Optimal Cluster and GPU Utilization with
Run Al

NetApp Solutions

NetApp
July 31, 2024

This PDF was generated from https://docs.netapp.com/us-en/netapp-

solutions/ai/osrunai_run_ai_installation.html on July 31, 2024. Always check docs.netapp.com for the
latest.

Table of Contents

Optimal Cluster and GPU Utilization with Run:Al
Run:Al Installation
Run:Al Dashboards and Views
Creating Projects for Data Science Teams and Allocating GPUs
Submitting Jobs in Run:Al CLI
Achieving High Cluster Utilization
Fractional GPU Allocation for Less Demanding or Interactive Workloads
Achieving High Cluster Utilization with Over-Quota GPU Allocation
Basic Resource Allocation Fairness
Over-Quota Fairness
Saving Data to a Trident-Provisioned PersistentVolume

—_— -

N O © 0N O WN =~ 2 -

Optimal Cluster and GPU Utilization with Run:Al

The following sections provide details on the Run:Al installation, test scenarios, and
results performed in this validation.

We validated the operation and performance of this system by using industry standard benchmark tools,
including TensorFlow benchmarks. The ImageNet dataset was used to train ResNet-50, which is a famous
Convolutional Neural Network (CNN) DL model for image classification. ResNet-50 delivers an accurate
training result with a faster processing time, which enabled us to drive a sufficient demand on the storage.

Run:Al Installation
To install Run:Al, complete the following steps:

1. Install the Kubernetes cluster using DeepOps and configure the NetApp default storage class.

2. Prepare GPU nodes:
a. Verify that NVIDIA drivers are installed on GPU nodes.

b. Verify that nvidia-docker is installed and configured as the default docker runtime.
3. Install Run:Al:

a. Log into the Run:Al Admin Ul to create the cluster.

b. Download the created runai-operator-<clustername>.yamnl file.

c. Apply the operator configuration to the Kubernetes cluster.

kubectl apply -f runai-operator-<clustername>.yaml

4. Verify the installation:
a. Go to https://app.run.ail.
b. Go to the Overview dashboard.

c. Verify that the number of GPUs on the top right reflects the expected number of GPUs and the GPU
nodes are all in the list of servers.For more information about Run:Al deployment, see installing Run:Al
on an on-premise Kubernetes cluster and installing the Run:Al CLI.

Run:Al Dashboards and Views

After installing Run:Al on your Kubernetes cluster and configuring the containers
correctly, you see the following dashboards and views on https://app.run.ai in your
browser, as shown in the following figure.

https://app.run.ai
https://app.run.ai/
https://docs.run.ai/Administrator/Cluster-Setup/Installing-Run-AI-on-an-on-premise-Kubernetes-Cluster/
https://docs.run.ai/Administrator/Cluster-Setup/Installing-Run-AI-on-an-on-premise-Kubernetes-Cluster/
https://docs.run.ai/Administrator/Researcher-Setup/Installing-the-Run-AI-Command-Line-Interface/
https://app.run.ai/

= run:

Qverview Cluster: cluster1 rick.huang@netapp.com MNet)—\DD

e a

Nodes Total GPUs Allocated GPUs e Uthansoh BRUS Pt

2 I 6 6 :
-]
Idle Allocated GPUs

1 23%

tearm-a

Running Jobs
Job Project User Type Node GPUs Run Time Progress Utilization
test-ingress team-a raat Interactive dgxi-2 1.00 00:07:50 - 0%
myfirstjob team-a oot Train dgx1-2 1.00 00:27:13 48%
mysecondjob team-a oot Train dgx1-2 4,00 00:16:36 3% T0%
Pending Jobs Nodes
Node Total GPUs Allocated GPUs Utilization
No data 1o show. @
dgx1-1 B] 0%
dgx1-2 B 1)

There are 16 total GPUs in the cluster provided by two DGX-1 nodes. You can see the number of nodes, the
total available GPUs, the allocated GPUs that are assigned with workloads, the total number of running jobs,
pending jobs, and idle allocated GPUs. On the right side, the bar diagram shows GPUs per Project, which
summarizes how different teams are using the cluster resource. In the middle is the list of currently running
jobs with job details, including job name, project, user, job type, the node each job is running on, the number of
GPU(s) allocated for that job, the current run time of the job, job progress in percentage, and the GPU
utilization for that job. Note that the cluster is under-utilized (GPU utilization at 23%) because there are only
three running jobs submitted by a single team (team-a).

In the following section, we show how to create multiple teams in the Projects tab and allocate GPUs for each
team to maximize cluster usage and manage resources when there are many users per cluster. The test
scenarios mimic enterprise environments in which memory and GPU resources are shared among training,
inferencing, and interactive workloads.

Creating Projects for Data Science Teams and Allocating
GPUs

Researchers can submit workloads through the Run:Al CLI, Kubeflow, or similar
processes. To streamline resource allocation and create prioritization, Run:Al introduces
the concept of Projects. Projects are quota entities that associate a project name with
GPU allocation and preferences. It is a simple and convenient way to manage multiple
data science teams.

A researcher submitting a workload must associate a project with a workload request. The Run:Al scheduler
compares the request against the current allocations and the project and determines whether the workload can
be allocated resources or whether it should remain in a pending state.

As a system administrator, you can set the following parameters in the Run:Al Projects tab:

* Model projects. Set a project per user, set a project per team of users, and set a project per a real
organizational project.

* Project quotas. Each project is associated with a quota of GPUs that can be allocated for this project at
the same time. This is a guaranteed quota in the sense that researchers using this project are guaranteed
to get this number of GPUs no matter what the status in the cluster is. As a rule, the sum of the project
allocation should be equal to the number of GPUs in the cluster. Beyond that, a user of this project can
receive an over-quota. As long as GPUs are unused, a researcher using this project can get more GPUs.
We demonstrate over-quota testing scenarios and fairness considerations in Achieving High Cluster
Utilization with Over-Quota GPU Allocation, Basic Resource Allocation Fairness, and Over-Quota Fairness.

» Create a new project, update an existing project, and delete an existing project.

Limit jobs to run on specific node groups. You can assign specific projects to run only on specific
nodes. This is useful when the project team needs specialized hardware, for example, with enough
memory. Alternatively, a project team might be the owner of specific hardware that was acquired with a
specialized budget, or when you might need to direct build or interactive workloads to work on weaker
hardware and direct longer training or unattended workloads to faster nodes. For commands to group
nodes and set affinity for a specific project, see the Run:Al Documentation.

Limit the duration of interactive jobs. Researchers frequently forget to close interactive jobs. This might
lead to a waste of resources. Some organizations prefer to limit the duration of interactive jobs and close
them automatically.

The following figure shows the Projects view with four teams created. Each team is assigned a different
number of GPUs to account for different workloads, with the total number of GPUs equal to that of the total
available GPUs in a cluster consisting of two DGX-1s.

= ru 2 | Proje'cts Cluster: cluster1 rick.huang @netapp.com NE[’_ADD
Q 1
Project Name Assigned GPUs Created Training Node Affinity Interactive Node Affinity &
I team-a 2 07/27/20, 9:28AM none none
M team-b 4 07/28/20, 7:50AM none none
 team—c 2 07/28/20, 7:50AM none none
™ team-d 8 07/28/20, 7:51AM none none

Submitting Jobs in Run:Al CLI

This section provides the detail on basic Run:Al commands that you can use to run any
Kubernetes job. It is divided into three parts according to workload type. Al/ML/DL
workloads can be divided into two generic types:

« Unattended training sessions. With these types of workloads, the data scientist prepares a self-running
workload and sends it for execution. During the execution, the customer can examine the results. This type
of workload is often used in production or when model development is at a stage where no human
intervention is required.

* Interactive build sessions. With these types of workloads, the data scientist opens an interactive session
with Bash, Jupyter Notebook, remote PyCharm, or similar IDEs and accesses GPU resources directly. We
include a third scenario for running interactive workloads with connected ports to reveal an internal port to

https://docs.run.ai/Administrator/Admin-User-Interface-Setup/Working-with-Projects/

the container user..

Unattended Training Workloads

After setting up projects and allocating GPU(s), you can run any Kubernetes workload using the following
command at the command line:

$ runai project set team-a runai submit hyperl -i gcr.io/run-ai-

demo/quickstart -g 1

This command starts an unattended training job for team-a with an allocation of a single GPU. The job is based
on a sample docker image, gcr.io/run-ai-demo/quickstart. We named the job hyperl. You can then
monitor the job’s progress by running the following command:

S runai list

The following figure shows the result of the runai 1ist command. Typical statuses you might see include
the following:

* ContainerCreating. The docker container is being downloaded from the cloud repository.
* Pending. The job is waiting to be scheduled.

* Running. The job is running.

~» runai list
Showing jobs for project team-a

NAME STATUS AGE NODE IMAGE TYPE PROJECT USER GPUs
hyperl Running 11s gke-dev-yaronl-gpu-4-pool-154f511d-5nk5 gcr.io/run-ai-demo/guickstart Train team-a yaron 1

To get an additional status on your job, run the following command:

$ runai get hyperl

To view the logs of the job, run the runai logs <job-name> command:

$ runai logs hyperl

In this example, you should see the log of a running DL session, including the current training epoch, ETA, loss
function value, accuracy, and time elapsed for each step.

You can view the cluster status on the Run:Al Ul at https://app.run.ai/. Under Dashboards > Overview, you can
monitor GPU utilization.

To stop this workload, run the following command:

https://app.run.ai/

$ runai delte hyperl

This command stops the training workload. You can verify this action by running runai 1ist again. For more
detail, see launching unattended training workloads.

Interactive Build Workloads

After setting up projects and allocating GPU(s) you can run an interactive build workload using the following
command at the command line:

$ runai submit buildl -i python -g 1 --interactive --command sleep --args
infinity

The job is based on a sample docker image python. We named the job build1.

The -- interactive flag means that the job does not have a start or end. It is the
researcher’s responsibility to close the job. The administrator can define a time limit for
interactive jobs after which they are terminated by the system.

The —--g 1 flag allocates a single GPU to this job. The command and argument provided is —-command
sleep—args infinity. You must provide a command, or the container starts and then exits immediately.

The following commands work similarly to the commands described in Unattended Training Workloads:

* runai list: Shows the name, status, age, node, image, project, user, and GPUs for jobs.
* runai get buildl: Displays additional status on the job build1.

* runai delete buildl: Stops the interactive workload build1.To get a bash shell to the container, the
following command:

$ runail bash buildl

This provides a direct shell into the computer. Data scientists can then develop or finetune their models within
the container.

You can view the cluster status on the Run:Al Ul at https://app.run.ai. For more detail, see starting and using
interactive build workloads.

Interactive Workloads with Connected Ports

As an extension of interactive build workloads, you can reveal internal ports to the container user when starting
a container with the Run:Al CLI. This is useful for cloud environments, working with Jupyter Notebooks, or
connecting to other microservices. Ingress allows access to Kubernetes services from outside the Kubernetes
cluster. You can configure access by creating a collection of rules that define which inbound connections reach
which services.

For better management of external access to the services in a cluster, we suggest that cluster administrators
install Ingress and configure LoadBalancer.

https://docs.run.ai/Researcher/Walkthroughs/Walkthrough-Launch-Unattended-Training-Workloads-/
https://app.run.ai
https://docs.run.ai/Researcher/Walkthroughs/Walkthrough-Start-and-Use-Interactive-Build-Workloads-/
https://docs.run.ai/Researcher/Walkthroughs/Walkthrough-Start-and-Use-Interactive-Build-Workloads-/
https://kubernetes.io/docs/concepts/services-networking/ingress/
https://kubernetes.io/docs/concepts/services-networking/ingress/

To use Ingress as a service type, run the following command to set the method type and the ports when
submitting your workload:

$ runai submit test-ingress -i jupyter/base-notebook -g 1 \
--interactive --service-type=ingress —--port 8888 \
-—args="--NotebookApp.base url=test-ingress" --command=start-notebook.sh

After the container starts successfully, execute runai 1ist to see the SERVICE URL (S) with which to
access the Jupyter Notebook. The URL is composed of the ingress endpoint, the job name, and the port.

For more details, see launching an interactive build workload with connected ports.

Achieving High Cluster Utilization

In this section, we emulate a realistic scenario in which four data science teams each
submit their own workloads to demonstrate the Run:Al orchestration solution that
achieves high cluster utilization while maintaining prioritization and balancing GPU
resources. We start by using the ResNet-50 benchmark described in the section ResNet-
50 with ImageNet Dataset Benchmark Summary:

$ runai submit netappl -i netapp/tensorflow-tfl-py3:20.01.0 --local-image
--large-shm -v /mnt:/mnt -v /tmp:/tmp --command python --args

"/netapp/scripts/run.py" --args "--
dataset dir=/mnt/mount 0/dataset/imagenet/imagenet original/" --args "--
num mounts=2" --args "--dgx version=dgxl" --args "--num devices=1" -g 1

We ran the same ResNet-50 benchmark as in NVA-1121. We used the flag --1ocal-image for containers
not residing in the public docker repository. We mounted the directories /mnt and /tmp on the host DGX-1
node to /mnt and /tmp to the container, respectively. The dataset is at NetApp AFFA800 with the

dataset dir argument pointing to the directory. Both —~—-num devices=1 and -g 1 mean that we allocate
one GPU for this job. The former is an argument for the run. py script, while the latter is a flag for the runai
submit command.

The following figure shows a system overview dashboard with 97% GPU utilization and all sixteen available
GPUs allocated. You can easily see how many GPUs are allocated for each team in the GPUs/Project bar
chart. The Running Jobs pane shows the current running job names, project, user, type, node, GPUs
consumed, run time, progress, and utilization details. A list of workloads in queue with their wait time is shown
in Pending Jobs. Finally, the Nodes box offers GPU numbers and utilization for individual DGX-1 nodes in the
cluster.

https://docs.run.ai/Researcher/Walkthroughs/Walkthrough-Launch-an-Interactive-Build-Workload-with-Connected-Ports/
https://docs.netapp.com/us-en/netapp-solutions/ai/osrunai_resnet-50_with_imagenet_dataset_benchmark_summary.html
https://docs.netapp.com/us-en/netapp-solutions/ai/osrunai_resnet-50_with_imagenet_dataset_benchmark_summary.html
https://www.netapp.com/us/media/nva-1121-design.pdf

= ru 2 ¥ | Overview Cluster: cluster1 rick.huang@netapp.com F‘letADD
Nodes Total GPUs Allocated GPUs AP tion GFLS Y Pestect
]
4
Idle Allocated
GPUs 2

o
0 TR DRAMED 1haT-G TeT-d

Running Jobs

Job Project User Type Mode GPUs Run Time Progress WHilization
netapp-heavy-d-1 team-d rool Train dgul-1 1.00 00:24:23 263
natapp-heavy-d-3 team-d oot Train dgx1-1 1.00 00:20:47
lrachs team-d root Interactive dgx1-2 0.50 00:10:35 13% T00%
Pénding Jobs Nodes
Job Project User Type Reguasted GPUs Walt Time Node Tetal GPUs Allecated GPUs WHilization
netapp-heavy-c-2 team-c oot Train dgxl-1
po-aee 2.00 00:13:20 L 8 8
dgxl-2
L 8 8

Fractional GPU Allocation for Less Demanding or
Interactive Workloads

When researchers and developers are working on their models, whether in the
development, hyperparameter tuning, or debugging stages, such workloads usually
require fewer computational resources. It is therefore more efficient to provision fractional
GPU and memory such that the same GPU can simultaneously be allocated to other
workloads. Run:Al’s orchestration solution provides a fractional GPU sharing system for
containerized workloads on Kubernetes. The system supports workloads running CUDA
programs and is especially suited for lightweight Al tasks such as inference and model
building. The fractional GPU system transparently gives data science and Al engineering
teams the ability to run multiple workloads simultaneously on a single GPU. This enables
companies to run more workloads, such as computer vision, voice recognition, and
natural language processing on the same hardware, thus lowering costs.

Run:Al’s fractional GPU system effectively creates virtualized logical GPUs with their own memory and
computing space that containers can use and access as if they were self-contained processors. This enables
several workloads to run in containers side-by-side on the same GPU without interfering with each other. The
solution is transparent, simple, and portable and it requires no changes to the containers themselves.

A typical usecase could see two to eight jobs running on the same GPU, meaning that you could do eight times
the work with the same hardware.

For the job frac05 belonging to project team-d in the following figure, we can see that the number of GPUs
allocated was 0.50. This is further verified by the nvidia-smi command, which shows that the GPU memory
available to the container was 16,255MB: half of the 32GB per V100 GPU in the DGX-1 node.

root@run-deploy:~# runai bash frac@5 -p team-d

| NVIDIA-SMI 45@.51.05 Driver Version: 450.51.05 CUDA Version:
| == e e e e
GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
Fan Temp Perf Pwr:Usage/Capl Memory-Usage | GPU-Util Compute M. |
I MIG M. |

— L —

On | 000000000 .9 Off | @ |

PO 2400 / 300W | 15525MiB / 16255MiB | % Default |

(I PID Type Process name GPU Memory |
Usage I

I @ N/A N/A 156 C python3 15525M1iB |
+ —— +

Achieving High Cluster Utilization with Over-Quota GPU
Allocation

In this section and in the sections Basic Resource Allocation Fairness, and Over-Quota
Fairness, we have devised advanced testing scenarios to demonstrate the Run:Al
orchestration capabilities for complex workload management, automatic preemptive
scheduling, and over-quota GPU provisioning. We did this to achieve high cluster-
resource usage and optimize enterprise-level data science team productivity in an
ONTAP Al environment.

For these three sections, set the following projects and quotas:

Project Quota
team-a 4
team-b 2
team-c 2
team-d 8

In addition, we use the following containers for these three sections:

* Jupyter Notebook: jupyter/base-notebook

* Run:Al quickstart: gcr.io/run-ai-demo/quickstart
We set the following goals for this test scenario:

» Show the simplicity of resource provisioning and how resources are abstracted from users
« Show how users can easily provision fractions of a GPU and integer number of GPUs

* Show how the system eliminates compute bottlenecks by allowing teams or users to go over their resource
quota if there are free GPUs in the cluster

» Show how data pipeline bottlenecks are eliminated by using the NetApp solution when running compute-
intensive jobs, such as the NetApp container

« Show how multiple types of containers are running using the system
> Jupyter Notebook
o Run:Al container

» Show high utilization when the cluster is full
For details on the actual command sequence executed during the testing, see Testing Details for Section 4.8.

When all 13 workloads are submitted, you can see a list of container names and GPUs allocated, as shown in
the following figure. We have seven training and six interactive jobs, simulating four data science teams, each
with their own models running or in development. For interactive jobs, individual developers are using Jupyter
Notebooks to write or debug their code. Thus, it is suitable to provision GPU fractions without using too many
cluster resources.

The results of this testing scenario show the following:

* The cluster should be full: 16/16 GPUs are used.
 High cluster utilization.
* More experiments than GPUs due to fractional allocation.

* team-d is not using all their quota; therefore, team-b and team-c can use additional GPUs for their
experiments, leading to faster time to innovation.

Basic Resource Allocation Fairness

In this section, we show that, when team-d asks for more GPUs (they are under their
quota), the system pauses the workloads of team-b and team-c and moves them into a
pending state in a fair-share manner.

https://docs.netapp.com/us-en/netapp-solutions/ai/osrunai_testing_details_for_section_48.html

For details including job submissions, container images used, and command sequences executed, see the
section Testing Details for Section 4.9.

The following figure shows the resulting cluster utilization, GPUs allocated per team, and pending jobs due to
automatic load balancing and preemptive scheduling. We can observe that when the total number of GPUs
requested by all team workloads exceeds the total available GPUs in the cluster, Run:Al’s internal fairness
algorithm pauses one job each for team-b and team-c because they have met their project quota. This

provides overall high cluster utilization while data science teams still work under resource constraints set by an
administrator.

GPU Utilization

Nodes Total GPUs GPUs / Project

2 16

Running Jobs Pending Jobs

Allocated GPUs

16

Idle Allocated
GPUs

- : P
ES

:..)) 1 8 6 %
) L 0

|
. ﬂ.",.

B
i

team-¢ leam-b team-a team-d

Running Jobs
Job Project User Type MNode GPUs Run Time Progress Utilization
c-3-g02 team-¢ root Interactive dgxi-1 0.20 00:11:40 16% 99%
alg team-a root Train dgx1-1 1.00 00:11:49 23% 100%
b-2-g04 team-b root Interactive dgx1-2 0.40 00:11:48 13% 100%
&-50 team-¢ root Train dax1-2 1.00 00:11:38 24% 66%
Pending Jobs Nodes
Job Project Uger Type Requested GPUs Wait Time Node ~ Total GPUs Allocated GPUs Utilization
b-4- team-b root Train 2.00 00:01:34 dgx1-1
L - g 8 8 85%
c-4-gg team-c root Train 2.00 00:04:49
dgx1-2
9 8 8 89%

The results of this testing scenario demonstrate the following:

« Automatic load balancing. The system automatically balances the quota of the GPUs, such that each
team is now using their quota. The workloads that were paused belong to teams that were over their quota.

 Fair share pause. The system chooses to stop the workload of one team that was over their quota and
then stop the workload of the other team. Run:Al has internal fairness algorithms.

Over-Quota Fairness

In this section, we expand the scenario in which multiple teams submit workloads and
exceed their quota. In this way, we demonstrate how Run:Al’s fairness algorithm allocates
cluster resources according to the ratio of preset quotas.

Goals for this test scenario:

» Show queuing mechanism when multiple teams are requesting GPUs over their quota.

* Show how the system distributes a fair share of the cluster between multiple teams that are over their

10

https://docs.netapp.com/us-en/netapp-solutions/ai/osrunai_testing_details_for_section_49.html

quota according to the ratio between their quotas, so that the team with the larger quota gets a larger share
of the spare capacity.

At the end of Basic Resource Allocation Fairness, there are two workloads queued: one for team-b and one
for team-c. In this section, we queue additional workloads.

For details including job submissions, container images used, and command sequences executed, see Testing
Details for section 4.10.

When all jobs are submitted according to the section Testing Details for section 4.10, the system dashboard
shows that team-a, team-b, and team-c all have more GPUs than their preset quota. team-a occupies four
more GPUs than its preset soft quota (four), whereas team-b and team-c each occupy two more GPUs than
their soft quota (two). The ratio of over-quota GPUs allocated is equal to that of their preset quota. This is
because the system used the preset quota as a reference of priority and provisioned accordingly when multiple
teams request more GPUs, exceeding their quota. Such automatic load balancing provides fairness and
prioritization when enterprise data science teams are actively engaged in Al model development and
production.

Nodes Total GPUs Allocated GPUs e ARRaon SEY8/ Probest
10
(-]
Running Jobs Pending Jobs |dle Allocated 4
2 i : PUs

!

e
B

.. -
' m

b W

N

!' U s | =] - |
= I team-¢ team-b team-a

Running Jobs

Job Project User Type Mode GPUs Run Time Progress Utilization
c-3g902 team-¢ root Interactive dgx1-1 0.20 00:22:01 29% T00%
alg team-a root Train dgx1-1 1.00 00:22:10 42% 99%
b-2-g04 team-b root Interactive dgx1-2 0.40 00:22:09 24% 100%
Pending Jobs Nodes
Job Project User Type Requested GPUs Wait Time Node -~ Total GPUs Allocated GPUs Utilization
i 0:07:4¢ -
c-6-gg team-¢ root Train 2.00 00:07:45 dax1-1 g 5 ok
b-5-gg team-b root Train 2.00 00:07:46
dgx1-2
i 8 8 89%

The results of this testing scenario show the following:

» The system starts to de-queue the workloads of other teams.

* The order of the dequeuing is decided according to fairness algorithms, such that team-b and team-c get
the same amount of over-quota GPUs (since they have a similar quota), and team-a gets a double
amount of GPUs since their quota is two times higher than the quota of team-b and team-c.

 All the allocation is done automatically.

Therefore, the system should stabilize on the following states:

11

https://docs.netapp.com/us-en/netapp-solutions/ai/osrunai_testing_details_for_section_410.html
https://docs.netapp.com/us-en/netapp-solutions/ai/osrunai_testing_details_for_section_410.html
https://docs.netapp.com/us-en/netapp-solutions/ai/osrunai_testing_details_for_section_410.html

Project

team-a

team-b

team-c

team-d

GPUs allocated
8/4

4/2

4/2

0/8

Comment

Four GPUs over the quota. Empty
queue.

Two GPUs over the quota. One
workload queued.

Two GPUs over the quota. One
workload queued.

Not using GPUs at all, no queued
workloads.

The following figure shows the GPU allocation per project over time in the Run:Al Analytics dashboard for the
sections Achieving High Cluster Utilization with Over-Quota GPU Allocation, Basic Resource Allocation
Fairness, and Over-Quota Fairness. Each line in the figure indicates the number of GPUs provisioned for a
given data science team at any time. We can see that the system dynamically allocates GPUs according to
workloads submitted. This allows teams to go over quota when there are available GPUs in the cluster, and
then preempt jobs according to fairness, before finally reaching a stable state for all four teams.

10

GPU Allocation / Project ~

0 i) i —
08:30 08:35

08:40

— team-a team-b team-c — team-d

08:45 08:50 08:55

Saving Data to a Trident-Provisioned PersistentVolume

NetApp Trident is a fully supported open source project designed to help you meet the
sophisticated persistence demands of your containerized applications. You can read and
write data to a Trident-provisioned Kubernetes PersistentVolume (PV) with the added
benefit of data tiering, encryption, NetApp Snapshot technology, compliance, and high
performance offered by NetApp ONTAP data management software.

12

Reusing PVCs in an Existing Namespace

For larger Al projects, it might be more efficient for different containers to read and write data to the same
Kubernetes PV. To reuse a Kubernetes Persistent Volume Claim (PVC), the user must have already created a
PVC. See the NetApp Trident documentation for details on creating a PVC. Here is an example of reusing an
existing PVC:

$ runai submit pvc-test -p team-a --pvc test:/tmp/pvclmount -i gcr.io/run-
ai-demo/quickstart -g 1

Run the following command to see the status of job pvc-test for project team-a:

$ runai get pvc-test -p team-a

You should see the PV /tmp/pvc1mount mounted to team-a job pvc-test. In this way, multiple containers
can read from the same volume, which is useful when there are multiple competing models in development or
in production. Data scientists can build an ensemble of models and then combine prediction results by majority
voting or other techniques.

Use the following to access the container shell:
$ runai bash pvc-test -p team-a
You can then check the mounted volume and access your data within the container.
This capability of reusing PVCs works with NetApp FlexVol volumes and NetApp ONTAP FlexGroup volumes,

enabling data engineers more flexible and robust data management options to leverage your data fabric
powered by NetApp.

13

https://netapp-trident.readthedocs.io/

Copyright information

Copyright © 2024 NetApp, Inc. All Rights Reserved. Printed in the U.S. No part of this document covered by
copyright may be reproduced in any form or by any means—graphic, electronic, or mechanical, including
photocopying, recording, taping, or storage in an electronic retrieval system—without prior written permission
of the copyright owner.

Software derived from copyrighted NetApp material is subject to the following license and disclaimer:

THIS SOFTWARE IS PROVIDED BY NETAPP “AS IS” AND WITHOUT ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE, WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL
NETAPP BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

NetApp reserves the right to change any products described herein at any time, and without notice. NetApp
assumes no responsibility or liability arising from the use of products described herein, except as expressly
agreed to in writing by NetApp. The use or purchase of this product does not convey a license under any
patent rights, trademark rights, or any other intellectual property rights of NetApp.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or
pending applications.

LIMITED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set
forth in subparagraph (b)(3) of the Rights in Technical Data -Noncommercial Items at DFARS 252.227-7013
(FEB 2014) and FAR 52.227-19 (DEC 2007).

Data contained herein pertains to a commercial product and/or commercial service (as defined in FAR 2.101)
and is proprietary to NetApp, Inc. All NetApp technical data and computer software provided under this
Agreement is commercial in nature and developed solely at private expense. The U.S. Government has a non-
exclusive, non-transferrable, nonsublicensable, worldwide, limited irrevocable license to use the Data only in
connection with and in support of the U.S. Government contract under which the Data was delivered. Except
as provided herein, the Data may not be used, disclosed, reproduced, modified, performed, or displayed
without the prior written approval of NetApp, Inc. United States Government license rights for the Department
of Defense are limited to those rights identified in DFARS clause 252.227-7015(b) (FEB 2014).

Trademark information

NETAPP, the NETAPP logo, and the marks listed at http://www.netapp.com/TM are trademarks of NetApp, Inc.
Other company and product names may be trademarks of their respective owners.

14

http://www.netapp.com/TM

	Optimal Cluster and GPU Utilization with Run AI : NetApp Solutions
	Table of Contents
	Optimal Cluster and GPU Utilization with Run:AI
	Run:AI Installation
	Run:AI Dashboards and Views
	Creating Projects for Data Science Teams and Allocating GPUs
	Submitting Jobs in Run:AI CLI
	Achieving High Cluster Utilization
	Fractional GPU Allocation for Less Demanding or Interactive Workloads
	Achieving High Cluster Utilization with Over-Quota GPU Allocation
	Basic Resource Allocation Fairness
	Over-Quota Fairness
	Saving Data to a Trident-Provisioned PersistentVolume

