
Artificial Intelligence
NetApp Solutions
NetApp
July 31, 2024

This PDF was generated from https://docs.netapp.com/us-en/netapp-solutions/ai/a400-thinksystem-
introduction.html on July 31, 2024. Always check docs.netapp.com for the latest.

Table of Contents

NetApp Artifical Intelligence Solutions . 1

AI Converged Infrastructures . 1

Data Pipelines, Data Lakes and Management. 27

Use Cases . 226

NetApp Artifical Intelligence Solutions

AI Converged Infrastructures

NetApp AFF A400 with Lenovo ThinkSystem SR670 V2 for AI and ML Model
Training

TR-4810: NetApp AFF A400 with Lenovo ThinkSystem SR670 V2 for AI and ML Model Training

Sathish Thyagarajan, David Arnette, NetApp
Mircea Troaca, Lenovo

This solution presents a mid-range cluster architecture using NetApp storage and Lenovo
servers optimized for artificial intelligence (AI) workloads. It is meant for small- to
medium-sized enterprises for which most compute jobs are single node (single or multi-
GPU) or distributed over a few computational nodes. This solution aligns with most day-
to-day AI training jobs for many businesses.

This document covers testing and validation of a compute and storage configuration consisting of eight-GPU
Lenovo SR670V2 servers, a mid-range NetApp AFF A400 storage system and 100GbE interconnect switch. To
measure the performance, we used ResNet50 with the ImageNet dataset, a batch size of 408, half precision,
CUDA, and cuDNN. This architecture provides an efficient and cost-effective solution for small and medium-
sized organizations just starting out with AI initiatives that require the enterprise-grade capabilities of NetApp
ONTAP cloud-connected data storage.

Target audience

This document is intended for the following audiences:

• Data scientists, data engineers, data administrators, and developers of AI systems

• Enterprise architects who design solutions for the development of AI models

• Data scientists and data engineers who are looking for efficient ways to achieve deep learning (DL) and
machine learning (ML) development goals

• Business leaders and OT/IT decision makers who want to achieve the fastest possible time to market for AI
initiatives

Solution architecture

This solution with Lenovo ThinkSystem servers and NetApp ONTAP with AFF storage is designed to handle AI
training on large datasets using the processing power of GPUs alongside traditional CPUs. This validation
demonstrates high performance and optimal data management with a scale-out architecture that uses either
one, two, or four Lenovo SR670 V2 servers alongside a single NetApp AFF A400 storage system. The
following figure provides an architectural overview.

This NetApp and Lenovo solution offers the following key benefits:

• Highly efficient and cost-effective performance when executing multiple training jobs in parallel

• Scalable performance based on different numbers of Lenovo servers and different models of NetApp
storage controllers

1

• Robust data protection to meet low recovery point objectives (RPOs) and recovery time objectives (RTOs)
with no data loss

• Optimized data management with snapshots and clones to streamline development workflows

Technology overview

This section introduces the major components of this solution in greater detail.

NetApp AFF systems

NetApp AFF storage systems enable businesses to meet enterprise storage requirements with industry-leading
performance, superior flexibility, cloud integration, and best-in-class data management. Designed specifically
for flash, AFF systems help accelerate, manage, and protect business-critical data.

NetApp AFF A400 is a mid-range NVMe flash storage system that includes the following features:

• Maximum effective capacity: ~20PB

• Maximum scale-out: 2-24 nodes (12 HA pairs)

• 25GbE and 16Gb FC host support

• 100GbE RDMA over Converged Ethernet (RoCE) connectivity to NVMe expansion storage shelves

• 100GbE RoCE ports can be used for host network attachment if NVMe shelves aren’t attached

• Full 12Gbps SAS connectivity expansion storage shelves

• Available in two configurations:

◦ Ethernet: 4x 25Gb Ethernet (SFP28) ports

◦ Fiber Channel: 4x 16Gb FC (SFP+) ports

• 100% 8KB random read @.4 ms 400k IOPS

NetApp AFF A250 features for entry level AI/ML deployments include the following:

• Maximum effective capacity: 35PB

• Maximum scale out: 2-24 nodes (12 HA pairs)

2

• 440k IOPS random reads @1ms

• Built on the latest NetApp ONTAP release ONTAP 9.8 or later

• Two 25Gb Ethernet ports for HA and cluster interconnect

NetApp also offers other storage systems, such as the AFF A800 and AFF A700 that provide higher
performance and scalability for larger-scale AI/ML deployments.

NetApp ONTAP

ONTAP 9, the latest generation of storage management software from NetApp, enables businesses to
modernize infrastructure and transition to a cloud-ready data center. Leveraging industry-leading data
management capabilities, ONTAP enables the management and protection of data with a single set of tools,
regardless of where that data resides. Data can also be moved freely to wherever it’s needed: the edge, the
core, or the cloud. ONTAP 9 includes numerous features that simplify data management, accelerate and
protect critical data, and future-proof infrastructure across hybrid cloud architectures.

Simplify data management

Data management is crucial to enterprise IT operations so that appropriate resources are used for applications
and datasets. ONTAP includes the following features to streamline and simplify operations and reduce the total
cost of operation:

• Inline data compaction and expanded deduplication. Data compaction reduces wasted space inside
storage blocks, and deduplication significantly increases effective capacity. This applies to data stored
locally and data tiered to the cloud.

• Minimum, maximum, and adaptive quality of service (QoS). Granular QoS controls help maintain
performance levels for critical applications in highly shared environments.

• ONTAP FabricPool. This feature automatically tiers cold data to public and private cloud storage options,
including Amazon Web Services (AWS), Azure, and NetApp StorageGRID object storage.

Accelerate and protect data

ONTAP delivers superior levels of performance and data protection and extends these capabilities in the
following ways:

• Performance and lower latency. ONTAP offers the highest possible throughput at the lowest possible
latency.

• Data protection. ONTAP provides built-in data protection capabilities with common management across
all platforms.

• NetApp Volume Encryption. ONTAP offers native volume-level encryption with both onboard and external
key management support.

Future-proof infrastructure

ONTAP 9 helps meet demanding and constantly changing business needs:

• Seamless scaling and nondisruptive operations. ONTAP supports the nondisruptive addition of
capacity to existing controllers as well as to scale-out clusters. Customers can upgrade to the latest
technologies, such as NVMe and 32Gb FC, without costly data migrations or outages.

• Cloud connection. ONTAP is the most cloud-connected storage management software, with options for
software-defined storage (ONTAP Select) and cloud-native instances (NetApp Cloud Volumes Service) in

3

all public clouds.

• Integration with emerging applications. ONTAP offers enterprise-grade data services for next-
generation platforms and applications such as OpenStack, Hadoop, and MongoDB by using the same
infrastructure that supports existing enterprise apps.

NetApp FlexGroup volumes

Training datasets are typically a collection of potentially billions of files. Files can include text, audio, video, and
other forms of unstructured data that must be stored and processed to be read in parallel. The storage system
must store many small files and must read those files in parallel for sequential and random I/O.

A FlexGroup volume (the following figure) is a single namespace made up of multiple constituent member
volumes that is managed and acts like a NetApp FlexVol volume to storage administrators. Files in a
FlexGroup volume are allocated to individual member volumes and are not striped across volumes or nodes.
They enable the following capabilities:

• Up to 20 petabytes of capacity and predictable low latency for high-metadata workloads

• Up to 400 billion files in the same namespace

• Parallelized operations in NAS workloads across CPUs, nodes, aggregates, and constituent FlexVol
volumes

image::a400-thinksystem-image5.png["This image depicts an HA-pair of storage controllers containing many
volumes with main files within a FlexGroup.]"

Lenovo ThinkSystem portfolio

Lenovo ThinkSystem servers feature innovative hardware, software, and services that solve customers’
challenges today and deliver an evolutionary, fit-for-purpose, modular design approach to address tomorrow’s
challenges. These servers capitalize on best-in-class, industry-standard technologies coupled with
differentiated Lenovo innovations to provide the greatest possible flexibility in x86 servers.

Key advantages of deploying Lenovo ThinkSystem servers include the following:

• Highly scalable, modular designs that grow with your business

• Industry-leading resilience to save hours of costly unscheduled downtime

• Fast flash technologies for lower latencies, quicker response times, and smarter data management in real
time

In the AI area, Lenovo is taking a practical approach to helping enterprises understand and adopt the benefits
of ML and AI for their workloads. Lenovo customers can explore and evaluate Lenovo AI offerings in Lenovo AI
Innovation Centers to fully understand the value for their particular use case. To improve time to value, this
customer-centric approach gives customers proofs of concept for solution development platforms that are
ready to use and optimized for AI.

Lenovo SR670 V2

The Lenovo ThinkSystem SR670 V2 rack server delivers optimal performance for accelerated AI and high-
performance computing (HPC). Supporting up to eight GPUs, the SR670 V2 is suited for the computationally
intensive workload requirements of ML, DL, and inference.

4

With the latest scalable Intel Xeon CPUs that support high-end GPUs (including the NVIDIA A100 80GB PCIe
8x GPU), the ThinkSystem SR670 V2 delivers optimized, accelerated performance for AI and HPC workloads.

Because more workloads use the performance of accelerators, the demand for GPU density has increased.
Industries such as retail, financial services, energy, and healthcare are using GPUs to extract greater insights
and drive innovation with ML, DL, and inference techniques.

The ThinkSystem SR670 V2 is an optimized, enterprise-grade solution for deploying accelerated HPC and AI
workloads in production, maximizing system performance while maintaining data center density for
supercomputing clusters with next-generation platforms.

Other features include:

• Support for GPU direct RDMA I/O in which high-speed network adapters are directly connected to the
GPUs to maximize I/O performance.

• Support for GPU direct storage in which NVMe drives are directly connected to the GPUs to maximize
storage performance.

MLPerf

MLPerf is the industry-leading benchmark suite for evaluating AI performance. In this validation, we used its
image-classification benchmark with MXNet, one of the most popular AI frameworks. The MXNet_benchmarks
training script was used to drive AI training. The script contains implementations of several popular
conventional models and is designed to be as fast as possible. It can be run on a single machine or run in
distributed mode across multiple hosts.

Test plan

In this validation, we performed image recognition training as specified by MLPerf v2.0.
Specifically, we trained the ResNet v2.0 model with the ImageNet dataset until we

5

reached an accuracy of 76.1%. The main metric is the time to reach the desired accuracy.
We also report training bandwidth in images per second to better judge scale-out
efficiency.

The primary test case evaluated multiple independent training processes (one per node) running concurrently.
This simulates the main use case, a shared system used by multiple data scientists. The second test case
evaluated scale-out efficiency.

Test results

The following table summarizes the results for all tests performed for this solution.

Test description Results summary

Image recognition training: multiple concurrent jobs Highly efficient performance. All jobs ran at full speed
even when the cluster was fully used. The NetApp
storage systems delivered training performance
comparable to local SSD storage while enabling easy
sharing of data between servers.

Image recognition training: scale out Highly efficient for up to four nodes. At that point,
scale out was less efficient but still feasible. Using a
higher-speed computational network improves
scalability. The NetApp storage system delivered
training performance comparable to local SSD storage
while enabling easy sharing of data between servers.

Test configuration

This section describes the tested configurations, the network infrastructure, the SR670
V2 server, and the NetApp storage provisioning details.

Solution architecture

We used the solution components listed in the following table for this validation.

Solution components Details

Lenovo ThinkSystem servers • Two SR670 V2 servers each with eight NVIDIA
A100 80GB GPU cards

• Each server contains 2 Intel Xeon Platinum
8360Y CPUs (28 physical cores) and 1TB RAM

Linux (Ubuntu – 20.04 with CUDA 11.8)

NetApp AFF storage system (HA pair) • NetApp ONTAP 9.10.1 software

• 24x 960GB SSDs

• NFS protocol

• 1 interface group (ifgrp) per controller, with four
logical IP addresses for mount points

6

In this validation, we used ResNet v2.0 with the ImageNet basis set as specified by MLPerf v2.0. The dataset
is stored in a NetApp AFF storage system with the NFS protocol. The SR670s were connected to the NetApp
AFF A400 storage system over a 100GbE switch.

ImageNet is a frequently used image dataset. It contains almost 1.3 million images for a total size of 144GB.
The average image size is 108KB.

The following figure depicts the network topology of the tested configuration.

Storage controller

The following table lists the storage configuration.

Controller Aggregate FlexGroup

volume

Aggregate size Volume size Operating

system mount

point

Controller1 Aggr1 /a400-100g 9.9TB 19TB /a400-100g

Controller2 Aggr2 /a400-100g 9.9TB /a400-100g

The /a400-100g folder contains the dataset used for ResNet validation.

Test procedure and detailed results

This section describes the detailed test procedure results.

7

Image recognition training using ResNet in ONTAP

We ran the ResNet50 benchmark with one and two SR670 V2 servers. This test used the MXNet 22.04-py3
NGC container to run the training.

We used the following test procedure in this validation:

1. We cleared the host cache before running the script to make sure that data was not already cached:

sync ; sudo /sbin/sysctl vm.drop_caches=3

2. We ran the benchmark script with the ImageNet dataset in server storage (local SSD storage) as well as on
the NetApp AFF storage system.

3. We validated network and local storage performance using the dd command.

4. For the single-node run, we used the following command:

python train_imagenet.py --gpus 0,1,2,3,4,5,6,7 --batch-size 408 --kv

-store horovod --lr 10.5 --mom 0.9 --lr-step-epochs pow2 --lars-eta

0.001 --label-smoothing 0.1 --wd 5.0e-05 --warmup-epochs 2 --eval-period

4 --eval-offset 2 --optimizer sgdwfastlars --network resnet-v1b-stats-fl

--num-layers 50 --num-epochs 37 --accuracy-threshold 0.759 --seed 27081

--dtype float16 --disp-batches 20 --image-shape 4,224,224 --fuse-bn-relu

1 --fuse-bn-add-relu 1 --bn-group 1 --min-random-area 0.05 --max-random

-area 1.0 --conv-algo 1 --force-tensor-core 1 --input-layout NHWC --conv

-layout NHWC --batchnorm-layout NHWC --pooling-layout NHWC --batchnorm

-mom 0.9 --batchnorm-eps 1e-5 --data-train /data/train.rec --data-train

-idx /data/train.idx --data-val /data/val.rec --data-val-idx

/data/val.idx --dali-dont-use-mmap 0 --dali-hw-decoder-load 0 --dali

-prefetch-queue 5 --dali-nvjpeg-memory-padding 256 --input-batch

-multiplier 1 --dali- threads 6 --dali-cache-size 0 --dali-roi-decode 1

--dali-preallocate-width 5980 --dali-preallocate-height 6430 --dali-tmp

-buffer-hint 355568328 --dali-decoder-buffer-hint 1315942 --dali-crop

-buffer-hint 165581 --dali-normalize-buffer-hint 441549 --profile 0

--e2e-cuda-graphs 0 --use-dali

5. For the distributed runs, we used the parameter server’s parallelization model. We used two parameter
servers per node, and we set the number of epochs to be the same as for the single-node run. We did this
because distributed training often takes more epochs due to imperfect synchronization between processes.
The different number of epochs can skew comparisons between single-node and distributed cases.

Data read speed: Local versus network storage

The read speed was tested by using the dd command on one of the files for the ImageNet dataset. Specifically,
we ran the following commands for both local and network data:

8

sync ; sudo /sbin/sysctl vm.drop_caches=3dd if=/a400-100g/netapp-

ra/resnet/data/preprocessed_data/train.rec of=/dev/null bs=512k

count=2048Results (average of 5 runs):

Local storage: 1.7 GB/s Network storage: 1.5 GB/s.

Both values are similar, demonstrating that the network storage can deliver data at a rate similar to local
storage.

Shared use case: Multiple, independent, simultaneous jobs

This test simulated the expected use case for this solution: multi-job, multi-user AI training. Each node ran its
own training while using the shared network storage. The results are displayed in the following figure, which
shows that the solution case provided excellent performance with all jobs running at essentially the same
speed as individual jobs. The total throughput scaled linearly with the number of nodes.

9

These graphs present the runtime in minutes and the aggregate images per second for compute nodes that
used eight GPUs from each server on 100 GbE client networking, combining both the concurrent training
model and the single training model. The average runtime for the training model was 35 minutes and 9
seconds. The individual runtimes were 34 minutes and 32 seconds, 36 minutes and 21 seconds, 34 minutes
and 37 seconds, 35 minutes and 25 seconds, and 34 minutes and 31 seconds. The average images per
second for the training model were 22,573, and the individual images per second were 21,764; 23,438; 22,556;
22,564; and 22,547.

Based on our validation, one independent training model with a NetApp data runtime was 34 minutes and 54
seconds with 22,231 images/sec. One independent training model with a local data (DAS) runtime was 34
minutes and 21 seconds with 22,102 images/sec. During those runs the average GPU utilization was 96%, as
observed on nvidia-smi. Note that this average includes the testing phase, during which GPUs were not used,
while CPU utilization was 40% as measured by mpstat. This demonstrates that the data delivery rate is
sufficient in each case.

Architecture adjustments

The setup used for this validation can be adjusted to fit other use cases.

CPU Adjustments

We used a Skylake Intel Xeon Platinum 8360Y processor for this validation, as recommended by Lenovo. We
expect that the equivalent Cascade Lake CPU, an Intel Xeon Gold 6330 processor, would deliver similar
performance because this workload is not CPU bound.

Storage Capacity Increase

Based on your storage capacity needs, you can increase the share storage (NFS volume) on demand,
provided that you have the additional disk shelves and controller models. You can do this from the CLI or from
the NetApp web interface of the storage controller as the admin user.

10

Conclusion

The NetApp and Lenovo solution validated here is a flexible scale-out architecture that is
ideal for entry into mid-level enterprise AI.

NetApp storage delivers the same or better performance as local SSD storage and offers the following benefits
to data scientists, data engineers, and IT decision makers:

• Effortless sharing of data between AI systems, analytics, and other critical business systems. This data
sharing reduces infrastructure overhead, improves performance, and streamlines data management across
the enterprise.

• Independently scalable compute and storage to minimize costs and improve resource utilization.

• Streamlined development and deployment workflows using integrated snapshots and clones for
instantaneous and space-efficient user workspaces, integrated version control, and automated deployment.

• Enterprise-grade data protection for disaster recovery and business continuance.

Acknowledgments

• Karthikeyan Nagalingam, Technical Marketing Engineer, NetApp

• Jarrett Upton, Admin, AI Lab Systems, Lenovo

Where to find additional information

To learn more about the information described in this document, refer to the following documents and/or
websites:

• NetApp All Flash Arrays product page

https://www.netapp.com/us/products/storage-systems/all-flash-array/aff-a-series.aspx

• NetApp AFF A400 page

https://docs.netapp.com/us-en/ontap-systems/a400/index.html

• NetApp ONTAP data management software product page

http://www.netapp.com/us/products/data-management-software/ontap.aspx

• MLPerf

https://mlperf.org

• TensorFlow benchmark

https://github.com/tensorflow/benchmarks

• NVIDIA SMI (nvidia-smi)

https://developer.nvidia.com/nvidia-system-management-interface

11

https://www.netapp.com/us/products/storage-systems/all-flash-array/aff-a-series.aspx
https://docs.netapp.com/us-en/ontap-systems/a400/index.html
http://www.netapp.com/us/products/data-management-software/ontap.aspx
https://mlperf.org/
https://github.com/tensorflow/benchmarks
https://developer.nvidia.com/nvidia-system-management-interface

NetApp AI with NVIDIA

Overview of ONTAP AI converged infrastructure solutions from NetApp and NVIDIA.

NetApp AIPod with NVIDIA DGX Systems

• NetApp AI Pod with NVIDIA DGX Systems

NetApp ONTAP AI with NVIDIA DGX A100 Systems

• Design Guide

• Deployment Guide

NetApp ONTAP AI with NVIDIA DGX A100 Systems and Mellanox Spectrum Ethernet Switches

• Design Guide

• Deployment Guide

NetApp AIPod with NVIDIA DGX Systems - Introduction

This section provides an introduction to the NetApp AIPod with NVIDIA DGX systems.

NetApp Solution Engineering

The NetApp™ AIPod with NVIDIA DGX™ systems and NetApp cloud-connected storage systems, simplifies
infrastructure deployments for machine learning (ML) and artificial intelligence (AI) workloads by eliminating
design complexity and guesswork. Building on the NVIDIA DGX BasePOD design to deliver exceptional
compute performance for next-generation workloads, AIPod with NVIDIA DGX systems adds NetApp AFF
storage systems that allow customers to start small and grow non-disruptively while intelligently managing data
from the edge to the core to the cloud and back. NetApp AIPod is part of the larger portfolio of NetApp AI
solutions, show in the figure below-

NetApp AI Solutions Portfolio

image::aipod_nv_portfolio.png[]

This document describes the key components of the AIPod reference architecture, system connectivity
information and solution sizing guidance. This document is intended for NetApp and partner solutions
engineers and customer strategic decision makers interested in deploying a high-performance infrastructure for
ML/DL and analytics workloads.

NetApp AIPod with NVIDIA DGX Systems - Introduction

This section provides an introduction to the NetApp AIPod with NVIDIA DGX systems.

NetApp Solution Engineering

The NetApp™ AIPod with NVIDIA DGX™ systems and NetApp cloud-connected storage systems, simplifies
infrastructure deployments for machine learning (ML) and artificial intelligence (AI) workloads by eliminating
design complexity and guesswork. Building on the NVIDIA DGX BasePOD design to deliver exceptional
compute performance for next-generation workloads, AIPod with NVIDIA DGX systems adds NetApp AFF
storage systems that allow customers to start small and grow non-disruptively while intelligently managing data
from the edge to the core to the cloud and back. NetApp AIPod is part of the larger portfolio of NetApp AI
solutions, show in the figure below-

12

https://www.netapp.com/pdf.html?item=/media/19432-nva-1151-design.pdf
https://www.netapp.com/pdf.html?item=/media/20708-nva-1151-deploy.pdf
https://www.netapp.com/pdf.html?item=/media/21793-nva-1153-design.pdf
https://www.netapp.com/pdf.html?item=/media/21789-nva-1153-deploy.pdf

NetApp AI Solutions Portfolio

image::aipod_nv_portfolio.png[]

This document describes the key components of the AIPod reference architecture, system connectivity
information and solution sizing guidance. This document is intended for NetApp and partner solutions
engineers and customer strategic decision makers interested in deploying a high-performance infrastructure for
ML/DL and analytics workloads.

NetApp AIPod with NVIDIA DGX Systems - Hardware Components

This section focuses on the hardware components for the NetApp AIPod with NVIDIA
DGX systems.

NetApp AFF Storage Systems

NetApp AFF state-of-the-art storage systems enable IT departments to meet enterprise storage requirements
with industry-leading performance, superior flexibility, cloud integration, and best-in-class data management.
Designed specifically for flash, AFF systems help accelerate, manage, and protect business-critical data.

AFF A900 storage systems

The NetApp AFF A900 powered by NetApp ONTAP data management software provides built-in data
protection, optional anti-ransomware capabilities, and the high performance and resiliency required to support
the most critical business workloads. It eliminates disruptions to mission-critical operations, minimizes
performance tuning, and safeguards your data from ransomware attacks. It delivers:
• Industry-leading performance
• Uncompromised data security
• Simplified non-disruptive upgrades

NetApp AFF A900 storage system

image::aipod_nv_A900.png[]

Industry-leading Performance

The AFF A900 easily manages next-generation workloads like deep learning, AI, and high-speed analytics as
well as traditional enterprise databases like Oracle, SAP HANA, Microsoft SQL Server, and virtualized
applications. It keeps business-critical applications running at top speed with up to 2.4M IOPS per HA pair and
latency as low as 100µs—and increases performance by up to 50% over previous NetApp models. With NFS
over RDMA, pNFS and Session Trunking, customers can achieve the high level of network performance
required for next-generation applications using existing data center networking infrastructure.
Customers can also scale and grow with unified multi-protocol support for SAN, NAS, and Object storage and
deliver maximum flexibility with unified and single ONTAP data management software, for data on-premises or
in the cloud. In addition, system health can be optimized with AI-based predictive analytics delivered by Active
IQ Digital Advisor (also known as Digital Advisor) and Cloud Insights.

Uncompromised Data Security

AFF A900 systems contain a full suite of NetApp integrated and application-consistent data protection
software. It provides built-in data protection and cutting-edge anti-ransomware solutions for pre-emption and
post-attack recovery. Malicious files can be blocked from ever being written to disk, and storage abnormalities
are easily monitored to gain insights.

13

Simplified Non-Disruptive Upgrades

The AFF A900 is available as a non-disruptive in-chassis upgrade to existing A700 customers. NetApp makes
it simple to refresh and eliminate disruptions to mission-critical operations through our advanced reliability,
availability, serviceability, and manageability (RASM) capabilities. In addition, NetApp further increases
operational efficiency and simplifies day-to-day activities for IT teams because ONTAP software automatically
applies firmware updates for all system components.

For the largest deployments, AFF A900 systems offer the highest performance and capacity options while
other NetApp storage systems, such as the AFF A800, AFF C800, AFF A400, AFF C400 and AFF A250 offer
options for smaller deployments at lower cost points.

NVIDIA DGX BasePOD

NVIDIA DGX BasePOD is an integrated solution consisting of NVIDIA hardware and software components,
MLOps solutions, and third-party storage. Leveraging best practices of scale-out system design with NVIDIA
products and validated partner solutions, customers can implement an efficient and manageable platform for AI
development. Figure 1 highlights the various components of NVIDIA DGX BasePOD.

NVIDIA DGX BasePOD solution

image::aipod_nv_basepod_layers.png[]

NVIDIA DGX H100 Systems

The NVIDIA DGX H100™ system is the AI powerhouse that is accelerated by the groundbreaking performance
of the NVIDIA H100 Tensor Core GPU.

NVIDIA DGX H100 system

image::aipod_nv_H100_3D.png[]

Key specifications of the DGX H100 system are:
• Eight NVIDIA H100 GPUs.
• 80 GB GPU memory per GPU, for a total of 640GB.
• Four NVIDIA NVSwitch™ chips.
• Dual 56-core Intel® Xeon® Platinum 8480 processors with PCIe 5.0 support.
• 2 TB of DDR5 system memory.
• Four OSFP ports serving eight single-port NVIDIA ConnectX-7 (InfiniBand/Ethernet) adapters, and two dual-
port NVIDIA ConnectX-7 (InfiniBand/Ethernet) adapters.
• Two 1.92 TB M.2 NVMe drives for DGX OS, eight 3.84 TB U.2 NVMe drives for storage/cache.
• 10.2 kW max power.
The rear ports of the DGX H100 CPU tray are shown below. Four of the OSFP ports serve eight ConnectX-7
adapters for the InfiniBand compute fabric. Each pair of dual-port ConnectX-7 adapters provide parallel
pathways to the storage and management fabrics. The out-of-band port is used for BMC access.

NVIDIA DGX H100 rear panel

image::aipod_nv_H100_rear.png[]

NVIDIA Networking

NVIDIA Quantum-2 QM9700 Switch

NVIDIA Quantum-2 QM9700 InfiniBand switch

image::aipod_nv_QM9700.png[]

14

NVIDIA Quantum-2 QM9700 switches with 400Gb/s InfiniBand connectivity power the compute fabric in
NVIDIA Quantum-2 InfiniBand BasePOD configurations. ConnectX-7 single-port adapters are used for the
InfiniBand compute fabric. Each NVIDIA DGX system has dual connections to each QM9700 switch, providing
multiple high-bandwidth, low-latency paths between the systems.

NVIDIA Spectrum-3 SN4600 Switch

NVIDIA Spectrum-3 SN4600 switch

image::aipod_nv_SN4600_hires_smallest.png[]

NVIDIA Spectrum-3 SN4600 switches offer 128 total ports (64 per switch) to provide redundant connectivity for
in-band management of the DGX BasePOD. The NVIDIA SN4600 switch can provide for speeds between 1
GbE and 200 GbE. For storage appliances connected over Ethernet, the NVIDIA SN4600 switches are also
used. The ports on the NVIDIA DGX dual-port ConnectX-7 adapters are used for both in-band management
and storage connectivity.

NVIDIA Spectrum SN2201 Switch

NVIDIA Spectrum SN2201 switch

image::aipod_nv_SN2201.png[]

NVIDIA Spectrum SN2201 switches offer 48 ports to provide connectivity for out-of-band management. Out-of-
band management provides consolidated management connectivity for all components in DGX BasePOD.

NVIDIA ConnectX-7 Adapter

NVIDIA ConnectX-7 adapter

image::aipod_nv_CX7.png[]

The NVIDIA ConnectX-7 adapter can provide 25/50/100/200/400G of throughput. NVIDIA DGX systems use
both the single and dual-port ConnectX-7 adapters to provide flexibility in DGX BasePOD deployments with
400Gb/s InfiniBand and 100/200Gb Ethernet.

NetApp AIPod with NVIDIA DGX Systems - Software Components

This section focuses on the software components of the NetApp AIPod with NVIDIA DGX
systems.

NVIDIA Software

NVIDIA Base Command

NVIDIA Base Command™ powers every DGX BasePOD, enabling organizations to leverage the best of
NVIDIA software innovation. Enterprises can unleash the full potential of their investment with a proven
platform that includes enterprise-grade orchestration and cluster management, libraries that accelerate
compute, storage and network infrastructure, and an operating system (OS) optimized for AI workloads.

NVIDIA BaseCommand solution

image::aipod_nv_BaseCommand_new.png[]

NVIDIA GPU Cloud (NGC)

NVIDIA NGC™ provides software to meet the needs of data scientists, developers, and researchers with
various levels of AI expertise. Software hosted on NGC undergoes scans against an aggregated set of

15

common vulnerabilities and exposures (CVEs), crypto, and private keys. It is tested and designed to scale to
multiple GPUs and in many cases, to multi-node, ensuring users maximize their investment in DGX systems.

NVIDIA GPU Cloud

image::aipod_nv_ngc.png[]

NVIDIA AI Enterprise

NVIDIA AI Enterprise is the end-to-end software platform that brings generative AI into reach for every
enterprise, providing the fastest and most efficient runtime for generative AI foundation models optimized to run
on the NVIDIA DGX platform. With production-grade security, stability, and manageability, it streamlines the
development of generative AI solutions. NVIDIA AI Enterprise is included with DGX BasePOD for enterprise
developers to access pretrained models, optimized frameworks, microservices, accelerated libraries, and
enterprise support.

NetApp Software

NetApp ONTAP

ONTAP 9, the latest generation of storage management software from NetApp, enables businesses to
modernize infrastructure and transition to a cloud-ready data center. Leveraging industry-leading data
management capabilities, ONTAP enables the management and protection of data with a single set of tools,
regardless of where that data resides. You can also move data freely to wherever it is needed: the edge, the
core, or the cloud. ONTAP 9 includes numerous features that simplify data management, accelerate, and
protect critical data, and enable next generation infrastructure capabilities across hybrid cloud architectures.

Accelerate and protect data

ONTAP delivers superior levels of performance and data protection and extends these capabilities in the
following ways:

• Performance and lower latency. ONTAP offers the highest possible throughput at the lowest possible
latency, including support for NVIDIA GPUDirect Storage (GDS) using NFS over RDMA, parallel NFS
(pNFS), and NFS session trunking.

• Data protection. ONTAP provides built-in data protection capabilities and the industry’s strongest anti-
ransomware guarantee with common management across all platforms.

• NetApp Volume Encryption (NVE). ONTAP offers native volume-level encryption with both onboard and
External Key Management support.

• Storage multitenancy and multifactor authentication. ONTAP enables sharing of infrastructure resources
with the highest levels of security.

Simplify data management

Data management is crucial to enterprise IT operations and data scientists so that appropriate resources are
used for AI applications and training AI/ML datasets. The following additional information about NetApp
technologies is out of scope for this validation but might be relevant depending on your deployment.

ONTAP data management software includes the following features to streamline and simplify operations and
reduce your total cost of operation:

• Snapshots and clones enable collaboration, parallel experimentation and enhanced data governance for
ML/DL workflows.

16

• SnapMirror enables seamless data movement in hybrid cloud and multi-site environments, delivering data
where and when it’s needed.

• Inline data compaction and expanded deduplication. Data compaction reduces wasted space inside
storage blocks, and deduplication significantly increases effective capacity. This applies to data stored
locally and data tiered to the cloud.

• Minimum, maximum, and adaptive quality of service (AQoS). Granular quality of service (QoS) controls
help maintain performance levels for critical applications in highly shared environments.

• NetApp FlexGroups enable distribution of data across all nodes in the storage cluster providing massive
capacity and higher performance for extremely large datasets.

• NetApp FabricPool. Provides automatic tiering of cold data to public and private cloud storage options,
including Amazon Web Services (AWS), Azure, and NetApp StorageGRID storage solution. For more
information about FabricPool, see TR-4598: FabricPool best practices.

• NetApp FlexCache. Provides remote volume caching capabilities that simplify file distribution, reduces
WAN latency, and lowers WAN bandwidth costs. FlexCache enables distributed product development
across multiple sites, as well as accelerated access to corporate datasets from remote locations.

Future-proof infrastructure

ONTAP helps meet demanding and constantly changing business needs with the following features:

• Seamless scaling and non disruptive operations. ONTAP supports the online addition of capacity to
existing controllers and to scale-out clusters. Customers can upgrade to the latest technologies, such as
NVMe and 32Gb FC, without costly data migrations or outages.

• Cloud connection. ONTAP is the most cloud-connected storage management software, with options for
software-defined storage (ONTAP Select) and cloud-native instances (NetApp Cloud Volumes Service) in
all public clouds.

• Integration with emerging applications. ONTAP offers enterprise-grade data services for next generation
platforms and applications, such as autonomous vehicles, smart cities, and Industry 4.0, by using the same
infrastructure that supports existing enterprise apps.

NetApp DataOps Toolkit

The NetApp DataOps Toolkit is a Python-based tool that simplifies the management of development/training
workspaces and inference servers that are backed by high-performance, scale-out NetApp storage. The
DataOps Toolkit can operate as a stand-alone utility, and is even more effective in Kubernetes environments
leveraging NetApp Astra Trident to automate storage operations. Key capabilities include:

• Rapidly provision new high-capacity JupyterLab workspaces that are backed by high-performance, scale-
out NetApp storage.

• Rapidly provision new NVIDIA Triton Inference Server instances that are backed by enterprise-class
NetApp storage.

• Near-instantaneous cloning of high-capacity JupyterLab workspaces in order to enable experimentation or
rapid iteration.

• Near-instantaneous snapshots of high-capacity JupyterLab workspaces for backup and/or
traceability/baselining.

• Near-instantaneous provisioning, cloning, and snapshots of high-capacity, high-performance data volumes.

17

https://www.netapp.com/pdf.html?item=/media/17239-tr4598pdf.pdf

NetApp Astra Trident

Astra Trident is a fully supported, open-source storage orchestrator for containers and Kubernetes
distributions, including Anthos. Trident works with the entire NetApp storage portfolio, including NetApp
ONTAP, and it also supports NFS, NVMe/TCP, and iSCSI connections. Trident accelerates the DevOps
workflow by allowing end users to provision and manage storage from their NetApp storage systems without
requiring intervention from a storage administrator.

NetApp AIPod with NVIDIA DGX Systems - Solution Architecture

This section focuses on the architecture for the NetApp AIPod with NVIDIA DGX systems.

NetApp AI Pod with DGX H100 systems

This reference architecture leverages separate fabrics for compute cluster interconnect and storage access,
with 400Gb/s InfiniBand (IB)connectivity between compute nodes. The drawing below shows the overall
solution topology of NetApp AIPod with DGX H100 systems.

NetApp AIpod solution topology

image::aipod_nv_a900topo.png[]

Network configuration

In this configuration the compute cluster fabric uses a pair of QM9700 400Gb/s IB switches, which are
connected together for high availability. Each DGX H100 system is connected to the switches using eight
connections, with even-numbered ports connected to one switch and odd-numbered ports connected to the
other switch.

For storage system access, in-band management and client access, a pair of SN4600 Ethernet switches is
used. The switches are connected with inter-switch links and configured with multiple VLANs to isolate the
various traffic types. For larger deployments the Ethernet network can be expanded to a leaf-spine
configuration by adding additional switch pairs for spine switches and additional leaves as needed.

In addition to the compute interconnect and high-speed Ethernet networks, all of the physical devices are also
connected to one or more SN2201 Ethernet switches for out of band management. For more details on DGX
H100 system connectivity please refer to the NVIDIA BasePOD documentation.

Client configuration for storage access

Each DGX H100 system is provisioned with two dual-ported ConnectX-7 adapters for management and
storage traffic, and for this solution both ports on each card are connected to the same switch. One port from
each card is then configured into a LACP MLAG bond with one port connected to each switch, and VLANs for
in-band management, client access, and user-level storage access are hosted on this bond.

The other port on each card is used for connectivity to the AFF A900 storage systems, and can be used in
several configurations depending on workload requirements. For configurations using NFS over RDMA to
support NVIDIA Magnum IO GPUDirect Storage, the ports are configured in an active/passive bond, as RDMA
is not supported on any other type of bond. For deployments that do not require RDMA, the storage interfaces
can also be configured with LACP bonding to deliver high availability and additional bandwidth. With or without
RDMA, clients can mount the storage system using NFS v4.1 pNFS and Session trunking to enable parallel
access to all storage nodes in the cluster.

18

https://nvdam.widen.net/s/nfnjflmzlj/nvidia-dgx-basepod-reference-architecture

Storage system configuration

Each AFF A900 storage system is connected using four 100 GbE ports from each controller. Two ports from
each controller are used for workload data access from the DGX systems, and two ports from each controller
are configured as an LACP interface group to support access from the management plane servers for cluster
management artifacts and user home directories. All data access from the storage system is provided through
NFS, with a storage virtual machine (SVM) dedicated to AI workload access and a separate SVM dedicated to
cluster management uses.

The workload SVM is configured with a total of eight logical interfaces (LIFs), with two LIFs on each physical
port. This configuration provides maximum bandwidth as well as the means for each LIF to fail over to another
port on the same controller, so that both controllers stay active in the event of a network failure. This
configuration also supports NFS over RDMA to enable GPUDirect Storage access. Storage capacity is
provisioned in the form of a single large FlexGroup volume that spans all storage controllers in the cluster, with
16 constituent volumes on each controller. This FlexGroup is accessible from any of the LIFs on the SVM, and
by using NFSv4.1 with pNFS and session trunking, clients establish connections to every LIF in the SVM,
enabling data local to each storage node to be accessed in parallel for significantly improved performance. The
workload SVM and each data LIF are also configured for RDMA protocol access. For more details on RDMA
configuration for ONTAP please refer to the ONTAP documentation.

The management SVM only requires a single LIF, which is hosted on the 2-port interface groups configured on
each controller. Other FlexGroup volumes are provisioned on the management SVM to house cluster
management artifacts like cluster node images, system monitoring historical data, and end-user home
directories. The drawing below shows the logical configuration of the storage system.

NetApp A900 storage cluster logical configuration

image::aipod_nv_A900logical.png[]

Management plane servers

This reference architecture also includes five CPU-based servers for management plane uses. Two of these
systems are used as the head nodes for NVIDIA Base Command Manager for cluster deployment and
management. The other three systems are used to provide additional cluster services such as Kubernetes
master nodes or login nodes for deployments utilizing Slurm for job scheduling. Deployments utilizing
Kubernetes can leverage the NetApp Astra Trident CSI driver to provide automated provisioning and data
services with persistent storage for both management and AI workloads on the AFF A900 storage system.

Each server is physically connected to both the IB switches and Ethernet switches to enable cluster
deployment and management, and configured with NFS mounts to the storage system via the management
SVM for storage of cluster management artifacts as described earlier.

NetApp AIPod with NVIDIA DGX Systems - Solution Validation and Sizing Guidance

This section focuses on the solution validation and sizing guidance for the NetApp AIPod
with NVIDIA DGX systems.

Solution Validation

The storage configuration in this solution was validated using a series of synthetic workloads using the open-
source tool FIO. These tests include read and write I/O patterns intended to simulate the storage workload
generated by DGX systems performing deep learning training jobs. The storage configuration was validated
using a cluster of 2-socket CPU servers running the FIO workloads concurrently to simulate a cluster of DGX
systems. Each client was configured with the same network configuration described previously, with the
addition of the following details.

19

https://docs.netapp.com/us-en/ontap/nfs-rdma/index.html

The following mount options were used for this validation-
• vers=4.1 # enables pNFS for parallel access to multiple storage nodes
• proto=rdma # sets the transfer protocol to RDMA instead of the default TCP
• port=20049 # specify the correct port for the RDMA NFS service
• max_connect=16 # enables NFS session trunking to aggregate storage port bandwidth
• write=eager # improves write performance of buffered writes
• rsize=262144,wsize=262144 # sets the I/O transfer size to 256k

In addition the clients were configured with an NFS max_session_slots value of 1024. As the solution was
tested using NFS over RDMA, the storage networks ports were configured with an active/passive bond. The
following bond parameters were used for this validation-
• mode=active-backup # sets the bond to active/passive mode
• primary=<interface name> # primary interfaces for all clients were distributed across the switches
• mii-monitor-interval=100 # specifies monitoring interval of 100ms
• fail-over-mac-policy=active # specifies that the MAC address of the active link is the MAC of the bond. This is
required for proper operation of RDMA over the bonded interface.

The storage system was configured as described with two A900 HA pairs (4 controllers) with two NS224 disk
shelves of 24 1.9TB NVMe disk drives attached to each HA pair. As noted in the architecture section, storage
capacity from all controllers was combined using a FlexGroup volume, and data from all clients was distributed
across all the controllers in the cluster.

Storage System Sizing Guidance

NetApp has successfully completed the DGX BasePOD certification, and the two A900 HA pairs as tested can
easily support a cluster of eight DGX H100 systems. For larger deployments with higher storage performance
requirements, additional AFF systems can be added to the NetApp ONTAP cluster up to 12 HA pairs (24
nodes) in a single cluster. Using the FlexGroup technology described in this solution, a 24-node cluster can
provide over 40 PB and up to 300 GBps throughput in a single namespace. Other NetApp storage systems
such as the AFF A400, A250 and C800 offer lower performance and/or higher capacity options for smaller
deployments at lower cost points. Because ONTAP 9 supports mixed-model clusters, customers can start with
a smaller initial footprint and add more or larger storage systems to the cluster as capacity and performance
requirements grow. The table below shows a rough estimate of the number of A100 and H100 GPUs
supported on each AFF model.

NetApp storage system sizing guidance

image::aipod_nv_sizing_new.png[]

NetApp AIPod with NVIDIA DGX Systems - Conclusion and Additional Information

This section includes references for additional information for the NetApp AIPod with
NVIDIA DGX systems.

Conclusion

The DGX BasePOD architecture is a next-generation deep learning platform that requires equally advanced
storage and data management capabilities. By combining DGX BasePOD with NetApp AFF systems, the
NetApp AIPod with DGX systems architecture can be implemented at almost any scale up to 48 DGX H100
systems on a 24-node AFF A900 cluster. Combined with the superior cloud integration and software-defined
capabilities of NetApp ONTAP, AFF enables a full range of data pipelines that spans the edge, the core, and
the cloud for successful DL projects.

20

Additional Information

To learn more about the information described in this document, please refer to the following documents and/or
websites:

• NetApp ONTAP data management software — ONTAP information library

https://docs.netapp.com/us-en/ontap-family/

• NetApp AFF A900 storage systems-

https://www.netapp.com/data-storage/aff-a-series/aff-a900/

• NetApp ONTAP RDMA information-

https://docs.netapp.com/us-en/ontap/nfs-rdma/index.html

• NetApp DataOps Toolkit

https://github.com/NetApp/netapp-dataops-toolkit

• NetApp Astra Trident

Overview

• NetApp GPUDirect Storage Blog-

https://www.netapp.com/blog/ontap-reaches-171-gpudirect-storage/

• NVIDIA DGX BasePOD

https://www.nvidia.com/en-us/data-center/dgx-basepod/

• NVIDIA DGX H100 systems

https://www.nvidia.com/en-us/data-center/dgx-h100/

• NVIDIA Networking

https://www.nvidia.com/en-us/networking/

• NVIDIA Magnum IO GPUDirect Storage

https://docs.nvidia.com/gpudirect-storage

• NVIDIA Base Command

https://www.nvidia.com/en-us/data-center/base-command/

• NVIDIA Base Command Manager

https://www.nvidia.com/en-us/data-center/base-command/manager

• NVIDIA AI Enterprise

https://www.nvidia.com/en-us/data-center/products/ai-enterprise/

21

https://docs.netapp.com/us-en/ontap-family/
https://www.netapp.com/data-storage/aff-a-series/aff-a900/
https://docs.netapp.com/us-en/ontap/nfs-rdma/index.html
https://github.com/NetApp/netapp-dataops-toolkit
https://docs.netapp.com/us-en/netapp-solutions/containers/rh-os-n_overview_trident.html
https://www.netapp.com/blog/ontap-reaches-171-gpudirect-storage/
https://www.nvidia.com/en-us/data-center/dgx-basepod/
https://www.nvidia.com/en-us/data-center/dgx-h100/
https://www.nvidia.com/en-us/networking/
https://docs.nvidia.com/gpudirect-storage
https://www.nvidia.com/en-us/data-center/base-command/
https://www.nvidia.com/en-us/data-center/base-command/manager
https://www.nvidia.com/en-us/data-center/products/ai-enterprise/

Acknowledgements

This document is the work of the NetApp Solutions and ONTAP Engineering teams- David Arnette, Olga
Kornievskaia, Dustin Fischer, Srikanth Kaligotla, Mohit Kumar and Rajeev Badrinath. The authors would also
like to thank NVIDIA and the NVIDIA DGX BasePOD engineering team for their continued support.

NVA-1151-DESIGN: NetApp ONTAP AI with NVIDIA DGX A100 systems design guide

David Arnette and Sung-Han Lin, NetApp

NVA-1151-DESIGN describes a NetApp Verified Architecture for machine learning and
artificial intelligence workloads using NetApp AFF A800 storage systems, NVIDIA DGX
A100 systems, and NVIDIA Mellanox network switches. It also includes benchmark test
results for the architecture as implemented.

NVA-1151-DESIGN: NetApp ONTAP AI with NVIDIA DGX A100 systems design guide

NVA-1151-DEPLOY: NetApp ONTAP AI with NVIDIA DGX A100 systems

David Arnette, NetApp

NVA-1151-DEPLOY includes storage system deployment instructions for a NetApp
Verified Architecture (NVA) for machine learning (ML) and artificial intelligence (AI)
workloads using NetApp AFF A800 storage systems, NVIDIA DGX A100 systems, and
NVIDIA Mellanox network switches. It also includes instructions for running validation
benchmark tests after deployment is complete.

NVA-1151-DEPLOY: NetApp ONTAP AI with NVIDIA DGX A100 systems

NVA-1153-DESIGN: NetApp ONTAP AI with NVIDIA DGX A100 systems and Mellanox Spectrum Ethernet
switches

David Arnette and Sung-Han Lin, NetApp

NVA-1153-DESIGN describes a NetApp Verified Architecture for machine learning (ML)
and artificial intelligence (AI) workloads using NetApp AFF A800 storage systems,
NVIDIA DGX A100 systems, and NVIDIA Mellanox Spectrum SN3700V 200Gb Ethernet
switches. This design features RDMA over Converged Ethernet (RoCE) for the compute
cluster interconnect fabric to provide customers with a completely ethernet-based
architecture for high-performance workloads. This document also includes benchmark
test results for the architecture as implemented.

NVA-1153-DESIGN: NetApp ONTAP AI with NVIDIA DGX A100 systems and Mellanox Spectrum Ethernet
switches

NVA-1153-DEPLOY: NetApp ONTAP AI with NVIDIA DGX A100 systems and Mellanox Spectrum
Ethernet switches

David Arnette, NetApp

NVA-1153-DEPLOY includes storage-system deployment instructions for a NetApp

22

https://www.netapp.com/pdf.html?item=/media/19432-nva-1151-design.pdf
https://www.netapp.com/pdf.html?item=/media/20708-nva-1151-deploy.pdf
https://www.netapp.com/pdf.html?item=/media/21793-nva-1153-design.pdf
https://www.netapp.com/pdf.html?item=/media/21793-nva-1153-design.pdf

Verified Architecture for machine learning (ML) and artificial intelligence (AI) workloads
using NetApp AFF A800 storage systems, NVIDIA DGX A100 systems, and NVIDIA
Mellanox Spectrum SN3700V 200Gb Ethernet switches. It also includes instructions for
executing validation benchmark tests after deployment is complete.

NVA-1153-DEPLOY: NetApp ONTAP AI with NVIDIA DGX A100 systems and Mellanox Spectrum Ethernet
switches

NetApp EF-Series AI with NVIDIA

Overview of EF-Series AI converged infrastructure solutions from NetApp and NVIDIA.

EF-Series AI with NVIDIA DGX A100 Systems and BeeGFS

• Design Guide

• Deployment Guide

• BeeGFS Deployment Guide

NVIDIA DGX SuperPOD with NetApp - Design Guide

Amine Bennani, David Arnette and Sathish Thyagarajan, NetApp

Executive summary

Although AI enhances consumers’ lives and helps organizations in all industries worldwide to innovate and to
grow their businesses, it is a disrupter for IT. To support the business, IT departments are scrambling to deploy
high-performance computing (HPC) solutions that can meet the extreme demands of AI workloads. As the race
to win with AI intensifies, the need for an easy-to-deploy, easy-to-scale, and easy-to-manage solution becomes
increasingly urgent.

The NVIDIA DGX SuperPOD makes supercomputing infrastructure easily accessible for any organization and
delivers the extreme computational power needed to solve even the most complex AI problems. To help
customers deploy at scale today, this NVIDIA and NetApp turnkey solution removes the complexity and
guesswork from infrastructure design and delivers a complete, validated solution including best-in-class
compute, networking, storage, and software.

Program summary

NVIDIA DGX SuperPOD with NVIDIA DGX H100 systems and NVIDIA Base Command brings together a
design-optimized combination of AI computing, network fabric, storage, software, and support. The BeeGFS on
NetApp architecture has been previously validated on a dedicated acceptance cluster at NVIDIA. The latest
architecture extends that validation by maintaining the proven design while incorporating support for the latest
hardware from NVIDIA.

23

https://www.netapp.com/pdf.html?item=/media/21789-nva-1153-deploy.pdf
https://www.netapp.com/pdf.html?item=/media/21789-nva-1153-deploy.pdf
https://www.netapp.com/pdf.html?item=/media/25445-nva-1156-design.pdf
https://www.netapp.com/pdf.html?item=/media/25574-nva-1156-deploy.pdf
https://www.netapp.com/us/media/tr-4755.pdf

Solution overview

NVIDIA DGX SuperPOD is an AI data center infrastructure platform delivered as a turnkey solution for IT to
support the most complex AI workloads facing today’s enterprises. It simplifies deployment and management
while delivering virtually limitless scalability for performance and capacity. In other words, DGX SuperPOD lets
you focus on insights instead of infrastructure.
With NetApp EF600 all-flash arrays at the foundation of an NVIDIA DGX SuperPOD, customers get an agile AI
solution that scales easily and seamlessly. The flexibility and scalability of the solution enable it to support and
adapt to evolving workloads, making it a strong foundation to meet current and future storage requirements.
Modular storage building blocks allow a granular approach to growth and scale seamlessly from terabytes to
petabytes. By increasing the number of storage building blocks, customers can scale up the performance and
capacity of the file system, enabling the solution to manage the most extreme workloads with ease.

Solution technology

• NVIDIA DGX SuperPOD with NVIDIA DGX H100 systems leverates DGX H100 systems with validated
externally attached shared storage:

◦ Each DGX SuperPOD scalable unit (SU) consists of 32 DGX H100 systems and is capable of 640
petaFLOPS of AI performance at FP8 precision. It usually contains at least two NetApp BeeGFS
building blocks depending on the performance and capacity requirements for a particular installation.

A high-level view of the solution

image::EF_SuperPOD_HighLevel.png[]

• NetApp BeeGFS building blocks consists of two NetApp EF600 arrays and two x86 servers:

◦ With NetApp EF600 all-flash arrays at the foundation of NVIDIA DGX SuperPOD, customers get a
reliable storage foundation backed by six 9s of uptime.

◦ The file system layer between the NetApp EF600 and the NVIDIA DGX H100 systems is the BeeGFS
parallel file system. BeeGFS was created by the Fraunhofer Center for High-Performance Computing
in Germany to solve the pain points of legacy parallel file systems. The result is a file system with a
modern, user space architecture that is now developed and delivered by ThinkParQ and used by many
supercomputing environments.

◦ NetApp support for BeeGFS aligns NetApp’s excellent support organization with customer
requirements for performance and uptime. Customers get access to superior support resources, early
access to BeeGFS releases, and access to select BeeGFS enterprise features such as quota
enforcement and high availability (HA).

• The combination of NVIDIA SuperPOD SUs and NetApp BeeGFS building blocks provides an agile AI
solution in which compute or storage scales easily and seamlessly.

NetApp BeeGFS building block

image::EF_SuperPOD_buildingblock.png[]

Use Case Summary

This solution applies to the following use cases:

• Artificial Intelligence (AI) including machine learning (ML), deep learning (DL), natural language processing
(NLP), natural language understanding (NLU) and g
generative AI (GenAI).

• Medium to large scale AI training

• Computer vision, speech, audio, and language models

24

• HPC including applications accelerated by message passing interface (MPI) and other distributed
computing techniques

• Application workloads characterized by the following:

◦ Reading or writing to files larger than 1GB

◦ Reading or writing to the same file by multiple clients (10s, 100s, and 1000s)

• Multiterabyte or multipetabyte datasets

• Environments that need a single storage namespace optimizable for a mix of large and small files

Technology Requirements

This section covers the technology requirements for the NVIDIA DGX SuperPOD with NetApp solution.

Hardware requirements

Table 1 below lists the hardware components that are required to implement the solution for a single SU. The
solution sizing starts with 32 NVIDIA DGX H100 systems and two or three NetApp BeeGFS building blocks.
A single NetApp BeeGFS building block consists of two NetApp EF600 arrays and two x86 servers. Customers
can add additional building blocks as the deployment size increases. For more information, see the NVIDIA
DGX H100 SuperPOD reference architecture and NVA-1164-DESIGN: BeeGFS on NetApp NVA Design.

Table 1. Hardware requirements

Hardware Quantity

NVIDIA DGX H100 32

NVIDIA Quantum QM9700 switches 8 leaf, 4 spine

NetApp BeeGFS building blocks 3

Software requirements

Table 2 below lists the software components required to implement the solution. The software components that
are used in any particular implementation of the solution might vary based on customer requirements.

Table 2. Software requirements

Software

NVIDIA DGX software stack

NVIDIA Base Command Manager

ThinkParQ BeeGFS parallel file system

Solution verification

NVIDIA DGX SuperPOD with NetApp was validated on a dedicated acceptance cluster at NVIDIA by using
NetApp BeeGFS building blocks. Acceptance criteria was based on a series of application, performance, and
stress tests performed by NVIDIA. For more information, see the NVIDIA DGX SuperPOD: NetApp EF600 and
BeeGFS Reference Architecture.

Conclusion

NetApp and NVIDIA have a long history of collaboration to deliver a portfolio of AI solutions to market. NVIDIA

25

https://docs.nvidia.com/dgx-superpod/reference-architecture-scalable-infrastructure-h100/latest/dgx-superpod-components.html
https://docs.nvidia.com/dgx-superpod/reference-architecture-scalable-infrastructure-h100/latest/dgx-superpod-components.html
https://fieldportal.netapp.com/content/1792438
https://nvidia-gpugenius.highspot.com/viewer/62915e2ef093f1a97b2d1fe6?iid=62913b14052a903cff46d054&source=email.62915e2ef093f1a97b2d1fe7.4
https://nvidia-gpugenius.highspot.com/viewer/62915e2ef093f1a97b2d1fe6?iid=62913b14052a903cff46d054&source=email.62915e2ef093f1a97b2d1fe7.4

DGX SuperPOD with the NetApp EF600 all-flash array is a proven, validated solution that customers can
deploy with confidence. This fully integrated, turnkey architecture takes the risk out of deployment and puts
anyone on the path to winning the race to AI leadership.

Where to find additional information

To learn more about the information that is described in this document, review the following documents and/or
websites:
NVA-1164-DESIGN: BeeGFS on NetApp NVA Design
https://www.netapp.com/media/71123-nva-1164-design.pdf
NVA-1164-DEPLOY: BeeGFS on NetApp NVA Deployment
https://www.netapp.com/media/71124-nva-1164-deploy.pdf
NVIDIA DGX SuperPOD Reference Architecture
https://docs.nvidia.com/dgx-superpod/reference-architecture-scalable-infrastructure-h100/latest/index.html#
NVIDIA DGX SuperPOD Data Center Design Reference Guide
https://docs.nvidia.com/nvidia-dgx-superpod-data-center-design-dgx-h100.pdf
NVIDIA DGX SuperPOD: NetApp EF600 and BeeGFS
https://nvidiagpugenius.highspot.com/viewer/62915e2ef093f1a97b2d1fe6?iid=62913b14052a903cff46d054&
source=email.62915e2ef093f1a97b2d1fe7.4

NVA-1156-DESIGN: NetApp EF-Series AI with NVIDIA DGX A100 systems and BeeGFS

Abdel Sadek, Tim Chau, Joe McCormick and David Arnette, NetApp

NVA-1156-DESIGN describes a NetApp Verified Architecture for machine learning (ML)
and artificial intelligence (AI) workloads using NetApp EF600 NVMe storage systems, the
BeeGFS parallel file system, NVIDIA DGX A100 systems, and NVIDIA Mellanox
Quantum QM8700 200Gbps IB switches. This design features 200Gbps InfiniBand (IB)
for the storage and compute cluster interconnect fabric to provide customers with a
completely IB-based architecture for high-performance workloads. This document also
includes benchmark test results for the architecture as implemented.

NVA-1156-DESIGN: NetApp EF-Series AI with NVIDIA DGX A100 systems and BeeGFS

NVA-1156-DEPLOY: NetApp EF-Series AI with NVIDIA DGX A100 systems and BeeGFS

Abdel Sadek, Tim Chau, Joe McCormick, and David Arnette, NetApp

This document describes a NetApp Verified Architecture for machine learning (ML) and
artificial intelligence (AI) workloads using NetApp EF600 NVMe storage systems, the
ThinkParQ BeeGFS parallel file system, NVIDIA DGX A100 systems, and NVIDIA
Mellanox Quantum QM8700 200Gbps InfiniBand (IB) switches. This document also
includes instructions for executing validation benchmark tests after the deployment is
complete.

NVA-1156-DEPLOY: NetApp EF-Series AI with NVIDIA DGX A100 systems and BeeGFS

TR-4859: Deploying IBM spectrum scale with NetApp E-Series storage - Installation
and validation

Chris Seirer, NetApp

26

https://www.netapp.com/media/71123-nva-1164-design.pdf
https://www.netapp.com/media/71124-nva-1164-deploy.pdf
https://docs.nvidia.com/dgx-superpod/reference-architecture-scalable-infrastructure-h100/latest/index.html#
https://docs.nvidia.com/nvidia-dgx-superpod-data-center-design-dgx-h100.pdf
https://nvidiagpugenius.highspot.com/viewer/62915e2ef093f1a97b2d1fe6?iid=62913b14052a903cff46d054&source=email.62915e2ef093f1a97b2d1fe7.4
https://nvidiagpugenius.highspot.com/viewer/62915e2ef093f1a97b2d1fe6?iid=62913b14052a903cff46d054&source=email.62915e2ef093f1a97b2d1fe7.4
https://www.netapp.com/pdf.html?item=/media/25445-nva-1156-design.pdf
https://www.netapp.com/pdf.html?item=/media/25574-nva-1156-deploy.pdf

TR-4859 describes the process of deploying a full parallel file system solution based on
IBM’s Spectrum Scale software stack. TR-4859 is designed to provide details on how to
install Spectrum Scale, validate the infrastructure, and manage the configuration.

TR-4859: Deploying IBM spectrum scale with NetApp E-Series storage - Installation and validation

TR-4815: NetApp AFF A800 and Fujitsu Server PRIMERGY GX2570 M5 for AI and
ML model training workloads

David Arnette, NetApp
Takashi Oishi, Fujitsu

This solution focuses on a scale-out architecture to deploy artificial intelligence systems
with NetApp storage systems and Fujitsu servers. The solution was validated with MLperf
v0.6 model-training benchmarks using Fujitsu GX2570 servers and a NetApp AFF A800
storage system.

TR-4815: NetApp AFF A800 and Fujitsu Server PRIMERGY GX2570 M5 for AI and ML model training
workloads

Data Pipelines, Data Lakes and Management

AWS FSx for NetApp ONTAP (FSxN) for MLOps

This section delves into the practical application of AI infrastructure development,
providing an end-to-end walkthrough of constructing an MLOps pipeline using FSxN.
Comprising three comprehensive examples, it guides you to meet your MLOps needs via
this powerful data management platform.

Author(s):

Jian Jian (Ken), Senior Data & Applied Scientist, NetApp

These articles focus on:

1. Part 1 - Integrating AWS FSx for NetApp ONTAP (FSxN) as a private S3 bucket into AWS SageMaker

2. Part 2 - Leveraging AWS FSx for NetApp ONTAP (FSxN) as a Data Source for Model Training in
SageMaker

3. Part 3 - Building A Simplified MLOps Pipeline (CI/CT/CD)

By the end of this section, you will have gained a solid understanding of how to use FSxN to streamline MLOps
processes.

Part 1 - Integrating AWS FSx for NetApp ONTAP (FSxN) as a private S3 bucket into AWS SageMaker

This section provides a guide on configuring FSxN as a private S3 bucket using AWS
SageMaker.

Author(s):

Jian Jian (Ken), Senior Data & Applied Scientist, NetApp

27

https://www.netapp.com/pdf.html?item=/media/22029-tr-4859.pdf
https://www.netapp.com/pdf.html?item=/media/17215-tr4815.pdf
https://www.netapp.com/pdf.html?item=/media/17215-tr4815.pdf

Introduction

Using SageMaker as an example, this page provides guidance on configuring FSxN as a private S3 bucket.

For more information about FSxN, please take a look at this presentation (Video Link)

User Guide

Server creation

Create a SageMaker Notebook Instance

1. Open AWS console. In the search panel, search SageMaker and click the service Amazon SageMaker.

2. Open the Notebook instances under Notebook tab, click the orange button Create notebook instance.

3. In the creation page,

28

http://youtube.com/watch?v=mFN13R6JuUk

Enter the Notebook instance name

Expand the Network panel
Leave other entries default and select a VPC, Subnet, and Security group(s). (This VPC and Subnet will
be used to create FSxN file system later)
Click the orange button Create notebook instance at the bottom right.

29

Create an FSxN File System

1. Open AWS console. In the search panel, search Fsx and click the service FSx.

2. Click Create file system.

3. Select the first card FSx for NetApp ONTAP and click Next.

30

4. In the details configuration page.

a. Select the Standard create option.

b. Enter the File system name and the SSD storage capacity.

31

c. Make sure to use the VPC and subnet same to the SageMaker Notebook instance.

32

d. Enter the Storage virtual machine name and Specify a password for your SVM (storage virtual
machine).

33

e. Leave other entries default and click the orange button Next at the bottom right.

f. Click the orange button Create file system at the bottom right of the review page.

34

5. It may takes about 20-40 minutes to spin up the FSx file system.

Server Configuration

ONTAP Configuration

1. Open the created FSx file system. Please make sure the status is Available.

2. Select the Administration tab and keep the Management endpoint - IP address and ONTAP

administrator username.

35

3. Open the created SageMaker Notebook instance and click Open JupyterLab.

4. In the Jupyter Lab page, open a new Terminal.

36

5. Enter the ssh command ssh <admin user name>@<ONTAP server IP> to login to the FSxN ONTAP file
system. (The user name and IP address are retrieved from the step 2)
Please use the password used when creating the Storage virtual machine.

6. Execute the commands in the following order.
We use fsxn-ontap as the name for the FSxN private S3 bucket name.
Please use the storage virtual machine name for the -vserver argument.

vserver object-store-server create -vserver fsxn-svm-demo -object-store

-server fsx_s3 -is-http-enabled true -is-https-enabled false

vserver object-store-server user create -vserver fsxn-svm-demo -user

s3user

vserver object-store-server group create -name s3group -users s3user

-policies FullAccess

vserver object-store-server bucket create fsxn-ontap -vserver fsxn-svm-

demo -type nas -nas-path /vol1

37

7. Execute the below commands to retrieve the endpoint IP and credentials for FSxN private S3.

network interface show -vserver fsxn-svm-demo -lif nfs_smb_management_1

set adv

vserver object-store-server user show

8. Keep the endpoint IP and credential for future use.

38

Client Configuration

1. In SageMaker Notebook instance, create a new Jupyter notebook.

2. Use the below code as a work around solution to upload files to FSxN private S3 bucket.
For a comprehensive code example please refer to this notebook.
fsxn_demo.ipynb

Setup configurations

-------- Manual configurations --------

seed: int = 77 # Random

seed

bucket_name: str = 'fsxn-ontap' # The bucket

name in ONTAP

aws_access_key_id = '<Your ONTAP bucket key id>' # Please get

this credential from ONTAP

aws_secret_access_key = '<Your ONTAP bucket access key>' # Please get

this credential from ONTAP

fsx_endpoint_ip: str = '<Your FSxN IP address>' # Please get

this IP address from FSXN

-------- Manual configurations --------

Workaround

Permission patch

!mkdir -p vol1

!sudo mount -t nfs $fsx_endpoint_ip:/vol1 /home/ec2-user/SageMaker/vol1

!sudo chmod 777 /home/ec2-user/SageMaker/vol1

Authentication for FSxN as a Private S3 Bucket

!aws configure set aws_access_key_id $aws_access_key_id

39

https://nbviewer.jupyter.org/github/NetAppDocs/netapp-solutions/blob/main/media/mlops_fsxn_s3_integration_0.ipynb

!aws configure set aws_secret_access_key $aws_secret_access_key

Upload file to the FSxN Private S3 Bucket

%%capture

local_file_path: str = <Your local file path>

!aws s3 cp --endpoint-url http://$fsx_endpoint_ip /home/ec2-user

/SageMaker/$local_file_path s3://$bucket_name/$local_file_path

Read data from FSxN Private S3 bucket

Initialize a s3 resource client

import boto3

Get session info

region_name = boto3.session.Session().region_name

Initialize Fsxn S3 bucket object

--- Start integrating SageMaker with FSXN ---

This is the only code change we need to incorporate SageMaker with

FSXN

s3_client: boto3.client = boto3.resource(

 's3',

 region_name=region_name,

 aws_access_key_id=aws_access_key_id,

 aws_secret_access_key=aws_secret_access_key,

 use_ssl=False,

 endpoint_url=f'http://{fsx_endpoint_ip}',

 config=boto3.session.Config(

 signature_version='s3v4',

 s3={'addressing_style': 'path'}

)

)

--- End integrating SageMaker with FSXN ---

Read file byte content

bucket = s3_client.Bucket(bucket_name)

binary_data = bucket.Object(data.filename).get()['Body']

This concludes the integration between FSxN and the SageMaker instance.

Useful debugging checklist

• Ensure that the SageMaker Notebook instance and FSxN file system are in the same VPC.

• Remember to run the set dev command on ONTAP to set the privilege level to dev.

40

FAQ (As of Sep 27, 2023)

Q: Why am I getting the error "An error occurred (NotImplemented) when calling the

CreateMultipartUpload operation: The s3 command you requested is not implemented" when uploading
files to FSxN?

A: As a private S3 bucket, FSxN supports uploading files up to 100MB. When using the S3 protocol, files larger
than 100MB are divided into 100MB chunks, and the 'CreateMultipartUpload' function is called. However, the
current implementation of FSxN private S3 does not support this function.

Q: Why am I getting the error "An error occurred (AccessDenied) when calling the PutObject operations:

Access Denied" when uploading files to FSxN?

A: To access the FSxN private S3 bucket from a SageMaker Notebook instance, switch the AWS credentials to
the FSxN credentials. However, granting write permission to the instance requires a workaround solution that
involves mounting the bucket and running the 'chmod' shell command to change the permissions.

Q: How can I integrate the FSxN private S3 bucket with other SageMaker ML services?

A: Unfortunately, the SageMaker services SDK does not provide a way to specify the endpoint for the private
S3 bucket. As a result, FSxN S3 is not compatible with SageMaker services such as Sagemaker Data
Wrangler, Sagemaker Clarify, Sagemaker Glue, Sagemaker Athena, Sagemaker AutoML, and others.

Part 2 - Leveraging AWS FSx for NetApp ONTAP (FSxN) as a Data Source for Model Training in
SageMaker

This article is a tutorial on using AWS FSx for NetApp ONTAP (FSxN) for training PyTorch
models in SageMaker, specifically for a tire quality classification project.

Author(s):

Jian Jian (Ken), Senior Data & Applied Scientist, NetApp

Introduction

This tutorial offers a practical example of a computer vision classification project, providing hands-on
experience in building ML models that utilize FSxN as the data source within the SageMaker environment. The
project focuses on using PyTorch, a deep learning framework, to classify tire quality based on tire images. It
emphasizes the development of machine learning models using FSxN as the data source in Amazon
SageMaker.

What is FSxN

Amazon FSx for NetApp ONTAP is indeed a fully managed storage solution offered by AWS. It leverages
NetApp’s ONTAP file system to provide reliable and high-performance storage. With support for protocols like
NFS, SMB, and iSCSI, it allows seamless access from different compute instances and containers. The service
is designed to deliver exceptional performance, ensuring fast and efficient data operations. It also offers high
availability and durability, ensuring that your data remains accessible and protected. Additionally, the storage
capacity of Amazon FSx for NetApp ONTAP is scalable, allowing you to easily adjust it according to your
needs.

Prerequisite

41

Network Environment

FSxN (Amazon FSx for NetApp ONTAP) is an AWS storage service. It includes a file system running on the
NetApp ONTAP system and an AWS-managed system virtual machine (SVM) that connects to it. In the
provided diagram, the NetApp ONTAP server managed by AWS is located outside the VPC. The SVM serves
as the intermediary between SageMaker and the NetApp ONTAP system, receiving operation requests from
SageMaker and forwarding them to the underlying storage. To access FSxN, SageMaker must be placed
within the same VPC as the FSxN deployment. This configuration ensures communication and data access
between SageMaker and FSxN.

Data Access

In real-world scenarios, data scientists typically utilize the existing data stored in FSxN to build their machine
learning models. However, for demonstration purposes, since the FSxN file system is initially empty after
creation, it is necessary to manually upload the training data. This can be achieved by mounting FSxN as a
volume to SageMaker. Once the file system is successfully mounted, you can upload your dataset to the
mounted location, making it accessible for training your models within the SageMaker environment. This
approach allows you to leverage the storage capacity and capabilities of FSxN while working with SageMaker
for model development and training.

The data reading process involves configuring FSxN as a private S3 bucket. To learn the detailed configuration
instructions, please refer to Part 1 - Integrating AWS FSx for NetApp ONTAP (FSxN) as a private S3 bucket
into AWS SageMaker

Integration Overview

42

The workflow of using training data in FSxN to build a deep learning model in SageMaker can be summarized
into three main steps: data loader definition, model training, and deployment. At a high level, these steps form
the foundation of an MLOps pipeline. However, each step involves several detailed sub-steps for a
comprehensive implementation. These sub-steps encompass various tasks such as data preprocessing,
dataset splitting, model configuration, hyperparameter tuning, model evaluation, and model deployment. These
steps ensure a thorough and effective process for building and deploying deep learning models using training
data from FSxN within the SageMaker environment.

Step-by-Step Integration

Data Loader

In order to train a PyTorch deep learning network with data, a data loader is created to facilitate the feeding of
data. The data loader not only defines the batch size but also determines the procedure for reading and
preprocessing each record within the batch. By configuring the data loader, we can handle the processing of
data in batches, enabling training of the deep learning network.

The data loader consists of 3 parts.

Preprocessing Function

from torchvision import transforms

preprocess = transforms.Compose([

 transforms.ToTensor(),

 transforms.Resize((224,224)),

 transforms.Normalize(

 mean=[0.485, 0.456, 0.406],

 std=[0.229, 0.224, 0.225]

)

])

The above code snippet demonstrates the definition of image preprocessing transformations using the
torchvision.transforms module. In this turtorial, the preprocess object is created to apply a series of
transformations. Firstly, the ToTensor() transformation converts the image into a tensor representation.
Subsequently, the Resize 224,224 transformation resizes the image to a fixed size of 224x224 pixels. Finally,
the Normalize() transformation normalizes the tensor values by subtracting the mean and dividing by the
standard deviation along each channel. The mean and standard deviation values used for normalization are

43

commonly employed in pre-trained neural network models. Overall, this code prepares the image data for
further processing or input into a pre-trained model by converting it to a tensor, resizing it, and normalizing the
pixel values.

The PyTorch Dataset Class

import torch

from io import BytesIO

from PIL import Image

class FSxNImageDataset(torch.utils.data.Dataset):

 def __init__(self, bucket, prefix='', preprocess=None):

 self.image_keys = [

 s3_obj.key

 for s3_obj in list(bucket.objects.filter(Prefix=prefix).all())

]

 self.preprocess = preprocess

 def __len__(self):

 return len(self.image_keys)

 def __getitem__(self, index):

 key = self.image_keys[index]

 response = bucket.Object(key)

 label = 1 if key[13:].startswith('defective') else 0

 image_bytes = response.get()['Body'].read()

 image = Image.open(BytesIO(image_bytes))

 if image.mode == 'L':

 image = image.convert('RGB')

 if self.preprocess is not None:

 image = self.preprocess(image)

 return image, label

This class provides functionality to obtain the total number of records in the dataset and defines the method for
reading data for each record. Within the getitem function, the code utilizes the boto3 S3 bucket object to
retrieve the binary data from FSxN. The code style for accessing data from FSxN is similar to reading data
from Amazon S3. The subsequent explanation delves into the creation process of the private S3 object
bucket.

FSxN as a private S3 repository

44

seed = 77 # Random seed

bucket_name = '<Your ONTAP bucket name>' # The bucket

name in ONTAP

aws_access_key_id = '<Your ONTAP bucket key id>' # Please get

this credential from ONTAP

aws_secret_access_key = '<Your ONTAP bucket access key>' # Please get

this credential from ONTAP

fsx_endpoint_ip = '<Your FSxN IP address>' # Please get

this IP address from FSXN

import boto3

Get session info

region_name = boto3.session.Session().region_name

Initialize Fsxn S3 bucket object

--- Start integrating SageMaker with FSXN ---

This is the only code change we need to incorporate SageMaker with FSXN

s3_client: boto3.client = boto3.resource(

 's3',

 region_name=region_name,

 aws_access_key_id=aws_access_key_id,

 aws_secret_access_key=aws_secret_access_key,

 use_ssl=False,

 endpoint_url=f'http://{fsx_endpoint_ip}',

 config=boto3.session.Config(

 signature_version='s3v4',

 s3={'addressing_style': 'path'}

)

)

s3_client = boto3.resource('s3')

bucket = s3_client.Bucket(bucket_name)

--- End integrating SageMaker with FSXN ---

To read data from FSxN in SageMaker, a handler is created that points to the FSxN storage using the S3
protocol. This allows FSxN to be treated as a private S3 bucket. The handler configuration includes specifying
the IP address of the FSxN SVM, the bucket name, and the necessary credentials. For a comprehensive
explanation on obtaining these configuration items, please refer to the document at Part 1 - Integrating AWS
FSx for NetApp ONTAP (FSxN) as a private S3 bucket into AWS SageMaker.

In the example mentioned above, the bucket object is used to instantiate the PyTorch dataset object. The
dataset object will be further explained in the subsequent section.

45

The PyTorch Data Loader

from torch.utils.data import DataLoader

torch.manual_seed(seed)

1. Hyperparameters

batch_size = 64

2. Preparing for the dataset

dataset = FSxNImageDataset(bucket, 'dataset/tyre', preprocess=preprocess)

train, test = torch.utils.data.random_split(dataset, [1500, 356])

data_loader = DataLoader(dataset, batch_size=batch_size, shuffle=True)

In the example provided, a batch size of 64 is specified, indicating that each batch will contain 64 records. By
combining the PyTorch Dataset class, the preprocessing function, and the training batch size, we obtain the
data loader for training. This data loader facilitates the process of iterating through the dataset in batches
during the training phase.

Model Training

from torch import nn

class TyreQualityClassifier(nn.Module):

 def __init__(self):

 super().__init__()

 self.model = nn.Sequential(

 nn.Conv2d(3,32,(3,3)),

 nn.ReLU(),

 nn.Conv2d(32,32,(3,3)),

 nn.ReLU(),

 nn.Conv2d(32,64,(3,3)),

 nn.ReLU(),

 nn.Flatten(),

 nn.Linear(64*(224-6)*(224-6),2)

)

 def forward(self, x):

 return self.model(x)

46

import datetime

num_epochs = 2

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

model = TyreQualityClassifier()

fn_loss = torch.nn.CrossEntropyLoss()

optimizer = torch.optim.Adam(model.parameters(), lr=1e-3)

model.to(device)

for epoch in range(num_epochs):

 for idx, (X, y) in enumerate(data_loader):

 X = X.to(device)

 y = y.to(device)

 y_hat = model(X)

 loss = fn_loss(y_hat, y)

 optimizer.zero_grad()

 loss.backward()

 optimizer.step()

 current_time = datetime.datetime.now().strftime("%Y-%m-%d

%H:%M:%S")

 print(f"Current Time: {current_time} - Epoch [{epoch+1}/

{num_epochs}]- Batch [{idx + 1}] - Loss: {loss}", end='\r')

This code implements a standard PyTorch training process. It defines a neural network model called
TyreQualityClassifier using convolutional layers and a linear layer to classify tire quality. The training loop
iterates over data batches, computes the loss, and updates the model’s parameters using backpropagation
and optimization. Additionally, it prints the current time, epoch, batch, and loss for monitoring purposes.

Model Deployment

Deployment

47

import io

import os

import tarfile

import sagemaker

1. Save the PyTorch model to memory

buffer_model = io.BytesIO()

traced_model = torch.jit.script(model)

torch.jit.save(traced_model, buffer_model)

2. Upload to AWS S3

sagemaker_session = sagemaker.Session()

bucket_name_default = sagemaker_session.default_bucket()

model_name = f'tyre_quality_classifier.pth'

2.1. Zip PyTorch model into tar.gz file

buffer_zip = io.BytesIO()

with tarfile.open(fileobj=buffer_zip, mode="w:gz") as tar:

 # Add PyTorch pt file

 file_name = os.path.basename(model_name)

 file_name_with_extension = os.path.split(file_name)[-1]

 tarinfo = tarfile.TarInfo(file_name_with_extension)

 tarinfo.size = len(buffer_model.getbuffer())

 buffer_model.seek(0)

 tar.addfile(tarinfo, buffer_model)

2.2. Upload the tar.gz file to S3 bucket

buffer_zip.seek(0)

boto3.resource('s3') \

 .Bucket(bucket_name_default) \

 .Object(f'pytorch/{model_name}.tar.gz') \

 .put(Body=buffer_zip.getvalue())

The code saves the PyTorch model to Amazon S3 because SageMaker requires the model to be stored in S3
for deployment. By uploading the model to Amazon S3, it becomes accessible to SageMaker, allowing for the
deployment and inference on the deployed model.

import time

from sagemaker.pytorch import PyTorchModel

from sagemaker.predictor import Predictor

from sagemaker.serializers import IdentitySerializer

from sagemaker.deserializers import JSONDeserializer

class TyreQualitySerializer(IdentitySerializer):

48

 CONTENT_TYPE = 'application/x-torch'

 def serialize(self, data):

 transformed_image = preprocess(data)

 tensor_image = torch.Tensor(transformed_image)

 serialized_data = io.BytesIO()

 torch.save(tensor_image, serialized_data)

 serialized_data.seek(0)

 serialized_data = serialized_data.read()

 return serialized_data

class TyreQualityPredictor(Predictor):

 def __init__(self, endpoint_name, sagemaker_session):

 super().__init__(

 endpoint_name,

 sagemaker_session=sagemaker_session,

 serializer=TyreQualitySerializer(),

 deserializer=JSONDeserializer(),

)

sagemaker_model = PyTorchModel(

 model_data=f's3://{bucket_name_default}/pytorch/{model_name}.tar.gz',

 role=sagemaker.get_execution_role(),

 framework_version='2.0.1',

 py_version='py310',

 predictor_cls=TyreQualityPredictor,

 entry_point='inference.py',

 source_dir='code',

)

timestamp = int(time.time())

pytorch_endpoint_name = '{}-{}-{}'.format('tyre-quality-classifier', 'pt',

timestamp)

sagemaker_predictor = sagemaker_model.deploy(

 initial_instance_count=1,

 instance_type='ml.p3.2xlarge',

 endpoint_name=pytorch_endpoint_name

)

This code facilitates the deployment of a PyTorch model on SageMaker. It defines a custom serializer,
TyreQualitySerializer, which preprocesses and serializes input data as a PyTorch tensor. The
TyreQualityPredictor class is a custom predictor that utilizes the defined serializer and a JSONDeserializer.
The code also creates a PyTorchModel object to specify the model’s S3 location, IAM role, framework version,
and entry point for inference. The code generates a timestamp and constructs an endpoint name based on the

49

model and timestamp. Finally, the model is deployed using the deploy method, specifying the instance count,
instance type, and generated endpoint name. This enables the PyTorch model to be deployed and accessible
for inference on SageMaker.

Inference

image_object = list(bucket.objects.filter('dataset/tyre'))[0].get()

image_bytes = image_object['Body'].read()

with Image.open(with Image.open(BytesIO(image_bytes)) as image::

 predicted_classes = sagemaker_predictor.predict(image)

 print(predicted_classes)

This is the example of using the deployed endpoint to do the inference.

Part 3 - Building A Simplified MLOps Pipeline (CI/CT/CD)

This article provides a guide to building an MLOps pipeline with AWS services, focusing
on automated model retraining, deployment, and cost optimization.

Author(s):

Jian Jian (Ken), Senior Data & Applied Scientist, NetApp

Introduction

In this tutorial, you will learn how to leverage various AWS services to construct a simple MLOps pipeline that
encompasses Continuous Integration (CI), Continuous Training (CT), and Continuous Deployment (CD). Unlike
traditional DevOps pipelines, MLOps requires additional considerations to complete the operational cycle. By
following this tutorial, you will gain insights into incorporating CT into the MLOps loop, enabling continuous
training of your models and seamless deployment for inference. The tutorial will guide you through the process
of utilizing AWS services to establish this end-to-end MLOps pipeline.

Manifest

Functionality Name Comment

Data storage AWS FSxN Refer to Part 1 - Integrating AWS
FSx for NetApp ONTAP (FSxN) as
a private S3 bucket into AWS
SageMaker.

Data science IDE AWS SageMaker This tutorial is based on the Jupyter
notebook presented in Part 2 -
Leveraging AWS FSx for NetApp
ONTAP (FSxN) as a Data Source
for Model Training in SageMaker.

Function to trigger the MLOps
pipeline

AWS Lambda function -

50

Functionality Name Comment

Cron job trigger AWS EventBridge -

Deep learning framework PyTorch -

AWS Python SDK boto3 -

Programming Language Python v3.10

Prerequisite

• An pre-configured FSxN file system. This tutorial utilizes data stored in FSxN for the training process.

• A SageMaker Notebook instance that is configured to share the same VPC as the FSxN file system
mentioned above.

• Before triggering the AWS Lambda function, ensure that the SageMaker Notebook instance is in
stopped status.

• The ml.g4dn.xlarge instance type is required to leverage the GPU acceleration necessary for the
computations of deep neural networks.

Architecture

This MLOps pipeline is a practical implementation that utilizes a cron job to trigger a serverless function, which
in turn executes an AWS service registered with a lifecycle callback function. The AWS EventBridge acts as
the cron job. It periodically invokes an AWS Lambda function responsible for retraining and redeploying the
model. This process involves spinning up the AWS SageMaker Notebook instance to perform the necessary
tasks.

Step-by-Step Configuration

Lifecycle configurations

To configure the lifecycle callback function for the AWS SageMaker Notebook instance, you would utilize
Lifecycle configurations. This service allow you to define the necessary actions to be performed during when
spinning up the notebook instance. Specifically, a shell script can be implemented within the Lifecycle

configurations to automatically shut down the notebook instance once the training and deployment processes
are completed. This is a required configuration as the cost is one of the major consideration in MLOps.

It’s important to note that the configuration for Lifecycle configurations needs to be set up in advance.
Therefore, it is recommended to prioritize configuring this aspect before proceeding with the other MLOps
pipeline setup.

1. To set up a Lifecycle configurations, open the Sagemaker panel and navigate to Lifecycle configurations

51

under the section Admin configurations.

2. Select the Notebook Instance tab and click the Create configuration button

52

3. Paste the below code to the entry area.

#!/bin/bash

set -e

sudo -u ec2-user -i <<'EOF'

1. Retraining and redeploying the model

NOTEBOOK_FILE=/home/ec2-

user/SageMaker/tyre_quality_classification_local_training.ipynb

echo "Activating conda env"

source /home/ec2-user/anaconda3/bin/activate pytorch_p310

nohup jupyter nbconvert "$NOTEBOOK_FILE"

--ExecutePreprocessor.kernel_name=python --execute --to notebook &

nbconvert_pid=$!

conda deactivate

2. Scheduling a job to shutdown the notebook to save the cost

PYTHON_DIR='/home/ec2-

user/anaconda3/envs/JupyterSystemEnv/bin/python3.10'

echo "Starting the autostop script in cron"

(crontab -l 2>/dev/null; echo "*/5 * * * * bash -c 'if ps -p

$nbconvert_pid > /dev/null; then echo \"Notebook is still running.\" >>

/var/log/jupyter.log; else echo \"Notebook execution completed.\" >>

/var/log/jupyter.log; $PYTHON_DIR -c \"import boto3;boto3.client(

\'sagemaker\').stop_notebook_instance(NotebookInstanceName=get_notebook_

name())\" >> /var/log/jupyter.log; fi'") | crontab -

EOF

53

4. This script executes the Jupyter Notebook, which handles the retraining and redeployment of the model for
inference. After the execution is complete, the notebook will automatically shut down within 5 minutes. To
learn more about the problem statement and the code implementation, please refer to Part 2 - Leveraging
AWS FSx for NetApp ONTAP (FSxN) as a Data Source for Model Training in SageMaker.

5. After the creation, navigate to Notebook instances, select the target instance, and click Update settings

under Actions dropdown.

54

6. Select the created Lifecycle configuration and click Update notebook instance.

55

AWS Lambda serverless function

As mentioned earlier, the AWS Lambda function is responsible for spinning up the AWS SageMaker

Notebook instance.

1. To create an AWS Lambda function, navigate to the respective panel, switch to the Functions tab, and
click on Create Function.

2. Please file all required entries on the page and remember to switch the Runtime to Python 3.10.

56

3. Please verify that the designated role has the required permission AmazonSageMakerFullAccess and
click on the Create function button.

57

4. Select the created Lambda function. In the code tab, copy and paste the following code into the text area.
This code starts the notebook instance named fsxn-ontap.

import boto3

import logging

def lambda_handler(event, context):

 client = boto3.client('sagemaker')

 logging.info('Invoking SageMaker')

 client.start_notebook_instance(NotebookInstanceName='fsxn-ontap')

 return {

 'statusCode': 200,

 'body': f'Starting notebook instance: {notebook_instance_name}'

 }

58

5. Click the Deploy button to apply this code change.

6. To specify how to trigger this AWS Lambda function, click on the Add Trigger button.

59

7. Select EventBridge from the dropdown menu, then click on the radio button labeled Create a new rule. In

the schedule expression field, enter rate(1 day), and click on the Add button to create and apply this
new cron job rule to the AWS Lambda function.

60

After completing the two-step configuration, on a daily basis, the AWS Lambda function will initiate the
SageMaker Notebook, perform model retraining using the data from the FSxN repository, redeploy the
updated model to the production environment, and automatically shut down the SageMaker Notebook

instance to optimize cost. This ensures that the model remains up to date.

This concludes the tutorial for developing an MLOps pipeline.

Hybrid Multicloud MLOps with Domino Data Lab and NetApp

61

Hybrid Multicloud MLOps with Domino Data Lab and NetApp

Mike Oglesby, NetApp

Organizations all over the world are currently adopting AI to transform their businesses
and processes. Because of this, AI-ready compute infrastructure is often in short supply.
Enterprises are adopting hybrid multicloud MLOps architectures in order to take
advantage of available compute environments across different regions, data centers, and
clouds - balancing cost, availability, and performance.

Domino Nexus, from Domino Data Lab, is a unified MLOps control plane that lets you run data science and
machine learning workloads across any compute cluster — in any cloud, region, or on-premises. It unifies data
science silos across the enterprise, so you have one place to build, deploy, and monitor models. Likewise,
NetApp’s hybrid cloud data management capabilities enable you to bring your data to your jobs and
workspaces, no matter where they are running. When you pair Domino Nexus with NetApp, you have the
flexibility to schedule workloads across environments without having to worry about data availability. In other
words, you have the ability to send your workloads and your data to the appropriate compute environment,
enabling you to accelerate your AI deployments while navigating regulations around data privacy and
sovereignty.

This solution demonstrates the deployment of a unified MLOps control plane incorporating an on-premises
Kubernetes cluster and an Elastic Kubernetes Service (EKS) cluster running in Amazon Web Services (AWS).

Technology Overview

This section provides a technology overview for Hybrid Multicloud MLOps with Domino
Data Lab and NetApp.

Domino Data Lab

Domino Data Lab powers model-driven businesses with its leading Enterprise AI platform trusted by over 20%
of the Fortune 100. Domino accelerates the development and deployment of data science work while
increasing collaboration and governance. With Domino, enterprises worldwide can develop better medicines,
grow more productive crops, build better cars, and much more. Founded in 2013, Domino is backed by Coatue

62

Management, Great Hill Partners, Highland Capital, Sequoia Capital and other leading investors.

Domino lets enterprises and their data scientists build, deploy and manage AI on a unified, end-to-end platform
— fast, responsibly and cost-effectively. Teams can access all of the data, tools, compute, models, and
projects they need across any environment, so they can collaborate, reuse past work, track models in
production to improve accuracy, standardize with best practices, and make AI responsible and governed.

• Open and Flexible: Access the broadest ecosystem of open source and commercial tools, and
infrastructure, for the best innovations and no vendor lock-in.

• System of Record: Central hub for AI operations and knowledge across the enterprise, enabling best
practices, cross-functional collaboration, faster innovation, and efficiency.

• Integrated: Integrated workflows and automation — built for enterprise processes, controls, and
governance — satisfy your compliance and regulatory needs.

• Hybrid Multicloud: Run AI workloads close to your data anywhere — on-premises, hybrid, any cloud or
multi-cloud — for lower cost, optimal performance and compliance.

Domino Nexus

Domino Nexus is a single pane of glass that lets you run data science and machine learning workloads across
any compute cluster — in any cloud, region, or on-premises. It unifies data science silos across the enterprise,
so you have one place to build, deploy, and monitor models.

NetApp BlueXP

NetApp BlueXP unifies all of NetApp’s storage and data services into a single tool that lets you build, protect,
and govern your hybrid multicloud data estate. It delivers a unified experience for storage and data services
across on-premises and cloud environments, and enables operational simplicity through the power of AIOps,

63

with the flexible consumption parameters and integrated protection required for today’s cloud-led world.

NetApp ONTAP

ONTAP 9, the latest generation of storage management software from NetApp, enables businesses to
modernize infrastructure and transition to a cloud-ready data center. Leveraging industry-leading data
management capabilities, ONTAP enables the management and protection of data with a single set of tools,
regardless of where that data resides. You can also move data freely to wherever it is needed: the edge, the
core, or the cloud. ONTAP 9 includes numerous features that simplify data management, accelerate, and
protect critical data, and enable next generation infrastructure capabilities across hybrid cloud architectures.

Simplify data management

Data management is crucial to enterprise IT operations and data scientists so that appropriate resources are
used for AI applications and training AI/ML datasets. The following additional information about NetApp
technologies is out of scope for this validation but might be relevant depending on your deployment.

ONTAP data management software includes the following features to streamline and simplify operations and
reduce your total cost of operation:

• Inline data compaction and expanded deduplication. Data compaction reduces wasted space inside
storage blocks, and deduplication significantly increases effective capacity. This applies to data stored
locally and data tiered to the cloud.

• Minimum, maximum, and adaptive quality of service (AQoS). Granular quality of service (QoS) controls
help maintain performance levels for critical applications in highly shared environments.

• NetApp FabricPool. Provides automatic tiering of cold data to public and private cloud storage options,
including Amazon Web Services (AWS), Azure, and NetApp StorageGRID storage solution. For more
information about FabricPool, see TR-4598: FabricPool best practices.

Accelerate and protect data

ONTAP delivers superior levels of performance and data protection and extends these capabilities in the
following ways:

• Performance and lower latency. ONTAP offers the highest possible throughput at the lowest possible
latency.

• Data protection. ONTAP provides built-in data protection capabilities with common management across all
platforms.

• NetApp Volume Encryption (NVE). ONTAP offers native volume-level encryption with both onboard and
External Key Management support.

• Multitenancy and multifactor authentication. ONTAP enables sharing of infrastructure resources with the
highest levels of security.

Future-proof infrastructure

ONTAP helps meet demanding and constantly changing business needs with the following features:

• Seamless scaling and nondisruptive operations. ONTAP supports the nondisruptive addition of capacity to
existing controllers and to scale-out clusters. Customers can upgrade to the latest technologies, such as
NVMe and 32Gb FC, without costly data migrations or outages.

• Cloud connection. ONTAP is the most cloud-connected storage management software, with options for
software-defined storage and cloud-native instances in all public clouds.

64

https://www.netapp.com/pdf.html?item=/media/17239-tr4598pdf.pdf

• Integration with emerging applications. ONTAP offers enterprise-grade data services for next generation
platforms and applications, such as autonomous vehicles, smart cities, and Industry 4.0, by using the same
infrastructure that supports existing enterprise apps.

Amazon FSx for NetApp ONTAP

Amazon FSx for NetApp ONTAP is a first-party, fully managed AWS service that provides highly reliable,
scalable, high-performing, and feature-rich file storage built on NetApp’s popular ONTAP file system. FSx for
ONTAP combines the familiar features, performance, capabilities, and API operations of NetApp file systems
with the agility, scalability, and simplicity of a fully managed AWS service.

NetApp Astra Trident

Astra Trident enables consumption and management of storage resources across all popular NetApp storage
platforms, in the public cloud or on premises, including ONTAP (AFF, FAS, Select, Cloud, Amazon FSx for
NetApp ONTAP), Element software (NetApp HCI, SolidFire), Azure NetApp Files service, and Cloud Volumes
Service on Google Cloud. Astra Trident is a Container Storage Interface (CSI) compliant dynamic storage
orchestrator that natively integrates with Kubernetes.

Kubernetes

Kubernetes is an open source, distributed, container orchestration platform that was originally designed by
Google and is now maintained by the Cloud Native Computing Foundation (CNCF). Kubernetes enables the
automation of deployment, management, and scaling functions for containerized applications, and is the
dominant container orchestration platform in enterprise environments.

Amazon Elastic Kubernetes Service (EKS)

Amazon Elastic Kubernetes Service (Amazon EKS) is a managed Kubernetes service in the AWS cloud.
Amazon EKS automatically manages the availability and scalability of the Kubernetes control plane nodes
responsible for scheduling containers, managing application availability, storing cluster data, and other key
tasks. With Amazon EKS, you can take advantage of all the performance, scale, reliability, and availability of
AWS infrastructure, as well as integrations with AWS networking and security services.

Architecture

This solution combines Domino Nexus' hybrid multicloud workload scheduling capabilities
with NetApp data services to create a unified hybrid cloud MLOps platform. See the
following table for details.

Component Name Environment

MLOps Control Plane Domino Enterprise AI Platform with
Domino Nexus

AWS

MLOps Platform Compute
Environments

Domino Nexus Data Planes AWS, On-premises data center

On-premises Compute Platform Kubernetes with NetApp Astra
Trident

On-premises data center

Cloud Compute Platform Amazon Elastic Kubernetes Service
(EKS) with NetApp Astra Trident

AWS

On-premises Data Platform NetApp storage appliance powered
by NetApp ONTAP

On-premises data center

65

https://domino.ai/platform/nexus
https://domino.ai/platform/nexus
https://docs.dominodatalab.com/en/latest/admin_guide/5781ea/data-planes/
https://kubernetes.io
https://docs.netapp.com/us-en/trident/index.html
https://docs.netapp.com/us-en/trident/index.html
https://aws.amazon.com/eks/
https://aws.amazon.com/eks/
https://docs.netapp.com/us-en/trident/index.html
https://www.netapp.com/data-storage/
https://www.netapp.com/data-management/ontap-data-management-software/

Component Name Environment

Cloud Data Platform Amazon FSx for NetApp ONTAP AWS

Initial Setup

This section describes the initial setup tasks that need to be performed in order to utilize
Domino Nexus with NetApp data services in a hybrid environment incorporating an on-
premises data center and AWS.

Prerequisites

Before you perform the steps that are outlined in this section, we assume that you have already performed the
following tasks:

• You have already deployed and configured your on-premises NetApp ONTAP storage platform. For more
information, refer to the NetApp product documentation.

• You have already provisioned an Amazon FSx for NetApp ONTAP instance in AWS. For more information,
refer to the Amazon FSx for NetApp ONTAP product page.

• You have already provisioned a Kubernetes cluster in your on-premises data center. For more information,
refer to the Domino admin guide.

• You have already provisioned an Amazon EKS cluster in AWS. For more information, refer to the Domino
admin guide.

• You have installed NetApp Astra Trident in your on-premises Kubernetes cluster. Additionally, you have
configured this Trident instance to use your on-premises NetApp ONTAP storage platform when
provisioning and managing storage resources. For more information, refer to the NetApp Astra Trident
documentation.

• You have installed NetApp Astra Trident in your Amazon EKS cluster. Additionally, you have configured this
Trident instance to use your Amazon FSx for NetApp ONTAP instance when provisioning and managing
storage resources. For more information, refer to the NetApp Astra Trident documentation.

• You must have bi-directional network connectivity between your on-premises data center and your Virtual

66

https://aws.amazon.com/fsx/netapp-ontap/
https://www.netapp.com/support-and-training/documentation/
https://aws.amazon.com/fsx/netapp-ontap/
https://docs.dominodatalab.com/en/latest/admin_guide/b35e66/admin-guide/
https://docs.dominodatalab.com/en/latest/admin_guide/b35e66/admin-guide/
https://docs.dominodatalab.com/en/latest/admin_guide/b35e66/admin-guide/
https://docs.netapp.com/us-en/trident/index.html
https://docs.netapp.com/us-en/trident/index.html
https://docs.netapp.com/us-en/trident/index.html

Private Cloud (VPC) in AWS. For more details on the various options for implementing this, refer to the
Amazon Virtual Private Network (VPN) documentation.

Install the Domino Enterprise AI Platform in AWS

To install the Domino Enterprise MLOps Platform in AWS, follow the instructions outlined in Domino admin
guide. You must deploy Domino in the same Amazon EKS cluster that you previously provisioned. Additionally,
NetApp Astra Trident must already be installed and configured in this EKS cluster, and you must specify a
Trident-managed storage class as the shared storage class in your domino.yml install configuration file.

Refer to the Domino install configuration reference guide for details on how to specify a shared
storage class in your domino.yml install configuration file.

Technical Report TR-4952 walks through the deployment of Domino in AWS with Amazon FSx
for NetApp ONTAP and may be a useful reference for troubleshooting any issues that arise.

Enable Domino Nexus

Next, you must enable Domino Nexus. Refer to the Domino admin guide for details.

Deploy a Domino Data Plane in your On-premises Data Center

Next, you must deploy a Domino Data Plane in your on-premises data center. You must deploy this data plane
in the on-premises Kubernetes cluster that you previously provisioned. Additionally, NetApp Astra Trident must
already be installed and configured in this Kubernetes cluster. Refer to the Domino admin guide for details.

Expose Existing NetApp Volumes to Domino

This section describes the tasks that need to be performed in order to expose existing
NetApp ONTAP NFS volumes to the Domino MLOps platform. These same steps apply
both on-premises and in AWS.

Why Expose NetApp ONTAP Volumes to Domino?

Using NetApp volumes in conjunction with Domino provides the following benefits:

• You can execute workloads against extremely large datasets by taking advantage of NetApp ONTAP’s
scale-out capabilities.

• You can execute workloads across multiple compute nodes without having to copy your data to the
individual nodes.

• You can take advantage of NetApp’s hybrid multicloud data movement and sync capabilities in order to
access your data across multiple data centers and/or clouds.

• You want to be able to quickly and easily create a cache of your data in a different data center or cloud.

Expose Existing NFS Volumes that were not Provisioned by Astra Trident

If your existing NetApp ONTAP NFS volume was not provisioned by Astra Trident, follow the steps outlined in
this sub-section.

67

https://docs.aws.amazon.com/vpc/latest/userguide/vpn-connections.html
https://docs.dominodatalab.com/en/latest/admin_guide/c1eec3/deploy-domino/
https://docs.dominodatalab.com/en/latest/admin_guide/c1eec3/deploy-domino/
https://docs.dominodatalab.com/en/latest/admin_guide/7f4331/install-configuration-reference/#storage-classes
https://www.netapp.com/media/79922-tr-4952.pdf
https://docs.dominodatalab.com/en/latest/admin_guide/c65074/nexus-hybrid-architecture/
https://docs.dominodatalab.com/en/latest/admin_guide/5781ea/data-planes/

Create PV and PVC in Kubernetes

For on-premises volumes, create the PV and PVC in your on-premises Kubernetes cluster. For
Amazon FSx for NetApp ONTAP volumes, create the PV and PVC in Amazon EKS.

First, you must create a persistent volume (PV) and persistent volume claim (PVC) in your Kubernetes cluster.
To create the PV and PVC, use the NFS PV/PVC example from the Domino admin guide and update the

values to reflect to your environment. Be sure to specify the correct values for the namespace, nfs.path,

and nfs.server fields. Additionally, we recommend giving your PV and PVC unique names that represent
that nature of the data that is stored on the corresponding ONTAP NFS volume. For example, if the volume

contains images of manufacturing defects, you might name the PV, pv-mfg-defect-images, and the PVC,

pvc-mfg-defect-images.

Register External Data Volume in Domino

Next, you must register an external data volume in Domino. To register an external data volume, refer to the
instructions in the Domino admin guide. When registering the volume, be sure to select "NFS" from the
'Volume Type' drop-down menu. After selecting "NFS", you should see your PVC in the 'Available Volumes' list.

68

https://docs.dominodatalab.com/en/latest/admin_guide/4cdae9/set-up-kubernetes-pv-and-pvc/#_nfs_pvpvc_example
https://docs.dominodatalab.com/en/latest/admin_guide/9c3564/register-external-data-volumes/

Expose Existing Volumes that were Provisioned by Astra Trident

If your existing volume was provisioned by Astra Trident, follow the steps outlined in this sub-section.

Edit Existing PVC

If your volume was provisioned by Astra Trident, then you already have a persistent volume claim (PVC)
corresponding to your volume. In order to expose this volume to Domino, you must edit the PVC and add the

following label to the list of labels in the metadata.labels field:

"dominodatalab.com/external-data-volume": "Generic"

Register External Data Volume in Domino

Next, you must register an external data volume in Domino. To register an external data volume, refer to the
instructions in the Domino admin guide. When registering the volume, be sure to select "Generic" from the
'Volume Type' drop-down menu. After selecting "Generic", you should see your PVC in the 'Available Volumes'
list.

Access the same Data Across Different Environments

This section describes the tasks that need to be performed in order to access the same
data across different compute environments. In the Domino MLOps platform, compute
environments are referred to "data planes." Follow the tasks outlined in this section if your
data resides on a NetApp volume in one data plane, but you need to access it in another
data plane. This type of scenario is often referred to as "bursting" or, when the destination
environment is the cloud, "cloud bursting." This capability is often needed when dealing
with constrained or over-subscribed compute resources. For example, if your on-
premises compute cluster is over-subscribed, you may want to schedule workloads to the
cloud where they can be started immediately.

There are two recommended options for accessing a NetApp volume that resides in a different data plane.
These options are outlined in the sub-sections below. Choose one of these options depending on your specific
requirements. The benefits and drawbacks of the two options are described in the following table.

Option Benefits Drawbacks

Option 1 - Cache - Simpler workflow
- Ability to cache a subset of data
based on needs
- Ability to write data back to source
- No remote copy to manage

- Increased latency on initial data
access as cache is hydrated.

Option 2 - Mirror - Full copy of source volume
- No increased latency due to
cache hydration (after mirror
operation is complete)

- Must wait for mirror operation to
complete before accessing data
- Must manage a remote copy
- No ability to write back to source

69

https://docs.dominodatalab.com/en/latest/admin_guide/9c3564/register-external-data-volumes/

Option 1 - Create a Cache of a Volume that Resides in a Different Data Plane

With NetApp FlexCache technology, you can create a cache of a NetApp volume that resides in a different
data plane. For example, if you have a NetApp volume in your on-premises data plane, and you need to
access that volume in your AWS data plane, you can create a cache of the volume in AWS. This section
outlines the tasks that need to be performed in order to create a cache of a NetApp volume that resides in a
different data plane.

Create FlexCache Volume in Destination Environment

If the destination environment is your on-premises data center, you will create the FlexCache
volume on your on-premises ONTAP system. If the destination environment is AWS, you will
create the FlexCache volume on your Amazon FSx for NetApp ONTAP instance.

First, you must create a FlexCache volume in the destination environment.

We recommend using BlueXP to create the FlexCache volume. To create a FlexCache volume with BlueXP,
follow the instructions outlined in the BlueXP volume caching documentation.

If you prefer not to use BlueXP, you can use ONTAP System Manager or the ONTAP CLI to create the
FlexCache volume. To create a FlexCache volume with System Manager, refer to the instructions outlined in
the ONTAP documentation. To create a FlexCache volume with the ONTAP CLI, refer to the instructions
outlined in the ONTAP documentation.

If you wish to automate this process, you can use the BlueXP API, the ONTAP REST API, or the ONTAP
Ansible collection.

System Manager is not available in Amazon FSx for NetApp ONTAP.

Expose FlexCache Volume to Domino

Next, you must expose the FlexCache volume to the Domino MLOps platform. To expose the FlexCache
volume to Domino, follow the instructions outlined in the 'Expose Existing NFS Volumes that were not
Provisioned by Astra Trident' sub-section of the 'Expose Existing NetApp Volumes to Domino' section of this
solution.

Now, you will be able to mount the FlexCache volume when launching jobs and workspaces in the destination
data plane as shown in the following screenshots.

Before Creating FlexCache Volume

70

https://docs.netapp.com/us-en/ontap/flexcache/accelerate-data-access-concept.html
https://docs.netapp.com/us-en/bluexp-volume-caching/
https://docs.netapp.com/us-en/ontap/task_nas_flexcache.html
https://docs.netapp.com/us-en/ontap/flexcache/index.html
https://docs.netapp.com/us-en/bluexp-automation/
https://devnet.netapp.com/restapi.php
https://docs.ansible.com/ansible/latest/collections/netapp/ontap/index.html
https://docs.ansible.com/ansible/latest/collections/netapp/ontap/index.html

After Exposing FlexCache Volume to Domino

71

Option 2 - Replicate a Volume that Resides in a Different Data Plane

With NetApp SnapMirror data replication technology, you can create a copy of a NetApp volume that resides in
a different data plane. For example, if you have a NetApp volume in your on-premises data plane, and you
need to access that volume in your AWS data plane, you can create a copy of the volume in AWS. This section
outlines the tasks that need to be performed in order to create a copy of a NetApp volume that resides in a
different data plane.

Create SnapMirror Relationship

First, you must create a SnapMirror relationship between your source volume and a new destination volume in
the destination environment. Note that the destination volume will be created as part of the process of creating
the SnapMirror relationship.

72

https://www.netapp.com/cyber-resilience/data-protection/data-backup-recovery/snapmirror-data-replication/

We recommend using BlueXP to create the SnapMirror relationship. To create a SnapMirror relationship with
BlueXP, follow the instructions outlined in the BlueXP replication documentation.

If you prefer not to use BlueXP, you can use ONTAP System Manager or the ONTAP CLI to create the
SnapMirror relationship. To create a SnapMirror relationship with System Manager, refer to the instructions
outlined in the ONTAP documentation. To create a SnapMirror relationship with the ONTAP CLI, refer to the
instructions outlined in the ONTAP documentation.

If you wish to automate this process, you can use the BlueXP API, the ONTAP REST API, or the ONTAP
Ansible collection.

System Manager is not available in Amazon FSx for NetApp ONTAP.

Break SnapMirror Relationship

Next, you must break the SnapMirror relationship in order to activate the destination volume for data access.
Wait until the initial replication is complete before performing this step.

You can determine whether or not the replication is complete by checking the mirror state in
BlueXP, ONTAP System Manager, or the ONTAP CLI. When the replication is complete, the
mirror state will be "snapmirrored".

We recommend using BlueXP to break the SnapMirror relationship. To break a SnapMirror relationship with
BlueXP, follow the instructions outlined in the BlueXP replication documentation.

If you prefer not to use BlueXP, you can use ONTAP System Manager or the ONTAP CLI to break the
SnapMirror relationship. To break a SnapMirror relationship with System Manager, refer to the instructions
outlined in the ONTAP documentation. To break a SnapMirror relationship with the ONTAP CLI, refer to the
instructions outlined in the ONTAP documentation.

If you wish to automate this process, you can use the BlueXP API, the ONTAP REST API, or the ONTAP
Ansible collection.

Expose Destination Volume to Domino

Next, you must expose the destination volume to the Domino MLOps platform. To expose the destination
volume to Domino, follow the instructions outlined in the 'Expose Existing NFS Volumes that were not
Provisioned by Astra Trident' sub-section of the 'Expose Existing NetApp Volumes to Domino' section of this
solution.

Now, you will be able to mount the destination volume when launching jobs and workspaces in the destination
data plane as shown in the following screenshots.

Before Creating SnapMirror Relationship

73

https://docs.netapp.com/us-en/bluexp-replication/
https://docs.netapp.com/us-en/ontap/task_dp_configure_mirror.html
https://docs.netapp.com/us-en/ontap/data-protection/snapmirror-replication-workflow-concept.html
https://docs.netapp.com/us-en/bluexp-automation/
https://devnet.netapp.com/restapi.php
https://docs.ansible.com/ansible/latest/collections/netapp/ontap/index.html
https://docs.ansible.com/ansible/latest/collections/netapp/ontap/index.html
https://docs.netapp.com/us-en/bluexp-replication/task-managing-replication.html
https://docs.netapp.com/us-en/ontap/task_dp_serve_data_from_destination.html
https://docs.netapp.com/us-en/ontap/data-protection/make-destination-volume-writeable-task.html
https://docs.netapp.com/us-en/bluexp-automation/
https://devnet.netapp.com/restapi.php
https://docs.ansible.com/ansible/latest/collections/netapp/ontap/index.html
https://docs.ansible.com/ansible/latest/collections/netapp/ontap/index.html

After Exposing Destination Volume to Domino

74

Where to Find Additional Information

To learn more about the information described in this document, refer to the following
documents and/or websites:

• Domino Data Lab

https://domino.ai

• Domino Nexus

https://domino.ai/platform/nexus

75

https://domino.ai
https://domino.ai/platform/nexus

• NetApp BlueXP

https://bluexp.netapp.com

• NetApp ONTAP data management software

https://www.netapp.com/data-management/ontap-data-management-software/

• NetApp AI Solutions

https://www.netapp.com/artificial-intelligence/

Acknowledgments

• Josh Mineroff, Director of SA for Tech Alliances, Domino Data Lab

• Nicholas Jablonski, Field CTO, Domino Data Lab

• Prabu Arjunan, Solution Architect, NetApp

• Brian Young, Global Alliance Director, Technology Alliance Partners, NetApp

NVIDIA AI Enterprise with NetApp and VMware

NVIDIA AI Enterprise with NetApp and VMware

Mike Oglesby, NetApp

For IT architects and admins, AI tooling can be complicated and unfamiliar. Additionally,
many AI platforms are not enterprise-ready. NVIDIA AI Enterprise, powered by NetApp
and VMware, was created to deliver a streamlined, enterprise-class AI architecture.

NVIDIA AI Enterprise is an end-to-end, cloud-native suite of AI and data analytics software that is optimized,
certified, and supported by NVIDIA to run on VMware vSphere with NVIDIA-Certified Systems. This software
facilitates the simple and rapid deployment, management, and scaling of AI workloads in the modern hybrid
cloud environment. NVIDIA AI Enterprise, powered by NetApp and VMware, delivers enterprise-class AI
workload and data management in a simplified, familiar package.

76

https://bluexp.netapp.com
https://www.netapp.com/data-management/ontap-data-management-software/
https://www.netapp.com/artificial-intelligence/

Technology Overview

This section provides a technology overview for NVIDIA AI Enterprise with NetApp and
VMware.

NVIDIA AI Enterprise

NVIDIA AI Enterprise is an end-to-end, cloud-native suite of AI and data analytics software that is optimized,
certified, and supported by NVIDIA to run on VMware vSphere with NVIDIA-Certified Systems. This software
facilitates the simple and rapid deployment, management, and scaling of AI workloads in the modern hybrid
cloud environment.

NVIDIA GPU Cloud (NGC)

NVIDIA NGC hosts a catalog of GPU-optimized software for AI practitioners to develop their AI solutions. It
also provides access to various AI services including NVIDIA Base Command for model training, NVIDIA Fleet
Command to deploy and monitor models, and the NGC Private Registry for securely accessing and managing
proprietary AI software. Also, NVIDIA AI Enterprise customers can request support through the NGC portal.

VMware vSphere

VMware vSphere is VMware’s virtualization platform, which transforms data centers into aggregated computing
infrastructures that include CPU, storage, and networking resources. vSphere manages these infrastructures
as a unified operating environment, and provides administrators with the tools to manage the data centers that
participate in that environment.

77

The two core components of vSphere are ESXi and vCenter Server. ESXi is the virtualization platform where
administrators create and run virtual machines and virtual appliances. vCenter Server is the service through
which administrators manage multiple hosts connected in a network and pool host resources.

NetApp ONTAP

ONTAP 9, the latest generation of storage management software from NetApp, enables businesses to
modernize infrastructure and transition to a cloud-ready data center. Leveraging industry-leading data
management capabilities, ONTAP enables the management and protection of data with a single set of tools,
regardless of where that data resides. You can also move data freely to wherever it is needed: the edge, the
core, or the cloud. ONTAP 9 includes numerous features that simplify data management, accelerate, and
protect critical data, and enable next generation infrastructure capabilities across hybrid cloud architectures.

Simplify data management

Data management is crucial to enterprise IT operations and data scientists so that appropriate resources are
used for AI applications and training AI/ML datasets. The following additional information about NetApp
technologies is out of scope for this validation but might be relevant depending on your deployment.

ONTAP data management software includes the following features to streamline and simplify operations and
reduce your total cost of operation:

• Inline data compaction and expanded deduplication. Data compaction reduces wasted space inside
storage blocks, and deduplication significantly increases effective capacity. This applies to data stored
locally and data tiered to the cloud.

• Minimum, maximum, and adaptive quality of service (AQoS). Granular quality of service (QoS) controls
help maintain performance levels for critical applications in highly shared environments.

• NetApp FabricPool. Provides automatic tiering of cold data to public and private cloud storage options,
including Amazon Web Services (AWS), Azure, and NetApp StorageGRID storage solution. For more
information about FabricPool, see TR-4598: FabricPool best practices.

Accelerate and protect data

ONTAP delivers superior levels of performance and data protection and extends these capabilities in the
following ways:

• Performance and lower latency. ONTAP offers the highest possible throughput at the lowest possible
latency.

• Data protection. ONTAP provides built-in data protection capabilities with common management across all
platforms.

• NetApp Volume Encryption (NVE). ONTAP offers native volume-level encryption with both onboard and
External Key Management support.

• Multitenancy and multifactor authentication. ONTAP enables sharing of infrastructure resources with the
highest levels of security.

Future-proof infrastructure

ONTAP helps meet demanding and constantly changing business needs with the following features:

• Seamless scaling and nondisruptive operations. ONTAP supports the nondisruptive addition of capacity to
existing controllers and to scale-out clusters. Customers can upgrade to the latest technologies, such as
NVMe and 32Gb FC, without costly data migrations or outages.

78

https://www.netapp.com/pdf.html?item=/media/17239-tr4598pdf.pdf

• Cloud connection. ONTAP is the most cloud-connected storage management software, with options for
software-defined storage (ONTAP Select) and cloud-native instances (NetApp Cloud Volumes Service) in
all public clouds.

• Integration with emerging applications. ONTAP offers enterprise-grade data services for next generation
platforms and applications, such as autonomous vehicles, smart cities, and Industry 4.0, by using the same
infrastructure that supports existing enterprise apps.

NetApp DataOps Toolkit

The NetApp DataOps Toolkit is a Python-based tool that simplifies the management of development/training
workspaces and inference servers that are backed by high-performance, scale-out NetApp storage. Key
capabilities include:

• Rapidly provision new high-capacity JupyterLab workspaces that are backed by high-performance, scale-
out NetApp storage.

• Rapidly provision new NVIDIA Triton Inference Server instances that are backed by enterprise-class
NetApp storage.

• Near-instaneously clone high-capacity JupyterLab workspaces in order to enable experimentation or rapid
iteration.

• Near-instaneously save snapshots of high-capacity JupyterLab workspaces for backup and/or
traceability/baselining.

• Near-instaneously provision, clone, and snapshot high-capacity, high-performance data volumes.

Architecture

This solution builds upon a proven and familiar architecture featuring NetApp, VMware,
and NVIDIA-Certified Systems. See the following table for details.

Component Details

AI and Data Analytics Software NVIDIA AI Enterprise for VMware

Virtualization Platform VMware vSphere

Compute Platform NVIDIA-Certified Systems

Data Management Platform NetApp ONTAP

79

https://www.nvidia.com/en-us/data-center/products/ai-enterprise/vmware/
https://www.vmware.com/products/vsphere.html
https://www.nvidia.com/en-us/data-center/products/certified-systems/
https://www.netapp.com/data-management/ontap-data-management-software/

Initial Setup

This section describes the initial setup tasks that need to be performed in order to utilize
NVIDIA AI Enterprise with NetApp and VMware.

Prerequisites

Before you perform the steps that are outlined in this section, we assume that you have already deployed
VMware vSphere and NetApp ONTAP. Refer to the NVIDIA AI Enterprise Product Support Matrix for details on
supported vSphere versions. Refer to the NetApp and VMware solution documentation for details on deploying
VMware vSphere with NetApp ONTAP.

80

https://docs.nvidia.com/ai-enterprise/latest/product-support-matrix/index.html
https://docs.netapp.com/us-en/netapp-solutions/vmware/vmware-on-netapp.html

Install NVIDIA AI Enterprise Host Software

To install the NVIDIA AI Entrprise host software, follow the instructions outlined in sections 1-4 in the NVIDIA AI
Enterprise Quick Start Guide.

Utilize NVIDIA NGC Software

This section describes the tasks that need to be performed in order to utilize NVIDIA NGC
enterprise software within an NVIDIA AI Enterprise environment.

Setup

This section describes the initial setup tasks that need to be performed in order to utilize
NVIDIA NGC enterprise software within an NVIDIA AI Enterprise environment.

Prerequisites

Before you perform the steps that are outlined in this section, we assume that you have already deployed the
NVIDIA AI Entrprise host software by following the instructions outlined on the Initial Setup page.

Create an Ubuntu Guest VM with vGPU

First, you must create an Ubuntu 20.04 guest VM with vGPU. To create an Ubuntu 20.04 guest VM with vGPU,
follow the instructions outline in the NVIDIA AI Enterprise Deployment Guide.

Download and Install NVIDIA Guest Software

Next, you must install the required NVIDIA guest software within the guest VM that you created in the previous
step. To download and install the required NVIDIA guest software within the guest VM, follow the instructions
outlined in sections 5.1-5.4 in the NVIDIA AI Enterprise Quick Start Guide.

When performing the verification tasks outlined in section 5.4, you may need to use a different
CUDA container image version tag as the CUDA container image has been updated since the
writing of the guide. In our validation, we used 'nvidia/cuda:11.0.3-base-ubuntu20.04'.

Download AI/Analytics Framework Container(s)

Next, you must download needed AI or analytics framework container images from NVIDIA NGC so that they
will be available within your guest VM. To download framework containers within the guest VM, follow the
instructions outlined in the NVIDIA AI Enterprise Deployment Guide.

Install and Configure the NetApp DataOps Toolkit

Next, you must install the NetApp DataOps Toolkit for Traditional Environemnts within the guest VM. The
NetApp DataOps Toolkit can be used to manage scale-out data volumes on your ONTAP system directly from
the terminal within the guest VM. To install the NetApp DataOps Toolkit within the guest VM, perform the
following tasks.

1. Install pip.

81

https://docs.nvidia.com/ai-enterprise/latest/quick-start-guide/index.html
https://docs.nvidia.com/ai-enterprise/latest/quick-start-guide/index.html
https://docs.nvidia.com/ai-enterprise/deployment-guide-vmware/0.1.0/first-vm.html
https://docs.nvidia.com/ai-enterprise/latest/quick-start-guide/index.html
https://docs.nvidia.com/ai-enterprise/deployment-guide-vmware/0.1.0/installing-ai.html

$ sudo apt update

$ sudo apt install python3-pip

$ python3 -m pip install netapp-dataops-traditional

2. Log out of the guest VM terminal and then log back in.

3. Configure the NetApp DataOps Toolkit. In order to complete this step, you will need API access details for
your ONTAP system. You may need to obtain these from your storage admin.

$ netapp_dataops_cli.py config

Enter ONTAP management LIF hostname or IP address (Recommendation: Use

SVM management interface): 172.22.10.10

Enter SVM (Storage VM) name: NVAIE-client

Enter SVM NFS data LIF hostname or IP address: 172.22.13.151

Enter default volume type to use when creating new volumes

(flexgroup/flexvol) [flexgroup]:

Enter export policy to use by default when creating new volumes

[default]:

Enter snapshot policy to use by default when creating new volumes

[none]:

Enter unix filesystem user id (uid) to apply by default when creating

new volumes (ex. '0' for root user) [0]:

Enter unix filesystem group id (gid) to apply by default when creating

new volumes (ex. '0' for root group) [0]:

Enter unix filesystem permissions to apply by default when creating new

volumes (ex. '0777' for full read/write permissions for all users and

groups) [0777]:

Enter aggregate to use by default when creating new FlexVol volumes:

aff_a400_01_NVME_SSD_1

Enter ONTAP API username (Recommendation: Use SVM account): admin

Enter ONTAP API password (Recommendation: Use SVM account):

Verify SSL certificate when calling ONTAP API (true/false): false

Do you intend to use this toolkit to trigger BlueXP Copy and Sync

operations? (yes/no): no

Do you intend to use this toolkit to push/pull from S3? (yes/no): no

Created config file: '/home/user/.netapp_dataops/config.json'.

Create a Guest VM template

Lastly, you must create a VM template based on your guest VM. You will be able to use this template to quickly
create guest VMs for utilizing NVIDIA NGC software.

To create a VM template based on your guest VM, log into VMware vSphere, righ-click on the guest VM name,
choose 'Clone', choose 'Clone to Template…', and then follow the wizard.

82

Example Use Case - TensorFlow Training Job

This section describes the tasks that need to be performed in order to execute a
TensorFlow training job within an NVIDIA AI Enterprise environment.

Prerequisites

Before you perform the steps that are outlined in this section, we assume that you have already created a
guest VM template by following the instructions outlined on the Setup page.

Create Guest VM from Template

First, you must create a new guest VM from the template that you created in the previous section. To create a
new guest VM from your template, log into VMware vSphere, righ-click on the template name, choose 'New
VM from This Template…', and then follow the wizard.

83

Create and Mount Data Volume

Next, you must create a new data volume on which to store your training dataset. You can quickly create a new
data volume using the NetApp DataOps Toolkit. The example command that follows shows the creation of a
volume named 'imagenet' with a capacity of 2 TB.

$ netapp_dataops_cli.py create vol -n imagenet -s 2TB

Before you can populate your data volume with data, you must mount it within the guest VM. You can quickly
mount a data volume using the NetApp DataOps Toolkit. The example command that follows shows the
mouting of the volume that was created in the previous step.

$ sudo -E netapp_dataops_cli.py mount vol -n imagenet -m ~/imagenet

84

Populate Data Volume

After the new volume has been provisioned and mounted, the training dataset can be retrieved from the source
location and placed on the new volume. This typically will involve pulling the data from an S3 or Hadoop data
lake and sometimes will involve help from a data engineer.

Execute TensorFlow Training Job

Now, you are ready to execute your TensorFlow training job. To execute your TensorFlow training job, perform
the following tasks.

1. Pull the NVIDIA NGC enterprise TensorFlow container image.

$ sudo docker pull nvcr.io/nvaie/tensorflow-2-1:22.05-tf1-nvaie-2.1-py3

2. Launch an instance of the NVIDIA NGC enterprise TensorFlow container. Use the '-v' option to attach your
data volume to the container.

$ sudo docker run --gpus all -v ~/imagenet:/imagenet -it --rm

nvcr.io/nvaie/tensorflow-2-1:22.05-tf1-nvaie-2.1-py3

3. Execute your TensorFlow training program within the container. The example command that follows shows
the execution of an example ResNet-50 training program that is included in the container image.

$ python ./nvidia-examples/cnn/resnet.py --layers 50 -b 64 -i 200 -u

batch --precision fp16 --data_dir /imagenet/data

Where to Find Additional Information

To learn more about the information described in this document, refer to the following
documents and/or websites:

• NetApp ONTAP data management software — ONTAP information library

http://mysupport.netapp.com/documentation/productlibrary/index.html?productID=62286

• NetApp DataOps Toolkit

https://github.com/NetApp/netapp-dataops-toolkit

• NVIDIA AI Enterprise with VMware

https://www.nvidia.com/en-us/data-center/products/ai-enterprise/vmware/^]

Acknowledgments

• Bobby Oommen, Sr. Manager, NetApp

85

http://mysupport.netapp.com/documentation/productlibrary/index.html?productID=62286
https://github.com/NetApp/netapp-dataops-toolkit
https://www.nvidia.com/en-us/data-center/products/ai-enterprise/vmware/^

• Ramesh Isaac, Systems Administrator, NetApp

• Roney Daniel, Technical Marketing Engineer, NetApp

TR-4851: NetApp StorageGRID data lake for autonomous driving workloads -
Solution design

David Arnette, NetApp

TR-4851 demonstrates the use of NetApp StorageGRID object storage as a data
repository and management system for machine learning (ML) and deep learning (DL)
software development. This paper describes the data flow and requirements in
autonomous vehicle software development and the StorageGRID features that streamline
the data lifecycle. This solution applies to any multistage data pipeline workflow that is
typical in ML and DL development processes.

TR-4851: NetApp StorageGRID data lake for autonomous driving workloads - Solution design

Open Source MLOps with NetApp

Open Source MLOps with NetApp

Mike Oglesby, NetApp
Mohan Acharya, NetApp

Companies and organizations of all sizes and across many industries are turning to
artificial intelligence (AI), machine learning (ML), and deep learning (DL) to solve real-
world problems, deliver innovative products and services, and to get an edge in an
increasingly competitive marketplace. As organizations increase their use of AI, ML, and
DL, they face many challenges, including workload scalability and data availability. This
solution demonstrates how you can address these challenges by pairing NetApp data
management capabilities with popular open-source tools and frameworks.

This solution is intended to demonstrate several different open-source tools and frameworks that can be
incorporated into an MLOps workflow. These different tools and frameworks can be used together or by
themselves depending on the requirements and use case.

The following tools/frameworks are covered in this solution:

• Apache Airflow

• Kubeflow

86

https://www.netapp.com/pdf.html?item=/media/19399-tr-4851.pdf
https://airflow.apache.org
https://www.kubeflow.org

Technology Overview

This section focuses on the technology overview for OpenSource MLOps with NetApp.

Artificial Intelligence

AI is a computer science discipline in which computers are trained to mimic the cognitive functions of the
human mind. AI developers train computers to learn and to solve problems in a manner that is similar to, or
even superior to, humans. Deep learning and machine learning are subfields of AI. Organizations are
increasingly adopting AI, ML, and DL to support their critical business needs. Some examples are as follows:

• Analyzing large amounts of data to unearth previously unknown business insights

• Interacting directly with customers by using natural language processing

• Automating various business processes and functions

Modern AI training and inference workloads require massively parallel computing capabilities. Therefore, GPUs
are increasingly being used to execute AI operations because the parallel processing capabilities of GPUs are
vastly superior to those of general-purpose CPUs.

Containers

Containers are isolated user-space instances that run on top of a shared host operating system kernel. The
adoption of containers is increasing rapidly. Containers offer many of the same application sandboxing benefits
that virtual machines (VMs) offer. However, because the hypervisor and guest operating system layers that
VMs rely on have been eliminated, containers are far more lightweight. The following figure depicts a
visualization of virtual machines versus containers.

Containers also allow the efficient packaging of application dependencies, run times, and so on, directly with
an application. The most commonly used container packaging format is the Docker container. An application
that has been containerized in the Docker container format can be executed on any machine that can run
Docker containers. This is true even if the application’s dependencies are not present on the machine because
all dependencies are packaged in the container itself. For more information, visit the Docker website.

87

https://www.docker.com

Kubernetes

Kubernetes is an open source, distributed, container orchestration platform that was originally designed by
Google and is now maintained by the Cloud Native Computing Foundation (CNCF). Kubernetes enables the
automation of deployment, management, and scaling functions for containerized applications. In recent years,
Kubernetes has emerged as the dominant container orchestration platform. For more information, visit the
Kubernetes website.

NetApp Astra Trident

Astra Trident enables consumption and management of storage resources across all popular NetApp storage
platforms, in the public cloud or on premises, including ONTAP (AFF, FAS, Select, Cloud, Amazon FSx for
NetApp ONTAP), Element software (NetApp HCI, SolidFire), Azure NetApp Files service, and Cloud Volumes
Service on Google Cloud. Astra Trident is a Container Storage Interface (CSI) compliant dynamic storage
orchestrator that natively integrates with Kubernetes.

NetApp DataOps Toolkit

The NetApp DataOps Toolkit is a Python-based tool that simplifies the management of development/training
workspaces and inference servers that are backed by high-performance, scale-out NetApp storage. Key
capabilities include:

• Rapidly provision new high-capacity workspaces that are backed by high-performance, scale-out NetApp
storage.

• Near-instaneously clone high-capacity workspaces in order to enable experimentation or rapid iteration.

• Near-instaneously save snapshots of high-capacity workspaces for backup and/or traceability/baselining.

• Near-instaneously provision, clone, and snapshot high-capacity, high-performance data volumes.

Kubeflow

Kubeflow is an open source AI and ML toolkit for Kubernetes that was originally developed by Google. The
Kubeflow project makes deployments of AI and ML workflows on Kubernetes simple, portable, and scalable.
Kubeflow abstracts away the intricacies of Kubernetes, allowing data scientists to focus on what they know
best ― data science. See the following figure for a visualization. Kubeflow is a good open-source option for
organizations that prefer an all-in-one MLOps platform. For more information, visit the Kubeflow website.

88

https://kubernetes.io
https://github.com/NetApp/netapp-dataops-toolkit
http://www.kubeflow.org/

Kubeflow Pipelines

Kubeflow Pipelines are a key component of Kubeflow. Kubeflow Pipelines are a platform and standard for
defining and deploying portable and scalable AI and ML workflows. For more information, see the official
Kubeflow documentation.

Jupyter Notebook Server

A Jupyter Notebook Server is an open source web application that allows data scientists to create wiki-like
documents called Jupyter Notebooks that contain live code as well as descriptive test. Jupyter Notebooks are
widely used in the AI and ML community as a means of documenting, storing, and sharing AI and ML projects.
Kubeflow simplifies the provisioning and deployment of Jupyter Notebook Servers on Kubernetes. For more
information on Jupyter Notebooks, visit the Jupyter website. For more information about Jupyter Notebooks
within the context of Kubeflow, see the official Kubeflow documentation.

Katib

Katib is a Kubernetes-native project for automated machine learning (AutoML). Katib supports hyperparameter
tuning, early stopping and neural architecture search (NAS). Katib is the project which is agnostic to machine
learning (ML) frameworks. It can tune hyperparameters of applications written in any language of the users’
choice and natively supports many ML frameworks, such as TensorFlow, MXNet, PyTorch, XGBoost, and
others. Katib supports a lot of various AutoML algorithms, such as Bayesian optimization, Tree of Parzen
Estimators, Random Search, Covariance Matrix Adaptation Evolution Strategy, Hyperband, Efficient Neural
Architecture Search, Differentiable Architecture Search and many more. For more information about Jupyter
Notebooks within the context of Kubeflow, see the official Kubeflow documentation.

Apache Airflow

Apache Airflow is an open-source workflow management platform that enables programmatic authoring,
scheduling, and monitoring for complex enterprise workflows. It is often used to automate ETL and data
pipeline workflows, but it is not limited to these types of workflows. The Airflow project was started by Airbnb
but has since become very popular in the industry and now falls under the auspices of The Apache Software
Foundation. Airflow is written in Python, Airflow workflows are created via Python scripts, and Airflow is
designed under the principle of "configuration as code.” Many enterprise Airflow users now run Airflow on top
of Kubernetes.

Directed Acyclic Graphs (DAGs)

In Airflow, workflows are called Directed Acyclic Graphs (DAGs). DAGs are made up of tasks that are executed
in sequence, in parallel, or a combination of the two, depending on the DAG definition. The Airflow scheduler
executes individual tasks on an array of workers, adhering to the task-level dependencies that are specified in
the DAG definition. DAGs are defined and created via Python scripts.

NetApp ONTAP

ONTAP 9, the latest generation of storage management software from NetApp, enables businesses to
modernize infrastructure and transition to a cloud-ready data center. Leveraging industry-leading data
management capabilities, ONTAP enables the management and protection of data with a single set of tools,
regardless of where that data resides. You can also move data freely to wherever it is needed: the edge, the
core, or the cloud. ONTAP 9 includes numerous features that simplify data management, accelerate, and
protect critical data, and enable next generation infrastructure capabilities across hybrid cloud architectures.

89

https://www.kubeflow.org/docs/components/pipelines/
https://www.kubeflow.org/docs/components/pipelines/
http://www.jupyter.org/
https://www.kubeflow.org/docs/components/notebooks/overview/
https://www.kubeflow.org/docs/components/katib/overview/

Simplify data management

Data management is crucial to enterprise IT operations and data scientists so that appropriate resources are
used for AI applications and training AI/ML datasets. The following additional information about NetApp
technologies is out of scope for this validation but might be relevant depending on your deployment.

ONTAP data management software includes the following features to streamline and simplify operations and
reduce your total cost of operation:

• Inline data compaction and expanded deduplication. Data compaction reduces wasted space inside
storage blocks, and deduplication significantly increases effective capacity. This applies to data stored
locally and data tiered to the cloud.

• Minimum, maximum, and adaptive quality of service (AQoS). Granular quality of service (QoS) controls
help maintain performance levels for critical applications in highly shared environments.

• NetApp FabricPool. Provides automatic tiering of cold data to public and private cloud storage options,
including Amazon Web Services (AWS), Azure, and NetApp StorageGRID storage solution. For more
information about FabricPool, see TR-4598: FabricPool best practices.

Accelerate and protect data

ONTAP delivers superior levels of performance and data protection and extends these capabilities in the
following ways:

• Performance and lower latency. ONTAP offers the highest possible throughput at the lowest possible
latency.

• Data protection. ONTAP provides built-in data protection capabilities with common management across all
platforms.

• NetApp Volume Encryption (NVE). ONTAP offers native volume-level encryption with both onboard and
External Key Management support.

• Multitenancy and multifactor authentication. ONTAP enables sharing of infrastructure resources with the
highest levels of security.

Future-proof infrastructure

ONTAP helps meet demanding and constantly changing business needs with the following features:

• Seamless scaling and nondisruptive operations. ONTAP supports the nondisruptive addition of capacity to
existing controllers and to scale-out clusters. Customers can upgrade to the latest technologies, such as
NVMe and 32Gb FC, without costly data migrations or outages.

• Cloud connection. ONTAP is the most cloud-connected storage management software, with options for
software-defined storage and cloud-native instances in all public clouds.

• Integration with emerging applications. ONTAP offers enterprise-grade data services for next generation
platforms and applications, such as autonomous vehicles, smart cities, and Industry 4.0, by using the same
infrastructure that supports existing enterprise apps.

NetApp Snapshot Copies

A NetApp Snapshot copy is a read-only, point-in-time image of a volume. The image consumes minimal
storage space and incurs negligible performance overhead because it only records changes to files create
since the last Snapshot copy was made, as depicted in the following figure.

Snapshot copies owe their efficiency to the core ONTAP storage virtualization technology, the Write Anywhere

90

https://www.netapp.com/pdf.html?item=/media/17239-tr4598pdf.pdf

File Layout (WAFL). Like a database, WAFL uses metadata to point to actual data blocks on disk. But, unlike a
database, WAFL does not overwrite existing blocks. It writes updated data to a new block and changes the
metadata. It’s because ONTAP references metadata when it creates a Snapshot copy, rather than copying
data blocks, that Snapshot copies are so efficient. Doing so eliminates the seek time that other systems incur
in locating the blocks to copy, as well as the cost of making the copy itself.

You can use a Snapshot copy to recover individual files or LUNs or to restore the entire contents of a volume.
ONTAP compares pointer information in the Snapshot copy with data on disk to reconstruct the missing or
damaged object, without downtime or a significant performance cost.

NetApp FlexClone Technology

NetApp FlexClone technology references Snapshot metadata to create writable, point-in-time copies of a
volume. Copies share data blocks with their parents, consuming no storage except what is required for
metadata until changes are written to the copy, as depicted in the following figure. Where traditional copies can
take minutes or even hours to create, FlexClone software lets you copy even the largest datasets almost
instantaneously. That makes it ideal for situations in which you need multiple copies of identical datasets (a
development workspace, for example) or temporary copies of a dataset (testing an application against a
production dataset).

91

NetApp SnapMirror Data Replication Technology

NetApp SnapMirror software is a cost-effective, easy-to-use unified replication solution across the data fabric. It
replicates data at high speeds over LAN or WAN. It gives you high data availability and fast data replication for
applications of all types, including business critical applications in both virtual and traditional environments.
When you replicate data to one or more NetApp storage systems and continually update the secondary data,
your data is kept current and is available whenever you need it. No external replication servers are required.
See the following figure for an example of an architecture that leverages SnapMirror technology.

SnapMirror software leverages NetApp ONTAP storage efficiencies by sending only changed blocks over the
network. SnapMirror software also uses built-in network compression to accelerate data transfers and reduce
network bandwidth utilization by up to 70%. With SnapMirror technology, you can leverage one thin replication
data stream to create a single repository that maintains both the active mirror and prior point-in-time copies,
reducing network traffic by up to 50%.

NetApp BlueXP Copy and Sync

BlueXP Copy and Sync is a NetApp service for rapid and secure data synchronization. Whether you need to
transfer files between on-premises NFS or SMB file shares, NetApp StorageGRID, NetApp ONTAP S3, NetApp
Cloud Volumes Service, Azure NetApp Files, AWS S3, AWS EFS, Azure Blob, Google Cloud Storage, or IBM
Cloud Object Storage, BlueXP Copy and Sync moves the files where you need them quickly and securely.

After your data is transferred, it is fully available for use on both source and target. BlueXP Copy and Sync can
sync data on-demand when an update is triggered or continuously sync data based on a predefined schedule.
Regardless, BlueXP Copy and Sync only moves the deltas, so time and money spent on data replication is
minimized.

BlueXP Copy and Sync is a software as a service (SaaS) tool that is extremely simple to set up and use. Data
transfers that are triggered by BlueXP Copy and Sync are carried out by data brokers. BlueXP Copy and Sync
data brokers can be deployed in AWS, Azure, Google Cloud Platform, or on-premises.

92

NetApp XCP

NetApp XCP is client-based software for any-to-NetApp and NetApp-to-NetApp data migrations and file system
insights. XCP is designed to scale and achieve maximum performance by utilizing all available system
resources to handle high-volume datasets and high-performance migrations. XCP helps you to gain complete
visibility into the file system with the option to generate reports.

NetApp XCP is available in a single package that supports NFS and SMB protocols. XCP includes a Linux
binary for NFS data sets and a windows executable for SMB data sets.

NetApp XCP File Analytics is host-based software that detects file shares, runs scans on the file system, and
provides a dashboard for file analytics. XCP File Analytics is compatible with both NetApp and non-NetApp
systems and runs on Linux or Windows hosts to provide analytics for NFS and SMB-exported file systems.

NetApp ONTAP FlexGroup Volumes

A training dataset can be a collection of potentially billions of files. Files can include text, audio, video, and
other forms of unstructured data that must be stored and processed to be read in parallel. The storage system
must store large numbers of small files and must read those files in parallel for sequential and random I/O.

A FlexGroup volume is a single namespace that comprises multiple constituent member volumes, as shown in
the following figure. From a storage administrator viewpoint, a FlexGroup volume is managed and acts like a
NetApp FlexVol volume. Files in a FlexGroup volume are allocated to individual member volumes and are not
striped across volumes or nodes. They enable the following capabilities:

• FlexGroup volumes provide multiple petabytes of capacity and predictable low latency for high-metadata
workloads.

• They support up to 400 billion files in the same namespace.

• They support parallelized operations in NAS workloads across CPUs, nodes, aggregates, and constituent
FlexVol volumes.

Architecture

This solution is not dependent on specific hardware. The solution is compatible with any
NetApp physical storage appliance, software-defined instance, or cloud service, that is

93

supported by Trident. Examples include a NetApp AFF storage system, Amazon FSx for
NetApp ONTAP, Azure NetApp Files, or a NetApp Cloud Volumes ONTAP instance.
Additionally, the solution can be implemented on any Kubernetes cluster as long as the
Kubernetes version used is supported by Kubeflow and NetApp Astra Trident. For a list of
Kubernetes versions that are supported by Kubeflow, see the see the official Kubeflow
documentation. For a list of Kubernetes versions that are supported by Trident, see the
Trident documentation. See the following tables for details on the environment that was
used to validate the solution.

Software Component Version

Apache Airflow 2.0.1

Apache Airflow Helm Chart 8.0.8

Kubeflow 1.7, deployed via deployKF 0.1.1

Kubernetes 1.26

NetApp Astra Trident 23.07

Support

NetApp does not offer enterprise support for Apache Airflow, Kubeflow, or Kubernetes. If you are interested in a
fully supported MLOps platform, contact NetApp about fully supported MLOps solutions that NetApp offers
jointly with partners.

NetApp Astra Trident Configuration

Example Astra Trident Backends for NetApp AIPod Deployments

Before you can use Astra Trident to dynamically provision storage resources within your
Kubernetes cluster, you must create one or more Trident Backends. The examples that
follow represent different types of Backends that you might want to create if you are
deploying components of this solution on a NetApp AIPod. For more information about
Backends, see the Astra Trident documentation.

1. NetApp recommends creating a FlexGroup-enabled Trident Backend for your AIPod.

The example commands that follow show the creation of a FlexGroup-enabled Trident Backend for an

AIPod storage virtual machine (SVM). This Backend uses the ontap-nas-flexgroup storage driver.
ONTAP supports two main data volume types: FlexVol and FlexGroup. FlexVol volumes are size-limited (as
of this writing, the maximum size depends on the specific deployment). FlexGroup volumes, on the other
hand, can scale linearly to up to 20PB and 400 billion files, providing a single namespace that greatly
simplifies data management. Therefore, FlexGroup volumes are optimal for AI and ML workloads that rely
on large amounts of data.

If you are working with a small amount of data and want to use FlexVol volumes instead of FlexGroup

volumes, you can create Trident Backends that use the ontap-nas storage driver instead of the ontap-

nas-flexgroup storage driver.

94

https://www.kubeflow.org/docs/started/getting-started/
https://www.kubeflow.org/docs/started/getting-started/
https://docs.netapp.com/us-en/trident/index.html
https://www.deploykf.org
https://www.netapp.com/us/contact-us/index.aspx?for_cr=us
https://docs.netapp.com/us-en/netapp-solutions/ai/aipod_nv_intro.html
https://docs.netapp.com/us-en/trident/index.html

$ cat << EOF > ./trident-backend-aipod-flexgroups-iface1.json

{

 "version": 1,

 "storageDriverName": "ontap-nas-flexgroup",

 "backendName": "aipod-flexgroups-iface1",

 "managementLIF": "10.61.218.100",

 "dataLIF": "192.168.11.11",

 "svm": "ontapai_nfs",

 "username": "admin",

 "password": "ontapai"

}

EOF

$ tridentctl create backend -f ./trident-backend-aipod-flexgroups-

iface1.json -n trident

+-------------------------+---------------------

+--------------------------------------+--------+---------+

| NAME | STORAGE DRIVER | UUID

| STATE | VOLUMES |

+-------------------------+---------------------

+--------------------------------------+--------+---------+

| aipod-flexgroups-iface1 | ontap-nas-flexgroup | b74cbddb-e0b8-40b7-

b263-b6da6dec0bdd | online | 0 |

+-------------------------+---------------------

+--------------------------------------+--------+---------+

$ tridentctl get backend -n trident

+-------------------------+---------------------

+--------------------------------------+--------+---------+

| NAME | STORAGE DRIVER | UUID

| STATE | VOLUMES |

+-------------------------+---------------------

+--------------------------------------+--------+---------+

| aipod-flexgroups-iface1 | ontap-nas-flexgroup | b74cbddb-e0b8-40b7-

b263-b6da6dec0bdd | online | 0 |

+-------------------------+---------------------

+--------------------------------------+--------+---------+

2. NetApp also recommends creating a FlexVol- enabled Trident Backend. You may want to use FlexVol
volumes for hosting persistent applications, storing results, output, debug information, and so on. If you
want to use FlexVol volumes, you must create one or more FlexVol- enabled Trident Backends. The
example commands that follow show the creation of a single FlexVol- enabled Trident Backend.

95

$ cat << EOF > ./trident-backend-aipod-flexvols.json

{

 "version": 1,

 "storageDriverName": "ontap-nas",

 "backendName": "aipod-flexvols",

 "managementLIF": "10.61.218.100",

 "dataLIF": "192.168.11.11",

 "svm": "ontapai_nfs",

 "username": "admin",

 "password": "ontapai"

}

EOF

$ tridentctl create backend -f ./trident-backend-aipod-flexvols.json -n

trident

+-------------------------+---------------------

+--------------------------------------+--------+---------+

| NAME | STORAGE DRIVER | UUID

| STATE | VOLUMES |

+-------------------------+---------------------

+--------------------------------------+--------+---------+

| aipod-flexvols | ontap-nas | 52bdb3b1-13a5-4513-a9c1-

52a69657fabe | online | 0 |

+-------------------------+---------------------

+--------------------------------------+--------+---------+

$ tridentctl get backend -n trident

+-------------------------+---------------------

+--------------------------------------+--------+---------+

| NAME | STORAGE DRIVER | UUID

| STATE | VOLUMES |

+-------------------------+---------------------

+--------------------------------------+--------+---------+

| aipod-flexvols | ontap-nas | 52bdb3b1-13a5-4513-a9c1-

52a69657fabe | online | 0 |

| aipod-flexgroups-iface1 | ontap-nas-flexgroup | b74cbddb-e0b8-40b7-b263-

b6da6dec0bdd | online | 0 |

+-------------------------+---------------------

+--------------------------------------+--------+---------+

Example Kubernetes StorageClasses for NetApp AIPod Deployments

Before you can use Astra Trident to dynamically provision storage resources within your
Kubernetes cluster, you must create one or more Kubernetes StorageClasses. The
examples that follow represent different types of StorageClasses that you might want to
create if you are deploying components of this solution on a NetApp AIPod. For more
information about StorageClasses, see the Astra Trident documentation.

96

https://docs.netapp.com/us-en/netapp-solutions/ai/aipod_nv_intro.html
https://docs.netapp.com/us-en/trident/index.html

1. NetApp recommends creating a StorageClass for the FlexGroup-enabled Trident Backend that you created
in the section Example Astra Trident Backends for NetApp AIPod Deployments, step 1. The example
commands that follow show the creation of multiple StorageClasses that corresponds to the two example
Backend that was created in the section Example Astra Trident Backends for NetApp AIPod Deployments,
step 1 - one that utilizes NFS over RDMA and one that does not.

So that a persistent volume isn’t deleted when the corresponding PersistentVolumeClaim (PVC) is deleted,

the following example uses a reclaimPolicy value of Retain. For more information about the

reclaimPolicy field, see the official Kubernetes documentation.

Note: The following example StorageClasses use a maximum transfer size of 262144. To use this
maximum transfer size, you must configure the maximum transfer size on your ONTAP system accordingly.
Refer to the ONTAP documentation for details.

Note: To use NFS over RDMA, you must configure NFS over RDMA on your ONTAP system. Refer to the
linkhttps://docs.netapp.com/us-en/ontap/nfs-rdma/[ONTAP documentation] for details.

Note: In the following example, a specific Backend is not specified in the storagePool field in StorageClass
definition file.

97

https://docs.netapp.com/us-en/ontap/nfs-rdma/
https://kubernetes.io/docs/concepts/storage/storage-classes/
https://docs.netapp.com/us-en/ontap/nfs-admin/nfsv3-nfsv4-performance-tcp-transfer-size-concept.html

$ cat << EOF > ./storage-class-aipod-flexgroups-retain.yaml

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: aipod-flexgroups-retain

provisioner: csi.trident.netapp.io

mountOptions: ["vers=4.1", "nconnect=16", "rsize=262144",

"wsize=262144"]

parameters:

 backendType: "ontap-nas-flexgroup"

 storagePools: "aipod-flexgroups-iface1:.*"

reclaimPolicy: Retain

EOF

$ kubectl create -f ./storage-class-aipod-flexgroups-retain.yaml

storageclass.storage.k8s.io/aipod-flexgroups-retain created

$ cat << EOF > ./storage-class-aipod-flexgroups-retain-rdma.yaml

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: aipod-flexgroups-retain-rdma

provisioner: csi.trident.netapp.io

mountOptions: ["vers=4.1", "proto=rdma", "max_connect=16",

"rsize=262144", "wsize=262144"]

parameters:

 backendType: "ontap-nas-flexgroup"

 storagePools: "aipod-flexgroups-iface1:.*"

reclaimPolicy: Retain

EOF

$ kubectl create -f ./storage-class-aipod-flexgroups-retain-rdma.yaml

storageclass.storage.k8s.io/aipod-flexgroups-retain-rdma created

$ kubectl get storageclass

NAME PROVISIONER AGE

aipod-flexgroups-retain csi.trident.netapp.io 0m

aipod-flexgroups-retain-rdma csi.trident.netapp.io 0m

2. NetApp also recommends creating a StorageClass that corresponds to the FlexVol-enabled Trident
Backend that you created in the section Example Astra Trident Backends for AIPod Deployments, step 2.
The example commands that follow show the creation of a single StorageClass for FlexVol volumes.

Note: In the following example, a particular Backend is not specified in the storagePool field in
StorageClass definition file. When you use Kubernetes to administer volumes using this StorageClass,

Trident attempts to use any available backend that uses the ontap-nas driver.

98

$ cat << EOF > ./storage-class-aipod-flexvols-retain.yaml

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: aipod-flexvols-retain

provisioner: netapp.io/trident

parameters:

 backendType: "ontap-nas"

reclaimPolicy: Retain

EOF

$ kubectl create -f ./storage-class-aipod-flexvols-retain.yaml

storageclass.storage.k8s.io/aipod-flexvols-retain created

$ kubectl get storageclass

NAME PROVISIONER AGE

aipod-flexgroups-retain csi.trident.netapp.io 0m

aipod-flexgroups-retain-rdma csi.trident.netapp.io 0m

aipod-flexvols-retain csi.trident.netapp.io 0m

Kubeflow

Kubeflow Deployment

This section describes the tasks that you must complete to deploy Kubeflow in your
Kubernetes cluster.

Prerequisites

Before you perform the deployment exercise that is outlined in this section, we assume that you have already
performed the following tasks:

1. You already have a working Kubernetes cluster, and you are running a version of Kubernetes that is
supported by the Kubeflow version that you intend to deploy. For a list of supported Kubernetes versions,
refer to the dependencies for your Kubeflow version in the official Kubeflow documentation.

2. You have already installed and configured NetApp Astra Trident in your Kubernetes cluster. For more
details on Astra Trident, refer to the Astra Trident documentation.

Set Default Kubernetes StorageClass

Before you deploy Kubeflow, we recommend designating a default StorageClass within your Kubernetes
cluster. The Kubeflow deployment process may attempt to provision new persistent volumes using the default
StorageClass. If no StorageClass is designated as the default StorageClass, then the deployment may fail. To
designate a default StorageClass within your cluster, perform the following task from the deployment jump
host. If you have already designated a default StorageClass within your cluster, then you can skip this step.

1. Designate one of your existing StorageClasses as the default StorageClass. The example commands that

follow show the designation of a StorageClass named ontap-ai-flexvols-retain as the default
StorageClass.

99

https://www.kubeflow.org/docs/releases/
https://docs.netapp.com/us-en/trident/index.html

The ontap-nas-flexgroup Trident Backend type has a minimum PVC size that is fairly
large. By default, Kubeflow attempts to provision PVCs that are only a few GBs in size.

Therefore, you should not designate a StorageClass that utilizes the ontap-nas-flexgroup
Backend type as the default StorageClass for the purposes of Kubeflow deployment.

$ kubectl get sc

NAME PROVISIONER AGE

ontap-ai-flexgroups-retain csi.trident.netapp.io 25h

ontap-ai-flexgroups-retain-iface1 csi.trident.netapp.io 25h

ontap-ai-flexgroups-retain-iface2 csi.trident.netapp.io 25h

ontap-ai-flexvols-retain csi.trident.netapp.io 3s

$ kubectl patch storageclass ontap-ai-flexvols-retain -p '{"metadata":

{"annotations":{"storageclass.kubernetes.io/is-default-class":"true"}}}'

storageclass.storage.k8s.io/ontap-ai-flexvols-retain patched

$ kubectl get sc

NAME PROVISIONER AGE

ontap-ai-flexgroups-retain csi.trident.netapp.io 25h

ontap-ai-flexgroups-retain-iface1 csi.trident.netapp.io 25h

ontap-ai-flexgroups-retain-iface2 csi.trident.netapp.io 25h

ontap-ai-flexvols-retain (default) csi.trident.netapp.io 54s

Kubeflow Deployment Options

There are many different options for deploying Kubeflow. Refer to the official Kubeflow documentation for a list
of deployment options, and choose the option that is the best fit for your needs.

For validation purposes, we deployed Kubeflow 1.7 using deployKF 0.1.1.

Example Kubeflow Operations and Tasks

Provision a Jupyter Notebook Workspace for Data Scientist or Developer Use

Kubeflow is capable of rapidly provisioning new Jupyter Notebook servers to act as data
scientist workspaces. For more information about Jupyter Notebooks within the Kubeflow
context, see the official Kubeflow documentation.

100

https://www.kubeflow.org/docs/started/installing-kubeflow/
https://www.deploykf.org
https://www.kubeflow.org/docs/components/notebooks/

Use the NetApp DataOps Toolkit with Kubeflow

The NetApp Data Science Toolkit for Kubernetes can be used in conjunction with
Kubeflow. Using the NetApp Data Science Toolkit with Kubeflow provides the following
benefits:

• Data scientists can perform advanced NetApp data management operations, such as creating snapshots
and clones, directly from within a Jupyter Notebook.

• Advanced NetApp data management operations, such as creating snapshots and clones, can be
incorporated into automated workflows using the Kubeflow Pipelines framework.

Refer to the Kubeflow Examples section within the NetApp Data Science Toolkit GitHub repository for details
on using the toolkit with Kubeflow.

Example Workflow - Train an Image Recognition Model Using Kubeflow and the NetApp DataOps
Toolkit

This section describes the steps involved in training and deploying a Neural Network for
Image Recognition using Kubeflow and the NetApp DataOps Toolkit. This is intended to
serve as an example to show a training job that incorporates NetApp storage.

Prerequisites

Create a Dockerfile with the required configurations to use for the train and test steps within the Kubeflow
pipeline.
Here is an example of a Dockerfile -

101

https://github.com/NetApp/netapp-dataops-toolkit/tree/main/netapp_dataops_k8s
https://github.com/NetApp/netapp-dataops-toolkit/tree/main/netapp_dataops_k8s/Examples/Kubeflow

FROM pytorch/pytorch:latest

RUN pip install torchvision numpy scikit-learn matplotlib tensorboard

WORKDIR /app

COPY . /app

COPY train_mnist.py /app/train_mnist.py

CMD ["python", "train_mnist.py"]

Depending on your requirements, install all required libraries and packages needed to run the program. Before
you train the Machine Learning model, it is assumed that you already have a working Kubeflow deployment.

Train a Small NN on MNIST Data Using PyTorch and Kubeflow Pipelines

We use the example of a small Neural Network trained on MNIST data. The MNIST dataset consists of
handwritten images of digits from 0-9. The images are 28x28 pixels in size. The dataset is divided into 60,000
train images and 10,000 validation images. The Neural Network used for this experiment is a 2-layer
feedforward network. Training is executed using Kubeflow Pipelines. Refer to the documentation here for more
information. Our Kubeflow pipeline incorporates the docker image from the Prerequisites section.

Visualize Results Using Tensorboard

Once the model is trained, we can visualize the results using Tensorboard. Tensorboard is available as a
feature on the Kubeflow Dashboard. You can create a custom tensorboard for your job. An example below
shows the plot of training accuracy vs. number of epochs and training loss vs. number of epochs.

102

https://www.kubeflow.org/docs/components/pipelines/v1/introduction/
https://www.tensorflow.org/tensorboard

Experiment with Hyperparameters Using Katib

Katib is a tool within Kubeflow that can be used to experiment with the model hyperparameters. To create an
experiment, define a desired metric/goal first. This is usually the test accuracy. Once the metric is defined,
choose hyperparameters that you would like to play around with (optimizer/learning_rate/number of layers).
Katib does a hyperparameter sweep with the user-defined values to find the best combination of parameters
that satisfy the desired metric. You can define these parameters in each section in the UI. Alternatively, you
could define a YAML file with the necessary specifications. Below is an illustration of a Katib experiment -

103

https://www.kubeflow.org/docs/components/katib/hyperparameter/

Use NetApp Snapshots to Save Data for Traceability

During the model training, we may want to save a snapshot of the training dataset for traceability. To do this,
we can add a snapshot step to the pipeline as shown below. To create the snapshot, we can use the NetApp
DataOps Toolkit for Kubernetes.

Refer to the NetApp DataOps Toolkit example for Kubeflow for more information.

Apache Airflow

Apache Airflow Deployment

This section describes the tasks that you must complete to deploy Airflow in your
Kubernetes cluster.

It is possible to deploy Airflow on platforms other than Kubernetes. Deploying Airflow on
platforms other than Kubernetes is outside of the scope of this solution.

104

https://github.com/NetApp/netapp-dataops-toolkit/tree/main/netapp_dataops_k8s
https://github.com/NetApp/netapp-dataops-toolkit/tree/main/netapp_dataops_k8s
https://github.com/NetApp/netapp-dataops-toolkit/tree/main/netapp_dataops_k8s/Examples/Kubeflow

Prerequisites

Before you perform the deployment exercise that is outlined in this section, we assume that you have already
performed the following tasks:

1. You already have a working Kubernetes cluster.

2. You have already installed and configured NetApp Astra Trident in your Kubernetes cluster. For more
details on Astra Trident, refer to the Astra Trident documentation.

Install Helm

Airflow is deployed using Helm, a popular package manager for Kubernetes. Before you deploy Airflow, you
must install Helm on the deployment jump host. To install Helm on the deployment jump host, follow the
installation instructions in the official Helm documentation.

Set Default Kubernetes StorageClass

Before you deploy Airflow, you must designate a default StorageClass within your Kubernetes cluster. The
Airflow deployment process attempts to provision new persistent volumes using the default StorageClass. If no
StorageClass is designated as the default StorageClass, then the deployment fails. To designate a default
StorageClass within your cluster, follow the instructions outlined in the Kubeflow Deployment section. If you
have already designated a default StorageClass within your cluster, then you can skip this step.

Use Helm to Deploy Airflow

To deploy Airflow in your Kubernetes cluster using Helm, perform the following tasks from the deployment jump
host:

1. Deploy Airflow using Helm by following the deployment instructions for the official Airflow chart on the
Artifact Hub. The example commands that follow show the deployment of Airflow using Helm. Modify, add,

and/or remove values in the custom- values.yaml file as needed depending on your environment and
desired configuration.

$ cat << EOF > custom-values.yaml

###################################

Airflow - Common Configs

###################################

airflow:

 ## the airflow executor type to use

 ##

 executor: "CeleryExecutor"

 ## environment variables for the web/scheduler/worker Pods (for

airflow configs)

 ##

 #

###################################

Airflow - WebUI Configs

###################################

web:

 ## configs for the Service of the web Pods

105

https://docs.netapp.com/us-en/trident/index.html
https://helm.sh/docs/intro/install/
https://artifacthub.io/packages/helm/airflow-helm/airflow

 ##

 service:

 type: NodePort

###################################

Airflow - Logs Configs

###################################

logs:

 persistence:

 enabled: true

###################################

Airflow - DAGs Configs

###################################

dags:

 ## configs for the DAG git repository & sync container

 ##

 gitSync:

 enabled: true

 ## url of the git repository

 ##

 repo: "git@github.com:mboglesby/airflow-dev.git"

 ## the branch/tag/sha1 which we clone

 ##

 branch: master

 revision: HEAD

 ## the name of a pre-created secret containing files for ~/.ssh/

 ##

 ## NOTE:

 ## - this is ONLY RELEVANT for SSH git repos

 ## - the secret commonly includes files: id_rsa, id_rsa.pub,

known_hosts

 ## - known_hosts is NOT NEEDED if `git.sshKeyscan` is true

 ##

 sshSecret: "airflow-ssh-git-secret"

 ## the name of the private key file in your `git.secret`

 ##

 ## NOTE:

 ## - this is ONLY RELEVANT for PRIVATE SSH git repos

 ##

 sshSecretKey: id_rsa

 ## the git sync interval in seconds

 ##

 syncWait: 60

EOF

$ helm install airflow airflow-stable/airflow -n airflow --version 8.0.8

--values ./custom-values.yaml

...

106

Congratulations. You have just deployed Apache Airflow!

1. Get the Airflow Service URL by running these commands:

 export NODE_PORT=$(kubectl get --namespace airflow -o

jsonpath="{.spec.ports[0].nodePort}" services airflow-web)

 export NODE_IP=$(kubectl get nodes --namespace airflow -o

jsonpath="{.items[0].status.addresses[0].address}")

 echo http://$NODE_IP:$NODE_PORT/

2. Open Airflow in your web browser

2. Confirm that all Airflow pods are up and running. It may take a few minutes for all pods to start.

$ kubectl -n airflow get pod

NAME READY STATUS RESTARTS AGE

airflow-flower-b5656d44f-h8qjk 1/1 Running 0 2h

airflow-postgresql-0 1/1 Running 0 2h

airflow-redis-master-0 1/1 Running 0 2h

airflow-scheduler-9d95fcdf9-clf4b 2/2 Running 2 2h

airflow-web-59c94db9c5-z7rg4 1/1 Running 0 2h

airflow-worker-0 2/2 Running 2 2h

3. Obtain the Airflow web service URL by following the instructions that were printed to the console when you
deployed Airflow using Helm in step 1.

$ export NODE_PORT=$(kubectl get --namespace airflow -o

jsonpath="{.spec.ports[0].nodePort}" services airflow-web)

$ export NODE_IP=$(kubectl get nodes --namespace airflow -o

jsonpath="{.items[0].status.addresses[0].address}")

$ echo http://$NODE_IP:$NODE_PORT/

4. Confirm that you can access the Airflow web service.

107

Use the NetApp DataOps Toolkit with Airflow

The NetApp DataOps Toolkit for Kubernetes can be used in conjunction with Airflow.
Using the NetApp DataOps Toolkit with Airflow enables you to incorporate NetApp data
management operations, such as creating snapshots and clones, into automated
workflows that are orchestrated by Airflow.

Refer to the Airflow Examples section within the NetApp DataOps Toolkit GitHub repository for details on using
the toolkit with Airflow.

Example Astra Trident Operations

This section includes examples of various operations that you may want to perform with
Astra Trident.

Import an Existing Volume

If there are existing volumes on your NetApp storage system/platform that you want to mount on containers
within your Kubernetes cluster, but that are not tied to PVCs in the cluster, then you must import these
volumes. You can use the Trident volume import functionality to import these volumes.

108

https://github.com/NetApp/netapp-dataops-toolkit/tree/main/netapp_dataops_k8s
https://github.com/NetApp/netapp-dataops-toolkit/tree/main/netapp_dataops_k8s/Examples/Airflow

The example commands that follow show the importing of a volume named pb_fg_all. For more information
about PVCs, see the official Kubernetes documentation. For more information about the volume import
functionality, see the Trident documentation.

An accessModes value of ReadOnlyMany is specified in the example PVC spec files. For more information

about the accessMode field, see the official Kubernetes documentation.

$ cat << EOF > ./pvc-import-pb_fg_all-iface1.yaml

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

 name: pb-fg-all-iface1

 namespace: default

spec:

 accessModes:

 - ReadOnlyMany

 storageClassName: ontap-ai-flexgroups-retain-iface1

EOF

$ tridentctl import volume ontap-ai-flexgroups-iface1 pb_fg_all -f ./pvc-

import-pb_fg_all-iface1.yaml -n trident

+--------------------------------+--------

+-----------------------------------+----------

+--+--------+---------+

| NAME | SIZE | STORAGE CLASS

| PROTOCOL | BACKEND UUID | STATE |

MANAGED |

+--------------------------------+--------

+-----------------------------------+----------

+--+--------+---------+

| default-pb-fg-all-iface1-7d9f1 | 10 TiB | ontap-ai-flexgroups-retain-

iface1 | file | b74cbddb-e0b8-40b7-b263-b6da6dec0bdd | online | true

|

+--------------------------------+--------

+-----------------------------------+----------

+--+--------+---------+

$ tridentctl get volume -n trident

+----------------------------------+---------

+-----------------------------------+----------

+--------------------------------------+--------+---------+

| NAME | SIZE | STORAGE CLASS

| PROTOCOL | BACKEND UUID | STATE | MANAGED |

+----------------------------------+---------

+-----------------------------------+----------

+--------------------------------------+--------+---------+

| default-pb-fg-all-iface1-7d9f1 | 10 TiB | ontap-ai-flexgroups-retain-

iface1 | file | b74cbddb-e0b8-40b7-b263-b6da6dec0bdd | online | true

109

https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://docs.netapp.com/us-en/trident/index.html
https://kubernetes.io/docs/concepts/storage/persistent-volumes/

|

+----------------------------------+---------

+-----------------------------------+----------

+--------------------------------------+--------+---------+

$ kubectl get pvc

NAME STATUS VOLUME CAPACITY

ACCESS MODES STORAGECLASS AGE

pb-fg-all-iface1 Bound default-pb-fg-all-iface1-7d9f1

10995116277760 ROX ontap-ai-flexgroups-retain-iface1 25h

Provision a New Volume

You can use Trident to provision a new volume on your NetApp storage system or platform.

Provision a New Volume Using kubectl

The following example commands show the provisioning of a new FlexVol volume using kubectl.

An accessModes value of ReadWriteMany is specified in the following example PVC definition file. For more

information about the accessMode field, see the official Kubernetes documentation.

$ cat << EOF > ./pvc-tensorflow-results.yaml

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

 name: tensorflow-results

spec:

 accessModes:

 - ReadWriteMany

 resources:

 requests:

 storage: 1Gi

 storageClassName: ontap-ai-flexvols-retain

EOF

$ kubectl create -f ./pvc-tensorflow-results.yaml

persistentvolumeclaim/tensorflow-results created

$ kubectl get pvc

NAME STATUS VOLUME

CAPACITY ACCESS MODES STORAGECLASS AGE

pb-fg-all-iface1 Bound default-pb-fg-all-iface1-7d9f1

10995116277760 ROX ontap-ai-flexgroups-retain-iface1 26h

tensorflow-results Bound default-tensorflow-results-

2fd60 1073741824 RWX ontap-ai-flexvols-retain

25h

110

https://kubernetes.io/docs/concepts/storage/persistent-volumes/

Provision a New Volume Using the NetApp DataOps Toolkit

You can also use the NetApp DataOps Toolkit for Kubernetes to provision a new volume on your NetApp
storage system or platform. The NetApp DataOps Toolkit for Kubernetes utilizes Trident to provision volumes
but simplifies the process for the user. Refer to the documentation for details.

Example High-performance Jobs for AIPod Deployments

Execute a Single-Node AI Workload

To execute a single-node AI and ML job in your Kubernetes cluster, perform the following
tasks from the deployment jump host. With Trident, you can quickly and easily make a
data volume, potentially containing petabytes of data, accessible to a Kubernetes
workload. To make such a data volume accessible from within a Kubernetes pod, simply
specify a PVC in the pod definition.

This section assumes that you have already containerized (in the Docker container format) the
specific AI and ML workload that you are attempting to execute in your Kubernetes cluster.

1. The following example commands show the creation of a Kubernetes job for a TensorFlow benchmark
workload that uses the ImageNet dataset. For more information about the ImageNet dataset, see the
ImageNet website.

This example job requests eight GPUs and therefore can run on a single GPU worker node that features
eight or more GPUs. This example job could be submitted in a cluster for which a worker node featuring
eight or more GPUs is not present or is currently occupied with another workload. If so, then the job
remains in a pending state until such a worker node becomes available.

Additionally, in order to maximize storage bandwidth, the volume that contains the needed training data is
mounted twice within the pod that this job creates. Another volume is also mounted in the pod. This second
volume will be used to store results and metrics. These volumes are referenced in the job definition by
using the names of the PVCs. For more information about Kubernetes jobs, see the official Kubernetes
documentation.

An emptyDir volume with a medium value of Memory is mounted to /dev/shm in the pod that this

example job creates. The default size of the /dev/shm virtual volume that is automatically created by the

Docker container runtime can sometimes be insufficient for TensorFlow’s needs. Mounting an emptyDir

volume as in the following example provides a sufficiently large /dev/shm virtual volume. For more

information about emptyDir volumes, see the official Kubernetes documentation.

The single container that is specified in this example job definition is given a securityContext >

privileged value of true. This value means that the container effectively has root access on the host.
This annotation is used in this case because the specific workload that is being executed requires root
access. Specifically, a clear cache operation that the workload performs requires root access. Whether or

not this privileged: true annotation is necessary depends on the requirements of the specific
workload that you are executing.

$ cat << EOF > ./netapp-tensorflow-single-imagenet.yaml

apiVersion: batch/v1

kind: Job

metadata:

111

https://github.com/NetApp/netapp-dataops-toolkit/blob/main/netapp_dataops_k8s/docs/volume_management.md
http://www.image-net.org
https://kubernetes.io/docs/concepts/workloads/controllers/jobs-run-to-completion/
https://kubernetes.io/docs/concepts/workloads/controllers/jobs-run-to-completion/
https://kubernetes.io/docs/concepts/storage/volumes/

 name: netapp-tensorflow-single-imagenet

spec:

 backoffLimit: 5

 template:

 spec:

 volumes:

 - name: dshm

 emptyDir:

 medium: Memory

 - name: testdata-iface1

 persistentVolumeClaim:

 claimName: pb-fg-all-iface1

 - name: testdata-iface2

 persistentVolumeClaim:

 claimName: pb-fg-all-iface2

 - name: results

 persistentVolumeClaim:

 claimName: tensorflow-results

 containers:

 - name: netapp-tensorflow-py2

 image: netapp/tensorflow-py2:19.03.0

 command: ["python", "/netapp/scripts/run.py", "--

dataset_dir=/mnt/mount_0/dataset/imagenet", "--dgx_version=dgx1", "--

num_devices=8"]

 resources:

 limits:

 nvidia.com/gpu: 8

 volumeMounts:

 - mountPath: /dev/shm

 name: dshm

 - mountPath: /mnt/mount_0

 name: testdata-iface1

 - mountPath: /mnt/mount_1

 name: testdata-iface2

 - mountPath: /tmp

 name: results

 securityContext:

 privileged: true

 restartPolicy: Never

EOF

$ kubectl create -f ./netapp-tensorflow-single-imagenet.yaml

job.batch/netapp-tensorflow-single-imagenet created

$ kubectl get jobs

NAME COMPLETIONS DURATION AGE

netapp-tensorflow-single-imagenet 0/1 24s 24s

112

2. Confirm that the job that you created in step 1 is running correctly. The following example command
confirms that a single pod was created for the job, as specified in the job definition, and that this pod is
currently running on one of the GPU worker nodes.

$ kubectl get pods -o wide

NAME READY STATUS

RESTARTS AGE

IP NODE NOMINATED NODE

netapp-tensorflow-single-imagenet-m7x92 1/1 Running 0

3m 10.233.68.61 10.61.218.154 <none>

3. Confirm that the job that you created in step 1 completes successfully. The following example commands
confirm that the job completed successfully.

113

$ kubectl get jobs

NAME COMPLETIONS DURATION

AGE

netapp-tensorflow-single-imagenet 1/1 5m42s

10m

$ kubectl get pods

NAME READY STATUS

RESTARTS AGE

netapp-tensorflow-single-imagenet-m7x92 0/1 Completed

0 11m

$ kubectl logs netapp-tensorflow-single-imagenet-m7x92

[netapp-tensorflow-single-imagenet-m7x92:00008] PMIX ERROR: NO-

PERMISSIONS in file gds_dstore.c at line 702

[netapp-tensorflow-single-imagenet-m7x92:00008] PMIX ERROR: NO-

PERMISSIONS in file gds_dstore.c at line 711

Total images/sec = 6530.59125

================ Clean Cache !!! ==================

mpirun -allow-run-as-root -np 1 -H localhost:1 bash -c 'sync; echo 1 >

/proc/sys/vm/drop_caches'

===

mpirun -allow-run-as-root -np 8 -H localhost:8 -bind-to none -map-by

slot -x NCCL_DEBUG=INFO -x LD_LIBRARY_PATH -x PATH python

/netapp/tensorflow/benchmarks_190205/scripts/tf_cnn_benchmarks/tf_cnn_be

nchmarks.py --model=resnet50 --batch_size=256 --device=gpu

--force_gpu_compatible=True --num_intra_threads=1 --num_inter_threads=48

--variable_update=horovod --batch_group_size=20 --num_batches=500

--nodistortions --num_gpus=1 --data_format=NCHW --use_fp16=True

--use_tf_layers=False --data_name=imagenet --use_datasets=True

--data_dir=/mnt/mount_0/dataset/imagenet

--datasets_parallel_interleave_cycle_length=10

--datasets_sloppy_parallel_interleave=False --num_mounts=2

--mount_prefix=/mnt/mount_%d --datasets_prefetch_buffer_size=2000

--datasets_use_prefetch=True --datasets_num_private_threads=4

--horovod_device=gpu >

/tmp/20190814_105450_tensorflow_horovod_rdma_resnet50_gpu_8_256_b500_ima

genet_nodistort_fp16_r10_m2_nockpt.txt 2>&1

4. Optional: Clean up job artifacts. The following example commands show the deletion of the job object that
was created in step 1.

When you delete the job object, Kubernetes automatically deletes any associated pods.

114

$ kubectl get jobs

NAME COMPLETIONS DURATION

AGE

netapp-tensorflow-single-imagenet 1/1 5m42s

10m

$ kubectl get pods

NAME READY STATUS

RESTARTS AGE

netapp-tensorflow-single-imagenet-m7x92 0/1 Completed

0 11m

$ kubectl delete job netapp-tensorflow-single-imagenet

job.batch "netapp-tensorflow-single-imagenet" deleted

$ kubectl get jobs

No resources found.

$ kubectl get pods

No resources found.

Execute a Synchronous Distributed AI Workload

To execute a synchronous multinode AI and ML job in your Kubernetes cluster, perform
the following tasks on the deployment jump host. This process enables you to take
advantage of data that is stored on a NetApp volume and to use more GPUs than a
single worker node can provide. See the following figure for a depiction of a synchronous
distributed AI job.

Synchronous distributed jobs can help increase performance and training accuracy compared
with asynchronous distributed jobs. A discussion of the pros and cons of synchronous jobs
versus asynchronous jobs is outside the scope of this document.

1. The following example commands show the creation of one worker that participates in the synchronous
distributed execution of the same TensorFlow benchmark job that was executed on a single node in the
example in the section Execute a Single-Node AI Workload. In this specific example, only a single worker
is deployed because the job is executed across two worker nodes.

This example worker deployment requests eight GPUs and thus can run on a single GPU worker node that

115

features eight or more GPUs. If your GPU worker nodes feature more than eight GPUs, to maximize
performance, you might want to increase this number to be equal to the number of GPUs that your worker
nodes feature. For more information about Kubernetes deployments, see the official Kubernetes
documentation.

A Kubernetes deployment is created in this example because this specific containerized worker would
never complete on its own. Therefore, it doesn’t make sense to deploy it by using the Kubernetes job
construct. If your worker is designed or written to complete on its own, then it might make sense to use the
job construct to deploy your worker.

The pod that is specified in this example deployment specification is given a hostNetwork value of true.
This value means that the pod uses the host worker node’s networking stack instead of the virtual
networking stack that Kubernetes usually creates for each pod. This annotation is used in this case
because the specific workload relies on Open MPI, NCCL, and Horovod to execute the workload in a
synchronous distributed manner. Therefore, it requires access to the host networking stack. A discussion
about Open MPI, NCCL, and Horovod is outside the scope of this document. Whether or not this

hostNetwork: true annotation is necessary depends on the requirements of the specific workload that

you are executing. For more information about the hostNetwork field, see the official Kubernetes
documentation.

$ cat << EOF > ./netapp-tensorflow-multi-imagenet-worker.yaml

apiVersion: apps/v1

kind: Deployment

metadata:

 name: netapp-tensorflow-multi-imagenet-worker

spec:

 replicas: 1

 selector:

 matchLabels:

 app: netapp-tensorflow-multi-imagenet-worker

 template:

 metadata:

 labels:

 app: netapp-tensorflow-multi-imagenet-worker

 spec:

 hostNetwork: true

 volumes:

 - name: dshm

 emptyDir:

 medium: Memory

 - name: testdata-iface1

 persistentVolumeClaim:

 claimName: pb-fg-all-iface1

 - name: testdata-iface2

 persistentVolumeClaim:

 claimName: pb-fg-all-iface2

 - name: results

 persistentVolumeClaim:

 claimName: tensorflow-results

116

https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/policy/pod-security-policy/
https://kubernetes.io/docs/concepts/policy/pod-security-policy/

 containers:

 - name: netapp-tensorflow-py2

 image: netapp/tensorflow-py2:19.03.0

 command: ["bash", "/netapp/scripts/start-slave-multi.sh",

"22122"]

 resources:

 limits:

 nvidia.com/gpu: 8

 volumeMounts:

 - mountPath: /dev/shm

 name: dshm

 - mountPath: /mnt/mount_0

 name: testdata-iface1

 - mountPath: /mnt/mount_1

 name: testdata-iface2

 - mountPath: /tmp

 name: results

 securityContext:

 privileged: true

EOF

$ kubectl create -f ./netapp-tensorflow-multi-imagenet-worker.yaml

deployment.apps/netapp-tensorflow-multi-imagenet-worker created

$ kubectl get deployments

NAME DESIRED CURRENT UP-TO-DATE

AVAILABLE AGE

netapp-tensorflow-multi-imagenet-worker 1 1 1

1 4s

2. Confirm that the worker deployment that you created in step 1 launched successfully. The following
example commands confirm that a single worker pod was created for the deployment, as indicated in the
deployment definition, and that this pod is currently running on one of the GPU worker nodes.

$ kubectl get pods -o wide

NAME READY

STATUS RESTARTS AGE

IP NODE NOMINATED NODE

netapp-tensorflow-multi-imagenet-worker-654fc7f486-v6725 1/1

Running 0 60s 10.61.218.154 10.61.218.154 <none>

$ kubectl logs netapp-tensorflow-multi-imagenet-worker-654fc7f486-v6725

22122

3. Create a Kubernetes job for a master that kicks off, participates in, and tracks the execution of the
synchronous multinode job. The following example commands create one master that kicks off, participates
in, and tracks the synchronous distributed execution of the same TensorFlow benchmark job that was
executed on a single node in the example in the section Execute a Single-Node AI Workload.

117

This example master job requests eight GPUs and thus can run on a single GPU worker node that features
eight or more GPUs. If your GPU worker nodes feature more than eight GPUs, to maximize performance,
you might want to increase this number to be equal to the number of GPUs that your worker nodes feature.

The master pod that is specified in this example job definition is given a hostNetwork value of true, just

as the worker pod was given a hostNetwork value of true in step 1. See step 1 for details about why
this value is necessary.

$ cat << EOF > ./netapp-tensorflow-multi-imagenet-master.yaml

apiVersion: batch/v1

kind: Job

metadata:

 name: netapp-tensorflow-multi-imagenet-master

spec:

 backoffLimit: 5

 template:

 spec:

 hostNetwork: true

 volumes:

 - name: dshm

 emptyDir:

 medium: Memory

 - name: testdata-iface1

 persistentVolumeClaim:

 claimName: pb-fg-all-iface1

 - name: testdata-iface2

 persistentVolumeClaim:

 claimName: pb-fg-all-iface2

 - name: results

 persistentVolumeClaim:

 claimName: tensorflow-results

 containers:

 - name: netapp-tensorflow-py2

 image: netapp/tensorflow-py2:19.03.0

 command: ["python", "/netapp/scripts/run.py", "--

dataset_dir=/mnt/mount_0/dataset/imagenet", "--port=22122", "--

num_devices=16", "--dgx_version=dgx1", "--

nodes=10.61.218.152,10.61.218.154"]

 resources:

 limits:

 nvidia.com/gpu: 8

 volumeMounts:

 - mountPath: /dev/shm

 name: dshm

 - mountPath: /mnt/mount_0

 name: testdata-iface1

 - mountPath: /mnt/mount_1

118

 name: testdata-iface2

 - mountPath: /tmp

 name: results

 securityContext:

 privileged: true

 restartPolicy: Never

EOF

$ kubectl create -f ./netapp-tensorflow-multi-imagenet-master.yaml

job.batch/netapp-tensorflow-multi-imagenet-master created

$ kubectl get jobs

NAME COMPLETIONS DURATION AGE

netapp-tensorflow-multi-imagenet-master 0/1 25s 25s

4. Confirm that the master job that you created in step 3 is running correctly. The following example command
confirms that a single master pod was created for the job, as indicated in the job definition, and that this
pod is currently running on one of the GPU worker nodes. You should also see that the worker pod that you
originally saw in step 1 is still running and that the master and worker pods are running on different nodes.

$ kubectl get pods -o wide

NAME READY

STATUS RESTARTS AGE

IP NODE NOMINATED NODE

netapp-tensorflow-multi-imagenet-master-ppwwj 1/1

Running 0 45s 10.61.218.152 10.61.218.152 <none>

netapp-tensorflow-multi-imagenet-worker-654fc7f486-v6725 1/1

Running 0 26m 10.61.218.154 10.61.218.154 <none>

5. Confirm that the master job that you created in step 3 completes successfully. The following example
commands confirm that the job completed successfully.

$ kubectl get jobs

NAME COMPLETIONS DURATION AGE

netapp-tensorflow-multi-imagenet-master 1/1 5m50s 9m18s

$ kubectl get pods

NAME READY

STATUS RESTARTS AGE

netapp-tensorflow-multi-imagenet-master-ppwwj 0/1

Completed 0 9m38s

netapp-tensorflow-multi-imagenet-worker-654fc7f486-v6725 1/1

Running 0 35m

$ kubectl logs netapp-tensorflow-multi-imagenet-master-ppwwj

[10.61.218.152:00008] WARNING: local probe returned unhandled

shell:unknown assuming bash

rm: cannot remove '/lib': Is a directory

[10.61.218.154:00033] PMIX ERROR: NO-PERMISSIONS in file gds_dstore.c at

119

line 702

[10.61.218.154:00033] PMIX ERROR: NO-PERMISSIONS in file gds_dstore.c at

line 711

[10.61.218.152:00008] PMIX ERROR: NO-PERMISSIONS in file gds_dstore.c at

line 702

[10.61.218.152:00008] PMIX ERROR: NO-PERMISSIONS in file gds_dstore.c at

line 711

Total images/sec = 12881.33875

================ Clean Cache !!! ==================

mpirun -allow-run-as-root -np 2 -H 10.61.218.152:1,10.61.218.154:1 -mca

pml ob1 -mca btl ^openib -mca btl_tcp_if_include enp1s0f0 -mca

plm_rsh_agent ssh -mca plm_rsh_args "-p 22122" bash -c 'sync; echo 1 >

/proc/sys/vm/drop_caches'

===

mpirun -allow-run-as-root -np 16 -H 10.61.218.152:8,10.61.218.154:8

-bind-to none -map-by slot -x NCCL_DEBUG=INFO -x LD_LIBRARY_PATH -x PATH

-mca pml ob1 -mca btl ^openib -mca btl_tcp_if_include enp1s0f0 -x

NCCL_IB_HCA=mlx5 -x NCCL_NET_GDR_READ=1 -x NCCL_IB_SL=3 -x

NCCL_IB_GID_INDEX=3 -x

NCCL_SOCKET_IFNAME=enp5s0.3091,enp12s0.3092,enp132s0.3093,enp139s0.3094

-x NCCL_IB_CUDA_SUPPORT=1 -mca orte_base_help_aggregate 0 -mca

plm_rsh_agent ssh -mca plm_rsh_args "-p 22122" python

/netapp/tensorflow/benchmarks_190205/scripts/tf_cnn_benchmarks/tf_cnn_be

nchmarks.py --model=resnet50 --batch_size=256 --device=gpu

--force_gpu_compatible=True --num_intra_threads=1 --num_inter_threads=48

--variable_update=horovod --batch_group_size=20 --num_batches=500

--nodistortions --num_gpus=1 --data_format=NCHW --use_fp16=True

--use_tf_layers=False --data_name=imagenet --use_datasets=True

--data_dir=/mnt/mount_0/dataset/imagenet

--datasets_parallel_interleave_cycle_length=10

--datasets_sloppy_parallel_interleave=False --num_mounts=2

--mount_prefix=/mnt/mount_%d --datasets_prefetch_buffer_size=2000 --

datasets_use_prefetch=True --datasets_num_private_threads=4

--horovod_device=gpu >

/tmp/20190814_161609_tensorflow_horovod_rdma_resnet50_gpu_16_256_b500_im

agenet_nodistort_fp16_r10_m2_nockpt.txt 2>&1

6. Delete the worker deployment when you no longer need it. The following example commands show the
deletion of the worker deployment object that was created in step 1.

When you delete the worker deployment object, Kubernetes automatically deletes any associated worker
pods.

120

$ kubectl get deployments

NAME DESIRED CURRENT UP-TO-DATE

AVAILABLE AGE

netapp-tensorflow-multi-imagenet-worker 1 1 1

1 43m

$ kubectl get pods

NAME READY

STATUS RESTARTS AGE

netapp-tensorflow-multi-imagenet-master-ppwwj 0/1

Completed 0 17m

netapp-tensorflow-multi-imagenet-worker-654fc7f486-v6725 1/1

Running 0 43m

$ kubectl delete deployment netapp-tensorflow-multi-imagenet-worker

deployment.extensions "netapp-tensorflow-multi-imagenet-worker" deleted

$ kubectl get deployments

No resources found.

$ kubectl get pods

NAME READY STATUS

RESTARTS AGE

netapp-tensorflow-multi-imagenet-master-ppwwj 0/1 Completed 0

18m

7. Optional: Clean up the master job artifacts. The following example commands show the deletion of the
master job object that was created in step 3.

When you delete the master job object, Kubernetes automatically deletes any associated master pods.

$ kubectl get jobs

NAME COMPLETIONS DURATION AGE

netapp-tensorflow-multi-imagenet-master 1/1 5m50s 19m

$ kubectl get pods

NAME READY STATUS

RESTARTS AGE

netapp-tensorflow-multi-imagenet-master-ppwwj 0/1 Completed 0

19m

$ kubectl delete job netapp-tensorflow-multi-imagenet-master

job.batch "netapp-tensorflow-multi-imagenet-master" deleted

$ kubectl get jobs

No resources found.

$ kubectl get pods

No resources found.

121

MLRun Pipeline with Iguazio

TR-4834: NetApp and Iguazio for MLRun Pipeline

Rick Huang, David Arnette, NetApp
Marcelo Litovsky, Iguazio

This document covers the details of the MLRun pipeline using NetApp ONTAP AI, NetApp
AI Control Plane, NetApp Cloud Volumes software, and the Iguazio Data Science
Platform. We used Nuclio serverless function, Kubernetes Persistent Volumes, NetApp
Cloud Volumes, NetApp Snapshot copies, Grafana dashboard, and other services on the
Iguazio platform to build an end-to-end data pipeline for the simulation of network failure
detection. We integrated Iguazio and NetApp technologies to enable fast model
deployment, data replication, and production monitoring capabilities on premises as well
as in the cloud.

The work of a data scientist should be focused on the training and tuning of machine learning (ML) and artificial
intelligence (AI) models. However, according to research by Google, data scientists spend ~80% of their time
figuring out how to make their models work with enterprise applications and run at scale, as shown in the
following image depicting model development in the AI/ML workflow.

To manage end-to-end AI/ML projects, a wider understanding of enterprise components is needed. Although
DevOps have taken over the definition, integration, and deployment these types of components, machine
learning operations target a similar flow that includes AI/ML projects. To get an idea of what an end-to-end
AI/ML pipeline touches in the enterprise, see the following list of required components:

• Storage

• Networking

122

• Databases

• File systems

• Containers

• Continuous integration and continuous deployment (CI/CD) pipeline

• Development integrated development environment (IDE)

• Security

• Data access policies

• Hardware

• Cloud

• Virtualization

• Data science toolsets and libraries

In this paper, we demonstrate how the partnership between NetApp and Iguazio drastically simplifies the
development of an end-to-end AI/ML pipeline. This simplification accelerates the time to market for all of your
AI/ML applications.

Target Audience

The world of data science touches multiple disciplines in information technology and business.

• The data scientist needs the flexibility to use their tools and libraries of choice.

• The data engineer needs to know how the data flows and where it resides.

• A DevOps engineer needs the tools to integrate new AI/ML applications into their CI/CD pipelines.

• Business users want to have access to AI/ML applications. We describe how NetApp and Iguazio help
each of these roles bring value to business with our platforms.

Solution Overview

This solution follows the lifecycle of an AI/ML application. We start with the work of data scientists to define the
different steps needed to prep data and train and deploy models. We follow with the work needed to create a
full pipeline with the ability to track artifacts, experiment with execution, and deploy to Kubeflow. To complete
the full cycle, we integrate the pipeline with NetApp Cloud Volumes to enable data versioning, as seen in the
following image.

123

Technology Overview

This article provides an overview of the colution for MLRun pipeline using NetApp ONTAP
AI, NetApp AI Control Plane, NetApp Cloud Volumes software, and the Iguazio Data
Science Platform.

NetApp Overview

NetApp is the data authority for the hybrid cloud. NetApp provides a full range of hybrid cloud data services
that simplify management of applications and data across cloud and on-premises environments to accelerate
digital transformation. Together with our partners, NetApp empowers global organizations to unleash the full
potential of their data to expand customer touch points, foster greater innovation, and optimize their operations.

NetApp ONTAP AI

NetApp ONTAP AI, powered by NVIDIA DGX systems and NetApp cloud-connected all-flash storage,
streamlines the flow of data reliably and speeds up analytics, training, and inference with your data fabric that
spans from edge to core to cloud. It gives IT organizations an architecture that provides the following benefits:

• Eliminates design complexities

• Allows independent scaling of compute and storage

• Enables customers to start small and scale seamlessly

• Offers a range of storage options for various performance and cost pointsNetApp ONTAP AI offers
converged infrastructure stacks incorporating NVIDIA DGX-1, a petaflop-scale AI system, and NVIDIA
Mellanox high-performance Ethernet switches to unify AI workloads, simplify deployment, and accelerate
ROI. We leveraged ONTAP AI with one DGX-1 and NetApp AFF A800 storage system for this technical
report. The following image shows the topology of ONTAP AI with the DGX-1 system used in this
validation.

124

NetApp AI Control Plane

The NetApp AI Control Plane enables you to unleash AI and ML with a solution that offers extreme scalability,
streamlined deployment, and nonstop data availability. The AI Control Plane solution integrates Kubernetes
and Kubeflow with a data fabric enabled by NetApp. Kubernetes, the industry-standard container orchestration
platform for cloud-native deployments, enables workload scalability and portability. Kubeflow is an open-source
machine-learning platform that simplifies management and deployment, enabling developers to do more data
science in less time. A data fabric enabled by NetApp offers uncompromising data availability and portability to
make sure that your data is accessible across the pipeline, from edge to core to cloud. This technical report
uses the NetApp AI Control Plane in an MLRun pipeline. The following image shows Kubernetes cluster
management page where you can have different endpoints for each cluster. We connected NFS Persistent
Volumes to the Kubernetes cluster, and the following images show an Persistent Volume connected to the
cluster, where NetApp Trident offers persistent storage support and data management capabilities.

125

https://www.netapp.com/us/media/ds-netapp-project-trident.pdf

126

Iguazio Overview

The Iguazio Data Science Platform is a fully integrated and secure data- science platform as a service (PaaS)
that simplifies development, accelerates performance, facilitates collaboration, and addresses operational
challenges. This platform incorporates the following components, and the Iguazio Data Science Platform is
presented in the following image:

• A data-science workbench that includes Jupyter Notebooks, integrated analytics engines, and Python
packages

• Model management with experiments tracking and automated pipeline capabilities

• Managed data and ML services over a scalable Kubernetes cluster

• Nuclio, a real-time serverless functions framework

• An extremely fast and secure data layer that supports SQL, NoSQL, time-series databases, files (simple
objects), and streaming

• Integration with third-party data sources such as NetApp, Amazon S3, HDFS, SQL databases, and
streaming or messaging protocols

• Real-time dashboards based on Grafana

127

Software and Hardware Requirements

This article defines the hardware requirements that must be met in order to deploy this
solution.

Network Configuration

The following is the network configuration requirement for setting up in the cloud:

• The Iguazio cluster and NetApp Cloud Volumes must be in the same virtual private cloud.

• The cloud manager must have access to port 6443 on the Iguazio app nodes.

• We used Amazon Web Services in this technical report. However, users have the option of deploying the
solution in any Cloud provider.For on-premises testing in ONTAP AI with NVIDIA DGX-1, we used the
Iguazio hosted DNS service for convenience.

Clients must be able to access dynamically created DNS domains. Customers can use their own DNS if
desired.

Hardware Requirements

You can install Iguazio on-premises in your own cluster. We have verified the solution in NetApp ONTAP AI
with an NVIDIA DGX-1 system. The following table lists the hardware used to test this solution.

Hardware Quantity

DGX-1 systems 1

NetApp AFF A800 system 1 high-availability (HA) pair, includes 2 controllers and
48 NVMe SSDs (3.8TB or above)

Cisco Nexus 3232C network switches 2

The following table lists the software components required for on-premise testing:

128

Software Version or Other Information

NetApp ONTAP data management software 9.7

Cisco NX-OS switch firmware 7.0(3)I6(1)

NVIDIA DGX OS 4.4 - Ubuntu 18.04 LTS

Docker container platform 19.03.5

Container version 20.01-tf1-py2

Machine learning framework TensorFlow 1.15.0

Iguazio Version 2.8+

ESX Server 6.5

This solution was fully tested with Iguazio version 2.5 and NetApp Cloud Volumes ONTAP for AWS. The
Iguazio cluster and NetApp software are both running on AWS.

Software Version or Type

Iguazio Version 2.8+

App node M5.4xlarge

Data node I3.4xlarge

Network Device Failure Prediction Use Case Summary

This use case is based on an Iguazio customer in the telecommunications space in Asia.
With 100K enterprise customers and 125k network outage events per year, there was a
critical need to predict and take proactive action to prevent network failures from affecting
customers. This solution provided them with the following benefits:

• Predictive analytics for network failures

• Integration with a ticketing system

• Taking proactive action to prevent network failuresAs a result of this implementation of Iguazio, 60% of
failures were proactively prevented.

Setup Overview

Iguazio can be installed on-premises or on a cloud provider.

Iguazio Installation

Provisioning can be done as a service and managed by Iguazio or by the customer. In both cases, Iguazio
provides a deployment application (Provazio) to deploy and manage clusters.

For on-premises installation, please refer to NVA-1121 for compute, network, and storage setup. On-premises
deployment of Iguazio is provided by Iguazio without additional cost to the customer. See this page for DNS
and SMTP server configurations. The Provazio installation page is shown as follows.

129

https://www.netapp.com/us/media/nva-1121-design.pdf
https://www.iguazio.com/docs/latest-release/intro/setup/howto/

Configuring Kubernetes Cluster

This section is divided into two parts for cloud and on-premises deployment respectively.

Cloud Deployment Kubernetes Configuration

Through NetApp Cloud Manager, you can define the connection to the Iguazio Kubernetes cluster. Trident
requires access to multiple resources in the cluster to make the volume available.

1. To enable access, obtain the Kubernetes config file from one the Iguazio nodes. The file is located under

/home/Iguazio/.kube/config. Download this file to your desktop.

2. Go to Discover Cluster to configure.

130

3. Upload the Kubernetes config file. See the following image.

4. Deploy Trident and associate a volume with the cluster. See the following image on defining and assigning
a Persistent Volume to the Iguazio cluster.This process creates a Persistent Volume (PV) in Iguazio’s
Kubernetes cluster. Before you can use it, you must define a Persistent Volume Claim (PVC).

131

On-Premises Deployment Kubernetes Configuration

For on-premises installation of NetApp Trident, see TR-4798 for details. After configuring your Kubernetes
cluster and installing NetApp Trident, you can connect Trident to the Iguazio cluster to enable NetApp data
management capabilities, such as taking Snapshot copies of your data and model.

Define Persistent Volume Claim

This article demonstrates how to define a persistent volume claim on a Jupyter notebook.

1. Save the following YAML to a file to create a PVC of type Basic.

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

 name: basic

spec:

 accessModes:

 - ReadWriteOnce

 resources:

 requests:

 storage: 100Gi

 storageClassName: netapp-file

132

https://www.netapp.com/us/media/tr-4798.pdf

2. Apply the YAML file to your Iguazio Kubernetes cluster.

Kubectl -n default-tenant apply -f <your yaml file>

Attach NetApp Volume to the Jupyter Notebook

Iguazio offers several managed services to provide data scientists with a full end-to-end stack for development
and deployment of AI/ML applications. You can read more about these components at the Iguazio Overview of
Application Services and Tools.

One of the managed services is Jupyter Notebook. Each developer gets its own deployment of a notebook
container with the resources they need for development. To give them access to the NetApp Cloud Volume,
you can assign the volume to their container and resource allocation, running user, and environment variable
settings for Persistent Volume Claims is presented in the following image.

For an on-premises configuration, you can refer to TR-4798 on the Trident setup to enable NetApp ONTAP
data management capabilities, such as taking Snapshot copies of your data or model for versioning control.
Add the following line in your Trident back- end config file to make Snapshot directories visible:

{

 …

 "defaults": {

 "snapshotDir": "true"

 }

}

You must create a Trident back- end config file in JSON format, and then run the following Trident command to
reference it:

tridentctl create backend -f <backend-file>

Deploying the Application

The following sections describe how to install and deploy the application.

133

https://www.iguazio.com/docs/intro/latest-release/ecosystem/app-services/
https://www.iguazio.com/docs/intro/latest-release/ecosystem/app-services/
https://www.netapp.com/us/media/tr-4798.pdf
https://netapp-trident.readthedocs.io/en/stable-v18.07/kubernetes/operations/tasks/backends.html

Get Code from GitHub

Now that the NetApp Cloud Volume or NetApp Trident volume is available to the Iguazio
cluster and the developer environment, you can start reviewing the application.

Users have their own workspace (directory). On every notebook, the path to the user directory is /User. The
Iguazio platform manages the directory. If you follow the instructions above, the NetApp Cloud volume is

available in the /netapp directory.

Get the code from GitHub using a Jupyter terminal.

At the Jupyter terminal prompt, clone the project.

cd /User

git clone .

You should now see the netops- netapp folder on the file tree in Jupyter workspace.

Configure Working Environment

Copy the Notebook set_env-Example.ipynb as set_env.ipynb. Open and edit

set_env.ipynb. This notebook sets variables for credentials, file locations, and
execution drivers.

If you follow the instructions above, the following steps are the only changes to make:

1. Obtain this value from the Iguazio services dashboard: docker_registry

Example: docker-registry.default-tenant.app.clusterq.iguaziodev.com:80

134

2. Change admin to your Iguazio username:

IGZ_CONTAINER_PATH = '/users/admin'

The following are the ONTAP system connection details. Include the volume name that was generated
when Trident was installed. The following setting is for an on-premises ONTAP cluster:

ontapClusterMgmtHostname = '0.0.0.0'

ontapClusterAdminUsername = 'USER'

ontapClusterAdminPassword = 'PASSWORD'

sourceVolumeName = 'SOURCE VOLUME'

The following setting is for Cloud Volumes ONTAP:

MANAGER=ontapClusterMgmtHostname

svm='svm'

email='email'

password=ontapClusterAdminPassword

weid="weid"

volume=sourceVolumeName

Create Base Docker Images

Everything you need to build an ML pipeline is included in the Iguazio platform. The developer can define the
specifications of the Docker images required to run the pipeline and execute the image creation from Jupyter

Notebook. Open the notebook create- images.ipynb and Run All Cells.

This notebook creates two images that we use in the pipeline.

• iguazio/netapp. Used to handle ML tasks.

• netapp/pipeline. Contains utilities to handle NetApp Snapshot copies.

Review Individual Jupyter Notebooks

The following table lists the libraries and frameworks we used to build this task. All these components have
been fully integrated with Iguazio’s role- based access and security controls.

135

Libraries/Framework Description

MLRun An managed by Iguazio to enable the assembly,
execution, and monitoring of an ML/AI pipeline.

Nuclio A serverless functions framework integrated with
Iguazio. Also available as an open-source project
managed by Iguazio.

Kubeflow A Kubernetes-based framework to deploy the pipeline.
This is also an open-source project to which Iguazio
contributes. It is integrated with Iguazio for added
security and integration with the rest of the
infrastructure.

Docker A Docker registry run as a service in the Iguazio
platform. You can also change this to connect to your
registry.

NetApp Cloud Volumes Cloud Volumes running on AWS give us access to
large amounts of data and the ability to take Snapshot
copies to version the datasets used for training.

Trident Trident is an open-source project managed by
NetApp. It facilitates the integration with storage and
compute resources in Kubernetes.

We used several notebooks to construct the ML pipeline. Each notebook can be tested individually before
being brought together in the pipeline. We cover each notebook individually following the deployment flow of
this demonstration application.

The desired result is a pipeline that trains a model based on a Snapshot copy of the data and deploys the
model for inference. A block diagram of a completed MLRun pipeline is shown in the following image.

136

Deploy Data Generation Function

This section describes how we used Nuclio serverless functions to generate network device data. The use
case is adapted from an Iguazio client that deployed the pipeline and used Iguazio services to monitor and
predict network device failures.

We simulated data coming from network devices. Executing the Jupyter notebook data- generator.ipynb
creates a serverless function that runs every 10 minutes and generates a Parquet file with new data. To deploy
the function, run all the cells in this notebook. See the Nuclio website to review any unfamiliar components in
this notebook.

A cell with the following comment is ignored when generating the function. Every cell in the notebook is

assumed to be part of the function. Import the Nuclio module to enable %nuclio magic.

nuclio: ignore

import nuclio

In the spec for the function, we defined the environment in which the function executes, how it is triggered, and
the resources it consumes.

137

https://nuclio.io/

spec = nuclio.ConfigSpec(config={"spec.triggers.inference.kind":"cron",

"spec.triggers.inference.attributes.interval" :"10m",

 "spec.readinessTimeoutSeconds" : 60,

 "spec.minReplicas" : 1},……

The init_context function is invoked by the Nuclio framework upon initialization of the function.

def init_context(context):

 ….

Any code not in a function is invoked when the function initializes. When you invoke it, a handler function is
executed. You can change the name of the handler and specify it in the function spec.

def handler(context, event):

 …

You can test the function from the notebook prior to deployment.

%%time

nuclio: ignore

init_context(context)

event = nuclio.Event(body='')

output = handler(context, event)

output

The function can be deployed from the notebook or it can be deployed from a CI/CD pipeline (adapting this
code).

addr = nuclio.deploy_file(name='generator',project='netops',spec=spec,

tag='v1.1')

Pipeline Notebooks

These notebooks are not meant to be executed individually for this setup. This is just a review of each
notebook. We invoked them as part of the pipeline. To execute them individually, review the MLRun
documentation to execute them as Kubernetes jobs.

snap_cv.ipynb

This notebook handles the Cloud Volume Snapshot copies at the beginning of the pipeline. It passes the name
of the volume to the pipeline context. This notebook invokes a shell script to handle the Snapshot copy. While
running in the pipeline, the execution context contains variables to help locate all files needed for execution.

138

While writing this code, the developer does not have to worry about the file location in the container that
executes it. As described later, this application is deployed with all its dependencies, and it is the definition of
the pipeline parameters that provides the execution context.

command = os.path.join(context.get_param('APP_DIR'),"snap_cv.sh")

The created Snapshot copy location is placed in the MLRun context to be consumed by steps in the pipeline.

context.log_result('snapVolumeDetails',snap_path)

The next three notebooks are run in parallel.

data-prep.ipynb

Raw metrics must be turned into features to enable model training. This notebook reads the raw metrics from
the Snapshot directory and writes the features for model training to the NetApp volume.

When running in the context of the pipeline, the input DATA_DIR contains the Snapshot copy location.

metrics_table = os.path.join(str(mlruncontext.get_input('DATA_DIR',

os.getenv('DATA_DIR','/netpp'))),

 mlruncontext.get_param('metrics_table',

os.getenv('metrics_table','netops_metrics_parquet')))

describe.ipynb

To visualize the incoming metrics, we deploy a pipeline step that provides plots and graphs that are available
through the Kubeflow and MLRun UIs. Each execution has its own version of this visualization tool.

ax.set_title("features correlation")

plt.savefig(os.path.join(base_path, "plots/corr.png"))

context.log_artifact(PlotArtifact("correlation", body=plt.gcf()),

local_path="plots/corr.html")

deploy-feature-function.ipynb

We continuously monitor the metrics looking for anomalies. This notebook creates a serverless function that
generates the features need to run prediction on incoming metrics. This notebook invokes the creation of the

function. The function code is in the notebook data- prep.ipynb. Notice that we use the same notebook as
a step in the pipeline for this purpose.

training.ipynb

After we create the features, we trigger the model training. The output of this step is the model to be used for
inferencing. We also collect statistics to keep track of each execution (experiment).

139

For example, the following command enters the accuracy score into the context for that experiment. This value
is visible in Kubeflow and MLRun.

context.log_result(‘accuracy’,score)

deploy-inference-function.ipynb

The last step in the pipeline is to deploy the model as a serverless function for continuous inferencing. This

notebook invokes the creation of the serverless function defined in nuclio-inference- function.ipynb.

Review and Build Pipeline

The combination of running all the notebooks in a pipeline enables the continuous run of experiments to

reassess the accuracy of the model against new metrics. First, open the pipeline.ipynb notebook. We take
you through details that show how NetApp and Iguazio simplify the deployment of this ML pipeline.

We use MLRun to provide context and handle resource allocation to each step of the pipeline. The MLRun API
service runs in the Iguazio platform and is the point of interaction with Kubernetes resources. Each developer
cannot directly request resources; the API handles the requests and enables access controls.

MLRun API connection definition

mlconf.dbpath = 'http://mlrun-api:8080'

The pipeline can work with NetApp Cloud Volumes and on-premises volumes. We built this demonstration to
use Cloud Volumes, but you can see in the code the option to run on-premises.

140

Initialize the NetApp snap fucntion once for all functions in a notebook

if [NETAPP_CLOUD_VOLUME]:

 snapfn =

code_to_function('snap',project='NetApp',kind='job',filename="snap_cv.ipyn

b").apply(mount_v3io())

 snap_params = {

 "metrics_table" : metrics_table,

 "NETAPP_MOUNT_PATH" : NETAPP_MOUNT_PATH,

 'MANAGER' : MANAGER,

 'svm' : svm,

 'email': email,

 'password': password ,

 'weid': weid,

 'volume': volume,

 "APP_DIR" : APP_DIR

 }

else:

 snapfn =

code_to_function('snap',project='NetApp',kind='job',filename="snapshot.ipy

nb").apply(mount_v3io())

….

snapfn.spec.image = docker_registry + '/netapp/pipeline:latest'

snapfn.spec.volume_mounts =

[snapfn.spec.volume_mounts[0],netapp_volume_mounts]

 snapfn.spec.volumes = [snapfn.spec.volumes[0],netapp_volumes]

The first action needed to turn a Jupyter notebook into a Kubeflow step is to turn the code into a function. A
function has all the specifications required to run that notebook. As you scroll down the notebook, you can see
that we define a function for every step in the pipeline.

Part of the Notebook Description

<code_to_function>
(part of the MLRun module)

Name of the function:
Project name. used to organize all project artifacts.
This is visible in the MLRun UI.
Kind. In this case, a Kubernetes job. This could be
Dask, mpi, sparkk8s, and more. See the MLRun
documentation for more details.
File. The name of the notebook. This can also be a
location in Git (HTTP).

image The name of the Docker image we are using for this
step. We created this earlier with the create-
image.ipynb notebook.

volume_mounts & volumes Details to mount the NetApp Cloud Volume at run
time.

We also define parameters for the steps.

141

params={ "FEATURES_TABLE":FEATURES_TABLE,

 "SAVE_TO" : SAVE_TO,

 "metrics_table" : metrics_table,

 'FROM_TSDB': 0,

 'PREDICTIONS_TABLE': PREDICTIONS_TABLE,

 'TRAIN_ON_LAST': '1d',

 'TRAIN_SIZE':0.7,

 'NUMBER_OF_SHARDS' : 4,

 'MODEL_FILENAME' : 'netops.v3.model.pickle',

 'APP_DIR' : APP_DIR,

 'FUNCTION_NAME' : 'netops-inference',

 'PROJECT_NAME' : 'netops',

 'NETAPP_SIM' : NETAPP_SIM,

 'NETAPP_MOUNT_PATH': NETAPP_MOUNT_PATH,

 'NETAPP_PVC_CLAIM' : NETAPP_PVC_CLAIM,

 'IGZ_CONTAINER_PATH' : IGZ_CONTAINER_PATH,

 'IGZ_MOUNT_PATH' : IGZ_MOUNT_PATH

 }

After you have the function definition for all steps, you can construct the pipeline. We use the kfp module to
make this definition. The difference between using MLRun and building on your own is the simplification and
shortening of the coding.

The functions we defined are turned into step components using the as_step function of MLRun.

Snapshot Step Definition

Initiate a Snapshot function, output, and mount v3io as source:

snap = snapfn.as_step(NewTask(handler='handler',params=snap_params),

name='NetApp_Cloud_Volume_Snapshot',outputs=['snapVolumeDetails','training

_parquet_file']).apply(mount_v3io())

Parameters Details

NewTask NewTask is the definition of the function run.

(MLRun module) Handler. Name of the Python function to invoke. We
used the name handler in the notebook, but it is not
required.
params. The parameters we passed to the execution.
Inside our code, we use context.get_param
(‘PARAMETER’) to get the values.

142

Parameters Details

as_step Name. Name of the Kubeflow pipeline step.
outputs. These are the values that the step adds to
the dictionary on completion. Take a look at the
snap_cv.ipynb notebook.
mount_v3io(). This configures the step to mount /User
for the user executing the pipeline.

prep = data_prep.as_step(name='data-prep',

handler='handler',params=params,

 inputs = {'DATA_DIR':

snap.outputs['snapVolumeDetails']} ,

out_path=artifacts_path).apply(mount_v3io()).after(snap)

Parameters Details

inputs You can pass to a step the outputs of a previous step.
In this case, snap.outputs['snapVolumeDetails'] is the
name of the Snapshot copy we created on the snap
step.

out_path A location to place artifacts generating using the
MLRun module log_artifacts.

You can run pipeline.ipynb from top to bottom. You can then go to the Pipelines tab from the Iguazio
dashboard to monitor progress as seen in the Iguazio dashboard Pipelines tab.

143

Because we logged the accuracy of training step in every run, we have a record of accuracy for each
experiment, as seen in the record of training accuracy.

If you select the Snapshot step, you can see the name of the Snapshot copy that was used to run this
experiment.

144

The described step has visual artifacts to explore the metrics we used. You can expand to view the full plot as
seen in the following image.

The MLRun API database also tracks inputs, outputs, and artifacts for each run organized by project. An
example of inputs, outputs, and artifacts for each run can be seen in the following image.

145

For each job, we store additional details.

There is more information about MLRun than we can cover in this document. Al artifacts, including the
definition of the steps and functions, can be saved to the API database, versioned, and invoked individually or
as a full project. Projects can also be saved and pushed to Git for later use. We encourage you to learn more
at the MLRun GitHub site.

Deploy Grafana Dashboard

After everything is deployed, we run inferences on new data. The models predict failure
on network device equipment. The results of the prediction are stored in an Iguazio
TimeSeries table. You can visualize the results with Grafana in the platform integrated
with Iguazio’s security and data access policy.

You can deploy the dashboard by importing the provided JSON file into the Grafana interfaces in the cluster.

1. To verify that the Grafana service is running, look under Services.

146

https://github.com/mlrun/mlrun

2. If it is not present, deploy an instance from the Services section:

a. Click New Service.

b. Select Grafana from the list.

c. Accept the defaults.

d. Click Next Step.

e. Enter your user ID.

f. Click Save Service.

g. Click Apply Changes at the top.

3. To deploy the dashboard, download the file NetopsPredictions-Dashboard.json through the Jupyter
interface.

147

4. Open Grafana from the Services section and import the dashboard.

5. Click Upload *.json File and select the file that you downloaded earlier (NetopsPredictions-

Dashboard.json). The dashboard displays after the upload is completed.

148

Deploy Cleanup Function

When you generate a lot of data, it is important to keep things clean and organized. To do so, deploy the

cleanup function with the cleanup.ipynb notebook.

Benefits

NetApp and Iguazio speed up and simplify the deployment of AI and ML applications by building in essential
frameworks, such as Kubeflow, Apache Spark, and TensorFlow, along with orchestration tools like Docker and
Kubernetes. By unifying the end-to-end data pipeline, NetApp and Iguazio reduce the latency and complexity
inherent in many advanced computing workloads, effectively bridging the gap between development and
operations. Data scientists can run queries on large datasets and securely share data and algorithmic models
with authorized users during the training phase. After the containerized models are ready for production, you
can easily move them from development environments to operational environments.

Conclusion

When building your own AI/ML pipelines, configuring the integration, management,
security, and accessibility of the components in an architecture is a challenging task.
Giving developers access and control of their environment presents another set of
challenges.

The combination of NetApp and Iguazio brings these technologies together as managed services to accelerate
technology adoption and improve the time to market for new AI/ML applications.

TR-4915: Data movement with E-Series and BeeGFS for AI and analytics workflows

Cody Harryman and Ryan Rodine, NetApp

TR-4915 describes how to move data from any data repository into a BeeGFS file system
backed by NetApp E-Series SAN storage. For artificial intelligence (AI) and machine

149

learning (ML) applications, customers might routinely need to move large data sets
exceeding many petabytes of data into their BeeGFS clusters for model development.
This document explores how to accomplish this by using NetApp XCP and NetApp
BlueXP Copy and Sync tools.

TR-4915: Data movement with E-Series and BeeGFS for AI and analytics workflows

Vector Database Solution with NetApp

Karthikeyan Nagalingam and Rodrigo Nascimento, NetApp

This document provides a thorough exploration of the deployment and management of
vector databases, such as Milvus, and pgvecto an open-source PostgreSQL extension,
using NetApp’s storage solutions. It details the infrastructure guidelines for using NetApp
ONTAP and StorageGRID object storage and validates the application of Milvus database
in AWS FSX for NetApp ONTAP. The document elucidates NetApp’s file-object duality
and its utility for vector databases and applications that support vector embeddings. It
emphasizes the capabilities of SnapCenter, NetApp’s enterprise management product, in
offering backup and restore functionalities for vector databases, ensuring data integrity
and availability. The document further delves into NetApp’s hybrid cloud solution,
discussing its role in data replication and protection across on-premises and cloud
environments. It includes insights into the performance validation of vector databases on
NetApp ONTAP, and concludes with two practical use cases on generative AI : RAG with
LLM and the NetApp’s internal ChatAI. This document serves as a comprehensive guide
for leveraging NetApp’s storage solutions for managing vector databases.

The Reference Architecture focus on the following:

1. Introduction

2. Solution Overview

3. Vector Database

4. Technology Requirement

5. Deployment Procedure

6. Solution Verification Overview

◦ Milvus cluster setup with Kubernetes in on-premises

◦ Milvus with Amazon FSxN for NetApp ONTAP – file and object duality

◦ Vector database protection using NetApp SnapCenter.

◦ Disaster Recovery using NetApp SnapMirror

◦ Performance validation

7. Vector Database with Instaclustr using PostgreSQL: pgvector

8. Vector Database Use Cases

9. Conclusion

10. Appendix A: values.yaml

150

https://www.netapp.com/pdf.html?item=/media/65882-tr-4915.pdf

11. Appendix B: prepare_data_netapp_new.py

12. Appendix C: verify_data_netapp.py

13. Appendix D: docker-compose.yml

Introduction

This section provide an introduction to vector database solution for NetApp.

Introduction

Vector databases effectively address the challenges that are designed to handle the complexities of semantic
search in Large Language Models (LLMs) and generative Artificial Intelligence (AI). Unlike traditional data
management systems, vector databases are capable of processing and searching through various types of
data, including images, videos, text, audio, and other forms of unstructured data, by using the content of the
data itself rather than labels or tags.

The limitations of Relational Database Management Systems (RDBMS) are well-documented, particularly their
struggles with high-dimensional data representations and unstructured data common in AI applications.
RDBMS often necessitate a time-consuming and error-prone process of flattening data into more manageable
structures, leading to delays and inefficiencies in searches. Vector databases, however, are designed to
circumvent these issues, offering a more efficient and accurate solution for managing and searching through
complex and high-dimensional data, thus facilitating the advancement of AI applications.

This document serves as a comprehensive guide for customers who are currently using or planning to use
vector databases, detailing the best practices for utilizing vector databases on platforms such as NetApp
ONTAP, NetApp StorageGRID, Amazon FSxN for NetApp ONTAP, and SnapCenter. The content provided
herein covers a range of topics:

• Infrastructure guidelines for vector databases, like Milvus, provided by NetApp storage through NetApp
ONTAP and StorageGRID object storage.

• Validation of the Milvus database in AWS FSX for NetApp ONTAP through file and object store.

• Delves into NetApp’s file-object duality, demonstrating its utility for data in vector databases as well as
other applications.

• How NetApp’s Data Protection Management product, SnapCenter, offers backup and restore functionalities
for vector database data.

• How NetApp’s Hybrid Cloud offers data replication and protection across on-premises and cloud
environments.

• Provides insights into the performance validation of vector databases like Milvus and pgvector on NetApp
ONTAP.

• Two specific use cases: Retrieval Augmented Generation (RAG) with Large Language Models(LLM) and
the NetApp IT team’s ChatAI, thereby offering practical examples of the concepts and practices outlined.

Solution Overview

This section provides an overview for the NetApp vector database solution.

Solution overview

This solution showcases the distinctive benefits and capabilities that NetApp brings to the table to tackle the
challenges faced by vector database customers. By leveraging NetApp ONTAP, StorageGRID, NetApp’s cloud
solutions, and SnapCenter, customers can add significant value to their business operations. These tools not

151

only address existing issues but also enhance efficiency and productivity, thereby contributing to overall
business growth.

Why NetApp?

• NetApp’s offerings, such as ONTAP and StorageGRID, allow for the separation of storage and compute,
enabling optimal resource utilization based on specific requirements. This flexibility empowers customers to
independently scale their storage using NetApp storage solutions.

• By leveraging NetApp’s storage controllers, customers can efficiently serve data to their vector database
using NFS and S3 protocols. These protocols facilitate customer data storage and manage the vector
database index, eliminating the need for multiple copies of data accessed through file and object methods.

• NetApp ONTAP provides native support for NAS and Object storage across leading cloud service providers
like AWS, Azure, and Google Cloud. This wide compatibility ensures seamless integration, enabling
customer data mobility, global accessibility, disaster recovery, dynamic scalability, and high performance.

• With NetApp’s robust data management capabilities, customers can rest assured knowing that their data is
well-protected against potential risks and threats. NetApp prioritizes data security, offering peace of mind to
customers regarding the safety and integrity of their valuable information.

Vector Database

This section covers the definition and use of a vector database in NetApp AI solutions.

Vector Database

A vector database is a specialized type of database designed to handle, index, and search unstructured data
using embeddings from machine learning models. Instead of organizing data in a traditional tabular format, it
arranges data as high-dimensional vectors, also known as vector embeddings. This unique structure allows the
database to handle complex, multi-dimensional data more efficiently and accurately.

One of the key capabilities of a vector database is its use of generative AI to perform analytics. This includes
similarity searches, where the database identifies data points that are like a given input, and anomaly
detection, where it can spot data points that deviate significantly from the norm.

Furthermore, vector databases are well-suited to handle temporal data, or time-stamped data. This type of
data provides information about ‘what’ happened and when it happened, in sequence and in relation to all
other events within a given IT system. This ability to handle and analyze temporal data makes vector
databases particularly useful for applications that require an understanding of events over time.

Advantages of vector database for ML and AI:

• High-dimensional Search: Vector databases excel in managing and retrieving high-dimensional data, which
is often generated in AI and ML applications.

• Scalability: They can efficiently scale to handle large volumes of data, supporting the growth and expansion
of AI and ML projects.

• Flexibility: Vector databases offer a high degree of flexibility, allowing for the accommodation of diverse
data types and structures.

• Performance: They provide high-performance data management and retrieval, critical for the speed and
efficiency of AI and ML operations.

• Customizable Indexing: Vector databases offer customizable indexing options, enabling optimized data
organization and retrieval based on specific needs.

152

Vector databases and use cases.

This section provides varies vector databases and their use case details.

Faiss and ScaNN

They are libraries that serve as crucial tools in the realm of vector search. These libraries provide functionality
that is instrumental in managing and searching through vector data, making them invaluable resources in this
specialized area of data management.

Elasticsearch

It’s a widely used search and analytics engine, has recently incorporated vector search capabilities. This new
feature enhances its functionality, enabling it to handle and search through vector data more effectively.

Pinecone

It is a robust vector database with a unique set of features. It supports both dense and sparse vectors in its
indexing functionality, which enhances its flexibility and adaptability. One of its key strengths lies in its ability to
combine traditional search methods with AI-based dense vector search, creating a hybrid search approach that
leverages the best of both worlds.

Primarily cloud-based, Pinecone is designed for machine learning applications and integrates well with a
variety of platforms, including GCP, AWS, Open AI, GPT-3, GPT-3.5, GPT-4, Catgut Plus, Elasticsearch,
Haystack, and more. It’s important to note that Pinecone is a closed-source platform and is available as a
Software as a Service (SaaS) offering.

Given its advanced capabilities, Pinecone is particularly well-suited for the cybersecurity industry, where its
high-dimensional search and hybrid search capabilities can be leveraged effectively to detect and respond to
threats.

Chroma

It’s a vector database that has a Core-API with four primary functions, one of which includes an in-memory
document-vector store. It also utilizes the Face Transformers library to vectorize documents, enhancing its
functionality and versatility.
Chroma is designed to operate both in the cloud and on-premises, offering flexibility based on user needs.
Particularly, it excels in audio-related applications, making it an excellent choice for audio-based search
engines, music recommendation systems, and other audio-related use cases.

Weaviate

It’s a versatile vector database that allows users to vectorize their content using either its built-in modules or
custom modules, providing flexibility based on specific needs. It offers both fully managed and self-hosted
solutions, catering to a variety of deployment preferences.

One of Weaviate’s key features is its ability to store both vectors and objects, enhancing its data handling
capabilities. It is widely used for a range of applications, including semantic search and data classification in
ERP systems. In the e-commerce sector, it powers search and recommendation engines. Weaviate is also
used for image search, anomaly detection, automated data harmonization, and cybersecurity threat analysis,
showcasing its versatility across multiple domains.

153

Redis

Redis is a high-performing vector database known for its fast in-memory storage, offering low latency for read-
write operations. This makes it an excellent choice for recommendation systems, search engines, and data
analytics applications that require quick data access.

Redis supports various data structures for vectors, including lists, sets, and sorted sets. It also provides vector
operations such as calculating distances between vectors or finding intersections and unions. These features
are particularly useful for similarity search, clustering, and content-based recommendation systems.

In terms of scalability and availability, Redis excels in handling high throughput workloads and offers data
replication. It also integrates well with other data types, including traditional relational databases (RDBMS).
Redis includes a Publish/Subscribe (Pub/Sub) feature for real-time updates, which is beneficial for managing
real-time vectors. Moreover, Redis is lightweight and simple to use, making it a user-friendly solution for
managing vector data.

Milvus

It’s a versatile vector database that offers an API like a document store, much like MongoDB. It stands out due
to its support for a wide variety of data types, making it a popular choice in the data science and machine
learning fields.

One of Milvus’ unique features is its multi-vectorization capability, which allows users to specify at runtime the
type of vector to use for the search. Furthermore, it utilizes Knowwhere, a library that sits atop other libraries
like Faiss, to manage communication between queries and the vector search algorithms.

Milvus also offers seamless integration with machine learning workflows, thanks to its compatibility with
PyTorch and TensorFlow. This makes it an excellent tool for a range of applications, including e-commerce,
image and video analysis, object recognition, image similarity search, and content-based image retrieval. In the
realm of natural language processing, Milvus is used for document clustering, semantic search, and question-
answering systems.

For this solution, we picked milvus for the solution validation. For performance, we used both milvus and
postgres(pgvecto.rs).

Why we chose milvus for this solution?

• Open-Source: Milvus is an open-source vector database, encouraging community-driven development and
improvements.

• AI Integration: It leverages embedding similarity search and AI applications to enhance vector database
functionality.

• Large Volume Handling: Milvus has the capacity to store, index, and manage over a billion embedding
vectors generated by Deep Neural Networks (DNN) and Machine Learning (ML) models.

• User-Friendly: It is easy to use, with setup taking less than a minute. Milvus also offers SDKs for different
programming languages.

• Speed: It offers blazing fast retrieval speeds, up to 10 times faster than some alternatives.

• Scalability and Availability: Milvus is highly scalable, with options to scale up and out as needed.

• Feature-Rich: It supports different data types, attribute filtering, User-Defined Function (UDF) support,
configurable consistency levels, and travel time, making it a versatile tool for various applications.

154

Milvus architecture overview

This section provides higher lever components and services are used in Milvus architecture.
* Access layer – It’s composed of a group of stateless proxies and serves as the front layer of the system and
endpoint to users.
* Coordinator service – it assigns the tasks to the worker nodes and act as a system’s brain. It has three
coordinator types: root coord,data coord and query coord.
* Worker nodes : It follows the instruction from coordinator service and execute user triggered DML/DDL
commands.it has three types of worker nodes such as query node, data node and index node.
* Storage: it’s responsible for data persistence. It comprises meta storage, log broker, and object storage.
NetApp storage such as ONTAP and StorageGRID provides object storage and File based storage to Milvus
for both customer data and vector database data.

Technology Requirement

This section provides an overview of the requirements for the NetApp vector database
solution.

Technology Requirement

The hardware and software configurations outlined below were utilized for the majority of the validations
performed in this document, with the exception of performance. These configurations serve as a guideline to
help you set up your environment. However, please note that the specific components may vary depending on
individual customer requirements.

Hardware requirements

155

Hardware Details

NetApp AFF Storage array HA Pair * A800
* ONTAP 9.14.1
* 48 x 3.49TB SSD-NVM
* Two Flexible group volumes: metadata and data.
* Metadata NFS volume has 12 x Persistent Volumes
with 250GB.
* Data is a ONTAP NAS S3 volume

6 x FUJITSU PRIMERGY RX2540 M4 * 64 CPUs
* Intel® Xeon® Gold 6142 CPU @ 2.60GHz
* 256 GM Physical Memory
* 1 x 100GbE network port

Networking 100 GbE

StorageGRID * 1 x SG100, 3xSGF6024
* 3 x 24 x 7.68TB

Software requirements

Software Details

Milvus cluster * CHART - milvus-4.1.11.
* APP Version – 2.3.4
* Dependent bundles such as bookkeeper, zookeeper,
pulsar, etcd, proxy, querynode, worker

Kubernetes * 5 node K8s cluster
* 1 Master node and 4 Worker nodes
* Version – 1.7.2

Python *3.10.12.

Deployment Procedure

This section discusses the deployment procedure for the vector database solution for
NetApp.

Deployment procedure

In this deployment section, we used milvus vector database with Kubernetes for the lab setup as below.

156

The netapp storage provides the storage for the cluster to keep customers data and milvus cluster data.

NetApp storage setup – ONTAP

• Storage system initialization

• Storage virtual machine (SVM) creation

• Assignment of logical network interfaces

• NFS, S3 configuration and licensing

Please follow the steps below for NFS (Network File System):

1. Create a FlexGroup volume for NFSv4. In our set up for this validation, we have used 48 SSDs, 1 SSD
dedicated for the controller’s root volume and 47 SSDs spread across for NFSv4]].Verify that the NFS
export policy for the FlexGroup volume has read/write permissions for the Kubernetes (K8s) nodes
network. If these permissions are not in place, grant read/write (rw) permissions for the K8s nodes network.

2. On all K8s nodes, create a folder and mount the FlexGroup volume onto this folder through a Logical
Interface (LIF) on each K8s nodes.

Please follow the steps below for NAS S3 (Network Attached Storage Simple Storage Service):

1. Create a FlexGroup volume for NFS.

157

2. Set up an object-store-server with HTTP enabled and the admin status set to 'up' using the "vserver object-
store-server create" command. You have the option to enable HTTPS and set a custom listener port.

3. Create an object-store-server user using the "vserver object-store-server user create -user <username>"
command.

4. To obtain the access key and secret key, you can run the following command: "set diag; vserver object-
store-server user show -user <username>". However, moving forward, these keys will be supplied during
the user creation process or can be retrieved using REST API calls.

5. Establish an object-store-server group using the user created in step 2 and grant access. In this example,
we have provided "FullAccess".

6. Create a NAS bucket by setting its type to "nas" and supplying the path to the NFSv3 volume. It’s also
possible to utilize an S3 bucket for this purpose.

NetApp storage setup – StorageGRID

1. Install the storageGRID software.

2. Create a tenant and bucket.

3. Create user with required permission.

Please check more details in https://docs.netapp.com/us-en/storagegrid-116/primer/index.html

Solution Overview

We have conducted a comprehensive solution validation focused on five key areas, the
details of which are outlined below. Each section delves into the challenges faced by
customers, the solutions provided by NetApp, and the subsequent benefits to the
customer.

1. Milvus cluster setup with Kubernetes in on-premises
Customer challenges to scale independently on storage and compute, effective infrastructure management
and data management. In this section, we detail the process of installing a Milvus cluster on Kubernetes,
utilizing a NetApp storage controller for both cluster data and customer data.

2. Milvus with Amazon FSxN for NetApp ONTAP – file and object duality
In this section, Why we need to deploy vector database in cloud as well as steps to deploy vector database
(milvus standalone) in Amazon FSxN for NetApp ONTAP within docker containers.

3. Vector database protection using NetApp SnapCenter.
In this section, we delve into how SnapCenter safeguards the vector database data and Milvus data
residing in ONTAP. For this example, we utilized a NAS bucket (milvusdbvol1) derived from an NFS
ONTAP volume (vol1) for customer data, and a separate NFS volume (vectordbpv) for Milvus cluster
configuration data.

4. Disaster Recovery using NetApp SnapMirror
In this section, we discuss about the importance of Disaster recovery(DR) for vector database and how
netapp disaster recovery product snapmirror provides DR solution to vector database.

5. Performance validation
In this section, we aim to delve into the performance validation of vector databases, such as Milvus and
pgvecto.rs, focusing on their storage performance characteristics such as I/O profile and netapp storage
controller behavious in support of RAG and inference workloads within the LLM Lifecycle. We will evaluate
and identify any performance differentiators when these databases are combined with the ONTAP storage
solution. Our analysis will be based on key performance indicators, such as the number of queries

158

https://docs.netapp.com/us-en/storagegrid-116/primer/index.html

processed per second(QPS).

Milvus Cluster Setup with Kubernetes in on-premises

This section discusses the milvus cluster setup for the vector database solution for
NetApp.

Milvus cluster setup with Kubernetes in on-premises

Customer challenges to scale independently on storage and compute, effective infrastructure management and
data management,
Kubernetes and vector databases together form a powerful, scalable solution for managing large data
operations. Kubernetes optimizes resources and manages containers, while vector databases efficiently
handle high-dimensional data and similarity searches. This combination enables swift processing of complex
queries on large datasets and seamlessly scales with growing data volumes, making it ideal for big data
applications and AI workloads.

1. In this section, we detail the process of installing a Milvus cluster on Kubernetes, utilizing a NetApp storage
controller for both cluster data and customer data.

2. To install a Milvus cluster, Persistent Volumes (PVs) are required for storing data from various Milvus
cluster components. These components include etcd (three instances), pulsar-bookie-journal (three
instances), pulsar-bookie-ledgers (three instances), and pulsar-zookeeper-data (three instances).

In milvus cluster, we can use either pulsar or kafka for the underlying engine supporting
Milvus cluster’s reliable storage and publication/subscription of message streams. For Kafka
with NFS,NetApp has made improvements in ONTAP 9.12.1 and later, and these
enhancements, along with NFSv4.1 and Linux changes that are included in RHEL 8.7 or 9.1
and higher, resolve the "silly rename" issue that can occur when running Kafka over NFS. if
you interested in more in-depth information on the topic of running kafka with netapp NFS
solution, please check - this link.

3. We created a single NFS volume from NetApp ONTAP and established 12 persistent volumes, each with
250GB of storage. The storage size can vary depending on the cluster size; for instance, we have another
cluster where each PV has 50GB. Please refer below to one of the PV YAML files for more details; we had
12 such files in total. In each file, the storageClassName is set to 'default', and the storage and path are
unique to each PV.

159

https://docs.netapp.com/us-en/netapp-solutions/data-analytics/kafka-nfs-introduction.html

root@node2:~# cat sai_nfs_to_default_pv1.yaml

apiVersion: v1

kind: PersistentVolume

metadata:

 name: karthik-pv1

spec:

 capacity:

 storage: 250Gi

 volumeMode: Filesystem

 accessModes:

 - ReadWriteOnce

 persistentVolumeReclaimPolicy: Retain

 storageClassName: default

 local:

 path: /vectordbsc/milvus/milvus1

 nodeAffinity:

 required:

 nodeSelectorTerms:

 - matchExpressions:

 - key: kubernetes.io/hostname

 operator: In

 values:

 - node2

 - node3

 - node4

 - node5

 - node6

root@node2:~#

4. Execute the 'kubectl apply' command for each PV YAML file to create the Persistent Volumes, and then
verify their creation using ‘kubectl get pv’

160

root@node2:~# for i in $(seq 1 12); do kubectl apply -f

sai_nfs_to_default_pv$i.yaml; done

persistentvolume/karthik-pv1 created

persistentvolume/karthik-pv2 created

persistentvolume/karthik-pv3 created

persistentvolume/karthik-pv4 created

persistentvolume/karthik-pv5 created

persistentvolume/karthik-pv6 created

persistentvolume/karthik-pv7 created

persistentvolume/karthik-pv8 created

persistentvolume/karthik-pv9 created

persistentvolume/karthik-pv10 created

persistentvolume/karthik-pv11 created

persistentvolume/karthik-pv12 created

root@node2:~#

5. For storing customer data, Milvus supports object storage solutions such as MinIO, Azure Blob, and S3. In
this guide, we utilize S3. The following steps apply to both ONTAP S3 and StorageGRID object store. We
use Helm to deploy the Milvus cluster. Download the configuration file, values.yaml, from the Milvus
download location. Please refer to the appendix for the values.yaml file we used in this document.

6. Ensure that the 'storageClass' is set to 'default' in each section, including those for the log, etcd,
zookeeper, and bookkeeper.

7. In the MinIO section, disable MinIO.

8. Create a NAS bucket from ONTAP or StorageGRID object storage and include them in an External S3 with
the object storage credentials.

###################################

External S3

- these configs are only used when `externalS3.enabled` is true

###################################

externalS3:

 enabled: true

 host: "192.168.150.167"

 port: "80"

 accessKey: "24G4C1316APP2BIPDE5S"

 secretKey: "Zd28p43rgZaU44PX_ftT279z9nt4jBSro97j87Bx"

 useSSL: false

 bucketName: "milvusdbvol1"

 rootPath: ""

 useIAM: false

 cloudProvider: "aws"

 iamEndpoint: ""

 region: ""

 useVirtualHost: false

161

9. Before creating the Milvus cluster, ensure that the PersistentVolumeClaim (PVC) does not have any pre-
existing resources.

root@node2:~# kubectl get pvc

No resources found in default namespace.

root@node2:~#

10. Utilize Helm and the values.yaml configuration file to install and start the Milvus cluster.

root@node2:~# helm upgrade --install my-release milvus/milvus --set

global.storageClass=default -f values.yaml

Release "my-release" does not exist. Installing it now.

NAME: my-release

LAST DEPLOYED: Thu Mar 14 15:00:07 2024

NAMESPACE: default

STATUS: deployed

REVISION: 1

TEST SUITE: None

root@node2:~#

11. Verify the status of the PersistentVolumeClaims (PVCs).

162

root@node2:~# kubectl get pvc

NAME STATUS

VOLUME CAPACITY ACCESS MODES STORAGECLASS AGE

data-my-release-etcd-0 Bound

karthik-pv8 250Gi RWO default 3s

data-my-release-etcd-1 Bound

karthik-pv5 250Gi RWO default 2s

data-my-release-etcd-2 Bound

karthik-pv4 250Gi RWO default 3s

my-release-pulsar-bookie-journal-my-release-pulsar-bookie-0 Bound

karthik-pv10 250Gi RWO default 3s

my-release-pulsar-bookie-journal-my-release-pulsar-bookie-1 Bound

karthik-pv3 250Gi RWO default 3s

my-release-pulsar-bookie-journal-my-release-pulsar-bookie-2 Bound

karthik-pv1 250Gi RWO default 3s

my-release-pulsar-bookie-ledgers-my-release-pulsar-bookie-0 Bound

karthik-pv2 250Gi RWO default 3s

my-release-pulsar-bookie-ledgers-my-release-pulsar-bookie-1 Bound

karthik-pv9 250Gi RWO default 3s

my-release-pulsar-bookie-ledgers-my-release-pulsar-bookie-2 Bound

karthik-pv11 250Gi RWO default 3s

my-release-pulsar-zookeeper-data-my-release-pulsar-zookeeper-0 Bound

karthik-pv7 250Gi RWO default 3s

root@node2:~#

12. Check the status of the pods.

root@node2:~# kubectl get pods -o wide

NAME READY STATUS

RESTARTS AGE IP NODE NOMINATED NODE

READINESS GATES

<content removed to save page space>

Please make sure the pods status are ‘running’ and working as expected

13. Test data writing and reading in Milvus and NetApp object storage.

◦ Write data using the "prepare_data_netapp_new.py" Python program.

163

root@node2:~# date;python3 prepare_data_netapp_new.py ;date

Thu Apr 4 04:15:35 PM UTC 2024

=== start connecting to Milvus ===

=== Milvus host: localhost ===

Does collection hello_milvus_ntapnew_update2_sc exist in Milvus:

False

=== Drop collection - hello_milvus_ntapnew_update2_sc ===

=== Drop collection - hello_milvus_ntapnew_update2_sc2 ===

=== Create collection `hello_milvus_ntapnew_update2_sc` ===

=== Start inserting entities ===

Number of entities in hello_milvus_ntapnew_update2_sc: 3000

Thu Apr 4 04:18:01 PM UTC 2024

root@node2:~#

◦ Read the data using the "verify_data_netapp.py" Python file.

root@node2:~# python3 verify_data_netapp.py

=== start connecting to Milvus ===

=== Milvus host: localhost ===

Does collection hello_milvus_ntapnew_update2_sc exist in Milvus: True

{'auto_id': False, 'description': 'hello_milvus_ntapnew_update2_sc',

'fields': [{'name': 'pk', 'description': '', 'type': <DataType.INT64:

5>, 'is_primary': True, 'auto_id': False}, {'name': 'random',

'description': '', 'type': <DataType.DOUBLE: 11>}, {'name': 'var',

'description': '', 'type': <DataType.VARCHAR: 21>, 'params':

{'max_length': 65535}}, {'name': 'embeddings', 'description': '',

'type': <DataType.FLOAT_VECTOR: 101>, 'params': {'dim': 16}}]}

Number of entities in Milvus: hello_milvus_ntapnew_update2_sc : 3000

=== Start Creating index IVF_FLAT ===

=== Start loading ===

=== Start searching based on vector similarity ===

hit: id: 2998, distance: 0.0, entity: {'random': 0.9728033590489911},

random field: 0.9728033590489911

hit: id: 2600, distance: 0.602496862411499, entity: {'random':

0.3098157043984633}, random field: 0.3098157043984633

hit: id: 1831, distance: 0.6797959804534912, entity: {'random':

0.6331477114129169}, random field: 0.6331477114129169

hit: id: 2999, distance: 0.0, entity: {'random':

0.02316334456872482}, random field: 0.02316334456872482

hit: id: 2524, distance: 0.5918987989425659, entity: {'random':

164

0.285283165889066}, random field: 0.285283165889066

hit: id: 264, distance: 0.7254047393798828, entity: {'random':

0.3329096143562196}, random field: 0.3329096143562196

search latency = 0.4533s

=== Start querying with `random > 0.5` ===

query result:

-{'random': 0.6378742006852851, 'embeddings': [0.20963514,

0.39746657, 0.12019053, 0.6947492, 0.9535575, 0.5454552, 0.82360446,

0.21096309, 0.52323616, 0.8035404, 0.77824664, 0.80369574, 0.4914803,

0.8265614, 0.6145269, 0.80234545], 'pk': 0}

search latency = 0.4476s

=== Start hybrid searching with `random > 0.5` ===

hit: id: 2998, distance: 0.0, entity: {'random': 0.9728033590489911},

random field: 0.9728033590489911

hit: id: 1831, distance: 0.6797959804534912, entity: {'random':

0.6331477114129169}, random field: 0.6331477114129169

hit: id: 678, distance: 0.7351570129394531, entity: {'random':

0.5195484662306603}, random field: 0.5195484662306603

hit: id: 2644, distance: 0.8620758056640625, entity: {'random':

0.9785952878381153}, random field: 0.9785952878381153

hit: id: 1960, distance: 0.9083120226860046, entity: {'random':

0.6376039340439571}, random field: 0.6376039340439571

hit: id: 106, distance: 0.9792704582214355, entity: {'random':

0.9679994241326673}, random field: 0.9679994241326673

search latency = 0.1232s

Does collection hello_milvus_ntapnew_update2_sc2 exist in Milvus:

True

{'auto_id': True, 'description': 'hello_milvus_ntapnew_update2_sc2',

'fields': [{'name': 'pk', 'description': '', 'type': <DataType.INT64:

5>, 'is_primary': True, 'auto_id': True}, {'name': 'random',

'description': '', 'type': <DataType.DOUBLE: 11>}, {'name': 'var',

'description': '', 'type': <DataType.VARCHAR: 21>, 'params':

{'max_length': 65535}}, {'name': 'embeddings', 'description': '',

'type': <DataType.FLOAT_VECTOR: 101>, 'params': {'dim': 16}}]}

Based on the above validation, the integration of Kubernetes with a vector database, as demonstrated
through the deployment of a Milvus cluster on Kubernetes using a NetApp storage controller, offers
customers a robust, scalable, and efficient solution for managing large-scale data operations. This
setup provides customers with the ability to handle high-dimensional data and execute complex queries
rapidly and efficiently, making it an ideal solution for big data applications and AI workloads. The use of
Persistent Volumes (PVs) for various cluster components, along with the creation of a single NFS
volume from NetApp ONTAP, ensures optimal resource utilization and data management. The process
of verifying the status of PersistentVolumeClaims (PVCs) and pods, as well as testing data writing and

165

reading, provides customers with the assurance of reliable and consistent data operations. The use of
ONTAP or StorageGRID object storage for customer data further enhances data accessibility and
security. Overall, this setup empowers customers with a resilient and high-performing data
management solution that can seamlessly scale with their growing data needs.

Milvus with Amazon FSxN for NetApp ONTAP - file and object duality

This section discusses the milvus cluster setup with Amazon FSxN for the vector
database solution for NetApp.

Milvus with Amazon FSxN for NetApp ONTAP – file and object duality

In this section, Why we need to deploy vector database in cloud as well as steps to deploy vector database (
milvus standalone) in Amazon FSxN for NetApp ONTAP within docker containers.

Deploying a vector database in the cloud provides several significant benefits, particularly for applications that
require handling high-dimensional data and executing similarity searches. First, cloud-based deployment offers
scalability, allowing for the easy adjustment of resources to match the growing data volumes and query loads.
This ensures that the database can efficiently handle increased demand while maintaining high performance.
Second, cloud deployment provides high availability and disaster recovery, as data can be replicated across
different geographical locations, minimizing the risk of data loss, and ensuring continuous service even during
unexpected events. Third, it provides cost-effectiveness, as you only pay for the resources you use, and can
scale up or down based on demand, avoiding the need for substantial upfront investment in hardware. Finally,
deploying a vector database in the cloud can enhance collaboration, as data can be accessed and shared from
anywhere, facilitating team-based work and data-driven decision making.
Please check the architecture of the milvus standalone with Amazon FSxN for NetApp ONTAP used in this
validation.

1. Create an Amazon FSxN for NetApp ONTAP instance and note down the details of the VPC, VPC security
groups, and subnet. This information will be required when creating an EC2 instance. You can find more

166

details here - https://us-east-1.console.aws.amazon.com/fsx/home?region=us-east-1#file-system-create

2. Create an EC2 instance, ensuring that the VPC, Security Groups, and subnet match those of the Amazon
FSxN for NetApp ONTAP instance.

3. Install nfs-common using the command 'apt-get install nfs-common' and update the package information
using 'sudo apt-get update'.

4. Create a mount folder and mount the Amazon FSxN for NetApp ONTAP on it.

ubuntu@ip-172-31-29-98:~$ mkdir /home/ubuntu/milvusvectordb

ubuntu@ip-172-31-29-98:~$ sudo mount 172.31.255.228:/vol1

/home/ubuntu/milvusvectordb

ubuntu@ip-172-31-29-98:~$ df -h /home/ubuntu/milvusvectordb

Filesystem Size Used Avail Use% Mounted on

172.31.255.228:/vol1 973G 126G 848G 13% /home/ubuntu/milvusvectordb

ubuntu@ip-172-31-29-98:~$

5. Install Docker and Docker Compose using 'apt-get install'.

6. Set up a Milvus cluster based on the docker-compose.yaml file, which can be downloaded from the Milvus
website.

root@ip-172-31-22-245:~# wget https://github.com/milvus-

io/milvus/releases/download/v2.0.2/milvus-standalone-docker-compose.yml

-O docker-compose.yml

--2024-04-01 14:52:23-- https://github.com/milvus-

io/milvus/releases/download/v2.0.2/milvus-standalone-docker-compose.yml

<removed some output to save page space>

7. In the 'volumes' section of the docker-compose.yml file, map the NetApp NFS mount point to the
corresponding Milvus container path, specifically in etcd, minio, and standalone.Check Appendix D:
docker-compose.yml for details about changes in yml

8. Verify the mounted folders and files.

167

https://us-east-1.console.aws.amazon.com/fsx/home?region=us-east-1#file-system-create

ubuntu@ip-172-31-29-98:~/milvusvectordb$ ls -ltrh

/home/ubuntu/milvusvectordb

total 8.0K

-rw-r--r-- 1 root root 1.8K Apr 2 16:35 s3_access.py

drwxrwxrwx 2 root root 4.0K Apr 4 20:19 volumes

ubuntu@ip-172-31-29-98:~/milvusvectordb$ ls -ltrh

/home/ubuntu/milvusvectordb/volumes/

total 0

ubuntu@ip-172-31-29-98:~/milvusvectordb$ cd

ubuntu@ip-172-31-29-98:~$ ls

docker-compose.yml docker-compose.yml~ milvus.yaml milvusvectordb

vectordbvol1

ubuntu@ip-172-31-29-98:~$

9. Run 'docker-compose up -d' from the directory containing the docker-compose.yml file.

10. Check the status of the Milvus container.

ubuntu@ip-172-31-29-98:~$ sudo docker-compose ps

 Name Command State

Ports

--

--

milvus-etcd etcd -advertise-client-url ... Up (healthy)

2379/tcp, 2380/tcp

milvus-minio /usr/bin/docker-entrypoint ... Up (healthy)

0.0.0.0:9000->9000/tcp,:::9000->9000/tcp, 0.0.0.0:9001-

>9001/tcp,:::9001->9001/tcp

milvus-standalone /tini -- milvus run standalone Up (healthy)

0.0.0.0:19530->19530/tcp,:::19530->19530/tcp, 0.0.0.0:9091-

>9091/tcp,:::9091->9091/tcp

ubuntu@ip-172-31-29-98:~$

ubuntu@ip-172-31-29-98:~$ ls -ltrh /home/ubuntu/milvusvectordb/volumes/

total 12K

drwxr-xr-x 3 root root 4.0K Apr 4 20:21 etcd

drwxr-xr-x 4 root root 4.0K Apr 4 20:21 minio

drwxr-xr-x 5 root root 4.0K Apr 4 20:21 milvus

ubuntu@ip-172-31-29-98:~$

11. To validate the read and write functionality of vector database and it’s data in Amazon FSxN for NetApp
ONTAP, we used the Python Milvus SDK and a sample program from PyMilvus. Install the necessary
packages using 'apt-get install python3-numpy python3-pip' and install PyMilvus using 'pip3 install
pymilvus'.

12. Validate data writing and reading operations from Amazon FSxN for NetApp ONTAP in the vector

168

database.

root@ip-172-31-29-98:~/pymilvus/examples# python3

prepare_data_netapp_new.py

=== start connecting to Milvus ===

=== Milvus host: localhost ===

Does collection hello_milvus_ntapnew_sc exist in Milvus: True

=== Drop collection - hello_milvus_ntapnew_sc ===

=== Drop collection - hello_milvus_ntapnew_sc2 ===

=== Create collection `hello_milvus_ntapnew_sc` ===

=== Start inserting entities ===

Number of entities in hello_milvus_ntapnew_sc: 9000

root@ip-172-31-29-98:~/pymilvus/examples# find

/home/ubuntu/milvusvectordb/

…

<removed content to save page space >

…

/home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert_log

/448789845791611912/448789845791611913/448789845791611939/103/4487898457

91411923/b3def25f-c117-4fba-8256-96cb7557cd6c

/home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert_log

/448789845791611912/448789845791611913/448789845791611939/103/4487898457

91411923/b3def25f-c117-4fba-8256-96cb7557cd6c/part.1

/home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert_log

/448789845791611912/448789845791611913/448789845791611939/103/4487898457

91411923/xl.meta

/home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert_log

/448789845791611912/448789845791611913/448789845791611939/0

/home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert_log

/448789845791611912/448789845791611913/448789845791611939/0/448789845791

411924

/home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert_log

/448789845791611912/448789845791611913/448789845791611939/0/448789845791

411924/xl.meta

/home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert_log

/448789845791611912/448789845791611913/448789845791611939/1

/home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert_log

/448789845791611912/448789845791611913/448789845791611939/1/448789845791

411925

/home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert_log

/448789845791611912/448789845791611913/448789845791611939/1/448789845791

411925/xl.meta

/home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert_log

/448789845791611912/448789845791611913/448789845791611939/100

/home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert_log

/448789845791611912/448789845791611913/448789845791611939/100/4487898457

169

91411920

/home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert_log

/448789845791611912/448789845791611913/448789845791611939/100/4487898457

91411920/xl.meta

13. Check the reading operation using the verify_data_netapp.py script.

root@ip-172-31-29-98:~/pymilvus/examples# python3 verify_data_netapp.py

=== start connecting to Milvus ===

=== Milvus host: localhost ===

Does collection hello_milvus_ntapnew_sc exist in Milvus: True

{'auto_id': False, 'description': 'hello_milvus_ntapnew_sc', 'fields':

[{'name': 'pk', 'description': '', 'type': <DataType.INT64: 5>,

'is_primary': True, 'auto_id': False}, {'name': 'random', 'description':

'', 'type': <DataType.DOUBLE: 11>}, {'name': 'var', 'description': '',

'type': <DataType.VARCHAR: 21>, 'params': {'max_length': 65535}},

{'name': 'embeddings', 'description': '', 'type': <DataType.

FLOAT_VECTOR: 101>, 'params': {'dim': 8}}], 'enable_dynamic_field':

False}

Number of entities in Milvus: hello_milvus_ntapnew_sc : 9000

=== Start Creating index IVF_FLAT ===

=== Start loading ===

=== Start searching based on vector similarity ===

hit: id: 2248, distance: 0.0, entity: {'random': 0.2777646777746381},

random field: 0.2777646777746381

hit: id: 4837, distance: 0.07805602252483368, entity: {'random':

0.6451650959930306}, random field: 0.6451650959930306

hit: id: 7172, distance: 0.07954417169094086, entity: {'random':

0.6141351712303128}, random field: 0.6141351712303128

hit: id: 2249, distance: 0.0, entity: {'random': 0.7434908973629817},

random field: 0.7434908973629817

hit: id: 830, distance: 0.05628090724349022, entity: {'random':

0.8544487225667627}, random field: 0.8544487225667627

hit: id: 8562, distance: 0.07971227169036865, entity: {'random':

0.4464554280115878}, random field: 0.4464554280115878

search latency = 0.1266s

=== Start querying with `random > 0.5` ===

170

query result:

-{'random': 0.6378742006852851, 'embeddings': [0.3017092, 0.74452263,

0.8009826, 0.4927033, 0.12762444, 0.29869467, 0.52859956, 0.23734547],

'pk': 0}

search latency = 0.3294s

=== Start hybrid searching with `random > 0.5` ===

hit: id: 4837, distance: 0.07805602252483368, entity: {'random':

0.6451650959930306}, random field: 0.6451650959930306

hit: id: 7172, distance: 0.07954417169094086, entity: {'random':

0.6141351712303128}, random field: 0.6141351712303128

hit: id: 515, distance: 0.09590047597885132, entity: {'random':

0.8013175797590888}, random field: 0.8013175797590888

hit: id: 2249, distance: 0.0, entity: {'random': 0.7434908973629817},

random field: 0.7434908973629817

hit: id: 830, distance: 0.05628090724349022, entity: {'random':

0.8544487225667627}, random field: 0.8544487225667627

hit: id: 1627, distance: 0.08096684515476227, entity: {'random':

0.9302397069516164}, random field: 0.9302397069516164

search latency = 0.2674s

Does collection hello_milvus_ntapnew_sc2 exist in Milvus: True

{'auto_id': True, 'description': 'hello_milvus_ntapnew_sc2', 'fields':

[{'name': 'pk', 'description': '', 'type': <DataType.INT64: 5>,

'is_primary': True, 'auto_id': True}, {'name': 'random', 'description':

'', 'type': <DataType.DOUBLE: 11>}, {'name': 'var', 'description': '',

'type': <DataType.VARCHAR: 21>, 'params': {'max_length': 65535}},

{'name': 'embeddings', 'description': '', 'type': <DataType.

FLOAT_VECTOR: 101>, 'params': {'dim': 8}}], 'enable_dynamic_field':

False}

14. If the customer wants to access (read) NFS data tested in the vector database via the S3 protocol for AI
workloads, this can be validated using a straightforward Python program. An example of this could be a
similarity search of images from another application as mentioned in the picture that is in the beginning of
this section.

root@ip-172-31-29-98:~/pymilvus/examples# sudo python3

/home/ubuntu/milvusvectordb/s3_access.py -i 172.31.255.228 --bucket

milvusnasvol --access-key PY6UF318996I86NBYNDD --secret-key

hoPctr9aD88c1j0SkIYZ2uPa03vlbqKA0c5feK6F

OBJECTS in the bucket milvusnasvol are :

…

<output content removed to save page space>

…

171

bucket/files/insert_log/448789845791611912/448789845791611913/4487898457

91611920/0/448789845791411917/xl.meta

volumes/minio/a-bucket/files/insert_log/448789845791611912

/448789845791611913/448789845791611920/1/448789845791411918/xl.meta

volumes/minio/a-bucket/files/insert_log/448789845791611912

/448789845791611913/448789845791611920/100/448789845791411913/xl.meta

volumes/minio/a-bucket/files/insert_log/448789845791611912

/448789845791611913/448789845791611920/101/448789845791411914/xl.meta

volumes/minio/a-bucket/files/insert_log/448789845791611912

/448789845791611913/448789845791611920/102/448789845791411915/xl.meta

volumes/minio/a-bucket/files/insert_log/448789845791611912

/448789845791611913/448789845791611920/103/448789845791411916/1c48ab6e-

1546-4503-9084-28c629216c33/part.1

volumes/minio/a-bucket/files/insert_log/448789845791611912

/448789845791611913/448789845791611920/103/448789845791411916/xl.meta

volumes/minio/a-bucket/files/insert_log/448789845791611912

/448789845791611913/448789845791611939/0/448789845791411924/xl.meta

volumes/minio/a-bucket/files/insert_log/448789845791611912

/448789845791611913/448789845791611939/1/448789845791411925/xl.meta

volumes/minio/a-bucket/files/insert_log/448789845791611912

/448789845791611913/448789845791611939/100/448789845791411920/xl.meta

volumes/minio/a-bucket/files/insert_log/448789845791611912

/448789845791611913/448789845791611939/101/448789845791411921/xl.meta

volumes/minio/a-bucket/files/insert_log/448789845791611912

/448789845791611913/448789845791611939/102/448789845791411922/xl.meta

volumes/minio/a-bucket/files/insert_log/448789845791611912

/448789845791611913/448789845791611939/103/448789845791411923/b3def25f-

c117-4fba-8256-96cb7557cd6c/part.1

volumes/minio/a-bucket/files/insert_log/448789845791611912

/448789845791611913/448789845791611939/103/448789845791411923/xl.meta

volumes/minio/a-bucket/files/stats_log/448789845791211880

/448789845791211881/448789845791411889/100/1/xl.meta

volumes/minio/a-bucket/files/stats_log/448789845791211880

/448789845791211881/448789845791411889/100/448789845791411912/xl.meta

volumes/minio/a-bucket/files/stats_log/448789845791611912

/448789845791611913/448789845791611920/100/1/xl.meta

volumes/minio/a-bucket/files/stats_log/448789845791611912

/448789845791611913/448789845791611920/100/448789845791411919/xl.meta

volumes/minio/a-bucket/files/stats_log/448789845791611912

/448789845791611913/448789845791611939/100/1/xl.meta

volumes/minio/a-bucket/files/stats_log/448789845791611912

/448789845791611913/448789845791611939/100/448789845791411926/xl.meta

root@ip-172-31-29-98:~/pymilvus/examples#

This section effectively demonstrates how customers can deploy and operate a standalone Milvus setup

172

within Docker containers, utilizing Amazon’s NetApp FSxN for NetApp ONTAP data storage. This setup
allows customers to leverage the power of vector databases for handling high-dimensional data and
executing complex queries, all within the scalable and efficient environment of Docker containers. By
creating an Amazon FSxN for NetApp ONTAP instance and matching EC2 instance, customers can ensure
optimal resource utilization and data management. The successful validation of data writing and reading
operations from FSxN in the vector database provides customers with the assurance of reliable and
consistent data operations. Additionally, the ability to list (read) data from AI workloads via the S3 protocol
offers enhanced data accessibility. This comprehensive process, therefore, provides customers with a
robust and efficient solution for managing their large-scale data operations, leveraging the capabilities of
Amazon’s FSxN for NetApp ONTAP.

Vector Database Protection using SnapCenter

This section describes how to provide data protection for the vector database using
NetApp SnapCenter.

Vector database protection using NetApp SnapCenter.

For example, in the film production industry, customers often possess critical embedded data such as video
and audio files. Loss of this data, due to issues like hard drive failures, can have a significant impact on their
operations, potentially jeopardizing multimillion-dollar ventures. We have encountered instances where
invaluable content was lost, causing substantial disruption and financial loss. Ensuring the security and
integrity of this essential data is therefore of paramount importance in this industry.
In this section, we delve into how SnapCenter safeguards the vector database data and Milvus data residing in
ONTAP. For this example, we utilized a NAS bucket (milvusdbvol1) derived from an NFS ONTAP volume (vol1)
for customer data, and a separate NFS volume (vectordbpv) for Milvus cluster configuration data. please check
the here for the snapcenter backup workflow

1. Set up the host that will be used to execute SnapCenter commands.

173

https://docs.netapp.com/us-en/snapcenter-47/protect-sco/backup-workflow.html

2. Install and configure the storage plugin. From the added host, select "More Options". Navigate to and
select the downloaded storage plugin from the NetApp Automation Store. Install the plugin and save the
configuration.

174

https://automationstore.netapp.com/snap-detail.shtml?packUuid=Storage&packVersion=1.0

3. Set up the storage system and volume: Add the storage system under "Storage System" and select the
SVM (Storage Virtual Machine). In this example, we’ve chosen "vs_nvidia".

4. Establish a resource for the vector database, incorporating a backup policy and a custom snapshot name.

◦ Enable Consistency Group Backup with default values and enable SnapCenter without filesystem
consistency.

◦ In the Storage Footprint section, select the volumes associated with the vector database customer data
and Milvus cluster data. In our example, these are "vol1" and "vectordbpv".

◦ Create policy for vector database protection and protect vector database resource using the policy.

5. Insert data into the S3 NAS bucket using a Python script. In our case, we modified the backup script
provided by Milvus, namely 'prepare_data_netapp.py', and executed the 'sync' command to flush the data

175

from the operating system.

root@node2:~# python3 prepare_data_netapp.py

=== start connecting to Milvus ===

=== Milvus host: localhost ===

Does collection hello_milvus_netapp_sc_test exist in Milvus: False

=== Create collection `hello_milvus_netapp_sc_test` ===

=== Start inserting entities ===

Number of entities in hello_milvus_netapp_sc_test: 3000

=== Create collection `hello_milvus_netapp_sc_test2` ===

Number of entities in hello_milvus_netapp_sc_test2: 6000

root@node2:~# for i in 2 3 4 5 6 ; do ssh node$i "hostname; sync; echo

'sync executed';" ; done

node2

sync executed

node3

sync executed

node4

sync executed

node5

sync executed

node6

sync executed

root@node2:~#

6. Verify the data in the S3 NAS bucket. In our example, the files with the timestamp '2024-04-08 21:22' were
created by the 'prepare_data_netapp.py' script.

176

root@node2:~# aws s3 ls --profile ontaps3 s3://milvusdbvol1/

--recursive | grep '2024-04-08'

<output content removed to save page space>

2024-04-08 21:18:14 5656

stats_log/448950615991000809/448950615991000810/448950615991001854/100/1

2024-04-08 21:18:12 5654

stats_log/448950615991000809/448950615991000810/448950615991001854/100/4

48950615990800869

2024-04-08 21:18:17 5656

stats_log/448950615991000809/448950615991000810/448950615991001872/100/1

2024-04-08 21:18:15 5654

stats_log/448950615991000809/448950615991000810/448950615991001872/100/4

48950615990800876

2024-04-08 21:22:46 5625

stats_log/448950615991003377/448950615991003378/448950615991003385/100/1

2024-04-08 21:22:45 5623

stats_log/448950615991003377/448950615991003378/448950615991003385/100/4

48950615990800899

2024-04-08 21:22:49 5656

stats_log/448950615991003408/448950615991003409/448950615991003416/100/1

2024-04-08 21:22:47 5654

stats_log/448950615991003408/448950615991003409/448950615991003416/100/4

48950615990800906

2024-04-08 21:22:52 5656

stats_log/448950615991003408/448950615991003409/448950615991003434/100/1

2024-04-08 21:22:50 5654

stats_log/448950615991003408/448950615991003409/448950615991003434/100/4

48950615990800913

root@node2:~#

7. Initiate a backup using the Consistency Group (CG) snapshot from the 'milvusdb' resource

177

8. To test the backup functionality, we either added a new table after the backup process or removed some
data from the NFS (S3 NAS bucket).

For this test, imagine a scenario where someone created a new, unnecessary, or inappropriate collection
after the backup. In such a case, we would need to revert the vector database to its state before the new
collection was added. For instance, new collections such as 'hello_milvus_netapp_sc_testnew' and
'hello_milvus_netapp_sc_testnew2' have been inserted.

178

root@node2:~# python3 prepare_data_netapp.py

=== start connecting to Milvus ===

=== Milvus host: localhost ===

Does collection hello_milvus_netapp_sc_testnew exist in Milvus: False

=== Create collection `hello_milvus_netapp_sc_testnew` ===

=== Start inserting entities ===

Number of entities in hello_milvus_netapp_sc_testnew: 3000

=== Create collection `hello_milvus_netapp_sc_testnew2` ===

Number of entities in hello_milvus_netapp_sc_testnew2: 6000

root@node2:~#

9. Execute a full restore of the S3 NAS bucket from the previous snapshot.

179

10. Use a Python script to verify the data from the 'hello_milvus_netapp_sc_test' and
'hello_milvus_netapp_sc_test2' collections.

root@node2:~# python3 verify_data_netapp.py

=== start connecting to Milvus ===

=== Milvus host: localhost ===

Does collection hello_milvus_netapp_sc_test exist in Milvus: True

{'auto_id': False, 'description': 'hello_milvus_netapp_sc_test',

'fields': [{'name': 'pk', 'description': '', 'type': <DataType.INT64: 5

>, 'is_primary': True, 'auto_id': False}, {'name': 'random',

'description': '', 'type': <DataType.DOUBLE: 11>}, {'name': 'var',

'description': '', 'type': <DataType.VARCHAR: 21>, 'params':

{'max_length': 65535}}, {'name': 'embeddings', 'description': '',

'type': <DataType.FLOAT_VECTOR: 101>, 'params': {'dim': 8}}]}

Number of entities in Milvus: hello_milvus_netapp_sc_test : 3000

=== Start Creating index IVF_FLAT ===

=== Start loading ===

=== Start searching based on vector similarity ===

hit: id: 2998, distance: 0.0, entity: {'random': 0.9728033590489911},

random field: 0.9728033590489911

hit: id: 1262, distance: 0.08883658051490784, entity: {'random':

0.2978858685751561}, random field: 0.2978858685751561

hit: id: 1265, distance: 0.09590047597885132, entity: {'random':

0.3042039939240304}, random field: 0.3042039939240304

hit: id: 2999, distance: 0.0, entity: {'random': 0.02316334456872482},

random field: 0.02316334456872482

hit: id: 1580, distance: 0.05628091096878052, entity: {'random':

0.3855988746044062}, random field: 0.3855988746044062

hit: id: 2377, distance: 0.08096685260534286, entity: {'random':

0.8745922204004368}, random field: 0.8745922204004368

search latency = 0.2832s

=== Start querying with `random > 0.5` ===

query result:

-{'random': 0.6378742006852851, 'embeddings': [0.20963514, 0.39746657,

180

0.12019053, 0.6947492, 0.9535575, 0.5454552, 0.82360446, 0.21096309],

'pk': 0}

search latency = 0.2257s

=== Start hybrid searching with `random > 0.5` ===

hit: id: 2998, distance: 0.0, entity: {'random': 0.9728033590489911},

random field: 0.9728033590489911

hit: id: 747, distance: 0.14606499671936035, entity: {'random':

0.5648774800635661}, random field: 0.5648774800635661

hit: id: 2527, distance: 0.1530652642250061, entity: {'random':

0.8928974315571507}, random field: 0.8928974315571507

hit: id: 2377, distance: 0.08096685260534286, entity: {'random':

0.8745922204004368}, random field: 0.8745922204004368

hit: id: 2034, distance: 0.20354536175727844, entity: {'random':

0.5526117606328499}, random field: 0.5526117606328499

hit: id: 958, distance: 0.21908017992973328, entity: {'random':

0.6647383716417955}, random field: 0.6647383716417955

search latency = 0.5480s

Does collection hello_milvus_netapp_sc_test2 exist in Milvus: True

{'auto_id': True, 'description': 'hello_milvus_netapp_sc_test2',

'fields': [{'name': 'pk', 'description': '', 'type': <DataType.INT64: 5

>, 'is_primary': True, 'auto_id': True}, {'name': 'random',

'description': '', 'type': <DataType.DOUBLE: 11>}, {'name': 'var',

'description': '', 'type': <DataType.VARCHAR: 21>, 'params':

{'max_length': 65535}}, {'name': 'embeddings', 'description': '',

'type': <DataType.FLOAT_VECTOR: 101>, 'params': {'dim': 8}}]}

Number of entities in Milvus: hello_milvus_netapp_sc_test2 : 6000

=== Start Creating index IVF_FLAT ===

=== Start loading ===

=== Start searching based on vector similarity ===

hit: id: 448950615990642008, distance: 0.07805602252483368, entity:

{'random': 0.5326684390871348}, random field: 0.5326684390871348

hit: id: 448950615990645009, distance: 0.07805602252483368, entity:

{'random': 0.5326684390871348}, random field: 0.5326684390871348

hit: id: 448950615990640618, distance: 0.13562293350696564, entity:

{'random': 0.7864676926688837}, random field: 0.7864676926688837

hit: id: 448950615990642314, distance: 0.10414951294660568, entity:

{'random': 0.2209597460821181}, random field: 0.2209597460821181

hit: id: 448950615990645315, distance: 0.10414951294660568, entity:

181

{'random': 0.2209597460821181}, random field: 0.2209597460821181

hit: id: 448950615990640004, distance: 0.11571306735277176, entity:

{'random': 0.7765521996186631}, random field: 0.7765521996186631

search latency = 0.2381s

=== Start querying with `random > 0.5` ===

query result:

-{'embeddings': [0.15983285, 0.72214717, 0.7414838, 0.44471496,

0.50356466, 0.8750043, 0.316556, 0.7871702], 'pk': 448950615990639798,

'random': 0.7820620141382767}

search latency = 0.3106s

=== Start hybrid searching with `random > 0.5` ===

hit: id: 448950615990642008, distance: 0.07805602252483368, entity:

{'random': 0.5326684390871348}, random field: 0.5326684390871348

hit: id: 448950615990645009, distance: 0.07805602252483368, entity:

{'random': 0.5326684390871348}, random field: 0.5326684390871348

hit: id: 448950615990640618, distance: 0.13562293350696564, entity:

{'random': 0.7864676926688837}, random field: 0.7864676926688837

hit: id: 448950615990640004, distance: 0.11571306735277176, entity:

{'random': 0.7765521996186631}, random field: 0.7765521996186631

hit: id: 448950615990643005, distance: 0.11571306735277176, entity:

{'random': 0.7765521996186631}, random field: 0.7765521996186631

hit: id: 448950615990640402, distance: 0.13665105402469635, entity:

{'random': 0.9742541034109935}, random field: 0.9742541034109935

search latency = 0.4906s

root@node2:~#

11. Verify that the unnecessary or inappropriate collection is no longer present in the database.

182

root@node2:~# python3 verify_data_netapp.py

=== start connecting to Milvus ===

=== Milvus host: localhost ===

Does collection hello_milvus_netapp_sc_testnew exist in Milvus: False

Traceback (most recent call last):

 File "/root/verify_data_netapp.py", line 37, in <module>

 recover_collection = Collection(recover_collection_name)

 File "/usr/local/lib/python3.10/dist-

packages/pymilvus/orm/collection.py", line 137, in __init__

 raise SchemaNotReadyException(

pymilvus.exceptions.SchemaNotReadyException: <SchemaNotReadyException:

(code=1, message=Collection 'hello_milvus_netapp_sc_testnew' not exist,

or you can pass in schema to create one.)>

root@node2:~#

In conclusion, the use of NetApp’s SnapCenter to safeguard vector database data and Milvus data residing in
ONTAP offers significant benefits to customers, particularly in industries where data integrity is paramount,
such as film production. SnapCenter’s ability to create consistent backups and perform full data restores
ensures that critical data, such as embedded video and audio files, are protected against loss due to hard drive
failures or other issues. This not only prevents operational disruption but also safeguards against substantial
financial loss.

In this section, we demonstrated how SnapCenter can be configured to protect data residing in ONTAP,
including the setup of hosts, installation and configuration of storage plugins, and the creation of a resource for
the vector database with a custom snapshot name. We also showcased how to perform a backup using the
Consistency Group snapshot and verify the data in the S3 NAS bucket.

Furthermore, we simulated a scenario where an unnecessary or inappropriate collection was created after the
backup. In such cases, SnapCenter’s ability to perform a full restore from a previous snapshot ensures that the
vector database can be reverted to its state before the addition of the new collection, thus maintaining the
integrity of the database. This capability to restore data to a specific point in time is invaluable for customers,
providing them with the assurance that their data is not only secure but also correctly maintained. Thus,
NetApp’s SnapCenter product offers customers a robust and reliable solution for data protection and
management.

Disaster Recovery using NetApp SnapMirror

This section discusses DR (disaster recovery) with SnapMirror for the vector database
solution for NetApp.

Disaster Recovery using NetApp SnapMirror

183

Disaster recovery is crucial for maintaining the integrity and availability of a vector database, especially given
its role in managing high-dimensional data and executing complex similarity searches. A well-planned and
implemented disaster recovery strategy ensures that data is not lost or compromised in the event of
unforeseen incidents, such as hardware failures, natural disasters, or cyber-attacks. This is particularly
significant for applications relying on vector databases, where the loss or corruption of data could lead to
significant operational disruptions and financial losses. Moreover, a robust disaster recovery plan also ensures
business continuity by minimizing downtime and allowing for the quick restoration of services. This is achieved
through NetApp data replication product SnapMirrror across different geographical locations, regular backups,
and failover mechanisms. Therefore, disaster recovery is not just a protective measure, but a critical
component of responsible and efficient vector database management.

NetApp’s SnapMirror provides data replication from one NetApp ONTAP storage controller to another, primarily
used for disaster recovery (DR) and hybrid solutions. In the context of a vector database, this tool facilitates the
smooth transition of data between on-premises and cloud environments. This transition is achieved without
necessitating any data conversions or application refactoring, thereby enhancing the efficiency and flexibility of
data management across multiple platforms.

NetApp Hybrid solution in a vector database scenario can bring about more advantages:

1. Scalability: NetApp’s hybrid cloud solution offers the ability to scale your resources as per your
requirements. You can utilize on-premises resources for regular, predictable workloads and cloud
resources such as Amazon FSxN for NetApp ONTAP and Google Cloud NetApp Volume (GCNV) for peak
times or unexpected loads.

2. Cost Efficiency: NetApp’s hybrid cloud model allows you to optimize your costs by using on-premises
resources for regular workloads and only paying for cloud resources when you need them. This pay-as-
you-go model can be quite cost-effective with a NetApp instaclustr service offering. For on-prem and major
cloud service providers, instaclustr provids support and consultation.

3. Flexibility: NetApp’s hybrid cloud gives you the flexibility to choose where to process your data. For
example, you might choose to perform complex vector operations on-premises where you have more
powerful hardware, and less intensive operations in the cloud.

4. Business Continuity: In the event of a disaster, having your data in a NetApp hybrid cloud can ensure
business continuity. You can quickly switch to the cloud if your on-premises resources are affected. We can
leverage NetApp SnapMirror to move the data from on-prem to cloud and vice versa.

184

5. Innovation: NetApp’s hybrid cloud solutions can also enable faster innovation by providing access to
cutting-edge cloud services and technologies. NetApp innovations in cloud such as Amazon FSxN for
NetApp ONTAP, Azure NetApp Files and Google Cloud NetApp Volumes are cloud service providers
innovative products and preferred NAS.

Vector Database Performance Validation

This section highlights the performance validation that was performed on the vector
database.

Performance validation

Performance validation plays a critical role in both vector databases and storage systems, serving as a key
factor in ensuring optimal operation and efficient resource utilization. Vector databases, known for handling
high-dimensional data and executing similarity searches, need to maintain high performance levels to process
complex queries swiftly and accurately. Performance validation helps identify bottlenecks, fine-tune
configurations, and ensure the system can handle expected loads without degradation in service. Similarly, in
storage systems, performance validation is essential to ensure data is stored and retrieved efficiently, without
latency issues or bottlenecks that could impact overall system performance. It also aids in making informed
decisions about necessary upgrades or changes in storage infrastructure. Therefore, performance validation is
a crucial aspect of system management, contributing significantly to maintaining high service quality,
operational efficiency, and overall system reliability.

In this section, we aim to delve into the performance validation of vector databases, such as Milvus and
pgvecto.rs, focusing on their storage performance characteristics such as I/O profile and netapp storage
controller behavious in support of RAG and inference workloads within the LLM Lifecycle. We will evaluate and
identify any performance differentiators when these databases are combined with the ONTAP storage solution.
Our analysis will be based on key performance indicators, such as the number of queries processed per
second(QPS).

Please check the methodology used for milvus and progress below.

Details Milvus (Standalone and Cluster) Postgres(pgvecto.rs)
#

version 2.3.2 0.2.0

Filesystem XFS on iSCSI LUNs

Workload Generator VectorDB-Bench – v0.0.5

Datasets LAION Dataset
* 10Million Embeddings
* 768 Dimensions
* ~300GB dataset size

Storage controller AFF 800
* Version – 9.14.1
* 4 x 100GbE – for milvus and 2x
100GbE for postgres
* iscsi

VectorDB-Bench with Milvus standalone cluster

we did the following performance validation on milvus standalone cluster with vectorDB-Bench.

185

https://github.com/zilliztech/VectorDBBench

The network and server connectivity of the milvus standalone cluster is below.

In this section, we share our observations and results from testing the Milvus standalone database.
. We selected DiskANN as the index type for these tests.
. Ingesting, optimizing, and creating indexes for a dataset of approximately 100GB took around 5 hours. For
most of this duration, the Milvus server, equipped with 20 cores (which equates to 40 vcpus when Hyper-
Threading is enabled), was operating at its maximum CPU capacity of 100%.We found that DiskANN is
particularly important for large datasets that exceed the system memory size.
. In the query phase, we observed a Queries per Second (QPS) rate of 10.93 with a recall of 0.9987. The 99th
percentile latency for queries was measured at 708.2 milliseconds.

From the storage perspective, the database issued about 1,000 ops/sec during the ingest, post-insert
optimization, and index creation phases. In the query phase, it demanded 32,000 ops/sec.

The following section presents the storage performance metrics.

Workload Phase Metric Value

Data Ingestion
and
Post insert optimization

IOPS < 1,000

Latency < 400 usecs

Workload Read/Write mix, mostly writes

IO size 64KB

Query IOPS Peak at 32,000

Latency < 400 usecs

Workload 100% cached read

IO size Mainly 8KB

The vectorDB-bench result is below.

186

From the performance validation of the standalone Milvus instance, it’s evident that the current setup is
insufficient to support a dataset of 5 million vectors with a dimensionality of 1536. we’ve determined that the
storage possesses adequate resources and does not constitute a bottleneck in the system.

VectorDB-Bench with milvus cluster

In this section, we discuss the deployment of a Milvus cluster within a Kubernetes environment. This
Kubernetes setup was constructed atop a VMware vSphere deployment, which hosted the Kubernetes master
and worker nodes.

The details of the VMware vSphere and Kubernetes deployments are presented in the following sections.

187

188

In this section, we present our observations and results from testing the Milvus database.
* The index type used was DiskANN.
* The table below provides a comparison between the standalone and cluster deployments when working with
5 million vectors at a dimensionality of 1536. We observed that the time taken for data ingestion and post-insert
optimization was lower in the cluster deployment. The 99th percentile latency for queries was reduced by six
times in the cluster deployment compared to the standalone setup.
* Although the Queries per Second (QPS) rate was higher in the cluster deployment, it was not at the desired
level.

The images below provide a view of various storage metrics, including storage cluster latency and total IOPS

189

(Input/Output Operations Per Second).

The following section presents the key storage performance metrics.

Workload Phase Metric Value

Data Ingestion
and
Post insert optimization

IOPS < 1,000

Latency < 400 usecs

Workload Read/Write mix, mostly writes

IO size 64KB

Query IOPS Peak at 147,000

Latency < 400 usecs

Workload 100% cached read

IO size Mainly 8KB

Based on the performance validation of both the standalone Milvus and the Milvus cluster, we present the
details of the storage I/O profile.
* We observed that the I/O profile remains consistent across both standalone and cluster deployments.
* The observed difference in peak IOPS can be attributed to the larger number of clients in the cluster
deployment.

vectorDB-Bench with Postgres (pgvecto.rs)

We conducted the following actions on PostgreSQL(pgvecto.rs) using VectorDB-Bench:
The details regarding the network and server connectivity of PostgreSQL (specifically, pgvecto.rs) are as
follows:

190

In this section, we share our observations and results from testing the PostgreSQL database, specifically using
pgvecto.rs.
* We selected HNSW as the index type for these tests because at the time of testing, DiskANN wasn’t
available for pgvecto.rs.
* During the data ingestion phase, we loaded the Cohere dataset, which consists of 10 million vectors at a
dimensionality of 768. This process took approximately 4.5 hours.
* In the query phase, we observed a Queries per Second (QPS) rate of 1,068 with a recall of 0.6344. The 99th
percentile latency for queries was measured at 20 milliseconds. Throughout most of the runtime, the client
CPU was operating at 100% capacity.

The images below provide a view of various storage metrics, including storage cluster latency total IOPS
(Input/Output Operations Per Second).

The following section presents the key storage performance metrics.

191

Performance comparison between milvus and postgres on vector DB Bench

Based on our performance validation of Milvus and PostgreSQL using VectorDBBench, we observed the
following:

• Index Type: HNSW

192

• Dataset: Cohere with 10 million vectors at 768 dimensions

We found that pgvecto.rs achieved a Queries per Second (QPS) rate of 1,068 with a recall of 0.6344, while
Milvus achieved a QPS rate of 106 with a recall of 0.9842.

If high precision in your queries is a priority, Milvus outperforms pgvecto.rs as it retrieves a higher proportion of
relevant items per query. However, if the number of queries per second is a more crucial factor, pgvecto.rs
exceeds Milvus. It’s important to note, though, that the quality of the data retrieved via pgvecto.rs is lower, with
around 37% of the search results being irrelevant items.

Observation based on our performance validations:

Based on our performance validations, we have made the following observations:

In Milvus, the I/O profile closely resembles an OLTP workload, such as that seen with Oracle SLOB. The
benchmark consists of three phases: Data Ingestion, Post-Optimization, and Query. The initial stages are
primarily characterized by 64KB write operations, while the query phase predominantly involves 8KB reads.
We expect ONTAP to handle the Milvus I/O load proficiently.

The PostgreSQL I/O profile does not present a challenging storage workload. Given the in-memory
implementation currently in progress, we didn’t observe any disk I/O during the query phase.

DiskANN emerges as a crucial technology for storage differentiation. It enables the efficient scaling of vector
DB search beyond the system memory boundary. However, it’s unlikely to establish storage performance
differentiation with in-memory vector DB indices such as HNSW.

It’s also worth noting that storage does not play a critical role during the query phase when the index type is
HSNW, which is the most important operating phase for vector databases supporting RAG applications. The
implication here is that the storage performance does not significantly impact the overall performance of these
applications.

Vector Database with Instaclustr using PostgreSQL: pgvector

This section discusses the specifics of how instaclustr product integrates with
postgreSQL on pgvector fuctionality in the vector database solution for NetApp.

Vector Database with Instaclustr using PostgreSQL: pgvector

In this section, we delve into the specifics of how instaclustr product integrates with postgreSQL on pgvector
fuctionality. We have an example of “How To Improve Your LLM Accuracy and Performance With PGVector
and PostgreSQL®: Introduction to Embeddings and the Role of PGVector”. Please check the blog to get more
information.

Vector Database Use Cases

This section provides an overview of the use cases for the NetApp vector database
solution.

Vector Database Use Cases

In this section, we discuss about two use cases such as Retrieval Augmented Generation with Large
Language Models and NetApp IT chatbot.

193

https://www.instaclustr.com/blog/how-to-improve-your-llm-accuracy-and-performance-with-pgvector-and-postgresql-introduction-to-embeddings-and-the-role-of-pgvector/

Retrieval Augmented Generation (RAG) with Large Language Models (LLMs)

Retrieval-augmented generation, or RAG, is a technique for enhancing the

accuracy and reliability of Large Language Models, or LLMs, by augmenting

prompts with facts fetched from external sources. In a traditional RAG

deployment, vector embeddings are generated from an existing dataset and

then stored in a vector database, often referred to as a knowledgebase.

Whenever a user submits a prompt to the LLM, a vector embedding

representation of the prompt is generated, and the vector database is

searched using that embedding as the search query. This search operation

returns similar vectors from the knowledgebase, which are then fed to the

LLM as context alongside the original user prompt. In this way, an LLM can

be augmented with additional information that was not part of its original

training dataset.

The NVIDIA Enterprise RAG LLM Operator is a useful tool for implementing RAG in the enterprise. This
operator can be used to deploy a full RAG pipeline. The RAG pipeline can be customized to utilize either
Milvus or pgvecto as the vector database for storing knowledgebase embeddings. Refer to the documentation
for details.

NetApp has validated an enterprise RAG architecture powered by the NVIDIA

Enterprise RAG LLM Operator alongside NetApp storage. Refer to our blog

post for more information and to see a demo. Figure 1 provides an overview

of this architecture.

Figure 1) Enterprise RAG powered by NVIDIA NeMo Microservices and NetApp

NetApp IT chatbot use case

NetApp’s chatbot serves as another real-time use case for the vector database. In this instance, the NetApp
Private OpenAI Sandbox provides an effective, secure, and efficient platform for managing queries from
NetApp’s internal users. By incorporating stringent security protocols, efficient data management systems, and
sophisticated AI processing capabilities, it guarantees high-quality, precise responses to users based on their
roles and responsibilities in the organization via SSO authentication. This architecture highlights the potential

194

of merging advanced technologies to create user-focused, intelligent systems.

The use case can be divided into four primary sections.

User Authentication and Verification:

• User queries first go through the NetApp Single Sign-On (SSO) process to confirm the user’s identity.

• After successful authentication, the system checks the VPN connection to ensure a secure data
transmission.

Data Transmission and Processing:

• Once the VPN is validated, the data is sent to MariaDB through the NetAIChat or NetAICreate web
applications. MariaDB is a fast and efficient database system used to manage and store user data.

• MariaDB then sends the information to the NetApp Azure instance, which connects the user data to the AI
processing unit.

Interaction with OpenAI and Content Filtering:

• The Azure instance sends the user’s questions to a content filtering system. This system cleans up the
query and prepares it for processing.

• The cleaned-up input is then sent to the Azure OpenAI base model, which generates a response based on
the input.

Response Generation and Moderation:

• The response from the base model is first checked to ensure it is accurate and meets content standards.

• After passing the check, the response is sent back to the user. This process ensures that the user receives
a clear, accurate, and appropriate answer to their query.

195

Conclusion

This section concludes the vector database solution for NetApp.

Conclusion

In conclusion, this document provides a comprehensive overview of deploying and managing vector
databases, such as Milvus and pgvector, on NetApp storage solutions. We discussed the infrastructure
guidelines for leveraging NetApp ONTAP and StorageGRID object storage and validated the Milvus database
in AWS FSX for NetApp ONTAP through file and object store.

We explored NetApp’s file-object duality, demonstrating its utility not only for data in vector databases but also
for other applications. We also highlighted how SnapCenter, NetApp’s enterprise management product, offers
backup, restore, and clone functionalities for vector database data, ensuring data integrity and availability.

The document also delves into how NetApp’s Hybrid Cloud solution offers data replication and protection
across on-premises and cloud environments, providing a seamless and secure data management experience.
We provided insights into the performance validation of vector databases like Milvus and pgvecto on NetApp
ONTAP, offering valuable information on their efficiency and scalability.

Finally, we discussed two generative AI use cases: RAG with LLM and the NetApp’s internal ChatAI. These
practical examples underscore the real-world applications and benefits of the concepts and practices outlined
in this document. Overall, this document serves as a comprehensive guide for anyone looking to leverage
NetApp’s powerful storage solutions for managing vector databases.

Acknowledgments

The author like to heartfelt thanks to the below contributors, others who provided their feedback and comments
to make this paper valuable to NetApp customers and NetApp fields.

1. Sathish Thyagarajan, Technical Marketing Engineer, ONTAP AI & Analytics, NetApp

2. Mike Oglesby, Technical Marketing Engineer, NetApp

3. AJ Mahajan, Senior Director, NetApp

4. Joe Scott, Manager, Workload Performance Engineering, NetApp

5. Puneet Dhawan, Senior Director, Product Management Fsx, NetApp

6. Yuval Kalderon, Senior Product Manager, FSx Product Team, NetApp

Where to find additional information

To learn more about the information that is described in this document, review the following documents and/or
websites:

• Milvus documentation - https://milvus.io/docs/overview.md

• Milvus standalone documentation - https://milvus.io/docs/v2.0.x/install_standalone-docker.md

• NetApp Product Documentation
https://www.netapp.com/support-and-training/documentation/

• instaclustr - instalclustr documentation

Version history

196

https://milvus.io/docs/overview.md
https://milvus.io/docs/v2.0.x/install_standalone-docker.md
https://www.netapp.com/support-and-training/documentation/
https://www.instaclustr.com/support/documentation/?_bt=&_bk=&_bm=&_bn=x&_bg=&utm_term=&utm_campaign=&utm_source=adwords&utm_medium=ppc&hsa_acc=1467100120&hsa_cam=20766399079&hsa_grp=&hsa_ad=&hsa_src=x&hsa_tgt=&hsa_kw=&hsa_mt=&hsa_net=adwords&hsa_ver=3&gad_source=1&gclid=CjwKCAjw26KxBhBDEiwAu6KXtzOZhN0dl0H1smOMcj9nsC0qBQphdMqFR7IrVQqeG2Y4aHWydUMj2BoCdFwQAvD_BwE

Version Date Document version history

Version 1.0 April 2024 Initial release

Appendix A: Values.yaml

This section provides sample YAML code for the values used in the NetApp vector
database solution.

Appendix A: Values.yaml

root@node2:~# cat values.yaml

Enable or disable Milvus Cluster mode

cluster:

 enabled: true

image:

 all:

 repository: milvusdb/milvus

 tag: v2.3.4

 pullPolicy: IfNotPresent

 ## Optionally specify an array of imagePullSecrets.

 ## Secrets must be manually created in the namespace.

 ## ref: https://kubernetes.io/docs/tasks/configure-pod-container/pull-

image-private-registry/

 ##

 # pullSecrets:

 # - myRegistryKeySecretName

 tools:

 repository: milvusdb/milvus-config-tool

 tag: v0.1.2

 pullPolicy: IfNotPresent

Global node selector

If set, this will apply to all milvus components

Individual components can be set to a different node selector

nodeSelector: {}

Global tolerations

If set, this will apply to all milvus components

Individual components can be set to a different tolerations

tolerations: []

Global affinity

If set, this will apply to all milvus components

Individual components can be set to a different affinity

affinity: {}

197

Global labels and annotations

If set, this will apply to all milvus components

labels: {}

annotations: {}

Extra configs for milvus.yaml

If set, this config will merge into milvus.yaml

Please follow the config structure in the milvus.yaml

at https://github.com/milvus-io/milvus/blob/master/configs/milvus.yaml

Note: this config will be the top priority which will override the

config

in the image and helm chart.

extraConfigFiles:

 user.yaml: |+

 # For example enable rest http for milvus proxy

 # proxy:

 # http:

 # enabled: true

 ## Enable tlsMode and set the tls cert and key

 # tls:

 # serverPemPath: /etc/milvus/certs/tls.crt

 # serverKeyPath: /etc/milvus/certs/tls.key

 # common:

 # security:

 # tlsMode: 1

Expose the Milvus service to be accessed from outside the cluster

(LoadBalancer service).

or access it from within the cluster (ClusterIP service). Set the

service type and the port to serve it.

ref: http://kubernetes.io/docs/user-guide/services/

##

service:

 type: ClusterIP

 port: 19530

 portName: milvus

 nodePort: ""

 annotations: {}

 labels: {}

 ## List of IP addresses at which the Milvus service is available

 ## Ref: https://kubernetes.io/docs/user-guide/services/#external-ips

 ##

 externalIPs: []

 # - externalIp1

198

 # LoadBalancerSourcesRange is a list of allowed CIDR values, which are

combined with ServicePort to

 # set allowed inbound rules on the security group assigned to the master

load balancer

 loadBalancerSourceRanges:

 - 0.0.0.0/0

 # Optionally assign a known public LB IP

 # loadBalancerIP: 1.2.3.4

ingress:

 enabled: false

 annotations:

 # Annotation example: set nginx ingress type

 # kubernetes.io/ingress.class: nginx

 nginx.ingress.kubernetes.io/backend-protocol: GRPC

 nginx.ingress.kubernetes.io/listen-ports-ssl: '[19530]'

 nginx.ingress.kubernetes.io/proxy-body-size: 4m

 nginx.ingress.kubernetes.io/ssl-redirect: "true"

 labels: {}

 rules:

 - host: "milvus-example.local"

 path: "/"

 pathType: "Prefix"

 # - host: "milvus-example2.local"

 # path: "/otherpath"

 # pathType: "Prefix"

 tls: []

 # - secretName: chart-example-tls

 # hosts:

 # - milvus-example.local

serviceAccount:

 create: false

 name:

 annotations:

 labels:

metrics:

 enabled: true

 serviceMonitor:

 # Set this to `true` to create ServiceMonitor for Prometheus operator

 enabled: false

 interval: "30s"

 scrapeTimeout: "10s"

199

 # Additional labels that can be used so ServiceMonitor will be

discovered by Prometheus

 additionalLabels: {}

livenessProbe:

 enabled: true

 initialDelaySeconds: 90

 periodSeconds: 30

 timeoutSeconds: 5

 successThreshold: 1

 failureThreshold: 5

readinessProbe:

 enabled: true

 initialDelaySeconds: 90

 periodSeconds: 10

 timeoutSeconds: 5

 successThreshold: 1

 failureThreshold: 5

log:

 level: "info"

 file:

 maxSize: 300 # MB

 maxAge: 10 # day

 maxBackups: 20

 format: "text" # text/json

 persistence:

 mountPath: "/milvus/logs"

 ## If true, create/use a Persistent Volume Claim

 ## If false, use emptyDir

 ##

 enabled: false

 annotations:

 helm.sh/resource-policy: keep

 persistentVolumeClaim:

 existingClaim: ""

 ## Milvus Logs Persistent Volume Storage Class

 ## If defined, storageClassName: <storageClass>

 ## If set to "-", storageClassName: "", which disables dynamic

provisioning

 ## If undefined (the default) or set to null, no storageClassName

spec is

 ## set, choosing the default provisioner.

 ## ReadWriteMany access mode required for milvus cluster.

200

 ##

 storageClass: default

 accessModes: ReadWriteMany

 size: 10Gi

 subPath: ""

Heaptrack traces all memory allocations and annotates these events with

stack traces.

See more: https://github.com/KDE/heaptrack

Enable heaptrack in production is not recommended.

heaptrack:

 image:

 repository: milvusdb/heaptrack

 tag: v0.1.0

 pullPolicy: IfNotPresent

standalone:

 replicas: 1 # Run standalone mode with replication disabled

 resources: {}

 # Set local storage size in resources

 # limits:

 # ephemeral-storage: 100Gi

 nodeSelector: {}

 affinity: {}

 tolerations: []

 extraEnv: []

 heaptrack:

 enabled: false

 disk:

 enabled: true

 size:

 enabled: false # Enable local storage size limit

 profiling:

 enabled: false # Enable live profiling

 ## Default message queue for milvus standalone

 ## Supported value: rocksmq, natsmq, pulsar and kafka

 messageQueue: rocksmq

 persistence:

 mountPath: "/var/lib/milvus"

 ## If true, alertmanager will create/use a Persistent Volume Claim

 ## If false, use emptyDir

 ##

 enabled: true

 annotations:

 helm.sh/resource-policy: keep

201

 persistentVolumeClaim:

 existingClaim: ""

 ## Milvus Persistent Volume Storage Class

 ## If defined, storageClassName: <storageClass>

 ## If set to "-", storageClassName: "", which disables dynamic

provisioning

 ## If undefined (the default) or set to null, no storageClassName

spec is

 ## set, choosing the default provisioner.

 ##

 storageClass:

 accessModes: ReadWriteOnce

 size: 50Gi

 subPath: ""

proxy:

 enabled: true

 # You can set the number of replicas to -1 to remove the replicas field

in case you want to use HPA

 replicas: 1

 resources: {}

 nodeSelector: {}

 affinity: {}

 tolerations: []

 extraEnv: []

 heaptrack:

 enabled: false

 profiling:

 enabled: false # Enable live profiling

 http:

 enabled: true # whether to enable http rest server

 debugMode:

 enabled: false

 # Mount a TLS secret into proxy pod

 tls:

 enabled: false

when enabling proxy.tls, all items below should be uncommented and the

key and crt values should be populated.

enabled: true

secretName: milvus-tls

expecting base64 encoded values here: i.e. $(cat tls.crt | base64 -w 0)

and $(cat tls.key | base64 -w 0)

key: LS0tLS1CRUdJTiBQU--REDUCT

crt: LS0tLS1CRUdJTiBDR--REDUCT

volumes:

- secret:

202

secretName: milvus-tls

name: milvus-tls

volumeMounts:

- mountPath: /etc/milvus/certs/

name: milvus-tls

rootCoordinator:

 enabled: true

 # You can set the number of replicas greater than 1, only if enable

active standby

 replicas: 1 # Run Root Coordinator mode with replication disabled

 resources: {}

 nodeSelector: {}

 affinity: {}

 tolerations: []

 extraEnv: []

 heaptrack:

 enabled: false

 profiling:

 enabled: false # Enable live profiling

 activeStandby:

 enabled: false # Enable active-standby when you set multiple replicas

for root coordinator

 service:

 port: 53100

 annotations: {}

 labels: {}

 clusterIP: ""

queryCoordinator:

 enabled: true

 # You can set the number of replicas greater than 1, only if enable

active standby

 replicas: 1 # Run Query Coordinator mode with replication disabled

 resources: {}

 nodeSelector: {}

 affinity: {}

 tolerations: []

 extraEnv: []

 heaptrack:

 enabled: false

 profiling:

 enabled: false # Enable live profiling

 activeStandby:

 enabled: false # Enable active-standby when you set multiple replicas

203

for query coordinator

 service:

 port: 19531

 annotations: {}

 labels: {}

 clusterIP: ""

queryNode:

 enabled: true

 # You can set the number of replicas to -1 to remove the replicas field

in case you want to use HPA

 replicas: 1

 resources: {}

 # Set local storage size in resources

 # limits:

 # ephemeral-storage: 100Gi

 nodeSelector: {}

 affinity: {}

 tolerations: []

 extraEnv: []

 heaptrack:

 enabled: false

 disk:

 enabled: true # Enable querynode load disk index, and search on disk

index

 size:

 enabled: false # Enable local storage size limit

 profiling:

 enabled: false # Enable live profiling

indexCoordinator:

 enabled: true

 # You can set the number of replicas greater than 1, only if enable

active standby

 replicas: 1 # Run Index Coordinator mode with replication disabled

 resources: {}

 nodeSelector: {}

 affinity: {}

 tolerations: []

 extraEnv: []

 heaptrack:

 enabled: false

 profiling:

 enabled: false # Enable live profiling

 activeStandby:

204

 enabled: false # Enable active-standby when you set multiple replicas

for index coordinator

 service:

 port: 31000

 annotations: {}

 labels: {}

 clusterIP: ""

indexNode:

 enabled: true

 # You can set the number of replicas to -1 to remove the replicas field

in case you want to use HPA

 replicas: 1

 resources: {}

 # Set local storage size in resources

 # limits:

 # ephemeral-storage: 100Gi

 nodeSelector: {}

 affinity: {}

 tolerations: []

 extraEnv: []

 heaptrack:

 enabled: false

 profiling:

 enabled: false # Enable live profiling

 disk:

 enabled: true # Enable index node build disk vector index

 size:

 enabled: false # Enable local storage size limit

dataCoordinator:

 enabled: true

 # You can set the number of replicas greater than 1, only if enable

active standby

 replicas: 1 # Run Data Coordinator mode with replication

disabled

 resources: {}

 nodeSelector: {}

 affinity: {}

 tolerations: []

 extraEnv: []

 heaptrack:

 enabled: false

 profiling:

 enabled: false # Enable live profiling

205

 activeStandby:

 enabled: false # Enable active-standby when you set multiple replicas

for data coordinator

 service:

 port: 13333

 annotations: {}

 labels: {}

 clusterIP: ""

dataNode:

 enabled: true

 # You can set the number of replicas to -1 to remove the replicas field

in case you want to use HPA

 replicas: 1

 resources: {}

 nodeSelector: {}

 affinity: {}

 tolerations: []

 extraEnv: []

 heaptrack:

 enabled: false

 profiling:

 enabled: false # Enable live profiling

mixCoordinator contains all coord

If you want to use mixcoord, enable this and disable all of other

coords

mixCoordinator:

 enabled: false

 # You can set the number of replicas greater than 1, only if enable

active standby

 replicas: 1 # Run Mixture Coordinator mode with replication

disabled

 resources: {}

 nodeSelector: {}

 affinity: {}

 tolerations: []

 extraEnv: []

 heaptrack:

 enabled: false

 profiling:

 enabled: false # Enable live profiling

 activeStandby:

 enabled: false # Enable active-standby when you set multiple replicas

for Mixture coordinator

206

 service:

 annotations: {}

 labels: {}

 clusterIP: ""

attu:

 enabled: false

 name: attu

 image:

 repository: zilliz/attu

 tag: v2.2.8

 pullPolicy: IfNotPresent

 service:

 annotations: {}

 labels: {}

 type: ClusterIP

 port: 3000

 # loadBalancerIP: ""

 resources: {}

 podLabels: {}

 ingress:

 enabled: false

 annotations: {}

 # Annotation example: set nginx ingress type

 # kubernetes.io/ingress.class: nginx

 labels: {}

 hosts:

 - milvus-attu.local

 tls: []

 # - secretName: chart-attu-tls

 # hosts:

 # - milvus-attu.local

Configuration values for the minio dependency

ref: https://github.com/minio/charts/blob/master/README.md

##

minio:

 enabled: false

 name: minio

 mode: distributed

 image:

 tag: "RELEASE.2023-03-20T20-16-18Z"

 pullPolicy: IfNotPresent

207

 accessKey: minioadmin

 secretKey: minioadmin

 existingSecret: ""

 bucketName: "milvus-bucket"

 rootPath: file

 useIAM: false

 iamEndpoint: ""

 region: ""

 useVirtualHost: false

 podDisruptionBudget:

 enabled: false

 resources:

 requests:

 memory: 2Gi

 gcsgateway:

 enabled: false

 replicas: 1

 gcsKeyJson: "/etc/credentials/gcs_key.json"

 projectId: ""

 service:

 type: ClusterIP

 port: 9000

 persistence:

 enabled: true

 existingClaim: ""

 storageClass:

 accessMode: ReadWriteOnce

 size: 500Gi

 livenessProbe:

 enabled: true

 initialDelaySeconds: 5

 periodSeconds: 5

 timeoutSeconds: 5

 successThreshold: 1

 failureThreshold: 5

 readinessProbe:

 enabled: true

 initialDelaySeconds: 5

 periodSeconds: 5

 timeoutSeconds: 1

 successThreshold: 1

208

 failureThreshold: 5

 startupProbe:

 enabled: true

 initialDelaySeconds: 0

 periodSeconds: 10

 timeoutSeconds: 5

 successThreshold: 1

 failureThreshold: 60

Configuration values for the etcd dependency

ref: https://artifacthub.io/packages/helm/bitnami/etcd

##

etcd:

 enabled: true

 name: etcd

 replicaCount: 3

 pdb:

 create: false

 image:

 repository: "milvusdb/etcd"

 tag: "3.5.5-r2"

 pullPolicy: IfNotPresent

 service:

 type: ClusterIP

 port: 2379

 peerPort: 2380

 auth:

 rbac:

 enabled: false

 persistence:

 enabled: true

 storageClass: default

 accessMode: ReadWriteOnce

 size: 10Gi

 ## Change default timeout periods to mitigate zoobie probe process

 livenessProbe:

 enabled: true

 timeoutSeconds: 10

 readinessProbe:

209

 enabled: true

 periodSeconds: 20

 timeoutSeconds: 10

 ## Enable auto compaction

 ## compaction by every 1000 revision

 ##

 autoCompactionMode: revision

 autoCompactionRetention: "1000"

 ## Increase default quota to 4G

 ##

 extraEnvVars:

 - name: ETCD_QUOTA_BACKEND_BYTES

 value: "4294967296"

 - name: ETCD_HEARTBEAT_INTERVAL

 value: "500"

 - name: ETCD_ELECTION_TIMEOUT

 value: "2500"

Configuration values for the pulsar dependency

ref: https://github.com/apache/pulsar-helm-chart

##

pulsar:

 enabled: true

 name: pulsar

 fullnameOverride: ""

 persistence: true

 maxMessageSize: "5242880" # 5 * 1024 * 1024 Bytes, Maximum size of each

message in pulsar.

 rbac:

 enabled: false

 psp: false

 limit_to_namespace: true

 affinity:

 anti_affinity: false

enableAntiAffinity: no

 components:

 zookeeper: true

 bookkeeper: true

210

 # bookkeeper - autorecovery

 autorecovery: true

 broker: true

 functions: false

 proxy: true

 toolset: false

 pulsar_manager: false

 monitoring:

 prometheus: false

 grafana: false

 node_exporter: false

 alert_manager: false

 images:

 broker:

 repository: apachepulsar/pulsar

 pullPolicy: IfNotPresent

 tag: 2.8.2

 autorecovery:

 repository: apachepulsar/pulsar

 tag: 2.8.2

 pullPolicy: IfNotPresent

 zookeeper:

 repository: apachepulsar/pulsar

 pullPolicy: IfNotPresent

 tag: 2.8.2

 bookie:

 repository: apachepulsar/pulsar

 pullPolicy: IfNotPresent

 tag: 2.8.2

 proxy:

 repository: apachepulsar/pulsar

 pullPolicy: IfNotPresent

 tag: 2.8.2

 pulsar_manager:

 repository: apachepulsar/pulsar-manager

 pullPolicy: IfNotPresent

 tag: v0.1.0

 zookeeper:

 volumes:

 persistence: true

 data:

 name: data

 size: 20Gi #SSD Required

211

 storageClassName: default

 resources:

 requests:

 memory: 1024Mi

 cpu: 0.3

 configData:

 PULSAR_MEM: >

 -Xms1024m

 -Xmx1024m

 PULSAR_GC: >

 -Dcom.sun.management.jmxremote

 -Djute.maxbuffer=10485760

 -XX:+ParallelRefProcEnabled

 -XX:+UnlockExperimentalVMOptions

 -XX:+DoEscapeAnalysis

 -XX:+DisableExplicitGC

 -XX:+PerfDisableSharedMem

 -Dzookeeper.forceSync=no

 pdb:

 usePolicy: false

 bookkeeper:

 replicaCount: 3

 volumes:

 persistence: true

 journal:

 name: journal

 size: 100Gi

 storageClassName: default

 ledgers:

 name: ledgers

 size: 200Gi

 storageClassName: default

 resources:

 requests:

 memory: 2048Mi

 cpu: 1

 configData:

 PULSAR_MEM: >

 -Xms4096m

 -Xmx4096m

 -XX:MaxDirectMemorySize=8192m

 PULSAR_GC: >

 -Dio.netty.leakDetectionLevel=disabled

 -Dio.netty.recycler.linkCapacity=1024

 -XX:+UseG1GC -XX:MaxGCPauseMillis=10

212

 -XX:+ParallelRefProcEnabled

 -XX:+UnlockExperimentalVMOptions

 -XX:+DoEscapeAnalysis

 -XX:ParallelGCThreads=32

 -XX:ConcGCThreads=32

 -XX:G1NewSizePercent=50

 -XX:+DisableExplicitGC

 -XX:-ResizePLAB

 -XX:+ExitOnOutOfMemoryError

 -XX:+PerfDisableSharedMem

 -XX:+PrintGCDetails

 nettyMaxFrameSizeBytes: "104867840"

 pdb:

 usePolicy: false

 broker:

 component: broker

 podMonitor:

 enabled: false

 replicaCount: 1

 resources:

 requests:

 memory: 4096Mi

 cpu: 1.5

 configData:

 PULSAR_MEM: >

 -Xms4096m

 -Xmx4096m

 -XX:MaxDirectMemorySize=8192m

 PULSAR_GC: >

 -Dio.netty.leakDetectionLevel=disabled

 -Dio.netty.recycler.linkCapacity=1024

 -XX:+ParallelRefProcEnabled

 -XX:+UnlockExperimentalVMOptions

 -XX:+DoEscapeAnalysis

 -XX:ParallelGCThreads=32

 -XX:ConcGCThreads=32

 -XX:G1NewSizePercent=50

 -XX:+DisableExplicitGC

 -XX:-ResizePLAB

 -XX:+ExitOnOutOfMemoryError

 maxMessageSize: "104857600"

 defaultRetentionTimeInMinutes: "10080"

 defaultRetentionSizeInMB: "-1"

 backlogQuotaDefaultLimitGB: "8"

 ttlDurationDefaultInSeconds: "259200"

213

 subscriptionExpirationTimeMinutes: "3"

 backlogQuotaDefaultRetentionPolicy: producer_exception

 pdb:

 usePolicy: false

 autorecovery:

 resources:

 requests:

 memory: 512Mi

 cpu: 1

 proxy:

 replicaCount: 1

 podMonitor:

 enabled: false

 resources:

 requests:

 memory: 2048Mi

 cpu: 1

 service:

 type: ClusterIP

 ports:

 pulsar: 6650

 configData:

 PULSAR_MEM: >

 -Xms2048m -Xmx2048m

 PULSAR_GC: >

 -XX:MaxDirectMemorySize=2048m

 httpNumThreads: "100"

 pdb:

 usePolicy: false

 pulsar_manager:

 service:

 type: ClusterIP

 pulsar_metadata:

 component: pulsar-init

 image:

 # the image used for running `pulsar-cluster-initialize` job

 repository: apachepulsar/pulsar

 tag: 2.8.2

Configuration values for the kafka dependency

ref: https://artifacthub.io/packages/helm/bitnami/kafka

214

##

kafka:

 enabled: false

 name: kafka

 replicaCount: 3

 image:

 repository: bitnami/kafka

 tag: 3.1.0-debian-10-r52

 ## Increase graceful termination for kafka graceful shutdown

 terminationGracePeriodSeconds: "90"

 pdb:

 create: false

 ## Enable startup probe to prevent pod restart during recovering

 startupProbe:

 enabled: true

 ## Kafka Java Heap size

 heapOpts: "-Xmx4096m -Xms4096m"

 maxMessageBytes: _10485760

 defaultReplicationFactor: 3

 offsetsTopicReplicationFactor: 3

 ## Only enable time based log retention

 logRetentionHours: 168

 logRetentionBytes: _-1

 extraEnvVars:

 - name: KAFKA_CFG_MAX_PARTITION_FETCH_BYTES

 value: "5242880"

 - name: KAFKA_CFG_MAX_REQUEST_SIZE

 value: "5242880"

 - name: KAFKA_CFG_REPLICA_FETCH_MAX_BYTES

 value: "10485760"

 - name: KAFKA_CFG_FETCH_MESSAGE_MAX_BYTES

 value: "5242880"

 - name: KAFKA_CFG_LOG_ROLL_HOURS

 value: "24"

 persistence:

 enabled: true

 storageClass:

 accessMode: ReadWriteOnce

 size: 300Gi

 metrics:

 ## Prometheus Kafka exporter: exposes complimentary metrics to JMX

215

exporter

 kafka:

 enabled: false

 image:

 repository: bitnami/kafka-exporter

 tag: 1.4.2-debian-10-r182

 ## Prometheus JMX exporter: exposes the majority of Kafkas metrics

 jmx:

 enabled: false

 image:

 repository: bitnami/jmx-exporter

 tag: 0.16.1-debian-10-r245

 ## To enable serviceMonitor, you must enable either kafka exporter or

jmx exporter.

 ## And you can enable them both

 serviceMonitor:

 enabled: false

 service:

 type: ClusterIP

 ports:

 client: 9092

 zookeeper:

 enabled: true

 replicaCount: 3

###################################

External S3

- these configs are only used when `externalS3.enabled` is true

###################################

externalS3:

 enabled: true

 host: "192.168.150.167"

 port: "80"

 accessKey: "24G4C1316APP2BIPDE5S"

 secretKey: "Zd28p43rgZaU44PX_ftT279z9nt4jBSro97j87Bx"

 useSSL: false

 bucketName: "milvusdbvol1"

 rootPath: ""

 useIAM: false

 cloudProvider: "aws"

 iamEndpoint: ""

 region: ""

216

 useVirtualHost: false

###################################

GCS Gateway

- these configs are only used when `minio.gcsgateway.enabled` is true

###################################

externalGcs:

 bucketName: ""

###################################

External etcd

- these configs are only used when `externalEtcd.enabled` is true

###################################

externalEtcd:

 enabled: false

 ## the endpoints of the external etcd

 ##

 endpoints:

 - localhost:2379

###################################

External pulsar

- these configs are only used when `externalPulsar.enabled` is true

###################################

externalPulsar:

 enabled: false

 host: localhost

 port: 6650

 maxMessageSize: "5242880" # 5 * 1024 * 1024 Bytes, Maximum size of each

message in pulsar.

 tenant: public

 namespace: default

 authPlugin: ""

 authParams: ""

###################################

External kafka

- these configs are only used when `externalKafka.enabled` is true

###################################

externalKafka:

 enabled: false

 brokerList: localhost:9092

 securityProtocol: SASL_SSL

 sasl:

 mechanisms: PLAIN

 username: ""

217

 password: ""

root@node2:~#

Appendix B: prepare_data_netapp_new.py

This section provides a sample Python script used to prepare data for the vector
database.

Appendix B: prepare_data_netapp_new.py

root@node2:~# cat prepare_data_netapp_new.py

hello_milvus.py demonstrates the basic operations of PyMilvus, a Python

SDK of Milvus.

1. connect to Milvus

2. create collection

3. insert data

4. create index

5. search, query, and hybrid search on entities

6. delete entities by PK

7. drop collection

import time

import os

import numpy as np

from pymilvus import (

 connections,

 utility,

 FieldSchema, CollectionSchema, DataType,

 Collection,

)

fmt = "\n=== {:30} ===\n"

search_latency_fmt = "search latency = {:.4f}s"

#num_entities, dim = 3000, 8

num_entities, dim = 3000, 16

##

#######

1. connect to Milvus

Add a new connection alias `default` for Milvus server in

`localhost:19530`

Actually the "default" alias is a buildin in PyMilvus.

If the address of Milvus is the same as `localhost:19530`, you can omit

all

parameters and call the method as: `connections.connect()`.

#

Note: the `using` parameter of the following methods is default to

218

"default".

print(fmt.format("start connecting to Milvus"))

host = os.environ.get('MILVUS_HOST')

if host == None:

 host = "localhost"

print(fmt.format(f"Milvus host: {host}"))

#connections.connect("default", host=host, port="19530")

connections.connect("default", host=host, port="27017")

has = utility.has_collection("hello_milvus_ntapnew_update2_sc")

print(f"Does collection hello_milvus_ntapnew_update2_sc exist in Milvus:

{has}")

#drop the collection

print(fmt.format(f"Drop collection - hello_milvus_ntapnew_update2_sc"))

utility.drop_collection("hello_milvus_ntapnew_update2_sc")

#drop the collection

print(fmt.format(f"Drop collection - hello_milvus_ntapnew_update2_sc2"))

utility.drop_collection("hello_milvus_ntapnew_update2_sc2")

##

#######

2. create collection

We're going to create a collection with 3 fields.

+-+------------+------------+------------------

+------------------------------+

| | field name | field type | other attributes | field description

|

+-+------------+------------+------------------

+------------------------------+

|1| "pk" | Int64 | is_primary=True | "primary field"

|

| | | | auto_id=False |

|

+-+------------+------------+------------------

+------------------------------+

|2| "random" | Double | | "a double field"

|

+-+------------+------------+------------------

+------------------------------+

|3|"embeddings"| FloatVector| dim=8 | "float vector with dim

8" |

+-+------------+------------+------------------

+------------------------------+

fields = [

219

 FieldSchema(name="pk", dtype=DataType.INT64, is_primary=True, auto_id

=False),

 FieldSchema(name="random", dtype=DataType.DOUBLE),

 FieldSchema(name="var", dtype=DataType.VARCHAR, max_length=65535),

 FieldSchema(name="embeddings", dtype=DataType.FLOAT_VECTOR, dim=dim)

]

schema = CollectionSchema(fields, "hello_milvus_ntapnew_update2_sc")

print(fmt.format("Create collection `hello_milvus_ntapnew_update2_sc`"))

hello_milvus_ntapnew_update2_sc = Collection

("hello_milvus_ntapnew_update2_sc", schema, consistency_level="Strong")

##

######

3. insert data

We are going to insert 3000 rows of data into

`hello_milvus_ntapnew_update2_sc`

Data to be inserted must be organized in fields.

#

The insert() method returns:

- either automatically generated primary keys by Milvus if auto_id=True

in the schema;

- or the existing primary key field from the entities if auto_id=False

in the schema.

print(fmt.format("Start inserting entities"))

rng = np.random.default_rng(seed=19530)

entities = [

 # provide the pk field because `auto_id` is set to False

 [i for i in range(num_entities)],

 rng.random(num_entities).tolist(), # field random, only supports list

 [str(i) for i in range(num_entities)],

 rng.random((num_entities, dim)), # field embeddings, supports

numpy.ndarray and list

]

insert_result = hello_milvus_ntapnew_update2_sc.insert(entities)

hello_milvus_ntapnew_update2_sc.flush()

print(f"Number of entities in hello_milvus_ntapnew_update2_sc:

{hello_milvus_ntapnew_update2_sc.num_entities}") # check the num_entites

create another collection

fields2 = [

 FieldSchema(name="pk", dtype=DataType.INT64, is_primary=True, auto_id

=True),

220

 FieldSchema(name="random", dtype=DataType.DOUBLE),

 FieldSchema(name="var", dtype=DataType.VARCHAR, max_length=65535),

 FieldSchema(name="embeddings", dtype=DataType.FLOAT_VECTOR, dim=dim)

]

schema2 = CollectionSchema(fields2, "hello_milvus_ntapnew_update2_sc2")

print(fmt.format("Create collection `hello_milvus_ntapnew_update2_sc2`"))

hello_milvus_ntapnew_update2_sc2 = Collection

("hello_milvus_ntapnew_update2_sc2", schema2, consistency_level="Strong")

entities2 = [

 rng.random(num_entities).tolist(), # field random, only supports list

 [str(i) for i in range(num_entities)],

 rng.random((num_entities, dim)), # field embeddings, supports

numpy.ndarray and list

]

insert_result2 = hello_milvus_ntapnew_update2_sc2.insert(entities2)

hello_milvus_ntapnew_update2_sc2.flush()

insert_result2 = hello_milvus_ntapnew_update2_sc2.insert(entities2)

hello_milvus_ntapnew_update2_sc2.flush()

index_params = {"index_type": "IVF_FLAT", "params": {"nlist": 128},

"metric_type": "L2"}

hello_milvus_ntapnew_update2_sc.create_index("embeddings", index_params)

#

hello_milvus_ntapnew_update2_sc2.create_index(field_name="var",index_name=

"scalar_index")

index_params2 = {"index_type": "Trie"}

hello_milvus_ntapnew_update2_sc2.create_index("var", index_params2)

print(f"Number of entities in hello_milvus_ntapnew_update2_sc2:

{hello_milvus_ntapnew_update2_sc2.num_entities}") # check the num_entites

root@node2:~#

Appendix C: verify_data_netapp.py

This section contains a sample Python script that can be used to validate the vector
database in the NetApp vector database solution.

221

Appendix C: verify_data_netapp.py

root@node2:~# cat verify_data_netapp.py

import time

import os

import numpy as np

from pymilvus import (

 connections,

 utility,

 FieldSchema, CollectionSchema, DataType,

 Collection,

)

fmt = "\n=== {:30} ===\n"

search_latency_fmt = "search latency = {:.4f}s"

num_entities, dim = 3000, 16

rng = np.random.default_rng(seed=19530)

entities = [

 # provide the pk field because `auto_id` is set to False

 [i for i in range(num_entities)],

 rng.random(num_entities).tolist(), # field random, only supports list

 rng.random((num_entities, dim)), # field embeddings, supports

numpy.ndarray and list

]

##

######

1. get recovered collection hello_milvus_ntapnew_update2_sc

print(fmt.format("start connecting to Milvus"))

host = os.environ.get('MILVUS_HOST')

if host == None:

 host = "localhost"

print(fmt.format(f"Milvus host: {host}"))

#connections.connect("default", host=host, port="19530")

connections.connect("default", host=host, port="27017")

recover_collections = ["hello_milvus_ntapnew_update2_sc",

"hello_milvus_ntapnew_update2_sc2"]

for recover_collection_name in recover_collections:

 has = utility.has_collection(recover_collection_name)

 print(f"Does collection {recover_collection_name} exist in Milvus:

{has}")

 recover_collection = Collection(recover_collection_name)

 print(recover_collection.schema)

 recover_collection.flush()

222

 print(f"Number of entities in Milvus: {recover_collection_name} :

{recover_collection.num_entities}") # check the num_entites

##

######

 # 4. create index

 # We are going to create an IVF_FLAT index for

hello_milvus_ntapnew_update2_sc collection.

 # create_index() can only be applied to `FloatVector` and

`BinaryVector` fields.

 print(fmt.format("Start Creating index IVF_FLAT"))

 index = {

 "index_type": "IVF_FLAT",

 "metric_type": "L2",

 "params": {"nlist": 128},

 }

 recover_collection.create_index("embeddings", index)

##

######

 # 5. search, query, and hybrid search

 # After data were inserted into Milvus and indexed, you can perform:

 # - search based on vector similarity

 # - query based on scalar filtering(boolean, int, etc.)

 # - hybrid search based on vector similarity and scalar filtering.

 #

 # Before conducting a search or a query, you need to load the data in

`hello_milvus` into memory.

 print(fmt.format("Start loading"))

 recover_collection.load()

 #

--

 # search based on vector similarity

 print(fmt.format("Start searching based on vector similarity"))

 vectors_to_search = entities[-1][-2:]

 search_params = {

 "metric_type": "L2",

 "params": {"nprobe": 10},

 }

223

 start_time = time.time()

 result = recover_collection.search(vectors_to_search, "embeddings",

search_params, limit=3, output_fields=["random"])

 end_time = time.time()

 for hits in result:

 for hit in hits:

 print(f"hit: {hit}, random field: {hit.entity.get('random')}")

 print(search_latency_fmt.format(end_time - start_time))

 #

--

 # query based on scalar filtering(boolean, int, etc.)

 print(fmt.format("Start querying with `random > 0.5`"))

 start_time = time.time()

 result = recover_collection.query(expr="random > 0.5", output_fields=

["random", "embeddings"])

 end_time = time.time()

 print(f"query result:\n-{result[0]}")

 print(search_latency_fmt.format(end_time - start_time))

 #

--

 # hybrid search

 print(fmt.format("Start hybrid searching with `random > 0.5`"))

 start_time = time.time()

 result = recover_collection.search(vectors_to_search, "embeddings",

search_params, limit=3, expr="random > 0.5", output_fields=["random"])

 end_time = time.time()

 for hits in result:

 for hit in hits:

 print(f"hit: {hit}, random field: {hit.entity.get('random')}")

 print(search_latency_fmt.format(end_time - start_time))

##

#####

 # 7. drop collection

 # Finally, drop the hello_milvus, hello_milvus_ntapnew_update2_sc

collection

224

 #print(fmt.format(f"Drop collection {recover_collection_name}"))

 #utility.drop_collection(recover_collection_name)

root@node2:~#

Appendix D: docker-compose.yml

This section includes sample YAML code for the vector database solution for NetApp.

Appendix D: docker-compose.yml

version: '3.5'

services:

 etcd:

 container_name: milvus-etcd

 image:: quay.io/coreos/etcd:v3.5.5

 environment:

 - ETCD_AUTO_COMPACTION_MODE=revision

 - ETCD_AUTO_COMPACTION_RETENTION=1000

 - ETCD_QUOTA_BACKEND_BYTES=4294967296

 - ETCD_SNAPSHOT_COUNT=50000

 volumes:

 - /home/ubuntu/milvusvectordb/volumes/etcd:/etcd

 command: etcd -advertise-client-urls=http://127.0.0.1:2379 -listen

-client-urls http://0.0.0.0:2379 --data-dir /etcd

 healthcheck:

 test: ["CMD", "etcdctl", "endpoint", "health"]

 interval: 30s

 timeout: 20s

 retries: 3

 minio:

 container_name: milvus-minio

 image:: minio/minio:RELEASE.2023-03-20T20-16-18Z

 environment:

 MINIO_ACCESS_KEY: minioadmin

 MINIO_SECRET_KEY: minioadmin

 ports:

 - "9001:9001"

 - "9000:9000"

 volumes:

 - /home/ubuntu/milvusvectordb/volumes/minio:/minio_data

 command: minio server /minio_data --console-address ":9001"

 healthcheck:

 test: ["CMD", "curl", "-f",

225

"http://localhost:9000/minio/health/live"]

 interval: 30s

 timeout: 20s

 retries: 3

 standalone:

 container_name: milvus-standalone

 image:: milvusdb/milvus:v2.4.0-rc.1

 command: ["milvus", "run", "standalone"]

 security_opt:

 - seccomp:unconfined

 environment:

 ETCD_ENDPOINTS: etcd:2379

 MINIO_ADDRESS: minio:9000

 volumes:

 - /home/ubuntu/milvusvectordb/volumes/milvus:/var/lib/milvus

 healthcheck:

 test: ["CMD", "curl", "-f", "http://localhost:9091/healthz"]

 interval: 30s

 start_period: 90s

 timeout: 20s

 retries: 3

 ports:

 - "19530:19530"

 - "9091:9091"

 depends_on:

 - "etcd"

 - "minio"

networks:

 default:

 name: milvus

Use Cases

Responsible AI and confidential inferencing - NetApp AI with Protopia Image
Transformation

TR-4928: Responsible AI and confidential inferencing - NetApp AI with Protopia Image and Data
Transformation

Sathish Thyagarajan, Michael Oglesby, NetApp
Byung Hoon Ahn, Jennifer Cwagenberg, Protopia

Visual interpretations have become an integral part of communication with the emergence
of image capturing and image processing. Artificial intelligence (AI) in digital image

226

processing brings novel business opportunities, such as in the medical field for cancer
and other disease identification, in geospatial visual analytics for studying environmental
hazards, in pattern recognition, in video processing for fighting crime, and so on.
However, this opportunity also comes with extraordinary responsibilities.

The more decisions organizations put into the hands of AI, the more they accept risks related to data privacy
and security and legal, ethical, and regulatory issues. Responsible AI enables a practice that allows companies
and government organizations to build trust and governance that is crucial for AI at scale in large enterprises.
This document describes an AI inferencing solution validated by NetApp under three different scenarios by
using NetApp data management technologies with Protopia data obfuscation software to privatize sensitive
data and reduce risks and ethical concerns.

Millions of images are generated every day with various digital devices by both consumers and business
entities. The consequent massive explosion of data and computational workload makes businesses turn to
cloud computing platforms for scale and efficiency. Meanwhile, privacy concerns over the sensitive information
contained in image data arise with transfer to a public cloud. The lack of security and privacy assurances
become the main barrier to deployment of image- processing AI systems.

Additionally, there is the right to erasure by the GDPR, the right of an individual to request that an organization
erase all their personal data. There is also the Privacy Act, which establishes a code of fair information
practices. Digital images such as photographs can constitute personal data under the GDPR, which governs
how data must be collected, processed, and erased. Failure to do so is a failure to comply with GDPR, which
might lead to hefty fines for breaching compliances that can be seriously damaging to organizations. Privacy
principles are among the backbone of implementing responsible AI that ensure fairness in the machine
learning (ML) and deep learning (DL) model predictions and lowers risks associated with violating privacy or
regulatory compliance.

This document describes a validated design solution under three different scenarios with and without image
obfuscation relevant to preserving privacy and deploying a responsible AI solution:

• Scenario 1. On-demand inferencing within Jupyter notebook.

• Scenario 2. Batch inferencing on Kubernetes.

• Scenario 3. NVIDIA Triton inference server.

For this solution, we use the Face Detection Data Set and Benchmark (FDDB), a dataset of face regions
designed for studying the problem of unconstrained face detection, combined with the PyTorch machine
learning framework for implementation of FaceBoxes. This dataset contains the annotations for 5171 faces in a
set of 2845 images of various resolutions. Furthermore, this technical report presents some of the solution
areas and relevant use cases gathered from NetApp customers and field engineers in situations where this
solution is applicable.

Target audience

This technical report is intended for the following audiences:

• Business leaders and enterprise architects who want to design and deploy responsible AI and address
data protection and privacy issues concerning facial image processing in public spaces.

• Data scientists, data engineers, AI/ machine learning (ML) researchers, and developers of AI/ML systems
who aim to protect and preserve privacy.

• Enterprise architects who design data obfuscation solutions for AI/ML models and applications that comply
with regulatory standards such as GDPR, CCPA, or the Privacy Act of the Department of Defense (DoD)
and government organizations.

227

https://gdpr.eu/right-to-be-forgotten/
https://www.justice.gov/opcl/privacy-act-1974

• Data scientists and AI engineers looking for efficient ways to deploy deep learning (DL) and AI/ML/DL
inferencing models that protect sensitive information.

• Edge device managers and edge server administrators responsible for deployment and management of
edge inferencing models.

Solution architecture

This solution is designed to handle real-time and batch inferencing AI workloads on large datasets by using the
processing power of GPUs alongside traditional CPUs. This validation demonstrates the privacy-preserving
inference for ML and optimal data management required for organizations seeking responsible AI
deployments. This solution provides an architecture suited for a single or multi-node Kubernetes platform for
edge and cloud computing interconnected with NetApp ONTAP AI at the core on-premises, NetApp DataOps
Toolkit, and Protopia obfuscation software using Jupyter Lab and CLI interfaces. The following figure shows the
logical architecture overview of data fabric powered by NetApp with DataOps Toolkit and Protopia.

228

Protopia obfuscation software runs seamlessly on top of the NetApp DataOps Toolkit and transforms the data
before leaving the storage server.

Solution areas

Digital image processing comes with a lot of advantages, allowing many organizations to
make the most of data associated with visual representations. This NetApp and Protopia
solution provides a unique AI inferencing design to protect and privatize AI/ML data
across the ML/DL life cycle. It enables customers to retain ownership of sensitive data,
use public- or hybrid-cloud deployment models for scale and efficiency by alleviating
concerns related to privacy, and deploy AI inferencing at the edge.

Environmental intelligence

There are many ways industries can take advantage of geospatial analytics in the areas of environmental
hazards. Governments and the department of public works can derive actionable insights on public health and
weather conditions to better advise the public during a pandemic or a natural disaster such as wildfires. For
example, you can identify a COVID- positive patient in public spaces, such as airports or hospitals, without
compromising the privacy of the affected individual and alert the respective authorities and the public in the
vicinity for necessary safety measures.

Edge device wearables

In the military and on battlefields, you can use AI inferencing on the edge as wearable devices to track soldier
health, monitor driver behavior, and alert authorities on the safety and associated risks of approaching military
vehicles while preserving and protecting the privacy of soldiers. The future of the military is going high-tech
with the Internet of Battlefield Things (IoBT) and the Internet of Military Things (IoMT) for wearable combat
gear that help soldiers identify enemies and perform better in battle by using rapid edge computing. Protecting
and preserving visual data collected from edge devices such as drones and wearable gears is crucial to keep
hackers and the enemy at bay.

Noncombatant evacuation operations

Noncombatant evacuation operations (NEOs) are conducted by the DoD to assist in evacuating US citizens
and nationals, DoD civilian personnel, and designated persons (host nation (HN) and third-country nationals
(TCNs)) whose lives are in danger to an appropriate safe haven. The administrative controls in place use
largely manual evacuee screening processes. However, the accuracy, security, and speed of evacuee
identification, evacuee tracking, and threat screening could potentially be improved by using highly automated
AI/ML tools combined with AI/ML video obfuscation technologies.

Healthcare and biomedical research

Image processing is used to diagnose pathologies for surgical planning from 3D images obtained from
computed tomography (CT) or magnetic resonance imaging (MRI). HIPAA privacy rules govern how data must
be collected, processed, and erased by organizations for all personal information and digital images like
photographs. For data to qualify as sharable under the HIPAA Safe Harbor regulations, full-face photographic
images and any comparable images must be removed. Automated techniques like de-identification or skull
‐stripping algorithms used to obscure an individual’s facial features from structural CT/MR images have
become an essential part of the data sharing process for biomedical research institutions.

Cloud migration of AI/ML analytics

Enterprise customers have traditionally trained and deployed AI/ML models on-premises. For economies of
scale and efficiency reasons, these customers are expanding to move AI/ML functions into public, hybrid, or

229

multi-cloud cloud deployments. However, they are bound by what data can be exposed to other infrastructures.
NetApp solutions address a full range of cybersecurity threats required for data protection and security
assessment and, when combined with Protopia data transformation, minimize the risks associated with
migrating image processing AI/ML workloads to the cloud.

For additional use cases for edge computing and AI inferencing across other industries, see TR-4886 AI
Inferencing at the Edge and the NetApp AI blog, Intelligence versus privacy.

Technology overview

This section provides an overview of the various technical components required to
complete this solution.

Protopia

Protopia AI offers a unobtrusive, software-only solution for confidential inference in the market today. The
Protopia solution delivers unparalleled protection for inference services by minimizing exposure of sensitive
information. AI is only fed the information in the data record that is truly essential to perform the task at hand
and nothing more. Most inference tasks do not use all the information that exists in every data record.
Regardless of whether your AI is consuming images, voice, video, or even structured tabular data, Protopia
delivers only what the inference service needs. The patented core technology uses mathematically curated
noise to stochastically transform the data and garble the information that is not needed by a given ML service.
This solution does not mask the data; rather, it changes the data representation by using curated random
noise.

The Protopia solution formulates the problem of changing the representation as a gradient-based perturbation
maximization method that still retains the pertinent information in the input feature space with respect to the
functionality of the model. This discovery process is run as a fine-tuning pass at the end of training the ML
model. After the pass automatically generates a set of probability distributions, a low-overhead data
transformation applies noise samples from these distributions to the data, obfuscating it before passing it to the
model for inferencing.

NetApp ONTAP AI

The NetApp ONTAP AI reference architecture, powered by DGX A100 systems and NetApp cloud connected
storage systems, was developed and verified by NetApp and NVIDIA. It gives IT organizations an architecture
that provides the following benefits:

• Eliminates design complexities

• Allows independent scaling of compute and storage

• Enables customers to start small and scale seamlessly

• Offers a range of storage options for various performance and cost points

ONTAP AI tightly integrates DGX A100 systems and NetApp AFF A800 storage systems with state-of-the-art
networking. ONTAP AI simplifies AI deployments by eliminating design complexity and guesswork. Customers
can start small and grow nondisruptively while intelligently managing data from the edge to the core to the
cloud and back.

The following figure shows several variations in the ONTAP AI family of solutions with DGX A100 systems.
AFF A800 system performance is verified with up to eight DGX A100 systems. By adding storage controller
pairs to the ONTAP cluster, the architecture can scale to multiple racks to support many DGX A100 systems
and petabytes of storage capacity with linear performance. This approach offers the flexibility to alter compute-
to-storage ratios independently based on the size of the DL models that are used and the required

230

https://www.netapp.com/data-protection/?internal_promo=mdw_aiml_ww_all_awareness-coas_blog
https://www.netapp.com/blog/federated-learning-intelligence-vs-privacy/

performance metrics.

For additional information about ONTAP AI, see NVA-1153: NetApp ONTAP AI with NVIDIA DGX A100
Systems and Mellanox Spectrum Ethernet Switches.

NetApp ONTAP

ONTAP 9.11, the latest generation of storage management software from NetApp, enables businesses to
modernize infrastructure and transition to a cloud-ready data center. Leveraging industry-leading data
management capabilities, ONTAP enables the management and protection of data with a single set of tools,
regardless of where that data resides. You can also move data freely to wherever it is needed: the edge, the
core, or the cloud. ONTAP 9.11 includes numerous features that simplify data management, accelerate, and
protect critical data, and enable next generation infrastructure capabilities across hybrid cloud architectures.

NetApp DataOps Toolkit

NetApp DataOps Toolkit is a Python library that makes it simple for developers, data scientists, DevOps
engineers, and data engineers to perform various data management tasks, such as near-instantaneous
provisioning of a new data volume or JupyterLab workspace, near-instantaneous cloning of a data volume or
JupyterLab workspace, and near-instantaneous taking snapshots of a data volume or JupyterLab workspace

231

https://www.netapp.com/pdf.html?item=/media/21793-nva-1153-design.pdf
https://www.netapp.com/pdf.html?item=/media/21793-nva-1153-design.pdf

for traceability or baselining. This Python library can function as either a command-line utility or a library of
functions that you can import into any Python program or Jupyter notebook.

NVIDIA Triton Inference Server

NVIDIA Triton Inference Server is an open-source inference serving software that helps standardize model
deployment and execution to deliver fast and scalable AI in production. Triton Inference Server streamlines AI
inferencing by enabling teams to deploy, run, and scale trained AI models from any framework on any GPU- or
CPU-based infrastructure. Triton Inference Server supports all major frameworks, such as TensorFlow, NVIDIA
TensorRT, PyTorch, MXNet, OpenVINO, and so on. Triton integrates with Kubernetes for orchestration and
scaling that you can use in all major public cloud AI and Kubernetes platforms. It’s also integrated with many
MLOps software solutions.

PyTorch

PyTorch is an open-source ML framework. It is an optimized tensor library for deep learning that uses GPUs
and CPUs. The PyTorch package contains data structures for multidimensional tensors that provide many
utilities for efficient serializing of tensors among other useful utilities. It also has a CUDA counterpart that
enables you to run your tensor computations on an NVIDIA GPU with compute capability. In this validation, we
use the OpenCV-Python (cv2) library to validate our model while taking advantage of Python’s most intuitive
computer vision concepts.

Simplify data management

Data management is crucial to enterprise IT operations and data scientists so that appropriate resources are
used for AI applications and training AI/ML datasets. The following additional information about NetApp
technologies is out of scope for this validation but might be relevant depending on your deployment.

ONTAP data management software includes the following features to streamline and simplify operations and
reduce your total cost of operation:

• Inline data compaction and expanded deduplication. Data compaction reduces wasted space inside
storage blocks, and deduplication significantly increases effective capacity. This applies to data stored
locally and data tiered to the cloud.

• Minimum, maximum, and adaptive quality of service (AQoS). Granular quality of service (QoS) controls
help maintain performance levels for critical applications in highly shared environments.

• NetApp FabricPool. Provides automatic tiering of cold data to public and private cloud storage options,
including Amazon Web Services (AWS), Azure, and NetApp StorageGRID storage solution. For more
information about FabricPool, see TR-4598: FabricPool best practices.

Accelerate and protect data

ONTAP delivers superior levels of performance and data protection and extends these capabilities in the
following ways:

• Performance and lower latency. ONTAP offers the highest possible throughput at the lowest possible
latency.

• Data protection. ONTAP provides built-in data protection capabilities with common management across all
platforms.

• NetApp Volume Encryption (NVE). ONTAP offers native volume-level encryption with both onboard and
External Key Management support.

• Multitenancy and multifactor authentication. ONTAP enables sharing of infrastructure resources with the
highest levels of security.

232

https://pytorch.org/
https://www.netapp.com/pdf.html?item=/media/17239-tr4598pdf.pdf

Future-proof infrastructure

ONTAP helps meet demanding and constantly changing business needs with the following features:

• Seamless scaling and nondisruptive operations. ONTAP supports the nondisruptive addition of capacity to
existing controllers and to scale-out clusters. Customers can upgrade to the latest technologies, such as
NVMe and 32Gb FC, without costly data migrations or outages.

• Cloud connection. ONTAP is the most cloud-connected storage management software, with options for
software-defined storage (ONTAP Select) and cloud-native instances (NetApp Cloud Volumes Service) in
all public clouds.

• Integration with emerging applications. ONTAP offers enterprise-grade data services for next generation
platforms and applications, such as autonomous vehicles, smart cities, and Industry 4.0, by using the same
infrastructure that supports existing enterprise apps.

NetApp Astra Control

The NetApp Astra product family offers storage and application-aware data management services for
Kubernetes applications on-premises and in the public cloud, powered by NetApp storage and data
management technologies. It enables you to easily back up Kubernetes applications, migrate data to a different
cluster, and instantly create working application clones. If you need to manage Kubernetes applications
running in a public cloud, see the documentation for Astra Control Service. Astra Control Service is a NetApp-
managed service that provides application-aware data management of Kubernetes clusters in Google
Kubernetes Engine (GKE) and Azure Kubernetes Service (AKS).

NetApp Astra Trident

Astra Trident from NetApp is an open-source dynamic storage orchestrator for Docker and Kubernetes that
simplifies the creation, management, and consumption of persistent storage. Trident, a Kubernetes-native
application, runs directly within a Kubernetes cluster. Trident enables customers to seamlessly deploy DL
container images onto NetApp storage and provides an enterprise-grade experience for AI container
deployments. Kubernetes users (ML developers, data scientists, and so on) can create, manage, and
automate orchestration and cloning to take advantage of advanced data management capabilities powered by
NetApp technology.

NetApp BlueXP Copy and Sync

BlueXP Copy and Sync is a NetApp service for rapid and secure data synchronization. Whether you need to
transfer files between on-premises NFS or SMB file shares, NetApp StorageGRID, NetApp ONTAP S3, NetApp
Cloud Volumes Service, Azure NetApp Files, Amazon Simple Storage Service (Amazon S3), Amazon Elastic
File System (Amazon EFS), Azure Blob, Google Cloud Storage, or IBM Cloud Object Storage, BlueXP Copy
and Sync moves the files where you need them quickly and securely. After your data is transferred, it is fully
available for use on both source and target. BlueXP Copy and Syncc continuously synchronizes the data
based on your predefined schedule, moving only the deltas, so that time and money spent on data replication
is minimized. BlueXP Copy and Sync is a software-as-a-service (SaaS) tool that is extremely simple to set up
and use. Data transfers that are triggered by BlueXP Copy and Sync are carried out by data brokers. You can
deploy BlueXP Copy and Sync data brokers in AWS, Azure, Google Cloud Platform, or on-premises.

NetApp BlueXP Classification

Driven by powerful AI algorithms, NetApp BlueXP Classification provides automated controls and data
governance across your entire data estate. You can easily pinpoint cost-savings, identify compliance and
privacy concerns, and find optimization opportunities. The BlueXP Classification dashboard gives you the
insight to identify duplicate data to eliminate redundancy, map personal, nonpersonal, and sensitive data and
turn on alerts for sensitive data and anomalies.

233

https://docs.netapp.com/us-en/astra-control-service/index.html
https://netapp.io/persistent-storage-provisioner-for-kubernetes/
https://docs.netapp.com/us-en/occm/concept_cloud_sync.html
https://bluexp.netapp.com/netapp-cloud-data-sense

Test and validation plan

For this solution design, the following three scenarios were validated:

• An inferencing task, with and without Protopia obfuscation, within a JupyterLab workspace that was
orchestrated by using the NetApp DataOps Toolkit for Kubernetes.

• A batch inferencing job, with and without Protopia obfuscation, on Kubernetes with a data volume that was
orchestrated by using NetApp DataOps Toolkit for Kubernetes.

• An inferencing task using an NVIDIA Triton Inference Server instance that was orchestrated by using the
NetApp DataOps Toolkit for Kubernetes. We applied Protopia obfuscation to the image before invoking the
Triton inference API to simulate the common requirement that any data that is transmitted over the network
must be obfuscated. This workflow is applicable to use cases where data is collected within a trusted zone
but must be passed outside of that trusted zone for inferencing. Without Protopia obfuscation, it is not
possible to implement this type of workflow without sensitive data leaving the trusted zone.

Test configuration

The following table outlines the solution design validation environment.

Component Version

Kubernetes 1.21.6

NetApp Astra Trident CSI Driver 22.01.0

NetApp DataOps Toolkit for Kubernetes 2.3.0

NVIDIA Triton Inference Server 21.11-py3

Test procedure

This section describes the tasks needed to complete the validation.

Prerequisites

To execute the tasks outlined in this section, you must have access to a Linux or macOS host with the
following tools installed and configured:

• Kubectl (configured for access to an existing Kubernetes cluster)

◦ Installation and configuration instructions can be found here.

• NetApp DataOps Toolkit for Kubernetes

◦ Installation instructions can be found here.

Scenario 1 – On-demand inferencing in JupyterLab

1. Create a Kubernetes namespace for AI/ML inferencing workloads.

$ kubectl create namespace inference

namespace/inference created

2. Use the NetApp DataOps Toolkit to provision a persistent volume for storing the data on which you will

234

https://kubernetes.io/docs/tasks/tools/
https://github.com/NetApp/netapp-dataops-toolkit/tree/main/netapp_dataops_k8s

perform the inferencing.

$ netapp_dataops_k8s_cli.py create volume --namespace=inference --pvc

-name=inference-data --size=50Gi

Creating PersistentVolumeClaim (PVC) 'inference-data' in namespace

'inference'.

PersistentVolumeClaim (PVC) 'inference-data' created. Waiting for

Kubernetes to bind volume to PVC.

Volume successfully created and bound to PersistentVolumeClaim (PVC)

'inference-data' in namespace 'inference'.

3. Use the NetApp DataOps Toolkit to create a new JupyterLab workspace. Mount the persistent volume that

was created in the previous step by using the --mount- pvc option. Allocate NVIDIA GPUs to the

workspace as necessary by using the -- nvidia-gpu option.

In the following example, the persistent volume inference-data is mounted to the JupyterLab

workspace container at /home/jovyan/data. When using official Project Jupyter container images,

/home/jovyan is presented as the top-level directory within the JupyterLab web interface.

$ netapp_dataops_k8s_cli.py create jupyterlab --namespace=inference

--workspace-name=live-inference --size=50Gi --nvidia-gpu=2 --mount

-pvc=inference-data:/home/jovyan/data

Set workspace password (this password will be required in order to

access the workspace):

Re-enter password:

Creating persistent volume for workspace...

Creating PersistentVolumeClaim (PVC) 'ntap-dsutil-jupyterlab-live-

inference' in namespace 'inference'.

PersistentVolumeClaim (PVC) 'ntap-dsutil-jupyterlab-live-inference'

created. Waiting for Kubernetes to bind volume to PVC.

Volume successfully created and bound to PersistentVolumeClaim (PVC)

'ntap-dsutil-jupyterlab-live-inference' in namespace 'inference'.

Creating Service 'ntap-dsutil-jupyterlab-live-inference' in namespace

'inference'.

Service successfully created.

Attaching Additional PVC: 'inference-data' at mount_path:

'/home/jovyan/data'.

Creating Deployment 'ntap-dsutil-jupyterlab-live-inference' in namespace

'inference'.

Deployment 'ntap-dsutil-jupyterlab-live-inference' created.

Waiting for Deployment 'ntap-dsutil-jupyterlab-live-inference' to reach

Ready state.

Deployment successfully created.

Workspace successfully created.

To access workspace, navigate to http://192.168.0.152:32721

235

4. Access the JupyterLab workspace by using the URL specified in the output of the create jupyterlab
command. The data directory represents the persistent volume that was mounted to the workspace.

5. Open the data directory and upload the files on which the inferencing is to be performed. When files are
uploaded to the data directory, they are automatically stored on the persistent volume that was mounted to
the workspace. To upload files, click the Upload Files icon, as shown in the following image.

236

6. Return to the top-level directory and create a new notebook.

7. Add inferencing code to the notebook. The following example shows inferencing code for an image
detection use case.

237

8. Add Protopia obfuscation to your inferencing code. Protopia works directly with customers to provide use-
case specific documentation and is outside of the scope of this technical report. The following example
shows inferencing code for an image detection use case with Protopia obfuscation added.

238

Scenario 2 – Batch inferencing on Kubernetes

1. Create a Kubernetes namespace for AI/ML inferencing workloads.

239

$ kubectl create namespace inference

namespace/inference created

2. Use the NetApp DataOps Toolkit to provision a persistent volume for storing the data on which you will
perform the inferencing.

$ netapp_dataops_k8s_cli.py create volume --namespace=inference --pvc

-name=inference-data --size=50Gi

Creating PersistentVolumeClaim (PVC) 'inference-data' in namespace

'inference'.

PersistentVolumeClaim (PVC) 'inference-data' created. Waiting for

Kubernetes to bind volume to PVC.

Volume successfully created and bound to PersistentVolumeClaim (PVC)

'inference-data' in namespace 'inference'.

3. Populate the new persistent volume with the data on which you will perform the inferencing.

There are several methods for loading data onto a PVC. If your data is currently stored in an S3-compatible
object storage platform, such as NetApp StorageGRID or Amazon S3, then you can use NetApp DataOps
Toolkit S3 Data Mover capabilities. Another simple method is to create a JupyterLab workspace and then
upload files through the JupyterLab web interface, as outlined in Steps 3 to 5 in the section “Scenario 1 –
On-demand inferencing in JupyterLab.”

4. Create a Kubernetes job for your batch inferencing task. The following example shows a batch inferencing
job for an image detection use case. This job performs inferencing on each image in a set of images and
writes inferencing accuracy metrics to stdout.

240

https://github.com/NetApp/netapp-dataops-toolkit/blob/main/netapp_dataops_k8s/docs/data_movement.md
https://github.com/NetApp/netapp-dataops-toolkit/blob/main/netapp_dataops_k8s/docs/data_movement.md

$ vi inference-job-raw.yaml

apiVersion: batch/v1

kind: Job

metadata:

 name: netapp-inference-raw

 namespace: inference

spec:

 backoffLimit: 5

 template:

 spec:

 volumes:

 - name: data

 persistentVolumeClaim:

 claimName: inference-data

 - name: dshm

 emptyDir:

 medium: Memory

 containers:

 - name: inference

 image:: netapp-protopia-inference:latest

 imagePullPolicy: IfNotPresent

 command: ["python3", "run-accuracy-measurement.py", "--dataset",

"/data/netapp-face-detection/FDDB"]

 resources:

 limits:

 nvidia.com/gpu: 2

 volumeMounts:

 - mountPath: /data

 name: data

 - mountPath: /dev/shm

 name: dshm

 restartPolicy: Never

$ kubectl create -f inference-job-raw.yaml

job.batch/netapp-inference-raw created

5. Confirm that the inferencing job completed successfully.

241

$ kubectl -n inference logs netapp-inference-raw-255sp

100%|██████████| 89/89 [00:52<00:00, 1.68it/s]
Reading Predictions : 100%|██████████| 10/10 [00:01<00:00, 6.23it/s]
Predicting ... : 100%|██████████| 10/10 [00:16<00:00, 1.64s/it]
==================== Results ====================

FDDB-fold-1 Val AP: 0.9491256561145955

FDDB-fold-2 Val AP: 0.9205024466101926

FDDB-fold-3 Val AP: 0.9253013871078468

FDDB-fold-4 Val AP: 0.9399781485863011

FDDB-fold-5 Val AP: 0.9504280149478732

FDDB-fold-6 Val AP: 0.9416473519339292

FDDB-fold-7 Val AP: 0.9241631566241117

FDDB-fold-8 Val AP: 0.9072663297546659

FDDB-fold-9 Val AP: 0.9339648715035469

FDDB-fold-10 Val AP: 0.9447707905560152

FDDB Dataset Average AP: 0.9337148153739079

===

mAP: 0.9337148153739079

6. Add Protopia obfuscation to your inferencing job. You can find use case-specific instructions for adding
Protopia obfuscation directly from Protopia, which is outside of the scope of this technical report. The
following example shows a batch inferencing job for a face detection use case with Protopia obfuscation
added by using an ALPHA value of 0.8. This job applies Protopia obfuscation before performing
inferencing for each image in a set of images and then writes inferencing accuracy metrics to stdout.

We repeated this step for ALPHA values 0.05, 0.1, 0.2, 0.4, 0.6, 0.8, 0.9, and 0.95. You can see the results
in “Inferencing accuracy comparison.”

242

$ vi inference-job-protopia-0.8.yaml

apiVersion: batch/v1

kind: Job

metadata:

 name: netapp-inference-protopia-0.8

 namespace: inference

spec:

 backoffLimit: 5

 template:

 spec:

 volumes:

 - name: data

 persistentVolumeClaim:

 claimName: inference-data

 - name: dshm

 emptyDir:

 medium: Memory

 containers:

 - name: inference

 image:: netapp-protopia-inference:latest

 imagePullPolicy: IfNotPresent

 env:

 - name: ALPHA

 value: "0.8"

 command: ["python3", "run-accuracy-measurement.py", "--dataset",

"/data/netapp-face-detection/FDDB", "--alpha", "$(ALPHA)", "--noisy"]

 resources:

 limits:

 nvidia.com/gpu: 2

 volumeMounts:

 - mountPath: /data

 name: data

 - mountPath: /dev/shm

 name: dshm

 restartPolicy: Never

$ kubectl create -f inference-job-protopia-0.8.yaml

job.batch/netapp-inference-protopia-0.8 created

7. Confirm that the inferencing job completed successfully.

243

$ kubectl -n inference logs netapp-inference-protopia-0.8-b4dkz

100%|██████████| 89/89 [01:05<00:00, 1.37it/s]
Reading Predictions : 100%|██████████| 10/10 [00:02<00:00, 3.67it/s]
Predicting ... : 100%|██████████| 10/10 [00:22<00:00, 2.24s/it]
==================== Results ====================

FDDB-fold-1 Val AP: 0.8953066115834589

FDDB-fold-2 Val AP: 0.8819580264029936

FDDB-fold-3 Val AP: 0.8781107458462862

FDDB-fold-4 Val AP: 0.9085731346308461

FDDB-fold-5 Val AP: 0.9166445508275378

FDDB-fold-6 Val AP: 0.9101178994188819

FDDB-fold-7 Val AP: 0.8383443678423771

FDDB-fold-8 Val AP: 0.8476311547659464

FDDB-fold-9 Val AP: 0.8739624502111121

FDDB-fold-10 Val AP: 0.8905468076424851

FDDB Dataset Average AP: 0.8841195749171925

===

mAP: 0.8841195749171925

Scenario 3 – NVIDIA Triton Inference Server

1. Create a Kubernetes namespace for AI/ML inferencing workloads.

$ kubectl create namespace inference

namespace/inference created

2. Use the NetApp DataOps Toolkit to provision a persistent volume to use as a model repository for the
NVIDIA Triton Inference Server.

$ netapp_dataops_k8s_cli.py create volume --namespace=inference --pvc

-name=triton-model-repo --size=100Gi

Creating PersistentVolumeClaim (PVC) 'triton-model-repo' in namespace

'inference'.

PersistentVolumeClaim (PVC) 'triton-model-repo' created. Waiting for

Kubernetes to bind volume to PVC.

Volume successfully created and bound to PersistentVolumeClaim (PVC)

'triton-model-repo' in namespace 'inference'.

3. Store your model on the new persistent volume in a format that is recognized by the NVIDIA Triton
Inference Server.

There are several methods for loading data onto a PVC. A simple method is to create a JupyterLab
workspace and then upload files through the JupyterLab web interface, as outlined in steps 3 to 5 in
“Scenario 1 – On-demand inferencing in JupyterLab. ”

244

https://github.com/triton-inference-server/server/blob/main/docs/user_guide/model_repository.md

4. Use NetApp DataOps Toolkit to deploy a new NVIDIA Triton Inference Server instance.

$ netapp_dataops_k8s_cli.py create triton-server --namespace=inference

--server-name=netapp-inference --model-repo-pvc-name=triton-model-repo

Creating Service 'ntap-dsutil-triton-netapp-inference' in namespace

'inference'.

Service successfully created.

Creating Deployment 'ntap-dsutil-triton-netapp-inference' in namespace

'inference'.

Deployment 'ntap-dsutil-triton-netapp-inference' created.

Waiting for Deployment 'ntap-dsutil-triton-netapp-inference' to reach

Ready state.

Deployment successfully created.

Server successfully created.

Server endpoints:

http: 192.168.0.152: 31208

grpc: 192.168.0.152: 32736

metrics: 192.168.0.152: 30009/metrics

5. Use a Triton client SDK to perform an inferencing task. The following Python code excerpt uses the Triton
Python client SDK to perform an inferencing task for an face detection use case. This example calls the
Triton API and passes in an image for inferencing. The Triton Inference Server then receives the request,
invokes the model, and returns the inferencing output as part of the API results.

get current frame

frame = input_image

preprocess input

preprocessed_input = preprocess_input(frame)

preprocessed_input = torch.Tensor(preprocessed_input).to(device)

run forward pass

clean_activation = clean_model_head(preprocessed_input) # runs the

first few layers

##

##############

pass clean image to Triton Inference Server API for

inferencing #

##

##############

triton_client =

httpclient.InferenceServerClient(url="192.168.0.152:31208",

verbose=False)

model_name = "face_detection_base"

inputs = []

outputs = []

inputs.append(httpclient.InferInput("INPUT__0", [1, 128, 32, 32],

245

"FP32"))

inputs[0].set_data_from_numpy(clean_activation.detach().cpu().numpy(),

binary_data=False)

outputs.append(httpclient.InferRequestedOutput("OUTPUT__0",

binary_data=False))

outputs.append(httpclient.InferRequestedOutput("OUTPUT__1",

binary_data=False))

results = triton_client.infer(

 model_name,

 inputs,

 outputs=outputs,

 #query_params=query_params,

 headers=None,

 request_compression_algorithm=None,

 response_compression_algorithm=None)

#print(results.get_response())

statistics =

triton_client.get_inference_statistics(model_name=model_name,

headers=None)

print(statistics)

if len(statistics["model_stats"]) != 1:

 print("FAILED: Inference Statistics")

 sys.exit(1)

loc_numpy = results.as_numpy("OUTPUT__0")

pred_numpy = results.as_numpy("OUTPUT__1")

##

##############

postprocess output

clean_pred = (loc_numpy, pred_numpy)

clean_outputs = postprocess_outputs(

 clean_pred, [[input_image_width, input_image_height]], priors,

THRESHOLD

)

draw rectangles

clean_frame = copy.deepcopy(frame) # needs to be deep copy

for (x1, y1, x2, y2, s) in clean_outputs[0]:

 x1, y1 = int(x1), int(y1)

 x2, y2 = int(x2), int(y2)

 cv2.rectangle(clean_frame, (x1, y1), (x2, y2), (0, 0, 255), 4)

6. Add Protopia obfuscation to your inferencing code. You can find use case-specific instructions for adding
Protopia obfuscation directly from Protopia; however, this process is outside the scope of this technical
report. The following example shows the same Python code that is shown in the preceding step 5, but with
Protopia obfuscation added.

Note that the Protopia obfuscation is applied to the image before it is passed to the Triton API. Thus, the

246

non-obfuscated image never leaves the local machine. Only the obfuscated image is passed across the
network. This workflow is applicable to use cases in which data is collected within a trusted zone but then
needs to be passed outside of that trusted zone for inferencing. Without Protopia obfuscation, it is not
possible to implement this type of workflow without sensitive data ever leaving the trusted zone.

get current frame

frame = input_image

preprocess input

preprocessed_input = preprocess_input(frame)

preprocessed_input = torch.Tensor(preprocessed_input).to(device)

run forward pass

not_noisy_activation = noisy_model_head(preprocessed_input) # runs the

first few layers

##

obfuscate image locally prior to inferencing

SINGLE ADITIONAL LINE FOR PRIVATE INFERENCE

##

noisy_activation = noisy_model_noise(not_noisy_activation)

##

##

###################

pass obfuscated image to Triton Inference Server API for

inferencing #

##

###################

triton_client =

httpclient.InferenceServerClient(url="192.168.0.152:31208",

verbose=False)

model_name = "face_detection_noisy"

inputs = []

outputs = []

inputs.append(httpclient.InferInput("INPUT__0", [1, 128, 32, 32],

"FP32"))

inputs[0].set_data_from_numpy(noisy_activation.detach().cpu().numpy(),

binary_data=False)

outputs.append(httpclient.InferRequestedOutput("OUTPUT__0",

binary_data=False))

outputs.append(httpclient.InferRequestedOutput("OUTPUT__1",

binary_data=False))

results = triton_client.infer(

 model_name,

 inputs,

 outputs=outputs,

 #query_params=query_params,

 headers=None,

 request_compression_algorithm=None,

247

 response_compression_algorithm=None)

#print(results.get_response())

statistics =

triton_client.get_inference_statistics(model_name=model_name,

headers=None)

print(statistics)

if len(statistics["model_stats"]) != 1:

 print("FAILED: Inference Statistics")

 sys.exit(1)

loc_numpy = results.as_numpy("OUTPUT__0")

pred_numpy = results.as_numpy("OUTPUT__1")

##

###################

postprocess output

noisy_pred = (loc_numpy, pred_numpy)

noisy_outputs = postprocess_outputs(

 noisy_pred, [[input_image_width, input_image_height]], priors,

THRESHOLD * 0.5

)

get reconstruction of the noisy activation

noisy_reconstruction = decoder_function(noisy_activation)

noisy_reconstruction = noisy_reconstruction.detach().cpu().numpy()[0]

noisy_reconstruction = unpreprocess_output(

 noisy_reconstruction, (input_image_width, input_image_height), True

).astype(np.uint8)

draw rectangles

for (x1, y1, x2, y2, s) in noisy_outputs[0]:

 x1, y1 = int(x1), int(y1)

 x2, y2 = int(x2), int(y2)

 cv2.rectangle(noisy_reconstruction, (x1, y1), (x2, y2), (0, 0, 255),

4)

Inferencing accuracy comparison

For this validation, we performed inferencing for an image detection use case by using a
set of raw images. We then performed the same inferencing task on the same set of
images with Protopia obfuscation added before inferencing. We repeated the task using
different values of ALPHA for the Protopia obfuscation component. In the context of
Protopia obfuscation, the ALPHA value represents the amount of obfuscation that is
applied, with a higher ALPHA value representing a higher level of obfuscation. We then
compared inferencing accuracy across these different runs.

The following two tables provide details about our use case and outline the results.

248

Protopia works directly with customers to determine the appropriate ALPHA value for a specific use case.

Component Details

Model FaceBoxes (PyTorch) -

Dataset FDDB dataset

Protopia obfuscation ALPHA Accuracy

No N/A 0.9337148153739079

Yes 0.05 0.9028766627325002

Yes 0.1 0.9024301009661478

Yes 0.2 0.9081836283186224

Yes 0.4 0.9073066107482036

Yes 0.6 0.8847816568680239

Yes 0.8 0.8841195749171925

Yes 0.9 0.8455427675252052

Yes 0.95 0.8455427675252052

Obfuscation speed

For this validation, we applied Protopia obfuscation to a 1920 x 1080 pixel image five
times and measured the amount of time that it took for the obfuscation step to complete
each time.

We used PyTorch running on a single NVIDIA V100 GPU to apply the obfuscation, and we cleared the GPU
cache between runs. The obfuscation step took 5.47ms, 5.27ms, 4.54ms, 5.24ms, and 4.84ms respectively to
complete across the five runs. The average speed was 5.072ms.

Conclusion

Data exists in three states: at rest, in transit, and in compute. An important part of any AI
inferencing service should be the protection of data from threats during the entire
process. Protecting data during inferencing is critical because the process can expose
private information about both external customers and the business providing the
inferencing service. Protopia AI is a nonobtrusive software-only solution for confidential AI
inferencing in today’s market. With Protopia, AI is fed only the transformed information in
the data records that is essential to carrying out the AI/ML task at hand and nothing more.
This stochastic transformation is not a form of masking and is based on mathematically
changing the representation of the data by using curated noise.

NetApp storage systems with ONTAP capabilities deliver the same or better performance as local SSD storage
and, combined with the NetApp DataOps Toolkit, offer the following benefits to data scientists, data engineers,
AI/ML developers, and business or enterprise IT decision makers:

• Effortless sharing of data between AI systems, analytics, and other critical business systems. This data

249

sharing reduces infrastructure overhead, improves performance, and streamlines data management across
the enterprise.

• Independently scalable compute and storage to minimize costs and improve resource usage.

• Streamlined development and deployment workflows using integrated Snapshot copies and clones for
instantaneous and space-efficient user workspaces, integrated version control, and automated deployment.

• Enterprise-grade data protection and data governance for disaster recovery, business continuity, and
regulatory requirements.

• Simplified invocation of data management operations; rapidly take Snapshot copies of data scientist
workspaces for backup and traceability from the NetApp DataOps Toolkit in Jupyter notebooks.

The NetApp and Protopia solution provides a flexible, scale-out architecture that is ideal for enterprise-grade AI
inference deployments. It enables data protection and provides privacy for sensitive information where
confidential AI inferencing requirements can be met with responsible AI practices in both on-premises and
hybrid cloud deployments.

Where to find additional information and acknowledgements

To learn more about the information described in this document, refer to the following
documents and/or websites:

• NetApp ONTAP data management software — ONTAP information library

http://mysupport.netapp.com/documentation/productlibrary/index.html?productID=62286

• NetApp Persistent Storage for Containers—NetApp Trident

https://netapp.io/persistent-storage-provisioner-for-kubernetes/

• NetApp DataOps Toolkit

https://github.com/NetApp/netapp-dataops-toolkit

• NetApp Persistent Storage for Containers—NetApp Astra Trident

https://netapp.io/persistent-storage-provisioner-for-kubernetes/

• Protopia AI—Confidential Inference

https://protopia.ai/blog/protopia-ai-takes-on-the-missing-link-in-ai-privacy-confidential-inference/

• NetApp BlueXP Copy and Sync

https://docs.netapp.com/us-en/occm/concept_cloud_sync.html#how-cloud-sync-works

• NVIDIA Triton Inference Server

https://developer.nvidia.com/nvidia-triton-inference-server

• NVIDIA Triton Inference Server Documentation

https://docs.nvidia.com/deeplearning/triton-inference-server/index.html

• FaceBoxes in PyTorch

250

http://mysupport.netapp.com/documentation/productlibrary/index.html?productID=62286
https://netapp.io/persistent-storage-provisioner-for-kubernetes/
https://github.com/NetApp/netapp-dataops-toolkit
https://netapp.io/persistent-storage-provisioner-for-kubernetes/
https://protopia.ai/blog/protopia-ai-takes-on-the-missing-link-in-ai-privacy-confidential-inference/
https://docs.netapp.com/us-en/occm/concept_cloud_sync.html#how-cloud-sync-works
https://developer.nvidia.com/nvidia-triton-inference-server
https://docs.nvidia.com/deeplearning/triton-inference-server/index.html

https://github.com/zisianw/FaceBoxes.PyTorch

Acknowledgments

• Mark Cates, Principal Product Manager, NetApp

• Sufian Ahmad, Technical Marketing Engineer, NetApp

• Hadi Esmaeilzadeh, Chief Technology Officer and Professor, Protopia AI

Sentiment analysis with NetApp AI

TR-4910: Sentiment Analysis from Customer Communications with NetApp AI

Rick Huang, Sathish Thyagarajan, and David Arnette, NetApp
Diego Sosa-Coba, SFL Scientific

This technical report provides design guidance for customers to perform sentiment
analysis in an enterprise-level global support center by using NetApp data management
technologies with an NVIDIA software framework using transfer learning and
conversational AI. This solution is applicable to any industry wanting to gain customer
insights from recorded speech or text files representing chat logs, emails, and other text
or audio communications. We implemented an end-to-end pipeline to demonstrate
automatic speech recognition, real-time sentiment analysis, and deep-learning natural-
language- processing model- retraining capabilities on a GPU-accelerated compute
cluster with NetApp cloud-connected all flash storage. Massive, state-of-the-art language
models can be trained and optimized to perform inference rapidly with the global support
center to create an exceptional customer experience and objective, long-term employee
performance evaluations.

Sentiment analysis is a field of study within Natural Language Processing (NLP) by which positive, negative, or
neutral sentiments are extracted from text. Conversational AI systems have risen to a near global level of
integration as more and more people come to interact with them. Sentiment analysis has a variety of use
cases, from determining support center employee performance in conversations with callers and providing
appropriate automated chatbot responses to predicting a firm’s stock price based on the interactions between
firm representatives and the audience at quarterly earnings calls. Furthermore, sentiment analysis can be used
to determine the customer’s view on the products, services, or support provided by the brand.

This end-to-end solution uses NLP models to perform high level sentiment analysis that enables support-
center analytical frameworks. Audio recordings are processed into written text, and sentiment is extracted from
each sentence in the conversation. Results, aggregated into a dashboard, can be crafted to analyze
conversation sentiments, both historically and in real-time. This solution can be generalized to other solutions
with similar data modalities and output needs. With the appropriate data, other use cases can be
accomplished. For example, company earnings calls can be analyzed for sentiment using the same end-to-end
pipeline. Other forms of NLP analyses, such as topic modeling and named entity recognition (NER), are also
possible due to the flexible nature of the pipeline.

These AI implementations were made possible by NVIDIA RIVA, the NVIDIA TAO Toolkit, and the NetApp
DataOps Toolkit working together. NVIDIA’s tools are used to rapidly deploy highly performant AI solutions
using prebuilt models and pipelines. The NetApp DataOps Toolkit simplifies various data management tasks to
speed up development.

251

https://github.com/zisianw/FaceBoxes.PyTorch

Customer value

Businesses see value from an employee-assessment and customer-reaction tool for text, audio, and video
conversation for sentiment analysis. Managers benefit from the information presented in the dashboard,
allowing for an assessment of the employees and customer satisfaction based on both sides of the
conversation.

Additionally, the NetApp DataOps Toolkit manages the versioning and allocation of data within the customer’s
infrastructure. This leads to frequent updates of the analytics presented within the dashboard without creating
unwieldy data storage costs.

Use cases

Due to the number of calls that these support centers process, assessment of call
performance could take significant time if performed manually. Traditional methods, like
bag-of-words counting and other methods, can achieve some automation, but these
methods do not capture more nuanced aspects and semantic context of dynamic
language. AI modeling techniques can be used to perform some of these more nuanced
analyses in an automated manner. Furthermore, with the current state of the art,
pretrained modeling tools published by NVIDIA, AWS, Google, and others, an end-to-end
pipeline with complex models can be now stood up and customized with relative ease.

An end-to-end pipeline for support center sentiment analysis ingests audio files in real time as employees
converse with callers. Then, these audio files are processed for use in the speech-to-text component which
converts them into a text format. Each sentence in the conversation receives a label indicating the sentiment
(positive, negative, or neutral).

Sentiment analysis can provide an essential aspect of the conversations for assessment of call performance.
These sentiments add an additional level of depth to the interactions between employees and callers. The AI-
assisted sentiment dashboard provides managers with a real-time tracking of sentiment within a conversation,
along with a retrospective analysis of the employee’s past calls.

There are prebuilt tools that can be combined in powerful ways to quickly create an end-to-end AI pipeline to
solve this problem. In this case, the NVIDIA RIVA library can be used to perform the two in-series tasks: audio
transcription and sentiment analysis. The first is a supervised learning signal processing algorithm and the
second is a supervised learning NLP classification algorithm. These out-of-the-box algorithms can be fine-
tuned for any relevant use case with business-relevant data using the NVIDIA TAO Toolkit. This leads to more
accurate and powerful solutions being built for only a fraction of the cost and resources. Customers can
incorporate the NVIDIA Maxine framework for GPU-accelerated video conferencing applications in their
support center design.

The following use cases are at the core of this solution. Both use cases use the TAO Toolkit for model fine-
tuning and RIVA for model deployment.

• Speech-to-text

• Sentiment analysis

To analyze support center interactions between employees and customers, each customer conversation in the
form of audio calls can be run through the pipeline to extract sentence-level sentiments. Those sentiments can
then be verified by a human to justify the sentiments or adjust them as needed. The labeled data is then
passed onto the fine-tuning step to improve sentiment predictions. If labeled sentiment data already exists,
then model fine-tuning can be expedited. In either case, the pipeline is generalizable to other solutions that
require the ingestion of audio and the classification of sentences.

252

https://developer.nvidia.com/maxine

AI sentiment outputs are either uploaded to an external cloud database or to a company- managed storage
system. The sentiment outputs are transferred from this larger database into local storage for use within the
dashboard that displays the sentiment analysis for managers. The dashboard’s primary functionality is to
interface with the customer service employee in real time. Managers can assess and provide feedback on
employees during their calls with live updates of the sentiment of each sentence, as well as an historic review
of the employee’s past performance or customer reactions.

The NetApp DataOps Toolkit can continue to manage data storage systems even after the RIVA inference
pipeline generates sentiment labels. Those AI results can be uploaded to a data storage system managed by
the NetApp DataOps Toolkit. The data storage systems must be capable of managing hundreds of inserts and
selects every minute. The local device storage system queries the larger data storage in real-time for
extraction. The larger data storage instance can also be queried for historical data to further enhance the
dashboard experience. The NetApp DataOps Toolkit facilitates both these uses by rapidly cloning data and
distributing it across all the dashboards that use it.

253

https://github.com/NetApp/netapp-dataops-toolkit/releases/tag/v2.0.0

Target Audience

The target audience for the solution includes the following groups:

• Employee managers

• Data engineers/data scientists

• IT administrators (on-premises, cloud, or hybrid)

Tracking sentiments throughout conversations is a valuable tool for assessing employee performance. Using
the AI-dashboard, managers can see how employees and callers change their feelings in real time, allowing for
live assessments and guidance sessions. Moreover, businesses can gain valuable customer insights from
customers engaged in vocal conversations, text chatbots, and video conferencing. Such customer analytics
uses the capabilities of multimodal processing at scale with modern, state-of-the-art AI models and workflows.

On the data side, a large number of audio files are processed daily by the support center. The NetApp
DataOps Toolkit facilitates this data handling task for both the periodic fine-tuning of models and sentiment
analysis dashboards.

IT administrators also benefit from the NetApp DataOps Toolkit as it allows them to move data quickly between
deployment and production environments. The NVIDIA environments and servers must also be managed and
distributed to allow for real time inference.

Architecture

The architecture of this support center solution revolves around NVIDIA’s prebuilt tools
and the NetApp DataOps Toolkit. NVIDIA’s tools are used to rapidly deploy high-
performance AI-solutions using prebuilt models and pipelines. The NetApp DataOps
Toolkit simplifies various data management tasks to speed up development.

Solution technology

NVIDIA RIVA is a GPU-accelerated SDK for building multimodal conversational AI applications that deliver
real-time performance on GPUs. The NVIDIA Train, Adapt, and Optimize (TAO) Toolkit provides a faster, easier
way to accelerate training and quickly create highly accurate and performant, domain-specific AI models.

The NetApp DataOps Toolkit is a Python library that makes it simple for developers, data scientists, DevOps
engineers, and data engineers to perform various data management tasks. This includes near-instantaneous
provisioning of a new data volume or JupyterLab workspace, near-instantaneous cloning of a data volume or
JupyterLab workspace, and near-instantaneous snapshotting of a data volume or JupyterLab workspace for
traceability and baselining.

Architectural Diagram

The following diagram shows the solution architecture. There are three main environment categories: the
cloud, the core, and the edge. Each of the categories can be geographically dispersed. For example, the cloud
contains object stores with audio files in buckets in different regions, whereas the core might contain
datacenters linked via a high-speed network or NetApp BlueXP Copy and Sync. The edge nodes denote the
individual human agent’s daily working platforms, where interactive dashboard tools and microphones are
available to visualize sentiment and collect audio data from conversations with customers.

In GPU-accelerated datacenters, businesses can use the NVIDIA RIVA framework to build conversational AI
applications, to which the Tao Toolkit connects for model finetuning and retraining using transfer L-learning
techniques. These compute applications and workflows are powered by the NetApp DataOps Toolkit, enabling
the best data management capabilities ONTAP has to offer. The toolkit allows corporate data teams to rapidly

254

https://developer.nvidia.com/riva
https://docs.nvidia.com/deeplearning/riva/user-guide/docs/index.html
https://developer.nvidia.com/tao
https://github.com/NetApp/netapp-dataops-toolkit

prototype their models with associated structured and unstructured data via snapshots and clones for
traceability, versioning, A/B testing, thus providing security, governance, and regulatory compliance. See the
section "Storage Design" for more details.

This solution demonstrates the audio file processing, NLP model training, transfer learning, and data
management detail steps. The resulting end-to-end pipeline generates a sentiment summary that displays in
real-time on human support agents’ dashboards.

Hardware requirements

The following table lists the hardware components that are required to implement the solution. The hardware
components that are used in any particular implementation of the solution might vary based on customer
requirements.

Response latency tests Time (milliseconds)

Data processing 10

Inferencing 10

These response-time tests were run on 50,000+ audio files across 560 conversations. Each audio file was
~100KB in size as an MP3 and ~1 MB when converted to WAV. The data processing step converts MP3s into
WAV files. The inference steps convert the audio files into text and extract a sentiment from the text. These
steps are all independent of one another and can be parallelized to speed up the process.

Taking into account the latency of transferring data between stores, managers should be able to see updates
to the real time sentiment analysis within a second of the end of the sentence.

255

NVIDIA RIVA hardware

Hardware Requirements

OS Linux x86_64

GPU memory (ASR) Streaming models: ~5600 MB
Non-streaming models: ~3100 MB

GPU memory (NLP) ~500MB per BERT model

NVIDIA TAO Toolkit hardware

Hardware Requirements

System RAM 32GB

GPU RAM 32GB

CPU 8 core

GPU NVIDIA (A100, V100 and RTX 30x0)

SSD 100GB

Flash storage system

NetApp ONTAP 9

ONTAP 9.9, the latest generation of storage management software from NetApp, enables businesses to
modernize infrastructure and transition to a cloud-ready data center. Leveraging industry-leading data
management capabilities, ONTAP enables the management and protection of data with a single set of tools,
regardless of where that data resides. You can also move data freely to wherever it is needed: the edge, the
core, or the cloud. ONTAP 9.9 includes numerous features that simplify data management, accelerate, and
protect critical data, and enable next generation infrastructure capabilities across hybrid cloud architectures.

NetApp BlueXP Copy and Sync

BlueXP Copy and Sync is a NetApp service for rapid and secure data synchronization that allows you to
transfer files between on-premises NFS or SMB file shares to any of the following targets:

• NetApp StorageGRID

• NetApp ONTAP S3

• NetApp Cloud Volumes Service

• Azure NetApp Files

• Amazon Simple Storage Service (Amazon S3)

• Amazon Elastic File System (Amazon EFS)

• Azure Blob

• Google Cloud Storage

• IBM Cloud Object Storage

BlueXP Copy and Sync moves the files where you need them quickly and securely. After your data is
transferred, it is fully available for use on both the source and the target. BlueXP Copy and Sync continuously

256

https://docs.netapp.com/us-en/occm/concept_cloud_sync.html

synchronizes the data, based on your predefined schedule, moving only the deltas, so that time and money
spent on data replication is minimized. BlueXP Copy and Sync is a software as a service (SaaS) tool that is
simple to set up and use. Data transfers that are triggered by BlueXP Copy and Sync are carried out by data
brokers. You can deploy BlueXP Copy and Sync data brokers in AWS, Azure, Google Cloud Platform, or on-
premises.

NetApp StorageGRID

The StorageGRID software-defined object storage suite supports a wide range of use cases across public,
private, and hybrid multi-cloud environments seamlessly. With industry leading innovations, NetApp
StorageGRID stores, secures, protect, and preserves unstructured data for multi-purpose use including
automated lifecycle management for long periods of time. For more information, see the NetApp StorageGRID
site.

Software requirements

The following table lists the software components that are required to implement this solution. The software
components that are used in any particular implementation of the solution might vary based on customer
requirements.

Host machine Requirements

RIVA (formerly JARVIS) 1.4.0

TAO Toolkit (formerly Transfer Learning Toolkit) 3.0

ONTAP 9.9.1

DGX OS 5.1

DOTK 2.0.0

NVIDIA RIVA Software

Software Requirements

Docker >19.02 (with nvidia-docker installed)>=19.03 if not
using DGX

NVIDIA Driver 465.19.01+
418.40+, 440.33+, 450.51+, 460.27+ for Data Center
GPUs

Container OS Ubuntu 20.04

CUDA 11.3.0

cuBLAS 11.5.1.101

cuDNN 8.2.0.41

NCCL 2.9.6

TensorRT 7.2.3.4

Triton Inference Server 2.9.0

257

https://www.netapp.com/data-storage/storagegrid/documentation/

NVIDIA TAO Toolkit software

Software Requirements

Ubuntu 18.04 LTS 18.04

python >=3.6.9

docker-ce >19.03.5

docker-API 1.40

nvidia-container-toolkit >1.3.0-1

nvidia-container-runtime 3.4.0-1

nvidia-docker2 2.5.0-1

nvidia-driver >455

python-pip >21.06

nvidia-pyindex Latest version

Use case details

This solution applies to the following use cases:

• Speech-to-text

• Sentiment analysis

258

The speech-to-text use case begins by ingesting audio files for the support centers. This audio is then
processed to fit the structure required by RIVA. If the audio files have not already been split into their units of
analysis, then this must be done before passing the audio to RIVA. After the audio file is processed, it is
passed to the RIVA server as an API call. The server employs one of the many models it is hosting and returns
a response. This speech-to-text (part of Automatic Speech Recognition) returns a text representation of the
audio. From there, the pipeline switches over to the sentiment analysis portion.

For sentiment analysis, the text output from the Automatic Speech Recognition serves as the input to the Text
Classification. Text Classification is the NVIDIA component for classifying text to any number of categories. The
sentiment categories range from positive to negative for the support center conversations. The performance of
the models can be assessed using a holdout set to determine the success of the fine-tuning step.

259

A similar pipeline is used for both the speech-to-text and sentiment analysis within the TAO Toolkit. The major
difference is the use of labels which are required for the fine-tuning of the models. The TAO Toolkit pipeline
begins with the processing of the data files. Then the pretrained models (coming from the NVIDIA NGC
Catalog) are fine-tuned using the support center data. The fine-tuned models are evaluated based on their
corresponding performance metrics and, if they are more performant than the pretrained models, are deployed
to the RIVA server.

Design considerations

This section describes the design considerations for the different components of this
solution.

Network and compute design

Depending on the restrictions on data security, all data must remain within the customer’s infrastructure or a
secure environment.

260

https://ngc.nvidia.com/catalog
https://ngc.nvidia.com/catalog

Storage design

The NetApp DataOps Toolkit serves as the primary service for managing storage systems. The DataOps
Toolkit is a Python library that makes it simple for developers, data scientists, DevOps engineers, and data
engineers to perform various data management tasks, such as near-instantaneous provisioning of a new data
volume or JupyterLab workspace, near-instantaneous cloning of a data volume or JupyterLab workspace, and
near-instantaneous snapshotting of a data volume or JupyterLab workspace for traceability or baselining. This
Python library can function as either a command line utility or a library of functions that can be imported into
any Python program or Jupyter Notebook.

RIVA best practices

NVIDIA provides several general best data practices for using RIVA:

• Use lossless audio formats if possible. The use of lossy codecs such as MP3 can reduce quality.

• Augment training data. Adding background noise to audio training data can initially decrease accuracy
and yet increase robustness.

• Limit vocabulary size if using scraped text. Many online sources contain typos or ancillary pronouns
and uncommon words. Removing these can improve the language model.

• Use a minimum sampling rate of 16kHz if possible. However, try not to resample, because doing so
decreases audio quality.

In addition to these best practices, customers must prioritize gathering a representative sample dataset with
accurate labels for each step of the pipeline. In other words, the sample dataset should proportionally reflect
specified characteristics exemplified in a target dataset. Similarly, the dataset annotators have a responsibility
to balance accuracy and the speed of labeling so that the quality and quantity of the data are both maximized.
For example, this support center solution requires audio files, labeled text, and sentiment labels. The
sequential nature of this solution means that errors from the beginning of the pipeline are propagated all the
way through to the end. If the audio files are of poor quality, the text transcriptions and sentiment labels will be
as well.

This error propagation similarly applies to the models trained on this data. If the sentiment predictions are
100% accurate but the speech-to-text model performs poorly, then the final pipeline is limited by the initial
audio- to- text transcriptions. It is essential that developers consider each model’s performance individually and
as a component of a larger pipeline. In this particular case, the end goal is to develop a pipeline that can
accurately predict the sentiment. Therefore, the overall metric on which to assess the pipeline is the accuracy
of the sentiments, which the speech-to-text transcription directly affects.

261

https://docs.nvidia.com/deeplearning/riva/user-guide/docs/best-practices.html

The NetApp DataOps Toolkit complements the data quality-checking pipeline through the use of its near-
instantaneous data cloning technology. Each labeled file must be assessed and compared to the existing
labeled files. Distributing these quality checks across various data storage systems ensures that these checks
are executed quickly and efficiently.

Deploying support center sentiment analysis

Deploying the solution involves the following components:

1. NetApp DataOps Toolkit

2. NGC Configuration

3. NVIDIA RIVA Server

4. NVIDIA TAO Toolkit

5. Export TAO models to RIVA

To perform deployment, complete the following steps:

NetApp DataOps Toolkit: Support center sentiment analysis

To use the NetApp DataOps Toolkit, complete the following steps:

1. Pip install the toolkit.

python3 -m pip install netapp-dataops-traditional

2. Configure the data management

netapp_dataops_cli.py config

262

https://github.com/NetApp/netapp-dataops-toolkit

NGC configuration: Support center sentiment analysis

To set up NVIDIA NGC, complete the following steps:

1. Download the NGC.

wget -O ngccli_linux.zip

https://ngc.nvidia.com/downloads/ngccli_linux.zip && unzip -o

ngccli_linux.zip && chmod u+x ngc

2. Add your current directory to path.

echo "export PATH=\"\$PATH:$(pwd)\"" >> ~/.bash_profile && source

~/.bash_profile

3. You must configure NGC CLI for your use so that you can run the commands. Enter the following
command, including your API key when prompted.

ngc config set

For operating systems that are not Linux-based, visit here.

NVIDIA RIVA server: Support center sentiment analysis

To set up NVIDIA RIVA, complete the following steps:

1. Download the RIVA files from NGC.

ngc registry resource download-version

nvidia/riva/riva_quickstart:1.4.0-beta

2. Initialize the RIVA setup (riva_init.sh).

3. Start the RIVA server (riva_start.sh).

4. Start the RIVA client (riva_start_client.sh).

5. Within the RIVA client, install the audio processing library (FFMPEG)

apt-get install ffmpeg

6. Start the Jupyter server.

7. Run the RIVA Inference Pipeline Notebook.

263

https://ngc.nvidia.com/setup/installers/cli
https://ngc.nvidia.com/setup/installers/cli
https://docs.nvidia.com/deeplearning/riva/user-guide/docs/quick-start-guide.html
https://ffmpeg.org/download.html
https://jupyter-server.readthedocs.io/en/latest/

NVIDIA TAO Toolkit: Support center sentiment analysis

To set up NVIDIA TAO Toolkit, complete the following steps:

1. Prepare and activate a virtual environment for TAO Toolkit.

2. Install the required packages.

3. Manually pull the image used during training and fine-tuning.

docker pull nvcr.io/nvidia/tao/tao-toolkit-pyt:v3.21.08-py3

4. Start the Jupyter server.

5. Run the TAO Fine-Tuning Notebook.

Export TAO models to RIVA: Support center sentiment analysis

To use TAO Toolkit models in RIVA, complete the following steps:

1. Save models within the TAO Fine-Tuning Notebook.

2. Copy TAO trained models to the RIVA model directory.

3. Start the RIVA server (riva_start.sh).

Deployment roadblocks

Here are a few things to keep in mind as you develop your own solution:

• The NetApp DataOps Toolkit is installed first to ensure that the data storage system runs optimally.

• NVIDIA NGC must be installed before anything else because it authenticates the downloading of images
and models.

• RIVA must be installed before the TAO Toolkit. The RIVA installation configures the docker daemon to pull
images as needed.

• DGX and docker must have internet access to download the models.

Validation results

As mentioned in the previous section, errors are propagated throughout the pipeline
whenever there are two or more machine learning models running in sequence. For this
solution, the sentiment of the sentence is the most important factor in measuring the
firm’s stock risk level. The speech-to-text model, although essential to the pipeline, serves
as the preprocessing unit before the sentiments can be predicted. What really matters is
the difference in sentiment between the ground truth sentences and the predicted
sentences. This serves as a proxy for the word error rate (WER). The speech-to-text
accuracy is important, but the WER is not directly used in the final pipeline metric.

PIPELINE_SENTIMENT_METRIC = MEAN(DIFF(GT_sentiment, ASR_sentiment))

These sentiment metrics can be calculated for the F1 Score, Recall, and Precision of each sentence. The

264

https://docs.python.org/3/library/venv.html
https://docs.nvidia.com/tao/tao-toolkit/text/tao_toolkit_quick_start_guide.html
https://jupyter-server.readthedocs.io/en/latest/
https://docs.nvidia.com/tao/tao-toolkit/text/riva_tao_integration.html

results can be then aggregated and displayed within a confusion matrix, along with the confidence intervals for
each metric.

The benefit of using transfer learning is an increase in model performance for a fraction of data requirements,
training time, and cost. The fine-tuned models should also be compared to their baseline versions to ensure
the transfer learning enhances the performance instead of impairing it. In other words, the fine-tuned model
should perform better on the support center data than the pretrained model.

Pipeline assessment

Test case Details

Test number Pipeline sentiment metric

Test prerequisites Fine-tuned models for speech-to-text and sentiment
analysis models

Expected outcome The sentiment metric of the fine-tuned model performs
better than the original pretrained model.

Pipeline sentiment metric

1. Calculate the sentiment metric for the baseline model.

2. Calculate the sentiment metric for the fine-tuned model.

3. Calculate the difference between those metrics.

4. Average the differences across all sentences.

Videos and demos

There are two notebooks that contain the sentiment analysis pipeline: “Support-Center-
Model-Transfer-Learning-and-Fine-Tuning.ipynb” and “Support-Center-Sentiment-
Analysis-Pipeline.ipynb”. Together, these notebooks demonstrate how to develop a
pipeline to ingest support center data and extract sentiments from each sentence using
state-of-the-art deep learning models fine-tuned on the user’s data.

Support Center - Sentiment Analysis Pipeline.ipynb

This notebook contains the inference RIVA pipeline for ingesting audio, converting it to text, and extracting
sentiments for use in an external dashboard. Dataset are automatically downloaded and processed if this has
not already been done. The first section in the notebook is the Speech-to-Text which handles the conversion of
audio files to text. This is followed by the Sentiment Analysis section which extracts sentiments for each text
sentence and displays those results in a format similar to the proposed dashboard.

This notebook must be run before the model training and fine-tuning because the MP3 dataset
must be downloaded and converted into the correct format.

265

https://nbviewer.jupyter.org/github/NetAppDocs/netapp-solutions/blob/main/media/Support-Center-Model-Transfer-Learning-and-Fine-Tuning.ipynb
https://nbviewer.jupyter.org/github/NetAppDocs/netapp-solutions/blob/main/media/Support-Center-Model-Transfer-Learning-and-Fine-Tuning.ipynb
https://nbviewer.jupyter.org/github/NetAppDocs/netapp-solutions/blob/main/media/Support-Center-Sentiment-Analysis-Pipeline.ipynb
https://nbviewer.jupyter.org/github/NetAppDocs/netapp-solutions/blob/main/media/Support-Center-Sentiment-Analysis-Pipeline.ipynb

Support Center - Model Training and Fine-Tuning.ipynb

The TAO Toolkit virtual environment must be set up before executing the notebook (see the TAO Toolkit section
in the Commands Overview for installation instructions).

This notebook relies on the TAO Toolkit to fine-tune deep learning models on the customers data. As with the
previous notebook, this one is separated into two sections for the Speech-to-Text and Sentiment Analysis
components. Each section goes through data processing, model training and fine-tuning, evaluation of results,
and model export. Finally, there is an end section for deploying both your fine-tuned models for use in RIVA.

266

Conclusion

As customer experience has become increasingly regarded as a key competitive
battleground, an AI-augmented global support center becomes a critical component that
companies in almost every industry cannot afford to neglect. The solution proposed in this
technical report has been demonstrated to support the delivery of such exceptional
customer experiences, and the challenge now is to ensure businesses are taking actions
to modernize their AI infrastructure and workflows.

The best implementations of AI in customer service are not to replace human agents. Rather, AI can empower
them to create exceptional customer experiences via real-time sentiment analysis, dispute escalation, and
multimodal affective computing to detect verbal, non-verbal, and facial cues with which comprehensive AI
models can make recommendations at scale and supplement what an individual human agent might be

267

lacking. AI can also provide a better match between a particular customer with currently available agents.
Using AI, businesses can extract valuable customer sentiment regarding their thoughts and impressions of the
provider’s products, services, and brand image.

The solution can also be used to construct time-series data for support agents to serve as an objective
performance evaluation metric. Conventional customer satisfaction surveys often lack sufficient responses. By
collecting long-term employee and customer sentiment, employers can make informed decisions regarding
support agents’ performance.

The combination of NetApp, SFL Scientific, opens-source orchestration frameworks, and NVIDIA brings the
latest technologies together as managed services with great flexibility to accelerate technology adoption and
improve the time to market for new AI/ML applications. These advanced services are delivered on-premises
that can be easily ported for cloud-native environment as well as hybrid deployment architectures.

Where to find additional information

To learn more about the information that is described in this document, review the
following documents and/or websites:

• 3D interactive demos

www.netapp.com/ai

• Connect directly with a NetApp AI specialist

https://www.netapp.com/artificial-intelligence/

• NVDIA Base Command Platform with NetApp solution brief

https://www.netapp.com/pdf.html?item=/media/32792-DS-4145-NVIDIA-Base-Command-Platform-with-
NetApp.pdf

• NetApp for AI 10 Good Reasons infographic

https://www.netapp.com/us/media/netapp-ai-10-good-reasons.pdf

• AI in Healthcare: Deep learning to identify COVID-19 lesions in lung CT scans white paper

https://www.netapp.com/pdf.html?item=/media/31240-WP-7342.pdf

• AI in Healthcare: Monitoring face mask usage in healthcare settings white paper

https://www.netapp.com/pdf.html?item=/media/37490-NA-611-Monitoring-face-mask-usage-in-healthcare-
settings.pdf

• AI in Healthcare: Diagnostic Imaging Technical Report

https://www.netapp.com/pdf.html?item=/media/7395-tr4811.pdf

• AI for Retail: NetApp Conversational AI using NVIDIA RIVA

Executive Summary

• NetApp ONTAP AI solution brief

268

http://www.netapp.com/ai
https://www.netapp.com/artificial-intelligence/
https://www.netapp.com/pdf.html?item=/media/32792-DS-4145-NVIDIA-Base-Command-Platform-with-NetApp.pdf
https://www.netapp.com/pdf.html?item=/media/32792-DS-4145-NVIDIA-Base-Command-Platform-with-NetApp.pdf
https://www.netapp.com/us/media/netapp-ai-10-good-reasons.pdf
https://www.netapp.com/pdf.html?item=/media/31240-WP-7342.pdf
https://www.netapp.com/pdf.html?item=/media/37490-NA-611-Monitoring-face-mask-usage-in-healthcare-settings.pdf
https://www.netapp.com/pdf.html?item=/media/37490-NA-611-Monitoring-face-mask-usage-in-healthcare-settings.pdf
https://www.netapp.com/pdf.html?item=/media/7395-tr4811.pdf

https://www.netapp.com/pdf.html?item=/media/6736-sb-3939.pdf

• NetApp DataOps Toolkit solution brief

https://www.netapp.com/pdf.html?item=/media/21480-SB-4111-1220-NA-Data-Science-Toolkit.pdf

• NetApp AI Control Plane solution brief

https://www.netapp.com/pdf.html?item=/media/6737-sb-4055.pdf

• Transforming Industry with Data Drive AI eBook

https://www.netapp.com/us/media/na-337.pdf

• NetApp EF-Series AI solution brief

https://www.netapp.com/pdf.html?item=/media/26708-SB-4136-NetApp-AI-E-Series.pdf

• NetApp AI and Lenovo ThinkSystem for AI Inferencing solution brief

https://www.netapp.com/pdf.html?item=/media/25316-SB-4129.pdf

• NetApp AI and Lenovo ThinkSystem for enterprise AI and ML solution brief

https://www.netapp.com/pdf.html?item=/media/25317-SB-4128.pdf

• NetApp and NVIDIA – Redefining What is Possible with AI video

https://www.youtube.com/watch?v=38xw65SteUc

Distributed training in Azure - Click-Through Rate Prediction

TR-4904: Distributed training in Azure - Click-Through Rate Prediction

Rick Huang, Verron Martina, Muneer Ahmad, NetApp

The work of a data scientist should be focused on the training and tuning of machine
learning (ML) and artificial intelligence (AI) models. However, according to research by
Google, data scientists spend approximately 80% of their time figuring out how to make
their models work with enterprise applications and run at scale.

To manage end-to-end AI/ML projects, a wider understanding of enterprise components is needed. Although
DevOps have taken over the definition, integration, and deployment, these types of components, ML
operations target a similar flow that includes AI/ML projects. To get an idea of what an end-to-end AI/ML
pipeline touches in the enterprise, see the following list of required components:

• Storage

• Networking

• Databases

• File systems

• Containers

269

https://www.netapp.com/pdf.html?item=/media/6736-sb-3939.pdf
https://www.netapp.com/pdf.html?item=/media/21480-SB-4111-1220-NA-Data-Science-Toolkit.pdf
https://www.netapp.com/pdf.html?item=/media/6737-sb-4055.pdf
https://www.netapp.com/us/media/na-337.pdf
https://www.netapp.com/pdf.html?item=/media/26708-SB-4136-NetApp-AI-E-Series.pdf
https://www.netapp.com/pdf.html?item=/media/25316-SB-4129.pdf
https://www.netapp.com/pdf.html?item=/media/25317-SB-4128.pdf
https://www.youtube.com/watch?v=38xw65SteUc

• Continuous integration and continuous deployment (CI/CD) pipeline

• Integrated development environment (IDE)

• Security

• Data access policies

• Hardware

• Cloud

• Virtualization

• Data science toolsets and libraries

Target audience

The world of data science touches multiple disciplines in IT and business:

• The data scientist needs the flexibility to use their tools and libraries of choice.

• The data engineer needs to know how the data flows and where it resides.

• A DevOps engineer needs the tools to integrate new AI/ML applications into their CI/CD pipelines.

• Cloud administrators and architects need to be able to set up and manage Azure resources.

• Business users want to have access to AI/ML applications.

In this technical report, we describe how Azure NetApp Files, RAPIDS AI, Dask, and Azure help each of these
roles bring value to business.

Solution overview

This solution follows the lifecycle of an AI/ML application. We start with the work of data scientists to define the
different steps needed to prepare data and train models. By leveraging RAPIDS on Dask, we perform
distributed training across the Azure Kubernetes Service (AKS) cluster to drastically reduce the training time
when compared to the conventional Python scikit-learn approach. To complete the full cycle, we integrate the
pipeline with Azure NetApp Files.

Azure NetApp Files provides various performance tiers. Customers can start with a Standard tier and scale out
and scale up to a high-performance tier nondisruptively without moving any data. This capability enables data
scientists to train models at scale without any performance issues, avoiding any data silos across the cluster,
as shown in figure below.

270

Technology overview

This page provides an overview of the technology used in this solution.

Microsoft and NetApp

Since May 2019, Microsoft has delivered an Azure native, first-party portal service for enterprise NFS and SMB
file services based on NetApp ONTAP technology. This development is driven by a strategic partnership
between Microsoft and NetApp and further extends the reach of world-class ONTAP data services to Azure.

Azure NetApp Files

The Azure NetApp Files service is an enterprise-class, high-performance, metered file storage service. Azure
NetApp Files supports any workload type and is highly available by default. You can select service and
performance levels and set up Snapshot copies through the service. Azure NetApp Files is an Azure first-party
service for migrating and running the most demanding enterprise-file workloads in the cloud, including
databases, SAP, and high-performance computing applications with no code changes.

This reference architecture gives IT organizations the following advantages:

• Eliminates design complexities

• Enables independent scaling of compute and storage

• Enables customers to start small and scale seamlessly

• Offers a range of storage tiers for various performance and cost points

Dask and NVIDIA RAPIDS overview

Dask is an open-source, parallel computing tool that scales Python libraries on multiple machines and provides
faster processing of large amounts of data. It provides an API similar to single-threaded conventional Python
libraries, such as Pandas, Numpy, and scikit-learn. As a result, native Python users are not forced to change
much in their existing code to use resources across the cluster.

NVIDIA RAPIDS is a suite of open-source libraries that makes it possible to run end-to-end ML and data
analytics workflows entirely on GPUs. Together with Dask, it enables you to easily scale from GPU workstation
(scale up) to multinode, multi-GPU clusters (scale out).

271

For deploying Dask on a cluster, you could use Kubernetes for resource orchestration. You could also scale up
or scale down the worker nodes as per the process requirement, which in-turn can help to optimize the cluster
resource consumption, as shown in the following figure.

Software requirements

The following table lists the software requirements needed for this solution.

Software Version

Azure Kubernetes Service 1.18.14

RAPIDS and Dask container image Repository: "rapidsai/rapidsai"
Tag: 0.17-cuda11.0-runtime-ubuntu18.04

NetApp Trident 20.01.1

Helm 3.0.0

Cloud resource requirements

This page describes the configuration of cloud resources for Azure NetApp Files.

Configure Azure NetApp Files

Configure Azure NetApp Files as described in QuickStart: Set up Azure NetApp Files and create an NFS
volume.

You can proceed past the section “Create NFS volume for Azure NetApp Files” because you are going to
create volumes through Trident. Before continuing, complete the following steps:

1. Register for Azure NetApp Files and NetApp Resource Provider (through the Azure Shell) (link).

272

https://docs.microsoft.com/azure/azure-netapp-files/azure-netapp-files-quickstart-set-up-account-create-volumes?tabs=azure-portal
https://docs.microsoft.com/azure/azure-netapp-files/azure-netapp-files-quickstart-set-up-account-create-volumes?tabs=azure-portal
https://docs.microsoft.com/azure/azure-netapp-files/azure-netapp-files-register

2. Create an account in Azure NetApp Files (link).

3. Set up a capacity pool (a minimum 4TB Standard or Premium, depending on your need) (link).The
following table lists the network configuration requirements for setting up in the cloud. The Dask cluster and
Azure NetApp Files must be in the same Azure Virtual Network (VNet) or a peered VNet.

Resources Type/version

Azure Kubernetes Service 1.18.14

Agent node 3x Standard_DS2_v2

GPU node 3x Standard_NC6s_v3

Azure NetApp Files Standard capacity pool

Capacity in TB 4

Click-through rate prediction use case summary

This use case is based on the publicly available Terabyte Click Logs dataset from Criteo
AI Lab. With the recent advances in ML platforms and applications, a lot of attention is
now on learning at scale. The click-through rate (CTR) is defined as the average number
of click-throughs per hundred online ad impressions (expressed as a percentage). It is
widely adopted as a key metric in various industry verticals and use cases, including
digital marketing, retail, e-commerce, and service providers. Examples of using CTR as
an important metric for potential customer traffic include the following:

• Digital marketing: In Google Analytics, CTR can be used to gauge how well an advertiser or merchant’s
keywords, ads, and free listings are performing. A high CTR is a good indication that users find your ads
and listings helpful and relevant. CTR also contributes to your keyword’s expected CTR, which is a
component of Ad Rank.

• E-commerce: In addition to leveraging Google Analytics, there are at least some visitor statistics in an e-
commerce backend. Although these statistics might not seem useful at first glance, they are typically easy
to read and might be more accurate than other information. First-party datasets composed of such
statistics are proprietary and are therefore the most relevant to e-commerce sellers, buyers, and platforms.
These datasets can be used for setting benchmarks, comparing results to last year and yesterday by
constructing a time-series for further analysis.

• Retail: Brick-and-mortar retailers can correlate the number of visitors and the number of customers to the
CTR. The number of customers can be seen from their point-of-sale history. The CTR from retailers'
websites or ad traffic might result in the aforementioned sales. Loyalty programs are another use case,
because customers redirected from online ads or other websites might join to earn rewards. Retailers can
acquire customers via loyalty programs and record behaviors from sales histories to build a
recommendation system that not only predicts consumer buying behaviors in different categories but also
personalizes coupons and decreases churn.

• Service providers: Telecommunication companies and internet service providers have an abundance of
first-party user telemetry data for insightful AI, ML, and analytics use cases. For example, a telecom can
leverage its mobile subscribers' web browsing top level domain history logs daily to fine-tune existing
models to produce up-to-date audience segmentation, predict customer behavior, and collaborate with
advertisers to place real-time ads for better online experience. In such data-driven marketing workflow,
CTR is an important metric to reflect conversions.

In the context of digital marketing, Criteo Terabyte Click Logs are now the dataset of reference in assessing the
scalability of ML platforms and algorithms. By predicting the click-through rate, an advertiser can select the

273

https://docs.microsoft.com/azure/azure-netapp-files/azure-netapp-files-create-netapp-account
https://docs.microsoft.com/azure/azure-netapp-files/azure-netapp-files-set-up-capacity-pool
http://labs.criteo.com/2013/12/download-terabyte-click-logs/
https://ailab.criteo.com/
https://ailab.criteo.com/
https://support.google.com/google-ads/answer/2615875?hl=en
https://support.google.com/google-ads/answer/1752122?hl=en
https://analytics.google.com/analytics/web/provision/#/provision
http://labs.criteo.com/2013/12/download-terabyte-click-logs/

visitors who are most likely to respond to the ads, analyze their browsing history, and show the most relevant
ads based on the interests of the user.

The solution provided in this technical report highlights the following benefits:

• Azure NetApp Files advantages in distributed or large-scale training

• RAPIDS CUDA-enabled data processing (cuDF, cuPy, and so on) and ML algorithms (cuML)

• The Dask parallel computing framework for distributed training

An end-to-end workflow built on RAPIDS AI and Azure NetApp Files demonstrates the drastic improvement in
random forest model training time by two orders of magnitude. This improvement is significant comparing to
the conventional Pandas approach when dealing with real-world click logs with 45GB of structured tabular data
(on average) each day. This is equivalent to a DataFrame containing roughly twenty billion rows. We will
demonstrate cluster environment setup, framework and library installation, data loading and processing,
conventional versus distributed training, visualization and monitoring, and compare critical end-to-end runtime
results in this technical report.

Setup

Install and set up the AKS cluster

To install and set up the AKS cluster, see the webpage Create an AKS Cluster and then
complete the following steps:

1. When selecting the type of node (system [CPU] or worker [GPU] nodes), select the following:

a. Primary system nodes should be Standard DS2v2 (agentpool default three nodes).

b. Then add the worker node Standard_NC6s_v3 pool (three nodes minimum) for the user group (for

GPU nodes) named gpupool.

2. Deployment takes 5 to 10 minutes. After it is complete, click Connect to Cluster.

3. To connect to the newly created AKS cluster, install the following from your local environment (laptop/pc):

a. The Kubernetes command-line tool using the instructions provided for your specific OS

b. The Azure CLI as described in the document, Install the Azure CLI

4. To access the AKS cluster from the terminal, enter az login and enter the credentials.

5. Run the following two commands:

az account set --subscription xxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxxxx

aks get-credentials --resource-group resourcegroup --name aksclustername

274

https://docs.microsoft.com/azure/aks/kubernetes-walkthrough-portal
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://docs.microsoft.com/cli/azure/install-azure-cli

6. Enter Azure CLI: kubectl get nodes.

7. If all six nodes are up and running, as shown in the following example, your AKS cluster is ready and
connected to your local environment

Create a delegated subnet for Azure NetApp Files

To create a delegated subnet for Azure NetApp Files, complete the following steps:

1. Navigate to Virtual Networks within the Azure portal. Find your newly created virtual network. It should

have a prefix such as aks-vnet.

2. Click the name of the VNet.

3. Click Subnets and click +Subnet from the top toolbar.

275

4. Provide the subnet with a name such as ANF.sn and, under the Subnet Delegation heading, select

Microsoft.Netapp/volumes. Do not change anything else. Click OK.

276

Azure NetApp Files volumes are allocated to the application cluster and are consumed as persistent volume
claims (PVCs) in Kubernetes. In turn, this process provides you the flexibility to map them to different services,
such as Jupyter notebooks, serverless functions, and so on.

Users of services can consume storage from the platform in many ways. As this technical report discusses
NFSs, the main benefits of Azure NetApp Files are:

• Providing users with the ability to use Snapshot copies.

• Enabling users to store large quantities of data on Azure NetApp Files volumes.

• Using the performance benefits of Azure NetApp Files volumes when running their models on large sets of
files.

277

Peer AKS VNet and Azure NetApp Files VNet

To peer the AKS VNet to the Azure NetApp Files VNet, complete the following steps:

1. Enter Virtual Networks in the search field.

2. Select vnet aks-vnet-name. Click it and enter Peerings in the search field.

3. Click +Add.

4. Enter the following descriptors:

a. The peering link name is aks-vnet-name_to_anf.

b. subscriptionID and Azure NetApp Files VNet as the VNet peering partner.

c. Leave all the nonasterisk sections with the default values.

5. Click Add.

For more information, see Create, change, or delete a virtual network peering.

Install Trident

To install Trident using Helm, complete the following steps:

1. Install Helm (for installation instructions, visit the source).

2. Download and extract the Trident 20.01.1 installer.

$wget

$tar -xf trident-installer-21.01.1.tar.gz

3. Change the directory to trident-installer.

$cd trident-installer

4. Copy tridentctl to a directory in your system $PATH.

$sudo cp ./tridentctl /usr/local/bin

5. Install Trident on the Kubernetes (K8s) cluster with Helm (source):

a. Change the directory to the helm directory.

$cd helm

b. Install Trident.

278

https://docs.microsoft.com/azure/virtual-network/virtual-network-manage-peering
https://helm.sh/docs/intro/install/
https://scaleoutsean.github.io/2021/02/02/trident-21.01-install-with-helm-on-netapp-hci.html

$helm install trident trident-operator-21.01.1.tgz --namespace

trident --create-namespace

c. Check the status of Trident pods.

$kubectl -n trident get pods

If all the pods are up and running, then Trident is installed and you can move forward.

6. Set up the Azure NetApp Files backend and storage class for AKS.

a. Create an Azure Service Principle.

The service principal is how Trident communicates with Azure to manipulate your Azure NetApp Files
resources.

$az ad sp create-for-rbac --name ""

The output should look like the following example:

{

"appId": "xxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx",

"displayName": "netapptrident",

"name": "",

"password": "xxxxxxxxxxxxxxx.xxxxxxxxxxxxxx",

"tenant": "xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxx"

}

7. Create a Trident backend json file, example name anf-backend.json.

8. Using your preferred text editor, complete the following fields inside the anf-backend.json file:

279

{

 "version": 1,

 "storageDriverName": "azure-netapp-files",

 "subscriptionID": "fakec765-4774-fake-ae98-a721add4fake",

 "tenantID": "fakef836-edc1-fake-bff9-b2d865eefake",

 "clientID": "fake0f63-bf8e-fake-8076-8de91e57fake",

 "clientSecret": "SECRET",

 "location": "westeurope",

 "serviceLevel": "Standard",

 "virtualNetwork": "anf-vnet",

 "subnet": "default",

 "nfsMountOptions": "vers=3,proto=tcp",

 "limitVolumeSize": "500Gi",

 "defaults": {

 "exportRule": "0.0.0.0/0",

 "size": "200Gi"

}

9. Substitute the following fields:

◦ subscriptionID. Your Azure subscription ID.

◦ tenantID. Your Azure Tenant ID from the output of az ad sp in the previous step.

◦ clientID. Your appID from the output of az ad sp in the previous step.

◦ clientSecret. Your password from the output of az ad sp in the previous step.

10. Instruct Trident to create the Azure NetApp Files backend in the trident namespace using anf-

backend.json as the configuration file:

$tridentctl create backend -f anf-backend.json -n trident

11. Create a storage class. Kubernetes users provision volumes by using PVCs that specify a storage class by

name. Instruct K8s to create a storage class azurenetappfiles that references the Trident backend
created in the previous step.

12. Create a YAML (anf-storage-class.yaml) file for storage class and copy.

280

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

name: azurenetappfiles

provisioner: netapp.io/trident

parameters:

backendType: "azure-netapp-files"

$kubectl create -f anf-storage-class.yaml

13. Verify that the storage class was created.

kubectl get sc azurenetappfiles

Set up Dask with RAPIDS deployment on AKS using Helm

To set up Dask with RAPIDS deployment on AKS using Helm, complete the following
steps:

1. Create a namespace for installing Dask with RAPIDS.

kubectl create namespace rapids-dask

2. Create a PVC to store the click-through rate dataset:

a. Save the following YAML content to a file to create a PVC.

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

 name: pvc-criteo-data

spec:

 accessModes:

 - ReadWriteMany

 resources:

 requests:

 storage: 1000Gi

 storageClassName: azurenetappfiles

b. Apply the YAML file to your Kubernetes cluster.

281

kubectl -n rapids-dask apply -f <your yaml file>

3. Clone the rapidsai git repository (https://github.com/rapidsai/helm-chart).

git clone https://github.com/rapidsai/helm-chart helm-chart

4. Modify values.yaml and include the PVC created earlier for workers and Jupyter workspace.

a. Go to the rapidsai directory of the repository.

cd helm-chart/rapidsai

b. Update the values.yaml file and mount the volume using PVC.

dask:

 …

 worker:

 name: worker

 …

 mounts:

 volumes:

 - name: data

 persistentVolumeClaim:

 claimName: pvc-criteo-data

 volumeMounts:

 - name: data

 mountPath: /data

 …

 jupyter:

 name: jupyter

 …

 mounts:

 volumes:

 - name: data

 persistentVolumeClaim:

 claimName: pvc-criteo-data

 volumeMounts:

 - name: data

 mountPath: /data

 …

5. Go to the repository’s home directory and deploy Dask with three worker nodes on AKS using Helm.

282

https://github.com/rapidsai/helm-chart

cd ..

helm dep update rapidsai

helm install rapids-dask --namespace rapids-dask rapidsai

Azure NetApp Files performance tiers

You can change the service level of an existing volume by moving the volume to another
capacity pool that uses the service level you want for the volume. This solution enables
customers to start with a small dataset and small number of GPUs in Standard Tier and
scale out or scale up to Premium Tier as the amount of data and GPUs increase. The
Premium Tier offers four times the throughput per terabyte as the Standard Tier, and
scale up is performed without having to move any data to change the service level of a
volume.

Dynamically change the service level of a volume

To dynamically change the service level of a volume, complete the following steps:

1. On the Volumes page, right-click the volume whose service level you want to change. Select Change Pool.

2. In the Change Pool window, select the capacity pool to which you want to move the volume.

283

3. Click OK.

Automate performance tier change

The following options are available to automate performance tier changes:

• Dynamic Service Level change is still in Public Preview at this time and not enabled by default. To enable
this feature on the Azure Subscription, see this documentation about how to Dynamically change the
service level of a volume.

• Azure CLI volume pool change commands are provided in volume pool change documentation and in the
following example:

az netappfiles volume pool-change -g mygroup --account-name myaccname

--pool-name mypoolname --name myvolname --new-pool-resource-id

mynewresourceid

• PowerShell: The Set-AzNetAppFilesVolumePool cmdlet changes the pool of an Azure NetApp Files volume
and is shown in the following example:

284

https://docs.microsoft.com/azure/azure-netapp-files/dynamic-change-volume-service-level
https://docs.microsoft.com/azure/azure-netapp-files/dynamic-change-volume-service-level
https://docs.microsoft.com/en-us/cli/azure/netappfiles/volume?view=azure-cli-latest&viewFallbackFrom=azure-cli-latest%20-%20az_netappfiles_volume_pool_change
https://docs.microsoft.com/powershell/module/az.netappfiles/set-aznetappfilesvolumepool?view=azps-5.8.0

Set-AzNetAppFilesVolumePool

-ResourceGroupName "MyRG"

-AccountName "MyAnfAccount"

-PoolName "MyAnfPool"

-Name "MyAnfVolume"

-NewPoolResourceId 7d6e4069-6c78-6c61-7bf6-c60968e45fbf

Click through rate prediction data processing and model training

Libraries for data processing and model training

The following table lists the libraries and frameworks that were used to build this task. All
these components have been fully integrated with Azure’s role-based access and security
controls.

Libraries/framework Description

Dask cuML For ML to work on GPU, the cuML library provides
access to the RAPIDS cuML package with Dask.
RAPIDS cuML implements popular ML algorithms,
including clustering, dimensionality reduction, and
regression approaches, with high-performance GPU-
based implementations, offering speed-ups of up to
100x over CPU-based approaches.

Dask cuDF cuDF includes various other functions supporting
GPU-accelerated extract, transform, load (ETL), such
as data subsetting, transformations, one-hot
encoding, and more. The RAPIDS team maintains a
dask-cudf library that includes helper methods to use
Dask and cuDF.

Scikit Learn Scikit-learn provides dozens of built-in machine
learning algorithms and models, called estimators.
Each estimator can be fitted to some data using its fit
method.

We used two notebooks to construct the ML pipelines for comparison; one is the conventional Pandas scikit-
learn approach, and the other is distributed training with RAPIDS and Dask. Each notebook can be tested
individually to see the performance in terms of time and scale. We cover each notebook individually to
demonstrate the benefits of distributed training using RAPIDS and Dask.

Load Criteo Click Logs day 15 in Pandas and train a scikit-learn random forest model

This section describes how we used Pandas and Dask DataFrames to load Click Logs
data from the Criteo Terabyte dataset. The use case is relevant in digital advertising for
ad exchanges to build users’ profiles by predicting whether ads will be clicked or if the
exchange isn’t using an accurate model in an automated pipeline.

We loaded day 15 data from the Click Logs dataset, totaling 45GB. Running the following cell in Jupyter

285

https://github.com/rapidsai/cuml/tree/main/python/cuml/dask
https://github.com/rapidsai/cudf/tree/main/python/dask_cudf
https://scikit-learn.org/stable/glossary.html#term-estimators
https://scikit-learn.org/stable/glossary.html#term-fit

notebook CTR-PandasRF-collated.ipynb creates a Pandas DataFrame that contains the first 50 million
rows and generates a scikit-learn random forest model.

%%time

import pandas as pd

import numpy as np

header = ['col'+str(i) for i in range (1,41)] #note that according to

criteo, the first column in the dataset is Click Through (CT). Consist of

40 columns

first_row_taken = 50_000_000 # use this in pd.read_csv() if your compute

resource is limited.

total number of rows in day15 is 20B

take 50M rows

"""

Read data & display the following metrics:

1. Total number of rows per day

2. df loading time in the cluster

3. Train a random forest model

"""

df = pd.read_csv(file, nrows=first_row_taken, delimiter='\t',

names=header)

take numerical columns

df_sliced = df.iloc[:, 0:14]

split data into training and Y

Y = df_sliced.pop('col1') # first column is binary (click or not)

change df_sliced data types & fillna

df_sliced = df_sliced.astype(np.float32).fillna(0)

from sklearn.ensemble import RandomForestClassifier

Random Forest building parameters

n_streams = 8 # optimization

max_depth = 10

n_bins = 16

n_trees = 10

rf_model = RandomForestClassifier(max_depth=max_depth,

n_estimators=n_trees)

rf_model.fit(df_sliced, Y)

To perform prediction by using a trained random forest model, run the following paragraph in this notebook. We
took the last one million rows from day 15 as the test set to avoid any duplication. The cell also calculates
accuracy of prediction, defined as the percentage of occurrences the model accurately predicts whether a user
clicks an ad or not. To review any unfamiliar components in this notebook, see the official scikit-learn
documentation.

286

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html

testing data, last 1M rows in day15

test_file = '/data/day_15_test'

with open(test_file) as g:

 print(g.readline())

dataFrame processing for test data

test_df = pd.read_csv(test_file, delimiter='\t', names=header)

test_df_sliced = test_df.iloc[:, 0:14]

test_Y = test_df_sliced.pop('col1')

test_df_sliced = test_df_sliced.astype(np.float32).fillna(0)

prediction & calculating error

pred_df = rf_model.predict(test_df_sliced)

from sklearn import metrics

Model Accuracy

print("Accuracy:",metrics.accuracy_score(test_Y, pred_df))

Load Day 15 in Dask and train a Dask cuML random forest model

In a manner similar to the previous section, load Criteo Click Logs day 15 in Pandas and
train a scikit-learn random forest model. In this example, we performed DataFrame
loading with Dask cuDF and trained a random forest model in Dask cuML. We compared
the differences in training time and scale in the section “Training time comparison.”

criteo_dask_RF.ipynb

This notebook imports numpy, cuml, and the necessary dask libraries, as shown in the following example:

import cuml

from dask.distributed import Client, progress, wait

import dask_cudf

import numpy as np

import cudf

from cuml.dask.ensemble import RandomForestClassifier as cumlDaskRF

from cuml.dask.common import utils as dask_utils

Initiate Dask Client().

client = Client()

If your cluster is configured correctly, you can see the status of worker nodes.

287

client

workers = client.has_what().keys()

n_workers = len(workers)

n_streams = 8 # Performance optimization

In our AKS cluster, the following status is displayed:

Note that Dask employs the lazy execution paradigm: rather than executing the processing code instantly,
Dask builds a Directed Acyclic Graph (DAG) of execution instead. DAG contains a set of tasks and their
interactions that each worker needs to run. This layout means the tasks do not run until the user tells Dask to
execute them in one way or another. With Dask you have three main options:

• Call compute() on a DataFrame. This call processes all the partitions and then returns results to the
scheduler for final aggregation and conversion to cuDF DataFrame. This option should be used sparingly
and only on heavily reduced results unless your scheduler node runs out of memory.

• Call persist() on a DataFrame. This call executes the graph, but, instead of returning the results to the
scheduler node, it maintains them across the cluster in memory so the user can reuse these intermediate
results down the pipeline without the need for rerunning the same processing.

• Call head() on a DataFrame. Just like with cuDF, this call returns 10 records back to the scheduler node.
This option can be used to quickly check if your DataFrame contains the desired output format, or if the
records themselves make sense, depending on your processing and calculation.

Therefore, unless the user calls either of these actions, the workers sit idle waiting for the scheduler to initiate
the processing. This lazy execution paradigm is common in modern parallel and distributed computing
frameworks such as Apache Spark.

The following paragraph trains a random forest model by using Dask cuML for distributed GPU-accelerated
computing and calculates model prediction accuracy.

288

Adsf

Random Forest building parameters

n_streams = 8 # optimization

max_depth = 10

n_bins = 16

n_trees = 10

cuml_model = cumlDaskRF(max_depth=max_depth, n_estimators=n_trees,

n_bins=n_bins, n_streams=n_streams, verbose=True, client=client)

cuml_model.fit(gdf_sliced_small, Y)

Model prediction

pred_df = cuml_model.predict(gdf_test)

calculate accuracy

cu_score = cuml.metrics.accuracy_score(test_y, pred_df)

Monitor Dask using native Task Streams dashboard

The Dask distributed scheduler provides live feedback in two forms:

• An interactive dashboard containing many plots and tables with live information

• A progress bar suitable for interactive use in consoles or notebooks

In our case, the following figure shows how you can monitor the task progress, including Bytes Stored, the
Task Stream with a detailed breakdown of the number of streams, and Progress by task names with
associated functions executed. In our case, because we have three worker nodes, there are three main chunks
of stream and the color codes denote different tasks within each stream.

You have the option to analyze individual tasks and examine the execution time in milliseconds or identify any
obstacles or hindrances. For example, the following figure shows the Task Streams for the random forest
model fitting stage. There are considerably more functions being executed, including unique chunk for
DataFrame processing, _construct_rf for fitting the random forest, and so on. Most of the time was spent on
DataFrame operations due to the large size (45GB) of one day of data from the Criteo Click Logs.

289

https://docs.dask.org/en/latest/scheduling.html

Training time comparison

This section compares the model training time using conventional Pandas compared to
Dask. For Pandas, we loaded a smaller amount of data due to the nature of slower
processing time to avoid memory overflow. Therefore, we interpolated the results to offer
a fair comparison.

The following table shows the raw training time comparison when there is significantly less data used for the
Pandas random forest model (50 million rows out of 20 billion per day15 of the dataset). This sample is only
using less than 0.25% of all available data. Whereas for Dask-cuML we trained the random forest model on all
20 billion available rows. The two approaches yielded comparable training time.

Approach Training time

Scikit-learn: Using only 50M rows in day15 as the
training data

47 minutes and 21 seconds

RAPIDS-Dask: Using all 20B rows in day15 as the
training data

1 hour, 12 minutes, and 11 seconds

If we interpolate the training time results linearly, as shown in the following table, there is a significant
advantage to using distributed training with Dask. It would take the conventional Pandas scikit-learn approach
13 days to process and train 45GB of data for a single day of click logs, whereas the RAPIDS-Dask approach
processes the same amount of data 262.39 times faster.

Approach Training time

Scikit-learn: Using all 20B rows in day15 as the
training data

13 days, 3 hours, 40 minutes, and 11 seconds

RAPIDS-Dask: Using all 20B rows in day15 as the
training data

1 hour, 12 minutes, and 11 seconds

In the previous table, you can see that by using RAPIDS with Dask to distribute the data processing and model
training across multiple GPU instances, the run time is significantly shorter compared to conventional Pandas
DataFrame processing with scikit-learn model training. This framework enables scaling up and out in the cloud

290

as well as on-premises in a multinode, multi-GPU cluster.

Monitor Dask and RAPIDS with Prometheus and Grafana

After everything is deployed, run inferences on new data. The models predict whether a
user clicks an ad based on browsing activities. The results of the prediction are stored in
a Dask cuDF. You can monitor the results with Prometheus and visualize in Grafana
dashboards.

For more information, see this RAPIDS AI Medium post.

Dataset and model versioning using NetApp DataOps Toolkit

The NetApp DataOps Toolkit for Kubernetes abstracts storage resources and Kubernetes
workloads up to the data-science workspace level. These capabilities are packaged in a
simple, easy-to-use interface that is designed for data scientists and data engineers.
Using the familiar form of a Python program, the Toolkit enables data scientists and
engineers to provision and destroy JupyterLab workspaces in just seconds. These
workspaces can contain terabytes, or even petabytes, of storage capacity, enabling data
scientists to store all their training datasets directly in their project workspaces. Gone are
the days of separately managing workspaces and data volumes.

For more information, visit the Toolkit’s GitHub repository.

Jupyter notebooks for reference

There are two Jupyter notebooks associated with this technical report:

• CTR-PandasRF-collated.ipynb. This notebook loads Day 15 from the Criteo Terabyte Click Logs dataset,
processes and formats data into a Pandas DataFrame, trains a Scikit-learn random forest model, performs
prediction, and calculates accuracy.

• criteo_dask_RF.ipynb. This notebook loads Day 15 from the Criteo Terabyte Click Logs dataset,
processes and formats data into a Dask cuDF, trains a Dask cuML random forest model, performs
prediction, and calculates accuracy. By leveraging multiple worker nodes with GPUs, this distributed data
and model processing and training approach is highly efficient. The more data you process, the greater the
time savings versus a conventional ML approach. You can deploy this notebook in the cloud, on-premises,
or in a hybrid environment where your Kubernetes cluster contains compute and storage in different
locations, as long as your networking setup enables the free movement of data and model distribution.

Conclusion

Azure NetApp Files, RAPIDS, and Dask speed up and simplify the deployment of large-
scale ML processing and training by integrating with orchestration tools such as Docker
and Kubernetes. By unifying the end-to-end data pipeline, this solution reduces the
latency and complexity inherent in many advanced computing workloads, effectively
bridging the gap between development and operations. Data scientists can run queries
on large datasets and securely share data and algorithmic models with other users during
the training phase.

When building your own AI/ML pipelines, configuring the integration, management, security, and accessibility of

291

https://medium.com/rapids-ai/monitoring-dask-rapids-with-prometheus-grafana-96eaf6b8f3a0
https://github.com/NetApp/netapp-data-science-toolkit
https://nbviewer.jupyter.org/github/NetAppDocs/netapp-solutions/blob/main/media/CTR-PandasRF-collated.ipynb
https://nbviewer.jupyter.org/github/NetAppDocs/netapp-solutions/blob/main/media/criteo_dask_RF.ipynb

the components in an architecture is a challenging task. Giving developers access and control of their
environment presents another set of challenges.

By building an end-to-end distributed training model and data pipeline in the cloud, we demonstrated two
orders of magnitude improvement in total workflow completion time versus a conventional, open-source
approach that did not leverage GPU-accelerated data processing and compute frameworks.

The combination of NetApp, Microsoft, opens-source orchestration frameworks, and NVIDIA brings the latest
technologies together as managed services with great flexibility to accelerate technology adoption and improve
the time to market for new AI/ML applications. These advanced services are delivered in a cloud-native
environment that can be easily ported for on-premises as well as hybrid deployment architectures.

Where to find additional information

To learn more about the information that is described in this document, see the following
resources:

• Azure NetApp Files:

◦ Solutions architecture page for Azure NetApp Files

https://docs.microsoft.com/azure/azure-netapp-files/azure-netapp-files-solution-architectures

• Trident persistent storage for containers:

◦ Azure NetApp Files and Trident

https://netapptrident.readthedocs.io/en/stablev20.07/kubernetes/operations/tasks/backends/anf.html

• Dask and RAPIDS:

◦ Dask

https://docs.dask.org/en/latest/

◦ Install Dask

https://docs.dask.org/en/latest/install.html

◦ Dask API

https://docs.dask.org/en/latest/api.html

◦ Dask Machine Learning

https://examples.dask.org/machine-learning.html

◦ Dask Distributed Diagnostics

https://docs.dask.org/en/latest/diagnostics-distributed.html

• ML framework and tools:

◦ TensorFlow: An Open-Source Machine Learning Framework for Everyone

https://www.tensorflow.org/

292

https://docs.microsoft.com/azure/azure-netapp-files/azure-netapp-files-solution-architectures
https://netapptrident.readthedocs.io/en/stablev20.07/kubernetes/operations/tasks/backends/anf.html
https://docs.dask.org/en/latest/
https://docs.dask.org/en/latest/install.html
https://docs.dask.org/en/latest/api.html
https://examples.dask.org/machine-learning.html
https://docs.dask.org/en/latest/diagnostics-distributed.html
https://www.tensorflow.org/

◦ Docker

https://docs.docker.com

◦ Kubernetes

https://kubernetes.io/docs/home/

◦ Kubeflow

http://www.kubeflow.org/

◦ Jupyter Notebook Server

http://www.jupyter.org/

TR-4896: Distributed training in Azure: Lane detection - Solution design

Muneer Ahmad and Verron Martina, NetApp
Ronen Dar, RUN:AI

Since May 2019, Microsoft delivers an Azure native, first-party portal service for
enterprise NFS and SMB file services based on NetApp ONTAP technology. This
development is driven by a strategic partnership between Microsoft and NetApp and
further extends the reach of world-class ONTAP data services to Azure.

NetApp, a leading cloud data services provider, has teamed up with RUN: AI, a company virtualizing AI
infrastructure, to allow faster AI experimentation with full GPU utilization. The partnership enables teams to
speed up AI by running many experiments in parallel, with fast access to data, and leveraging limitless
compute resources. RUN: AI enables full GPU utilization by automating resource allocation, and the proven
architecture of Azure NetApp Files enables every experiment to run at maximum speed by eliminating data
pipeline obstructions.

NetApp and RUN: AI have joined forces to offer customers a future-proof platform for their AI journey in Azure.
From analytics and high-performance computing (HPC) to autonomous decisions (where customers can
optimize their IT investments by only paying for what they need, when they need it), the alliance between
NetApp and RUN: AI offers a single unified experience in the Azure Cloud.

Solution overview

In this architecture, the focus is on the most computationally intensive part of the AI or
machine learning (ML) distributed training process of lane detection. Lane detection is
one of the most important tasks in autonomous driving, which helps to guide vehicles by
localization of the lane markings. Static components like lane markings guide the vehicle
to drive on the highway interactively and safely.

Convolutional Neural Network (CNN)-based approaches have pushed scene understanding and segmentation
to a new level. Although it doesn’t perform well for objects with long structures and regions that could be
occluded (for example, poles, shade on the lane, and so on). Spatial Convolutional Neural Network (SCNN)
generalizes the CNN to a rich spatial level. It allows information propagation between neurons in the same
layer, which makes it best suited for structured objects such as lanes, poles, or truck with occlusions. This
compatibility is because the spatial information can be reinforced, and it preserves smoothness and continuity.

293

https://docs.docker.com/
https://kubernetes.io/docs/home/
http://www.kubeflow.org/
http://www.jupyter.org/

Thousands of scene images need to be injected in the system to allow the model learn and distinguish the
various components in the dataset. These images include weather, daytime or nighttime, multilane highway
roads, and other traffic conditions.

For training, there is a need for good quality and quantity of data. Single GPU or multiple GPUs can take days
to weeks to complete the training. Data-distributed training can speed up the process by using multiple and
multinode GPUs. Horovod is one such framework that grants distributed training but reading data across
clusters of GPUs could act as a hindrance. Azure NetApp Files provides ultrafast, high throughput and
sustained low latency to provide scale-out/scale-up capabilities so that GPUs are leveraged to the best of their
computational capacity. Our experiments verified that all the GPUs across the cluster are used more than 96%
on average for training the lane detection using SCNN.

Target audience

Data science incorporates multiple disciplines in IT and business, therefore multiple personas are part of our
targeted audience:

• Data scientists need the flexibility to use the tools and libraries of their choice.

• Data engineers need to know how the data flows and where it resides.

• Autonomous driving use-case experts.

• Cloud administrators and architects to set up and manage cloud (Azure) resources.

• A DevOps engineer needs the tools to integrate new AI/ML applications into their continuous integration
and continuous deployment (CI/CD) pipelines.

• Business users want to have access to AI/ML applications.

In this document, we describe how Azure NetApp Files, RUN: AI, and Microsoft Azure help each of these roles
bring value to business.

Solution technology

This section covers the technology requirements for the lane detection use case by implementing a distributed
training solution at scale that fully runs in the Azure cloud. The figure below provides an overview of the
solution architecture.

The elements used in this solution are:

• Azure Kubernetes Service (AKS)

• Azure Compute SKUs with NVIDIA GPUs

• Azure NetApp Files

• RUN: AI

• NetApp Trident

Links to all the elements mentioned here are listed in the Additional information section.

294

Cloud resources and services requirements

The following table lists the hardware components that are required to implement the solution. The cloud
components that are used in any implementation of the solution might vary based on customer requirements.

Cloud Quantity

AKS Minimum of three system nodes and three GPU
worker nodes

Virtual machine (VM) SKU system nodes Three Standard_DS2_v2

VM SKU GPU worker nodes Three Standard_NC6s_v3

Azure NetApp Files 4TB standard tier

Software requirements

The following table lists the software components that are required to implement the solution. The software
components that are used in any implementation of the solution might vary based on customer requirements.

Software Version or other information

AKS - Kubernetes version 1.18.14

RUN:AI CLI v2.2.25

RUN:AI Orchestration Kubernetes Operator version 1.0.109

Horovod 0.21.2

NetApp Trident 20.01.1

Helm 3.0.0

Lane detection – Distributed training with RUN:AI

This section provides details on setting up the platform for performing lane detection
distributed training at scale using the RUN: AI orchestrator. We discuss installation of all
the solution elements and running the distributed training job on the said platform. ML

295

versioning is completed by using NetApp SnapshotTM linked with RUN: AI experiments
for achieving data and model reproducibility. ML versioning plays a crucial role in tracking
models, sharing work between team members, reproducibility of results, rolling new
model versions to production, and data provenance. NetApp ML version control
(Snapshot) can capture point-in-time versions of the data, trained models, and logs
associated with each experiment. It has rich API support making it easy to integrate with
the RUN: AI platform; you just have to trigger an event based on the training state. You
also have to capture the state of the whole experiment without changing anything in the
code or the containers running on top of Kubernetes (K8s).

Finally, this technical report wraps up with performance evaluation on multiple GPU-enabled nodes across
AKS.

Distributed training for lane detection use case using the TuSimple dataset

In this technical report, distributed training is performed on the TuSimple dataset for lane detection. Horovod is
used in the training code for conducting data distributed training on multiple GPU nodes simultaneously in the
Kubernetes cluster through AKS. Code is packaged as container images for TuSimple data download and
processing. Processed data is stored on persistent volumes allocated by NetApp Trident plug- in. For the
training, one more container image is created, and it uses the data stored on persistent volumes created during
downloading the data.

To submit the data and training job, use RUN: AI for orchestrating the resource allocation and management.
RUN: AI allows you to perform Message Passing Interface (MPI) operations which are needed for Horovod.
This layout allows multiple GPU nodes to communicate with each other for updating the training weights after
every training mini batch. It also enables monitoring of training through the UI and CLI, making it easy to
monitor the progress of experiments.

NetApp Snapshot is integrated within the training code and captures the state of data and the trained model for
every experiment. This capability enables you to track the version of data and code used, and the associated
trained model generated.

AKS setup and installation

For setup and installation of the AKS cluster go to Create an AKS Cluster. Then, follow these series of steps:

1. When selecting the type of nodes (whether it be system (CPU) or worker (GPU) nodes), select the
following:

a. Add primary system node named agentpool at the Standard_DS2_v2 size. Use the default three
nodes.

b. Add worker node gpupool with the Standard_NC6s_v3 pool size. Use three nodes minimum for
GPU nodes.

296

https://docs.microsoft.com/azure/aks/kubernetes-walkthrough-portal

Deployment takes 5–10 minutes.

2. After deployment is complete, click Connect to Cluster. To connect to the newly created AKS cluster, install
the Kubernetes command-line tool from your local environment (laptop/PC). Visit Install Tools to install it as
per your OS.

3. Install Azure CLI on your local environment.

4. To access the AKS cluster from the terminal, first enter az login and put in the credentials.

5. Run the following two commands:

az account set --subscription xxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxxxx

aks get-credentials --resource-group resourcegroup --name aksclustername

6. Enter this command in the Azure CLI:

kubectl get nodes

If all six nodes are up and running as seen here, your AKS cluster is ready and connected to
your local environment.

Create a delegated subnet for Azure NetApp Files

To create a delegated subnet for Azure NetApp Files, follow this series of steps:

1. Navigate to Virtual networks within the Azure portal. Find your newly created virtual network. It should have
a prefix such as aks-vnet, as seen here. Click the name of the virtual network.

297

https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://docs.microsoft.com/cli/azure/install-azure-cli

2. Click Subnets and select +Subnet from the top toolbar.

3. Provide the subnet with a name such as ANF.sn and under the Subnet Delegation heading, select
Microsoft.NetApp/volumes. Do not change anything else. Click OK.

298

Azure NetApp Files volumes are allocated to the application cluster and are consumed as persistent volume
claims (PVCs) in Kubernetes. In turn, this allocation provides us the flexibility to map volumes to different
services, be it Jupyter notebooks, serverless functions, and so on

Users of services can consume storage from the platform in many ways. The main benefits of Azure NetApp
Files are:

• Provides users with the ability to use snapshots.

• Enables users to store large quantities of data on Azure NetApp Files volumes.

• Procure the performance benefits of Azure NetApp Files volumes when running their models on large sets
of files.

299

Azure NetApp Files setup

To complete the setup of Azure NetApp Files, you must first configure it as described in Quickstart: Set up
Azure NetApp Files and create an NFS volume.

However, you may omit the steps to create an NFS volume for Azure NetApp Files as you will create volumes
through Trident. Before continuing, be sure that you have:

1. Registered for Azure NetApp Files and NetApp Resource Provider (through the Azure Cloud Shell).

2. Created an account in Azure NetApp Files.

3. Set up a capacity pool (minimum 4TiB Standard or Premium depending on your needs).

Peering of AKS virtual network and Azure NetApp Files virtual network

Next, peer the AKS virtual network (VNet) with the Azure NetApp Files VNet by following these steps:

1. In the search box at the top of the Azure portal, type virtual networks.

2. Click VNet aks- vnet-name, then enter Peerings in the search field.

3. Click +Add and enter the information provided in the table below:

Field Value or description
#

Peering link name aks-vnet-name_to_anf

SubscriptionID Subscription of the Azure NetApp Files VNet to
which you’re peering

VNet peering partner Azure NetApp Files VNet

Leave all the nonasterisk sections on default

4. Click ADD or OK to add the peering to the virtual network.

For more information, visit Create, change, or delete a virtual network peering.

Trident

Trident is an open-source project that NetApp maintains for application container persistent storage. Trident
has been implemented as an external provisioner controller that runs as a pod itself, monitoring volumes and
completely automating the provisioning process.

NetApp Trident enables smooth integration with K8s by creating and attaching persistent volumes for storing
training datasets and trained models. This capability makes it easier for data scientists and data engineers to
use K8s without the hassle of manually storing and managing datasets. Trident also eliminates the need for
data scientists to learn managing new data platforms as it integrates the data management-related tasks
through the logical API integration.

Install Trident

To install Trident software, complete the following steps:

1. First install helm.

300

https://docs.microsoft.com/azure/azure-netapp-files/azure-netapp-files-quickstart-set-up-account-create-volumes
https://docs.microsoft.com/azure/azure-netapp-files/azure-netapp-files-quickstart-set-up-account-create-volumes
https://docs.microsoft.com/azure/azure-netapp-files/azure-netapp-files-register
https://docs.microsoft.com/azure/azure-netapp-files/azure-netapp-files-create-netapp-account
https://docs.microsoft.com/en-us/azure/azure-netapp-files/azure-netapp-files-set-up-capacity-pool
https://docs.microsoft.com/azure/virtual-network/tutorial-connect-virtual-networks-portal
https://helm.sh/docs/intro/install/

2. Download and extract the Trident 21.01.1 installer.

wget

https://github.com/NetApp/trident/releases/download/v21.01.1/trident-

installer-21.01.1.tar.gz

tar -xf trident-installer-21.01.1.tar.gz

3. Change the directory to trident-installer.

cd trident-installer

4. Copy tridentctl to a directory in your system $PATH.

cp ./tridentctl /usr/local/bin

5. Install Trident on K8s cluster with Helm:

a. Change directory to helm directory.

cd helm

b. Install Trident.

helm install trident trident-operator-21.01.1.tgz --namespace trident

--create-namespace

c. Check the status of Trident pods the usual K8s way:

kubectl -n trident get pods

d. If all the pods are up and running, Trident is installed and you are good to move forward.

Set up Azure NetApp Files back-end and storage class

To set up Azure NetApp Files back-end and storage class, complete the following steps:

1. Switch back to the home directory.

cd ~

2. Clone the project repository lane-detection-SCNN-horovod.

301

https://github.com/dedmari/lane-detection-SCNN-horovod.git

3. Go to the trident-config directory.

cd ./lane-detection-SCNN-horovod/trident-config

4. Create an Azure Service Principle (the service principle is how Trident communicates with Azure to access
your Azure NetApp Files resources).

az ad sp create-for-rbac --name

The output should look like the following example:

{

 "appId": "xxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx",

 "displayName": "netapptrident",

 "name": "http://netapptrident",

 "password": "xxxxxxxxxxxxxxx.xxxxxxxxxxxxxx",

 "tenant": "xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxx"

 }

5. Create the Trident backend json file.

6. Using your preferred text editor, complete the following fields from the table below inside the anf-

backend.json file.

Field Value

subscriptionID Your Azure Subscription ID

tenantID Your Azure Tenant ID (from the output of az ad sp in
the previous step)

clientID Your appID (from the output of az ad sp in the
previous step)

clientSecret Your password (from the output of az ad sp in the
previous step)

The file should look like the following example:

302

{

 "version": 1,

 "storageDriverName": "azure-netapp-files",

 "subscriptionID": "fakec765-4774-fake-ae98-a721add4fake",

 "tenantID": "fakef836-edc1-fake-bff9-b2d865eefake",

 "clientID": "fake0f63-bf8e-fake-8076-8de91e57fake",

 "clientSecret": "SECRET",

 "location": "westeurope",

 "serviceLevel": "Standard",

 "virtualNetwork": "anf-vnet",

 "subnet": "default",

 "nfsMountOptions": "vers=3,proto=tcp",

 "limitVolumeSize": "500Gi",

 "defaults": {

 "exportRule": "0.0.0.0/0",

 "size": "200Gi"

}

7. Instruct Trident to create the Azure NetApp Files back- end in the trident namespace, using anf-

backend.json as the configuration file as follows:

tridentctl create backend -f anf-backend.json -n trident

8. Create the storage class:

a. K8 users provision volumes by using PVCs that specify a storage class by name. Instruct K8s to create

a storage class azurenetappfiles that will reference the Azure NetApp Files back end created in
the previous step using the following:

kubectl create -f anf-storage-class.yaml

b. Check that storage class is created by using the following command:

kubectl get sc azurenetappfiles

The output should look like the following example:

Deploy and set up volume snapshot components on AKS

If your cluster does not come pre-installed with the correct volume snapshot components, you may manually
install these components by running the following steps:

303

AKS 1.18.14 does not have pre-installed Snapshot Controller.

1. Install Snapshot Beta CRDs by using the following commands:

kubectl create -f https://raw.githubusercontent.com/kubernetes-

csi/external-snapshotter/release-

3.0/client/config/crd/snapshot.storage.k8s.io_volumesnapshotclasses.yaml

kubectl create -f https://raw.githubusercontent.com/kubernetes-

csi/external-snapshotter/release-

3.0/client/config/crd/snapshot.storage.k8s.io_volumesnapshotcontents.yam

l

kubectl create -f https://raw.githubusercontent.com/kubernetes-

csi/external-snapshotter/release-

3.0/client/config/crd/snapshot.storage.k8s.io_volumesnapshots.yaml

2. Install Snapshot Controller by using the following documents from GitHub:

kubectl apply -f https://raw.githubusercontent.com/kubernetes-

csi/external-snapshotter/release-3.0/deploy/kubernetes/snapshot-

controller/rbac-snapshot-controller.yaml

kubectl apply -f https://raw.githubusercontent.com/kubernetes-

csi/external-snapshotter/release-3.0/deploy/kubernetes/snapshot-

controller/setup-snapshot-controller.yaml

3. Set up K8s volumesnapshotclass: Before creating a volume snapshot, a volume snapshot class must
be set up. Create a volume snapshot class for Azure NetApp Files, and use it to achieve ML versioning by

using NetApp Snapshot technology. Create volumesnapshotclass netapp-csi-snapclass and set
it to default `volumesnapshotclass `as such:

kubectl create -f netapp-volume-snapshot-class.yaml

The output should look like the following example:

4. Check that the volume Snapshot copy class was created by using the following command:

kubectl get volumesnapshotclass

The output should look like the following example:

304

https://netapp-trident.readthedocs.io/en/stable-v20.01/kubernetes/concepts/objects.html

RUN:AI installation

To install RUN:AI, complete the following steps:

1. Install RUN:AI cluster on AKS.

2. Go to app.runai.ai, click create New Project, and name it lane-detection. It will create a namespace on a

K8s cluster starting with runai- followed by the project name. In this case, the namespace created would
be runai-lane-detection.

3. Install RUN:AI CLI.

4. On your terminal, set lane-detection as a default RUN: AI project by using the following command:

`runai config project lane-detection`

The output should look like the following example:

305

https://docs.run.ai/Administrator/Cluster-Setup/cluster-install/
https://docs.run.ai/Administrator/Cluster-Setup/cluster-install/

5. Create ClusterRole and ClusterRoleBinding for the project namespace (for example, lane-detection)

so the default service account belonging to runai-lane-detection namespace has permission to

perform volumesnapshot operations during job execution:

a. List namespaces to check that runai-lane-detection exists by using this command:

kubectl get namespaces

The output should appear like the following example:

6. Create ClusterRole netappsnapshot and ClusterRoleBinding netappsnapshot using the following
commands:

`kubectl create -f runai-project-snap-role.yaml`

`kubectl create -f runai-project-snap-role-binding.yaml`

Download and process the TuSimple dataset as RUN:AI job

The process to download and process the TuSimple dataset as a RUN: AI job is optional. It involves the
following steps:

1. Build and push the docker image, or omit this step if you want to use an existing docker image (for

example, muneer7589/download-tusimple:1.0)

a. Switch to the home directory:

cd ~

b. Go to the data directory of the project lane-detection-SCNN-horovod:

cd ./lane-detection-SCNN-horovod/data

c. Modify build_image.sh shell script and change docker repository to yours. For example, replace

muneer7589 with your docker repository name. You could also change the docker image name and

306

TAG (such as download-tusimple and 1.0):

d. Run the script to build the docker image and push it to the docker repository using these commands:

chmod +x build_image.sh

./build_image.sh

2. Submit the RUN: AI job to download, extract, pre-process, and store the TuSimple lane detection dataset in

a pvc, which is dynamically created by NetApp Trident:

a. Use the following commands to submit the RUN: AI job:

runai submit

--name download-tusimple-data

--pvc azurenetappfiles:100Gi:/mnt

--image muneer7589/download-tusimple:1.0

b. Enter the information from the table below to submit the RUN:AI job:

Field Value or description

-name Name of the job

307

Field Value or description

-pvc PVC of the format
[StorageClassName]:Size:ContainerMountPath

In the above job submission, you are creating an
PVC based on-demand using Trident with storage
class azurenetappfiles. Persistent volume capacity
here is 100Gi and it’s mounted at path /mnt.

-image Docker image to use when creating the container
for this job

The output should look like the following example:

c. List the submitted RUN:AI jobs.

runai list jobs

d. Check the submitted job logs.

runai logs download-tusimple-data -t 10

e. List the pvc created. Use this pvc command for training in the next step.

kubectl get pvc | grep download-tusimple-data

The output should look like the following example:

f. Check the job in RUN: AI UI (or app.run.ai).

308

Perform distributed lane detection training using Horovod

Performing distributed lane detection training using Horovod is an optional process. However, here are the
steps involved:

1. Build and push the docker image, or skip this step if you want to use the existing docker image (for

example, muneer7589/dist-lane-detection:3.1):

a. Switch to home directory.

cd ~

b. Go to the project directory lane-detection-SCNN-horovod.

cd ./lane-detection-SCNN-horovod

c. Modify the build_image.sh shell script and change docker repository to yours (for example, replace

muneer7589 with your docker repository name). You could also change the docker image name and

TAG (dist-lane-detection and 3.1, for example).

309

d. Run the script to build the docker image and push to the docker repository.

chmod +x build_image.sh

./build_image.sh

2. Submit the RUN: AI job for carrying out distributed training (MPI):

a. Using submit of RUN: AI for automatically creating PVC in the previous step (for downloading data)
only allows you to have RWO access, which does not allow multiple pods or nodes to access the same
PVC for distributed training. Update the access mode to ReadWriteMany and use the Kubernetes
patch to do so.

b. First, get the volume name of the PVC by running the following command:

kubectl get pvc | grep download-tusimple-data

c. Patch the volume and update access mode to ReadWriteMany (replace volume name with yours in the
following command):

kubectl patch pv pvc-bb03b74d-2c17-40c4-a445-79f3de8d16d5 -p

'{"spec":{"accessModes":["ReadWriteMany"]}}'

d. Submit the RUN: AI MPI job for executing the distributed training` job using information from the table
below:

310

runai submit-mpi

--name dist-lane-detection-training

--large-shm

--processes=3

--gpu 1

--pvc pvc-download-tusimple-data-0:/mnt

--image muneer7589/dist-lane-detection:3.1

-e USE_WORKERS="true"

-e NUM_WORKERS=4

-e BATCH_SIZE=33

-e USE_VAL="false"

-e VAL_BATCH_SIZE=99

-e ENABLE_SNAPSHOT="true"

-e PVC_NAME="pvc-download-tusimple-data-0"

Field Value or description

name Name of the distributed training job

large shm Mount a large /dev/shm device

It is a shared file system mounted on RAM and
provides large enough shared memory for multiple
CPU workers to process and load batches into
CPU RAM.

processes Number of distributed training processes

gpu Number of GPUs/processes to allocate for the job

In this job, there are three GPU worker processes
(--processes=3), each allocated with a single GPU
(--gpu 1)

pvc Use existing persistent volume (pvc-download-
tusimple-data-0) created by previous job
(download-tusimple-data) and it is mounted at
path /mnt

image Docker image to use when creating the container
for this job

Define environment variables to be set in the container

USE_WORKERS Setting the argument to true turns on multi-
process data loading

NUM_WORKERS Number of data loader worker processes

BATCH_SIZE Training batch size

USE_VAL Setting the argument to true allows validation

VAL_BATCH_SIZE Validation batch size

311

Field Value or description

ENABLE_SNAPSHOT Setting the argument to true enables taking data
and trained model snapshots for ML versioning
purposes

PVC_NAME Name of the pvc to take a snapshot of. In the
above job submission, you are taking a snapshot
of pvc-download-tusimple-data-0, consisting of
dataset and trained models

The output should look like the following example:

e. List the submitted job.

runai list jobs

f. Submitted job logs:

runai logs dist-lane-detection-training

g. Check training job in RUN: AI GUI (or app.runai.ai): RUN: AI Dashboard, as seen in the figures below.
The first figure details three GPUs allocated for the distributed training job spread across three nodes
on AKS, and the second RUN:AI jobs:

312

h. After the training is finished, check the NetApp Snapshot copy that was created and linked with RUN:
AI job.

runai logs dist-lane-detection-training --tail 1

kubectl get volumesnapshots | grep download-tusimple-data-0

313

Restore data from the NetApp Snapshot copy

To restore data from the NetApp Snapshot copy, complete the following steps:

1. Switch to home directory.

cd ~

2. Go to the project directory lane-detection-SCNN-horovod.

cd ./lane-detection-SCNN-horovod

3. Modify restore-snaphot-pvc.yaml and update dataSource name field to the Snapshot copy from
which you want to restore data. You could also change PVC name where the data will be restored to, in

this example its restored-tusimple.

4. Create a new PVC by using restore-snapshot-pvc.yaml.

kubectl create -f restore-snapshot-pvc.yaml

The output should look like the following example:

5. If you want to use the just restored data for training, job submission remains the same as before; only

replace the PVC_NAME with the restored PVC_NAME when submitting the training job, as seen in the
following commands:

314

runai submit-mpi

--name dist-lane-detection-training

--large-shm

--processes=3

--gpu 1

--pvc restored-tusimple:/mnt

--image muneer7589/dist-lane-detection:3.1

-e USE_WORKERS="true"

-e NUM_WORKERS=4

-e BATCH_SIZE=33

-e USE_VAL="false"

-e VAL_BATCH_SIZE=99

-e ENABLE_SNAPSHOT="true"

-e PVC_NAME="restored-tusimple"

Performance evaluation

To show the linear scalability of the solution, performance tests have been done for two scenarios: one GPU
and three GPUs. GPU allocation, GPU and memory utilization, different single- and three- node metrics have
been captured during the training on the TuSimple lane detection dataset. Data is increased five- fold just for
the sake of analyzing resource utilization during the training processes.

The solution enables customers to start with a small dataset and a few GPUs. When the amount of data and
the demand of GPUs increase, customers can dynamically scale out the terabytes in the Standard Tier and
quickly scale up to the Premium Tier to get four times the throughput per terabyte without moving any data.
This process is further explained in the section, Azure NetApp Files service levels.

Processing time on one GPU was 12 hours and 45 minutes. Processing time on three GPUs across three
nodes was approximately 4 hours and 30 minutes.

The figures shown throughout the remainder of this document illustrate examples of performance and
scalability based on individual business needs.

The figure below illustrates 1 GPU allocation and memory utilization.

315

The figure below illustrates single node GPU utilization.

The figure below illustrates single node memory size (16GB).

316

The figure below illustrates single node GPU count (1).

The figure below illustrates single node GPU allocation (%).

The figure below illustrates three GPUs across three nodes – GPUs allocation and memory.

317

The figure below illustrates three GPUs across three nodes utilization (%).

The figure below illustrates three GPUs across three nodes memory utilization (%).

318

Azure NetApp Files service levels

You can change the service level of an existing volume by moving the volume to another capacity pool that
uses the service level you want for the volume. This existing service-level change for the volume does not
require that you migrate data. It also does not affect access to the volume.

Dynamically change the service level of a volume

To change the service level of a volume, use the following steps:

1. On the Volumes page, right-click the volume whose service level you want to change. Select Change Pool.

2. In the Change Pool window, select the capacity pool you want to move the volume to. Then, click OK.

319

https://docs.microsoft.com/azure/azure-netapp-files/azure-netapp-files-service-levels

Automate service level change

Dynamic Service Level change is currently still in Public Preview, but it is not enabled by default. To enable this
feature on the Azure subscription, follow these steps provided in the document “ Dynamically change the
service level of a volume.”

• You can also use the following commands for Azure: CLI. For more information about changing the pool
size of Azure NetApp Files, visit az netappfiles volume: Manage Azure NetApp Files (ANF) volume
resources.

az netappfiles volume pool-change -g mygroup

--account-name myaccname

-pool-name mypoolname

--name myvolname

--new-pool-resource-id mynewresourceid

• The set- aznetappfilesvolumepool cmdlet shown here can change the pool of an Azure NetApp
Files volume. More information about changing volume pool size and Azure PowerShell can be found by
visiting Change pool for an Azure NetApp Files volume.

320

file:///C:\Users\crich\Downloads\•%09https:\docs.microsoft.com\azure\azure-netapp-files\dynamic-change-volume-service-level
file:///C:\Users\crich\Downloads\•%09https:\docs.microsoft.com\azure\azure-netapp-files\dynamic-change-volume-service-level
https://docs.microsoft.com/cli/azure/netappfiles/volume?view=azure-cli-latest-az_netappfiles_volume_pool_change
https://docs.microsoft.com/cli/azure/netappfiles/volume?view=azure-cli-latest-az_netappfiles_volume_pool_change
https://docs.microsoft.com/powershell/module/az.netappfiles/set-aznetappfilesvolumepool?view=azps-5.8.0

Set-AzNetAppFilesVolumePool

-ResourceGroupName "MyRG"

-AccountName "MyAnfAccount"

-PoolName "MyAnfPool"

-Name "MyAnfVolume"

-NewPoolResourceId 7d6e4069-6c78-6c61-7bf6-c60968e45fbf

Conclusion

NetApp and RUN: AI have partnered in the creation of this technical report to
demonstrate the unique capabilities of the Azure NetApp Files together with the RUN: AI
platform for simplifying orchestration of AI workloads. This technical report provides a
reference architecture for streamlining the process of both data pipelines and workload
orchestration for distributed lane detection training.

In conclusion, with regard to distributed training at scale (especially in a public cloud environment), the
resource orchestration and storage component is a critical part of the solution. Making sure that data managing
never hinders multiple GPU processing, therefore results in the optimal utilization of GPU cycles. Thus, making
the system as cost effective as possible for large- scale distributed training purposes.

Data fabric delivered by NetApp overcomes the challenge by enabling data scientists and data engineers to
connect together on-premises and in the cloud to have synchronous data, without performing any manual
intervention. In other words, data fabric smooths the process of managing AI workflow spread across multiple
locations. It also facilitates on demand-based data availability by bringing data close to compute and
performing analysis, training, and validation wherever and whenever needed. This capability not only enables
data integration but also protection and security of the entire data pipeline.

Additional information

To learn more about the information that is described in this document, review the
following documents and/or websites:

• Dataset: TuSimple

https://github.com/TuSimple/tusimple-benchmark/tree/master/doc/lane_detection

• Deep Learning Network Architecture: Spatial Convolutional Neural Network

https://arxiv.org/abs/1712.06080

• Distributed deep learning training framework: Horovod

https://horovod.ai/

• RUN: AI container orchestration solution: RUN: AI product introduction

https://docs.run.ai/home/components/

• RUN: AI installation documentation

321

https://github.com/TuSimple/tusimple-benchmark/tree/master/doc/lane_detection
https://arxiv.org/abs/1712.06080
https://horovod.ai/
https://docs.run.ai/home/components/

https://docs.run.ai/Administrator/Cluster-Setup/cluster-install/#step-3-install-runai
https://docs.run.ai/Administrator/Researcher-Setup/cli-install/#runai-cli-installation

• Submitting jobs in RUN: AI CLI

https://docs.run.ai/Researcher/cli-reference/runai-submit/

https://docs.run.ai/Researcher/cli-reference/runai-submit-mpi/

• Azure Cloud resources: Azure NetApp Files

https://docs.microsoft.com/azure/azure-netapp-files/

• Azure Kubernetes Service

https://azure.microsoft.com/services/kubernetes-service/-features

• Azure VM SKUs

https://azure.microsoft.com/services/virtual-machines/

• Azure VM with GPU SKUs

https://docs.microsoft.com/azure/virtual-machines/sizes-gpu

• NetApp Trident

https://github.com/NetApp/trident/releases

• Data Fabric powered by NetApp

https://www.netapp.com/data-fabric/what-is-data-fabric/

• NetApp Product Documentation

https://www.netapp.com/support-and-training/documentation/

TR-4841: Hybrid Cloud AI Operating System with Data Caching

Rick Huang, David Arnette, NetApp
Yochay Ettun, cnvrg.io

The explosive growth of data and the exponential growth of ML and AI have converged to
create a zettabyte economy with unique development and implementation challenges.

Although it is a widely known that ML models are data-hungry and require high-performance data storage
proximal to compute resources, in practice, it is not so straight forward to implement this model, especially with
hybrid cloud and elastic compute instances. Massive quantities of data are usually stored in low-cost data
lakes, where high-performance AI compute resources such as GPUs cannot efficiently access it. This problem
is aggravated in a hybrid-cloud infrastructure where some workloads operate in the cloud and some are
located on-premises or in a different HPC environment entirely.

In this document, we present a novel solution that allows IT professionals and data engineers to create a truly
hybrid cloud AI platform with a topology-aware data hub that enables data scientists to instantly and
automatically create a cache of their datasets in proximity to their compute resources, wherever they are

322

https://docs.run.ai/Administrator/Cluster-Setup/cluster-install/#step-3-install-runai
https://docs.run.ai/Administrator/Researcher-Setup/cli-install/
https://docs.run.ai/Researcher/cli-reference/runai-submit/
https://docs.run.ai/Researcher/cli-reference/runai-submit-mpi/
https://docs.microsoft.com/azure/azure-netapp-files/
https://azure.microsoft.com/services/kubernetes-service/-features
https://azure.microsoft.com/services/virtual-machines/
https://docs.microsoft.com/azure/virtual-machines/sizes-gpu
https://github.com/NetApp/trident/releases
https://www.netapp.com/data-fabric/what-is-data-fabric/
https://www.netapp.com/support-and-training/documentation/

located. As a result, not only can high-performance model training be accomplished, but additional benefits are
created, including the collaboration of multiple AI practitioners, who have immediate access to dataset caches,
versions, and lineages within a dataset version hub.

Use Case Overview and Problem Statement

Datasets and dataset versions are typically located in a data lake, such as NetApp
StorageGrid object-based storage, which offers reduced cost and other operational
advantages. Data scientists pull these datasets and engineer them in multiple steps to
prepare them for training with a specific model, often creating multiple versions along the
way. As the next step, the data scientist must pick optimized compute resources (GPUs,
high-end CPU instances, an on-premises cluster, and so on) to run the model. The
following figure depicts the lack of dataset proximity in an ML compute environment.

However, multiple training experiments must run in parallel in different compute environments, each of which
require a download of the dataset from the data lake, which is an expensive and time-consuming process.
Proximity of the dataset to the compute environment (especially for a hybrid cloud) is not guaranteed. In
addition, other team members that run their own experiments with the same dataset must go through the same
arduous process. Beyond the obvious slow data access, challenges include difficulties tracking dataset
versions, dataset sharing, collaboration, and reproducibility.

Customer Requirements

Customer requirements can vary in order to achieve high- performance ML runs while efficiently using
resources; for example, customers might require the following:

• Fast access to datasets from each compute instance executing the training model without incurring
expensive downloads and data access complexities

323

• The use any compute instance (GPU or CPU) in the cloud or on-premises without concern for the location
of the datasets

• Increased efficiency and productivity by running multiple training experiments in parallel with different
compute resources on the same dataset without unnecessary delays and data latency

• Minimized compute instance costs

• Improved reproducibility with tools to keep records of the datasets, their lineage, versions, and other
metadata details

• Enhanced sharing and collaboration so that any authorized member of the team can access the datasets
and run experiments

To implement dataset caching with NetApp ONTAP data management software, customers must perform the
following tasks:

• Configure and set the NFS storage that is closest to the compute resources.

• Determine which dataset and version to cache.

• Monitor the total memory committed to cached datasets and how much NFS storage is available for
additional cache commits (for example, cache management).

• Age out of datasets in the cache if they have not been used in certain time. The default is one day; other
configuration options are available.

Solution Overview

This section reviews a conventional data science pipeline and its drawbacks. It also
presents the architecture of the proposed dataset caching solution.

Conventional Data Science Pipeline and Drawbacks

A typical sequence of ML model development and deployment involves iterative steps that include the
following:

• Ingesting data

• Data preprocessing (creating multiple versions of the datasets)

• Running multiple experiments involving hyperparameter optimization, different models, and so on

• Deployment

• Monitoringcnvrg.io has developed a comprehensive platform to automate all tasks from research to
deployment. A small sample of dashboard screenshots pertaining to the pipeline is shown in the following
figure.

324

It is very common to have multiple datasets in play from public repositories and private data. In addition, each
dataset is likely to have multiple versions resulting from dataset cleanup or feature engineering. A dashboard
that provides a dataset hub and a version hub is needed to make sure collaboration and consistency tools are
available to the team, as can be seen in the following figure.

325

The next step in the pipeline is training, which requires multiple parallel instances of training models, each
associated with a dataset and a certain compute instance. The binding of a dataset to a certain experiment
with a certain compute instance is a challenge because it is possible that some experiments are performed by
GPU instances from Amazon Web Services (AWS), while other experiments are performed by DGX-1 or DGX-
2 instances on- premises. Other experiments might be executed in CPU servers in GCP, while the dataset
location is not in reasonable proximity to the compute resources performing the training. A reasonable
proximity would have full 10GbE or more low-latency connectivity from the dataset storage to the compute
instance.

It is a common practice for data scientists to download the dataset to the compute instance performing the
training and execute the experiment. However, there are several potential problems with this approach:

• When the data scientist downloads the dataset to a compute instance, there are no guarantees that the
integrated compute storage is high performance (an example of a high-performance system would be the
ONTAP AFF A800 NVMe solution).

• When the downloaded dataset resides in one compute node, storage can become a bottleneck when
distributed models are executed over multiple nodes (unlike with NetApp ONTAP high-performance
distributed storage).

• The next iteration of the training experiment might be performed in a different compute instance due to
queue conflicts or priorities, again creating significant network distance from the dataset to the compute
location.

• Other team members executing training experiments on the same compute cluster cannot share this
dataset; each performs the (expensive) download of the dataset from an arbitrary location.

• If other datasets or versions of the same dataset are needed for the subsequent training jobs, the data
scientists must again perform the (expensive) download of the dataset to the compute instance performing
the training.NetApp and cnvrg.io have created a new dataset caching solution that eliminates these

326

hurdles. The solution creates accelerated execution of the ML pipeline by caching hot datasets on the
ONTAP high- performance storage system. With ONTAP NFS, the datasets are cached once (and only
once) in a data fabric powered by NetApp (such as AFF A800), which is collocated with the compute. As
the NetApp ONTAP NFS high-speed storage can serve multiple ML compute nodes, the performance of
the training models is optimized, bringing cost savings, productivity, and operational efficiency to the
organization.

Solution Architecture

This solution from NetApp and cnvrg.io provides dataset caching, as shown in the following figure. Dataset
caching allows data scientists to pick a desired dataset or dataset version and move it to the ONTAP NFS
cache, which lies in proximity to the ML compute cluster. The data scientist can now run multiple experiments
without incurring delays or downloads. In addition, all collaborating engineers can use the same dataset with
the attached compute cluster (with the freedom to pick any node) without additional downloads from the data
lake. The data scientists are offered a dashboard that tracks and monitors all datasets and versions and
provides a view of which datasets were cached.

The cnvrg.io platform auto-detects aged datasets that have not been used for a certain time and evicts them
from the cache, which maintains free NFS cache space for more frequently used datasets. It is important to
note that dataset caching with ONTAP works in the cloud and on-premises, thus providing maximum flexibility.

Concepts and Components

This section covers concepts and components associated with data caching in an ML
workflow.

Machine Learning

ML is rapidly becoming essential to many businesses and organizations around the world. Therefore, IT and

327

DevOps teams are now facing the challenge of standardizing ML workloads and provisioning cloud, on-
premises, and hybrid compute resources that support the dynamic and intensive workflows that ML jobs and
pipelines require.

Container-Based Machine Learning and Kubernetes

Containers are isolated user-space instances that run on top of a shared host operating system kernel. The
adoption of containers is rapidly increasing. Containers offer many of the same application sandboxing benefits
that virtual machines (VMs) offer. However, because the hypervisor and guest operating system layers that
VMs rely on have been eliminated, containers are far more lightweight.

Containers also allow the efficient packaging of application dependencies, run times, and so on directly with an
application. The most commonly used container packaging format is the Docker container. An application that
has been containerized in the Docker container format can be executed on any machine that can run Docker
containers. This is true even if the application’s dependencies are not present on the machine, because all
dependencies are packaged in the container itself. For more information, visit the Docker website.

Kubernetes, the popular container orchestrator, allows data scientists to launch flexible, container-based jobs
and pipelines. It also enables infrastructure teams to manage and monitor ML workloads in a single managed
and cloud-native environment. For more information, visit the Kubernetes website.

cnvrg.io

cnvrg.io is an AI operating system that transforms the way enterprises manage, scale, and accelerate AI and
data science development from research to production. The code-first platform is built by data scientists for
data scientists and offers flexibility to run on-premises or in the cloud. With model management, MLOps, and
continual ML solutions, cnvrg.io brings top- of- the- line technology to data science teams so they can spend
less time on DevOps and focus on the real magic—algorithms. Since using cnvrg.io, teams across industries
have gotten more models to production resulting in increased business value.

cnvrg.io Meta-Scheduler

cnvrg. io has a unique architecture that allows IT and engineers to attach different compute resources to the
same control plane and have cnvrg.io manage ML jobs across all resources. This means that IT can attach
multiple on-premises Kubernetes clusters, VM servers, and cloud accounts and run ML workloads on all
resources, as shown in the following figure.

328

https://www.docker.com/
https://kubernetes.io/

cnvrg.io Data Caching

cnvrg.io allows data scientists to define hot and cold dataset versions with its data-caching technology. By
default, datasets are stored in a centralized object storage database. Then, data scientists can cache a specific
data version on the selected compute resource to save time on download and therefor increase ML
development and productivity. Datasets that are cached and are not in use for a few days are automatically
cleared from the selected NFS. Caching and clearing the cache can be performed with a single click; no
coding, IT, or DevOps work is required.

cnvrg.io Flows and ML Pipelines

cnvrg.io Flows is a tool for building production ML pipelines. Each component in a flow is a script/code running
on a selected compute with a base docker image. This design enables data scientists and engineers to build a
single pipeline that can run both on-premises and in the cloud. cnvrg.io makes sure data, parameters, and
artifacts are moving between the different components. In addition, each flow is monitored and tracked for
100% reproducible data science.

cnvrg.io CORE

cnvrg.io CORE is a free platform for the data science community to help data scientists focus more on data
science and less on DevOps. CORE’s flexible infrastructure gives data scientists the control to use any
language, AI framework, or compute environment whether on- premises or in the cloud so they can do what
they do best, build algorithms. cnvrg.io CORE can be easily installed with a single command on any
Kubernetes cluster.

NetApp ONTAP AI

ONTAP AI is a data center reference architecture for ML and deep learning (DL) workloads that uses NetApp
AFF storage systems and NVIDIA DGX systems with Tesla V100 GPUs. ONTAP AI is based on the industry-
standard NFS file protocol over 100Gb Ethernet, providing customers with a high-performance ML/DL
infrastructure that uses standard data center technologies to reduce implementation and administration
overhead. Using standardized network and protocols enables ONTAP AI to integrate into hybrid cloud
environments while maintaining operational consistency and simplicity. As a prevalidated infrastructure
solution, ONTAP AI reduces deployment time and risk and reduces administration overhead significantly,
allowing customers to realize faster time to value.

NVIDIA DeepOps

DeepOps is an open source project from NVIDIA that, by using Ansible, automates the deployment of GPU
server clusters according to best practices. DeepOps is modular and can be used for various deployment
tasks. For this document and the validation exercise that it describes, DeepOps is used to deploy a Kubernetes
cluster that consists of GPU server worker nodes. For more information, visit the DeepOps website.

NetApp Trident

Trident is an open source storage orchestrator developed and maintained by NetApp that greatly simplifies the
creation, management, and consumption of persistent storage for Kubernetes workloads. Trident itself a
Kubernetes-native application—it runs directly within a Kubernetes cluster. With Trident, Kubernetes users
(developers, data scientists, Kubernetes administrators, and so on) can create, manage, and interact with
persistent storage volumes in the standard Kubernetes format that they are already familiar with. At the same
time, they can take advantage of NetApp advanced data management capabilities and a data fabric that is
powered by NetApp technology. Trident abstracts away the complexities of persistent storage and makes it
simple to consume. For more information, visit the Trident website.

329

https://github.com/NVIDIA/deepops
https://netapp-trident.readthedocs.io/en/stable-v18.07/kubernetes/

NetApp StorageGRID

NetApp StorageGRID is a software-defined object storage platform designed to meet these needs by providing
simple, cloud-like storage that users can access using the S3 protocol. StorageGRID is a scale-out system
designed to support multiple nodes across internet-connected sites, regardless of distance. With the intelligent
policy engine of StorageGRID, users can choose erasure-coding objects across sites for geo-resiliency or
object replication between remote sites to minimize WAN access latency. StorageGrid provides an excellent
private-cloud primary object storage data lake in this solution.

NetApp Cloud Volumes ONTAP

NetApp Cloud Volumes ONTAP data management software delivers control, protection, and efficiency to user
data with the flexibility of public cloud providers including AWS, Google Cloud Platform, and Microsoft Azure.
Cloud Volumes ONTAP is cloud-native data management software built on the NetApp ONTAP storage
software, providing users with a superior universal storage platform that addresses their cloud data needs.
Having the same storage software in the cloud and on- premises provides users with the value of a data fabric
without having to train IT staff in all-new methods to manage data.

For customers that are interested in hybrid cloud deployment models, Cloud Volumes ONTAP can provide the
same capabilities and class-leading performance in most public clouds to provide a consistent and seamless
user experience in any environment.

Hardware and Software Requirements

This section covers the technology requirements for the ONTAP AI solution.

Hardware Requirements

Although hardware requirements depend on specific customer workloads, ONTAP AI can be deployed at any
scale for data engineering, model training, and production inferencing from a single GPU up to rack-scale
configurations for large-scale ML/DL operations. For more information about ONTAP AI, see the ONTAP AI
website.

This solution was validated using a DGX-1 system for compute, a NetApp AFF A800 storage system, and
Cisco Nexus 3232C for network connectivity. The AFF A800 used in this validation can support as many as 10
DGX-1 systems for most ML/DL workloads. The following figure shows the ONTAP AI topology used for model
training in this validation.

330

https://www.netapp.com/us/products/ontap-ai.aspx
https://www.netapp.com/us/products/ontap-ai.aspx

To extend this solution to a public cloud, Cloud Volumes ONTAP can be deployed alongside cloud GPU
compute resources and integrated into a hybrid cloud data fabric that enables customers to use whatever
resources are appropriate for any given workload.

Software Requirements

The following table shows the specific software versions used in this solution validation.

Component Version

Ubuntu 18.04.4 LTS

NVIDIA DGX OS 4.4.0

NVIDIA DeepOps 20.02.1

Kubernetes 1.15

Helm 3.1.0

cnvrg.io 3.0.0

NetApp ONTAP 9.6P4

For this solution validation, Kubernetes was deployed as a single-node cluster on the DGX-1 system. For
large-scale deployments, independent Kubernetes master nodes should be deployed to provide high
availability of management services as well as reserve valuable DGX resources for ML and DL workloads.

Solution Deployment and Validation Details

The following sections discuss the details of solution deployment and validation.

ONTAP AI Deployment

Deployment of ONTAP AI requires the installation and configuration of networking,
compute, and storage hardware. Specific instructions for deployment of the ONTAP AI
infrastructure are beyond the scope of this document. For detailed deployment

331

information, see NVA-1121-DEPLOY: NetApp ONTAP AI, Powered by NVIDIA.

For this solution validation, a single volume was created and mounted to the DGX-1 system. That mount point
was then mounted to the containers to make data accessible for training. For large-scale deployments, NetApp
Trident automates the creation and mounting of volumes to eliminate administrative overhead and enable end-
user management of resources.

Kubernetes Deployment

To deploy and configure your Kubernetes cluster with NVIDIA DeepOps, perform the
following tasks from a deployment jump host:

1. Download NVIDIA DeepOps by following the instructions on the Getting Started page on the NVIDIA
DeepOps GitHub site.

2. Deploy Kubernetes in your cluster by following the instructions on the Kubernetes Deployment Guide on
the NVIDIA DeepOps GitHub site.

For the DeepOps Kubernetes deployment to work, the same user must exist on all Kubernetes
master and worker nodes.

If the deployment fails, change the value of kubectl_localhost to false in

deepops/config/group_vars/k8s-cluster.yml and repeat step 2. The Copy kubectl binary to

ansible host task, which executes only when the value of kubectl_localhost is true, relies on the fetch
Ansible module, which has known memory usage issues. These memory usage issues can sometimes cause
the task to fail. If the task fails because of a memory issue, then the remainder of the deployment operation
does not complete successfully.

If the deployment completes successfully after you have changed the value of kubectl_localhost to

false, then you must manually copy the kubectl binary from a Kubernetes master node to the

deployment jump host. You can find the location of the kubectl binary on a specific master node by

running the which kubectl command directly on that node.

cnvrg.io Deployment

This section provides the details for deploying cnvrg CORE using Helm charts.

Deploy cnvrg CORE Using Helm

Helm is the easiest way to quickly deploy cnvrg using any cluster, on-premises, Minikube, or on any cloud
cluster (such as AKS, EKS, and GKE). This section describes how cnvrg was installed on an on-premises
(DGX-1) instance with Kubernetes installed.

Prerequisites

Before you can complete the installation, you must install and prepare the following dependencies on your
local machine:

• Kubectl

• Helm 3.x

• Kubernetes cluster 1.15+

332

https://www.netapp.com/us/media/nva-1121-deploy.pdf
https://github.com/NVIDIA/deepops/blob/master/docs/getting-started.md
https://github.com/NVIDIA/deepops/blob/master/docs/kubernetes-cluster.md

Deploy Using Helm

1. To download the most updated cnvrg helm charts, run the following command:

helm repo add cnvrg https://helm.cnvrg.io

helm repo update

2. Before you deploy cnvrg, you need the external IP address of the cluster and the name of the node on
which you will deploy cnvrg. To deploy cnvrg on an on-premises Kubernetes cluster, run the following
command:

helm install cnvrg cnvrg/cnvrg --timeout 1500s --wait \ --set

global.external_ip=<ip_of_cluster> \ --set global.node=<name_of_node>

3. Run the helm install command. All the services and systems automatically install on your cluster. The
process can take up to 15 minutes.

4. The helm install command can take up to 10 minutes. When the deployment completes, go to the
URL of your newly deployed cnvrg or add the new cluster as a resource inside your organization. The

helm command informs you of the correct URL.

Thank you for installing cnvrg.io!

Your installation of cnvrg.io is now available, and can be reached via:

Talk to our team via email at

5. When the status of all the containers is running or complete, cnvrg has been successfully deployed. It
should look similar to the following example output:

NAME READY STATUS RESTARTS AGE

cnvrg-app-69fbb9df98-6xrgf 1/1 Running 0 2m

cnvrg-sidekiq-b9d54d889-5x4fc 1/1 Running 0 2m

controller-65895b47d4-s96v6 1/1 Running 0 2m

init-app-vs-config-wv9c4 0/1 Completed 0 9m

init-gateway-vs-config-2zbpp 0/1 Completed 0 9m

init-minio-vs-config-cd2rg 0/1 Completed 0 9m

minio-0 1/1 Running 0 2m

postgres-0 1/1 Running 0 2m

redis-695c49c986-kcbt9 1/1 Running 0 2m

seeder-wh655 0/1 Completed 0 2m

speaker-5sghr 1/1 Running 0 2m

Computer Vision Model Training with ResNet50 and the Chest X-ray Dataset

cnvrg.io AI OS was deployed on a Kubernetes setup on a NetApp ONTAP AI architecture powered by the
NVIDIA DGX system. For validation, we used the NIH Chest X-ray dataset consisting of de-identified images of

333

chest x-rays. The images were in the PNG format. The data was provided by the NIH Clinical Center and is
available through the NIH download site. We used a 250GB sample of the data with 627, 615 images across
15 classes.

The dataset was uploaded to the cnvrg platform and was cached on an NFS export from the NetApp AFF A800
storage system.

Set up the Compute Resources

The cnvrg architecture and meta-scheduling capability allow engineers and IT professionals to attach different
compute resources to a single platform. In our setup, we used the same cluster cnvrg that was deployed for
running the deep-learning workloads. If you need to attach additional clusters, use the GUI, as shown in the
following screenshot.

Load Data

To upload data to the cnvrg platform, you can use the GUI or the cnvrg CLI. For large datasets, NetApp
recommends using the CLI because it is a strong, scalable, and reliable tool that can handle a large number of
files.

To upload data, complete the following steps:

1. Download the cnvrg CLI.

2. navigate to the x-ray directory.

3. Initialize the dataset in the platform with the cnvrg data init command.

4. Upload all contents of the directory to the central data lake with the cnvrg data sync command.After
the data is uploaded to the central object store (StorageGRID, S3, or others), you can browse with the GUI.
The following figure shows a loaded chest X-ray fibrosis image PNG file. In addition, cnvrg versions the
data so that any model you build can be reproduced down to the data version.

334

https://nihcc.app.box.com/v/ChestXray-NIHCC
https://app.cnvrg.io/docs/cli/install.html

Cach Data

To make training faster and avoid downloading 600k+ files for each model training and experiment, we used
the data-caching feature after data was initially uploaded to the central data-lake object store.

335

After users click Cache, cnvrg downloads the data in its specific commit from the remote object store and
caches it on the ONTAP NFS volume. After it completes, the data is available for instant training. In addition, if
the data is not used for a few days (for model training or exploration, for example), cnvrg automatically clears
the cache.

Build an ML Pipeline with Cached Data

cnvrg flows allows you to easily build production ML pipelines. Flows are flexible, can work for any kind of ML
use case, and can be created through the GUI or code. Each component in a flow can run on a different
compute resource with a different Docker image, which makes it possible to build hybrid cloud and optimized
ML pipelines.

336

Building the Chest X-ray Flow: Setting Data

We added our dataset to a newly created flow. When adding the dataset, you can select the specific version
(commit) and indicate whether you want the cached version. In this example, we selected the cached commit.

337

Building the Chest X-ray Flow: Setting Training Model: ResNet50

In the pipeline, you can add any kind of custom code you want. In cnvrg, there is also the AI library, a reusable
ML components collection. In the AI library, there are algorithms, scripts, data sources, and other solutions that
can be used in any ML or deep learning flow. In this example, we selected the prebuilt ResNet50 module. We
used default parameters such as batch_size:128, epochs:10, and more. These parameters can be viewed in
the AI Library docs. The following screenshot shows the new flow with the X-ray dataset connected to
ResNet50.

338

Define the Compute Resource for ResNet50

Each algorithm or component in cnvrg flows can run on a different compute instance, with a different Docker
image. In our setup, we wanted to run the training algorithm on the NVIDIA DGX systems with the NetApp

ONTAP AI architecture. In The following figure, we selected gpu-real, which is a compute template and
specification for our on-premises cluster. We also created a queue of templates and selected multiple

templates. In this way, if the gpu-real resource cannot be allocated (if, for example, other data scientists are
using it), then you can enable automatic cloud-bursting by adding a cloud provider template. The following
screenshot shows the use of gpu-real as a compute node for ResNet50.

339

Tracking and Monitoring Results

After a flow is executed, cnvrg triggers the tracking and monitoring engine. Each run of a flow is automatically
documented and updated in real time. Hyperparameters, metrics, resource usage (GPU utilization, and more),
code version, artifacts, logs, and so on are automatically available in the Experiments section, as shown in the
following two screenshots.

340

341

Conclusion

NetApp and cnvrg.io have partnered to offer customers a complete data management
solution for ML and DL software development. ONTAP AI provides high-performance
compute and storage for any scale of operation, and cnvrg.io software streamlines data
science workflows and improves resource utilization.

Acknowledgments

• Mike Oglesby, Technical Marketing Engineer, NetApp

• Santosh Rao, Senior Technical Director, NetApp

Where to Find Additional Information

To learn more about the information that is described in this document, see the following
resources:

• Cnvrg.io (https://cnvrg.io):

◦ Cnvrg CORE (free ML platform)

https://cnvrg.io/platform/core

◦ Cnvrg docs

https://app.cnvrg.io/docs

• NVIDIA DGX-1 servers:

◦ NVIDIA DGX-1 servers

https://www.nvidia.com/en-us/data-center/dgx-1/

◦ NVIDIA Tesla V100 Tensor Core GPU

https://www.nvidia.com/en-us/data-center/tesla-v100/

◦ NVIDIA GPU Cloud (NGC)

https://www.nvidia.com/en-us/gpu-cloud/

• NetApp AFF systems:

◦ AFF datasheet

https://www.netapp.com/us/media/d-3582.pdf

◦ NetApp FlashAdvantage for AFF

https://www.netapp.com/us/media/ds-3733.pdf

◦ ONTAP 9.x documentation

http://mysupport.netapp.com/documentation/productlibrary/index.html?productID=62286

342

https://cnvrg.io
https://cnvrg.io/platform/core
https://app.cnvrg.io/docs
https://www.nvidia.com/en-us/data-center/dgx-1/
https://www.nvidia.com/en-us/data-center/tesla-v100/
https://www.nvidia.com/en-us/gpu-cloud/
https://www.netapp.com/us/media/d-3582.pdf
https://www.netapp.com/us/media/ds-3733.pdf
http://mysupport.netapp.com/documentation/productlibrary/index.html?productID=62286

◦ NetApp FlexGroup technical report

https://www.netapp.com/us/media/tr-4557.pdf

• NetApp persistent storage for containers:

◦ NetApp Trident

https://netapp.io/persistent-storage-provisioner-for-kubernetes/

• NetApp Interoperability Matrix:

◦ NetApp Interoperability Matrix Tool

https://mysupport.netapp.com/matrix/#welcome

• ONTAP AI networking:

◦ Cisco Nexus 3232C Switches

https://www.cisco.com/c/en/us/products/switches/nexus-3232c-switch/index.html

◦ Mellanox Spectrum 2000 series switches

http://www.mellanox.com/page/products_dyn?product_family=251&mtag=sn2000

• ML framework and tools:

◦ DALI

https://github.com/NVIDIA/DALI

◦ TensorFlow: An Open-Source Machine Learning Framework for Everyone

https://www.tensorflow.org/

◦ Horovod: Uber’s Open-Source Distributed Deep Learning Framework for TensorFlow

https://eng.uber.com/horovod/

◦ Enabling GPUs in the Container Runtime Ecosystem

https://devblogs.nvidia.com/gpu-containers-runtime/

◦ Docker

https://docs.docker.com

◦ Kubernetes

https://kubernetes.io/docs/home/

◦ NVIDIA DeepOps

https://github.com/NVIDIA/deepops

◦ Kubeflow

343

https://www.netapp.com/us/media/tr-4557.pdf
https://netapp.io/persistent-storage-provisioner-for-kubernetes/
https://mysupport.netapp.com/matrix/#welcome
https://www.cisco.com/c/en/us/products/switches/nexus-3232c-switch/index.html
http://www.mellanox.com/page/products_dyn?product_family=251&mtag=sn2000
https://github.com/NVIDIA/DALI
https://www.tensorflow.org/
https://eng.uber.com/horovod/
https://devblogs.nvidia.com/gpu-containers-runtime/
https://docs.docker.com
https://kubernetes.io/docs/home/
https://github.com/NVIDIA/deepops

http://www.kubeflow.org/

◦ Jupyter Notebook Server

http://www.jupyter.org/

• Dataset and benchmarks:

◦ NIH chest X-ray dataset

https://nihcc.app.box.com/v/ChestXray-NIHCC

◦ Xiaosong Wang, Yifan Peng, Le Lu, Zhiyong Lu, Mohammadhadi Bagheri, Ronald Summers, ChestX-
ray8: Hospital-scale Chest X-ray Database and Benchmarks on Weakly-Supervised Classification and
Localization of Common Thorax Diseases, IEEE CVPR, pp. 3462-3471, 2017TR-4841-0620

TR-4732: Big data analytics data to artificial intelligence

Karthikeyan Nagalingam, NetApp

This document describes how to move big-data analytics data and HPC data to AI. AI
processes NFS data through NFS exports, whereas customers often have their AI data in
a big-data analytics platform, such as HDFS, Blob, or S3 storage as well as HPC
platforms such as GPFS. This paper provides guidelines for moving big-data-analytics
data and HPC data to AI by using NetApp XCP and NIPAM. We also discuss the
business benefits of moving data from big data and HPC to AI.

Concepts and components

Big data analytics storage

Big data analytics is the major storage provider for HDFS. A customer often uses a Hadoop-compatible file
system (HCFS) such as Windows Azure Blob Storage, MapR File System (MapR-FS), and S3 object storage.

General parallel file system

IBM’s GPFS is an enterprise file system that provides an alternative to HDFS. GPFS provides flexibility for
applications to decide the block size and replication layout, which provide good performance and efficiency.

NetApp In-Place Analytics Module

The NetApp In-Place Analytics Module (NIPAM) serves as a driver for Hadoop clusters to access NFS data. It
has four components: a connection pool, an NFS InputStream, a file handle cache, and an NFS OutputStream.
For more information, see TR-4382: NetApp In-Place Analytics Module.

Hadoop Distributed Copy

Hadoop Distributed Copy (DistCp) is a distributed copy tool used for large inter-cluster and intra-cluster coping
tasks. This tool uses MapReduce for data distribution, error handling, and reporting. It expands the list of files
and directories and inputs them to map tasks to copy the data from the source list. The image below shows the
DistCp operation in HDFS and nonHDFS.

344

http://www.kubeflow.org/
http://www.jupyter.org/
https://nihcc.app.box.com/v/ChestXray-NIHCC
https://www.netapp.com/us/media/tr-4382.pdf

Hadoop DistCp moves data between the two HDFS systems without using an additional driver. NetApp
provides the driver for non-HDFS systems. For an NFS destination, NIPAM provides the driver to copy data
that Hadoop DistCp uses to communicate with NFS destinations when copying data.

NetApp Cloud Volumes Service

The NetApp Cloud Volumes Service is a cloud-native file service with extreme performance. This service helps
customers accelerate their time-to-market by rapidly spinning resources up and down and using NetApp
features to improve productivity and reduce staff downtime. The Cloud Volumes Service is the right alternative
for disaster recovery and back up to cloud because it reduces the overall data-center footprint and consumes
less native public cloud storage.

NetApp XCP

NetApp XCP is client software that enables fast and reliable any-to-NetApp and NetApp-to-NetApp data
migration. This tool is designed to copy a large amount of unstructured NAS data from any NAS system to a
NetApp storage controller. The XCP Migration Tool uses a multicore, multichannel I/O streaming engine that
can process many requests in parallel, such as data migration, file or directory listings, and space reporting.
This is the default NetApp data Migration Tool. You can use XCP to copy data from a Hadoop cluster and HPC
to NetApp NFS storage. The diagram below shows data transfer from a Hadoop and HPC cluster to a NetApp
NFS volume using XCP.

345

NetApp BlueXP Copy and Sync

NetApp BlueXP Copy and Sync is a hybrid data replication software-as-a-service that transfers and
synchronizes NFS, S3, and CIFS data seamlessly and securely between on-premises storage and cloud
storage. This software is used for data migration, archiving, collaboration, analytics, and more. After data is
transferred, BlueXP Copy and Sync continuously syncs the data between the source and destination. Going
forward, it then transfers the delta. It also secures the data within your own network, in the cloud, or on
premises. This software is based on a pay-as-you-go model, which provides a cost-effective solution and
provides monitoring and reporting capabilities for your data transfer.

AI Inferencing at the Edge - NetApp with Lenovo ThinkSystem - Solution Design

TR-4886: AI Inferencing at the Edge - NetApp with Lenovo ThinkSystem - Solution Design

Sathish Thyagarajan, NetApp
Miroslav Hodak, Lenovo

This document describes a compute and storage architecture to deploy GPU-based
artificial intelligence (AI) inferencing on NetApp storage controllers and Lenovo
ThinkSystem servers in an edge environment that meets emerging application scenarios.

Summary

Several emerging application scenarios, such as advanced driver-assistance systems (ADAS), Industry 4.0,
smart cities, and Internet of Things (IoT), require the processing of continuous data streams under a near-zero
latency. This document describes a compute and storage architecture to deploy GPU-based artificial
intelligence (AI) inferencing on NetApp storage controllers and Lenovo ThinkSystem servers in an edge
environment that meets these requirements. This document also provides performance data for the industry
standard MLPerf Inference benchmark, evaluating various inference tasks on edge servers equipped with
NVIDIA T4 GPUs. We investigate the performance of offline, single stream, and multistream inference
scenarios and show that the architecture with a cost-effective shared networked storage system is highly
performant and provides a central point for data and model management for multiple edge servers.

346

Introduction

Companies are increasingly generating massive volumes of data at the network edge. To achieve maximum
value from smart sensors and IoT data, organizations are looking for a real-time event streaming solution that
enables edge computing. Computationally demanding jobs are therefore increasingly performed at the edge,
outside of data centers. AI inference is one of the drivers of this trend. Edge servers provide sufficient
computational power for these workloads, especially when using accelerators, but limited storage is often an
issue, especially in multiserver environments. In this document we show how you can deploy a shared storage
system in the edge environment and how it benefits AI inference workloads without imposing a performance
penalty.

This document describes a reference architecture for AI inference at the edge. It combines multiple Lenovo
ThinkSystem edge servers with a NetApp storage system to create a solution that is easy to deploy and
manage. It is intended to be a baseline guide for practical deployments in various situations, such as the
factory floor with multiple cameras and industrial sensors, point- of- sale (POS) systems in retail transactions,
or Full Self-Driving (FSD) systems that identify visual anomalies in autonomous vehicles.

This document covers testing and validation of a compute and storage configuration consisting of Lenovo
ThinkSystem SE350 Edge Server and an entry-level NetApp AFF and EF-Series storage system. The
reference architectures provide an efficient and cost-effective solution for AI deployments while also providing
comprehensive data services, integrated data protection, seamless scalability, and cloud connected data
storage with NetApp ONTAP and NetApp SANtricity data management software.

Target audience

This document is intended for the following audiences:

• Business leaders and enterprise architects who want to productize AI at the edge.

• Data scientists, data engineers, AI/machine learning (ML) researchers, and developers of AI systems.

• Enterprise architects who design solutions for the development of AI/ML models and applications.

• Data scientists and AI engineers looking for efficient ways to deploy deep learning (DL) and ML models.

• Edge device managers and edge server administrators responsible for deployment and management of
edge inferencing models.

Solution architecture

This Lenovo ThinkSystem server and NetApp ONTAP or NetApp SANtricity storage solution is designed to
handle AI inferencing on large datasets using the processing power of GPUs alongside traditional CPUs. This
validation demonstrates high performance and optimal data management with an architecture that uses either
single or multiple Lenovo SR350 edge servers interconnected with a single NetApp AFF storage system, as
shown in the following two figures.

347

348

The logical architecture overview in the following figure shows the roles of the compute and storage elements
in this architecture. Specifically, it shows the following:

• Edge compute devices performing inference on the data it receives from cameras, sensors, and so on.

• A shared storage element that serves multiple purposes:

◦ Provides a central location for inference models and other data needed to perform the inference.
Compute servers access the storage directly and use inference models across the network without the
need to copy them locally.

◦ Updated models are pushed here.

◦ Archives input data that edge servers receive for later analysis. For example, if the edge devices are
connected to cameras, the storage element keeps the videos captured by the cameras.

349

red blue

Lenovo compute system NetApp AFF storage system

Edge devices performing inference on inputs from
cameras, sensors, and so on.

Shared storage holding inference models and data
from edge devices for later analysis.

This NetApp and Lenovo solution offers the following key benefits:

• GPU accelerated computing at the edge.

• Deployment of multiple edge servers backed and managed from a shared storage.

• Robust data protection to meet low recovery point objectives (RPOs) and recovery time objectives (RTOs)
with no data loss.

• Optimized data management with NetApp Snapshot copies and clones to streamline development
workflows.

How to use this architecture

This document validates the design and performance of the proposed architecture. However, we have not
tested certain software-level pieces, such us container, workload, or model management and data
synchronization with cloud or data center on-premises, because they are specific to a deployment scenario.
Here, multiple choices exist.

At the container management level, Kubernetes container management is a good choice and is well supported
in either a fully upstream version (Canonical) or in a modified version suitable for enterprise deployments (Red
Hat). The NetApp AI Control Plane which uses NetApp Trident and the newly added NetApp DataOps Toolkit
provides built-in traceability, data management functions, interfaces, and tools for data scientists and data
engineers to integrate with NetApp storage. Kubeflow, the ML toolkit for Kubernetes, provides additional AI
capabilities along with a support for model versioning and KFServing on several platforms such as TensorFlow
Serving or NVIDIA Triton Inference Server. Another option is NVIDIA EGX platform, which provides workload
management along with access to a catalog of GPU-enabled AI inference containers. However, these options
might require significant effort and expertise to put them into production and might require the assistance of a
third-party independent software vendor (ISV) or consultant.

Solution areas

The key benefit of AI inferencing and edge computing is the ability of devices to compute, process, and
analyze data with a high level of quality without latency. There are far too many examples of edge computing
use cases to describe in this document, but here are a few prominent ones:

Automobiles: Autonomous vehicles

The classic edge computing illustration is in the advanced driver-assistance systems (ADAS) in autonomous
vehicles (AV). The AI in driverless cars must rapidly process a lot of data from cameras and sensors to be a
successful safe driver. Taking too long to interpret between an object and a human can mean life or death,
therefore being able to process that data as close to the vehicle as possible is crucial. In this case, one or more
edge compute servers handles the input from cameras, RADAR, LiDAR, and other sensors, while shared
storage holds inference models and stores input data from sensors.

Healthcare: Patient monitoring

One of the greatest impacts of AI and edge computing is its ability to enhance continuous monitoring of
patients for chronic diseases both in at-home care and intensive care units (ICUs). Data from edge devices

350

https://github.com/NetApp/netapp-dataops-toolkit/releases/tag/v2.0.0

that monitor insulin levels, respiration, neurological activity, cardiac rhythm, and gastrointestinal functions
require instantaneous analysis of data that must be acted on immediately because there is limited time to act
to save someone’s life.

Retail: Cashier-less payment

Edge computing can power AI and ML to help retailers reduce checkout time and increase foot traffic. Cashier-
less systems support various components, such as the following:

• Authentication and access. Connecting the physical shopper to a validated account and permitting access
to the retail space.

• Inventory monitoring. Using sensors, RFID tags, and computer vision systems to help confirm the selection
or deselection of items by shoppers.

Here, each of the edge servers handle each checkout counter and the shared storage system serves as a
central synchronization point.

Financial services: Human safety at kiosks and fraud prevention

Banking organizations are using AI and edge computing to innovate and create personalized banking
experiences. Interactive kiosks using real-time data analytics and AI inferencing now enable ATMs to not only
help customers withdraw money, but proactively monitor kiosks through the images captured from cameras to
identify risk to human safety or fraudulent behavior. In this scenario, edge compute servers and shared storage
systems are connected to interactive kiosks and cameras to help banks collect and process data with AI
inference models.

Manufacturing: Industry 4.0

The fourth industrial revolution (Industry 4.0) has begun, along with emerging trends such as Smart Factory
and 3D printing. To prepare for a data-led future, large-scale machine-to-machine (M2M) communication and
IoT are integrated for increased automation without the need for human intervention. Manufacturing is already
highly automated and adding AI features is a natural continuation of the long-term trend. AI enables
automating operations that can be automated with the help of computer vision and other AI capabilities. You
can automate quality control or tasks that rely on human vision or decision making to perform faster analyses
of materials on assembly lines in factory floors to help manufacturing plants meet the required ISO standards
of safety and quality management. Here, each compute edge server is connected to an array of sensors
monitoring the manufacturing process and updated inference models are pushed to the shared storage, as
needed.

Telecommunications: Rust detection, tower inspection, and network optimization

The telecommunications industry uses computer vision and AI techniques to process images that automatically
detect rust and identify cell towers that contain corrosion and, therefore, require further inspection. The use of
drone images and AI models to identify distinct regions of a tower to analyze rust, surface cracks, and
corrosion has increased in recent years. The demand continues to grow for AI technologies that enable
telecommunication infrastructure and cell towers to be inspected efficiently, assessed regularly for degradation,
and repaired promptly when required.

Additionally, another emerging use case in telecommunication is the use of AI and ML algorithms to predict
data traffic patterns, detect 5G-capable devices, and automate and augment multiple-input and multiple-output
(MIMO) energy management. MIMO hardware is used at radio towers to increase network capacity; however,
this comes with additional energy costs. ML models for “MIMO sleep mode” deployed at cell sites can predict
the efficient use of radios and help reduce energy consumption costs for mobile network operators (MNOs). AI
inferencing and edge computing solutions help MNOs reduce the amount of data transmitted back-and-forth to

351

data centers, lower their TCO, optimize network operations, and improve overall performance for end users.

Technology overview

This section describes the technological foundation for this AI solution.

NetApp AFF systems

State-of-the-art NetApp AFF storage systems enable AI inference deployments at the edge to meet enterprise
storage requirements with industry-leading performance, superior flexibility, cloud integration, and best-in class
data management. Designed specifically for flash, NetApp AFF systems help accelerate, manage, and protect
business-critical data.

• Entry-level NetApp AFF storage systems are based on FAS2750 hardware and SSD flash media

• Two controllers in HA configuration

NetApp entry-level AFF C190 storage systems support the following features:

• A maximum drive count of 24x 960GB SSDs

• Two possible configurations:

◦ Ethernet (10GbE): 4x 10GBASE-T (RJ-45) ports

◦ Unified (16Gb FC or 10GbE): 4x unified target adapter 2 (UTA2) ports

• A maximum of 50.5TB effective capacity

For NAS workloads, a single entry-level AFF C190 system supports throughput of 4.4GBps
for sequential reads and 230K IOPS for small random reads at latencies of 1ms or less.

NetApp AFF A220

NetApp also offers other entry-level storage systems that provide higher performance and scalability for larger-
scale deployments. For NAS workloads, a single entry-level AFF A220 system supports:

• Throughput of 6.2GBps for sequential reads

352

• 375K IOPS for small random reads at latencies of 1ms or less

• Maximum drive count of 144x 960GB, 3.8TB, or 7.6TB SSDs

• AFF A220 scales to larger than 1PB of effective capacity

NetApp AFF A250

• Maximum effective capacity is 35PB with maximum scale out 2-24 nodes (12 HA pairs)

• Provides ≥ 45% performance increase over AFF A220

• 440k IOPS random reads @1ms

• Built on the latest NetApp ONTAP release: ONTAP 9.8

• Leverages two 25Gb Ethernet for HA and cluster interconnect

NetApp E-Series EF Systems

The EF-Series is a family of entry-level and mid-range all-flash SAN storage arrays that can accelerate access
to your data and help you derive value from it faster with NetApp SANtricity software. These systems offer both
SAS and NVMe flash storage and provide you with affordable to extreme IOPS, response times under 100
microseconds, and bandwidth up to 44GBps—making them ideal for mixed workloads and demanding
applications such as AI inferencing and high-performance computing (HPC).

The following figure shows the NetApp EF280 storage system.

NetApp EF280

• 32Gb/16Gb FC, 25Gb/10Gb iSCSI, and 12Gb SAS support

• Maximum effective capacity is 96 drives totaling 1.5PB

• Throughput of 10GBps (sequential reads)

• 300K IOPs (random reads)

• The NetApp EF280 is the lowest cost all-flash array (AFA) in the NetApp portfolio

NetApp EF300

• 24x NVMe SSD drives for a total capacity of 367TB

• Expansion options totaling 240x NL-SAS HDDs, 96x SAS SSDs, or a combination

• 100Gb NVMe/IB, NVMe/RoCE, iSER/IB, and SRP/IB

353

• 32Gb NVME/FC, FCP

• 25Gb iSCSI

• 20GBps (sequential reads)

• 670K IOPs (random reads)

For more information, see the NetApp EF-Series NetApp EF-Series all-flash arrays EF600,
F300, EF570, and EF280 datasheet.

NetApp ONTAP 9

ONTAP 9.8.1, the latest generation of storage management software from NetApp, enables businesses to
modernize infrastructure and transition to a cloud-ready data center. Leveraging industry-leading data
management capabilities, ONTAP enables the management and protection of data with a single set of tools,
regardless of where that data resides. You can also move data freely to wherever it is needed: the edge, the
core, or the cloud. ONTAP 9.8.1 includes numerous features that simplify data management, accelerate and
protect critical data, and enable next generation infrastructure capabilities across hybrid cloud architectures.

Simplify data management

Data management is crucial to enterprise IT operations so that appropriate resources are used for applications
and datasets. ONTAP includes the following features to streamline and simplify operations and reduce the total
cost of operation:

• Inline data compaction and expanded deduplication. Data compaction reduces wasted space inside
storage blocks, and deduplication significantly increases effective capacity. This applies to data stored
locally and data tiered to the cloud.

• Minimum, maximum, and adaptive quality of service (AQoS). Granular quality of service (QoS) controls
help maintain performance levels for critical applications in highly shared environments.

• NetApp FabricPool. This feature provides automatic tiering of cold data to public and private cloud
storage options, including Amazon Web Services (AWS), Azure, and NetApp StorageGRID storage
solution. For more information about FabricPool, see TR-4598.

Accelerate and protect data

ONTAP 9 delivers superior levels of performance and data protection and extends these capabilities in the
following ways:

• Performance and lower latency. ONTAP offers the highest possible throughput at the lowest possible
latency.

• Data protection. ONTAP provides built-in data protection capabilities with common management across
all platforms.

• NetApp Volume Encryption (NVE). ONTAP offers native volume-level encryption with both onboard and
External Key Management support.

• Multitenancy and multifactor authentication. ONTAP enables sharing of infrastructure resources with
the highest levels of security.

Future-proof infrastructure

ONTAP 9 helps meet demanding and constantly changing business needs with the following features:

354

https://www.netapp.com/pdf.html?item=/media/19339-DS-4082.pdf
https://www.netapp.com/pdf.html?item=/media/19339-DS-4082.pdf
https://www.netapp.com/pdf.html?item=/media/17239-tr4598pdf.pdf

• Seamless scaling and nondisruptive operations. ONTAP supports the nondisruptive addition of
capacity to existing controllers and to scale-out clusters. Customers can upgrade to the latest technologies,
such as NVMe and 32Gb FC, without costly data migrations or outages.

• Cloud connection. ONTAP is the most cloud-connected storage management software, with options for
software-defined storage (ONTAP Select) and cloud-native instances (NetApp Cloud Volumes Service) in
all public clouds.

• Integration with emerging applications. ONTAP offers enterprise-grade data services for next generation
platforms and applications, such as autonomous vehicles, smart cities, and Industry 4.0, by using the same
infrastructure that supports existing enterprise apps.

NetApp SANtricity

NetApp SANtricity is designed to deliver industry-leading performance, reliability, and simplicity to E-Series
hybrid-flash and EF-Series all-flash arrays. Achieve maximum performance and utilization of your E-Series
hybrid-flash and EF-Series all-flash arrays for heavy-workload applications, including data analytics, video
surveillance, and backup and recovery. With SANtricity, configuration tweaking, maintenance, capacity
expansion, and other tasks can be completed while the storage stays online. SANtricity also provides superior
data protection, proactive monitoring, and certified security—all accessible through the easy-to-use, on-box
System Manager interface. To learn more, see the NetApp E-Series SANtricity Software datasheet.

Performance optimized

Performance-optimized SANtricity software delivers data—with high IOPs, high throughput, and low
latency—to all your data analytics, video surveillance, and backup apps. Accelerate performance for high-
IOPS, low-latency applications and high-bandwidth, high-throughput applications.

Maximize uptime

Complete all your management tasks while the storage stays online. Tweak configurations, perform
maintenance, or expand capacity without disrupting I/O. Realize best-in-class reliability with automated
features, online configuration, state-of-the-art Dynamic Disk Pools (DPP) technology, and more.

Rest easy

SANtricity software delivers superior data protection, proactive monitoring, and certified security—all through
the easy-to-use, on-box System Manager interface. Simplify storage-management chores. Gain the flexibility
you need for advanced tuning of all E-Series storage systems. Manage your NetApp E-Series
system—anytime, anywhere. Our on-box, web-based interface streamlines your management workflow.

NetApp Trident

Trident from NetApp is an open-source dynamic storage orchestrator for Docker and Kubernetes that simplifies
the creation, management, and consumption of persistent storage. Trident, a Kubernetes native application,
runs directly within a Kubernetes cluster. Trident enables customers to seamlessly deploy DL container images
onto NetApp storage and provides an enterprise-grade experience for AI container deployments. Kubernetes
users (such as ML developers and data scientists) can create, manage, and automate orchestration and
cloning to take advantage of NetApp advanced data management capabilities powered by NetApp technology.

NetApp BlueXP Copy and Sync

BlueXP Copy and Sync is a NetApp service for rapid and secure data synchronization. Whether you need to
transfer files between on-premises NFS or SMB file shares, NetApp StorageGRID, NetApp ONTAP S3, NetApp
Cloud Volumes Service, Azure NetApp Files, Amazon Simple Storage Service (Amazon S3), Amazon Elastic
File System (Amazon EFS), Azure Blob, Google Cloud Storage, or IBM Cloud Object Storage, BlueXP Copy

355

https://www.netapp.com/pdf.html?item=/media/7676-ds-3891.pdf
https://netapp.io/persistent-storage-provisioner-for-kubernetes/
https://docs.netapp.com/us-en/occm/concept_cloud_sync.html

and Sync moves the files where you need them quickly and securely. After your data is transferred, it is fully
available for use on both source and target. BlueXP Copy and Sync continuously synchronizes the data, based
on your predefined schedule, moving only the deltas, so time and money spent on data replication is
minimized. BlueXP Copy and Sync is a software as a service (SaaS) tool that is extremely simple to set up and
use. Data transfers that are triggered by BlueXP Copy and Sync are carried out by data brokers. You can
deploy BlueXP Copy and Sync data brokers in AWS, Azure, Google Cloud Platform, or on-premises.

Lenovo ThinkSystem servers

Lenovo ThinkSystem servers feature innovative hardware, software, and services that solve customers’
challenges today and deliver an evolutionary, fit-for-purpose, modular design approach to address tomorrow’s
challenges. These servers capitalize on best-in-class, industry-standard technologies coupled with
differentiated Lenovo innovations to provide the greatest possible flexibility in x86 servers.

Key advantages of deploying Lenovo ThinkSystem servers include:

• Highly scalable, modular designs to grow with your business

• Industry-leading resilience to save hours of costly unscheduled downtime

• Fast flash technologies for lower latencies, quicker response times, and smarter data management in real
time

In the AI area, Lenovo is taking a practical approach to helping enterprises understand and adopt the benefits
of ML and AI for their workloads. Lenovo customers can explore and evaluate Lenovo AI offerings in Lenovo AI
Innovation Centers to fully understand the value for their particular use case. To improve time to value, this
customer-centric approach gives customers proof of concept for solution development platforms that are ready
to use and optimized for AI.

Lenovo ThinkSystem SE350 Edge Server

Edge computing allows data from IoT devices to be analyzed at the edge of the network before being sent to
the data center or cloud. The Lenovo ThinkSystem SE350, as shown in the figure below, is designed for the
unique requirements for deployment at the edge, with a focus on flexibility, connectivity, security, and remote
manageability in a compact ruggedized and environmentally hardened form factor.

Featuring the Intel Xeon D processor with the flexibility to support acceleration for edge AI workloads, the
SE350 is purpose-built for addressing the challenge of server deployments in a variety of environments outside
the data center.

356

MLPerf

MLPerf is the industry-leading benchmark suite for evaluating AI performance. It covers many areas of applied
AI including image classification, object detection, medical imaging, and natural language processing (NLP). In
this validation, we used Inference v0.7 workloads, which is the latest iteration of the MLPerf Inference at the
completion of this validation. The MLPerf Inference v0.7 suite includes four new benchmarks for data center
and edge systems:

• BERT. Bi-directional Encoder Representation from Transformers (BERT) fine-tuned for question answering
by using the SQuAD dataset.

• DLRM. Deep Learning Recommendation Model (DLRM) is a personalization and recommendation model
that is trained to optimize click-through rates (CTR).

• 3D U-Net. 3D U-Net architecture is trained on the Brain Tumor Segmentation (BraTS) dataset.

• RNN-T. Recurrent Neural Network Transducer (RNN-T) is an automatic speech recognition (ASR) model
that is trained on a subset of LibriSpeech. MLPerf Inference results and code are publicly available and

357

https://mlcommons.org/en/news/mlperf-inference-v07/

released under Apache license. MLPerf Inference has an Edge division, which supports the following
scenarios:

• Single stream. This scenario mimics systems where responsiveness is a critical factor, such as offline AI
queries performed on smartphones. Individual queries are sent to the system and response times are
recorded. 90th percentile latency of all the responses is reported as the result.

• Multistream. This benchmark is for systems that process input from multiple sensors. During the test,
queries are sent at a fixed time interval. A QoS constraint (maximum allowed latency) is imposed. The test
reports the number of streams that the system can process while meeting the QoS constraint.

• Offline. This is the simplest scenario covering batch processing applications and the metric is throughput
in samples per second. All data is available to the system and the benchmark measures the time it takes to
process all the samples.

Lenovo has published MLPerf Inference scores for SE350 with T4, the server used in this document. See the
results at https://mlperf.org/inference-results-0-7/ in the “Edge, Closed Division” section in entry #0.7-145.

Test plan

This document follows MLPerf Inference v0.7 code, MLPerf Inference v1.1 code, and
rules. We ran MLPerf benchmarks designed for inference at the edge as defined in the
follow table.

Area Task Model Dataset QSL size Quality Multistream

latency

constraint

Vision Image
classification

Resnet50v1.5 ImageNet
(224x224)

1024 99% of
FP32

50ms

Vision Object
detection
(large)

SSD-
ResNet34

COCO
(1200x1200)

64 99% of
FP32

66ms

Vision Object
detection
(small)

SSD-
MobileNetsv1

COCO
(300x300)

256 99% of
FP32

50ms

Vision Medical image
segmentation

3D UNET BraTS 2019
(224x224x160
)

16 99% and
99.9% of
FP32

n/a

Speech Speech-to-
text

RNNT Librispeech
dev-clean

2513 99% of
FP32

n/a

Language Language
processing

BERT SQuAD v1.1 10833 99% of
FP32

n/a

The following table presents Edge benchmark scenarios.

Area Task Scenarios

Vision Image classification Single stream, offline, multistream

Vision Object detection (large) Single stream, offline, multistream

Vision Object detection (small) Single stream, offline, multistream

358

https://mlperf.org/inference-results-0-7/
https://github.com/mlperf/inference_results_v0.7/tree/master/closed/Lenovo
https://github.com/mlcommons/inference_results_v1.1/tree/main/closed/Lenovo
https://github.com/mlcommons/inference_policies/blob/master/inference_rules.adoc

Area Task Scenarios

Vision Medical image segmentation Single stream, offline

Speech Speech-to-text Single stream, offline

Language Language processing Single stream, offline

We performed these benchmarks using the networked storage architecture developed in this validation and
compared results to those from local runs on the edge servers previously submitted to MLPerf. The
comparison is to determine how much impact the shared storage has on inference performance.

Test configuration

The following figure shows the test configuration. We used the NetApp AFF C190 storage
system and two Lenovo ThinkSystem SE350 servers (each with one NVIDIA T4
accelerator). These components are connected through a 10GbE network switch. The
network storage holds validation/test datasets and pretrained models. The servers
provide computational capability, and the storage is accessed over NFS protocol.

This section describes the tested configurations, the network infrastructure, the SE350 server, and the storage
provisioning details. The following table lists the base components for the solution architecture.

Solution components Details

Lenovo ThinkSystem servers • 2x SE350 servers each with one NVIDIA T4 GPU
card

• Each server contains one Intel Xeon D-2123IT
CPU with four physical cores running at 2.20GHz
and 128GB RAM

Entry-level NetApp AFF storage system (HA pair) • NetApp ONTAP 9 software

• 24x 960GB SSDs

• NFS protocol

• One interface group per controller, with four
logical IP addresses for mount points

359

The following table lists the storage configuration: AFF C190 with 2RU, 24 drive slots.

Controller Aggregate FlexGroup

volume

Aggregatesize Volumesize Operating

systemmount

point

Controller1 Aggr1 /netapplenovo_A
I_fg

8.42TiB 15TB /netapp_lenovo_f
g

Controller2 Aggr2 8.42TiB

The /netappLenovo_AI_fg folder contains the datasets used for model validation.

The figure below shows the test configuration. We used the NetApp EF280 storage system and two Lenovo
ThinkSystem SE350 servers (each with one NVIDIA T4 accelerator). These components are connected
through a 10GbE network switch. The network storage holds validation/test datasets and pretrained models.
The servers provide computational capability, and the storage is accessed over NFS protocol.

The following table lists the storage configuration for EF280.

360

Controller Volume Group Volume Volumesize DDPsize Connection

method

Controller1 DDP1 Volume 1 8.42TiB 16TB SE350-1 to
iSCSI LUN 0

Controller2 Volume 2 8.42TiB SE350-2 to
iSCSI LUN 1

Test procedure

This section describes the test procedures used to validate this solution.

Operating system and AI inference setup

For AFF C190, we used Ubuntu 18.04 with NVIDIA drivers and docker with support for NVIDIA GPUs and used
MLPerf code available as a part of the Lenovo submission to MLPerf Inference v0.7.

For EF280, we used Ubuntu 20.04 with NVIDIA drivers and docker with support for NVIDIA GPUs and MLPerf
code available as a part of the Lenovo submission to MLPerf Inference v1.1.

To set up the AI inference, follow these steps:

1. Download datasets that require registration, the ImageNet 2012 Validation set, Criteo Terabyte dataset,
and BraTS 2019 Training set, and then unzip the files.

2. Create a working directory with at least 1TB and define environmental variable MLPERF_SCRATCH_PATH
referring to the directory.

You should share this directory on the shared storage for the network storage use case, or the local disk
when testing with local data.

361

https://github.com/mlperf/inference_results_v0.7/tree/master/closed/Lenovo
https://github.com/mlcommons/inference_results_v1.1/tree/main/closed/Lenovo

3. Run the make prebuild command, which builds and launches the docker container for the required
inference tasks.

The following commands are all executed from within the running docker container:

◦ Download pretrained AI models for MLPerf Inference tasks: make download_model

◦ Download additional datasets that are freely downloadable: make download_data

◦ Preprocess the data: make preprocess_data

◦ Run: make build.

◦ Build inference engines optimized for the GPU in compute servers: make generate_engines

◦ To run Inference workloads, run the following (one command):

make run_harness RUN_ARGS="--benchmarks=<BENCHMARKS>

--scenarios=<SCENARIOS>"

AI inference runs

Three types of runs were executed:

• Single server AI inference using local storage

• Single server AI inference using network storage

• Multi-server AI inference using network storage

Test results

A multitude of tests were run to evaluate the performance of the proposed architecture.

There are six different workloads (image classification, object detection [small], object detection [large], medical
imaging, speech-to-text, and natural language processing [NLP]), which you can run in three different
scenarios: offline, single stream, and multistream.

The last scenario is implemented only for image classification and object detection.

This gives 15 possible workloads, which were all tested under three different setups:

• Single server/local storage

• Single server/network storage

• Multi-server/network storage

The results are described in the following sections.

AI inference in offline scenario for AFF

In this scenario, all the data was available to the server and the time it took to process all the samples was
measured. We report bandwidths in samples per second as the results of the tests. When more than one
compute server was used, we report total bandwidth summed over all the servers. The results for all three use
cases are shown in the figure below. For the two-server case, we report combined bandwidth from both

362

servers.

The results show that network storage does not negatively affect the performance—the change is minimal and
for some tasks, none is found. When adding the second server, the total bandwidth either exactly doubles, or
at worst, the change is less than 1%.

AI inference in a single stream scenario for AFF

This benchmark measures latency. For the multiple computational server case, we report the average latency.
The results for the suite of tasks are given in the figure below. For the two-server case, we report the average
latency from both servers.

363

The results, again, show that the network storage is sufficient to handle the tasks. The difference between local
and network storage in the one server case is minimal or none. Similarly, when two servers use the same
storage, the latency on both servers stays the same or changes by a very small amount.

AI inference in multistream scenario for AFF

In this case, the result is the number of streams that the system can handle while satisfying the QoS constraint.
Thus, the result is always an integer. For more than one server, we report the total number of streams summed
over all the servers. Not all workloads support this scenario, but we have executed those that do. The results of
our tests are summarized in the figure below. For the two-server case, we report the combined number of
streams from both servers.

364

The results show perfect performance of the setup—local and networking storage give the same results and
adding the second server doubles the number of streams the proposed setup can handle.

Test results for EF

A multitude of tests were run to evaluate the performance of the proposed architecture. There are six different
workloads (image classification, object detection [small], object detection [large], medical imaging, speech-to-
text, and natural language processing [NLP]), which were run in two different scenarios: offline and single
stream. The results are described in the following sections.

AI inference in offline scenario for EF

In this scenario, all the data was available to the server and the time it took to process all the samples was
measured. We report bandwidths in samples per second as the results of the tests. For single node runs we
report average from both servers, while for two server runs we report total bandwidth summed over all the
servers. The results for use cases are shown in the figure below.

365

The results show that network storage does not negatively affect the performance—the change is minimal and
for some tasks, none is found. When adding the second server, the total bandwidth either exactly doubles, or
at worst, the change is less than 1%.

AI inference in a single stream scenario for EF

This benchmark measures latency. For all cases, we report average latency across all servers involved in the
runs. The results for the suite of tasks are given.

366

The results show again that the network storage is sufficient to handle the tasks. The difference between the
local and network storage in the one server case is minimal or none. Similarly, when two servers use the same
storage, the latency on both servers stays the same or changes by a very small amount.

Architecture sizing options

You can adjust the setup used for the validation to fit other use cases.

Compute server

We used an Intel Xeon D-2123IT CPU, which is the lowest level of CPU supported in SE350, with four physical
cores and 60W TDP. While the server does not support replacing CPUs, it can be ordered with a more
powerful CPU. The top CPU supported is Intel Xeon D-2183IT with 16 cores, 100W running at 2.20GHz. This
increases the CPU computational capability considerably. While CPU was not a bottleneck for running the
inference workloads themselves, it helps with data processing and other tasks related to inference. At present,
NVIDIA T4 is the only GPU available for edge use cases; therefore, currently, there is no ability to upgrade or
downgrade the GPU.

Shared storage

For testing and validation, the NetApp AFF C190 system, which has maximum storage capacity of 50.5TB, a
throughput of 4.4GBps for sequential reads, and 230K IOPS for small random reads, was used for the purpose
of this document and is proven to be well-suited for edge inference workloads.

However, if you require more storage capacity or faster networking speeds, you should use the NetApp AFF
A220 or NetApp AFF A250 storage systems. In addition, the NetApp EF280 system, which has a maximum
capacity of 1.5PB, bandwidth 10GBps was also used for the purpose of this solution validation. If you prefer
more storage capacity with higher bandwidth, NetApp EF300 can be used.

367

https://tv.netapp.com/detail/video/6211798209001/netapp-aff-a250-virtual-tour-and-demo
https://www.netapp.com/pdf.html?item=/media/19339-DS-4082.pdf&v=2021691654

Conclusion

AI-driven automation and edge computing is a leading approach to help business
organizations achieve digital transformation and maximize operational efficiency and
safety. With edge computing, data is processed much faster because it does not have to
travel to and from a data center. Therefore, the cost associated with sending data back
and forth to data centers or the cloud is diminished. Lower latency and increased speed
can be beneficial when businesses must make decisions in near-real time using AI
inferencing models deployed at the edge.

NetApp storage systems deliver the same or better performance as local SSD storage and offer the following
benefits to data scientists, data engineers, AI/ML developers, and business or IT decision makers:

• Effortless sharing of data between AI systems, analytics, and other critical business systems. This data
sharing reduces infrastructure overhead, improves performance, and streamlines data management across
the enterprise.

• Independently scalable compute and storage to minimize costs and improve resource usage.

• Streamlined development and deployment workflows using integrated Snapshot copies and clones for
instantaneous and space-efficient user workspaces, integrated version control, and automated deployment.

• Enterprise-grade data protection for disaster recovery and business continuity. The NetApp and Lenovo
solution presented in this document is a flexible, scale-out architecture that is ideal for enterprise-grade AI
inference deployments at the edge.

Acknowledgments

• J.J. Falkanger, Sr. Manager, HPC & AI Solutions, Lenovo

• Dave Arnette, Technical Marketing Engineer, NetApp

• Joey Parnell, Tech Lead E-Series AI Solutions, NetApp

• Cody Harryman, QA Engineer, NetApp

Where to find additional information

To learn more about the information described in this document, refer to the following documents and/or
websites:

• NetApp AFF A-Series arrays product page

https://www.netapp.com/data-storage/aff-a-series/

• NetApp ONTAP data management software—ONTAP 9 information library

http://mysupport.netapp.com/documentation/productlibrary/index.html?productID=62286

• TR-4727: NetApp EF-Series Introduction

https://www.netapp.com/pdf.html?item=/media/17179-tr4727pdf.pdf

• NetApp E-Series SANtricity Software Datasheet

https://www.netapp.com/pdf.html?item=/media/19775-ds-3171-66862.pdf

368

https://www.netapp.com/data-storage/aff-a-series/
http://mysupport.netapp.com/documentation/productlibrary/index.html?productID=62286
https://www.netapp.com/pdf.html?item=/media/17179-tr4727pdf.pdf
https://www.netapp.com/pdf.html?item=/media/19775-ds-3171-66862.pdf

• NetApp Persistent Storage for Containers—NetApp Trident

https://netapp.io/persistent-storage-provisioner-for-kubernetes/

• MLPerf

◦ https://mlcommons.org/en/

◦ http://www.image-net.org/

◦ https://mlcommons.org/en/news/mlperf-inference-v11/

• NetApp BlueXP Copy and Sync

https://docs.netapp.com/us-en/occm/concept_cloud_sync.html#how-cloud-sync-works

• TensorFlow benchmark

https://github.com/tensorflow/benchmarks

• Lenovo ThinkSystem SE350 Edge Server

https://lenovopress.com/lp1168

• Lenovo ThinkSystem DM5100F Unified Flash Storage Array

https://lenovopress.com/lp1365-thinksystem-dm5100f-unified-flash-storage-array

WP-7328: NetApp Conversational AI Using NVIDIA Jarvis

Rick Huang, Sung-Han Lin, NetApp
Davide Onofrio, NVIDIA

The NVIDIA DGX family of systems is made up of the world’s first integrated artificial
intelligence (AI)-based systems that are purpose-built for enterprise AI. NetApp AFF
storage systems deliver extreme performance and industry-leading hybrid cloud data-
management capabilities. NetApp and NVIDIA have partnered to create the NetApp
ONTAP AI reference architecture, a turnkey solution for AI and machine learning (ML)
workloads that provides enterprise-class performance, reliability, and support.

This white paper gives directional guidance to customers building conversational AI systems in support of
different use cases in various industry verticals. It includes information about the deployment of the system
using NVIDIA Jarvis. The tests were performed using an NVIDIA DGX Station and a NetApp AFF A220 storage
system.

The target audience for the solution includes the following groups:

• Enterprise architects who design solutions for the development of AI models and software for
conversational AI use cases such as a virtual retail assistant

• Data scientists looking for efficient ways to achieve language modeling development goals

• Data engineers in charge of maintaining and processing text data such as customer questions and
dialogue transcripts

• Executive and IT decision makers and business leaders interested in transforming the conversational AI
experience and achieving the fastest time to market from AI initiatives

369

https://netapp.io/persistent-storage-provisioner-for-kubernetes/
https://mlcommons.org/en/
http://www.image-net.org/
https://mlcommons.org/en/news/mlperf-inference-v11/
https://docs.netapp.com/us-en/occm/concept_cloud_sync.html#how-cloud-sync-works
https://github.com/tensorflow/benchmarks
https://lenovopress.com/lp1168
https://lenovopress.com/lp1365-thinksystem-dm5100f-unified-flash-storage-array

Solution Overview

This document gives an overfiew of the conversational AI model for ONTAP AI and
NVIDIA DGX.

NetApp ONTAP AI and BlueXP Copy and Sync

The NetApp ONTAP AI architecture, powered by NVIDIA DGX systems and NetApp cloud-connected storage
systems, was developed and verified by NetApp and NVIDIA. This reference architecture gives IT
organizations the following advantages:

• Eliminates design complexities

• Enables independent scaling of compute and storage

• Enables customers to start small and scale seamlessly

• Offers a range of storage options for various performance and cost pointsNetApp ONTAP AI tightly
integrates DGX systems and NetApp AFF A220 storage systems with state-of-the-art networking. NetApp
ONTAP AI and DGX systems simplify AI deployments by eliminating design complexity and guesswork.
Customers can start small and grow their systems in an uninterrupted manner while intelligently managing
data from the edge to the core to the cloud and back.

NetApp BlueXP Copy and Sync enables you to move data easily over various protocols, whether it’s between
two NFS shares, two CIFS shares, or one file share and Amazon S3, Amazon Elastic File System (EFS), or
Azure Blob storage. Active-active operation means that you can continue to work with both source and target
at the same time, incrementally synchronizing data changes when required. By enabling you to move and
incrementally synchronize data between any source and destination system, whether on-premises or cloud-
based, BlueXP Copy and Sync opens up a wide variety of new ways in which you can use data. Migrating data
between on-premises systems, cloud on-boarding and cloud migration, or collaboration and data analytics all
become easily achievable. The figure below shows available sources and destinations.

In conversational AI systems, developers can leverage BlueXP Copy and Sync to archive conversation history
from the cloud to data centers to enable offline training of natural language processing (NLP) models. By
training models to recognize more intents, the conversational AI system will be better equipped to manage
more complex questions from end-users.

NVIDIA Jarvis Multimodal Framework

370

NVIDIA Jarvis is an end-to-end framework for building conversational AI services. It includes the following
GPU-optimized services:

• Automatic speech recognition (ASR)

• Natural language understanding (NLU)

• Integration with domain-specific fulfillment services

• Text-to-speech (TTS)

• Computer vision (CV)Jarvis-based services use state-of-the-art deep learning models to address the
complex and challenging task of real-time conversational AI. To enable real-time, natural interaction with an
end user, the models need to complete computation in under 300 milliseconds. Natural interactions are
challenging, requiring multimodal sensory integration. Model pipelines are also complex and require
coordination across the above services.

Jarvis is a fully accelerated, application framework for building multimodal conversational AI services that use
an end-to-end deep learning pipeline. The Jarvis framework includes pretrained conversational AI models,
tools, and optimized end-to-end services for speech, vision, and NLU tasks. In addition to AI services, Jarvis
enables you to fuse vision, audio, and other sensor inputs simultaneously to deliver capabilities such as multi-
user, multi-context conversations in applications such as virtual assistants, multi-user diarization, and call
center assistants.

NVIDIA NeMo

NVIDIA NeMo is an open-source Python toolkit for building, training, and fine-tuning GPU-accelerated state-of-
the-art conversational AI models using easy-to-use application programming interfaces (APIs). NeMo runs
mixed precision compute using Tensor Cores in NVIDIA GPUs and can scale up to multiple GPUs easily to
deliver the highest training performance possible. NeMo is used to build models for real-time ASR, NLP, and
TTS applications such as video call transcriptions, intelligent video assistants, and automated call center
support across different industry verticals, including healthcare, finance, retail, and telecommunications.

We used NeMo to train models that recognize complex intents from user questions in archived conversation
history. This training extends the capabilities of the retail virtual assistant beyond what Jarvis supports as

371

https://devblogs.nvidia.com/introducing-jarvis-framework-for-gpu-accelerated-conversational-ai-apps/
https://developer.nvidia.com/nvidia-nemo

delivered.

Retail Use Case Summary

Using NVIDIA Jarvis, we built a virtual retail assistant that accepts speech or text input and answers questions
regarding weather, points-of-interest, and inventory pricing. The conversational AI system is able to remember
conversation flow, for example, ask a follow-up question if the user does not specify location for weather or
points-of-interest. The system also recognizes complex entities such as “Thai food” or “laptop memory.” It
understands natural language questions like “will it rain next week in Los Angeles?” A demonstration of the
retail virtual assistant can be found in Customize States and Flows for Retail Use Case.

Solution Technology

The following figure illustrates the proposed conversational AI system architecture. You
can interact with the system with either speech signal or text input. If spoken input is
detected, Jarvis AI-as-service (AIaaS) performs ASR to produce text for Dialog Manager.
Dialog Manager remembers states of conversation, routes text to corresponding services,
and passes commands to Fulfillment Engine. Jarvis NLP Service takes in text, recognizes
intents and entities, and outputs those intents and entity slots back to Dialog Manager,
which then sends Action to Fulfillment Engine. Fulfillment Engine consists of third-party
APIs or SQL databases that answer user queries. After receiving Result from Fulfillment
Engine, Dialog Manager routes text to Jarvis TTS AIaaS to produce an audio response
for the end-user. We can archive conversation history, annotate sentences with intents
and slots for NeMo training such that NLP Service improves as more users interact with
the system.

Hardware Requirements

This solution was validated using one DGX Station and one AFF A220 storage system. Jarvis requires either a
T4 or V100 GPU to perform deep neural network computations.

372

The following table lists the hardware components that are required to implement the solution as tested.

Hardware Quantity

T4 or V100 GPU 1

NVIDIA DGX Station 1

Software Requirements

The following table lists the software components that are required to implement the solution as tested.

Software Version or Other Information

NetApp ONTAP data management software 9.6

Cisco NX-OS switch firmware 7.0(3)I6(1)

NVIDIA DGX OS 4.0.4 - Ubuntu 18.04 LTS

NVIDIA Jarvis Framework EA v0.2

NVIDIA NeMo nvcr.io/nvidia/nemo:v0.10

Docker container platform 18.06.1-ce [e68fc7a]

Overview

This section provides detail on the implementation of the virtual retail assistant.

Jarvis Deployment

You can sign up for Jarvis Early Access program to gain access to Jarvis containers on
NVIDIA GPU Cloud (NGC). After receiving credentials from NVIDIA, you can deploy
Jarvis using the following steps:

1. Sign-on to NGC.

2. Set your organization on NGC: ea-2-jarvis.

3. Locate Jarvis EA v0.2 assets: Jarvis containers are in Private Registry > Organization

Containers.

4. Select Jarvis: navigate to Model Scripts and click Jarvis Quick Start

5. Verify that all assets are working properly.

6. Find the documentation to build your own applications: PDFs can be found in Model Scripts > Jarvis

Documentation > File Browser.

Customize States and Flows for Retail Use Case

You can customize States and Flows of Dialog Manager for your specific use cases. In
our retail example, we have the following four yaml files to direct the conversation
according to different intents.

Se the following list of file names and description of each file:

373

https://developer.nvidia.com/nvidia-jarvis-early-access

• main_flow.yml: Defines the main conversation flows and states and directs the flow to the other three
yaml files when necessary.

• retail_flow.yml: Contains states related to retail or points-of-interest questions. The system either
provides the information of the nearest store, or the price of a given item.

• weather_flow.yml: Contains states related to weather questions. If the location cannot be determined,
the system asks a follow up question to clarify.

• error_flow.yml: Handles cases where user intents do not fall into the above three yaml files. After
displaying an error message, the system re-routes back to accepting user questions.The following sections
contain the detailed definitions for these yaml files.

main_flow.yml

name: JarvisRetail

intent_transitions:

 jarvis_error: error

 price_check: retail_price_check

 inventory_check: retail_inventory_check

 store_location: retail_store_location

 weather.weather: weather

 weather.temperature: temperature

 weather.sunny: sunny

 weather.cloudy: cloudy

 weather.snow: snow

 weather.rainfall: rain

 weather.snow_yes_no: snowfall

 weather.rainfall_yes_no: rainfall

 weather.temperature_yes_no: tempyesno

 weather.humidity: humidity

 weather.humidity_yes_no: humidity

 navigation.startnavigationpoi: retail # Transitions should be context

and slot based. Redirecting for now.

 navigation.geteta: retail

 navigation.showdirection: retail

 navigation.showmappoi: idk_what_you_talkin_about

 nomatch.none: idk_what_you_talkin_about

states:

 init:

 type: message_text

 properties:

 text: "Hi, welcome to NARA retail and weather service. How can I

help you?"

 input_intent:

 type: input_context

 properties:

 nlp_type: jarvis

 entities:

374

 intent: dontcare

This state is executed if the intent was not understood

 dont_get_the intent:

 type: message_text_random

 properties:

 responses:

 - "Sorry I didn't get that! Please come again."

 - "I beg your pardon! Say that again?"

 - "Are we talking about weather? What would you like to know?"

 - "Sorry I know only about the weather"

 - "You can ask me about the weather, the rainfall, the

temperature, I don't know much more"

 delay: 0

 transitions:

 next_state: input_intent

 idk_what_you_talkin_about:

 type: message_text_random

 properties:

 responses:

 - "Sorry I didn't get that! Please come again."

 - "I beg your pardon! Say that again?"

 - "Are we talking about retail or weather? What would you like to

know?"

 - "Sorry I know only about retail and the weather"

 - "You can ask me about retail information or the weather, the

rainfall, the temperature. I don't know much more."

 delay: 0

 transitions:

 next_state: input_intent

 error:

 type: change_context

 properties:

 update_keys:

 intent: 'error'

 transitions:

 flow: error_flow

 retail_inventory_check:

 type: change_context

 properties:

 update_keys:

 intent: 'retail_inventory_check'

 transitions:

 flow: retail_flow

 retail_price_check:

 type: change_context

 properties:

375

 update_keys:

 intent: 'check_item_price'

 transitions:

 flow: retail_flow

 retail_store_location:

 type: change_context

 properties:

 update_keys:

 intent: 'find_the_store'

 transitions:

 flow: retail_flow

 weather:

 type: change_context

 properties:

 update_keys:

 intent: 'weather'

 transitions:

 flow: weather_flow

 temperature:

 type: change_context

 properties:

 update_keys:

 intent: 'temperature'

 transitions:

 flow: weather_flow

 rainfall:

 type: change_context

 properties:

 update_keys:

 intent: 'rainfall'

 transitions:

 flow: weather_flow

 sunny:

 type: change_context

 properties:

 update_keys:

 intent: 'sunny'

 transitions:

 flow: weather_flow

 cloudy:

 type: change_context

 properties:

 update_keys:

 intent: 'cloudy'

 transitions:

 flow: weather_flow

376

 snow:

 type: change_context

 properties:

 update_keys:

 intent: 'snow'

 transitions:

 flow: weather_flow

 rain:

 type: change_context

 properties:

 update_keys:

 intent: 'rain'

 transitions:

 flow: weather_flow

 snowfall:

 type: change_context

 properties:

 update_keys:

 intent: 'snowfall'

 transitions:

 flow: weather_flow

 tempyesno:

 type: change_context

 properties:

 update_keys:

 intent: 'tempyesno'

 transitions:

 flow: weather_flow

 humidity:

 type: change_context

 properties:

 update_keys:

 intent: 'humidity'

 transitions:

 flow: weather_flow

 end_state:

 type: reset

 transitions:

 next_state: init

retail_flow.yml

name: retail_flow

states:

 store_location:

377

 type: conditional_exists

 properties:

 key: '{{location}}'

 transitions:

 exists: retail_state

 notexists: ask_retail_location

 retail_state:

 type: Retail

 properties:

 transitions:

 next_state: output_retail

 output_retail:

 type: message_text

 properties:

 text: '{{retail_status}}'

 transitions:

 next_state: input_intent

 ask_retail_location:

 type: message_text

 properties:

 text: "For which location? I can find the closest store near you."

 transitions:

 next_state: input_retail_location

 input_retail_location:

 type: input_user

 properties:

 nlp_type: jarvis

 entities:

 slot: location

 require_match: true

 transitions:

 match: retail_state

 notmatch: check_retail_jarvis_error

 output_retail_acknowledge:

 type: message_text_random

 properties:

 responses:

 - 'ok in {{location}}'

 - 'the store in {{location}}'

 - 'I always wanted to shop in {{location}}'

 delay: 0

 transitions:

 next_state: retail_state

 output_retail_notlocation:

 type: message_text

 properties:

378

 text: "I did not understand the location. Can you please repeat?"

 transitions:

 next_state: input_intent

 check_rerail_jarvis_error:

 type: conditional_exists

 properties:

 key: '{{jarvis_error}}'

 transitions:

 exists: show_retail_jarvis_api_error

 notexists: output_retail_notlocation

 show_retail_jarvis_api_error:

 type: message_text

 properties:

 text: "I am having troubled understanding right now. Come again on

that?"

 transitions:

 next_state: input_intent

weather_flow.yml

name: weather_flow

states:

 check_weather_location:

 type: conditional_exists

 properties:

 key: '{{location}}'

 transitions:

 exists: weather_state

 notexists: ask_weather_location

 weather_state:

 type: Weather

 properties:

 transitions:

 next_state: output_weather

 output_weather:

 type: message_text

 properties:

 text: '{{weather_status}}'

 transitions:

 next_state: input_intent

 ask_weather_location:

 type: message_text

 properties:

 text: "For which location?"

 transitions:

379

 next_state: input_weather_location

 input_weather_location:

 type: input_user

 properties:

 nlp_type: jarvis

 entities:

 slot: location

 require_match: true

 transitions:

 match: weather_state

 notmatch: check_jarvis_error

 output_weather_acknowledge:

 type: message_text_random

 properties:

 responses:

 - 'ok in {{location}}'

 - 'the weather in {{location}}'

 - 'I always wanted to go in {{location}}'

 delay: 0

 transitions:

 next_state: weather_state

 output_weather_notlocation:

 type: message_text

 properties:

 text: "I did not understand the location, can you please repeat?"

 transitions:

 next_state: input_intent

 check_jarvis_error:

 type: conditional_exists

 properties:

 key: '{{jarvis_error}}'

 transitions:

 exists: show_jarvis_api_error

 notexists: output_weather_notlocation

 show_jarvis_api_error:

 type: message_text

 properties:

 text: "I am having troubled understanding right now. Come again on

that, else check jarvis services?"

 transitions:

 next_state: input_intent

error_flow.yml

380

name: error_flow

states:

 error_state:

 type: message_text_random

 properties:

 responses:

 - "Sorry I didn't get that!"

 - "Are we talking about retail or weather? What would you like to

know?"

 - "Sorry I know only about retail information or the weather"

 - "You can ask me about retail information or the weather, the

rainfall, the temperature. I don't know much more"

 - "Let's talk about retail or the weather!"

 delay: 0

 transitions:

 next_state: input_intent

Connect to Third-Party APIs as Fulfillment Engine

We connected the following third-party APIs as a Fulfillment Engine to answer questions:

• WeatherStack API: returns weather, temperature, rainfall, and snow in a given location.

• Yelp Fusion API: returns the nearest store information in a given location.

• eBay Python SDK: returns the price of a given item.

NetApp Retail Assistant Demonstration

We recorded a demonstration video of NetApp Retail Assistant (NARA).

Video demonstration of NARA

Video demonstration of NARA

381

https://weatherstack.com/
https://www.yelp.com/fusion
https://github.com/timotheus/ebaysdk-python
https://netapp.hosted.panopto.com/Panopto/Pages/Embed.aspx?id=b4aae689-31b5-440c-8dde-ac050140ece7

Use NetApp BlueXP Copy and Sync to Archive Conversation History

By dumping conversation history into a CSV file once a day, we can then leverage
BlueXP Copy and Sync to download the log files into local storage. The following figure
shows the architecture of having Jarvis deployed on-premises and in public clouds, while
using BlueXP Copy and Sync to send conversation history for NeMo training. Details of
NeMo training can be found in the section Expand Intent Models Using NeMo Training.

382

383

Expand Intent Models Using NeMo Training

NVIDIA NeMo is a toolkit built by NVIDIA for creating conversational AI applications. This
toolkit includes collections of pre-trained modules for ASR, NLP, and TTS, enabling
researchers and data scientists to easily compose complex neural network architectures
and put more focus on designing their own applications.

As shown in the previous example, NARA can only handle a limited type of question. This is because the pre-
trained NLP model only trains on these types of questions. If we want to enable NARA to handle a broader
range of questions, we need to retrain it with our own datasets. Thus, here, we demonstrate how we can use
NeMo to extend the NLP model to satisfy the requirements. We start by converting the log collected from
NARA into the format for NeMo, and then train with the dataset to enhance the NLP model.

Model

Our goal is to enable NARA to sort the items based on user preferences. For instance, we might ask NARA to
suggest the highest-rated sushi restaurant or might want NARA to look up the jeans with the lowest price. To
this end, we use the intent detection and slot filling model provided in NeMo as our training model. This model
allows NARA to understand the intent of searching preference.

Data Preparation

To train the model, we collect the dataset for this type of question, and convert it to the NeMo format. Here, we
listed the files we use to train the model.

dict.intents.csv

This file lists all the intents we want the NeMo to understand. Here, we have two primary intents and one intent
only used to categorize the questions that do not fit into any of the primary intents.

price_check

find_the_store

unknown

dict.slots.csv

This file lists all the slots we can label on our training questions.

B-store.type

B-store.name

B-store.status

B-store.hour.start

B-store.hour.end

B-store.hour.day

B-item.type

B-item.name

B-item.color

B-item.size

B-item.quantity

384

B-location

B-cost.high

B-cost.average

B-cost.low

B-time.period_of_time

B-rating.high

B-rating.average

B-rating.low

B-interrogative.location

B-interrogative.manner

B-interrogative.time

B-interrogative.personal

B-interrogative

B-verb

B-article

I-store.type

I-store.name

I-store.status

I-store.hour.start

I-store.hour.end

I-store.hour.day

I-item.type

I-item.name

I-item.color

I-item.size

I-item.quantity

I-location

I-cost.high

I-cost.average

I-cost.low

I-time.period_of_time

I-rating.high

I-rating.average

I-rating.low

I-interrogative.location

I-interrogative.manner

I-interrogative.time

I-interrogative.personal

I-interrogative

I-verb

I-article

O

train.tsv

This is the main training dataset. Each line starts with the question following the intent category listing in the file

385

dict.intent.csv. The label is enumerated starting from zero.

train_slots.tsv

20 46 24 25 6 32 6

52 52 24 6

23 52 14 40 52 25 6 32 6

…

Train the Model

docker pull nvcr.io/nvidia/nemo:v0.10

We then use the following command to launch the container. In this command, we limit the container to use a
single GPU (GPU ID = 1) since this is a lightweight training exercise. We also map our local workspace
/workspace/nemo/ to the folder inside container /nemo.

NV_GPU='1' docker run --runtime=nvidia -it --shm-size=16g \

 --network=host --ulimit memlock=-1 --ulimit

stack=67108864 \

 -v /workspace/nemo:/nemo\

 --rm nvcr.io/nvidia/nemo:v0.10

Inside the container, if we want to start from the original pre-trained BERT model, we can use the following
command to start the training procedure. data_dir is the argument to set up the path of the training data.
work_dir allows you to configure where you want to store the checkpoint files.

cd examples/nlp/intent_detection_slot_tagging/

python joint_intent_slot_with_bert.py \

 --data_dir /nemo/training_data\

 --work_dir /nemo/log

If we have new training datasets and want to improve the previous model, we can use the following command
to continue from the point we stopped. checkpoint_dir takes the path to the previous checkpoints folder.

cd examples/nlp/intent_detection_slot_tagging/

python joint_intent_slot_infer.py \

 --data_dir /nemo/training_data \

 --checkpoint_dir /nemo/log/2020-05-04_18-34-20/checkpoints/ \

 --eval_file_prefix test

386

Inference the Model

We need to validate the performance of the trained model after a certain number of epochs. The following
command allows us to test the query one-by-one. For instance, in this command, we want to check if our

model can properly identify the intention of the query where can I get the best pasta.

cd examples/nlp/intent_detection_slot_tagging/

python joint_intent_slot_infer_b1.py \

--checkpoint_dir /nemo/log/2020-05-29_23-50-58/checkpoints/ \

--query "where can i get the best pasta" \

--data_dir /nemo/training_data/ \

--num_epochs=50

Then, the following is the output from the inference. In the output, we can see that our trained model can
properly predict the intention find_the_store, and return the keywords we are interested in. With these
keywords, we enable the NARA to search for what users want and do a more precise search.

[NeMo I 2020-05-30 00:06:54 actions:728] Evaluating batch 0 out of 1

[NeMo I 2020-05-30 00:06:55 inference_utils:34] Query: where can i get the

best pasta

[NeMo I 2020-05-30 00:06:55 inference_utils:36] Predicted intent: 1

find_the_store

[NeMo I 2020-05-30 00:06:55 inference_utils:50] where B-

interrogative.location

[NeMo I 2020-05-30 00:06:55 inference_utils:50] can O

[NeMo I 2020-05-30 00:06:55 inference_utils:50] i O

[NeMo I 2020-05-30 00:06:55 inference_utils:50] get B-verb

[NeMo I 2020-05-30 00:06:55 inference_utils:50] the B-article

[NeMo I 2020-05-30 00:06:55 inference_utils:50] best B-rating.high

[NeMo I 2020-05-30 00:06:55 inference_utils:50] pasta B-item.type

Conclusion

A true conversational AI system engages in human-like dialogue, understands context,
and provides intelligent responses. Such AI models are often huge and highly complex.
With NVIDIA GPUs and NetApp storage, massive, state-of-the-art language models can
be trained and optimized to run inference rapidly. This is a major stride towards ending
the trade- off between an AI model that is fast versus one that is large and complex.
GPU-optimized language understanding models can be integrated into AI applications for
industries such as healthcare, retail, and financial services, powering advanced digital
voice assistants in smart speakers and customer service lines. These high-quality
conversational AI systems allow businesses across verticals to provide previously
unattainable personalized services when engaging with customers.

Jarvis enables the deployment of use cases such as virtual assistants, digital avatars, multimodal sensor
fusion (CV fused with ASR/NLP/TTS), or any ASR/NLP/TTS/CV stand-alone use case, such as transcription.

387

We built a virtual retail assistant that can answer questions regarding weather, points-of-interest, and inventory
pricing. We also demonstrated how to improve the natural language understanding capabilities of the
conversational AI system by archiving conversation history using BlueXP Copy and Sync and training NeMo
models on new data.

Acknowledgments

The authors gratefully acknowledge the contributions that were made to this white paper
by our esteemed colleagues from NVIDIA: Davide Onofrio, Alex Qi, Sicong Ji, Marty Jain,
and Robert Sohigian. The authors would also like to acknowledge the contributions of key
NetApp team members: Santosh Rao, David Arnette, Michael Oglesby, Brent Davis, Andy
Sayare, Erik Mulder, and Mike McNamara.

Our sincere appreciation and thanks go to all these individuals, who provided insight and expertise that greatly
assisted in the creation of this paper.

Where to Find Additional Information

To learn more about the information that is described in this document, see the following
resources:

• NVIDIA DGX Station, V100 GPU, GPU Cloud

◦ NVIDIA DGX Station
https://www.nvidia.com/en-us/data-center/dgx-station/

◦ NVIDIA V100 Tensor Core GPU
https://www.nvidia.com/en-us/data-center/tesla-v100/

◦ NVIDIA NGC
https://www.nvidia.com/en-us/gpu-cloud/

• NVIDIA Jarvis Multimodal Framework

◦ NVIDIA Jarvis
https://developer.nvidia.com/nvidia-jarvis

◦ NVIDIA Jarvis Early Access
https://developer.nvidia.com/nvidia-jarvis-early-access

• NVIDIA NeMo

◦ NVIDIA NeMo
https://developer.nvidia.com/nvidia-nemo

◦ Developer Guide
https://nvidia.github.io/NeMo/

• NetApp AFF systems

◦ NetApp AFF A-Series Datasheet
https://www.netapp.com/us/media/ds-3582.pdf

◦ NetApp Flash Advantage for All Flash FAS
https://www.netapp.com/us/media/ds-3733.pdf

◦ ONTAP 9 Information Library
http://mysupport.netapp.com/documentation/productlibrary/index.html?productID=62286

388

https://www.nvidia.com/en-us/data-center/dgx-station/
https://www.nvidia.com/en-us/data-center/tesla-v100/
https://www.nvidia.com/en-us/gpu-cloud/
https://developer.nvidia.com/nvidia-jarvis
https://developer.nvidia.com/nvidia-jarvis-early-access
https://developer.nvidia.com/nvidia-nemo
https://nvidia.github.io/NeMo/
https://www.netapp.com/us/media/ds-3582.pdf
https://www.netapp.com/us/media/ds-3733.pdf
http://mysupport.netapp.com/documentation/productlibrary/index.html?productID=62286

◦ NetApp ONTAP FlexGroup Volumes technical report
https://www.netapp.com/us/media/tr-4557.pdf

• NetApp ONTAP AI

◦ ONTAP AI with DGX-1 and Cisco Networking Design Guide
https://www.netapp.com/us/media/nva-1121-design.pdf

◦ ONTAP AI with DGX-1 and Cisco Networking Deployment Guide
https://www.netapp.com/us/media/nva-1121-deploy.pdf

◦ ONTAP AI with DGX-1 and Mellanox Networking Design Guide
http://www.netapp.com/us/media/nva-1138-design.pdf

◦ ONTAP AI with DGX-2 Design Guide
https://www.netapp.com/us/media/nva-1135-design.pdf

TR-4858: NetApp Orchestration Solution with Run:AI

Rick Huang, David Arnette, Sung-Han Lin, NetApp
Yaron Goldberg, Run:AI

NetApp AFF storage systems deliver extreme performance and industry-leading hybrid
cloud data-management capabilities. NetApp and Run:AI have partnered to demonstrate
the unique capabilities of the NetApp ONTAP AI solution for artificial intelligence (AI) and
machine learning (ML) workloads that provides enterprise-class performance, reliability,
and support. Run:AI orchestration of AI workloads adds a Kubernetes-based scheduling
and resource utilization platform to help researchers manage and optimize GPU
utilization. Together with the NVIDIA DGX systems, the combined solution from NetApp,
NVIDIA, and Run:AI provide an infrastructure stack that is purpose-built for enterprise AI
workloads. This technical report gives directional guidance to customers building
conversational AI systems in support of various use cases and industry verticals. It
includes information about the deployment of Run:AI and a NetApp AFF A800 storage
system and serves as a reference architecture for the simplest way to achieve fast,
successful deployment of AI initiatives.

The target audience for the solution includes the following groups:

• Enterprise architects who design solutions for the development of AI models and software for Kubernetes-
based use cases such as containerized microservices

• Data scientists looking for efficient ways to achieve efficient model development goals in a cluster
environment with multiple teams and projects

• Data engineers in charge of maintaining and running production models

• Executive and IT decision makers and business leaders who would like to create the optimal Kubernetes
cluster resource utilization experience and achieve the fastest time to market from AI initiatives

Solution Overview

This section provides a solution overview of the Run:AI solution for ONTAP AI.

389

https://www.netapp.com/us/media/tr-4557.pdf
https://www.netapp.com/us/media/nva-1121-design.pdf
https://www.netapp.com/us/media/nva-1121-deploy.pdf
http://www.netapp.com/us/media/nva-1138-design.pdf
https://www.netapp.com/us/media/nva-1135-design.pdf

NetApp ONTAP AI and AI Control Plane

The NetApp ONTAP AI architecture, developed and verified by NetApp and NVIDIA, is powered by NVIDIA
DGX systems and NetApp cloud-connected storage systems. This reference architecture gives IT
organizations the following advantages:

• Eliminates design complexities

• Enables independent scaling of compute and storage

• Enables customers to start small and scale seamlessly

• Offers a range of storage options for various performance and cost points

NetApp ONTAP AI tightly integrates DGX systems and NetApp AFF A800 storage systems with state-of-the-art
networking. NetApp ONTAP AI and DGX systems simplify AI deployments by eliminating design complexity
and guesswork. Customers can start small and grow their systems in an uninterrupted manner while
intelligently managing data from the edge to the core to the cloud and back.

NetApp AI Control Plane is a full stack AI, ML, and deep learning (DL) data and experiment management
solution for data scientists and data engineers. As organizations increase their use of AI, they face many
challenges, including workload scalability and data availability. NetApp AI Control Plane addresses these
challenges through functionalities, such as rapidly cloning a data namespace just as you would a Git repo, and
defining and implementing AI training workflows that incorporate the near-instant creation of data and model
baselines for traceability and versioning. With NetApp AI Control Plane, you can seamlessly replicate data
across sites and regions and swiftly provision Jupyter Notebook workspaces with access to massive datasets.

Run:AI Platform for AI Workload Orchestration

Run:AI has built the world’s first orchestration and virtualization platform for AI infrastructure. By abstracting
workloads from the underlying hardware, Run:AI creates a shared pool of GPU resources that can be
dynamically provisioned, enabling efficient orchestration of AI workloads and optimized use of GPUs. Data
scientists can seamlessly consume massive amounts of GPU power to improve and accelerate their research
while IT teams retain centralized, cross-site control and real-time visibility over resource provisioning, queuing,
and utilization. The Run:AI platform is built on top of Kubernetes, enabling simple integration with existing IT
and data science workflows.

The Run:AI platform provides the following benefits:

• Faster time to innovation. By using Run:AI resource pooling, queueing, and prioritization mechanisms
together with a NetApp storage system, researchers are removed from infrastructure management hassles
and can focus exclusively on data science. Run:AI and NetApp customers increase productivity by running
as many workloads as they need without compute or data pipeline bottlenecks.

• Increased team productivity. Run:AI fairness algorithms guarantee that all users and teams get their fair
share of resources. Policies around priority projects can be preset, and the platform enables dynamic
allocation of resources from one user or team to another, helping users to get timely access to coveted
GPU resources.

• Improved GPU utilization. The Run:AI Scheduler enables users to easily make use of fractional GPUs,
integer GPUs, and multiple nodes of GPUs for distributed training on Kubernetes. In this way, AI workloads
run based on your needs, not capacity. Data science teams are able to run more AI experiments on the
same infrastructure.

Solution Technology

This solution was implemented with one NetApp AFF A800 system, two DGX-1 servers,

390

and two Cisco Nexus 3232C 100GbE-switches. Each DGX-1 server is connected to the
Nexus switches with four 100GbE connections that are used for inter-GPU
communications by using remote direct memory access (RDMA) over Converged
Ethernet (RoCE). Traditional IP communications for NFS storage access also occur on
these links. Each storage controller is connected to the network switches by using four
100GbE-links. The following figure shows the ONTAP AI solution architecture used in this
technical report for all testing scenarios.

Hardware Used in This Solution

This solution was validated using the ONTAP AI reference architecture two DGX-1 nodes and one AFF A800
storage system. See NVA-1121 for more details about the infrastructure used in this validation.

The following table lists the hardware components that are required to implement the solution as tested.

Hardware Quantity

DGX-1 systems 2

AFF A800 1

Nexus 3232C switches 2

Software Requirements

This solution was validated using a basic Kubernetes deployment with the Run:AI operator installed.
Kubernetes was deployed using the NVIDIA DeepOps deployment engine, which deploys all required
components for a production-ready environment. DeepOps automatically deployed NetApp Trident for
persistent storage integration with the k8s environment, and default storage classes were created so
containers leverage storage from the AFF A800 storage system. For more information on Trident with
Kubernetes on ONTAP AI, see TR-4798.

391

https://www.netapp.com/us/media/nva-1121-design.pdf
https://github.com/NVIDIA/deepops
https://netapp.io/persistent-storage-provisioner-for-kubernetes/
https://www.netapp.com/us/media/tr-4798.pdf

The following table lists the software components that are required to implement the solution as tested.

Software Version or Other Information

NetApp ONTAP data management software 9.6p4

Cisco NX-OS switch firmware 7.0(3)I6(1)

NVIDIA DGX OS 4.0.4 - Ubuntu 18.04 LTS

Kubernetes version 1.17

Trident version 20.04.0

Run:AI CLI v2.1.13

Run:AI Orchestration Kubernetes Operator version 1.0.39

Docker container platform 18.06.1-ce [e68fc7a]

Additional software requirements for Run:AI can be found at Run:AI GPU cluster prerequisites.

Optimal Cluster and GPU Utilization with Run:AI

The following sections provide details on the Run:AI installation, test scenarios, and
results performed in this validation.

We validated the operation and performance of this system by using industry standard benchmark tools,
including TensorFlow benchmarks. The ImageNet dataset was used to train ResNet-50, which is a famous
Convolutional Neural Network (CNN) DL model for image classification. ResNet-50 delivers an accurate
training result with a faster processing time, which enabled us to drive a sufficient demand on the storage.

Run:AI Installation

To install Run:AI, complete the following steps:

1. Install the Kubernetes cluster using DeepOps and configure the NetApp default storage class.

2. Prepare GPU nodes:

a. Verify that NVIDIA drivers are installed on GPU nodes.

b. Verify that nvidia-docker is installed and configured as the default docker runtime.

3. Install Run:AI:

a. Log into the Run:AI Admin UI to create the cluster.

b. Download the created runai-operator-<clustername>.yaml file.

c. Apply the operator configuration to the Kubernetes cluster.

kubectl apply -f runai-operator-<clustername>.yaml

4. Verify the installation:

a. Go to https://app.run.ai/.

b. Go to the Overview dashboard.

392

https://docs.run.ai/Administrator/Cluster-Setup/Run-AI-GPU-Cluster-Prerequisites/
https://app.run.ai
https://app.run.ai/

c. Verify that the number of GPUs on the top right reflects the expected number of GPUs and the GPU
nodes are all in the list of servers.For more information about Run:AI deployment, see installing Run:AI
on an on-premise Kubernetes cluster and installing the Run:AI CLI.

Run:AI Dashboards and Views

After installing Run:AI on your Kubernetes cluster and configuring the containers
correctly, you see the following dashboards and views on https://app.run.ai in your
browser, as shown in the following figure.

There are 16 total GPUs in the cluster provided by two DGX-1 nodes. You can see the number of nodes, the
total available GPUs, the allocated GPUs that are assigned with workloads, the total number of running jobs,
pending jobs, and idle allocated GPUs. On the right side, the bar diagram shows GPUs per Project, which
summarizes how different teams are using the cluster resource. In the middle is the list of currently running
jobs with job details, including job name, project, user, job type, the node each job is running on, the number of
GPU(s) allocated for that job, the current run time of the job, job progress in percentage, and the GPU
utilization for that job. Note that the cluster is under-utilized (GPU utilization at 23%) because there are only

three running jobs submitted by a single team (team-a).

In the following section, we show how to create multiple teams in the Projects tab and allocate GPUs for each
team to maximize cluster usage and manage resources when there are many users per cluster. The test
scenarios mimic enterprise environments in which memory and GPU resources are shared among training,
inferencing, and interactive workloads.

Creating Projects for Data Science Teams and Allocating GPUs

Researchers can submit workloads through the Run:AI CLI, Kubeflow, or similar
processes. To streamline resource allocation and create prioritization, Run:AI introduces
the concept of Projects. Projects are quota entities that associate a project name with
GPU allocation and preferences. It is a simple and convenient way to manage multiple

393

https://docs.run.ai/Administrator/Cluster-Setup/Installing-Run-AI-on-an-on-premise-Kubernetes-Cluster/
https://docs.run.ai/Administrator/Cluster-Setup/Installing-Run-AI-on-an-on-premise-Kubernetes-Cluster/
https://docs.run.ai/Administrator/Researcher-Setup/Installing-the-Run-AI-Command-Line-Interface/
https://app.run.ai/

data science teams.

A researcher submitting a workload must associate a project with a workload request. The Run:AI scheduler
compares the request against the current allocations and the project and determines whether the workload can
be allocated resources or whether it should remain in a pending state.

As a system administrator, you can set the following parameters in the Run:AI Projects tab:

• Model projects. Set a project per user, set a project per team of users, and set a project per a real
organizational project.

• Project quotas. Each project is associated with a quota of GPUs that can be allocated for this project at
the same time. This is a guaranteed quota in the sense that researchers using this project are guaranteed
to get this number of GPUs no matter what the status in the cluster is. As a rule, the sum of the project
allocation should be equal to the number of GPUs in the cluster. Beyond that, a user of this project can
receive an over-quota. As long as GPUs are unused, a researcher using this project can get more GPUs.
We demonstrate over-quota testing scenarios and fairness considerations in Achieving High Cluster
Utilization with Over-Quota GPU Allocation, Basic Resource Allocation Fairness, and Over-Quota Fairness.

• Create a new project, update an existing project, and delete an existing project.

• Limit jobs to run on specific node groups. You can assign specific projects to run only on specific
nodes. This is useful when the project team needs specialized hardware, for example, with enough
memory. Alternatively, a project team might be the owner of specific hardware that was acquired with a
specialized budget, or when you might need to direct build or interactive workloads to work on weaker
hardware and direct longer training or unattended workloads to faster nodes. For commands to group
nodes and set affinity for a specific project, see the Run:AI Documentation.

• Limit the duration of interactive jobs. Researchers frequently forget to close interactive jobs. This might
lead to a waste of resources. Some organizations prefer to limit the duration of interactive jobs and close
them automatically.

The following figure shows the Projects view with four teams created. Each team is assigned a different
number of GPUs to account for different workloads, with the total number of GPUs equal to that of the total
available GPUs in a cluster consisting of two DGX-1s.

Submitting Jobs in Run:AI CLI

This section provides the detail on basic Run:AI commands that you can use to run any
Kubernetes job. It is divided into three parts according to workload type. AI/ML/DL
workloads can be divided into two generic types:

394

https://docs.run.ai/Administrator/Admin-User-Interface-Setup/Working-with-Projects/

• Unattended training sessions. With these types of workloads, the data scientist prepares a self-running
workload and sends it for execution. During the execution, the customer can examine the results. This type
of workload is often used in production or when model development is at a stage where no human
intervention is required.

• Interactive build sessions. With these types of workloads, the data scientist opens an interactive session
with Bash, Jupyter Notebook, remote PyCharm, or similar IDEs and accesses GPU resources directly. We
include a third scenario for running interactive workloads with connected ports to reveal an internal port to
the container user..

Unattended Training Workloads

After setting up projects and allocating GPU(s), you can run any Kubernetes workload using the following
command at the command line:

$ runai project set team-a runai submit hyper1 -i gcr.io/run-ai-

demo/quickstart -g 1

This command starts an unattended training job for team-a with an allocation of a single GPU. The job is based

on a sample docker image, gcr.io/run-ai-demo/quickstart. We named the job hyper1. You can then
monitor the job’s progress by running the following command:

$ runai list

The following figure shows the result of the runai list command. Typical statuses you might see include
the following:

• ContainerCreating. The docker container is being downloaded from the cloud repository.

• Pending. The job is waiting to be scheduled.

• Running. The job is running.

To get an additional status on your job, run the following command:

$ runai get hyper1

To view the logs of the job, run the runai logs <job-name> command:

$ runai logs hyper1

In this example, you should see the log of a running DL session, including the current training epoch, ETA, loss
function value, accuracy, and time elapsed for each step.

395

You can view the cluster status on the Run:AI UI at https://app.run.ai/. Under Dashboards > Overview, you can
monitor GPU utilization.

To stop this workload, run the following command:

$ runai delte hyper1

This command stops the training workload. You can verify this action by running runai list again. For more
detail, see launching unattended training workloads.

Interactive Build Workloads

After setting up projects and allocating GPU(s) you can run an interactive build workload using the following
command at the command line:

$ runai submit build1 -i python -g 1 --interactive --command sleep --args

infinity

The job is based on a sample docker image python. We named the job build1.

The -- interactive flag means that the job does not have a start or end. It is the
researcher’s responsibility to close the job. The administrator can define a time limit for
interactive jobs after which they are terminated by the system.

The --g 1 flag allocates a single GPU to this job. The command and argument provided is --command

sleep — args infinity. You must provide a command, or the container starts and then exits immediately.

The following commands work similarly to the commands described in Unattended Training Workloads:

• runai list: Shows the name, status, age, node, image, project, user, and GPUs for jobs.

• runai get build1: Displays additional status on the job build1.

• runai delete build1: Stops the interactive workload build1.To get a bash shell to the container, the
following command:

$ runai bash build1

This provides a direct shell into the computer. Data scientists can then develop or finetune their models within
the container.

You can view the cluster status on the Run:AI UI at https://app.run.ai. For more detail, see starting and using
interactive build workloads.

Interactive Workloads with Connected Ports

As an extension of interactive build workloads, you can reveal internal ports to the container user when starting
a container with the Run:AI CLI. This is useful for cloud environments, working with Jupyter Notebooks, or
connecting to other microservices. Ingress allows access to Kubernetes services from outside the Kubernetes

396

https://app.run.ai/
https://docs.run.ai/Researcher/Walkthroughs/Walkthrough-Launch-Unattended-Training-Workloads-/
https://app.run.ai
https://docs.run.ai/Researcher/Walkthroughs/Walkthrough-Start-and-Use-Interactive-Build-Workloads-/
https://docs.run.ai/Researcher/Walkthroughs/Walkthrough-Start-and-Use-Interactive-Build-Workloads-/
https://kubernetes.io/docs/concepts/services-networking/ingress/

cluster. You can configure access by creating a collection of rules that define which inbound connections reach
which services.

For better management of external access to the services in a cluster, we suggest that cluster administrators
install Ingress and configure LoadBalancer.

To use Ingress as a service type, run the following command to set the method type and the ports when
submitting your workload:

$ runai submit test-ingress -i jupyter/base-notebook -g 1 \

 --interactive --service-type=ingress --port 8888 \

 --args="--NotebookApp.base_url=test-ingress" --command=start-notebook.sh

After the container starts successfully, execute runai list to see the SERVICE URL(S) with which to
access the Jupyter Notebook. The URL is composed of the ingress endpoint, the job name, and the port.

For more details, see launching an interactive build workload with connected ports.

Achieving High Cluster Utilization

In this section, we emulate a realistic scenario in which four data science teams each
submit their own workloads to demonstrate the Run:AI orchestration solution that
achieves high cluster utilization while maintaining prioritization and balancing GPU
resources. We start by using the ResNet-50 benchmark described in the section ResNet-
50 with ImageNet Dataset Benchmark Summary:

$ runai submit netapp1 -i netapp/tensorflow-tf1-py3:20.01.0 --local-image

--large-shm -v /mnt:/mnt -v /tmp:/tmp --command python --args

"/netapp/scripts/run.py" --args "--

dataset_dir=/mnt/mount_0/dataset/imagenet/imagenet_original/" --args "--

num_mounts=2" --args "--dgx_version=dgx1" --args "--num_devices=1" -g 1

We ran the same ResNet-50 benchmark as in NVA-1121. We used the flag --local-image for containers

not residing in the public docker repository. We mounted the directories /mnt and /tmp on the host DGX-1

node to /mnt and /tmp to the container, respectively. The dataset is at NetApp AFFA800 with the

dataset_dir argument pointing to the directory. Both --num_devices=1 and -g 1 mean that we allocate

one GPU for this job. The former is an argument for the run.py script, while the latter is a flag for the runai

submit command.

The following figure shows a system overview dashboard with 97% GPU utilization and all sixteen available
GPUs allocated. You can easily see how many GPUs are allocated for each team in the GPUs/Project bar
chart. The Running Jobs pane shows the current running job names, project, user, type, node, GPUs
consumed, run time, progress, and utilization details. A list of workloads in queue with their wait time is shown
in Pending Jobs. Finally, the Nodes box offers GPU numbers and utilization for individual DGX-1 nodes in the
cluster.

397

https://kubernetes.io/docs/concepts/services-networking/ingress/
https://docs.run.ai/Researcher/Walkthroughs/Walkthrough-Launch-an-Interactive-Build-Workload-with-Connected-Ports/
https://docs.netapp.com/us-en/netapp-solutions/ai/osrunai_resnet-50_with_imagenet_dataset_benchmark_summary.html
https://docs.netapp.com/us-en/netapp-solutions/ai/osrunai_resnet-50_with_imagenet_dataset_benchmark_summary.html
https://www.netapp.com/us/media/nva-1121-design.pdf

Fractional GPU Allocation for Less Demanding or Interactive Workloads

When researchers and developers are working on their models, whether in the
development, hyperparameter tuning, or debugging stages, such workloads usually
require fewer computational resources. It is therefore more efficient to provision fractional
GPU and memory such that the same GPU can simultaneously be allocated to other
workloads. Run:AI’s orchestration solution provides a fractional GPU sharing system for
containerized workloads on Kubernetes. The system supports workloads running CUDA
programs and is especially suited for lightweight AI tasks such as inference and model
building. The fractional GPU system transparently gives data science and AI engineering
teams the ability to run multiple workloads simultaneously on a single GPU. This enables
companies to run more workloads, such as computer vision, voice recognition, and
natural language processing on the same hardware, thus lowering costs.

Run:AI’s fractional GPU system effectively creates virtualized logical GPUs with their own memory and
computing space that containers can use and access as if they were self-contained processors. This enables
several workloads to run in containers side-by-side on the same GPU without interfering with each other. The
solution is transparent, simple, and portable and it requires no changes to the containers themselves.

A typical usecase could see two to eight jobs running on the same GPU, meaning that you could do eight times
the work with the same hardware.

For the job frac05 belonging to project team-d in the following figure, we can see that the number of GPUs

allocated was 0.50. This is further verified by the nvidia-smi command, which shows that the GPU memory
available to the container was 16,255MB: half of the 32GB per V100 GPU in the DGX-1 node.

398

Achieving High Cluster Utilization with Over-Quota GPU Allocation

In this section and in the sections Basic Resource Allocation Fairness, and Over-Quota
Fairness, we have devised advanced testing scenarios to demonstrate the Run:AI
orchestration capabilities for complex workload management, automatic preemptive
scheduling, and over-quota GPU provisioning. We did this to achieve high cluster-
resource usage and optimize enterprise-level data science team productivity in an
ONTAP AI environment.

For these three sections, set the following projects and quotas:

Project Quota

team-a 4

team-b 2

team-c 2

team-d 8

In addition, we use the following containers for these three sections:

• Jupyter Notebook: jupyter/base-notebook

• Run:AI quickstart: gcr.io/run-ai-demo/quickstart

We set the following goals for this test scenario:

399

• Show the simplicity of resource provisioning and how resources are abstracted from users

• Show how users can easily provision fractions of a GPU and integer number of GPUs

• Show how the system eliminates compute bottlenecks by allowing teams or users to go over their resource
quota if there are free GPUs in the cluster

• Show how data pipeline bottlenecks are eliminated by using the NetApp solution when running compute-
intensive jobs, such as the NetApp container

• Show how multiple types of containers are running using the system

◦ Jupyter Notebook

◦ Run:AI container

• Show high utilization when the cluster is full

For details on the actual command sequence executed during the testing, see Testing Details for Section 4.8.

When all 13 workloads are submitted, you can see a list of container names and GPUs allocated, as shown in
the following figure. We have seven training and six interactive jobs, simulating four data science teams, each
with their own models running or in development. For interactive jobs, individual developers are using Jupyter
Notebooks to write or debug their code. Thus, it is suitable to provision GPU fractions without using too many
cluster resources.

The results of this testing scenario show the following:

• The cluster should be full: 16/16 GPUs are used.

• High cluster utilization.

• More experiments than GPUs due to fractional allocation.

• team-d is not using all their quota; therefore, team-b and team-c can use additional GPUs for their
experiments, leading to faster time to innovation.

Basic Resource Allocation Fairness

In this section, we show that, when team-d asks for more GPUs (they are under their

quota), the system pauses the workloads of team-b and team-c and moves them into a
pending state in a fair-share manner.

For details including job submissions, container images used, and command sequences executed, see the
section Testing Details for Section 4.9.

The following figure shows the resulting cluster utilization, GPUs allocated per team, and pending jobs due to
automatic load balancing and preemptive scheduling. We can observe that when the total number of GPUs

400

requested by all team workloads exceeds the total available GPUs in the cluster, Run:AI’s internal fairness

algorithm pauses one job each for team-b and team-c because they have met their project quota. This
provides overall high cluster utilization while data science teams still work under resource constraints set by an
administrator.

The results of this testing scenario demonstrate the following:

• Automatic load balancing. The system automatically balances the quota of the GPUs, such that each
team is now using their quota. The workloads that were paused belong to teams that were over their quota.

• Fair share pause. The system chooses to stop the workload of one team that was over their quota and
then stop the workload of the other team. Run:AI has internal fairness algorithms.

Over-Quota Fairness

In this section, we expand the scenario in which multiple teams submit workloads and
exceed their quota. In this way, we demonstrate how Run:AI’s fairness algorithm allocates
cluster resources according to the ratio of preset quotas.

Goals for this test scenario:

• Show queuing mechanism when multiple teams are requesting GPUs over their quota.

• Show how the system distributes a fair share of the cluster between multiple teams that are over their
quota according to the ratio between their quotas, so that the team with the larger quota gets a larger share
of the spare capacity.

At the end of Basic Resource Allocation Fairness, there are two workloads queued: one for team-b and one

for team-c. In this section, we queue additional workloads.

401

For details including job submissions, container images used, and command sequences executed, see Testing
Details for section 4.10.

When all jobs are submitted according to the section Testing Details for section 4.10, the system dashboard

shows that team-a, team-b, and team-c all have more GPUs than their preset quota. team-a occupies four

more GPUs than its preset soft quota (four), whereas team-b and team-c each occupy two more GPUs than
their soft quota (two). The ratio of over-quota GPUs allocated is equal to that of their preset quota. This is
because the system used the preset quota as a reference of priority and provisioned accordingly when multiple
teams request more GPUs, exceeding their quota. Such automatic load balancing provides fairness and
prioritization when enterprise data science teams are actively engaged in AI model development and
production.

The results of this testing scenario show the following:

• The system starts to de-queue the workloads of other teams.

• The order of the dequeuing is decided according to fairness algorithms, such that team-b and team-c get

the same amount of over-quota GPUs (since they have a similar quota), and team-a gets a double

amount of GPUs since their quota is two times higher than the quota of team-b and team-c.

• All the allocation is done automatically.

Therefore, the system should stabilize on the following states:

Project GPUs allocated Comment

team-a 8/4 Four GPUs over the quota. Empty
queue.

team-b 4/2 Two GPUs over the quota. One
workload queued.

402

Project GPUs allocated Comment

team-c 4/2 Two GPUs over the quota. One
workload queued.

team-d 0/8 Not using GPUs at all, no queued
workloads.

The following figure shows the GPU allocation per project over time in the Run:AI Analytics dashboard for the
sections Achieving High Cluster Utilization with Over-Quota GPU Allocation, Basic Resource Allocation
Fairness, and Over-Quota Fairness. Each line in the figure indicates the number of GPUs provisioned for a
given data science team at any time. We can see that the system dynamically allocates GPUs according to
workloads submitted. This allows teams to go over quota when there are available GPUs in the cluster, and
then preempt jobs according to fairness, before finally reaching a stable state for all four teams.

Saving Data to a Trident-Provisioned PersistentVolume

NetApp Trident is a fully supported open source project designed to help you meet the
sophisticated persistence demands of your containerized applications. You can read and
write data to a Trident-provisioned Kubernetes PersistentVolume (PV) with the added
benefit of data tiering, encryption, NetApp Snapshot technology, compliance, and high
performance offered by NetApp ONTAP data management software.

Reusing PVCs in an Existing Namespace

For larger AI projects, it might be more efficient for different containers to read and write data to the same
Kubernetes PV. To reuse a Kubernetes Persistent Volume Claim (PVC), the user must have already created a
PVC. See the NetApp Trident documentation for details on creating a PVC. Here is an example of reusing an
existing PVC:

403

https://netapp-trident.readthedocs.io/

$ runai submit pvc-test -p team-a --pvc test:/tmp/pvc1mount -i gcr.io/run-

ai-demo/quickstart -g 1

Run the following command to see the status of job pvc-test for project team-a:

$ runai get pvc-test -p team-a

You should see the PV /tmp/pvc1mount mounted to team-a job pvc-test. In this way, multiple containers
can read from the same volume, which is useful when there are multiple competing models in development or
in production. Data scientists can build an ensemble of models and then combine prediction results by majority
voting or other techniques.

Use the following to access the container shell:

$ runai bash pvc-test -p team-a

You can then check the mounted volume and access your data within the container.

This capability of reusing PVCs works with NetApp FlexVol volumes and NetApp ONTAP FlexGroup volumes,
enabling data engineers more flexible and robust data management options to leverage your data fabric
powered by NetApp.

Conclusion

NetApp and Run:AI have partnered in this technical report to demonstrate the unique
capabilities of the NetApp ONTAP AI solution together with the Run:AI Platform for
simplifying orchestration of AI workloads. The preceding steps provide a reference
architecture to streamline the process of data pipelines and workload orchestration for
deep learning. Customers looking to implement these solutions are encouraged to reach
out to NetApp and Run:AI for more information.

Testing Details for Section 4.8

This section contains the testing details for the section Achieving High Cluster Utilization
with Over-Quota GPU Allocation.

Submit jobs in the following order:

Project Image # GPUs Total Comment

team-a Jupyter 1 1/4 –

team-a NetApp 1 2/4 –

team-a Run:AI 2 4/4 Using all their quota

team-b Run:AI 0.6 0.6/2 Fractional GPU

404

Project Image # GPUs Total Comment

team-b Run:AI 0.4 1/2 Fractional GPU

team-b NetApp 1 2/2 –

team-b NetApp 2 4/2 Two over quota

team-c Run:AI 0.5 0.5/2 Fractional GPU

team-c Run:AI 0.3 0.8/2 Fractional GPU

team-c Run:AI 0.2 1/2 Fractional GPU

team-c NetApp 2 3/2 One over quota

team-c NetApp 1 4/2 Two over quota

team-d NetApp 4 4/8 Using half of their
quota

Command structure:

$ runai submit <job-name> -p <project-name> -g <#GPUs> -i <image-name>

Actual command sequence used in testing:

$ runai submit a-1-1-jupyter -i jupyter/base-notebook -g 1 \

 --interactive --service-type=ingress --port 8888 \

 --args="--NotebookApp.base_url=team-a-test-ingress" --command=start

-notebook.sh -p team-a

$ runai submit a-1-g -i gcr.io/run-ai-demo/quickstart -g 1 -p team-a

$ runai submit a-2-gg -i gcr.io/run-ai-demo/quickstart -g 2 -p team-a

$ runai submit b-1-g06 -i gcr.io/run-ai-demo/quickstart -g 0.6

--interactive -p team-b

$ runai submit b-2-g04 -i gcr.io/run-ai-demo/quickstart -g 0.4

--interactive -p team-b

$ runai submit b-3-g -i gcr.io/run-ai-demo/quickstart -g 1 -p team-b

$ runai submit b-4-gg -i gcr.io/run-ai-demo/quickstart -g 2 -p team-b

$ runai submit c-1-g05 -i gcr.io/run-ai-demo/quickstart -g 0.5

--interactive -p team-c

$ runai submit c-2-g03 -i gcr.io/run-ai-demo/quickstart -g 0.3

--interactive -p team-c

$ runai submit c-3-g02 -i gcr.io/run-ai-demo/quickstart -g 0.2

--interactive -p team-c

$ runai submit c-4-gg -i gcr.io/run-ai-demo/quickstart -g 2 -p team-c

$ runai submit c-5-g -i gcr.io/run-ai-demo/quickstart -g 1 -p team-c

$ runai submit d-1-gggg -i gcr.io/run-ai-demo/quickstart -g 4 -p team-d

At this point, you should have the following states:

405

Project GPUs Allocated Workloads Queued

team-a 4/4 (soft quota/actual allocation) None

team-b 4/2 None

team-c 4/2 None

team-d 4/8 None

See the section Achieving High Cluster Utilization with Over-uota GPU Allocation for discussions on the
proceeding testing scenario.

Testing Details for Section 4.9

This section contains testing details for the section Basic Resource Allocation Fairness.

Submit jobs in the following order:

Project # GPUs Total Comment

team-d 2 6/8 Team-b/c workload
pauses and moves to

pending.

team-d 2 8/8 Other team (b/c)
workloads pause and

move to pending.

See the following executed command sequence:

$ runai submit d-2-gg -i gcr.io/run-ai-demo/quickstart -g 2 -p team-d$

runai submit d-3-gg -i gcr.io/run-ai-demo/quickstart -g 2 -p team-d

At this point, you should have the following states:

Project GPUs Allocated Workloads Queued

team-a 4/4 None

team-b 2/2 None

team-c 2/2 None

team-d 8/8 None

See the section Basic Resource Allocation Fairness for a discussion on the proceeding testing scenario.

Testing Details for Section 4.10

This section contains testing details for the section Over-Quota Fairness.

Submit jobs in the following order for team-a, team-b, and team-c:

406

Project # GPUs Total Comment

team-a 2 4/4 1 workload queued

team-a 2 4/4 2 workloads queued

team-b 2 2/2 2 workloads queued

team-c 2 2/2 2 workloads queued

See the following executed command sequence:

$ runai submit a-3-gg -i gcr.io/run-ai-demo/quickstart -g 2 -p team-a$

runai submit a-4-gg -i gcr.io/run-ai-demo/quickstart -g 2 -p team-a$ runai

submit b-5-gg -i gcr.io/run-ai-demo/quickstart -g 2 -p team-b$ runai

submit c-6-gg -i gcr.io/run-ai-demo/quickstart -g 2 -p team-c

At this point, you should have the following states:

Project GPUs Allocated Workloads Queued

team-a 4/4 Two workloads asking for GPUs
two each

team-b 2/2 Two workloads asking for two
GPUs each

team-c 2/2 Two workloads asking for two
GPUs each

team-d 8/8 None

Next, delete all the workloads for team-d:

$ runai delete -p team-d d-1-gggg d-2-gg d-3-gg

See the section Over-Quota Fairness, for discussions on the proceeding testing scenario.

Where to Find Additional Information

To learn more about the information that is described in this document, see the following
resources:

• NVIDIA DGX Systems

◦ NVIDIA DGX-1 System
https://www.nvidia.com/en-us/data-center/dgx-1/

◦ NVIDIA V100 Tensor Core GPU
https://www.nvidia.com/en-us/data-center/tesla-v100/

◦ NVIDIA NGC
https://www.nvidia.com/en-us/gpu-cloud/

407

https://www.nvidia.com/en-us/data-center/dgx-1/
https://www.nvidia.com/en-us/data-center/tesla-v100/
https://www.nvidia.com/en-us/gpu-cloud/

• Run:AI container orchestration solution

◦ Run:AI product introduction
https://docs.run.ai/home/components/

◦ Run:AI installation documentation
https://docs.run.ai/Administrator/Cluster-Setup/Installing-Run-AI-on-an-on-premise-Kubernetes-Cluster/
https://docs.run.ai/Administrator/Researcher-Setup/Installing-the-Run-AI-Command-Line-Interface/

◦ Submitting jobs in Run:AI CLI
https://docs.run.ai/Researcher/Walkthroughs/Walkthrough-Launch-Unattended-Training-Workloads-/
https://docs.run.ai/Researcher/Walkthroughs/Walkthrough-Start-and-Use-Interactive-Build-Workloads-/

◦ Allocating GPU fractions in Run:AI CLI
https://docs.run.ai/Researcher/Walkthroughs/Walkthrough-Using-GPU-Fractions/

• NetApp AI Control Plane

◦ Technical report
https://www.netapp.com/us/media/tr-4798.pdf

◦ Short-form demo
https://youtu.be/gfr_sO27Rvo

◦ GitHub repository
https://github.com/NetApp/kubeflow_jupyter_pipeline

• NetApp AFF systems

◦ NetApp AFF A-Series Datasheet
https://www.netapp.com/us/media/ds-3582.pdf

◦ NetApp Flash Advantage for All Flash FAS
https://www.netapp.com/us/media/ds-3733.pdf

◦ ONTAP 9 Information Library
http://mysupport.netapp.com/documentation/productlibrary/index.html?productID=62286

◦ NetApp ONTAP FlexGroup Volumes technical report
https://www.netapp.com/us/media/tr-4557.pdf

• NetApp ONTAP AI

◦ ONTAP AI with DGX-1 and Cisco Networking Design Guide
https://www.netapp.com/us/media/nva-1121-design.pdf

◦ ONTAP AI with DGX-1 and Cisco Networking Deployment Guide
https://www.netapp.com/us/media/nva-1121-deploy.pdf

◦ ONTAP AI with DGX-1 and Mellanox Networking Design Guide
http://www.netapp.com/us/media/nva-1138-design.pdf

◦ ONTAP AI with DGX-2 Design Guide
https://www.netapp.com/us/media/nva-1135-design.pdf

TR-4799-DESIGN: NetApp ONTAP AI reference architecture for autonomous driving
workloads

David Arnette and Sung-Han Lin, NetApp

The NVIDIA DGX family of systems is the world’s first integrated artificial intelligence (AI)
platform that is purpose-built for enterprise AI. NetApp AFF storage systems deliver

408

https://docs.run.ai/home/components/
https://docs.run.ai/Administrator/Cluster-Setup/Installing-Run-AI-on-an-on-premise-Kubernetes-Cluster/
https://docs.run.ai/Administrator/Researcher-Setup/Installing-the-Run-AI-Command-Line-Interface/
https://docs.run.ai/Researcher/Walkthroughs/Walkthrough-Launch-Unattended-Training-Workloads-/
https://docs.run.ai/Researcher/Walkthroughs/Walkthrough-Start-and-Use-Interactive-Build-Workloads-/
https://docs.run.ai/Researcher/Walkthroughs/Walkthrough-Using-GPU-Fractions/
https://www.netapp.com/us/media/tr-4798.pdf
https://youtu.be/gfr_sO27Rvo
https://github.com/NetApp/kubeflow_jupyter_pipeline
https://www.netapp.com/us/media/ds-3582.pdf
https://www.netapp.com/us/media/ds-3733.pdf
http://mysupport.netapp.com/documentation/productlibrary/index.html?productID=62286
https://www.netapp.com/us/media/tr-4557.pdf
https://www.netapp.com/us/media/nva-1121-design.pdf
https://www.netapp.com/us/media/nva-1121-deploy.pdf
http://www.netapp.com/us/media/nva-1138-design.pdf
https://www.netapp.com/us/media/nva-1135-design.pdf

extreme performance and industry-leading hybrid cloud data-management capabilities.
NetApp and NVIDIA have partnered to create the NetApp ONTAP AI reference
architecture to offer customers a turnkey solution for supporting AI and machine learning
(ML) workloads with enterprise-class performance, reliability, and support.

TR-4799-DESIGN: NetApp ONTAP AI reference architecture for autonomous driving workloads

TR-4811: NetApp ONTAP AI reference architecture for healthcare: Diagnostic
imaging - Solution design

Rick Huang, Sung-Han Lin, Sathish Thyagarajan, NetApp
Jacci Cenci, NVIDIA

This reference architecture offers guidelines for customers building artificial intelligence
(AI) infrastructure using NVIDIA DGX-2 systems and NetApp AFF storage for healthcare
use cases. It includes information about the high-level workflows used in the development
of deep learning (DL) models for medical diagnostic imaging, validated test cases, and
results. It also includes sizing recommendations for customer deployments.

TR-4811: NetApp ONTAP AI reference architecture for healthcare: Diagnostic imaging - Solution design

TR-4807: NetApp ONTAP AI reference architecture for financial services workloads
- Solution design

Karthikeyan Nagalingam, Sung-Han Lin, NetApp
Jacci Cenci, NVIDIA

This reference architecture offers guidelines for customers who are building artificial
intelligence infrastructure using NVIDIA DGX-1 systems and NetApp AFF storage for
financial sector use cases. It includes information about the high-level workflows used in
the development of deep learning models for financial services test cases and results. It
also includes sizing recommendations for customer deployments.

TR-4807: NetApp ONTAP AI reference architecture for financial services workloads - Solution design

Generative AI and NetApp Value

The demand for generative artificial intelligence (AI) is driving disruption across
industries, enhancing business creativity and product innovation.

Author: Sathish Thyagarajan, NetApp

Abstract

Many organizations are using generative AI to build new product features, improve engineering productivity
and prototype AI powered applications that deliver better results and consumer experiences. Generative AI
such as Generative Pre-trained Transformers (GPT) use neural networks to create new content, as diverse as
text, audio, and video. Given the extreme scale and massive datasets involved with large language models
(LLMs), it is crucial to architect a robust AI infrastructure that takes advantage of the compelling data storage
features of on-premises, hybrid and multicloud deployment options and reduce risks associated with data

409

https://www.netapp.com/pdf.html?item=/media/8554-tr4799designpdf.pdf
https://www.netapp.com/pdf.html?item=/media/7395-tr4811.pdf
https://www.netapp.com/pdf.html?item=/media/17205-tr4807pdf.pdf

mobility, data protection and governance before companies can design AI solutions. This paper describes
these considerations and the corresponding NetApp® AI capabilities that enable seamless data management
and data movement across the AI data pipeline for training, retraining, fine-tuning, and inferencing generative
AI models.

Executive Summary

Most recently after the launch of ChatGPT, a spin-off of GPT-3 in November 2022, new AI tools used to
generate text, code, image, or even therapeutic proteins in response to user prompts have gained significant
fame. This indicates users can make a request using natural language and AI will interpret and generate text,
such as news articles or product descriptions that reflect user request or produce code, music, speech, visual
effects, and 3D assets using algorithms trained on already existing data. As a result, phrases like Stable
Diffusion, Hallucinations, Prompt Engineering and Value Alignment are rapidly emerging in the design of AI
systems. These self-supervised or semi-supervised machine learning (ML) models are becoming widely
available as pre-trained foundation models (FM) via cloud service providers and other AI firmsvendors, which
are being adopted by various business establishments across industries for a wide range of downstream NLP
(natural language processing) tasks. As asserted by research analyst firms like McKinsey – “Generative AI’s
impact on productivity could add trillions of dollars in value to the global economy.” While companies are
reimagining AI as thought partners to humans and FMs are broadening simultaneously to what businesses and
institutions can do with generative AI, the opportunities to manage massive volumes of data will continue to
grow. This document presents introductory information on generative AI and the design concepts in relation to
NetApp capabilities that bring value to NetApp customers, both on-premises and hybrid or multicloud
environments.

So, what’s in it for customers to use NetApp in their AI environments? NetApp helps organizations meet
the complexities created by rapid data and cloud growth, multi-cloud management, and the adoption of next-
generation technologies, such as AI. NetApp has combined various capabilities into intelligent data
management software and storage infrastructure that have been well balanced with high-performance
optimized for AI workloads. Generative AI solutions like LLMs need to read and process their source datasets
from storage into memory numerous times to foster intelligence. NetApp has been a leader in data mobility,
data governance and data security technologies across the edge-to-core-to-cloud ecosystem, serving
enterprise customers build at-scale AI solutions. NetApp, with a strong network of partners has been helping
chief data officers, AI engineers, enterprise architects and data scientists in the design of a free-flowing data
pipeline for data preparation, data protection, and strategic data management responsibilities of AI model
training and inferencing, optimizing the performance and scalability of the AI/ML lifecycle. NetApp data
technologies and capabilities such as NetApp® ONTAP AI® for deep learning data pipeline, NetApp®
SnapMirror® for transporting data seamlessly and efficiently between storage endpoints, and NetApp®
FlexCache® for real-time rendering when the data flow shifts from batch to real-time and data engineering
happens at prompt time, bring value to the deployment of real-time Generative AI models. As enterprises of all
types embrace new AI tools, they face data challenges from the edge to the data center to the cloud that
demand for scalable, responsible and explainable AI solutions. As the data authority on hybrid and multi cloud,
NetApp is committed to building a network of partners and joint solutions that can help with all aspects of
constructing a data pipeline and data lakes for generative AI model training (pre-training), fine-tuning, context-
based inferencing and model decay monitoring of LLMs.

What is Generative AI?

Generative AI is changing how we create content, generate new design concepts, and explore novel
compositions. It illustrates neural network frameworks like Generative Adversarial Network (GAN), Variational
Autoencoders (VAE), and Generative Pre-Trained Transformers (GPT), which can generate new content like
text, code, images, audio, video, and synthetic data. Transformer-based models like OpenAI’s Chat-GPT,
Google’s Bard, Hugging Face’s BLOOM, and Meta’s LLaMA have emerged as the foundational technology
underpinning many advances in large language models. Likewise, OpenAI’s Dall-E, Meta’s CM3leon, and
Google’s Imagen are examples for text-to-image diffusion models which offer customers an unprecedented
degree of photorealism to create new, complex images from scratch or edit existing images to generate high-

410

quality context-aware images using dataset augmentation and text-to-image synthesis linking textual and
visual semantics. Digital artists are starting to apply a combination of rendering technologies like NeRF (Neural
Radiance Field) with generative AI to convert static 2D images into immersive 3D scenes. In general, LLMs are
broadly characterized by four parameters: (1) Size of the model (typically in billions of parameters); (2) Size of
the training dataset; (3) Cost of training, and (4) Model performance after training. LLMs also fall mainly into
three transformer architectures. (i) Encoder-only models. E.g. BERT (Google, 2018); (ii) Encoder-Decoder E.g.
BART (Meta, 2020) and (iii) Decoder-only models. E.g. LLaMA (Meta, 2023), PaLM-E (Google, 2023).
Depending on the business requirement, irrespective of which architecture a company chooses the number of
model parameters (N) and the number of tokens (D) in the training dataset generally determine the baseline
cost of training (pre-training) or fine-tuning an LLM.

Enterprise Use Cases and Downstream NLP Tasks

Businesses across industries are uncovering more and more potential for AI to extract and produce new forms
of value from existing data for business operations, sales, marketing, and legal services. According to IDC
(International Data Corporation) market intelligence on global generative AI use cases and investments,
knowledge management in software development and product design is to be the most impacted, followed by
storyline creation for marketing and code generation for developers. In healthcare, clinical research
organizations are breaking new ground in medicine. Pretrained models like ProteinBERT incorporate Gene
Ontology (GO) annotations to rapidly design protein structures for medical drugs, representing a significant
milestone in drug discovery, bioinformatics, and molecular biology. Biotech firms have initiated human trials for
generative AI-discovered medicine, that aims to treat diseases like pulmonary fibrosis (IPF), a lung disease
that causes irreversible scarring of lung tissue.

Figure 1: Use cases driving Generative AI
image::gen-ai-image1.png["Figure 1: Use cases driving Generative AI"]

Increases in automation adoption driven by generative AI is also changing the supply & demand of work
activities for many occupations. As per McKinsey the US labor market (diagram below) has gone through a
rapid transition, which may only continue when factoring in the impact of AI.

Source: McKinsey & Company
image::gen-ai-image3.png["Figure 2: Source: McKinsey & Company"]

Role of storage in generative AI

LLMs rely largely on deep learning, GPUs, and compute. However, when GPU buffer fills up, the data needs to
be written quickly to storage. While some AI models are small enough to execute in memory, LLMs require
high IOPS and high throughput storage to provide fast access to large datasets, especially if it involves billions
of tokens or millions of images. For a typical GPU memory requirement of an LLM, the memory needed to train
a model with 1 billion parameters could go up to 80GB @32-bit full precision. In which case, Meta’s LLaMA 2, a
family of LLMs ranging in scale from 7 billion to 70 billion parameters, may require 70x80, approx. 5600GB or
5.6TB of GPU RAM. Furthermore, the amount of memory you need is directly proportional to the maximum
number of tokens you want to generate. For example, if you want to generate outputs of up to 512 tokens
(about 380 words), you need "512MB". It may seem inconsequential – but, if you want to run bigger batches it
starts to add up. Therefore, making it very expensive for organizations training or fine-tuning LLMs in memory,
thus making storage a cornerstone for generative AI.

Three primary approaches to LLMs

For most businesses, based on current trends, the approach to deploying LLMs can be condensed into 3 basic
scenarios. As described in a recent “Harvard Business Review” article: (1) Training (pre-training) an LLM from
scratch – costly and requires expert AI/ML skills; (2) Fine-tuning a foundation model with enterprise data –
complex, yet feasible; (3) Using retrieval-augmented generation (RAG) to query document repositories, APIs
and vector databases that contain company data. Each of these has tradeoffs between the effort, iteration

411

https://github.com/ray-project/llm-numbers#1-mb-gpu-memory-required-for-1-token-of-output-with-a-13b-parameter-model
https://hbr.org/2023/07/how-to-train-generative-ai-using-your-companys-data

speed, cost-efficiency and model accuracy in their implementations, used to solving different types of problems
(diagram below).

Figure 3: Problem Types
image::gen-ai-image4.png[Figure 3: Problem Types]

Foundation Models

A foundation model (FM) also known as base model is a large AI model (LLM) trained on vast quantities of
unlabeled data, using self-supervision at scale, generally adapted for a wide range of downstream NLP tasks.
Since the training data is not labelled by humans, the model emerges rather than being explicitly encoded. This
means the model can generate stories or a narrative of its own without being explicitly programmed to do so.
Hence an important characteristic of FM is homogenization, which means the same method is used in many
domains. However, with personalization and fine-tuning techniques, FMs integrated into products appearing
these days are not only good at generating text, text-to-images, and text-to-code, but also for explaining
domain specific tasks or debugging code. For instance, FMs like OpenAI’s Codex or Meta’s Code Llama can
generate code in multiple programming languages based on natural language descriptions of a programming
task. These models are proficient in over a dozen programming languages including Python, C#, JavaScript,
Perl, Ruby, and SQL. They understand the user’s intent and generate specific code that accomplishes the
desired task useful for software development, code optimization, and automation of programming tasks.

Fine-tuning, domain-specificity, and retraining

One of the common practices with LLM deployment following data preparation and data pre-processing is to
select a pre-trained model that has been trained on a large and diverse dataset. In the context of fine-tuning
this can be an open-source large language model such as "Meta’s Llama 2" trained on 70 billion parameters
and 2 trillion tokens. Once the pre-trained model is selected, the next step is to fine-tune it on the domain-
specific data. This involves adjusting the model’s parameters and training it on the new data to adapt to a
specific domain and task. For example, BloombergGPT, a proprietary LLM trained on a wide range of financial
data serving the financial industry. Domain-specific models designed and trained for a specific task generally
have higher accuracy and performance within their scope, but low transferability across other tasks or
domains. When business environment and data change over a period, the prediction accuracy of the FM could
begin to decline when compared to their performance during testing. This is when retraining or fine-tuning the
model becomes crucial. Model retraining in traditional AI/ML refers to updating a deployed ML model with new
data, generally performed to eliminate two types of drifts that occur. (1) Concept drift – when the link between
the input variables and the target variables changes over time, since the description of what we want to predict
changes, the model can produce inaccurate predictions. (2) Data drift – occurs when the characteristics of the
input data change, like changes in customer habits or behavior over time and therefore the model’s inability to
respond to such changes. In a similar fashion, retraining applies to FMs/LLMs, however it can be a lot costlier
(in $millions), therefore not something most organizations might consider. It is under active research, still
emerging in the realm of LLMOps. So instead of re-training, when model decay occurs in fine-tuned FMs,
businesses may opt for fine-tuning again (lot cheaper) with a newer dataset. For a cost perspective, listed
below is an example of a model-price table from Azure-OpenAI Services. For each task category, customers
can fine-tune and evaluate models on specific datasets.

Source: Microsoft Azure
image::gen-ai-image5.png[Source: Microsoft Azure]

Prompt engineering and Inferencing

Prompt engineering refers to the effective methods of how to communicate with LLMs to perform desired tasks
without updating the model weights. As important as AI model training and fine-tuning is to NLP applications,
inferencing is equally important, where the trained models respond to user prompts. The system requirements
for inferencing are generally much more on the read performance of the AI storage system that feeds data
from LLMs to the GPUs as it needs to be able to apply billions of stored model parameters to produce the best

412

https://ai.meta.com/llama/

response.

LLMOps, Model Monitoring and Vectorstores

Like traditional Machine Learning Ops (MLOps), Large Language Model Operations (LLMOps) also require the
collaboration of data scientists and DevOps engineers with tools and best practices for the management of
LLMs in production environments. However, the workflow and tech stack for LLMs could vary in some ways.
For instance, LLM pipelines built using frameworks like LangChain string together multiple LLM API calls to
external embedding endpoints such as vectorstores or vector databases. The use of an embedding endpoint
and vectorstore for downstream connectors (like to a vector database) represents a significant development in
how data is stored and accessed. As opposed to traditional ML models that are developed from scratch, LLMs
often rely on transfer learning since these models start with FMs that are fine-tuned with new data to improve
performance in a more specific domain. Therefore, it is crucial LLMOps deliver the capabilities of risk
management and model decay monitoring.

Risks and Ethics in the age of Generative AI

“ChatGPT – It’s slick but still spews nonsense.”– MIT Tech Review. Garbage in–garbage out, has always been
the challenging case with computing. The only difference with generative AI is that it excels at making the
garbage highly credible, leading to inaccurate outcomes. LLMs are prone to invent facts to fit the narrative it’s
building. Therefore, companies that see generative AI as a great opportunity to lower their costs with AI
equivalents need to efficiently detect deep fakes, reduce biases, and lower risks to keep the systems honest
and ethical. A free-flowing data pipeline with a robust AI infrastructure that supports data mobility, data quality,
data governance and data protection via end-to-end encryption and AI guardrails is eminent in the design of
responsible and explainable generative AI models.

Customer scenario and NetApp

Figure 3: Machine Learning/Large Language Model Workflow
image::gen-ai-image6.png[Figure 3: Machine Learning/Large Language Model Workflow]

Are we training or fine-tuning? The question of whether to (a) train an LLM model from scratch, fine-tune a
pre-trained FM, or use RAG to retrieve data from document repositories outside a foundation model and
augment prompts, and (b) either by leveraging open-source LLMs (E.g., Llama 2) or proprietary FMs (E.g.,
ChatGPT, Bard, AWS Bedrock) is a strategic decision for organizations. Each approach has a tradeoff between
cost-efficiency, data gravity, operations, model accuracy and management of LLMs.

NetApp as a company embraces AI internally in its work culture and in its approach to product design and
engineering efforts. For instance, NetApp’s autonomous ransomware protection is built using AI and machine
learning. It provides early detection of file system anomalies to help identify threats before they impact
operations. Second, NetApp uses predictive AI for its business operations like sales and inventory forecasting
and chatbots to assist customers in call center product support services, tech specs, warranty, service
manuals, and more. Third, NetApp brings customer value to the AI data pipeline and ML/LLM workflow via
products and solutions serving customers building predictive AI solutions such as demand forecasting, medical
imaging, sentiment analysis, and generative AI solutions like GANs for industrial images anomaly detection in
manufacturing sector and anti-money laundering and fraud detection in banking & financial services with
NetApp products and capabilities like NetApp® ONTAP AI®, NetApp® SnapMirror® , and NetApp®
FlexCache®.

NetApp capabilities

The movement and management of data in generative AI applications such as chatbot, code generation,
image generation or genome model expression can span across the edge, private data center, and hybrid
multicloud ecosystem. For instance, a real-time AI-bot helping a passenger upgrade his or her airline ticket to
business class from an end-user app exposed via APIs of pre-trained models such as ChatGPT cannot

413

achieve that task by itself since the passenger information is not publicly available on the internet. The API
requires access to the passenger’s personal info and ticket info from the airline carrier which may exist in a
hybrid or multicloud ecosystem. A similar scenario might apply to scientists sharing a drug molecule and
patient data via an end-user application that uses LLMs to accomplish clinical trials across drug discovery
involving one-to-many bio-medical research institutions. Sensitive data that gets passed to FMs or LLMs may
include PII, financial information, health information, biometric data, location data, communications data, online
behavior, and legal information. In such an event of real-time rendering, prompt execution and edge
inferencing there is data movement from end user app to storage endpoints via open source or proprietary
LLM models to a data center on premises or public cloud platforms. In all such scenarios, data mobility and
data protection are crucial for the AI operations involving LLMs which rely on large training datasets and
movement of such data.

Figure 4: Generative AI - LLM Data Pipeline
image::gen-ai-image7.png[Figure 4: Generative AI-LLM data pipeline]

NetApp’s portfolio of storage infrastructure, data and cloud services is powered by intelligent data management
software.

Data Preparation: The first pillar of the LLM tech stack is largely untouched from the older traditional ML stack.
Data preprocessing in AI pipeline is necessary to normalize and cleanse the data before training or fine-tuning.
This step includes connectors to ingest data wherever it may reside in the form of an Amazon S3 tier or in on-
premises storage systems such as a file store or an object store like NetApp StorageGRID.

NetApp® ONTAP is the foundational technology that underpins NetApp’s critical storage solutions in the data
center and the cloud. ONTAP includes various data management and protection features and capabilities,
including automatic ransomware protection against cyber-attacks, built-in data transport features, and storage
efficiency capabilities for a range of architectures from on-premises, hybrid, multiclouds in NAS, SAN, object,
and software defined storage (SDS) situations of LLM deployments.

NetApp® ONTAP AI® for deep learning model training. NetApp® ONTAP® supports NVIDIA GPU Direct
Storage™ with the use of NFS over RDMA for NetApp customers with ONTAP storage cluster and NVIDIA
DGX compute nodes . It offers a cost-efficient performance to read and process source datasets from storage
into memory numerous times to foster intelligence, enabling organizations with training, fine-tuning, and scaling
access to LLMs.

NetApp® FlexCache® is a remote caching capability that simplifies file distribution and caches only the
actively read data. This can be useful for LLM training, re-training, and fine tuning, bringing value to customers
with business requirements like real-time rendering and LLM inferencing.

NetApp® SnapMirror is an ONTAP feature that replicates volume snapshots between any two ONTAP
systems. This feature optimally transfers data at the edge to your on-premises data center or to the cloud.
SnapMirror can be used for moving data securely and efficiently between on-premises and hyperscaler clouds,
when customers want to develop generative AI in clouds with RAG containing enterprise data. It efficiently
transfers only changes, saving bandwidth and speeding replication, thus bringing essential data mobility
features during the operations of training, re-training, and fine-tuning of FMs or LLMs.

NetApp® SnapLock brings immutable disk capability on ONTAP-based storage systems for dataset
versioning. The microcore architecture is designed to protect customer data with FPolicy™ Zero Trust engine.
NetApp ensures customer data is available by resisting denial-of-service (DoS) attacks when an attacker
interacts with an LLM in a particularly resource-consuming way.

NetApp® Cloud Data Sense helps identify, map, and classify personal information present in enterprise
datasets, enact policies, meet privacy requirements on premises or in the cloud, help improve security posture
and comply with regulations.

414

NetApp® BlueXP™ classification, powered by Cloud Data Sense. Customers can automatically scan,
analyze, categorize, and act on data across data estate, detect security risks, optimize storage, and accelerate
cloud deployments. It combines storage and data services via its unified control plane, Customers can use
GPU instances for computation, and hybrid multicloud environments for cold storage tiering and for archives
and backups.

NetApp File-Object Duality. NetApp ONTAP enables dual-protocol access for NFS and S3. With this solution,
customers can access NFS data from Amazon AWS SageMaker notebooks via S3 buckets from NetApp Cloud
Volumes ONTAP. This offers flexibility to customers who need easy access to heterogenous data sources with
the ability to share data from both NFS and S3. For e.g., fine-tuning FMs like Meta’s Llama 2 text-generation
models on SageMaker with access to file-object buckets.

NetApp® Cloud Sync service offers a simple and secure way to migrate data to any target, in the cloud or on-
premises. Cloud Sync seamlessly transfers and synchronizes data between on-premises or cloud storage,
NAS, and object stores.

NetApp XCP is a client software that enables fast and reliable any-to-NetApp and NetApp-to-NetApp data
migrations. XCP also provides the capability of moving bulk data efficiently from Hadoop HDFS file systems
into ONTAP NFS, S3 or StorageGRID and XCP file analytics provides visibility into the file system.

NetApp® DataOps Toolkit is a Python library that makes it simple for data scientists, DevOps, and data
engineers to perform various data management tasks, such as near-instantaneously provisioning, cloning, or
snapshotting a data volume or JupyterLab workspace that are backed by high-performance scale-out NetApp
storage.

NetApp’s product security. LLMs may inadvertently reveal confidential data in their responses, thus a
concern to CISOs who study the vulnerabilities associated with AI applications leveraging LLMs. As outlined by
OWASP (Open Worldwide Application Security Project), security issues such as data poisoning, data leakage,
denial of service and prompt injections within LLMs can impact businesses from data exposure to unauthorized
access serving attackers. Data storage requirements should include integrity checks and immutable snapshots
for structured, semi-structured, and unstructured data. NetApp Snapshots and SnapLock are being used for
dataset versioning. It brings strict role-based access control (RBAC), as well as secure protocols, and industry
standard encryption for securing both data at rest and in transit. Cloud Insights and Cloud Data Sense together
offer capabilities to help you forensically identify the source of the threat and prioritize which data to restore.

ONTAP AI with DGX BasePOD

NetApp® ONTAP® AI reference architecture with NVIDIA DGX BasePOD is a scalable architecture for
machine learning (ML) and artificial intelligence (AI) workloads. For the critical training phase of LLMs, data is
typically copied from the data storage into the training cluster at regular intervals. The servers that are used in
this phase use GPUs to parallelize computations, creating a tremendous appetite for data. Meeting the raw I/O
bandwidth needs is crucial for maintaining high GPU utilization.

ONTAP AI with NVIDIA AI Enterprise

NVIDIA AI Enterprise is an end-to-end, cloud-native suite of AI and data analytics software that is optimized,
certified, and supported by NVIDIA to run on VMware vSphere with NVIDIA-Certified Systems. This software
facilitates the simple and rapid deployment, management, and scaling of AI workloads in the modern hybrid
cloud environment. NVIDIA AI Enterprise, powered by NetApp and VMware, delivers enterprise-class AI
workload and data management in a simplified, familiar package.

1P Cloud Platforms

Fully managed cloud storage offerings are available natively on Microsoft Azure as Azure NetApp Files (ANF),
on AWS as Amazon FSx for NetApp ONTAP (FSxN), and on Google as Google Cloud NetApp Volumes

415

(GNCV). 1P is a managed, high-performance file system that enables customers to run highly available AI
workloads with improved data security in public clouds, for fine-tuning LLMs/FMs with cloud native ML
platforms like AWS SageMaker, Azure-OpenAI Services, and Google’s Vertex AI.

NetApp Partner Solution Suite

In addition to its core data products, technologies and capabilities, NetApp also collaborates closely with a
robust network of AI partners to bring added value to customers.

NVIDIA Guardrails in AI systems serve as safeguards to ensure the ethical and responsible use of AI
technologies. AI developers can choose to define the behavior of LLM-powered applications on specific topics
and prevent them from engaging in discussions on unwanted topics. Guardrails, an open-source toolkit,
provides the ability to connect an LLM to other services, seamlessly and securely for building trustworthy, safe,
and secure LLM conversational systems.

Domino Data Lab provides versatile, enterprise-grade tools for building and productizing Generative AI - fast,
safe, and economical, wherever you are in your AI journey. With Domino’s Enterprise MLOps Platform, data
scientists can use preferred tools and all their data, train and deploy models easily anywhere and manage risk
and cost effectively - all from one control center.

Modzy for Edge AI. NetApp® and Modzy have partnered together to deliver AI at scale to any type of data,
including imagery, audio, text, and tables. Modzy is an MLOps platform for deploying, integrating, and running
AI models, offers data scientists the capabilities of model monitoring, drift detection and explainability, with an
integrated solution for seamless LLM inference.

Run:AI and NetApp have partnered to demonstrate the unique capabilities of the NetApp ONTAP AI solution
with the Run:AI cluster management platform for simplifying orchestration of AI workloads. It automatically
splits and joins GPU resources, designed to scale your data processing pipelines to hundreds of machines with
built-in integration frameworks for Spark, Ray, Dask, and Rapids.

Conclusion

Generative AI can produce effective results only when the model is trained on reams of quality data. While
LLMs have achieved remarkable milestones, it is critical to recognize its limitations, design challenges and
risks associated with data mobility and data quality. LLMs rely on large and disparate training datasets from
heterogenous data sources. Inaccurate outcomes or biased results generated by the models can put both
businesses and consumers in jeopardy. These risks can correspond to constraints for LLMs emerging
potentially from data management challenges associated with data quality, data security, and data mobility.
NetApp helps organizations meet the complexities created by rapid data growth, data mobility, multi-cloud
management, and the adoption of AI. At scale AI infrastructure and efficient data management is crucial to
defining the success of AI applications like generative AI. It is critical customers cover all the deployment
scenarios without compromising on the ability to expand as enterprises need to while maintaining cost-
efficiency, data governance and ethical AI practices in control. NetApp is constantly working to help customers
simplify and accelerate their AI deployments.

TR-4785: AI Deployment with NetApp E-Series and BeeGFS

Nagalakshmi Raju, Daniel Landes, Nathan Swartz, Amine Bennani, NetApp

Artificial intelligence (AI), machine learning (ML), and deep learning (DL) applications
involve large datasets and high computations. To run these workloads successfully, you
need an agile infrastructure that allows you to scale out both storage and compute nodes
seamlessly. This report includes the steps for running an AI training model in a distributed

416

mode, which allows seamless scale-out of compute and storage nodes. The report also
includes various performance metrics to show how a solution combining NetApp E-Series
storage with the BeeGFS parallel file system provides a flexible, cost-effective, and
simple solution for AI workloads.

TR-4785: AI Deployment with NetApp E-Series and BeeGFS

NVA-1150-DESIGN: Quantum StorNext with NetApp E-Series systems design guide

Ryan Rodine, NetApp

This document provides details on how to design a StorNext parallel file system solution
with NetApp E-Series storage systems. This solution covers the NetApp EF280 all-flash
array, the NetApp EF300 all-flash NVMe array, the EF600 all-flash NVMe array, and the
NetApp E5760 hybrid system. It offers performance characterization based on Frametest
benchmarking, a tool that is widely used for testing in the media and entertainment
industry.

NVA-1150-DESIGN: Quantum StorNext with NetApp E-Series systems design guide

NVA-1150-DEPLOY: Quantum StorNext with NetApp E-Series systems deployment
guide

Ryan Rodine, NetApp

This document provides details on how to deploy a StorNext parallel file system solution
with NetApp E-Series storage systems. This solution covers the NetApp EF280 all-flash
array, the NetApp EF300 all-flash NVMe array, the NetApp EF600 all-flash NVMe array,
and the NetApp E5760 hybrid system. It offers performance characterization based on
Frametest benchmarking, a tool that is widely used for testing in the media and
entertainment industry.

NVA-1150-DEPLOY: Quantum StorNext with NetApp E-Series systems deployment guide

417

https://www.netapp.com/pdf.html?item=/media/17040-tr4785pdf.pdf
https://www.netapp.com/pdf.html?item=/media/19426-nva-1150-design.pdf
https://www.netapp.com/pdf.html?item=/media/19429-nva-1150-deploy.pdf

Copyright information

Copyright © 2024 NetApp, Inc. All Rights Reserved. Printed in the U.S. No part of this document covered by
copyright may be reproduced in any form or by any means—graphic, electronic, or mechanical, including
photocopying, recording, taping, or storage in an electronic retrieval system—without prior written permission
of the copyright owner.

Software derived from copyrighted NetApp material is subject to the following license and disclaimer:

THIS SOFTWARE IS PROVIDED BY NETAPP “AS IS” AND WITHOUT ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE, WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL
NETAPP BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

NetApp reserves the right to change any products described herein at any time, and without notice. NetApp
assumes no responsibility or liability arising from the use of products described herein, except as expressly
agreed to in writing by NetApp. The use or purchase of this product does not convey a license under any
patent rights, trademark rights, or any other intellectual property rights of NetApp.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or
pending applications.

LIMITED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set
forth in subparagraph (b)(3) of the Rights in Technical Data -Noncommercial Items at DFARS 252.227-7013
(FEB 2014) and FAR 52.227-19 (DEC 2007).

Data contained herein pertains to a commercial product and/or commercial service (as defined in FAR 2.101)
and is proprietary to NetApp, Inc. All NetApp technical data and computer software provided under this
Agreement is commercial in nature and developed solely at private expense. The U.S. Government has a non-
exclusive, non-transferrable, nonsublicensable, worldwide, limited irrevocable license to use the Data only in
connection with and in support of the U.S. Government contract under which the Data was delivered. Except
as provided herein, the Data may not be used, disclosed, reproduced, modified, performed, or displayed
without the prior written approval of NetApp, Inc. United States Government license rights for the Department
of Defense are limited to those rights identified in DFARS clause 252.227-7015(b) (FEB 2014).

Trademark information

NETAPP, the NETAPP logo, and the marks listed at http://www.netapp.com/TM are trademarks of NetApp, Inc.
Other company and product names may be trademarks of their respective owners.

418

http://www.netapp.com/TM

	Artificial Intelligence : NetApp Solutions
	Table of Contents
	NetApp Artifical Intelligence Solutions
	AI Converged Infrastructures
	Data Pipelines, Data Lakes and Management
	Use Cases

