
Data Pipelines, Data Lakes and
Management
NetApp Solutions
NetApp
July 31, 2024

This PDF was generated from https://docs.netapp.com/us-en/netapp-
solutions/ai/mlops_fsxn_s3_integration.html on July 31, 2024. Always check docs.netapp.com for the
latest.

Table of Contents

Data Pipelines, Data Lakes and Management. 1

AWS FSx for NetApp ONTAP (FSxN) for MLOps . 1

Hybrid Multicloud MLOps with Domino Data Lab and NetApp. 36

NVIDIA AI Enterprise with NetApp and VMware . 51

TR-4851: NetApp StorageGRID data lake for autonomous driving workloads - Solution design 61

Open Source MLOps with NetApp . 61

MLRun Pipeline with Iguazio . 97

TR-4915: Data movement with E-Series and BeeGFS for AI and analytics workflows 124

Vector Database Solution with NetApp . 125

Data Pipelines, Data Lakes and Management

AWS FSx for NetApp ONTAP (FSxN) for MLOps

This section delves into the practical application of AI infrastructure development,

providing an end-to-end walkthrough of constructing an MLOps pipeline using FSxN.

Comprising three comprehensive examples, it guides you to meet your MLOps needs via

this powerful data management platform.

Author(s):

Jian Jian (Ken), Senior Data & Applied Scientist, NetApp

These articles focus on:

1. Part 1 - Integrating AWS FSx for NetApp ONTAP (FSxN) as a private S3 bucket into AWS SageMaker

2. Part 2 - Leveraging AWS FSx for NetApp ONTAP (FSxN) as a Data Source for Model Training in

SageMaker

3. Part 3 - Building A Simplified MLOps Pipeline (CI/CT/CD)

By the end of this section, you will have gained a solid understanding of how to use FSxN to streamline MLOps

processes.

Part 1 - Integrating AWS FSx for NetApp ONTAP (FSxN) as a private S3 bucket into
AWS SageMaker

This section provides a guide on configuring FSxN as a private S3 bucket using AWS

SageMaker.

Author(s):

Jian Jian (Ken), Senior Data & Applied Scientist, NetApp

Introduction

Using SageMaker as an example, this page provides guidance on configuring FSxN as a private S3 bucket.

For more information about FSxN, please take a look at this presentation (Video Link)

User Guide

Server creation

Create a SageMaker Notebook Instance

1. Open AWS console. In the search panel, search SageMaker and click the service Amazon SageMaker.

1

http://youtube.com/watch?v=mFN13R6JuUk

2. Open the Notebook instances under Notebook tab, click the orange button Create notebook instance.

3. In the creation page,

Enter the Notebook instance name

Expand the Network panel

Leave other entries default and select a VPC, Subnet, and Security group(s). (This VPC and Subnet will

be used to create FSxN file system later)

Click the orange button Create notebook instance at the bottom right.

2

Create an FSxN File System

1. Open AWS console. In the search panel, search Fsx and click the service FSx.

3

2. Click Create file system.

3. Select the first card FSx for NetApp ONTAP and click Next.

4

4. In the details configuration page.

a. Select the Standard create option.

b. Enter the File system name and the SSD storage capacity.

5

c. Make sure to use the VPC and subnet same to the SageMaker Notebook instance.

6

d. Enter the Storage virtual machine name and Specify a password for your SVM (storage virtual

machine).

7

e. Leave other entries default and click the orange button Next at the bottom right.

f. Click the orange button Create file system at the bottom right of the review page.

8

5. It may takes about 20-40 minutes to spin up the FSx file system.

Server Configuration

ONTAP Configuration

1. Open the created FSx file system. Please make sure the status is Available.

2. Select the Administration tab and keep the Management endpoint - IP address and ONTAP

administrator username.

9

3. Open the created SageMaker Notebook instance and click Open JupyterLab.

4. In the Jupyter Lab page, open a new Terminal.

10

5. Enter the ssh command ssh <admin user name>@<ONTAP server IP> to login to the FSxN ONTAP file

system. (The user name and IP address are retrieved from the step 2)

Please use the password used when creating the Storage virtual machine.

6. Execute the commands in the following order.

We use fsxn-ontap as the name for the FSxN private S3 bucket name.

Please use the storage virtual machine name for the -vserver argument.

vserver object-store-server create -vserver fsxn-svm-demo -object-store

-server fsx_s3 -is-http-enabled true -is-https-enabled false

vserver object-store-server user create -vserver fsxn-svm-demo -user

s3user

vserver object-store-server group create -name s3group -users s3user

-policies FullAccess

vserver object-store-server bucket create fsxn-ontap -vserver fsxn-svm-

demo -type nas -nas-path /vol1

11

7. Execute the below commands to retrieve the endpoint IP and credentials for FSxN private S3.

network interface show -vserver fsxn-svm-demo -lif nfs_smb_management_1

set adv

vserver object-store-server user show

8. Keep the endpoint IP and credential for future use.

12

Client Configuration

1. In SageMaker Notebook instance, create a new Jupyter notebook.

2. Use the below code as a work around solution to upload files to FSxN private S3 bucket.

For a comprehensive code example please refer to this notebook.

fsxn_demo.ipynb

Setup configurations

-------- Manual configurations --------

seed: int = 77 # Random

seed

bucket_name: str = 'fsxn-ontap' # The bucket

name in ONTAP

aws_access_key_id = '<Your ONTAP bucket key id>' # Please get

this credential from ONTAP

aws_secret_access_key = '<Your ONTAP bucket access key>' # Please get

this credential from ONTAP

fsx_endpoint_ip: str = '<Your FSxN IP address>' # Please get

this IP address from FSXN

-------- Manual configurations --------

Workaround

Permission patch

!mkdir -p vol1

!sudo mount -t nfs $fsx_endpoint_ip:/vol1 /home/ec2-user/SageMaker/vol1

!sudo chmod 777 /home/ec2-user/SageMaker/vol1

Authentication for FSxN as a Private S3 Bucket

!aws configure set aws_access_key_id $aws_access_key_id

13

https://nbviewer.jupyter.org/github/NetAppDocs/netapp-solutions/blob/main/media/mlops_fsxn_s3_integration_0.ipynb

!aws configure set aws_secret_access_key $aws_secret_access_key

Upload file to the FSxN Private S3 Bucket

%%capture

local_file_path: str = <Your local file path>

!aws s3 cp --endpoint-url http://$fsx_endpoint_ip /home/ec2-user

/SageMaker/$local_file_path s3://$bucket_name/$local_file_path

Read data from FSxN Private S3 bucket

Initialize a s3 resource client

import boto3

Get session info

region_name = boto3.session.Session().region_name

Initialize Fsxn S3 bucket object

--- Start integrating SageMaker with FSXN ---

This is the only code change we need to incorporate SageMaker with

FSXN

s3_client: boto3.client = boto3.resource(

 's3',

 region_name=region_name,

 aws_access_key_id=aws_access_key_id,

 aws_secret_access_key=aws_secret_access_key,

 use_ssl=False,

 endpoint_url=f'http://{fsx_endpoint_ip}',

 config=boto3.session.Config(

 signature_version='s3v4',

 s3={'addressing_style': 'path'}

)

)

--- End integrating SageMaker with FSXN ---

Read file byte content

bucket = s3_client.Bucket(bucket_name)

binary_data = bucket.Object(data.filename).get()['Body']

This concludes the integration between FSxN and the SageMaker instance.

Useful debugging checklist

• Ensure that the SageMaker Notebook instance and FSxN file system are in the same VPC.

• Remember to run the set dev command on ONTAP to set the privilege level to dev.

14

FAQ (As of Sep 27, 2023)

Q: Why am I getting the error "An error occurred (NotImplemented) when calling the

CreateMultipartUpload operation: The s3 command you requested is not implemented" when uploading

files to FSxN?

A: As a private S3 bucket, FSxN supports uploading files up to 100MB. When using the S3 protocol, files larger

than 100MB are divided into 100MB chunks, and the 'CreateMultipartUpload' function is called. However, the

current implementation of FSxN private S3 does not support this function.

Q: Why am I getting the error "An error occurred (AccessDenied) when calling the PutObject operations:

Access Denied" when uploading files to FSxN?

A: To access the FSxN private S3 bucket from a SageMaker Notebook instance, switch the AWS credentials to

the FSxN credentials. However, granting write permission to the instance requires a workaround solution that

involves mounting the bucket and running the 'chmod' shell command to change the permissions.

Q: How can I integrate the FSxN private S3 bucket with other SageMaker ML services?

A: Unfortunately, the SageMaker services SDK does not provide a way to specify the endpoint for the private

S3 bucket. As a result, FSxN S3 is not compatible with SageMaker services such as Sagemaker Data

Wrangler, Sagemaker Clarify, Sagemaker Glue, Sagemaker Athena, Sagemaker AutoML, and others.

Part 2 - Leveraging AWS FSx for NetApp ONTAP (FSxN) as a Data Source for Model
Training in SageMaker

This article is a tutorial on using AWS FSx for NetApp ONTAP (FSxN) for training PyTorch

models in SageMaker, specifically for a tire quality classification project.

Author(s):

Jian Jian (Ken), Senior Data & Applied Scientist, NetApp

Introduction

This tutorial offers a practical example of a computer vision classification project, providing hands-on

experience in building ML models that utilize FSxN as the data source within the SageMaker environment. The

project focuses on using PyTorch, a deep learning framework, to classify tire quality based on tire images. It

emphasizes the development of machine learning models using FSxN as the data source in Amazon

SageMaker.

What is FSxN

Amazon FSx for NetApp ONTAP is indeed a fully managed storage solution offered by AWS. It leverages

NetApp’s ONTAP file system to provide reliable and high-performance storage. With support for protocols like

NFS, SMB, and iSCSI, it allows seamless access from different compute instances and containers. The service

is designed to deliver exceptional performance, ensuring fast and efficient data operations. It also offers high

availability and durability, ensuring that your data remains accessible and protected. Additionally, the storage

capacity of Amazon FSx for NetApp ONTAP is scalable, allowing you to easily adjust it according to your

needs.

Prerequisite

15

Network Environment

FSxN (Amazon FSx for NetApp ONTAP) is an AWS storage service. It includes a file system running on the

NetApp ONTAP system and an AWS-managed system virtual machine (SVM) that connects to it. In the

provided diagram, the NetApp ONTAP server managed by AWS is located outside the VPC. The SVM serves

as the intermediary between SageMaker and the NetApp ONTAP system, receiving operation requests from

SageMaker and forwarding them to the underlying storage. To access FSxN, SageMaker must be placed

within the same VPC as the FSxN deployment. This configuration ensures communication and data access

between SageMaker and FSxN.

Data Access

In real-world scenarios, data scientists typically utilize the existing data stored in FSxN to build their machine

learning models. However, for demonstration purposes, since the FSxN file system is initially empty after

creation, it is necessary to manually upload the training data. This can be achieved by mounting FSxN as a

volume to SageMaker. Once the file system is successfully mounted, you can upload your dataset to the

mounted location, making it accessible for training your models within the SageMaker environment. This

approach allows you to leverage the storage capacity and capabilities of FSxN while working with SageMaker

for model development and training.

The data reading process involves configuring FSxN as a private S3 bucket. To learn the detailed configuration

instructions, please refer to Part 1 - Integrating AWS FSx for NetApp ONTAP (FSxN) as a private S3 bucket

into AWS SageMaker

Integration Overview

16

The workflow of using training data in FSxN to build a deep learning model in SageMaker can be summarized

into three main steps: data loader definition, model training, and deployment. At a high level, these steps form

the foundation of an MLOps pipeline. However, each step involves several detailed sub-steps for a

comprehensive implementation. These sub-steps encompass various tasks such as data preprocessing,

dataset splitting, model configuration, hyperparameter tuning, model evaluation, and model deployment. These

steps ensure a thorough and effective process for building and deploying deep learning models using training

data from FSxN within the SageMaker environment.

Step-by-Step Integration

Data Loader

In order to train a PyTorch deep learning network with data, a data loader is created to facilitate the feeding of

data. The data loader not only defines the batch size but also determines the procedure for reading and

preprocessing each record within the batch. By configuring the data loader, we can handle the processing of

data in batches, enabling training of the deep learning network.

The data loader consists of 3 parts.

Preprocessing Function

from torchvision import transforms

preprocess = transforms.Compose([

 transforms.ToTensor(),

 transforms.Resize((224,224)),

 transforms.Normalize(

 mean=[0.485, 0.456, 0.406],

 std=[0.229, 0.224, 0.225]

)

])

The above code snippet demonstrates the definition of image preprocessing transformations using the

torchvision.transforms module. In this turtorial, the preprocess object is created to apply a series of

transformations. Firstly, the ToTensor() transformation converts the image into a tensor representation.

Subsequently, the Resize 224,224 transformation resizes the image to a fixed size of 224x224 pixels. Finally,

the Normalize() transformation normalizes the tensor values by subtracting the mean and dividing by the

standard deviation along each channel. The mean and standard deviation values used for normalization are

17

commonly employed in pre-trained neural network models. Overall, this code prepares the image data for

further processing or input into a pre-trained model by converting it to a tensor, resizing it, and normalizing the

pixel values.

The PyTorch Dataset Class

import torch

from io import BytesIO

from PIL import Image

class FSxNImageDataset(torch.utils.data.Dataset):

 def __init__(self, bucket, prefix='', preprocess=None):

 self.image_keys = [

 s3_obj.key

 for s3_obj in list(bucket.objects.filter(Prefix=prefix).all())

]

 self.preprocess = preprocess

 def __len__(self):

 return len(self.image_keys)

 def __getitem__(self, index):

 key = self.image_keys[index]

 response = bucket.Object(key)

 label = 1 if key[13:].startswith('defective') else 0

 image_bytes = response.get()['Body'].read()

 image = Image.open(BytesIO(image_bytes))

 if image.mode == 'L':

 image = image.convert('RGB')

 if self.preprocess is not None:

 image = self.preprocess(image)

 return image, label

This class provides functionality to obtain the total number of records in the dataset and defines the method for

reading data for each record. Within the getitem function, the code utilizes the boto3 S3 bucket object to

retrieve the binary data from FSxN. The code style for accessing data from FSxN is similar to reading data

from Amazon S3. The subsequent explanation delves into the creation process of the private S3 object

bucket.

FSxN as a private S3 repository

18

seed = 77 # Random seed

bucket_name = '<Your ONTAP bucket name>' # The bucket

name in ONTAP

aws_access_key_id = '<Your ONTAP bucket key id>' # Please get

this credential from ONTAP

aws_secret_access_key = '<Your ONTAP bucket access key>' # Please get

this credential from ONTAP

fsx_endpoint_ip = '<Your FSxN IP address>' # Please get

this IP address from FSXN

import boto3

Get session info

region_name = boto3.session.Session().region_name

Initialize Fsxn S3 bucket object

--- Start integrating SageMaker with FSXN ---

This is the only code change we need to incorporate SageMaker with FSXN

s3_client: boto3.client = boto3.resource(

 's3',

 region_name=region_name,

 aws_access_key_id=aws_access_key_id,

 aws_secret_access_key=aws_secret_access_key,

 use_ssl=False,

 endpoint_url=f'http://{fsx_endpoint_ip}',

 config=boto3.session.Config(

 signature_version='s3v4',

 s3={'addressing_style': 'path'}

)

)

s3_client = boto3.resource('s3')

bucket = s3_client.Bucket(bucket_name)

--- End integrating SageMaker with FSXN ---

To read data from FSxN in SageMaker, a handler is created that points to the FSxN storage using the S3

protocol. This allows FSxN to be treated as a private S3 bucket. The handler configuration includes specifying

the IP address of the FSxN SVM, the bucket name, and the necessary credentials. For a comprehensive

explanation on obtaining these configuration items, please refer to the document at Part 1 - Integrating AWS

FSx for NetApp ONTAP (FSxN) as a private S3 bucket into AWS SageMaker.

In the example mentioned above, the bucket object is used to instantiate the PyTorch dataset object. The

dataset object will be further explained in the subsequent section.

19

The PyTorch Data Loader

from torch.utils.data import DataLoader

torch.manual_seed(seed)

1. Hyperparameters

batch_size = 64

2. Preparing for the dataset

dataset = FSxNImageDataset(bucket, 'dataset/tyre', preprocess=preprocess)

train, test = torch.utils.data.random_split(dataset, [1500, 356])

data_loader = DataLoader(dataset, batch_size=batch_size, shuffle=True)

In the example provided, a batch size of 64 is specified, indicating that each batch will contain 64 records. By

combining the PyTorch Dataset class, the preprocessing function, and the training batch size, we obtain the

data loader for training. This data loader facilitates the process of iterating through the dataset in batches

during the training phase.

Model Training

from torch import nn

class TyreQualityClassifier(nn.Module):

 def __init__(self):

 super().__init__()

 self.model = nn.Sequential(

 nn.Conv2d(3,32,(3,3)),

 nn.ReLU(),

 nn.Conv2d(32,32,(3,3)),

 nn.ReLU(),

 nn.Conv2d(32,64,(3,3)),

 nn.ReLU(),

 nn.Flatten(),

 nn.Linear(64*(224-6)*(224-6),2)

)

 def forward(self, x):

 return self.model(x)

20

import datetime

num_epochs = 2

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

model = TyreQualityClassifier()

fn_loss = torch.nn.CrossEntropyLoss()

optimizer = torch.optim.Adam(model.parameters(), lr=1e-3)

model.to(device)

for epoch in range(num_epochs):

 for idx, (X, y) in enumerate(data_loader):

 X = X.to(device)

 y = y.to(device)

 y_hat = model(X)

 loss = fn_loss(y_hat, y)

 optimizer.zero_grad()

 loss.backward()

 optimizer.step()

 current_time = datetime.datetime.now().strftime("%Y-%m-%d

%H:%M:%S")

 print(f"Current Time: {current_time} - Epoch [{epoch+1}/

{num_epochs}]- Batch [{idx + 1}] - Loss: {loss}", end='\r')

This code implements a standard PyTorch training process. It defines a neural network model called

TyreQualityClassifier using convolutional layers and a linear layer to classify tire quality. The training loop

iterates over data batches, computes the loss, and updates the model’s parameters using backpropagation

and optimization. Additionally, it prints the current time, epoch, batch, and loss for monitoring purposes.

Model Deployment

Deployment

21

import io

import os

import tarfile

import sagemaker

1. Save the PyTorch model to memory

buffer_model = io.BytesIO()

traced_model = torch.jit.script(model)

torch.jit.save(traced_model, buffer_model)

2. Upload to AWS S3

sagemaker_session = sagemaker.Session()

bucket_name_default = sagemaker_session.default_bucket()

model_name = f'tyre_quality_classifier.pth'

2.1. Zip PyTorch model into tar.gz file

buffer_zip = io.BytesIO()

with tarfile.open(fileobj=buffer_zip, mode="w:gz") as tar:

 # Add PyTorch pt file

 file_name = os.path.basename(model_name)

 file_name_with_extension = os.path.split(file_name)[-1]

 tarinfo = tarfile.TarInfo(file_name_with_extension)

 tarinfo.size = len(buffer_model.getbuffer())

 buffer_model.seek(0)

 tar.addfile(tarinfo, buffer_model)

2.2. Upload the tar.gz file to S3 bucket

buffer_zip.seek(0)

boto3.resource('s3') \

 .Bucket(bucket_name_default) \

 .Object(f'pytorch/{model_name}.tar.gz') \

 .put(Body=buffer_zip.getvalue())

The code saves the PyTorch model to Amazon S3 because SageMaker requires the model to be stored in S3

for deployment. By uploading the model to Amazon S3, it becomes accessible to SageMaker, allowing for the

deployment and inference on the deployed model.

import time

from sagemaker.pytorch import PyTorchModel

from sagemaker.predictor import Predictor

from sagemaker.serializers import IdentitySerializer

from sagemaker.deserializers import JSONDeserializer

class TyreQualitySerializer(IdentitySerializer):

22

 CONTENT_TYPE = 'application/x-torch'

 def serialize(self, data):

 transformed_image = preprocess(data)

 tensor_image = torch.Tensor(transformed_image)

 serialized_data = io.BytesIO()

 torch.save(tensor_image, serialized_data)

 serialized_data.seek(0)

 serialized_data = serialized_data.read()

 return serialized_data

class TyreQualityPredictor(Predictor):

 def __init__(self, endpoint_name, sagemaker_session):

 super().__init__(

 endpoint_name,

 sagemaker_session=sagemaker_session,

 serializer=TyreQualitySerializer(),

 deserializer=JSONDeserializer(),

)

sagemaker_model = PyTorchModel(

 model_data=f's3://{bucket_name_default}/pytorch/{model_name}.tar.gz',

 role=sagemaker.get_execution_role(),

 framework_version='2.0.1',

 py_version='py310',

 predictor_cls=TyreQualityPredictor,

 entry_point='inference.py',

 source_dir='code',

)

timestamp = int(time.time())

pytorch_endpoint_name = '{}-{}-{}'.format('tyre-quality-classifier', 'pt',

timestamp)

sagemaker_predictor = sagemaker_model.deploy(

 initial_instance_count=1,

 instance_type='ml.p3.2xlarge',

 endpoint_name=pytorch_endpoint_name

)

This code facilitates the deployment of a PyTorch model on SageMaker. It defines a custom serializer,

TyreQualitySerializer, which preprocesses and serializes input data as a PyTorch tensor. The

TyreQualityPredictor class is a custom predictor that utilizes the defined serializer and a JSONDeserializer.

The code also creates a PyTorchModel object to specify the model’s S3 location, IAM role, framework version,

and entry point for inference. The code generates a timestamp and constructs an endpoint name based on the

23

model and timestamp. Finally, the model is deployed using the deploy method, specifying the instance count,

instance type, and generated endpoint name. This enables the PyTorch model to be deployed and accessible

for inference on SageMaker.

Inference

image_object = list(bucket.objects.filter('dataset/tyre'))[0].get()

image_bytes = image_object['Body'].read()

with Image.open(with Image.open(BytesIO(image_bytes)) as image::

 predicted_classes = sagemaker_predictor.predict(image)

 print(predicted_classes)

This is the example of using the deployed endpoint to do the inference.

Part 3 - Building A Simplified MLOps Pipeline (CI/CT/CD)

This article provides a guide to building an MLOps pipeline with AWS services, focusing

on automated model retraining, deployment, and cost optimization.

Author(s):

Jian Jian (Ken), Senior Data & Applied Scientist, NetApp

Introduction

In this tutorial, you will learn how to leverage various AWS services to construct a simple MLOps pipeline that

encompasses Continuous Integration (CI), Continuous Training (CT), and Continuous Deployment (CD). Unlike

traditional DevOps pipelines, MLOps requires additional considerations to complete the operational cycle. By

following this tutorial, you will gain insights into incorporating CT into the MLOps loop, enabling continuous

training of your models and seamless deployment for inference. The tutorial will guide you through the process

of utilizing AWS services to establish this end-to-end MLOps pipeline.

Manifest

Functionality Name Comment

Data storage AWS FSxN Refer to Part 1 - Integrating AWS

FSx for NetApp ONTAP (FSxN) as

a private S3 bucket into AWS

SageMaker.

Data science IDE AWS SageMaker This tutorial is based on the Jupyter

notebook presented in Part 2 -

Leveraging AWS FSx for NetApp

ONTAP (FSxN) as a Data Source

for Model Training in SageMaker.

Function to trigger the MLOps

pipeline

AWS Lambda function -

24

Functionality Name Comment

Cron job trigger AWS EventBridge -

Deep learning framework PyTorch -

AWS Python SDK boto3 -

Programming Language Python v3.10

Prerequisite

• An pre-configured FSxN file system. This tutorial utilizes data stored in FSxN for the training process.

• A SageMaker Notebook instance that is configured to share the same VPC as the FSxN file system

mentioned above.

• Before triggering the AWS Lambda function, ensure that the SageMaker Notebook instance is in

stopped status.

• The ml.g4dn.xlarge instance type is required to leverage the GPU acceleration necessary for the

computations of deep neural networks.

Architecture

This MLOps pipeline is a practical implementation that utilizes a cron job to trigger a serverless function, which

in turn executes an AWS service registered with a lifecycle callback function. The AWS EventBridge acts as

the cron job. It periodically invokes an AWS Lambda function responsible for retraining and redeploying the

model. This process involves spinning up the AWS SageMaker Notebook instance to perform the necessary

tasks.

Step-by-Step Configuration

Lifecycle configurations

To configure the lifecycle callback function for the AWS SageMaker Notebook instance, you would utilize

Lifecycle configurations. This service allow you to define the necessary actions to be performed during when

spinning up the notebook instance. Specifically, a shell script can be implemented within the Lifecycle

configurations to automatically shut down the notebook instance once the training and deployment processes

are completed. This is a required configuration as the cost is one of the major consideration in MLOps.

It’s important to note that the configuration for Lifecycle configurations needs to be set up in advance.

Therefore, it is recommended to prioritize configuring this aspect before proceeding with the other MLOps

pipeline setup.

1. To set up a Lifecycle configurations, open the Sagemaker panel and navigate to Lifecycle configurations

25

under the section Admin configurations.

2. Select the Notebook Instance tab and click the Create configuration button

26

3. Paste the below code to the entry area.

#!/bin/bash

set -e

sudo -u ec2-user -i <<'EOF'

1. Retraining and redeploying the model

NOTEBOOK_FILE=/home/ec2-

user/SageMaker/tyre_quality_classification_local_training.ipynb

echo "Activating conda env"

source /home/ec2-user/anaconda3/bin/activate pytorch_p310

nohup jupyter nbconvert "$NOTEBOOK_FILE"

--ExecutePreprocessor.kernel_name=python --execute --to notebook &

nbconvert_pid=$!

conda deactivate

2. Scheduling a job to shutdown the notebook to save the cost

PYTHON_DIR='/home/ec2-

user/anaconda3/envs/JupyterSystemEnv/bin/python3.10'

echo "Starting the autostop script in cron"

(crontab -l 2>/dev/null; echo "*/5 * * * * bash -c 'if ps -p

$nbconvert_pid > /dev/null; then echo \"Notebook is still running.\" >>

/var/log/jupyter.log; else echo \"Notebook execution completed.\" >>

/var/log/jupyter.log; $PYTHON_DIR -c \"import boto3;boto3.client(

\'sagemaker\').stop_notebook_instance(NotebookInstanceName=get_notebook_

name())\" >> /var/log/jupyter.log; fi'") | crontab -

EOF

27

4. This script executes the Jupyter Notebook, which handles the retraining and redeployment of the model for

inference. After the execution is complete, the notebook will automatically shut down within 5 minutes. To

learn more about the problem statement and the code implementation, please refer to Part 2 - Leveraging

AWS FSx for NetApp ONTAP (FSxN) as a Data Source for Model Training in SageMaker.

5. After the creation, navigate to Notebook instances, select the target instance, and click Update settings

under Actions dropdown.

28

6. Select the created Lifecycle configuration and click Update notebook instance.

29

AWS Lambda serverless function

As mentioned earlier, the AWS Lambda function is responsible for spinning up the AWS SageMaker

Notebook instance.

1. To create an AWS Lambda function, navigate to the respective panel, switch to the Functions tab, and

click on Create Function.

2. Please file all required entries on the page and remember to switch the Runtime to Python 3.10.

30

3. Please verify that the designated role has the required permission AmazonSageMakerFullAccess and

click on the Create function button.

31

4. Select the created Lambda function. In the code tab, copy and paste the following code into the text area.

This code starts the notebook instance named fsxn-ontap.

import boto3

import logging

def lambda_handler(event, context):

 client = boto3.client('sagemaker')

 logging.info('Invoking SageMaker')

 client.start_notebook_instance(NotebookInstanceName='fsxn-ontap')

 return {

 'statusCode': 200,

 'body': f'Starting notebook instance: {notebook_instance_name}'

 }

32

5. Click the Deploy button to apply this code change.

6. To specify how to trigger this AWS Lambda function, click on the Add Trigger button.

33

7. Select EventBridge from the dropdown menu, then click on the radio button labeled Create a new rule. In

the schedule expression field, enter rate(1 day), and click on the Add button to create and apply this

new cron job rule to the AWS Lambda function.

34

After completing the two-step configuration, on a daily basis, the AWS Lambda function will initiate the

SageMaker Notebook, perform model retraining using the data from the FSxN repository, redeploy the

updated model to the production environment, and automatically shut down the SageMaker Notebook

instance to optimize cost. This ensures that the model remains up to date.

This concludes the tutorial for developing an MLOps pipeline.

35

Hybrid Multicloud MLOps with Domino Data Lab and
NetApp

Hybrid Multicloud MLOps with Domino Data Lab and NetApp

Mike Oglesby, NetApp

Organizations all over the world are currently adopting AI to transform their businesses

and processes. Because of this, AI-ready compute infrastructure is often in short supply.

Enterprises are adopting hybrid multicloud MLOps architectures in order to take

advantage of available compute environments across different regions, data centers, and

clouds - balancing cost, availability, and performance.

Domino Nexus, from Domino Data Lab, is a unified MLOps control plane that lets you run data science and

machine learning workloads across any compute cluster — in any cloud, region, or on-premises. It unifies data

science silos across the enterprise, so you have one place to build, deploy, and monitor models. Likewise,

NetApp’s hybrid cloud data management capabilities enable you to bring your data to your jobs and

workspaces, no matter where they are running. When you pair Domino Nexus with NetApp, you have the

flexibility to schedule workloads across environments without having to worry about data availability. In other

words, you have the ability to send your workloads and your data to the appropriate compute environment,

enabling you to accelerate your AI deployments while navigating regulations around data privacy and

sovereignty.

This solution demonstrates the deployment of a unified MLOps control plane incorporating an on-premises

Kubernetes cluster and an Elastic Kubernetes Service (EKS) cluster running in Amazon Web Services (AWS).

Technology Overview

This section provides a technology overview for Hybrid Multicloud MLOps with Domino

Data Lab and NetApp.

36

Domino Data Lab

Domino Data Lab powers model-driven businesses with its leading Enterprise AI platform trusted by over 20%

of the Fortune 100. Domino accelerates the development and deployment of data science work while

increasing collaboration and governance. With Domino, enterprises worldwide can develop better medicines,

grow more productive crops, build better cars, and much more. Founded in 2013, Domino is backed by Coatue

Management, Great Hill Partners, Highland Capital, Sequoia Capital and other leading investors.

Domino lets enterprises and their data scientists build, deploy and manage AI on a unified, end-to-end platform

— fast, responsibly and cost-effectively. Teams can access all of the data, tools, compute, models, and

projects they need across any environment, so they can collaborate, reuse past work, track models in

production to improve accuracy, standardize with best practices, and make AI responsible and governed.

• Open and Flexible: Access the broadest ecosystem of open source and commercial tools, and

infrastructure, for the best innovations and no vendor lock-in.

• System of Record: Central hub for AI operations and knowledge across the enterprise, enabling best

practices, cross-functional collaboration, faster innovation, and efficiency.

• Integrated: Integrated workflows and automation — built for enterprise processes, controls, and

governance — satisfy your compliance and regulatory needs.

• Hybrid Multicloud: Run AI workloads close to your data anywhere — on-premises, hybrid, any cloud or

multi-cloud — for lower cost, optimal performance and compliance.

Domino Nexus

Domino Nexus is a single pane of glass that lets you run data science and machine learning workloads across

any compute cluster — in any cloud, region, or on-premises. It unifies data science silos across the enterprise,

so you have one place to build, deploy, and monitor models.

37

NetApp BlueXP

NetApp BlueXP unifies all of NetApp’s storage and data services into a single tool that lets you build, protect,

and govern your hybrid multicloud data estate. It delivers a unified experience for storage and data services

across on-premises and cloud environments, and enables operational simplicity through the power of AIOps,

with the flexible consumption parameters and integrated protection required for today’s cloud-led world.

NetApp ONTAP

ONTAP 9, the latest generation of storage management software from NetApp, enables businesses to

modernize infrastructure and transition to a cloud-ready data center. Leveraging industry-leading data

management capabilities, ONTAP enables the management and protection of data with a single set of tools,

regardless of where that data resides. You can also move data freely to wherever it is needed: the edge, the

core, or the cloud. ONTAP 9 includes numerous features that simplify data management, accelerate, and

protect critical data, and enable next generation infrastructure capabilities across hybrid cloud architectures.

Simplify data management

Data management is crucial to enterprise IT operations and data scientists so that appropriate resources are

used for AI applications and training AI/ML datasets. The following additional information about NetApp

technologies is out of scope for this validation but might be relevant depending on your deployment.

ONTAP data management software includes the following features to streamline and simplify operations and

reduce your total cost of operation:

• Inline data compaction and expanded deduplication. Data compaction reduces wasted space inside

storage blocks, and deduplication significantly increases effective capacity. This applies to data stored

locally and data tiered to the cloud.

• Minimum, maximum, and adaptive quality of service (AQoS). Granular quality of service (QoS) controls

help maintain performance levels for critical applications in highly shared environments.

• NetApp FabricPool. Provides automatic tiering of cold data to public and private cloud storage options,

including Amazon Web Services (AWS), Azure, and NetApp StorageGRID storage solution. For more

information about FabricPool, see TR-4598: FabricPool best practices.

Accelerate and protect data

ONTAP delivers superior levels of performance and data protection and extends these capabilities in the

following ways:

• Performance and lower latency. ONTAP offers the highest possible throughput at the lowest possible

latency.

• Data protection. ONTAP provides built-in data protection capabilities with common management across all

platforms.

• NetApp Volume Encryption (NVE). ONTAP offers native volume-level encryption with both onboard and

External Key Management support.

• Multitenancy and multifactor authentication. ONTAP enables sharing of infrastructure resources with the

highest levels of security.

Future-proof infrastructure

ONTAP helps meet demanding and constantly changing business needs with the following features:

• Seamless scaling and nondisruptive operations. ONTAP supports the nondisruptive addition of capacity to

38

https://www.netapp.com/pdf.html?item=/media/17239-tr4598pdf.pdf

existing controllers and to scale-out clusters. Customers can upgrade to the latest technologies, such as

NVMe and 32Gb FC, without costly data migrations or outages.

• Cloud connection. ONTAP is the most cloud-connected storage management software, with options for

software-defined storage and cloud-native instances in all public clouds.

• Integration with emerging applications. ONTAP offers enterprise-grade data services for next generation

platforms and applications, such as autonomous vehicles, smart cities, and Industry 4.0, by using the same

infrastructure that supports existing enterprise apps.

Amazon FSx for NetApp ONTAP

Amazon FSx for NetApp ONTAP is a first-party, fully managed AWS service that provides highly reliable,

scalable, high-performing, and feature-rich file storage built on NetApp’s popular ONTAP file system. FSx for

ONTAP combines the familiar features, performance, capabilities, and API operations of NetApp file systems

with the agility, scalability, and simplicity of a fully managed AWS service.

NetApp Astra Trident

Astra Trident enables consumption and management of storage resources across all popular NetApp storage

platforms, in the public cloud or on premises, including ONTAP (AFF, FAS, Select, Cloud, Amazon FSx for

NetApp ONTAP), Element software (NetApp HCI, SolidFire), Azure NetApp Files service, and Cloud Volumes

Service on Google Cloud. Astra Trident is a Container Storage Interface (CSI) compliant dynamic storage

orchestrator that natively integrates with Kubernetes.

Kubernetes

Kubernetes is an open source, distributed, container orchestration platform that was originally designed by

Google and is now maintained by the Cloud Native Computing Foundation (CNCF). Kubernetes enables the

automation of deployment, management, and scaling functions for containerized applications, and is the

dominant container orchestration platform in enterprise environments.

Amazon Elastic Kubernetes Service (EKS)

Amazon Elastic Kubernetes Service (Amazon EKS) is a managed Kubernetes service in the AWS cloud.

Amazon EKS automatically manages the availability and scalability of the Kubernetes control plane nodes

responsible for scheduling containers, managing application availability, storing cluster data, and other key

tasks. With Amazon EKS, you can take advantage of all the performance, scale, reliability, and availability of

AWS infrastructure, as well as integrations with AWS networking and security services.

Architecture

This solution combines Domino Nexus' hybrid multicloud workload scheduling capabilities

with NetApp data services to create a unified hybrid cloud MLOps platform. See the

following table for details.

Component Name Environment

MLOps Control Plane Domino Enterprise AI Platform with

Domino Nexus

AWS

MLOps Platform Compute

Environments

Domino Nexus Data Planes AWS, On-premises data center

39

https://domino.ai/platform/nexus
https://domino.ai/platform/nexus
https://docs.dominodatalab.com/en/latest/admin_guide/5781ea/data-planes/

Component Name Environment

On-premises Compute Platform Kubernetes with NetApp Astra

Trident

On-premises data center

Cloud Compute Platform Amazon Elastic Kubernetes Service

(EKS) with NetApp Astra Trident

AWS

On-premises Data Platform NetApp storage appliance powered

by NetApp ONTAP

On-premises data center

Cloud Data Platform Amazon FSx for NetApp ONTAP AWS

Initial Setup

This section describes the initial setup tasks that need to be performed in order to utilize

Domino Nexus with NetApp data services in a hybrid environment incorporating an on-

premises data center and AWS.

Prerequisites

Before you perform the steps that are outlined in this section, we assume that you have already performed the

following tasks:

• You have already deployed and configured your on-premises NetApp ONTAP storage platform. For more

information, refer to the NetApp product documentation.

• You have already provisioned an Amazon FSx for NetApp ONTAP instance in AWS. For more information,

refer to the Amazon FSx for NetApp ONTAP product page.

• You have already provisioned a Kubernetes cluster in your on-premises data center. For more information,

refer to the Domino admin guide.

• You have already provisioned an Amazon EKS cluster in AWS. For more information, refer to the Domino

admin guide.

• You have installed NetApp Astra Trident in your on-premises Kubernetes cluster. Additionally, you have

40

https://kubernetes.io
https://docs.netapp.com/us-en/trident/index.html
https://docs.netapp.com/us-en/trident/index.html
https://aws.amazon.com/eks/
https://aws.amazon.com/eks/
https://docs.netapp.com/us-en/trident/index.html
https://www.netapp.com/data-storage/
https://www.netapp.com/data-management/ontap-data-management-software/
https://aws.amazon.com/fsx/netapp-ontap/
https://www.netapp.com/support-and-training/documentation/
https://aws.amazon.com/fsx/netapp-ontap/
https://docs.dominodatalab.com/en/latest/admin_guide/b35e66/admin-guide/
https://docs.dominodatalab.com/en/latest/admin_guide/b35e66/admin-guide/
https://docs.dominodatalab.com/en/latest/admin_guide/b35e66/admin-guide/

configured this Trident instance to use your on-premises NetApp ONTAP storage platform when

provisioning and managing storage resources. For more information, refer to the NetApp Astra Trident

documentation.

• You have installed NetApp Astra Trident in your Amazon EKS cluster. Additionally, you have configured this

Trident instance to use your Amazon FSx for NetApp ONTAP instance when provisioning and managing

storage resources. For more information, refer to the NetApp Astra Trident documentation.

• You must have bi-directional network connectivity between your on-premises data center and your Virtual

Private Cloud (VPC) in AWS. For more details on the various options for implementing this, refer to the

Amazon Virtual Private Network (VPN) documentation.

Install the Domino Enterprise AI Platform in AWS

To install the Domino Enterprise MLOps Platform in AWS, follow the instructions outlined in Domino admin

guide. You must deploy Domino in the same Amazon EKS cluster that you previously provisioned. Additionally,

NetApp Astra Trident must already be installed and configured in this EKS cluster, and you must specify a

Trident-managed storage class as the shared storage class in your domino.yml install configuration file.

Refer to the Domino install configuration reference guide for details on how to specify a shared

storage class in your domino.yml install configuration file.

Technical Report TR-4952 walks through the deployment of Domino in AWS with Amazon FSx

for NetApp ONTAP and may be a useful reference for troubleshooting any issues that arise.

Enable Domino Nexus

Next, you must enable Domino Nexus. Refer to the Domino admin guide for details.

Deploy a Domino Data Plane in your On-premises Data Center

Next, you must deploy a Domino Data Plane in your on-premises data center. You must deploy this data plane

in the on-premises Kubernetes cluster that you previously provisioned. Additionally, NetApp Astra Trident must

already be installed and configured in this Kubernetes cluster. Refer to the Domino admin guide for details.

Expose Existing NetApp Volumes to Domino

This section describes the tasks that need to be performed in order to expose existing

NetApp ONTAP NFS volumes to the Domino MLOps platform. These same steps apply

both on-premises and in AWS.

Why Expose NetApp ONTAP Volumes to Domino?

Using NetApp volumes in conjunction with Domino provides the following benefits:

• You can execute workloads against extremely large datasets by taking advantage of NetApp ONTAP’s

scale-out capabilities.

• You can execute workloads across multiple compute nodes without having to copy your data to the

individual nodes.

• You can take advantage of NetApp’s hybrid multicloud data movement and sync capabilities in order to

access your data across multiple data centers and/or clouds.

• You want to be able to quickly and easily create a cache of your data in a different data center or cloud.

41

https://docs.netapp.com/us-en/trident/index.html
https://docs.netapp.com/us-en/trident/index.html
https://docs.netapp.com/us-en/trident/index.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpn-connections.html
https://docs.dominodatalab.com/en/latest/admin_guide/c1eec3/deploy-domino/
https://docs.dominodatalab.com/en/latest/admin_guide/c1eec3/deploy-domino/
https://docs.dominodatalab.com/en/latest/admin_guide/7f4331/install-configuration-reference/#storage-classes
https://www.netapp.com/media/79922-tr-4952.pdf
https://docs.dominodatalab.com/en/latest/admin_guide/c65074/nexus-hybrid-architecture/
https://docs.dominodatalab.com/en/latest/admin_guide/5781ea/data-planes/

Expose Existing NFS Volumes that were not Provisioned by Astra Trident

If your existing NetApp ONTAP NFS volume was not provisioned by Astra Trident, follow the steps outlined in

this sub-section.

Create PV and PVC in Kubernetes

For on-premises volumes, create the PV and PVC in your on-premises Kubernetes cluster. For

Amazon FSx for NetApp ONTAP volumes, create the PV and PVC in Amazon EKS.

First, you must create a persistent volume (PV) and persistent volume claim (PVC) in your Kubernetes cluster.

To create the PV and PVC, use the NFS PV/PVC example from the Domino admin guide and update the

values to reflect to your environment. Be sure to specify the correct values for the namespace, nfs.path,

and nfs.server fields. Additionally, we recommend giving your PV and PVC unique names that represent

that nature of the data that is stored on the corresponding ONTAP NFS volume. For example, if the volume

contains images of manufacturing defects, you might name the PV, pv-mfg-defect-images, and the PVC,

pvc-mfg-defect-images.

Register External Data Volume in Domino

Next, you must register an external data volume in Domino. To register an external data volume, refer to the

instructions in the Domino admin guide. When registering the volume, be sure to select "NFS" from the

'Volume Type' drop-down menu. After selecting "NFS", you should see your PVC in the 'Available Volumes' list.

42

https://docs.dominodatalab.com/en/latest/admin_guide/4cdae9/set-up-kubernetes-pv-and-pvc/#_nfs_pvpvc_example
https://docs.dominodatalab.com/en/latest/admin_guide/9c3564/register-external-data-volumes/

Expose Existing Volumes that were Provisioned by Astra Trident

If your existing volume was provisioned by Astra Trident, follow the steps outlined in this sub-section.

Edit Existing PVC

If your volume was provisioned by Astra Trident, then you already have a persistent volume claim (PVC)

corresponding to your volume. In order to expose this volume to Domino, you must edit the PVC and add the

following label to the list of labels in the metadata.labels field:

"dominodatalab.com/external-data-volume": "Generic"

Register External Data Volume in Domino

Next, you must register an external data volume in Domino. To register an external data volume, refer to the

instructions in the Domino admin guide. When registering the volume, be sure to select "Generic" from the

'Volume Type' drop-down menu. After selecting "Generic", you should see your PVC in the 'Available Volumes'

list.

43

https://docs.dominodatalab.com/en/latest/admin_guide/9c3564/register-external-data-volumes/

Access the same Data Across Different Environments

This section describes the tasks that need to be performed in order to access the same

data across different compute environments. In the Domino MLOps platform, compute

environments are referred to "data planes." Follow the tasks outlined in this section if your

data resides on a NetApp volume in one data plane, but you need to access it in another

data plane. This type of scenario is often referred to as "bursting" or, when the destination

environment is the cloud, "cloud bursting." This capability is often needed when dealing

with constrained or over-subscribed compute resources. For example, if your on-

premises compute cluster is over-subscribed, you may want to schedule workloads to the

cloud where they can be started immediately.

There are two recommended options for accessing a NetApp volume that resides in a different data plane.

These options are outlined in the sub-sections below. Choose one of these options depending on your specific

requirements. The benefits and drawbacks of the two options are described in the following table.

Option Benefits Drawbacks

Option 1 - Cache - Simpler workflow

- Ability to cache a subset of data

based on needs

- Ability to write data back to source

- No remote copy to manage

- Increased latency on initial data

access as cache is hydrated.

Option 2 - Mirror - Full copy of source volume

- No increased latency due to

cache hydration (after mirror

operation is complete)

- Must wait for mirror operation to

complete before accessing data

- Must manage a remote copy

- No ability to write back to source

Option 1 - Create a Cache of a Volume that Resides in a Different Data Plane

With NetApp FlexCache technology, you can create a cache of a NetApp volume that resides in a different

data plane. For example, if you have a NetApp volume in your on-premises data plane, and you need to

access that volume in your AWS data plane, you can create a cache of the volume in AWS. This section

outlines the tasks that need to be performed in order to create a cache of a NetApp volume that resides in a

different data plane.

Create FlexCache Volume in Destination Environment

If the destination environment is your on-premises data center, you will create the FlexCache

volume on your on-premises ONTAP system. If the destination environment is AWS, you will

create the FlexCache volume on your Amazon FSx for NetApp ONTAP instance.

First, you must create a FlexCache volume in the destination environment.

We recommend using BlueXP to create the FlexCache volume. To create a FlexCache volume with BlueXP,

follow the instructions outlined in the BlueXP volume caching documentation.

If you prefer not to use BlueXP, you can use ONTAP System Manager or the ONTAP CLI to create the

FlexCache volume. To create a FlexCache volume with System Manager, refer to the instructions outlined in

the ONTAP documentation. To create a FlexCache volume with the ONTAP CLI, refer to the instructions

outlined in the ONTAP documentation.

44

https://docs.netapp.com/us-en/ontap/flexcache/accelerate-data-access-concept.html
https://docs.netapp.com/us-en/bluexp-volume-caching/
https://docs.netapp.com/us-en/ontap/task_nas_flexcache.html
https://docs.netapp.com/us-en/ontap/flexcache/index.html

If you wish to automate this process, you can use the BlueXP API, the ONTAP REST API, or the ONTAP

Ansible collection.

System Manager is not available in Amazon FSx for NetApp ONTAP.

Expose FlexCache Volume to Domino

Next, you must expose the FlexCache volume to the Domino MLOps platform. To expose the FlexCache

volume to Domino, follow the instructions outlined in the 'Expose Existing NFS Volumes that were not

Provisioned by Astra Trident' sub-section of the 'Expose Existing NetApp Volumes to Domino' section of this

solution.

Now, you will be able to mount the FlexCache volume when launching jobs and workspaces in the destination

data plane as shown in the following screenshots.

Before Creating FlexCache Volume

45

https://docs.netapp.com/us-en/bluexp-automation/
https://devnet.netapp.com/restapi.php
https://docs.ansible.com/ansible/latest/collections/netapp/ontap/index.html
https://docs.ansible.com/ansible/latest/collections/netapp/ontap/index.html

After Exposing FlexCache Volume to Domino

46

Option 2 - Replicate a Volume that Resides in a Different Data Plane

With NetApp SnapMirror data replication technology, you can create a copy of a NetApp volume that resides in

a different data plane. For example, if you have a NetApp volume in your on-premises data plane, and you

need to access that volume in your AWS data plane, you can create a copy of the volume in AWS. This section

outlines the tasks that need to be performed in order to create a copy of a NetApp volume that resides in a

different data plane.

Create SnapMirror Relationship

First, you must create a SnapMirror relationship between your source volume and a new destination volume in

the destination environment. Note that the destination volume will be created as part of the process of creating

the SnapMirror relationship.

47

https://www.netapp.com/cyber-resilience/data-protection/data-backup-recovery/snapmirror-data-replication/

We recommend using BlueXP to create the SnapMirror relationship. To create a SnapMirror relationship with

BlueXP, follow the instructions outlined in the BlueXP replication documentation.

If you prefer not to use BlueXP, you can use ONTAP System Manager or the ONTAP CLI to create the

SnapMirror relationship. To create a SnapMirror relationship with System Manager, refer to the instructions

outlined in the ONTAP documentation. To create a SnapMirror relationship with the ONTAP CLI, refer to the

instructions outlined in the ONTAP documentation.

If you wish to automate this process, you can use the BlueXP API, the ONTAP REST API, or the ONTAP

Ansible collection.

System Manager is not available in Amazon FSx for NetApp ONTAP.

Break SnapMirror Relationship

Next, you must break the SnapMirror relationship in order to activate the destination volume for data access.

Wait until the initial replication is complete before performing this step.

You can determine whether or not the replication is complete by checking the mirror state in

BlueXP, ONTAP System Manager, or the ONTAP CLI. When the replication is complete, the

mirror state will be "snapmirrored".

We recommend using BlueXP to break the SnapMirror relationship. To break a SnapMirror relationship with

BlueXP, follow the instructions outlined in the BlueXP replication documentation.

If you prefer not to use BlueXP, you can use ONTAP System Manager or the ONTAP CLI to break the

SnapMirror relationship. To break a SnapMirror relationship with System Manager, refer to the instructions

outlined in the ONTAP documentation. To break a SnapMirror relationship with the ONTAP CLI, refer to the

instructions outlined in the ONTAP documentation.

If you wish to automate this process, you can use the BlueXP API, the ONTAP REST API, or the ONTAP

Ansible collection.

Expose Destination Volume to Domino

Next, you must expose the destination volume to the Domino MLOps platform. To expose the destination

volume to Domino, follow the instructions outlined in the 'Expose Existing NFS Volumes that were not

Provisioned by Astra Trident' sub-section of the 'Expose Existing NetApp Volumes to Domino' section of this

solution.

Now, you will be able to mount the destination volume when launching jobs and workspaces in the destination

data plane as shown in the following screenshots.

Before Creating SnapMirror Relationship

48

https://docs.netapp.com/us-en/bluexp-replication/
https://docs.netapp.com/us-en/ontap/task_dp_configure_mirror.html
https://docs.netapp.com/us-en/ontap/data-protection/snapmirror-replication-workflow-concept.html
https://docs.netapp.com/us-en/bluexp-automation/
https://devnet.netapp.com/restapi.php
https://docs.ansible.com/ansible/latest/collections/netapp/ontap/index.html
https://docs.ansible.com/ansible/latest/collections/netapp/ontap/index.html
https://docs.netapp.com/us-en/bluexp-replication/task-managing-replication.html
https://docs.netapp.com/us-en/ontap/task_dp_serve_data_from_destination.html
https://docs.netapp.com/us-en/ontap/data-protection/make-destination-volume-writeable-task.html
https://docs.netapp.com/us-en/bluexp-automation/
https://devnet.netapp.com/restapi.php
https://docs.ansible.com/ansible/latest/collections/netapp/ontap/index.html
https://docs.ansible.com/ansible/latest/collections/netapp/ontap/index.html

After Exposing Destination Volume to Domino

49

Where to Find Additional Information

To learn more about the information described in this document, refer to the following

documents and/or websites:

• Domino Data Lab

https://domino.ai

• Domino Nexus

https://domino.ai/platform/nexus

50

https://domino.ai
https://domino.ai/platform/nexus

• NetApp BlueXP

https://bluexp.netapp.com

• NetApp ONTAP data management software

https://www.netapp.com/data-management/ontap-data-management-software/

• NetApp AI Solutions

https://www.netapp.com/artificial-intelligence/

Acknowledgments

• Josh Mineroff, Director of SA for Tech Alliances, Domino Data Lab

• Nicholas Jablonski, Field CTO, Domino Data Lab

• Prabu Arjunan, Solution Architect, NetApp

• Brian Young, Global Alliance Director, Technology Alliance Partners, NetApp

NVIDIA AI Enterprise with NetApp and VMware

NVIDIA AI Enterprise with NetApp and VMware

Mike Oglesby, NetApp

For IT architects and admins, AI tooling can be complicated and unfamiliar. Additionally,

many AI platforms are not enterprise-ready. NVIDIA AI Enterprise, powered by NetApp

and VMware, was created to deliver a streamlined, enterprise-class AI architecture.

NVIDIA AI Enterprise is an end-to-end, cloud-native suite of AI and data analytics software that is optimized,

certified, and supported by NVIDIA to run on VMware vSphere with NVIDIA-Certified Systems. This software

facilitates the simple and rapid deployment, management, and scaling of AI workloads in the modern hybrid

cloud environment. NVIDIA AI Enterprise, powered by NetApp and VMware, delivers enterprise-class AI

workload and data management in a simplified, familiar package.

51

https://bluexp.netapp.com
https://www.netapp.com/data-management/ontap-data-management-software/
https://www.netapp.com/artificial-intelligence/

Technology Overview

This section provides a technology overview for NVIDIA AI Enterprise with NetApp and

VMware.

NVIDIA AI Enterprise

NVIDIA AI Enterprise is an end-to-end, cloud-native suite of AI and data analytics software that is optimized,

certified, and supported by NVIDIA to run on VMware vSphere with NVIDIA-Certified Systems. This software

facilitates the simple and rapid deployment, management, and scaling of AI workloads in the modern hybrid

cloud environment.

NVIDIA GPU Cloud (NGC)

NVIDIA NGC hosts a catalog of GPU-optimized software for AI practitioners to develop their AI solutions. It

also provides access to various AI services including NVIDIA Base Command for model training, NVIDIA Fleet

Command to deploy and monitor models, and the NGC Private Registry for securely accessing and managing

proprietary AI software. Also, NVIDIA AI Enterprise customers can request support through the NGC portal.

VMware vSphere

VMware vSphere is VMware’s virtualization platform, which transforms data centers into aggregated computing

infrastructures that include CPU, storage, and networking resources. vSphere manages these infrastructures

as a unified operating environment, and provides administrators with the tools to manage the data centers that

participate in that environment.

52

The two core components of vSphere are ESXi and vCenter Server. ESXi is the virtualization platform where

administrators create and run virtual machines and virtual appliances. vCenter Server is the service through

which administrators manage multiple hosts connected in a network and pool host resources.

NetApp ONTAP

ONTAP 9, the latest generation of storage management software from NetApp, enables businesses to

modernize infrastructure and transition to a cloud-ready data center. Leveraging industry-leading data

management capabilities, ONTAP enables the management and protection of data with a single set of tools,

regardless of where that data resides. You can also move data freely to wherever it is needed: the edge, the

core, or the cloud. ONTAP 9 includes numerous features that simplify data management, accelerate, and

protect critical data, and enable next generation infrastructure capabilities across hybrid cloud architectures.

Simplify data management

Data management is crucial to enterprise IT operations and data scientists so that appropriate resources are

used for AI applications and training AI/ML datasets. The following additional information about NetApp

technologies is out of scope for this validation but might be relevant depending on your deployment.

ONTAP data management software includes the following features to streamline and simplify operations and

reduce your total cost of operation:

• Inline data compaction and expanded deduplication. Data compaction reduces wasted space inside

storage blocks, and deduplication significantly increases effective capacity. This applies to data stored

locally and data tiered to the cloud.

• Minimum, maximum, and adaptive quality of service (AQoS). Granular quality of service (QoS) controls

help maintain performance levels for critical applications in highly shared environments.

• NetApp FabricPool. Provides automatic tiering of cold data to public and private cloud storage options,

including Amazon Web Services (AWS), Azure, and NetApp StorageGRID storage solution. For more

information about FabricPool, see TR-4598: FabricPool best practices.

Accelerate and protect data

ONTAP delivers superior levels of performance and data protection and extends these capabilities in the

following ways:

• Performance and lower latency. ONTAP offers the highest possible throughput at the lowest possible

latency.

• Data protection. ONTAP provides built-in data protection capabilities with common management across all

platforms.

• NetApp Volume Encryption (NVE). ONTAP offers native volume-level encryption with both onboard and

External Key Management support.

• Multitenancy and multifactor authentication. ONTAP enables sharing of infrastructure resources with the

highest levels of security.

Future-proof infrastructure

ONTAP helps meet demanding and constantly changing business needs with the following features:

• Seamless scaling and nondisruptive operations. ONTAP supports the nondisruptive addition of capacity to

existing controllers and to scale-out clusters. Customers can upgrade to the latest technologies, such as

NVMe and 32Gb FC, without costly data migrations or outages.

53

https://www.netapp.com/pdf.html?item=/media/17239-tr4598pdf.pdf

• Cloud connection. ONTAP is the most cloud-connected storage management software, with options for

software-defined storage (ONTAP Select) and cloud-native instances (NetApp Cloud Volumes Service) in

all public clouds.

• Integration with emerging applications. ONTAP offers enterprise-grade data services for next generation

platforms and applications, such as autonomous vehicles, smart cities, and Industry 4.0, by using the same

infrastructure that supports existing enterprise apps.

NetApp DataOps Toolkit

The NetApp DataOps Toolkit is a Python-based tool that simplifies the management of development/training

workspaces and inference servers that are backed by high-performance, scale-out NetApp storage. Key

capabilities include:

• Rapidly provision new high-capacity JupyterLab workspaces that are backed by high-performance, scale-

out NetApp storage.

• Rapidly provision new NVIDIA Triton Inference Server instances that are backed by enterprise-class

NetApp storage.

• Near-instaneously clone high-capacity JupyterLab workspaces in order to enable experimentation or rapid

iteration.

• Near-instaneously save snapshots of high-capacity JupyterLab workspaces for backup and/or

traceability/baselining.

• Near-instaneously provision, clone, and snapshot high-capacity, high-performance data volumes.

Architecture

This solution builds upon a proven and familiar architecture featuring NetApp, VMware,

and NVIDIA-Certified Systems. See the following table for details.

Component Details

AI and Data Analytics Software NVIDIA AI Enterprise for VMware

Virtualization Platform VMware vSphere

Compute Platform NVIDIA-Certified Systems

Data Management Platform NetApp ONTAP

54

https://www.nvidia.com/en-us/data-center/products/ai-enterprise/vmware/
https://www.vmware.com/products/vsphere.html
https://www.nvidia.com/en-us/data-center/products/certified-systems/
https://www.netapp.com/data-management/ontap-data-management-software/

Initial Setup

This section describes the initial setup tasks that need to be performed in order to utilize

NVIDIA AI Enterprise with NetApp and VMware.

Prerequisites

Before you perform the steps that are outlined in this section, we assume that you have already deployed

VMware vSphere and NetApp ONTAP. Refer to the NVIDIA AI Enterprise Product Support Matrix for details on

supported vSphere versions. Refer to the NetApp and VMware solution documentation for details on deploying

VMware vSphere with NetApp ONTAP.

55

https://docs.nvidia.com/ai-enterprise/latest/product-support-matrix/index.html
https://docs.netapp.com/us-en/netapp-solutions/vmware/vmware-on-netapp.html

Install NVIDIA AI Enterprise Host Software

To install the NVIDIA AI Entrprise host software, follow the instructions outlined in sections 1-4 in the NVIDIA AI

Enterprise Quick Start Guide.

Utilize NVIDIA NGC Software

This section describes the tasks that need to be performed in order to utilize NVIDIA NGC

enterprise software within an NVIDIA AI Enterprise environment.

Setup

This section describes the initial setup tasks that need to be performed in order to utilize

NVIDIA NGC enterprise software within an NVIDIA AI Enterprise environment.

Prerequisites

Before you perform the steps that are outlined in this section, we assume that you have already deployed the

NVIDIA AI Entrprise host software by following the instructions outlined on the Initial Setup page.

Create an Ubuntu Guest VM with vGPU

First, you must create an Ubuntu 20.04 guest VM with vGPU. To create an Ubuntu 20.04 guest VM with vGPU,

follow the instructions outline in the NVIDIA AI Enterprise Deployment Guide.

Download and Install NVIDIA Guest Software

Next, you must install the required NVIDIA guest software within the guest VM that you created in the previous

step. To download and install the required NVIDIA guest software within the guest VM, follow the instructions

outlined in sections 5.1-5.4 in the NVIDIA AI Enterprise Quick Start Guide.

When performing the verification tasks outlined in section 5.4, you may need to use a different

CUDA container image version tag as the CUDA container image has been updated since the

writing of the guide. In our validation, we used 'nvidia/cuda:11.0.3-base-ubuntu20.04'.

Download AI/Analytics Framework Container(s)

Next, you must download needed AI or analytics framework container images from NVIDIA NGC so that they

will be available within your guest VM. To download framework containers within the guest VM, follow the

instructions outlined in the NVIDIA AI Enterprise Deployment Guide.

Install and Configure the NetApp DataOps Toolkit

Next, you must install the NetApp DataOps Toolkit for Traditional Environemnts within the guest VM. The

NetApp DataOps Toolkit can be used to manage scale-out data volumes on your ONTAP system directly from

the terminal within the guest VM. To install the NetApp DataOps Toolkit within the guest VM, perform the

following tasks.

1. Install pip.

56

https://docs.nvidia.com/ai-enterprise/latest/quick-start-guide/index.html
https://docs.nvidia.com/ai-enterprise/latest/quick-start-guide/index.html
https://docs.nvidia.com/ai-enterprise/deployment-guide-vmware/0.1.0/first-vm.html
https://docs.nvidia.com/ai-enterprise/latest/quick-start-guide/index.html
https://docs.nvidia.com/ai-enterprise/deployment-guide-vmware/0.1.0/installing-ai.html

$ sudo apt update

$ sudo apt install python3-pip

$ python3 -m pip install netapp-dataops-traditional

2. Log out of the guest VM terminal and then log back in.

3. Configure the NetApp DataOps Toolkit. In order to complete this step, you will need API access details for

your ONTAP system. You may need to obtain these from your storage admin.

$ netapp_dataops_cli.py config

Enter ONTAP management LIF hostname or IP address (Recommendation: Use

SVM management interface): 172.22.10.10

Enter SVM (Storage VM) name: NVAIE-client

Enter SVM NFS data LIF hostname or IP address: 172.22.13.151

Enter default volume type to use when creating new volumes

(flexgroup/flexvol) [flexgroup]:

Enter export policy to use by default when creating new volumes

[default]:

Enter snapshot policy to use by default when creating new volumes

[none]:

Enter unix filesystem user id (uid) to apply by default when creating

new volumes (ex. '0' for root user) [0]:

Enter unix filesystem group id (gid) to apply by default when creating

new volumes (ex. '0' for root group) [0]:

Enter unix filesystem permissions to apply by default when creating new

volumes (ex. '0777' for full read/write permissions for all users and

groups) [0777]:

Enter aggregate to use by default when creating new FlexVol volumes:

aff_a400_01_NVME_SSD_1

Enter ONTAP API username (Recommendation: Use SVM account): admin

Enter ONTAP API password (Recommendation: Use SVM account):

Verify SSL certificate when calling ONTAP API (true/false): false

Do you intend to use this toolkit to trigger BlueXP Copy and Sync

operations? (yes/no): no

Do you intend to use this toolkit to push/pull from S3? (yes/no): no

Created config file: '/home/user/.netapp_dataops/config.json'.

Create a Guest VM template

Lastly, you must create a VM template based on your guest VM. You will be able to use this template to quickly

create guest VMs for utilizing NVIDIA NGC software.

To create a VM template based on your guest VM, log into VMware vSphere, righ-click on the guest VM name,

choose 'Clone', choose 'Clone to Template…', and then follow the wizard.

57

Example Use Case - TensorFlow Training Job

This section describes the tasks that need to be performed in order to execute a

TensorFlow training job within an NVIDIA AI Enterprise environment.

Prerequisites

Before you perform the steps that are outlined in this section, we assume that you have already created a

guest VM template by following the instructions outlined on the Setup page.

Create Guest VM from Template

First, you must create a new guest VM from the template that you created in the previous section. To create a

new guest VM from your template, log into VMware vSphere, righ-click on the template name, choose 'New

VM from This Template…', and then follow the wizard.

58

Create and Mount Data Volume

Next, you must create a new data volume on which to store your training dataset. You can quickly create a new

data volume using the NetApp DataOps Toolkit. The example command that follows shows the creation of a

volume named 'imagenet' with a capacity of 2 TB.

$ netapp_dataops_cli.py create vol -n imagenet -s 2TB

Before you can populate your data volume with data, you must mount it within the guest VM. You can quickly

mount a data volume using the NetApp DataOps Toolkit. The example command that follows shows the

mouting of the volume that was created in the previous step.

$ sudo -E netapp_dataops_cli.py mount vol -n imagenet -m ~/imagenet

59

Populate Data Volume

After the new volume has been provisioned and mounted, the training dataset can be retrieved from the source

location and placed on the new volume. This typically will involve pulling the data from an S3 or Hadoop data

lake and sometimes will involve help from a data engineer.

Execute TensorFlow Training Job

Now, you are ready to execute your TensorFlow training job. To execute your TensorFlow training job, perform

the following tasks.

1. Pull the NVIDIA NGC enterprise TensorFlow container image.

$ sudo docker pull nvcr.io/nvaie/tensorflow-2-1:22.05-tf1-nvaie-2.1-py3

2. Launch an instance of the NVIDIA NGC enterprise TensorFlow container. Use the '-v' option to attach your

data volume to the container.

$ sudo docker run --gpus all -v ~/imagenet:/imagenet -it --rm

nvcr.io/nvaie/tensorflow-2-1:22.05-tf1-nvaie-2.1-py3

3. Execute your TensorFlow training program within the container. The example command that follows shows

the execution of an example ResNet-50 training program that is included in the container image.

$ python ./nvidia-examples/cnn/resnet.py --layers 50 -b 64 -i 200 -u

batch --precision fp16 --data_dir /imagenet/data

Where to Find Additional Information

To learn more about the information described in this document, refer to the following

documents and/or websites:

• NetApp ONTAP data management software — ONTAP information library

http://mysupport.netapp.com/documentation/productlibrary/index.html?productID=62286

• NetApp DataOps Toolkit

https://github.com/NetApp/netapp-dataops-toolkit

• NVIDIA AI Enterprise with VMware

https://www.nvidia.com/en-us/data-center/products/ai-enterprise/vmware/^]

Acknowledgments

• Bobby Oommen, Sr. Manager, NetApp

60

http://mysupport.netapp.com/documentation/productlibrary/index.html?productID=62286
https://github.com/NetApp/netapp-dataops-toolkit
https://www.nvidia.com/en-us/data-center/products/ai-enterprise/vmware/^

• Ramesh Isaac, Systems Administrator, NetApp

• Roney Daniel, Technical Marketing Engineer, NetApp

TR-4851: NetApp StorageGRID data lake for autonomous
driving workloads - Solution design

David Arnette, NetApp

TR-4851 demonstrates the use of NetApp StorageGRID object storage as a data

repository and management system for machine learning (ML) and deep learning (DL)

software development. This paper describes the data flow and requirements in

autonomous vehicle software development and the StorageGRID features that streamline

the data lifecycle. This solution applies to any multistage data pipeline workflow that is

typical in ML and DL development processes.

TR-4851: NetApp StorageGRID data lake for autonomous driving workloads - Solution design

Open Source MLOps with NetApp

Open Source MLOps with NetApp

Mike Oglesby, NetApp

Mohan Acharya, NetApp

Companies and organizations of all sizes and across many industries are turning to

artificial intelligence (AI), machine learning (ML), and deep learning (DL) to solve real-

world problems, deliver innovative products and services, and to get an edge in an

increasingly competitive marketplace. As organizations increase their use of AI, ML, and

DL, they face many challenges, including workload scalability and data availability. This

solution demonstrates how you can address these challenges by pairing NetApp data

management capabilities with popular open-source tools and frameworks.

This solution is intended to demonstrate several different open-source tools and frameworks that can be

incorporated into an MLOps workflow. These different tools and frameworks can be used together or by

themselves depending on the requirements and use case.

The following tools/frameworks are covered in this solution:

• Apache Airflow

• Kubeflow

61

https://www.netapp.com/pdf.html?item=/media/19399-tr-4851.pdf
https://airflow.apache.org
https://www.kubeflow.org

Technology Overview

This section focuses on the technology overview for OpenSource MLOps with NetApp.

Artificial Intelligence

AI is a computer science discipline in which computers are trained to mimic the cognitive functions of the

human mind. AI developers train computers to learn and to solve problems in a manner that is similar to, or

even superior to, humans. Deep learning and machine learning are subfields of AI. Organizations are

increasingly adopting AI, ML, and DL to support their critical business needs. Some examples are as follows:

• Analyzing large amounts of data to unearth previously unknown business insights

• Interacting directly with customers by using natural language processing

• Automating various business processes and functions

Modern AI training and inference workloads require massively parallel computing capabilities. Therefore, GPUs

are increasingly being used to execute AI operations because the parallel processing capabilities of GPUs are

vastly superior to those of general-purpose CPUs.

Containers

Containers are isolated user-space instances that run on top of a shared host operating system kernel. The

adoption of containers is increasing rapidly. Containers offer many of the same application sandboxing benefits

that virtual machines (VMs) offer. However, because the hypervisor and guest operating system layers that

VMs rely on have been eliminated, containers are far more lightweight. The following figure depicts a

visualization of virtual machines versus containers.

Containers also allow the efficient packaging of application dependencies, run times, and so on, directly with

an application. The most commonly used container packaging format is the Docker container. An application

that has been containerized in the Docker container format can be executed on any machine that can run

Docker containers. This is true even if the application’s dependencies are not present on the machine because

all dependencies are packaged in the container itself. For more information, visit the Docker website.

62

https://www.docker.com

Kubernetes

Kubernetes is an open source, distributed, container orchestration platform that was originally designed by

Google and is now maintained by the Cloud Native Computing Foundation (CNCF). Kubernetes enables the

automation of deployment, management, and scaling functions for containerized applications. In recent years,

Kubernetes has emerged as the dominant container orchestration platform. For more information, visit the

Kubernetes website.

NetApp Astra Trident

Astra Trident enables consumption and management of storage resources across all popular NetApp storage

platforms, in the public cloud or on premises, including ONTAP (AFF, FAS, Select, Cloud, Amazon FSx for

NetApp ONTAP), Element software (NetApp HCI, SolidFire), Azure NetApp Files service, and Cloud Volumes

Service on Google Cloud. Astra Trident is a Container Storage Interface (CSI) compliant dynamic storage

orchestrator that natively integrates with Kubernetes.

NetApp DataOps Toolkit

The NetApp DataOps Toolkit is a Python-based tool that simplifies the management of development/training

workspaces and inference servers that are backed by high-performance, scale-out NetApp storage. Key

capabilities include:

• Rapidly provision new high-capacity workspaces that are backed by high-performance, scale-out NetApp

storage.

• Near-instaneously clone high-capacity workspaces in order to enable experimentation or rapid iteration.

• Near-instaneously save snapshots of high-capacity workspaces for backup and/or traceability/baselining.

• Near-instaneously provision, clone, and snapshot high-capacity, high-performance data volumes.

Kubeflow

Kubeflow is an open source AI and ML toolkit for Kubernetes that was originally developed by Google. The

Kubeflow project makes deployments of AI and ML workflows on Kubernetes simple, portable, and scalable.

Kubeflow abstracts away the intricacies of Kubernetes, allowing data scientists to focus on what they know

best ― data science. See the following figure for a visualization. Kubeflow is a good open-source option for

63

https://kubernetes.io
https://github.com/NetApp/netapp-dataops-toolkit

organizations that prefer an all-in-one MLOps platform. For more information, visit the Kubeflow website.

Kubeflow Pipelines

Kubeflow Pipelines are a key component of Kubeflow. Kubeflow Pipelines are a platform and standard for

defining and deploying portable and scalable AI and ML workflows. For more information, see the official

Kubeflow documentation.

Jupyter Notebook Server

A Jupyter Notebook Server is an open source web application that allows data scientists to create wiki-like

documents called Jupyter Notebooks that contain live code as well as descriptive test. Jupyter Notebooks are

widely used in the AI and ML community as a means of documenting, storing, and sharing AI and ML projects.

Kubeflow simplifies the provisioning and deployment of Jupyter Notebook Servers on Kubernetes. For more

information on Jupyter Notebooks, visit the Jupyter website. For more information about Jupyter Notebooks

within the context of Kubeflow, see the official Kubeflow documentation.

Katib

Katib is a Kubernetes-native project for automated machine learning (AutoML). Katib supports hyperparameter

tuning, early stopping and neural architecture search (NAS). Katib is the project which is agnostic to machine

learning (ML) frameworks. It can tune hyperparameters of applications written in any language of the users’

choice and natively supports many ML frameworks, such as TensorFlow, MXNet, PyTorch, XGBoost, and

others. Katib supports a lot of various AutoML algorithms, such as Bayesian optimization, Tree of Parzen

Estimators, Random Search, Covariance Matrix Adaptation Evolution Strategy, Hyperband, Efficient Neural

Architecture Search, Differentiable Architecture Search and many more. For more information about Jupyter

Notebooks within the context of Kubeflow, see the official Kubeflow documentation.

Apache Airflow

Apache Airflow is an open-source workflow management platform that enables programmatic authoring,

scheduling, and monitoring for complex enterprise workflows. It is often used to automate ETL and data

pipeline workflows, but it is not limited to these types of workflows. The Airflow project was started by Airbnb

but has since become very popular in the industry and now falls under the auspices of The Apache Software

Foundation. Airflow is written in Python, Airflow workflows are created via Python scripts, and Airflow is

designed under the principle of "configuration as code.” Many enterprise Airflow users now run Airflow on top

of Kubernetes.

Directed Acyclic Graphs (DAGs)

In Airflow, workflows are called Directed Acyclic Graphs (DAGs). DAGs are made up of tasks that are executed

in sequence, in parallel, or a combination of the two, depending on the DAG definition. The Airflow scheduler

executes individual tasks on an array of workers, adhering to the task-level dependencies that are specified in

the DAG definition. DAGs are defined and created via Python scripts.

NetApp ONTAP

ONTAP 9, the latest generation of storage management software from NetApp, enables businesses to

modernize infrastructure and transition to a cloud-ready data center. Leveraging industry-leading data

management capabilities, ONTAP enables the management and protection of data with a single set of tools,

regardless of where that data resides. You can also move data freely to wherever it is needed: the edge, the

core, or the cloud. ONTAP 9 includes numerous features that simplify data management, accelerate, and

protect critical data, and enable next generation infrastructure capabilities across hybrid cloud architectures.

64

http://www.kubeflow.org/
https://www.kubeflow.org/docs/components/pipelines/
https://www.kubeflow.org/docs/components/pipelines/
http://www.jupyter.org/
https://www.kubeflow.org/docs/components/notebooks/overview/
https://www.kubeflow.org/docs/components/katib/overview/

Simplify data management

Data management is crucial to enterprise IT operations and data scientists so that appropriate resources are

used for AI applications and training AI/ML datasets. The following additional information about NetApp

technologies is out of scope for this validation but might be relevant depending on your deployment.

ONTAP data management software includes the following features to streamline and simplify operations and

reduce your total cost of operation:

• Inline data compaction and expanded deduplication. Data compaction reduces wasted space inside

storage blocks, and deduplication significantly increases effective capacity. This applies to data stored

locally and data tiered to the cloud.

• Minimum, maximum, and adaptive quality of service (AQoS). Granular quality of service (QoS) controls

help maintain performance levels for critical applications in highly shared environments.

• NetApp FabricPool. Provides automatic tiering of cold data to public and private cloud storage options,

including Amazon Web Services (AWS), Azure, and NetApp StorageGRID storage solution. For more

information about FabricPool, see TR-4598: FabricPool best practices.

Accelerate and protect data

ONTAP delivers superior levels of performance and data protection and extends these capabilities in the

following ways:

• Performance and lower latency. ONTAP offers the highest possible throughput at the lowest possible

latency.

• Data protection. ONTAP provides built-in data protection capabilities with common management across all

platforms.

• NetApp Volume Encryption (NVE). ONTAP offers native volume-level encryption with both onboard and

External Key Management support.

• Multitenancy and multifactor authentication. ONTAP enables sharing of infrastructure resources with the

highest levels of security.

Future-proof infrastructure

ONTAP helps meet demanding and constantly changing business needs with the following features:

• Seamless scaling and nondisruptive operations. ONTAP supports the nondisruptive addition of capacity to

existing controllers and to scale-out clusters. Customers can upgrade to the latest technologies, such as

NVMe and 32Gb FC, without costly data migrations or outages.

• Cloud connection. ONTAP is the most cloud-connected storage management software, with options for

software-defined storage and cloud-native instances in all public clouds.

• Integration with emerging applications. ONTAP offers enterprise-grade data services for next generation

platforms and applications, such as autonomous vehicles, smart cities, and Industry 4.0, by using the same

infrastructure that supports existing enterprise apps.

NetApp Snapshot Copies

A NetApp Snapshot copy is a read-only, point-in-time image of a volume. The image consumes minimal

storage space and incurs negligible performance overhead because it only records changes to files create

since the last Snapshot copy was made, as depicted in the following figure.

Snapshot copies owe their efficiency to the core ONTAP storage virtualization technology, the Write Anywhere

65

https://www.netapp.com/pdf.html?item=/media/17239-tr4598pdf.pdf

File Layout (WAFL). Like a database, WAFL uses metadata to point to actual data blocks on disk. But, unlike a

database, WAFL does not overwrite existing blocks. It writes updated data to a new block and changes the

metadata. It’s because ONTAP references metadata when it creates a Snapshot copy, rather than copying

data blocks, that Snapshot copies are so efficient. Doing so eliminates the seek time that other systems incur

in locating the blocks to copy, as well as the cost of making the copy itself.

You can use a Snapshot copy to recover individual files or LUNs or to restore the entire contents of a volume.

ONTAP compares pointer information in the Snapshot copy with data on disk to reconstruct the missing or

damaged object, without downtime or a significant performance cost.

NetApp FlexClone Technology

NetApp FlexClone technology references Snapshot metadata to create writable, point-in-time copies of a

volume. Copies share data blocks with their parents, consuming no storage except what is required for

metadata until changes are written to the copy, as depicted in the following figure. Where traditional copies can

take minutes or even hours to create, FlexClone software lets you copy even the largest datasets almost

instantaneously. That makes it ideal for situations in which you need multiple copies of identical datasets (a

development workspace, for example) or temporary copies of a dataset (testing an application against a

production dataset).

66

NetApp SnapMirror Data Replication Technology

NetApp SnapMirror software is a cost-effective, easy-to-use unified replication solution across the data fabric. It

replicates data at high speeds over LAN or WAN. It gives you high data availability and fast data replication for

applications of all types, including business critical applications in both virtual and traditional environments.

When you replicate data to one or more NetApp storage systems and continually update the secondary data,

your data is kept current and is available whenever you need it. No external replication servers are required.

See the following figure for an example of an architecture that leverages SnapMirror technology.

SnapMirror software leverages NetApp ONTAP storage efficiencies by sending only changed blocks over the

network. SnapMirror software also uses built-in network compression to accelerate data transfers and reduce

network bandwidth utilization by up to 70%. With SnapMirror technology, you can leverage one thin replication

data stream to create a single repository that maintains both the active mirror and prior point-in-time copies,

reducing network traffic by up to 50%.

NetApp BlueXP Copy and Sync

BlueXP Copy and Sync is a NetApp service for rapid and secure data synchronization. Whether you need to

transfer files between on-premises NFS or SMB file shares, NetApp StorageGRID, NetApp ONTAP S3, NetApp

Cloud Volumes Service, Azure NetApp Files, AWS S3, AWS EFS, Azure Blob, Google Cloud Storage, or IBM

Cloud Object Storage, BlueXP Copy and Sync moves the files where you need them quickly and securely.

After your data is transferred, it is fully available for use on both source and target. BlueXP Copy and Sync can

sync data on-demand when an update is triggered or continuously sync data based on a predefined schedule.

Regardless, BlueXP Copy and Sync only moves the deltas, so time and money spent on data replication is

minimized.

BlueXP Copy and Sync is a software as a service (SaaS) tool that is extremely simple to set up and use. Data

transfers that are triggered by BlueXP Copy and Sync are carried out by data brokers. BlueXP Copy and Sync

data brokers can be deployed in AWS, Azure, Google Cloud Platform, or on-premises.

67

NetApp XCP

NetApp XCP is client-based software for any-to-NetApp and NetApp-to-NetApp data migrations and file system

insights. XCP is designed to scale and achieve maximum performance by utilizing all available system

resources to handle high-volume datasets and high-performance migrations. XCP helps you to gain complete

visibility into the file system with the option to generate reports.

NetApp XCP is available in a single package that supports NFS and SMB protocols. XCP includes a Linux

binary for NFS data sets and a windows executable for SMB data sets.

NetApp XCP File Analytics is host-based software that detects file shares, runs scans on the file system, and

provides a dashboard for file analytics. XCP File Analytics is compatible with both NetApp and non-NetApp

systems and runs on Linux or Windows hosts to provide analytics for NFS and SMB-exported file systems.

NetApp ONTAP FlexGroup Volumes

A training dataset can be a collection of potentially billions of files. Files can include text, audio, video, and

other forms of unstructured data that must be stored and processed to be read in parallel. The storage system

must store large numbers of small files and must read those files in parallel for sequential and random I/O.

A FlexGroup volume is a single namespace that comprises multiple constituent member volumes, as shown in

the following figure. From a storage administrator viewpoint, a FlexGroup volume is managed and acts like a

NetApp FlexVol volume. Files in a FlexGroup volume are allocated to individual member volumes and are not

striped across volumes or nodes. They enable the following capabilities:

• FlexGroup volumes provide multiple petabytes of capacity and predictable low latency for high-metadata

workloads.

• They support up to 400 billion files in the same namespace.

• They support parallelized operations in NAS workloads across CPUs, nodes, aggregates, and constituent

FlexVol volumes.

Architecture

This solution is not dependent on specific hardware. The solution is compatible with any

NetApp physical storage appliance, software-defined instance, or cloud service, that is

68

supported by Trident. Examples include a NetApp AFF storage system, Amazon FSx for

NetApp ONTAP, Azure NetApp Files, or a NetApp Cloud Volumes ONTAP instance.

Additionally, the solution can be implemented on any Kubernetes cluster as long as the

Kubernetes version used is supported by Kubeflow and NetApp Astra Trident. For a list of

Kubernetes versions that are supported by Kubeflow, see the see the official Kubeflow

documentation. For a list of Kubernetes versions that are supported by Trident, see the

Trident documentation. See the following tables for details on the environment that was

used to validate the solution.

Software Component Version

Apache Airflow 2.0.1

Apache Airflow Helm Chart 8.0.8

Kubeflow 1.7, deployed via deployKF 0.1.1

Kubernetes 1.26

NetApp Astra Trident 23.07

Support

NetApp does not offer enterprise support for Apache Airflow, Kubeflow, or Kubernetes. If you are interested in a

fully supported MLOps platform, contact NetApp about fully supported MLOps solutions that NetApp offers

jointly with partners.

NetApp Astra Trident Configuration

Example Astra Trident Backends for NetApp AIPod Deployments

Before you can use Astra Trident to dynamically provision storage resources within your

Kubernetes cluster, you must create one or more Trident Backends. The examples that

follow represent different types of Backends that you might want to create if you are

deploying components of this solution on a NetApp AIPod. For more information about

Backends, see the Astra Trident documentation.

1. NetApp recommends creating a FlexGroup-enabled Trident Backend for your AIPod.

The example commands that follow show the creation of a FlexGroup-enabled Trident Backend for an

AIPod storage virtual machine (SVM). This Backend uses the ontap-nas-flexgroup storage driver.

ONTAP supports two main data volume types: FlexVol and FlexGroup. FlexVol volumes are size-limited (as

of this writing, the maximum size depends on the specific deployment). FlexGroup volumes, on the other

hand, can scale linearly to up to 20PB and 400 billion files, providing a single namespace that greatly

simplifies data management. Therefore, FlexGroup volumes are optimal for AI and ML workloads that rely

on large amounts of data.

If you are working with a small amount of data and want to use FlexVol volumes instead of FlexGroup

volumes, you can create Trident Backends that use the ontap-nas storage driver instead of the ontap-

nas-flexgroup storage driver.

69

https://www.kubeflow.org/docs/started/getting-started/
https://www.kubeflow.org/docs/started/getting-started/
https://docs.netapp.com/us-en/trident/index.html
https://www.deploykf.org
https://www.netapp.com/us/contact-us/index.aspx?for_cr=us
https://docs.netapp.com/us-en/netapp-solutions/ai/aipod_nv_intro.html
https://docs.netapp.com/us-en/trident/index.html

$ cat << EOF > ./trident-backend-aipod-flexgroups-iface1.json

{

 "version": 1,

 "storageDriverName": "ontap-nas-flexgroup",

 "backendName": "aipod-flexgroups-iface1",

 "managementLIF": "10.61.218.100",

 "dataLIF": "192.168.11.11",

 "svm": "ontapai_nfs",

 "username": "admin",

 "password": "ontapai"

}

EOF

$ tridentctl create backend -f ./trident-backend-aipod-flexgroups-

iface1.json -n trident

+-------------------------+---------------------

+--------------------------------------+--------+---------+

| NAME | STORAGE DRIVER | UUID

| STATE | VOLUMES |

+-------------------------+---------------------

+--------------------------------------+--------+---------+

| aipod-flexgroups-iface1 | ontap-nas-flexgroup | b74cbddb-e0b8-40b7-

b263-b6da6dec0bdd | online | 0 |

+-------------------------+---------------------

+--------------------------------------+--------+---------+

$ tridentctl get backend -n trident

+-------------------------+---------------------

+--------------------------------------+--------+---------+

| NAME | STORAGE DRIVER | UUID

| STATE | VOLUMES |

+-------------------------+---------------------

+--------------------------------------+--------+---------+

| aipod-flexgroups-iface1 | ontap-nas-flexgroup | b74cbddb-e0b8-40b7-

b263-b6da6dec0bdd | online | 0 |

+-------------------------+---------------------

+--------------------------------------+--------+---------+

2. NetApp also recommends creating a FlexVol- enabled Trident Backend. You may want to use FlexVol

volumes for hosting persistent applications, storing results, output, debug information, and so on. If you

want to use FlexVol volumes, you must create one or more FlexVol- enabled Trident Backends. The

example commands that follow show the creation of a single FlexVol- enabled Trident Backend.

70

$ cat << EOF > ./trident-backend-aipod-flexvols.json

{

 "version": 1,

 "storageDriverName": "ontap-nas",

 "backendName": "aipod-flexvols",

 "managementLIF": "10.61.218.100",

 "dataLIF": "192.168.11.11",

 "svm": "ontapai_nfs",

 "username": "admin",

 "password": "ontapai"

}

EOF

$ tridentctl create backend -f ./trident-backend-aipod-flexvols.json -n

trident

+-------------------------+---------------------

+--------------------------------------+--------+---------+

| NAME | STORAGE DRIVER | UUID

| STATE | VOLUMES |

+-------------------------+---------------------

+--------------------------------------+--------+---------+

| aipod-flexvols | ontap-nas | 52bdb3b1-13a5-4513-a9c1-

52a69657fabe | online | 0 |

+-------------------------+---------------------

+--------------------------------------+--------+---------+

$ tridentctl get backend -n trident

+-------------------------+---------------------

+--------------------------------------+--------+---------+

| NAME | STORAGE DRIVER | UUID

| STATE | VOLUMES |

+-------------------------+---------------------

+--------------------------------------+--------+---------+

| aipod-flexvols | ontap-nas | 52bdb3b1-13a5-4513-a9c1-

52a69657fabe | online | 0 |

| aipod-flexgroups-iface1 | ontap-nas-flexgroup | b74cbddb-e0b8-40b7-b263-

b6da6dec0bdd | online | 0 |

+-------------------------+---------------------

+--------------------------------------+--------+---------+

Example Kubernetes StorageClasses for NetApp AIPod Deployments

Before you can use Astra Trident to dynamically provision storage resources within your

Kubernetes cluster, you must create one or more Kubernetes StorageClasses. The

examples that follow represent different types of StorageClasses that you might want to

create if you are deploying components of this solution on a NetApp AIPod. For more

information about StorageClasses, see the Astra Trident documentation.

71

https://docs.netapp.com/us-en/netapp-solutions/ai/aipod_nv_intro.html
https://docs.netapp.com/us-en/trident/index.html

1. NetApp recommends creating a StorageClass for the FlexGroup-enabled Trident Backend that you created

in the section Example Astra Trident Backends for NetApp AIPod Deployments, step 1. The example

commands that follow show the creation of multiple StorageClasses that corresponds to the two example

Backend that was created in the section Example Astra Trident Backends for NetApp AIPod Deployments,

step 1 - one that utilizes NFS over RDMA and one that does not.

So that a persistent volume isn’t deleted when the corresponding PersistentVolumeClaim (PVC) is deleted,

the following example uses a reclaimPolicy value of Retain. For more information about the

reclaimPolicy field, see the official Kubernetes documentation.

Note: The following example StorageClasses use a maximum transfer size of 262144. To use this

maximum transfer size, you must configure the maximum transfer size on your ONTAP system accordingly.

Refer to the ONTAP documentation for details.

Note: To use NFS over RDMA, you must configure NFS over RDMA on your ONTAP system. Refer to the

linkhttps://docs.netapp.com/us-en/ontap/nfs-rdma/[ONTAP documentation] for details.

Note: In the following example, a specific Backend is not specified in the storagePool field in StorageClass

definition file.

72

https://docs.netapp.com/us-en/ontap/nfs-rdma/
https://kubernetes.io/docs/concepts/storage/storage-classes/
https://docs.netapp.com/us-en/ontap/nfs-admin/nfsv3-nfsv4-performance-tcp-transfer-size-concept.html

$ cat << EOF > ./storage-class-aipod-flexgroups-retain.yaml

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: aipod-flexgroups-retain

provisioner: csi.trident.netapp.io

mountOptions: ["vers=4.1", "nconnect=16", "rsize=262144",

"wsize=262144"]

parameters:

 backendType: "ontap-nas-flexgroup"

 storagePools: "aipod-flexgroups-iface1:.*"

reclaimPolicy: Retain

EOF

$ kubectl create -f ./storage-class-aipod-flexgroups-retain.yaml

storageclass.storage.k8s.io/aipod-flexgroups-retain created

$ cat << EOF > ./storage-class-aipod-flexgroups-retain-rdma.yaml

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: aipod-flexgroups-retain-rdma

provisioner: csi.trident.netapp.io

mountOptions: ["vers=4.1", "proto=rdma", "max_connect=16",

"rsize=262144", "wsize=262144"]

parameters:

 backendType: "ontap-nas-flexgroup"

 storagePools: "aipod-flexgroups-iface1:.*"

reclaimPolicy: Retain

EOF

$ kubectl create -f ./storage-class-aipod-flexgroups-retain-rdma.yaml

storageclass.storage.k8s.io/aipod-flexgroups-retain-rdma created

$ kubectl get storageclass

NAME PROVISIONER AGE

aipod-flexgroups-retain csi.trident.netapp.io 0m

aipod-flexgroups-retain-rdma csi.trident.netapp.io 0m

2. NetApp also recommends creating a StorageClass that corresponds to the FlexVol-enabled Trident

Backend that you created in the section Example Astra Trident Backends for AIPod Deployments, step 2.

The example commands that follow show the creation of a single StorageClass for FlexVol volumes.

Note: In the following example, a particular Backend is not specified in the storagePool field in

StorageClass definition file. When you use Kubernetes to administer volumes using this StorageClass,

Trident attempts to use any available backend that uses the ontap-nas driver.

73

$ cat << EOF > ./storage-class-aipod-flexvols-retain.yaml

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: aipod-flexvols-retain

provisioner: netapp.io/trident

parameters:

 backendType: "ontap-nas"

reclaimPolicy: Retain

EOF

$ kubectl create -f ./storage-class-aipod-flexvols-retain.yaml

storageclass.storage.k8s.io/aipod-flexvols-retain created

$ kubectl get storageclass

NAME PROVISIONER AGE

aipod-flexgroups-retain csi.trident.netapp.io 0m

aipod-flexgroups-retain-rdma csi.trident.netapp.io 0m

aipod-flexvols-retain csi.trident.netapp.io 0m

Kubeflow

Kubeflow Deployment

This section describes the tasks that you must complete to deploy Kubeflow in your

Kubernetes cluster.

Prerequisites

Before you perform the deployment exercise that is outlined in this section, we assume that you have already

performed the following tasks:

1. You already have a working Kubernetes cluster, and you are running a version of Kubernetes that is

supported by the Kubeflow version that you intend to deploy. For a list of supported Kubernetes versions,

refer to the dependencies for your Kubeflow version in the official Kubeflow documentation.

2. You have already installed and configured NetApp Astra Trident in your Kubernetes cluster. For more

details on Astra Trident, refer to the Astra Trident documentation.

Set Default Kubernetes StorageClass

Before you deploy Kubeflow, we recommend designating a default StorageClass within your Kubernetes

cluster. The Kubeflow deployment process may attempt to provision new persistent volumes using the default

StorageClass. If no StorageClass is designated as the default StorageClass, then the deployment may fail. To

designate a default StorageClass within your cluster, perform the following task from the deployment jump

host. If you have already designated a default StorageClass within your cluster, then you can skip this step.

1. Designate one of your existing StorageClasses as the default StorageClass. The example commands that

follow show the designation of a StorageClass named ontap-ai-flexvols-retain as the default

StorageClass.

74

https://www.kubeflow.org/docs/releases/
https://docs.netapp.com/us-en/trident/index.html

The ontap-nas-flexgroup Trident Backend type has a minimum PVC size that is fairly

large. By default, Kubeflow attempts to provision PVCs that are only a few GBs in size.

Therefore, you should not designate a StorageClass that utilizes the ontap-nas-flexgroup

Backend type as the default StorageClass for the purposes of Kubeflow deployment.

$ kubectl get sc

NAME PROVISIONER AGE

ontap-ai-flexgroups-retain csi.trident.netapp.io 25h

ontap-ai-flexgroups-retain-iface1 csi.trident.netapp.io 25h

ontap-ai-flexgroups-retain-iface2 csi.trident.netapp.io 25h

ontap-ai-flexvols-retain csi.trident.netapp.io 3s

$ kubectl patch storageclass ontap-ai-flexvols-retain -p '{"metadata":

{"annotations":{"storageclass.kubernetes.io/is-default-class":"true"}}}'

storageclass.storage.k8s.io/ontap-ai-flexvols-retain patched

$ kubectl get sc

NAME PROVISIONER AGE

ontap-ai-flexgroups-retain csi.trident.netapp.io 25h

ontap-ai-flexgroups-retain-iface1 csi.trident.netapp.io 25h

ontap-ai-flexgroups-retain-iface2 csi.trident.netapp.io 25h

ontap-ai-flexvols-retain (default) csi.trident.netapp.io 54s

Kubeflow Deployment Options

There are many different options for deploying Kubeflow. Refer to the official Kubeflow documentation for a list

of deployment options, and choose the option that is the best fit for your needs.

For validation purposes, we deployed Kubeflow 1.7 using deployKF 0.1.1.

Example Kubeflow Operations and Tasks

Provision a Jupyter Notebook Workspace for Data Scientist or Developer Use

Kubeflow is capable of rapidly provisioning new Jupyter Notebook servers to act as data

scientist workspaces. For more information about Jupyter Notebooks within the Kubeflow

context, see the official Kubeflow documentation.

75

https://www.kubeflow.org/docs/started/installing-kubeflow/
https://www.deploykf.org
https://www.kubeflow.org/docs/components/notebooks/

Use the NetApp DataOps Toolkit with Kubeflow

The NetApp Data Science Toolkit for Kubernetes can be used in conjunction with

Kubeflow. Using the NetApp Data Science Toolkit with Kubeflow provides the following

benefits:

• Data scientists can perform advanced NetApp data management operations, such as creating snapshots

and clones, directly from within a Jupyter Notebook.

• Advanced NetApp data management operations, such as creating snapshots and clones, can be

incorporated into automated workflows using the Kubeflow Pipelines framework.

Refer to the Kubeflow Examples section within the NetApp Data Science Toolkit GitHub repository for details

on using the toolkit with Kubeflow.

Example Workflow - Train an Image Recognition Model Using Kubeflow and the NetApp DataOps Toolkit

This section describes the steps involved in training and deploying a Neural Network for

Image Recognition using Kubeflow and the NetApp DataOps Toolkit. This is intended to

serve as an example to show a training job that incorporates NetApp storage.

Prerequisites

Create a Dockerfile with the required configurations to use for the train and test steps within the Kubeflow

pipeline.

Here is an example of a Dockerfile -

76

https://github.com/NetApp/netapp-dataops-toolkit/tree/main/netapp_dataops_k8s
https://github.com/NetApp/netapp-dataops-toolkit/tree/main/netapp_dataops_k8s/Examples/Kubeflow

FROM pytorch/pytorch:latest

RUN pip install torchvision numpy scikit-learn matplotlib tensorboard

WORKDIR /app

COPY . /app

COPY train_mnist.py /app/train_mnist.py

CMD ["python", "train_mnist.py"]

Depending on your requirements, install all required libraries and packages needed to run the program. Before

you train the Machine Learning model, it is assumed that you already have a working Kubeflow deployment.

Train a Small NN on MNIST Data Using PyTorch and Kubeflow Pipelines

We use the example of a small Neural Network trained on MNIST data. The MNIST dataset consists of

handwritten images of digits from 0-9. The images are 28x28 pixels in size. The dataset is divided into 60,000

train images and 10,000 validation images. The Neural Network used for this experiment is a 2-layer

feedforward network. Training is executed using Kubeflow Pipelines. Refer to the documentation here for more

information. Our Kubeflow pipeline incorporates the docker image from the Prerequisites section.

Visualize Results Using Tensorboard

Once the model is trained, we can visualize the results using Tensorboard. Tensorboard is available as a

feature on the Kubeflow Dashboard. You can create a custom tensorboard for your job. An example below

shows the plot of training accuracy vs. number of epochs and training loss vs. number of epochs.

77

https://www.kubeflow.org/docs/components/pipelines/v1/introduction/
https://www.tensorflow.org/tensorboard

Experiment with Hyperparameters Using Katib

Katib is a tool within Kubeflow that can be used to experiment with the model hyperparameters. To create an

experiment, define a desired metric/goal first. This is usually the test accuracy. Once the metric is defined,

choose hyperparameters that you would like to play around with (optimizer/learning_rate/number of layers).

Katib does a hyperparameter sweep with the user-defined values to find the best combination of parameters

that satisfy the desired metric. You can define these parameters in each section in the UI. Alternatively, you

could define a YAML file with the necessary specifications. Below is an illustration of a Katib experiment -

78

https://www.kubeflow.org/docs/components/katib/hyperparameter/

Use NetApp Snapshots to Save Data for Traceability

During the model training, we may want to save a snapshot of the training dataset for traceability. To do this,

we can add a snapshot step to the pipeline as shown below. To create the snapshot, we can use the NetApp

DataOps Toolkit for Kubernetes.

Refer to the NetApp DataOps Toolkit example for Kubeflow for more information.

Apache Airflow

Apache Airflow Deployment

This section describes the tasks that you must complete to deploy Airflow in your

Kubernetes cluster.

It is possible to deploy Airflow on platforms other than Kubernetes. Deploying Airflow on

platforms other than Kubernetes is outside of the scope of this solution.

79

https://github.com/NetApp/netapp-dataops-toolkit/tree/main/netapp_dataops_k8s
https://github.com/NetApp/netapp-dataops-toolkit/tree/main/netapp_dataops_k8s
https://github.com/NetApp/netapp-dataops-toolkit/tree/main/netapp_dataops_k8s/Examples/Kubeflow

Prerequisites

Before you perform the deployment exercise that is outlined in this section, we assume that you have already

performed the following tasks:

1. You already have a working Kubernetes cluster.

2. You have already installed and configured NetApp Astra Trident in your Kubernetes cluster. For more

details on Astra Trident, refer to the Astra Trident documentation.

Install Helm

Airflow is deployed using Helm, a popular package manager for Kubernetes. Before you deploy Airflow, you

must install Helm on the deployment jump host. To install Helm on the deployment jump host, follow the

installation instructions in the official Helm documentation.

Set Default Kubernetes StorageClass

Before you deploy Airflow, you must designate a default StorageClass within your Kubernetes cluster. The

Airflow deployment process attempts to provision new persistent volumes using the default StorageClass. If no

StorageClass is designated as the default StorageClass, then the deployment fails. To designate a default

StorageClass within your cluster, follow the instructions outlined in the Kubeflow Deployment section. If you

have already designated a default StorageClass within your cluster, then you can skip this step.

Use Helm to Deploy Airflow

To deploy Airflow in your Kubernetes cluster using Helm, perform the following tasks from the deployment jump

host:

1. Deploy Airflow using Helm by following the deployment instructions for the official Airflow chart on the

Artifact Hub. The example commands that follow show the deployment of Airflow using Helm. Modify, add,

and/or remove values in the custom- values.yaml file as needed depending on your environment and

desired configuration.

$ cat << EOF > custom-values.yaml

###################################

Airflow - Common Configs

###################################

airflow:

 ## the airflow executor type to use

 ##

 executor: "CeleryExecutor"

 ## environment variables for the web/scheduler/worker Pods (for

airflow configs)

 ##

 #

###################################

Airflow - WebUI Configs

###################################

web:

 ## configs for the Service of the web Pods

 ##

80

https://docs.netapp.com/us-en/trident/index.html
https://helm.sh/docs/intro/install/
https://artifacthub.io/packages/helm/airflow-helm/airflow

 service:

 type: NodePort

###################################

Airflow - Logs Configs

###################################

logs:

 persistence:

 enabled: true

###################################

Airflow - DAGs Configs

###################################

dags:

 ## configs for the DAG git repository & sync container

 ##

 gitSync:

 enabled: true

 ## url of the git repository

 ##

 repo: "git@github.com:mboglesby/airflow-dev.git"

 ## the branch/tag/sha1 which we clone

 ##

 branch: master

 revision: HEAD

 ## the name of a pre-created secret containing files for ~/.ssh/

 ##

 ## NOTE:

 ## - this is ONLY RELEVANT for SSH git repos

 ## - the secret commonly includes files: id_rsa, id_rsa.pub,

known_hosts

 ## - known_hosts is NOT NEEDED if `git.sshKeyscan` is true

 ##

 sshSecret: "airflow-ssh-git-secret"

 ## the name of the private key file in your `git.secret`

 ##

 ## NOTE:

 ## - this is ONLY RELEVANT for PRIVATE SSH git repos

 ##

 sshSecretKey: id_rsa

 ## the git sync interval in seconds

 ##

 syncWait: 60

EOF

$ helm install airflow airflow-stable/airflow -n airflow --version 8.0.8

--values ./custom-values.yaml

...

Congratulations. You have just deployed Apache Airflow!

81

1. Get the Airflow Service URL by running these commands:

 export NODE_PORT=$(kubectl get --namespace airflow -o

jsonpath="{.spec.ports[0].nodePort}" services airflow-web)

 export NODE_IP=$(kubectl get nodes --namespace airflow -o

jsonpath="{.items[0].status.addresses[0].address}")

 echo http://$NODE_IP:$NODE_PORT/

2. Open Airflow in your web browser

2. Confirm that all Airflow pods are up and running. It may take a few minutes for all pods to start.

$ kubectl -n airflow get pod

NAME READY STATUS RESTARTS AGE

airflow-flower-b5656d44f-h8qjk 1/1 Running 0 2h

airflow-postgresql-0 1/1 Running 0 2h

airflow-redis-master-0 1/1 Running 0 2h

airflow-scheduler-9d95fcdf9-clf4b 2/2 Running 2 2h

airflow-web-59c94db9c5-z7rg4 1/1 Running 0 2h

airflow-worker-0 2/2 Running 2 2h

3. Obtain the Airflow web service URL by following the instructions that were printed to the console when you

deployed Airflow using Helm in step 1.

$ export NODE_PORT=$(kubectl get --namespace airflow -o

jsonpath="{.spec.ports[0].nodePort}" services airflow-web)

$ export NODE_IP=$(kubectl get nodes --namespace airflow -o

jsonpath="{.items[0].status.addresses[0].address}")

$ echo http://$NODE_IP:$NODE_PORT/

4. Confirm that you can access the Airflow web service.

82

Use the NetApp DataOps Toolkit with Airflow

The NetApp DataOps Toolkit for Kubernetes can be used in conjunction with Airflow.

Using the NetApp DataOps Toolkit with Airflow enables you to incorporate NetApp data

management operations, such as creating snapshots and clones, into automated

workflows that are orchestrated by Airflow.

Refer to the Airflow Examples section within the NetApp DataOps Toolkit GitHub repository for details on using

the toolkit with Airflow.

Example Astra Trident Operations

This section includes examples of various operations that you may want to perform with

Astra Trident.

Import an Existing Volume

If there are existing volumes on your NetApp storage system/platform that you want to mount on containers

within your Kubernetes cluster, but that are not tied to PVCs in the cluster, then you must import these

volumes. You can use the Trident volume import functionality to import these volumes.

83

https://github.com/NetApp/netapp-dataops-toolkit/tree/main/netapp_dataops_k8s
https://github.com/NetApp/netapp-dataops-toolkit/tree/main/netapp_dataops_k8s/Examples/Airflow

The example commands that follow show the importing of a volume named pb_fg_all. For more information

about PVCs, see the official Kubernetes documentation. For more information about the volume import

functionality, see the Trident documentation.

An accessModes value of ReadOnlyMany is specified in the example PVC spec files. For more information

about the accessMode field, see the official Kubernetes documentation.

$ cat << EOF > ./pvc-import-pb_fg_all-iface1.yaml

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

 name: pb-fg-all-iface1

 namespace: default

spec:

 accessModes:

 - ReadOnlyMany

 storageClassName: ontap-ai-flexgroups-retain-iface1

EOF

$ tridentctl import volume ontap-ai-flexgroups-iface1 pb_fg_all -f ./pvc-

import-pb_fg_all-iface1.yaml -n trident

+--------------------------------+--------

+-----------------------------------+----------

+--+--------+---------+

| NAME | SIZE | STORAGE CLASS

| PROTOCOL | BACKEND UUID | STATE |

MANAGED |

+--------------------------------+--------

+-----------------------------------+----------

+--+--------+---------+

| default-pb-fg-all-iface1-7d9f1 | 10 TiB | ontap-ai-flexgroups-retain-

iface1 | file | b74cbddb-e0b8-40b7-b263-b6da6dec0bdd | online | true

|

+--------------------------------+--------

+-----------------------------------+----------

+--+--------+---------+

$ tridentctl get volume -n trident

+----------------------------------+---------

+-----------------------------------+----------

+--------------------------------------+--------+---------+

| NAME | SIZE | STORAGE CLASS

| PROTOCOL | BACKEND UUID | STATE | MANAGED |

+----------------------------------+---------

+-----------------------------------+----------

+--------------------------------------+--------+---------+

| default-pb-fg-all-iface1-7d9f1 | 10 TiB | ontap-ai-flexgroups-retain-

iface1 | file | b74cbddb-e0b8-40b7-b263-b6da6dec0bdd | online | true

84

https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://docs.netapp.com/us-en/trident/index.html
https://kubernetes.io/docs/concepts/storage/persistent-volumes/

|

+----------------------------------+---------

+-----------------------------------+----------

+--------------------------------------+--------+---------+

$ kubectl get pvc

NAME STATUS VOLUME CAPACITY

ACCESS MODES STORAGECLASS AGE

pb-fg-all-iface1 Bound default-pb-fg-all-iface1-7d9f1

10995116277760 ROX ontap-ai-flexgroups-retain-iface1 25h

Provision a New Volume

You can use Trident to provision a new volume on your NetApp storage system or platform.

Provision a New Volume Using kubectl

The following example commands show the provisioning of a new FlexVol volume using kubectl.

An accessModes value of ReadWriteMany is specified in the following example PVC definition file. For more

information about the accessMode field, see the official Kubernetes documentation.

$ cat << EOF > ./pvc-tensorflow-results.yaml

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

 name: tensorflow-results

spec:

 accessModes:

 - ReadWriteMany

 resources:

 requests:

 storage: 1Gi

 storageClassName: ontap-ai-flexvols-retain

EOF

$ kubectl create -f ./pvc-tensorflow-results.yaml

persistentvolumeclaim/tensorflow-results created

$ kubectl get pvc

NAME STATUS VOLUME

CAPACITY ACCESS MODES STORAGECLASS AGE

pb-fg-all-iface1 Bound default-pb-fg-all-iface1-7d9f1

10995116277760 ROX ontap-ai-flexgroups-retain-iface1 26h

tensorflow-results Bound default-tensorflow-results-

2fd60 1073741824 RWX ontap-ai-flexvols-retain

25h

85

https://kubernetes.io/docs/concepts/storage/persistent-volumes/

Provision a New Volume Using the NetApp DataOps Toolkit

You can also use the NetApp DataOps Toolkit for Kubernetes to provision a new volume on your NetApp

storage system or platform. The NetApp DataOps Toolkit for Kubernetes utilizes Trident to provision volumes

but simplifies the process for the user. Refer to the documentation for details.

Example High-performance Jobs for AIPod Deployments

Execute a Single-Node AI Workload

To execute a single-node AI and ML job in your Kubernetes cluster, perform the following

tasks from the deployment jump host. With Trident, you can quickly and easily make a

data volume, potentially containing petabytes of data, accessible to a Kubernetes

workload. To make such a data volume accessible from within a Kubernetes pod, simply

specify a PVC in the pod definition.

This section assumes that you have already containerized (in the Docker container format) the

specific AI and ML workload that you are attempting to execute in your Kubernetes cluster.

1. The following example commands show the creation of a Kubernetes job for a TensorFlow benchmark

workload that uses the ImageNet dataset. For more information about the ImageNet dataset, see the

ImageNet website.

This example job requests eight GPUs and therefore can run on a single GPU worker node that features

eight or more GPUs. This example job could be submitted in a cluster for which a worker node featuring

eight or more GPUs is not present or is currently occupied with another workload. If so, then the job

remains in a pending state until such a worker node becomes available.

Additionally, in order to maximize storage bandwidth, the volume that contains the needed training data is

mounted twice within the pod that this job creates. Another volume is also mounted in the pod. This second

volume will be used to store results and metrics. These volumes are referenced in the job definition by

using the names of the PVCs. For more information about Kubernetes jobs, see the official Kubernetes

documentation.

An emptyDir volume with a medium value of Memory is mounted to /dev/shm in the pod that this

example job creates. The default size of the /dev/shm virtual volume that is automatically created by the

Docker container runtime can sometimes be insufficient for TensorFlow’s needs. Mounting an emptyDir

volume as in the following example provides a sufficiently large /dev/shm virtual volume. For more

information about emptyDir volumes, see the official Kubernetes documentation.

The single container that is specified in this example job definition is given a securityContext >

privileged value of true. This value means that the container effectively has root access on the host.

This annotation is used in this case because the specific workload that is being executed requires root

access. Specifically, a clear cache operation that the workload performs requires root access. Whether or

not this privileged: true annotation is necessary depends on the requirements of the specific

workload that you are executing.

$ cat << EOF > ./netapp-tensorflow-single-imagenet.yaml

apiVersion: batch/v1

kind: Job

metadata:

86

https://github.com/NetApp/netapp-dataops-toolkit/blob/main/netapp_dataops_k8s/docs/volume_management.md
http://www.image-net.org
https://kubernetes.io/docs/concepts/workloads/controllers/jobs-run-to-completion/
https://kubernetes.io/docs/concepts/workloads/controllers/jobs-run-to-completion/
https://kubernetes.io/docs/concepts/storage/volumes/

 name: netapp-tensorflow-single-imagenet

spec:

 backoffLimit: 5

 template:

 spec:

 volumes:

 - name: dshm

 emptyDir:

 medium: Memory

 - name: testdata-iface1

 persistentVolumeClaim:

 claimName: pb-fg-all-iface1

 - name: testdata-iface2

 persistentVolumeClaim:

 claimName: pb-fg-all-iface2

 - name: results

 persistentVolumeClaim:

 claimName: tensorflow-results

 containers:

 - name: netapp-tensorflow-py2

 image: netapp/tensorflow-py2:19.03.0

 command: ["python", "/netapp/scripts/run.py", "--

dataset_dir=/mnt/mount_0/dataset/imagenet", "--dgx_version=dgx1", "--

num_devices=8"]

 resources:

 limits:

 nvidia.com/gpu: 8

 volumeMounts:

 - mountPath: /dev/shm

 name: dshm

 - mountPath: /mnt/mount_0

 name: testdata-iface1

 - mountPath: /mnt/mount_1

 name: testdata-iface2

 - mountPath: /tmp

 name: results

 securityContext:

 privileged: true

 restartPolicy: Never

EOF

$ kubectl create -f ./netapp-tensorflow-single-imagenet.yaml

job.batch/netapp-tensorflow-single-imagenet created

$ kubectl get jobs

NAME COMPLETIONS DURATION AGE

netapp-tensorflow-single-imagenet 0/1 24s 24s

87

2. Confirm that the job that you created in step 1 is running correctly. The following example command

confirms that a single pod was created for the job, as specified in the job definition, and that this pod is

currently running on one of the GPU worker nodes.

$ kubectl get pods -o wide

NAME READY STATUS

RESTARTS AGE

IP NODE NOMINATED NODE

netapp-tensorflow-single-imagenet-m7x92 1/1 Running 0

3m 10.233.68.61 10.61.218.154 <none>

3. Confirm that the job that you created in step 1 completes successfully. The following example commands

confirm that the job completed successfully.

88

$ kubectl get jobs

NAME COMPLETIONS DURATION

AGE

netapp-tensorflow-single-imagenet 1/1 5m42s

10m

$ kubectl get pods

NAME READY STATUS

RESTARTS AGE

netapp-tensorflow-single-imagenet-m7x92 0/1 Completed

0 11m

$ kubectl logs netapp-tensorflow-single-imagenet-m7x92

[netapp-tensorflow-single-imagenet-m7x92:00008] PMIX ERROR: NO-

PERMISSIONS in file gds_dstore.c at line 702

[netapp-tensorflow-single-imagenet-m7x92:00008] PMIX ERROR: NO-

PERMISSIONS in file gds_dstore.c at line 711

Total images/sec = 6530.59125

================ Clean Cache !!! ==================

mpirun -allow-run-as-root -np 1 -H localhost:1 bash -c 'sync; echo 1 >

/proc/sys/vm/drop_caches'

===

mpirun -allow-run-as-root -np 8 -H localhost:8 -bind-to none -map-by

slot -x NCCL_DEBUG=INFO -x LD_LIBRARY_PATH -x PATH python

/netapp/tensorflow/benchmarks_190205/scripts/tf_cnn_benchmarks/tf_cnn_be

nchmarks.py --model=resnet50 --batch_size=256 --device=gpu

--force_gpu_compatible=True --num_intra_threads=1 --num_inter_threads=48

--variable_update=horovod --batch_group_size=20 --num_batches=500

--nodistortions --num_gpus=1 --data_format=NCHW --use_fp16=True

--use_tf_layers=False --data_name=imagenet --use_datasets=True

--data_dir=/mnt/mount_0/dataset/imagenet

--datasets_parallel_interleave_cycle_length=10

--datasets_sloppy_parallel_interleave=False --num_mounts=2

--mount_prefix=/mnt/mount_%d --datasets_prefetch_buffer_size=2000

--datasets_use_prefetch=True --datasets_num_private_threads=4

--horovod_device=gpu >

/tmp/20190814_105450_tensorflow_horovod_rdma_resnet50_gpu_8_256_b500_ima

genet_nodistort_fp16_r10_m2_nockpt.txt 2>&1

4. Optional: Clean up job artifacts. The following example commands show the deletion of the job object that

was created in step 1.

When you delete the job object, Kubernetes automatically deletes any associated pods.

89

$ kubectl get jobs

NAME COMPLETIONS DURATION

AGE

netapp-tensorflow-single-imagenet 1/1 5m42s

10m

$ kubectl get pods

NAME READY STATUS

RESTARTS AGE

netapp-tensorflow-single-imagenet-m7x92 0/1 Completed

0 11m

$ kubectl delete job netapp-tensorflow-single-imagenet

job.batch "netapp-tensorflow-single-imagenet" deleted

$ kubectl get jobs

No resources found.

$ kubectl get pods

No resources found.

Execute a Synchronous Distributed AI Workload

To execute a synchronous multinode AI and ML job in your Kubernetes cluster, perform

the following tasks on the deployment jump host. This process enables you to take

advantage of data that is stored on a NetApp volume and to use more GPUs than a

single worker node can provide. See the following figure for a depiction of a synchronous

distributed AI job.

Synchronous distributed jobs can help increase performance and training accuracy compared

with asynchronous distributed jobs. A discussion of the pros and cons of synchronous jobs

versus asynchronous jobs is outside the scope of this document.

1. The following example commands show the creation of one worker that participates in the synchronous

distributed execution of the same TensorFlow benchmark job that was executed on a single node in the

example in the section Execute a Single-Node AI Workload. In this specific example, only a single worker

is deployed because the job is executed across two worker nodes.

90

This example worker deployment requests eight GPUs and thus can run on a single GPU worker node that

features eight or more GPUs. If your GPU worker nodes feature more than eight GPUs, to maximize

performance, you might want to increase this number to be equal to the number of GPUs that your worker

nodes feature. For more information about Kubernetes deployments, see the official Kubernetes

documentation.

A Kubernetes deployment is created in this example because this specific containerized worker would

never complete on its own. Therefore, it doesn’t make sense to deploy it by using the Kubernetes job

construct. If your worker is designed or written to complete on its own, then it might make sense to use the

job construct to deploy your worker.

The pod that is specified in this example deployment specification is given a hostNetwork value of true.

This value means that the pod uses the host worker node’s networking stack instead of the virtual

networking stack that Kubernetes usually creates for each pod. This annotation is used in this case

because the specific workload relies on Open MPI, NCCL, and Horovod to execute the workload in a

synchronous distributed manner. Therefore, it requires access to the host networking stack. A discussion

about Open MPI, NCCL, and Horovod is outside the scope of this document. Whether or not this

hostNetwork: true annotation is necessary depends on the requirements of the specific workload that

you are executing. For more information about the hostNetwork field, see the official Kubernetes

documentation.

$ cat << EOF > ./netapp-tensorflow-multi-imagenet-worker.yaml

apiVersion: apps/v1

kind: Deployment

metadata:

 name: netapp-tensorflow-multi-imagenet-worker

spec:

 replicas: 1

 selector:

 matchLabels:

 app: netapp-tensorflow-multi-imagenet-worker

 template:

 metadata:

 labels:

 app: netapp-tensorflow-multi-imagenet-worker

 spec:

 hostNetwork: true

 volumes:

 - name: dshm

 emptyDir:

 medium: Memory

 - name: testdata-iface1

 persistentVolumeClaim:

 claimName: pb-fg-all-iface1

 - name: testdata-iface2

 persistentVolumeClaim:

 claimName: pb-fg-all-iface2

 - name: results

 persistentVolumeClaim:

91

https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/policy/pod-security-policy/
https://kubernetes.io/docs/concepts/policy/pod-security-policy/

 claimName: tensorflow-results

 containers:

 - name: netapp-tensorflow-py2

 image: netapp/tensorflow-py2:19.03.0

 command: ["bash", "/netapp/scripts/start-slave-multi.sh",

"22122"]

 resources:

 limits:

 nvidia.com/gpu: 8

 volumeMounts:

 - mountPath: /dev/shm

 name: dshm

 - mountPath: /mnt/mount_0

 name: testdata-iface1

 - mountPath: /mnt/mount_1

 name: testdata-iface2

 - mountPath: /tmp

 name: results

 securityContext:

 privileged: true

EOF

$ kubectl create -f ./netapp-tensorflow-multi-imagenet-worker.yaml

deployment.apps/netapp-tensorflow-multi-imagenet-worker created

$ kubectl get deployments

NAME DESIRED CURRENT UP-TO-DATE

AVAILABLE AGE

netapp-tensorflow-multi-imagenet-worker 1 1 1

1 4s

2. Confirm that the worker deployment that you created in step 1 launched successfully. The following

example commands confirm that a single worker pod was created for the deployment, as indicated in the

deployment definition, and that this pod is currently running on one of the GPU worker nodes.

$ kubectl get pods -o wide

NAME READY

STATUS RESTARTS AGE

IP NODE NOMINATED NODE

netapp-tensorflow-multi-imagenet-worker-654fc7f486-v6725 1/1

Running 0 60s 10.61.218.154 10.61.218.154 <none>

$ kubectl logs netapp-tensorflow-multi-imagenet-worker-654fc7f486-v6725

22122

3. Create a Kubernetes job for a master that kicks off, participates in, and tracks the execution of the

synchronous multinode job. The following example commands create one master that kicks off, participates

in, and tracks the synchronous distributed execution of the same TensorFlow benchmark job that was

executed on a single node in the example in the section Execute a Single-Node AI Workload.

92

This example master job requests eight GPUs and thus can run on a single GPU worker node that features

eight or more GPUs. If your GPU worker nodes feature more than eight GPUs, to maximize performance,

you might want to increase this number to be equal to the number of GPUs that your worker nodes feature.

The master pod that is specified in this example job definition is given a hostNetwork value of true, just

as the worker pod was given a hostNetwork value of true in step 1. See step 1 for details about why

this value is necessary.

$ cat << EOF > ./netapp-tensorflow-multi-imagenet-master.yaml

apiVersion: batch/v1

kind: Job

metadata:

 name: netapp-tensorflow-multi-imagenet-master

spec:

 backoffLimit: 5

 template:

 spec:

 hostNetwork: true

 volumes:

 - name: dshm

 emptyDir:

 medium: Memory

 - name: testdata-iface1

 persistentVolumeClaim:

 claimName: pb-fg-all-iface1

 - name: testdata-iface2

 persistentVolumeClaim:

 claimName: pb-fg-all-iface2

 - name: results

 persistentVolumeClaim:

 claimName: tensorflow-results

 containers:

 - name: netapp-tensorflow-py2

 image: netapp/tensorflow-py2:19.03.0

 command: ["python", "/netapp/scripts/run.py", "--

dataset_dir=/mnt/mount_0/dataset/imagenet", "--port=22122", "--

num_devices=16", "--dgx_version=dgx1", "--

nodes=10.61.218.152,10.61.218.154"]

 resources:

 limits:

 nvidia.com/gpu: 8

 volumeMounts:

 - mountPath: /dev/shm

 name: dshm

 - mountPath: /mnt/mount_0

 name: testdata-iface1

 - mountPath: /mnt/mount_1

93

 name: testdata-iface2

 - mountPath: /tmp

 name: results

 securityContext:

 privileged: true

 restartPolicy: Never

EOF

$ kubectl create -f ./netapp-tensorflow-multi-imagenet-master.yaml

job.batch/netapp-tensorflow-multi-imagenet-master created

$ kubectl get jobs

NAME COMPLETIONS DURATION AGE

netapp-tensorflow-multi-imagenet-master 0/1 25s 25s

4. Confirm that the master job that you created in step 3 is running correctly. The following example command

confirms that a single master pod was created for the job, as indicated in the job definition, and that this

pod is currently running on one of the GPU worker nodes. You should also see that the worker pod that you

originally saw in step 1 is still running and that the master and worker pods are running on different nodes.

$ kubectl get pods -o wide

NAME READY

STATUS RESTARTS AGE

IP NODE NOMINATED NODE

netapp-tensorflow-multi-imagenet-master-ppwwj 1/1

Running 0 45s 10.61.218.152 10.61.218.152 <none>

netapp-tensorflow-multi-imagenet-worker-654fc7f486-v6725 1/1

Running 0 26m 10.61.218.154 10.61.218.154 <none>

5. Confirm that the master job that you created in step 3 completes successfully. The following example

commands confirm that the job completed successfully.

$ kubectl get jobs

NAME COMPLETIONS DURATION AGE

netapp-tensorflow-multi-imagenet-master 1/1 5m50s 9m18s

$ kubectl get pods

NAME READY

STATUS RESTARTS AGE

netapp-tensorflow-multi-imagenet-master-ppwwj 0/1

Completed 0 9m38s

netapp-tensorflow-multi-imagenet-worker-654fc7f486-v6725 1/1

Running 0 35m

$ kubectl logs netapp-tensorflow-multi-imagenet-master-ppwwj

[10.61.218.152:00008] WARNING: local probe returned unhandled

shell:unknown assuming bash

rm: cannot remove '/lib': Is a directory

[10.61.218.154:00033] PMIX ERROR: NO-PERMISSIONS in file gds_dstore.c at

94

line 702

[10.61.218.154:00033] PMIX ERROR: NO-PERMISSIONS in file gds_dstore.c at

line 711

[10.61.218.152:00008] PMIX ERROR: NO-PERMISSIONS in file gds_dstore.c at

line 702

[10.61.218.152:00008] PMIX ERROR: NO-PERMISSIONS in file gds_dstore.c at

line 711

Total images/sec = 12881.33875

================ Clean Cache !!! ==================

mpirun -allow-run-as-root -np 2 -H 10.61.218.152:1,10.61.218.154:1 -mca

pml ob1 -mca btl ^openib -mca btl_tcp_if_include enp1s0f0 -mca

plm_rsh_agent ssh -mca plm_rsh_args "-p 22122" bash -c 'sync; echo 1 >

/proc/sys/vm/drop_caches'

===

mpirun -allow-run-as-root -np 16 -H 10.61.218.152:8,10.61.218.154:8

-bind-to none -map-by slot -x NCCL_DEBUG=INFO -x LD_LIBRARY_PATH -x PATH

-mca pml ob1 -mca btl ^openib -mca btl_tcp_if_include enp1s0f0 -x

NCCL_IB_HCA=mlx5 -x NCCL_NET_GDR_READ=1 -x NCCL_IB_SL=3 -x

NCCL_IB_GID_INDEX=3 -x

NCCL_SOCKET_IFNAME=enp5s0.3091,enp12s0.3092,enp132s0.3093,enp139s0.3094

-x NCCL_IB_CUDA_SUPPORT=1 -mca orte_base_help_aggregate 0 -mca

plm_rsh_agent ssh -mca plm_rsh_args "-p 22122" python

/netapp/tensorflow/benchmarks_190205/scripts/tf_cnn_benchmarks/tf_cnn_be

nchmarks.py --model=resnet50 --batch_size=256 --device=gpu

--force_gpu_compatible=True --num_intra_threads=1 --num_inter_threads=48

--variable_update=horovod --batch_group_size=20 --num_batches=500

--nodistortions --num_gpus=1 --data_format=NCHW --use_fp16=True

--use_tf_layers=False --data_name=imagenet --use_datasets=True

--data_dir=/mnt/mount_0/dataset/imagenet

--datasets_parallel_interleave_cycle_length=10

--datasets_sloppy_parallel_interleave=False --num_mounts=2

--mount_prefix=/mnt/mount_%d --datasets_prefetch_buffer_size=2000 --

datasets_use_prefetch=True --datasets_num_private_threads=4

--horovod_device=gpu >

/tmp/20190814_161609_tensorflow_horovod_rdma_resnet50_gpu_16_256_b500_im

agenet_nodistort_fp16_r10_m2_nockpt.txt 2>&1

6. Delete the worker deployment when you no longer need it. The following example commands show the

deletion of the worker deployment object that was created in step 1.

When you delete the worker deployment object, Kubernetes automatically deletes any associated worker

pods.

95

$ kubectl get deployments

NAME DESIRED CURRENT UP-TO-DATE

AVAILABLE AGE

netapp-tensorflow-multi-imagenet-worker 1 1 1

1 43m

$ kubectl get pods

NAME READY

STATUS RESTARTS AGE

netapp-tensorflow-multi-imagenet-master-ppwwj 0/1

Completed 0 17m

netapp-tensorflow-multi-imagenet-worker-654fc7f486-v6725 1/1

Running 0 43m

$ kubectl delete deployment netapp-tensorflow-multi-imagenet-worker

deployment.extensions "netapp-tensorflow-multi-imagenet-worker" deleted

$ kubectl get deployments

No resources found.

$ kubectl get pods

NAME READY STATUS

RESTARTS AGE

netapp-tensorflow-multi-imagenet-master-ppwwj 0/1 Completed 0

18m

7. Optional: Clean up the master job artifacts. The following example commands show the deletion of the

master job object that was created in step 3.

When you delete the master job object, Kubernetes automatically deletes any associated master pods.

$ kubectl get jobs

NAME COMPLETIONS DURATION AGE

netapp-tensorflow-multi-imagenet-master 1/1 5m50s 19m

$ kubectl get pods

NAME READY STATUS

RESTARTS AGE

netapp-tensorflow-multi-imagenet-master-ppwwj 0/1 Completed 0

19m

$ kubectl delete job netapp-tensorflow-multi-imagenet-master

job.batch "netapp-tensorflow-multi-imagenet-master" deleted

$ kubectl get jobs

No resources found.

$ kubectl get pods

No resources found.

96

MLRun Pipeline with Iguazio

TR-4834: NetApp and Iguazio for MLRun Pipeline

Rick Huang, David Arnette, NetApp

Marcelo Litovsky, Iguazio

This document covers the details of the MLRun pipeline using NetApp ONTAP AI, NetApp

AI Control Plane, NetApp Cloud Volumes software, and the Iguazio Data Science

Platform. We used Nuclio serverless function, Kubernetes Persistent Volumes, NetApp

Cloud Volumes, NetApp Snapshot copies, Grafana dashboard, and other services on the

Iguazio platform to build an end-to-end data pipeline for the simulation of network failure

detection. We integrated Iguazio and NetApp technologies to enable fast model

deployment, data replication, and production monitoring capabilities on premises as well

as in the cloud.

The work of a data scientist should be focused on the training and tuning of machine learning (ML) and artificial

intelligence (AI) models. However, according to research by Google, data scientists spend ~80% of their time

figuring out how to make their models work with enterprise applications and run at scale, as shown in the

following image depicting model development in the AI/ML workflow.

To manage end-to-end AI/ML projects, a wider understanding of enterprise components is needed. Although

DevOps have taken over the definition, integration, and deployment these types of components, machine

learning operations target a similar flow that includes AI/ML projects. To get an idea of what an end-to-end

AI/ML pipeline touches in the enterprise, see the following list of required components:

• Storage

• Networking

97

• Databases

• File systems

• Containers

• Continuous integration and continuous deployment (CI/CD) pipeline

• Development integrated development environment (IDE)

• Security

• Data access policies

• Hardware

• Cloud

• Virtualization

• Data science toolsets and libraries

In this paper, we demonstrate how the partnership between NetApp and Iguazio drastically simplifies the

development of an end-to-end AI/ML pipeline. This simplification accelerates the time to market for all of your

AI/ML applications.

Target Audience

The world of data science touches multiple disciplines in information technology and business.

• The data scientist needs the flexibility to use their tools and libraries of choice.

• The data engineer needs to know how the data flows and where it resides.

• A DevOps engineer needs the tools to integrate new AI/ML applications into their CI/CD pipelines.

• Business users want to have access to AI/ML applications. We describe how NetApp and Iguazio help

each of these roles bring value to business with our platforms.

Solution Overview

This solution follows the lifecycle of an AI/ML application. We start with the work of data scientists to define the

different steps needed to prep data and train and deploy models. We follow with the work needed to create a

full pipeline with the ability to track artifacts, experiment with execution, and deploy to Kubeflow. To complete

the full cycle, we integrate the pipeline with NetApp Cloud Volumes to enable data versioning, as seen in the

following image.

98

Technology Overview

This article provides an overview of the colution for MLRun pipeline using NetApp ONTAP

AI, NetApp AI Control Plane, NetApp Cloud Volumes software, and the Iguazio Data

Science Platform.

NetApp Overview

NetApp is the data authority for the hybrid cloud. NetApp provides a full range of hybrid cloud data services

that simplify management of applications and data across cloud and on-premises environments to accelerate

digital transformation. Together with our partners, NetApp empowers global organizations to unleash the full

potential of their data to expand customer touch points, foster greater innovation, and optimize their operations.

NetApp ONTAP AI

NetApp ONTAP AI, powered by NVIDIA DGX systems and NetApp cloud-connected all-flash storage,

streamlines the flow of data reliably and speeds up analytics, training, and inference with your data fabric that

spans from edge to core to cloud. It gives IT organizations an architecture that provides the following benefits:

• Eliminates design complexities

• Allows independent scaling of compute and storage

• Enables customers to start small and scale seamlessly

• Offers a range of storage options for various performance and cost pointsNetApp ONTAP AI offers

converged infrastructure stacks incorporating NVIDIA DGX-1, a petaflop-scale AI system, and NVIDIA

Mellanox high-performance Ethernet switches to unify AI workloads, simplify deployment, and accelerate

ROI. We leveraged ONTAP AI with one DGX-1 and NetApp AFF A800 storage system for this technical

report. The following image shows the topology of ONTAP AI with the DGX-1 system used in this

99

validation.

NetApp AI Control Plane

The NetApp AI Control Plane enables you to unleash AI and ML with a solution that offers extreme scalability,

streamlined deployment, and nonstop data availability. The AI Control Plane solution integrates Kubernetes

and Kubeflow with a data fabric enabled by NetApp. Kubernetes, the industry-standard container orchestration

platform for cloud-native deployments, enables workload scalability and portability. Kubeflow is an open-source

machine-learning platform that simplifies management and deployment, enabling developers to do more data

science in less time. A data fabric enabled by NetApp offers uncompromising data availability and portability to

make sure that your data is accessible across the pipeline, from edge to core to cloud. This technical report

uses the NetApp AI Control Plane in an MLRun pipeline. The following image shows Kubernetes cluster

management page where you can have different endpoints for each cluster. We connected NFS Persistent

Volumes to the Kubernetes cluster, and the following images show an Persistent Volume connected to the

cluster, where NetApp Trident offers persistent storage support and data management capabilities.

100

https://www.netapp.com/us/media/ds-netapp-project-trident.pdf

101

Iguazio Overview

The Iguazio Data Science Platform is a fully integrated and secure data- science platform as a service (PaaS)

that simplifies development, accelerates performance, facilitates collaboration, and addresses operational

challenges. This platform incorporates the following components, and the Iguazio Data Science Platform is

presented in the following image:

• A data-science workbench that includes Jupyter Notebooks, integrated analytics engines, and Python

packages

• Model management with experiments tracking and automated pipeline capabilities

• Managed data and ML services over a scalable Kubernetes cluster

• Nuclio, a real-time serverless functions framework

• An extremely fast and secure data layer that supports SQL, NoSQL, time-series databases, files (simple

objects), and streaming

• Integration with third-party data sources such as NetApp, Amazon S3, HDFS, SQL databases, and

streaming or messaging protocols

• Real-time dashboards based on Grafana

102

Software and Hardware Requirements

This article defines the hardware requirements that must be met in order to deploy this

solution.

Network Configuration

The following is the network configuration requirement for setting up in the cloud:

• The Iguazio cluster and NetApp Cloud Volumes must be in the same virtual private cloud.

• The cloud manager must have access to port 6443 on the Iguazio app nodes.

• We used Amazon Web Services in this technical report. However, users have the option of deploying the

solution in any Cloud provider.For on-premises testing in ONTAP AI with NVIDIA DGX-1, we used the

Iguazio hosted DNS service for convenience.

Clients must be able to access dynamically created DNS domains. Customers can use their own DNS if

desired.

Hardware Requirements

You can install Iguazio on-premises in your own cluster. We have verified the solution in NetApp ONTAP AI

with an NVIDIA DGX-1 system. The following table lists the hardware used to test this solution.

Hardware Quantity

DGX-1 systems 1

NetApp AFF A800 system 1 high-availability (HA) pair, includes 2 controllers and

48 NVMe SSDs (3.8TB or above)

Cisco Nexus 3232C network switches 2

103

The following table lists the software components required for on-premise testing:

Software Version or Other Information

NetApp ONTAP data management software 9.7

Cisco NX-OS switch firmware 7.0(3)I6(1)

NVIDIA DGX OS 4.4 - Ubuntu 18.04 LTS

Docker container platform 19.03.5

Container version 20.01-tf1-py2

Machine learning framework TensorFlow 1.15.0

Iguazio Version 2.8+

ESX Server 6.5

This solution was fully tested with Iguazio version 2.5 and NetApp Cloud Volumes ONTAP for AWS. The

Iguazio cluster and NetApp software are both running on AWS.

Software Version or Type

Iguazio Version 2.8+

App node M5.4xlarge

Data node I3.4xlarge

Network Device Failure Prediction Use Case Summary

This use case is based on an Iguazio customer in the telecommunications space in Asia.

With 100K enterprise customers and 125k network outage events per year, there was a

critical need to predict and take proactive action to prevent network failures from affecting

customers. This solution provided them with the following benefits:

• Predictive analytics for network failures

• Integration with a ticketing system

• Taking proactive action to prevent network failuresAs a result of this implementation of Iguazio, 60% of

failures were proactively prevented.

Setup Overview

Iguazio can be installed on-premises or on a cloud provider.

Iguazio Installation

Provisioning can be done as a service and managed by Iguazio or by the customer. In both cases, Iguazio

provides a deployment application (Provazio) to deploy and manage clusters.

For on-premises installation, please refer to NVA-1121 for compute, network, and storage setup. On-premises

deployment of Iguazio is provided by Iguazio without additional cost to the customer. See this page for DNS

and SMTP server configurations. The Provazio installation page is shown as follows.

104

https://www.netapp.com/us/media/nva-1121-design.pdf
https://www.iguazio.com/docs/latest-release/intro/setup/howto/

Configuring Kubernetes Cluster

This section is divided into two parts for cloud and on-premises deployment respectively.

Cloud Deployment Kubernetes Configuration

Through NetApp Cloud Manager, you can define the connection to the Iguazio Kubernetes cluster. Trident

requires access to multiple resources in the cluster to make the volume available.

1. To enable access, obtain the Kubernetes config file from one the Iguazio nodes. The file is located under

/home/Iguazio/.kube/config. Download this file to your desktop.

2. Go to Discover Cluster to configure.

105

3. Upload the Kubernetes config file. See the following image.

4. Deploy Trident and associate a volume with the cluster. See the following image on defining and assigning

a Persistent Volume to the Iguazio cluster.This process creates a Persistent Volume (PV) in Iguazio’s

Kubernetes cluster. Before you can use it, you must define a Persistent Volume Claim (PVC).

106

On-Premises Deployment Kubernetes Configuration

For on-premises installation of NetApp Trident, see TR-4798 for details. After configuring your Kubernetes

cluster and installing NetApp Trident, you can connect Trident to the Iguazio cluster to enable NetApp data

management capabilities, such as taking Snapshot copies of your data and model.

Define Persistent Volume Claim

This article demonstrates how to define a persistent volume claim on a Jupyter notebook.

1. Save the following YAML to a file to create a PVC of type Basic.

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

 name: basic

spec:

 accessModes:

 - ReadWriteOnce

 resources:

 requests:

 storage: 100Gi

 storageClassName: netapp-file

107

https://www.netapp.com/us/media/tr-4798.pdf

2. Apply the YAML file to your Iguazio Kubernetes cluster.

Kubectl -n default-tenant apply -f <your yaml file>

Attach NetApp Volume to the Jupyter Notebook

Iguazio offers several managed services to provide data scientists with a full end-to-end stack for development

and deployment of AI/ML applications. You can read more about these components at the Iguazio Overview of

Application Services and Tools.

One of the managed services is Jupyter Notebook. Each developer gets its own deployment of a notebook

container with the resources they need for development. To give them access to the NetApp Cloud Volume,

you can assign the volume to their container and resource allocation, running user, and environment variable

settings for Persistent Volume Claims is presented in the following image.

For an on-premises configuration, you can refer to TR-4798 on the Trident setup to enable NetApp ONTAP

data management capabilities, such as taking Snapshot copies of your data or model for versioning control.

Add the following line in your Trident back- end config file to make Snapshot directories visible:

{

 …

 "defaults": {

 "snapshotDir": "true"

 }

}

You must create a Trident back- end config file in JSON format, and then run the following Trident command to

reference it:

tridentctl create backend -f <backend-file>

Deploying the Application

The following sections describe how to install and deploy the application.

108

https://www.iguazio.com/docs/intro/latest-release/ecosystem/app-services/
https://www.iguazio.com/docs/intro/latest-release/ecosystem/app-services/
https://www.netapp.com/us/media/tr-4798.pdf
https://netapp-trident.readthedocs.io/en/stable-v18.07/kubernetes/operations/tasks/backends.html

Get Code from GitHub

Now that the NetApp Cloud Volume or NetApp Trident volume is available to the Iguazio

cluster and the developer environment, you can start reviewing the application.

Users have their own workspace (directory). On every notebook, the path to the user directory is /User. The

Iguazio platform manages the directory. If you follow the instructions above, the NetApp Cloud volume is

available in the /netapp directory.

Get the code from GitHub using a Jupyter terminal.

At the Jupyter terminal prompt, clone the project.

cd /User

git clone .

You should now see the netops- netapp folder on the file tree in Jupyter workspace.

Configure Working Environment

Copy the Notebook set_env-Example.ipynb as set_env.ipynb. Open and edit

set_env.ipynb. This notebook sets variables for credentials, file locations, and

execution drivers.

If you follow the instructions above, the following steps are the only changes to make:

1. Obtain this value from the Iguazio services dashboard: docker_registry

Example: docker-registry.default-tenant.app.clusterq.iguaziodev.com:80

109

2. Change admin to your Iguazio username:

IGZ_CONTAINER_PATH = '/users/admin'

The following are the ONTAP system connection details. Include the volume name that was generated

when Trident was installed. The following setting is for an on-premises ONTAP cluster:

ontapClusterMgmtHostname = '0.0.0.0'

ontapClusterAdminUsername = 'USER'

ontapClusterAdminPassword = 'PASSWORD'

sourceVolumeName = 'SOURCE VOLUME'

The following setting is for Cloud Volumes ONTAP:

MANAGER=ontapClusterMgmtHostname

svm='svm'

email='email'

password=ontapClusterAdminPassword

weid="weid"

volume=sourceVolumeName

Create Base Docker Images

Everything you need to build an ML pipeline is included in the Iguazio platform. The developer can define the

specifications of the Docker images required to run the pipeline and execute the image creation from Jupyter

Notebook. Open the notebook create- images.ipynb and Run All Cells.

This notebook creates two images that we use in the pipeline.

• iguazio/netapp. Used to handle ML tasks.

• netapp/pipeline. Contains utilities to handle NetApp Snapshot copies.

Review Individual Jupyter Notebooks

The following table lists the libraries and frameworks we used to build this task. All these components have

been fully integrated with Iguazio’s role- based access and security controls.

110

Libraries/Framework Description

MLRun An managed by Iguazio to enable the assembly,

execution, and monitoring of an ML/AI pipeline.

Nuclio A serverless functions framework integrated with

Iguazio. Also available as an open-source project

managed by Iguazio.

Kubeflow A Kubernetes-based framework to deploy the pipeline.

This is also an open-source project to which Iguazio

contributes. It is integrated with Iguazio for added

security and integration with the rest of the

infrastructure.

Docker A Docker registry run as a service in the Iguazio

platform. You can also change this to connect to your

registry.

NetApp Cloud Volumes Cloud Volumes running on AWS give us access to

large amounts of data and the ability to take Snapshot

copies to version the datasets used for training.

Trident Trident is an open-source project managed by

NetApp. It facilitates the integration with storage and

compute resources in Kubernetes.

We used several notebooks to construct the ML pipeline. Each notebook can be tested individually before

being brought together in the pipeline. We cover each notebook individually following the deployment flow of

this demonstration application.

The desired result is a pipeline that trains a model based on a Snapshot copy of the data and deploys the

model for inference. A block diagram of a completed MLRun pipeline is shown in the following image.

111

Deploy Data Generation Function

This section describes how we used Nuclio serverless functions to generate network device data. The use

case is adapted from an Iguazio client that deployed the pipeline and used Iguazio services to monitor and

predict network device failures.

We simulated data coming from network devices. Executing the Jupyter notebook data- generator.ipynb

creates a serverless function that runs every 10 minutes and generates a Parquet file with new data. To deploy

the function, run all the cells in this notebook. See the Nuclio website to review any unfamiliar components in

this notebook.

A cell with the following comment is ignored when generating the function. Every cell in the notebook is

assumed to be part of the function. Import the Nuclio module to enable %nuclio magic.

nuclio: ignore

import nuclio

In the spec for the function, we defined the environment in which the function executes, how it is triggered, and

the resources it consumes.

112

https://nuclio.io/

spec = nuclio.ConfigSpec(config={"spec.triggers.inference.kind":"cron",

"spec.triggers.inference.attributes.interval" :"10m",

 "spec.readinessTimeoutSeconds" : 60,

 "spec.minReplicas" : 1},……

The init_context function is invoked by the Nuclio framework upon initialization of the function.

def init_context(context):

 ….

Any code not in a function is invoked when the function initializes. When you invoke it, a handler function is

executed. You can change the name of the handler and specify it in the function spec.

def handler(context, event):

 …

You can test the function from the notebook prior to deployment.

%%time

nuclio: ignore

init_context(context)

event = nuclio.Event(body='')

output = handler(context, event)

output

The function can be deployed from the notebook or it can be deployed from a CI/CD pipeline (adapting this

code).

addr = nuclio.deploy_file(name='generator',project='netops',spec=spec,

tag='v1.1')

Pipeline Notebooks

These notebooks are not meant to be executed individually for this setup. This is just a review of each

notebook. We invoked them as part of the pipeline. To execute them individually, review the MLRun

documentation to execute them as Kubernetes jobs.

snap_cv.ipynb

This notebook handles the Cloud Volume Snapshot copies at the beginning of the pipeline. It passes the name

of the volume to the pipeline context. This notebook invokes a shell script to handle the Snapshot copy. While

running in the pipeline, the execution context contains variables to help locate all files needed for execution.

113

While writing this code, the developer does not have to worry about the file location in the container that

executes it. As described later, this application is deployed with all its dependencies, and it is the definition of

the pipeline parameters that provides the execution context.

command = os.path.join(context.get_param('APP_DIR'),"snap_cv.sh")

The created Snapshot copy location is placed in the MLRun context to be consumed by steps in the pipeline.

context.log_result('snapVolumeDetails',snap_path)

The next three notebooks are run in parallel.

data-prep.ipynb

Raw metrics must be turned into features to enable model training. This notebook reads the raw metrics from

the Snapshot directory and writes the features for model training to the NetApp volume.

When running in the context of the pipeline, the input DATA_DIR contains the Snapshot copy location.

metrics_table = os.path.join(str(mlruncontext.get_input('DATA_DIR',

os.getenv('DATA_DIR','/netpp'))),

 mlruncontext.get_param('metrics_table',

os.getenv('metrics_table','netops_metrics_parquet')))

describe.ipynb

To visualize the incoming metrics, we deploy a pipeline step that provides plots and graphs that are available

through the Kubeflow and MLRun UIs. Each execution has its own version of this visualization tool.

ax.set_title("features correlation")

plt.savefig(os.path.join(base_path, "plots/corr.png"))

context.log_artifact(PlotArtifact("correlation", body=plt.gcf()),

local_path="plots/corr.html")

deploy-feature-function.ipynb

We continuously monitor the metrics looking for anomalies. This notebook creates a serverless function that

generates the features need to run prediction on incoming metrics. This notebook invokes the creation of the

function. The function code is in the notebook data- prep.ipynb. Notice that we use the same notebook as

a step in the pipeline for this purpose.

training.ipynb

After we create the features, we trigger the model training. The output of this step is the model to be used for

inferencing. We also collect statistics to keep track of each execution (experiment).

114

For example, the following command enters the accuracy score into the context for that experiment. This value

is visible in Kubeflow and MLRun.

context.log_result(‘accuracy’,score)

deploy-inference-function.ipynb

The last step in the pipeline is to deploy the model as a serverless function for continuous inferencing. This

notebook invokes the creation of the serverless function defined in nuclio-inference- function.ipynb.

Review and Build Pipeline

The combination of running all the notebooks in a pipeline enables the continuous run of experiments to

reassess the accuracy of the model against new metrics. First, open the pipeline.ipynb notebook. We take

you through details that show how NetApp and Iguazio simplify the deployment of this ML pipeline.

We use MLRun to provide context and handle resource allocation to each step of the pipeline. The MLRun API

service runs in the Iguazio platform and is the point of interaction with Kubernetes resources. Each developer

cannot directly request resources; the API handles the requests and enables access controls.

MLRun API connection definition

mlconf.dbpath = 'http://mlrun-api:8080'

The pipeline can work with NetApp Cloud Volumes and on-premises volumes. We built this demonstration to

use Cloud Volumes, but you can see in the code the option to run on-premises.

115

Initialize the NetApp snap fucntion once for all functions in a notebook

if [NETAPP_CLOUD_VOLUME]:

 snapfn =

code_to_function('snap',project='NetApp',kind='job',filename="snap_cv.ipyn

b").apply(mount_v3io())

 snap_params = {

 "metrics_table" : metrics_table,

 "NETAPP_MOUNT_PATH" : NETAPP_MOUNT_PATH,

 'MANAGER' : MANAGER,

 'svm' : svm,

 'email': email,

 'password': password ,

 'weid': weid,

 'volume': volume,

 "APP_DIR" : APP_DIR

 }

else:

 snapfn =

code_to_function('snap',project='NetApp',kind='job',filename="snapshot.ipy

nb").apply(mount_v3io())

….

snapfn.spec.image = docker_registry + '/netapp/pipeline:latest'

snapfn.spec.volume_mounts =

[snapfn.spec.volume_mounts[0],netapp_volume_mounts]

 snapfn.spec.volumes = [snapfn.spec.volumes[0],netapp_volumes]

The first action needed to turn a Jupyter notebook into a Kubeflow step is to turn the code into a function. A

function has all the specifications required to run that notebook. As you scroll down the notebook, you can see

that we define a function for every step in the pipeline.

Part of the Notebook Description

<code_to_function>

(part of the MLRun module)

Name of the function:

Project name. used to organize all project artifacts.

This is visible in the MLRun UI.

Kind. In this case, a Kubernetes job. This could be

Dask, mpi, sparkk8s, and more. See the MLRun

documentation for more details.

File. The name of the notebook. This can also be a

location in Git (HTTP).

image The name of the Docker image we are using for this

step. We created this earlier with the create-

image.ipynb notebook.

volume_mounts & volumes Details to mount the NetApp Cloud Volume at run

time.

We also define parameters for the steps.

116

params={ "FEATURES_TABLE":FEATURES_TABLE,

 "SAVE_TO" : SAVE_TO,

 "metrics_table" : metrics_table,

 'FROM_TSDB': 0,

 'PREDICTIONS_TABLE': PREDICTIONS_TABLE,

 'TRAIN_ON_LAST': '1d',

 'TRAIN_SIZE':0.7,

 'NUMBER_OF_SHARDS' : 4,

 'MODEL_FILENAME' : 'netops.v3.model.pickle',

 'APP_DIR' : APP_DIR,

 'FUNCTION_NAME' : 'netops-inference',

 'PROJECT_NAME' : 'netops',

 'NETAPP_SIM' : NETAPP_SIM,

 'NETAPP_MOUNT_PATH': NETAPP_MOUNT_PATH,

 'NETAPP_PVC_CLAIM' : NETAPP_PVC_CLAIM,

 'IGZ_CONTAINER_PATH' : IGZ_CONTAINER_PATH,

 'IGZ_MOUNT_PATH' : IGZ_MOUNT_PATH

 }

After you have the function definition for all steps, you can construct the pipeline. We use the kfp module to

make this definition. The difference between using MLRun and building on your own is the simplification and

shortening of the coding.

The functions we defined are turned into step components using the as_step function of MLRun.

Snapshot Step Definition

Initiate a Snapshot function, output, and mount v3io as source:

snap = snapfn.as_step(NewTask(handler='handler',params=snap_params),

name='NetApp_Cloud_Volume_Snapshot',outputs=['snapVolumeDetails','training

_parquet_file']).apply(mount_v3io())

Parameters Details

NewTask NewTask is the definition of the function run.

(MLRun module) Handler. Name of the Python function to invoke. We

used the name handler in the notebook, but it is not

required.

params. The parameters we passed to the execution.

Inside our code, we use context.get_param

(‘PARAMETER’) to get the values.

117

Parameters Details

as_step Name. Name of the Kubeflow pipeline step.

outputs. These are the values that the step adds to

the dictionary on completion. Take a look at the

snap_cv.ipynb notebook.

mount_v3io(). This configures the step to mount /User

for the user executing the pipeline.

prep = data_prep.as_step(name='data-prep',

handler='handler',params=params,

 inputs = {'DATA_DIR':

snap.outputs['snapVolumeDetails']} ,

out_path=artifacts_path).apply(mount_v3io()).after(snap)

Parameters Details

inputs You can pass to a step the outputs of a previous step.

In this case, snap.outputs['snapVolumeDetails'] is the

name of the Snapshot copy we created on the snap

step.

out_path A location to place artifacts generating using the

MLRun module log_artifacts.

You can run pipeline.ipynb from top to bottom. You can then go to the Pipelines tab from the Iguazio

dashboard to monitor progress as seen in the Iguazio dashboard Pipelines tab.

118

Because we logged the accuracy of training step in every run, we have a record of accuracy for each

experiment, as seen in the record of training accuracy.

If you select the Snapshot step, you can see the name of the Snapshot copy that was used to run this

experiment.

119

The described step has visual artifacts to explore the metrics we used. You can expand to view the full plot as

seen in the following image.

The MLRun API database also tracks inputs, outputs, and artifacts for each run organized by project. An

example of inputs, outputs, and artifacts for each run can be seen in the following image.

120

For each job, we store additional details.

There is more information about MLRun than we can cover in this document. Al artifacts, including the

definition of the steps and functions, can be saved to the API database, versioned, and invoked individually or

as a full project. Projects can also be saved and pushed to Git for later use. We encourage you to learn more

at the MLRun GitHub site.

Deploy Grafana Dashboard

After everything is deployed, we run inferences on new data. The models predict failure

on network device equipment. The results of the prediction are stored in an Iguazio

TimeSeries table. You can visualize the results with Grafana in the platform integrated

with Iguazio’s security and data access policy.

You can deploy the dashboard by importing the provided JSON file into the Grafana interfaces in the cluster.

1. To verify that the Grafana service is running, look under Services.

121

https://github.com/mlrun/mlrun

2. If it is not present, deploy an instance from the Services section:

a. Click New Service.

b. Select Grafana from the list.

c. Accept the defaults.

d. Click Next Step.

e. Enter your user ID.

f. Click Save Service.

g. Click Apply Changes at the top.

3. To deploy the dashboard, download the file NetopsPredictions-Dashboard.json through the Jupyter

interface.

122

4. Open Grafana from the Services section and import the dashboard.

5. Click Upload *.json File and select the file that you downloaded earlier (NetopsPredictions-

Dashboard.json). The dashboard displays after the upload is completed.

123

Deploy Cleanup Function

When you generate a lot of data, it is important to keep things clean and organized. To do so, deploy the

cleanup function with the cleanup.ipynb notebook.

Benefits

NetApp and Iguazio speed up and simplify the deployment of AI and ML applications by building in essential

frameworks, such as Kubeflow, Apache Spark, and TensorFlow, along with orchestration tools like Docker and

Kubernetes. By unifying the end-to-end data pipeline, NetApp and Iguazio reduce the latency and complexity

inherent in many advanced computing workloads, effectively bridging the gap between development and

operations. Data scientists can run queries on large datasets and securely share data and algorithmic models

with authorized users during the training phase. After the containerized models are ready for production, you

can easily move them from development environments to operational environments.

Conclusion

When building your own AI/ML pipelines, configuring the integration, management,

security, and accessibility of the components in an architecture is a challenging task.

Giving developers access and control of their environment presents another set of

challenges.

The combination of NetApp and Iguazio brings these technologies together as managed services to accelerate

technology adoption and improve the time to market for new AI/ML applications.

TR-4915: Data movement with E-Series and BeeGFS for AI
and analytics workflows

Cody Harryman and Ryan Rodine, NetApp

124

TR-4915 describes how to move data from any data repository into a BeeGFS file system

backed by NetApp E-Series SAN storage. For artificial intelligence (AI) and machine

learning (ML) applications, customers might routinely need to move large data sets

exceeding many petabytes of data into their BeeGFS clusters for model development.

This document explores how to accomplish this by using NetApp XCP and NetApp

BlueXP Copy and Sync tools.

TR-4915: Data movement with E-Series and BeeGFS for AI and analytics workflows

Vector Database Solution with NetApp

Karthikeyan Nagalingam and Rodrigo Nascimento, NetApp

This document provides a thorough exploration of the deployment and management of

vector databases, such as Milvus, and pgvecto an open-source PostgreSQL extension,

using NetApp’s storage solutions. It details the infrastructure guidelines for using NetApp

ONTAP and StorageGRID object storage and validates the application of Milvus database

in AWS FSX for NetApp ONTAP. The document elucidates NetApp’s file-object duality

and its utility for vector databases and applications that support vector embeddings. It

emphasizes the capabilities of SnapCenter, NetApp’s enterprise management product, in

offering backup and restore functionalities for vector databases, ensuring data integrity

and availability. The document further delves into NetApp’s hybrid cloud solution,

discussing its role in data replication and protection across on-premises and cloud

environments. It includes insights into the performance validation of vector databases on

NetApp ONTAP, and concludes with two practical use cases on generative AI : RAG with

LLM and the NetApp’s internal ChatAI. This document serves as a comprehensive guide

for leveraging NetApp’s storage solutions for managing vector databases.

The Reference Architecture focus on the following:

1. Introduction

2. Solution Overview

3. Vector Database

4. Technology Requirement

5. Deployment Procedure

6. Solution Verification Overview

◦ Milvus cluster setup with Kubernetes in on-premises

◦ Milvus with Amazon FSxN for NetApp ONTAP – file and object duality

◦ Vector database protection using NetApp SnapCenter.

◦ Disaster Recovery using NetApp SnapMirror

◦ Performance validation

7. Vector Database with Instaclustr using PostgreSQL: pgvector

8. Vector Database Use Cases

125

https://www.netapp.com/pdf.html?item=/media/65882-tr-4915.pdf

9. Conclusion

10. Appendix A: values.yaml

11. Appendix B: prepare_data_netapp_new.py

12. Appendix C: verify_data_netapp.py

13. Appendix D: docker-compose.yml

Introduction

This section provide an introduction to vector database solution for NetApp.

Introduction

Vector databases effectively address the challenges that are designed to handle the complexities of semantic

search in Large Language Models (LLMs) and generative Artificial Intelligence (AI). Unlike traditional data

management systems, vector databases are capable of processing and searching through various types of

data, including images, videos, text, audio, and other forms of unstructured data, by using the content of the

data itself rather than labels or tags.

The limitations of Relational Database Management Systems (RDBMS) are well-documented, particularly their

struggles with high-dimensional data representations and unstructured data common in AI applications.

RDBMS often necessitate a time-consuming and error-prone process of flattening data into more manageable

structures, leading to delays and inefficiencies in searches. Vector databases, however, are designed to

circumvent these issues, offering a more efficient and accurate solution for managing and searching through

complex and high-dimensional data, thus facilitating the advancement of AI applications.

This document serves as a comprehensive guide for customers who are currently using or planning to use

vector databases, detailing the best practices for utilizing vector databases on platforms such as NetApp

ONTAP, NetApp StorageGRID, Amazon FSxN for NetApp ONTAP, and SnapCenter. The content provided

herein covers a range of topics:

• Infrastructure guidelines for vector databases, like Milvus, provided by NetApp storage through NetApp

ONTAP and StorageGRID object storage.

• Validation of the Milvus database in AWS FSX for NetApp ONTAP through file and object store.

• Delves into NetApp’s file-object duality, demonstrating its utility for data in vector databases as well as

other applications.

• How NetApp’s Data Protection Management product, SnapCenter, offers backup and restore functionalities

for vector database data.

• How NetApp’s Hybrid Cloud offers data replication and protection across on-premises and cloud

environments.

• Provides insights into the performance validation of vector databases like Milvus and pgvector on NetApp

ONTAP.

• Two specific use cases: Retrieval Augmented Generation (RAG) with Large Language Models(LLM) and

the NetApp IT team’s ChatAI, thereby offering practical examples of the concepts and practices outlined.

Solution Overview

This section provides an overview for the NetApp vector database solution.

126

Solution overview

This solution showcases the distinctive benefits and capabilities that NetApp brings to the table to tackle the

challenges faced by vector database customers. By leveraging NetApp ONTAP, StorageGRID, NetApp’s cloud

solutions, and SnapCenter, customers can add significant value to their business operations. These tools not

only address existing issues but also enhance efficiency and productivity, thereby contributing to overall

business growth.

Why NetApp?

• NetApp’s offerings, such as ONTAP and StorageGRID, allow for the separation of storage and compute,

enabling optimal resource utilization based on specific requirements. This flexibility empowers customers to

independently scale their storage using NetApp storage solutions.

• By leveraging NetApp’s storage controllers, customers can efficiently serve data to their vector database

using NFS and S3 protocols. These protocols facilitate customer data storage and manage the vector

database index, eliminating the need for multiple copies of data accessed through file and object methods.

• NetApp ONTAP provides native support for NAS and Object storage across leading cloud service providers

like AWS, Azure, and Google Cloud. This wide compatibility ensures seamless integration, enabling

customer data mobility, global accessibility, disaster recovery, dynamic scalability, and high performance.

• With NetApp’s robust data management capabilities, customers can rest assured knowing that their data is

well-protected against potential risks and threats. NetApp prioritizes data security, offering peace of mind to

customers regarding the safety and integrity of their valuable information.

Vector Database

This section covers the definition and use of a vector database in NetApp AI solutions.

Vector Database

A vector database is a specialized type of database designed to handle, index, and search unstructured data

using embeddings from machine learning models. Instead of organizing data in a traditional tabular format, it

arranges data as high-dimensional vectors, also known as vector embeddings. This unique structure allows the

database to handle complex, multi-dimensional data more efficiently and accurately.

One of the key capabilities of a vector database is its use of generative AI to perform analytics. This includes

similarity searches, where the database identifies data points that are like a given input, and anomaly

detection, where it can spot data points that deviate significantly from the norm.

Furthermore, vector databases are well-suited to handle temporal data, or time-stamped data. This type of

data provides information about ‘what’ happened and when it happened, in sequence and in relation to all

other events within a given IT system. This ability to handle and analyze temporal data makes vector

databases particularly useful for applications that require an understanding of events over time.

Advantages of vector database for ML and AI:

• High-dimensional Search: Vector databases excel in managing and retrieving high-dimensional data, which

is often generated in AI and ML applications.

• Scalability: They can efficiently scale to handle large volumes of data, supporting the growth and expansion

of AI and ML projects.

• Flexibility: Vector databases offer a high degree of flexibility, allowing for the accommodation of diverse

data types and structures.

127

• Performance: They provide high-performance data management and retrieval, critical for the speed and

efficiency of AI and ML operations.

• Customizable Indexing: Vector databases offer customizable indexing options, enabling optimized data

organization and retrieval based on specific needs.

Vector databases and use cases.

This section provides varies vector databases and their use case details.

Faiss and ScaNN

They are libraries that serve as crucial tools in the realm of vector search. These libraries provide functionality

that is instrumental in managing and searching through vector data, making them invaluable resources in this

specialized area of data management.

Elasticsearch

It’s a widely used search and analytics engine, has recently incorporated vector search capabilities. This new

feature enhances its functionality, enabling it to handle and search through vector data more effectively.

Pinecone

It is a robust vector database with a unique set of features. It supports both dense and sparse vectors in its

indexing functionality, which enhances its flexibility and adaptability. One of its key strengths lies in its ability to

combine traditional search methods with AI-based dense vector search, creating a hybrid search approach that

leverages the best of both worlds.

Primarily cloud-based, Pinecone is designed for machine learning applications and integrates well with a

variety of platforms, including GCP, AWS, Open AI, GPT-3, GPT-3.5, GPT-4, Catgut Plus, Elasticsearch,

Haystack, and more. It’s important to note that Pinecone is a closed-source platform and is available as a

Software as a Service (SaaS) offering.

Given its advanced capabilities, Pinecone is particularly well-suited for the cybersecurity industry, where its

high-dimensional search and hybrid search capabilities can be leveraged effectively to detect and respond to

threats.

Chroma

It’s a vector database that has a Core-API with four primary functions, one of which includes an in-memory

document-vector store. It also utilizes the Face Transformers library to vectorize documents, enhancing its

functionality and versatility.

Chroma is designed to operate both in the cloud and on-premises, offering flexibility based on user needs.

Particularly, it excels in audio-related applications, making it an excellent choice for audio-based search

engines, music recommendation systems, and other audio-related use cases.

Weaviate

It’s a versatile vector database that allows users to vectorize their content using either its built-in modules or

custom modules, providing flexibility based on specific needs. It offers both fully managed and self-hosted

solutions, catering to a variety of deployment preferences.

One of Weaviate’s key features is its ability to store both vectors and objects, enhancing its data handling

capabilities. It is widely used for a range of applications, including semantic search and data classification in

ERP systems. In the e-commerce sector, it powers search and recommendation engines. Weaviate is also

128

used for image search, anomaly detection, automated data harmonization, and cybersecurity threat analysis,

showcasing its versatility across multiple domains.

Redis

Redis is a high-performing vector database known for its fast in-memory storage, offering low latency for read-

write operations. This makes it an excellent choice for recommendation systems, search engines, and data

analytics applications that require quick data access.

Redis supports various data structures for vectors, including lists, sets, and sorted sets. It also provides vector

operations such as calculating distances between vectors or finding intersections and unions. These features

are particularly useful for similarity search, clustering, and content-based recommendation systems.

In terms of scalability and availability, Redis excels in handling high throughput workloads and offers data

replication. It also integrates well with other data types, including traditional relational databases (RDBMS).

Redis includes a Publish/Subscribe (Pub/Sub) feature for real-time updates, which is beneficial for managing

real-time vectors. Moreover, Redis is lightweight and simple to use, making it a user-friendly solution for

managing vector data.

Milvus

It’s a versatile vector database that offers an API like a document store, much like MongoDB. It stands out due

to its support for a wide variety of data types, making it a popular choice in the data science and machine

learning fields.

One of Milvus’ unique features is its multi-vectorization capability, which allows users to specify at runtime the

type of vector to use for the search. Furthermore, it utilizes Knowwhere, a library that sits atop other libraries

like Faiss, to manage communication between queries and the vector search algorithms.

Milvus also offers seamless integration with machine learning workflows, thanks to its compatibility with

PyTorch and TensorFlow. This makes it an excellent tool for a range of applications, including e-commerce,

image and video analysis, object recognition, image similarity search, and content-based image retrieval. In the

realm of natural language processing, Milvus is used for document clustering, semantic search, and question-

answering systems.

For this solution, we picked milvus for the solution validation. For performance, we used both milvus and

postgres(pgvecto.rs).

Why we chose milvus for this solution?

• Open-Source: Milvus is an open-source vector database, encouraging community-driven development and

improvements.

• AI Integration: It leverages embedding similarity search and AI applications to enhance vector database

functionality.

• Large Volume Handling: Milvus has the capacity to store, index, and manage over a billion embedding

vectors generated by Deep Neural Networks (DNN) and Machine Learning (ML) models.

• User-Friendly: It is easy to use, with setup taking less than a minute. Milvus also offers SDKs for different

programming languages.

• Speed: It offers blazing fast retrieval speeds, up to 10 times faster than some alternatives.

• Scalability and Availability: Milvus is highly scalable, with options to scale up and out as needed.

• Feature-Rich: It supports different data types, attribute filtering, User-Defined Function (UDF) support,

configurable consistency levels, and travel time, making it a versatile tool for various applications.

129

Milvus architecture overview

This section provides higher lever components and services are used in Milvus architecture.

* Access layer – It’s composed of a group of stateless proxies and serves as the front layer of the system and

endpoint to users.

* Coordinator service – it assigns the tasks to the worker nodes and act as a system’s brain. It has three

coordinator types: root coord,data coord and query coord.

* Worker nodes : It follows the instruction from coordinator service and execute user triggered DML/DDL

commands.it has three types of worker nodes such as query node, data node and index node.

* Storage: it’s responsible for data persistence. It comprises meta storage, log broker, and object storage.

NetApp storage such as ONTAP and StorageGRID provides object storage and File based storage to Milvus

for both customer data and vector database data.

Technology Requirement

This section provides an overview of the requirements for the NetApp vector database

solution.

Technology Requirement

The hardware and software configurations outlined below were utilized for the majority of the validations

performed in this document, with the exception of performance. These configurations serve as a guideline to

help you set up your environment. However, please note that the specific components may vary depending on

individual customer requirements.

Hardware requirements

130

Hardware Details

NetApp AFF Storage array HA Pair * A800

* ONTAP 9.14.1

* 48 x 3.49TB SSD-NVM

* Two Flexible group volumes: metadata and data.

* Metadata NFS volume has 12 x Persistent Volumes

with 250GB.

* Data is a ONTAP NAS S3 volume

6 x FUJITSU PRIMERGY RX2540 M4 * 64 CPUs

* Intel® Xeon® Gold 6142 CPU @ 2.60GHz

* 256 GM Physical Memory

* 1 x 100GbE network port

Networking 100 GbE

StorageGRID * 1 x SG100, 3xSGF6024

* 3 x 24 x 7.68TB

Software requirements

Software Details

Milvus cluster * CHART - milvus-4.1.11.

* APP Version – 2.3.4

* Dependent bundles such as bookkeeper, zookeeper,

pulsar, etcd, proxy, querynode, worker

Kubernetes * 5 node K8s cluster

* 1 Master node and 4 Worker nodes

* Version – 1.7.2

Python *3.10.12.

Deployment Procedure

This section discusses the deployment procedure for the vector database solution for

NetApp.

Deployment procedure

In this deployment section, we used milvus vector database with Kubernetes for the lab setup as below.

131

The netapp storage provides the storage for the cluster to keep customers data and milvus cluster data.

NetApp storage setup – ONTAP

• Storage system initialization

• Storage virtual machine (SVM) creation

• Assignment of logical network interfaces

• NFS, S3 configuration and licensing

Please follow the steps below for NFS (Network File System):

1. Create a FlexGroup volume for NFSv4. In our set up for this validation, we have used 48 SSDs, 1 SSD

dedicated for the controller’s root volume and 47 SSDs spread across for NFSv4]].Verify that the NFS

export policy for the FlexGroup volume has read/write permissions for the Kubernetes (K8s) nodes

network. If these permissions are not in place, grant read/write (rw) permissions for the K8s nodes network.

2. On all K8s nodes, create a folder and mount the FlexGroup volume onto this folder through a Logical

Interface (LIF) on each K8s nodes.

Please follow the steps below for NAS S3 (Network Attached Storage Simple Storage Service):

1. Create a FlexGroup volume for NFS.

2. Set up an object-store-server with HTTP enabled and the admin status set to 'up' using the "vserver object-

132

store-server create" command. You have the option to enable HTTPS and set a custom listener port.

3. Create an object-store-server user using the "vserver object-store-server user create -user <username>"

command.

4. To obtain the access key and secret key, you can run the following command: "set diag; vserver object-

store-server user show -user <username>". However, moving forward, these keys will be supplied during

the user creation process or can be retrieved using REST API calls.

5. Establish an object-store-server group using the user created in step 2 and grant access. In this example,

we have provided "FullAccess".

6. Create a NAS bucket by setting its type to "nas" and supplying the path to the NFSv3 volume. It’s also

possible to utilize an S3 bucket for this purpose.

NetApp storage setup – StorageGRID

1. Install the storageGRID software.

2. Create a tenant and bucket.

3. Create user with required permission.

Please check more details in https://docs.netapp.com/us-en/storagegrid-116/primer/index.html

Solution Overview

We have conducted a comprehensive solution validation focused on five key areas, the

details of which are outlined below. Each section delves into the challenges faced by

customers, the solutions provided by NetApp, and the subsequent benefits to the

customer.

1. Milvus cluster setup with Kubernetes in on-premises

Customer challenges to scale independently on storage and compute, effective infrastructure management

and data management. In this section, we detail the process of installing a Milvus cluster on Kubernetes,

utilizing a NetApp storage controller for both cluster data and customer data.

2. Milvus with Amazon FSxN for NetApp ONTAP – file and object duality

In this section, Why we need to deploy vector database in cloud as well as steps to deploy vector database

(milvus standalone) in Amazon FSxN for NetApp ONTAP within docker containers.

3. Vector database protection using NetApp SnapCenter.

In this section, we delve into how SnapCenter safeguards the vector database data and Milvus data

residing in ONTAP. For this example, we utilized a NAS bucket (milvusdbvol1) derived from an NFS

ONTAP volume (vol1) for customer data, and a separate NFS volume (vectordbpv) for Milvus cluster

configuration data.

4. Disaster Recovery using NetApp SnapMirror

In this section, we discuss about the importance of Disaster recovery(DR) for vector database and how

netapp disaster recovery product snapmirror provides DR solution to vector database.

5. Performance validation

In this section, we aim to delve into the performance validation of vector databases, such as Milvus and

pgvecto.rs, focusing on their storage performance characteristics such as I/O profile and netapp storage

controller behavious in support of RAG and inference workloads within the LLM Lifecycle. We will evaluate

and identify any performance differentiators when these databases are combined with the ONTAP storage

solution. Our analysis will be based on key performance indicators, such as the number of queries

processed per second(QPS).

133

https://docs.netapp.com/us-en/storagegrid-116/primer/index.html

Milvus Cluster Setup with Kubernetes in on-premises

This section discusses the milvus cluster setup for the vector database solution for

NetApp.

Milvus cluster setup with Kubernetes in on-premises

Customer challenges to scale independently on storage and compute, effective infrastructure management and

data management,

Kubernetes and vector databases together form a powerful, scalable solution for managing large data

operations. Kubernetes optimizes resources and manages containers, while vector databases efficiently

handle high-dimensional data and similarity searches. This combination enables swift processing of complex

queries on large datasets and seamlessly scales with growing data volumes, making it ideal for big data

applications and AI workloads.

1. In this section, we detail the process of installing a Milvus cluster on Kubernetes, utilizing a NetApp storage

controller for both cluster data and customer data.

2. To install a Milvus cluster, Persistent Volumes (PVs) are required for storing data from various Milvus

cluster components. These components include etcd (three instances), pulsar-bookie-journal (three

instances), pulsar-bookie-ledgers (three instances), and pulsar-zookeeper-data (three instances).

In milvus cluster, we can use either pulsar or kafka for the underlying engine supporting

Milvus cluster’s reliable storage and publication/subscription of message streams. For Kafka

with NFS,NetApp has made improvements in ONTAP 9.12.1 and later, and these

enhancements, along with NFSv4.1 and Linux changes that are included in RHEL 8.7 or 9.1

and higher, resolve the "silly rename" issue that can occur when running Kafka over NFS. if

you interested in more in-depth information on the topic of running kafka with netapp NFS

solution, please check - this link.

3. We created a single NFS volume from NetApp ONTAP and established 12 persistent volumes, each with

250GB of storage. The storage size can vary depending on the cluster size; for instance, we have another

cluster where each PV has 50GB. Please refer below to one of the PV YAML files for more details; we had

12 such files in total. In each file, the storageClassName is set to 'default', and the storage and path are

unique to each PV.

134

https://docs.netapp.com/us-en/netapp-solutions/data-analytics/kafka-nfs-introduction.html

root@node2:~# cat sai_nfs_to_default_pv1.yaml

apiVersion: v1

kind: PersistentVolume

metadata:

 name: karthik-pv1

spec:

 capacity:

 storage: 250Gi

 volumeMode: Filesystem

 accessModes:

 - ReadWriteOnce

 persistentVolumeReclaimPolicy: Retain

 storageClassName: default

 local:

 path: /vectordbsc/milvus/milvus1

 nodeAffinity:

 required:

 nodeSelectorTerms:

 - matchExpressions:

 - key: kubernetes.io/hostname

 operator: In

 values:

 - node2

 - node3

 - node4

 - node5

 - node6

root@node2:~#

4. Execute the 'kubectl apply' command for each PV YAML file to create the Persistent Volumes, and then

verify their creation using ‘kubectl get pv’

135

root@node2:~# for i in $(seq 1 12); do kubectl apply -f

sai_nfs_to_default_pv$i.yaml; done

persistentvolume/karthik-pv1 created

persistentvolume/karthik-pv2 created

persistentvolume/karthik-pv3 created

persistentvolume/karthik-pv4 created

persistentvolume/karthik-pv5 created

persistentvolume/karthik-pv6 created

persistentvolume/karthik-pv7 created

persistentvolume/karthik-pv8 created

persistentvolume/karthik-pv9 created

persistentvolume/karthik-pv10 created

persistentvolume/karthik-pv11 created

persistentvolume/karthik-pv12 created

root@node2:~#

5. For storing customer data, Milvus supports object storage solutions such as MinIO, Azure Blob, and S3. In

this guide, we utilize S3. The following steps apply to both ONTAP S3 and StorageGRID object store. We

use Helm to deploy the Milvus cluster. Download the configuration file, values.yaml, from the Milvus

download location. Please refer to the appendix for the values.yaml file we used in this document.

6. Ensure that the 'storageClass' is set to 'default' in each section, including those for the log, etcd,

zookeeper, and bookkeeper.

7. In the MinIO section, disable MinIO.

8. Create a NAS bucket from ONTAP or StorageGRID object storage and include them in an External S3 with

the object storage credentials.

###################################

External S3

- these configs are only used when `externalS3.enabled` is true

###################################

externalS3:

 enabled: true

 host: "192.168.150.167"

 port: "80"

 accessKey: "24G4C1316APP2BIPDE5S"

 secretKey: "Zd28p43rgZaU44PX_ftT279z9nt4jBSro97j87Bx"

 useSSL: false

 bucketName: "milvusdbvol1"

 rootPath: ""

 useIAM: false

 cloudProvider: "aws"

 iamEndpoint: ""

 region: ""

 useVirtualHost: false

136

9. Before creating the Milvus cluster, ensure that the PersistentVolumeClaim (PVC) does not have any pre-

existing resources.

root@node2:~# kubectl get pvc

No resources found in default namespace.

root@node2:~#

10. Utilize Helm and the values.yaml configuration file to install and start the Milvus cluster.

root@node2:~# helm upgrade --install my-release milvus/milvus --set

global.storageClass=default -f values.yaml

Release "my-release" does not exist. Installing it now.

NAME: my-release

LAST DEPLOYED: Thu Mar 14 15:00:07 2024

NAMESPACE: default

STATUS: deployed

REVISION: 1

TEST SUITE: None

root@node2:~#

11. Verify the status of the PersistentVolumeClaims (PVCs).

137

root@node2:~# kubectl get pvc

NAME STATUS

VOLUME CAPACITY ACCESS MODES STORAGECLASS AGE

data-my-release-etcd-0 Bound

karthik-pv8 250Gi RWO default 3s

data-my-release-etcd-1 Bound

karthik-pv5 250Gi RWO default 2s

data-my-release-etcd-2 Bound

karthik-pv4 250Gi RWO default 3s

my-release-pulsar-bookie-journal-my-release-pulsar-bookie-0 Bound

karthik-pv10 250Gi RWO default 3s

my-release-pulsar-bookie-journal-my-release-pulsar-bookie-1 Bound

karthik-pv3 250Gi RWO default 3s

my-release-pulsar-bookie-journal-my-release-pulsar-bookie-2 Bound

karthik-pv1 250Gi RWO default 3s

my-release-pulsar-bookie-ledgers-my-release-pulsar-bookie-0 Bound

karthik-pv2 250Gi RWO default 3s

my-release-pulsar-bookie-ledgers-my-release-pulsar-bookie-1 Bound

karthik-pv9 250Gi RWO default 3s

my-release-pulsar-bookie-ledgers-my-release-pulsar-bookie-2 Bound

karthik-pv11 250Gi RWO default 3s

my-release-pulsar-zookeeper-data-my-release-pulsar-zookeeper-0 Bound

karthik-pv7 250Gi RWO default 3s

root@node2:~#

12. Check the status of the pods.

root@node2:~# kubectl get pods -o wide

NAME READY STATUS

RESTARTS AGE IP NODE NOMINATED NODE

READINESS GATES

<content removed to save page space>

Please make sure the pods status are ‘running’ and working as expected

13. Test data writing and reading in Milvus and NetApp object storage.

◦ Write data using the "prepare_data_netapp_new.py" Python program.

138

root@node2:~# date;python3 prepare_data_netapp_new.py ;date

Thu Apr 4 04:15:35 PM UTC 2024

=== start connecting to Milvus ===

=== Milvus host: localhost ===

Does collection hello_milvus_ntapnew_update2_sc exist in Milvus:

False

=== Drop collection - hello_milvus_ntapnew_update2_sc ===

=== Drop collection - hello_milvus_ntapnew_update2_sc2 ===

=== Create collection `hello_milvus_ntapnew_update2_sc` ===

=== Start inserting entities ===

Number of entities in hello_milvus_ntapnew_update2_sc: 3000

Thu Apr 4 04:18:01 PM UTC 2024

root@node2:~#

◦ Read the data using the "verify_data_netapp.py" Python file.

root@node2:~# python3 verify_data_netapp.py

=== start connecting to Milvus ===

=== Milvus host: localhost ===

Does collection hello_milvus_ntapnew_update2_sc exist in Milvus: True

{'auto_id': False, 'description': 'hello_milvus_ntapnew_update2_sc',

'fields': [{'name': 'pk', 'description': '', 'type': <DataType.INT64:

5>, 'is_primary': True, 'auto_id': False}, {'name': 'random',

'description': '', 'type': <DataType.DOUBLE: 11>}, {'name': 'var',

'description': '', 'type': <DataType.VARCHAR: 21>, 'params':

{'max_length': 65535}}, {'name': 'embeddings', 'description': '',

'type': <DataType.FLOAT_VECTOR: 101>, 'params': {'dim': 16}}]}

Number of entities in Milvus: hello_milvus_ntapnew_update2_sc : 3000

=== Start Creating index IVF_FLAT ===

=== Start loading ===

=== Start searching based on vector similarity ===

hit: id: 2998, distance: 0.0, entity: {'random': 0.9728033590489911},

random field: 0.9728033590489911

hit: id: 2600, distance: 0.602496862411499, entity: {'random':

0.3098157043984633}, random field: 0.3098157043984633

hit: id: 1831, distance: 0.6797959804534912, entity: {'random':

0.6331477114129169}, random field: 0.6331477114129169

hit: id: 2999, distance: 0.0, entity: {'random':

0.02316334456872482}, random field: 0.02316334456872482

hit: id: 2524, distance: 0.5918987989425659, entity: {'random':

139

0.285283165889066}, random field: 0.285283165889066

hit: id: 264, distance: 0.7254047393798828, entity: {'random':

0.3329096143562196}, random field: 0.3329096143562196

search latency = 0.4533s

=== Start querying with `random > 0.5` ===

query result:

-{'random': 0.6378742006852851, 'embeddings': [0.20963514,

0.39746657, 0.12019053, 0.6947492, 0.9535575, 0.5454552, 0.82360446,

0.21096309, 0.52323616, 0.8035404, 0.77824664, 0.80369574, 0.4914803,

0.8265614, 0.6145269, 0.80234545], 'pk': 0}

search latency = 0.4476s

=== Start hybrid searching with `random > 0.5` ===

hit: id: 2998, distance: 0.0, entity: {'random': 0.9728033590489911},

random field: 0.9728033590489911

hit: id: 1831, distance: 0.6797959804534912, entity: {'random':

0.6331477114129169}, random field: 0.6331477114129169

hit: id: 678, distance: 0.7351570129394531, entity: {'random':

0.5195484662306603}, random field: 0.5195484662306603

hit: id: 2644, distance: 0.8620758056640625, entity: {'random':

0.9785952878381153}, random field: 0.9785952878381153

hit: id: 1960, distance: 0.9083120226860046, entity: {'random':

0.6376039340439571}, random field: 0.6376039340439571

hit: id: 106, distance: 0.9792704582214355, entity: {'random':

0.9679994241326673}, random field: 0.9679994241326673

search latency = 0.1232s

Does collection hello_milvus_ntapnew_update2_sc2 exist in Milvus:

True

{'auto_id': True, 'description': 'hello_milvus_ntapnew_update2_sc2',

'fields': [{'name': 'pk', 'description': '', 'type': <DataType.INT64:

5>, 'is_primary': True, 'auto_id': True}, {'name': 'random',

'description': '', 'type': <DataType.DOUBLE: 11>}, {'name': 'var',

'description': '', 'type': <DataType.VARCHAR: 21>, 'params':

{'max_length': 65535}}, {'name': 'embeddings', 'description': '',

'type': <DataType.FLOAT_VECTOR: 101>, 'params': {'dim': 16}}]}

Based on the above validation, the integration of Kubernetes with a vector database, as demonstrated

through the deployment of a Milvus cluster on Kubernetes using a NetApp storage controller, offers

customers a robust, scalable, and efficient solution for managing large-scale data operations. This

setup provides customers with the ability to handle high-dimensional data and execute complex queries

rapidly and efficiently, making it an ideal solution for big data applications and AI workloads. The use of

Persistent Volumes (PVs) for various cluster components, along with the creation of a single NFS

volume from NetApp ONTAP, ensures optimal resource utilization and data management. The process

of verifying the status of PersistentVolumeClaims (PVCs) and pods, as well as testing data writing and

140

reading, provides customers with the assurance of reliable and consistent data operations. The use of

ONTAP or StorageGRID object storage for customer data further enhances data accessibility and

security. Overall, this setup empowers customers with a resilient and high-performing data

management solution that can seamlessly scale with their growing data needs.

Milvus with Amazon FSxN for NetApp ONTAP - file and object duality

This section discusses the milvus cluster setup with Amazon FSxN for the vector

database solution for NetApp.

Milvus with Amazon FSxN for NetApp ONTAP – file and object duality

In this section, Why we need to deploy vector database in cloud as well as steps to deploy vector database (

milvus standalone) in Amazon FSxN for NetApp ONTAP within docker containers.

Deploying a vector database in the cloud provides several significant benefits, particularly for applications that

require handling high-dimensional data and executing similarity searches. First, cloud-based deployment offers

scalability, allowing for the easy adjustment of resources to match the growing data volumes and query loads.

This ensures that the database can efficiently handle increased demand while maintaining high performance.

Second, cloud deployment provides high availability and disaster recovery, as data can be replicated across

different geographical locations, minimizing the risk of data loss, and ensuring continuous service even during

unexpected events. Third, it provides cost-effectiveness, as you only pay for the resources you use, and can

scale up or down based on demand, avoiding the need for substantial upfront investment in hardware. Finally,

deploying a vector database in the cloud can enhance collaboration, as data can be accessed and shared from

anywhere, facilitating team-based work and data-driven decision making.

Please check the architecture of the milvus standalone with Amazon FSxN for NetApp ONTAP used in this

validation.

1. Create an Amazon FSxN for NetApp ONTAP instance and note down the details of the VPC, VPC security

groups, and subnet. This information will be required when creating an EC2 instance. You can find more

141

details here - https://us-east-1.console.aws.amazon.com/fsx/home?region=us-east-1#file-system-create

2. Create an EC2 instance, ensuring that the VPC, Security Groups, and subnet match those of the Amazon

FSxN for NetApp ONTAP instance.

3. Install nfs-common using the command 'apt-get install nfs-common' and update the package information

using 'sudo apt-get update'.

4. Create a mount folder and mount the Amazon FSxN for NetApp ONTAP on it.

ubuntu@ip-172-31-29-98:~$ mkdir /home/ubuntu/milvusvectordb

ubuntu@ip-172-31-29-98:~$ sudo mount 172.31.255.228:/vol1

/home/ubuntu/milvusvectordb

ubuntu@ip-172-31-29-98:~$ df -h /home/ubuntu/milvusvectordb

Filesystem Size Used Avail Use% Mounted on

172.31.255.228:/vol1 973G 126G 848G 13% /home/ubuntu/milvusvectordb

ubuntu@ip-172-31-29-98:~$

5. Install Docker and Docker Compose using 'apt-get install'.

6. Set up a Milvus cluster based on the docker-compose.yaml file, which can be downloaded from the Milvus

website.

root@ip-172-31-22-245:~# wget https://github.com/milvus-

io/milvus/releases/download/v2.0.2/milvus-standalone-docker-compose.yml

-O docker-compose.yml

--2024-04-01 14:52:23-- https://github.com/milvus-

io/milvus/releases/download/v2.0.2/milvus-standalone-docker-compose.yml

<removed some output to save page space>

7. In the 'volumes' section of the docker-compose.yml file, map the NetApp NFS mount point to the

corresponding Milvus container path, specifically in etcd, minio, and standalone.Check Appendix D:

docker-compose.yml for details about changes in yml

8. Verify the mounted folders and files.

142

https://us-east-1.console.aws.amazon.com/fsx/home?region=us-east-1#file-system-create

ubuntu@ip-172-31-29-98:~/milvusvectordb$ ls -ltrh

/home/ubuntu/milvusvectordb

total 8.0K

-rw-r--r-- 1 root root 1.8K Apr 2 16:35 s3_access.py

drwxrwxrwx 2 root root 4.0K Apr 4 20:19 volumes

ubuntu@ip-172-31-29-98:~/milvusvectordb$ ls -ltrh

/home/ubuntu/milvusvectordb/volumes/

total 0

ubuntu@ip-172-31-29-98:~/milvusvectordb$ cd

ubuntu@ip-172-31-29-98:~$ ls

docker-compose.yml docker-compose.yml~ milvus.yaml milvusvectordb

vectordbvol1

ubuntu@ip-172-31-29-98:~$

9. Run 'docker-compose up -d' from the directory containing the docker-compose.yml file.

10. Check the status of the Milvus container.

ubuntu@ip-172-31-29-98:~$ sudo docker-compose ps

 Name Command State

Ports

--

--

milvus-etcd etcd -advertise-client-url ... Up (healthy)

2379/tcp, 2380/tcp

milvus-minio /usr/bin/docker-entrypoint ... Up (healthy)

0.0.0.0:9000->9000/tcp,:::9000->9000/tcp, 0.0.0.0:9001-

>9001/tcp,:::9001->9001/tcp

milvus-standalone /tini -- milvus run standalone Up (healthy)

0.0.0.0:19530->19530/tcp,:::19530->19530/tcp, 0.0.0.0:9091-

>9091/tcp,:::9091->9091/tcp

ubuntu@ip-172-31-29-98:~$

ubuntu@ip-172-31-29-98:~$ ls -ltrh /home/ubuntu/milvusvectordb/volumes/

total 12K

drwxr-xr-x 3 root root 4.0K Apr 4 20:21 etcd

drwxr-xr-x 4 root root 4.0K Apr 4 20:21 minio

drwxr-xr-x 5 root root 4.0K Apr 4 20:21 milvus

ubuntu@ip-172-31-29-98:~$

11. To validate the read and write functionality of vector database and it’s data in Amazon FSxN for NetApp

ONTAP, we used the Python Milvus SDK and a sample program from PyMilvus. Install the necessary

packages using 'apt-get install python3-numpy python3-pip' and install PyMilvus using 'pip3 install

pymilvus'.

12. Validate data writing and reading operations from Amazon FSxN for NetApp ONTAP in the vector

143

database.

root@ip-172-31-29-98:~/pymilvus/examples# python3

prepare_data_netapp_new.py

=== start connecting to Milvus ===

=== Milvus host: localhost ===

Does collection hello_milvus_ntapnew_sc exist in Milvus: True

=== Drop collection - hello_milvus_ntapnew_sc ===

=== Drop collection - hello_milvus_ntapnew_sc2 ===

=== Create collection `hello_milvus_ntapnew_sc` ===

=== Start inserting entities ===

Number of entities in hello_milvus_ntapnew_sc: 9000

root@ip-172-31-29-98:~/pymilvus/examples# find

/home/ubuntu/milvusvectordb/

…

<removed content to save page space >

…

/home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert_log

/448789845791611912/448789845791611913/448789845791611939/103/4487898457

91411923/b3def25f-c117-4fba-8256-96cb7557cd6c

/home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert_log

/448789845791611912/448789845791611913/448789845791611939/103/4487898457

91411923/b3def25f-c117-4fba-8256-96cb7557cd6c/part.1

/home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert_log

/448789845791611912/448789845791611913/448789845791611939/103/4487898457

91411923/xl.meta

/home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert_log

/448789845791611912/448789845791611913/448789845791611939/0

/home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert_log

/448789845791611912/448789845791611913/448789845791611939/0/448789845791

411924

/home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert_log

/448789845791611912/448789845791611913/448789845791611939/0/448789845791

411924/xl.meta

/home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert_log

/448789845791611912/448789845791611913/448789845791611939/1

/home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert_log

/448789845791611912/448789845791611913/448789845791611939/1/448789845791

411925

/home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert_log

/448789845791611912/448789845791611913/448789845791611939/1/448789845791

411925/xl.meta

/home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert_log

/448789845791611912/448789845791611913/448789845791611939/100

/home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert_log

/448789845791611912/448789845791611913/448789845791611939/100/4487898457

144

91411920

/home/ubuntu/milvusvectordb/volumes/minio/a-bucket/files/insert_log

/448789845791611912/448789845791611913/448789845791611939/100/4487898457

91411920/xl.meta

13. Check the reading operation using the verify_data_netapp.py script.

root@ip-172-31-29-98:~/pymilvus/examples# python3 verify_data_netapp.py

=== start connecting to Milvus ===

=== Milvus host: localhost ===

Does collection hello_milvus_ntapnew_sc exist in Milvus: True

{'auto_id': False, 'description': 'hello_milvus_ntapnew_sc', 'fields':

[{'name': 'pk', 'description': '', 'type': <DataType.INT64: 5>,

'is_primary': True, 'auto_id': False}, {'name': 'random', 'description':

'', 'type': <DataType.DOUBLE: 11>}, {'name': 'var', 'description': '',

'type': <DataType.VARCHAR: 21>, 'params': {'max_length': 65535}},

{'name': 'embeddings', 'description': '', 'type': <DataType.

FLOAT_VECTOR: 101>, 'params': {'dim': 8}}], 'enable_dynamic_field':

False}

Number of entities in Milvus: hello_milvus_ntapnew_sc : 9000

=== Start Creating index IVF_FLAT ===

=== Start loading ===

=== Start searching based on vector similarity ===

hit: id: 2248, distance: 0.0, entity: {'random': 0.2777646777746381},

random field: 0.2777646777746381

hit: id: 4837, distance: 0.07805602252483368, entity: {'random':

0.6451650959930306}, random field: 0.6451650959930306

hit: id: 7172, distance: 0.07954417169094086, entity: {'random':

0.6141351712303128}, random field: 0.6141351712303128

hit: id: 2249, distance: 0.0, entity: {'random': 0.7434908973629817},

random field: 0.7434908973629817

hit: id: 830, distance: 0.05628090724349022, entity: {'random':

0.8544487225667627}, random field: 0.8544487225667627

hit: id: 8562, distance: 0.07971227169036865, entity: {'random':

0.4464554280115878}, random field: 0.4464554280115878

search latency = 0.1266s

=== Start querying with `random > 0.5` ===

145

query result:

-{'random': 0.6378742006852851, 'embeddings': [0.3017092, 0.74452263,

0.8009826, 0.4927033, 0.12762444, 0.29869467, 0.52859956, 0.23734547],

'pk': 0}

search latency = 0.3294s

=== Start hybrid searching with `random > 0.5` ===

hit: id: 4837, distance: 0.07805602252483368, entity: {'random':

0.6451650959930306}, random field: 0.6451650959930306

hit: id: 7172, distance: 0.07954417169094086, entity: {'random':

0.6141351712303128}, random field: 0.6141351712303128

hit: id: 515, distance: 0.09590047597885132, entity: {'random':

0.8013175797590888}, random field: 0.8013175797590888

hit: id: 2249, distance: 0.0, entity: {'random': 0.7434908973629817},

random field: 0.7434908973629817

hit: id: 830, distance: 0.05628090724349022, entity: {'random':

0.8544487225667627}, random field: 0.8544487225667627

hit: id: 1627, distance: 0.08096684515476227, entity: {'random':

0.9302397069516164}, random field: 0.9302397069516164

search latency = 0.2674s

Does collection hello_milvus_ntapnew_sc2 exist in Milvus: True

{'auto_id': True, 'description': 'hello_milvus_ntapnew_sc2', 'fields':

[{'name': 'pk', 'description': '', 'type': <DataType.INT64: 5>,

'is_primary': True, 'auto_id': True}, {'name': 'random', 'description':

'', 'type': <DataType.DOUBLE: 11>}, {'name': 'var', 'description': '',

'type': <DataType.VARCHAR: 21>, 'params': {'max_length': 65535}},

{'name': 'embeddings', 'description': '', 'type': <DataType.

FLOAT_VECTOR: 101>, 'params': {'dim': 8}}], 'enable_dynamic_field':

False}

14. If the customer wants to access (read) NFS data tested in the vector database via the S3 protocol for AI

workloads, this can be validated using a straightforward Python program. An example of this could be a

similarity search of images from another application as mentioned in the picture that is in the beginning of

this section.

root@ip-172-31-29-98:~/pymilvus/examples# sudo python3

/home/ubuntu/milvusvectordb/s3_access.py -i 172.31.255.228 --bucket

milvusnasvol --access-key PY6UF318996I86NBYNDD --secret-key

hoPctr9aD88c1j0SkIYZ2uPa03vlbqKA0c5feK6F

OBJECTS in the bucket milvusnasvol are :

…

<output content removed to save page space>

…

146

bucket/files/insert_log/448789845791611912/448789845791611913/4487898457

91611920/0/448789845791411917/xl.meta

volumes/minio/a-bucket/files/insert_log/448789845791611912

/448789845791611913/448789845791611920/1/448789845791411918/xl.meta

volumes/minio/a-bucket/files/insert_log/448789845791611912

/448789845791611913/448789845791611920/100/448789845791411913/xl.meta

volumes/minio/a-bucket/files/insert_log/448789845791611912

/448789845791611913/448789845791611920/101/448789845791411914/xl.meta

volumes/minio/a-bucket/files/insert_log/448789845791611912

/448789845791611913/448789845791611920/102/448789845791411915/xl.meta

volumes/minio/a-bucket/files/insert_log/448789845791611912

/448789845791611913/448789845791611920/103/448789845791411916/1c48ab6e-

1546-4503-9084-28c629216c33/part.1

volumes/minio/a-bucket/files/insert_log/448789845791611912

/448789845791611913/448789845791611920/103/448789845791411916/xl.meta

volumes/minio/a-bucket/files/insert_log/448789845791611912

/448789845791611913/448789845791611939/0/448789845791411924/xl.meta

volumes/minio/a-bucket/files/insert_log/448789845791611912

/448789845791611913/448789845791611939/1/448789845791411925/xl.meta

volumes/minio/a-bucket/files/insert_log/448789845791611912

/448789845791611913/448789845791611939/100/448789845791411920/xl.meta

volumes/minio/a-bucket/files/insert_log/448789845791611912

/448789845791611913/448789845791611939/101/448789845791411921/xl.meta

volumes/minio/a-bucket/files/insert_log/448789845791611912

/448789845791611913/448789845791611939/102/448789845791411922/xl.meta

volumes/minio/a-bucket/files/insert_log/448789845791611912

/448789845791611913/448789845791611939/103/448789845791411923/b3def25f-

c117-4fba-8256-96cb7557cd6c/part.1

volumes/minio/a-bucket/files/insert_log/448789845791611912

/448789845791611913/448789845791611939/103/448789845791411923/xl.meta

volumes/minio/a-bucket/files/stats_log/448789845791211880

/448789845791211881/448789845791411889/100/1/xl.meta

volumes/minio/a-bucket/files/stats_log/448789845791211880

/448789845791211881/448789845791411889/100/448789845791411912/xl.meta

volumes/minio/a-bucket/files/stats_log/448789845791611912

/448789845791611913/448789845791611920/100/1/xl.meta

volumes/minio/a-bucket/files/stats_log/448789845791611912

/448789845791611913/448789845791611920/100/448789845791411919/xl.meta

volumes/minio/a-bucket/files/stats_log/448789845791611912

/448789845791611913/448789845791611939/100/1/xl.meta

volumes/minio/a-bucket/files/stats_log/448789845791611912

/448789845791611913/448789845791611939/100/448789845791411926/xl.meta

root@ip-172-31-29-98:~/pymilvus/examples#

This section effectively demonstrates how customers can deploy and operate a standalone Milvus setup

147

within Docker containers, utilizing Amazon’s NetApp FSxN for NetApp ONTAP data storage. This setup

allows customers to leverage the power of vector databases for handling high-dimensional data and

executing complex queries, all within the scalable and efficient environment of Docker containers. By

creating an Amazon FSxN for NetApp ONTAP instance and matching EC2 instance, customers can ensure

optimal resource utilization and data management. The successful validation of data writing and reading

operations from FSxN in the vector database provides customers with the assurance of reliable and

consistent data operations. Additionally, the ability to list (read) data from AI workloads via the S3 protocol

offers enhanced data accessibility. This comprehensive process, therefore, provides customers with a

robust and efficient solution for managing their large-scale data operations, leveraging the capabilities of

Amazon’s FSxN for NetApp ONTAP.

Vector Database Protection using SnapCenter

This section describes how to provide data protection for the vector database using

NetApp SnapCenter.

Vector database protection using NetApp SnapCenter.

For example, in the film production industry, customers often possess critical embedded data such as video

and audio files. Loss of this data, due to issues like hard drive failures, can have a significant impact on their

operations, potentially jeopardizing multimillion-dollar ventures. We have encountered instances where

invaluable content was lost, causing substantial disruption and financial loss. Ensuring the security and

integrity of this essential data is therefore of paramount importance in this industry.

In this section, we delve into how SnapCenter safeguards the vector database data and Milvus data residing in

ONTAP. For this example, we utilized a NAS bucket (milvusdbvol1) derived from an NFS ONTAP volume (vol1)

for customer data, and a separate NFS volume (vectordbpv) for Milvus cluster configuration data. please check

the here for the snapcenter backup workflow

1. Set up the host that will be used to execute SnapCenter commands.

148

https://docs.netapp.com/us-en/snapcenter-47/protect-sco/backup-workflow.html

2. Install and configure the storage plugin. From the added host, select "More Options". Navigate to and

select the downloaded storage plugin from the NetApp Automation Store. Install the plugin and save the

configuration.

149

https://automationstore.netapp.com/snap-detail.shtml?packUuid=Storage&packVersion=1.0

3. Set up the storage system and volume: Add the storage system under "Storage System" and select the

SVM (Storage Virtual Machine). In this example, we’ve chosen "vs_nvidia".

4. Establish a resource for the vector database, incorporating a backup policy and a custom snapshot name.

◦ Enable Consistency Group Backup with default values and enable SnapCenter without filesystem

consistency.

◦ In the Storage Footprint section, select the volumes associated with the vector database customer data

and Milvus cluster data. In our example, these are "vol1" and "vectordbpv".

◦ Create policy for vector database protection and protect vector database resource using the policy.

5. Insert data into the S3 NAS bucket using a Python script. In our case, we modified the backup script

provided by Milvus, namely 'prepare_data_netapp.py', and executed the 'sync' command to flush the data

150

from the operating system.

root@node2:~# python3 prepare_data_netapp.py

=== start connecting to Milvus ===

=== Milvus host: localhost ===

Does collection hello_milvus_netapp_sc_test exist in Milvus: False

=== Create collection `hello_milvus_netapp_sc_test` ===

=== Start inserting entities ===

Number of entities in hello_milvus_netapp_sc_test: 3000

=== Create collection `hello_milvus_netapp_sc_test2` ===

Number of entities in hello_milvus_netapp_sc_test2: 6000

root@node2:~# for i in 2 3 4 5 6 ; do ssh node$i "hostname; sync; echo

'sync executed';" ; done

node2

sync executed

node3

sync executed

node4

sync executed

node5

sync executed

node6

sync executed

root@node2:~#

6. Verify the data in the S3 NAS bucket. In our example, the files with the timestamp '2024-04-08 21:22' were

created by the 'prepare_data_netapp.py' script.

151

root@node2:~# aws s3 ls --profile ontaps3 s3://milvusdbvol1/

--recursive | grep '2024-04-08'

<output content removed to save page space>

2024-04-08 21:18:14 5656

stats_log/448950615991000809/448950615991000810/448950615991001854/100/1

2024-04-08 21:18:12 5654

stats_log/448950615991000809/448950615991000810/448950615991001854/100/4

48950615990800869

2024-04-08 21:18:17 5656

stats_log/448950615991000809/448950615991000810/448950615991001872/100/1

2024-04-08 21:18:15 5654

stats_log/448950615991000809/448950615991000810/448950615991001872/100/4

48950615990800876

2024-04-08 21:22:46 5625

stats_log/448950615991003377/448950615991003378/448950615991003385/100/1

2024-04-08 21:22:45 5623

stats_log/448950615991003377/448950615991003378/448950615991003385/100/4

48950615990800899

2024-04-08 21:22:49 5656

stats_log/448950615991003408/448950615991003409/448950615991003416/100/1

2024-04-08 21:22:47 5654

stats_log/448950615991003408/448950615991003409/448950615991003416/100/4

48950615990800906

2024-04-08 21:22:52 5656

stats_log/448950615991003408/448950615991003409/448950615991003434/100/1

2024-04-08 21:22:50 5654

stats_log/448950615991003408/448950615991003409/448950615991003434/100/4

48950615990800913

root@node2:~#

7. Initiate a backup using the Consistency Group (CG) snapshot from the 'milvusdb' resource

152

8. To test the backup functionality, we either added a new table after the backup process or removed some

data from the NFS (S3 NAS bucket).

For this test, imagine a scenario where someone created a new, unnecessary, or inappropriate collection

after the backup. In such a case, we would need to revert the vector database to its state before the new

collection was added. For instance, new collections such as 'hello_milvus_netapp_sc_testnew' and

'hello_milvus_netapp_sc_testnew2' have been inserted.

153

root@node2:~# python3 prepare_data_netapp.py

=== start connecting to Milvus ===

=== Milvus host: localhost ===

Does collection hello_milvus_netapp_sc_testnew exist in Milvus: False

=== Create collection `hello_milvus_netapp_sc_testnew` ===

=== Start inserting entities ===

Number of entities in hello_milvus_netapp_sc_testnew: 3000

=== Create collection `hello_milvus_netapp_sc_testnew2` ===

Number of entities in hello_milvus_netapp_sc_testnew2: 6000

root@node2:~#

9. Execute a full restore of the S3 NAS bucket from the previous snapshot.

154

10. Use a Python script to verify the data from the 'hello_milvus_netapp_sc_test' and

'hello_milvus_netapp_sc_test2' collections.

root@node2:~# python3 verify_data_netapp.py

=== start connecting to Milvus ===

=== Milvus host: localhost ===

Does collection hello_milvus_netapp_sc_test exist in Milvus: True

{'auto_id': False, 'description': 'hello_milvus_netapp_sc_test',

'fields': [{'name': 'pk', 'description': '', 'type': <DataType.INT64: 5

>, 'is_primary': True, 'auto_id': False}, {'name': 'random',

'description': '', 'type': <DataType.DOUBLE: 11>}, {'name': 'var',

'description': '', 'type': <DataType.VARCHAR: 21>, 'params':

{'max_length': 65535}}, {'name': 'embeddings', 'description': '',

'type': <DataType.FLOAT_VECTOR: 101>, 'params': {'dim': 8}}]}

Number of entities in Milvus: hello_milvus_netapp_sc_test : 3000

=== Start Creating index IVF_FLAT ===

=== Start loading ===

=== Start searching based on vector similarity ===

hit: id: 2998, distance: 0.0, entity: {'random': 0.9728033590489911},

random field: 0.9728033590489911

hit: id: 1262, distance: 0.08883658051490784, entity: {'random':

0.2978858685751561}, random field: 0.2978858685751561

hit: id: 1265, distance: 0.09590047597885132, entity: {'random':

0.3042039939240304}, random field: 0.3042039939240304

hit: id: 2999, distance: 0.0, entity: {'random': 0.02316334456872482},

random field: 0.02316334456872482

hit: id: 1580, distance: 0.05628091096878052, entity: {'random':

0.3855988746044062}, random field: 0.3855988746044062

hit: id: 2377, distance: 0.08096685260534286, entity: {'random':

0.8745922204004368}, random field: 0.8745922204004368

search latency = 0.2832s

=== Start querying with `random > 0.5` ===

query result:

-{'random': 0.6378742006852851, 'embeddings': [0.20963514, 0.39746657,

155

0.12019053, 0.6947492, 0.9535575, 0.5454552, 0.82360446, 0.21096309],

'pk': 0}

search latency = 0.2257s

=== Start hybrid searching with `random > 0.5` ===

hit: id: 2998, distance: 0.0, entity: {'random': 0.9728033590489911},

random field: 0.9728033590489911

hit: id: 747, distance: 0.14606499671936035, entity: {'random':

0.5648774800635661}, random field: 0.5648774800635661

hit: id: 2527, distance: 0.1530652642250061, entity: {'random':

0.8928974315571507}, random field: 0.8928974315571507

hit: id: 2377, distance: 0.08096685260534286, entity: {'random':

0.8745922204004368}, random field: 0.8745922204004368

hit: id: 2034, distance: 0.20354536175727844, entity: {'random':

0.5526117606328499}, random field: 0.5526117606328499

hit: id: 958, distance: 0.21908017992973328, entity: {'random':

0.6647383716417955}, random field: 0.6647383716417955

search latency = 0.5480s

Does collection hello_milvus_netapp_sc_test2 exist in Milvus: True

{'auto_id': True, 'description': 'hello_milvus_netapp_sc_test2',

'fields': [{'name': 'pk', 'description': '', 'type': <DataType.INT64: 5

>, 'is_primary': True, 'auto_id': True}, {'name': 'random',

'description': '', 'type': <DataType.DOUBLE: 11>}, {'name': 'var',

'description': '', 'type': <DataType.VARCHAR: 21>, 'params':

{'max_length': 65535}}, {'name': 'embeddings', 'description': '',

'type': <DataType.FLOAT_VECTOR: 101>, 'params': {'dim': 8}}]}

Number of entities in Milvus: hello_milvus_netapp_sc_test2 : 6000

=== Start Creating index IVF_FLAT ===

=== Start loading ===

=== Start searching based on vector similarity ===

hit: id: 448950615990642008, distance: 0.07805602252483368, entity:

{'random': 0.5326684390871348}, random field: 0.5326684390871348

hit: id: 448950615990645009, distance: 0.07805602252483368, entity:

{'random': 0.5326684390871348}, random field: 0.5326684390871348

hit: id: 448950615990640618, distance: 0.13562293350696564, entity:

{'random': 0.7864676926688837}, random field: 0.7864676926688837

hit: id: 448950615990642314, distance: 0.10414951294660568, entity:

{'random': 0.2209597460821181}, random field: 0.2209597460821181

hit: id: 448950615990645315, distance: 0.10414951294660568, entity:

156

{'random': 0.2209597460821181}, random field: 0.2209597460821181

hit: id: 448950615990640004, distance: 0.11571306735277176, entity:

{'random': 0.7765521996186631}, random field: 0.7765521996186631

search latency = 0.2381s

=== Start querying with `random > 0.5` ===

query result:

-{'embeddings': [0.15983285, 0.72214717, 0.7414838, 0.44471496,

0.50356466, 0.8750043, 0.316556, 0.7871702], 'pk': 448950615990639798,

'random': 0.7820620141382767}

search latency = 0.3106s

=== Start hybrid searching with `random > 0.5` ===

hit: id: 448950615990642008, distance: 0.07805602252483368, entity:

{'random': 0.5326684390871348}, random field: 0.5326684390871348

hit: id: 448950615990645009, distance: 0.07805602252483368, entity:

{'random': 0.5326684390871348}, random field: 0.5326684390871348

hit: id: 448950615990640618, distance: 0.13562293350696564, entity:

{'random': 0.7864676926688837}, random field: 0.7864676926688837

hit: id: 448950615990640004, distance: 0.11571306735277176, entity:

{'random': 0.7765521996186631}, random field: 0.7765521996186631

hit: id: 448950615990643005, distance: 0.11571306735277176, entity:

{'random': 0.7765521996186631}, random field: 0.7765521996186631

hit: id: 448950615990640402, distance: 0.13665105402469635, entity:

{'random': 0.9742541034109935}, random field: 0.9742541034109935

search latency = 0.4906s

root@node2:~#

11. Verify that the unnecessary or inappropriate collection is no longer present in the database.

157

root@node2:~# python3 verify_data_netapp.py

=== start connecting to Milvus ===

=== Milvus host: localhost ===

Does collection hello_milvus_netapp_sc_testnew exist in Milvus: False

Traceback (most recent call last):

 File "/root/verify_data_netapp.py", line 37, in <module>

 recover_collection = Collection(recover_collection_name)

 File "/usr/local/lib/python3.10/dist-

packages/pymilvus/orm/collection.py", line 137, in __init__

 raise SchemaNotReadyException(

pymilvus.exceptions.SchemaNotReadyException: <SchemaNotReadyException:

(code=1, message=Collection 'hello_milvus_netapp_sc_testnew' not exist,

or you can pass in schema to create one.)>

root@node2:~#

In conclusion, the use of NetApp’s SnapCenter to safeguard vector database data and Milvus data residing in

ONTAP offers significant benefits to customers, particularly in industries where data integrity is paramount,

such as film production. SnapCenter’s ability to create consistent backups and perform full data restores

ensures that critical data, such as embedded video and audio files, are protected against loss due to hard drive

failures or other issues. This not only prevents operational disruption but also safeguards against substantial

financial loss.

In this section, we demonstrated how SnapCenter can be configured to protect data residing in ONTAP,

including the setup of hosts, installation and configuration of storage plugins, and the creation of a resource for

the vector database with a custom snapshot name. We also showcased how to perform a backup using the

Consistency Group snapshot and verify the data in the S3 NAS bucket.

Furthermore, we simulated a scenario where an unnecessary or inappropriate collection was created after the

backup. In such cases, SnapCenter’s ability to perform a full restore from a previous snapshot ensures that the

vector database can be reverted to its state before the addition of the new collection, thus maintaining the

integrity of the database. This capability to restore data to a specific point in time is invaluable for customers,

providing them with the assurance that their data is not only secure but also correctly maintained. Thus,

NetApp’s SnapCenter product offers customers a robust and reliable solution for data protection and

management.

Disaster Recovery using NetApp SnapMirror

This section discusses DR (disaster recovery) with SnapMirror for the vector database

solution for NetApp.

Disaster Recovery using NetApp SnapMirror

158

Disaster recovery is crucial for maintaining the integrity and availability of a vector database, especially given

its role in managing high-dimensional data and executing complex similarity searches. A well-planned and

implemented disaster recovery strategy ensures that data is not lost or compromised in the event of

unforeseen incidents, such as hardware failures, natural disasters, or cyber-attacks. This is particularly

significant for applications relying on vector databases, where the loss or corruption of data could lead to

significant operational disruptions and financial losses. Moreover, a robust disaster recovery plan also ensures

business continuity by minimizing downtime and allowing for the quick restoration of services. This is achieved

through NetApp data replication product SnapMirrror across different geographical locations, regular backups,

and failover mechanisms. Therefore, disaster recovery is not just a protective measure, but a critical

component of responsible and efficient vector database management.

NetApp’s SnapMirror provides data replication from one NetApp ONTAP storage controller to another, primarily

used for disaster recovery (DR) and hybrid solutions. In the context of a vector database, this tool facilitates the

smooth transition of data between on-premises and cloud environments. This transition is achieved without

necessitating any data conversions or application refactoring, thereby enhancing the efficiency and flexibility of

data management across multiple platforms.

NetApp Hybrid solution in a vector database scenario can bring about more advantages:

1. Scalability: NetApp’s hybrid cloud solution offers the ability to scale your resources as per your

requirements. You can utilize on-premises resources for regular, predictable workloads and cloud

resources such as Amazon FSxN for NetApp ONTAP and Google Cloud NetApp Volume (GCNV) for peak

times or unexpected loads.

2. Cost Efficiency: NetApp’s hybrid cloud model allows you to optimize your costs by using on-premises

resources for regular workloads and only paying for cloud resources when you need them. This pay-as-

you-go model can be quite cost-effective with a NetApp instaclustr service offering. For on-prem and major

cloud service providers, instaclustr provids support and consultation.

3. Flexibility: NetApp’s hybrid cloud gives you the flexibility to choose where to process your data. For

example, you might choose to perform complex vector operations on-premises where you have more

powerful hardware, and less intensive operations in the cloud.

4. Business Continuity: In the event of a disaster, having your data in a NetApp hybrid cloud can ensure

business continuity. You can quickly switch to the cloud if your on-premises resources are affected. We can

leverage NetApp SnapMirror to move the data from on-prem to cloud and vice versa.

159

5. Innovation: NetApp’s hybrid cloud solutions can also enable faster innovation by providing access to

cutting-edge cloud services and technologies. NetApp innovations in cloud such as Amazon FSxN for

NetApp ONTAP, Azure NetApp Files and Google Cloud NetApp Volumes are cloud service providers

innovative products and preferred NAS.

Vector Database Performance Validation

This section highlights the performance validation that was performed on the vector

database.

Performance validation

Performance validation plays a critical role in both vector databases and storage systems, serving as a key

factor in ensuring optimal operation and efficient resource utilization. Vector databases, known for handling

high-dimensional data and executing similarity searches, need to maintain high performance levels to process

complex queries swiftly and accurately. Performance validation helps identify bottlenecks, fine-tune

configurations, and ensure the system can handle expected loads without degradation in service. Similarly, in

storage systems, performance validation is essential to ensure data is stored and retrieved efficiently, without

latency issues or bottlenecks that could impact overall system performance. It also aids in making informed

decisions about necessary upgrades or changes in storage infrastructure. Therefore, performance validation is

a crucial aspect of system management, contributing significantly to maintaining high service quality,

operational efficiency, and overall system reliability.

In this section, we aim to delve into the performance validation of vector databases, such as Milvus and

pgvecto.rs, focusing on their storage performance characteristics such as I/O profile and netapp storage

controller behavious in support of RAG and inference workloads within the LLM Lifecycle. We will evaluate and

identify any performance differentiators when these databases are combined with the ONTAP storage solution.

Our analysis will be based on key performance indicators, such as the number of queries processed per

second(QPS).

Please check the methodology used for milvus and progress below.

Details Milvus (Standalone and Cluster) Postgres(pgvecto.rs)

#

version 2.3.2 0.2.0

Filesystem XFS on iSCSI LUNs

Workload Generator VectorDB-Bench – v0.0.5

Datasets LAION Dataset

* 10Million Embeddings

* 768 Dimensions

* ~300GB dataset size

Storage controller AFF 800

* Version – 9.14.1

* 4 x 100GbE – for milvus and 2x

100GbE for postgres

* iscsi

VectorDB-Bench with Milvus standalone cluster

we did the following performance validation on milvus standalone cluster with vectorDB-Bench.

160

https://github.com/zilliztech/VectorDBBench

The network and server connectivity of the milvus standalone cluster is below.

In this section, we share our observations and results from testing the Milvus standalone database.

. We selected DiskANN as the index type for these tests.

. Ingesting, optimizing, and creating indexes for a dataset of approximately 100GB took around 5 hours. For

most of this duration, the Milvus server, equipped with 20 cores (which equates to 40 vcpus when Hyper-

Threading is enabled), was operating at its maximum CPU capacity of 100%.We found that DiskANN is

particularly important for large datasets that exceed the system memory size.

. In the query phase, we observed a Queries per Second (QPS) rate of 10.93 with a recall of 0.9987. The 99th

percentile latency for queries was measured at 708.2 milliseconds.

From the storage perspective, the database issued about 1,000 ops/sec during the ingest, post-insert

optimization, and index creation phases. In the query phase, it demanded 32,000 ops/sec.

The following section presents the storage performance metrics.

Workload Phase Metric Value

Data Ingestion

and

Post insert optimization

IOPS < 1,000

Latency < 400 usecs

Workload Read/Write mix, mostly writes

IO size 64KB

Query IOPS Peak at 32,000

Latency < 400 usecs

Workload 100% cached read

IO size Mainly 8KB

The vectorDB-bench result is below.

161

From the performance validation of the standalone Milvus instance, it’s evident that the current setup is

insufficient to support a dataset of 5 million vectors with a dimensionality of 1536. we’ve determined that the

storage possesses adequate resources and does not constitute a bottleneck in the system.

VectorDB-Bench with milvus cluster

In this section, we discuss the deployment of a Milvus cluster within a Kubernetes environment. This

Kubernetes setup was constructed atop a VMware vSphere deployment, which hosted the Kubernetes master

and worker nodes.

The details of the VMware vSphere and Kubernetes deployments are presented in the following sections.

162

163

In this section, we present our observations and results from testing the Milvus database.

* The index type used was DiskANN.

* The table below provides a comparison between the standalone and cluster deployments when working with

5 million vectors at a dimensionality of 1536. We observed that the time taken for data ingestion and post-insert

optimization was lower in the cluster deployment. The 99th percentile latency for queries was reduced by six

times in the cluster deployment compared to the standalone setup.

* Although the Queries per Second (QPS) rate was higher in the cluster deployment, it was not at the desired

level.

The images below provide a view of various storage metrics, including storage cluster latency and total IOPS

164

(Input/Output Operations Per Second).

The following section presents the key storage performance metrics.

Workload Phase Metric Value

Data Ingestion

and

Post insert optimization

IOPS < 1,000

Latency < 400 usecs

Workload Read/Write mix, mostly writes

IO size 64KB

Query IOPS Peak at 147,000

Latency < 400 usecs

Workload 100% cached read

IO size Mainly 8KB

Based on the performance validation of both the standalone Milvus and the Milvus cluster, we present the

details of the storage I/O profile.

* We observed that the I/O profile remains consistent across both standalone and cluster deployments.

* The observed difference in peak IOPS can be attributed to the larger number of clients in the cluster

deployment.

vectorDB-Bench with Postgres (pgvecto.rs)

We conducted the following actions on PostgreSQL(pgvecto.rs) using VectorDB-Bench:

The details regarding the network and server connectivity of PostgreSQL (specifically, pgvecto.rs) are as

follows:

165

In this section, we share our observations and results from testing the PostgreSQL database, specifically using

pgvecto.rs.

* We selected HNSW as the index type for these tests because at the time of testing, DiskANN wasn’t

available for pgvecto.rs.

* During the data ingestion phase, we loaded the Cohere dataset, which consists of 10 million vectors at a

dimensionality of 768. This process took approximately 4.5 hours.

* In the query phase, we observed a Queries per Second (QPS) rate of 1,068 with a recall of 0.6344. The 99th

percentile latency for queries was measured at 20 milliseconds. Throughout most of the runtime, the client

CPU was operating at 100% capacity.

The images below provide a view of various storage metrics, including storage cluster latency total IOPS

(Input/Output Operations Per Second).

The following section presents the key storage performance metrics.

166

Performance comparison between milvus and postgres on vector DB Bench

Based on our performance validation of Milvus and PostgreSQL using VectorDBBench, we observed the

following:

• Index Type: HNSW

167

• Dataset: Cohere with 10 million vectors at 768 dimensions

We found that pgvecto.rs achieved a Queries per Second (QPS) rate of 1,068 with a recall of 0.6344, while

Milvus achieved a QPS rate of 106 with a recall of 0.9842.

If high precision in your queries is a priority, Milvus outperforms pgvecto.rs as it retrieves a higher proportion of

relevant items per query. However, if the number of queries per second is a more crucial factor, pgvecto.rs

exceeds Milvus. It’s important to note, though, that the quality of the data retrieved via pgvecto.rs is lower, with

around 37% of the search results being irrelevant items.

Observation based on our performance validations:

Based on our performance validations, we have made the following observations:

In Milvus, the I/O profile closely resembles an OLTP workload, such as that seen with Oracle SLOB. The

benchmark consists of three phases: Data Ingestion, Post-Optimization, and Query. The initial stages are

primarily characterized by 64KB write operations, while the query phase predominantly involves 8KB reads.

We expect ONTAP to handle the Milvus I/O load proficiently.

The PostgreSQL I/O profile does not present a challenging storage workload. Given the in-memory

implementation currently in progress, we didn’t observe any disk I/O during the query phase.

DiskANN emerges as a crucial technology for storage differentiation. It enables the efficient scaling of vector

DB search beyond the system memory boundary. However, it’s unlikely to establish storage performance

differentiation with in-memory vector DB indices such as HNSW.

It’s also worth noting that storage does not play a critical role during the query phase when the index type is

HSNW, which is the most important operating phase for vector databases supporting RAG applications. The

implication here is that the storage performance does not significantly impact the overall performance of these

applications.

Vector Database with Instaclustr using PostgreSQL: pgvector

This section discusses the specifics of how instaclustr product integrates with

postgreSQL on pgvector fuctionality in the vector database solution for NetApp.

Vector Database with Instaclustr using PostgreSQL: pgvector

In this section, we delve into the specifics of how instaclustr product integrates with postgreSQL on pgvector

fuctionality. We have an example of “How To Improve Your LLM Accuracy and Performance With PGVector

and PostgreSQL®: Introduction to Embeddings and the Role of PGVector”. Please check the blog to get more

information.

Vector Database Use Cases

This section provides an overview of the use cases for the NetApp vector database

solution.

Vector Database Use Cases

In this section, we discuss about two use cases such as Retrieval Augmented Generation with Large

Language Models and NetApp IT chatbot.

168

https://www.instaclustr.com/blog/how-to-improve-your-llm-accuracy-and-performance-with-pgvector-and-postgresql-introduction-to-embeddings-and-the-role-of-pgvector/

Retrieval Augmented Generation (RAG) with Large Language Models (LLMs)

Retrieval-augmented generation, or RAG, is a technique for enhancing the

accuracy and reliability of Large Language Models, or LLMs, by augmenting

prompts with facts fetched from external sources. In a traditional RAG

deployment, vector embeddings are generated from an existing dataset and

then stored in a vector database, often referred to as a knowledgebase.

Whenever a user submits a prompt to the LLM, a vector embedding

representation of the prompt is generated, and the vector database is

searched using that embedding as the search query. This search operation

returns similar vectors from the knowledgebase, which are then fed to the

LLM as context alongside the original user prompt. In this way, an LLM can

be augmented with additional information that was not part of its original

training dataset.

The NVIDIA Enterprise RAG LLM Operator is a useful tool for implementing RAG in the enterprise. This

operator can be used to deploy a full RAG pipeline. The RAG pipeline can be customized to utilize either

Milvus or pgvecto as the vector database for storing knowledgebase embeddings. Refer to the documentation

for details.

NetApp has validated an enterprise RAG architecture powered by the NVIDIA

Enterprise RAG LLM Operator alongside NetApp storage. Refer to our blog

post for more information and to see a demo. Figure 1 provides an overview

of this architecture.

Figure 1) Enterprise RAG powered by NVIDIA NeMo Microservices and NetApp

NetApp IT chatbot use case

NetApp’s chatbot serves as another real-time use case for the vector database. In this instance, the NetApp

Private OpenAI Sandbox provides an effective, secure, and efficient platform for managing queries from

NetApp’s internal users. By incorporating stringent security protocols, efficient data management systems, and

sophisticated AI processing capabilities, it guarantees high-quality, precise responses to users based on their

roles and responsibilities in the organization via SSO authentication. This architecture highlights the potential

169

of merging advanced technologies to create user-focused, intelligent systems.

The use case can be divided into four primary sections.

User Authentication and Verification:

• User queries first go through the NetApp Single Sign-On (SSO) process to confirm the user’s identity.

• After successful authentication, the system checks the VPN connection to ensure a secure data

transmission.

Data Transmission and Processing:

• Once the VPN is validated, the data is sent to MariaDB through the NetAIChat or NetAICreate web

applications. MariaDB is a fast and efficient database system used to manage and store user data.

• MariaDB then sends the information to the NetApp Azure instance, which connects the user data to the AI

processing unit.

Interaction with OpenAI and Content Filtering:

• The Azure instance sends the user’s questions to a content filtering system. This system cleans up the

query and prepares it for processing.

• The cleaned-up input is then sent to the Azure OpenAI base model, which generates a response based on

the input.

Response Generation and Moderation:

• The response from the base model is first checked to ensure it is accurate and meets content standards.

• After passing the check, the response is sent back to the user. This process ensures that the user receives

a clear, accurate, and appropriate answer to their query.

170

Conclusion

This section concludes the vector database solution for NetApp.

Conclusion

In conclusion, this document provides a comprehensive overview of deploying and managing vector

databases, such as Milvus and pgvector, on NetApp storage solutions. We discussed the infrastructure

guidelines for leveraging NetApp ONTAP and StorageGRID object storage and validated the Milvus database

in AWS FSX for NetApp ONTAP through file and object store.

We explored NetApp’s file-object duality, demonstrating its utility not only for data in vector databases but also

for other applications. We also highlighted how SnapCenter, NetApp’s enterprise management product, offers

backup, restore, and clone functionalities for vector database data, ensuring data integrity and availability.

The document also delves into how NetApp’s Hybrid Cloud solution offers data replication and protection

across on-premises and cloud environments, providing a seamless and secure data management experience.

We provided insights into the performance validation of vector databases like Milvus and pgvecto on NetApp

ONTAP, offering valuable information on their efficiency and scalability.

Finally, we discussed two generative AI use cases: RAG with LLM and the NetApp’s internal ChatAI. These

practical examples underscore the real-world applications and benefits of the concepts and practices outlined

in this document. Overall, this document serves as a comprehensive guide for anyone looking to leverage

NetApp’s powerful storage solutions for managing vector databases.

Acknowledgments

The author like to heartfelt thanks to the below contributors, others who provided their feedback and comments

to make this paper valuable to NetApp customers and NetApp fields.

1. Sathish Thyagarajan, Technical Marketing Engineer, ONTAP AI & Analytics, NetApp

2. Mike Oglesby, Technical Marketing Engineer, NetApp

3. AJ Mahajan, Senior Director, NetApp

4. Joe Scott, Manager, Workload Performance Engineering, NetApp

5. Puneet Dhawan, Senior Director, Product Management Fsx, NetApp

6. Yuval Kalderon, Senior Product Manager, FSx Product Team, NetApp

Where to find additional information

To learn more about the information that is described in this document, review the following documents and/or

websites:

• Milvus documentation - https://milvus.io/docs/overview.md

• Milvus standalone documentation - https://milvus.io/docs/v2.0.x/install_standalone-docker.md

• NetApp Product Documentation

https://www.netapp.com/support-and-training/documentation/

• instaclustr - instalclustr documentation

Version history

171

https://milvus.io/docs/overview.md
https://milvus.io/docs/v2.0.x/install_standalone-docker.md
https://www.netapp.com/support-and-training/documentation/
https://www.instaclustr.com/support/documentation/?_bt=&_bk=&_bm=&_bn=x&_bg=&utm_term=&utm_campaign=&utm_source=adwords&utm_medium=ppc&hsa_acc=1467100120&hsa_cam=20766399079&hsa_grp=&hsa_ad=&hsa_src=x&hsa_tgt=&hsa_kw=&hsa_mt=&hsa_net=adwords&hsa_ver=3&gad_source=1&gclid=CjwKCAjw26KxBhBDEiwAu6KXtzOZhN0dl0H1smOMcj9nsC0qBQphdMqFR7IrVQqeG2Y4aHWydUMj2BoCdFwQAvD_BwE

Version Date Document version history

Version 1.0 April 2024 Initial release

Appendix A: Values.yaml

This section provides sample YAML code for the values used in the NetApp vector

database solution.

Appendix A: Values.yaml

root@node2:~# cat values.yaml

Enable or disable Milvus Cluster mode

cluster:

 enabled: true

image:

 all:

 repository: milvusdb/milvus

 tag: v2.3.4

 pullPolicy: IfNotPresent

 ## Optionally specify an array of imagePullSecrets.

 ## Secrets must be manually created in the namespace.

 ## ref: https://kubernetes.io/docs/tasks/configure-pod-container/pull-

image-private-registry/

 ##

 # pullSecrets:

 # - myRegistryKeySecretName

 tools:

 repository: milvusdb/milvus-config-tool

 tag: v0.1.2

 pullPolicy: IfNotPresent

Global node selector

If set, this will apply to all milvus components

Individual components can be set to a different node selector

nodeSelector: {}

Global tolerations

If set, this will apply to all milvus components

Individual components can be set to a different tolerations

tolerations: []

Global affinity

If set, this will apply to all milvus components

Individual components can be set to a different affinity

172

affinity: {}

Global labels and annotations

If set, this will apply to all milvus components

labels: {}

annotations: {}

Extra configs for milvus.yaml

If set, this config will merge into milvus.yaml

Please follow the config structure in the milvus.yaml

at https://github.com/milvus-io/milvus/blob/master/configs/milvus.yaml

Note: this config will be the top priority which will override the

config

in the image and helm chart.

extraConfigFiles:

 user.yaml: |+

 # For example enable rest http for milvus proxy

 # proxy:

 # http:

 # enabled: true

 ## Enable tlsMode and set the tls cert and key

 # tls:

 # serverPemPath: /etc/milvus/certs/tls.crt

 # serverKeyPath: /etc/milvus/certs/tls.key

 # common:

 # security:

 # tlsMode: 1

Expose the Milvus service to be accessed from outside the cluster

(LoadBalancer service).

or access it from within the cluster (ClusterIP service). Set the

service type and the port to serve it.

ref: http://kubernetes.io/docs/user-guide/services/

##

service:

 type: ClusterIP

 port: 19530

 portName: milvus

 nodePort: ""

 annotations: {}

 labels: {}

 ## List of IP addresses at which the Milvus service is available

 ## Ref: https://kubernetes.io/docs/user-guide/services/#external-ips

 ##

 externalIPs: []

173

 # - externalIp1

 # LoadBalancerSourcesRange is a list of allowed CIDR values, which are

combined with ServicePort to

 # set allowed inbound rules on the security group assigned to the master

load balancer

 loadBalancerSourceRanges:

 - 0.0.0.0/0

 # Optionally assign a known public LB IP

 # loadBalancerIP: 1.2.3.4

ingress:

 enabled: false

 annotations:

 # Annotation example: set nginx ingress type

 # kubernetes.io/ingress.class: nginx

 nginx.ingress.kubernetes.io/backend-protocol: GRPC

 nginx.ingress.kubernetes.io/listen-ports-ssl: '[19530]'

 nginx.ingress.kubernetes.io/proxy-body-size: 4m

 nginx.ingress.kubernetes.io/ssl-redirect: "true"

 labels: {}

 rules:

 - host: "milvus-example.local"

 path: "/"

 pathType: "Prefix"

 # - host: "milvus-example2.local"

 # path: "/otherpath"

 # pathType: "Prefix"

 tls: []

 # - secretName: chart-example-tls

 # hosts:

 # - milvus-example.local

serviceAccount:

 create: false

 name:

 annotations:

 labels:

metrics:

 enabled: true

 serviceMonitor:

 # Set this to `true` to create ServiceMonitor for Prometheus operator

 enabled: false

 interval: "30s"

174

 scrapeTimeout: "10s"

 # Additional labels that can be used so ServiceMonitor will be

discovered by Prometheus

 additionalLabels: {}

livenessProbe:

 enabled: true

 initialDelaySeconds: 90

 periodSeconds: 30

 timeoutSeconds: 5

 successThreshold: 1

 failureThreshold: 5

readinessProbe:

 enabled: true

 initialDelaySeconds: 90

 periodSeconds: 10

 timeoutSeconds: 5

 successThreshold: 1

 failureThreshold: 5

log:

 level: "info"

 file:

 maxSize: 300 # MB

 maxAge: 10 # day

 maxBackups: 20

 format: "text" # text/json

 persistence:

 mountPath: "/milvus/logs"

 ## If true, create/use a Persistent Volume Claim

 ## If false, use emptyDir

 ##

 enabled: false

 annotations:

 helm.sh/resource-policy: keep

 persistentVolumeClaim:

 existingClaim: ""

 ## Milvus Logs Persistent Volume Storage Class

 ## If defined, storageClassName: <storageClass>

 ## If set to "-", storageClassName: "", which disables dynamic

provisioning

 ## If undefined (the default) or set to null, no storageClassName

spec is

 ## set, choosing the default provisioner.

175

 ## ReadWriteMany access mode required for milvus cluster.

 ##

 storageClass: default

 accessModes: ReadWriteMany

 size: 10Gi

 subPath: ""

Heaptrack traces all memory allocations and annotates these events with

stack traces.

See more: https://github.com/KDE/heaptrack

Enable heaptrack in production is not recommended.

heaptrack:

 image:

 repository: milvusdb/heaptrack

 tag: v0.1.0

 pullPolicy: IfNotPresent

standalone:

 replicas: 1 # Run standalone mode with replication disabled

 resources: {}

 # Set local storage size in resources

 # limits:

 # ephemeral-storage: 100Gi

 nodeSelector: {}

 affinity: {}

 tolerations: []

 extraEnv: []

 heaptrack:

 enabled: false

 disk:

 enabled: true

 size:

 enabled: false # Enable local storage size limit

 profiling:

 enabled: false # Enable live profiling

 ## Default message queue for milvus standalone

 ## Supported value: rocksmq, natsmq, pulsar and kafka

 messageQueue: rocksmq

 persistence:

 mountPath: "/var/lib/milvus"

 ## If true, alertmanager will create/use a Persistent Volume Claim

 ## If false, use emptyDir

 ##

 enabled: true

 annotations:

176

 helm.sh/resource-policy: keep

 persistentVolumeClaim:

 existingClaim: ""

 ## Milvus Persistent Volume Storage Class

 ## If defined, storageClassName: <storageClass>

 ## If set to "-", storageClassName: "", which disables dynamic

provisioning

 ## If undefined (the default) or set to null, no storageClassName

spec is

 ## set, choosing the default provisioner.

 ##

 storageClass:

 accessModes: ReadWriteOnce

 size: 50Gi

 subPath: ""

proxy:

 enabled: true

 # You can set the number of replicas to -1 to remove the replicas field

in case you want to use HPA

 replicas: 1

 resources: {}

 nodeSelector: {}

 affinity: {}

 tolerations: []

 extraEnv: []

 heaptrack:

 enabled: false

 profiling:

 enabled: false # Enable live profiling

 http:

 enabled: true # whether to enable http rest server

 debugMode:

 enabled: false

 # Mount a TLS secret into proxy pod

 tls:

 enabled: false

when enabling proxy.tls, all items below should be uncommented and the

key and crt values should be populated.

enabled: true

secretName: milvus-tls

expecting base64 encoded values here: i.e. $(cat tls.crt | base64 -w 0)

and $(cat tls.key | base64 -w 0)

key: LS0tLS1CRUdJTiBQU--REDUCT

crt: LS0tLS1CRUdJTiBDR--REDUCT

volumes:

177

- secret:

secretName: milvus-tls

name: milvus-tls

volumeMounts:

- mountPath: /etc/milvus/certs/

name: milvus-tls

rootCoordinator:

 enabled: true

 # You can set the number of replicas greater than 1, only if enable

active standby

 replicas: 1 # Run Root Coordinator mode with replication disabled

 resources: {}

 nodeSelector: {}

 affinity: {}

 tolerations: []

 extraEnv: []

 heaptrack:

 enabled: false

 profiling:

 enabled: false # Enable live profiling

 activeStandby:

 enabled: false # Enable active-standby when you set multiple replicas

for root coordinator

 service:

 port: 53100

 annotations: {}

 labels: {}

 clusterIP: ""

queryCoordinator:

 enabled: true

 # You can set the number of replicas greater than 1, only if enable

active standby

 replicas: 1 # Run Query Coordinator mode with replication disabled

 resources: {}

 nodeSelector: {}

 affinity: {}

 tolerations: []

 extraEnv: []

 heaptrack:

 enabled: false

 profiling:

 enabled: false # Enable live profiling

 activeStandby:

178

 enabled: false # Enable active-standby when you set multiple replicas

for query coordinator

 service:

 port: 19531

 annotations: {}

 labels: {}

 clusterIP: ""

queryNode:

 enabled: true

 # You can set the number of replicas to -1 to remove the replicas field

in case you want to use HPA

 replicas: 1

 resources: {}

 # Set local storage size in resources

 # limits:

 # ephemeral-storage: 100Gi

 nodeSelector: {}

 affinity: {}

 tolerations: []

 extraEnv: []

 heaptrack:

 enabled: false

 disk:

 enabled: true # Enable querynode load disk index, and search on disk

index

 size:

 enabled: false # Enable local storage size limit

 profiling:

 enabled: false # Enable live profiling

indexCoordinator:

 enabled: true

 # You can set the number of replicas greater than 1, only if enable

active standby

 replicas: 1 # Run Index Coordinator mode with replication disabled

 resources: {}

 nodeSelector: {}

 affinity: {}

 tolerations: []

 extraEnv: []

 heaptrack:

 enabled: false

 profiling:

 enabled: false # Enable live profiling

179

 activeStandby:

 enabled: false # Enable active-standby when you set multiple replicas

for index coordinator

 service:

 port: 31000

 annotations: {}

 labels: {}

 clusterIP: ""

indexNode:

 enabled: true

 # You can set the number of replicas to -1 to remove the replicas field

in case you want to use HPA

 replicas: 1

 resources: {}

 # Set local storage size in resources

 # limits:

 # ephemeral-storage: 100Gi

 nodeSelector: {}

 affinity: {}

 tolerations: []

 extraEnv: []

 heaptrack:

 enabled: false

 profiling:

 enabled: false # Enable live profiling

 disk:

 enabled: true # Enable index node build disk vector index

 size:

 enabled: false # Enable local storage size limit

dataCoordinator:

 enabled: true

 # You can set the number of replicas greater than 1, only if enable

active standby

 replicas: 1 # Run Data Coordinator mode with replication

disabled

 resources: {}

 nodeSelector: {}

 affinity: {}

 tolerations: []

 extraEnv: []

 heaptrack:

 enabled: false

 profiling:

180

 enabled: false # Enable live profiling

 activeStandby:

 enabled: false # Enable active-standby when you set multiple replicas

for data coordinator

 service:

 port: 13333

 annotations: {}

 labels: {}

 clusterIP: ""

dataNode:

 enabled: true

 # You can set the number of replicas to -1 to remove the replicas field

in case you want to use HPA

 replicas: 1

 resources: {}

 nodeSelector: {}

 affinity: {}

 tolerations: []

 extraEnv: []

 heaptrack:

 enabled: false

 profiling:

 enabled: false # Enable live profiling

mixCoordinator contains all coord

If you want to use mixcoord, enable this and disable all of other

coords

mixCoordinator:

 enabled: false

 # You can set the number of replicas greater than 1, only if enable

active standby

 replicas: 1 # Run Mixture Coordinator mode with replication

disabled

 resources: {}

 nodeSelector: {}

 affinity: {}

 tolerations: []

 extraEnv: []

 heaptrack:

 enabled: false

 profiling:

 enabled: false # Enable live profiling

 activeStandby:

 enabled: false # Enable active-standby when you set multiple replicas

181

for Mixture coordinator

 service:

 annotations: {}

 labels: {}

 clusterIP: ""

attu:

 enabled: false

 name: attu

 image:

 repository: zilliz/attu

 tag: v2.2.8

 pullPolicy: IfNotPresent

 service:

 annotations: {}

 labels: {}

 type: ClusterIP

 port: 3000

 # loadBalancerIP: ""

 resources: {}

 podLabels: {}

 ingress:

 enabled: false

 annotations: {}

 # Annotation example: set nginx ingress type

 # kubernetes.io/ingress.class: nginx

 labels: {}

 hosts:

 - milvus-attu.local

 tls: []

 # - secretName: chart-attu-tls

 # hosts:

 # - milvus-attu.local

Configuration values for the minio dependency

ref: https://github.com/minio/charts/blob/master/README.md

##

minio:

 enabled: false

 name: minio

 mode: distributed

 image:

 tag: "RELEASE.2023-03-20T20-16-18Z"

182

 pullPolicy: IfNotPresent

 accessKey: minioadmin

 secretKey: minioadmin

 existingSecret: ""

 bucketName: "milvus-bucket"

 rootPath: file

 useIAM: false

 iamEndpoint: ""

 region: ""

 useVirtualHost: false

 podDisruptionBudget:

 enabled: false

 resources:

 requests:

 memory: 2Gi

 gcsgateway:

 enabled: false

 replicas: 1

 gcsKeyJson: "/etc/credentials/gcs_key.json"

 projectId: ""

 service:

 type: ClusterIP

 port: 9000

 persistence:

 enabled: true

 existingClaim: ""

 storageClass:

 accessMode: ReadWriteOnce

 size: 500Gi

 livenessProbe:

 enabled: true

 initialDelaySeconds: 5

 periodSeconds: 5

 timeoutSeconds: 5

 successThreshold: 1

 failureThreshold: 5

 readinessProbe:

 enabled: true

 initialDelaySeconds: 5

 periodSeconds: 5

 timeoutSeconds: 1

183

 successThreshold: 1

 failureThreshold: 5

 startupProbe:

 enabled: true

 initialDelaySeconds: 0

 periodSeconds: 10

 timeoutSeconds: 5

 successThreshold: 1

 failureThreshold: 60

Configuration values for the etcd dependency

ref: https://artifacthub.io/packages/helm/bitnami/etcd

##

etcd:

 enabled: true

 name: etcd

 replicaCount: 3

 pdb:

 create: false

 image:

 repository: "milvusdb/etcd"

 tag: "3.5.5-r2"

 pullPolicy: IfNotPresent

 service:

 type: ClusterIP

 port: 2379

 peerPort: 2380

 auth:

 rbac:

 enabled: false

 persistence:

 enabled: true

 storageClass: default

 accessMode: ReadWriteOnce

 size: 10Gi

 ## Change default timeout periods to mitigate zoobie probe process

 livenessProbe:

 enabled: true

 timeoutSeconds: 10

184

 readinessProbe:

 enabled: true

 periodSeconds: 20

 timeoutSeconds: 10

 ## Enable auto compaction

 ## compaction by every 1000 revision

 ##

 autoCompactionMode: revision

 autoCompactionRetention: "1000"

 ## Increase default quota to 4G

 ##

 extraEnvVars:

 - name: ETCD_QUOTA_BACKEND_BYTES

 value: "4294967296"

 - name: ETCD_HEARTBEAT_INTERVAL

 value: "500"

 - name: ETCD_ELECTION_TIMEOUT

 value: "2500"

Configuration values for the pulsar dependency

ref: https://github.com/apache/pulsar-helm-chart

##

pulsar:

 enabled: true

 name: pulsar

 fullnameOverride: ""

 persistence: true

 maxMessageSize: "5242880" # 5 * 1024 * 1024 Bytes, Maximum size of each

message in pulsar.

 rbac:

 enabled: false

 psp: false

 limit_to_namespace: true

 affinity:

 anti_affinity: false

enableAntiAffinity: no

 components:

 zookeeper: true

185

 bookkeeper: true

 # bookkeeper - autorecovery

 autorecovery: true

 broker: true

 functions: false

 proxy: true

 toolset: false

 pulsar_manager: false

 monitoring:

 prometheus: false

 grafana: false

 node_exporter: false

 alert_manager: false

 images:

 broker:

 repository: apachepulsar/pulsar

 pullPolicy: IfNotPresent

 tag: 2.8.2

 autorecovery:

 repository: apachepulsar/pulsar

 tag: 2.8.2

 pullPolicy: IfNotPresent

 zookeeper:

 repository: apachepulsar/pulsar

 pullPolicy: IfNotPresent

 tag: 2.8.2

 bookie:

 repository: apachepulsar/pulsar

 pullPolicy: IfNotPresent

 tag: 2.8.2

 proxy:

 repository: apachepulsar/pulsar

 pullPolicy: IfNotPresent

 tag: 2.8.2

 pulsar_manager:

 repository: apachepulsar/pulsar-manager

 pullPolicy: IfNotPresent

 tag: v0.1.0

 zookeeper:

 volumes:

 persistence: true

 data:

 name: data

186

 size: 20Gi #SSD Required

 storageClassName: default

 resources:

 requests:

 memory: 1024Mi

 cpu: 0.3

 configData:

 PULSAR_MEM: >

 -Xms1024m

 -Xmx1024m

 PULSAR_GC: >

 -Dcom.sun.management.jmxremote

 -Djute.maxbuffer=10485760

 -XX:+ParallelRefProcEnabled

 -XX:+UnlockExperimentalVMOptions

 -XX:+DoEscapeAnalysis

 -XX:+DisableExplicitGC

 -XX:+PerfDisableSharedMem

 -Dzookeeper.forceSync=no

 pdb:

 usePolicy: false

 bookkeeper:

 replicaCount: 3

 volumes:

 persistence: true

 journal:

 name: journal

 size: 100Gi

 storageClassName: default

 ledgers:

 name: ledgers

 size: 200Gi

 storageClassName: default

 resources:

 requests:

 memory: 2048Mi

 cpu: 1

 configData:

 PULSAR_MEM: >

 -Xms4096m

 -Xmx4096m

 -XX:MaxDirectMemorySize=8192m

 PULSAR_GC: >

 -Dio.netty.leakDetectionLevel=disabled

 -Dio.netty.recycler.linkCapacity=1024

187

 -XX:+UseG1GC -XX:MaxGCPauseMillis=10

 -XX:+ParallelRefProcEnabled

 -XX:+UnlockExperimentalVMOptions

 -XX:+DoEscapeAnalysis

 -XX:ParallelGCThreads=32

 -XX:ConcGCThreads=32

 -XX:G1NewSizePercent=50

 -XX:+DisableExplicitGC

 -XX:-ResizePLAB

 -XX:+ExitOnOutOfMemoryError

 -XX:+PerfDisableSharedMem

 -XX:+PrintGCDetails

 nettyMaxFrameSizeBytes: "104867840"

 pdb:

 usePolicy: false

 broker:

 component: broker

 podMonitor:

 enabled: false

 replicaCount: 1

 resources:

 requests:

 memory: 4096Mi

 cpu: 1.5

 configData:

 PULSAR_MEM: >

 -Xms4096m

 -Xmx4096m

 -XX:MaxDirectMemorySize=8192m

 PULSAR_GC: >

 -Dio.netty.leakDetectionLevel=disabled

 -Dio.netty.recycler.linkCapacity=1024

 -XX:+ParallelRefProcEnabled

 -XX:+UnlockExperimentalVMOptions

 -XX:+DoEscapeAnalysis

 -XX:ParallelGCThreads=32

 -XX:ConcGCThreads=32

 -XX:G1NewSizePercent=50

 -XX:+DisableExplicitGC

 -XX:-ResizePLAB

 -XX:+ExitOnOutOfMemoryError

 maxMessageSize: "104857600"

 defaultRetentionTimeInMinutes: "10080"

 defaultRetentionSizeInMB: "-1"

 backlogQuotaDefaultLimitGB: "8"

188

 ttlDurationDefaultInSeconds: "259200"

 subscriptionExpirationTimeMinutes: "3"

 backlogQuotaDefaultRetentionPolicy: producer_exception

 pdb:

 usePolicy: false

 autorecovery:

 resources:

 requests:

 memory: 512Mi

 cpu: 1

 proxy:

 replicaCount: 1

 podMonitor:

 enabled: false

 resources:

 requests:

 memory: 2048Mi

 cpu: 1

 service:

 type: ClusterIP

 ports:

 pulsar: 6650

 configData:

 PULSAR_MEM: >

 -Xms2048m -Xmx2048m

 PULSAR_GC: >

 -XX:MaxDirectMemorySize=2048m

 httpNumThreads: "100"

 pdb:

 usePolicy: false

 pulsar_manager:

 service:

 type: ClusterIP

 pulsar_metadata:

 component: pulsar-init

 image:

 # the image used for running `pulsar-cluster-initialize` job

 repository: apachepulsar/pulsar

 tag: 2.8.2

Configuration values for the kafka dependency

189

ref: https://artifacthub.io/packages/helm/bitnami/kafka

##

kafka:

 enabled: false

 name: kafka

 replicaCount: 3

 image:

 repository: bitnami/kafka

 tag: 3.1.0-debian-10-r52

 ## Increase graceful termination for kafka graceful shutdown

 terminationGracePeriodSeconds: "90"

 pdb:

 create: false

 ## Enable startup probe to prevent pod restart during recovering

 startupProbe:

 enabled: true

 ## Kafka Java Heap size

 heapOpts: "-Xmx4096m -Xms4096m"

 maxMessageBytes: _10485760

 defaultReplicationFactor: 3

 offsetsTopicReplicationFactor: 3

 ## Only enable time based log retention

 logRetentionHours: 168

 logRetentionBytes: _-1

 extraEnvVars:

 - name: KAFKA_CFG_MAX_PARTITION_FETCH_BYTES

 value: "5242880"

 - name: KAFKA_CFG_MAX_REQUEST_SIZE

 value: "5242880"

 - name: KAFKA_CFG_REPLICA_FETCH_MAX_BYTES

 value: "10485760"

 - name: KAFKA_CFG_FETCH_MESSAGE_MAX_BYTES

 value: "5242880"

 - name: KAFKA_CFG_LOG_ROLL_HOURS

 value: "24"

 persistence:

 enabled: true

 storageClass:

 accessMode: ReadWriteOnce

 size: 300Gi

 metrics:

190

 ## Prometheus Kafka exporter: exposes complimentary metrics to JMX

exporter

 kafka:

 enabled: false

 image:

 repository: bitnami/kafka-exporter

 tag: 1.4.2-debian-10-r182

 ## Prometheus JMX exporter: exposes the majority of Kafkas metrics

 jmx:

 enabled: false

 image:

 repository: bitnami/jmx-exporter

 tag: 0.16.1-debian-10-r245

 ## To enable serviceMonitor, you must enable either kafka exporter or

jmx exporter.

 ## And you can enable them both

 serviceMonitor:

 enabled: false

 service:

 type: ClusterIP

 ports:

 client: 9092

 zookeeper:

 enabled: true

 replicaCount: 3

###################################

External S3

- these configs are only used when `externalS3.enabled` is true

###################################

externalS3:

 enabled: true

 host: "192.168.150.167"

 port: "80"

 accessKey: "24G4C1316APP2BIPDE5S"

 secretKey: "Zd28p43rgZaU44PX_ftT279z9nt4jBSro97j87Bx"

 useSSL: false

 bucketName: "milvusdbvol1"

 rootPath: ""

 useIAM: false

 cloudProvider: "aws"

 iamEndpoint: ""

191

 region: ""

 useVirtualHost: false

###################################

GCS Gateway

- these configs are only used when `minio.gcsgateway.enabled` is true

###################################

externalGcs:

 bucketName: ""

###################################

External etcd

- these configs are only used when `externalEtcd.enabled` is true

###################################

externalEtcd:

 enabled: false

 ## the endpoints of the external etcd

 ##

 endpoints:

 - localhost:2379

###################################

External pulsar

- these configs are only used when `externalPulsar.enabled` is true

###################################

externalPulsar:

 enabled: false

 host: localhost

 port: 6650

 maxMessageSize: "5242880" # 5 * 1024 * 1024 Bytes, Maximum size of each

message in pulsar.

 tenant: public

 namespace: default

 authPlugin: ""

 authParams: ""

###################################

External kafka

- these configs are only used when `externalKafka.enabled` is true

###################################

externalKafka:

 enabled: false

 brokerList: localhost:9092

 securityProtocol: SASL_SSL

 sasl:

 mechanisms: PLAIN

192

 username: ""

 password: ""

root@node2:~#

Appendix B: prepare_data_netapp_new.py

This section provides a sample Python script used to prepare data for the vector

database.

Appendix B: prepare_data_netapp_new.py

root@node2:~# cat prepare_data_netapp_new.py

hello_milvus.py demonstrates the basic operations of PyMilvus, a Python

SDK of Milvus.

1. connect to Milvus

2. create collection

3. insert data

4. create index

5. search, query, and hybrid search on entities

6. delete entities by PK

7. drop collection

import time

import os

import numpy as np

from pymilvus import (

 connections,

 utility,

 FieldSchema, CollectionSchema, DataType,

 Collection,

)

fmt = "\n=== {:30} ===\n"

search_latency_fmt = "search latency = {:.4f}s"

#num_entities, dim = 3000, 8

num_entities, dim = 3000, 16

##

#######

1. connect to Milvus

Add a new connection alias `default` for Milvus server in

`localhost:19530`

Actually the "default" alias is a buildin in PyMilvus.

If the address of Milvus is the same as `localhost:19530`, you can omit

all

parameters and call the method as: `connections.connect()`.

193

#

Note: the `using` parameter of the following methods is default to

"default".

print(fmt.format("start connecting to Milvus"))

host = os.environ.get('MILVUS_HOST')

if host == None:

 host = "localhost"

print(fmt.format(f"Milvus host: {host}"))

#connections.connect("default", host=host, port="19530")

connections.connect("default", host=host, port="27017")

has = utility.has_collection("hello_milvus_ntapnew_update2_sc")

print(f"Does collection hello_milvus_ntapnew_update2_sc exist in Milvus:

{has}")

#drop the collection

print(fmt.format(f"Drop collection - hello_milvus_ntapnew_update2_sc"))

utility.drop_collection("hello_milvus_ntapnew_update2_sc")

#drop the collection

print(fmt.format(f"Drop collection - hello_milvus_ntapnew_update2_sc2"))

utility.drop_collection("hello_milvus_ntapnew_update2_sc2")

##

#######

2. create collection

We're going to create a collection with 3 fields.

+-+------------+------------+------------------

+------------------------------+

| | field name | field type | other attributes | field description

|

+-+------------+------------+------------------

+------------------------------+

|1| "pk" | Int64 | is_primary=True | "primary field"

|

| | | | auto_id=False |

|

+-+------------+------------+------------------

+------------------------------+

|2| "random" | Double | | "a double field"

|

+-+------------+------------+------------------

+------------------------------+

|3|"embeddings"| FloatVector| dim=8 | "float vector with dim

8" |

+-+------------+------------+------------------

194

+------------------------------+

fields = [

 FieldSchema(name="pk", dtype=DataType.INT64, is_primary=True, auto_id

=False),

 FieldSchema(name="random", dtype=DataType.DOUBLE),

 FieldSchema(name="var", dtype=DataType.VARCHAR, max_length=65535),

 FieldSchema(name="embeddings", dtype=DataType.FLOAT_VECTOR, dim=dim)

]

schema = CollectionSchema(fields, "hello_milvus_ntapnew_update2_sc")

print(fmt.format("Create collection `hello_milvus_ntapnew_update2_sc`"))

hello_milvus_ntapnew_update2_sc = Collection

("hello_milvus_ntapnew_update2_sc", schema, consistency_level="Strong")

##

######

3. insert data

We are going to insert 3000 rows of data into

`hello_milvus_ntapnew_update2_sc`

Data to be inserted must be organized in fields.

#

The insert() method returns:

- either automatically generated primary keys by Milvus if auto_id=True

in the schema;

- or the existing primary key field from the entities if auto_id=False

in the schema.

print(fmt.format("Start inserting entities"))

rng = np.random.default_rng(seed=19530)

entities = [

 # provide the pk field because `auto_id` is set to False

 [i for i in range(num_entities)],

 rng.random(num_entities).tolist(), # field random, only supports list

 [str(i) for i in range(num_entities)],

 rng.random((num_entities, dim)), # field embeddings, supports

numpy.ndarray and list

]

insert_result = hello_milvus_ntapnew_update2_sc.insert(entities)

hello_milvus_ntapnew_update2_sc.flush()

print(f"Number of entities in hello_milvus_ntapnew_update2_sc:

{hello_milvus_ntapnew_update2_sc.num_entities}") # check the num_entites

create another collection

fields2 = [

195

 FieldSchema(name="pk", dtype=DataType.INT64, is_primary=True, auto_id

=True),

 FieldSchema(name="random", dtype=DataType.DOUBLE),

 FieldSchema(name="var", dtype=DataType.VARCHAR, max_length=65535),

 FieldSchema(name="embeddings", dtype=DataType.FLOAT_VECTOR, dim=dim)

]

schema2 = CollectionSchema(fields2, "hello_milvus_ntapnew_update2_sc2")

print(fmt.format("Create collection `hello_milvus_ntapnew_update2_sc2`"))

hello_milvus_ntapnew_update2_sc2 = Collection

("hello_milvus_ntapnew_update2_sc2", schema2, consistency_level="Strong")

entities2 = [

 rng.random(num_entities).tolist(), # field random, only supports list

 [str(i) for i in range(num_entities)],

 rng.random((num_entities, dim)), # field embeddings, supports

numpy.ndarray and list

]

insert_result2 = hello_milvus_ntapnew_update2_sc2.insert(entities2)

hello_milvus_ntapnew_update2_sc2.flush()

insert_result2 = hello_milvus_ntapnew_update2_sc2.insert(entities2)

hello_milvus_ntapnew_update2_sc2.flush()

index_params = {"index_type": "IVF_FLAT", "params": {"nlist": 128},

"metric_type": "L2"}

hello_milvus_ntapnew_update2_sc.create_index("embeddings", index_params)

#

hello_milvus_ntapnew_update2_sc2.create_index(field_name="var",index_name=

"scalar_index")

index_params2 = {"index_type": "Trie"}

hello_milvus_ntapnew_update2_sc2.create_index("var", index_params2)

print(f"Number of entities in hello_milvus_ntapnew_update2_sc2:

{hello_milvus_ntapnew_update2_sc2.num_entities}") # check the num_entites

root@node2:~#

Appendix C: verify_data_netapp.py

This section contains a sample Python script that can be used to validate the vector

database in the NetApp vector database solution.

196

Appendix C: verify_data_netapp.py

root@node2:~# cat verify_data_netapp.py

import time

import os

import numpy as np

from pymilvus import (

 connections,

 utility,

 FieldSchema, CollectionSchema, DataType,

 Collection,

)

fmt = "\n=== {:30} ===\n"

search_latency_fmt = "search latency = {:.4f}s"

num_entities, dim = 3000, 16

rng = np.random.default_rng(seed=19530)

entities = [

 # provide the pk field because `auto_id` is set to False

 [i for i in range(num_entities)],

 rng.random(num_entities).tolist(), # field random, only supports list

 rng.random((num_entities, dim)), # field embeddings, supports

numpy.ndarray and list

]

##

######

1. get recovered collection hello_milvus_ntapnew_update2_sc

print(fmt.format("start connecting to Milvus"))

host = os.environ.get('MILVUS_HOST')

if host == None:

 host = "localhost"

print(fmt.format(f"Milvus host: {host}"))

#connections.connect("default", host=host, port="19530")

connections.connect("default", host=host, port="27017")

recover_collections = ["hello_milvus_ntapnew_update2_sc",

"hello_milvus_ntapnew_update2_sc2"]

for recover_collection_name in recover_collections:

 has = utility.has_collection(recover_collection_name)

 print(f"Does collection {recover_collection_name} exist in Milvus:

{has}")

 recover_collection = Collection(recover_collection_name)

 print(recover_collection.schema)

 recover_collection.flush()

197

 print(f"Number of entities in Milvus: {recover_collection_name} :

{recover_collection.num_entities}") # check the num_entites

##

######

 # 4. create index

 # We are going to create an IVF_FLAT index for

hello_milvus_ntapnew_update2_sc collection.

 # create_index() can only be applied to `FloatVector` and

`BinaryVector` fields.

 print(fmt.format("Start Creating index IVF_FLAT"))

 index = {

 "index_type": "IVF_FLAT",

 "metric_type": "L2",

 "params": {"nlist": 128},

 }

 recover_collection.create_index("embeddings", index)

##

######

 # 5. search, query, and hybrid search

 # After data were inserted into Milvus and indexed, you can perform:

 # - search based on vector similarity

 # - query based on scalar filtering(boolean, int, etc.)

 # - hybrid search based on vector similarity and scalar filtering.

 #

 # Before conducting a search or a query, you need to load the data in

`hello_milvus` into memory.

 print(fmt.format("Start loading"))

 recover_collection.load()

 #

--

 # search based on vector similarity

 print(fmt.format("Start searching based on vector similarity"))

 vectors_to_search = entities[-1][-2:]

 search_params = {

 "metric_type": "L2",

 "params": {"nprobe": 10},

 }

198

 start_time = time.time()

 result = recover_collection.search(vectors_to_search, "embeddings",

search_params, limit=3, output_fields=["random"])

 end_time = time.time()

 for hits in result:

 for hit in hits:

 print(f"hit: {hit}, random field: {hit.entity.get('random')}")

 print(search_latency_fmt.format(end_time - start_time))

 #

--

 # query based on scalar filtering(boolean, int, etc.)

 print(fmt.format("Start querying with `random > 0.5`"))

 start_time = time.time()

 result = recover_collection.query(expr="random > 0.5", output_fields=

["random", "embeddings"])

 end_time = time.time()

 print(f"query result:\n-{result[0]}")

 print(search_latency_fmt.format(end_time - start_time))

 #

--

 # hybrid search

 print(fmt.format("Start hybrid searching with `random > 0.5`"))

 start_time = time.time()

 result = recover_collection.search(vectors_to_search, "embeddings",

search_params, limit=3, expr="random > 0.5", output_fields=["random"])

 end_time = time.time()

 for hits in result:

 for hit in hits:

 print(f"hit: {hit}, random field: {hit.entity.get('random')}")

 print(search_latency_fmt.format(end_time - start_time))

##

#####

 # 7. drop collection

 # Finally, drop the hello_milvus, hello_milvus_ntapnew_update2_sc

collection

199

 #print(fmt.format(f"Drop collection {recover_collection_name}"))

 #utility.drop_collection(recover_collection_name)

root@node2:~#

Appendix D: docker-compose.yml

This section includes sample YAML code for the vector database solution for NetApp.

Appendix D: docker-compose.yml

version: '3.5'

services:

 etcd:

 container_name: milvus-etcd

 image:: quay.io/coreos/etcd:v3.5.5

 environment:

 - ETCD_AUTO_COMPACTION_MODE=revision

 - ETCD_AUTO_COMPACTION_RETENTION=1000

 - ETCD_QUOTA_BACKEND_BYTES=4294967296

 - ETCD_SNAPSHOT_COUNT=50000

 volumes:

 - /home/ubuntu/milvusvectordb/volumes/etcd:/etcd

 command: etcd -advertise-client-urls=http://127.0.0.1:2379 -listen

-client-urls http://0.0.0.0:2379 --data-dir /etcd

 healthcheck:

 test: ["CMD", "etcdctl", "endpoint", "health"]

 interval: 30s

 timeout: 20s

 retries: 3

 minio:

 container_name: milvus-minio

 image:: minio/minio:RELEASE.2023-03-20T20-16-18Z

 environment:

 MINIO_ACCESS_KEY: minioadmin

 MINIO_SECRET_KEY: minioadmin

 ports:

 - "9001:9001"

 - "9000:9000"

 volumes:

 - /home/ubuntu/milvusvectordb/volumes/minio:/minio_data

 command: minio server /minio_data --console-address ":9001"

 healthcheck:

200

 test: ["CMD", "curl", "-f",

"http://localhost:9000/minio/health/live"]

 interval: 30s

 timeout: 20s

 retries: 3

 standalone:

 container_name: milvus-standalone

 image:: milvusdb/milvus:v2.4.0-rc.1

 command: ["milvus", "run", "standalone"]

 security_opt:

 - seccomp:unconfined

 environment:

 ETCD_ENDPOINTS: etcd:2379

 MINIO_ADDRESS: minio:9000

 volumes:

 - /home/ubuntu/milvusvectordb/volumes/milvus:/var/lib/milvus

 healthcheck:

 test: ["CMD", "curl", "-f", "http://localhost:9091/healthz"]

 interval: 30s

 start_period: 90s

 timeout: 20s

 retries: 3

 ports:

 - "19530:19530"

 - "9091:9091"

 depends_on:

 - "etcd"

 - "minio"

networks:

 default:

 name: milvus

201

Copyright information

Copyright © 2024 NetApp, Inc. All Rights Reserved. Printed in the U.S. No part of this document covered by

copyright may be reproduced in any form or by any means—graphic, electronic, or mechanical, including

photocopying, recording, taping, or storage in an electronic retrieval system—without prior written permission

of the copyright owner.

Software derived from copyrighted NetApp material is subject to the following license and disclaimer:

THIS SOFTWARE IS PROVIDED BY NETAPP “AS IS” AND WITHOUT ANY EXPRESS OR IMPLIED

WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY

AND FITNESS FOR A PARTICULAR PURPOSE, WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL

NETAPP BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR

CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE

GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER

CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS

SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

NetApp reserves the right to change any products described herein at any time, and without notice. NetApp

assumes no responsibility or liability arising from the use of products described herein, except as expressly

agreed to in writing by NetApp. The use or purchase of this product does not convey a license under any

patent rights, trademark rights, or any other intellectual property rights of NetApp.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or

pending applications.

LIMITED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set

forth in subparagraph (b)(3) of the Rights in Technical Data -Noncommercial Items at DFARS 252.227-7013

(FEB 2014) and FAR 52.227-19 (DEC 2007).

Data contained herein pertains to a commercial product and/or commercial service (as defined in FAR 2.101)

and is proprietary to NetApp, Inc. All NetApp technical data and computer software provided under this

Agreement is commercial in nature and developed solely at private expense. The U.S. Government has a non-

exclusive, non-transferrable, nonsublicensable, worldwide, limited irrevocable license to use the Data only in

connection with and in support of the U.S. Government contract under which the Data was delivered. Except

as provided herein, the Data may not be used, disclosed, reproduced, modified, performed, or displayed

without the prior written approval of NetApp, Inc. United States Government license rights for the Department

of Defense are limited to those rights identified in DFARS clause 252.227-7015(b) (FEB 2014).

Trademark information

NETAPP, the NETAPP logo, and the marks listed at http://www.netapp.com/TM are trademarks of NetApp, Inc.

Other company and product names may be trademarks of their respective owners.

202

http://www.netapp.com/TM

	Data Pipelines, Data Lakes and Management : NetApp Solutions
	Table of Contents
	Data Pipelines, Data Lakes and Management
	AWS FSx for NetApp ONTAP (FSxN) for MLOps
	Hybrid Multicloud MLOps with Domino Data Lab and NetApp
	NVIDIA AI Enterprise with NetApp and VMware
	TR-4851: NetApp StorageGRID data lake for autonomous driving workloads - Solution design
	Open Source MLOps with NetApp
	MLRun Pipeline with Iguazio
	TR-4915: Data movement with E-Series and BeeGFS for AI and analytics workflows
	Vector Database Solution with NetApp

