
]
 }
 }
 }
 }
 }
]
}

template: Importing componentTypes

Use the following template format for a job that imports componentTypes:

{
 "componentTypes": [
 {
 "componentTypeId": "string",
 "componentTypeName": "string",
 "description": "string",
 "extendsFrom": [
 "string"
],
 "functions": {
 "string": {
 "implementedBy": {
 "isNative": "boolean",
 "lambda": {
 "functionName": "Telemetry-tsDataReader",
 "arn": "Telemetry-tsDataReaderARN"
 }
 },
 "requiredProperties": [
 "string"
],
 "scope": "string"
 }

Import metadata templates 49

AWS IoT TwinMaker User Guide

 },
 "isSingleton": "boolean",
 "propertyDefinitions": {
 "string": {
 "configuration": {
 "string": "string"
 },
 "dataType": "DataType",
 "defaultValue": "DataValue",
 "displayName": "string",
 "isExternalId": "boolean",
 "isRequiredInEntity": "boolean",
 "isStoredExternally": "boolean",
 "isTimeSeries": "boolean"
 }
 },
 "propertyGroups": {
 "string": {
 "groupType": "string",
 "propertyNames": [
 "string"
]
 }
 },
 "tags": {
 "string": "string"
 }
 }
]
}

template: Importing components

Use the following template format for a job that imports components:

{
 "entityComponents": [
 {
 "entityId": "string",
 "componentName": "string",
 "componentTypeId": "string",
 "description": "string",
 "properties": {
 "string": {

Import metadata templates 50

AWS IoT TwinMaker User Guide

 "definition": {
 "configuration": {
 "string": "string"
 },
 "dataType": "DataType",
 "defaultValue": "DataValue",
 "displayName": "string",
 "isExternalId": "boolean",
 "isRequiredInEntity": "boolean",
 "isStoredExternally": "boolean",
 "isTimeSeries": "boolean"
 },
 "value": "DataValue"
 }
 },
 "propertyGroups": {
 "string": {
 "groupType": "string",
 "propertyNames": [
 "string"
]
 }
 }
 }
]
}

AWS IoT TwinMaker metadataTransferJob examples

Use the following commands to manage your metadata transfers:

• CreateMetadataTransferJob API action.

CLI command example:

aws iottwinmaker create-metadata-transfer-job --region us-east-1 \
--cli-input-json file://yourTransferFileName.json

• To cancel a job use the CancelMetadataTransferJob API action.

CLI command example:

AWS IoT TwinMaker metadataTransferJob examples 51

https://docs.aws.amazon.com/iot-twinmaker/latest/apireference/API_CreateMetadataTransferJob.html
https://docs.aws.amazon.com/iot-twinmaker/latest/apireference/API_CancelMetadataTransferJob.html

AWS IoT TwinMaker User Guide

aws iottwinmaker cancel-metadata-transfer-job
--region us-east-1 \
--metadata-transfer-job-id job-to-cancel-id

When you call CancelMetadataTransferJob, it only cancels a specific metadata transfer job, and
any resources already exported or imported are not affected.

• To retrieve information on a specific job use the GetMetadataTransferJob API action.

CLI command example:

aws iottwinmaker get-metadata-transfer-job \
--metadata-transfer-job-id your_metadata_transfer_job_id \
--region us-east-1 \

• To list current jobs use the ListMetadataTransferJobs API action.

You can filter the results returned by ListMetadataTransferJobs using a JSON file. See the
following procedure using the CLI:

1. Create a CLI input JSON file to specify the filters you want to use:

{
 "sourceType": "s3",
 "destinationType": "iottwinmaker",
 "filters": [{
 "workspaceId": "workspaceforbulkimport"
 },
 {
 "state": "COMPLETED"
 }]
}

Save it and record the file name, you will need it when entering the CLI command.

2. Use the JSON file as an argument to the following CLI command:

aws iottwinmaker list-metadata-transfer-job --region us-east-1 \
--cli-input-json file://ListMetadataTransferJobsExample.json

AWS IoT TwinMaker metadataTransferJob examples 52

https://docs.aws.amazon.com/iot-twinmaker/latest/apireference/API_GetMetadataTransferJob.html
https://docs.aws.amazon.com/iot-twinmaker/latest/apireference/API_ListMetadataTransferJobs.html

AWS IoT TwinMaker User Guide

AWS IoT TwinMaker metadata transfer job schema

metadataTransferJob import schema: Use this AWS IoT TwinMaker metadata schema to validate
your data when you upload it to an Amazon S3 bucket:

{
 "$schema": "https://json-schema.org/draft/2020-12/schema",
 "title": "IoTTwinMaker",
 "description": "Metadata transfer job resource schema for IoTTwinMaker",
 "definitions": {
 "ExternalId": {
 "type": "string",
 "minLength": 1,
 "maxLength": 128,
 "pattern": "[a-zA-Z0-9][a-zA-Z_\\-0-9.:]*[a-zA-Z0-9]+"
 },
 "Description": {
 "type": "string",
 "minLength": 0,
 "maxLength": 512
 },
 "DescriptionWithDefault": {
 "type": "string",
 "minLength": 0,
 "maxLength": 512,
 "default": ""
 },
 "ComponentTypeName": {
 "description": "A friendly name for the component type.",
 "type": "string",
 "pattern": ".*[^\\u0000-\\u001F\\u007F]*.*",
 "minLength": 1,
 "maxLength": 256
 },
 "ComponentTypeId": {
 "description": "The ID of the component type.",
 "type": "string",
 "pattern": "[a-zA-Z_.\\-0-9:]+",
 "minLength": 1,
 "maxLength": 256
 },
 "ComponentName": {
 "description": "The name of the component.",

AWS IoT TwinMaker metadata transfer job schema 53

AWS IoT TwinMaker User Guide

 "type": "string",
 "pattern": "[a-zA-Z_\\-0-9]+",
 "minLength": 1,
 "maxLength": 256
 },
 "EntityId": {
 "description": "The ID of the entity.",
 "type": "string",
 "minLength": 1,
 "maxLength": 128,
 "pattern": "[0-9a-f]{8}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{12}|^[a-zA-
Z0-9][a-zA-Z_\\-0-9.:]*[a-zA-Z0-9]+"
 },
 "EntityName": {
 "description": "The name of the entity.",
 "type": "string",
 "minLength": 1,
 "maxLength": 256,
 "pattern": "[a-zA-Z_0-9-.][a-zA-Z_0-9-.]*[a-zA-Z0-9]+"
 },
 "ParentEntityId": {
 "description": "The ID of the parent entity.",
 "type": "string",
 "minLength": 1,
 "maxLength": 128,
 "pattern": "\\$ROOT|^[0-9a-f]{8}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]
{12}|^[a-zA-Z0-9][a-zA-Z_\\-0-9.:]*[a-zA-Z0-9]+",
 "default": "$ROOT"
 },
 "DisplayName": {
 "description": "A friendly name for the property.",
 "type": "string",
 "pattern": ".*[^\\u0000-\\u001F\\u007F]*.*",
 "minLength": 0,
 "maxLength": 256
 },
 "Tags": {
 "description": "Metadata that you can use to manage the entity / componentType",
 "patternProperties": {
 "^([\\p{L}\\p{Z}\\p{N}_.:/=+\\-@]*)$": {
 "type": "string",
 "minLength": 1,
 "maxLength": 256
 }

AWS IoT TwinMaker metadata transfer job schema 54

AWS IoT TwinMaker User Guide

 },
 "existingJavaType": "java.util.Map<String,String>",
 "minProperties": 0,
 "maxProperties": 50
 },
 "Relationship": {
 "description": "The type of the relationship.",
 "type": "object",
 "properties": {
 "relationshipType": {
 "description": "The type of the relationship.",
 "type": "string",
 "pattern": ".*",
 "minLength": 1,
 "maxLength": 256
 },
 "targetComponentTypeId": {
 "description": "The ID of the target component type associated with this
 relationship.",
 "$ref": "#/definitions/ComponentTypeId"
 }
 },
 "additionalProperties": false
 },
 "DataValue": {
 "description": "An object that specifies a value for a property.",
 "type": "object",
 "properties": {
 "booleanValue": {
 "description": "A Boolean value.",
 "type": "boolean"
 },
 "doubleValue": {
 "description": "A double value.",
 "type": "number"
 },
 "expression": {
 "description": "An expression that produces the value.",
 "type": "string",
 "pattern": "(^\\$\\{Parameters\\.[a-zA-z]+([a-zA-z_0-9]*)}$)",
 "minLength": 1,
 "maxLength": 316
 },
 "integerValue": {

AWS IoT TwinMaker metadata transfer job schema 55

AWS IoT TwinMaker User Guide

 "description": "An integer value.",
 "type": "integer"
 },
 "listValue": {
 "description": "A list of multiple values.",
 "type": "array",
 "minItems": 0,
 "maxItems": 50,
 "uniqueItems": false,
 "insertionOrder": false,
 "items": {
 "$ref": "#/definitions/DataValue"
 },
 "default": null
 },
 "longValue": {
 "description": "A long value.",
 "type": "integer",
 "existingJavaType": "java.lang.Long"
 },
 "stringValue": {
 "description": "A string value.",
 "type": "string",
 "pattern": ".*",
 "minLength": 1,
 "maxLength": 256
 },
 "mapValue": {
 "description": "An object that maps strings to multiple DataValue objects.",
 "type": "object",
 "patternProperties": {
 "[a-zA-Z_\\-0-9]+": {
 "$ref": "#/definitions/DataValue"
 }
 },
 "additionalProperties": {
 "$ref": "#/definitions/DataValue"
 }
 },
 "relationshipValue": {
 "description": "A value that relates a component to another component.",
 "type": "object",
 "properties": {
 "TargetComponentName": {

AWS IoT TwinMaker metadata transfer job schema 56

AWS IoT TwinMaker User Guide

 "type": "string",
 "pattern": "[a-zA-Z_\\-0-9]+",
 "minLength": 1,
 "maxLength": 256
 },
 "TargetEntityId": {
 "type": "string",
 "pattern": "[0-9a-f]{8}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{12}|
^[a-zA-Z0-9][a-zA-Z_\\-0-9.:]*[a-zA-Z0-9]+",
 "minLength": 1,
 "maxLength": 128
 }
 },
 "additionalProperties": false
 }
 },
 "additionalProperties": false
 },
 "DataType": {
 "description": "An object that specifies the data type of a property.",
 "type": "object",
 "properties": {
 "allowedValues": {
 "description": "The allowed values for this data type.",
 "type": "array",
 "minItems": 0,
 "maxItems": 50,
 "uniqueItems": false,
 "insertionOrder": false,
 "items": {
 "$ref": "#/definitions/DataValue"
 },
 "default": null
 },
 "nestedType": {
 "description": "The nested type in the data type.",
 "$ref": "#/definitions/DataType"
 },
 "relationship": {
 "description": "A relationship that associates a component with another
 component.",
 "$ref": "#/definitions/Relationship"
 },
 "type": {

AWS IoT TwinMaker metadata transfer job schema 57

AWS IoT TwinMaker User Guide

 "description": "The underlying type of the data type.",
 "type": "string",
 "enum": [
 "RELATIONSHIP",
 "STRING",
 "LONG",
 "BOOLEAN",
 "INTEGER",
 "DOUBLE",
 "LIST",
 "MAP"
]
 },
 "unitOfMeasure": {
 "description": "The unit of measure used in this data type.",
 "type": "string",
 "pattern": ".*",
 "minLength": 1,
 "maxLength": 256
 }
 },
 "required": [
 "type"
],
 "additionalProperties": false
 },
 "PropertyDefinition": {
 "description": "An object that specifies information about a property.",
 "type": "object",
 "properties": {
 "configuration": {
 "description": "An object that specifies information about a property.",
 "patternProperties": {
 "[a-zA-Z_\\-0-9]+": {
 "type": "string",
 "pattern": "[a-zA-Z_\\-0-9]+",
 "minLength": 1,
 "maxLength": 256
 }
 },
 "existingJavaType": "java.util.Map<String,String>"
 },
 "dataType": {
 "description": "An object that contains information about the data type.",

AWS IoT TwinMaker metadata transfer job schema 58

AWS IoT TwinMaker User Guide

 "$ref": "#/definitions/DataType"
 },
 "defaultValue": {
 "description": "An object that contains the default value.",
 "$ref": "#/definitions/DataValue"
 },
 "displayName": {
 "description": "An object that contains the default value.",
 "$ref": "#/definitions/DisplayName"
 },
 "isExternalId": {
 "description": "A Boolean value that specifies whether the property ID comes
 from an external data store.",
 "type": "boolean",
 "default": null
 },
 "isRequiredInEntity": {
 "description": "A Boolean value that specifies whether the property is
 required.",
 "type": "boolean",
 "default": null
 },
 "isStoredExternally": {
 "description": "A Boolean value that specifies whether the property is stored
 externally.",
 "type": "boolean",
 "default": null
 },
 "isTimeSeries": {
 "description": "A Boolean value that specifies whether the property consists
 of time series data.",
 "type": "boolean",
 "default": null
 }
 },
 "additionalProperties": false
 },
 "PropertyDefinitions": {
 "type": "object",
 "patternProperties": {
 "[a-zA-Z_\\-0-9]+": {
 "$ref": "#/definitions/PropertyDefinition"
 }
 },

AWS IoT TwinMaker metadata transfer job schema 59

AWS IoT TwinMaker User Guide

 "additionalProperties": {
 "$ref": "#/definitions/PropertyDefinition"
 }
 },
 "Property": {
 "type": "object",
 "properties": {
 "definition": {
 "description": "The definition of the property",
 "$ref": "#/definitions/PropertyDefinition"
 },
 "value": {
 "description": "The value of the property.",
 "$ref": "#/definitions/DataValue"
 }
 },
 "additionalProperties": false
 },
 "Properties": {
 "type": "object",
 "patternProperties": {
 "[a-zA-Z_\\-0-9]+": {
 "$ref": "#/definitions/Property"
 }
 },
 "additionalProperties": {
 "$ref": "#/definitions/Property"
 }
 },
 "PropertyName": {
 "type": "string",
 "pattern": "[a-zA-Z_\\-0-9]+"
 },
 "PropertyGroup": {
 "description": "An object that specifies information about a property group.",
 "type": "object",
 "properties": {
 "groupType": {
 "description": "The type of property group.",
 "type": "string",
 "enum": [
 "TABULAR"
]
 },

AWS IoT TwinMaker metadata transfer job schema 60

AWS IoT TwinMaker User Guide

 "propertyNames": {
 "description": "The list of property names in the property group.",
 "type": "array",
 "minItems": 1,
 "maxItems": 256,
 "uniqueItems": true,
 "insertionOrder": false,
 "items": {
 "$ref": "#/definitions/PropertyName"
 },
 "default": null
 }
 },
 "additionalProperties": false
 },
 "PropertyGroups": {
 "type": "object",
 "patternProperties": {
 "[a-zA-Z_\\-0-9]+": {
 "$ref": "#/definitions/PropertyGroup"
 }
 },
 "additionalProperties": {
 "$ref": "#/definitions/PropertyGroup"
 }
 },
 "Component": {
 "type": "object",
 "properties": {
 "componentTypeId": {
 "$ref": "#/definitions/ComponentTypeId"
 },
 "description": {
 "$ref": "#/definitions/Description"
 },
 "properties": {
 "description": "An object that maps strings to the properties to set in the
 component type. Each string in the mapping must be unique to this object.",
 "$ref": "#/definitions/Properties"
 },
 "propertyGroups": {
 "description": "An object that maps strings to the property groups to set in
 the entity component. Each string in the mapping must be unique to this object.",
 "$ref": "#/definitions/PropertyGroups"

AWS IoT TwinMaker metadata transfer job schema 61

AWS IoT TwinMaker User Guide

 }
 },
 "required": [
 "componentTypeId"
],
 "additionalProperties": false
 },
 "RequiredProperty": {
 "type": "string",
 "pattern": "[a-zA-Z_\\-0-9]+"
 },
 "LambdaFunction": {
 "type": "object",
 "properties": {
 "arn": {
 "type": "string",
 "pattern": "arn:((aws)|(aws-cn)|(aws-us-gov)|(\\${partition})):lambda:(([a-
z0-9-]+)|(\\${region})):([0-9]{12}|(\\${accountId})):function:[/a-zA-Z0-9_-]+",
 "minLength": 1,
 "maxLength": 128
 }
 },
 "additionalProperties": false,
 "required": [
 "arn"
]
 },
 "DataConnector": {
 "description": "The data connector.",
 "type": "object",
 "properties": {
 "isNative": {
 "description": "A Boolean value that specifies whether the data connector is
 native to IoT TwinMaker.",
 "type": "boolean"
 },
 "lambda": {
 "description": "The Lambda function associated with this data connector.",
 "$ref": "#/definitions/LambdaFunction"
 }
 },
 "additionalProperties": false
 },
 "Function": {

AWS IoT TwinMaker metadata transfer job schema 62

AWS IoT TwinMaker User Guide

 "description": "The function of component type.",
 "type": "object",
 "properties": {
 "implementedBy": {
 "description": "The data connector.",
 "$ref": "#/definitions/DataConnector"
 },
 "requiredProperties": {
 "description": "The required properties of the function.",
 "type": "array",
 "minItems": 1,
 "maxItems": 256,
 "uniqueItems": true,
 "insertionOrder": false,
 "items": {
 "$ref": "#/definitions/RequiredProperty"
 },
 "default": null
 },
 "scope": {
 "description": "The scope of the function.",
 "type": "string",
 "enum": [
 "ENTITY",
 "WORKSPACE"
]
 }
 },
 "additionalProperties": false
 },
 "Entity": {
 "type": "object",
 "properties": {
 "description": {
 "description": "The description of the entity.",
 "$ref": "#/definitions/DescriptionWithDefault"
 },
 "entityId": {
 "$ref": "#/definitions/EntityId"
 },
 "entityExternalId": {
 "description": "The external ID of the entity.",
 "$ref": "#/definitions/ExternalId"
 },

AWS IoT TwinMaker metadata transfer job schema 63

AWS IoT TwinMaker User Guide

 "entityName": {
 "$ref": "#/definitions/EntityName"
 },
 "parentEntityId": {
 "$ref": "#/definitions/ParentEntityId"
 },
 "tags": {
 "$ref": "#/definitions/Tags"
 },
 "components": {
 "description": "A map that sets information about a component.",
 "type": "object",
 "patternProperties": {
 "[a-zA-Z_\\-0-9]+": {
 "$ref": "#/definitions/Component"
 }
 },
 "additionalProperties": {
 "$ref": "#/definitions/Component"
 }
 }
 },
 "required": [
 "entityId",
 "entityName"
],
 "additionalProperties": false
 },
 "ComponentType": {
 "type": "object",
 "properties": {
 "description": {
 "description": "The description of the component type.",
 "$ref": "#/definitions/DescriptionWithDefault"
 },
 "componentTypeId": {
 "$ref": "#/definitions/ComponentTypeId"
 },
 "componentTypeExternalId": {
 "description": "The external ID of the component type.",
 "$ref": "#/definitions/ExternalId"
 },
 "componentTypeName": {
 "$ref": "#/definitions/ComponentTypeName"

AWS IoT TwinMaker metadata transfer job schema 64

AWS IoT TwinMaker User Guide

 },
 "extendsFrom": {
 "description": "Specifies the parent component type to extend.",
 "type": "array",
 "minItems": 1,
 "maxItems": 256,
 "uniqueItems": true,
 "insertionOrder": false,
 "items": {
 "$ref": "#/definitions/ComponentTypeId"
 },
 "default": null
 },
 "functions": {
 "description": "a Map of functions in the component type. Each function's key
 must be unique to this map.",
 "type": "object",
 "patternProperties": {
 "[a-zA-Z_\\-0-9]+": {
 "$ref": "#/definitions/Function"
 }
 },
 "additionalProperties": {
 "$ref": "#/definitions/Function"
 }
 },
 "isSingleton": {
 "description": "A Boolean value that specifies whether an entity can have
 more than one component of this type.",
 "type": "boolean",
 "default": false
 },
 "propertyDefinitions": {
 "description": "An map of the property definitions in the component type.
 Each property definition's key must be unique to this map.",
 "$ref": "#/definitions/PropertyDefinitions"
 },
 "propertyGroups": {
 "description": "An object that maps strings to the property groups to set in
 the component type. Each string in the mapping must be unique to this object.",
 "$ref": "#/definitions/PropertyGroups"
 },
 "tags": {
 "$ref": "#/definitions/Tags"

AWS IoT TwinMaker metadata transfer job schema 65

AWS IoT TwinMaker User Guide

 }
 },
 "required": [
 "componentTypeId"
],
 "additionalProperties": false
 },
 "EntityComponent": {
 "type": "object",
 "properties": {
 "entityId": {
 "$ref": "#/definitions/EntityId"
 },
 "componentName": {
 "$ref": "#/definitions/ComponentName"
 },
 "componentExternalId": {
 "description": "The external ID of the component.",
 "$ref": "#/definitions/ExternalId"
 },
 "componentTypeId": {
 "$ref": "#/definitions/ComponentTypeId"
 },
 "description": {
 "description": "The description of the component.",
 "$ref": "#/definitions/Description"
 },
 "properties": {
 "description": "An object that maps strings to the properties to set in the
 component. Each string in the mapping must be unique to this object.",
 "$ref": "#/definitions/Properties"
 },
 "propertyGroups": {
 "description": "An object that maps strings to the property groups to set in
 the component. Each string in the mapping must be unique to this object.",
 "$ref": "#/definitions/PropertyGroups"
 }
 },
 "required": [
 "entityId",
 "componentTypeId",
 "componentName"
],
 "additionalProperties": false

AWS IoT TwinMaker metadata transfer job schema 66

AWS IoT TwinMaker User Guide

 }
 },
 "additionalProperties": false,
 "properties": {
 "entities": {
 "type": "array",
 "uniqueItems": false,
 "items": {
 "$ref": "#/definitions/Entity"
 }
 },
 "componentTypes": {
 "type": "array",
 "uniqueItems": false,
 "items": {
 "$ref": "#/definitions/ComponentType"
 }
 },
 "entityComponents": {
 "type": "array",
 "uniqueItems": false,
 "items": {
 "$ref": "#/definitions/EntityComponent"
 },
 "default": null
 }
 }
}

Here is an example that creates a new componentType called component.type.intial and
creates an entity called initial:

{
 "componentTypes": [
 {
 "componentTypeId": "component.type.initial",
 "tags": {
 "key": "value"
 }
 }
],
 "entities": [
 {

AWS IoT TwinMaker metadata transfer job schema 67

AWS IoT TwinMaker User Guide

 "entityName": "initial",
 "entityId": "initial"
 }
]
}

Here is an example that updates existing entities:

{
 "componentTypes": [
 {
 "componentTypeId": "component.type.initial",
 "description": "updated"
 }
],
 "entities": [
 {
 "entityName": "parent",
 "entityId": "parent"
 },
 {
 "entityName": "child",
 "entityId": "child",
 "components": {
 "testComponent": {
 "componentTypeId": "component.type.initial",
 "properties": {
 "testProperty": {
 "definition": {
 "configuration": {
 "alias": "property"
 },
 "dataType": {
 "relationship": {
 "relationshipType": "parent",
 "targetComponentTypeId": "test"
 },
 "type": "STRING",
 "unitOfMeasure": "t"
 },
 "displayName": "displayName"
 }
 }

AWS IoT TwinMaker metadata transfer job schema 68

AWS IoT TwinMaker User Guide

 }
 }
 },
 "parentEntityId": "parent"
 }
],
 "entityComponents": [
 {
 "entityId": "initial",
 "componentTypeId": "component.type.initial",
 "componentName": "entityComponent",
 "description": "additionalDescription",
 "properties": {
 "additionalProperty": {
 "definition": {
 "configuration": {
 "alias": "additionalProperty"
 },
 "dataType": {
 "type": "STRING"
 },
 "displayName": "additionalDisplayName"
 },
 "value": {
 "stringValue": "test"
 }
 }
 }
 }
]
}

AWS IoT TwinMaker metadata transfer job schema 69

AWS IoT TwinMaker User Guide

AWS IoT TwinMaker data connectors

AWS IoT TwinMaker uses a connector-based architecture so that you can connect data from your
own data store to AWS IoT TwinMaker. This means you don't need to migrate data prior to using
AWS IoT TwinMaker. Currently, AWS IoT TwinMaker supports first-party connectors for AWS IoT
SiteWise. If you store modeling and property data in AWS IoT SiteWise, then you don’t need to
implement your own connectors. If you store your modeling or property data in other data stores,
such as Timestream, DynamoDB, or Snowflake, then you must implement AWS Lambda connectors
with the AWS IoT TwinMaker data connector interface so that AWS IoT TwinMaker can invoke your
connector when necessary.

Topics

• AWS IoT TwinMaker data connectors

• AWS IoT TwinMaker Athena tabular data connector

• Developing AWS IoT TwinMaker time-series data connectors

AWS IoT TwinMaker data connectors

Connectors need access to your underlying data store to resolve sent queries and to return either
results or an error.

To learn about the available connectors, their request interfaces, and their response interfaces, see
the following topics.

For more information about the properties used in the connector interfaces, see the
GetPropertyValueHistory API action.

Note

Some connectors have two timestamp fields in both the request and response interfaces
for start time and end time properties. Both startDateTime and endDateTime use
a long number to represent epoch second, which is no longer supported. To maintain
backwards-compatibility, we still send a timestamp value to that field, but we recommend
using the startTime and endTime fields that are consistent with our API timestamp
format.

Data connectors 70

https://docs.aws.amazon.com/iot-twinmaker/latest/apireference/API_GetPropertyValueHistory.html

AWS IoT TwinMaker User Guide

Topics

• Schema initializer connector

• DataReaderByEntity

• DataReaderByComponentType

• DataReader

• AttributePropertyValueReaderByEntity

• DataWriter

• Examples

Schema initializer connector

You can use the schema initializer in the component type or entity lifecycle to fetch the
component type or component properties from the underlying data source. The schema initializer
automatically imports component type or component properties without explicitly calling an API
action to set up properties.

SchemaInitializer request interface

{
 "workspaceId": "string",
 "entityId": "string",
 "componentName": "string",
 "properties": {
 // property name as key,
 // value is of type PropertyRequest
 "string": "PropertyRequest"
 }
}

Note

The map of properties in this request interface is a PropertyRequest. For more
information, see PropertyRequest.

Schema initializer connector 71

https://docs.aws.amazon.com/iot-twinmaker/latest/apireference/API_PropertyRequest.html

AWS IoT TwinMaker User Guide

SchemaInitializer response interface

{
 "properties": {
 // property name as key,
 // value is of type PropertyResponse
 "string": "PropertyResponse"
 }
}

Note

The map of properties in this request interface is a PropertyResponse. For more
information, see PropertyResponse.

DataReaderByEntity

DataReaderByEntity is a data plane connector that's used to get the time-series values of
properties in a single component.

For information about the property types, syntax, and format of this connector, see the
GetPropertyValueHistory API action.

DataReaderByEntity request interface

{
 "startDateTime": long, // In epoch sec, deprecated
 "startTime": "string", // ISO-8601 timestamp format
 "endDateTime": long, // In epoch sec, deprecated
 "endTime": "string", // ISO-8601 timestamp format
 "properties": {
 // A map of properties as in the get-entity API response
 // property name as key,
 // value is of type PropertyResponse
 "string": "PropertyResponse"
 },
 "workspaceId": "string",
 "selectedProperties": List:"string",
 "propertyFilters": List:PropertyFilter,

DataReaderByEntity 72

https://docs.aws.amazon.com/iot-twinmaker/latest/apireference/API_PropertyResponse.html
https://docs.aws.amazon.com/iot-twinmaker/latest/apireference/API_GetPropertyValueHistory.html
https://docs.aws.amazon.com/iot-twinmaker/latest/apireference/API_PropertyResponse.html

AWS IoT TwinMaker User Guide

 "entityId": "string",
 "componentName": "string",
 "componentTypeId": "string",
 "interpolation": InterpolationParameters,
 "nextToken": "string",
 "maxResults": int,
 "orderByTime": "string"
 }

DataReaderByEntity response interface

{
 "propertyValues": [
 {
 "entityPropertyReference": EntityPropertyReference, // The same
 as EntityPropertyReference
 "values": [
 {
 "timestamp": long, // Epoch sec, deprecated
 "time": "string", // ISO-8601 timestamp format
 "value": DataValue // The same as DataValue
 }
]
 }
],
 "nextToken": "string"
}

DataReaderByComponentType

To get the time-series values of common properties that come from the same component type, use
the data plane connector DataReaderByEntity. For example, if you define time-series properties
in the component type and you have multiple components using that component type, then you
can query those properties across all components in a given a time range. A common use case for
this is when you want to query the alarm status of multiple components for a global view of your
entities.

For information about the property types, syntax, and format of this connector, see the
GetPropertyValueHistory API action.

DataReaderByComponentType 73

https://docs.aws.amazon.com/iot-twinmaker/latest/apireference/API_EntityPropertyReference.html
https://docs.aws.amazon.com/iot-twinmaker/latest/apireference/API_DataValue.html
https://docs.aws.amazon.com/iot-twinmaker/latest/apireference/API_GetPropertyValueHistory.html

AWS IoT TwinMaker User Guide

DataReaderByComponentType request interface

{
 "startDateTime": long, // In epoch sec, deprecated
 "startTime": "string", // ISO-8601 timestamp format
 "endDateTime": long, // In epoch sec, deprecated
 "endTime": "string", // ISO-8601 timestamp format
 "properties": { // A map of properties as in the get-entity API response
 // property name as key,
 // value is of type PropertyResponse
 "string": "PropertyResponse"
 },
 "workspaceId": "string",
 "selectedProperties": List:"string",
 "propertyFilters": List:PropertyFilter,
 "componentTypeId": "string",
 "interpolation": InterpolationParameters,
 "nextToken": "string",
 "maxResults": int,
 "orderByTime": "string"
}

DataReaderByComponentType response interface

{
 "propertyValues": [
 {
 "entityPropertyReference": EntityPropertyReference, // The same
 as EntityPropertyReference
 "entityId": "string",
 "componentName": "string",
 "values": [
 {
 "timestamp": long, // Epoch sec, deprecated
 "time": "string", // ISO-8601 timestamp format
 "value": DataValue // The same as DataValue
 }
]
 }
],
 "nextToken": "string"
}

DataReaderByComponentType 74

https://docs.aws.amazon.com/iot-twinmaker/latest/apireference/API_PropertyResponse.html
https://docs.aws.amazon.com/iot-twinmaker/latest/apireference/API_EntityPropertyReference.html
https://docs.aws.amazon.com/iot-twinmaker/latest/apireference/API_DataValue.html

AWS IoT TwinMaker User Guide

DataReader

DataReader is a data plane connector that can handle both the case of DataReaderByEntity and
DataReaderByComponentType.

For information about the property types, syntax, and format of this connector, see the
GetPropertyValueHistory API action.

DataReader request interface

The EntityId and componentName are optional.

{
 "startDateTime": long, // In epoch sec, deprecated
 "startTime": "string", // ISO-8601 timestamp format
 "endDateTime": long, // In epoch sec, deprecated
 "endTime": "string", // ISO-8601 timestamp format
 "properties": { // A map of properties as in the get-entity API response
 // property name as key,
 // value is of type PropertyRequest
 "string": "PropertyRequest"
 },

 "workspaceId": "string",
 "selectedProperties": List:"string",
 "propertyFilters": List:PropertyFilter,
 "entityId": "string",
 "componentName": "string",
 "componentTypeId": "string",
 "interpolation": InterpolationParameters,
 "nextToken": "string",
 "maxResults": int,
 "orderByTime": "string"
}

DataReader response interface

{
 "propertyValues": [
 {
 "entityPropertyReference": EntityPropertyReference, // The same
 as EntityPropertyReference
 "values": [

DataReader 75

https://docs.aws.amazon.com/iot-twinmaker/latest/apireference/API_GetPropertyValueHistory.html
https://docs.aws.amazon.com/iot-twinmaker/latest/apireference/API_EntityPropertyReference.html

AWS IoT TwinMaker User Guide

 {
 "timestamp": long, // Epoch sec, deprecated
 "time": "string", // ISO-8601 timestamp format
 "value": DataValue // The same as DataValue
 }
]
 }
],
 "nextToken": "string"
}

AttributePropertyValueReaderByEntity

AttributePropertyValueReaderByEntity is a data plane connector that you can use to fetch the
value of static properties in a single entity.

For information about the property types, syntax, and format of this connector, see the
GetPropertyValue API action.

AttributePropertyValueReaderByEntity request interface

{
 "properties": {
 // property name as key,
 // value is of type PropertyResponse
 "string": "PropertyResponse"
 }

 "workspaceId": "string",
 "entityId": "string",
 "componentName": "string",
 "selectedProperties": List:"string",
}

AttributePropertyValueReaderByEntity response interface

{
 "propertyValues": {
 "string": { // property name as key
 "propertyReference": EntityPropertyReference, // The same
 as EntityPropertyReference
 "propertyValue": DataValue // The same as DataValue

AttributePropertyValueReaderByEntity 76

https://docs.aws.amazon.com/iot-twinmaker/latest/apireference/API_DataValue.html
https://docs.aws.amazon.com/iot-twinmaker/latest/apireference/API_GetPropertyValue.html
https://docs.aws.amazon.com/iot-twinmaker/latest/apireference/API_GetPropertyValue.html
https://docs.aws.amazon.com/iot-twinmaker/latest/apireference/API_PropertyResponse.html
https://docs.aws.amazon.com/iot-twinmaker/latest/apireference/API_EntityPropertyReference.html
https://docs.aws.amazon.com/iot-twinmaker/latest/apireference/API_DataValue.html

AWS IoT TwinMaker User Guide

 }
}

DataWriter

DataWriter is a data plane connector that you can use to write time-series data points back to the
underlying data store for properties in a single component.

For information about the property types, syntax, and format of this connector, see the
BatchPutPropertyValues API action.

DataWriter request interface

{
 "workspaceId": "string",
 "properties": {
 // entity id as key
 "String": {
 // property name as key,
 // value is of type PropertyResponse
 "string": PropertyResponse
 }
 },
 "entries": [
 {
 "entryId": "string",
 "entityPropertyReference": EntityPropertyReference, // The same
 as EntityPropertyReference
 "propertyValues": [
 {
 "timestamp": long, // Epoch sec, deprecated
 "time": "string", // ISO-8601 timestamp format
 "value": DataValue // The same as DataValue
 }
]
 }
]
}

DataWriter response interface

{

DataWriter 77

https://docs.aws.amazon.com/iot-twinmaker/latest/apireference/API_BatchPutPropertyValues.html
https://docs.aws.amazon.com/iot-twinmaker/latest/apireference/API_PropertyResponse.html
https://docs.aws.amazon.com/iot-twinmaker/latest/apireference/API_EntityPropertyReference.html
https://docs.aws.amazon.com/iot-twinmaker/latest/apireference/API_DataValue.html

AWS IoT TwinMaker User Guide

 "errorEntries": [
 {
 "errors": List:BatchPutPropertyError // The value is a list of
 type BatchPutPropertyError
 }
]
}

Examples

The following JSON samples are examples of response and request syntax for multiple connectors.

• SchemaInitializer:

The following examples show the schema initializer in a component type lifecycle.

Request:

{
 "workspaceId": "myWorkspace",
 "properties": {
 "modelId": {
 "definition": {
 "dataType": { "type": "STRING" },
 "isExternalId": true,
 "isFinal": true,
 "isImported": false,
 "isInherited": false,
 "isRequiredInEntity": true,
 "isStoredExternally": false,
 "isTimeSeries": false,
 "defaultValue": {
 "stringValue": "myModelId"
 }
 },
 "value": {
 "stringValue": "myModelId"
 }
 },
 "tableName": {
 "definition": {
 "dataType": { "type": "STRING" },
 "isExternalId": false,

Examples 78

https://docs.aws.amazon.com/iot-twinmaker/latest/apireference/API_BatchPutPropertyError.html

AWS IoT TwinMaker User Guide

 "isFinal": false,
 "isImported": false,
 "isInherited": false,
 "isRequiredInEntity": false,
 "isStoredExternally": false,
 "isTimeSeries": false,
 "defaultValue": {
 "stringValue": "myTableName"
 }
 },
 "value": {
 "stringValue": "myTableName"
 }
 }
 }
}

Response:

{
 "properties": {
 "myProperty1": {
 "definition": {
 "dataType": {
 "type": "DOUBLE",
 "unitOfMeasure": "%"
 },
 "configuration": {
 "myProperty1Id": "idValue"
 },
 "isTimeSeries": true
 }
 },
 "myProperty2": {
 "definition": {
 "dataType": { "type": "STRING" },
 "isTimeSeries": false,
 "defaultValue": {
 "stringValue": "property2Value"
 }
 }
 }
 }

Examples 79

AWS IoT TwinMaker User Guide

}

• Schema initializer in entity lifecycle:

Request:

{
 "workspaceId": "myWorkspace",
 "entityId": "myEntity",
 "componentName": "myComponent",
 "properties": {
 "assetId": {
 "definition": {
 "dataType": { "type": "STRING" },
 "isExternalId": true,
 "isFinal": true,
 "isImported": false,
 "isInherited": false,
 "isRequiredInEntity": true,
 "isStoredExternally": false,
 "isTimeSeries": false
 },
 "value": {
 "stringValue": "myAssetId"
 }
 },
 "tableName": {
 "definition": {
 "dataType": { "type": "STRING" },
 "isExternalId": false,
 "isFinal": false,
 "isImported": false,
 "isInherited": false,
 "isRequiredInEntity": false,
 "isStoredExternally": false,
 "isTimeSeries": false
 },
 "value": {
 "stringValue": "myTableName"
 }
 }
 }
}

Examples 80

AWS IoT TwinMaker User Guide

Response:

{
 "properties": {
 "myProperty1": {
 "definition": {
 "dataType": {
 "type": "DOUBLE",
 "unitOfMeasure": "%"
 },
 "configuration": {
 "myProperty1Id": "idValue"
 },
 "isTimeSeries": true
 }
 },
 "myProperty2": {
 "definition": {
 "dataType": { "type": "STRING" },
 "isTimeSeries": false
 },
 "value": {
 "stringValue": "property2Value"
 }
 }
 }
}

• DataReaderByEntity and DataReader:

Request:

{
 "workspaceId": "myWorkspace",
 "entityId": "myEntity",
 "componentName": "myComponent",
 "selectedProperties": [
 "Temperature",
 "Pressure"
],
 "startTime": "2022-04-07T04:04:42Z",
 "endTime": "2022-04-07T04:04:45Z",

Examples 81

AWS IoT TwinMaker User Guide

 "maxResults": 4,
 "orderByTime": "ASCENDING",
 "properties": {
 "assetId": {
 "definition": {
 "dataType": { "type": "STRING" },
 "isExternalId": true,
 "isFinal": true,
 "isImported": false,
 "isInherited": false,
 "isRequiredInEntity": true,
 "isStoredExternally": false,
 "isTimeSeries": false
 },
 "value": {
 "stringValue": "myAssetId"
 }
 },
 "Temperature": {
 "definition": {
 "configuration": {
 "temperatureId": "xyz123"
 },
 "dataType": {
 "type": "DOUBLE",
 "unitOfMeasure": "DEGC"
 },
 "isExternalId": false,
 "isFinal": false,
 "isImported": true,
 "isInherited": false,
 "isRequiredInEntity": false,
 "isStoredExternally": false,
 "isTimeSeries": true
 }
 },
 "Pressure": {
 "definition": {
 "configuration": {
 "pressureId": "xyz456"
 },
 "dataType": {
 "type": "DOUBLE",
 "unitOfMeasure": "MPA"

Examples 82

AWS IoT TwinMaker User Guide

 },
 "isExternalId": false,
 "isFinal": false,
 "isImported": true,
 "isInherited": false,
 "isRequiredInEntity": false,
 "isStoredExternally": false,
 "isTimeSeries": true
 }
 }
 }
}

Response:

{
 "propertyValues": [
 {
 "entityPropertyReference": {
 "entityId": "myEntity",
 "componentName": "myComponent",
 "propertyName": "Temperature"
 },
 "values": [
 {
 "time": "2022-04-07T04:04:42Z",
 "value": {
 "doubleValue": 588.168
 }
 },
 {
 "time": "2022-04-07T04:04:43Z",
 "value": {
 "doubleValue": 592.4224
 }
 }
]
 }
],
 "nextToken": "qwertyuiop"
}

• AttributePropertyValueReaderByEntity:

Examples 83

AWS IoT TwinMaker User Guide

Request:

{
 "workspaceId": "myWorkspace",
 "entityId": "myEntity",
 "componentName": "myComponent",
 "selectedProperties": [
 "manufacturer",
],
 "properties": {
 "assetId": {
 "definition": {
 "dataType": { "type": "STRING" },
 "isExternalId": true,
 "isFinal": true,
 "isImported": false,
 "isInherited": false,
 "isRequiredInEntity": true,
 "isStoredExternally": false,
 "isTimeSeries": false
 },
 "value": {
 "stringValue": "myAssetId"
 }
 },
 "manufacturer": {
 "definition": {
 "dataType": { "type": "STRING" },
 "configuration": {
 "manufacturerPropId": "M001"
 },
 "isExternalId": false,
 "isFinal": false,
 "isImported": false,
 "isInherited": false,
 "isRequiredInEntity": false,
 "isStoredExternally": true,
 "isTimeSeries": false
 }
 }
 }
}

Examples 84

AWS IoT TwinMaker User Guide

Response:

{
 "propertyValues": {
 "manufacturer": {
 "propertyReference": {
 "propertyName": "manufacturer",
 "entityId": "myEntity",
 "componentName": "myComponent"
 },
 "propertyValue": {
 "stringValue": "Amazon"
 }
 }
 }
}

• DataWriter:

Request:

{
 "workspaceId": "myWorkspaceId",
 "properties": {
 "myEntity": {
 "Temperature": {
 "definition": {
 "configuration": {
 "temperatureId": "xyz123"
 },
 "dataType": {
 "type": "DOUBLE",
 "unitOfMeasure": "DEGC"
 },
 "isExternalId": false,
 "isFinal": false,
 "isImported": true,
 "isInherited": false,
 "isRequiredInEntity": false,
 "isStoredExternally": false,
 "isTimeSeries": true

Examples 85

AWS IoT TwinMaker User Guide

 }
 }
 }
 },
 "entries": [
 {
 "entryId": "myEntity",
 "entityPropertyReference": {
 "entityId": "myEntity",
 "componentName": "myComponent",
 "propertyName": "Temperature"
 },
 "propertyValues": [
 {
 "timestamp": 1626201120,
 "value": {
 "doubleValue": 95.6958
 }
 },
 {
 "timestamp": 1626201132,
 "value": {
 "doubleValue": 80.6959
 }
 }
]
 }
]
}

Response:

{
 "errorEntries": [
 {
 "errors": [
 {
 "errorCode": "409",
 "errorMessage": "Conflict value at same timestamp",
 "entry": {
 "entryId": "myEntity",
 "entityPropertyReference": {

Examples 86

AWS IoT TwinMaker User Guide

 "entityId": "myEntity",
 "componentName": "myComponent",
 "propertyName": "Temperature"
 },
 "propertyValues": [
 "time": "2022-04-07T04:04:42Z",
 "value": {
 "doubleValue": 95.6958
 }
]
 }
 }
]
 }
]
}

AWS IoT TwinMaker Athena tabular data connector

With the Athena tabular data connector, you can access and use your Athena data stores in AWS
IoT TwinMaker. You can use your Athena data to build digital twins without an intensive data
migration effort. You can either use the prebuilt connector or create a custom Athena connector to
access data from your Athena data sources.

AWS IoT TwinMaker Athena data connector prerequisites

Before you use the Athena tabular data connector, complete the following prerequisites:

• Create managed Athena tables and their associated Amazon S3 resources. For information on
using Athena, see the Athena documentation.

• Create an AWS IoT TwinMaker workspace. You can create a workspace in the AWS IoT TwinMaker
console.

• Update your workspace IAM role with Athena permissions. For more information, see Modify
your workspace IAM role to use the Athena data connector.

• Become familiar with AWS IoT TwinMaker's entity-component system and how to create entities.
For more information, see Create your first entity.

• Become familiar with AWS IoT TwinMaker's data connectors. For more information, see AWS IoT
TwinMaker data connectors.

Athena tabular data connector 87

https://docs.aws.amazon.com/athena/latest/ug/what-is.html
https://console.aws.amazon.com/iottwinmaker/
https://console.aws.amazon.com/iottwinmaker/

AWS IoT TwinMaker User Guide

Using the Athena data connector

To use the Athena data connector, you must create a component, using the Athena connector as
the component type. Then you attach the component to an entity within your scene for use in AWS
IoT TwinMaker.

Create a component type with the Athena data connector

Use this procedure to create an AWS IoT TwinMaker component type with the Athena tabular
data connector:

1. Navigate to the AWS IoT TwinMaker console.

2. Open an existing workspace or create a new one.

3. From the left side navigation menu, choose Component types, and select Create
component type to open the component type creation page.

4. On the Create component type page, fill in the ID field with an ID that matches your use
case.

5. Choose the Base type. From the dropdown list, select the Athena tabular data connector
which is labeled as com.amazon.athena.connector.

Using the Athena data connector 88

https://console.aws.amazon.com/iottwinmaker/

AWS IoT TwinMaker User Guide

6. Configure the component type's Data source by choosing Athena resources for the
following fields:

• Choose an Athena datasource.

• Choose an Athena database.

• Choose a Table name.

• Choose a Athena workGroup.

7. Once you have selected the Athena resources you want to use as the data source, choose
which columns from the table you want to include.

8. Select an External ID column name. Select a column from the previous step to serve as the
external ID column. The external Id is the id that's used to represent an Athena asset and
map it to an AWS IoT TwinMaker entity.

Using the Athena data connector 89

AWS IoT TwinMaker User Guide

Using the Athena data connector 90

AWS IoT TwinMaker User Guide

9. (Optional) Add AWS tags to these resources, so you can group and organize them.

10. Choose Create component type to finish creating the component type.

Create a component with the Athena data connector type and attach it to an entity

Use this procedure to create an AWS IoT TwinMaker component with the Athena tabular data
connector and attach it to an entity:

Note

You must have an existing component type that uses the Athena tabular data connector
as a data source in order to complete this procedure. See the previous procedure Create
a component type with the Athena data connector before starting this walkthrough.

1. Navigate to the AWS IoT TwinMaker console.

2. Open an existing workspace or create a new one.

3. From the left side navigation menu choose Entities, and select the entity you want to add
the component to or create a new entity.

4. Create a new entity.

5. Next select Add component., fill in the Component name field with a name that match
your use case.

6. From the Component type drop down menu select the component type ID that you
created in the previous procedure.

7. Enter Component information, a Component Name, and select the child ComponentType
created previously. This is the ComponentType you created with the Athena data connector.

8. In the Properties section, enter the athenaComponentExternalId for the component.

9. Choose Add component to finish creating the component.

Using the Athena data connector 91

https://console.aws.amazon.com/iottwinmaker/
https://docs.aws.amazon.com/iot-twinmaker/latest/guide/twinmaker-gs-entity.html

AWS IoT TwinMaker User Guide

You have now successfully created a component with the Athena data connector as the component
type and attached it to an entity.

Using the Athena tabular data connector JSON reference

The following example is the full the JSON reference for the Athena tabular data connector. Use
this as a resource to create custom data connectors and component types.

{
 "componentTypeId": "com.amazon.athena.connector",
 "description": "Athena connector for syncing tabular data",
 "workspaceId":"AmazonOwnedTypesWorkspace",
 "propertyGroups": {
 "tabularPropertyGroup": {
 "groupType": "TABULAR",
 "propertyNames": []
 }
 },
 "propertyDefinitions": {
 "athenaDataSource": {
 "dataType": { "type": "STRING" },
 "isRequiredInEntity": true
 },
 "athenaDatabase": {
 "dataType": { "type": "STRING" },
 "isRequiredInEntity": true
 },
 "athenaTable": {
 "dataType": { "type": "STRING" },
 "isRequiredInEntity": true
 },
 "athenaWorkgroup": {
 "dataType": { "type": "STRING" },
 "isRequiredInEntity": true
 },
 "athenaExternalIdColumnName": {
 "dataType": { "type": "STRING" },
 "isRequiredInEntity": true,
 "isExternalId": false
 },
 "athenaComponentExternalId": {
 "dataType": { "type": "STRING" },
 "isStoredExternally": false,

Using the Athena tabular data connector JSON reference 92

AWS IoT TwinMaker User Guide

 "isRequiredInEntity": true,
 "isExternalId": true
 }
 },
 "functions": {
 "tabularDataReaderByEntity": {
 "implementedBy": {
 "isNative": true
 }
 }
 }
}

Using the Athena data connector

You can surface your entities that are using Athena tables in Grafana. For more information, see
AWS IoT TwinMaker Grafana dashboard integration.

Read the Athena documentation for information on creating and using Athena tables to store data.

Troubleshooting the Athena data connector

This topic covers common issues you may encounter when configuring the Athena data connector.

Athena workgroup location:

When creating Athena connector componentType, an Athena workgroup has to have output
location setup. See How workgroups work.

Missing IAM role permissions:

The AWS IoT TwinMaker; workspace role may be missing Athena API access permission
when creating a componentType, adding a Ca component to an entity, or running the
GetPropertyValue API. To update IAM permissions see Create and manage a service role for
AWS IoT TwinMaker.

Visualize Athena tabular data in Grafana

A Grafana plugin is also available to visualize your tabular data on Grafana a dashboard panel with
additional features such as sorting and filtering based on selected properties without making API

Using the Athena data connector 93

https://docs.aws.amazon.com/iot-twinmaker/latest/guide/grafana-integration.html
https://docs.aws.amazon.com/athena/latest/ug/what-is.html
https://docs.aws.amazon.com/athena/latest/ug/user-created-workgroups.html
https://docs.aws.amazon.com/iot-twinmaker/latest/guide/twinmaker-gs-service-role.html
https://docs.aws.amazon.com/iot-twinmaker/latest/guide/twinmaker-gs-service-role.html

AWS IoT TwinMaker User Guide

calls to AWS IoT TwinMaker, or interactions with Athena. This topic shows you how to configure
Grafana to visualize Athena tabular data.

Prerequisites

Before configuring a Grafana panel for visualizing Athena tabular data, review the following
prerequisites:

• You have set up a Grafana environment. For more information see, AWS IoT TwinMaker Grafana
integration.

• You can configure a Grafana datasource. For more information see, Grafana AWS IoT TwinMaker.

• You are familiar with creating a new dashboard and add a new panel.

Visualize Athena tabular data in Grafana

This procedure shows you how to setup a Grafana panel to visualize Athena tabular data.

1. Open your AWS IoT TwinMaker Grafana dashboard.

2. Select the Table panel in the panel settings.

3. Select your datasource in the query configuration.

4. Select the Get Property Value query.

5. Select an entity.

6. Select a component that has a componentType that extends the Athena base component
type.

7. Select the property group of your Athena table.

8. Select any number of properties from the property group.

9. Configure the tabular conditions through a list of filters and property orders. With the
following options:

• Filter: define an expression for a property value to filter your data.

• OrderBy: specify whether data should be returned in ascending or descending order for a
property.

Visualize Athena tabular data in Grafana 94

https://docs.aws.amazon.com/iot-twinmaker/latest/guide/grafana-integration.html
https://docs.aws.amazon.com/iot-twinmaker/latest/guide/grafana-integration.html
https://github.com/grafana/grafana-iot-twinmaker-app/blob/main/src/datasource/README.md

AWS IoT TwinMaker User Guide

Developing AWS IoT TwinMaker time-series data connectors

This section explains how to develop a time-series data connector in a step-by-step process.
Additionally, we present an example time-series data connector based of the entire cookie factory
sample, which includes 3D models, entities, components, alarms, and connectors. The cookie
factory sample source is available on the AWS IoT TwinMaker samples GitHub repository .

Topics

• AWS IoT TwinMaker time-series data connector prerequisites

• Time-series data connector background

• Developing a time-series data connector

• Improving your data connector

• Testing your connector

AWS IoT TwinMaker time-series data connector 95

https://github.com/aws-samples/aws-iot-twinmaker-samples

AWS IoT TwinMaker User Guide

• Security

• Creating AWS IoT TwinMaker resources

• What's next

• AWS IoT TwinMakercookie factory example time-series connector

AWS IoT TwinMaker time-series data connector prerequisites

Before developing your time-series data connector, we recommend that you complete the
following tasks:

• Create an AWS IoT TwinMaker workspace.

• Create AWS IoT TwinMaker component types.

• Create AWS IoT TwinMaker entities.

• (Optional) Read Using and creating component types.

• (Optional) Read AWS IoT TwinMaker data connector interface to get a general understanding of
AWS IoT TwinMaker data connectors.

Note

For an example of a fully implemented connector, see our cookie factory example
implementation.

Time-series data connector background

Imagine you are working with a factory that has a set of cookie mixers and a water tank. You would
like to build AWS IoT TwinMaker digital twins of these physical entities so that you can monitor
their operational states by checking various time-series metrics.

You have on-site sensors set up and you are already streaming measurement data into a
Timestream database. You want to be able to view and organize the measurement data in AWS
IoT TwinMaker with minimal overhead. You can accomplish this task by using a time-series data
connector. The following image shows an example telemetry table, which is populated through the
use of a time-series connector.

AWS IoT TwinMaker time-series data connector prerequisites 96

https://docs.aws.amazon.com/iot-twinmaker/latest/guide/twinmaker-component-types.html
https://docs.aws.amazon.com/iot-twinmaker/latest/guide/twinmaker-gs-entity.html
https://docs.aws.amazon.com/iot-twinmaker/latest/guide/twinmaker-component-types.htm
https://docs.aws.amazon.com/iot-twinmaker/latest/guide/data-connector-interface.html

AWS IoT TwinMaker User Guide

The datasets and the Timestream table used in this screenshot are available in the AWS IoT
TwinMaker samples GitHub repository. Also see the cookie factory example connector for the
implementation, which produces the result shown in the preceding screenshot.

Time-series data connector data flow

For data plane queries, AWS IoT TwinMaker fetches the corresponding properties of both
components and component types from components and component types definitions. AWS IoT
TwinMaker forwards properties to AWS Lambda functions along with any API query parameters in
the query.

AWS IoT TwinMaker uses Lambda functions to access and resolve queries from data sources and
return the results of those queries. The Lambda functions use the component and component type
properties from the data plane to resolve the initial request.

The results of the Lambda query are mapped to an API response and returned to you.

AWS IoT TwinMaker defines the data connector interface and uses that to interact with Lambda
functions. Using data connectors, you can query your data source from AWS IoT TwinMaker API
without any data migration efforts. The following image outlines the basic data flow described in
the previous paragraphs.

Time-series data connector background 97

https://github.com/aws-samples/aws-iot-twinmaker-samples
https://github.com/aws-samples/aws-iot-twinmaker-samples

AWS IoT TwinMaker User Guide

Developing a time-series data connector

The following procedure outlines a development model that incrementally builds up to a
functional time-series data connector. The basic steps are as follows:

1. Create a valid basic component type

In a component type, you define common properties that are shared across your components.
To learn more about defining component types, see Using and creating component types.

AWS IoT TwinMaker uses an entity-component modeling pattern so each component is
attached to an entity. We recommend that you model each physical item as an entity and
model different data sources with their own component types.

The following example shows a Timestream template component type with one property:

{"componentTypeId": "com.example.timestream-telemetry",
 "workspaceId": "MyWorkspace",
 "functions": {
 "dataReader": {
 "implementedBy": {
 "lambda": {
 "arn": "lambdaArn"
 }
 }
 }
 },
 "propertyDefinitions": {
 "telemetryType": {
 "dataType": { "type": "STRING" },
 "isExternalId": false,
 "isStoredExternally": false,
 "isTimeSeries": false,
 "isRequiredInEntity": true
 },
 "telemetryId": {
 "dataType": { "type": "STRING" },
 "isExternalId": true,
 "isStoredExternally": false,
 "isTimeSeries": false,
 "isRequiredInEntity": true
 },

Developing a time-series data connector 98

https://docs.aws.amazon.com/iot-twinmaker/latest/guide/twinmaker-component-types.html
https://en.wikipedia.org/wiki/Entity_component_system

AWS IoT TwinMaker User Guide

 "Temperature": {
 "dataType": { "type": "DOUBLE" },
 "isExternalId": false,
 "isTimeSeries": true,
 "isStoredExternally": true,
 "isRequiredInEntity": false
 }
 }
}

The key elements of the component type are the following:

• The telemetryId property identifies the unique key of the physical item in the
corresponding data source. The data connector uses this property as a filter condition
to only query values associated with the given item. Additionally, if you include the
telemetryId property value in the data plane API response, then the client side takes the
ID and can perform a reverse lookup if necessary.

• The lambdaArn field identifies the Lambda function with which the component type
engages.

• The isRequiredInEntity flag enforces the ID creation. This flag is required so that when
the component is created, the item's ID is also instantiated.

• The TelemetryId is added to the component type as an external id so that the item can be
identified in the Timestream table.

2. Create a component with the component type

To use the component type you created, you must create a component and attach it to the
entity from which you wish to retrieve data. The following steps detail the process of creating
that component:

a. Navigate to the AWS IoT TwinMaker console.

b. Select and open the same workspace in which you created the component types.

c. Navigate to the entity page.

d. Create a new entity or select an existing entity from the table.

e. Once you have selected the entity you wish to use, choose Add component to open the
Add component page.

f. Give the component a name and for the Type, choose the component type you created
with the template in 1. Create a valid basic component type.

Developing a time-series data connector 99

https://console.aws.amazon.com/iottwinmaker/

AWS IoT TwinMaker User Guide

3. Make your component type call a Lambda connector

The Lambda connector needs to access the data source and generate the query statement
based on the input and forward it to the data source. The following example shows a JSON
request template that does this.

{
 "workspaceId": "MyWorkspace",
 "entityId": "MyEntity",
 "componentName": "TelemetryData",
 "selectedProperties": ["Temperature"],
 "startTime": "2022-08-25T00:00:00Z",
 "endTime": "2022-08-25T00:00:05Z",
 "maxResults": 3,
 "orderByTime": "ASCENDING",
 "properties": {
 "telemetryType": {
 "definition": {
 "dataType": { "type": "STRING" },
 "isExternalId": false,
 "isFinal": false,
 "isImported": false,
 "isInherited": false,
 "isRequiredInEntity": false,
 "isStoredExternally": false,
 "isTimeSeries": false
 },
 "value": {
 "stringValue": "Mixer"
 }
 },
 "telemetryId": {
 "definition": {
 "dataType": { "type": "STRING" },
 "isExternalId": true,
 "isFinal": true,
 "isImported": false,
 "isInherited": false,
 "isRequiredInEntity": true,
 "isStoredExternally": false,
 "isTimeSeries": false
 },
 "value": {

Developing a time-series data connector 100

AWS IoT TwinMaker User Guide

 "stringValue": "item_A001"
 }
 },
 "Temperature": {
 "definition": {
 "dataType": { "type": "DOUBLE", },
 "isExternalId": false,
 "isFinal": false,
 "isImported": true,
 "isInherited": false,
 "isRequiredInEntity": false,
 "isStoredExternally": false,
 "isTimeSeries": true
 }
 }
 }
}

The key elements of the request:

• The selectedProperties is a list you populate with the properties for which you want
Timestream measurements.

• The startDateTime, startTime, EndDateTime, and endTime fields specify a time range
for the request. This determines the sample range for the measurements returned.

• The entityId is the name of the entity from which you are querying data.

• The componentName is the name of the component from which you are querying data.

• Use the orderByTime field to organize the order in which the results are displayed.

In the preceding example request, we would expect to get a series of samples for the selected
properties during the given time window for the given item, with the selected time order. The
response statement can be summarized as the following:

{
 "propertyValues": [
 {
 "entityPropertyReference": {
 "entityId": "MyEntity",
 "componentName": "TelemetryData",
 "propertyName": "Temperature"
 },

Developing a time-series data connector 101

AWS IoT TwinMaker User Guide

 "values": [
 {
 "time": "2022-08-25T00:00:00Z",
 "value": {
 "doubleValue": 588.168
 }
 },
 {
 "time": "2022-08-25T00:00:01Z",
 "value": {
 "doubleValue": 592.4224
 }
 },
 {
 "time": "2022-08-25T00:00:02Z",
 "value": {
 "doubleValue": 594.9383
 }
 }
]
 }
],
 "nextToken": "..."
}

4. Update your component type to have two properties

The following JSON template shows a valid component type with two properties:

{
 "componentTypeId": "com.example.timestream-telemetry",
 "workspaceId": "MyWorkspace",
 "functions": {
 "dataReader": {
 "implementedBy": {
 "lambda": {
 "arn": "lambdaArn"
 }
 }
 }
 },
 "propertyDefinitions": {
 "telemetryType": {
 "dataType": { "type": "STRING" },

Developing a time-series data connector 102

AWS IoT TwinMaker User Guide

 "isExternalId": false,
 "isStoredExternally": false,
 "isTimeSeries": false,
 "isRequiredInEntity": true
 },
 "telemetryId": {
 "dataType": { "type": "STRING" },
 "isExternalId": true,
 "isStoredExternally": false,
 "isTimeSeries": false,
 "isRequiredInEntity": true
 },
 "Temperature": {
 "dataType": { "type": "DOUBLE" },
 "isExternalId": false,
 "isTimeSeries": true,
 "isStoredExternally": true,
 "isRequiredInEntity": false
 },
 "RPM": {
 "dataType": { "type": "DOUBLE" },
 "isExternalId": false,
 "isTimeSeries": true,
 "isStoredExternally": true,
 "isRequiredInEntity": false
 }
 }
}

5. Update the Lambda connector to handle the second property

The AWS IoT TwinMaker data plane API supports querying multiple properties in a single
request, and AWS IoT TwinMaker follows a single request to a connector by providing a list of
selectedProperties.

The following JSON request shows a modified template that now supports a request for two
properties.

{
 "workspaceId": "MyWorkspace",
 "entityId": "MyEntity",
 "componentName": "TelemetryData",
 "selectedProperties": ["Temperature", "RPM"],

Developing a time-series data connector 103

AWS IoT TwinMaker User Guide

 "startTime": "2022-08-25T00:00:00Z",
 "endTime": "2022-08-25T00:00:05Z",
 "maxResults": 3,
 "orderByTime": "ASCENDING",
 "properties": {
 "telemetryType": {
 "definition": {
 "dataType": { "type": "STRING" },
 "isExternalId": false,
 "isFinal": false,
 "isImported": false,
 "isInherited": false,
 "isRequiredInEntity": false,
 "isStoredExternally": false,
 "isTimeSeries": false
 },
 "value": {
 "stringValue": "Mixer"
 }
 },
 "telemetryId": {
 "definition": {
 "dataType": { "type": "STRING" },
 "isExternalId": true,
 "isFinal": true,
 "isImported": false,
 "isInherited": false,
 "isRequiredInEntity": true,
 "isStoredExternally": false,
 "isTimeSeries": false
 },
 "value": {
 "stringValue": "item_A001"
 }
 },
 "Temperature": {
 "definition": {
 "dataType": { "type": "DOUBLE" },
 "isExternalId": false,
 "isFinal": false,
 "isImported": true,
 "isInherited": false,
 "isRequiredInEntity": false,
 "isStoredExternally": false,

Developing a time-series data connector 104

AWS IoT TwinMaker User Guide

 "isTimeSeries": true
 }
 },
 "RPM": {
 "definition": {
 "dataType": { "type": "DOUBLE" },
 "isExternalId": false,
 "isFinal": false,
 "isImported": true,
 "isInherited": false,
 "isRequiredInEntity": false,
 "isStoredExternally": false,
 "isTimeSeries": true
 }
 }
 }
}

Similarly, the corresponding response is also updated, as shown in the following example:

{
 "propertyValues": [
 {
 "entityPropertyReference": {
 "entityId": "MyEntity",
 "componentName": "TelemetryData",
 "propertyName": "Temperature"
 },
 "values": [
 {
 "time": "2022-08-25T00:00:00Z",
 "value": {
 "doubleValue": 588.168
 }
 },
 {
 "time": "2022-08-25T00:00:01Z",
 "value": {
 "doubleValue": 592.4224
 }
 },
 {
 "time": "2022-08-25T00:00:02Z",

Developing a time-series data connector 105

AWS IoT TwinMaker User Guide

 "value": {
 "doubleValue": 594.9383
 }
 }
]
 },
 {
 "entityPropertyReference": {
 "entityId": "MyEntity",
 "componentName": "TelemetryData",
 "propertyName": "RPM"
 },
 "values": [
 {
 "time": "2022-08-25T00:00:00Z",
 "value": {
 "doubleValue": 59
 }
 },
 {
 "time": "2022-08-25T00:00:01Z",
 "value": {
 "doubleValue": 60
 }
 },
 {
 "time": "2022-08-25T00:00:02Z",
 "value": {
 "doubleValue": 60
 }
 }
]
 }
],
 "nextToken": "..."
}

Note

In terms of the pagination for this case, the page size in the request applies to all
properties. This means that with five properties in the query and a page size of 100, if

Developing a time-series data connector 106

AWS IoT TwinMaker User Guide

there are enough data points in the source, you should expect to see 100 data points
per property, with 500 data points in total.

For an example implementation, see Snowflake connector sample on GitHub.

Improving your data connector

Handling exceptions

It is safe for the Lambda connector to throw exceptions. In the data plane API call, the AWS
IoT TwinMaker service waits for the Lambda function to return a response. If the connector
implementation throws an exception, AWS IoT TwinMaker translates the exception type to be
ConnectorFailure, making the API client aware that an issue happened inside the connector.

Handling pagination

In the example, Timestream provides a utility function which can help support pagination natively.
However, for some other query interfaces, such as SQL, it might need extra effort to implement an
efficient pagination algorithm. There is a Snowflake connector example that handles pagination in
an SQL interface.

When the new token is returned to AWS IoT TwinMaker through the connector response interface,
the token is encrypted before being returned to the API client. When the token is included in
another request, AWS IoT TwinMaker decrypts it before forwarding it to the Lambda connector. We
recommend that you avoid adding sensitive information to the token.

Testing your connector

Though you can still update the implementation after you link the connector to the component
type, we strongly recommend you verify the Lambda connector before integrating with AWS IoT
TwinMaker.

There are multiple ways to test your Lambda connector: you can test the Lambda connector in the
Lambda console or locally in the AWS CDK.

For more information on testing your Lambda functions, see Testing Lambda functions and Locally
testing AWS CDK applications.

Improving your data connector 107

https://github.com/aws-samples/aws-iot-twinmaker-samples-snowflake/blob/main/src/modules/snowflake/data-connector/lambda_connectors/data_reader_by_entity.py
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/timestream-query.html#TimestreamQuery.Client.query
https://github.com/aws-samples/aws-iot-twinmaker-samples-snowflake/blob/main/src/modules/snowflake/data-connector/lambda_connectors/data_reader_by_entity.py
https://docs.aws.amazon.com/lambda/latest/dg/testing-functions.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/serverless-cdk-testing.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/serverless-cdk-testing.html

AWS IoT TwinMaker User Guide

Security

For documentation on security best practices with Timestream, see Security in Timestream.

For an example of SQL injection prevention, see the following Python script in AWS IoT TwinMaker
Samples GitHub Repository.

Creating AWS IoT TwinMaker resources

Once you have implemented the Lambda function, you can create AWS IoT TwinMaker resources
such as component types, entities, and components through the AWS IoT TwinMaker console or
API.

Note

If you follow the setup instructions in the GitHub sample, all AWS IoT TwinMaker resources
are available automatically. You can check the component type definitions in the AWS
IoT TwinMaker GitHub sample. Once the component type is used by any components, the
property definitions and functions of the component type cannot be updated.

Integration testing

We recommend having an integrated test with AWS IoT TwinMaker to verify the data plane query
works end-to-end. You can perform that through GetPropertyValueHistory API or easily in AWS IoT
TwinMaker console.

Security 108

https://docs.aws.amazon.com/timestream/latest/developerguide/security.html
https://github.com/aws-samples/aws-iot-twinmaker-samples/blob/main/src/libs/udq_helper_utils/udq_utils/sql_detector.py
https://console.aws.amazon.com/iottwinmaker/
https://github.com/aws-samples/aws-iot-twinmaker-samples/tree/main/src/workspaces/cookiefactory/component_types
https://github.com/aws-samples/aws-iot-twinmaker-samples/tree/main/src/workspaces/cookiefactory/component_types
https://docs.aws.amazon.com/iot-twinmaker/latest/apireference/API_GetPropertyValueHistory.html
https://console.aws.amazon.com/iottwinmaker/
https://console.aws.amazon.com/iottwinmaker/

AWS IoT TwinMaker User Guide

In the AWS IoT TwinMaker console, go to component details and then under the Test, you’ll see
all the properties in the component are listed there. The Test area of the console allows you to test
time-series properties as well as non-time-series properties. For time-series properties you can also
use the GetPropertyValueHistory API and for non-time-series properties use GetPropertyValue
API. If your Lambda connector supports multiple property query, you can choose more than one
property.

Creating AWS IoT TwinMaker resources 109

https://docs.aws.amazon.com/iot-twinmaker/latest/apireference/API_GetPropertyValueHistory.html
https://docs.aws.amazon.com/iot-twinmaker/latest/apireference/API_GetPropertyValue.html

AWS IoT TwinMaker User Guide

What's next

You can now set up an AWS IoT TwinMaker Grafana dashboard to visualize metrics. You can also
explore other data connector samples in the AWS IoT TwinMaker samples GitHub repository to see
if they fit your use case.

AWS IoT TwinMakercookie factory example time-series connector

The complete code of the cookie factory Lambda function is available on GitHub. Though you can
still update the implementation after you link the connector to the component type, we strongly
recommend you verify the Lambda connector before integrating with AWS IoT TwinMaker. You can
test your Lambda function in the Lambda console or locally in the AWS CDK. For more information
on testing your Lambda functions, see Testing Lambda functions, and Locally testing AWS CDK
applications.

Example cookie factory component types

In a component type, we define common properties that are shared across components. For the
cookie factory example, physical components of the same type share the same measurements, so
we can define the measurements schema in the component type. As an example, the mixer type is
defined in the following example.

What's next 110

https://docs.aws.amazon.com/iot-twinmaker/latest/guide/grafana-integration.html
https://github.com/aws-samples/aws-iot-twinmaker-samples/tree/main/src/modules/s3
https://github.com/aws-samples/aws-iot-twinmaker-samples/blob/main/src/modules/timestream_telemetry/lambda_function/udq_data_reader.py
https://docs.aws.amazon.com/lambda/latest/dg/testing-functions.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/serverless-cdk-testing.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/serverless-cdk-testing.html

AWS IoT TwinMaker User Guide

{
 "componentTypeId": "com.example.cookiefactory.mixer"
 "propertyDefinitions": {
 "RPM": {
 "dataType": { "type": "DOUBLE" },
 "isTimeSeries": true,
 "isRequiredInEntity": false,
 "isExternalId": false,
 "isStoredExternally": true
 },
 "Temperature": {
 "dataType": { "type": "DOUBLE" },
 "isTimeSeries": true,
 "isRequiredInEntity": false,
 "isExternalId": false,
 "isStoredExternally": true
 }
 }
}

For example, a physical component might have measurements in a Timestream database,
maintenance records in an SQL database, or alarm data in alarm systems. Creating multiple
components and associating them with an entity links different data sources to the entity and
populates the entity-component graph. In this context, each component needs an telemetryId
property to identify the unique key of the component in the corresponding data source. Specifying
the telemetryId property has two benefits: the property can be used in the data connector as a
filter condition to only query values of the given component and, if you include the telemetryId
property value in the data plane API response, then the client side takes the ID and can perform a
reverse lookup if necessary.

If you add the TelemetryId to the component type as an external id, it identifies the component
in the TimeStream table.

{
 "componentTypeId": "com.example.cookiefactory.mixer"
 "propertyDefinitions": {
 "telemetryId": {
 "dataType": { "type": "STRING" },
 "isTimeSeries": false,
 "isRequiredInEntity": true,
 "isExternalId": true,

AWS IoT TwinMaker cookie factory data connector 111

AWS IoT TwinMaker User Guide

 "isStoredExternally": false
 },
 "RPM": {
 "dataType": { "type": "DOUBLE" },
 "isTimeSeries": true,
 "isRequiredInEntity": false,
 "isExternalId": false,
 "isStoredExternally": true
 },
 "Temperature": {
 "dataType": { "type": "DOUBLE" },
 "isTimeSeries": true,
 "isRequiredInEntity": false,
 "isExternalId": false,
 "isStoredExternally": true
 }
 }
}

Similarly we have the component type for the WaterTank, as shown in the following JSON
example.

{
 "componentTypeId": "com.example.cookiefactory.watertank",
 "propertyDefinitions": {
 "flowRate1": {
 "dataType": { "type": "DOUBLE" },
 "isTimeSeries": true,
 "isRequiredInEntity": false,
 "isExternalId": false,
 "isStoredExternally": true
 },
 "flowrate2": {
 "dataType": { "type": "DOUBLE" },
 "isTimeSeries": true,
 "isRequiredInEntity": false,
 "isExternalId": false,
 "isStoredExternally": true
 },
 "tankVolume1": {
 "dataType": { "type": "DOUBLE" },
 "isTimeSeries": true,
 "isRequiredInEntity": false,

AWS IoT TwinMaker cookie factory data connector 112

AWS IoT TwinMaker User Guide

 "isExternalId": false,
 "isStoredExternally": true
 },
 "tankVolume2": {
 "dataType": { "type": "DOUBLE" },
 "isTimeSeries": true,
 "isRequiredInEntity": false,
 "isExternalId": false,
 "isStoredExternally": true
 },
 "telemetryId": {
 "dataType": { "type": "STRING" },
 "isTimeSeries": false,
 "isRequiredInEntity": true,
 "isExternalId": true,
 "isStoredExternally": false
 }
 }
}

The TelemetryType is an optional property in the component type if it's aimed at querying
property values in the entity scope. For an example, see the defined component types in the
AWS IoT TwinMaker samples GitHub repository. There are alarm types also embedded into the
same table, so the TelemetryType is defined and you extract common properties like the
TelemetryId and TelemetryType to a parent component type for other child types to share.

Example Lambda

The Lambda connector needs to access the data source and generate the query statement based
on the input and forward it to the data source. An example request sent to the Lambda is shown in
the following JSON example.

{
 'workspaceId': 'CookieFactory',
 'selectedProperties': ['Temperature'],
 'startDateTime': 1648796400,
 'startTime': '2022-04-01T07:00:00.000Z',
 'endDateTime': 1650610799,
 'endTime': '2022-04-22T06:59:59.000Z',
 'properties': {
 'telemetryId': {
 'definition': {

AWS IoT TwinMaker cookie factory data connector 113

https://github.com/aws-samples/aws-iot-twinmaker-samples/tree/main/src/workspaces/cookiefactory/component_types

AWS IoT TwinMaker User Guide

 'dataType': { 'type': 'STRING' },
 'isTimeSeries': False,
 'isRequiredInEntity': True,
 'isExternalId': True,
 'isStoredExternally': False,
 'isImported': False,
 'isFinal': False,
 'isInherited': True,
 },
 'value': {
 'stringValue': 'Mixer_22_680b5b8e-1afe-4a77-87ab-834fbe5ba01e'
 }
 }
 'Temperature': {
 'definition': {
 'dataType': { 'type': 'DOUBLE' },
 'isTimeSeries': True,
 'isRequiredInEntity': False,
 'isExternalId': False,
 'isStoredExternally': True,
 'isImported': False,
 'isFinal': False,
 'isInherited': False
 }
 }
 'RPM': {
 'definition': {
 'dataType': { 'type': 'DOUBLE' },
 'isTimeSeries': True,
 'isRequiredInEntity': False,
 'isExternalId': False,
 'isStoredExternally': True,
 'isImported': False,
 'isFinal':False,
 'isInherited': False
 }
 },
 'entityId': 'Mixer_22_d133c9d0-472c-48bb-8f14-54f3890bc0fe',
 'componentName': 'MixerComponent',
 'maxResults': 100,
 'orderByTime': 'ASCENDING'
}

AWS IoT TwinMaker cookie factory data connector 114

AWS IoT TwinMaker User Guide

The goal of the Lambda function is to query historical measurement data for a given entity. AWS
IoT TwinMaker provides a component-properties map, and you should specify an instantiated value
for the component ID. For example, to handle the component type-level query (which is common
for alarm use cases) and return the alarm status of all components in the workspace, then the
properties map has component type properties definitions.

For the most straightforward case, as in the preceding request, we want a series of temperature
samples during the given time window for the given component, in ascending time order. The
query statement can be summarized as the following:

...
SELECT measure_name, time, measure_value::double
 FROM {database_name}.{table_name}
 WHERE time < from_iso8601_timestamp('{request.start_time}')
 AND time >= from_iso8601_timestamp('{request.end_time}')
 AND TelemetryId = '{telemetry_id}'
 AND measure_name = '{selected_property}'
 ORDER BY time {request.orderByTime}
...

AWS IoT TwinMaker cookie factory data connector 115

AWS IoT TwinMaker User Guide

Creating and editing AWS IoT TwinMaker scenes

Scenes are three-dimensional visualizations of your digital twin. They're the primary way for you
to edit your digital twin. Learn how to add alarms, time series data, color overlays, tags, and visual
rules to your scene to align your digital twin visualizations with your real-world use case.

This section covers the following topics:

• Before you create your first scene

• Upload resources to the AWS IoT TwinMaker Resource Library

• Create your scenes

• Add fixed cameras to entities

• Scene enhanced editing

• Edit your scenes

• 3D Tiles model format

• Dynamic scenes

Before you create your first scene

Scenes rely on resources to represent your digital twin. These resources are made up of 3D models,
data, or texture files. The size and complexity of your resources, elements in the scene such as
lighting, and your computer hardware, impact the performance of AWS IoT TwinMaker scenes.
Use the information in this topic to reduce lag, loading times, and improve the frame rate of your
scenes.

Optimize your resources before importing them into AWS IoT
TwinMaker

You can use AWS IoT TwinMaker to interact with your digital twin in real time. For the best
experience with your scenes, we recommend optimizing your resources for use in a real-time
environment.

Your 3D models can have a significant impact on performance. Complex model geometry and
meshes can reduce performance. For example, industrial CAD models have a high level of detail.
We recommend compressing these model's meshes and reducing their polygon count before using
them in AWS IoT TwinMaker scenes. If you're creating new 3D models for AWS IoT TwinMaker,

Before creating scenes 116

AWS IoT TwinMaker User Guide

you should establish a level of detail and maintain it across all your models. Remove details from
models that don’t affect the visualization or interpretation of your use case..

To compress models and reduce the file size, use open source mesh compression tools, such as
DRACO 3D data compression.

Unoptimized textures can also impact performance. If you don’t require any transparency in your
textures, considering choosing the PEG image format over the PNG format. You can compress
your texture files by using open source texture compression tools, such as Basis Universal texture
compression.

Best practices for performance in AWS IoT TwinMaker

For the best performance with AWS IoT TwinMaker, note the following limitations and best
practices.

• AWS IoT TwinMaker scene rendering performance is hardware dependent. Performance varies
across different computer hardware configurations.

• We recommend a total polygon count of under 1 million across all your objects in your AWS IoT
TwinMaker.

• We recommend a total of 200 objects per scene. Increasing the number of objects in a scene
beyond 200 can decrease your scene frame rate.

• We recommend the that total size of all unique 3D assets in your scene does not exceed 100
megabytes. Otherwise, you may encounter slow loading times or degraded performance
depending on your browser and hardware.

• Scenes have ambient lighting by default. You can add extra lights into a scene to bring certain
objects into focus, or cast shadows on objects. We recommend using one light per scene. Use
lights where needed, and avoid replicating real-world lights within a scene.

Learn more

Use these resources to learn more about optimization techniques that you can use to improve
performance in your scenes.

• How to convert and compress OBJ models to GLTF for use with AWS IoT TwinMaker

• Optimize your 3D models for web content

• Optimizing scenes for better WebGL performance

Best practices for performance in AWS IoT TwinMaker 117

https://google.github.io/draco/
https://www.khronos.org/blog/google-and-binomial-contribute-basis-universal-texture-format-to-khronos-gltf-3d-transmission-open-standard
https://www.khronos.org/blog/google-and-binomial-contribute-basis-universal-texture-format-to-khronos-gltf-3d-transmission-open-standard
https://aws.amazon.com/blogs/iot/how-to-convert-and-compress-obj-models-to-glb-gltf-for-use-with-aws-iot-twinmaker/
https://medium.com/@michael.andrew/6-things-you-havent-optimised-in-your-webvr-content-272d74d541f0
https://www.soft8soft.com/docs/manual/en/introduction/Optimizing-WebGL-performance.html

AWS IoT TwinMaker User Guide

Upload resources to the AWS IoT TwinMaker Resource Library

You can use the Resource Library to control and manage any resource you want to place into
scenes for your digital twin application. To make AWS IoT TwinMaker aware of the resources,
upload them using the Resource Library console page.

Upload files to the Resource Library using the console

Follow these steps to add files to the Resource Library using the AWS IoT TwinMaker console.

1. In the left navigation menu, under Workspaces, select Resource Library.

2. Select Add resources and choose the files you want to upload.

Create your scenes

In this section, you'll set up a scene so that you can edit your digital twin. You can import a 3D
model that was uploaded to the resource library, then add widgets and bind property data to
objects to complete your digital twin. Scene objects can include an entire building or space, or
individual pieces of equipment positioned in their physical location.

Note

Before you create a scene, you must create a workspace.

Uploading resources in AWS IoT TwinMaker 118

AWS IoT TwinMaker User Guide

Use the following procedure to create your scene in AWS IoT TwinMaker.

1. To open the scene pane, in the left navigation of your workspace, choose Scenes.

2. Choose Create scene. The new scene creation pane opens.

3. In the scene creation pane, enter a name and description for your new scene. If you have a
standard or tiered bundle pricing plan, you can select your scene type. It is recommended to
use a dynamic scene.

4. When you're ready to create the scene, choose Create scene. The new scene opens and is ready
for you to work with it.

Use 3D navigation in your AWS IoT TwinMaker in scenes

The AWS IoT TwinMaker scene has a set of navigation controls that you can use to navigate
efficiently through your scene's 3D space. To interact with the 3D space and objects represented by
your scene, you use the following widgets and menu options.

• Inspector: Use the Inspector window to view and edit properties and settings of a selected entity
or component in your hierarchy.

Use 3D navigation in your AWS IoT TwinMaker in scenes 119

AWS IoT TwinMaker User Guide

• Scene Canvas: The Scene Canvas is the 3D space where you can position and orient any 3D
resources you want to use.

• Scene Graph Hierarchy: You can use this panel to see all of the entities present in your scene. It
appears on the left side of the window.

• Object gizmo: Use this gizmo to move objects around the canvas. It appears at the center of a
selected 3D object in the Scene Canvas.

• Edit Camera gizmo: Use the Edit Camera gizmo to quickly view the scene view camera’s current
orientation and modify the viewing angle. You can find this gizmo in the lower-right corner of
the scene view.

• Zoom controls: To navigate on the Scene Canvas, use right click and drag in the direction you
want to move. To rotate , left click and drag to rotate. To zoom, use the scroll wheel on your
mouse, or pinch and move your fingers apart on the track pad of your laptop.

The scene buttons on the hierarchy pane have the following functions listed, in order of the
buttons' layout:

Use 3D navigation in your AWS IoT TwinMaker in scenes 120

AWS IoT TwinMaker User Guide

• Undo: Undo your last change in the scene.

• Redo: Redo your last change in the scene.

• Plus (+): Use this button to gain access to the following actions: Add empty node, Add 3D
model, Add tag, Add light, and Add model shader.

• Change navigation method: Gain access to the scene camera navigation options, Orbit and Pan.

• Trashcan (delete): Use this button to delete a selected object in your scene.

• Object manipulation tools: Use this button to translate, rotate, and scale the selected object.

Add fixed cameras to entities

You can attach fixed camera views to your entities within your AWS IoT TwinMaker scenes. These
cameras provide a fixed perspective on a 3d model, allowing you to quickly and easily shift your
perspective in a scene to a targeted entity.

1. Navigate to your scene in the AWS IoT TwinMaker console.

2. In the scene hierarchy menu, select the entity you want to attach the camera to.

3. Press the + button, and from the drop down options select Add camera from current view. To
apply a camera with the current perspective to the entity.

4. In the inspector, you can configure your camera and adjust the following settings:

• A camera Name

• The camera position and rotation

• The camera focal length

• The zoom level

• Near and Far clipping planes

5. To access your camera after you have placed it. Select the entity you added the camera to in
the hierarchy. Look for the camera name listed under the entity.

6. Once you select the placed camera from your entity, the scenes camera view will snap to the
set perspective of the placed camera.

Scene enhanced editing

AWS IoT TwinMaker scenes feature a set of tools for enhanced and editing and manipulation of
resources present in your scene.

Add fixed cameras 121

https://console.aws.amazon.com/iottwinmaker/

AWS IoT TwinMaker User Guide

The following topics teach you how to used the enhanced editing features in your AWS IoT
TwinMaker scenes.

• Targeted placement of scene objects

• Submodel selection

• Edit entities in the scene hierarchy

Targeted placement of scene objects

AWS IoT TwinMaker allows you to precisely place and add objects into your scene. This enhanced
editing feature gives you greater control of where you're placing tags, entities lights and models in
your scene.

1. Navigate to your scene in the AWS IoT TwinMaker console.

2. Press the + button, and from the drop down options select one of the options. This could be a
model, a light, a tag, or anything from the + menu.

When you move your cursor in the 3d space of your scene you should see a target around your
cursor .

3. Use the target to precisely place elements in your scene.

Submodel selection

AWS IoT TwinMaker lets you select submodels of 3d models in scenes and apply standard
properties to them, such as tags, lights, or rules.

3d model file formats contain metadata that can specify sub areas of the model as submodels
within the larger model. For example a model could be a filtration system, individual parts of the
system like tanks, pipes, or a motor are marked as submodels of the filtration's 3d model.

Supported 3D file formats in scenes: GLB, and GLTF.

1. Navigate to your scene in the AWS IoT TwinMaker console.

2. If you have no models in your scene, make sure to add one by selecting the option from the +
menu.

3. Select model listed in your scene hierarchy, once selected the hierarchy should display any
submodels beneath the model.

Targeted placement of scene objects 122

https://console.aws.amazon.com/iottwinmaker/
https://console.aws.amazon.com/iottwinmaker/

AWS IoT TwinMaker User Guide

Note

If you do not see any submodels listed then it is likely the model was not configured to
have any submodels.

4. To toggle the visibility of a submodel, press the eye icon, located to the right of the submodel's
name in the hierarchy.

5. To edit submodel data, such as its name or position, the scene inspector will open when a
submodel is selected. Use the inspector menu to update or change submodel data.

6. To add tags, lights, rules, or other properties to submodels, press the +, while the submodel is
selected in the hierarchy.

Edit entities in the scene hierarchy

AWS IoT TwinMaker scenes let you directly edit properties of entities within the hierarchy table.
The following procedure shows you which actions you can perform on an entity through the
hierarchy menu.

1. Navigate to your scene in the AWS IoT TwinMaker console.

2. Open the scene hierarchy, and select a sub element of an entity you wish to manipulate.

3. Once the element is selected, press the + button, and from the drop down select one of the
options:

• Add empty node

• Add 3D model

• Add light

• Add camera from current view

• Add tag

• Add model shader

• Add motion indicator

4. After selecting one of the options from the drop down, the selection will be applied to the
scene as child of the selected element from step 2.

5. You can reorder child elements and reparent elements, by selecting a child element and
dragging in the hierarchy to a new parent.

Edit entities in the scene hierarchy 123

https://console.aws.amazon.com/iottwinmaker/

AWS IoT TwinMaker User Guide

Add annotations to entities

The AWS IoT TwinMaker scene composer lets you annotate any element in your scene hierarchy.
The annotation is authored in markdown.

For more information on writing in Markdown, see the official documentation on markdown syntax,
Basic Syntax.

Note

AWS IoT TwinMaker annotations and overlay Markdown syntax only and not HTML.

Add an annotation to an entity

1. Navigate to your scene in the AWS IoT TwinMaker console.

2. Select an element from the scene hierarchy that you want to annotate. If no element in the
hierarchy is selected, then you can add annotation to the root.

3. Press the plus + button and choose the Add annotation option.

4. In the Inspector window on the left, scroll down to the annotation section. Using Markdown
syntax, write the text you want your annotation to display.

Add annotations to entities 124

https://www.markdownguide.org/basic-syntax/
https://console.aws.amazon.com/iottwinmaker/

AWS IoT TwinMaker User Guide

For more information on writing in Markdown, see the official documentation on markdown
syntax, Basic Syntax.

5. To bind your AWS IoT TwinMaker scene data to an annotation choose Add data binding, add
the Entity Id, then select the Component Name and Property Name of the entity you wish
to surface data from. You can update the binding name to use it as a Markdown variable, and
surface the data in the annotation.

Add annotations to entities 125

https://www.markdownguide.org/basic-syntax/

AWS IoT TwinMaker User Guide

Add annotations to entities 126

AWS IoT TwinMaker User Guide

Add annotations to entities 127

AWS IoT TwinMaker User Guide

6. The Binding Name is used to represent the annotation's variable.

Enter a Binding Name to surface the latest historical value of an entities time-series in the
annotation through AWS IoT TwinMaker's variable syntax: ${variable-name}

As an example, this overlay displays the value of the mixer0alarm, in the annotation with the
syntax ${mixer0alarm}.

Add overlays to Tags

You can create overlays for your AWS IoT TwinMaker scenes. Scene overlays are associated with
tags and can be used to surface critical data associated with your scene entities. The overlay is
authored and rendered in Markdown.

For more information on writing in Markdown, see the official documentation on markdown syntax,
Basic Syntax.

Add overlays to Tags 128

https://www.markdownguide.org/basic-syntax/

AWS IoT TwinMaker User Guide

Note

By default, an Overlay is visible in a scene only when the tag associated with it is selected.
You can toggle this in the scene Settings so that all Overlays are visible at once.

1. Navigate to your scene in the AWS IoT TwinMaker console.

2. The AWS IoT TwinMaker overlay is associated with a tag scene, you can update an existing tag
or add a new one.

Press the plus + button and choose the Add tag option.

3. In the Inspector panel on the right, select the + (plus symbol) button then select Add overlay.

Add overlays to Tags 129

https://console.aws.amazon.com/iottwinmaker/

AWS IoT TwinMaker User Guide

Add overlays to Tags 130

AWS IoT TwinMaker User Guide

4. In Markdown syntax, write the text you want your overlay to display.

For more information on writing in Markdown, see the official documentation on markdown
syntax, Basic Syntax.

5. To bind your AWS IoT TwinMaker scene data to an overlay, select Add data binding.

Add overlays to Tags 131

https://www.markdownguide.org/basic-syntax/

AWS IoT TwinMaker User Guide

Add the Binding name and Entity Id, then select the Component Name and Property Name
of the entity you wish to surface data from.

6. You can surface the latest historical value of an entities time-series data in the overlay through
AWS IoT TwinMaker's variable syntax: ${variable-name}.

As an example, this overlay displays the value of the mixer0alarm, in the overlay with the
syntax ${mixer0alarm}.

Add overlays to Tags 132

AWS IoT TwinMaker User Guide

Add overlays to Tags 133

AWS IoT TwinMaker User Guide

7. To enable Overlay visibility, open the Settings tab in the top left, and make sure the toggle for
Overlay is switched on so that all Overlays are visible at once.

Note

By default, an Overlay is visible in a scene only when the tag associated with it is
selected.

Add overlays to Tags 134

AWS IoT TwinMaker User Guide

Add overlays to Tags 135

AWS IoT TwinMaker User Guide

Edit your scenes

After you've created a scene, you can add entities, components, and configure augmented widgets
into your scene. Use entity components and widgets to model your digital twin and provide
functionality that matches your use case.

Add models to your scenes

To add models to your scene, use the following procedure.

Note

To add models in your scene, you must first upload the models to the AWS IoT TwinMaker
Resource Library. For more information, see Upload resources to the AWS IoT TwinMaker
Resource Library.

1. On the scene composer page, choose the plus (+) sign, and then choose Add 3D model.

2. On the Add resource from resource library window, choose the CookieFactorMixer.glb file,
and then choose Add. Scene composer opens.

3. Optional: Choose the plus (+) sign, and then choose Add light.

4. Choose each light option to see how they affect the scene.

Edit your scenes 136

AWS IoT TwinMaker User Guide

Note

Scenes have default ambient lighting. To avoid frame rate loss, consider limiting the
number of additional lights placed in your scene.

Add model shader augmented UI widgets to your scene

Model shader widgets can change the color of an object under conditions that you define. For
example, you can create a color widget that changes the color of a cookie mixer in your scene
based on the mixer's temperature data.

Use the following procedure to add model shader widgets to a selected object.

1. Select an object in the hierarchy that you want to add a widget to. Press the + button and then
choose Model Shader.

2. To add a new visual rule group, first follow the instructions below to create the ColorRule, then
in the Inspector panel for the object of the Rule ID, choose ColorRule.

Add widgets 137

AWS IoT TwinMaker User Guide

3. Select the entityID, ComponentName, and PropertyName you want to bind the model shader
to.

Create visual rules for your scenes

You can use visual rule maps to specify the data driven conditions that change the visual
appearance of an augmented UI widget, such as a tag or a model shader. There are sample rules
provided, but you can also create your own. The following example shows a visual rule.

Add widgets 138

AWS IoT TwinMaker User Guide

Add widgets 139

AWS IoT TwinMaker User Guide

The image above shows a rule for when a previously defined data property with ID 'temperature' is
checked against a certain value. For example, if the 'temperature' is greater than or equal to 40, the
state will change the appearance of the tag to a red circle. The target, when chosen in the Grafana
dashboard, populates a detail panel that is configured to use the same data source.

The following procedure shows you how to add a new visual rule group for the mesh colorization
augmented UI layer.

1. Under the rules tab in the console, enter a name such as ColorRule in the text field and choose
Add New Rule Group.

2. Define a new rule for your use case. For example, you can create one based on the data
property 'temperature', where the reported value is less than 20. Use the following syntax for
rule expressions: Less than is <, greater than is >, less than or equal is <=, greater than or equal
is >=, and equal is ==. (For more information, see the Apache Commons JEXL syntax.)

3. Set the target to a color. To define a color, such as #fcba03, use hex values. (For more
information about hex values, see Hexadecimal.)

Add widgets 140

https://commons.apache.org/proper/commons-jexl/reference/syntax.html
https://en.wikipedia.org/wiki/Hexadecimal

AWS IoT TwinMaker User Guide

Creating tags for your scenes

A tag is an annotation added to a specific x,y,z coordinate position of a scene. The tag uses an
entity property to connect a scene part to the knowledge graph. You can use a tag to configure the
behavior or visual appearance of an item in the scene, such as an alarm.

Note

To add functionality to tags, you apply visual rules to them.

Use the following procedure to add tags to your scene.

1. Select an object in the hierarchy, choose the + button, and then choose Add Tag.

2. Name the tag. Then, to apply a visual rule, select a visual group Id.

3. In the dropdown lists, choose the EntityID, ComponentName, and PropertyName.

4. To populate the Data Path field, choose Create DataFrameLabel.

3D Tiles model format

Using 3D Tiles in your scene

If you experience long wait times when you load 3D scenes in AWS IoT TwinMaker or have poor
rendering performance when you navigate a complex 3D model, then you may want to convert
your models to 3D tiles. This section describes the 3D tiles format and available third-party tools.
Read on to decide if 3D Tiles are right for your use case and for help getting started.

Complex model use case

A 3D model in your AWS IoT TwinMaker scene may cause performance issues like slow loading
times and lagging navigation if the model is:

• Large: its file size is larger than 100MB.

• Dense: it is made up of hundreds or thousands of distinct meshes.

• Complex: mesh geometry has millions of triangles to form complex shapes.

Adding tags 141

AWS IoT TwinMaker User Guide

3D Tiles format

The 3D Tiles format is a solution for streaming model geometry and improving 3D rendering
performance. It enables instantaneous loading of 3D models in an AWS IoT TwinMaker scene, and
optimizes 3D interactions by loading in chunks of a model based on what is visible in the camera
view.

The 3D Tiles format was created by Cesium. Cesium has a managed service to convert 3D models
to 3D Tiles called Cesium Ion. This is currently the best solution for creating 3D Tiles, and we
recommend this for your complex models in the supported formats. You can register Cesium and
choose the appropriate subscription plan based on your business requirements on Cesium's pricing
page.

To prepare a 3D Tiles model that you can add to an AWS IoT TwinMaker scene, follow the
instructions documented by Cesium Ion:

• Import a model to Cesium Ion

Upload Cesium 3D tiles to AWS

Once your model has been converted to 3D Tiles, download the model files then upload them to
your AWS IoT TwinMaker workspace Amazon S3 bucket:

1. Create and download your 3D Tiles model archive.

2. Unzip the archive into a folder.

3. Upload the entire 3D Tiles folder into the Amazon S3 bucket associated with your AWS IoT
TwinMaker workspace. (See Uploading objects in the Amazon S3 User Guide.)

4. If your 3D Tiles model was uploaded successfully, you will see an Amazon S3 folder path in
your AWS IoT TwinMaker Resource Library with type Tiles3D.

Note

The AWS IoT TwinMaker Resource Library doesn't support directly uploading 3D Tiles
models.

Using 3D Tiles in your scene 142

https://www.ogc.org/standard/3dtiles/
https://cesium.com/
https://cesium.com/platform/cesium-ion/
https://cesium.com/learn/3d-tiling/tiler-data-formats/#supported-data-formats
https://cesium.com/platform/cesium-ion/pricing/
https://cesium.com/platform/cesium-ion/pricing/
https://cesium.com/learn/3d-tiling/tiler-data-formats/
https://cesium.com/learn/ion/cesium-ion-archives-and-exports/#create-and-download-an-asset-archive
https://docs.aws.amazon.com/AmazonS3/latest/userguide/upload-objects.html

AWS IoT TwinMaker User Guide

Using 3D Tiles in AWS IoT TwinMaker

AWS IoT TwinMaker is aware of any 3D Tiles model uploaded to your workspace S3 bucket. The
model must have a tileset.json and all dependent files (.gltf, .b3dm, .i3dm, .cmpt, .pnts)
available in the same Amazon S3 directory. The Amazon S3 directory path will appear in the
Resource Library with the type Tiles3D.

To add the 3D Tiles model to your scene, follow these steps:

1. On the scene composer page, choose the plus (+) sign, and then choose Add 3D model.

2. On the Add resource from resource library window, choose the path to your 3D Tiles model
with the type Tiles3D, and then choose Add.

3. Click on the canvas to place the model in your scene.

3D Tiles differences

3D Tiles does not currently support geometric and semantic metadata, which means that the mesh
hierarchy of the original model is not available for the sub-model selection feature. You can still
add widgets to your 3D Tiles model, but you cannot use features fine-tuned to sub-models: model
shader, separated 3D transformations, or entity binding for a sub-model mesh.

It is recommended to use the 3D Tiles conversion for large assets that serve as context for the
background of a scene. If you want a sub-model to be further broken down and annotated then it
should be extracted as a separate glTF/glb asset and added directly to the scene. This can be done
with free and common 3D tools like Blender.

Example use case:

• You have a 1GB model of a factory with detailed machine rooms and floors, electrical boxes, and
plumbing pipes. The electrical boxes and pipes need to glow red when associated property data
cross a threshold.

• You isolate the box and pipe meshes in the model and export it into a separate glTF using
Blender.

• You convert the factory without electrical and plumbing elements into a 3D Tiles model and
upload it to S3.

• You add both the 3D Tiles model and glTF model to an AWS IoT TwinMaker scene at the origin
(0,0,0).

Using 3D Tiles in your scene 143

https://www.blender.org/

AWS IoT TwinMaker User Guide

• You add model shader components to the electrical box and pipe sub-models of the glTF to
make the meshes red based on property rules.

Dynamic scenes

AWS IoT TwinMaker scenes unlock the power of the knowledge graph by storing scene nodes and
settings in an entity component. Use the AWS IoT TwinMaker console to create dynamic scenes to
more easily manage, build, and render 3D scenes.

Key features:

• All 3D scene node objects, settings, and data bindings are rendered "dynamically" based on
knowledge graph queries.

• If you use the read-only Scene Viewer in a Grafana or custom application, you can get updates to
your scenes on a 30 second interval.

Static versus dynamic scenes

Static scenes are composed of a scene JSON file stored in S3 that has details of all scene nodes
and settings. Any change to the scene must be made to the JSON document and saved to S3. A
static scene is the only option if you have a basic pricing plan.

Dynamic scenes are composed of a scene JSON file that has global settings for the scene, while
all other scene nodes and node settings are stored as entity components in the knowledge graph.
Dynamic scenes are only supported in standard and tiered bundle pricing plans. See Switch AWS
IoT TwinMaker pricing modes for information on how to upgrade your pricing plan).

You can convert an existing static scene to a dynamic scene by following these steps:

• Navigate to your scene in the AWS IoT TwinMaker console.

• On the left hand panel, click the Settings tab.

• Expand the Convert scene section at the bottom of the panel.

• Click the Convert scene button, then click Confirm.

Dynamic scenes 144

https://aws.amazon.com/iot-twinmaker/pricing/
https://console.aws.amazon.com/iottwinmaker/

AWS IoT TwinMaker User Guide

Warning

The conversion from a static to dynamic scene is irreversible.

Scene component types and entities

In order to create scene-specific entity components, the following 1P component types are
supported:

• com.amazon.iottwinmaker.3d.component.camera A component type that stores the settings of
a camera widget.

• com.amazon.iottwinmaker.3d.component.dataoverlay A component type that stores the
settings for an overlay of an annotation or tag widget.

• com.amazon.iottwinmaker.3d.component.light A component type that stores the settings of a
light widget.

• com.amazon.iottwinmaker.3d.component.modelref A component type that stores the settings
and S3 location of a 3D model used in a scene.

• com.amazon.iottwinmaker.3d.component.modelshader A component type that stores the
settings of a model shader on a 3D model.

Scene component types and entities 145

AWS IoT TwinMaker User Guide

• com.amazon.iottwinmaker.3d.component.motionindicator A component type that stores the
settings of a motion indicator widget.

• com.amazon.iottwinmaker.3d.component.submodelref A component type that stores the
settings of a submodel of a 3D model.

• com.amazon.iottwinmaker.3d.component.tag A component type that stores the settings of a
tag widget.

• com.amazon.iottwinmaker.3d.node A component type that stores the basic settings of a scene
node like its 3D transform, name, and generic properties.

Dynamic scene concepts

Dynamic scene entities are stored under a global entity labelled $SCENES. Each scene is made up
of a root entity and a hierarchy of children entities that match the scene node hierarchy. Each scene
node under the root has a com.amazon.iottwinmaker.3d.node component and a component for
the type of node (3D model, widget, and so on).

Warning

Do not manually delete any scene entities or your scene may be in a broken state. If you
want to partially or fully delete a scene, use the scene composer page to add and delete
scene nodes, and use the scenes page to select and delete a scene.

Dynamic scene concepts 146

AWS IoT TwinMaker User Guide

Create a customized web application using AWS IoT
TwinMaker UI Components

AWS IoT TwinMaker provides open-source UI components for AWS IoT Application developers.
Using those UI components, developers can build customized web applications with AWS IoT
TwinMaker feature enabled for their digital twins.

AWS IoT TwinMaker UI components are part of the AWS IoT Application Kit, an open-source, client-
side library that enables IoT application developers to simplify the development of complex IoT
applications

AWS IoT TwinMaker UI components include:

• AWS IoT TwinMaker source:

A data connector component that enables you to retrieve data and interact with your AWS IoT
TwinMaker data and digital twins.

For more information, see AWS IoT TwinMaker source documentation.

• Scene viewer:

A 3D rendering component built over @react-three/fiber that renders your digital twin and
enables you to interact with it.

For more information, see Scene Viewer documentation.

• Video player:

A video player component that allows you to stream a video from the Kinesis Video Streams
through AWS IoT TwinMaker.

For more information, see Video Player documentation.

To learn more about using AWS IoT Application Kit, please visit AWS IoT Application Kit Github
page.

For instructions on how to start a new web application using AWS IoT Application Kit, please visit
the official IoT App Kit documentation page.

147

https://awslabs.github.io/iot-app-kit/?path=/docs/data-sources-aws-iot-twinmaker--docs
https://awslabs.github.io/iot-app-kit/?path=/docs/components-sceneviewer--docs
https://awslabs.github.io/iot-app-kit/?path=/docs/components-videoplayer--docs
https://github.com/awslabs/iot-app-kit
https://awslabs.github.io/iot-app-kit/?path=/docs/introduction--docs

AWS IoT TwinMaker User Guide

Switch AWS IoT TwinMaker pricing modes

AWS IoT TwinMaker currently has three pricing modes, basic, standard or tiered bundle. Standard
pricing mode is set as the default pricing mode.

You can switch from the usage-based to the tiered-based pricing mode at any time, but the change
takes effect at the beginning of your next billing cycle. Once you have switched from usage-based
to the tiered-based pricing mode, you cannot switch back to the usage-based pricing mode for the
next three usage cycles. If you switch from basic to standard, the change is effective immediately.
For details and cost information, see AWS IoT TwinMaker Pricing

This procedure shows you how to switch your pricing mode in the AWS IoT TwinMaker console:

1. Open the AWS IoT TwinMaker console.

2. In the left navigation pane, select Settings. The Pricing page opens.

3. Choose Change price mode.

4. Select either the Standard or Tiered bundle modes, as shown in the following screenshot.

148

https://aws.amazon.com/iot-twinmaker/pricing/
https://console.aws.amazon.com/iottwinmaker/
https://console.aws.amazon.com/iottwinmaker/

AWS IoT TwinMaker User Guide

5. Choose Save to confirm your new pricing mode.

6. You have now changed your pricing mode.

Note

You can switch from the usage-based to the tiered-based pricing mode at any time,
but the change takes effect at the beginning of your next billing cycle. Once you have
switched from usage-based to the tiered-based pricing mode, you cannot switch back
to the usage-based pricing mode for the next three usage cycles. If you switch from
basic to standard, the change is effective immediately.

149

AWS IoT TwinMaker User Guide

AWS IoT TwinMaker knowledge graph

The AWS IoT TwinMaker knowledge graph organizes all the information contained within your AWS
IoT TwinMaker workspaces and presents it in a visual graph format. You can run queries against
your entities, components, and component types to generate visual graphs that show you the
relationships between your AWS IoT TwinMaker resources.

The following topics show you how to use and integrate the knowledge graph.

Topics

• AWS IoT TwinMaker knowledge graph core concepts

• How to Run AWS IoT TwinMaker knowledge graph queries

• Knowledge graph scene integration

• How to use AWS IoT TwinMaker knowledge graph with Grafana

• AWS IoT TwinMaker knowledge graph additional resources

AWS IoT TwinMaker knowledge graph core concepts

This topic covers the key concepts and vocabulary of the knowledge graph feature.

How knowledge graph works:

Knowledge graph creates relationships between entities and their components with the existing
CreateEntity or UpdateEntity APIs. A relationship is just a property of a special data type
RELATIONSHIP that is defined on a component of an entity. AWS IoT TwinMaker knowledge
graph calls the ExecuteQuery API to make a query based on any data in the entities or the
relationships between them. Knowledge graph uses the flexible PartiQL query language (used
by many AWS services) that has newly added graph match syntax support to help you write
your queries. After the calls are made, you can view the results as a table or visualize them as a
graph of connected nodes and edges.

Knowledge graph key terms:

• Entity graph: A collection of nodes and edges within a workspace.

• Node: Every entity in your workspace becomes a node in the entity graph.

• Edge: Every relationship property defined on a component of an entity becomes an edge
in the entity graph. In addition, a hierarchical parent-child relationship defined using the

AWS IoT TwinMaker knowledge graph core concepts 150

https://docs.aws.amazon.com/iot-twinmaker/latest/apireference/API_CreateEntity.html
https://docs.aws.amazon.com/iot-twinmaker/latest/apireference/API_UpdateEntity.html
https://docs.aws.amazon.com/iot-twinmaker/latest/apireference/API_DataType.html#:~:text=Valid%20Values%3A-,RELATIONSHIP,-%7C%20STRING%20%7C%20LONG%20%7C%20BOOLEAN
https://docs.aws.amazon.com/iot-twinmaker/latest/apireference/API_DataType.html#:~:text=Valid%20Values%3A-,RELATIONSHIP,-%7C%20STRING%20%7C%20LONG%20%7C%20BOOLEAN
https://docs.aws.amazon.com/iot-twinmaker/latest/apireference/API_ExecuteQuery.html

AWS IoT TwinMaker User Guide

parentEntityId field of an entity also becomes an edge in the entity graph with an "isChildOf"
relationship name. All edges are directional edges.

• Relationship: An AWS IoT TwinMaker Relationship is a special type of property of an Entity’s
component. You can use the AWS IoT TwinMaker CreateEntity or UpdateEntity API to define
and edit a relationship. In AWS IoT TwinMaker, a relationship must be defined in a component
of an entity. A relationship cannot be defined as an isolated resource. A relationship must be
directional from one entity to another.

How to Run AWS IoT TwinMaker knowledge graph queries

Before you use the AWS IoT TwinMaker knowledge graph, make sure you have completed the
following prerequisites:

• Create an AWS IoT TwinMaker workspace. You can create a workspace in the AWS IoT TwinMaker
console.

• Become familiar with AWS IoT TwinMaker's entity-component system and how to create entities.
For more information, see Create your first entity.

• Become familiar with AWS IoT TwinMaker's data connectors. For more information, see AWS IoT
TwinMaker data connectors.

Note

In order to use the AWS IoT TwinMaker knowledge graph, you need to be in either the
standard or tiered bundle pricing modes. For more information, see Switch AWS IoT
TwinMaker pricing modes.

The following procedures show you how to write, run, save, and edit queries.

Open the query editor

To navigate to the knowledge graph query editor

1. Open the AWS IoT TwinMaker console.

2. Open the workspace in which you wish to use knowledge graph.

3. In the left navigation menu, choose Query editor.

Using knowledge graph 151

https://docs.aws.amazon.com/iot-twinmaker/latest/apireference/API_CreateEntity.html
https://docs.aws.amazon.com/iot-twinmaker/latest/apireference/API_UpdateEntity.html
https://console.aws.amazon.com/iottwinmaker/
https://console.aws.amazon.com/iottwinmaker/
https://console.aws.amazon.com/iottwinmaker/

AWS IoT TwinMaker User Guide

4. The query editor opens. You are now ready to run queries on your workspace's resources.

Run a query

To run a query and generate a graph

1. In the query editor, choose the Editor tab to open the syntax editor.

2. In the editor space, write the query you wish to run against your workspace's resources.

In the example shown, the request searches for entities that contain vav_% in their name,
then organizes these entities by the feed relationship between them, using the following
code.

SELECT ahu, vav, r FROM EntityGraph
MATCH (vav)<-[r:feed]-(ahu)
WHERE vav.entityName LIKE 'vav_%'

Note

The knowledge graph syntax uses PartiQL. For information on this syntax, see AWS
IoT TwinMaker knowledge graph additional resources.

3. Choose Run query to run the request you created.

A graph is generated based on your request.

Using knowledge graph 152

https://partiql.org/

AWS IoT TwinMaker User Guide

The example graph shown above is based on the query example in step 2.

4. The results of the query are also presented in a list. Choose results to view the query
results in a list.

5. Optionally, choose Export as to export the query results in JSON or CSV format.

This covers the basic use of knowledge graph in the console. For more information and examples
demonstrating the knowledge graph syntax, see AWS IoT TwinMaker knowledge graph additional
resources.

Knowledge graph scene integration

You can use AWS IoT app kit components to build a web application that integrates knowledge
graph into your AWS IoT TwinMaker scenes. This allows you to generate graphs based on the 3D
nodes (the 3D models which represent your equipment or systems) that are present within your
scene. To create an application that graphs 3D nodes from your scene, first bind the 3D nodes

Generate a scene graph 153

AWS IoT TwinMaker User Guide

to entities in your workspace. With this mapping, AWS IoT TwinMaker graphs the relationships
between the 3D models present in your scene and the entities in your workspace. Then you can
create a web application, select 3D models with your scene, and explore their relationships to other
entities in a graph format.

For an example of a working web application that utilizes the AWS IoT app kit components to
generate graphs in an AWS IoT TwinMaker scene, see the AWS IoT TwinMaker sample react app on
github.

AWS IoT TwinMaker scene graph prerequisites

Before you create a web app that uses AWS IoT TwinMaker knowledge graph in your scenes,
complete the following prerequisites:

• Create an AWS IoT TwinMaker workspace. You can create a workspace in the AWS IoT TwinMaker
console.

• Become familiar with AWS IoT TwinMaker's entity-component system and how to create entities.
For more information, see Create your first entity.

• Create an AWS IoT TwinMaker scene populated with 3D models.

• Become familiar with AWS IoT TwinMaker's AWS IoT app kit components. For more information
on the AWS IoT TwinMaker components, see Create a customized web application using AWS IoT
TwinMaker UI Components.

AWS IoT TwinMaker scene graph prerequisites 154

https://github.com/awslabs/iot-app-kit/blob/3DKG_Demo/examples/react-app/src/components/index.tsx
https://console.aws.amazon.com/iottwinmaker/
https://console.aws.amazon.com/iottwinmaker/

AWS IoT TwinMaker User Guide

• Become fimalliar with knowledge graph concepts and key terminology. See AWS IoT TwinMaker
knowledge graph core concepts.

Note

To use the AWS IoT TwinMaker knowledge graph and any related features, you need to be
in either the standard or tiered bundle pricing modes. For more information on AWS IoT
TwinMaker pricing, see Switch AWS IoT TwinMaker pricing modes.

Bind 3D nodes in your scene

Before you create a web app that integrates knowledge graph with your scene, bind the 3D models,
referred to as 3D nodes, that are present in your scene to the associated workspace entity. For
example, if you have a model of mixer equipment in a scene, and a corresponding entity called
mixer_0, create a data binding between the model of the mixer and the entity representing the
mixer– so that the model and entity can be graphed.

To perform a data binding action

1. Log in to the AWS IoT TwinMaker console.

2. Open your workspace and select a scene with the 3D nodes you wish to bind.

3. Select a node (3D model) in the scene composer. When you select a node, it will open an
inspector panel on the right side of the screen.

4. In the inspector panel, navigate to the top of the panel and select the + button. Then choose
the Add entity binding option. This will open a drop-down where you can select an entity to
bind to your currently selected node.

Bind 3D nodes in your scene 155

https://console.aws.amazon.com/iottwinmaker/

AWS IoT TwinMaker User Guide

5. From the data binding drop-down menu, select the entity id you want to map to the 3D
model. For the Component name and Property name fields, select the components and
properties you want to bind.

Bind 3D nodes in your scene 156

AWS IoT TwinMaker User Guide

Once you have made selections for the Entity Id, Component Name and Property Name
fields, the binding is complete.

6. Repeat this process for all models and entities you want to graph.

Note

The same data binding operation can be performed on your scene tags, simply select a
tag instead of an entity and follow the same process to bind the tag to a node.

Create a web application

After you bind your entities, use the AWS IoT app kit library to build a web app with a knowledge
graph widget that lets you view your scene and explore the relationships between your scene
nodes and entities.

Create a web application 157

AWS IoT TwinMaker User Guide

Use the following resources to create your own app:

• The AWS IoT TwinMaker sample react app github Readme documentation.

• The AWS IoT TwinMaker sample react app source on github.

• The AWS IoT app kit Getting started documentation.

• The AWS IoT app kit Video Player component documentation.

• The AWS IoT app kit Scene Viewer component documentation.

The following procedure demonstrates the functionality of the scene viewer component in a web
app.

Note

This procedure is based on the implementation of the AWS IoT app kit scene viewer
component in the AWS IoT TwinMaker sample react app.

1. Open the scene viewer component of the AWS IoT TwinMaker sample react app. In the search
field type an entity name or partial entity name (case sensitive search) then select the Search
button. If a model is bound to the entity id, then the model in the scene will be highlighted
and a node of the entity will be shown in the scene viewer panel.

Create a web application 158

https://github.com/awslabs/iot-app-kit/blob/3DKG_Demo/examples/react-app/README.md
https://github.com/awslabs/iot-app-kit/blob/3DKG_Demo/examples/react-app/src/components/index.tsx
https://awslabs.github.io/iot-app-kit/?path=/docs/overview-getting-started--docs
https://awslabs.github.io/iot-app-kit/?path=/docs/components-videoplayer--docs
https://awslabs.github.io/iot-app-kit/?path=/docs/components-sceneviewer--docs

AWS IoT TwinMaker User Guide

2. To generate a graph of all relationships, select a node in the scene viewer widget and select
the Explore button.

3. Press the Clear button to clear your current graph selection and start over.

How to use AWS IoT TwinMaker knowledge graph with Grafana

This section shows you how to add a query editor panel to your AWS IoT TwinMaker Grafana
dashboard to run and display queries.

AWS IoT TwinMaker query editor prerequisites

Before you use the AWS IoT TwinMaker knowledge graph in Grafana, complete the following
prerequisites:

• Create an AWS IoT TwinMaker workspace. You can create a workspace in the AWS IoT TwinMaker
console.

• Configure AWS IoT TwinMaker for use with Grafana. For instructions, see AWS IoT TwinMaker
Grafana dashboard integration.

Knowledge graph Grafana panel 159

https://console.aws.amazon.com/iottwinmaker/
https://console.aws.amazon.com/iottwinmaker/

AWS IoT TwinMaker User Guide

Note

To use the AWS IoT TwinMaker knowledge graph, you need to be in either the standard or
tiered bundle pricing modes. For more information, see Switch AWS IoT TwinMaker pricing
modes.

AWS IoT TwinMaker query editor permissions

To use the AWS IoT TwinMaker query editor in Grafana, you must have an IAM role with permission
for the action iottwinmaker:ExecuteQuery. Add that permission to your workspace dashboard
role, as shown in this example:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "s3:GetObject"
],
 "Resource": [
 "{s3Arn}",
 "{s3Arn}/"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "iottwinmaker:Get",
 "iottwinmaker:List",
 "iottwinmaker:ExecuteQuery"
],
 "Resource": [
 "{workspaceArn}",
 "{workspaceArn}/*"
]
 },
 {
 "Effect": "Allow",
 "Action": "iottwinmaker:ListWorkspaces",
 "Resource": "*"

Knowledge graph Grafana permissions 160

AWS IoT TwinMaker User Guide

 }
]
}

Note

When you configure your AWS IoT TwinMaker Grafana data source, make sure to use the
role with this permission for the Assume role ARN field. After you add it, you can select
your workspace from the dropdown next to Workspace.

For more information, see Creating a dashboard IAM role.

Set up the AWS IoT TwinMaker query editor panel

To set up a new Grafana dashboard panel for knowledge graph

1. Open your AWS IoT TwinMaker Grafana dashboard.

2. Create a new dashboard panel. For detailed steps on how to create a panel, see Create a
dashboard in the Grafana documentation.

3. From the list of visualizations, select AWS IoT TwinMaker Query Editor.

Knowledge graph Grafana permissions 161

https://grafana.com/docs/grafana/latest/dashboards/build-dashboards/create-dashboard/
https://grafana.com/docs/grafana/latest/dashboards/build-dashboards/create-dashboard/

AWS IoT TwinMaker User Guide

4. Select the data source to run queries against.

5. (Optional) Add a name for the new panel in the provided field.

6. Select Apply to save and confirm your new panel.

Knowledge graph Grafana permissions 162

AWS IoT TwinMaker User Guide

The knowledge graph panel works in a similar way as the query editor provided in the AWS
IoT TwinMaker console. You can run, write, and clear queries you make in the panel. For more
information on how to write queries, see AWS IoT TwinMaker knowledge graph additional
resources.

How to use the AWS IoT TwinMaker query editor

The results of your queries are displayed in three ways, as shown in the following images: visualized
in a graph, listed in a table, or presented as a run summary.

• Graph visualization:

The visual graph only displays data for queries that have at least one relation in the result. The
graph displays entities as nodes and relationships as directed edges in the graph.

• Tabular data:

Knowledge graph Grafana permissions 163

AWS IoT TwinMaker User Guide

The tabular data format displays the data for all queries. You can search the table for specific
results or subsets of the results. The data can be exported in JSON or CSV format.

• Run summary

The run summary displays the query and metadata about the status of the query.

AWS IoT TwinMaker knowledge graph additional resources

This section provides basic examples of the PartiQL syntax used to write queries in the knowledge
graph, as well as links to PartiQL documentation that provide information on the knowledge graph
data model.

Knowledge graph additional resources 164

AWS IoT TwinMaker User Guide

• PartiQL graph data model documentation

• PartiQL graph query documentation

This set of examples shows basic queries with their responses. Use this as a reference to write your
own queries.

Basic queries

• Get all entities with a filter

SELECT entity
FROM EntityGraph MATCH (entity)
WHERE entity.entityName = 'room_0'

This query returns all the entities in a workspace with the name room_0.

FROM clause: EntityGraph is the graph collection that contains all the entities and their
relationships in a workspace. This collection is automatically created and managed by AWS
IoT TwinMaker based on the entities in your workspace.

MATCH clause: specifies a pattern that matches a portion of the graph. In this case, the
pattern (entity) matches every node in the graph and is bound to the entity variable. The
FROM clause must be followed by the MATCH clause.

WHERE clause: specifies a filter on the entityName field of the node, where the value must
match room_0.

SELECT clause: specifies the entity variable so the whole entity node is returned.

Response:

{
 "columnDescriptions": [
 {
 "name": "entity",
 "type": "NODE"
 }
],
 "rows": [
 {
 "rowData": [

Knowledge graph additional resources 165

https://partiql.org/gpml/graph_model.html
https://partiql.org/gpml/graph_query.html

AWS IoT TwinMaker User Guide

 {
 "arn": "arn:aws:iottwinmaker:us-east-1: 577476956029: workspace /
 SmartBuilding8292022 / entity / room_18f3ef90 - 7197 - 53 d1 - abab -
 db9c9ad02781 ",
 "creationDate": 1661811123914,
 "entityId": "room_18f3ef90-7197-53d1-abab-db9c9ad02781",
 "entityName": "room_0",
 "lastUpdateDate": 1661811125072,
 "workspaceId": "SmartBuilding8292022",
 "description": "",
 "components": [
 {
 "componentName": "RoomComponent",
 "componentTypeId": "com.example.query.construction.room",
 "properties": [
 {
 "propertyName": "roomFunction",
 "propertyValue": "meeting"
 },
 {
 "propertyName": "roomNumber",
 "propertyValue": 0
 }
]
 }
]
 }
]
 }
]
}

The columnDescriptions returns metadata about the column, such as the name and type.
The type returned is NODE. This indicates that the whole node has been returned. Other
values for the type can be EDGE which would indicate a relationship or VALUE which would
indicate a scalar value such as an integer or string.

The rows returns a list of rows. As only one entity was matched, one rowData is returned
which contains all the fields in an entity.

Knowledge graph additional resources 166

AWS IoT TwinMaker User Guide

Note

Unlike SQL where you can only return scalar values, you can return an object (as
JSON) using PartiQL.

Each node contains all the entity-level fields such as entityId, arn and components,
component-level fields such as componentName, componentTypeId and properties as
well as property-level fields such as propertyName and propertyValue, all as a nested
JSON.

• Get all relationships with a filter:

SELECT relationship
FROM EntityGraph MATCH (e1)-[relationship]->(e2)
WHERE relationship.relationshipName = 'isLocationOf'

This query returns all the relationships in a workspace with relationship name
isLocationOf.

The MATCH clause: specifies a pattern that matches two nodes (indicated by ()) that
are connected by a directed edge (indicated by -[]->) and bound to a variable called
relationship.

The WHERE clause: specifies a filter on the relationshipName field of the edge, where the
value is isLocationOf.

The SELECT clause: specifies the relationship variable so the whole edge node is returned.

Response

{
 "columnDescriptions": [{
 "name": "relationship",
 "type": "EDGE"
 }],
 "rows": [{
 "rowData": [{
 "relationshipName": "isLocationOf",
 "sourceEntityId": "floor_83faea7a-ea3b-56b7-8e22-562f0cf90c5a",

Knowledge graph additional resources 167

AWS IoT TwinMaker User Guide

 "targetEntityId": "building_4ec7f9e9-e67e-543f-9d1b- 235df7e3f6a8",
 "sourceComponentName": "FloorComponent",
 "sourceComponentTypeId": "com.example.query.construction.floor"
 }]
 },
 ... //rest of the rows are omitted
]
}

The type of the column in columnDescriptions is an EDGE.

Each rowData represents an edge with fields like relationshipName. This is the
same as the relationship property name defined on the entity. The sourceEntityId,
sourceComponentName and sourceComponentTypeId give information about which
entity and component the relationship property was defined on. The targetEntityId
specifies which entity this relationship is pointing towards.

• Get all entities with a specific relationship to a specific entity

SELECT e2.entityName
 FROM EntityGraph MATCH (e1)-[r]->(e2)
 WHERE relationship.relationshipName = 'isLocationOf'
 AND e1.entityName = 'room_0'

This query returns all the entity names of all entities that have an isLocationOf
relationship with the room_0 entity.

The MATCH clause: specifies a pattern that matches any two nodes (e1, e2) that have a
directed edge (r).

The WHERE clause: specifies a filter on the relationship name and source entity’s name.

The SELECT clause: returns the entityName field in the e2 node.

Response

{
 "columnDescriptions": [
 {
 "name": "entityName",
 "type": "VALUE"
 }

Knowledge graph additional resources 168

AWS IoT TwinMaker User Guide

],
 "rows": [
 {
 "rowData": [
 "floor_0"
]
 }
]
}

In the columnDescriptions, the type of the column is VALUE since entityName is a string.

One entity, floor_0, is returned.

MATCH

The following patterns are supported in a MATCH clause:

• Match node 'b' pointing to node 'a':

FROM EntityGraph MATCH (a)-[rel]-(b)

• Match node 'a' pointing to node 'b':

FROM EntityGraph MATCH (a)-[]->(b)

There is no variable bound to a relationship assuming a filter doesn’t need to be specified on
the relationship.

• Match node 'a' pointing to node 'b' and node 'b' pointing to node 'a':

FROM EntityGraph MATCH (a)-[rel]-(b)

This will return two matches: one from 'a' to 'b' and another from 'b' to 'a', so the
recommendation is to use directed edges wherever possible.

• The relationship name is also a label of the property graph EntityGraph, so you can
simply specify the relationship name following a colon (:) instead of specifying a filter on
rel.relationshipName in the WHERE clause.

FROM EntityGraph MATCH (a)-[:isLocationOf]-(b)

• Chaining: patterns can be chained to match on multiple relationships.

Knowledge graph additional resources 169

AWS IoT TwinMaker User Guide

FROM EntityGraph MATCH (a)-[rel1]->(b)-[rel2]-(c)

• Variable hop patterns can span multiple nodes and edges as well:

FROM EntityGraph MATCH (a)-[]->{1,5}(b)

This query matches any pattern with outgoing edges from node 'a' within 1 to 5 hops. The
allowed quantifiers are:

{m,n} - between m and n repetitions

{m,} - m or more repetitions.

FROM:

An entity node can contain nested data, such as components which themselves contain further
nested data such as properties. These can be accessed by unnesting the result of the MATCH
pattern.

SELECT e
FROM EntityGraph MATCH (e), e.components AS c, c.properties AS p
WHERE c.componentTypeId = 'com.example.query.construction.room',
AND p.propertyName = 'roomFunction'
AND p.propertyValue = 'meeting'

Access nested fields by dotting . into a variable. A comma (,) is used to unnest (or join)
entities with the components inside and then the properties inside those components.
AS is used to bind a variable to the unnested variables so that they can be used in
the WHERE or SELECT clauses. This query returns all entities that contains a property
named roomFunction with value meeting in a component with component type id
com.example.query.construction.room

To access multiple nested fields of a field such as multiple components in an entity, use the
comma notation to do a join.

SELECT e
FROM EntityGraph MATCH (e), e.components AS c1, e.components AS c2

SELECT:

• Return a node:

Knowledge graph additional resources 170

AWS IoT TwinMaker User Guide

SELECT e
FROM EntityGraph MATCH (e)

• Return an edge:

SELECT r
FROM EntityGraph MATCH (e1)-[r]->(e2)

• Return a scalar value:

SELECT floor.entityName, room.description, p.propertyValue AS roomfunction
FROM EntityGraph MATCH (floor)-[:isLocationOf]-(room),
room.components AS c, c.properties AS p

Format the name of the output field by aliasing it using AS. Here, instead of propertyValue
as column name in the response, roomfunction is returned.

• Return aliases:

SELECT floor.entityName AS floorName, luminaire.entityName as luminaireName
FROM EntityGraph MATCH (floor)-[:isLocationOf]-(room)-[:hasPart]-
(lightingZone)-[:feed]-(luminaire)
WHERE floor.entityName = 'floor_0'
AND luminaire.entityName like 'lumin%'

Using aliases is highly recommended to be explicit, increase readability, and avoid any
ambiguities in your queries.

WHERE:

• The supported logical operators are AND, NOT, and OR.

• The supported comparison operators are <, <=, >, =>,=, and !=.

• Use the IN keyword if you want to specify multiple OR conditions on the same field.

• Filter on an entity, component or property field:

FROM EntityGraph MATCH (e), e.components AS c, c.properties AS p
WHERE e.entityName = 'room_0'
AND c.componentTypeId = 'com.example.query.construction.room',
AND p.propertyName = 'roomFunction'
AND NOT p.propertyValue = 'meeting'

Knowledge graph additional resources 171

AWS IoT TwinMaker User Guide

OR p.propertyValue = 'office'

• Filter on the configuration property. Here unit is the key in the configuration map and
Celsius is the value.

WHERE p.definition.configuration.unit = 'Celsius'

• Check if a map property contains a given key and value:

WHERE p.propertyValue.length = 20.0

• Check if a map property contains a given key:

WHERE NOT p.propertyValue.length IS MISSING

• Check if a list property contains a given value:

WHERE 10.0 IN p.propertyValue

• Use the lower() function for case insensitive comparisons. By default, all comparisons are
case sensitive.

WHERE lower(p.propertyValue) = 'meeting'

LIKE:

Useful if you do not know the exact value for a field and can perform full text search on the
specified field. % represents zero or more.

WHERE e.entityName LIKE '%room%'

• Infix search: %room%

• Prefix search: room%

• Suffix search: %room

• If you have '%' in your values, then put an escape character in the LIKE and specify the
escape character with ESCAPE.

WHERE e.entityName LIKE 'room\%' ESCAPE '\'

Knowledge graph additional resources 172

AWS IoT TwinMaker User Guide

DISTINCT:

SELECT DISTINCT c.componentTypeId
FROM EntityGraph MATCH (e), e.components AS c

• The DISTINCT keyword eliminates duplicates from the final result.

DISTINCT is not supported on complex data types.

COUNT

SELECT COUNT(e), COUNT(c.componentTypeId)
FROM EntityGraph MATCH (e), e.components AS c

• The COUNT keyword computes the number of items in a query result.

• COUNT is not supported on nested complex fields and graph pattern fields.

• COUNT aggregation is not supported with DISTINCT and nested queries.

For example, COUNT(DISTINCT e.entityId) is not supported.

PATH

The following pattern projections are supported in querying using path projection:

• Variable hop queries

SELECT p FROM EntityGraph MATCH p = (a)-[]->{1, 3}(b)

This query matches and projects nodes metadata of any patterns with outgoing edges from
node a within 1 to 3 hops.

• Fixed hop queries

SELECT p FROM EntityGraph MATCH p = (a)-[]->(b)<-[]-(c)

This query matches and projects metadata of entities and incoming edges to b.

• Undirected queries

SELECT p FROM EntityGraph MATCH p = (a)-[]-(b)-[]-(c)

Knowledge graph additional resources 173

AWS IoT TwinMaker User Guide

This query matches and projects the metadata of nodes in 1 hop patterns connecting a and c
via b.

{
 "columnDescriptions": [
 {
 "name": "path",
 "type": "PATH"
 }
],
 "rows": [
 {
 "rowData": [
 {
 "path": [
 {
 "entityId": "a",
 "entityName": "a"
 },
 {
 "relationshipName": "a-to-b-relation",
 "sourceEntityId": "a",
 "targetEntityId": "b"
 },
 {
 "entityId": "b",
 "entityName": "b"
 }
]
 }
]
 },
 {
 "rowData": [
 {
 "path": [
 {
 "entityId": "b",
 "entityName": "b"
 },
 {
 "relationshipName": "b-to-c-relation",

Knowledge graph additional resources 174

AWS IoT TwinMaker User Guide

 "sourceEntityId": "b",
 "targetEntityId": "c"
 },
 {
 "entityId": "c",
 "entityName": "c"
 }
]
 }
]
 }
]
}

This PATH query response comprises of only metadata that identifies all the nodes and edges
of each path/pattern between a and c via b.

LIMIT and OFFSET:

SELECT e.entityName
FROM EntityGraph MATCH (e)
WHERE e.entityName LIKE 'room_%'
LIMIT 10
OFFSET 5

LIMIT specifies the number of results to be returned in the query, and OFFSET specifies the
number of results to skip.

LIMIT and maxResults:

The following example shows a query that returns 500 results in total, but only displays 50 at
a time per API call. This pattern can be used where you need to limit the amount of displayed
results, for example if you are only able to display 50 results in a UI.

aws iottwinmaker execute-query \
--workspace-id exampleWorkspace \
--query-statement "SELECT e FROM EntityGraph MATCH (e) LIMIT 500"\
--max-results 50

• The LIMIT keyword affects the query and limits the resulting rows. If you need to control the
number of results returned per API call without limiting the total number of returned results,
use LIMIT.

Knowledge graph additional resources 175

AWS IoT TwinMaker User Guide

• max-results is an optional parameter for the ExecuteQuery API action. max-results only
applies to the API and how results are read within the bounds of the above query.

Using max-results in a query allows you to reduce the number of displayed results without
limiting the actual number of returned results.

The query below iterates through the next page of results. This query uses the ExecuteQuery
API call to return rows 51-100, where the next page of results is specified by the next-token–
in this case the token is: "H7kyGmvK376L".

aws iottwinmaker execute-query \
--workspace-id exampleWorkspace \
--query-statement "SELECT e FROM EntityGraph MATCH (e) LIMIT 500"\
--max-results 50
--next-token "H7kyGmvK376L"

• The next-token string specifies the next page of results. For more information, see the
ExecuteQuery API action.

AWS IoT TwinMaker knowledge graph query has the following limits:

Limit Name Quota Adjustable

Query execution timeout 10 seconds No

Maximum number of hops 10 Yes

Maximum number of self
JOINs

20 Yes

Maximum number of
projected fields

20 Yes

Maximum number of
conditional expressions (AND,
OR, NOT)

10 Yes

Knowledge graph additional resources 176

https://docs.aws.amazon.com/iot-twinmaker/latest/apireference/API_ExecuteQuery.html
https://docs.aws.amazon.com/iot-twinmaker/latest/apireference/API_ExecuteQuery.html#API_ExecuteQuery_RequestSyntax
https://docs.aws.amazon.com/iot-twinmaker/latest/apireference/API_ExecuteQuery.html#API_ExecuteQuery_RequestSyntax

AWS IoT TwinMaker User Guide

Limit Name Quota Adjustable

Maximum length of a LIKE
expression pattern (including
wildcards and escapes)

20 Yes

Maximum number of items
that can be specified in an IN
clause

10 Yes

Maximum value for OFFSET 3000 Yes

Maximum value for LIMIT 3000 Yes

Maximum value for traversals
(OFFSET + LIMIT)

3000 Yes

Knowledge graph additional resources 177

AWS IoT TwinMaker User Guide

Asset synchronization with AWS IoT SiteWise

AWS IoT TwinMaker supports asset synchronization (asset sync) for your AWS IoT SiteWise assets
and asset models. Using the AWS IoT SiteWise component type, asset sync takes existing AWS IoT
SiteWise assets and asset models and converts these resources into AWS IoT TwinMaker entities,
components, and component types. The following sections walk you through how to configure
asset sync and which AWS IoT SiteWise assets and asset models can be synced to your AWS IoT
TwinMaker workspace.

Topics

• Using asset sync with AWS IoT SiteWise

• Differences between custom and default workspaces

• Resources synced from AWS IoT SiteWise

• Analyze sync status and errors

• Delete a sync job

• Asset sync limits

Using asset sync with AWS IoT SiteWise

This topic shows you how to turn on and configure AWS IoT SiteWise asset sync. Follow the
appropriate procedures based on which type of workspace you're using.

Important

See the section called “Differences between custom and default workspaces” for
information about the differences between the custom and default workspaces.

Topics

• Using a custom workspace

• Using the IoTSiteWiseDefaultWorkspace

Using a custom workspace

Review these prerequisites before turning on asset sync.

Using asset sync with AWS IoT SiteWise 178

AWS IoT TwinMaker User Guide

Prerequisites

Before using AWS IoT SiteWise, the following must be completed:

• You have an AWS IoT TwinMaker workspace.

• You have assets and asset models in AWS IoT SiteWise. For more information, see Creating asset
models.

• An existing IAM role with read permissions for the following AWS IoT SiteWise actions:

• ListAssets

• ListAssetModels

• DescribeAsset

• DescribeAssetModel

• The IAM role must have the following write permissions for AWS IoT TwinMaker:

• CreateEntity

• UpdateEntity

• DeleteEntity

• CreateComponentType

• UpdateComponentType

• DeleteComponentType

• ListEntities

• GetEntity

• ListComponentTypes

Use the following IAM role as a template for the required role:

// trust relationships
 {
 {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": [

Using a custom workspace 179

https://docs.aws.amazon.com/iot-sitewise/latest/userguide/create-asset-models.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/create-asset-models.html

AWS IoT TwinMaker User Guide

 "iottwinmaker.amazonaws.com"
]
 },
 "Action": "sts:AssumeRole"
 }
]
}

// permissions - replace ACCOUNT_ID, REGION, WORKSPACE_ID with actual values
{
 "Version": "2012-10-17",
 "Statement": [{
 "Sid": "SiteWiseAssetReadAccess",
 "Effect": "Allow",
 "Action": [
 "iotsitewise:DescribeAsset"
],
 "Resource": [
 "arn:aws:iotsitewise:REGION:ACCOUNT_ID:asset/*"
]
 },
 {
 "Sid": "SiteWiseAssetModelReadAccess",
 "Effect": "Allow",
 "Action": [
 "iotsitewise:DescribeAssetModel"
],
 "Resource": [
 "arn:aws:iotsitewise:REGION:ACCOUNT_ID:asset-model/*"
]
 },
 {
 "Sid": "SiteWiseAssetModelAndAssetListAccess",
 "Effect": "Allow",
 "Action": [
 "iotsitewise:ListAssets",
 "iotsitewise:ListAssetModels"
],
 "Resource": [
 "*"
]
 },
 {
 "Sid": "TwinMakerAccess",

Using a custom workspace 180

AWS IoT TwinMaker User Guide

 "Effect": "Allow",
 "Action": [
 "iottwinmaker:GetEntity",
 "iottwinmaker:CreateEntity",
 "iottwinmaker:UpdateEntity",
 "iottwinmaker:DeleteEntity",
 "iottwinmaker:ListEntities",
 "iottwinmaker:GetComponentType",
 "iottwinmaker:CreateComponentType",
 "iottwinmaker:UpdateComponentType",
 "iottwinmaker:DeleteComponentType",
 "iottwinmaker:ListComponentTypes"
],
 "Resource": [
 "arn:aws:iottwinmaker:REGION:ACCOUNT_ID:workspace/WORKSPACE_ID"
]
 }
]
}

Use the following procedure to turn on and configure AWS IoT SiteWise asset sync.

1. In the AWS IoT TwinMaker console, navigate to the Settings page.

2. Open the Model sources tab.

Using a custom workspace 181

https://console.aws.amazon.com/iottwinmaker/

AWS IoT TwinMaker User Guide

3. Choose Connect workspace to link your AWS IoT TwinMaker workspace to your AWS IoT
SiteWise assets.

Note

You can only use asset sync with a single AWS IoT TwinMaker workspace. You must
disconnect the sync from one workspace and connect to another workspace to if you
wish to sync in a different workspace.

4. Next, navigate to the workspace in which you want to use asset sync.

5. Choose Add sources. This opens the Add entity model source page.

Using a custom workspace 182

AWS IoT TwinMaker User Guide

6. On the Add entity model source page, confirm that the source field displays AWS IoT
SiteWise. Select the IAM role you created as a prerequisite for the IAM role.

7. You have now turned on AWS IoT SiteWise asset sync. You should see a conformation banner
appear at the top of the selected Workspace page confirming that asset sync is active. You
should also now see a sync source listed in the Entity model sources section.

Using a custom workspace 183

AWS IoT TwinMaker User Guide

Using the IoTSiteWiseDefaultWorkspace

When you opt in to the AWS IoT SiteWiseAWS IoT TwinMaker integration, a default workspace
named IoTSiteWiseDefaultWorkspace is created and automatically synced with AWS IoT
SiteWise.

You can also use the AWS IoT TwinMaker CreateWorkspace API to create a workspace named
IoTSiteWiseDefaultWorkspace.

Prerequisites

Before creating IoTSiteWiseDefaultWorkspace, make sure you have done the following:

• Create an AWS IoT TwinMaker service-linked role. See Using service-linked roles for AWS IoT
TwinMaker for more information.

• Open the IAM console at https://console.aws.amazon.com/iam/.

Review the role or user and verify that it has permission to
iotsitewise:EnableSiteWiseIntegration.

If needed, add permission to the role or user:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "iotsitewise:EnableSiteWiseIntegration",
 "Resource": "*"
 }
]
}

Using the IoTSiteWiseDefaultWorkspace 184

https://docs.aws.amazon.com/iot-sitewise/latest/userguide/integrate-tm.html
https://console.aws.amazon.com/iam/

AWS IoT TwinMaker User Guide

Differences between custom and default workspaces

Important

New AWS IoT SiteWise features, such as CompositionModel, are only available in
IoTSiteWiseDefaultWorkspace. We encourage you to use a default workspace instead
of custom workspace.

When using the IoTSiteWiseDefaultWorkspace, there are a few notable differences from using
a custom workspace with asset sync.

• When you create a default workspace, the Amazon S3 location and IAM role are optional.

Note

You can use UpdateWorkspace to provide the Amazon S3 location and IAM role.

• The IoTSiteWiseDefaultWorkspace doesn't have a resource count limit to sync AWS IoT
SiteWise resources to AWS IoT TwinMaker.

• When you sync resources from AWS IoT SiteWise, their SyncSource will be
SITEWISE_MANAGED. This includes Entities and ComponentTypes.

• New AWS IoT SiteWise features, such as CompositionModel are only available in the
IoTSiteWiseDefaultWorkspace.

There are a few limitations specific to IoTSiteWiseDefaultWorkspace, they are:

• The default workspace can't be deleted.

• To delete resources, you must delete the AWS IoT SiteWise resources first, then the
corresponding resources in AWS IoT TwinMaker are deleted.

Resources synced from AWS IoT SiteWise

This topic lists which assets you can sync from AWS IoT SiteWise to your AWS IoT TwinMaker
workspace.

Differences between custom and default workspaces 185

https://docs.aws.amazon.com/iot-sitewise/latest/userguide/custom-composite-models.html

AWS IoT TwinMaker User Guide

Important

See Differences between custom and default workspaces for information about the
differences between the custom and default workspaces.

Custom and default workspaces

The following resources are synced and available in both custom and default workspaces:

Asset Models

AWS IoT TwinMaker creates a new component type for each asset model in AWS IoT SiteWise.

• The component TypeId for the asset model will use one of the following patterns:

• Custom workspace - iotsitewise.assetmodel:assetModelId

• Default workspace - assetModelId

• Each property in the asset model is a new property in the component type, with one of the
following naming patterns:

• Custom workspace - Property_propertyId

• Default workspace - propertyId

The property name in AWS IoT SiteWise is stored as the displayName in the property
definition.

• Each hierarchy in the asset model is a new property of type LIST and the nestedType is
RELATIONSHIP in the component type. The hierarchy is mapped to the property with a name
prefixed by one of the following:

• Custom workspace - Hierarchy_hierarchyId

• Default workspace - hierarchyId

Asset

AWS IoT TwinMaker creates a new entity for each asset in AWS IoT SiteWise.

• The entityId is the same as the assetId in AWS IoT SiteWise.

• These entities have a single component called sitewiseBase, which has the component
type corresponding to the asset model for this asset.

• Any asset level overrides, such as setting property alias or unit of measure, are reflected in
the entity in AWS IoT TwinMaker.

Custom and default workspaces 186

AWS IoT TwinMaker User Guide

Default workspace only

The following assets are synced and available in the default workspace only,
IoTSiteWiseDefaultWorkspace.

AssetModelComponents

AWS IoT TwinMaker creates a new component type for each AssetModelComponents in AWS
IoT SiteWise.

• The component TypeId for the asset model uses the following pattern: assetModelId.

• Each property in the asset model is a new property in the component type, with the property
name as propertyId. The property name in AWS IoT SiteWise is stored as the displayName
in the property definition.

• Each hierarchy in the asset model is a new property of type LIST and the nestedType is
RELATIONSHIP in the component type. The hierarchy is mapped to the property with a name
prefixed by hierarchyId.

AssetModelCompositeModel

AWS IoT TwinMaker creates a new component type for each AssetModelCompositeModel in
AWS IoT SiteWise.

• The component TypeId for the asset model uses the following pattern:
assetModelId_assetModelCompositeModelId.

• Each property in the asset model is a new property in the component type, with the property
name as propertyId. The property name in AWS IoT SiteWise is stored as the displayName
in the property definition.

AssetCompositeModels

AWS IoT TwinMaker creates a new composite component for each AssetCompositeModel in
AWS IoT SiteWise.

• The componentName is the same as the assetModelCompositeModelId in AWS IoT
SiteWise.

Resources not synced

The following resources are not synced:

Default workspace only 187

AWS IoT TwinMaker User Guide

Non-synced assets and asset models

• Alarm models will be synced as compositeModels, but corresponding data in the asset related
to alarms are not synced.

• AWS IoT SiteWise data streams are not synced. Only properties modeled in the asset model
are synced.

• Property values for attributes, measurements, transforms, aggregates, and metadata
calculation such as formula and window are not synced. Only the metadata about the
properties, such as alias, unit of measure, and data type are synced. The values can be queried
using the regular AWS IoT TwinMaker data connector API, GetPropertyValueHistory.

Use synced entities and component types in AWS IoT TwinMaker

Once assets are synced from AWS IoT SiteWise, the synced component types are read only in AWS
IoT TwinMaker. Any update or delete action must be done in AWS IoT SiteWise, and those changes
are synced to AWS IoT TwinMaker if the syncJob is still active.

The synced entities and the AWS IoT SiteWise base component are also read only in AWS IoT
TwinMaker. You can add additional non-synced components to the synced entity, as long as no
entity-level attributes such as the description or entityName are updated.

Some restrictions apply to how you can interact with synced entities. You can't create child entities
under a synced entity in the synced entity's hierarchy. Additionally, you can't create non-synced
component types that extend from a synced component type.

Note

Additional components are deleted along with the entity if the asset is deleted in AWS IoT
SiteWise or if you delete the sync job.

You can use these synced entities in Grafana dashboards and add them as tags in the scene
composer like regular entities. You can also issue knowledge graph queries for these synced
entities.

Note

Synced entities without modification are not charged, but you are charged for those
entities if changes have been made in AWS IoT TwinMaker. For example, if you add a non-

Use synced entities and component types in AWS IoT TwinMaker 188

https://docs.aws.amazon.com/iot-sitewise/latest/userguide/manage-data-streams.html
https://docs.aws.amazon.com/iot-twinmaker/latest/apireference/API_GetPropertyValueHistory.html

AWS IoT TwinMaker User Guide

synced component to a synced entity, that entity is now charged in AWS IoT TwinMaker. For
more information, see AWS IoT TwinMaker Pricing.

Analyze sync status and errors

This topic provides guidance on how to analyze sync errors and statuses.

Important

See the section called “Differences between custom and default workspaces” for
information about the differences between the custom and default workspaces.

Sync job statuses

A sync job has one of the following statuses depending on its state.

• The sync job CREATING state means the job is checking for permissions and loading data from
AWS IoT SiteWise to prepare the sync.

• The sync job INITIALIZING state means all the existing resources in AWS IoT SiteWise are
synced to AWS IoT TwinMaker. This step can take longer to complete if the user has a large
number of assets and asset models in AWS IoT SiteWise. You can monitor the number of
resources that have been synced by checking on the sync job in the AWS IoT TwinMaker console,
or by calling the ListSyncResources API.

• The sync job ACTIVE state means the initialization step is done. The job is now ready to sync any
new updates from AWS IoT SiteWise.

• The sync job ERROR state indicates an error with any of the preceding states. Review the error
message. There may be an issue with the IAM role setup. If you want to use a new IAM role,
delete the sync job that had the error and create a new one with the new role.

Sync errors appear in the model source page, which is accessed from the Entity model sources
table in your workspace. The model source page displays a list of resources that failed to sync.
Most errors are automatically retried by the sync job, but if the resource requires an action, then it
remains in the ERROR state. You can also obtain a list of errors by using the ListSyncResources API.

To see all the listed errors for the current source, use the following procedure.

Analyze sync status and errors 189

https://aws.amazon.com/iot-twinmaker/pricing/
https://console.aws.amazon.com/iottwinmaker/
https://docs.aws.amazon.com/iot-twinmaker/latest/apireference/API_ListSyncResources.html

AWS IoT TwinMaker User Guide

1. Navigate to your workspace in the AWS IoT TwinMaker console.

2. Select the AWS IoT SiteWise source listed in the Entity model sources modal to open the asset
sync details page.

3. As shown in the preceding screenshot, any resources with persisting errors are listed in the
Errors table. You can use this table to track down and fix errors related to specific resources.

Possible errors include the following:

• While AWS IoT SiteWise supports duplicate asset names, AWS IoT TwinMaker only supports
them at the ROOT level, not under the same parent entity. If you have two assets with the same
name under a parent entity in AWS IoT SiteWise, one of them fails to sync. To fix this error, either
delete one of the assets or move one under a different parent asset in AWS IoT SiteWise before
you sync.

• If you already have an entity with the same ID as the AWS IoT SiteWise asset ID, that asset fails
to sync until you delete the existing entity.

Sync job statuses 190

https://console.aws.amazon.com/iottwinmaker/

AWS IoT TwinMaker User Guide

Delete a sync job

Use the following procedure to delete a sync job.

Important

See the section called “Differences between custom and default workspaces” for
information about the differences between the custom and default workspaces.

1. Navigate to the AWS IoT TwinMaker console.

2. Open the workspace from which you wish to delete the sync job.

3. Under Entity model sources, select the AWS IoT SiteWise source to open the source details
page.

4. To stop the sync job, choose Disconnect. Confirm your choice to fully delete the sync job.

Once a sync job is deleted, you can create the sync job again in the same or a different workspace.

You can't delete a workspace if there are any sync jobs in that workspace. Delete the sync jobs first
before deleting a workspace.

Delete a sync job 191

https://console.aws.amazon.com/iottwinmaker/

AWS IoT TwinMaker User Guide

If there are any errors during the deletion of the sync job, the sync job remains in the DELETING
state and is automatically retried. You can now manually delete any of the synced entities or
component types if there is any error related to deleting a resource.

Note

Any resources that were synced from AWS IoT SiteWise are deleted first, then the sync job
itself is deleted.

Asset sync limits

Important

See the section called “Differences between custom and default workspaces” for
information about the differences between the custom and default workspaces.

Because the AWS IoT SiteWise quotas are higher than the default AWS IoT TwinMaker quotas, we
are increasing the following limits for entities and component types synced from AWS IoT SiteWise.

• 1000 synced component types in a workspace, since it can only sync 1000 asset models from
AWS IoT SiteWise.

• 100,000 synced entities in a workspace, since it can only sync 100,000 assets from AWS IoT
SiteWise.

• 2000 maximum child entities per parent entity. It syncs 2000 child assets per single parent asset.

Note

The GetEntity API only returns the first 50 child entities for a hierarchy property, but you
can use the GetPropertyValue API to paginate and retrieve the list of all child entities.

• 600 properties per synced component from AWS IoT SiteWise, which can sync asset models with
600 total properties and hierarchies.

Asset sync limits 192

https://docs.aws.amazon.com/iot-sitewise/latest/userguide/quotas.html
https://docs.aws.amazon.com/general/latest/gr/iot-twinmaker.html
https://docs.aws.amazon.com/iot-twinmaker/latest/apireference/API_GetEntity.html
https://docs.aws.amazon.com/iot-twinmaker/latest/apireference/API_GetPropertyValue.html

AWS IoT TwinMaker User Guide

Note

These limits are only applicable for the synced entities. Request a quota increase if you
need these limits increased for non-synced resources.

Asset sync limits 193

AWS IoT TwinMaker User Guide

AWS IoT TwinMaker Grafana dashboard integration

AWS IoT TwinMaker supports Grafana integration through an application plugin. You can use
Grafana version 8.2.0 and later to interact with your digital twin application. The AWS IoT
TwinMaker plugin provides custom panels, dashboard templates, and a datasource to connect to
your digital twin data.

For more information about how to onboard with Grafana and set up permissions for your
dashboard, see the following topics:

Topics

• CORS configuration for Grafana scene viewer

• Setting up your Grafana environment

• Creating a dashboard IAM role

• Creating an AWS IoT TwinMaker video player policy

Note

You need to modify CORS (cross-origin resource sharing) configuration of the Amazon
S3 bucket to allow the Grafana user interface to load resources from the bucket. For the
instructions, see CORS configuration for Grafana scene viewer.

For more information about the AWS IoT TwinMaker Grafana plugin, see the AWS IoT TwinMaker
App documentation.

For more information about the key components of the Grafana plugin, see the following:

• AWS IoT TwinMaker datasource

• Dashboard templates

• Scene Viewer panel

• Video Player panel

194

https://grafana.com/grafana/plugins/grafana-iot-twinmaker-app/
https://grafana.com/grafana/plugins/grafana-iot-twinmaker-app/
https://github.com/grafana/grafana-iot-twinmaker-app/blob/main/src/datasource/README.md
https://github.com/grafana/grafana-iot-twinmaker-app/blob/main/src/datasource/dashboards/README.md
https://github.com/grafana/grafana-iot-twinmaker-app/blob/main/src/panels/scene-viewer/README.md
https://github.com/grafana/grafana-iot-twinmaker-app/blob/main/src/panels/video-player/README.md

AWS IoT TwinMaker User Guide

CORS configuration for Grafana scene viewer

The AWS IoT TwinMaker Grafana plugin requires a CORS (cross-origin resource sharing)
configuration, which allows the Grafana user interface to load resources from the Amazon S3
bucket. Without the CORS configuration, you will receive an error message as "Load 3D Scene
failed with Network Failure" on the Scene viewer since the Grafana domain can't access the
resources in the Amazon S3 bucket.

To configure your Amazon S3 bucket with CORS, use the following steps:

1. Sign in to the IAM console and open the Amazon S3 console.

2. In the Buckets list, choose the name of the bucket that you use as your AWS IoT TwinMaker
workspace's resource bucket.

3. Choose Permissions.

4. In the Cross-origin resource sharing section, select Edit, to open the CORS editor.

5. In the CORS configuration editor text box, type or copy and paste the following JSON CORS
configuration by replacing the Grafana workspace domain GRAFANA-WORKSPACE-DOMAIN
with your domain.

Note

You need to keep the asterisk * character at the beginning of the
"AllowedOrigins": JSON element.

 [
 {
 "AllowedHeaders": [
 "*"
],
 "AllowedMethods": [
 "GET",
 "PUT",
 "POST",
 "DELETE",
 "HEAD"
],
 "AllowedOrigins": [

CORS configuration 195

https://console.aws.amazon.com/s3/

AWS IoT TwinMaker User Guide

 "*GRAFANA-WORKSPACE-DOMAIN"
],
 "ExposeHeaders": [
 "ETag"
]
 }
]

6. Select Save changes to finish the CORS configuration.

For more information on CORS with Amazon S3 buckets, see Using cross-origin resource sharing
(CORS).

Setting up your Grafana environment

You can use Amazon Managed Grafana for a fully managed service, or set up a Grafana
environment that you manage yourself. With Amazon Managed Grafana, you can quickly deploy,
operate, and scale open source Grafana for your needs. Alternatively, you can set up your own
infrastructure to manage Grafana servers.

For more information about both Grafana environment options, see the following topics:

• Amazon Managed Grafana

• Self-managed Grafana

Amazon Managed Grafana

Amazon Managed Grafana provides an AWS IoT TwinMaker plugin so you can quickly integrate
AWS IoT TwinMaker with Grafana. Because Amazon Managed Grafana manages Grafana servers for
you, you can visualize your data without having to build, package, or deploy any hardware or any
other Grafana infrastructure. For more information about Amazon Managed Grafana, see What is
Amazon Managed Grafana?.

Note

Amazon Managed Grafana currently supports version 1.3.1 of the AWS IoT TwinMaker
Grafana plugin.

Setting up your Grafana environment 196

https://docs.aws.amazon.com/AmazonS3/latest/userguide/cors.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/cors.html
https://docs.aws.amazon.com/grafana/latest/userguide/what-is-Amazon-Managed-Service-Grafana.html
https://docs.aws.amazon.com/grafana/latest/userguide/what-is-Amazon-Managed-Service-Grafana.html

AWS IoT TwinMaker User Guide

Amazon Managed Grafana prerequisites

To use AWS IoT TwinMaker in an Amazon Managed Grafana dashboard, first complete the
following prerequisite:

• Create an AWS IoT TwinMaker workspace. For more information about creating workspaces, see
Getting started with AWS IoT TwinMaker.

Note

When you first create an Amazon Managed Grafana workspace in the AWS Management
Console, AWS IoT TwinMaker isn't listed. However, the plugin is already installed on all
workspaces. You can find the AWS IoT TwinMaker plugin on the open source Grafana
plugins list. You can find the AWS IoT TwinMaker datasource by choosing Add a datasource
on the Datasources page.

When you create an Amazon Managed Grafana workspace, an IAM role is created automatically
to manage the permissions for the Grafana instance. This is called the Workspace IAM Role. It's
the authentication provider option you'll use to configure all AWS IoT TwinMaker datasources for
Grafana. Amazon Managed Grafana doesn't support automatically adding permissions for AWS IoT
TwinMaker, so you must set up these permissions manually. For more information about setting up
manual permissions, see Creating a dashboard IAM role.

Self-managed Grafana

You can choose to host your own infrastructure to run Grafana. For information about running
Grafana locally on your machine, see Install Grafana. The AWS IoT TwinMaker plugin is available
on the public Grafana catalog. For information about installing this plugin in your Grafana
environment, see AWS IoT TwinMaker App.

When you run Grafana locally you can't easily share dashboards or provide access to multiple
users. For a scripted quick start guide about sharing dashboards using local Grafana, see AWS IoT
TwinMaker samples repository. This resource walks you through hosting a Grafana environment on
Cloud9 and Amazon EC2 on a public endpoint.

You must determine which authentication provider you'll use for configuring TwinMaker
datasources. You configure the credentials for the environment based on the default credentials

Self-managed Grafana 197

https://docs.aws.amazon.com/iot-twinmaker/latest/guide/twinmaker-gs.html
https://grafana.com/docs/grafana/latest/installation/
https://grafana.com/grafana/plugins/grafana-iot-twinmaker-app/?tab=installation
https://github.com/aws-samples/aws-iot-twinmaker-samples
https://github.com/aws-samples/aws-iot-twinmaker-samples

AWS IoT TwinMaker User Guide

chain (see Using the Default Credential Provider Chain). The default credentials can be the
permanent credentials of any user or role. For example, if you're running Grafana on Amazon
EC2 , the default credentials chain has access to the Amazon EC2 execution role, which would then
be your authentication provider. The IAM Amazon Resource Name (ARN) of the authentication
provider is required in the steps to Creating a dashboard IAM role.

Creating a dashboard IAM role

With AWS IoT TwinMaker, you can control data access on your Grafana dashboards. Grafana
dashboard users should have different permission scopes to view data, and in some cases, write
data. For example, an alarm operator might not have permission to view videos, while an admin
has permission for all resources. Grafana defines the permissions through datasources, where
credentials and an IAM role are provided. The AWS IoT TwinMaker datasource fetches AWS
credentials with permissions for that role. If an IAM role isn't provided, Grafana uses the scope of
the credentials, which can't be reduced by AWS IoT TwinMaker.

To use your AWS IoT TwinMaker dashboards in Grafana, you create an IAM role and attach policies.
You can use the following templates to help you create these policies.

Create an IAM policy

Create an IAM policy called YourWorkspaceIdDashboardPolicy in the IAM Console. This policy
gives your workspaces access to Amazon S3 bucket and AWS IoT TwinMaker resources. You can
also decide to use AWS IoT Greengrass Edge Connector for Amazon Kinesis Video Streams, which
requires permissions for the Kinesis Video Streams and AWS IoT SiteWise assets configured for the
component. To fit your use case, choose one of the following policy templates.

1. No video permissions policy

If you don't want to use the Grafana Video Player panel, create the policy using the following
template.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "s3:GetObject"
],

Creating a dashboard role 198

https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/credentials.html#credentials-default
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html
https://docs.aws.amazon.com/iot-twinmaker/latest/guide/video-integration.html
https://github.com/grafana/grafana-iot-twinmaker-app/blob/main/src/panels/video-player/README.md

AWS IoT TwinMaker User Guide

 "Resource": [
 "arn:aws:s3:::bucketName/*",
 "arn:aws:s3:::bucketName"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "iottwinmaker:Get*",
 "iottwinmaker:List*"
],
 "Resource": [
 "arn:aws:iottwinmaker:region:accountId:workspace/workspaceId",
 "arn:aws:iottwinmaker:region:accountId:workspace/workspaceId/*"
]
 },
 {
 "Effect": "Allow",
 "Action": "iottwinmaker:ListWorkspaces",
 "Resource": "*"
 }
]
}

An Amazon S3 bucket is created for each workspace. It contains the 3D models and scenes to
view on a dashboard. The SceneViewer panel loads items from this bucket.

2. Scoped down video permissions policy

To limit access on the Video Player panel in Grafana, group your AWS IoT Greengrass Edge
Connector for Amazon Kinesis Video Streams resources by tags. For more information about
scoping down permissions for your video resources, see Creating an AWS IoT TwinMaker video
player policy.

3. All video permissions

If you don’t want to group your videos, you can make them all accessible from the Grafana
Video Player. Anyone with access to a Grafana workspace is able to play video for any stream
in your account, and have read only access to any AWS IoT SiteWise asset. This includes any
resources that are created in the future.

Create the policy with the following template:

{

Create an IAM policy 199

https://github.com/grafana/grafana-iot-twinmaker-app/blob/main/src/panels/scene-viewer/README.md

AWS IoT TwinMaker User Guide

 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "s3:GetObject"
],
 "Resource": [
 "arn:aws:s3:::bucketName/*",
 "arn:aws:s3:::bucketName"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "iottwinmaker:Get*",
 "iottwinmaker:List*"
],
 "Resource": [
 "arn:aws:iottwinmaker:region:accountId:workspace/workspaceId",
 "arn:aws:iottwinmaker:region:accountId:workspace/workspaceId/*"
]
 },
 {
 "Effect": "Allow",
 "Action": "iottwinmaker:ListWorkspaces",
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "kinesisvideo:GetDataEndpoint",
 "kinesisvideo:GetHLSStreamingSessionURL"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "iotsitewise:GetAssetPropertyValue",
 "iotsitewise:GetInterpolatedAssetPropertyValues"
],
 "Resource": "*"
 },

Create an IAM policy 200

AWS IoT TwinMaker User Guide

 {
 "Effect": "Allow",
 "Action": [
 "iotsitewise:BatchPutAssetPropertyValue"
],
 "Resource": "*",
 "Condition": {
 "StringLike": {
 "aws:ResourceTag/EdgeConnectorForKVS": "*workspaceId*"
 }
 }
 }
]
}

This policy template provides the following permissions:

• Read only access to an S3 bucket to load a scene.

• Read only access to AWS IoT TwinMaker for all entities and components in a workspace.

• Read only access to stream all Kinesis Video Streams videos in your account.

• Read only access to the property value history of all AWS IoT SiteWise assets in your account.

• Data ingestion into any property of a AWS IoT SiteWise asset tagged with the key
EdgeConnectorForKVS and the value workspaceId.

Tagging your camera AWS IoT SiteWise asset request video upload
from edge

Using the Video Player in Grafana , users can manually request that video is uploaded from the
edge cache to Kinesis Video Streams. You can turn on this feature for any AWS IoT SiteWise asset
that's associated with your AWS IoT Greengrass Edge Connector for Amazon Kinesis Video Streams
and that is tagged with the key EdgeConnectorForKVS.

The tag value can be a list of workspaceIds delimited by any of the following characters: . : +
= @ _ / -. For example, if you want to use an AWS IoT SiteWise asset associated with an AWS
IoT Greengrass Edge Connector for Amazon Kinesis Video Streams across AWS IoT TwinMaker
workspaces, you can use a tag that follows this pattern: WorkspaceA/WorkspaceB/WorkspaceC.
The Grafana plugin enforces that the AWS IoT TwinMaker workspaceId is used to group AWS IoT
SiteWise asset data ingestion.

Upload video from the edge 201

AWS IoT TwinMaker User Guide

Add more permissions to your dashboard policy

The AWS IoT TwinMaker Grafana plugin uses your authentication provider to call AssumeRole on
the dashboard role you create. Internally, the plugin restricts the highest scope of permissions you
have access to by using a session policy in the AssumeRole call. For more information about session
policies, see Session policies.

This is the maximum permissive policy you can have on your dashboard role for an AWS IoT
TwinMaker workspace:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "s3:GetObject"
],
 "Resource": [
 "arn:aws:s3:::bucketName/*",
 "arn:aws:s3:::bucketName"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "iottwinmaker:Get*",
 "iottwinmaker:List*"
],
 "Resource": [
 "arn:aws:iottwinmaker:region:accountId:workspace/workspaceId",
 "arn:aws:iottwinmaker:region:accountId:workspace/workspaceId/*"
]
 },
 {
 "Effect": "Allow",
 "Action": "iottwinmaker:ListWorkspaces",
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "kinesisvideo:GetDataEndpoint",

Add more permissions 202

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#policies_session

AWS IoT TwinMaker User Guide

 "kinesisvideo:GetHLSStreamingSessionURL"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "iotsitewise:GetAssetPropertyValue",
 "iotsitewise:GetInterpolatedAssetPropertyValues"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "iotsitewise:BatchPutAssetPropertyValue"
],
 "Resource": "*",
 "Condition": {
 "StringLike": {
 "aws:ResourceTag/EdgeConnectorForKVS": "*workspaceId*"
 }
 }
 }
]
}

If you add statements that Allow more permissions, they won't work on the AWS IoT TwinMaker
plugin. This is by design to ensure the minimum necessary permissions are used by the plugin.

However, you can scope down permissions further. For information, see Creating an AWS IoT
TwinMaker video player policy.

Creating the Grafana Dashboard IAM role

In the IAM Console, create an IAM role called YourWorkspaceIdDashboardRole. Attach the
YourWorkspaceIdDashboardPolicy to the role.

To edit the trust policy of the dashboard role, you must give permission for the Grafana
authentication provider to call AssumeRole on the dashboard role. Update the trust policy with
the following template:

{

Creating the Grafana Dashboard IAM role 203

AWS IoT TwinMaker User Guide

 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "AWS": "ARN of Grafana authentication provider"
 },
 "Action": "sts:AssumeRole"
 }
]
}

For more information about creating a Grafana environment and finding your authentication
provider, see Setting up your Grafana environment.

Creating an AWS IoT TwinMaker video player policy

The following is a policy template with all of the video permissions you need for the AWS IoT
TwinMaker plugin in Grafana:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "s3:GetObject"
],
 "Resource": [
 "arn:aws:s3:::bucketName/*",
 "arn:aws:s3:::bucketName"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "iottwinmaker:Get*",
 "iottwinmaker:List*"
],
 "Resource": [
 "arn:aws:iottwinmaker:region:accountId:workspace/workspaceId",
 "arn:aws:iottwinmaker:region:accountId:workspace/workspaceId/*"

Creating an AWS IoT TwinMaker Video Player policy 204

AWS IoT TwinMaker User Guide

]
 },
 {
 "Effect": "Allow",
 "Action": "iottwinmaker:ListWorkspaces",
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "kinesisvideo:GetDataEndpoint",
 "kinesisvideo:GetHLSStreamingSessionURL"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "iotsitewise:GetAssetPropertyValue",
 "iotsitewise:GetInterpolatedAssetPropertyValues"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "iotsitewise:BatchPutAssetPropertyValue"
],
 "Resource": "*",
 "Condition": {
 "StringLike": {
 "aws:ResourceTag/EdgeConnectorForKVS": "*workspaceId*"
 }
 }
 }
]
}

For more information about the full policy, see the All video permissions policy template in the
Create an IAM policy topic.

Creating an AWS IoT TwinMaker Video Player policy 205

AWS IoT TwinMaker User Guide

Scope down access to your resources

The Video Player panel in Grafana directly calls Kinesis Video Streams and IoT SiteWise to provide
a complete video playback experience. To avoid unauthorized access to resources that aren't
associated with your AWS IoT TwinMaker workspace, add conditions to the IAM policy for your
workspace dashboard role.

Scope down GET permissions

You can scope down the access of your Amazon Kinesis Video Streams and AWS IoT SiteWise assets
by tagging resources. You might have already tagged your AWS IoT SiteWise camera asset based on
the AWS IoT TwinMaker workspaceId to enable the video upload request feature, see the Upload
video from the edge topic. You can use the same tag key-value pair to limit GET access to AWS IoT
SiteWise assets, and also to tag your Kinesis Video Streams the same way.

You can then add this condition to the kinesisvideo and iotsitewise statements in the
YourWorkspaceIdDashboardPolicy:

"Condition": {
 "StringLike": {
 "aws:ResourceTag/EdgeConnectorForKVS": "*workspaceId*"
 }
}

Real-life use case: Grouping cameras

In this scenario, you have a large array of cameras monitoring the process of baking cookies in
a factory. Batches of cookie batter are made in the Batter Room, batter is frozen in the Freezer
Room, and cookies are baked in the Baking Room. There are cameras in each of these rooms
with different teams of operators separately monitoring each process. You want each group of
operators to be authorized for their respective room. When building a digital twin for the cookie
factory, a single workspace is used, but the camera permissions need to be scoped by room.

You can achieve this permission separation by tagging groups of cameras based on their
groupingId. In this scenario, the groupingIds are BatterRoom, FreezerRoom, and BakingRoom.
The camera in each room is connected to Kinesis Video Streams and should have a tag with: Key =
EdgeConnectorForKVS, Value = BatterRoom. The value can be a list of groupings delimited by
any of the following characters:. : + = @ _ / -

To amend the YourWorkspaceIdDashboardPolicy, use the following policy statements:

Scope down access to your resources 206

https://docs.aws.amazon.com/iot-twinmaker/latest/guide/dashboard-IAM-role.html#tagging-camera-assets
https://docs.aws.amazon.com/iot-twinmaker/latest/guide/dashboard-IAM-role.html#tagging-camera-assets

AWS IoT TwinMaker User Guide

...,
{
 "Effect": "Allow",
 "Action": [
 "kinesisvideo:GetDataEndpoint",
 "kinesisvideo:GetHLSStreamingSessionURL"
],
 "Resource": "*",
 "Condition": {
 "StringLike": {
 "aws:ResourceTag/EdgeConnectorForKVS": "*groupingId*"
 }
 }
},
{
 "Effect": "Allow",
 "Action": [
 "iotsitewise:GetAssetPropertyValue",
 "iotsitewise:GetInterpolatedAssetPropertyValues"
],
 "Resource": "*",
 "Condition": {
 "StringLike": {
 "aws:ResourceTag/EdgeConnectorForKVS": "*groupingId*"
 }
 }
},
...

These statements restrict streaming video playback and AWS IoT SiteWise property history
access to specific resources in a grouping. The groupingId is defined by your use case. In the our
scenario, it would be the roomId.

Scope down AWS IoT SiteWise BatchPutAssetPropertyValue permission

Providing this permission turns on the video upload request feature in the Video Player. When you
upload video, you can specify a time range and submit the request from by choosing Submit on
the panel on the Grafana dashboard.

To give iotsitewise:BatchPutAssetPropertyValue permissions, use the default policy:

...,

Scope down AWS IoT SiteWise BatchPutAssetPropertyValue permission 207

https://docs.aws.amazon.com/iot-twinmaker/latest/guide/dashboard-IAM-role.html#tagging-camera-assets

AWS IoT TwinMaker User Guide

{
 "Effect": "Allow",
 "Action": [
 "iotsitewise:BatchPutAssetPropertyValue"
],
 "Resource": "*",
 "Condition": {
 "StringLike": {
 "aws:ResourceTag/EdgeConnectorForKVS": "*workspaceId*"
 }
 }
},
...

By using this policy, users can call BatchPutAssetPropertyValue for any property on the AWS IoT
SiteWise camera asset. You can restrict authorization for a specific propertyId by specifying it in the
statement’s condition.

{
 ...
 "Condition": {
 "StringEquals": {
 "iotsitewise:propertyId": "propertyId"
 }
 }
 ...
}

The Video Player panel in Grafana ingests data into the measurement property, named
VideoUploadRequest, to initiate the uploading of video from the edge cache to Kinesis Video
Streams. Find the propertyId of this property in the AWS IoT SiteWise Console. To amend the
YourWorkspaceIdDashboardPolicy, use the following policy statement:

...,
{
 "Effect": "Allow",
 "Action": [
 "iotsitewise:BatchPutAssetPropertyValue"
],
 "Resource": "*",
 "Condition": {
 "StringLike": {

Scope down AWS IoT SiteWise BatchPutAssetPropertyValue permission 208

AWS IoT TwinMaker User Guide

 "aws:ResourceTag/EdgeConnectorForKVS": "*workspaceId*"
 },
 "StringEquals": {
 "iotsitewise:propertyId": "VideoUploadRequestPropertyId"
 }
 }
},
...

This statement restricts ingesting data to a specific property of your tagged AWS IoT SiteWise
camera asset. For more information, see How AWS IoT SiteWise works with IAM.

Scope down AWS IoT SiteWise BatchPutAssetPropertyValue permission 209

https://docs.aws.amazon.com/iot-sitewise/latest/userguide/security_iam_service-with-iam.html

AWS IoT TwinMaker User Guide

Connect AWS IoT SiteWise Alarms to AWS IoT TwinMaker
Grafana dashboards

Note

This feature is in public preview and is subject to change.

AWS IoT TwinMaker is able import AWS IoT SiteWise and Events alarms into AWS IoT TwinMaker
components. This allows you to be able to query alarm status and configure alarm thresholds
without implementing a custom data connector for AWS IoT SiteWise data migration. You can
use the AWS IoT TwinMaker Grafana plugin to visualize the alarm status and configure the alarm
threshold in Grafana, without making API calls to AWS IoT TwinMaker or interacting directly with
AWS IoT SiteWise alarms.

AWS IoT SiteWise alarm configuration prerequisites

Before creating alarms and integrating them into your Grafana dashboard, make sure you have
reviewed the following prerequisites:

• Become familiar with AWS IoT SiteWise's model and asset system. For more information, see
Creating asset models and Creating assets in the AWS IoT SiteWise User Guide.

• Become familiar with the IoT Events alarm models and how to attach them to an AWS IoT
SiteWise model. For more information, see Defining AWS IoT Events alarms in the AWS IoT
SiteWise User Guide.

• Integrate AWS IoT TwinMaker with Grafana so you can access your AWS IoT TwinMaker resources
in Grafana. For more information see, AWS IoT TwinMaker Grafana dashboard integration.

Define the AWS IoT SiteWise alarm component IAM role

AWS IoT TwinMaker uses the workspace IAM role to query and configure the alarm threshold in
Grafana. The following permissions are required in the AWS IoT TwinMaker workspace role, in order
to interact with AWS IoT SiteWise alarms in Grafana:

{

AWS IoT SiteWise alarm configuration prerequisites 210

https://docs.aws.amazon.com/iot-sitewise/latest/userguide/create-asset-models.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/create-assets.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/define-iot-events-alarms.html

AWS IoT TwinMaker User Guide

"Effect": "Allow",
 "Action": [
 "iotevents:DescribeAlarmModel",
],
 "Resource": ["{IoTEventsAlarmModelArn}"]
},{
"Effect": "Allow",
 "Action": [
 "iotsitewise:BatchPutAssetPropertyValue"
],
 "Resource": ["{IoTSitewiseAssetArn}"]
}

In the AWS IoT TwinMaker console, create an entity that represents your AWS IoT SiteWise asset.
Make sure you add a component for that entity using com.amazon.iotsitewise.alarm as the
component type, and pick the corresponding asset and alarm models.

The above screenshot is example of creating this entity with the type
com.amazon.iotsitewise.alarm.

Define the AWS IoT SiteWise alarm component IAM role 211

https://console.aws.amazon.com/iottwinmaker/

AWS IoT TwinMaker User Guide

When you create this component, AWS IoT TwinMaker automatically imports the related alarm
properties from AWS IoT SiteWise and AWS IoT Events. You can the repeat this alarm component
type pattern to create alarm components for all the assets needed in your workspace.

Query and update through the AWS IoT TwinMaker API

After creating alarm components, you can query the alarm status, threshold, and update alarm
thresholds through the AWS IoT TwinMaker API.

Below is a sample request to query alarm status:

aws iottwinmaker get-property-value-history --cli-input-json \
'{
 "workspaceId": "{workspaceId}",
 "entityId": "{entityId}",
 "componentName": "{componentName}",
 "selectedProperties": ["alarm_status"],
 "startTime": "{startTimeIsoString}",
 "endTime": "{endTimeIsoString}"
}'

Below is a sample request to query the alarm threshold.

aws iottwinmaker get-property-value-history --cli-input-json \
'{
 "workspaceId": "{workspaceId}",
 "entityId": "{entityId}",
 "componentName": "{componentName}",
 "selectedProperties": ["alarm_threshold"],
 "startTime": "{startTimeIsoString}",
 "endTime": "{endTimeIsoString}"
}'

Below is a sample request to update the alarm threshold:

aws iottwinmaker batch-put-property-values --cli-input-json \
'{
 "workspaceId": "{workspaceId}",
 "entries": [
 {
 "entityPropertyReference": {
 "entityId": "{entityId}",

Query and update through the AWS IoT TwinMaker API 212

AWS IoT TwinMaker User Guide

 "componentName": "{componentName}",
 "propertyName": "alarm_threshold"
 },
 "propertyValues": [
 {
 "value": {
 "doubleValue": "{newThreshold}"
 },
 "time": "{effectiveTimeIsoString}"
 }
]
 }
]
}'

Configure your Grafana dashboard for alarms

A second write enabled dashboard IAM role needs to be created , that is a normal role but with
permission for the action iottwinmaker:BatchPutPropertyValues to add to the TwinMaker
workspace arn like in the example below.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "iottwinmaker:Get*",
 "iottwinmaker:List*",
 "iottwinmaker:BatchPutPropertyValues"
],
 "Resource": [
 "{workspaceArn}",
 "{workspaceArn}/*"
]
 },
 {
 "Effect": "Allow",
 "Action": "iottwinmaker:ListWorkspaces",
 "Resource": "*"
 }
]

Configure your Grafana dashboard for alarms 213

AWS IoT TwinMaker User Guide

}

Alternatively you can add this statement at the end of your IAM role instead:

{
 "Effect": "Allow",
 "Action": [
 "iottwinmaker:BatchPutPropertyValues"
],
 "Resource": [
 "{workspaceArn}",
 "{workspaceArn}/*"
]
}

The datasource needs to have it’s write arn set with the dashboard write role you created.

After you modify your IAM role, login into your Grafana dashboard to assume the updated role arn.
Select the checkbox for Define write permissions for Alarm Configuration Panel and copy in the
arn for the Write role.

Configure your Grafana dashboard for alarms 214

AWS IoT TwinMaker User Guide

Use Grafana dashboard for alarm visualization

Use the following procedure to add an alarm configuration panel to your dashboard and configure
it: :

1. Select the workspace in the panel options.

Use Grafana dashboard for alarm visualization 215

AWS IoT TwinMaker User Guide

2. Set your datasource in the query configuration.

3. Use the following query type: Get Property Value History by Entity.

4. Select an entity or entity variable, you wish to add an alarm to.

5. Once you have selected the entity, select a component or component variable, to apply a
property to.

6. For the property, choose: alarm_status and alarm_threshold.

When it's connected you should see the Id for the alarm Id and it’s current threshold.

Note

For the public preview, no notifications are shown. You should review your alarm status
and threshold to make sure the properties were applied correctly.

7. The default Query Order of Ascending should be used so the latest value shows.

8. The filter section of the Query can be left empty. A complete configuration is pictured below:

9. By using the Edit Alarm button you can bring up a dialog to change the current alarm
threshold.

10. Select Save to set the new threshold value.

Use Grafana dashboard for alarm visualization 216

AWS IoT TwinMaker User Guide

Note

This panel should only be used with a live time range that includes the present. Using
it with time ranges that end and start in the past may show unexpected values when
editing alarm thresholds as the current threshold always.

Use Grafana dashboard for alarm visualization 217

AWS IoT TwinMaker User Guide

AWS IoT TwinMaker Matterport integration

Matterport provides a variety of capture options to scan real-world environments and create
immersive 3D models, also known as Matterport digital twins. These models are called Matterport
spaces. AWS IoT TwinMaker supports Matterport integration, allowing you to import your
Matterport digital twins into your AWS IoT TwinMaker scenes. By pairing Matterport digital twins
with AWS IoT TwinMaker, you can visualize and monitor your digital twin system in a virtual
environment.

For more information about using Matterport, read Matterport's documentation on AWS IoT
TwinMaker and Matterport page.

Integration topics

• Integration overview

• Matterport integration prerequisites

• Generate and record your Matterport credentials

• Store your Matterport credentials in AWS Secrets Manager

• Import Matterport spaces into AWS IoT TwinMaker scenes

• Use Matterport spaces in your AWS IoT TwinMaker Grafana dashboard

218

https://matterport.com/partners/amazon-web-services
https://matterport.com/partners/amazon-web-services

AWS IoT TwinMaker User Guide

• Use Matterport spaces in your AWS IoT TwinMaker web application

Integration overview

This integration enables you to do the following:

• Use your Matterport tags and spaces in the AWS IoT TwinMaker app kit.

• View your imported matterport data in your AWS IoT TwinMaker Grafana dashboard. For more
information on using AWS IoT TwinMaker and Grafana, read the Grafana dashboard integration
documentation.

• Import your Matterport spaces into your AWS IoT TwinMaker scenes.

• Select and import your Matterport tags that you'd like to bind to data in your AWS IoT
TwinMaker scene.

• Automatically surface your Matterport space and tag changes in your AWS IoT TwinMaker scene
and approve which to synchronize.

The integration process is comprised of 3 critical steps.

1. Generate and record your Matterport credentials

2. Store your Matterport credentials in AWS Secrets Manager

3. Import Matterport spaces into AWS IoT TwinMaker scenes

You start your integration in the AWS IoT TwinMaker console. In the console's Settings page, under
3rd party resources, open Matterport integration to navigate between the different resources
required for the integration.

Integration overview 219

https://docs.aws.amazon.com/iot-twinmaker/latest/guide/grafana-integration.html
https://console.aws.amazon.com/iottwinmaker/

AWS IoT TwinMaker User Guide

Matterport integration prerequisites

Before integrating Matterport with AWS IoT TwinMaker please make sure you meet the following
prerequisites:

• You have purchased an Enterprise-level Matterport account and the Matterport products
necessary for the AWS IoT TwinMaker integration.

• You have an AWS IoT TwinMaker workspace. For more information, see Getting started with
AWS IoT TwinMaker.

Matterport integration prerequisites 220

https://my.matterport.com/
https://docs.aws.amazon.com/iot-twinmaker/latest/guide/twinmaker-gs.html
https://docs.aws.amazon.com/iot-twinmaker/latest/guide/twinmaker-gs.html

AWS IoT TwinMaker User Guide

• You have updated your AWS IoT TwinMaker workspace role. For more information on creating a
workspace role, see Create and manage a service role for AWS IoT TwinMaker.

Add the following to your workspace role:

{
 "Effect": "Allow",
 "Action": "secretsmanager:GetSecretValue",
 "Resource": [
 "AWS Secrets Manager secret ARN"
]
}

• You must contact Matterport to configure the necessary licensing for enabling the integration.
Matterport will also enable a Private Model Embed (PME) for the integration.

If you already have a Matterport account manager, contact them directly.

Use the following procedure to contact Matterport and request an integration if you don’t have a
Matterport point of contact:

1. Open the Matterport and AWS IoT TwinMaker page.

2. Press the Contact us button, to open the contact form.

3. Fill out the required information on the form.

4. When you're ready, choose SAY HELLO to send your request to Matterport.

Once you have requested integration, you can generate the required Matterport SDK and Private
Model Embed (PME) credentials needed to continue the integration process.

Note

This may involve you incurring a fee for purchasing new products or services.

Generate and record your Matterport credentials

To integrate Matterport with AWS IoT TwinMaker, you must provide AWS Secrets Manager with
Matterport credentials. Use the following procedure to generate the Matterport SDK credentials.

Matterport SDK credentials 221

https://docs.aws.amazon.com/iot-twinmaker/latest/guide/twinmaker-gs-service-role.html
https://matterport.com/partners/amazon-web-services

AWS IoT TwinMaker User Guide

1. Log in to your Matterport account.

2. Navigate to your account settings page.

3. Once in the settings page, select the Developer tools option.

4. On the Developer tools page, go to the SDK Key Management section.

5. Once in the SDK Key Management section, select the option to add a new SDK key.

6. Once you have the Matterport SDK key, add domains to the key for AWS IoT TwinMaker and
your Grafana server. If you are using the AWS IoT TwinMaker app kit, then make sure to add
your custom domain as well.

7. Next, find the Application integration Management section, you should see your PME
application listed. Record the following information:

• The Client ID

• The Client Secret

Note

Since the Client Secret is only presented to you once, we strongly recommend that
you record your Client Secret. You must present your Client Secret in the AWS Secrets
Manager console to continue with the Matterport integration.

These credentials are automatically created when you have purchased the necessary
components and the PME for your account has been enabled by Matterport. If these
credentials do not appear, contact Matterport. To request contact, see the Matterport and
AWS IoT TwinMaker contact form.

For more information on Matterport SDK credentials, see Matterport's official SDK documentation
SDK Docs Overview.

Store your Matterport credentials in AWS Secrets Manager

Use the following procedure to store your Matterport credentials in AWS Secrets Manager.

Store Matterport credentials in AWS Secrets Manager 222

https://authn.matterport.com
https://matterport.com/partners/amazon-web-services
https://matterport.com/partners/amazon-web-services
https://matterport.github.io/showcase-sdk/index.html

AWS IoT TwinMaker User Guide

Note

You need the Client Secret created from the procedure in the Generate and record your
Matterport credentials topic to continue with the Matterport integration.

1. Log in to the AWS Secrets Manager console.

2. Navigate to the Secrets page and select Store a new secret.

3. For the Secret type, select Other type of secret.

4. In the Key/value pairs section, add in the following key-value pairs, with your Matterport
credentials as the values:

• Create a key-value pair, with Key: application_key, and Value: <your Matterport
credentials>.

• Create a key-value pair, with Key: client_id, and Value: <your Matterport
credentials>.

• Create a key-value pair, with Key: client_secret, and Value: <your Matterport
credentials>.

When completed, you should have a configuration similar to the following example:

Store Matterport credentials in AWS Secrets Manager 223

AWS IoT TwinMaker User Guide

5. For the Encryption key, you can leave the default encryption key aws/secretsmanager
selected.

6. Choose Next to move on to the Configure secret page.

7. Fill out the field for Secret name and the Description.

8. Add a tag to this secret in the Tags section.

When creating the tag, assign the key as AWSIoTTwinMaker_Matterport as shown in the
following screenshot:

Note

You must add a tag. Tags are required when adding 3rd party secrets into AWS Secrets
Manager, despite Tags being listed as optional.

The Value field is optional. Once you have provided a Key, you can select Add to move on to
the next step.

Store Matterport credentials in AWS Secrets Manager 224

AWS IoT TwinMaker User Guide

9. Choose Next to move on to the Configure rotation page. Setting up a secret rotation is
optional. If you wish to finish adding your secret and don’t need a rotation, choose Next again.
For more information on secret rotation, see Rotate AWS Secrets Manager secrets.

10. Confirm your secret configuration on the Review page. Once you're ready to add your secret,
choose Store.

For more information about using AWS Secrets Manager, see the following AWS Secrets Manager
documentation:

• Create and manage secrets with AWS Secrets Manager

• What is AWS Secrets Manager?

• Rotate AWS Secrets Manager secrets

Now you are ready to import your Matterport assets into AWS IoT TwinMaker scenes. See the
procedure in the following section, Import Matterport spaces into AWS IoT TwinMaker scenes

Import Matterport spaces into AWS IoT TwinMaker scenes

Add Matterport scans to your scene by selecting the connected Matterport account from within the
scene settings page. Use the following procedure to import your Matterport scans and tags:

1. Log in to the AWS IoT TwinMaker console.

2. Create or open an existing AWS IoT TwinMaker scene in which you want to use a Matterport
space.

3. Once the scene has opened, navigate to the Settings tab.

4. In Settings, under 3rd party resources, find the Connection name and enter the secret you
created in the procedure from Store your Matterport credentials in AWS Secrets Manager.

Matterport scans in AWS IoT TwinMaker scenes 225

https://docs.aws.amazon.com/secretsmanager/latest/userguide/rotating-secrets.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/managing-secrets.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/intro.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/rotating-secrets.html
https://console.aws.amazon.com/iottwinmaker/

AWS IoT TwinMaker User Guide

Note

If you see a message that states No connections, navigate to the AWS IoT TwinMaker
console settings page to begin the process for Matterport integration.

Matterport scans in AWS IoT TwinMaker scenes 226

https://console.aws.amazon.com/iottwinmaker/
https://console.aws.amazon.com/iottwinmaker/

AWS IoT TwinMaker User Guide

5. Next, choose the Matterport space you'd like to use in your scene by selecting it in the
Matterport space drop-down.

Matterport scans in AWS IoT TwinMaker scenes 227

AWS IoT TwinMaker User Guide

6. After selecting a space, you can import your Matterport tags and convert them to AWS IoT
TwinMaker scene tags by pressing the Import tags button.

Matterport scans in AWS IoT TwinMaker scenes 228

AWS IoT TwinMaker User Guide

After you have imported Matterport tags, the button is replaced by an Update tags button.
You can continually update your Matterport tags in AWS IoT TwinMaker so that they always
reflect the most recent changes in your Matterport account.

Matterport scans in AWS IoT TwinMaker scenes 229

AWS IoT TwinMaker User Guide

7. You have successfully integrated AWS IoT TwinMaker with Matterport, and now your AWS IoT
TwinMaker scene has both your imported Matterport space and tags. You can work within this
scene as you would with any other AWS IoT TwinMaker scene.

Matterport scans in AWS IoT TwinMaker scenes 230

AWS IoT TwinMaker User Guide

For more information on working with AWS IoT TwinMaker scenes, see Creating and editing AWS
IoT TwinMaker scenes.

Use Matterport spaces in your AWS IoT TwinMaker Grafana
dashboard

Once you have imported your Matterport space into an AWS IoT TwinMaker scene, you can view
that scene with the Matterport space in your Grafana dashboard. If you have already configured
Grafana with AWS IoT TwinMaker, then you can simply open the Grafana dashboard to view your
scene with the imported Matterport space.

If you have not configured AWS IoT TwinMaker with Grafana yet, complete the Grafana integration
process first. You have two choices when integrating AWS IoT TwinMaker with Grafana. You can use
a self-managed Grafana instance or you can use Amazon Managed Grafana.

See the following documentation to learn more about the Grafana options and integration process:

• AWS IoT TwinMaker Grafana dashboard integration.

• Amazon Managed Grafana.

• Self-managed Grafana.

Use Matterport spaces in your AWS IoT TwinMaker web
application

Once you have imported your Matterport space into an AWS IoT TwinMaker scene, you can view
that scene with the Matterport space in your AWS IoT app kit web application.

See the following documentation to learn more about using the AWS IoT application kit:

• To learn more about using AWS IoT TwinMaker with the AWS IoT app kit, see Create a
customized web application using AWS IoT TwinMaker UI Components.

• To learn more about using AWS IoT application kit, please visit AWS IoT Application kit Github
page.

• For instructions on how to start a new web application using AWS IoT application kit, please visit
the official IoT App Kit documentation page.

Matterport in your AWS IoT TwinMaker Grafana dashboard 231

https://docs.aws.amazon.com/iot-twinmaker/latest/guide/scenes.html
https://docs.aws.amazon.com/iot-twinmaker/latest/guide/scenes.html
https://docs.aws.amazon.com/iot-twinmaker/latest/guide/grafana-integration.html
https://docs.aws.amazon.com/iot-twinmaker/latest/guide/amazon-managed-grafana.html
https://docs.aws.amazon.com/iot-twinmaker/latest/guide/self-managed-grafana.html
https://github.com/awslabs/iot-app-kit
https://awslabs.github.io/iot-app-kit/?path=/docs/introduction--docs

AWS IoT TwinMaker User Guide

AWS IoT TwinMaker video integration

Video cameras present a good opportunity for digital twin simulation. You can use AWS IoT
TwinMaker to simulate your camera's location and physical conditions. Create entities in AWS IoT
TwinMaker for your on-site cameras, and use video components to stream live video and metadata
from your site to your AWS IoT TwinMaker scene or to a Grafana dashboard.

AWS IoT TwinMaker can capture video from edge devices in two ways. You can stream video from
edge devices with the edge connector for Kinesis video stream, or you can save video on the edge
device and initiate video uploading with MQTT messages. Use this component to stream video data
from your devices for use with AWS IoT services. To generate the required resources and deploy
the edge connector for Kinesis Video Streams, see the Getting started with the edge connector for
Kinesis video stream on GitHub. For more information about the AWS IoT Greengrass component,
see the AWS IoT Greengrass documentation on edge connector for Kinesis Video Streams.

After you've created the required AWS IoT SiteWise models and configured the Kinesis Video
Streams Greengrass component, you can stream or record video on the edge to your digital twin
application in the AWS IoT TwinMaker console. You can also view livestreams and metadata from
your devices in a Grafana dashboard. For more information about integrating Grafana and AWS IoT
TwinMaker, see AWS IoT TwinMaker Grafana dashboard integration.

Use the edge connector for Kinesis video stream to stream
video in AWS IoT TwinMaker

With the edge connector for Kinesis video stream, you can stream video and data to an entity
in your AWS IoT TwinMaker scene. You use a video component to do this. To create the video
component for use in your scenes, complete the following procedure.

Prerequisites

Before you create the video component in your AWS IoT TwinMaker scene, make sure you've
completed the following prerequisites.

• Created the required AWS IoT SiteWise models and assets for the edge connector for Kinesis
video stream. For more information about creating the AWS IoT SiteWise assets for the
connector, see Getting started with the edge connector for Kinesis video stream.

Use the edge connector for Kinesis video stream to stream video in AWS IoT TwinMaker 232

https://github.com/awslabs/aws-iot-greengrass-edge-connector-for-kinesis-video-stream/tree/main/gettingstarted
https://github.com/awslabs/aws-iot-greengrass-edge-connector-for-kinesis-video-stream/tree/main/gettingstarted
https://docs.aws.amazon.com/greengrass/v2/developerguide/kvs-edge-connector-component.html
https://github.com/awslabs/aws-iot-greengrass-edge-connector-for-kinesis-video-stream/tree/main/gettingstarted

AWS IoT TwinMaker User Guide

• Deployed the Kinesis video stream edge connector on your AWS IoT Greengrass device. For
more information about deploying the Kinesis video stream edge connector component, see the
deployment README.

Create video components for AWS IoT TwinMaker scenes

Complete the following steps to create the edge connector for the Kinesis video stream component
for your scene.

1. In the AWS IoT TwinMaker console, open the scene you want to add the video component to.

2. After the scene is opens, choose an existing entity or create the entity you want to add the
component to, and then choose Add component.

3. In the Add component pane, enter a name for the component, and for the Type, choose
com.amazon.iotsitewise.connector.edgevideo.

4. Choose an Asset Model by selecting the name of the AWS IoT SiteWise
camera model you created. This name should have the following format:
EdgeConnectorForKVSCameraModel-0abc, where the string of letters and numbers at the
end matches your own asset name.

5. For Asset, choose the AWS IoT SiteWise camera assets you want to stream video from. A small
window appears showing you a preview of the current video stream.

Note

To test your video streaming, choose test. This test sends out an MQTT event to initiate
video live streaming. Wait for a few moments to see the video show up in the player.

6. To add the video component to your entity, choose Add component.

Add video and metadata from Kinesis video stream to a
Grafana dashboard

After you've created a video component for your entity in your AWS IoT TwinMaker scene, you can
configure the video panel in Grafana to see live streams. Make sure you have properly integrated
AWS IoT TwinMaker with Grafana. For more information, see AWS IoT TwinMaker Grafana
dashboard integration.

Create video components for AWS IoT TwinMaker scenes 233

https://github.com/awslabs/aws-iot-greengrass-edge-connector-for-kinesis-video-stream/blob/main/README.md

AWS IoT TwinMaker User Guide

Important

To view video in your Grafana dashboard, you must make sure the Grafana datasources
have the proper IAM permissions. To create the required role and policy see Creating a
dashboard IAM role.

Complete the following steps to see Kinesis Video Streams and metadata in your Grafana
dashboard.

1. Open the AWS IoT TwinMaker dashboard.

2. Choose Add panel, and then choose Add an empty panel.

3. From the panels list, choose the AWS IoT TwinMaker video player panel.

4. In the AWS IoT TwinMaker video player panel, enter the stream name of the
KinesisVideoStreamName, with the name of the Kinesis video stream you want to stream
video from.

Note

To stream metadata to the Grafana video panel, you must first have created an entity
with a video streaming component.

5. Optional: To stream metadata from AWS IoT SiteWise assets to the video player, for Entity,
choose the AWS IoT TwinMaker entity that you created in your AWS IoT TwinMaker scene. For
the Component name, choose the video component you created for the entity in your AWS
IoT TwinMaker scene.

Add video and metadata from Kinesis video stream to a Grafana dashboard 234

AWS IoT TwinMaker User Guide

Using the AWS IoT TwinMaker Flink library

AWS IoT TwinMaker provides a Flink library that you can use to read and write data to external
data stores used in your digital twins.

You use the AWS IoT TwinMaker Flink library by installing it as a custom connector in Managed
Service for Apache Flink and performing Flink SQL queries in a Zeppelin notebook in Managed
Service for Apache Flink. The notebook can be promoted to a continuously running stream
processing application. The library leverages AWS IoT TwinMaker components to retrieve data from
your workspace.

The AWS IoT TwinMaker Flink library requires the following.

Prerequisites

1. A fully populated workspace with scenes and components. Use the built-in component types
for data from AWS services (AWS IoT SiteWise and Kinesis Video Streams). Create custom
component types for data from third-party sources. For more information, see ???.

2. An understanding of Studio notebooks with Managed Service for Apache Flink for Apache Flink.
These notebooks are powered by Apache Zeppelin and use the Apache Flink framework. For
more information, see Using a Studio notebook with Managed Service for Apache Flink for
Apache Flink.

For instructions on using the library, see the AWS IoT TwinMaker Flink library user guide.

For instructions on setting up AWS IoT TwinMaker with the quick start in AWS IoT TwinMaker
samples, see README file for the sample insights application.

235

https://zeppelin.apache.org
https://flink.apache.org
https://docs.aws.amazon.com/kinesisanalytics/latest/java/how-notebook.html
https://docs.aws.amazon.com/kinesisanalytics/latest/java/how-notebook.html
https://github.com/aws-samples/aws-iot-twinmaker-samples/blob/main/src/modules/insights/iot-twinmaker-flink-library-guide.md
https://github.com/aws-samples/aws-iot-twinmaker-samples
https://github.com/aws-samples/aws-iot-twinmaker-samples
https://github.com/aws-samples/aws-iot-twinmaker-samples/blob/main/src/modules/insights/README.md

AWS IoT TwinMaker User Guide

Logging and monitoring in AWS IoT TwinMaker

Monitoring is an important part of maintaining the reliability, availability, and performance of
AWS IoT TwinMaker and your other AWS solutions. AWS IoT TwinMaker supports the following
monitoring tools to watch the service, report when something is wrong, and take automatic actions
when appropriate:

• Amazon CloudWatch monitors in real time your AWS resources and the applications that you
run on AWS. You can collect and track metrics, create customized dashboards, and set alarms
that notify you or take actions when a specified metric reaches a threshold that you specify.
For example, you can have CloudWatch track CPU usage or other metrics for your Amazon EC2
instances and automatically launch new instances when needed. For more information, see the
Amazon CloudWatch User Guide.

• Amazon CloudWatch Logs monitors, stores, and provides access to your log files from AWS IoT
TwinMaker gateways, CloudTrail, and other sources. CloudWatch Logs can monitor information in
the log files and notify you when certain thresholds are met. You can also archive your log data
in highly durable storage. For more information, see the Amazon CloudWatch Logs User Guide.

• AWS CloudTrail captures API calls and related events made by or on behalf of your AWS account
and delivers the log files to an Amazon S3 bucket that you specify. You can identify which users
and accounts called AWS, the source IP address from which the calls were made, and when the
calls occurred. For more information, see the AWS CloudTrail User Guide.

Topics

• Monitoring AWS IoT TwinMaker with Amazon CloudWatch metrics

• Logging AWS IoT TwinMaker API calls with AWS CloudTrail

Monitoring AWS IoT TwinMaker with Amazon CloudWatch
metrics

You can monitor AWS IoT TwinMaker by using CloudWatch, which collects raw data and processes
it into readable, near real-time metrics. These statistics are kept for 15 months, so that you can
access historical information and gain a better perspective on how your web application or service
is performing. You can also set alarms that watch for certain thresholds, and send notifications or

Monitoring with Amazon CloudWatch metrics 236

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/

AWS IoT TwinMaker User Guide

take actions when those thresholds are met. For more information, see the Amazon CloudWatch
User Guide.

AWS IoT TwinMaker publishes the metrics and dimensions listed in the following sections to the
AWS/IoTTwinMaker namespace.

Tip

AWS IoT TwinMaker publishes metrics on a one minute interval. When you view these
metrics in graphs in the CloudWatch console, we recommend that you choose a Period of 1
minute to see the highest available resolution of your metric data.

Contents

• Metrics

Metrics

AWS IoT TwinMaker publishes the following metrics.

Metrics

Metric Description

ComponentTypeCreationFailure This metric reports whether the component
type creation is successful.

The metric is published when a component
type is in CREATING state. This happens when
a component type is created with the required
properties in the schema initializer and these
properties are instantiated with default values.

The metric value can be either 0 for success or
1 for failure.

Dimensions: ComponentTypeId, WorkspaceId.

Units: Count

Metrics 237

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/

AWS IoT TwinMaker User Guide

Metric Description

ComponentTypeUpdateFailure This metric reports whether the component
type update is successful.

The metric is published when a component
type is in UPDATING state. This happens
when a component type is updated with the
required properties in the schema initializer
and these properties are instantiated with
default values.

The metric value can be either 0 for success or
1 for failure.

Dimensions: ComponentTypeId, WorkspaceId.

Units: Count

EntityCreationFailure This metric reports whether the entity creation
is successful. The metric is published when
an entity is in CREATING state. This happens
when an entity is created with a component.

The metric value can be either 0 for success or
1 for failure.

Dimensions: EntityName, EntityId, Workspace
Id.

Units: Count

Metrics 238

AWS IoT TwinMaker User Guide

Metric Description

EntityUpdateFailure This metric reports whether the entity update
is successful. The metric is published when
an entity is in UPDATING state. This happens
when an entity is updated.

The metric value can be either 0 for success or
1 for failure.

Dimensions: EntityName, EntityId, Workspace
Id.

Units: Count

EntityDeletionFailure This metric reports whether the entity
deletion is successful. The metric is published
when an entity is in DELETING state. This
happens when an entity is deleted.

The metric value can be either 0 for success or
1 for failure.

Dimensions: EntityName, EntityId, Workspace
Id.

Units: Count

Tip

All metrics are published to the AWS/IoTTwinMaker namespace.

Logging AWS IoT TwinMaker API calls with AWS CloudTrail

AWS IoT TwinMaker is integrated with AWS CloudTrail, a service that provides a record of actions
taken by a user, role, or an AWS service in AWS IoT TwinMaker. CloudTrail captures API calls for
AWS IoT TwinMaker as events. The calls captured include calls from the AWS IoT TwinMaker

Logging API calls with AWS CloudTrail 239

AWS IoT TwinMaker User Guide

console and code calls to the AWS IoT TwinMaker API operations. If you create a trail, you can
enable continuous delivery of CloudTrail events to an Amazon S3 bucket, including events for
AWS IoT TwinMaker. If you don't configure a trail, you can still view the most recent events in
the CloudTrail console in Event history. Using the information collected by CloudTrail, you can
determine the request that was made to AWS IoT TwinMaker, the IP address from which the
request was made, who made the request, when it was made, and additional details.

For more information about CloudTrail, see the AWS CloudTrail User Guide.

AWS IoT TwinMaker information in CloudTrail

When you create your AWS account, CloudTrail is automatically enabled. CloudTrail records
support event activity that occurs in AWS IoT TwinMaker, along with other AWS service events in
Event history. You can view, search, and download recent events in your AWS account. For more
information, see Viewing events with CloudTrail event history.

For an ongoing record of events in your AWS account, including events for AWS IoT TwinMaker,
create a trail. A trail enables CloudTrail to deliver log files to an Amazon S3 bucket. By default,
when you create a trail in the console, the trail applies to all AWS Regions. CloudTrail logs events
from all Regions in the AWS partition and delivers the log files to the Amazon S3 bucket that you
specify. Additionally, you can configure other AWS services to further analyze and act upon the
event data collected in CloudTrail logs. For more information, see the following:

• Overview for creating a trail

• CloudTrail supported services and integrations

• Configuring Amazon SNS notifications for CloudTrail

• Receiving CloudTrail log files from multiple Regions and Receiving CloudTrail log files from
multiple accounts

Most AWS IoT TwinMaker operations are logged by CloudTrail and are documented in the AWS IoT
TwinMaker API Reference.

The following data plane operations aren't logged by CloudTrail:

• GetPropertyValue

• GetPropertyValueHistory

• BatchPutPropertyValues

AWS IoT TwinMaker information in CloudTrail 240

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/view-cloudtrail-events.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-and-update-a-trail.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-aws-service-specific-topics.html#cloudtrail-aws-service-specific-topics-integrations
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/getting_notifications_top_level.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/receive-cloudtrail-log-files-from-multiple-regions.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.aws.amazon.com/iot-twinmaker/latest/apireference/Welcome.html
https://docs.aws.amazon.com/iot-twinmaker/latest/apireference/Welcome.html
https://docs.aws.amazon.com/iot-twinmaker/latest/apireference/API_GetPropertyValue.html
https://docs.aws.amazon.com/iot-twinmaker/latest/apireference/API_GetPropertyValueHistory.html
https://docs.aws.amazon.com/iot-twinmaker/latest/apireference/API_BatchPutPropertyValues.html

AWS IoT TwinMaker User Guide

Every event or log entry contains information about who generated the request. The identity
information helps you determine the following:

• Whether the request was made with root or user credentials.

• Whether the request was made with temporary security credentials for a role or federated user.

• Whether the request was made by another AWS service.

For more information, see the CloudTrail userIdentity element.

AWS IoT TwinMaker information in CloudTrail 241

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-event-reference-user-identity.html

AWS IoT TwinMaker User Guide

Security in AWS IoT TwinMaker

Cloud security at AWS is the highest priority. As an AWS customer, you benefit from data centers
and network architectures that are built to meet the requirements of the most security-sensitive
organizations.

Security is a shared responsibility between AWS and you. The shared responsibility model describes
this as security of the cloud and security in the cloud:

• Security of the cloud – AWS is responsible for protecting the infrastructure that runs AWS
services in the AWS Cloud. AWS also provides you with services that you can use securely.
Third-party auditors regularly test and verify the effectiveness of our security as part of the
AWS Compliance Programs. To learn about the compliance programs that apply to AWS IoT
TwinMaker, see AWS Services in Scope by Compliance Program.

• Security in the cloud – Your responsibility is determined by the AWS service that you use. You
are also responsible for other factors including the sensitivity of your data, your company’s
requirements, and applicable laws and regulations.

This documentation helps you understand how to apply the shared responsibility model when
using AWS IoT TwinMaker. The following topics show you how to configure AWS IoT TwinMaker to
meet your security and compliance objectives. You also learn how to use other AWS services that
help you to monitor and secure your AWS IoT TwinMaker resources.

Topics

• Data protection in AWS IoT TwinMaker

• Identity and Access Management for AWS IoT TwinMaker

• AWS IoT TwinMaker and interface VPC endpoints (AWS PrivateLink)

• Compliance Validation for AWS IoT TwinMaker

• Resilience in AWS IoT TwinMaker

• Infrastructure Security in AWS IoT TwinMaker

Data protection in AWS IoT TwinMaker

The AWS shared responsibility model applies to data protection in AWS IoT TwinMaker. As
described in this model, AWS is responsible for protecting the global infrastructure that runs all

Data protection 242

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/shared-responsibility-model/

AWS IoT TwinMaker User Guide

of the AWS Cloud. You are responsible for maintaining control over your content that is hosted on
this infrastructure. You are also responsible for the security configuration and management tasks
for the AWS services that you use. For more information about data privacy, see the Data Privacy
FAQ. For information about data protection in Europe, see the AWS Shared Responsibility Model
and GDPR blog post on the AWS Security Blog.

For data protection purposes, we recommend that you protect AWS account credentials and set
up individual users with AWS IAM Identity Center or AWS Identity and Access Management (IAM).
That way, each user is given only the permissions necessary to fulfill their job duties. We also
recommend that you secure your data in the following ways:

• Use multi-factor authentication (MFA) with each account.

• Use SSL/TLS to communicate with AWS resources. We require TLS 1.2 and recommend TLS 1.3.

• Set up API and user activity logging with AWS CloudTrail.

• Use AWS encryption solutions, along with all default security controls within AWS services.

• Use advanced managed security services such as Amazon Macie, which assists in discovering and
securing sensitive data that is stored in Amazon S3.

• If you require FIPS 140-3 validated cryptographic modules when accessing AWS through a
command line interface or an API, use a FIPS endpoint. For more information about the available
FIPS endpoints, see Federal Information Processing Standard (FIPS) 140-3.

We strongly recommend that you never put confidential or sensitive information, such as your
customers' email addresses, into tags or free-form text fields such as a Name field. This includes
when you work with AWS IoT TwinMaker or other AWS services using the console, API, AWS CLI, or
AWS SDKs. Any data that you enter into tags or free-form text fields used for names may be used
for billing or diagnostic logs. If you provide a URL to an external server, we strongly recommend
that you do not include credentials information in the URL to validate your request to that server.

Encryption at rest

AWS IoT TwinMaker stores your workspace information in an Amazon S3 bucket that the service
creates for you, if you choose. The bucket that the service creates for you has default server-side
encryption enabled. If you choose to use your own Amazon S3 bucket when you create a new
workspace, we recommend that you enable default server-side encryption. For more information
about default encryption in Amazon S3, see Setting default server-side encryption behavior for
Amazon S3 buckets.

Encryption at rest 243

https://aws.amazon.com/compliance/data-privacy-faq/
https://aws.amazon.com/compliance/data-privacy-faq/
https://aws.amazon.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr/
https://aws.amazon.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr/
https://aws.amazon.com/compliance/fips/
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/bucket-encryption.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/bucket-encryption.html

AWS IoT TwinMaker User Guide

Encryption in transit

All data sent to AWS IoT TwinMaker is sent over a TLS connection using the HTTPS protocol, so it's
secure by default while in transit.

Note

We recommend that you use HTTPS on Amazon S3 bucket addresses as a control to enforce
encryption in transit when AWS IoT TwinMaker interacts with an Amazon S3 bucket. For
more information on Amazon S3 buckets, see Creating, configuring, and working with
Amazon S3 buckets.

Identity and Access Management for AWS IoT TwinMaker

AWS Identity and Access Management (IAM) is an AWS service that helps an administrator securely
control access to AWS resources. IAM administrators control who can be authenticated (signed in)
and authorized (have permissions) to use AWS IoT TwinMaker resources. IAM is an AWS service that
you can use with no additional charge.

Topics

• Audience

• Authenticating with identities

• Managing access using policies

• How AWS IoT TwinMaker works with IAM

• Identity-based policy examples for AWS IoT TwinMaker

• Troubleshooting AWS IoT TwinMaker identity and access

• Using service-linked roles for AWS IoT TwinMaker

• AWS managed policies for AWS IoT TwinMaker

Audience

How you use AWS Identity and Access Management (IAM) differs, depending on the work that you
do in AWS IoT TwinMaker.

Encryption in transit 244

https://docs.aws.amazon.com/AmazonS3/latest/userguide/creating-buckets-s3.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/creating-buckets-s3.html

AWS IoT TwinMaker User Guide

Service user – If you use the AWS IoT TwinMaker service to do your job, then your administrator
provides you with the credentials and permissions that you need. As you use more AWS IoT
TwinMaker features to do your work, you might need additional permissions. Understanding how
access is managed can help you request the right permissions from your administrator. If you
cannot access a feature in AWS IoT TwinMaker, see Troubleshooting AWS IoT TwinMaker identity
and access.

Service administrator – If you're in charge of AWS IoT TwinMaker resources at your company,
you probably have full access to AWS IoT TwinMaker. It's your job to determine which AWS IoT
TwinMaker features and resources your service users should access. You must then submit requests
to your IAM administrator to change the permissions of your service users. Review the information
on this page to understand the basic concepts of IAM. To learn more about how your company can
use IAM with AWS IoT TwinMaker, see How AWS IoT TwinMaker works with IAM.

IAM administrator – If you're an IAM administrator, you might want to learn details about how you
can write policies to manage access to AWS IoT TwinMaker. To view example AWS IoT TwinMaker
identity-based policies that you can use in IAM, see Identity-based policy examples for AWS IoT
TwinMaker.

Authenticating with identities

Authentication is how you sign in to AWS using your identity credentials. You must be
authenticated (signed in to AWS) as the AWS account root user, as an IAM user, or by assuming an
IAM role.

You can sign in to AWS as a federated identity by using credentials provided through an identity
source. AWS IAM Identity Center (IAM Identity Center) users, your company's single sign-on
authentication, and your Google or Facebook credentials are examples of federated identities.
When you sign in as a federated identity, your administrator previously set up identity federation
using IAM roles. When you access AWS by using federation, you are indirectly assuming a role.

Depending on the type of user you are, you can sign in to the AWS Management Console or the
AWS access portal. For more information about signing in to AWS, see How to sign in to your AWS
account in the AWS Sign-In User Guide.

If you access AWS programmatically, AWS provides a software development kit (SDK) and a
command line interface (CLI) to cryptographically sign your requests by using your credentials. If
you don't use AWS tools, you must sign requests yourself. For more information about using the

Authenticating with identities 245

https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html

AWS IoT TwinMaker User Guide

recommended method to sign requests yourself, see Signing AWS API requests in the IAM User
Guide.

Regardless of the authentication method that you use, you might be required to provide additional
security information. For example, AWS recommends that you use multi-factor authentication
(MFA) to increase the security of your account. To learn more, see Multi-factor authentication in the
AWS IAM Identity Center User Guide and Using multi-factor authentication (MFA) in AWS in the IAM
User Guide.

AWS account root user

When you create an AWS account, you begin with one sign-in identity that has complete access to
all AWS services and resources in the account. This identity is called the AWS account root user and
is accessed by signing in with the email address and password that you used to create the account.
We strongly recommend that you don't use the root user for your everyday tasks. Safeguard your
root user credentials and use them to perform the tasks that only the root user can perform. For
the complete list of tasks that require you to sign in as the root user, see Tasks that require root
user credentials in the IAM User Guide.

Federated identity

As a best practice, require human users, including users that require administrator access, to use
federation with an identity provider to access AWS services by using temporary credentials.

A federated identity is a user from your enterprise user directory, a web identity provider, the AWS
Directory Service, the Identity Center directory, or any user that accesses AWS services by using
credentials provided through an identity source. When federated identities access AWS accounts,
they assume roles, and the roles provide temporary credentials.

For centralized access management, we recommend that you use AWS IAM Identity Center. You can
create users and groups in IAM Identity Center, or you can connect and synchronize to a set of users
and groups in your own identity source for use across all your AWS accounts and applications. For
information about IAM Identity Center, see What is IAM Identity Center? in the AWS IAM Identity
Center User Guide.

IAM users and groups

An IAM user is an identity within your AWS account that has specific permissions for a single person
or application. Where possible, we recommend relying on temporary credentials instead of creating
IAM users who have long-term credentials such as passwords and access keys. However, if you have

Authenticating with identities 246

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-signing.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/enable-mfa.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/root-user-tasks.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/root-user-tasks.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/what-is.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users.html

AWS IoT TwinMaker User Guide

specific use cases that require long-term credentials with IAM users, we recommend that you rotate
access keys. For more information, see Rotate access keys regularly for use cases that require long-
term credentials in the IAM User Guide.

An IAM group is an identity that specifies a collection of IAM users. You can't sign in as a group. You
can use groups to specify permissions for multiple users at a time. Groups make permissions easier
to manage for large sets of users. For example, you could have a group named IAMAdmins and give
that group permissions to administer IAM resources.

Users are different from roles. A user is uniquely associated with one person or application, but
a role is intended to be assumable by anyone who needs it. Users have permanent long-term
credentials, but roles provide temporary credentials. To learn more, see When to create an IAM user
(instead of a role) in the IAM User Guide.

IAM roles

An IAM role is an identity within your AWS account that has specific permissions. It is similar to an
IAM user, but is not associated with a specific person. You can temporarily assume an IAM role in
the AWS Management Console by switching roles. You can assume a role by calling an AWS CLI or
AWS API operation or by using a custom URL. For more information about methods for using roles,
see Using IAM roles in the IAM User Guide.

IAM roles with temporary credentials are useful in the following situations:

• Federated user access – To assign permissions to a federated identity, you create a role
and define permissions for the role. When a federated identity authenticates, the identity
is associated with the role and is granted the permissions that are defined by the role. For
information about roles for federation, see Creating a role for a third-party Identity Provider
in the IAM User Guide. If you use IAM Identity Center, you configure a permission set. To control
what your identities can access after they authenticate, IAM Identity Center correlates the
permission set to a role in IAM. For information about permissions sets, see Permission sets in
the AWS IAM Identity Center User Guide.

• Temporary IAM user permissions – An IAM user or role can assume an IAM role to temporarily
take on different permissions for a specific task.

• Cross-account access – You can use an IAM role to allow someone (a trusted principal) in a
different account to access resources in your account. Roles are the primary way to grant cross-
account access. However, with some AWS services, you can attach a policy directly to a resource
(instead of using a role as a proxy). To learn the difference between roles and resource-based
policies for cross-account access, see Cross account resource access in IAM in the IAM User Guide.

Authenticating with identities 247

https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#rotate-credentials
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#rotate-credentials
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_groups.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/permissionsetsconcept.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html

AWS IoT TwinMaker User Guide

• Cross-service access – Some AWS services use features in other AWS services. For example, when
you make a call in a service, it's common for that service to run applications in Amazon EC2 or
store objects in Amazon S3. A service might do this using the calling principal's permissions,
using a service role, or using a service-linked role.

• Forward access sessions (FAS) – When you use an IAM user or role to perform actions in
AWS, you are considered a principal. When you use some services, you might perform an
action that then initiates another action in a different service. FAS uses the permissions of the
principal calling an AWS service, combined with the requesting AWS service to make requests
to downstream services. FAS requests are only made when a service receives a request that
requires interactions with other AWS services or resources to complete. In this case, you must
have permissions to perform both actions. For policy details when making FAS requests, see
Forward access sessions.

• Service role – A service role is an IAM role that a service assumes to perform actions on your
behalf. An IAM administrator can create, modify, and delete a service role from within IAM. For
more information, see Creating a role to delegate permissions to an AWS service in the IAM
User Guide.

• Service-linked role – A service-linked role is a type of service role that is linked to an AWS
service. The service can assume the role to perform an action on your behalf. Service-linked
roles appear in your AWS account and are owned by the service. An IAM administrator can
view, but not edit the permissions for service-linked roles.

• Applications running on Amazon EC2 – You can use an IAM role to manage temporary
credentials for applications that are running on an EC2 instance and making AWS CLI or AWS API
requests. This is preferable to storing access keys within the EC2 instance. To assign an AWS role
to an EC2 instance and make it available to all of its applications, you create an instance profile
that is attached to the instance. An instance profile contains the role and enables programs that
are running on the EC2 instance to get temporary credentials. For more information, see Using
an IAM role to grant permissions to applications running on Amazon EC2 instances in the IAM
User Guide.

To learn whether to use IAM roles or IAM users, see When to create an IAM role (instead of a user)
in the IAM User Guide.

Managing access using policies

You control access in AWS by creating policies and attaching them to AWS identities or resources.
A policy is an object in AWS that, when associated with an identity or resource, defines their

Managing access using policies 248

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_forward_access_sessions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose_role

AWS IoT TwinMaker User Guide

permissions. AWS evaluates these policies when a principal (user, root user, or role session) makes
a request. Permissions in the policies determine whether the request is allowed or denied. Most
policies are stored in AWS as JSON documents. For more information about the structure and
contents of JSON policy documents, see Overview of JSON policies in the IAM User Guide.

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

By default, users and roles have no permissions. To grant users permission to perform actions on
the resources that they need, an IAM administrator can create IAM policies. The administrator can
then add the IAM policies to roles, and users can assume the roles.

IAM policies define permissions for an action regardless of the method that you use to perform the
operation. For example, suppose that you have a policy that allows the iam:GetRole action. A
user with that policy can get role information from the AWS Management Console, the AWS CLI, or
the AWS API.

Identity-based policies

Identity-based policies are JSON permissions policy documents that you can attach to an identity,
such as an IAM user, group of users, or role. These policies control what actions users and roles can
perform, on which resources, and under what conditions. To learn how to create an identity-based
policy, see Creating IAM policies in the IAM User Guide.

Identity-based policies can be further categorized as inline policies or managed policies. Inline
policies are embedded directly into a single user, group, or role. Managed policies are standalone
policies that you can attach to multiple users, groups, and roles in your AWS account. Managed
policies include AWS managed policies and customer managed policies. To learn how to choose
between a managed policy or an inline policy, see Choosing between managed policies and inline
policies in the IAM User Guide.

Resource-based policies

Resource-based policies are JSON policy documents that you attach to a resource. Examples of
resource-based policies are IAM role trust policies and Amazon S3 bucket policies. In services that
support resource-based policies, service administrators can use them to control access to a specific
resource. For the resource where the policy is attached, the policy defines what actions a specified
principal can perform on that resource and under what conditions. You must specify a principal
in a resource-based policy. Principals can include accounts, users, roles, federated users, or AWS
services.

Managing access using policies 249

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#access_policies-json
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#choosing-managed-or-inline
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#choosing-managed-or-inline
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html

AWS IoT TwinMaker User Guide

Resource-based policies are inline policies that are located in that service. You can't use AWS
managed policies from IAM in a resource-based policy.

Access control lists (ACLs)

Access control lists (ACLs) control which principals (account members, users, or roles) have
permissions to access a resource. ACLs are similar to resource-based policies, although they do not
use the JSON policy document format.

Amazon S3, AWS WAF, and Amazon VPC are examples of services that support ACLs. To learn more
about ACLs, see Access control list (ACL) overview in the Amazon Simple Storage Service Developer
Guide.

Other policy types

AWS supports additional, less-common policy types. These policy types can set the maximum
permissions granted to you by the more common policy types.

• Permissions boundaries – A permissions boundary is an advanced feature in which you set
the maximum permissions that an identity-based policy can grant to an IAM entity (IAM user
or role). You can set a permissions boundary for an entity. The resulting permissions are the
intersection of an entity's identity-based policies and its permissions boundaries. Resource-based
policies that specify the user or role in the Principal field are not limited by the permissions
boundary. An explicit deny in any of these policies overrides the allow. For more information
about permissions boundaries, see Permissions boundaries for IAM entities in the IAM User Guide.

• Service control policies (SCPs) – SCPs are JSON policies that specify the maximum permissions
for an organization or organizational unit (OU) in AWS Organizations. AWS Organizations is a
service for grouping and centrally managing multiple AWS accounts that your business owns. If
you enable all features in an organization, then you can apply service control policies (SCPs) to
any or all of your accounts. The SCP limits permissions for entities in member accounts, including
each AWS account root user. For more information about Organizations and SCPs, see Service
control policies in the AWS Organizations User Guide.

• Session policies – Session policies are advanced policies that you pass as a parameter when you
programmatically create a temporary session for a role or federated user. The resulting session's
permissions are the intersection of the user or role's identity-based policies and the session
policies. Permissions can also come from a resource-based policy. An explicit deny in any of these
policies overrides the allow. For more information, see Session policies in the IAM User Guide.

Managing access using policies 250

https://docs.aws.amazon.com/AmazonS3/latest/userguide/acl-overview.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_boundaries.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#policies_session

AWS IoT TwinMaker User Guide

Multiple policy types

When multiple types of policies apply to a request, the resulting permissions are more complicated
to understand. To learn how AWS determines whether to allow a request when multiple policy
types are involved, see Policy evaluation logic in the IAM User Guide.

How AWS IoT TwinMaker works with IAM

Before you use IAM to manage access to AWS IoT TwinMaker, learn what IAM features are available
to use with AWS IoT TwinMaker.

IAM features you can use with AWS IoT TwinMaker

IAM feature AWS IoT TwinMaker support

Identity-based policies Yes

Resource-based policies No

Policy actions Yes

Policy resources Yes

Policy condition keys Yes

ACLs No

ABAC (tags in policies) Partial

Temporary credentials Yes

Principal permissions Yes

Service roles Yes

Service-linked roles No

To get a high-level view of how AWS IoT TwinMaker and other AWS services work with most IAM
features, see AWS services that work with IAM in the AWS IAM Identity Center User Guide.

How AWS IoT TwinMaker works with IAM 251

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html

AWS IoT TwinMaker User Guide

Identity-based policies for AWS IoT TwinMaker

Supports identity-based policies: Yes

Identity-based policies are JSON permissions policy documents that you can attach to an identity,
such as an IAM user, group of users, or role. These policies control what actions users and roles can
perform, on which resources, and under what conditions. To learn how to create an identity-based
policy, see Creating IAM policies in the IAM User Guide.

With IAM identity-based policies, you can specify allowed or denied actions and resources as well
as the conditions under which actions are allowed or denied. You can't specify the principal in an
identity-based policy because it applies to the user or role to which it is attached. To learn about all
of the elements that you can use in a JSON policy, see IAM JSON policy elements reference in the
IAM User Guide.

Identity-based policy examples for AWS IoT TwinMaker

To view examples of AWS IoT TwinMaker identity-based policies, see Identity-based policy
examples for AWS IoT TwinMaker.

Resource-based policies within AWS IoT TwinMaker

Supports resource-based policies: No

Resource-based policies are JSON policy documents that you attach to a resource. Examples of
resource-based policies are IAM role trust policies and Amazon S3 bucket policies. In services that
support resource-based policies, service administrators can use them to control access to a specific
resource. For the resource where the policy is attached, the policy defines what actions a specified
principal can perform on that resource and under what conditions. You must specify a principal
in a resource-based policy. Principals can include accounts, users, roles, federated users, or AWS
services.

To enable cross-account access, you can specify an entire account or IAM entities in another
account as the principal in a resource-based policy. Adding a cross-account principal to a resource-
based policy is only half of establishing the trust relationship. When the principal and the resource
are in different AWS accounts, an IAM administrator in the trusted account must also grant
the principal entity (user or role) permission to access the resource. They grant permission by
attaching an identity-based policy to the entity. However, if a resource-based policy grants access
to a principal in the same account, no additional identity-based policy is required. For more
information, see Cross account resource access in IAM in the IAM User Guide.

How AWS IoT TwinMaker works with IAM 252

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html

AWS IoT TwinMaker User Guide

Policy actions for AWS IoT TwinMaker

Supports policy actions: Yes

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Action element of a JSON policy describes the actions that you can use to allow or deny
access in a policy. Policy actions usually have the same name as the associated AWS API operation.
There are some exceptions, such as permission-only actions that don't have a matching API
operation. There are also some operations that require multiple actions in a policy. These
additional actions are called dependent actions.

Include actions in a policy to grant permissions to perform the associated operation.

To see a list of AWS IoT TwinMaker actions, see Actions defined by AWS IoT TwinMaker in the
Service Authorization Reference.

Policy actions in AWS IoT TwinMaker use the following prefix before the action:

iottwinmaker

To specify multiple actions in a single statement, separate them with commas.

"Action": [
 "iottwinmaker:action1",
 "iottwinmaker:action2"
]

To view examples of AWS IoT TwinMaker identity-based policies, see Identity-based policy
examples for AWS IoT TwinMaker.

Policy resources for AWS IoT TwinMaker

Supports policy resources: Yes

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

How AWS IoT TwinMaker works with IAM 253

https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsiottwinmaker.html#awsiottwinmaker-actions-as-permissions

AWS IoT TwinMaker User Guide

The Resource JSON policy element specifies the object or objects to which the action applies.
Statements must include either a Resource or a NotResource element. As a best practice,
specify a resource using its Amazon Resource Name (ARN). You can do this for actions that support
a specific resource type, known as resource-level permissions.

For actions that don't support resource-level permissions, such as listing operations, use a wildcard
(*) to indicate that the statement applies to all resources.

"Resource": "*"

To see a list of AWS IoT TwinMaker resource types and their ARNs, see Resources defined by AWS
IoT TwinMaker in the Service Authorization Reference. To learn with which actions you can specify
the ARN of each resource, see Actions defined by AWS IoT TwinMaker.

To view examples of AWS IoT TwinMaker identity-based policies, see Identity-based policy
examples for AWS IoT TwinMaker.

Policy condition keys for AWS IoT TwinMaker

Supports service-specific policy condition keys: Yes

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Condition element (or Condition block) lets you specify conditions in which a statement
is in effect. The Condition element is optional. You can create conditional expressions that use
condition operators, such as equals or less than, to match the condition in the policy with values in
the request.

If you specify multiple Condition elements in a statement, or multiple keys in a single
Condition element, AWS evaluates them using a logical AND operation. If you specify multiple
values for a single condition key, AWS evaluates the condition using a logical OR operation. All of
the conditions must be met before the statement's permissions are granted.

You can also use placeholder variables when you specify conditions. For example, you can grant
an IAM user permission to access a resource only if it is tagged with their IAM user name. For more
information, see IAM policy elements: variables and tags in the IAM User Guide.

AWS supports global condition keys and service-specific condition keys. To see all AWS global
condition keys, see AWS global condition context keys in the IAM User Guide.

How AWS IoT TwinMaker works with IAM 254

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference-arns.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsiottwinmaker.html#awsiottwinmaker-resources-for-iam-policies
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsiottwinmaker.html#awsiottwinmaker-resources-for-iam-policies
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsiottwinmaker.html#awsiottwinmaker-actions-as-permissions
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_variables.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html

AWS IoT TwinMaker User Guide

To see a list of AWS IoT TwinMaker condition keys, see Condition keys for AWS IoT TwinMaker
in the Service Authorization Reference. To learn with which actions and resources you can use a
condition key, see Actions defined by AWS IoT TwinMaker.

To view examples of AWS IoT TwinMaker identity-based policies, see Identity-based policy
examples for AWS IoT TwinMaker.

Access control lists (ACLs) in AWS IoT TwinMaker

Supports ACLs: No

Access control lists (ACLs) control which principals (account members, users, or roles) have
permissions to access a resource. ACLs are similar to resource-based policies, although they do not
use the JSON policy document format.

Attribute-based access control (ABAC) with AWS IoT TwinMaker

Supports ABAC (tags in policies): Partial

Attribute-based access control (ABAC) is an authorization strategy that defines permissions based
on attributes. In AWS, these attributes are called tags. You can attach tags to IAM entities (users or
roles) and to many AWS resources. Tagging entities and resources is the first step of ABAC. Then
you design ABAC policies to allow operations when the principal's tag matches the tag on the
resource that they are trying to access.

ABAC is helpful in environments that are growing rapidly and helps with situations where policy
management becomes cumbersome.

To control access based on tags, you provide tag information in the condition element of a policy
using the aws:ResourceTag/key-name, aws:RequestTag/key-name, or aws:TagKeys
condition keys.

If a service supports all three condition keys for every resource type, then the value is Yes for the
service. If a service supports all three condition keys for only some resource types, then the value is
Partial.

For more information about ABAC, see What is ABAC? in the IAM User Guide. To view a tutorial with
steps for setting up ABAC, see Use attribute-based access control (ABAC) in the IAM User Guide.

Using Temporary credentials with AWS IoT TwinMaker

Supports temporary credentials: Yes

How AWS IoT TwinMaker works with IAM 255

https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsiottwinmaker.html#awsiottwinmaker-policy-keys
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsiottwinmaker.html#awsiottwinmaker-actions-as-permissions
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction_attribute-based-access-control.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_attribute-based-access-control.html

AWS IoT TwinMaker User Guide

Some AWS services don't work when you sign in using temporary credentials. For additional
information, including which AWS services work with temporary credentials, see AWS services that
work with IAM in the IAM User Guide.

You are using temporary credentials if you sign in to the AWS Management Console using
any method except a user name and password. For example, when you access AWS using your
company's single sign-on (SSO) link, that process automatically creates temporary credentials. You
also automatically create temporary credentials when you sign in to the console as a user and then
switch roles. For more information about switching roles, see Switching to a role (console) in the
IAM User Guide.

You can manually create temporary credentials using the AWS CLI or AWS API. You can then use
those temporary credentials to access AWS. AWS recommends that you dynamically generate
temporary credentials instead of using long-term access keys. For more information, see
Temporary security credentials in IAM.

Cross-service principal permissions for AWS IoT TwinMaker

Supports forward access sessions (FAS): Yes

When you use an IAM user or role to perform actions in AWS, you are considered a principal.
When you use some services, you might perform an action that then initiates another action in a
different service. FAS uses the permissions of the principal calling an AWS service, combined with
the requesting AWS service to make requests to downstream services. FAS requests are only made
when a service receives a request that requires interactions with other AWS services or resources to
complete. In this case, you must have permissions to perform both actions. For policy details when
making FAS requests, see Forward access sessions.

Service roles for AWS IoT TwinMaker

Supports service roles: Yes

A service role is an IAM role that a service assumes to perform actions on your behalf. An IAM
administrator can create, modify, and delete a service role from within IAM. For more information,
see Creating a role to delegate permissions to an AWS service in the IAM User Guide.

Warning

Changing the permissions for a service role might break AWS IoT TwinMaker functionality.
Edit service roles only when AWS IoT TwinMaker provides guidance to do so.

How AWS IoT TwinMaker works with IAM 256

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_forward_access_sessions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html

AWS IoT TwinMaker User Guide

Service-linked roles for AWS IoT TwinMaker

Supports service-linked roles: No

A service-linked role is a type of service role that is linked to an AWS service. The service can
assume the role to perform an action on your behalf. Service-linked roles appear in your AWS
account and are owned by the service. An IAM administrator can view, but not edit the permissions
for service-linked roles.

For details about creating or managing service-linked roles, see AWS services that work with IAM.
Find a service in the table that includes a Yes in the Service-linked role column. Choose the Yes
link to view the service-linked role documentation for that service.

Identity-based policy examples for AWS IoT TwinMaker

By default, users and roles don't have permission to create or modify AWS IoT TwinMaker
resources. They also can't perform tasks by using the AWS Management Console, AWS Command
Line Interface (AWS CLI), or AWS API. To grant users permission to perform actions on the
resources that they need, an IAM administrator can create IAM policies. The administrator can then
add the IAM policies to roles, and users can assume the roles.

To learn how to create an IAM identity-based policy by using these example JSON policy
documents, see Creating IAM policies in the IAM User Guide.

For details about actions and resource types defined by AWS IoT TwinMaker, including the format
of the ARNs for each of the resource types, see Actions, resources, and condition keys for AWS IoT
TwinMaker in the Service Authorization Reference.

Topics

• Policy best practices

• Using the AWS IoT TwinMaker console

• Allow users to view their own permissions

Policy best practices

Identity-based policies determine whether someone can create, access, or delete AWS IoT
TwinMaker resources in your account. These actions can incur costs for your AWS account. When
you create or edit identity-based policies, follow these guidelines and recommendations:

Identity-based policy examples 257

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create-console.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsiottwinmaker.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsiottwinmaker.html

AWS IoT TwinMaker User Guide

• Get started with AWS managed policies and move toward least-privilege permissions – To
get started granting permissions to your users and workloads, use the AWS managed policies
that grant permissions for many common use cases. They are available in your AWS account. We
recommend that you reduce permissions further by defining AWS customer managed policies
that are specific to your use cases. For more information, see AWS managed policies or AWS
managed policies for job functions in the IAM User Guide.

• Apply least-privilege permissions – When you set permissions with IAM policies, grant only the
permissions required to perform a task. You do this by defining the actions that can be taken on
specific resources under specific conditions, also known as least-privilege permissions. For more
information about using IAM to apply permissions, see Policies and permissions in IAM in the
IAM User Guide.

• Use conditions in IAM policies to further restrict access – You can add a condition to your
policies to limit access to actions and resources. For example, you can write a policy condition to
specify that all requests must be sent using SSL. You can also use conditions to grant access to
service actions if they are used through a specific AWS service, such as AWS CloudFormation. For
more information, see IAM JSON policy elements: Condition in the IAM User Guide.

• Use IAM Access Analyzer to validate your IAM policies to ensure secure and functional
permissions – IAM Access Analyzer validates new and existing policies so that the policies
adhere to the IAM policy language (JSON) and IAM best practices. IAM Access Analyzer provides
more than 100 policy checks and actionable recommendations to help you author secure and
functional policies. For more information, see IAM Access Analyzer policy validation in the IAM
User Guide.

• Require multi-factor authentication (MFA) – If you have a scenario that requires IAM users
or a root user in your AWS account, turn on MFA for additional security. To require MFA when
API operations are called, add MFA conditions to your policies. For more information, see
Configuring MFA-protected API access in the IAM User Guide.

For more information about best practices in IAM, see Security best practices in IAM in the IAM User
Guide.

Using the AWS IoT TwinMaker console

To access the AWS IoT TwinMaker console, you must have a minimum set of permissions. These
permissions must allow you to list and view details about the AWS IoT TwinMaker resources in
your AWS account. If you create an identity-based policy that is more restrictive than the minimum

Identity-based policy examples 258

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-policy-validation.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html

AWS IoT TwinMaker User Guide

required permissions, the console won't function as intended for entities (users or roles) with that
policy.

You don't need to allow minimum console permissions for users that are making calls only to the
AWS CLI or the AWS API. Instead, allow access to only the actions that match the API operation
that they're trying to perform.

To ensure that users and roles can still use the AWS IoT TwinMaker console, also attach the AWS
IoT TwinMaker ConsoleAccess or ReadOnly AWS managed policy to the entities. For more
information, see Adding permissions to a user in the AWS IAM Identity Center User Guide.

Allow users to view their own permissions

This example shows how you might create a policy that allows IAM users to view the inline and
managed policies that are attached to their user identity. This policy includes permissions to
complete this action on the console or programmatically using the AWS CLI or AWS API.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ViewOwnUserInfo",
 "Effect": "Allow",
 "Action": [
 "iam:GetUserPolicy",
 "iam:ListGroupsForUser",
 "iam:ListAttachedUserPolicies",
 "iam:ListUserPolicies",
 "iam:GetUser"
],
 "Resource": ["arn:aws:iam::*:user/${aws:username}"]
 },
 {
 "Sid": "NavigateInConsole",
 "Effect": "Allow",
 "Action": [
 "iam:GetGroupPolicy",
 "iam:GetPolicyVersion",
 "iam:GetPolicy",
 "iam:ListAttachedGroupPolicies",
 "iam:ListGroupPolicies",
 "iam:ListPolicyVersions",

Identity-based policy examples 259

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_change-permissions.html#users_change_permissions-add-console

AWS IoT TwinMaker User Guide

 "iam:ListPolicies",
 "iam:ListUsers"
],
 "Resource": "*"
 }
]
}

Troubleshooting AWS IoT TwinMaker identity and access

Use the following information to help you diagnose and fix common issues that you might
encounter when working with AWS IoT TwinMaker and IAM.

Topics

• I am not authorized to perform an action in AWS IoT TwinMaker

• I am not authorized to perform iam:PassRole

• I want to allow people outside of my AWS account to access my AWS IoT TwinMaker resources

I am not authorized to perform an action in AWS IoT TwinMaker

If you receive an error that you're not authorized to perform an action, your policies must be
updated to allow you to perform the action.

The following example error occurs when the mateojackson IAM user tries to use the console
to view details about a fictional my-example-widget resource but doesn't have the fictional
iottwinmaker:GetWidget permissions.

User: arn:aws:iam::123456789012:user/mateojackson is not authorized to perform:
 iottwinmaker:GetWidget on resource: my-example-widget

In this case, the policy for the mateojackson user must be updated to allow access to the my-
example-widget resource by using the iottwinmaker:GetWidget action.

If you need help, contact your AWS administrator. Your administrator is the person who provided
you with your sign-in credentials.

Troubleshooting 260

AWS IoT TwinMaker User Guide

I am not authorized to perform iam:PassRole

If you receive an error that you're not authorized to perform the iam:PassRole action, your
policies must be updated to allow you to pass a role to AWS IoT TwinMaker.

Some AWS services allow you to pass an existing role to that service instead of creating a new
service role or service-linked role. To do this, you must have permissions to pass the role to the
service.

The following example error occurs when an IAM user named marymajor tries to use the console
to perform an action in AWS IoT TwinMaker. However, the action requires the service to have
permissions that are granted by a service role. Mary does not have permissions to pass the role to
the service.

User: arn:aws:iam::123456789012:user/marymajor is not authorized to perform:
 iam:PassRole

In this case, Mary's policies must be updated to allow her to perform the iam:PassRole action.

If you need help, contact your AWS administrator. Your administrator is the person who provided
you with your sign-in credentials.

I want to allow people outside of my AWS account to access my AWS IoT
TwinMaker resources

You can create a role that users in other accounts or people outside of your organization can use to
access your resources. You can specify who is trusted to assume the role. For services that support
resource-based policies or access control lists (ACLs), you can use those policies to grant people
access to your resources.

To learn more, consult the following:

• To learn whether AWS IoT TwinMaker supports these features, see How AWS IoT TwinMaker
works with IAM.

• To learn how to provide access to your resources across AWS accounts that you own, see
Providing access to an IAM user in another AWS account that you own in the IAM User Guide.

• To learn how to provide access to your resources to third-party AWS accounts, see Providing
access to AWS accounts owned by third parties in the IAM User Guide.

Troubleshooting 261

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_aws-accounts.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html

AWS IoT TwinMaker User Guide

• To learn how to provide access through identity federation, see Providing access to externally
authenticated users (identity federation) in the IAM User Guide.

• To learn the difference between using roles and resource-based policies for cross-account access,
see Cross account resource access in IAM in the IAM User Guide.

Using service-linked roles for AWS IoT TwinMaker

AWS IoT TwinMaker uses AWS Identity and Access Management (IAM) service-linked roles. A
service-linked role is a unique type of IAM role that is linked directly to AWS IoT TwinMaker.
Service-linked roles are predefined by AWS IoT TwinMaker and include all the permissions that the
service requires to call other AWS services on your behalf.

A service-linked role makes setting up AWS IoT TwinMaker easier because you don’t have to
manually add the necessary permissions. AWS IoT TwinMaker defines the permissions of its service-
linked roles, and unless defined otherwise, only AWS IoT TwinMaker can assume its roles. The
defined permissions include the trust policy and the permissions policy, and that permissions policy
cannot be attached to any other IAM entity.

You can delete a service-linked role only after first deleting their related resources. This protects
your AWS IoT TwinMaker resources because you can't inadvertently remove permission to access
the resources.

For information about other services that support service-linked roles, see AWS services that work
with IAM and look for the services that have Yes in the Service-linked roles column. Choose a Yes
with a link to view the service-linked role documentation for that service.

Service-linked role permissions for AWS IoT TwinMaker

AWS IoT TwinMaker uses the service-linked role named AWSServiceRoleForIoTTwinMaker –
Allows AWS IoT TwinMaker to call other AWS services and to sync their resources on your behalf.

The AWSServiceRoleForIoTTwinMaker service-linked role trusts the following services to assume
the role:

• iottwinmaker.amazonaws.com

The role permissions policy named AWSIoTTwinMakerServiceRolePolicy allows AWS IoT TwinMaker
to complete the following actions on the specified resources:

Using service-linked roles 262

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html#iam-term-service-linked-role
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html

AWS IoT TwinMaker User Guide

• Action: iotsitewise:DescribeAsset, iotsitewise:ListAssets,
iotsitewise:DescribeAssetModel, and iotsitewise:ListAssetModels,
iottwinmaker:GetEntity, iottwinmaker:CreateEntity,
iottwinmaker:UpdateEntity, iottwinmaker:DeleteEntity,
iottwinmaker:ListEntities, iottwinmaker:GetComponentType,
iottwinmaker:CreateComponentType, iottwinmaker:UpdateComponentType,
iottwinmaker:DeleteComponentType, iottwinmaker:ListComponentTypes on all
your iotsitewise asset and asset-model resources

You must configure permissions to allow your users, groups, or roles to create, edit, or delete a
service-linked role. For more information, see Service-linked role permissions in the IAM User Guide.

Creating a service-linked role for AWS IoT TwinMaker

You don't need to manually create a service-linked role. When you synchronize your AWS IoT
SiteWise assets and asset models (asset sync) in the AWS Management Console, the AWS CLI, or
the AWS API, AWS IoT TwinMaker creates the service-linked role for you.

If you delete this service-linked role, and then need to create it again, you can use the same process
to recreate the role in your account. When you synchronize your AWS IoT SiteWise assets and asset
models (asset sync), AWS IoT TwinMaker creates the service-linked role for you again.

You can also use the IAM console to create a service-linked role with the "IoT TwinMaker -
Managed Role" use case. In the AWS CLI or the AWS API, create a service-linked role with the
iottwinmaker.amazonaws.com service name. For more information, see Creating a service-
linked role in the IAM User Guide. If you delete this service-linked role, you can use this same
process to create the role again.

Editing a service-linked role for AWS IoT TwinMaker

AWS IoT TwinMaker does not allow you to edit the AWSServiceRoleForIoTTwinMaker service-linked
role. After you create a service-linked role, you cannot change the name of the role because various
entities might reference the role. However, you can edit the description of the role using IAM. For
more information, see Editing a service-linked role in the IAM User Guide.

Deleting a service-linked role for AWS IoT TwinMaker

If you no longer need to use a feature or service that requires a service-linked role, we recommend
that you delete that role. That way you don’t have an unused entity that is not actively monitored

Using service-linked roles 263

https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#service-linked-role-permissions
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#create-service-linked-role
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#create-service-linked-role
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#edit-service-linked-role

AWS IoT TwinMaker User Guide

or maintained. However, you must clean up any serviceLinked-workspaces that are still using your
service-linked role before you can manually delete the role.

Note

If the AWS IoT TwinMaker service is using the role when you try to delete the resources,
then the deletion might fail. If that happens, wait for a few minutes and try the operation
again.

To manually delete the service-linked role using IAM

Use the IAM console, the AWS CLI, or the AWS API to delete the AWSServiceRoleForIoTTwinMaker
service-linked role. For more information, see Deleting a service-linked role in the IAM User Guide.

Supported Regions for AWS IoT TwinMaker service-linked roles

AWS IoT TwinMaker supports using service-linked roles in all of the Regions where the service is
available. For more information, see AWS Regions and endpoints.

AWS managed policies for AWS IoT TwinMaker

To add permissions to users, groups, and roles, it is easier to use AWS managed policies than to
write policies yourself. It takes time and expertise to create IAM customer managed policies that
provide your team with only the permissions they need. To get started quickly, you can use our
AWS managed policies. These policies cover common use cases and are available in your AWS
account. For more information about AWS managed policies, see AWS managed policies in the IAM
User Guide.

AWS services maintain and update AWS managed policies. You can't change the permissions in
AWS managed policies. Services occasionally add additional permissions to an AWS managed
policy to support new features. This type of update affects all identities (users, groups, and roles)
where the policy is attached. Services are most likely to update an AWS managed policy when
a new feature is launched or when new operations become available. Services do not remove
permissions from an AWS managed policy, so policy updates won't break your existing permissions.

Additionally, AWS supports managed policies for job functions that span multiple services. For
example, the ReadOnlyAccess AWS managed policy provides read-only access to all AWS services

AWS managed policies 264

https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#delete-service-linked-role
https://docs.aws.amazon.com/general/latest/gr/iot-twinmaker.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies

AWS IoT TwinMaker User Guide

and resources. When a service launches a new feature, AWS adds read-only permissions for new
operations and resources. For a list and descriptions of job function policies, see AWS managed
policies for job functions in the IAM User Guide.

AWS managed policy: AWSIoTTwinMakerServiceRolePolicy

You can't attach AWSIoTTwinMakerServiceRolePolicy to your IAM entities. This policy is attached
to a service-linked role that allows to perform actions on your behalf. For more information, see
Service-linked role permissions for AWS IoT TwinMaker.

The role permissions policy named AWSIoTTwinMakerServiceRolePolicy allows AWS IoT TwinMaker
to complete the following actions on the specified resources:

• Action: iotsitewise:DescribeAsset, iotsitewise:ListAssets,
iotsitewise:DescribeAssetModel, and iotsitewise:ListAssetModels,
iottwinmaker:GetEntity, iottwinmaker:CreateEntity,
iottwinmaker:UpdateEntity, iottwinmaker:DeleteEntity,
iottwinmaker:ListEntities, iottwinmaker:GetComponentType,
iottwinmaker:CreateComponentType, iottwinmaker:UpdateComponentType,
iottwinmaker:DeleteComponentType, iottwinmaker:ListComponentTypes on all
your iotsitewise asset and asset-model resources

{
 "Version": "2012-10-17",
 "Statement": [{
 "Sid": "SiteWiseAssetReadAccess",
 "Effect": "Allow",
 "Action": [
 "iotsitewise:DescribeAsset"
],
 "Resource": [
 "arn:aws:iotsitewise:*:*:asset/*"

AWS managed policies 265

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html

AWS IoT TwinMaker User Guide

]
 },
 {
 "Sid": "SiteWiseAssetModelReadAccess",
 "Effect": "Allow",
 "Action": [
 "iotsitewise:DescribeAssetModel"
],
 "Resource": [
 "arn:aws:iotsitewise:*:*:asset-model/*"
]
 },
 {
 "Sid": "SiteWiseAssetModelAndAssetListAccess",
 "Effect": "Allow",
 "Action": [
 "iotsitewise:ListAssets",
 "iotsitewise:ListAssetModels"
],
 "Resource": [
 "*"
]
 },
 {
 "Sid": "TwinMakerAccess",
 "Effect": "Allow",
 "Action": [
 "iottwinmaker:GetEntity",
 "iottwinmaker:CreateEntity",
 "iottwinmaker:UpdateEntity",
 "iottwinmaker:DeleteEntity",
 "iottwinmaker:ListEntities",
 "iottwinmaker:GetComponentType",
 "iottwinmaker:CreateComponentType",
 "iottwinmaker:UpdateComponentType",
 "iottwinmaker:DeleteComponentType",
 "iottwinmaker:ListComponentTypes"
],
 "Resource": [
 "arn:aws:iottwinmaker:*:*:workspace/*"
],
 "Condition": {
 "ForAnyValue:StringEquals": {
 "iottwinmaker:linkedServices": [

AWS managed policies 266

AWS IoT TwinMaker User Guide

 "IOTSITEWISE"
]
 }
 }
 }
]
}

AWS IoT TwinMaker updates to AWS managed policies

View details about updates to AWS managed policies for since this service began tracking these
changes. For automatic alerts about changes to this page, subscribe to the RSS feed on the
Document history page.

Change Description Date

AWSIoTTwinMakerSer
viceRolePolicy – Added a
policy

AWS IoT TwinMaker added
the role permissions policy
named AWSIoTTwinMakerSer
viceRolePolicy which allows
AWS IoT TwinMaker to
complete the following
actions on the specified
resources:

• Action: iotsitewi
se:DescribeAsset,
iotsitewise:ListAs
sets, iotsitewi
se:DescribeAssetMo
del, and iotsitewi
se:ListAssetModels
, iottwinma
ker:GetEntity,
iottwinmaker:Creat

November 17, 2023

AWS managed policies 267

AWS IoT TwinMaker User Guide

Change Description Date

eEntity, iottwinma
ker:UpdateEntity,
iottwinmaker:Delet
eEntity, iottwinma
ker:ListEntities,
iottwinmaker:GetCo
mponentType,
iottwinmaker:Creat
eComponentType,
iottwinmaker:Updat
eComponentType,
iottwinmaker:Delet
eComponentType,
iottwinmaker:ListC
omponentTypes on
all your iotsitewise
asset and asset-mod
el resources

For more information, see
Service-linked role permissio
ns for AWS IoT TwinMaker.

started tracking changes started tracking changes for
its AWS managed policies.

May 11, 2022

AWS IoT TwinMaker and interface VPC endpoints (AWS
PrivateLink)

You can establish a private connection between your virtual private cloud (VPC) and AWS IoT
TwinMaker by creating an interface VPC endpoint. Interface endpoints are powered by AWS
PrivateLink, which you can use to privately access AWS IoT TwinMaker APIs without an internet
gateway, network address translation (NAT) device, VPN connection, or AWS Direct Connect

VPC endpoints (AWS PrivateLink) 268

https://aws.amazon.com/privatelink
https://aws.amazon.com/privatelink

AWS IoT TwinMaker User Guide

connection. Instances in your VPC don't need public IP addresses to communicate with AWS IoT
TwinMaker APIs. Traffic between your VPC and AWS IoT TwinMaker doesn't leave the Amazon
network.

Each interface endpoint is represented by one or more Elastic Network Interfaces in your subnets.

For more information, see Interface VPC endpoints (AWS PrivateLink) in the Amazon VPC User
Guide.

Considerations for AWS IoT TwinMaker VPC endpoints

Before you set up an interface VPC endpoint for AWS IoT TwinMaker, review Interface endpoint
properties and limitations in the Amazon VPC User Guide.

AWS IoT TwinMaker supports making calls to all of its API actions from your VPC.

• For data plane API operations, use the following endpoint:

data.iottwinmaker.region.amazonaws.com

The data plane API operations include the following:

• GetPropertyValue

• GetPropertyValueHistory

• BatchPutPropertyValues

• For the control plane API operations, use the following endpoint:

api.iottwinmaker.region.amazonaws.com

The supported control plane API operations include the following:

• CreateComponentType

• CreateEntity

• CreateScene

• CreateWorkspace

• DeleteComponentType

• DeleteEntity

• DeleteScene
Considerations for AWS IoT TwinMaker VPC endpoints 269

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-eni.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html#vpce-interface-limitations
https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html#vpce-interface-limitations
https://docs.aws.amazon.com/iot-twinmaker/latest/apireference/API_GetPropertyValue.html
https://docs.aws.amazon.com/iot-twinmaker/latest/apireference/API_GetPropertyValueHistory.html
https://docs.aws.amazon.com/iot-twinmaker/latest/apireference/API_BatchPutPropertyValues.html
https://docs.aws.amazon.com/iot-twinmaker/latest/apireference/API_CreateComponentType.html
https://docs.aws.amazon.com/iot-twinmaker/latest/apireference/API_CreateEntity.html
https://docs.aws.amazon.com/iot-twinmaker/latest/apireference/API_CreateScene.html
https://docs.aws.amazon.com/iot-twinmaker/latest/apireference/API_CreateWorkspace.html
https://docs.aws.amazon.com/iot-twinmaker/latest/apireference/API_DeleteComponentType.html
https://docs.aws.amazon.com/iot-twinmaker/latest/apireference/API_DeleteEntity.html
https://docs.aws.amazon.com/iot-twinmaker/latest/apireference/API_DeleteScene.html

AWS IoT TwinMaker User Guide

• DeleteWorkspace

• GetComponentType

• GetEntity

• GetScene

• GetWorkspace

• ListComponentTypes

• ListComponentTypes

• ListEntities

• ListScenes

• ListTagsForResource

• ListWorkspaces

• TagResource

• UntagResource

• UpdateComponentType

• UpdateEntity

• UpdateScene

• UpdateWorkspace

Creating an interface VPC endpoint for AWS IoT TwinMaker

You can create a VPC endpoint for the AWS IoT TwinMaker service by using either the Amazon VPC
console or the AWS Command Line Interface (AWS CLI). For more information, see Creating an
interface endpoint in the Amazon VPC User Guide.

Create a VPC endpoint for AWS IoT TwinMaker that uses the following service name.

• For data plane API operations, use the following service name:

com.amazonaws.region.iottwinmaker.data

• For control plane API operations, use the following service name:

com.amazonaws.region.iottwinmaker.api
Creating an interface VPC endpoint for AWS IoT TwinMaker 270

https://docs.aws.amazon.com/iot-twinmaker/latest/apireference/API_DeleteWorkspace.html
https://docs.aws.amazon.com/iot-twinmaker/latest/apireference/API_GetComponentType.html
https://docs.aws.amazon.com/iot-twinmaker/latest/apireference/API_GetEntity.html
https://docs.aws.amazon.com/iot-twinmaker/latest/apireference/API_GetScene.html
https://docs.aws.amazon.com/iot-twinmaker/latest/apireference/API_GetWorkspace.html
https://docs.aws.amazon.com/iot-twinmaker/latest/apireference/API_ListComponentTypes.html
https://docs.aws.amazon.com/iot-twinmaker/latest/apireference/API_ListComponentTypes.html
https://docs.aws.amazon.com/iot-twinmaker/latest/apireference/API_ListEntities.html
https://docs.aws.amazon.com/iot-twinmaker/latest/apireference/API_ListScenes.html
https://docs.aws.amazon.com/iot-twinmaker/latest/apireference/API_ListTagsForResource.html
https://docs.aws.amazon.com/iot-twinmaker/latest/apireference/API_ListWorkspaces.html
https://docs.aws.amazon.com/iot-twinmaker/latest/apireference/API_TagResource.html
https://docs.aws.amazon.com/iot-twinmaker/latest/apireference/API_UntagResource.html
https://docs.aws.amazon.com/iot-twinmaker/latest/apireference/API_UpdateComponentType.html
https://docs.aws.amazon.com/iot-twinmaker/latest/apireference/API_UpdateEntity.html
https://docs.aws.amazon.com/iot-twinmaker/latest/apireference/API_UpdateScene.html
https://docs.aws.amazon.com/iot-twinmaker/latest/apireference/API_UpdateWorkspace.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html#create-interface-endpoint
https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html#create-interface-endpoint

AWS IoT TwinMaker User Guide

If you enable private DNS for the endpoint, you can make API requests to AWS IoT
TwinMaker by using its default DNS name for the Region, for example, iottwinmaker.us-
east-1.amazonaws.com.

For more information, see Accessing a service through an interface endpoint in the Amazon VPC
User Guide.

AWS IoT TwinMaker PrivateLink is supported in the following regions:

• us-east-1

The ControlPlane service is supported in the following availability zones: use1-az1, use1-az2,
and use1-az6.

The DataPlane service is supported in the following availability zones: use1-az1, use1-az2,
and use1-az4.

• us-west-2

The ControlPlane and DataPlane services are supported in the following availability zones:
usw2-az1, usw2-az2, and usw2-az3.

• eu-west-1

• eu-central-1

• ap-southeast-1

• ap-southeast-2

For more information on availability zones, see Availability Zone IDs for your AWS resources - AWS
Resource Access Manager.

Accessing AWS IoT TwinMaker through an interface VPC endpoint

When you create an interface endpoint, AWS IoT TwinMaker generates endpoint-specific DNS
hostnames that you can use to communicate with AWS IoT TwinMaker. The private DNS option is
enabled by default. For more information, see Using private hosted zones in the Amazon VPC User
Guide.

If you enable private DNS for the endpoint, you can make API requests to AWS IoT TwinMaker
through one of the following VPC endpoints.

Accessing AWS IoT TwinMaker through an interface VPC endpoint 271

https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html#access-service-though-endpoint
https://docs.aws.amazon.com/ram/latest/userguide/working-with-az-ids.html
https://docs.aws.amazon.com/ram/latest/userguide/working-with-az-ids.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-dns.html#vpc-private-hosted-zones

AWS IoT TwinMaker User Guide

• For the data plane API operations, use the following endpoint. Replace region with your AWS
Region.

data.iottwinmaker.region.amazonaws.com

• For the control plane API operations, use the following endpoint. Replace region with your AWS
Region.

api.iottwinmaker.region.amazonaws.com

If you disable private DNS for the endpoint, you must do the following to access AWS IoT
TwinMaker through the endpoint:

• Specify the VPC endpoint URL in API requests.

• For the data plane API operations, use the following endpoint URL. Replace vpc-endpoint-
id and region with your VPC endpoint ID and Region.

vpc-endpoint-id.data.iottwinmaker.region.vpce.amazonaws.com

• For the control plane API operations, use the following endpoint URL. Replace vpc-
endpoint-id and region with your VPC endpoint ID and Region.

vpc-endpoint-id.api.iottwinmaker.region.vpce.amazonaws.com

• Disable host prefix injection. The AWS CLI and AWS SDKs prepend the service endpoint with
various host prefixes when you call each API operation. This causes the AWS CLI and AWS SDKs
to produce invalid URLs for AWS IoT TwinMaker when you specify a VPC endpoint.

Important

You can't disable host prefix injection in AWS CLI or AWS Tools for PowerShell. This
means that if you've disabled private DNS, you won't be able to use AWS CLI or AWS
Tools for PowerShell to access AWS IoT TwinMaker through the VPC endpoint. If you
want to use these tools to access AWS IoT TwinMaker through the endpoint, enable
private DNS.

Accessing AWS IoT TwinMaker through an interface VPC endpoint 272

AWS IoT TwinMaker User Guide

For more information about how to disable host prefix injection in the AWS SDKs, see the
following documentation sections for each SDK:

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Go v2

• AWS SDK for Java

• AWS SDK for Java 2.x

• AWS SDK for JavaScript

• AWS SDK for .NET

• AWS SDK for PHP

• AWS SDK for Python (Boto3)

• AWS SDK for Ruby

For more information, see Accessing a service through an interface endpoint in the Amazon VPC
User Guide.

Creating a VPC endpoint policy for AWS IoT TwinMaker

You can attach an endpoint policy to your VPC endpoint that controls access to AWS IoT
TwinMaker. The policy specifies the following information:

• The principal that can perform actions.

• The actions that can be performed.

• The resources on which actions can be performed.

For more information, see Controlling access to services with VPC endpoints in the Amazon VPC
User Guide.

Example: VPC endpoint policy for AWS IoT TwinMaker actions

The following is an example of an endpoint policy for AWS IoT TwinMaker. When attached to
an endpoint, this policy grants access to the listed AWS IoT TwinMaker actions for the IAM user
iottwinmakeradmin in the AWS account 123456789012 on all resources.

Creating a VPC endpoint policy for AWS IoT TwinMaker 273

https://sdk.amazonaws.com/cpp/api/LATEST/struct_aws_1_1_client_1_1_client_configuration.html#a3579c1a2f2e1c9d54e99c59d27643499
https://docs.aws.amazon.com/sdk-for-go/api/aws/#Config.WithDisableEndpointHostPrefix
https://docs.aws.amazon.com/sdk-for-go/v2/api/aws/#Config
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/ClientConfiguration.html#setDisableHostPrefixInjection-boolean-
https://sdk.amazonaws.com/java/api/latest/software/amazon/awssdk/core/client/config/SdkAdvancedClientOption.html
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/Config.html#hostPrefixEnabled-property
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Runtime/TClientConfig.html
https://docs.aws.amazon.com/aws-sdk-php/v3/api/class-Aws.AwsClient.html#___construct
https://botocore.amazonaws.com/v1/documentation/api/latest/reference/config.html
https://docs.aws.amazon.com/sdk-for-ruby/v3/api/Aws/IoTSiteWise/Client.html#initialize-instance_method
https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html#access-service-though-endpoint
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints-access.html

AWS IoT TwinMaker User Guide

{
 "Statement":[
 {
 "Principal": {
 "AWS": "arn:aws:iam::123456789012:user/role"
 },
 "Resource": "*",
 "Effect":"Allow",
 "Action":[
 "iottwinmaker:CreateEntity",
 "iottwinmaker:GetScene",
 "iottwinmaker:ListEntities"
]
 }
]
}

Compliance Validation for AWS IoT TwinMaker

To learn whether an AWS service is within the scope of specific compliance programs, see AWS
services in Scope by Compliance Program and choose the compliance program that you are
interested in. For general information, see AWS Compliance Programs.

You can download third-party audit reports using AWS Artifact. For more information, see
Downloading Reports in AWS Artifact.

Your compliance responsibility when using AWS services is determined by the sensitivity of your
data, your company's compliance objectives, and applicable laws and regulations. AWS provides the
following resources to help with compliance:

• Security and Compliance Quick Start Guides – These deployment guides discuss architectural
considerations and provide steps for deploying baseline environments on AWS that are security
and compliance focused.

• Architecting for HIPAA Security and Compliance on Amazon Web Services – This whitepaper
describes how companies can use AWS to create HIPAA-eligible applications.

Compliance Validation 274

https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/programs/
https://docs.aws.amazon.com/artifact/latest/ug/downloading-documents.html
https://aws.amazon.com/quickstart/?awsf.filter-tech-category=tech-category%23security-identity-compliance
https://docs.aws.amazon.com/whitepapers/latest/architecting-hipaa-security-and-compliance-on-aws/architecting-hipaa-security-and-compliance-on-aws.html

AWS IoT TwinMaker User Guide

Note

Not all AWS services are HIPAA eligible. For more information, see the HIPAA Eligible
Services Reference.

• AWS Compliance Resources – This collection of workbooks and guides might apply to your
industry and location.

• AWS Customer Compliance Guides – Understand the shared responsibility model through the
lens of compliance. The guides summarize the best practices for securing AWS services and map
the guidance to security controls across multiple frameworks (including National Institute of
Standards and Technology (NIST), Payment Card Industry Security Standards Council (PCI), and
International Organization for Standardization (ISO)).

• Evaluating Resources with Rules in the AWS Config Developer Guide – The AWS Config service
assesses how well your resource configurations comply with internal practices, industry
guidelines, and regulations.

• AWS Security Hub – This AWS service provides a comprehensive view of your security state within
AWS. Security Hub uses security controls to evaluate your AWS resources and to check your
compliance against security industry standards and best practices. For a list of supported services
and controls, see Security Hub controls reference.

• Amazon GuardDuty – This AWS service detects potential threats to your AWS accounts,
workloads, containers, and data by monitoring your environment for suspicious and malicious
activities. GuardDuty can help you address various compliance requirements, like PCI DSS, by
meeting intrusion detection requirements mandated by certain compliance frameworks.

• AWS Audit Manager – This AWS service helps you continuously audit your AWS usage to simplify
how you manage risk and compliance with regulations and industry standards.

Resilience in AWS IoT TwinMaker

The AWS global infrastructure is built around AWS Regions and Availability Zones. AWS Regions
provide multiple physically separated and isolated Availability Zones, which are connected with
low-latency, high-throughput, and highly redundant networking. With Availability Zones, you
can design and operate applications and databases that automatically fail over between zones
without interruption. Availability Zones are more highly available, fault tolerant, and scalable than
traditional single or multiple data center infrastructures.

Resilience 275

https://aws.amazon.com/compliance/hipaa-eligible-services-reference/
https://aws.amazon.com/compliance/hipaa-eligible-services-reference/
https://aws.amazon.com/compliance/resources/
https://d1.awsstatic.com/whitepapers/compliance/AWS_Customer_Compliance_Guides.pdf
https://docs.aws.amazon.com/config/latest/developerguide/evaluate-config.html
https://docs.aws.amazon.com/securityhub/latest/userguide/what-is-securityhub.html
https://docs.aws.amazon.com/securityhub/latest/userguide/securityhub-controls-reference.html
https://docs.aws.amazon.com/guardduty/latest/ug/what-is-guardduty.html
https://docs.aws.amazon.com/audit-manager/latest/userguide/what-is.html

AWS IoT TwinMaker User Guide

For more information about AWS Regions and Availability Zones, see AWS Global Infrastructure.

In addition to the AWS global infrastructure, AWS IoT TwinMaker offers several features to help
support your data resiliency and backup needs.

Infrastructure Security in AWS IoT TwinMaker

As a managed service, AWS IoT TwinMaker is protected by the AWS global network security
procedures that are described in the Amazon Web Services: Overview of Security Processes
whitepaper.

You use AWS published API calls to access AWS IoT TwinMaker through the network. Clients must
support Transport Layer Security (TLS) 1.2 or later. We recommend TLS 1.3 or later. Clients must
also support cipher suites with perfect forward secrecy (PFS) such as Ephemeral Diffie-Hellman
(DHE) or Elliptic Curve Ephemeral Diffie-Hellman (ECDHE). Most modern systems such as Java 7
and later support these modes.

Additionally, requests must be signed by using an access key ID and a secret access key that is
associated with an IAM principal. Or you can use the AWS Security Token Service (AWS STS) to
generate temporary security credentials to sign requests.

Infrastructure Security 276

https://aws.amazon.com/about-aws/global-infrastructure/
https://d0.awsstatic.com/whitepapers/Security/AWS_Security_Whitepaper.pdf
https://docs.aws.amazon.com/STS/latest/APIReference/Welcome.html

AWS IoT TwinMaker User Guide

Endpoints and quotas

AWS IoT TwinMaker endpoints and quotas

You can find information about AWS IoT TwinMaker endpoints and quotas in the AWS General
Reference.

• For information about service endpoints, see AWS IoT TwinMaker service endpoints.

• For information about quotas, see AWS IoT TwinMaker service quotas.

• For information about API throttling limits, see AWS IoT TwinMaker API throttling limits.

Additional information about AWS IoT TwinMaker endpoints

To connect programmatically to AWS IoT TwinMaker, use an endpoint. If you use an HTTP client,
you need to prefix control plane and data plane APIs as follows. However, it is unnecessary to add
a prefix to AWS SDK and AWS Command Line Interface commands because they automatically add
the necessary prefix.

• Use the api prefix for control plane APIs. For example, api.iottwinmaker.us-
west-1.amazonaws.com.

• Use the data prefix for data plane APIs. For example, data.iottwinmaker.us-
west-1.amazonaws.com.

AWS IoT TwinMaker endpoints and quotas 277

https://docs.aws.amazon.com/general/latest/gr/iot-twinmaker
https://docs.aws.amazon.com/general/latest/gr/iot-twinmaker
https://docs.aws.amazon.com/general/latest/gr/iot-twinmaker#iot-twinmaker_region
https://docs.aws.amazon.com/general/latest/gr/iot-twinmaker#limits_iot_twinmaker
https://docs.aws.amazon.com/general/latest/gr/iot-twinmaker#limits_iot_twinmaker_throttling_lim

AWS IoT TwinMaker User Guide

Document history for the AWS IoT TwinMaker User Guide

The following table describes the documentation releases for AWS IoT TwinMaker.

Change Description Date

New service-linked role and
new IAM policy

AWS IoT TwinMaker added
a new service-linked role,
called AWSServiceRoleForI
oTTwinMaker. AWS IoT
TwinMaker added this new
service-linked role to allow
AWS IoT TwinMaker to call
other AWS services and to
sync their resources on your
behalf. The new AWSIoTTwi
nMakerServiceRolePolicy
IAM policy is attached to
this role, and the policy
grants permission to AWS
IoT TwinMaker to call other
AWS services and to sync their
resources on your behalf.

November 17, 2023

Initial release Initial release of the AWS IoT
TwinMaker User Guide

November 30, 2021

278

https://docs.aws.amazon.com/iot-twinmaker/latest/guide/using-service-linked-roles.html
https://docs.aws.amazon.com/iot-twinmaker/latest/guide/using-service-linked-roles.html

AWS IoT TwinMaker User Guide

cclxxix

	AWS IoT TwinMaker
	Table of Contents
	What is AWS IoT TwinMaker?
	How it works
	Key concepts and components
	Workspace
	Entity-component model
	Entity
	Component
	Data sources
	Property

	Visualization
	Scenes
	Resources
	Augmented user interface

	Getting started with AWS IoT TwinMaker
	Create and manage a service role for AWS IoT TwinMaker
	Assign trust
	Amazon S3 permissions
	Assign permissions to a specific Amazon S3 bucket
	Permissions for built-in connectors
	Permissions for a connector to an external data source
	Modify your workspace IAM role to use the Athena data connector

	Create a workspace
	Create your first entity
	Setting up an AWS account
	Sign up for an AWS account
	Create a user with administrative access

	Using and creating component types
	Built-in component types
	Core features of AWS IoT TwinMaker component types
	Creating property definitions
	Creating functions
	Example component types
	Alarm (abstract)
	Timestream telemetry
	Alarm (inherits from abstract alarm)
	Equipment examples
	Cookie mixer
	Water tank
	Space location

	AWS IoT TwinMaker bulk operations
	Key concepts and terminology
	AWS IoT TwinMaker metadataTransferJob functionality

	Performing bulk import and export operations
	metadataTransferJob prerequisites
	IAM permissions
	Set access control for a metadataTransferJob

	Run a bulk operation
	Error handling
	Import metadata templates
	AWS IoT TwinMaker metadataTransferJob examples

	AWS IoT TwinMaker metadata transfer job schema

	AWS IoT TwinMaker data connectors
	AWS IoT TwinMaker data connectors
	Schema initializer connector
	SchemaInitializer request interface
	SchemaInitializer response interface

	DataReaderByEntity
	DataReaderByEntity request interface
	DataReaderByEntity response interface

	DataReaderByComponentType
	DataReaderByComponentType request interface
	DataReaderByComponentType response interface

	DataReader
	DataReader request interface
	DataReader response interface

	AttributePropertyValueReaderByEntity
	AttributePropertyValueReaderByEntity request interface
	AttributePropertyValueReaderByEntity response interface

	DataWriter
	DataWriter request interface
	DataWriter response interface

	Examples

	AWS IoT TwinMaker Athena tabular data connector
	AWS IoT TwinMaker Athena data connector prerequisites
	Using the Athena data connector
	Using the Athena tabular data connector JSON reference
	Using the Athena data connector
	Troubleshooting the Athena data connector

	Visualize Athena tabular data in Grafana
	Prerequisites
	Visualize Athena tabular data in Grafana

	Developing AWS IoT TwinMaker time-series data connectors
	AWS IoT TwinMaker time-series data connector prerequisites
	Time-series data connector background
	Time-series data connector data flow

	Developing a time-series data connector
	Improving your data connector
	Handling exceptions
	Handling pagination

	Testing your connector
	Security
	Creating AWS IoT TwinMaker resources
	Integration testing

	What's next
	AWS IoT TwinMakercookie factory example time-series connector
	Example cookie factory component types
	Example Lambda

	Creating and editing AWS IoT TwinMaker scenes
	Before you create your first scene
	Optimize your resources before importing them into AWS IoT TwinMaker
	Best practices for performance in AWS IoT TwinMaker
	Learn more

	Upload resources to the AWS IoT TwinMaker Resource Library
	Upload files to the Resource Library using the console

	Create your scenes
	Use 3D navigation in your AWS IoT TwinMaker in scenes

	Add fixed cameras to entities
	Scene enhanced editing
	Targeted placement of scene objects
	Submodel selection
	Edit entities in the scene hierarchy
	Add annotations to entities
	Add overlays to Tags

	Edit your scenes
	Add models to your scenes
	Add model shader augmented UI widgets to your scene
	Create visual rules for your scenes

	Creating tags for your scenes

	3D Tiles model format
	Using 3D Tiles in your scene
	Complex model use case
	3D Tiles format
	Upload Cesium 3D tiles to AWS
	Using 3D Tiles in AWS IoT TwinMaker
	3D Tiles differences

	Dynamic scenes
	Static versus dynamic scenes
	Scene component types and entities
	Dynamic scene concepts

	Create a customized web application using AWS IoT TwinMaker UI Components
	Switch AWS IoT TwinMaker pricing modes
	AWS IoT TwinMaker knowledge graph
	AWS IoT TwinMaker knowledge graph core concepts
	How to Run AWS IoT TwinMaker knowledge graph queries
	Knowledge graph scene integration
	AWS IoT TwinMaker scene graph prerequisites
	Bind 3D nodes in your scene
	Create a web application

	How to use AWS IoT TwinMaker knowledge graph with Grafana
	AWS IoT TwinMaker query editor prerequisites
	AWS IoT TwinMaker query editor permissions
	Set up the AWS IoT TwinMaker query editor panel
	How to use the AWS IoT TwinMaker query editor

	AWS IoT TwinMaker knowledge graph additional resources

	Asset synchronization with AWS IoT SiteWise
	Using asset sync with AWS IoT SiteWise
	Using a custom workspace
	Prerequisites

	Using the IoTSiteWiseDefaultWorkspace
	Prerequisites

	Differences between custom and default workspaces
	Resources synced from AWS IoT SiteWise
	Custom and default workspaces
	Default workspace only
	Resources not synced
	Use synced entities and component types in AWS IoT TwinMaker

	Analyze sync status and errors
	Sync job statuses

	Delete a sync job
	Asset sync limits

	AWS IoT TwinMaker Grafana dashboard integration
	CORS configuration for Grafana scene viewer
	Setting up your Grafana environment
	Amazon Managed Grafana
	Amazon Managed Grafana prerequisites

	Self-managed Grafana

	Creating a dashboard IAM role
	Create an IAM policy
	Tagging your camera AWS IoT SiteWise asset request video upload from edge
	Add more permissions to your dashboard policy
	Creating the Grafana Dashboard IAM role

	Creating an AWS IoT TwinMaker video player policy
	Scope down access to your resources
	Scope down GET permissions
	Real-life use case: Grouping cameras

	Scope down AWS IoT SiteWise BatchPutAssetPropertyValue permission

	Connect AWS IoT SiteWise Alarms to AWS IoT TwinMaker Grafana dashboards
	AWS IoT SiteWise alarm configuration prerequisites
	Define the AWS IoT SiteWise alarm component IAM role
	Query and update through the AWS IoT TwinMaker API
	Configure your Grafana dashboard for alarms
	Use Grafana dashboard for alarm visualization

	AWS IoT TwinMaker Matterport integration
	Integration overview
	Matterport integration prerequisites
	Generate and record your Matterport credentials
	Store your Matterport credentials in AWS Secrets Manager
	Import Matterport spaces into AWS IoT TwinMaker scenes
	Use Matterport spaces in your AWS IoT TwinMaker Grafana dashboard
	Use Matterport spaces in your AWS IoT TwinMaker web application

	AWS IoT TwinMaker video integration
	Use the edge connector for Kinesis video stream to stream video in AWS IoT TwinMaker
	Prerequisites
	Create video components for AWS IoT TwinMaker scenes

	Add video and metadata from Kinesis video stream to a Grafana dashboard

	Using the AWS IoT TwinMaker Flink library
	Logging and monitoring in AWS IoT TwinMaker
	Monitoring AWS IoT TwinMaker with Amazon CloudWatch metrics
	Metrics

	Logging AWS IoT TwinMaker API calls with AWS CloudTrail
	AWS IoT TwinMaker information in CloudTrail

	Security in AWS IoT TwinMaker
	Data protection in AWS IoT TwinMaker
	Encryption at rest
	Encryption in transit

	Identity and Access Management for AWS IoT TwinMaker
	Audience
	Authenticating with identities
	AWS account root user
	Federated identity
	IAM users and groups
	IAM roles

	Managing access using policies
	Identity-based policies
	Resource-based policies
	Access control lists (ACLs)
	Other policy types
	Multiple policy types

	How AWS IoT TwinMaker works with IAM
	Identity-based policies for AWS IoT TwinMaker
	Identity-based policy examples for AWS IoT TwinMaker

	Resource-based policies within AWS IoT TwinMaker
	Policy actions for AWS IoT TwinMaker
	Policy resources for AWS IoT TwinMaker
	Policy condition keys for AWS IoT TwinMaker
	Access control lists (ACLs) in AWS IoT TwinMaker
	Attribute-based access control (ABAC) with AWS IoT TwinMaker
	Using Temporary credentials with AWS IoT TwinMaker
	Cross-service principal permissions for AWS IoT TwinMaker
	Service roles for AWS IoT TwinMaker
	Service-linked roles for AWS IoT TwinMaker

	Identity-based policy examples for AWS IoT TwinMaker
	Policy best practices
	Using the AWS IoT TwinMaker console
	Allow users to view their own permissions

	Troubleshooting AWS IoT TwinMaker identity and access
	I am not authorized to perform an action in AWS IoT TwinMaker
	I am not authorized to perform iam:PassRole
	I want to allow people outside of my AWS account to access my AWS IoT TwinMaker resources

	Using service-linked roles for AWS IoT TwinMaker
	Service-linked role permissions for AWS IoT TwinMaker
	Creating a service-linked role for AWS IoT TwinMaker
	Editing a service-linked role for AWS IoT TwinMaker
	Deleting a service-linked role for AWS IoT TwinMaker
	Supported Regions for AWS IoT TwinMaker service-linked roles

	AWS managed policies for AWS IoT TwinMaker
	AWS managed policy: AWSIoTTwinMakerServiceRolePolicy
	AWS IoT TwinMaker updates to AWS managed policies

	AWS IoT TwinMaker and interface VPC endpoints (AWS PrivateLink)
	Considerations for AWS IoT TwinMaker VPC endpoints
	Creating an interface VPC endpoint for AWS IoT TwinMaker
	Accessing AWS IoT TwinMaker through an interface VPC endpoint
	Creating a VPC endpoint policy for AWS IoT TwinMaker

	Compliance Validation for AWS IoT TwinMaker
	Resilience in AWS IoT TwinMaker
	Infrastructure Security in AWS IoT TwinMaker

	Endpoints and quotas
	AWS IoT TwinMaker endpoints and quotas
	Additional information about AWS IoT TwinMaker endpoints

	Document history for the AWS IoT TwinMaker User Guide
	

