
User Guide

AWS Mainframe Modernization

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

AWS Mainframe Modernization User Guide

AWS Mainframe Modernization: User Guide

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

AWS Mainframe Modernization User Guide

Table of Contents

What is AWS Mainframe Modernization .. 1
Features of AWS Mainframe Modernization ... 2
Patterns ... 3
How to get started with AWS Mainframe Modernization .. 3
Related services .. 4
Accessing AWS Mainframe Modernization .. 5
Are you a first-time AWS Mainframe Modernization user? .. 5
Pricing for AWS Mainframe Modernization .. 5

Set up for AWS Mainframe Modernization .. 6
Sign up for an AWS account .. 6
Create a user with administrative access .. 6

Concepts ... 9
Application ... 9
Application definition .. 9
Batch job .. 10
Configuration .. 11
Data set .. 11
Environment .. 11
Mainframe modernization .. 11
Migration journey ... 11
Mount point ... 11
Automated Refactoring ... 11
Replatforming ... 12
Resource ... 12
Runtime engine .. 12

Modernization approach ... 13
Assess phase .. 13
Mobilize phase .. 13
Migrate and modernize phase ... 14
Operate and optimize phase ... 14

Get started ... 15
Tutorial: Set up managed runtime for AWS Blu Age .. 15

Prerequisites ... 16
Step 1: Upload the demo application .. 16

iii

AWS Mainframe Modernization User Guide

Step 2: Create the application definition .. 16
Step 3: Create a runtime environment .. 17
Step 4: Create an application ... 22
Step 5: Deploy an application .. 24
Step 6: Start an application ... 27
Step 7: Access the application ... 27
Step 8: Test the application ... 28
Clean up resources ... 30

Tutorial: Set up managed runtime for Micro Focus .. 30
Prerequisites ... 31
Step 1: Create and load an Amazon S3 bucket .. 31
Step 2: Create and configure a database .. 32
Step 3: Create and configure an AWS KMS key ... 35
Step 4: Create and configure an AWS Secrets Manager database secret 36
Step 5: Create a runtime environment .. 37
Step 6: Create an application ... 43
Step 7: Deploy an application .. 49
Step 8: Import data sets ... 51
Step 9: Start an application ... 57
Step 10: Connect to the CardDemo CICS application ... 58
Clean up resources ... 65
Next steps ... 66

Components lifecycle .. 67
Components lifecycle overview ... 67
Version upgrade ... 68
AWS Mainframe Modernization Refactor with AWS Blu Age release overview 69

AWS Blu Age Refactoring .. 71
AWS Blu Age release notes .. 72

Release notes 4.2.0 .. 73
Runtime release 4.2.0 .. 75
Modernization tools release 4.2.0 ... 78
Release notes 4.1.0 .. 80
Runtime release 4.1.0 .. 81
Modernization tools release 4.1.0 ... 85
Release notes 4.0.0 .. 87
Runtime release 4.0.0 .. 88

iv

AWS Mainframe Modernization User Guide

Modernization tools release 4.0.0 ... 93
Release notes 3.10.0 .. 96
Runtime release 3.10.0 .. 96
Modernization tools release 3.10.0 ... 98
Release notes 3.9.0 .. 100
Runtime release 3.9.0 .. 100
Modernization tools release 3.9.0 ... 105
Release notes 3.8.0 .. 108
Runtime release 3.8.0 .. 108
Modernization tools release 3.8.0 ... 111
Release notes 3.7.0 .. 114
Runtime release 3.7.0 .. 114
Modernization tools release 3.7.0 ... 116
Release notes 3.6.0 ... 119
Runtime release 3.6.0 .. 119
Modernization tools release 3.6.0 ... 122
Release notes 3.5.0 .. 124
Runtime release 3.5.0 .. 125
Modernization tools release 3.5.0 ... 128

Upgrading AWS Blu Age .. 130
Migrating from 3.10.0 to 4.0.0 .. 130

AWS Blu Age Runtime concepts ... 132
High level architecture .. 133
Modernized application structure ... 137
Understand data simplifiers ... 172
AWS Blu Age Blusam ... 180
Blusam Administration Console .. 199

AWS Blu Age Runtime configuration ... 234
Application configuration basics ... 235
Application precedence ... 237
JNDI for databases ... 237
AWS Blu Age Runtime secrets ... 238
Other files (groovy, sql, etc.) .. 249
Additional web application ... 250
Enable properties ... 251
Available Redis cache properties ... 303

v

AWS Mainframe Modernization User Guide

Configure security for Gapwalk applications .. 319
AWS Blu Age Runtime APIs ... 335

Endpoints for building URLs .. 335
Endpoints for Gapwalk application .. 336
Blusam application console REST endpoints .. 355
Manage JICS application console .. 377
Data structures .. 398

Set up AWS Blu Age Runtime (non-managed) ... 407
AWS Blu Age Runtime prerequisites .. 407
Onboarding AWS Blu Age Runtime .. 408
Infrastructure setup requirements .. 413
Deploy AWS Blu Age Runtime on Amazon ECS ... 420
Deploy AWS Blu Age Runtime on Amazon EC2 ... 428
Test the PlanetsDemo application .. 442

Modify the source code with Blu Age Developer IDE ... 446
Tutorial: Set up AppStream 2.0 for AWS Blu Age Developer IDE ... 446
Tutorial: Use AWS Blu Age Developer on AppStream 2.0 .. 451

Micro Focus Replatforming ... 468
Set up Micro Focus Runtime (on Amazon EC2) ... 468

Micro Focus Runtime (on Amazon EC2) prerequisites ... 469
Create the Amazon VPC endpoint for Amazon S3 .. 469
Request the allowlist update for the account .. 471
Create the AWS Identity and Access Management role ... 472
Grant License Manager the required permissions ... 479
Subscribe to the Amazon Machine Images ... 480
Launch a Micro Focus instance .. 484
Subnet or VPC with no internet access ... 490

Set up AppStream 2.0 Automation ... 497
Set up automation at session start .. 497
Set up automation at session end .. 498

View data sets as tables in Enterprise Developer ... 498
Prerequisites .. 499
Step 1: Set up ODBC Connection to Micro Focus datastore (Amazon RDS database) 499
Step 2: Create the MFDBFH.cfg file .. 501
Step 3: Create a structure (STR) file for your copybook layout .. 502
Step 4: Create a database view using the structure (STR) file .. 505

vi

AWS Mainframe Modernization User Guide

Step 5: View Micro Focus data sets as tables and columns ... 505
Tutorials for Micro Focus .. 506

Tutorial: Set up the build for the BankDemo sample application .. 507
Tutorial: Set up CI/CD pipeline with Micro Focus Enterprise Developer 517
Tutorial: Set up AppStream 2.0 for Enterprise Analyzer and Enterprise Developer 542
Tutorial: Use templates with Enterprise Developer ... 551
Tutorial: Set up Enterprise Analyzer ... 562
Tutorial: Set up Enterprise Developer .. 573

Batch utilities .. 578
Binary Location ... 579
M2SFTP batch utility ... 579
M2WAIT batch utility ... 586
TXT2PDF batch utility ... 588
M2DFUTIL batch utility ... 594
M2RUNCMD batch utility .. 601

Data replication with Precisely ... 605
Prerequisites .. 605
Subscribe to the Amazon Machine Image .. 605
Launch AWS Mainframe Modernization data replication with Precisely 606
Create an IAM policy ... 607
Create an IAM role .. 608
Attach the IAM role to the Amazon EC2 instance .. 608

Assembler Conversion with mLogica ... 609
What is Assembler Conversion with mLogica .. 609

Code conversion compliers ... 610
Code conversion architecture ... 610
Automation approach .. 611
Security ... 611
Additional resources ... 611

Understand Code conversion billing .. 611
Code conversion billing and scope ... 611

Code conversion concepts .. 614
Macro Handling ... 614
Code pages (EBCDIC vs ASCII) ... 614
CodeBuild ... 614

Understand components and process ... 615

vii

AWS Mainframe Modernization User Guide

AWS Mainframe Modernization container ... 615
S3 project bucket ... 616
Log file locations .. 616
Process overview ... 616

Tutorial: Convert code from Assembler to COBOL ... 617
Prerequisites .. 618
Step 1: Share the build assets with AWS account ... 618
Step 2: Create Amazon S3 buckets .. 618
Step 3: Create IAM policy ... 619
Step 4: Create an IAM role ... 621
Step 5: Attach the IAM policy to the IAM role ... 622
Step 6: Create the CodeBuild project .. 622
Step 7: Define the project and upload the source code ... 628
Step 8: Run the analysis and understand the reports .. 629
Step 9: Run the Code conversion .. 631
Step 10: Verify the Code conversion .. 635
Step 11: Download converted code ... 636
Clean up resources ... 636

Charon integration .. 637
Introduction to Charon-SSP .. 637
Supported guest operating systems .. 639
Charon-SSP cloud instance prerequisites ... 639
Instance prerequisites ... 641
Creating and configuring an AWS cloud instance for Charon (New GUI) 642

General prerequisites ... 642
Using the AWS Management Console to launch a new instance .. 643

Replatforming with NTT DATA ... 649
Prerequisites .. 649
Subscribe to the Amazon Machine Image .. 649
Launch AWS Mainframe Modernization replatform with NTT DATA instance 650
Getting started with NTT Data ... 650

Managed applications ... 653
Create AWS resources for a migrated application .. 654

Required permissions ... 654
Amazon S3 bucket ... 654
Database ... 655

viii

AWS Mainframe Modernization User Guide

AWS Key Management Service key .. 656
AWS Secrets Manager secret .. 656

Create an application .. 657
Create an application ... 657

Deploy an application ... 658
Deploy an application .. 658

Update an application .. 659
Update an application ... 659

Delete an application .. 660
Delete an application ... 660

Submit batch jobs for applications .. 661
Submit a batch job .. 661
Restart a batch job .. 662

Cancel batch jobs for applications ... 663
Cancel a batch job ... 663

Import data sets for applications ... 664
Import a data set ... 664

Manage transactions for applications ... 665
Manage transactions for applications .. 665

Configure the managed application .. 666
Structure of AWS Blu Age managed applications ... 667
Configure access to utilities for managed applications .. 668
Configure additional properties for managed application ... 679

Application definition reference ... 700
General header section ... 701
Definition section overview .. 702
AWS Blu Age application definition sample ... 702
AWS Blu Age definition details ... 703
Micro Focus application definition .. 709
Micro Focus definition details .. 710

Data set definition reference .. 718
Common properties ... 719
Sample data set request format for VSAM ... 720
Sample data set request format for GDG base .. 723
Sample data set request format for PS or GDG generations .. 723
Sample data set request format for PO .. 725

ix

AWS Mainframe Modernization User Guide

Managed runtime environments .. 727
Create a runtime environment .. 727

Create a runtime environment .. 728
Update a runtime environment .. 730

Update a runtime environment ... 730
Maintenance window ... 731

Stop a runtime environment ... 732
Stop a runtime environment ... 733

Restart a runtime environment .. 734
Restart a runtime environment ... 734

Delete a runtime environment .. 734
Delete a runtime environment .. 735

Application Testing .. 736
What is Application Testing ... 736

Are you a first-time Application Testing user? ... 737
Benefits of Application Testing ... 737
Integration with AWS CloudFormation .. 738
How Application Testing works ... 738
Related services ... 4
Accessing Application Testing .. 740
Pricing for Application Testing .. 740

Application Testing concepts ... 740
Test case ... 741
Test suite .. 742
Test environment configuration .. 742
Upload ... 742
Replay .. 742
Compare ... 743
Database comparisons ... 743
Dataset comparisons .. 743
Comparison status .. 744
Equivalence rules .. 744
Final-state data set comparison .. 745
State-progress database comparisons ... 745
Functional equivalence (FE) .. 745
Online 3270 screen comparisons .. 745

x

AWS Mainframe Modernization User Guide

Replay data .. 745
Reference data .. 746
Upload, Replay, and Compare ... 746
Differences .. 747
Equivalencies ... 747
Source application .. 747
Target application ... 747

Application Testing prerequisites ... 747
Console workflows in Application Testing .. 748

Create test cases in Application Testing .. 748
Create test suites in Application Testing ... 751
Create test environment configurations in Application Testing .. 753

Tutorial: Set up CardDemo application in Application Testing ... 755
Prerequisites .. 755
Step 1: Prepare to set up CardDemo ... 755
Step 2: Create all necessary resources ... 756
Step 3: Deploy and start the application .. 757
Step 4: Import initial data .. 757
Step 5: Connect to the CardDemo application .. 758

Tutorial: Replay and compare on AWS Blu Age using CardDemo .. 759
Step 1: Obtain AWS Blu Age Amazon EC2 Amazon Machine Image (AMI) 759
Step 2: Start an Amazon EC2 instance using the AWS Blu Age AMI .. 759
Step 3: Upload CardDemo dependent files to S3 ... 761
Step 4: Load databases and initialize the CardDemo application .. 761
Step 5: Launch AWS Blu Age runtime CloudFormation ... 764
Step 6: Testing the AWS Blu Age Amazon EC2 instance .. 766
Step 7: Validate previous steps were completed correctly .. 767
Step 8: Create the test case ... 768
Step 9: Create a test suite .. 768
Step 10: Create a test environment configuration .. 769
Step 11: Upload your input data in test suite .. 769
Step 12: Replay and compare .. 770

Supported data sets code pages in Application Testing .. 770
Data protection in Application Testing ... 781

Data collected by the AWS Mainframe Modernization Application Testing 782
Data encryption at rest for the AWS Mainframe Modernization Application Testing 783

xi

AWS Mainframe Modernization User Guide

Create a customer managed key .. 784
Specifying a customer managed key for AWS Mainframe Modernization Application
Testing ... 785
AWS Mainframe Modernization Application Testing encryption context 785
Monitoring your encryption keys .. 786
Encryption in transit .. 786

File Transfer ... 787
What is File Transfer ... 787

Benefits of AWS Mainframe Modernization File Transfer .. 787
How AWS Mainframe Modernization File Transfer works .. 788

Install a File Transfer agent ... 789
Step 1: Create a zFS data set for the M2-agent .. 790
Step 2: Format the data set as zFS .. 790
Step 3: Mount the filesystem .. 790
Step 4: Verify the mount .. 790
Step 5: Enter OMVS ... 790
Step 6: Set the agent installation directory environment variable .. 791
Step 7: Set the work directory environment variable ... 791
Step 8: Create the work directory .. 791
Step 9: Copy the agent tar file and copy the work directory .. 791
Step 10: Assume the root user .. 791
Step 11: Finish the agent installation .. 792

Configure a File Transfer agent .. 793
Step 1: Configure permissions and Started Task Control (STC) .. 793
Step 2: Create Amazon S3 buckets .. 794
Step 3: Create an AWS KMS customer managed key for encryption 794
Step 4: Create an AWS Secrets Manager secret for the mainframe credentials 795
Step 5: Create an IAM policy ... 796
Step 6: Create an IAM user with long-term access credentials ... 798
Step 7: Create an IAM role for the agent to assume .. 798
Step 8: Agent configuration ... 799

Create data transfer endpoints ... 802
Create data transfer endpoints ... 802

Create transfer tasks ... 804
Create transfer tasks .. 804
View transfer tasks ... 807

xii

AWS Mainframe Modernization User Guide

Tutorial: Getting started with File Transfer .. 807
Overview ... 807
Step 1: Transfer the agent binaries tar package from AWS to the mainframe logical
partition .. 808
Step 2: Configure the File Transfer agent on the source mainframe 808
Step 3: Create a data transfer endpoint ... 808
Step 4: Create a transfer task .. 808
Step 5: View transfer task progress ... 809

Supported source and target code pages .. 809
Mainframe data set types ... 809
Supported code pages .. 809

Security .. 811
Data protection .. 812

Data that AWS Mainframe Modernization collects .. 813
Data encryption at rest for AWS Mainframe Modernization service .. 814
How AWS Mainframe Modernization uses grants in AWS KMS .. 816
Create a customer managed key .. 818
Specifying a customer managed key for AWS Mainframe Modernization 820
AWS Mainframe Modernization encryption context ... 821
Monitoring your encryption keys .. 822
Learn more ... 837
Encryption in transit .. 837

Identity and Access Management .. 838
Audience ... 838
Authenticating with identities ... 839
Managing access using policies ... 842
How AWS Mainframe Modernization works with IAM .. 845
Identity-based policy examples ... 857
Troubleshooting .. 860
Using service-linked roles ... 862

Compliance validation .. 865
Resilience ... 866
Infrastructure security ... 866
AWS PrivateLink ... 867

Considerations ... 867
Create an interface endpoint ... 867

xiii

AWS Mainframe Modernization User Guide

Create an endpoint policy .. 868
Monitoring ... 870

Monitoring with CloudWatch .. 870
Runtime Environment Metrics ... 871
Application Metrics ... 872
Dimensions ... 876

Logging API calls with CloudTrail .. 876
AWS Mainframe Modernization information in CloudTrail .. 876
Understanding AWS Mainframe Modernization log file entries .. 877

Troubleshooting in M2 .. 880
Troubleshooting error: Time out while waiting for data set name to be unlocked 880

Common cause .. 881
Resolution ... 881
Force the lock to release .. 881
Configure the Blusam auto repairing mechanism ... 882
Blusam locks manager .. 883

Troubleshooting error: Cannot access an application URL .. 883
Common cause .. 884
Resolution ... 884

Troubleshooting: AWS Blu Insights does not open from the console ... 885
Common cause .. 885
Resolution ... 885

Troubleshooting error: Environment unhealthy .. 886
Common cause .. 886
Resolution ... 886

Troubleshooting license issues for Micro Focus ... 887
Verify the Amazon EC2 instance has the IAM licensing role ... 887
Use the reachability analyzer ... 888
Run the license-daemon ... 888
License issues with Enterprise Server or Enterprise Build Tools on Linux after OS
patching .. 889

Document history .. 891

xiv

AWS Mainframe Modernization User Guide

What is AWS Mainframe Modernization?

AWS Mainframe Modernization helps you modernize your mainframe applications to AWS
managed runtime environments. It provides tools and resources to help you plan and implement
migration and modernization. You can analyze your existing mainframe applications, develop
or update them using COBOL or PL/I, and implement an automated pipeline for continuous
integration and continuous delivery (CI/CD) of the applications. You can choose between
automated refactoring and replatforming patterns, depending on your clients' needs. If you are
a consultant helping a client migrate their mainframe workloads, you can use AWS Mainframe
Modernization tools for all phases of the migration and modernization journey, from initial
planning to post-migration cloud operations.

You can use AWS Mainframe Modernization to help you efficiently create and manage the runtime
environment on AWS for your mainframe applications, as well as to manage and monitor your
modernized applications.

Topics

• Features of AWS Mainframe Modernization

• Patterns

• How to get started with AWS Mainframe Modernization

• Related services

• Accessing AWS Mainframe Modernization

• Are you a first-time AWS Mainframe Modernization user?

• Pricing for AWS Mainframe Modernization

Note

Have you engaged with AWS Mainframe Migration Competency Partners or AWS
Professional Services for your mainframe modernization project? If not, we highly
recommend that you engage experts for your project.

• AWS Mainframe Modernization Competency Partners

• AWS Professional Services

1

https://aws.amazon.com/mainframe/partner-solutions/
https://aws.amazon.com/professional-services/

AWS Mainframe Modernization User Guide

The features and use cases of AWS Mainframe Modernization support an evolutionary
modernization approach, which provides short-term wins by improving agility and plenty of
opportunities to optimize and innovate later on. For more information, see Modernization
approach.

Features of AWS Mainframe Modernization

AWS Mainframe Modernization features support the following use cases:

• Assess: AWS Mainframe Modernization's assessment capability can help you assess, scope, and
plan a migration and modernization project.

• Refactor: powered by AWS Blu Age, you can use refactoring to convert legacy application
programming languages, to create macroservices or microservices, and to modernize user
interfaces (UIs) and application software stacks.

AWS Blu Insights is now available from the AWS Management Console through single sign-on.
You do not have to manage separate AWS Blu Insights credentials any longer. You can access
both the AWS AWS Blu Age Codebase and Transformation Center features directly from the AWS
Management Console.

• Replatform: powered by the Micro Focus Enterprise solution, you can port the application where
much of the application source code is recompiled without changes.

• Developer IDE: AWS Mainframe Modernization offers an on-demand integrated development
environment (IDE) so developers can write code quicker with smart editing and debugging,
instant code compilation, and unit testing.

• Managed runtime: The AWS Mainframe Modernization managed runtime environment
continually monitors your clusters to keep enterprise workloads running with self-healing
compute and automated scaling.

• Continuous integration and delivery (CI/CD): AWS Mainframe Modernization's CI/CD feature
helps application development teams deliver code changes more frequently and reliably, which
accelerates migration speed, increases quality, and helps reduce time-to-market for releasing
new business functions.

• Integrations with other AWS services: AWS Mainframe Modernization supports AWS
CloudFormation, AWS PrivateLink, and AWS Key Management Service for repeatable deployment
and greater security and compliance.

Features of AWS Mainframe Modernization 2

AWS Mainframe Modernization User Guide

• Expanded availability: AWS Mainframe Modernization is now available in US East (Ohio), US West
(N. California), Asia Pacific (Mumbai), Asia Pacific (Seoul), Asia Pacific (Singapore), Asia Pacific
(Tokyo), Europe (London), and Europe (Paris).

For more information on AWS Mainframe Modernization features, see https://aws.amazon.com/
mainframe-modernization/features/.

Patterns

The Automated Refactoring pattern, powered by AWS Blu Age, is focused on accelerating
modernization by converting the complete legacy application stack and its data layer into a
modern Java-based application while preserving functional equivalence. During this automated
transformation, it creates a multi-tier application with an Angular-based front-end, an API-enabled
Java backend and a data layer accessing modern data stores. The refactoring process provides
equivalent functionality to the legacy stack to increase project automation resulting in speed,
quality, and lower cost for achieving business benefits quicker. For more information, see AWS
Mainframe Modernization Automated Refactor.

The Replatforming pattern, powered by Micro Focus Enterprise suite, is focused on preserving
the application language, code, and artifacts in order to minimize the impact to the application
assets and teams. It helps customers maintain the application knowledge and skills. While the
application changes are limited, this pattern also facilitates a modernization of the infrastructure
and the processes. The infrastructure is changed to a modern cloud-based managed service while
the processes are changed to follow best practices for application development and IT operations.
For more information, see AWS Mainframe Modernization Replatform.

How to get started with AWS Mainframe Modernization

Try it! We offer tutorials and sample applications to help you get a sense of what AWS Mainframe
Modernization offers. Choose either the Tutorial: Set up managed runtime for AWS Blu Age or the
Tutorial: Set up managed runtime for Micro Focus for a complete, step-by-step tutorial.

If you are interested in automated refactoring, check out the AWS Blu Age tools at BluInsights.
You can also set up AppStream 2.0 to access the AWS Blu Age Developer IDE, or the Micro Focus
Enterprise Analyzer and Micro Focus Enterprise Developer tools.

Patterns 3

https://aws.amazon.com/mainframe-modernization/features/
https://aws.amazon.com/mainframe-modernization/features/
https://aws.amazon.com/mainframe-modernization/patterns/refactor/?mainframe-blogs.sort-by=item.additionalFields.createdDate&mainframe-blogs.sort-order=desc
https://aws.amazon.com/mainframe-modernization/patterns/refactor/?mainframe-blogs.sort-by=item.additionalFields.createdDate&mainframe-blogs.sort-order=desc
https://aws.amazon.com/mainframe-modernization/patterns/replatform/
https://bluinsights.aws/

AWS Mainframe Modernization User Guide

The tutorials and sample applications only give you a sense of what AWS Mainframe Modernization
provides. When you are ready to start a modernization project, see Modernization approach for
details about the stages and tasks of a modernization project.

The following diagram shows the workflow of the AWS Mainframe Modernization service to
analyze, transform, develop, test, and deploy and operate mainframe applications.

Related services

In addition to Blu Insights for automated refactoring, you can use the following AWS services with
AWS Mainframe Modernization.

• Amazon RDS for hosting your migrated databases

• Amazon S3 for storing application binaries and definition files

• Amazon FSx or Amazon EFS for storing application data

• Amazon AppStream for access to the Micro Focus Enterprise Analyzer and Micro Focus Enterprise
Developer tools

• AWS CloudFormation for the automated DevOps pipeline that you can use to set up CI/CD for
your migrated applications

• AWS Migration Hub

• AWS DMS for migrating your databases

Related services 4

AWS Mainframe Modernization User Guide

Accessing AWS Mainframe Modernization

Currently, you can access AWS Mainframe Modernization through the console at https://
console.aws.amazon.com/m2/. For a list of regions where AWS Mainframe Modernization is
available, see AWS Mainframe Modernization endpoints and quotas in the Amazon Web Services
General Reference.

Are you a first-time AWS Mainframe Modernization user?

If you are a first-time user of AWS Mainframe Modernization, we recommend that you begin by
reading the following sections:

• Get started with AWS Mainframe Modernization

• Set up for AWS Mainframe Modernization

Pricing for AWS Mainframe Modernization

AWS Mainframe Modernization charges for the usage of instances supporting the managed
runtime environments. In addition, AWS Mainframe Modernization offers some tools without
additional charges. You are responsible for fees incurred for other AWS services that you use in
connection with AWS Mainframe Modernization. AWS will provide 30 days' notice before any
pricing changes take effect for use of AWS Mainframe Modernization. For more information, see
Mainframe Modernization with AWS.

With AWS Blu Insights, you pay for Transformation Center usage. For more information, see AWS
Mainframe Modernization pricing.

Accessing AWS Mainframe Modernization 5

https://console.aws.amazon.com/m2/
https://console.aws.amazon.com/m2/
https://docs.aws.amazon.com/general/latest/gr/m2.html
https://aws.amazon.com/mainframe/
https://aws.amazon.com/mainframe-modernization/pricing/
https://aws.amazon.com/mainframe-modernization/pricing/

AWS Mainframe Modernization User Guide

Set up for AWS Mainframe Modernization

Before you can start using AWS Mainframe Modernization you or your administrator need to sign
up for an AWS account, create user with administrative settings, and secure your IAM users.

Topics

• Sign up for an AWS account

• Create a user with administrative access

Sign up for an AWS account

If you do not have an AWS account, complete the following steps to create one.

To sign up for an AWS account

1. Open https://portal.aws.amazon.com/billing/signup.

2. Follow the online instructions.

Part of the sign-up procedure involves receiving a phone call and entering a verification code
on the phone keypad.

When you sign up for an AWS account, an AWS account root user is created. The root user
has access to all AWS services and resources in the account. As a security best practice, assign
administrative access to a user, and use only the root user to perform tasks that require root
user access.

AWS sends you a confirmation email after the sign-up process is complete. At any time, you can
view your current account activity and manage your account by going to https://aws.amazon.com/
and choosing My Account.

Create a user with administrative access

After you sign up for an AWS account, secure your AWS account root user, enable AWS IAM Identity
Center, and create an administrative user so that you don't use the root user for everyday tasks.

Sign up for an AWS account 6

https://portal.aws.amazon.com/billing/signup
https://docs.aws.amazon.com/accounts/latest/reference/root-user-tasks.html
https://docs.aws.amazon.com/accounts/latest/reference/root-user-tasks.html
https://aws.amazon.com/

AWS Mainframe Modernization User Guide

Secure your AWS account root user

1. Sign in to the AWS Management Console as the account owner by choosing Root user and
entering your AWS account email address. On the next page, enter your password.

For help signing in by using root user, see Signing in as the root user in the AWS Sign-In User
Guide.

2. Turn on multi-factor authentication (MFA) for your root user.

For instructions, see Enable a virtual MFA device for your AWS account root user (console) in
the IAM User Guide.

Create a user with administrative access

1. Enable IAM Identity Center.

For instructions, see Enabling AWS IAM Identity Center in the AWS IAM Identity Center User
Guide.

2. In IAM Identity Center, grant administrative access to a user.

For a tutorial about using the IAM Identity Center directory as your identity source, see
Configure user access with the default IAM Identity Center directory in the AWS IAM Identity
Center User Guide.

Sign in as the user with administrative access

• To sign in with your IAM Identity Center user, use the sign-in URL that was sent to your email
address when you created the IAM Identity Center user.

For help signing in using an IAM Identity Center user, see Signing in to the AWS access portal in
the AWS Sign-In User Guide.

Assign access to additional users

1. In IAM Identity Center, create a permission set that follows the best practice of applying least-
privilege permissions.

For instructions, see Create a permission set in the AWS IAM Identity Center User Guide.

Create a user with administrative access 7

https://console.aws.amazon.com/
https://docs.aws.amazon.com/signin/latest/userguide/console-sign-in-tutorials.html#introduction-to-root-user-sign-in-tutorial
https://docs.aws.amazon.com/IAM/latest/UserGuide/enable-virt-mfa-for-root.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/get-set-up-for-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html
https://docs.aws.amazon.com/signin/latest/userguide/iam-id-center-sign-in-tutorial.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/get-started-create-a-permission-set.html

AWS Mainframe Modernization User Guide

2. Assign users to a group, and then assign single sign-on access to the group.

For instructions, see Add groups in the AWS IAM Identity Center User Guide.

Create a user with administrative access 8

https://docs.aws.amazon.com/singlesignon/latest/userguide/addgroups.html

AWS Mainframe Modernization User Guide

AWS Mainframe Modernization Concepts

AWS Mainframe Modernization provides tools and resources to help you migrate, modernize,
and run mainframe workloads on AWS. You can use this page to understand about various
concepts in AWS Mainframe Modernization including applications, modernization, environments,
replatforming, refactoring, and runtime engines.

Topics

• Application

• Application definition

• Batch job

• Configuration

• Data set

• Environment

• Mainframe modernization

• Migration journey

• Mount point

• Automated Refactoring

• Replatforming

• Resource

• Runtime engine

Application

A running mainframe workload in AWS Mainframe Modernization. A set of batch jobs, interactive
transactions (CICS or IMS), or other components comprise an application. You define the scope.
You must define and specify any components or resources that the workload needs, such as CICS
transactions or batch jobs.

Application definition

The definition or specification of the components and resources needed by an application
(mainframe workload) running in AWS Mainframe Modernization. Separating the definition from

Application 9

AWS Mainframe Modernization User Guide

the application itself is important because it is possible to reuse the same definition for multiple
stages (Pre-production, Production), represented by different runtime environments.

Batch job

A scheduled program that is configured to run without requiring user interaction. In AWS
Mainframe Modernization, you will need to store both batch job JCL files and batch job binaries in
an Amazon S3 bucket, and provide the location of both in the application definition file. When you
run a batch job, AWS Mainframe Modernization reports the following status values:

Submitting

The batch job is in the process of being submitted.

Holding

The batch job is on hold.

Dispatching

The batch job is in the process of being dispatched.

Running

The batch job is currently running.

Cancelling

The batch job is in the process of being cancelled.

Cancelled

The batch job is cancelled.

Succeeded

The batch job finished running successfully.

Failed

The batch job failed.

Succeeded With Warning

The batch job finished running successfully with a minor error reported. The job condition code
returned as part of the GetBatchJobExecution response indicates the cause of the error.

Batch job 10

AWS Mainframe Modernization User Guide

Configuration

The characteristics of an environment or application. Environment configurations consist of engine
type, engine version, availability patterns, optional file system configurations, and more.

Application configurations can be static or dynamic. Static configurations change only when you
update an application by deploying a new version. Dynamic configurations, which are usually an
operational activity such as turning tracing on or off, change as soon as you update them.

Data set

A file containing data for use by applications.

Environment

A named combination of AWS compute resources, a runtime engine, and configuration details
created to host one or more applications.

Mainframe modernization

The process of migrating applications from a legacy mainframe environment to AWS.

Migration journey

The end-to-end process of migrating and modernizing legacy applications, typically made of the
following phases: Assess, Mobilize, Migrate and modernize, and Operate and optimize.

Mount point

A directory in a file system that provides access to the files stored within that system.

Automated Refactoring

The process of modernizing legacy application artifacts for running in a modern cloud
environment. It can include code and data conversion. For more information, see AWS Mainframe
Modernization Automated Refactor.

Configuration 11

https://aws.amazon.com/mainframe-modernization/patterns/refactor/?mainframe-blogs.sort-by=item.additionalFields.createdDate&mainframe-blogs.sort-order=desc
https://aws.amazon.com/mainframe-modernization/patterns/refactor/?mainframe-blogs.sort-by=item.additionalFields.createdDate&mainframe-blogs.sort-order=desc

AWS Mainframe Modernization User Guide

Replatforming

The process of moving an application and application artifacts from one computing platform
to a different computing platform. For more information, see AWS Mainframe Modernization
Replatform.

Resource

A physical or virtual component within a computer system.

Runtime engine

Software that facilitates the running of an application.

Replatforming 12

https://aws.amazon.com/mainframe-modernization/patterns/replatform/
https://aws.amazon.com/mainframe-modernization/patterns/replatform/

AWS Mainframe Modernization User Guide

Modernization approach
Migration is complex and has many variables. AWS Mainframe Modernization offers an
evolutionary approach that provides some short-term wins by improving agility with plenty of
opportunities to optimize and innovate later on. In addition, AWS Mainframe Modernization helps
simplify the journey and still respects the particulars of your client’s company and business. The
two main approaches that AWS Mainframe Modernization supports are automated refactoring or
replatforming. Which to choose depends on your client’s situation.

Automated refactoring uses AWS Blu Age tools to automatically convert code, data, and
dependencies to modern language, datastore, and frameworks, while at the same time
guaranteeing functional equivalence with the same business functions.

Replatforming uses Micro Focus tools to transform mainframe workloads into agile services on
AWS.

You can think of the modernization journey in stages. The first stage includes three phases: assess,
mobilize, and migrate and modernize. The next stage includes the operate and optimize phase,
where you can identify more opportunities for innovation.

Topics

• Assess phase

• Mobilize phase

• Migrate and modernize phase

• Operate and optimize phase

Assess phase

At the highest level, the Assess phase looks at whether you are ready to migrate. You define a
business case, and then educate your team with workshops and an immersion day (demos and
labs) offered by AWS. Workshops and immersion days address different topics. These tasks are
conducted outside of AWS Mainframe Modernization.

Mobilize phase

In the Mobilize phase, you start your project with a kickoff, and then run through a discovery
process that extracts data from your mainframe applications and ingests it to a migration tool.

Assess phase 13

AWS Mainframe Modernization User Guide

You identify the applications you want to migrate and select a few applications to pilot. You
refine your business case, write your migration plan, and decide how you want to handle security
and compliance, account governance, and your operational model. You set up a cloud center
of excellence with the right people from your team. You run the pilots and document what you
learned. You refine your migration plan and business case. Many of these tasks are conducted
outside of AWS Mainframe Modernization.

Migrate and modernize phase

The Migrate and Modernize phase applies to each application and consists of several tasks,
including assigning people, running in-depth discovery, figuring out the right application
architecture on AWS, setting up application runtime environments, replatforming or refactoring
your code, integrating with other systems, and, of course, testing. At the end of the phase, you
deploy the replatformed or refactored applications to production and cut over to the new system
on AWS. Most or all of these tasks are conducted in AWS Mainframe Modernization, in another
AWS service, or in a tool to which AWS Mainframe Modernization provides access.

If you want to use automated refactoring, see Blu Insights. AWS Blu Insights is now available from
the AWS Management Console through single sign-on. You do not have to manage separate AWS
Blu Insights credentials any longer. You can access both the AWS AWS Blu Age Codebase and
Transformation Center features directly from the AWS Management Console.

For migrating data from the mainframe to AWS, we recommend the AWS SCT and the AWS
Database Migration Service. For more information, see What is the AWS Schema Conversion Tool?
in the AWS Schema Conversion Tool User Guide and What is AWS Database Migration Service? in the
AWS Database Migration Service User Guide.

Operate and optimize phase

In the Operate and Optimize phase, you focus on monitoring your deployed applications,
managing resources, and ensuring that security and compliance are up to date. You also assess
opportunities to optimize the migrated workloads.

Migrate and modernize phase 14

https://bluinsights.aws/
https://docs.aws.amazon.com/SchemaConversionTool/latest/userguide/CHAP_Welcome.html
https://docs.aws.amazon.com/dms/latest/userguide/Welcome.html

AWS Mainframe Modernization User Guide

Get started with AWS Mainframe Modernization

You can get started with AWS Mainframe Modernization by following tutorials that introduce you
to the service and each runtime engine.

Topics

• Tutorial: Set up managed runtime for AWS Blu Age

• Tutorial: Set up managed runtime for Micro Focus

To continue learning, see the following tutorials.

• Tutorial: Setting up the Micro Focus build for the BankDemo sample application

• Tutorial: Setting up a CI/CD pipeline for use with Micro Focus Enterprise Developer

Tutorial: Set up managed runtime for AWS Blu Age

You can deploy a AWS Blu Age modernized application into an AWS Mainframe Modernization
runtime environment with a demo application specified in this tutorial.

Topics

• Prerequisites

• Step 1: Upload the demo application

• Step 2: Create the application definition

• Step 3: Create a runtime environment

• Step 4: Create an application

• Step 5: Deploy an application

• Step 6: Start an application

• Step 7: Access the application

• Step 8: Test the application

• Clean up resources

Tutorial: Set up managed runtime for AWS Blu Age 15

AWS Mainframe Modernization User Guide

Prerequisites

To complete this tutorial, download the demo application archive PlanetsDemo-v1.zip.

The running demo application requires a modern browser for access. Whether you run this browser
from your desktop or from an Amazon Elastic Compute Cloud instance, for example, within the
VPC, determines your security settings.

Step 1: Upload the demo application

Upload the demo application to an Amazon S3 bucket. Make sure that this bucket is in the same
AWS Region where you will deploy the application. The following example shows a bucket named
planetsdemo, with a key prefix, or folder, named v1 and an archive named planetsdemo-
v1.zip.

Note

The folder in the bucket is required.

Step 2: Create the application definition

To deploy an application to the managed runtime, you need an AWS Mainframe Modernization
application definition. This definition is a JSON file that describes the application location and
settings. The following example is such an application definition for the demo application:

Prerequisites 16

https://d3lkpej5ajcpac.cloudfront.net/demo/bluage/PlanetsDemo-v1.zip

AWS Mainframe Modernization User Guide

{
 "template-version": "2.0",
 "source-locations": [{
 "source-id": "s3-source",
 "source-type": "s3",
 "properties": {
 "s3-bucket": "planetsdemo",
 "s3-key-prefix": "v1"
 }
 }],
 "definition": {
 "listeners": [{
 "port": 8196,
 "type": "http"
 }],
 "ba-application": {
 "app-location": "${s3-source}/PlanetsDemo-v1.zip"
 }
 }
}

Change the s3-bucket entry to the name of the bucket where you stored the sample application
zip file.

For more information on the application definition, see AWS Blu Age application definition sample.

Step 3: Create a runtime environment

To create the AWS Mainframe Modernization runtime environment, perform the following steps:

1. Open the AWS Mainframe Modernization console.

2. In the AWS Region selector, choose the Region where you want to create the environment. This
AWS Region must match the Region where you created the S3 bucket in Step 1: Upload the
demo application.

3. Under Modernize mainframe applications, choose Refactor with Blu Age, and then choose
Get started.

Step 3: Create a runtime environment 17

https://us-east-2.console.aws.amazon.com/m2/home?region=us-east-2#/landing

AWS Mainframe Modernization User Guide

4. Under How can AWS Mainframe Modernization help, choose Deploy and Create runtime
environment.

5. In the left navigation, choose Environments, then choose Create environment. On the Specify
basic information page, enter a name and description for your environment, and then make

Step 3: Create a runtime environment 18

AWS Mainframe Modernization User Guide

sure AWS Blu Age engine is selected. Optionally, you can add tags to the created resource.
Then choose Next.

6. On the Specify configurations page, choose Standalone runtime environment.

Step 3: Create a runtime environment 19

AWS Mainframe Modernization User Guide

7. Under Security and network, make the following changes:

• Choose Allow applications deployed to this environment to be publicly accessible. This
option assigns a public IP address to the application so that you can access it from your
desktop.

• Choose a VPC. You can use the Default.

• Choose two subnets. Make sure that the subnets allow the assignment of public IP
addresses.

• Choose a security group. You can use the Default. Make sure that the security group that
you choose allows access from the browser IP address to the port you specified in the
listener property of the application definition. For more information, see Step 2: Create
the application definition.

Step 3: Create a runtime environment 20

AWS Mainframe Modernization User Guide

If you want to access the application from outside the VPC that you chose, make sure that the
inbound rules for that VPC are configured properly. For more information, see Troubleshooting
error: Cannot access an application URL.

8. Choose Next.

9. In Attach storage - Optional, leave the default selections and choose Next.

Step 3: Create a runtime environment 21

AWS Mainframe Modernization User Guide

10. In Schedule maintenance, choose No preference, and then choose Next.

11. In Review and create, review the information, and then choose Create environment.

Step 4: Create an application

1. Navigate to AWS Mainframe Modernization in the AWS Management Console.

2. In the navigation pane, choose Applications, and then choose Create application. On the
Specify basic information page, enter a name and description for the application, and make
sure that the AWS Blu Age engine is selected. Then choose Next.

Step 4: Create an application 22

AWS Mainframe Modernization User Guide

3. On the Specify resources and configurations page, copy and paste the updated application
definition JSON you created in the section called “Step 2: Create the application definition”.

Step 4: Create an application 23

AWS Mainframe Modernization User Guide

4. In Review and create, review your choices, and then choose Create application.

Step 5: Deploy an application

After you successfully create both the AWS Mainframe Modernization runtime environment and
application, and both are in the Available state, you can deploy the application into the runtime
environment. To do this, complete the following steps:

1. Navigate to AWS Mainframe Modernization in the AWS Management Console. In the
navigation pane, choose Environments. The Environments list page is displayed.

Step 5: Deploy an application 24

AWS Mainframe Modernization User Guide

2. Choose the previously created runtime environment. The environment details page is
displayed.

3. Choose Deploy application.

4. Choose the previously created application, then choose the version you want to deploy your
application to. Then choose Deploy.

Step 5: Deploy an application 25

AWS Mainframe Modernization User Guide

5. Wait until the application finishes its deployment. You'll see a banner with the message
Application was deployed successfully.

Step 5: Deploy an application 26

AWS Mainframe Modernization User Guide

Step 6: Start an application

1. Navigate to AWS Mainframe Modernization in the AWS Management Console and choose
Applications.

2. Choose your application, and then go to Deployments. The status of the application should be
Succeeded.

3. Choose Actions, and then choose Start application.

Step 7: Access the application

1. Wait until the application is in the Running state. You'll see a banner with the message
Application was started successfully.

2. Copy the application DNS hostname. You can find this hostname in the Application
information section of the application.

3. In a browser, navigate to http://{hostname}:{portname}/PlanetsDemo-web-1.0.0/,
where:

• hostname is the DNS hostname copied previously.

• portname is the Tomcat port defined in the application definition you created in Step 2:
Create the application definition.

The JICS screen appears.

Step 6: Start an application 27

AWS Mainframe Modernization User Guide

If you can't access the application, see Troubleshooting error: Cannot access an application URL.

Note

If the application is not accessible, and the inbound rule on security group has 'My IP'
selected on port 8196, specify rule to allow traffic from LB i/p on port 8196.

Step 8: Test the application

In this step, you run a transaction in the migrated application.

1. On the JICS screen, enter PINQ in the input field, and choose Run (or press Enter) to start the
application transaction.

The demo app screen should appear.

Step 8: Test the application 28

AWS Mainframe Modernization User Guide

2. Type a planet name in the corresponding field and press Enter.

You should see details about the planet.

Step 8: Test the application 29

AWS Mainframe Modernization User Guide

Clean up resources

If you no longer need the resources that you created for this tutorial, delete them to avoid
additional charges. To do so, complete the following steps:

• If the AWS Mainframe Modernization application is still running, stop it.

• Delete the application. For more information, see Delete an AWS Mainframe Modernization
application.

• Delete the runtime environment. For more information, see Delete an AWS Mainframe
Modernization runtime environment.

Tutorial: Set up managed runtime for Micro Focus

You can deploy and run an application in AWS Mainframe Modernization managed runtime
environment with the Micro Focus runtime engine. This tutorial shows how to deploy and run the
CardDemo sample application in an AWS Mainframe Modernization managed runtime environment
with the Micro Focus runtime engine. The CardDemo sample application is a simplified credit
card application developed to test and showcase AWS and partner technology for mainframe
modernization use cases.

In the tutorial, you create resources in other AWS services. These include Amazon Simple Storage
Service, Amazon Relational Database Service, AWS Key Management Service, and AWS Secrets
Manager.

Topics

• Prerequisites

• Step 1: Create and load an Amazon S3 bucket

• Step 2: Create and configure a database

• Step 3: Create and configure an AWS KMS key

• Step 4: Create and configure an AWS Secrets Manager database secret

• Step 5: Create a runtime environment

• Step 6: Create an application

• Step 7: Deploy an application

• Step 8: Import data sets

• Step 9: Start an application

Clean up resources 30

AWS Mainframe Modernization User Guide

• Step 10: Connect to the CardDemo CICS application

• Clean up resources

• Next steps

Prerequisites

• Make sure that you have access to a 3270 emulator to use the CICS connection. Free and trial
3270 emulators are available from third party websites. Alternatively, you can start an AWS
Mainframe Modernization AppStream 2.0 Micro Focus instance and use the Rumba 3270
emulator (not available for free).

For information about AppStream 2.0, see the section called “Tutorial: Set up AppStream 2.0 for
Enterprise Analyzer and Enterprise Developer”.

Note

When creating the stack, choose the Enterprise Developer (ED) option and not Enterprise
Analyzer (EA).

• Download the CardDemo sample application and unzip the downloaded file to any local
directory. This directory will contain a subdirectory titled CardDemo.

• Identify a VPC in your account where you can define the resources created in this tutorial. The
VPC will need subnets in at least two Availability Zones. For more information about Amazon
VPC, see How Amazon VPC works.

Step 1: Create and load an Amazon S3 bucket

In this step, you create an Amazon S3 bucket and upload CardDemo files to this bucket. Later in
this tutorial, you use these files to deploy and run the CardDemo sample application in an AWS
Mainframe Modernization Micro Focus Managed Runtime environment.

Note

You do not have to create a new S3 bucket but the bucket that you choose must be in the
same Region as other resources used in this tutorial.

Prerequisites 31

https://github.com/aws-samples/aws-mainframe-modernization-carddemo/blob/main/samples/m2/mf/CardDemo_runtime.zip
https://docs.aws.amazon.com/vpc/latest/userguide/how-it-works.html

AWS Mainframe Modernization User Guide

To create an Amazon S3 bucket

1. Open the Amazon S3 console, and choose Create bucket.

2. In General configuration, choose the AWS Region where you want to build the AWS
Mainframe Modernization Micro Focus Managed Runtime.

3. Enter a Bucket name, for example, yourname-aws-region-carddemo. Keep the default
settings, and choose Create bucket. Alternatively, you can also copy settings from an existing
Amazon S3 bucket and then choose Create bucket.

4. Choose the bucket that you just created, and then choose Upload.

5. In the Upload section, choose Add Folder, and then browse to the CardDemo directory from
you local computer.

6. Choose Upload to start the upload process. Upload times vary based on your connection
speeds.

7. When the upload completes, confirm that all files have been successfully uploaded, and then
choose Close.

Your Amazon S3 bucket now contains the CardDemo folder.

For information about S3 buckets, see Creating, configuring, and working with Amazon S3 buckets.

Step 2: Create and configure a database

In this step, you create a PostgreSQL database in Amazon Relational Database Service (Amazon
RDS). For the tutorial, this database contains the data sets that the CardDemo sample application
uses for customer tasks regarding credit card transactions.

Step 2: Create and configure a database 32

https://s3.console.aws.amazon.com/s3/home
https://docs.aws.amazon.com/AmazonS3/latest/userguide/creating-buckets-s3.html

AWS Mainframe Modernization User Guide

To create a database in Amazon RDS

1. Open the Amazon RDS console.

2. Choose the AWS Region in which you want to create the database instance.

3. From the navigation pane, choose Databases.

4. Choose Create database, and then choose Standard create.

5. For Engine type, choose PostgreSQL.

6. Choose an Engine version of 15 or higher.

Note

Save the engine version because you need it later in this tutorial.

7. In Templates, choose Free tier.

8. Change the DB instance identifier to something meaningful, for example, MicroFocus-
Tutorial.

9. Refrain from managing master credentials in AWS Secrets Manager. Instead, enter a master
password and confirm it.

Note

Save the username and password that you use for the database. You will store them
securely in the next steps of this tutorial.

10. Under Connectivity, choose the VPC where you want to create the AWS Mainframe
Modernization managed runtime environment.

11. Choose Create database.

To create a custom parameter group in Amazon RDS

1. In the Amazon RDS console navigation pane, choose Parameter groups, and then choose
Create parameter group.

2. In the Create parameter group window, for Parameter group family, select the Postgres
option that matches your database version.

Step 2: Create and configure a database 33

https://console.aws.amazon.com/rds/

AWS Mainframe Modernization User Guide

Note

Some Postgres versions require a Type. Select DB Parameter Group if needed. Enter a
Group name and Description for the parameter group.

3. Choose Create.

To configure the custom parameter group

1. Choose the newly created parameter group.

2. Choose Actions, and then choose Edit.

3. Filter on max_prepared_transactions and change the parameter value to 100.

4. Choose Save Changes.

To associate the custom parameter group with the database

1. In the Amazon RDS console navigation pane, choose Databases, and then choose the database
instance that you want to modify.

2. Choose Modify. The Modify DB instance page appears.

Note

The Modify option is not available until the database has finished creating and
backing-up, which might take several minutes.

3. On the Modify DB instance page, navigate to Additional configuration, and change the DB
parameter group to your parameter group. If your parameter group is not available in the list,
check if it was created with the correct database version.

4. Choose Continue, and check the summary of modifications.

5. Choose Apply immediately to apply the changes instantly.

6. Choose Modify DB instance to save your changes.

For more information on parameter groups, see Working with parameter groups.

Step 2: Create and configure a database 34

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_WorkingWithParamGroups.html

AWS Mainframe Modernization User Guide

Note

You can also use an Amazon Aurora PostgreSQL database with AWS Mainframe
Modernization but there is no free tier option. For more information, see Working with
Amazon Aurora postgreSQL.

Step 3: Create and configure an AWS KMS key

To store credentials securely for the Amazon RDS instance, first create an AWS KMS key.

To create an AWS KMS key

1. Open the Key Management Service console.

2. Choose Create Key.

3. Leave the defaults of Symmetric for key type and Encrypt and decrypt for key usage.

4. Choose Next.

5. Give the key an Alias such as MicroFocus-Tutorial-RDS-Key and an optional description.

6. Choose Next.

7. Assign a key administrator by checking the box beside your user or role.

8. Choose Next , and then choose Next again.

9. On the review screen, edit the Key policy, then enter the following:

{
 "Sid" : "Allow access for Mainframe Modernization Service",
 "Effect" : "Allow",
 "Principal" : {
 "Service" : "m2.amazonaws.com"
 },
 "Action" : "kms:Decrypt",
 "Resource" : "*"
},

This policy grants AWS Mainframe Modernization decrypt permissions using this specific key
policy.

10. Choose Finish to create the key.

Step 3: Create and configure an AWS KMS key 35

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Aurora.AuroraPostgreSQL.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Aurora.AuroraPostgreSQL.html
https://console.aws.amazon.com/kms/home

AWS Mainframe Modernization User Guide

For more information, see Creating keys in the AWS Key Management Service Developer Guide.

Step 4: Create and configure an AWS Secrets Manager database secret

Now store the database credentials securely using the AWS Secrets Manager and AWS KMS key.

To create and configure an AWS Secrets Manager database secret

1. Open the Secrets Manager console.

2. In the navigation pane, choose Secrets.

3. In Secrets, choose Store a new secret.

4. Set the Secret type to Credentials for Amazon RDS database.

5. Enter the Credentials that you specified when you created the database.

6. Under Encryption key, select the key that you created in step 3.

7. In the Database section, select the database that you created for this tutorial, and then choose
Next.

8. Under Secret name, enter a name such as MicroFocus-Tutorial-RDS-Secret and an
optional description.

9. In the Resource permissions section, choose Edit permissions, and replace the contents with
the following policy:

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Effect" : "Allow",
 "Principal" : {
 "Service" : "m2.amazonaws.com"
 },
 "Action" : "secretsmanager:GetSecretValue",
 "Resource" : "*"
 }
]
}

10. Choose Save.

11. Choose Next for the subsequent screens, and then choose Store. Refresh the secrets list to see
the new secret.

Step 4: Create and configure an AWS Secrets Manager database secret 36

https://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html
https://console.aws.amazon.com/secretsmanager/

AWS Mainframe Modernization User Guide

12. Choose the newly created secret and note the Secret ARN because you need it later in the
tutorial.

13. In the Overview tab of the secret, choose Retrieve secret value.

14. Choose Edit, and then choose Add row.

15. Add a Key for sslMode with a Value of verify-full:

16. Choose Save.

Step 5: Create a runtime environment

To create a runtime environment

1. Open the AWS Mainframe Modernization console.

2. In the navigation pane, choose Environments. Then choose Create environment.

3. Under Specify basic information,

a. Enter MicroFocus-Environment for the environment name.

b. Under engine options, make sure Micro Focus is selected.

c. Choose the latest Micro Focus Version.

d. Choose Next.

Step 5: Create a runtime environment 37

https://us-east-2.console.aws.amazon.com/m2/home?region=us-east-2#/landing

AWS Mainframe Modernization User Guide

4. Configure the environment

a. Under Availability, choose High availability cluster.

b. Under Resources, choose either M2.c5.large or M2.m5.large for the instance type, and
the number of instances that you want. Specify up to two instances.

Step 5: Create a runtime environment 38

AWS Mainframe Modernization User Guide

c. Under Security and network, choose Allow applications deployed to this environment
to be publicly accessible and choose at least two public subnets.

d. Choose Next.

Step 5: Create a runtime environment 39

AWS Mainframe Modernization User Guide

Step 5: Create a runtime environment 40

AWS Mainframe Modernization User Guide

5. On the Attach storage page, choose Next.

6. On the Schedule maintenance page, choose No preference and then choose Next.

7. On the Review and create page, review all the configurations that you provided for the
runtime environment, and then choose Create environment.

Step 5: Create a runtime environment 41

AWS Mainframe Modernization User Guide

When you've created your environment, a banner appears that says Environment name was
created successfully, and the Status field changes to Available. The environment creation
process takes several minutes but you can continue with the next steps while it runs.

Step 5: Create a runtime environment 42

AWS Mainframe Modernization User Guide

Step 6: Create an application

To create an application

1. In the navigation pane, choose Applications. Then choose Create application.

2. On the Create application page, under Specify basic information, enter MicroFocus-
CardDemo for the application name and under Engine type make sure Micro Focus is selected.
Then choose Next.

Step 6: Create an application 43

AWS Mainframe Modernization User Guide

3. Under Specify resources and configurations, choose the option to specify the application
definition with its resources and configurations using the inline editor.

Step 6: Create an application 44

AWS Mainframe Modernization User Guide

Enter the following application definition in the editor:

{
 "template-version": "2.0",
 "source-locations": [
 {
 "source-id": "s3-source",
 "source-type": "s3",
 "properties": {
 "s3-bucket": "yourname-aws-region-carddemo",
 "s3-key-prefix": "CardDemo"
 }
 }

Step 6: Create an application 45

AWS Mainframe Modernization User Guide

],
 "definition": {
 "listeners": [
 {
 "port": 6000,
 "type": "tn3270"
 }
],
 "dataset-location": {
 "db-locations": [
 {
 "name": "Database1",
 "secret-manager-arn":
 "arn:aws:secretsmanager:Region:123456789012:secret:MicroFocus-Tutorial-RDS-Secret-
xxxxxx"
 }
]
 },
 "batch-settings": {
 "initiators": [
 {
 "classes": [
 "A",
 "B"
],
 "description": "initiator_AB...."
 },
 {
 "classes": [
 "C",
 "D"
],
 "description": "initiator_CD...."
 }
],
 "jcl-file-location": "${s3-source}/catalog/jcl"
 },
 "cics-settings": {
 "binary-file-location": "${s3-source}/loadlib",
 "csd-file-location": "${s3-source}/rdef",
 "system-initialization-table": "CARDSIT"
 },
 "xa-resources": [
 {

Step 6: Create an application 46

AWS Mainframe Modernization User Guide

 "name": "XASQL",
 "secret-manager-arn":
 "arn:aws:secretsmanager:Region:123456789012:secret:MicroFocus-Tutorial-RDS-Secret-
xxxxxx",
 "module": "${s3-source}/xa/ESPGSQLXA64.so"
 }
]
 }
}

Note

This file is subject to change.

4. Edit the application JSON in the properties object of source-locations as follows:

a. Replace the value for s3_bucket with the name of the Amazon S3 bucket that you
created in Step 1.

b. Replace the value for s3-key-prefix with the folder (key prefix) where you uploaded
the CardDemo sample files. If you uploaded the CardDemo directory directly to an
Amazon S3 bucket, then the s3-key-prefix doesn’t need to be changed.

c. Replace both secret-manager-arn values with the ARN for the database secret that
you created in Step 4.

Step 6: Create an application 47

AWS Mainframe Modernization User Guide

For more information on the application definition, see Micro Focus application definition.

5. Choose Next to continue.

6. On the Review and create page, review the information that you provided, and then choose
Create application.

Step 6: Create an application 48

AWS Mainframe Modernization User Guide

When you've created your application, a banner appears that says Application name was
created successfully. And the Status field changes to Available.

Step 7: Deploy an application

To deploy an application

1. In the navigation pane, choose Applications, and then choose MicroFocus-CardDemo.

2. Under Deploy application, choose Deploy.

3. Choose the latest version of the application and the environment that you created previously,
and then choose Deploy.

Step 7: Deploy an application 49

AWS Mainframe Modernization User Guide

When the CardDemo application deploys successfully, the status changes to Ready.

Step 7: Deploy an application 50

AWS Mainframe Modernization User Guide

Step 8: Import data sets

To import data sets

1. In the navigation pane, choose Applications, and then choose the application.

2. Choose the Data sets tab. Then choose Import.

3. Choose Import and Edit JSON configuration, and then choose the Copy and paste your own
JSON option.

4. Copy and paste the following JSON but don't choose "Submit" yet. This JSON contains all the
data sets required for the demo application but needs your Amazon S3 bucket details.

{
 "dataSets": [
 {
 "dataSet": {
 "storageType": "Database",
 "datasetName": "AWS.M2.CARDDEMO.ACCTDATA.VSAM.KSDS",
 "relativePath": "DATA",

Step 8: Import data sets 51

AWS Mainframe Modernization User Guide

 "datasetOrg": {
 "vsam": {
 "format": "KS",
 "encoding": "A",
 "primaryKey": {
 "length": 11,
 "offset": 0
 }
 }
 },
 "recordLength": {
 "min": 300,
 "max": 300
 }
 },
 "externalLocation": {
 "s3Location": "s3://<s3-bucket-name>/CardDemo/catalog/data/
AWS.M2.CARDDEMO.ACCTDATA.VSAM.KSDS.DAT"
 }
 },
 {
 "dataSet": {
 "storageType": "Database",
 "datasetName": "AWS.M2.CARDDEMO.CARDDATA.VSAM.AIX.PATH",
 "relativePath": "DATA",
 "datasetOrg": {
 "vsam": {
 "format": "KS",
 "encoding": "A",
 "primaryKey": {
 "length": 11,
 "offset": 16
 }
 }
 },
 "recordLength": {
 "min": 150,
 "max": 150
 }
 },
 "externalLocation": {
 "s3Location": "s3://<s3-bucket-name>/CardDemo/catalog/data/
AWS.M2.CARDDEMO.CARDDATA.VSAM.KSDS.DAT"
 }

Step 8: Import data sets 52

AWS Mainframe Modernization User Guide

 },
 {
 "dataSet": {
 "storageType": "Database",
 "datasetName": "AWS.M2.CARDDEMO.CARDDATA.VSAM.KSDS",
 "relativePath": "DATA",
 "datasetOrg": {
 "vsam": {
 "format": "KS",
 "encoding": "A",
 "primaryKey": {
 "length": 16,
 "offset": 0
 }
 }
 },
 "recordLength": {
 "min": 150,
 "max": 150
 }
 },
 "externalLocation": {
 "s3Location": "s3://<s3-bucket-name>/CardDemo/catalog/data/
AWS.M2.CARDDEMO.CARDDATA.VSAM.KSDS.DAT"
 }
 },
 {
 "dataSet": {
 "storageType": "Database",
 "datasetName": "AWS.M2.CARDDEMO.CARDXREF.VSAM.KSDS",
 "relativePath": "DATA",
 "datasetOrg": {
 "vsam": {
 "format": "KS",
 "encoding": "A",
 "primaryKey": {
 "length": 16,
 "offset": 0
 }
 }
 },
 "recordLength": {
 "min": 50,
 "max": 50

Step 8: Import data sets 53

AWS Mainframe Modernization User Guide

 }
 },
 "externalLocation": {
 "s3Location": "s3://<s3-bucket-name>/CardDemo/catalog/data/
AWS.M2.CARDDEMO.CARDXREF.VSAM.KSDS.DAT"
 }
 },
 {
 "dataSet": {
 "storageType": "Database",
 "datasetName": "AWS.M2.CARDDEMO.CUSTDATA.VSAM.KSDS",
 "relativePath": "DATA",
 "datasetOrg": {
 "vsam": {
 "format": "KS",
 "encoding": "A",
 "primaryKey": {
 "length": 9,
 "offset": 0
 }
 }
 },
 "recordLength": {
 "min": 500,
 "max": 500
 }
 },
 "externalLocation": {
 "s3Location": "s3://<s3-bucket-name>/CardDemo/catalog/data/
AWS.M2.CARDDEMO.CUSTDATA.VSAM.KSDS.DAT"
 }
 },
 {
 "dataSet": {
 "storageType": "Database",
 "datasetName": "AWS.M2.CARDDEMO.CARDXREF.VSAM.AIX.PATH",
 "relativePath": "DATA",
 "datasetOrg": {
 "vsam": {
 "format": "KS",
 "encoding": "A",
 "primaryKey": {
 "length": 11,
 "offset": 25

Step 8: Import data sets 54

AWS Mainframe Modernization User Guide

 }
 }
 },
 "recordLength": {
 "min": 50,
 "max": 50
 }
 },
 "externalLocation": {
 "s3Location": "s3://<s3-bucket-name>/CardDemo/catalog/data/
AWS.M2.CARDDEMO.CARDXREF.VSAM.KSDS.DAT"
 }
 },
 {
 "dataSet": {
 "storageType": "Database",
 "datasetName": "AWS.M2.CARDDEMO.TRANSACT.VSAM.KSDS",
 "relativePath": "DATA",
 "datasetOrg": {
 "vsam": {
 "format": "KS",
 "encoding": "A",
 "primaryKey": {
 "length": 16,
 "offset": 0
 }
 }
 },
 "recordLength": {
 "min": 350,
 "max": 350
 }
 },
 "externalLocation": {
 "s3Location": "s3://<s3-bucket-name>/CardDemo/catalog/data/
AWS.M2.CARDDEMO.TRANSACT.VSAM.KSDS.DAT"
 }
 },
 {
 "dataSet": {
 "storageType": "Database",
 "datasetName": "AWS.M2.CARDDEMO.USRSEC.VSAM.KSDS",
 "relativePath": "DATA",
 "datasetOrg": {

Step 8: Import data sets 55

AWS Mainframe Modernization User Guide

 "vsam": {
 "format": "KS",
 "encoding": "A",
 "primaryKey": {
 "length": 8,
 "offset": 0
 }
 }
 },
 "recordLength": {
 "min": 80,
 "max": 80
 }
 },
 "externalLocation": {
 "s3Location": "s3://<s3-bucket-name>/CardDemo/catalog/data/
AWS.M2.CARDDEMO.USRSEC.VSAM.KSDS.DAT"
 }
 }
]
}

5. Replace each occurrence of <s3-bucket-name> (there are eight) with the name of the
Amazon S3 bucket that contains the CardDemo folder, for example, your-name-aws-
region-carddemo.

Note

To copy the Amazon S3 URI for the folder in Amazon S3, select the folder, and then
choose Copy Amazon S3 URI.

6. Choose Submit.

When the import finishes, a banner appears with the following message: Import task with
resource identifier name was completed successfully. A list of the imported
datasets is shown.

Step 8: Import data sets 56

AWS Mainframe Modernization User Guide

You can also view the status of all data set imports by choosing Import History on the Data sets
tab.

Step 9: Start an application

To start an application

1. In the navigation pane, choose Applications, and then choose the application.

2. Choose Start application.

Step 9: Start an application 57

AWS Mainframe Modernization User Guide

When the CardDemo application starts to run successfully, a banner appears with the following
message: Application name was started successfully. The Status field changes to
Running.

Step 10: Connect to the CardDemo CICS application

Before you connect, make sure that the VPC and security group that you specified for the
application are the same as the ones that you applied for your network interface that you will
connect from.

To configure the TN3270 connection, you also need the DNS hostname and the port of the
application.

To configure and connect an application to mainframe using terminal emulator

1. Open the AWS Mainframe Modernization console and choose Applications, and then choose
MicroFocus-CardDemo.

2. Choose the copy icon to copy the DNS Hostname. Also make sure to note the Ports number.

3. Start a terminal emulator. This tutorial uses Micro Focus Rumba+.

Note

The configuration steps vary by emulator.

4. Choose Mainframe Display.

Step 10: Connect to the CardDemo CICS application 58

AWS Mainframe Modernization User Guide

5. Choose Connection, and then choose Configure.

6. Under Installed Interfaces, choose TN3270, and then choose TN3270 again under the
Connection menu.

Step 10: Connect to the CardDemo CICS application 59

AWS Mainframe Modernization User Guide

7. Choose Insert, and paste the DNS Hostname for the Application. Specify 6000 for the Telnet
Port.

Step 10: Connect to the CardDemo CICS application 60

AWS Mainframe Modernization User Guide

Note

If you are using AWS AppStream 2.0 in a browser and having difficulties with pasting
values, please refer to Troubleshooting AppStream 2.0 User Issues.

8. Under Connection, choose Advanced, and then choose Send Keep Alive and Send NOP, and
enter 180 for the Interval.

Note

Configuring the keep alive setting on your TN3270 terminal to at least 180 seconds
helps ensure that the Network Load Balancer doesn’t drop your connection.

Step 10: Connect to the CardDemo CICS application 61

https://docs.aws.amazon.com/appstream2/latest/developerguide/troubleshooting-user-issues.html#copy-paste-doesnt-work

AWS Mainframe Modernization User Guide

9. Choose Connect.

Note

If the connection fails:

• If you are using AppStream 2.0, confirm that the VPC and security group specified
for the application's environment are the same as the AppStream 2.0 fleet.

• Use the VPC Reachability Analyzer to analyze the connection. You can access the
Reachability Analyzer through the console.

• As a diagnostic step, try adding or changing the Security Group inbound rules for the
application to allow traffic for port 6000 from anywhere (i.e. CIDR Block 0.0.0.0/0). If

Step 10: Connect to the CardDemo CICS application 62

https://console.aws.amazon.com/networkinsights/home#ReachabilityAnalyzer

AWS Mainframe Modernization User Guide

you successfully connect, then you know the security group was blocking your traffic.
Change the security group source to something more specific. For more information
on security groups, see Security group basics.

10. Enter USER0001 for the username and password for the password.

Note

In Rumba, the default for Clear is ctrl-shift-z, and the default for Reset is ctrl-r.

11. After you log in successfully, you can navigate through the CardDemo application.

12. Enter 01 for the Account View.

Step 10: Connect to the CardDemo CICS application 63

https://docs.aws.amazon.com/vpc/latest/userguide/vpc-security-groups.html#security-group-basics

AWS Mainframe Modernization User Guide

13. Enter 00000000010 for the Account Number and press Enter on your keyboard.

Note

Other valid accounts are 0000000011 and 00000000020.

Step 10: Connect to the CardDemo CICS application 64

AWS Mainframe Modernization User Guide

14. Press F3 to Exit to the menu, and F3 to exit the transaction.

Clean up resources

If you no longer need the resources that you created for this tutorial, delete them to avoid
additional charges. To do so, complete the following steps:

• If necessary, stop the application.

• Delete the application. For more information, see Delete an AWS Mainframe Modernization
application.

• Delete the runtime environment. For more information, see Delete an AWS Mainframe
Modernization runtime environment.

Clean up resources 65

AWS Mainframe Modernization User Guide

• Delete the Amazon S3 buckets that you created for this tutorial. For more information, see
Deleting a bucket in the Amazon S3 User Guide.

• Delete the AWS Secrets Manager secret that you created for this tutorial. For more information,
see Delete a secret.

• Delete the KMS key that you created for this tutorial. For more information, see Deleting AWS
KMS keys.

• Delete the Amazon RDS database that you created for this tutorial. For more information, see
Delete the EC2 instance and DB instance in the Amazon RDS User Guide.

• If you added a Security Group rule for port 6000, delete the rule.

Next steps

To learn how to set up a development environment for your modernized applications, see Tutorial:
Set up AppStream 2.0 for use with Micro Focus Enterprise Analyzer and Micro Focus Enterprise
Developer.

Next steps 66

https://docs.aws.amazon.com/AmazonS3/latest/userguide/delete-bucket.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/manage_delete-secret.html
https://docs.aws.amazon.com/kms/latest/developerguide/deleting-keys.html
https://docs.aws.amazon.com/kms/latest/developerguide/deleting-keys.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_GettingStarted.CreatingConnecting.PostgreSQL.html#CHAP_GettingStarted.Deleting.PostgreSQL
https://docs.aws.amazon.com/m2/latest/userguide/set-up-appstream-mf.html
https://docs.aws.amazon.com/m2/latest/userguide/set-up-appstream-mf.html
https://docs.aws.amazon.com/m2/latest/userguide/set-up-appstream-mf.html

AWS Mainframe Modernization User Guide

AWS Mainframe Modernization components lifecycle

Each component of AWS Mainframe Modernization goes through version upgrades and a
development lifecycle. You can use this page as an overview to understand these components,
their version upgrade plans, and how AWS Mainframe Modernization communicates the release or
deprecation of these components or their versions.

Components lifecycle overview

AWS Mainframe Modernization lifecycle describes the approach and timelines for releasing
and supporting AWS Mainframe Modernization service components throughout their lifecycle.
Providing predictable and consistent lifecycle helps you as you plan, test, and deploy newer
versions.

All AWS-provided AWS Mainframe Modernization components benefit from the product support
provided by AWS Support from the time they are released until their retirement per each
component's release calendar table. You can learn more about the AWS Support scope and
activities at Compare AWS Support Plans. During active modernization projects, we typically
encourage customer support to be provided first by professional services delivery teams as per the
statement of work.

AWS Mainframe Modernization releases some components with versions originating from
suppliers which can be AWS itself, select AWS Partners, or communities. For each AWS Mainframe
Modernization component, a version has a major version number and a minor version number.
Each component has its own major and minor version numbering.

For versioned components, we have the following intents:

• To release AWS Mainframe Modernization components newer versions on a regular basis or per
customer demand. If a component's newer version is desired and not yet available in the AWS
Mainframe Modernization service, you can make an explicit request via AWS Support Product
Feature Request (PFR).

• To have AWS Mainframe Modernization component-specific versions' end of support and
retirement dates align with the component supplier end of support dates.

• To notify customers approximately one year prior to the retirement of a component's major
version.

Components lifecycle overview 67

https://aws.amazon.com/premiumsupport/plans/

AWS Mainframe Modernization User Guide

While we strive to meet these guidelines, in some cases, we may retire specific versions sooner with
shorter notification timeframes. For example, we may retire a version with security issues promptly
with a shorter notification timeframe. We may also retire minor versions early when a minor
version has significant bugs or security issues that have been resolved in a later minor version. In
the unlikely event that such cases occur, we will notify customers and communicate about the plan
and the timeline for retirement. Specific circumstances may dictate different timelines depending
on the situation.

Note

Critical updates to components might be made available at any time. For example, new
versions may be made available promptly for security reasons or to provide fixes for the
production environments. For requests made through AWS Support, the support plan
dictates the processes, severity, and the response times.

When a component version is retired, AWS Mainframe Modernization doesn't distribute these
versions to customers for new deployments. Consequently, these versions are also unsupported by
AWS Support. Customers running existing component deployments past their version retirement
dates should be aware of the risks of doing so. AWS is not responsible to provide security updates,
technical support, or hot fixes for retired component versions. Also, we don't automatically remove
access or delete your environment's resources. We strongly encourage you check for new versions
every 3 months, and upgrade all your AWS Mainframe Modernization components to recent
supported versions.

Version upgrade

AWS Mainframe Modernization provides newer versions of each supported component so you can
stay up-to-date with the latest maintenance updates and features. Newer versions can include
bug fixes, security enhancements, and other improvements for the components. We recommend
you should upgrade regularly to benefit from security fixes, bug fixes, and feature enhancements.
When AWS Mainframe Modernization releases a new version, you can choose how and when to
upgrade your existing deployments. There are two kinds of upgrades: major version upgrades and
minor version upgrades. In general, a major engine version upgrade can introduce changes that
aren't compatible with existing applications. In that case, substantial application changes may be
required for a major version upgrade. In contrast, a minor version upgrade includes changes that

Version upgrade 68

AWS Mainframe Modernization User Guide

are mostly backward-compatible with existing applications. Little to no changes may be required
for a minor version upgrade.

You should perform non-regression tests prior to performing components’ version upgrades. It's
best practice to use DevOps test and deployment pipelines. DevOps test pipelines can be built
during modernization projects, and should be maintained to automate application testing when
performing component upgrades and application code changes. You can also use blue/green
deployments or canary deployment during upgrades. You can learn more about such deployments
and change management at AWS Well-Architected Reliability Pillar.

AWS Mainframe Modernization Refactor with AWS Blu Age
release overview

With AWS Blu Age runtime, the version follows a Major.Minor.Patch pattern. For example, for
AWS Blu Age runtime version 4.1.0, the major version is 4, the minor version is 1, and the patch
version is 0.

We intend to release new AWS Blu Age runtime major versions when there are impactful changes
to runtime or their dependencies. AWS Blu Age runtime major versions are supported for at least
12 months unless some Common Vulnerabilities and Exposures (CVEs) appear. The support
covers for bugs in the runtime features as mentioned in our documentation. In case of Critical and
High CVEs in the dependencies of the runtime (Spring, Java, Tomcat, and others), the major version
support duration is reduced to 6 months for High CVEs, and 3 months for Critical CVEs from the
release date of the new runtime version fixing the CVE, unless explicitly stated otherwise.

We intend to release new AWS Blu Age minor versions monthly. Customers are expected to
upgrade versions regularly to obtain the latest security fixes, bug fixes, and feature enhancements.
Active projects not yet in production have to adopt the latest runtime version as soon as it
becomes available.

New fixes are provided in the latest minor version for the particular major version where an issue is
raised. If you require new fixes, you need to upgrade to a new minor version to apply those fixes.

Alpha pre-releases are short-lived versions made available for quick iteration during delivery
projects. Fixes for issues identified in alpha pre-releases are provided in the later minor versions.

You can find release dates and details about each runtime version in the the section called “AWS
Blu Age release notes”.

AWS Mainframe Modernization Refactor with AWS Blu Age release overview 69

https://docs.aws.amazon.com/wellarchitected/latest/reliability-pillar/rel_tracking_change_management_immutable_infrastructure.html#implementation-guidance

AWS Mainframe Modernization User Guide

Security scans are performed by Amazon Inspector.

AWS Mainframe Modernization Refactor with AWS Blu Age release overview 70

https://aws.amazon.com/inspector/

AWS Mainframe Modernization User Guide

Refactoring applications automatically with AWS Blu Age

Automated refactoring with AWS Blu Age provides an end-to-end solution for migrating and
modernizing your mainframe applications. The steps in the refactoring process are as follows:

• Analyze inventory

• Analyze dependencies

• Automatically transform code

• Capture and manage test scenarios

You can complete the previous steps in the Blu Insights tool, available through single sign-on from
the AWS Mainframe Modernization console. For more information on Blu Insights, see the Blu
Insights documentation.

When you are satisfied with the transformed source code, it’s time to move to AWS, where you will
complete the following steps:

• Build and deploy the refactored application.

• Deploy and monitor your application in AWS Mainframe Modernization.

AWS Blu Age Runtime (non-managed) is one of the offerings of the AWS Mainframe Modernization
service along with AWS Blu Age managed. With AWS Blu Age managed, you can deploy your
modernized application to an AWS-managed environment that simplifies your experience, so you
don't need to manage the underlying infrastructure that runs your modernized application. In
contrast, with AWS Blu Age Runtime (non-managed) you can deploy your modernized application
in your own AWS account, so you can manage your own infrastructure. With AWS Blu Age Runtime
(non-managed) you have the flexibility to operate all the technical components required to run
your modernized application the way you want.

AWS Blu Age Runtime (non-managed) is available for deployment on:

• Amazon EC2

• Amazon ECS on Amazon EC2

• Amazon EKS on Amazon EC2

• Amazon ECS managed by AWS Fargate

71

https://bluinsights.aws/docs/
https://bluinsights.aws/docs/

AWS Mainframe Modernization User Guide

Deploying on Amazon EC2 (the first three options in the preceding list) can be done directly in the
instance or through a Docker containerized application, which is the preferred way when using
Amazon ECS or Amazon EKS.

Topics

• AWS Blu Age release notes

• Upgrading instructions for AWS Blu Age

• AWS Blu Age Runtime concepts

• Set up configuration for AWS Blu Age Runtime

• AWS Blu Age Runtime APIs

• Set up AWS Blu Age Runtime (non-managed)

• Modify the source code with Blu Age Developer IDE

AWS Blu Age release notes

This section contains the release notes of AWS Blu Age Runtime and Modernization Tools from
version 3.5.0 onward, most recent first, organized by version number.

Note

For release notes predating this document, contact AWS Blu Age delivery services. For
information about the latest Blu Insights features, see Blu Insights releases.

Topics

• Release notes 4.2.0

• Runtime release 4.2.0

• Modernization tools release 4.2.0

• Release notes 4.1.0

• Runtime release 4.1.0

• Modernization tools release 4.1.0

• Release notes 4.0.0

• Runtime release 4.0.0

• Modernization tools release 4.0.0

AWS Blu Age release notes 72

https://bluinsights.aws/releases

AWS Mainframe Modernization User Guide

• Release notes 3.10.0

• Runtime release 3.10.0

• Modernization tools release 3.10.0

• Release notes 3.9.0

• Runtime release 3.9.0

• Modernization tools release 3.9.0

• Release notes 3.8.0

• Runtime release 3.8.0

• Modernization tools release 3.8.0

• Release notes 3.7.0

• Runtime release 3.7.0

• Modernization tools release 3.7.0

• Release notes 3.6.0

• Runtime release 3.6.0

• Modernization tools release 3.6.0

• Release notes 3.5.0

• Runtime release 3.5.0

• Modernization tools release 3.5.0

Release notes 4.2.0

Release date: July 10, 2024

This release of AWS Blu Age Runtime and Modernization Tools is focused on performance and
security. Some key features and changes in this release are:

• We improved transformation performance, especially for large projects with over 30 million
lines of code. We implemented a set of improvements and the results we obtained showed
a time reduction of over 150%, and runs that completed in minutes instead of hours. The
key improvement we implemented is the configuration of a timeout mechanism to limit the
maximum time allocated for analysis so as to skip files with detected issues. We mark skipped
files so that you can investigate them later if necessary.

Release notes 4.2.0 73

AWS Mainframe Modernization User Guide

• We added support for a distributed lock management system for AS400 projects. In a High
Availability environment (multi-node) where multiple instances of the application target the
same database, maintaining data consistency throughout the life cycle of these instances is
a significant challenge. To effectively address this challenge, we added Redis as a shared and
external caching server to coordinate among all instances when running in batch mode.

• We added a new dynamic pagination feature for the table component. The goal of this feature
is to improve the response time and reduce memory usage for tables with a large number of
rows. This feature allows the table component to only load part of the data, and to fetch more
records on demand as you navigate through the pages. To further improve the experience, the
platform also supports the prefetching of data. This new dynamic pagination feature provides a
more efficient and responsive user experience for applications with large data sets.

• To address a key challenge that comes up frequently, we added support for nested COBOL
programs. Previously, the workaround for modernizing nested COBOL programs involved
manually separating programs into different files, linking them through the linkage section, and
making them call each other with the necessary arguments. This process was not only time-
consuming but also error-prone. You can now modernize nested COBOL programs without the
need for manual separation.

We tested this version of the AWS Blu Age Runtime with the following stack. Other component
versions might also be compatible.

Component Version

Java Java 17

Presentation layer Node JS 18.18, Npm 9.8, Angular 17

Service layer Spring Boot 3.2.4, Spring Core 6.1.5, Spring
Statemachine 4.0.0

Persistence layer PostgreSQL engine 14, Oracle 21c

Application server Apache Tomcat 10.1.17

For more information about the changes included in this release, see the following sections.

Release notes 4.2.0 74

AWS Mainframe Modernization User Guide

Runtime release 4.2.0

zOS

New features

• DB2 - Added support for stored procedure invocation without schema qualifier in the SQL query

• COBOL - Added support for HEX-OF function

• COBOL - Added support for nested programs

• COBOL - Added support for FUNCTION TEST-DATE-YYYYMMDD and TEST-DAY-YYYYDDD

• CICS - Added support for option UCTRANST in the SET TERMINAL command

• CICS - Added support for the INQUIRE DB2CONN command

• BluSam - Added support for key deletion on dynamically accessed VSAM

• IMS - Added support for the TERM command

• BAC - Added authorization checks on all BAC REST endpoints

• BAC - Added configuration through application-main.yaml to define a record size to filter
loaded masks that match that record size

• BAC and JAC : Added configuration through application-main.yaml to retrieve the username
and the password of the default super admin user in the secret from by specifying the ARN

Improvements

• JCL - SORT - Enhanced support for OMIT clause to handle conditions with Shiftin and ShiftOut
characters

• JCL - SORT - Improved support for the BDW field

• JCL - SORT - Improved support for multiple GDG concatenations with the BDW field

• JCL - DFSORT - Added support for INREC PARSE STARTAFT / STARTAT clauses

• JCL - IEBGENER - Enhanced recordSize handling for output files

• JCL - INFUTILB - Disabled NULL INDICATOR based on YML- FIX GRAPHIC CASE

• JCL - Improved support for FormatterParser to handle constants in the OUTREC field

• JCL - Enhanced load data for graphic type in DSNUTILB program utility

• JCL - SORT - Enhanced support for Zoned Decimal format

Runtime release 4.2.0 75

AWS Mainframe Modernization User Guide

• JCL - SORT - Enhanced support for the OMIT clause to handle conditions with Shiftin and
ShiftOut characters

• MQ - Improved the handling of MQ connection to fit several business workflows

• CICS - Enhanced support of pointer reference for EXEC CICS READ SET (ptr-ref) statements

• COBOL - Improved support for ADDRESS OF linkage section record

• COBOL - Added support for EXP and EXP10 functions

• COBOL - Improved support for the REPLACE statement using copybook

• COBOL - Improved multidimensional field access to support signed values

• MF COBOL - Added support for variable-format sequential files

• IMS - Improved reading of the configuration of IMS YML files to make it possible to use
environment variables

• IMS - Handled additional ways of specifying the segment number

• IMS - Added robustness when an IMS program is called from a programatically-started
transaction

• IMS - Improved the search criteria SSA build to take the current length of the WHERE clause into
account if the implied segment length is not provided

• IMS - Improved reading of the configuration of IMS YML files to allow the use of environment
variables

• Improved support for the VALUE clause in NumericEditedType

• Improved support for string concatenation to handle the case when the first string to be
concatenated is empty, blank, or spaces

AS400

New features

• Added support for pagination inside the Table component; projects can use this feature to
decrease the response time and size when a Table component with a large number of rows is
loaded

• Added library support for SQL queries on the AS400 application; because libraries are converted
to partitions in modern applications, we adapted the runtime to rewrite the queries accordingly

• RPG - Added support for the QTEMP library for SQL queries

• RPG - Added encoding in the CONVERT function to handle empty input values

Runtime release 4.2.0 76

AWS Mainframe Modernization User Guide

• RPG - Added support for the %HOURS, %MINUTES, and %SECONDS functions

• CL - Added the CHGPFM command

• CL - Added support for the *FROMLIB keyword in the CRTDUPOBJ command

• CL - Added support for table and partition creation for table names exceeding 9 characters

• CL - Added support for deletion of flat files in subfolders for the DLTF command

Improvements

• Screen - Improved ErrorMessage to bind with specific field and add to ArrayMessageLine

• Screen - Improved errormsg cursor

• Screen - Improved ArrayMessageLine to not be included in Tab Order

• Screen - Improved display of error message arrays for AS400 screen

• SQL - Improved cursor support to commit Transaction upon closing to avoid deadlocks on
partition creation

• CL - Added support for the PgmCall command and improved the QCMDEXC unsupported pattern

• CL - Improved support for the CHKOBJ command to handle OBJTYPE PGM

• CL - Improved multi-library support for CPYF and other CL commands that deal with libraries
and partitions

• CL - Added support for passing a program name variable in the CALL PGM command

• CL - Handled the case for default type of Object type

• CL - Added multi-library support for the CRTDUPOBJ command

• CL - Enhanced database connection handling on multiple commands

• CL - Improved support for RMVLNK to handle the case when a file or directory isn't found and
the CPF0000 monitor message

• CL - Improved CLRPFM to take the library into account when removing records

• CL - CPYF - Improved command to support the QTEMP library, FmtOpt(*NoChk) parameter, and
control character

• CL - Fixed handling of quotation marks and missing parameters in the RMVLNK and CPY
commands

• RPG - Enhanced variable scoping; DataArea is now in working scope instead of linkage scope

• RPG - Improved DAO read queries to run without a transaction to avoid deadlocks

• Enhanced MQ messaging lookup by adding a trim to MSGQ on DB lookup

Runtime release 4.2.0 77

AWS Mainframe Modernization User Guide

• Removed unnecessary transaction declarations on database connection support

• Improved the update of Quartz job status in case of exception

• Added support to handle the case when an indicator array isn't initialized

Transversal capabilities

New features

• Redis - Added global Redis configuration for all Redis caches

• Added session-tracking functionality to make it possible to store session-tracking information
(session ID, associated username, creation timestamp, and node ID) by persisting the data to
Redis

• Added temporary location configuration for runtime resolved groovy files through the YML
property tempFilesDirectory; also added the capability to specify whether to purge
contents of the temporary files folder at application startup through the YML property
cleanTempFilesDirectoryAtStartup

Improvements

• Enhanced support for connection pool implementation configuration properties for utility data
sources

• Improved support for printer mode and ANSI carriage control based on the usage of ADVANCING
clauses and WRITE BEFORE clauses

• Updated Angular version on front-end application for modernized projects

• Enhanced secret manager URL syntax construction for DB2

• Enhanced the DataUtils.compareAlphInt method to add support for trailing spaces

• Improved SQL support for blob type output

• Added robustness for job triggers through post/script endpoint

Modernization tools release 4.2.0

zOS

New features

Modernization tools release 4.2.0 78

AWS Mainframe Modernization User Guide

• CICS - Added support for parsing WEB CICS commands

• CICS - Added support for the transformation of the MONITOR command

• CICS - Added support for parsing the CICS command SEND MRO

• COBOL - Added support for parsing the NO REWIND statement

• COBOL - Added support for number type of option UCTRANST in the CICS command SET
TERMINAL

• COBOL - Add supported for the MULTIPLE FILE clause in I-O-SECTION

• CSD - Added support for the transformation of multiple CSD files

• CSD - Added support for the generation of jicsFileAix.json from multiple CSD files

• IDCAMS : Added support for the creation of a relative record data set (RRDS)

Improvements

• Improved performance when computing SQL masks

• COBOL - Improved parsing of useless RESERVE clause in FILE-CONTROL

• COBOL - Improved parsing of SECTION and CLASS

• COBOL - Improved DFHRESP handling

• COBOL - Enhanced support for EXIT PARAGRAPH through perform

• IMS - Improved support for segment names specified by using double parentheses

• IMS - Enriched the generation of status codes when SCHD and TERM are invoked

• COBOL - Improved generation of DEPENDING ON fields

• COBOL - Improved transformation of TO_TIMESTAMP DB2 builtin function

AS400

New features

• Added support for converting alphanumeric fields as CHAR in SQL scripts

• COBOL400 - Added support for program-described DATABASE files

Improvements

• DDS - Improved support for ALIAS name

Modernization tools release 4.2.0 79

AWS Mainframe Modernization User Guide

• Enhanced support for type float without initial value

• COBOL 400 - Improved size compute for signed zoned type

Transversal capabilities

Improvements

• Improved error ID reporting around DDS and SQL parsing

• Improved code generation on condition branches

• Improved performance on weather report generation

Release notes 4.1.0

Release date: May 31, 2024

This release of AWS Blu Age Runtime and Modernization Tools is focused on performance and
security. Some key features and changes in this release are:

• Transformation and performance: To allow projects with a large codebase (+50M lines of code) to
transform successfully, we have optimized the performance and memory footprint of the whole
transformation mechanism.

• BAC/JAC: security at AWS is the highest priority. Applications modernized with AWS Blu Age
must comply with security standards. We have made some major upgrades to the BluSam
Administration Console (BAC) and the JICS Administration Console (JAC) to make them more
secure:

• Updated the application to Angular v17.

• In addition to the native support for AWS Cognito, we added generic support for OAuth that
will enable more flexibility to let customers use the identity provider of their choice.

• Configured and extended the security features using appropriate headers.

• AS400 - Multi-node support for database lock mechanism. Provided the possibility to plug a
shared and external caching server (Redis) to run a batch application on multiple instances, like
managed AWS Mainframe Modernization.

This version of the Blu Age runtime has been tested with the following stack. Other versions might
also be compatible.

Release notes 4.1.0 80

AWS Mainframe Modernization User Guide

Component Version tested

Java Java 17

Presentation layer Node JS 18.18, Npm 9.8, Angular 16.1

Service layer Spring Boot 3.2.5, Spring Core 6.1.5, Spring
Statemachine 4.0.0

Persistence layer PostgreSQL 14, Oracle 21c

Application server Apache Tomcat 10.1.17

For more information about the changes included in this release, see the following sections.

Runtime release 4.1.0

zOS

New features

• Added configuration for dynamic OAuth2 provider handling. Introduced
SECRET_OAUTH2_PROVIDER_NAME_KEY to specify provider. Updated secret retrieval method to
handle multiple providers. Ensured secrets are securely retrieved from AWS Secrets Manager.

• Added support for DB2 SSL properties on AWS Secrets Manager to make it possible for you
to define an SSL certificate (sslTrustStoreLocation) and a password (sslTrustStorePassword) to
unlock the keystore file.

• Added support for external business data sources.

• JCL - Added support for checkpoint mechanism for batch restart.

• JCL - Added support for DCB parameters record size and RDW.

• JCL - Added dynamic folder-name configuration for generated temporary files.

• REDIS - Added pool configuration in Redis configuration for JICS.

• REDIS - Added database index in Redis configuration for Catalog and JICS.

• BatchScript - Added propagation of step name for running program executions.

• CICS - Added support for the ADDRESS SET command.

Runtime release 4.1.0 81

AWS Mainframe Modernization User Guide

• CICS - Added support for PURGE MESSAGE and JUSTIFY.

Improvements

• JCL - INFUTILB - Enhanced support for disabling the null indicator based on YML property.

• JCL - INFUTILB - Improved support for the CHAR/BPCHAR datatype.

• JCL - ICEGENER - Added support for copying multiline input streams into files.

• JCL - IEBGENER - Improved support for handling conversion from Variable Block to Fixed Block
files.

• JCL - DFSORT - Improved support for multi-digit parameters on operation DATE.

• JCL - DFSORT - Added support for the INCLUDE=ALL clause.

• JCL - Improved support for the SORT utility to handle the BDW field in output.

• JCL - Improved support for DD concatenation.

• JCL - Improved support for Input Stream.

• JCL - DSNUTILB - Improved support for the NULLIF() statement.

• JCL - INFUTILB - Added support for unloading data with the NOPAD option.

• JCL - INFUTILB - Enhanced support for current date in INFUTILB.

• JCL - Added file existence and size checks before using a file.

• JCL - GDG - Improved the handling of sub-directories for GDG.

• MQ - Improved connection opening in the JMS implementation.

• MQ - Improved data length setting of GET message for XA datasoure.

• MQ - Decomposed CMQV standard copybook to prevent compilation errors and refactoring uses.

• BluSam - Improved support for delete requests for non-existent data sets.

• Improved support for the ALLOCATE statement.

• Improved robustness of TS-QUEUE Naming.

• BatchScript - Enhanced preservation of previous step return code in job re-execution.

• Dataset - Improved the file existence check when a file exists and is temporary.

• Dataset - Improved the concurrency when locating GDG files to delete.

• Dataset - Added support for getting GDG Dataset record size.

• CICS - Improved support for the SUSPENDED option in the INQUIRE TASK LIST command.

• CICS - Improved support for LOAD SET using the ADDRESS OF statement.

Runtime release 4.1.0 82

AWS Mainframe Modernization User Guide

• CICS - Improved unhandled CICS arguments REMOTESYSTEM when CICS INQUIRE.

• CICS - Enhanced support for the GETMAIN command to handle the SET option with a pointer
defined with the OF keyword.

• JICS - Improved robustness for the jicsXAPrepare() method by adding the transaction state check.

• JICS XA - Added a check for transaction state and enhanced transaction thread termination.

• BAC - Enhanced role-based authentication on client side and refactored/centralized all API calls.

• BAC - Implemented a feature to block public access to BAC and JAC based on configuration

• BAC - Upgrade of the dependencies: Angular 17.

• BAC - Improved security integration with OAuth2 - StateFarm/FIDIS.

• BAC - Enhanced hibernate generated DDL.

• BAC - Improved export data set mechanism.

• JAC - Updated to Angular 17 and reporting all specifics work from BAC (ROLE, sadmin conf, XSRF,
logout).

• COBOL - Added support for the CHAR and ORD-MIN functions.

• Enhanced FileFactory to keep catalog record size in MOD disposition.

• Enabled logging using MDC for JICS transactions.

• Improved SQLCA > SQLSTATE produced for stored procedures generating ad-hoc result sets.

• Improved support for task scheduling related to last Spring upgrade.

AS400

New features

• Added multi-node support for database record locks using Redis.

• Added support for BINARY CHARACTER for the DDS type.

• CL - Added support for custom report file generation.

• RPG - Added support for the RENAME keyword on primary/secondary files.

Improvements

• Improved database support for handling the CTID column with a JOIN clause.

• Improved cursor position for multiple DSPATR(PC).

Runtime release 4.1.0 83

AWS Mainframe Modernization User Guide

• Improved logging on read exception.

• Improved Quartz job logging to include job properties to MDC.

• Improved support for the AS400 help screen.

• CL - Improved support for the RMVJOBSCDE command to accept entry numbers with trailing
spaces.

• CL - Improved support for the RMVJOBSCDE command to remove a job schedule using a generic
job name.

• CL - Improved support for the SAVOBJ command to order records by table key.

• CL - Improved support for the CPYF command to establish a new connection for DB queries.

• CL - Improved insertion of inquiry messages in queue message with SNDPGMMSG.

• CL - Improved job queue configuration to specify default job queue.

• CL - Improved the CRTPF command to support the QTEMP library and the RCDLEN parameter.

• CL - Improved support for the CHKOBJ command - Check for partition with library.

• CL - Improved RTVMGS to send CPF2407 and CPF2419 when file/ID not found.

• CL - Improved CPYTOIMPF and CPYFRMIMPF interpretation of legacy formatting parameters.

• CL - Added support for OVRPRTF parameter USRDTA.

• CL - Improved the CPYTOIMPF CL command to establish a new connection to avoid closing
existing result sets.

• CL - Improved CHGDTAARA so that it no longer modifies the data area length when it updates
the content.

• CL - Improved ClCommand database connection handling.

• Optimized interaction between the front end and the back end.

• COBOL - Updated transformation to handle FILLER in copybooks.

• Improved additional message information display for custom messages sent to the front end.

• Updated the default value for the selector in app.component.ts.

• Improved text splitting in split-dynamic-field display.

• Improved the display of error message with multiple writes followed by a read.

Transversal capabilities

New features

Runtime release 4.1.0 84

AWS Mainframe Modernization User Guide

Added support for the dynamic configuration of OAuth2 provider secret.

Improvements

• Printing - Improved QCMDEXC parameter support for handling quotation marks and improved
report name formation

• Improved support for delimited syntax on RecordAdaptable.

• Enhanced InspectBuilder error logging to add context about source string.

• DataSimplifier - added robustness for ByteArray affectation.

• Enhanced MDC logging with new runtime attributes.

Modernization tools release 4.1.0

zOS

New features

• Added support for multiple CSD file transformations

• COBOL - Added support for the CICS ALLOCATE statement.

• COBOL - Added support for ON SIZE ERROR in the ADD CORRESPONDING statement.

• COBOL - Added support for EXIT PARAGRAPH.

Improvements

• COBOL - Improved support for -INC copybook.

• COBOL - Enhanced support for FILLER initialization.

• COBOL - Improved support for figurative values comparison.

• COBOL - Enhanced support for WHEN ANY in consecutive WHEN clauses lacking intermediary
code blocks.

• COBOL - Improved support for figurative constant.

• COBOL - Improved support for packed type size computation.

• COBOL - Improved unhandled CICS argument KEEP for SPOOLCLOSE.

• COBOL - Improved generation for the TEST-NUMVAL function.

Modernization tools release 4.1.0 85

AWS Mainframe Modernization User Guide

• COBOL - Improved Java generation arguments on INSPECT framework support.

• CICS - Improved support for defining DFHCOMMAREA.

AS400

New features

• RPG - Added an error-catching mechanism to generate the (incomplete) DDS so it won’t block
program generation.

• Added support for the INCLUDE file description specification keyword.

Improvements

• RPG - Improved full-free parsing.

• RPG - Added robustness with error catching.

• RPG - Improved initialization of field/DS with export keyword.

• RPG - Improved DAO operation to handle indicators.

• RPG - Handled the default value of PERRCD with CTDATA.

• RPG - Upgraded the Free-RPG parser to log a unique error per parsing rule.

• PRTF - Handled name collision between PRTF and JRXML.

• COBOL - Improved support of the LIKE keyword.

Transversal capabilities

Improvements

• Added robustness for ErrorID API

• Performance optimization for large project transformation. For example: timeout to skip blocked
files, re-use of the classification from Blu Insights, and better memory allocations.

• Optimized the memory footprint during COBOL/PL1 transformation.

• Fixed CVE on third-party (jQuery and bootstrap).

• Managed timeoutParser options in TC.

• Improved the multiple spaces rewriting on SQL queries.

Modernization tools release 4.1.0 86

AWS Mainframe Modernization User Guide

• Improved Read Only Cursor with sensitivity attribute.

Release notes 4.0.0

Release date: April 8, 2024

For instructions on how to migrate from AWS Blu Age Runtime 3.10.0 to 4.0.0, see the section
called “Migrating from 3.10.0 to 4.0.0”.

This release of AWS Blu Age Runtime and Modernization Tools is focused on upgrading critical
dependencies and supported technologies while boosting performance in multiple functionalities.
Some key features and changes in this release are:

• • Upgrade from Spring Boot 2.7 to 3.2.4, Spring Core 5.3 to 6.1.5, and Tomcat 9.0 to 10.1.17
to provide improved security, performance, and maintainability by using versions that are
actively being patched and maintained.

• Lazy loading on front-end application to build faster large projects with more than 2000
screens and reduce the displaying initialization from 10 s to 300 ms.

• Support for DBCS display on front-end application. Enhancement of the support of double-
byte characters to provide a new font that handles double-byte and single-byte characters,
prevent single-byte input in a double-byte field, and handle fields with mixed double-byte and
single-byte characters.

• Thread monitoring feature for AS400 Online application to run AS400 application with
parallelization.

• Improved performance on context and RunUnit initialization by adding a configurable
mechanism to pre-initialize program context reducing the impact of loading complex
structures inherent in legacy complexity.

This version of the AWS Blu Age Runtime was tested with the following stack. Other versions might
also be compatible.

Component Version tested

Java Java 17

Presentation layer Node JS 18.18

Release notes 4.0.0 87

AWS Mainframe Modernization User Guide

Npm 9.8

Angular 16.1

Spring Boot 3.2.4

Spring Core 6.1.5

Service layer

Spring statemachine 4.0.0

PostgreSQL engine 14Persistence layer

Oracle 21

Application server Apache Tomcat 10.1.17

For more information about the changes included in this release, see the following sections.

Runtime release 4.0.0

zOS

New features

• Added support for include statement '-INC CPYNAME'.

• CICS - Added support for PUSH/POP HANDLE statement.

• COBOL - Added support for "ASSIGN TO DYNAMIC".

• Added support for DB2 UNLOAD using INFUTILB.

• Added support for keyword SEQNUM in an OVERLAY of INREC statement.

Improvements

• SORT - Added support for special chars (parenthesis and asterisks) in sort string literals C'....'.

• SORT - Improved support for OUTFIL NOMATCH-(..) argument.

• SORT - Added support for SYMNAMES data definition.

• SORT - Improved handling of TO= and LENGTH= arguments.

• SORT - Improved handling on MOD disposition.

Runtime release 4.0.0 88

AWS Mainframe Modernization User Guide

• SORT - Added support for HIT=NEXT argument.

• Enhanced ICEGENER to add support for specific output file encoding.

• INFUTILB - Enhanced support for WITH UR clause.

• INFUTILB - Enhanced support for unload when writeNullIndicator is false.

• DSNUTILB - Enhanced robustness to load step when the NULLIF keyword is after an optional SQL
keyword.

• DSNUTILB - Enhanced support for isolate column name.

• DSNUTILB - Added support to load an empty file into a table.

• DNSUTILB - Added support for MOD disposition for the DNSUTILB SYSDISC file.

• IDCAMS - Enhanced comments support.

• JCL- Added support for column with double quote in LoadTask.

• JCL- Enhanced UNLOAD SQL query handling regarding whites paces removing.

• JCL- Enhanced response of Groovy script when an exception occurs in processing to assure a
JSON format.

• JCL- Improved check file disposition in the case of DISP=NEW and DISP=OLD.

• JCL- Enhanced support to handle multiple GDG generation reference with special character in
GDG base name.

• JCL- Enhanced support to load a dummy file.

• JCL - Enhanced support for tempFilesDirectory YML parameter.

• JCL - Improved JSON return when it is needed to escape double quotes within a string element .

• JCL - Enhanced FileUtils to support GDG base name.

• JCL - Enhanced DSNTEP program for DB2 multiple queries execution.

• Added support for Spring beans.

• Enhanced SQLConverter to avoid rectifying wrong dates.

• Improved JicsTimeBuilder handling of YYYYDDD.

• Allowed custom jars to be accessible from groovy.

• IMS - Enhanced navigation across records in the IMS database implementation.

• IMS - Enhanced CBLTDLI to be able to launch program use purge.

• IMS - DFSRRC00 able to pass the params from groovy to backend program.

• Added support for JICS command that was not invoked through a transactionRunner.

Runtime release 4.0.0 89

AWS Mainframe Modernization User Guide

• JICS - Improved performance by using configurable cache.

• BluSam - Add support for disabling warmup BluSam when opening to enhance performance for
large dataset.

• BluSam- Improved delete/rename behaviour on regular BluSam data sets.

• BluSam - Enhanced performance on record operations.

• Enhanced datasimplifier for the methods determining if a string is low value.

• Enhanced support for Packed-Decimal & sorting order issue.

• Enhanced configuration of DB2 as primary data-source with AWS Secrets.

• Enhanced FileSystem API to expose the file status.

• Enhanced DynamicFileBuilder read stream input with lineSeparator.

• Enhanced datasimplifier for the methods determining if a string is low value when deals with
CUSTOM930 charset.

• SQL - Improved SQL Stored Procedure Output Processing.

• SQL - Improved lambda mapping for multiple table with aliases.

• COBOL - Improved support fro LENGTH OF statement.

• COBOL - Added support for TRANSFORM statement.

• COBOL - Added support for 9 new mathematical functions.

• COBOL - Improved support for INTEGER-OF-DAY FUNCTION.

• COBOL - Improved support for 88 level involving figurative value.

• COBOL - Improved transformation for SET ADDRESS statement.

AS400

New features

• Removed duplicated indicator entities.

• Added support for DBCS characters.

• Introduced handling of HELP keyword for subfile record control.

• Added configuration parameter to toggle column name capitalization & split comment column
content on pipe char.

• Added support for using 0x0c as last nibble for Packed type fields.

• RPG - Handled prototypes declared with ExtProc('system').

Runtime release 4.0.0 90

AWS Mainframe Modernization User Guide

• CL - Handled 'CLEAR' parameter of cl-command RMVMSG + introduce in-memory non-program
message queues.

• CL - Handled generic statements being passed to SBMJOB CMD() calls.

• CL - Added command STRCMTCTL and ENDCMTCTL. Modified locking mechanism and cleaning
up of transactions and locks.

• CL - Added support for RCDDLM parameter for CPYTOIMPF command.

• CL - Added handling of padding zeros in SAVOBJ command.

• CL - Added handling of libraries included in the qualified name of the OBJ parameter for
RTVOBJD.

• CL - Added support for CPYTOIMPF command params STRDLM, STRESCCHR, and RMVBLANK.

• CL - Enhanced RTVMGS to send CPF2407 and CPF2419 when file/id not found.

• CL - Improved RCVF command to receive records from any provided library in DEV parameter.

Improvements

• Changed default values for Blu4iv task executor to allow better scaling by default.

• Parameterhelper modified to convert list of strings and ElementaryRangeReference to String.

• Enhanced CTID to handle not existing column in POSTGRE.

• Added robustness to support user space API "QUSPTRUS".

• Added support for User Spaces APIs QUSRUSAT and QUSCUSAT.

• Enhanced support for User Space API (QUSPTRUS) without error code.

• Added support for CRON Job Scheduling using Quartz.

• Enhanced support of RPG program cycle.

• Improved Blu4iv transaction management.

• Record locking of files under commitment control within same transaction has been improved.

• Improved handling of subfile initialization.

• Improved display of scroll indicators for Message Lines.

• Prevented trailing zeros on numbers sent through data queue.

• Improved Additional Message Information Screen.

• Improved JPA write operations to consider current library.

• Improved behavior of ProgramJobExecutor when executing programs without parameters.

Runtime release 4.0.0 91

AWS Mainframe Modernization User Guide

• Added functionality to directly pass arguments from front end links to back end scripts.

• Improved transaction handling for jobs metadata.

• CL - Added support for param SECLVL in RTVMSG.

• CL - Added empty implementation for CLRLIB.

• CL - Improved CPYFRMIMPF support for copying from both database and CSV.

• CL - Improved CPYFRMIMPF implementation to ignore extra columns.

• CL - Improved CPYTOIMPF and CPYFRMIMPF interpretation of legacy formatting parameters.

• CL - Added param removeDecimalPoint to format numeric values in SAVOBJ.

• CL - Improved RCVF command to properly handle EOF condition.

• CL - RTVSYSVAL - Implementation SYSVAL = QDATETIME.

• CL - OVRDBF command modified to get field as default table name.

• CL - RTVJOBA Unavailable value for param : USRLIBL.

• CL - Handled leading slashes in SNDPGMMSG MSGF param.

• CL - Improved support for wildcards in sourcefile in command DSPFFD.

• CL - Improved handling of param PGMQ in RCVMSG and SNDPGMMSG.

• CL - Made RTVMSG param MSG optional to align with legacy docs.

Transversal capabilities

New features

• Improved capability when passing parameter at USING clause of OPEN cursor.

• Performance: Improved pre-initialization of context and RunUnit for performance tuning.

Improvements

• Improved the mechanism to dump low values from UNLOAD command of INFUTILB utility
program.

• Added support current schema option on datasources secret manager.

• Enhanced runtime to not consider parameters passed at open cursor when they are not needed.

• Improved numeric format validation for numeric fields.

• Improved SQL Diagnostic in highly parallel execution environment.

Runtime release 4.0.0 92

AWS Mainframe Modernization User Guide

• Introduced unicode for codepage byte sequence (FE FD).

• DataSimplifier performance optimization - Enhanced assign statements.

• DataSimplifier performance optimization - Improve default value for numeric type initialization
to prevent useless BigDecimal usage.

Modernization tools release 4.0.0

zOS

New features

• Added support handling Abend PROGRAM.

• Improved support to generate AIX dataset.

• COBOL - Added support for JUSTIFIED clause on ALPHANUMERIC/ALPHABETIC/GRAPHIC fields.

Improvements

• Improved PURGETHRESH attribute handling for TRANSCLASS resource definitions.

• Improved support for data definition and MOVE statement.

• CICS - Enhanced support for DELAY command on option MILLISECS.

• Improved SQL lambda mapping for multiple tables with aliases.

• Improved support for parent field finding.

• Improved SQLCA sqlstate set for COMMIT and ROLLBACK operation.

• COBOL - Enhance parsing by commenting obsolete paragraphs

• COBOL - Enhanced support for REPLACING clause.

• COBOL - Added support for mathematical functions ASIN ACOS LOG TAN.

• COBOL - Added support for multiple AFTER statements in PERFORM VARYING.

• COBOL - Enhanced support for RENAMES (level 66) fields.

• COBOL - Enhanced LENGTH OF method to get length at a specific index in an array field.

• COBOL - Added support for multiple AFTER clauses in PERFORM VARYING statements.

• COBOL - Enhanced support for RENAMES clause.

• COBOL - Enhanced support of PICTURE keyword.

Modernization tools release 4.0.0 93

AWS Mainframe Modernization User Guide

• COBOL - Enhanced support for Level 88 field parsing.

• COBOL - Improved goto depending condition with table data items.

AS400

New features

• Added functionality to pass arguments to direct front end java calls.

• CL - Improved %SST generation including support for *LDA with CL→Java.

• RPG - Added support Program-Described record for DISK files.

Improvements

• Improved display file, resolve referenced fields with the "REFFLD" keyword.

• Improved support of display file keyword SETOF-CSRLOC.

• Removed files from the commitment control after closing.

• Ensured consistent behavior for concurrent Read and Write Operations on a table when
performed by the same program.

• Handled assignment to substring of SizePrefixedAlphanumericType.

• Handled passing data structure to procedure with varying-length string parameter.

• Improved retention of invalid numeric values upon onBlur event and creation of event listeners
for valid fields only.

• Improved error messages on screens and highlighting of fields with invalid input.

• Improved handling of screen fields conditioned on indicators.

• Enabled scrolling with mouse wheel.

• Added support for function keys for Help screen.

• Improved support for long text in split-dynamic-field component.

• Improved handling of multi-record LF files when renaming records.

• CL - Improved RTVJOBD command to handle LF files (views).

• CL - Improved OVRDBF command when used on a multi record LF.

• RPG - Handled scenario where procedure defines a variable with same name as renamed param.

• RPG - Improved handling of *ZEROS when initializing signed binaryInteger.

Modernization tools release 4.0.0 94

AWS Mainframe Modernization User Guide

• RPG - Improved handling of pointers to non-local (reference) variables.

• RPG - Improved handling of ELSEIF statements following IFxx statements.

• RPG - Added support for Fields defined with LIKE on prototype.

• RPG - Improved the support for LIKE keyword of a field created by LIKEREC.

• RPG - Improved generation of operators with figuratives.

• RPG - Improved parsing for array expression xxx(*) and support it in %lookup.

• RPG - Improved LookUp operation code with high and equal (or low and equal) indicators.

• RPG - Improved free form parsing.

• RPG - Improved parsing of I-card named constants that follow I-card record formats.

• RPG - Improved support for type INTEGER and UNSIGNED.

• COBOL - Added support INDIC clause of DSPF format in COPY DDS statement.

• COBOL - Improved grammar for DISPLAY and ACCEPT statements to unblock transformation and
generation.

• COBOL - Added support fro DISK files.

• COBOL - Improved DDS display files support programs.

• COBOL - Added support for LIKE clause.

• COBOL - Added support for Program-Described DISK file.

• COBOL - Added support for file name with suffix.

Transversal capabilities

New features

• Handled the Lazy loading of Map Components of web projects.

Improvements

• Improved java generation of SQL indicators parameters.

• Improved capacity to handle variables involved in SET DB2 statement.

• Improved raise of error at end of fetched cursor when output is a single entity array.

• Managed path in Linux.

• Data Migrator manage vulnerabilities and remove unused dependencies.

Modernization tools release 4.0.0 95

AWS Mainframe Modernization User Guide

Release notes 3.10.0

This release of AWS Blu Age Runtime and Modernization Tools is focused on core baseline upgrades
and improvements across the product striving to increase performance and robustness in all
transformation and execution steps. Some key features and changes in this release are:

• Version upgrade from Java 8 to Java 17, increasing security and performance, and allowing
customers to deploy and run applications implemented in a more modern language and to use
recent third-party framework versions.

• Additional support for managing large shared memory spaces between users or jobs, storing
data reusable after application or instance restart.

• Faster access to large data sets in Blusam using a pagination mechanism that makes it possible
to retrieve a subset of records incrementally.

For more information about the changes included in this release, see the following sections.

Runtime release 3.10.0

This runtime is based on Java17, Spring2.7, and Angular16.

zOS

New features

• Blusam - Added support for large data sets through a paginated mechanism where indexes are
stored and loaded using pages

Improvements

• Enhanced DataUtils.compare to handle lower precedence conversion from string to number

• Added support to check that no ByteRange is created with improper values through YML
property dataSimplifier.byteRangeBoundsCheck

• Enhanced removeSOSI() to support the initialization of a GraphicAlphanumericType with an
empty character

• Added robustness for job operation and secure GDG state read

• Blusam - Added support for clearing Ehcache of Blusam data sets through a new method named
CoreBluesamManager.removeCache()

Release notes 3.10.0 96

AWS Mainframe Modernization User Guide

• Blusam - Improved delete/rename behavior for regular Blusam data sets

• Redis - Enhanced support for unlocking data sets and clearing record lock

• JICS - Improved the error message for failed requests

• JCL - Added support for ControlM variable concatenation based on dot character

• JCL - Added support for Write ADVANCING (ADV) for GDG files

• JCL - Enhanced support for current generation number after delete all GDG files

• JCL - Enhanced support for rdw/recordSize reading from catalog at dataset creation

• JCL - Added support to update the resource object (from AbstractSequentialFile) when opening
the file with the size of data output record

• JCL - Improved IDCAMS performance

• JCL - Enhanced support for PRINT STATEMENT by adding "CHAR" as alias of "CHARACTER"

• SORT - Enhanced support for copy operation from a Blusam fixed-length dataset to a dataset
with variable length

• SORT - Enhanced sort grammar to handle some specific statements

AS400

New features

• Added support for User Spaces and its related APIs

• Added support for TOMSGQ parameter of SNDPGMMSG and implemented message queues

• CL - Added support for FILE and SPLFNAME params for the OVRPRTF command

• CL - Added support for handling libraries for corresponding partition table with the CPYF
command

• CL - Added support for handling the CHGCURLIB command and considering the current library
when building queries

• CL - Added support for handling the cl command as part of the call stacktrace

Improvements

• Improved MessageHandlingBuilder for better handling of the call stack trace entry

• Improved parallel execution of the contextPreconstruct feature

• Improved display attributes when a record is created by SFLINZ

Runtime release 3.10.0 97

AWS Mainframe Modernization User Guide

• Improved SAVOBJ to allow the handling of multiple output files

• Improved groovy programs handling by adding them to programCallStack when they are called
from a Java program

• Improved top positioning detection of help modal

• Improved toPgmQ functionality when toMsgQ param is provided for SNDPGMMSG

• Improved fetching of predefined messages and functionality of message loader

• Improved CPYTOIMPF handling of delimiter characters in content

• Improved release lock on READ record

Transversal capabilities

New features

• Added a translation for system messages on Front-End

• Added a new method in ExecutionContext to return the program call stack

• Set a line separator (for data simplifier) regardless of the actual environment

• Added the possibility to configure the SQL model JSON path

Improvements

• Improved the comparison method DataUtils.compareAlphInt() when padding is involved

• Creation of a flag to allow custom behavior on exception in cursor queries

• Improved graphic LOWVALUES db conversion

Third party

• Upgrade to mitigate CVE-2024-21634, CVE-2023-34055, CVE-2023-34462, IN1-JAVA-
ORGSPRINGFRAMEWORKSECURITY-5905484, CVE-2023-46120, CVE-2023-6481,
CVE-2023-6378, CVE-2023-5072)

Modernization tools release 3.10.0

zOS

Improvements

Modernization tools release 3.10.0 98

AWS Mainframe Modernization User Guide

• COBOL - Added support for ABS function

• JCL - Enhanced variable scope: attached to STEP instead of JOB

• Enhanced cursor parameter injection for low/high value

• Improved CSD parsing, notably for remote TRANSACTIONS

AS400

Improvements

• Removed blank check for Control Level Indicator

• Added support for external name for IMPORT/EXPORT keywords

• Added support for %LEN on fields

• CL - Added support for new operators for the CLLE language

• CL - Added support for nested IF

• COBOL - Improved handling of the START command when used with multiple keys

• DSPF - Improved handling of cursor position with record number

• DSPF - Improved the formatting for signed numeric, numeric only fields, and fields with large
scale

• DSPF - Improved the determination of the title for Screen General Help

• DSPF - Improved support of Input/Output specifications

• DSPF - Improved handling of grouping separators during validation of numeric field

• Improved mapping output/DDS records

• Improved printer file REFFLT keyword ability to resolve referenced fields

• RPG - Enhanced support for “ALL free” statements

• RPG - Improved condition parsing and added support for handling CABXX without result TAG

• RPG - Improved input specification handling of numeric fields

• RPG - Improved handling of procedure calls within IF/ELSEIF/WHEN conditions

• RPG - Improved handling of READ command when called on a dspf file

• RPG - Improve support for files referring to a non-existing DDS

• Improve handling of REFFLD when passed a physical record format name

• Added support to use 'return' as a db column name

Modernization tools release 3.10.0 99

AWS Mainframe Modernization User Guide

Transversal capabilities

New features

• Oracle - Made it possible to define users than SYS to store built-in functions

Improvements

• Upgraded Java version from v8 to v17

• Improved SQL condition with Cluster column name

• Added support for ORDER BY clauses from view

Release notes 3.9.0

This release of AWS Blu Age Runtime and Modernization Tools is focused on multiple transversal
enhancements across the product striving to increase performance in high-availability
architectures, along with new capabilities to raise jobs executions to the next level. Some key
features and changes in this release are:

• Version upgrade from Angular 13 to Angular 16, increasing security and giving access to new
features that improve the performance in customer’s online applications.

• Add support of cross job features in AS400, with the main high-light that jobs can send inquiry
messages synchronously among them, enabling decoupling in modernized jobs.

• Performance improvements on the usage of Redis, including connection pool optimization, high
security on connection and upgraded dataset locking mechanism.

For more information about the changes included in this release, see the following sections.

Runtime release 3.9.0

zOS

New features

• Sort program: Updated VSAM inputs with fixed length

• JHDB DB: Added configurable timeout

Release notes 3.9.0 100

AWS Mainframe Modernization User Guide

Improvements

• Enhanced support for line separator to stream if used in files concatenation

• Enhanced support to open concatenated sequential files. Initialize DataSetIndex after opening of
the file

• Enhanced support for virtual decimal separator when a NumericEditedType is affected to a
numeric value

• Enhanced support for NumericEditedType on negative values

• IDCAMS: SYSIN cards are now read using the "encoding" property defined in application-utility-
pgm.yml

• IDCAMS: Updated grammar to support FILE(..) argument in DEFINE CLUSTER statement

• INFUTILB: Added support for DFSIGDCB argument to override DCB parameters of DD SYSREC

• INFUTIL: Enhanced support for "DFSIGDCB YES" parameter

• Improved SPLICE to handle huge input file

• DFSORT: Improved remark fields handling

• DFSORT: Added support for (signed / unsigned) free form numeric format (SFF/UFF)

• SORT: Added parsing support for OPTION PRINT and OPTION ROUTE statements

• SORT/ICEMAN: Added support for enclosed division operations (field with DIV operator)

• Enhanced support for CICS READ using generic key

• Function StringUtils.chargraphic fixed to remove SOSI from a graphic type

• Enhance performance on DataUtils.isDoubleByteEncoding

• JCL: Enhanced support for KEEP disposition mode for a temporary data set. The system changes
the disposition to PASS

• JCL: Handles DCB parameters dynamically

• JCL: Enhanced SUM FIELDS outputs for incorrect values

• JCL: CommonDDUtils::getContent now searches for the recordSize in the catalog

• JCL: Read rdw/recordSize attributes from catalog at dataset creation

• JCL: Added support for DCB=.MYDD to copy DCB parameters of a DD into another in same job
step

• JCL: Improved record size inheritance system

• JCL: Added (Redis) exclusive dataset lock

• Redis: Added SSL support for standalone mode

Runtime release 3.9.0 101

AWS Mainframe Modernization User Guide

• Redis: Added synchronized Redis lock count with lock

• Redis: Supported Pool parameters for Redis lock

• Redis: Optimized metadata refresh with Redis

• Redis: Improved redis cluster support

• Improvement on open locks with IO mode

• Improved datasets locks performance and clear unused locks

• Enhanced path of the dataset during unregister file

• Improved pre-fetch window cache invalidation

• Added support for thread safe utility datasource provider usage

• Enhanced datasetState nullity check

• Enhanced support for not reopening already opened data sets

• Added robustness for job final operation

• Enhanced support for indexes order for keys allowing duplicates

• Enhanced support for skip list serialization order

• Added support for debug dump feature to help diagnose indexes order issues

• Enhanced support for metadata refresh

• Enhanced support for Blusam bulk read

AS400

New features

• Creates an application-context registry

• Support for DSPF keyword CLRL(NO) Support record locks monitoring

• Support for keyed DataQueue

• Support for INQUIRY messages for batch jobs

• Added support for Program-described Printer file for AS400 COBOL

• Handles RMVJOBSCDE cl command

• Improvement for RUNSQL/DLYJOB

• CHKOBJ: Raising legacy error code for parameter LIB

• SNDPGMMSG: Supports string parameters

Runtime release 3.9.0 102

AWS Mainframe Modernization User Guide

• RTVDTAARA: Improved substring in LDA

• DSPFD: FILE param supported added for specific file name

• RUNQRY: Support for sql file in QRY PARAM

• CRTDUPOB: Support to copy the data between data areas

• SBMJOB: Converts instruction to use JobQueueManager

• OPNQRYF: Added support for Qtemp library

• CRTDUPOBJ: Improved logic for copying partition content

• CRTDUPOBJ: Added support for Qtemp for views

• RTVSYSVAL: Support for SYSVAL value, QDATFMT in CL command

• CHKOBJ: Added support for OUTQ

• RTVJOBA: Supports SWS param

• SNDPGMMSG and RCVMSG: Additional parameters supported MSGF, MSGFLIB, MSGDTA,
MSGTYPE, KEYVAR, MSGKEY, MSGID

Improvements

• Improved WORKSTATION I/O cards supports

• Improved handling of set message overlaying previous message

• Supports additional message information on array-messageline

• Improved standalone array wrapper access inside EVAL, SortA, figuratives

• Improve DAOs cleaning when online application ends

• Added support for additional date formats and improve handling of string inputs

• Improved CVTDAT handling of SYSVAL by adding system value helper class Decode and build
parameters from CL command SbmJob

• Removed package com.netfective.bluage.gapwalk.rt.blu4iv from gapwalk-cl-command
component scan

• Improved the support of predefined messages for message queue API

• Improved the support of retrieveSubfileRecord for record written in another program

• Improved the support of immediate messages for message queue API

• Improved handling of local data area when submitting a job

• Starts JobQueues automatically when the server starts

Runtime release 3.9.0 103

AWS Mainframe Modernization User Guide

• Uses applicationContext configuration to decode params for SBMJOB

• Improvement on system-supplied error messages

• Allows RTVMSG to search for .properties files in nested sub-directories

• Handles reset of entities bound to bad/invalid pointers

• Improved MessageHandlingBuilder to display msgId and MsgFile name as strings for RCVMSG

• Improved withMsgFileName method of the message queuing API

• Improved data area lock mechanism

• RTVMBRD: Support for lower and upper case for parameter FILE

• CRTDUPOBJ: Improved handling of views

• CPYTOSTMF: Improved handling of connection

• CPYF: Improvement in handling directory name while copying from a flat file

• RCVF: Properly handles DEV/RCDFMT parameters and transformation of RCDFMT for groovy and
java

• RCVF: Handles subsequent calls and avoid resetting the cursor

• CPYF: Added support for writing from flat files

• CRTDUPOBJ: Added handling of new obj with Qtemp library

• CHGDTAARA: Increased data area max length from 256 to 2000

• SAVOBJ: Ensure records saved are in insertion order

• RTVDTAARA: Values retrieved (not to be trimmed)

• CHKOBJ: Returns correct monitor messages when member does not exist

• RTVDTAARA: Added support of LDA substring

• RTVDTAARA: Returns whitespaces up to the length of variable specified in the RTNVAR param

• RTVDTAARA: Supports integer parameters for start and length and support latest
transformation format

• CHGDTAARA: Added support for parameter that includes lower and upper bounds

• CHKOBJ: Handles VIEW value for parameter object type

• CHKOBJ: result set to true irrespective of member if the view exists

Transversal capabilities

New features

Runtime release 3.9.0 104

AWS Mainframe Modernization User Guide

• Handles generating reports to .txt files

• Added currentSchema XA datasource property to secret manager

• Add database.cursor.raise.already.opened.error YAML property to enable framework to raise
SQLCODE error 502 when already opened cursor is opening

Improvements

• Added gapwalk poms to AWS Blu Age on Amazon EC2 packaging

• Uses the new signal handler paradigm by default

• Add support for lock when disposition is MOD or OLD

• Added cache to store database date time patterns

• Improved check function of PackedType

• Improve DataUtils.setTo functions for Records with VariableSizeArray

• Handles MQ SYNCPOINT option as regard as run unit

• Enabled framework to set SQLCODE on rollback transaction

• Added automatic driver class name according to engine key secret

• Program/Transaction timeout

• Restore cursor position after Rollback when accessing cursor

Third party

• Upgrade SnakeYAML, Redisson and Amazon SDK, remove YamlBeans (mitigate CVE-2022-25857,
CVE-2023-24621, CVE-2023-42809, CVE-2023-44487)

Modernization tools release 3.9.0

zOS

Improvements

• Enhanced support for XML-TEXT as source for target of type String

• Enhanced STM to UML workflow to support X/(Y/Z) division pattern

• JHDB DB: Accepts ROLLBACK call before any database update

• JHDB DB: Accepts ROLLBACK even if transaction is terminated (NOP)

Modernization tools release 3.9.0 105

AWS Mainframe Modernization User Guide

• JCL: Improved step validation function

• SORT: Handles SUM function with zone decimal negative values

• COBOL: Adds support for single/double quote escaping in string literals

AS400

Improvements

• Improved built-in function %editc handling of edit code X by adding leading zeros

• Improved handling of input only fields initial value

• Added action keys to help dialogs

• Footer record of dynamic table appearing at the bottom

• Handled START command without KEY PHASE for files that specify an actual RECORD-KEY

• Added default value for float and NumberUtils::pow type

• Added support defining a variable using LIKE(IN)

• Updated FOR loop handling to support omitting optional elements

• Updated RPG parsing to associate records with CTDATA array name

• Improved handling of indicators for CABxx statements

• Supports optional parameter on COMMIT keyword

• Improved FORMAT Keyword support in LF

• Managed LOOKUP operation code with high and equal (or low and equal) indicators

• Handled PF key name declared within double quotes

• Improved the handling of EDTCDE X to not suppress leading zeroes

• Improved support for MSGCON in printer file not generating unnamed labels

• Field CONTENT is shared by multiple data structures

• Handled ERRSFL parameter in combination with SFLMSG/SFLMSGID

• Improved main code before proc declaration scope of full free rpg

• Added parsing conditioned control specification

• Improved support for setErrSfl() method in dataholdermapper

• Improved type resolution for internally created variables

• Improved support for Z-ADD opcode

Modernization tools release 3.9.0 106

AWS Mainframe Modernization User Guide

• Improved the handling of constant field with DFT value

• Improve the support of integer field inside program status ds

• Handled indicator assignment in ENTRY params

• Improved the filter of keywords propagated through ref/reffield keyword

• Supported unnamed DataArea data structure

• Improved handling of pointer data type

• Handled elements of array used to define variables with LIKE keyword support array access in
output field

• Improved support for signed numeric, only displaying digits

• Supported logical relationship on O card

• Test case for %CHAR on alphanumeric

• Supported control specification keyword main

• EDTCDE with two parameters in printer file

• Improved FullFreeRPG parsing

• Enhanced the dynamic table to ensure the footer is correctly positioned

• Added support for initializing numeric types with ALL figurative constant

• Improved handling of multiple RPG logical files referencing the same physical file

• Improve the detection of modified fields in a modern screen

• Modal synchronization with dynamic fields

• Improved the handling of output only signed numeric field

• Improve WORKSTATION I/O cards supports

Transversal capabilities

New features

• Data Migrator Tool: Added ebcdicFilesWithVarcharInVB property to allow taking VARCHAR 2-
byte length into account when reading bytes

• Implemented a common API to log error

• Implementation of BluAgeErrorDictionaryUtils and use of common API to log error and/or info in
COBOL2Model, RPGCycleBuilder, Definitions2Model and FieldsProcessor

• Improved SQL grammar to support different isolation clause definition

Modernization tools release 3.9.0 107

AWS Mainframe Modernization User Guide

Improvements

• Upgraded Angular version to v16

• Angular: Upgraded ajv version from 6 to 8.9

Third party

• Upgraded Groovy to version 2.4.15

Release notes 3.8.0

This release of AWS Blu Age Runtime and Modernization Tools is focused on multiple transversal
enhancements across the product to improve its quality and security, along with improvements in
performance for caching and the unification of commands supports in a single distribution. Some
key features and changes in this release are:

• Version upgrade from Spring 2.5 to Spring 2.7, increasing the maintenance support,
performance, and security of the platform.

• Unification of more than 82 CL commands support as part of the over-the-counter distribution
in order to facilitate the usage and deployment of modernized applications previously using CL
scripting.

• New APIs available to operate and interact better with BluSAM datasets, such as integrated
import to the managed service and the capability to list dataset metadata information.

• Performance improvements and extension of the usage of Redis, including availability in cluster
mode, high availability data retrieval, standardization of the usage of secrets.

For more information about the changes included in this release, see the following sections.

Runtime release 3.8.0

zOS

New features

• Handling key definition as a string for DynamicFileBuilder

• DFSORT: Added support for multi-items in OUTFIL TRAILER1 + DFSORT grammar initialization

Release notes 3.8.0 108

AWS Mainframe Modernization User Guide

• CommonDDUtils tool: handling record size in in-stream data

• Indexed file: handling the GENKEY option

Improvements

• Externalized BluSAM loading services in a separate jar

• Added support to set up location for storing temporary files

• Improved shared cache mechanisms for multi-nodes cases

• Shared cache usage: IDCAMS verify optimization

• Improve ROWID injection for embedded select

• JCL: Each in-stream job procedure is now generated in a distinct Groovy file

• Ensure card-demo-v2 coverage on IDCAMS JCL cards

• BluSAM: Avoid duplicate warmUp when using multiple instances

• Reduced memory footprint on cache hydration

• Jedis pool config support

• Added line separator to stream if used in file concatenation

• Support for EBCDIC cards + block comments (/* ... /) in IDCAMS utility

• Database support query: support for double byte strings in the conversion of level49 towards
SQL

• DFSORT grammar: implements 17 control statements + integration of 2 of them (OMIT/
INCLUDE)

• Enhance GRAPHIC columns fetch INFUTILB

• Support for reading file with variable Size table

• Support for ZonedType with nibble signed where the first bit of last byte is 'E'

• DFSORT/ICETOOL adds support for NOMATCH=(..) argument if a record does not match any of
the CHANGE find constants

• Redis Cluster compatibility

• Handling Job Status (Failed) based on groovy exit code

• Improved CICS SYNCPOINT ROLLBACK support.

• Pre-fetch window to optimize Redis cache usage

• JCL/GROOVY: Inherits isRDW property from previous step's dataset when DISP=(,PASS)

• Handling partial copy of data with variable size array

Runtime release 3.8.0 109

AWS Mainframe Modernization User Guide

AS400

New features

• Support for I/O cards for display files

• Support for additional message information for DSPF keywords ERRMSGID and CHKMSGID

• Support for multiple error messages on frontend screen

• Added or improved support of 82 CL commands within the gapwalk-cl-command application

Improvements

• Improved support for DELETE and READ under commitment control

• ConvertDate inside of builtin %dec

• Enforced XSS security headers

• Improved robustness and consistency of STM generation (better handling of: continuation line in
free form rpg, commas for decimal part, free form blocks in definition/declaration)

• Improved DataHolderMapper generation

• Added robustness and change scope in DataAreaFactory

• Improved the focus shifting on tab key

• Improved performance on Jasper report generation

• Improved decimal display with padding 0s

• Improved support for ROW/COL field in INFDS

• Improve support for modified fields from the screen

• Added getters for generated report name and path

• Improved on Dataqueue length

• Improved autoconfiguration of Job Queues to match new standards in Spring Boot 2.7

• Improved workstation updates for multiple concurrent sessions

Transversal capabilities

New features

• Support for No Invalid Data Tolerance for Packed

Runtime release 3.8.0 110

AWS Mainframe Modernization User Guide

• Added pagination/filtering to list dataset endpoints

Improvements

• Enhanced ORACLE query transformation strategy in column comparison against empty string

• Handling BLOB DB2 with DSNTEP and INFUTILB utility programs. BLOB DB2 are now modernized
to BYTEA type postgres.

• Improvement of deletion of last item of cursor

• Enhanced support for delete RRDS file

• Improved AWS Blusam secret performance

• Improved handling of database connections in SQL framework

• Standardized AWS multi-datasource secret manager keys

• Performance regression fixes

• Improved check function for PackedType

• Improved handling of LOW-VALUE for PackedType

• Upgraded spring security packaging for cognito connection

• Not applying codeshiftpoint encoding and decoding on DB2 targeted databases

Third party

• Spring Boot upgrade from 2.5 to 2.7

Modernization tools release 3.8.0

zOS

New features

• JCL: Handling stream with carriage return "\r"

Improvements

• Improved logging to prevent division by zero when modernizing a DIVIDE with ON SIZE ERROR
clause

Modernization tools release 3.8.0 111

AWS Mainframe Modernization User Guide

• JCL: Enhanced support for calling a procedure in a procedure

• Support for OF keyword in FORMATTIME CICS command when there are ambiguous fields

• JCL: support for Â¥ character in variables

• JCL: computing RC based on previous steps

• Comparing bytes instead of strings when PL1 SUBSTR is used

• Improvement of initialization of multidimensional arrays from single source

• Improved parsing of COBOL when it involves a single SQL query in an IF block

AS400

New features

• Support for nested IF statement in CL

• Improved support for ENDDO statement in RPG freeform

Improvements

• Improved support for conditioning Control Level

• Improved prototype return with LIKE

• Improved support for handling functions %months, %year, %days

• Support for help feature for the whole screen

• Handling figurative BLANKS passed as a parameter

• Improvement on expression EVAL with "" operator

• Handling START command without KEY PHASE

• Improvement on handling the Keyword LIKEREC

• Improvement on unnamed subfields

• Improvement on procedure returning an unsigned type

• Improved support for RESET operation (Free RPG), %CHAR and %DEC built-ins

• Improvement in the builtin function %LOOKUPXX

• Improved support for LIKEDS keyword on procedure without prototype

• Handling Dim keyword array type (VAR, AUTO)

Modernization tools release 3.8.0 112

AWS Mainframe Modernization User Guide

• Improved support for XFOOT

• COBOL: improved support for RENAMES fields

• CL: support while(true) condition

• Improved the handling of standalone arrays with LIKE keyword

• Improvement of built-in function %INT

• Improved RPG Full Free parsing

• Improved support for array in the linkage

• CL2GROOVY: Support Select Statement

• Improvement in DSPF keyword "ERRMSGID"

• Improved the handling of initializing bytes with leading zeroes

• Improvement on authorizedValues for numerical fields

• Handling extender H for Free form EVAL statement

• CL to Groovy: Support substring of LDA

• Improved support for RESET on a record

• Improved the handling of EDTCDE and EDTWRD with references

• Improved input-field mapping with DDS fields

• Improvedsupport for MOVEA character into IN array

• Improvement in prototype with LIKEDS keyword

• Improved support for the DSPF keyword DSPATR

• Improved parsing of D-card with +/-

• Added robustness in program calls

• Added robustness in the field-resolving process

Transversal capabilities

Improvements

• FrontEnd: Simulate paste event for IME input

Third party

• Spring Boot upgrade from 2.5 to 2.7

Modernization tools release 3.8.0 113

AWS Mainframe Modernization User Guide

Release notes 3.7.0

This release of AWS Blu Age Runtime and Modernization Tools mainly includes enhancements to
better support commands and utilities, capabilities to integrate with AWS Secrets Manager and
new monitoring features. Some of the key changes in this release are:

• Multiple runtime components can now use AWS Secrets Manager to increase the security setup
of modernized applications, mostly related to utilities data sources, Redis for TS Queues, BluSam
cache and locks.

• Monitoring endpoint that allows to retrieve transaction, batch, and JVM metrics for resource
usage optimization and operational management, such as status, duration, volume, and others.

• New features to support IBM MQ calls in RPG, and increased JCL SORT and IDCAMS
transformation coverage.

For more information about the changes included in this release, see the following sections.

Runtime release 3.7.0

Topics

• zOS

• AS400

• Transversal capabilities

zOS

New features

• Improve parsing queries involved in program utility application by using SQL like grammar.
(V7-9401)

• Handle indexed Variable Size Array when offset (V7-9904)

• Support INSERT SQL TIME column into DB2 with 24:00:00 hour format (V7-10023)

• Support INSERT SQL query from arrays with FOR ROWS and ATOMIC options (V7-10105)

• JCL SORT - enhance TranscodeTool to support OUTREC with IFTHEN (V7-10124)

• JCL SORT - add support for DATE keyword in OUTREC command (V7-10125)

• JCL - add support of In-Stream procedures (V7-10223)

Release notes 3.7.0 114

AWS Mainframe Modernization User Guide

Improvements

• A dataset marked with the "PASS" disposition should be available across all job steps (V7-9504)

• Support JCL attribute SCHENV (V7-9570)

• Support SEND with CTLCHAR option (V7-9714)

• COBOL - Handle different line separator charsets in ACCEPT statements (V7-9875)

• Avoid multiple rollback (V7-9958)

• Allow use of MOD disposition to append at the end of GDG files (V7-10031)

• Optimization: putAll refactoring (V7-10063)

• PutAll refactoring: adding pagination (V7-10063)

• Make Jedis client read timeout configurable (V7-10063)

• UseSsl support for standalone mode (V7-10114)

• Support EIBDS after opening file successfully (V7-10147)

• Support EIBDS after a file control request (V7-10147)

• Improve CICS SYNCPOINT support (V7-10187)

• BluesamRedisSerializer: issue with metadataPersistence (V7-10202)

• Support Redis AWS Secrets Manager for TS queues (V7-10204)

• Support JCLBCICS on customizing DD name size (V7-10224)

• Adds support for absolute path in IDCAMS DELETE statement (V7-10308)

AS400

New features

• Implementation of the help feature for AS400 screens (V7-9673)

Improvements

• Number of records in INFDS (V7-9377)

Transversal capabilities

New features

Runtime release 3.7.0 115

AWS Mainframe Modernization User Guide

• Support for Runtime on EC2 to send logs to Amazon CloudWatch (D87990246)

• Added new endpoint to retrieve metrics about batches, transactions, and JVM (D88393832)

Improvements

• Support datasources AWS Secrets Manager for utility pgm (V7-9570)

• Added Db2 support for DSNUTILB DISCARD (V7-9798)

• Support for writing into logger instead of default system output stream in default SYSPRINT and
SYSPUNCH files (V7-10098)

• Support BluSam Redis cache and locks connection properties in AWS Secrets Manager
(V7-10238)

• Support for SSL connection on Db2 XA AWS secret (V7-10258)

• Updated metadata for IDCAMS REPRO and VERIFY (V7-10281)

• Improved IDCAMS Abend Return Code Management (V7-10307)

Modernization tools release 3.7.0

Topics

• zOS

• AS400

• Transversal capabilities

zOS

New features

• PLI - Improved assignment for array cross section and two-dimensional arrays (V7-9830)

AS400

New features

• Handling of control level indicators (V7-9227)

• Support for EXTNAME parameter *INPUT (V7-9897)

Modernization tools release 3.7.0 116

AWS Mainframe Modernization User Guide

• Enhanced Goto Rewriting: Support for tags located in SELECT OTHER statements (V7-9973)

• Support REFSHIT DSPF keyword (V7-10049)

Improvements

• Improvement on handling file description keyword EXTIND(*INUx) (V7-7404)

• Improved SQLDDS file transformation (V7-7687)

• File objects no longer generated for AS400 files (V7-9062)

• Improved handling of file description keyword EXTDESC (V7-9268)

• Improved handling of %CHAR builtin (V7-9311)

• Improved support for pagedown on last record without SFLEND (V7-9322)

• Improved support for prefixed data structures (V7-9436)

• Support for dimension defined with %SIZE (V7-9472)

• Support for handling PF field name declared within double quotes (V7-9557)

• Improved file operation - case insensitive (V7-9785)

• Support for field initialized to *USER (V7-9806)

• Support for COMP type in AS400 (V7-9840)

• Improved COBOL400 parsing on (Not)InvalidKey (V7-9922)

• Improved handling of SCAN operation (V7-9971)

• Improved support of GOTO opcode (V7-9973)

• Improved handling of EXCEPT operation (V7-9977)

• Improved prefix support (V7-10000)

• Support for MQ calls in RPG (V7-10007)

• Improved %LOOKUP builtin (keyed array data structure) (V7-10022)

• Support for Close *All operation (V7-10036)

• Support for UPDATE AS ROW CHANGE SQLDDS statement (V7-10051)

• Improvement to handle literal value type Long (V7-10073)

• Improved RPG grammar (the use of the keyword INZ as name of subroutine) (V7-10074)

• Improved RPG grammar to support numeric values with empty fractional part (V7-10077)

• Improved support for fields shared between CL and external file (V7-10081)

Modernization tools release 3.7.0 117

AWS Mainframe Modernization User Guide

• Improved support for DDS conditional indicators (V7-10084)

• Support for DDS binary type with COBOL programs (V7-10100)

• Improved name collision with linkage (V7-10109)

• Support for mixing main and export procedures (V7-10112)

• Improved support for DataStructure in a sub-procedure (V7-10113)

• Improved support of CLEAR (V7-10126)

• Improved support of DO loop (V7-10134)

• Support SQLTYPE in Full-Free RPG (V7-10151)

• Improved parsing of conditions on DDS keyword (V7-10155)

• Improved DSL generation (V7-10163)

• Improvement for processIndicators when the condition is a binary expression. (V7-10164)

• Improved GOTOs with Else condition (V7-10168)

• Support for type Time and Timestamp in DSPF (V7-10173)

• Improved parsing of continuation line for DDS (V7-10183)

• COBOL support for RENAMES FLD OF RECORD (V7-10195)

• Improved conditional indicator parsing on DSPF fields (V7-10221)

• Support parsing of DDS keyword NOALTSEQ (V7-10288)

• Support Help menu and hidden fields (V7-10314)

• Improved DSPF help keyword sanity check (V7-10328)

• No longer propagating all keywords on Ref field (V7-10347)

Transversal capabilities

New features

• Data Migrator - Handling CLOB data (V7-9665)

Improvements

• Propagating JCL property SCHENV from JOB to PROC GROOVY definition through JobContext
(V7-10225)

• FrontEnd - Adjusting window size in case of no border (V7-10358)

Modernization tools release 3.7.0 118

AWS Mainframe Modernization User Guide

Release notes 3.6.0

This release of AWS Blu Age Runtime and Modernization Tools provides new features for both
zOS and AS400 legacy migrations, mainly oriented to expanding CICS support mechanisms,
complementing JCL capabilities, optimizing performance in concurrent and high-volume features,
and adding multi-data-source capabilities. Some of the key changes in this release are:

• Enhancement of JCL dynamic file handling, expansion of current statements and management
of concatenated datasets, execution of multiple statements in a single block, and data transfer
from batches to programs.

• Enhanced support of multiple CICS commands, including inquiry for several CICS resource types.

• The capability to have different databases when using Blu Age Runtime Utilities, best suited for
scenarios when business data is distributed across multiple sources.

For more information about the changes included in this release, see the following sections.

Runtime release 3.6.0

Topics

• zOS

• AS400

• Transversal capabilities

zOS

New features

• JCL - DynamicFileBuilder - Enhanced file-handle management (V7-9408)

• Enhanced format conversion on some built-in SQL DB2 functions when calling the INFUTILB
UNLOAD utility (V7-9554)

• Enhanced PLI multi-dimensional array assignments (V7-9592)

• Handling of sysout redirect to file (V7-9992)

Improvements

• Add triggering of stored procedures for DB2 RDBMS (V7-9155)

Release notes 3.6.0 119

AWS Mainframe Modernization User Guide

• SORT handles conversion to PDF format (V7-9286)

• JCL/GROOVY - Enhance REPRO statement to support DUMMY datasets (V7-9424)

• Improve CICS UNLOCK support (V7-9606)

• Handle default value size for Union (V7-9648)

• JCL/GROOVY handle different termination/disposition in concatenated datasets (V7-9653)

• Make pageSize configurable for Blusam datasets (V7-9680)

• DSNUTIL - allow loading of 24:00:00 as valid TIME in DB2LUW (V7-9697)

• Support HIGH-VALUES (0xff) comparison in NumberUtils.ne() / NumberUtils.eq() (V7-9731)

• JCL/GROOVY - support DO ... THEN keywords in IDCAMS IF-THEN-ELSE clauses to execute
multiple statements in a single block (V7-9750)

• Invalid JHDB called program outside JHDBBatchRunner (V7-9782)

• Support whitespace characters in SORT OUTFIL control card (V7-9808)

• Improve CICS READ PREV support (V7-9845)

• Improve concurrent access for dataset indexes (V7-9864)

• Improve CICS REWRITE support (V7-9873)

• COBOL - support for multi line SYSIN in ACCEPT statements to pass data from batch (JCL) to a
program (COBOL) (V7-9875)

• Groovy - Better handling of ConcatenatedFileConfiguration at files creation step (V7-9876)

• IDCAMS UTILITY - Handling of DEFINE PATH statement (V7-9878)

• SORT BUILD - Adjust TRAN option and handle implicit blanks (V7-9925)

• Improve CICS DELETE with GENERIC option support (V7-9939)

• Improve CICS STARTBR and ENDBR support (V7-9952)

• Improve close performance on concurrent access (V7-9953)

• Improve file status handling on start (V7-9991)

• Groovy - Allow call of getDisposition()/getNormalTermination()/getAbnormalTermination() on
ConcatenatedFileConfiguration (V7-10012)

AS400

New features

• Support external indicators on COMMIT keywords (V7-6035)

Runtime release 3.6.0 120

AWS Mainframe Modernization User Guide

• Reset ReadC loop after SFLCTL write (V7-8061)

• Support LR indicator in CALL (V7-9250)

• Add new type of dynamic-field (split) to handle input field on multiple lines (V7-9370)

• Support primary/secondary file (V7-9390)

• Local Data Area are now passed to the called job when submitting a job (V7-9775)

• Support of QTEMP for data area and support of datarea value creation. (V7-9916)

• Commitment Control - support for enable/disable commitment control (V7-9956)

• Support external indicators on COMMIT keywords

Improvements

• Improve 0 value display and EDTWRD (V7-8933)

• Support of DSPF keyword "CHKMSGID" (V7-9125)

• SQL commit transaction upon batch termination (V7-9232)

• Improve support of keywords EXPORT and IMPORT for field and datastructure (V7-9265)

• Support lower case in DateHelper (V7-9461)

• Support conversion *CYMD to *ISO (numeric) (V7-9488)

• Improve the handle of built-in %len for a varying field (left-hand and right-hand side of an
expression) (V7-9733)

• Improve support for built-in functions '%LOOKUPXX' XX ("LE","LT","GE","GT") (V7-10064)

Transversal capabilities

New features

• CICS - Improve Inquire transaction for option status (V7-9712)

• JCL - Improve Load for sysprint with system out file (V7-9797)

• CICS - Improve INQUIRE TSQUEUE (V7-9823)

• CICS - Improve Inquire terminal for option userid (V7-9906)

Improvements

• Improve the handle of the comparison with blank (V7-8047)

Runtime release 3.6.0 121

AWS Mainframe Modernization User Guide

• Improve logging for Jics and Blusam (V7-8847)

• Support BMS extended attributes SOSI and programmed symbol F8 for dynamic fields (V7-8857)

• Handle buffer overflow in program parameter (V7-9138)

• Improve threads write concurrency for Blusam locks registry (V7-9505)

• Support multiple datasources configuration for Utility-pgm (V7-9570)

• Blusam record level locking only mode (V7-9626)

• Ensure metadata persistence resists to server restart (V7-9748)

• Improve DAO clean-up on exception (Browser Close) (V7-9790)

• Support DummyFile for INFUTILB SYSPUNCH (V7-9799)

• Enhance support for negative values on NumericEditedType (V7-9935)

Modernization tools release 3.6.0

Topics

• zOS

• AS400

• Transversal capabilities

zOS

New features

• JCL - Enhance logging for end of procedure (V7-8509)

• PL1 - Enhance bags generation for data type PakedLong (V7-8917)

• JCL - Enhance logging for end of procedure when the file contains the "end" marker // (V7-9509)

• PL1 - Enhance support for GET EDIT with Fixed-point and SYSIN stream (V7-9593)

• DB2 - Enhance support for VARGRAPHIC DB2 type (V7-9809)

• CICS - Improve command QUERY SECURITY for option LOGMESSAGE (V7-9969)

• PL1 - Improve bags generation for CHARG/chargraphic built-in (V7-9989)

Improvements

• PL1- Enhance support for INCLUDEX keyword (V7-9588)

Modernization tools release 3.6.0 122

AWS Mainframe Modernization User Guide

• PL/I - Handle CHARGRAPHIC keyword as a valid parameter of any method call (V7-9589)

• Improving PL1 host variable resolution when named with specific characters @ # $ §. (V7-9654)

• COBOL - Support of C01...C12 & S01...S05 keywords as parameter of WRITE ADVANCING
statement at parsing step (V7-9669)

AS400

New features

• Support SQL-DDS transformation in Analyzer (V7-7687)

• Automate SQL-DDS file detection (V7-7687)

• Implementation of SQL-DDS preprocessing (V7-7687)

• Support ALIGN keyword (V7-9254)

• Support ExtName to DSPF and multi-dim array (V7-9663)

• Support InvalidKey statements on COBOL WRITE (V7-9793)

Improvements

• Improvement on TESTB opcode (V7-8865)

• Improve support of DECFMT on focus (V7-8933)

• Handling resulting indicator on MOVE (V7-9224)

• Improve support of keyword TEMPLATE for field and datastructure (V7-9278)

• Improvement of LIKEDS (DS defined using LIKEDS is automatically qualified) (V7-9302)

• COBOL - Improve generation of indicators structure (V7-9423)

• Const parameter in prototype is not read-only (V7-9437)

• Improve EDTCDE keyword with edit code "Y" (V7-9443)

• Support generation of *ROUTINE field in PSDS and INFDS (V7-9487)

• Improve rewriting field XXX to standalone (default value is lost while rewriting) (V7-9522)

• Improve Support of DSPF keywords (V7-9658)

• Handling ZEROES default value on binary (V7-9666)

• Support implicit pointer (V7-9719)

• Improve the handling of built-in call %size with one parameter (V7-9730)

• Improve the handling of datastructure references in built-in calls (%ELEM) (V7-9736)

Modernization tools release 3.6.0 123

AWS Mainframe Modernization User Guide

• Improve the handling of signed length for field with LIKE reference in definition specification
(V7-9738)

• Improvement on REWRITE (V7-9791)

• Improvement of the generation of indexes from DDS files (V7-9803)

• Improve mappers robustness with invalid numeric value (V7-9813)

• Improve SQLModel and allIndexes files generation (V7-9818)

• Improve qualified DS support (V7-9863)

• Improve support of LOOKUP (with a standalone field LIKE a DS in parameter) (V7-9961)

• Improve LIKE on indicator (V7-9985)

• Handling resulting indicator on MVR (V7-9995)

• Support character N with tilde (V7-10021)

• Improve modern DDL files generation from SQLDDS legacy files (V7-10067)

Transversal capabilities

New features

• Customize resource location with a yml property (D88816105)

• COBOL - Support of EXIT PERFORM statement to exit from an inline PERFORM without using a
GO TO / PERFORM ... THROUGH (V7-9582)

• Specifying default legacy encoding to consider into global metadata. (V7-9883)

Improvements

• Improve mask generation (V7-9602)

• Improve context warm-up (V7-9621)

• Make Charset CUSTOM930 thread safe. (V7-9674)

• Improvement on MOVEA (V7-9773)

Release notes 3.5.0

This release of AWS Blu Age Runtime and Modernization Tools provides new features for both zOS
and AS400 legacy migrations, mainly oriented to datasets and messaging optimization, as well

Release notes 3.5.0 124

AWS Mainframe Modernization User Guide

as extended Java capabilities as a resulting asset of the transformation process. Some of the key
changes in this release are:

• Capability of migrating CL programs to Java in addition to the pre-existent groovy scripts
feature, to facilitate its integration with other modernized programs, and to simplify customer
learning curve by unifying the resulting programming language.

• Time reduction and optimization of the performance of dataset loads in Redis with the new data
bulk feature.

• Ability to operate and pass datasets within job steps to modernize traditional datasets behaviors.

• Extension of SQL migration to support VB input files and Java 11 simplified migration.

• Multiple new mechanisms for faster integration with IBM MQ including additional headers,
extended GET/PUT support and automatic retrieve of queue metadata.

• REST Endpoint for datasets metadata and import datasets from S3 buckets.

For more information about the changes included in this release, see the following sections.

Runtime release 3.5.0

Topics

• zOS

• AS400

• Transversal capabilities

zOS

New features

• JCL SORT - Handle new keyword overlay (V7-9409)

• ZOS COBOL - enhance support of floating char (V7-9404)

• Port of RedisJicsTSQueue to RedisTemplate & ListOperations (V7-9212)

• ZOS JCL - enhance temporary directory's path with files directory if defined through
UserDefinedParameters (V7-9012)

• Handle FUNCTION ORD-MAX with ALL (all array items) (V7-9366)

• Prefixed and human-readable keys are now used when storing TS Queues in Redis (V7-9212)

Runtime release 3.5.0 125

AWS Mainframe Modernization User Guide

• Add get dataset endpoint for Blusam API

• JCL - ADD support for batch job with name involving special character like # (V7-9136)

• TSModel fetching is now robustly performed on demand (V7-9212)

Improvements

• Non-versioned INCLUDE support in LNK files (V7-6022)

• MQ - Enhance encoding support (V7-9652)

• Improving support for double bytes or mixed charsets for varying character type (V7-9596)

• JCL - Support of filesDirectory configuration in IDCAMS delete NONVSAM statements (V7-9609)

• Support bulk mode for ESDS and RRDS datasets loading from files (V7-8639)

• Handle the opening of empty ESDS in input mode. (V7-9287)

• Enhance DEFINE CLUSTER statement with ORD/UNORD abbreviation support (V7-9451)

• Blusam Redis lock performance improvements (V7-8639)

• Enhance DEFINE CLUSTER statement to support RECORDSIZE provided in DATA() argument
scope (V7-9337)

• Adds support of BUFFERSPACE/UNIQUE attributes on DEFINE CLUSTER statements (V7-9419)

• Improve Blusam read operation for variable length record dataset. (V7-9391)

• CICS ADDRESS properly represents missing CWA as null (V7-9491)

• Remove Unnecessary write at end locks (V7-8639)

• Handle Redis cache template injection in cache (V7-9510)

• Decode correctly BPXWDYN parameter (V7-9417)

• Improvement on LISTCAT export consumption (V7-9201)

• Non-printable chars support in Blusam TS Queues name (V7-9212)

• Handle receive Map building for field with mapset null (V7-9486)

• Improve BluesamRelativeFile delete and rewrite operation for dynamic access mode. (V7-8989)

AS400

New features

• Add a feature to generate CL files as Java programs through standard DS/STM pivot (V7-9427)

Runtime release 3.5.0 126

AWS Mainframe Modernization User Guide

• Support Input File with ADD mode (V7-9378)

• Improved sort order and retrieval management to support cl command OPNQRYF (Open Query
File) and added support of SHARE parameter in OverrideItem. (V7-9364)

Improvements

• Support SFLNXTCHG on UpdateSubfile (V7-8061)

• Modify scope of CL context when run CL command (V7-9624)

• Handle return code for program BPXWDYN (V7-9417)

• Clear local monitors. (V7-9624)

• Support of DSPF keyword RTNCSRLOC (V7-9389)

• setOnGreaterOrEqual() not setting Equal to 1 (V7-9342)

• Update fields cache on UpdateSubfileRecord (V7-9376)

• Improve Support SFLNXTCHG (V7-8061)

Transversal capabilities

New features

• Ignore G prefix on literal graphic string. (V7-9420)

• ZOS COBOL - Enhance support of Fiedl.initialize() for some special structures (V7-9485)

• Allow initialization of context asynchronously to improve performance of program startup
(V7-9446)

• SQL Release explicitly the opened prepare statement and ResulSet. (V7-9422)

• Enhance JMS MQ - support MQRFH2 for MQ PUT / V7-7085 - support of default queue manager
(V7-9400)

• SQL Management - Enable Lambda conversions on parameters for SET commands (V7-9492)

• ZOS MQ JMS - Add support to MQCOMIT and MQBACK (V7-9399)

• ZOS IBMMQ - Enhance support to MQINQ (V7-9544)

• Handle CONCAT operation with byte instead of string when using double byte encoding.
(V7-8932)

• ZOS IBMMQ - Enhance support of PUT command with options SET_ALL_CONTEXT (V7-9544)

Runtime release 3.5.0 127

AWS Mainframe Modernization User Guide

Improvements

• Handle gdg file names with $ character (V7-9066)

• SQL Diagnostic return 1 as NUMBER clause when previous SQL statement is successful.
(V7-9410)

• Outlining for field with non null length (V7-7536)

• Support built-in PL1 GRAPHIC function (V7-9245)

• MQ - Add support of version for MQGMO fields setting (V7-9500)

• JMS MQ GET - Message returned dataLength improvement (V7-9502)

• Set sqlerrd(3) with number of fetched items in ROWSET context. (V7-9371)

Modernization tools release 3.5.0

Topics

• zOS

• AS400

• Transversal capabilities

zOS

New features

• ZOS PLI - Support asterisk index in assignment with binary expression (V7-9178)

• JCL to BatchScript - A "//" marks the end of job execution (V7-9304)

• ZOS PLI - enhance support of floating char and sign in numeric edited type (V7-8982)

• COBOL - Support of built-in SUM function (V7-9367)

• JCL- optionally, comment dead code after null statement (//) (V7-9202)

• JCL- Support of operator '|' in condition statement (V7-9499)

• PL/I - Comment of precompilation directives at preprocessing step to prevent parsing exceptions
(V7-9507)

Improvements

Modernization tools release 3.5.0 128

AWS Mainframe Modernization User Guide

• Handle Stream definition with delimiter (V7-9615)

• Improving LISTCAT exports handling. (V7-9201)

• PL/I - Enhancement to support implicit 'null' arguments (V7-9204)

AS400

New features

• Support of DDS keyword CONCAT (V7-9439)

• Refactor the generated java code for DSPF keywords. (V7-7700)

• Support Varying keyword on fields within a data structure definition (V7-9029)

Improvements

• Improve parsing of logical relationship AND/OR (V7-9352)

• COBOL Improve mapping between vo and dsEntity (V7-9449)

• Display empty value if numerical input is focused (V7-9374)

• Local variable in SQL Declare Cursor (V7-9456)

• Scope problem with empty DS (V7-9466)

• Truncate lines after col 80 before parsing (V7-9632)

• Improve the handle of field references and built-in calls in keywords (DIM, LIKE,...) in definition
specification (V7-9358)

• Support SQL comments (--) (V7-9632)

• FullFree parsing, type Date/Time/Timestamp (V7-9542)

• Include SQLCA from FullFree parsing (V7-9333)

• Improve Support of Control Level. (V7-9610)

• Handle DS comparison with *BLANKS (V7-9668)

• Improve support of multiple indicators in DDS (V7-9318)

• Improve support of multiple DSPF programs (V7-9657)

• Improve the handle of field with LIKE (case of liked data structure and case of liked data
structure in an array) (V7-9213)

• Free RPG, Handle continuation on literal (V7-9686)

Modernization tools release 3.5.0 129

AWS Mainframe Modernization User Guide

• Improve Support of end of program records (V7-9452)

• Support of the LINKAGE phrase in the CALL statement. (V7-9685)

• CASXX operation code (CASBB without CASXX group) (V7-9357)

• Improve FullFreeRPG parsing (V7-9457)

• Built-in %LEN does not support DS as argument (V7-9267)

• Improvements of MOVEA when factor 2 is *ALL'X...' (V7-9228)

• Support assign with RENAME field (V7-9385)

Transversal capabilities

New features

• SQL Migrator tool - Add OID option for variable record length at ebcdic loading step. (V7-9380)

• SQL Migrator tool - Support for Java 11 on OID option (V7-9599)

Improvements

• Improve support for nested arrays (V7-9595)

• Replace Â¬ character by ! in case of Â¬ is supported by original encoding. (V7-9465)

• JCL - Support of PASS normal termination to share datasets between job steps (V7-9504)

• Apply ON NULL to column definition on ORACLE when deals with VARCHAR and nullable db
column type. (V7-9681)

• Improve Spring injection compliance (V7-9635)

Upgrading instructions for AWS Blu Age

This page contains instructions for upgrading the AWS Blu Age version. The following sections give
a complete list of expected changes you need to make when migrating from AWS Blu Age version
of 3.10.0 to 4.0.0.

Migrating from 3.10.0 to 4.0.0

The main change in 4.0.0 is the migration from Spring Boot 2.7 to Spring Boot 3.2 and from
Tomcat 9 to Tomcat 10.

Upgrading AWS Blu Age 130

AWS Mainframe Modernization User Guide

Code changes

This section lists changes required to make the modernized code compatible with AWS Blu Age
Runtime 4.0.0. You can skip this section if you decide to launch a new generation using the 4.0.0
version on Blu Insights (Transformation Center).

POM changes

Group ArtifactId Change

org.slf4j slf4j-api Remove (is a transitive
dependency)

org.yaml snakeyaml Remove (is a transitive
dependency)

org.springframework.boot spring-boot-starter-web - Upgrade spring.boot.version
to 3.2.4 - Remove exclusion of
log4j-to-slf4j

org.springframework.boot spring-boot-starter-jta-ato
mikos

Change to com.atomi
kos:transactions-spring-boo
t3-starter:6.0.0

org.apache.commons commons-dbcp2 Upgrade to 2.10.0

org.postgresql postgreql Upgrade to 42.7.2

com.microsoft.sqlserver mssql-jdbc Upgrade to 12.4.2.jre11

com.oracle.database.jdbc ojdbc8 Change to ojdbc11 version
23.3.0.23.09

Migrate from Javax to Jakarta

The tomcat upgrade comes with a migration from the Javax Java package to Jakarta. Make sure to
update your imports accordingly from javax.* to jakarta.*.

Nearly all the old referenced classes in the Javax package can be found in Jakarta. Known
exceptions to this are the javax.sql and javax.xml packages, which are still unchanged.

Migrating from 3.10.0 to 4.0.0 131

AWS Mainframe Modernization User Guide

Atomikos change

Due to the dependency change referenced above, references to
org.springframework.boot.jta.atomikos.AtomikosDataSourceBean must be changed
to com.atomikos.spring.AtomikosDataSourceBean.

PostgreSQL dialect removal

The custom class PostgreSQLDialect.java is removed. References to it in the main launcher
must be removed too.

Deployment (AWS Blu Age Runtime (non-managed))

Tomcat

This version is compatible with Tomcat 10.1.17. Upgrading the Tomcat server to this version
is required to run the Blu Age Runtime 4.0.0. Make sure to port the old configuration changes
(notably the Catalina properties).

Shared dependencies

The runtime shared folder contains the up-to-date dependencies.

Extra dependencies

If you used extra dependencies (not included on the runtime), you might need to update them. The
readme file in the extra folder lists the supported versions.

AWS Blu Age Runtime concepts

Understanding the basic concepts of the AWS Blu Age Runtime can help you understand how your
applications are modernized with automated refactoring.

Topics

• AWS Blu Age Runtime high level architecture

• AWS Blu Age structure of a modernized application

• What are data simplifiers in AWS Blu Age

• AWS Blu Age Blusam

• AWS Blu Age Blusam Administration Console

AWS Blu Age Runtime concepts 132

AWS Mainframe Modernization User Guide

AWS Blu Age Runtime high level architecture

As a part of the AWS Blu Age solution for modernizing legacy programs to Java, the AWS Blu
Age Runtime provides a unified, REST-based entry point for modernized applications, and a
framework of execution for such applications, through libraries providing legacy constructs and a
standardization of programs code organization.

Such modernized applications are the result of the AWS Blu Age Automated Refactor process
for modernizing mainframe and midrange programs (referred to in the following document as
"legacy") to a web based architecture.

The AWS Blu Age Runtime goals are reproduction of legacy programs behavior (isofunctionality),
performances (with respect to programs execution time and resources consumption), and ease of
maintenance of modernized programs by Java developers, though the use of familiar environments
and idioms such as tomcat, Spring, getters/setters, fluent APIs.

Topics

• AWS Blu Age runtime components

• Execution environments

• Statelessness and session handling

• High availability and statelessness

AWS Blu Age runtime components

The AWS Blu Age Runtime environment is composed of two kinds of components:

• A set of java libraries (jar files) often referenced as "the shared folder", and providing legacy
constructs and statements.

• A set of web applications (war files) containing Spring-based web applications providing a
common set of frameworks and services to modernized programs.

The following sections detail the role of both of these components.

AWS Blu Age libraries

The AWS Blu Age libraries are a set of jar files stored in a shared/ subfolder added to the standard
tomcat classpath, so as to make them available to all modernized Java programs. Their goal
is to provide features that are neither natively nor easily available in the Java programming

High level architecture 133

AWS Mainframe Modernization User Guide

environment, but typical of legacy development environments. Those features are exposed in a
way that is as familiar as possible to Java developers (getters/setters, class-based, fluent APIs).
An important example is the Data Simplifier library, which provides legacy memory layout and
manipulation constructs (encountered in COBOL, PL1 or RPG languages) to Java programs. Those
jars are a core dependency of the modernized Java code generated from legacy programs. For
more information about the Data Simplifier, see What are data simplifiers in AWS Blu Age.

Web application

Web Application Archives (WARs) are a standard way of deploying code and applications to the
tomcat application server. The ones provided as part of the AWS Blu Age runtime aim at providing
a set of execution frameworks reproducing legacy environments and transaction monitors (JCL
batches, CICS, IMS...), and associated required services.

The most important one is gapwalk-application (often shortened as "Gapwalk"), which
provides a unified set of REST-based entry points to trigger and control transactions, programs and
batches execution. For more information, see AWS Blu Age Runtime APIs.

This web application allocates Java execution threads and resources to run modernized programs in
the context for which they were designed. Examples of such reproduced environments are detailed
in the following section.

Other web applications add to the execution environment (more precisely, to the "Programs
Registry" described below) programs emulating the ones available to, and callable from, the legacy
programs. Two important categories of such are:

• Emulation of OS-provided programs: JCL-driven batches especially expect to be able to call
a variety of file and database manipulating programs as part of their standard environment.
Examples include SORT/DFSORT or IDCAMS. For this purpose, Java programs are provided that
reproduce such behavior, and are callable using the same conventions as the legacy ones.

• "Drivers", which are specialized programs provided by the execution framework or middleware as
entry points. An example is CBLTDLI, which COBOL programs executing in the IMS environment
depend on to access IMS-related services (IMS DB, user dialog through MFS, etc.).

Programs registry

To participate in and take advantage of those constructs, frameworks and services, Java programs
modernized from legacy ones adhere to a specific structure documented in AWS Blu Age structure
of a modernized application. At startup, the AWS Blu Age Runtime will collect all such programs

High level architecture 134

AWS Mainframe Modernization User Guide

in a common "Programs Registry" so that they can be invoked (and call each other) afterwards.
The Program Registry provides loose coupling and possibilities of decomposition (since programs
calling each other do not have to be modernized simultaneously).

Execution environments

Frequently encountered legacy environments and choreographies are available:

• JCL-driven batches, once modernized to Java programs and Groovy scripts, can be started in a
synchronous (blocking) or asynchronous (detached) way. In the latter case, their execution can be
monitored through REST endpoints.

• A AWS Blu Age subsystem provides an execution environment similar to CICS through:

• an entry point used to start a CICS transaction and run associated programs while respecting
CICS "run levels" choreography,

• an external storage for Resource Definitions,

• an homogeneous set of Java fluent APIs reproducing EXEC CICS statements,

• a set of pluggable classes reproducing CICS services, such as Temporary Storage Queues,
Temporary Data Queues or files access (multiple implementations are usually available, such
as Amazon Managed Service for Apache Flink, Amazon Simple Queue Service, or RabbitMQ for
TD Queues),

• for user-facing applications, the BMS screen description format is modernized to an Angular
web application, and the corresponding "pseudo-conversational" dialog is supported.

• Similarly, another subsystem provides IMS message-based choreography, and supports
modernization of UI screens in the MFS format.

• In addition, a third subsystem allows execution of programs in an iSeries-like environment,
including modernization of DSPF (Display File)-specified screens.

All of those environments build upon common OS-level services such as:

• the emulation of legacy memory allocation and layout (Data Simplifier),

• Java thread-based reproduction of the COBOL "run units" execution and parameters passing
mechanism (CALL statement),

• emulation of flat, concatenated, VSAM (through the Blusam set of libraries), and GDG Data Set
organizations,

• access to data stores, such as RDBMS (EXEC SQL statements).

High level architecture 135

AWS Mainframe Modernization User Guide

Statelessness and session handling

An important feature of the AWS Blu Age Runtime is to enable High Availability (HA) and
horizontal scalability scenarios when executing modernized programs.

The cornerstone for this is statelessness, an important example of which is HTTP session handling.

Session handling

Tomcat being web-based, an important mechanism for this is HTTP session handling (as provided
by tomcat and Spring) and stateless design. As such statelessness design is based on the following:

• users connect though HTTPS,

• application servers are deployed behind a Load balancer,

• when a user first connects to the application it will be authenticated and the application server
will create an identifier (typically within a cookie)

• this identifier will be used as a key to save and retrieve the user context to/from an external
cache (data store).

Cookie management is done automatically by the AWS Blu Age framework and the underlying
tomcat server, this is transparent to the user. The user internet browser will manage this
automatically.

The Gapwalk web application may store the session state (the context) in various data stores:

• Amazon ElastiCache (Redis OSS)

• Redis cluster

• in memory map (only for development and standalone environments, not suitable for HA).

High availability and statelessness

More generally, a design tenet of the AWS Blu Age framework is statelessness: most non-transient
states required to reproduce legacy programs behavior are not stored inside the application
servers, but shared through an external, common "single source of truth".

Examples of such states are CICS's Temporary Storage Queues or Resource Definitions, and typical
external storages for those are Redis-compatible servers or relational databases.

High level architecture 136

AWS Mainframe Modernization User Guide

This design, combined with load balancing and shared sessions, leads to most of user-facing dialog
(OLTP, "Online Transactional Processing") to be distributable between multiple "nodes" (here,
tomcat instances).

Indeed a user may execute a transaction on any server and not care if the next transaction call is
performed on a different server. Then when a new server is spawned (because of auto scaling, or to
replace a non healthy server), we can guarantee that any reachable and healthy server can run the
transaction as expected with the proper results (expected returned value, expected data change in
database, etc.).

AWS Blu Age structure of a modernized application

This document provides details about the structure of modernized applications (using AWS
Mainframe Modernization refactoring tools), so that developers can accomplish various tasks, such
as:

• navigating into applications smoothly.

• developing custom programs that can be called from the modernized applications.

• safely refactoring modernized applications.

We assume that you already have basic knowledge about the following:

• legacy common coding concepts, such as records, data sets and their access modes to records --
indexed, sequential --, VSAM, run units, jcl scripts, CICS concepts, and so on.

• java coding using the Spring framework.

• Throughout the document, we use short class names for readability. For more information,
see AWS Blu Age fully qualified name mappings to retrieve the corresponding fully qualified
names for AWS Blu Age runtime elements and Third party fully qualified name mappings to
retrieve the corresponding fully qualified names for third party elements.

• All artifacts and samples are taken from the modernization process outputs of the sample
COBOL/CICS CardDemo application.

Topics

• Artifacts organization

• Running and calling programs

• Write your own program

Modernized application structure 137

https://spring.io/projects/spring-framework
https://github.com/aws-samples/aws-mainframe-modernization-carddemo

AWS Mainframe Modernization User Guide

• Fully qualified name mappings

Artifacts organization

AWS Blu Age modernized applications are packaged as java web applications (.war), that you can
deploy on a JEE server. Typically, the server is a Tomcat instance that embeds the AWS Blu Age
Runtime, which is currently built upon the Springboot and Angular (for the UI part) frameworks.

The war aggregates several component artifacts (.jar). Each jar is the result of the compilation
(using the maven tool) of a dedicated java project whose elements are the result of the
modernization process.

The basic organization relies on the following structure:

• Entities project: contains business model and context elements. The project name generally
ends with "-entities". Typically, for a given legacy COBOL program, this corresponds to the
modernization of the I/O section (data sets) and the data division. You can have more than one
entities project.

• Service project: contains legacy business logic modernization elements. Typically, the procedure
division of a COBOL program. You can have more than one service project.

• Utility project: contains shared common tools and utilities, used by other projects.

• Web project: contains the modernization of UI-related elements when applicable. Not used for
batch-only modernization projects. These UI elements could come from CICS BMS maps, IMS
MFS components, and other mainframe UI sources. You can have more than one Web project.

Entities project contents

Note

The following descriptions only apply to COBOL and PL/I modernization outputs. RPG
modernization outputs are based on a different layout.

Modernized application structure 138

https://tomcat.apache.org/
https://spring.io/projects/spring-boot
https://angular.io/
https://maven.apache.org/

AWS Mainframe Modernization User Guide

Before any refactoring, the packages organization in the entities project is tied to the modernized
programs. You can accomplish this in a couple of different ways. The preferred way is to use the
Refactoring toolbox, which operates before you trigger the code generation mechanism. This
is an advanced operation, which is explained in the BluAge trainings. For more information, see
Refactoring workshop. This approach allows you to preserve the capability to re-generate the java
code later, to benefit from further improvements in the future, for instance). The other way is to do
regular java refactoring, directly on the generated source code, using any java refactoring approach
you might like to apply -- at your own risk.

Program related classes

Each modernized program is related to two packages, a business.context and a business.model
package.

Modernized application structure 139

https://catalog.workshops.aws/aws-blu-age-l3-certification-workshop/en-US/refactoring

AWS Mainframe Modernization User Guide

• base package.program.business.context

The business.context sub-package contains two classes, a configuration class and a context class.

• One configuration class for the program, which contains specific configuration
details for the given program, such as the character set to use to represent
character-based data elements, the default byte value for padding data structure
elements and so on. The class name ends with "Configuration". It is marked with the
@org.springframework.context.annotation.Configuration annotation and
contains a single method that must return a properly setup Configuration object.

• One context class, which serves as a bridge between the program service classes (see below)
and the data structures (Record) and data sets (File) from the model sub-package (see
below). The class name ends with "Context" and is a subclass of the RuntimeContext class.

Modernized application structure 140

AWS Mainframe Modernization User Guide

• base package.program.business.model

The model sub-package contains all the data structures that the given program can use.
For instance, any 01 level COBOL data structure corresponds to a class in the model sub-
package (lower level data structures are properties of their owning 01 level structure). For more
information about how we modernize 01 data structures, see What are data simplifiers in AWS
Blu Age.

Modernized application structure 141

AWS Mainframe Modernization User Guide

All classes extend the RecordEntity class, which represents the access to a business record
representation. Some of the records have a special purpose, as they're bound to a File. The
binding between a Record and a File is made in the corresponding *FileHandler methods found
in the context class when creating the file object. For example, the following listing shows how the
TransactfileFile File is bound to the transactFile Record (from the model sub-package).

Modernized application structure 142

AWS Mainframe Modernization User Guide

Service project contents

Every service project comes with a dedicated Springboot application, which is used
as the backbone of the architecture. This is materialized through the class named
SpringBootLauncher, located in the base package of the service java sources:

This class is notably responsible for:

• making the glue between the program classes and managed resources (datasources / transaction
managers / data sets mappings / etc ...).

• providing a ConfigurableApplicationContext to programs.

• discovering all classes marked as spring components (@Component).

• ensuring programs are properly registered in the ProgramRegistry -- see the initialize method
in charge of this registration.

Modernized application structure 143

https://spring.io/projects/spring-boot

AWS Mainframe Modernization User Guide

Program related artifacts

Without prior refactoring, the business logic modernization outputs are organized on a two or
three packages per legacy program basis:

Modernized application structure 144

AWS Mainframe Modernization User Guide

The most exhaustive case will have three packages:

• base package.program.service: contains an interface named ProgramProcess, which has
business methods to handle the business logic, preserving the legacy execution control flow.

Modernized application structure 145

AWS Mainframe Modernization User Guide

• base package.program.service.impl: contains a class named ProgramProcessImpl, which
is the implementation of the Process interface described previously. This is where the legacy
statements are "translated" to java statements, relying on the AWS Blu Age framework:

• base package.program.statemachine: this package might not always be present. It is
required when the modernization of the legacy control flow has to use a state machine approach
(namely using the Spring StateMachine framework) to properly cover the legacy execution flow.

In that case, the statemachine sub-package contains two classes:

• ProgramProcedureDivisionStateMachineController: a class that extends a class
implementing the StateMachineController (define operations needed to control the
execution of a state machine) and StateMachineRunner (define operations required to run a

Modernized application structure 146

https://spring.io/projects/spring-statemachine

AWS Mainframe Modernization User Guide

state machine) interfaces, used to drive the Spring state machine mechanics; for instance, the
SimpleStateMachineController as in the sample case.

The state machine controller defines the possible different states and the transitions between
them, which reproduce the legacy execution control flow for the given program.

When building the state machine, the controller refers to methods that are defined in the
associated service class located in the state machine package and described below:

subConfigurer.state(States._0000_MAIN, buildAction(() ->
 {stateProcess._0000Main(lctx, ctrl);}), null);
subConfigurer.state(States.ABEND_ROUTINE, buildAction(() ->
 {stateProcess.abendRoutine(lctx, ctrl);}), null);

• ProgramProcedureDivisionStateMachineService: this service class represents some
business logic that is required to be bound with the state machine that the state machine
controller creates, as described previously.

Modernized application structure 147

AWS Mainframe Modernization User Guide

The code in the methods of this class use the Events defined in the state machine controller:

Modernized application structure 148

AWS Mainframe Modernization User Guide

The statemachine service also makes calls to the process service implementation described
previously:

In addition to that, a package named base package.program plays a significant role, as it
gathers one class per program, which will serve as the program entry point (more details about this
later on). Each class implements the Program interface, marker for a program entry point.

Modernized application structure 149

AWS Mainframe Modernization User Guide

Other artifacts

• BMS MAPs companions

In addition to program related artifacts, the service project can contain other artifacts for various
purposes. In the case of the modernization of a CICS online application, the modernization
process produces a json file and puts in the map folder of the /src/main/resources folder:

Modernized application structure 150

AWS Mainframe Modernization User Guide

The Blu Age runtime consumes those json files to bind the records used by the SEND MAP
statement with the screen fields.

• Groovy Scripts

If the legacy application had JCL scripts, those have been modernized as groovy scripts, stored in
the /src/main/resources/scripts folder (more on that specific location later on):

Those scripts are used to launch batch jobs (dedicated, non-interactive, cpu-intensive data
processing workloads).

• SQL files

Modernized application structure 151

https://groovy-lang.org/

AWS Mainframe Modernization User Guide

If the legacy application was using SQL queries, the corresponding modernized SQL queries
have been gathered in dedicated properties files, with the naming pattern program.sql, where
program is the name of the program using those queries.

The contents of those sql files are a collection of (key=query) entries, where each query is
associated to a unique key, that the modernized program uses to run the given query:

For instance, the COSGN00C program is executing the query with key "COSGN00C_1" (the first
entry in the sql file):

Modernized application structure 152

AWS Mainframe Modernization User Guide

Utilities project contents

The utilities project, whose name ends with "-tools", contains a set of technical utilities, which
might be used by all the other projects.

Web project(s) contents

The web project is only present when modernizing legacy UI elements. The modern UI elements
used to build the modernized application front-end are based on Angular. The sample application
used to show the modernization artifacts is a COBOL/CICS application, running on a mainframe.
The CICS system uses MAPs to represent the UI screens. The corresponding modern elements will
be, for every map, a html file accompanied by Typescript files:

Modernized application structure 153

https://angular.io/
https://www.typescriptlang.org/

AWS Mainframe Modernization User Guide

The web project only takes care of the front end aspect of the application The service project,
which relies on the utility and entities projects, provides the backend services. The link between
the front end and the backend is made through the web application named Gapwalk-Application,
which is part of the standard AWS Blu Age runtime distribution.

Running and calling programs

On legacy systems, programs are compiled as stand-alone executables that can call themselves
through a CALL mechanism, such as the COBOL CALL statement, passing arguments when needed.
The modernized applications offer the same capability but use a different approach, because the
nature of the involved artifacts differs from the legacy ones.

On the modernized side, program entry points are specific classes that implement the Program
interface, are Spring components (@Component) and are located in service projects, in a package
named base package.program.

Modernized application structure 154

AWS Mainframe Modernization User Guide

Programs registration

Each time the Tomcat server that hosts modernized applications is started, the service Springboot
application is also started, which triggers the programs registration. A dedicated registry named
ProgramRegistry is populated with program entries, each program being registered using its
identifiers, one entry per known program identifier, which means that if a program is known by
several different identifiers, the registry contains as many entries as there are identifiers.

The registration for a given program relies on the collection of identifiers returned by the
getProgramIdentifiers() method:

Modernized application structure 155

https://tomcat.apache.org/

AWS Mainframe Modernization User Guide

In this example, the program is registered once, under the name 'CBACT04C' (look at the contents
of the programIdentifiers collection). The tomcat logs show every program registration. The
program registration only depends on the declared program identifiers and not the program class
name itself (though typically the program identifiers and program class names are aligned.

The same registration mechanism applies to utility programs brought by the various utility AWS
Blu Age web applications, which are part of the AWS Blu Age runtime distribution. For instance,
the Gapwalk-Utility-Pgm webapp provides the functional equivalents of the z/OS system utilities
(IDCAMS, ICEGENER, SORT,and so on) and can be called by modernized programs or scripts. All
available utility programs that are registered at Tomcat startup are logged in the Tomcat logs.

Scripts and daemons registration

A similar registration process, at Tomcat startup time, occurs for groovy scripts that are located
in the /src/main/resources/scripts folder hierarchy. The scripts folder hierarchy is traversed, and
all groovy scripts that are discovered (except the special functions.groovy reserved script) are
registered in the ScriptRegistry, using their short name (the part of the script file name located
before the first dot character) as the key for retrieval.

Note

• If several scripts have file names that will result in producing the same registration key,
only the latest is registered, overwriting any previously encountered registration for that
given key.

• Considering the above note, pay attention when using sub-folders as the registration
mechanism flattens the hierarchy and could lead to unexpected overwrites. The hierarchy
does not count in the registration process: typically /scripts/A/myscript.groovy and /
scripts/B/myscript.groovy will lead to /scripts/B/myscript.groovy overwriting /scripts/A/
myscript.groovy.

The groovy scripts in the /src/main/resources/daemons folder are handled a bit differently. They're
still registered as regular scripts, but in addition, they are launched once, directly at Tomcat startup
time, asynchronously.

After scripts are registered in the ScriptRegistry, a REST call can launch them, using the
dedicated endpoints that the Gapwalk-Application exposes. For more information, see the
corresponding documentation.

Modernized application structure 156

AWS Mainframe Modernization User Guide

Programs calling programs

Each program can call another program as a subprogram, passing parameters to it. Programs use
an implementation of the ExecutionController interface to do so (most of the time, this will
be an ExecutionControllerImpl instance), along with a fluent API mechanism named the
CallBuilder to build the program call arguments.

All programs methods take both a RuntimeContext and an ExecutionController as method
arguments, so an ExecutionController is always available to call other programs.

See, for instance, the following diagram, which shows how the CBST03A program calls the
CBST03B program as a sub-program, passing parameters to it:

• The first argument of the ExecutionController.callSubProgram is an identifier of the
program to call (that is, one of the identifiers used for the program registration -- see paragraphs
above).

• The second argument, which is the result of the build on the CallBuilder, is an array of
Record, corresponding to the data passed from caller to callee.

• The third and last argument is the caller RuntimeContext instance.

Modernized application structure 157

AWS Mainframe Modernization User Guide

All three arguments are mandatory and cannot be null, but the second argument can be an empty
array.

The callee will be able to deal with passed parameters only if it was originally designed to do so.
For a legacy COBOL program, that means having a LINKAGE section and a USING clause for the
procedure division to make use of the LINKAGE elements.

For instance, see the corresponding CBSTM03B.CBL COBOL source file:

So the CBSTM03B program takes a single Record as a parameter (an array of size 1). This is what
the CallBuilder is building, using the byReference() and getArguments() methods chaining.

The CallBuilder fluent API class has several methods available to populate the array of
arguments to pass to a callee:

• asPointer(RecordAdaptable) : add an argument of pointer kind, by reference. The pointer
represents the address of a target data structure.

• byReference(RecordAdaptable): add an argument by reference. The caller will see the
modifications that the callee performs.

• byReference(RecordAdaptable): varargs variant of the previous method.

Modernized application structure 158

https://github.com/aws-samples/aws-mainframe-modernization-carddemo/blob/main/app/cbl/CBSTM03B.CBL

AWS Mainframe Modernization User Guide

• byValue(Object): add an argument, transformed to a Record, by value. The caller won't see the
modifications the callee performs.

• byValue(RecordAdaptable): same as the previous method, but the argument is directly available
as a RecordAdaptable.

• byValueWithBounds(Object, int, int): add an argument, transformed to a Record, extracting the
byte array portion defined by the given bounds, by value.

Finally, the getArguments method will collect all added arguments and return them as an array of
Record.

Note

It is the responsability of the caller to make sure the arguments array has the required size,
that the items are properly ordered and compatible, in terms of memory layout with the
expected layouts for the linkage elements.

Scripts calling programs

Calling registered programs from groovy scripts require using a class instance implementing the
MainProgramRunner interface. Usually, getting such an instance is achieved through Spring's
ApplicationContext usage:

After a MainProgramRunner interface is available, use the runProgram method to call a program
and pass the identifier of the target program as a parameter:

Modernized application structure 159

AWS Mainframe Modernization User Guide

In the previous example, a job step calls IDCAMS (file handling utility program), providing a
mapping between actual data set definitions and their logical identifiers.

When dealing with data sets, legacy programs mostly use logical names to identify data sets. When
the program is called from a script, the script must map logical names with actual physical data
sets. These data sets could be on the filesystem, in a Blusam storage or even defined by an inline
stream, the concatenation of several data sets, or the generation of a GDG.

Use the withFileConfiguration method to build a logical to physical map of data sets and make it
available to the called program.

Write your own program

Writing your own program for scripts or other modernized programs to call is a common task.
Typically, on modernization projects, you write your own programs when an executable legacy

Modernized application structure 160

AWS Mainframe Modernization User Guide

program is written in a language that the modernization process doesn't support, or the sources
have been lost (yes, that can happen), or the program is an utility whose sources are not available.

In that case, you might have to write the missing program, in java, by yourself (assuming you have
enough knowledge about what the program expected behaviour should be, the memory layout
of the program's arguments if any, and so on.) Your java program must comply with the program
mechanics described in this document, so that other programs and scripts can run it.

To make sure the program is usable, you must complete two mandatory steps:

• Write a class that implements the Program interface properly, so that it can be registered and
called.

• Make sure your program is registered properly, so that it is visible from other programs/scripts.

Writing the program implementation

Use your IDE to create a new java class that implements the Program interface:

Modernized application structure 161

AWS Mainframe Modernization User Guide

The following image shows the Eclipse IDE, which takes care of creating all mandatory methods to
be implemented:

Modernized application structure 162

AWS Mainframe Modernization User Guide

Spring integration

First, the class must be declared as a Spring component. Annotate the class with the @Component
annotation:

Next, implement the required methods properly. In the context of this sample, we added the
MyUtilityProgram to the package that already contains all modernized programs. That

Modernized application structure 163

AWS Mainframe Modernization User Guide

placement permits the program to use the existing Springboot application to provide the required
ConfigurableApplicationContext for the getSpringApplication method implementation:

You might choose a different location for your own program. For instance, you might locate the
given program in another dedicated service project. Make sure the given service project has its own
Springboot application, which makes it possible to retrieve the ApplicationContext (that should be
a ConfigurableApplicationContext).

Giving an identity to the program

To be callable by other programs and scripts, the program must be given at least one identifier,
which must not collide with any other existing registered program within the system. The identifier
choice might be driven by the need to cover an existing legacy program replacement; in that case,
you'll have to use the expected identifier, as met in CALL occurrences found throughout the legacy
programs. Most of the program identifiers are 8 characters long in legacy systems.

Creating an unmodifiable set of identifiers in the program is one way of doing this. The following
example shows choosing "MYUTILPG" as the single identifier:

Associate the program to a context

The program needs a companion RuntimeContext instance. For modernized programs, AWS Blu
Age automatically generates the companion context, using the data structures that are part of the
legacy program.

If you're writing your own program, you must write the companion context as well.

Modernized application structure 164

AWS Mainframe Modernization User Guide

Referring to Program related classes, you can see that a program requires at least two companion
classes:

• a configuration class.

• a context class that uses the configuration.

If the utility program uses any extra data structure, it should be written as well and used by the
context.

Those classes should be in a package that is part of a package hierarchy that will be scanned at
application startup, to make sure the context component and configuration will be handled by the
Spring framework.

Let's write a minimal configuration and context, in the base
package.myutilityprogram.business.context package, freshly created in the entities
project:

Here is the configuration content. It is using a configuration build similar to other -- modernized --
programs nearby. You'll probably have to customize this for your specific needs.

Modernized application structure 165

AWS Mainframe Modernization User Guide

Notes:

• General naming convention is ProgramNameConfiguration.

• It must use the @org.springframework.context.annotation.Configuration and @Lazy
annotations.

• The bean name usually follows the ProgramNameContextConfiguration convention, but this is
not mandatory. Make sure to avoid bean name collisions across the project.

• The single method to implement must return a Configuration object. Use the
ConfigurationBuilder fluent API to help you build one.

And the associated context:

Modernized application structure 166

AWS Mainframe Modernization User Guide

Notes

• The context class should extend an existing Context interface implementation (either
RuntimeContext or JicsRuntimeContext, which is an enhanced RuntimeContext with JICS
specifics items).

• General naming convention is ProgramNameContext.

• You must declare it as a Prototype component, and use the @Lazy annotation.

• The constructor refers to the associated configuration, using the @Qualifier annotation to target
the proper configuration class.

• If the utility program uses some extra data structures, they should be:

• written and added to the base package.business.model package.

• referenced in the context. Take a look at other existing context classes to see how to reference
data strcutures classes and adapt the context methods (constructor / clean-up / reset) as
needed.

Now that a dedicated context is available, let the new program use it:

Modernized application structure 167

AWS Mainframe Modernization User Guide

Notes:

• The getContext method must be implemented strictly as shown, using a delegation to
the getOrCreate method of the ProgramContextStore class and the auto wired Spring
BeanFactory. A single program identifier is used to store the program context in the
ProgramContextStore; this identifier is referenced as being the 'program main identifier'.

• The companion configuration and context classes must be referenced using the @Import spring
annotation.

Implementing the business logic

When the program skeleton is complete, implement the business logic for the new utility program.

Do this in the run method of the program. This method will be executed anytime the program is
called, either by another program or by a script.

Modernized application structure 168

AWS Mainframe Modernization User Guide

Happy coding!

Handling the program registration

Finally, make sure the new program is properly registered in the ProgramRegistry. If you added
the new program to the package that already contains other programs, there's nothing more to be
done. The new program is picked up and registered with all its neighbour programs at application
startup.

If you chose another location for the program, you must make sure the program is properly
registered at Tomcat startup. For some inspiration about how to do that, look at the initialize
method of the generated SpringbootLauncher classes in the service project(s) (see Service project
contents).

Check the Tomcat startup logs. Every program registration is logged. If your program is successfully
registered, you'll find the matching log entry.

When you're sure that your program is properly registered, you can start iterating on the business
logic coding.

Fully qualified name mappings

This section contains lists of the AWS Blu Age and third-party fully qualified name mappings for
use in your modernized applications.

AWS Blu Age fully qualified name mappings

Short name Fully qualified name

CallBuilder com.netfective.bluage.gapwa
lk.runtime.statements.CallB
uilder

Configuration com.netfective.bluage.gapwa
lk.datasimplifier.configura
tion.Configuration

ConfigurationBuilder com.netfective.bluage.gapwa
lk.datasimplifier.configura
tion.ConfigurationBuilder

Modernized application structure 169

AWS Mainframe Modernization User Guide

Short name Fully qualified name

ExecutionController com.netfective.bluage.gapwa
lk.rt.call.ExecutionController

ExecutionControllerImpl com.netfective.bluage.gapwa
lk.rt.call.internal.Executi
onControllerImpl

File com.netfective.bluage.gapwa
lk.rt.io.File

MainProgramRunner com.netfective.bluage.gapwa
lk.rt.call.MainProgramRunner

Program com.netfective.bluage.gapwa
lk.rt.provider.Program

ProgramContextStore com.netfective.bluage.gapwa
lk.rt.context.ProgramContex
tStore

ProgramRegistry com.netfective.bluage.gapwa
lk.rt.provider.ProgramRegistry

Record com.netfective.bluage.gapwa
lk.datasimplifier.data.Record

RecordEntity com.netfective.bluage.gapwa
lk.datasimplifier.entity.Re
cordEntity

RuntimeContext com.netfective.bluage.gapwa
lk.rt.context.RuntimeContext

SimpleStateMachineController com.netfective.bluage.gapwa
lk.rt.statemachine.SimpleSt
ateMachineController

Modernized application structure 170

AWS Mainframe Modernization User Guide

Short name Fully qualified name

StateMachineController com.netfective.bluage.gapwa
lk.rt.statemachine.StateMac
hineController

StateMachineRunner com.netfective.bluage.gapwa
lk.rt.statemachine.StateMac
hineRunner

Third party fully qualified name mappings

Short name Fully qualified name

@Autowired org.springframework.beans.f
actory.annotation.Autowired

@Bean org.springframework.context
.annotation.Bean

BeanFactory org.springframework.beans.f
actory.BeanFactory

@Component org.springframework.stereot
ype.Component

ConfigurableApplicationContext org.springframework.context
.ConfigurableApplicationContext

@Import org.springframework.context
.annotation.Import

@Lazy org.springframework.context
.annotation.Lazy

Modernized application structure 171

AWS Mainframe Modernization User Guide

What are data simplifiers in AWS Blu Age

On mainframe and midrange systems (referred to in the following topic as "legacy" systems),
frequently used programming languages such as COBOL, PL/I or RPG provide low-level access
to memory. This access focuses on memory layout accessed through native types such as zoned,
packed, or alphanumeric, possibly also aggregated through groups or arrays.

A mix of accesses to a given piece of memory, through both typed fields and as direct access
to bytes (raw memory), coexists in a given program. For example, COBOL programs will pass
arguments to callers as contiguous sets of bytes (LINKAGE), or read/write data from files in the
same manner (records), while interpreting such memory ranges with typed fields organized in
copybooks.

Such combinations of raw and structured access to memory, the reliance on precise, byte-level
memory layout, and legacy types, such as zoned or packed, are features that are neither natively
nor easily available in the Java programming environment.

As a part of the AWS Blu Age solution for modernizing legacy programs to Java, the Data
Simplifier library provides such constructs to modernized Java programs, and exposes those in a
way that is as familiar as possible to Java developers (getters/setters, byte arrays, class-based). It is
a core dependency of the modernized Java code generated from such programs.

For simplicity, most of the following explanations are based on COBOL constructs, but you can
use the same API for both PL1 and RPG data layout modernization, since most of the concepts are
similar.

Topics

• Main classes

• Data binding and access

• FQN of discussed Java types

Main classes

For easier reading, this document uses the Java short names of the AWS Blu Age API interfaces and
classes. For more information, see FQN of discussed Java types.

Understand data simplifiers 172

AWS Mainframe Modernization User Guide

Low level memory representation

At the lowest level, memory (a contiguous range of bytes accessible in a fast, random way) is
represented by the Record interface. This interface is essentially an abstraction of a byte array of a
fixed size. As such, it provides setters and getters able to access or modify the underlying bytes.

Structured data representation

To represent structured data, such as "01 data items", or "01 copybooks", as found in COBOL DATA
DIVISION, subclasses of the RecordEntity class are used. Those are normally not written by
hand, but generated by the AWS Blu Age modernization tools from the corresponding legacy
constructs. It is still useful to know about their main structure and API, so you can understand how
the code in a modernized program uses them. In the case of COBOL, that code is Java generated
from their PROCEDURE DIVISION.

Generated code represents each "01 data item" with a RecordEntity subclass; each elementary
field or aggregate composing it is represented as a private Java field, organized as a tree (each item
has a parent, except for the root one).

For illustration purposes, here is an example COBOL data item, followed by the corresponding AWS
Blu Age generated code that modernizes it:

01 TST2.
 02 FILLER PIC X(4).
 02 F1 PIC 9(2) VALUE 42.
 02 FILLER PIC X.
 02 PIC 9(3) VALUE 123.
 02 F2 PIC X VALUE 'A'.

public class Tst2 extends RecordEntity {

 private final Group root = new Group(getData()).named("TST2");
 private final Filler filler = new Filler(root,new AlphanumericType(4));
 private final Elementary f1 = new Elementary(root,new ZonedType(2, 0, false),new
 BigDecimal("42")).named("F1");
 private final Filler filler1 = new Filler(root,new AlphanumericType(1));
 private final Filler filler2 = new Filler(root,new ZonedType(3, 0, false),new
 BigDecimal("123"));
 private final Elementary f2 = new Elementary(root,new
 AlphanumericType(1),"A").named("F2");

Understand data simplifiers 173

AWS Mainframe Modernization User Guide

 /**
 * Instantiate a new Tst2 with a default record.
 * @param configuration the configuration
 */
 public Tst2(Configuration configuration) {
 super(configuration);
 setupRoot(root);
 }
 /**
 * Instantiate a new Tst2 bound to the provided record.
 * @param configuration the configuration
 * @param record the existing record to bind
 */
 public Tst2(Configuration configuration, RecordAdaptable record) {
 super(configuration);
 setupRoot(root, record);
 }

 /**
 * Gets the reference for attribute f1.
 * @return the f1 attribute reference
 */
 public ElementaryRangeReference getF1Reference() {
 return f1.getReference();
 }

 /* *
 * Getter for f1 attribute.
 * @return f1 attribute
 */
 public int getF1() {
 return f1.getValue();
 }

 /**
 * Setter for f1 attribute.
 * @param f1 the new value of f1
 */
 public void setF1(int f1) {
 this.f1.setValue(f1);
 }
 /**
 * Gets the reference for attribute f2.
 * @return the f2 attribute reference

Understand data simplifiers 174

AWS Mainframe Modernization User Guide

 */
 public ElementaryRangeReference getF2Reference() {
 return f2.getReference();
 }

 /**
 * Getter for f2 attribute.
 * @return f2 attribute
 */
 public String getF2() {
 return f2.getValue();
 }

 /**
 * Setter for f2 attribute.
 * @param f2 the new value of f2
 */
 public void setF2(String f2) {
 this.f2.setValue(f2);
 }
}

Elementary fields

Fields of class Elementary (or Filler, when unnamed) represent a "leaf" of the legacy data
structure. They are associated with a contiguous span of underlying bytes ("range") and commonly
have a type (possibly parameterized) expressing how to interpret and modify those bytes (by
respectively "decoding" and "encoding" a value from/to a byte array).

All elementary types are subclasses of RangeType. Common types are:

COBOL Type Data Simplifier Type

PIC X(n) AlphanumericType

PIC 9(n) ZonedType

PIC 9(n) COMP-3 PackedType

PIC 9(n) COMP-5 BinaryType

Understand data simplifiers 175

AWS Mainframe Modernization User Guide

Aggregate fields

Aggregate fields organize the memory layout of their contents (other aggregates or elementary
fields). They do not have an elementary type themselves.

Group fields represent contiguous fields in memory. Each of their contained fields are laid out in
the same order in memory, the first field being at offset 0 with respect to the group field position
in memory, the second field being at offset 0 + (size in bytes of first field), etc. They
are used to represent sequences of COBOL fields under the same containing field.

Union fields represent multiples fields accessing the same memory. Each of their contained fields
are laid out at offset 0 with respect to the union field position in memory. They are for example
used to represent the COBOL "REDEFINES" construct (the first Union children being the redefined
data item, the second children being its first redefinition, etc.).

Array fields (subclasses of Repetition) represent the repetition, in memory, of the layout of their
child field (be it an aggregate itself or an elementary item). They lay out a given number of such
child layouts in memory, each being at offset index * (size in bytes of child). They are
used to represent COBOL "OCCURS" constructs.

Primitives

In some modernization cases, "Primitives" may also be used to present independent, "root" data
items. Those are very similar in use to RecordEntity but don't come from it, nor are based on
generated code. Instead they are directly provided by the AWS Blu Age runtime as subclasses of the
Primitive interface. Examples of such provided classes are Alphanumeric or ZonedDecimal.

Data binding and access

Association between structured data and underlying data can be done in multiple ways.

An important interface for this purpose is RecordAdaptable, which is used to obtain a Record
providing a "writable view" on the RecordAdaptable underlying data. As we will see below,
multiple classes implement RecordAdaptable. Reciprocally, AWS Blu Age APIs and code
manipulating low-level memory (such as programs arguments, file I/O records, CICS comm area,
allocated memory...) will often expect a RecordAdaptable as an handle to that memory.

In the COBOL modernization case, most data items are associated with memory which will be fixed
during the life time of the corresponding program execution. For this purpose, RecordEntity
subclasses are instantiated once in a generated parent object (the program Context), and will take
care of instantiating their underlying Record, based on the RecordEntity byte size.

Understand data simplifiers 176

AWS Mainframe Modernization User Guide

In other COBOL cases, such as associating LINKAGE elements with program arguments, or
modernizing the SET ADDRESS OF construct, a RecordEntity instance must be associated with a
provided RecordAdaptable. For this purpose, two mechanisms exist:

• if the RecordEntity instance already exists, the RecordEntity.bind(RecordAdaptable)
method (inherited from Bindable) can be used to make this instance "point" to this
RecordAdaptable. Any getter or setter called on the RecordEntity will then be backed
(bytes reading or writing) by the underlying RecordAdaptable bytes.

• if the RecordEntity is to be instantiated, a generated constructor accepting a
RecordAdaptable is available.

Conversely, the Record currently bound to structured data can be accessed. For this,
RecordEntity implements RecordAdaptable, so getRecord() can be called on any such
instance.

Finally, many COBOL or CICS verbs require access to a single field, for reading or writing purpose.
The RangeReference class is used to represent such access. Its instances can be obtained from
RecordEntity generated getXXXReference() methods (XXX being the accessed field), and
passed to runtime methods. RangeReference is typically used to access whole RecordEntity
or Group, while its subclass ElementaryRangeReference represents accesses to Elementary
fields.

Note that most observations above apply to Primitive subclasses, since they strive at
implementing similar behavior as RecordEntity while being provided by the AWS Blu Age
runtime (instead of generated code). For this purpose, all subclasses of Primitive implement
RecordAdaptable, ElementaryRangeReference and Bindable interfaces so as to be usable
in place of both RecordEntity subclasses and elementary fields.

FQN of discussed Java types

The following table shows the fully qualified names of the Java types discussed in this section.

Short Name Fully Qualified Name

Alphanumeric com.netfective.bluage.gapwa
lk.datasimplifier.elementar
y.Alphanumeric

Understand data simplifiers 177

AWS Mainframe Modernization User Guide

Short Name Fully Qualified Name

AlphanumericType com.netfective.bluage.gapwa
lk.datasimplifier.metadata.
type.AlphanumericType

BinaryType com.netfective.bluage.gapwa
lk.datasimplifier.metadata.
type.BinaryType

Bindable com.netfective.bluage.gapwa
lk.datasimplifier.data.Bindable

Elementary com.netfective.bluage.gapwa
lk.datasimplifier.data.stru
cture.Elementary

ElementaryRangeReference com.netfective.bluage.gapwa
lk.datasimplifier.entity.El
ementaryRangeReference

Filler com.netfective.bluage.gapwa
lk.datasimplifier.data.stru
cture.Filler

Group com.netfective.bluage.gapwa
lk.datasimplifier.data.stru
cture.Group

PackedType com.netfective.bluage.gapwa
lk.datasimplifier.metadata.
type.PackedType

Primitive com.netfective.bluage.gapwa
lk.datasimplifier.elementar
y.Primitive

Understand data simplifiers 178

AWS Mainframe Modernization User Guide

Short Name Fully Qualified Name

RangeReference com.netfective.bluage.gapwa
lk.datasimplifier.entity.Ra
ngeReference

RangeType com.netfective.bluage.gapwa
lk.datasimplifier.metadata.
type.RangeType

Record com.netfective.bluage.gapwa
lk.datasimplifier.data.Record

RecordAdaptable com.netfective.bluage.gapwa
lk.datasimplifier.data.Reco
rdAdaptable

RecordEntity com.netfective.bluage.gapwa
lk.datasimplifier.entity.Re
cordEntity

Repetition com.netfective.bluage.gapwa
lk.datasimplifier.data.stru
cture.Repetition

Union com.netfective.bluage.gapwa
lk.datasimplifier.data.stru
cture.Union

ZonedDecimal com.netfective.bluage.gapwa
lk.datasimplifier.elementar
y.ZonedDecimal

ZonedType com.netfective.bluage.gapwa
lk.datasimplifier.metadata.
type.ZonedType

Understand data simplifiers 179

AWS Mainframe Modernization User Guide

AWS Blu Age Blusam

On mainframe systems (referred to in the following topic as "legacy"), business data is often
stored using VSAM (Virtual Storage Access Method). The data is stored in "records" (byte arrays),
belonging to a "data set".

There are four data set organizations:

• KSDS: Key-Sequenced data sets - records are indexed by a primary key (no duplicate keys
allowed) and optionally, additional "alternate" keys. All key values are subsets of the record byte
array, each key being defined by:

• an offset (0-based, 0 being the start of the record byte array content, measured in bytes)

• a length (expressed in bytes)

• whether it tolerates duplicate values or not

• ESDS: Entry-Sequenced data sets - records are accessed mostly sequentially (based on their
insertion order in the data set) but can be accessed using additional alternate keys;

• RRDS: Relative Records data sets - records are accessed using "jumps", using relative record
numbers; The jumps can be done either forward or backward;

• LDS: Linear data sets - no records there, simply a stream of bytes, organized in pages. Mainly
used for internal purposes on legacy platforms.

When modernizing legacy applications, using AWS Blu Age refactoring approach, modernized
applications are no longer intended to access VSAM stored data, while preserving the data access
logic. The Blusam component is the answer: it allows importing data from legacy VSAM data
sets exports, provides an API for the modernized application to manipulate them along with a
dedicated administration web application. See the section called “Blusam Administration Console”.

Note

Blusam only supports KSDS, ESDS, and RRDS.

The Blusam API makes it possible to preserve data access logic (sequential, random, and relative
reads; insert, update, and delete records), whereas the components architecture, relying on a mix of
caching strategies and RDBMS-based storage, permits high throughput I/O operations with limited
resources.

AWS Blu Age Blusam 180

AWS Mainframe Modernization User Guide

Blusam infrastructure

Blusam relies on RDBMS for data sets storage, both for raw records data and keys indexes (when
applicable). The favorite option is to use the postgreSQL engine, notably using Amazon Aurora. The
examples and illustrations in this topic are based on this engine.

Other supported RDBMS engines are:

• Oracle

• Microsoft SQL Server

Note

• For AWS Mainframe Modernization managed environments, only the Aurora postgreSQL engine
is eligible. Other RDBMS engines can be chosen when using AWS Blu Age Runtime on Amazon
EC2 deployment.

• At server startup, the Blusam runtime checks for the presence of some mandatory technical
tables and create them if they cannot be found. As a consequence, the role used in the
configuration to access the Blusam database must be granted the rights to create, update, and
delete the database tables (both rows and the tables definitions themselves). For information
about how to disable Blusam, see the section called “Blusam configuration”.

Caching

In addition to the storage itself, Blusam operates faster when coupled to a cache implementation.

Two cache engines are currently supported, EhCache and Redis, each having its own use-case:

• EhCache : Standalone embedded volatile local cache

• NOT eligible for AWS Mainframe Modernization managed environment deployment.

• Typically used when a single node, like a single Apache Tomcat server, is used to run the
modernized applications. For instance, the node might be dedicated to host batch jobs tasks.

• Volatile: The EhCache cache instance is volatile; its content will be lost on the server
shutdown.

• Embedded: The EhCache and the server share the same JVM Memory Space (to be taken into
account when defining the specifications for the hosting machine).

• Redis: Shared persistent cache

AWS Blu Age Blusam 181

AWS Mainframe Modernization User Guide

• Eligible for AWS Mainframe Modernization managed environment deployment.

• Typically used in multi-nodes situations, in particular when several servers are behind a load-
balancer. The cache content is shared amongst all nodes.

• The Redis is persistent and not bound to the nodes life-cycles. It is running on its own
dedicated machine or service (for example, Amazon ElastiCache). The cache is remote to all
nodes.

Locking

To deal with concurrent access to data sets and records, Blusam relies on a configurable locking
system. Locking can be applied to both levels: data sets and records:

• Locking a data set for write purpose will prevent all others clients from performing write
operations to it, at any level (data set or record).

• Locking at the record level for write will prevent other clients from performing write operations
on the given record only.

Configuring the Blusam locking system should be done accordingly to the cache configuration:

• If EhCache is chosen as cache implementation, no further locking configuration is required as the
default in-memory locking system should be used.

• If Redis is chosen as cache implementation, then a Redis-based locking configuration is required,
to allow concurrent access from multiple nodes. The Redis cache used for locks does not have
to be the same as the one used for data sets. For information about configuring a Redis-based
locking system, see the section called “Blusam configuration”.

Blusam intrinsics and data migration from legacy

Storing data sets: records and indexes

Each legacy data set, when imported to Blusam, will be stored to a dedicated table; each row of the
table represents a record, using two columns:

• The numeric ID column, big integer type, that is the table primary key, and is used to store the
Relative Byte Address (RBA) of the record. The RBA represents the offset in bytes from the start
of the data set, and begins at 0.

AWS Blu Age Blusam 182

AWS Mainframe Modernization User Guide

• The byte array record column, that is used to store the raw record's content.

See for example the content of a KSDS data set used in the CardDemo application:

• This particular data set has fixed length records, the length being 300 bytes (hence the collection
of ids being multiples of 300).

• By default, the pgAdmin tool used to query postgreSQL databases does not show byte array
column contents, but prints a [binary data] label instead.

• The raw record content matches the raw data set export from the legacy, without any
conversion. In particular, no character set conversion occurs; that implies that alphanumeric
portions of the record will have to be decoded by modernized applications using the legacy
character set, most likely an EBCDIC variant.

AWS Blu Age Blusam 183

AWS Mainframe Modernization User Guide

Regarding the data set metadata and keys indexes: each data set is associated with two rows in the
table named metadata. This is the default naming convention. To learn how to customize it, see
the section called “Blusam configuration”.

• The first row has the data set name as the value of the name column. The metadata column is a
binary column that contains a binary serialization of the general metadata of the given data set.
For details, see the section called “General data set metadata attributes”.

• The second row has the data set name with the suffix __internal' as the value of the name
column. The metadata column binary content depends on the "weight" of the data set.

• For small/medium data sets, the content is a compressed serialization of:

• definition of the keys used by the data set; the primary key definition (for KSDS) and
alternate keys definitions if applicable (for KSDS / ESDS)

• the key indexes if applicable (KSDS / ESDS with alternate keys definitions): used for indexed
browsing of records; the key index maps a key value to the RBA of a record;

• records length map: used for sequential / relative browsing of records;

• For Large/Very Large data sets, the content is a compressed serialization of:

• definition of the keys used by the data set; the primary key definition (for KSDS) and
alternate keys definitions if applicable (for KSDS / ESDS)

Additionally, large/very large data sets indexes (if applicable) are stored using a pagination
mechanism; index pages binary serializations are stored as rows of a dedicated table (one table per
data set key). Each page of indexes is stored in a row, having the following columns:

• id: technical identifier of the indexes page (numeric primary key);

• firstkey: binary value of the first (lowest) key value stored in the indexes page;

• lastkey: binary value of the last (highest) key value stored in the indexes page;

• metadata: binary compressed serialization of the indexes page (mapping key values to records
RBAs).

AWS Blu Age Blusam 184

AWS Mainframe Modernization User Guide

The table name is a concatenation of the data set name and the key internal name, which contains
information about the key, such as the key offset, whether the key accepts duplicates (set to true to
allow duplicates), and the key length. For example, consider a data set named "AWS_LARGE_KSDS"
that has the following two defined keys:

• primary key [offset: 0, duplicates: false, length:18]

• alternate key [offset: 3, duplicates: true, length: 6]

In this case, the following tables store the indexes related to the two keys.

Optimizing I/O throughput using write-behind mechanism

In order to optimize insert / update / delete operations performances, the Blusam engine relies on
a configurable write-behind mechanism. The mechanism is built upon a pool of dedicated threads
that deal with persistence operations using bulk update queries, to maximize I/O throughput
towards the Blusam storage.

The Blusam engine collects all update operations done on records by applications and build
records lots that are being dispatched for treatment to the dedicated threads. The lots are then
being persisted to the Blusam storage, using bulk update queries, avoiding the usage of atomic
persistence operations, ensuring the best possible usage of network bandwidth.

AWS Blu Age Blusam 185

AWS Mainframe Modernization User Guide

The mechanism uses a configurable delay (defaults to one second) and a configurable lot size
(defaults to 10000 records). The build persistence queries are executed as soon as the first of the
two following conditions is met:

• The configured delay has elapsed and the lot is not empty

• The number of records in the lot to be treated reaches the configured limit

To learn how to configure the write-behind mechanism, see the section called “Optional
properties”.

Picking up the proper storage scheme

As shown in the previous section, the way data sets are being stored depends on their "weight". But
what is considered as small, medium or large for a data set? When to pick the paginated storage
strategy rather than the regular one?

The answer to that question depends on the following.

• The amount of available memory on each of the servers hosting the modernized applications
that will use those data sets.

• The amount of available memory on cache infrastructure (if any).

When using non-paginated indexes storage scheme, the full key indexes and records sizes
collections will be loaded into the server memory at data set opening time, for each data set. In
addition, if caching is involved, all data set records might be pre-loaded into cache with the regular
approach, which might lead to memory resource exhaustion on the cache infrastructure side.

Depending on the number of defined keys, the length of the key values, the number of records
and the number of data sets opened at the same time, the amount of consumed memory can be
roughly evaluated for the given known use-cases.

To learn more, see the section called “Estimating the memory footprint for a given data set”.

Blusam migration

Once the proper storage scheme has been selected for a given data set, the blusam storage must
be populated by migrating legacy data sets.

To achieve this, one has to use raw binary exports of the legacy data sets, without any charset
conversion being used during the export process. When transferring data set exports from the

AWS Blu Age Blusam 186

AWS Mainframe Modernization User Guide

legacy system, make sure not to corrupt the binary format. For example, enforce binary mode
when using FTP.

The raw binary exports contain only the records. The import mechanism does not need the keys/
indexes exports as all keys/indexes are being re-computed on the fly by the import mechanism.

Once a data set binary export is available, several options to migrate it to Blusam exist:

On AWS Mainframe Modernization managed environment:

• Import data sets by using the dedicated feature. See the section called “Import data sets for
applications”.

or

• Use the data set bulk import facility. See the section called “Data set definition reference” and
the section called “Sample data set request format for VSAM”.

or

• Use a groovy script to import data sets, using dedicated loading services.

Note

Importing LargeKSDS and LargeESDS on Mainframe Modernization managed environments is only
possible using groovy scripts for now.

On AWS Blu Age Runtime on Amazon EC2:

• Import data set by using the Blusam Administration Console.

or

• Use a groovy script to import data sets, using dedicated loading services.

Import data sets using Groovy scripts

This section will help you writing groovy scripts to import legacy data sets into Blusam.

It starts with some mandatory imports:

AWS Blu Age Blusam 187

AWS Mainframe Modernization User Guide

import com.netfective.bluage.gapwalk.bluesam.BluesamManager
import com.netfective.bluage.gapwalk.bluesam.metadata.Key;
import com.netfective.bluage.gapwalk.rt.provider.ServiceRegistry
import java.util.ArrayList; //used for alternate keys if any

After that, for each data set to import, the code is built upon the given pattern:

1. create or clear a map object

2. fill the map with required properties (this varies with data set kinds -- see below for details)

3. retrieve the proper loading service to be used for data set kind in the service registry

4. run the service, using the map as argument

There are 5 service implementations that can be retrieved from the service registry, using the
following identifiers:

• "BluesamKSDSFileLoader": for small/medium sized KSDS

• "BluesamESDSFileLoader" for small/medium sized ESDS

• "BluesamRRDSFileLoader": for RRDS

• "BluesamLargeKSDSFileLoader": for large KSDS

• "BluesamLargeESDSFileLoader": for large ESDS

Whether to pick the regular vs large version of service for KSDS/ESDS depends on the size of the
data sets and the storage strategy you want to apply for it. To learn how to pick the proper storage
strategy, see the section called “Picking up the proper storage scheme”.

To be able to successfully import the data set into Blusam, the proper properties must be provided
to the loading service.

Common properties:

• Mandatory (for all kinds of data sets)

• "bluesamManager" : expected value is
applicationContext.getBean(BluesamManager.class)

• "datasetName" : name of the data set, as a String

• "inFilePath" : path to the legacy data set export, as a String

AWS Blu Age Blusam 188

AWS Mainframe Modernization User Guide

• "recordLength": the fixed record length or 0 for variable record length data set, as an integer

• Optional

• Not supported for Large data sets:

• "isAppend" : a boolean flag, indicating that the import is happening in append mode
(appending records to an existing blusam data set).

• "useCompression" : a boolean flag, indicating that compression will be used to store
metadata.

• Only for Large data sets:

• "indexingPageSizeInMb" : the size in megabytes of each index page, for each of the keys of
the data set, as a strictly positive integer

Data set kind dependant properties:

• KSDS/Large KSDS:

• mandatory

• "primaryKey" : the primary key definition, using a
com.netfective.bluage.gapwalk.bluesam.metadata.Key constructor call.

• optional:

• "alternateKeys" : a List (java.util.List) of alternate key definitions, built using
com.netfective.bluage.gapwalk.bluesam.metadata.Key constructor calls.

• ESDS/Large ESDS:

• optional:

• "alternateKeys" : a List (java.util.List) of alternate key definitions, built using
com.netfective.bluage.gapwalk.bluesam.metadata.Key constructor calls.

• RRDS:

• none.

Key constructor calls:

• new Key(int offset, int length): creates a Key object, with given key attributes (offset
and length) and no duplicates allowed. This variant should be used to define a primary key.

• new Key(boolean allowDuplicates, int offset, int length): creates a Key object,
with given key attributes (offset and length) and duplicates allowing flag.

AWS Blu Age Blusam 189

AWS Mainframe Modernization User Guide

The following Groovy samples illustrate various loading scenarios.

Loading a large KSDS, with two alternate keys:

import com.netfective.bluage.gapwalk.bluesam.BluesamManager
import com.netfective.bluage.gapwalk.bluesam.metadata.Key;
import com.netfective.bluage.gapwalk.rt.provider.ServiceRegistry
import java.util.ArrayList;

// Loading a large KSDS into Blusam
def map = [:]
map.put("bluesamManager", applicationContext.getBean(BluesamManager.class));
map.put("datasetName", "largeKsdsSample");
map.put("inFilePath", "/work/samples/largeKsdsSampleExport");
map.put("recordLength", 49);
map.put("primaryKey", new Key(0, 18));
ArrayList altKeys = [new Key(true, 10, 8), new Key(false, 0, 9)]
map.put("alternateKeys", altKeys);
map.put("indexingPageSizeInMb", 25);
def service = ServiceRegistry.getService("BluesamLargeKSDSFileLoader");
service.runService(map);

Loading a variable record length ESDS, with no alternate keys:

import com.netfective.bluage.gapwalk.bluesam.BluesamManager
import com.netfective.bluage.gapwalk.bluesam.metadata.Key;
import com.netfective.bluage.gapwalk.rt.provider.ServiceRegistry

// Loading an ESDS into Blusam
def map = [:]
map.put("bluesamManager", applicationContext.getBean(BluesamManager.class));
map.put("datasetName", "esdsSample");
map.put("inFilePath", "/work/samples/esdsSampleExport");
map.put("recordLength", 0);
def service = ServiceRegistry.getService("BluesamESDSFileLoader");
service.runService(map);

Variable record length data sets exports will contain the mandatory Record Decriptor Word (RDW)
information to allow records splits at reading time.

Loading a fixed record length RRDS:

import com.netfective.bluage.gapwalk.bluesam.BluesamManager

AWS Blu Age Blusam 190

AWS Mainframe Modernization User Guide

import com.netfective.bluage.gapwalk.bluesam.metadata.Key;
import com.netfective.bluage.gapwalk.rt.provider.ServiceRegistry

// Loading a RRDS into Blusam
def map = [:]
map.put("bluesamManager", applicationContext.getBean(BluesamManager.class));
map.put("datasetName", "rrdsSample");
map.put("inFilePath", "/work/samples/rrdsSampleExport");
map.put("recordLength", 180);
def service = ServiceRegistry.getService("BluesamRRDSFileLoader");
service.runService(map);

In addition, a configuration entry (to be set in the application-main.yml configuration file) can be
used to fine tune the import process:

• bluesam.fileLoading.commitInterval: a strictly positive integer, definining the commit
interval for regular ESDS/KSDS/RRDS import mechanism. Does not apply to Large data sets
imports. Defaults to 100000.

Blusam configuration

Configuring Blusam happens in the application-main.yml configuration file (or in the application-
bac.yml configuration file for the stand-alone deployment of the Blusam Administration Console --
BAC -- application).

Blusam has to be configured on two aspects:

• Blusam storage and caches access configuration

• Blusam engine configuration

Blusam storage and caches access configuration

For information about how to configure access to Blusam storage and caches using either secrets
managers or datasources, see the section called “AWS Blu Age Runtime configuration”.

Note

Regarding the access to the Blusam storage, the credentials used will point to a connection role,
with according privileges. For the Blusam engine be able to operate as expected, the connection
role must have the following privileges:

AWS Blu Age Blusam 191

AWS Mainframe Modernization User Guide

• connect to the database

• create / delete / alter / truncate tables and views

• select / insert / delete / update rows in tables and views

• execute functions or procedures

Blusam engine configuration

Disabling Blusam support

First, let's mention that it is possible do completely disable Blusam support, by setting the
bluesam.disabled property to true. An information message will be displayed in the server
logs at application startup to remind Blusam disabling:

BLUESAM is disabled. No operations allowed.

No further configuration about Blusam is required in that case and any attempt to use
Blusam related features (either programmatically or through REST calls) will raise an
UnsupportedOperationException in the Java code execution, with a relevant explaination
message about Blusam being disabled.

Blusam engine properties

The Blusam engine configuration properties are regrouped under the bluesam key prefix:

Mandatory properties

• cache: to be valued with the chosen cache implementation. Valid values are:

• ehcache: For local embedded ehcache usage. See the related use case restrictions above.

• redis: For shared remote redis cache usage. This is the preferred option for the AWS
Mainframe Modernization managed use case.

• none: To disable storage caching

• persistence: to be valued with the chosen storage engine. Valid values are:

• pgsql (for PostgreSQL engine: minimal version 10.0 -- recommended version >= 14.0)

• oracle (for Oracle engine: minimal version 19c)

AWS Blu Age Blusam 192

AWS Mainframe Modernization User Guide

• mssql (for SQL Server engine: minimal version required is SQL Server 2019)

• datasource reference: <persistence engine>.dataSource will point to the dataSource
definition for the connection to the Blusam storage, defined elsewhere in the configuration file.
Commonly it's being named bluesamDs .

Note

Whenever Redis is used as cache mechanism, either for data or locks (see below), access to the
Redis instances is to be configured. For details, see the section called “Available Redis cache
properties”.

Optional properties

Blusam Locks: the properties are prefixed with locks

• cache: only usable value is redis , to specify that the redis-based locking mechanism will be
used (to be used when blusam storage cache is redis-based as well). If the property is missing or
not set to redis , the default in-memory locks mechanism will be used instead.

• lockTimeOut: a positive long integer value, giving the timeout expressed in milliseconds before
an attempt to lock an already locked element is marked as failed. Defaults to 500 .

• locksDeadTime: a positive long integer value, representing the maximum time, expressed
in milliseconds, an application can hold a lock. Locks are automatically marked as expired and
released after that elapsed time. Defaults to 1000 ;

• locksCheck: a string, used to define the locking check strategy used by the current blusam lock
manager, about expired locks removal. To be picked amongst the following values:

• off: no checks are performed. Discouraged, as dead locks might happen.

• reboot: checks are performed at reboot or application start time. All expired locks are
released at that time. This is the default.

• timeout: checks are performed at reboot or application start time, or when a timeout expires
during an attempt to lock a data set. Expired locks are released immediately.

Write-behind mechanism: the properties are prefixed with write-behind key:

• enabled: true (default and recommended value) or false , to enable or disable the write-
behind mechanism. Disabling the mechanism will greatly impact write performance and is
discouraged.

AWS Blu Age Blusam 193

AWS Mainframe Modernization User Guide

• maxDelay: a maximal duration for the threads to be triggered. Defaults to "1s" (one second).
Keeping the default value is generally a good idea, unless specific conditions require this value to
be tuned. In any case the value should be kept low (under 3 seconds). The format for the delay
string is: <integer value><optional whitespace><time unit> where <time unit> is
to be picked amongst the following values:

• "ns": nanoseconds

• "µs": microseconds

• "ms": milliseconds

• "s": seconds

• threads: the number of dedicated write-behind threads. Default to 5 . You need to adjust this
value according to the computing power of the host running the Blusam engine. It's not relevant
to use a much higher value, hoping for performance increase as the limiting factor will become
the storage RDBMS ability to deal with numerous concurrent batch queries. Recommended
values are usually in the range 4-8.

• batchSize: a positive integer representing the maximal number of records in a lot that will be
dispatched for bulk treatment to a thread. Its value must be between 1 and 32767. Defaults to
10000 . Using 1 as value defeats the purpose of the mechanism which is to avoid using atomic
update queries; the suitable minimal value to use is around 1000 .

Embedded EhCache fine-tuning: the properties are prefixed with ehcache key:

• resource-pool:

• size: allocated memory size for the embedded cache, expressed as a string. Defaults to
"1024MB" (1 gigabyte). To be adjusted with regards to the available memory of the machine
hosting the Blusam engine and the size of the datasets being used by the application. The
format of the size string is: <integer value><optional whitespace><memory unit>
where <memory-unit> is to be picked amongst the following values:

• B: bytes

• KB: kilobytes

• MB: megabytes

• GB: gigabytes

• TB: terabytes

• heap: true or false , to indicate whether the cache will consume JVM heap memory or not.
Defaults to true (fastest option for cache performance, but cache storage consumes memory

AWS Blu Age Blusam 194

AWS Mainframe Modernization User Guide

from the JVM on-heap RAM memory). Setting this property to false will switch to Off-Heap
memory, which will be slower, due to required exchanges with the JVM heap.

Sample configuration snippet:

dataSource:
 bluesamDs:
 driver-class-name: org.postgresql.Driver
 ...
 ...
bluesam:
 locks:
 lockTimeOut: 700
 cache: ehcache
 persistence: pgsql
 ehcache:
 resource-pool:
 size: 8GB
 write-behind:
 enabled: true
 threads: 8
 batchsize: 5000
 pgsql:
 dataSource : bluesamDs

Blusam Administration Console

The Blusam Administration Console (BAC) is a web-application, used to administrate the Blusam
storage. For information about the BAC, see the section called “Blusam Administration Console”.

Appendix

General data set metadata attributes

General data set metadata serialization attributes list:

• name (of the data set)

• type (KSDS, LargeKSDS, ESDS, LargeESDS or RRDS)

• cache warm-up flag (whether the data set should be preloaded in cache at server startup or not)

AWS Blu Age Blusam 195

AWS Mainframe Modernization User Guide

• compression usage flag (whether to store records in a compressed or raw format)

• creation date

• last modification date

• fixed length record flag (whether the data set records are all having the same length or not)

• record length -- only meaningful for fixed record length

• page size (used to customize the paginated sql queries used to preload cache when required)

• size (size of the data set - cumulated length of the records)

• last offset (offset i.e. RBA of the latest record added to the data set)

• next offset (next avaliable offset for adding a new record to the data set)

• if meaningful, definition of the keys used by the data set; each key being defined by its kind
(primary or part of the alternate keys collection) and three attributes:

• offset : position in the record of the starting byte of the key value;

• length : length in bytes of the key value. Thus the key value is the byte array which is the
subset of the record starting at key offset and ending at position key offset + length
- 1 ;

• duplicates allowed flag: whether the key accepts duplicates or not (set to true to allow
duplicates).

Estimating the memory footprint for a given data set

For small to medium sized data sets, the metadata (sizes and indexes for various keys) will be fully
loaded into memory. Allocating proper resources for the machine hosting the server used to run
modernized applications requires to figure out the memory consumption induced by the Blusam
data sets, in particular regarding metadata. This section give practical answers to concerned
operators.

The given formulas only apply to Blusam small to medium data sets, not using the "Large" storage
strategy.

Blusam data set metadata

For a Blusam data set, metadata are split into two parts:

• core metadata : holds global information about the data set. The memory footprint of this can
be considered as negligeable compared to the internal metadata.

AWS Blu Age Blusam 196

AWS Mainframe Modernization User Guide

• internal metadata: holds information about the records sizes and key indexes; when a data set
is not empty, this is what consumes memory when loaded into the application server hosting
modernized applications. The sections below detail how the consumed memory grows with the
number of records.

Calculating Internal Metadata footprint

Records sizes map

First, the internal metadata stores a map to hold the size of every record (as an integer) given its
RBA (relative byte address — stored as a long number).

The memory footprint of that data structure is, in bytes: 80 * number of records

This applies to all data set kinds.

Indexes

Regarding the indexes for either the primary key of KSDS or alternate keys on both ESDS and
KSDS, the calculation of the footprint depends on two factors:

• the number of records in the data set;

• the size of the key, in bytes.

The graphic below shows the size of the key index per record (y-axis) based on the size of the key
(x-axis).

AWS Blu Age Blusam 197

AWS Mainframe Modernization User Guide

The corresponding formula for evaluating the footprint for a given key index of a data set is:

index footprint = number of records * (83 + 8 (key length / 8))

where ' / ' stands for the integer division.

Examples:

• data set 1:

• number of records = 459 996

• key length = 15 therefore (key length / 8) = 1

• index footprint = 459 996 * (83 + (8*1)) = 41 859 636 bytes (= 39 MB approx.)

• data set 2:

AWS Blu Age Blusam 198

AWS Mainframe Modernization User Guide

• number of records = 13 095 783

• key length = 18 therefore (key length / 8) = 2

• index footprint = 13 095 783 * (83 + (8*2)) = 1 296 482 517 bytes (= 1.2 GB approx.)

The total footprint for a given data set is the sum of all the footprints for all keys indexes and the
footprint for the records sizes map.

For instance, taking the example data set 2, that has only a single key, the global footprint is:

• Records sizes map: 13 095 783 * 80 = 1 047 662 640 bytes

• Key Indexes : 1 296 482 517 bytes (see above)

• Total footprint = 2 344 145 157 bytes (= 2.18 GB approx.)

AWS Blu Age Blusam Administration Console

The Blusam Administration Console (BAC) is a secure web-application for handling Blusam data
sets. This guide covers the BAC user interface. For remote management through REST endpoints,
see Blusam application console REST endpoints.

Topics

• Deploying the BAC

• Using the BAC

• LISTCAT JSON format

Deploying the BAC

The BAC is available as a secured single web application, using the web-archive format (.war).
It is intended to be deployed alongside the BluAge Gapwalk-Application, in an Apache Tomcat
application server, but can also be deployed as a standalone application. The BAC inherits the
access to the Blusam storage from the Gapwalk-Application configuration if present.

The BAC has its own dedicated configuration file, named application-bac.yml. For
configuration details, see the section called “BAC dedicated configuration file”.

The BAC is secured. For details about security configuration, see the section called “Configuring
security for the BAC”.

Blusam Administration Console 199

AWS Mainframe Modernization User Guide

BAC dedicated configuration file

Standalone deployment: If the BAC is deployed alone the Gapwalk-Application, the connection to
the Blusam storage must be configured in the application-bac.yml configuration file.

Default values for data sets configuration used to browse data set records must be set in the
configuration file. See the section called “Browsing records from a data set”. The records browsing
page can use an optional mask mechanism that makes it possible to show a structured view on a
record's content. Some properties impact the records view when masks are used.

The following configurable properties must set in the configuration file. The BAC application does
not assume any default value for these properties.

Key Type Description

bac.crud.limit integer A positive integer value
giving the maximum number
of records returned when
browsing records. Using 0
means unlimited. Recommend
ed value: 10 (then adjust the
value data set by data set on
the browsing page, to fit your
needs).

bac.crud.encoding string The default character set
name, used to decode
records bytes as alphanume
ric content. The provided
charset name must be java
compatible (please see
the java documentation
for supported charsets).
Recommended value: the
legacy charset used on the
legacy platform where data
sets are coming from; this will

Blusam Administration Console 200

AWS Mainframe Modernization User Guide

Key Type Description

be an EBCDIC variant most of
the times.

bac.crud.initChara
cter

string The default character (byte)
used to init data items. Two
special values can be used:
"LOW-VALUE" , the 0x00
byte (recommended value)
and "HI-VALUE" , the 0xFF
byte. Used when masks are
applied.

bac.crud.defaultCh
aracter

string The default character (byte),
as a one character string,
used for padding records (on
the right). Recommended
value: " " (space). Used when
masks are applied.

bac.crud.blankChar
acter

string The default character (byte),
as a one character string,
used to represent blanks
in records.Recommended
value: " " (space). Used when
masks are applied.

bac.crud.strictZoned boolean A flag to indicate which zoned
mode is used for the record.
If true, the Strict zone mode
will be used; if false, the
Modified zoned mode will be
used. Recommended value:
true. Used when masks are
applied.

Blusam Administration Console 201

AWS Mainframe Modernization User Guide

Key Type Description

bac.crud.decimalSe
parator

string The character used as decimal
separator in numeric edited
fields (used when masks are
applied).

bac.crud.currencyS
ign

string The default character, as a
one character string, used to
represent currency in numeric
edited fields, when formattin
g is applied (used when masks
are applied).

bac.crud.pictureCu
rrencySign

string The default character, as a
one character string, used to
represent currency in numeric
edited fields pictures (used
when masks are applied).

The following sample is a configuration file snippet.

bac.crud.limit: 10
bac.crud.encoding: ascii
bac.crud.initCharacter: "LOW-VALUE"
bac.crud.defaultCharacter: " "
bac.crud.blankCharacter: " "
bac.crud.strictZoned: true
bac.crud.decimalSeparator: "."
bac.crud.currencySign: "$"
bac.crud.pictureCurrencySign: "$"

Configuring security for the BAC

Configuring security for the BAC relies on the mechanisms detailed in this documentation page.
The authentication scheme is OAuth2, and configuration details for Amazon Cognito or Keycloak
are provided.

Blusam Administration Console 202

AWS Mainframe Modernization User Guide

While general setup can be applied, some specifics about the BAC need to be detailed here. The
access to the BAC features is protected using a role-based policy and relies on the following roles.

• ROLE_USER:

• Basic user role

• No import, export, creation, or deletion of data sets allowed

• No control over caching policies

• No administration features allowed

• ROLE_ADMIN:

• Inherits ROLE_USER permissions

• All data set operations allowed

• Caching policies administration allowed

Installing the masks

In Blusam storage, data sets records are stored in a byte array column in the database, for
versatility and performance considerations. Having access to a structured view, using fields, of the
business records, based on application point of view is a convenient feature of the BAC. This relies
on the SQL masks produced during the BluAge driven modernization process.

For the SQL masks to be generated, please make sure to set the relevant option
(export.SQL.masks) in the configuration of the BluInsights Transformation Center to true:

Blusam Administration Console 203

AWS Mainframe Modernization User Guide

The masks are part of the modernization artifacts that can be downloaded from BluInsights for
a given project. They are SQL scripts, organized by modernized programs, giving the applicative
point of view on data sets records.

For example, using the AWS CardDemo sample application, you can find in the downloaded
artifacts from the modernization result of this application, the following SQL masks for the
program CBACT04C.cbl:

Each SQL mask name is the concatenation of the program name and the record structure name for
a given data set within the program.

For example, looking at the [CBACT04C.cbl program, the given file control entry:

 FILE-CONTROL.
 SELECT TCATBAL-FILE ASSIGN TO TCATBALF
 ORGANIZATION IS INDEXED
 ACCESS MODE IS SEQUENTIAL
 RECORD KEY IS FD-TRAN-CAT-KEY
 FILE STATUS IS TCATBALF-STATUS.

is associated with the given FD record definition

 FILE SECTION.
 FD TCATBAL-FILE.
 01 FD-TRAN-CAT-BAL-RECORD.
 05 FD-TRAN-CAT-KEY.
 10 FD-TRANCAT-ACCT-ID PIC 9(11).
 10 FD-TRANCAT-TYPE-CD PIC X(02).
 10 FD-TRANCAT-CD PIC 9(04).
 05 FD-FD-TRAN-CAT-DATA PIC X(33).

The matching SQL mask named cbact04c_fd_tran_cat_bal_record.SQL is the mask that
gives the point of view of the program CBACT04C.cbl on the FD record named FD-TRAN-CAT-
BAL-RECORD.

Blusam Administration Console 204

https://github.com/aws-samples/aws-mainframe-modernization-carddemo/tree/main/app/cbl
https://github.com/aws-samples/aws-mainframe-modernization-carddemo/blob/main/app/cbl/CBACT04C.cbl

AWS Mainframe Modernization User Guide

Its content is:

-- Generated by Blu Age Velocity
-- Mask : cbact04c_fd_tran_cat_bal_record

INSERT INTO mask (name, length) VALUES ('cbact04c_fd_tran_cat_bal_record', 50);
 INSERT INTO mask_item (name, c_offset, length, skip, type, options, mask_fk) VALUES
 ('fd_trancat_acct_id', 1, 11, false, 'zoned', 'integerSize=11!fractionalSize=0!
signed=false', (SELECT MAX(id) FROM mask));
 INSERT INTO mask_item (name, c_offset, length, skip, type, options, mask_fk) VALUES
 ('fd_trancat_type_cd', 12, 2, false, 'alphanumeric', 'length=2', (SELECT MAX(id) FROM
 mask));
 INSERT INTO mask_item (name, c_offset, length, skip, type, options, mask_fk)
 VALUES ('fd_trancat_cd', 14, 4, false, 'zoned', 'integerSize=4!fractionalSize=0!
signed=false', (SELECT MAX(id) FROM mask));
 INSERT INTO mask_item (name, c_offset, length, skip, type, options, mask_fk) VALUES
 ('fd_fd_tran_cat_data', 18, 33, false, 'alphanumeric', 'length=33', (SELECT MAX(id)
 FROM mask));

Masks are stored in the Blusam storage using two tables:

• mask: used to identify masks. The columns of the mas table are:

• name: used to store mask identification (used as primary key, so must be unique)

• length: size in bytes of the record mask

• mask_item: used to store mask details. Every elementary field from a FD record definition will
produce a row in the mask_item table, with details on how to interpret the given record part. The
columns of the mask_item table are:

• name: name of the record field, based on the elementary name, using lowercase and replacing
dash with underscore

• c_offset: 1-based offset of the record sub-part, used for the field content

• length: length in bytes of the record sub-part, used for the field content

• skip: flag to indicate whether the given record part should be skipped or not, in the view
presentation

• type: the field kind (based on its legacy picture clause)

• options: additional type options -- type-dependant

• mask_fk: reference to the mask identifier to attach this item to

Blusam Administration Console 205

AWS Mainframe Modernization User Guide

Note the following:

• SQL masks represent a point of view from a program on records from a data set: several
programs might have a different point of view on a given data set; only install the masks that
you find relevant for your purpose.

• A SQL mask can also represent the point of view from a program based on a 01 data structure
from the WORKING STORAGE section, not only from a FD record. The SQL masks are organized
into sub-folders according to their nature:

• FD record based masks will be located in the sub-folder named file

• 01 data structure based masks will be located in the sub-folder named working

While FD records definitions always match the record content from a data set, 01 data structures
might not be aligned or might only represent a subset from a data set record. Before you use
them, inspect the code and understands the possible shortcomings.

Using the BAC

Because the BAC is secured and delivers permissions to use features based on the user role, the first
step to access the application is to authenticate yourself. After the authentication step, you'll be
redirected to the home page. The home page presents the paginated list of data sets found in the
Blusam storage:

Blusam Administration Console 206

AWS Mainframe Modernization User Guide

To return to the home page with the data sets listing, choose the BluAge logo in the upper left
corner of any page of the application. The following image shows the logo.

The foldable header, labelled "BluSam configuration", contains information about the used BluSam
storage configuration:

• Persistence: the persistent storage choice (here PostgreSQL)

• Cache Enabled: whether the storage cache is enabled

On the right side of the header, two drop-down lists, each one listing operations related to data
sets:

• Bulk actions

• Create actions

Blusam Administration Console 207

AWS Mainframe Modernization User Guide

To learn about the detailed contents of these lists, see the section called “Existing data set
operations”.

The Bulk Actions button is disabled when no data set selection has been made.

You can use the search field to filer the list based on the data sets names:

The paginated list that follows shows one data set per table row, with the following columns:

• Selection checkbox: A checkbox to select the current data set.

• Name: The name of the data set.

• Type: The type of the data set, one of the following:

• KSDS

• ESDS

• RRDS

• Keys: A link to show or hide details about the keys (if any). For example, the given KSDS has the
mandatory primary key and one alternative key.

There is one row per key, with the following columns. None of the fields are editable.

• Key nature: either a primary key or an alternative key

• Name: the name of the key

• Unique: whether the key accepts duplicate entries

Blusam Administration Console 208

AWS Mainframe Modernization User Guide

• Offset: offset of the key start within the record

• Length: length in bytes of the key portion in the record

• Records: The total number of records in the data set.

• Record size max: The maximal size for records, expressed in bytes.

• Fixed record length: A checkbox that indicates whether the records are fixed length (selected) or
variable length (unselected).

• Compression: A checkbox that indicates whether compression is applied (selected) or not
(unselected) to stored indexes.

• Creation date: The date when the data set was created in the Blusam storage.

• Last modification date: The date when the data set was last updated in the Blusam storage.

• Cache: A link to show or hide details about the caching strategy applied to this dataset.

• Enable cache at startup: A checkbox to specify the startup caching strategy for this data set. If
selected, the data set will be loaded into cache at startup time.

• Warm up cache: A button to load the given data set into cache, starting immediately (but
hydrating the cache takes some time, depending on the data set size and number of keys).
After the data set gets loaded into cache, a notification like the following one appears.

• Actions: A drop-down list of possible data sets operations. For details, see the section called
“Existing data set operations”.

At the bottom of the page, there is a regular paginated navigation widget for browsing through the
pages of the list of data sets.

Blusam Administration Console 209

AWS Mainframe Modernization User Guide

Existing data set operations

For each data set in the paginated list, there is an Actions drop-down list with the following
content:

Each item in the list is an active link that makes it possible to perform the specified action on the
data set:

• Read: browse records from the data sets

• Load: import records from a legacy data set file

• Export: export records to a flat file (compatible with legacy systems)

• Clear: remove all records from the data set

• Delete: remove the data set from the storage

Details for each action are provided in the following sections.

Browsing records from a data set

When you choose the Read action for a given data set, you get the following page.

Blusam Administration Console 210

AWS Mainframe Modernization User Guide

The page is made of:

• a header, with:

• Dataset: the data set name

• Record size: the fixed record length, expressed in bytes

• Total Records: the total number of records stored for this data set

• Show configuration button (on the right side): a toggle button to show/hide the data set
configuration. At first, the configuration is hidden. When using the button, the configuration
you see the configuration, as shown in the following image.

When configuration is shown, two new buttons: Save and Reset, used respectively to:

• save the configuration for this data set and current work session

• reset the configuration to default values for all fields.

• A list of configurable properties to tailor the browsing experience for the given data set.

The configurable properties match the configuration properties described in the section called
“BAC dedicated configuration file”. Refer to that section to understand the meaning of each
column and applicable values. Each value can be redefined here for the data set and saved for the
Blusam Administration Console 211

AWS Mainframe Modernization User Guide

work session (using the Save button). After you save the configuration, a banner similar to the one
shown in the following image appears.

The banner states that the work session ends when you leave the current page.

There is an extra configurable property that is not documented in the configuration section: Record
size. This is used to specify a given record size, expressed in bytes, that will filter the applicable
masks to this data set: only masks whose total length matches the given record size will be listed in
the Data mask drop-down list.

Retrieving records from the data set is triggered by the Search button, using all options and filters
nearby.

First line of options:

• the Data mask drop-down list show applicable masks (respecting the record size). Please note
that, matching the record size is not enough to be an effective applicable mask. The mask
definition must also be compatible with the records contents. The Data mask picked here has

• Max results: limits the number of records retrieved by the search. Set to 0 for unlimited
(paginated) results from the data set.

• Search button: launch the records retrieval using filters and options

• Clear mask button: will clear the used mask if any and switch back the results page to a raw key/
data presentation.

• Clear filter button: will clear the used filter(s) if any and update the results page accordingly.

• All fields toggle: When selected, mask items defined with skip = true are shown anyway,
otherwise mask items with skip = true are hidden.

Next lines of filters: It is possible to define a list of filters, based on the usage of filtering conditions
applied to fields (columns) from a given mask, as shown in the following image.

• Filter mask: The name of the mask to pick the filtering column from. When you choose the field,
the list of applicable masks appears. You can choose the mask you want from that list.

Blusam Administration Console 212

AWS Mainframe Modernization User Guide

• Filter column: The name of the field (column) from the mask, used to filter records. When you
choose the field, the list of mask columns appears. To fill the Filter column field, choose the
desired cell.

• Filter operator: An operator to apply to the selected column. The following operators are
available.

• equals to: the column value for the record must be equal to the filter value

• starts with: the column value for the record must start with the filter value

• ends with: the column value for the record must end with the filter value

• contains: the column value for the record must contain the filter value

• Filter options:

• Inverse: apply the inverse condition for the filter operator; for instance, 'equals to' is replaced
by 'not equals to';

• Ignore case: ignore case on alphanumeric comparisons for the filter operator

• Filter value: The value used for comparison by the filter operator with the filter column.

Once the minimal number of filter items are set (at least: Filter mask, filter column, filter operator
and Filter value must be set), the Add Filter button is enabled, and clicking on it creates a new filter
condition on the retrieved records. Another empty filter condition row is added at the top and
the added filter condition has a Remove filter button that can be used to suppress the given filter
condition:

Blusam Administration Console 213

AWS Mainframe Modernization User Guide

When you launch the search, the filtered results appear in a paginated table.

Note

• Successive filters are linked by an and or an or. Every new filter definition starts by setting the
link operator, as shown in the following image.

• There might not be any records that match the given filter conditions.

Otherwise, the results table looks like the one in the following image.

A header indicates the total number of records that match the filter conditions. After the header,
you see the following.

Blusam Administration Console 214

AWS Mainframe Modernization User Guide

• Reminder of the used data mask (if any) and the filter conditions.

• A refresh button that you can use to trigger the refresh of the whole results table with latest
values from the Blusam storage (as it might have been updated by another user for instance).

For each retrieved record, the table has a row that shows the result of applying the data mask to
the records' contents. Each column is the interpretation of the record sub-portion according to the
column's type (and using the selected encoding). To the left of each row, there are three buttons:

• a magnifying glass button: leads to a dedicated page showing the detailed record's contents

• a pen button: leads to a dedicated edit page for the record's contents:

• a trashcan button: used to delete the given record from the blusam storage

Viewing the record's contents in detail:

• Three toggle buttons for hiding or showing some columns:

• Hide/show the type

• Hide/show the display flag

• Hide/show the range

• To leave this dedicated page and go back to the results table, choose Close.

• Each row represents a column from the data mask, with the following columns:

• Name: the column's name

• Type: the column's type

• Display: the display indicator; a green check will be displayed if the matching mask item is
defined with skip = false, otherwise a red cross will be displayed

• From & To: the 0-based range for the record sub-portion

• Value: the interpreted value of the record sub-portion, using type and encoding

Editing the record's contents:

Blusam Administration Console 215

AWS Mainframe Modernization User Guide

The editing page is similar to the view page described above, except that the mask items values are
editable. Three buttons control the update process:

• Reset: resets the editable values to the initial record values (prior to any edition);

• Validate: validates the input, with regards to the mask item type. For each mask item, the result
of the validation will be printed using visual labels (OK and checkbox if validation succeeded,
ERROR and red cross if validation failed, alongside an error message giving hints about the
validation failure). If the validation succeeded, two new buttons will appear:

• Save: attempt to update the existing record into Blusam storage

• Save a copy: attempt to create a new record into Blusam storage

• If saving the record to the storage is successful, a message is displayed and the page will
switch to a read-only mode (mask items values cannot be edited anymore):

Blusam Administration Console 216

AWS Mainframe Modernization User Guide

• If for any reason the record persistence to the storage fails, an error message is displayed in
red, providing a failure reason. The most common case of failures are that storing the record
would lead to a key corruption (invalid or duplicate key). For an illustration, see the following
note.

• To exit, choose the Close button.

• Cancel: Ends the editing session, closes the page, and takes you back to the records list page.

Note:

• The validation mechanism only checks that the mask item value is formally compatible with the
mask item type. For example, see this failed validation on a numeric mask item:

• The validation mechanism might try to auto-correct invalid input, displaying an informational
message in blue to indicate that the value has been automatically corrected, according to its
type. For example, inputting 7XX0 as the numeric value in the numeric fd_trncat_cd mask
item:

Calling validation leads to the following:

Blusam Administration Console 217

AWS Mainframe Modernization User Guide

• The validation mechanism does not check whether the given value is valid in terms of key
integrity (if any unique key is involved for the given data set). For instance, despite validation
being successful, if provided values lead to an invalid or duplicate key situation, the persistence
will fail and an error message will be displayed:

Deleting a record:

To delete a record, choose the trashcan button:

Loading records into a data set

To loading records into a data set, choose Actions, then choose Load.

Blusam Administration Console 218

AWS Mainframe Modernization User Guide

A window with load options appears.

At first, both the Load on server and Load on Blusam buttons are disabled.

Reading parameters:

• Record length kind:

• Fixed or Variable record length: use the radio-button to specify whether the legacy data
set export uses fixed length records or variable length records (the records are expected to
start with RDW bytes). If you choose Fixed, the record length must be specified (in bytes) as
a positive integer value in the input field. The value should be pre-filled by the information
coming from the data set. If you choose Variable, the given input field disappears.

• File selection:

Blusam Administration Console 219

AWS Mainframe Modernization User Guide

• Local: choose the data set file from your local computer, using the file selector below (Note:
the file selector uses your browser's locale for printing its messages -- here in french, but
it might look different on your side, which is expected). After you make the selection, the
window is updated with the data file name and the Load on server button is enabled:

Choose Load on server. After the progress bar reaches its end, the Load on Blusam button
gets enabled:

To complete the load process to the Blusam storage, choose the Load on Blusam.
Otherwise, choose Cancel. If you choose to go on with the load process, a notification will
appear in the lower right corner after the loading process is completed:

• Server: choosing this option makes an input field appear while the Load on server button
disappears. The input field is where you must specify the path to the data set file on the
Blusam server (this assumes that you have transferred the given file to the Blusam server
first). After you specify the path, Load on Blusam gets enabled:

Blusam Administration Console 220

AWS Mainframe Modernization User Guide

To complete the loading process, Choose Load on Blusam. Otherwise, choose Cancel. If
you choose to proceed with the loading, a notification appears after the loading process is
complete. The notification is different from the load from the browser as it displays the data
file server path followed by the words from server:

Exporting records from a data set

To export data set records, choose Actions in the current data set row, then choose Export:

The following pop-up window appears.

Blusam Administration Console 221

AWS Mainframe Modernization User Guide

Options:

To : a radio button choice, to pick the export destination, either as a download in the browser
(Local (on browser)) or to a given folder on the Server hosting the BAC application. If you choose
to export using the Server choice, a new input field will be displayed:

As the red asterisk on the right of the input field indicates, it is mandatory to provide a valid
folder location on the server (the Dump button will be inactive while no folder location has been
provided).

To export to the server, you must have the sufficient access rights for the server file system, if you
plan to manipulate the exported data set file after the export.

Zip dump: a checkbox that produces a zipped archive instead of a raw file.

Options: To include a Record Descriptor Word (RDW) at the beginning of each record in the
exported data set in the case of variable length record data set, choose Include RDW fields.

To launch the data set export process, choose Dump. If you choose to export to browser, check the
download folder for the export data set file. The file will have the same name as the data set:

Note:

Blusam Administration Console 222

AWS Mainframe Modernization User Guide

• For KSDS, the records will exported following the primary key order.

• For ESDS and RRDS, the records will be exported following the RBA (Relative Byte Address) order.

• For all data sets kinds, records will be exported as raw binary arrays (no conversion of any kind
happening), ensuring direct compatibility with legacy platforms.

Clearing records from a data set

To clear all records from a data set, choose Actions, then choose Clear:

After all records are removed from a data set, the following notification appears.

Deleting a data set

To delete a data set, choose Actions, then choose Delete:

Blusam Administration Console 223

AWS Mainframe Modernization User Guide

After you delete a data set, the following notification appears:

Bulk operations

Three bulk operations are available on data sets:

• Export

• Clear

• Delete

Bulk operations can only be applied to a selection of data sets (at least one data set needs to be
selected); selecting data sets is done through ticking selection checkboxes on the left of data sets
rows, in the data sets list table. Selecting at least one data set will enable the Bulk Actions drop
down list:

Apart from the fact that the given actions apply on a selection of data sets rather than a single
one, the actions are similar to those described above, so please refer to dedicated actions
documentation for details. The pop-up windows text contents will be slightly different to reflect
the bulk nature. For instance, when trying to delete several data sets, the pop-up window will look
like:

Blusam Administration Console 224

AWS Mainframe Modernization User Guide

Creating operations

Create a single data set

Choose Actions, then choose Create single data set:

The data set creation form will then be displayed as a pop-up window:

You can specify the following attributes for the data set definition:

Blusam Administration Console 225

AWS Mainframe Modernization User Guide

• Enabling and disabling naming rules: Use the 'Disable naming rules / Enable naming rules'
toggle widget to disable and enable data set naming conventions. We recommend that you leave
the toggle on the default value, with enabled data set naming rules (the toggle widget should
display "Disable naming rules"):

• Data Set name: The name for the data set. If you specify a name that is already in use, the
following error message appears.

The name must also respect the naming convention if it is enabled:

• Record size max: This must be a positive integer representing the record size for a data set with
fixed-length records. You can leave it blank for data sets with variable-length records .

• Fixed length record: A checkbox to specify whether the record length is fixed or variable. If
selected, the data set will have fixed-length records, otherwise the record length will be variable.

When you import legacy data to a variable length records data set, the provided legacy records
must contain the Record Descriptor Word (RDW) that gives the length of each record.

Blusam Administration Console 226

AWS Mainframe Modernization User Guide

• Data set Type: A drop-down list for specifying the current data set type. The following types are
supported.

• ESDS

• LargeESDS

• KSDS

For KSDS, you must specify the primary key:

For the primary key, specify the following:

• Name: This field is optional. The default is PK.

• Offset: The 0-based offset of the primary key within the record. The offset must be a positive
integer. This field is required.

• Length: The length of the primary key. This length must be a positive integer. This field is
required.

For KSDS and ESDS, you can optionally define a collection of alternate keys, by choosing the Plus
button in front of the Alternate Keys label. Each time you choose that button, a new alternate
key definition section appears in the data set creation form:

Blusam Administration Console 227

AWS Mainframe Modernization User Guide

For each alternative key, you need to provide:

• Name: This field is optional. The default value is ALTK_#, where # represents an auto-
incremented counter that starts at 0.

• Offset: The 0-based offset of the alternative key within the record. Must be a positive integer.
This field is required.

• Length: The length of the alternative key. This length must be a positive integer. This field is
required.

• Unique: A checkbox to indicate whether the alternative key will accept duplicate entries. If
selected, the alternative key will be defined as unique (NOT accepting duplicate key entries).
This field is required.

To remove the alternate key definition, use the trashcan button on the left.

• Compression: A checkbox to specify whether compression will be used to store the data set.

• Enable cache at startup: A checkbox to specify whether the data set should be loaded into cache
at application startup.

After you specify the attribute definitions, choose Create to proceed:

Blusam Administration Console 228

AWS Mainframe Modernization User Guide

The creation window will be closed and the home page showing the list of data sets will be
displayed. You can view the details of the newly created data set.

Blusam Administration Console 229

AWS Mainframe Modernization User Guide

Create data sets from LISTCAT

This feature makes it possible to take advantage of the LISTCAT JSON files created during the
BluAge transformation process using BluInsights Transformation Center as the result of parsing
LISTCAT export from the legacy platforms: LISTCAT exports are parsed and transformed into JSON
files that hold the data set definitions (names, data set type, keys definitions, and whether the
record length is fixed or variable).

Having the LISTCAT JSON files makes it possible to create data sets directly without having to
manually enter all the information required for data sets. You can also create a collection of data
sets directly instead of having to create them one by one.

If no LISTCAT JON file is available for your project (for example, because no LISTCAT export file was
available at transformation time), you can always manually create one, provided you adhere to the
LISTCAT JSON format detailed in the appendix.

From the Create Actions drop-down list, choose Create data sets from LISTCAT.

The following dedicated page will be displayed:

At this stage, the Load button is disabled, which is expected.

Blusam Administration Console 230

AWS Mainframe Modernization User Guide

Use the radio buttons to specify how you want to provide the LISTCAT JSON files. There are two
options:

• You can use your browser to upload the JSON files.

• You can select the JSON files from a folder location on the server. To choose this option, you
must first copy the JSON files to the given folder path on the server with proper access rights.

To use JSON files on the server

1. Set the folder path on the server, pointing at the folder containing the LISTCAT JSON files:

2. Choose the Load button. All recognized data set definitions will be listed in a table:

Each row represents a data set definition. You can use trashcan button to remove a data set
definition from the list.

Important

The removal from the list is immediate, with no warning message.

3. The name on the left is a link. You can choose it to show or hide the details of the data set
definition, which is editable. You can freely modify the definition, starting on the basis of the
parsed JSON file.

Blusam Administration Console 231

AWS Mainframe Modernization User Guide

4. To create all data sets, choose Create. All data sets will be created, and will be displayed on the
data sets results page. The newly created data sets will all have 0 records.

To upload files to the server

1. This option is similar to using the files from the server folder path, but in this case you must
first upload the files using the file selector. Select all files to upload from your local machine,
then choose Load on server.

Blusam Administration Console 232

AWS Mainframe Modernization User Guide

2. When the progress bar reaches the end, all files have been successfully uploaded to the server
and the Load button is enabled. Choose the Load button and use the discovered data set
definitions as explained previously.

LISTCAT JSON format

The LISTCAT JSON format is defined by the following attributes:

• optional "catalogId": identifier of the legacy catalog as a String, or "default" for the default
catalog.

• "identifier": the data set name, as a String.

• "isIndexed": a boolean flag to indicate KSDS: true for KSDS, false otherwise.

• "isLinear": a boolean flag to indicate ESDS: true for ESDS, false otherwise.

• "isRelative": a boolean flag to indicate RRDS: true for RRDS, false otherwise

• Note: "isIndexed", "isLinear", and "isRelative" are mutually exclusive.

• "isFixedLengthRecord": a boolean flag: set to true if fixed length records data set, false otherwise.

• "avgRecordSize": Average record size in bytes, expressed as a positive integer.

• "maxRecordSize": Maximal Record size in bytes, expressed as an integer. Should be equal to
avgRecordSize for fixed length record size.

• for KSDS only: Mandatory primary Key definition (as nested object)

• labelled "primaryKey"

• "offset": 0-based bytes offset for the primary key in the record.

• "length": length in bytes of the primary key.

• "unique": must be set to true for primary key.

• for KSDS/ESDS, collection of alternate keys (as collection of nested objects):

• labelled "alternateKeys"

• For each alternate key:

• "offset": 0-based bytes offset for the alternate key in the record.

Blusam Administration Console 233

AWS Mainframe Modernization User Guide

• "length": length in bytes of the alternate key.

• "unique": must be set to true for alternate key, if the key does not accept duplicate entries,
false otherwise.

• if no alternate keys are present, provide an empty collection:

alternateKeys: []

The following is a sample KSDS LISTCAT JSON file.

{
 "catalogId": "default",
 "identifier": "AWS_M2_CARDDEMO_CARDXREF_VSAM_KSDS",
 "isIndexed": true,
 "isLinear": false,
 "isRelative": false,
 "isFixedLengthRecord": true,
 "avgRecordSize": 50,
 "maxRecordSize": 50,
 "primaryKey": {
 "offset": 0,
 "length": 16,
 "unique": true
 },
 "alternateKeys": [
 {
 "offset": 25,
 "length": 11,
 "unique": false
 }
]
}

Set up configuration for AWS Blu Age Runtime

The AWS Blu Age Runtime and the client code are web applications using the Spring Boot
framework. It leverages Spring capabilities to supply configuration, with several possible locations
and precedence rules. There are also similar precedence rules for supplying many other files, such
as groovy scripts, sql, etc.

AWS Blu Age Runtime configuration 234

https://docs.spring.io/spring-boot/docs/2.5.14/reference/html/
https://docs.spring.io/spring-boot/docs/2.5.14/reference/html/

AWS Mainframe Modernization User Guide

The AWS Blu Age Runtime also contains additional optional web applications, that can be opted-in
if needed.

Topics

• Application configuration basics

• Application precedence

• JNDI for databases

• AWS Blu Age Runtime secrets

• Other files (groovy, sql, etc.)

• Additional web application

• Enable properties for AWS Blu Age Runtime

• Available Redis cache properties in AWS Blu Age Runtime

• Configure security for Gapwalk applications

Application configuration basics

The default way to handle application configuration is through the use of dedicated YAML files to
be supplied in the application server's config folder. There are two main YAML configuration files:

• application-main.yaml

• application-profile.yaml (where profile value is setup during application generation).

The first file configures the framework, i.e. Gapwalk-application.war, while the second one
is for additional options specifically for the client application. This works with the use of spring
profiles: the Gapwalk application uses the main profile, while the client application uses the
profile profile.

The following example shows a typical main YAML file.

Application configuration basics 235

AWS Mainframe Modernization User Guide

The following example shows a typical client YAML file.

For information about the content of the YAML files, see Enable properties for AWS Blu Age
Runtime.

Application configuration basics 236

AWS Mainframe Modernization User Guide

Application precedence

For these configuration files, Spring precedence rules apply. Notably:

• The application-main YAML file appears in the Gapwalk main war file with default values,
and the one in the config folder supersedes it.

• The same should be done for the client application configuration

• Additional parameters may be passed on the command line at server launch time. They would
override the YAML ones.

For more information, see Official Spring Boot documentation.

JNDI for databases

The database configuration might be supplied with JNDI in the context.xml file in Tomcat. Any such
configuration would override the YAML one. But pay attention that using this will not allow to wrap
your credentials in a secret manager (see below).

The following example shows sample configurations for JICS and BluSam databases.

<Resource auth="Container" driverClassName="org.postgresql.Driver" initialSize="0"
 maxIdle="5"
 maxOpenPreparedStatements="-1" maxTotal="10" maxWaitMillis="-1" name="jdbc/jics"
 poolPreparedStatements="true" testOnBorrow="false" type="javax.sql.DataSource"
 url="jdbc:postgresql://XXXX.rds.amazonaws.com:5432/XXXX" username="XXXX"
 password="XXXX" />

jdbc/jics

Would be jdbc/jics for the JICS database and jdbc/bluesam (pay attention to the 'e') for
the blusam database.

url="jdbc:postgresql://XXXX.rds.amazonaws.com:5432/XXXX" username="XXXX" password="XXXX"

The database url, username and password.

Application precedence 237

https://docs.spring.io/spring-boot/docs/2.5.14/reference/html/features.html#features.external-config

AWS Mainframe Modernization User Guide

AWS Blu Age Runtime secrets

Some of the resource configurations that contain credentials can be further secured by using AWS
secrets. The idea is to store critical data in an AWS secret and have a reference to the secret in the
YAML configuration so the secret content is picked up on the fly at Apache Tomcat startup.

Secrets for Aurora

Aurora database configuration (for JICS, Blusam, customer db, and so on) will use the built-in
database secret, which will populate all the relevant fields automatically from the corresponding
database.

Note

The dbname key is optional, depending on your database configuration, it will get into the
secret or not. You can add it there manually, or by supplying the name to the YAML file.

Other secrets

Other secrets are for resources that have a single password (notably password-protected redis
caches). In this case the other type of secret must be used.

YAML references to secrets

The application-main.yml can reference the secret ARN for various resources:

JICS database

JICS database credentials with spring.aws.jics.db.secret

spring:
 aws:
 jics:
 db:
 dbname: jics
 secret: arn:aws:secretsmanager:XXXX

Supported JICS database secret keys:

AWS Blu Age Runtime secrets 238

https://docs.aws.amazon.com/secretsmanager/latest/userguide/create_database_secret.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/create_secret.html

AWS Mainframe Modernization User Guide

Secret key Secret key description

host The host name

port The port

dbname The name of the database

username The username

password The password

engine Database engine: Postgres, Oracle, Db2,
Microsoft SQL Server

currentSchema Specific schema to use (Db2 support only)

sslConnection Whether to use SSL connection (Db2 support
only)

sslTrustStoreLocation The location of the truststore on the client
(Db2 support only)

sslTrustStorePassword The password for the truststore on the client
(Db2 support only)

Note

The name of the database is either supplied in the secret or in the yaml reference
spring.aws.jics.db.dbname.

Blusam database

Blusam database credentials with spring.aws.client.bluesam.db.secret

spring:
 aws:
 client:

AWS Blu Age Runtime secrets 239

AWS Mainframe Modernization User Guide

 bluesam:
 db:
 dbname: bluesam
 secret: arn:aws:secretsmanager:XXXX

Supported Blusam database secret keys:

Secret key Secret key description

host The host name

port The port

dbname The name of the database

username The username

password The password

engine Database engine: Postgres, Oracle, Db2,
Microsoft SQL Server

currentSchema Specific schema to use (Db2 support only)

sslConnection Whether to use SSL connection (Db2 support
only)

sslTrustStoreLocation The location of the truststore on the client
(Db2 support only)

sslTrustStorePassword The password for the truststore on the client
(Db2 support only)

Note

The name of the database is either supplied in the secret or in the yaml reference
spring.aws.client.bluesam.db.dbname.

AWS Blu Age Runtime secrets 240

AWS Mainframe Modernization User Guide

Client database

The client application-profile.yml can reference the secret ARN for the
client database. This requires an additional property to list the datasource names
spring.aws.client.datasources.names. For each datasource name ds_name specify the
secret ARN in the following property: spring.aws.client.datasources.ds_name.secret.
Example:

spring:
 aws:
 client:
 datasources:
 names: primary,host
 primary:
 secret: arn:aws:secretsmanager:XXXX
 host:
 dbname: hostdb
 secret: arn:aws:secretsmanager:XXXX

names: primary,host:

An example with two client datasources named primary and host, each with their database and
credentials.

dbname: hostdb:

In this example, the name of the "host" database is not in the secret and is supplied here instead,
while for the "primary" database it is in the secret.

Supported client database secret keys:

Secret key Secret key description

host The host name

port The port

dbname The name of the database

username The username

AWS Blu Age Runtime secrets 241

AWS Mainframe Modernization User Guide

Secret key Secret key description

password The password

engine Database engine: Postgres, Oracle, Db2,
Microsoft SQL Server

currentSchema Specific schema to use (Db2 support only)

sslConnection Whether to use SSL connection (Db2 support
only)

sslTrustStoreLocation The location of the truststore on the client
(Db2 support only)

sslTrustStorePassword The password for the truststore on the client
(Db2 support only)

PGM utility database

The application-utility-pgm.yml can reference the secret ARN for various resources.

• spring.aws.client.datasources.primary

• secret

Secret ARN for the application database.

Type: string

• type

Fully qualified name of the connection pool implementation to use.

Type: string

Default: com.zaxxer.hikari.HikariDataSource

• spring.aws.client.utility.pgm.datasources

• names

AWS Blu Age Runtime secrets 242

AWS Mainframe Modernization User Guide

List of data source names.

Type: string

• dsname

• dbname

Name of the host.

Type: string

• secret

Secret ARN of the host database.

Type: string

• type

Fully qualified name of the connection pool implementation to use.

Type: string

Default: com.zaxxer.hikari.HikariDataSource

For a multi-datasources secret:

spring:
 aws:
 client:
 primary:
 secret: arn:aws:secretsmanager:XXXX
 type: dataSourceType
 utility:
 pgm:
 datasources:
 names: dsname1,dsname2,dsname3
 dsname1:
 dbname: dbname1
 secret: arn:aws:secretsmanager:XXXX
 type: dataSourceType
 dsname2:

AWS Blu Age Runtime secrets 243

AWS Mainframe Modernization User Guide

 dbname: dbname2
 secret: arn:aws:secretsmanager:XXXX
 type: dataSourceType
 dsname3:
 dbname: dbname3
 secret: arn:aws:secretsmanager:XXXX
 type: dataSourceType

No XA supported secret keys

• engine (postgres/oracle/db2/mssql)

• port

• dbname

• currentSchema

• username

• password

• url

• sslConnection

• sslTrustStoreLocation

• sslTrustStorePassword

For postgres only the sslMode secret key value (disable/allow/prefer/require/verify-
ca/verify-full) and the spring.aws.rds.ssl.cert-path YAML property make it possible
to connect with SSL.

XA supported secret keys

If the client database is using XA, the sub xa-properties are supported through secret values.

• host

• port

• dbname

• currentSchema

• username

• password

• url

AWS Blu Age Runtime secrets 244

AWS Mainframe Modernization User Guide

• sslConnection (true/false)

• sslTrustStoreLocation

• sslTrustStorePassword

However, for other xa-properties (for example maxPoolSize or driverType), the regular YAML
key spring.jta.atomikos.datasource.XXXX.unique-resource-name must still be
supplied.

The secret value overrides the YAML properties.

Default Super Admin BAC and JAC

You can also configure application-main.yml to retrieve the username and the password of the
default super admin user in the secret from AWS Secrets Manager by specifying the ARN. The
following example shows how to declare this secret in a YAML file.

spring:
 aws:
 client:
 defaultSuperAdmin:
 secret: arn:aws:secretsmanager:XXXX

Supported default super admin database secret keys:

Secret key Secret key description

username The username.

password The password.

OAuth2

You can also configure `application-main.yml` to retrieve the OAuth2 client secret from AWS
Secrets Manager by specifying the provider and ARN. The default value for the provider property is
Amazon Cognito. The following is an example configuration for the OAuth2 provider Keycloak:

spring:
 aws:
 client:

AWS Blu Age Runtime secrets 245

AWS Mainframe Modernization User Guide

 provider: keycloak
 keycloak:
 secret: arn:aws:secretsmanager:XXXX

In this example, the client-secret for the OAuth2 provider Keycloak is retrieved from the specified
ARN in AWS Secrets Manager. This configuration supports multiple providers by dynamically
resolving the provider name and corresponding secret ARN.

Supported OAuth2 secret keys:

Secret key Secret key description

client-secret The secret generated by the authorization
server during the process of application
registration.

Secret manager for Redis caches

The application-main.yml file can reference the secret ARN for Redis caches. The supported
one are:

• Gapwalk Redis credentials with spring.aws.client.gapwalk.redis.secret

• Bluesam Redis credentials with spring.aws.client.bluesam.redis.secret

• Bluesam locks Redis credentials with spring.aws.client.bluesam.locks.redis.secret

• Dataset catalog Redis credentials with
spring.aws.client.dataset.catalog.redis.secret

• JICS Redis credentials with spring.aws.client.jics.redis.secret

• Session Redis credentials with spring.aws.client.jics.redis.secret

• Session tracker Redis credentials with
spring.aws.client.session.tracker.redis.secret

• JICS TS Queues Redis credentials with
spring.aws.client.jics.queues.ts.redis.secret

• JCL checkpoint Redis credentials with
spring.aws.client.jcl.checkpoint.redis.secret

• Gapwalk files locks Redis credentials with
spring.aws.client.gapwalk.files.locks.redis.secret

AWS Blu Age Runtime secrets 246

AWS Mainframe Modernization User Guide

• Blu4IV locks Redis credentials with spring.aws.client.blu4iv.locks.redis.secret

The following example shows how to declare these secrets in a YAML file.

spring:
 aws:
 client:
 gapwalk:
 redis:
 secret: arn:aws:secretsmanager:XXXX
 bluesam:
 locks:
 redis:
 secret: arn:aws:secretsmanager:XXXX
 redis:
 secret: arn:aws:secretsmanager:XXXX
 dataset:
 catalog:
 redis:
 secret: arn:aws:secretsmanager:XXXX
 jics:
 redis:
 secret: arn:aws:secretsmanager:XXXX
 session:
 tracker:
 redis:
 secret: arn:aws:secretsmanager:XXXX
 jics:
 queues:
 ts:
 redis:
 secret: arn:aws:secretsmanager:XXXX
 jcl:
 checkpoint:
 redis:
 secret: arn:aws:secretsmanager:XXXX
 gapwalk:
 files:
 locks:
 redis:
 secret: arn:aws:secretsmanager:XXXX
 blu4iv:
 locks:

AWS Blu Age Runtime secrets 247

AWS Mainframe Modernization User Guide

 redis:
 secret: arn:aws:secretsmanager:XXXX

Supported Redis secret keys:

Secret key Secret key description

hostName The Redis server hostname.

port The Redis server port.

username The username.

password The password.

Secret manager for SSL password settings

The application-main.yml file can reference the secret ARN for SSL password settings. The
following is supported.

• Gapwalk SSL credentials with spring.aws.client.ssl.secret

The following example shows how to declare these secrets in a YAML file.

spring:
 aws:
 client:
 ssl:
 secret: arn:aws:secretsmanager:XXXX

Secret key Secret key description

trustStorePassword The truststore password.

keyStorePassword The keystore password.

AWS Blu Age Runtime secrets 248

AWS Mainframe Modernization User Guide

Secret manager for IBM MQ password settings

The application-main.yml file can reference the secret ARN for IBM MQ password settings.
The following is supported.

• IBM MQ connections are defined as a list, and so are the credentials:

mq.queues.jmsMQQueueManagers[N].secret:

N starts at 0 for the first connection.

The following example shows how to declare these secrets in a YAML file.

mq.queues.jmsMQQueueManagers[0].secret: Secret-0-ARN
mq.queues.jmsMQQueueManagers[1].secret: Secret-1-ARN

For information about secret ARNs, see What's in a Secrets Manager secret?

Secret key Secret key description

password The IBM MQ queue manager password.

Other files (groovy, sql, etc.)

The other files used by the customer project use similar precedence rules as the ones for spring
configuration. Examples:

• Groovy scripts are .groovy files in the scripts folder or subfolders.

• SQL scripts are .sql files in the sql folder or subfolders.

• Daemon scripts are .groovy files in the daemons folder or subfolders.

• Queries Database mapping file are files named queries-database.mapping files in the sql
folder subfolders.

• Jasper templates are .jrxml files in the templates folder or subfolders.

• Dataset catalogs are .json files in the catalog folder.

• Lnk files are .json files in the lnk folder.

Other files (groovy, sql, etc.) 249

https://docs.aws.amazon.com/secretsmanager/latest/userguide/whats-in-a-secret.html

AWS Mainframe Modernization User Guide

All these locations can be overridden by way of a system property or a client YAML property.

• For Groovy scripts: configuration.scripts

• For SQL scripts: configuration.sql

• For Daemon scripts: configuration.daemons

• For Queries Database mapping file: configuration.databaseMapping

• For Jasper templates: configuration.templates

• For Dataset catalogs: configuration.catalog

• For Lnk files: configuration.lnk

If the property is not found, the files will be taken from the default location mentioned above. The
lookup will first be done with the tomcat working directory as a root, and lastly in the application
war file.

Additional web application

The AWS Blu Age Runtime contains additional web applications in its webapps-extra folder.
These applications are not served by default by the tomcat server.

Opting-in to these web applications is modernization project dependent and is done by moving the
desired war file from the webapps-extra folder to the webapps folder. After that, the war will be
served by the tomcat server at next startup.

Some project-specific additional configuration can also be added in a YAML configuration file for
each additional war, as is done in the application-main.yml file and explained above. The
additional wars are:

• gapwalk-utility-pgm.war: contains support for ZOS utility programs and uses
application-utility-pgm.yaml as its configuration.

• gapwalk-cl-command.war: contains support for AS/400 utility programs and uses
application-cl-command.yaml as its configuration.

• gapwalk-hierarchical-support.war: contains IMS/MFS transaction support and uses
application-jhdb.yaml as its configuration

Additional web application 250

AWS Mainframe Modernization User Guide

Enable properties for AWS Blu Age Runtime

In Spring Boot applications application-main.yml is the configuration file in which we define
different kinds of properties such as the listening port, database connectivity, and many more. You
can use this page to learn about the available properties for AWS Blu Age Runtime and how to
enable them.

Topics

• YML notation

• Quick start / Use cases

• Available properties for the main application

• Available properties for optional web applications

YML notation

In the following documentation, a property such as parent.child1.child2=true is written as
follows in YAML format.

 parent:
 child1:
 child2: true

Quick start / Use cases

The following use cases show examples of the applicable keys and values.

• Default application-main.yml

DEFAULT APPLICATION-MAIN.YML FILE
SHOWING USEFUL CONFIGURATION ELEMENTS
SHOULD BE OVERRIDDEN AND EXTERNALIZED

#################################
Logging configuration
#################################
logging:
 config: classpath:logback-main.xml
 level.org.springframework.beans.factory.support.DefaultListableBeanFactory : WARN

Enable properties 251

AWS Mainframe Modernization User Guide

################################
Spring configuration
################################
spring:
 quartz:
 auto-startup: false
 scheduler-name: Default
 properties:
 org.quartz.threadPool.threadCount: 1
 jta:
 enabled: false
 atomikos.properties.maxTimeout : 600000
 atomikos.properties.default-jta-timeout : 100000
 jpa:
DISABLE OpenEntityManagerInViewInterceptor
 open-in-view: false
 # Fix Postgres JPA Error:
 # Method org.postgresql.jdbc.PgConnection.createClob() is not yet implemented.
 properties.hibernate.temp.use_jdbc_metadata_defaults : false
#####################################
Jics tables configuration
#####################################

 # The dialect should match the jics datasource choice
 database-platform : org.hibernate.dialect.PostgreSQLDialect #
 org.hibernate.dialect.PostgreSQLDialect, org.hibernate.dialect.SQLServerDialect

 # those properties can be used to create and initialize jics tables
 automatically.
properties:
hibernate:
globally_quoted_identifiers: true
hbm2ddl:
import_files_sql_extractor :
 org.hibernate.tool.hbm2ddl.MultipleLinesSqlCommandExtractor
import_files : file:./setup/initJics.sql
auto : create

##########################
Level 2 cache
##########################
cache:
use_second_level_cache: true

Enable properties 252

AWS Mainframe Modernization User Guide

use_query_cache: true
region:
factory_class: org.hibernate.cache.ehcache.EhCacheRegionFactory
javax:
persistence:
sharedCache:
mode: ENABLE_SELECTIVE
##########################
Redis settings
##########################
 session:
 store-type: none #redis

###
JICS datasource configuration
###
datasource:
 jicsDs:
 driver-class-name : org.postgresql.Driver # org.postgresql.Driver,
 com.microsoft.sqlserver.jdbc.SQLServerDriver
 url: jdbc:postgresql://localhost/jics # jdbc:postgresql://localhost:5433/jics,
 jdbc:sqlserver://localhost\SQLEXPRESS:1434;databasename=jics;
 username: jics
 password: jics
 type : org.postgresql.ds.PGSimpleDataSource #
 org.postgresql.ds.PGSimpleDataSource,
 com.microsoft.sqlserver.jdbc.SQLServerDataSource

###
Embedded Bluesam datasource configuration

 bluesamDs :
 driver-class-name : org.postgresql.Driver # org.postgresql.Driver,
 com.microsoft.sqlserver.jdbc.SQLServerDriver
 url : jdbc:postgresql://localhost/bluesam # jdbc:postgresql://localhost:5433/
jics, jdbc:sqlserver://localhost\SQLEXPRESS:1434;databasename=jics;
 username : bluesam
 password : bluesam
 type : org.postgresql.ds.PGSimpleDataSource #
 org.postgresql.ds.PGSimpleDataSource,
 com.microsoft.sqlserver.jdbc.SQLServerDataSource

##
Embedded Bluesam configuration

Enable properties 253

AWS Mainframe Modernization User Guide

##
bluesam :
 remote : false
 cache : ehcache
 persistence : pgsql #pgsql, mssql, xodus...
 ehcache:
 resource-pool:
 size: 4GB
 write-behind:
 enabled: true
 pgsql :
 dataSource : bluesamDs

#########################
Jics settings
#########################
rabbitmq.host: localhost
jics:
 cache: false #redis
 resource-definitions.store-type: jpa # default value: jpa, other possible value:
 redis
 redis.hostname: 127.0.0.1 # Redis server host.
 redis.password: redis # Login password of the redis server.
 redis.port: 6379 # Redis server port.
 redis.username: # Redis username
 redis.mode: standalone # Redis mode. Possible values: standalone, cluster
jics.disableSyncpoint : false
#jics.initList:
#jics.parameters.datform: DDMMYY
#jics.parameters.applid: VELOCITY
#jics.parameters.sysid: CICS
#jics.parameters.eibtrmid: TERM
#jics.parameters.userid: MYUSERID
#jics.parameters.username: MYUSERNAME
#jics.parameters.opid: XXX
#jics.parameters.cwa.length: 0
#jics.parameters.netname: MYNETNAME
#jics.parameters.jobname: MJOBNAME
#jics.parameters.sysname: SYSNAME

##
Jics RunUnitLauncher pool settings
##
#jics.runUnitLauncherPool.enable: false

Enable properties 254

AWS Mainframe Modernization User Guide

#jics.runUnitLauncherPool.size: 20
#jics.runUnitLauncherPool.validationInterval: 1000

#########################
Jhdb settings
#########################
#jhdb.lterm: LTERMVAL
#jhdb.identificationCardData: SomeIDData

###################################
DateHelper configuration
###################################
#forcedDate: "2013-08-26T12:59:58+01:57"

#############################
Sort configuration
#############################
#externalSort.threshold: 256MB

###################################
Server timeout (10 min)
###################################
spring.mvc.async.request-timeout: 600000

###############################
DATABASE STATISTICS
###############################
databaseStatistics : false

######################
CALLS GRAPH
######################
callGraph : false

####################################
SSL configuration
####################################
gapwalk.ssl.enabled : true
gapwalk.ssl.trustStore : "./config/clientkey.jks"
gapwalk.ssl.trustStorePassword : mysslcertifpassword

##################################
MQ settings
##################################

Enable properties 255

AWS Mainframe Modernization User Guide

mq.queues: jmsmq
mq.queues.jmsMQQueueManagers[0].jmsMQQueueManager: QM1
mq.queues.jmsMQQueueManagers[0].jmsMQAppName: Gapwalk
mq.queues.jmsMQQueueManagers[0].jmsMQChannel: DEV.APP.SVRCONN
mq.queues.jmsMQQueueManagers[0].jmsMQHost: localhost
mq.queues.jmsMQQueueManagers[0].jmsMQPort: 1415
mq.queues.jmsMQQueueManagers[0].jmsMQUserid: app
mq.queues.jmsMQQueueManagers[0].jmsMQSSLCipher: "*TLS12ORHIGHER"
mq.queues.jmsMQQueueManagers[1].jmsMQQueueManager: QM2
mq.queues.jmsMQQueueManagers[1].jmsMQAppName: Gapwalk
mq.queues.jmsMQQueueManagers[1].jmsMQChannel: DEV.APP.SVRCONN
mq.queues.jmsMQQueueManagers[1].jmsMQHost: localhost
mq.queues.jmsMQQueueManagers[1].jmsMQPort: 1415
mq.queues.jmsMQQueueManagers[1].jmsMQUserid: app

###############################
SQL SHIFT CODE POINT
###############################
Code point 384 match unicode character \u0180
sqlCodePointShift : 384

###############################
LOCK TIMEOUT RECORD
###############################
Blu4IV record lock timeout
lockTimeout : 100

##############################
REPORTS OUTPUT PATH
##############################
reportOutputPath: reports

##############################
TASK EXECUTOR
##############################
taskExecutor:
 corePoolSize: 5
 maxPoolSize: 10
 queueCapacity: 50
 allowCoreThreadTimeOut: false

##############################
PROGRAM NOT FOUND
##############################

Enable properties 256

AWS Mainframe Modernization User Guide

stopExecutionWhenProgNotFound: false

##
DISP DEFAULT VALUE (to be removed one day)
##
defaultKeepExistingFiles: true

#####################################
JOBQUEUE CONFIGURATION
#####################################
jobqueue:
 api.enabled: false
 impl: none # possible values: quartz, none
 schedulers: # list of schedulers
 -
 name: queue1
 threadCount: 5
 -
 name: queue2
 threadCount: 5

##
QUERY BUILDING
useConcatCondition : false by default
if true, in the query, the where condition is build with key concatenation
##
query.useConcatCondition: true

• Use variable length files with LISTCAT commands

[**/*.*]
encoding=IBM930
reencoding=false

[global]
listcat.variablelengthpreprocessor.enabled=true
listcat.variablelengthpreprocessor.type=rdw
use "rdw" if your .listcat file contains a set of records (RDW)
use "bdw" if your .listcat file contains a set of blocks (bdw)

Enable properties 257

AWS Mainframe Modernization User Guide

• Provide Null Byte Indicator Value in LOAD/UNLOAD utility

Unload properties
For date/time: if use database configuration is enabled, formats are ignored
For nbi; use hexadecimal syntax to specify the byte value
- When the value is null in database : the value dumped to the file is filled by
 low value characters and the NBI is
equal to the byte 6F (the ? character)
- When the value is not null in database and the column is nullable: the NBI is
 equal to the byte 00 (low value) and NOT
equal to the byte 40 (space)
unload:
 sqlCodePointShift: 0
 nbi:
 whenNull: "6F"
 whenNotNull: "00"
 useDatabaseConfiguration: false
 format:
 date: MM/dd/yyyy
 time: HH.mm.ss
 timestamp: yyyy-MM-dd-HH.mm.ss.SSSSSS

Available properties for the main application

This table provides an exhaustive view of key/values parameters.

Key Type Default value Description

logging.config Path classpath:logback-
main.xml

Standard key for
the reference to the
logback configuration
file. Other standard
logging keys are
available too.

spring.jt
a.enabled

boolean false Standard key. If
the datasource
support mode is
not static-xa, spring

Enable properties 258

AWS Mainframe Modernization User Guide

Key Type Default value Description

JTA transactions
autoconfiguration
must be disabled.

datasourc
e.jicsDs +
-driver-class-
name + -url +
-username +
-password + -type

Standard spring
datasource with
subkeys

Contains the
connection informati
on for the Jics
database. Alternate
ly, use of AWS secrets
is strongly encourage
d, as explained in the
section called “JICS
database”.

datasourc
e.bluesamDs
+ -driver-cl
ass-name + -url
+ -username +
-password + -type

Standard spring
datasource with
subkeys

Contains the
connection informati
on for the Blusam
database. Alternate
ly, use of AWS secrets
is strongly encourage
d, as explained in
the section called
“Blusam database”.

bluesam.d
isabled

boolean false Whether to disable
Blusam entirely.

bluesam.cache string If not set, the Blusam
cache will not be
used. Possible values
(cache implement
ations) are cache and
redis.

Enable properties 259

AWS Mainframe Modernization User Guide

Key Type Default value Description

forcedDate string Forces the date to the
date provided if there
is one.

frozenDate boolean true Specifies whether
to freeze the
date. Applies only
ifforcedDate is
also set.

externalS
ort.threshold

datasize (example: 12
MB)

The sort threshold
: when to switch to
external (merge) sort.

jics.para
meters.datform

string MMDDYY The date form.

Enable properties 260

AWS Mainframe Modernization User Guide

Key Type Default value Description

jics.initList string The initialize JICS
list, separated by
commas. If present,
it defines comma-
separated names
of lists to activate
at Apache Tomcat
startup among
CICS lists. Example
value: $UUU,DFH
$IVPL,PEZ1 .
This will cascade to
groups contained in
those lists and their
underlying resource
definitions, which will
then be visible to the
runtime. Empty by
default.

jics.para
meters.applid

string VELOCITY The applied to
identify application
in JICS (at least 4
characters, no max
length).

jics.para
meters.sysid

string CICS The system identific
ation (SYSID).

jics.para
meters.ei
btrmid

string TERM The terminal identifie
r (4 character
s maximum, 1
minimum).

Enable properties 261

AWS Mainframe Modernization User Guide

Key Type Default value Description

jics.para
meters.userid

string The user id (8
characters maximum,
no minimum). When
no value is provided
(blank by default) the
HTTP session id is
used as the user id.

jics.para
meters.us
ername

string MYUSERNAME The username (10
characters maximum,
1 minimum).

jics.para
meters.netname

string MYNETNAME The network name (8
characters maximum,
1 minimum).

jics.para
meters.opid

string XXX The 3-character
operator identific
ation.

jics.para
meters.jobname

string MJOBNAME The job name.

jics.para
meters.sysname

string SYSNAME The AS400 system
name (sysname).

jics.para
meters.cw
a.length

number 0 The length of the
common work area
(CWA).

jics.para
meters.charset

string CP037 JICS globally used
character set.

Enable properties 262

AWS Mainframe Modernization User Guide

Key Type Default value Description

jics.para
meters.tsqimpl

string bluesam JICS Temporary
Storage Queue (TSQ)
implementation
(allowed values
arebluesam /memory
/redis)

jics.queu
es.ts.red
is.hostname

string 127.0.0.1 The hostname of the
jics cache redis server.

jics.queu
es.ts.red
is.port

number 6379 The port of the jics
cache redis server.

jics.queu
es.ts.red
is.password

string redis The password for the
jics cache redis server.

jics.queu
es.ts.red
is.username

string Th username for the
jics cache redis server.
Default is blank (no
username).

jics.queu
es.ts.red
is.mode

string standalone The jics cache mode.
Possible values
arestandalone
orcluster. Default
isstandalone .

lockTimeout number 500 The lock timeout, in
milliseconds.

Enable properties 263

AWS Mainframe Modernization User Guide

Key Type Default value Description

sqlCodePo
intShift

number Optional. The sql
code point shift.
Shifts the codepoint
for control character
s that we might
encounter when
migrating legacy
RDBMS data to a
modern RDBMS. For
example, you can
specify384 to match
Unicode character
\u0180.

sqlIntege
rOverflow
Allowed

boolean false Specifies whether
to allow the SQL
integer overflow,
meaning whether
placing larger values
in the host variable is
allowed.

Enable properties 264

AWS Mainframe Modernization User Guide

Key Type Default value Description

database.
cursor.ov
erflow.allowed

boolean true Specifies whether
to allow the cursor
overflow. Set totrue
to perform a next
call on the cursor
whatever its position.
Set tofalse to check
whether the cursor
is at the last position
before performin
g a next call on
cursor. Only enable if
cursor is SCROLLABL
E (SENSITIVE or
INSENSITIVE).

reportOut
putPath

string /reports The report output
path.

spring.se
ssion.store-
type

string none The session cache
for high-availability
environments.
Possible values
arenone orredis.
Default isnone.

stopExecu
tionWhenP
rogNotFound

boolean true Specifies whether
to stop running
if a program isn't
found. If set totrue,
interrupts the run if a
program is not found.

Enable properties 265

AWS Mainframe Modernization User Guide

Key Type Default value Description

forceHR boolean false Specifies whether to
use Human Readable
SYSPRINT, either on
console or file output.

rollbackOnRTE boolean false Specifies whether to
rollback implicit run
unit transaction on
runtime exceptions.

sctThreadLimit long 5 The thread limit for
triggering scripts.

dataSimpl
ifier.onI
nvalidNum
ericData

string reject How to react
when decoding
invalid numeric
data. Allowed
values arereject
/tolerates
paces /tolerates
paceslowvalues
/toleratemost .
Default isreject.

filesDirectory string The directory for
batches input/output
files.

ims.messa
ges.exten
dedSize

boolean false Specifies whether to
set the extended size
on IMS messages.

defaultKe
epExistin
gFiles

boolean false Specifies whether
to set the dataset
default previous
value.

Enable properties 266

AWS Mainframe Modernization User Guide

Key Type Default value Description

jics.db.d
dlScriptL
ocation

string The Jics DDL script
location. Allows you
to initiate the Jics
database schema
using a .sql script.
Blank by default. For
example,./jics/sq
l/jics.sql .

jics.db.s
chemaTest
QueryLocation

string Location of the sql
file that should
contain a unique
query that returns
the number of
objects in the jics
schema (if any).

jics.db.d
ataScript
Location

string Location of the
initJics.sql script,
prepared by Analyzer
from parsing CSD
exports from the
mainframe.

Enable properties 267

AWS Mainframe Modernization User Guide

Key Type Default value Description

jics.db.d
ataTestQu
eryLocation

string Location of a sql
script containing
a single sql query
that is expected to
return a count of
objects (for example:
counting number of
records in the jics
program table). If
the count equals
0, database will
be loaded using
thejics.db.d
ataScript
Location script,
otherwise database
load will be skipped.

jics.data
.dataJson
InitLocation

string

jics.xa.a
gent.timeout

number

query.use
ConcatCon
dition

boolean false Specifies whether key
condition is built by
key concatenation or
not.

system.qdecfmt string

Enable properties 268

AWS Mainframe Modernization User Guide

Key Type Default value Description

dispositi
on.checke
xistence

boolean false Specifies whether to
release a check on file
existence for Dataset
with DISP SHR or
OLD.

useContro
lMVariable

boolean false Specifies whether
to use control-M
specification for
variable replacement.

card.encoding string CP1145 Card encoding: to be
used withuseContro
lMVariable .

mapTransf
o.prefixes

string &,@,%% List of prefixes
to be used when
transforming
controlM variables.
Each one separated
by comma.

checkinpu
tfilesize

boolean false Specifies whether to
release a check if the
file size is a multiple
of record size.

stepFailW
henAbend

boolean true Specifies whether
to raise an abend
if a step fails or
completes execution.

bluesam.f
ileLoadin
g.commitI
nterval

number 100000 The bluesam commit
interval.

Enable properties 269

AWS Mainframe Modernization User Guide

Key Type Default value Description

uppercase
UserInput

boolean true Specifies whether
user input must be in
uppercase.

jhdb.lterm string Allow you to force
a common logical
terminal ID in the
case of an IMS
emulation. If not
set then sessionId is
used.

jhdb.iden
tificatio
nCardData

string Used to hard-code
some "operator
identification card
data" to the MID field
designated by the
CARD parameter.
Blank by default, no
input restriction.

encoding string ASCII The encoding used
in projects (not
in groovy files).
Expects a valid
encodingCP1047,IBM930,ASCII,UTF-8...

cl.config
uration.c
ontext.en
coding

string CP297 The encoding of CL
files. Expects a valid
encodingCP1047,IBM930,ASCII,UTF-8...
Default value
isCP297

Enable properties 270

AWS Mainframe Modernization User Guide

Key Type Default value Description

cl.zonedMode string EBCDIC_STRICT The mode for
encoding or decoding
control language (CL)
commands. Allowed
values areEBCDIC_ST
RICT /EBCDIC_MO
DIFIED /AS400.

ims.programs string List of IMS programs
to use. Separate each
parameter with a
semicolon (;) and
each transaction with
a comma (,). For
example:PCP008,PC
T008;PCP0
54,PCT054
;PCP066,P
CT066;PCP
068,PCT068;

jhdb.conf
iguration
.context.
encoding

string CP297 The JHDB
(Java Hierarchi
cal Database)
encoding. Expects
a valid encoding
stringCP1047,IBM930,ASCII,UTF-8...

jhdb.meta
data.extrapath

string file:./setup/ A configuration
parameter that
specifies an extra,
runtime-specific root
folder for psbs and
dbds folders.

Enable properties 271

AWS Mainframe Modernization User Guide

Key Type Default value Description

jhdb.chec
kpointPer
sistence

string none The checkpoint
persistence mode.
Allowed values
arenone /add /end.
Useadd to persist
checkpoints when a
new one is created
and added to the
registry. Useend too
persist checkpoint at
server shutdown. Any
other values disable
the persistence. Note
that each time a new
checkpoint is added
to the registry, all the
existing checkpoin
ts will be serialize
d and the file will
be erased. It is not
an append to the
existing data in the
file. So depending
on the number of
checkpoints, it can
have some effects on
performances.

Enable properties 272

AWS Mainframe Modernization User Guide

Key Type Default value Description

jhdb.chec
kpointPath

string file:./setup/ Ifjhdb.chec
kpointPer
sistence is
notnone then this
parameter allows
you to setup the
checkpoint persisten
ce path (checkpoi
nt.dat file storage
location), all the
checkpoints data
contained in the
registry are serialize
d and backed up
in a file (checkpoi
nt.dat) located in
provided folder. Note
that only checkpoint
data (scriptId, stepId,
database position
and checkpoint area)
are concerned by this
backup.

jhdb.navi
gation.ca
chenexts

number 5000 The cache duration
(in milliseconds)
used in hierarchical
navigation for an
RDBMS.

jhdb.use-db-
prefix

boolean true Specifies whether to
enable a database
prefix in hierarchi
cal navigation for an
RDBMS.

Enable properties 273

AWS Mainframe Modernization User Guide

Key Type Default value Description

jhdb.quer
y.limitJo
inUsage

boolean true Specifies whether
to use the limit join
usage parameter on
RDBMS graphs.

taskExecu
tor.coreP
oolSize

number 5 When a transacti
on in a terminal is
initiated via a groovy
script, a new thread
is created. Use this
parameter to setup
the core pool size.

taskExecu
tor.maxPo
olSize

number 10 When a transacti
on in a terminal is
initiated via a groovy
script, a new thread
is created. Use this
parameter to setup
the max pool size
(max number of
parallel threads).

taskExecu
tor.queue
Capacity

number 50 When a transacti
on in a terminal is
initiated via a groovy
script, a new thread
is created. Use this
parameter to setup
the queue size. (=
maximum number
of pending transacti
ons whentaskExecu
tor.maxPo
olSize is reached)

Enable properties 274

AWS Mainframe Modernization User Guide

Key Type Default value Description

taskExecu
tor.allow
CoreThrea
dTimeOut

boolean false Specifies whether to
allow core threads
to time out in
JCIS. This enables
dynamic growing
and shrinking even
in combination with
a non-zero queue
(since the max pool
size will only grow
once the queue is
full).

jics.runU
nitLaunch
erPool.enable

boolean false Specifies whether to
activate the run unit
launcher pool in JICS.

jics.runU
nitLaunch
erPool.size

number 20 The run unit launcher
pool size in JICS.

jics.runU
nitLaunch
erPool.va
lidationI
nterval

number 1000 The interval between
each run of the task
that adjusts the size
of the pool.

jics.runU
nitLaunch
erPool.pa
rallelism

number 2 The number of
threads used to
produce the missing
instances in the
queue when the
adjustment task runs.

Enable properties 275

AWS Mainframe Modernization User Guide

Key Type Default value Description

context.p
reconstru
ct.enable

boolean false Specifies whether to
activate pre construct
ion of program
context.

context.p
reconstru
ct.freque
ncyInMillis

number 100 The interval between
each run of the task
that adjusts the size
of the pool.

context.p
reconstru
ct.parallelism

number 5 The number of
threads used to
produce the missing
instances in the
queue when the
adjustment task runs.

context.p
reconstru
ct.minIns
tances

number 2 The number of
instances that will be
created the first time
a context is needed.

spring.aw
s.applica
tion.cred
entials

string null Load the AWS
credentials from the
credential profiles file
in JICS.

jics.queu
es.sqs.region

string eu-west-1 The AWS Region
for Amazon Simple
Queue Service, used
in JICS.

mq.queues
.sqs.region

string eu-west-3 The AWS Region for
the AWS SQS MQ
service.

Enable properties 276

AWS Mainframe Modernization User Guide

Key Type Default value Description

quartz.sc
heduler.stand-
by-if-error

boolean false Specifies whether to
trigger job execution
if the job scheduler is
in standby mode. If
true, When enabled
job execution is not
triggered.

databaseS
tatistics

boolean false Specifies whether to
allow SQL builders
to collect and display
statistics information.

dbDateFormat string yyyy-MM-dd The db target date
format.

dbTimeFormat string HH:mm:ss The db target time
format.

dbTimesta
mpFormat

string yyyy-MM-dd
HH:mm:ss.SSSSSS

The db target
timestamp format.

dateTimeFormat string ISO The dateTimeFormat
describes how to
spill database date
time timestamp type
into data simplifie
r entities. Allowed
values areISO /EUR
/EUR /USA /LOCAL

localDateFormat string List of local date
formats.Separate
each format with\.

Enable properties 277

AWS Mainframe Modernization User Guide

Key Type Default value Description

localTimeFormat string List of local time
formats. Separate
each format with\

localTime
stampFormat

string List of local
timestamp formats.
Separate each format
with\.

pgmDateFormat string yyyy-MM-dd The date time format.

pgmTimeFormat string HH.mm.ss The time format used
for pgm (programs)
execution.

pgmTimest
ampFormat

string yyyy-MM-dd-
HH.mm.ss.SSSSSS

The timestamp
format.

cacheMetadata boolean true Specifies whether
to cache database
metadata.

forceDisa
bleSQLTri
mStringType

boolean false Specifies whether to
disable trim of all sql
string parameters.

fetchSize number The fetchSize value
for cursors. Use when
fetching data using
chunks by load/unlo
ad utils.

check-groovy-
file

boolean true Specifies whether
to check groovy
files content before
registering.

Enable properties 278

AWS Mainframe Modernization User Guide

Key Type Default value Description

qtemp.uui
d.length

number 9 The QTEMP unique id
length.

qtemp.dblog boolean false Whether to enable
QTEMP Database
logging.

qtemp.cle
anup.thre
shold.hours

number 0 To specify
whenqtemp.dblog
is enabled. The db
partition lifetime (in
hours).

sort.function string The sort function
name for the blu4iv
database.

invalidDa
taTolerence

boolean true Specifies whether
invalid data is
tolerated for packed
type.

program.timeout number -1 Specifies a timeout
for any program/t
ransaction execution
in seconds. After this
time, the system will
try to interrupt the
program.

Enable properties 279

AWS Mainframe Modernization User Guide

Key Type Default value Description

gapwalk.l
ine.separator

string null Specifies line
separator type in
gapwalk. The allowed
values are WIN
(CRLF) / UNIX (LF) /
LINUX (LF). Other
values are ignored
and System line.sepa
tator property is
used.

enableAct
ivePgmIdCache

boolean false Specifies whether
to enable active
program ID local
cache. Use carefully
this feature because
JICS resources can
be shared amongst
programs and users.
Those resources can
be changed externall
y by any administr
ators and the local
cache put in place
might be invalidated.

Enable properties 280

AWS Mainframe Modernization User Guide

Key Type Default value Description

mq.queues
.default.
syncpoint

boolean false Specifies the default
behavior for MQ
PUT commands
when neither
MQPMO_SYNCPOINT
nor MQPMO_NO_
SYNCPOINT are set.
When set to true, it
acts as MQPMO_SYN
CPOINT and
messages are NOT
directly committed
during the PUT
command. When
set to false, it acts
as MQPMO_NO_
SYNCPOINT and
messages are directly
committed during the
PUT command.

dataSimpl
ifier.byt
eRangeBou
ndsCheck

boolean false When set to true,
it ensures that no
ByteRange is created
with improper values.
The default is false.

file.stdo
utIntoLogger

boolean false Specifies whether
to enable writing
to logger instead of
the default system
output stream in the
default SYSPRINT
and SYSPUNCH files.

Enable properties 281

AWS Mainframe Modernization User Guide

Key Type Default value Description

tempFiles
Directory

string null Specifies the name of
the folder location of
the temporary files
that are generated.

cleanTemp
FilesDire
ctoryAtStartup

boolean true Specifies whether to
purge the contents of
the temporary files
folder at application
startup.

Enable properties 282

AWS Mainframe Modernization User Guide

Key Type Default value Description

tempFolde
rPattern

string null Specifies a pattern
that will be used
to dynamically
build the name
of the temporary
 folder based on the
following predefine
d and customizable
information.

HOST: the host name.

JOBID: the ID of the
job.

HASHCODE: the
hash code of the job
context.

TIMESTAMP: the
pattern to use
when getting
the timestamp
. Target name of
the temporary
 folder is TMP_DIR_{
tempFolderPattern}
. For example, in
the case of the
following pattern, the
name will start with
the job ID and end
with the “timestam
p”: tempFolde
rPattern: JOBID,HOS
T=xxxxx,HASHCODE,T

Enable properties 283

AWS Mainframe Modernization User Guide

Key Type Default value Description

IMESTAMP=
yyyymmddh
hmmss. If the
property tempFolde
rPattern is not
added to the YAML
file or is empty,
the name of the
temporary folder
will be "TMP_DIR_
" + this.hashCode()
(DefaultJobContext).

database.
cursor.ra
ise.alrea
dy.opened
.error

boolean false Specifies whether
to enable raising
SQLCODE error 502
when an already
opened cursor is
opening.

jics.spoo
l.smtp.ho
stname

string null Specifies the SMTP
server host. Example:
smtp.xxx.com

jics.spoo
l.smtp.port

string null Specifies the SMTP
server port. Example:
25

jics.spoo
l.smtp.pa
ssword

string null Specifies the login
password of the
SMTP server.

jics.spoo
l.smtp.us
ername

string null Specifies the
username of the
SMTP server.

Enable properties 284

AWS Mainframe Modernization User Guide

Key Type Default value Description

jics.spoo
l.smtp.debug

boolean false Specifies the debug
mode for the SMTP
server.

gapwalk-a
pplicatio
n.security

string disabled Toggle global
security configuration
(XSS, CORS, CSRF,
OAUTH authentic
ation...). Allowed
values are disabled
and enabled.

gapwalk-a
pplicatio
n.identity

string null Global authentic
ation method.
Recommended value
is oauth. Allowed
values are json
and oauth. This
option is required
when gapwalk-
applicatio
n.security is
enabled.

gapwalk-a
pplicatio
n.securit
y.issuerUri

string null The issuer URI
of the identity
provider (IdP). This
option is required
when gapwalk-
applicatio
n.identity is
oauth.

Enable properties 285

AWS Mainframe Modernization User Guide

Key Type Default value Description

gapwalk-a
pplicatio
n.securit
y.allowed
Origins

string[] null The list of origins to
allow. This option
requires gapwalk-
applicatio
n.identity to be
set to oauth.

gapwalk-a
pplicatio
n.securit
y.claimGr
oupName

string cognito:groups The claim attribute
that contains the list
of all the groups a
user belongs to. Use
cognito:groups
for Amazon Cognito,
or any other string
for a foreign IdP.

gapwalk-a
pplicatio
n.securit
y.userAtt
ributeName

string username The claim attribute
name used to identify
a user request.
Use username for
Amazon Cognito,
preferred
_username for
Keycloak, or any
other string for a
foreign IdP.

gapwalk-a
pplicatio
n.securit
y.localho
stWhiteli
stingEnabled

boolean true Specifies whether to
enable authentication
from any localhost

 requests.

Enable properties 286

AWS Mainframe Modernization User Guide

Key Type Default value Description

gapwalk-a
pplicatio
n.default
SuperAdmi
nUserName

string sadmin When gapwalk-
applicatio
n.security is
disabled, specifies the
default local super
user name.

gapwalk-a
pplicatio
n.default
SuperAdmi
nUserPwd

string sadmin When gapwalk-
applicatio
n.security is
disabled, specifies the
default local super
user password.

gapwalk-a
pplicatio
n.securit
y.filterURIs

string disabled Toggle filtering
URIs configuration.
Allowed values
are disabled and
enabled.

gapwalk-a
pplicatio
n.securit
y.blockedURIs

string[] null The list of URIs
to block. This
option is required
when gapwalk-
applicatio
n.securit
y.filterURIs is
enabled.

jics.redi
s.database

number 0 Specifies the
database index for
the Redis server
connection factory,
ranging from 0 to 15.
The default is 0.

Enable properties 287

AWS Mainframe Modernization User Guide

Key Type Default value Description

jics.redi
s.maxTotal

number 32 Redis pool maximum
number of active
connections.

jics.redi
s.maxIdle

number 32 Redis pool maximum
number of idle
connections.

jics.redi
s.minIdle

number 8 Redis pool minimum
number of idle
connections.

gapwalk.s
sl.enabled

boolean false Indicated to set the
following gapwalk.s
sl.* properties
to the current JVM
system properties if
there are not already
set at application
start.

gapwalk.s
sl.trustStore

string null Set the value
to the system
property javax.net
.ssl.trus
tStore if not
already set at
application start.

Enable properties 288

AWS Mainframe Modernization User Guide

Key Type Default value Description

gapwalk.s
sl.trustS
torePassword

string null Set the value
to the system
property javax.net
.ssl.trus
tStorePassword
if not already setup
at application start.
Alternately, use
of AWS secrets is
strongly encourage
d, as explained in the
section called “Secret
manager for SSL
password settings”.

gapwalk.s
sl.trustS
toreType

string null Set the value
to the system
property javax.net
.ssl.trus
tStoreType if
not already setup at
application start.

gapwalk.s
sl.keyStore

string null Set the value
to the system
property javax.net
.ssl.keyStore if
not already setup at
application start.

Enable properties 289

AWS Mainframe Modernization User Guide

Key Type Default value Description

gapwalk.s
sl.keySto
rePassword

string null Set the value
to the system
property javax.net
.ssl.keyS
torePassword
if not already setup
at application start.
Alternately, use
of AWS secrets is
strongly encourage
d, as explained in the
section called “Secret
manager for SSL
password settings”.

mq.queues string sqs Specifies which
supported queue
brocker to use among
sqs using Amazon
SQS, rabbitmq using
on-prem Rabbit MQ
or jms using on-prem
IBMMQ.

Enable properties 290

AWS Mainframe Modernization User Guide

Key Type Default value Description

mq.queues
.jmsMQQue
ueManagers[N]

 When mq.queues
 is jms, enables

to specify an IBM
MQ connection
list. mq.queues
.jmsMQQue
ueManagers[0]
for the first connectio
n, mq.queues
.jmsMQQue
ueManagers[1]
for the second and so
on.

mq.queues
.jmsMQQue
ueManager
s[N].jmsM
QQueueManager

string null The IBMMQ queue
manager name.

mq.queues
.jmsMQQue
ueManager
s[N].jmsM
QAppName

string null The IBMMQ applicati
on name.

mq.queues
.jmsMQQue
ueManager
s[N].jmsM
QChannel

string null The IBMMQ channel
name.

Enable properties 291

AWS Mainframe Modernization User Guide

Key Type Default value Description

mq.queues
.jmsMQQue
ueManager
s[N].jmsMQHost

string null The IBMMQ
hostname.

mq.queues
.jmsMQQue
ueManager
s[N].jmsMQPort

number null The IBMMQ port.

mq.queues
.jmsMQQue
ueManager
s[N].jmsM
QUserid

string null The IBMMQ user
name.

mq.queues
.jmsMQQue
ueManager
s[N].jmsM
QPassword

string null The IBMMQ user
password. Alternate
ly, use of AWS secrets
is strongly encourage
d, as explained in the
section called “Secret
manager for IBM MQ
password settings”.

mq.queues
.jmsMQQue
ueManager
s[N].jmsM
QMaxPoolSize

number 0 The IBMMQ
maximum pool size .
With 0, an infinite
number of physical
connections are
enabled.

Enable properties 292

AWS Mainframe Modernization User Guide

Key Type Default value Description

mq.queues
.jmsMQQue
ueManager
s[N].jmsM
QSSLCipher

string null The IBMMQ SSL
cipher suite. An
example could
be "*TLS12OR
HIGHER" . Refer
to the official
documentation TLS
CipherSpecs and
CipherSuites in IBM
MQ classes for JMS
for more details.

 When mq.queues
 is rabbitmq, The

IBMMQ hostname.

mq.queues
.rabbitMQHost

 The Rabbit MQ
hostname.

mq.queues
.rabbitMQ
VirtualHost

 The Rabbit MQ
virtual hostname.

mq.queues
.rabbitMQPort

 The Rabbit MQ port.

mq.queues
.rabbitMQ
Username

 The Rabbit MQ user.

mq.queues
.rabbitMQ
Password

 The Rabbit MQ
password.

Enable properties 293

https://www.ibm.com/docs/en/ibm-mq/9.2?topic=jms-tls-cipherspecs-ciphersuites-in-mq-classes
https://www.ibm.com/docs/en/ibm-mq/9.2?topic=jms-tls-cipherspecs-ciphersuites-in-mq-classes
https://www.ibm.com/docs/en/ibm-mq/9.2?topic=jms-tls-cipherspecs-ciphersuites-in-mq-classes
https://www.ibm.com/docs/en/ibm-mq/9.2?topic=jms-tls-cipherspecs-ciphersuites-in-mq-classes

AWS Mainframe Modernization User Guide

Available properties for optional web applications

Depending on your modernized application, you might need to configure one or more optional
web applications that represent support for dependencies such as z/OS, AS/400, or IMS/MFS. The
following tables contain lists of the available key/value parameters for configuring each optional
web application.

gapwalk-utility-pgm.war

This optional web application contains support for Z/OS utility programs.

This table provides an exhaustive view of key/values parameters for this application.

Key Type Default value Description

logging.config Path classpath:logback-
utility.xml

Standard key for
the reference to the
logback configuration
file. Other standard
logging keys are
available too.

spring.jt
a.enabled

boolean false Standard key. If
the datasource
support mode is not
static-xa, spring JTA
transactions auto
configuration must
be disabled.

spring.da
tasource.
primary.jndi-
name

string jdbc/primary The JNDI name
(Java Naming And
Directory Interface
) for the primary
datasource, if using
JNDI.

Enable properties 294

AWS Mainframe Modernization User Guide

Key Type Default value Description

primary.d
atasource

 -driver-
class-name
-url -username
-password

Standard spring
datasource with
subkeys

Contains the
connection informati
on for the application
database, if not using
JNDI. Must have the
same configuration
as in the modernized
application YAML file.

Alternately, use
of AWS secrets is
strongly encourage
d, as explained in the
section called “Client
database”.

encoding string ASCII The encoding used
in utility programs.
Expects a valid
encodingCP1047,IBM930,ASCII,UTF-8...

sysPunchE
ncoding

string ASCII The syspunch
encoding character
set. Expects a valid
encodingCP1047,IBM930,ASCII,UTF-8...

zonedMode string EBCDIC_STRICT The mode for
encoding or decoding
zoned data types.
Allowed values
areEBCDIC_ST
RICT /EBCDIC_MO
DIFIED /AS400.

unload.ch
unkSize

number 0 Chunk size used for
unload utility.

Enable properties 295

AWS Mainframe Modernization User Guide

Key Type Default value Description

unload.sq
lCodePoin
tShift

number 0 The SQL code
pointshift for unload
utility. Runs the
shifting character
s process. Required
when your target
database from DB2 is
Postgresql.

unload.co
lumnFiller

string space The unload utility
column filler.

unload.va
rCharIsNull

boolean false Use this parameter in
INFTILB program, if
set totrue then all
not nullable fields
with blank (space)
values returns an
empty string.

unload.us
eDatabase
Configuration

boolean false Specifies whether to
use the date or time
configuration from
application-main.yml
in unload utility.

unload.fo
rmat.date

string MM/dd/yyyy Ifunload.us
eDatabase
Configuration
is enabled, the date
format to use in the
unload utility.

Enable properties 296

AWS Mainframe Modernization User Guide

Key Type Default value Description

unload.fo
rmat.time

string HH.mm.ss Ifunload.us
eDatabase
Configuration
is enabled, the time
format to use in the
unload utility.

unload.fo
rmat.timestamp

string yyyy-MM-dd-
HH.mm.ss.SSSSSS

Ifunload.us
eDatabase
Configuration
is enabled, the
timestamp format
to use in the unload
utility.

unload.nb
i.whenNull

hexadecimal 6F The Null Byte
Indicator (NBI) value
to add when value
from database is null.

unload.nb
i.whenNotNull

hexadecimal 00 The Null Byte
Indicator (NBI) value
to add when value
from database is not
null.

unload.nb
i.writeNu
llIndicator

boolean false Specifies whether
to write out the
null indicator in the
unload output file.

unload.fe
tchSize

number 0 Allows you to tune
the fetch size when
handling cursors in
the unload utility.

Enable properties 297

AWS Mainframe Modernization User Guide

Key Type Default value Description

treatLarg
eNumberAs
Integer

boolean false Specifies whether to
treat large numbers
asInteger. They are
treated asBigDecima
l by default.

load.batchSize number 0 The load utility batch
size.

load.form
at.localDate

string dd.MM.yyyy\dd/MM/
yyyy\yyyy-MM-dd

The load utility local
date format to use.

load.form
at.localTime

string HH:mm:ss\HH.mm.ss The load utility local
time format to use.

load.form
at.dbDate

string yyyy-MM-dd The load utility
database format to
use.

load.form
at.dbTime

string HH:mm:ss The load utility
database time to use.

load.sqlC
odePointShift

number 0s The SQL code
pointshift for load
utility. Runs the
shifting character
s process. Required
when your target
database from DB2 is
Postgresql.

Enable properties 298

AWS Mainframe Modernization User Guide

Key Type Default value Description

load.appl
yRollback

boolean false Set this parameter
to true to indicate
that you want the
service to roll back
table changes if it
encounters an error
while loading data
into the database.

forcedDate string Forces the date to the
date provided if there
is one.

frozenDate boolean true Specifies whether
to freeze the
date. Applies only
ifforcedDate is
also set.

jcl.type string mvs .jcl file type. Allowed
values arejcl
/vse. The IDCAMS
utility PRINT/REPRO
commands return 4 if
the file is empty for
non-vse jcl.

hasGraphic boolean false Whether the
INFUTILB utility
needs to handle
GRAPHIC DB2
columns.

convertGr
aphicData
ToFullWidth

boolean true Specifies whether to
convert graphic data
to full-width format.

Enable properties 299

AWS Mainframe Modernization User Guide

gapwalk-cl-command.war

This optional web application contains support for AS/400 utility programs.

This table provides an exhaustive view of key/values parameters for this application.

Key Type Default value Description

logging.config Path classpath:logback-
utility.xml

Standard key for
the reference to the
logback configuration
file. Other standard
logging keys are
available too.

spring.jt
a.enabled

boolean false Standard key. If
the datasource
support mode is not
static-xa, spring JTA
transactions auto
configuration must
be disabled.

spring.da
tasource.
primary.jndi-
name

string jdbc/primary The JNDI name
(Java Naming And
Directory Interface
) for the primary
datasource, if using
JNDI.

primary.d
atasource
+ -driver-cl
ass-name + -url
+ -username +
-password

Standard spring
datasource with
subkeys

Contains the
connection informati
on for the application
database, if not using
JNDI. Must have the
same configuration
as in the modernized
application YAML file.

Enable properties 300

AWS Mainframe Modernization User Guide

Key Type Default value Description

Alternately, use
of AWS secrets is
strongly encourage
d, as explained in the
section called “Client
database”.

encoding string ASCII The encoding used
in utility programs.
Expects a valid
encodingCP1047,IBM930,ASCII,UTF-8...

zonedMode string EBCDIC_STRICT The mode for
encoding or decoding
zoned data types.
Allowed values
areEBCDIC_ST
RICT /EBCDIC_MO
DIFIED /AS400.

commands-off string List of commands to
turn off, separated
by comma. Allowed
values arePGM_BASIC

,RCVMSG,SNDRCVF,CHGVAR,QCLRDTAQ,RTVJOBA,ADDLFM,ADDPFM,RCVF,OVRDBF,DLTOVR,CPYF,SNDDTAQ.
Useful when you
want to disable or
overwrite an existing
program. PGM_BASIC

 is a specific AWS
Blu Age Runtime
program designed for
debugging purposes.

Enable properties 301

AWS Mainframe Modernization User Guide

Key Type Default value Description

forcedDate string Forces the date to the
date provided if there
is one.

gapwalk-hierarchical-support.war

This optional web application contains IMS/MFS transaction support.

This table provides an exhaustive view of key/values parameters for this application.

Key Type Default value Description

logging.config Path classpath:logback-
utility.xml

Standard key for
the reference to the
logback configuration
file. Other standard
logging keys are
available too.

spring.jt
a.enabled

boolean false Standard key. If
the datasource
support mode is not
static-xa, spring JTA
transactions auto
configuration must
be disabled.

jhdb.conf
iguration
.context.
encoding

string The JHDB
(Java Hierarchi
cal Database)
encoding. Expects
a valid encoding
stringCP1047,IBM930,ASCII,UTF-8...

Enable properties 302

AWS Mainframe Modernization User Guide

Key Type Default value Description

jhdb.chec
kpointPer
sistence

string none The checkpoint
persistence mode.
Allowed values
arenone /add /end.
Useadd to persist
checkpoints when a
new one is created
and added to the
registry. Useend too
persist checkpoint at
server shutdown. Any
other values disable
the persistence. Note
that each time a new
checkpoint is added
to the registry, all the
existing checkpoin
ts will be serialize
d and the file will
be erased. It is not
an append to the
existing data in the
file. So depending
 on the number of
checkpoints, it can
have some effects on
performances.

Available Redis cache properties in AWS Blu Age Runtime

You can use this document to learn about the Redis caches in AWS Blu Age Runtime, along with
Gapwalk configuration, supported Redis properties and how application-main.yml file can
reference secret ARN for Redis caches.

Available Redis cache properties 303

AWS Mainframe Modernization User Guide

Redis caches in AWS Blu Age Runtime

Redis servers can be used as caches for various features in the AWS Blu Age Gapwalk application,
such as:

AWS Blu Age Runtime features that use
Redis caching

Description

Blusam cache A Redis Blusam cache for reading records
efficiently, using a write-behind strategy, to
optimize write-intensive workloads encounter
ed on batch payloads.

Blusam locks A cache for distributed locks for datasets and
records.

Dataset catalog The catalog dataset cache.

Session cache A Redis cache for HttpSession. The cache
stores the username, the state of the dialogue
with the Angular frontend, and specific
'dialect' (BMS, MFS, AS400) information.

Session tracker A cache of active sessions with associated
username and session-creation-time informati
on.

JICS cache A cache for JICS resource definitions.

TS queues Storage for TS queues.

JCL checkpoint JCL checkpoint cache.

Gapwalk file locks A cache for distributed file locks by job.

Blu4iv locks Storage for Blu4iv record locks.

Available Redis cache properties 304

AWS Mainframe Modernization User Guide

Redis Gapwalk configuration

The global Redis configuration is used if redis is specified as the caching mechanism and no Redis
configuration is provided for the specific feature. This configuration makes it possible for you to
use the same configuration for multiple Redis caches simultaneously.

In the following example the Blusam datasets cache and JICS cache use the gapwalk.redis
(redis.server1) configuration because their cache type is set to redis, and no implicit Redis
properties are specified under the section called “JICS resource definitions” and the section called
“JICS resource definitions”. However, the Blusam locks cache will use a different Redis configuration
(redis.server2) because its Redis properties are explicitly defined.

...

 gapwalk:
 redis:
 hostName: redis.server1
 port: 6379
 ...

 bluesam:
 # Redis bluesam cache
 cache: redis
 # Redis locks cache
 locks:
 cache: redis
 hostName: redis.server2
 port: 6379
 ...
 # Redis jics cache
 jics:
 resource-definitions:
 store-type: redis
 ...

To enable the global Redis configuration, add the following configuration in main-
application.yml.

 gapwalk:
 redis:
 hostName: localhost

Available Redis cache properties 305

AWS Mainframe Modernization User Guide

 port: 6379
 mode: standalone # Optional
 username: # Optional
 password: "" # Optional
 useSsl: false # Optional
 database: 0 # Optional
 maxTotal: 128 # Optional
 maxIdle: 128 # Optional
 minIdle: 16 # Optional
 testOnBorrow: true # Optional
 testOnReturn: true # Optional
 testWhileIdle: true # Optional
 testOnCreate: true # Optional
 minEvictableIdleTimeMillis: 60000 # Optional
 timeBetweenEvictionRunsMillis: 30000 # Optional
 numTestsPerEvictionRun: -1 # Optional
 blockWhenExhausted: true # Optional
 nettyThreads: 32 # Optional
 subscriptionsPerConnection: 10 # Optional
 subscriptionConnectionPoolSize: 100 # Optional
 pageSizeInBytes: 8192 # Optional
 readTimeout: 2000 # Optional

Supported Redis properties

The following table shows the Redis properties that are supported for global and specific Redis
caches on AWS Blu Age Runtime.

Property name Required? Description Values Default

mode No The Redis
running mode.

standalone
| cluster

standalone

hostname Yes The hostname or
IP address of the
Redis server.

string null

port Yes The port
number on
which the

int null

Available Redis cache properties 306

AWS Mainframe Modernization User Guide

Property name Required? Description Values Default

Redis server is
listening for
connections.

username No The username
for authentic
ation.

string null

password No The password
for authentic
ation.

string empty string

useSsl No Specifies
whether to
enable SSL/
TLS encryptio
n for the Redis
connection.

boolean false

database No The Redis
database
number to use.
Redis supports
multiple logical
databases, and
this property
specifies which
one to use.

int 0

maxTotal No The maximum
number of
connections
allowed in the
Redis connection
pool.

int 128

Available Redis cache properties 307

AWS Mainframe Modernization User Guide

Property name Required? Description Values Default

maxIdle No The maximum
number of idle
connections
allowed in the
Redis connection
pool.

int 128

minIdle No The minimum
number of idle
connections to
maintain in the
Redis connection
pool.

int 16

testOnBor
row

No A boolean
value indicatin
g whether
to validate
connectio
ns before
borrowing them
from the pool.

boolean true

testOnRet
urn

No A boolean
value indicatin
g whether
to validate
connections
before returning
 them to the
pool.

boolean true

Available Redis cache properties 308

AWS Mainframe Modernization User Guide

Property name Required? Description Values Default

testWhile
Idle

No A boolean
value indicatin
g whether to
validate idle
connections
in the pool
periodically.

boolean true

testOnCre
ate

No A boolean
value indicatin
g whether
to validate
connections
when they are
created.

boolean true

minEvicta
bleIdleTi
meMillis

No The minimum
amount of time
(in milliseco
nds) that an idle
connection must
remain in the
pool before it
can be evicted.

long 60000L

timeBetwe
enEvictio
nRunsMill
is

No The time
(in milliseco
nds) between
successive runs
of the idle
connection
evictor thread.

long 30000L

Available Redis cache properties 309

AWS Mainframe Modernization User Guide

Property name Required? Description Values Default

numTestsP
erEvictio
nRun

No The maximum
number of
connections
to test during
each run of the
idle connection
evictor thread.

int -1

blockWhen
Exhausted

No A boolean
value indicatin
g whether to
block and wait
for a connectio
n to become
available when
the pool is
exhausted.

boolean true

nettyThre
ads

No The number of
Netty threads to
use for handling
Redis connectio
ns.

int 32

subscript
ionsPerCo
nnection

No The maximum
number of
subscriptions
allowed per
Redis connectio
n.

int 10

Available Redis cache properties 310

AWS Mainframe Modernization User Guide

Property name Required? Description Values Default

subscript
ionConnec
tionPoolS
ize

No The maximum
number of
connections
allowed in the
Redis subscript
ion connection
pool.

int 100

pageSizeI
nBytes

No The default page
size in bytes for
Redis operation
s.

long 262144000

readTimeout No The read
timeout in
milliseconds for
Redis operation
s.

long 2000

Redis cache properties

Redis Blusam cache

bluesam:
 cache: redis
 # If the following redis properties are not specified gapwalk.redis configuration will
 be used for this cache
 redis:
 hostName: localhost
 port: 6379
 mode: standalone # Optional
 username: # Optional
 password: "" # Optional
 useSsl: false # Optional
 database: 0 # Optional
 maxTotal: 128 # Optional
 maxIdle: 128 # Optional

Available Redis cache properties 311

AWS Mainframe Modernization User Guide

 minIdle: 16 # Optional
 testOnBorrow: true # Optional
 testOnReturn: true # Optional
 testWhileIdle: true # Optional
 testOnCreate: true # Optional
 minEvictableIdleTimeMillis: 60000 # Optional
 timeBetweenEvictionRunsMillis: 30000 # Optional
 numTestsPerEvictionRun: -1 # Optional
 blockWhenExhausted: true # Optional
 nettyThreads: 32 # Optional
 subscriptionsPerConnection: 10 # Optional
 subscriptionConnectionPoolSize: 100 # Optional
 pageSizeInBytes: 8192 # Optional
 readTimeout: 2000 # Optional

Redis Blusam cache

bluesam:
 locks:
 cache: redis
 # If the following redis properties are not specified gapwalk.redis configuration will
 be used for this cache
 hostName: localhost
 port: 6379
 mode: standalone # Optional
 username: # Optional
 password: "" # Optional
 useSsl: false # Optional
 database: 0 # Optional
 maxTotal: 128 # Optional
 maxIdle: 128 # Optional
 minIdle: 16 # Optional
 testOnBorrow: true # Optional
 testOnReturn: true # Optional
 testWhileIdle: true # Optional
 testOnCreate: true # Optional
 minEvictableIdleTimeMillis: 60000 # Optional
 timeBetweenEvictionRunsMillis: 30000 # Optional
 numTestsPerEvictionRun: -1 # Optional
 blockWhenExhausted: true # Optional
 nettyThreads: 32 # Optional
 subscriptionsPerConnection: 10 # Optional
 subscriptionConnectionPoolSize: 100 # Optional

Available Redis cache properties 312

AWS Mainframe Modernization User Guide

 pageSizeInBytes: 8192 # Optional
 readTimeout: 2000 # Optional

Session cache

 spring:
 session:
 store-type: redis
 # If the following redis properties are not specified gapwalk.redis configuration will
 be used for this cache
 jics:
 redis:
 hostName: localhost
 port: 6379
 mode: standalone # Optional
 username: # Optional
 password: "" # Optional
 useSsl: false # Optional
 database: 0 # Optional
 maxTotal: 128 # Optional
 maxIdle: 128 # Optional
 minIdle: 16 # Optional
 testOnBorrow: true # Optional
 testOnReturn: true # Optional
 testWhileIdle: true # Optional
 testOnCreate: true # Optional
 minEvictableIdleTimeMillis: 60000 # Optional
 timeBetweenEvictionRunsMillis: 30000 # Optional
 numTestsPerEvictionRun: -1 # Optional
 blockWhenExhausted: true # Optional
 nettyThreads: 32 # Optional
 subscriptionsPerConnection: 10 # Optional
 subscriptionConnectionPoolSize: 100 # Optional
 pageSizeInBytes: 8192 # Optional
 readTimeout: 2000 # Optional

JICS resource definitions

jics:
 resource-definitions:
 store-type: redis

Available Redis cache properties 313

AWS Mainframe Modernization User Guide

 # If the following redis properties are not specified gapwalk.redis configuration will
 be used for this cache
 redis:
 hostName: localhost
 port: 6379
 mode: standalone # Optional
 username: # Optional
 password: "" # Optional
 useSsl: false # Optional
 database: 0 # Optional
 maxTotal: 128 # Optional
 maxIdle: 128 # Optional
 minIdle: 16 # Optional
 testOnBorrow: true # Optional
 testOnReturn: true # Optional
 testWhileIdle: true # Optional
 testOnCreate: true # Optional
 minEvictableIdleTimeMillis: 60000 # Optional
 timeBetweenEvictionRunsMillis: 30000 # Optional
 numTestsPerEvictionRun: -1 # Optional
 blockWhenExhausted: true # Optional
 nettyThreads: 32 # Optional
 subscriptionsPerConnection: 10 # Optional
 subscriptionConnectionPoolSize: 100 # Optional
 pageSizeInBytes: 8192 # Optional
 readTimeout: 2000 # Optional

JICS TS queues

jics:
 parameters:
 tsqimpl: redis
 # If the following redis properties are not specified gapwalk.redis configuration will
 be used for this cache
 queues:
 ts:
 redis:
 hostName: localhost
 port: 6379
 mode: standalone # Optional
 username: # Optional
 password: "" # Optional
 useSsl: false # Optional

Available Redis cache properties 314

AWS Mainframe Modernization User Guide

 database: 0 # Optional
 maxTotal: 128 # Optional
 maxIdle: 128 # Optional
 minIdle: 16 # Optional
 testOnBorrow: true # Optional
 testOnReturn: true # Optional
 testWhileIdle: true # Optional
 testOnCreate: true # Optional
 minEvictableIdleTimeMillis: 60000 # Optional
 timeBetweenEvictionRunsMillis: 30000 # Optional
 numTestsPerEvictionRun: -1 # Optional
 blockWhenExhausted: true # Optional
 nettyThreads: 32 # Optional
 subscriptionsPerConnection: 10 # Optional
 subscriptionConnectionPoolSize: 100 # Optional
 pageSizeInBytes: 8192 # Optional
 readTimeout: 2000 # Optional

Session tracker

session-tracker:
 store-type: redis
 # If the following redis properties are not specified gapwalk.redis configuration will
 be used for this cache
 redis:
 hostName: localhost
 port: 6379
 mode: standalone # Optional
 username: # Optional
 password: "" # Optional
 useSsl: false # Optional
 database: 0 # Optional
 maxTotal: 128 # Optional
 maxIdle: 128 # Optional
 minIdle: 16 # Optional
 testOnBorrow: true # Optional
 testOnReturn: true # Optional
 testWhileIdle: true # Optional
 testOnCreate: true # Optional
 minEvictableIdleTimeMillis: 60000 # Optional
 timeBetweenEvictionRunsMillis: 30000 # Optional
 numTestsPerEvictionRun: -1 # Optional
 blockWhenExhausted: true # Optional

Available Redis cache properties 315

AWS Mainframe Modernization User Guide

 nettyThreads: 32 # Optional
 subscriptionsPerConnection: 10 # Optional
 subscriptionConnectionPoolSize: 100 # Optional
 pageSizeInBytes: 8192 # Optional
 readTimeout: 2000 # Optional

JCL checkpoint

jcl:
 checkpoint:
 provider: redis
 # If the following redis properties are not specified gapwalk.redis configuration will
 be used for this cache
 redis:
 hostname: localhost
 port: 6379
 mode: standalone # Optional
 username: # Optional
 password: "" # Optional
 useSsl: false # Optional
 database: 0 # Optional
 maxTotal: 128 # Optional
 maxIdle: 128 # Optional
 minIdle: 16 # Optional
 testOnBorrow: true # Optional
 testOnReturn: true # Optional
 testWhileIdle: true # Optional
 testOnCreate: true # Optional
 minEvictableIdleTimeMillis: 60000 # Optional
 timeBetweenEvictionRunsMillis: 30000 # Optional
 numTestsPerEvictionRun: -1 # Optional
 blockWhenExhausted: true # Optional
 nettyThreads: 32 # Optional
 subscriptionsPerConnection: 10 # Optional
 subscriptionConnectionPoolSize: 100 # Optional
 pageSizeInBytes: 8192 # Optional
 readTimeout: 2000 # Optional

Gapwalk file locks

filesLocks:
 enabled: true
 retryTime: 1000

Available Redis cache properties 316

AWS Mainframe Modernization User Guide

 MaxRetry: 5
 provider: redis
 # If the following redis properties are not specified gapwalk.redis configuration will
 be used for this cache
 redis:
 hostName: localhost
 port: 6379
 mode: standalone # Optional
 username: # Optional
 password: "" # Optional
 useSsl: false # Optional
 database: 0 # Optional
 pool:
 maxTotal: 128 # Optional
 maxIdle: 128 # Optional
 minIdle: 16 # Optional
 testOnBorrow: true # Optional
 testOnReturn: true # Optional
 testWhileIdle: true # Optional
 testOnCreate: true # Optional
 minEvictableIdleTimeMillis: 60000 # Optional
 timeBetweenEvictionRunsMillis: 30000 # Optional
 numTestsPerEvictionRun: -1 # Optional
 blockWhenExhausted: true # Optional
 nettyThreads: 32 # Optional
 subscriptionsPerConnection: 10 # Optional
 subscriptionConnectionPoolSize: 100 # Optional
 pageSizeInBytes: 8192 # Optional
 readTimeout: 2000 # Optional

Blu4iv locks

 blu4iv.lock: redis
 blu4iv.lock.timeout: 10 #(in millisecondes)
 # If the following redis properties are not specified gapwalk.redis configuration
 will be used for this cache
 blu4iv.lock.redis:
 hostName: localhost
 port: 6379
 mode: standalone # Optional
 username: # Optional
 password: "" # Optional

Available Redis cache properties 317

AWS Mainframe Modernization User Guide

 useSsl: false # Optional
 database: 0 # Optional
 maxTotal: 128 # Optional
 maxIdle: 128 # Optional
 minIdle: 16 # Optional
 testOnBorrow: true # Optional
 testOnReturn: true # Optional
 testWhileIdle: true # Optional
 testOnCreate: true # Optional
 minEvictableIdleTimeMillis: 60000 # Optional
 timeBetweenEvictionRunsMillis: 30000 # Optional
 numTestsPerEvictionRun: -1 # Optional
 blockWhenExhausted: true # Optional
 nettyThreads: 32 # Optional
 subscriptionsPerConnection: 10 # Optional
 subscriptionConnectionPoolSize: 100 # Optional
 pageSizeInBytes: 8192 # Optional
 readTimeout: 2000 # Optional

Dataset catalog

datasimplifier:
 catalogImplementation: redis
 # If the following redis properties are not specified gapwalk.redis configuration
 will be used for this cache
 redis:
 hostName: localhost
 port: 6379
 mode: standalone # Optional
 username: # Optional
 password: "" # Optional
 useSsl: false # Optional
 database: 0 # Optional
 maxTotal: 128 # Optional
 maxIdle: 128 # Optional
 minIdle: 16 # Optional
 testOnBorrow: true # Optional
 testOnReturn: true # Optional
 testWhileIdle: true # Optional
 testOnCreate: true # Optional
 minEvictableIdleTimeMillis: 60000 # Optional
 timeBetweenEvictionRunsMillis: 30000 # Optional
 numTestsPerEvictionRun: -1 # Optional

Available Redis cache properties 318

AWS Mainframe Modernization User Guide

 blockWhenExhausted: true # Optional
 nettyThreads: 32 # Optional
 subscriptionsPerConnection: 10 # Optional
 subscriptionConnectionPoolSize: 100 # Optional
 pageSizeInBytes: 8192 # Optional
 readTimeout: 2000 # Optional

Secret manager for Redis caches

The application-main.yaml file can reference the secret ARN for Redis caches. For information
about how to integrate AWS Secrets Manager to securely retrieve Redis connection details at
runtime, see the section called “AWS Blu Age Runtime secrets”.

Configure security for Gapwalk applications

The following topics describe how to secure Gapwalk applications.

It is your responsibility to provide the right configuration to ensure that the use of the AWS Blu Age
framework is secure.

All security-related features are disabled by default. To enable authentication (and
CSRF,XSS,CSP, and so on), set gapwalk-application.security to enabled and gapwalk-
application.security.identity to oauth.

Topics

• Configure URI accessibility for Gapwalk applications

• Configure authentication for Gapwalk applications

Configure URI accessibility for Gapwalk applications

This topic describes how to configure the filtering of URIs for Gapwalk applications. This feature
does not require an identity provider (IdP).

To block a list of URIs, add the following two lines to the application-main.yml of your
modernized application, replacing URI-1, URI-2, and so on, with the URIs that you want to block.

gapwalk-application.security.filterURIs: enabled
gapwalk-application.security.blockedURIs: URI-1, URI-2, URI-3

Configure security for Gapwalk applications 319

AWS Mainframe Modernization User Guide

Configure authentication for Gapwalk applications

To configure OAuth2 authentication for your Gapwalk application, you need to set up an identity
provider (IdP) and integrate it with your application. This guide covers the steps for using Amazon
Cognito or Keycloak as your IdP. With Amazon Cognito, you can update your application's
configuration file with the Cognito user pool details. With Keycloak, you can control access to your
application's APIs and resources based on the user's assigned roles.

Topics

• Configure Gapwalk OAuth2 authentication with Amazon Cognito

• Configure Gapwalk OAuth2 authentication with Keycloak

Configure Gapwalk OAuth2 authentication with Amazon Cognito

This topic describes how to configure OAuth2 authentication for Gapwalk applications using
Amazon Cognito as an identity provider (IdP).

Prerequisites

In this tutorial we will use Amazon Cognito as the IdP and PlanetDemo as the modernized project.

You can use any other external identity provider. The ClientRegistration information must be
obtained from your IdP and is required for Gapwalk authentication. For more information, see the
Amazon Cognito Developer Guide.

The ClientRegistration information:

client-id

The ID of the ClientRegistration. In our example it will be PlanetsDemo.

client-secret

Your client secret.

authorization endpoint

The authorization endpoint URI for the authorization server.

token endpoint

The token endpoint URI for the authorization server.

Configure security for Gapwalk applications 320

https://docs.aws.amazon.com/cognito/latest/developerguide/

AWS Mainframe Modernization User Guide

jwks endpoint

The URI used to get the JSON Web Key (JWK) that contains the keys for validating the JSON
web signature issued by the authorization server.

redirect URI

The URI to which the authorization server redirects the end-user if access is granted.

Amazon Cognito setup

First we will create and configure a Amazon Cognito user pool and user that we will use with our
deployed Gapwalk application for testing purpose.

Note

If you are using another IdP, you can skip this step.

Create user pool

1. Go to Amazon Cognito in the AWS Management Console and authenticate using your AWS
credentials.

2. Choose User Pools.

3. Choose Create a user pool.

4. In Configure sign-in experience, keep the Cognito user pool default provider type. You can
choose one or multiple Cognito user pool sign-in options; for now, choose User name, then
choose Next.

Configure security for Gapwalk applications 321

AWS Mainframe Modernization User Guide

5. In Configure security requirements, keep the defaults and disable Multi-factor
authentication by choosing No MFA, and then choose Next.

6. As a security measure, disable Enable self-registration, and then choose Next.

Configure security for Gapwalk applications 322

AWS Mainframe Modernization User Guide

7. Choose Send email with Cognito, and then choose Next.

8. In Integrate your app, specify a name for your user pool. In Hosted authentication pages,
choose Use the Cognito Hosted UI.

Configure security for Gapwalk applications 323

AWS Mainframe Modernization User Guide

9. For simplicity, in Domain, choose Use a Cognito domain and enter a domain prefix; for
example, https://planetsdemo. The demo app must be added as a client.

a. In Initial app client, choose Confidential client. Enter an app client name, such as
planetsdemo, and then choose Generate a client secret.

b. In Allowed callback URL enter the URL to redirect the user to after authentication. The
URL must end with /login/oauth2/code/cognito. For example, for our application
and backend Gapwalk and BAC applications:

http://localhost:8080/bac
 http://localhost:8080/bac/login/oauth2/code/cognito
 http://localhost:8080/gapwalk-application
 http://localhost:8080/gapwalk-application/login/oauth2/code/cognito
 http://localhost:8080/planetsdemo
 http://localhost:8080/planetsdemo/login/oauth2/code/cognito

You can edit the URL later.

Configure security for Gapwalk applications 324

AWS Mainframe Modernization User Guide

c. In Allowed sign-out URLs enter the URL of the sign-out page that you want Amazon
Cognito to redirect to when your application signs users out. For example, for backend
Gapwalk and BAC applications:

http://localhost:8080/bac/logout
http://localhost:8080/gapwalk-application/logout
http://localhost:8080/planetsdemo/logout

You can edit the URL later.

d. Keep the default values in the Advanced app client settings and Attribute read and write
permissions sections.

e. Choose Next.

10. In Review and create, verify your choices, and then choose Create user pool.

For more information, see Create user pool.

User creation

Configure security for Gapwalk applications 325

https://docs.aws.amazon.com/cognito/latest/developerguide/tutorial-create-user-pool.html

AWS Mainframe Modernization User Guide

Because self-registration is disabled, create a Amazon Cognito user. Navigate to Amazon Cognito in
the AWS Management Console. Choose the user pool you created, and then in Users choose Create
user.

In User information, choose Send an email invitation, enter a user name and an email address,
and choose Generate a password. Choose Create user.

Role creation

In the Groups tab, create 3 groups (SUPER_ADMIN, ADMIN, and USER), and associate your user to
one or more of these groups. These roles are later mapped to ROLE_SUPER_ADMIN, ROLE_ADMIN
and ROLE_USER by the Gapwalk application to make it possible to access some restricted API REST
calls.

Integrate Amazon Cognito into the Gapwalk application

Now that your Amazon Cognito user pool and users are ready, go the application-main.yml
file of your modernized application and add the following code:

gapwalk-application.security: enabled
gapwalk-application.security.identity: oauth
gapwalk-application.security.issuerUri: https://cognito-idp.<region-id>.amazonaws.com/
<pool-id>
gapwalk-application.security.domainName: <your-cognito-domain>
gapwalk-application.security.localhostWhitelistingEnabled: false

spring:
 security:
 oauth2:
 client:
 registration:
 cognito:
 client-id: <client-id>
 client-name: <client-name>
 client-secret: <client-secret>
 provider: cognito
 authorization-grant-type: authorization_code
 scope: openid
 redirect-uri: "<redirect-uri>"
 provider:
 cognito:
 issuer-uri: ${gapwalk-application.security.issuerUri}

Configure security for Gapwalk applications 326

AWS Mainframe Modernization User Guide

 authorization-uri: ${gapwalk-application.security.domainName}/oauth2/
authorize
 jwk-set-uri: ${gapwalk-application.security.issuerUri}/.well-known/
jwks.json
 token-uri: ${gapwalk-application.security.domainName}/oauth2/token
 user-name-attribute: username
 resourceserver:
 jwt:
 jwk-set-uri: ${gapwalk-application.security.issuerUri}/.well-known/jwks.json

Replace the following placeholders as described:

1. Go to Amazon Cognito in the AWS Management Console and authenticate using your AWS
credentials.

2. Choose User Pools and choose the user pool that you created. You can find your pool-id in
User pool ID.

3. Choose App integration where you can find your your-cognito-domain, and then go to
App clients and analytics and choose your app.

4. In App client: yourApp you can find the client-name , client-id, and client-secret
(Show client secret).

5. region-id corresponds to the AWS Region ID where you created your Amazon Cognito user
and user pool. Example: eu-west-3.

6. For redirect-uri enter the URI that you specified for Allowed callback URL. In our example
it is http://localhost:8080/planetsdemo/login/oauth2/code/cognito.

You can now deploy your Gapwalk application and use the user created previously to sign in to
your app.

Configure Gapwalk OAuth2 authentication with Keycloak

This topic describes how to configure OAuth2 authentication for Gapwalk applications using
Keycloak as an identity provider (IdP). In this tutorial we use Keycloak 24.0.0.

Prerequisites

• Keycloak

• Gapwalk application

Configure security for Gapwalk applications 327

https://www.keycloak.org/

AWS Mainframe Modernization User Guide

Keycloak setup

1. Go to your Keycloak dashboard in your web browser. The default credentials are admin/admin.
Go to the top left navigation bar, and create a realm with the name demo, as shown in the
following image.

2. Create a client with the name app-demo.

Replace localhost:8080 with the address of your Gapwalk application

Configure security for Gapwalk applications 328

AWS Mainframe Modernization User Guide

Configure security for Gapwalk applications 329

AWS Mainframe Modernization User Guide

3. To get your client secret, choose Clients, then app-demo, then Credentials.

4. Choose Clients, then Client scopes, then Add predefined mapper. Choose realm roles.

Configure security for Gapwalk applications 330

AWS Mainframe Modernization User Guide

5. Edit your realm role with the configuration shown in the following image.

Configure security for Gapwalk applications 331

AWS Mainframe Modernization User Guide

6. Remember the defined Token Claim Name. You’ll need this value in the Gapwalk settings
definition for the gapwalk-application.security.claimGroupName property.

Configure security for Gapwalk applications 332

AWS Mainframe Modernization User Guide

7. Choose Realms roles, and create 3 roles: SUPER_ADMIN, ADMIN, and USER. These roles
are later mapped to ROLE_SUPER_ADMIN, ROLE_ADMIN, and ROLE_USER by the Gapwalk
application to be able to access some restricted API REST calls.

Integrate Keycloak into the Gapwalk application

Edit your application-main.yml as follows:

gapwalk-application.security: enabled

Configure security for Gapwalk applications 333

AWS Mainframe Modernization User Guide

gapwalk-application.security.identity: oauth
gapwalk-application.security.issuerUri: http://<KEYCLOAK_SERVER_HOSTNAME>/realms/
<YOUR_REALM_NAME>
gapwalk-application.security.claimGroupName: "keycloak:groups"

gapwalk-application.security.userAttributeName: "preferred_username"
Use "username" for cognito,
"preferred_username" for keycloak
or any other string
gapwalk-application.security.localhostWhitelistingEnabled: false

spring:
 security:
 oauth2:
 client:
 registration:
 demo:
 client-id: <YOUR_CLIENT_ID>
 client-name: Demo App
 client-secret: <YOUR_CLIENT_SECRET>
 provider: keycloak
 authorization-grant-type: authorization_code
 scope: openid
 redirect-uri: "{baseUrl}/login/oauth2/code/{registrationId}"
 provider:
 keycloak:
 issuer-uri: ${gapwalk-application.security.issuerUri}
 authorization-uri: ${gapwalk-application.security.issuerUri}/protocol/
openid-connect/auth
 jwk-set-uri: ${gapwalk-application.security.issuerUri}/protocol/openid-
connect/certs
 token-uri: ${gapwalk-application.security.issuerUri}/protocol/openid-
connect/token
 user-name-attribute: ${gapwalk-application.security.userAttributeName}
 resourceserver:
 jwt:
 jwk-set-uri: ${gapwalk-application.security.issuerUri}/protocol/openid-
connect/certs

Replace <KEYCLOAK_SERVER_HOSTNAME>, <YOUR_REALM_NAME>, <YOUR_CLIENT_ID>, and
<YOUR_CLIENT_SECRET> with your Keycloak server hostname, your realm name, your client ID,
and your client secret.

Configure security for Gapwalk applications 334

AWS Mainframe Modernization User Guide

AWS Blu Age Runtime APIs

The AWS Blu Age Runtime uses several web-applications to expose REST endpoints, providing ways
to interact with the modernized applications using REST clients (e.g. calling jobs using a scheduler).

The purpose of this document is to list available REST endpoints, giving details about:

• Their role

• The way to use them properly

The endpoints listing is organized into categories, depending on the nature of the provided service
and the web-application exposing the endpoints.

We assume that you already have a basic knowledge of using REST endpoints using dedicated tools
such as POSTMAN, Thunder Client, CURL, web browsers, etc ...) or writing your own piece of code to
make an API call.

Topics

• Available endpoints for user when building URLs

• Endpoints for Gapwalk application in AWS Blu Age

• Blusam application console REST endpoints

• Manage JICS application console in AWS Blu Age

• Data structures for AWS Blu Age user

Available endpoints for user when building URLs

This topic lists the URLs with root paths for endpoints. Each web application below is defining
a root path, shared by all endpoints. Each endpoint then adds its own dedicated path. The
resulting URL to use is the result of the concatenation of the paths. For instance, considering the
first endpoint for the Gapwalk application, we have:

• /gapwalk-application for the root web-application path.

• /scripts for the dedicated endpoint path.

The resulting URL to use will be http://server:port/gapwalk-application/scripts

AWS Blu Age Runtime APIs 335

https://www.postman.com/
https://www.thunderclient.com/
https://curl.se/

AWS Mainframe Modernization User Guide

server

points at the server name (the one hosting the given web-application).

port

the port exposed by the server.

Endpoints for Gapwalk application in AWS Blu Age

In this topic, learn about the endpoints for the Gapwalk web application. These use the root path /
gapwalk-application.

Topics

• Batch jobs (modernized JCLs and alike) related endpoints

• Metrics endpoints

• Other endpoints

• Job queues related endpoints

Batch jobs (modernized JCLs and alike) related endpoints

Batch jobs can be run either synchronously or asynchronously (see details below). Batch jobs are
being executed using groovy scripts that are the results of the modernization of legacy scripts
(JCL).

Topics

• List deployed scripts

• Launch a script synchronously

• Launch a script asynchronously

• Listing triggered scripts

• Retrieving job execution details

• Listing asynchronously launched scripts that can be killed

• Listing synchronously launched scripts that can be killed

• Killing a given job execution

• Listing existing checkpoints for restartability

Endpoints for Gapwalk application 336

AWS Mainframe Modernization User Guide

• Restarting a job (synchronously)

• Restarting a job (asynchronously)

• Setting thread limit for asynchronous job executions

List deployed scripts

• Supported method: GET

• Path: /scripts

• Arguments: none

• This endpoint returns the list of deployed groovy scripts on the server, as a String. This endpoint
is primarily intended to be used from a web browser, since the resulting String is a HTML page,
with active links (a link per launchable script -- see sample below).

Sample response:

<p>COMBTRAN</p><p>CREASTMT</
a></p><p>INTCALC</p><p><a href=./script/
POSTTRAN>POSTTRAN</p><p>REPROC</p><p><a href=./script/
TRANBKP>TRANBKP</p><p>TRANREPT</p><p><a href=./
script/functions>functions</p>

Note

The links represent the url to use to launch each listed script synchronously.

• Supported method: GET

• Path: /triggerscripts

• Arguments: none

• This endpoint returns the list of deployed groovy scripts on the server, as a String. This endpoint
is primarily intended to be used from a web browser, since the resulting String is a HTML page,
with active links (a link per launch-able script -- see sample below).

As opposed to the previous endpoint response, the links represent the url to use to launch each
listed script asynchronously.

Endpoints for Gapwalk application 337

AWS Mainframe Modernization User Guide

Launch a script synchronously

This endpoint has two variants with dedicated paths for GET and POST usage (see below).

• Supported method: GET

• Path: /script/{scriptId:.+}

• Supported method: POST

• Path: /post/script/{scriptId:.+}

• Arguments:

• identifier of the script to launch

• optionally: parameters to pass to the script, using request parameters (seen as a
Map<String,String>). The given parameters will be automatically added to the bindings of
the invoked groovy script.

• The call will launch the script with the given identifier, using extra parameters if provided and
wait for script execution completion before returning a message (String) that'll be either:

• "Done." (if job execution ran smoothly).

• A JSON error message with details about what went wrong during job execution. Further
details can be retrieved from the server logs, to understand what went wrong with the job
execution.

{

Endpoints for Gapwalk application 338

https://docs.groovy-lang.org/latest/html/api/groovy/lang/Binding.html

AWS Mainframe Modernization User Guide

 "exitCode": -1,
 "stepName": "STEP15",
 "program": "CBACT04C",
 "status": "Error"
}

Looking at the server logs, we can figure out that this a deployment issue (the expected
program has not been properly deployed, so it cannot be found, making job execution fail):

Note

The synchronous calls should be reserved for short time running jobs. Long times running
jobs should rather be launched asynchronously (see dedicated endpoint below).

Launch a script asynchronously

• Supported methods: GET / POST

• Path: /triggerscript/{scriptId:.+}

• arguments:

• identifier of the script to launch

• optionally: parameters to pass to the script, using request parameters (seen as a
Map<String,String>). The given parameters will be automatically added to the https://
docs.groovy-lang.org/latest/html/api/groovy/lang/Binding.html[bindings] of the invoked
groovy script.

• As opposed to the synchronous mode above, the endpoint is not waiting for the job execution
to finish to send a response. The job execution is launched at once, if an available thread can be
found to do so, and a response is sent immediately to caller, with the job execution id, a unique
identifier representing the job execution, that can be used to query job execution status or force
kill a job execution that is supposed to be malfunctioning. The format of the response is:

Endpoints for Gapwalk application 339

AWS Mainframe Modernization User Guide

Triggered script <script identifier> [unique job execution id] @ <date and time>

• Since the job asynchronous execution relies on a fixed limited number of threads, the job
execution might not be launched if no available thread could be found. In that case, the returned
message will rather look like:

Script [<script identifier>] NOT triggered - Thread limit reached (<actual thread
 limit>) - Please retry later or increase thread limit.

See the settriggerthreadlimit endpoint below to learn how to increase the thread limit.

Sample response:

Triggered script INTCALC [d43cbf46-4255-4ce2-aac2-79137573a8b4] @ 06-12-2023 16:26:15

The unique job execution identifier permits to quickly retrieve related log entries in the server logs
if required. It is also used by several other endpoints detailed below.

Listing triggered scripts

• Supported methods: GET

• Paths: /triggeredscripts/{status:.+}, /triggeredscripts/{status:.+}/
{namefilter}

• Arguments:

• Status (mandatory): the status of the triggered scripts to retrieve. Possibles values are:

• all : show all job execution details, whether the jobs are still running or not.

• running: only show jobs details for jobs that are currently running.

• done: only show jobs details for jobs whose execution is over.

• killed: only show jobs details for jobs whose execution has been forcefully killed using the
dedicated endpoint (see below).

• triggered: only show jobs details for jobs which have been triggered but not yet launched.

• failed: only show jobs details for jobs whose execution has been marked as failed.

• _namefilter (optional)_ : retrieve only executions for the given script identifier.

• Returns a collection of job executions details as JSON. For more information, see Job execution
details message structure.

Endpoints for Gapwalk application 340

AWS Mainframe Modernization User Guide

Sample response:

[
 {
 "scriptId": "INTCALC",
 "caller": "127.0.0.1",
 "identifier": "d43cbf46-4255-4ce2-aac2-79137573a8b4",
 "startTime": "06-12-2023 16:26:15",
 "endTime": "06-12-2023 16:26:15",
 "status": "DONE",
 "executionResult": "{ \"exitCode\": -1, \"stepName\": \"STEP15\", \"program\":
 \"CBACT04C\", \"status\": \"Error\" }",
 "executionMode": "ASYNCHRONOUS"
 }
]

Retrieving job execution details

• Supported method: GET

• Path: /getjobexecutioninfo/{jobexecutionid:.+}

• Arguments:

• jobexecutionid (mandatory): the unique job execution identifier to retrieve the corresponding
job execution details.

• Returns: a JSON string representing a single job execution details (see Job execution details
message structure) or an empty response if no job execution details could be found for the given
identifier.

Listing asynchronously launched scripts that can be killed

• Supported method: GET

• Path: /killablescripts

• Returns a collection of job execution identifiers of jobs which have been launched
asynchronously that are still currently running and can be forcefully killed (see the /kill
endpoint below).

Listing synchronously launched scripts that can be killed

• Supported method: GET

Endpoints for Gapwalk application 341

AWS Mainframe Modernization User Guide

• Path: /killablesyncscripts

• Returns a collection of job execution identifiers of jobs which have been launched synchronously,
are still currently running and can be forcefully killed (see the /kill endpoint below).

Killing a given job execution

• Supported method: GET

• Path: /kill/{identifier:.+}

• argument: job execution identifier (mandatory): the unique job execution identifier to point at
the job execution to be forcefully killed.

• Returns: a textual message detailing the job execution kill attempt outcome; the message will
contain the script identifier, the job execution unique identifier and the date and time at which
the execution kill occurred. If no running job execution could be found for the given identifier, an
error message will be returned instead.

Warning

• The runtime makes its best effort to kill the target job execution nicely. Thus, the
response from the /kill endpoint might take a bit of time to reach the caller, as the AWS
Blu Age runtime will try to minimize the business impact of killing the job.

• Forcefully killing a job execution should not be done lightly, as it may have direct
business consequences, including possible data loss or corruption. It should be reserved
for cases where a given job execution has gone sideways and data remediation means are
clearly identified.

• Killing a job should lead to further investigations (post-mortem analysis) to figure out
what went wrong and take proper remediations actions.

• In any case, attempt to kill a running job will be logged in the server logs with warning
level messages.

Listing existing checkpoints for restartability

Job restartability relies on the ability for the scripts to register checkpoints in the
CheckpointRegistry to track down the job execution progress. If a job execution fails to end
properly, and restart checkpoints have been registered, one can simply restart the job execution

Endpoints for Gapwalk application 342

AWS Mainframe Modernization User Guide

from the last known registered checkpoint (without having to execute the steps above the
checkpoint).

• Supported method: GET

• Path: /restarts

• Returns the list of existing restart points, that can be used to restart a job whose execution did
not come to and end properly, as an html page. If no checkpoints were registered by any scripts,
the page contents will be "No registered checkpoints.".

Restarting a job (synchronously)

• Supported method: GET

• Path: /restart/{hashcode}

• Arguments: hashcode (integer - mandatory): restart a previously aborted job execution, using
the provided hashcode as checkpoint value (see the /restarts endpoint above to learn how to
retrieve a valid checkpoint value).

• Returns: see script return description above.

Restarting a job (asynchronously)

• Supported method: GET

• Path: /triggerrestart/{hashcode}

• Arguments: hashcode (integer - mandatory): restart a previously aborted job execution, using
the provided hashcode as checkpoint value (see the /restarts endpoint above to learn how to
retrieve a valid checkpoint value).

• Returns: see triggerscript return description above.

Setting thread limit for asynchronous job executions

The job asynchronous execution relies on a dedicated pool of threads in the JVM. That pool has a
fixed limit regarding the number of available threads. The used has the ability to adjust the limit
according to the host capabilities (number of CPUs, available memory, etc...). By default, the thread
limit is set to 5 threads.

• Supported method: GET

Endpoints for Gapwalk application 343

AWS Mainframe Modernization User Guide

• Path: /settriggerthreadlimit/{threadlimit:.+}

• Argument (integer): the new thread limit to apply. Must be a strictly positive integer.

• Returns a message (String) giving the new thread limit and the previous one, or en error
message if the provided thread limit value is not valid (not a strictly positive integer).

Sample response:

Set thread limit for Script Tower Control to 10 (previous value was 5)

Counting currently running triggered job executions

• Supported method: GET

• Path: /countrunningtriggeredscripts

• Returns a message indicating the number of running jobs launched asynchronously and the
thread limit (that is the maximum number of triggered jobs that can run simultaneously).

Sample response:

0 triggered script(s) running (limit =10)

Note

This can be used to check, prior to launching a job, if the thread limit has not been reached
(which would prevent the job from being launched).

Purge job executions information

The job executions information remain in the server memory as long as the server is up. It might be
convenient to purge oldest informations from the memory, as they are not relevant anymore; this
is the purpose of this endpoint.

• Supported method: GET

• Path: /purgejobinformation/{age:.+}

• Arguments: a strictly positive integer value representing the age in hours of informations to be
purged.

Endpoints for Gapwalk application 344

AWS Mainframe Modernization User Guide

• Returns a message with the following informations:

• Name of the purge file where purged job execution informations are being stored for archiving
purpose.

• Number of purged job execution informations.

• Number of remaining job execution informations in memo

Metrics endpoints

JVM

This endpoint returns available metrics related to the JVM.

• Supported method: GET

• Path: /metrics/jvm

• Arguments: none

• Returns a message with the following information:

• threadActiveCount: Number of active threads.

• jvmMemoryUsed: Memory actively used by the Java Virtual Machine.

• jvmMemoryMax: Maximum memory allowed for the Java Virtual Machine.

• jvmMemoryFree: Available memory not currently in use by the Java Virtual Machine.

Session

This endpoint returns metrics related to currently opened HTTP sessions.

• Supported method: GET

• Path: /metrics/session

• Arguments: none

• Returns a message with the following information:

• sessionCount: Number of active user sessions currently maintained by the server.

Batch

• Supported method: GET
Endpoints for Gapwalk application 345

AWS Mainframe Modernization User Guide

• Path: /metrics/batch

• Arguments:

• startTimestamp (optional, number): Starting timestamp for data filtering.

• endTimestamp (optional, number): Ending timestamp for data filtering.

• page (optional, number): Page number for pagination.

• pageSize (optional, number): Number of items per page in pagination.

• Returns a message with the following information:

• content: List of batch execution metrics.

• pageNumber: Current page number in pagination.

• pageSize: Number of items displayed per page.

• totalPages: Total number of pages available.

• numberOfElements: Count of items on the current page.

• last: Boolean flag for the last page.

• first: Boolean flag for the first page.

Transaction

• Supported method: GET

• Path: /metrics/transaction

• Arguments:

• startTimestamp (optional, number): Starting timestamp for data filtering.

• endTimestamp (optional, number): Ending timestamp for data filtering.

• page (optional, number): Page number for pagination.

• pageSize (optional, number): Number of items per page in pagination.

• Returns a message with the following information:

• content: List of transaction execution metrics.

• pageNumber: Current page number in pagination.

• pageSize: Number of items displayed per page.

• totalPages: Total number of pages available.

• numberOfElements: Count of items on the current page.

• last: Boolean flag for the last page.
Endpoints for Gapwalk application 346

AWS Mainframe Modernization User Guide

• first: Boolean flag for the first page.

Other endpoints

Use these endpoints to list list registered programs or services, discover health status, and manage
JICS transactions.

Topics

• Listing registered programs

• Listing registered services

• Health status

• Listing available JICS transactions

• Launch a JICS transaction

• Launch a JICS transaction (alternative)

• List active sessions

Listing registered programs

• Supported method: GET

• Path: /programs

• Returns the list of registered programs, as a html page. Each program is designated by its main
program identifier. Both modernized legacy programs and utility programs (IDCAMS, IEBGENER,
etc ...) are being returned in the list. Please note that the available utility programs will depend
on the utility web-applications that have been deployed on your tomcat server. For instance, z/
OS utility support programs might not be available for modernized iSeries assets, as they are not
relevant.

Listing registered services

• Supported method: GET

• Path: /services

• Returns the list of registered runtime services, as a html page. The given services are brought by
the AWS Blu Age runtime as utilities, that can be used for instance in groovy scripts. Blusam load
services (to create Blusam datasets from legacy datasets) fall into that category.

Endpoints for Gapwalk application 347

AWS Mainframe Modernization User Guide

Sample response:

<p>BluesamESDSFileLoader</p><p>BluesamKSDSFileLoader</p><p>BluesamRRDSFileLoader</p>

Health status

• Supported method: GET

• Path: /

• Returns a simple message, indicating that the gapwalk-application is up and running (Jics
application is running.)

Listing available JICS transactions

• Supported method: GET

• Path: /transactions

• Returns a html page listing all available JICS transactions. This only makes sense for
environments with JICS elements (modernization of legacy CICS elements).

Sample response:

<p>INQ1</p><p>MENU</p><p>MNT2</p><p>ORD1</p><p>PRNT</p>

Launch a JICS transaction

• Supported methods: GET,POST

• Path: /jicstransrunner/{jtrans:.+}

• arguments:

• JICS transaction identifier (string, required) : identifier of the JICS transaction to be launched
(8 characters long at max.)

• required: additional input data to pass to the transaction, as a Map<String,Object>. The
contents of this map will be used to feed the COMMAREA that will be consumed by the JICS
transaction. The map can be empty if no data is required to run the transaction.

• optional: Http headers entries, to customize the run environment for the given transaction.
The following header keys are being supported:

Endpoints for Gapwalk application 348

https://www.ibm.com/docs/en/cics-ts/5.4?topic=programs-commarea

AWS Mainframe Modernization User Guide

• jics-channel: The name of the JICS CHANNEL to be used by the program that will be
launched by this transaction launch.

• jics-container: The name of the JICS CONTAINER to be used for this JICS transaction
launch.

• jics-startcode: the STARTCODE (String, up to 2 characters) to use at JICS transaction
start. See STARTCODE for possible values (browse down the page).

• jicxa-xid : The XID (X/Open transaction identifier XID structure) of a "global
transaction" (XA), initiated by the caller, to which the current JICS transaction launch will
participate.

• Returns: a com.netfective.bluage.gapwalk.rt.shared.web.TransactionResultBean
JSON serialization, representing the outcome of the JICS transaction launch.

For more information about the details of the structure, see Transaction launch outcome structure.

Launch a JICS transaction (alternative)

• supported methods: GET,POST

• path: /jicstransaction/{jtrans:.+}

• arguments:

JICS transaction identifier (string, required)

identifier of the JICS transaction to be launched (8 characters long at max.)

required: additional input data to pass to the transaction, as a Map<String,Object>

The contents of this map will be used to feed the COMMAREA that will be consumed by the
JICS transaction. The map can be empty if no data is required to run the transaction.

optional: Http headers entries, to customize the run environment for the given transaction.

The following header keys are being supported:

• jics-channel: The name of the JICS CHANNEL to be used by the program that will be
launched by this transaction launch.

• jics-container: The name of the JICS CONTAINER to be used for this JICS transaction
launch.

• jics-startcode: the STARTCODE (String, up to 2 characters) to use at JICS transaction
start. For possible values, see STARTCODE (browse down the page).

Endpoints for Gapwalk application 349

https://www.ibm.com/docs/en/cics-ts/5.5?topic=summary-assign
https://en.wikipedia.org/wiki/X/Open_XA
https://www.ibm.com/docs/en/cics-ts/5.4?topic=programs-commarea
https://www.ibm.com/docs/en/cics-ts/5.5?topic=summary-assign

AWS Mainframe Modernization User Guide

• jicxa-xid : The XID (X/Open transaction identifier XID structure) of a "global
transaction" (XA), initiated by the caller, to which the current JICS transaction launch will
participate.

• returns: a com.netfective.bluage.gapwalk.rt.shared.web.RecordHolderBean
JSON serialization, representing the outcome of the JICS transaction launch. The details of the
structure can be found in Transaction launch record outcome structure.

List active sessions

• supported methods: GET,POST

• path: /activesessionlist

• arguments: none

• returns: a list of
com.netfective.bluage.gapwalk.application.web.sessiontracker.SessionTrackerObject
in JSON serialization, representing the list of active user sessions. When session tracking is
disabled, an empty list will be returned.

Job queues related endpoints

Job queues are the AWS Blu Age support for the AS400 jobs submission mechanism. Job queues
are used in AS400 to run job on specific thread pools. A job queue is defined by a name and a
maximum number of threads that corresponds to the maximum number of programs that can be
run simultaneously on that queue. If more jobs are submitted on the queue than the maximum
number of threads, jobs will wait for a thread to be available.

For an exhaustive list of status for a job on a queue, see Possible status of a job on a queue.

Operations on job queues are handled through the following dedicated endpoints. You can
invoke these operations from the Gapwalk Application URL with the following root URL:
http://server:port/gapwalk-application/jobqueue.

Topics

• List available queues

• Start or restart a job queue

• Submit a job for launch

• List all submitted jobs

Endpoints for Gapwalk application 350

https://en.wikipedia.org/wiki/X/Open_XA

AWS Mainframe Modernization User Guide

• Release all jobs that are "on hold"

• Release all jobs that are "on hold" for a given job name

• Release a given job for a job number

• Submit a job on repeating schedule

• List all submitted repeating jobs

• Cancel the scheduling of a repeating job

List available queues

• Supported method: GET

• Path: list-queues

• Returns the list of available queues along with their status, as a JSON list of key-values.

Sample response:

{"Default":"STAND_BY","queue1":"STARTED","queue2":"STARTED"}

Possible status for a job queue are:

STAND_BY

the job queue is waiting to be started.

STARTED

the job queue is up and running.

UNKNOWN

the job queue status cannot be determined.

Start or restart a job queue

• Supported method: POST

• Path: /restart/{name}

• Argument: the name of the queue to be started/restarted, as a String - mandatory.

Endpoints for Gapwalk application 351

AWS Mainframe Modernization User Guide

• The endpoint does not return anything but rather relies on http status to indicate the outcome
of the start/restart operation:

HTTP 200

the start/restart operation went well: the given job queue is now STARTED.

HTTP 404

the job queue does not exist.

HTTP 503

an exception occurred during the start/restart attempt (server logs should be inspected to
figure out what went wrong).

Submit a job for launch

• Supported method: POST

• Path: /submit

• Argument: mandatory as request body, a JSON serialization of a
com.netfective.bluage.gapwalk.rt.jobqueue.SubmitJobMessage object. For more
information, see Submit job and schedule job input.

• Returns: a JSON containing the original SubmitJobMessage and a log indicating if the job has
been submitted or not.

List all submitted jobs

• Supported method: GET

• Path: /list-jobs?status={status}&size={size}&page={page}&sort={sort}

• Arguments:

• page: Page number to retrieve (default = 1)

• size: Size of the page (default = 50, max = 300)

• sort: The order of the Jobs. (default = “executionId”). “executionId” is currently the only
supported value

• status: (optional) If present, it will filter on the status.

• Returns: a list of all scheduled jobs, as a JSON string. For a sample response, see List of
scheduled jobs response.

Endpoints for Gapwalk application 352

AWS Mainframe Modernization User Guide

Release all jobs that are "on hold"

• Supported method: POST

• Path: /release-all

• Returns: a message indicating the outcome for the release attempt operation. Two possible cases
here:

• HTTP 200 and a message "All job released with success!" if all jobs were successfully released.

• HTTP 503 and a message "Jobs not released. An unknown error occurred. See log for more
details" if something went wrong with the release attempt.

Release all jobs that are "on hold" for a given job name

For a given job name, multiple jobs can be submitted, with different job numbers (the unicity of a
job run is granted by a couple <job name, job number>). The endpoint will attempt to release all
job submissions with the given job name, which are "on hold".

• Supported method: POST

• Path: /release/{name}

• Arguments: the job name to look for, as a string. Mandatory.

• Returns: a message indicating the outcome for the release attempt operation. Two possible cases
here:

• HTTP 200 and a message "Jobs in group <name> (<number of released jobs>) released with
success!" jobs were successfully released.

• HTTP 503 and a message "Jobs in group <name> not released. An unknown error occured. See
log for more details" if something went wrong with the release attempt.

Release a given job for a job number

The endpoint will attempt to release the unique job submission which is "on hold", for the given
couple <job name, job number>.

• Supported method: POST

• Path: /release/{name}/{number}

• Arguments:

Endpoints for Gapwalk application 353

AWS Mainframe Modernization User Guide

name

the job name to look for, as a string. Mandatory.

number

the job number to look for, as an integer. Mandatory.

returns

a message indicating the outcome for the release attempt operation. Two possible cases here:

• HTTP 200 and a message ""Job <name/number> released with success!" if the job was
successfully released.

• HTTP 503 and a message "Job <name/number>>not released. An unknown error occured.
See log for more details" if something went wrong with the release attempt.

Submit a job on repeating schedule

Schedule a job that will be executed with a repeating schedule.

• Supported method: POST

• Path: /schedule

• Argument: the request body must contain a JSON serialization of a
com.netfective.bluage.gapwalk.rt.jobqueue.SubmitJobMessage object.

List all submitted repeating jobs

• Supported method: GET

• Path: /schedule/list?status={status}&size={size}&page={page}&sort={sort}

• Arguments:

1. page: Page number to retrieve (default = 1)

2. size: Size of the page (default = 50, max = 300)

3. sort: The order of the Jobs. (default = “id”). “id” is the only supported value for now.

4. status: (optional) If present, it will filter on the status. Possible values are the one mentioned
in section 1.

5. status: (optional) If present, it will filter on the status. Possible values are the one mentioned
in section 1.

Endpoints for Gapwalk application 354

AWS Mainframe Modernization User Guide

6. Returns: a list of all scheduled jobs, as a JSON string.

Cancel the scheduling of a repeating job

Removes a job that was created on a repeating schedule. The job scheduling status is set to
INACTIVE.

• Supported method: GET

• Path: /schedule/remove/{schedule_id}

• Argument: schedule_id, the identifier of the scheduled job to remove.

Blusam application console REST endpoints

In this section, you can learn about the Blusam application console, which is an API designed
to simplify the management of modernized VSAM datasets. Endpoints for the Blusam web
application use the root path /bac.

Topics

• Data sets related endpoints

• Bulk data sets related endpoints

• Records

• Masks

• Other

• BAC user-management endpoints

Data sets related endpoints

Use the following endpoints to create or manage a specific data set.

Topics

• Create a data set

• Upload a file

• Load a data set (POST)

• Load a data set (GET)

• Load a data set from an Amazon S3 bucket

Blusam application console REST endpoints 355

AWS Mainframe Modernization User Guide

• Export a data set to an Amazon S3 bucket

• Clear a data set

• Delete a data set

• Count data set records

Create a data set

You can use this endpoint to create a data set definition.

• Supported methods: POST

• Requires authentication and the ROLE_ADMIN role.

• Path: /api/services/rest/bluesamservice/createDataSet

• Arguments:

name

(required, string): the name of the data set.

type

(required, string): the data set type. Possible values are: ESDS, KSDS, RRDS.

recordSize

(optional, string): Maximum size of each record of the data set.

fixedLength

(optional, boolean) : Indicates if the records length is fixed.

compression

(optional, boolean) : Indicates if the dataset is compressed.

cacheEnable

(optional, boolean) : Indicates if caching is enabled for the dataset.

alternativeKeys

(optional, list of keys):

• offset (required, number)

• length (required, number)
Blusam application console REST endpoints 356

AWS Mainframe Modernization User Guide

• name (required, number)

• Returns a JSON file representing the newly created data set.

Sample request:

POST /api/services/rest/bluesamservice/createDataSet
{
 "name": "DATASET",
 "checked": false,
 "records": [],
 "primaryKey": {
 "name": "PK"
 },
 "alternativeKeys": [
 {
 "offset": 10,
 "length": 10,
 "name": "ALTK_0"
 }
],
 "type": "ESDS",
 "recordSize": 10,
 "compression": true,
 "cacheEnable": true
}

Sample response:

{
 "dataSet": {
 "name": "DATASET",
 "checked": false,
 "nbRecords": 0,
 "keyLength": -1,
 "recordSize": 10,
 "compression": false,
 "fixLength": true,
 "type": "ESDS",
 "cacheEnable": false,
 "cacheWarmup": false,
 "cacheEviction": "100ms",
 "creationDate": 1686744961234,

Blusam application console REST endpoints 357

AWS Mainframe Modernization User Guide

 "modificationDate": 1686744961234,
 "records": [],
 "primaryKey": {
 "name": "PK",
 "offset": null,
 "length": null,
 "columns": null,
 "unique": true
 },
 "alternativeKeys": [
 {
 "offset": 10,
 "length": 10,
 "name": "ALTK_0"
 }
],
 "readLimit": 0,
 "readEncoding": null,
 "initCharacter": null,
 "defaultCharacter": null,
 "blankCharacter": null,
 "strictZoned": null,
 "decimalSeparator": null,
 "currencySign": null,
 "pictureCurrencySign": null
 },
 "message": null,
 "result": true
 }

Upload a file

You can use this endpoint to upload files to the server. The file is stored in a temporary folder that
corresponds to each specific user. Use this endpoint every time you need to upload a file.

• Supported methods: POST

• Requires authentication and the ROLE_ADMIN role.

• Path: /api/services/rest/bluesamservice/upload

• Arguments:

file

(required, multipart/form-data): The file to upload.

Blusam application console REST endpoints 358

AWS Mainframe Modernization User Guide

• Returns a boolean reflecting the status of the upload

Load a data set (POST)

After you use createDataSet to create the data set definition, you can load records that are
associated with the uploaded file to a specific data set.

• Supported methods: POST

• Requires authentication and the ROLE_ADMIN role.

• Path: /api/services/rest/bluesamservice/loadDataSet

• Arguments:

name

(required, string): the name of the data set.

• Returns the status of the request and the loaded data set.

Load a data set (GET)

• Supported methods: GET

• Requires authentication and the ROLE_ADMIN role.

• Path: /api/services/rest/bluesamservice/loadDataSet

• Arguments:

name

(required, string): the name of the data set.

dataset file

(required, string): the data set file name.

• Returns the status of the request and the loaded data set.

Load a data set from an Amazon S3 bucket

Loads a data set using a listcat file from an Amazon S3 bucket.

• Supported methods: GET

• Requires authentication and the ROLE_ADMIN role.

Blusam application console REST endpoints 359

AWS Mainframe Modernization User Guide

• Path: /api/services/rest/bluesamservice/loadDataSetFromS3

• Arguments:

listcatFileS3Location

(required, string): the Amazon S3 location of the listcat file.

datasetFileS3Location

(required, string): the Amazon S3 location of the data set file.

region

(required, string): the Amazon S3 AWS Region where the files are stored.

• Returns the newly created data set

Sample request:

/BAC/api/services/rest/bluesamservice/loadDataSetFromS3?region=us-
east-1&listcatFileS3Location=s3://bucket-name/listcat.json&datasetFileS3Location=s3://
bucket-name/dataset.DAT

Export a data set to an Amazon S3 bucket

Exports a data set to the specified Amazon S3 bucket.

• Supported methods: GET

• Requires authentication and the ROLE_ADMIN role.

• Path: /api/services/rest/bluesamservice/exportDataSetToS3

• Arguments:

s3Location

(required, string): the Amazon S3 location to export the data set to.

datasetName

(required, string): the name of the data set to export.

region

(required, string): the AWS Region of the Amazon S3 bucket.

• Returns the exported data set

Blusam application console REST endpoints 360

AWS Mainframe Modernization User Guide

Sample request:

/BAC/api/services/rest/bluesamservice/exportDataSetToS3?region=eu-
west-1&s3Location=s3://bucket-name/dump&datasetName=dataset

Clear a data set

Clears all records from a data set.

• Supported methods: POST, GET

• Requires authentication and the ROLE_ADMIN role.

• Path: /api/services/rest/bluesamservice/clearDataSet

• Arguments:

name

(required, string): the name of the data set to clear.

• Returns the status of the request.

Delete a data set

Deletes the data set definition and records.

• Supported methods: POST

• Requires authentication and the ROLE_ADMIN role.

• Path: /api/services/rest/bluesamservice/deleteDataSet

• Arguments:

name

(required, string): the name of the data set to delete.

• Returns the status of the request and the deleted data set.

Count data set records

This endpoint returns the number of records associated with a data set.

• Supported methods: POST

• Requires authentication and the ROLE_USER role.

Blusam application console REST endpoints 361

AWS Mainframe Modernization User Guide

• Path: /api/services/rest/bluesamservice/countRecords

• Arguments:

name

(required, string): the name of the data set.

• Returns: the number of records

Bulk data sets related endpoints

Use the following endpoints to create or manage multiple data sets at once.

Topics

• Export data sets (GET)

• Export data sets (POST)

• Create multiple data sets

• List all data sets

• Direct list all data sets

• Direct list all data sets by page

• Stream data set

• Delete all data sets

• Get data set definitions from listcat file

• Get data set definitions from uploaded list cat file

• Get a data set

• Load listcat from JSON file

Export data sets (GET)

• Supported methods: GET

• Requires authentication and the ROLE_USER role.

• Path: /api/services/rest/bluesamservice/exportDataSet

• Arguments:

datasetName

(required, string): the name of the data set to export.

Blusam application console REST endpoints 362

AWS Mainframe Modernization User Guide

datasetOutputFile

(required, string): the path of the folder where you want to store the exported dataset on the
server.

rdw

(required, boolean): whether you want the record descriptor word (RDW) to be part of the
exported records. If the data set has fixed length records, the value of this parameter is
ignored.

• Returns the status of the request and the path to the file containing the exported data set (if
any). If the dataset is null in the response, that means the system was not able to locate a data
set with the given name.

Export data sets (POST)

• Supported methods: POST

• Requires authentication and the ROLE_USER role.

• Path: /api/services/rest/bluesamservice/exportDataSet

• Arguments:

dumpParameters

(required, BACReadParameters): Bluesam read parameters.

• Returns the status of the exported data set.

Create multiple data sets

• Supported methods: POST

• Requires authentication and the ROLE_ADMIN role.

• Path: /api/services/rest/bluesamservice/createAllDataSets

• Arguments:

• List of data sets

name

(required, string): the name of the data set.

Blusam application console REST endpoints 363

AWS Mainframe Modernization User Guide

type

(required, string): the data set type. Possible values are: ESDS, KSDS, RRDS.

recordSize

(optional, string) : Maximum size of each record of the data set.

fixedLength

(optional, boolean) : Indicates if the records length is fixed.

compression

(optional, boolean) : Indicates if the dataset is compressed.

cacheEnable

(optional, boolean) : Indicates if caching is enabled for the dataset.

• Returns: the status of the request and the newly created data set.

List all data sets

• Supported methods: GET

• Requires authentication and the ROLE_USER role.

• Path: /api/services/rest/bluesamservice/listDataSet

• Arguments: None

• Returns: the status of the request and the list of the data sets.

Direct list all data sets

• Supported methods: GET

• Requires authentication and the ROLE_USER role.

• Path: /api/services/rest/bluesamservice/directListDataSet

• Arguments: None

• Returns: the status of the request and the list of the data sets.

Blusam application console REST endpoints 364

AWS Mainframe Modernization User Guide

Direct list all data sets by page

• Supported methods: GET

• Requires authentication and the ROLE_USER role.

• Path: /api/services/rest/bluesamservice/directListDataSetByPage

• Arguments:

datasetName

(required, string): the name of the data set.

pageNumber

(required, int): the page number.

pageSize

(required, int): the page size.

• Returns: the status of the request and the list of the data sets.

Stream data set

• Supported methods: GET

• Requires authentication and the ROLE_ADMIN role.

• Path: /api/services/rest/bluesamservice/streamDataset

• Arguments:

datasetName

(required, string): the name of the data set.

• Returns: A stream of the requested data sets.

Delete all data sets

• Supported methods: POST

• Requires authentication and the ROLE_ADMIN role.

• Path: /api/services/rest/bluesamservice/removeAll

• Arguments: None

• Returns: a boolean that represents the status of the request.

Blusam application console REST endpoints 365

AWS Mainframe Modernization User Guide

Get data set definitions from listcat file

• Supported methods: POST

• Requires authentication and the ROLE_ADMIN role.

• Path: /api/services/rest/bluesamservice/getDataSetsDefinitionFromListcat

• Arguments:

paramFilePath

(required, string): The path to the listcat file.

• Returns: a list of data sets

Get data set definitions from uploaded list cat file

• Supported methods: POST

• Requires authentication and the ROLE_ADMIN role.

• Path: /api/services/rest/bluesamservice/
getDataSetsDefinitionFromUploadedListcat

• Arguments: None

• Returns: a list of data sets

Get a data set

• Supported methods: GET

• Requires authentication and the ROLE_USER role.

• Path: /api/services/rest/bluesamservice/getDataSet

• Arguments:

name

(required, string): the name of the data set.

• Returns the requested data set.

Load listcat from JSON file

• Supported methods: GET

Blusam application console REST endpoints 366

AWS Mainframe Modernization User Guide

• Requires authentication and the ROLE_ADMIN role.

• Path: /api/services/rest/bluesamservice/loadListcatFromJsonFile

• Arguments:

filePath

(required, string): The path to the listcat file.

• Returns: a list of data sets

Records

Use the following endpoints to create or manage records within a data set.

Topics

• Create a record

• Read a data set

• Delete a record

• Update a record

• Save a record

• Validate a record

• Get a record tree

Create a record

You can use this endpoint to create a new record.

• Supported methods: POST

• Requires authentication and the ROLE_USER role.

• Path: /api/services/rest/crud/createRecord

• Arguments:

dataset

(required, DataSet): the data set object

mask

(required, mask): the mask object.

Blusam application console REST endpoints 367

AWS Mainframe Modernization User Guide

• Returns the status of the request and the created record.

Read a data set

You can use this endpoint to read a data set.

• Supported methods: POST

• Requires authentication and the ROLE_USER role.

• Path: /api/services/rest/crud/readDataSet

• Arguments:

dataset

(required, DataSet): the data set object.

• Returns the status of the request and the data set with the records.

Delete a record

You can use this endpoint to delete a record from a data set.

• Supported methods: POST

• Requires authentication and the ROLE_USER role.

• Path: /api/services/rest/crud/deleteRecord

• Arguments:

dataset

(required, DataSet): the data set object

record

(required, Record): the record to delete

• Returns the status of the deletion.

Update a record

You can use this endpoint to update a record associated with a data set.

• Supported methods: POST

Blusam application console REST endpoints 368

AWS Mainframe Modernization User Guide

• Requires authentication and the ROLE_USER role.

• Path: /api/services/rest/crud/updateRecord

• Arguments:

dataset

(required, DataSet): the data set object

record

(required, Record): the record to update

• Returns the status of the request and the data set with the records.

Save a record

You can use this endpoint to save a record to a data set and using a mask.

• Supported methods: POST

• Requires authentication and the ROLE_USER role.

• Path: /api/services/rest/crud/saveRecord

• Arguments:

dataset

(required, DataSet): the data set object

record

(required, Record): the record to save

• Returns the status of the request and the data set with the records.

Validate a record

Use this endpoint to validate a record.

• Supported methods: POST

• Requires authentication and the ROLE_USER role.

• Path: /api/services/rest/crud/validateRecord

• Arguments:

Blusam application console REST endpoints 369

AWS Mainframe Modernization User Guide

dataset

(required, DataSet): the data set object

• Returns the status of the request and the data set with the records.

Get a record tree

Use this endpoint to get the hierarchical tree of a record.

• Supported methods: POST

• Requires authentication and the ROLE_USER role.

• Path: /api/services/rest/crud/getRecordTree

• Arguments:

dataset

(required, DataSet): the data set object

record

(required, Record): the record to fetch

• Returns the status of the request and the hierarchical tree of the requested record.

Masks

Use the following endpoints to load or apply masks to a data set.

Topics

• Load masks

• Apply mask

• Apply mask filter

Load masks

You can use this endpoint to retrieve all the masks that are associated with a specific data set.

• Supported methods: POST

• Requires authentication and the ROLE_USER role.

Blusam application console REST endpoints 370

AWS Mainframe Modernization User Guide

• Path: /api/services/rest/crud/loadMasks

• Path variables:

recordSize: .../loadMasks/{recordSize}

(optional, numeric): the record size, filter loaded masks that match this record size

• Arguments:

dataset

(required, DataSet): the data set object

• Returns the status of the request and the list of the masks.

Apply mask

You can use this endpoint to apply a mask to a specific data set.

• Supported methods: POST

• Requires authentication and the ROLE_USER role.

• Path: /api/services/rest/crud/applyMask

• Arguments:

dataset

(required, DataSet): the data set object

mask

(required, Mask): the data set object

• Returns the status of the request and the data set with the applied mask.

Apply mask filter

You can use this endpoint to apply a mask and a filter to a specific data set.

• Supported methods: POST

• Requires authentication and the ROLE_USER role.

• Path: /api/services/rest/crud/applyMaskFilter

• Arguments:

Blusam application console REST endpoints 371

AWS Mainframe Modernization User Guide

dataset

(required, DataSet): the data set object

mask

(required, Mask): the data set object

• Returns the status of the request and the data set with the applied mask and filter.

Other

Use the following endpoints to manage cache for a data set or check data set characteristics

Topics

• Check warm up cache

• Check cache enabled

• Enable cache

• Check allocated RAM cache

• Check persistence

• Check supported data set types

• Check server health

Check warm up cache

Checks if the warmup cache is enabled for a specific data set.

• Supported methods: POST

• Requires authentication and the ROLE_ADMIN role.

• Path: /api/services/rest/bluesamservice/warmupCache

• Arguments:

name

(required, string): the name of the data set.

• Returns: true if the warm up cache is enabled and false otherwise.

Blusam application console REST endpoints 372

AWS Mainframe Modernization User Guide

Check cache enabled

Checks if the cache is enabled for a specific data set.

• Supported methods: GET

• Requires authentication and the ROLE_USER role.

• Path: /api/services/rest/bluesamservice/isEnableCache

• Arguments: None

• Returns true if the caching is enabled.

Enable cache

• Supported methods: GET

• Requires authentication and the ROLE_ADMIN and ROLE_SUPER_ADMIN roles.

• Path: /api/services/rest/bluesamservice/enableDisableCache/{enable}

• Arguments:

enable

(required, boolean): if set to true, it will enable caching.

• Returns None

Check allocated RAM cache

You can use this endpoint to retrieve the allocated RAM cache memory.

• Supported methods: GET

• Requires authentication and the ROLE_USER role.

• Path: /api/services/rest/bluesamservice/allocatedRamCache

• Arguments: None

• Returns: the size of the memory as a string

Check persistence

• Supported methods: GET

Blusam application console REST endpoints 373

AWS Mainframe Modernization User Guide

• Requires authentication and the ROLE_USER role.

• Path: /api/services/rest/bluesamservice/persistence

• Arguments: None

• Returns: the persistence used as a string

Check supported data set types

• Supported methods: GET

• Path: /api/services/rest/bluesamservice/getDataSetTypes

• Requires authentication and the ROLE_USER role.

• Arguments: None

• Returns: the list of supported data set types as a list of strings.

Check server health

• Supported methods: GET

• Path: /api/services/rest/bluesamserver/serverIsUp

• Arguments: None

• Returns: None. HTTP response status code 200 indicates that the server is up and running.

BAC user-management endpoints

Use the following endpoints to manage user interactions.

Topics

• Log a user in

• Verify whether at least one user exists in the system

• Record a new user

• Get user info

• List users

• Delete a user

• Log the current user out

Blusam application console REST endpoints 374

AWS Mainframe Modernization User Guide

Log a user in

• Supported method: POST

• Path: /api/services/security/servicelogin/login

• Arguments: None

• Returns the JSON serialization of a com.netfective.bluage.bac.entities.SignOn object,
representing the user whose credentials are provided in the current request. The password is
hidden from the view in the returned object. The roles given to the used are being listed.

Sample response:

{
 "login": "some-admin",
 "password": null,
 "roles": [
 {
 "id": 0,
 "roleName": "ROLE_ADMIN"
 }
]
 }

Verify whether at least one user exists in the system

• Supported method: GET

• Path: /api/services/security/servicelogin/hasAccount

• Arguments: None

• Returns the boolean value true if at least one user other than the default super admin user has
been created. Returns false otherwise.

Record a new user

• Supported method: POST

• Requires authentication and the ROLE_ADMIN role.

• Path: /api/services/security/servicelogin/recorduser

Blusam application console REST endpoints 375

AWS Mainframe Modernization User Guide

• Arguments: the JSON serialization of a com.netfective.bluage.bac.entities.SignOn
object that represents the user to be added to the storage. The roles for the user must be
defined, otherwise the user might not be able to use the BAC facility and endpoints.

• Returns the boolean value true if the user was successfully created. Returns false otherwise.

• Sample request JSON:

 {
 "login": "simpleuser",
 "password": "simplepassword",
 "roles": [
 {
 "id": 2,
 "roleName": "ROLE_USER"
 }
]
 }

The following are the two valid values for roleName:

• ROLE_ADMIN: can manage Blusam resources and users.

• ROLE_USER: can manage Blusam resources but not users.

Get user info

• Supported method: GET

• Path: /api/services/security/servicelogin/userInfo

• Arguments: None

• Returns the username and role of the currently connected user

List users

• Supported method: GET

• Requires authentication and the ROLE_ADMIN role.

• Path: /api/services/security/servicelogin/listusers

• Arguments: None

• Returns a list of com.netfective.bluage.bac.entities.SignOn, serialized as JSON.

Blusam application console REST endpoints 376

AWS Mainframe Modernization User Guide

Delete a user

Important

This action cannot be undone. The deleted user won't be able to connect to the BAC
application again.

• Supported method: POST

• Requires authentication and the ROLE_ADMIN role.

• Path: /api/services/security/servicelogin/deleteuser

• Arguments: the JSON serialization of a com.netfective.bluage.bac.entities.SignOn
object that represents the user to be removed from the storage.

• Returns the boolean value true if the user was successfully removed.

Log the current user out

• Supported method: GET

• Path: /api/services/security/servicelogout/logout

• Arguments: None

• Returns the JSON message {"success":true} if the current user was successfully logged out.
The related HTTP session will be invalidated.

Manage JICS application console in AWS Blu Age

The JICS component is the AWS Blu Age support for modernization of the legacy CICS resources.
The JICS application console web application is dedicated to administrate JICS resources. The
following endpoints allow to perform the administration tasks without having to interact with
the JAC user interface. Whenever an endpoint requires authentication, the request will have to
include authentication details (username/password typically, as required by Basic Authentication).
Endpoints for the JICS application console web application use the root path /jac/.

Topics

• JICS resources management

• Other

Manage JICS application console 377

AWS Mainframe Modernization User Guide

• JAC users management endpoints

JICS resources management

All following endpoints are related to JICS resources management, allowing JICS administrators to
deal with resources on daily basis.

Topics

• List JICS LISTS and GROUPS

• Retrieve JICS resources

• List JICS GROUPS

• List JICS GROUPS for a given LIST

• LIST JICS resources for a given GROUP

• LIST JICS resources for a given GROUP (alternative using a name)

• Editing the owned GROUPS of several LISTS

• Delete a LIST

• Delete a GROUP

• Delete a TRANSACTION

• Delete a PROGRAM

• Delete a FILE

• Delete a TDQUEUE

• Delete a TSMODEL

• Delete elements

• Create a LIST

• Create a GROUP

• Common RESOURCES creation considerations

• Create a TRANSACTION

• Create a PROGRAM

• Create a FILE

• Create a TDQUEUE

• Create a TSMODEL

Manage JICS application console 378

AWS Mainframe Modernization User Guide

• Create elements

• Update a LIST

• Update a GROUP

• Common RESOURCES update considerations

• Update a TRANSACTION

• Update a PROGRAM

• Update a FILE

• Update a TDQUEUE

• Update a TSMODEL

• Update elements

• Upsert elements

• Retrieve elements

• JICS CRUD operation

List JICS LISTS and GROUPS

The LIST and GROUPS are the main owning container resources within the JICS component. All
JICS resources must belong to a GROUP. Groups can belong to LISTS, but this is not mandatory.
LISTS might even not exist on a given JICS environment, but most of the time, LISTS are there to
give an extra layer of organization for resources. For more information about the CICS resources
organization, see CICS resources.

• Supported method: GET

• Requires authentication and one of the following roles: ROLE_ADMIN, ROLE_SUPER_ADMIN,
ROLE_USER

• Path: /api/services/rest/jicsservice/listJicsListsAndGroups

• Arguments: None

• Returns: a list of serialized JicsContainer objects, both LISTS and GROUPS, as JSON.

Sample response:

[
 {
 "name": "Resources",

Manage JICS application console 379

https://www.ibm.com/docs/en/cics-ts/6.1?topic=fundamentals-how-it-works-cics-resources

AWS Mainframe Modernization User Guide

 "children": [
 {
 "jacType": "JACList",
 "name": "MURACHS",
 "isActive": true,
 "children": [
 {
 "jacType": "JACGroup",
 "name": "MURACHS",
 "isActive": true,
 "children": []
 }
]
 },
 {
 "jacType": "JACGroup",
 "name": "TEST",
 "isActive": true,
 "children": []
 }
],
 "isExpanded": true
 }
]

Retrieve JICS resources

• Supported method: POST

• Requires authentication and one of the following roles: ROLE_ADMIN, ROLE_SUPER_ADMIN,
ROLE_USER

• Path: /api/services/rest/jicsservice/retrieveJicsResources

• Arguments: A JSON payload that represents the JICS resources that you want to retrieve. This is
the JSON serialization of a
com.netfective.bluage.jac.entities.request.RetrieveOperationRequest object.

• Returns: A list of serialized JicsResource objects. The objects are returned in no particular order
and are of different types, like PROGRAM, TRANSACTION, FILE, and so on.

List JICS GROUPS

• Supported method: GET

Manage JICS application console 380

AWS Mainframe Modernization User Guide

• Requires authentication and one of the following roles: ROLE_ADMIN, ROLE_SUPER_ADMIN,
ROLE_USER

• Path: /api/services/rest/jicsservice/listJicsGroups

• Arguments: None

• Returns a list of serialized JicsContainer objects (GROUPS) as JSON. The GROUPS are returned
without their owning LIST information.

Sample response:

[
 {
 "jacType": "JACGroup",
 "name": "MURACHS",
 "isActive": true,
 "children": []
 },
 {
 "jacType": "JACGroup",
 "name": "TEST",
 "isActive": true,
 "children": []
 }
]

List JICS GROUPS for a given LIST

• Supported method: POST

• Requires authentication and one of the following roles: ROLE_ADMIN, ROLE_SUPER_ADMIN,
ROLE_USER

• Path: /api/services/rest/jicsservice/listGroupsForList

• Arguments: a JSON payload, representing the JICS LIST whose GROUPS you're looking for. This is
the JSON serialization of a com.netfective.bluage.jac.entities.JACList object.

Sample request:

{
 "jacType":"JACList",
 "name":"MURACHS",

Manage JICS application console 381

AWS Mainframe Modernization User Guide

 "isActive":true
 }

• Returns a list of serialized JicsContainer objects (GROUPS) as JSON, that are attached to the
given LIST. The GROUPS are returned without their owning LIST information.

Sample response:

[
 {
 "jacType": "JACGroup",
 "name": "MURACHS",
 "isActive": true,
 "children": []
 }
]

LIST JICS resources for a given GROUP

• Supported method: POST

• Requires authentication and one of the following roles: ROLE_ADMIN, ROLE_SUPER_ADMIN,
ROLE_USER

• Path: /api/services/rest/jicsservice/listResourcesForGroup

• Arguments: a JSON payload, representing the JICS GROUP whose resources you're looking for.
This is the JSON serialization of a com.netfective.bluage.jac.entities.JACGroup
object. You do not need to specify all fields for the GROUP, but the name is mandatory.

Sample request:

{
 "jacType":"JACGroup",
 "name":"MURACHS",
 "isActive":true
 }

• Returns a list of serialized JicsResource objects, owned by the given GROUP. The objects are
returned in no particular order and are of different types, like PROGRAM, TRANSACTION, FILE,
and so on.

Manage JICS application console 382

AWS Mainframe Modernization User Guide

LIST JICS resources for a given GROUP (alternative using a name)

• Supported method: POST

• Requires authentication

• Path: /api/services/rest/jicsservice/listResourcesForGroupName

• Arguments: the name of the GROUP owning the resources you're looking for.

• Returns: a list of serialized JicsResource objects, owned by the given GROUP. The objects are
being returned in no particular order and are of different types, like PROGRAM, TRANSACTION,
FILE, and so on.

Editing the owned GROUPS of several LISTS

• Supported method: POST

• Requires authentication and one of the following roles: ROLE_ADMIN, ROLE_SUPER_ADMIN,
ROLE_USER

• Path: /api/services/rest/jicsservice/editGroupsList

• Arguments: a JSON representation of a collection of LISTS with children GROUPS;

Sample request:

[
 {
 "jacType": "JACList",
 "name": "MURACHS",
 "isActive": true,
 "children": [
 {
 "jacType": "JACGroup",
 "name": "MURACHS",
 "isActive": true,
 "children": []
 },
 {
 "jacType": "JACGroup",
 "name": "TEST",
 "isActive": true,
 "children": []
 }
]

Manage JICS application console 383

AWS Mainframe Modernization User Guide

 }
]

Prior to this editing, only the group named "MURACHS" belonged to the LIST named
"MURACHS". With this editing, you "add" the group named "TEST" to the LIST named
"MURACHS".

• Returns a boolean value. If the value is 'true', the LISTS modifications were successfully persisted
to the underlying JICS storage.

Delete a LIST

• Supported method: POST

• Requires authentication and one of the following roles: ROLE_ADMIN, ROLE_SUPER_ADMIN,
ROLE_USER

• Path: /api/services/rest/jicsservice/deleteList

• Arguments: a JSON payload, representing the JICS LIST to delete. This is the JSON serialization
of a com.netfective.bluage.jac.entities.JACList object.

• Returns a boolean value. If the value is 'true', the LIST deletion was successfully operated on the
underlying JICS storage.

Delete a GROUP

• Supported method: POST

• Requires authentication and one of the following roles: ROLE_ADMIN, ROLE_SUPER_ADMIN,
ROLE_USER

• Path: /api/services/rest/jicsservice/deleteGroup

• Arguments: a JSON payload, representing the JICS GROUP to delete. This is the JSON
serialization of a com.netfective.bluage.jac.entities.JACGroup object.

• Returns a boolean value. If the value is 'true', the GROUP deletion was successfully operated on
the underlying JICS storage.

Delete a TRANSACTION

• Supported method: POST

Manage JICS application console 384

AWS Mainframe Modernization User Guide

• Requires authentication and one of the following roles: ROLE_ADMIN, ROLE_SUPER_ADMIN,
ROLE_USER

• Path: /api/services/rest/jicsservice/deleteTransaction

• Arguments: a JSON payload, representing the JICS Transaction to delete. This is the JSON
serialization of a com.netfective.bluage.jac.entities.JACTransaction object.

• Returns a boolean value. If the value is 'true', the TRANSACTION deletion was successfully
operated on the underlying JICS storage.

Delete a PROGRAM

• Supported method: POST

• Requires authentication and one the following roles: ROLE_ADMIN, ROLE_SUPER_ADMIN,
ROLE_USER

• Path: /api/services/rest/jicsservice/deleteProgram

• Arguments: a JSON payload, representing the JICS Program to delete. This is the JSON
serialization of a com.netfective.bluage.jac.entities.JACProgram object.

• Returns a boolean value. If the value is 'true', the PROGRAM deletion was successfully operated
on the underlying JICS storage.

Delete a FILE

• Supported method: POST

• Requires authentication and one of the following roles: ROLE_ADMIN, ROLE_SUPER_ADMIN,
ROLE_USER

• Path: /api/services/rest/jicsservice/deleteFile

• Arguments: a JSON payload, representing the JICS File to delete. This is the JSON serialization of
a com.netfective.bluage.jac.entities.JACFile object.

• Returns a boolean value. If the value is 'true', the FILE deletion was successfully operated on the
underlying JICS storage.

Delete a TDQUEUE

• Supported method: POST

Manage JICS application console 385

AWS Mainframe Modernization User Guide

• Requires authentication and one of the following roles: ROLE_ADMIN, ROLE_SUPER_ADMIN,
ROLE_USER

• Path: /api/services/rest/jicsservice/deleteTDQueue

• Arguments: a JSON payload, representing the JICS TDQUEUE to delete. This is the JSON
serialization of a `com.netfective.bluage.jac.entities.JACTDQueue` object.

• Returns a boolean value. If the value is 'true', the TDQUEUE deletion was successfully operated
on the underlying JICS storage.

Delete a TSMODEL

• Supported method: POST

• Requires authentication and one of the following roles: ROLE_ADMIN, ROLE_SUPER_ADMIN,
ROLE_USER

• Path: /api/services/rest/jicsservice/deleteTSModel

• Arguments: a JSON payload, representing the JICS TSMODEL to delete. This is the JSON
serialization of a `com.netfective.bluage.jac.entities.JACTSModel` object.

• Returns a boolean value. If the value is 'true', the TSMODEL deletion was successfully operated
on the underlying JICS storage.

Delete elements

• Supported method: POST

• Requires authentication and one of the following roles: ROLE_ADMIN, ROLE_SUPER_ADMIN,
ROLE_USER

• Path: /api/services/rest/jicsservice/deleteElements

• Arguments: A JSON payload that represents the JICS elements to delete.

• Returns a boolean value where true indicates that the deletion was successfully operated in the
underlying JICS storage.

Create a LIST

• Supported method: POST

• Requires authentication and one of the following roles: ROLE_ADMIN, ROLE_SUPER_ADMIN,
ROLE_USER

Manage JICS application console 386

AWS Mainframe Modernization User Guide

• Path: /api/services/rest/jicsservice/createList

• Arguments: a JSON payload, representing the JICS LIST to create. This is the JSON serialization
of a `com.netfective.bluage.jac.entities.JACList` object.

• Returns a boolean value. If the value is 'true', the LIST was successfully created in the underlying
JICS storage.

Note

The LIST will always be created empty. Attaching GROUPS to the LIST will require another
operation.

Create a GROUP

• Supported method: POST

• Requires authentication and the following roles: ROLE_ADMIN, ROLE_SUPER_ADMIN,
ROLE_USER

• Path: /api/services/rest/jicsservice/createGroup

• Arguments: a JSON payload, representing the JICS GROUP to create. This is the JSON
serialization of a com.netfective.bluage.jac.entities.JACGroup object.

• Returns a boolean value. If the value is 'true', the GROUP has been properly created in the
underlying JICS storage.

Note

The GROUP will always be created empty. Attaching RESOURCES to the GROUP will require
additional operations (creating resources will automatically attach them to a given GROUP.

Common RESOURCES creation considerations

All the following endpoints are related to JICS RESOURCES creation and share some common
constraints: in the request payload to be sent to the endpoint, the groupName field has to be
valued.

GROUP ownership constraint:

Manage JICS application console 387

AWS Mainframe Modernization User Guide

No resource can be created without being attached to an existing group, and the endpoint uses the
groupName to retrieve the group to which this resource will be attached. The groupName must
point to the name of an existing GROUP. An error message with HTTP STATUS 400 will be sent if
the groupName is not pointing at an existing group in the JICS underlying storage.

Unicity constraint within a GROUP:

A given resource with a given name must be unique within a given group. The check for unicity will
be performed by each resource creation endpoint. If the given payload does not respect the unicity
constraint, the endpoint will send a response with HTTP STATUS 400 (BAD REQUEST) -- see the
sample response below.

Sample payload: you try to create the transaction 'ARIT' in the 'TEST' group, but a transaction with
that name already exists in that group.

{
 "jacType":"JACTransaction",
 "name":"ARIT",
 "groupName":"TEST",
 "isActive":true
 }

You receive the following error response:

{
 "timestamp": 1686759054510,
 "status": 400,
 "error": "Bad Request",
 "path": "/jac/api/services/rest/jicsservice/createTransaction"
 }

Inspecting servers logs will confirm the origin of the issue:

2023-06-14 18:10:54 default TRACE - o.s.w.m.HandlerMethod
 - Arguments: [java.lang.IllegalArgumentException: Transaction already
 present in the group, org.springframework.security.web.header.HeaderWriterFilter
$HeaderWriterResponse@e34f6b8]
2023-06-14 18:10:54 default ERROR - c.n.b.j.a.WebConfig -
 400
java.lang.IllegalArgumentException: Transaction already present in the group

Manage JICS application console 388

AWS Mainframe Modernization User Guide

 at
 com.netfective.bluage.jac.server.services.rest.impl.JicsServiceImpl.createElement(JicsServiceImpl.java:1280)

Create a TRANSACTION

• Supported method: POST

• Requires authentication and one of the following roles: ROLE_ADMIN, ROLE_SUPER_ADMIN,
ROLE_USER

• Path: /api/services/rest/jicsservice/createTransaction

• Arguments: a JSON payload, representing the JICS TRANSACTION to create. This is the JSON
serialization of a com.netfective.bluage.jac.entities.JACTransaction object.

• Returns a boolean value. If the value is 'true', the TRANSACTION was successfully created in the
underlying JICS storage.

Create a PROGRAM

• Supported method: POST

• Requires authentication and one of the following roles: ROLE_ADMIN, ROLE_SUPER_ADMIN,
ROLE_USER

• Path: /api/services/rest/jicsservice/createProgram

• Arguments: a JSON payload, representing the JICS PROGRAM to create. This is the JSON
serialization of a com.netfective.bluage.jac.entities.JACProgram object.

• Returns a boolean value. If the value is 'true', the PROGRAM was successfully created in the
underlying JICS storage.

Create a FILE

• Supported method: POST

• Requires authentication and one of the following roles: ROLE_ADMIN, ROLE_SUPER_ADMIN,
ROLE_USER

• Path: /api/services/rest/jicsservice/createFile

• Arguments: a JSON payload, representing the JICS FILE to create. This is the JSON serialization of
a com.netfective.bluage.jac.entities.JACFile object.

Manage JICS application console 389

AWS Mainframe Modernization User Guide

• Returns a boolean value. If the value is 'true', the FILE was successfully created in the underlying
JICS storage.

Create a TDQUEUE

• Supported method: POST

• Requires authentication and one of the following roles: ROLE_ADMIN, ROLE_SUPER_ADMIN,
ROLE_USER

• Path: /api/services/rest/jicsservice/createTDQueue

• Arguments: a JSON payload, representing the JICS TDQUEUE to create. This is the JSON
serialization of a com.netfective.bluage.jac.entities.JACTDQueue object.

• Returns a boolean value. If the value is 'true', the TDQUEUE was successfully created in the
underlying JICS storage.

Create a TSMODEL

• Supported method: POST

• Requires authentication and one of the following roles: ROLE_ADMIN, ROLE_SUPER_ADMIN,
ROLE_USER

• Path: /api/services/rest/jicsservice/createTSModel

• Arguments: a JSON payload, representing the JICS TSMODEL to create. This is the JSON
serialization of a com.netfective.bluage.jac.entities.JACTSModel object.

• Returns a boolean value where true indicates that the creation of elements was successfully
operated in the underlying JICS storage.

Create elements

• Supported method: POST

• Requires authentication and one of the following roles: ROLE_ADMIN, ROLE_SUPER_ADMIN,
ROLE_USER

• Path: /api/services/rest/jicsservice/createElements

• Arguments: a JSON payload that represents the JICS elements to create.

• Returns a boolean value. If the value is 'true', the elements were successfully created in the
underlying JICS storage.

Manage JICS application console 390

AWS Mainframe Modernization User Guide

Update a LIST

• Supported method: POST

• Requires authentication and one of the following roles: ROLE_ADMIN, ROLE_SUPER_ADMIN,
ROLE_USER

• Path: /api/services/rest/jicsservice/updateList

• Arguments: a JSON payload, representing the JICS LIST to update. This is the JSON serialization
of a com.netfective.bluage.jac.entities.JACList object. There's no need to supply
the children of the LIST; the LIST update mechanism won't take the children into account.

• Returns a boolean value. If the value is 'true', the LIST was successfully updated in the underlying
JICS storage.

Updating the LIST 'isActive' flag will propagate to all owned elements of the LIST, that is, all
GROUPS owned by the LIST and all RESOURCES owned by those GROUPS. This is a convenient way
of deactivating a lot of resources with a single operation, over several GROUPS.

Update a GROUP

• Supported method: POST

• Requires authentication and one of the following roles: ROLE_ADMIN, ROLE_SUPER_ADMIN,
ROLE_USER

• Path: /api/services/rest/jicsservice/updateGroup

• Arguments: a JSON payload, representing the JICS GROUP to update. This is the JSON
serialization of a com.netfective.bluage.jac.entities.JACGroup object. There's no
need to supply the children of the GROUP, the GROUP update mechanism won't take this into
account.

• Returns a boolean value. If the value is 'true', the GROUP was successfully updated in the
underlying JICS storage.

Note

Updating the GROUP 'isActive' flag will propagate to all owned elements of the GROUP,
that is, all RESOURCES owned by the GROUP. This is a convenient way of deactivating a lot
of resources with a single operation within a given GROUP.

Manage JICS application console 391

AWS Mainframe Modernization User Guide

Common RESOURCES update considerations

All following endpoints are about updating JICS RESOURCES. Using the groupName field, you can
change the owning GROUP of any JICS RESOURCE, provided the field value points to an existing
GROUP in the underlying JICS storage (otherwise, you will get a BAD REQUEST response (HTTP
STATUS 400) from the endpoint).

Update a TRANSACTION

• Supported method: POST

• Requires authentication and one of the following roles: ROLE_ADMIN, ROLE_SUPER_ADMIN,
ROLE_USER

• Path: /api/services/rest/jicsservice/updateTransaction

• Arguments: a JSON payload, representing the JICS TRANSACTION to update. This is the JSON
serialization of a com.netfective.bluage.jac.entities.JACTransaction object.

• Returns a boolean value. If the value is 'true', the TRANSACTION was successfully updated in the
underlying JICS storage.

Update a PROGRAM

• Supported method: POST

• Requires authentication and one of the following roles: ROLE_ADMIN, ROLE_SUPER_ADMIN,
ROLE_USER

• Path: /api/services/rest/jicsservice/updateProgram

• Arguments: a JSON payload, representing the JICS PROGRAM to update. This is the JSON
serialization of a com.netfective.bluage.jac.entities.JACProgram object.

• Returns a boolean value. If the value is 'true', the PROGRAM was successfully updated in the
underlying JICS storage.

Update a FILE

• Supported method: POST

• Requires authentication and one of the following roles: ROLE_ADMIN, ROLE_SUPER_ADMIN,
ROLE_USER

• Path: /api/services/rest/jicsservice/updateFile

Manage JICS application console 392

AWS Mainframe Modernization User Guide

• Arguments: a JSON payload, representing the JICS FILE to update. This is the JSON serialization
of a com.netfective.bluage.jac.entities.JACFile object.

• Returns a boolean value. If the value is 'true', the FILE was successfully updated in the underlying
JICS storage.

Update a TDQUEUE

• Supported method: POST

• Requires authentication and one of the following roles: ROLE_ADMIN, ROLE_SUPER_ADMIN,
ROLE_USER

• Path: /api/services/rest/jicsservice/updateTDQueue

• Arguments: a JSON payload, representing the JICS TDQUEUE to update. This is the JSON
serialization of a com.netfective.bluage.jac.entities.JACTDQueue object.

• Returns a boolean value. If the value is 'true', the TDQueue was successfully updated in the
underlying JICS storage.

Update a TSMODEL

• Supported method: POST

• Requires authentication and one of the following roles: ROLE_ADMIN, ROLE_SUPER_ADMIN,
ROLE_USER

• Path: /api/services/rest/jicsservice/updateTSModel

• Arguments: a JSON payload, representing the JICS TSMODEL to update. This is the JSON
serialization of a com.netfective.bluage.jac.entities.JACTSModel object.

• Returns a boolean value. If the value is 'true', the TSMODEL was successfully updated in the
underlying JICS storage.

Update elements

• Supported method: POST

• Requires authentication and one of the following roles: ROLE_ADMIN, ROLE_SUPER_ADMIN,
ROLE_USER

• Path: /api/services/rest/jicsservice/updateElements

• Arguments: A JSON payload that represents the elements to update.

Manage JICS application console 393

AWS Mainframe Modernization User Guide

• Returns a boolean value where true indicates that the elements update was successfully
operated in the underlying JICS storage.

Upsert elements

• Supported method: POST

• Requires authentication and one of the following roles: ROLE_ADMIN, ROLE_SUPER_ADMIN,
ROLE_USER

• Path: /api/services/rest/jicsservice/upsertElements

• Arguments: A JSON payload that represents the elements to upsert.

• Returns a boolean value where true indicates that the elements upsert was successfully
operated in the underlying JICS storage.

Retrieve elements

• Supported method: GET

• Requires authentication and one of the following roles: ROLE_ADMIN, ROLE_SUPER_ADMIN,
ROLE_USER

• Path: /api/services/rest/jicsservice/retrieveElements

• Arguments: None

• Returns a list of all serialized JICS resources.

JICS CRUD operation

• Supported method: POST

• Requires authentication and one of the following roles: ROLE_ADMIN, ROLE_SUPER_ADMIN,
ROLE_USER

• Path: /api/services/rest/jicsservice/jicsCrudOperation

• Arguments: a JSON payload that represents the JICS resources you're looking for. This is the
JSON serialization of a
com.netfective.bluage.jac.entities.request.JicsCrudOperationRequest object.

• Returns a JSON payload that represents the response. This is the JSON serialization of a
com.netfective.bluage.jac.entities.request.JicsCrudOperationResponse
object.

Manage JICS application console 394

AWS Mainframe Modernization User Guide

Other

Topics

• JICS server health status

JICS server health status

• Supported method: GET

• Path: /api/services/rest/jicsserver/serverIsUp

• Arguments: None

• Returns: None. An HTTP STATUS 200 response indicates that the server is up and running.

JAC users management endpoints

Use the following endpoints to manage user interactions.

Topics

• Logging a user

• Testing if at least an user exists in the system

• Recording a new user

• User info

• Listing users

• Deleting a user

• Logout the current user

Logging a user

• Supported method: POST

• Path: /api/services/security/servicelogin/login

• Arguments: None

• Returns the JSON serialization of a com.netfective.bluage.jac.entities.SignOn object,
representing the user whose credentials are provided in the current request. The password is
hidden from the view in the returned object. The roles given to the used are being listed.

Manage JICS application console 395

AWS Mainframe Modernization User Guide

Sample response:

{
 "login": "some-admin",
 "password": null,
 "roles": [
 {
 "id": 0,
 "roleName": "ROLE_ADMIN"
 }
]
 }

Testing if at least an user exists in the system

• Supported method: GET

• Path: /api/services/security/servicelogin/hasAccount

• Arguments: None

• Returns the boolean value true if at least one user other than the default super admin user has
been created. Returns false otherwise.

Recording a new user

• Supported method: POST

• Requires authentication and the ROLE_ADMIN role.

• Path: /api/services/security/servicelogin/recorduser

• Arguments: the JSON serialization of a com.netfective.bluage.jac.entities.SignOn
object, representing the user to be added to the storage. The Roles for the user should be
defined, otherwise the user might not be able to use the JAC facility and endpoints.

• Returns the boolean value true if the user was successfully created. Returns false otherwise.

Sample request:

{
 "login": "simpleuser",
 "password": "simplepassword",
 "roles": [

Manage JICS application console 396

AWS Mainframe Modernization User Guide

 {
 "id": 2,
 "roleName": "ROLE_USER"
 }
]
 }

Only the following roles can be used when recording a new user:

• ROLE_ADMIN : can manage JICS resources and users.

• ROLE_USER : can manage JICS resources but not users.

User info

• Supported method: GET

• Path: /api/services/security/servicelogin/userInfo

• Arguments: None

• Returns the username and roles of the currently connected user.

Listing users

• Supported method: GET

• Requires authentication and the ROLE_ADMIN role.

• Path: /api/services/security/servicelogin/listusers

• Arguments: None

• Returns a list of com.netfective.bluage.jac.entities.SignOn, serialized as JSON.

Deleting a user

• Supported method: POST

• Requires authentication and the ROLE_ADMIN role.

• Path: /api/services/security/servicelogin/deleteuser

• Arguments: the JSON serialization of a com.netfective.bluage.jac.entities.SignOn
object that represents the user to be removed from the storage.

• Returns the boolean value true if the user was successfully removed.

Manage JICS application console 397

AWS Mainframe Modernization User Guide

Important

This action cannot be undone. The deleted user won't be able to connect to the JAC
application again.

Logout the current user

• Supported method: GET

• Path: /api/services/security/servicelogout/logout

• Arguments: None

• Returns the JSON message {"success":true} if the current user was successfully logged out.
The related HTTP session will be invalidated.

Data structures for AWS Blu Age user

You can learn about various data structures for AWS Blu Age engine in the following section.

Topics

• Job execution details message structure

• Transaction launch outcome structure

• Transaction launch record outcome structure

• Possible status of a job on a queue

• Submit job and schedule job input

• List of scheduled jobs response

• List of repeating jobs response

Job execution details message structure

Each job execution details will have the following fields:

scriptId

the identifier of the called script.

Data structures 398

AWS Mainframe Modernization User Guide

caller

I.P. address of the caller.

identifier

unique job execution identifier.

startTime

date and time at which the job execution started.

endTime

date and time at which the job execution ended.

status

a status for the job execution. One possible value amongst:

• DONE: job execution ended normally.

• TRIGGERED: job execution triggered but not launched yet.

• RUNNING: job execution is running.

• KILLED: job execution has been killed.

• FAILED: job execution has failed.

executionResult

a message to sum up the outcome of the job execution. This message can either be a simple
message if the job execution is not finished yet or a JSON structure with the following fields:

• exitCode: numeric exit code; negative values indicate failure situations.

• program: latest program launched by the job.

• status: one possible value amongst:

• Error: when exitCode = -1; this corresponds to an (technical) error occurring during job
execution.

• Failed: when exitcode = -2; This corresponds to a failure occurring during a service
program execution (like an ABEND situation).

• Succeeded: when exitCode >= 0;

• stepName: name of the latest step executed in the job.

executionMode

either SYNCHRONOUS or ASYNCHRONOUS, depending on the way the job has been launched.

Data structures 399

AWS Mainframe Modernization User Guide

Sample output:

{
 "scriptId": "INTCALC",
 "caller": "127.0.0.1",
 "identifier": "97d410be-efa7-4bd3-b7b9-d080e5769771",
 "startTime": "06-09-2023 11:42:41",
 "endTime": "06-09-2023 11:42:42",
 "status": "DONE",
 "executionResult": "{ \"exitCode\": -1, \"stepName\": \"STEP15\", \"program\":
 \"CBACT04C\", \"status\": \"Error\" }",
 "executionMode": "ASYNCHRONOUS"
 }

Transaction launch outcome structure

The structure might contain the following fields:

outCome

a string representing the transaction execution outcome. Possible values are:

• Success: transaction execution went to the end properly.

• Failure: transaction execution failed to end properly, some problem(s) were encountered.

commarea

a string representing the COMMAREA final value, as a byte64 encoded byte array. Might be an
empty string.

containerRecord

(Optional) a string representing the CONTAINER's record content as a byte64 encoded byte
array.

serverDescription

May contain information about the server which served the request (for debugging purpose).
Might be an empty string.

abendCode

(Optional) if the program referenced by the launched transaction abended, the abend code
value will be returned as as string in this field.

Data structures 400

AWS Mainframe Modernization User Guide

Sample responses:

Success

{
 "outCome": "Success",
 "commarea": "",
 "serverDescription": ""
 }

Failure

{
 "outCome": "Failure",
 "commarea": "",
 "serverDescription": "",
 "abendCode": "AEIA"
 }

Transaction launch record outcome structure

The structure might contain the following fields:

recordContent

a string representing the COMMAREA's record content as a byte64 encoded byte array.

containerRecord

a string representing the CONTAINER's record content as a byte64 encoded byte array.

serverDescription

May contain information about the server which served the request (for debugging purpose).
Might be an empty string.

Sample responses:

Success

{
 "recordContent": "",
 "serverDescription": ""

Data structures 401

AWS Mainframe Modernization User Guide

}

Possible status of a job on a queue

On a queue, jobs can have the following status:

ACTIVE

The job is currently being run on the queue.

EXECUTION_WAIT

The job is waiting for a thread to be available.

SCHEDULED

Jobs is scheduled for execution at a specific date and time.

HOLD

Job is waiting to be released before being run.

COMPLETED

Job has been executed successfully.

FAILED

Job execution has failed.

UNKNOWN

Status is unknown.

Submit job and schedule job input

The submit job and schedule job input is the JSON serialization of a
com.netfective.bluage.gapwalk.rt.jobqueue.SubmitJobMessage object. The sample
input below exhibits all the fields for such a bean.

Sample input for submit job:

{
 "messageQueueName":null,
 "scheduleDate":null,
 "scheduleTime":null,
 "programName":"PTA0044",

Data structures 402

AWS Mainframe Modernization User Guide

 "programParams":
 {"wmind":"B"},
 "localDataAreaValue":"",
 "userName":"USER1",
 "jobName":"PTA0044",
 "jobNumber":9,
 "jobPriority":5,
 "executionDate":"20181231",
 "jobQueue":"queue1",
 "jobOnHold":false
}

Sample input for schedule job:

{
 "scheduleCron": "*/2 * * * * ?",
 "programName":"LOGPGM",
 "programParams": {
 "cl_sbmjob_param_json": "[\"./output/schedule-job-log.txt\", \"Every 2
 seconds!\"]"
 },
 "localDataAreaValue":"",
 "userName":"PVO",
 "jobName":"LOGGERJOB",
 "jobPriority":5,
 "jobQueue":"queue1",
 "scheduleMisfirePolicy": 4,
 "startTime": "2003/05/04 07:00:00.000 GMT-06:00",
 "endTime": "2003/05/04 07:00:07.000 GMT-06:00"
 }

jobNumber

if the job number is 0, the job number will be automatically generated using the next number in
the job number sequence. That value should be set to 0 (except for testing purpose).

jobPriority

Default job priority in AS400 is 5. Valid range is 0-9, 0 being the highest priority.

jobOnHold

If a job is submitted on hold, it won’t be executed right away but only when somebody
“releases” it. A job can be released using the REST API (/release or /release-all).

Data structures 403

AWS Mainframe Modernization User Guide

scheduleDate and scheduleTime

If these values are not null, the job will be executed at the specified date and time.

Date

Can be provided with format MMddyy or ddMMyyyy (size of the input will determine what
format is used)

Time

Can be provided with format HHmm or HHmmss (size of the input will determine what format
is used)

programParams

Will be passed to the program as a map.

scheduleMisfirePolicy

Defines the strategy used when a trigger is misfired. The following are the possible values:

1. Release the first misfire and discard the other misfires.

2. Submit a job on hold for the first misfire and discard the other misfires.

3. Discard the misfire.

4. Release all misfires. The job queue will run all jobs.

List of scheduled jobs response

This is the structure of the list-jobs job queue endpoint. The submit job message that was used
to submit that job is part of the response. This can be used for tracking or testing / resubmitting
purpose. When a job is completed, the start date and end date will also be populated.

[
 {
 "jobName": "PTA0044",
 "userName": "USER1",
 "jobNumber": 9,
 "jobPriority": 5,
 "status": "HOLD",
 "jobDelay": 0,
 "startDate": null,
 "endDate": null,
 "jobQueue": "queue1",

Data structures 404

AWS Mainframe Modernization User Guide

 "message": {
 "messageQueueName": null,
 "scheduleDate": null,
 "scheduleTime": null,
 "programName": "PTA0044",
 "programParams": {"wmind": "B"},
 "localDataAreaValue": "",
 "userName": "USER1",
 "jobName": "PTA0044",
 "jobNumber": 9,
 "jobPriority": 5,
 "executionDate": "20181231",
 "jobQueue": "queue1",
 "jobOnHold": true,
 "scheduleCron": null,
 "save": false,
 "scheduleMisfirePolicy": 4,
 "omitdates": null
 },
 "executionId": 1,
 "jobScheduledId": 0,
 "jobScheduledAt": null
 },
 {
 "jobName": "PTA0044",
 "userName": "USER1",
 "jobNumber": 9,
 "jobPriority": 5,
 "status": "COMPLETED",
 "jobDelay": 0,
 "startDate": "2022-10-13T22:48:34.025+00:00",
 "endDate": "2022-10-13T22:52:54.475+00:00",
 "jobQueue": "queue1",
 "message": {
 "messageQueueName": null,
 "scheduleDate": null,
 "scheduleTime": null,
 "programName": "PTA0044",
 "programParams": {"wmind": "B"},
 "localDataAreaValue": "",
 "userName": "USER1",
 "jobName": "PTA0044",
 "jobNumber": 9,
 "jobPriority": 5,

Data structures 405

AWS Mainframe Modernization User Guide

 "executionDate": "20181231",
 "jobQueue": "queue1",
 "jobOnHold": true,
 "scheduleCron": "*/20 * * * * ?",
 "save": false,
 "scheduleMisfirePolicy": 4,
 "omitdates": null
 },
 "executionId": 2,
 "jobScheduledId": 0,
 "jobScheduledAt": null
 }
]

List of repeating jobs response

This is the structure of the /schedule/list job queue endpoint.

[
 {
 "id": 1,
 "status": "ACTIVE",
 "jobNumber": 1,
 "userName": "PVO",
 "msg": {
 "messageQueueName": null,
 "scheduleDate": null,
 "scheduleTime": null,
 "startTime": "2024/03/07 21:12:00.000 UTC",
 "endTime": "2024/03/07 21:13:59.000 UTC",
 "programName": "LOGPGM",
 "programParams": {"cl_sbmjob_param_json": "[\"./output/schedule-job-log.txt\",
 \"Every 20 seconds!\"]"},
 "localDataAreaValue": "",
 "userName": "PVO",
 "jobName": "LOGGERJOB",
 "jobNumber": 1,
 "jobScheduleId": 1,
 "jobPriority": 5,
 "executionDate": null,
 "jobQueue": "queue1",
 "jobOnHold": false,
 "scheduleCron": "*/20 * * * * ?",

Data structures 406

AWS Mainframe Modernization User Guide

 "save": false,
 "scheduleMisfirePolicy": 4,
 "omitdates": null
 },
 "lastUpdatedAt": "2024-03-07T21:11:13.282+00:00",
 "lastUpdatedBy": ""
 }
]

Set up AWS Blu Age Runtime (non-managed)

This section explains the steps to set up AWS Blu Age Runtime (non-managed) on your AWS
infrastructure. Before you set up your AWS Blu Age Runtime (non-managed) for applications,
understand the prerequisites, Regions and buckets, and the CloudWatch alarm setup to configure
and manager your runtime environment.

Topics

• AWS Blu Age Runtime prerequisites

• Onboarding AWS Blu Age Runtime

• Infrastructure setup requirements for AWS Blu Age Runtime (non-managed)

• Deploy AWS Blu Age Runtime on Amazon ECS managed by AWS Fargate

• Deploy AWS Blu Age Runtime on Amazon EC2

• Test the PlanetsDemo application

AWS Blu Age Runtime prerequisites

AWS Blu Age Runtime (non-managed) is available in several the section called “AWS Blu Age
release notes” release versions. If you have ongoing modernization projects, you might need
incremental versions of the runtime for implementation and testing purposes. To define your
needs, contact your AWS Blu Age delivery manager.

Before you begin the AWS Blu Age Runtime (non-managed) onboarding process, do the following:

• Make sure that you have an AWS account.

• Make sure that you have a modernized application refactored with AWS Blu Age.

• Choose an AWS Region and one of the compute options that are supported for AWS Blu Age
Runtime (non-managed).

Set up AWS Blu Age Runtime (non-managed) 407

AWS Mainframe Modernization User Guide

• Choose the AWS Blu Age Runtime version that you want to use.

• Review the section called “Infrastructure setup requirements” and validate the additional
components required to run the AWS Blu Age Runtime (non-managed).

Note

If you want to test the features of AWS Blu Age Runtime (non-managed), you can use the
demo application Planets Demo, which you can download from PlanetsDemo-v1.zip.

Onboarding AWS Blu Age Runtime

To get started, create an AWS Support case to request onboarding to access AWS Blu Age Runtime.
Include in your request your AWS account ID, the AWS Region that you want to use, and a compute
choice and runtime version. If you are not sure which version you need, contact your AWS Blu Age
delivery manager.

Note

The AWS Blu Age Runtime is available in two main varieties: alpha pre-releases and official
releases. To determine which release to use, see Get Started on the Blu Insights site, or
contact your AWS Blu Age delivery manager.

Regions and buckets AWS Blu Age Runtime (non-managed) on Amazon EC2

We store the AWS Blu Age Runtime (non-managed) artifacts in different Amazon S3 buckets by
Region and by compute choice. To access the bucket for your AWS Region for AWS Blu Age Runtime
(non-managed) on Amazon EC2, use the name listed in the following table.

Note

This table applies to Amazon EC2 as well as Amazon EC2 instances used in Amazon ECS and
Amazon EKS.

Onboarding AWS Blu Age Runtime 408

https://d3lkpej5ajcpac.cloudfront.net/demo/bluage/PlanetsDemo-v1.zip
https://bluinsights.aws/docs/bluage-runtime-get-started

AWS Mainframe Modernization User Guide

AWS Region Release bucket Pre-release bucket

US East (Ohio) aws-bluage-runtime-artifact
s-055777665268-us-east-2

aws-bluage-runtime-artifact
s-dev-055777665268-us-
east-2

US East (N. Virginia) aws-bluage-runtime-artifact
s-139023371234-us-east-1

aws-bluage-runtime-artifact
s-dev-139023371234-us-
east-1

US West (N. California) aws-bluage-runtime-artifact
s-788454048782-us-west-1

aws-bluage-runtime-artifact
s-dev-788454048782-us-
west-1

US West (Oregon) aws-bluage-runtime-artifact
s-836771190483-us-west-2

aws-bluage-runtime-artifact
s-dev-836771190483-us-
west-2

Europe (Ireland) aws-bluage-runtime-artifact
s-925278190477-eu-west-1

aws-bluage-runtime-artifact
s-dev-925278190477-eu-
west-1

Europe (Paris) aws-bluage-runtime-artifact
s-673009995881-eu-west-3

aws-bluage-runtime-artifact
s-dev-673009995881-eu-
west-3

Europe (Frankfurt) aws-bluage-runtime-artifact
s-485196800481-eu-
central-1

aws-bluage-runtime-artifact
s-dev-485196800481-eu-
central-1

South America (São Paulo) aws-bluage-runtime-artifact
s-737536804457-sa-east-1

aws-bluage-runtime-artifact
s-dev-737536804457-sa-
east-1

Asia Pacific (Tokyo) aws-bluage-runtime-artifact
s-445578176276-ap-
northeast-1

aws-bluage-runtime-artifact
s-dev-445578176276-ap-
northeast-1

Onboarding AWS Blu Age Runtime 409

AWS Mainframe Modernization User Guide

AWS Region Release bucket Pre-release bucket

Asia Pacific (Sydney) aws-bluage-runtime-artifact
s-726160321909-ap-
southeast-2

aws-bluage-runtime-artifact
s-dev-726160321909-ap-
southeast-2

Regions and buckets AWS Blu Age Runtime (non-managed) on Amazon ECS
managed by Fargate

We store the AWS Blu Age Runtime (non-managed) artifacts in different Amazon S3 buckets by
Region and by compute choice. To access the bucket for your AWS Region for AWS Blu Age Runtime
(non-managed) on Amazon ECS managed by Fargate, use the name listed in the following table.

AWS Region Release bucket Pre-release bucket

US East (Ohio) aws-bluage-runtime-fargate-
rel-483416914331-us-east-2

aws-bluage-runtime-fargate-
dev-483416914331-us-east-2

US East (N. Virginia) aws-bluage-runtime-fargate-
rel-308472162679-us-east-1

aws-bluage-runtime-fargate-
dev-308472162679-us-east-1

US West (N. California) aws-bluage-runtime-fargate-
rel-343763094578-us-west-1

aws-bluage-runtime-fargate-
dev-343763094578-us-
west-1

US West (Oregon) aws-bluage-runtime-fargate-
rel-688933007849-us-west-2

aws-bluage-runtime-fargate-
dev-688933007849-us-
west-2

Europe (Ireland) aws-bluage-runtime-fargate-
rel-140138033705-eu-west-1

aws-bluage-runtime-fargate-
dev-140138033705-eu-
west-1

Europe (Paris) aws-bluage-runtime-fargate-
rel-339712948211-eu-west-3

aws-bluage-runtime-fargate-
dev-339712948211-eu-
west-3

Onboarding AWS Blu Age Runtime 410

AWS Mainframe Modernization User Guide

AWS Region Release bucket Pre-release bucket

Europe (Frankfurt) aws-bluage-runtime-fargate-
rel-339712918892-eu-central
-1

aws-bluage-runtime-fargate-
dev-339712918892-eu-
central-1

South America (São Paulo) aws-bluage-runtime-fargate-
rel-767397998881-sa-east-1

aws-bluage-runtime-fargate-
dev-767397998881-sa-east-1

Asia Pacific (Tokyo) aws-bluage-runtime-fargate-
rel-891377400849-ap-
northeast-1

aws-bluage-runtime-fargate-
dev-891377400849-ap-
northeast-1

Asia Pacific (Sydney) aws-bluage-runtime-fargate-
rel-533267435478-ap-
southeast-2

aws-bluage-runtime-fargate-
dev-533267435478-ap-
southeast-2

Using the AWS CLI to list the contents of the bucket

After you are onboarded, you can list the contents of the bucket by running the following AWS CLI
command in a terminal.

aws s3 ls bucket-name

Replace bucket-name with the name of the bucket for your AWS Region from the previous table.

This command returns a list of folders that correspond to different versions of the AWS Blu Age
Runtime (non-managed) runtime, such as the following for a release bucket:

PRE 3.10.0/
PRE 4.0.0/

Or the following for a build bucket:

PRE 4.1.0-alpha.8/
PRE 4.1.0-alpha.9/

Onboarding AWS Blu Age Runtime 411

AWS Mainframe Modernization User Guide

We recommend that you use the latest version available. If that isn't possible, then use the
runtime version that was validated during the application refactoring phase. To list the available
frameworks for a specific version, run the following command:

aws s3 ls s3://bucket-name/version/Framework/

Replace bucket-name with the name of the bucket for your AWS Region and version with the
version you want. The following are two examples.

For a release bucket:

aws s3 ls s3://aws-bluage-runtime-artifacts-139023371234-us-east-1/4.0.0/
Framework/

The command returns a list of frameworks, such as:

2024-04-08 16:11:19 152040176 aws-bluage-runtime-4.0.0.tar.gz
2024-04-08 16:11:50 45 aws-bluage-runtime-4.0.0.tar.gz.checksumSHA256
2024-04-08 16:11:52 176518889 aws-bluage-webapps-4.0.0.tar.gz
2024-04-08 16:12:28 45 aws-bluage-webapps-4.0.0.tar.gz.checksumSHA256

For a build bucket:

aws s3 ls s3://aws-bluage-runtime-artifacts-dev-139023371234-us-
east-1/4.1.0-alpha.9/Framework/

The command returns a list of frameworks, such as:

2024-04-09 20:23:34 152304534 aws-bluage-runtime-4.1.0-alpha.9.tar.gz
2024-04-09 20:24:05 45 aws-bluage-runtime-4.1.0-alpha.9.tar.gz.checksumSHA256
2024-04-09 20:24:07 176262381 aws-bluage-webapps-4.1.0-alpha.9.tar.gz
2024-04-09 20:24:42 45 aws-bluage-webapps-4.1.0-alpha.9.tar.gz.checksumSHA256

Download the framework

You can download the framework for example to upgrade the AWS Blu Age Runtime version on an
existing Amazon EC2 instance.

aws s3 cp s3://bucket-name/version/Framework/ folder-of-your-choice --
recursive

Where:

Onboarding AWS Blu Age Runtime 412

AWS Mainframe Modernization User Guide

folder-of-your-choice

folder path where you'd like to download the framework.

For example: aws s3 cp s3://aws-bluage-runtime-artifacts-139023371234-us-
east-1/4.0.0/Framework/ . --recursive

This command produces the following output:

download: s3://aws-bluage-runtime-artifacts-139023371234-us-east-1/4.0.0/
Framework/aws-bluage-runtime-4.0.0.tar.gz.checksumSHA256 to ./aws-bluage-
runtime-4.0.0.tar.gz.checksumSHA256
download: s3://aws-bluage-runtime-artifacts-139023371234-us-east-1/4.0.0/
Framework/aws-bluage-webapps-4.0.0.tar.gz.checksumSHA256 to ./aws-bluage-
webapps-4.0.0.tar.gz.checksumSHA256
download: s3://aws-bluage-runtime-artifacts-139023371234-us-east-1/4.0.0/Framework/aws-
bluage-webapps-4.0.0.tar.gz to ./aws-bluage-webapps-4.0.0.tar.gz
download: s3://aws-bluage-runtime-artifacts-139023371234-us-east-1/4.0.0/Framework/aws-
bluage-runtime-4.0.0.tar.gz to ./aws-bluage-runtime-4.0.0.tar.gz

You can list the framework files as follows:

ls -l

This command produces the following output:

total 230928
-rw-rw-r-- 1 cloudshell-user cloudshell-user 152040176 Apr 8 16:11 aws-bluage-
runtime-4.0.0.tar.gz
-rw-rw-r-- 1 cloudshell-user cloudshell-user 45 Apr 8 16:11 aws-bluage-
runtime-4.0.0.tar.gz.checksumSHA256
-rw-rw-r-- 1 cloudshell-user cloudshell-user 176518889 Apr 8 16:11 aws-bluage-
webapps-4.0.0.tar.gz
-rw-rw-r-- 1 cloudshell-user cloudshell-user 45 Apr 8 16:12 aws-bluage-
webapps-4.0.0.tar.gz.checksumSHA256

Infrastructure setup requirements for AWS Blu Age Runtime (non-
managed)

This topic describes the minimum infrastructure configuration required to run AWS Blu Age
Runtime (non-managed). The following procedures describe how to set up AWS Blu Age Runtime

Infrastructure setup requirements 413

AWS Mainframe Modernization User Guide

(non-managed) on your compute of choice to deploy a modernized application on the AWS Blu
Age Runtime. The resources that you create must be in an Amazon VPC that has a subnet that is
dedicated to your application domain.

Topics

• Infrastructure requirements

• Amazon EC2 instance types for AWS Blu Age Runtime (on Amazon EC2)

• Running AWS Blu Age Runtime on Amazon EC2

• Running AWS Blu Age Runtime on Amazon ECS on Amazon EC2

• Running AWS Blu Age Runtime on Amazon EKS on Amazon EC2

• Running AWS Blu Age Runtime on Amazon ECS managed by AWS Fargate

Infrastructure requirements

Create a security group

If you plan to work on Amazon EC2 instances on Amazon EKS, skip this procedure because the
Amazon EKS cluster creation process creates a security group on your behalf. Use that security
group in the following procedures instead of creating a new one.

1. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.

2. In the left navigation pane, under Security, choose Security groups.

3. In the central pane, choose Create security group.

4. In the Security group name field, enter M2BluagePrivateLink-SG.

5. In the Inbound rules section, choose Add rule.

6. For Type, choose HTTPS.

7. For Source enter your VPC CIDR.

8. In the Outbound rules section, choose Add rule.

9. For Type, choose HTTPS.

10. For Destination, enter 0.0.0.0/0.

11. Choose Create security group.

Infrastructure setup requirements 414

https://console.aws.amazon.com/vpc/

AWS Mainframe Modernization User Guide

Create an Amazon VPC endpoint

1. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.

2. In the left navigation pane, under Virtual private cloud, choose Endpoints.

3. In the central pane, choose Create endpoint.

4. In the Services section, enter SQS in the search field, and then select the Amazon SQS service
that corresponds to your Region.

5. In the VPC section, select the Amazon VPC that you created in the previous step.

6. In the Subnets section, select the subnet that you created for your application domain.

7. In the Security groups section, select the security group from the previous procedure.

8. Choose Create endpoint.

Create an IAM policy

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. In the left navigation pane, under Access management, choose Policies.

3. In the central pane, choose Create policy.

4. In the Policy editor section, choose JSON.

5. Replace all of the JSON that you see in the editor with the following JSON.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "VisualEditor0",
 "Effect": "Allow",
 "Action": [
 "sqs:GetQueueUrl",
 "sqs:ReceiveMessage",
 "sqs:SendMessage"
],
 "Resource": "*"
 }
]
}

Infrastructure setup requirements 415

https://console.aws.amazon.com/vpc/
https://console.aws.amazon.com/iam/

AWS Mainframe Modernization User Guide

Note

If you need further details to customize your policy, contact your AWS Blu Age delivery
manager or account manager.

6. Choose Next.

7. Enter a name for the policy, then choose Create policy.

Create an IAM role

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. In the left navigation pane, under Access management, choose Roles.

3. In the central pane, choose Create role.

4. In the Use case section, depending on your compute choice, choose one of the following:

• EC2 (for Amazon EC2 and Amazon EKS on Amazon EC2)

• Elastic Container Service and then EC2 Role for Elastic Container Service (for Amazon ECS
on Amazon EC2)

• Elastic Container Service and then Elastic Container Service Task (for Amazon ECS
managed by Fargate)

5. Choose Next.

6. In the search box, enter the name of the policy that you created earlier.

7. Select the checkbox to the left of your policy.

Note

If you can't add a policy, finish creating the role and then update the role to add the
policy.

8. Choose Next.

9. Enter a name for the role, then choose Create role.

Infrastructure setup requirements 416

https://console.aws.amazon.com/iam/

AWS Mainframe Modernization User Guide

Amazon EC2 instance types for AWS Blu Age Runtime (on Amazon EC2)

The following is a list of the Amazon EC2 instance types that you can use for AWS Blu Age Runtime
(on Amazon EC2) when creating Amazon EC2 instances or when defining Amazon EKS worker
nodes.

t3.xlarge
t3.small
t3.large
t2.small
t2.large
r7a.medium
r7a.large
r7a.xlarge
r7a.2xlarge
r7a.4xlarge
r7a.8xlarge
r7a.12xlarge
r7a.16xlarge
r7a.24xlarge
r7a.32xlarge
r7a.48xlarge
r7a.metal-48xl
r7i.large
r7i.xlarge
r7i.2xlarge
r7i.4xlarge
r7i.8xlarge
r7i.12xlarge
r7i.16xlarge
r7i.24xlarge
r7i.48xlarge
r7i.metal-24xl
r7i.metal-48xl
r6i.xlarge
r6i.large
r6i.4xlarge
r6i.2xlarge
r5b.xlarge
r5b.large
r5b.2xlarge
r3.xlarge
m6i.xlarge

Infrastructure setup requirements 417

AWS Mainframe Modernization User Guide

m6i.large
m6i.8xlarge
m6i.4xlarge
m6i.2xlarge
m6i.16xlarge
m5zn.xlarge
m5zn.large
m5zn.3xlarge
m5zn.2xlarge
m5.xlarge
m5.large
m5.8xlarge
m5.4xlarge
m5.2xlarge
m5.16xlarge
m5.12xlarge
c6i.xlarge
c6i.large
c6i.8xlarge
c6i.4xlarge
c6i.2xlarge
c6i.16xlarge
c5.xlarge
c5.large
c5.9xlarge
c5.4xlarge
c5.2xlarge
c5.18xlarge
c5.12xlarge

Running AWS Blu Age Runtime on Amazon EC2

To create an Amazon EC2 instance, use the following steps.

Create an Amazon EC2 instance

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.

2. Choose Launch instance.

3. For Instance type, choose one of the types listed in the section called “Amazon EC2 instance
types for AWS Blu Age Runtime (on Amazon EC2)”.

4. In the Key pair section, either choose an existing key pair or create a new one.

Infrastructure setup requirements 418

https://console.aws.amazon.com/ec2/

AWS Mainframe Modernization User Guide

5. In the Network settings section, choose Select existing security group.

6. For Common security groups, choose M2BluagePrivateLink-SG.

7. Expand the Advanced details section.

8. For IAM instance profile, choose the IAM role that you created earlier.

9. Choose Launch instance.

Install the application on the Amazon EC2 instance

1. When the state of the Amazon EC2 instance changes to Running, connect to the instance.

2. Install the following software components on the instance:

• Java Runtime Environment (JRE) 17.

• Apache Tomcat 10.

• AWS Blu Age Runtime (on Amazon EC2). Install the AWS Blu Age runtime at the root of
Apache Tomcat installation folder (some files will be added while others will be overwritten).

To install the additional webapps delivered alongside the AWS Blu Age Runtime archive, set
up a secondary instance of the Apache Tomcat server, and decompress the webapps archive at
that location.

Running AWS Blu Age Runtime on Amazon ECS on Amazon EC2

1. Create an Amazon ECS cluster, with Amazon EC2 instances as an underlying infrastructure.
See Getting started with Windows on Amazon EC2 in the Amazon Elastic Container Service
Developer Guide.

2. Specify the IAM role that you created in the previous steps.

3. Choose one of the instance types listed in the section called “Amazon EC2 instance types for
AWS Blu Age Runtime (on Amazon EC2)”.

4. In Network settings for Amazon EC2 instances, choose the security group that you created in
the previous steps.

Infrastructure setup requirements 419

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/getting-started-ecs-ec2-v2.html#getting-started-ec2-cluster-v2

AWS Mainframe Modernization User Guide

Running AWS Blu Age Runtime on Amazon EKS on Amazon EC2

1. Create an Amazon EKS cluster. See Creating an Amazon EKS cluster in the Amazon EKS User
Guide.

2. As mentioned previously, a security group is created on your behalf. You can use that security
group when you create the Amazon VPC endpoint.

3. Create a node group. Specify the IAM role that you created in the previous steps.

4. Choose one of the instance types listed in the section called “Amazon EC2 instance types for
AWS Blu Age Runtime (on Amazon EC2)”.

5. Amazon EKS will automatically assign the security group to the spawned Amazon EC2
instances.

Running AWS Blu Age Runtime on Amazon ECS managed by AWS Fargate

Create an Amazon ECS cluster with AWS Fargate (serverless) as an underlying infrastructure. See
Getting started with Fargate in the Amazon Elastic Container Service Developer Guide.

Deploy AWS Blu Age Runtime on Amazon ECS managed by AWS Fargate

You can use the topics in this section to learn how to set up AWS Blu Age Runtime on Amazon ECS
managed by AWS Fargate, how to update the runtime version, how to monitor your deployment
by using Amazon CloudWatch alarms, and how to add licensed dependencies. Upgrading to a
new AWS Blu Age Runtime version can be achieved by rebuilding and redeploying your Docker
image. Additionally, you can set up Amazon CloudWatch alarms to monitor application logs
and receive notifications for errors. For applications requiring licensed dependencies like Oracle
databases or IBM MQ, you can include the necessary JAR files in your Docker image and configure
the appropriate settings.

Topics

• Set up AWS Blu Age Runtime on Amazon ECS managed by AWS Fargate

• Upgrade the AWS Blu Age Runtime on Amazon ECS managed by AWS Fargate

• Set up Amazon CloudWatch alarms for AWS Blu Age Runtime on Amazon ECS managed by AWS
Fargate

• Set up licensed dependencies in AWS Blu Age Runtime on Amazon ECS managed by AWS Fargate

Deploy AWS Blu Age Runtime on Amazon ECS 420

https://docs.aws.amazon.com/eks/latest/userguide/create-cluster.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/getting-started-fargate.html

AWS Mainframe Modernization User Guide

Set up AWS Blu Age Runtime on Amazon ECS managed by AWS Fargate

This topic explains how to set up and deploy the PlanetsDemo sample application using AWS Blu
Age Runtime on Amazon ECS managed by AWS Fargate.

AWS Blu Age Runtime on Amazon ECS managed by AWS Fargate is available for Linux/X86.

Topics

• Prerequisites

• Setting up

• Test the deployed application

Prerequisites

Before you begin, make sure you complete the following prerequisites.

• Configure the AWS CLI by following the steps in Configuring the AWS CLI.

• Complete the section called “AWS Blu Age Runtime prerequisites” and the section called
“Onboarding AWS Blu Age Runtime ”.

• Download the AWS Blu Age Runtime on Amazon ECS managed by AWS Fargate binaries. For
instructions, see the section called “Onboarding AWS Blu Age Runtime ”.

• Download the Apache Tomcat 10 binaries.

• Download the PlanetsDemo application archive.

• Create an Amazon Aurora PostgreSQL database for JICS, and run the PlanetsDemo-v1/jics/
sql/initJics.sql query on it. For information about how to create an Amazon Aurora
PostgreSQL database see, Creating and connecting to an Aurora PostgreSQL DB cluster.

Setting up

To set up the PlanetsDemo sample application, complete the following steps.

1. After downloading the Apache Tomcat binaries, extract the contents, and go to the conf
folder. Open the catalina.properties file for editing and replace the line that starts with
common.loader with the following line.

common.loader="${catalina.base}/lib","${catalina.base}/lib/
.jar","${catalina.home}/lib","${catalina.home}/lib/.jar","${catalina.home}/

Deploy AWS Blu Age Runtime on Amazon ECS 421

https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-configure.html
https://d3lkpej5ajcpac.cloudfront.net/demo/bluage/PlanetsDemo-v1.zip
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/CHAP_GettingStartedAurora.CreatingConnecting.AuroraPostgreSQL.html#CHAP_GettingStarted.AuroraPostgreSQL.CreateDBCluster

AWS Mainframe Modernization User Guide

shared","${catalina.home}/shared/*.jar","${catalina.home}/extra","${catalina.home}/
extra/*.jar"

2. Compress the Apache Tomcat folder by using the tar command to build a `tar.gz` archive.

3. Prepare a Dockerfile to build your custom image based on the provided runtime binaries and
Apache Tomcat server binaries. See the following example Dockerfile. The goal is to install
Apache Tomcat 10, followed by AWS Blu Age Runtime (for Amazon ECS managed by AWS
Fargate) extracted at the root of Apache Tomcat 10 installation directory, and then to install
the sample modernized application named PlanetsDemo.

Note

The contents of install-gapwalk.sh and install-app.sh scripts, which are used in this
example Dockerfile, are listed after the Dockerfile.

FROM --platform=linux/x86_64 amazonlinux:2

RUN mkdir -p /workdir/apps
WORKDIR /workdir
COPY install-gapwalk.sh .
COPY install-app.sh .
RUN chmod +x install-gapwalk.sh
RUN chmod +x install-app.sh

Install Java and AWS CLI v2-y
RUN yum install sudo java-17-amazon-corretto unzip tar -y
RUN sudo yum remove awscli -y
RUN curl "https://awscli.amazonaws.com/awscli-exe-linux-x86_64.zip" -o
 "awscliv2.zip"
RUN sudo unzip awscliv2.zip
RUN sudo ./aws/install

#·Installation dir
RUN mkdir -p /usr/local/velocity/installation/gapwalk
Copy PlanetsDemo archive to a dedicated apps dir
COPY PlanetsDemo-v1.zip /workdir/apps/

Copy resources (tomcat, blu age runtime) to installation dir
COPY tomcat.tar.gz /usr/local/velocity/installation/tomcat.tar.gz

Deploy AWS Blu Age Runtime on Amazon ECS 422

https://docs.docker.com/engine/reference/builder/

AWS Mainframe Modernization User Guide

COPY aws-bluage-on-fargate-runtime-4.x.x.tar.gz /usr/local/velocity/installation/
gapwalk/gapwalk-bluage-on-fargate.tar.gz

run relevant installation scripts
RUN ./install-gapwalk.sh
RUN ./install-app.sh

EXPOSE 8080
EXPOSE 8081
...

Run Command to start Tomcat server
CMD ["sh", "-c", "sudo /bluage-on-fargate/tomcat.gapwalk/velocity/startup.sh
 $ECS_CONTAINER_METADATA_URI_V4 $AWS_CONTAINER_CREDENTIALS_RELATIVE_URI"]

The following are the contents of install-gapwalk.sh.

#!/bin/sh

Vars
TEMP_DIR=/bluage-on-fargate/tomcat.gapwalk/temp

Install
echo "Installing Gapwalk and Tomcat"
sudo rm -rf /bluage-on-fargate
mkdir -p ${TEMP_DIR}
Copy Blu Age runtime and tomcat archives to temporary extraction dir
sudo cp /usr/local/velocity/installation/gapwalk/gapwalk-bluage-on-fargate.tar.gz
 ${TEMP_DIR}
sudo cp /usr/local/velocity/installation/tomcat.tar.gz ${TEMP_DIR}
#·Create velocity dir
mkdir -p /bluage-on-fargate/tomcat.gapwalk/velocity
#·Extract tomcat files
tar -xvf ${TEMP_DIR}/tomcat.tar.gz -C ${TEMP_DIR}
Copy all tomcat files to velocity dir
cp -fr ${TEMP_DIR}/apache-tomcat-10.x.x/* /bluage-on-fargate/tomcat.gapwalk/
velocity
Remove default webapps of Tomcat
rm -f /bluage-on-fargate/tomcat.gapwalk/velocity/webapps/*
Extract Blu Age runtime at velocity dir
tar -xvf ${TEMP_DIR}/gapwalk-bluage-on-fargate.tar.gz -C /bluage-on-fargate/
tomcat.gapwalk
Remove temporary extraction dir

Deploy AWS Blu Age Runtime on Amazon ECS 423

AWS Mainframe Modernization User Guide

sudo rm -rf ${TEMP_DIR}

The following are the contents of install-app.sh.

#!/bin/sh

APP_DIR=/workdir/apps
TOMCAT_GAPWALK_DIR=/bluage-on-fargate/tomcat.gapwalk

unzip ${APP_DIR}/PlanetsDemo-v1.zip -d ${APP_DIR}
cp -r ${APP_DIR}/webapps/* ${TOMCAT_GAPWALK_DIR}/velocity/webapps/
cp -r ${APP_DIR}/config/* ${TOMCAT_GAPWALK_DIR}/velocity/config/

4. Provide the connection information for the database that you created as part of the
prerequisites in the following snippet in the application-main.yml file, which is located
in the {TOMCAT_GAPWALK_DIR}/config folder. For more information see, Creating and
connecting to an Aurora PostgreSQL DB cluster.

datasource:
 jicsDs:
 driver-class-name :
 url:
 username:
 password:
 type :

5. Build and push the image to your Amazon ECR repository. For instructions, see Pushing a
Docker image in the Amazon Elastic Container Registry User Guide.

6. Open the console at https://console.aws.amazon.com/ecs/v2.

7. In the left navigation pane, choose Task definitions.

8. For Launch type, choose AWS Fargate.

9. Select the task role that you created as part of the section called “Infrastructure setup
requirements”.

10. Attach your image to the container.

11. Finish filling out the form, and then choose Create.

12. In the left navigation pane, choose Clusters, then choose your cluster from the list.

13. On the details page of your cluster, on the Services tab, choose Create.

14. Select the task definition.

Deploy AWS Blu Age Runtime on Amazon ECS 424

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/CHAP_GettingStartedAurora.CreatingConnecting.AuroraPostgreSQL.html#CHAP_GettingStarted.AuroraPostgreSQL.CreateDBCluster
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/CHAP_GettingStartedAurora.CreatingConnecting.AuroraPostgreSQL.html#CHAP_GettingStarted.AuroraPostgreSQL.CreateDBCluster
https://docs.aws.amazon.com/AmazonECR/latest/userguide/docker-push-ecr-image.html
https://docs.aws.amazon.com/AmazonECR/latest/userguide/docker-push-ecr-image.html
https://console.aws.amazon.com/ecs/v2

AWS Mainframe Modernization User Guide

15. Expand the Networking section, and configure the VPC, subnets, and security group that you
created as part of the section called “Infrastructure setup requirements”.

16. Deploy your Amazon ECS service.

If the deployment fails, check the logs. To find them, go to the task page in Amazon ECS managed
by AWS Fargate, and then choose the Logs tab. If you find error codes that start with a C followed
by a number, such as CXXXX, note the error messages. For example, error code C5102 is a common
error indicating an incorrect infrastructure configuration. You can also navigate inside your running
task and run a few commands, similar to AWS Blu Age Runtime (on Amazon EC2). For more
information, see Using Amazon ECS Exec for debugging in the Amazon Elastic Container Service
Developer Guide.

To open an interactive shell, run the following command from your local machine.

aws ecs execute-command --cluster your_cluster_name --container your_container_name --
task task_id --interactive --command /bin/sh

Test the deployed application

For an example of how to test the PlanetsDemo application, see the section called “Test the
PlanetsDemo application”.

Upgrade the AWS Blu Age Runtime on Amazon ECS managed by AWS Fargate

This guide describes how to upgrade the AWS Blu Age Runtime on Amazon ECS managed by AWS
Fargate.

Topics

• Prerequisites

• Upgrade the AWS Blu Age Runtime

Prerequisites

Before you begin, make sure you meet the following prerequisites.

• Complete the section called “AWS Blu Age Runtime prerequisites” and the section called
“Onboarding AWS Blu Age Runtime ”.

Deploy AWS Blu Age Runtime on Amazon ECS 425

url-ecs-devecs-exec.html

AWS Mainframe Modernization User Guide

• Download the version of the AWS Blu Age Runtime that you want to upgrade to. For more
information, see the section called “Onboarding AWS Blu Age Runtime ”. The framework consists
of two binary files: aws-bluage-runtime-x.x.x.x.tar.gz and aws-bluage-webapps-
x.x.x.x.tar.gz.

Upgrade the AWS Blu Age Runtime

Complete the following steps to upgrade the AWS Blu Age Runtime.

1. Rebuild your Docker image with the desired AWS Blu Age Runtime version. For instructions, see
the section called “Set up AWS Blu Age Runtime on Amazon ECS”.

2. Push your Docker image to your Amazon ECR repository.

3. Stop and restart your Amazon ECS service.

4. Verify the logs.

The AWS Blu Age Runtime is successfully upgraded.

Set up Amazon CloudWatch alarms for AWS Blu Age Runtime on Amazon ECS
managed by AWS Fargate

You can set up CloudWatch to have more visible notifications whenever your deployed applications
encounter exceptions. This also helps you to receive your application log, and add an alarm to warn
you of possible errors.

Alarm setup

With CloudWatch logs, you can configure any number of metrics and alarms, depending on your
application and your needs.

Specifically, you can set up proactive alarms for usage alerts directly during your Amazon ECS
cluster creation, so that you get notified when errors occur. To highlight errors in the connection to
the AWS Blu Age control system, add a metric concerning the string "Error C" in the logs. You can
then define an alarm that reacts to this metric.

Set up licensed dependencies in AWS Blu Age Runtime on Amazon ECS managed
by AWS Fargate

This topic describes how to set up additional licensed dependencies that you can use with AWS Blu
Age Runtime on Amazon ECS managed by AWS Fargate.

Deploy AWS Blu Age Runtime on Amazon ECS 426

AWS Mainframe Modernization User Guide

Topics

• Prerequisites

• Overview

Prerequisites

Before you begin, make sure you complete the following prerequisites.

• Complete the section called “AWS Blu Age Runtime prerequisites” and the section called
“Onboarding AWS Blu Age Runtime ”.

• Get the following dependencies from their source.

Oracle database

Supply an Oracle database driver. For example, ojdbc11-23.3.0.23.09.jar.

IBM MQ connection

Supply an IBM MQ client. For example, com.ibm.mq.jakarta.client-9.3.4.1.jar.

With this dependency version, also supply the following transitive dependencies:

• bcprov-jdk15to18-1.76.jar

• bcpkix-jdk15to18-1.76.jar

• bcutil-jdk15to18-1.76.jar

DDS Printer files

Supply the Jasper reports library. For example, jasperreports-6.16.0.jar, but a more recent version
might be compatible.

With this dependency version, also supply the following transitive dependencies:

• castor-core-1.4.1.jar

• castor-xml-1.4.1.jar

• commons-digester-2.1.jar

• ecj-3.21.0.jar

Deploy AWS Blu Age Runtime on Amazon ECS 427

https://www.oracle.com/database/technologies/appdev/jdbc-downloads.html
https://www.ibm.com/support/pages/mqc91-ibm-mq-clients
https://community.jaspersoft.com/project/jasperreports-library

AWS Mainframe Modernization User Guide

• itext-2.1.7.js8.jar

• javax.inject-1.jar

• jcommon-1.0.23.jar

• jfreechart-1.0.19.jar

• commons-beanutils-1.9.4.jar

• commons-collections-3.2.2.jar

Overview

To install the dependencies, complete the following steps.

1. Copy any of the above dependencies as required to your Docker image build folder.

2. If your JICS or Blusam database is hosted on Oracle, provide the Oracle database driver in
your-tomcat-path/extra.

3. On your Dockerfile, copy these dependencies to your-tomcat-path/extra.

4. Build your Docker image, and then push it to Amazon ECR.

5. Stop and restart your Amazon ECS service.

6. Check the logs.

Deploy AWS Blu Age Runtime on Amazon EC2

You can learn how to set up AWS Blu Age Runtime (non-managed) on Amazon EC2, how to update
the runtime version, how to monitor your deployment by using Amazon CloudWatch alarms, and
how to add licensed dependencies with the topics in this section. These instructions are applicable
when you create Amazon EC2 instances as well as when you use Amazon ECS on Amazon EC2 or
Amazon EKS on Amazon EC2.

Topics

• Set up AWS Blu Age Runtime (non-managed) on Amazon EC2

• Use containers in Amazon EC2 for Amazon ECS and Amazon EKS

• Upgrade the AWS Blu Age Runtime on Amazon EC2

• Set up AWS Blu Age Runtime (on Amazon EC2) Amazon CloudWatch alarms

• Set up licensed dependencies in AWS Blu Age Runtime on Amazon EC2

Deploy AWS Blu Age Runtime on Amazon EC2 428

AWS Mainframe Modernization User Guide

Set up AWS Blu Age Runtime (non-managed) on Amazon EC2

This topic explains how to set up and deploy the PlanetsDemo sample application using AWS Blu
Age Runtime (non-managed) on Amazon EC2.

Topics

• Prerequisites

• Setting up

• Test the deployed application

Prerequisites

Before you begin, make sure you complete the following prerequisites.

• Configure the AWS CLI by following the steps in Configuring the AWS CLI.

• Complete the section called “AWS Blu Age Runtime prerequisites” and the section called
“Onboarding AWS Blu Age Runtime ”.

• Create an Amazon EC2 instance using one of the supported instance types. For more
information, see Get started with Amazon EC2 Linux instances.

• Make sure you can connect to the Amazon EC2 instance successfully, for example by using SSM.

• Download and extract AWS Blu Age Runtime (on Amazon EC2) at your-tomcat-path/*. Make
sure to place the bluage.bin file exactly in the location specified by the CATALINA_HOME
environment variable described under CATALINA_HOME and CATALINA_BASE in the Apache
Tomcat documentation. For instructions on how to retrieve the AWS Blu Age Runtime, see the
section called “Onboarding AWS Blu Age Runtime ”.

• Download the PlanetsDemo application archive.

• Unzip the archive and upload the application to an Amazon S3 bucket of your choice.

• Create an Amazon Aurora PostgreSQL database for JICS, and run the PlanetsDemo-v1/jics/
sql/initJics.sql query on it. For information about how to create an Amazon Aurora
PostgreSQL database, see Creating and connecting to an Aurora PostgreSQL DB cluster.

Setting up

To set up the PlanetsDemo sample application, complete the following steps.

Deploy AWS Blu Age Runtime on Amazon EC2 429

https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-configure.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EC2_GetStarted.html
https://tomcat.apache.org/tomcat-8.5-doc/introduction.html#CATALINA_HOME_and_CATALINA_BASE
https://d3lkpej5ajcpac.cloudfront.net/demo/bluage/PlanetsDemo-v1.zip
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/CHAP_GettingStartedAurora.CreatingConnecting.AuroraPostgreSQL.html#CHAP_GettingStarted.AuroraPostgreSQL.CreateDBCluster

AWS Mainframe Modernization User Guide

1. Connect to your Amazon EC2 instance and go to the conf folder under your Apache Tomcat
10 installation folder. Open the catalina.properties file for editing and replace the line
that starts with common.loader with the following line.

common.loader="${catalina.base}/lib","${catalina.base}/lib/
.jar","${catalina.home}/lib","${catalina.home}/lib/.jar","${catalina.home}/
shared","${catalina.home}/shared/*.jar","${catalina.home}/extra","${catalina.home}/
extra/*.jar"

2. Navigate to the <your-tomcat-path>/webapps folder.

3. Copy the PlanetsDemo binaries available at PlanetsDemo-v1/webapps/ folder from the
Amazon S3 bucket using the following command.

aws s3 cp s3://path-to-demo-app-webapps/ . --recursive

Note

Replace path-to-demo-app-webapps with the correct Amazon S3 URI for the bucket
where you previously unzipped the PlanetsDemo archive.

4. Copy the content of PlanetsDemo-v1/config/ folder to <your-tomcat-path>/config/.

5. Provide the connection information for the database that you created as part of the
prerequisites in the following snippet in the application-main.yml file. For more
information see, Creating and connecting to an Aurora PostgreSQL DB cluster.

datasource:
 jicsDs:
 driver-class-name :
 url:
 username:
 password:
 type :

6. Start your Apache Tomcat server and verify the logs.

your-tomcat-path/startup.sh

tail -f your-tomcat-path/logs/catalina.log

Deploy AWS Blu Age Runtime on Amazon EC2 430

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/CHAP_GettingStartedAurora.CreatingConnecting.AuroraPostgreSQL.html#CHAP_GettingStarted.AuroraPostgreSQL.CreateDBCluster

AWS Mainframe Modernization User Guide

If you find error codes that start with a C followed by a number, such as CXXXX, note the
error messages. For example, error code C5102 is a common error indicating an incorrect
infrastructure configuration.

Test the deployed application

For an example of how to test the PlanetsDemo application, see the section called “Test the
PlanetsDemo application”.

Use containers in Amazon EC2 for Amazon ECS and Amazon EKS

This topic explains how to set up and deploy the PlanetsDemo sample application using AWS Blu
Age Runtime (non-managed) on Amazon EC2 as a container.

Topics

• Prerequisites

• Setting up

• Test the deployed application

Prerequisites

Before you begin, make sure you complete the following prerequisites.

• Configure the AWS CLI by following the steps in Configuring the AWS CLI.

• Complete the section called “AWS Blu Age Runtime prerequisites” and the section called
“Onboarding AWS Blu Age Runtime ”.

• Download AWS Blu Age Runtime (on Amazon EC2). For instructions on how to retrieve the
runtime, see the section called “Onboarding AWS Blu Age Runtime ”.

• Download the PlanetsDemo application archive.

• Create an Amazon Aurora PostgreSQL database for JICS, and run the PlanetsDemo-v1/jics/
sql/initJics.sql query on it. For information about how to create an Amazon Aurora
PostgreSQL database, see Creating and connecting to an Aurora PostgreSQL DB cluster.

Setting up

To set up the PlanetsDemo sample application, complete the following steps.

Deploy AWS Blu Age Runtime on Amazon EC2 431

https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-configure.html
https://d3lkpej5ajcpac.cloudfront.net/demo/bluage/PlanetsDemo-v1.zip
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/CHAP_GettingStartedAurora.CreatingConnecting.AuroraPostgreSQL.html#CHAP_GettingStarted.AuroraPostgreSQL.CreateDBCluster

AWS Mainframe Modernization User Guide

1. Prepare a Dockerfile to build your custom image based on the provided runtime binaries and
Apache Tomcat server binaries. See the following example Dockerfile. The goal is to install
Apache Tomcat 10, followed by AWS Blu Age Runtime (on Amazon EC2) extracted at the root
of the Apache Tomcat 10 installation directory, and then to install the sample modernized
application named PlanetsDemo. The install-gapwalk.sh and install-app.sh scripts
that are used in this example Dockerfile are listed after the Dockerfile.

FROM --platform=linux/x86_64 amazonlinux:2

RUN mkdir -p /workdir/apps
WORKDIR /workdir
COPY install-gapwalk.sh .
COPY install-app.sh .
RUN chmod +x install-gapwalk.sh
RUN chmod +x install-app.sh

Install Java and AWS CLI v2-y
RUN yum install sudo java-17-amazon-corretto unzip tar -y
RUN sudo yum remove awscli -y
RUN curl "https://awscli.amazonaws.com/awscli-exe-linux-x86_64.zip" -o
 "awscliv2.zip"
RUN sudo unzip awscliv2.zip
RUN sudo ./aws/install

#·Installation dir
RUN mkdir -p /usr/local/velocity/installation/gapwalk

Copy PlanetsDemo archive to a dedicated apps dir
COPY PlanetsDemo-v1.zip /workdir/apps/

Copy resources (tomcat, blu age runtime) to installation dir
COPY tomcat.tar.gz /usr/local/velocity/installation/tomcat.tar.gz
COPY aws-bluage-runtime-4.x.x.tar.gz /usr/local/velocity/installation/gapwalk/
gapwalk.tar.gz

run relevant installation scripts
RUN ./install-gapwalk.sh
RUN ./install-app.sh

EXPOSE 8080
EXPOSE 8081
...

Deploy AWS Blu Age Runtime on Amazon EC2 432

https://docs.docker.com/engine/reference/builder/

AWS Mainframe Modernization User Guide

WORKDIR /bluage/tomcat.gapwalk/velocity
Run Command to start Tomcat server
CMD ["sh", "-c", "sudo bin/catalina.sh run"]

The following are the contents of install-gapwalk.sh.

#!/bin/sh

Vars
TEMP_DIR=/bluage/tomcat.gapwalk/temp

Install
echo "Installing Gapwalk and Tomcat"
sudo rm -rf /bluage
mkdir -p ${TEMP_DIR}
Copy Blu Age runtime and tomcat archives to temporary extraction dir
sudo cp /usr/local/velocity/installation/gapwalk/gapwalk-bluage.tar.gz ${TEMP_DIR}
sudo cp /usr/local/velocity/installation/tomcat.tar.gz ${TEMP_DIR}
Create velocity dir
mkdir -p /bluage/tomcat.gapwalk/velocity
Extract tomcat files
tar -xvf ${TEMP_DIR}/tomcat.tar.gz -C ${TEMP_DIR}
Copy all tomcat files to velocity dir
cp -fr ${TEMP_DIR}/apache-tomcat-10.x.x/* /bluage/tomcat.gapwalk/velocity
Remove default webapps of Tomcat
rm -f /bluage/tomcat.gapwalk/velocity/webapps/*
Extract Blu Age runtime at velocity dir
tar -xvf ${TEMP_DIR}/gapwalk-bluage.tar.gz -C /bluage/tomcat.gapwalk
Remove temporary extraction dir
sudo rm -rf ${TEMP_DIR}

The following are the contents of install-app.sh.

#!/bin/sh

APP_DIR=/workdir/apps
TOMCAT_GAPWALK_DIR=/bluage/tomcat.gapwalk

unzip ${APP_DIR}/PlanetsDemo-v1.zip -d ${APP_DIR}
cp -r ${APP_DIR}/webapps/* ${TOMCAT_GAPWALK_DIR}/velocity/webapps/
cp -r ${APP_DIR}/config/* ${TOMCAT_GAPWALK_DIR}/velocity/config/

Deploy AWS Blu Age Runtime on Amazon EC2 433

AWS Mainframe Modernization User Guide

2. Provide the connection information for the database that you created as part of the
prerequisites in the following snippet in the application-main.yml file, which is located
in the {TOMCAT_GAPWALK_DIR}/config folder. For more information see, Creating and
connecting to an Aurora PostgreSQL DB cluster.

datasource:
 jicsDs:
 driver-class-name :
 url:
 username:
 password:
 type :

3. Build and push the image to your Amazon ECR repository. For instructions, see Pushing a
Docker image in the Amazon Elastic Container Registry User Guide. Then, depending on your
situation, create an Amazon EKS pod or an Amazon ECS task definition using your Amazon
ECR image and deploy it to your cluster. For example, see Creating a task definition using
the console in the Amazon Elastic Container Service Developer Guide and Deploy a sample
application in the Amazon EKS User Guide.

Test the deployed application

For an example of how to test the PlanetsDemo application, see the section called “Test the
PlanetsDemo application”.

Upgrade the AWS Blu Age Runtime on Amazon EC2

This guide describes how to upgrade the AWS Blu Age Runtime on Amazon EC2.

Topics

• Prerequisites

• Upgrade the AWS Blu Age Runtime in the Amazon EC2 instance

• Upgrade the AWS Blu Age Runtime in a container

Prerequisites

Before you begin, make sure you meet the following prerequisites.

Deploy AWS Blu Age Runtime on Amazon EC2 434

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/CHAP_GettingStartedAurora.CreatingConnecting.AuroraPostgreSQL.html#CHAP_GettingStarted.AuroraPostgreSQL.CreateDBCluster
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/CHAP_GettingStartedAurora.CreatingConnecting.AuroraPostgreSQL.html#CHAP_GettingStarted.AuroraPostgreSQL.CreateDBCluster
https://docs.aws.amazon.com/AmazonECR/latest/userguide/docker-push-ecr-image.html
https://docs.aws.amazon.com/AmazonECR/latest/userguide/docker-push-ecr-image.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/create-task-definition.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/create-task-definition.html
https://docs.aws.amazon.com/eks/latest/userguide/sample-deployment.html
https://docs.aws.amazon.com/eks/latest/userguide/sample-deployment.html

AWS Mainframe Modernization User Guide

• To check if there are specific instructions for your version, see the section called “Upgrading AWS
Blu Age”.

• Complete the section called “AWS Blu Age Runtime prerequisites” and the section called
“Onboarding AWS Blu Age Runtime ”.

• Ensure that you have an Amazon EC2 instance that contains the latest AWS Blu Age Runtime. For
more information, see Get started with Amazon EC2 Linux instances.

• Make sure you can connect to the Amazon EC2 instance successfully, for example, by using SSM.

• Download the version of the AWS Blu Age Runtime that you want to upgrade to. For more
information, see the section called “ Set up AWS Blu Age Runtime (non-managed)” The
framework consists of two binary files: aws-bluage-runtime-x.x.x.x.tar.gz and aws-
bluage-webapps-x.x.x.x.tar.gz.

Upgrade the AWS Blu Age Runtime in the Amazon EC2 instance

Complete the following steps to upgrade the AWS Blu Age Runtime.

1. Connect to your Amazon EC2 instance and change the user to su by running the following
command.

sudo su

You need superuser privilege to run commands in this tutorial.

2. Create two folders, one for each binary file.

3. Name each folder with the same name as the binary file.

4. Copy each binary file to the corresponding folder.

Warning

Extracting each binary produces a folder with the same name. Therefore, if you extract
both binary files at the same location one after another, you will overwrite the content.

5. To extract the binaries, use the following commands. Run the commands in each folder.

tar xvf aws-bluage-runtime-x.x.x.x.tar.gz
tar xvf aws-bluage-webapps-x.x.x.x.tar.gz

6. Stop the Apache Tomcat services by using the following commands.

Deploy AWS Blu Age Runtime on Amazon EC2 435

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EC2_GetStarted.html

AWS Mainframe Modernization User Guide

systemctl stop tomcat.service
systemctl stop tomcat-webapps.service

7. Replace the content of <your-tomcat-path>/shared/ with the content of aws-bluage-
runtime-x.x.x.x/velocity/shared/.

8. Replace <your-tomcat-path>/webapps/gapwalk-application.war with aws-bluage-
runtime-x.x.x.x/velocity/webapps/gapwalk-application.war.

9. Replace the war files in <your-tomcat-path>/webapps/, namely bac.war and jac.war,
with the same files from aws-bluage-webapps-x.x.x.x/velocity/webapps/.

10. Start the Apache Tomcat services by running the following commands.

systemctl start tomcat.service
systemctl start tomcat-webapps.service

11. Check the logs.

To check the status of the deployed application, run the following commands.

curl http://localhost:8080/gapwalk-application/

The following message should appear.

Jics application is running

curl http://localhost:8181/jac/api/services/rest/jicsservice/

The following message should appear.

Jics application is running

curl http://localhost:8181/bac/api/services/rest/bluesamserver/serverIsUp

The response should be empty.

The AWS Blu Age runtime is successfully upgraded.

Deploy AWS Blu Age Runtime on Amazon EC2 436

AWS Mainframe Modernization User Guide

Upgrade the AWS Blu Age Runtime in a container

Complete the following steps to upgrade the AWS Blu Age Runtime.

1. Rebuild your Docker image with the desired AWS Blu Age Runtime version. For instructions, see
the section called “Set up AWS Blu Age Runtime (non-managed) on Amazon EC2”.

2. Push your Docker image to your Amazon ECR repository.

3. Stop and restart your Amazon ECS or Amazon EKS service.

4. Check the logs.

The AWS Blu Age Runtime is successfully upgraded.

Set up AWS Blu Age Runtime (on Amazon EC2) Amazon CloudWatch alarms

You can set up CloudWatch to receive your application log and add an alarm to warn you of
possible errors. This allows you to have more visible notifications whenever your deployed
applications encounter exceptions. The following sections help you understand and learn about the
configuration of CloudWatch logging and alarm setup.

Deployment of CloudWatch logging

By default, the application-main.yml file includes a reference to another logging config file
named logback-cloudwatch.yml.

logging:
 config: classpath:logback-cloudwatch.xml

Both files are in the config folder and this is how CloudWatch logging is configured, as explained in
the following sections.

Configuration of CloudWatch logging

The default logback-cloudwatch.xml file has the following contents.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE configuration>
<configuration>

Deploy AWS Blu Age Runtime on Amazon EC2 437

AWS Mainframe Modernization User Guide

 <appender name="console" class="ch.qos.logback.core.ConsoleAppender">
 <encoder>
 <pattern>%date{yyyy-MM-dd HH:mm:ss.SSS,UTC} %level --- [%thread{15}]
 %logger{40} : %msg%n%xThrowable</pattern>
 </encoder>
 </appender>

 <appender name="cloudwatch"
 class="com.netfective.bluage.runtime.cloudwatchlogger.CloudWatchAppender">
 <logGroup>BluAgeRuntimeOnEC2-Logs</logGroup>
 <logStream>%date{yyyy-MM-dd,UTC}.%instanceId.%uuid</logStream>
 <layout>
 <pattern>%date{yyyy-MM-dd HH:mm:ss.SSS,UTC} %level --- [%thread{15}]
 %logger{40} : %msg%n%xThrowable</pattern>
 </layout>
 <appender-ref ref="console" />
 </appender>

 <root level="INFO">
 <appender-ref ref="cloudwatch" />
 </root>
</configuration>

Everything outside the <appender name="cloudwatch"/> element is standard logback
configuration. There are two appenders in this file: a console appender to send logs to the console
and a CloudWatch appender to send logs to CloudWatch.

The level attribute in the root element specifies the logging level of the entire application.

The required values inside the tag <appender name="cloudwatch"/> are:

• <logGroup/>:Sets the name of the log group in CloudWatch. If the value is not specified it
defaults to BluAgeRuntimeOnEC2-Logs. If the log group doesn’t exist it will be created
automatically. This behavior can be changed through configuration, which is covered below.

• <logStream/>: Sets the name of the logStream (inside of the log group) in CloudWatch.

Optional values:

• <region/>: Overrides the Region that the log stream will be written to. By default, logs go to the
same Region as the EC2 instance.

• <layout/>: The pattern the log messages will use.

Deploy AWS Blu Age Runtime on Amazon EC2 438

AWS Mainframe Modernization User Guide

• <maxbatchsize/>: The maximum number of log messages to send to CloudWatch per operation.

• <maxbatchtimemillis/>: The time in milliseconds to allow for CloudWatch logs to be written.

• <maxqueuewaittimemillis/>: The time in milliseconds to try to insert requests in the internal log
queue.

• <internalqueuesize/>: The maximum size of the internal queue.

• <createlogdests/>: Create log group and log stream if they don't exist.

• <initialwaittimemillis/>: The amount of time that you want the thread to sleep on startup. This
initial wait allows for an initial accrual of logs.

• <maxeventmessagesize/>: The maximum size of a log event. Logs that exceed this size won’t be
sent.

• <truncateeventmessages/>: Truncate messages that are too long.

• <printrejectedevents/>: Enable the emergency appender.

CloudWatch setup

In order for the above configuration to correctly push logs to CloudWatch, update your Amazon
EC2 IAM instance profile role to grant it additional permissions for the `BluAgeRuntimeOnEC2-
Logs` log group and its log streams:

• logs:CreateLogStream

• logs:DescribeLogStreams

• logs:CreateLogGroup

• logs:PutLogEvents

• logs:DescribeLogGroups

Alarm setup

Thanks to CloudWatch logs, you can then configure different metrics and alarms, depending on
your application and your needs. Specifically, you can set up proactive alarms for usage alerts, in
order to be warned in the case of errors that might put your application in a grace period (and in
the end, prevent it from working at all). To achieve this, you can add a metric concerning the "Error
C5001" string in the logs, which highlights errors in the connection to the AWS Blu Age control
system. You can then define an alarm that reacts to this metric.

Deploy AWS Blu Age Runtime on Amazon EC2 439

AWS Mainframe Modernization User Guide

Set up licensed dependencies in AWS Blu Age Runtime on Amazon EC2

This guide describes how to set up additional licensed dependencies that you can use with AWS Blu
Age Runtime on Amazon EC2.

Topics

• Prerequisites

• Overview

• Set up the dependencies for JAC and BAC webapps

Prerequisites

Before you begin, make sure you complete the following prerequisites.

• Complete the section called “AWS Blu Age Runtime prerequisites” and the section called
“Onboarding AWS Blu Age Runtime ”.

• Make sure that you have an Amazon EC2 instance containing the latest AWS Blu Age Runtime (on
Amazon EC2). For more information, see Get started with Amazon EC2 Linux instances.

• Make sure you can connect to the Amazon EC2 instance successfully, for example, by using SSM.

• Get the following dependencies from their sources.

Oracle database

Supply an Oracle database driver. We tested the AWS Blu Age Runtime (on Amazon EC2)
functionality with version ojdbc11-23.3.0.23.09.jar, but a more recent version might be
compatible.

IBM MQ connection

Supply an IBM MQ client. We tested the AWS Blu Age Runtime (on Amazon EC2) functionality with
version com.ibm.mq.jakarta.client-9.3.4.1.jar, but a more recent version might be compatible.

With this dependency version, also supply the following transitive dependencies:

• bcprov-jdk15to18-1.76.jar

• bcpkix-jdk15to18-1.76.jar

• bcutil-jdk15to18-1.76.jar

Deploy AWS Blu Age Runtime on Amazon EC2 440

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EC2_GetStarted.html
https://www.oracle.com/database/technologies/appdev/jdbc-downloads.html
https://www.ibm.com/support/pages/mqc91-ibm-mq-clients

AWS Mainframe Modernization User Guide

DDS Printer files

Supply the Jasper reports library. We tested the AWS Blu Age Runtime (on Amazon EC2)
functionality with jasperreports-6.16.0.jar, but a more recent version might be compatible.

With this dependency version, also supply the following transitive dependencies:

• castor-core-1.4.1.jar

• castor-xml-1.4.1.jar

• commons-digester-2.1.jar

• ecj-3.21.0.jar

• itext-2.1.7.js8.jar

• javax.inject-1.jar

• jcommon-1.0.23.jar

• jfreechart-1.0.19.jar

• commons-beanutils-1.9.4.jar

• commons-collections-3.2.2.jar

Overview

To install the dependencies, complete the following steps.

1. Connect to your Amazon EC2 instance and change the user to su by running the following
command.

sudo su

You need Superuser privilege to run commands in this tutorial.

2. Navigate to the <your-tomcat-path>/extra/ folder.

cd <your-tomcat-path>/extra/

3. Copy any of the above dependencies as required at this folder.

4. Stop and start the tomcat.service by running the following commands.

systemctl stop tomcat.service

Deploy AWS Blu Age Runtime on Amazon EC2 441

https://community.jaspersoft.com/project/jasperreports-library

AWS Mainframe Modernization User Guide

systemctl start tomcat.service

5. Check the status of the service to make sure it is running.

systemctl status tomcat.service

6. Verify the logs.

Set up the dependencies for JAC and BAC webapps

1. If your JICS or Blusam database is hosted on Oracle then you need to provide the Oracle
database driver in <your-tomcat-path>/extra.

2. Create the folder if it is not present already.

3. Stop and restart your Apache Tomcat server.

4. Verify the logs.

Test the PlanetsDemo application

To check the status of the deployed PlanetsDemo application, run the following commands after
you replace load-balancer-DNS-name, listener-port, and web-binary-name with the
correct values for your setup.

curl http://load-balancer-DNS-name:listener-port/gapwalk-application/

If the application is running, you see the following output message: Jics application is
running.

Next, run the following command.

curl http://load-balancer-DNS-name:listener-port/jac/api/services/rest/jicsservice/

If the application is running, you see the following output message: Jics application is
running.

Jics application is running

Test the PlanetsDemo application 442

AWS Mainframe Modernization User Guide

If you have configured Blusam, you can expect an empty response when you run the following
command.

curl http://load-balancer-DNS-name:listener-port/bac/api/services/rest/bluesamserver/
serverIsUp

Note the name of the web binary (PlanetsDemo-web-1.0.0, if unchanged). To access the
PlanetsDemo application, use a URL of the following format.

https://load-balancer-DNS-name:listener-port/web-binary-name

After the PlanetsDemo application starts, the home page is displayed.

Enter PINQ in the text box and then press Enter. The data inquiry page is displayed.

Test the PlanetsDemo application 443

AWS Mainframe Modernization User Guide

For example, enter EARTH in the PlanetsDemo name field, and then press Enter. The page for the
planet you entered is displayed.

Test the PlanetsDemo application 444

AWS Mainframe Modernization User Guide

Test the PlanetsDemo application 445

AWS Mainframe Modernization User Guide

Modify the source code with Blu Age Developer IDE

If you are using the AWS-managed AWS Blu Age runtime engine, you can use Blu Age Developer
to modify the generated source code. You might want to do this if you need to update the
modernized code for some reason, or if a portion of the legacy source code couldn't be
modernized. You access Blu Age Developer through Amazon AppStream 2.0. This section describes
how to set up Blu Age Developer on AppStream 2.0. It also explains how to use Blu Age Developer
to update source code, using the sample application PlanetsDemo.

Topics

• Tutorial: Set up AppStream 2.0 for AWS Blu Age Developer IDE

• Tutorial: Use AWS Blu Age Developer on AppStream 2.0

Tutorial: Set up AppStream 2.0 for AWS Blu Age Developer IDE

AWS Mainframe Modernization provides several tools through Amazon AppStream 2.0. AppStream
2.0 is a fully managed, secure application streaming service that lets you stream desktop
applications to users without rewriting applications. AppStream 2.0 provides users with instant
access to the applications that they need with a responsive, fluid user experience on the device of
their choice. Using AppStream 2.0 to host runtime engine-specific tools gives customer application
teams the ability to use the tools directly from their web browsers, interacting with application
files stored in either Amazon S3 buckets or CodeCommit repositories.

For information about browser support in AppStream 2.0 see System Requirements and Feature
Support (Web Browser) in the Amazon AppStream 2.0 Administration Guide. If you have issues
when you are using AppStream 2.0 see Troubleshooting AppStream 2.0 User Issues in the Amazon
AppStream 2.0 Administration Guide.

This document describes how to set up AWS Blu Age Developer IDE on an AppStream 2.0 fleet.

Topics

• Prerequisite

• Step 1: Create an Amazon S3 bucket

• Step 2: Attach a policy to the S3 bucket

• Step 3: Upload files to the Amazon S3 bucket

• Step 4: Download AWS CloudFormation templates

Modify the source code with Blu Age Developer IDE 446

https://docs.aws.amazon.com/appstream2/latest/developerguide/requirements-and-features-web-browser-admin.html
https://docs.aws.amazon.com/appstream2/latest/developerguide/requirements-and-features-web-browser-admin.html
https://docs.aws.amazon.com/appstream2/latest/developerguide/troubleshooting-user-issues.html

AWS Mainframe Modernization User Guide

• Step 5: Create the fleet with AWS CloudFormation

• Step 6: Access an instance

• Clean up resources

Prerequisite

Download the archive file that contains the artifacts that you need to set up AWS Blu Age
Developer IDE under AppStream 2.0.

Note

This is a large file. If you have problems with the operation timing out, we recommend
using an Amazon EC2 instance to improve the upload and download performance.

Step 1: Create an Amazon S3 bucket

Create an Amazon S3 bucket in the same AWS Region as the AppStream 2.0 fleet that you will
create. This bucket will contain the artifacts that you need to complete this tutorial.

Step 2: Attach a policy to the S3 bucket

Attach the following policy to the bucket that you create for this tutorial. Make sure to replace
MYBUCKET with the actual name of the bucket that you create.

{
 "Version": "2012-10-17",
 "Statement": [{
 "Sid": "AllowAppStream2.0ToRetrieveObjects",
 "Effect": "Allow",
 "Principal": {
 "Service": "appstream.amazonaws.com"
 },
 "Action": "s3:GetObject",
 "Resource": "arn:aws:s3:::MYBUCKET/*"
 }]
}

Tutorial: Set up AppStream 2.0 for AWS Blu Age Developer IDE 447

https://d3lkpej5ajcpac.cloudfront.net/appstream/bluage/appstream-bluage-developer-ide.zip

AWS Mainframe Modernization User Guide

Step 3: Upload files to the Amazon S3 bucket

Unzip the files you downloaded in the Prerequisite and upload the appstream folder to your
bucket. Uploading this folder creates the correct structure in your bucket. For more information,
see Uploading objects in the Amazon S3 User Guide.

Step 4: Download AWS CloudFormation templates

Download the following AWS CloudFormation templates. You need these templates to create and
populate the AppStream 2.0 fleet.

• cfn-m2-appstream-elastic-fleet-linux.yaml

• cfn-m2-appstream-bluage-dev-tools-linux.yaml

• cfn-m2-appstream-bluage-shared-linux.yaml

• cfn-m2-appstream-chrome-linux.yaml

• cfn-m2-appstream-eclipse-jee-linux.yaml

• cfn-m2-appstream-pgadmin-linux.yaml

Step 5: Create the fleet with AWS CloudFormation

In this step, you use the cfn-m2-appstream-elastic-fleet-linux.yaml AWS
CloudFormation template to create an AppStream 2.0 fleet and stack to host the AWS Blu Age
Developer IDE. After you create the fleet and stack, you will run the other AWS CloudFormation
templates you downloaded in the previous step to install the Developer IDE and other required
tools.

1. Navigate to AWS CloudFormation in the AWS Management console, and choose Stacks.

2. In Stacks, choose Create stack and With new Resources (standard):

3. In Create stack, choose Template is ready and Upload a template file:

Tutorial: Set up AppStream 2.0 for AWS Blu Age Developer IDE 448

https://docs.aws.amazon.com/AmazonS3/latest/userguide/upload-objects.html
https://d3lkpej5ajcpac.cloudfront.net/appstream/bluage/developer-ide/CloudFormation/cfn-m2-appstream-elastic-fleet-linux.yaml
https://d3lkpej5ajcpac.cloudfront.net/appstream/bluage/developer-ide/CloudFormation/cfn-m2-appstream-bluage-dev-tools-linux.yaml
https://d3lkpej5ajcpac.cloudfront.net/appstream/bluage/developer-ide/CloudFormation/cfn-m2-appstream-bluage-shared-linux.yaml
https://d3lkpej5ajcpac.cloudfront.net/appstream/bluage/developer-ide/CloudFormation/cfn-m2-appstream-chrome-linux.yaml
https://d3lkpej5ajcpac.cloudfront.net/appstream/bluage/developer-ide/CloudFormation/cfn-m2-appstream-eclipse-jee-linux.yaml
https://d3lkpej5ajcpac.cloudfront.net/appstream/bluage/developer-ide/CloudFormation/cfn-m2-appstream-pgadmin-linux.yaml

AWS Mainframe Modernization User Guide

4. Choose Choose file, and navigate to file cfn-m2-appstream-elastic-fleet-
linux.yaml. Choose Next.

5. In Specify stack details, provide the following information:

• A name for the stack.

• Your default security group and two subnets of that security group.

Note

The two subnets of security group need to be in different availability zones.

6. Choose Next, and then choose Next again.

7. Choose I acknowledge that AWS CloudFormation might create IAM resources with custom
names., and then choose Submit.

8. After you create the fleet, create CloudFormation stacks with the other downloaded templates
to finish setting up the applications. Make sure to update BucketName each time to point
to the correct S3 bucket. You can edit the BucketName in the CloudFormation console.
Alternatively, you can edit the template files directly and update the S3Bucket property.

Tutorial: Set up AppStream 2.0 for AWS Blu Age Developer IDE 449

AWS Mainframe Modernization User Guide

Note

The downloaded templates expect to find assets in an S3 bucket with a folder structure
called appstream/bluage/developer-ide/. The bucket must be in the same AWS
Region as the fleet that you created.

Step 6: Access an instance

After you create and start the fleet, you can create a temporary link to access the fleet through the
native client.

1. Navigate to AppStream 2.0 in the AWS Management Console and choose the previously
created stack:

2. On the stack details page, choose Action, then choose Create Streaming URL:

3. In Create Streaming URL, enter an arbitrary User ID and a URL expiration time, and then
choose Get URL. You get an URL that you can use to stream to a browser or into the native
client. We recommend that you stream into the native client.

Tutorial: Set up AppStream 2.0 for AWS Blu Age Developer IDE 450

AWS Mainframe Modernization User Guide

Clean up resources

For the procedure to clean up the created stack and fleets, see Create an AppStream 2.0 Fleet and
Stack.

When you've deleted the AppStream 2.0 objects, you or the account administrator can also clean
up the S3 buckets for Application Settings and Home Folders.

Note

The home folder for a given user is unique across all fleets, so you might need to retain it if
other AppStream 2.0 stacks are active in the same account.

You can't use the AppStream 2.0 console to delete users. Instead, you must use the service API with
the AWS CLI. For more information, see User Pool Administration in the Amazon AppStream 2.0
Administration Guide.

Tutorial: Use AWS Blu Age Developer on AppStream 2.0

This tutorial shows you how to access AWS Blu Age Developer on AppStream 2.0 and use it with a
sample application so you can try out the features. When you finish this tutorial, you can use the
same steps with your own applications.

Topics

• Step 1: Create a database

• Step 2: Access the environment

• Step 3: Set up the runtime

• Step 4: Start the Eclipse IDE

• Step 5: Set up a Maven project

• Step 6: Configure a Tomcat server

• Step 7: Deploy to Tomcat

• Step 8: Create the JICS database

• Step 9: Start and test the application

• Step 10: Debug the application

• Clean up resources

Tutorial: Use AWS Blu Age Developer on AppStream 2.0 451

https://docs.aws.amazon.com/appstream2/latest/developerguide/set-up-stacks-fleets.html
https://docs.aws.amazon.com/appstream2/latest/developerguide/set-up-stacks-fleets.html
https://docs.aws.amazon.com/appstream2/latest/developerguide/user-pool-admin.html

AWS Mainframe Modernization User Guide

Step 1: Create a database

In this step, you use Amazon RDS to create a managed PostgreSQL database that the demo
application uses to store configuration information.

1. Open the Amazon RDS console.

2. Choose Databases > Create database.

3. Choose Standard create > PostgreSQL, leave the default version, and then choose Free tier.

4. Choose a DB instance identifier.

5. For Credential Settings, choose Manage master credentials in AWS Secrets Manager. For
more information, see Password management with Amazon RDS and AWS Secrets Manager in
the Amazon RDS User Guide.

6. Ensure that the VPC is the same as the one that you use for the AppStream 2.0 instance. You
can ask your admin for this value.

7. For VPC security group, choose Create New.

8. Set Public access to Yes.

9. Leave all other default values. Review these values.

10. Choose Create database.

To make the database server accessible from your instance, select the database server in Amazon
RDS. Under Connectivity & security, choose the VPC security group for the database server. This
security group was previously created for you and should have a description similar to the one in
Created by RDS management console. Choose Action > Edit inbound rules, choose Add rule, and
create a rule of type PostgreSQL. For rule source, use the security group defaultYou can start to
type the source name in the Source field and then accept the suggested ID. Finally, choose Save
rules.

Step 2: Access the environment

In this step, you access the AWS Blu Age development environment on AppStream 2.0.

1. Contact your administrator for the proper way to access your AppStream 2.0 instance. For
general information about possible clients and configurations, see AppStream 2.0 Access
Methods and Clients in the Amazon AppStream 2.0 Administration Guide. Consider using the
native client for the best experience.

2. In AppStream 2.0 choose Desktop.

Tutorial: Use AWS Blu Age Developer on AppStream 2.0 452

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-secrets-manager.html
https://docs.aws.amazon.com/appstream2/latest/developerguide/clients-access-methods-user.html
https://docs.aws.amazon.com/appstream2/latest/developerguide/clients-access-methods-user.html

AWS Mainframe Modernization User Guide

Step 3: Set up the runtime

In this step, you set up the AWS Blu Age runtime. You must set up the runtime at first launch and
again if you are notified of a runtime upgrade. This step populates your .m2 folder.

1. Choose Applications, from the menu bar, and then choose Terminal.

2. Enter the following command:

~/_install-velocity-runtime.sh

Step 4: Start the Eclipse IDE

In this step, you start the Eclipse IDE and choose a location where you want to create a workspace.

1. In AppStream 2.0 choose the Launch Application icon on the toolbar, and then choose Eclipse
JEE.

Tutorial: Use AWS Blu Age Developer on AppStream 2.0 453

AWS Mainframe Modernization User Guide

2. When the launcher opens, enter the location where you want to create your workspace, and
choose Launch.

Optionally, you can launch Eclipse from the command line, as follows:

~/eclipse &

Step 5: Set up a Maven project

In this step, you import a Maven project for the Planets demo application.

1. Upload PlanetsDemo-pom.zip to your Home folder. You can use the native client “My Files”
feature to do this.

2. Use the unzip command line tool to extract the files.

3. Navigate inside the unzipped folder and open the root pom.xml of your project in a text
editor.

4. Edit the gapwalk.version property so that it matches the installed AWS Blu Age runtime.

If you are unsure of the installed version, issue the following command in a terminal:

Tutorial: Use AWS Blu Age Developer on AppStream 2.0 454

https://d3lkpej5ajcpac.cloudfront.net/appstream/bluage/developer-ide/PlanetsDemo/PlanetsDemo-pom.zip

AWS Mainframe Modernization User Guide

cat ~/runtime-version.txt

This command prints the currently available runtime version, for example, 3.1.0-b3257-dev.

Note

Don't include the -dev suffix in gapwalk.version. For example, a valid value would
be <gapwalk.version>3.1.0-b3257</gapwalk.version>.

5. In Eclipse, choose File, then Import. In the Import, dialog window, expand Maven and choose
Existing Maven Projects. Choose Next.

6. In Import Maven Projects, provide the location of the extracted files and choose Finish.

You can safely ignore the following popup. Maven downloads a local copy of node.js to build
the Angular (*-web) part of the project:

Wait until the end of the build. You can follow the build in the Progress view.

7. In Eclipse, select the project and choose Run as. Then choose Maven install. After the Maven
installation succeeds, it creates the war file under PlanetsDemoPom/PlanetsDemo-web/
target/PlanetsDemo-web-1.0.0.war.

Step 6: Configure a Tomcat server

In this step, you configure a Tomcat server where you deploy and start your compiled application.

1. In Eclipse, choose Window > Show View > Servers to show the Servers view:

Tutorial: Use AWS Blu Age Developer on AppStream 2.0 455

AWS Mainframe Modernization User Guide

2. Choose No servers are available. Click this link to create a new server.... The New
Serverwizard appears. In the Select the server type field of the wizard, enter tomcat v9 , and
choose Tomcat v9.0 Server. Then choose Next.

Tutorial: Use AWS Blu Age Developer on AppStream 2.0 456

AWS Mainframe Modernization User Guide

3. Choose Browse, and choose the tomcat folder at the root of the Home folder. Leave the JRE at
its default value and choose Finish.

A Servers project is created in the workspace, and a Tomcat v9.0 server is now available in the
Servers view. This is where the compiled application will be deployed and started:

Tutorial: Use AWS Blu Age Developer on AppStream 2.0 457

AWS Mainframe Modernization User Guide

Step 7: Deploy to Tomcat

In this step, you deploy the Planets demo application to the Tomcat server so you can run the
application.

1. Select the PlanetsDemo-web file and choose Run As > Maven install. Select PlanetsDemo-
web again and choose Refresh to ensure that the npm-compiled frontend is properly compiled
to a .war and noticed by Eclipse.

2. Upload the PlanetsDemo-runtime.zip to the instance, and unzip the file at an accessible
location. This ensures that the demo application can access the configuration folders and files
that it requires.

3. Copy the contents of PlanetsDemo-runtime/tomcat-config into the Servers/Tomcat
v9.0... subfolder that you created for your Tomcat server:

4. Open the tomcat v9.0 server entry in the Servers view. The server properties editor appears:

Tutorial: Use AWS Blu Age Developer on AppStream 2.0 458

https://d3lkpej5ajcpac.cloudfront.net/appstream/bluage/developer-ide/PlanetsDemo/PlanetsDemo-runtime.zip

AWS Mainframe Modernization User Guide

5. In the Overview tab, increase the Timeouts values to 450 seconds for Start, and 150 seconds
for Stop, as shown here:

6. Choose Open launch configuration. A wizard appears. In the wizard, navigate to the
Arguments folder and, for Working directory, choose Other. Choose File System, and
navigate to the PlanetsDemo-runtime folder unzipped earlier. This folder should contain a
direct subfolder called config.

Tutorial: Use AWS Blu Age Developer on AppStream 2.0 459

AWS Mainframe Modernization User Guide

7. Choose the Modules tab of the server properties editor and make the following changes:

• Choose Add Web Module and add PlanetsDemo-service.

• Choose Add External Web Module. The Add Web Module dialog window appears. Make the
following changes:

• In Document base, choose Browse and navigate to ~/webapps/gapwalk-
application...war

• In Path, enter /gapwalk-application.

• Choose OK.

• Choose Add External Web Module again and make the following changes:

Tutorial: Use AWS Blu Age Developer on AppStream 2.0 460

AWS Mainframe Modernization User Guide

• For Document base, enter the path to the frontend .war (in PlanetsDemo-web/target)

• For Path, enter /demo

• Choose OK

• Save the editor modifications (Ctrl + S).

The editor content should now be similar to the following.

Step 8: Create the JICS database

In this step, you connect to the database that you created in Step 1: Create a database.

1. From the AppStream 2.0 instance, issue the following command in a terminal to launch
pgAdmin:

./pgadmin-start.sh

2. Choose an email address and password as login identifiers. Take note of the provided URL
(typically http://127.0.0.1:5050). Launch Google Chrome in the instance, copy and paste the
URL into the browser, and log in with your identifiers.

Tutorial: Use AWS Blu Age Developer on AppStream 2.0 461

AWS Mainframe Modernization User Guide

3. After you log in, choose Add New Server and enter the connection information to the
previously created database as follows.

Tutorial: Use AWS Blu Age Developer on AppStream 2.0 462

AWS Mainframe Modernization User Guide

4. When you connect to the database server, use Object > Create > Database and create a new
database named jics.

5. Edit the database connection information that the demo app used. This information is defined
in PlanetsDemo-runtime/config/application-main.yml. Search for the jicsDs entry.
To retrieve the values for username and password, in the Amazon RDS console, navigate to
the database. On the Configuration tab, under Master Credentials ARN, choose Manage in
Secrets Manager. Then, in the Secrets Manager console, in the secret, choose Retrieve secret
value.

Step 9: Start and test the application

In this step, you start the Tomcat server and the demo application so that you can test it.

Tutorial: Use AWS Blu Age Developer on AppStream 2.0 463

AWS Mainframe Modernization User Guide

1. To start the Tomcat server and the previously deployed applications, select the server entry in
the Servers view and choose Start. A console appears that displays startup logs.

2. Check the server status in the Servers view, or wait for the Server startup in [xxx]
milliseconds message in the console. After the server starts, check that gapwalk-application is
properly deployed. To do this, access the http://localhost:8080/gapwalk-application URL in
a Google Chrome browser. You should see the following.

3. Access the deployed application frontend from Google Chrome at http://localhost:8080/
demo. The following Transaction Launcher page should appear.

4. To start the application transaction, enter PINQ in the input field, and choose Run (or press
Enter).

The demo app screen should appear.

Tutorial: Use AWS Blu Age Developer on AppStream 2.0 464

AWS Mainframe Modernization User Guide

5. Type a planet name in the corresponding field and press Enter.

Tutorial: Use AWS Blu Age Developer on AppStream 2.0 465

AWS Mainframe Modernization User Guide

Step 10: Debug the application

In this step, you test using the standard Eclipse debugging features. These features are available
when you work on a modernized application.

1. To open the main service class, press Ctrl + Shift + T. Then enter PlanetsinqProcessImpl.

2. Navigate to the searchPlanet method, and put a breakpoint there.

3. Select the server name and select Restart in Debug.

4. Repeat the previous steps. That is, access the application, input a planet name, and press Enter.

Eclipse will stop the application in the searchPlanet method. Now you can examine it.

Tutorial: Use AWS Blu Age Developer on AppStream 2.0 466

AWS Mainframe Modernization User Guide

Clean up resources

If you no longer need the resources that you created for this tutorial, delete them so that you don't
incur additional charges. Complete the following steps:

• If the Planets application is still running, stop it.

• Delete the database that you created in Step 1: Create a database. For more information, see
Deleting a DB instance.

Tutorial: Use AWS Blu Age Developer on AppStream 2.0 467

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_DeleteInstance.html

AWS Mainframe Modernization User Guide

Replatforming applications with Micro Focus

This guide covers the end-to-end process of replatforming mainframe applications using AWS
Mainframe Modernization solutions on AWS. It describes all tasks and includes information on
configuring and operating AWS Mainframe Modernization runtime on Amazon EC2 from initial
setup and analysis to building, testing, and deploying your modernized applications on AWS. It also
covers advanced topics like working with legacy data structures, using templates and predefined
projects, and setting up automation for streaming sessions.

Topics

• Set up Micro Focus Runtime (on Amazon EC2)

• Set up Automation for Micro Focus Enterprise Analyzer and Micro Focus Enterprise Developer
Streaming Sessions

• View data sets as tables and columns in Enterprise Developer

• Tutorials for Micro Focus

• Available batch utilities in AWS Mainframe Modernization

Set up Micro Focus Runtime (on Amazon EC2)

AWS Mainframe Modernization provides several Amazon Machine Images (AMIs) that include Micro
Focus licensed products. These AMIs allow you to quickly provision Amazon Elastic Compute Cloud
(Amazon EC2) instances to support Micro Focus environments that you control and manage. This
topic provides the steps required to access and launch these AMIs. Using these AMIs is entirely
optional and they are not required to complete the tutorials in this user guide.

Topics

• Prerequisites for setting up Micro Focus Runtime (on Amazon EC2)

• Create the Amazon VPC endpoint for Amazon S3

• Request the allowlist update for the account

• Create the AWS Identity and Access Management role

• Grant License Manager the required permissions

• Subscribe to the Amazon Machine Images

• Launch an AWS Mainframe Modernization Micro Focus instance

Set up Micro Focus Runtime (on Amazon EC2) 468

AWS Mainframe Modernization User Guide

• Subnet or VPC with no internet access

Prerequisites for setting up Micro Focus Runtime (on Amazon EC2)

When you set up Micro Focus Runtime (on Amazon EC2), make sure you meet the following
prerequisites.

• Administrator access to the account where the Amazon EC2 instances will be created.

• Identify the AWS Region where the Amazon EC2 instances will be created and verify the AWS
Mainframe Modernization service is available. See AWS Services by Region. Make sure to choose
a Region where the service is available.

• Identify the Amazon Virtual Private Cloud (Amazon VPC) where the Amazon EC2 instances will
be created.

Create the Amazon VPC endpoint for Amazon S3

In this section, you create a Amazon VPC endpoint for Amazon S3 to use. Setting up this endpoint
will help you later when setting up internet access for VPC.

1. Navigate to Amazon VPC in the AWS Management Console.

2. In the navigation pane, choose Endpoints.

3. Choose Create endpoint.

4. Enter a meaningful name tag, for example: “Micro-Focus-License-S3”.

5. Choose AWS Services as the Service Category.

Micro Focus Runtime (on Amazon EC2) prerequisites 469

https://aws.amazon.com/about-aws/global-infrastructure/regional-product-services/

AWS Mainframe Modernization User Guide

6. Under Services search for the Amazon S3 Gateway service: com.amazonaws.[region].s3.

For us-west-1 this would be: com.amazonaws.us-west-1.s3.

7. Choose the Gateway service.

8. For VPC choose the VPC you will be using.

9. Choose all of the route tables for the VPC.

Create the Amazon VPC endpoint for Amazon S3 470

AWS Mainframe Modernization User Guide

10. Under Policy choose Full Access.

11. Choose Create Endpoint.

Request the allowlist update for the account

Work with your AWS representative to have your account allowlisted for the AWS Mainframe
Modernization AMIs. Please provide the following information:

• The AWS account ID.

• The AWS Region where the Amazon VPC endpoint was created.

• The Amazon VPC Amazon S3 endpoint ID created in Create the Amazon VPC endpoint for
Amazon S3. This is the vpce-xxxxxxxxxxxxxxxxx id for the com.amazonaws.[region].s3
Gateway endpoint.

• The number of licenses required across all Micro Focus Enterprise Suite AMI Amazon EC2
instances.

One license is required per CPU core (per 2 vCPUs for most Amazon EC2 instances).

For more information, see Optimize CPU options.

Request the allowlist update for the account 471

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-optimize-cpu.html#cpu-options-compute-optimized

AWS Mainframe Modernization User Guide

The requested number can be adjusted in the future by AWS.

Note

The AWS representative must open the support ticket for the Allowlist request. It cannot be
directly requested and the request may take several days to complete.

Create the AWS Identity and Access Management role

Create an AWS Identity and Access Management policy and role to be used by the AWS Mainframe
Modernization Amazon EC2 instances. Creating the role through the IAM console will create an
associated instance profile of the same name. Assigning this instance profile to the Amazon EC2
instances allows Micro Focus Licenses to be assigned. For more information on instance profiles,
see Using an IAM role to grant permissions to applications running on Amazon EC2 instances.

Create an IAM policy

An IAM policy is created first and then attached to the role.

1. Navigate to AWS Identity and Access Management in the AWS Management Console.

2. Choose Policies and then Create Policy.

3. Choose the JSON tab.

Create the AWS Identity and Access Management role 472

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html

AWS Mainframe Modernization User Guide

4. Replace us-west-1 in the following JSON with the AWS Region where the Amazon S3
endpoint was defined, then copy and paste the JSON into the policy editor.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "S3WriteObject",
 "Effect": "Allow",
 "Action": [
 "s3:PutObject"
],
 "Resource": [
 "arn:aws:s3:::aws-supernova-marketplace-us-west-1-prod/*"
]
 },
 {
 "Sid": "OtherRequiredActions",
 "Effect": "Allow",
 "Action": [
 "sts:GetCallerIdentity",
 "ec2:DescribeInstances",
 "license-manager:ListReceivedLicenses"
],
 "Resource": [
 "*"
]
 }
]

Create the AWS Identity and Access Management role 473

AWS Mainframe Modernization User Guide

}

Note

The Actions under the Sid OtherRequiredActions do not support resource-level
permissions and must specify * in the resource element.

5. Choose Next: Tags.

Create the AWS Identity and Access Management role 474

AWS Mainframe Modernization User Guide

6. Optionally enter any tags, then choose Next: Review.

7. Enter a name for the policy, for example “Micro-Focus-Licensing-policy”. Optionally enter
a description, for example “A role that includes this policy must be attached to each AWS
Mainframe Modernization Amazon EC2 instance.”

8. Choose Create Policy.

Create the AWS Identity and Access Management role 475

AWS Mainframe Modernization User Guide

Create the IAM role

After creating an IAM policy, you create an IAM role and attach it to the policy.

1. Navigate to IAM in the AWS Management Console.

2. Choose Roles and then Create Role.

3. Leave Trusted entity type as AWS service and choose the EC2 common use case.

4. Choose Next.

Create the AWS Identity and Access Management role 476

AWS Mainframe Modernization User Guide

5. Enter “Micro” into the filter and press enter to apply the filter.

6. Choose the policy that was just created, for example the “Micro-Focus-Licensing-policy”.

7. Choose Next.

8. Enter the Role name, for example “Micro-Focus-Licensing-role”.

9. Replace the description with one of your own, for example “Allows Amazon EC2 instances with
this role to obtain Micro Focus Licenses”.

10. Under Step 1: Select trusted entities review the JSON and confirm it has the following values:

Create the AWS Identity and Access Management role 477

AWS Mainframe Modernization User Guide

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "sts:AssumeRole"
],
 "Principal": {
 "Service": [
 "ec2.amazonaws.com"
]
 }
 }
]
}

Note

The order of the Effect, Action, and Principal are not significant.

11. Confirm that Step 2: Add permissions shows your Licensing policy.

Create the AWS Identity and Access Management role 478

AWS Mainframe Modernization User Guide

12. Choose Create role.

After the allowlist request is complete, continue with the following steps.

Grant License Manager the required permissions

You need to grant permissions to your AWS License Manager to set up Micro Focus runtime engine
(on Amazon EC2).

1. Navigate to AWS License Manager in the AWS Management Console.

Grant License Manager the required permissions 479

AWS Mainframe Modernization User Guide

2. Choose Start using AWS License Manager.

3. If you see the following pop-up, view the details, then choose the check-box and press Grant
Permissions.

Subscribe to the Amazon Machine Images

After you are subscribed to an AWS Marketplace product, you can launch an instance from the
product's AMI. You can also manage your subscribed AMIs when setting up Micro Focus runtime
engine (on Amazon EC2).

Subscribe to the Amazon Machine Images 480

AWS Mainframe Modernization User Guide

1. Navigate to AWS Marketplace Subscriptions in the AWS Management Console.

2. Choose Manage subscriptions.

3. Copy and paste one of the following links into the browser address bar.

Note

Only choose a link for one of the products you have been authorized to use.

• Enterprise Server: https://aws.amazon.com/marketplace/pp/prodview-g5emev63l7blc

• Enterprise Server for Windows: https://aws.amazon.com/marketplace/pp/prodview-
lwybsiyikbhc2

• Enterprise Developer: https://aws.amazon.com/marketplace/pp/prodview-77qmpr42yzxwk

• Enterprise Developer with Visual Studio 2022: https://aws.amazon.com/marketplace/pp/
prodview-m4l3lqiszo6cm

• Enterprise Analyzer: https://aws.amazon.com/marketplace/pp/prodview-tttheylcmcihm

• Enterprise Build Tools for Windows: https://aws.amazon.com/marketplace/pp/
prodview-2rw35bbt6uozi

• Enterprise Stored Procedures: https://aws.amazon.com/marketplace/pp/prodview-
zoeyqnsdsj6ha

• Enterprise Stored Procedures with SQL Server 2019: https://aws.amazon.com/marketplace/
pp/prodview-ynfklquwubnz4

4. Choose Continue to Subscribe.
Subscribe to the Amazon Machine Images 481

https://aws.amazon.com/marketplace/pp/prodview-g5emev63l7blc
https://aws.amazon.com/marketplace/pp/prodview-lwybsiyikbhc2
https://aws.amazon.com/marketplace/pp/prodview-lwybsiyikbhc2
https://aws.amazon.com/marketplace/pp/prodview-77qmpr42yzxwk
https://aws.amazon.com/marketplace/pp/prodview-m4l3lqiszo6cm
https://aws.amazon.com/marketplace/pp/prodview-m4l3lqiszo6cm
https://aws.amazon.com/marketplace/pp/prodview-tttheylcmcihm
https://aws.amazon.com/marketplace/pp/prodview-2rw35bbt6uozi
https://aws.amazon.com/marketplace/pp/prodview-2rw35bbt6uozi
https://aws.amazon.com/marketplace/pp/prodview-zoeyqnsdsj6ha
https://aws.amazon.com/marketplace/pp/prodview-zoeyqnsdsj6ha
https://aws.amazon.com/marketplace/pp/prodview-ynfklquwubnz4
https://aws.amazon.com/marketplace/pp/prodview-ynfklquwubnz4

AWS Mainframe Modernization User Guide

5. If the Terms and Conditions are acceptable, choose Accept Terms.

6. The subscription might take a few minutes to process.

Subscribe to the Amazon Machine Images 482

AWS Mainframe Modernization User Guide

7. After the Thank you message shows, copy and paste the next link from step 3 to continue
adding subscriptions.

8. Stop when Manage subscriptions shows all your subscribed AMIs.

Note

The panel preferences (gear icon) are set to show the View as a Table.

Subscribe to the Amazon Machine Images 483

AWS Mainframe Modernization User Guide

Launch an AWS Mainframe Modernization Micro Focus instance

After creating endpoints, IAM policy, IAM role, and subscribing to AMIs, you are ready to launch an
AWS Mainframe Modernization Micro Focus instance in the AWS Management Console.

1. Navigate to AWS Marketplace Subscriptions in the AWS Management Console.

2. Locate the AMI to be launched and choose Launch New Instance.

Launch a Micro Focus instance 484

AWS Mainframe Modernization User Guide

3. In the launch new instance dialog, ensure the allowlisted region is selected.

4. Press Continue to launch through EC2.

Note

The following example shows a launch of an Enterprise Developer AMI, but the process
is the same for all the AWS Mainframe Modernization AMIs.

Launch a Micro Focus instance 485

AWS Mainframe Modernization User Guide

5. Enter a name for the server.

6. Choose an instance type.

The Instance type selected should be determined by the project performance and cost
requirements. The following are suggested starting points:

• For Enterprise Analyzer, an r6i.xlarge

• For Enterprise Developer, an r6i.large

• For a standalone instance of Enterprise Server, an r6i.xlarge

• For Micro Focus Performance Availability Cluster (PAC) with scale-out, an r6i.large

Note

The Application and OS Images section has been collapsed for the screen shot.

Launch a Micro Focus instance 486

AWS Mainframe Modernization User Guide

7. Choose or create (and save) a key-pair (not shown).

For more information on key pairs for Linux instances, see Amazon EC2 key pairs and Linux
instances.

For more information on key pairs for Windows instances, see Amazon EC2 key pairs and
Windows instances.

8. Edit the Network settings and choose the allowlisted VPC and appropriate Subnet.

9. Choose or create a Security Group. If this is an Enterprise Server EC2 instance it is typical to
allow TCP traffic to ports 86 and 10086 to administer the Micro Focus configuration.

10. Optionally configure the storage for the Amazon EC2 instance.

Launch a Micro Focus instance 487

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/ec2-key-pairs.html
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/ec2-key-pairs.html

AWS Mainframe Modernization User Guide

11. Important - Expand Advanced details and under IAM instance profile choose the Licensing role
created earlier, for example “Micro-Focus-Licensing-role”.

Note

If this step is missed, after the instance is created you can modify the IAM role from the
Security option of the Action menu for the EC2 instance.

12. Review the Summary and push Launch Instance.

Launch a Micro Focus instance 488

AWS Mainframe Modernization User Guide

13. The instance launch will fail if an invalid virtual server type is chosen.

If this happens, choose Edit instance config and change the instance type.

Launch a Micro Focus instance 489

AWS Mainframe Modernization User Guide

14. Once the “Success” message is shown choose Connect to instance to get connection details.

15. Alternatively, navigate to EC2 in the AWS Management Console.

16. Choose Instances to see the status of the new instance.

Subnet or VPC with no internet access

Make these additional changes if the subnet or VPC does not have outbound Internet access.

Subnet or VPC with no internet access 490

AWS Mainframe Modernization User Guide

The license manager requires access to the following AWS services:

• com.amazonaws.region.s3

• com.amazonaws.region.ec2

• com.amazonaws.region.license-manager

• com.amazonaws.region.sts

The earlier steps defined the com.amazonaws.region.s3 service as a gateway endpoint. This
endpoint needs a route table entry for any subnets without Internet access.

The additional three services will be defined as interface endpoints.

Topics

• Add the Route table entry for the Amazon S3 endpoint

• Define the required security group

• Create the service endpoints

Add the Route table entry for the Amazon S3 endpoint

1. Navigate to VPC in the AWS Management Console and choose Subnets.

2. Choose the subnet where the Amazon EC2 instances will be created and choose the Route
Table tab.

3. Note a few trailing digits of the Route table id. For example, the 6b39 in the image below.

Subnet or VPC with no internet access 491

AWS Mainframe Modernization User Guide

4. Choose Endpoints from the navigation pane.

5. Choose the endpoint created earlier and then Manage Route tables, either from the Route
Tables tab for the endpoint, or from the Actions drop down.

6. Choose the Route table using the digits identified earlier and press Modify route tables.

Define the required security group

The Amazon EC2, AWS STS, and License Manager services communicate over HTTPS via port
443. This communication is bi-directional and requires inbound and outbound rules to allow the
instance to communicate with the services.

1. Navigate to Amazon VPC in the AWS Management Console.

2. Locate Security Groups in the navigation bar and choose Create security group.

3. Enter a Security group name and description, for example “Inbound-Outbound HTTPS”.

4. Press the X in the VPC selection area to remove the default VPC, and choose the VPC that
contains the S3 endpoint.

5. Add an Inbound Rule that allows TCP traffic on Port 443 from anywhere.

Note

The inbound (and outbound rules) can be restricted further by limiting the Source. For
more information, see Control traffic to your AWS resources using security groups in
the Amazon VPC User Guide.

Subnet or VPC with no internet access 492

https://docs.aws.amazon.com/vpc/latest/userguide/vpc-security-groups.html

AWS Mainframe Modernization User Guide

6. Press Create security group.

Create the service endpoints

Repeat this process three times – once for each service.

1. Navigate to Amazon VPC in the AWS Management Console and choose Endpoints.

2. Press Create endpoint.

3. Enter a name, for example “Micro-Focus-License-EC2”, “Micro-Focus-License-STS”, or “Micro-
Focus-License-Manager”.

4. Choose the AWS Services Service Category.

Subnet or VPC with no internet access 493

AWS Mainframe Modernization User Guide

5. Under Services search for the matching Interface service which is one of:

• “com.amazonaws.region.ec2”

• “com.amazonaws.region.sts”

• “com.amazonaws.region.license-manager”

For example:

• “com.amazonaws.us-west-1.ec2”

• “com.amazonaws.us-west-1.sts”

• “com.amazonaws.us-west-1.license-manager”

6. Choose the matching Interface service.

com.amazonaws.region.ec2:

Subnet or VPC with no internet access 494

AWS Mainframe Modernization User Guide

com.amazonaws.region.sts:

com.amazonaws.region.license-manager:

7. For VPC choose the VPC for the instance.

Subnet or VPC with no internet access 495

AWS Mainframe Modernization User Guide

8. Choose the Availability Zone and the Subnets for the VPC.

9. Choose the Security Group created earlier.

10. Under Policy choose Full Access.

Subnet or VPC with no internet access 496

AWS Mainframe Modernization User Guide

11. Choose Create Endpoint.

12. Repeat this process for the remaining interfaces.

Set up Automation for Micro Focus Enterprise Analyzer and
Micro Focus Enterprise Developer Streaming Sessions

You can automatically run a script at session start and end to allow automation that is specific
to your customer context. For more information on this AppStream 2.0 feature, see Use Session
Scripts to Manage Your AppStream 2.0 Users' Streaming Experience in the Amazon AppStream 2.0
Administration Guide.

This feature requires that you have at least the following versions of the Enterprise Analyzer and
Enterprise Developer images:

• m2-enterprise-analyzer-v8.0.4.R1

• m2-enterprise-developer-v8.0.4.R1

Topics

• Set up automation at session start

• Set up automation at session end

Set up automation at session start

If you want to run an automation script when users connect to AppStream 2.0, create your script
and name it m2-user-setup.cmd. Store the script in the AppStream 2.0 Home folder for the user.

Set up AppStream 2.0 Automation 497

https://docs.aws.amazon.com/appstream2/latest/developerguide/use-session-scripts.html
https://docs.aws.amazon.com/appstream2/latest/developerguide/use-session-scripts.html

AWS Mainframe Modernization User Guide

The AppStream 2.0 images that AWS Mainframe Modernization provides look for a script with that
name in that location, and run it if it exists.

Note

The script duration cannot exceed the limit set by AppStream 2.0, which is currently 60
seconds. For more information, see Run Scripts Before Streaming Sessions Begin in the
Amazon AppStream 2.0 Administration Guide.

Set up automation at session end

If you want to run an automation script when users disconnect from AppStream 2.0, create your
script and name it m2-user-teardown.cmd. Store the script in the AppStream 2.0 Home folder
for the user. The AppStream 2.0 images that AWS Mainframe Modernization provides look for a
script with that name in that location, and run it if it exists.

Note

The script duration cannot exceed the limit set by AppStream 2.0, which is currently
60 seconds. For more information, see Run Scripts After Streaming Sessions End in the
Amazon AppStream 2.0 Administration Guide.

View data sets as tables and columns in Enterprise Developer

You can access mainframe datasets that are deployed in AWS Mainframe Modernization using the
Micro Focus runtime. You can view the migrated data sets as tables and columns from an Micro
Focus Enterprise Developer instance. Viewing data sets this way allows you to:

• Perform SQL SELECT operations on the migrated data files.

• Expose data outside the migrated mainframe application without changing the application.

• Easily filter data and save as CSV or other file formats.

Set up automation at session end 498

https://docs.aws.amazon.com/appstream2/latest/developerguide/use-session-scripts.html#run-scripts-before-streaming-sessions-begin
https://docs.aws.amazon.com/appstream2/latest/developerguide/use-session-scripts.html#run-scripts-after-streaming-sessions-end

AWS Mainframe Modernization User Guide

Note

Steps 1 and 2 are one time activities. Repeat steps 3 and 4 for each data set to create the
database views.

Topics

• Prerequisites

• Step 1: Set up ODBC Connection to Micro Focus datastore (Amazon RDS database)

• Step 2: Create the MFDBFH.cfg file

• Step 3: Create a structure (STR) file for your copybook layout

• Step 4: Create a database view using the structure (STR) file

• Step 5: View Micro Focus data sets as tables and columns

Prerequisites

• You must have access to Micro Focus Enterprise Developer Desktop via AppStream 2.0.

• You must have an application deployed and running under AWS Mainframe Modernization using
the Micro Focus runtime engine.

• You are storing your application data in Aurora PostgreSQL-Compatible Edition.

Step 1: Set up ODBC Connection to Micro Focus datastore (Amazon RDS
database)

In this step, you set up an ODBC connection to the database that contains the data you want to
view as tables and columns. This is a one-time only step.

1. Log in to Micro Focus Enterprise Developer Desktop using AppStream 2.0 streaming URL.

2. Open ODBC Data Source Administrator, choose User DSN and then choose Add.

3. In Create New Data Source, choose PostgreSQL ANSI and then choose Finish.

4. Create a data source for PG.POSTGRES by providing the necessary database information, as
follows:

Data Source : PG.POSTGRES

Prerequisites 499

AWS Mainframe Modernization User Guide

Database : postgres
Server : rds_endpoint.rds.amazonaws.com
Port : 5432
User Name : user_name
Password : user_password

5. Choose Test to make sure the connection works. You should see the message Connection
successful if the test succeeds.

If the test doesn't succeed, review the following information.

• Troubleshooting for Amazon RDS

• How do I resolve problems when connecting to my Amazon RDS DB instance?

6. Save the data source.

7. Create a data source for PG.VSAM, test the connection, and save the data source. Provide the
following database information:

Step 1: Set up ODBC Connection to Micro Focus datastore (Amazon RDS database) 500

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_Troubleshooting.html
https://repost.aws/knowledge-center/rds-cannot-connect

AWS Mainframe Modernization User Guide

Data Source : PG.VSAM
Database : MicroFocusSEEFiles$VSAM
Server : rds_endpoint.rds.amazonaws.com
Port : 5432
User Name : user_name
Password : user_password

Step 2: Create the MFDBFH.cfg file

In this step, you create a configuration file that describes the Micro Focus data store. This is a one-
time only configuration step.

1. In your Home Folder, for example, in D:\PhotonUser\My Files\Home Folder\MFED\cfg
\MFDBFH.cfg, create the MFDBFH.cfg file with the following content.

Step 2: Create the MFDBFH.cfg file 501

AWS Mainframe Modernization User Guide

<datastores>
 <server name="ESPACDatabase" type="postgresql" access="odbc">
 <dsn name="PG.POSTGRES" type="database" dbname="postgres"/>
 <dsn name="PG.VSAM" type="datastore" dsname="VSAM"/>
 </server>
 </datastores>

2. Verify the MFDBFH configuration by running the following commands to query the Micro
Focus datastore:

##
Test the connection by running the following commands
##

set MFDBFH_CONFIG="D:\PhotonUser\My Files\Home Folder\MFED\cfg\MFDBFH.cfg"

dbfhdeploy list sql://ESPACDatabase/VSAM?folder=/DATA

Step 3: Create a structure (STR) file for your copybook layout

In this step, you create a structure file for your copybook layout so that you can use it later to
create database views from the data sets.

1. Compile the program that is associated with your copybook. If no program is using the
copybook, create and compile a simple program like the following with a COPY statement for
your copybook.

IDENTIFICATION DIVISION.
 PROGRAM-ID. TESTPGM1.

 ENVIRONMENT DIVISION.
 CONFIGURATION SECTION.

 DATA DIVISION.
 WORKING-STORAGE SECTION.

 COPY CVTRA05Y.

 PROCEDURE DIVISION.

Step 3: Create a structure (STR) file for your copybook layout 502

AWS Mainframe Modernization User Guide

 GOBACK.

2. After successful compilation, right click on the program and choose Create Record Layout
File. This will open the Micro Focus Data File Tools using the .idy file generated during the
compilation.

3. Right click on the Record structure and choose Create Default Layout (single structure) or
Create Conditional Layout (multi structure) depending on the layout.

For more information, see Creating Structure Files and Layouts in the Micro Focus
documentation.

Step 3: Create a structure (STR) file for your copybook layout 503

https://www.microfocus.com/documentation/enterprise-developer/ed60/ES-WIN/GUID-6EDDA4C3-F09E-4CEC-9CF8-281D9D7453C3.html

AWS Mainframe Modernization User Guide

4. After creating the layout, choose File from the menu and then choose Save As. Browse and
save the file under your Home Folder with same file name as your copybook. You can choose
to create a folder called str and save all your structure files there.

Step 3: Create a structure (STR) file for your copybook layout 504

AWS Mainframe Modernization User Guide

Step 4: Create a database view using the structure (STR) file

In this step, you use the previously created structure file to create a database view for a data set.

• Use the dbfhview command to create a database view for a data set that is already in the
Micro Focus datastore as shown in the following example.

 ## The below command creates database view for VSAM file
 AWS.M2.CARDDEMO.TRANSACT.VSAM.KSDS
 ## using the STR file CVTRA05Y.str
 ##

 dbfhview -create -struct:"D:\PhotonUser\My Files\Home Folder\MFED\str
\CVTRA05Y.str" -name:V_AWS.M2.CARDDEMO.TRANSACT.VSAM.KSDS.DAT -file:sql://
ESPACDatabase/VSAM/AWS.M2.CARDDEMO.TRANSACT.VSAM.KSDS.DAT?folder=/DATA

 ##
 ## Output:
 ##

 Micro Focus Database File Handler - View Generation Tool Version 8.0.00
 Copyright (C) 1984-2022 Micro Focus. All rights reserved.

 VGN0017I Using structure definition 'TRAN-RECORD-DEFAULT'
 VGN0022I View 'V_AWS.M2.CARDDEMO.TRANSACT.VSAM.KSDS.DAT' installed in
 datastore 'sql://espacdatabase/VSAM'
 VGN0002I The operation completed successfully

Step 5: View Micro Focus data sets as tables and columns

In this step, connect to the database using pgAdmin so you can run queries to view the datasets
like tables and columns.

• Connect to the database MicroFocusSEEFiles$VSAM using pgAdmin and query the
database view you created in step 4.

SELECT * FROM public."V_AWS.M2.CARDDEMO.TRANSACT.VSAM.KSDS.DAT";

Step 4: Create a database view using the structure (STR) file 505

AWS Mainframe Modernization User Guide

Tutorials for Micro Focus

The tutorials in this section help you to get started with setting up various tasks in the Micro Focus
runtime engine for the AWS Mainframe Modernization service. These tutorials are for setting up
sample application, CI/CD pipelines, using templates with Micro Focus Enterprise Developer, and
setting up Enterprise Analyzer.

Topics

• Tutorial: Setting up the Micro Focus build for the BankDemo sample application

• Tutorial: Setting up a CI/CD pipeline for use with Micro Focus Enterprise Developer

• Tutorial: Set up AppStream 2.0 for use with Micro Focus Enterprise Analyzer and Micro Focus
Enterprise Developer

• Tutorial: Use templates with Micro Focus Enterprise Developer

• Tutorial: Set up Enterprise Analyzer on AppStream 2.0

• Tutorial: Set up Micro Focus Enterprise Developer on AppStream 2.0

Tutorials for Micro Focus 506

AWS Mainframe Modernization User Guide

Tutorial: Setting up the Micro Focus build for the BankDemo sample
application

AWS Mainframe Modernization provides you with the ability to set up builds and continuous
integration/continuous delivery (CI/CD) pipelines for your migrated applications. These builds
and pipelines use AWS CodeBuild, AWS CodeCommit, and AWS CodePipeline to provide these
capabilities. CodeBuild is a fully managed build service that compiles your source code, runs unit
tests, and produces artifacts that are ready to deploy. CodeCommit is a version control service that
enables you to privately store and manage Git reponsitories in the AWS Cloud. CodePipeline is a
continuous delivery service that enables you to model, visualize, and automate the steps required
to release your software.

This tutorial demonstrates how to use AWS CodeBuild to compile the BankDemo sample
application source code from Amazon S3 and then export the compiled code back to Amazon S3.

AWS CodeBuild is a fully managed continuous integration service that compiles source code,
runs tests, and produces software packages that are ready to deploy. With CodeBuild, you can
use prepackaged build environments, or you can create custom build environments that use
your own build tools. This demo scenario uses the second option. It consists of a CodeBuild build
environment that uses a pre-packaged Docker image.

Important

Before you start your mainframe modernization project, we recommend that you learn
about the AWS Migration Acceleration Program (MAP) for Mainframe or contact AWS
mainframe specialists to learn about the steps required to modernize a mainframe
application.

Topics

• Prerequisites

• Step 1: Share the build assets with AWS account

• Step 2: Create Amazon S3 buckets

• Step 3: Create the build spec file

• Step 4: Upload the source files

• Step 5: Create IAM policies

Tutorial: Set up the build for the BankDemo sample application 507

https://aws.amazon.com/migration-acceleration-program/mainframe/
mailto:%20mainframe@amazon.com
mailto:%20mainframe@amazon.com

AWS Mainframe Modernization User Guide

• Step 6: Create an IAM role

• Step 7: Attach the IAM policies to the IAM role

• Step 8: Create the CodeBuild project

• Step 9: Start the build

• Step 10: Download output artifacts

• Clean up resources

Prerequisites

Before you start this tutorial, complete the following prerequisites.

• Download the BankDemo sample application and unzip it to a folder. The source folder contains
COBOL programs and Copybooks, and definitions. It also contains a JCL folder for reference,
although you do not need to build JCL. The folder also contains the meta files required for the
build.

• In the AWS Mainframe Modernization console, choose Tools . In Analysis, development, and
build assets, choose Share assets with my AWS account.

Step 1: Share the build assets with AWS account

In this step, you ensure that you share the build assets with your AWS account, especially in the
Region where assets are being used.

1. Open the AWS Mainframe Modernization console at https://console.aws.amazon.com/m2/.

2. In the left navigation, choose Tools.

3. In Analysis, development, and build assets, choose Share assets with my AWS account.

Important

You need to do this step once in every AWS Region where you intend to do builds.

Tutorial: Set up the build for the BankDemo sample application 508

https://d3lkpej5ajcpac.cloudfront.net/demo/mf/BANKDEMO-build.zip
https://us-west-2.console.aws.amazon.com/m2/home?region=us-west-2#/

AWS Mainframe Modernization User Guide

Step 2: Create Amazon S3 buckets

In this step, you create two Amazon S3 buckets. The first is an input bucket to hold the source
code, and the other is an output bucket to hold the build output. For more information, see
Creating, configuring, and working with Amazon S3 buckets in the Amazon S3 User Guide.

1. To create the input bucket, log in to the Amazon S3 console and choose Create bucket.

2. In General configuration, provide a name for the bucket and specify the AWS Region where
you want to create the bucket. An example name is codebuild-regionId-accountId-
input-bucket, where regionId is the AWS Region of the bucket ,and accountId is your
AWS account ID.

Note

If you are creating the bucket in a different AWS Region from US East (N. Virginia),
specify the LocationConstraint parameter. For more information, see Create
Bucket in the Amazon Simple Storage Service API Reference.

3. Retain all other settings and choose Create bucket.

4. Repeat steps 1-3 to create the output bucket. An example name is codebuild-regionId-
accountId-output-bucket, where regionId is the AWS Region of the bucket and
accountId is your AWS account ID.

Whatever names you choose for these buckets, be sure to use them throughout this tutorial.

Step 3: Create the build spec file

In this step, you create a build spec file,. This file provides build commands and related settings,
in YAML format, for CodeBuild to run the build. For more information, see Build specification
reference for CodeBuild in the AWS CodeBuild User Guide.

1. Create a file named buildspec.yml in the directory that you unzipped as a prerequisite.

2. Add the following content to the file and save. No changes are required for this file.

version: 0.2
env:
 exported-variables:
 - CODEBUILD_BUILD_ID

Tutorial: Set up the build for the BankDemo sample application 509

https://docs.aws.amazon.com/AmazonS3/latest/userguide/creating-buckets-s3.html
https://docs.aws.amazon.com/AmazonS3/latest/API/API_CreateBucket.html
https://docs.aws.amazon.com/AmazonS3/latest/API/API_CreateBucket.html
https://docs.aws.amazon.com/codebuild/latest/userguide/build-spec-ref.html
https://docs.aws.amazon.com/codebuild/latest/userguide/build-spec-ref.html

AWS Mainframe Modernization User Guide

 - CODEBUILD_BUILD_ARN
phases:
 install:
 runtime-versions:
 python: 3.7
 pre_build:
 commands:
 - echo Installing source dependencies...
 - ls -lR $CODEBUILD_SRC_DIR/source
 build:
 commands:
 - echo Build started on `date`
 - /start-build.sh -Dbasedir=$CODEBUILD_SRC_DIR/source -Dloaddir=
$CODEBUILD_SRC_DIR/target
 post_build:
 commands:
 - ls -lR $CODEBUILD_SRC_DIR/target
 - echo Build completed on `date`
artifacts:
 files:
 - $CODEBUILD_SRC_DIR/target/**

Here CODEBUILD_BUILD_ID, CODEBUILD_BUILD_ARN, $CODEBUILD_SRC_DIR/source, and
$CODEBUILD_SRC_DIR/target are environment variables available within CodeBuild. For
more information, see Environment variables in build environments.

At this point, your directory should look like this.

(root directory name)
 |-- build.xml
 |-- buildspec.yml
 |-- LICENSE.txt
 |-- source
 |... etc.

3. Zip the contents of the folder to a file named BankDemo.zip.. For this tutorial, you can't zip
the folder. Instead, zip the contents of the folder to the file BankDemo.zip.

Tutorial: Set up the build for the BankDemo sample application 510

https://docs.aws.amazon.com/codebuild/latest/userguide/build-env-ref-env-vars.html

AWS Mainframe Modernization User Guide

Step 4: Upload the source files

In this step, you upload the source code for the BankDemo sample application to your Amazon S3
input bucket.

1. Log in to the Amazon S3 console and choose Buckets in the left navigation pane. Then choose
the input bucket you created previously.

2. Under Objects, choose Upload.

3. In the Files and folders section, choose Add Files.

4. Navigate to and choose your BankDemo.zip file.

5. Choose Upload.

Step 5: Create IAM policies

In this step, you create two IAM policies. One policy grants permissions for AWS Mainframe
Modernization to access and use the Docker image that contains the Micro Focus build tools. This
policy is not customized for customers. The other policy grants permissions for AWS Mainframe
Modernization to interact with the input and output buckets, and with the Amazon CloudWatch
logs that CodeBuild generates.

To learn about creating an IAM policy, see Editing IAM policies in the IAM User Guide.

To create a policy for accessing Docker images

1. In the IAM console, copy the following policy document and paste it into the policy editor.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ecr:GetAuthorizationToken"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [

Tutorial: Set up the build for the BankDemo sample application 511

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/WhatIsCloudWatchLogs.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/WhatIsCloudWatchLogs.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html

AWS Mainframe Modernization User Guide

 "ecr:BatchCheckLayerAvailability",
 "ecr:GetDownloadUrlForLayer",
 "ecr:BatchGetImage"
],
 "Resource": "arn:aws:ecr:*:673918848628:repository/m2-enterprise-build-
tools"
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:PutObject"
],
 "Resource": "arn:aws:s3:::aws-m2-repo-*-<region>-prod"
 }
]
}

2. Provide a name for the policy, for example, m2CodeBuildPolicy.

To create a policy that allows AWS Mainframe Modernization to interact with buckets and logs

1. In the IAM console, copy the following policy document and paste it into the policy editor.
Make sure to update regionId to the AWS Region, and accountId to your AWS account.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "logs:CreateLogGroup",
 "logs:CreateLogStream",
 "logs:PutLogEvents"
],
 "Resource": [
 "arn:aws:logs:regionId:accountId:log-group:/aws/codebuild/
codebuild-bankdemo-project",
 "arn:aws:logs:regionId:accountId:log-group:/aws/codebuild/
codebuild-bankdemo-project:*"
],
 "Effect": "Allow"
 },
 {
 "Action": [

Tutorial: Set up the build for the BankDemo sample application 512

AWS Mainframe Modernization User Guide

 "s3:PutObject",
 "s3:GetObject",
 "s3:GetObjectVersion",
 "s3:GetBucketAcl",
 "s3:GetBucketLocation",
 "s3:List*"
],
 "Resource": [
 "arn:aws:s3:::codebuild-regionId-accountId-input-bucket",
 "arn:aws:s3:::codebuild-regionId-accountId-input-bucket/*",
 "arn:aws:s3:::codebuild-regionId-accountId-output-bucket",
 "arn:aws:s3:::codebuild-regionId-accountId-output-bucket/*"
],
 "Effect": "Allow"
 }
]
 }

2. Provide a name for the policy, for example, BankdemoCodeBuildRolePolicy.

Step 6: Create an IAM role

In this step, you create a new IAM role that allows CodeBuild to interact with AWS resources for
you, after you associate the IAM policies that you previously created with this new IAM role.

For information about creating a service role, see Creating a Role to Delegate Permissions to an
AWS Service in the IAM User Guide,.

1. Log in to the IAM console and choose Roles in the left navigation pane.

2. Choose Create role.

3. Under Trusted entity type, choose AWS service.

4. Under Use cases for other AWS services, choose CodeBuild, and then choose CodeBuild
again.

5. Choose Next.

6. On the Add permissions page, choose Next. You assign a policy to the role later.

7. Under Role details, provide a name for the role, for example,
BankdemoCodeBuildServiceRole.

8. Under Select trusted entities, verify that the policy document looks like the following:

Tutorial: Set up the build for the BankDemo sample application 513

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html

AWS Mainframe Modernization User Guide

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "codebuild.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
 }

9. Choose Create role.

Step 7: Attach the IAM policies to the IAM role

In this step, you attach the two IAM policies you previously created to the
BankdemoCodeBuildServiceRole IAM role.

1. Log in to the IAM console and choose Roles in the left navigation pane.

2. In Roles, choose the role you created previously, for example,
BankdemoCodeBuildServiceRole.

3. In Permissions policies, choose Add permissions, and then Attach policies.

4. In Other permissions policies, choose the policies that you created previously, for example,
m2CodeBuildPolicy and BankdemoCodeBuildRolePolicy.

5. Choose Attach policies.

Step 8: Create the CodeBuild project

In this step, you create the CodeBuild project.

1. Log in to the CodeBuild console and choose Create build project.

2. In the Project configuration section, provide a name for the project, for example,
codebuild-bankdemo-project.

Tutorial: Set up the build for the BankDemo sample application 514

AWS Mainframe Modernization User Guide

3. In the Source section, for Source provider, choose Amazon S3, and then choose the input
bucket you created previously, for example, codebuild-regionId-accountId-input-
bucket.

4. In the S3 object key or S3 folder field, enter the name of the zip file that you uploaded to the
S3 bucket. In this case, the file name is bankdemo.zip.

5. In the Environment section, choose Custom image.

6. In the Environment type field, choose Linux.

7. Under Image registry, choose Other registry.

8. In the External registry URL field,

• For Micro Focus v9: Enter 673918848628.dkr.ecr.us-west-1.amazonaws.com/
m2-enterprise-build-tools:9.0.7.R1. If you're using a different AWS
Region with Micro Focus v9, you can also specify 673918848628.dkr.ecr.<m2-
region>.amazonaws.com/m2-enterprise-build-tools:9.0.7.R1, where <m2-
region> is an AWS Region in which AWS Mainframe Modernization service is available (for
example, eu-west-3).

• For Micro Focus v8: Enter 673918848628.dkr.ecr.us-west-2.amazonaws.com/m2-
enterprise-build-tools:8.0.9.R1

• For Micro Focus v7: Enter 673918848628.dkr.ecr.us-west-2.amazonaws.com/m2-
enterprise-build-tools:7.0.R10

9. Under Service role, choose Existing service role, and in the Role ARN field, choose the service
role you created previously; for example, BankdemoCodeBuildServiceRole.

10. In the Buildspec section, choose Use a buildspec file.

11. In the Artifacts section, under Type, choose Amazon S3, and then choose your output bucket,
for example, codebuild-regionId-accountId-output-bucket.

12. In the Name field, enter the name of a folder in the bucket that you want to contain the build
output artifacts, for example, bankdemo-output.zip.

13. Under Artifacts packaging, choose Zip.

14. Choose Create build project.

Step 9: Start the build

In this step, you start the build.

Tutorial: Set up the build for the BankDemo sample application 515

AWS Mainframe Modernization User Guide

1. Log in to the CodeBuild console.

2. In the left navigation pane, choose Build projects.

3. Choose the build project that you created previously, for example, codebuild-bankdemo-
project.

4. Choose Start build.

This command starts the build. The build runs asynchronously. The output of the command is a
JSON that includes the attribute id. This attribute idis a reference to the CodeBuild build id of the
build that you just started. You can view the status of the build in the CodeBuild console. You can
also see detailed logs about the build execution in the console. For more information, see View
detailed build information in the AWS CodeBuild User Guide.

When the current phase is COMPLETED, it means that your build finished successfully, and your
compiled artifacts are ready on Amazon S3.

Step 10: Download output artifacts

In this step, you download the output artifacts from Amazon S3. The Micro Focus build tool can
create several different executable types. In this tutorial, it generates shared objects.

1. Log in to the Amazon S3 console.

2. In the Buckets role="bold"> section, choose the name of your output bucket, for example,
codebuild-regionId-accountId-output-bucket.

3. Choose Download role="bold">.

4. Unzip the downloaded file. Navigate to the target folder to see the build artifacts. These
include the .so Linux shared objects.

Clean up resources

If you no longer need the resources that you created for this tutorial, delete them to avoid
additional charges. To do so, complete the following steps:

• Delete the S3 buckets that you created for this tutorial. For more information, see Deleting a
bucket in the Amazon Simple Storage Service User Guide.

• Delete the IAM policies that you created for this tutorial. For more information, see Deleting IAM
policies in the IAM User Guide.

Tutorial: Set up the build for the BankDemo sample application 516

https://docs.aws.amazon.com/codebuild/latest/userguide/getting-started-build-log-console.html
https://docs.aws.amazon.com/codebuild/latest/userguide/getting-started-build-log-console.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/delete-bucket.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/delete-bucket.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage-delete.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage-delete.html

AWS Mainframe Modernization User Guide

• Delete the IAM role that you created for this tutorial. For more information, see Deleting roles or
instance profiles in the IAM User Guide.

• Delete the CodeBuild project that you created for this tutorial. For more information, see Delete
a build project in CodeBuild in the AWS CodeBuild User Guide.

Tutorial: Setting up a CI/CD pipeline for use with Micro Focus
Enterprise Developer

This tutorial shows you how to import, edit, compile, and run the BankDemo sample application in
Micro Focus Enterprise Developer, and then to commit your changes to trigger a CI/CD pipeline.

Contents

• Prerequisites

• Create CI/CD pipeline basic infrastructure

• Create AWS CodeCommit repository and CI/CD pipeline

• Sample YAML Trigger File config_git.yml

• Enterprise Developer AppStream 2.0 Creation

• Enterprise Developer Setup and Test

• Clone the BankDemo CodeCommit repository in Enterprise Developer

• Create BankDemo mainframe COBOL project and build application

• Create local BankDemo CICS and batch environment for testing

• Start the BANKDEMO server from Enterprise Developer

• Start the Rumba 3270 terminal

• Run a BankDemo transaction

• Stop the BANKDEMO server from Enterprise Developer

• Exercise 1: Enhance Loan Calculation in BANKDEMO Application

• Add loan analysis rule to Enterprise Developer Code Analysis

• Step 1: Perform code analysis for loan calculation

• Step 2: Modify CICS BMS map and COBOL program and test

• Step 3: Add total amount calculation in COBOL program

• Step 4: Commit changes and run CI/CD pipeline

• Exercise 2: Extract loan calculation in BankDemo application

Tutorial: Set up CI/CD pipeline with Micro Focus Enterprise Developer 517

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_manage_delete.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_manage_delete.html
https://docs.aws.amazon.com/codebuild/latest/userguide/delete-project.html
https://docs.aws.amazon.com/codebuild/latest/userguide/delete-project.html

AWS Mainframe Modernization User Guide

• Step 1: Refactor loan calculation routine into a COBOL section

• Step 2: Extract loan calculation routine to a standalone COBOL program

• Step 3: Commit changes and run the CI/CD pipeline

• Clean up resources

Prerequisites

Download the following files.

• basic-infra.yaml

• Download from Europe (Frankfurt) Region.

• Download from US East (N. Virginia) Region.

• pipeline.yaml

• Download from Europe (Frankfurt) Region.

• Download from US East (N. Virginia) Region.

• m2-code-sync-function.zip

• Download from Europe (Frankfurt) Region.

• Download from US East (N. Virginia) Region.

• config_git.yml

• Download from Europe (Frankfurt) Region.

• Download from US East (N. Virginia) Region.

• BANKDEMO-source.zip

• Download from Europe (Frankfurt) Region.

• Download from US East (N. Virginia) Region.

• BANKDEMO-exercise.zip

• Download from Europe (Frankfurt) Region.

• Download from US East (N. Virginia) Region.

The purpose of each file is as follows:

Tutorial: Set up CI/CD pipeline with Micro Focus Enterprise Developer 518

https://d3lkpej5ajcpac.cloudfront.net/cicd/mf/basic-infra.yaml
https://drm0z31ua8gi7.cloudfront.net/cicd/mf/basic-infra.yaml
https://d3lkpej5ajcpac.cloudfront.net/cicd/mf/pipeline.yaml
https://drm0z31ua8gi7.cloudfront.net/cicd/mf/pipeline.yaml
https://d3lkpej5ajcpac.cloudfront.net/cicd/mf/m2-code-sync-function.zip
https://drm0z31ua8gi7.cloudfront.net/cicd/mf/m2-code-sync-function.zip
https://d3lkpej5ajcpac.cloudfront.net/cicd/mf/config_git.yml
https://drm0z31ua8gi7.cloudfront.net/cicd/mf/config_git.yml
https://d3lkpej5ajcpac.cloudfront.net/cicd/mf/BANKDEMO-source.zip
https://drm0z31ua8gi7.cloudfront.net/cicd/mf/BANKDEMO-source.zip
https://d3lkpej5ajcpac.cloudfront.net/cicd/mf/BANKDEMO-exercise.zip
https://drm0z31ua8gi7.cloudfront.net/cicd/mf/BANKDEMO-exercise.zip

AWS Mainframe Modernization User Guide

basic-infra.yaml

This AWS CloudFormation template creates the basic infrastructure needed for the CI/CD
pipeline: VPC, Amazon S3 buckets, and so on.

pipeline.yaml

This AWS CloudFormation template is used by an Lambda function to launch the pipeline stack.
Make sure this template is located in a publicly accessible Amazon S3 bucket. Add the link to
this bucket as the default value for the PipelineTemplateURLparameter in the basic-
infra.yaml template.

m2-code-sync-function.zip

This Lambda function creates the CodeCommit repository, the directory structure based on the
config_git.yaml, and launches the pipeline stack using pipeline.yaml. Make sure this zip
file is available in a publicly accessible Amazon S3 bucket in all the AWS Regions where AWS
Mainframe Modernization is supported. We recommend that you store the file in a bucket in
one AWS Region and replicate it to buckets across all AWS Regions. Use a naming convention
for the bucket with a suffix that identifies the specific AWS Region (for example, m2-cicd-
deployment-source-eu-west-1) and add the prefix m2-cicd-deployment-source
as default value for parameter DeploymentSourceBucket and form the full bucket by
using the AWS CloudFormation substitution function !Sub {DeploymentSourceBucket}-
${AWS::Region} while referring to that bucket in the basic-infra.yaml template for
resource SourceSyncLambdaFunction.

config_git.yml

CodeCommit directory structure definition. For more information, see Sample YAML Trigger File
config_git.yml.

BANKDEMO-source.zip.

BankDemo source code and configuration file created from the CodeCommit repository.

BANKDEMO-exercise.zip.

BankDemo source for tutorial exercises created from the CodeCommit repository.

Create CI/CD pipeline basic infrastructure

Use the AWS CloudFormation template basic-infra.yaml to create the CI/CD pipeline basic
infrastructure stack through the AWS CloudFormation console. This stack creates Amazon S3

Tutorial: Set up CI/CD pipeline with Micro Focus Enterprise Developer 519

AWS Mainframe Modernization User Guide

buckets where you upload your application code and data, and a supporting AWS Lambda
function to create other necessary resources such as an AWS CodeCommit repository and an AWS
CodePipeline pipeline.

Note

To launch this stack you need permissions to administer IAM, Amazon S3, Lambda, and
AWS CloudFormation and permissions to use AWS KMS.

1. Sign in to the AWS Management Console and open the AWS CloudFormation console at
https://console.aws.amazon.com/cloudformation.

2. Create a new stack by using one of the following options:

• Choose Create Stack. This is the only option if you have a currently running stack.

• On the Stacks page, choose Create Stack. This option is visible only if you have no running
stacks.

3. On the Specify template page:

• In Prepare template, choose Template is ready.

• In Specify template, choose Amazon S3 URL as the template source and enter one of the
following URLs depending on your AWS Region.

• https://m2-us-east-1.s3.us-east-1.amazonaws.com/cicd/mf/basic-
infra.yaml

• https://m2-eu-central-1.s3.eu-central-1.amazonaws.com/cicd/mf/basic-
infra.yaml

• To accept your settings, choose Next.

The Create stack page opens.

Tutorial: Set up CI/CD pipeline with Micro Focus Enterprise Developer 520

https://console.aws.amazon.com/cloudformation/

AWS Mainframe Modernization User Guide

Tutorial: Set up CI/CD pipeline with Micro Focus Enterprise Developer 521

AWS Mainframe Modernization User Guide

Make the following changes:

• Provide appropriate values for Stack name and parameters for Networking Configuration.

• Most parameters in Deployment Configurations are pre-populated appropriately so you
don’t need to modify them. Depending on your AWS Region, change the pipeline AWS
CloudFormation template to one of the following Amazon S3 URLs.

• https://m2-us-east-1.s3.amazonaws.com/cicd/mf/pipeline.yaml

• https://m2-eu-central-1.s3.eu-central-1.amazonaws.com/cicd/mf/
pipeline.yaml

• Choose Next.

Note

Don’t change the default parameter values unless you have modified the AWS
CloudFormation template yourself.

4. In Configure stack options, choose Next.

5. In Capabilities, choose I acknowledge that AWS CloudFormation might create IAM resources
to allow permission for AWS CloudFormation to create IAM Role on your behalf. Choose Create
stack.

Note

It can take 3 to 5 minutes for this stack to be provisioned.

6. After the stack has been created successfully, navigate to the Outputs section of the newly
provisioned stack. There you'll find the Amazon S3 bucket where you need to upload your
mainframe code and dependent files.

Tutorial: Set up CI/CD pipeline with Micro Focus Enterprise Developer 522

AWS Mainframe Modernization User Guide

Create AWS CodeCommit repository and CI/CD pipeline

In this step, you create a CodeCommit repository and provision a CI/CD pipeline stack by calling a
Lambda function that calls AWS CloudFormation to create the pipeline stack.

1. Download the BankDemo sample application to your local machine.

2. Upload bankdemo.zip from your local machine to the Amazon S3 bucket created in Create
CI/CD pipeline basic infrastructure.

3. Download config_git.yml.

4. Modify the config_git.yml if needed, as follows:

• Add your own target repository name, target branch and commit message.

repository-config:
 target-repository: bankdemo-repo
 target-branch: main
 commit-message: Initial commit for bankdemo-repo main branch

• Add the email address you want to receive notifications.

Tutorial: Set up CI/CD pipeline with Micro Focus Enterprise Developer 523

https://d1vi4vxke6c2hu.cloudfront.net/demo/bankdemo.zip

AWS Mainframe Modernization User Guide

pipeline-config:
 # Send pipeline failure notifications to these email addresses
 alert-notifications:
 - myname@mycompany.com
 # Send notifications for manual approval before production deployment to these
 email addresses
 approval-notifications:
 - myname@mycompany.com

5. Upload the config_git.yml file containing the definition of the CodeCommit repository
folder structure to the Amazon S3 bucket created in Create CI/CD pipeline basic infrastructure.
This will invoke the Lambda function that will automatically provision the repository and
pipeline.

This will create a CodeCommit repository with the name provided in the target-
repository defined in the config_git.yml file; for example, bankdemo-repo.

The Lambda function will also create the CI/CD pipeline stack through AWS CloudFormation.
The AWS CloudFormation stack will have the same prefix as the target-repository name
provided followed by a random string (for example bankdemo-repo-01234567. You can
find the CodeCommit repository URL and the URL to access the created pipeline in the AWS
Management Console.

6. If the CodeCommit repository creation is complete, the CI/CD pipeline will be triggered
immediately to perform a full CI/CD.

Tutorial: Set up CI/CD pipeline with Micro Focus Enterprise Developer 524

AWS Mainframe Modernization User Guide

7. Once the file has been pushed it will automatically trigger the pipeline which will build, deploy
in staging, run some tests and wait for manual approval before getting it deployed in the
production environment.

Sample YAML Trigger File config_git.yml

repository-config:
 target-repository: bankdemo-repo
 target-branch: main
 commit-message: Initial commit for bankdemo-repo main branch
 directory-structure:
 - '/':
 files:
 - build.xml
 - '*.yaml'
 - '*.yml'
 - '*.xml'
 - 'LICENSE.txt'
 readme: |
 # Root Folder
 - 'build.xml' : Build configuration for the application
 - tests:
 files:
 - '*.py'
 readme: |
 # Test Folder
 - '*.py' : Test scripts
 - config:
 files:
 - 'BANKDEMO.csd'
 - 'BANKDEMO.json'
 - 'BANKDEMO_ED.json'
 - 'dfhdrdat'
 - 'ESPGSQLXA.dll'
 - 'ESPGSQLXA64.so'
 - 'ESPGSQLXA64_S.so'
 - 'EXTFH.cfg'
 - 'm2-2021-04-28.normal.json'
 - 'MFDBFH.cfg'
 - 'application-definition-template-config.json'
 readme: |
 # Config Folder

Tutorial: Set up CI/CD pipeline with Micro Focus Enterprise Developer 525

AWS Mainframe Modernization User Guide

 This folder contains the application configuration files.
 - 'BANKDEMO.csd' : CICS Resource definitions export file
 - 'BANKDEMO.json' : Enterprise Server configuration
 - 'BANKDEMO_ED.json' : Enterprise Server configuration for ED
 - 'dfhdrdat' : CICS resource definition file
 - 'ESPGSQLXA.dll' : XA switch module Windows
 - 'ESPGSQLXA64.so' : XA switch module Linux
 - 'ESPGSQLXA64_S.so' : XA switch module Linux
 - 'EXTFH.cfg' : Micro Focus File Handler configuration
 - 'm2-2021-04-28.normal.json' : M2 request document
 - 'MFDBFH.cfg' : Micro Focus Database File Handler
 - 'application-definition-template-config.json' : Application definition for
 M2
 - source:
 subdirs:
 - .settings:
 files:
 - '.bms.mfdirset'
 - '.cbl.mfdirset'
 - copybook:
 files:
 - '*.cpy'
 - '*.inc'
 readme: |
 # Copy folder
 This folder contains the source for COBOL copy books, PLI includes, ...
 - .cpy COBOL copybooks
 - .inc PLI includes
- ctlcards:
files:
- '*.ctl'
- 'KBNKSRT1.txt'
readme: |
Control Card folder
This folder contains the source for Batch Control Cards
- .ctl Control Cards
 - ims:
 files:
 - '*.dbd'
 - '*.psb'
 readme: |
 # ims folder
 This folder contains the IMS DB source files with the extensions
 - .dbd for IMS DBD source

Tutorial: Set up CI/CD pipeline with Micro Focus Enterprise Developer 526

AWS Mainframe Modernization User Guide

 - .psb for IMS PSB source
 - jcl:
 files:
 - '*.jcl'
 - '*.ctl'
 - 'KBNKSRT1.txt'
 - '*.prc'
 readme: |
 # jcl folder
 This folder contains the JCL source files with the extensions
 - .jcl
- proclib:
files:
- '*.prc'
readme: |
proclib folder
This folder contains the JCL procedures referenced via PROCLIB
 statements in the JCL with extensions
- .prc
 - rdbms:
 files:
 - '*.sql'
 readme: |
 # rdbms folder
 This folder contains any DB2 related source files with extensions
 - .sql for any kind of SQL source
 - screens:
 files:
 - '*.bms'
 - '*.mfs'
 readme: |
 # screens folder
 This folder contains the screens source files with the extensions
 - .bms for CICS BMS screens
 - .mfs for IMS MFS screens
 subdirs:
 - .settings:
 files:
 - '*.bms.mfdirset'
 - cobol:
 files:
 - '*.cbl'
 - '*.pli'
 readme: |

Tutorial: Set up CI/CD pipeline with Micro Focus Enterprise Developer 527

AWS Mainframe Modernization User Guide

 # source folder
 This folder contains the program source files with the extensions
 - .cbl for COBOL source
 - .pli for PLI source
 subdirs:
 - .settings:
 files:
 - '*.cbl.mfdirset'
 - tests:
 files:
 - 'test_script.py'
 readme: |
 # tests Folder
 This folder contains the application test scripts
pipeline-config:
 alert-notifications:
 - myname@mycompany.com
 approval-notifications:
 - myname@mycompany.com

Enterprise Developer AppStream 2.0 Creation

To set up Micro Focus Enterprise Developer on AppStream 2.0, see Tutorial: Set up Micro Focus
Enterprise Developer on AppStream 2.0.

To connect the CodeCommit repository to Enterprise Developer, use the name specified in
target-repository in Sample YAML Trigger File config_git.yml.

Enterprise Developer Setup and Test

Topics

• Clone the BankDemo CodeCommit repository in Enterprise Developer

• Create BankDemo mainframe COBOL project and build application

• Create local BankDemo CICS and batch environment for testing

• Start the BANKDEMO server from Enterprise Developer

• Start the Rumba 3270 terminal

• Run a BankDemo transaction

• Stop the BANKDEMO server from Enterprise Developer

Tutorial: Set up CI/CD pipeline with Micro Focus Enterprise Developer 528

AWS Mainframe Modernization User Guide

Connect to the Enterprise Developer AppStream 2.0 instance you created in Enterprise Developer
AppStream 2.0 Creation.

1. Start Enterprise Developer from Windows Start. Choose Micro Focus Enterprise Developer,
then choose Enterprise Developer for Eclipse. If you are starting for the first time, it might take
some time.

2. In the Eclipse Launcher, in Workspace: enter C:\Users\<username>\workspace then
choose Launch.

Note

Make sure you choose the same location after reconnecting to the AppStream 2.0
instance. Workspace selection is not persistent.

3. In Welcome, choose Open COBOL Perspective. This will only be shown the first time for a new
workspace.

Clone the BankDemo CodeCommit repository in Enterprise Developer

1. Choose Window / Perspective / Open Perspective / Other ... / Git.

2. Choose Clone a Git repository.

3. In Clone Git Repository, enter the following information:

• In Location URI, enter the HTTPS URL of the CodeCommit repository.

Note

Copy the Clone URL HTTPS for the CodeCommit repository in the AWS Management
Console and paste it here. The URI will be split into the Host and Repository paths..

• The user CodeCommit repository credentials in Authentication User and Password and
choose Store in Secure Store.

4. In Branch Selection, choose Main branch, then choose Next.

5. In Local Destination, in Directory, enter C:\Users\<username>\workspace and choose
Finish.

Tutorial: Set up CI/CD pipeline with Micro Focus Enterprise Developer 529

AWS Mainframe Modernization User Guide

The clone process is completed when BANKDEMO [main] is shown in the Git Repositories
view.

Create BankDemo mainframe COBOL project and build application

1. Change to COBOL Perspective.

2. In Project, disable Build Automatically.

3. In File, choose New, then Mainframe COBOL Project.

4. In New Mainframe COBOL Project, enter the following information:

• In Project name, enter BankDemo.

• Choose Micro Focus template [64 bit].

• Choose Finish.

5. In COBOL Explorer, expand the new BankDemo project.

Note

[BANKDEMO main] in square brackets indicates that the project is connected with the
local BankDemo CodeCommit repository.

6. If the tree view does not show entries for COBOL Programs, Copybooks, BMS Source, and JCL
Files, choose Refresh from the BankDemo project context menu.

7. From the BankDemo context menu, choose Properties / Micro Focus / Project Settings /
COBOL:

• Choose Character Set - ASCII.

• Choose Apply, then Close.

8. If the build of the BMS and COBOL source does not immediately start, check in the Project
menu, that the option Build Automatically is enabled.

The Build output will be displayed in the Console view and should complete after a few
minutes with messages BUILD SUCCESSFUL and Build finished with no errors.

The BankDemo application should now be compiled and ready for local execution.

Tutorial: Set up CI/CD pipeline with Micro Focus Enterprise Developer 530

AWS Mainframe Modernization User Guide

Create local BankDemo CICS and batch environment for testing

1. In COBOL Explorer, expand BANKDEMO / config.

2. In the editor, open BANKDEMO_ED.json.

3. Find string ED_Home= and change path to point to the Enterprise Developer project, as
follows: D:\\<username>\\workspace\\BANKDEMO. Note the use of double slashes (\\)in
the path definition.

4. Save and close the file.

5. Choose Server Explorer.

6. From the Default context menu, choose Open Administration Page. The Micro Focus
Enterprise Server Administration page is opened in the default browser.

7. For AppStream 2.0 sessions only, make the following changes so you can preserve your local
Enterprise Server region for local testing:

• In Directory Server / Default, choose PROPERTIES / Configuration.

• Replace Repository Location with D:\<username>\My Files\Home Folder\MFDS.

Note

You must complete steps 5 - 8 after every new connection to an AppStream 2.0
instance.

8. In Directory Server / Default, choose Import, then complete the following steps:

• In Step 1: Import Type, choose JSON and choose Next.

• In Step 2: Upload, click to upload file in blue square.

• In Choose File to Upload, enter:

• File name: D:\<username>\workspace\BANKDEMO\config\BANKDEMO_ED.json.

• Choose Open.

• Choose Next.

• In Step 3: Regions clear Clear Ports from Endpoints.

• Choose Next.

• In Step 4: Import, choose Import.

• Choose Finish.

Tutorial: Set up CI/CD pipeline with Micro Focus Enterprise Developer 531

AWS Mainframe Modernization User Guide

The list will now show a new server name BANKDEMO.

Start the BANKDEMO server from Enterprise Developer

1. Choose Enterprise Developer.

2. In Server Explorer, choose Default, then choose Refresh from the context menu.

The server list should now also show BANKDEMO.

3. Choose BANKDEMO.

4. From the context menu, choose Associate with project, then choose BANKDEMO.

5. From the context menu, choose Start.

The Console view should display the log for the server startup.

If the message BANKDEMO CASSI5030I PLTPI Phase 2 List(PI) Processing
Completed is displayed, the Server is ready for testing the CICS BANKDEMO application.

Start the Rumba 3270 terminal

1. From Windows Start, launch Micro Focus Rumba+ Desktop / Rumba+ Desktop.

2. In Welcome, choose CREATE NEW SESSION / Mainframe Display.

3. In Mainframe Display, choose Connection / Configure.

4. In Session Configuration, choose Connection / TN3270.

5. In Host Name / Address, choose Insert and enter IP address 127.0.0.1.

6. In Telnet Port, enter port 6000.

7. Choose Apply.

8. Choose Connect.

The CICS welcome screen displays screen with row 1 message: This is the Micro Focus
MFE CICS region BANKDEMO.

9. Press CTRL+Shift+Z to clear screen.

Tutorial: Set up CI/CD pipeline with Micro Focus Enterprise Developer 532

AWS Mainframe Modernization User Guide

Run a BankDemo transaction

1. In an empty screen, enter BANK.

2. In screen BANK10, in the input field for User id.....:, enter guest and press Enter.

3. In screen BANK20, in the input field before Calculate the cost of a loan, enter / (forward
slash) and press Enter.

4. In screen BANK70:

• In The amount you would like to borrow...:, enter 10000.

• In At an interest rate of................:, enter 5.0.

• In For how many months...................:, enter 10.

• Press Enter.

The following result should be displayed:

Resulting monthly payment.............: $1023.06

This completes the BANKDEMO application setup in Enterprise Developer.

Stop the BANKDEMO server from Enterprise Developer

1. In Server Explorer, choose Default, then choose Refresh from the context menu.

2. Choose BANKDEMO.

3. From the context menu, choose Stop.

The Console view should display the log for the server stopping.

If the message Server: BANKDEMO stopped successfully is displayed, the server has
successfully shut down.

Exercise 1: Enhance Loan Calculation in BANKDEMO Application

Topics

• Add loan analysis rule to Enterprise Developer Code Analysis

• Step 1: Perform code analysis for loan calculation

Tutorial: Set up CI/CD pipeline with Micro Focus Enterprise Developer 533

AWS Mainframe Modernization User Guide

• Step 2: Modify CICS BMS map and COBOL program and test

• Step 3: Add total amount calculation in COBOL program

• Step 4: Commit changes and run CI/CD pipeline

In this scenario, you walk through the process of making a sample change to the code, deploying it,
and testing it.

The Loan department wants a new field on the Loan Calculation screen BANK70 to show the Total
Loan Amount. This requires a change of the BMS screen MBANK70.CBL, adding a new field and the
corresponding screen handling program SBANK70P.CBL with related copybooks. In addition, the
loan calculation routine in BBANK70P.CBL needs to be extended with the additional formula.

To complete this exercise, make sure you complete the following prerequisites.

• Download BANKDEMO-exercise.zip to D:\PhotonUser\My Files\Home Folder.

• Extract the zip file to D:\PhotonUser\My Files\Home Folder\BANKDEMO-exercise.

• Create folder D:\PhotonUser\My Files\Home Folder\AnalysisRules.

• Copy the rules file Loan+Calculation+Update.General-1.xml from the BANKDEMO-
exercise folder to D:\PhotonUser\My Files\Home Folder\AnalysisRules.

Note

Code changes in *.CBL and *.CPY are marked with EXER01 in column 1 - 6 for this exercise.

Add loan analysis rule to Enterprise Developer Code Analysis

Analysis rules defined in Micro Focus Enterprise Analyzer can be exported from Enterprise Analyzer
and imported into Enterprise Developer to run same analysis rules across the sources in the
Enterprise Developer project.

1. Open Window/Preferences/Micro Focus/COBOL/Code Analysis/Rules.

2. Choose Edit... and enter the folder name D:\PhotonUser\My Files\Home Folder
\AnalysisRules containing the rules file Loan+Calculation+Update.General-1.xml.

3. Choose Finish.

4. Choose Apply, then choose Close.

Tutorial: Set up CI/CD pipeline with Micro Focus Enterprise Developer 534

https://d3lkpej5ajcpac.cloudfront.net/demo/mf/BANKDEMO-exercise.zip

AWS Mainframe Modernization User Guide

5. From the BANKDEMO project context menu, choose Code Analysis.

You should see an entry for Loan Calculation Update.

Step 1: Perform code analysis for loan calculation

With the new analysis rule we want to identify the COBOL programs and lines of code in there that
are matching the search patterns *PAYMENT*, *LOAN* and *RATE* in expressions, statements and
variables. This will help to navigate through the code and identify required code changes.

1. From the BANKDEMO project context menu, choose Code Analysis/Loan Calculation Update.

This will run the search rule and list the results in a new tab called Code Analysis. The analysis
run is completed when the green progress bar at the bottom right disappears.

The Code Analysis tab should display an expanded list of BBANK20P.CBL, BBANK70P.CBL and
SBANK70P.CBL, each listing the statements, expressions and variables matching the search
patterns.

Looking at the result for BBANK20P.CBL there are only literals moved that have a match with
search pattern. So this program can be ignored.

2. In the tab menu bar choose - Icon to collapse all.

3. Expand SBANK70P.CBL and select any lines in any order with a double-click to see how this
will open the source and highlight the line selected in source code. You will also recognize that
all identified source lines are marked.

Step 2: Modify CICS BMS map and COBOL program and test

First we will change the BMS map MBANK70.BMS and the screen handling program SBANK70P.CBL
and copybook CBANKDAT.CPY to display the new field. To avoid unnecessary coding in this
exercise, modified source modules are available in the D:\PhotonUser\My Files\Home
Folder\BANKDEMO-exercise\Exercise01 folder. Normally a developer would use the Code
Analysis results to navigate and modify the sources. If you have the time and and want to do the
manual changes do so with the information provided in *Manual change in MBANK70.BMS and
SBANK70P.CBL (Optional)*.

For quick changes, copy the following files:

Tutorial: Set up CI/CD pipeline with Micro Focus Enterprise Developer 535

AWS Mainframe Modernization User Guide

1. ..\BANKDEMO-exercise\Exercis01\screens\MBANK70.BMS to D:\PhotonUser
\workspace\bankdemo\source\screens.

2. .\BANKDEMO-exercise\Exercis01\cobol\SBANK70P.CBL to D:\PhotonUser
\workspace\bankdemo\source\cobol.

3. ..\BANKDEMO-exercise\Exercis01\copybook\CBANKDAT.CPY to D:\PhotonUser
\workspace\bankdemo\source\copybook.

4. To ensure that all programs impacted by the changes are compiled, choose Project/Clean.../
Clean all project.

For manual changes to MBANK70.BMS and SBANK70P.CBL, complete the following steps:

• For manual change in BMS MBANK70.BMS source add after the PAYMENT field:

• TXT09 with same attributes as TXT08 and INITIAL value “Total Loan Amount”

• TOTAL with same attributes as PAYMENT

Test changes

To test the changes, repeat the steps in the following sections:

1. Start the BANKDEMO server from Enterprise Developer

2. Start the Rumba 3270 terminal

3. Run a BankDemo transaction

In addition you should now also see the text Total Loan
Amount.....................:.

4. Stop the BANKDEMO server from Enterprise Developer

Step 3: Add total amount calculation in COBOL program

In the second step we will change BBANK70P.CBL and add the calculation for the total loan
amount. The prepared source with required changes is available in D:\PhotonUser\My Files
\Home Folder\BANKDEMO-exercise\Exercise01 folder. If you have the time and want to
do the manual changes do so with the information provided in *Manual change in BBANK70P.CBL
(Optional)*.

For quick change, copy the following file:

Tutorial: Set up CI/CD pipeline with Micro Focus Enterprise Developer 536

AWS Mainframe Modernization User Guide

• ..\BANKDEMO-exercise\Exercis01\source\cobol\BBANK70P.CBL to D:\PhotonUser
\workspace\bankdemo\source\cobol.

To make a manual change to BBANK70P.CBL, complete the following steps:

• Use the Code Analysis result to identify the required changes.

Test changes

To test the changes, repeat the steps in the following sections:

1. Start the BANKDEMO server from Enterprise Developer

2. Start the Rumba 3270 terminal

3. Run a BankDemo transaction

In addition you should now also see the text Total Loan
Amount.....................: $10230.60.

4. Stop the BANKDEMO server from Enterprise Developer

Step 4: Commit changes and run CI/CD pipeline

Commit the changes to the central CodeCommit repository and trigger the CI/CD pipeline to build,
test, and deploy the changes.

1. From BANKDEMO project, in the context menu, choose Team/Commit.

2. In the Git Staging tab, enter the following commit message: Added Total Amount
Calculation.

3. Choose Commit and Push....

4. Open the CodePipeline console and check status of the pipeline execution.

Note

In case you face any problem with the Enterprise Developer or Teams function Commit
or Push, use the Git Bash command line interface.

Tutorial: Set up CI/CD pipeline with Micro Focus Enterprise Developer 537

AWS Mainframe Modernization User Guide

Exercise 2: Extract loan calculation in BankDemo application

Topics

• Step 1: Refactor loan calculation routine into a COBOL section

• Step 2: Extract loan calculation routine to a standalone COBOL program

• Step 3: Commit changes and run the CI/CD pipeline

In this next exercise, you work through another sample change request. In this scenario, the Loan
department want to reuse the loan calculation routine as a standalone WebService. The routine
should remain in COBOL and should also still be callable from the existing CICS COBOL program
BBANK70P.CBL.

Step 1: Refactor loan calculation routine into a COBOL section

In the first step we extract the loan calculation routine into a COBOL Section. This step is required
to extract the code into a stand-alone COBOL program in the next step.

1. Open BBANK70P.CBL in the COBOL Editor.

2. In the editor, choose from the context menu Code Analysis/Loan Calculation Update. This
will only scan the current source for patterns defined in the analysis rule.

3. In the result in the Code Analysis tab, find the first arithmetic statement DIVIDE WS-LOAN-
INTEREST BY 12.

4. Double click on the statement to navigate to source line in Editor. This is the first statement of
the loan calculation routine.

5. Mark the following code block for loan calculation routine to be extracted to a section.

DIVIDE WS-LOAN-INTEREST BY 12
 GIVING WS-LOAN-INTEREST ROUNDED.
 COMPUTE WS-LOAN-MONTHLY-PAYMENT ROUNDED =
 ((WS-LOAN-INTEREST * ((1 + WS-LOAN-INTEREST)
 ** WS-LOAN-TERM)) /
 (((1 + WS-LOAN-INTEREST) * WS-LOAN-TERM) - 1))
 * WS-LOAN-PRINCIPAL.
EXER01 COMPUTE WS-LOAN-TOTAL-PAYMENT =
EXER01 (WS-LOAN-MONTHLY-PAYMENT * WS-LOAN-TERM).

6. From the context menu in the editor, choose Refactor/Extract to Section....

Tutorial: Set up CI/CD pipeline with Micro Focus Enterprise Developer 538

AWS Mainframe Modernization User Guide

7. Enter New section name: LOAN-CALCULATION.

8. Choose OK.

The marked code block has now been extracted to the new LOAN-CALCULATION section and
the code block has been replaced with the PERFROM LOAN-CALCULATION statement.

Test changes

To test the changes repeat the steps described in the following sections.

1. Start the BANKDEMO server from Enterprise Developer

2. Start the Rumba 3270 terminal

3. Run a BankDemo transaction

In addition you should now also see the text Total Loan
Amount.....................: $10230.60.

4. Stop the BANKDEMO server from Enterprise Developer

Note

If you want to avoid the above steps to extract the code block to a section
you can copy the modified source for Step 1 from ..\BANKDEMO-exercise
\Exercis02\Step1\cobol\BBANK70P.CBL to D:\PhotonUser\workspace
\bankdemo\source\cobol.

Step 2: Extract loan calculation routine to a standalone COBOL program

In Step 2 the code block in the LOAN-CALCULATION section will be extracted to a standalone
program and the original code will be replaced with code to call the new subprogram.

1. Open BBANK70P.CBL in editor and find the new PERFORM LOAN-CALCULATION statement
created in Step 1.

2. Place the cursor within the section name. It will be marked grey.

3. From the context menu, select Refactor->Extract Section/Paragraph to Program....

4. In Extract Section/Paragraph to Program, enter New file name: LOANCALC.CBL.

5. Choose OK.

Tutorial: Set up CI/CD pipeline with Micro Focus Enterprise Developer 539

AWS Mainframe Modernization User Guide

The new LOANCALC.CBL program will open in the editor.

6. Scroll down and review the code being extracted and generated for the call interface.

7. Select editor with BBANK70P.CBL and go to LOAN-CALCULATION SECTION. Review the code
being generated to call the new sub-program LOANCALC.CBL.

Note

The CALL statement is using DFHEIBLK and DFHCOMMAREA to call LOANCALC with CICS
control blocks. Because we want to call the new LOANCALC.CBL sub-program as non-
CICS program, we have to remove DFHEIBLK and DFHCOMMAREA from the call either
by commenting out or deleting.

Test changes

To test the changes repeat the steps described in the following sections.

1. Start the BANKDEMO server from Enterprise Developer

2. Start the Rumba 3270 terminal

3. Run a BankDemo transaction

In addition you should now also see the text Total Loan
Amount.....................: $10230.60.

4. Stop the BANKDEMO server from Enterprise Developer

Note

If you want to avoid the above steps to extract the code block to a section
you can copy the modified source for Step 1 from ..\BANKDEMO-exercise
\Exercis02\Step2\cobol\BBANK70P.CBL and LOANCALC.CBL to D:
\PhotonUser\workspace\bankdemo\source\cobol.

Tutorial: Set up CI/CD pipeline with Micro Focus Enterprise Developer 540

AWS Mainframe Modernization User Guide

Step 3: Commit changes and run the CI/CD pipeline

Commit the changes to the central CodeCommit reposiotry and trigger the CI/CD Pipeline to build,
test and deploy the changes.

1. From BANKDEMO project, in the context menu, choose Team/Commit.

2. In the Git Staging tab

• Add in Unstaged Stages LOANCALC.CBL and LOANCALC.CBL.mfdirset.

• Enter a commit message: Added Total Amount Calculation.

3. Choose Commit and Push....

4. Open the CodePipeline console and check status of the pipeline execution.

Note

In case you face any problem with the Enterprise Developer or Teams function Commit
or Push, use the Git Bash command line interface.

Clean up resources

If you no longer need the resources you created for this tutorial, delete them so that you won't
continue to be charged for them. Complete the following steps:

• Delete the CodePipeline pipeline. For more information, see Delete a pipeline in CodePipeline in
the AWS CodePipeline User Guide.

• Delete the CodeCommit repository. For more information, see Delete an CodeCommit repository
in the AWS CodeCommit User Guide.

• Delete the S3; bucket. For more information, see Deleting a bucket in the Amazon Simple Storage
Service User Guide.

• Delete the AWS CloudFormation stack. For more information, see Deleting a stack on the AWS
CloudFormation console in the AWS CloudFormation User Guide.

Tutorial: Set up CI/CD pipeline with Micro Focus Enterprise Developer 541

https://docs.aws.amazon.com/codepipeline/latest/userguide/pipelines-delete.html
https://docs.aws.amazon.com/codecommit/latest/userguide/how-to-delete-repository.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/delete-bucket.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-console-delete-stack.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-console-delete-stack.html

AWS Mainframe Modernization User Guide

Tutorial: Set up AppStream 2.0 for use with Micro Focus Enterprise
Analyzer and Micro Focus Enterprise Developer

AWS Mainframe Modernization provides several tools through Amazon AppStream 2.0. AppStream
2.0 is a fully managed, secure application streaming service that lets you stream desktop
applications to users without rewriting applications. AppStream 2.0 provides users with instant
access to the applications that they need with a responsive, fluid user experience on the device of
their choice. Using AppStream 2.0 to host runtime engine-specific tools gives customer application
teams the ability to use the tools directly from their web browsers, interacting with application
files stored in either Amazon S3 buckets or CodeCommit repositories.

For information about browser support in AppStream 2.0 see System Requirements and Feature
Support (Web Browser) in the Amazon AppStream 2.0 Administration Guide. If you have issues
when you are using AppStream 2.0 see Troubleshooting AppStream 2.0 User Issues in the Amazon
AppStream 2.0 Administration Guide.

This document is intended for members of the customer operations team. It describes how to set
up Amazon AppStream 2.0 fleets and stacks to host the Micro Focus Enterprise Analyzer and Micro
Focus Enterprise Developer tools used with AWS Mainframe Modernization. Micro Focus Enterprise
Analyzer is usually used during the Assess phase and Micro Focus Enterprise Developer is usually
used during the Migrate and Modernize phase of the AWS Mainframe Modernization approach. If
you plan to use both Enterprise Analyzer and Enterprise Developer you must create separate fleets
and stacks for each tool. Each tool requires its own fleet and stack because their licensing terms are
different.

Important

The steps in this tutorial are based on the downloadable AWS CloudFormation template
cfn-m2-appstream-fleet-ea-ed.yml.

Topics

• Prerequisites

• Step 1: Get the AppStream 2.0 images

• Step 2: Create the stack using the AWS CloudFormation template

• Step 3: Create a user in AppStream 2.0

Tutorial: Set up AppStream 2.0 for Enterprise Analyzer and Enterprise Developer 542

https://docs.aws.amazon.com/appstream2/latest/developerguide/requirements-and-features-web-browser-admin.html
https://docs.aws.amazon.com/appstream2/latest/developerguide/requirements-and-features-web-browser-admin.html
https://docs.aws.amazon.com/appstream2/latest/developerguide/troubleshooting-user-issues.html
https://drm0z31ua8gi7.cloudfront.net/tutorials/mf/appstream/cfn-m2-appstream-fleet-ea-ed.yml

AWS Mainframe Modernization User Guide

• Step 4: Log in to AppStream 2.0

• Step 5: Verify buckets in Amazon S3 (optional)

• Next steps

• Clean up resources

Prerequisites

• Download the template: cfn-m2-appstream-fleet-ea-ed.yml.

• Get the ID of your default VPC and security group. For more information on the default VPC, see
Default VPCs in the Amazon VPC User Guide. For more information on the default security group,
see Default and custom security groups in the Amazon EC2 User Guide.

• Make sure you have the following permissions:

• create stacks, fleets, and users in AppStream 2.0.

• create stacks in AWS CloudFormation using a template.

• create buckets and upload files to buckets in Amazon S3.

• download credentials (access_key_id and secret_access_key) from IAM.

Step 1: Get the AppStream 2.0 images

In this step, you share the AppStream 2.0 images for Enterprise Analyzer and Enterprise Developer
with your AWS account.

1. Open the AWS Mainframe Modernization console at https://console.aws.amazon.com/m2/.

2. In the left navigation, choose Tools.

3. In Analysis, development, and build assets, choose Share assets with my AWS account.

Step 2: Create the stack using the AWS CloudFormation template

In this step, you use the downloaded AWS CloudFormation template to create an AppStream
2.0 stack and fleet for running Micro Focus Enterprise Analyzer. You can repeat this step later
to create another AppStream 2.0 stack and fleet for running Micro Focus Enterprise Developer,
since each tool requires its own fleet and stack in AppStream 2.0. For more information on AWS
CloudFormation stacks, see Working with stacks in the AWS CloudFormation User Guide.

Tutorial: Set up AppStream 2.0 for Enterprise Analyzer and Enterprise Developer 543

https://drm0z31ua8gi7.cloudfront.net/tutorials/mf/appstream/cfn-m2-appstream-fleet-ea-ed.yml
https://docs.aws.amazon.com/vpc/latest/userguide/default-vpc.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/default-custom-security-groups.html
https://us-west-2.console.aws.amazon.com/m2/home?region=us-west-2#/
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/stacks.html

AWS Mainframe Modernization User Guide

Note

AWS Mainframe Modernization adds an additional fee to the standard AppStream 2.0
pricing for the use of Enterprise Analyzer and Enterprise Developer. For more information,
see AWS Mainframe Modernization Pricing.

1. Download the cfn-m2-appstream-fleet-ea-ed.yml template, if necessary.

2. Open the AWS CloudFormation console and choose Create Stack and with new resources
(standard).

3. In Prerequisite - Prepare template, choose Template is ready.

4. In Specify Template, choose Upload a template file.

5. In Upload a template file, choose Choose file and upload the cfn-m2-appstream-fleet-ea-
ed.yml template.

6. Choose Next.

7. On Specify stack details, enter the following information:

Tutorial: Set up AppStream 2.0 for Enterprise Analyzer and Enterprise Developer 544

https://aws.amazon.com/mainframe-modernization/pricing/
https://drm0z31ua8gi7.cloudfront.net/tutorials/mf/appstream/cfn-m2-appstream-fleet-ea-ed.yml
https://drm0z31ua8gi7.cloudfront.net/tutorials/mf/appstream/cfn-m2-appstream-fleet-ea-ed.yml
https://drm0z31ua8gi7.cloudfront.net/tutorials/mf/appstream/cfn-m2-appstream-fleet-ea-ed.yml

AWS Mainframe Modernization User Guide

• In Stack name, enter a name of your choice. For example, m2-ea.

• In AppStreamApplication, choose ea.

• In AppStreamFleetSecurityGroup, choose your default VPC’s default security group.

• In AppStreamFleetVpcSubnet, choose a subnet within your default VPC.

• In AppStreamImageName, choose the image starting with m2-enterprise-analyzer.
This image contains the currently supported version of the Micro Focus Enterprise Analyzer
tool.

• Accept the defaults for the other fields, then choose Next.

Tutorial: Set up AppStream 2.0 for Enterprise Analyzer and Enterprise Developer 545

AWS Mainframe Modernization User Guide

8. Accept all defaults, then choose Next again.

9. On Review, make sure all the parameters are what you intend.

10. Scroll to the bottom, choose I acknowledge that AWS CloudFormation might create IAM
resources with custom names, and choose Create Stack.

It takes between 20 and 30 minutes for the stack and fleet to be created. You can choose Refresh
to see the AWS CloudFormation events as they occur.

Tutorial: Set up AppStream 2.0 for Enterprise Analyzer and Enterprise Developer 546

AWS Mainframe Modernization User Guide

Step 3: Create a user in AppStream 2.0

While you are waiting for AWS CloudFormation to finish creating the stack, you can create one
or more users in AppStream 2.0. These users are those who will be using Enterprise Analyzer in
AppStream 2.0. You will need to specify an email address for each user, and ensure that each user
has sufficient permissions to create buckets in Amazon S3, upload files to a bucket, and link to a
bucket to map its contents.

1. Open the AppStream 2.0 console.

2. In the left navigation, choose User pool.

3. Choose Create user.

4. Provide an email address where the user can receive an email invitation to use AppStream 2.0,
a first name and last name, and choose Create user.

5. Repeat if necessary to create more users. The email address for each user must be unique.

For more information on creating AppStream 2.0 users, see AppStream 2.0 User Pools in the
Amazon AppStream 2.0 Administration Guide.

When AWS CloudFormation finishes creating the stack, you can assign the user you created to the
stack, as follows:

1. Open the AppStream 2.0 console.

2. Choose the user name.

3. Choose Action, then Assign stack.

4. In Assign stack, choose the stack that begins with m2-appstream-stack-ea.

5. Choose Assign stack.

Tutorial: Set up AppStream 2.0 for Enterprise Analyzer and Enterprise Developer 547

https://docs.aws.amazon.com/appstream2/latest/developerguide/user-pool.html

AWS Mainframe Modernization User Guide

Assigning a user to a stack causes AppStream 2.0 to send an email to the user at the address you
provided. This email contains a link to the AppStream 2.0 login page.

Step 4: Log in to AppStream 2.0

In this step, you log in to AppStream 2.0 using the link in the email sent by AppStream 2.0 to the
user you created in Step 3: Create a user in AppStream 2.0.

1. Log in to AppStream 2.0 using the link provided in the email sent by AppStream 2.0.

2. Change your password, if prompted. The AppStream 2.0 screen that you see is similar to the
following:

Tutorial: Set up AppStream 2.0 for Enterprise Analyzer and Enterprise Developer 548

AWS Mainframe Modernization User Guide

3. Choose Desktop.

4. On the task bar, choose Search and enter D: to navigate to the Home Folder.

Note

If you skip this step, you might get a Device not ready error when you try to access
the Home Folder.

At any point, if you have trouble signing into AppStream 2.0, you can restart your AppStream 2.0
fleet and try to sign in again, using the following steps.

1. Open the AppStream 2.0 console.

2. In the left navigation, choose Fleets.

3. Choose the fleet you are trying to use.

4. Choose Action, then choose Stop.

5. Wait for the fleet to stop.

6. Choose Action, then choose Start.

This process can take around 10 minutes.

Tutorial: Set up AppStream 2.0 for Enterprise Analyzer and Enterprise Developer 549

AWS Mainframe Modernization User Guide

Step 5: Verify buckets in Amazon S3 (optional)

One of the tasks completed by the AWS CloudFormation template you used to create the stack
was to create two buckets in Amazon S3, which are necessary to save and restore user data and
application settings across work sessions. These buckets are as follows:

• Name starts with appstream2-. This bucket maps data to your Home Folder in AppStream 2.0
(D:\PhotonUser\My Files\Home Folder).

Note

The Home Folder is unique for a given email address and is shared across all fleets and
stacks in a given AWS account. The name of the Home Folder is a SHA256 hash of the
user’s email address, and is stored on a path based on that hash.

• Name starts with appstream-app-settings-. This bucket contains user session information
for AppStream 2.0, and includes settings such as browser favorites, IDE and application
connection profiles, and UI customizations. For more information, see How Application Settings
Persistence Works in the Amazon AppStream 2.0 Administration Guide.

To verify that the buckets were created, follow these steps:

1. Open the Amazon S3 console.

2. In the left navigation, choose Buckets.

3. In Find buckets by name, enter appstream to filter the list.

If you see the buckets, no further action is necessary. Just be aware that the buckets exist. If you do
not see the buckets, then either the AWS CloudFormation template is not finished running, or an
error occurred. Go to the AWS CloudFormation console and review the stack creation messages.

Next steps

Now that the AppStream 2.0 infrastructure is set up, you can set up and start using Enterprise
Analyzer. For more information, see Tutorial: Set up Enterprise Analyzer on AppStream 2.0. You can
also set up Enterprise Developer. For more information, see Tutorial: Set up Micro Focus Enterprise
Developer on AppStream 2.0.

Tutorial: Set up AppStream 2.0 for Enterprise Analyzer and Enterprise Developer 550

https://docs.aws.amazon.com/appstream2/latest/developerguide/how-it-works-app-settings-persistence.html
https://docs.aws.amazon.com/appstream2/latest/developerguide/how-it-works-app-settings-persistence.html

AWS Mainframe Modernization User Guide

Clean up resources

The procedure to clean up the created stack and fleets is described in Create an AppStream 2.0
Fleet and Stack.

When the AppStream 2.0 objects have been deleted, the account administrator can also, if
appropriate, clean up the Amazon S3 buckets for Application Settings and Home Folders.

Note

The home folder for a given user is unique across all fleets, so you might need to retain it if
other AppStream 2.0 stacks are active in the same account.

Finally, AppStream 2.0 does not currently allow you to delete users using the console. Instead, you
must use the service API with the CLI. For more information, see User Pool Administration in the
Amazon AppStream 2.0 Administration Guide.

Tutorial: Use templates with Micro Focus Enterprise Developer

This tutorial describes how to use templates and predefined projects with Micro Focus Enterprise
Developer. It covers three use cases. All of the use cases use the sample code provided in the
BankDemo sample. To download the sample, choose bankdemo.zip .

Important

If you use the version of Enterprise Developer for Windows, the binaries generated by the
compiler can run only on the Enterprise Server provided with Enterprise Developer. You
cannot run them under the AWS Mainframe Modernization runtime, which is based on
Linux.

Topics

• Use Case 1 - Using the COBOL Project Template containing source components

• Use Case 2 - Using the COBOL Project Template without source components

• Use Case 3 - Using the pre-defined COBOL project linking to the source folders

• Using the Region Definition JSON Template

Tutorial: Use templates with Enterprise Developer 551

https://docs.aws.amazon.com/appstream2/latest/developerguide/set-up-stacks-fleets.html
https://docs.aws.amazon.com/appstream2/latest/developerguide/set-up-stacks-fleets.html
https://docs.aws.amazon.com/appstream2/latest/developerguide/user-pool-admin.html
https://d1vi4vxke6c2hu.cloudfront.net/demo/bankdemo.zip

AWS Mainframe Modernization User Guide

Use Case 1 - Using the COBOL Project Template containing source components

This use case requires you to copy the source components into the Template directory structure as
part of the demo pre setup steps. In the bankdemo.zip this has been changed from the original
AWSTemplates.zip delivery to avoid having two copies of the source.

1. Start Enterprise Developer and specify the chosen workspace.

2. Within the Application Explorer view, from the Enterprise Development Project tree view
item, choose New Project from Template from the context menu.

3. Enter the template parameters as shown.

Tutorial: Use templates with Enterprise Developer 552

https://d1vi4vxke6c2hu.cloudfront.net/demo/bankdemo.zip

AWS Mainframe Modernization User Guide

Note

The Template Path will refer to where the ZIP was extracted.

4. Choosing OK will create a local development Eclipse Project based on the provided template,
with a complete source and execution environment structure.

Tutorial: Use templates with Enterprise Developer 553

AWS Mainframe Modernization User Guide

The System structure contains a complete resource definition file with the required entries for
BANKDEMO, the required catalog with entries added and the corresponding ASCII data files.

Because the source template structure contains all the source items, these files are copied to
the local project and therefore are automatically built in Enterprise Developer.

Use Case 2 - Using the COBOL Project Template without source components

Steps 1 to 3 are identical to Use Case 1 - Using the COBOL Project Template containing source
components.

The System structure in this use case also contains a complete resource definition file with the
required entries for BankDemo, the required catalog with entries added, and the corresponding
ASCII data files.

However, the template source structure does not contain any components. You must import these
into the project from whatever source repository you are using.

1. Choose the project name. From the related context menu, choose Import.

Tutorial: Use templates with Enterprise Developer 554

AWS Mainframe Modernization User Guide

2. From the resulting dialog, under the General section, choose File System and then choose
Next.

3. Populate the From directory field by browsing the file system to point to the repository
folder. Choose all the folders you wish to import, such as sources. The Into folder field
will be pre-populated. Choose Finish.

Tutorial: Use templates with Enterprise Developer 555

AWS Mainframe Modernization User Guide

After the source template structure contains all the source items, they are built automatically
in Enterprise Developer.

Use Case 3 - Using the pre-defined COBOL project linking to the source folders

1. Start Enterprise Developer and specify the chosen workspace.

Tutorial: Use templates with Enterprise Developer 556

AWS Mainframe Modernization User Guide

2. From the File menu, choose Import.

3. From the resulting dialog, under General, choose Projects from Folder or Archive and choose
Next.

Tutorial: Use templates with Enterprise Developer 557

AWS Mainframe Modernization User Guide

4. Populate Import source, Choose Directory and browse through the file system to select the
pre-defined project folder. The project contained within has links to the source folders in the
same repository.

Choose Finish.

Because the project is populated by the links to the source folder, the code is automatically
built.

Tutorial: Use templates with Enterprise Developer 558

AWS Mainframe Modernization User Guide

Using the Region Definition JSON Template

1. Switch to the Server Explorer view. From the related context menu, choose Open
Administration Page, which starts the default browser.

2. From the resulting Enterprise Server Common Web Administration (ESCWA) screen, choose
Import .

3. Choose the JSON import type and choose Next.

4. Upload the supplied BANKDEMO.JSON file.

Tutorial: Use templates with Enterprise Developer 559

AWS Mainframe Modernization User Guide

Once selected, choose Next.

On the Select Regions panel, ensure that the Clear Ports from Endpoints option is not
selected, and then continue to choose Next through the panels until the Perform Import
panel is shown. Then choose Import from the left navigation pane.

Finally click Finish. The BANKDEMO region will then be added to the server list.

Tutorial: Use templates with Enterprise Developer 560

AWS Mainframe Modernization User Guide

5. Navigate to the General Properties for the BANKDEMO region.

6. Scroll to the Configuration section.

7. The ESP environment variable needs to be set to the System folder relevant to the Eclipse
Project created in the previous steps. This should be workspacefolder/projectname/
System.

8. Click Apply.

The region is now fully configured to run in conjunction with the Eclipse COBOL project.

9. Finally, back in Enterprise Developer, associate the imported region with the project.

The Enterprise Developer environment is now ready to use, with a complete working version of
BankDemo. You can edit, compile, and debug code against the region.

Tutorial: Use templates with Enterprise Developer 561

AWS Mainframe Modernization User Guide

Important

If you use the version of Enterprise Developer for Windows, the binaries generated by
the compiler can run only on the Enterprise Server provided with Enterprise Developer.
You cannot run them under the AWS Mainframe Modernization runtime, which is based
on Linux.

Tutorial: Set up Enterprise Analyzer on AppStream 2.0

This tutorial describes how to set up Micro Focus Enterprise Analyzer to analyze one or more
mainframe applications. The Enterprise Analyzer tool provides several reports based on its analysis
of the application source code and system definitions.

This setup is designed to foster team collaboration. Installation uses an Amazon S3 bucket to share
the source code with virtual disks. Doing this makes use of Rclone) on the Windows machine. With
a common Amazon RDS instance running PostgreSQL , any member of the team can access to all
requested reports.

Team members can also mount the virtual Amazon S3 backed disk on their personal machines. and
update the source bucket from their workstations. They can potentially use scripts or any other
form of automation on their machines if they are connected to other on-premises internal systems.

The setup is based on the AppStream 2.0 Windows images that AWS Mainframe Modernization
shares with the customer . Setup is also based on the creation of AppStream 2.0 fleets and stacks
as described in Tutorial: Set up AppStream 2.0 for use with Micro Focus Enterprise Analyzer and
Micro Focus Enterprise Developer.

Important

The steps in this tutorial assume that you set up AppStream 2.0 with the downloadable
AWS CloudFormation template cfn-m2-appstream-fleet-ea-ed.yml. For more information,
see Tutorial: Set up AppStream 2.0 for use with Micro Focus Enterprise Analyzer and Micro
Focus Enterprise Developer.
To perform the steps in this tutorial, you must have set up your Enterprise Analyzer fleet
and stack and they must be running.

Tutorial: Set up Enterprise Analyzer 562

https://rclone.org/
https://www.postgresql.org/
https://drm0z31ua8gi7.cloudfront.net/tutorials/mf/appstream/cfn-m2-appstream-fleet-ea-ed.yml

AWS Mainframe Modernization User Guide

For a complete description of Enterprise Analyzer features and deliverables, see the Enterprise
Analyzer Documentation on the Micro Focus website.

Image contents

In addition to Enterprise Analyzer application itself, the image contains the following tools and
libraries.

Third-party tools

• Python

• Rclone

• pgAdmin

• git-scm

• PostgreSQL ODBC driver

Libraries in C:\Users\Public

• BankDemo source code and project definition for Enterprise Developer: m2-bankdemo-
template.zip.

• MFA install package for the mainframe: mfa.zip. For more information, see Mainframe Access
Overview in the Micro Focus Enterprise Developer documentation.

• Command and config files for Rclone (instructions for their use in the tutorials): m2-rclone.cmd
and m2-rclone.conf.

Topics

• Prerequisites

• Step 1: Setup

• Step 2: Create the Amazon S3 based virtual folder on Windows

• Step 3: Create an ODBC source for the Amazon RDS instance

• Subsequent sessions

• Troubleshooting workspace connection

• Clean up resources

Tutorial: Set up Enterprise Analyzer 563

https://www.microfocus.com/documentation/enterprise-analyzer/
https://www.microfocus.com/documentation/enterprise-analyzer/
https://www.python.org/
https://rclone.org/
https://www.pgadmin.org/
https://git-scm.com/
https://odbc.postgresql.org/
https://www.microfocus.com/documentation/enterprise-developer/30pu12/ED-VS2012/BKMMMMINTRS001.html
https://www.microfocus.com/documentation/enterprise-developer/30pu12/ED-VS2012/BKMMMMINTRS001.html

AWS Mainframe Modernization User Guide

Prerequisites

• Upload the source code and system definitions for the customer application that you want to
analyze to an S3 bucket. The system definitions include CICS CSD, DB2 object definitions, and
so on. You can create a folder structure within the bucket that makes sense for how you want to
organize the application artifacts. For example, when you unzip the BankDemo sample, it has the
following structure:

demo
 |--> jcl
 |--> RDEF
 |--> transaction
 |--> xa

• Create and start an Amazon RDS instance running PostgreSQL. This instance will store the data
and results produced by Enterprise Analyzer. You can share this instance with all members of the
application team. In addition, create an empty schema called m2_ea (or any other suitable name)
in the database. Define credentials for authorized users that allow them to create, insert, update,
and delete items in this schema. You can obtain the database name, its server endpoint URL, and
TCP port from the Amazon RDS console or from the account administrator.

• Make sure you have set up programmatic access to your AWS account. For more information, see
Programmatic access in the Amazon Web Services General Reference.

Step 1: Setup

1. Start a session with AppStream 2.0 with the URL that you received in the welcome email
message from AppStream 2.0.

2. Use your email as your user ID, and define your permanent password.

3. Select the Enterprise Analyzer stack.

4. On the AppStream 2.0 menu page, choose Desktop to reach the Windows desktop that the
fleet is streaming.

Tutorial: Set up Enterprise Analyzer 564

https://docs.aws.amazon.com/general/latest/gr/aws-sec-cred-types.html#access-keys-and-secret-access-keys

AWS Mainframe Modernization User Guide

Step 2: Create the Amazon S3 based virtual folder on Windows

Note

If you already used Rclone during the AWS Mainframe Modernization preview, you must
update m2-rclone.cmd to the newer version located in C:\Users\Public.

1. Copy the m2-rclone.conf and m2-rclone.cmd files provided in C:\Users\Public to
your home folder C:\Users\PhotonUser\My Files\Home Folder using File Explorer.

2. Update the m2-rclone.conf config parameters with your AWS access key and corresponding
secret, as well as your AWS Region.

[m2-s3]
type = s3
provider = AWS
access_key_id = YOUR-ACCESS-KEY
secret_access_key = YOUR-SECRET-KEY
region = YOUR-REGION
acl = private
server_side_encryption = AES256

3. In m2-rclone.cmd, make the following changes:

• Change your-s3-bucket to your Amazon S3 bucket name. For example, m2-s3-
mybucket.

• Change your-s3-folder-key to your Amazon S3 bucket key. For example, myProject.

• Change your-local-folder-path to the path of the directory where you want the
application files synced from the Amazon S3 bucket that contains them. For example,
D:\PhotonUser\My Files\Home Folder\m2-new. This synced directory must be a
subdirectory of the Home Folder in order for AppStream 2.0 to properly back up and restore
it on session start and end.

:loop
timeout /T 10
"C:\Program Files\rclone\rclone.exe" sync m2-s3:your-s3-bucket/your-s3-folder-
key "D:\PhotonUser\My Files\Home Folder\your-local-folder-path" --config "D:
\PhotonUser\My Files\Home Folder\m2-rclone.conf"

Tutorial: Set up Enterprise Analyzer 565

AWS Mainframe Modernization User Guide

goto :loop

4. Open a Windows command prompt, cd to C:\Users\PhotonUser\My Files\Home
Folder if needed and run m2-rclone.cmd. This command script runs a continuous loop,
syncing your Amazon S3 bucket and key to the local folder every 10 seconds. You can adjust
the time out as needed. You should see the source code of the application located in the
Amazon S3 bucket in Windows File Explorer.

To add new files to the set that you are working on or to update existing ones, upload the files
to the Amazon S3 bucket and they will be synced to your directory at the next iteration defined
in m2-rclone.cmd. Similarly, if you want to delete some files, delete them from the Amazon S3
bucket. The next sync operation will delete them from your local directory.

Step 3: Create an ODBC source for the Amazon RDS instance

1. To start the EA_Admin tool, navigate to the application selector menu in the top left corner of
the browser window and choose MF EA_Admin.

2. From the Administer menu, choose ODBC Data Sources, and choose Add from the User DSN
tab.

3. In the Create New Data Source dialog box, choose the PostgreSQL Unicode driver, and then
choose Finish.

4. In the PostgreSQL Unicode ODBC Driver (psqlODBC) Setup dialog box, define and take note
of the data source name that you want. Complete the following parameters with the values
from the RDS instance that you previously created:

Description

Optional description to help you identify this database connection quickly.

Database

The Amazon RDS database you created previously.

Server

The Amazon RDS endpoint.

Port

The Amazon RDS port.

Tutorial: Set up Enterprise Analyzer 566

AWS Mainframe Modernization User Guide

User Name

As defined in the Amazon RDS instance.

Password

As defined in the Amazon RDS instance.

5. Choose Test to validate that the connection to Amazon RDS is successful, and then choose
Save to save your new User DSN.

6. Wait until you see the message that confirms creation of the proper workspace, and then
choose OK to finish with ODBC Data Sources and close the EA_Admin tool.

7. Navigate again to the application selector menu, and choose Enterprise Analyzer to start the
tool. Choose Create New.

8. In the Workspace configuration window, enter your workspace name and define its location.
The workspace can be the Amazon S3 based disk if you work under this config, or your home
folder if you prefer.

9. Choose Choose Other Database to connect to your Amazon RDS instance.

10. Choose the Postgre icon from the options, and then choose OK.

11. For the Windows settings under Options – Define Connection Parameters, enter the name of
the data source that you created. Also enter the database name, the schema name, the user
name, and password. Choose OK.

12. Wait for Enterprise Analyzer to create all the tables, indexes, and so on that it needs to store
results. This process might take a couple of minutes. Enterprise Analyzer confirms when the
database and workspace are ready for use.

13. Navigate again to the application selector menu and choose Enterprise Analyzer to start the
tool.

14. The Enterprise Analyzer startup window appears in the new, selected workspace location.
Choose OK.

15. Navigate to your repository in the left pane, select the repository name, and choose Add
files / folders to your workspace.Select the folder where your application code is stored
to add it to the workspace. You can use the previous BankDemo example code if you want.
When Enterprise Analyzer prompts you to verify those files, choose Verify to start the initial
Enterprise Analyzer verification report. It might take some minutes to complete, depending on
the size of your application.

Tutorial: Set up Enterprise Analyzer 567

AWS Mainframe Modernization User Guide

16. Expand your workspace to see the files and folders that you’ve added to the workspace. The
object types and cyclomatic complexity reports are also visible in the top quadrant of the
Chart Viewer pane.

You can now use Enterprise Analyzer for all needed tasks.

Subsequent sessions

1. Start a session with AppStream 2.0 with the URL that you received in the welcome email
message from AppStream 2.0.

2. Log in with your email and permanent password.

3. Select the Enterprise Analyzer stack.

4. Launch Rclone to connect to the Amazon S3 backed disk if you use this option to share the
workspace files.

5. Launch Enterprise Analyzer to do your tasks.

Troubleshooting workspace connection

When you try to reconnect to your Enterprise Analyzer workspace, you might see an error like this:

Cannot access the workspace directory D:\PhotonUser\My Files\Home Folder\EA_BankDemo.
 The workspace has been created on a non-shared disk of the EC2AMAZ-E6LC33H computer.
 Would you like to correct the workspace directory location?

To resolve this issue, choose OK to clear the message, and then complete the following steps.

1. In AppStream 2.0, choose the Launch Application icon on the toolbar, and then choose
EA_Admin to start the Micro Focus Enterprise Analyzer Administration tool.

Tutorial: Set up Enterprise Analyzer 568

AWS Mainframe Modernization User Guide

2. From the Administer menu, choose Refresh Workspace Path....

Tutorial: Set up Enterprise Analyzer 569

AWS Mainframe Modernization User Guide

3. Under Select workspace, choose the workspace that you want, and then choose OK.

Tutorial: Set up Enterprise Analyzer 570

AWS Mainframe Modernization User Guide

4. Choose OK to confirm the error message.

5. Under Workspace directory network path, enter the correct path to your workspace, for
example, D:\PhotonUser\My Files\Home Folder\EA\MyWorkspace3.

Tutorial: Set up Enterprise Analyzer 571

AWS Mainframe Modernization User Guide

6. Close the Micro Focus Enterprise Analyzer Administration tool.

7. In AppStream 2.0, choose the Launch Application icon on the toolbar, and then choose EA to
start Micro Focus Enterprise Analyzer.

Tutorial: Set up Enterprise Analyzer 572

AWS Mainframe Modernization User Guide

8. Repeat steps 3 - 5.

Micro Focus Enterprise Analyzer should now open with the existing workspace.

Clean up resources

If you no longer need the resources that you created for this tutorial, delete them so that you don't
incur further charges. Complete the following steps:

• Use the EA_Admin tool to delete the workspace.

• Delete the S3 buckets that you created for this tutorial. For more information, see Deleting a
bucket in the Amazon S3 User Guide.

• Delete the database that you created for this tutorial. For more information, see Deleting a DB
instance.

Tutorial: Set up Micro Focus Enterprise Developer on AppStream 2.0

This tutorial describes how to set up Micro Focus Enterprise Developer for one or more mainframe
applications in order to maintain, compile, and test them using the Enterprise Developer features.
The setup is based on the AppStream 2.0 Windows images that AWS Mainframe Modernization
shares with the customer and on the creation of AppStream 2.0 fleets and stacks as described
in Tutorial: Set up AppStream 2.0 for use with Micro Focus Enterprise Analyzer and Micro Focus
Enterprise Developer.

Important

The steps in this tutorial assume that you set up AppStream 2.0 using the downloadable
AWS CloudFormation template cfn-m2-appstream-fleet-ea-ed.yaml. For more information,
see Tutorial: Set up AppStream 2.0 for use with Micro Focus Enterprise Analyzer and Micro
Focus Enterprise Developer.
You must perform the steps of this setup when the Enterprise Developer fleet and stack are
up and running.

For a complete description of Enterprise Developer v7 features and deliverables, check out its up-
to-date online documentation (v7.0) on the Micro Focus site.

Tutorial: Set up Enterprise Developer 573

https://docs.aws.amazon.com/AmazonS3/latest/userguide/delete-bucket.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/delete-bucket.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_GettingStarted.CreatingConnecting.PostgreSQL.html#CHAP_GettingStarted.Deleting.PostgreSQL
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_GettingStarted.CreatingConnecting.PostgreSQL.html#CHAP_GettingStarted.Deleting.PostgreSQL
https://d1vi4vxke6c2hu.cloudfront.net/tutorial/cfn-m2-appstream-fleet-ea-ed.yaml
https://www.microfocus.com/documentation/enterprise-developer/ed70/ED-Eclipse/GUID-8D6B7358-AC35-4DAF-A445-607D8D97EBB2.html
https://www.microfocus.com/documentation/enterprise-developer/ed70/ED-Eclipse/GUID-8D6B7358-AC35-4DAF-A445-607D8D97EBB2.html

AWS Mainframe Modernization User Guide

Image contents

In addition to Enterprise Developer itself, the image contains the image contains Rumba (a TN3270
emulator). It also contains the following tools and libraries.

Third-party tools

• Python

• Rclone

• pgAdmin

• git-scm

• PostgreSQL ODBC driver

Libraries in C:\Users\Public

• BankDemo source code and project definition for Enterprise Developer: m2-bankdemo-
template.zip.

• MFA install package for the mainframe: mfa.zip. For more information, see Mainframe Access
Overview in the Micro Focus Enterprise Developer documentation.

• Command and config files for Rclone (instructions for their use in the tutorials): m2-rclone.cmd
and m2-rclone.conf.

If you need to access source code that is not yet loaded into CodeCommit repositories, but that is
available in an Amazon S3 bucket, for example to perform the initial load of the source code into
git, follow the procedure to create a virtual Windows disk as described in Tutorial: Set up Enterprise
Analyzer on AppStream 2.0.

Topics

• Prerequisites

• Step 1: Setup by individual Enterprise Developer users

• Step 2: Create the Amazon S3-based virtual folder on Windows (optional)

• Step 3: Clone the repository

• Subsequent sessions

• Clean up resources

Tutorial: Set up Enterprise Developer 574

https://www.python.org/
https://rclone.org/
https://www.pgadmin.org/
https://git-scm.com/
https://odbc.postgresql.org/
https://www.microfocus.com/documentation/enterprise-developer/30pu12/ED-VS2012/BKMMMMINTRS001.html
https://www.microfocus.com/documentation/enterprise-developer/30pu12/ED-VS2012/BKMMMMINTRS001.html

AWS Mainframe Modernization User Guide

Prerequisites

• One or more CodeCommit repositories loaded with the source code of the application to be
maintained. The repository setup should match the requirements of the CI/CD pipeline above to
create synergies by combination of both tools.

• Each user must have credentials to the CodeCommit repository or repositories defined by the
account administrator according to the information in Authentication and access control for AWS
CodeCommit. The structure of those credentials is reviewed in Authentication and access control
for AWS CodeCommit and the complete reference for IAM authorizations for CodeCommit is
in the CodeCommit permissions reference: the administrator may define distinct IAM policies
for distinct roles having credentials specific to the role for each repository and limiting its
authorizations of the user to the specific set of tasks that he has to to accomplish on a given
repository. So, for each maintainer of the CodeCommit repository, the account administrator
will generate a primary user and grant this user permissions to access the required repository or
repositories via selecting the proper IAM policy or policies for CodeCommit access.

Step 1: Setup by individual Enterprise Developer users

1. Obtain your IAM credentials:

1. Connect to the AWS console at https://console.aws.amazon.com/iam/.

2. Follow the procedure described in step 3 of Setup for HTTPS users using Git credentials in
the AWS CodeCommit User Guide.

3. Copy the CodeCommit-specific sign-in credentials that IAM generated for you, either
by showing, copying, and then pasting this information into a secure file on your local
computer, or by choosing Download credentials to download this information as a .CSV file.
You need this information to connect to CodeCommit.

2. Start a session with AppStream 2.0 based on the url received in the welcome email. Use your
email as user name and create your password.

3. Select your Enterprise Developer stack.

4. On the menu page, choose Desktop to reach the Windows desktop streamed by the fleet.

Step 2: Create the Amazon S3-based virtual folder on Windows (optional)

If there is a need for Rclone (see above), create the Amazon S3-based virtual folder on Windows:
(optional if all application artefacts exclusively come from CodeCommit access).

Tutorial: Set up Enterprise Developer 575

https://docs.aws.amazon.com/codecommit/latest/userguide/auth-and-access-control.html
https://docs.aws.amazon.com/codecommit/latest/userguide/auth-and-access-control.html
https://docs.aws.amazon.com/codecommit/latest/userguide/auth-and-access-control.html
https://docs.aws.amazon.com/codecommit/latest/userguide/auth-and-access-control.html
https://docs.aws.amazon.com/codecommit/latest/userguide/auth-and-access-control-permissions-reference.html
https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/codecommit/latest/userguide/setting-up-gc.html

AWS Mainframe Modernization User Guide

Note

If you already used Rclone during the AWS Mainframe Modernization preview, you must
update m2-rclone.cmd to the newer version located in C:\Users\Public.

1. Copy the m2-rclone.conf and m2-rclone.cmd files provided in C:\Users\Public to
your home folder C:\Users\PhotonUser\My Files\Home Folder using File Explorer.

2. Update the m2-rclone.conf config parameters with your AWS access key and corresponding
secret, as well as your AWS Region.

[m2-s3]
type = s3
provider = AWS
access_key_id = YOUR-ACCESS-KEY
secret_access_key = YOUR-SECRET-KEY
region = YOUR-REGION
acl = private
server_side_encryption = AES256

3. In m2-rclone.cmd, make the following changes:

• Change your-s3-bucket to your Amazon S3 bucket name. For example, m2-s3-
mybucket.

• Change your-s3-folder-key to your Amazon S3 bucket key. For example, myProject.

• Change your-local-folder-path to the path of the directory where you want the
application files synced from the Amazon S3 bucket that contains them. For example,
D:\PhotonUser\My Files\Home Folder\m2-new. This synced directory must be a
subdirectory of the Home Folder in order for AppStream 2.0 to properly back up and restore
it on session start and end.

:loop
timeout /T 10
"C:\Program Files\rclone\rclone.exe" sync m2-s3:your-s3-bucket/your-s3-folder-
key "D:\PhotonUser\My Files\Home Folder\your-local-folder-path" --config "D:
\PhotonUser\My Files\Home Folder\m2-rclone.conf"
goto :loop

Tutorial: Set up Enterprise Developer 576

AWS Mainframe Modernization User Guide

4. Open a Windows command prompt, cd to C:\Users\PhotonUser\My Files\Home
Folder if needed and run m2-rclone.cmd. This command script runs a continuous loop,
syncing your Amazon S3 bucket and key to the local folder every 10 seconds. You can adjust
the time out as needed. You should see the source code of the application located in the
Amazon S3 bucket in Windows File Explorer.

To add new files to the set that you are working on or to update existing ones, upload the files
to the Amazon S3 bucket and they will be synced to your directory at the next iteration defined
in m2-rclone.cmd. Similarly, if you want to delete some files, delete them from the Amazon S3
bucket. The next sync operation will delete them from your local directory.

Step 3: Clone the repository

1. Navigate to the application selector menu in the top left corner of the browser window and
select Enterprise Developer.

2. Complete the workspace creation required by Enterprise Developer in your Home folder by
choosing C:\Users\PhotonUser\My Files\Home Folder (aka D: \PhotonUser\My
Files\Home Folder) as location for the workspace.

3. In Enterprise Developer, clone your CodeCommit repository by going to the Project Explorer,
right click and choose Import, Import …, Git, Projects from Git Clone URI. Then, enter your
CodeCommit-specific sign-in credentials and complete the Eclipse dialog to import the code.

The CodeCommit git repository in now cloned in your local workspace.

Your Enterprise Developer workspace is now ready to start the maintenance work on your
application. In particular, you can use the local instance of Microfocus Enterprise Server (ES)
integrated with Enterprise Developer to interactively debug and run your application to validate
your changes locally.

Note

The local Enterprise Developer environment, including the local Enterprise Server
instance, runs under Windows while AWS Mainframe Modernization runs under Linux.
We recommend that you run complementary tests in the Linux environment provided by
AWS Mainframe Modernization after you commit the new application to CodeCommit and
rebuild it for this target and before you roll out the new application to production.

Tutorial: Set up Enterprise Developer 577

AWS Mainframe Modernization User Guide

Subsequent sessions

As you select a folder that is under AppStream 2.0 management like the home folder for the
cloning of your CodeCommit repository, it will be saved and restored transparently across sessions.
Complete the following steps the next time you need to work with the application:

1. Start a session with AppStream 2.0 based on the url received in the welcome email.

2. Login with your email and permanent password.

3. Select the Enterprise Developer stack.

4. Launch Rclone to connect (see above) to the Amazon S3-backed disk when this option is used
to share the workspace files.

5. Launch Enterprise Developer to do your work.

Clean up resources

If you no longer need the resources you created for this tutorial, delete them so that you won't
continue to be charged for them. Complete the following steps:

• Delete the CodeCommit repository you created for this tutorial. For more information, see Delete
an CodeCommit repository in the AWS CodeCommit User Guide.

• Delete the database you created for this tutorial. For more information, see Deleting a DB
instance.

Available batch utilities in AWS Mainframe Modernization

Mainframe applications often use batch utility programs to perform specific functions such as
sorting data, transferring files using FTP, loading data into databases like DB2, unloading data from
databases, and so on.

When you migrate your applications to AWS Mainframe Modernization, you need functionally
equivalent replacement utilities that can perform the same tasks as the ones you used on the
mainframe. Some of these utilities might already be available as part of the AWS Mainframe
Modernization runtime engines, but we are providing the following replacement utilities:

• M2SFTP - enables secure file transfer using SFTP protocol.

• M2WAIT - waits for a specified amount of time before continuing with the next step in a batch
job.

Batch utilities 578

https://docs.aws.amazon.com/codecommit/latest/userguide/how-to-delete-repository.html
https://docs.aws.amazon.com/codecommit/latest/userguide/how-to-delete-repository.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_GettingStarted.CreatingConnecting.PostgreSQL.html#CHAP_GettingStarted.Deleting.PostgreSQL
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_GettingStarted.CreatingConnecting.PostgreSQL.html#CHAP_GettingStarted.Deleting.PostgreSQL

AWS Mainframe Modernization User Guide

• TXT2PDF - converts text files to PDF format.

• M2DFUTIL - provides backup, restore, delete, and copy functions on data sets that is similar to
the support provided by the mainframe ADRDSSU utility.

• M2RUNCMD - lets you run Micro Focus commands, scripts, and system calls directly from JCL.

We developed these batch utilities based on customer feedback and designed them to provide the
same functionality as the mainframe utilities. The goal is to make your transition from mainframe
to AWS Mainframe Modernization as smooth as possible.

Topics

• Binary Location

• M2SFTP batch utility

• M2WAIT batch utility

• TXT2PDF batch utility

• M2DFUTIL batch utility

• M2RUNCMD batch utility

Binary Location

These utilities are preinstalled on the Micro Focus Enterprise Developer (ED) and Micro Focus
Enterprise Server (ES) products. You can find them in the following location for all variants of ED
and ES:

• Linux: /opt/aws/m2/microfocus/utilities/64bit

• Windows (32 bit): C:\AWS\M2\MicroFocus\Utilities\32bit

• Windows (64 bit): C:\AWS\M2\MicroFocus\Utilities\64bit

M2SFTP batch utility

M2SFTP is a JCL utility program designed to perform secure file transfers between systems using
the Secure File Transfer Protocol (SFTP). The program uses the Putty SFTP client, psftp, to
perform the actual file transfers. The program works similarly to a mainframe FTP utility program
and uses user and password authentication.

Binary Location 579

AWS Mainframe Modernization User Guide

Note

Public key authentication is not supported.

To convert your mainframe FTP JCLs to use SFTP, change PGM=FTP to PGM=M2SFTP.

Topics

• Supported platforms

• Installing dependencies

• Configure M2SFTP for AWS Mainframe Modernization Managed

• Configure M2SFTP for AWS Mainframe Modernization runtime on Amazon EC2 (including
AppStream 2.0)

• Sample JCLs

• Putty SFTP (PSFTP) client command reference

• Next steps

Supported platforms

You can use M2SFTP on any of the following platforms:

• AWS Mainframe Modernization Micro Focus Managed

• Micro Focus Runtime (on Amazon EC2)

• All variants of Micro Focus Enterprise Developer (ED) and Micro Focus Enterprise Server (ES)
products.

Installing dependencies

To install the Putty SFTP client on Windows

• Download the PuTTY SFTP client and install it.

To install the Putty SFTP client on Linux:

• Run the following command to install the Putty SFTP client:

M2SFTP batch utility 580

https://www.putty.org/

AWS Mainframe Modernization User Guide

 sudo yum -y install putty

Configure M2SFTP for AWS Mainframe Modernization Managed

If your migrated applications are running on AWS Mainframe Modernization Managed, you will
need to configure M2SFTP as follows.

• Set the appropriate Micro Focus Enterprise Server environment variables for MFFTP. Here are
few examples:

• MFFTP_TEMP_DIR

• MFFTP_SENDEOL

• MFFTP_TIME

• MFFTP_ABEND

You can set as few or as many of these variables as you want. You can set them in your JCL
using the ENVAR DD statement. For more information on these variables, see MFFTP Control
Variables in the Micro Focus documentation.

To test your configuration, see Sample JCLs.

Configure M2SFTP for AWS Mainframe Modernization runtime on Amazon EC2
(including AppStream 2.0)

If your migrated applications are running on AWS Mainframe Modernization runtime on Amazon
EC2, configure M2SFTP as follows.

1. Change the Micro Focus JES Program Path to include the binary location for batch utilities. If
you need to specify multiple paths, use colons (:) to separate paths on Linux and semicolons
(;) on Windows.

• Linux: /opt/aws/m2/microfocus/utilities/64bit

• Windows (32bit): C:\AWS\M2\MicroFocus\Utilities\32bit

• Windows (64bit): C:\AWS\M2\MicroFocus\Utilities\64bit

M2SFTP batch utility 581

https://www.microfocus.com/documentation/enterprise-developer/ed80/ED-Eclipse/GUID-3F94BBC8-CB97-4642-A4A7-4235C0C079E2.html
https://www.microfocus.com/documentation/enterprise-developer/ed80/ED-Eclipse/GUID-3F94BBC8-CB97-4642-A4A7-4235C0C079E2.html
https://www.microfocus.com/documentation/enterprise-developer/ed80/ED-Eclipse/GUID-BC8A1796-9EDE-48EB-8363-31C9BDE7F96B.html

AWS Mainframe Modernization User Guide

2. Set the appropriate Micro Focus Enterprise Server environment variables for MFFTP. Here are
few examples:

• MFFTP_TEMP_DIR

• MFFTP_SENDEOL

• MFFTP_TIME

• MFFTP_ABEND

You can set as few or as many of these variables as you want. You can set them in your JCL
using the ENVAR DD statement. For more information on these variables, see MFFTP Control
Variables in the Micro Focus documentation.

To test your configuration, see Sample JCLs.

Sample JCLs

To test the installation, you can use either of the following sample JCL files.

M2SFTP1.jcl

This JCL shows how to call M2SFTP to send a file to a remote SFTP server. Notice the environment
variables that are set in the ENVVAR DD statement.

//M2SFTP1 JOB 'M2SFTP1',CLASS=A,MSGCLASS=X,TIME=1440
//*
//* Copyright Amazon.com, Inc. or its affiliates.*
//* All Rights Reserved.*
//*
//*---**
//* Sample SFTP JCL step to send a file to SFTP server*
//*---**
//*
//STEP01 EXEC PGM=M2SFTP,
// PARM='127.0.0.1 (EXIT=99 TIMEOUT 300'
//*
//SYSFTPD DD *
RECFM FB
LRECL 80
SBSENDEOL CRLF
MBSENDEOL CRLF

M2SFTP batch utility 582

https://www.microfocus.com/documentation/enterprise-developer/ed80/ED-Eclipse/GUID-3F94BBC8-CB97-4642-A4A7-4235C0C079E2.html
https://www.microfocus.com/documentation/enterprise-developer/ed80/ED-Eclipse/GUID-3F94BBC8-CB97-4642-A4A7-4235C0C079E2.html

AWS Mainframe Modernization User Guide

TRAILINGBLANKS FALSE
/*
//NETRC DD *
machine 127.0.0.1 login sftpuser password sftppass
/*
//SYSPRINT DD SYSOUT=*
//OUTPUT DD SYSOUT=*
//STDOUT DD SYSOUT=*
//INPUT DD *
type a
locsite notrailingblanks
cd files
put 'AWS.M2.TXT2PDF1.PDF' AWS.M2.TXT2PDF1.pdf
put 'AWS.M2.CARDDEMO.CARDDATA.PS' AWS.M2.CARDDEMO.CARDDATA.PS1.txt
quit
/*
//ENVVAR DD *
MFFTP_VERBOSE_OUTPUT=ON
MFFTP_KEEP=N
/*
//*
//

M2SFTP2.jcl

This JCL shows how to call M2SFTP to receive a file from a remote SFTP server. Notice the
environment variables set in the ENVVAR DD statement.

//M2SFTP2 JOB 'M2SFTP2',CLASS=A,MSGCLASS=X,TIME=1440
//*
//* Copyright Amazon.com, Inc. or its affiliates.*
//* All Rights Reserved.*
//*
//*---**
//* Sample SFTP JCL step to receive a file from SFTP server*
//*---**
//*
//STEP01 EXEC PGM=M2SFTP
//*
//SYSPRINT DD SYSOUT=*
//OUTPUT DD SYSOUT=*
//STDOUT DD SYSOUT=*
//INPUT DD *

M2SFTP batch utility 583

AWS Mainframe Modernization User Guide

open 127.0.0.1
sftpuser
sftppass
cd files
locsite recfm=fb lrecl=150
get AWS.M2.CARDDEMO.CARDDATA.PS.txt +
'AWS.M2.CARDDEMO.CARDDATA.PS2' (replace
quit
/*
//ENVVAR DD *
MFFTP_VERBOSE_OUTPUT=ON
MFFTP_KEEP=N
/*
//*
//

Note

We strongly recommend storing FTP credentials in a NETRC file and restricting access to
only authorized users.

Putty SFTP (PSFTP) client command reference

The PSFTP client does not support all FTP commands. The following list shows all the commands
that PSFTP does support.

Command Description

! Run a local command

bye Finish your SFTP session

cd Change your remote working directory

chmod Change file permissions and modes

close Finish your SFTP session but do not quit
PSFTP

del Delete files on the remote server

M2SFTP batch utility 584

AWS Mainframe Modernization User Guide

Command Description

dir List remote files

exit Finish your SFTP session

get Download a file from the server to your local
machine

help Give help

lcd Change local working directory

lpwd Print local working directory

ls List remote files

mget Download multiple files at once

mkdir Create directories on the remote server

mput Upload multiple files at once

mv Move or rename file(s) on the remote server

open Connect to a host

put Upload a file from your local machine to the
server

pwd Print your remote working directory

quit Finish your SFTP session

reget Continue downloading files

ren Move or rename file(s) on the remote server

reput Continue uploading files

rm Delete files on the remote server

M2SFTP batch utility 585

AWS Mainframe Modernization User Guide

Command Description

rmdir Remove directories on the remote server

Next steps

To upload and download files into Amazon Simple Storage Service using SFTP, you could use
M2SFTP in conjunction with the AWS Transfer Family, as described in the following blog posts.

• Using AWS SFTP logical directories to build a simple data distribution service

• Enable password authentication for AWS Transfer for SFTP using AWS Secrets Manager

M2WAIT batch utility

M2WAIT is a mainframe utility program that enables you to introduce a wait period in your JCL
scripts by specifying a time duration in seconds, minutes, or hours. You can call M2WAIT directly
from JCL by passing the time you want to wait as an input parameter. Internally, the M2WAIT
program calls the Micro Focus supplied module C$SLEEP to wait for a specified time.

Note

You can use Micro Focus aliases to replace what you have in your JCL scripts. For more
information, see JES Alias in the Micro Focus documentation.

Topics

• Supported platforms

• Configure M2WAIT for AWS Mainframe Modernization Managed

• Configure M2WAIT for AWS Mainframe Modernization runtime on Amazon EC2 (including
AppStream 2.0)

• Sample JCL

Supported platforms

You can use M2WAIT on any of the following platforms:

M2WAIT batch utility 586

https://aws.amazon.com/blogs/storage/using-aws-sftp-logical-directories-to-build-a-simple-data-distribution-service/
https://aws.amazon.com/blogs/storage/enable-password-authentication-for-aws-transfer-for-sftp-using-aws-secrets-manager/
https://www.microfocus.com/documentation/enterprise-developer/ed80/ED-Eclipse/GUID-D4206FF9-32C4-43E7-9413-5E7E96AA8092.html

AWS Mainframe Modernization User Guide

• AWS Mainframe Modernization Micro Focus Managed

• Micro Focus Runtime (on Amazon EC2)

• All variants of Micro Focus Enterprise Developer (ED) and Micro Focus Enterprise Server (ES)
products.

Configure M2WAIT for AWS Mainframe Modernization Managed

If your migrated applications are running on AWS Mainframe Modernization Managed, you will
need to configure M2WAIT as follows.

• Use the program M2WAIT in your JCL by passing input parameter as shown in Sample JCL.

Configure M2WAIT for AWS Mainframe Modernization runtime on Amazon EC2
(including AppStream 2.0)

If your migrated applications are running on AWS Mainframe Modernization runtime on Amazon
EC2, configure M2WAIT as follows.

1. Change the Micro Focus JES Program Path to include the binary location for batch utilities. If
you need to specify multiple paths, use colons (:) to separate paths on Linux and semicolons
(;) on Windows.

• Linux: /opt/aws/m2/microfocus/utilities/64bit

• Windows (32bit): C:\AWS\M2\MicroFocus\Utilities\32bit

• Windows (64bit): C:\AWS\M2\MicroFocus\Utilities\64bit

2. Use the program M2WAIT in your JCL by passing the input parameter as shown in Sample JCL.

Sample JCL

To test the installation, you can use the M2WAIT1.jcl program.

This sample JCL shows how to call M2WAIT and pass it several different durations.

//M2WAIT1 JOB 'M2WAIT',CLASS=A,MSGCLASS=X,TIME=1440
//*
//* Copyright Amazon.com, Inc. or its affiliates.*
//* All Rights Reserved.*

M2WAIT batch utility 587

https://www.microfocus.com/documentation/enterprise-developer/ed80/ED-Eclipse/GUID-BC8A1796-9EDE-48EB-8363-31C9BDE7F96B.html

AWS Mainframe Modernization User Guide

//*
//*---**
//* Wait for 12 Seconds*
//*---**
//*
//STEP01 EXEC PGM=M2WAIT,PARM='S012'
//SYSOUT DD SYSOUT=*
//*
//*---**
//* Wait for 0 Seconds (defaulted to 10 Seconds)*
//*---**
//*
//STEP02 EXEC PGM=M2WAIT,PARM='S000'
//SYSOUT DD SYSOUT=*
//*
//*---**
//* Wait for 1 Minute*
//*---**
//*
//STEP03 EXEC PGM=M2WAIT,PARM='M001'
//SYSOUT DD SYSOUT=*
//*
//

TXT2PDF batch utility

TXT2PDF is a mainframe utility program commonly used to convert a text file to a PDF file. This
utility uses the same source code for TXT2PDF (z/OS freeware). We modified it to run under the
AWS Mainframe Modernization Micro Focus runtime environment.

Topics

• Supported platforms

• Configure TXT2PDF for AWS Mainframe Modernization Managed

• Configure TXT2PDF for AWS Mainframe Modernization runtime on Amazon EC2 (including
AppStream 2.0)

• Sample JCL

• Modifications

• References

TXT2PDF batch utility 588

AWS Mainframe Modernization User Guide

Supported platforms

You can use TXT2PDF on any of the following platforms:

• AWS Mainframe Modernization Micro Focus Managed

• Micro Focus Runtime (on Amazon EC2)

• All variants of Micro Focus Enterprise Developer (ED) and Micro Focus Enterprise Server (ES)
products.

Configure TXT2PDF for AWS Mainframe Modernization Managed

If your migrated applications are running on AWS Mainframe Modernization Managed, configure
TXT2PDF as follows.

• Create a REXX EXEC library called AWS.M2.REXX.EXEC. Download these REXX modules and
copy them into the library.

• TXT2PDF.rex - TXT2PDF z/OS freeware (modified)

• TXT2PDFD.rex - TXT2PDF z/OS freeware (unmodified)

• TXT2PDFX.rex - TXT2PDF z/OS freeware (modified)

• M2GETOS.rex - To check the OS type (Windows or Linux)

To test your configuration, see Sample JCL.

Configure TXT2PDF for AWS Mainframe Modernization runtime on Amazon EC2
(including AppStream 2.0)

If your migrated applications are running on AWS Mainframe Modernization runtime on Amazon
EC2, configure TXT2PDF as follows.

1. Set the Micro Focus environment variable MFREXX_CHARSET to the appropriate value, such as
“A" for ASCII data.

TXT2PDF batch utility 589

https://drm0z31ua8gi7.cloudfront.net/utilities/mf/TXT2PDF/rexx/TXT2PDF_rexx.zip

AWS Mainframe Modernization User Guide

Important

Entering the wrong value could cause data conversion issues (from EBCDIC to
ASCII), making the resulting PDF unreadable or inoperable. We recommend setting
MFREXX_CHARSET to match MF_CHARSET.

2. Change the Micro Focus JES Program Path to include the binary location for batch utilities. If
you need to specify multiple paths, use colons (:) to separate paths on Linux and semicolons
(;) on Windows.

• Linux: /opt/aws/m2/microfocus/utilities/64bit

• Windows (32bit): C:\AWS\M2\MicroFocus\Utilities\32bit

• Windows (64bit): C:\AWS\M2\MicroFocus\Utilities\64bit

3. Create a REXX EXEC library called AWS.M2.REXX.EXEC`. Download these REXX modules and
copy them into the library.

• TXT2PDF.rex - TXT2PDF z/OS freeware (modified)

• TXT2PDFD.rex - TXT2PDF z/OS freeware (unmodified)

• TXT2PDFX.rex - TXT2PDF z/OS freeware (modified)

• M2GETOS.rex - To check the OS type (Windows or Linux)

To test your configuration, see Sample JCL.

Sample JCL

To test the installation, you can use either of the following sample JCL files.

TXT2PDF1.jcl

This sample JCL file uses a DD name for the TXT2PDF conversion.

//TXT2PDF1 JOB 'TXT2PDF1',CLASS=A,MSGCLASS=X,TIME=1440
//*
//* Copyright Amazon.com, Inc. or its affiliates.*
//* All Rights Reserved.*
//*
//*---**
//* PRE DELETE*

TXT2PDF batch utility 590

https://www.microfocus.com/documentation/enterprise-developer/ed80/ED-Eclipse/GUID-BC8A1796-9EDE-48EB-8363-31C9BDE7F96B.html
https://drm0z31ua8gi7.cloudfront.net/utilities/mf/TXT2PDF/rexx/TXT2PDF_rexx.zip

AWS Mainframe Modernization User Guide

//*---**
//*
//PREDEL EXEC PGM=IEFBR14
//*
//DD01 DD DSN=AWS.M2.TXT2PDF1.PDF.VB,
// DISP=(MOD,DELETE,DELETE)
//*
//DD02 DD DSN=AWS.M2.TXT2PDF1.PDF,
// DISP=(MOD,DELETE,DELETE)
//*
//*---**
//* CALL TXT2PDF TO CONVERT FROM TEXT TO PDF (VB)*
//*---**
//*
//STEP01 EXEC PGM=IKJEFT1B
//*
//SYSEXEC DD DISP=SHR,DSN=AWS.M2.REXX.EXEC
//*
//INDD DD *
1THIS IS THE FIRST LINE ON THE PAGE 1
0THIS IS THE THIRD LINE ON THE PAGE 1
-THIS IS THE 6TH LINE ON THE PAGE 1
THIS IS THE 7TH LINE ON THE PAGE 1
+____________________________________ - OVERSTRIKE 7TH LINE
1THIS IS THE FIRST LINE ON THE PAGE 2
0THIS IS THE THIRD LINE ON THE PAGE 2
-THIS IS THE 6TH LINE ON THE PAGE 2
THIS IS THE 7TH LINE ON THE PAGE 2
+____________________________________ - OVERSTRIKE 7TH LINE
/*
//*
//OUTDD DD DSN=AWS.M2.TXT2PDF1.PDF.VB,
// DISP=(NEW,CATLG,DELETE),
// DCB=(LRECL=256,DSORG=PS,RECFM=VB,BLKSIZE=0)
//*
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD DDNAME=SYSIN
//*
//SYSIN DD *
%TXT2PDF BROWSE Y IN DD:INDD +
OUT DD:OUTDD +
CC YES
/*
//*

TXT2PDF batch utility 591

AWS Mainframe Modernization User Guide

//*---**
//* CONVERT PDF (VB) TO PDF (LSEQ - BYTE STREAM)*
//*---**
//*
//STEP02 EXEC PGM=VB2LSEQ
//*
//INFILE DD DSN=AWS.M2.TXT2PDF1.PDF.VB,DISP=SHR
//*
//OUTFILE DD DSN=AWS.M2.TXT2PDF1.PDF,
// DISP=(NEW,CATLG,DELETE),
// DCB=(LRECL=256,DSORG=PS,RECFM=LSEQ,BLKSIZE=0)
//*
//SYSOUT DD SYSOUT=*
//*
//

TXT2PDF2.jcl

This sample JCL uses a DSN name for the TXT2PDF conversion.

//TXT2PDF2 JOB 'TXT2PDF2',CLASS=A,MSGCLASS=X,TIME=1440
//*
//* Copyright Amazon.com, Inc. or its affiliates.*
//* All Rights Reserved.*
//*
//*---**
//* PRE DELETE*
//*---**
//*
//PREDEL EXEC PGM=IEFBR14
//*
//DD01 DD DSN=AWS.M2.TXT2PDF2.PDF.VB,
// DISP=(MOD,DELETE,DELETE)
//*
//DD02 DD DSN=AWS.M2.TXT2PDF2.PDF,
// DISP=(MOD,DELETE,DELETE)
//*
//*---**
//* CALL TXT2PDF TO CONVERT FROM TEXT TO PDF (VB)*
//*---**
//*
//STEP01 EXEC PGM=IKJEFT1B
//*
//SYSEXEC DD DISP=SHR,DSN=AWS.M2.REXX.EXEC

TXT2PDF batch utility 592

AWS Mainframe Modernization User Guide

//*
//INDD DD *
1THIS IS THE FIRST LINE ON THE PAGE 1
0THIS IS THE THIRD LINE ON THE PAGE 1
-THIS IS THE 6TH LINE ON THE PAGE 1
THIS IS THE 7TH LINE ON THE PAGE 1
+____________________________________ - OVERSTRIKE 7TH LINE
1THIS IS THE FIRST LINE ON THE PAGE 2
0THIS IS THE THIRD LINE ON THE PAGE 2
-THIS IS THE 6TH LINE ON THE PAGE 2
THIS IS THE 7TH LINE ON THE PAGE 2
+____________________________________ - OVERSTRIKE 7TH LINE
/*
//*
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD DDNAME=SYSIN
//*
//SYSIN DD *
%TXT2PDF BROWSE Y IN DD:INDD +
OUT 'AWS.M2.TXT2PDF2.PDF.VB' +
CC YES
/*
//*
//*---**
//* CONVERT PDF (VB) TO PDF (LSEQ - BYTE STREAM)*
//*---**
//*
//STEP02 EXEC PGM=VB2LSEQ
//*
//INFILE DD DSN=AWS.M2.TXT2PDF2.PDF.VB,DISP=SHR
//*
//OUTFILE DD DSN=AWS.M2.TXT2PDF2.PDF,
// DISP=(NEW,CATLG,DELETE),
// DCB=(LRECL=256,DSORG=PS,RECFM=LSEQ,BLKSIZE=0)
//*
//SYSOUT DD SYSOUT=*
//*
//

Modifications

To make the TXT2PDF program run on the AWS Mainframe Modernization Micro Focus runtime
environment, we made the following changes:

TXT2PDF batch utility 593

AWS Mainframe Modernization User Guide

• Changes to the source code to ensure compatibility with the Micro Focus REXX runtime

• Changes to ensure that the program can run on both Windows and Linux operating systems

• Modifications to support both EBCDIC and ASCII runtime

References

TXT2PDF references and source code:

• Text to PDF converter

• z/OS Freeware TCP/IP and Mail Tools

• TXT2PDF User Reference Guide

M2DFUTIL batch utility

M2DFUTIL is a JCL utility program that provides backup, restore, delete, and copy functions on
datasets, similar to the support provided by the mainframe ADRDSSU utility. This program retains
many of the SYSIN parameters from ADRDSSU, which streamlines the process to migrate to this
new utility.

Topics

• Supported platforms

• Platform requirements

• Planned future support

• Asset locations

• Configure M2DFUTIL or AWS Mainframe Modernization runtime on Amazon EC2 (including
AppStream 2.0)

• General syntax

• Sample JCLs

Supported platforms

You can use M2DFUTIL on any of the following platforms:

• Micro Focus ES on Windows (64 bit and 32 bit)

M2DFUTIL batch utility 594

https://homerow.net/rexx/txt2pdf/
http://www.lbdsoftware.com/tcpip.html
http://www.lbdsoftware.com/TXT2PDF-User-Guide.pdf

AWS Mainframe Modernization User Guide

• Micro Focus ES on Linux (64 bit)

Platform requirements

M2DFUTIL depends on calling a script to perform a regular expression test. On Windows, you must
install Windows Services for Linux (WSL) for this script to run.

Planned future support

Features that are not currently available from the mainframe ADRDSSU utility, but are in the future
scope include:

• M2 Managed

• VSAM

• COPY support for file name renaming

• RENAME support for RESTORE

• Multiple INCLUDE and EXCLUDE

• BY clause for subselecting by DSORG, CREDT, EXPDT

• MWAIT clause to retry enqueue failures

• S3 storage support for DUMP/RESTORE

Asset locations

The load module for this utility is called M2DFUTIL.so on Linux and M2DFUTIL.dll on Windows.
This load module can be found in the following locations:

• Linux: /opt/aws/m2/microfocus/utilities/64bit

• Windows (32 bit): C:\AWS\M2\MicroFocus\Utilities\32bit

• Windows (64 bit): C:\AWS\M2\MicroFocus\Utilities\64bit

The script used for regular expression testing is called compare.sh. This script can be found in the
following locations:

• Linux: /opt/aws/m2/microfocus/utilities/scripts

• Windows (32 bit): C:\AWS\M2\MicroFocus\Utilities\scripts

M2DFUTIL batch utility 595

AWS Mainframe Modernization User Guide

Configure M2DFUTIL or AWS Mainframe Modernization runtime on Amazon EC2
(including AppStream 2.0)

Configure your Enterprise Server region with the following:

• Add the following variables in [ES-Environment]

• M2DFUTILS_BASE_LOC - The default location for DUMP output

• M2DFUTILS_SCRIPTPATH - The location of the compare.sh script documented in Asset
Locations

• M2DFUTILS_VERBOSE - [VERBOSE or NORMAL]. This controls the level of detail in the
SYSPRINT output

• Verify that the load module path is added to the JES\Configuration\JES Program Path
setting

• Verify that the scripts in the utilities directory have run permissions. You can add a run
permission using the chmod + x <script name> command, in the Linux environment

General syntax

DUMP

Provides the ability to copy files from the present cataloged location to a backup location. This
location must currently be a file system.

Process

DUMP will perform the following:

1. Create the target location directory.

2. Catalog the target location directory as a PDS member.

3. Determine the files to be included by processing the INCLUDE parameter.

4. Deselect included files by processing the EXCLUDE parameter.

5. Determine if the files being dumped are to be DELETED.

6. Enqueue the files to be processed.

7. Copy the files.

8. Export the copied files cataloged DCB information to a side file in the target location to assist
with future RESTORE operations.

M2DFUTIL batch utility 596

AWS Mainframe Modernization User Guide

Syntax

DUMP
TARGET (TARGET LOCATION) -
INCLUDE (DSN.)
[EXCLUDE (DSN)]
[CANCEL | IGNORE]
[DELETE]

Required parameters

Following are the required parameters for DUMP:

• SYSPRINT DD NAME - To contain additional logging information

• TARGET - Target location. It can be either:

• Full path of the dump location

• Subdirectory name created in the location defined in the M2DFUTILS_BASE_LOC variable

• INCLUDE - Either a single named DSNAME or a valid mainframe DSN search string

• EXCLUDE - Either a single named DSNAME or a valid mainframe DSN search string

Optional parameters

• CANCEL - Cancel if any error occurs. Files that were processed will be retained

• (Default) IGNORE - Ignore any error and process until end

• DELETE - If no ENQ error occurs, then the file is deleted and is uncataloged

DELETE

Provides the ability to mass delete and uncatalog files. Files are not backed up.

Process

DELETE will perform the following:

1. Determine the files to be included by processing the INCLUDE parameter.

2. Deselect included files by processing the EXCLUDE parameter.

3. Enqueue the files to be processed. Setting the disposition to OLD, DELETE, KEEP.

M2DFUTIL batch utility 597

AWS Mainframe Modernization User Guide

Syntax

DELETE
INCLUDE (DSN)
[EXCLUDE (DSN)]
[CANCEL | IGNORE]
[DELETE]

Required parameters

Following are the required parameters for DELETE:

• SYSPRINT DD NAME - To contain additional logging information

• INCLUDE - Either a single named DSNAME or a valid mainframe DSN search string

• EXCLUDE - Either a single named DSNAME or a valid mainframe DSN search string

Optional parameters

• CANCEL - Cancel if any error occurs. Files that are processed will be retained

• (Default) IGNORE - Ignore any error and process until end

RESTORE

Provides the ability to restore files previously backed up using DUMP. Files are restored to the
original cataloged location unless RENAME is used to alter the restored DSNAME.

Process

RESTORE will perform the following:

1. Validate the source location directory.

2. Determine the files to be included by processing the catalog export file.

3. Deselect included files by processing the EXCLUDE parameter.

4. Enqueue the files to be processed.

5. Catalog files that aren't cataloged based on their export information.

6. If a file is already cataloged and the export catalog information is the same, RESTORE will
replace the cataloged dataset if the REPLACE option is set.

M2DFUTIL batch utility 598

AWS Mainframe Modernization User Guide

Syntax

RESTORE
SOURCE (TARGET LOCATION)
INCLUDE (DSN)
[EXCLUDE (DSN)]
[CANCEL | IGNORE]
[REPLACE]

Required parameters

Following are the required parameters for RESTORE:

• SYSPRINT DD NAME - To contain additional logging information

• SOURCE - Source location. It can be either:

• Full path of the dump location

• Subdirectory name created in the location defined in the M2DFUTILS_BASE_LOC variable

• INCLUDE - Either a single named DSNAME or a valid mainframe DSN search string

• EXCLUDE - Either a single named DSNAME or a valid mainframe DSN search string

Optional parameters

• CANCEL - Cancel if any error. Files processed retained

• (Default) IGNORE - Ignore any error and process until end

• REPLACE - If the file being restored is already cataloged and the catalog records are the same,
then replace the cataloged file

Sample JCLs

DUMP job

This job will create a subdirectory called TESTDUMP. This is the default backup location specified
by the M2DFUTILS_BASE_LOC variable. It will create a PDS library for this backup called
M2DFUTILS.TESTDUMP. The exported catalog data is stored in a line sequential file in the backup
directory called CATDUMP.DAT. All files selected will be copied to this backup directory.

//M2DFDMP JOB 'M2DFDMP',CLASS=A,MSGCLASS=X
//STEP001 EXEC PGM=M2DFUTIL

M2DFUTIL batch utility 599

AWS Mainframe Modernization User Guide

//SYSPRINT DD DSN=TESTDUMP.SYSPRINT,
// DISP=(NEW,CATLG,DELETE),
// DCB=(RECFM=LSEQ,LRECL=256)
//SYSIN DD *
DUMP TARGET(TESTDUMP) -
 INCLUDE(TEST.FB.FILE*.ABC) -
 CANCEL
/*
//

DELETE job

This job will delete all files from the catalog that match the INCLUDE parameter.

/M2DFDEL JOB 'M2DFDEL',CLASS=A,MSGCLASS=X
//STEP001 EXEC PGM=M2DFUTIL
//SYSPRINT DD DSN=TESTDEL.SYSPRINT,
// DISP=(NEW,CATLG,DELETE),
// DCB=(RECFM=LSEQ,LRECL=256)
//SYSPRINT DD SYSOUT=A
//SYSIN DD *
 DELETE -
 INCLUDE(TEST.FB.FILE*.ABC) -
 CANCEL
/*
 //

RESTORE job

This job will restore the files that match the INCLUDE parameter from the TESTDUMP backup
location. Files that are cataloged will be replaced if the cataloged file is the same as the one in the
CATDUMP export and the REPLACE option is specified.

//M2DFREST JOB 'M2DFREST',CLASS=A,MSGCLASS=X
//STEP001 EXEC PGM=M2DFUTIL
////SYSPRINT DD DSN=TESTREST.SYSPRINT,
// DISP=(NEW,CATLG,DELETE),
// DCB=(RECFM=LSEQ,LRECL=256)
//SYSPRINT DD SYSOUT=A
//SYSIN DD *
RESTORE SOURCE(TESTDUMP) -
 INCLUDE(TEST.FB.FILE*.ABC) -
 IGNORE

M2DFUTIL batch utility 600

AWS Mainframe Modernization User Guide

 REPLACE
/*
//

M2RUNCMD batch utility

You can use M2RUNCMD, a batch utility program, to run Micro Focus commands, scripts, and
system calls directly from JCL instead of running them from a terminal or command prompt. The
output from the commands is logged to the batch job's spool log.

Topics

• Supported platforms

• Configure M2RUNCMD for AWS Mainframe Modernization runtime on Amazon EC2 (including
AppStream 2.0)

• Sample JCLs

Supported platforms

You can use M2RUNCMD on the following platforms:

• Micro Focus Runtime (on Amazon EC2)

• All variants of Micro Focus Enterprise Developer (ED) and Micro Focus Enterprise Server (ES)
products.

Configure M2RUNCMD for AWS Mainframe Modernization runtime on Amazon
EC2 (including AppStream 2.0)

If your migrated applications are running on AWS Mainframe Modernization runtime on Amazon
EC2, configure M2RUNCMD as follows.

• Change the Micro Focus JES Program Path to include the binary location for batch utilities. If
you must specify multiple paths, use colons (:) to separate paths on Linux and semicolons (;) on
Windows.

• Linux: /opt/aws/m2/microfocus/utilities/64bit

• Windows (32bit): C:\AWS\M2\MicroFocus\Utilities\32bit

• Windows (64bit): C:\AWS\M2\MicroFocus\Utilities\64bit

M2RUNCMD batch utility 601

https://www.microfocus.com/documentation/enterprise-developer/ed80/ED-Eclipse/index.html?t=GUID-BC8A1796-9EDE-48EB-8363-31C9BDE7F96B.html

AWS Mainframe Modernization User Guide

Sample JCLs

To test the installation, you can use either of the following sample JCLs.

RUNSCRL1.jcl

This sample JCL creates a script and runs it. The first step creates a script called /tmp/
TEST_SCRIPT.sh and with content from SYSUT1 in-stream data. The second step sets the run
permission and runs the script created in the first step. You can also choose to perform only the
second step to run already existing Micro Focus and system commands.

//RUNSCRL1 JOB 'RUN SCRIPT',CLASS=A,MSGCLASS=X,TIME=1440
//*
//*
//*---*
//* CREATE SCRIPT (LINUX)
//*---*
//*
//STEP0010 EXEC PGM=IEBGENER
//*
//SYSPRINT DD SYSOUT=*
//SYSIN DD DUMMY
//*
//SYSUT1 DD *
#!/bin/bash

set -x

ECHO PATH ENVIRONMNET VARIABLE
echo $PATH

CLOSE/DISABLE VSAM FILE
casfile -r$ES_SERVER -oc -ed -dACCTFIL

OPEN/ENABLE VSAM FILE
casfile -r$ES_SERVER -ooi -ee -dACCTFIL

exit $?
/*
//SYSUT2 DD DSN=&&TEMP,
// DISP=(NEW,CATLG,DELETE),
// DCB=(RECFM=LSEQ,LRECL=300,DSORG=PS,BLKSIZE=0)
//*MFE: %PCDSN='/tmp/TEST_SCRIPT.sh'

M2RUNCMD batch utility 602

AWS Mainframe Modernization User Guide

//*
//*---*
//* RUN SCRIPT (LINUX) *
//*---*
//*
//STEP0020 EXEC PGM=RUNCMD
//*
//SYSOUT DD SYSOUT=*
//*
//SYSIN DD *
*RUN SCRIPT
 sh /tmp/TEST_SCRIPT.sh
/*
//

SYSOUT

The output from the command or script that is run, is written into the SYSOUT log. For each carried
out command, it displays the command, output, and return code.

************ CMD Start ************

CMD_STR: sh /tmp/TEST_SCRIPT.sh

CMD_OUT:

+ echo /opt/microfocus/EnterpriseServer/bin:/sbin:/bin:/usr/sbin:/usr/bin
/opt/microfocus/EnterpriseServer/bin:/sbin:/bin:/usr/sbin:/usr/bin
+ casfile -rMYDEV -oc -ed -dACCTFIL

-Return Code: 0

Highest return code: 0

+ casfile -rMYDEV -ooi -ee -dACCTFIL

-Return Code: 8

Highest return code: 8

+ exit 8

M2RUNCMD batch utility 603

AWS Mainframe Modernization User Guide

CMD_RC=8

************ CMD End ************

RUNCMDL1.jcl

This sample JCL uses RUNCMD to run multiple commands.

//RUNCMDL1 JOB 'RUN CMD',CLASS=A,MSGCLASS=X,TIME=1440
//*
//*
//*---*
//* RUN SYSTEM COMMANDS *
//*---*
//*
//STEP0001 EXEC PGM=RUNCMD
//*
//SYSOUT DD SYSOUT=*
//*
//SYSIN DD *
*LIST DIRECTORY
 ls
*ECHO PATH ENVIRONMNET VARIABLE
 echo $PATH
/*
//

M2RUNCMD batch utility 604

AWS Mainframe Modernization User Guide

AWS Mainframe Modernization data replication with
Precisely

AWS Mainframe Modernization offers a variety of Amazon Machine Images (AMIs). These AMIs
facilitate rapid provisioning of Amazon EC2 instances, creating a tailored environment for data
replication from Mainframe systems to AWS using Precisely. This guide provides the steps required
to access and use these AMIs.

Prerequisites

• Ensure that you have administrator access to an AWS account where you can create Amazon EC2
instances.

• Verify that the AWS Mainframe Modernization service is available in the Region where you plan
to create the Amazon EC2 instances. See List of AWS Services Available by Region.

• Identify the Amazon Virtual Private Cloud (Amazon VPC) where the Amazon EC2 instances will
be created.

• When creating Amazon EC2 instances in an Amazon VPC, ensure that the associated route table
has an internet gateway or a NAT gateway.

Note

Successful data replication requires the AWS EC2 instance has communication access to the
AWS Marketplace. If there's a connectivity issue with the AWS Marketplace, the replication
process will fail.

Subscribe to the Amazon Machine Image

When you subscribe to an AWS Marketplace product, you can launch an instance from the product's
AMI.

1. Sign in to the AWS Management Console and open the AWS Marketplace console at https://
console.aws.amazon.com/marketplace.

2. Choose Manage subscriptions.

Prerequisites 605

https://aws.amazon.com/about-aws/global-infrastructure/regional-product-services/
https://console.aws.amazon.com/marketplace
https://console.aws.amazon.com/marketplace

AWS Mainframe Modernization User Guide

3. Copy and paste the following link into the browser address bar: https://aws.amazon.com/
marketplace/pp/prodview-en3xrbgzbs3dk

4. Choose Continue to Subscribe.

5. If the terms and conditions are acceptable, choose Accept Terms. The subscription might take
a few minutes to process.

6. Wait for the thank you message to appear, as shown below. This message confirms that you
have successfully subscribed to the product.

7. In the left navigate pane, choose Manage subscriptions. This view shows you all the
subscriptions that you've subscribed to.

Launch AWS Mainframe Modernization data replication with
Precisely

1. Open the AWS Marketplace console at https://console.aws.amazon.com/marketplace.

2. In the left navigation pane, choose Manage subscriptions.

3. Find the AMI that you want to launch, and choose Launch new instance.

4. Under Region, select the allow-listed Region.

5. Choose Continue to launch through EC2. This action takes you to the Amazon EC2 console.

6. Enter a name for the server.

7. Select an instance type that matches your project performance and cost requirements. The
suggested starting point for instance size is c5.2xLarge.

8. Choose an existing key pair or create and save a new one. For information about key pairs, see
Amazon EC2 key pairs and Linux instances in the Amazon EC2 User Guide.

9. Edit the network settings and choose the allow-listed VPC and appropriate subnet.

10. Choose an existing security group or create a new one. In addition to allowing SSH access (by
default on port 22), for data replication with a Precisely server EC2 instance, it is typical to
allow TCP traffic to its default port 2626.

Launch AWS Mainframe Modernization data replication with Precisely 606

https://console.aws.amazon.com/marketplace
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html

AWS Mainframe Modernization User Guide

11. Configure the storage for the Amazon EC2 instance.

12. Review the summary and choose Launch instance. For the launch to success, the instance type
must be valid. If the launch fails, choose Edit instance configuration and choose a different
instance type.

13. After you see the success message, choose Connect to instance.

14. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.

15. In the left navigation pane, under the Instances menu, choose Instances.

16. In the main pane, check the status of your instance.

Create an IAM policy

To successfully operate AWS Mainframe Modernization EC2 instances deployed via our AWS
Marketplace listing, you must configure an IAM role and policy. This specifically-tailored IAM setup
is not optional; it authorizes your Amazon EC2 instances to interact with the AWS Marketplace
service. The IAM role and policy allow AWS Mainframe Modernization to accurately record usage
data, which is essential for precise billing. Failing to implement this configuration may lead to
unsuccessful data replication attempts and operational disruptions.

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. In the navigation pane on the left, choose Policies.

3. If this is your first-time choosing Policies, the Welcome to Managed Policies page appears.
Choose Get Started.

4. At the top of the page, choose Create policy.

5. In the Policy editor section, choose the JSON option.

6. Enter the following JSON policy.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": ["aws-marketplace:MeterUsage"],
 "Effect": "Allow",
 "Resource": "*"
 }
]
}

Create an IAM policy 607

https://console.aws.amazon.com/ec2/
https://console.aws.amazon.com/iam/

AWS Mainframe Modernization User Guide

Create an IAM role

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. In the navigation pane, choose Roles, and then choose Create role.

3. In the Trusted entity type section, choose AWS service.

4. In the Use case section, under Service or use case, choose Amazon EC2.

5. Choose Next.

6. In the list of policies, select Customer managed from the Filter by Type drop-down and enter
the name of the policy that you created. Select the check box next to the name of the policy.

7. Choose Next.

8. Enter a name and, optionally, a description for the role.

9. Review the trust policy and permissions, and then choose Create role.

Attach the IAM role to the Amazon EC2 instance

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.

2. In the navigation pane, choose Instances.

3. Select your Amazon EC2 instance.

4. From the Actions menu, choose Security, and then choose Modify IAM role.

5. Select the role to attach to your instance, and then choose Update IAM role.

Create an IAM role 608

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/ec2/

AWS Mainframe Modernization User Guide

AWS Mainframe Modernization Code Conversion with
mLogica

AWS Mainframe Modernization Code Conversion with mLogica (Code conversion), is an AWS
Mainframe Modernization feature that automatically converts z/OS mainframe Assembler code to
COBOL. You can use Code conversion to pull an assembler image using the AWS CodeBuild service
for your intended code conversion with your AWS account.

Topics

• What is Assembler Conversion with mLogica?

• Understand Code conversion billing for Assembler conversion

• Code conversion concepts

• Understand components and processes for Code conversion

• Tutorial: Convert code from Assembler to COBOL in AWS Mainframe Modernization

What is Assembler Conversion with mLogica?

AWS Mainframe Modernization Code Conversion with mLogica (Code conversion) automatically
converts z/OS mainframe Assembler code to COBOL. The service runs within your AWS account
and doesn't transmit or store Assembler or COBOL source code outside the AWS account. Code
conversion allows your authorized account to pull an assembler image using the AWS CodeBuild
service for your intended code conversion.

AWS Mainframe Modernization provides you with the ability to set up builds and continuous
integration/continuous delivery (CI/CD) pipelines for your migrated applications. These builds
and pipelines use AWS CodeBuild and Amazon S3 to provide this feature. AWS CodeBuild is a fully
managed build service that compiles your source code, runs unit tests, and produces artifacts that
are ready to deploy. Amazon S3 is an object storage service that offers industry- leading scalability,
data availability, security, and performance.

Topics

• Code conversion compliers

• Code conversion architecture

• Automation approach

What is Assembler Conversion with mLogica 609

AWS Mainframe Modernization User Guide

• Security

• Additional resources

Code conversion compliers

Code conversion can be configured to emit COBOL suitable for compilation and running in several
target environments with different compilers. Some of these include:

• M2 Re-platforming with Micro Focus and other Micro Focus Enterprise Server environments

• M2 Re-platforming with NTT DATA Enterprise COBOL (UniKix)

• mLogica LIBER*COBOL

• z/OS Mainframe using IBM Enterprise COBOL

• Veryant isCOBOL

Code conversion architecture

The following is an architectural diagram for the Code conversion process:

Code conversion compliers 610

AWS Mainframe Modernization User Guide

Automation approach

To use Code conversion with CodeBuild, the Assembler code needs to be uploaded to an Amazon
S3 bucket, to later configure conversion parameters and invoke a CodeBuild project to perform
each step in the conversion process. The target COBOL code is automatically stored in a specified
path in the Amazon S3 bucket.

Security

AWS Mainframe Modernization Code conversion enables conversion while keeping all source and
target code in your AWS account. Source Assembler code, target COBOL code, and configuration
files are stored in your Amazon S3 bucket. The automated conversion tool runs as a container in
the CodeBuild environment in your AWS account. The code stays in your account at all times.

To enable the Conversion tool to access your Amazon S3 bucket, you grant permissions to the
bucket to an AWS service role. When you configure CodeBuild, you will set this service role so that
CodeBuild can access the container image and access your Amazon S3 bucket.

Additional resources

Along with the the section called “Tutorial: Convert code from Assembler to COBOL”, here are
some additional resources where you can learn about creating the AWS CloudFormation templates
and other information about converting Assembler to COBOL.

• Workshop link for Automated Code conversion from Assembler to COBOL: https://
catalog.workshops.aws/awsm2ccm-assembler-cobol/en-US.

• Blog post: https://aws.amazon.com/blogs/migration-and-modernization/unlocking-new-
potential-transform-your-assembler-programs-to-cobol-with-aws-mainframe-modernization/.

Understand Code conversion billing for Assembler conversion

You will refer this page to understand the Code conversion billing scope and process before
doing the actual conversion. The billing calculation section mentions the process though which
conversion from Assembler to COBOL is charged per each line of code.

Code conversion billing and scope

Assembler code conversion generates charges (billing reports) on your AWS account only after
completing the conversion step. The charge is based on the number of lines of code converted. If

Automation approach 611

https://catalog.workshops.aws/awsm2ccm-assembler-cobol/en-US
https://catalog.workshops.aws/awsm2ccm-assembler-cobol/en-US
https://aws.amazon.com/blogs/migration-and-modernization/unlocking-new-potential-transform-your-assembler-programs-to-cobol-with-aws-mainframe-modernization/
https://aws.amazon.com/blogs/migration-and-modernization/unlocking-new-potential-transform-your-assembler-programs-to-cobol-with-aws-mainframe-modernization/

AWS Mainframe Modernization User Guide

you perform multiple conversion steps, for instance after adding new Assembler code, changing
the conversion configuration, or applying a new version of the container, only changed lines and/
or newly added lines are used to calculate the charge. We won't charge you twice for conversion of
the same line of code in the same program.

Note

The modules with changed lines of code and all lines of code in new or renamed programs
will be charged.

To avoid multiple charges, Code conversion stores an encoded binary file for each Assembler
or Macro module in the project bucket in <Project_bucket>/awsm2ccm-do-not-delete/
<AWS_account_number>/Hash. These encoded files do not contain any customer code.

Important

Don't manually edit or delete these files. Changes may result in multiple billings for
converting the same components.

The AWS Mainframe Modernization Code conversion analysis report (“Analysis Report”) provides
customers with details about the anticipated conversion scope, outcome, and billing to ensure
accurate expectations of the actual conversion. Conversion may result in some lines of code
not getting converted, some lines of code partially getting converted, and some lines of code
converting completely. The Analysis Report shows the number of lines of code for each category.
You must run and read the Analysis Report prior to processing any conversion of programs,
macros, and copybooks. Once a customer reviews the Analysis Report and agrees with the
reported scope, expected outcome, and expected billing, the customer can move forward with
executing the conversion.

Note

By executing the AWS Mainframe Modernization Code Conversion Convert command, you
acknowledge that you have run and read the Analysis Report, and agree with the expected
outcome and the billable number of lines of code.

Code conversion billing and scope 612

AWS Mainframe Modernization User Guide

Scope of Conversion

AWS Mainframe Modernization Code conversion processes all lines of code of all assembler, macro
and copybook components available in the scrlib and macrolib directories in the configured S3
source location. Assembler programs, and any macros, and copybooks referenced in an assembler
program are in scope. Macro and copybook components that are not referenced by an assembler
program are considered as out of scope and not converted. During processing, the converter
executes advanced algorithms that consider each in-scope component holistically. All lines of code
of these components participate in the processing regardless of whether they are totally converted,
partially converted, or not converted. AWS Mainframe Modernization Code conversion ignores
blank lines and doesn't count them as lines of code. Comment lines and lines containing any other
text (e.g., JCL statements for assembler embedded in JCL) are counted as lines of code for billing.

Billing calculation

AWS Mainframe Modernization Code conversion charges for the in-scope components in their
entirety. This means that it charges for every line of code within each in-scope component,
including lines that could not be converted, were partially converted, and were totally converted.
AWS Mainframe Modernization Code conversion adds up all lines of code of components supplied
for processing (including assembler programs, referenced copybooks, and referenced macros), and
uses the total number of lines of code for billing.

Note

Copybooks and macros not referenced by an Assembler program are not considered in-
scope.

For example, assume a program has 1,000 lines of code:

• 700 lines are fully converted

• 200 lines are partially converted

• 100 lines are not converted

1,000 lines of code would be processed and will be billable.

Code conversion billing and scope 613

AWS Mainframe Modernization User Guide

Improving the conversion

If you as a customer seek a higher conversion rate for the lines of code or have other specific
requirements, you can reach out to the AWS representatives for additional engagement options
such as a calibration effort, or professional services assistance.

Code conversion concepts

To learn how code conversion happens, understanding some key concepts such as Macro handling,
Code pages, and CodeBuild is important.

Topics

• Macro Handling

• Code pages (EBCDIC vs ASCII)

• CodeBuild

Macro Handling

Mainframe Assembler code frequently uses Macros to encapsulate functionality for reuse. Macro
behavior is typically determined at application runtime based on parameters passed from an
Assembler program. Code conversion provides several mechanisms for expanding Assembler
Macros prior to conversion to COBOL.

Code pages (EBCDIC vs ASCII)

Mainframe Assembler often contain character literals expressed as hexadecimal values
corresponding to EBCDIC characters. Code conversion provides a configurable capability to
automatically manage character literals in ASCII when emitting COBOL for ASCII environments.

CodeBuild

Code conversion is available through the AWS CodeBuild service. AWS CodeBuild is a
build automation tool originally designed as a part of a CI/CD pipeline. In AWS Mainframe
Modernization, AWS CodeBuild is used to automate the MCCAC Conversion tool and other tools
such as the Micro Focus COBOL compiler.

Code conversion concepts 614

AWS Mainframe Modernization User Guide

Understand components and processes for Code conversion

AWS Mainframe Modernization Code conversion process includes various components such as AWS
Mainframe Modernization container, S3 project bucket, and Log file locations.

Topics

• AWS Mainframe Modernization container

• S3 project bucket

• Log file locations

• Process overview

AWS Mainframe Modernization container

AWS Mainframe Modernization Code conversion container runs in the AWS CodeBuild project, and
provides commands to set up the project directories and configuration files, assess Assembler code,
expand Assembler macros, and convert Assembler code to COBOL.

You will have access to the following AWS ECR Repository:381492161314.dkr.ecr.us-
east-1.amazonaws.com/aws-mlogica-codebuild-prod.

To use the images, you can follow either of the two options:

• Use the latest tag when consuming the image via AWS CodeBuild. When using the image, you
will use this path: 381492161314.dkr.ecr.us-east-1.amazonaws.com/aws-mlogica-
codebuild-prod. This means that AWS CodeBuild will pick up whichever was the last pushed
image into the repository.

• Listing the version and selecting from that. To do this use the following command via CLI to list
the different versions in the repository:

aws ecr describe-images \
 --registry-id 381492161314 \
 --repository-name aws-mlogica-codebuild-prod \
 --query 'imageDetails[*].{ImagePushedAt: imagePushedAt, ImageTags: imageTags}' \
 --output json | jq '[.[] | {ImageURI: (.ImageTags[] |
 "381492161314.dkr.ecr.us-east-1.amazonaws.com/aws-mlogica-codebuild-prod:" + .),
 ImagePushedAt: .ImagePushedAt}] | sort_by(.ImagePushedAt) | reverse'

Understand components and process 615

AWS Mainframe Modernization User Guide

This will list all the images with the associated tag on each image, and the time when a particular
image was released to the repository. Based on the above code, you will get a list of images
where the tag on the image represents the version of the code conversion utility. You can select
the appropriate image based on your requirements.

S3 project bucket

The input and output code, code updated with expanded Macros, and the reports generated by
AWS Mainframe Modernization Code conversion are stored in the project bucket you create in your
AWS Account Management. You provide AWS Mainframe Modernization Code conversion with
access to the bucket by granting permissions to an AWS service role.

Log file locations

Log files are written in two locations during each CodeBuild project execution:

• Log files with high-level results of each CodeBuild step are written to log files in the Logging
bucket configured in the CodeBuild. These files appear as gzip archives with a GUID- type
file name generated by the CodeBuild framework (e.g., 0c03e183-ab40-4fe0-ba77-
bc1d87e73b14.gz). Each archive contains the log generated by the execution of a CodeBuild
project. If a CodeBuild project execution fails, this log file will contain important troubleshooting
information.

• Log files with detailed execution results at a component level are written to the log files in the
main Project bucket path with the filename pattern <Project_Bucket_name>_.log (e.g.
project- bucket_202406131200.log). These logs provide:

• A configuration summary noting input and output locations.

• A log of each Assembler or Macro component processed with the target filename.

• A list of reports generated with file locations.

• For conversion executions, a list of the run-time copybooks supplied.

Process overview

The following diagram illustrates the process of converting Assembler to COBOL:

S3 project bucket 616

AWS Mainframe Modernization User Guide

Tutorial: Convert code from Assembler to COBOL in AWS
Mainframe Modernization

You can use this document as a step-by-step guide to understand how to convert the mainframe
modernization Assembler code to COBOL. In addition to this, you can also refer the Automated
code conversion from Assembler to COBOL workshop to learn more about the conversion process.

Topics

• Prerequisites

• Step 1: Share the build assets with AWS account

• Step 2: Create Amazon S3 buckets

• Step 3: Create IAM policy

• Step 4: Create an IAM role

• Step 5: Attach the IAM policy to the IAM role

• Step 6: Create the CodeBuild project

• Step 6.1: Create the Define project

• Step 6.2: Create the Code Analysis project

Tutorial: Convert code from Assembler to COBOL 617

https://catalog.workshops.aws/awsm2ccm-assembler-cobol/en-US
https://catalog.workshops.aws/awsm2ccm-assembler-cobol/en-US

AWS Mainframe Modernization User Guide

• Step 6.3: Create the Code Conversion project

• Step 7: Define the project and upload the source code

• Step 8: Run the analysis and understand the reports

• Step 9: Run the Code conversion

• Step 10: Verify the Code conversion

• Step 11: Download converted code

• Clean up resources

Prerequisites

Read the Understand Code conversion billing for Assembler conversion section to understand how
Assembler code conversion generates charges (billing reports) on your AWS Account Management,
and the way billing works.

Step 1: Share the build assets with AWS account

In this step, ensure that you share the build assets with your AWS account, especially in the Region
where assets are being used.

1. Open the AWS Mainframe Modernization console at https://console.aws.amazon.com/m2/.

2. In the left navigation, choose Tools.

3. In AWS Mainframe Modernization Code Conversion with mLogica, choose Share assets with
my AWS account.

Important

You need to do this step once in every AWS Region where you intend to do builds.

Step 2: Create Amazon S3 buckets

In this step, you create Amazon S3 buckets. The first bucket is the project bucket for AWS
CodeBuild to hold the source code and then push the output bucket to hold the AWS CodeBuild
output (converted code). For more information, see Creating, configuring, and working with
Amazon S3 buckets in the Amazon S3 User Guide.

Prerequisites 618

https://us-west-2.console.aws.amazon.com/m2/home?region=us-west-2#/
https://docs.aws.amazon.com/AmazonS3/latest/userguide/creating-buckets-s3.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/creating-buckets-s3.html

AWS Mainframe Modernization User Guide

1. To create the project bucket, log in to the Amazon S3 console, and choose Create bucket.

2. In General configuration, provide a name for the bucket and specify the AWS Region where
you want to create the bucket. An example name is codebuild-regionId-accountId-
bucket, where:

• regionId is the AWS Region of the bucket.

• accountId is your AWS account ID.

Note

If you are creating the bucket in a different AWS Region from US East (N. Virginia),
specify the LocationConstraint parameter. For more information, see Create
Bucket in the Amazon Simple Storage Service API Reference.

3. Retain all other settings, and choose Create bucket.

Whatever names you choose for these buckets, be sure to use them throughout this tutorial.

Step 3: Create IAM policy

In this step, you create an IAM policy. The provided IAM policy grants specific permissions
AWS CodeBuild for interacting with Amazon S3, Amazon Elastic Container Registry, Amazon
CloudWatch logs that CodeBuild generates, and Amazon Elastic Compute Cloud resources for Code
conversion. This policy is not customized for customers. The policy grants permissions for AWS
Mainframe Modernization to interact, and fetch the Code conversion statistics to bill the customer
appropriately.

To learn about creating an IAM policy, see Creating IAM policies in the IAM user guide.

To create a policy

1. Log in to the IAM console, and choose Policies in the left navigation pane.

2. Choose Create policy.

3. Copy and paste the following JSON policy into the policy editor.

{
 "Version": "2012-10-17",

Step 3: Create IAM policy 619

https://docs.aws.amazon.com/AmazonS3/latest/API/API_CreateBucket.html
https://docs.aws.amazon.com/AmazonS3/latest/API/API_CreateBucket.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/WhatIsCloudWatchLogs.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/WhatIsCloudWatchLogs.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html

AWS Mainframe Modernization User Guide

 "Statement": [
 {
 "Action": [
 "s3:PutObject",
 "s3:GetObject",
 "s3:GetBucketLocation",
 "s3:ListBucket",
 "s3:PutObjectAcl",
 "s3:GetBucketAcl"
],
 "Resource": [
 "arn:aws:s3:::codebuild-regionId-accountId-bucket",
 "arn:aws:s3:::codebuild-regionId-accountId-bucket/*",
 "arn:aws:s3:::aws-m2-repo-*"],
 "Effect": "Allow"
 },
 {
 "Action": [
 "ecr:GetAuthorizationToken",
 "ecr:BatchCheckLayerAvailability",
 "ecr:BatchGetImage",
 "ecr:GetDownloadUrlForLayer",
 "logs:*",
 "ec2:DescribeSecurityGroups",
 "ec2:DescribeSubnets",
 "ec2:DescribeNetworkInterfaces",
 "ec2:DeleteNetworkInterface",
 "ec2:CreateNetworkInterface",
 "ec2:DescribeDhcpOptions",
 "ec2:DescribeVpcs",
 "ec2:CreateNetworkInterfacePermission"
],
 "Resource": "*",
 "Effect": "Allow"
 }
]
}

4. You can optionally add tags to the policy. Tags are key-value pairs that can help you organize,
track, or control access for the policy.

5. Choose Next:Review.

6. Provide a name for the policy, for example, CodeBuildAWSM2CCMPolicy.

Step 3: Create IAM policy 620

AWS Mainframe Modernization User Guide

7. You can optionally enter a description for the policy, and review the policy summary to ensure
it's correct.

8. Choose Create policy.

Step 4: Create an IAM role

In this step, you create a new IAM role that allows CodeBuild to interact with AWS resources for
you, after you associate the IAM policies that you previously created with this new IAM role.

For information about creating a service role, see Creating a Role to Delegate Permissions to an
AWS Service in the IAM User guide.

1. Log in to the IAM console, and choose Roles in the left navigation pane.

2. Choose Create role.

3. Under Trusted entity type, choose AWS service.

4. Under Use cases for other AWS services, choose CodeBuild, and then choose CodeBuild
again.

5. Choose Next.

6. On the Add permissions page, choose Next. You assign a policy to the role later.

7. Under Role details, provide a name for the role, for example,
IAMRoleTaskExecutionRoleForCodeBuild.

8. Under Select trusted entities, verify that the policy document looks like the following:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "codebuild.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

9. Choose Create role.

Step 4: Create an IAM role 621

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html

AWS Mainframe Modernization User Guide

Step 5: Attach the IAM policy to the IAM role

In this step, you attach the IAM policy you previously created to the
IAMRoleTaskExecutionRoleForCodeBuild IAM role.

1. Log in to the IAM console, and choose Roles in the left navigation pane.

2. In Roles, choose the role you created previously, for example,
IAMRoleTaskExecutionRoleForCodeBuild.

3. In Permissions policies, choose Add permissions, and then Attach policies.

4. In Other permissions policies, choose the policies that you created previously, for example,
CodeBuildAWSM2CCMPolicy.

5. Choose Attach policies.

Step 6: Create the CodeBuild project

In this step, you create three different CodeBuild projects based on the buildspec.yml file
mentioned above.

Step 6.1: Create the Define project

To create the Define project

1. Log in to the CodeBuild console, and choose Create build project.

2. In the Project configuration section, provide a name for the project, for example, 1-
awsm2ccm-define-project.

3. In the Source section, for Source provider, leave the default selection.

4. In the Environment section, choose Custom image.

5. In the Environment type field, choose Linux.

6. Under Image registry, choose Other registry.

7. In the External registry URL field, follow the the section called “AWS Mainframe
Modernization container” section.

8. Under Service role, choose Existing service role, and in the Role ARN field, choose the service
role you created previously (e.g., IAMRoleTaskExecutionRoleForCodeBuild).

9. Expand the Additional configuration section, do the following:

a. VPC: Configure if needed based on your setup.

Step 5: Attach the IAM policy to the IAM role 622

AWS Mainframe Modernization User Guide

b. Timeout: Set to 60 minutes.

c. Queued timeout: Set to 480 minutes.

d. Encryption: Choose the appropriate encryption settings (default is fine).

e. In the Environment variables section, add the following one by one:

• Name : PROJECT_BUCKET. Value : codebuild-regionId-accountId- bucket.
Type : Plaintext

• Name : PROJECT_DIR. Value : prj_codebuild_01. Type : Plaintext

• Name : AWSM2CCM_ACTION. Value : define_project. Type : Plaintext

• Name : AWSM2CCM_LOGGING_BUCKET. Value : s3:// codebuild-regionId-
accountId-bucket. Type : Plaintext

10. In the Buildspec section, choose Insert build commands, and then Switch to editor.

11. Replace the current values with this:

version: 0.2
phases:
 build:
 commands:
 - . /app/awsm2ccm_prod/bin/setup_env.sh
 - run_awsm2ccm.sh $PROJECT_DIR
artifacts:
 files:
 - '**/*'
 discard-paths: no
 base-directory: $PROJECT_DIR

where, PROJECT_DIR are environment variables available within CodeBuild. For more
information, see Environment variables in build environments.

12. In the Artifacts section, do this:

• under Type, choose Amazon S3, and then choose your output bucket, for example,
codebuild-regionId-accountId-bucket.

• for Path, leave this field empty.

• for Name, enter prj_codebuild_01.

• for Artifact packaging, select None.

• for Override artifact name, uncheck this option.
Step 6: Create the CodeBuild project 623

https://docs.aws.amazon.com/codebuild/latest/userguide/build-env-ref-env-vars.html

AWS Mainframe Modernization User Guide

• for Encryption, leave it to default settings.

13. For the Logs section, do the following:

• CloudWatch logs: Disabled

• S3 Logs: Enabled

• Bucket: codebuild-regionId-account-bucket

• Log path: CODEBUILD-LOGS

14. Choose Create build project.

Step 6.2: Create the Code Analysis project

To create the Code Analysis project

1. Log in to the CodeBuild console, and choose Create build project.

2. In the Project configuration section, provide a name for the project, for example, 2-
awsm2ccm-analysis.

3. In the Source section, for Source provider, choose Amazon S3, and then choose the input
bucket you created previously (e.g., codebuild-regionId-accountId-bucket).

4. In the S3 object key or S3 folder field, enter prj_codebuild_01.

5. In the Environment section, choose Custom image.

6. In the Environment type field, choose Linux.

7. Under Image registry, choose Other registry.

8. In the External registry URL field, follow the the section called “AWS Mainframe
Modernization container” section.

9. Under Service role, choose Existing service role, and in the Role ARN field, choose the service
role you created previously (e.g.,IAMRoleTaskExecutionRoleForCodeBuild).

10. Expand the Additional configuration section, do the following:

a. VPC: Configure if needed based on your setup.

b. Timeout: Set to 60 minutes.

c. Queued timeout: Set to 480 minutes.

d. Encryption: Choose the appropriate encryption settings (default is fine).

Step 6: Create the CodeBuild project 624

AWS Mainframe Modernization User Guide

e. In the Environment variables section, add the following one by one:

• Name: PROJECT_BUCKET. Value : codebuild-regionId-accountId-bucket. Type :
Plaintext

• Name : PROJECT_DIR. Value : prj_codebuild_01. Type : Plaintext

• Name : AWSM2CCM_ACTION. Value : analysis. Type : Plaintext

• Name : AWSM2CCM_LOGGING_BUCKET. Value : s3:// codebuild-regionId-
accountId-bucket. Type : Plaintext

11. In the Buildspec section, choose Insert build commands, and then Switch to editor.

12. Replace the current values with this:

version: 0.2
phases:
 build:
 commands:
 - ln -s $CODEBUILD_SRC_DIR $PROJECT_DIR
 - . /app/awsm2ccm_prod/bin/setup_env.sh
 - run_awsm2ccm.sh $PROJECT_DIR
artifacts:
 files:
 - '*.log'
 - '_Converted/*/*'
 - '_Reports/*'
 secondary-artifacts:
 reports:
 files:
 - '_Reports/AWSM2CCM*'
 discard-paths: no
 base-directory: $PROJECT_DIR

where, PROJECT_DIR are environment variables available within CodeBuild. For more
information, see Environment variables in build environments.

13. In the Artifacts section, do this:

• under Type, choose Amazon S3, and then choose your output bucket (e.g., codebuild-
regionId-accountId-bucket).

• for Path, enter ARTIFACTS.

• for Name, enter prj_codebuild_01.

Step 6: Create the CodeBuild project 625

https://docs.aws.amazon.com/codebuild/latest/userguide/build-env-ref-env-vars.html

AWS Mainframe Modernization User Guide

• for Artifact packaging, select None.

• for Override artifact name, uncheck this option.

• for Encryption, leave it to default settings.

14. For the Logs section, do the following:

• CloudWatch logs: Disabled

• S3 Logs: Enabled

• Bucket: codebuild-regionId-account-bucket

• Log path: CODEBUILD-LOGS

15. Choose Create build project.

Step 6.3: Create the Code Conversion project

To create the Code Conversion project

1. Log in to the CodeBuild console, and choose Create build project.

2. In the Project configuration section, provide a name for the project (e.g.,3-awsm2ccm-
convert).

3. In the Source section, for Source provider, choose Amazon S3, and then choose the input
bucket you created previously (e.g.,codebuild-regionId-accountId-bucket).

4. In the S3 object key or S3 folder field, enter prj_codebuild_01.

5. In the Environment section, choose Custom image.

6. In the Environment type field, choose Linux.

7. Under Image registry, choose Other registry.

8. In the External registry URL field, follow the the section called “AWS Mainframe
Modernization container” section.

9. Under Service role, choose Existing service role, and in the Role ARN field, choose the service
role you created previously; for example, IAMRoleTaskExecutionRoleForCodeBuild.

10. Expand the Additional configuration section, do the following:

a. VPC: Configure if needed based on your setup.

b. Timeout: Set to 60 minutes.

Step 6: Create the CodeBuild project 626

AWS Mainframe Modernization User Guide

c. Queued timeout: Set to 480 minutes.

d. Encryption: Choose the appropriate encryption settings (default is fine).

e. In the Environment variables section, add the following one by one:

• Name: PROJECT_BUCKET. Value : codebuild-regionId-accountId-bucket. Type :
Plaintext

• Name : PROJECT_DIR. Value : prj_codebuild_01. Type : Plaintext

• Name : AWSM2CCM_ACTION. Value : conversion. Type : Plaintext

• Name : AWSM2CCM_LOGGING_BUCKET. Value : s3:// codebuild-regionId-
accountId-bucket. Type : Plaintext

11. In the Buildspec section, choose Insert build commands, and then Switch to editor.

12. Replace the current values with this:

version: 0.2
phases:
 build:
 commands:
 - export AWSM2CCM_PUSH_RUNTIME_COPYBOOKS=y
 - ln -s $CODEBUILD_SRC_DIR $PROJECT_DIR
 - . /app/awsm2ccm_prod/bin/setup_env.sh
 - run_awsm2ccm.sh $PROJECT_DIR
artifacts:
 files:
 - '*.log'
 - '_Converted/*/*'
 - '_Reports/*'
 discard-paths: no
 base-directory: $PROJECT_DIR

where, PROJECT_DIR are environment variables available within CodeBuild. For more
information, see Environment variables in build environments.

13. In the Artifacts section, do this:

• under Type, choose Amazon S3, and then choose your output bucket (e.g., codebuild-
regionId-accountId-bucket).

• for Path, enter ARTIFACTS.

• for Name, enter prj_codebuild_01.

Step 6: Create the CodeBuild project 627

https://docs.aws.amazon.com/codebuild/latest/userguide/build-env-ref-env-vars.html

AWS Mainframe Modernization User Guide

• for Artifact packaging, select None.

• for Override artifact name, uncheck this option.

• for Encryption, leave it to default settings.

14. For the Logs section, do the following:

• CloudWatch logs: Disabled

• S3 Logs: Enabled

• Bucket: codebuild-regionId-account-bucket

• Log path: CODEBUILD-LOGS

15. Choose Create build project.

Step 7: Define the project and upload the source code

The Define Project sets up the project folder and configuration files, initialized with default
configurations. In this step, you start the build. To do this:

1. Log in to the AWS CodeBuild console.

2. In the left navigation pane choose Build projects.

3. Select the previously created project (1-awsm2ccm-define-project) to build

4. Choose Start build, and then Start now to define the project. Once the build starts, the status
will change to in progress.

5. Choose Phase details to see the progress of each step which is orchestrated by the AWS
CodeBuild project.

6. Wait until the status has changed to succeeded for all the steps.

7. Go to the Amazon S3 console.

8. Locate and click on Amazon S3 bucket named codebuild-regionId-accountId-bucket

• CODEBUILD-LOGS/ folder contains the AWS CodeBuild logs for the running AWS CodeBuild
projects.

• prj_codebuild_01/ folder that contains the project structure. It's used during analysis,
expand_macros, and convert steps. You can select prj_codebuild_01/ to explore details

• cobol_reserved.rsw configuration file (list of COBOL words) reserved for the converter.
It's used during the convert step.

Step 7: Define the project and upload the source code 628

AWS Mainframe Modernization User Guide

• Macro_Expansion/ folder contains macros to expand into Assembler programs. It's used
during the expand_macros step.

• macro_settings.json configuration file contains customized macro replacement. It's
used during the expand_macros step.

• macrolib/ folder contains the Assembler macros to be converted. It's used during the
analysis and convert step.

1. Select macrolib/.

2. By default one Assembler macro named MACRO1.mac is provided as a sample file. Delete
this file since it's not needed for the analysis.

3. Upload your Macros in this directory.

• project_settings_aux.json configuration file contains settings related to code page.
It's used during the convert step.

• project_settings.json configuration file contains settings for the converter. It's used
during the convert step.

• srclib/ folder contains the Assembler programs to be converted. It's used during the
analysis and convert step.

1. Choose srclib/.

2. By default, two Assembler programs named SQtest01.asm and SQtest02.asm are
provided as samples. Delete these files as they aren't needed for your analysis and
conversion.

3. Upload your Assembler programs in this directory.

9. Verify the status for 1-awsm2ccm-define-project step. It should have succeeded under the
Latest build status tab.

You are ready for the next step: Code analysis.

Step 8: Run the analysis and understand the reports

Note

AWS Mainframe Modernization Code conversion analysis step is free of charge.

In this step, you kickoff another build:

Step 8: Run the analysis and understand the reports 629

AWS Mainframe Modernization User Guide

1. In the left navigation pane, choose Build projects.

2. Choose the project you created in step 6.2 to build: 2-awsm2ccm-analysis.

3. Choose Start build, and then Start now to generate analysis reports. This will start the build
and change status to in progress.

4. Choose Phase details where you will see the progress of each step orchestrated by the AWS
CodeBuild project. Wait until the status changes to succeeded for all steps.

5. From the AWS Management Console, go to the Amazon S3 service console.

6. Locate and click on the Amazon S3 bucket: codebuild-regionId-accountId-bucket

a. ARTIFACTS/ folder contains the outputs of analysis and convert steps.

b. Choose ARTIFACTS/prj_codebuild_01/_Reports/.

c. The following reports will be available:

• AWSM2CCM-Analysis-Report-<timestamp>.pdf is an executive report that
provides the AWS Mainframe Modernization Code conversion billing and scope,
improving the conversion, conversion summary, and the detailed conversion statistics.
It also summarizes the code counts and billable code counts at a project level and
provides metrics and lists of referenced members for each component. It's critical to run
and examine this report prior to running the actual conversion.

• Conversion_Detailed_Statistics.txt provides the frequency and expected
conversion result (shown as “Conversion status”) for each instruction found in each
component. This provides a quick way to identify whether instructions are clear that the
converter does not support. Possible Conversion status results are:

• Totally converted: the instruction will be accurately converted to COBOL.

• Partially converted: the instruction is supported but uses an unsupported parameter
or expression. Manual adjustments are likely required after conversion.

• Not converted: the instruction is not supported by the converter.

• Pre-compile instructions to verify: these are normally included inside the Macros,
and refer to what is probably known also as Conditional Assembly Language (e.g.,
AIF, AGO) instructions on mainframe. These are handled by the pre-compiler which is
driven by such instructions or directives selects and produces clean/static ASM code.
These instructions depend on the actual values of the Macro parameters which get
compiled. So, the same Macro can generate different pieces of ASM code, depending
on the values of the passed parameters. This is because of the presence of such pre-
compile instructions. In that case, consider expanding or re-engineering the Macro.

Step 8: Run the analysis and understand the reports 630

AWS Mainframe Modernization User Guide

• Conversion_Global_Statistics.txt provides a summary of the Conversion status
at a component level.

• CrossReference_PgmToCpyMacro.txt reports on Assembler program dependencies
on Macros. It provides a quick way to determine if any Macros are missing from the
uploaded code.

• CrossReference_PgmToPgm.txt reports on Assembler program dependencies
on other Assembler programs. It provides a quick way to determine if any Assembler
programs are missing from the uploaded code.

7. Return to the AWS CodeBuild service console.

8. Verify the status for 2-awsm2ccm-analysis step. It should have succeeded under the Latest
build status tab.

You are ready for the next step: Code conversion.

Step 9: Run the Code conversion

Important

AWS Mainframe Modernization Code conversion conversion step will be billed per your
usage. For more information on billing, see the section called “Understand Code conversion
billing”.

In this step, you will configure the conversion process, and then start the build.

1. From the AWS Management Console, go to the Amazon S3 service.

2. Locate and click on the Amazon S3 bucket: codebuild-regionId-accountId-bucket.

a. Go to prj_codebuild_01/.

b. Select project_settings.json, and choose Download.

c. Open the project_settings.json file to see the following JSON structure:

{
"Source programs directory":"srclib",
"Source copybooks/macros directory":"macrolib",
"Copybook/Macros Conversion":"Called_only",
"Do not regenerate the Copy/Macro if already exists":"false",

Step 9: Run the Code conversion 631

AWS Mainframe Modernization User Guide

"Target Compiler":"IBM",
"Endianess":"Big",
"Converted programs extension":"",
"Converted CICS programs extension":"",
"Converted copies/macros extension":"",
"Trace Level":"STANDARD",
"Trace file open mode":"append",
"Data definition level":5,
"Start picture column":40,
"Generate Sync FILLER with name":"FILL-SYNC",
"Use SYNC clause":"yes",
"Decimal Point Comma":"true",
"Original Source Placement":"RIGHT"
}

where,

• Source program directory: contains the Assembler programs that are needed for the
conversion.

• Source copybooks/Macros directory: contains the Assembler Macros and copybooks
that are needed for the conversion.

• Copybooks/Macros conversion can be either:

• All: This radio button denotes that the full conversion will convert all copybook/
Macros available in the directory irrespective of whether that is being used by the
programs or not.

• Called_only: This radio button denotes that the full conversion will only convert the
copybook/Macros that actually used by the programs.

•
Important

You don't need to regenerate the Copy/Macro if it already exists.

When this is true, the tool won't convert the copybook/Macro again, if it's already
converted (exists in the output folder).

• Target: The conversion of the programs (generated code) depends on the target COBOL
compiler. The following options are supported:

• "IBM" for IBM mainframe

Step 9: Run the Code conversion 632

AWS Mainframe Modernization User Guide

• "MF" for Micro Focus COBOL

• “VERYANT” for Veryant isCOBOL

• “NTT” for NTT DATA Enterprise COBOL (Unikix)

• Endianess and Bitness: The conversion of the programs (generated code) depends on
the target platform (bit/endianess). This combo allows the selection of the following
supported options:

• Endianess: Big (for Big-Endian)/ Little (Little-Endian). For example, IBM z/OS
mainframe is Big-Endian, Windows is Little-Endian, Linux varies by distribution (e.g.
Amazon Linux 2 on EC2 is Little-Endian).

• Bitness: 32/64 (if not given, default will be 32). The recommended setting is 32 bits.

• Converted program extension: This is to set the file extension for the generated
COBOL programs. Empty (“”): no extension. For Micro Focus COBOL targets, CBL is
recommended to enable Micro Focus Enterprise Developer to correctly recognize the
files.

• Converted CICS program extension: This is to set the file extension for the generated
CICS COBOL programs. Empty (“”):: no extension. For Micro Focus COBOL targets, CBL
is recommended to enable Micro Focus Enterprise Developer to correctly recognize the
files.

• Converted copybooks/Macros extension: This is to set the file extension for the
generated COBOL copybooks. Empty (“”):: no extension. For Micro Focus COBOL targets,
CPY is recommended to enable Micro Focus Enterprise Developer to correctly recognize
the files.

• Trace level: Trace is the information that is logged using CodeBuild during the
conversion. The user can select the level of detail by selecting any one of the provided
options.

• ERROR = TRACE ERROR: only conversion errors are displayed.

• STANDARD = TRACE STANDARD: conversion errors and standard information are
displayed. This is the recommended setting.

• ALL = TRACE ALL: maximum level of tracing

• Trace file open mode: Not used. Default setting ofappend is recommended.

• Data definition level: This indicates the initial level of the sub-fields (after level “01”)
defined in working-storage and linkage section. Must be a number.

Step 9: Run the Code conversion 633

AWS Mainframe Modernization User Guide

• Start picture column: This is about the format of the generated COBOL code and
indicates the column where the PIC clause is placed (after the field names). Must be a
number.

• Original source placement: This indicates the position where the comments are placed
in the program. It has two options:

• RIGHT: This option will place the comment or additional information at the right
position after seventy-third (73) column. In COBOL the code is written in the first
seventy-two (1-72) columns and anything from the seventy-third (>= 73) column will
be treated as a comment.

• ABOVE: This option will place the comment above the translated content.

• Generate Sync FILLER with name: This option is related to the alignment in memory of
binary fields (Assembler "H”, “F”, “D” data-types, which are converted to COBOL “COMP”
data-type). In order to guarantee the proper alignment boundary, explicit filler fields will
be added during the conversion. This is a text based option, the value must be a string
(like FILL-SYNC).

• Use SYNC clause: This option refers to the alignment in memory of binary fields. Yes =
all the fields converted to COBOL. “COMP” will be defined with the clause “SYNC” (e.g.,,
05 WRKFLD PIC S9(09) COMP SYNC).

• Decimal point comma: When this is true, the DECIMAL-POINT IS COMMA clause will be
added to the "SPECIAL-NAMES" COBOL paragraph.

d. Based on your requirements, change appropriate parameters, and then save the
project_settings.json.

e. Remove the existing project_settings.json file from prj_codebuild_01/ in
Amazon S3 bucket, and then upload the new version.

3. Go back to the AWS CodeBuild service.

4. Select the project to build you created previously : 3-awsm2ccm-convert

a. Choose Start build, and then Start now to convert Assembler programs and Macros to
COBOL programs and copybooks.

b. Wait for the build status to change to Succeeded for this project. It will be under the
Latest build status tab.

Step 9: Run the Code conversion 634

AWS Mainframe Modernization User Guide

Step 10: Verify the Code conversion

1. From the AWS Management Console, go to Amazon S3 service.

2. Locate and click on the Amazon S3 bucket: codebuild-regionId-accountId-bucket.

3. Navigate to awsm2ccm-do-not-delete . AWS Mainframe Modernization Code conversion
creates encoded binary files for each Assembler or Macro module during the conversion
process. These files are essential for preventing duplicate billing to the customers and also
to track how much of the provided Assembler code was analyzed and converted. Files are
stored in the following location: codebuild-regionId-accountId- bucket/awsm2ccm-
do-not-delete/<your_AWS_account_id>/Hash. The encoded files do not contain any
Assembler code and It is also not possible to extract customer code from these files.

Important

Neither manually edit these files or delete these files. Editing or deleting these files
may result in multiple billings for the same components.

Treat the awsm2ccm-do-not-delete/ folder as a system-managed directory. Consult AWS
Support before making any changes to this directory or its contents.

4. Click codebuild-regionId-accountId-bucket to go back to the bucket.

5. Choose ARTIFACTS/prj_codebuild_01/._Converted/ folder contains the generated
COBOL outputs as a result of Code conversion step. It will have the following subdirectories:

• copybooks/ folder contains the generated COBOL copybooks.

• programs/ folder contains the generated COBOL programs.

• runtime_lib/ folder contains additional COBOL programs and copybooks provided by the
solution.

6. If the Analysis Reports and other reports indicate that the conversion was successful, and the
AWS CodeBuild project 3-awsm2ccm-convert is marked Succeeded, download the COBOL
code and copybooks from the _Converted/ directory.

Step 10: Verify the Code conversion 635

AWS Mainframe Modernization User Guide

Step 11: Download converted code

In this step, download the COBOL code and copybooks from the _Converted/ directory, and
compile them in the target COBOL environment.

1. From the AWS Management Console, go to Amazon S3 service.

2. Locate and click on the Amazon S3 bucket: codebuild-regionId-accountId-bucket.

3. Navigate to the location: ARTIFACTS/prj_codebuild_01/_Converted/.

4. Download the converted COBOL code from all the subdirectories under _Converted/. You can
also use the following CLI command to download them at once:

aws s3 cp s3://codebuild-regionId-accountId-
bucket/ARTIFACTS/prj_codebuild_01/_Converted/ . --recursive

5. Analyze and compile the converted COBOL in the target COBOL environment.

Clean up resources

If you no longer need the resources that you created for this tutorial, delete them to avoid
additional charges. To do so, complete the following steps:

• Delete the S3 buckets that you created for this tutorial. For more information, see Deleting a
bucket in the Amazon Simple Storage Service User guide.

• Delete the IAM policies that you created for this tutorial. For more information, see Deleting IAM
policies in the IAM User guide.

• Delete the IAM role that you created for this tutorial. For more information, see Deleting roles or
instance profiles in the IAM User guide.

• Delete the CodeBuild project that you created for this tutorial. For more information, see Delete
a build project in CodeBuild in the AWS CodeBuild User guide.

Step 11: Download converted code 636

https://docs.aws.amazon.com/AmazonS3/latest/userguide/delete-bucket.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/delete-bucket.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage-delete.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage-delete.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_manage_delete.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_manage_delete.html
https://docs.aws.amazon.com/codebuild/latest/userguide/delete-project.html
https://docs.aws.amazon.com/codebuild/latest/userguide/delete-project.html

AWS Mainframe Modernization User Guide

Charon integration

Introduction to Charon-SSP

In 1987, Sun Microsystems released the SPARC V7 processor, a 32-bit RISC processor. The SPARC
V8 followed in 1990 - a revision of the original SPARC V7, with the most notable inclusion of
hardware divide and multiply instructions. The SPARC V8 processors formed the basis for a number
of servers and workstations such as the SPARCstation 5, 10 and 20. In 1993, the SPARC V8 was
followed by the 64-bit SPARC V9 processor. This too became the basis for a number of servers and
workstations, such as the Enterprise 250 and 450.

Due to hardware obsolescence and lack of spare or refurbished parts, software and systems
developed for these older SPARC-based workstations and servers have become harder to maintain.
To fill the continuous need for certain, end-of-life SPARC-based systems, Stromasys S.A. developed
the Charon-SSP line of SPARC emulator products. The following products are software-based,
virtual machine replacements for the specified native- hardware SPARC systems. The following is a
general overview of the emulated hardware families.

Charon-SSP/4M emulates the following SPARC hardware:

• Sun-4m family (represented by the Sun SPARCstation 20): originally, a multiprocessor Sun-4
variant, based on the MBus processor module bus introduced in the SPARCServer 600MP series.
The Sun-4m architecture later also encompassed non-MBus uniprocessor systems such as the
SPAR Cstation 5, utilizing SPARC V8-architecture processors. Supported starting with SunOS
4.1.2 and by Solaris 2.1 to Solaris 9. SPARCServer 600MP support was dropped after Solaris
2.5.1.

Charon-SSP/4U(+) emulates the following SPARC hardware:

• Sun-4u family (represented by the Sun Enterprise 450): (U for UltraSPARC) - this variant
introduced the 64-bit SPARC V9 processor architecture and UPA processor interconnect first used
in the Sun Ultra series. Supported by 32-bit versions of Solaris starting from version 2.5.1. The
first 64-bit Solaris release for Sun-4u was Solaris 7. UltraSPARC I support was dropped after
Solaris 9. Solaris 10 supports Sun-4u implementations from UltraSP ARC II to UltraSPARC IV.

Charon-SSP/4V(+) emulates the following SPARC hardware:

Introduction to Charon-SSP 637

AWS Mainframe Modernization User Guide

• Sun-4v family (represented by the SPARC T2 and T4): this variation added hypervisor processor
virtualization to the Sun-4u; introduced in the Ultra SPARC T1 multicore processor. Selected
hardware was supported by Solaris version 10 starting from release 3/05 HW2 (most models -
including the hardware emulated by Charon-SSP - require newer versions of Solaris 10). Several
Solaris 11 versions are also supported.

The following image shows the basic concept of migrating physical hardware to an emulator.

The Charon-SSP virtual machines allow users of Sun and Oracle SPARC-based computers to replace
their native hardware in a way that requires little or no change to the original system configuration.
This means you can continue to run your applications and data without the need to switch or port
to another platform. The Charon-SSP software runs on commodity, Intel 64-bit systems ensuring
the continued protection of your investment.

Charon-SSP/4U+ supports the same virtual SPARC platforms as Charon-SSP/4U, and Charon-
SSP/4V+ the same as Charon-SSP/4V. However, the 4U+ and 4V+ versions take advantage of Intel's
VTx/EPT and AMD's AMD-v/NPT hardware assisted virtualization technology in modern CPUs to
offer better virtual CPU performance. Charon-SSP/4U+ and Charon-SSP/4V+ require CPUs with
VT-x/EPT or AMD-v/NPT support and must be installed on a dedicated host system. Running these
product variants in a VM (e.g., on VMware) is not supported.

Introduction to Charon-SSP 638

AWS Mainframe Modernization User Guide

Note

If you plan to run Charon-SSP/4U+ or 4V+ in a cloud environment, contact Stromasys or a
Stromasys VAR to discuss your requirements.

Supported guest operating systems

The Charon-SSP/4M virtual machines support the following guest operating system releases:

• SunOS 4.1.3 - 4.1.4

• Solaris 2.3 to Solaris 9

The Charon-SSP/4U(+) virtual machines support the following guest operating system releases:

• Solaris 2.5.1 to Solaris 10

The Charon-SSP/4V(+) virtual machines support the following guest operating system releases:

• Solaris 10 (starting with update 4, 08/07) and Solaris 11.1 to Solaris 11.4

For Charon-SSP/4V(+), note the following:

• For the emulated SPARC T4, supported Solaris 10 versions are: Oracle Solaris 10 1/13, Oracle
Solaris 10 8/11, and Solaris 10 9/10, or Solaris 10 10/09 with the Oracle Solaris 10 8/11 patch
set.

• The emulated SPARC T4 model is a prerequisite for running Solaris 11.4 in the emulator.

• Solaris kernel zones are not supported.

Charon-SSP cloud instance prerequisites

By selecting an instance type or shape, you select the virtual hardware that will be used for the
Charon-SSP host instance in the cloud. Therefore, the selection of an instance type or shape
determines the hardware characteristics of the Charon-SSP virtual host hardware (e.g., how many
CPU cores and how much memory your virtual Charon host system will have).

Supported guest operating systems 639

AWS Mainframe Modernization User Guide

Note

If you use a Charon-SSP marketplace image to launch your instance, all Linux host
operating system requirements are fulfilled.

The minimum hardware requirements are described below.

Important points regarding the sizing guidelines:

• The sizing guidelines below-in particular regarding number of host CPU cores and host memory-
show the minimum requirements. Every deployment situation must be reviewed and the actual
host sizing has to be adapted as necessary. For example, the number of CPU cores available for
I/O must be increased if the guest applications produce a high I/O load. Also, a system with
many emulated CPUs is typically able to create a higher I/O load and thus the number of CPU
cores available for I/O may have to be increased. In a hyper-threading environment, for best
performance, the number of CPU cores (that is, real/physical CPUs) must be sufficient to fulfill
CPU requirements of the active emulators, thus avoiding high-workload threads sharing one
physical CPU core.

• The CPU core allocation for emulated CPUs and CPU cores for I/O processing is determined
by the configuration. See CPU Configuration in the general Charon-SSP User's Guide for more
information about this and the default allocation of CPU cores for I/O processing.

Important general information

• To facilitate a fast transfer of emulator data from one cloud instance to another, it is
strongly recommended to store all relevant emulator data on a separate disk volume
that can easily be detached from the old instance and attached to a new instance.

• Make sure to dimension your instance correctly from the beginning (check the minimum
requirements below). The Charon-SSP license for Charon-SSP AL is created when the
instance is first launched. Changing later to another instance size/type and thereby
changing the number of CPU cores will invalidate the license and thus prevent Charon
instances from starting (new instance required). If planning to use the Charon-SSP AL
instance in AutoVE mode, be sure to include the AutoVE server information before first
launch, otherwise the public license servers will be used. The license for Charon-SSP VE
is created based on the fingerprint taken on the license server. If the license server is run

Charon-SSP cloud instance prerequisites 640

AWS Mainframe Modernization User Guide

directly on the emulator host and the emulator host later requires, for example, a change
in the number of CPU cores, the license will be invalidated (new license and possibly new
instance required).

Instance prerequisites

General CPU requirements: Charon-SSP supports modern x86-64 architecture processors based
Amazon EC2 instances.

Minimum requirements for Charon-SSP:

• Minimum number of host system CPU cores:

• At least one CPU core for the host operating system, plus:

• For each emulated SPARC system:

• One CPU core for each emulated CPU of the instance, plus:

• At least one additional CPU core for I/O processing (at least two, if server JIT optimization
is used). See the CPU Configuration section mentioned above for configuration options. By
default, Charon will assign 1/3 (min. 1; rounded down) of the number of CPUs visible to the
Charon host to I/O processing.

• Minimum memory requirements:

• 4GB or more of RAM for the Linux host operating system. The actual requirements may be
higher and will depend on the requirements of the non- emulator services running on the
Linux host. The previous recommendation of at least 2GB of RAM for the Linux host will still
be valid for many systems, but the increasing requirements of the Linux operating system and
applications have led to the updated recommendation for new installations. Plus:

• For each emulated SPARC system:

• The configured memory of the emulated instance, plus:

• 2GB of RAM (6GB of RAM if server JIT is used) to allow for DIT optimization, emulator
requirements, run-time buffers, SMP and graphics emulation.

• If hyper-threading is enabled on modern x86-64 CPUs, two threads can run on one physical
CPU core providing two logical CPUs to the host operating system. If possible, disable hyper-
threading on the Charon-SSP host. However, this is frequently not possible in VMware and
cloud environments, or it is unclear whether hyper-threading is used or not. The Charon-SSP
hyper-threading option enables Charon-SSP to adapt to such environments. See the CPU

Instance prerequisites 641

AWS Mainframe Modernization User Guide

Configuration section in your general Charon-SSP User's Guide mentioned above for detailed
configuration information. P lease note: for best performance, Charon-SSP threads should not
share a physical CPU core - enough physical cores should be available on the host system to
satisfy the requirements of the configured emulator(s).

• One or more network interfaces, depending on customer requirements.

• Charon-SSP/4U+ and Charon-SSP/4V+ must run on physical hardware supporting Intel VT-x/EPT
or AMD-v/NPT (baremetal instances) and therefore cannot run in all cloud environments. Please
check your cloud provider's documentation for the availability of such hardware. In addition,
note the following points:

• Charon-SSP/4U+ and Charon-SSP/4V+ are only available when using a Linux kernel supported
by Stromasys.

• If you need this type of emulated SPARC hardware, contact Stromasys or your Stromasys VAR
to discuss your requirements in detail.

Creating and configuring an AWS cloud instance for Charon
(New GUI)

This section reflects the AWS Management Console in spring 2022. If you still use the older
console, refer to the Appendix of the Charon-SSP AWS Getting Started guide.

General prerequisites

This description shows the basic setup of a Linux instance in AWS. It does not list specific
prerequisites. However, depending on your use case, consider the following prerequisites:

• Amazon account and AWS Marketplace subscriptions

• To set up a Linux instance in AWS, you need an AWS account with administrator access.

• Identify the AWS Region in which you plan to launch your instance. Ensure that AWS services
that you plan to use are available in that Region. See AWS Services by Region.

• Identify the VPC and subnet in which you plan to launch your instance.

• If your instance requires internet access, ensure that the route table associated with your VPC
has an internet gateway. If your instance requires VPN access to your on-premises network,
ensure that a VPN gateway is available. The exact configuration of your VPC and its subnets
will depend on your network design and application requirements.

Creating and configuring an AWS cloud instance for Charon (New GUI) 642

https://aws.amazon.com/about-aws/global-infrastructure/regional-product-services/

AWS Mainframe Modernization User Guide

• To subscribe to a specific AWS Marketplace service, choose AWS Marketplace Subscriptions in
the AWS Management Console and then choose Manage subscriptions.

• Search for the service that you plan to use and subscribe to it. After a successful subscription,
you will find the subscription in the Manage subscriptions section. From there you can directly
launch a new instance.

• The instance hardware and software prerequisites will be different depending on the planned
use of the instance:

• Option 1: the instance is to be used as a Charon emulator host system:

• Refer to the hardware and software prerequisite sections of the User's Guide and/or Getting
Started guide of your Charon product to determine the exact hardware and software
prerequisites that must be fulfilled by the Linux instance. The image you use to launch your
instance and the instance type you chose determine the software and hardware of your
cloud instance.

• A Charon product license is required to run emulated legacy systems. Refer to the licensing
information in the documentation of your Charon product, or contact your Stromasys
representative or Stromasys VAR for additional information.

• Option 2: the instance is to be used as a dedicated VE license server:

• See the VE License Server Guide for detailed prerequisites.

• Certain legacy operating systems that can run in the emulated systems provided by Charon
emulator products require a license of the original vendor of the operating system. The user
is responsible for any licensing obligations related to the legacy operating system and has to
provide the appropriate licenses.

Using the AWS Management Console to launch a new instance

To create a new instance

1. Sign in to the AWS Management Console and open the Amazon EC2 console at https://
console.aws.amazon.com/ec2/.

2. Choose Launch instance.

3. Enter a name for the instance.

4. Select an AMI. An AMI is a prepackaged image used to launch cloud instances. It includes the
operating system and applicable application software. The choice of AMI depends on how you
plan to use the instance:

Using the AWS Management Console to launch a new instance 643

https://console.aws.amazon.com/ec2/
https://console.aws.amazon.com/ec2/

AWS Mainframe Modernization User Guide

• If the instance is to be used as a Charon emulator host system several AMI choices are
possible:

• Installing the Charon host system from a prepackaged Charon marketplace image: they
contain the underlying operating system and the preinstalled Charon software.

• Check with your Stromasys representative which options are currently available in your
cloud providers marketplace.

• Depending on the cloud provider and the Stromasys product release plans, there can be
two variants:

• Automatic licensing (AL) for use with a public, Stromasys-operated license server, or
with a private, customer-operated AutoVE license server

• Virtual environment (VE) for use with a private, customer-operated VE license server

• Installing the Charon host system using a conventional Charon emulator installation with
the Charon emulator installation RPM packages for Linux:

• Choose a Linux AMI of a distribution supported by your selected Charon product and
version. See the user guide for your product on the Stromasys documentation site.

• If the instance is to be used as a dedicated VE license server, see the VE License Server Guide
in Licensing Documentation for the requirements of the Linux instance.

After you decide which AMI is required, select a matching Linux or Charon product AMI. If
you don't see the AMI that you need, choose Browse more AMIs. Choose the Linux AMI that
matches how you plan to use the instance. It can be one of the following:

• A prepackaged Charon VE marketplace image. The name of the AMI will include the string
"ve".

• A prepackaged Charon AL marketplace image for Automatic Licensing or AutoVE.

• A Linux version supported for an RPM product installation.

• A Linux version supported for the VE license server.

5. Select an instance type. Amazon EC2 offers instance types with varying combinations of
CPU, memory, storage, and networking capacity. Select an instance type that matches the
requirements of the Charon product that you want to use. Some marketplace images have a
restricted selection of instance types.

Using the AWS Management Console to launch a new instance 644

AWS Mainframe Modernization User Guide

6. Select an existing key pair or create and save a new one. If you select an existing key pair, make
sure you have the matching private key. Otherwise, you will not be able to connect to your
instance.

Note

If your management system supports it, for RHEL 9.x, Rocky Linux 9.x, and Oracle
Linux 9.x, use SSH key type ECDSA or ED25519. These types allow you to connect to
these Charon host Linux systems by using an SSH tunnel without needing to change
the the default crypto-policy settings on the Charon host to less secure settings.
For example, this is important for the Charon-SSP Manager. See Using system-wide
cryptographic policies in the Red Hat documentation.

7. In the Network settings section, choose Edit. Choose the settings that correspond to your
environment.

• Specify a VPC.

• Specify an existing subnet or create a new one.

• Enable or disable the automatic assignment of a public IP address to the primary interface.
Automatic assignment is only possible if the instance has a single network interface.

• Assign an existing or new custom security group. The security group must allow at least
SSH to access the instance. Any ports required by applications that you plan to run on the
instance must also be allowed. You can modify the security group at any time after you
create the instance.

8. In the Storage section, for the root volume (the system disk), choose a size that is appropriate
for your environment. The recommended minimum system disk size for the Linux system is 30
GiB. To provide space for virtual disk containers and other storage requirements, you can add
more storage now or after you launch the instance. But the system disk size must cover the
Linux system requirements, including any applications and utilities that you plan to install.

Note

We recommend that you create separate storage volumes for Charon application data
(e.g., disk images). If necessaryou, you can later migrate such volumes to another
instance.

Using the AWS Management Console to launch a new instance 645

https://access.redhat.com/documentation/en-us%20%20%20%20%20%20%20%20%20/red_hat_enterprise_linux/9/html/security_hardening/using-the-system-wide-cryptographic-policies_security-hardening
https://access.redhat.com/documentation/en-us%20%20%20%20%20%20%20%20%20/red_hat_enterprise_linux/9/html/security_hardening/using-the-system-wide-cryptographic-policies_security-hardening

AWS Mainframe Modernization User Guide

9. Expand the Advanced details section, scroll down, and select Specify CPU options. Three that
are more likely to be useful to a Charon emulator environment are shown in the following
image as examples.

10. For a VE license server system with a version earlier than 1.1.23, you must assign the required
IAM role to the instance. It must be a role that allows the ListUsers action. To assign a role,
in the expanded Advanced details section either select a role under IAM instance profile, or
choose Create a new IAM profile. For more information, see IAM roles for Amazon EC2.

11. If your instance is based on a Charon AL AWS Marketplace image and you plan to use the
Stromasys-operated public license servers, you must add the corresponding information to the
instance configuration before you launch the instance.

Enter the information for the AutoVE license server as shown in the following image.

Using the AWS Management Console to launch a new instance 646

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html

AWS Mainframe Modernization User Guide

The following are valid user data configuration options:

• primary_server=<ip-address>[:<port>]

• backup_server=<ip-address>[:<port>]

Where

• <ip-address> stands for the IP address of the primary and the backup server as applicable.

• <port> stands for a non-default TCP port used to communicate with the license server
(default: TCP/8083).

Using the AWS Management Console to launch a new instance 647

AWS Mainframe Modernization User Guide

Note

At least one license server must be configured at initial launch to enable AutoVE mode.
0therwise, the instance will bind to one of the public license servers operated by
Stromasys.

12. In the Summary section, choose Launch instance. After a while, you will see the following
success message:

13. At the bottom-right corner of the screen, choose View all instances.

14. To see the details of your instance, select the check box to the left of the row that represents
the instance in the Instances table. Your instance details will appear in the bottom half of the
screen. For information on how to connect to your instance, see Connect in the Amazon EC2
User Guide.

Using the AWS Management Console to launch a new instance 648

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/connect.html

AWS Mainframe Modernization User Guide

AWS Mainframe Modernization replatforming with NTT
DATA

AWS Mainframe Modernization offers a variety of Amazon Machine Images (AMIs). These AMIs
facilitate the rapid provisioning of Amazon EC2 instances, creating a tailored environment for
rehosting and replatforming mainframe applications in AWS by using NTT Data. This guide
provides the steps required to access and use these AMIs.

Prerequisites

• Ensure that you have administrator access to an AWS account where you can create Amazon EC2
instances.

• Verify that the AWS Mainframe Modernization service is available in the Region where you plan
to create the Amazon EC2 instances. See List of AWS Services Available by Region.

• Identify the Amazon VPC where you want to create the Amazon EC2 instances.

Subscribe to the Amazon Machine Image

When you subscribe to an AWS Marketplace product, you can launch an instance from the product's
AMI.

1. Sign in to the AWS Management Console and open the AWS Marketplace console at https://
console.aws.amazon.com/marketplace.

2. Choose Manage subscriptions.

3. Copy and paste the following link into the browser address bar: https://aws.amazon.com/
marketplace/pp/prodview-eg227ymldsnx2

4. Choose Continue to Subscribe.

5. If the terms and conditions are acceptable, choose Accept Terms. The subscription might take
a few minutes to process.

6. Wait for a thank-you message to appear. This message confirms that you have successfully
subscribed to the product.

7. In the left navigate pane, choose Manage subscriptions. This view shows you all of your
subscriptions.

Prerequisites 649

https://aws.amazon.com/about-aws/global-infrastructure/regional-product-services/
https://console.aws.amazon.com/marketplace
https://console.aws.amazon.com/marketplace
https://aws.amazon.com/marketplace/pp/prodview-eg227ymldsnx2
https://aws.amazon.com/marketplace/pp/prodview-eg227ymldsnx2

AWS Mainframe Modernization User Guide

Launch AWS Mainframe Modernization replatform with NTT
DATA instance

1. Open the AWS Marketplace console at https://console.aws.amazon.com/marketplace.

2. In the left navigation pane, choose Manage subscriptions.

3. Find the AMI that you want to launch, and choose Launch new instance.

4. Under Region, select the allow-listed Region.

5. Choose Continue to launch through EC2. This action takes you to the Amazon EC2 console.

6. Enter a name for the server.

7. Select an instance type that matches your project performance and cost requirements. The
suggested starting point for instance size is c5.2xLarge.

8. Choose an existing key pair or create and save a new one. For information about key pairs, see
Amazon EC2 key pairs and Linux instances in the Amazon EC2 User Guide.

9. Edit the network settings and choose the allow-listed VPC and appropriate subnet.

10. Choose an existing security group or create a new one. If this is an Enterprise Server Amazon
EC2 instance it is typical to allow TCP traffic to ports 86 and 10086 to administer the Micro
Focus configuration.

11. Configure the storage for the Amazon EC2 instance.

12. Review the summary and choose Launch instance. For the launch to success, the instance type
must be valid. If the launch fails, choose Edit instance configuration and choose a different
instance type.

13. After you see the success message, choose Connect to instance.

14. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.

15. In the left navigation pane, under the Instances menu, choose Instances.

16. In the main pane, check the status of your instance.

Getting started with NTT Data

After you provision the Amazon EC2 instance, SSH into it with the user name ec2-user. The
screen will look like the following image.

Launch AWS Mainframe Modernization replatform with NTT DATA instance 650

https://console.aws.amazon.com/marketplace
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html
https://console.aws.amazon.com/ec2/

AWS Mainframe Modernization User Guide

Under the /opt/software/ folder, there is a folder named UniKix_Product_Guides, as shown
in the following image.

The UniKix_Product_Guides folder includes the documentation for the following components
that are installed on this Amazon EC2 instance:

• NTT DATA TPE

• NTT DATA BPE

• NTT DATA Enterprise COBOL

• NTT DATA UniKix Secure

• NTT DATA UniKix Central Manager

The software folder that appears in the previous image has the binaries for the components that
are listed above.

Getting started with NTT Data 651

AWS Mainframe Modernization User Guide

After you successfully validate the Amazon EC2 instance, get started using AWS Mainframe
Modernization Replatform with NTT DATA by following the NTT Data documentation.

Getting started with NTT Data 652

AWS Mainframe Modernization User Guide

Understand managed applications in AWS Mainframe
Modernization

If you're new to AWS Mainframe Modernization see the following topics to get started:

• What is AWS Mainframe Modernization?

• Set up for AWS Mainframe Modernization

• Tutorial: Set up managed runtime for AWS Blu Age

• Tutorial: Set up managed runtime for Micro Focus

An application in AWS Mainframe Modernization contains a migrated mainframe workload.
The application is analogous to a workload on the mainframe and is associated with a runtime
environment. You can add batch files and data sets to applications and monitor applications
as they run. You create AWS Mainframe Modernization applications for each workload that
you migrate. When you create an AWS Mainframe Modernization application, you specify the
engine that the application runs on when you create it. Choose AWS Blu Age if you are using the
automated refactoring pattern, and choose Micro Focus if you are using the replatforming pattern.

Topics

• Create AWS resources for a migrated application

• Create an AWS Mainframe Modernization application

• Deploy an AWS Mainframe Modernization application

• Update an AWS Mainframe Modernization application

• Delete an AWS Mainframe Modernization application

• Submit batch jobs for AWS Mainframe Modernization applications

• Cancel batch jobs for AWS Mainframe Modernization applications

• Import data sets for AWS Mainframe Modernization applications

• Manage transactions for AWS Mainframe Modernization applications

• Configure the managed application

• AWS Mainframe Modernization application definition reference

• AWS Mainframe Modernization data set definition reference

653

AWS Mainframe Modernization User Guide

Create AWS resources for a migrated application

In order to run your migrated application in AWS, you must create some AWS resources with other
AWS services. The resources you must create include the following:

• An S3 bucket to hold application code, configuration, data files, and other required artifacts.

• An Amazon RDS or Amazon Aurora database to hold the data that the application requires.

• An AWS KMS key, which is required by AWS Secrets Manager to create and store secrets.

• A Secrets Manager secret to hold the database credentials.

Note

Each migrated application requires its own set of these resources. This is a minimum set.
Your application might also require additional resources, such as Amazon Cognito secrets or
MQ queues.

Required permissions

Make sure that you have the following permissions:

• s3:CreateBucket, s3:PutObject

• rds:CreateDBInstance

• kms:CreateKey

• secretsmanager:CreateSecret

Amazon S3 bucket

Both refactored and replatformed applications require an Amazon S3 bucket that you configure as
follows:

bucket-name/root-folder-name/application-name

Create AWS resources for a migrated application 654

AWS Mainframe Modernization User Guide

bucket-name

Any name within the constraints of Amazon S3 naming. We recommend that you include the
AWS Region name as part of your bucket name. Make sure that you create the bucket in the
same Region where you plan to deploy the migrated application.

root-folder-name

Name required to satisfy constraints in the application definition, which you create as part
of the AWS Mainframe Modernization application. You can use the root-folder-name to
distinguish between different versions of an application, for example, V1 and V2.

application-name

The name of your migrated application, for example, PlanetsDemo or BankDemo.

Database

Both refactored and replatformed applications might require a database. You must create,
configure, and manage the database according to specific requirements for each runtime engine.
AWS Mainframe Modernization supports encryption in transit on this database. If you enable SSL
on your database, make sure that you specify sslMode in the database secret along with the
connection details of the database. For more information, see AWS Secrets Manager secret.

If you use the AWS Blu Age refactoring pattern, and you need a BluSam database, the AWS Blu Age
runtime engine expects an Amazon Aurora PostgreSQL database, which you must create, configure,
and manage. The BluSam database is optional. Create this database only if your application
requires it. To create the database, follow the steps in Creating an Amazon Aurora DB cluster in the
Amazon Aurora User Guide.

If you are using the Micro Focus replatforming pattern, you can create either an Amazon RDS or
an Amazon Aurora PostgreSQL database. To create the database, follow the steps in Creating
an Amazon RDS DB instance in the Amazon RDS User Guide or in Creating an Amazon Aurora DB
cluster in the Amazon Aurora User Guide.

For both runtime engines, you must store the database credentials in AWS Secrets Manager using
an AWS KMS key to encrypt them.

Database 655

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Aurora.CreateInstance.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_CreateDBInstance.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_CreateDBInstance.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Aurora.CreateInstance.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Aurora.CreateInstance.html

AWS Mainframe Modernization User Guide

AWS Key Management Service key

You must store the credentials for the application database securely in AWS Secrets Manager. To
create a secret in Secrets Manager, you must create an AWS KMS key. To create an KMS key, follow
the steps in Creating keys in the AWS Key Management Service Developer Guide.

After you create the key, you must update the key policy to grant AWS Mainframe Modernization
decrypt permissions. Add the following policy statements:

{
 "Effect" : "Allow",
 "Principal" : {
 "Service" : "m2.amazonaws.com"
 },
 "Action" : "kms:Decrypt",
 "Resource" : "*"
 }

AWS Secrets Manager secret

You must store the credentials for the application database securely in AWS Secrets Manager. To
create a secret follow the steps in Create a database secret in the AWS Secrets Manager User Guide.

AWS Mainframe Modernization supports encryption in transit on this database. If you enable
SSL on your database, make sure that you specify sslMode in the database secret along with
the connection details of the database. You can specify one of the following values for sslMode:
verify-full, verify-ca, or disable.

During the key creation process, choose Resource permissions - optional, and then choose Edit
permissions. In the policy editor, add a resource-based policy, such as the following, to retrieve the
content of the encrypted fields.

{
 "Effect" : "Allow",
 "Principal" : {
 "Service" : "m2.amazonaws.com"
 },
 "Action" : "secretsmanager:GetSecretValue",
 "Resource" : "*"
 }

AWS Key Management Service key 656

https://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/create_database_secret.html

AWS Mainframe Modernization User Guide

Create an AWS Mainframe Modernization application

Use the AWS Mainframe Modernization console to create an AWS Mainframe Modernization
application. Creating an application allows you to perform tasks with the migrated mainframe
workload.

These instructions assume that you have completed the steps in Set up for AWS Mainframe
Modernization.

Create an application

To create an application

1. Open the AWS Mainframe Modernization console at https://console.aws.amazon.com/m2/.

2. In the AWS Region selector, choose the Region where you want to create the application.

3. On the Applications page, choose Create application.

4. On the Specify basic information page, in the Name and description section, enter a name
for the application.

5. (Optional) In the Application description field, enter a description for the application. This
description can help you and other users identify the purpose of the application.

6. In the Engine type section, choose Blu Age for automated refactoring, or Micro Focus for
replatforming.

7. In the KMS key section, choose Customize encryption settings if you want to use a customer
managed AWS KMS key. For more information, see Data encryption at rest for AWS Mainframe
Modernization service.

Note

By default, AWS Mainframe Modernization encrypts your data with a AWS KMS key
that AWS Mainframe Modernization owns and manages for you. However, you can
choose to use a customer managed AWS KMS key.

8. (Optional) Choose an AWS KMS key by name or Amazon Resource Name (ARN), or choose
Create an AWS KMS key to go to the AWS KMS console and create a new AWS KMS key.

9. (Optional) In the Tags section, choose Add new tag to add one or more application tags to
your application. An application tag is a custom attribute label that helps you organize and
manage your AWS resources).

Create an application 657

https://console.aws.amazon.com/m2/

AWS Mainframe Modernization User Guide

10. Choose Next.

11. In the Resources and configurations section, use the inline editor to enter the application
definition. Alternatively, choose Use an application definition JSON file in an Amazon
S3 bucket and provide the location of the application definition that you want to use. For
more information, see AWS Blu Age application definition sample or Micro Focus application
definition.

12. Choose Next.

13. On the Review and create page, review the information that you entered, and then choose
Create application.

Deploy an AWS Mainframe Modernization application

Use the AWS Mainframe Modernization console to deploy an AWS Mainframe Modernization
application. You need to deploy your applications on a runtime environment before performing
tasks.

These instructions assume that you have completed the steps in Set up for AWS Mainframe
Modernization.

Deploy an application

To run an AWS Mainframe Modernization application, you must first deploy it to a runtime
environment. An application can have more than one version. Each version of an application has its
own application definition. To deploy an application, you must specify the version that you want to
deploy.

You can deploy only one version of a given application at a time. If you deploy a version of an
application, then decide to deploy a different version instead, you must first stop the application if
it is running.

To deploy an application

1. Open the AWS Mainframe Modernization console at https://console.aws.amazon.com/m2/.

2. In the AWS Region selector, choose the Region where you want to create the application.

3. On the Applications page, choose the application that you want to deploy.

4. Choose Deploy application.

5. In the Available versions section, choose the version that you want to deploy.

Deploy an application 658

https://console.aws.amazon.com/m2/

AWS Mainframe Modernization User Guide

6. In the Environments section, choose a runtime environment where you want your application
to run.

7. Choose Deploy.

To deploy a different version of a deployed application

1. Open the AWS Mainframe Modernization console at https://console.aws.amazon.com/m2/.

2. In the AWS Region selector, choose the Region where you want to create the application.

3. On the Applications page, choose the application that you want to deploy.

4. From the Actions menu, choose Stop application.

5. After the application stops, choose Deploy application.

6. In the Available versions section, choose the version that you want to deploy. In the
Environments section, the environment that the application is already deployed in is
preselected.

7. Choose Deploy.

Update an AWS Mainframe Modernization application

Use the AWS Mainframe Modernization console to update an AWS Mainframe Modernization
application. Updating an application creates a new version of the application.

These instructions assume that you have completed the steps in Set up for AWS Mainframe
Modernization.

Update an application

An AWS Mainframe Modernization application can have multiple versions, each with its own
application definition. To update an application, provide a new application definition. This creates a
new version of the application.

To update an application

1. Open the AWS Mainframe Modernization console at https://console.aws.amazon.com/m2/.

2. In the AWS Region selector, choose the Region where the application that you want to update
was created.

3. On the Applications page, choose the application that you want to update.

Update an application 659

https://console.aws.amazon.com/m2/
https://console.aws.amazon.com/m2/

AWS Mainframe Modernization User Guide

4. On the application details page, in the Current definition section, choose Edit to update the
current application definition.

5. On the Update application page, use the inline editor to update the current application
definition.

Alternatively, choose Use an application definition JSON file in an Amazon S3 bucket and
provide the location of the application definition that you want to use. For more information,
see AWS Blu Age application definition sample or Micro Focus application definition.

6. When you're finished updating the application definition, choose Update.

Note

After you update the application, you must deploy it again. For more information, see
Deploy an AWS Mainframe Modernization application.

Delete an AWS Mainframe Modernization application

You can delete an AWS Mainframe Modernization application from an environment using the AWS
Mainframe Modernization console.

These instructions assume that you have completed the steps in Set up for AWS Mainframe
Modernization.

Delete an application

If you need to delete an AWS Mainframe Modernization application, and it is running, make sure
that you stop it first. You can see the application status on the Applications page.

To delete an application

1. Open the AWS Mainframe Modernization console at https://console.aws.amazon.com/m2/.

2. In the AWS Region selector, choose the Region where the application that you want to delete
from the environment was created.

3. On the Applications page, choose the application that you want to delete from the
environment, and then choose Actions.

4. (Optional) If the status of the application is Running, choose Stop application.

Delete an application 660

https://console.aws.amazon.com/m2/

AWS Mainframe Modernization User Guide

5. Choose Delete from environment.

The delete process starts immediately.

Submit batch jobs for AWS Mainframe Modernization
applications

In AWS Mainframe Modernization you can submit batch jobs for your applications. You can submit
or cancel batch jobs and review details about batch job executions. Each time that you submit a
batch job, AWS Mainframe Modernization creates a separate batch job execution. You can monitor
this job execution. You can search for batch jobs by name and supply JCL or script files to batch
jobs.

Important

If you cancel a batch job, this doesn't delete the job. It cancels a particular run of the batch
job. The batch job records remain available for you to view in the details for the batch job
run.

If your batch job requires access to one or more data sets, use the AWS Mainframe Modernization
console to import the data sets. For more information, see Import data sets for AWS Mainframe
Modernization applications.

These instructions assume that you have completed the steps in Set up for AWS Mainframe
Modernization and in Create an AWS Mainframe Modernization application.

Topics

• Submit a batch job

• Restart a batch job

Submit a batch job

To submit a batch job

1. Open the AWS Mainframe Modernization console at https://console.aws.amazon.com/m2/.

Submit batch jobs for applications 661

https://console.aws.amazon.com/m2/

AWS Mainframe Modernization User Guide

2. In the AWS Region selector, choose the Region where the application that you want to submit
a batch job for was created.

3. On the Applications page, choose the application that you want to submit a batch job for.

Note

Before you can submit a batch job to an application, you must deploy the application
successfully.

4. On the application details page, choose Batch jobs.

5. Choose Submit job.

6. In the Select a script section, choose a script. You can search for the script that you want by
name.

7. Choose Submit job.

Restart a batch job

To restart a batch job

Important

A batch job restart is available only on Micro Focus environment engine versions 8.0.6 or
greater. You also need to have an EFS or FSx file system attached to your environment.

1. Open the AWS Mainframe Modernization console at https://console.aws.amazon.com/m2/.

2. In the AWS Region selector, choose the Region where the application and your batch job was
created.

3. On the Applications page, choose the application where you want to restart a batch job.

4. On the application details page, choose Batch jobs.

5. Select the batch job you want to restart from the generated list. Navigate to the Actions
menu, and choose Restart job.

6. Specify how you want to restart the batch job. You can either choose to Restart from the
beginning or Restart using steps or procsteps.

Restart a batch job 662

https://console.aws.amazon.com/m2/

AWS Mainframe Modernization User Guide

• Restart from the beginning option allows you to restart all steps of a batch job from the
start.

• With Restart using steps or procsteps option, you can choose a specific step or procstep
(procedure step) you want to restart, and optionally a step or procstep after which to end.

Note

The end step or procstep must be greater than or equal to the start step or procstep
number.

7. Choose Submit job.

Cancel batch jobs for AWS Mainframe Modernization
applications

In AWS Mainframe Modernization you can cancel batch jobs for your applications. You can review
details about batch job executions. Each time that you submit a batch job, AWS Mainframe
Modernization creates a separate batch job execution. You can monitor this job execution. You can
search for batch jobs by name and supply JCL or script files to batch jobs.

Important

If you cancel a batch job, this doesn't delete the job. It cancels a particular run of the batch
job. The batch job records remain available for you to view in the details for the batch job
run.

Cancel a batch job

When you cancel a batch job, it does not delete a batch job, but the running of tasks for that batch
job. You can still view details of your batch job.

To cancel a batch job

1. Open the AWS Mainframe Modernization console at https://console.aws.amazon.com/m2/.

2. In the AWS Region selector, choose the Region with the application for your batch jobs.

Cancel batch jobs for applications 663

https://console.aws.amazon.com/m2/

AWS Mainframe Modernization User Guide

3. From the batch job list find and select the batch job you want to cancel.

4. Choose Actions, and choose Cancel job.

5. Choose Cancel batch job.

This will cancel any batch job tasks you had scheduled for running.

Import data sets for AWS Mainframe Modernization
applications

With AWS Mainframe Modernization you can import data sets to use with your applications. You
can specify the data sets in a JSON file stored in an Amazon S3 bucket, or you can specify data set
configuration values separately. After you import the data sets, you can review the details of the
import task to confirm that the data sets that you wanted were imported. All cataloged data sets
for an application are listed together in the console.

Use the AWS Mainframe Modernization console to import data sets for a AWS Mainframe
Modernization application.

These instructions assume that you have completed the steps in Set up for AWS Mainframe
Modernization and in Create an AWS Mainframe Modernization application.

Import a data set

To import a data set

1. Open the AWS Mainframe Modernization console at https://console.aws.amazon.com/m2/.

2. In the AWS Region selector, choose the Region where the application that you want to import
data sets for was created.

3. On the Applications page, choose the application that you want to import data sets for.

4. On the application details page, choose Data sets.

5. Choose Import.

6. Do one of the following:

• Choose Use data set configuration JSON file in an Amazon S3 bucket and provide the
location of the data set configuration.

• Choose Specify the data set configuration values separately with guided configuration.
Refer the section called “Data set definition reference” for specific definition details.

Import data sets for applications 664

https://console.aws.amazon.com/m2/

AWS Mainframe Modernization User Guide

Enter the name, data set organization (VSAM, GDG, PO, PS), location, and external
Amazon S3 location, and parameter settings for each data set configuration value. In
guided configuration you can also choose Generate JSON to review JSON configuration
from your input.

7. Choose Submit.

Manage transactions for AWS Mainframe Modernization
applications

With AWS Mainframe Modernization you can run an application, by request, at the same time
as many other users who submit requests to run the same application using the same files and
programs. A single transaction consists of one or more application programs that carry out the
needed processing.

These instructions assume that you have completed the steps in Set up for AWS Mainframe
Modernization and in Create an AWS Mainframe Modernization application.

Manage transactions for applications

To manage transactions for applications

1. Open the AWS Mainframe Modernization console at https://console.aws.amazon.com/m2/.

2. In the AWS Region selector, choose the Region where the application that you want to run was
created.

3. On the Applications page, choose the application where you want to manage transactions.

4. On the Transactions tab, under Transaction resources, choose how you want your resources
displayed from the dropdown list. You can display resources according to transaction
resources, groups, lists, or SITs.

• Transaction resources allow you to choose the resource type according to file definitions,
transaction definitions, program definitions, or transient data queue definitions.

Manage transactions for applications 665

https://console.aws.amazon.com/m2/

AWS Mainframe Modernization User Guide

Note

The AWS Mainframe Modernization service supports additional resource types to
manage transactions for applications, and can be accessed in the console.

• Groups are collection of transaction resources. You can choose groups that you want to
associate with your transaction resource.

• Lists are ordered collection of groups. You can see all your transaction resources and groups
in a list view. The startup list determines which resources are loaded when the server is
initialized.

• With AWS Blu Age refactor engine, you specify the lists to be included at the startup.
There is no limit to number of lists.

• With Micro Focus replatform engine, you can specify up to four lists in one SIT.

• SIT (System Initialization Table) displays all available transaction configurations. You can
find SITs according to properties (name, description, and startup lists). You can also choose
lists to associate with your chosen SIT.

Note

SITs are only applicable for the Micro Focus replatform engine.

5. Choose a transaction resource to display all the resource information. You can also view all
attributes associated with your transaction resource.

Configure the managed application

You can configure your application to include access to legacy utilities. You can customize
additional properties as well. In order to understand what you can configure and where, refer the
the section called “Structure of AWS Blu Age managed applications” section to understand the
overall structure of an AWS Blu Age modernized application.

Topics

• Structure of AWS Blu Age managed applications

• Configure access to utilities for managed applications

• Add configuration properties for the managed application with AWS Blu Age engine

Configure the managed application 666

AWS Mainframe Modernization User Guide

Structure of AWS Blu Age managed applications

If you use the AWS Blu Age refactoring pattern, the AWS Blu Age runtime engine expects the
following structure inside the application-name folder in your S3 bucket:

config

Contains the YAML files for your project. These are the YAML files specific to your application,
typically named something like application-planetsdemo.yaml and not the
application-main.yaml file that AWS Mainframe Modernization supplies and sets up
automatically for you.

webapps

Contains the war files for your application. Those files are an output of the modernization
process.

An application can also have the following optional folders:

jics/sql

Contains the initJics.sql script that initializes the JICS database for your application.

scripts

Contains application scripts, which you can also supply directly inside the war files.

Structure of AWS Blu Age managed applications 667

AWS Mainframe Modernization User Guide

sql

Contains application SQL files, which you can also supply directly inside the war files.

lnk

Contains application LNK files, which you can also supply directly inside the war files.

extra

Contains jars that can provide additional capabilities for the modernized application.

Managing an application's Java options

To manage some java options for the application, add a properties file named
tomcat.properties to the application-name folder. This file can have three properties: xms,
which specifies the minimum Java memory consumption, xmx, which specifies the maximum Java
memory consumption, and dnscachettl, that manages the cache duration for dns resolutions.
The following is an example of the contents of a valid tomcat.properties file.

xms=512M
xmx=1G
dnscachettl=5

The values that you specify for the first two properties can be in any of the following units:

• Bytes: don't specify a unit.

• Kilobytes: append a K to the value.

• Megabytes: append an M to the value.

• Gigabytes: append a G to the value.

The value for the third property represents the cache duration in seconds, and can have value of -1
(cache forever), or can range from 0 (never cache) to 999. In the context of managed application
deployments, the default value is -1.

Configure access to utilities for managed applications

When you refactor a mainframe application with AWS Blu Age, you might need to provide support
for various legacy platform utility programs, such as IDCAMS, INFUTILB, SORT, and so on, if your
application depends on them. AWS Blu Age refactoring provides this access with a dedicated web

Configure access to utilities for managed applications 668

AWS Mainframe Modernization User Guide

application that is deployed alongside modernized applications. This web application requires a
configuration file, application-utility-pgm.yml, that you must provide. If you don't provide
this configuration file, the web application can't deploy alongside your application and won't be
available.

Topics

• Configuration properties

This topic describes all the possible properties that you can specify in the application-
utility-pgm.yml configuration file, along with their defaults. The topic describes both required
and optional properties. The following example is a complete configuration file. It lists properties
in the order that we recommend. You can use this example as a starting point for your own
configuration file.

If the datasource support mode is not static-xa, spring JTA transactions
 autoconfiguration must be disabled
 spring.jta.enabled: false
 logging.config: 'classpath:logback-utility.xml'

 # Encoding
 encoding: cp1047

 # Encoding to be used by INFUTILB and DSNUTILB to generate and read SYSPUNCH files
 sysPunchEncoding: cp1047

 # Utility database access
 spring.aws.client.datasources.primary.secret: `arn:aws:secretsmanager:us-
west-2:111122223333:secret:business-FfmXLG`

 treatLargeNumberAsInteger: false

 # Zoned mode : valid values = EBCDIC_STRICT, EBCDIC_MODIFIED, AS400
 zonedMode: EBCDIC_STRICT

 jcl.type: mvs

 # Unload properties
 # For date/time: if use database configuration is enabled, formats are ignored
 # For nbi; use hexadecimal syntaxe to specify the byte value
 unload:
 sqlCodePointShift: 384

Configure access to utilities for managed applications 669

AWS Mainframe Modernization User Guide

 nbi:
 whenNull: "6F"
 whenNotNull: "00"
 useDatabaseConfiguration: false
 format:
 date: MM/dd/yyyy
 time: HH.mm.ss
 timestamp: yyyy-MM-dd-HH.mm.ss.SSSSSS
 chunkSize:500
 fetchSize: 500
 varCharIsNull: false
 columnFiller: space

 # Load properties
 # Batch size for DSNUTILB Load Task
 load:
 sqlCodePointShift: 384
 batchSize: 500
 format:
 localDate: dd.MM.yyyy|dd/MM/yyyy|yyyy-MM-dd
 dbDate: yyyy-MM-dd
 localTime: 'HH:mm:ss|HH.mm.ss'
 dbTime: 'HH:mm:ss'

 table-mappings:
 TABLE_1_NAME : LEGACY_TABLE_1_NAME
 TABLE_2_NAME : LEGACY_TABLE_2_NAME

Configuration properties

You can specify the following properties in your configuration file.

spring.jta.enabled

(Optional) Controls whether JTA support is enabled. For utilities, we recommend that you set
this value to false.

spring.jta.enabled : false

logging.config

(Required) Specifies the path to the dedicated logger configuration file. We recommend that
you use the name logback-utility.xml and provide this file as part of the modernized

Configure access to utilities for managed applications 670

AWS Mainframe Modernization User Guide

application. The common way to organize these files is to put all logger configuration files in
the same place, usually in the subfolder /config/logback where /config is the folder that
contains YAML configuration files. For more information, see Chapter 3: Logback configuration
in the Logback documentation.

logging.config : classpath:logback-utility.xml

encoding

(Required) Specifies the character set that the utility program uses. For most cases, when you
migrate from z/OS platforms, this character set is an EBCDIC variant, and should match the
character set that is configured for the modernized applications. Default if not set is ASCII.

encoding : cp1047

sysPunchEncoding

(Optional) Specifies the character set that INFUTILB and DSNUTILB use to generate and read
SYSPUNCH files. If you use the SYSPUNCH files from the legacy platform as they are, this value
should be an EBCDIC variant. Default if not set is ASCII.

sysPunchEncoding : cp1047

Data source configuration

Some database-related utilities, such as LOAD and UNLOAD, require access to a target database
through a data source. Like other data source definitions within AWS Mainframe Modernization,
this access requires that you use AWS Secrets Manager. The properties that point to the proper
secrets in Secrets Manager are as follows:

Primary data source

This is the primary business application database.

spring.aws.client.datasources.primary.secret

(Optional) Specifies the secret in Secrets Manager that contains the data source properties.

spring.aws.client.datasources.primary.secret: datasource-secret-ARN

Configure access to utilities for managed applications 671

https://logback.qos.ch/manual/configuration.html

AWS Mainframe Modernization User Guide

spring.aws.client.datasources.primary.dbname

(Optional) Specifies the target database name if the database name isn't provided directly in
the database secret, with the dbname property.

spring.aws.client.datasources.primary.dbname: target-database-name

spring.aws.client.datasources.primary.type

(Optional) Specifies the fully qualified name of the connection pool implementation to use. The
default value is com.zaxxer.hikari.HikariDataSource.

spring.aws.client.datasources.primary.type: target-datasource-type

If the type of the primary data source is com.zaxxer.hikari.HikariDataSource, you can
specify additional properties as follows:

spring.datasource.primary.[property_name]

(Optional) You can use this format to specify extra properties for configuring a primary data
source connection pool implementation.

The following is an example for a primary data source of type
com.zaxxer.hikari.HikariDataSource.

spring:
 datasource:
 primary:
 autoCommit: XXXX
 maximumPoolSize: XXXX
 keepaliveTime: XXXX
 minimumIdle: XXXX
 idleTimeout: XXXX
 connectionTimeout: XXXX
 maxLifetime: XXXX

Other utility data sources

In addition to the primary data source, you can provide other utility data sources.

Configure access to utilities for managed applications 672

AWS Mainframe Modernization User Guide

spring.aws.client.utility.pgm.datasources.names

(Optional) Specifies the list of utility data source names.

spring.aws.client.utility.pgm.datasources.names: dsname1, dsname2, dsname3

spring.aws.client.utility.pgm.datasources.[dsname].secret

(Optional) Specifies the secret ARN in SSM that hosts the data
source properties. Provide [dsname] in the list of names specified in
spring.aws.client.utility.pgm.datasources.names.

spring.aws.client.utility.pgm.datasources.dsname1.secret: datasource-secret-ARN

spring.aws.client.utility.pgm.datasources.[dsname].dbname

(Optional) Specifies the target database name if the database name isn't provided directly
in the database secret by using the dbname property. Provide [dsname] in the list of names
specified in spring.aws.client.utility.pgm.datasources.names.

spring.aws.client.utility.pgm.datasources.dsname1.dbname: target-database-name

spring.aws.client.utility.pgm.datasources.[dsname].type

(Optional) Specifies the fully qualified name of the connection pool implementation to use. The
default value is com.zaxxer.hikari.HikariDataSource. Provide [dsname] in the list of
names specified in spring.aws.client.utility.pgm.datasources.names.

spring.aws.client.utility.pgm.datasources.dsname1.type: target-datasource-type

If the utility data source type is com.zaxxer.hikari.HikariDataSource, you can provide
additional properties as follows:

spring.datasource.[dsname].[property_name]

(Optional) Specifies a collection of extra properties to configure a utility data source
connection pool implementation. Provide [dsname] in the list of names specified in
spring.aws.client.utility.pgm.datasources.names. Specify the properties in the
following format: property_name : value

Configure access to utilities for managed applications 673

AWS Mainframe Modernization User Guide

The following is an example for additional utility data sources of type
com.zaxxer.hikari.HikariDataSource:

spring:
 datasource:
 dsname1:
 connectionTimeout: XXXX
 maxLifetime: XXXX
 dsname2:
 connectionTimeout: XXXX
 maxLifetime: XXXX
 dsname3:
 connectionTimeout: XXXX
 maxLifetime: XXXX

treatLargeNumberAsInteger

(Optional) Related to Oracle database engine specifics and DSNTEP2/DSNTEP4 utilities usage.
If you set this flag to true, large numbers coming from the Oracle database (NUMBER (38,0)) are
treated as integers. Default: false

treatLargeNumberAsInteger : false

zonedMode

(Optional) Sets the zoned mode to encode or decode zoned data types. This setting influences
the way sign digits are represented. The following values are valid:

• EBCDIC_STRICT: Default. Use strict definition for signs handling. Depending on whether the
character set is EBCDIC or ASCII, the sign digit representation uses the following characters:

• EBCDIC characters that correspond to bytes (Cn+Dn) to represent positive and negative
digit ranges (+0 to +9, -0 to -9). The characters are displayed as {,A to I, }, J to R

• ASCII characters that correspond to bytes (3n+7n) to represent positive and negative digit
ranges (+0 to +9, -0 to -9). The characters are displayed as 0 to 9, p to y

• EBCDIC_MODIFIED: Use a modified definition for signs handling. For both EBDIC and ASCII,
the same list of characters represent the sign digits, that is, +0 to +9 mapped to { + A to I
and -0 to -9 mapped to } + J to R. \

• AS400: Use for modernized legacy assets that come from iSeries (AS400) platforms.

Configure access to utilities for managed applications 674

AWS Mainframe Modernization User Guide

zonedMode:EBCDIC_STRICT

jcl.type

(Optional) Indicates the legacy type of modernized JCL scripts. The IDCAMS utility uses this
setting to tailor the return code if the invoking JCL is of type vse. Valid values are as follows:

• mvs (Default)

• vse

jcl.type : mvs

Database Unload utilities related properties

Use these properties to configure utilities that unload database tables to data sets. All of the
following properties are optional.

This example shows all the possible unload properties.

Unload properties
 # For date/time: if use database configuration is enabled, formats are ignored
 # For nbi; use hexadecimal syntaxe to specify the byte value
 unload:
 sqlCodePointShift: 0
 nbi:
 whenNull: "6F"
 whenNotNull: "00"
 useDatabaseConfiguration: false
 format:
 date: MM/dd/yyyy
 time: HH.mm.ss
 timestamp: yyyy-MM-dd-HH.mm.ss.SSSSSS
 chunkSize: 0
 fetchSize: 0
 varCharIsNull: false
 columnFiller: space

sqlCodePointShift

(Optional) Specifies an integer value that represents the SQL code point shift used on data.
The default is 0. This means that no code point shifting is made. Align this setting with the SQL

Configure access to utilities for managed applications 675

AWS Mainframe Modernization User Guide

code point shift parameter used for modernized applications. When code point shifting is in
use, the most common value for this parameter is 384.

unload.sqlCodePointShift: 0

nbi

(Optional) Specifies a null indicator byte. This is a hexadecimal value (as a string) added to the
right of the data value. The two possible values are as follows:

• whenNull: Add the hexadecimal value when the data value is null. Default is 6`. Sometimes
the high value FF is used instead.

unload.nbi.whenNull: "6F"

• whenNotNull: Add the hexadecimal value when the data value is not null, but the column is
nullable. Default is 00 (low value).

unload.nbi.whenNotNull: "00"

useDatabaseConfiguration

(Optional) Specifies date and time formatting properties. This is used to deal with date/time
objects in UNLOAD queries. Default is false.

• If set to true, uses the pgmDateFormat, pgmTimeFormat, and pgmTimestampFormat
properties from the main configuration file (application-main.yml).

• If set to false, uses the following date and time formatting properties:

• unload.format.date: Specifies a date formatting pattern. Default is MM/dd/yyyy.

• unload.format.time: Specifies a time formatting pattern. Default is HH.mm.ss.

• unload.format.timestamp: Specifies a timestamp formatting pattern. Default is yyyy-
MM-dd-HH.mm.ss.SSSSSS.

chunkSize

(Optional) Specifies the size of data chunks used to create SYSREC data sets. These data sets are
the target of the data set unload operation, with parallel operations. Default is 0 (no chunks).

unload.chunkSize:0

Configure access to utilities for managed applications 676

AWS Mainframe Modernization User Guide

fetchSize

(Optional) Specifies the data fetch size. The value is the number of records to fetch at one time
when a data chunks strategy is used. Default: 0.

unload.fetchSize:0

varCharIsNull

(Optional) Specifies how to handle a non nullable varchar column with blank content. Default is
false.

If you set this value to true, the column content is treated as an empty string for unload
purposes, instead of a single space string. Set this flag to true for the Oracle database engine
case only.

unload.varCharIsNull: false

columnFiller

(Optional) Specifies the value to use for padding unloaded columns in varchar columns. Possible
values are space or low values. Default is space.

unload.columnFiller: space

Database Load related properties

Use these properties to configure utilities that load data set records into a target database, for
example, DSNUTILB. All of the following properties are optional.

This example shows all of the possible load properties.

Load properties
 # Batch size for DSNUTILB Load Task
 load:
 sqlCodePointShift: 384
 batchSize: 500
 format:
 localDate: dd.MM.yyyy|dd/MM/yyyy|yyyy-MM-dd

Configure access to utilities for managed applications 677

AWS Mainframe Modernization User Guide

 dbDate: yyyy-MM-dd
 localTime: HH:mm:ss|HH.mm.ss
 dbTime: HH:mm:ss

 table-mappings:
 TABLE_1_NAME : LEGACY_TABLE_1_NAME
 TABLE_2_NAME : LEGACY_TABLE_2_NAME

sqlCodePointShift

(Optional) Specifies an integer value that represents the SQL code point shift that is used on
data. Defaults to 0, which means that applications make no code point shifting. Align this
setting with the SQL code point shift parameter used for modernized applications. When you
use code point shifts, the most common value for this parameter is 384.

load.sqlCodePointShift : 384

batchSize

(Optional) Specifies an integer value that represents the number of records to treat before you
send an actual batch statement to the database. Defaults to 0.

load.batchSize: 500

format

(Optional) Specifies the date and time formatting patterns to use for date/time conversions
during the database load operations.

• load.format.localDate: Local date formatting pattern. This defaults to dd.MM.yyyy|
dd/MM/yyyy|yyyy-MM-dd.

• load.format.dbDate: Database date formatting pattern. This defaults to yyyy-MM-dd.

• load.format.localTime: Local time formatting pattern. This defaults to HH:mm:ss|
HH.mm.ss.

• load.format.dbTime: Database time formatting pattern. This defaults to HH:mm:ss.

table-mappings

(Optional) Specifies a collection of customer-provided mappings between legacy and modern
table names. The DSNUTILB utility program consumes these mappings.

Configure access to utilities for managed applications 678

AWS Mainframe Modernization User Guide

Specify the values in the following format: MODERN_TABLE_NAME : LEGACY_TABLE_NAME

Here is an example:

table-mappings:
 TABLE_1_NAME : LEGACY_TABLE_1_NAME
 TABLE_2_NAME : LEGACY_TABLE_2_NAME
 ...
 TABLE_*N*_NAME : LEGACY_TABLE_*N*_NAME

Note

When the utility application starts, it explicitly logs all provided mappings.

Add configuration properties for the managed application with AWS
Blu Age engine

You can add a file in the config folder for your refactored application that will give you
access to new features in the AWS Blu Age runtime engine. You must name this file user-
properties.yml. This file doesn’t replace the application definition but extends it. This topic
describes the properties you can include in the user-properties.yml file.

Note

You can’t change some parameters because they are controlled either by AWS Mainframe
Modernization or by the application definition. All parameters defined in the application
definition for your application have priority over the parameters you specify in user-
properties.yml.

For more information about the structure of refactored applications, see Structure of AWS Blu Age
managed applications.

The following diagram shows where to locate the user-properties.yml file within the structure
of the AWS Blu Age sample application, PlanetsDemo.

PlanetsDemo-v1/

Configure additional properties for managed application 679

AWS Mainframe Modernization User Guide

 ## config/
 # ## application-PlanetsDemo.yml
 # ## user-properties.yml
 ## jics/
 ## webapps/

Configuration properties reference

This is the list of available properties. All parameters are optional.

Topics

• Gapwalk application properties

• Gapwalk batchscript properties

• Gapwalk Blugen properties

• Gapwalk CL command properties

• Gapwalk CL runner properties

• Gapwalk JHDB properties

• Gapwalk JICS properties

• Gapwalk runtime properties

• Gapwalk utility program properties

• Other properties

Gapwalk application properties

bluesam.fileLoading.commitInterval

Optional. The BluSAM commit interval.

Type: number

Default: 100000

card.encoding

Optional. Card encoding: to be used with useControlMVariable.

Type: string

Configure additional properties for managed application 680

AWS Mainframe Modernization User Guide

Default: CP1145

checkinputfilesize

Optional. Specifies whether to release a check if the file size is a multiple of record size.

Type: boolean

Default: false

database.cursor.overflow.allowed

Optional. Specifies whether to allow the cursor overflow. Set to true to perform a next call on
the cursor whatever its position. Set to false to check whether the cursor is at the last position
before performing a next call on cursor. Only enable if cursor is SCROLLABLE (SENSITIVE or
INSENSITIVE)

Type: boolean

Default: true

dataSimplifier.onInvalidNumericData

Optional. How to react when decoding invalid numeric data. Allowed values are reject,
toleratespaces, toleratespaceslowvalues, toleratemost.

Type: string

Default: reject

defaultKeepExistingFiles

Optional. Specifies whether to set the dataset default previous value.

Type: boolean

Default: false

disposition.checkexistence

Optional. Specifies whether to release a check on file existence for Dataset with DISP SHR or
OLD.

Type: boolean

Configure additional properties for managed application 681

AWS Mainframe Modernization User Guide

Default: false

externalSort.threshold

Optional. The sort threshold: when to switch to external (merge) sort.

Type: string

Default: null

externalSort.threshold: 12MB

forceHR

Optional. Specifies whether to use Human Readable SYSPRINT, either on console or file output.

Type: boolean

Default: false

forcedDate

Optional. Forces a specific date and time in the database. Use only during development and
testing.

Default: null

forcedDate: 2022-08-26T12:59:58.123456+01:57

frozenDate

Optional. Freezes the date and time in the database. Use only during development and testing.

Default: false

frozenDate: false

ims.messages.extendedSize

Optional. Specifies whether to set the extendedSize on ims messages.

Type: boolean

Default: false

Configure additional properties for managed application 682

AWS Mainframe Modernization User Guide

lockTimeout

Optional. The timeout in milliseconds of a transaction when unable to acquire a lock within a
specified timeframe.

Type: number

Default: 500

mapTransfo.prefixes

Optional. List of prefixes to be used when transforming controlM variables. Each one separated
by comma.

Type: string

Default: &,@,%%

query.useConcatCondition

Optional. Specifies whether key condition is built by key concatenation or not.

Type: boolean

Default: false

rollbackOnRTE

Optional. Specifies whether to rollback implicit run unit transaction on runtime exceptions.

Type: boolean

Default: false

sctThreadLimit

Optional. The thread limit for triggering scripts.

Type: number

Default: 5

sqlCodePointShift

Optional. The sql code point shift. Shifts the codepoint for control characters that we might
encounter when migrating legacy rdbms data to a modern rdbms. For example, you could
specify 384 to match unicode character \u0180.

Configure additional properties for managed application 683

AWS Mainframe Modernization User Guide

Type: number

Default: 0

sqlIntegerOverflowAllowed

Optional. Specifies whether to allow the SQL integer overflow, meaning whether placing larger
values in the host variable is allowed.

Type: boolean

Default: false

stepFailWhenAbend

Optional. Specifies whether to raise an abend if a step fails or completes execution.

Type: boolean

Default: true

stopExecutionWhenProgNotFound

Optional. Specifies whether to stop running if a program isn't found. If set to true, interrupts
the run if a program is not found.

Type: boolean

Default: true

uppercaseUserInput

Optional. Specifies whether user input must be in uppercase.

Type: boolean

Default: true

useControlMVariable

Optional. Specifies whether to use control-M specification for variable replacement.

Type: boolean

Default: false

Configure additional properties for managed application 684

AWS Mainframe Modernization User Guide

Gapwalk batchscript properties

encoding

Optional. The encoding used in batchscript projects (not with groovy). Expects a valid encoding
CP1047, IBM930, ASCII, UTF-8...

Type: string

Default: ASCII

Gapwalk Blugen properties

managers.trancode

Optional. The dialog manager trancode mapping. Allows you to map
a JICS transaction code to a dialog manager. Expected format is
trancode1:dialogManager1;trancode2:dialogManager2;.

Type: string

Default: null

managers.trancode: OR12:MYDIALOG1

Gapwalk CL command properties

commands-off

Optional. List of commands to turn off, separated by comma. Allowed values are PGM_BASIC,
RCVMSG, SNDRCVF, CHGVAR, QCLRDTAQ, RTVJOBA, ADDLFM, ADDPFM, RCVF, OVRDBF, DLTOVR,
CPYF, SNDDTAQ. Useful when you want to disable or overwrite an existing program. PGM_BASIC
is a specific AWS Blu Age Runtime program designed for debugging purposes.

Type: string

Default: null

spring.datasource.primary.jndi-name

Optional. The primary Java Naming And Directory Interface (JNDI) datasource.

Configure additional properties for managed application 685

AWS Mainframe Modernization User Guide

Type: string

Default: jdbc/primary

zonedMode

Optional. The mode for encoding or decoding zoned data types. Allowed values are
EBCDIC_STRICT / EBCDIC_MODIFIED / AS400.

Type: string

Default: EBCDIC_STRICT

Gapwalk CL runner properties

cl.configuration.context.encoding

Optional. The encoding of CL files. Expects a valid encoding CP1047, IBM930, ASCII, UTF-8...

Type: string

Default: CP297

cl.zonedMode

Optional. The mode for encoding or decoding control language (CL) commands. Allowed values
are EBCDIC_STRICT / EBCDIC_MODIFIED / AS400.

Type: string

Default: EBCDIC_STRICT

Gapwalk JHDB properties

ims.programs

Optional. List of IMS programs to use. Separate each parameter with a semicolon
(;) and each transaction with a comma (,). For example: ims.programs:
PCP008,PCT008;PCP054,PCT054;PCP066,PCT066;PCP068,PCT068;

Type: string

Configure additional properties for managed application 686

AWS Mainframe Modernization User Guide

Default: null

jhdb.checkpointPath

Optional. If jhdb.checkpointPersistence is not none then this parameter allows you to
set up the checkpoint persistence path (checkpoint.dat file storage location), all the checkpoints
data contained in the registry are serialized and backed up in a file (checkpoint.dat) located
in provided folder. Note that only checkpoint data (scriptId, stepId, database position, and
checkpoint area) are concerned by this backup.

Type: string

Default: file:./setup/

jhdb.checkpointPersistence

Optional. The checkpoint persistence mode. Allowed values are none / add / end. Use add to
persist checkpoints when a new one is created and added to the registry. Use end to persist
checkpoint at server shutdown. Any other values disable the persistence. Note that each time
a new checkpoint is added to the registry, all the existing checkpoints will be serialized and
the file will be erased. It is not an append to the existing data in the file. So depending on the
number of checkpoints, it can have some effect on performance.

Type: string

Default: none

jhdb.configuration.context.encoding

Optional. The JHDB (Java Hierarchical Database) encoding. Expects a valid encoding string
CP1047, IBM930, ASCII, UTF-8...

Type: string

Default: CP297

jhdb.identificationCardData

Optional. Used to hardcode some "operator identification card data" to the MID field designated
by the CARD parameter.

Type: string

Configure additional properties for managed application 687

AWS Mainframe Modernization User Guide

Default: ""

jhdb.lterm

Optional. Allow you to force a common logical terminal ID in the case of an IMS emulation. If
not set then sessionId is used.

Type: string

Default: null

jhdb.metadata.extrapath

A configuration parameter that specifies an extra, runtime-specific root folder for psbs and
dbds folders.

Type: string

Default: file:./setup/

Note

Currently, for deployment constraints, you must copy your dbds and psbs directories in
the config directory of your application or in a subdirectory of the config directory: e.g.,
config/setup

config
|- setup
 |- dbds
 |- psbs

and set in application-jhdb.yml
jhdb.metadata.extrapath: file: ./config/setup/

jhdb.navigation.cachenexts

Optional. The cache duration (in milliseconds) used in hierarchical navigation for an RDBMS.

Type: number

Default: 5000

Configure additional properties for managed application 688

AWS Mainframe Modernization User Guide

jhdb.query.limitJoinUsage

Optional. Specifies whether to use the limit join usage parameter on RDBMS graphs.

Type: boolean

Default: true

jhdb.use-db-prefix

Optional. Specifies whether to enable a database prefix in hierarchical navigation for an RDBMS.

Type: boolean

Default: true

Gapwalk JICS properties

jics.data.dataJsonInitLocation

Optional. Location of the json file prepared by the Analyzer from parsing CSD, and used to
initialize the jics database,

Type: string

Default: ""

jics.db.dataScriptLocation

Optional. Location of the initJics.sql script, prepared by Analyzer from parsing CSD exports from
the mainframe.

Type: string

Default: ""

jics.db.dataTestQueryLocation

Optional. Location of a sql script containing a single sql query that is expected to return a count
of objects (for example: counting number of records in the jics program table). If the count
equals 0, database will be loaded using the jics.db.dataScriptLocation script, otherwise
database load will be skipped.

Type: string

Configure additional properties for managed application 689

AWS Mainframe Modernization User Guide

Default: ""

jics.db.ddlScriptLocation

Optional. The Jics ddl script location. Allows you to initiate the jics database schema using a .sql
script.

Type: string

Default: ""

jics.db.ddlScriptLocation: ./jics/sql/jics.sql

jics.db.schemaTestQueryLocation

Optional. Location of the sql file that should contain a unique query that returns the number of
objects in the jics schema (if any).

Type: string

Default: ""

jics.runUnitLauncherPool.enable

Optional. Specifies whether to activate the run unit launcher pool in JICS.

Type: boolean

Default: false

jics.runUnitLauncherPool.size

Optional. The run unit launcher pool size in JICS.

Type: number

Default: 20

jics.runUnitLauncherPool.validationInterval

Optional: The validation interval of the run unit launcher pool in JICS, expressed in milliseconds.

Type: number

Default: 1000

Configure additional properties for managed application 690

AWS Mainframe Modernization User Guide

jics.queues.sqs.region

Optional. The AWS Region for Amazon SQS, used in JICS. It is advised to be set the same region
of the deployed application for performance, but it is not mandatory.

Type: string

Default: eu-west-1

jics.xa.agent.timeout

Optional. Defines the maximum duration for the xa agent responsible for managing distributed
transactions, to complete its operations.

Type: number

Default: null

mq.queues.sqs.region

Optional. The AWS Region for the Amazon SQS MQ service.

Type: string

Default: eu-west-3

taskExecutor.allowCoreThreadTimeOut

Optional. Specifies whether to allow core threads to time out in JCIS. This enables dynamic
growing and shrinking even in combination with a non-zero queue (since the max pool size will
only grow once the queue is full).

Type: boolean

Default: false

taskExecutor.corePoolSize

Optional. When a transaction in a terminal is initiated via a groovy script, a new thread is
created. Use this parameter to setup the core pool size.

Type: number

Default: 5

Configure additional properties for managed application 691

AWS Mainframe Modernization User Guide

taskExecutor.maxPoolSize

Optional. When a transaction in a terminal is initiated via a groovy script, a new thead is
created. Use this parameter to setup the max pool size (max number of parallel threads).

Type: number

Default: 10

taskExecutor.queueCapacity

Optional. When a transaction in a terminal is initiated via a groovy script, a new thead
is created. Use this parameter to setup the queue size. (= maximum number of pending
transactions when taskExecutor.maxPoolSize is reached)

Type: number

Default: 50

Gapwalk runtime properties

cacheMetadata

Optional. Specifies whether to cache database metadata.

Type: boolean

Default: true

check-groovy-file

Optional. Specifies whether to check groovy files content before registering.

Type: boolean

Default: true

databaseStatistics

Optional. Specifies whether to allow SQL builders to collect and display statistics information.

Type: boolean

Default: false

Configure additional properties for managed application 692

AWS Mainframe Modernization User Guide

dateTimeFormat

Optional. The dateTimeFormat describes how to spill database date time timestamp type into
data simplifier entities. Allowed values are ISO / EUR / USA / LOCAL

Type: string

Default: ISO

dbDateFormat

Optional. The database target date format.

Type: string

Default: yyyy-MM-dd

dbTimeFormat

Optional. The database target time format.

Type: string

Default: HH:mm:ss

dbTimestampFormat

Optional. The database target timestamp format.

Type: string

Default: yyyy-MM-dd HH:mm:ss.SSSSSS

fetchSize

Optional. The fetchSize value for cursors. Use when fetching data using chunks by load/unload
utils.

Type: number

Default: 10

forceDisableSQLTrimStringType

Optional. Specifies whether to disable trim of all sql string parameters.

Configure additional properties for managed application 693

AWS Mainframe Modernization User Guide

Type: boolean

Default: false

localDateFormat

Optional. List of local date formats. Separate each format with |.

Type: string

localTimeFormat

Optional. List of local time formats. Separate each format with | .

Type: string

localTimestampFormat

Optional. List of local timestamp formats. Separate each format with |.

Type: string

Default:

pgmDateFormat

Optional. The date time format used in the programs.

Type: string

Default: yyyy-MM-dd

pgmTimeFormat

Optional. The time format used for pgm (programs) execution.

Type: string

Default: HH.mm.ss

pgmTimestampFormat

Optional. The timestamp format.

Type: string

Default: yyyy-MM-dd-HH.mm.ss.SSSSSS

Configure additional properties for managed application 694

AWS Mainframe Modernization User Guide

Gapwalk utility program properties

jcl.type

Optional. .jcl file type. Allowed values are jcl / vse. The IDCAMS utility PRINT/REPRO
commands return 4 if the file is empty for non-vse jcl.

Type: string

Default: mvs

listcat.variablelengthpreprocessor.enabled

Optional. Specifies whether to enable the variable length preprocessor for the LISTCAT
command.

Type: boolean

Default: false

listcat.variablelengthpreprocessor.type

Optional. The type of objects contained in the listcat file, if you enable
listcat.variablelengthpreprocessor.enabled. Allowed values are rdw / bdw.

Type: string

Default: rdw

load.batchSize

Optional. The load utility batch size.

Type: number

Default: 0

load.format.dbDate

Optional. The load utility database format to use.

Type: string

Default: yyyy-MM-dd

Configure additional properties for managed application 695

AWS Mainframe Modernization User Guide

load.format.dbTime

Optional. The load utility database time to use.

Type: string

Default: HH:mm:ss

load.format.localDate

Optional. The load utility local date format to use.

Type: string

Default: dd.MM.yyyy|dd/MM/yyyy|yyyy-MM-dd

load.format.localTime

Optional. The load utility local time format to use.

Type: string

Default: HH:mm:ss|HH.mm.ss

load.sqlCodePointShift

Optional. The SQL code pointshift for load utility. Runs the shifting characters process. Required
when your target database from DB2 is Postgresql.

Type: number

Default: 0

sysPunchEncoding

Optional. The syspunch encoding character set. Supported values are Cp1047 / ASCII.

Type: string

Default: ASCII

treatLargeNumberAsInteger

Optional. Specifies whether to treat large numbers as Integer. They are treated as
BigDecimal by default.

Configure additional properties for managed application 696

AWS Mainframe Modernization User Guide

Type: boolean

Default: false

unload.chunkSize

Optional. Chunk size used for unload utility.

Type: number

Default: 0

unload.columnFiller

Optional. The unload utility column filler.

Type: string

Default: space

unload.fetchSize

Optional. Allows you to tune the fetch size when handling cursors in the unload utility.

Type: number

Default: 0

unload.format.date

Optional. If unload.useDatabaseConfiguration is enabled, the date format to use in the
unload utility.

Type: string

Default: MM/dd/yyyy

unload.format.time

Optional. If unload.useDatabaseConfiguration is enabled, the time format to use in the
unload utility.

Type: string

Default: HH.mm.ss

Configure additional properties for managed application 697

AWS Mainframe Modernization User Guide

unload.format.timestamp

Optional. If unload.useDatabaseConfiguration is enabled, the timestamp format to use
in the unload utility.

Type: string

Default: yyyy-MM-dd-HH.mm.ss.SSSSSS

unload.nbi.whenNotNull

Optional. The Null Byte Indicator (nbi) value to add when value from database is not null.

Type: hexadecimal

Default: 00

unload.nbi.whenNull

Optional. The Null Byte Indicator (nbi) value to add when value from database is null.

Type: hexadecimal

Default: 6F

unload.nbi.writeNullIndicator

Optional. Specifies whether to write out the null indicator in the unload output file.

Type: boolean

Default: false

unload.sqlCodePointShift

Optional. The SQL code pointshift for unload utility. Runs the shifting characters process.
Required when your target database from DB2 is Postgresql.

Type: number

Default: 0

unload.useDatabaseConfiguration

Optional. Specifies whether to use the date or time configuration from application-main.yml in
unload utility.

Configure additional properties for managed application 698

AWS Mainframe Modernization User Guide

Type: boolean

Default: false

unload.varCharIsNull

Optional. Use this parameter in INFTILB program, if set to true then all not nullable fields with
blank (space) values returns an empty string.

Type: boolean

Default: false

Other properties

qtemp.cleanup.threshold.hours

Optional. To specify when qtemp.dblog is enabled. The db partition lifetime (in hours).

Type: number

Default: 0

qtemp.dblog

Optional. Whether to enable QTEMP Database logging.

Type: boolean

Default: false

qtemp.uuid.length

Optional. The QTEMP unique id length.

Type: number

Default: 9

quartz.scheduler.stand-by-if-error

Optional. Specifies whether to trigger job execution if the job scheduler is in standby mode. If
true, When enabled job execution is not triggered.

Configure additional properties for managed application 699

AWS Mainframe Modernization User Guide

Type: boolean

Default: false

warmUpCache

Optional. Specifies whether to load all datacom table data into a warm up cache at server start.

Type: boolean

Default: false

AWS Mainframe Modernization application definition reference

In AWS Mainframe Modernization, you configure migrated mainframe applications in an
application definition JSON file, which is specific to the runtime engine you choose. An application
definition contains both general information and engine-specific information. This topic describes
both the AWS Blu Age and Micro Focus application definitions and identifies all required and
optional elements.

Contents

• General header section

• Definition section overview

• AWS Blu Age application definition sample

• AWS Blu Age definition details

• Listener(s) - required

• AWS Blu Age application - required

• BluSAM - optional

• AWS Blu Age message queues - optional

• AWS Blu Age Application storage EFS config - optional

• Micro Focus application definition

• Micro Focus definition details

• Listener(s) - required

• Data set locations - required

• Amazon Cognito authentication and authorization handler - optional

• LDAP and Active Directory handler - optional

Application definition reference 700

AWS Mainframe Modernization User Guide

• Batch settings - required

• CICS settings - required

• XA resources - required

• Runtime settings - optional

General header section

Each application definition starts with general information about the template version and source
locations. The current version of the application definition is 2.0.

Use the following structure to specify the template version and source locations.

"template-version": "2.0",
 "source-locations": [
 {
 "source-id": "s3-source",
 "source-type": "s3",
 "properties": {
 "s3-bucket": "mainframe-deployment-bucket",
 "s3-key-prefix": "v1"
 }
 }
]

Note

You can use the following syntax if you want to input S3 ARN as s3-bucket :

"template-version": "2.0",
 "source-locations": [
 {
 "source-id": "s3-source",
 "source-type": "s3",
 "properties": {
 "s3-bucket": "arn:aws:s3:::mainframe-deployment-bucket",
 "s3-key-prefix": "v1"
 }
 }
]

General header section 701

AWS Mainframe Modernization User Guide

template-version

Required. Specifies the version of the application definition file. Do not change this value.
Currently, the only allowed value is 2.0. Specify template-version with a string.

source-locations

Specifies the locations of the files and other resources that the application requires during
runtime.

source-id

Specifies a name for the location. This name is used to reference the source location as needed
in the application definition JSON.

source-type

Specifies the type of the source. Currently, the only allowed value is s3.

properties

Provides the details of the source location. Each property is specified with a string.

• s3-bucket - Required. Specifies the name of the Amazon S3 bucket where the files are
stored.

• s3-key-prefix - Required. Specifies the name of the folder in the Amazon S3 bucket where
the files are stored.

Definition section overview

Specifies the resource definitions of the services, settings, data, and other typical resources
that the application needs to run. When you update an application definition, AWS Mainframe
Modernization detects changes by comparing the source-locations and definition lists from
both the previous and the current versions of the application definition JSON file.

The definition section is engine-specific and subject to change. The following sections show sample
engine-specific application definitions for both engines.

AWS Blu Age application definition sample

{
 "template-version": "2.0",
 "source-locations": [
 {

Definition section overview 702

AWS Mainframe Modernization User Guide

 "source-id": "s3-source",
 "source-type": "s3",
 "properties": {
 "s3-bucket": "mainframe-deployment-bucket-aaa",
 "s3-key-prefix": "v1"
 }
 }
],
 "definition" : {
 "listeners": [{
 "port": 8194,
 "type": "http"
 }],
 "ba-application": {
 "app-location": "${s3-source}/murachs-v6/"
 },
 "blusam": {
 "db": {
 "nb-threads": 8,
 "batch-size": 10000,
 "name": "blusam",
 "secret-manager-arn": "arn:aws:secretsmanager:us-
west-2:111122223333:secret:blusam-FfmXLG"
 },
 "redis": {
 "hostname": "blusam.c3geul.ng.0001.usw2.cache.amazonaws.com",
 "port": 6379,
 "useSsl": true,
 "secret-manager-arn": "arn:aws:secretsmanager:us-
west-2:111122223333:secret:bluesamredis-nioefm"
 }
 }
 }
}

AWS Blu Age definition details

Listener(s) - required

Specify the port you will use to access the application through the AWS Mainframe Modernization-
created Elastic Load Balancing. Use the following structure:

"listeners": [{

AWS Blu Age definition details 703

AWS Mainframe Modernization User Guide

 "port": 8194,
 "type": "http"
}],

port

Required. You can use any available port except for the well-known ports of 0 to 1023. We
recommend using the range from 8192 to 8199. Make sure there’s no other listeners or
applications operating on this port.

type

Required. Currently, only http is supported.

AWS Blu Age application - required

Specify the location where the engine picks up the application image file using the following
structure.

"ba-application": {
 "app-location": "${s3-source}/murachs-v6/",
 "files-directory": "/m2/mount/myfolder",
 "enable-jics": <true|false>,
 "shared-app-location": "${s3-source}/shared/"
},

app-location

The specific location in Amazon S3 where the application image file is stored.

files-directory

Optional. The location of the input/output files for batches. Must be a subfolder of the Amazon
EFS or Amazon FSx mount point setup at environment level. The subfolder must be owned by a
suitable user for use by the Blu Age application running inside AWS Mainframe Modernization.
To achieve this, when attaching the drive to a Linux Amazon EC2 instance, a group with ID 101
and a user with ID 3001 must be created, and the desired folder must be owned by this user. For
example, this way, the testclient folder can be used by Blu Age AWS Mainframe Modernization
Managed.

groupadd -g 101 mygroup

AWS Blu Age definition details 704

AWS Mainframe Modernization User Guide

useradd -M -g mygroup -p mypassword -u 3001 myuser
mkdir testclient
chown myuser:mygroup testclient

enable-jics

Optional. Specifies whether to enable JICS. Defaults to true. Setting this to false prevents the
JICS database from being spawned.

shared-app-location

Optional. Further location in Amazon S3 where shared application elements are stored. It can
contain the same kind of application structure as app-location.

BluSAM - optional

Specify the BluSAM database and Redis cache using the following structure.

"blusam": {
 "db": {
 "nb-threads": 8,
 "batch-size": 10000,
 "name": "blusam",
 "secret-manager-arn": "arn:aws:secretsmanager:us-
west-2:111122223333:secret:blusam-FfmXLG"
 },
 "redis": {
 "hostname": "blusam.c3geul.ng.0001.usw2.cache.amazonaws.com",
 "port": 6379,
 "useSsl": true,
 "secret-manager-arn": "arn:aws:secretsmanager:us-
west-2:111122223333:secret:bluesamredis-nioefm"
 }
}

db

Specifies the properties of the database used with the application. The database must be an
Aurora PostgreSQL database. You can specify the following properties:

• nb-threads - Optional. Specifies how many dedicated threads are used for the write-behind
mechanism that the BluSAM engine relies on. The default is 8.

AWS Blu Age definition details 705

AWS Mainframe Modernization User Guide

• batch-size - Optional. Specifies the threshold that the write-behind mechanism uses to
start batch storage operations. The threshold represents the number of modified records that
will start a batch storage operation to ensure that modified records are persisted. The trigger
itself is based on a combination of batch-size and an elapsed time of one second, whichever is
reached first. The default is 10000.

• name - Optional. Specifies the name of the database.

• secret-manager-arn - Specifies the Amazon Resource Name (ARN) of the secret that
contains the database credentials. For more information, see Step 4: Create and configure an
AWS Secrets Manager database secret.

Redis

Specifies the properties of the Redis cache that the application uses to store temporary data
that it needs in a central location to improve performance. We recommend that you both
encrypt and password-protect the Redis cache.

• hostname - Specifies the location of the Redis cache.

• port - Specifies the port, typically 6379, where the Redis cache sends and receives
communication.

• useSsl - Specifies whether the Redis cache is encrypted. If the cache is not encrypted, set
useSsl to false.

• secret-manager-arn - Specifies the Amazon Resource Name (ARN) of the secret that
contains the Redis cache password. If the Redis cache is not password-protected, do not
specify secret-manager-arn. For more information, see Step 4: Create and configure an
AWS Secrets Manager database secret.

AWS Blu Age message queues - optional

Specify the JMS-MQ connection details for AWS Blu Age application.

"message-queues": [
 {
 "product-type": "JMS-MQ",
 "queue-manager": "QMgr1",
 "channel": "mqChannel1",
 "hostname": "mqserver-host1",
 "port": 1414,
 "user-id": "app-user1",

AWS Blu Age definition details 706

AWS Mainframe Modernization User Guide

 "secret-manager-arn": "arn:aws:secretsmanager:us-
west-2:123456789012:secret:sample/mq/test-279PTa"
 },
 {
 "product-type": "JMS-MQ",
 "queue-manager": "QMgr2",
 "channel": "mqChannel2",
 "hostname": "mqserver-host2",
 "port": 1412,
 "user-id": "app-user2",
 "secret-manager-arn": "arn:aws:secretsmanager:us-
west-2:123456789012:secret:sample/mq/test-279PTa"
 }
]

product-type

Required. Specifies the product type. Currently, this can only be "JMS-MQ" for AWS Blu Age
applications.

queue-manager

Required. Specifies the name of the queue manager.

channel

Required. Specifies the name of the server-connection channel.

hostname

Required. Specifies the hostname of the message queue server.

port

Required. Specifies the listener port number the server is listening on.

user-id

Optional. Specifies the user account ID permitted to perform message queue operations on the
specified channel.

secret-manager-arn

Optional. Specifies the Amazon Resource Name (ARN) of Secrets Manager that provides the
password of the specified user.

AWS Blu Age definition details 707

AWS Mainframe Modernization User Guide

AWS Blu Age Application storage EFS config - optional

Specify the application storage EFS Access point details using the following structure.

"ba-application": {
 "file-permission-mask": "UMASK002"
},
"efs-configs": [
 {
 "file-system-id": "fs-01376dfsvfvrsvsr",
 "mount-point": "/m2/mount/efs-ap2",
 "access-point-id": fsap-0eaesefvrefrewgv8"
 }
]

file-system-id

Required. The ID of EFS file system that the access point applies to. Pattern: "fs-([0-9a-f]{8,40})
{1,128}$"

mount-point

Required. The mount point for the application level file system. This must be different than the
environment level storage mount point.

access-point-id

Required. The ID of the access point, assigned by Amazon EFS. Pattern: "^fsap-([0-9a-f]{8,40})
{1,128}$"

file-permission-mask

Optional. Defines the file creation mask for files created by the application process. For
example, when the value is set to UMASK006, all the files will have permission 660. This will
mean that only the file owner and file group will have the read and write access, while other
users don't have any permissions.

Note

The value set for this field is only considered when using application level EFS storage.

AWS Blu Age definition details 708

AWS Mainframe Modernization User Guide

Note

When efs config is provided, files-directory must be specified in the application definition
section. It must be a subfolder of the Amazon EFS mount point set up at application level.

Micro Focus application definition

The following sample definition section is for the Micro Focus runtime engine, and contains both
required and optional elements.

{
 "template-version": "2.0",
 "source-locations": [
 {
 "source-id": "s3-source",
 "source-type": "s3",
 "properties": {
 "s3-bucket": "mainframe-deployment-bucket-aaa",
 "s3-key-prefix": "v1"
 }
 }
],
 "definition" : {
 "listeners": [{
 "port": 5101,
 "type": "tn3270"
 }],
 "dataset-location": {
 "db-locations": [{
 "name": "Database1",
 "secret-manager-arn": "arn:aws:secrets:1234:us-east-1:secret:123456"
 }]
 },
 "cognito-auth-handler": {
 "user-pool-id": "cognito-idp.us-west-2.amazonaws.com/us-west-2_rvYFnQIxL",
 "client-id": "58k05jb8grukjjsudm5hhn1v87",
 "identity-pool-id": "us-west-2:64464b12-0bfb-4dea-ab35-5c22c6c245f6"
 },
 "ldap-ad-auth-handler": {
 "ldap-ad-connection-secrets": [LIST OF AD-SECRETS]
 },

Micro Focus application definition 709

AWS Mainframe Modernization User Guide

 "batch-settings": {
 "initiators": [{
 "classes": ["A", "B"],
 "description": "initiator...."
 }],
 "jcl-file-location": "${s3-source}/batch/jcl",
 "program-path": "/m2/mount/libs/loadlib:$EFS_MOUNT/emergency/loadlib",
 "system-procedure-libraries":"SYS1.PROCLIB;SYS2.PROCLIB",
 "aliases": [
 {"alias": "FDSSORT", "program": "SORT"},
 {"alias": "MFADRDSU", "program": "ADRDSSU"}
]
 },
 "cics-settings": {
 "binary-file-location": "${s3-source}/cics/binaries",
 "csd-file-location": "${s3-source}/cics/def",
 "system-initialization-table": "BNKCICV"
 },
 "xa-resources" : [{
 "name": "XASQL",
 "secret-manager-arn": "arn:aws:secrets:1234:us-east-1:secret:123456",
 "module": "${s3-source}/xa/ESPGSQLXA64.so"
 }],
 "runtime-settings": {
 "environment-variables": {
 "ES_JES_RESTART": "N",
 "EFS_MOUNT": "/m2/mount/efs"
 }
 }
 }
}

Micro Focus definition details

The content in the definition section of the Micro Focus application definition file varies, depending
on the resources that your migrated mainframe application requires at runtime.

Listener(s) - required

Specify a listener using the following structure:

"listeners": [{
 "port": 5101,

Micro Focus definition details 710

AWS Mainframe Modernization User Guide

 "type": "tn3270"
}],

port

For tn3270, the default is 5101. For other types of service listeners, the port varies. You can use
any available port except for the well-known ports of 0 to 1023. Each listener should have a
distinctive port. Listeners should not share ports. For more information, see Listener Control in
the Micro Focus Enterprise Server documentation.

type

Specifies the type of service listener. For more information, see Listeners in the Micro Focus
Enterprise Server documentation.

Data set locations - required

Specify the data set location using the following structure.

"dataset-location": {
 "db-locations": [{
 "name": "Database1",
 "secret-manager-arn": "arn:aws:secrets:1234:us-east-1:secret:123456"
 }],
 }

db-locations

Specifies the location of the data sets that the migrated application creates. Currently, AWS
Mainframe Modernization supports only data sets from a single VSAM database.

• name - Specifies the name of the database instance that contains the data sets that the
migrated application creates.

• secret-manager-arn - Specifies the Amazon Resource Name (ARN) of the secret that
contains the database credentials.

Micro Focus definition details 711

https://www.microfocus.com/documentation/enterprise-developer/ed70/ES-UNIX/GUID-63F6D8B0-024F-48D1-956A-1E079E4BD891.html
https://www.microfocus.com/documentation/enterprise-developer/ed70/ES-UNIX/HTPHMDSAL100.html

AWS Mainframe Modernization User Guide

Amazon Cognito authentication and authorization handler - optional

AWS Mainframe Modernization uses Amazon Cognito for authentication and authorization for
migrated applications. Specify the Amazon Cognito authentication handler using the following
structure.

"cognito-auth-handler": {
 "user-pool-id": "cognito-idp.Region.amazonaws.com/Region_rvYFnQIxL",
 "client-id": "58k05jb8grukjjsudm5hhn1v87",
 "identity-pool-id": "Region:64464b12-0bfb-4dea-ab35-5c22c6c245f6"
}

user-pool-id

Specifies the Amazon Cognito user pool that AWS Mainframe Modernization uses to
authenticate users of the migrated application. The AWS Region for the user pool should match
the AWS Region for the AWS Mainframe Modernization application.

client-id

Specifies the migrated application that the authenticated user can access.

identity-pool-id

Specifies the Amazon Cognito identity pool where the authenticated user exchanges a user
pool token for credentials that allow the user to access AWS Mainframe Modernization. The
AWS Region for the identity pool should match the AWS Region for the AWS Mainframe
Modernization application.

LDAP and Active Directory handler - optional

You can integrate your application with Active Directory (AD) or any type of LDAP server to make
it possible for users of the application to use their LDAP/AD credentials for authorization and
authentication.

To integrate your application with AD

1. Follow the steps described in Configuring Active Directory for Enterprise Server Security in the
Micro Focus Enterprise Server documentation.

2. Create an AWS Secrets Manager secret with your AD/LDAP details for each AD/LDAP server
that you want to use with your application. For information on how to create a secret, see

Micro Focus definition details 712

https://www.microfocus.com/documentation/server-cobol/51/chessa64.htm

AWS Mainframe Modernization User Guide

Create an AWS Secrets Manager secret in the AWS Secrets Manager User Guide. For secret
type, choose Other type of secret and include the following key-value pairs.

{
 "connectionPath" : "<HOST-ADDRESS>:<PORT>",
 "authorizedId" : "<USER-FULL-DN>",
 "password" : "<PASSWORD>",
 "baseDn" : "<BASE-FULL-DN>",
 "userClassDn" : "<USER-TYPE>",
 "userContainerDn" : "<USER-CONTAINER-DN>",
 "groupContainerDn" : "<GROUP-CONTAINER-DN>",
 "resourceContainerDn" : "<RESOURCE-CONTAINER-DN>"
}

Security recommendations

• For connectionPath, AWS Mainframe Modernization supports the LDAP and LDAP
over SSL (LDAPS) protocols. We recommend using LDAPS because it is more secure
and prevents credentials from appearing in network transmissions.

• For authorizedId and password, we recommend that you specify the credentials
of a user with no more permissions than the most restrictive read-only and
verification permissions that are required for your application to run.

• We recommend rotating the AD/LDAP credentials on a regular basis.

• Do not create AD users with the username awsuser or mfuser. These two
usernames are reserved for AWS use.

The following is an example.

{
 "connectionPath" : "ldaps://msad4.m2.example.people.aws.dev:636",
 "authorizedId" :
 "CN=LDAPUser,OU=Users,OU=msad4,DC=msad4,DC=m2,DC=example,DC=people,DC=aws,DC=dev",
 "password" : "ADPassword",
 "userContainerDn" : "CN=Enterprise Server Users,CN=Micro Focus,CN=Program
 Data,OU=msad4,DC=msad4,DC=m2,DC=example,DC=people,DC=aws,DC=dev",
 "groupContainerDn" : "CN=Enterprise Server Groups,CN=Micro Focus,CN=Program
 Data,OU=msad4,DC=msad4,DC=m2,DC=example,DC=people,DC=aws,DC=dev",

Micro Focus definition details 713

https://docs.aws.amazon.com/secretsmanager/latest/userguide/

AWS Mainframe Modernization User Guide

 "resourceContainerDn" : "CN=Enterprise Server Resources,CN=Micro
 Focus,CN=Program Data,OU=msad4,DC=msad4,DC=m2,DC=example,DC=people,DC=aws,DC=dev"
}

Create the secret with a customer-managed KMS key. You must grant AWS Mainframe
Modernization the GetSecretValue and DescribeSecret permissions on the secret,
and Decrypt and DescribeKey permissions on the KMS key. For more information, see
Permissions for the KMS key in the AWS Secrets Manager User Guide.

3. Add the following to your application definition.

"ldap-ad-auth-handler": {
 "ldap-ad-connection-secrets": [LIST OF AD/LDAP SECRETS]
}

The following is an example.

"ldap-ad-auth-handler": {
 "ldap-ad-connection-secrets": ["arn:aws:secrets:1234:us-east-1:secret:123456"]
}

The LDAP/AD authentication handler is available for Micro Focus 8.0.11 and later versions.

Batch settings - required

Specify the details required by the batch jobs that run as part of the application using the
following structure.

"batch-settings": {
 "initiators": [{
 "classes": ["A", "B"],
 "description": "initiator...."
 }],
 "jcl-file-location": "${s3-source}/batch/jcl",
 "program-path": "/m2/mount/libs/loadlib:$EFS_MOUNT/emergency/loadlib",
 "system-procedure-libraries":"SYS1.PROCLIB;SYS2.PROCLIB",
 "aliases": [
 {"alias": "FDSSORT", "program": "SORT"},
 {"alias": "MFADRDSU", "program": "ADRDSSU"}
]

Micro Focus definition details 714

https://docs.aws.amazon.com/secretsmanager/latest/userguide/security-encryption.html#security-encryption-authz

AWS Mainframe Modernization User Guide

}

initiators

Specifies a batch initiator that starts when the migrated application starts successfully and
continues running until the application stops. You can define one or multiple classes per
initiator. You can also define multiple initiators. For example:

"batch-settings": {
 "initiators": [
 {
 "classes": ["A", "B"],
 "description": "initiator...."
 },
 {
 "classes": ["C", "D"],
 "description": "initiator...."
 }

],
 }

For more information, see To define a batch initiator or printer SEP in the Micro Focus Enterprise
Server documentation.

• classes - Specifies the job classes that the initiator can run. You can use up to 36 characters.
You can use the following characters: A-Z or 0-9.

• description - Describes what the initiator is for.

jcl-file-location

Specifies the location of the JCL (Job Control Language) files that are required by the batch jobs
the migrated application runs.

program-path

Specifies the path required to run batch jobs when a program in a JCL is not in the default
location. The different path names are separated with a colon (:).

Note

The program path can only be an EFS path.

Micro Focus definition details 715

https://www.microfocus.com/documentation/enterprise-developer/ed70/ES-UNIX/HHMTTHJCLE08.html

AWS Mainframe Modernization User Guide

system-procedure-libraries

Specifies the default partitioned data sets that will be searched for JCL procedures. The
procedure is, however, not found in the JCL or via the JCLLIB statements. These data sets must
be cataloged and the catalog name must be used. And the entries are separated with a semi-
colon (;).

aliases

Defines a mapping for the utility and program names used in JCL to the implementation name
of the utility. AWS and 3rd party batch utilities (e.g. M2SFTP, M2WAIT, Syncsort, etc.) can
optionally have aliases to eliminate the need to change the JCL. For example:

• FDSSORT Alias FDSSORT for SORT and Alias FDSICET for ICETOOL

• ADRDSSU Alias MFADRDSU for ADRDSSU

• Syncsort Alias DMXMFSRT for SORT

CICS settings - required

Specify the details required for the CICS transactions that run as part of the application using the
following structure.

"cics-settings": {
 "binary-file-location": "${s3-source}/cics/binaries",
 "csd-file-location": "${s3-source}/cics/def",
 "system-initialization-table": "BNKCICV"
}

binary-file-location

Specifies the location of the CICS transaction program files.

csd-file-location

Specifies the location of the CICS resource definition (CSD) file for this application. For more
information, see CICS Resource Definitions in the Micro Focus Enterprise Server documentation.

system-initialization-table

Specifies the system initialization table (SIT) that the migrated application uses. The name of
the SIT table can be up to 8 characters. You can use A-Z, 0-9, $, @, and #. For more information,
see CICS Resource Definitions in the Micro Focus Enterprise Server documentation.

Micro Focus definition details 716

https://www.microfocus.com/documentation/enterprise-developer/ed80/ES-UNIX/HRMTRHCSDS01.html
https://www.microfocus.com/documentation/enterprise-developer/ed70/ES-UNIX/HRMTRHCSDS01.html

AWS Mainframe Modernization User Guide

XA resources - required

Specify the details required for the XA resources that the application requires using the following
structure.

"xa-resources" : [{
 "name": "XASQL",
 "secret-manager-arn": "arn:aws:secrets:1234:us-east-1:secret:123456",
 "module": "${s3-source}/xa/ESPGSQLXA64.so"
}]

name

Required. Specifies the name of the XA resource.

secret-manager-arn

Specifies the Amazon Resource Name (ARN) for the secret that contains the credentials for
connecting to the database.

module

Specifies the location of the RM switch module executable file. For more information, see
Planning and Designing XARs in the Micro Focus Enterprise Server documentation.

Runtime settings - optional

Specify the details required for runtime settings to manage permitted environment variables using
the following structure.

"runtime-settings": {
 "environment-variables": {
 "ES_JES_RESTART": "N",
 "EFS_MOUNT": "/m2/mount/efs"
 }
}

environment-variables

Specifies Micro Focus supported environment variables that are applied to this application’s
runtime.

Micro Focus definition details 717

https://www.microfocus.com/documentation/enterprise-developer/ed60/ES-WIN/GUID-91C0E7E4-C012-4DF2-8996-CF6C52437FB7.html

AWS Mainframe Modernization User Guide

• ES_JES_RESTART is a Micro Focus environment variable that enables JCL restart processing.
Optionally, you can also use ES_ALLOC_OVERRIDE as a Micro Focus environment variable.

• EFS_MOUNT is a custom environment variable that your application might use to identify
where the environment's EFS mount is located.

You can access all the Micro Focus environment variables in the Micro Focus Enterprise Server for
UNIX guide.

AWS Mainframe Modernization data set definition reference

If your application requires more than a few data sets for processing, entering them one by one in
the AWS Mainframe Modernization console is inefficient. Instead, we recommend that you create
a JSON file to specify each data set. Different data set types are specified differently in the JSON,
although many parameters are common. This document describes the details of the JSON required
to import different types of data sets.

Note

Before you import any data sets, you must transfer the data sets from the mainframe
to AWS. Then you must make sure that the data sets are converted from the mainframe
format to a format that AWS can use. If necessary, transform the data as needed and store
the transformed data sets in Amazon S3. Specify the name of the bucket and folder in the
data set definition JSON file.
If you are using the Micro Focus runtime engine, you can use the DFCONV utility to convert
the data sets. We include this utility in our Micro Focus Enterprise Developer and Enterprise
Server images. For more information, see DFCONV Batch File Conversion in the Micro Focus
Enterprise Developer documentation.

Topics

• Common properties

• Sample data set request format for VSAM

• Sample data set request format for GDG base

• Sample data set request format for PS or GDG generations

• Sample data set request format for PO

Data set definition reference 718

https://www.microfocus.com/documentation/enterprise-developer/ed80/ES-UNIX/GUID-F0C24B4E-9720-47C1-A77C-2E9B30CC4328.html
https://www.microfocus.com/documentation/enterprise-developer/ed70/ED-Eclipse/BKFHFHCONVS001.html

AWS Mainframe Modernization User Guide

Common properties

Several parameters are common to all data sets. These parameters cover the following areas:

• Information about the data set (datasetName, datasetOrg, recordLength, encoding)

• Information about the location you are importing from; that is, the source location of the data
set. This is not the location on the mainframe. It is the path to the Amazon S3 location where
you uploaded the data set (externalLocation).

• Information about the location you are importing to; that is, the target location of the data
set. This location is either a database or a file system, depending on your runtime engine.
(storageType and relativePath).

• Information about the data set type (specific data set type, format, encoding, and so on).

Each data set definition has the same JSON structure. The following example JSON shows all these
common parameters.

{
 "dataSet": {
 "storageType": "Database",
 "datasetName": "MFI01V.MFIDEMO.BNKACC",
 "relativePath": "DATA",
 "datasetOrg": {
 "type": {
 type-specific properties
 ...
 },
 },
 },
}

The following properties are common to all data sets.

storageType

Required. Applies to the target location. Specifies whether the data set is stored in a database
or a file system. Possible values are Database or FileSystem.

• AWS Blu Age runtime engine: file systems are not supported. You must use a database.

Common properties 719

AWS Mainframe Modernization User Guide

• Micro Focus runtime engine: databases and file systems are both supported. You can use
either Amazon Relational Database Service or Amazon Aurora for databases, and Amazon
Elastic File System or Amazon FSx for Lustre for file systems.

datasetName

(Required) Specifies the fully qualified name of the data set as it appears on the mainframe.

relativePath

(Required) Applies to the target location. Specifies the relative location of the data set in the
database or file system.

datasetOrg

(Required) Specifies the type of data set. Possible values are vsam, gdg, ps, po, or unknown.

• AWS Blu Age runtime engine: only VSAM type data sets are supported.

• Micro Focus runtime engine: VSAM, GDG, PS, PO, or Unknown type data sets are supported.

Note

If your application requires files that are not COBOL data files but are PDF or other
binary files, you can specify them as follows:

"datasetOrg": {
 "type": PS {
 "format": U
 },

Sample data set request format for VSAM

• AWS Blu Age runtime engine: supported.

• Micro Focus runtime engine: supported.

If you are importing VSAM data sets, specify vsam as the datasetOrg. Your JSON should resemble
the following example:

{

Sample data set request format for VSAM 720

AWS Mainframe Modernization User Guide

 "storageType": "Database",
 "datasetName": "AWS.M2.VSAM.KSDS",
 "relativePath": "DATA",
 "datasetOrg": {
 "vsam": {

 "encoding": "A",
 "format": "KS",
 "primaryKey": {
 "length": 11,
 "offset": 0
 }
 }
 },
 "recordLength": {
 "min": 300,
 "max": 300
 }
},
"externalLocation": {
 "s3Location": "s3://$M2_DATA_STORE/catalog/data/AWS.M2.VSAM.KSDS.DAT"
}

The following properties are supported for VSAM data sets.

encoding

(Required) Specifies the character set encoding of the data set. Possible values are ASCII (A),
EBCDIC (E), and Unknown (?).

format

(Required) Specifies the VSAM data set type and the record format.

• AWS Blu Age runtime engine: possible values are ESDS (ES), KSDS (KS), and RRDS (RR). Record
format can be fixed or variable.

• Micro Focus runtime engine: possible values are ESDS (ES), KSDS (KS), and RRDS (RR). The
VSAM definition includes the record format, so you don't need to specify it separately.

primaryKey

(Required) Applies to VSAM KSDS data sets only. Specifies the primary key. Consists of the
primary key name, key offset, and key length. The name is optional; offset and length are
required.

Sample data set request format for VSAM 721

AWS Mainframe Modernization User Guide

recordLength

(Required) Specifies the length of a record. For fixed-length record formats, these values must
match.

• AWS Blu Age runtime engine: for VSAM ESDS, KSDS, and RRDS, min is optional and max is
required.

• Micro Focus runtime engine: min and max are required.

externalLocation

(Required) Specifies the source location: that is, the Amazon S3 bucket where you uploaded the
data set.

Blu Age engine-specific properties

The AWS Blu Age runtime engine supports compression for VSAM data sets. The following example
shows how you can specify this property in JSON.

{
 common properties
 ...
 "datasetOrg": {
 "vsam": {
 common properties
 ...
 "compressed": boolean,
 common properties
 ...
 }
 }
}

Specify the compression property as follows:

compression

(Optional) Specifies whether indexes for this data set are stored as compressed values. If you
have a large data set (typically > 100 Mb), consider setting this flag to true.

Sample data set request format for VSAM 722

AWS Mainframe Modernization User Guide

Sample data set request format for GDG base

• AWS Blu Age runtime engine: not supported.

• Micro Focus runtime engine: supported.

If you are importing GDG base data sets, specify gdg as the datasetOrg. Your JSON should
resemble the following example:

{
 "storageType": "Database",
 "datasetName": "AWS.M2.GDG",
 "relativePath": "DATA",
 "datasetOrg": {
 "gdg": {
 "limit": "3",
 "rollDisposition": "Scratch and No Empty"
 }
 }
}

The following properties are supported for GDG base data sets.

limit

(Required) Specifies the number of active generations, or biases. For a GDG base cluster, the
maximum is 255.

rollDisposition

(Optional) Specifies how to handle generation data sets when the maximum is reached or
exceeded. Possible values are No Scratch and No Empty, Scratch and No Empty,
Scratch and Empty, or No Scratch and Empty. The default is Scratch and No Empty.

Sample data set request format for PS or GDG generations

• AWS Blu Age runtime engine: not supported.

• Micro Focus runtime engine: supported.

Sample data set request format for GDG base 723

AWS Mainframe Modernization User Guide

If you are importing PS or GDG generations data sets, specify ps as the datasetOrg. Your JSON
should resemble the following example:

{
 "storageType": "Database",
 "datasetName": "AWS.M2.PS.FB",
 "relativePath": "DATA",
 "datasetOrg": {
 "ps": {
 "format": "FB",
 "encoding": "A"
 }
 },
 "recordLength": {
 "min": 300,
 "max": 300
 }
},
"externalLocation": {
 "s3Location": "s3://$M2_DATA_STORE/catalog/data/AWS.M2.PS.LSEQ"
}
}

The following properties are supported for PS or GDG generations data sets.

format

(Required) Specifies the format of the data set records. Possible values are F, FA, FB, FBA, FBM,
FBS, FM, FS, LSEQ, U, V, VA, VB, VBA, VBM, VBS, VM, and VS.

encoding

(Required) Specifies the character set encoding of the data set. Possible values are ASCII (A),
EBCDIC (E), and Unknown (?)

recordLength

(Required) Specifies the length of a record. You must specify both the minimum (min) and
maximum (max) length of the record. For fixed-length record formats, these values must match.

externalLocation

(Required) Specifies the source location: that is, the Amazon S3 bucket where you uploaded the
data set.

Sample data set request format for PS or GDG generations 724

AWS Mainframe Modernization User Guide

Sample data set request format for PO

If you are importing PO data sets, specify po as the datasetOrg. Your JSON should resemble the
following example:

{
 "storageType": "Database",
 "datasetName": "AWS.M2.PO.PROC",
 "relativePath": "DATA",
 "datasetOrg": {
 "po": {
 "format": "LSEQ",
 "encoding": "A",
 "memberFileExtensions": ["PRC"]
 }
 },
 "recordLength": {
 "min": 80,
 "max": 80
 }
},
"externalLocation": {
 "s3Location": "s3://$M2_DATA_STORE/source/proc/"
}
}

The following properties are supported for PO data sets.

format

(Required) Specifies the format of the data set records. Possible values are F, FA, FB, FBA, FBM,
FBS, FM, FS, LSEQ, U, V, VA, VB, VBA, VBM, VBS, VM, and VS.

encoding

(Required) Specifies the character set encoding of the data set. Possible values are ASCII (A),
EBCDIC (E), and Unknown (?).

memberFileExtensions

(Required) Specifies an array containing one or more filename extensions, allowing you to
specify which files to be included as PDS member.

Sample data set request format for PO 725

AWS Mainframe Modernization User Guide

recordLength

(Optional) Specifies the length of a record. Both the minimum (min) and maximum (max) length
of the record are optional. For fixed-length record formats, these values must match.

externalLocation

(Required) Specifies the source location: that is, the Amazon S3 bucket where you uploaded the
data set.

Note

The current implementation for the Micro Focus runtime engine adds PDS entries as
dynamic data sets.

Sample data set request format for PO 726

AWS Mainframe Modernization User Guide

Managed runtime environments in AWS Mainframe
Modernization

If you're new to AWS Mainframe Modernization see the following topics to get started:

• What is AWS Mainframe Modernization?

• Set up for AWS Mainframe Modernization

• Get started with AWS Mainframe Modernization

• Tutorial: Set up managed runtime for AWS Blu Age

• Tutorial: Set up managed runtime for Micro Focus

A runtime environment in AWS Mainframe Modernization is a named combination of AWS
compute resources, a runtime engine, and the configuration details that you specify. The runtime
environment hosts one or more applications. Applications in AWS Mainframe Modernization
contain migrated mainframe workloads. You can choose the runtime engine for the environments
that you create. Choose AWS Blu Age if you are using the automated refactoring pattern, and
Micro Focus if you are using the replatforming pattern. You can also choose the amount of
compute resources that are right for your application and optionally attach storage to runtime
environments. AWS Mainframe Modernization enables Amazon CloudWatch metrics and logging
for you so that you can monitor your runtime environment.

Topics

• Create an AWS Mainframe Modernization runtime environment

• Update an AWS Mainframe Modernization runtime environment

• Stop an AWS Mainframe Modernization runtime environment

• Restart an AWS Mainframe Modernization runtime environment

• Delete an AWS Mainframe Modernization runtime environment

Create an AWS Mainframe Modernization runtime environment

Use the AWS Mainframe Modernization console to create an AWS Mainframe Modernization
environment.

Create a runtime environment 727

AWS Mainframe Modernization User Guide

These instructions assume that you've completed the steps in Set up for AWS Mainframe
Modernization.

Create a runtime environment

To create a runtime environment

1. Open the AWS Mainframe Modernization console at https://console.aws.amazon.com/m2/.

2. In the AWS Region selector, choose the Region where you want to create the environment.

3. On the Environments page, choose Create environment.

4. On the Specify basic information page, provide the following information:

a. In the Name and description section, enter a name for the environment.

b. (Optional). In the Environment description field, enter a description for the environment.
This description can help you and other users identify the purpose of the runtime
environment.

c. In the Engine options section, choose Blu Age for automated refactoring, or Micro Focus
for replatforming.

d. Choose a version for the engine that you selected.

e. (Optional). In the Tags section, choose Add new tag to add one or more environment
tags to your environment. An environment tag is a custom attribute label that helps you
organize and manage your AWS resources.

f. Choose Next.

5. On the Specify configurations page, provide the following information:

a. In the Availability section, choose Standalone runtime environment or High availability
cluster.

The availability pattern determines how available your application will be when it runs.
Standalone is fine for development purposes. High availability is for applications that must
be available at all times.

b. In Resources, choose an instance type and desired capacity.

These resources are the AWS Mainframe Modernization managed Amazon EC2 instances
that will host your runtime environment. Standalone runtime environments offer
two choices for instance type and permit only one instance. High availability runtime
environments offer two choices for instance type and permit up to two instances.

Create a runtime environment 728

https://console.aws.amazon.com/m2/

AWS Mainframe Modernization User Guide

For more information, see Amazon EC2 Instance Types, and contact an AWS mainframe
specialist for guidance.

6. In the Security and network section, do the following:

a. If you want the applications to be publicly accessible, choose Allow applications
deployed to this environment to be publicly accessible.

b. Choose a Virtual Private Cloud (VPC).

c. If you're using the high availability pattern, choose two or more subnets. If you're using
the standalone pattern with the AWS Blu Age engine, choose two or more subnets. If
you're using the standalone pattern with the Micro Focus engine, you can specify one
subnet.

d. Choose a security group for the VPC that you selected.

Note

AWS Mainframe Modernization creates a Network Load Balancer for you to
distribute connections to your runtime environment. Make sure your security
group inbound rules allow access from an IP address to the port you specified in
the listener property of the application definition. For more information, see
Register targets in the User Guide for Network Load Balancers.

e. In the KMS key field, choose Customize encryption settings if you want to use a
customer managed AWS KMS key. For more information, see Data encryption at rest for
AWS Mainframe Modernization service.

Note

By default, AWS Mainframe Modernization encrypts your data with a AWS KMS key
that AWS Mainframe Modernization owns and manages for you. However, you can
choose to use a customer managed AWS KMS key.

f. (Optional) Choose an AWS KMS key by name or Amazon Resource Name (ARN).
Alternately, choose Create an AWS KMS key to go to the AWS KMS console and create a
new AWS KMS key.

g. Choose Next.

Create a runtime environment 729

https://aws.amazon.com/ec2/instance-types/
https://docs.aws.amazon.com/elasticloadbalancing/latest/network/target-group-register-targets.html#target-security-groups

AWS Mainframe Modernization User Guide

7. (Optional) On the Attach storage page, choose one or more Amazon EFS or Amazon FSx file
systems, and then choose Next.

8. In the Maintenance window section, choose when you want to apply pending changes to the
environment.

• If you choose No preference, AWS Mainframe Modernization chooses an optimized
maintenance window for you.

• If you want to specify a particular maintenance window, choose Select new maintenance
window. Then choose a day of the week, a start time, and a duration for the maintenance
window.

For more information about the maintenance window, see AWS Mainframe Modernization
maintenance window.

Choose Next.

9. On the Review and create page, review the information that you entered, and then choose
Create environment.

Update an AWS Mainframe Modernization runtime
environment

Use the AWS Mainframe Modernization console to update an AWS Mainframe Modernization
runtime environment. You can update the minor version of the runtime engine or the instance
type that hosts the runtime environment. You can choose whether you want to apply updates
immediately or during the preferred maintenance window.

These instructions assume that you have completed the steps in Set up for AWS Mainframe
Modernization.

Update a runtime environment

To update a runtime environment

1. Open the AWS Mainframe Modernization console at https://console.aws.amazon.com/m2/.

2. In the AWS Region selector, choose the Region where the environment that you want to
update was created.

Update a runtime environment 730

https://console.aws.amazon.com/m2/

AWS Mainframe Modernization User Guide

3. On the Environments page, choose the environment that you want to update.

4. On the details page for the environment, choose Actions, and then choose Edit environment.

5. Make any of the following changes:

• In the Engine options section, choose the engine version that you want.

• In the Resources section, choose the instance type that you want.

• In the Maintenance window section, choose the day, time, and duration that you want.

Note

The only changes that you can choose to apply during the maintenance window are
changes to the engine version. You must apply all other changes immediately.

6. Choose Next.

7. In When to apply these changes, choose Immediately or During the next maintenance
window. Then choose Update environment.

If you choose Immediately, you see a message when the environment has finished updating.

AWS Mainframe Modernization maintenance window

Every runtime environment has a weekly two-hour maintenance window. Any system changes are
applied during this time. The maintenance window is your chance to control when modifications,
and software and security patching occurs. If a maintenance event is scheduled for a given week, it
begins during that two-hour maintenance window. Most maintenance events also complete during
the two-hour maintenance window, although larger maintenance events might take more than a
couple of hours to complete.

The two-hour maintenance window is selected at random from an 8 hour block of time per
Region. If you don't specify a maintenance window when you create a runtime environment, AWS
Mainframe Modernization assigns a 2 hour maintenance window on a randomly selected day of the
week.

AWS Mainframe Modernization consumes some of the resources in your environment instance
while maintenance is being applied. You might observe a minimal effect on performance or some
disruptions in applications during maintenance.

Maintenance window 731

AWS Mainframe Modernization User Guide

The following table shows the default time blocks when maintenance windows are assigned for
each Region.

Region Name Region Time Block

US East (N. Virginia) us-east-1 03:00–11:00 UTC

US West (Oregon) us-west-2 06:00–14:00 UTC

Asia Pacific (Mumbai) ap-south-1 06:00–14:00 UTC

Asia Pacific (Singapor
e)

ap-southeast-1 14:00–22:00 UTC

Asia Pacific (Sydney) ap-southeast-2 12:00–20:00 UTC

Asia Pacific (Tokyo) ap-northeast-1 13:00–21:00 UTC

Canada (Central) ca-central-1 03:00–11:00 UTC

Europe (Frankfurt) eu-central-1 21:00–05:00 UTC

Europe (Ireland) eu-west-1 22:00–06:00 UTC

Europe (London) eu-west-2 22:00–06:00 UTC

Europe (Paris) eu-west-3 23:59–07:29 UTC

South America (São
Paulo)

sa-east-1 00:00–08:00 UTC

Stop an AWS Mainframe Modernization runtime environment

Use the AWS Mainframe Modernization console to stop an AWS Mainframe Modernization runtime
environment. When you stop an environment the current application deployments are retained and
you won't be charged for the environment until the environment is restarted.

These instructions assume that you have completed the steps in Set up for AWS Mainframe
Modernization.

Stop a runtime environment 732

AWS Mainframe Modernization User Guide

Stop a runtime environment

If you need to stop an AWS Mainframe Modernization runtime environment, you follow similar
steps as the update environment section.

Use the AWS Mainframe Modernization console to stop an AWS Mainframe Modernization runtime
environment. When you stop an environment, the current application deployments are retained
and you won't be charged for the environment until the environment is restarted.

Note

You must stop all applications before stopping environment.

To stop a runtime environment

1. Open the AWS Mainframe Modernization console at https://console.aws.amazon.com/m2/.

2. In the AWS Region selector, choose the Region where the environment that you want to stop
was created.

3. On the Environments page, choose the environment that you want to stop.

4. On the details page for the environment, choose Actions, and then choose Edit environment.

5. On the Edit environment page, find Resources section, and update the desired capacity to
zero.

Note

To stop an environment, you can only choose to stop immediately.

6. Choose Next.

7. In When to apply these changes, choose Immediately. Then choose Update environment.

You see a message when the environment capacity is updated.

Stop a runtime environment 733

https://console.aws.amazon.com/m2/

AWS Mainframe Modernization User Guide

Restart an AWS Mainframe Modernization runtime
environment

Use the AWS Mainframe Modernization console to restart an AWS Mainframe Modernization
runtime environment. When you restart a runtime environment, the billing for the environment
will be resumed.

Restart a runtime environment

To restart an AWS Mainframe Modernization runtime environment, you follow similar steps as the
stop environment section.

To restart a runtime environment

1. Open the AWS Mainframe Modernization console at https://console.aws.amazon.com/m2/.

2. In the AWS Region selector, choose the Region where the environment that you want to restart
was created.

3. On the Environments page, choose the environment that you want to restart.

4. On the details page for the environment, choose Actions, and then choose Edit environment.

Note

The desired capacity for standalone environment can only be updated to 1. To restart a
runtime environment, you can only choose to restart immediately.

5. On the Edit environment page, find Resources section, and update the desired capacity from
zero to the required capacity.

6. Choose Next.

7. In When to apply these changes, choose Immediately. Then choose Update environment.

You see a message when the environment capacity is updated and the environment is restarted.

Delete an AWS Mainframe Modernization runtime environment

Use the AWS Mainframe Modernization console to delete an AWS Mainframe Modernization
runtime environment.

Restart a runtime environment 734

https://console.aws.amazon.com/m2/

AWS Mainframe Modernization User Guide

These instructions assume that you have completed the steps in Set up for AWS Mainframe
Modernization.

Delete a runtime environment

If you need to delete an AWS Mainframe Modernization runtime environment, make sure that
you delete any deployed applications from the environment first. You can't delete a runtime
environment where applications are deployed.

To delete an environment

1. Open the AWS Mainframe Modernization console at https://console.aws.amazon.com/m2/.

2. In the AWS Region selector, choose the Region where the environment that you want to delete
was created.

3. On the Environments page, choose the environment that you want to delete, and then choose
Actions and Delete environment.

4. In the Delete environment window, enter delete to confirm that you want to delete the
runtime environment, and then choose Delete.

Delete a runtime environment 735

https://console.aws.amazon.com/m2/

AWS Mainframe Modernization User Guide

Application Testing in AWS Mainframe Modernization

AWS Mainframe Modernization Application Testing provides automated functional equivalence
testing for your migration projects. AWS Mainframe Modernization Application Testing accelerates
migration projects by leveraging the elasticity of the cloud. You can run independent test suites on
as many parallel environments as required, reducing testing timelines. Key benefits of Application
Testing include testing acceleration and agility, high degrees of testing repeatability, built-in
scalability and elasticity, large-scale automation, cost efficiency, and seamless integration with
AWS CloudFormation for creating target test environments.

Topics

• What is AWS Mainframe Modernization Application Testing?

• AWS Mainframe Modernization Application Testing concepts

• AWS Mainframe Modernization Application Testing prerequisites

• Application Testing console workflows

• Tutorial: Set up the CardDemo sample application in AWS Mainframe Modernization Application
Testing

• Tutorial: Replay and compare in AWS Mainframe Modernization Application Testing using
CardDemo for AWS Blu Age deployed on Amazon EC2

• AWS Mainframe Modernization Application Testing supported data sets code pages

• Data protection in AWS Mainframe Modernization Application Testing

What is AWS Mainframe Modernization Application Testing?

Testing impacts migration projects significantly. It can consume up to 70% of your migration,
modernization, or augmentation project time and effort. AWS Application Testing, a feature
of AWS Mainframe Modernization, provides automated functional equivalence testing for your
migrated applications. Functional equivalence testing helps you validate that your applications on
the AWS Cloud are equivalent to your applications on your mainframe. AWS Application Testing
automatically compares changes to data sets, database records, and online 3270 screens between
your mainframe and AWS. Moreover, Application Testing permits repeatable testing, so you can
run your test scenarios many times as you update target architecture, resolve issues, and progress
toward a fully migrated application. After migration, you can continue to use Application Testing
for regression testing, to make sure that updates to runtime engines or other components don’t

What is Application Testing 736

AWS Mainframe Modernization User Guide

cause regressions. Application Testing is cost-efficient: target test environments are created using
the user-provided CloudFormation templates, leveraging Infrastructure-as-Code (IaC) concepts.
Application Testing accelerates migration projects using the elasticity of the cloud. You can run
independent test suites on as many parallel environments as required, reducing testing timelines.

Topics

• Are you a first-time Application Testing user?

• Benefits of Application Testing

• Integration with AWS CloudFormation

• How Application Testing works

• Related services

• Accessing Application Testing

• Pricing for Application Testing

Are you a first-time Application Testing user?

If you are a first-time user of Application Testing, we recommend that you begin by reading the
following sections:

• Application Testing concepts

• Tutorial: Set up CardDemo application in Application Testing

• the section called “Tutorial: Replay and compare on AWS Blu Age using CardDemo”

Benefits of Application Testing

Application Testing provides several benefits to help you in your migration process:

• Testing acceleration, agility, and flexibility.

• “Record once on mainframe, replay multiple times in AWS” testing concepts.

• IaC creation of target environments through user-supplied CloudFormation templates.

• High degrees of testing repeatability.

• Built for the cloud, with scalability and elasticity in mind.

• Large-scale testing with high degree of automation.

• Cost efficiency.

Are you a first-time Application Testing user? 737

AWS Mainframe Modernization User Guide

Integration with AWS CloudFormation

Application Testing uses infrastructure as code with AWS CloudFormation. This design choice
simplifies and improves your testing experience. AWS CloudFormation gives you autonomy and
the independence to define the better infrastructure for your needs. You can select or define for
many parameters (instance size, RDS instance, optimal security group) independently. You can add
resources, such as an Amazon SQS queue that you require for your application to work properly
under test conditions.

In the AWS CloudFormation templates provided for download, you will notice some common
features:

• Application Testing creates a fully isolated stack, including an AWS Mainframe Modernization
runtime environment and application, with its own network and security definitions. This
isolated stack provides resiliency, because other actors in the same AWS account cannot interfere
with testing activity. It also avoids situations where system operators modify the default VPC or
security group, which can cause testing activity failures.

• The security group also allows you to control external access to the resources used in testing. For
example, a database might contain confidential data.

• Full isolation prevents other actors that share the VPC from snooping on the traffic.

• It enhances performance. For example, communication between the AWS Mainframe
Modernization application that the template creates and its Amazon RDS database occurs on a
separate network (a private VPC), which avoids other actors slowing down traffic.

We recommend that you implement these features in the AWS CloudFormation templates you
create as well.

How Application Testing works

The following figure is an overview of how Application Testing works.

Integration with AWS CloudFormation 738

AWS Mainframe Modernization User Guide

• You can transfer input data from the source to AWS using File Transfer or your preferred tools for
mainframe data transfer.

• You run the same business logic on both the source and the target.

• Application Testing automatically compares the output data (data sets, relational database
changes, online 3270 screens and user interactions) from both source and target. After you run
your test scenario on the mainframe, you capture the output data and transfer them to AWS,
then replay the test scenario on the target. Application Testing automatically compares the
output data from the test run on AWS with the output data from the source. You can see at a
glance which records are identical, equivalent, different, or missing. In addition, you can define
equivalence rules, so that records that are not identical but have the same business meaning are
understood to be equivalent.

The workflow you follow in Application Testing consists of the following steps:

1. Create test cases: Test cases are the smallest unit of testing actions. When you create a test
case, you also identify the data types to be compared that best represent functional equivalence
between the source and target.

2. Define test environment configuration: Specify your environment configuration by specifying
AWS CloudFormation template and additional attributes.

How Application Testing works 739

AWS Mainframe Modernization User Guide

3. Create test suites: Test suites are a collection of test cases.

4. Upload data sets on the source and replay on the target: Capture the input and output data
sets on the mainframe, and upload them to AWS. Then replay the test scenario on AWS.

5. Compare source and target data sets: Application Testing automatically compares the output
data sets from both source and target, so you can see at a glance what is correct and what is not.

Both the final action of a test scenario and the goal of the entire process is to identify discrepancies
between the source and the target test runs. Application Testing compares the source version and
the target version for the data captured on all the interaction channels during the test run. It also
compares the final states of the relevant data (as defined in the test cases).

Related services

Application Testing is a feature of AWS Mainframe Modernization. It also uses infrastructure as
code with AWS CloudFormation to ensure testing repeatability, automation, and cost efficiency. For
more information, see:

• AWS Mainframe Modernization

• AWS CloudFormation

Accessing Application Testing

You can access Application Testing console at https://console.aws.amazon.com/apptest/ or from
the AWS Mainframe Modernization console by choosing Application Testing in the left navigation
pane.

Pricing for Application Testing

Pricing for Application Testing can be found at AWS Mainframe Modernization Pricing.

AWS Mainframe Modernization Application Testing concepts

AWS Application Testing uses terms that other testing services or software packages might
use with a slightly different meaning. The following sections explain how AWS Mainframe
Modernization Application Testing uses this terminology.

Topics

Related services 740

https://docs.aws.amazon.com/m2/latest/userguide/what-is-m2.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/Welcome.html
https://console.aws.amazon.com/apptest/
https://aws.amazon.com/mainframe-modernization/pricing/

AWS Mainframe Modernization User Guide

• Test case

• Test suite

• Test environment configuration

• Upload

• Replay

• Compare

• Database comparisons

• Dataset comparisons

• Comparison status

• Equivalence rules

• Final-state data set comparison

• State-progress database comparisons

• Functional equivalence (FE)

• Online 3270 screen comparisons

• Replay data

• Reference data

• Upload, Replay, and Compare

• Differences

• Equivalencies

• Source application

• Target application

Test case

A test case is the individual most atomic unit of action in your testing workflow. Usually, a test case
is used to represent an independent unit of business logic that modifies data. Comparisons will be
done for each test case. Test cases are added to a test suite. Test cases contain metadata about the
data artifacts (datasets, databases) which the test case modifies and about the business functions
that are triggered during the test case execution: batch jobs, 3270 interactive dialogs, and others.
For example, the names and code pages of datasets.

Test case 741

AWS Mainframe Modernization User Guide

Input data → Test case → Output data

Test cases can be either online or batch type:

• Online 3270 screen test cases are test cases where user executes interactive screen dialogs
(3270) to read, modify, or produce new business data (database and / or datasets records).

• Batch test cases are test cases requiring to submit a batch to read, process, and modify or
produce new business data (datasets and / or database records).

Test suite

Test suites have a collection of test cases that are run in a sequential order, one by one. Replay is
done at a test suite level. All test cases in the test suite are run on the target testing environment
when a test suite is replayed. If there are differences after comparing reference and replay testing
artifacts, the differences will be shown at the test case level.

For example, Test Suite A:

Test Case 1, Test Case 2, Test Case 3, and so forth.

Test environment configuration

Test environment configuration allows you to set up the initial set of data and configuration
parameters (or resources) with CloudFormation that you need to make the test run repeatable.

Upload

Uploads are done at a test suite level. During upload, you must provide an Amazon S3 location that
contains the artifacts, data sets, and relational database CDC journals from the source mainframe
to be compared against. These will be considered as reference data from the source mainframe.
During replay, the generated replay data will be compared against the uploaded reference data to
ensure application equivalency.

Replay

Replays are done at a test suite level. During replay, AWS Mainframe Modernization Application
Testing uses the CloudFormation script to create the target test environment and run the
application. Data sets and database records that are modified during replay are captured and

Test suite 742

AWS Mainframe Modernization User Guide

compared against the reference data from the mainframe. Typically, you will upload on the
mainframe once and then replay multiple times, until functional equivalency has been reached.

Compare

Comparisons are made automatically after a replay finishes successfully. During comparisons, the
referenced data you uploaded and captured during the upload phase is compared against the
replay data generated during the replay phase. Comparisons happen at an individual test case level
for data sets, database records, and online screens separately.

Database comparisons

Application Testing employs a state-progress matching functionality when comparing changes in
database records between the source and target applications. State-progress matching compares
differences in each individual run INSERT, UPDATE, and DELETE statement, unlike comparing
table rows at the end of the process. State-progress matching is more efficient than alternatives,
providing faster and more accurate comparisons by only comparing changed data and detecting
self-correcting errors in the transaction flow. By using CDC (Changed Data Capture) technology,
Application Testing can detect individual relation database changes and compare them between
the source and target.

Relation database changes are generated on source and target by the tested application code
using DML (Data Modification Language) statements like SQL INSERT, UPDATE, or DELETE, but
also indirectly when the application is using stored procedures, or when database triggers are set
on some tables, or when CASCADE DELETE are used to guarantee referential integrity, triggering
automatically additional deletions.

Dataset comparisons

Application Testing automatically compares the reference and replay data sets produced on the
source (recording) and target replay) systems.

To compare data sets:

1. Start with the same input data (data sets, database) on both the source and the target.

2. Run your test cases on the source system (mainframe).

3. Capture the produced data sets and upload them to an Amazon S3 bucket. You can transfer
input data sets from the source to AWS using CDC journals, screens,and data sets.

Compare 743

AWS Mainframe Modernization User Guide

4. Specify the location of the Amazon S3 bucket where the mainframe data sets were uploaded
when you uploaded the test case.

After replay is complete, Application Testing automatically compares the output reference and
target data sets, showing if records are identical, equivalent, different, or missing. For example,
date fields that are relative to the moment of workload execution (day + 1, end of current month,
etc.) are automatically considered as equivalent. In addition, you can optionally define equivalence
rules, so that records that are not identical still have the same business meaning, and are flagged
as equivalent.

Comparison status

Application Testing uses the following comparison statuses: IDENTICAL, EQUIVALENT, and
DIFFERENT.

IDENTICAL

The source and target data are exactly the same.

EQUIVALENT

The source and target data contain false differences considered as equivalences, such as dates
or timestamps that do not affect functional equivalence when they are relative to the moment
of workload execution. You can define equivalence rules to identify what these differences
are. When all replayed test suites compared to their reference test suites show the status of
IDENTICAL or EQUIVALENT, your test suite shows no differences.

DIFFERENT

The source and target data contains differences, such as a different number of records in a
dataset, or different values in the same record.

Equivalence rules

A set of rules to identify false differences that can be considered equivalent results. Offline
functional equivalence testing (OFET) inevitably causes differences for some results between the
source and target systems. For example, update timestamps are different by design. Equivalence
rules explain how to adjust for those differences and avoid false positives at comparison time. For
example, if a date is runtime + 2 days in a particular data column, the equivalence rule describes it

Comparison status 744

AWS Mainframe Modernization User Guide

and accepts a time on the target system that is runtime on target + 2 days instead of a value that
strictly equals the same column in the reference uploading.

Final-state data set comparison

The end state of data sets that have been created or modified, including all changes or updates
made to the data sets from their initial state. For data sets, Application Testing looks at the records
in those data sets at the end of a test case run, and compare the results.

State-progress database comparisons

Comparisons of changes done to database records as a sequence of individual DML (Delete,
Update, Insert) statements. Application Testing compares individual changes (insert, update, or
delete a table's row) from the source database to the target database, and will identify differences
for each individual change. For example, an individual INSERT statement may be used to insert in a
table a row with different values on the source database compared to the target database.

Functional equivalence (FE)

Two systems are considered functionally equivalent if they produce the same results on all
observable operations, given the same input data. For example, two applications are considered
functionally equivalent if the same input data produces identical output data (through screens,
dataset changes or database changes).

Online 3270 screen comparisons

Compares the output of the mainframe 3270 screens with the output of the modernized
application web screens when the target system is running under AWS Blu Age runtime in the AWS
Cloud. And it compares the output of the mainframe 3270 screens with the 3270 screens of the
rehosted application when the target system is running under Micro Focus runtime in the AWS
Cloud.

Replay data

Replay data is used to describe the data generated by replaying a test suite on the target test
environment. For example, replay data is generated when a test suite is running on an AWS
Mainframe Modernization service application. Replay data is then compared to the reference data
captured from the source. Every time you replay the workload in the target environment, a new
generation of replay data is generated.

Final-state data set comparison 745

AWS Mainframe Modernization User Guide

Reference data

Reference data is used to describe the data captured on the source mainframe. It is the reference to
which replay (target) generated data will be compared. Usually, for every record on the mainframe
that creates reference data, there will be many replays. This is because users typically capture
the correct state of the application on the mainframe, and replay the test cases on the target
modernized application to validate equivalency. If bugs are found, they are fixed and the test cases
are replayed again. Often, multiple cycles of replay, fixing bugs, and replaying again to validate the
occurrence. This is called the capture once, replay multiple times paradigm of testing.

Upload, Replay, and Compare

Application Testing operates in three steps:

• Upload: captures the referenced data created on the mainframe for each test case of a test
scenario. These can include 3270 online screens, data sets, and database records.

• For online 3270 screens, you must use the Blu Insights terminal emulator to capture your
source workload. For more information see, Blu Insights documentation.

• For data sets, you will need to capture the data sets produced by each test case on the
mainframe by using common tools, like FTP or the dataset transfer service part of AWS
Mainframe Modernization.

• For database changes, you use theAWS Mainframe Modernization Data Replication with
Precisely documentation to capture and generate CDC journals containing changes.

• Replay: The test suite is replayed in the target environment. All test cases specified in the test
suite run. Specified data types created by the individual test cases, such as data sets, relational
database changes, or 3270 screens, will be captured with automation. These data are known as
replay data, and will be compared against the reference data captured during the upload phase.

Note

The relational database changes will require DMS-specific configuration options in your
initial condition CloudFormation template.

• Compare: the source testing reference data, and the target replay data are compared, and the
results will be displayed to you as identical, different, equivalent, or missing data.

Reference data 746

https://bluinsights.aws/docs/
https://aws.amazon.com/marketplace/pp/prodview-en3xrbgzbs3dk
https://aws.amazon.com/marketplace/pp/prodview-en3xrbgzbs3dk

AWS Mainframe Modernization User Guide

Differences

Indicates differences have been detected between the reference and replay data sets by data
comparison. For example, a field in an online 3270 screen that is showing different values from a
business logic standpoint between the source mainframe and the target modernized application
will be considered as a difference. Another example is a upload in a data set that is not identical
between source and target applications.

Equivalencies

Equivalent records are records that are different between the reference and replay data sets,
but should not be treated as different from a business logic standpoint. For example, a record
containing the timestamp of when the dataset was produced (workload execution time). Using
customizable equivalency rules, you can instruct Application Testing to treat such false positive
difference as an equivalence, even if it shows different values between reference and replay data.

Source application

The source mainframe application to be compared against.

Target application

The new or modified application on which testing is done and which will be compared to the
source application to detect any defects and to achieve functional equivalence between source and
target applications. The target application is typically running in the AWS Cloud.

AWS Mainframe Modernization Application Testing
prerequisites

AWS Mainframe Modernization Application Testing feature in AWS Mainframe Modernization
allows you to perform automated functional equivalence testing for your migration projects. To
prepare for using the Application Testing in the AWS Mainframe Modernization console, do the
following:

1. Define test cases: Define the basic units of testing you want to run and replay in a specific order,
for your target application. For additional information on how to create test cases, see the
section called “Create test cases in Application Testing”.

Differences 747

AWS Mainframe Modernization User Guide

2. Prepare CloudFormation template and input data: Create a CloudFormation template that
will be used to provision the target test environment. The variables from this template will be
used for adding input data and output variable names in your AWS Mainframe Modernization
application. For additional information, see Working with AWS CloudFormation template in AWS
CloudFormation User guide.

3. Ensure mainframe access and data capture: Verify that you have access to the source
mainframe. This will also ensure that you can capture and upload the source data generated by
the applications running on the mainframe.

Application Testing console workflows

AWS Mainframe Modernization Application Testing console helps you create test cases, test suites,
and test environment configurations.

Topics

• Create test cases in AWS Mainframe Modernization Application Testing

• Create test suites in AWS Mainframe Modernization Application Testing

• Create test environment configurations in AWS Mainframe Modernization Application Testing

Create test cases in AWS Mainframe Modernization Application Testing

A test case is an atomic unit that represents a certain action in your workflow. For additional
information on various concepts, see ???.

Important

You need to create at least one test environment configurations first before running test
cases. To create your first environment configuration, see the section called “Create test
environment configurations in Application Testing”.

Topics

• Create a Batch test case

• Create an Online 3270 screen test case

Console workflows in Application Testing 748

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/template-guide.html

AWS Mainframe Modernization User Guide

Create a Batch test case

Batch test cases allow you to submit a batch to read, process, and modify or produce new business
data (database and/or data set records).

To create a Batch test case

1. Open the AWS Mainframe Modernization Application Testing console at https://
console.aws.amazon.com/apptest/.

2. In the AWS Region selector, choose the Region where Application Testing is available.

Note

Application Testing is currently available in US East (N. Virginia), Asia Pacific (Sydney),
Europe (Frankfurt), and South America (São Paulo) regions only.

3. In the left navigation pane, select Test cases.

4. In Define test case, enter your test case name and optional description. Choose Batch under
Test case type.

5. Choose Next.

6. (Optional) On Specify batch JCL parameters page, add the JCL (job control language) name
and your job parameters (names and values).

7. Choose Next.

8. On Data source to capture page, you can choose either Relational database changes, Data
sets, or both.

• Choose Relational database changes when you want the test case to modify database
records.

• Choose Data sets when you want the test case to modify data sets. Under Output data sets,
add the name of your output data set.

Note

You can add multiple data sets.

9. Choose Next.

10. On Review and create page, review all information and choose Create test case.

Create test cases in Application Testing 749

https://console.aws.amazon.com/apptest/
https://console.aws.amazon.com/apptest/

AWS Mainframe Modernization User Guide

Create an Online 3270 screen test case

Online 3270 screen test cases allow you to run interactive screen dialogs (3270) to read, modify, or
produce new business data (database and/or data set records).

To create an Online 3270 screen test case

1. Open the AWS Mainframe Modernization Application Testing console at https://
console.aws.amazon.com/apptest/.

2. In the AWS Region selector, choose the Region where Application Testing is available.

Note

Application Testing is currently available in US East (N. Virginia), Asia Pacific (Sydney),
Europe (Frankfurt), and South America (São Paulo) regions only.

3. In the left navigation pane, select Test cases.

4. In Define test case, enter your test case name and optional description. Choose Online 3270
screens under Test case type.

5. Choose Next.

Note

Online 3270 screen does not need you to Specify JCL parameters.

6. Choose Next.

7. On Data source to capture page, the default selection is Online 3270 screens. Additionally,
you can choose Relational database changes and Data sets.

• Choose Relational database changes when you want the test case to modify database
records.

• Choose Data sets when you want the test case to modify data sets. Under Output data sets,
add the name of your output data set.

Note

You can add multiple data sets.

Create test cases in Application Testing 750

https://console.aws.amazon.com/apptest/
https://console.aws.amazon.com/apptest/

AWS Mainframe Modernization User Guide

8. Choose Next.

9. On Review and create page, review all information and choose Create test case.

Create test suites in AWS Mainframe Modernization Application Testing

Test suites are series of test cases that are run in a sequential order. Test suites are important for
replaying test cases.

Important

Before creating test suites, you need to have at least one test case. You can create your first
test case using, the section called “Create test cases in Application Testing”.

For additional information on various concepts, see the section called “Application Testing
concepts”.

Topics

• Create a test suite

• Upload reference data

• Replay and compare

Create a test suite

Test suites allow you to run different test cases, and replay and compare them later.

To create a test suite

1. Open the AWS Mainframe Modernization Application Testing console at https://
console.aws.amazon.com/apptest/.

2. In the AWS Region selector, choose the Region where Application Testing is available.

Note

Application Testing is currently available in US East (N. Virginia), Asia Pacific (Sydney),
Europe (Frankfurt), and South America (São Paulo) regions only.

Create test suites in Application Testing 751

https://console.aws.amazon.com/apptest/
https://console.aws.amazon.com/apptest/

AWS Mainframe Modernization User Guide

3. In the left navigation pane, select Test cases.

4. Choose Create test suites.

5. In the Create test suites section, find test cases from the test case library, and choose Add
selected test cases.

Note

You can add up to 20 test cases in one test suite.

6. In the Test suite pane, enter your test suite name and optional description. Also, select from
the either managed runtime or non-managed runtime, which will define how test suite
configures and deconfigures an AWS Mainframe Modernization application. Optionally, add
the AWS Mainframe Modernization import data set JSON S3 URI.

7. In the Added test cases section, stack your test cases in the order you want to upload and
replay them.

8. Choose Create test suite.

Upload reference data

Upload mainframe reference data to AWS Application Testing. You only need to save the uploaded
reference data the first time. The testing service can reuse the uploaded results from the source
and compare them consecutively with the replayed results on the target.

To upload reference data

1. From the Test suites section, choose the test suite to upload reference data.

2. Choose Upload.

3. On the Upload reference data page, select test cases you want to replay. Complete fields for
Data captured date, Database change journal S3 location, Data sets S3 location, and Choose
Upload.

Replay and compare

Replay and compare process associates your test case to the target test environment and runs the
application. You need to upload data before running the replay process.

Create test suites in Application Testing 752

AWS Mainframe Modernization User Guide

To replay and compare

1. From the Test suites section, choose the test suite to replay.

2. Choose Replay and compare.

3. On the Replay and compare overview page, select your test environment configuration and
review information. Edit function allows you to edit any test environment configuration fields.
You can also find AWS CloudFormation parameters.

4. Under Test cases to be replayed section, choose test cases and place them in the order you
want to replay them.

5. Choose Replay and compare.

Create test environment configurations in AWS Mainframe
Modernization Application Testing

Test environment configurations allow you to set up the initial set of data and configuration
parameters (or resources) with AWS CloudFormation that you need to make the test run
repeatable.

For additional information on various concepts, see the section called “Application Testing
concepts”.

Create a test environment configuration

Configure your test environment to replay and compare test cases in Application Testing.

Set up test environment configurations

1. Open the AWS Mainframe Modernization Application Testing console at https://
console.aws.amazon.com/apptest/.

2. In the AWS Region selector, choose the Region where Application Testing is available.

Note

Application Testing is currently available in US East (N. Virginia), Asia Pacific (Sydney),
Europe (Frankfurt), and South America (São Paulo) regions only.

3. In the left navigation pane, select Test environment configurations .

Create test environment configurations in Application Testing 753

https://console.aws.amazon.com/apptest/
https://console.aws.amazon.com/apptest/

AWS Mainframe Modernization User Guide

4. Choose Create test environment configuration.

5. On the Create test environment configuration pane, enter the name and description. Also
add your Amazon S3 bucket that contains the CloudFormation template for Application
Testing. Additionally, you can add the CloudFormation input parameters that will be used
during the CloudFormation stack creation.

6. Specify your AWS Mainframe Modernization application that will be affected by this test
configuration. Add output variable name for AWS Mainframe Modernization application ID,
runtime engine (AWS Blu Age non-managed or Micro Focus managed).

Note

The output variable name for AWS Mainframe Modernization application ID should
match the output variable name from the CloudFormation template for stack creation.

Important

AWS Blu Age non-managed runtime also requires you to specify the output variable
name for VPC endpoint service ID, output variable name for listener port, and output
variable name for WebApp name. These names should match the output variable
names from the CloudFormation template.

7. (Optional) Additional attribute such as output variable name can be defined for the Database
Migration Service (DMS) task Amazon Resource Name (ARN), which is used for capturing
relational database changes. Another attribute is Source database DDL S3 URI.

Important

The output variable name should match the variable name from CloudFormation
template.

8. (Optional) Customize your Key Management Service (KMS) key. For more information, see
Managing access to customer managed keys in the AWS Key Management Service Developer
Guide.

9. Choose Create test environment configuration.

Create test environment configurations in Application Testing 754

https://docs.aws.amazon.com/kms/latest/developerguide/control-access-overview.html#managing-access

AWS Mainframe Modernization User Guide

Tutorial: Set up the CardDemo sample application in AWS
Mainframe Modernization Application Testing

For this tutorial, you create an AWS CloudFormation stack that helps you set up the CardDemo
sample application for replatforming with Micro Focus on AWS Mainframe Modernization managed
service, and features including AWS Mainframe Modernization Application Testing. The tutorial
describes a sample AWS CloudFormation template that you can use to create the stack. We also
provide a zipped file of the necessary application artifacts. The example template provisions a
database, a runtime environment, an application, and a fully isolated network environment.

This template creates several AWS resources. You will be billed for them if you create a stack from
this template.

Prerequisites

• Download and unzip the IC3-card-demo-zip and datasets_Mainframe_ebcdic.zip.
These files contain the CardDemo sample and sample datasets for use with AWS Application
Testing.

• Create an Amazon S3 bucket to hold the CardDemo files and other artifacts. For example, my-
carddemo-bucket.

Step 1: Prepare to set up CardDemo

Upload the CardDemo sample files and edit the AWS CloudFormation template that will create the
CardDemo application.

1. Upload the datasets_Mainframe_ebcdic and IC3-card-demo folders that you unzipped
previously to your bucket.

2. Download the aws-m2-math-mf-carddemo.yaml AWS CloudFormation template from your
bucket. It is in the IC3-card-demo folder.

3. Edit the aws-m2-math-mf-carddemo.yaml AWS CloudFormation template as follows:

• Change the BucketName parameter to the name of the bucket that you defined previously,
such as my-carddemo-bucket.

• Change the ImportJsonPath to the location in your bucket of the mf-carddemo-
datasets-import.json file. For example, s3://my-carddemo-bucket/IC3-card-

Tutorial: Set up CardDemo application in Application Testing 755

https://github.com/aws-samples/aws-mainframe-modernization-carddemo
https://github.com/aws-samples/aws-mainframe-modernization-carddemo
https://d33z0psz0eww7s.cloudfront.net/IC3-card-demo.zip
https://d33z0psz0eww7s.cloudfront.net/datasets_Mainframe_ebcdic.zip

AWS Mainframe Modernization User Guide

demo/mf-carddemo-datasets-import.json Updating this value makes sure that the
output M2ImportJson has the correct value.

• (Optional) Adapt the EngineVersion and InstanceType parameters to match your
standards.

Note

Do not modify the M2EnvironmentId and M2ApplicationId outputs. Application
Testing uses those values to locate the resources with which it will interact.

Step 2: Create all necessary resources

Run your customized AWS CloudFormation template to create all the resources you need to
complete this tutorial successfully. This template sets up the CardDemo application so that you can
use it in testing.

1. Log in to the AWS CloudFormation console and choose Create stack, then choose With new
resources (standard).

2. In Prerequisite - Prepare template, choose Template is ready.

3. In Specify template, choose Upload a template file, then choose Choose file.

4. Navigate to where you downloaded aws-m2-math-mf-carddemo.yaml and choose that file,
then choose Next.

5. In Specify stack details provide a name for the stack so you can easily find it in a list and then
choose Next.

6. In Configure stack options, keep the default values and choose Next.

7. In Review, check what AWS CloudFormation is creating for you, and then choose Submit.

It takes about 10–15 minutes for AWS CloudFormation to create the stack.

Note

The template is set up to append a unique suffix to the names of the resources it creates.
This means that you can create multiple instances of this stack template in parallel, a key
feature for Application Testing that allows you to run multiple test suites at the same time.

Step 2: Create all necessary resources 756

AWS Mainframe Modernization User Guide

Step 3: Deploy and start the application

Deploy the CardDemo application that AWS CloudFormation created for you and make sure it is
running.

1. Open the AWS Mainframe Modernization console and choose Applications from the left
navigation.

2. Choose the CardDemo application, which is named something like aws-m2-math-mf-
carddemo-abc1d2e3.

3. Choose Actions, then choose Deploy application.

4. In Environments, choose the runtime environment that corresponds to the application. It will
have the same unique identifier appended to the end of the name. For example, aws-m2-
math-mf-carddemo-abc1d2e3.

5. Choose Deploy. Wait until the application deploys successfully and is in the Ready state.

6. Choose the application, then choose Actions and Start application. Wait until the application
is in the Running state.

7. In the application details page, copy the Port and DNS Hostname, which you need in order to
connect to the running application.

Step 4: Import initial data

To use the CardDemo sample application, you must import an initial set of data. Complete the
following steps.

1. Download the mf-carddemo-datasets-import.json file.

2. Edit the file in your preferred text editor.

3. Locate the s3Location parameter and update the value to point to the Amazon S3 bucket
you created.

4. Make this same change for all occurrences of s3Location, then save the file.

5. Log in to the Amazon S3 console and navigate to the bucket you created earlier.

6. Upload the customized mf-carddemo-datasets-import.json file.

7. Open the AWS Mainframe Modernization console and choose Applications from the left
navigation.

8. Choose the CardDemo application.

Step 3: Deploy and start the application 757

AWS Mainframe Modernization User Guide

9. Choose Data sets and then choose Import.

10. Navigate to the location in Amazon S3 where you uploaded the customized JSON file and
choose Submit.

This job imports 23 datasets. To monitor the outcome of the import job, check the console. When
all datasets are successfully imported, connect to the application.

Note

When you use this template in Application Testing, the Output M2ImportJson
automatically handles the import process.

Step 5: Connect to the CardDemo application

Connect to the CardDemo sample application using the 3270 emulator of your choice.

• When the application is running, use your 3270 emulator to connect to the application,
specifying the DNS hostname and the port name, if necessary.

For example, if you are using the open source c3270 emulator, your command looks like this:

c3270 -port port-number DNS-hostname

port

The port specified on the application detail page. For example, 6000.

Hostname

The DNS Hostname specified on the application detail page.

The following figure shows where to find the port and DSN Hostname.

Step 5: Connect to the CardDemo application 758

https://x3270.miraheze.org/wiki/X3270

AWS Mainframe Modernization User Guide

Tutorial: Replay and compare in AWS Mainframe Modernization
Application Testing using CardDemo for AWS Blu Age deployed
on Amazon EC2

In this tutorial, you will complete required steps to replay and compare testing workloads with the
CardDemo application running on AWS Blu Age deployed on Amazon EC2.

Step 1: Obtain AWS Blu Age Amazon EC2 Amazon Machine Image (AMI)

Follow the instructions in the AWS Blu Age Runtime (on Amazon EC2) Setup tutorial for
onboarding steps required to get access to AWS Blu Age on Amazon EC2 AMI.

Step 2: Start an Amazon EC2 instance using the AWS Blu Age AMI

1. Set up your AWS credentials.

2. Identify the location of the 3.5.0 Amazon EC2 AMI binary file (CLI only/AWS Blu Age version)
from the Amazon S3 bucket:

aws s3 ls s3://aws-bluage-runtime-artifacts-xxxxxxx-eu-west-1/
aws s3 ls s3://aws-bluage-runtime-artifacts-xxxxxxx-eu-west-1/3.5.0/AMI/

Tutorial: Replay and compare on AWS Blu Age using CardDemo 759

https://docs.aws.amazon.com/m2/latest/userguide/ba-runtime-setup.html

AWS Mainframe Modernization User Guide

Note

Application Testing feature is only available to use in 4 regions in prod (us-east-1, sa-
east-1, eu-central-1 and ap-southeast-2).

3. Restore the AMI in your account with the following command:

aws ec2 create-restore-image-task --object-key 3.5.0/AMI/ami-0182ffe3b9d63925b.bin
 --bucket aws-bluage-runtime-artifacts-xxxxxxx-eu-west-1 --region eu-west-1 --name
 "AWS BLUAGE RUNTIME AMI"

Note

Replace the AMI bin file name and the Region where you want to create the AMI.

4. After you create an Amazon EC2 instance you can find the correct AMI ID that was restored
AMI from the Amazon S3 bucket in the Amazon EC2 image catalog.

Note

In this tutorial, the AMI ID is ami-0d0fafcc636fd1e6d, and you must change this ID in
the different configuration files to the one provided to you.

1. If the aws ec2 create-restore-image-task fails, then check your version of Python and CLI
using the following command:

aws --version

Note

Python version must be >= 3 and CLI version must be >= 2.

2. If these versions are obsolete, the CLI must be updated. To update the CLI:

a. Follow the instructions in Install or update the latest version of the AWS CLI.

b. Remove CLI v1 with the following command:

Step 2: Start an Amazon EC2 instance using the AWS Blu Age AMI 760

https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html

AWS Mainframe Modernization User Guide

sudo yum remove awscli

c. And install CLI v2 with the following commands:

curl "https://awscli.amazonaws.com/awscli-exe-linux-x86_64.zip" -o
 "awscliv2.zip"
unzip awscliv2.zip
sudo ./aws/install

d. Finally, check version of Python and CLI with the following command:

aws --version

3. You can then redo the aws ec2 create-restore-image-task.

Step 3: Upload CardDemo dependent files to S3

Copy the content of folders databases, file-system, and userdata. Download and unzip the
CardDemo applications. These three folders must be copied into one of your buckets called your-
s3-bucket in this documentation.

Step 4: Load databases and initialize the CardDemo application

Create a temporary Amazon EC2 instance that you will use as a compute resource to generate
the required database snapshots for the CardDemo application. This EC2 instance will not run the
CardDemo application itself, but instead generate the database snapshots that will be used later.

Start by editing the provided CloudFormation template named ‘load-and-create-ba-
snapshots.yml.’ This is the CloudFormation template that's used to create the Amazon EC2 instance
used to generate the database snapshots.

1. Generate and provide your EC2 key pair that will be used for the EC2 instance. For more
information, see Create key pairs.

Example:

Ec2KeyPair:
 Description: 'ec2 key pair'
 Default: 'm2-tests-us-west-2'

Step 3: Upload CardDemo dependent files to S3 761

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/create-key-pairs.html

AWS Mainframe Modernization User Guide

 Type: String

2. Specify the Amazon S3 path of your folder where you have put the database folder from the
previous step:

S3DBScriptsPath:
 Description: 'S3 DB scripts folder path'
 Type: String
 Default: 's3://your-s3-bucket/databases'

3. Specify the Amazon S3 path of your folder where you have put the file-system folder from the
previous step:

S3ApplicationFilesPath:
 Description: 'S3 application files folder path'
 Type: String
 Default: 's3://your-s3-bucket/file-system'

4. Specify the Amazon S3 path of your folder where you have put the userdata folder from the
previous step:

S3UserDataPath:
 Description: 'S3 userdata folder path'
 Type: String
 Default: 's3://your-s3-bucket/userdata'

5. Also specify an Amazon S3 path where you will save the result files to be used in the next step.

S3SaveProducedFilesPath:
 Description: 'S3 path folder to save produced files'
 Type: String
 Default: 's3://your-s3-bucket/post-produced-files'

6. Change the AMI ID with the correct one obtained earlier in this tutorial using the following
template:

 BaaAmiId:
 Description: 'ami id (AL2) for ba anywhere'
 Default: 'ami-0bd41245734fd20d9'
 Type: String

Step 4: Load databases and initialize the CardDemo application 762

AWS Mainframe Modernization User Guide

• You can optionally change the name of the three snapshots that will be created by the run
of the load databases withCloudFormation. These will be visible in the CloudFormation
stack as it’s being created and will be used later in this tutorial. Remember to note the
names used for the database snapshots.

SnapshotPrimary:
 Description: 'Snapshot Name DB BA Primary'
 Type: String
 Default: 'snapshot-primary'

 SnapshotBluesam:
 Description: 'Snapshot Name DB BA Bluesam'
 Type: String
 Default: 'snapshot-bluesam'

 SnapshotJics:
 Description: 'Snapshot Name DB BA Jics'
 Type: String
 Default: 'snapshot-jics'

Note

In this document, we assume that the name of the snapshots remains consistent.

7. Run the CloudFormation with CLI or AWS console using the Create Stack button and wizard. At
the end of the process, you should see three snapshots in the RDS console with the name you
chose followed by a unique ID. You will need these names in the next step.

Note

RDS will add postfixes to the snapshots names defined in the AWS CloudFormation
template. Be sure to obtain the full snapshot name from RDS before proceeding to the
next step.

Sample CLI command-

Step 4: Load databases and initialize the CardDemo application 763

AWS Mainframe Modernization User Guide

aws cloudformation create-stack --stack-name load-and-create-ba-snapshots --
template-url https://your-apptest-bucket.s3.us-west-2.amazonaws.com/load-and-
create-ba-snapshots.yml --capabilities CAPABILITY_NAMED_IAM

You can also check in the Amazon S3 path that you provided for S3SaveProducedFilesPath
that the datasets have been correctly created.

Step 5: Launch AWS Blu Age runtime CloudFormation

Use CloudFormation to run the Amazon EC2 instance with the CardDemo AWS Blu Age
application. You must replace some variables in the CloudFormation named m2-with-ba-using-
snapshots-https-authentication.yml by editing the YAML file or by modifying the values in
the console during launch of the CFN.

1. Modify the AllowedVpcEndpointPrincipals to specify which account will reach the VPC
endpoint for accessing the AWS Blu Age runtime, using the following commands:

AllowedVpcEndpointPrincipals:
 Description: 'comma-separated list of IAM users, IAM roles, or AWS accounts'
 Default: 'apptest.amazonaws.com'
 Type: String

2. Change the value of variables SnapshotPrimaryDb, SnapshotBlusamDb, and SnapshotJicsDb to
the name of the snapshots. Also obtain the snapshots names from RDS after they were created
in the previous step.

SnapshotPrimary:
 Description: 'Snapshot DB cluster for DB Primary'
 Type: String
 Default: 'snapshot-primary87d067b0'

 SnapshotBluesam:
 Description: 'Snapshot DB cluster for DB Bluesam'
 Type: String
 Default: 'snapshot-bluesam87d067b0'

 SnapshotJics:
 Description: 'Snapshot DB cluster for DB Jics'
 Type: String

Step 5: Launch AWS Blu Age runtime CloudFormation 764

AWS Mainframe Modernization User Guide

 Default: 'snapshot-jics87d067b0'

Note

RDS will add its own postfix to the snapshot names.

3. Provide your Amazon EC2 key pair for the EC2 instance, using this command:

Ec2KeyPair:
 Description: 'ec2 key pair'
 Default: 'm2-tests-us-west-2'
 Type: String

4. Provide the AMI ID that you have obtained during the AMI registration process for the variable
BaaAmiId, using:

BaaAmiId:
 Description: 'ami id (AL2) for ba anywhere'
 Default: 'ami-0d0fafcc636fd1e6d'
 Type: String

5. Provide the Amazon S3 folder path that you used in the previous step to save the produced
files, using the following command:

S3ApplicationFilesPath:
 Description: 'bucket name'
 Type: String
 Default: 's3://your-s3-bucket/post-produced-files'

6. Lastly, provide the folder path of the s3-userdata-folder-path:

S3UserDataPath:
 Description: 'S3 userdata folder path'
 Type: String
 Default: 's3://your-s3-bucket/userdata'

• (Optional) You can enable the HTTPS mode and the basic HTTP authentication for tomcat.
Although the default settings would also work.

Step 5: Launch AWS Blu Age runtime CloudFormation 765

AWS Mainframe Modernization User Guide

Note

By default, the HTTPS mode is disabled and set to mode HTTP in the parameter
BacHttpsMode:

For example:

BacHttpsMode:
 Description: 'http or https for Blue Age Runtime connection mode '
 Default: 'http'
 Type: String
 AllowedValues: [http, https]

• (Optional) To enable HTTPS mode, you must change the value to HTTPS and to provide your
ACM certificate ARN by changing the value of the variable ACMCertArn:

ACMCertArn:
 Type: String
 Description: 'ACM certificate ARN'
 Default: 'your arn certificate'

• (Optional) The basic authentication is disabled by default with the parameter
WithBacBasicAuthentication set to false. You can enable it by setting the value to true.

WithBacBasicAuthentication:
 Description: 'false or true for Blue Age Runtime Basic Authentication '
 Default: false
 Type: String
 AllowedValues: [true, false]

7. When you have completed the configuration, you can create the stack by using the edited
CloudFormation template.

Step 6: Testing the AWS Blu Age Amazon EC2 instance

Manually run the CloudFormation template to create the AWS Blu Age Amazon EC2 instance for
the CardDemo application to make sure that it starts without errors. This is done to verify that
the CloudFormation template and all prerequisites are valid, before using the CloudFormation

Step 6: Testing the AWS Blu Age Amazon EC2 instance 766

AWS Mainframe Modernization User Guide

template with the Application Testing feature. You can then use Application Testing to
automatically create the target AWS Blu Age Amazon EC2 instance during replay and compare.

1. Run the CloudFormation create stack command to create the AWS Blu Age Amazon
EC2 instance, providing the m2-with-ba-using-snapshots-https-authentication.yml
CloudFormation template you edited in the previous step:

aws cloudformation create-stack --stack-name load-and-create-ba-snapshots —-
template-url https://apptest-ba-demo.s3.us-west-2.amazonaws.com/m2-with-ba-using-
snapshots-https-authentication.yml --capabilities CAPABILITY_NAMED_IAM --region us-
west-2

Note

Remember to specify the correct Region where the AWS Blu Age AMI was restored.

2. Make sure that everything is working correctly by looking in the console to find the running
Amazon EC2 instance. Connect to it using Session Manager.

3. After you are connected to the Amazon EC2 instance, use the following commands:

sudo su
cd /m2-anywhere/tomcat.gapwalk/velocity/logs
cat catalina.log

4. Make sure that there are no exceptions or errors in the log.

5. Next, check that the application is responding by using this command:

curl http://localhost:8080/gapwalk-application/

You will see the message, "Jics application is running."

Step 7: Validate previous steps were completed correctly

In the next several steps, we will use AWS Mainframe Modernization Application Testing to replay
and compare datasets created by the CardDemo application. These steps rely on successful
completion of all previous steps in this tutorial. Validate the following before proceeding:

Step 7: Validate previous steps were completed correctly 767

AWS Mainframe Modernization User Guide

1. You have successfully created the AWS Blu Age on Amazon EC2 instance through the AWS
CloudFormation template.

2. The Tomcat service on the AWS Blu Age on Amazon EC2 is up and running, without exceptions.

When you get the EC2 instance running with the CardDemo application, complete the following
steps on the Application Testing console to perform replay and compare for batch datasets.

Step 8: Create the test case

In this step, you create the test case that will be used to compare the datasets created in the Card
Demo application.

1. Create a new test case. Give it a name and description.

2. Specify CREASTMT.JCL as the JCL name.

3. Add following datasets to Test case definition:

Name CCSID RecordFormat RecordLength

AWS.M2.CA
RDDEMO.ST
ATEMNT.PS

"037" FB 80

AWS.M2.CA
RDDEMO.ST
ATEMNT.HTML

"037" FB 100

Note

Your JCL name and dataset details must match.

Step 9: Create a test suite

1. Create a new test suite, and provide a name and description for it.

2. Add the test case that you created in the previous step to your test suite.

Step 8: Create the test case 768

AWS Mainframe Modernization User Guide

3. Once the test suite is created, capture test cases on mainframe, and upload mainframe
reference data to AWS Application Testing.

4. Choose Create test suite.

Step 10: Create a test environment configuration

1. Create a new test environment configuration, and provide a name and description for it.

2. Add your CloudFormation template. You can also add input parameter name and value from
you CloudFormation template.

3. Choose AWS Mainframe Modernization service AWS Blu Age non-managed as your runtime.

4. Add the output variable name for name for AWS Mainframe Modernization application ID,
output variable name for VPC endpoint service ID, output variable name for Listener port, and
output variable name for WebApp name.

Note

The names of these fields should match the output variable names from the
CloudFormation template that will be returned from AWS Mainframe Modernization
during stack creation.

5. (Optional) Choose output variable name for DMS (Database Migration Service) task ARN and
source database DDL (Database definition language) S3 URI location.

6. (Optional) Customize your Key Management Service (KMS) key. For more information, see
Managing access to customer managed keys in the AWS Key Management Service Developer
Guide.

7. Choose Create test environment configuration.

Step 11: Upload your input data in test suite

In this step, you run test cases on the source. To do that:

1. Download and run the datasets that originated from the mainframe run of the CardDemo
application.

2. Upload the unzipped folder to your Amazon S3 bucket. This Amazon S3 bucket must be in the
same Region as your other Application Testing resources.

Step 10: Create a test environment configuration 769

https://docs.aws.amazon.com/kms/latest/developerguide/control-access-overview.html#managing-access

AWS Mainframe Modernization User Guide

Note

There should be two files with the names matching the dataset names passed in the
previous test case.

3. On the Test suite overview page, choose the Upload button.

4. On the Upload reference data page, specify the Amazon S3 location to where you uploaded
the datasets obtained from the source mainframe.

5. Choose Upload to start the upload process.

Note

Wait for the recording to complete before you perform replay and compare.

Step 12: Replay and compare

Run the test suite and test cases in the target AWS AWS Blu Age on Amazon EC2 environment.
Application Testing will capture the replay produced datasets, and compare them to the reference
datasets that were recorded on the mainframe.

1. Choose Replay and compare. It should take about three minutes to create the CloudFormation
stack, and perform the comparison.

Once everything is complete, you should have comparison results with a few differences
intentionally created for the purpose of this demo.

AWS Mainframe Modernization Application Testing supported
data sets code pages

Use the following table to determine whether the coded character set identifier (CCSID) for
your data is supported on AWS Application Testing. If your data uses an unsupported CCSID, we
recommend that you either convert it to a supported CCSID or contact us for help.

Step 12: Replay and compare 770

https://console.aws.amazon.com/support/home/?nc1=f_dr

AWS Mainframe Modernization User Guide

CCSID Character sets Description

37 IBM037, IBM-037, Cp037 Host: USA, Canada (ESA),
Netherlands, Portugal, Brazil,
Australia, New Zealand

273 IBM273, IBM-273, Cp273 Host: Austria, Germany

277 IBM277, IBM-277, Cp277 Host: Denmark, Norway

278 IBM278, IBM-278, Cp278 Host: Finland, Sweden

280 IBM280, IBM-280, Cp280 Host: Italy

284 IBM284, IBM-284, Cp284 Host: Spain, Latin America
(Spanish)

285 IBM285, IBM-285, Cp285 Host: United Kingdom

297 IBM297, IBM-297, Cp297 Host: France

300 IBM-300 JAPAN DB EBCDIC

301 IBM-301 PC data: Japan DB

437 IBM437, IBM-437, US-ASCII,
ASCII, Cp437, US-ASCII

PC data: PC Base USA, many
other countries

500 IBM500, IBM-500, Cp500 Host: Belgium, Canada
(AS/400), Switzerland,
International Latin-1

720 IBM-720 MSDOS ARABIC

737 IBM-737, x-IBM737 MSDOS GREEK

775 IBM775, IBM-775 MSDOS BALTIC

808 IBM-808 PC data: Cyrillic, Russia, with
euro

Supported data sets code pages in Application Testing 771

AWS Mainframe Modernization User Guide

CCSID Character sets Description

813 ISO-8859-7, ISO8859_7 ISO 8859-7: Greece

819 ISO-8859-1, ISO8859_1 ISO 8859-1: Latin-1 countries

833 IBM-833 KOREAN EBCDIC

834 IBM-834, x-IBM834 KOREAN DB EBCDIC

835 IBM-835 T-CHINESE DB EBCD

836 IBM-836 S-CHINESE EBCDIC

837 IBM-837 S-CHINESE EBCDIC

850 IBM850, IBM-850, Cp850 PC data: Latin-1 countries

855 IBM855, IBM-855, Cp855 PC data: Cyrillic

856 IBM-856, x-IBM856, Cp856 PC data: Hebrew

858 IBM00858, IBM-858, Cp858 PC data: Latin-1 countries,
with euro

859 IBM-859 PC data: LATIN-9

860 IBM860, IBM-860 PC data: Portuguese

861 IBM861, IBM-861 PC data: Iceland

862 IBM862, IBM-862, Cp862 PC data: Hebrew (migration)

863 IBM863, IBM-863 PC data: Canada

865 IBM865, IBM-865, Cp865 PC data: Den/Norway

866 IBM866, IBM-866, Cp866 PC data: Cyrillic, Russia

867 IBM-867 PC data: Hebrew with euro

870 IBM870, IBM-870, Cp870 Host: Latin-2 multilingual

Supported data sets code pages in Application Testing 772

AWS Mainframe Modernization User Guide

CCSID Character sets Description

871 IBM871, IBM-871, Cp871 Host: Iceland

874 x-IBM874 PC data: Thai

875 IBM-875, x-IBM875, Cp875 Host: Greece

897 IBM-897 PC data: Japan SB

912 ISO-8859-2, ISO8859_2 ISO 8859-2: Latin-2 multiling
ual

915 ISO-8859-5, ISO8859_5 ISO 8859-5: Cyrillic

916 ISO-8859-8, ISO8859_8 ISO 8859-8: Hebrew

918 IBM918, IBM-918, Cp918 Host: Urdu

920 ISO-8859-9, ISO8859_9 ISO 8859-9: Latin-5
(ECMA-128, Turkey TS-5881)

921 IBM-921, x-IBM921, Cp921 PC data: Latvia, Lithuania

922 IBM-922, x-IBM922, Cp922 PC data: Estonia

923 ISO-8859-15, Cp923,
ISO8859_15_FDIS

ISO 8859-15: Latin-9

924 IBM-924 ISO 8859-15: Latin-9

927 IBM-927 PC data: T-Chinese

930 IBM-930, x-IBM930, Cp930 Katakana Host: extended
SBCS. Kanji Host: DBCS
including 4370 user-defined
characters

932 IBM-932 PC data: Japan Mix

Supported data sets code pages in Application Testing 773

AWS Mainframe Modernization User Guide

CCSID Character sets Description

933 IBM-933, x-IBM933, Cp933 Host: Extended SBCS. Host:
DBCS including 1880 user-
defined characters and 11172
full Hangul characters

935 IBM-935, x-IBM935, Cp935 Host: Extended SBCS. Host:
DBCS including 1880 user-
defined characters.

937 IBM-937, x-IBM937, Cp937 Host: Extended SBCS. Host:
DBCS including 6204 user-
defined characters

939 IBM-939, x-IBM939, Cp939 Latin Host: extended SBCS.
Kanji Host: DBCS including
4370 user-defined characters.

942 IBM-942, IBM-942C, x-
IBM942, x-IBM942C, Cp942,
Cp942C

PC data: Extended SBCS. PC
data: DBCS including 1880
user-defined characters

943 IBM-943, IBM-943C, Shift_JIS
, windows-31j, windows-932,
x-IBM943, x-IBM943C, Cp943,
Cp943C, MS932

PC data: SBCS. PC data:
DBCS for Open environment
including 1880 IBM� user-
defined characters

947 IBM-947 T-CHINESE BIG-5

948 IBM-948, x-IBM948, Cp948 PC data: Extended SBCS. PC
data: DBCS including 6204
user-defined characters

949 IBM-949, IBM-949C, x-
IBM949, x-IBM949C, Cp949,
Cp949C

IBM KS Code - PC data: SBCS.
IBM KS code - PC data: DBCS
including 1880 user-defined
characters

Supported data sets code pages in Application Testing 774

AWS Mainframe Modernization User Guide

CCSID Character sets Description

950 Big5, IBM-950, x-IBM950,
Cp950

PC data: SBCS (IBM BIG5). PC
data: DBCS including 13493
CNS, 566 IBM selected, 6204
user-defined characters

951 IBM-951 PC data: IBM KS

954 EUC-JP, IBM-954, IBM-954C G0: JIS X201 Roman. G1: JIS
X208-1990. G1: JIS X201
Katakana. G1: JIS X212

964 EUC-TW, IBM-964, x-IBM964,
Cp964

G0: ASCII. G1: CNS 11643
plane 1. G1: CNS 11643 plane
2.

970 EUC-KR, x-IBM970, Cp970 G0: ASCII. G1: KSC X5601-198
9 including 1880 user-defined
characters

971 IBM-971 KOREAN EUC

1006 IBM-1006, x-IBM1006,
Cp1006

ISO-8: Urdu

1025 IBM-1025, x-IBM1025,
Cp1025

Host: Cyrillic multilingual

1026 IBM1026, IBM-1026, Cp1026 Host: Latin-5 (Turkey)

1027 IBM-1027 JAPAN LATIN EBCD

1041 IBM-1041 PC data: Japan

1043 IBM-1043 PC data: T-Chinese

1046 IBM-1046, IBM-1046S, x-
IBM1046

ARABIC - PC

Supported data sets code pages in Application Testing 775

AWS Mainframe Modernization User Guide

CCSID Character sets Description

1047 IBM1047, IBM-1047 Host: Latin-1

1051 hp-roman8 HP EMULATION

1088 IBM-1088 PC data: Korea KS

1089 ISO-8859-6, ISO8859_6 ISO 8859-6: Arabic

1097 IBM-1097, x-IBM1097,
Cp1097

Host: Farsi

1098 IBM-1098, x-IBM1098,
Cp1098

PC data: Farsi

1112 IBM-1112, x-IBM1112,
Cp1112

Host: Latvia, Lithuania

1114 IBM-1114 PC data: T-CH SB

1115 IBM-1115 PC data: S-CH GB

1122 IBM-1122, x-IBM1122,
Cp1122

Host: Estonia

1123 IBM-1123, x-IBM1123,
Cp1123

Host: Cyrillic Ukraine

1124 IBM-1124, x-IBM1124,
Cp1124

8-bit: Cyrillic, Belarus

1140 IBM01140, IBM-1140, Cp1140 Host: USA, Canada (ESA),
Netherlands, Portugal, Brazil,
Australia, New Zealand, with
euro

1141 IBM01141, IBM-1141, Cp1141 Host: Austria, Germany, with
euro

Supported data sets code pages in Application Testing 776

AWS Mainframe Modernization User Guide

CCSID Character sets Description

1142 IBM01142, IBM-1142, Cp1142 Host: Denmark, Norway, with
euro

1143 IBM01143, IBM-1143, Cp1143 Host: Finland, Sweden, with
euro

1144 IBM01144, IBM-1144, Cp1144 Host: Italy, with euro

1145 IBM01145, IBM-1145, Cp1145 Host: Spain, Latin America
(Spanish), with euro

1146 IBM01146, IBM-1146, Cp1146 Host: United Kingdom, with
euro

1147 IBM01147, IBM-1147, Cp1147 Host: France, with euro

1148 IBM01148, IBM-1148, Cp1148 Host: Belgium, Canada
(AS/400), Switzerland,
International Latin-1, with
euro

1149 IBM01149, IBM-1149, Cp1149 Host: Iceland, with euro

1200 UTF-16BE Unicode with character set
65535. In the absence of
a byte-order mark (BOM),
assumed to be UTF-16 BE
(big-endian).

1202 UTF-16LE UTF-16 LE with IBM PUA

1204 UTF-16 UTF-16 with IBM PUA

1208 UTF-8, UTF-8J, UTF8 Unicode with character set
65535. UTF-8.

1232 UTF-32BE UTF-32 BE with IBM PUA

Supported data sets code pages in Application Testing 777

AWS Mainframe Modernization User Guide

CCSID Character sets Description

1234 UTF-32LE UTF-32 LE with IBM PUA

1236 UTF-32 UTF-32 with IBM PUA

1351 IBM-1351 JAPAN OPEN

1362 IBM-1362 KOREAN MS-WIN

1363 IBM-1363, IBM-1363C,
windows-949, MS949

PC data: MS Windows Korean
SBCS. PC data: MS Windows
Koran DBCS including 11172
full Hangul

1364 IBM-1364 Host: Extended SBCS. Host:
DBCS including 1880 user-
defined characters and 11172
full Hangul characters

1370 IBM-1370 PC data: Extended SBCS, with
euro. PC data: DBCS including
6204 user-defined characters,
with euro

1371 IBM-1371 Host: Extended SBCS, with
euro. Host: DBCS including
6204 user-defined characters,
with euro

1375 Big5-HKSCS Mixed Big-5 Ext for HKSCS

1380 IBM-1380 PC data: S-CH GB

1381 IBM-1381, x-IBM1381,
Cp1381

PC data: Extended SBCS (IBM
GB). PC data: DBCS (IBM GB)
including 31 IBM-selected,
1880 user-defined characters

Supported data sets code pages in Application Testing 778

AWS Mainframe Modernization User Guide

CCSID Character sets Description

1382 IBM-1382 S-CHINESE EUC

1383 EUC-CN, GB2312, IBM-1383,
x-IBM1383, Cp1383

G0: ASCII. G1: GB 2312-80 set

1385 IBM-1385 PC data: S-CH GBK

1386 GBK, IBM-1386, windows-9
36, MS936

PC data: S-Chinese GBK and
T-Chinese IBM BIG-5. PC data:
S-Chinese GBK

1388 IBM-1388 Host: Extended SBCS. Host:
DBCS including 1880 user-
defined characters

1390 IBM-1390 Katakana Host: extended
SBCS, with euro. Kanji Host:
DBCS including 6205 user-
defined characters

1399 IBM-1399 Latin Host: extended SBCS,
with euro. Kanji Host: DBCS
including 4370 user-defined
characters, with euro

5050 JIS0201, JIS0208, JIS0212,
JIS0201, JIS0208, JIS0212

G0: JIS X201 Roman. G1: JIS
X208-1990. G1: JIS X201
Katakana. G1: JIS X212

5054 ISO-2022-JP JAPANESE TCP

5346 windows-1250, Cp1250 MS Windows: Latin-2, version
2 with euro

5347 windows-1251, Cp1251 MS Windows: Cyrillic, version
2 with euro

Supported data sets code pages in Application Testing 779

AWS Mainframe Modernization User Guide

CCSID Character sets Description

5348 windows-1252, Cp1252 MS Windows: Latin-1
countries, version 2 with euro

5349 windows-1253, Cp1253 MS Windows: Greece, version
2 with euro

5350 windows-1254, Cp1254 MS Windows: Turkey, version
2 with euro

5351 windows-1255, Cp1255 MS Windows: Hebrew, version
2 with euro

5352 windows-1256, windows-1
256S, Cp1256

MS Windows: Arabic, version
2 with euro

5353 windows-1257, Cp1257 MS Windows: Baltic Rim,
version 2 with euro

5354 windows-1258, Cp1258 MS Windows: Vietnamese,
version 2 with euro

5488 GB18030 GB18030, 1-byte data
GB18030, 2-byte data
GB18030, 4-byte data

9030 IBM-838, Cp838 Host: Thai extended SBCS

9066 IBM-874, Cp874 PC data: Thai extended SBCS

9400 CESU-8 CESU-8 with IBM PUA

25546 ISO-2022-KR KOREAN TCP

33722 IBM-33722, IBM-33722C IBMeucJP

Supported data sets code pages in Application Testing 780

AWS Mainframe Modernization User Guide

Data protection in AWS Mainframe Modernization Application
Testing

The AWS shared responsibility model applies to data protection in AWS Mainframe Modernization
Application Testing. As described in this model, AWS is responsible for protecting the global
infrastructure that runs all of the AWS Cloud. You are responsible for maintaining control over your
content that is hosted on this infrastructure. You are also responsible for the security configuration
and management tasks for the AWS services that you use. For more information about data
privacy, see the Data Privacy FAQ. For information about data protection in Europe, see the AWS
Shared Responsibility Model and GDPR blog post on the AWS Security Blog.

We recommend that you protect AWS account credentials and set up individual users with AWS
IAM Identity Center or AWS Identity and Access Management (IAM). As a result, each user is given
only the permissions necessary to fulfill their job duties. We also recommend that you secure your
data in the following ways:

• Use multi-factor authentication (MFA) with each account.

• Use SSL/TLS to communicate with AWS resources. We require TLS 1.2 and recommend TLS 1.3.

• Set up API and user activity logging with AWS CloudTrail.

• Use AWS encryption solutions, along with all default security controls within AWS services.

• Use advanced managed security services such as Amazon Macie, which assists in discovering and
securing sensitive data that is stored in Amazon S3.

• If you require FIPS 140-2 validated cryptographic modules when accessing AWS through a
command line interface or an API, use a FIPS endpoint. For more information about the available
FIPS endpoints, see Federal Information Processing Standard (FIPS) 140-2.

We recommend that you avoid using any confidential or sensitive information, such as your
customers' email addresses, into tags or free-form text fields (for example, Name field). This
includes when you work with AWS Mainframe Modernization Application Testing or other AWS
services using the console, API, AWS CLI, or AWS SDKs. Any data that you enter into tags or free-
form text fields used for names might be used for billing or diagnostic logs. If you provide a URL to
an external server, avoid using credentials information in the URL to validate your request to that
server.

Data protection in Application Testing 781

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/data-privacy-faq
https://aws.amazon.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr/
https://aws.amazon.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr/
https://aws.amazon.com/compliance/fips/

AWS Mainframe Modernization User Guide

Data collected by the AWS Mainframe Modernization Application
Testing

AWS Mainframe Modernization Application Testing collects several types of data from you:

• Resource definition: Resource definition indicates the data passed to Application Testing
when you create or update a resource of type test case, test suite, or a test configuration.

• Scripts for replay: These are scripts passed to Application Testing against your AWS
Mainframe Modernization application.

• Data for comparison: These are data sets or Database Change Data Capture (CDC) files
passed to Application Testing for comparison.

AWS Mainframe Modernization Application Testing stores this data natively in AWS. The data
we collect from you is stored in an AWS Mainframe Modernization Application Testing-managed
Amazon S3 bucket. When you delete a resource, the associated data is removed from the Amazon
S3 bucket.

When you start a test run to perform replay for testing interactive workloads, AWS Mainframe
Modernization Application Testing downloads the script to an ephemeral storage backed-Amazon
ECS-managed Fargate container to perform the replay. The script file is deleted once the replay is
complete and the script generated output file is stored in Application Testing-managed Amazon
S3 bucket in your account. The replay output file is deleted from the Amazon S3 bucket when you
delete the test run.

Similarly, when you start a test run to compare files (datasets or database changes), AWS
Mainframe Modernization Application Testing downloads the files to an ephemeral storage
backed-Amazon ECS-managed Fargate container to perform the comparison. The downloaded files
are deleted as soon as the comparison operation is complete. The comparison output data is stored
in Application Testing-managed Amazon S3 bucket in your account. The output data is deleted
from the S3 bucket when you delete the test run.

You can use all available Amazon S3 encryption options to secure your data when you place it in
the Amazon S3 bucket that AWS Mainframe Modernization Application Testing uses for comparing
files.

Data collected by the AWS Mainframe Modernization Application Testing 782

AWS Mainframe Modernization User Guide

Data encryption at rest for the AWS Mainframe Modernization
Application Testing

AWS Mainframe Modernization Application Testing integrates with AWS Key Management
Service (KMS) to provide transparent server side encryption (SSE) on all dependent resources that
store data permanently. Resource examples include Amazon Simple Storage Service, Amazon
DynamoDB, and Amazon Elastic Block Store. AWS Mainframe Modernization Application Testing
creates and manages symmetric encryption AWS KMS keys for you in AWS KMS.

Encryption of data at rest by default helps reduce the operational overhead and complexity
involved in protecting sensitive data. At the same time, it enables you to test applications that
require strict encryption compliance and regulatory requirements.

You can't disable this layer of encryption or select an alternate encryption type when you create
test cases, test suites, or test configurations.

You can use your own customer managed key for comparison files and AWS CloudFormation
templates to encrypt Amazon S3. You can use this key to encrypt all the resources created for test
runs in Application Testing.

Note

DynamoDB resources are always encrypted using an AWS managed key in the Application
Testing service account. You cannot encrypt DynamoDB resources using a customer
managed key.

AWS Mainframe Modernization Application Testing uses your customer managed key for the
following tasks:

• Exporting data sets from Application Testing to Amazon S3.

• Uploading comparison output files to Amazon S3.

For more information, see Customer managed keys in the AWS Key Management Service Developer
Guide.

Data encryption at rest for the AWS Mainframe Modernization Application Testing 783

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#customer-cmk

AWS Mainframe Modernization User Guide

Create a customer managed key

You can create a symmetric customer managed key by using the AWS Management Console or the
AWS KMS APIs.

To create a symmetric customer managed key

Follow the steps for Creating symmetric customer managed key in the AWS Key Management
Service Developer Guide.

Key policy

Key policies control access to your customer managed key. Every customer managed key must have
exactly one key policy, which contains statements that determine who can use the key and how
they can use it. When you create your customer managed key, you can specify a key policy.

Following is an example key policy scoped down access with ViaService that allows Application
Testing to write replay and comparison-generated data in your account. You should attach this
policy to the IAM role when you invoke StartTestRun API.

Example

{
 "Sid": "TestRunKmsPolicy",
 "Action": ["kms:Decrypt", "kms:GenerateDataKey"],
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::111122223333:role/TestRunRole"
 },
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "kms:ViaService": ["s3.amazonaws.com"]
 },
 "ForAnyValue:StringEquals": {
 "kms:EncryptionContextKeys": "aws:apptest:testrun"
 }
 }
}

For more information, see Managing access to customer managed keys in the AWS Key
Management Service Developer Guide.

Create a customer managed key 784

https://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html#create-symmetric-cmk
https://docs.aws.amazon.com/kms/latest/developerguide/control-access-overview.html#managing-access

AWS Mainframe Modernization User Guide

For more information about troubleshooting key access, see the AWS Key Management Service
Developer Guide.

Specifying a customer managed key for AWS Mainframe Modernization
Application Testing

When you create a test configuration, you can specify a customer managed key by entering a KEY
ID. Application Testing uses to encrypt the data uploaded to the Amazon S3 bucket during the test
run.

• KEY ID— A key identifier for a customer managed key. Enter a key ID, key ARN, alias name, or
alias ARN.

To add your customer managed key when you create a test configuration with the AWS CLI, specify
the kmsKeyId parameter, as follows:

create-test-configuration --name test \
--resources '[{
 "name": "TestApplication",
 "type": {
 "m2ManagedApplication": {
 "applicationId": "wqju4m2dcz3rhny5fpdozrsdd4",
 "runtime": "MicroFocus"
 }
 }
}]' \
--service-settings '{
 "kmsKeyId": "arn:aws:kms:us-west-2:111122223333:key/05d467z6-c42d-40ad-
b4b7-274e68b14013"
}'

AWS Mainframe Modernization Application Testing encryption context

An encryption context is an optional set of key-value pairs that contain additional contextual
information about the data.

AWS KMS uses the encryption context as additional authenticated data to support authenticated
encryption. When you include an encryption context in a request to encrypt data, AWS KMS binds
the encryption context to the encrypted data. To decrypt data, you include the same encryption
context in the request.

Specifying a customer managed key for AWS Mainframe Modernization Application Testing 785

https://docs.aws.amazon.com/kms/latest/developerguide/policy-evaluation.html#example-no-iam
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#encrypt_context
https://docs.aws.amazon.com/crypto/latest/userguide/cryptography-concepts.html#term-aad
https://docs.aws.amazon.com/crypto/latest/userguide/cryptography-concepts.html#define-authenticated-encryption
https://docs.aws.amazon.com/crypto/latest/userguide/cryptography-concepts.html#define-authenticated-encryption

AWS Mainframe Modernization User Guide

AWS Mainframe Modernization Application Testing encryption context

AWS Mainframe Modernization Application Testing uses the same encryption context in all AWS
KMS cryptographic operations related to a test run, where the key is aws:apptest:testrun and
the value is the unique identifier of the test run.

Example

"encryptionContext": {
 "aws:apptest:testrun": "u3qd7uhdandgdkhhi44qv77iwq"
}

Using encryption context for monitoring

When you use a symmetric customer managed key to encrypt your test run, you can also use the
encryption context in audit records and logs to identify how the customer managed key is being
used when uploading data to Amazon S3.

Monitoring your encryption keys for AWS Mainframe Modernization
Application Testing

When you use an AWS KMS customer managed key with your AWS Mainframe Modernization
Application Testing resources, you can use AWS CloudTrail to track requests that AWS Mainframe
Modernization Application Testing sends to Amazon S3 when uploading objects.

Encryption in transit

For test cases that define steps to test transactional workloads, the data exchanges between
the Application Testing managed terminal emulator running your selenium scripts and the AWS
Mainframe Modernization application endpoints are not encrypted in transit. AWS Mainframe
Modernization Application Testing uses AWS PrivateLink to connect to your application endpoint to
privately exchange data without exposing the traffic over the public internet.

AWS Mainframe Modernization Application Testing uses HTTPS to encrypt the service APIs. All
other communication within AWS Mainframe Modernization Application Testing is protected by the
service VPC or security group, as well as HTTPS.

Basic encryption in transit is configured by default, but does not apply to TN3270 protocol based
interactive workload tests.

Monitoring your encryption keys 786

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-user-guide.html

AWS Mainframe Modernization User Guide

File Transfer in AWS Mainframe Modernization

AWS Mainframe Modernization File Transfer lets you transfer and convert mainframe data sets to
Amazon S3 for mainframe modernization, migration, and augmentation use cases. It simplifies
the process of transferring data sets from your mainframe to the AWS Cloud. Key features include:
discovery of source mainframe data sets and artifacts, and scalability and efficiency for faster data
transfers to Amazon S3. File Transfer supports various mainframe data set types like sequential,
PDS, GDS, GDG, and VSAM KSDS. The service transfers the data sets to an intermediate Amazon
S3 bucket, converts them to the specified target code page, and then moves them to your desired
target S3 bucket.

Topics

• What is AWS Mainframe Modernization File Transfer?

• Install a File Transfer agent

• Configure a File Transfer agent

• Create data transfer endpoints for File Transfer

• Create transfer tasks in File Transfer

• Tutorial: Getting started with AWS Mainframe Modernization File Transfer

• Supported source and target encodings in AWS Mainframe Modernization File Transfer

What is AWS Mainframe Modernization File Transfer?

With AWS Mainframe Modernization File Transfer, you can transfer and convert datasets and
files with a fully managed service to accelerate and simplify modernization, migration, and
augmentation use cases to the AWS Mainframe Modernization service and Amazon S3.

Topics

• Benefits of AWS Mainframe Modernization File Transfer

• How AWS Mainframe Modernization File Transfer works

Benefits of AWS Mainframe Modernization File Transfer

AWS Mainframe Modernization File Transfer helps you transfer datasets from mainframe to
Amazon S3. Some benefits include:

What is File Transfer 787

AWS Mainframe Modernization User Guide

• Discovery of source mainframe datasets and artifacts

• Automated transfers and datasets conversion

• Scalability, efficiency, and speed to achieve faster dataset transfers to AWS

How AWS Mainframe Modernization File Transfer works

The following figure is an overview of how AWS Mainframe Modernization File Transfer works on a
conceptual level.

The following figure is an architectural overview of AWS Mainframe Modernization File Transfer
feature.

How AWS Mainframe Modernization File Transfer works 788

AWS Mainframe Modernization User Guide

Install a File Transfer agent

You can use this document as a step-by-step guide to install an agent on the source mainframe.

Topics

• Step 1: Create a zFS data set for the M2-agent

• Step 2: Format the data set as zFS

• Step 3: Mount the filesystem

• Step 4: Verify the mount

• Step 5: Enter OMVS

• Step 6: Set the agent installation directory environment variable

• Step 7: Set the work directory environment variable

• Step 8: Create the work directory

• Step 9: Copy the agent tar file and copy the work directory

• Step 10: Assume the root user

• Step 11: Finish the agent installation

Install a File Transfer agent 789

AWS Mainframe Modernization User Guide

Step 1: Create a zFS data set for the M2-agent

Create a zFS for the M2-agent installation using the JCL below.

//DEFINE EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=A
//SYSIN DD *
 DEFINE CLUSTER (NAME(yourhlq.M2AGENT.ZFS) -
 VOLUMES(*) -
 LINEAR CYL(1000 200))

Step 2: Format the data set as zFS

After creating the data set, format it as a zFS filesystem.

One way to do that is using the following Job Control Language (JCL):

//FORMAT EXEC PGM=IOEAGFMT,PARM='AGGRNAME(yourhlq.M2AGENT.ZFS),FORMAT,AGGRSIZE(1200)'
//SYSPRINT DD SYSOUT=A

Submit this job and check if it completed successfully.

Step 3: Mount the filesystem

To mount the filesystem, use the MOUNT command. You can mount the filesystem in command line
in ISPF or in batch.

For example:

MOUNT FILESYSTEM('yourhlq.M2AGENT.ZFS') TYPE(ZFS) MODE(RDWR) MOUNTPOINT('/usr/lpp/aws/
m2-agent')

Step 4: Verify the mount

Verify that the filesystem is correctly mounted using D OMVS,F command or by checking within
Unix System Service (USS).

Step 5: Enter OMVS

Use the following command to enter OMVS:

Step 1: Create a zFS data set for the M2-agent 790

AWS Mainframe Modernization User Guide

TSO OMVS

Step 6: Set the agent installation directory environment variable

Use the following command to set the agent installation directory environment:

export AGENT_DIR=/usr/lpp/aws/m2-agent

Note

Mount point is defined in step 3.

Step 7: Set the work directory environment variable

Use the following command to set the work directory environment variable:

export WORK_DIR=$AGENT_DIR/tmp

Step 8: Create the work directory

Use the following command to set the work directory environment:

mkdir -p $WORK_DIR

Step 9: Copy the agent tar file and copy the work directory

Download the agent tar file from AWS using the M2 agent link.

The transfer mechanism will depend on your environment, but make sure that the tar file is
transferred in binary mode.

Step 10: Assume the root user

Use the following command to assume root user:

su

Step 6: Set the agent installation directory environment variable 791

https://drm0z31ua8gi7.cloudfront.net/filetransfer/m2-agent-v1.0.0.tar

AWS Mainframe Modernization User Guide

Step 11: Finish the agent installation

Follow these steps to finish the agent installation.

1. Set the m2-agent version environment variable to the version currently being installed using
the following command:

export M2_AGENT_VERSION=1.0.0

2. Extract the agent tar package using the following command:

tar -xpf m2-agent-package-$M2_AGENT_VERSION.tar -C $AGENT_DIR

3. Create a current-version symbolic link to the current agent installation directory with the
following command:

ln -s $AGENT_DIR/m2-agent-v$M2_AGENT_VERSION $AGENT_DIR/current-version

4. Update and submit CPY#PDS to create the File Transfer agent data sets.

Note

JCL uses the SYS2.AWS.M2 HLQ.

To create the File Transfer agent, set parameter lines 000006-000012. Also, update the three
symbolic variables HLQ, VOLSER, and AGNTPATH to be used later in the JCL:

oedit $AGENT_DIR/current-version/installation/CPY#PDS
submit $AGENT_DIR/current-version/installation/CPY#PDS

Note

This JCL is tailored for setting up certain aspects of the agent installation on the
mainframe. It allocates necessary data sets and then copies specific files from the Unix
filesystem to these data sets.

Step 11: Finish the agent installation 792

AWS Mainframe Modernization User Guide

Configure a File Transfer agent

Once you have installed a file transfer agent, follow these steps to configure the agent. If you need
to install a new agent, follow instructions on the the section called “Install a File Transfer agent”
page.

Topics

• Step 1: Configure permissions and Started Task Control (STC)

• Step 2: Create Amazon S3 buckets

• Step 3: Create an AWS KMS customer managed key for encryption

• Step 4: Create an AWS Secrets Manager secret for the mainframe credentials

• Step 5: Create an IAM policy

• Step 6: Create an IAM user with long-term access credentials

• Step 7: Create an IAM role for the agent to assume

• Step 8: Agent configuration

Step 1: Configure permissions and Started Task Control (STC)

1. Update and submit one of SYS2.AWS.M2.SAMPLIB(SEC#RACF) (for setting up RACF
permissions) or SYS2.AWS.M2.SAMPLIB(SEC#TSS) (for setting up TSS permissions) in
accordance with their instructions. These members were created by the previous CPY#PDS
step.

Note

SYS2.AWS.M2 is the high-level qualifier (HLQ) that was chosen during the install.

2. Update the PWD export in the SYS2.AWS.M2.SAMPLIB(M2AGENT) STC JCL, if the default File
Transfer agent directory path(/usr/lpp/aws/m2-agent) was changed.

3. Update and copy the SYS2.AWS.M2.SAMPLIB(M2AGENT) JCL to SYS1.PROCLIB.

4. Add SYS2.AWS.M2.LOADLIB to the APF list using the following command:

SETPROG APF ADD DSNAME(SYS2.AWS.M2.LOADLIB) SMS

Configure a File Transfer agent 793

AWS Mainframe Modernization User Guide

5. Set the agent’s logs and diag folders' group and owner to the agent user/group (M2USER/
M2GROUP). Use the following command:

chown -R M2USER:M2GROUP $AGENT_DIR/current-version/logs
chown -R M2USER:M2GROUP $AGENT_DIR/current-version/diag

Step 2: Create Amazon S3 buckets

AWS Mainframe Modernization File Transfer requires an intermediate Amazon S3 bucket as a work
area. We recommend creating a bucket specifically for this.

Optionally, create a new target Amazon S3 bucket for the transferred data sets. Otherwise you can
also use your existing Amazon S3 bucket. For more information on creating Amazon S3 buckets,
see Creating a bucket.

Step 3: Create an AWS KMS customer managed key for encryption

To create a customer managed key in AWS KMS

1. Open the AWS KMS console at https://console.aws.amazon.com/kms.

2. Choose Customer managed keys in left navigation pane.

3. Choose Create key.

4. Under Configure key, choose Key type as Symmetric, and Key usage as encrypt and decrypt.
Use other default configurations.

5. In Add labels, add Alias and description for your key.

6. Choose Next.

7. Under Define key administrative permissions, choose at least one IAM user and role who
administers this key.

8. Choose Next.

9. On the Review page, add the following syntax to the Key policy. This allows the AWS
Mainframe Modernization service to read and use these keys for encryption/decryption.

Step 2: Create Amazon S3 buckets 794

https://docs.aws.amazon.com/AmazonS3/latest/userguide/create-bucket-overview.html
https://console.aws.amazon.com/kms

AWS Mainframe Modernization User Guide

Important

Add the statement to the existing statements. Don't replace what's already in the
policy.

{
 "Sid" : "Enable AWS M2 File Transfer Permissions",
 "Effect" : "Allow",
 "Principal" : {
 "Service" : "m2.amazonaws.com"
 },
 "Action" : [
 "kms:Encrypt",
 "kms:Decrypt"
],
 "Resource" : "*"
},

Save the ARN for the customer managed key once it is created. It will be used in the policy later.

Step 4: Create an AWS Secrets Manager secret for the mainframe
credentials

Mainframe credentials are required to access the data sets to be transferred and these must be
stored as an AWS Secrets Manager secret.

To create an AWS Secrets Manager secret

1. Open Secrets manager console at https://console.aws.amazon.com/secretsmanager.

2. In Choose Secret type, choose Other type of secret.

3. Use the key value userId for the mainframe userId that has access to the data sets.

4. Use the key value password for the password field.

5. For Encryption Key, choose the AWS customer managed key created earlier.

6. Choose Next.

7. On the Configure secret page, provide a name and description.

Step 4: Create an AWS Secrets Manager secret for the mainframe credentials 795

https://console.aws.amazon.com/secretsmanager

AWS Mainframe Modernization User Guide

8. On the same page, edit the Resource permissions, and use the following resource policy so
the AWS Mainframe Modernization service can access it.

{
 "Version" : "2012-10-17",
 "Statement" : [{
 "Effect" : "Allow",
 "Principal" : {
 "Service" : "m2.amazonaws.com"
 },
 "Action" : ["secretsmanager:GetSecretValue",
 "secretsmanager:DescribeSecret"],
 "Resource" : "*"
 }]
}

9. Choose Save to save the updated permissions before choosing Next.

10. Skip throughConfigure rotations page, and choose Next.

11. On the Review page, check all configurations and choose Store to save the secret.

Important

The userId and password secret keys are case-sensitive and must be entered as shown.

Step 5: Create an IAM policy

To create a new policy with the permissions required for the agent

1. Switch from the Visual editor to the JSON editor and replace the contents with the following
template:

{
"Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "FileTransferAgentSQSReceive",
 "Effect": "Allow",
 "Action": [
 "sqs:DeleteMessage",

Step 5: Create an IAM policy 796

AWS Mainframe Modernization User Guide

 "sqs:ReceiveMessage"
],
 "Resource": "arn:aws:sqs:*:111122223333:m2-*-request-queue.fifo"
 },
 {
 "Sid": "FileTransferAgentSQSSend",
 "Effect": "Allow",
 "Action": "sqs:SendMessage",
 "Resource": "arn:aws:sqs:*:111122223333:m2-*-response-queue.fifo"
 },
 {
 "Sid": "FileTransferWorkingS3",
 "Effect": "Allow",
 "Action": "s3:PutObject",
 "Resource": "<file-transfer-endpoint-intermediate-bucket-arn>/*"
 },
 {
 "Sid": "FileTransferAgentKMSDecrypt",
 "Effect": "Allow",
 "Action": "kms:Decrypt",
 "Resource": "<kms-key-arn>"
 }
]
}

2. Replace the 111122223333 in the request-queue and response-queue ARN’s with your
account.

Note

These are wildcard ARN’s that match the two Amazon SQS queues created during the
data transfer endpoint initialization. After creating a File Transfer endpoint, optionally
replace these ARN’s with the actual values from Amazon SQS.

3. Replace file-transfer-endpoint-intermediate-bucket-arn with the ARN of the
transfer bucket created earlier. Leave the “/*” wildcard at the end.

4. Replace kms-key-arn with the ARN of the AWS KMS key created earlier.

Step 5: Create an IAM policy 797

AWS Mainframe Modernization User Guide

Step 6: Create an IAM user with long-term access credentials

Create an IAM user that allows the mainframe agent to connect to your AWS account. The agent
will connect with this user and then assume a role you define with permissions to use Amazon SQS
response and request queues and to save datasets to Amazon S3 buckets.

To create this IAM user

1. Navigate to AWS IAM console at https://console.aws.amazon.com/iam.

2. In the Permissions options, choose the Attach policies directly option but do not attach any
permissions policies. These permissions will be managed by a role that will be attached.

3. Once the user is created, choose the user and open Security credentials tab.

4. In Create access key, choose Other when prompted for Use case.

5. Copy and securely save the generated Access key and Secret access key. These will be used
later.

For more information on creating IAM access key, see Managing access keys for IAM users.

Important

Save the Access key and Secret access key displayed on the last page of the access key
creation wizard, before choosing Done. These keys are used to configure the mainframe
agent.

Note

Save the IAM user ARN used to set up a trust relationship with an IAM role.

Step 7: Create an IAM role for the agent to assume

To create a new IAM role for the agent

1. Choose Roles in the IAM console at https://console.aws.amazon.com/iam.

2. Choose Create role.

3. On the Select trusted entity page, choose Custom trust policy for the Trusted entity type.

Step 6: Create an IAM user with long-term access credentials 798

https://console.aws.amazon.com/iam
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html
https://console.aws.amazon.com/iam

AWS Mainframe Modernization User Guide

4. Replace the Custom trust policy with the following and replace <iam-user-arn> with the
ARN of the user created earlier.

{
 "Version": "2012-10-17",
 "Statement": [{
 "Sid": "FileTransferAgent",
 "Effect": "Allow",
 "Principal": {
 "AWS": "<IAM-User-arn>"
 },
 "Action": "sts:AssumeRole"
 }]
}

5. Choose Next.

6. In Add Permissions, filter for the Policy name you created earlier and choose it.

7. Choose Next.

8. Name the role, and choose Create Role.

Note

Save the role name, which you will use later to configure the mainframe agent.

Step 8: Agent configuration

To configure the File Transfer agent

1. Navigate to $AGENT_DIR/current-version/config.

2. Edit the agent’s configuration file appication.properties to add an environments
configuration using the following command:

oedit $AGENT_DIR/current-version/config/application.properties

For example:

agent.environments[0].account-id=<AWS_ACCOUNT_ID>

Step 8: Agent configuration 799

AWS Mainframe Modernization User Guide

agent.environments[0].agent-role-name=<AWS_IAM_ROLE_NAME>
agent.environments[0].access-key-id=<AWS_IAM_ROLE_ACCESS_KEY>
agent.environments[0].secret-access-id=<AWS_IAM_ROLE_SECRET_KEY>
agent.environments[0].bucket-name=<AWS_S3_BUCKET_NAME>
agent.environments[0].environment-name=<AWS_REGION>
agent.environments[0].region=<AWS_REGION>
zos.complex-name=<File_Transfer_Endpoint_Name>

Where:

• AWS_ACCOUNT_ID is the ID of the AWS account.

• AWS_IAM_ROLE_NAME is the name of the IAM role created in the the section called “Step 7:
Create an IAM role for the agent to assume”.

• AWS_IAM_ROLE_ACCESS_KEY is the access key of the IAM user created in the section called
“Step 6: Create an IAM user with long-term access credentials”.

• AWS_IAM_ROLE_SECRET_KEY is the access secret key for the IAM user created in the section
called “Step 6: Create an IAM user with long-term access credentials”.

• AWS_S3_BUCKET_NAME is the name of the transfer bucket created with the data transfer
endpoint.

• AWS_REGION is the region in which you configure the File Transfer agent.

Note

You can have the File Transfer agent transfer to multiple regions and accounts in
AWS by defining multiple environments.

• (Optional). zos.complex-name is the complex name you created when creating a File
Transfer endpoint.

Note

This field is necessary only if you want to customize the complex name (which
defaults to your sysplex name) that is the same as you defined when creating your
File Transfer endpoint. For more information, see the section called “Create data
transfer endpoints”.

Step 8: Agent configuration 800

AWS Mainframe Modernization User Guide

Important

There can be several such sections, as long as the index in brackets — [0]— is
incremented for each.

You must restart the agent for changes to take effect.

Requirements

1. When a parameter is added or removed, the agent has to be stopped and started. Start the File
transfer agent using the following command in the CLI:

/S M2AGENT

To stop the M2 agent, use the following command in CLI:

/P M2AGENT

2. You can have the File Transfer agent transfer to multiple regions and accounts in AWS by
defining multiple environments.

Note

Replace the values with the parameter values you created and configured previously.

#Region 1
agent.environments[0].account-id=AWS_ACCOUNT_ID
agent.environments[0].agent-role-name=AWS_IAM_ROLE_NAME
agent.environments[0].access-key-id=AWS_IAM_ROLE_ACCESS_KEY
agent.environments[0].secret-access-id=AWS_IAM_ROLE_SECRET_KEY
agent.environments[0].bucket-name=AWS_S3_BUCKET_NAME
agent.environments[0].environment-name=AWS_REGION
agent.environments[0].region=AWS_REGION

#Region 2
agent.environments[1].account-id=AWS_ACCOUNT_ID

Step 8: Agent configuration 801

AWS Mainframe Modernization User Guide

agent.environments[1].agent-role-name=AWS_IAM_ROLE_NAME
agent.environments[1].access-key-id=AWS_IAM_ROLE_ACCESS_KEY
agent.environments[1].secret-access-id=AWS_IAM_ROLE_SECRET_KEY
agent.environments[1].bucket-name=AWS_S3_BUCKET_NAME
agent.environments[1].environment-name=AWS_REGION
agent.environments[1].region=AWS_REGION

Create data transfer endpoints for File Transfer

Data transfer endpoints enable connectivity with the source mainframe, and support high
availability, scalability, and streamlined management of agents. Individual agents are installed
on mainframe LPARs and can be grouped together into a data transfer endpoint. When a request
is made to transfer a dataset, one agent in the data transfer endpoint will handle that specific
transfer. To initiate data transfers, at least one agent on the data transfer endpoint must be online.

This procedure assumes that you have completed the steps in Set up for AWS Mainframe
Modernization and Configure File Transfer agent on the source mainframe.

Create data transfer endpoints

To create data transfer endpoints for File Transfer, follow these steps in the AWS Mainframe
Modernization console.

To create a data transfer endpoint

1. Open the AWS Mainframe Modernization console at https://console.aws.amazon.com/m2/.

2. In the AWS Region selector, choose the region where you want to transfer files from your
mainframe to an Amazon S3 bucket.

3. On the Data transfer endpoints page, under File Transfer, choose Create data transfer
endpoint.

4. On the Data transfer endpoint prerequisites page, read all the instructions to make sure you
have completed these steps on the source mainframe. Once confirmed, choose Next.

5. On the Configure data transfer endpoint page, add basic information for your data transfer
endpoint.

1. In the basic information section, enter your data transfer endpoint name.

Create data transfer endpoints 802

https://console.aws.amazon.com/m2/

AWS Mainframe Modernization User Guide

Note

The data transfer endpoint name must match the Sysplex name, unless you specify
a complex name in the agent configuration.

2. An optional description.

3. The KMS key used to encrypt the secret.

Note

You must add the following resource-based policy for KMS so the AWS Mainframe
Modernization service can read and use these keys for encryption/decryption:

{
 "Sid" : "Enable AWS M2 Permissions",
 "Effect" : "Allow",
 "Principal" : {
 "Service" : "m2.amazonaws.com"
 },
 "Action" : [
 "kms:Encrypt",
 "kms:Decrypt"
],
 "Resource" : "*"
}

4. Specify the S3 location for intermediate data, which is the intermediate S3 location
where transferred datasets from the mainframe are stored before they are converted and
transferred to the target Amazon S3 bucket.

.

Note

It's recommended that you create a new Amazon S3 bucket for your transfer tasks.
For additional information, see Creating a bucket. You can also browse your existing
Amazon S3 buckets by choosing Browse S3 option.

5. After entering required fields, choose Next.

Create data transfer endpoints 803

https://docs.aws.amazon.com/AmazonS3/latest/userguide/create-bucket-overview.html

AWS Mainframe Modernization User Guide

6. On the Review and create data transfer endpoint page, check if you have completed
prerequisites, and review basic information. Once confirmed, choose Create data transfer
endpoint.

You will be redirected to the Data transfer endpoints overview page where you can see the list
of all data transfer endpoints. You will also be able to see the data transfer endpoints that are
available or have failed.

You can also search data transfer endpoints by name and access additional information for each
available agent.

Create transfer tasks in File Transfer

Transfer tasks are used to specify the data sets to be transferred from the mainframe to Amazon
S3 and allow you to choose the code page conversion options.

These instructions assume that you have completed the steps in Set up for AWS Mainframe
Modernization and have created the section called “Create data transfer endpoints”.

Topics

• Create transfer tasks

• View transfer tasks

Create transfer tasks

To create transfer tasks in File Transfer, follow these steps in the AWS Mainframe Modernization
console.

To create a transfer task

Important

You must have at least one data transfer endpoint to create new transfer tasks.

1. Open the AWS Mainframe Modernization console at https://console.aws.amazon.com/m2/.

2. In the AWS Region selector, choose the Region where you want to transfer files from your
mainframe to an Amazon S3 bucket.

Create transfer tasks 804

https://console.aws.amazon.com/m2/

AWS Mainframe Modernization User Guide

3. On the Transfer tasks page, you can choose any data transfer endpoint to create transfer
tasks.

4. On the Create transfer task page, set up properties for your transfer task. If you have not
created any transfer tasks previously, you can create your first one by choosing the Create
Transfer task option.

• On this page, enter the basic information of your transfer task, including the transfer task
name, description, and secret key.

Note

• Encrypt the secret using the KMS key defined with the data transfer endpoint. The
secret should contain the mainframe credentials needed to access data sets on the
mainframe using the userId and password keys. For more information, see the
AWS Secrets Manager secret.

• You must configure the secret key with the following resource-based policy so that
AWS Mainframe Modernization service can access it to perform data transfer task.

{
 "Version" : "2012-10-17",
 "Statement" : [{
 "Effect" : "Allow",
 "Principal" : {
 "Service" : "m2.amazonaws.com"
 },
 "Action" : ["secretsmanager:GetSecretValue",
 "secretsmanager:DescribeSecret"],
 "Resource" : "*"
 }]
}

Note

The current maximum supported dataset size for transfer is 90 GB.

• Next, select the target Amazon S3 bucket location where the target data sets from the
mainframe will be transferred.

Create transfer tasks 805

https://docs.aws.amazon.com/secretsmanager/latest/userguide/create_secret.html

AWS Mainframe Modernization User Guide

• The previously chosen data transfer endpoint will be selected. You can also select another
endpoint from the available endpoints.

5. Choose Next.

6. On the Add data sets page, enter your query in the Search mainframe for data sets to search
the mainframe for data sets to be included in your transfer task. Select View data sets.

The following wildcard symbols can be used as part of the data set search criteria for
mainframe:

• A single asterisk (*) as a qualifier (between periods or after the final period) matches a single
qualifier in that position.

• A single asterisk (*) within a qualifier matches zero or more characters in that position.

• A double asterisk (**) as a qualifier (between periods or after the final period) matches zero
or more qualifiers in that position.

• A double asterisk (**) within a qualifier is not a valid query.

• A single percent sign (%) matches any single alphanumeric or national character in that
position. You can use up to eight percent signs in each qualifier.

Important

We suggest always ending your search criteria with a period followed by a double
asterisk (.**) and then refine the search further, if needed.

For more information on wildcard rules, see the Filtering data set names in IBM
documentation.

7. These data sets will load under Mainframe data sets section, where you can search or choose
one or more data sets you want to configure code page conversions for. These chosen data sets
will be displayed in the Added data sets section.

Note

You can select data sets from multiple search queries and add them to your transfer
task.

Create transfer tasks 806

https://www.ibm.com/docs/en/zos/3.1.0?topic=processed-filtering-by-data-set-names

AWS Mainframe Modernization User Guide

8. In the Added data sets section, you need to manually select the source code page and target
code page for each of your chosen data set. Source code page is the source data set format,
and target code page is the target data set format used to convert the data sets and store
them in the target Amazon S3 bucket.

9. After confirming the source and target code pages, choose Next.

10. On the Review and create page, you can review or edit information for your transfer task.

11. Then, choose Create transfer task.

View transfer tasks

To view transfer tasks in File Transfer, you must follow these steps in the AWS Mainframe
Modernization console.

To view transfer tasks

1. Open the AWS Mainframe Modernization console at https://console.aws.amazon.com/m2/.

2. In the AWS Region selector, choose the Region where you want to transfer files from your
mainframe to an Amazon S3 bucket.

3. On the Transfer tasks page, select the data transfer endpoint to view your transfer tasks.

4. For endpoints that have pre-existing transfer tasks, these will be displayed under the Transfer
tasks section. You can choose to view details of any transfer task from this list.

Tutorial: Getting started with AWS Mainframe Modernization
File Transfer

AWS Mainframe Modernization File Transfer lets you transfer and convert mainframe data sets for
mainframe modernization, migration, and augmentation use cases.

Follow the steps in this tutorial to understand how AWS Mainframe Modernization File Transfer
works.

Overview

File Transfer consists of the following:

1. An agent to be installed on the source mainframe.

View transfer tasks 807

https://console.aws.amazon.com/m2/

AWS Mainframe Modernization User Guide

2. Access to dataset discovery, transfer, and conversion capabilities directly from the AWS
Mainframe Modernization management service console.

As a user, you can transfer datasets from the mainframe to your Amazon S3 bucket.

Topics

• Step 1: Transfer the agent binaries tar package from AWS to the mainframe logical partition

• Step 2: Configure the File Transfer agent on the source mainframe

• Step 3: Create a data transfer endpoint

• Step 4: Create a transfer task

• Step 5: View transfer task progress

Step 1: Transfer the agent binaries tar package from AWS to the
mainframe logical partition

Download tar files from the M2-agent tar link.

Step 2: Configure the File Transfer agent on the source mainframe

In this step, you configure and start the AWS Mainframe Modernization File Transfer agent on the
source mainframe. The agent is required to facilitate communications between the File Transfer
service feature and the source mainframe. At least one agent is required per mainframe. More than
one agent can be started for high availability and enhanced scalability.

Follow the instructions in the section called “Install a File Transfer agent” guide to complete File
Transfer agent installation on the mainframe.

Step 3: Create a data transfer endpoint

Follow steps on the section called “Create data transfer endpoints” page to create a new data
transfer endpoint.

Step 4: Create a transfer task

Follow steps on the section called “Create transfer tasks” page to create and manage your transfer
tasks.

Step 1: Transfer the agent binaries tar package from AWS to the mainframe logical partition 808

https://drm0z31ua8gi7.cloudfront.net/filetransfer/m2-agent-v1.0.0.tar

AWS Mainframe Modernization User Guide

Step 5: View transfer task progress

You can view your transfer task's progress in the AWS Mainframe Modernization console. For more
details, refer the section called “View transfer tasks” section.

Supported source and target encodings in AWS Mainframe
Modernization File Transfer

AWS Mainframe Modernization File Transfer supports various data set types and code page
conversion options.

Mainframe data set types

AWS Mainframe Modernization File Transfer supports the following mainframe data set types:

• Non-VSAM: Sequential (PS), PDS, GDS, GDG

• VSAM types: KSDS

Supported code pages

AWS Mainframe Modernization File Transfer supports the following code pages for data set
conversion (from/to):

"BIG5" , "BIG5_HKSCS" , "CESU_8" , "EUC_JP" , "EUC_KR" , "GB18030" , "GB2312" , "GBK" ,
"IBM00858" , "IBM01140" , "IBM01141" , "IBM01142", "IBM01143" , "IBM01144" , "IBM01145" ,
"IBM01146" , "IBM01147" , "IBM01148" , "IBM01149" , "IBM037" , "IBM1026" , "IBM1047" ,
"IBM273" , "IBM277" , "IBM278" , "IBM280" , "IBM284" , "IBM285" , "IBM290" , "IBM297" ,
"IBM420" , "IBM424" , "IBM437" , "IBM500" , "IBM775" , "IBM850" , "IBM852" , "IBM855" ,
"IBM857" , "IBM860" , "IBM861" , "IBM862" , "IBM863" , "IBM864" , "IBM865" , "IBM866" , "IBM868" ,
"IBM869" , "IBM870" , "IBM871" , "IBM918" , "IBM_THAI" , "ISO_2022_CN" , "ISO_2022_JP" ,
"ISO_2022_JP_2" , "ISO_2022_KR" , "ISO_8859_1" , "ISO_8859_13" , "ISO_8859_15" ,
"ISO_8859_16" , "ISO_8859_2" , "ISO_8859_3" , "ISO_8859_4" , "ISO_8859_5" , "ISO_8859_6" ,
"ISO_8859_7" , "ISO_8859_8" , "ISO_8859_9" ,"JIS_X0201" , "JIS_X0212_1990" , "KOI8_R" ,
"KOI8_U" , "SHIFT_JIS" , "TIS_620" , "US_ASCII" , "UTF_16" , "UTF_16BE" , "UTF_16LE" , "UTF_32" ,
"UTF_32BE" , "UTF_32LE" , "UTF_8" , "WINDOWS_1250" , "WINDOWS_1251" , "WINDOWS_1252" ,
"WINDOWS_1253" ,"WINDOWS_1254" , "WINDOWS_1255" , "WINDOWS_1256" ,
"WINDOWS_1257" , "WINDOWS_1258" , "WINDOWS_31J" , "X_BIG5_HKSCS_2001" ,

Step 5: View transfer task progress 809

AWS Mainframe Modernization User Guide

"X_BIG5_SOLARIS" , "X_EUCJP_OPEN" , "X_EUC_JP_LINUX" , "X_EUC_TW" , "X_IBM1006" ,
"X_IBM1025" , "X_IBM1046" , "X_IBM1097" , "X_IBM1098" , "X_IBM1112" , "X_IBM1122" ,
"X_IBM1123" , "X_IBM1124" , "X_IBM1129" , "X_IBM1166" , "X_IBM1364" , "X_IBM1381" ,
"X_IBM1383" , "X_IBM29626C" , "X_IBM300" , "X_IBM33722" , "X_IBM737" , "X_IBM833" ,
"X_IBM834" , "X_IBM856" , "X_IBM874" , "X_IBM875" , "X_IBM921" , "X_IBM922" , "X_IBM930" ,
"X_IBM933" , "X_IBM935" , "X_IBM937" , "X_IBM939" , "X_IBM942" , "X_IBM942C" ,
"X_IBM943" , "X_IBM943C" , "X_IBM948" , "X_IBM949" , "X_IBM949C" , "X_IBM950" ,
"X_IBM964" , "X_IBM970" , "X_ISCII91" , "X_ISO_2022_CN_CNS" , "X_ISO_2022_CN_GB" ,
"X_ISO_8859_11" , "X_JIS0208" , "X_JISAUTODETECT" , "X_JOHAB", "X_MACARABIC" ,
"X_MACCENTRALEUROPE" , "X_MACCROATIAN" , "X_MACCYRILLIC" , "X_MACDINGBAT",
"X_MACGREEK" , "X_MACHEBREW" , "X_MACICELAND" , "X_MACROMAN" , "X_MACROMANIA" ,
"X_MACSYMBOL" , "X_MACTHAI" , "X_MACTURKISH" , "X_MACUKRAINE" , "X_MS932_0213" ,
"X_MS950_HKSCS" , "X_MS950_HKSCS_XP" , "X_MSWIN_936" , "X_PCK" , "X_SJIS_0213" ,
"X_UTF_16LE_BOM" , "X_UTF_32BE_BOM" , "X_UTF_32LE_BOM" , "X_WINDOWS_50220" ,
"X_WINDOWS_50221" , "X_WINDOWS_874" , "X_WINDOWS_949" , "X_WINDOWS_950" ,
"X_WINDOWS_ISO2022j"

Supported code pages 810

AWS Mainframe Modernization User Guide

Security in AWS Mainframe Modernization

Cloud security at AWS is the highest priority. As an AWS customer, you benefit from a data center
and network architecture that is built to meet the requirements of the most security-sensitive
organizations.

Security is a shared responsibility between AWS and you. The shared responsibility model describes
this as security of the cloud and security in the cloud:

• Security of the cloud – AWS is responsible for protecting the infrastructure that runs AWS
services in the AWS Cloud. AWS also provides you with services that you can use securely. Third-
party auditors regularly test and verify the effectiveness of our security as part of the AWS
Compliance Programs. To learn about the compliance programs that apply to AWS Mainframe
Modernization, see AWS Services in Scope by Compliance Program.

• Security in the cloud – Your responsibility is determined by the AWS service that you use. You
are also responsible for other factors including the sensitivity of your data, your company’s
requirements, and applicable laws and regulations

This documentation helps you understand how to apply the shared responsibility model
when using AWS Mainframe Modernization. It shows you how to configure AWS Mainframe
Modernization to meet your security and compliance objectives. You also learn how to use other
AWS services that help you to monitor and secure your AWS Mainframe Modernization resources.

AWS Mainframe Modernization provides its own IAM-protected resources (application,
environment, deployment etc), which are the AWS Mainframe Modernization administrative
resources, on which any action must be allowed by IAM policies.

AWS Mainframe Modernization for replatforming is also secured by IAM. IAM grants or
denies permission to a principal for a specific action on a defined resource, derived from the
original mainframe environment, through standard IAM policies as well. The AWS Mainframe
Modernization replatforming runtime calls the IAM authorization service when an application
attempts such action on a protected resource. IAM will return allow or deny based on standard IAM
policy evaluation mechanisms.

Contents

• Data protection in AWS Mainframe Modernization

• Identity and Access Management for AWS Mainframe Modernization

811

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/services-in-scope/

AWS Mainframe Modernization User Guide

• Compliance validation for AWS Mainframe Modernization

• Resilience in AWS Mainframe Modernization

• Infrastructure security in AWS Mainframe Modernization

• Access AWS Mainframe Modernization using an AWS PrivateLink interface endpoint

Data protection in AWS Mainframe Modernization

The AWS shared responsibility model applies to data protection in AWS Mainframe Modernization.
As described in this model, AWS is responsible for protecting the global infrastructure that runs all
of the AWS Cloud. You are responsible for maintaining control over your content that is hosted on
this infrastructure. You are also responsible for the security configuration and management tasks
for the AWS services that you use. For more information about data privacy, see the Data Privacy
FAQ. For information about data protection in Europe, see the AWS Shared Responsibility Model
and GDPR blog post on the AWS Security Blog.

For data protection purposes, we recommend that you protect AWS account credentials and set
up individual users with AWS IAM Identity Center or AWS Identity and Access Management (IAM).
That way, each user is given only the permissions necessary to fulfill their job duties. We also
recommend that you secure your data in the following ways:

• Use multi-factor authentication (MFA) with each account.

• Use SSL/TLS to communicate with AWS resources. We require TLS 1.2 and recommend TLS 1.3.

• Set up API and user activity logging with AWS CloudTrail.

• Use AWS encryption solutions, along with all default security controls within AWS services.

• Use advanced managed security services such as Amazon Macie, which assists in discovering and
securing sensitive data that is stored in Amazon S3.

• If you require FIPS 140-3 validated cryptographic modules when accessing AWS through a
command line interface or an API, use a FIPS endpoint. For more information about the available
FIPS endpoints, see Federal Information Processing Standard (FIPS) 140-3.

We strongly recommend that you never put confidential or sensitive information, such as your
customers' email addresses, into tags or free-form text fields such as a Name field. This includes
when you work with AWS Mainframe Modernization or other AWS services using the console, API,
AWS CLI, or AWS SDKs. Any data that you enter into tags or free-form text fields used for names
may be used for billing or diagnostic logs. If you provide a URL to an external server, we strongly

Data protection 812

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/data-privacy-faq/
https://aws.amazon.com/compliance/data-privacy-faq/
https://aws.amazon.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr/
https://aws.amazon.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr/
https://aws.amazon.com/compliance/fips/

AWS Mainframe Modernization User Guide

recommend that you do not include credentials information in the URL to validate your request to
that server.

Data that AWS Mainframe Modernization collects

AWS Mainframe Modernization collects several types of data from you:

• Application configuration: This is a JSON file that you create to configure your
application. It contains your choices for the different options that AWS Mainframe Modernization
offers. The file also contains information for dependent AWS resources such as Amazon Simple
Storage Service paths where application artifacts are stored or the Amazon Resource Name
(ARN) for AWS Secrets Manager where your database credentials are stored.

• Application executable (binary): This is a binary that you compile and that you intend
to deploy on AWS Mainframe Modernization.

• Application JCL or scripts: This source code manages batch jobs or other processing on
behalf of your application.

• User application data: When you import data sets, AWS Mainframe Modernization stores
them in the relational database so your application can access them.

• Application source code: Through Amazon AppStream 2.0, AWS Mainframe Modernization
provides a development environment for you to write and compile code.

AWS Mainframe Modernization stores this data natively in AWS. The data we collect from you is
stored in an AWS Mainframe Modernization-managed Amazon S3 bucket. When you deploy an
application, AWS Mainframe Modernization downloads the data onto an Amazon Elastic Block
Store-backed Amazon Elastic Compute Cloud instance. When cleanup is triggered, the data is
removed from the Amazon EBS volume and from Amazon S3. The Amazon EBS volumes are single-
tenanted, meaning that one instance is used for one customer. Instances are never shared. When
you delete a runtime environment, the Amazon EBS volume is also deleted. When you delete an
application, the artifacts and configuration are deleted from Amazon S3.

Application logs are stored in Amazon CloudWatch. Customer application log messages are
exported to CloudWatch as well. The CloudWatch logs might contain customer-sensitive data, such
as business data or security information in debug messages). For more information, see Monitoring
AWS Mainframe Modernization with Amazon CloudWatch.

Data that AWS Mainframe Modernization collects 813

AWS Mainframe Modernization User Guide

In addition, if you choose to attach one or more Amazon Elastic File System or Amazon FSx file
systems to your runtime environment, the data within those systems will be stored in AWS. You will
need to clean up that data if you decide to stop using the file systems.

You can use all available Amazon S3 encryption options to secure your data when you place it in
the Amazon S3 bucket that AWS Mainframe Modernization uses for application deployment and
dataset imports. In addition, you can use the Amazon EFS and Amazon FSx encryption options if
you attach one or more of these file systems to your runtime environment.

Data encryption at rest for AWS Mainframe Modernization service

AWS Mainframe Modernization integrates with AWS Key Management Service to provide
transparent server side encryption (SSE) on all dependent resources that store data permanently;
namely Amazon Simple Storage Service, Amazon DynamoDB, and Amazon Elastic Block Store. AWS
Mainframe Modernization creates and manages symmetric encryption AWS KMS keys for you in
AWS KMS.

Encryption of data at rest by default helps reduce the operational overhead and complexity
involved in protecting sensitive data. At the same time, it enables you to migrate applications that
require strict encryption compliance and regulatory requirements.

You can't disable this layer of encryption or select an alternate encryption type when you create
runtime environments and applications.

You can use your own customer managed key for AWS Mainframe Modernization applications and
runtime environments to encrypt Amazon S3 and Amazon EBS resources.

For your AWS Mainframe Modernization applications, you can use this key to encrypt your
application definition as well as other application resources, like JCL files, which are saved in the
Amazon S3 bucket that is created in the service’s account. For more information, see Create an
application .

For your AWS Mainframe Modernization runtime environments, AWS Mainframe Modernization
uses your customer managed key to encrypt the Amazon EBS volume that it creates and attaches
to your AWS Mainframe Modernization Amazon EC2 instance, which is also in the service’s account.
For more information, see Create a runtime environment.

Data encryption at rest for AWS Mainframe Modernization service 814

AWS Mainframe Modernization User Guide

Note

DynamoDB resources are always encrypted using an AWS managed key in the AWS
Mainframe Modernization service account. You cannot encrypt DynamoDB resources using
a customer managed key.

AWS Mainframe Modernization uses your customer managed key for the following tasks:

• Redeploying an application.

• Replacing a AWS Mainframe Modernization Amazon EC2 instance.

AWS Mainframe Modernization doesn't use your customer managed key to encrypt Amazon
Relational Database Service or Amazon Aurora databases, Amazon Simple Queue Service queues,
and Amazon ElastiCache caches that are created to support a AWS Mainframe Modernization
application, because none of them contain customer data.

For more information, see Customer managed keys in the AWS Key Management Service Developer
Guide.

The following table summarizes how AWS Mainframe Modernization encrypts your sensitive data.

Data type AWS managed key encryptio
n

Customer managed key
encryption

Definition

Contains the definition for a
particular application.

Enabled Enabled

EnvironmentSummary

Contains information about
the runtime environment.

Enabled Enabled

ApplicationSummary Enabled Enabled

Data encryption at rest for AWS Mainframe Modernization service 815

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#customer-cmk

AWS Mainframe Modernization User Guide

Data type AWS managed key encryptio
n

Customer managed key
encryption

Contains information
about the AWS Mainframe
Modernization application.

DeploymentSummary

Contains information about
a deployment of an AWS
Mainframe Modernization
application.

Enabled Enabled

Note

AWS Mainframe Modernization automatically enables encryption at rest using AWS
managed keys to protect your sensitive data at no charge. However, AWS KMS charges
apply for using a customer managed key. For more information about pricing, see AWS Key
Management Service Pricing.

For more information on AWS KMS, see AWS Key Management Service.

How AWS Mainframe Modernization uses grants in AWS KMS

AWS Mainframe Modernization requires a grant to use your customer managed key.

When you create an application or runtime environment, or deploy an application in AWS
Mainframe Modernization encrypted with a customer managed key, AWS Mainframe Modernization
creates a grant on your behalf by sending a CreateGrant request to AWS KMS. Grants in AWS KMS
are used to give AWS Mainframe Modernization access to a KMS key in a customer account.

AWS Mainframe Modernization requires the grant to use your customer managed key for the
following internal operations:

• Send DescribeKey requests to AWS KMS to verify that the symmetric customer managed key ID
entered when creating an application, runtime environment, or application deployment is valid.

How AWS Mainframe Modernization uses grants in AWS KMS 816

https://aws.amazon.com/kms/pricing/
https://aws.amazon.com/kms/pricing/
https://docs.aws.amazon.com/kms/latest/developerguide/grants.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_CreateGrant.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_DescribeKey.html

AWS Mainframe Modernization User Guide

• Send GenerateDataKey requests to AWS KMS to encrypt the Amazon EBS volume attached to
Amazon EC2 instances that host AWS Mainframe Modernization runtime environments.

• Send Decrypt requests to AWS KMS to decrypt encrypted content on Amazon EBS.

AWS Mainframe Modernization uses AWS KMS grants to decrypt your secrets stored in Secrets
Manager and when creating a runtime environment, creating or redeploying an application,
and creating a deployment. The grants that AWS Mainframe Modernization creates support the
following operations:

• Create or update a runtime environment grant:

• Decrypt

• Encrypt

• ReEncryptFrom

• ReEncryptTo

• GenerateDataKey

• DescribeKey

• CreateGrant

• Create or redeploy an application grant:

• GenerateDataKey

• Create a deployment grant:

• Decrypt

You can revoke access to the grant, or remove the service's access to the customer managed key
at any time. If you do, AWS Mainframe Modernization won't be able to access any of the data
encrypted by the customer managed key, which affects operations that depend on the data. For
example, if AWS Mainframe Modernization tried to access an application definition encrypted by a
customer managed key without the grant to that key, the application creation operation would fail.

AWS Mainframe Modernization collects user application configurations (JSON files) and artifacts
(binaries and executables). It also creates metadata that tracks various entities used for the
operation of AWS Mainframe Modernization, and creates logs and metrics. The logs and metrics
that are customer-visible include:

• CloudWatch logs that reflect application and runtime engine (either AWS Blu Age or Micro
Focus).

How AWS Mainframe Modernization uses grants in AWS KMS 817

https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html

AWS Mainframe Modernization User Guide

• CloudWatch metrics for operation dashboards.

In addition, AWS Mainframe Modernization collects usage data and metrics for metering, activity
reporting, and so on about the services. This data is not customer-visible.

AWS Mainframe Modernization stores this data in different places depending on the type of data.
Customer data that you upload is stored in an Amazon S3 bucket. Service data is stored in both
Amazon S3 and DynamoDB. When you deploy an application, both your data and service data
are downloaded onto Amazon EBS volumes. If you choose to attach Amazon EFS or Amazon FSx
storage to your runtime environment, data stored in those file systems is also downloaded to the
Amazon EBS volume.

Encryption at rest is configured by default. You cannot disable it or change it. Currently, you cannot
change its configuration either.

Create a customer managed key

You can create a symmetric customer managed key by using the AWS Management Console or the
AWS KMS APIs.

To create a symmetric customer managed key

Follow the steps for Creating symmetric customer managed key in the AWS Key Management
Service Developer Guide.

Key policy

Key policies control access to your customer managed key. Every customer managed key must have
exactly one key policy, which contains statements that determine who can use the key and how
they can use it. When you create your customer managed key, you can specify a key policy. For
more information, see Managing access to customer managed keys in the AWS Key Management
Service Developer Guide.

To use your customer managed key with your AWS Mainframe Modernization resources, the
following API operations must be permitted in the key policy:

• kms:CreateGrant – Adds a grant to a customer managed key. Grants control access to a
specified KMS key, which allows access to grant operations AWS Mainframe Modernization
requires. For more information about Using Grants, see the AWS Key Management Service
Developer Guide.

Create a customer managed key 818

https://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html#create-symmetric-cmk
https://docs.aws.amazon.com/kms/latest/developerguide/control-access-overview.html#managing-access
https://docs.aws.amazon.com/kms/latest/APIReference/API_CreateGrant.html
https://docs.aws.amazon.com/kms/latest/developerguide/grants.html#terms-grant-operations
https://docs.aws.amazon.com/kms/latest/developerguide/grants.html

AWS Mainframe Modernization User Guide

This allows AWS Mainframe Modernization to do the following:

• Call GenerateDataKey to generate an encrypted data key and store it, because the data key
isn't immediately used to encrypt.

• Call Decrypt to use the stored encrypted data key to access encrypted data.

• Set up a retiring principal to allow the service to RetireGrant.

• kms:DescribeKey – Provides the customer managed key details to allow AWS Mainframe
Modernization to validate the key.

AWS Mainframe Modernization requires kms:CreateGrant and kms:DescribeKey permissions
in the customer's key policy. AWS Mainframe Modernization uses this policy to create a grant for
itself.

{
 "Version": "2012-10-17",
 "Statement": [{
 "Sid": "Enable IAM User Permissions",
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::AccountId:role/ExampleRole"
 },
 "Action": [
 "kms:CreateGrant",
 "kms:DescribeKey"
],
 "Resource": "*"
 }]
}

Note

The role shown for Principal in the preceding example is the one that you use
for AWS Mainframe Modernization operations such as CreateApplication and
CreateEnvironment.

For more information about specifying permissions in a policy, see the AWS Key Management
Service Developer Guide.

Create a customer managed key 819

https://docs.aws.amazon.com/kms/latest/APIReference/API_DescribeKey.html
https://docs.aws.amazon.com/kms/latest/developerguide/control-access-overview.html#overview-policy-elements

AWS Mainframe Modernization User Guide

For more information about troubleshooting key access, see the AWS Key Management Service
Developer Guide.

Specifying a customer managed key for AWS Mainframe Modernization

You can specify a customer managed key for the following resources:

• Application

• Environment

When you create a resource, you can specify the key by entering a KMS ID, which AWS Mainframe
Modernization uses to encrypt the sensitive data stored by the resource.

• KMS ID— A key identifier for a customer managed key. Enter a key ID, key ARN, alias name, or
alias ARN.

You can specify a customer managed key using the AWS Management Console or the AWS CLI.

To specify your customer managed key when creating a runtime environment in the AWS
Management Console, see Create an AWS Mainframe Modernization runtime environment. To
specify your customer managed key when creating an application in the AWS Management
Console, see Create an AWS Mainframe Modernization application.

To add your customer managed key when you create a runtime environment with the AWS CLI,
specify the kms-key-id parameter, as follows:

aws m2 create-environment —engine-type microfocus —instance-type M2.m5.large
--publicly-accessible —engine-version 7.0.3 —name test
--high-availability-config desiredCapacity=2
--kms-key-id myEnvironmentKey

To add your customer managed key when you create an application with the AWS CLI, specify the
kms-key-id parameter, as follows:

aws m2 create-application —name test-application —description my description
--engine-type microfocus
--definition content="$(jq -c . raw-template.json | jq -R)"
--kms-key-id myApplicationKey

Specifying a customer managed key for AWS Mainframe Modernization 820

https://docs.aws.amazon.com/kms/latest/developerguide/policy-evaluation.html#example-no-iam
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id

AWS Mainframe Modernization User Guide

AWS Mainframe Modernization encryption context

An encryption context is an optional set of key-value pairs that contain additional contextual
information about the data.

AWS KMS uses the encryption context as additional authenticated data to support authenticated
encryption. When you include an encryption context in a request to encrypt data, AWS KMS binds
the encryption context to the encrypted data. To decrypt data, you include the same encryption
context in the request.

AWS Mainframe Modernization encryption context

AWS Mainframe Modernization uses the same encryption context in all AWS KMS cryptographic
operations related to an application (create application and create deployment), where the key is
aws:m2:app and the value is the unique identifier of the application.

Example

"encryptionContextSubset": {
 "aws:m2:app": "a1bc2defabc3defabc4defabcd"
}

Using encryption context for monitoring

When you use a symmetric customer managed key to encrypt your applications or runtime
environments, you can also use the encryption context in audit records and logs to identify how
the customer managed key is being used.

Using encryption context to control access to your customer managed key

You can use the encryption context in key policies and IAM policies as conditions to control
access to your symmetric customer managed key. You can also use encryption context constraints
in a grant.

AWS Mainframe Modernization uses an encryption context constraint in grants to control access
to the customer managed key in your account or region. The grant constraint requires that the
operations that the grant allows use the specified encryption context. The following example is a
grant that AWS Mainframe Modernization leverages to encrypt application artifact when creating
an application.

//This grant is retired immediately after create application finish

AWS Mainframe Modernization encryption context 821

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#encrypt_context
https://docs.aws.amazon.com/crypto/latest/userguide/cryptography-concepts.html#term-aad
https://docs.aws.amazon.com/crypto/latest/userguide/cryptography-concepts.html#define-authenticated-encryption
https://docs.aws.amazon.com/crypto/latest/userguide/cryptography-concepts.html#define-authenticated-encryption

AWS Mainframe Modernization User Guide

{
 "grantee-principal": m2.us-west-2.amazonaws.com,
 "retiring-principal": m2.us-west-2.amazonaws.com,
 "operations": [
 "GenerateDataKey"
]
 "condition": {
 "encryptionContextSubset": {
 “aws:m2:app”: “a1bc2defabc3defabc4defabcd”
 }
}

Monitoring your encryption keys for AWS Mainframe Modernization

When you use an AWS KMS customer managed key with your AWS Mainframe Modernization
resources, you can use AWS CloudTrail or Amazon CloudWatch Logs to track requests that AWS
Mainframe Modernization sends to AWS KMS.

Examples for runtime environments

The following examples are AWS CloudTrail events for DescribeKey, CreateGrant,
GenerateDataKey, and Decrypt to monitor KMS operations called by AWS Mainframe
Modernization to access data encrypted by your customer managed key:

DescribeKey

AWS Mainframe Modernization uses the DescribeKey operation to verify if the AWS KMS
customer managed key associated with your runtime environment exists in the account and
region.

The following example event records the DescribeKey operation:

{
 "eventVersion": "1.08",
 "userIdentity": {
 "type": "AssumedRole",
 "principalId": "AROAIGDTESTANDEXAMPLE:Sampleuser01",
 "arn": "arn:aws:sts::111122223333:assumed-role/Admin/Sampleuser01",
 "accountId": "111122223333",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE3",
 "sessionContext": {
 "sessionIssuer": {

Monitoring your encryption keys 822

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-user-guide.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/WhatIsCloudWatchLogs.html

AWS Mainframe Modernization User Guide

 "type": "Role",
 "principalId": "AROAIGDTESTANDEXAMPLE:Sampleuser01",
 "arn": "arn:aws:sts::111122223333:assumed-role/Admin/Sampleuser01",
 "accountId": "111122223333",
 "userName": "Admin"
 },
 "webIdFederationData": {},
 "attributes": {
 "creationDate": "2022-12-06T19:40:26Z",
 "mfaAuthenticated": "false"
 }
 }
 },
 "eventTime": "2022-12-06T20:23:43Z",
 "eventSource": "kms.amazonaws.com",
 "eventName": "DescribeKey",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "205.251.233.182",
 "userAgent": "ExampleDesktop/1.0 (V1; OS)",
 "requestParameters": {
 "keyId": "00dd0db0-0000-0000-ac00-b0c000SAMPLE"
 },
 "responseElements": null,
 "requestID": "ff000af-00eb-00ce-0e00-ea000fb0fba0SAMPLE",
 "eventID": "ff000af-00eb-00ce-0e00-ea000fb0fba0SAMPLE",
 "readOnly": true,
 "resources": [
 {
 "accountId": "111122223333",
 "type": "AWS::KMS::Key",
 "ARN": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-123456SAMPLE"
 }
],
 "eventType": "AwsApiCall",
 "managementEvent": true,
 "recipientAccountId": "111122223333",
 "eventCategory": "Management",
 "tlsDetails": {
 "tlsVersion": "TLSv1.3",
 "cipherSuite": "TLS_AES_256_GCM_SHA384",
 "clientProvidedHostHeader": "kms.us-west-2.amazonaws.com"
 },
 "sessionCredentialFromConsole": "true"

Monitoring your encryption keys 823

AWS Mainframe Modernization User Guide

}

CreateGrant

When you use an AWS KMS customer managed key to encrypt your runtime environment, AWS
Mainframe Modernization sends several CreateGrant requests on your behalf to perform
necessary KMS operations. Some of the grants that AWS Mainframe Modernization creates are
retired immediately after use. Others are retired when you delete the runtime environment.

The following example event records the CreateGrant operation for the Lambda execution
role associated with the Create Environment workflow.

{
 "eventVersion": "1.08",
 "userIdentity": {
 "type": "AssumedRole",
 "principalId": "AROAIGDTESTANDEXAMPLE:Sampleuser01",
 "arn": "arn:aws:sts::111122223333:assumed-role/Admin/Sampleuser01",
 "accountId": "111122223333",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE3",
 "sessionContext": {
 "sessionIssuer": {
 "type": "Role",
 "principalId": "AROAIGDTESTANDEXAMPLE:Sampleuser01",
 "arn": "arn:aws:sts::111122223333:assumed-role/Admin/Sampleuser01",
 "accountId": "111122223333",
 "userName": "Admin"
 },
 "webIdFederationData": {},
 "attributes": {
 "creationDate": "2022-12-06T20:11:45Z",
 "mfaAuthenticated": "false"
 }
 },
 "invokedBy": "m2.us-west-2.amazonaws.com"
 },
 "eventTime": "2022-12-06T20:23:09Z",
 "eventSource": "kms.amazonaws.com",
 "eventName": "CreateGrant",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "m2.us-west-2.amazonaws.com",
 "userAgent": "m2.us-west-2.amazonaws.com",
 "requestParameters": {

Monitoring your encryption keys 824

AWS Mainframe Modernization User Guide

 "keyId": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-123456SAMPLE",
 "operations": [
 "Encrypt",
 "Decrypt",
 "ReEncryptFrom",
 "ReEncryptTo",
 "GenerateDataKey",
 "GenerateDataKey",
 "DescribeKey",
 "CreateGrant"
],
 "granteePrincipal": "m2.us-west-2.amazonaws.com",
 "retiringPrincipal": "m2.us-west-2.amazonaws.com"
 },
 "responseElements": {
 "grantId":
 "0ab0ac0d0b000f00ea00cc0a0e00fc00bce000c000f0000000c0bc0a0000aaafSAMPLE",
 "keyId": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-123456SAMPLE"
 },
 "requestID": "ff000af-00eb-00ce-0e00-ea000fb0fba0SAMPLE",
 "eventID": "ff000af-00eb-00ce-0e00-ea000fb0fba0SAMPLE",
 "readOnly": false,
 "resources": [
 {
 "accountId": "111122223333",
 "type": "AWS::KMS::Key",
 "ARN": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-123456SAMPLE"
 }
],
 "eventType": "AwsApiCall",
 "managementEvent": true,
 "recipientAccountId": "111122223333",
 "eventCategory": "Management"
}

The following example event records the CreateGrant operation for the Auto Scaling group
service-linked role. The Lambda execution role associated with the Create Environment
workflow calls this CreateGrant operation. It grants permission for the execution role to
create a subgrant against the Auto Scaling group's service-linked role.

Monitoring your encryption keys 825

AWS Mainframe Modernization User Guide

{
 "eventVersion": "1.08",
 "userIdentity": {
 "type": "AssumedRole",
 "principalId": "AROA3YPCLM65MZFUPM4JO:EnvironmentWorkflow-alpha-
CreateEnvironmentLambda7-HfxDj5zz86tr",
 "arn": "arn:aws:sts::111122223333:assumed-role/EnvironmentWorkflow-
alpha-CreateEnvironmentLambdaS-1AU4A8VNQEEKN/EnvironmentWorkflow-alpha-
CreateEnvironmentLambda7-HfxDj5zz86tr",
 "accountId": "111122223333",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE3",
 "sessionContext": {
 "sessionIssuer": {
 "type": "Role",
 "principalId": "AROAIGDTESTANDEXAMPLE:Sampleuser01",
 "arn": "arn:aws:iam::111122223333:role/EnvironmentWorkflow-alpha-
CreateEnvironmentLambdaS-1AU4A8VNQEEKN",
 "accountId": "111122223333",
 "userName": "EnvironmentWorkflow-alpha-
CreateEnvironmentLambdaS-1AU4A8VNQEEKN"
 },
 "webIdFederationData": {},
 "attributes": {
 "creationDate": "2022-12-06T20:22:28Z",
 "mfaAuthenticated": "false"
 }
 }
 },
 "eventTime": "2022-12-06T20:23:09Z",
 "eventSource": "kms.amazonaws.com",
 "eventName": "CreateGrant",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "54.148.236.160",
 "userAgent": "aws-sdk-java/2.18.21 Linux/4.14.255-276-224.499.amzn2.x86_64
 OpenJDK_64-Bit_Server_VM/11.0.14.1+10-LTS Java/11.0.14.1 vendor/Amazon.com_Inc. md/
internal exec-env/AWS_Lambda_java11 io/sync http/Apache cfg/retry-mode/legacy",
 "requestParameters": {
 "keyId": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-123456SAMPLE",
 "operations": [
 "Encrypt",
 "Decrypt",
 "ReEncryptFrom",

Monitoring your encryption keys 826

AWS Mainframe Modernization User Guide

 "ReEncryptTo",
 "GenerateDataKey",
 "GenerateDataKey",
 "DescribeKey",
 "CreateGrant"
],
 "granteePrincipal": "m2.us-west-2.amazonaws.com",
 "retiringPrincipal": "m2.us-west-2.amazonaws.com"
 },
 "responseElements": {
 "grantId":
 "0ab0ac0d0b000f00ea00cc0a0e00fc00bce000c000f0000000c0bc0a0000aaafSAMPLE",
 "keyId": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-123456SAMPLE"
 },
 "requestID": "ff000af-00eb-00ce-0e00-ea000fb0fba0SAMPLE",
 "eventID": "ff000af-00eb-00ce-0e00-ea000fb0fba0SAMPLE",
 "readOnly": false,
 "resources": [
 {
 "accountId": "111122223333",
 "type": "AWS::KMS::Key",
 "ARN": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-123456SAMPLE"
 }
],
 "eventType": "AwsApiCall",
 "managementEvent": true,
 "recipientAccountId": "111122223333",
 "eventCategory": "Management",
 "tlsDetails": {
 "tlsVersion": "TLSv1.3",
 "cipherSuite": "TLS_AES_256_GCM_SHA384",
 "clientProvidedHostHeader": "kms.us-west-2.amazonaws.com"
 }
}
}

GenerateDataKey

When you enable an AWS KMS customer managed key for your runtime environment resource,
Auto Scaling creates a unique key for encrypting the Amazon EBS volume associated with the

Monitoring your encryption keys 827

AWS Mainframe Modernization User Guide

runtime environment. It sends a GenerateDataKey request to AWS KMS that specifies the
AWS KMS customer managed key for the resource.

The following example event records the GenerateDataKey operation:

{
 "eventVersion": "1.08",
 "userIdentity": {
 "type": "AssumedRole",
 "principalId": "AROA3YPCLM65EEXVIEH7D:AutoScaling",
 "arn": "arn:aws:sts::111122223333:assumed-role/AWSServiceRoleForAutoScaling/
AutoScaling",
 "accountId": "111122223333",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE3",
 "sessionContext": {
 "sessionIssuer": {
 "type": "Role",
 "principalId": "AROAIGDTESTANDEXAMPLE:Sampleuser01",
 "arn": "arn:aws:iam::111122223333:role/aws-service-role/
autoscaling.amazonaws.com/AWSServiceRoleForAutoScaling",
 "accountId": "111122223333",
 "userName": "AWSServiceRoleForAutoScaling"
 },
 "webIdFederationData": {},
 "attributes": {
 "creationDate": "2022-12-06T20:23:16Z",
 "mfaAuthenticated": "false"
 }
 },
 "invokedBy": "autoscaling.amazonaws.com"
 },
 "eventTime": "2022-12-06T20:23:18Z",
 "eventSource": "kms.amazonaws.com",
 "eventName": "GenerateDataKey",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "autoscaling.amazonaws.com",
 "userAgent": "autoscaling.amazonaws.com",
 "requestParameters": {
 "encryptionContext": {
 "aws:ebs:id": "vol-080f7a32d290807f3"
 },
 "keyId": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-123456SAMPLE",
 "numberOfBytes": 64

Monitoring your encryption keys 828

AWS Mainframe Modernization User Guide

 },
 "responseElements": null,
 "requestID": "ff000af-00eb-00ce-0e00-ea000fb0fba0SAMPLE",
 "eventID": "ff000af-00eb-00ce-0e00-ea000fb0fba0SAMPLE",
 "readOnly": true,
 "resources": [
 {
 "accountId": "111122223333",
 "type": "AWS::KMS::Key",
 "ARN": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-123456SAMPLE"
 }
],
 "eventType": "AwsApiCall",
 "managementEvent": true,
 "recipientAccountId": "111122223333",
 "eventCategory": "Management"
}

Decrypt

When you access an encrypted runtime environment, Amazon EBS calls the Decrypt operation
to use the stored encrypted data key to access the encrypted data.

The following example event records the Decrypt operation:

{
 "eventVersion": "1.08",
 "userIdentity": {
 "type": "AWSService",
 "invokedBy": "ebs.amazonaws.com"
 },
 "eventTime": "2022-12-06T20:23:22Z",
 "eventSource": "kms.amazonaws.com",
 "eventName": "Decrypt",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "ebs.amazonaws.com",
 "userAgent": "ebs.amazonaws.com",
 "requestParameters": {
 "encryptionAlgorithm": "SYMMETRIC_DEFAULT",
 "encryptionContext": {
 "aws:ebs:id": "vol-080f7a32d290807f3"
 }
 },

Monitoring your encryption keys 829

AWS Mainframe Modernization User Guide

 "responseElements": null,
 "requestID": "ff000af-00eb-00ce-0e00-ea000fb0fba0SAMPLE",
 "eventID": "ff000af-00eb-00ce-0e00-ea000fb0fba0SAMPLE",
 "readOnly": true,
 "resources": [
 {
 "accountId": "111122223333",
 "type": "AWS::KMS::Key",
 "ARN": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-123456SAMPLE"
 }
],
 "eventType": "AwsApiCall",
 "managementEvent": true,
 "recipientAccountId": "111122223333",
 "sharedEventID": "ff000af-00eb-00ce-0e00-ea000fb0fba0SAMPLE",
 "eventCategory": "Management"
}

Examples for applications

The following examples are AWS CloudTrail events for CreateGrant and GenerateDataKey to
monitor KMS operations called by AWS Mainframe Modernization to access data encrypted by your
customer managed key:

CreateGrant

When you use an AWS KMS customer managed key to encrypt your application resources, the
Lambda execution role sends a CreateGrant request on your behalf to access the KMS key in
your AWS account. The grant allows the Lambda execution role to upload customer application
resources to Amazon S3 using your customer managed key. This grant is retired immediately
after the application is created.

The following example event records the CreateGrant operation:

{
 "eventVersion": "1.08",
 "userIdentity": {
 "type": "AssumedRole",
 "principalId": "AROAIGDTESTANDEXAMPLE:Sampleuser01",
 "arn": "arn:aws:sts::111122223333:assumed-role/Admin/Sampleuser01",

Monitoring your encryption keys 830

AWS Mainframe Modernization User Guide

 "accountId": "111122223333",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE3",
 "sessionContext": {
 "sessionIssuer": {
 "type": "Role",
 "principalId": "AROAIGDTESTANDEXAMPLE:Sampleuser01",
 "arn": "arn:aws:sts::111122223333:assumed-role/Admin/Sampleuser01",
 "accountId": "111122223333",
 "userName": "Admin"
 },
 "webIdFederationData": {},
 "attributes": {
 "creationDate": "2022-12-06T21:51:45Z",
 "mfaAuthenticated": "false"
 }
 },
 "invokedBy": "m2.us-west-2.amazonaws.com"
 },
 "eventTime": "2022-12-06T22:47:04Z",
 "eventSource": "kms.amazonaws.com",
 "eventName": "CreateGrant",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "m2.us-west-2.amazonaws.com",
 "userAgent": "m2.us-west-2.amazonaws.com",
 "requestParameters": {
 "keyId": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-123456SAMPLE",
 "constraints": {
 "encryptionContextSubset": {
 "aws:m2:app": "a1bc2defabc3defabc4defabcd"
 }
 },
 "retiringPrincipal": "m2.us-west-2.amazonaws.com",
 "operations": [
 "GenerateDataKey"
],
 "granteePrincipal": "m2.us-west-2.amazonaws.com"
 },
 "responseElements": {
 "grantId":
 "0ab0ac0d0b000f00ea00cc0a0e00fc00bce000c000f0000000c0bc0a0000aaafSAMPLE",
 "keyId": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-123456SAMPLE"
 },

Monitoring your encryption keys 831

AWS Mainframe Modernization User Guide

 "requestID": "ff000af-00eb-00ce-0e00-ea000fb0fba0SAMPLE",
 "eventID": "ff000af-00eb-00ce-0e00-ea000fb0fba0SAMPLE",
 "readOnly": false,
 "resources": [
 {
 "accountId": "111122223333",
 "type": "AWS::KMS::Key",
 "ARN": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-123456SAMPLE"
 }
],
 "eventType": "AwsApiCall",
 "managementEvent": true,
 "recipientAccountId": "111122223333",
 "eventCategory": "Management"
}

GenerateDataKey

When you enable an AWS KMS customer managed key for your application resource, the
Lambda execution role creates a key that it uses to encrypt and upload customer data to
Amazon Simple Storage Service. The Lambda execution role sends a GenerateDataKey
request to AWS KMS that specifies the AWS KMS customer managed key for the resource.

The following example event records the GenerateDataKey operation:

{
 "eventVersion": "1.08",
 "userIdentity": {
 "type": "AssumedRole",
 "principalId": "AROA3YPCLM65CLCEKKC7Z:ApplicationWorkflow-alpha-
CreateApplicationVersion-CstWZUn5R4u6",
 "arn": "arn:aws:sts::111122223333:assumed-role/ApplicationWorkflow-
alpha-CreateApplicationVersion-1IZRBZYDG20B/ApplicationWorkflow-alpha-
CreateApplicationVersion-CstWZUn5R4u6",
 "accountId": "111122223333",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE3",
 "sessionContext": {
 "sessionIssuer": {
 "type": "Role",
 "principalId": "AROAIGDTESTANDEXAMPLE:Sampleuser01",
 "arn": "arn:aws:iam::111122223333:role/ApplicationWorkflow-alpha-
CreateApplicationVersion-1IZRBZYDG20B",

Monitoring your encryption keys 832

AWS Mainframe Modernization User Guide

 "accountId": "111122223333",
 "userName": "ApplicationWorkflow-alpha-
CreateApplicationVersion-1IZRBZYDG20B"
 },
 "webIdFederationData": {},
 "attributes": {
 "creationDate": "2022-12-06T23:28:32Z",
 "mfaAuthenticated": "false"
 }
 },
 "invokedBy": "m2.us-west-2.amazonaws.com"
 },
 "eventTime": "2022-12-06T23:29:08Z",
 "eventSource": "kms.amazonaws.com",
 "eventName": "GenerateDataKey",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "m2.us-west-2.amazonaws.com",
 "userAgent": "m2.us-west-2.amazonaws.com",
 "requestParameters": {
 "encryptionContext": {
 "aws:m2:app": "a1bc2defabc3defabc4defabcd",
 "aws:s3:arn": "arn:aws:s3:::supernova-processedtemplate-111122223333-us-
west-2/111122223333/a1bc2defabc3defabc4defabcd/1/cics-transaction/ZBNKE35.so"
 },
 "keySpec": "AES_256",
 "keyId": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-123456SAMPLE"
 },
 "responseElements": null,
 "requestID": "ff000af-00eb-00ce-0e00-ea000fb0fba0SAMPLE",
 "eventID": "ff000af-00eb-00ce-0e00-ea000fb0fba0SAMPLE",
 "readOnly": true,
 "resources": [
 {
 "accountId": "111122223333",
 "type": "AWS::KMS::Key",
 "ARN": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-123456SAMPLE"
 }
],
 "eventType": "AwsApiCall",
 "managementEvent": true,
 "recipientAccountId": "111122223333",
 "eventCategory": "Management"

Monitoring your encryption keys 833

AWS Mainframe Modernization User Guide

}

Examples for deployments

The following examples are AWS CloudTrail events for CreateGrant and Decrypt to monitor
KMS operations called by AWS Mainframe Modernization to access data encrypted by your
customer managed key:

CreateGrant

When you use an AWS KMS customer managed key to encrypt your deployment resources,
AWS Mainframe Modernization sends two CreateGrant requests on your behalf. The first
grant is against the current Lambda execution role to call ListBatchJobScriptFiles, and is retired
immediately after deployment finishes. The second grant is against the Amazon EC2 scoped
down instance role so that Amazon EC2 can download customer application resources from
Amazon S3. This grant is retired when the application is deleted from the runtime environment.

The following example event records the CreateGrant operation:

{
 "eventVersion": "1.08",
 "userIdentity": {
 "type": "AssumedRole",
 "principalId": "AROAIGDTESTANDEXAMPLE:Sampleuser01",
 "arn": "arn:aws:sts::111122223333:assumed-role/Admin/Sampleuser01",
 "accountId": "111122223333",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE3",
 "sessionContext": {
 "sessionIssuer": {
 "type": "Role",
 "principalId": "AROAIGDTESTANDEXAMPLE:Sampleuser01",
 "arn": "arn:aws:sts::111122223333:assumed-role/Admin/Sampleuser01",
 "accountId": "111122223333",
 "userName": "Admin"
 },
 "webIdFederationData": {},
 "attributes": {
 "creationDate": "2022-12-06T21:51:45Z",
 "mfaAuthenticated": "false"
 }
 },

Monitoring your encryption keys 834

AWS Mainframe Modernization User Guide

 "invokedBy": "m2.us-west-2.amazonaws.com"
 },
 "eventTime": "2022-12-06T23:40:07Z",
 "eventSource": "kms.amazonaws.com",
 "eventName": "CreateGrant",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "m2.us-west-2.amazonaws.com",
 "userAgent": "m2.us-west-2.amazonaws.com",
 "requestParameters": {
 "operations": [
 "Decrypt"
],
 "constraints": {
 "encryptionContextSubset": {
 "aws:m2:app": "a1bc2defabc3defabc4defabcd"
 }
 },
 "granteePrincipal": "m2.us-west-2.amazonaws.com",
 "retiringPrincipal": "m2.us-west-2.amazonaws.com",
 "keyId": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-123456SAMPLE"
 },
 "responseElements": {
 "grantId":
 "0ab0ac0d0b000f00ea00cc0a0e00fc00bce000c000f0000000c0bc0a0000aaafSAMPLE",
 "keyId": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-123456SAMPLE"
 },
 "requestID": "ff000af-00eb-00ce-0e00-ea000fb0fba0SAMPLE",
 "eventID": "ff000af-00eb-00ce-0e00-ea000fb0fba0SAMPLE",
 "readOnly": false,
 "resources": [
 {
 "accountId": "111122223333",
 "type": "AWS::KMS::Key",
 "ARN": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-123456SAMPLE"
 }
],
 "eventType": "AwsApiCall",
 "managementEvent": true,
 "recipientAccountId": "111122223333",
 "eventCategory": "Management"

Monitoring your encryption keys 835

AWS Mainframe Modernization User Guide

}

Decrypt

When you access a deployment, Amazon EC2 calls the Decrypt operation to use the stored
encrypted data key to decrypt and download encrypted customer data from Amazon S3.

The following example event records the Decrypt operation:

{
 "eventVersion": "1.08",
 "userIdentity": {
 "type": "AssumedRole",
 "principalId": "AROA3YPCLM65BSPZ37E6G:m2-hm-bqe367dxtfcpdbzmnhfzranisu",
 "arn": "arn:aws:sts::111122223333:assumed-role/
SupernovaEnvironmentInstanceScopeDownRole/m2-hm-bqe367dxtfcpdbzmnhfzranisu",
 "accountId": "111122223333",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE3",
 "sessionContext": {
 "sessionIssuer": {
 "type": "Role",
 "principalId": "AROAIGDTESTANDEXAMPLE:Sampleuser01",
 "arn": "arn:aws:iam::111122223333:role/
SupernovaEnvironmentInstanceScopeDownRole",
 "accountId": "111122223333",
 "userName": "SupernovaEnvironmentInstanceScopeDownRole"
 },
 "webIdFederationData": {},
 "attributes": {
 "creationDate": "2022-12-06T23:19:29Z",
 "mfaAuthenticated": "false"
 }
 },
 "invokedBy": "m2.us-west-2.amazonaws.com"
 },
 "eventTime": "2022-12-06T23:40:15Z",
 "eventSource": "kms.amazonaws.com",
 "eventName": "Decrypt",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "m2.us-west-2.amazonaws.com",
 "userAgent": "m2.us-west-2.amazonaws.com",
 "requestParameters": {
 "encryptionContext": {

Monitoring your encryption keys 836

AWS Mainframe Modernization User Guide

 "aws:m2:app": "a1bc2defabc3defabc4defabcdm",
 "aws:s3:arn": "arn:aws:s3:::supernova-processedtemplate-111122223333-us-
west-2/111122223333/a1bc2defabc3defabc4defabcdm/1/cics-transaction/BBANK40P.so"
 },
 "encryptionAlgorithm": "SYMMETRIC_DEFAULT"
 },
 "responseElements": null,
 "requestID": "ff000af-00eb-00ce-0e00-ea000fb0fba0SAMPLE",
 "eventID": "ff000af-00eb-00ce-0e00-ea000fb0fba0SAMPLE",
 "readOnly": true,
 "resources": [
 {
 "accountId": "111122223333",
 "type": "AWS::KMS::Key",
 "ARN": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-123456SAMPLE"
 }
],
 "eventType": "AwsApiCall",
 "managementEvent": true,
 "recipientAccountId": "111122223333",
 "eventCategory": "Management"
}

Learn more

The following resources provide more information about data encryption at rest.

• For more information about AWS Key Management Service basic concepts, see the AWS Key
Management Service Developer Guide.

• For more information about Security best practices for AWS Key Management Service, see the
AWS Key Management Service Developer Guide.

Encryption in transit

For interactive applications that are part of transactional workloads, the data exchanges between
the terminal emulator and the AWS Mainframe Modernization service endpoint for TN3270
protocol are not encrypted in transit. If the application requires encryption in transit, you might
want to implement some additional tunneling mechanisms.

Learn more 837

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html
https://docs.aws.amazon.com/kms/latest/developerguide/best-practices.html

AWS Mainframe Modernization User Guide

AWS Mainframe Modernization uses HTTPS to encrypt the service APIs. All other communication
within AWS Mainframe Modernization is protected by the service VPC or security group, as well
as HTTPS. AWS Mainframe Modernization transfers application artifacts, configurations, and
application data. Application artifacts are copied from an Amazon S3 bucket that you own, as
are application data. You can provide application configurations using a link to Amazon S3 or by
uploading a file locally.

Basic encryption in transit is configured by default, but does not apply to the TN3270 protocol.
AWS Mainframe Modernization uses HTTPS for API endpoints, which are also configured by
default.

Identity and Access Management for AWS Mainframe
Modernization

AWS Identity and Access Management (IAM) is an AWS service that helps an administrator securely
control access to AWS resources. IAM administrators control who can be authenticated (signed in)
and authorized (have permissions) to use AWS Mainframe Modernization resources. IAM is an AWS
service that you can use with no additional charge.

Topics

• Audience

• Authenticating with identities

• Managing access using policies

• How AWS Mainframe Modernization works with IAM

• Identity-based policy examples for AWS Mainframe Modernization

• Troubleshooting AWS Mainframe Modernization identity and access

• Using service-linked roles for AWS Mainframe Modernization

Audience

How you use AWS Identity and Access Management (IAM) differs, depending on the work that you
do in AWS Mainframe Modernization.

Service user – If you use the AWS Mainframe Modernization service to do your job, then your
administrator provides you with the credentials and permissions that you need. As you use

Identity and Access Management 838

AWS Mainframe Modernization User Guide

more AWS Mainframe Modernization features to do your work, you might need additional
permissions. Understanding how access is managed can help you request the right permissions
from your administrator. If you cannot access a feature in AWS Mainframe Modernization, see
Troubleshooting AWS Mainframe Modernization identity and access.

Service administrator – If you're in charge of AWS Mainframe Modernization resources at
your company, you probably have full access to AWS Mainframe Modernization. It's your job to
determine which AWS Mainframe Modernization features and resources your service users should
access. You must then submit requests to your IAM administrator to change the permissions of
your service users. Review the information on this page to understand the basic concepts of IAM.
To learn more about how your company can use IAM with AWS Mainframe Modernization, see How
AWS Mainframe Modernization works with IAM.

IAM administrator – If you're an IAM administrator, you might want to learn details about how
you can write policies to manage access to AWS Mainframe Modernization. To view example AWS
Mainframe Modernization identity-based policies that you can use in IAM, see Identity-based policy
examples for AWS Mainframe Modernization.

Authenticating with identities

Authentication is how you sign in to AWS using your identity credentials. You must be
authenticated (signed in to AWS) as the AWS account root user, as an IAM user, or by assuming an
IAM role.

You can sign in to AWS as a federated identity by using credentials provided through an identity
source. AWS IAM Identity Center (IAM Identity Center) users, your company's single sign-on
authentication, and your Google or Facebook credentials are examples of federated identities.
When you sign in as a federated identity, your administrator previously set up identity federation
using IAM roles. When you access AWS by using federation, you are indirectly assuming a role.

Depending on the type of user you are, you can sign in to the AWS Management Console or the
AWS access portal. For more information about signing in to AWS, see How to sign in to your AWS
account in the AWS Sign-In User Guide.

If you access AWS programmatically, AWS provides a software development kit (SDK) and a
command line interface (CLI) to cryptographically sign your requests by using your credentials. If
you don't use AWS tools, you must sign requests yourself. For more information about using the
recommended method to sign requests yourself, see Signing AWS API requests in the IAM User
Guide.

Authenticating with identities 839

https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-signing.html

AWS Mainframe Modernization User Guide

Regardless of the authentication method that you use, you might be required to provide additional
security information. For example, AWS recommends that you use multi-factor authentication
(MFA) to increase the security of your account. To learn more, see Multi-factor authentication in the
AWS IAM Identity Center User Guide and Using multi-factor authentication (MFA) in AWS in the IAM
User Guide.

AWS account root user

When you create an AWS account, you begin with one sign-in identity that has complete access to
all AWS services and resources in the account. This identity is called the AWS account root user and
is accessed by signing in with the email address and password that you used to create the account.
We strongly recommend that you don't use the root user for your everyday tasks. Safeguard your
root user credentials and use them to perform the tasks that only the root user can perform. For
the complete list of tasks that require you to sign in as the root user, see Tasks that require root
user credentials in the IAM User Guide.

Federated identity

As a best practice, require human users, including users that require administrator access, to use
federation with an identity provider to access AWS services by using temporary credentials.

A federated identity is a user from your enterprise user directory, a web identity provider, the AWS
Directory Service, the Identity Center directory, or any user that accesses AWS services by using
credentials provided through an identity source. When federated identities access AWS accounts,
they assume roles, and the roles provide temporary credentials.

For centralized access management, we recommend that you use AWS IAM Identity Center. You can
create users and groups in IAM Identity Center, or you can connect and synchronize to a set of users
and groups in your own identity source for use across all your AWS accounts and applications. For
information about IAM Identity Center, see What is IAM Identity Center? in the AWS IAM Identity
Center User Guide.

IAM users and groups

An IAM user is an identity within your AWS account that has specific permissions for a single person
or application. Where possible, we recommend relying on temporary credentials instead of creating
IAM users who have long-term credentials such as passwords and access keys. However, if you have
specific use cases that require long-term credentials with IAM users, we recommend that you rotate
access keys. For more information, see Rotate access keys regularly for use cases that require long-
term credentials in the IAM User Guide.

Authenticating with identities 840

https://docs.aws.amazon.com/singlesignon/latest/userguide/enable-mfa.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/root-user-tasks.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/root-user-tasks.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/what-is.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#rotate-credentials
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#rotate-credentials

AWS Mainframe Modernization User Guide

An IAM group is an identity that specifies a collection of IAM users. You can't sign in as a group. You
can use groups to specify permissions for multiple users at a time. Groups make permissions easier
to manage for large sets of users. For example, you could have a group named IAMAdmins and give
that group permissions to administer IAM resources.

Users are different from roles. A user is uniquely associated with one person or application, but
a role is intended to be assumable by anyone who needs it. Users have permanent long-term
credentials, but roles provide temporary credentials. To learn more, see When to create an IAM user
(instead of a role) in the IAM User Guide.

IAM roles

An IAM role is an identity within your AWS account that has specific permissions. It is similar to an
IAM user, but is not associated with a specific person. You can temporarily assume an IAM role in
the AWS Management Console by switching roles. You can assume a role by calling an AWS CLI or
AWS API operation or by using a custom URL. For more information about methods for using roles,
see Using IAM roles in the IAM User Guide.

IAM roles with temporary credentials are useful in the following situations:

• Federated user access – To assign permissions to a federated identity, you create a role
and define permissions for the role. When a federated identity authenticates, the identity
is associated with the role and is granted the permissions that are defined by the role. For
information about roles for federation, see Creating a role for a third-party Identity Provider
in the IAM User Guide. If you use IAM Identity Center, you configure a permission set. To control
what your identities can access after they authenticate, IAM Identity Center correlates the
permission set to a role in IAM. For information about permissions sets, see Permission sets in
the AWS IAM Identity Center User Guide.

• Temporary IAM user permissions – An IAM user or role can assume an IAM role to temporarily
take on different permissions for a specific task.

• Cross-account access – You can use an IAM role to allow someone (a trusted principal) in a
different account to access resources in your account. Roles are the primary way to grant cross-
account access. However, with some AWS services, you can attach a policy directly to a resource
(instead of using a role as a proxy). To learn the difference between roles and resource-based
policies for cross-account access, see Cross account resource access in IAM in the IAM User Guide.

• Cross-service access – Some AWS services use features in other AWS services. For example, when
you make a call in a service, it's common for that service to run applications in Amazon EC2 or

Authenticating with identities 841

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_groups.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/permissionsetsconcept.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html

AWS Mainframe Modernization User Guide

store objects in Amazon S3. A service might do this using the calling principal's permissions,
using a service role, or using a service-linked role.

• Forward access sessions (FAS) – When you use an IAM user or role to perform actions in
AWS, you are considered a principal. When you use some services, you might perform an
action that then initiates another action in a different service. FAS uses the permissions of the
principal calling an AWS service, combined with the requesting AWS service to make requests
to downstream services. FAS requests are only made when a service receives a request that
requires interactions with other AWS services or resources to complete. In this case, you must
have permissions to perform both actions. For policy details when making FAS requests, see
Forward access sessions.

• Service role – A service role is an IAM role that a service assumes to perform actions on your
behalf. An IAM administrator can create, modify, and delete a service role from within IAM. For
more information, see Creating a role to delegate permissions to an AWS service in the IAM
User Guide.

• Service-linked role – A service-linked role is a type of service role that is linked to an AWS
service. The service can assume the role to perform an action on your behalf. Service-linked
roles appear in your AWS account and are owned by the service. An IAM administrator can
view, but not edit the permissions for service-linked roles.

• Applications running on Amazon EC2 – You can use an IAM role to manage temporary
credentials for applications that are running on an EC2 instance and making AWS CLI or AWS API
requests. This is preferable to storing access keys within the EC2 instance. To assign an AWS role
to an EC2 instance and make it available to all of its applications, you create an instance profile
that is attached to the instance. An instance profile contains the role and enables programs that
are running on the EC2 instance to get temporary credentials. For more information, see Using
an IAM role to grant permissions to applications running on Amazon EC2 instances in the IAM
User Guide.

To learn whether to use IAM roles or IAM users, see When to create an IAM role (instead of a user)
in the IAM User Guide.

Managing access using policies

You control access in AWS by creating policies and attaching them to AWS identities or resources.
A policy is an object in AWS that, when associated with an identity or resource, defines their
permissions. AWS evaluates these policies when a principal (user, root user, or role session) makes
a request. Permissions in the policies determine whether the request is allowed or denied. Most

Managing access using policies 842

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_forward_access_sessions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose_role

AWS Mainframe Modernization User Guide

policies are stored in AWS as JSON documents. For more information about the structure and
contents of JSON policy documents, see Overview of JSON policies in the IAM User Guide.

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

By default, users and roles have no permissions. To grant users permission to perform actions on
the resources that they need, an IAM administrator can create IAM policies. The administrator can
then add the IAM policies to roles, and users can assume the roles.

IAM policies define permissions for an action regardless of the method that you use to perform the
operation. For example, suppose that you have a policy that allows the iam:GetRole action. A
user with that policy can get role information from the AWS Management Console, the AWS CLI, or
the AWS API.

Identity-based policies

Identity-based policies are JSON permissions policy documents that you can attach to an identity,
such as an IAM user, group of users, or role. These policies control what actions users and roles can
perform, on which resources, and under what conditions. To learn how to create an identity-based
policy, see Creating IAM policies in the IAM User Guide.

Identity-based policies can be further categorized as inline policies or managed policies. Inline
policies are embedded directly into a single user, group, or role. Managed policies are standalone
policies that you can attach to multiple users, groups, and roles in your AWS account. Managed
policies include AWS managed policies and customer managed policies. To learn how to choose
between a managed policy or an inline policy, see Choosing between managed policies and inline
policies in the IAM User Guide.

Resource-based policies

Resource-based policies are JSON policy documents that you attach to a resource. Examples of
resource-based policies are IAM role trust policies and Amazon S3 bucket policies. In services that
support resource-based policies, service administrators can use them to control access to a specific
resource. For the resource where the policy is attached, the policy defines what actions a specified
principal can perform on that resource and under what conditions. You must specify a principal
in a resource-based policy. Principals can include accounts, users, roles, federated users, or AWS
services.

Managing access using policies 843

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#access_policies-json
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#choosing-managed-or-inline
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#choosing-managed-or-inline
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html

AWS Mainframe Modernization User Guide

Resource-based policies are inline policies that are located in that service. You can't use AWS
managed policies from IAM in a resource-based policy.

Access control lists (ACLs)

Access control lists (ACLs) control which principals (account members, users, or roles) have
permissions to access a resource. ACLs are similar to resource-based policies, although they do not
use the JSON policy document format.

Amazon S3, AWS WAF, and Amazon VPC are examples of services that support ACLs. To learn more
about ACLs, see Access control list (ACL) overview in the Amazon Simple Storage Service Developer
Guide.

Other policy types

AWS supports additional, less-common policy types. These policy types can set the maximum
permissions granted to you by the more common policy types.

• Permissions boundaries – A permissions boundary is an advanced feature in which you set
the maximum permissions that an identity-based policy can grant to an IAM entity (IAM user
or role). You can set a permissions boundary for an entity. The resulting permissions are the
intersection of an entity's identity-based policies and its permissions boundaries. Resource-based
policies that specify the user or role in the Principal field are not limited by the permissions
boundary. An explicit deny in any of these policies overrides the allow. For more information
about permissions boundaries, see Permissions boundaries for IAM entities in the IAM User Guide.

• Service control policies (SCPs) – SCPs are JSON policies that specify the maximum permissions
for an organization or organizational unit (OU) in AWS Organizations. AWS Organizations is a
service for grouping and centrally managing multiple AWS accounts that your business owns. If
you enable all features in an organization, then you can apply service control policies (SCPs) to
any or all of your accounts. The SCP limits permissions for entities in member accounts, including
each AWS account root user. For more information about Organizations and SCPs, see Service
control policies in the AWS Organizations User Guide.

• Session policies – Session policies are advanced policies that you pass as a parameter when you
programmatically create a temporary session for a role or federated user. The resulting session's
permissions are the intersection of the user or role's identity-based policies and the session
policies. Permissions can also come from a resource-based policy. An explicit deny in any of these
policies overrides the allow. For more information, see Session policies in the IAM User Guide.

Managing access using policies 844

https://docs.aws.amazon.com/AmazonS3/latest/userguide/acl-overview.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_boundaries.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#policies_session

AWS Mainframe Modernization User Guide

Multiple policy types

When multiple types of policies apply to a request, the resulting permissions are more complicated
to understand. To learn how AWS determines whether to allow a request when multiple policy
types are involved, see Policy evaluation logic in the IAM User Guide.

How AWS Mainframe Modernization works with IAM

Before you use IAM to manage access to AWS Mainframe Modernization, learn what IAM features
are available to use with AWS Mainframe Modernization.

IAM features you can use with AWS Mainframe Modernization

IAM feature AWS Mainframe Modernization support

Identity-based policies Yes

Resource-based policies No

Policy actions Yes

Policy resources Yes

Policy condition keys Yes

ACLs No

ABAC (tags in policies) Yes

Temporary credentials Yes

Forward access sessions (FAS) Yes

Service roles Yes

Service-linked roles Yes

To get a high-level view of how AWS Mainframe Modernization and other AWS services work with
most IAM features, see AWS services that work with IAM in the IAM User Guide.

How AWS Mainframe Modernization works with IAM 845

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html

AWS Mainframe Modernization User Guide

Identity-based policies for AWS Mainframe Modernization

Supports identity-based policies: Yes

Identity-based policies are JSON permissions policy documents that you can attach to an identity,
such as an IAM user, group of users, or role. These policies control what actions users and roles can
perform, on which resources, and under what conditions. To learn how to create an identity-based
policy, see Creating IAM policies in the IAM User Guide.

With IAM identity-based policies, you can specify allowed or denied actions and resources as well
as the conditions under which actions are allowed or denied. You can't specify the principal in an
identity-based policy because it applies to the user or role to which it is attached. To learn about all
of the elements that you can use in a JSON policy, see IAM JSON policy elements reference in the
IAM User Guide.

Identity-based policy examples for AWS Mainframe Modernization

To view examples of AWS Mainframe Modernization identity-based policies, see Identity-based
policy examples for AWS Mainframe Modernization.

Resource-based policies within AWS Mainframe Modernization

Supports resource-based policies: No

Resource-based policies are JSON policy documents that you attach to a resource. Examples of
resource-based policies are IAM role trust policies and Amazon S3 bucket policies. In services that
support resource-based policies, service administrators can use them to control access to a specific
resource. For the resource where the policy is attached, the policy defines what actions a specified
principal can perform on that resource and under what conditions. You must specify a principal
in a resource-based policy. Principals can include accounts, users, roles, federated users, or AWS
services.

To enable cross-account access, you can specify an entire account or IAM entities in another
account as the principal in a resource-based policy. Adding a cross-account principal to a resource-
based policy is only half of establishing the trust relationship. When the principal and the resource
are in different AWS accounts, an IAM administrator in the trusted account must also grant
the principal entity (user or role) permission to access the resource. They grant permission by
attaching an identity-based policy to the entity. However, if a resource-based policy grants access
to a principal in the same account, no additional identity-based policy is required. For more
information, see Cross account resource access in IAM in the IAM User Guide.

How AWS Mainframe Modernization works with IAM 846

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html

AWS Mainframe Modernization User Guide

Policy actions for AWS Mainframe Modernization

Supports policy actions: Yes

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Action element of a JSON policy describes the actions that you can use to allow or deny
access in a policy. Policy actions usually have the same name as the associated AWS API operation.
There are some exceptions, such as permission-only actions that don't have a matching API
operation. There are also some operations that require multiple actions in a policy. These
additional actions are called dependent actions.

Include actions in a policy to grant permissions to perform the associated operation.

To see a list of AWS Mainframe Modernization actions, see Actions Defined by AWS Mainframe
Modernization in the Service Authorization Reference.

Policy actions in AWS Mainframe Modernization use the following prefix before the action:

m2

To specify multiple actions in a single statement, separate them with commas.

"Action": [
 "m2:StartApplication",
 "m2:StopApplication"
]

You can specify multiple actions using wildcards (*). For example, to specify all actions that begin
with the word List, include the following action:

"Action": "m2:List*"

To view examples of AWS Mainframe Modernization identity-based policies, see Identity-based
policy examples for AWS Mainframe Modernization.

Policy resources for AWS Mainframe Modernization

Supports policy resources: Yes

How AWS Mainframe Modernization works with IAM 847

https://docs.aws.amazon.com/IAM/latest/UserGuide/list_awsmainframemodernizationservice.html#awsmainframemodernizationservice-actions-as-permissions
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_awsmainframemodernizationservice.html#awsmainframemodernizationservice-actions-as-permissions

AWS Mainframe Modernization User Guide

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Resource JSON policy element specifies the object or objects to which the action applies.
Statements must include either a Resource or a NotResource element. As a best practice,
specify a resource using its Amazon Resource Name (ARN). You can do this for actions that support
a specific resource type, known as resource-level permissions.

For actions that don't support resource-level permissions, such as listing operations, use a wildcard
(*) to indicate that the statement applies to all resources.

"Resource": "*"

You can restrict access to specific AWS Mainframe Modernization resources by using their ARNs
to identify the resource that the IAM policy applies to. For more information about the format of
ARNs, see Amazon Resource Names (ARNs) in the AWS General Reference.

For example, an AWS Mainframe Modernization environment has the following ARN.

"Resource": "arn:aws:m2:regionId:accountId:env/service-generated-unique-identifier"

An AWS Mainframe Modernization application has the following ARN.

"Resource": "arn:aws:m2:regionId:accountId:app/service-generated-unique-identifier"

Not all AWS Mainframe Modernization actions support resource-level permissions. For actions that
don't support resource-level permissions, you must use the wildcard (*).

The following AWS Mainframe Modernization actions do not support resource-level permissions.

ListApplications
 ListApplicationVersions
 ListBatchJobDefinitions
 ListBatchJobExecutions
 ListDataSetImportHistory
 ListDataSets
 ListDeployments
 ListEngineVersions
 ListEnvironments

How AWS Mainframe Modernization works with IAM 848

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference-arns.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html

AWS Mainframe Modernization User Guide

 ListTagsForResource

To see a list of AWS Mainframe Modernization resource types and their ARNs, see Resources
Defined by AWS Mainframe Modernization in the Service Authorization Reference. To learn with
which actions you can specify the ARN of each resource, see Actions Defined by AWS Mainframe
Modernization.

To view examples of AWS Mainframe Modernization identity-based policies, see Identity-based
policy examples for AWS Mainframe Modernization.

AWS Mainframe Modernization API permissions: Actions, resources, and
conditions reference

When you are writing permissions policies that you can attach to an IAM identity (identity-based
policies), you can use the following table as a reference. The table includes the following:

• Each AWS Mainframe Modernization API operation.

• The corresponding actions for which you can grant permissions to perform the action.

• The AWS resource for which you can grant the permissions.

You specify the actions in the policy's Action field and the resource value in the policy's
Resource field.

You can use AWS global condition keys in your AWS Mainframe Modernization policies to express
conditions. For a complete list of AWS keys, see Available Global Condition Keys in the IAM User
Guide.

Note

To specify an action, use the m2: prefix followed by the API operation name (for example,
m2:CreateApplication).

How AWS Mainframe Modernization works with IAM 849

https://docs.aws.amazon.com/IAM/latest/UserGuide/list_awsmainframemodernizationservice.html#awsmainframemodernizationservice-resources-for-iam-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_awsmainframemodernizationservice.html#awsmainframemodernizationservice-resources-for-iam-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_awsmainframemodernizationservice.html#awsmainframemodernizationservice-actions-as-permissions
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_awsmainframemodernizationservice.html#awsmainframemodernizationservice-actions-as-permissions
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#AvailableKeys

AWS Mainframe Modernization User Guide

AWS Mainframe Modernization API and required permissions for actions

AWS Mainframe
Modernization API
Operations

Required Permissions (API Actions) Resources

CancelBatchJobExec
ution

 Application

CreateApplication iam:PassRole

kms:DescribeKey

kms:CreateGrant

s3:GetObject

s3:ListBucket

Application

CreateDataSetImpor
tTask

m2:CreateDataSetImportTask

s3:GetObject

Application

CreateDeployment elasticloadbalanci
ng:AddTags

elasticloadbalanci
ng:CreateListener

elasticloadbalanci
ng:CreateTargetGroup

elasticloadbalanci
ng:RegisterTargets

Application

CreateEnvironment ec2:CreateNetworkInterface

ec2:CreateNetworkI
nterfacePermission

Environment

How AWS Mainframe Modernization works with IAM 850

https://docs.aws.amazon.com/m2/latest/APIReference/API_CancelBatchJobExecution.html
https://docs.aws.amazon.com/m2/latest/APIReference/API_CancelBatchJobExecution.html
https://docs.aws.amazon.com/m2/latest/APIReference/API_CreateApplication.html
https://docs.aws.amazon.com/m2/latest/APIReference/API_CreateDataSetImportTask.html
https://docs.aws.amazon.com/m2/latest/APIReference/API_CreateDataSetImportTask.html
https://docs.aws.amazon.com/m2/latest/APIReference/API_CreateDeployment.html
https://docs.aws.amazon.com/m2/latest/APIReference/API_CreateEnvironment.html

AWS Mainframe Modernization User Guide

AWS Mainframe
Modernization API
Operations

Required Permissions (API Actions) Resources

ec2:DescribeNetwor
kInterfaces

ec2:DescribeSecurityGroups

ec2:DescribeSubnets

ec2:DescribeVpcAttribute

ec2:DescribeVpcs

ec2:ModifyNetworkI
nterfaceAttribute

elasticfilesystem:
DescribeMountTargets

elasticloadbalanci
ng:AddTags

elasticloadbalanci
ng:CreateLoadBalancer

elasticloadbalanci
ng:DeleteLoadBalancer

kms:DescribeKey

kms:CreateGrant

fsx:DescribeFileSystems

iam:CreateServiceL
inkedRole

How AWS Mainframe Modernization works with IAM 851

AWS Mainframe Modernization User Guide

AWS Mainframe
Modernization API
Operations

Required Permissions (API Actions) Resources

DeleteApplication elasticloadbalanci
ng:DeleteListener

elasticloadbalanci
ng:DeleteTargetGroup

logs:DeleteLogDelivery

Application

DeleteApplicationF
romEnvironment

elasticloadbalanci
ng:DeleteListener

elasticloadbalanci
ng:DeleteTargetGroup

Application

Environment

DeleteEnvironment elasticloadbalanci
ng:DeleteLoadBalancer

Environment

GetApplication Application

GetApplicationVersion Application

GetBatchJobExecution Application

GetDataSetDetails Application

GetDataSetImportTa
sk

Application

GetDeployment Application

GetEnvironment Environment

ListApplications *

ListApplicationVer
sions

*

How AWS Mainframe Modernization works with IAM 852

https://docs.aws.amazon.com/m2/latest/APIReference/API_DeleteApplication.html
https://docs.aws.amazon.com/m2/latest/APIReference/API_DeleteApplicationFromEnvironment.html
https://docs.aws.amazon.com/m2/latest/APIReference/API_DeleteApplicationFromEnvironment.html
https://docs.aws.amazon.com/m2/latest/APIReference/API_DeleteEnvironment.html
https://docs.aws.amazon.com/m2/latest/APIReference/API_GetApplication.html
https://docs.aws.amazon.com/m2/latest/APIReference/API_GetApplicationVersion.html
https://docs.aws.amazon.com/m2/latest/APIReference/API_GetBatchJobExecution.html
https://docs.aws.amazon.com/m2/latest/APIReference/API_GetDataSetDetails.html
https://docs.aws.amazon.com/m2/latest/APIReference/API_GetDataSetImportTask.html
https://docs.aws.amazon.com/m2/latest/APIReference/API_GetDataSetImportTask.html
https://docs.aws.amazon.com/m2/latest/APIReference/API_GetDeployment.html
https://docs.aws.amazon.com/m2/latest/APIReference/API_GetEnvironment.html
https://docs.aws.amazon.com/m2/latest/APIReference/API_ListApplications.html
https://docs.aws.amazon.com/m2/latest/APIReference/API_ListApplicationVersions.html
https://docs.aws.amazon.com/m2/latest/APIReference/API_ListApplicationVersions.html

AWS Mainframe Modernization User Guide

AWS Mainframe
Modernization API
Operations

Required Permissions (API Actions) Resources

ListBatchJobDefini
tions

*

ListBatchJobExecut
ions

*

ListDataSetImportH
istory

*

ListDataSets *

ListDeployments *

ListEngineVersions *

ListEnvironments *

ListTagsForResource *

StartApplication Application

StartBatchJob Application

StopApplication Application

TagResource *

UntagResource *

UpdateApplication s3:GetObject

s3:ListBucket

Application

UpdateEnvironment kms:DescribeKey Environment

How AWS Mainframe Modernization works with IAM 853

https://docs.aws.amazon.com/m2/latest/APIReference/API_ListBatchJobDefinitions.html
https://docs.aws.amazon.com/m2/latest/APIReference/API_ListBatchJobDefinitions.html
https://docs.aws.amazon.com/m2/latest/APIReference/API_ListBatchJobExecutions.html
https://docs.aws.amazon.com/m2/latest/APIReference/API_ListBatchJobExecutions.html
https://docs.aws.amazon.com/m2/latest/APIReference/API_ListDataSetImportHistory.html
https://docs.aws.amazon.com/m2/latest/APIReference/API_ListDataSetImportHistory.html
https://docs.aws.amazon.com/m2/latest/APIReference/API_ListDataSets.html
https://docs.aws.amazon.com/m2/latest/APIReference/API_ListDeployments.html
https://docs.aws.amazon.com/m2/latest/APIReference/API_ListEngineVersions.html
https://docs.aws.amazon.com/m2/latest/APIReference/API_ListEnvironments.html
https://docs.aws.amazon.com/m2/latest/APIReference/API_ListTagsForResource.html
https://docs.aws.amazon.com/m2/latest/APIReference/API_StartApplication.html
https://docs.aws.amazon.com/m2/latest/APIReference/API_StartBatchJob.html
https://docs.aws.amazon.com/m2/latest/APIReference/API_StopApplication.html
https://docs.aws.amazon.com/m2/latest/APIReference/API_TagResource.html
https://docs.aws.amazon.com/m2/latest/APIReference/API_UntagResource.html
https://docs.aws.amazon.com/m2/latest/APIReference/API_UpdateApplication.html
https://docs.aws.amazon.com/m2/latest/APIReference/API_UpdateEnvironment.html

AWS Mainframe Modernization User Guide

Policy condition keys for AWS Mainframe Modernization

Supports service-specific policy condition keys: Yes

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Condition element (or Condition block) lets you specify conditions in which a statement
is in effect. The Condition element is optional. You can create conditional expressions that use
condition operators, such as equals or less than, to match the condition in the policy with values in
the request.

If you specify multiple Condition elements in a statement, or multiple keys in a single
Condition element, AWS evaluates them using a logical AND operation. If you specify multiple
values for a single condition key, AWS evaluates the condition using a logical OR operation. All of
the conditions must be met before the statement's permissions are granted.

You can also use placeholder variables when you specify conditions. For example, you can grant
an IAM user permission to access a resource only if it is tagged with their IAM user name. For more
information, see IAM policy elements: variables and tags in the IAM User Guide.

AWS supports global condition keys and service-specific condition keys. To see all AWS global
condition keys, see AWS global condition context keys in the IAM User Guide.

The following condition keys are specific to AWS Mainframe Modernization

m2:EngineType
 m2:InstanceType

To see a list of AWS Mainframe Modernization condition keys, see Condition Keys for AWS
Mainframe Modernization in the Service Authorization Reference. To learn with which actions and
resources you can use a condition key, see Actions Defined by AWS Mainframe Modernization.

To view examples of AWS Mainframe Modernization identity-based policies, see Identity-based
policy examples for AWS Mainframe Modernization.

Access control lists (ACLs) in AWS Mainframe Modernization

Supports ACLs: No

How AWS Mainframe Modernization works with IAM 854

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_variables.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_awsmainframemodernizationservice.html#awsmainframemodernizationservice-policy-keys
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_awsmainframemodernizationservice.html#awsmainframemodernizationservice-policy-keys
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_awsmainframemodernizationservice.html#awsmainframemodernizationservice-actions-as-permissions

AWS Mainframe Modernization User Guide

Access control lists (ACLs) control which principals (account members, users, or roles) have
permissions to access a resource. ACLs are similar to resource-based policies, although they do not
use the JSON policy document format.

Attribute-based access control (ABAC) with AWS Mainframe Modernization

Supports ABAC (tags in policies): Yes

Attribute-based access control (ABAC) is an authorization strategy that defines permissions based
on attributes. In AWS, these attributes are called tags. You can attach tags to IAM entities (users or
roles) and to many AWS resources. Tagging entities and resources is the first step of ABAC. Then
you design ABAC policies to allow operations when the principal's tag matches the tag on the
resource that they are trying to access.

ABAC is helpful in environments that are growing rapidly and helps with situations where policy
management becomes cumbersome.

To control access based on tags, you provide tag information in the condition element of a policy
using the aws:ResourceTag/key-name, aws:RequestTag/key-name, or aws:TagKeys
condition keys.

If a service supports all three condition keys for every resource type, then the value is Yes for the
service. If a service supports all three condition keys for only some resource types, then the value is
Partial.

For more information about ABAC, see What is ABAC? in the IAM User Guide. To view a tutorial with
steps for setting up ABAC, see Use attribute-based access control (ABAC) in the IAM User Guide.

Using Temporary credentials with AWS Mainframe Modernization

Supports temporary credentials: Yes

Some AWS services don't work when you sign in using temporary credentials. For additional
information, including which AWS services work with temporary credentials, see AWS services that
work with IAM in the IAM User Guide.

You are using temporary credentials if you sign in to the AWS Management Console using
any method except a user name and password. For example, when you access AWS using your
company's single sign-on (SSO) link, that process automatically creates temporary credentials. You
also automatically create temporary credentials when you sign in to the console as a user and then

How AWS Mainframe Modernization works with IAM 855

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction_attribute-based-access-control.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_attribute-based-access-control.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html

AWS Mainframe Modernization User Guide

switch roles. For more information about switching roles, see Switching to a role (console) in the
IAM User Guide.

You can manually create temporary credentials using the AWS CLI or AWS API. You can then use
those temporary credentials to access AWS. AWS recommends that you dynamically generate
temporary credentials instead of using long-term access keys. For more information, see
Temporary security credentials in IAM.

Forward access sessions for AWS Mainframe Modernization

Supports forward access sessions (FAS): Yes

When you use an IAM user or role to perform actions in AWS, you are considered a principal.
When you use some services, you might perform an action that then initiates another action in a
different service. FAS uses the permissions of the principal calling an AWS service, combined with
the requesting AWS service to make requests to downstream services. FAS requests are only made
when a service receives a request that requires interactions with other AWS services or resources to
complete. In this case, you must have permissions to perform both actions. For policy details when
making FAS requests, see Forward access sessions.

Important

These tokens give AWS Mainframe Modernization access to customer data without your
explicit agreement; for example, AWS Mainframe Modernization deploys application
artifacts with associated business data from an Amazon S3 bucket without obtaining
explicit permission from the customer. You might need to update any compliance
documentation accordingly.

Service roles for AWS Mainframe Modernization

Supports service roles: Yes

A service role is an IAM role that a service assumes to perform actions on your behalf. An IAM
administrator can create, modify, and delete a service role from within IAM. For more information,
see Creating a role to delegate permissions to an AWS service in the IAM User Guide.

AWS Mainframe Modernization supports service roles for activity hooks (transaction / jobs abend
or completion, etc).

How AWS Mainframe Modernization works with IAM 856

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_forward_access_sessions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html

AWS Mainframe Modernization User Guide

Warning

Changing the permissions for a service role might break AWS Mainframe Modernization
functionality. Edit service roles only when AWS Mainframe Modernization provides
guidance to do so.

Choosing an IAM role in AWS Mainframe Modernization

If you have previously created an IAM role that your applications running on Amazon EC2 can
assume, you can choose this role when you create a launch template or launch configuration. AWS
Mainframe Modernization provides you with a list of roles to choose from. When creating these
roles, it's important to associate least privilege IAM policies that restrict access to the specific API
calls that the application requires. For more information, see IAM role for applications that run on
Amazon EC2 instances in the Amazon EC2 Auto Scaling User Guide.

Service-linked roles for AWS Mainframe Modernization

Supports service-linked roles: Yes

A service-linked role is a type of service role that is linked to an AWS service. The service can
assume the role to perform an action on your behalf. Service-linked roles appear in your AWS
account and are owned by the service. An IAM administrator can view, but not edit the permissions
for service-linked roles.

For details about creating or managing AWS Mainframe Modernization service-linked roles, see
Using service-linked roles for AWS Mainframe Modernization.

For details about creating or managing service-linked roles, see AWS services that work with IAM.
Find a service in the table that includes a Yes in the Service-linked role column. Choose the Yes
link to view the service-linked role documentation for that service.

Identity-based policy examples for AWS Mainframe Modernization

By default, users and roles don't have permission to create or modify AWS Mainframe
Modernization resources. They also can't perform tasks by using the AWS Management Console,
AWS Command Line Interface (AWS CLI), or AWS API. To grant users permission to perform actions
on the resources that they need, an IAM administrator can create IAM policies. The administrator
can then add the IAM policies to roles, and users can assume the roles.

Identity-based policy examples 857

https://docs.aws.amazon.com/autoscaling/ec2/userguide/us-iam-role.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/us-iam-role.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html

AWS Mainframe Modernization User Guide

To learn how to create an IAM identity-based policy by using these example JSON policy
documents, see Creating IAM policies in the IAM User Guide.

For details about actions and resource types defined by AWS Mainframe Modernization, including
the format of the ARNs for each of the resource types, see Actions, Resources, and Condition Keys
for AWS Mainframe Modernization in the Service Authorization Reference.

Topics

• Policy best practices

• Using the AWS Mainframe Modernization console

• Allow users to view their own permissions

Policy best practices

Identity-based policies determine whether someone can create, access, or delete AWS Mainframe
Modernization resources in your account. These actions can incur costs for your AWS account.
When you create or edit identity-based policies, follow these guidelines and recommendations:

• Get started with AWS managed policies and move toward least-privilege permissions – To
get started granting permissions to your users and workloads, use the AWS managed policies
that grant permissions for many common use cases. They are available in your AWS account. We
recommend that you reduce permissions further by defining AWS customer managed policies
that are specific to your use cases. For more information, see AWS managed policies or AWS
managed policies for job functions in the IAM User Guide.

• Apply least-privilege permissions – When you set permissions with IAM policies, grant only the
permissions required to perform a task. You do this by defining the actions that can be taken on
specific resources under specific conditions, also known as least-privilege permissions. For more
information about using IAM to apply permissions, see Policies and permissions in IAM in the
IAM User Guide.

• Use conditions in IAM policies to further restrict access – You can add a condition to your
policies to limit access to actions and resources. For example, you can write a policy condition to
specify that all requests must be sent using SSL. You can also use conditions to grant access to
service actions if they are used through a specific AWS service, such as AWS CloudFormation. For
more information, see IAM JSON policy elements: Condition in the IAM User Guide.

• Use IAM Access Analyzer to validate your IAM policies to ensure secure and functional
permissions – IAM Access Analyzer validates new and existing policies so that the policies

Identity-based policy examples 858

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_awsmainframemodernizationservice.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_awsmainframemodernizationservice.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html

AWS Mainframe Modernization User Guide

adhere to the IAM policy language (JSON) and IAM best practices. IAM Access Analyzer provides
more than 100 policy checks and actionable recommendations to help you author secure and
functional policies. For more information, see IAM Access Analyzer policy validation in the IAM
User Guide.

• Require multi-factor authentication (MFA) – If you have a scenario that requires IAM users
or a root user in your AWS account, turn on MFA for additional security. To require MFA when
API operations are called, add MFA conditions to your policies. For more information, see
Configuring MFA-protected API access in the IAM User Guide.

For more information about best practices in IAM, see Security best practices in IAM in the IAM User
Guide.

Using the AWS Mainframe Modernization console

To access the AWS Mainframe Modernization console, you must have a minimum set of
permissions. These permissions must allow you to list and view details about the AWS Mainframe
Modernization resources in your AWS account. If you create an identity-based policy that is more
restrictive than the minimum required permissions, the console won't function as intended for
entities (users or roles) with that policy.

You don't need to allow minimum console permissions for users that are making calls only to the
AWS CLI or the AWS API. Instead, allow access to only the actions that match the API operation
that they're trying to perform.

To ensure that users and roles can still use the AWS Mainframe Modernization console, also attach
the AWS Mainframe Modernization ConsoleAccess or ReadOnly AWS managed policy to the
entities. For more information, see Adding permissions to a user in the IAM User Guide.

Allow users to view their own permissions

This example shows how you might create a policy that allows IAM users to view the inline and
managed policies that are attached to their user identity. This policy includes permissions to
complete this action on the console or programmatically using the AWS CLI or AWS API.

{
 "Version": "2012-10-17",
 "Statement": [
 {

Identity-based policy examples 859

https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-policy-validation.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_change-permissions.html#users_change_permissions-add-console

AWS Mainframe Modernization User Guide

 "Sid": "ViewOwnUserInfo",
 "Effect": "Allow",
 "Action": [
 "iam:GetUserPolicy",
 "iam:ListGroupsForUser",
 "iam:ListAttachedUserPolicies",
 "iam:ListUserPolicies",
 "iam:GetUser"
],
 "Resource": ["arn:aws:iam::*:user/${aws:username}"]
 },
 {
 "Sid": "NavigateInConsole",
 "Effect": "Allow",
 "Action": [
 "iam:GetGroupPolicy",
 "iam:GetPolicyVersion",
 "iam:GetPolicy",
 "iam:ListAttachedGroupPolicies",
 "iam:ListGroupPolicies",
 "iam:ListPolicyVersions",
 "iam:ListPolicies",
 "iam:ListUsers"
],
 "Resource": "*"
 }
]
}

Troubleshooting AWS Mainframe Modernization identity and access

Use the following information to help you diagnose and fix common issues that you might
encounter when working with AWS Mainframe Modernization and IAM.

Topics

• I am not authorized to perform iam:PassRole

• I want to allow people outside of my AWS account to access my AWS Mainframe Modernization
resources

Troubleshooting 860

AWS Mainframe Modernization User Guide

I am not authorized to perform iam:PassRole

If you receive an error that you're not authorized to perform the iam:PassRole action, your
policies must be updated to allow you to pass a role to AWS Mainframe Modernization.

Some AWS services allow you to pass an existing role to that service instead of creating a new
service role or service-linked role. To do this, you must have permissions to pass the role to the
service.

The following example error occurs when an IAM user named marymajor tries to use the console
to perform an action in AWS Mainframe Modernization. However, the action requires the service
to have permissions that are granted by a service role. Mary does not have permissions to pass the
role to the service.

User: arn:aws:iam::123456789012:user/marymajor is not authorized to perform:
 iam:PassRole

In this case, Mary's policies must be updated to allow her to perform the iam:PassRole action.

If you need help, contact your AWS administrator. Your administrator is the person who provided
you with your sign-in credentials.

I want to allow people outside of my AWS account to access my AWS Mainframe
Modernization resources

You can create a role that users in other accounts or people outside of your organization can use to
access your resources. You can specify who is trusted to assume the role. For services that support
resource-based policies or access control lists (ACLs), you can use those policies to grant people
access to your resources.

To learn more, consult the following:

• To learn whether AWS Mainframe Modernization supports these features, see How AWS
Mainframe Modernization works with IAM.

• To learn how to provide access to your resources across AWS accounts that you own, see
Providing access to an IAM user in another AWS account that you own in the IAM User Guide.

• To learn how to provide access to your resources to third-party AWS accounts, see Providing
access to AWS accounts owned by third parties in the IAM User Guide.

Troubleshooting 861

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_aws-accounts.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html

AWS Mainframe Modernization User Guide

• To learn how to provide access through identity federation, see Providing access to externally
authenticated users (identity federation) in the IAM User Guide.

• To learn the difference between using roles and resource-based policies for cross-account access,
see Cross account resource access in IAM in the IAM User Guide.

Using service-linked roles for AWS Mainframe Modernization

AWS Mainframe Modernization uses AWS Identity and Access Management (IAM) service-linked
roles. A service-linked role is a unique type of IAM role that is linked directly to AWS Mainframe
Modernization. Service-linked roles are predefined by AWS Mainframe Modernization and include
all the permissions that the service requires to call other AWS services on your behalf.

A service-linked role makes setting up AWS Mainframe Modernization easier because you don’t
have to manually add the necessary permissions. AWS Mainframe Modernization defines the
permissions of its service-linked roles, and unless defined otherwise, only AWS Mainframe
Modernization can assume its roles. The defined permissions include the trust policy and the
permissions policy, and that permissions policy cannot be attached to any other IAM entity.

You can delete a service-linked role only after first deleting their related resources. This protects
your AWS Mainframe Modernization resources because you can't inadvertently remove permission
to access the resources.

For information about other services that support service-linked roles, see AWS Services That Work
with IAM and look for the services that have Yes in the Service-linked roles column. Choose a Yes
with a link to view the service-linked role documentation for that service.

Service-linked role permissions for AWS Mainframe Modernization

AWS Mainframe Modernization uses the service-linked role named AWSServiceRoleForAWSM2 –
configure the network to connect to your VPC and access resources such as file systems.

The AWSServiceRoleForAWSM2 service-linked role trusts the following services to assume the role:

• m2.amazonaws.com

The role permissions policy named AWSM2ServicePolicy allows AWS Mainframe Modernization to
complete the following actions on the specified resources:

Using service-linked roles 862

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html#iam-term-service-linked-role
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html#iam-term-service-linked-role
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html

AWS Mainframe Modernization User Guide

• Create, delete, describe, and attach permissions to Amazon EC2 network interfaces for the AWS
Mainframe Modernization environment to establish connectivity to the customer VPC.

• Register or de-register entries from Elastic Load Balancing, which is how customers connect to
the AWS Mainframe Modernization environment.

• Describe the Amazon EFS or Amazon FSx file system, if used.

• Emit metrics to the customer's CloudWatch from the runtime environment.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ec2:DescribeSubnets",
 "ec2:CreateNetworkInterface",
 "ec2:DeleteNetworkInterface",
 "ec2:DescribeNetworkInterfaces",
 "ec2:CreateNetworkInterfacePermission",
 "ec2:ModifyNetworkInterfaceAttribute"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "elasticfilesystem:DescribeMountTargets"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "elasticloadbalancing:RegisterTargets",
 "elasticloadbalancing:DeregisterTargets"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "fsx:DescribeFileSystems"

Using service-linked roles 863

AWS Mainframe Modernization User Guide

],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "cloudwatch:PutMetricData"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "cloudwatch:namespace": [
 "AWS/M2"
]
 }
 }
 }
]
}

You must configure permissions to allow an IAM entity (such as a user, group, or role) to create,
edit, or delete a service-linked role. For more information, see Service-linked role permissions in
the IAM User Guide.

Creating a service-linked role for AWS Mainframe Modernization

You don't need to manually create a service-linked role. When you create a runtime environment
in the AWS Management Console, the AWS CLI, or the AWS API, AWS Mainframe Modernization
creates the service-linked role for you.

If you delete this service-linked role, and then need to create it again, you can use the same process
to recreate the role in your account. When you create a runtime environment, AWS Mainframe
Modernization creates the service-linked role for you again.

Editing a service-linked role for AWS Mainframe Modernization

AWS Mainframe Modernization does not allow you to edit the AWSServiceRoleForAWSM2 service-
linked role. After you create a service-linked role, you cannot change the name of the role because
various entities might reference the role. However, you can edit the description of the role using
IAM. For more information, see Editing a service-linked role in the IAM User Guide.

Using service-linked roles 864

https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#service-linked-role-permissions
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#edit-service-linked-role

AWS Mainframe Modernization User Guide

Deleting a service-linked role for AWS Mainframe Modernization

If you no longer need to use a feature or service that requires a service-linked role, we recommend
that you delete that role. That way you don’t have an unused entity that is not actively monitored
or maintained. However, you must clean up the resources for your service-linked role before you
can manually delete it.

Note

If the AWS Mainframe Modernization service is using the role when you try to delete the
resources, then the deletion might fail. If that happens, wait for a few minutes and try the
operation again.

To delete AWS Mainframe Modernization resources used by the AWSServiceRoleForAWSM2

• Delete the runtime environments in AWS Mainframe Modernization. Make sure to delete
applications from an environment before deleting the environment itself.

To manually delete the service-linked role using IAM

Use the IAM console, the AWS CLI, or the AWS API to delete the AWSServiceRoleForAWSM2 service-
linked role. For more information, see Deleting a service-linked role in the IAM User Guide.

Supported regions for AWS Mainframe Modernization service-linked roles

AWS Mainframe Modernization supports using service-linked roles in all of the regions where the
service is available. For more information, see AWS regions and endpoints.

Compliance validation for AWS Mainframe Modernization

Third-party auditors assess the security and compliance of AWS Mainframe Modernization as part
of multiple AWS compliance programs. These include SOC, PCI, FedRAMP, HIPAA, and others.

For a list of AWS services in scope of specific compliance programs, see AWS Services in Scope by
Compliance Program. For general information, see AWS Compliance Programs.

You can download third-party audit reports using AWS Artifact. For more information, see
Downloading Reports in AWS Artifact.

Compliance validation 865

https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#delete-service-linked-role
https://docs.aws.amazon.com/general/latest/gr/rande.html
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/programs/
https://docs.aws.amazon.com/artifact/latest/ug/downloading-documents.html

AWS Mainframe Modernization User Guide

Your compliance responsibility when using AWS Mainframe Modernization is determined by
the sensitivity of your data, your company's compliance objectives, and applicable laws and
regulations. AWS provides the following resources to help with compliance:

• Security and Compliance Quick Start Guides – These deployment guides discuss architectural
considerations and provide steps for deploying security- and compliance-focused baseline
environments on AWS.

• Architecting for HIPAA Security and Compliance Whitepaper – This whitepaper describes how
companies can use AWS to create HIPAA-compliant applications.

• AWS Compliance Resources – This collection of workbooks and guides might apply to your
industry and location.

• Evaluating Resources with Rules in the AWS Config Developer Guide – AWS Config; assesses
how well your resource configurations comply with internal practices, industry guidelines, and
regulations.

• AWS Security Hub – This AWS service provides a comprehensive view of your security state within
AWS that helps you check your compliance with security industry standards and best practices.

Resilience in AWS Mainframe Modernization

The AWS global infrastructure is built around AWS Regions and Availability Zones. Regions provide
multiple physically separated and isolated Availability Zones, which are connected through
low-latency, high-throughput, and highly redundant networking. With Availability Zones, you
can design and operate applications and databases that automatically fail over between zones
without interruption. Availability Zones are more highly available, fault tolerant, and scalable than
traditional single or multiple data center infrastructures.

For more information about AWS Regions and Availability Zones, see AWS Global Infrastructure.

Infrastructure security in AWS Mainframe Modernization

As a managed service, AWS Mainframe Modernization is protected by AWS global network security.
For information about AWS security services and how AWS protects infrastructure, see AWS Cloud
Security. To design your AWS environment using the best practices for infrastructure security, see
Infrastructure Protection in Security Pillar AWS Well‐Architected Framework.

You use AWS published API calls to access AWS Mainframe Modernization through the network.
Clients must support the following:

Resilience 866

https://aws.amazon.com/quickstart/?awsf.quickstart-homepage-filter=categories%23security-identity-compliance
https://docs.aws.amazon.com/whitepapers/latest/architecting-hipaa-security-and-compliance-on-aws/architecting-hipaa-security-and-compliance-on-aws.html
https://aws.amazon.com/compliance/resources/
https://docs.aws.amazon.com/config/latest/developerguide/evaluate-config.html
https://docs.aws.amazon.com/securityhub/latest/userguide/what-is-securityhub.html
https://aws.amazon.com/about-aws/global-infrastructure/
https://aws.amazon.com/security/
https://aws.amazon.com/security/
https://docs.aws.amazon.com/wellarchitected/latest/security-pillar/infrastructure-protection.html

AWS Mainframe Modernization User Guide

• Transport Layer Security (TLS). We require TLS 1.2 and recommend TLS 1.3.

• Cipher suites with perfect forward secrecy (PFS) such as DHE (Ephemeral Diffie-Hellman) or
ECDHE (Elliptic Curve Ephemeral Diffie-Hellman). Most modern systems such as Java 7 and later
support these modes.

Additionally, requests must be signed by using an access key ID and a secret access key that is
associated with an IAM principal. Or you can use the AWS Security Token Service (AWS STS) to
generate temporary security credentials to sign requests.

Access AWS Mainframe Modernization using an AWS
PrivateLink interface endpoint

You can use AWS PrivateLink to create a private connection between your VPC and AWS Mainframe
Modernization. You can access AWS Mainframe Modernization as if it were in your VPC, without
the use of an internet gateway, NAT device, VPN connection, or AWS Direct Connect connection.
Instances in your VPC don't need public IP addresses to access AWS Mainframe Modernization.

You establish this private connection by creating an interface endpoint, powered by AWS
PrivateLink. We create an endpoint network interface in each subnet that you enable for the
interface endpoint. These are requester-managed network interfaces that serve as the entry point
for traffic destined for AWS Mainframe Modernization.

For more information, see Access AWS services through AWS PrivateLink in the AWS PrivateLink
Guide.

Considerations for AWS Mainframe Modernization

Before you set up an interface endpoint for AWS Mainframe Modernization, review Considerations
in the AWS PrivateLink Guide.

AWS Mainframe Modernization supports making calls to all of its API actions through the interface
endpoint.

Create an interface endpoint for AWS Mainframe Modernization

You can create an interface endpoint for AWS Mainframe Modernization using either the Amazon
VPC console or the AWS Command Line Interface (AWS CLI). For more information, see Create an
interface endpoint in the AWS PrivateLink Guide.

AWS PrivateLink 867

https://docs.aws.amazon.com/STS/latest/APIReference/welcome.html
https://docs.aws.amazon.com/vpc/latest/privatelink/privatelink-access-aws-services.html
https://docs.aws.amazon.com/vpc/latest/privatelink/create-interface-endpoint.html#considerations-interface-endpoints
https://docs.aws.amazon.com/vpc/latest/privatelink/create-interface-endpoint.html#create-interface-endpoint-aws
https://docs.aws.amazon.com/vpc/latest/privatelink/create-interface-endpoint.html#create-interface-endpoint-aws

AWS Mainframe Modernization User Guide

Create an interface endpoint for AWS Mainframe Modernization using the following service name:

com.amazonaws.region.m2

If you enable private DNS for the interface endpoint, you can make API requests to AWS
Mainframe Modernization using its default Regional DNS name. For example, m2.us-
east-1.amazonaws.com.

Create an endpoint policy for your interface endpoint

An endpoint policy is an IAM resource that you can attach to an interface endpoint. The default
endpoint policy allows full access to AWS Mainframe Modernization through the interface
endpoint. To control the access allowed to AWS Mainframe Modernization from your VPC, attach a
custom endpoint policy to the interface endpoint.

An endpoint policy specifies the following information:

• The principals that can perform actions (AWS accounts, users, and IAM roles).

• The actions that can be performed.

• The resources on which the actions can be performed.

For more information, see Control access to services using endpoint policies in the AWS PrivateLink
Guide.

Example: VPC endpoint policy for AWS Mainframe Modernization actions

The following is an example of a custom endpoint policy. When you attach this policy to your
interface endpoint, it grants access to the listed AWS Mainframe Modernization actions for all
principals on all resources.

//Example of an endpoint policy where access is granted to the
//listed AWS Mainframe Modernization actions for all principals on all resources
{"Statement": [
 {"Principal": "*",
 "Effect": "Allow",
 "Action": [
 "m2:ListApplications",
 "m2:ListEnvironments",
 "m2:ListDeployments"

Create an endpoint policy 868

https://docs.aws.amazon.com/vpc/latest/privatelink/vpc-endpoints-access.html

AWS Mainframe Modernization User Guide

],
 "Resource":"*"
 }
]
}

//Example of an endpoint policy where access is denied to all the
//AWS Mainframe Modernization CREATE actions for all principals on all resources
{"Statement": [
 {"Principal": "*",
 "Effect": "Deny",
 "Action": [
 "m2:Create*"
],
 "Resource":"*"
 }
]
}

Create an endpoint policy 869

AWS Mainframe Modernization User Guide

Monitoring AWS Mainframe Modernization

Monitoring is an important part of maintaining the reliability, availability, and performance
of AWS Mainframe Modernization and your other AWS solutions. AWS provides the following
monitoring tools to watch AWS Mainframe Modernization, report when something is wrong, and
take automatic actions when appropriate:

• Amazon CloudWatch monitors your AWS resources and the applications you run on AWS in real
time. You can collect and track metrics, create customized dashboards, and set alarms that notify
you or take actions when a specified metric reaches a threshold that you specify. For example,
you can have CloudWatch track CPU usage or other metrics of your Amazon EC2 instances
and automatically launch new instances when needed. For more information, see the Amazon
CloudWatch User Guide.

• Amazon CloudWatch Logs enables you to monitor, store, and access your log files from Amazon
EC2 instances, CloudTrail, and other sources. CloudWatch Logs can monitor information in the
log files and notify you when certain thresholds are met. You can also archive your log data in
highly durable storage. For more information, see the Amazon CloudWatch Logs User Guide.

• AWS CloudTrail captures API calls and related events made by or on behalf of your AWS account
and delivers the log files to an Amazon S3 bucket that you specify. You can identify which users
and accounts called AWS, the source IP address from which the calls were made, and when the
calls occurred. For more information, see the AWS CloudTrail User Guide.

Monitoring AWS Mainframe Modernization with Amazon
CloudWatch

You can monitor AWS Mainframe Modernization using CloudWatch, which collects raw data and
processes it into readable, near real-time metrics. These statistics are kept for 15 months, so that
you can access historical information and gain a better perspective on how your web application
or service is performing. You can also set alarms that watch for certain thresholds, and send
notifications or take actions when those thresholds are met. For more information, see the Amazon
CloudWatch User Guide.

The following tables list the metrics and dimensions for AWS Mainframe Modernization. The
namespace for these metrics is AWS/M2.

Monitoring with CloudWatch 870

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/

AWS Mainframe Modernization User Guide

Runtime Environment Metrics

Metric Description

CPUUtilization The CPU utilization of instances in the
environment.

Dimension: environmentId

Units: Percent

Valid statistics: Average, Minimum, Maximum

InboundNetworkThroughput Inbound network throughput of instances in
the environment.

Dimension: environmentId

Units: Bytes per second

Valid statistics: Average, Minimum, Maximum

MemoryUtilization The memory utilization of instances in the
environment.

Dimension: environmentId

Units: Percent

Valid statistics: Average, Minimum, Maximum

OutboundNetworkThroughput Outbound network throughput of the
instances in the environment.

Dimension: environmentId

Units: Bytes per second

Valid statistics: Average, Minimum, Maximum

Runtime Environment Metrics 871

AWS Mainframe Modernization User Guide

Application Metrics

Metric Description

BatchJobCompletedCount The number of completed jobs during the
time interval.

This metric is available for Micro Focus and for
AWS Blu Age 3.7.0 and later releases.

Dimension: applicationId

Units: Count

Valid statistics: Sum

BatchJobFailedCount The number of failed jobs during the time
interval.

This metric is available for Micro Focus and for
AWS Blu Age 3.7.0 and later releases.

Dimension: applicationId

Units: Count

Valid statistics: Sum

JvmMemoryFree The amount of available memory that is not
currently in use by the Java Virtual Machine.

This metric is only available for the AWS Blu
Age runtime engine. It is available for AWS Blu
Age 3.7.0 and later releases.

Dimension: applicationId

Units: Bytes

Valid statistics: Average, Minimum, Maximum

Application Metrics 872

AWS Mainframe Modernization User Guide

Metric Description

JvmMemoryMax The maximum amount of memory allowed for
the Java Virtual Machine.

This metric is only available for the AWS Blu
Age runtime engine. It is available for AWS Blu
Age 3.7.0 and later releases.

Dimension: applicationId

Units: Bytes

Valid statistics: Average, Minimum, Maximum

JvmMemoryUsed The amount of memory actively used by the
Java Virtual Machine.

This metric is only available for the AWS Blu
Age runtime engine. It is available for AWS Blu
Age 3.7.0 and later releases.

Dimension: applicationId

Units: Bytes

Valid statistics: Average, Minimum, Maximum

ProcessesActiveCount The active number of concurrent service
execution processes that are processing
requests.

This metric is only available for the Micro
Focus runtime engine.

Dimension: applicationId

Units: Count

Valid statistics: Sum

Application Metrics 873

AWS Mainframe Modernization User Guide

Metric Description

SessionCount The number of HTTP sessions for the applicati
on.

This metric is only available for the AWS Blu
Age runtime engine. It is available for AWS Blu
Age 3.7.0 and later releases.

Dimension: applicationId

Units: Count

Valid statistics: Average, Minimum, Maximum

SharedMemoryFree The memory that is available for the enterpris
e server to store all the information it needs to
run transactions and jobs.

This metric is only available for the Micro
Focus runtime engine.

Dimension: applicationId

Units: Count

Valid statistics: Average, Minimum, Maximum

ThreadActiveCount The number of engine threads that are
processing requests.

This metric is only available for the AWS Blu
Age runtime engine. It is available for AWS Blu
Age 3.7.0 and later releases.

Dimension: applicationId

Units: Count

Valid statistics: Average, Minimum, Maximum

Application Metrics 874

AWS Mainframe Modernization User Guide

Metric Description

TransactionCompletedCount The number of committed transactions during
the time interval.

This metric is available for Micro Focus and for
AWS Blu Age 3.7.0 and later releases.

Dimension: applicationId

Units: Count

Valid statistics: Sum

TransactionFailedCount The number of failed transactions during the
time interval.

This metric is available for Micro Focus and for
AWS Blu Age 3.7.0 and later releases.

Dimension: applicationId

Units: Count

Valid statistics: Sum

TransactionResponseTime The amount of time from the moment that
a user sends a request until the time that the
application indicates that the request has been
completed.

This metric is available for Micro Focus and for
AWS Blu Age 3.7.0 and later releases.

Dimension: applicationId

Units: Milliseconds

Valid statistics: Average, Minimum, Maximum

Application Metrics 875

AWS Mainframe Modernization User Guide

Dimensions

Dimension Description

applicationId This dimension filters the metric to the
identified application by ID.

environmentId This dimension filters the metric to the
identified environment by ID.

Logging AWS Mainframe Modernization API calls using AWS
CloudTrail

AWS Mainframe Modernization is integrated with AWS CloudTrail, a service that provides a record
of actions taken by a user, role, or an AWS service in AWS Mainframe Modernization. CloudTrail
captures all API calls for AWS Mainframe Modernization as events. The calls captured include
calls from the AWS Mainframe Modernization console and code calls to the AWS Mainframe
Modernization API operations. If you create a trail, you can enable continuous delivery of CloudTrail
events to an Amazon S3 bucket, including events for AWS Mainframe Modernization. If you don't
configure a trail, you can still view the most recent events in the CloudTrail console in Event
history. Using the information collected by CloudTrail, you can determine the request that was
made to AWS Mainframe Modernization, the IP address from which the request was made, who
made the request, when it was made, and additional details.

To learn more about CloudTrail, see the AWS CloudTrail User Guide.

AWS Mainframe Modernization information in CloudTrail

CloudTrail is enabled on your AWS account when you create the account. When activity occurs in
AWS Mainframe Modernization, that activity is recorded in a CloudTrail event along with other AWS
service events in Event history. You can view, search, and download recent events in your AWS
account. For more information, see Viewing Events with CloudTrail Event History.

For an ongoing record of events in your AWS account, including events for AWS Mainframe
Modernization, create a trail. A trail enables CloudTrail to deliver log files to an Amazon S3 bucket.
By default, when you create a trail in the console, the trail applies to all AWS Regions. The trail logs
events from all Regions in the AWS partition and delivers the log files to the Amazon S3 bucket

Dimensions 876

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/view-cloudtrail-events.html

AWS Mainframe Modernization User Guide

that you specify. Additionally, you can configure other AWS services to further analyze and act
upon the event data collected in CloudTrail logs. For more information, see the following:

• Overview for creating a trail

• CloudTrail supported services and integrations

• Configuring Amazon SNS notifications for CloudTrail

• Receiving CloudTrail log files from multiple Regions

• Receiving CloudTrail log files from multiple accounts

All AWS Mainframe Modernization actions are logged by CloudTrail and are documented in the
AWS Mainframe Modernization API Reference. For example, calls to the CreateApplication,
CreateEnvironment and CreateDeployment actions generate entries in the CloudTrail log files.

Every event or log entry contains information about who generated the request. The identity
information helps you determine the following:

• Whether the request was made with root user or user credentials.

• Whether the request was made with temporary security credentials for a role or federated user.

• Whether the request was made by another AWS service.

For more information, see the CloudTrail userIdentity element.

Understanding AWS Mainframe Modernization log file entries

A trail is a configuration that enables delivery of events as log files to an Amazon S3 bucket that
you specify. CloudTrail log files contain one or more log entries. An event represents a single
request from any source and includes information about the requested action, the date and time of
the action, request parameters, and so on. CloudTrail log files aren't an ordered stack trace of the
public API calls, so they don't appear in any specific order.

The following example shows a CloudTrail log entry that demonstrates the CreateApplication
action.

{
 "eventVersion": "1.08",
 "userIdentity": {
 "type": "AssumedRole",
 "principalId": "AROAII6WZTHGYAEXAMPLE",

Understanding AWS Mainframe Modernization log file entries 877

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-and-update-a-trail.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-aws-service-specific-topics.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/configure-sns-notifications-for-cloudtrail.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/receive-cloudtrail-log-files-from-multiple-regions.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.aws.amazon.com/m2/latest/APIReference/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-event-reference-user-identity.html

AWS Mainframe Modernization User Guide

 "arn": "arn:aws:sts::444455556666:assumed-role/Admin/Mary_Major",
 "accountId": "444455556666",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE",
 "sessionContext": {
 "sessionIssuer": {
 "type": "Role",
 "principalId": "AROAII6WZTHGYAEXAMPLE",
 "arn": "arn:aws:iam::444455556666:role/Admin",
 "accountId": "444455556666",
 "userName": "Admin"
 },
 "webIdFederationData": {},
 "attributes": {
 "creationDate": "2022-06-01T20:38:22Z",
 "mfaAuthenticated": "false"
 }
 }
 },
 "eventTime": "2022-06-01T20:40:39Z",
 "eventSource": "m2.amazonaws.com",
 "eventName": "CreateApplication",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "72.21.196.65",
 "userAgent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10.15; rv:91.0) Gecko/20100101
 Firefox/91.0",
 "requestParameters": {
 "clientToken": "1abc23de-f45g-6789-h01i-jkl2m3456789",
 "name": "MyApp",
 "description": "",
 "engineType": "microfocus",
 "definition": {
 "content": "{}"
 },
 "tags": {}
 },
 "responseElements": {
 "applicationVersion": 1,
 "Access-Control-Expose-Headers": "x-amzn-RequestId,x-amzn-ErrorType,x-amzn-
ErrorMessage,Date",
 "applicationArn": "arn:aws:m2:us-east-1:444455556666:app/
lsfhmwhw7fffrosff2lncwqcua",
 "applicationId": "lsfhmwhw7fffrosff2lncwqcua"
 },
 "requestID": "36982d38-fcde-4bfe-a89a-7bd78d43c926",

Understanding AWS Mainframe Modernization log file entries 878

AWS Mainframe Modernization User Guide

 "eventID": "d7f0fc36-46ae-4157-9a79-c79f385fda98",
 "readOnly": false,
 "eventType": "AwsApiCall",
 "managementEvent": true,
 "recipientAccountId": "444455556666",
 "eventCategory": "Management"
}

Understanding AWS Mainframe Modernization log file entries 879

AWS Mainframe Modernization User Guide

Troubleshooting in AWS Mainframe Modernization

Use the information in this section to help you troubleshoot common errors in AWS Mainframe
Modernization applications and runtime environments using both the AWS Blu Age and Micro
Focus engines.

Topics

• Troubleshooting error: Time out while waiting for data set name to be unlocked

• Troubleshooting error: Cannot access an application URL

• Troubleshooting: AWS Blu Insights does not open from the console

• Troubleshooting error: Environment unhealthy

• Troubleshooting license issues for Micro Focus

Troubleshooting error: Time out while waiting for data set
name to be unlocked

This page describes how you can resolve your error when you see another application in an
environment is holding a lock on a shared data set.

• Engine: AWS Blu Age

• Component: Blusam

If you see this error in the Amazon CloudWatch logs for a AWS Mainframe Modernization
application using the AWS Blu Age engine and running in an environment with the High Availability
pattern, it indicates that another application is holding a lock on a shared data set. Typically, this
situation occurs if the other application crashes or otherwise fails and does not release the lock.

Look for a failed application and check whether it uses the same data set mentioned in the error
message. Check whether the application is running in a runtime environment with the High
Availability pattern. The application that raised the timeout exception cannot proceed and will
display the Failed status.

Troubleshooting error: Time out while waiting for data set name to be unlocked 880

AWS Mainframe Modernization User Guide

Common cause

Application example-app-1 tries to lock a record example-record-1 for a write operation. This
operation creates both a lock on data set example-dataset-1, which owns example-record-1,
and a lock on example-record-1 itself. Now another application, example-app-2, tries to
lock the same record example-record-1. The data set and the record are already locked, so
example-app-2 waits for the lock to release. If example-app-1 crashes, the held lock on dataset
example-dataset-1 still exists, which causes example-app-2 to cancel its write attempt
and raise a timeout exception. This deadlock situation prevents all applications from reaching
example-dataset-1.

Resolution

To resolve the situation immediately, you can force the lock to release. To prevent a similar
situation from occurring in the future, you can configure two parameters that control the Blusam
auto repairing mechanism.

Force the lock to release

The Blusam lock manager uses Amazon ElastiCache (Redis OSS) to provide shared locks between
applications. To release locks in ElastiCache, use the Redis CLI utility. You cannot delete an
individual record lock. You must remove all locks from the owning dataset. Complete the following
steps:

1. Connect to your ElastiCache using the following command:

redis-cli -h hostname -p port

You can find the details of your ElastiCache in the ElastiCache console at https://
console.aws.amazon.com/elasticache/.

2. Enter your password.

3. Enter the command you want to run, as follows:

Command Purpose

KEYS * Get all existing keys.

KEYS *YOUR_DATASET_NAME Get a dataset lock key.

Common cause 881

https://console.aws.amazon.com/elasticache/
https://console.aws.amazon.com/elasticache/

AWS Mainframe Modernization User Guide

Command Purpose

DEL THE_RETURNED_KEY Delete a dataset lock.

FLUSHDB Clean the entire Redis.

Warning

All data in the Redis cache will be
lost. If the Redis is used for other
purposes, such as handling http
sessions, you might not want to use
FLUSHDB.

Configure the Blusam auto repairing mechanism

The Blusam locks manager includes an auto repairing mechanism to prevent deadlocks on
data sets or records. You can adjust the following parameters in the application definition
(application-main.yml) to configure the auto repairing mechanism:

• locksDeadTime: refers to the maximum time an application can hold a lock. When this time
passes, the lock is declared expired and released immediately. The locksDeadTime value is in
milliseconds, and the default value is 1000.

• locksCheck: defines the Blusam locks manager strategy for checking locks. All Blusam locks
in ElastiCache are timestamped and have an expiration time. The locksCheck parameter value
determines whether expired locks are removed.

• off: no check is executed at any time. Deadlocks might occur. (Not recommended)

• reboot: checks are executed when an AWS Mainframe Modernization application instance
running in an AWS Mainframe Modernization runtime environment is started or rebooted. All
expired locks are released immediately. (Default)

• timeout: checks are executed when an AWS Mainframe Modernization application instance
running in an AWS Mainframe Modernization runtime environment is started or rebooted,
or when a timeout expires during an attempt to lock a dataset. Expired locks are released
immediately.

Configure the Blusam auto repairing mechanism 882

AWS Mainframe Modernization User Guide

For more information on the application definition for a AWS Blu Age application, see AWS Blu Age
application definition sample.

Blusam locks manager

In the context of an AWS Mainframe Modernization runtime environment using the High
Availability pattern, a AWS Blu Age application might be deployed multiple times. For those
applications that handle Blusam data sets, concurrent access problems might occur. The Blusam
locks manager ensures data integrity and manages read and write access to records and data sets
by providing shared locks between applications using ElastiCache. This mechanism allows more
than one application to read the record concurrently, and ensures that only one application at a
time writes the record.

Write locks

To update or delete a specific record, the application must first lock the dataset that owns the
record, then lock the record itself. When the record is locked, the dataset lock is released, and
other records from the same data set are available for use. When the update or delete operation
is complete, the held record lock is released. Only one application at a time can update the record,
which blocks other applications from either reading or writing until the lock is released, if the
defined application policy allows waiting for release.

Read locks

As long as no write lock is held on the record or the dataset, multiple applications can read the
same records at the same time. To lock a record for a write operation, all read locks must be
released.

Note

The Blusam locks manager handles the access from multiple threads in a given application
using the same locking mechanism.

Troubleshooting error: Cannot access an application URL

This page describes how you can resolve your error when you can't access URL for a running AWS
Mainframe Modernization application.

• Engine: AWS Blu Age and Micro Focus

Blusam locks manager 883

AWS Mainframe Modernization User Guide

• Component: applications

If you can't access the URL for a running AWS Mainframe Modernization application that you
created and deployed to an AWS Mainframe Modernization runtime environment, you might
need to configure the inbound rules on the security group that you associated with the runtime
environment.

Common cause

When you create a runtime environment, the security group you provide, including the default
security group, must have inbound rules configured to allow traffic to the deployed applications
from outside the VPC, if you want to allow this type of access.

Resolution

Check whether the Amazon VPC security group associated with the runtime environment allows
traffic to the environment on the appropriate application ports. To check the security group rules,
complete the following steps:

1. Open the AWS Mainframe Modernization console at https://console.aws.amazon.com/m2/.

2. In the left navigation, choose Environments.

3. Choose the runtime environment that hosts the application you want to connect to.

4. Choose Configurations.

5. In Security & Network, choose the security group. The link opens the details of the security
group in the Amazon VPC console.

6. If necessary, choose Edit inbound rules and add the following rule if not already present:

Type

Custom TCP

Port

8196 or the port that matches the listener properties specified in the application definition.
For more information, see Step 2: Create the application definition.

Source

The IP address from where you are calling the application. You can choose myIP from the
dropdown. If you still have timeout issues, try choosing Anywhere IPV4 or Anywhere IPV6.

Common cause 884

https://us-west-2.console.aws.amazon.com/m2/home?region=us-west-2#/

AWS Mainframe Modernization User Guide

Make sure to stop the application and start it again after you add the inbound rule on the
security group.

For more information, see Work with security group rules in Amazon VPC User Guide.

Troubleshooting: AWS Blu Insights does not open from the
console

This page describes how you can resolve Blu Insights page not opening from the AWS Mainframe
Modernization console.

• Engine: AWS Blu Age

• Component: Blu Insights

When you try to access Blu Insights from the AWS Mainframe Modernization console, it doesn't
open and the new tab is closed immediately.

Common cause

The role you are using to access Blu Insights does not have sufficient permissions.

Resolution

Attach an IAM policy to the role to allow it to access Blu Insights. Make sure the policy includes at
least the following permissions.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "m2:GetSignedBluinsightsUrl"
],
 "Resource": "*"
 }
]
}

Troubleshooting: AWS Blu Insights does not open from the console 885

https://docs.aws.amazon.com/vpc/latest/userguide/VPC_SecurityGroups.html#working-with-security-group-rules

AWS Mainframe Modernization User Guide

Make sure to replace region and account with the correct AWS Region and AWS account.

Troubleshooting error: Environment unhealthy

This page describes how you can resolve your error when you receive a notification that one of your
AWS Mainframe Modernization environments are unhealthy.

• Engine: AWS Blu Age and Micro Focus

• Component: environments

If you receive a notification that says one of your AWS Mainframe Modernization environments has
become unhealthy, this applies to you. You are notified through one of these sources:

• The unhealthy environment status is shown in your AWS Mainframe Modernization console.

• Email notification about the unhealthy environment status from AWS Health.

• You see a related event from AWS Mainframe Modernization in your AWS Health dashboard,
under Your account health.

Common cause

The error occurs when the resources in your AWS account associated with the AWS Mainframe
Modernization environment is inaccessible. A common reason for this issue is that the resources
related to the environment are being modified or deleted.

Resolution

For specific guidance, use the error code provided in the email from AWS Health, or through your
AWS Mainframe Modernization console.

Error code:

• Storage unreachable

This error indicates that the attached storage (Amazon Elastic File System or Amazon FSx file
systems) for the environment has failed to mount correctly. To check details about unhealthy
environment, complete the following steps:

Troubleshooting error: Environment unhealthy 886

AWS Mainframe Modernization User Guide

1. Open the AWS Mainframe Modernization console at https://console.aws.amazon.com/m2/.

2. Select the unhealthy environment, and choose Configuration.

3. Choose Attached Storage to view the storage resources associated with this environment.

4. Check the network-related configurations, such as the security group, subnet, and Amazon VPC
associated with the storage. If these configurations are incorrect, try to restore them to solve
this issue.

Note

If the storage has been deleted, the environment can't be recovered. In this case, you
should consider deleting the unhealthy environment.

Troubleshooting license issues for Micro Focus

This page describes how you can resolve license issues with the Micro Focus Runtime engine

• Engine: Micro Focus

• Component: Amazon EC2

If you have trouble accessing or using the AMIs, the following information might help you.

Topics

• Verify the Amazon EC2 instance has the IAM licensing role

• Use the reachability analyzer

• Run the license-daemon

• License issues with Enterprise Server or Enterprise Build Tools on Linux after OS patching

Verify the Amazon EC2 instance has the IAM licensing role

This can be checked on the Security tab of the Amazon EC2 Instance Details. This can be changed
using the Security Option of the Actions drop down menu.

Troubleshooting license issues for Micro Focus 887

https://us-west-2.console.aws.amazon.com/m2/home?region=us-west-2#/

AWS Mainframe Modernization User Guide

Use the reachability analyzer

Find the Reachability Analyzer on the AWS Network Manager Console page.

Create and analyze a path between the Amazon EC2 instance created from the AMI and the
Amazon S3 VPC Endpoint.

If the Amazon EC2 Instance does not have internet access repeat the path analysis to all 4
endpoints.

For more information on the Reachability Analyzer, see Getting started with Reachability Analyzer
in the Reachability Analyzer guide.

Run the license-daemon

On Windows Enterprise Developer use the following command from a Command Prompt:

“C:\Program Files (x86)\Micro Focus\Enterprise Developer\AdoptOpenJDK\bin\java” -jar
 "C:\Program Files (x86)\Micro Focus\Licensing\aws-license-daemon.jar"

Use the reachability analyzer 888

https://docs.aws.amazon.com/vpc/latest/reachability/getting-started.html

AWS Mainframe Modernization User Guide

and examine the output. Ignore the SLF4J messages and look for the first exception.

On Enterprise Analyzer use the following command from a Command Prompt:

"C:\Program Files (x86)\Micro Focus\AdoptOpenJDK\bin\java" -jar "C:\Program Files
 (x86)\Micro Focus\Licensing\aws-license-daemon.jar"

and examine the output. Ignore the SLF4J messages and look for the first exception.

On Linux run:

java -jar /var/microfocuslicensing/bin/aws-license-daemon.jar

Ignore the SLF4J messages and look for the first exception.

For example, if the Amazon S3 resource is not available, the exception is as follows:

SLF4J: Failed to load class "org.slf4j.impl.StaticLoggerBinder".
SLF4J: Defaulting to no-operation (NOP) logger implementation
SLF4J: See http://www.slf4j.org/codes.html#StaticLoggerBinder for further details.

Exception in thread "main" software.amazon.awssdk.services.s3.model.S3Exception: Access
 Denied (Service: S3, Status Code: 403, Request ID: P6

The exception message indicates which resource is not available. Compare the configuration values
to those shown in this topic.

License issues with Enterprise Server or Enterprise Build Tools on Linux
after OS patching

If you're having license issues with Enterprise Server or Enterprise Build Tools on Linux after OS
patching, update the license daemon by downloading and running a patch script. To do that, use
the following commands on the Command Prompt:

sudo curl https://d148y999krizvm.cloudfront.net/patch/v8/linux/patch.sh -o /var/
microfocuslicensing/bin/patch.sh
sudo chmod +x /var/microfocuslicensing/bin/patch.sh
sudo /var/microfocuslicensing/bin/patch.sh
sudo ./startmfcesd.sh

License issues with Enterprise Server or Enterprise Build Tools on Linux after OS patching 889

AWS Mainframe Modernization User Guide

Note

This patch script will also work with version 9 even if the download path is for version 8.

License issues with Enterprise Server or Enterprise Build Tools on Linux after OS patching 890

AWS Mainframe Modernization User Guide

Document history for the AWS Mainframe Modernization
User Guide

The following table describes the documentation releases for AWS Mainframe Modernization.

Change Description Date

Assembler Conversion with
mLogica

AWS Mainframe Moderniza
tion Code conversion with
mLogica is an AWS Mainframe
Modernization feature that
automatically converts z/OS
mainframe Assembler code to
COBOL.

July 22, 2024

Application Testing GA
release

General availability docs
for Application Testing.
AWS Mainframe Moderniza
tion Application Testing
provides automated functiona
l equivalence testing for
your migration projects.
This release includes data
protection page, console
workflows, and updates
to other doc pages since
preview.

June 12, 2024

Updated Managed Runtime
for Micro Focus tutorial

This tutorial shows how to
deploy and run the CardDemo
sample application in an AWS
Mainframe Modernization
managed runtime environme
nt with the Micro Focus
runtime engine.

February 5, 2024

891

https://docs.aws.amazon.com/m2/latest/userguide/assembler-conversion.html
https://docs.aws.amazon.com/m2/latest/userguide/assembler-conversion.html
https://docs.aws.amazon.com/m2/latest/userguide/apptest.html
https://docs.aws.amazon.com/m2/latest/userguide/apptest.html
https://docs.aws.amazon.com/m2/latest/userguide/tutorial-runtime-mf.html
https://docs.aws.amazon.com/m2/latest/userguide/tutorial-runtime-mf.html

AWS Mainframe Modernization User Guide

Release notes for AWS Blu
Age Runtime and Moderniza
tion Tools version 3.9.0.

This release of AWS Blu Age
Runtime and Modernization
Tools is focused on multiple
transversal enhancements
across the product striving
to increase performance in
high-availability architectures,
along with new capabilities
to raise jobs executions to the
next level.

December 18, 2023

Transfer files between
mainframe and AWS

New feature released to
transfer files from the source
mainframe to AWS.

November 27, 2023

Manage transactions for
applications

New feature released to
display and edit transacti
ons for applications for AWS
Mainframe Modernization.

October 16, 2023

Release notes for AWS Blu
Age Runtime and Moderniza
tion Tools version 3.6.0.

This release of AWS Blu Age
Runtime and Moderniza
tion Tools provides new
features for both zOS and
AS400 legacy migrations,
mainly oriented to expanding
CICS support mechanisms,
complementing JCL capabilit
ies, optimizing performan
ce in concurrent and high-
volume features, and adding
multi-data-source capabilities.

August 4, 2023

892

https://docs.aws.amazon.com/m2/latest/userguide/ba-release-notes.html
https://docs.aws.amazon.com/m2/latest/userguide/ba-release-notes.html
https://docs.aws.amazon.com/m2/latest/userguide/ba-release-notes.html
https://docs.aws.amazon.com/m2/latest/userguide/filetransfer.html
https://docs.aws.amazon.com/m2/latest/userguide/filetransfer.html
https://docs.aws.amazon.com/m2/latest/userguide/applications-m2-transactions.console.html
https://docs.aws.amazon.com/m2/latest/userguide/applications-m2-transactions.console.html
https://docs.aws.amazon.com/m2/latest/userguide/ba-release-notes.html
https://docs.aws.amazon.com/m2/latest/userguide/ba-release-notes.html
https://docs.aws.amazon.com/m2/latest/userguide/ba-release-notes.html

AWS Mainframe Modernization User Guide

You can now deploy a new
version of an application
when the application is
stopped.

Previously, to deploy a new
version of an application, you
had to delete the deployed
version. Now you can just
stop the deployed version and
deploy a new version.

July 26, 2023

AWS Blu Age runtime
packaged for easier Amazon
EC2 deployment

AWS Mainframe Moderniza
tion with AWS Blu Age
runtime is now available with
more flexibility for configuri
ng the complete stack and
deployment on Amazon
EC2 instances in your AWS
account.

July 6, 2023

Single sign-on to AWS Blu
Age Blu Insights.

AWS Blu Age Blu Insights
available from the AWS
Management Console
through single sign-on.

March 31, 2023

GA release GA release of the AWS
Mainframe Modernization
User Guide.

June 8, 2022

Initial release Initial release (public preview)
of the AWS Mainframe
Modernization User Guide.

November 30, 2021

893

https://docs.aws.amazon.com/m2/latest/userguide/applications-m2-deploy.html
https://docs.aws.amazon.com/m2/latest/userguide/applications-m2-deploy.html
https://docs.aws.amazon.com/m2/latest/userguide/applications-m2-deploy.html
https://docs.aws.amazon.com/m2/latest/userguide/applications-m2-deploy.html

	AWS Mainframe Modernization
	Table of Contents
	What is AWS Mainframe Modernization?
	Features of AWS Mainframe Modernization
	Patterns
	How to get started with AWS Mainframe Modernization
	Related services
	Accessing AWS Mainframe Modernization
	Are you a first-time AWS Mainframe Modernization user?
	Pricing for AWS Mainframe Modernization

	Set up for AWS Mainframe Modernization
	Sign up for an AWS account
	Create a user with administrative access

	AWS Mainframe Modernization Concepts
	Application
	Application definition
	Batch job
	Configuration
	Data set
	Environment
	Mainframe modernization
	Migration journey
	Mount point
	Automated Refactoring
	Replatforming
	Resource
	Runtime engine

	Modernization approach
	Assess phase
	Mobilize phase
	Migrate and modernize phase
	Operate and optimize phase

	Get started with AWS Mainframe Modernization
	Tutorial: Set up managed runtime for AWS Blu Age
	Prerequisites
	Step 1: Upload the demo application
	Step 2: Create the application definition
	Step 3: Create a runtime environment
	Step 4: Create an application
	Step 5: Deploy an application
	Step 6: Start an application
	Step 7: Access the application
	Step 8: Test the application
	Clean up resources

	Tutorial: Set up managed runtime for Micro Focus
	Prerequisites
	Step 1: Create and load an Amazon S3 bucket
	Step 2: Create and configure a database
	Step 3: Create and configure an AWS KMS key
	Step 4: Create and configure an AWS Secrets Manager database secret
	Step 5: Create a runtime environment
	Step 6: Create an application
	Step 7: Deploy an application
	Step 8: Import data sets
	Step 9: Start an application
	Step 10: Connect to the CardDemo CICS application
	Clean up resources
	Next steps

	AWS Mainframe Modernization components lifecycle
	Components lifecycle overview
	Version upgrade
	AWS Mainframe Modernization Refactor with AWS Blu Age release overview

	Refactoring applications automatically with AWS Blu Age
	AWS Blu Age release notes
	Release notes 4.2.0
	Runtime release 4.2.0
	zOS
	AS400
	Transversal capabilities

	Modernization tools release 4.2.0
	zOS
	AS400
	Transversal capabilities

	Release notes 4.1.0
	Runtime release 4.1.0
	zOS
	AS400
	Transversal capabilities

	Modernization tools release 4.1.0
	zOS
	AS400
	Transversal capabilities

	Release notes 4.0.0
	Runtime release 4.0.0
	zOS
	AS400
	Transversal capabilities

	Modernization tools release 4.0.0
	zOS
	AS400
	Transversal capabilities

	Release notes 3.10.0
	Runtime release 3.10.0
	zOS
	AS400
	Transversal capabilities

	Modernization tools release 3.10.0
	zOS
	AS400
	Transversal capabilities

	Release notes 3.9.0
	Runtime release 3.9.0
	zOS
	AS400
	Transversal capabilities

	Modernization tools release 3.9.0
	zOS
	AS400
	Transversal capabilities

	Release notes 3.8.0
	Runtime release 3.8.0
	zOS
	AS400
	Transversal capabilities

	Modernization tools release 3.8.0
	zOS
	AS400
	Transversal capabilities

	Release notes 3.7.0
	Runtime release 3.7.0
	zOS
	AS400
	Transversal capabilities

	Modernization tools release 3.7.0
	zOS
	AS400
	Transversal capabilities

	Release notes 3.6.0
	Runtime release 3.6.0
	zOS
	AS400
	Transversal capabilities

	Modernization tools release 3.6.0
	zOS
	AS400
	Transversal capabilities

	Release notes 3.5.0
	Runtime release 3.5.0
	zOS
	AS400
	Transversal capabilities

	Modernization tools release 3.5.0
	zOS
	AS400
	Transversal capabilities

	Upgrading instructions for AWS Blu Age
	Migrating from 3.10.0 to 4.0.0
	Code changes
	Deployment (AWS Blu Age Runtime (non-managed))

	AWS Blu Age Runtime concepts
	AWS Blu Age Runtime high level architecture
	AWS Blu Age runtime components
	AWS Blu Age libraries
	Web application
	Programs registry

	Execution environments
	Statelessness and session handling
	Session handling

	High availability and statelessness

	AWS Blu Age structure of a modernized application
	Artifacts organization
	Entities project contents
	Program related classes

	Service project contents
	Program related artifacts
	Other artifacts

	Utilities project contents
	Web project(s) contents

	Running and calling programs
	Programs registration
	Scripts and daemons registration
	Programs calling programs
	Scripts calling programs

	Write your own program
	Writing the program implementation
	Spring integration
	Giving an identity to the program
	Associate the program to a context
	Implementing the business logic
	Handling the program registration

	Fully qualified name mappings
	AWS Blu Age fully qualified name mappings
	Third party fully qualified name mappings

	What are data simplifiers in AWS Blu Age
	Main classes
	Low level memory representation
	Structured data representation
	Elementary fields
	Aggregate fields
	Primitives

	Data binding and access
	FQN of discussed Java types

	AWS Blu Age Blusam
	Blusam infrastructure
	Caching
	Locking

	Blusam intrinsics and data migration from legacy
	Storing data sets: records and indexes
	Optimizing I/O throughput using write-behind mechanism
	Picking up the proper storage scheme
	Blusam migration
	Import data sets using Groovy scripts

	Blusam configuration
	Blusam storage and caches access configuration
	Blusam engine configuration
	Disabling Blusam support
	Blusam engine properties
	Mandatory properties
	Optional properties

	Blusam Administration Console
	Appendix
	General data set metadata attributes
	Estimating the memory footprint for a given data set
	Blusam data set metadata
	Calculating Internal Metadata footprint
	Records sizes map
	Indexes

	AWS Blu Age Blusam Administration Console
	Deploying the BAC
	BAC dedicated configuration file
	Configuring security for the BAC
	Installing the masks

	Using the BAC
	Existing data set operations
	Browsing records from a data set
	Loading records into a data set
	Exporting records from a data set
	Clearing records from a data set
	Deleting a data set
	Bulk operations

	Creating operations
	Create a single data set
	Create data sets from LISTCAT

	LISTCAT JSON format

	Set up configuration for AWS Blu Age Runtime
	Application configuration basics
	Application precedence
	JNDI for databases
	AWS Blu Age Runtime secrets
	Secrets for Aurora
	Other secrets
	YAML references to secrets
	JICS database
	Blusam database
	Client database
	PGM utility database
	No XA supported secret keys
	XA supported secret keys
	Default Super Admin BAC and JAC
	OAuth2
	Secret manager for Redis caches
	Secret manager for SSL password settings
	Secret manager for IBM MQ password settings

	Other files (groovy, sql, etc.)
	Additional web application
	Enable properties for AWS Blu Age Runtime
	YML notation
	Quick start / Use cases
	Available properties for the main application
	Available properties for optional web applications
	gapwalk-utility-pgm.war
	gapwalk-cl-command.war
	gapwalk-hierarchical-support.war

	Available Redis cache properties in AWS Blu Age Runtime
	Redis caches in AWS Blu Age Runtime
	Redis Gapwalk configuration
	Supported Redis properties
	Redis cache properties
	Redis Blusam cache
	Redis Blusam cache
	Session cache
	JICS resource definitions
	JICS TS queues
	Session tracker
	JCL checkpoint
	Gapwalk file locks
	Blu4iv locks
	Dataset catalog

	Secret manager for Redis caches

	Configure security for Gapwalk applications
	Configure URI accessibility for Gapwalk applications
	Configure authentication for Gapwalk applications
	Configure Gapwalk OAuth2 authentication with Amazon Cognito
	Prerequisites
	Amazon Cognito setup
	Integrate Amazon Cognito into the Gapwalk application

	Configure Gapwalk OAuth2 authentication with Keycloak
	Prerequisites
	Keycloak setup
	Integrate Keycloak into the Gapwalk application

	AWS Blu Age Runtime APIs
	Available endpoints for user when building URLs
	Endpoints for Gapwalk application in AWS Blu Age
	Batch jobs (modernized JCLs and alike) related endpoints
	List deployed scripts
	Launch a script synchronously
	Launch a script asynchronously
	Listing triggered scripts
	Retrieving job execution details
	Listing asynchronously launched scripts that can be killed
	Listing synchronously launched scripts that can be killed
	Killing a given job execution
	Listing existing checkpoints for restartability
	Restarting a job (synchronously)
	Restarting a job (asynchronously)
	Setting thread limit for asynchronous job executions
	Counting currently running triggered job executions
	Purge job executions information

	Metrics endpoints
	JVM
	Session
	Batch
	Transaction

	Other endpoints
	Listing registered programs
	Listing registered services
	Health status
	Listing available JICS transactions
	Launch a JICS transaction
	Launch a JICS transaction (alternative)
	List active sessions

	Job queues related endpoints
	List available queues
	Start or restart a job queue
	Submit a job for launch
	List all submitted jobs
	Release all jobs that are "on hold"
	Release all jobs that are "on hold" for a given job name
	Release a given job for a job number
	Submit a job on repeating schedule
	List all submitted repeating jobs
	Cancel the scheduling of a repeating job

	Blusam application console REST endpoints
	Data sets related endpoints
	Create a data set
	Upload a file
	Load a data set (POST)
	Load a data set (GET)
	Load a data set from an Amazon S3 bucket
	Export a data set to an Amazon S3 bucket
	Clear a data set
	Delete a data set
	Count data set records

	Bulk data sets related endpoints
	Export data sets (GET)
	Export data sets (POST)
	Create multiple data sets
	List all data sets
	Direct list all data sets
	Direct list all data sets by page
	Stream data set
	Delete all data sets
	Get data set definitions from listcat file
	Get data set definitions from uploaded list cat file
	Get a data set
	Load listcat from JSON file

	Records
	Create a record
	Read a data set
	Delete a record
	Update a record
	Save a record
	Validate a record
	Get a record tree

	Masks
	Load masks
	Apply mask
	Apply mask filter

	Other
	Check warm up cache
	Check cache enabled
	Enable cache
	Check allocated RAM cache
	Check persistence
	Check supported data set types
	Check server health

	BAC user-management endpoints
	Log a user in
	Verify whether at least one user exists in the system
	Record a new user
	Get user info
	List users
	Delete a user
	Log the current user out

	Manage JICS application console in AWS Blu Age
	JICS resources management
	List JICS LISTS and GROUPS
	Retrieve JICS resources
	List JICS GROUPS
	List JICS GROUPS for a given LIST
	LIST JICS resources for a given GROUP
	LIST JICS resources for a given GROUP (alternative using a name)
	Editing the owned GROUPS of several LISTS
	Delete a LIST
	Delete a GROUP
	Delete a TRANSACTION
	Delete a PROGRAM
	Delete a FILE
	Delete a TDQUEUE
	Delete a TSMODEL
	Delete elements
	Create a LIST
	Create a GROUP
	Common RESOURCES creation considerations
	Create a TRANSACTION
	Create a PROGRAM
	Create a FILE
	Create a TDQUEUE
	Create a TSMODEL
	Create elements
	Update a LIST
	Update a GROUP
	Common RESOURCES update considerations
	Update a TRANSACTION
	Update a PROGRAM
	Update a FILE
	Update a TDQUEUE
	Update a TSMODEL
	Update elements
	Upsert elements
	Retrieve elements
	JICS CRUD operation

	Other
	JICS server health status

	JAC users management endpoints
	Logging a user
	Testing if at least an user exists in the system
	Recording a new user
	User info
	Listing users
	Deleting a user
	Logout the current user

	Data structures for AWS Blu Age user
	Job execution details message structure
	Transaction launch outcome structure
	Transaction launch record outcome structure
	Possible status of a job on a queue
	Submit job and schedule job input
	List of scheduled jobs response
	List of repeating jobs response

	Set up AWS Blu Age Runtime (non-managed)
	AWS Blu Age Runtime prerequisites
	Onboarding AWS Blu Age Runtime
	Regions and buckets AWS Blu Age Runtime (non-managed) on Amazon EC2
	Regions and buckets AWS Blu Age Runtime (non-managed) on Amazon ECS managed by Fargate
	Using the AWS CLI to list the contents of the bucket
	Download the framework

	Infrastructure setup requirements for AWS Blu Age Runtime (non-managed)
	Infrastructure requirements
	Amazon EC2 instance types for AWS Blu Age Runtime (on Amazon EC2)
	Running AWS Blu Age Runtime on Amazon EC2
	Running AWS Blu Age Runtime on Amazon ECS on Amazon EC2
	Running AWS Blu Age Runtime on Amazon EKS on Amazon EC2
	Running AWS Blu Age Runtime on Amazon ECS managed by AWS Fargate

	Deploy AWS Blu Age Runtime on Amazon ECS managed by AWS Fargate
	Set up AWS Blu Age Runtime on Amazon ECS managed by AWS Fargate
	Prerequisites
	Setting up
	Test the deployed application

	Upgrade the AWS Blu Age Runtime on Amazon ECS managed by AWS Fargate
	Prerequisites
	Upgrade the AWS Blu Age Runtime

	Set up Amazon CloudWatch alarms for AWS Blu Age Runtime on Amazon ECS managed by AWS Fargate
	Alarm setup

	Set up licensed dependencies in AWS Blu Age Runtime on Amazon ECS managed by AWS Fargate
	Prerequisites
	Oracle database
	IBM MQ connection
	DDS Printer files

	Overview

	Deploy AWS Blu Age Runtime on Amazon EC2
	Set up AWS Blu Age Runtime (non-managed) on Amazon EC2
	Prerequisites
	Setting up
	Test the deployed application

	Use containers in Amazon EC2 for Amazon ECS and Amazon EKS
	Prerequisites
	Setting up
	Test the deployed application

	Upgrade the AWS Blu Age Runtime on Amazon EC2
	Prerequisites
	Upgrade the AWS Blu Age Runtime in the Amazon EC2 instance
	Upgrade the AWS Blu Age Runtime in a container

	Set up AWS Blu Age Runtime (on Amazon EC2) Amazon CloudWatch alarms
	Deployment of CloudWatch logging
	Configuration of CloudWatch logging
	CloudWatch setup
	Alarm setup

	Set up licensed dependencies in AWS Blu Age Runtime on Amazon EC2
	Prerequisites
	Oracle database
	IBM MQ connection
	DDS Printer files

	Overview
	Set up the dependencies for JAC and BAC webapps

	Test the PlanetsDemo application

	Modify the source code with Blu Age Developer IDE
	Tutorial: Set up AppStream 2.0 for AWS Blu Age Developer IDE
	Prerequisite
	Step 1: Create an Amazon S3 bucket
	Step 2: Attach a policy to the S3 bucket
	Step 3: Upload files to the Amazon S3 bucket
	Step 4: Download AWS CloudFormation templates
	Step 5: Create the fleet with AWS CloudFormation
	Step 6: Access an instance
	Clean up resources

	Tutorial: Use AWS Blu Age Developer on AppStream 2.0
	Step 1: Create a database
	Step 2: Access the environment
	Step 3: Set up the runtime
	Step 4: Start the Eclipse IDE
	Step 5: Set up a Maven project
	Step 6: Configure a Tomcat server
	Step 7: Deploy to Tomcat
	Step 8: Create the JICS database
	Step 9: Start and test the application
	Step 10: Debug the application
	Clean up resources

	Replatforming applications with Micro Focus
	Set up Micro Focus Runtime (on Amazon EC2)
	Prerequisites for setting up Micro Focus Runtime (on Amazon EC2)
	Create the Amazon VPC endpoint for Amazon S3
	Request the allowlist update for the account
	Create the AWS Identity and Access Management role
	Create an IAM policy
	Create the IAM role

	Grant License Manager the required permissions
	Subscribe to the Amazon Machine Images
	Launch an AWS Mainframe Modernization Micro Focus instance
	Subnet or VPC with no internet access
	Add the Route table entry for the Amazon S3 endpoint
	Define the required security group
	Create the service endpoints

	Set up Automation for Micro Focus Enterprise Analyzer and Micro Focus Enterprise Developer Streaming Sessions
	Set up automation at session start
	Set up automation at session end

	View data sets as tables and columns in Enterprise Developer
	Prerequisites
	Step 1: Set up ODBC Connection to Micro Focus datastore (Amazon RDS database)
	Step 2: Create the MFDBFH.cfg file
	Step 3: Create a structure (STR) file for your copybook layout
	Step 4: Create a database view using the structure (STR) file
	Step 5: View Micro Focus data sets as tables and columns

	Tutorials for Micro Focus
	Tutorial: Setting up the Micro Focus build for the BankDemo sample application
	Prerequisites
	Step 1: Share the build assets with AWS account
	Step 2: Create Amazon S3 buckets
	Step 3: Create the build spec file
	Step 4: Upload the source files
	Step 5: Create IAM policies
	Step 6: Create an IAM role
	Step 7: Attach the IAM policies to the IAM role
	Step 8: Create the CodeBuild project
	Step 9: Start the build
	Step 10: Download output artifacts
	Clean up resources

	Tutorial: Setting up a CI/CD pipeline for use with Micro Focus Enterprise Developer
	Prerequisites
	Create CI/CD pipeline basic infrastructure
	Create AWS CodeCommit repository and CI/CD pipeline
	Sample YAML Trigger File config_git.yml

	Enterprise Developer AppStream 2.0 Creation
	Enterprise Developer Setup and Test
	Clone the BankDemo CodeCommit repository in Enterprise Developer
	Create BankDemo mainframe COBOL project and build application
	Create local BankDemo CICS and batch environment for testing
	Start the BANKDEMO server from Enterprise Developer
	Start the Rumba 3270 terminal
	Run a BankDemo transaction
	Stop the BANKDEMO server from Enterprise Developer

	Exercise 1: Enhance Loan Calculation in BANKDEMO Application
	Add loan analysis rule to Enterprise Developer Code Analysis
	Step 1: Perform code analysis for loan calculation
	Step 2: Modify CICS BMS map and COBOL program and test
	Step 3: Add total amount calculation in COBOL program
	Step 4: Commit changes and run CI/CD pipeline

	Exercise 2: Extract loan calculation in BankDemo application
	Step 1: Refactor loan calculation routine into a COBOL section
	Step 2: Extract loan calculation routine to a standalone COBOL program
	Step 3: Commit changes and run the CI/CD pipeline

	Clean up resources

	Tutorial: Set up AppStream 2.0 for use with Micro Focus Enterprise Analyzer and Micro Focus Enterprise Developer
	Prerequisites
	Step 1: Get the AppStream 2.0 images
	Step 2: Create the stack using the AWS CloudFormation template
	Step 3: Create a user in AppStream 2.0
	Step 4: Log in to AppStream 2.0
	Step 5: Verify buckets in Amazon S3 (optional)
	Next steps
	Clean up resources

	Tutorial: Use templates with Micro Focus Enterprise Developer
	Use Case 1 - Using the COBOL Project Template containing source components
	Use Case 2 - Using the COBOL Project Template without source components
	Use Case 3 - Using the pre-defined COBOL project linking to the source folders
	Using the Region Definition JSON Template

	Tutorial: Set up Enterprise Analyzer on AppStream 2.0
	Image contents
	Prerequisites
	Step 1: Setup
	Step 2: Create the Amazon S3 based virtual folder on Windows
	Step 3: Create an ODBC source for the Amazon RDS instance
	Subsequent sessions
	Troubleshooting workspace connection
	Clean up resources

	Tutorial: Set up Micro Focus Enterprise Developer on AppStream 2.0
	Image contents
	Prerequisites
	Step 1: Setup by individual Enterprise Developer users
	Step 2: Create the Amazon S3-based virtual folder on Windows (optional)
	Step 3: Clone the repository
	Subsequent sessions
	Clean up resources

	Available batch utilities in AWS Mainframe Modernization
	Binary Location
	M2SFTP batch utility
	Supported platforms
	Installing dependencies
	Configure M2SFTP for AWS Mainframe Modernization Managed
	Configure M2SFTP for AWS Mainframe Modernization runtime on Amazon EC2 (including AppStream 2.0)
	Sample JCLs
	Putty SFTP (PSFTP) client command reference
	Next steps

	M2WAIT batch utility
	Supported platforms
	Configure M2WAIT for AWS Mainframe Modernization Managed
	Configure M2WAIT for AWS Mainframe Modernization runtime on Amazon EC2 (including AppStream 2.0)
	Sample JCL

	TXT2PDF batch utility
	Supported platforms
	Configure TXT2PDF for AWS Mainframe Modernization Managed
	Configure TXT2PDF for AWS Mainframe Modernization runtime on Amazon EC2 (including AppStream 2.0)
	Sample JCL
	Modifications
	References

	M2DFUTIL batch utility
	Supported platforms
	Platform requirements
	Planned future support
	Asset locations
	Configure M2DFUTIL or AWS Mainframe Modernization runtime on Amazon EC2 (including AppStream 2.0)
	General syntax
	DUMP
	Process
	Syntax
	Required parameters
	Optional parameters

	DELETE
	Process
	Syntax
	Required parameters
	Optional parameters

	RESTORE
	Process
	Syntax
	Required parameters
	Optional parameters

	Sample JCLs

	M2RUNCMD batch utility
	Supported platforms
	Configure M2RUNCMD for AWS Mainframe Modernization runtime on Amazon EC2 (including AppStream 2.0)
	Sample JCLs

	AWS Mainframe Modernization data replication with Precisely
	Prerequisites
	Subscribe to the Amazon Machine Image
	Launch AWS Mainframe Modernization data replication with Precisely
	Create an IAM policy
	Create an IAM role
	Attach the IAM role to the Amazon EC2 instance

	AWS Mainframe Modernization Code Conversion with mLogica
	What is Assembler Conversion with mLogica?
	Code conversion compliers
	Code conversion architecture
	Automation approach
	Security
	Additional resources

	Understand Code conversion billing for Assembler conversion
	Code conversion billing and scope
	Scope of Conversion
	Billing calculation
	Improving the conversion

	Code conversion concepts
	Macro Handling
	Code pages (EBCDIC vs ASCII)
	CodeBuild

	Understand components and processes for Code conversion
	AWS Mainframe Modernization container
	S3 project bucket
	Log file locations
	Process overview

	Tutorial: Convert code from Assembler to COBOL in AWS Mainframe Modernization
	Prerequisites
	Step 1: Share the build assets with AWS account
	Step 2: Create Amazon S3 buckets
	Step 3: Create IAM policy
	Step 4: Create an IAM role
	Step 5: Attach the IAM policy to the IAM role
	Step 6: Create the CodeBuild project
	Step 6.1: Create the Define project
	Step 6.2: Create the Code Analysis project
	Step 6.3: Create the Code Conversion project

	Step 7: Define the project and upload the source code
	Step 8: Run the analysis and understand the reports
	Step 9: Run the Code conversion
	Step 10: Verify the Code conversion
	Step 11: Download converted code
	Clean up resources

	Charon integration
	Introduction to Charon-SSP
	Supported guest operating systems
	Charon-SSP cloud instance prerequisites
	Instance prerequisites
	Creating and configuring an AWS cloud instance for Charon (New GUI)
	General prerequisites
	Using the AWS Management Console to launch a new instance

	AWS Mainframe Modernization replatforming with NTT DATA
	Prerequisites
	Subscribe to the Amazon Machine Image
	Launch AWS Mainframe Modernization replatform with NTT DATA instance
	Getting started with NTT Data

	Understand managed applications in AWS Mainframe Modernization
	Create AWS resources for a migrated application
	Required permissions
	Amazon S3 bucket
	Database
	AWS Key Management Service key
	AWS Secrets Manager secret

	Create an AWS Mainframe Modernization application
	Create an application

	Deploy an AWS Mainframe Modernization application
	Deploy an application

	Update an AWS Mainframe Modernization application
	Update an application

	Delete an AWS Mainframe Modernization application
	Delete an application

	Submit batch jobs for AWS Mainframe Modernization applications
	Submit a batch job
	Restart a batch job

	Cancel batch jobs for AWS Mainframe Modernization applications
	Cancel a batch job

	Import data sets for AWS Mainframe Modernization applications
	Import a data set

	Manage transactions for AWS Mainframe Modernization applications
	Manage transactions for applications

	Configure the managed application
	Structure of AWS Blu Age managed applications
	Managing an application's Java options

	Configure access to utilities for managed applications
	Configuration properties
	Data source configuration
	Primary data source
	Other utility data sources

	Database Unload utilities related properties
	Database Load related properties

	Add configuration properties for the managed application with AWS Blu Age engine
	Configuration properties reference
	Gapwalk application properties
	Gapwalk batchscript properties
	Gapwalk Blugen properties
	Gapwalk CL command properties
	Gapwalk CL runner properties
	Gapwalk JHDB properties
	Gapwalk JICS properties
	Gapwalk runtime properties
	Gapwalk utility program properties
	Other properties

	AWS Mainframe Modernization application definition reference
	General header section
	Definition section overview
	AWS Blu Age application definition sample
	AWS Blu Age definition details
	Listener(s) - required
	AWS Blu Age application - required
	BluSAM - optional
	AWS Blu Age message queues - optional
	AWS Blu Age Application storage EFS config - optional

	Micro Focus application definition
	Micro Focus definition details
	Listener(s) - required
	Data set locations - required
	Amazon Cognito authentication and authorization handler - optional
	LDAP and Active Directory handler - optional
	Batch settings - required
	CICS settings - required
	XA resources - required
	Runtime settings - optional

	AWS Mainframe Modernization data set definition reference
	Common properties
	Sample data set request format for VSAM
	Blu Age engine-specific properties

	Sample data set request format for GDG base
	Sample data set request format for PS or GDG generations
	Sample data set request format for PO

	Managed runtime environments in AWS Mainframe Modernization
	Create an AWS Mainframe Modernization runtime environment
	Create a runtime environment

	Update an AWS Mainframe Modernization runtime environment
	Update a runtime environment
	AWS Mainframe Modernization maintenance window

	Stop an AWS Mainframe Modernization runtime environment
	Stop a runtime environment

	Restart an AWS Mainframe Modernization runtime environment
	Restart a runtime environment

	Delete an AWS Mainframe Modernization runtime environment
	Delete a runtime environment

	Application Testing in AWS Mainframe Modernization
	What is AWS Mainframe Modernization Application Testing?
	Are you a first-time Application Testing user?
	Benefits of Application Testing
	Integration with AWS CloudFormation
	How Application Testing works
	

	Related services
	Accessing Application Testing
	Pricing for Application Testing

	AWS Mainframe Modernization Application Testing concepts
	Test case
	Test suite
	Test environment configuration
	Upload
	Replay
	Compare
	Database comparisons
	Dataset comparisons
	Comparison status
	Equivalence rules
	Final-state data set comparison
	State-progress database comparisons
	Functional equivalence (FE)
	Online 3270 screen comparisons
	Replay data
	Reference data
	Upload, Replay, and Compare
	Differences
	Equivalencies
	Source application
	Target application

	AWS Mainframe Modernization Application Testing prerequisites
	Application Testing console workflows
	Create test cases in AWS Mainframe Modernization Application Testing
	Create a Batch test case
	Create an Online 3270 screen test case

	Create test suites in AWS Mainframe Modernization Application Testing
	Create a test suite
	Upload reference data
	Replay and compare

	Create test environment configurations in AWS Mainframe Modernization Application Testing
	Create a test environment configuration

	Tutorial: Set up the CardDemo sample application in AWS Mainframe Modernization Application Testing
	Prerequisites
	Step 1: Prepare to set up CardDemo
	Step 2: Create all necessary resources
	Step 3: Deploy and start the application
	Step 4: Import initial data
	Step 5: Connect to the CardDemo application

	Tutorial: Replay and compare in AWS Mainframe Modernization Application Testing using CardDemo for AWS Blu Age deployed on Amazon EC2
	Step 1: Obtain AWS Blu Age Amazon EC2 Amazon Machine Image (AMI)
	Step 2: Start an Amazon EC2 instance using the AWS Blu Age AMI
	Step 3: Upload CardDemo dependent files to S3
	Step 4: Load databases and initialize the CardDemo application
	Step 5: Launch AWS Blu Age runtime CloudFormation
	Step 6: Testing the AWS Blu Age Amazon EC2 instance
	Step 7: Validate previous steps were completed correctly
	Step 8: Create the test case
	Step 9: Create a test suite
	Step 10: Create a test environment configuration
	Step 11: Upload your input data in test suite
	Step 12: Replay and compare

	AWS Mainframe Modernization Application Testing supported data sets code pages
	Data protection in AWS Mainframe Modernization Application Testing
	Data collected by the AWS Mainframe Modernization Application Testing
	Data encryption at rest for the AWS Mainframe Modernization Application Testing
	Create a customer managed key
	Specifying a customer managed key for AWS Mainframe Modernization Application Testing
	AWS Mainframe Modernization Application Testing encryption context
	

	Monitoring your encryption keys for AWS Mainframe Modernization Application Testing
	Encryption in transit

	File Transfer in AWS Mainframe Modernization
	What is AWS Mainframe Modernization File Transfer?
	Benefits of AWS Mainframe Modernization File Transfer
	How AWS Mainframe Modernization File Transfer works

	Install a File Transfer agent
	Step 1: Create a zFS data set for the M2-agent
	Step 2: Format the data set as zFS
	Step 3: Mount the filesystem
	Step 4: Verify the mount
	Step 5: Enter OMVS
	Step 6: Set the agent installation directory environment variable
	Step 7: Set the work directory environment variable
	Step 8: Create the work directory
	Step 9: Copy the agent tar file and copy the work directory
	Step 10: Assume the root user
	Step 11: Finish the agent installation

	Configure a File Transfer agent
	Step 1: Configure permissions and Started Task Control (STC)
	Step 2: Create Amazon S3 buckets
	Step 3: Create an AWS KMS customer managed key for encryption
	Step 4: Create an AWS Secrets Manager secret for the mainframe credentials
	Step 5: Create an IAM policy
	Step 6: Create an IAM user with long-term access credentials
	Step 7: Create an IAM role for the agent to assume
	Step 8: Agent configuration

	Create data transfer endpoints for File Transfer
	Create data transfer endpoints

	Create transfer tasks in File Transfer
	Create transfer tasks
	View transfer tasks

	Tutorial: Getting started with AWS Mainframe Modernization File Transfer
	Overview
	Step 1: Transfer the agent binaries tar package from AWS to the mainframe logical partition
	Step 2: Configure the File Transfer agent on the source mainframe
	Step 3: Create a data transfer endpoint
	Step 4: Create a transfer task
	Step 5: View transfer task progress

	Supported source and target encodings in AWS Mainframe Modernization File Transfer
	Mainframe data set types
	Supported code pages

	Security in AWS Mainframe Modernization
	Data protection in AWS Mainframe Modernization
	Data that AWS Mainframe Modernization collects
	Data encryption at rest for AWS Mainframe Modernization service
	How AWS Mainframe Modernization uses grants in AWS KMS
	Create a customer managed key
	Specifying a customer managed key for AWS Mainframe Modernization
	AWS Mainframe Modernization encryption context
	

	Monitoring your encryption keys for AWS Mainframe Modernization
	Examples for runtime environments
	Examples for applications
	Examples for deployments

	Learn more
	Encryption in transit

	Identity and Access Management for AWS Mainframe Modernization
	Audience
	Authenticating with identities
	AWS account root user
	Federated identity
	IAM users and groups
	IAM roles

	Managing access using policies
	Identity-based policies
	Resource-based policies
	Access control lists (ACLs)
	Other policy types
	Multiple policy types

	How AWS Mainframe Modernization works with IAM
	Identity-based policies for AWS Mainframe Modernization
	Identity-based policy examples for AWS Mainframe Modernization

	Resource-based policies within AWS Mainframe Modernization
	Policy actions for AWS Mainframe Modernization
	Policy resources for AWS Mainframe Modernization
	AWS Mainframe Modernization API permissions: Actions, resources, and conditions reference
	Policy condition keys for AWS Mainframe Modernization
	Access control lists (ACLs) in AWS Mainframe Modernization
	Attribute-based access control (ABAC) with AWS Mainframe Modernization
	Using Temporary credentials with AWS Mainframe Modernization
	Forward access sessions for AWS Mainframe Modernization
	Service roles for AWS Mainframe Modernization
	Choosing an IAM role in AWS Mainframe Modernization

	Service-linked roles for AWS Mainframe Modernization

	Identity-based policy examples for AWS Mainframe Modernization
	Policy best practices
	Using the AWS Mainframe Modernization console
	Allow users to view their own permissions

	Troubleshooting AWS Mainframe Modernization identity and access
	I am not authorized to perform iam:PassRole
	I want to allow people outside of my AWS account to access my AWS Mainframe Modernization resources

	Using service-linked roles for AWS Mainframe Modernization
	Service-linked role permissions for AWS Mainframe Modernization
	Creating a service-linked role for AWS Mainframe Modernization
	Editing a service-linked role for AWS Mainframe Modernization
	Deleting a service-linked role for AWS Mainframe Modernization
	Supported regions for AWS Mainframe Modernization service-linked roles

	Compliance validation for AWS Mainframe Modernization
	Resilience in AWS Mainframe Modernization
	Infrastructure security in AWS Mainframe Modernization
	Access AWS Mainframe Modernization using an AWS PrivateLink interface endpoint
	Considerations for AWS Mainframe Modernization
	Create an interface endpoint for AWS Mainframe Modernization
	Create an endpoint policy for your interface endpoint

	Monitoring AWS Mainframe Modernization
	Monitoring AWS Mainframe Modernization with Amazon CloudWatch
	Runtime Environment Metrics
	Application Metrics
	Dimensions

	Logging AWS Mainframe Modernization API calls using AWS CloudTrail
	AWS Mainframe Modernization information in CloudTrail
	Understanding AWS Mainframe Modernization log file entries

	Troubleshooting in AWS Mainframe Modernization
	Troubleshooting error: Time out while waiting for data set name to be unlocked
	Common cause
	Resolution
	Force the lock to release
	Configure the Blusam auto repairing mechanism
	Blusam locks manager
	Write locks
	Read locks

	Troubleshooting error: Cannot access an application URL
	Common cause
	Resolution

	Troubleshooting: AWS Blu Insights does not open from the console
	Common cause
	Resolution

	Troubleshooting error: Environment unhealthy
	Common cause
	Resolution

	Troubleshooting license issues for Micro Focus
	Verify the Amazon EC2 instance has the IAM licensing role
	Use the reachability analyzer
	Run the license-daemon
	License issues with Enterprise Server or Enterprise Build Tools on Linux after OS patching

	Document history for the AWS Mainframe Modernization User Guide

