
Red Hat Enterprise Linux 8

Managing IdM users, groups, hosts, and access
control rules

Configuring users and hosts, managing them in groups, and controlling access with
host-based and role-based access control rules

Last Updated: 2024-08-29

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access
control rules

Configuring users and hosts, managing them in groups, and controlling access with host-based and
role-based access control rules

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

The main feature of Red Hat Identity Management (IdM) is the management of users, groups,
hosts, and access control rules, such as host-based access control (HBAC) and role-based access
control (RBAC). You can configure them by using the command line, the IdM Web UI, and Ansible
Playbooks. The management tasks include configuring Kerberos policies and security, automating
group memberships, and delegating permissions.

. .

. .

. .

. .

. .

. .

Table of Contents

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

CHAPTER 1. INTRODUCTION TO THE IDM COMMAND-LINE UTILITIES
1.1. WHAT IS THE IPA COMMAND LINE INTERFACE
1.2. WHAT IS THE IPA HELP
1.3. USING IPA HELP TOPICS
1.4. USING IPA HELP COMMANDS
1.5. STRUCTURE OF IPA COMMANDS
1.6. USING AN IPA COMMAND TO ADD A USER ACCOUNT TO IDM
1.7. USING AN IPA COMMAND TO MODIFY A USER ACCOUNT IN IDM
1.8. HOW TO SUPPLY A LIST OF VALUES TO THE IDM UTILITIES
1.9. HOW TO USE SPECIAL CHARACTERS WITH THE IDM UTILITIES

CHAPTER 2. MANAGING USER ACCOUNTS USING THE COMMAND LINE
2.1. USER LIFE CYCLE
2.2. ADDING USERS USING THE COMMAND LINE
2.3. ACTIVATING USERS USING THE COMMAND LINE
2.4. PRESERVING USERS USING THE COMMAND LINE
2.5. DELETING USERS USING THE COMMAND LINE
2.6. RESTORING USERS USING THE COMMAND LINE

CHAPTER 3. MANAGING USER ACCOUNTS USING THE IDM WEB UI
3.1. USER LIFE CYCLE
3.2. ADDING USERS IN THE WEB UI
3.3. ACTIVATING STAGE USERS IN THE IDM WEB UI
3.4. DISABLING USER ACCOUNTS IN THE WEB UI
3.5. ENABLING USER ACCOUNTS IN THE WEB UI
3.6. PRESERVING ACTIVE USERS IN THE IDM WEB UI
3.7. RESTORING USERS IN THE IDM WEB UI
3.8. DELETING USERS IN THE IDM WEB UI

CHAPTER 4. MANAGING USER ACCOUNTS USING ANSIBLE PLAYBOOKS
4.1. USER LIFE CYCLE
4.2. ENSURING THE PRESENCE OF AN IDM USER USING AN ANSIBLE PLAYBOOK
4.3. ENSURING THE PRESENCE OF MULTIPLE IDM USERS USING ANSIBLE PLAYBOOKS
4.4. ENSURING THE PRESENCE OF MULTIPLE IDM USERS FROM A JSON FILE USING ANSIBLE
PLAYBOOKS
4.5. ENSURING THE ABSENCE OF USERS USING ANSIBLE PLAYBOOKS
4.6. ADDITIONAL RESOURCES

CHAPTER 5. MANAGING USER PASSWORDS IN IDM
5.1. WHO CAN CHANGE IDM USER PASSWORDS AND HOW
5.2. CHANGING YOUR USER PASSWORD IN THE IDM WEB UI
5.3. RESETTING ANOTHER USER’S PASSWORD IN THE IDM WEB UI
5.4. RESETTING THE DIRECTORY MANAGER USER PASSWORD
5.5. CHANGING YOUR USER PASSWORD OR RESETTING ANOTHER USER’S PASSWORD IN IDM CLI
5.6. ENABLING PASSWORD RESET IN IDM WITHOUT PROMPTING THE USER FOR A PASSWORD CHANGE
AT THE NEXT LOGIN
5.7. CHECKING IF AN IDM USER’S ACCOUNT IS LOCKED
5.8. UNLOCKING USER ACCOUNTS AFTER PASSWORD FAILURES IN IDM
5.9. ENABLING THE TRACKING OF LAST SUCCESSFUL KERBEROS AUTHENTICATION FOR USERS IN IDM

12

13
13
13
14
14
15
16
17
18
19

20
20
21
23
24
24
25

26
26
27
29
30
32
32
33
34

36
36
37
39

41
43
44

45
45
45
46
46
47

48
49
50

51

Table of Contents

1

. .

. .

. .

. .

. .

. .

. .

CHAPTER 6. DEFINING IDM PASSWORD POLICIES
6.1. WHAT IS A PASSWORD POLICY
6.2. PASSWORD POLICIES IN IDM
6.3. ENSURING THE PRESENCE OF A PASSWORD POLICY IN IDM USING AN ANSIBLE PLAYBOOK
6.4. ADDITIONAL PASSWORD POLICY OPTIONS IN IDM
6.5. APPLYING ADDITIONAL PASSWORD POLICY OPTIONS TO AN IDM GROUP
6.6. USING AN ANSIBLE PLAYBOOK TO APPLY ADDITIONAL PASSWORD POLICY OPTIONS TO AN IDM
GROUP

CHAPTER 7. MANAGING EXPIRING PASSWORD NOTIFICATIONS
7.1. WHAT IS THE EXPIRING PASSWORD NOTIFICATION TOOL
7.2. INSTALLING THE EXPIRING PASSWORD NOTIFICATION TOOL
7.3. RUNNING THE EPN TOOL TO SEND EMAILS TO USERS WHOSE PASSWORDS ARE EXPIRING
7.4. ENABLING THE IPA-EPN.TIMER TO SEND AN EMAIL TO ALL USERS WHOSE PASSWORDS ARE
EXPIRING
7.5. MODIFYING THE EXPIRING PASSWORD NOTIFICATION EMAIL TEMPLATE

CHAPTER 8. GRANTING SUDO ACCESS TO AN IDM USER ON AN IDM CLIENT
8.1. SUDO ACCESS ON AN IDM CLIENT
8.2. GRANTING SUDO ACCESS TO AN IDM USER ON AN IDM CLIENT USING THE CLI
8.3. GRANTING SUDO ACCESS TO AN AD USER ON AN IDM CLIENT USING THE CLI
8.4. GRANTING SUDO ACCESS TO AN IDM USER ON AN IDM CLIENT USING THE IDM WEB UI
8.5. CREATING A SUDO RULE ON THE CLI THAT RUNS A COMMAND AS A SERVICE ACCOUNT ON AN IDM
CLIENT
8.6. CREATING A SUDO RULE IN THE IDM WEBUI THAT RUNS A COMMAND AS A SERVICE ACCOUNT ON AN
IDM CLIENT
8.7. ENABLING GSSAPI AUTHENTICATION FOR SUDO ON AN IDM CLIENT
8.8. ENABLING GSSAPI AUTHENTICATION AND ENFORCING KERBEROS AUTHENTICATION INDICATORS
FOR SUDO ON AN IDM CLIENT
8.9. SSSD OPTIONS CONTROLLING GSSAPI AUTHENTICATION FOR PAM SERVICES
8.10. TROUBLESHOOTING GSSAPI AUTHENTICATION FOR SUDO
8.11. USING AN ANSIBLE PLAYBOOK TO ENSURE SUDO ACCESS FOR AN IDM USER ON AN IDM CLIENT

CHAPTER 9. USING LDAPMODIFY TO MANAGE IDM USERS EXTERNALLY
9.1. TEMPLATES FOR MANAGING IDM USER ACCOUNTS EXTERNALLY
9.2. TEMPLATES FOR MANAGING IDM GROUP ACCOUNTS EXTERNALLY
9.3. USING LDAPMODIFY COMMAND INTERACTIVELY
9.4. PRESERVING AN IDM USER WITH LDAPMODIFY

CHAPTER 10. SEARCHING IDM ENTRIES USING THE LDAPSEARCH COMMAND
10.1. USING THE LDAPSEARCH COMMAND
10.2. USING THE LDAPSEARCH FILTERS

CHAPTER 11. CONFIGURING IDM FOR EXTERNAL PROVISIONING OF USERS
11.1. PREPARING IDM ACCOUNTS FOR AUTOMATIC ACTIVATION OF STAGE USER ACCOUNTS
11.2. CONFIGURING AUTOMATIC ACTIVATION OF IDM STAGE USER ACCOUNTS
11.3. ADDING AN IDM STAGE USER DEFINED IN AN LDIF FILE
11.4. ADDING AN IDM STAGE USER DIRECTLY FROM THE CLI USING LDAPMODIFY
11.5. ADDITIONAL RESOURCES

CHAPTER 12. MANAGING KERBEROS PRINCIPAL ALIASES FOR USERS, HOSTS, AND SERVICES
12.1. ADDING A KERBEROS PRINCIPAL ALIAS
12.2. REMOVING A KERBEROS PRINCIPAL ALIAS
12.3. ADDING A KERBEROS ENTERPRISE PRINCIPAL ALIAS
12.4. REMOVING A KERBEROS ENTERPRISE PRINCIPAL ALIAS

52
52
52
54
55
56

59

62
62
62
63

65
65

67
67
67
70
74

76

79
84

86
89
90
92

95
95
97
98
99

101
101
102

104
104
106
108
109

111

112
112
112
113
114

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

2

. .

. .

. .

. .

. .

. .

. .

. .

CHAPTER 13. STRENGTHENING KERBEROS SECURITY WITH PAC INFORMATION
13.1. PRIVILEGE ATTRIBUTE CERTIFICATE (PAC) USE IN IDM
13.2. ENABLING SECURITY IDENTIFIERS (SIDS) IN IDM

CHAPTER 14. MANAGING KERBEROS TICKET POLICIES
14.1. THE ROLE OF THE IDM KDC
14.2. IDM KERBEROS TICKET POLICY TYPES
14.3. KERBEROS AUTHENTICATION INDICATORS
14.4. ENFORCING AUTHENTICATION INDICATORS FOR AN IDM SERVICE

14.4.1. Creating an IdM service entry and its Kerberos keytab
14.4.2. Associating authentication indicators with an IdM service using IdM CLI
14.4.3. Associating authentication indicators with an IdM service using IdM Web UI
14.4.4. Retrieving a Kerberos service ticket for an IdM service
14.4.5. Additional resources

14.5. CONFIGURING THE GLOBAL TICKET LIFECYCLE POLICY
14.6. CONFIGURING GLOBAL TICKET POLICIES PER AUTHENTICATION INDICATOR
14.7. CONFIGURING THE DEFAULT TICKET POLICY FOR A USER
14.8. CONFIGURING INDIVIDUAL AUTHENTICATION INDICATOR TICKET POLICIES FOR A USER
14.9. AUTHENTICATION INDICATOR OPTIONS FOR THE KRBTPOLICY-MOD COMMAND

CHAPTER 15. KERBEROS PKINIT AUTHENTICATION IN IDM
15.1. DEFAULT PKINIT CONFIGURATION
15.2. DISPLAYING THE CURRENT PKINIT CONFIGURATION
15.3. CONFIGURING PKINIT IN IDM
15.4. ADDITIONAL RESOURCES

CHAPTER 16. MAINTAINING IDM KERBEROS KEYTAB FILES
16.1. HOW IDENTITY MANAGEMENT USES KERBEROS KEYTAB FILES
16.2. VERIFYING THAT KERBEROS KEYTAB FILES ARE IN SYNC WITH THE IDM DATABASE
16.3. LIST OF IDM KERBEROS KEYTAB FILES AND THEIR CONTENTS
16.4. VIEWING THE ENCRYPTION TYPE OF YOUR IDM MASTER KEY

CHAPTER 17. USING THE KDC PROXY IN IDM
17.1. CONFIGURING AN IDM CLIENT TO USE KKDCP
17.2. VERIFYING THAT KKDCP IS ENABLED ON AN IDM SERVER
17.3. DISABLING KKDCP ON AN IDM SERVER
17.4. RE-ENABLING KKDCP ON AN IDM SERVER
17.5. CONFIGURING THE KKDCP SERVER I
17.6. CONFIGURING THE KKDCP SERVER II

CHAPTER 18. MANAGING SELF-SERVICE RULES IN IDM USING THE CLI
18.1. SELF-SERVICE ACCESS CONTROL IN IDM
18.2. CREATING SELF-SERVICE RULES USING THE CLI
18.3. EDITING SELF-SERVICE RULES USING THE CLI
18.4. DELETING SELF-SERVICE RULES USING THE CLI

CHAPTER 19. MANAGING SELF-SERVICE RULES USING THE IDM WEB UI
19.1. SELF-SERVICE ACCESS CONTROL IN IDM
19.2. CREATING SELF-SERVICE RULES USING THE IDM WEB UI
19.3. EDITING SELF-SERVICE RULES USING THE IDM WEB UI
19.4. DELETING SELF-SERVICE RULES USING THE IDM WEB UI

CHAPTER 20. USING ANSIBLE PLAYBOOKS TO MANAGE SELF-SERVICE RULES IN IDM
20.1. SELF-SERVICE ACCESS CONTROL IN IDM
20.2. USING ANSIBLE TO ENSURE THAT A SELF-SERVICE RULE IS PRESENT

115
115
115

117
117
118
119

120
121
122
124
125
126
126
127
127
128
129

130
130
130
131
132

133
133
134
135
136

138
138
138
139
139
140
141

142
142
142
143
143

145
145
145
147
148

149
149
149

Table of Contents

3

. .

. .

. .

. .

20.3. USING ANSIBLE TO ENSURE THAT A SELF-SERVICE RULE IS ABSENT
20.4. USING ANSIBLE TO ENSURE THAT A SELF-SERVICE RULE HAS SPECIFIC ATTRIBUTES
20.5. USING ANSIBLE TO ENSURE THAT A SELF-SERVICE RULE DOES NOT HAVE SPECIFIC ATTRIBUTES

CHAPTER 21. MANAGING USER GROUPS IN IDM CLI
21.1. THE DIFFERENT GROUP TYPES IN IDM
21.2. DIRECT AND INDIRECT GROUP MEMBERS
21.3. ADDING A USER GROUP USING IDM CLI
21.4. SEARCHING FOR USER GROUPS USING IDM CLI
21.5. DELETING A USER GROUP USING IDM CLI
21.6. ADDING A MEMBER TO A USER GROUP USING IDM CLI
21.7. ADDING USERS WITHOUT A USER PRIVATE GROUP

21.7.1. Users without a user private group
21.7.2. Adding a user without a user private group when private groups are globally enabled
21.7.3. Disabling user private groups globally for all users
21.7.4. Adding a user when user private groups are globally disabled

21.8. ADDING USERS OR GROUPS AS MEMBER MANAGERS TO AN IDM USER GROUP USING THE IDM CLI

21.9. VIEWING GROUP MEMBERS USING IDM CLI
21.10. REMOVING A MEMBER FROM A USER GROUP USING IDM CLI
21.11. REMOVING USERS OR GROUPS AS MEMBER MANAGERS FROM AN IDM USER GROUP USING THE IDM
CLI
21.12. ENABLING GROUP MERGING FOR LOCAL AND REMOTE GROUPS IN IDM
21.13. USING ANSIBLE TO GIVE A USER ID OVERRIDE ACCESS TO THE LOCAL SOUND CARD ON AN IDM
CLIENT

CHAPTER 22. MANAGING USER GROUPS IN IDM WEB UI
22.1. THE DIFFERENT GROUP TYPES IN IDM
22.2. DIRECT AND INDIRECT GROUP MEMBERS
22.3. ADDING A USER GROUP USING IDM WEB UI
22.4. DELETING A USER GROUP USING IDM WEB UI
22.5. ADDING A MEMBER TO A USER GROUP USING IDM WEB UI
22.6. ADDING USERS OR GROUPS AS MEMBER MANAGERS TO AN IDM USER GROUP USING THE WEB UI

22.7. VIEWING GROUP MEMBERS USING IDM WEB UI
22.8. REMOVING A MEMBER FROM A USER GROUP USING IDM WEB UI
22.9. REMOVING USERS OR GROUPS AS MEMBER MANAGERS FROM AN IDM USER GROUP USING THE
WEB UI

CHAPTER 23. MANAGING USER GROUPS USING ANSIBLE PLAYBOOKS
23.1. THE DIFFERENT GROUP TYPES IN IDM
23.2. DIRECT AND INDIRECT GROUP MEMBERS
23.3. ENSURING THE PRESENCE OF IDM GROUPS AND GROUP MEMBERS USING ANSIBLE PLAYBOOKS

23.4. USING ANSIBLE TO ADD MULTIPLE IDM GROUPS IN A SINGLE TASK
23.5. USING ANSIBLE TO ENABLE AD USERS TO ADMINISTER IDM
23.6. ENSURING THE PRESENCE OF MEMBER MANAGERS IN IDM USER GROUPS USING ANSIBLE
PLAYBOOKS
23.7. ENSURING THE ABSENCE OF MEMBER MANAGERS IN IDM USER GROUPS USING ANSIBLE
PLAYBOOKS

CHAPTER 24. AUTOMATING GROUP MEMBERSHIP USING IDM CLI
24.1. BENEFITS OF AUTOMATIC GROUP MEMBERSHIP
24.2. AUTOMEMBER RULES

151
152

154

156
156
157
157
158
158
159
160
160
160
161
161

162
163
163

164
165

167

170
170
171
171
172
173

174
176
176

177

179
179
180

181
183
184

185

187

189
189
189

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

4

. .

. .

. .

. .

. .

24.3. ADDING AN AUTOMEMBER RULE USING IDM CLI
24.4. ADDING A CONDITION TO AN AUTOMEMBER RULE USING IDM CLI
24.5. VIEWING EXISTING AUTOMEMBER RULES USING IDM CLI
24.6. DELETING AN AUTOMEMBER RULE USING IDM CLI
24.7. REMOVING A CONDITION FROM AN AUTOMEMBER RULE USING IDM CLI
24.8. APPLYING AUTOMEMBER RULES TO EXISTING ENTRIES USING IDM CLI
24.9. CONFIGURING A DEFAULT AUTOMEMBER GROUP USING IDM CLI

CHAPTER 25. AUTOMATING GROUP MEMBERSHIP USING IDM WEB UI
25.1. BENEFITS OF AUTOMATIC GROUP MEMBERSHIP
25.2. AUTOMEMBER RULES
25.3. ADDING AN AUTOMEMBER RULE USING IDM WEB UI
25.4. ADDING A CONDITION TO AN AUTOMEMBER RULE USING IDM WEB UI
25.5. VIEWING EXISTING AUTOMEMBER RULES AND CONDITIONS USING IDM WEB UI
25.6. DELETING AN AUTOMEMBER RULE USING IDM WEB UI
25.7. REMOVING A CONDITION FROM AN AUTOMEMBER RULE USING IDM WEB UI
25.8. APPLYING AUTOMEMBER RULES TO EXISTING ENTRIES USING IDM WEB UI

25.8.1. Rebuilding automatic membership for all users or hosts
25.8.2. Rebuilding automatic membership for a single user or host only

25.9. CONFIGURING A DEFAULT USER GROUP USING IDM WEB UI
25.10. CONFIGURING A DEFAULT HOST GROUP USING IDM WEB UI

CHAPTER 26. USING ANSIBLE TO AUTOMATE GROUP MEMBERSHIP IN IDM
26.1. PREPARING YOUR ANSIBLE CONTROL NODE FOR MANAGING IDM
26.2. USING ANSIBLE TO ENSURE THAT AN AUTOMEMBER RULE FOR AN IDM USER GROUP IS PRESENT

26.3. USING ANSIBLE TO ENSURE THAT A SPECIFIED CONDITION IS PRESENT IN AN IDM USER GROUP
AUTOMEMBER RULE
26.4. USING ANSIBLE TO ENSURE THAT A CONDITION IS ABSENT FROM AN IDM USER GROUP
AUTOMEMBER RULE
26.5. USING ANSIBLE TO ENSURE THAT AN AUTOMEMBER RULE FOR AN IDM USER GROUP IS ABSENT

26.6. USING ANSIBLE TO ENSURE THAT A CONDITION IS PRESENT IN AN IDM HOST GROUP AUTOMEMBER
RULE
26.7. ADDITIONAL RESOURCES

CHAPTER 27. DELEGATING PERMISSIONS TO USER GROUPS TO MANAGE USERS USING IDM CLI
27.1. DELEGATION RULES
27.2. CREATING A DELEGATION RULE USING IDM CLI
27.3. VIEWING EXISTING DELEGATION RULES USING IDM CLI
27.4. MODIFYING A DELEGATION RULE USING IDM CLI
27.5. DELETING A DELEGATION RULE USING IDM CLI

CHAPTER 28. DELEGATING PERMISSIONS TO USER GROUPS TO MANAGE USERS USING IDM WEBUI
28.1. DELEGATION RULES
28.2. CREATING A DELEGATION RULE USING IDM WEBUI
28.3. VIEWING EXISTING DELEGATION RULES USING IDM WEBUI
28.4. MODIFYING A DELEGATION RULE USING IDM WEBUI
28.5. DELETING A DELEGATION RULE USING IDM WEBUI

CHAPTER 29. DELEGATING PERMISSIONS TO USER GROUPS TO MANAGE USERS USING ANSIBLE
PLAYBOOKS

29.1. DELEGATION RULES
29.2. CREATING AN ANSIBLE INVENTORY FILE FOR IDM
29.3. USING ANSIBLE TO ENSURE THAT A DELEGATION RULE IS PRESENT

190
191

192
193
193
194
195

197
197
197
198
199

200
201

202
203
203
204
205
205

207
207

209

211

213

215

217
218

219
219
219

220
220
221

222
222
222
224
225
226

228
228
228
229

Table of Contents

5

. .

. .

. .

. .

. .

29.4. USING ANSIBLE TO ENSURE THAT A DELEGATION RULE IS ABSENT
29.5. USING ANSIBLE TO ENSURE THAT A DELEGATION RULE HAS SPECIFIC ATTRIBUTES
29.6. USING ANSIBLE TO ENSURE THAT A DELEGATION RULE DOES NOT HAVE SPECIFIC ATTRIBUTES

CHAPTER 30. MANAGING ROLE-BASED ACCESS CONTROLS IN IDM USING THE CLI
30.1. ROLE-BASED ACCESS CONTROL IN IDM

30.1.1. Permissions in IdM
30.1.2. Default managed permissions
30.1.3. Privileges in IdM
30.1.4. Roles in IdM
30.1.5. Predefined roles in Identity Management

30.2. MANAGING IDM PERMISSIONS IN THE CLI
30.3. COMMAND OPTIONS FOR EXISTING PERMISSIONS
30.4. MANAGING IDM PRIVILEGES IN THE CLI
30.5. COMMAND OPTIONS FOR EXISTING PRIVILEGES
30.6. MANAGING IDM ROLES IN THE CLI
30.7. COMMAND OPTIONS FOR EXISTING ROLES

CHAPTER 31. MANAGING ROLE-BASED ACCESS CONTROLS USING THE IDM WEB UI
31.1. ROLE-BASED ACCESS CONTROL IN IDM

31.1.1. Permissions in IdM
31.1.2. Default managed permissions
31.1.3. Privileges in IdM
31.1.4. Roles in IdM
31.1.5. Predefined roles in Identity Management

31.2. MANAGING PERMISSIONS IN THE IDM WEB UI
31.3. MANAGING PRIVILEGES IN THE IDM WEBUI
31.4. MANAGING ROLES IN THE IDM WEB UI

CHAPTER 32. PREPARING YOUR ENVIRONMENT FOR MANAGING IDM USING ANSIBLE PLAYBOOKS

CHAPTER 33. USING ANSIBLE PLAYBOOKS TO MANAGE ROLE-BASED ACCESS CONTROL IN IDM
33.1. PERMISSIONS IN IDM
33.2. DEFAULT MANAGED PERMISSIONS
33.3. PRIVILEGES IN IDM
33.4. ROLES IN IDM
33.5. PREDEFINED ROLES IN IDENTITY MANAGEMENT
33.6. USING ANSIBLE TO ENSURE AN IDM RBAC ROLE WITH PRIVILEGES IS PRESENT
33.7. USING ANSIBLE TO ENSURE AN IDM RBAC ROLE IS ABSENT
33.8. USING ANSIBLE TO ENSURE THAT A GROUP OF USERS IS ASSIGNED TO AN IDM RBAC ROLE
33.9. USING ANSIBLE TO ENSURE THAT SPECIFIC USERS ARE NOT ASSIGNED TO AN IDM RBAC ROLE

33.10. USING ANSIBLE TO ENSURE A SERVICE IS A MEMBER OF AN IDM RBAC ROLE
33.11. USING ANSIBLE TO ENSURE A HOST IS A MEMBER OF AN IDM RBAC ROLE
33.12. USING ANSIBLE TO ENSURE A HOST GROUP IS A MEMBER OF AN IDM RBAC ROLE

CHAPTER 34. USING ANSIBLE PLAYBOOKS TO MANAGE RBAC PRIVILEGES
34.1. USING ANSIBLE TO ENSURE A CUSTOM IDM RBAC PRIVILEGE IS PRESENT
34.2. USING ANSIBLE TO ENSURE MEMBER PERMISSIONS ARE PRESENT IN A CUSTOM IDM RBAC
PRIVILEGE
34.3. USING ANSIBLE TO ENSURE AN IDM RBAC PRIVILEGE DOES NOT INCLUDE A PERMISSION
34.4. USING ANSIBLE TO RENAME A CUSTOM IDM RBAC PRIVILEGE
34.5. USING ANSIBLE TO ENSURE AN IDM RBAC PRIVILEGE IS ABSENT
34.6. ADDITIONAL RESOURCES

231
232

234

237
237
237
238
239
240
240
241

243
243
244
244
245

247
247
247
248
249
250
250
251

256
259

264

266
266
267
269
269
269
270
272
274

275
277
278
280

282
282

283
285
287
289
290

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

6

. .

. .

. .

. .

. .

CHAPTER 35. USING ANSIBLE PLAYBOOKS TO MANAGE RBAC PERMISSIONS IN IDM
35.1. USING ANSIBLE TO ENSURE AN RBAC PERMISSION IS PRESENT
35.2. USING ANSIBLE TO ENSURE AN RBAC PERMISSION WITH AN ATTRIBUTE IS PRESENT
35.3. USING ANSIBLE TO ENSURE AN RBAC PERMISSION IS ABSENT
35.4. USING ANSIBLE TO ENSURE AN ATTRIBUTE IS A MEMBER OF AN IDM RBAC PERMISSION
35.5. USING ANSIBLE TO ENSURE AN ATTRIBUTE IS NOT A MEMBER OF AN IDM RBAC PERMISSION
35.6. USING ANSIBLE TO RENAME AN IDM RBAC PERMISSION
35.7. ADDITIONAL RESOURCES

CHAPTER 36. USING AN ID VIEW TO OVERRIDE A USER ATTRIBUTE VALUE ON AN IDM CLIENT
36.1. ID VIEWS
36.2. POTENTIAL NEGATIVE IMPACT OF ID VIEWS ON SSSD PERFORMANCE
36.3. ATTRIBUTES AN ID VIEW CAN OVERRIDE
36.4. GETTING HELP FOR ID VIEW COMMANDS
36.5. USING AN ID VIEW TO OVERRIDE THE LOGIN NAME OF AN IDM USER ON A SPECIFIC HOST
36.6. MODIFYING AN IDM ID VIEW
36.7. ADDING AN ID VIEW TO OVERRIDE AN IDM USER HOME DIRECTORY ON AN IDM CLIENT
36.8. APPLYING AN ID VIEW TO AN IDM HOST GROUP
36.9. USING ANSIBLE TO OVERRIDE THE LOGIN NAME AND HOME DIRECTORY OF AN IDM USER ON A
SPECIFIC HOST
36.10. USING ANSIBLE TO CONFIGURE AN ID VIEW THAT ENABLES AN SSH KEY LOGIN ON AN IDM CLIENT

36.11. USING ANSIBLE TO GIVE A USER ID OVERRIDE ACCESS TO THE LOCAL SOUND CARD ON AN IDM
CLIENT
36.12. USING ANSIBLE TO ENSURE AN IDM USER IS PRESENT IN AN ID VIEW WITH A SPECIFIC UID
36.13. USING ANSIBLE TO ENSURE AN IDM USER CAN LOG IN TO AN IDM CLIENT WITH TWO CERTIFICATES

36.14. USING ANSIBLE TO GIVE AN IDM GROUP ACCESS TO THE SOUND CARD ON AN IDM CLIENT
36.15. MIGRATING NIS DOMAINS TO IDENTITY MANAGEMENT

CHAPTER 37. USING ID VIEWS FOR ACTIVE DIRECTORY USERS
37.1. HOW THE DEFAULT TRUST VIEW WORKS
37.2. DEFINING GLOBAL ATTRIBUTES FOR AN AD USER BY MODIFYING THE DEFAULT TRUST VIEW
37.3. OVERRIDING DEFAULT TRUST VIEW ATTRIBUTES FOR AN AD USER ON AN IDM CLIENT WITH AN ID
VIEW
37.4. APPLYING AN ID VIEW TO AN IDM HOST GROUP

CHAPTER 38. ADJUSTING ID RANGES MANUALLY
38.1. ID RANGES
38.2. AUTOMATIC ID RANGES ASSIGNMENT
38.3. ASSIGNING THE IDM ID RANGE MANUALLY DURING SERVER INSTALLATION
38.4. ADDING A NEW IDM ID RANGE
38.5. THE ROLE OF SECURITY AND RELATIVE IDENTIFIERS IN IDM ID RANGES
38.6. USING ANSIBLE TO ADD A NEW LOCAL IDM ID RANGE
38.7. REMOVING AN ID RANGE AFTER REMOVING A TRUST TO AD
38.8. DISPLAYING CURRENTLY ASSIGNED DNA ID RANGES
38.9. MANUAL ID RANGE ASSIGNMENT
38.10. ASSIGNING DNA ID RANGES MANUALLY

CHAPTER 39. MANAGING SUBID RANGES MANUALLY
39.1. GENERATING SUBID RANGES USING IDM CLI
39.2. GENERATING SUBID RANGES USING IDM WEBUI INTERFACE
39.3. VIEWING SUBID INFORMATION ABOUT IDM USERS BY USING IDM CLI
39.4. LISTING SUBID RANGES USING THE GETSUBID COMMAND

291
291

293
295
296
298
299
301

302
302
303
303
303
304
306
308
310

312

314

316
318

319
320
322

324
324
325

326
327

330
330
330
331
332
333
335
337
338
338
339

340
340
341
341

342

Table of Contents

7

. .

. .

. .

. .

CHAPTER 40. MANAGING HOSTS IN IDM CLI
40.1. HOSTS IN IDM
40.2. HOST ENROLLMENT
40.3. USER PRIVILEGES REQUIRED FOR HOST ENROLLMENT
40.4. ENROLLMENT AND AUTHENTICATION OF IDM HOSTS AND USERS: COMPARISON
40.5. HOST OPERATIONS
40.6. HOST ENTRY IN IDM LDAP
40.7. ADDING IDM HOST ENTRIES FROM IDM CLI
40.8. DELETING HOST ENTRIES FROM IDM CLI
40.9. RE-ENROLLING AN IDENTITY MANAGEMENT CLIENT

40.9.1. Client re-enrollment in IdM
40.9.2. Re-enrolling a client by using user credentials: Interactive re-enrollment
40.9.3. Re-enrolling a client by using the client keytab: Non-interactive re-enrollment
40.9.4. Testing an Identity Management client after installation

40.10. RENAMING IDENTITY MANAGEMENT CLIENT SYSTEMS
40.10.1. Preparing an IdM client for its renaming
40.10.2. Uninstalling an Identity Management client
40.10.3. Renaming the host system
40.10.4. Re-adding services, re-generating certificates, and re-adding host groups

40.11. DISABLING AND RE-ENABLING HOST ENTRIES
40.11.1. Disabling Hosts
40.11.2. Re-enabling Hosts

40.12. DELEGATING ACCESS TO HOSTS AND SERVICES
40.12.1. Delegating service management
40.12.2. Delegating host management
40.12.3. Accessing delegated services

CHAPTER 41. ADDING HOST ENTRIES FROM IDM WEB UI
41.1. HOSTS IN IDM
41.2. HOST ENROLLMENT
41.3. USER PRIVILEGES REQUIRED FOR HOST ENROLLMENT
41.4. ENROLLMENT AND AUTHENTICATION OF IDM HOSTS AND USERS: COMPARISON
41.5. HOST ENTRY IN IDM LDAP
41.6. ADDING HOST ENTRIES FROM THE WEB UI

CHAPTER 42. MANAGING HOSTS USING ANSIBLE PLAYBOOKS
42.1. ENSURING THE PRESENCE OF AN IDM HOST ENTRY WITH FQDN USING ANSIBLE PLAYBOOKS
42.2. ENSURING THE PRESENCE OF AN IDM HOST ENTRY WITH DNS INFORMATION USING ANSIBLE
PLAYBOOKS
42.3. ENSURING THE PRESENCE OF MULTIPLE IDM HOST ENTRIES WITH RANDOM PASSWORDS USING
ANSIBLE PLAYBOOKS
42.4. ENSURING THE PRESENCE OF AN IDM HOST ENTRY WITH MULTIPLE IP ADDRESSES USING ANSIBLE
PLAYBOOKS
42.5. ENSURING THE ABSENCE OF AN IDM HOST ENTRY USING ANSIBLE PLAYBOOKS
42.6. ADDITIONAL RESOURCES

CHAPTER 43. MANAGING HOST GROUPS USING THE IDM CLI
43.1. HOST GROUPS IN IDM
43.2. VIEWING IDM HOST GROUPS USING THE CLI
43.3. CREATING IDM HOST GROUPS USING THE CLI
43.4. DELETING IDM HOST GROUPS USING THE CLI
43.5. ADDING IDM HOST GROUP MEMBERS USING THE CLI
43.6. REMOVING IDM HOST GROUP MEMBERS USING THE CLI
43.7. ADDING IDM HOST GROUP MEMBER MANAGERS USING THE CLI

344
344
345
345
346
347
349
351
352
352
352
353
353
354
354
354
355
356
356
356
356
357
357
358
359
360

361
361
361

362
362
364
365

368
368

370

372

374
376
377

378
378
378
379
379
380
381
382

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

8

. .

. .

. .

. .

. .

43.8. REMOVING IDM HOST GROUP MEMBER MANAGERS USING THE CLI

CHAPTER 44. MANAGING HOST GROUPS USING THE IDM WEB UI
44.1. HOST GROUPS IN IDM
44.2. VIEWING HOST GROUPS IN THE IDM WEB UI
44.3. CREATING HOST GROUPS IN THE IDM WEB UI
44.4. DELETING HOST GROUPS IN THE IDM WEB UI
44.5. ADDING HOST GROUP MEMBERS IN THE IDM WEB UI
44.6. REMOVING HOST GROUP MEMBERS IN THE IDM WEB UI
44.7. ADDING IDM HOST GROUP MEMBER MANAGERS USING THE WEB UI
44.8. REMOVING IDM HOST GROUP MEMBER MANAGERS USING THE WEB UI

CHAPTER 45. MANAGING HOST GROUPS USING ANSIBLE PLAYBOOKS
45.1. HOST GROUPS IN IDM
45.2. ENSURING THE PRESENCE OF IDM HOST GROUPS USING ANSIBLE PLAYBOOKS
45.3. ENSURING THE PRESENCE OF HOSTS IN IDM HOST GROUPS USING ANSIBLE PLAYBOOKS
45.4. NESTING IDM HOST GROUPS USING ANSIBLE PLAYBOOKS
45.5. ENSURING THE PRESENCE OF MEMBER MANAGERS IN IDM HOST GROUPS USING ANSIBLE
PLAYBOOKS
45.6. ENSURING THE ABSENCE OF HOSTS FROM IDM HOST GROUPS USING ANSIBLE PLAYBOOKS
45.7. ENSURING THE ABSENCE OF NESTED HOST GROUPS FROM IDM HOST GROUPS USING ANSIBLE
PLAYBOOKS
45.8. ENSURING THE ABSENCE OF IDM HOST GROUPS USING ANSIBLE PLAYBOOKS
45.9. ENSURING THE ABSENCE OF MEMBER MANAGERS FROM IDM HOST GROUPS USING ANSIBLE
PLAYBOOKS

CHAPTER 46. CONFIGURING HOST-BASED ACCESS CONTROL RULES
46.1. CONFIGURING HBAC RULES IN AN IDM DOMAIN USING THE WEBUI

46.1.1. Creating HBAC rules in the IdM WebUI
46.1.2. Testing HBAC rules in the IdM WebUI
46.1.3. Disabling HBAC rules in the IdM WebUI

46.2. CONFIGURING HBAC RULES IN AN IDM DOMAIN USING THE CLI
46.2.1. Creating HBAC rules in the IdM CLI
46.2.2. Testing HBAC rules in the IdM CLI
46.2.3. Disabling HBAC rules in the IdM CLI

46.3. ADDING HBAC SERVICE ENTRIES FOR CUSTOM HBAC SERVICES
46.3.1. Adding HBAC service entries for custom HBAC services in the IdM WebUI
46.3.2. Adding HBAC service entries for custom HBAC services in the IdM CLI

46.4. ADDING HBAC SERVICE GROUPS
46.4.1. Adding HBAC service groups in the IdM WebUI
46.4.2. Adding HBAC service groups in the IdM CLI

CHAPTER 47. ENSURING THE PRESENCE OF HOST-BASED ACCESS CONTROL RULES IN IDM USING
ANSIBLE PLAYBOOKS

47.1. HOST-BASED ACCESS CONTROL RULES IN IDM
47.2. ENSURING THE PRESENCE OF AN HBAC RULE IN IDM USING AN ANSIBLE PLAYBOOK

CHAPTER 48. MANAGING PUBLIC SSH KEYS FOR USERS AND HOSTS
48.1. ABOUT THE SSH KEY FORMAT
48.2. ABOUT IDM AND OPENSSH
48.3. GENERATING SSH KEYS
48.4. MANAGING PUBLIC SSH KEYS FOR HOSTS

48.4.1. Uploading SSH keys for a host using the IdM Web UI
48.4.2. Uploading SSH keys for a host using the IdM CLI
48.4.3. Deleting SSH keys for a host using the IdM Web UI

383

385
385
385
386
387
387
388
389
390

393
393
393
395
397

398
400

402
403

405

408
408
408
409
410
410
411

413
414
414
414
415
415
415
415

417
417
417

420
420
420
421
422
422
423
424

Table of Contents

9

. .

. .

. .

. .

48.4.4. Deleting SSH keys for a host using the IdM CLI
48.5. MANAGING PUBLIC SSH KEYS FOR USERS

48.5.1. Uploading SSH keys for a user using the IdM Web UI
48.5.2. Uploading SSH keys for a user using the IdM CLI
48.5.3. Deleting SSH keys for a user using the IdM Web UI
48.5.4. Deleting SSH keys for a user using the IdM CLI

CHAPTER 49. CONFIGURING THE DOMAIN RESOLUTION ORDER TO RESOLVE SHORT AD USER NAMES

49.1. HOW DOMAIN RESOLUTION ORDER WORKS
49.2. SETTING THE GLOBAL DOMAIN RESOLUTION ORDER ON AN IDM SERVER
49.3. SETTING THE DOMAIN RESOLUTION ORDER FOR AN ID VIEW ON AN IDM SERVER
49.4. USING ANSIBLE TO CREATE AN ID VIEW WITH A DOMAIN RESOLUTION ORDER
49.5. SETTING THE DOMAIN RESOLUTION ORDER IN SSSD ON AN IDM CLIENT
49.6. ADDITIONAL RESOURCES

CHAPTER 50. ENABLING AUTHENTICATION USING AD USER PRINCIPAL NAMES IN IDM
50.1. USER PRINCIPAL NAMES IN AN AD FOREST TRUSTED BY IDM
50.2. ENSURING THAT AD UPNS ARE UP-TO-DATE IN IDM
50.3. GATHERING TROUBLESHOOTING DATA FOR AD UPN AUTHENTICATION ISSUES

CHAPTER 51. ENABLING AD USERS TO ADMINISTER IDM
51.1. ID OVERRIDES FOR AD USERS
51.2. USING ID OVERRIDES TO ENABLE AD USERS TO ADMINISTER IDM
51.3. USING ANSIBLE TO ENABLE AD USERS TO ADMINISTER IDM
51.4. VERIFYING THAT AN AD USER CAN PERFORM CORRECT COMMANDS IN THE IDM CLI
51.5. USING ANSIBLE TO ENABLE AN AD USER TO ADMINISTER IDM

CHAPTER 52. USING EXTERNAL IDENTITY PROVIDERS TO AUTHENTICATE TO IDM
52.1. THE BENEFITS OF CONNECTING IDM TO AN EXTERNAL IDP
52.2. HOW IDM INCORPORATES LOGINS VIA EXTERNAL IDPS
52.3. CREATING A REFERENCE TO AN EXTERNAL IDENTITY PROVIDER
52.4. EXAMPLE REFERENCES TO DIFFERENT EXTERNAL IDPS IN IDM
52.5. OPTIONS FOR THE IPA IDP-* COMMANDS TO MANAGE EXTERNAL IDENTITY PROVIDERS IN IDM

52.6. MANAGING REFERENCES TO EXTERNAL IDPS
52.7. ENABLING AN IDM USER TO AUTHENTICATE VIA AN EXTERNAL IDP
52.8. RETRIEVING AN IDM TICKET-GRANTING TICKET AS AN EXTERNAL IDP USER
52.9. LOGGING IN TO AN IDM CLIENT VIA SSH AS AN EXTERNAL IDP USER
52.10. THE --PROVIDER OPTION IN THE IPA IDP-* COMMANDS

424
425
425
426
427
427

429
429
430
430
432
433
434

435
435
435
436

438
438
438
439
441
441

444
444
444
445
446

447
448
449
450
452
452

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

10

Table of Contents

11

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
We appreciate your feedback on our documentation. Let us know how we can improve it.

Submitting feedback through Jira (account required)

1. Log in to the Jira website.

2. Click Create in the top navigation bar.

3. Enter a descriptive title in the Summary field.

4. Enter your suggestion for improvement in the Description field. Include links to the relevant
parts of the documentation.

5. Click Create at the bottom of the dialogue.

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

12

https://issues.redhat.com/projects/RHELDOCS/issues

CHAPTER 1. INTRODUCTION TO THE IDM COMMAND-LINE
UTILITIES

Learn more about the basics of using the Identity Management (IdM) command-line utilities.

Prerequisites

Installed and accessible IdM server.
For details, see Installing Identity Management .

To use the IPA command-line interface, authenticate to IdM with a valid Kerberos ticket.
For details about obtaining a valid Kerberos ticket, see Logging in to Identity Management from
the command line.

1.1. WHAT IS THE IPA COMMAND LINE INTERFACE

The IPA command-line interface (CLI) is the basic command-line interface for Identity Management
(IdM) administration.

It supports a lot of subcommands for managing IdM, such as the ipa user-add command to add a new
user.

IPA CLI allows you to:

Add, manage, or remove users, groups, hosts and other objects in the network.

Manage certificates.

Search entries.

Display and list objects.

Set access rights.

Get help with the correct command syntax.

1.2. WHAT IS THE IPA HELP

The IPA help is a built-in documentation system for the IdM server.

The IPA command-line interface (CLI) generates available help topics from loaded IdM plugin modules.
To use the IPA help utility, you must:

Have an IdM server installed and running.

Be authenticated with a valid Kerberos ticket.

Entering the ipa help command without options displays information about basic help usage and the
most common command examples.

You can use the following options for different ipa help use cases:

$ ipa help [TOPIC | COMMAND | topics | commands]

[] — Brackets mean that all parameters are optional and you can write just ipa help and the

CHAPTER 1. INTRODUCTION TO THE IDM COMMAND-LINE UTILITIES

13

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/installing_identity_management
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/configuring_and_managing_identity_management/index#logging-in-to-ipa-from-the-command-line_configuring-and-managing-idm

[] — Brackets mean that all parameters are optional and you can write just ipa help and the
command will be executed.

| — The pipe character means or. Therefore, you can specify a TOPIC, a COMMAND, or topics,
or commands, with the basic ipa help command:

topics — You can run the command ipa help topics to display a list of topics that are
covered by the IPA help, such as user, cert, server and many others.

TOPIC — The TOPIC with capital letters is a variable. Therefore, you can specify a particular
topic, for example, ipa help user.

commands — You can enter the command ipa help commands to display a list of
commands which are covered by the IPA help, for example, user-add, ca-enable, server-
show and many others.

COMMAND — The COMMAND with capital letters is a variable. Therefore, you can specify a
particular command, for example, ipa help user-add.

1.3. USING IPA HELP TOPICS

The following procedure describes how to use the IPA help in the command-line interface.

Procedure

1. Open a terminal and connect to the IdM server.

2. Enter ipa help topics to display a list of topics covered by help.

$ ipa help topics

3. Select one of the topics and create a command according to the following pattern: ipa help
[topic_name]. Instead of the topic_name string, add one of the topics you listed in the previous
step.
In the example, we use the following topic: user

$ ipa help user

4. If the IPA help output is too long and you cannot see the whole text, use the following syntax:

$ ipa help user | less

You can then scroll down and read the whole help.

The IPA CLI displays a help page for the user topic. After reading the overview, you can see many
examples with patterns for working with topic commands.

1.4. USING IPA HELP COMMANDS

The following procedure describes how to create IPA help commands in the command-line interface.

Procedure

1. Open a terminal and connect to the IdM server.

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

14

2. Enter ipa help commands to display a list of commands covered by help.

$ ipa help commands

3. Select one of the commands and create a help command according to the following pattern: ipa
help <COMMAND>. Instead of the <COMMAND> string, add one of the commands you listed in
the previous step.

$ ipa help user-add

Additional resources

The ipa man page.

1.5. STRUCTURE OF IPA COMMANDS

The IPA CLI distinguishes the following types of commands:

Built-in commands — Built-in commands are all available in the IdM server.

Plug-in provided commands

The structure of IPA commands allows you to manage various types of objects. For example:

Users,

Hosts,

DNS records,

Certificates,

and many others.

For most of these objects, the IPA CLI includes commands to:

Add (add)

Modify (mod)

Delete (del)

Search (find)

Display (show)

Commands have the following structure:

ipa user-add, ipa user-mod, ipa user-del, ipa user-find, ipa user-show

ipa host-add, ipa host-mod, ipa host-del, ipa host-find, ipa host-show

ipa dnsrecord-add, ipa dnsrecord-mod, ipa dnsrecord-del, ipa dnsrecord-find, ipa dnrecord-show

You can create a user with the ipa user-add [options], where [options] are optional. If you use just the
ipa user-add command, the script asks you for details one by one.

CHAPTER 1. INTRODUCTION TO THE IDM COMMAND-LINE UTILITIES

15

To change an existing object, you need to define the object, therefore the command also includes an
object: ipa user-mod USER_NAME [options].

1.6. USING AN IPA COMMAND TO ADD A USER ACCOUNT TO IDM

The following procedure describes how to add a new user to the Identity Management (IdM) database
using the command line.

Prerequisites

You need to have administrator privileges to add user accounts to the IdM server.

Procedure

1. Open a terminal and connect to the IdM server.

2. Enter the command for adding a new user:

$ ipa user-add

The command runs a script that prompts you to provide basic data necessary for creating a user
account.

3. In the First name: field, enter the first name of the new user and press the Enter key.

4. In the Last name: field, enter the last name of the new user and press the Enter key.

5. In the User login [suggested user name]: enter the user name, or just press the Enter key to
accept the suggested user name.
The user name must be unique for the whole IdM database. If an error occurs because that user
name already exists, repeat the process with the ipa user-add command and use a different,
unique user name.

After you add the user name, the user account is added to the IdM database and the IPA command line
interface (CLI) prints the following output:

Added user "euser"

User login: euser
First name: Example
Last name: User
Full name: Example User
Display name: Example User
Initials: EU
Home directory: /home/euser
GECOS: Example User
Login shell: /bin/sh
Principal name: euser@IDM.EXAMPLE.COM
Principal alias: euser@IDM.EXAMPLE.COM
Email address: euser@idm.example.com
UID: 427200006
GID: 427200006

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

16

Password: False
Member of groups: ipausers
Kerberos keys available: False

NOTE

By default, a user password is not set for the user account. To add a password while
creating a user account, use the ipa user-add command with the following syntax:

$ ipa user-add --first=Example --last=User --password

The IPA CLI then prompts you to add or confirm a user name and password.

If the user has been created already, you can add the password with the ipa user-mod
command.

Additional resources

Run the ipa help user-add command for more information about parameters.

1.7. USING AN IPA COMMAND TO MODIFY A USER ACCOUNT IN IDM

You can change many parameters for each user account. For example, you can add a new password to
the user.

Basic command syntax is different from the user-add syntax because you need to define the existing
user account for which you want to perform changes, for example, add a password.

Prerequisites

You need to have administrator privileges to modify user accounts.

Procedure

1. Open a terminal and connect to the IdM server.

2. Enter the ipa user-mod command, specify the user to modify, and any options, such as --
password for adding a password:

$ ipa user-mod euser --password

The command runs a script where you can add the new password.

3. Enter the new password and press the Enter key.

The IPA CLI prints the following output:

Modified user "euser"

User login: euser
First name: Example
Last name: User
Home directory: /home/euser

CHAPTER 1. INTRODUCTION TO THE IDM COMMAND-LINE UTILITIES

17

Principal name: euser@IDM.EXAMPLE.COM
Principal alias: euser@IDM.EXAMPLE.COM
Email address: euser@idm.example.com
UID: 427200006
GID: 427200006
Password: True
Member of groups: ipausers
Kerberos keys available: True

The user password is now set for the account and the user can log into IdM.

Additional resources

Run the ipa help user-mod command for more information about parameters.

1.8. HOW TO SUPPLY A LIST OF VALUES TO THE IDM UTILITIES

Identity Management (IdM) stores values for multi-valued attributes in lists.

IdM supports the following methods of supplying multi-valued lists:

Using the same command-line argument multiple times within the same command invocation:

$ ipa permission-add --right=read --permissions=write --permissions=delete ...

Alternatively, you can enclose the list in curly braces, in which case the shell performs the
expansion:

$ ipa permission-add --right={read,write,delete} ...

The examples above show a command permission-add which adds permissions to an object. The object
is not mentioned in the example. Instead of … you need to add the object for which you want to add
permissions.

When you update such multi-valued attributes from the command line, IdM completely overwrites the
previous list of values with a new list. Therefore, when updating a multi-valued attribute, you must
specify the whole new list, not just a single value you want to add.

For example, in the command above, the list of permissions includes reading, writing and deleting. When
you decide to update the list with the permission-mod command, you must add all values, otherwise
those not mentioned will be deleted.

Example 1: — The ipa permission-mod command updates all previously added permissions.

$ ipa permission-mod --right=read --right=write --right=delete ...

or

$ ipa permission-mod --right={read,write,delete} ...

Example 2 — The ipa permission-mod command deletes the --right=delete argument because it is not
included in the command:

$ ipa permission-mod --right=read --right=write ...

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

18

or

$ ipa permission-mod --right={read,write} ...

1.9. HOW TO USE SPECIAL CHARACTERS WITH THE IDM UTILITIES

When passing command-line arguments that include special characters to the ipa commands, escape
these characters with a backslash (\). For example, common special characters include angle brackets
(< and >), ampersand (&), asterisk (*), or vertical bar (|).

For example, to escape an asterisk (*):

$ ipa certprofile-show certificate_profile --out=exported*profile.cfg

Commands containing unescaped special characters do not work as expected because the shell cannot
properly parse such characters.

CHAPTER 1. INTRODUCTION TO THE IDM COMMAND-LINE UTILITIES

19

CHAPTER 2. MANAGING USER ACCOUNTS USING THE
COMMAND LINE

There are several stages in the user life cycle in IdM (Identity Management), including the following:

Create user accounts

Activate stage user accounts

Preserve user accounts

Delete active, stage, or preserved user accounts

Restore preserved user accounts

2.1. USER LIFE CYCLE

Identity Management (IdM) supports three user account states:

Stage users are not allowed to authenticate. This is an initial state. Some of the user account
properties required for active users cannot be set, for example, group membership.

Active users are allowed to authenticate. All required user account properties must be set in this
state.

Preserved users are former active users that are considered inactive and cannot authenticate
to IdM. Preserved users retain most of the account properties they had as active users, but they
are not part of any user groups.

You can delete user entries permanently from the IdM database.

IMPORTANT

Deleted user accounts cannot be restored. When you delete a user account, all the
information associated with the account is permanently lost.

A new administrator can only be created by a user with administrator rights, such as the default admin

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

20

A new administrator can only be created by a user with administrator rights, such as the default admin
user. If you accidentally delete all administrator accounts, the Directory Manager must create a new
administrator manually in the Directory Server.

WARNING

Do not delete the admin user. As admin is a pre-defined user required by IdM, this
operation causes problems with certain commands. If you want to define and use an
alternative admin user, disable the pre-defined admin user with ipa user-disable
admin after you granted admin permissions to at least one different user.

WARNING

Do not add local users to IdM. The Name Service Switch (NSS) always resolves IdM
users and groups before resolving local users and groups. This means that, for
example, IdM group membership does not work for local users.

2.2. ADDING USERS USING THE COMMAND LINE

You can add users as:

Active — user accounts which can be actively used by their users.

Stage — users cannot use these accounts. Create stage users if you want to prepare new user
accounts. When users are ready to use their accounts, then you can activate them.

The following procedure describes adding active users to the IdM server with the ipa user-add
command.

Similarly, you can create stage user accounts with the ipa stageuser-add command.

CHAPTER 2. MANAGING USER ACCOUNTS USING THE COMMAND LINE

21

WARNING

IdM automatically assigns a unique user ID (UID) to new user accounts. You can
assign a UID manually by using the --uid=INT option with the ipa user-add
command, but the server does not validate whether the UID number is unique.
Consequently, multiple user entries might have the same UID number. A similar
problem can occur with user private group IDs (GIDs) if you assign a GID to a user
account manually by using the --gidnumber=INT option. To check if you have
multiple user entries with the same ID, enter ipa user-find --uid=<uid> or ipa user-
find --gidnumber=<gidnumber>.

Red Hat recommends you do not have multiple entries with the same UIDs or GIDs.
If you have objects with duplicate IDs, security identifiers (SIDs) are not generated
correctly. SIDs are crucial for trusts between IdM and Active Directory and for
Kerberos authentication to work correctly.

Prerequisites

Administrator privileges for managing IdM or User Administrator role.

Obtained a Kerberos ticket. For details, see Using kinit to log in to IdM manually .

Procedure

1. Open terminal and connect to the IdM server.

2. Add user login, user’s first name, last name and optionally, you can also add their email address.

$ ipa user-add user_login --first=first_name --last=last_name --email=email_address

IdM supports user names that can be described by the following regular expression:

[a-zA-Z0-9_.][a-zA-Z0-9_.-]{0,252}[a-zA-Z0-9_.$-]?

NOTE

User names ending with the trailing dollar sign ($) are supported to enable
Samba 3.x machine support.

If you add a user name containing uppercase characters, IdM automatically converts the name
to lowercase when saving it. Therefore, IdM always requires to enter user names in lowercase
when logging in. Additionally, it is not possible to add user names which differ only in letter
casing, such as user and User.

The default maximum length for user names is 32 characters. To change it, use the ipa config-
mod --maxusername command. For example, to increase the maximum user name length to
64 characters:

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

22

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/logging-in-to-ipa-from-the-command-line_configuring-and-managing-idm#using-kinit-to-log-in-to-ipa_logging-in-to-ipa-from-the-command-line

$ ipa config-mod --maxusername=64
 Maximum username length: 64
 ...

The ipa user-add command includes a lot of parameters. To list them all, use the ipa help
command:

$ ipa help user-add

For details about ipa help command, see What is the IPA help.

You can verify if the new user account is successfully created by listing all IdM user accounts:

$ ipa user-find

This command lists all user accounts with details.

Additional resources

Strengthening Kerberos security with PAC information

Are user/group collisions supported in Red Hat Enterprise Linux?

Users without SIDs cannot log in to IdM after an upgrade

2.3. ACTIVATING USERS USING THE COMMAND LINE

To activate a user account by moving it from stage to active, use the ipa stageuser-activate command.

Prerequisites

Administrator privileges for managing IdM or User Administrator role.

Obtained a Kerberos ticket. For details, see Using kinit to log in to IdM manually .

Procedure

1. Open terminal and connect to the IdM server.

2. Activate the user account with the following command:

$ ipa stageuser-activate user_login

Stage user user_login activated

...

You can verify if the new user account is successfully created by listing all IdM user accounts:

$ ipa user-find

This command lists all user accounts with details.

CHAPTER 2. MANAGING USER ACCOUNTS USING THE COMMAND LINE

23

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/introduction-to-the-ipa-command-line-utilities_configuring-and-managing-idm#what-is-the-ipa-help_introduction-to-the-ipa-command-line-utilities
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_idm_users_groups_hosts_and_access_control_rules/assembly_strengthening-kerberos-security-with-pac-information_managing-users-groups-hosts
https://access.redhat.com/solutions/529333
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html-single/9.4_release_notes/index#Jira-RHELPLAN-157939
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/logging-in-to-ipa-from-the-command-line_configuring-and-managing-idm#using-kinit-to-log-in-to-ipa_logging-in-to-ipa-from-the-command-line

2.4. PRESERVING USERS USING THE COMMAND LINE

You can preserve a user account if you want to remove it, but keep the option to restore it later. To
preserve a user account, use the --preserve option with the ipa user-del or ipa stageuser-del
commands.

Prerequisites

Administrator privileges for managing IdM or User Administrator role.

Obtained a Kerberos ticket. For details, see Using kinit to log in to IdM manually .

Procedure

1. Open terminal and connect to the IdM server.

2. Preserve the user account with the following command:

$ ipa user-del --preserve user_login

Deleted user "user_login"

NOTE

Despite the output saying the user account was deleted, it has been preserved.

2.5. DELETING USERS USING THE COMMAND LINE

IdM (Identity Management) enables you to delete users permanently. You can delete:

Active users with the following command: ipa user-del

Stage users with the following command: ipa stageuser-del

Preserved users with the following command: ipa user-del

When deleting multiple users, use the --continue option to force the command to continue regardless
of errors. A summary of the successful and failed operations is printed to the stdout standard output
stream when the command completes.

$ ipa user-del --continue user1 user2 user3

If you do not use --continue, the command proceeds with deleting users until it encounters an error,
after which it stops and exits.

Prerequisites

Administrator privileges for managing IdM or User Administrator role.

Obtained a Kerberos ticket. For details, see Using kinit to log in to IdM manually .

Procedure

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

24

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/logging-in-to-ipa-from-the-command-line_configuring-and-managing-idm#using-kinit-to-log-in-to-ipa_logging-in-to-ipa-from-the-command-line
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/logging-in-to-ipa-from-the-command-line_configuring-and-managing-idm#using-kinit-to-log-in-to-ipa_logging-in-to-ipa-from-the-command-line

1. Open terminal and connect to the IdM server.

2. Delete the user account with the following command:

$ ipa user-del user_login

Deleted user "user_login"

The user account has been permanently deleted from IdM.

2.6. RESTORING USERS USING THE COMMAND LINE

You can restore a preserved users to:

Active users: ipa user-undel

Stage users: ipa user-stage

Restoring a user account does not restore all of the account’s previous attributes. For example, the
user’s password is not restored and must be set again.

Prerequisites

Administrator privileges for managing IdM or User Administrator role.

Obtained a Kerberos ticket. For details, see Using kinit to log in to IdM manually .

Procedure

1. Open terminal and connect to the IdM server.

2. Activate the user account with the following command:

$ ipa user-undel user_login

Undeleted user account "user_login"

Alternatively, you can restore user accounts as staged:

$ ipa user-stage user_login

Staged user account "user_login"

Verification

You can verify if the new user account is successfully created by listing all IdM user accounts:

$ ipa user-find

This command lists all user accounts with details.

CHAPTER 2. MANAGING USER ACCOUNTS USING THE COMMAND LINE

25

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/logging-in-to-ipa-from-the-command-line_configuring-and-managing-idm#using-kinit-to-log-in-to-ipa_logging-in-to-ipa-from-the-command-line

CHAPTER 3. MANAGING USER ACCOUNTS USING THE IDM
WEB UI

Identity Management (IdM) provides several stages that can help you to manage various user life cycle
situations:

Creating a user account

Creating a stage user account before an employee starts their career in your company and be
prepared in advance for the day when the employee appears in the office and want to activate the
account.
You can omit this step and create the active user account directly. The procedure is similar to
creating a stage user account.

Activating a user account

Activating the account the first working day of the employee.

Disabling a user account

If the user go to a parental leave for couple of months, you will need to disable the account
temporarily.

Enabling a user account

When the user returns, you will need to re-enable the account .

Preserving a user account

If the user wants to leave the company, you will need to delete the account with a possibility to
restore it because people can return to the company after some time.

Restoring a user account

Two years later, the user is back and you need to restore the preserved account .

Deleting a user account

If the employee is dismissed, delete the account without a backup.

3.1. USER LIFE CYCLE

Identity Management (IdM) supports three user account states:

Stage users are not allowed to authenticate. This is an initial state. Some of the user account
properties required for active users cannot be set, for example, group membership.

Active users are allowed to authenticate. All required user account properties must be set in this
state.

Preserved users are former active users that are considered inactive and cannot authenticate
to IdM. Preserved users retain most of the account properties they had as active users, but they
are not part of any user groups.

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

26

You can delete user entries permanently from the IdM database.

IMPORTANT

Deleted user accounts cannot be restored. When you delete a user account, all the
information associated with the account is permanently lost.

A new administrator can only be created by a user with administrator rights, such as the default admin
user. If you accidentally delete all administrator accounts, the Directory Manager must create a new
administrator manually in the Directory Server.

WARNING

Do not delete the admin user. As admin is a pre-defined user required by IdM, this
operation causes problems with certain commands. If you want to define and use an
alternative admin user, disable the pre-defined admin user with ipa user-disable
admin after you granted admin permissions to at least one different user.

WARNING

Do not add local users to IdM. The Name Service Switch (NSS) always resolves IdM
users and groups before resolving local users and groups. This means that, for
example, IdM group membership does not work for local users.

3.2. ADDING USERS IN THE WEB UI

Usually, you need to create a new user account before a new employee starts to work. Such a stage
account is not accessible and you need to activate it later.

CHAPTER 3. MANAGING USER ACCOUNTS USING THE IDM WEB UI

27

NOTE

Alternatively, you can create an active user account directly. For adding active user, follow
the procedure below and add the user account in the Active users tab.

Prerequisites

Administrator privileges for managing IdM or User Administrator role.

Procedure

1. Log in to the IdM Web UI.
For details, see Accessing the IdM Web UI in a web browser .

2. Go to Users → Stage Users tab.
Alternatively, you can add the user account in the Users → Active users, however, you cannot
add user groups to the account.

3. Click the + Add icon.

4. In the Add stage user dialog box, enter First name and Last name of the new user.

5. Optional: In the User login field, add a login name.
If you leave it empty, the IdM server creates the login name in the following pattern: The first
letter of the first name and the surname. The whole login name can have up to 32 characters.

6. Optional: In the GID drop down menu, select groups in which the user should be included.

7. Optional: In the Password and Verify password fields, enter your password and confirm it,
ensuring they both match.

8. Click on the Add button.

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

28

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/accessing-the-ipa-web-ui-in-a-web-browser_configuring-and-managing-idm

At this point, you can see the user account in the Stage Users table.

NOTE

If you click on the user name, you can edit advanced settings, such as adding a phone
number, address, or occupation.

WARNING

IdM automatically assigns a unique user ID (UID) to new user accounts. You can
assign a UID manually, or even modify an already existing UID. However, the server
does not validate whether the new UID number is unique. Consequently, multiple
user entries might have the same UID number assigned. A similar problem can occur
with user private group IDs (GIDs) if you assign GIDs to user accounts manually. You
can use the ipa user-find --uid=<uid> or ipa user-find --gidnumber=
<gidnumber> commands on the IdM CLI to check if you have multiple user entries
with the same ID.

Red Hat recommends you do not have multiple entries with the same UIDs or GIDs.
If you have objects with duplicate IDs, security identifiers (SIDs) are not generated
correctly. SIDs are crucial for trusts between IdM and Active Directory and for
Kerberos authentication to work correctly.

Additional resources

Strengthening Kerberos security with PAC information

Are user/group collisions supported in Red Hat Enterprise Linux?

Users without SIDs cannot log in to IdM after an upgrade

3.3. ACTIVATING STAGE USERS IN THE IDM WEB UI

You must follow this procedure to activate a stage user account, before the user can log in to IdM and
before the user can be added to an IdM group.

Prerequisites

CHAPTER 3. MANAGING USER ACCOUNTS USING THE IDM WEB UI

29

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_idm_users_groups_hosts_and_access_control_rules/assembly_strengthening-kerberos-security-with-pac-information_managing-users-groups-hosts
https://access.redhat.com/solutions/529333
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html-single/9.4_release_notes/index#Jira-RHELPLAN-157939

Administrator privileges for managing the IdM Web UI or User Administrator role.

At least one staged user account in IdM.

Procedure

1. Log in to the IdM Web UI.
For details, see Accessing the IdM Web UI in a web browser .

2. Go to Users → Stage users tab.

3. Click the check-box of the user account you want to activate.

4. Click on the Activate button.

5. On the Confirmation dialog box, click OK.

If the activation is successful, the IdM Web UI displays a green confirmation that the user has been
activated and the user account has been moved to Active users. The account is active and the user can
authenticate to the IdM domain and IdM Web UI. The user is prompted to change their password on the
first login.

NOTE

At this stage, you can add the active user account to user groups.

3.4. DISABLING USER ACCOUNTS IN THE WEB UI

You can disable active user accounts. Disabling a user account deactivates the account, therefore, user

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

30

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/accessing-the-ipa-web-ui-in-a-web-browser_configuring-and-managing-idm

You can disable active user accounts. Disabling a user account deactivates the account, therefore, user
accounts cannot be used to authenticate and using IdM services, such as Kerberos, or perform any tasks.

Disabled user accounts still exist within IdM and all of the associated information remains unchanged.
Unlike preserved user accounts, disabled user accounts remain in the active state and can be a member
of user groups.

NOTE

After disabling a user account, any existing connections remain valid until the user’s
Kerberos TGT and other tickets expire. After the ticket expires, the user will not be able to
renew it.

Prerequisites

Administrator privileges for managing the IdM Web UI or User Administrator role.

Procedure

1. Log in to the IdM Web UI.
For details, see Accessing the IdM Web UI in a web browser .

2. Go to Users → Active users tab.

3. Click the check-box of the user accounts you want to disable.

4. Click on the Disable button.

5. In the Confirmation dialog box, click on the OK button.

If the disabling procedure has been successful, you can verify in the Status column in the Active users
table.

CHAPTER 3. MANAGING USER ACCOUNTS USING THE IDM WEB UI

31

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/accessing-the-ipa-web-ui-in-a-web-browser_configuring-and-managing-idm

3.5. ENABLING USER ACCOUNTS IN THE WEB UI

With IdM you can enable disabled active user accounts. Enabling a user account activates the disabled
account.

Prerequisites

Administrator privileges for managing the IdM Web UI or User Administrator role.

Procedure

1. Log in to the IdM Web UI.

2. Go to Users → Active users tab.

3. Click the check-box of the user accounts you want to enable.

4. Click on the Enable button.

5. In the Confirmation dialog box, click on the OK button.

If the change has been successful, you can verify in the Status column in the Active users table.

3.6. PRESERVING ACTIVE USERS IN THE IDM WEB UI

Preserving user accounts enables you to remove accounts from the Active users tab, yet keeping these
accounts in IdM.

Preserve the user account if the employee leaves the company. If you want to disable user accounts for
a couple of weeks or months (parental leave, for example), disable the account. For details, see
Disabling user accounts in the Web UI . The preserved accounts are not active and users cannot use
them to access your internal network, however, the account stays in the database with all the data.

You can move the restored accounts back to the active mode.

NOTE

The list of users in the preserved state can provide a history of past user accounts.

Prerequisites

Administrator privileges for managing the IdM (Identity Management) Web UI or User

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

32

Administrator privileges for managing the IdM (Identity Management) Web UI or User
Administrator role.

Procedure

1. Log in to the IdM Web UI.
For details, see Accessing the IdM Web UI in a web browser .

2. Go to Users → Active users tab.

3. Click the check-box of the user accounts you want to preserve.

4. Click on the Delete button.

5. In the Remove users dialog box, switch the Delete mode radio button to preserve.

6. Click on the Delete button.

As a result, the user account is moved to Preserved users.

If you need to restore preserved users, see the Restoring users in the IdM Web UI .

3.7. RESTORING USERS IN THE IDM WEB UI

IdM (Identity Management) enables you to restore preserved user accounts back to the active state.
You can restore a preserved user to an active user or a stage user.

Prerequisites

Administrator privileges for managing the IdM Web UI or User Administrator role.

Procedure

CHAPTER 3. MANAGING USER ACCOUNTS USING THE IDM WEB UI

33

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/accessing-the-ipa-web-ui-in-a-web-browser_configuring-and-managing-idm

Procedure

1. Log in to the IdM Web UI.
For details, see Accessing the IdM Web UI in a web browser .

2. Go to Users → Preserved users tab.

3. Click the check-box at the user accounts you want to restore.

4. Click on the Restore button.

5. In the Confirmation dialog box, click on the OK button.

The IdM Web UI displays a green confirmation and moves the user accounts to the Active users tab.

3.8. DELETING USERS IN THE IDM WEB UI

Deleting users is an irreversible operation, causing the user accounts to be permanently deleted from
the IdM database, including group memberships and passwords. Any external configuration for the user,
such as the system account and home directory, is not deleted, but is no longer accessible through IdM.

You can delete:

Active users — the IdM Web UI offers you with the options:

Preserving users temporarily
For details, see the Preserving active users in the IdM Web UI .

Deleting them permanently

Stage users — you can just delete stage users permanently.

Preserved users — you can delete preserved users permanently.

The following procedure describes deleting active users. Similarly, you can delete user accounts on:

The Stage users tab

The Preserved users tab

Prerequisites

Administrator privileges for managing the IdM Web UI or User Administrator role.

Procedure

1. Log in to the IdM Web UI.

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

34

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/accessing-the-ipa-web-ui-in-a-web-browser_configuring-and-managing-idm

For details, see Accessing the IdM Web UI in a web browser .

2. Go to Users → Active users tab.
Alternatively, you can delete the user account in the Users → Stage users or Users →
Preserved users.

3. Click the Delete icon.

4. In the Remove users dialog box, switch the Delete mode radio button to delete.

5. Click on the Delete button.

The users accounts have been permanently deleted from IdM.

CHAPTER 3. MANAGING USER ACCOUNTS USING THE IDM WEB UI

35

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/accessing-the-ipa-web-ui-in-a-web-browser_configuring-and-managing-idm

CHAPTER 4. MANAGING USER ACCOUNTS USING ANSIBLE
PLAYBOOKS

You can manage users in IdM using Ansible playbooks. After presenting the user life cycle, this chapter
describes how to use Ansible playbooks for the following operations:

Ensuring the presence of a single user listed directly in the YML file.

Ensuring the presence of multiple users listed directly in the YML file.

Ensuring the presence of multiple users listed in a JSON file that is referenced from the YML
file.

Ensuring the absence of users listed directly in the YML file.

4.1. USER LIFE CYCLE

Identity Management (IdM) supports three user account states:

Stage users are not allowed to authenticate. This is an initial state. Some of the user account
properties required for active users cannot be set, for example, group membership.

Active users are allowed to authenticate. All required user account properties must be set in this
state.

Preserved users are former active users that are considered inactive and cannot authenticate
to IdM. Preserved users retain most of the account properties they had as active users, but they
are not part of any user groups.

You can delete user entries permanently from the IdM database.

IMPORTANT

Deleted user accounts cannot be restored. When you delete a user account, all the
information associated with the account is permanently lost.

A new administrator can only be created by a user with administrator rights, such as the default admin

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

36

A new administrator can only be created by a user with administrator rights, such as the default admin
user. If you accidentally delete all administrator accounts, the Directory Manager must create a new
administrator manually in the Directory Server.

WARNING

Do not delete the admin user. As admin is a pre-defined user required by IdM, this
operation causes problems with certain commands. If you want to define and use an
alternative admin user, disable the pre-defined admin user with ipa user-disable
admin after you granted admin permissions to at least one different user.

WARNING

Do not add local users to IdM. The Name Service Switch (NSS) always resolves IdM
users and groups before resolving local users and groups. This means that, for
example, IdM group membership does not work for local users.

4.2. ENSURING THE PRESENCE OF AN IDM USER USING AN ANSIBLE
PLAYBOOK

The following procedure describes ensuring the presence of a user in IdM using an Ansible playbook.

Prerequisites

You know the IdM admin password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

Procedure

1. Create an inventory file, for example inventory.file, and define ipaserver in it:

[ipaserver]
server.idm.example.com

CHAPTER 4. MANAGING USER ACCOUNTS USING ANSIBLE PLAYBOOKS

37

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

2. Create an Ansible playbook file with the data of the user whose presence in IdM you want to
ensure. To simplify this step, you can copy and modify the example in the
/usr/share/doc/ansible-freeipa/playbooks/user/add-user.yml file. For example, to create user
named idm_user and add Password123 as the user password:

You must use the following options to add a user:

name: the login name

first: the first name string

last: the last name string

For the full list of available user options, see the /usr/share/doc/ansible-freeipa/README-
user.md Markdown file.

NOTE

If you use the update_password: on_create option, Ansible only creates the
user password when it creates the user. If the user is already created with a
password, Ansible does not generate a new password.

3. Run the playbook:

$ ansible-playbook --vault-password-file=password_file -v -i
path_to_inventory_directory/inventory.file path_to_playbooks_directory/add-IdM-
user.yml

Verification

You can verify if the new user account exists in IdM by using the ipa user-show command:

1. Log into ipaserver as admin:

- name: Playbook to handle users
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Create user idm_user
 ipauser:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: idm_user
 first: Alice
 last: Acme
 uid: 1000111
 gid: 10011
 phone: "+555123457"
 email: idm_user@acme.com
 passwordexpiration: "2023-01-19 23:59:59"
 password: "Password123"
 update_password: on_create

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

38

$ ssh admin@server.idm.example.com
Password:
[admin@server /]$

2. Request a Kerberos ticket for admin:

$ kinit admin
Password for admin@IDM.EXAMPLE.COM:

3. Request information about idm_user:

$ ipa user-show idm_user
 User login: idm_user
 First name: Alice
 Last name: Acme

The user named idm_user is present in IdM.

4.3. ENSURING THE PRESENCE OF MULTIPLE IDM USERS USING
ANSIBLE PLAYBOOKS

The following procedure describes ensuring the presence of multiple users in IdM using an Ansible
playbook.

Prerequisites

You know the IdM admin password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

Procedure

1. Create an inventory file, for example inventory.file, and define ipaserver in it:

[ipaserver]
server.idm.example.com

2. Create an Ansible playbook file with the data of the users whose presence you want to ensure in
IdM. To simplify this step, you can copy and modify the example in the /usr/share/doc/ansible-
freeipa/playbooks/user/ensure-users-present.yml file. For example, to create users

CHAPTER 4. MANAGING USER ACCOUNTS USING ANSIBLE PLAYBOOKS

39

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

idm_user_1, idm_user_2, and idm_user_3, and add Password123 as the password of idm_user_1:

NOTE

If you do not specify the update_password: on_create option, Ansible re-sets
the user password every time the playbook is run: if the user has changed the
password since the last time the playbook was run, Ansible re-sets password.

3. Run the playbook:

$ ansible-playbook --vault-password-file=password_file -v -i
path_to_inventory_directory/inventory.file path_to_playbooks_directory/add-
users.yml

Verification

You can verify if the user account exists in IdM by using the ipa user-show command:

1. Log into ipaserver as administrator:

$ ssh administrator@server.idm.example.com
Password:
[admin@server /]$

- name: Playbook to handle users
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Create user idm_users
 ipauser:
 ipaadmin_password: "{{ ipaadmin_password }}"
 users:
 - name: idm_user_1
 first: Alice
 last: Acme
 uid: 10001
 gid: 10011
 phone: "+555123457"
 email: idm_user@acme.com
 passwordexpiration: "2023-01-19 23:59:59"
 password: "Password123"
 - name: idm_user_2
 first: Bob
 last: Acme
 uid: 100011
 gid: 10011
 - name: idm_user_3
 first: Eve
 last: Acme
 uid: 1000111
 gid: 10011

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

40

2. Display information about idm_user_1:

$ ipa user-show idm_user_1
 User login: idm_user_1
 First name: Alice
 Last name: Acme
 Password: True

The user named idm_user_1 is present in IdM.

4.4. ENSURING THE PRESENCE OF MULTIPLE IDM USERS FROM A
JSON FILE USING ANSIBLE PLAYBOOKS

The following procedure describes how you can ensure the presence of multiple users in IdM using an
Ansible playbook. The users are stored in a JSON file.

Prerequisites

You know the IdM admin password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

Procedure

1. Create an inventory file, for example inventory.file, and define ipaserver in it:

[ipaserver]
server.idm.example.com

2. Create an Ansible playbook file with the necessary tasks. Reference the JSON file with the data
of the users whose presence you want to ensure. To simplify this step, you can copy and modify
the example in the /usr/share/doc/ansible-freeipa/ensure-users-present-ymlfile.yml file:

- name: Ensure users' presence
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Include users.json

CHAPTER 4. MANAGING USER ACCOUNTS USING ANSIBLE PLAYBOOKS

41

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

3. Create the users.json file, and add the IdM users into it. To simplify this step, you can copy and
modify the example in the /usr/share/doc/ansible-freeipa/playbooks/user/users.json file. For
example, to create users idm_user_1, idm_user_2, and idm_user_3, and add Password123 as the
password of idm_user_1:

4. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i
path_to_inventory_directory/inventory.file path_to_playbooks_directory/ensure-users-
present-jsonfile.yml

Verification

You can verify if the user accounts are present in IdM using the ipa user-show command:

1. Log into ipaserver as administrator:

$ ssh administrator@server.idm.example.com
Password:
[admin@server /]$

2. Display information about idm_user_1:

$ ipa user-show idm_user_1

 include_vars:
 file: users.json

 - name: Users present
 ipauser:
 ipaadmin_password: "{{ ipaadmin_password }}"
 users: "{{ users }}"

{
 "users": [
 {
 "name": "idm_user_1",
 "first": "Alice",
 "last": "Acme",
 "password": "Password123"
 },
 {
 "name": "idm_user_2",
 "first": "Bob",
 "last": "Acme"
 },
 {
 "name": "idm_user_3",
 "first": "Eve",
 "last": "Acme"
 }
]
}

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

42

 User login: idm_user_1
 First name: Alice
 Last name: Acme
 Password: True

The user named idm_user_1 is present in IdM.

4.5. ENSURING THE ABSENCE OF USERS USING ANSIBLE
PLAYBOOKS

The following procedure describes how you can use an Ansible playbook to ensure that specific users are
absent from IdM.

Prerequisites

You know the IdM admin password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

Procedure

1. Create an inventory file, for example inventory.file, and define ipaserver in it:

[ipaserver]
server.idm.example.com

2. Create an Ansible playbook file with the users whose absence from IdM you want to ensure. To
simplify this step, you can copy and modify the example in the /usr/share/doc/ansible-
freeipa/playbooks/user/ensure-users-present.yml file. For example, to delete users
idm_user_1, idm_user_2, and idm_user_3:

- name: Playbook to handle users
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Delete users idm_user_1, idm_user_2, idm_user_3
 ipauser:
 ipaadmin_password: "{{ ipaadmin_password }}"
 users:

CHAPTER 4. MANAGING USER ACCOUNTS USING ANSIBLE PLAYBOOKS

43

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

3. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i
path_to_inventory_directory/inventory.file path_to_playbooks_directory/delete-
users.yml

Verification

You can verify that the user accounts do not exist in IdM by using the ipa user-show command:

1. Log into ipaserver as administrator:

$ ssh administrator@server.idm.example.com
Password:
[admin@server /]$

2. Request information about idm_user_1:

$ ipa user-show idm_user_1
ipa: ERROR: idm_user_1: user not found

The user named idm_user_1 does not exist in IdM.

4.6. ADDITIONAL RESOURCES

See the README-user.md Markdown file in the /usr/share/doc/ansible-freeipa/ directory.

See sample Ansible playbooks in the /usr/share/doc/ansible-freeipa/playbooks/user directory.

 - name: idm_user_1
 - name: idm_user_2
 - name: idm_user_3
 state: absent

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

44

CHAPTER 5. MANAGING USER PASSWORDS IN IDM

5.1. WHO CAN CHANGE IDM USER PASSWORDS AND HOW

Regular users without the permission to change other users' passwords can change only their own
personal password. The new password must meet the IdM password policies applicable to the groups of
which the user is a member. For details on configuring password policies, see Defining IdM password
policies.

Administrators and users with password change rights can set initial passwords for new users and reset
passwords for existing users. These passwords:

Do not have to meet the IdM password policies.

Expire after the first successful login. When this happens, IdM prompts the user to change the
expired password immediately. To disable this behavior, see Enabling password reset in IdM
without prompting the user for a password change at the next login.

NOTE

The LDAP Directory Manager (DM) user can change user passwords using LDAP tools.
The new password can override any IdM password policies. Passwords set by DM do not
expire after the first login.

5.2. CHANGING YOUR USER PASSWORD IN THE IDM WEB UI

As an Identity Management (IdM) user, you can change your user password in the IdM Web UI.

Prerequisites

You are logged in to the IdM Web UI.

Procedure

1. In the upper right corner, click User name → Change password.

Figure 5.1. Resetting Password

2. Enter the current and new passwords.

CHAPTER 5. MANAGING USER PASSWORDS IN IDM

45

5.3. RESETTING ANOTHER USER’S PASSWORD IN THE IDM WEB UI

As an administrative user of Identity Management (IdM), you can change passwords for other users in
the IdM Web UI.

Prerequisites

You are logged in to the IdM Web UI as an administrative user.

Procedure

1. Select Identity → Users.

2. Click the name of the user to edit.

3. Click Actions → Reset password.

Figure 5.2. Resetting Password

4. Enter the new password, and click Reset Password.

Figure 5.3. Confirming New Password

5.4. RESETTING THE DIRECTORY MANAGER USER PASSWORD

If you lose the Identity Management (IdM) Directory Manager password, you can reset it.

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

46

Prerequisites

You have root access to an IdM server.

Procedure

1. Generate a new password hash by using the pwdhash command. For example:

pwdhash -D /etc/dirsrv/slapd-IDM-EXAMPLE-COM password
{PBKDF2_SHA256}AAAgABU0bKhyjY53NcxY33ueoPjOUWtl4iyYN5uW...

By specifying the path to the Directory Server configuration, you automatically use the
password storage scheme set in the nsslapd-rootpwstoragescheme attribute to encrypt the
new password.

2. On every IdM server in your topology, execute the following steps:

a. Stop all IdM services installed on the server:

ipactl stop

b. Edit the /etc/dirsrv/IDM-EXAMPLE-COM/dse.ldif file and set the nsslapd-rootpw
attribute to the value generated by the pwdhash command:

nsslapd-rootpw:
{PBKDF2_SHA256}AAAgABU0bKhyjY53NcxY33ueoPjOUWtl4iyYN5uW...

c. Start all IdM services installed on the server:

ipactl start

5.5. CHANGING YOUR USER PASSWORD OR RESETTING ANOTHER
USER’S PASSWORD IN IDM CLI

You can change your user password using the Identity Management (IdM) command-line interface
(CLI). If you are an administrative user, you can use the CLI to reset another user’s password.

Prerequisites

You have obtained a ticket-granting ticket (TGT) for an IdM user.

If you are resetting another user’s password, you must have obtained a TGT for an
administrative user in IdM.

Procedure

Enter the ipa user-mod command with the name of the user and the --password option. The
command will prompt you for the new password.

$ ipa user-mod idm_user --password
Password:
Enter Password again to verify:

CHAPTER 5. MANAGING USER PASSWORDS IN IDM

47

Modified user "idm_user"

...

NOTE

You can also use the ipa passwd idm_user command instead of ipa user-mod.

5.6. ENABLING PASSWORD RESET IN IDM WITHOUT PROMPTING THE
USER FOR A PASSWORD CHANGE AT THE NEXT LOGIN

By default, when an administrator resets another user’s password, the password expires after the first
successful login. As IdM Directory Manager, you can specify the following privileges for individual IdM
administrators:

They can perform password change operations without requiring users to change their
passwords subsequently on their first login.

They can bypass the password policy so that no strength or history enforcement is applied.

WARNING

Bypassing the password policy can be a security threat. Exercise caution when
selecting users to whom you grant these additional privileges.

Prerequisites

You know the Directory Manager password.

Procedure

1. On every Identity Management (IdM) server in the domain, make the following changes:

a. Enter the ldapmodify command to modify LDAP entries. Specify the name of the IdM
server and the 389 port and press Enter:

$ ldapmodify -x -D "cn=Directory Manager" -W -h server.idm.example.com -p 389
Enter LDAP Password:

b. Enter the Directory Manager password.

c. Enter the distinguished name for the ipa_pwd_extop password synchronization entry and
press Enter:

dn: cn=ipa_pwd_extop,cn=plugins,cn=config

d. Specify the modify type of change and press Enter:

changetype: modify

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

48

e. Specify what type of modification you want LDAP to execute and to which attribute. Press
Enter:

add: passSyncManagersDNs

f. Specify the administrative user accounts in the passSyncManagersDNs attribute. The
attribute is multi-valued. For example, to grant the admin user the password resetting
powers of Directory Manager:

passSyncManagersDNs: \
uid=admin,cn=users,cn=accounts,dc=example,dc=com

g. Press Enter twice to stop editing the entry.

The whole procedure looks as follows:

$ ldapmodify -x -D "cn=Directory Manager" -W -h server.idm.example.com -p 389
Enter LDAP Password:
dn: cn=ipa_pwd_extop,cn=plugins,cn=config
changetype: modify
add: passSyncManagersDNs
passSyncManagersDNs: uid=admin,cn=users,cn=accounts,dc=example,dc=com

The admin user, listed under passSyncManagerDNs, now has the additional privileges.

5.7. CHECKING IF AN IDM USER’S ACCOUNT IS LOCKED

As an Identity Management (IdM) administrator, you can check if an IdM user’s account is locked. For
that, you must compare a user’s maximum allowed number of failed login attempts with the number of
the user’s actual failed logins.

Prerequisites

You have obtained the ticket-granting ticket (TGT) of an administrative user in IdM.

Procedure

1. Display the status of the user account to see the number of failed logins:

$ ipa user-status example_user

Account disabled: False

 Server: idm.example.com
 Failed logins: 8
 Last successful authentication: N/A
 Last failed authentication: 20220229080317Z
 Time now: 2022-02-29T08:04:46Z

Number of entries returned 1

CHAPTER 5. MANAGING USER PASSWORDS IN IDM

49

2. Display the number of allowed login attempts for a particular user:

a. Log in to the IdM Web UI as IdM administrator.

b. Open the Identity → Users → Active users tab.

a. Click the user name to open the user settings.

b. In the Password policy section, locate the Max failures item.

3. Compare the number of failed logins as displayed in the output of the ipa user-status
command with the Max failures number displayed in the IdM Web UI. If the number of failed
logins equals that of maximum allowed login attempts, the user account is locked.

Additional resources

Unlocking user accounts after password failures in IdM

5.8. UNLOCKING USER ACCOUNTS AFTER PASSWORD FAILURES IN
IDM

If a user attempts to log in using an incorrect password a certain number of times, Identity Management
(IdM) locks the user account, which prevents the user from logging in. For security reasons, IdM does not
display any warning message that the user account has been locked. Instead, the CLI prompt might
continue asking the user for a password again and again.

IdM automatically unlocks the user account after a specified amount of time has passed. Alternatively,
you can unlock the user account manually with the following procedure.

Prerequisites

You have obtained the ticket-granting ticket of an IdM administrative user.

Procedure

To unlock a user account, use the ipa user-unlock command.

$ ipa user-unlock idm_user

Unlocked account "idm_user"

After this, the user can log in again.

Additional resources

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

50

Additional resources

Checking if an IdM user’s account is locked

5.9. ENABLING THE TRACKING OF LAST SUCCESSFUL KERBEROS
AUTHENTICATION FOR USERS IN IDM

For performance reasons, Identity Management (IdM) running in Red Hat Enterprise Linux 8 does not
store the time stamp of the last successful Kerberos authentication of a user. As a consequence, certain
commands, such as ipa user-status, do not display the time stamp.

Prerequisites

You have obtained the ticket-granting ticket (TGT) of an administrative user in IdM.

You have root access to the IdM server on which you are executing the procedure.

Procedure

1. Display the currently enabled password plug-in features:

ipa config-show | grep "Password plugin features"
 Password plugin features: AllowNThash, KDC:Disable Last Success

The output shows that the KDC:Disable Last Success plug-in is enabled. The plug-in hides
the last successful Kerberos authentication attempt from being visible in the ipa user-status
output.

2. Add the --ipaconfigstring=feature parameter for every feature to the ipa config-mod
command that is currently enabled, except for KDC:Disable Last Success:

ipa config-mod --ipaconfigstring='AllowNThash'

This command enables only the AllowNThash plug-in. To enable multiple features, specify the
--ipaconfigstring=feature parameter separately for each feature.

3. Restart IdM:

ipactl restart

CHAPTER 5. MANAGING USER PASSWORDS IN IDM

51

CHAPTER 6. DEFINING IDM PASSWORD POLICIES
This chapter describes Identity Management (IdM) password policies and how to add a new password
policy in IdM using an Ansible playbook.

6.1. WHAT IS A PASSWORD POLICY

A password policy is a set of rules that passwords must meet. For example, a password policy can define
the minimum password length and the maximum password lifetime. All users affected by this policy are
required to set a sufficiently long password and change it frequently enough to meet the specified
conditions. In this way, password policies help reduce the risk of someone discovering and misusing a
user’s password.

6.2. PASSWORD POLICIES IN IDM

Passwords are the most common way for Identity Management (IdM) users to authenticate to the IdM
Kerberos domain. Password policies define the requirements that these IdM user passwords must meet.

NOTE

The IdM password policy is set in the underlying LDAP directory, but the Kerberos Key
Distribution Center (KDC) enforces the password policy.

Password policy attributes lists the attributes you can use to define a password policy in IdM.

Table 6.1. Password Policy Attributes

Attribute Explanation Example

Max lifetime The maximum amount of time in days
that a password is valid before a user
must reset it. The default value is 90
days.

Note that if the attribute is set to 0, the
password never expires.

Max lifetime = 180

User passwords are valid only for 180
days. After that, IdM prompts users to
change them.

Min lifetime The minimum amount of time in hours
that must pass between two password
change operations.

Min lifetime = 1

After users change their passwords, they
must wait at least 1 hour before changing
them again.

History size The number of previous passwords that
are stored. A user cannot reuse a
password from their password history but
can reuse old passwords that are not
stored.

History size = 0

In this case, the password history is empty
and users can reuse any of their previous
passwords.

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

52

Character classes The number of different character
classes the user must use in the
password. The character classes are:

* Uppercase characters

* Lowercase characters

* Digits

* Special characters, such as comma (,),
period (.), asterisk (*)

* Other UTF-8 characters

Using a character three or more times in
a row decreases the character class by
one. For example:

* Secret1 has 3 character classes:
uppercase, lowercase, digits

* Secret111 has 2 character classes:
uppercase, lowercase, digits, and a -1
penalty for using 1 repeatedly

Character classes = 0

The default number of classes required is
0. To configure the number, run the ipa
pwpolicy-mod command with the --
minclasses option.

See also the Important note below this
table.

Min length The minimum number of characters in a
password.

If any of the additional password policy
options are set, then the minimum length
of passwords is 6 characters.

Min length = 8

Users cannot use passwords shorter than
8 characters.

Max failures The maximum number of failed login
attempts before IdM locks the user
account.

Max failures = 6

IdM locks the user account when the user
enters a wrong password 7 times in a row.

Failure reset
interval

The amount of time in seconds after
which IdM resets the current number of
failed login attempts.

Failure reset interval = 60

If the user waits for more than 1 minute
after the number of failed login attempts
defined in Max failures, the user can
attempt to log in again without risking a
user account lock.

Lockout duration The amount of time in seconds that the
user account is locked after the number
of failed login attempts defined in Max
failures.

Lockout duration = 600

Users with locked accounts are unable to
log in for 10 minutes.

Attribute Explanation Example

IMPORTANT

CHAPTER 6. DEFINING IDM PASSWORD POLICIES

53

IMPORTANT

Use the English alphabet and common symbols for the character classes requirement if
you have a diverse set of hardware that may not have access to international characters
and symbols. For more information about character class policies in passwords, see What
characters are valid in a password? in Red Hat Knowledgebase.

6.3. ENSURING THE PRESENCE OF A PASSWORD POLICY IN IDM
USING AN ANSIBLE PLAYBOOK

Follow this procedure to ensure the presence of a password policy in Identity Management (IdM) using
an Ansible playbook.

In the default global_policy password policy in IdM, the number of different character classes in the
password is set to 0. The history size is also set to 0.

Complete this procedure to enforce a stronger password policy for an IdM group using an Ansible
playbook.

NOTE

You can only define a password policy for an IdM group. You cannot define a password
policy for an individual user.

Prerequisites

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

You know the IdM administrator password.

The group for which you are ensuring the presence of a password policy exists in IdM.

Procedure

1. Create an inventory file, for example inventory.file, and define the FQDN of your IdM server in
the [ipaserver] section:

[ipaserver]
server.idm.example.com

2. Create your Ansible playbook file that defines the password policy whose presence you want to
ensure. To simplify this step, copy and modify the example in the /usr/share/doc/ansible-
freeipa/playbooks/pwpolicy/pwpolicy_present.yml file:

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

54

https://access.redhat.com/solutions/3143431
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

- name: Tests
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Ensure presence of pwpolicy for group ops
 ipapwpolicy:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: ops
 minlife: 7
 maxlife: 49
 history: 5
 priority: 1
 lockouttime: 300
 minlength: 8
 minclasses: 4
 maxfail: 3
 failinterval: 5

For details on what the individual variables mean, see Password policy attributes.

3. Run the playbook:

$ ansible-playbook --vault-password-file=password_file -v -i
path_to_inventory_directory/inventory.file
path_to_playbooks_directory_/new_pwpolicy_present.yml

You have successfully used an Ansible playbook to ensure that a password policy for the ops group is
present in IdM.

IMPORTANT

The priority of the ops password policy is set to 1, whereas the global_policy password
policy has no priority set. For this reason, the ops policy automatically supersedes
global_policy for the ops group and is enforced immediately.

global_policy serves as a fallback policy when no group policy is set for a user, and it can
never take precedence over a group policy.

Additional resources

See the README-pwpolicy.md file in the /usr/share/doc/ansible-freeipa/ directory.

See Password policy priorities.

6.4. ADDITIONAL PASSWORD POLICY OPTIONS IN IDM

As an Identity Management (IdM) administrator, you can strengthen the default password requirements
by enabling additional password policy options based on the libpwquality feature set. The additional
password policy options include the following:

--maxrepeat

CHAPTER 6. DEFINING IDM PASSWORD POLICIES

55

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/linux_domain_identity_authentication_and_policy_guide/pwd-policies-how#pwd-policies-priority

Specifies the maximum acceptable number of same consecutive characters in the new password.

--maxsequence

Specifies the maximum length of monotonic character sequences in the new password. Examples of
such a sequence are 12345 or fedcb. Most such passwords will not pass the simplicity check.

--dictcheck

If nonzero, checks whether the password, with possible modifications, matches a word in a dictionary.
Currently libpwquality performs the dictionary check using the cracklib library.

--usercheck

If nonzero, checks whether the password, with possible modifications, contains the user name in
some form. It is not performed for user names shorter than 3 characters.

You cannot apply the additional password policy options to existing passwords. If you apply any of the
additional options, IdM automatically sets the --minlength option, the minimum number of characters in
a password, to 6 characters.

NOTE

In a mixed environment with RHEL 7 and RHEL 8 servers, you can enforce the additional
password policy settings only on servers running on RHEL 8.4 and later. If a user is logged
in to an IdM client and the IdM client is communicating with an IdM server running on
RHEL 8.3 or earlier, then the new password policy requirements set by the system
administrator will not be applied. To ensure consistent behavior, upgrade or update all
servers to RHEL 8.4 and later.

Additional resources:

Applying additional password policies to an IdM group

pwquality(3) man page

6.5. APPLYING ADDITIONAL PASSWORD POLICY OPTIONS TO AN IDM
GROUP

Follow this procedure to apply additional password policy options in Identity Management (IdM). The
example describes how to strengthen the password policy for the managers group by making sure that
the new passwords do not contain the users' respective user names and that the passwords contain no
more than two identical characters in succession.

Prerequisites

You are logged in as an IdM administrator.

The managers group exists in IdM.

The managers password policy exists in IdM.

Procedure

1. Apply the user name check to all new passwords suggested by the users in the managers group:

$ ipa pwpolicy-mod --usercheck=True managers

NOTE

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

56

NOTE

If you do not specify the name of the password policy, the default global_policy
is modified.

2. Set the maximum number of identical consecutive characters to 2 in the managers password
policy:

$ ipa pwpolicy-mod --maxrepeat=2 managers

A password now will not be accepted if it contains more than 2 identical consecutive characters.
For example, the eR873mUi111YJQ combination is unacceptable because it contains three 1s in
succession.

Verification

1. Add a test user named test_user:

$ ipa user-add test_user
First name: test
Last name: user

Added user "test_user"

2. Add the test user to the managers group:

a. In the IdM Web UI, click Identity → Groups → User Groups.

b. Click managers.

c. Click Add.

d. In the Add users into user group 'managers' page, check test_user.

e. Click the > arrow to move the user to the Prospective column.

f. Click Add.

3. Reset the password for the test user:

a. Go to Identity → Users.

b. Click test_user.

c. In the Actions menu, click Reset Password.

d. Enter a temporary password for the user.

4. On the command line, try to obtain a Kerberos ticket-granting ticket (TGT) for the test_user:

$ kinit test_user

a. Enter the temporary password.

b. The system informs you that you must change your password. Enter a password that

CHAPTER 6. DEFINING IDM PASSWORD POLICIES

57

b. The system informs you that you must change your password. Enter a password that
contains the user name of test_user:

Password expired. You must change it now.
Enter new password:
Enter it again:
Password change rejected: Password not changed.
Unspecified password quality failure while trying to change password.
Please try again.

NOTE

Kerberos does not have fine-grained error password policy reporting and, in
certain cases, does not provide a clear reason why a password was rejected.

c. The system informs you that the entered password was rejected. Enter a password that
contains three or more identical characters in succession:

Password change rejected: Password not changed.
Unspecified password quality failure while trying to change password.
Please try again.

Enter new password:
Enter it again:

d. The system informs you that the entered password was rejected. Enter a password that
meets the criteria of the managers password policy:

Password change rejected: Password not changed.
Unspecified password quality failure while trying to change password.
Please try again.

Enter new password:
Enter it again:

5. View the obtained TGT:

$ klist
Ticket cache: KCM:0:33945
Default principal: test_user@IDM.EXAMPLE.COM

Valid starting Expires Service principal
07/07/2021 12:44:44 07/08/2021 12:44:44
krbtgt@IDM.EXAMPLE.COM@IDM.EXAMPLE.COM

The managers password policy now works correctly for users in the managers group.

Additional resources

Additional password policies in IdM

6.6. USING AN ANSIBLE PLAYBOOK TO APPLY ADDITIONAL

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

58

6.6. USING AN ANSIBLE PLAYBOOK TO APPLY ADDITIONAL
PASSWORD POLICY OPTIONS TO AN IDM GROUP

You can use an Ansible playbook to apply additional password policy options to strengthen the password
policy requirements for a specific IdM group. You can use the maxrepeat, maxsequence, dictcheck
and usercheck password policy options for this purpose. The example describes how to set the
following requirements for the managers group:

Users' new passwords do not contain the users' respective user names.

The passwords contain no more than two identical characters in succession.

Any monotonic character sequences in the passwords are not longer than 3 characters. This
means that the system does not accept a password with a sequence such as 1234 or abcd.

Prerequisites

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

You have created an Ansible inventory file with the fully-qualified domain name (FQDN) of
the IdM server in the ~/MyPlaybooks/ directory.

You have stored your ipaadmin_password in the secret.yml Ansible vault.

The group for which you are ensuring the presence of a password policy exists in IdM.

Procedure

1. Create your Ansible playbook file manager_pwpolicy_present.yml that defines the password
policy whose presence you want to ensure. To simplify this step, copy and modify the following
example:

- name: Tests
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Ensure presence of usercheck and maxrepeat pwpolicy for group managers
 ipapwpolicy:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: managers
 usercheck: True
 maxrepeat: 2
 maxsequence: 3

2. Run the playbook:

CHAPTER 6. DEFINING IDM PASSWORD POLICIES

59

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

$ ansible-playbook --vault-password-file=password_file -v -i
path_to_inventory_directory/inventory.file
path_to_playbooks_directory_/manager_pwpolicy_present.yml

Verification

1. Add a test user named test_user:

$ ipa user-add test_user
First name: test
Last name: user

Added user "test_user"

2. Add the test user to the managers group:

a. In the IdM Web UI, click Identity → Groups → User Groups.

b. Click managers.

c. Click Add.

d. In the Add users into user group 'managers' page, check test_user.

e. Click the > arrow to move the user to the Prospective column.

f. Click Add.

3. Reset the password for the test user:

a. Go to Identity → Users.

b. Click test_user.

c. In the Actions menu, click Reset Password.

d. Enter a temporary password for the user.

4. On the command line, try to obtain a Kerberos ticket-granting ticket (TGT) for the test_user:

$ kinit test_user

a. Enter the temporary password.

b. The system informs you that you must change your password. Enter a password that
contains the user name of test_user:

Password expired. You must change it now.
Enter new password:
Enter it again:
Password change rejected: Password not changed.
Unspecified password quality failure while trying to change password.
Please try again.

NOTE

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

60

NOTE

Kerberos does not have fine-grained error password policy reporting and, in
certain cases, does not provide a clear reason why a password was rejected.

c. The system informs you that the entered password was rejected. Enter a password that
contains three or more identical characters in succession:

Password change rejected: Password not changed.
Unspecified password quality failure while trying to change password.
Please try again.

Enter new password:
Enter it again:

d. The system informs you that the entered password was rejected. Enter a password that
contains a monotonic character sequence longer than 3 characters. Examples of such
sequences include 1234 and fedc:

Password change rejected: Password not changed.
Unspecified password quality failure while trying to change password.
Please try again.

Enter new password:
Enter it again:

e. The system informs you that the entered password was rejected. Enter a password that
meets the criteria of the managers password policy:

Password change rejected: Password not changed.
Unspecified password quality failure while trying to change password.
Please try again.

Enter new password:
Enter it again:

5. Verify that you have obtained a TGT, which is only possible after having entered a valid
password:

$ klist
Ticket cache: KCM:0:33945
Default principal: test_user@IDM.EXAMPLE.COM

Valid starting Expires Service principal
07/07/2021 12:44:44 07/08/2021 12:44:44
krbtgt@IDM.EXAMPLE.COM@IDM.EXAMPLE.COM

Additional resources

Additional password policies in IdM

/usr/share/doc/ansible-freeipa/README-pwpolicy.md

/usr/share/doc/ansible-freeipa/playbooks/pwpolicy

CHAPTER 6. DEFINING IDM PASSWORD POLICIES

61

CHAPTER 7. MANAGING EXPIRING PASSWORD
NOTIFICATIONS

You can use the Expiring Password Notification (EPN) tool, provided by the ipa-client-epn package, to
build a list of Identity Management (IdM) users whose passwords are expiring in a configured amount of
time. To install, configure, and use the EPN tool, refer to the relevant sections.

What is the Expiring Password Notification tool

Installing the Expiring Password Notification tool

Running the EPN tool to send emails to users whose passwords are expiring

Enabling the ipa-epn.timer to send an email to all users whose passwords are expiring

Modifying the Expiring Password Notification email template

7.1. WHAT IS THE EXPIRING PASSWORD NOTIFICATION TOOL

The Expiring Password Notification (EPN) tool is a standalone tool you can use to build a list of Identity
Management (IdM) users whose passwords are expiring in a configured amount of time.

IdM administrators can use EPN to:

Display a list of affected users in JSON format, which is created when run in dry-run mode.

Calculate how many emails will be sent for a given day or date range.

Send password expiration email notifications to users.

Configure the ipa-epn.timer to run the EPN tool daily and send an email to users whose
passwords are expiring within the defined future date ranges.

Customize the email notification to send to users.

NOTE

If a user account is disabled, no email notifications are sent if the password is going to
expire.

7.2. INSTALLING THE EXPIRING PASSWORD NOTIFICATION TOOL

Follow this procedure to install the Expiring Password Notification (EPN) tool.

Prerequisites

Install the EPN tool on either an Identity Management (IdM) replica or an IdM client with a local
Postfix SMTP server configured as a smart host.

Procedure

Install the EPN tool:

yum install ipa-client-epn

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

62

7.3. RUNNING THE EPN TOOL TO SEND EMAILS TO USERS WHOSE
PASSWORDS ARE EXPIRING

Follow this procedure to run the Expiring Password Notification (EPN) tool to send emails to users
whose passwords are expiring.

NOTE

The EPN tool is stateless. If the EPN tool fails to email any of the users whose passwords
are expiring on a given day, the EPN tool does not save a list of those users.

Prerequisites

The ipa-client-epn package is installed. See Installing the Expiring Password Notification tool .

Customize the ipa-epn email template if required. See Modifying the Expiring Password
Notification email template.

Procedure

1. Update the epn.conf configuration file to set the options for the EPN tool to notify users of
upcoming password expiration.

vi /etc/ipa/epn.conf

2. Update the notify_ttls as required. The default is to notify users whose passwords are expiring
in 28, 14, 7, 3, and 1 day(s).

notify_ttls = 28, 14, 7, 3, 1

3. Configure your SMTP server and port:

smtp_server = localhost
smtp_port = 25

4. Specify the email address from which the email expiration notification is sent. Any
unsuccessfully delivered emails are returned to this address.

mail_from =admin-email@example.com

5. Save the /etc/ipa/epn.conf file.

6. Run the EPN tool in dry-run mode to generate a list of the users to whom the password
expiration email notification would be sent if you run the tool without the --dry-run option.

ipa-epn --dry-run
[
 {
 "uid": "user5",
 "cn": "user 5",
 "krbpasswordexpiration": "2020-04-17 15:51:53",
 "mail": "['user5@ipa.test']"
 }

CHAPTER 7. MANAGING EXPIRING PASSWORD NOTIFICATIONS

63

]
[
 {
 "uid": "user6",
 "cn": "user 6",
 "krbpasswordexpiration": "2020-12-17 15:51:53",
 "mail": "['user5@ipa.test']"
 }
]
The IPA-EPN command was successful

NOTE

If the list of users returned is very large and you run the tool without the --dry-
run option, this might cause an issue with your email server.

7. Run the EPN tool without the --dry-run option to send expiration emails to the list of all the
users returned when you ran the EPN tool in dry-run mode:

ipa-epn
[
 {
 "uid": "user5",
 "cn": "user 5",
 "krbpasswordexpiration": "2020-10-01 15:51:53",
 "mail": "['user5@ipa.test']"
 }
]
[
 {
 "uid": "user6",
 "cn": "user 6",
 "krbpasswordexpiration": "2020-12-17 15:51:53",
 "mail": "['user5@ipa.test']"
 }
]
The IPA-EPN command was successful

8. You can add EPN to any monitoring system and invoke it with the --from-nbdays and --to-
nbdays options to determine how many users passwords are going to expire within a specific
time frame:

ipa-epn --from-nbdays 8 --to-nbdays 12

NOTE

If you invoke the EPN tool with the --from-nbdays and --to-nbdays options, it is
automatically executed in dry-run mode.

Verification

Run the EPN tool and verify an email notification is sent.

Additional resources

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

64

Additional resources

See ipa-epn man page.

See epn.conf man page.

7.4. ENABLING THE IPA-EPN.TIMER TO SEND AN EMAIL TO ALL
USERS WHOSE PASSWORDS ARE EXPIRING

Follow this procedure to use ipa-epn.timer to run the Expiring Password Notification (EPN) tool to send
emails to users whose passwords are expiring. The ipa-epn.timer parses the epn.conf file and sends an
email to users whose passwords are expiring within the defined future date ranges configured in that
file.

Prerequisites

The ipa-client-epn package is installed. See Installing the Expiring Password Notification tool

Customize the ipa-epn email template if required. See Modifying the Expiring Password
Notification email template

Procedure

Start the ipa-epn.timer:

systemctl start ipa-epn.timer

Once you start the timer, by default, the EPN tool is run every day at 1 a.m.

Additional resources

See the ipa-epn man page.

7.5. MODIFYING THE EXPIRING PASSWORD NOTIFICATION EMAIL
TEMPLATE

Follow this procedure to customize the Expiring Password Notification (EPN) email message template.

Prerequisites

The ipa-client-epn package is installed.

Procedure

1. Open the EPN message template:

vi /etc/ipa/epn/expire_msg.template

2. Update the template text as required.

Hi {{ fullname }},

Your password will expire on {{ expiration }}.

CHAPTER 7. MANAGING EXPIRING PASSWORD NOTIFICATIONS

65

Please change it as soon as possible.

You can use the following variables in the template.

User ID: uid

Full name: fullname

First name: first

Last name: last

Password expiration date: expiration

3. Save the message template file.

Verification

Run the EPN tool and verify the email notification contains the updated text.

Additional resources

See the ipa-epn man page.

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

66

CHAPTER 8. GRANTING SUDO ACCESS TO AN IDM USER ON
AN IDM CLIENT

Learn more about granting sudo access to users in Identity Management.

8.1. SUDO ACCESS ON AN IDM CLIENT

System administrators can grant sudo access to allow non-root users to execute administrative
commands that are normally reserved for the root user. Consequently, when users need to perform an
administrative command normally reserved for the root user, they precede that command with sudo.
After entering their password, the command is executed as if they were the root user. To execute a sudo
command as another user or group, such as a database service account, you can configure a RunAs alias
for a sudo rule.

If a Red Hat Enterprise Linux (RHEL) 8 host is enrolled as an Identity Management (IdM) client, you can
specify sudo rules defining which IdM users can perform which commands on the host in the following
ways:

Locally in the /etc/sudoers file

Centrally in IdM

You can create a central sudo rule for an IdM client using the command line interface (CLI) and the IdM
Web UI.

In RHEL 8.4 and later, you can also configure password-less authentication for sudo using the Generic
Security Service Application Programming Interface (GSSAPI), the native way for UNIX-based
operating systems to access and authenticate Kerberos services. You can use the pam_sss_gss.so
Pluggable Authentication Module (PAM) to invoke GSSAPI authentication via the SSSD service, allowing
users to authenticate to the sudo command with a valid Kerberos ticket.

Additional resources

See Managing sudo access.

8.2. GRANTING SUDO ACCESS TO AN IDM USER ON AN IDM CLIENT
USING THE CLI

In Identity Management (IdM), you can grant sudo access for a specific command to an IdM user
account on a specific IdM host. First, add a sudo command and then create a sudo rule for one or more
commands.

For example, complete this procedure to create the idm_user_reboot sudo rule to grant the idm_user
account the permission to run the /usr/sbin/reboot command on the idmclient machine.

Prerequisites

You are logged in as IdM administrator.

You have created a user account for idm_user in IdM and unlocked the account by creating a
password for the user. For details on adding a new IdM user using the CLI, see Adding users
using the command line.

No local idm_user account is present on the idmclient host. The idm_user user is not listed in

CHAPTER 8. GRANTING SUDO ACCESS TO AN IDM USER ON AN IDM CLIENT

67

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_basic_system_settings/managing-sudo-access_configuring-basic-system-settings
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_idm_users_groups_hosts_and_access_control_rules/managing-user-accounts-using-the-command-line_managing-users-groups-hosts#adding-users-using-the-command-line_managing-idm-users-using-the-command-line

No local idm_user account is present on the idmclient host. The idm_user user is not listed in
the local /etc/passwd file.

Procedure

1. Retrieve a Kerberos ticket as the IdM admin.

[root@idmclient ~]# kinit admin

2. Add the /usr/sbin/reboot command to the IdM database of sudo commands:

[root@idmclient ~]# ipa sudocmd-add /usr/sbin/reboot

Added Sudo Command "/usr/sbin/reboot"

 Sudo Command: /usr/sbin/reboot

3. Create a sudo rule named idm_user_reboot:

[root@idmclient ~]# ipa sudorule-add idm_user_reboot

Added Sudo Rule "idm_user_reboot"

 Rule name: idm_user_reboot
 Enabled: TRUE

4. Add the /usr/sbin/reboot command to the idm_user_reboot rule:

[root@idmclient ~]# ipa sudorule-add-allow-command idm_user_reboot --sudocmds
'/usr/sbin/reboot'
 Rule name: idm_user_reboot
 Enabled: TRUE
 Sudo Allow Commands: /usr/sbin/reboot

Number of members added 1

5. Apply the idm_user_reboot rule to the IdM idmclient host:

[root@idmclient ~]# ipa sudorule-add-host idm_user_reboot --hosts
idmclient.idm.example.com
Rule name: idm_user_reboot
Enabled: TRUE
Hosts: idmclient.idm.example.com
Sudo Allow Commands: /usr/sbin/reboot

Number of members added 1

6. Add the idm_user account to the idm_user_reboot rule:

[root@idmclient ~]# ipa sudorule-add-user idm_user_reboot --users idm_user
Rule name: idm_user_reboot
Enabled: TRUE

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

68

Users: idm_user
Hosts: idmclient.idm.example.com
Sudo Allow Commands: /usr/sbin/reboot

Number of members added 1

7. Optional: Define the validity of the idm_user_reboot rule:

a. To define the time at which a sudo rule starts to be valid, use the ipa sudorule-mod
sudo_rule_name command with the --setattr sudonotbefore=DATE option. The DATE
value must follow the yyyymmddHHMMSSZ format, with seconds specified explicitly. For
example, to set the start of the validity of the idm_user_reboot rule to 31 December 2025
12:34:00, enter:

[root@idmclient ~]# ipa sudorule-mod idm_user_reboot --setattr
sudonotbefore=20251231123400Z

b. To define the time at which a sudo rule stops being valid, use the --setattr
sudonotafter=DATE option. For example, to set the end of the idm_user_reboot rule
validity to 31 December 2026 12:34:00, enter:

[root@idmclient ~]# ipa sudorule-mod idm_user_reboot --setattr
sudonotafter=20261231123400Z

NOTE

Propagating the changes from the server to the client can take a few minutes.

Verification

1. Log in to the idmclient host as the idm_user account.

2. Display which sudo rules the idm_user account is allowed to perform.

[idm_user@idmclient ~]$ sudo -l
Matching Defaults entries for idm_user on idmclient:
 !visiblepw, always_set_home, match_group_by_gid, always_query_group_plugin,
 env_reset, env_keep="COLORS DISPLAY HOSTNAME HISTSIZE KDEDIR
LS_COLORS",
 env_keep+="MAIL PS1 PS2 QTDIR USERNAME LANG LC_ADDRESS LC_CTYPE",
 env_keep+="LC_COLLATE LC_IDENTIFICATION LC_MEASUREMENT
LC_MESSAGES",
 env_keep+="LC_MONETARY LC_NAME LC_NUMERIC LC_PAPER LC_TELEPHONE",
 env_keep+="LC_TIME LC_ALL LANGUAGE LINGUAS _XKB_CHARSET XAUTHORITY
KRB5CCNAME",
 secure_path=/sbin\:/bin\:/usr/sbin\:/usr/bin

User idm_user may run the following commands on idmclient:
 (root) /usr/sbin/reboot

3. Reboot the machine using sudo. Enter the password for idm_user when prompted:

CHAPTER 8. GRANTING SUDO ACCESS TO AN IDM USER ON AN IDM CLIENT

69

[idm_user@idmclient ~]$ sudo /usr/sbin/reboot
[sudo] password for idm_user:

8.3. GRANTING SUDO ACCESS TO AN AD USER ON AN IDM CLIENT
USING THE CLI

Identity Management (IdM) system administrators can use IdM user groups to set access permissions,
host-based access control, sudo rules, and other controls on IdM users. IdM user groups grant and
restrict access to IdM domain resources.

You can add both Active Directory (AD) users and AD groups to IdM user groups. To do that:

1. Add the AD users or groups to a non-POSIX external IdM group.

2. Add the non-POSIX external IdM group to an IdM POSIX group.

You can then manage the privileges of the AD users by managing the privileges of the POSIX group. For
example, you can grant sudo access for a specific command to an IdM POSIX user group on a specific
IdM host.

NOTE

It is also possible to add AD user groups as members to IdM external groups. This might
make it easier to define policies for Windows users, by keeping the user and group
management within the single AD realm.

IMPORTANT

Do not use ID overrides of AD users for SUDO rules in IdM. ID overrides of AD users
represent only POSIX attributes of AD users, not AD users themselves.

You can add ID overrides as group members. However, you can only use this functionality
to manage IdM resources in the IdM API. The possibility to add ID overrides as group
members is not extended to POSIX environments and you therefore cannot use it for
membership in sudo or host-based access control (HBAC) rules.

Follow this procedure to create the ad_users_reboot sudo rule to grant the administrator@ad-
domain.com AD user the permission to run the /usr/sbin/reboot command on the idmclient IdM host,
which is normally reserved for the root user. administrator@ad-domain.com is a member of the
ad_users_external non-POSIX group, which is, in turn, a member of the ad_users POSIX group.

Prerequisites

You have obtained the IdM admin Kerberos ticket-granting ticket (TGT).

A cross-forest trust exists between the IdM domain and the ad-domain.com AD domain.

No local administrator account is present on the idmclient host: the administrator user is not
listed in the local /etc/passwd file.

Procedure

1. Create the ad_users group that contains the ad_users_external group with the

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

70

1. Create the ad_users group that contains the ad_users_external group with the
administrator@ad-domain member:

a. Optional: Create or select a corresponding group in the AD domain to use to manage AD
users in the IdM realm. You can use multiple AD groups and add them to different groups on
the IdM side.

b. Create the ad_users_external group and indicate that it contains members from outside
the IdM domain by adding the --external option:

[root@ipaserver ~]# ipa group-add --desc='AD users external map'
ad_users_external --external

Added group "ad_users_external"

 Group name: ad_users_external
 Description: AD users external map

NOTE

Ensure that the external group that you specify here is an AD security group
with a global or universal group scope as defined in the Active Directory
security groups document. For example, the Domain users or Domain
admins AD security groups cannot be used because their group scope is
domain local.

c. Create the ad_users group:

[root@ipaserver ~]# ipa group-add --desc='AD users' ad_users

Added group "ad_users"

 Group name: ad_users
 Description: AD users
 GID: 129600004

d. Add the administrator@ad-domain.com AD user to ad_users_external as an external
member:

[root@ipaserver ~]# ipa group-add-member ad_users_external --external
"administrator@ad-domain.com"
 [member user]:
 [member group]:
 Group name: ad_users_external
 Description: AD users external map
 External member: S-1-5-21-3655990580-1375374850-1633065477-513

Number of members added 1

The AD user must be identified by a fully-qualified name, such as DOMAIN\user_name or
user_name@DOMAIN. The AD identity is then mapped to the AD SID for the user. The
same applies to adding AD groups.

e. Add ad_users_external to ad_users as a member:

CHAPTER 8. GRANTING SUDO ACCESS TO AN IDM USER ON AN IDM CLIENT

71

https://learn.microsoft.com/en-us/windows-server/identity/ad-ds/manage/understand-security-groups

[root@ipaserver ~]# ipa group-add-member ad_users --groups ad_users_external
 Group name: ad_users
 Description: AD users
 GID: 129600004
 Member groups: ad_users_external

Number of members added 1

2. Grant the members of ad_users the permission to run /usr/sbin/reboot on the idmclient host:

a. Add the /usr/sbin/reboot command to the IdM database of sudo commands:

[root@idmclient ~]# ipa sudocmd-add /usr/sbin/reboot

Added Sudo Command "/usr/sbin/reboot"

 Sudo Command: /usr/sbin/reboot

b. Create a sudo rule named ad_users_reboot:

[root@idmclient ~]# ipa sudorule-add ad_users_reboot

Added Sudo Rule "ad_users_reboot"

 Rule name: ad_users_reboot
 Enabled: True

c. Add the /usr/sbin/reboot command to the ad_users_reboot rule:

[root@idmclient ~]# ipa sudorule-add-allow-command ad_users_reboot --sudocmds
'/usr/sbin/reboot'
 Rule name: ad_users_reboot
 Enabled: True
 Sudo Allow Commands: /usr/sbin/reboot

Number of members added 1

d. Apply the ad_users_reboot rule to the IdM idmclient host:

[root@idmclient ~]# ipa sudorule-add-host ad_users_reboot --hosts
idmclient.idm.example.com
Rule name: ad_users_reboot
Enabled: True
Hosts: idmclient.idm.example.com
Sudo Allow Commands: /usr/sbin/reboot

Number of members added 1

e. Add the ad_users group to the ad_users_reboot rule:

[root@idmclient ~]# ipa sudorule-add-user ad_users_reboot --groups ad_users

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

72

Rule name: ad_users_reboot
Enabled: TRUE
User Groups: ad_users
Hosts: idmclient.idm.example.com
Sudo Allow Commands: /usr/sbin/reboot

Number of members added 1

NOTE

Propagating the changes from the server to the client can take a few minutes.

Verification

1. Log in to the idmclient host as administrator@ad-domain.com, an indirect member of the
ad_users group:

$ ssh administrator@ad-domain.com@ipaclient
Password:

2. Optional: Display the sudo commands that administrator@ad-domain.com is allowed to
execute:

[administrator@ad-domain.com@idmclient ~]$ sudo -l
Matching Defaults entries for administrator@ad-domain.com on idmclient:
 !visiblepw, always_set_home, match_group_by_gid, always_query_group_plugin,
 env_reset, env_keep="COLORS DISPLAY HOSTNAME HISTSIZE KDEDIR
LS_COLORS",
 env_keep+="MAIL PS1 PS2 QTDIR USERNAME LANG LC_ADDRESS LC_CTYPE",
 env_keep+="LC_COLLATE LC_IDENTIFICATION LC_MEASUREMENT
LC_MESSAGES",
 env_keep+="LC_MONETARY LC_NAME LC_NUMERIC LC_PAPER LC_TELEPHONE",
 env_keep+="LC_TIME LC_ALL LANGUAGE LINGUAS _XKB_CHARSET XAUTHORITY
KRB5CCNAME",
 secure_path=/sbin\:/bin\:/usr/sbin\:/usr/bin

User administrator@ad-domain.com may run the following commands on idmclient:
 (root) /usr/sbin/reboot

3. Reboot the machine using sudo. Enter the password for administrator@ad-domain.com when
prompted:

[administrator@ad-domain.com@idmclient ~]$ sudo /usr/sbin/reboot
[sudo] password for administrator@ad-domain.com:

Additional resources

Active Directory users and Identity Management groups

Include users and groups from a trusted Active Directory domain into SUDO rules

8.4. GRANTING SUDO ACCESS TO AN IDM USER ON AN IDM CLIENT

CHAPTER 8. GRANTING SUDO ACCESS TO AN IDM USER ON AN IDM CLIENT

73

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html-single/windows_integration_guide/index#trust-win-groups
https://freeipa.readthedocs.io/en/latest/designs/adtrust/sudorules-with-ad-objects.html

8.4. GRANTING SUDO ACCESS TO AN IDM USER ON AN IDM CLIENT
USING THE IDM WEB UI

In Identity Management (IdM), you can grant sudo access for a specific command to an IdM user
account on a specific IdM host. First, add a sudo command and then create a sudo rule for one or more
commands.

Complete this procedure to create the idm_user_reboot sudo rule to grant the idm_user account the
permission to run the /usr/sbin/reboot command on the idmclient machine.

Prerequisites

You are logged in as IdM administrator.

You have created a user account for idm_user in IdM and unlocked the account by creating a
password for the user. For details on adding a new IdM user using the command-line interface,
see Adding users using the command line .

No local idm_user account is present on the idmclient host. The idm_user user is not listed in
the local /etc/passwd file.

Procedure

1. Add the /usr/sbin/reboot command to the IdM database of sudo commands:

a. Navigate to Policy → Sudo → Sudo Commands.

b. Click Add in the upper right corner to open the Add sudo command dialog box.

c. Enter the command you want the user to be able to perform using sudo: /usr/sbin/reboot.

Figure 8.1. Adding IdM sudo command

d. Click Add.

2. Use the new sudo command entry to create a sudo rule to allow idm_user to reboot the

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

74

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_idm_users_groups_hosts_and_access_control_rules/managing-user-accounts-using-the-command-line_managing-users-groups-hosts#adding-users-using-the-command-line_managing-idm-users-using-the-command-line

2. Use the new sudo command entry to create a sudo rule to allow idm_user to reboot the
idmclient machine:

a. Navigate to Policy → Sudo → Sudo rules.

b. Click Add in the upper right corner to open the Add sudo rule dialog box.

c. Enter the name of the sudo rule: idm_user_reboot.

d. Click Add and Edit.

e. Specify the user:

i. In the Who section, check the Specified Users and Groups radio button.

ii. In the User category the rule applies to subsection, click Add to open the Add users
into sudo rule "idm_user_reboot" dialog box.

iii. In the Add users into sudo rule "idm_user_reboot" dialog box in the Available column,
check the idm_user checkbox, and move it to the Prospective column.

iv. Click Add.

f. Specify the host:

i. In the Access this host section, check the Specified Hosts and Groups radio button.

ii. In the Host category this rule applies to subsection, click Add to open the Add hosts
into sudo rule "idm_user_reboot" dialog box.

iii. In the Add hosts into sudo rule "idm_user_reboot" dialog box in the Available column,
check the idmclient.idm.example.com checkbox, and move it to the Prospective
column.

iv. Click Add.

g. Specify the commands:

i. In the Command category the rule applies to subsection of the Run Commands
section, check the Specified Commands and Groups radio button.

ii. In the Sudo Allow Commands subsection, click Add to open the Add allow sudo
commands into sudo rule "idm_user_reboot" dialog box.

iii. In the Add allow sudo commands into sudo rule "idm_user_reboot" dialog box in the
Available column, check the /usr/sbin/reboot checkbox, and move it to the
Prospective column.

iv. Click Add to return to the idm_sudo_reboot page.

Figure 8.2. Adding IdM sudo rule

CHAPTER 8. GRANTING SUDO ACCESS TO AN IDM USER ON AN IDM CLIENT

75

Figure 8.2. Adding IdM sudo rule

h. Click Save in the top left corner.

The new rule is enabled by default.

NOTE

Propagating the changes from the server to the client can take a few minutes.

Verification

1. Log in to idmclient as idm_user.

2. Reboot the machine using sudo. Enter the password for idm_user when prompted:

$ sudo /usr/sbin/reboot
[sudo] password for idm_user:

If the sudo rule is configured correctly, the machine reboots.

8.5. CREATING A SUDO RULE ON THE CLI THAT RUNS A COMMAND
AS A SERVICE ACCOUNT ON AN IDM CLIENT

In IdM, you can configure a sudo rule with a RunAs alias to run a sudo command as another user or
group. For example, you might have an IdM client that hosts a database application, and you need to run
commands as the local service account that corresponds to that application.

Use this example to create a sudo rule on the command line called run_third-party-app_report to allow
the idm_user account to run the /opt/third-party-app/bin/report command as the thirdpartyapp
service account on the idmclient host.

Prerequisites

You are logged in as IdM administrator.

You have created a user account for idm_user in IdM and unlocked the account by creating a
password for the user. For details on adding a new IdM user using the CLI, see Adding users
using the command line.

No local idm_user account is present on the idmclient host. The idm_user user is not listed in

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

76

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/managing-user-accounts-using-the-command-line_configuring-and-managing-idm#adding-users-using-the-command-line_managing-idm-users-using-the-command-line

No local idm_user account is present on the idmclient host. The idm_user user is not listed in
the local /etc/passwd file.

You have a custom application named third-party-app installed on the idmclient host.

The report command for the third-party-app application is installed in the /opt/third-party-
app/bin/report directory.

You have created a local service account named thirdpartyapp to execute commands for the
third-party-app application.

Procedure

1. Retrieve a Kerberos ticket as the IdM admin.

[root@idmclient ~]# kinit admin

2. Add the /opt/third-party-app/bin/report command to the IdM database of sudo commands:

[root@idmclient ~]# ipa sudocmd-add /opt/third-party-app/bin/report
--
Added Sudo Command "/opt/third-party-app/bin/report"
--
 Sudo Command: /opt/third-party-app/bin/report

3. Create a sudo rule named run_third-party-app_report:

[root@idmclient ~]# ipa sudorule-add run_third-party-app_report
--
Added Sudo Rule "run_third-party-app_report"
--
 Rule name: run_third-party-app_report
 Enabled: TRUE

4. Use the --users=<user> option to specify the RunAs user for the sudorule-add-runasuser
command:

[root@idmclient ~]# ipa sudorule-add-runasuser run_third-party-app_report --
users=thirdpartyapp
 Rule name: run_third-party-app_report
 Enabled: TRUE
 RunAs External User: thirdpartyapp

Number of members added 1

The user (or group specified with the --groups=* option) can be external to IdM, such as a local
service account or an Active Directory user. Do not add a % prefix for group names.

5. Add the /opt/third-party-app/bin/report command to the run_third-party-app_report rule:

[root@idmclient ~]# ipa sudorule-add-allow-command run_third-party-app_report --
sudocmds '/opt/third-party-app/bin/report'
Rule name: run_third-party-app_report
Enabled: TRUE

CHAPTER 8. GRANTING SUDO ACCESS TO AN IDM USER ON AN IDM CLIENT

77

Sudo Allow Commands: /opt/third-party-app/bin/report
RunAs External User: thirdpartyapp

Number of members added 1

6. Apply the run_third-party-app_report rule to the IdM idmclient host:

[root@idmclient ~]# ipa sudorule-add-host run_third-party-app_report --hosts
idmclient.idm.example.com
Rule name: run_third-party-app_report
Enabled: TRUE
Hosts: idmclient.idm.example.com
Sudo Allow Commands: /opt/third-party-app/bin/report
RunAs External User: thirdpartyapp

Number of members added 1

7. Add the idm_user account to the run_third-party-app_report rule:

[root@idmclient ~]# ipa sudorule-add-user run_third-party-app_report --users idm_user
Rule name: run_third-party-app_report
Enabled: TRUE
Users: idm_user
Hosts: idmclient.idm.example.com
Sudo Allow Commands: /opt/third-party-app/bin/report
RunAs External User: thirdpartyapp

Number of members added 1

NOTE

Propagating the changes from the server to the client can take a few minutes.

Verification

1. Log in to the idmclient host as the idm_user account.

2. Test the new sudo rule:

a. Display which sudo rules the idm_user account is allowed to perform.

[idm_user@idmclient ~]$ sudo -l
Matching Defaults entries for idm_user@idm.example.com on idmclient:
 !visiblepw, always_set_home, match_group_by_gid, always_query_group_plugin,
 env_reset, env_keep="COLORS DISPLAY HOSTNAME HISTSIZE KDEDIR
LS_COLORS",
 env_keep+="MAIL PS1 PS2 QTDIR USERNAME LANG LC_ADDRESS LC_CTYPE",
 env_keep+="LC_COLLATE LC_IDENTIFICATION LC_MEASUREMENT
LC_MESSAGES",
 env_keep+="LC_MONETARY LC_NAME LC_NUMERIC LC_PAPER
LC_TELEPHONE",
 env_keep+="LC_TIME LC_ALL LANGUAGE LINGUAS _XKB_CHARSET
XAUTHORITY KRB5CCNAME",

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

78

 secure_path=/sbin\:/bin\:/usr/sbin\:/usr/bin

User idm_user@idm.example.com may run the following commands on idmclient:
 (thirdpartyapp) /opt/third-party-app/bin/report

b. Run the report command as the thirdpartyapp service account.

[idm_user@idmclient ~]$ sudo -u thirdpartyapp /opt/third-party-app/bin/report
[sudo] password for idm_user@idm.example.com:
Executing report...
Report successful.

8.6. CREATING A SUDO RULE IN THE IDM WEBUI THAT RUNS A
COMMAND AS A SERVICE ACCOUNT ON AN IDM CLIENT

In IdM, you can configure a sudo rule with a RunAs alias to run a sudo command as another user or
group. For example, you might have an IdM client that hosts a database application, and you need to run
commands as the local service account that corresponds to that application.

Use this example to create a sudo rule in the IdM WebUI called run_third-party-app_report to allow the
idm_user account to run the /opt/third-party-app/bin/report command as the thirdpartyapp service
account on the idmclient host.

Prerequisites

You are logged in as IdM administrator.

You have created a user account for idm_user in IdM and unlocked the account by creating a
password for the user. For details on adding a new IdM user using the CLI, see Adding users
using the command line.

No local idm_user account is present on the idmclient host. The idm_user user is not listed in
the local /etc/passwd file.

You have a custom application named third-party-app installed on the idmclient host.

The report command for the third-party-app application is installed in the /opt/third-party-
app/bin/report directory.

You have created a local service account named thirdpartyapp to execute commands for the
third-party-app application.

Procedure

1. Add the /opt/third-party-app/bin/report command to the IdM database of sudo commands:

a. Navigate to Policy → Sudo → Sudo Commands.

b. Click Add in the upper right corner to open the Add sudo command dialog box.

c. Enter the command: /opt/third-party-app/bin/report.

CHAPTER 8. GRANTING SUDO ACCESS TO AN IDM USER ON AN IDM CLIENT

79

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/managing-user-accounts-using-the-command-line_configuring-and-managing-idm#adding-users-using-the-command-line_managing-idm-users-using-the-command-line

d. Click Add.

2. Use the new sudo command entry to create the new sudo rule:

a. Navigate to Policy → Sudo → Sudo rules.

b. Click Add in the upper right corner to open the Add sudo rule dialog box.

c. Enter the name of the sudo rule: run_third-party-app_report.

d. Click Add and Edit.

e. Specify the user:

i. In the Who section, check the Specified Users and Groups radio button.

ii. In the User category the rule applies to subsection, click Add to open the Add users
into sudo rule "run_third-party-app_report" dialog box.

iii. In the Add users into sudo rule "run_third-party-app_report" dialog box in the
Available column, check the idm_user checkbox, and move it to the Prospective
column.

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

80

iv. Click Add.

f. Specify the host:

i. In the Access this host section, check the Specified Hosts and Groups radio button.

ii. In the Host category this rule applies to subsection, click Add to open the Add hosts
into sudo rule "run_third-party-app_report" dialog box.

iii. In the Add hosts into sudo rule "run_third-party-app_report" dialog box in the
Available column, check the idmclient.idm.example.com checkbox, and move it to the
Prospective column.

iv. Click Add.

g. Specify the commands:

i. In the Command category the rule applies to subsection of the Run Commands
section, check the Specified Commands and Groups radio button.

ii. In the Sudo Allow Commands subsection, click Add to open the Add allow sudo

CHAPTER 8. GRANTING SUDO ACCESS TO AN IDM USER ON AN IDM CLIENT

81

ii. In the Sudo Allow Commands subsection, click Add to open the Add allow sudo
commands into sudo rule "run_third-party-app_report" dialog box.

iii. In the Add allow sudo commands into sudo rule "run_third-party-app_report" dialog
box in the Available column, check the /opt/third-party-app/bin/report checkbox, and
move it to the Prospective column.

iv. Click Add to return to the run_third-party-app_report page.

h. Specify the RunAs user:

i. In the As Whom section, check the Specified Users and Groups radio button.

ii. In the RunAs Users subsection, click Add to open the Add RunAs users into sudo rule
"run_third-party-app_report" dialog box.

iii. In the Add RunAs users into sudo rule "run_third-party-app_report" dialog box, enter
the thirdpartyapp service account in the External box and move it to the Prospective
column.

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

82

iv. Click Add to return to the run_third-party-app_report page.

i. Click Save in the top left corner.

The new rule is enabled by default.

Figure 8.3. Details of the sudo rule

NOTE

Propagating the changes from the server to the client can take a few minutes.

Verification

1. Log in to the idmclient host as the idm_user account.

2. Test the new sudo rule:

CHAPTER 8. GRANTING SUDO ACCESS TO AN IDM USER ON AN IDM CLIENT

83

a. Display which sudo rules the idm_user account is allowed to perform.

[idm_user@idmclient ~]$ sudo -l
Matching Defaults entries for idm_user@idm.example.com on idmclient:
 !visiblepw, always_set_home, match_group_by_gid, always_query_group_plugin,
 env_reset, env_keep="COLORS DISPLAY HOSTNAME HISTSIZE KDEDIR
LS_COLORS",
 env_keep+="MAIL PS1 PS2 QTDIR USERNAME LANG LC_ADDRESS LC_CTYPE",
 env_keep+="LC_COLLATE LC_IDENTIFICATION LC_MEASUREMENT
LC_MESSAGES",
 env_keep+="LC_MONETARY LC_NAME LC_NUMERIC LC_PAPER
LC_TELEPHONE",
 env_keep+="LC_TIME LC_ALL LANGUAGE LINGUAS _XKB_CHARSET
XAUTHORITY KRB5CCNAME",
 secure_path=/sbin\:/bin\:/usr/sbin\:/usr/bin

User idm_user@idm.example.com may run the following commands on idmclient:
 (thirdpartyapp) /opt/third-party-app/bin/report

b. Run the report command as the thirdpartyapp service account.

[idm_user@idmclient ~]$ sudo -u thirdpartyapp /opt/third-party-app/bin/report
[sudo] password for idm_user@idm.example.com:
Executing report...
Report successful.

8.7. ENABLING GSSAPI AUTHENTICATION FOR SUDO ON AN IDM
CLIENT

Enable Generic Security Service Application Program Interface (GSSAPI) authentication on an IdM
client for the sudo and sudo -i commands via the pam_sss_gss.so PAM module. With this
configuration, IdM users can authenticate to the sudo command with their Kerberos ticket.

Prerequisites

You have created a sudo rule for an IdM user that applies to an IdM host. For this example, you
have created the idm_user_reboot sudo rule to grant the idm_user account the permission to
run the /usr/sbin/reboot command on the idmclient host.

The idmclient host is running RHEL 8.4 or later.

You need root privileges to modify the /etc/sssd/sssd.conf file and PAM files in the
/etc/pam.d/ directory.

Procedure

1. Open the /etc/sssd/sssd.conf configuration file.

2. Add the following entry to the [domain/<domain_name>] section.

[domain/<domain_name>]
pam_gssapi_services = sudo, sudo-i

3. Save and close the /etc/sssd/sssd.conf file.

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

84

4. Restart the SSSD service to load the configuration changes.

[root@idmclient ~]# systemctl restart sssd

5. On RHEL 8.8 or later:

a. Optional: Determine if you have selected the sssd authselect profile:

authselect current
Profile ID: sssd

b. If the sssd authselect profile is selected, enable GSSAPI authentication:

authselect enable-feature with-gssapi

c. If the sssd authselect profile is not selected, select it and enable GSSAPI authentication:

authselect select sssd with-gssapi

6. On RHEL 8.7 or earlier:

a. Open the /etc/pam.d/sudo PAM configuration file.

b. Add the following entry as the first line of the auth section in the /etc/pam.d/sudo file.

#%PAM-1.0
auth sufficient pam_sss_gss.so
auth include system-auth
account include system-auth
password include system-auth
session include system-auth

c. Save and close the /etc/pam.d/sudo file.

Verification

1. Log into the host as the idm_user account.

[root@idm-client ~]# ssh -l idm_user@idm.example.com localhost
idm_user@idm.example.com's password:

2. Verify that you have a ticket-granting ticket as the idm_user account.

[idmuser@idmclient ~]$ klist
Ticket cache: KCM:1366201107
Default principal: idm_user@IDM.EXAMPLE.COM

Valid starting Expires Service principal
01/08/2021 09:11:48 01/08/2021 19:11:48
krbtgt/IDM.EXAMPLE.COM@IDM.EXAMPLE.COM
 renew until 01/15/2021 09:11:44

3. Optional: If you do not have Kerberos credentials for the idm_user account, delete your current

CHAPTER 8. GRANTING SUDO ACCESS TO AN IDM USER ON AN IDM CLIENT

85

3. Optional: If you do not have Kerberos credentials for the idm_user account, delete your current
Kerberos credentials and request the correct ones.

[idm_user@idmclient ~]$ kdestroy -A

[idm_user@idmclient ~]$ kinit idm_user@IDM.EXAMPLE.COM
Password for idm_user@idm.example.com:

4. Reboot the machine using sudo, without specifying a password.

[idm_user@idmclient ~]$ sudo /usr/sbin/reboot

Additional resources

The GSSAPI entry in the IdM terminology listing

Granting sudo access to an IdM user on an IdM client using IdM Web UI

Granting sudo access to an IdM user on an IdM client using the CLI

pam_sss_gss (8) man page

sssd.conf (5) man page

8.8. ENABLING GSSAPI AUTHENTICATION AND ENFORCING
KERBEROS AUTHENTICATION INDICATORS FOR SUDO ON AN IDM
CLIENT

Enable Generic Security Service Application Program Interface (GSSAPI) authentication on an IdM
client for the sudo and sudo -i commands via the pam_sss_gss.so PAM module. Additionally, only
users who have logged in with a smart card will authenticate to those commands with their Kerberos
ticket.

NOTE

You can use this procedure as a template to configure GSSAPI authentication with SSSD
for other PAM-aware services, and further restrict access to only those users that have a
specific authentication indicator attached to their Kerberos ticket.

Prerequisites

You have created a sudo rule for an IdM user that applies to an IdM host. For this example, you
have created the idm_user_reboot sudo rule to grant the idm_user account the permission to
run the /usr/sbin/reboot command on the idmclient host.

You have configured smart card authentication for the idmclient host.

The idmclient host is running RHEL 8.4 or later.

You need root privileges to modify the /etc/sssd/sssd.conf file and PAM files in the
/etc/pam.d/ directory.

Procedure

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

86

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/planning_identity_management/overview-of-identity-management-and-access-control-planning-identity-management#IdM_terminology_overview-of-idm-and-access-control

1. Open the /etc/sssd/sssd.conf configuration file.

2. Add the following entries to the [domain/<domain_name>] section.

[domain/<domain_name>]
pam_gssapi_services = sudo, sudo-i
pam_gssapi_indicators_map = sudo:pkinit, sudo-i:pkinit

3. Save and close the /etc/sssd/sssd.conf file.

4. Restart the SSSD service to load the configuration changes.

[root@idmclient ~]# systemctl restart sssd

5. On RHEL 8.8 or later:

a. Determine if you have selected the sssd authselect profile:

authselect current
Profile ID: sssd

b. Optional: Select the sssd authselect profile:

authselect select sssd

c. Enable GSSAPI authentication:

authselect enable-feature with-gssapi

d. Configure the system to authenticate only users with smart cards:

authselect with-smartcard-required

6. On RHEL 8.7 or earlier:

a. Open the /etc/pam.d/sudo PAM configuration file.

b. Add the following entry as the first line of the auth section in the /etc/pam.d/sudo file.

#%PAM-1.0
auth sufficient pam_sss_gss.so
auth include system-auth
account include system-auth
password include system-auth
session include system-auth

c. Save and close the /etc/pam.d/sudo file.

d. Open the /etc/pam.d/sudo-i PAM configuration file.

e. Add the following entry as the first line of the auth section in the /etc/pam.d/sudo-i file.

#%PAM-1.0
auth sufficient pam_sss_gss.so

CHAPTER 8. GRANTING SUDO ACCESS TO AN IDM USER ON AN IDM CLIENT

87

auth include sudo
account include sudo
password include sudo
session optional pam_keyinit.so force revoke
session include sudo

f. Save and close the /etc/pam.d/sudo-i file.

Verification

1. Log into the host as the idm_user account and authenticate with a smart card.

[root@idmclient ~]# ssh -l idm_user@idm.example.com localhost
PIN for smart_card

2. Verify that you have a ticket-granting ticket as the smart card user.

[idm_user@idmclient ~]$ klist
Ticket cache: KEYRING:persistent:1358900015:krb_cache_TObtNMd
Default principal: idm_user@IDM.EXAMPLE.COM

Valid starting Expires Service principal
02/15/2021 16:29:48 02/16/2021 02:29:48
krbtgt/IDM.EXAMPLE.COM@IDM.EXAMPLE.COM
 renew until 02/22/2021 16:29:44

3. Display which sudo rules the idm_user account is allowed to perform.

[idm_user@idmclient ~]$ sudo -l
Matching Defaults entries for idmuser on idmclient:
 !visiblepw, always_set_home, match_group_by_gid, always_query_group_plugin,
 env_reset, env_keep="COLORS DISPLAY HOSTNAME HISTSIZE KDEDIR
LS_COLORS",
 env_keep+="MAIL PS1 PS2 QTDIR USERNAME LANG LC_ADDRESS LC_CTYPE",
 env_keep+="LC_COLLATE LC_IDENTIFICATION LC_MEASUREMENT
LC_MESSAGES",
 env_keep+="LC_MONETARY LC_NAME LC_NUMERIC LC_PAPER LC_TELEPHONE",
 env_keep+="LC_TIME LC_ALL LANGUAGE LINGUAS _XKB_CHARSET XAUTHORITY
KRB5CCNAME",
 secure_path=/sbin\:/bin\:/usr/sbin\:/usr/bin

User idm_user may run the following commands on idmclient:
 (root) /usr/sbin/reboot

4. Reboot the machine using sudo, without specifying a password.

[idm_user@idmclient ~]$ sudo /usr/sbin/reboot

Additional resources

SSSD options controlling GSSAPI authentication for PAM services

The GSSAPI entry in the IdM terminology listing

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

88

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/granting-sudo-access-to-an-idm-user-on-an-idm-client_configuring-and-managing-idm#ref_sssd-options-controlling-gssapi-authentication-for-pam-services_granting-sudo-access-to-an-IdM-user-on-an-IdM-client
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/planning_identity_management/overview-of-identity-management-and-access-control-planning-identity-management#IdM_terminology_overview-of-idm-and-access-control

Configuring Identity Management for smart card authentication

Kerberos authentication indicators

Granting sudo access to an IdM user on an IdM client using IdM Web UI

Granting sudo access to an IdM user on an IdM client using the CLI .

pam_sss_gss (8) man page

sssd.conf (5) man page

8.9. SSSD OPTIONS CONTROLLING GSSAPI AUTHENTICATION FOR
PAM SERVICES

You can use the following options for the /etc/sssd/sssd.conf configuration file to adjust the GSSAPI
configuration within the SSSD service.

pam_gssapi_services

GSSAPI authentication with SSSD is disabled by default. You can use this option to specify a
comma-separated list of PAM services that are allowed to try GSSAPI authentication using the
pam_sss_gss.so PAM module. To explicitly disable GSSAPI authentication, set this option to -.

pam_gssapi_indicators_map

This option only applies to Identity Management (IdM) domains. Use this option to list Kerberos
authentication indicators that are required to grant PAM access to a service. Pairs must be in the
format <PAM_service>:_<required_authentication_indicator>_.
Valid authentication indicators are:

otp for two-factor authentication

radius for RADIUS authentication

pkinit for PKINIT, smart card, or certificate authentication

hardened for hardened passwords

pam_gssapi_check_upn

This option is enabled and set to true by default. If this option is enabled, the SSSD service requires
that the user name matches the Kerberos credentials. If false, the pam_sss_gss.so PAM module
authenticates every user that is able to obtain the required service ticket.

Examples

The following options enable Kerberos authentication for the sudo and sudo-i services, requires that
sudo users authenticated with a one-time password, and user names must match the Kerberos principal.
Because these settings are in the [pam] section, they apply to all domains:

[pam]
pam_gssapi_services = sudo, sudo-i
pam_gssapi_indicators_map = sudo:otp
pam_gssapi_check_upn = true

You can also set these options in individual [domain] sections to overwrite any global values in the
[pam] section. The following options apply different GSSAPI settings to each domain:

CHAPTER 8. GRANTING SUDO ACCESS TO AN IDM USER ON AN IDM CLIENT

89

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_smart_card_authentication/configuring-idm-for-smart-card-auth_managing-smart-card-authentication
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/managing-kerberos-ticket-policies_configuring-and-managing-idm#kerberos-authentication-indicators_managing-kerberos-ticket-policies

For the idm.example.com domain

Enable GSSAPI authentication for the sudo and sudo -i services.

Require certificate or smart card authentication authenticators for the sudo command.

Require one-time password authentication authenticators for the sudo -i command.

Enforce matching user names and Kerberos principals.

For the ad.example.com domain

Enable GSSAPI authentication only for the sudo service.

Do not enforce matching user names and principals.

[domain/idm.example.com]
pam_gssapi_services = sudo, sudo-i
pam_gssapi_indicators_map = sudo:pkinit, sudo-i:otp
pam_gssapi_check_upn = true
...

[domain/ad.example.com]
pam_gssapi_services = sudo
pam_gssapi_check_upn = false
...

Additional resources

Kerberos authentication indicators

8.10. TROUBLESHOOTING GSSAPI AUTHENTICATION FOR SUDO

If you are unable to authenticate to the sudo service with a Kerberos ticket from IdM, use the following
scenarios to troubleshoot your configuration.

Prerequisites

You have enabled GSSAPI authentication for the sudo service. See Enabling GSSAPI
authentication for sudo on an IdM client.

You need root privileges to modify the /etc/sssd/sssd.conf file and PAM files in the
/etc/pam.d/ directory.

Procedure

If you see the following error, the Kerberos service might not able to resolve the correct realm
for the service ticket based on the host name:

Server not found in Kerberos database

In this situation, add the hostname directly to [domain_realm] section in the /etc/krb5.conf
Kerberos configuration file:

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

90

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/managing-kerberos-ticket-policies_configuring-and-managing-idm#kerberos-authentication-indicators_managing-kerberos-ticket-policies

[idm-user@idm-client ~]$ cat /etc/krb5.conf
...

[domain_realm]
 .example.com = EXAMPLE.COM
 example.com = EXAMPLE.COM
 server.example.com = EXAMPLE.COM

If you see the following error, you do not have any Kerberos credentials:

No Kerberos credentials available

In this situation, retrieve Kerberos credentials with the kinit utility or authenticate with SSSD:

[idm-user@idm-client ~]$ kinit idm-user@IDM.EXAMPLE.COM
Password for idm-user@idm.example.com:

If you see either of the following errors in the /var/log/sssd/sssd_pam.log log file, the Kerberos
credentials do not match the username of the user currently logged in:

User with UPN [<UPN>] was not found.

UPN [<UPN>] does not match target user [<username>].

In this situation, verify that you authenticated with SSSD, or consider disabling the
pam_gssapi_check_upn option in the /etc/sssd/sssd.conf file:

[idm-user@idm-client ~]$ cat /etc/sssd/sssd.conf
...

pam_gssapi_check_upn = false

For additional troubleshooting, you can enable debugging output for the pam_sss_gss.so
PAM module.

Add the debug option at the end of all pam_sss_gss.so entries in PAM files, such as
/etc/pam.d/sudo and /etc/pam.d/sudo-i:

[root@idm-client ~]# cat /etc/pam.d/sudo
#%PAM-1.0
auth sufficient pam_sss_gss.so debug
auth include system-auth
account include system-auth
password include system-auth
session include system-auth

[root@idm-client ~]# cat /etc/pam.d/sudo-i
#%PAM-1.0
auth sufficient pam_sss_gss.so debug
auth include sudo
account include sudo
password include sudo
session optional pam_keyinit.so force revoke
session include sudo

CHAPTER 8. GRANTING SUDO ACCESS TO AN IDM USER ON AN IDM CLIENT

91

Try to authenticate with the pam_sss_gss.so module and review the console output. In
this example, the user did not have any Kerberos credentials.

[idm-user@idm-client ~]$ sudo ls -l /etc/sssd/sssd.conf
pam_sss_gss: Initializing GSSAPI authentication with SSSD
pam_sss_gss: Switching euid from 0 to 1366201107
pam_sss_gss: Trying to establish security context
pam_sss_gss: SSSD User name: idm-user@idm.example.com
pam_sss_gss: User domain: idm.example.com
pam_sss_gss: User principal:
pam_sss_gss: Target name: host@idm.example.com
pam_sss_gss: Using ccache: KCM:
pam_sss_gss: Acquiring credentials, principal name will be derived
pam_sss_gss: Unable to read credentials from [KCM:] [maj:0xd0000, min:0x96c73ac3]
pam_sss_gss: GSSAPI: Unspecified GSS failure. Minor code may provide more
information
pam_sss_gss: GSSAPI: No credentials cache found
pam_sss_gss: Switching euid from 1366200907 to 0
pam_sss_gss: System error [5]: Input/output error

8.11. USING AN ANSIBLE PLAYBOOK TO ENSURE SUDO ACCESS FOR
AN IDM USER ON AN IDM CLIENT

In Identity Management (IdM), you can ensure sudo access to a specific command is granted to an IdM
user account on a specific IdM host.

Complete this procedure to ensure a sudo rule named idm_user_reboot exists. The rule grants
idm_user the permission to run the /usr/sbin/reboot command on the idmclient machine.

Prerequisites

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

You have ensured the presence of a user account for idm_user in IdM and unlocked the
account by creating a password for the user. For details on adding a new IdM user using the
command-line interface, see link: Adding users using the command line .

No local idm_user account exists on idmclient. The idm_user user is not listed in the
/etc/passwd file on idmclient.

Procedure

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

92

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/managing-user-accounts-using-the-command-line_configuring-and-managing-idm#adding-users-using-the-command-line_managing-idm-users-using-the-command-line

1. Create an inventory file, for example inventory.file, and define ipaservers in it:

[ipaservers]
server.idm.example.com

2. Add one or more sudo commands:

a. Create an ensure-reboot-sudocmd-is-present.yml Ansible playbook that ensures the
presence of the /usr/sbin/reboot command in the IdM database of sudo commands. To
simplify this step, you can copy and modify the example in the /usr/share/doc/ansible-
freeipa/playbooks/sudocmd/ensure-sudocmd-is-present.yml file:

- name: Playbook to manage sudo command
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 # Ensure sudo command is present
 - ipasudocmd:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: /usr/sbin/reboot
 state: present

b. Run the playbook:

$ ansible-playbook --vault-password-file=password_file -v -i
path_to_inventory_directory/inventory.file path_to_playbooks_directory/ensure-
reboot-sudocmd-is-present.yml

3. Create a sudo rule that references the commands:

a. Create an ensure-sudorule-for-idmuser-on-idmclient-is-present.yml Ansible playbook
that uses the sudo command entry to ensure the presence of a sudo rule. The sudo rule
allows idm_user to reboot the idmclient machine. To simplify this step, you can copy and
modify the example in the /usr/share/doc/ansible-freeipa/playbooks/sudorule/ensure-
sudorule-is-present.yml file:

- name: Tests
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 # Ensure a sudorule is present granting idm_user the permission to run /usr/sbin/reboot
on idmclient
 - ipasudorule:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: idm_user_reboot
 description: A test sudo rule.
 allow_sudocmd: /usr/sbin/reboot

CHAPTER 8. GRANTING SUDO ACCESS TO AN IDM USER ON AN IDM CLIENT

93

 host: idmclient.idm.example.com
 user: idm_user
 state: present

b. Run the playbook:

$ ansible-playbook -v -i path_to_inventory_directory/inventory.file
path_to_playbooks_directory/ensure-sudorule-for-idmuser-on-idmclient-is-
present.yml

Verification

Test that the sudo rule whose presence you have ensured on the IdM server works on idmclient by
verifying that idm_user can reboot idmclient using sudo. Note that it can take a few minutes for the
changes made on the server to take effect on the client.

1. Log in to idmclient as idm_user.

2. Reboot the machine using sudo. Enter the password for idm_user when prompted:

$ sudo /usr/sbin/reboot
[sudo] password for idm_user:

If sudo is configured correctly, the machine reboots.

Additional resources

See the README-sudocmd.md, README-sudocmdgroup.md, and README-sudorule.md
files in the /usr/share/doc/ansible-freeipa/ directory.

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

94

CHAPTER 9. USING LDAPMODIFY TO MANAGE IDM USERS
EXTERNALLY

As an IdM administrators you can use the ipa commands to manage your directory content.
Alternatively, you can use the ldapmodify command to achieve similar goals. You can use this command
interactively and provide all the data directly in the command line. You also can provide data in the file in
the LDAP Data Interchange Format (LDIF) to ldapmodify command.

9.1. TEMPLATES FOR MANAGING IDM USER ACCOUNTS
EXTERNALLY

The following templates can be used for various user management operations in IdM. The templates
show which attributes you must modify using ldapmodify to achieve the following goals:

Adding a new stage user

Modifying a user’s attribute

Enabling a user

Disabling a user

Preserving a user

The templates are formatted in the LDAP Data Interchange Format (LDIF). LDIF is a standard plain text
data interchange format for representing LDAP directory content and update requests.

Using the templates, you can configure the LDAP provider of your provisioning system to manage IdM
user accounts.

For detailed example procedures, see the following sections:

Adding an IdM stage user defined in an LDIF file

Adding an IdM stage user directly from the CLI using ldapmodify

Preserving an IdM user with ldapmodify

Templates for adding a new stage user

A template for adding a user with UID and GID assigned automatically. The distinguished name
(DN) of the created entry must start with uid=user_login:

dn: uid=user_login,cn=staged
users,cn=accounts,cn=provisioning,dc=idm,dc=example,dc=com
changetype: add
objectClass: top
objectClass: inetorgperson
uid: user_login
sn: surname
givenName: first_name
cn: full_name

A template for adding a user with UID and GID assigned statically:

CHAPTER 9. USING LDAPMODIFY TO MANAGE IDM USERS EXTERNALLY

95

dn: uid=user_login,cn=staged
users,cn=accounts,cn=provisioning,dc=idm,dc=example,dc=com
changetype: add
objectClass: top
objectClass: person
objectClass: inetorgperson
objectClass: organizationalperson
objectClass: posixaccount
uid: user_login
uidNumber: UID_number
gidNumber: GID_number
sn: surname
givenName: first_name
cn: full_name
homeDirectory: /home/user_login

You are not required to specify any IdM object classes when adding stage users. IdM adds these
classes automatically after the users are activated.

Templates for modifying existing users

Modifying a user’s attribute:

dn: distinguished_name
changetype: modify
replace: attribute_to_modify
attribute_to_modify: new_value

Disabling a user:

dn: distinguished_name
changetype: modify
replace: nsAccountLock
nsAccountLock: TRUE

Enabling a user:

dn: distinguished_name
changetype: modify
replace: nsAccountLock
nsAccountLock: FALSE

Updating the nssAccountLock attribute has no effect on stage and preserved users. Even
though the update operation completes successfully, the attribute value remains
nssAccountLock: TRUE.

Preserving a user:

dn: distinguished_name
changetype: modrdn
newrdn: uid=user_login
deleteoldrdn: 0
newsuperior: cn=deleted users,cn=accounts,cn=provisioning,dc=idm,dc=example,dc=com

NOTE

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

96

NOTE

Before modifying a user, obtain the user’s distinguished name (DN) by searching using
the user’s login. In the following example, the user_allowed_to_modify_user_entries user is
a user allowed to modify user and group information, for example activator or IdM
administrator. The password in the example is this user’s password:

[...]
ldapsearch -LLL -x -D
"uid=user_allowed_to_modify_user_entries,cn=users,cn=accounts,dc=idm,dc=e
xample,dc=com" -w "Secret123" -H ldap://r8server.idm.example.com -b
"cn=users,cn=accounts,dc=idm,dc=example,dc=com" uid=test_user
dn: uid=test_user,cn=users,cn=accounts,dc=idm,dc=example,dc=com
memberOf: cn=ipausers,cn=groups,cn=accounts,dc=idm,dc=example,dc=com

9.2. TEMPLATES FOR MANAGING IDM GROUP ACCOUNTS
EXTERNALLY

The following templates can be used for various user group management operations in IdM. The
templates show which attributes you must modify using ldapmodify to achieve the following aims:

Creating a new group

Deleting an existing group

Adding a member to a group

Removing a member from a group

The templates are formatted in the LDAP Data Interchange Format (LDIF). LDIF is a standard plain text
data interchange format for representing LDAP directory content and update requests.

Using the templates, you can configure the LDAP provider of your provisioning system to manage IdM
group accounts.

Creating a new group

dn: cn=group_name,cn=groups,cn=accounts,dc=idm,dc=example,dc=com
changetype: add
objectClass: top
objectClass: ipaobject
objectClass: ipausergroup
objectClass: groupofnames
objectClass: nestedgroup
objectClass: posixgroup
uid: group_name
cn: group_name
gidNumber: GID_number

Modifying groups

Deleting an existing group:

CHAPTER 9. USING LDAPMODIFY TO MANAGE IDM USERS EXTERNALLY

97

dn: group_distinguished_name
changetype: delete

Adding a member to a group:

dn: group_distinguished_name
changetype: modify
add: member
member: uid=user_login,cn=users,cn=accounts,dc=idm,dc=example,dc=com

Do not add stage or preserved users to groups. Even though the update operation completes
successfully, the users will not be updated as members of the group. Only active users can
belong to groups.

Removing a member from a group:

dn: distinguished_name
changetype: modify
delete: member
member: uid=user_login,cn=users,cn=accounts,dc=idm,dc=example,dc=com

NOTE

Before modifying a group, obtain the group’s distinguished name (DN) by searching using
the group’s name.

ldapsearch -YGSSAPI -H ldap://server.idm.example.com -b
"cn=groups,cn=accounts,dc=idm,dc=example,dc=com" "cn=group_name"
dn: cn=group_name,cn=groups,cn=accounts,dc=idm,dc=example,dc=com
ipaNTSecurityIdentifier: S-1-5-21-1650388524-2605035987-2578146103-11017
cn: testgroup
objectClass: top
objectClass: groupofnames
objectClass: nestedgroup
objectClass: ipausergroup
objectClass: ipaobject
objectClass: posixgroup
objectClass: ipantgroupattrs
ipaUniqueID: 569bf864-9d45-11ea-bea3-525400f6f085
gidNumber: 1997010017

9.3. USING LDAPMODIFY COMMAND INTERACTIVELY

You can modify Lightweight Directory Access Protocol (LDAP) entries in the interactive mode.

Procedure

1. In a command line, enter the LDAP Data Interchange Format (LDIF) statement after the
ldapmodify command.

Example 9.1. Changing the telephone number for a testuser

ldapmodify -Y GSSAPI -H ldap://server.example.com

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

98

dn: uid=testuser,cn=users,cn=accounts,dc=example,dc=com
changetype: modify
replace: telephoneNumber
telephonenumber: 88888888

Note that you need to obtain a Kerberos ticket for using -Y option.

2. Press Ctlr+D to exit the interactive mode.

3. Alternatively, provide an LDIF file after ldapmodify command:

Example 9.2. The ldapmodify command reads modification data from an LDIF file

ldapmodify -Y GSSAPI -H ldap://server.example.com -f ~/example.ldif

Additional resources

For more information about how to use the ldapmodify command see ldapmodify(1) man
page.

For more information about the LDIF structure, see ldif(5) man page.

9.4. PRESERVING AN IDM USER WITH LDAPMODIFY

Follow this procedure to use ldapmodify to preserve an IdM user; that is, how to deactivate a user
account after the employee has left the company.

Prerequisites

You can authenticate as an IdM user with a role to preserve users.

Procedure

1. Log in as an IdM user with a role to preserve users:

$ kinit admin

2. Enter the ldapmodify command and specify the Generic Security Services API (GSSAPI) as the
Simple Authentication and Security Layer (SASL) mechanism to be used for authentication:

ldapmodify -Y GSSAPI
SASL/GSSAPI authentication started
SASL username: admin@IDM.EXAMPLE.COM
SASL SSF: 256
SASL data security layer installed.

3. Enter the dn of the user you want to preserve:

dn: uid=user1,cn=users,cn=accounts,dc=idm,dc=example,dc=com

4. Enter modrdn as the type of change you want to perform:

CHAPTER 9. USING LDAPMODIFY TO MANAGE IDM USERS EXTERNALLY

99

changetype: modrdn

5. Specify the newrdn for the user:

newrdn: uid=user1

6. Indicate that you want to preserve the user:

deleteoldrdn: 0

7. Specify the new superior DN:

newsuperior: cn=deleted users,cn=accounts,cn=provisioning,dc=idm,dc=example,dc=com

Preserving a user moves the entry to a new location in the directory information tree (DIT). For
this reason, you must specify the DN of the new parent entry as the new superior DN.

8. Press Enter again to confirm that this is the end of the entry:

[Enter]

modifying rdn of entry "uid=user1,cn=users,cn=accounts,dc=idm,dc=example,dc=com"

9. Exit the connection using Ctrl + C.

Verification

Verify that the user has been preserved by listing all preserved users:

$ ipa user-find --preserved=true

1 user matched

 User login: user1
 First name: First 1
 Last name: Last 1
 Home directory: /home/user1
 Login shell: /bin/sh
 Principal name: user1@IDM.EXAMPLE.COM
 Principal alias: user1@IDM.EXAMPLE.COM
 Email address: user1@idm.example.com
 UID: 1997010003
 GID: 1997010003
 Account disabled: True
 Preserved user: True

Number of entries returned 1

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

100

CHAPTER 10. SEARCHING IDM ENTRIES USING THE
LDAPSEARCH COMMAND

You can use the ipa find command to search through the Identity Management entries. For more
information about ipa command see Structure of IPA commands section.

This section introduces the basics of an alternative search option using ldapsearch command line
command through the Identity Management entries.

10.1. USING THE LDAPSEARCH COMMAND

The ldapsearch command has the following format:

ldapsearch [-x | -Y mechanism] [options] [search_filter] [list_of_attributes]

To configure the authentication method, specify the -x option to use simple binds or the -Y
option to set the Simple Authentication and Security Layer (SASL) mechanism. Note that you
need to obtain a Kerberos ticket if you are using the -Y GSSAPI option.

The options are the ldapsearch command options described in a table below.

The search_filter is an LDAP search filter.

The list_of_attributes is a list of the attributes that the search results return.

For example, you want to search all the entries of a base LDAP tree for the user name user01:

ldapsearch -x -H ldap://ldap.example.com -s sub "(uid=user01)"

The -x option tells the ldapsearch command to authenticate with the simple bind. Note that if
you do not provide the Distinguish Name (DN) with the -D option, the authentication is
anonymous.

The -H option connects you to the ldap://ldap.example.com.

The -s sub option tells the ldapsearch command to search all the entries, starting from the
base DN, for the user with the name user01. The "(uid=user01)" is a filter.

Note that if you do not provide the starting point for the search with the -b option, the command
searches in the default tree. It is specified in the BASE parameter of the etc/openldap/ldap.conf file.

Table 10.1. The ldapsearch command options

Option Description

-b The starting point for the search. If your search
parameters contain an asterisk (*) or other character,
that the command line can interpret into a code, you
must wrap the value in single or double quotation
marks. For example, -b cn=user,ou=Product
Development,dc=example,dc=com.

CHAPTER 10. SEARCHING IDM ENTRIES USING THE LDAPSEARCH COMMAND

101

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/managing_idm_users_groups_hosts_and_access_control_rules/index#the-structure-of-ipa-commands_introduction-to-the-ipa-command-line-utilities

-D The Distinguished Name (DN) with which you want
to authenticate.

-H An LDAP URL to connect to the server. The -H
option replaces the -h and -p options.

-l The time limit in seconds to wait for a search request
to complete.

-s scope The scope of the search. You can choose one of the
following for the scope:

base searches only the entry from the -b
option or defined by the LDAP_BASEDN
environment variable.

one searches only the children of the entry
from the -b option.

sub a subtree search from the -b option
starting point.

-W Requests for the password.

-x Disables the default SASL connection to allow simple
binds.

-Y SASL_mechanism Sets the SASL mechanism for the authentication.

-z number The maximum number of entries in the search result.

Option Description

Note, you must specify one of the authentication mechanisms with the -x or -Y option with the
ldapsearch command.

Additional resources

For details on how to use ldapsearch, see ldapsearch(1) man page.

10.2. USING THE LDAPSEARCH FILTERS

The ldapsearch filters allow you to narrow down the search results.

For example, you want the search result to contain all the entries with a common names set to example:

"(cn=example)"

In this case, the equal sign (=) is the operator, and example is the value.

Table 10.2. The ldapsearch filter operators

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

102

Search type Operator Description

Equality = Returns the entries with the exact
match to the value. For example,
cn=example.

Substring =string* string Returns all entries with the
substring match. For example,
cn=exa*l. The asterisk (*)
indicates zero (0) or more
characters.

Greater than or equal to >= Returns all entries with attributes
that are greater than or equal to
the value. For example,
uidNumber >= 5000.

Less than or equal to <= Returns all entries with attributes
that are less than or equal to the
value. For example, uidNumber <=
5000.

Presence =* Returns all entries with one or
more attributes. For example,
cn=*.

Approximate ~= Returns all entries with the similar
to the value attributes. For
example, l~=san fransico can
return l=san francisco.

You can use boolean operators to combine multiple filters to the ldapsearch command.

Table 10.3. The ldapsearch filter boolean operators

Search type Operator Description

AND & Returns all entries where all
statements in the filters are true.
For example, (&(filter)(filter)
(filter)…).

OR | Returns all entries where at least
one statement in the filters is true.
For example, (|(filter)(filter)(filter)
…).

NOT ! Returns all entries where the
statement in the filter is not true.
For example, (!(filter)).

CHAPTER 10. SEARCHING IDM ENTRIES USING THE LDAPSEARCH COMMAND

103

CHAPTER 11. CONFIGURING IDM FOR EXTERNAL
PROVISIONING OF USERS

As a system administrator, you can configure Identity Management (IdM) to support the provisioning of
users by an external solution for managing identities.

Rather than use the ipa utility, the administrator of the external provisioning system can access the IdM
LDAP using the ldapmodify utility. The administrator can add individual stage users from the CLI using
ldapmodify or using an LDIF file .

The assumption is that you, as an IdM administrator, fully trust your external provisioning system to only
add validated users. However, at the same time you do not want to assign the administrators of the
external provisioning system the IdM role of User Administrator to enable them to add new active
users directly.

You can configure a script to automatically move the staged users created by the external provisioning
system to active users automatically.

This chapter contains these sections:

1. Preparing Identity Management (IdM) to use an external provisioning system to add stage users
to IdM.

2. Creating a script to move the users added by the external provisioning system from stage to
active users.

3. Using an external provisioning system to add an IdM stage user. You can do that in two ways:

Add an IdM stage user using an LDIF file

Add an IdM stage user directly from the CLI using ldapmodify

11.1. PREPARING IDM ACCOUNTS FOR AUTOMATIC ACTIVATION OF
STAGE USER ACCOUNTS

This procedure shows how to configure two IdM user accounts to be used by an external provisioning
system. By adding the accounts to a group with an appropriate password policy, you enable the external
provisioning system to manage user provisioning in IdM. In the following, the user account to be used by
the external system to add stage users is named provisionator. The user account to be used to
automatically activate the stage users is named activator.

Prerequisites

The host on which you perform the procedure is enrolled into IdM.

Procedure

1. Log in as IdM administrator:

$ kinit admin

2. Create a user named provisionator with the privileges to add stage users.

a. Add the provisionator user account:

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

104

$ ipa user-add provisionator --first=provisioning --last=account --password

a. Grant the provisionator user the required privileges.

i. Create a custom role, System Provisioning, to manage adding stage users:

$ ipa role-add --desc "Responsible for provisioning stage users" "System
Provisioning"

ii. Add the Stage User Provisioning privilege to the role. This privilege provides the
ability to add stage users:

$ ipa role-add-privilege "System Provisioning" --privileges="Stage User Provisioning"

iii. Add the provisionator user to the role:

$ ipa role-add-member --users=provisionator "System Provisioning"

iv. Verify that the provisionator exists in IdM:

$ ipa user-find provisionator --all --raw

1 user matched

 dn: uid=provisionator,cn=users,cn=accounts,dc=idm,dc=example,dc=com
 uid: provisionator
 [...]

3. Create a user, activator, with the privileges to manage user accounts.

a. Add the activator user account:

$ ipa user-add activator --first=activation --last=account --password

b. Grant the activator user the required privileges by adding the user to the default User
Administrator role:

$ ipa role-add-member --users=activator "User Administrator"

4. Create a user group for application accounts:

$ ipa group-add application-accounts

5. Update the password policy for the group. The following policy prevents password expiration
and lockout for the account but compensates the potential risks by requiring complex
passwords:

$ ipa pwpolicy-add application-accounts --maxlife=10000 --minlife=0 --history=0 --
minclasses=4 --minlength=8 --priority=1 --maxfail=0 --failinterval=1 --lockouttime=0

6. Optional: Verify that the password policy exists in IdM:

CHAPTER 11. CONFIGURING IDM FOR EXTERNAL PROVISIONING OF USERS

105

$ ipa pwpolicy-show application-accounts
 Group: application-accounts
 Max lifetime (days): 10000
 Min lifetime (hours): 0
 History size: 0
[...]

7. Add the provisioning and activation accounts to the group for application accounts:

$ ipa group-add-member application-accounts --users={provisionator,activator}

8. Change the passwords for the user accounts:

$ kpasswd provisionator
$ kpasswd activator

Changing the passwords is necessary because new IdM users passwords expire immediately.

Additional resources:

See Managing user accounts using the command line .

See Delegating Permissions over Users .

See Defining IdM Password Policies .

11.2. CONFIGURING AUTOMATIC ACTIVATION OF IDM STAGE USER
ACCOUNTS

This procedure shows how to create a script for activating stage users. The system runs the script
automatically at specified time intervals. This ensures that new user accounts are automatically
activated and available for use shortly after they are created.

IMPORTANT

The procedure assumes that the owner of the external provisioning system has already
validated the users and that they do not require additional validation on the IdM side
before the script adds them to IdM.

It is sufficient to enable the activation process on only one of your IdM servers.

Prerequisites

The provisionator and activator accounts exist in IdM. For details, see Preparing IdM accounts
for automatic activation of stage user accounts.

You have root privileges on the IdM server on which you are running the procedure.

You are logged in as IdM administrator.

You trust your external provisioning system.

Procedure

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

106

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_idm_users_groups_hosts_and_access_control_rules/managing-user-accounts-using-the-command-line_managing-users-groups-hosts
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/linux_domain_identity_authentication_and_policy_guide/delegating-users
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/defining-idm-password-policies_configuring-and-managing-idm

1. Generate a keytab file for the activation account:

ipa-getkeytab -s server.idm.example.com -p "activator" -k /etc/krb5.ipa-activation.keytab

If you want to enable the activation process on more than one IdM server, generate the keytab
file on one server only. Then copy the keytab file to the other servers.

2. Create a script, /usr/local/sbin/ipa-activate-all, with the following contents to activate all users:

#!/bin/bash

kinit -k -i activator

ipa stageuser-find --all --raw | grep " uid:" | cut -d ":" -f 2 | while read uid; do ipa stageuser-
activate ${uid}; done

3. Edit the permissions and ownership of the ipa-activate-all script to make it executable:

chmod 755 /usr/local/sbin/ipa-activate-all
chown root:root /usr/local/sbin/ipa-activate-all

4. Create a systemd unit file, /etc/systemd/system/ipa-activate-all.service, with the following
contents:

[Unit]
Description=Scan IdM every minute for any stage users that must be activated

[Service]
Environment=KRB5_CLIENT_KTNAME=/etc/krb5.ipa-activation.keytab
Environment=KRB5CCNAME=FILE:/tmp/krb5cc_ipa-activate-all
ExecStart=/usr/local/sbin/ipa-activate-all

5. Create a systemd timer, /etc/systemd/system/ipa-activate-all.timer, with the following
contents:

[Unit]
Description=Scan IdM every minute for any stage users that must be activated

[Timer]
OnBootSec=15min
OnUnitActiveSec=1min

[Install]
WantedBy=multi-user.target

6. Reload the new configuration:

systemctl daemon-reload

7. Enable ipa-activate-all.timer:

systemctl enable ipa-activate-all.timer

CHAPTER 11. CONFIGURING IDM FOR EXTERNAL PROVISIONING OF USERS

107

8. Start ipa-activate-all.timer:

systemctl start ipa-activate-all.timer

9. Optional: Verify that the ipa-activate-all.timer daemon is running:

systemctl status ipa-activate-all.timer
● ipa-activate-all.timer - Scan IdM every minute for any stage users that must be activated
 Loaded: loaded (/etc/systemd/system/ipa-activate-all.timer; enabled; vendor preset:
disabled)
 Active: active (waiting) since Wed 2020-06-10 16:34:55 CEST; 15s ago
 Trigger: Wed 2020-06-10 16:35:55 CEST; 44s left

Jun 10 16:34:55 server.idm.example.com systemd[1]: Started Scan IdM every minute for any
stage users that must be activated.

11.3. ADDING AN IDM STAGE USER DEFINED IN AN LDIF FILE

Follow this procedure to access IdM LDAP and use an LDIF file to add stage users. While the example
below shows adding one single user, multiple users can be added in one file in bulk mode.

Prerequisites

IdM administrator has created the provisionator account and a password for it. For details, see
Preparing IdM accounts for automatic activation of stage user accounts .

You as the external administrator know the password of the provisionator account.

You can SSH to the IdM server from your LDAP server.

You are able to supply the minimal set of attributes that an IdM stage user must have to allow
the correct processing of the user life cycle, namely:

The distinguished name (dn)

The common name (cn)

The last name (sn)

The uid

Procedure

1. On the external server, create an LDIF file that contains information about the new user:

dn: uid=stageidmuser,cn=staged
users,cn=accounts,cn=provisioning,dc=idm,dc=example,dc=com
changetype: add
objectClass: top
objectClass: inetorgperson
uid: stageidmuser
sn: surname
givenName: first_name
cn: full_name

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

108

2. Transfer the LDIF file from the external server to the IdM server:

$ scp add-stageidmuser.ldif provisionator@server.idm.example.com:/provisionator/
Password:
add-stageidmuser.ldif 100% 364
217.6KB/s 00:00

3. Use the SSH protocol to connect to the IdM server as provisionator:

$ ssh provisionator@server.idm.example.com
Password:
[provisionator@server ~]$

4. On the IdM server, obtain the Kerberos ticket-granting ticket (TGT) for the provisionator
account:

[provisionator@server ~]$ kinit provisionator

5. Enter the ldapadd command with the -f option and the name of the LDIF file. Specify the name
of the IdM server and the port number:

~]$ ldapadd -h server.idm.example.com -p 389 -f add-stageidmuser.ldif
SASL/GSSAPI authentication started
SASL username: provisionator@IDM.EXAMPLE.COM
SASL SSF: 256
SASL data security layer installed.
adding the entry "uid=stageidmuser,cn=staged
users,cn=accounts,cn=provisioning,dc=idm,dc=example,dc=com"

11.4. ADDING AN IDM STAGE USER DIRECTLY FROM THE CLI USING
LDAPMODIFY

Follow this procedure to access access Identity Management (IdM) LDAP and use the ldapmodify
utility to add a stage user.

Prerequisites

The IdM administrator has created the provisionator account and a password for it. For details,
see Preparing IdM accounts for automatic activation of stage user accounts .

You as the external administrator know the password of the provisionator account.

You can SSH to the IdM server from your LDAP server.

You are able to supply the minimal set of attributes that an IdM stage user must have to allow
the correct processing of the user life cycle, namely:

The distinguished name (dn)

The common name (cn)

The last name (sn)

The uid

CHAPTER 11. CONFIGURING IDM FOR EXTERNAL PROVISIONING OF USERS

109

Procedure

1. Use the SSH protocol to connect to the IdM server using your IdM identity and credentials:

$ ssh provisionator@server.idm.example.com
Password:
[provisionator@server ~]$

2. Obtain the TGT of the provisionator account, an IdM user with a role to add new stage users:

$ kinit provisionator

3. Enter the ldapmodify command and specify Generic Security Services API (GSSAPI) as the
Simple Authentication and Security Layer (SASL) mechanism to use for authentication. Specify
the name of the IdM server and the port:

ldapmodify -h server.idm.example.com -p 389 -Y GSSAPI
SASL/GSSAPI authentication started
SASL username: provisionator@IDM.EXAMPLE.COM
SASL SSF: 56
SASL data security layer installed.

4. Enter the dn of the user you are adding:

dn: uid=stageuser,cn=staged
users,cn=accounts,cn=provisioning,dc=idm,dc=example,dc=com

5. Enter add as the type of change you are performing:

changetype: add

6. Specify the LDAP object class categories required to allow the correct processing of the user
life cycle:

objectClass: top
objectClass: inetorgperson

You can specify additional object classes.

7. Enter the uid of the user:

uid: stageuser

8. Enter the cn of the user:

cn: Babs Jensen

9. Enter the last name of the user:

sn: Jensen

10. Press Enter again to confirm that this is the end of the entry:

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

110

[Enter]

adding new entry "uid=stageuser,cn=staged
users,cn=accounts,cn=provisioning,dc=idm,dc=example,dc=com"

11. Exit the connection using Ctrl + C.

Verification

Verify the contents of the stage entry to make sure your provisioning system added all required POSIX
attributes and the stage entry is ready to be activated.

To display the new stage user’s LDAP attributes, enter the ipa stageuser-show --all --raw
command:

$ ipa stageuser-show stageuser --all --raw
 dn: uid=stageuser,cn=staged
users,cn=accounts,cn=provisioning,dc=idm,dc=example,dc=com
 uid: stageuser
 sn: Jensen
 cn: Babs Jensen
 has_password: FALSE
 has_keytab: FALSE
 nsaccountlock: TRUE
 objectClass: top
 objectClass: inetorgperson
 objectClass: organizationalPerson
 objectClass: person

1. Note that the user is explicitly disabled by the nsaccountlock attribute.

11.5. ADDITIONAL RESOURCES

See Using ldapmodify to manage IdM users externally .

CHAPTER 11. CONFIGURING IDM FOR EXTERNAL PROVISIONING OF USERS

111

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/using-ldapmodify-to-manage-idm-users-externally_configuring-and-managing-idm

CHAPTER 12. MANAGING KERBEROS PRINCIPAL ALIASES
FOR USERS, HOSTS, AND SERVICES

When you create a new user, host, or service, a Kerberos principal in the following format is automatically
added:

user_name@REALM

host/host_name@REALM

service_name/host_name@REALM

Administrators can enable users, hosts, or services to authenticate against Kerberos applications using
an alias. This is beneficial in the following scenarios:

The user name changed and the user wants to log in using both the previous and new user
name.

The user needs to log in using the email address even if the IdM Kerberos realm differs from the
email domain.

Note that if you rename a user, the object keeps the aliases and the previous canonical principal name.

12.1. ADDING A KERBEROS PRINCIPAL ALIAS

You can associate alias names with existing Kerberos principals in an Identity Management (IdM)
environment. This enhances security and simplifies authentication processes within the IdM domain.

Procedure

To add the alias name useralias to the account user, enter:

ipa user-add-principal <user> <useralias>

Added new aliases to user "user"

 User login: user
 Principal alias: user@IDM.EXAMPLE.COM, useralias@IDM.EXAMPLE.COM

To add an alias to a host or service, use the ipa host-add-principal or ipa service-add-
principal command respectively instead.

If you use an alias name to authenticate, use the -C option with the kinit command:

kinit -C <useralias>
Password for <user>@IDM.EXAMPLE.COM:

12.2. REMOVING A KERBEROS PRINCIPAL ALIAS

You can remove alias names associated with Kerberos principals in their Identity Management (IdM)
environment.

Procedure

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

112

To remove the alias useralias from the account user, enter:

ipa user-remove-principal <user> <useralias>

Removed aliases from user "user"

 User login: user
 Principal alias: user@IDM.EXAMPLE.COM

To remove an alias from a host or service, use the ipa host-remove-principal or ipa service-
remove-principal command respectively instead.

Note that you cannot remove the canonical principal name:

ipa user-show <user>
 User login: user
 ...
 Principal name: user@IDM.EXAMPLE.COM
 ...

ipa user-remove-principal user user
ipa: ERROR: invalid 'krbprincipalname': at least one value equal to the canonical principal
name must be present

12.3. ADDING A KERBEROS ENTERPRISE PRINCIPAL ALIAS

You can associate enterprise principal alias names with existing Kerberos enterprise principals in an
Identity Management (IdM) environment. Enterprise principal aliases can use any domain suffix except
for user principal name (UPN) suffixes, NetBIOS names, or domain names of trusted Active Directory
forest domains.

NOTE

When adding or removing enterprise principal aliases, escape the @ symbol using two
backslashes (\\). Otherwise, the shell interprets the @ symbol as part of the Kerberos
realm name and leads to the following error:

ipa: ERROR: The realm for the principal does not match the realm for this IPA server

Procedure

To add the enterprise principal alias user@example.com to the user account:

ipa user-add-principal <user> <user\\@example.com>

Added new aliases to user "user"

 User login: user
 Principal alias: user@IDM.EXAMPLE.COM, user\@example.com@IDM.EXAMPLE.COM

To add an enterprise alias to a host or service, use the ipa host-add-principal or ipa service-
add-principal command respectively instead.

If you use an enterprise principal name to authenticate, use the -E option with the kinit

CHAPTER 12. MANAGING KERBEROS PRINCIPAL ALIASES FOR USERS, HOSTS, AND SERVICES

113

If you use an enterprise principal name to authenticate, use the -E option with the kinit
command:

kinit -E <user@example.com>
Password for user\@example.com@IDM.EXAMPLE.COM:

12.4. REMOVING A KERBEROS ENTERPRISE PRINCIPAL ALIAS

You can remove enterprise principal alias names associated with Kerberos enterprise principals in their
Identity Management (IdM) environment.

NOTE

When adding or removing enterprise principal aliases, escape the @ symbol using two
backslashes (\\). Otherwise, the shell interprets the @ symbol as part of the Kerberos
realm name and leads to the following error:

ipa: ERROR: The realm for the principal does not match the realm for this IPA server

Procedure

To remove the enterprise principal alias user@example.com from the account user, enter:

ipa user-remove-principal <user> <user\\@example.com>

Removed aliases from user "user"

 User login: user
 Principal alias: user@IDM.EXAMPLE.COM

To remove an alias from a host or service, use the ipa host-remove-principal or ipa service-
remove-principal command respectively instead.

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

114

CHAPTER 13. STRENGTHENING KERBEROS SECURITY WITH
PAC INFORMATION

You can use Identity Management (IdM) with Privilege Attribute Certificate (PAC) information by
default since RHEL 8.5. Also, you can enable Security Identifiers (SIDs) in IdM deployments that were
installed before RHEL 8.5.

13.1. PRIVILEGE ATTRIBUTE CERTIFICATE (PAC) USE IN IDM

To increase security, RHEL Identity Management (IdM) now issues Kerberos tickets with Privilege
Attribute Certificate (PAC) information by default in new deployments. A PAC has rich information
about a Kerberos principal, including its Security Identifier (SID), group memberships, and home
directory information.

SIDs, which Microsoft Active Directory (AD) uses by default, are globally unique identifiers that are
never reused. SIDs express multiple namespaces: each domain has a SID, which is a prefix in the SID of
each object.

Starting from RHEL 8.5, when you install an IdM server or replica, the installation script generates SIDs
for users and groups by default. This allows IdM to work with PAC data. If you installed IdM before RHEL
8.5, and you have not configured a trust with an AD domain, you may not have generated SIDs for your
IdM objects. For more information about generating SIDs for your IdM objects, see Enabling Security
Identifiers (SIDs) in IdM.

By evaluating PAC information in Kerberos tickets, you can control resource access with much greater
detail. For example, the Administrator account in one domain has a uniquely different SID than the
Administrator account in any other domain. In an IdM environment with a trust to an AD domain, you can
set access controls based on globally unique SIDs rather than simple user names or UIDs that might
repeat in different locations, such as every Linux root account having a UID of 0.

13.2. ENABLING SECURITY IDENTIFIERS (SIDS) IN IDM

If you installed IdM before RHEL 8.5, and you have not configured a trust with an AD domain, you might
not have generated Security Identifiers (SIDs) for your IdM objects. This is because, before, the only way
to generate SIDs was to run the ipa-adtrust-install command to add the Trust Controller role to an
IdM server.

As of RHEL 8.6, Kerberos in IdM requires that your IdM objects have SIDs, which are necessary for
security based on Privilege Access Certificate (PAC) information.

Prerequisites

You installed IdM before RHEL 8.5.

You have not run the ipa-sidgen task, which is part of configuring a trust with an Active
Directory domain.

You can authenticate as the IdM admin account.

Procedure

Enable SID usage and trigger the SIDgen task to generate SIDs for existing users and groups.
This task might be resource-intensive:

CHAPTER 13. STRENGTHENING KERBEROS SECURITY WITH PAC INFORMATION

115

[root@server ~]# ipa config-mod --enable-sid --add-sids

Verification

Verify that the IdM admin user account entry has an ipantsecurityidentifier attribute with a SID
that ends with -500, the SID reserved for the domain administrator:

[root@server ~]# ipa user-show admin --all | grep ipantsecurityidentifier
 ipantsecurityidentifier: S-1-5-21-2633809701-976279387-419745629-500

Additional resources

Privilege Attribute Certificate (PAC) use in IdM

How to solve users unable to authenticate to IPA/IDM with PAC issues -
S4U2PROXY_EVIDENCE_TKT_WITHOUT_PAC error KCS solution

Trust Controllers and Trust Agents

Integrate SID configuration into base IPA installers

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

116

https://access.redhat.com/solutions/7052703
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/planning_identity_management/planning-a-cross-forest-trust-between-idm-and-ad_planning-identity-management#trust-controllers-and-trust-agents_planning-a-cross-forest-trust-between-idm-and-ad
https://freeipa.readthedocs.io/en/latest/designs/adtrust/sidconfig.html

CHAPTER 14. MANAGING KERBEROS TICKET POLICIES
Kerberos ticket policies in Identity Management (IdM) set restrictions on Kerberos ticket access,
duration, and renewal. You can configure Kerberos ticket policies for the Key Distribution Center (KDC)
running on your IdM server.

The following concepts and operations are performed when managing Kerberos ticket policies:

The role of the IdM KDC

IdM Kerberos ticket policy types

Kerberos authentication indicators

Enforcing authentication indicators for an IdM service

Configuring the global ticket lifecycle policy

Configuring global ticket policies per authentication indicator

Configuring the default ticket policy for a user

Configuring individual authentication indicator ticket policies for a user

Authentication indicator options for the krbtpolicy-mod command

14.1. THE ROLE OF THE IDM KDC

Identity Management’s authentication mechanisms use the Kerberos infrastructure established by the
Key Distribution Center (KDC). The KDC is the trusted authority that stores credential information and
ensures the authenticity of data originating from entities within the IdM network.

Each IdM user, service, and host acts as a Kerberos client and is identified by a unique Kerberos principal:

For users: identifier@REALM, such as admin@EXAMPLE.COM

For services: service/fully-qualified-hostname@REALM, such as
http/server.example.com@EXAMPLE.COM

For hosts: host/fully-qualified-hostname@REALM, such as
host/client.example.com@EXAMPLE.COM

The following image is a simplification of the communication between a Kerberos client, the KDC, and a
Kerberized application that the client wants to communicate with.

CHAPTER 14. MANAGING KERBEROS TICKET POLICIES

117

1. A Kerberos client identifies itself to the KDC by authenticating as a Kerberos principal. For
example, an IdM user performs kinit username and provides their password.

2. The KDC checks for the principal in its database, authenticates the client, and evaluates
Kerberos ticket policies to determine whether to grant the request.

3. The KDC issues the client a ticket-granting ticket (TGT) with a lifecycle and authentication
indicators according to the appropriate ticket policy.

4. With the TGT, the client requests a service ticket from the KDC to communicate with a
Kerberized service on a target host.

5. The KDC checks if the client’s TGT is still valid, and evaluates the service ticket request against
ticket policies.

6. The KDC issues the client a service ticket.

7. With the service ticket, the client can initiate encrypted communication with the service on the
target host.

14.2. IDM KERBEROS TICKET POLICY TYPES

IdM Kerberos ticket policies implement the following ticket policy types:

Connection policy

To protect Kerberized services with different levels of security, you can define connection policies to
enforce rules based on which pre-authentication mechanism a client used to retrieve a ticket-
granting ticket (TGT).
For example, you can require smart card authentication to connect to client1.example.com, and
require two-factor authentication to access the testservice application on client2.example.com.

To enforce connection policies, associate authentication indicators with services. Only clients that
have the required authentication indicators in their service ticket requests are able to access those
services. For more information, see Kerberos authentication indicators.

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

118

Ticket lifecycle policy

Each Kerberos ticket has a lifetime and a potential renewal age: you can renew a ticket before it
reaches its maximum lifetime, but not after it exceeds its maximum renewal age.
The default global ticket lifetime is one day (86400 seconds) and the default global maximum
renewal age is one week (604800 seconds). To adjust these global values, see Configuring the
global ticket lifecycle policy.

You can also define your own ticket lifecycle policies:

To configure different global ticket lifecycle values for each authentication indicator, see
Configuring global ticket policies per authentication indicator .

To define ticket lifecycle values for a single user that apply regardless of the authentication
method used, see Configuring the default ticket policy for a user .

To define individual ticket lifecycle values for each authentication indicator that only apply to
a single user, see Configuring individual authentication indicator ticket policies for a user .

14.3. KERBEROS AUTHENTICATION INDICATORS

The Kerberos Key Distribution Center (KDC) attaches authentication indicators to a ticket-granting
ticket (TGT) based on which pre-authentication mechanism the client used to prove its identity:

otp

two-factor authentication (password + One-Time Password)

radius

RADIUS authentication (commonly for 802.1x authentication)

pkinit

PKINIT, smart card, or certificate authentication

hardened

hardened passwords (SPAKE or FAST)[1]

The KDC then attaches the authentication indicators from the TGT to any service ticket requests that
stem from it. The KDC enforces policies such as service access control, maximum ticket lifetime, and
maximum renewable age based on the authentication indicators.

Authentication indicators and IdM services

If you associate a service or a host with an authentication indicator, only clients that used the
corresponding authentication mechanism to obtain a TGT will be able to access it. The KDC, not the
application or service, checks for authentication indicators in service ticket requests, and grants or
denies requests based on Kerberos connection policies.

For example, to require two-factor authentication to connect to a Virtual Private Network (VPN),
associate the otp authentication indicator with that service. Only users who used a One-Time password
to obtain their initial TGT from the KDC will be able to log in to the VPN:

Figure 14.1. Example of a VPN service requiring the otp authentication indicator

CHAPTER 14. MANAGING KERBEROS TICKET POLICIES

119

Figure 14.1. Example of a VPN service requiring the otp authentication indicator

If a service or a host has no authentication indicators assigned to it, it will accept tickets authenticated
by any mechanism.

Additional resources

Enforcing authentication indicators for an IdM service

Enabling GSSAPI authentication and enforcing Kerberos authentication indicators for sudo on
an IdM client

14.4. ENFORCING AUTHENTICATION INDICATORS FOR AN IDM
SERVICE

The authentication mechanisms supported by Identity Management (IdM) vary in their authentication
strength. For example, obtaining the initial Kerberos ticket-granting ticket (TGT) using a one-time
password (OTP) in combination with a standard password is considered more secure than
authentication using only a standard password.

By associating authentication indicators with a particular IdM service, you can, as an IdM administrator,
configure the service so that only users who used those specific pre-authentication mechanisms to
obtain their initial ticket-granting ticket (TGT) will be able to access the service.

In this way, you can configure different IdM services so that:

Only users who used a stronger authentication method to obtain their initial TGT, such as a one-
time password (OTP), can access services critical to security, such as a VPN.

Users who used simpler authentication methods to obtain their initial TGT, such as a password,
can only access non-critical services, such as local logins.

Figure 14.2. Example of authenticating using different technologies

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

120

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/granting-sudo-access-to-an-idm-user-on-an-idm-client_configuring-and-managing-idm#proc_enabling-gssapi-authentication-and-enforcing-kerberos-authentication-indicators-for-sudo-on-an-idm-client_granting-sudo-access-to-an-IdM-user-on-an-IdM-client

Figure 14.2. Example of authenticating using different technologies

This procedure describes creating an IdM service and configuring it to require particular Kerberos
authentication indicators from incoming service ticket requests.

14.4.1. Creating an IdM service entry and its Kerberos keytab

Adding an IdM service entry to IdM for a service running on an IdM host creates a corresponding
Kerberos principal, and allows the service to request an SSL certificate, a Kerberos keytab, or both.

The following procedure describes creating an IdM service entry and generating an associated Kerberos
keytab for encrypting communication with that service.

Prerequisites

Your service can store a Kerberos principal, an SSL certificate, or both.

Procedure

1. Add an IdM service with the ipa service-add command to create a Kerberos principal
associated with it. For example, to create the IdM service entry for the testservice application
that runs on host client.example.com:

[root@client ~]# ipa service-add testservice/client.example.com

Modified service "testservice/client.example.com@EXAMPLE.COM"

 Principal name: testservice/client.example.com@EXAMPLE.COM
 Principal alias: testservice/client.example.com@EXAMPLE.COM
 Managed by: client.example.com

2. Generate and store a Kerberos keytab for the service on the client.

[root@client ~]# ipa-getkeytab -k /etc/testservice.keytab -p
testservice/client.example.com
Keytab successfully retrieved and stored in: /etc/testservice.keytab

CHAPTER 14. MANAGING KERBEROS TICKET POLICIES

121

Verification

1. Display information about an IdM service with the ipa service-show command.

[root@server ~]# ipa service-show testservice/client.example.com
 Principal name: testservice/client.example.com@EXAMPLE.COM
 Principal alias: testservice/client.example.com@EXAMPLE.COM
 Keytab: True
 Managed by: client.example.com

2. Display the contents of the service’s Kerberos keytab with the klist command.

[root@server etc]# klist -ekt /etc/testservice.keytab
Keytab name: FILE:/etc/testservice.keytab
KVNO Timestamp Principal
---- ------------------- --
 2 04/01/2020 17:52:55 testservice/client.example.com@EXAMPLE.COM (aes256-cts-
hmac-sha1-96)
 2 04/01/2020 17:52:55 testservice/client.example.com@EXAMPLE.COM (aes128-cts-
hmac-sha1-96)
 2 04/01/2020 17:52:55 testservice/client.example.com@EXAMPLE.COM (camellia128-cts-
cmac)
 2 04/01/2020 17:52:55 testservice/client.example.com@EXAMPLE.COM (camellia256-cts-
cmac)

14.4.2. Associating authentication indicators with an IdM service using IdM CLI

As an Identity Management (IdM) administrator, you can configure a host or a service to require that a
service ticket presented by the client application contains a specific authentication indicator. For
example, you can ensure that only users who used a valid IdM two-factor authentication token with their
password when obtaining a Kerberos ticket-granting ticket (TGT) will be able to access that host or
service.

Follow this procedure to configure a service to require particular Kerberos authentication indicators
from incoming service ticket requests.

Prerequisites

You have created an IdM service entry for a service that runs on an IdM host. See Creating an
IdM service entry and its Kerberos keytab.

You have obtained the ticket-granting ticket of an administrative user in IdM.

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

122

WARNING

Do not assign authentication indicators to internal IdM services. The following IdM
services cannot perform the interactive authentication steps required by PKINIT
and multi-factor authentication methods:

host/server.example.com@EXAMPLE.COM
HTTP/server.example.com@EXAMPLE.COM
ldap/server.example.com@EXAMPLE.COM
DNS/server.example.com@EXAMPLE.COM
cifs/server.example.com@EXAMPLE.COM

Procedure

Use the ipa service-mod command to specify one or more required authentication indicators
for a service, identified with the --auth-ind argument.

Authentication method --auth-ind value

Two-factor authentication otp

RADIUS authentication radius

PKINIT, smart card, or certificate authentication pkinit

Hardened passwords (SPAKE or FAST) hardened

For example, to require that a user was authenticated with smart card or OTP authentication to
retrieve a service ticket for the testservice principal on host client.example.com:

[root@server ~]# ipa service-mod testservice/client.example.com@EXAMPLE.COM --
auth-ind otp --auth-ind pkinit

Modified service "testservice/client.example.com@EXAMPLE.COM"

 Principal name: testservice/client.example.com@EXAMPLE.COM
 Principal alias: testservice/client.example.com@EXAMPLE.COM
 Authentication Indicators: otp, pkinit
 Managed by: client.example.com

NOTE

CHAPTER 14. MANAGING KERBEROS TICKET POLICIES

123

NOTE

To remove all authentication indicators from a service, provide an empty list of indicators:

[root@server ~]# ipa service-mod
testservice/client.example.com@EXAMPLE.COM --auth-ind ''
--
Modified service "testservice/client.example.com@EXAMPLE.COM"
--
 Principal name: testservice/client.example.com@EXAMPLE.COM
 Principal alias: testservice/client.example.com@EXAMPLE.COM
 Managed by: client.example.com

Verification

Display information about an IdM service, including the authentication indicators it requires, with
the ipa service-show command.

[root@server ~]# ipa service-show testservice/client.example.com
 Principal name: testservice/client.example.com@EXAMPLE.COM
 Principal alias: testservice/client.example.com@EXAMPLE.COM
 Authentication Indicators: otp, pkinit
 Keytab: True
 Managed by: client.example.com

Additional resources

Retrieving a Kerberos service ticket for an IdM service

Enabling GSSAPI authentication and enforcing Kerberos authentication indicators for sudo on
an IdM client

14.4.3. Associating authentication indicators with an IdM service using IdM Web UI

As an Identity Management (IdM) administrator, you can configure a host or a service to require a
service ticket presented by the client application to contain a specific authentication indicator. For
example, you can ensure that only users who used a valid IdM two-factor authentication token with their
password when obtaining a Kerberos ticket-granting ticket (TGT) will be able to access that host or
service.

Follow this procedure to use the IdM Web UI to configure a host or service to require particular Kerberos
authentication indicators from incoming ticket requests.

Prerequisites

You have logged in to the IdM Web UI as an administrative user.

Procedure

1. Select Identity → Hosts or Identity → Services.

2. Click the name of the required host or service.

3. Under Authentication indicators, select the required authentication method.

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

124

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/granting-sudo-access-to-an-idm-user-on-an-idm-client_configuring-and-managing-idm#proc_enabling-gssapi-authentication-and-enforcing-kerberos-authentication-indicators-for-sudo-on-an-idm-client_granting-sudo-access-to-an-IdM-user-on-an-IdM-client

For example, selecting OTP ensures that only users who used a valid IdM two-factor
authentication token with their password when obtaining a Kerberos TGT will be able to
access the host or service.

If you select both OTP and RADIUS, then both users that used a valid IdM two-factor
authentication token with their password when obtaining a Kerberos TGT and users that
used the RADIUS server for obtaining their Kerberos TGT will be allowed access.

4. Click Save at the top of the page.

Additional resources

Retrieving a Kerberos service ticket for an IdM service

Enabling GSSAPI authentication and enforcing Kerberos authentication indicators for sudo on
an IdM client

14.4.4. Retrieving a Kerberos service ticket for an IdM service

The following procedure describes retrieving a Kerberos service ticket for an IdM service. You can use
this procedure to test Kerberos ticket policies, such as enforcing that certain Kerberos authentication
indicators are present in a ticket-granting ticket (TGT).

Prerequisites

If the service you are working with is not an internal IdM service, you have created a
corresponding IdM service entry for it. See Creating an IdM service entry and its Kerberos
keytab.

You have a Kerberos ticket-granting ticket (TGT).

Procedure

Use the kvno command with the -S option to retrieve a service ticket, and specify the name of
the IdM service and the fully-qualified domain name of the host that manages it.

[root@server ~]# kvno -S testservice client.example.com
testservice/client.example.com@EXAMPLE.COM: kvno = 1

NOTE

If you need to access an IdM service and your current ticket-granting ticket (TGT) does
not possess the required Kerberos authentication indicators associated with it, clear your
current Kerberos credentials cache with the kdestroy command and retrieve a new TGT:

[root@server ~]# kdestroy

For example, if you initially retrieved a TGT by authenticating with a password, and you
need to access an IdM service that has the pkinit authentication indicator associated with
it, destroy your current credentials cache and re-authenticate with a smart card. See
Kerberos authentication indicators.

Verification

CHAPTER 14. MANAGING KERBEROS TICKET POLICIES

125

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/granting-sudo-access-to-an-idm-user-on-an-idm-client_configuring-and-managing-idm#proc_enabling-gssapi-authentication-and-enforcing-kerberos-authentication-indicators-for-sudo-on-an-idm-client_granting-sudo-access-to-an-IdM-user-on-an-IdM-client

Use the klist command to verify that the service ticket is in the default Kerberos credentials
cache.

[root@server etc]# klist_
Ticket cache: KCM:1000
Default principal: admin@EXAMPLE.COM

Valid starting Expires Service principal
04/01/2020 12:52:42 04/02/2020 12:52:39 krbtgt/EXAMPLE.COM@EXAMPLE.COM
04/01/2020 12:54:07 04/02/2020 12:52:39
testservice/client.example.com@EXAMPLE.COM

14.4.5. Additional resources

See Kerberos authentication indicators.

14.5. CONFIGURING THE GLOBAL TICKET LIFECYCLE POLICY

The global ticket policy applies to all service tickets and to users that do not have any per-user ticket
policies defined.

The following procedure describes adjusting the maximum ticket lifetime and maximum ticket renewal
age for the global Kerberos ticket policy using the ipa krbtpolicy-mod command.

While using the ipa krbtpolicy-mod command, specify at least one of the following arguments:

--maxlife for the maximum ticket lifetime in seconds

--maxrenew for the maximum renewable age in seconds

Procedure

1. To modify the global ticket policy:

[root@server ~]# ipa krbtpolicy-mod --maxlife=$((8*60*60)) --maxrenew=$((24*60*60))
 Max life: 28800
 Max renew: 86400

In this example, the maximum lifetime is set to eight hours (8 * 60 minutes * 60 seconds) and
the maximum renewal age is set to one day (24 * 60 minutes * 60 seconds).

2. Optional: To reset the global Kerberos ticket policy to the default installation values:

[root@server ~]# ipa krbtpolicy-reset
 Max life: 86400
 Max renew: 604800

Verification

Display the global ticket policy:

[root@server ~]# ipa krbtpolicy-show
 Max life: 28800
 Max renew: 86640

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

126

Additional resources

See Configuring the default ticket policy for a user .

See Configuring individual authentication indicator ticket policies for a user .

14.6. CONFIGURING GLOBAL TICKET POLICIES PER
AUTHENTICATION INDICATOR

Follow this procedure to adjust the global maximum ticket lifetime and maximum renewable age for each
authentication indicator. These settings apply to users that do not have per-user ticket policies defined.

Use the ipa krbtpolicy-mod command to specify the global maximum lifetime or maximum renewable
age for Kerberos tickets depending on the authentication indicators attached to them.

Procedure

For example, to set the global two-factor ticket lifetime and renewal age values to one week,
and the global smart card ticket lifetime and renewal age values to two weeks:

[root@server ~]# ipa krbtpolicy-mod --otp-maxlife=604800 --otp-maxrenew=604800 --
pkinit-maxlife=172800 --pkinit-maxrenew=172800

Verification

Display the global ticket policy:

[root@server ~]# ipa krbtpolicy-show
 Max life: 86400
 OTP max life: 604800
 PKINIT max life: 172800
 Max renew: 604800
 OTP max renew: 604800
 PKINIT max renew: 172800

Notice that the OTP and PKINIT values are different from the global default Max life and Max
renew values.

Additional resources

See Authentication indicator options for the krbtpolicy-mod command.

See Configuring the default ticket policy for a user .

See Configuring individual authentication indicator ticket policies for a user .

14.7. CONFIGURING THE DEFAULT TICKET POLICY FOR A USER

You can define a unique Kerberos ticket policy that only applies to a single user. These per-user settings
override the global ticket policy, for all authentication indicators.

Use the ipa krbtpolicy-mod username command, and specify at least one of the following arguments:

CHAPTER 14. MANAGING KERBEROS TICKET POLICIES

127

--maxlife for the maximum ticket lifetime in seconds

--maxrenew for the maximum renewable age in seconds

Procedure

1. For example, to set the IdM admin user’s maximum ticket lifetime to two days and maximum
renewal age to two weeks:

[root@server ~]# ipa krbtpolicy-mod admin --maxlife=172800 --maxrenew=1209600
 Max life: 172800
 Max renew: 1209600

2. Optional: To reset the ticket policy for a user:

[root@server ~]# ipa krbtpolicy-reset admin

Verification

Display the effective Kerberos ticket policy that applies to a user:

[root@server ~]# ipa krbtpolicy-show admin
 Max life: 172800
 Max renew: 1209600

Additional resources

See Configuring the global ticket lifecycle policy .

See Configuring global ticket policies per authentication indicator .

14.8. CONFIGURING INDIVIDUAL AUTHENTICATION INDICATOR
TICKET POLICIES FOR A USER

As an administrator, you can define Kerberos ticket policies for a user that differ per authentication
indicator. For example, you can configure a policy to allow the IdM admin user to renew a ticket for two
days if it was obtained with OTP authentication, and a week if it was obtained with smart card
authentication.

These per-authentication indicator settings will override the user’s default ticket policy, the global
default ticket policy, and any global authentication indicator ticket policy.

Use the ipa krbtpolicy-mod username command to set custom maximum lifetime and maximum
renewable age values for a user’s Kerberos tickets depending on the authentication indicators attached
to them.

Procedure

1. For example, to allow the IdM admin user to renew a Kerberos ticket for two days if it was
obtained with One-Time Password authentication, set the --otp-maxrenew option:

[root@server ~]# ipa krbtpolicy-mod admin --otp-maxrenew=$((2*24*60*60))
 OTP max renew: 172800

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

128

2. Optional: To reset the ticket policy for a user:

[root@server ~]# ipa krbtpolicy-reset username

Verification

Display the effective Kerberos ticket policy that applies to a user:

[root@server ~]# ipa krbtpolicy-show admin
 Max life: 28800
 Max renew: 86640

Additional resources

See Authentication indicator options for the krbtpolicy-mod command.

See Configuring the default ticket policy for a user .

See Configuring the global ticket lifecycle policy .

See Configuring global ticket policies per authentication indicator .

14.9. AUTHENTICATION INDICATOR OPTIONS FOR THE KRBTPOLICY-MOD

COMMAND

Specify values for authentication indicators with the following arguments.

Table 14.1. Authentication indicator options for the krbtpolicy-mod command

Authentication indicator Argument for maximum lifetime Argument for maximum renewal
age

otp --otp-maxlife --otp-maxrenew

radius --radius-maxlife --radius-maxrenew

pkinit --pkinit-maxlife --pkinit-maxrenew

hardened --hardened-maxlife --hardened-maxrenew

[1] A hardened password is protected against brute-force password dictionary attacks by using Single-Party
Public-Key Authenticated Key Exchange (SPAKE) pre-authentication and/or Flexible Authentication via Secure
Tunneling (FAST) armoring.

CHAPTER 14. MANAGING KERBEROS TICKET POLICIES

129

CHAPTER 15. KERBEROS PKINIT AUTHENTICATION IN IDM
Public Key Cryptography for Initial Authentication in Kerberos (PKINIT) is a preauthentication
mechanism for Kerberos. The Identity Management (IdM) server includes a mechanism for Kerberos
PKINIT authentication.

15.1. DEFAULT PKINIT CONFIGURATION

The default PKINIT configuration on your IdM servers depends on the certificate authority (CA)
configuration.

Table 15.1. Default PKINIT configuration in IdM

CA configuration PKINIT configuration

Without a CA, no external PKINIT certificate
provided

Local PKINIT: IdM only uses PKINIT for internal
purposes on servers.

Without a CA, external PKINIT certificate provided to
IdM

IdM configures PKINIT by using the external
Kerberos key distribution center (KDC) certificate
and CA certificate.

With an Integrated CA IdM configures PKINIT by using the certificate signed
by the IdM CA.

15.2. DISPLAYING THE CURRENT PKINIT CONFIGURATION

IdM provides multiple commands you can use to query the PKINIT configuration in your domain.

Procedure

To determine the PKINIT status in your domain, use the ipa pkinit-status command:

$ ipa pkinit-status
 Server name: server1.example.com
 PKINIT status: enabled
 [...output truncated...]
 Server name: server2.example.com
 PKINIT status: disabled
 [...output truncated...]

The command displays the PKINIT configuration status as enabled or disabled:

enabled: PKINIT is configured using a certificate signed by the integrated IdM CA or an
external PKINIT certificate.

disabled: IdM only uses PKINIT for internal purposes on IdM servers.

To list the IdM servers with active Kerberos key distribution centers (KDCs) that support PKINIT
for IdM clients, use the ipa config-show command on any server:

$ ipa config-show

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

130

 Maximum username length: 32
 Home directory base: /home
 Default shell: /bin/sh
 Default users group: ipausers
 [...output truncated...]
 IPA masters capable of PKINIT: server1.example.com
 [...output truncated...]

15.3. CONFIGURING PKINIT IN IDM

If your IdM servers are running with PKINIT disabled, use these steps to enable it. For example, a server
is running with PKINIT disabled if you passed the --no-pkinit option with the ipa-server-install or ipa-
replica-install utilities.

Prerequisites

Ensure that all IdM servers with a certificate authority (CA) installed are running on the same
domain level.

Procedure

1. Check if PKINIT is enabled on the server:

kinit admin

Password for admin@IDM.EXAMPLE.COM:
ipa pkinit-status --server=server.idm.example.com
1 server matched

Server name: server.idm.example.com
PKINIT status:enabled

Number of entries returned 1

If PKINIT is disabled, you will see the following output:

ipa pkinit-status --server server.idm.example.com

0 servers matched

Number of entries returned 0

You can also use the command to find all the servers where PKINIT is enabled if you omit the --
server <server_fqdn> parameter.

2. If you are using IdM without CA:

a. On the IdM server, install the CA certificate that signed the Kerberos key distribution center
(KDC) certificate:

ipa-cacert-manage install -t CT,C,C ca.pem

CHAPTER 15. KERBEROS PKINIT AUTHENTICATION IN IDM

131

b. To update all IPA hosts, repeat the ipa-certupdate command on all replicas and clients:

ipa-certupdate

c. Check if the CA certificate has already been added using the ipa-cacert-manage list
command. For example:

ipa-cacert-manage list
CN=CA,O=Example Organization
The ipa-cacert-manage command was successful

d. Use the ipa-server-certinstall utility to install an external KDC certificate. The KDC
certificate must meet the following conditions:

It is issued with the common name
CN=fully_qualified_domain_name,certificate_subject_base.

It includes the Kerberos principal krbtgt/REALM_NAME@REALM_NAME.

It contains the Object Identifier (OID) for KDC authentication: 1.3.6.1.5.2.3.5.

ipa-server-certinstall --kdc kdc.pem kdc.key

systemctl restart krb5kdc.service

e. See your PKINIT status:

ipa pkinit-status
 Server name: server1.example.com
 PKINIT status: enabled
 [...output truncated...]
 Server name: server2.example.com
 PKINIT status: disabled
 [...output truncated...]

3. If you are using IdM with a CA certificate, enable PKINIT as follows:

ipa-pkinit-manage enable
 Configuring Kerberos KDC (krb5kdc)
 [1/1]: installing X509 Certificate for PKINIT
 Done configuring Kerberos KDC (krb5kdc).
 The ipa-pkinit-manage command was successful

If you are using an IdM CA, the command requests a PKINIT KDC certificate from the CA.

Additional resources

ipa-server-certinstall(1) man page

15.4. ADDITIONAL RESOURCES

For details on Kerberos PKINIT, PKINIT configuration in the MIT Kerberos Documentation.

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

132

https://web.mit.edu/kerberos/krb5-1.13/doc/admin/pkinit.html

CHAPTER 16. MAINTAINING IDM KERBEROS KEYTAB FILES
Learn more about what Kerberos keytab files are and how Identity Management (IdM) uses them to
allow services to authenticate securely with Kerberos.

You can use this information to understand why you should protect these sensitive files, and to
troubleshoot communication issues between IdM services.

For more information, see the following topics:

How Identity Management uses Kerberos keytab files

Verifying that Kerberos keytab files are in sync with the IdM database

List of IdM Kerberos keytab files and their contents

Viewing the encryption type of your IdM master key .

16.1. HOW IDENTITY MANAGEMENT USES KERBEROS KEYTAB FILES

A Kerberos keytab is a file containing Kerberos principals and their corresponding encryption keys.
Hosts, services, users, and scripts can use keytabs to authenticate to the Kerberos Key Distribution
Center (KDC) securely, without requiring human interaction.

Every IdM service on an IdM server has a unique Kerberos principal stored in the Kerberos database. For
example, if IdM servers east.idm.example.com and west.idm.example.com provide DNS services, IdM
creates 2 unique DNS Kerberos principals to identify these services, which follow the naming convention
<service>/host.domain.com@REALM.COM:

DNS/east.idm.example.com@IDM.EXAMPLE.COM

DNS/west.idm.example.com@IDM.EXAMPLE.COM

IdM creates a keytab on the server for each of these services to store a local copy of the Kerberos keys,
along with their Key Version Numbers (KVNO). For example, the default keytab file /etc/krb5.keytab
stores the host principal, which represents that machine in the Kerberos realm and is used for login
authentication. The KDC generates encryption keys for the different encryption algorithms it supports,
such as aes256-cts-hmac-sha1-96 and aes128-cts-hmac-sha1-96.

You can display the contents of a keytab file with the klist command:

[root@idmserver ~]# klist -ekt /etc/krb5.keytab
Keytab name: FILE:/etc/krb5.keytab
KVNO Timestamp Principal
---- ------------------- --
 2 02/24/2022 20:28:09 host/idmserver.idm.example.com@IDM.EXAMPLE.COM (aes256-cts-hmac-
sha1-96)
 2 02/24/2022 20:28:09 host/idmserver.idm.example.com@IDM.EXAMPLE.COM (aes128-cts-hmac-
sha1-96)
 2 02/24/2022 20:28:09 host/idmserver.idm.example.com@IDM.EXAMPLE.COM (camellia128-cts-
cmac)
 2 02/24/2022 20:28:09 host/idmserver.idm.example.com@IDM.EXAMPLE.COM (camellia256-cts-
cmac)

Additional resources

CHAPTER 16. MAINTAINING IDM KERBEROS KEYTAB FILES

133

Verifying that Kerberos keytab files are in sync with the IdM database

List of IdM Kerberos keytab files and their contents

16.2. VERIFYING THAT KERBEROS KEYTAB FILES ARE IN SYNC WITH
THE IDM DATABASE

When you change a Kerberos password, IdM automatically generates a new corresponding Kerberos key
and increments its Key Version Number (KVNO). If a Kerberos keytab is not updated with the new key
and KVNO, any services that depend on that keytab to retrieve a valid key might not be able to
authenticate to the Kerberos Key Distribution Center (KDC).

If one of your IdM services cannot communicate with another service, use the following procedure to
verify that your Kerberos keytab files are in sync with the keys stored in the IdM database. If they are out
of sync, retrieve a Kerberos keytab with an updated key and KVNO. This example compares and
retrieves an updated DNS principal for an IdM server.

Prerequisites

You must authenticate as the IdM admin account to retrieve keytab files

You must authenticate as the root account to modify keytab files owned by other users

Procedure

1. Display the KVNO of the principals in the keytab you are verifying. In the following example, the
/etc/named.keytab file has the key for the DNS/server1.idm.example.com@EXAMPLE.COM
principal with a KVNO of 2.

[root@server1 ~]# klist -ekt /etc/named.keytab
Keytab name: FILE:/etc/named.keytab
KVNO Timestamp Principal
---- ------------------- --
 2 11/26/2021 13:51:11 DNS/server1.idm.example.com@EXAMPLE.COM (aes256-cts-
hmac-sha1-96)
 2 11/26/2021 13:51:11 DNS/server1.idm.example.com@EXAMPLE.COM (aes128-cts-
hmac-sha1-96)
 2 11/26/2021 13:51:11 DNS/server1.idm.example.com@EXAMPLE.COM (camellia128-cts-
cmac)
 2 11/26/2021 13:51:11 DNS/server1.idm.example.com@EXAMPLE.COM (camellia256-cts-
cmac)

2. Display the KVNO of the principal stored in the IdM database. In this example, the KVNO of the
key in the IdM database does not match the KVNO in the keytab.

[root@server1 ~]# kvno DNS/server1.idm.example.com@EXAMPLE.COM
DNS/server1.idm.example.com@EXAMPLE.COM: kvno = 3

3. Authenticate as the IdM admin account.

[root@server1 ~]# kinit admin
Password for admin@IDM.EXAMPLE.COM:

4. Retrieve an updated Kerberos key for the principal and store it in its keytab. Perform this step as

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

134

4. Retrieve an updated Kerberos key for the principal and store it in its keytab. Perform this step as
the root user so you can modify the /etc/named.keytab file, which is owned by the named user.

[root@server1 ~]# ipa-getkeytab -s server1.idm.example.com -p
DNS/server1.idm.example.com -k /etc/named.keytab

Verification

1. Display the updated KVNO of the principal in the keytab.

[root@server1 ~]# klist -ekt /etc/named.keytab
Keytab name: FILE:/etc/named.keytab
KVNO Timestamp Principal
---- ------------------- --
 4 08/17/2022 14:42:11 DNS/server1.idm.example.com@EXAMPLE.COM (aes256-cts-
hmac-sha1-96)
 4 08/17/2022 14:42:11 DNS/server1.idm.example.com@EXAMPLE.COM (aes128-cts-
hmac-sha1-96)
 4 08/17/2022 14:42:11 DNS/server1.idm.example.com@EXAMPLE.COM (camellia128-cts-
cmac)
 4 08/17/2022 14:42:11 DNS/server1.idm.example.com@EXAMPLE.COM (camellia256-cts-
cmac)

2. Display the KVNO of the principal stored in the IdM database and ensure it matches the KVNO
from the keytab.

[root@server1 ~]# kvno DNS/server1.idm.example.com@EXAMPLE.COM
DNS/server1.idm.example.com@EXAMPLE.COM: kvno = 4

Additional resources

How Identity Management uses Kerberos keytab files

List of IdM Kerberos keytab files and their contents

16.3. LIST OF IDM KERBEROS KEYTAB FILES AND THEIR CONTENTS

The following table displays the location, contents, and purpose of the IdM Kerberos keytab files.

Table 16.1. Table

Keytab location Contents Purpose

/etc/krb5.keytab host principal Verifying user credentials when
logging in, used by NFS if there is
no nfs principal

/etc/dirsrv/ds.keytab ldap principal Authenticating users to the IdM
database, securely replicating
database contents between IdM
replicas

CHAPTER 16. MAINTAINING IDM KERBEROS KEYTAB FILES

135

/var/lib/ipa/gssproxy/http.key
tab

HTTP principal Authenticating to the Apache
server

/etc/named.keytab DNS principal Securely updating DNS records

/etc/ipa/dnssec/ipa-
dnskeysyncd.keytab

ipa-dnskeysyncd principal Keeping OpenDNSSEC
synchronized with LDAP

/etc/pki/pki-
tomcat/dogtag.keytab

dogtag principal Communicating with the
Certificate Authority (CA)

/etc/samba/samba.keytab cifs and host principals Communicating with the Samba
service

/var/lib/sss/keytabs/ad-
domain.com.keytab

Active Directory (AD) domain
controller (DCs) principals in the
form HOSTNAME$@AD-
DOMAIN.COM

Communicating with AD DCs
through an IdM-AD Trust

Keytab location Contents Purpose

Additional resources

How Identity Management uses Kerberos keytab files

Verifying that Kerberos keytab files are in sync with the IdM database

16.4. VIEWING THE ENCRYPTION TYPE OF YOUR IDM MASTER KEY

As an Identity Management (IdM) administrator, you can view the encryption type of your IdM master
key, which is the key that the IdM Kerberos Distribution Center (KDC) uses to encrypt all other principals
when storing them at rest. Knowing the encryption type helps you determine your deployment’s
compatibility with FIPS standards.

As of RHEL 8.7, the encryption type is aes256-cts-hmac-sha384-192. This encryption type is
compatible with the default RHEL 9 FIPS cryptographic policy aiming to comply with FIPS 140-3.

The encryption types used on previous RHEL versions are not compatible with RHEL 9 systems that
adhere to FIPS 140-3 standards. To make RHEL 9 systems in FIPS mode compatible with a RHEL 8 FIPS
140-2 deployment, enable the FIPS:AD-SUPPORT cryptographic policy on the RHEL 9 systems.

NOTE

Microsoft’s Active Directory implementation does not yet support any of the RFC8009
Kerberos encryption types that use SHA-2 HMAC. If you have an IdM-AD trust
configured, FIPS:AD-SUPPORT crypto subpolicy use is therefore required even if the
encryption type of your IdM master key is aes256-cts-hmac-sha384-192.

Prerequisites

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

136

You have root access to any of the RHEL 8 replicas in the IdM deployment.

Procedure

On the replica, view the encryption type on the command-line interface:

kadmin.local getprinc K/M | grep -E '^Key:'
Key: vno 1, aes256-cts-hmac-sha1-96

The aes256-cts-hmac-sha1-96 key in the output indicates that the IdM deployment was
installed on a server that was running RHEL 8.6 or earlier. The presence of a aes256-cts-hmac-
sha384-192 key in the output would indicate that the IdM deployment was installed on a server
that was running RHEL 8.7 or later.

CHAPTER 16. MAINTAINING IDM KERBEROS KEYTAB FILES

137

CHAPTER 17. USING THE KDC PROXY IN IDM
Some administrators might choose to make the default Kerberos ports inaccessible in their deployment.
To allow users, hosts, and services to obtain Kerberos credentials, you can use the HTTPS service as a
proxy that communicates with Kerberos via the HTTPS port 443.

In Identity Management (IdM), the Kerberos Key Distribution Center Proxy (KKDCP) provides this
functionality.

On an IdM server, KKDCP is enabled by default and available at
https://server.idm.example.com/KdcProxy. On an IdM client, you must change its Kerberos
configuration to access the KKDCP.

17.1. CONFIGURING AN IDM CLIENT TO USE KKDCP

As an Identity Management (IdM) system administrator, you can configure an IdM client to use the
Kerberos Key Distribution Center Proxy (KKDCP) on an IdM server. This is useful if the default Kerberos
ports are not accessible on the IdM server and the HTTPS port 443 is the only way of accessing the
Kerberos service.

Prerequisites

You have root access to the IdM client.

Procedure

1. Open the /etc/krb5.conf file for editing.

2. In the [realms] section, enter the URL of the KKDCP for the kdc, admin_server, and
kpasswd_server options:

[realms]
EXAMPLE.COM = {
 kdc = https://kdc.example.com/KdcProxy
 admin_server = https://kdc.example.com/KdcProxy
 kpasswd_server = https://kdc.example.com/KdcProxy
 default_domain = example.com
}

For redundancy, you can add the parameters kdc, admin_server, and kpasswd_server
multiple times to indicate different KKDCP servers.

3. Restart the sssd service to make the changes take effect:

~]# systemctl restart sssd

17.2. VERIFYING THAT KKDCP IS ENABLED ON AN IDM SERVER

On an Identity Management (IdM) server, the Kerberos Key Distribution Center Proxy (KKDCP) is
automatically enabled each time the Apache web server starts if the attribute and value pair
ipaConfigString=kdcProxyEnabled exists in the directory. In this situation, the symbolic link
/etc/httpd/conf.d/ipa-kdc-proxy.conf is created.

You can verify if the KKDCP is enabled on the IdM server, even as an unprivileged user.

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

138

Procedure

Check that the symbolic link exists:

$ ls -l /etc/httpd/conf.d/ipa-kdc-proxy.conf
lrwxrwxrwx. 1 root root 36 Jun 21 2020 /etc/httpd/conf.d/ipa-kdc-proxy.conf -> /etc/ipa/kdcproxy/ipa-
kdc-proxy.conf

The output confirms that KKDCP is enabled.

17.3. DISABLING KKDCP ON AN IDM SERVER

As an Identity Management (IdM) system administrator, you can disable the Kerberos Key Distribution
Center Proxy (KKDCP) on an IdM server.

Prerequisites

You have root access to the IdM server.

Procedure

1. Remove the ipaConfigString=kdcProxyEnabled attribute and value pair from the directory:

ipa-ldap-updater /usr/share/ipa/kdcproxy-disable.uldif
Update complete
The ipa-ldap-updater command was successful

2. Restart the httpd service:

systemctl restart httpd.service

KKDCP is now disabled on the current IdM server.

Verification

Verify that the symbolic link does not exist:

$ ls -l /etc/httpd/conf.d/ipa-kdc-proxy.conf
ls: cannot access '/etc/httpd/conf.d/ipa-kdc-proxy.conf': No such file or directory

17.4. RE-ENABLING KKDCP ON AN IDM SERVER

On an IdM server, the Kerberos Key Distribution Center Proxy (KKDCP) is enabled by default and
available at https://server.idm.example.com/KdcProxy.

If KKDCP has been disabled on a server, you can re-enable it.

Prerequisites

You have root access to the IdM server.

Procedure

CHAPTER 17. USING THE KDC PROXY IN IDM

139

1. Add the ipaConfigString=kdcProxyEnabled attribute and value pair to the directory:

ipa-ldap-updater /usr/share/ipa/kdcproxy-enable.uldif
Update complete
The ipa-ldap-updater command was successful

2. Restart the httpd service:

systemctl restart httpd.service

KKDCP is now enabled on the current IdM server.

Verification

Verify that the symbolic link exists:

$ ls -l /etc/httpd/conf.d/ipa-kdc-proxy.conf
lrwxrwxrwx. 1 root root 36 Jun 21 2020 /etc/httpd/conf.d/ipa-kdc-proxy.conf ->
/etc/ipa/kdcproxy/ipa-kdc-proxy.conf

17.5. CONFIGURING THE KKDCP SERVER I

With the following configuration, you can enable TCP to be used as the transport protocol between the
IdM KKDCP and the Active Directory (AD) realm, where multiple Kerberos servers are used.

Prerequisites

You have root access.

Procedure

1. Set the use_dns parameter in the [global] section of the /etc/ipa/kdcproxy/kdcproxy.conf
file to false.

[global]
use_dns = false

2. Put the proxied realm information into the /etc/ipa/kdcproxy/kdcproxy.conf file. For example,
for the [AD.EXAMPLE.COM] realm with proxy list the realm configuration parameters as follows:

[AD.EXAMPLE.COM]
kerberos = kerberos+tcp://1.2.3.4:88 kerberos+tcp://5.6.7.8:88
kpasswd = kpasswd+tcp://1.2.3.4:464 kpasswd+tcp://5.6.7.8:464

IMPORTANT

The realm configuration parameters must list multiple servers separated by a
space, as opposed to /etc/krb5.conf and kdc.conf, in which certain options may
be specified multiple times.

3. Restart Identity Management (IdM) services:

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

140

ipactl restart

Additional resources

See Configure IPA server as a KDC Proxy for AD Kerberos communication in Red Hat
Knowledgebase.

17.6. CONFIGURING THE KKDCP SERVER II

The following server configuration relies on the DNS service records to find Active Directory (AD)
servers to communicate with.

Prerequisites

You have root access.

Procedure

1. In the /etc/ipa/kdcproxy/kdcproxy.conf file, the [global] section, set the use_dns parameter
to true.

[global]
configs = mit
use_dns = true

The configs parameter allows you to load other configuration modules. In this case, the
configuration is read from the MIT libkrb5 library.

2. Optional: In case you do not want to use DNS service records, add explicit AD servers to the
[realms] section of the /etc/krb5.conf file. If the realm with proxy is, for example,
AD.EXAMPLE.COM, you add:

[realms]
AD.EXAMPLE.COM = {
 kdc = ad-server.ad.example.com
 kpasswd_server = ad-server.ad.example.com
}

3. Restart Identity Management (IdM) services:

ipactl restart

Additional resources

See Configure IPA server as a KDC Proxy for AD Kerberos communication in Red Hat
Knowledgebase.

CHAPTER 17. USING THE KDC PROXY IN IDM

141

https://access.redhat.com/solutions/3347361
https://access.redhat.com/solutions/3347361

CHAPTER 18. MANAGING SELF-SERVICE RULES IN IDM USING
THE CLI

Learn about self-service rules in Identity Management (IdM) and how to create and edit self-service
access rules in the command-line interface (CLI).

18.1. SELF-SERVICE ACCESS CONTROL IN IDM

Self-service access control rules define which operations an Identity Management (IdM) entity can
perform on its IdM Directory Server entry: for example, IdM users have the ability to update their own
passwords.

This method of control allows an authenticated IdM entity to edit specific attributes within its LDAP
entry, but does not allow add or delete operations on the entire entry.

WARNING

Be careful when working with self-service access control rules: configuring access
control rules improperly can inadvertently elevate an entity’s privileges.

18.2. CREATING SELF-SERVICE RULES USING THE CLI

Follow this procedure to create self-service access rules in IdM using the command-line interface (CLI).

Prerequisites

Administrator privileges for managing IdM or the User Administrator role.

An active Kerberos ticket. For details, see Using kinit to log in to IdM manually .

Procedure

To add a self-service rule, use the ipa selfservice-add command and specify the following two
options:

--permissions

sets the read and write permissions the Access Control Instruction (ACI) grants.

--attrs

sets the complete list of attributes to which this ACI grants permission.

For example, to create a self-service rule allowing users to modify their own name details:

$ ipa selfservice-add "Users can manage their own name details" --permissions=write --
attrs=givenname --attrs=displayname --attrs=title --attrs=initials

Added selfservice "Users can manage their own name details"

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

142

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/logging-in-to-ipa-from-the-command-line_configuring-and-managing-idm#using-kinit-to-log-in-to-ipa_logging-in-to-ipa-from-the-command-line

 Self-service name: Users can manage their own name details
 Permissions: write
 Attributes: givenname, displayname, title, initials

18.3. EDITING SELF-SERVICE RULES USING THE CLI

Follow this procedure to edit self-service access rules in IdM using the command-line interface (CLI).

Prerequisites

Administrator privileges for managing IdM or the User Administrator role.

An active Kerberos ticket. For details, see Using kinit to log in to IdM manually .

Procedure

1. Optional: Display existing self-service rules with the ipa selfservice-find command.

2. Optional: Display details for the self-service rule you want to modify with the ipa selfservice-
show command.

3. Use the ipa selfservice-mod command to edit a self-service rule.

For example:

$ ipa selfservice-mod "Users can manage their own name details" --attrs=givenname --
attrs=displayname --attrs=title --attrs=initials --attrs=surname
--
Modified selfservice "Users can manage their own name details"
--
Self-service name: Users can manage their own name details
Permissions: write
Attributes: givenname, displayname, title, initials

IMPORTANT

Using the ipa selfservice-mod command overwrites the previously defined permissions
and attributes, so always include the complete list of existing permissions and attributes
along with any new ones you want to define.

Verification

Use the ipa selfservice-show command to display the self-service rule you edited.

$ ipa selfservice-show "Users can manage their own name details"
--
Self-service name: Users can manage their own name details
Permissions: write
Attributes: givenname, displayname, title, initials

18.4. DELETING SELF-SERVICE RULES USING THE CLI

Follow this procedure to delete self-service access rules in IdM using the command-line interface (CLI).

CHAPTER 18. MANAGING SELF-SERVICE RULES IN IDM USING THE CLI

143

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/logging-in-to-ipa-from-the-command-line_configuring-and-managing-idm#using-kinit-to-log-in-to-ipa_logging-in-to-ipa-from-the-command-line

Prerequisites

Administrator privileges for managing IdM or the User Administrator role.

An active Kerberos ticket. For details, see Using kinit to log in to IdM manually .

Procedure

Use the ipa selfservice-del command to delete a self-service rule.

For example:

$ ipa selfservice-del "Users can manage their own name details"

Deleted selfservice "Users can manage their own name details"

Verification

Use the ipa selfservice-find command to display all self-service rules. The rule you just deleted
should be missing.

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

144

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/logging-in-to-ipa-from-the-command-line_configuring-and-managing-idm#using-kinit-to-log-in-to-ipa_logging-in-to-ipa-from-the-command-line

CHAPTER 19. MANAGING SELF-SERVICE RULES USING THE
IDM WEB UI

Learn about self-service rules in Identity Management (IdM) and how to create and edit self-service
access rules in the web interface (IdM Web UI).

19.1. SELF-SERVICE ACCESS CONTROL IN IDM

Self-service access control rules define which operations an Identity Management (IdM) entity can
perform on its IdM Directory Server entry: for example, IdM users have the ability to update their own
passwords.

This method of control allows an authenticated IdM entity to edit specific attributes within its LDAP
entry, but does not allow add or delete operations on the entire entry.

WARNING

Be careful when working with self-service access control rules: configuring access
control rules improperly can inadvertently elevate an entity’s privileges.

19.2. CREATING SELF-SERVICE RULES USING THE IDM WEB UI

Follow this procedure to create self-service access rules in IdM using the web interface (IdM Web UI).

Prerequisites

Administrator privileges for managing IdM or the User Administrator role.

You are logged-in to the IdM Web UI. For details, see Accessing the IdM Web UI in a web
browser.

Procedure

1. Open the Role-Based Access Control submenu in the IPA Server tab and select Self Service
Permissions.

2. Click Add at the upper-right of the list of the self-service access rules:

CHAPTER 19. MANAGING SELF-SERVICE RULES USING THE IDM WEB UI

145

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/accessing-the-ipa-web-ui-in-a-web-browser_configuring-and-managing-idm

3. The Add Self Service Permission window opens. Enter the name of the new self-service rule in
the Self-service name field. Spaces are allowed:

4. Select the check boxes next to the attributes you want users to be able to edit.

5. Optional: If an attribute you want to provide access to is not listed, you can add a listing for it:

a. Click the Add button.

b. Enter the attribute name in the Attribute text field of the following Add Custom Attribute
window.

c. Click the OK button to add the attribute

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

146

d. Verify that the new attribute is selected

6. Click the Add button at the bottom of the form to save the new self-service rule.
Alternatively, you can save and continue editing the self-service rule by clicking the Add and
Edit button, or save and add further rules by clicking the Add and Add another button.

19.3. EDITING SELF-SERVICE RULES USING THE IDM WEB UI

Follow this procedure to edit self-service access rules in IdM using the web interface (IdM Web UI).

Prerequisites

Administrator privileges for managing IdM or the User Administrator role.

You are logged-in to the IdM Web UI. For details, see Accessing the IdM Web UI in a web
browser.

Procedure

1. Open the Role-Based Access Control submenu in the IPA Server tab and select Self Service
Permissions.

2. Click on the name of the self-service rule you want to modify.

3. The edit page only allows you to edit the list of attributes to you want to add or remove to the

CHAPTER 19. MANAGING SELF-SERVICE RULES USING THE IDM WEB UI

147

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/accessing-the-ipa-web-ui-in-a-web-browser_configuring-and-managing-idm

3. The edit page only allows you to edit the list of attributes to you want to add or remove to the
self-service rule. Select or deselect the appropriate check boxes.

4. Click the Save button to save your changes to the self-service rule.

19.4. DELETING SELF-SERVICE RULES USING THE IDM WEB UI

Follow this procedure to delete self-service access rules in IdM using the web interface (IdM Web UI).

Prerequisites

Administrator privileges for managing IdM or the User Administrator role.

You are logged-in to the IdM Web UI. For details, see Accessing the IdM Web UI in a web
browser.

Procedure

1. Open the Role-Based Access Control submenu in the IPA Server tab and select Self Service
Permissions.

2. Select the check box next to the rule you want to delete, then click on the Delete button on the
right of the list.

3. A dialog opens, click on Delete to confirm.

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

148

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/accessing-the-ipa-web-ui-in-a-web-browser_configuring-and-managing-idm

CHAPTER 20. USING ANSIBLE PLAYBOOKS TO MANAGE
SELF-SERVICE RULES IN IDM

This section introduces self-service rules in Identity Management (IdM) and describes how to create and
edit self-service access rules using Ansible playbooks. Self-service access control rules allow an IdM
entity to perform specified operations on its IdM Directory Server entry.

Self-service access control in IdM

Using Ansible to ensure that a self-service rule is present

Using Ansible to ensure that a self-service rule is absent

Using Ansible to ensure that a self-service rule has specific attributes

Using Ansible to ensure that a self-service rule does not have specific attributes

20.1. SELF-SERVICE ACCESS CONTROL IN IDM

Self-service access control rules define which operations an Identity Management (IdM) entity can
perform on its IdM Directory Server entry: for example, IdM users have the ability to update their own
passwords.

This method of control allows an authenticated IdM entity to edit specific attributes within its LDAP
entry, but does not allow add or delete operations on the entire entry.

WARNING

Be careful when working with self-service access control rules: configuring access
control rules improperly can inadvertently elevate an entity’s privileges.

20.2. USING ANSIBLE TO ENSURE THAT A SELF-SERVICE RULE IS
PRESENT

The following procedure describes how to use an Ansible playbook to define self-service rules and
ensure their presence on an Identity Management (IdM) server. In this example, the new Users can
manage their own name details rule grants users the ability to change their own givenname,
displayname, title and initials attributes. This allows them to, for example, change their display name or
initials if they want to.

Prerequisites

You know the IdM administrator password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible

CHAPTER 20. USING ANSIBLE PLAYBOOKS TO MANAGE SELF-SERVICE RULES IN IDM

149

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

Procedure

1. Navigate to the ~/MyPlaybooks/ directory:

$ cd ~/MyPlaybooks/

2. Make a copy of the selfservice-present.yml file located in the /usr/share/doc/ansible-
freeipa/playbooks/selfservice/ directory:

$ cp /usr/share/doc/ansible-freeipa/playbooks/selfservice/selfservice-present.yml
selfservice-present-copy.yml

3. Open the selfservice-present-copy.yml Ansible playbook file for editing.

4. Adapt the file by setting the following variables in the ipaselfservice task section:

Set the ipaadmin_password variable to the password of the IdM administrator.

Set the name variable to the name of the new self-service rule.

Set the permission variable to a comma-separated list of permissions to grant: read and
write.

Set the attribute variable to a list of attributes that users can manage themselves:
givenname, displayname, title, and initials.

This is the modified Ansible playbook file for the current example:

- name: Self-service present
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Ensure self-service rule "Users can manage their own name details" is present
 ipaselfservice:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: "Users can manage their own name details"
 permission: read, write
 attribute:
 - givenname
 - displayname
 - title
 - initials

5. Save the file.

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

150

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

6. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i inventory selfservice-
present-copy.yml

Additional resources

See Self-service access control in IdM .

See the README-selfservice.md file in the /usr/share/doc/ansible-freeipa/ directory.

See the /usr/share/doc/ansible-freeipa/playbooks/selfservice directory.

20.3. USING ANSIBLE TO ENSURE THAT A SELF-SERVICE RULE IS
ABSENT

The following procedure describes how to use an Ansible playbook to ensure a specified self-service rule
is absent from your IdM configuration. The example below describes how to make sure the Users can
manage their own name details self-service rule does not exist in IdM. This will ensure that users
cannot, for example, change their own display name or initials.

Prerequisites

You know the IdM administrator password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

Procedure

1. Navigate to the ~/MyPlaybooks/ directory:

$ cd ~/MyPlaybooks/

2. Make a copy of the selfservice-absent.yml file located in the /usr/share/doc/ansible-
freeipa/playbooks/selfservice/ directory:

$ cp /usr/share/doc/ansible-freeipa/playbooks/selfservice/selfservice-absent.yml
selfservice-absent-copy.yml

3. Open the selfservice-absent-copy.yml Ansible playbook file for editing.

CHAPTER 20. USING ANSIBLE PLAYBOOKS TO MANAGE SELF-SERVICE RULES IN IDM

151

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

4. Adapt the file by setting the following variables in the ipaselfservice task section:

Set the ipaadmin_password variable to the password of the IdM administrator.

Set the name variable to the name of the self-service rule.

Set the state variable to absent.

This is the modified Ansible playbook file for the current example:

- name: Self-service absent
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Ensure self-service rule "Users can manage their own name details" is absent
 ipaselfservice:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: "Users can manage their own name details"
 state: absent

5. Save the file.

6. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i inventory selfservice-
absent-copy.yml

Additional resources

See Self-service access control in IdM .

See the README-selfservice.md file in the /usr/share/doc/ansible-freeipa/ directory.

See the sample playbooks in the /usr/share/doc/ansible-freeipa/playbooks/selfservice
directory.

20.4. USING ANSIBLE TO ENSURE THAT A SELF-SERVICE RULE HAS
SPECIFIC ATTRIBUTES

The following procedure describes how to use an Ansible playbook to ensure that an already existing
self-service rule has specific settings. In the example, you ensure the Users can manage their own
name details self-service rule also has the surname member attribute.

Prerequisites

You know the IdM administrator password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

152

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

The Users can manage their own name details self-service rule exists in IdM.

Procedure

1. Navigate to the ~/MyPlaybooks/ directory:

$ cd ~/MyPlaybooks/

2. Make a copy of the selfservice-member-present.yml file located in the
/usr/share/doc/ansible-freeipa/playbooks/selfservice/ directory:

$ cp /usr/share/doc/ansible-freeipa/playbooks/selfservice/selfservice-member-
present.yml selfservice-member-present-copy.yml

3. Open the selfservice-member-present-copy.yml Ansible playbook file for editing.

4. Adapt the file by setting the following variables in the ipaselfservice task section:

Set the ipaadmin_password variable to the password of the IdM administrator.

Set the name variable to the name of the self-service rule to modify.

Set the attribute variable to surname.

Set the action variable to member.

This is the modified Ansible playbook file for the current example:

- name: Self-service member present
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Ensure selfservice "Users can manage their own name details" member attribute
surname is present
 ipaselfservice:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: "Users can manage their own name details"
 attribute:
 - surname
 action: member

5. Save the file.

CHAPTER 20. USING ANSIBLE PLAYBOOKS TO MANAGE SELF-SERVICE RULES IN IDM

153

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

6. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i inventory selfservice-
member-present-copy.yml

Additional resources

See Self-service access control in IdM .

See the README-selfservice.md file available in the /usr/share/doc/ansible-freeipa/
directory.

See the sample playbooks in the /usr/share/doc/ansible-freeipa/playbooks/selfservice
directory.

20.5. USING ANSIBLE TO ENSURE THAT A SELF-SERVICE RULE DOES
NOT HAVE SPECIFIC ATTRIBUTES

The following procedure describes how to use an Ansible playbook to ensure that a self-service rule
does not have specific settings. You can use this playbook to make sure a self-service rule does not
grant undesired access. In the example, you ensure the Users can manage their own name details self-
service rule does not have the givenname and surname member attributes.

Prerequisites

You know the IdM administrator password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

The Users can manage their own name details self-service rule exists in IdM.

Procedure

1. Navigate to the ~/MyPlaybooks/ directory:

$ cd ~/MyPlaybooks/

2. Make a copy of the selfservice-member-absent.yml file located in the /usr/share/doc/ansible-
freeipa/playbooks/selfservice/ directory:

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

154

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

$ cp /usr/share/doc/ansible-freeipa/playbooks/selfservice/selfservice-member-
absent.yml selfservice-member-absent-copy.yml

3. Open the selfservice-member-absent-copy.yml Ansible playbook file for editing.

4. Adapt the file by setting the following variables in the ipaselfservice task section:

Set the ipaadmin_password variable to the password of the IdM administrator.

Set the name variable to the name of the self-service rule you want to modify.

Set the attribute variable to givenname and surname.

Set the action variable to member.

Set the state variable to absent.

This is the modified Ansible playbook file for the current example:

- name: Self-service member absent
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Ensure selfservice "Users can manage their own name details" member attributes
givenname and surname are absent
 ipaselfservice:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: "Users can manage their own name details"
 attribute:
 - givenname
 - surname
 action: member
 state: absent

5. Save the file.

6. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i inventory selfservice-
member-absent-copy.yml

Additional resources

See Self-service access control in IdM .

See the README-selfservice.md file in the /usr/share/doc/ansible-freeipa/ directory.

See the sample playbooks in the /usr/share/doc/ansible-freeipa/playbooks/selfservice
directory.

CHAPTER 20. USING ANSIBLE PLAYBOOKS TO MANAGE SELF-SERVICE RULES IN IDM

155

CHAPTER 21. MANAGING USER GROUPS IN IDM CLI
This chapter introduces user groups management using the IdM CLI.

A user group is a set of users with common privileges, password policies, and other characteristics.

A user group in Identity Management (IdM) can include:

IdM users

other IdM user groups

external users, which are users that exist outside of IdM

21.1. THE DIFFERENT GROUP TYPES IN IDM

IdM supports the following types of groups:

POSIX groups (the default)

POSIX groups support Linux POSIX attributes for their members. Note that groups that interact with
Active Directory cannot use POSIX attributes.
POSIX attributes identify users as separate entities. Examples of POSIX attributes relevant to users
include uidNumber, a user number (UID), and gidNumber, a group number (GID).

Non-POSIX groups

Non-POSIX groups do not support POSIX attributes. For example, these groups do not have a GID
defined.
All members of this type of group must belong to the IdM domain.

External groups

Use external groups to add group members that exist in an identity store outside of the IdM domain,
such as:

A local system

An Active Directory domain

A directory service

External groups do not support POSIX attributes. For example, these groups do not have a GID
defined.

Table 21.1. User groups created by default

Group name Default group members

ipausers All IdM users

admins Users with administrative privileges, including the default admin user

editors This is a legacy group that no longer has any special privileges

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

156

trust admins Users with privileges to manage the Active Directory trusts

Group name Default group members

When you add a user to a user group, the user gains the privileges and policies associated with the
group. For example, to grant administrative privileges to a user, add the user to the admins group.

WARNING

Do not delete the admins group. As admins is a pre-defined group required by
IdM, this operation causes problems with certain commands.

In addition, IdM creates user private groups by default whenever a new user is created in IdM. For more
information about private groups, see Adding users without a private group .

21.2. DIRECT AND INDIRECT GROUP MEMBERS

User group attributes in IdM apply to both direct and indirect members: when group B is a member of
group A, all users in group B are considered indirect members of group A.

For example, in the following diagram:

User 1 and User 2 are direct members of group A.

User 3, User 4, and User 5 are indirect members of group A.

Figure 21.1. Direct and Indirect Group Membership

If you set a password policy for user group A, the policy also applies to all users in user group B.

21.3. ADDING A USER GROUP USING IDM CLI

Follow this procedure to add a user group using the IdM CLI.

Prerequisites

CHAPTER 21. MANAGING USER GROUPS IN IDM CLI

157

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_idm_users_groups_hosts_and_access_control_rules/managing-user-groups-in-idm-cli_managing-users-groups-hosts#adding-users-without-a-user-private-group_managing-user-groups-in-idm-cli

You must be logged in as the administrator. For details, see Using kinit to log in to IdM manually .

Procedure

Add a user group by using the ipa group-add group_name command. For example, to create
group_a:

$ ipa group-add group_a

Added group "group_a"

 Group name: group_a
 GID: 1133400009

By default, ipa group-add adds a POSIX user group. To specify a different group type, add
options to ipa group-add:

--nonposix to create a non-POSIX group

--external to create an external group
For details on group types, see The different group types in IdM .

You can specify a custom GID when adding a user group by using the --gid=custom_GID
option. If you do this, be careful to avoid ID conflicts. If you do not specify a custom GID, IdM
automatically assigns a GID from the available ID range.

21.4. SEARCHING FOR USER GROUPS USING IDM CLI

Follow this procedure to search for existing user groups using the IdM CLI.

Procedure

Display all user groups by using the ipa group-find command. To specify a group type, add
options to ipa group-find:

Display all POSIX groups using the ipa group-find --posix command.

Display all non-POSIX groups using the ipa group-find --nonposix command.

Display all external groups using the ipa group-find --external command.
For more information about different group types, see The different group types in IdM .

21.5. DELETING A USER GROUP USING IDM CLI

Follow this procedure to delete a user group using IdM CLI. Note that deleting a group does not delete
the group members from IdM.

Prerequisites

You must be logged in as the administrator. For details, see Using kinit to log in to IdM manually .

Procedure

Delete a user group by using the ipa group-del group_name command. For example, to delete

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

158

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/logging-in-to-ipa-from-the-command-line_configuring-and-managing-idm#using-kinit-to-log-in-to-ipa_logging-in-to-ipa-from-the-command-line
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/logging-in-to-ipa-from-the-command-line_configuring-and-managing-idm#using-kinit-to-log-in-to-ipa_logging-in-to-ipa-from-the-command-line

Delete a user group by using the ipa group-del group_name command. For example, to delete
group_a:

$ ipa group-del group_a

Deleted group "group_a"

21.6. ADDING A MEMBER TO A USER GROUP USING IDM CLI

You can add both users and user groups as members of a user group. For more information, see The
different group types in IdM and Direct and indirect group members . Follow this procedure to add a
member to a user group by using the IdM CLI.

Prerequisites

You must be logged in as the administrator. For details, see Using kinit to log in to IdM manually .

Procedure

Add a member to a user group by using the ipa group-add-member command.
Specify the type of member using these options:

--users adds an IdM user

--external adds a user that exists outside the IdM domain, in the format of
DOMAIN\user_name or user_name@domain

--groups adds an IdM user group

For example, to add group_b as a member of group_a:

$ ipa group-add-member group_a --groups=group_b
Group name: group_a
GID: 1133400009
Member users: user_a
Member groups: group_b
Indirect Member users: user_b

Number of members added 1

Members of group_b are now indirect members of group_a.

IMPORTANT

When adding a group as a member of another group, do not create recursive groups. For
example, if Group A is a member of Group B, do not add Group B as a member of Group
A. Recursive groups can cause unpredictable behavior.

NOTE

CHAPTER 21. MANAGING USER GROUPS IN IDM CLI

159

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/logging-in-to-ipa-from-the-command-line_configuring-and-managing-idm#using-kinit-to-log-in-to-ipa_logging-in-to-ipa-from-the-command-line

NOTE

After you add a member to a user group, the update may take some time to spread to all
clients in your Identity Management environment. This is because when any given host
resolves users, groups and netgroups, the System Security Services Daemon (SSSD)
first looks into its cache and performs server lookups only for missing or expired records.

21.7. ADDING USERS WITHOUT A USER PRIVATE GROUP

By default, IdM creates user private groups (UPGs) whenever a new user is created in IdM. UPGs are a
specific group type:

The UPG has the same name as the newly created user.

The user is the only member of the UPG. The UPG cannot contain any other members.

The GID of the private group matches the UID of the user.

However, it is possible to add users without creating a UPG.

21.7.1. Users without a user private group

If a NIS group or another system group already uses the GID that would be assigned to a user private
group, it is necessary to avoid creating a UPG.

You can do this in two ways:

Add a new user without a UPG, without disabling private groups globally. See Adding a user
without a user private group when private groups are globally enabled.

Disable UPGs globally for all users, then add a new user. See Disabling user private groups
globally for all users and Adding a user when user private groups are globally disabled .

In both cases, IdM will require specifying a GID when adding new users, otherwise the operation will fail.
This is because IdM requires a GID for the new user, but the default user group ipausers is a non-POSIX
group and therefore does not have an associated GID. The GID you specify does not have to correspond
to an already existing group.

NOTE

Specifying the GID does not create a new group. It only sets the GID attribute for the new
user, because the attribute is required by IdM.

21.7.2. Adding a user without a user private group when private groups are globally
enabled

You can add a user without creating a user private group (UPG) even when UPGs are enabled on the
system. This requires manually setting a GID for the new user. For details on why this is needed, see
Users without a user private group .

Procedure

To prevent IdM from creating a UPG, add the --noprivate option to the ipa user-add
command.

Note that for the command to succeed, you must specify a custom GID. For example, to add a

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

160

Note that for the command to succeed, you must specify a custom GID. For example, to add a
new user with GID 10000:

$ ipa user-add jsmith --first=John --last=Smith --noprivate --gid 10000

21.7.3. Disabling user private groups globally for all users

You can disable user private groups (UPGs) globally. This prevents the creation of UPGs for all new
users. Existing users are unaffected by this change.

Procedure

1. Obtain administrator privileges:

$ kinit admin

2. IdM uses the Directory Server Managed Entries Plug-in to manage UPGs. List the instances of
the plug-in:

$ ipa-managed-entries --list

3. To ensure IdM does not create UPGs, disable the plug-in instance responsible for managing
user private groups:

$ ipa-managed-entries -e "UPG Definition" disable
Disabling Plugin

NOTE

To re-enable the UPG Definition instance later, use the ipa-managed-entries -
e "UPG Definition" enable command.

4. Restart Directory Server to load the new configuration.

$ sudo systemctl restart dirsrv.target

To add a user after UPGs have been disabled, you need to specify a GID. For more information,
see Adding a user when user private groups are globally disabled

Verification

To check if UPGs are globally disabled, use the disable command again:

$ ipa-managed-entries -e "UPG Definition" disable
Plugin already disabled

21.7.4. Adding a user when user private groups are globally disabled

When user private groups (UPGs) are disabled globally, IdM does not assign a GID to a new user
automatically. To successfully add a user, you must assign a GID manually or by using an automember
rule. For details on why this is required, see Users without a user private group .

CHAPTER 21. MANAGING USER GROUPS IN IDM CLI

161

Prerequisities

UPGs must be disabled globally for all users. For more information, see Disabling user private
groups globally for all users

Procedure

To make sure adding a new user succeeds when creating UPGs is disabled, choose one of the
following:

Specify a custom GID when adding a new user. The GID does not have to correspond to an
already existing user group.
For example, when adding a user from the command line, add the --gid option to the ipa
user-add command.

Use an automember rule to add the user to an existing group with a GID.

21.8. ADDING USERS OR GROUPS AS MEMBER MANAGERS TO AN IDM
USER GROUP USING THE IDM CLI

Follow this procedure to add users or groups as member managers to an IdM user group using the IdM
CLI. Member managers can add users or groups to IdM user groups but cannot change the attributes of
a group.

Prerequisites

You must be logged in as the administrator. For details, see Using kinit to log in to IdM manually .

You must have the name of the user or group you are adding as member managers and the
name of the group you want them to manage.

Procedure

Add a user as a member manager to an IdM user group by using the ipa group-add-member-
manager command.
For example, to add the user test as a member manager of group_a:

$ ipa group-add-member-manager group_a --users=test
Group name: group_a
GID: 1133400009
Membership managed by users: test

Number of members added 1

User test can now manage members of group_a.

Add a group as a member manager to an IdM user group by using the ipa group-add-member-
manager command.
For example, to add the group group_admins as a member manager of group_a:

$ ipa group-add-member-manager group_a --groups=group_admins
Group name: group_a
GID: 1133400009

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

162

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/logging-in-to-ipa-from-the-command-line_configuring-and-managing-idm#using-kinit-to-log-in-to-ipa_logging-in-to-ipa-from-the-command-line

Membership managed by groups: group_admins
Membership managed by users: test

Number of members added 1

Group group_admins can now manage members of group_a.

NOTE

After you add a member manager to a user group, the update may take some time to
spread to all clients in your Identity Management environment.

Verification

Using the ipa group-show command to verify the user and group were added as member
managers.

$ ipa group-show group_a
Group name: group_a
GID: 1133400009
Membership managed by groups: group_admins
Membership managed by users: test

Additional resources

See ipa group-add-member-manager --help for more details.

21.9. VIEWING GROUP MEMBERS USING IDM CLI

Follow this procedure to view members of a group using IdM CLI. You can view both direct and indirect
group members. For more information, see Direct and indirect group members .

Procedure:

To list members of a group, use the ipa group-show group_name command. For example:

$ ipa group-show group_a
 ...
 Member users: user_a
 Member groups: group_b
 Indirect Member users: user_b

NOTE

The list of indirect members does not include external users from trusted Active
Directory domains. The Active Directory trust user objects are not visible in the
Identity Management interface because they do not exist as LDAP objects within
Identity Management.

21.10. REMOVING A MEMBER FROM A USER GROUP USING IDM CLI

Follow this procedure to remove a member from a user group using IdM CLI.

CHAPTER 21. MANAGING USER GROUPS IN IDM CLI

163

Prerequisites

You must be logged in as the administrator. For details, see Using kinit to log in to IdM manually .

Procedure

1. Optional: Use the ipa group-show command to confirm that the group includes the member
you want to remove.

2. Remove a member from a user group by using the ipa group-remove-member command.
Specify members to remove using these options:

--users removes an IdM user

--external removes a user that exists outside the IdM domain, in the format of
DOMAIN\user_name or user_name@domain

--groups removes an IdM user group

For example, to remove user1, user2, and group1 from a group called group_name:

$ ipa group-remove-member group_name --users=user1 --users=user2 --groups=group1

21.11. REMOVING USERS OR GROUPS AS MEMBER MANAGERS FROM
AN IDM USER GROUP USING THE IDM CLI

Follow this procedure to remove users or groups as member managers from an IdM user group using the
IdM CLI. Member managers can remove users or groups from IdM user groups but cannot change the
attributes of a group.

Prerequisites

You must be logged in as the administrator. For details, see Using kinit to log in to IdM manually .

You must have the name of the existing member manager user or group you are removing and
the name of the group they are managing.

Procedure

Remove a user as a member manager of an IdM user group by using the ipa group-remove-
member-manager command.
For example, to remove the user test as a member manager of group_a:

$ ipa group-remove-member-manager group_a --users=test
Group name: group_a
GID: 1133400009
Membership managed by groups: group_admins

Number of members removed 1

User test can no longer manage members of group_a.

Remove a group as a member manager of an IdM user group by using the ipa group-remove-

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

164

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/logging-in-to-ipa-from-the-command-line_configuring-and-managing-idm#using-kinit-to-log-in-to-ipa_logging-in-to-ipa-from-the-command-line
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/logging-in-to-ipa-from-the-command-line_configuring-and-managing-idm#using-kinit-to-log-in-to-ipa_logging-in-to-ipa-from-the-command-line

Remove a group as a member manager of an IdM user group by using the ipa group-remove-
member-manager command.
For example, to remove the group group_admins as a member manager of group_a:

$ ipa group-remove-member-manager group_a --groups=group_admins
Group name: group_a
GID: 1133400009

Number of members removed 1

Group group_admins can no longer manage members of group_a.

NOTE

After you remove a member manager from a user group, the update may take some time
to spread to all clients in your Identity Management environment.

Verification

Using the ipa group-show command to verify the user and group were removed as member
managers.

$ ipa group-show group_a
Group name: group_a
GID: 1133400009

Additional resources

See ipa group-remove-member-manager --help for more details.

21.12. ENABLING GROUP MERGING FOR LOCAL AND REMOTE
GROUPS IN IDM

Groups are either centrally managed, provided by a domain such as Identity Management (IdM) or
Active Directory (AD), or they are managed on a local system in the etc/group file. In most cases, users
rely on a centrally managed store. However, in some cases software still relies on membership in known
groups for managing access control.

If you want to manage groups from a domain controller and from the local etc/group file, you can enable
group merging. You can configure your nsswitch.conf file to check both the local files and the remote
service. If a group appears in both, the list of member users is combined and returned in a single
response.

The steps below describe how to enable group merging for a user, idmuser.

Procedure

1. Add [SUCCESS=merge] to the /etc/nsswitch.conf file:

Allow initgroups to default to the setting for group.
initgroups: sss [SUCCESS=merge] files

CHAPTER 21. MANAGING USER GROUPS IN IDM CLI

165

2. Add the idmuser to IdM:

ipa user-add idmuser
First name: idm
Last name: user

Added user "idmuser"

User login: idmuser
First name: idm
Last name: user
Full name: idm user
Display name: idm user
Initials: tu
Home directory: /home/idmuser
GECOS: idm user
Login shell: /bin/sh
Principal name: idmuser@IPA.TEST
Principal alias: idmuser@IPA.TEST
Email address: idmuser@ipa.test
UID: 19000024
GID: 19000024
Password: False
Member of groups: ipausers
Kerberos keys available: False

3. Verify the GID of the local audio group.

$ getent group audio

audio:x:63

4. Add the group audio to IdM:

$ ipa group-add audio --gid 63

Added group "audio"

Group name: audio
GID: 63

NOTE

The GID you define when adding the audio group to IdM must be the same as
the GID of the local audio group.

5. Add idmuser user to the IdM audio group:

$ ipa group-add-member audio --users=idmuser
Group name: audio
GID: 63
Member users: idmuser

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

166

Number of members added 1

Verification

1. Log in as the idmuser.

2. Verify the idmuser has the local group in their session:

$ id idmuser
uid=1867800003(idmuser) gid=1867800003(idmuser)
groups=1867800003(idmuser),63(audio),10(wheel)

21.13. USING ANSIBLE TO GIVE A USER ID OVERRIDE ACCESS TO THE
LOCAL SOUND CARD ON AN IDM CLIENT

You can use the ansible-freeipa group and idoverrideuser modules to make Identity Management
(IdM) or Active Directory (AD) users members of the local audio group on an IdM client. This grants the
IdM or AD users privileged access to the sound card on the host. The procedure uses the example of
the Default Trust View ID view to which the aduser@addomain.com ID override is added in the first
playbook task. In the next playbook task, an audio group is created in IdM with the GID of 63, which
corresponds to the GID of local audio groups on RHEL hosts. At the same time, the
aduser@addomain.com ID override is added to the IdM audio group as a member.

Prerequisites

You have root access to the IdM client on which you want to perform the first part of the
procedure. In the example, this is client.idm.example.com.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

You are using RHEL 8.10 or later.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The AD forest is in trust with IdM. In the example, the name of the AD domain is addomain.com
and the fully-qualified domain name (FQDN) of the AD user whose presence in the local audio
group is being ensured is aduser@addomain.com.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

Procedure

1. On client.idm.example.com, add [SUCCESS=merge] to the /etc/nsswitch.conf file:

CHAPTER 21. MANAGING USER GROUPS IN IDM CLI

167

mailto:aduser@addomain.com
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

[...]
Allow initgroups to default to the setting for group.
initgroups: sss [SUCCESS=merge] files

2. Identify the GID of the local audio group:

$ getent group audio

audio:x:63

3. On your Ansible control node, create an add-aduser-to-audio-group.yml playbook with a task
to add the aduser@addomain.com user override to the Default Trust View:

- name: Playbook to manage idoverrideuser
 hosts: ipaserver
 become: false

 tasks:
 - name: Add aduser@addomain.com user to the Default Trust View
 ipaidoverrideuser:
 ipaadmin_password: "{{ ipaadmin_password }}"
 idview: "Default Trust View"
 anchor: aduser@addomain.com

4. Use another playbook task in the same playbook to add the group audio to IdM with the GID of
63. Add the aduser idoverrideuser to the group:

 - name: Add the audio group with the aduser member and GID of 63
 ipagroup:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: audio
 idoverrideuser:
 - aduser@addomain.com
 gidnumber: 63

5. Save the file.

6. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i inventory add-aduser-to-
audio-group.yml

Verification

1. Log in to the IdM client as the AD user:

$ ssh aduser@addomain.com@client.idm.example.com

2. Verify the group membership of the AD user:

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

168

$ id aduser@addomain.com
uid=702801456(aduser@addomain.com) gid=63(audio) groups=63(audio)

Additional resources

The idoverrideuser and ipagroup ansible-freeipa upstream documentation

Enabling group merging for local and remote groups in IdM

CHAPTER 21. MANAGING USER GROUPS IN IDM CLI

169

https://github.com/freeipa/ansible-freeipa/blob/master/README-idoverrideuser.md
https://github.com/freeipa/ansible-freeipa/blob/master/README-group.md
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_idm_users_groups_hosts_and_access_control_rules/managing-user-groups-in-idm-cli_managing-users-groups-hosts#enabling-group-merging-for-local-and-remote-groups-in-idm_managing-user-groups-in-idm-cli

CHAPTER 22. MANAGING USER GROUPS IN IDM WEB UI
This chapter introduces user groups management using the IdM web UI.

A user group is a set of users with common privileges, password policies, and other characteristics.

A user group in Identity Management (IdM) can include:

IdM users

other IdM user groups

external users, which are users that exist outside of IdM

22.1. THE DIFFERENT GROUP TYPES IN IDM

IdM supports the following types of groups:

POSIX groups (the default)

POSIX groups support Linux POSIX attributes for their members. Note that groups that interact with
Active Directory cannot use POSIX attributes.
POSIX attributes identify users as separate entities. Examples of POSIX attributes relevant to users
include uidNumber, a user number (UID), and gidNumber, a group number (GID).

Non-POSIX groups

Non-POSIX groups do not support POSIX attributes. For example, these groups do not have a GID
defined.
All members of this type of group must belong to the IdM domain.

External groups

Use external groups to add group members that exist in an identity store outside of the IdM domain,
such as:

A local system

An Active Directory domain

A directory service

External groups do not support POSIX attributes. For example, these groups do not have a GID
defined.

Table 22.1. User groups created by default

Group name Default group members

ipausers All IdM users

admins Users with administrative privileges, including the default admin user

editors This is a legacy group that no longer has any special privileges

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

170

trust admins Users with privileges to manage the Active Directory trusts

Group name Default group members

When you add a user to a user group, the user gains the privileges and policies associated with the
group. For example, to grant administrative privileges to a user, add the user to the admins group.

WARNING

Do not delete the admins group. As admins is a pre-defined group required by
IdM, this operation causes problems with certain commands.

In addition, IdM creates user private groups by default whenever a new user is created in IdM. For more
information about private groups, see Adding users without a private group .

22.2. DIRECT AND INDIRECT GROUP MEMBERS

User group attributes in IdM apply to both direct and indirect members: when group B is a member of
group A, all users in group B are considered indirect members of group A.

For example, in the following diagram:

User 1 and User 2 are direct members of group A.

User 3, User 4, and User 5 are indirect members of group A.

Figure 22.1. Direct and Indirect Group Membership

If you set a password policy for user group A, the policy also applies to all users in user group B.

22.3. ADDING A USER GROUP USING IDM WEB UI

Follow this procedure to add a user group using the IdM Web UI.

Prerequisites

CHAPTER 22. MANAGING USER GROUPS IN IDM WEB UI

171

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_idm_users_groups_hosts_and_access_control_rules/managing-user-groups-in-idm-cli_managing-users-groups-hosts#adding-users-without-a-user-private-group_managing-user-groups-in-idm-cli

You are logged in to the IdM Web UI.

Procedure

1. Click Identity → Groups, and select User Groups in the left sidebar.

2. Click Add to start adding the group.

3. Fill out the information about the group. For more information about user group types, see The
different group types in IdM.
You can specify a custom GID for the group. If you do this, be careful to avoid ID conflicts. If you
do not specify a custom GID, IdM automatically assigns a GID from the available ID range.

4. Click Add to confirm.

22.4. DELETING A USER GROUP USING IDM WEB UI

Follow this procedure to delete a user group using the IdM Web UI. Note that deleting a group does not
delete the group members from IdM.

Prerequisites

You are logged in to the IdM Web UI.

Procedure

1. Click Identity → Groups and select User Groups.

2. Select the group to delete.

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

172

3. Click Delete.

4. Click Delete to confirm.

22.5. ADDING A MEMBER TO A USER GROUP USING IDM WEB UI

You can add both users and user groups as members of a user group. For more information, see The
different group types in IdM and Direct and indirect group members .

Prerequisites

You are logged in to the IdM Web UI.

Procedure

1. Click Identity → Groups and select User Groups in the left sidebar.

2. Click the name of the group.

3. Select the type of group member you want to add: Users, User Groups, or External.

4. Click Add.

5. Select the check box next to one or more members you want to add.

6. Click the rightward arrow to move the selected members to the group.

CHAPTER 22. MANAGING USER GROUPS IN IDM WEB UI

173

7. Click Add to confirm.

22.6. ADDING USERS OR GROUPS AS MEMBER MANAGERS TO AN
IDM USER GROUP USING THE WEB UI

Follow this procedure to add users or groups as member managers to an IdM user group using the Web
UI. Member managers can add users or groups to IdM user groups but cannot change the attributes of a
group.

Prerequisites

You are logged in to the IdM Web UI.

You must have the name of the user or group you are adding as member managers and the
name of the group you want them to manage.

Procedure

1. Click Identity → Groups and select User Groups in the left sidebar.

2. Click the name of the group.

3. Select the type of group member manager you want to add: Users or User Groups.

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

174

4. Click Add.

5. Select the check box next to one or more members you want to add.

6. Click the rightward arrow to move the selected members to the group.

7. Click Add to confirm.

NOTE

After you add a member manager to a user group, the update may take some time to
spread to all clients in your Identity Management environment.

Verification

Verify the newly added user or user group has been added to the member manager list of users
or user groups:

CHAPTER 22. MANAGING USER GROUPS IN IDM WEB UI

175

Additional resources

See ipa group-add-member-manager --help for more information.

22.7. VIEWING GROUP MEMBERS USING IDM WEB UI

Follow this procedure to view members of a group using the IdM Web UI. You can view both direct and
indirect group members. For more information, see Direct and indirect group members .

Prerequisites

You are logged in to the IdM Web UI.

Procedure

1. Select Identity → Groups.

2. Select User Groups in the left sidebar.

3. Click the name of the group you want to view.

4. Switch between Direct Membership and Indirect Membership.

22.8. REMOVING A MEMBER FROM A USER GROUP USING IDM WEB UI

Follow this procedure to remove a member from a user group using the IdM Web UI.

Prerequisites

You are logged in to the IdM Web UI.

Procedure

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

176

1. Click Identity → Groups and select User Groups in the left sidebar.

2. Click the name of the group.

3. Select the type of group member you want to remove: Users, User Groups, or External.

4. Select the check box next to the member you want to remove.

5. Click Delete.

6. Click Delete to confirm.

22.9. REMOVING USERS OR GROUPS AS MEMBER MANAGERS FROM
AN IDM USER GROUP USING THE WEB UI

Follow this procedure to remove users or groups as member managers from an IdM user group using the
Web UI. Member managers can remove users or groups from IdM user groups but cannot change the
attributes of a group.

Prerequisites

You are logged in to the IdM Web UI.

You must have the name of the existing member manager user or group you are removing and
the name of the group they are managing.

Procedure

1. Click Identity → Groups and select User Groups in the left sidebar.

2. Click the name of the group.

3. Select the type of member manager you want to remove: Users or User Groups.

CHAPTER 22. MANAGING USER GROUPS IN IDM WEB UI

177

4. Select the check box next to the member manager you want to remove.

5. Click Delete.

6. Click Delete to confirm.

NOTE

After you remove a member manager from a user group, the update may take some time
to spread to all clients in your Identity Management environment.

Verification

Verify the user or user group has been removed from the member manager list of users or user
groups:

Additional resources

See ipa group-add-member-manager --help for more details.

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

178

CHAPTER 23. MANAGING USER GROUPS USING ANSIBLE
PLAYBOOKS

This section introduces user group management using Ansible playbooks.

A user group is a set of users with common privileges, password policies, and other characteristics.

A user group in Identity Management (IdM) can include:

IdM users

other IdM user groups

external users, which are users that exist outside of IdM

The section includes the following topics:

The different group types in IdM

Direct and indirect group members

Ensuring the presence of IdM groups and group members using Ansible playbooks

Using Ansible to enable AD users to administer IdM

Ensuring the presence of member managers in IDM user groups using Ansible playbooks

Ensuring the absence of member managers in IDM user groups using Ansible playbooks

23.1. THE DIFFERENT GROUP TYPES IN IDM

IdM supports the following types of groups:

POSIX groups (the default)

POSIX groups support Linux POSIX attributes for their members. Note that groups that interact with
Active Directory cannot use POSIX attributes.
POSIX attributes identify users as separate entities. Examples of POSIX attributes relevant to users
include uidNumber, a user number (UID), and gidNumber, a group number (GID).

Non-POSIX groups

Non-POSIX groups do not support POSIX attributes. For example, these groups do not have a GID
defined.
All members of this type of group must belong to the IdM domain.

External groups

Use external groups to add group members that exist in an identity store outside of the IdM domain,
such as:

A local system

An Active Directory domain

A directory service

External groups do not support POSIX attributes. For example, these groups do not have a GID

CHAPTER 23. MANAGING USER GROUPS USING ANSIBLE PLAYBOOKS

179

External groups do not support POSIX attributes. For example, these groups do not have a GID
defined.

Table 23.1. User groups created by default

Group name Default group members

ipausers All IdM users

admins Users with administrative privileges, including the default admin user

editors This is a legacy group that no longer has any special privileges

trust admins Users with privileges to manage the Active Directory trusts

When you add a user to a user group, the user gains the privileges and policies associated with the
group. For example, to grant administrative privileges to a user, add the user to the admins group.

WARNING

Do not delete the admins group. As admins is a pre-defined group required by
IdM, this operation causes problems with certain commands.

In addition, IdM creates user private groups by default whenever a new user is created in IdM. For more
information about private groups, see Adding users without a private group .

23.2. DIRECT AND INDIRECT GROUP MEMBERS

User group attributes in IdM apply to both direct and indirect members: when group B is a member of
group A, all users in group B are considered indirect members of group A.

For example, in the following diagram:

User 1 and User 2 are direct members of group A.

User 3, User 4, and User 5 are indirect members of group A.

Figure 23.1. Direct and Indirect Group Membership

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

180

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_idm_users_groups_hosts_and_access_control_rules/managing-user-groups-in-idm-cli_managing-users-groups-hosts#adding-users-without-a-user-private-group_managing-user-groups-in-idm-cli

Figure 23.1. Direct and Indirect Group Membership

If you set a password policy for user group A, the policy also applies to all users in user group B.

23.3. ENSURING THE PRESENCE OF IDM GROUPS AND GROUP
MEMBERS USING ANSIBLE PLAYBOOKS

The following procedure describes ensuring the presence of IdM groups and group members - both
users and user groups - using an Ansible playbook.

Prerequisites

You know the IdM administrator password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

The users you want to reference in your Ansible playbook exist in IdM. For details on ensuring
the presence of users using Ansible, see Managing user accounts using Ansible playbooks .

Procedure

1. Create an inventory file, for example inventory.file, and define ipaserver in it:

[ipaserver]
server.idm.example.com

2. Create an Ansible playbook file with the necessary user and group information:

- name: Playbook to handle groups
 hosts: ipaserver

CHAPTER 23. MANAGING USER GROUPS USING ANSIBLE PLAYBOOKS

181

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

3. Run the playbook:

$ ansible-playbook --vault-password-file=password_file -v -i
path_to_inventory_directory/inventory.file path_to_playbooks_directory/add-group-
members.yml

Verification

You can verify if the ops group contains sysops and appops as direct members and idm_user as an
indirect member by using the ipa group-show command:

1. Log into ipaserver as administrator:

$ ssh admin@server.idm.example.com
Password:
[admin@server /]$

2. Display information about ops:

ipaserver]$ ipa group-show ops
 Group name: ops
 GID: 1234
 Member groups: sysops, appops
 Indirect Member users: idm_user

The appops and sysops groups - the latter including the idm_user user - exist in IdM.

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Create group ops with gid 1234
 ipagroup:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: ops
 gidnumber: 1234

 - name: Create group sysops
 ipagroup:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: sysops
 user:
 - idm_user

 - name: Create group appops
 ipagroup:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: appops

 - name: Add group members sysops and appops to group ops
 ipagroup:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: ops
 group:
 - sysops
 - appops

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

182

Additional resources

See the /usr/share/doc/ansible-freeipa/README-group.md Markdown file.

23.4. USING ANSIBLE TO ADD MULTIPLE IDM GROUPS IN A SINGLE
TASK

You can use the ansible-freeipa ipagroup module to add, modify, and delete multiple Identity
Management (IdM) user groups with a single Ansible task. For that, use the groups option of the
ipagroup module.

Using the groups option, you can also specify multiple group variables that only apply to a particular
group. Define this group by the name variable, which is the only mandatory variable for the groups
option.

Complete this procedure to ensure the presence of the sysops and the appops groups in IdM in a single
task. Define the sysops group as a nonposix group and the appops group as an external group.

Prerequisites

On the control node:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package.

You have created an Ansible inventory file with the fully-qualified domain name (FQDN) of
the IdM server in the ~/MyPlaybooks/ directory.

You are using RHEL 8.9 and later.

You have stored your ipaadmin_password in the secret.yml Ansible vault.

Procedure

1. Create your Ansible playbook file add-nonposix-and-external-groups.yml with the following
content:

- name: Playbook to add nonposix and external groups
 hosts: ipaserver
 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml

 tasks:
 - name: Add nonposix group sysops and external group appops
 ipagroup:
 ipaadmin_password: "{{ ipaadmin_password }}"
 groups:
 - name: sysops
 nonposix: true
 - name: appops
 external: true

2. Run the playbook:

CHAPTER 23. MANAGING USER GROUPS USING ANSIBLE PLAYBOOKS

183

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

$ ansible-playbook --vault-password-file=password_file -v -i
<path_to_inventory_directory>/hosts <path_to_playbooks_directory>/add-nonposix-
and-external-groups.yml

Additional resources

The group module in ansible-freeipa upstream docs

23.5. USING ANSIBLE TO ENABLE AD USERS TO ADMINISTER IDM

Follow this procedure to use an Ansible playbook to ensure that a user ID override is present in an
Identity Management (IdM) group. The user ID override is the override of an Active Directory (AD) user
that you created in the Default Trust View after you established a trust with AD. As a result of running
the playbook, an AD user, for example an AD administrator, is able to fully administer IdM without having
two different accounts and passwords.

Prerequisites

You know the IdM admin password.

You have installed a trust with AD .

The user ID override of the AD user already exists in IdM. If it does not, create it with the ipa
idoverrideuser-add 'default trust view' ad_user@ad.example.com command.

The group to which you are adding the user ID override already exists in IdM .

You are using the 4.8.7 version of IdM or later. To view the version of IdM you have installed on
your server, enter ipa --version.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

Procedure

1. Navigate to your ~/MyPlaybooks/ directory:

$ cd ~/MyPlaybooks/

2. Create an add-useridoverride-to-group.yml playbook with the following content:

- name: Playbook to ensure presence of users in a group
 hosts: ipaserver

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

184

https://github.com/freeipa/ansible-freeipa/blob/master/README-group.md
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-trust-between-idm-and-ad_installing-identity-management
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/managing-user-groups-using-ansible-playbooks_configuring-and-managing-idm#ensuring-the-presence-of-IdM-groups-and-group-members-using-Ansible-playbooks_managing-user-groups-using-ansible-playbooks
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

 - name: Ensure the ad_user@ad.example.com user ID override is a member of the admins
group:
 ipagroup:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: admins
 idoverrideuser:
 - ad_user@ad.example.com

In the example:

Secret123 is the IdM admin password.

admins is the name of the IdM POSIX group to which you are adding the
ad_user@ad.example.com ID override. Members of this group have full administrator
privileges.

ad_user@ad.example.com is the user ID override of an AD administrator. The user is stored
in the AD domain with which a trust has been established.

3. Save the file.

4. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i inventory add-
useridoverride-to-group.yml

Additional resources

ID overrides for AD users

/usr/share/doc/ansible-freeipa/README-group.md

/usr/share/doc/ansible-freeipa/playbooks/user

Using ID views in Active Directory environments

Enabling AD users to administer IdM

23.6. ENSURING THE PRESENCE OF MEMBER MANAGERS IN IDM
USER GROUPS USING ANSIBLE PLAYBOOKS

The following procedure describes ensuring the presence of IdM member managers - both users and
user groups - using an Ansible playbook.

Prerequisites

You know the IdM administrator password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

CHAPTER 23. MANAGING USER GROUPS USING ANSIBLE PLAYBOOKS

185

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/enabling-ad-users-to-administer-idm_configuring-and-managing-idm#id-overrides-for-ad-users_enabling-ad-users-to-administer-idm
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/assembly_using-id-views-for-active-directory-users_configuring-and-managing-idm
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/enabling-ad-users-to-administer-idm_configuring-and-managing-idm

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

You must have the name of the user or group you are adding as member managers and the
name of the group you want them to manage.

Procedure

1. Create an inventory file, for example inventory.file, and define ipaserver in it:

[ipaserver]
server.idm.example.com

2. Create an Ansible playbook file with the necessary user and group member management
information:

- name: Playbook to handle membership management
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Ensure user test is present for group_a
 ipagroup:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: group_a
 membermanager_user: test

 - name: Ensure group_admins is present for group_a
 ipagroup:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: group_a
 membermanager_group: group_admins

3. Run the playbook:

$ ansible-playbook --vault-password-file=password_file -v -i
path_to_inventory_directory/inventory.file path_to_playbooks_directory/add-member-
managers-user-groups.yml

Verification

You can verify if the group_a group contains test as a member manager and group_admins is a
member manager of group_a by using the ipa group-show command:

1. Log into ipaserver as administrator:

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

186

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

$ ssh admin@server.idm.example.com
Password:
[admin@server /]$

2. Display information about managergroup1:

ipaserver]$ ipa group-show group_a
 Group name: group_a
 GID: 1133400009
 Membership managed by groups: group_admins
 Membership managed by users: test

Additional resources

See ipa host-add-member-manager --help.

See the ipa man page.

23.7. ENSURING THE ABSENCE OF MEMBER MANAGERS IN IDM USER
GROUPS USING ANSIBLE PLAYBOOKS

The following procedure describes ensuring the absence of IdM member managers - both users and
user groups - using an Ansible playbook.

Prerequisites

You know the IdM administrator password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

You must have the name of the existing member manager user or group you are removing and
the name of the group they are managing.

Procedure

1. Create an inventory file, for example inventory.file, and define ipaserver in it:

[ipaserver]
server.idm.example.com

2. Create an Ansible playbook file with the necessary user and group member management
information:

CHAPTER 23. MANAGING USER GROUPS USING ANSIBLE PLAYBOOKS

187

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

3. Run the playbook:

$ ansible-playbook --vault-password-file=password_file -v -i
path_to_inventory_directory/inventory.file path_to_playbooks_directory/ensure-
member-managers-are-absent.yml

Verification

You can verify if the group_a group does not contain test as a member manager and group_admins as
a member manager of group_a by using the ipa group-show command:

1. Log into ipaserver as administrator:

$ ssh admin@server.idm.example.com
Password:
[admin@server /]$

2. Display information about group_a:

ipaserver]$ ipa group-show group_a
 Group name: group_a
 GID: 1133400009

Additional resources

See ipa host-remove-member-manager --help.

See the ipa man page.

- name: Playbook to handle membership management
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Ensure member manager user and group members are absent for group_a
 ipagroup:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: group_a
 membermanager_user: test
 membermanager_group: group_admins
 action: member
 state: absent

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

188

CHAPTER 24. AUTOMATING GROUP MEMBERSHIP USING
IDM CLI

Using automatic group membership allows you to assign users and hosts to groups automatically based
on their attributes. For example, you can:

Divide employees' user entries into groups based on the employees' manager, location, or any
other attribute.

Divide hosts based on their class, location, or any other attribute.

Add all users or all hosts to a single global group.

This chapter covers the following topics:

Benefits of automatic group membership

Automember rules

Adding an automember rule using IdM CLI

Adding a condition to an automember rule using IdM CLI

Viewing existing automember rules using IdM CLI

Deleting an automember rule using IdM CLI

Removing a condition from an automember rule using IdM CLI

Applying automember rules to existing entries using IdM CLI

Configuring a default automember group using IdM CLI

24.1. BENEFITS OF AUTOMATIC GROUP MEMBERSHIP

Using automatic membership for users allows you to:

Reduce the overhead of manually managing group memberships
You no longer have to assign every user and host to groups manually.

Improve consistency in user and host management
Users and hosts are assigned to groups based on strictly defined and automatically evaluated
criteria.

Simplify the management of group-based settings
Various settings are defined for groups and then applied to individual group members, for
example sudo rules, automount, or access control. Adding users and hosts to groups
automatically makes managing these settings easier.

24.2. AUTOMEMBER RULES

When configuring automatic group membership, the administrator defines automember rules. An
automember rule applies to a specific user or host target group. It cannot apply to more than one group
at a time.

After creating a rule, the administrator adds conditions to it. These specify which users or hosts get

CHAPTER 24. AUTOMATING GROUP MEMBERSHIP USING IDM CLI

189

After creating a rule, the administrator adds conditions to it. These specify which users or hosts get
included or excluded from the target group:

Inclusive conditions
When a user or host entry meets an inclusive condition, it will be included in the target group.

Exclusive conditions
When a user or host entry meets an exclusive condition, it will not be included in the target
group.

The conditions are specified as regular expressions in the Perl-compatible regular expressions (PCRE)
format. For more information about PCRE, see the pcresyntax(3) man page.

NOTE

IdM evaluates exclusive conditions before inclusive conditions. In case of a conflict,
exclusive conditions take precedence over inclusive conditions.

An automember rule applies to every entry created in the future. These entries will be automatically
added to the specified target group. If an entry meets the conditions specified in multiple automember
rules, it will be added to all the corresponding groups.

Existing entries are not affected by the new rule. If you want to change existing entries, see Applying
automember rules to existing entries using IdM CLI.

24.3. ADDING AN AUTOMEMBER RULE USING IDM CLI

Follow this procedure to add an automember rule using the IdM CLI. For information about automember
rules, see Automember rules.

After adding an automember rule, you can add conditions to it using the procedure described in Adding a
condition to an automember rule.

NOTE

Existing entries are not affected by the new rule. If you want to change existing entries,
see Applying automember rules to existing entries using IdM CLI .

Prerequisites

You must be logged in as the administrator. For details, see Using kinit to log in to IdM manually .

The target group of the new rule must exist in IdM.

Procedure

1. Enter the ipa automember-add command to add an automember rule.

2. When prompted, specify:

Automember rule. This is the target group name.

Grouping Type. This specifies whether the rule targets a user group or a host group. To
target a user group, enter group. To target a host group, enter hostgroup.

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

190

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/logging-in-to-ipa-from-the-command-line_configuring-and-managing-idm#using-kinit-to-log-in-to-ipa_logging-in-to-ipa-from-the-command-line

For example, to add an automember rule for a user group named user_group:

$ ipa automember-add
Automember Rule: user_group
Grouping Type: group

Added automember rule "user_group"

 Automember Rule: user_group

Verification

You can display existing automember rules and conditions in IdM using Viewing existing
automember rules using IdM CLI.

24.4. ADDING A CONDITION TO AN AUTOMEMBER RULE USING IDM
CLI

After configuring automember rules, you can then add a condition to that automember rule using the
IdM CLI. For information about automember rules, see Automember rules.

Prerequisites

You must be logged in as the administrator. For details, see Using kinit to log in to IdM manually .

The target rule must exist in IdM. For details, see Adding an automember rule using IdM CLI .

Procedure

1. Define one or more inclusive or exclusive conditions using the ipa automember-add-condition
command.

2. When prompted, specify:

Automember rule. This is the target rule name. See Automember rules for details.

Attribute Key. This specifies the entry attribute to which the filter will apply. For example,
uid for users.

Grouping Type. This specifies whether the rule targets a user group or a host group. To
target a user group, enter group. To target a host group, enter hostgroup.

Inclusive regex and Exclusive regex. These specify one or more conditions as regular
expressions. If you only want to specify one condition, press Enter when prompted for the
other.

For example, the following condition targets all users with any value (.*) in their user login
attribute (uid).

$ ipa automember-add-condition
Automember Rule: user_group
Attribute Key: uid
Grouping Type: group
[Inclusive Regex]: .*

CHAPTER 24. AUTOMATING GROUP MEMBERSHIP USING IDM CLI

191

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/logging-in-to-ipa-from-the-command-line_configuring-and-managing-idm#using-kinit-to-log-in-to-ipa_logging-in-to-ipa-from-the-command-line

[Exclusive Regex]:

Added condition(s) to "user_group"

 Automember Rule: user_group
 Inclusive Regex: uid=.*

Number of conditions added 1

As another example, you can use an automembership rule to target all Windows users
synchronized from Active Directory (AD). To achieve this, create a condition that that targets all
users with ntUser in their objectClass attribute, which is shared by all AD users:

$ ipa automember-add-condition
Automember Rule: ad_users
Attribute Key: objectclass
Grouping Type: group
[Inclusive Regex]: ntUser
[Exclusive Regex]:

Added condition(s) to "ad_users"

 Automember Rule: ad_users
 Inclusive Regex: objectclass=ntUser

Number of conditions added 1

Verification

You can display existing automember rules and conditions in IdM using Viewing existing
automember rules using IdM CLI.

24.5. VIEWING EXISTING AUTOMEMBER RULES USING IDM CLI

Follow this procedure to view existing automember rules using the IdM CLI.

Prerequisites

You must be logged in as the administrator. For details, see Using kinit to log in to IdM manually .

Procedure

1. Enter the ipa automember-find command.

2. When prompted, specify the Grouping type:

To target a user group, enter group.

To target a host group, enter hostgroup.
For example:

$ ipa automember-find

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

192

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/logging-in-to-ipa-from-the-command-line_configuring-and-managing-idm#using-kinit-to-log-in-to-ipa_logging-in-to-ipa-from-the-command-line

Grouping Type: group

1 rules matched

 Automember Rule: user_group
 Inclusive Regex: uid=.*

Number of entries returned 1

24.6. DELETING AN AUTOMEMBER RULE USING IDM CLI

Follow this procedure to delete an automember rule using the IdM CLI.

Deleting an automember rule also deletes all conditions associated with the rule. To remove only specific
conditions from a rule, see Removing a condition from an automember rule using IdM CLI .

Prerequisites

You must be logged in as the administrator. For details, see Using kinit to log in to IdM manually .

Procedure

1. Enter the ipa automember-del command.

2. When prompted, specify:

Automember rule. This is the rule you want to delete.

Grouping rule. This specifies whether the rule you want to delete is for a user group or a
host group. Enter group or hostgroup.

24.7. REMOVING A CONDITION FROM AN AUTOMEMBER RULE USING
IDM CLI

Follow this procedure to remove a specific condition from an automember rule.

Prerequisites

You must be logged in as the administrator. For details, see Using kinit to log in to IdM manually .

Procedure

1. Enter the ipa automember-remove-condition command.

2. When prompted, specify:

Automember rule. This is the name of the rule from which you want to remove a condition.

Attribute Key. This is the target entry attribute. For example, uid for users.

Grouping Type. This specifies whether the condition you want to delete is for a user group
or a host group. Enter group or hostgroup.

Inclusive regex and Exclusive regex. These specify the conditions you want to remove. If

CHAPTER 24. AUTOMATING GROUP MEMBERSHIP USING IDM CLI

193

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/logging-in-to-ipa-from-the-command-line_configuring-and-managing-idm#using-kinit-to-log-in-to-ipa_logging-in-to-ipa-from-the-command-line
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/logging-in-to-ipa-from-the-command-line_configuring-and-managing-idm#using-kinit-to-log-in-to-ipa_logging-in-to-ipa-from-the-command-line

Inclusive regex and Exclusive regex. These specify the conditions you want to remove. If
you only want to specify one condition, press Enter when prompted for the other.
For example:

$ ipa automember-remove-condition
Automember Rule: user_group
Attribute Key: uid
Grouping Type: group
[Inclusive Regex]: .*
[Exclusive Regex]:

Removed condition(s) from "user_group"

 Automember Rule: user_group

Number of conditions removed 1

24.8. APPLYING AUTOMEMBER RULES TO EXISTING ENTRIES USING
IDM CLI

Automember rules apply automatically to user and host entries created after the rules were added. They
are not applied retroactively to entries that existed before the rules were added.

To apply automember rules to previously added entries, you have to manually rebuild automatic
membership. Rebuilding automatic membership re-evaluates all existing automember rules and applies
them either to all user or hosts entries, or to specific entries.

NOTE

Rebuilding automatic membership does not remove user or host entries from groups,
even if the entries no longer match the group’s inclusive conditions. To remove them
manually, see Removing a member from a user group using IdM CLI or Removing IdM
host group members using the CLI.

Prerequisites

You must be logged in as the administrator. For details, see link: Using kinit to log in to IdM
manually.

Procedure

To rebuild automatic membership, enter the ipa automember-rebuild command. Use the
following options to specify the entries to target:

To rebuild automatic membership for all users, use the --type=group option:

$ ipa automember-rebuild --type=group
--
Automember rebuild task finished. Processed (9) entries.
--

To rebuild automatic membership for all hosts, use the --type=hostgroup option.

To rebuild automatic membership for a specified user or users, use the --

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

194

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_idm_users_groups_hosts_and_access_control_rules/managing-user-groups-in-idm-cli_managing-users-groups-hosts#removing-a-member-from-a-user-group-using-idm-cli_managing-user-groups-in-idm-cli
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_idm_users_groups_hosts_and_access_control_rules/managing-host-groups-using-the-idm-cli_managing-users-groups-hosts#removing-idm-host-group-members-using-the-cli_managing-host-groups-using-the-idm-cli
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/logging-in-to-ipa-from-the-command-line_configuring-and-managing-idm#using-kinit-to-log-in-to-ipa_logging-in-to-ipa-from-the-command-line

To rebuild automatic membership for a specified user or users, use the --
users=target_user option:

$ ipa automember-rebuild --users=target_user1 --users=target_user2
--
Automember rebuild task finished. Processed (2) entries.
--

To rebuild automatic membership for a specified host or hosts, use the --
hosts=client.idm.example.com option.

24.9. CONFIGURING A DEFAULT AUTOMEMBER GROUP USING IDM
CLI

When you configure a default automember group, new user or host entries that do not match any
automember rule are automatically added to this default group.

Prerequisites

You must be logged in as the administrator. For details, see Using kinit to log in to IdM manually .

The target group you want to set as default exists in IdM.

Procedure

1. Enter the ipa automember-default-group-set command to configure a default automember
group.

2. When prompted, specify:

Default (fallback) Group, which specifies the target group name.

Grouping Type, which specifies whether the target is a user group or a host group. To
target a user group, enter group. To target a host group, enter hostgroup.
For example:

$ ipa automember-default-group-set
Default (fallback) Group: default_user_group
Grouping Type: group

Set default (fallback) group for automember "default_user_group"

 Default (fallback) Group:
cn=default_user_group,cn=groups,cn=accounts,dc=example,dc=com

NOTE

To remove the current default automember group, enter the ipa automember-
default-group-remove command.

Verification

To verify that the group is set correctly, enter the ipa automember-default-group-show
command. The command displays the current default automember group. For example:

CHAPTER 24. AUTOMATING GROUP MEMBERSHIP USING IDM CLI

195

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/logging-in-to-ipa-from-the-command-line_configuring-and-managing-idm#using-kinit-to-log-in-to-ipa_logging-in-to-ipa-from-the-command-line

$ ipa automember-default-group-show
Grouping Type: group
 Default (fallback) Group:
cn=default_user_group,cn=groups,cn=accounts,dc=example,dc=com

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

196

CHAPTER 25. AUTOMATING GROUP MEMBERSHIP USING
IDM WEB UI

Using automatic group membership enables you to assign users and hosts to groups automatically
based on their attributes. For example, you can:

Divide employees' user entries into groups based on the employees' manager, location, or any
other attribute.

Divide hosts based on their class, location, or any other attribute.

Add all users or all hosts to a single global group.

This chapter covers the following topics:

Benefits of automatic group membership

Automember rules

Adding an automember rule using IdM Web UI

Adding a condition to an automember rule using IdM Web UI

Viewing existing automember rules and conditions using IdM Web UI

Deleting an automember rule using IdM Web UI

Removing a condition from an automember rule using IdM Web UI

Applying automember rules to existing entries using IdM Web UI

Configuring a default user group using IdM Web UI

Configuring a default host group using IdM Web UI

25.1. BENEFITS OF AUTOMATIC GROUP MEMBERSHIP

Using automatic membership for users allows you to:

Reduce the overhead of manually managing group memberships
You no longer have to assign every user and host to groups manually.

Improve consistency in user and host management
Users and hosts are assigned to groups based on strictly defined and automatically evaluated
criteria.

Simplify the management of group-based settings
Various settings are defined for groups and then applied to individual group members, for
example sudo rules, automount, or access control. Adding users and hosts to groups
automatically makes managing these settings easier.

25.2. AUTOMEMBER RULES

When configuring automatic group membership, the administrator defines automember rules. An

CHAPTER 25. AUTOMATING GROUP MEMBERSHIP USING IDM WEB UI

197

When configuring automatic group membership, the administrator defines automember rules. An
automember rule applies to a specific user or host target group. It cannot apply to more than one group
at a time.

After creating a rule, the administrator adds conditions to it. These specify which users or hosts get
included or excluded from the target group:

Inclusive conditions
When a user or host entry meets an inclusive condition, it will be included in the target group.

Exclusive conditions
When a user or host entry meets an exclusive condition, it will not be included in the target
group.

The conditions are specified as regular expressions in the Perl-compatible regular expressions (PCRE)
format. For more information about PCRE, see the pcresyntax(3) man page.

NOTE

IdM evaluates exclusive conditions before inclusive conditions. In case of a conflict,
exclusive conditions take precedence over inclusive conditions.

An automember rule applies to every entry created in the future. These entries will be automatically
added to the specified target group. If an entry meets the conditions specified in multiple automember
rules, it will be added to all the corresponding groups.

Existing entries are not affected by the new rule. If you want to change existing entries, see Applying
automember rules to existing entries using IdM Web UI.

25.3. ADDING AN AUTOMEMBER RULE USING IDM WEB UI

Follow this procedure to add an automember rule using the IdM Web UI. For information about
automember rules, see Automember rules.

NOTE

Existing entries are not affected by the new rule. If you want to change existing entries,
see Applying automember rules to existing entries using IdM Web UI .

Prerequisites

You are logged in to the IdM Web UI.

You must be a member of the admins group.

The target group of the new rule exists in IdM.

Procedure

1. Click Identity → Automember, and select either User group rules or Host group rules.

2. Click Add.

3. In the Automember rule field, select the group to which the rule will apply. This is the target
group name.

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

198

4. Click Add to confirm.

5. Optional: You can add conditions to the new rule using the procedure described in Adding a
condition to an automember rule using IdM Web UI.

25.4. ADDING A CONDITION TO AN AUTOMEMBER RULE USING IDM
WEB UI

After configuring automember rules, you can then add a condition to that automember rule using the
IdM Web UI. For information about automember rules, see Automember rules.

Prerequisites

You are logged in to the IdM Web UI.

You must be a member of the admins group.

The target rule exists in IdM.

Procedure

1. Click Identity → Automember, and select either User group rules or Host group rules.

2. Click on the rule to which you want to add a condition.

3. In the Inclusive or Exclusive sections, click Add.

CHAPTER 25. AUTOMATING GROUP MEMBERSHIP USING IDM WEB UI

199

4. In the Attribute field, select the required attribute, for example uid.

5. In the Expression field, define a regular expression.

6. Click Add.
For example, the following condition targets all users with any value (.*) in their user ID (uid)
attribute.

25.5. VIEWING EXISTING AUTOMEMBER RULES AND CONDITIONS
USING IDM WEB UI

Follow this procedure to view existing automember rules and conditions using the IdM Web UI.

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

200

Prerequisites

You are logged in to the IdM Web UI.

You must be a member of the admins group.

Procedure

1. Click Identity → Automember, and select either User group rules or Host group rules to view
the respective automember rules.

2. Optional: Click on a rule to see the conditions for that rule in the Inclusive or Exclusive sections.

25.6. DELETING AN AUTOMEMBER RULE USING IDM WEB UI

Follow this procedure to delete an automember rule using the IdM Web UI.

Deleting an automember rule also deletes all conditions associated with the rule. To remove only specific
conditions from a rule, see Removing a condition from an automember rule using IdM Web UI .

Prerequisites

You are logged in to the IdM Web UI.

You must be a member of the admins group.

Procedure

1. Click Identity → Automember, and select either User group rules or Host group rules to view

CHAPTER 25. AUTOMATING GROUP MEMBERSHIP USING IDM WEB UI

201

1. Click Identity → Automember, and select either User group rules or Host group rules to view
the respective automember rules.

2. Select the check box next to the rule you want to remove.

3. Click Delete.

4. Click Delete to confirm.

25.7. REMOVING A CONDITION FROM AN AUTOMEMBER RULE USING
IDM WEB UI

Follow this procedure to remove a specific condition from an automember rule using the IdM Web UI.

Prerequisites

You are logged in to the IdM Web UI.

You must be a member of the admins group.

Procedure

1. Click Identity → Automember, and select either User group rules or Host group rules to view
the respective automember rules.

2. Click on a rule to see the conditions for that rule in the Inclusive or Exclusive sections.

3. Select the check box next to the conditions you want to remove.

4. Click Delete.

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

202

5. Click Delete to confirm.

25.8. APPLYING AUTOMEMBER RULES TO EXISTING ENTRIES USING
IDM WEB UI

Automember rules apply automatically to user and host entries created after the rules were added. They
are not applied retroactively to entries that existed before the rules were added.

To apply automember rules to previously added entries, you have to manually rebuild automatic
membership. Rebuilding automatic membership re-evaluates all existing automember rules and applies
them either to all user or hosts entries, or to specific entries.

NOTE

Rebuilding automatic membership does not remove user or host entries from groups,
even if the entries no longer match the group’s inclusive conditions. To remove them
manually, see Removing a member from a user group using IdM Web UI or Removing host
group members in the IdM Web UI.

25.8.1. Rebuilding automatic membership for all users or hosts

Follow this procedure to rebuild automatic membership for all user or host entries.

Prerequisites

You are logged in to the IdM Web UI.

CHAPTER 25. AUTOMATING GROUP MEMBERSHIP USING IDM WEB UI

203

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/managing-user-groups-in-idm-web-ui_configuring-and-managing-idm#removing-a-member-from-a-user-group-using-idm-web-ui_managing-user-groups-in-idm-web-ui
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/managing-host-groups-using-the-idm-web-ui_configuring-and-managing-idm#removing-host-group-members-in-the-idm-web-ui_managing-host-groups-using-the-idm-web-ui

You must be a member of the admins group.

Procedure

1. Select Identity → Users or Hosts.

2. Click Actions → Rebuild auto membership.

25.8.2. Rebuilding automatic membership for a single user or host only

Follow this procedure to rebuild automatic membership for a specific user or host entry.

Prerequisites

You are logged in to the IdM Web UI.

You must be a member of the admins group.

Procedure

1. Select Identity → Users or Hosts.

2. Click on the required user or host name.

3. Click Actions → Rebuild auto membership.

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

204

25.9. CONFIGURING A DEFAULT USER GROUP USING IDM WEB UI

When you configure a default user group, new user entries that do not match any automember rule are
automatically added to this default group.

Prerequisites

You are logged in to the IdM Web UI.

You must be a member of the admins group.

The target user group you want to set as default exists in IdM.

Procedure

1. Click Identity → Automember, and select User group rules.

2. In the Default user group field, select the group you want to set as the default user group.

25.10. CONFIGURING A DEFAULT HOST GROUP USING IDM WEB UI

When you configure a default host group, new host entries that do not match any automember rule are
automatically added to this default group.

Prerequisites

You are logged in to the IdM Web UI.

You must be a member of the admins group.

The target host group you want to set as default exists in IdM.

CHAPTER 25. AUTOMATING GROUP MEMBERSHIP USING IDM WEB UI

205

Procedure

1. Click Identity → Automember, and select Host group rules.

2. In the Default host group field, select the group you want to set as the default host group.

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

206

CHAPTER 26. USING ANSIBLE TO AUTOMATE GROUP
MEMBERSHIP IN IDM

Using automatic group membership, you can assign users and hosts user groups and host groups
automatically, based on their attributes. For example, you can:

Divide employees' user entries into groups based on the employees' manager, location, position
or any other attribute. You can list all attributes by entering ipa user-add --help on the
command-line.

Divide hosts into groups based on their class, location, or any other attribute. You can list all
attributes by entering ipa host-add --help on the command-line.

Add all users or all hosts to a single global group.

You can use Red Hat Ansible Engine to automate the management of automatic group membership in
Identity Management (IdM).

This section covers the following topics:

Preparing your Ansible control node for managing IdM

Using Ansible to ensure that an automember rule for an IdM user group is present

Using Ansible to ensure that a condition is present in an IdM user group automember rule

Using Ansible to ensure that a condition is absent in an IdM user group automember rule

Using Ansible to ensure that an automember rule for an IdM group is absent

Using Ansible to ensure that a condition is present in an IdM host group automember rule

26.1. PREPARING YOUR ANSIBLE CONTROL NODE FOR MANAGING
IDM

As a system administrator managing Identity Management (IdM), when working with Red Hat Ansible
Engine, it is good practice to do the following:

Create a subdirectory dedicated to Ansible playbooks in your home directory, for example
~/MyPlaybooks.

Copy and adapt sample Ansible playbooks from the /usr/share/doc/ansible-freeipa/* and
/usr/share/doc/rhel-system-roles/* directories and subdirectories into your ~/MyPlaybooks
directory.

Include your inventory file in your ~/MyPlaybooks directory.

By following this practice, you can find all your playbooks in one place and you can run your playbooks
without invoking root privileges.

NOTE

CHAPTER 26. USING ANSIBLE TO AUTOMATE GROUP MEMBERSHIP IN IDM

207

NOTE

You only need root privileges on the managed nodes to execute the ipaserver,
ipareplica, ipaclient, ipabackup, ipasmartcard_server and ipasmartcard_client
ansible-freeipa roles. These roles require privileged access to directories and the dnf
software package manager.

Follow this procedure to create the ~/MyPlaybooks directory and configure it so that you can use it to
store and run Ansible playbooks.

Prerequisites

You have installed an IdM server on your managed nodes, server.idm.example.com and
replica.idm.example.com.

You have configured DNS and networking so you can log in to the managed nodes,
server.idm.example.com and replica.idm.example.com, directly from the control node.

You know the IdM admin password.

Procedure

1. Create a directory for your Ansible configuration and playbooks in your home directory:

$ mkdir ~/MyPlaybooks/

2. Change into the ~/MyPlaybooks/ directory:

$ cd ~/MyPlaybooks

3. Create the ~/MyPlaybooks/ansible.cfg file with the following content:

[defaults]
inventory = /home/your_username/MyPlaybooks/inventory

[privilege_escalation]
become=True

4. Create the ~/MyPlaybooks/inventory file with the following content:

[ipaserver]
server.idm.example.com

[ipareplicas]
replica1.idm.example.com
replica2.idm.example.com

[ipacluster:children]
ipaserver
ipareplicas

[ipacluster:vars]
ipaadmin_password=SomeADMINpassword

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

208

[ipaclients]
ipaclient1.example.com
ipaclient2.example.com

[ipaclients:vars]
ipaadmin_password=SomeADMINpassword

This configuration defines two host groups, eu and us, for hosts in these locations. Additionally,
this configuration defines the ipaserver host group, which contains all hosts from the eu and us
groups.

5. Optional: Create an SSH public and private key. To simplify access in your test environment, do
not set a password on the private key:

$ ssh-keygen

6. Copy the SSH public key to the IdM admin account on each managed node:

$ ssh-copy-id admin@server.idm.example.com
$ ssh-copy-id admin@replica.idm.example.com

You must enter the IdM admin password when you enter these commands.

Additional resources

Installing an Identity Management server using an Ansible playbook .

How to build your inventory .

26.2. USING ANSIBLE TO ENSURE THAT AN AUTOMEMBER RULE FOR
AN IDM USER GROUP IS PRESENT

The following procedure describes how to use an Ansible playbook to ensure an automember rule for an
Identity Management (IdM) group exists. In the example, the presence of an automember rule is
ensured for the testing_group user group.

Prerequisites

You know the IdM admin password.

The testing_group user group exists in IdM.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

CHAPTER 26. USING ANSIBLE TO AUTOMATE GROUP MEMBERSHIP IN IDM

209

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management
https://docs.ansible.com/ansible/latest/user_guide/intro_inventory.html
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

Procedure

1. Navigate to your ~/MyPlaybooks/ directory:

$ cd ~/MyPlaybooks/

2. Copy the automember-group-present.yml Ansible playbook file located in the
/usr/share/doc/ansible-freeipa/playbooks/automember/ directory:

$ cp /usr/share/doc/ansible-freeipa/playbooks/automember/automember-group-
present.yml automember-group-present-copy.yml

3. Open the automember-group-present-copy.yml file for editing.

4. Adapt the file by setting the following variables in the ipaautomember task section:

Set the ipaadmin_password variable to the password of the IdM admin.

Set the name variable to testing_group.

Set the automember_type variable to group.

Ensure that the state variable is set to present.

This is the modified Ansible playbook file for the current example:

- name: Automember group present example
 hosts: ipaserver
 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Ensure group automember rule admins is present
 ipaautomember:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: testing_group
 automember_type: group
 state: present

5. Save the file.

6. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i inventory automember-
group-present-copy.yml

Additional resources

See Benefits of automatic group membership and Automember rules.

See Using Ansible to ensure that a condition is present in an IdM user group automember rule .

See the README-automember.md file in the /usr/share/doc/ansible-freeipa/ directory.

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

210

See the /usr/share/doc/ansible-freeipa/playbooks/automember directory.

26.3. USING ANSIBLE TO ENSURE THAT A SPECIFIED CONDITION IS
PRESENT IN AN IDM USER GROUP AUTOMEMBER RULE

The following procedure describes how to use an Ansible playbook to ensure that a specified condition
exists in an automember rule for an Identity Management (IdM) group. In the example, the presence of
a UID-related condition in the automember rule is ensured for the testing_group group. By specifying
the .* condition, you ensure that all future IdM users automatically become members of the
testing_group.

Prerequisites

You know the IdM admin password.

The testing_group user group and automember user group rule exist in IdM.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

Procedure

1. Navigate to your ~/MyPlaybooks/ directory:

$ cd ~/MyPlaybooks/

2. Copy the automember-hostgroup-rule-present.yml Ansible playbook file located in the
/usr/share/doc/ansible-freeipa/playbooks/automember/ directory and name it, for example,
automember-usergroup-rule-present.yml :

$ cp /usr/share/doc/ansible-freeipa/playbooks/automember/automember-hostgroup-
rule-present.yml automember-usergroup-rule-present.yml

3. Open the automember-usergroup-rule-present.yml file for editing.

4. Adapt the file by modifying the following parameters:

Rename the playbook to correspond to your use case, for example: Automember user
group rule member present.

Rename the task to correspond to your use case, for example: Ensure an automember
condition for a user group is present.

Set the following variables in the ipaautomember task section:

CHAPTER 26. USING ANSIBLE TO AUTOMATE GROUP MEMBERSHIP IN IDM

211

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

Set the ipaadmin_password variable to the password of the IdM admin.

Set the name variable to testing_group.

Set the automember_type variable to group.

Ensure that the state variable is set to present.

Ensure that the action variable is set to member.

Set the inclusive key variable to UID.

Set the inclusive expression variable to .*

This is the modified Ansible playbook file for the current example:

- name: Automember user group rule member present
 hosts: ipaserver
 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Ensure an automember condition for a user group is present
 ipaautomember:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: testing_group
 automember_type: group
 state: present
 action: member
 inclusive:
 - key: UID
 expression: .*

5. Save the file.

6. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i inventory automember-
usergroup-rule-present.yml

Verification

1. Log in as an IdM administrator.

$ kinit admin

2. Add a user, for example:

$ ipa user-add user101 --first user --last 101

Added user "user101"

 User login: user101
 First name: user

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

212

 Last name: 101
 ...
 Member of groups: ipausers, testing_group
 ...

Additional resources

See Applying automember rules to existing entries using the IdM CLI .

See Benefits of automatic group membership and Automember rules.

See the README-automember.md file in the /usr/share/doc/ansible-freeipa/ directory.

See the /usr/share/doc/ansible-freeipa/playbooks/automember directory.

26.4. USING ANSIBLE TO ENSURE THAT A CONDITION IS ABSENT
FROM AN IDM USER GROUP AUTOMEMBER RULE

The following procedure describes how to use an Ansible playbook to ensure a condition is absent from
an automember rule for an Identity Management (IdM) group. In the example, the absence of a
condition in the automember rule is ensured that specifies that users whose initials are dp should be
included. The automember rule is applied to the testing_group group. By applying the condition, you
ensure that no future IdM user whose initials are dp becomes a member of the testing_group.

Prerequisites

You know the IdM admin password.

The testing_group user group and automember user group rule exist in IdM.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

Procedure

1. Navigate to your ~/MyPlaybooks/ directory:

$ cd ~/MyPlaybooks/

2. Copy the automember-hostgroup-rule-absent.yml Ansible playbook file located in the
/usr/share/doc/ansible-freeipa/playbooks/automember/ directory and name it, for example,
automember-usergroup-rule-absent.yml:

CHAPTER 26. USING ANSIBLE TO AUTOMATE GROUP MEMBERSHIP IN IDM

213

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

$ cp /usr/share/doc/ansible-freeipa/playbooks/automember/automember-hostgroup-
rule-absent.yml automember-usergroup-rule-absent.yml

3. Open the automember-usergroup-rule-absent.yml file for editing.

4. Adapt the file by modifying the following parameters:

Rename the playbook to correspond to your use case, for example: Automember user
group rule member absent.

Rename the task to correspond to your use case, for example: Ensure an automember
condition for a user group is absent.

Set the following variables in the ipaautomember task section:

Set the ipaadmin_password variable to the password of the IdM admin.

Set the name variable to testing_group.

Set the automember_type variable to group.

Ensure that the state variable is set to absent.

Ensure that the action variable is set to member.

Set the inclusive key variable to initials.

Set the inclusive expression variable to dp.

This is the modified Ansible playbook file for the current example:

- name: Automember user group rule member absent
 hosts: ipaserver
 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Ensure an automember condition for a user group is absent
 ipaautomember:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: testing_group
 automember_type: group
 state: absent
 action: member
 inclusive:
 - key: initials
 expression: dp

5. Save the file.

6. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i inventory automember-
usergroup-rule-absent.yml

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

214

Verification

1. Log in as an IdM administrator.

$ kinit admin

2. View the automember group:

$ ipa automember-show --type=group testing_group
 Automember Rule: testing_group

The absence of an Inclusive Regex: initials=dp entry in the output confirms that the testing_group
automember rule does not contain the condition specified.

Additional resources

See Applying automember rules to existing entries using the IdM CLI .

See Benefits of automatic group membership and Automember rules.

See the README-automember.md file in the /usr/share/doc/ansible-freeipa/ directory.

See the /usr/share/doc/ansible-freeipa/playbooks/automember directory.

26.5. USING ANSIBLE TO ENSURE THAT AN AUTOMEMBER RULE FOR
AN IDM USER GROUP IS ABSENT

The following procedure describes how to use an Ansible playbook to ensure an automember rule is
absent for an Identity Management (IdM) group. In the example, the absence of an automember rule is
ensured for the testing_group group.

NOTE

Deleting an automember rule also deletes all conditions associated with the rule. To
remove only specific conditions from a rule, see Using Ansible to ensure that a condition is
absent in an IdM user group automember rule.

Prerequisites

You know the IdM admin password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

CHAPTER 26. USING ANSIBLE TO AUTOMATE GROUP MEMBERSHIP IN IDM

215

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

Procedure

1. Navigate to your ~/MyPlaybooks/ directory:

$ cd ~/MyPlaybooks/

2. Copy the automember-group-absent.yml Ansible playbook file located in the
/usr/share/doc/ansible-freeipa/playbooks/automember/ directory:

$ cp /usr/share/doc/ansible-freeipa/playbooks/automember/automember-group-
absent.yml automember-group-absent-copy.yml

3. Open the automember-group-absent-copy.yml file for editing.

4. Adapt the file by setting the following variables in the ipaautomember task section:

Set the ipaadmin_password variable to the password of the IdM admin.

Set the name variable to testing_group.

Set the automember_type variable to group.

Ensure that the state variable is set to absent.

This is the modified Ansible playbook file for the current example:

- name: Automember group absent example
 hosts: ipaserver
 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Ensure group automember rule admins is absent
 ipaautomember:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: testing_group
 automember_type: group
 state: absent

5. Save the file.

6. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i inventory automember-
group-absent.yml

Additional resources

See Benefits of automatic group membership and Automember rules.

See the README-automember.md file in the /usr/share/doc/ansible-freeipa/ directory.

See the /usr/share/doc/ansible-freeipa/playbooks/automember directory.

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

216

26.6. USING ANSIBLE TO ENSURE THAT A CONDITION IS PRESENT IN
AN IDM HOST GROUP AUTOMEMBER RULE

Follow this procedure to use Ansible to ensure that a condition is present in an IdM host group
automember rule. The example describes how to ensure that hosts with the FQDN of
.*.idm.example.com are members of the primary_dns_domain_hosts host group and hosts whose
FQDN is .*.example.org are not members of the primary_dns_domain_hosts host group.

Prerequisites

You know the IdM admin password.

The primary_dns_domain_hosts host group and automember host group rule exist in IdM.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

Procedure

1. Navigate to your ~/MyPlaybooks/ directory:

$ cd ~/MyPlaybooks/

2. Copy the automember-hostgroup-rule-present.yml Ansible playbook file located in the
/usr/share/doc/ansible-freeipa/playbooks/automember/ directory:

$ cp /usr/share/doc/ansible-freeipa/playbooks/automember/automember-hostgroup-
rule-present.yml automember-hostgroup-rule-present-copy.yml

3. Open the automember-hostgroup-rule-present-copy.yml file for editing.

4. Adapt the file by setting the following variables in the ipaautomember task section:

Set the ipaadmin_password variable to the password of the IdM admin.

Set the name variable to primary_dns_domain_hosts.

Set the automember_type variable to hostgroup.

Ensure that the state variable is set to present.

Ensure that the action variable is set to member.

Ensure that the inclusive key variable is set to fqdn.

CHAPTER 26. USING ANSIBLE TO AUTOMATE GROUP MEMBERSHIP IN IDM

217

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

Set the corresponding inclusive expression variable to .*.idm.example.com.

Set the exclusive key variable to fqdn.

Set the corresponding exclusive expression variable to .*.example.org.

This is the modified Ansible playbook file for the current example:

- name: Automember user group rule member present
 hosts: ipaserver
 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Ensure an automember condition for a user group is present
 ipaautomember:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: primary_dns_domain_hosts
 automember_type: hostgroup
 state: present
 action: member
 inclusive:
 - key: fqdn
 expression: .*.idm.example.com
 exclusive:
 - key: fqdn
 expression: .*.example.org

5. Save the file.

6. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i inventory automember-
hostgroup-rule-present-copy.yml

Additional resources

See Applying automember rules to existing entries using the IdM CLI .

See Benefits of automatic group membership and Automember rules.

See the README-automember.md file in the /usr/share/doc/ansible-freeipa/ directory.

See the /usr/share/doc/ansible-freeipa/playbooks/automember directory.

26.7. ADDITIONAL RESOURCES

Managing user accounts using Ansible playbooks

Managing hosts using Ansible playbooks

Managing user groups using Ansible playbooks

Managing host groups using the IdM CLI

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

218

CHAPTER 27. DELEGATING PERMISSIONS TO USER GROUPS
TO MANAGE USERS USING IDM CLI

Delegation is one of the access control methods in IdM, along with self-service rules and role-based
access control (RBAC). You can use delegation to assign permissions to one group of users to manage
entries for another group of users.

This section covers the following topics:

Delegation rules

Creating a delegation rule using IdM CLI

Viewing existing delegation rules using IdM CLI

Modifying a delegation rule using IdM CLI

Deleting a delegation rule using IdM CLI

27.1. DELEGATION RULES

You can delegate permissions to user groups to manage users by creating delegation rules.

Delegation rules allow a specific user group to perform write (edit) operations on specific attributes for
users in another user group. This form of access control rule is limited to editing the values of a subset of
attributes you specify in a delegation rule; it does not grant the ability to add or remove whole entries or
control over unspecified attributes.

Delegation rules grant permissions to existing user groups in IdM. You can use delegation to, for
example, allow the managers user group to manage selected attributes of users in the employees user
group.

27.2. CREATING A DELEGATION RULE USING IDM CLI

Follow this procedure to create a delegation rule using the IdM CLI.

Prerequisites

You are logged in as a member of the admins group.

Procedure

Enter the ipa delegation-add command. Specify the following options:

--group: the group who is being granted permissions to the entries of users in the user
group.

--membergroup: the group whose entries can be edited by members of the delegation
group.

--permissions: whether users will have the right to view the given attributes (read) and add
or change the given attributes (write). If you do not specify permissions, only the write
permission will be added.

--attrs: the attributes which users in the member group are allowed to view or edit.

CHAPTER 27. DELEGATING PERMISSIONS TO USER GROUPS TO MANAGE USERS USING IDM CLI

219

For example:

$ ipa delegation-add "basic manager attributes" --permissions=read --permissions=write --
attrs=businesscategory --attrs=departmentnumber --attrs=employeetype --
attrs=employeenumber --group=managers --membergroup=employees

Added delegation "basic manager attributes"

 Delegation name: basic manager attributes
 Permissions: read, write
 Attributes: businesscategory, departmentnumber, employeetype, employeenumber
 Member user group: employees
 User group: managers

27.3. VIEWING EXISTING DELEGATION RULES USING IDM CLI

Follow this procedure to view existing delegation rules using the IdM CLI.

Prerequisites

You are logged in as a member of the admins group.

Procedure

Enter the ipa delegation-find command:

$ ipa delegation-find

1 delegation matched

 Delegation name: basic manager attributes
 Permissions: read, write
 Attributes: businesscategory, departmentnumber, employeenumber, employeetype
 Member user group: employees
 User group: managers

Number of entries returned 1

27.4. MODIFYING A DELEGATION RULE USING IDM CLI

Follow this procedure to modify an existing delegation rule using the IdM CLI.

IMPORTANT

The --attrs option overwrites whatever the previous list of supported attributes was, so
always include the complete list of attributes along with any new attributes. This also
applies to the --permissions option.

Prerequisites

You are logged in as a member of the admins group.

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

220

Procedure

Enter the ipa delegation-mod command with the desired changes. For example, to add the
displayname attribute to the basic manager attributes example rule:

$ ipa delegation-mod "basic manager attributes" --attrs=businesscategory --
attrs=departmentnumber --attrs=employeetype --attrs=employeenumber --
attrs=displayname
--
Modified delegation "basic manager attributes"
--
 Delegation name: basic manager attributes
 Permissions: read, write
 Attributes: businesscategory, departmentnumber, employeetype, employeenumber,
displayname
 Member user group: employees
 User group: managers

27.5. DELETING A DELEGATION RULE USING IDM CLI

Follow this procedure to delete an existing delegation rule using the IdM CLI.

Prerequisites

You are logged in as a member of the admins group.

Procedure

Enter the ipa delegation-del command.

When prompted, enter the name of the delegation rule you want to delete:

$ ipa delegation-del
Delegation name: basic manager attributes

Deleted delegation "basic manager attributes"

CHAPTER 27. DELEGATING PERMISSIONS TO USER GROUPS TO MANAGE USERS USING IDM CLI

221

CHAPTER 28. DELEGATING PERMISSIONS TO USER GROUPS
TO MANAGE USERS USING IDM WEBUI

Delegation is one of the access control methods in IdM, along with self-service rules and role-based
access control (RBAC). You can use delegation to assign permissions to one group of users to manage
entries for another group of users.

This section covers the following topics:

Delegation rules

Creating a delegation rule using IdM WebUI

Viewing existing delegation rules using IdM WebUI

Modifying a delegation rule using IdM WebUI

Deleting a delegation rule using IdM WebUI

28.1. DELEGATION RULES

You can delegate permissions to user groups to manage users by creating delegation rules.

Delegation rules allow a specific user group to perform write (edit) operations on specific attributes for
users in another user group. This form of access control rule is limited to editing the values of a subset of
attributes you specify in a delegation rule; it does not grant the ability to add or remove whole entries or
control over unspecified attributes.

Delegation rules grant permissions to existing user groups in IdM. You can use delegation to, for
example, allow the managers user group to manage selected attributes of users in the employees user
group.

28.2. CREATING A DELEGATION RULE USING IDM WEBUI

Follow this procedure to create a delegation rule using the IdM WebUI.

Prerequisites

You are logged in to the IdM Web UI as a member of the admins group.

Procedure

1. From the IPA Server menu, click Role-Based Access Control → Delegations.

2. Click Add.

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

222

3. In the Add delegation window, do the following:

a. Name the new delegation rule.

b. Set the permissions by selecting the check boxes that indicate whether users will have the
right to view the given attributes (read) and add or change the given attributes (write).

c. In the User group drop-down menu, select the group who is being granted permissions to
view or edit the entries of users in the member group.

d. In the Member user group drop-down menu, select the group whose entries can be edited
by members of the delegation group.

e. In the attributes box, select the check boxes by the attributes to which you want to grant
permissions.

CHAPTER 28. DELEGATING PERMISSIONS TO USER GROUPS TO MANAGE USERS USING IDM WEBUI

223

f. Click the Add button to save the new delegation rule.

28.3. VIEWING EXISTING DELEGATION RULES USING IDM WEBUI

Follow this procedure to view existing delegation rules using the IdM WebUI.

Prerequisites

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

224

You are logged in to the IdM Web UI as a member of the admins group.

Procedure

From the IPA Server menu, click Role-Based Access Control → Delegations.

28.4. MODIFYING A DELEGATION RULE USING IDM WEBUI

Follow this procedure to modify an existing delegation rule using the IdM WebUI.

Prerequisites

You are logged in to the IdM Web UI as a member of the admins group.

Procedure

1. From the IPA Server menu, click Role-Based Access Control → Delegations.

2. Click on the rule you want to modify.

3. Make the desired changes:

Change the name of the rule.

Change granted permissions by selecting the check boxes that indicate whether users will
have the right to view the given attributes (read) and add or change the given attributes
(write).

In the User group drop-down menu, select the group who is being granted permissions to
view or edit the entries of users in the member group.

In the Member user group drop-down menu, select the group whose entries can be edited
by members of the delegation group.

In the attributes box, select the check boxes by the attributes to which you want to grant

CHAPTER 28. DELEGATING PERMISSIONS TO USER GROUPS TO MANAGE USERS USING IDM WEBUI

225

In the attributes box, select the check boxes by the attributes to which you want to grant
permissions. To remove permissions to an attribute, uncheck the relevant check box.

Click the Save button to save the changes.

28.5. DELETING A DELEGATION RULE USING IDM WEBUI

Follow this procedure to delete an existing delegation rule using the IdM WebUI.

Prerequisites

You are logged in to the IdM Web UI as a member of the admins group.

Procedure

1. From the IPA Server menu, click Role-Based Access Control → Delegations.

2. Select the check box next to the rule you want to remove.

3. Click Delete.

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

226

4. Click Delete to confirm.

CHAPTER 28. DELEGATING PERMISSIONS TO USER GROUPS TO MANAGE USERS USING IDM WEBUI

227

CHAPTER 29. DELEGATING PERMISSIONS TO USER GROUPS
TO MANAGE USERS USING ANSIBLE PLAYBOOKS

Delegation is one of the access control methods in IdM, along with self-service rules and role-based
access control (RBAC). You can use delegation to assign permissions to one group of users to manage
entries for another group of users.

This section covers the following topics:

Delegation rules

Creating the Ansible inventory file for IdM

Using Ansible to ensure that a delegation rule is present

Using Ansible to ensure that a delegation rule is absent

Using Ansible to ensure that a delegation rule has specific attributes

Using Ansible to ensure that a delegation rule does not have specific attributes

29.1. DELEGATION RULES

You can delegate permissions to user groups to manage users by creating delegation rules.

Delegation rules allow a specific user group to perform write (edit) operations on specific attributes for
users in another user group. This form of access control rule is limited to editing the values of a subset of
attributes you specify in a delegation rule; it does not grant the ability to add or remove whole entries or
control over unspecified attributes.

Delegation rules grant permissions to existing user groups in IdM. You can use delegation to, for
example, allow the managers user group to manage selected attributes of users in the employees user
group.

29.2. CREATING AN ANSIBLE INVENTORY FILE FOR IDM

When working with Ansible, it is good practice to create, in your home directory, a subdirectory
dedicated to Ansible playbooks that you copy and adapt from the /usr/share/doc/ansible-freeipa/* and
/usr/share/doc/rhel-system-roles/* subdirectories. This practice has the following advantages:

You can find all your playbooks in one place.

You can run your playbooks without invoking root privileges.

Procedure

1. Create a directory for your Ansible configuration and playbooks in your home directory:

$ mkdir ~/MyPlaybooks/

2. Change into the ~/MyPlaybooks/ directory:

$ cd ~/MyPlaybooks

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

228

3. Create the ~/MyPlaybooks/ansible.cfg file with the following content:

[defaults]
inventory = /home/<username>/MyPlaybooks/inventory

[privilege_escalation]
become=True

4. Create the ~/MyPlaybooks/inventory file with the following content:

[eu]
server.idm.example.com

[us]
replica.idm.example.com

[ipaserver:children]
eu
us

This configuration defines two host groups, eu and us, for hosts in these locations. Additionally,
this configuration defines the ipaserver host group, which contains all hosts from the eu and us
groups.

29.3. USING ANSIBLE TO ENSURE THAT A DELEGATION RULE IS
PRESENT

The following procedure describes how to use an Ansible playbook to define privileges for a new IdM
delegation rule and ensure its presence. In the example, the new basic manager attributes delegation
rule grants the managers group the ability to read and write the following attributes for members of
the employees group:

businesscategory

departmentnumber

employeenumber

employeetype

Prerequisites

You know the IdM administrator password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of

CHAPTER 29. DELEGATING PERMISSIONS TO USER GROUPS TO MANAGE USERS USING ANSIBLE PLAYBOOKS

229

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

Procedure

1. Navigate to the ~/MyPlaybooks/ directory:

$ cd ~/MyPlaybooks/

2. Make a copy of the delegation-present.yml file located in the /usr/share/doc/ansible-
freeipa/playbooks/delegation/ directory:

$ cp /usr/share/doc/ansible-freeipa/playbooks/delegation/delegation-present.yml
delegation-present-copy.yml

3. Open the delegation-present-copy.yml Ansible playbook file for editing.

4. Adapt the file by setting the following variables in the ipadelegation task section:

Set the ipaadmin_password variable to the password of the IdM administrator.

Set the name variable to the name of the new delegation rule.

Set the permission variable to a comma-separated list of permissions to grant: read and
write.

Set the attribute variable to a list of attributes the delegated user group can manage:
businesscategory, departmentnumber, employeenumber, and employeetype.

Set the group variable to the name of the group that is being given access to view or
modify attributes.

Set the membergroup variable to the name of the group whose attributes can be viewed
or modified.

This is the modified Ansible playbook file for the current example:

- name: Playbook to manage a delegation rule
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Ensure delegation "basic manager attributes" is present
 ipadelegation:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: "basic manager attributes"
 permission: read, write
 attribute:
 - businesscategory
 - departmentnumber
 - employeenumber
 - employeetype
 group: managers
 membergroup: employees

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

230

5. Save the file.

6. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i ~/MyPlaybooks/inventory
delegation-present-copy.yml

Additional resources

See Delegation rules.

See the README-delegation.md file in the /usr/share/doc/ansible-freeipa/ directory.

See the sample playbooks in the /usr/share/doc/ansible-freeipa/playbooks/ipadelegation
directory.

29.4. USING ANSIBLE TO ENSURE THAT A DELEGATION RULE IS
ABSENT

The following procedure describes how to use an Ansible playbook to ensure a specified delegation rule
is absent from your IdM configuration. The example below describes how to make sure the custom basic
manager attributes delegation rule does not exist in IdM.

Prerequisites

You know the IdM administrator password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

Procedure

1. Navigate to the ~/MyPlaybooks/ directory:

$ cd ~/MyPlaybooks>/

2. Make a copy of the delegation-absent.yml file located in the /usr/share/doc/ansible-
freeipa/playbooks/delegation/ directory:

$ cp /usr/share/doc/ansible-freeipa/playbooks/delegation/delegation-present.yml
delegation-absent-copy.yml

CHAPTER 29. DELEGATING PERMISSIONS TO USER GROUPS TO MANAGE USERS USING ANSIBLE PLAYBOOKS

231

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

3. Open the delegation-absent-copy.yml Ansible playbook file for editing.

4. Adapt the file by setting the following variables in the ipadelegation task section:

Set the ipaadmin_password variable to the password of the IdM administrator.

Set the name variable to the name of the delegation rule.

Set the state variable to absent.

This is the modified Ansible playbook file for the current example:

- name: Delegation absent
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Ensure delegation "basic manager attributes" is absent
 ipadelegation:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: "basic manager attributes"
 state: absent

5. Save the file.

6. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i ~/MyPlaybooks/inventory
delegation-absent-copy.yml

Additional resources

See Delegation rules.

See the README-delegation.md file in the /usr/share/doc/ansible-freeipa/ directory.

See the sample playbooks in the /usr/share/doc/ansible-freeipa/playbooks/ipadelegation
directory.

29.5. USING ANSIBLE TO ENSURE THAT A DELEGATION RULE HAS
SPECIFIC ATTRIBUTES

The following procedure describes how to use an Ansible playbook to ensure that a delegation rule has
specific settings. You can use this playbook to modify a delegation role you have previously created. In
the example, you ensure the basic manager attributes delegation rule only has the departmentnumber
member attribute.

Prerequisites

You know the IdM administrator password.

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

232

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

The basic manager attributes delegation rule exists in IdM.

Procedure

1. Navigate to the ~/MyPlaybooks/ directory:

$ cd ~/MyPlaybooks/

2. Make a copy of the delegation-member-present.yml file located in the
/usr/share/doc/ansible-freeipa/playbooks/delegation/ directory:

$ cp /usr/share/doc/ansible-freeipa/playbooks/delegation/delegation-member-
present.yml delegation-member-present-copy.yml

3. Open the delegation-member-present-copy.yml Ansible playbook file for editing.

4. Adapt the file by setting the following variables in the ipadelegation task section:

Set the ipaadmin_password variable to the password of the IdM administrator.

Set the name variable to the name of the delegation rule to modify.

Set the attribute variable to departmentnumber.

Set the action variable to member.

This is the modified Ansible playbook file for the current example:

- name: Delegation member present
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Ensure delegation "basic manager attributes" member attribute departmentnumber
is present
 ipadelegation:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: "basic manager attributes"

CHAPTER 29. DELEGATING PERMISSIONS TO USER GROUPS TO MANAGE USERS USING ANSIBLE PLAYBOOKS

233

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

 attribute:
 - departmentnumber
 action: member

5. Save the file.

6. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i ~/MyPlaybooks/inventory
delegation-member-present-copy.yml

Additional resources

See Delegation rules.

See the README-delegation.md file in the /usr/share/doc/ansible-freeipa/ directory.

See the sample playbooks in the /usr/share/doc/ansible-freeipa/playbooks/ipadelegation
directory.

29.6. USING ANSIBLE TO ENSURE THAT A DELEGATION RULE DOES
NOT HAVE SPECIFIC ATTRIBUTES

The following procedure describes how to use an Ansible playbook to ensure that a delegation rule does
not have specific settings. You can use this playbook to make sure a delegation role does not grant
undesired access. In the example, you ensure the basic manager attributes delegation rule does not
have the employeenumber and employeetype member attributes.

Prerequisites

You know the IdM administrator password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

The basic manager attributes delegation rule exists in IdM.

Procedure

1. Navigate to the ~/MyPlaybooks/ directory:

$ cd ~/MyPlaybooks/

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

234

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

2. Make a copy of the delegation-member-absent.yml file located in the /usr/share/doc/ansible-
freeipa/playbooks/delegation/ directory:

$ cp /usr/share/doc/ansible-freeipa/playbooks/delegation/delegation-member-
absent.yml delegation-member-absent-copy.yml

3. Open the delegation-member-absent-copy.yml Ansible playbook file for editing.

4. Adapt the file by setting the following variables in the ipadelegation task section:

Set the ipaadmin_password variable to the password of the IdM administrator.

Set the name variable to the name of the delegation rule to modify.

Set the attribute variable to employeenumber and employeetype.

Set the action variable to member.

Set the state variable to absent.

This is the modified Ansible playbook file for the current example:

- name: Delegation member absent
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Ensure delegation "basic manager attributes" member attributes employeenumber
and employeetype are absent
 ipadelegation:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: "basic manager attributes"
 attribute:
 - employeenumber
 - employeetype
 action: member
 state: absent

5. Save the file.

6. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i ~/MyPlaybooks/inventory
delegation-member-absent-copy.yml

Additional resources

See Delegation rules.

See the README-delegation.md file in the /usr/share/doc/ansible-freeipa/ directory.

See the sample playbooks in the /usr/share/doc/ansible-freeipa/playbooks/ipadelegation

CHAPTER 29. DELEGATING PERMISSIONS TO USER GROUPS TO MANAGE USERS USING ANSIBLE PLAYBOOKS

235

See the sample playbooks in the /usr/share/doc/ansible-freeipa/playbooks/ipadelegation
directory.

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

236

CHAPTER 30. MANAGING ROLE-BASED ACCESS CONTROLS
IN IDM USING THE CLI

Learn more about role-based access control in Identity Management (IdM) and the following operations
which are run in the command-line interface (CLI):

Managing permissions

Managing privileges

Managing roles

30.1. ROLE-BASED ACCESS CONTROL IN IDM

Role-based access control (RBAC) in IdM grants a very different kind of authority to users compared to
self-service and delegation access controls.

Role-based access control is composed of three parts:

Permissions grant the right to perform a specific task such as adding or deleting users,
modifying a group, and enabling read-access.

Privileges combine permissions, for example all the permissions needed to add a new user.

Roles grant a set of privileges to users, user groups, hosts or host groups.

30.1.1. Permissions in IdM

Permissions are the lowest level unit of role-based access control, they define operations together with
the LDAP entries to which those operations apply. Comparable to building blocks, permissions can be
assigned to as many privileges as needed.
One or more rights define what operations are allowed:

write

read

search

compare

add

delete

all

These operations apply to three basic targets:

subtree: a domain name (DN); the subtree under this DN

target filter: an LDAP filter

target: DN with possible wildcards to specify entries

Additionally, the following convenience options set the corresponding attribute(s):

CHAPTER 30. MANAGING ROLE-BASED ACCESS CONTROLS IN IDM USING THE CLI

237

type: a type of object (user, group, etc); sets subtree and target filter

memberof: members of a group; sets a target filter

NOTE

Setting the memberof attribute permission is not applied if the target LDAP
entry does not contain any reference to group membership.

targetgroup: grants access to modify a specific group (such as granting the rights to manage
group membership); sets a target

With IdM permissions, you can control which users have access to which objects and even which
attributes of these objects. IdM enables you to allow or block individual attributes or change the entire
visibility of a specific IdM function, such as users, groups, or sudo, to all anonymous users, all
authenticated users, or just a certain group of privileged users.
For example, the flexibility of this approach to permissions is useful for an administrator who wants to
limit access of users or groups only to the specific sections these users or groups need to access and to
make the other sections completely hidden to them.

NOTE

A permission cannot contain other permissions.

30.1.2. Default managed permissions

Managed permissions are permissions that come by default with IdM. They behave like other
permissions created by the user, with the following differences:

You cannot delete them or modify their name, location, and target attributes.

They have three sets of attributes:

Default attributes, the user cannot modify them, as they are managed by IdM

Included attributes, which are additional attributes added by the user

Excluded attributes, which are attributes removed by the user

A managed permission applies to all attributes that appear in the default and included attribute sets but
not in the excluded set.

NOTE

While you cannot delete a managed permission, setting its bind type to permission and
removing the managed permission from all privileges effectively disables it.

Names of all managed permissions start with System:, for example System: Add Sudo rule or System:
Modify Services. Earlier versions of IdM used a different scheme for default permissions. For example,
the user could not delete them and was only able to assign them to privileges. Most of these default
permissions have been turned into managed permissions, however, the following permissions still use
the previous scheme:

Add Automember Rebuild Membership Task

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

238

Add Configuration Sub-Entries

Add Replication Agreements

Certificate Remove Hold

Get Certificates status from the CA

Read DNA Range

Modify DNA Range

Read PassSync Managers Configuration

Modify PassSync Managers Configuration

Read Replication Agreements

Modify Replication Agreements

Remove Replication Agreements

Read LDBM Database Configuration

Request Certificate

Request Certificate ignoring CA ACLs

Request Certificates from a different host

Retrieve Certificates from the CA

Revoke Certificate

Write IPA Configuration

NOTE

If you attempt to modify a managed permission from the command line, the system does
not allow you to change the attributes that you cannot modify, the command fails. If you
attempt to modify a managed permission from the Web UI, the attributes that you
cannot modify are disabled.

30.1.3. Privileges in IdM

A privilege is a group of permissions applicable to a role.
While a permission provides the rights to do a single operation, there are certain IdM tasks that require
multiple permissions to succeed. Therefore, a privilege combines the different permissions required to
perform a specific task.
For example, setting up an account for a new IdM user requires the following permissions:

Creating a new user entry

Resetting a user password

Adding the new user to the default IPA users group

CHAPTER 30. MANAGING ROLE-BASED ACCESS CONTROLS IN IDM USING THE CLI

239

Combining these three low-level tasks into a higher level task in the form of a custom privilege named,
for example, Add User makes it easier for a system administrator to manage roles. IdM already contains
several default privileges. Apart from users and user groups, privileges are also assigned to hosts and
host groups, as well as network services. This practice permits a fine-grained control of operations by a
set of users on a set of hosts using specific network services.

NOTE

A privilege may not contain other privileges.

30.1.4. Roles in IdM

A role is a list of privileges that users specified for the role possess.
In effect, permissions grant the ability to perform given low-level tasks (such as creating a user entry
and adding an entry to a group), privileges combine one or more of these permissions needed for a
higher-level task (such as creating a new user in a given group). Roles gather privileges together as
needed: for example, a User Administrator role would be able to add, modify, and delete users.

IMPORTANT

Roles are used to classify permitted actions. They are not used as a tool to implement
privilege separation or to protect from privilege escalation.

NOTE

Roles can not contain other roles.

30.1.5. Predefined roles in Identity Management

Red Hat Identity Management provides the following range of pre-defined roles:

Table 30.1. Predefined Roles in Identity Management

Role Privilege Description

Enrollment Administrator Host Enrollment Responsible for client, or host,
enrollment

helpdesk Modify Users and Reset
passwords, Modify Group
membership

Responsible for performing simple
user administration tasks

IT Security Specialist Netgroups Administrators, HBAC
Administrator, Sudo Administrator

Responsible for managing security
policy such as host-based access
controls, sudo rules

IT Specialist Host Administrators, Host Group
Administrators, Service
Administrators, Automount
Administrators

Responsible for managing hosts

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

240

Security Architect Delegation Administrator,
Replication Administrators, Write
IPA Configuration, Password
Policy Administrator

Responsible for managing the
Identity Management
environment, creating trusts,
creating replication agreements

User Administrator User Administrators, Group
Administrators, Stage User
Administrators

Responsible for creating users
and groups

Role Privilege Description

30.2. MANAGING IDM PERMISSIONS IN THE CLI

Follow this procedure to manage Identity Management (IdM) permissions using the command-line
interface (CLI).

Prerequisites

Administrator privileges for managing IdM or the User Administrator role.

An active Kerberos ticket. For details, see Using kinit to log in to IdM manually .

Procedure

1. Create new permission entries with the ipa permission-add command.
For example, to add a permission named dns admin:

$ ipa permission-add "dns admin"

2. Specify the properties of the permission with the following options:

--bindtype specifies the bind rule type. This option accepts the all, anonymous, and
permission arguments. The permission bindtype means that only the users who are
granted this permission via a role can exercise it.
For example:

$ ipa permission-add "dns admin" --bindtype=all

If you do not specify --bindtype, then permission is the default value.

NOTE

It is not possible to add permissions with a non-default bind rule type to
privileges. You also cannot set a permission that is already present in a
privilege to a non-default bind rule type.

--right lists the rights granted by the permission, it replaces the deprecated --permissions
option. The available values are add, delete, read, search, compare, write, all.
You can set multiple attributes by using multiple --right options or with a comma-separated
list inside curly braces. For example:

CHAPTER 30. MANAGING ROLE-BASED ACCESS CONTROLS IN IDM USING THE CLI

241

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/logging-in-to-ipa-from-the-command-line_configuring-and-managing-idm#using-kinit-to-log-in-to-ipa_logging-in-to-ipa-from-the-command-line

$ ipa permission-add "dns admin" --right=read --right=write

$ ipa permission-add "dns admin" --right={read,write}

NOTE

add and delete are entry-level operations (for example, deleting a user,
adding a group, and so on) while read, search, compare and write are more
attribute-level: you can write to userCertificate but not read userPassword.

--attrs gives the list of attributes over which the permission is granted.
You can set multiple attributes by using multiple --attrs options or by listing the options in a
comma-separated list inside curly braces. For example:

$ ipa permission-add "dns admin" --attrs=description --attrs=automountKey

$ ipa permission-add "dns admin" --attrs={description,automountKey}

The attributes provided with --attrs must exist and be allowed attributes for the given
object type, otherwise the command fails with schema syntax errors.

--type defines the entry object type to which the permission applies, such as user, host, or
service. Each type has its own set of allowed attributes.
For example:

$ ipa permission-add "manage service" --right=all --type=service --attrs=krbprincipalkey -
-attrs=krbprincipalname --attrs=managedby

--subtree gives a subtree entry; the filter then targets every entry beneath this subtree
entry. Provide an existing subtree entry; --subtree does not accept wildcards or non-
existent domain names (DNs). Include a DN within the directory.
Because IdM uses a simplified, flat directory tree structure, --subtree can be used to target
some types of entries, like automount locations, which are containers or parent entries for
other configuration. For example:

$ ipa permission-add "manage automount locations" --
subtree="ldap://ldap.example.com:389/cn=automount,dc=example,dc=com" --right=write
--attrs=automountmapname --attrs=automountkey --attrs=automountInformation

NOTE

The --type and --subtree options are mutually exclusive: you can see the
inclusion of filters for --type as a simplification of --subtree, intending to
make life easier for an admin.

--filter uses an LDAP filter to identify which entries the permission applies to.
IdM automatically checks the validity of the given filter. The filter can be any valid LDAP
filter, for example:

$ ipa permission-add "manage Windows groups" --filter="(!(objectclass=posixgroup))" --
right=write --attrs=description

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

242

--memberof sets the target filter to members of the given group after checking that the
group exists. For example, to let the users with this permission modify the login shell of
members of the engineers group:

$ ipa permission-add ManageShell --right="write" --type=user --attr=loginshell --
memberof=engineers

NOTE

Setting the memberof attribute permission is not applied if the target LDAP
entry does not contain any reference to group membership.

--targetgroup sets target to the specified user group after checking that the group exists.
For example, to let those with the permission write the member attribute in the engineers
group (so they can add or remove members):

$ ipa permission-add ManageMembers --right="write" --
subtree=cn=groups,cn=accounts,dc=example,dc=test --attr=member --
targetgroup=engineers

Optionally, you can specify a target domain name (DN):

--target specifies the DN to apply the permission to. Wildcards are accepted.

--targetto specifies the DN subtree where an entry can be moved to.

--targetfrom specifies the DN subtree from where an entry can be moved.

30.3. COMMAND OPTIONS FOR EXISTING PERMISSIONS

Use the following variants to modify existing permissions as needed:

To edit existing permissions, use the ipa permission-mod command. You can use the same
command options as for adding permissions.

To find existing permissions, use the ipa permission-find command. You can use the same
command options as for adding permissions.

To view a specific permission, use the ipa permission-show command.
The --raw argument shows the raw 389-ds ACI that is generated. For example:

 $ ipa permission-show <permission> --raw

The ipa permission-del command deletes a permission completely.

Additional resources

See the ipa man page.

See the ipa help command.

30.4. MANAGING IDM PRIVILEGES IN THE CLI

Follow this procedure to manage Identity Management (IdM) privileges using the command-line

CHAPTER 30. MANAGING ROLE-BASED ACCESS CONTROLS IN IDM USING THE CLI

243

Follow this procedure to manage Identity Management (IdM) privileges using the command-line
interface (CLI).

Prerequisites

Administrator privileges for managing IdM or the User Administrator role.

An active Kerberos ticket. For details, see link: Using kinit to log in to IdM manually .

Existing permissions. For details about permissions, see Managing IdM permissions in the CLI .

Procedure

1. Add privilege entries using the ipa privilege-add command
For example, to add a privilege named managing filesystems with a description:

$ ipa privilege-add "managing filesystems" --desc="for filesystems"

2. Assign the required permissions to the privilege group with the privilege-add-permission
command
For example, to add the permissions named managing automount and managing ftp services to
the managing filesystems privilege:

$ ipa privilege-add-permission "managing filesystems" --permissions="managing automount"
--permissions="managing ftp services"

30.5. COMMAND OPTIONS FOR EXISTING PRIVILEGES

Use the following variants to modify existing privileges as needed:

To modify existing privileges, use the ipa privilege-mod command.

To find existing privileges, use the ipa privilege-find command.

To view a specific privilege, use the ipa privilege-show command.

The ipa privilege-remove-permission command removes one or more permissions from a
privilege.

The ipa privilege-del command deletes a privilege completely.

Additional resources

See the ipa man page.

See the ipa help command.

30.6. MANAGING IDM ROLES IN THE CLI

Follow this procedure to manage Identity Management (IdM) roles using the command-line interface
(CLI).

Prerequisites

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

244

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/logging-in-to-ipa-from-the-command-line_configuring-and-managing-idm#using-kinit-to-log-in-to-ipa_logging-in-to-ipa-from-the-command-line

Administrator privileges for managing IdM or the User Administrator role.

An active Kerberos ticket. For details, see Using kinit to log in to IdM manually .

Existing privileges. For details about privileges, see Managing IdM privileges in the CLI .

Procedure

1. Add new role entries using the ipa role-add command:

$ ipa role-add --desc="User Administrator" useradmin

Added role "useradmin"

Role name: useradmin
Description: User Administrator

2. Add the required privileges to the role using the ipa role-add-privilege command:

$ ipa role-add-privilege --privileges="user administrators" useradmin
Role name: useradmin
Description: User Administrator
Privileges: user administrators

Number of privileges added 1

3. Add the required members to the role using the ipa role-add-member command. Allowed
member types are: users, groups, hosts and hostgroups.
For example, to add the group named useradmins to the previously created useradmin role:

$ ipa role-add-member --groups=useradmins useradmin
Role name: useradmin
Description: User Administrator
Member groups: useradmins
Privileges: user administrators

Number of members added 1

30.7. COMMAND OPTIONS FOR EXISTING ROLES

Use the following variants to modify existing roles as needed:

To modify existing roles, use the ipa role-mod command.

To find existing roles, use the ipa role-find command.

To view a specific role, use the ipa role-show command.

To remove a member from the role, use the ipa role-remove-member command.

The ipa role-remove-privilege command removes one or more privileges from a role.

The ipa role-del command deletes a role completely.

CHAPTER 30. MANAGING ROLE-BASED ACCESS CONTROLS IN IDM USING THE CLI

245

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/logging-in-to-ipa-from-the-command-line_configuring-and-managing-idm#using-kinit-to-log-in-to-ipa_logging-in-to-ipa-from-the-command-line

Additional resources

See the ipa man page

See the ipa help command.

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

246

CHAPTER 31. MANAGING ROLE-BASED ACCESS CONTROLS
USING THE IDM WEB UI

Learn more about role-based access control in Identity Management (IdM) and the following operations
which are run in the web interface (Web UI):

Managing permissions

Managing privileges

Managing roles

31.1. ROLE-BASED ACCESS CONTROL IN IDM

Role-based access control (RBAC) in IdM grants a very different kind of authority to users compared to
self-service and delegation access controls.

Role-based access control is composed of three parts:

Permissions grant the right to perform a specific task such as adding or deleting users,
modifying a group, and enabling read-access.

Privileges combine permissions, for example all the permissions needed to add a new user.

Roles grant a set of privileges to users, user groups, hosts or host groups.

31.1.1. Permissions in IdM

Permissions are the lowest level unit of role-based access control, they define operations together with
the LDAP entries to which those operations apply. Comparable to building blocks, permissions can be
assigned to as many privileges as needed.
One or more rights define what operations are allowed:

write

read

search

compare

add

delete

all

These operations apply to three basic targets:

subtree: a domain name (DN); the subtree under this DN

target filter: an LDAP filter

target: DN with possible wildcards to specify entries

Additionally, the following convenience options set the corresponding attribute(s):

CHAPTER 31. MANAGING ROLE-BASED ACCESS CONTROLS USING THE IDM WEB UI

247

type: a type of object (user, group, etc); sets subtree and target filter

memberof: members of a group; sets a target filter

NOTE

Setting the memberof attribute permission is not applied if the target LDAP
entry does not contain any reference to group membership.

targetgroup: grants access to modify a specific group (such as granting the rights to manage
group membership); sets a target

With IdM permissions, you can control which users have access to which objects and even which
attributes of these objects. IdM enables you to allow or block individual attributes or change the entire
visibility of a specific IdM function, such as users, groups, or sudo, to all anonymous users, all
authenticated users, or just a certain group of privileged users.
For example, the flexibility of this approach to permissions is useful for an administrator who wants to
limit access of users or groups only to the specific sections these users or groups need to access and to
make the other sections completely hidden to them.

NOTE

A permission cannot contain other permissions.

31.1.2. Default managed permissions

Managed permissions are permissions that come by default with IdM. They behave like other
permissions created by the user, with the following differences:

You cannot delete them or modify their name, location, and target attributes.

They have three sets of attributes:

Default attributes, the user cannot modify them, as they are managed by IdM

Included attributes, which are additional attributes added by the user

Excluded attributes, which are attributes removed by the user

A managed permission applies to all attributes that appear in the default and included attribute sets but
not in the excluded set.

NOTE

While you cannot delete a managed permission, setting its bind type to permission and
removing the managed permission from all privileges effectively disables it.

Names of all managed permissions start with System:, for example System: Add Sudo rule or System:
Modify Services. Earlier versions of IdM used a different scheme for default permissions. For example,
the user could not delete them and was only able to assign them to privileges. Most of these default
permissions have been turned into managed permissions, however, the following permissions still use
the previous scheme:

Add Automember Rebuild Membership Task

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

248

Add Configuration Sub-Entries

Add Replication Agreements

Certificate Remove Hold

Get Certificates status from the CA

Read DNA Range

Modify DNA Range

Read PassSync Managers Configuration

Modify PassSync Managers Configuration

Read Replication Agreements

Modify Replication Agreements

Remove Replication Agreements

Read LDBM Database Configuration

Request Certificate

Request Certificate ignoring CA ACLs

Request Certificates from a different host

Retrieve Certificates from the CA

Revoke Certificate

Write IPA Configuration

NOTE

If you attempt to modify a managed permission from the command line, the system does
not allow you to change the attributes that you cannot modify, the command fails. If you
attempt to modify a managed permission from the Web UI, the attributes that you
cannot modify are disabled.

31.1.3. Privileges in IdM

A privilege is a group of permissions applicable to a role.
While a permission provides the rights to do a single operation, there are certain IdM tasks that require
multiple permissions to succeed. Therefore, a privilege combines the different permissions required to
perform a specific task.
For example, setting up an account for a new IdM user requires the following permissions:

Creating a new user entry

Resetting a user password

Adding the new user to the default IPA users group

CHAPTER 31. MANAGING ROLE-BASED ACCESS CONTROLS USING THE IDM WEB UI

249

Combining these three low-level tasks into a higher level task in the form of a custom privilege named,
for example, Add User makes it easier for a system administrator to manage roles. IdM already contains
several default privileges. Apart from users and user groups, privileges are also assigned to hosts and
host groups, as well as network services. This practice permits a fine-grained control of operations by a
set of users on a set of hosts using specific network services.

NOTE

A privilege may not contain other privileges.

31.1.4. Roles in IdM

A role is a list of privileges that users specified for the role possess.
In effect, permissions grant the ability to perform given low-level tasks (such as creating a user entry
and adding an entry to a group), privileges combine one or more of these permissions needed for a
higher-level task (such as creating a new user in a given group). Roles gather privileges together as
needed: for example, a User Administrator role would be able to add, modify, and delete users.

IMPORTANT

Roles are used to classify permitted actions. They are not used as a tool to implement
privilege separation or to protect from privilege escalation.

NOTE

Roles can not contain other roles.

31.1.5. Predefined roles in Identity Management

Red Hat Identity Management provides the following range of pre-defined roles:

Table 31.1. Predefined Roles in Identity Management

Role Privilege Description

Enrollment Administrator Host Enrollment Responsible for client, or host,
enrollment

helpdesk Modify Users and Reset
passwords, Modify Group
membership

Responsible for performing simple
user administration tasks

IT Security Specialist Netgroups Administrators, HBAC
Administrator, Sudo Administrator

Responsible for managing security
policy such as host-based access
controls, sudo rules

IT Specialist Host Administrators, Host Group
Administrators, Service
Administrators, Automount
Administrators

Responsible for managing hosts

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

250

Security Architect Delegation Administrator,
Replication Administrators, Write
IPA Configuration, Password
Policy Administrator

Responsible for managing the
Identity Management
environment, creating trusts,
creating replication agreements

User Administrator User Administrators, Group
Administrators, Stage User
Administrators

Responsible for creating users
and groups

Role Privilege Description

31.2. MANAGING PERMISSIONS IN THE IDM WEB UI

Follow this procedure to manage permissions in Identity Management (IdM) using the web interface
(IdM Web UI).

Prerequisites

Administrator privileges for managing IdM or the User Administrator role.

You are logged-in to the IdM Web UI. For details, see Accessing the IdM Web UI in a web
browser.

Procedure

1. To add a new permission, open the Role-Based Access Control submenu in the IPA Server tab
and select Permissions:

2. The list of permissions opens: Click the Add button at the top of the list of the permissions:

CHAPTER 31. MANAGING ROLE-BASED ACCESS CONTROLS USING THE IDM WEB UI

251

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/accessing-the-ipa-web-ui-in-a-web-browser_configuring-and-managing-idm

3. The Add Permission form opens. Specify the name of the new permission and define its
properties accordingly:

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

252

4. Select the appropriate Bind rule type:

permission is the default permission type, granting access through privileges and roles

all specifies that the permission applies to all authenticated users

anonymous specifies that the permission applies to all users, including unauthenticated
users

NOTE

CHAPTER 31. MANAGING ROLE-BASED ACCESS CONTROLS USING THE IDM WEB UI

253

NOTE

It is not possible to add permissions with a non-default bind rule type to
privileges. You also cannot set a permission that is already present in a
privilege to a non-default bind rule type.

5. Choose the rights to grant with this permission in Granted rights.

6. Define the method to identify the target entries for the permission:

Type specifies an entry type, such as user, host, or service. If you choose a value for the
Type setting, a list of all possible attributes which will be accessible through this ACI for that
entry type appears under Effective Attributes. Defining Type sets Subtree and Target
DN to one of the predefined values.

Subtree (required) specifies a subtree entry; every entry beneath this subtree entry is then
targeted. Provide an existing subtree entry, as Subtree does not accept wildcards or non-
existent domain names (DNs). For example: cn=automount,dc=example,dc=com

Extra target filter uses an LDAP filter to identify which entries the permission applies to.
The filter can be any valid LDAP filter, for example: (!(objectclass=posixgroup))
IdM automatically checks the validity of the given filter. If you enter an invalid filter, IdM
warns you about this when you attempt to save the permission.

Target DN specifies the domain name (DN) and accepts wildcards. For example:
uid=*,cn=users,cn=accounts,dc=com

Member of group sets the target filter to members of the given group. After you specify
the filter settings and click Add, IdM validates the filter. If all the permission settings are
correct, IdM will perform the search. If some of the permissions settings are incorrect, IdM
will display a message informing you about which setting is set incorrectly.

NOTE

Setting the memberof attribute permission is not applied if the target LDAP
entry does not contain any reference to group membership.

7. Add attributes to the permission:

If you set Type, choose the Effective attributes from the list of available ACI attributes.

If you did not use Type, add the attributes manually by writing them into the Effective
attributes field. Add a single attribute at a time; to add multiple attributes, click Add to add
another input field.

IMPORTANT

If you do not set any attributes for the permission, then the permissions
includes all attributes by default.

8. Finish adding the permissions with the Add buttons at the bottom of the form:

Click the Add button to save the permission and go back to the list of permissions.

Alternatively, you can save the permission and continue adding additional permissions in the

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

254

Alternatively, you can save the permission and continue adding additional permissions in the
same form by clicking the Add and Add another button

The Add and Edit button enables you to save and continue editing the newly created
permission.

9. Optional: You can also edit the properties of an existing permission by clicking its name from the
list of permissions to display the Permission settings page.

10. Optional: If you need to remove an existing permission, click the Delete button once you ticked
the check box next to its name in the list, to display The Remove permissions dialog.

NOTE

Operations on default managed permissions are restricted: the attributes you
cannot modify are disabled in the IdM Web UI and you cannot delete the
managed permissions completely.
However, you can effectively disable a managed permission that has a bind type
set to permission, by removing the managed permission from all privileges.

For example, to let those with the permission write the member attribute in the engineers group (so

CHAPTER 31. MANAGING ROLE-BASED ACCESS CONTROLS USING THE IDM WEB UI

255

For example, to let those with the permission write the member attribute in the engineers group (so
they can add or remove members):

31.3. MANAGING PRIVILEGES IN THE IDM WEBUI

Follow this procedure to manage privileges in IdM using the web interface (IdM Web UI).

Prerequisites

Administrator privileges for managing IdM or the User Administrator role.

You are logged-in to the IdM Web UI. For details, see Accessing the IdM Web UI in a web
browser.

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

256

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/accessing-the-ipa-web-ui-in-a-web-browser_configuring-and-managing-idm

Existing permissions. For details about permissions, see Managing permissions in the IdM Web
UI.

Procedure

1. To add a new privilege, open the Role-Based Access Control submenu in the IPA Server tab
and select Privileges:

2. The list of privileges opens. Click the Add button at the top of the list of privileges:

3. The Add Privilege form opens. Enter the name and a description of the privilege:

4. Click the Add and Edit button to save the new privilege and continue to the privilege
configuration page to add permissions.

5. Edit the properties of privileges by clicking on the privileges name in the privileges list. The
privileges configuration page opens.

CHAPTER 31. MANAGING ROLE-BASED ACCESS CONTROLS USING THE IDM WEB UI

257

6. The Permissions tab displays a list of permissions included in the selected privilege. Click the
Add button at the top of the list to add permissions to the privilege:

7. Tick the check box next to the name of each permission to add, and use the > button to move
the permissions to the Prospective column:

8. Confirm by clicking the Add button.

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

258

9. Optional: If you need to remove permissions, click the Delete button after you ticked the check
box next to the relevant permission: the Remove privileges from permissions dialog opens.

10. Optional: If you need to delete an existing privilege, click the Delete button after you ticked the
check box next to its name in the list: the Remove privileges dialog opens.

31.4. MANAGING ROLES IN THE IDM WEB UI

Follow this procedure to manage roles in Identity Management (IdM) using the web interface (IdM Web
UI).

Prerequisites

Administrator privileges for managing IdM or the User Administrator role.

You are logged-in to the IdM Web UI. For details, see Accessing the IdM Web UI in a web
browser.

Existing privileges. For details about privileges, see Managing privileges in the IdM Web UI .

Procedure

1. To add a new role, open the Role-Based Access Control submenu in the IPA Server tab and
select Roles:

2. The list of roles opens. Click the Add button at the top of the list of the role-based access
control instructions.

CHAPTER 31. MANAGING ROLE-BASED ACCESS CONTROLS USING THE IDM WEB UI

259

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/accessing-the-ipa-web-ui-in-a-web-browser_configuring-and-managing-idm

3. The Add Role form opens. Enter the role name and a description:

4. Click the Add and Edit button to save the new role and go to the role configuration page to add
privileges and users.

5. Edit the properties of roles by clicking on the roles name in the role list. The roles configuration
page opens.

6. Add members using the Users, Users Groups, Hosts, Host Groups or Services tabs, by clicking
the Add button on top of the relevant list(s).

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

260

7. In the window that opens, select the members on the left and use the > button to move them to
the Prospective column.

8. At the top of the Privileges tab, click Add.

CHAPTER 31. MANAGING ROLE-BASED ACCESS CONTROLS USING THE IDM WEB UI

261

9. Select the privileges on the left and use the > button to move them to the Prospective column.

10. Click the Add button to save.

11. Optional: If you need to remove privileges or members from a role, click the Delete button after

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

262

11. Optional: If you need to remove privileges or members from a role, click the Delete button after
you ticked the check box next to the name of the entity you want to remove. A dialog opens.

12. Optional: If you need to remove an existing role, click the Delete button after you ticked the
check box next to its name in the list, to display the Remove roles dialog.

CHAPTER 31. MANAGING ROLE-BASED ACCESS CONTROLS USING THE IDM WEB UI

263

CHAPTER 32. PREPARING YOUR ENVIRONMENT FOR
MANAGING IDM USING ANSIBLE PLAYBOOKS

As a system administrator managing Identity Management (IdM), when working with Red Hat Ansible
Engine, it is good practice to do the following:

Create a subdirectory dedicated to Ansible playbooks in your home directory, for example
~/MyPlaybooks.

Copy and adapt sample Ansible playbooks from the /usr/share/doc/ansible-freeipa/* and
/usr/share/doc/rhel-system-roles/* directories and subdirectories into your ~/MyPlaybooks
directory.

Include your inventory file in your ~/MyPlaybooks directory.

Using this practice, you can find all your playbooks in one place and you can run your playbooks without
invoking root privileges.

NOTE

You only need root privileges on the managed nodes to execute the ipaserver,
ipareplica, ipaclient and ipabackup ansible-freeipa roles. These roles require privileged
access to directories and the dnf software package manager.

Follow this procedure to create the ~/MyPlaybooks directory and configure it so that you can use it to
store and run Ansible playbooks.

Prerequisites

You have installed an IdM server on your managed nodes, server.idm.example.com and
replica.idm.example.com.

You have configured DNS and networking so you can log in to the managed nodes,
server.idm.example.com and replica.idm.example.com, directly from the control node.

You know the IdM admin password.

Procedure

1. Create a directory for your Ansible configuration and playbooks in your home directory:

$ mkdir ~/MyPlaybooks/

2. Change into the ~/MyPlaybooks/ directory:

$ cd ~/MyPlaybooks

3. Create the ~/MyPlaybooks/ansible.cfg file with the following content:

[defaults]
inventory = /home/your_username/MyPlaybooks/inventory

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

264

[privilege_escalation]
become=True

4. Create the ~/MyPlaybooks/inventory file with the following content:

[eu]
server.idm.example.com

[us]
replica.idm.example.com

[ipaserver:children]
eu
us

This configuration defines two host groups, eu and us, for hosts in these locations. Additionally,
this configuration defines the ipaserver host group, which contains all hosts from the eu and us
groups.

5. Optional: Create an SSH public and private key. To simplify access in your test environment, do
not set a password on the private key:

$ ssh-keygen

6. Copy the SSH public key to the IdM admin account on each managed node:

$ ssh-copy-id admin@server.idm.example.com
$ ssh-copy-id admin@replica.idm.example.com

These commands require that you enter the IdM admin password.

Additional resources

See Installing an Identity Management server using an Ansible playbook .

See How to build your inventory .

CHAPTER 32. PREPARING YOUR ENVIRONMENT FOR MANAGING IDM USING ANSIBLE PLAYBOOKS

265

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management
https://docs.ansible.com/ansible/latest/user_guide/intro_inventory.html

CHAPTER 33. USING ANSIBLE PLAYBOOKS TO MANAGE
ROLE-BASED ACCESS CONTROL IN IDM

Role-based access control (RBAC) is a policy-neutral access-control mechanism defined around roles
and privileges. The components of RBAC in Identity Management (IdM) are roles, privileges and
permissions:

Permissions grant the right to perform a specific task such as adding or deleting users,
modifying a group, and enabling read-access.

Privileges combine permissions, for example all the permissions needed to add a new user.

Roles grant a set of privileges to users, user groups, hosts or host groups.

Especially in large companies, using RBAC can help create a hierarchical system of administrators with
their individual areas of responsibility.

This chapter describes the following operations performed when managing RBAC using Ansible
playbooks:

Permissions in IdM

Default managed permissions

Privileges in IdM

Roles in IdM

Predefined roles in IdM

Using Ansible to ensure an IdM RBAC role with privileges is present

Using Ansible to ensure an IdM RBAC role is absent

Using Ansible to ensure that a group of users is assigned to an IdM RBAC role

Using Ansible to ensure that specific users are not assigned to an IdM RBAC role

Using Ansible to ensure a service is a member of an IdM RBAC role

Using Ansible to ensure a host is a member of an IdM RBAC role

Using Ansible to ensure a host group is a member of an IdM RBAC role

33.1. PERMISSIONS IN IDM

Permissions are the lowest level unit of role-based access control, they define operations together with
the LDAP entries to which those operations apply. Comparable to building blocks, permissions can be
assigned to as many privileges as needed.
One or more rights define what operations are allowed:

write

read

search

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

266

compare

add

delete

all

These operations apply to three basic targets:

subtree: a domain name (DN); the subtree under this DN

target filter: an LDAP filter

target: DN with possible wildcards to specify entries

Additionally, the following convenience options set the corresponding attribute(s):

type: a type of object (user, group, etc); sets subtree and target filter

memberof: members of a group; sets a target filter

NOTE

Setting the memberof attribute permission is not applied if the target LDAP
entry does not contain any reference to group membership.

targetgroup: grants access to modify a specific group (such as granting the rights to manage
group membership); sets a target

With IdM permissions, you can control which users have access to which objects and even which
attributes of these objects. IdM enables you to allow or block individual attributes or change the entire
visibility of a specific IdM function, such as users, groups, or sudo, to all anonymous users, all
authenticated users, or just a certain group of privileged users.
For example, the flexibility of this approach to permissions is useful for an administrator who wants to
limit access of users or groups only to the specific sections these users or groups need to access and to
make the other sections completely hidden to them.

NOTE

A permission cannot contain other permissions.

33.2. DEFAULT MANAGED PERMISSIONS

Managed permissions are permissions that come by default with IdM. They behave like other
permissions created by the user, with the following differences:

You cannot delete them or modify their name, location, and target attributes.

They have three sets of attributes:

Default attributes, the user cannot modify them, as they are managed by IdM

Included attributes, which are additional attributes added by the user

Excluded attributes, which are attributes removed by the user

CHAPTER 33. USING ANSIBLE PLAYBOOKS TO MANAGE ROLE-BASED ACCESS CONTROL IN IDM

267

A managed permission applies to all attributes that appear in the default and included attribute sets but
not in the excluded set.

NOTE

While you cannot delete a managed permission, setting its bind type to permission and
removing the managed permission from all privileges effectively disables it.

Names of all managed permissions start with System:, for example System: Add Sudo rule or System:
Modify Services. Earlier versions of IdM used a different scheme for default permissions. For example,
the user could not delete them and was only able to assign them to privileges. Most of these default
permissions have been turned into managed permissions, however, the following permissions still use
the previous scheme:

Add Automember Rebuild Membership Task

Add Configuration Sub-Entries

Add Replication Agreements

Certificate Remove Hold

Get Certificates status from the CA

Read DNA Range

Modify DNA Range

Read PassSync Managers Configuration

Modify PassSync Managers Configuration

Read Replication Agreements

Modify Replication Agreements

Remove Replication Agreements

Read LDBM Database Configuration

Request Certificate

Request Certificate ignoring CA ACLs

Request Certificates from a different host

Retrieve Certificates from the CA

Revoke Certificate

Write IPA Configuration

NOTE

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

268

NOTE

If you attempt to modify a managed permission from the command line, the system does
not allow you to change the attributes that you cannot modify, the command fails. If you
attempt to modify a managed permission from the Web UI, the attributes that you
cannot modify are disabled.

33.3. PRIVILEGES IN IDM

A privilege is a group of permissions applicable to a role.
While a permission provides the rights to do a single operation, there are certain IdM tasks that require
multiple permissions to succeed. Therefore, a privilege combines the different permissions required to
perform a specific task.
For example, setting up an account for a new IdM user requires the following permissions:

Creating a new user entry

Resetting a user password

Adding the new user to the default IPA users group

Combining these three low-level tasks into a higher level task in the form of a custom privilege named,
for example, Add User makes it easier for a system administrator to manage roles. IdM already contains
several default privileges. Apart from users and user groups, privileges are also assigned to hosts and
host groups, as well as network services. This practice permits a fine-grained control of operations by a
set of users on a set of hosts using specific network services.

NOTE

A privilege may not contain other privileges.

33.4. ROLES IN IDM

A role is a list of privileges that users specified for the role possess.
In effect, permissions grant the ability to perform given low-level tasks (such as creating a user entry
and adding an entry to a group), privileges combine one or more of these permissions needed for a
higher-level task (such as creating a new user in a given group). Roles gather privileges together as
needed: for example, a User Administrator role would be able to add, modify, and delete users.

IMPORTANT

Roles are used to classify permitted actions. They are not used as a tool to implement
privilege separation or to protect from privilege escalation.

NOTE

Roles can not contain other roles.

33.5. PREDEFINED ROLES IN IDENTITY MANAGEMENT

Red Hat Identity Management provides the following range of pre-defined roles:

Table 33.1. Predefined Roles in Identity Management

CHAPTER 33. USING ANSIBLE PLAYBOOKS TO MANAGE ROLE-BASED ACCESS CONTROL IN IDM

269

Role Privilege Description

Enrollment Administrator Host Enrollment Responsible for client, or host,
enrollment

helpdesk Modify Users and Reset
passwords, Modify Group
membership

Responsible for performing simple
user administration tasks

IT Security Specialist Netgroups Administrators, HBAC
Administrator, Sudo Administrator

Responsible for managing security
policy such as host-based access
controls, sudo rules

IT Specialist Host Administrators, Host Group
Administrators, Service
Administrators, Automount
Administrators

Responsible for managing hosts

Security Architect Delegation Administrator,
Replication Administrators, Write
IPA Configuration, Password
Policy Administrator

Responsible for managing the
Identity Management
environment, creating trusts,
creating replication agreements

User Administrator User Administrators, Group
Administrators, Stage User
Administrators

Responsible for creating users
and groups

33.6. USING ANSIBLE TO ENSURE AN IDM RBAC ROLE WITH
PRIVILEGES IS PRESENT

To exercise more granular control over role-based access (RBAC) to resources in Identity Management
(IdM) than the default roles provide, create a custom role.

The following procedure describes how to use an Ansible playbook to define privileges for a new IdM
custom role and ensure its presence. In the example, the new user_and_host_administrator role
contains a unique combination of the following privileges that are present in IdM by default:

Group Administrators

User Administrators

Stage User Administrators

Group Administrators

Prerequisites

You know the IdM administrator password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

270

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

Procedure

1. Navigate to the ~/<MyPlaybooks>/ directory:

$ cd ~/<MyPlaybooks>/

2. Make a copy of the role-member-user-present.yml file located in the /usr/share/doc/ansible-
freeipa/playbooks/role/ directory:

$ cp /usr/share/doc/ansible-freeipa/playbooks/role/role-member-user-present.yml role-
member-user-present-copy.yml

3. Open the role-member-user-present-copy.yml Ansible playbook file for editing.

4. Adapt the file by setting the following variables in the iparole task section:

Set the ipaadmin_password variable to the password of the IdM administrator.

Set the name variable to the name of the new role.

Set the privilege list to the names of the IdM privileges that you want to include in the new
role.

Optionally, set the user variable to the name of the user to whom you want to grant the new
role.

Optionally, set the group variable to the name of the group to which you want to grant the
new role.

This is the modified Ansible playbook file for the current example:

- name: Playbook to manage IPA role with members.
 hosts: ipaserver
 become: true
 gather_facts: no

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - iparole:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: user_and_host_administrator
 user: idm_user01
 group: idm_group01
 privilege:

CHAPTER 33. USING ANSIBLE PLAYBOOKS TO MANAGE ROLE-BASED ACCESS CONTROL IN IDM

271

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

 - Group Administrators
 - User Administrators
 - Stage User Administrators
 - Group Administrators

5. Save the file.

6. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i
~/<MyPlaybooks>/inventory role-member-user-present-copy.yml

Additional resources

See Encrypting content with Ansible Vault .

See Roles in IdM .

See the README-role file in the /usr/share/doc/ansible-freeipa/ directory.

See the sample playbooks in the /usr/share/doc/ansible-freeipa/playbooks/iparole directory.

33.7. USING ANSIBLE TO ENSURE AN IDM RBAC ROLE IS ABSENT

As a system administrator managing role-based access control (RBAC) in Identity Management (IdM),
you may want to ensure the absence of an obsolete role so that no administrator assigns it to any user
accidentally.

The following procedure describes how to use an Ansible playbook to ensure a role is absent. The
example below describes how to make sure the custom user_and_host_administrator role does not
exist in IdM.

Prerequisites

You know the IdM administrator password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

Procedure

1. Navigate to the ~/<MyPlaybooks>/ directory:

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

272

https://docs.ansible.com/ansible/latest/user_guide/vault.html
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

$ cd ~/<MyPlaybooks>/

2. Make a copy of the role-is-absent.yml file located in the /usr/share/doc/ansible-
freeipa/playbooks/role/ directory:

$ cp /usr/share/doc/ansible-freeipa/playbooks/role/role-is-absent.yml role-is-absent-
copy.yml

3. Open the role-is-absent-copy.yml Ansible playbook file for editing.

4. Adapt the file by setting the following variables in the iparole task section:

Set the ipaadmin_password variable to the password of the IdM administrator.

Set the name variable to the name of the role.

Ensure that the state variable is set to absent.

This is the modified Ansible playbook file for the current example:

- name: Playbook to manage IPA role with members.
 hosts: ipaserver
 become: true
 gather_facts: no

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - iparole:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: user_and_host_administrator
 state: absent

5. Save the file.

6. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i
~/<MyPlaybooks>/inventory role-is-absent-copy.yml

Additional resources

See Encrypting content with Ansible Vault .

See Roles in IdM .

See the README-role Markdown file in the /usr/share/doc/ansible-freeipa/ directory.

See the sample playbooks in the /usr/share/doc/ansible-freeipa/playbooks/iparole directory.

33.8. USING ANSIBLE TO ENSURE THAT A GROUP OF USERS IS

CHAPTER 33. USING ANSIBLE PLAYBOOKS TO MANAGE ROLE-BASED ACCESS CONTROL IN IDM

273

https://docs.ansible.com/ansible/latest/user_guide/vault.html

33.8. USING ANSIBLE TO ENSURE THAT A GROUP OF USERS IS
ASSIGNED TO AN IDM RBAC ROLE

As a system administrator managing role-based access control (RBAC) in Identity Management (IdM),
you may want to assign a role to a specific group of users, for example junior administrators.

The following example describes how to use an Ansible playbook to ensure the built-in IdM RBAC
helpdesk role is assigned to junior_sysadmins.

Prerequisites

You know the IdM administrator password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

Procedure

1. Navigate to the ~/<MyPlaybooks>/ directory:

$ cd ~/<MyPlaybooks>/

2. Make a copy of the role-member-group-present.yml file located in the
/usr/share/doc/ansible-freeipa/playbooks/role/ directory:

$ cp /usr/share/doc/ansible-freeipa/playbooks/role/role-member-group-present.yml
role-member-group-present-copy.yml

3. Open the role-member-group-present-copy.yml Ansible playbook file for editing.

4. Adapt the file by setting the following variables in the iparole task section:

Set the ipaadmin_password variable to the password of the IdM administrator.

Set the name variable to the name of the role you want to assign.

Set the group variable to the name of the group.

Set the action variable to member.

This is the modified Ansible playbook file for the current example:

- name: Playbook to manage IPA role with members.

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

274

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

 hosts: ipaserver
 become: true
 gather_facts: no

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - iparole:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: helpdesk
 group: junior_sysadmins
 action: member

5. Save the file.

6. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i
~/<MyPlaybooks>/inventory role-member-group-present-copy.yml

Additional resources

See Encrypting content with Ansible Vault .

See Roles in IdM .

See the README-role Markdown file in the /usr/share/doc/ansible-freeipa/ directory.

See the sample playbooks in the /usr/share/doc/ansible-freeipa/playbooks/iparole directory.

33.9. USING ANSIBLE TO ENSURE THAT SPECIFIC USERS ARE NOT
ASSIGNED TO AN IDM RBAC ROLE

As a system administrator managing role-based access control (RBAC) in Identity Management (IdM),
you may want to ensure that an RBAC role is not assigned to specific users after they have, for example,
moved to different positions within the company.

The following procedure describes how to use an Ansible playbook to ensure that the users named
user_01 and user_02 are not assigned to the helpdesk role.

Prerequisites

You know the IdM administrator password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

CHAPTER 33. USING ANSIBLE PLAYBOOKS TO MANAGE ROLE-BASED ACCESS CONTROL IN IDM

275

https://docs.ansible.com/ansible/latest/user_guide/vault.html
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

Procedure

1. Navigate to the ~/<MyPlaybooks>/ directory:

$ cd ~/<MyPlaybooks>/

2. Make a copy of the role-member-user-absent.yml file located in the /usr/share/doc/ansible-
freeipa/playbooks/role/ directory:

$ cp /usr/share/doc/ansible-freeipa/playbooks/role/role-member-user-absent.yml role-
member-user-absent-copy.yml

3. Open the role-member-user-absent-copy.yml Ansible playbook file for editing.

4. Adapt the file by setting the following variables in the iparole task section:

Set the ipaadmin_password variable to the password of the IdM administrator.

Set the name variable to the name of the role you want to assign.

Set the user list to the names of the users.

Set the action variable to member.

Set the state variable to absent.

This is the modified Ansible playbook file for the current example:

- name: Playbook to manage IPA role with members.
 hosts: ipaserver
 become: true
 gather_facts: no

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - iparole:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: helpdesk
 user
 - user_01
 - user_02
 action: member
 state: absent

5. Save the file.

6. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

276

$ ansible-playbook --vault-password-file=password_file -v -i
~/<MyPlaybooks>/inventory role-member-user-absent-copy.yml

Additional resources

See Encrypting content with Ansible Vault .

See Roles in IdM .

See the README-role Markdown file in the /usr/share/doc/ansible-freeipa/ directory.

See the sample playbooks in the /usr/share/doc/ansible-freeipa/playbooks/iparole directory.

33.10. USING ANSIBLE TO ENSURE A SERVICE IS A MEMBER OF AN
IDM RBAC ROLE

As a system administrator managing role-based access control (RBAC) in Identity Management (IdM),
you may want to ensure that a specific service that is enrolled into IdM is a member of a particular role.
The following example describes how to ensure that the custom web_administrator role can manage
the HTTP service that is running on the client01.idm.example.com server.

Prerequisites

You know the IdM administrator password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

The web_administrator role exists in IdM.

The HTTP/client01.idm.example.com@IDM.EXAMPLE.COM service exists in IdM.

Procedure

1. Navigate to the ~/<MyPlaybooks>/ directory:

$ cd ~/<MyPlaybooks>/

2. Make a copy of the role-member-service-present.yml file located in the
/usr/share/doc/ansible-freeipa/playbooks/role/ directory:

$ cp /usr/share/doc/ansible-freeipa/playbooks/role/role-member-service-present-
absent.yml role-member-service-present-copy.yml

CHAPTER 33. USING ANSIBLE PLAYBOOKS TO MANAGE ROLE-BASED ACCESS CONTROL IN IDM

277

https://docs.ansible.com/ansible/latest/user_guide/vault.html
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

3. Open the role-member-service-present-copy.yml Ansible playbook file for editing.

4. Adapt the file by setting the following variables in the iparole task section:

Set the ipaadmin_password variable to the password of the IdM administrator.

Set the name variable to the name of the role you want to assign.

Set the service list to the name of the service.

Set the action variable to member.

This is the modified Ansible playbook file for the current example:

- name: Playbook to manage IPA role with members.
 hosts: ipaserver
 become: true
 gather_facts: no

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - iparole:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: web_administrator
 service:
 - HTTP/client01.idm.example.com
 action: member

5. Save the file.

6. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i
~/<MyPlaybooks>/inventory role-member-service-present-copy.yml

Additional resources

See Encrypting content with Ansible Vault .

See Roles in IdM .

See the README-role Markdown file in the /usr/share/doc/ansible-freeipa/ directory.

See the sample playbooks in the /usr/share/doc/ansible-freeipa/playbooks/iparole directory.

33.11. USING ANSIBLE TO ENSURE A HOST IS A MEMBER OF AN IDM
RBAC ROLE

As a system administrator managing role-based access control in Identity Management (IdM), you may
want to ensure that a specific host or host group is associated with a specific role. The following
example describes how to ensure that the custom web_administrator role can manage the
client01.idm.example.com IdM host on which the HTTP service is running.

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

278

https://docs.ansible.com/ansible/latest/user_guide/vault.html

Prerequisites

You know the IdM administrator password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

The web_administrator role exists in IdM.

The client01.idm.example.com host exists in IdM.

Procedure

1. Navigate to the ~/<MyPlaybooks>/ directory:

$ cd ~/<MyPlaybooks>/

2. Make a copy of the role-member-host-present.yml file located in the /usr/share/doc/ansible-
freeipa/playbooks/role/ directory:

$ cp /usr/share/doc/ansible-freeipa/playbooks/role/role-member-host-present.yml role-
member-host-present-copy.yml

3. Open the role-member-host-present-copy.yml Ansible playbook file for editing.

4. Adapt the file by setting the following variables in the iparole task section:

Set the ipaadmin_password variable to the password of the IdM administrator.

Set the name variable to the name of the role you want to assign.

Set the host list to the name of the host.

This is the modified Ansible playbook file for the current example:

- name: Playbook to manage IPA role with members.
 hosts: ipaserver
 become: true
 gather_facts: no

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - iparole:

CHAPTER 33. USING ANSIBLE PLAYBOOKS TO MANAGE ROLE-BASED ACCESS CONTROL IN IDM

279

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

 ipaadmin_password: "{{ ipaadmin_password }}"
 name: web_administrator
 host:
 - client01.idm.example.com
 action: member

5. Save the file.

6. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i
~/<MyPlaybooks>/inventory role-member-host-present-copy.yml

Additional resources

See Encrypting content with Ansible Vault .

See Roles in IdM .

See the README-role Markdown file in the /usr/share/doc/ansible-freeipa/ directory.

See the sample playbooks in the /usr/share/doc/ansible-freeipa/playbooks/iparole directory.

33.12. USING ANSIBLE TO ENSURE A HOST GROUP IS A MEMBER OF
AN IDM RBAC ROLE

As a system administrator managing role-based access control in Identity Management (IdM), you may
want to ensure that a specific host or host group is associated with a specific role. The following
example describes how to ensure that the custom web_administrator role can manage the
web_servers group of IdM hosts on which the HTTP service is running.

Prerequisites

You know the IdM administrator password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

The web_administrator role exists in IdM.

The web_servers host group exists in IdM.

Procedure

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

280

https://docs.ansible.com/ansible/latest/user_guide/vault.html
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

1. Navigate to the ~/<MyPlaybooks>/ directory:

$ cd ~/<MyPlaybooks>/

2. Make a copy of the role-member-hostgroup-present.yml file located in the
/usr/share/doc/ansible-freeipa/playbooks/role/ directory:

$ cp /usr/share/doc/ansible-freeipa/playbooks/role/role-member-hostgroup-
present.yml role-member-hostgroup-present-copy.yml

3. Open the role-member-hostgroup-present-copy.yml Ansible playbook file for editing.

4. Adapt the file by setting the following variables in the iparole task section:

Set the ipaadmin_password variable to the password of the IdM administrator.

Set the name variable to the name of the role you want to assign.

Set the hostgroup list to the name of the hostgroup.

This is the modified Ansible playbook file for the current example:

- name: Playbook to manage IPA role with members.
 hosts: ipaserver
 become: true
 gather_facts: no

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - iparole:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: web_administrator
 hostgroup:
 - web_servers
 action: member

5. Save the file.

6. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i
~/<MyPlaybooks>/inventory role-member-hostgroup-present-copy.yml

Additional resources

See Encrypting content with Ansible Vault .

See Roles in IdM .

See the README-role Markdown file in the /usr/share/doc/ansible-freeipa/ directory.

See the sample playbooks in the /usr/share/doc/ansible-freeipa/playbooks/iparole directory.

CHAPTER 33. USING ANSIBLE PLAYBOOKS TO MANAGE ROLE-BASED ACCESS CONTROL IN IDM

281

https://docs.ansible.com/ansible/latest/user_guide/vault.html

CHAPTER 34. USING ANSIBLE PLAYBOOKS TO MANAGE
RBAC PRIVILEGES

Role-based access control (RBAC) is a policy-neutral access-control mechanism defined around roles,
privileges, and permissions. Especially in large companies, using RBAC can help create a hierarchical
system of administrators with their individual areas of responsibility.

This chapter describes the following operations for using Ansible playbooks to manage RBAC privileges
in Identity Management (IdM):

Using Ansible to ensure a custom RBAC privilege is present

Using Ansible to ensure member permissions are present in a custom IdM RBAC privilege

Using Ansible to ensure an IdM RBAC privilege does not include a permission

Using Ansible to rename a custom IdM RBAC privilege

Using Ansible to ensure an IdM RBAC privilege is absent

Prerequisites

You understand the concepts and principles of RBAC .

34.1. USING ANSIBLE TO ENSURE A CUSTOM IDM RBAC PRIVILEGE IS
PRESENT

To have a fully-functioning custom privilege in Identity Management (IdM) role-based access control
(RBAC), you need to proceed in stages:

1. Create a privilege with no permissions attached.

2. Add permissions of your choice to the privilege.

The following procedure describes how to create an empty privilege using an Ansible playbook so that
you can later add permissions to it. The example describes how to create a privilege named
full_host_administration that is meant to combine all IdM permissions related to host administration.

Prerequisites

You know the IdM administrator password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

282

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

Procedure

1. Navigate to the ~/MyPlaybooks/ directory:

$ cd ~/MyPlaybooks/

2. Make a copy of the privilege-present.yml file located in the /usr/share/doc/ansible-
freeipa/playbooks/privilege/ directory:

$ cp /usr/share/doc/ansible-freeipa/playbooks/privilege/privilege-present.yml privilege-
present-copy.yml

3. Open the privilege-present-copy.yml Ansible playbook file for editing.

4. Adapt the file by setting the following variables in the ipaprivilege task section:

Set the ipaadmin_password variable to the password of the IdM administrator.

Set the name variable to the name of the new privilege, full_host_administration.

Optionally, describe the privilege using the description variable.

This is the modified Ansible playbook file for the current example:

- name: Privilege present example
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Ensure privilege full_host_administration is present
 ipaprivilege:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: full_host_administration
 description: This privilege combines all IdM permissions related to host
administration

5. Save the file.

6. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i inventory privilege-
present-copy.yml

34.2. USING ANSIBLE TO ENSURE MEMBER PERMISSIONS ARE
PRESENT IN A CUSTOM IDM RBAC PRIVILEGE

To have a fully-functioning custom privilege in Identity Management (IdM) role-based access control
(RBAC), you need to proceed in stages:

1. Create a privilege with no permissions attached.

CHAPTER 34. USING ANSIBLE PLAYBOOKS TO MANAGE RBAC PRIVILEGES

283

2. Add permissions of your choice to the privilege.

The following procedure describes how to use an Ansible playbook to add permissions to a privilege
created in the previous step. The example describes how to add all IdM permissions related to host
administration to a privilege named full_host_administration. By default, the permissions are distributed
between the Host Enrollment, Host Administrators and Host Group Administrator privileges.

Prerequisites

You know the IdM administrator password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

The full_host_administration privilege exists. For information about how to create a privilege
using Ansible, see Using Ansible to ensure a custom IdM RBAC privilege is present .

Procedure

1. Navigate to the ~/MyPlaybooks/ directory:

$ cd ~/MyPlaybooks/

2. Make a copy of the privilege-member-present.yml file located in the /usr/share/doc/ansible-
freeipa/playbooks/privilege/ directory:

$ cp /usr/share/doc/ansible-freeipa/playbooks/privilege/privilege-member-present.yml
privilege-member-present-copy.yml

3. Open the privilege-member-present-copy.yml Ansible playbook file for editing.

4. Adapt the file by setting the following variables in the ipaprivilege task section:

Adapt the name of the task to correspond to your use case.

Set the ipaadmin_password variable to the password of the IdM administrator.

Set the name variable to the name of the privilege.

Set the permission list to the names of the permissions that you want to include in the
privilege.

Make sure that the action variable is set to member.

This is the modified Ansible playbook file for the current example:

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

284

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

- name: Privilege member present example
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Ensure that permissions are present for the "full_host_administration" privilege
 ipaprivilege:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: full_host_administration
 permission:
 - "System: Add krbPrincipalName to a Host"
 - "System: Enroll a Host"
 - "System: Manage Host Certificates"
 - "System: Manage Host Enrollment Password"
 - "System: Manage Host Keytab"
 - "System: Manage Host Principals"
 - "Retrieve Certificates from the CA"
 - "Revoke Certificate"
 - "System: Add Hosts"
 - "System: Add krbPrincipalName to a Host"
 - "System: Enroll a Host"
 - "System: Manage Host Certificates"
 - "System: Manage Host Enrollment Password"
 - "System: Manage Host Keytab"
 - "System: Manage Host Keytab Permissions"
 - "System: Manage Host Principals"
 - "System: Manage Host SSH Public Keys"
 - "System: Manage Service Keytab"
 - "System: Manage Service Keytab Permissions"
 - "System: Modify Hosts"
 - "System: Remove Hosts"
 - "System: Add Hostgroups"
 - "System: Modify Hostgroup Membership"
 - "System: Modify Hostgroups"
 - "System: Remove Hostgroups"

5. Save the file.

6. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i inventory privilege-
member-present-copy.yml

34.3. USING ANSIBLE TO ENSURE AN IDM RBAC PRIVILEGE DOES
NOT INCLUDE A PERMISSION

As a system administrator of Identity Management (IdM), you can customize the IdM role-based access
control.

The following procedure describes how to use an Ansible playbook to remove a permission from a
privilege. The example describes how to remove the Request Certificates ignoring CA ACLs

CHAPTER 34. USING ANSIBLE PLAYBOOKS TO MANAGE RBAC PRIVILEGES

285

permission from the default Certificate Administrators privilege because, for example, the
administrator considers it a security risk.

Prerequisites

You know the IdM administrator password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

Procedure

1. Navigate to the ~/MyPlaybooks/ directory:

$ cd ~/MyPlaybooks/

2. Make a copy of the privilege-member-present.yml file located in the /usr/share/doc/ansible-
freeipa/playbooks/privilege/ directory:

$ cp /usr/share/doc/ansible-freeipa/playbooks/privilege/privilege-member-absent.yml
privilege-member-absent-copy.yml

3. Open the privilege-member-absent-copy.yml Ansible playbook file for editing.

4. Adapt the file by setting the following variables in the ipaprivilege task section:

Adapt the name of the task to correspond to your use case.

Set the ipaadmin_password variable to the password of the IdM administrator.

Set the name variable to the name of the privilege.

Set the permission list to the names of the permissions that you want to remove from the
privilege.

Make sure that the action variable is set to member.

Make sure that the state variable is set to absent.

This is the modified Ansible playbook file for the current example:

- name: Privilege absent example
 hosts: ipaserver

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

286

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Ensure that the "Request Certificate ignoring CA ACLs" permission is absent from
the "Certificate Administrators" privilege
 ipaprivilege:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: Certificate Administrators
 permission:
 - "Request Certificate ignoring CA ACLs"
 action: member
 state: absent

5. Save the file.

6. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i inventory privilege-
member-absent-copy.yml

34.4. USING ANSIBLE TO RENAME A CUSTOM IDM RBAC PRIVILEGE

As a system administrator of Identity Management (IdM), you can customize the IdM role-based access
control.

The following procedure describes how to rename a privilege because, for example, you have removed a
few permissions from it. As a result, the name of the privilege is no longer accurate. In the example, the
administrator renames a full_host_administration privilege to limited_host_administration.

Prerequisites

You know the IdM administrator password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

The full_host_administration privilege exists. For more information about how to add a
privilege, see Using Ansible to ensure a custom IdM RBAC privilege is present .

Procedure

1. Navigate to the ~/MyPlaybooks/ directory:

CHAPTER 34. USING ANSIBLE PLAYBOOKS TO MANAGE RBAC PRIVILEGES

287

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

$ cd ~/MyPlaybooks/

2. Make a copy of the privilege-present.yml file located in the /usr/share/doc/ansible-
freeipa/playbooks/privilege/ directory:

$ cp /usr/share/doc/ansible-freeipa/playbooks/privilege/privilege-present.yml rename-
privilege.yml

3. Open the rename-privilege.yml Ansible playbook file for editing.

4. Adapt the file by setting the following variables in the ipaprivilege task section:

Set the ipaadmin_password variable to the password of the IdM administrator.

Set the name variable to the current name of the privilege.

Add the rename variable and set it to the new name of the privilege.

Add the state variable and set it to renamed.

5. Rename the playbook itself, for example:

- name: Rename a privilege
 hosts: ipaserver

6. Rename the task in the playbook, for example:

[...]
tasks:
- name: Ensure the full_host_administration privilege is renamed to
limited_host_administration
 ipaprivilege:
 [...]

This is the modified Ansible playbook file for the current example:

- name: Rename a privilege
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Ensure the full_host_administration privilege is renamed to
limited_host_administration
 ipaprivilege:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: full_host_administration
 rename: limited_host_administration
 state: renamed

7. Save the file.

8. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

288

8. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i inventory rename-
privilege.yml

34.5. USING ANSIBLE TO ENSURE AN IDM RBAC PRIVILEGE IS
ABSENT

As a system administrator of Identity Management (IdM), you can customize the IdM role-based access
control. The following procedure describes how to use an Ansible playbook to ensure that an RBAC
privilege is absent. The example describes how to ensure that the CA administrator privilege is absent.
As a result of the procedure, the admin administrator becomes the only user capable of managing
certificate authorities in IdM.

Prerequisites

You know the IdM administrator password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

Procedure

1. Navigate to the ~/MyPlaybooks/ directory:

$ cd ~/MyPlaybooks/

2. Make a copy of the privilege-absent.yml file located in the /usr/share/doc/ansible-
freeipa/playbooks/privilege/ directory:

$ cp /usr/share/doc/ansible-freeipa/playbooks/privilege/privilege-absent.yml privilege-
absent-copy.yml

3. Open the privilege-absent-copy.yml Ansible playbook file for editing.

4. Adapt the file by setting the following variables in the ipaprivilege task section:

Set the ipaadmin_password variable to the password of the IdM administrator.

Set the name variable to the name of the privilege you want to remove.

Make sure that the state variable is set it to absent.

CHAPTER 34. USING ANSIBLE PLAYBOOKS TO MANAGE RBAC PRIVILEGES

289

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

5. Rename the task in the playbook, for example:

[...]
tasks:
- name: Ensure privilege "CA administrator" is absent
 ipaprivilege:
 [...]

This is the modified Ansible playbook file for the current example:

- name: Privilege absent example
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Ensure privilege "CA administrator" is absent
 ipaprivilege:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: CA administrator
 state: absent

6. Save the file.

7. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i inventory privilege-
absent-copy.yml

34.6. ADDITIONAL RESOURCES

See Privileges in IdM .

See Permissions in IdM .

See the README-privilege file available in the /usr/share/doc/ansible-freeipa/ directory.

See the sample playbooks in the /usr/share/doc/ansible-freeipa/playbooks/ipaprivilege
directory.

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

290

CHAPTER 35. USING ANSIBLE PLAYBOOKS TO MANAGE
RBAC PERMISSIONS IN IDM

Role-based access control (RBAC) is a policy-neutral access control mechanism defined around roles,
privileges, and permissions. Especially in large companies, using RBAC can help create a hierarchical
system of administrators with their individual areas of responsibility.

This chapter describes the following operations performed when managing RBAC permissions in
Identity Management (IdM) using Ansible playbooks:

Using Ansible to ensure an RBAC permission is present

Using Ansible to ensure an RBAC permission with an attribute is present

Using Ansible to ensure an RBAC permission is absent

Using Ansible to ensure an attribute is a member of an IdM RBAC permission

Using Ansible to ensure an attribute is not a member of an IdM RBAC permission

Using Ansible to rename an IdM RBAC permission

Prerequisites

You understand the concepts and principles of RBAC .

35.1. USING ANSIBLE TO ENSURE AN RBAC PERMISSION IS PRESENT

As a system administrator of Identity Management (IdM), you can customize the IdM role-based access
control (RBAC).

The following procedure describes how to use an Ansible playbook to ensure a permission is present in
IdM so that it can be added to a privilege. The example describes how to ensure the following target
state:

The MyPermission permission exists.

The MyPermission permission can only be applied to hosts.

A user granted a privilege that contains the permission can do all of the following possible
operations on an entry:

Write

Read

Search

Compare

Add

Delete

Prerequisites

CHAPTER 35. USING ANSIBLE PLAYBOOKS TO MANAGE RBAC PERMISSIONS IN IDM

291

You know the IdM administrator password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

Procedure

1. Navigate to the ~/MyPlaybooks/ directory:

$ cd ~/MyPlaybooks/

2. Make a copy of the permission-present.yml file located in the /usr/share/doc/ansible-
freeipa/playbooks/permission/ directory:

$ cp /usr/share/doc/ansible-freeipa/playbooks/permission/permission-present.yml
permission-present-copy.yml

3. Open the permission-present-copy.yml Ansible playbook file for editing.

4. Adapt the file by setting the following variables in the ipapermission task section:

Adapt the name of the task to correspond to your use case.

Set the ipaadmin_password variable to the password of the IdM administrator.

Set the name variable to the name of the permission.

Set the object_type variable to host.

Set the right variable to all.

This is the modified Ansible playbook file for the current example:

- name: Permission present example
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Ensure that the "MyPermission" permission is present
 ipapermission:
 ipaadmin_password: "{{ ipaadmin_password }}"

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

292

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

 name: MyPermission
 object_type: host
 right: all

5. Save the file.

6. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i inventory permission-
present-copy.yml

35.2. USING ANSIBLE TO ENSURE AN RBAC PERMISSION WITH AN
ATTRIBUTE IS PRESENT

As a system administrator of Identity Management (IdM), you can customize the IdM role-based access
control (RBAC).

The following procedure describes how to use an Ansible playbook to ensure a permission is present in
IdM so that it can be added to a privilege. The example describes how to ensure the following target
state:

The MyPermission permission exists.

The MyPermission permission can only be used to add hosts.

A user granted a privilege that contains the permission can do all of the following possible
operations on a host entry:

Write

Read

Search

Compare

Add

Delete

The host entries created by a user that is granted a privilege that contains the MyPermission
permission can have a description value.

NOTE

The type of attribute that you can specify when creating or modifying a permission is not
constrained by the IdM LDAP schema. However, specifying, for example, attrs:
car_licence if the object_type is host later results in the ipa: ERROR: attribute "car-
license" not allowed error message when you try to exercise the permission and add a
specific car licence value to a host.

Prerequisites

You know the IdM administrator password.

CHAPTER 35. USING ANSIBLE PLAYBOOKS TO MANAGE RBAC PERMISSIONS IN IDM

293

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

Procedure

1. Navigate to the ~/MyPlaybooks/ directory:

$ cd ~/MyPlaybooks/

2. Make a copy of the permission-present.yml file located in the /usr/share/doc/ansible-
freeipa/playbooks/permission/ directory:

$ cp /usr/share/doc/ansible-freeipa/playbooks/permission/permission-present.yml
permission-present-with-attribute.yml

3. Open the permission-present-with-attribute.yml Ansible playbook file for editing.

4. Adapt the file by setting the following variables in the ipapermission task section:

Adapt the name of the task to correspond to your use case.

Set the ipaadmin_password variable to the password of the IdM administrator.

Set the name variable to the name of the permission.

Set the object_type variable to host.

Set the right variable to all.

Set the attrs variable to description.

This is the modified Ansible playbook file for the current example:

- name: Permission present example
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Ensure that the "MyPermission" permission is present with an attribute
 ipapermission:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: MyPermission

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

294

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

 object_type: host
 right: all
 attrs: description

5. Save the file.

6. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i inventory permission-
present-with-attribute.yml

Additional resources

See User and group schema in Linux Domain Identity, Authentication and Policy Guide in RHEL
7.

35.3. USING ANSIBLE TO ENSURE AN RBAC PERMISSION IS ABSENT

As a system administrator of Identity Management (IdM), you can customize the IdM role-based access
control (RBAC).

The following procedure describes how to use an Ansible playbook to ensure a permission is absent in
IdM so that it cannot be added to a privilege.

Prerequisites

You know the IdM administrator password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

Procedure

1. Navigate to the ~/MyPlaybooks/ directory:

$ cd ~/MyPlaybooks/

2. Make a copy of the permission-absent.yml file located in the /usr/share/doc/ansible-
freeipa/playbooks/permission/ directory:

$ cp /usr/share/doc/ansible-freeipa/playbooks/permission/permission-absent.yml
permission-absent-copy.yml

CHAPTER 35. USING ANSIBLE PLAYBOOKS TO MANAGE RBAC PERMISSIONS IN IDM

295

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/linux_domain_identity_authentication_and_policy_guide/user-schema
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

3. Open the permission-absent-copy.yml Ansible playbook file for editing.

4. Adapt the file by setting the following variables in the ipapermission task section:

Adapt the name of the task to correspond to your use case.

Set the ipaadmin_password variable to the password of the IdM administrator.

Set the name variable to the name of the permission.

This is the modified Ansible playbook file for the current example:

- name: Permission absent example
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Ensure that the "MyPermission" permission is absent
 ipapermission:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: MyPermission
 state: absent

5. Save the file.

6. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i inventory permission-
absent-copy.yml

35.4. USING ANSIBLE TO ENSURE AN ATTRIBUTE IS A MEMBER OF AN
IDM RBAC PERMISSION

As a system administrator of Identity Management (IdM), you can customize the IdM role-based access
control (RBAC).

The following procedure describes how to use an Ansible playbook to ensure that an attribute is a
member of an RBAC permission in IdM. As a result, a user with the permission can create entries that
have the attribute.

The example describes how to ensure that the host entries created by a user with a privilege that
contains the MyPermission permission can have gecos and description values.

NOTE

The type of attribute that you can specify when creating or modifying a permission is not
constrained by the IdM LDAP schema. However, specifying, for example, attrs:
car_licence if the object_type is host later results in the ipa: ERROR: attribute "car-
license" not allowed error message when you try to exercise the permission and add a
specific car licence value to a host.

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

296

Prerequisites

You know the IdM administrator password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

The MyPermission permission exists.

Procedure

1. Navigate to the ~/MyPlaybooks/ directory:

$ cd ~/MyPlaybooks/

2. Make a copy of the permission-member-present.yml file located in the
/usr/share/doc/ansible-freeipa/playbooks/permission/ directory:

$ cp /usr/share/doc/ansible-freeipa/playbooks/permission/permission-member-
present.yml permission-member-present-copy.yml

3. Open the permission-member-present-copy.yml Ansible playbook file for editing.

4. Adapt the file by setting the following variables in the ipapermission task section:

Adapt the name of the task to correspond to your use case.

Set the ipaadmin_password variable to the password of the IdM administrator.

Set the name variable to the name of the permission.

Set the attrs list to the description and gecos variables.

Make sure the action variable is set to member.

This is the modified Ansible playbook file for the current example:

- name: Permission member present example
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Ensure that the "gecos" and "description" attributes are present in

CHAPTER 35. USING ANSIBLE PLAYBOOKS TO MANAGE RBAC PERMISSIONS IN IDM

297

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

"MyPermission"
 ipapermission:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: MyPermission
 attrs:
 - description
 - gecos
 action: member

5. Save the file.

6. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i inventory permission-
member-present-copy.yml

35.5. USING ANSIBLE TO ENSURE AN ATTRIBUTE IS NOT A MEMBER
OF AN IDM RBAC PERMISSION

As a system administrator of Identity Management (IdM), you can customize the IdM role-based access
control (RBAC).

The following procedure describes how to use an Ansible playbook to ensure that an attribute is not a
member of an RBAC permission in IdM. As a result, when a user with the permission creates an entry in
IdM LDAP, that entry cannot have a value associated with the attribute.

The example describes how to ensure the following target state:

The MyPermission permission exists.

The host entries created by a user with a privilege that contains the MyPermission permission
cannot have the description attribute.

Prerequisites

You know the IdM administrator password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

The MyPermission permission exists.

Procedure

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

298

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

1. Navigate to the ~/MyPlaybooks/ directory:

$ cd ~/MyPlaybooks/

2. Make a copy of the permission-member-absent.yml file located in the
/usr/share/doc/ansible-freeipa/playbooks/permission/ directory:

$ cp /usr/share/doc/ansible-freeipa/playbooks/permission/permission-member-
absent.yml permission-member-absent-copy.yml

3. Open the permission-member-absent-copy.yml Ansible playbook file for editing.

4. Adapt the file by setting the following variables in the ipapermission task section:

Adapt the name of the task to correspond to your use case.

Set the ipaadmin_password variable to the password of the IdM administrator.

Set the name variable to the name of the permission.

Set the attrs variable to description.

Set the action variable to member.

Make sure the state variable is set to absent

This is the modified Ansible playbook file for the current example:

- name: Permission absent example
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Ensure that an attribute is not a member of "MyPermission"
 ipapermission:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: MyPermission
 attrs: description
 action: member
 state: absent

5. Save the file.

6. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i inventory permission-
member-absent-copy.yml

35.6. USING ANSIBLE TO RENAME AN IDM RBAC PERMISSION

As a system administrator of Identity Management (IdM), you can customize the IdM role-based access

CHAPTER 35. USING ANSIBLE PLAYBOOKS TO MANAGE RBAC PERMISSIONS IN IDM

299

As a system administrator of Identity Management (IdM), you can customize the IdM role-based access
control.

The following procedure describes how to use an Ansible playbook to rename a permission. The example
describes how to rename MyPermission to MyNewPermission.

Prerequisites

You know the IdM administrator password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

The MyPermission exists in IdM.

The MyNewPermission does not exist in IdM.

Procedure

1. Navigate to the ~/MyPlaybooks/ directory:

$ cd ~/MyPlaybooks/

2. Make a copy of the permission-renamed.yml file located in the /usr/share/doc/ansible-
freeipa/playbooks/permission/ directory:

$ cp /usr/share/doc/ansible-freeipa/playbooks/permission/permission-renamed.yml
permission-renamed-copy.yml

3. Open the permission-renamed-copy.yml Ansible playbook file for editing.

4. Adapt the file by setting the following variables in the ipapermission task section:

Adapt the name of the task to correspond to your use case.

Set the ipaadmin_password variable to the password of the IdM administrator.

Set the name variable to the name of the permission.

This is the modified Ansible playbook file for the current example:

- name: Permission present example
 hosts: ipaserver

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

300

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Rename the "MyPermission" permission
 ipapermission:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: MyPermission
 rename: MyNewPermission
 state: renamed

5. Save the file.

6. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i inventory permission-
renamed-copy.yml

35.7. ADDITIONAL RESOURCES

See Permissions in IdM .

See Privileges in IdM .

See the README-permission file available in the /usr/share/doc/ansible-freeipa/ directory.

See the sample playbooks in the /usr/share/doc/ansible-freeipa/playbooks/ipapermission
directory.

CHAPTER 35. USING ANSIBLE PLAYBOOKS TO MANAGE RBAC PERMISSIONS IN IDM

301

CHAPTER 36. USING AN ID VIEW TO OVERRIDE A USER
ATTRIBUTE VALUE ON AN IDM CLIENT

If an Identity Management (IdM) user want to override some of their user or group attributes stored in
the IdM LDAP server, for example the login name, home directory, certificate used for authentication, or
SSH keys, you as IdM administrator can redefine these values on specific IdM clients by using IdM ID
views. For example, you can specify a different home directory for a user on the IdM client that the user
most commonly uses for logging in to IdM.

This chapter describes how to redefine a POSIX attribute value associated with an IdM user on a host
enrolled into IdM as a client.

36.1. ID VIEWS

An ID view in Identity Management (IdM) is an IdM client-side view specifying the following information:

New values for centrally defined POSIX user or group attributes

The client host or hosts on which the new values apply.

An ID view contains one or more overrides. An override is a specific replacement of a centrally defined
POSIX attribute value.

You can only define an ID view for an IdM client centrally on IdM servers. You cannot configure client-
side overrides for an IdM client locally.

For example, you can use ID views to achieve the following goals:

Define different attribute values for different environments. For example, you can allow the IdM
administrator or another IdM user to have different home directories on different IdM clients:
you can configure /home/encrypted/username to be this user’s home directory on one IdM
client and /dropbox/username on another client. Using ID views in this situation is convenient as
alternatively, for example, changing fallback_homedir, override_homedir or other home
directory variables in the client’s /etc/sssd/sssd.conf file would affect all users. See Adding an
ID view to override an IdM user home directory on an IdM client for an example procedure.

Replace a previously generated attribute value with a different value, such as overriding a user’s
UID. This ability can be useful when you want to achieve a system-wide change that would
otherwise be difficult to do on the LDAP side, for example make 1009 the UID of an IdM user.
IdM ID ranges, which are used to generate an IdM user UID, never start as low as 1000 or even
10000. If a reason exists for an IdM user to impersonate a local user with UID 1009 on all IdM
clients, you can use ID views to override the UID of this IdM user that was generated when the
user was created in IdM.

IMPORTANT

You can only apply ID views to IdM clients, not to IdM servers.

Additional resources

Using ID views for Active Directory users

SSSD Client-side Views

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

302

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_authentication_and_authorization_in_rhel/assembly_sssd-client-side-view_configuring-authentication-and-authorization-in-rhel

36.2. POTENTIAL NEGATIVE IMPACT OF ID VIEWS ON SSSD
PERFORMANCE

When you define an ID view, IdM places the desired override value in the IdM server’s System Security
Services Daemon (SSSD) cache. The SSSD running on an IdM client then retrieves the override value
from the server cache.

Applying an ID view can have a negative impact on System Security Services Daemon (SSSD)
performance, because certain optimizations and ID views cannot run at the same time. For example, ID
views prevent SSSD from optimizing the process of looking up groups on the server:

With ID views, SSSD must check every member on the returned list of group member names if
the group name is overridden.

Without ID views, SSSD can only collect the user names from the member attribute of the
group object.

This negative effect becomes most apparent when the SSSD cache is empty or after you clear the
cache, which makes all entries invalid.

36.3. ATTRIBUTES AN ID VIEW CAN OVERRIDE

ID views consist of user and group ID overrides. The overrides define the new POSIX attribute values.

User and group ID overrides can define new values for the following POSIX attributes:

User attributes

Login name (uid)

GECOS entry (gecos)

UID number (uidNumber)

GID number (gidNumber)

Login shell (loginShell)

Home directory (homeDirectory)

SSH public keys (ipaSshPubkey)

Certificate (userCertificate)

Group attributes

Group name (cn)

Group GID number (gidNumber)

36.4. GETTING HELP FOR ID VIEW COMMANDS

You can get help for commands involving Identity Management (IdM) ID views on the IdM command-
line interface (CLI).

CHAPTER 36. USING AN ID VIEW TO OVERRIDE A USER ATTRIBUTE VALUE ON AN IDM CLIENT

303

Prerequisites

You have obtained a Kerberos ticket for an IdM user.

Procedure

To display all commands used to manage ID views and overrides:

$ ipa help idviews
ID Views

Manage ID Views

IPA allows to override certain properties of users and groups[...]
[...]
Topic commands:
 idoverridegroup-add Add a new Group ID override
 idoverridegroup-del Delete a Group ID override
[...]

To display detailed help for a particular command, add the --help option to the command:

$ ipa idview-add --help
Usage: ipa [global-options] idview-add NAME [options]

Add a new ID View.
Options:
 -h, --help show this help message and exit
 --desc=STR Description
[...]

36.5. USING AN ID VIEW TO OVERRIDE THE LOGIN NAME OF AN IDM
USER ON A SPECIFIC HOST

Follow this procedure to create an ID view for a specific IdM client that overrides a POSIX attribute value
associated with a specific IdM user. The procedure uses the example of an ID view that enables an IdM
user named idm_user to log in to an IdM client named host1 using the user_1234 login name.

Prerequisites

You are logged in as IdM administrator.

Procedure

1. Create a new ID view. For example, to create an ID view named example_for_host1:

$ ipa idview-add example_for_host1

Added ID View "example_for_host1"

 ID View Name: example_for_host1

2. Add a user override to the example_for_host1 ID view. To override the user login:

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

304

Enter the ipa idoverrideuser-add command

Add the name of the ID view

Add the user name, also called the anchor

Add the --login option:

$ ipa idoverrideuser-add example_for_host1 idm_user --login=user_1234

Added User ID override "idm_user"

 Anchor to override: idm_user
 User login: user_1234

For a list of the available options, run ipa idoverrideuser-add --help.

NOTE

The ipa idoverrideuser-add --certificate command replaces all existing
certificates for the account in the specified ID view. To append an additional
certificate, use the ipa idoverrideuser-add-cert command instead:

$ ipa idoverrideuser-add-cert example_for_host1 user --
certificate="MIIEATCC..."

3. Optional: Using the ipa idoverrideuser-mod command, you can specify new attribute values for
an existing user override.

4. Apply example_for_host1 to the host1.idm.example.com host:

$ ipa idview-apply example_for_host1 --hosts=host1.idm.example.com

Applied ID View "example_for_host1"

hosts: host1.idm.example.com

Number of hosts the ID View was applied to: 1

NOTE

The ipa idview-apply command also accepts the --hostgroups option. The
option applies the ID view to hosts that belong to the specified host group, but
does not associate the ID view with the host group itself. Instead, the --
hostgroups option expands the members of the specified host group and
applies the --hosts option individually to every one of them.

This means that if a host is added to the host group in the future, the ID view
does not apply to the new host.

5. To apply the new configuration to the host1.idm.example.com system immediately:

a. SSH to the system as root:

CHAPTER 36. USING AN ID VIEW TO OVERRIDE A USER ATTRIBUTE VALUE ON AN IDM CLIENT

305

$ ssh root@host1
Password:

b. Clear the SSSD cache:

root@host1 ~]# sss_cache -E

c. Restart the SSSD daemon:

root@host1 ~]# systemctl restart sssd

Verification

If you have the credentials of user_1234, you can use them to log in to IdM on host1:

1. SSH to host1 using user_1234 as the login name:

[root@r8server ~]# ssh user_1234@host1.idm.example.com
Password:

Last login: Sun Jun 21 22:34:25 2020 from 192.168.122.229
[user_1234@host1 ~]$

2. Display the working directory:

[user_1234@host1 ~]$ pwd
/home/idm_user/

Alternatively, if you have root credentials on host1, you can use them to check the output of the
id command for idm_user and user_1234:

[root@host1 ~]# id idm_user
uid=779800003(user_1234) gid=779800003(idm_user) groups=779800003(idm_user)
[root@host1 ~]# user_1234
uid=779800003(user_1234) gid=779800003(idm_user) groups=779800003(idm_user)

36.6. MODIFYING AN IDM ID VIEW

An ID view in Identity Management (IdM) overrides a POSIX attribute value associated with a specific
IdM user. Follow this procedure to modify an existing ID view. Specifically, it describes how to modify an
ID view to enable the user named idm_user to use the /home/user_1234/ directory as the user home
directory instead of /home/idm_user/ on the host1.idm.example.com IdM client.

Prerequisites

You have root access to host1.idm.example.com.

You are logged in as a user with the required privileges, for example admin.

You have an ID view configured for idm_user that applies to the host1 IdM client.

Procedure

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

306

1. As root, create the directory that you want idm_user to use on host1.idm.example.com as the
user home directory:

[root@host1 /]# mkdir /home/user_1234/

2. Change the ownership of the directory:

[root@host1 /]# chown idm_user:idm_user /home/user_1234/

3. Display the ID view, including the hosts to which the ID view is currently applied. To display the ID
view named example_for_host1:

$ ipa idview-show example_for_host1 --all
 dn: cn=example_for_host1,cn=views,cn=accounts,dc=idm,dc=example,dc=com
 ID View Name: example_for_host1
 User object override: idm_user
 Hosts the view applies to: host1.idm.example.com
 objectclass: ipaIDView, top, nsContainer

The output shows that the ID view currently applies to host1.idm.example.com.

4. Modify the user override of the example_for_host1 ID view. To override the user home
directory:

Enter the ipa idoverrideuser-add command

Add the name of the ID view

Add the user name, also called the anchor

Add the --homedir option:

$ ipa idoverrideuser-mod example_for_host1 idm_user --
homedir=/home/user_1234

Modified a User ID override "idm_user"

 Anchor to override: idm_user
 User login: user_1234
 Home directory: /home/user_1234/

For a list of the available options, run ipa idoverrideuser-mod --help.

5. To apply the new configuration to the host1.idm.example.com system immediately:

a. SSH to the system as root:

$ ssh root@host1
Password:

b. Clear the SSSD cache:

root@host1 ~]# sss_cache -E

CHAPTER 36. USING AN ID VIEW TO OVERRIDE A USER ATTRIBUTE VALUE ON AN IDM CLIENT

307

c. Restart the SSSD daemon:

root@host1 ~]# systemctl restart sssd

Verification

1. SSH to host1 as idm_user:

[root@r8server ~]# ssh idm_user@host1.idm.example.com
Password:

Last login: Sun Jun 21 22:34:25 2020 from 192.168.122.229
[user_1234@host1 ~]$

2. Print the working directory:

[user_1234@host1 ~]$ pwd
/home/user_1234/

Additional resources

Defining global attributes for an AD user by modifying the Default Trust View

36.7. ADDING AN ID VIEW TO OVERRIDE AN IDM USER HOME
DIRECTORY ON AN IDM CLIENT

An ID view in Identity Management (IdM) overrides a POSIX attribute value associated with a specific
IdM user. Follow this procedure to create an ID view that applies to idm_user on an IdM client named
host1 to enable the user to use the /home/user_1234/ directory as the user home directory instead of
/home/idm_user/.

Prerequisites

You have root access to host1.idm.example.com.

You are logged in as a user with the required privileges, for example admin.

Procedure

1. As root, create the directory that you want idm_user to use on host1.idm.example.com as the
user home directory:

[root@host1 /]# mkdir /home/user_1234/

2. Change the ownership of the directory:

[root@host1 /]# chown idm_user:idm_user /home/user_1234/

3. Create an ID view. For example, to create an ID view named example_for_host1:

$ ipa idview-add example_for_host1

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

308

Added ID View "example_for_host1"

 ID View Name: example_for_host1

4. Add a user override to the example_for_host1 ID view. To override the user home directory:

Enter the ipa idoverrideuser-add command

Add the name of the ID view

Add the user name, also called the anchor

Add the --homedir option:

$ ipa idoverrideuser-add example_for_host1 idm_user --homedir=/home/user_1234

Added User ID override "idm_user"

 Anchor to override: idm_user
 Home directory: /home/user_1234/

5. Apply example_for_host1 to the host1.idm.example.com host:

$ ipa idview-apply example_for_host1 --hosts=host1.idm.example.com

Applied ID View "example_for_host1"

hosts: host1.idm.example.com

Number of hosts the ID View was applied to: 1

NOTE

The ipa idview-apply command also accepts the --hostgroups option. The
option applies the ID view to hosts that belong to the specified host group, but
does not associate the ID view with the host group itself. Instead, the --
hostgroups option expands the members of the specified host group and
applies the --hosts option individually to every one of them.

This means that if a host is added to the host group in the future, the ID view
does not apply to the new host.

6. To apply the new configuration to the host1.idm.example.com system immediately:

a. SSH to the system as root:

$ ssh root@host1
Password:

b. Clear the SSSD cache:

root@host1 ~]# sss_cache -E

CHAPTER 36. USING AN ID VIEW TO OVERRIDE A USER ATTRIBUTE VALUE ON AN IDM CLIENT

309

c. Restart the SSSD daemon:

root@host1 ~]# systemctl restart sssd

Verification

1. SSH to host1 as idm_user:

[root@r8server ~]# ssh idm_user@host1.idm.example.com
Password:
Activate the web console with: systemctl enable --now cockpit.socket

Last login: Sun Jun 21 22:34:25 2020 from 192.168.122.229
[idm_user@host1 /]$

2. Print the working directory:

[idm_user@host1 /]$ pwd
/home/user_1234/

Additional resources

Overriding Default Trust View attributes for an AD user on an IdM client with an ID view

36.8. APPLYING AN ID VIEW TO AN IDM HOST GROUP

The ipa idview-apply command accepts the --hostgroups option. However, the option acts as a one-
time operation that applies the ID view to hosts that currently belong to the specified host group, but
does not dynamically associate the ID view with the host group itself. The --hostgroups option expands
the members of the specified host group and applies the --hosts option individually to every one of
them.

If you add a new host to the host group later, you must apply the ID view to the new host manually, using
the ipa idview-apply command with the --hosts option.

Similarly, if you remove a host from a host group, the ID view is still assigned to the host after the
removal. To unapply the ID view from the removed host, you must run the ipa idview-unapply
id_view_name --hosts=name_of_the_removed_host command.

Follow this procedure to achieve the following goals:

1. How to create a host group and add hosts to it.

2. How to apply an ID view to the host group.

3. How to add a new host to the host group and apply the ID view to the new host.

Prerequisites

Ensure that the ID view you want to apply to the host group exists in IdM. For example, to create
an ID view to override the GID for an AD user, see Overriding Default Trust View attributes for
an AD user on an IdM client with an ID view

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

310

Procedure

1. Create a host group and add hosts to it:

a. Create a host group. For example, to create a host group named baltimore:

[root@server ~]# ipa hostgroup-add --desc="Baltimore hosts" baltimore

Added hostgroup "baltimore"

Host-group: baltimore
Description: Baltimore hosts

b. Add hosts to the host group. For example, to add the host102 and host103 to the
baltimore host group:

[root@server ~]# ipa hostgroup-add-member --hosts={host102,host103} baltimore
Host-group: baltimore
Description: Baltimore hosts
Member hosts: host102.idm.example.com, host103.idm.example.com

Number of members added 2

2. Apply an ID view to the hosts in the host group. For example, to apply the example_for_host1 ID
view to the baltimore host group:

[root@server ~]# ipa idview-apply --hostgroups=baltimore
ID View Name: example_for_host1

Applied ID View "example_for_host1"

 hosts: host102.idm.example.com, host103.idm.example.com

Number of hosts the ID View was applied to: 2

3. Add a new host to the host group and apply the ID view to the new host:

a. Add a new host to the host group. For example, to add the somehost.idm.example.com
host to the baltimore host group:

[root@server ~]# ipa hostgroup-add-member --hosts=somehost.idm.example.com
baltimore
 Host-group: baltimore
 Description: Baltimore hosts
 Member hosts: host102.idm.example.com,
host103.idm.example.com,somehost.idm.example.com

Number of members added 1

b. Optional: Display the ID view information. For example, to display the details about the
example_for_host1 ID view:

CHAPTER 36. USING AN ID VIEW TO OVERRIDE A USER ATTRIBUTE VALUE ON AN IDM CLIENT

311

[root@server ~]# ipa idview-show example_for_host1 --all
 dn: cn=example_for_host1,cn=views,cn=accounts,dc=idm,dc=example,dc=com
 ID View Name: example_for_host1
[...]
 Hosts the view applies to: host102.idm.example.com, host103.idm.example.com
 objectclass: ipaIDView, top, nsContainer

The output shows that the ID view is not applied to somehost.idm.example.com, the
newly-added host in the baltimore host group.

c. Apply the ID view to the new host. For example, to apply the example_for_host1 ID view to
somehost.idm.example.com:

[root@server ~]# ipa idview-apply --host=somehost.idm.example.com
ID View Name: example_for_host1

Applied ID View "example_for_host1"

 hosts: somehost.idm.example.com

Number of hosts the ID View was applied to: 1

Verification

Display the ID view information again:

[root@server ~]# ipa idview-show example_for_host1 --all
 dn: cn=example_for_host1,cn=views,cn=accounts,dc=idm,dc=example,dc=com
 ID View Name: example_for_host1
[...]
 Hosts the view applies to: host102.idm.example.com, host103.idm.example.com,
somehost.idm.example.com
 objectclass: ipaIDView, top, nsContainer

The output shows that ID view is now applied to somehost.idm.example.com, the newly-added
host in the baltimore host group.

36.9. USING ANSIBLE TO OVERRIDE THE LOGIN NAME AND HOME
DIRECTORY OF AN IDM USER ON A SPECIFIC HOST

Complete this procedure to use the idoverrideuser ansible-freeipa module to create an ID view for a
specific Identity Management (IdM) client that overrides a POSIX attribute value associated with a
specific IdM user. The procedure uses the example of an ID view that enables an IdM user named
idm_user to log in to an IdM client named host1.idm.example.com by using the user_1234 login name.
Additionally, the ID view modifies the home directory of idm_user so that after logging in to host1, the
user home directory is /home/user_1234/.

Prerequisites

On the control node:

You are using Ansible version 2.14 or later.

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

312

You have installed the ansible-freeipa package.

You have created an Ansible inventory file with the fully-qualified domain name (FQDN) of
the IdM server in the ~/MyPlaybooks/ directory.

You are using RHEL 8.10 or later.

You have stored your ipaadmin_password in the secret.yml Ansible vault.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

Procedure

1. Create your Ansible playbook file add-idoverrideuser-with-name-and-homedir.yml with the
following content:

- name: Playbook to manage idoverrideuser
 hosts: ipaserver
 become: false
 gather_facts: false
 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml

 tasks:
 - name: Ensure idview_for_host1 is present
 idview:
 ipaadmin_password: ”{{ ipaadmin_password }}"
 name: idview_for_host1
 - name: Ensure idview_for_host1 is applied to host1.idm.example.com
 idview:
 ipaadmin_password: ”{{ ipaadmin_password }}"
 name: idview_for_host1
 host: host1.idm.example.com
 action: member
 - name: Ensure idm_user is present in idview_for_host1 with homedir /home/user_1234
and name user_1234
 ipaidoverrideuser:
 ipaadmin_password: ”{{ ipaadmin_password }}"
 idview: idview_for_host1
 anchor: idm_user
 name: user_1234
 homedir: /home/user_1234

2. Run the playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file::

$ ansible-playbook --vault-password-file=password_file -v -i
<path_to_inventory_directory>/inventory <path_to_playbooks_directory>/add-
idoverrideuser-with-name-and-homedir.yml

3. Optional: If you have root credentials, you can apply the new configuration to the
host1.idm.example.com system immediately:

a. SSH to the system as root:

CHAPTER 36. USING AN ID VIEW TO OVERRIDE A USER ATTRIBUTE VALUE ON AN IDM CLIENT

313

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

$ ssh root@host1
Password:

b. Clear the SSSD cache:

root@host1 ~]# sss_cache -E

c. Restart the SSSD daemon:

root@host1 ~]# systemctl restart sssd

Verification

1. SSH to host1 as idm_user:

[root@r8server ~]# ssh idm_user@host1.idm.example.com
Password:

Last login: Sun Jun 21 22:34:25 2020 from 192.168.122.229
[user_1234@host1 ~]$

2. Print the working directory:

[user_1234@host1 ~]$ pwd
/home/user_1234/

Additional resources

The idoverrideuser module in ansible-freeipa upstream docs

36.10. USING ANSIBLE TO CONFIGURE AN ID VIEW THAT ENABLES AN
SSH KEY LOGIN ON AN IDM CLIENT

Complete this procedure to use the idoverrideuser ansible-freeipa module to ensure that an IdM user
can use a specific SSH key to log in to a specific IdM client. The procedure uses the example of an ID
view that enables an IdM user named idm_user to log in to an IdM client named host1.idm.example.com
with an SSH key.

NOTE

This ID view can be used to enhance a specific HBAC rule.

Prerequisites

On the control node:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package.

You have created an Ansible inventory file with the fully-qualified domain name (FQDN) of
the IdM server in the ~/MyPlaybooks/ directory.

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

314

https://github.com/freeipa/ansible-freeipa/blob/master/README-idoverrideuser.md
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

You are using RHEL 8.10 or later.

You have stored your ipaadmin_password in the secret.yml Ansible vault.

You have access to the idm_user’s SSH public key.

The idview_for_host1 ID view exists.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

Procedure

1. Create your Ansible playbook file ensure-idoverrideuser-can-login-with-sshkey.yml with the
following content:

- name: Playbook to manage idoverrideuser
 hosts: ipaserver
 become: false
 gather_facts: false
 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml

 tasks:
 - name: Ensure test user idm_user is present in idview idview_for_host1 with sshpubkey
 ipaidoverrideuser:
 ipaadmin_password: ”{{ ipaadmin_password }}"
 idview: idview_for_host1
 anchor: idm_user
 sshpubkey:
 - ssh-rsa AAAAB3NzaC1yc2EAAADAQABAAABgQCqmVDpEX5gnSjKuv97Ay ...
 - name: Ensure idview_for_host1 is applied to host1.idm.example.com
 ipaidview:
 ipaadmin_password: ”{{ ipaadmin_password }}"
 name: idview_for_host1
 host: host1.idm.example.com
 action: member

2. Run the playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i
<path_to_inventory_directory>/inventory <path_to_playbooks_directory>/ensure-
idoverrideuser-can-login-with-sshkey.yml

3. Optional: If you have root credentials, you can apply the new configuration to the
host1.idm.example.com system immediately:

a. SSH to the system as root:

$ ssh root@host1
Password:

b. Clear the SSSD cache:

CHAPTER 36. USING AN ID VIEW TO OVERRIDE A USER ATTRIBUTE VALUE ON AN IDM CLIENT

315

root@host1 ~]# sss_cache -E

c. Restart the SSSD daemon:

root@host1 ~]# systemctl restart sssd

Verification

Use the public key to SSH to host1:

[root@r8server ~]# ssh -i ~/.ssh/id_rsa.pub idm_user@host1.idm.example.com

Last login: Sun Jun 21 22:34:25 2023 from 192.168.122.229
[idm_user@host1 ~]$

The output confirms that you have logged in successfully.

Additional resources

The idoverrideuser module in ansible-freeipa upstream docs

36.11. USING ANSIBLE TO GIVE A USER ID OVERRIDE ACCESS TO THE
LOCAL SOUND CARD ON AN IDM CLIENT

You can use the ansible-freeipa group and idoverrideuser modules to make Identity Management
(IdM) or Active Directory (AD) users members of the local audio group on an IdM client. This grants the
IdM or AD users privileged access to the sound card on the host. The procedure uses the example of
the Default Trust View ID view to which the aduser@addomain.com ID override is added in the first
playbook task. In the next playbook task, an audio group is created in IdM with the GID of 63, which
corresponds to the GID of local audio groups on RHEL hosts. At the same time, the
aduser@addomain.com ID override is added to the IdM audio group as a member.

Prerequisites

You have root access to the IdM client on which you want to perform the first part of the
procedure. In the example, this is client.idm.example.com.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

You are using RHEL 8.10 or later.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The AD forest is in trust with IdM. In the example, the name of the AD domain is addomain.com
and the fully-qualified domain name (FQDN) of the AD user whose presence in the local audio
group is being ensured is aduser@addomain.com.

The target node, that is the node on which the ansible-freeipa module is executed, is part of

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

316

https://github.com/freeipa/ansible-freeipa/blob/master/README-idoverrideuser.md
mailto:aduser@addomain.com
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

Procedure

1. On client.idm.example.com, add [SUCCESS=merge] to the /etc/nsswitch.conf file:

[...]
Allow initgroups to default to the setting for group.
initgroups: sss [SUCCESS=merge] files

2. Identify the GID of the local audio group:

$ getent group audio

audio:x:63

3. On your Ansible control node, create an add-aduser-to-audio-group.yml playbook with a task
to add the aduser@addomain.com user override to the Default Trust View:

- name: Playbook to manage idoverrideuser
 hosts: ipaserver
 become: false

 tasks:
 - name: Add aduser@addomain.com user to the Default Trust View
 ipaidoverrideuser:
 ipaadmin_password: "{{ ipaadmin_password }}"
 idview: "Default Trust View"
 anchor: aduser@addomain.com

4. Use another playbook task in the same playbook to add the group audio to IdM with the GID of
63. Add the aduser idoverrideuser to the group:

 - name: Add the audio group with the aduser member and GID of 63
 ipagroup:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: audio
 idoverrideuser:
 - aduser@addomain.com
 gidnumber: 63

5. Save the file.

6. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i inventory add-aduser-to-
audio-group.yml

Verification

1. Log in to the IdM client as the AD user:

CHAPTER 36. USING AN ID VIEW TO OVERRIDE A USER ATTRIBUTE VALUE ON AN IDM CLIENT

317

$ ssh aduser@addomain.com@client.idm.example.com

2. Verify the group membership of the AD user:

$ id aduser@addomain.com
uid=702801456(aduser@addomain.com) gid=63(audio) groups=63(audio)

Additional resources

The idoverrideuser and ipagroup ansible-freeipa upstream documentation

Enabling group merging for local and remote groups in IdM

36.12. USING ANSIBLE TO ENSURE AN IDM USER IS PRESENT IN AN ID
VIEW WITH A SPECIFIC UID

If you are working in a lab where you have our own computer but your /home/ directory is in a shared
drive exported by a server, you can have two users:

One that is system-wide user, stored centrally in Identity Management (IdM).

One whose account is local, that is stored on the system in question.

If you need to have full access to your files whether you are logged in as an IdM user or as a local user,
you can do so by giving both users the same UID.

Complete this procedure to use the ansible-freeipa idoverrideuser module to:

Apply an ID view to host01 named idview_for_host01.

Ensure, in idview_for_host01, the presence of a user ID override for idm_user with the UID of
20001.

Prerequisites

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

You are using RHEL 8.10 or later.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The idview_for_host1 ID view exists.

Procedure

1. On your Ansible control node, create an ensure-idmuser-and-local-user-have-access-to-
same-files.yml playbook with the following content:

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

318

https://github.com/freeipa/ansible-freeipa/blob/master/README-idoverrideuser.md
https://github.com/freeipa/ansible-freeipa/blob/master/README-group.md
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_idm_users_groups_hosts_and_access_control_rules/managing-user-groups-in-idm-cli_managing-users-groups-hosts#enabling-group-merging-for-local-and-remote-groups-in-idm_managing-user-groups-in-idm-cli
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

- name: Ensure both local user and IdM user have access to same files
 hosts: ipaserver
 become: false
 gather_facts: false

 tasks:
 - name: Ensure idview_for_host1 is applied to host1.idm.example.com
 ipaidview:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: idview_for_host01
 host: host1.idm.example.com
 - name: Ensure idmuser is present in idview_for_host01 with the UID of 20001
 ipaidoverrideuser:
 ipaadmin_password: "{{ ipaadmin_password }}"
 idview: idview_for_host01
 anchor: idm_user
 UID: 20001

2. Save the file.

3. Run the playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i inventory ensure-
idmuser-and-local-user-have-access-to-same-files.yml

Additional resources

The idoverrideuser module in ansible-freeipa upstream docs

36.13. USING ANSIBLE TO ENSURE AN IDM USER CAN LOG IN TO AN
IDM CLIENT WITH TWO CERTIFICATES

If you want an Identity Management (IdM) user that normally logs in to IdM with a password to
authenticate to a specific IdM client by using a smart card only, you can create an ID view that requires
certification for the user on that client.

Complete this procedure to use the ansible-freeipa idoverrideuser module to:

Apply an ID view to host01 named idview_for_host01.

Ensure, in idview_for_host01, the presence of a user ID override for idm_user with two
certificates.

Prerequisites

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

You are using RHEL 8.10 or later.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible

CHAPTER 36. USING AN ID VIEW TO OVERRIDE A USER ATTRIBUTE VALUE ON AN IDM CLIENT

319

https://github.com/freeipa/ansible-freeipa/blob/master/README-idoverrideuser.md
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The example assumes that cert1.b64 and cert2.b64 certificates are located in the same
directory in which you are executing the playbook.

The idview_for_host01 ID view exists.

Procedure

1. On your Ansible control node, create an ensure-idmuser-present-in-idview-with-
certificates.yml playbook with the following content:

- name: Ensure both local user and IdM user have access to same files
 hosts: ipaserver
 become: false
 gather_facts: false

 tasks:
 - name: Ensure idview_for_host1 is applied to host01.idm.example.com
 ipaidview:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: idview_for_host01
 host: host01.idm.example.com

 - name: Ensure an IdM user is present in ID view with two certificates
 ipaidoverrideuser:
 ipaadmin_password: "{{ ipaadmin_password }}"
 idview: idview_for_host01
 anchor: idm_user
 certificate:
 - "{{ lookup('file', 'cert1.b64', rstrip=False) }}"
 - "{{ lookup('file', 'cert2.b64', rstrip=False) }}"

The rstrip=False directive causes the white space not to be removed from the end of the
looked-up file.

2. Save the file.

3. Run the playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i inventory ensure-
idmuser-present-in-idview-with-certificates.yml

Additional resources

The idoverrideuser module in ansible-freeipa upstream docs

36.14. USING ANSIBLE TO GIVE AN IDM GROUP ACCESS TO THE
SOUND CARD ON AN IDM CLIENT

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

320

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm
https://github.com/freeipa/ansible-freeipa/blob/master/README-idoverrideuser.md

You can use the ansible-freeipa idview and idoverridegroup modules to make Identity Management
(IdM) or Active Directory (AD) users members of the local audio group on an IdM client. This grants the
IdM or AD users privileged access to the sound card on the host.

The procedure uses the example of the idview_for_host01 ID view to which the audio group ID override
is added with the GID` of 63, which corresponds to the GID of local audio groups on RHEL hosts. The
idview_for_host01 ID view is applied to an IdM client named host01.idm.example.com.

Prerequisites

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

You are using RHEL 8.10 or later.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

Procedure

1. Optional: Identify the GID of the local audio group on a RHEL host:

$ getent group audio

audio:x:63

2. On your Ansible control node, create an give-idm-group-access-to-sound-card-on-idm-
client.yml playbook with the following tasks:

- name: Playbook to give IdM group access to sound card on IdM client
 hosts: ipaserver
 become: false

 tasks:
 - name: Ensure the audio group exists in IdM
 ipagroup:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: audio

 - name: Ensure idview_for_host01 exists and is applied to host01.idm.example.com
 ipaidview:
 ipaadmin_password: ”{{ ipaadmin_password }}"
 name: idview_for_host01
 host: host01.idm.example.com

 - name: Add an override for the IdM audio group with GID 63 to idview_for_host01
 ipaidoverridegroup:
 ipaadmin_password: "{{ ipaadmin_password }}"

CHAPTER 36. USING AN ID VIEW TO OVERRIDE A USER ATTRIBUTE VALUE ON AN IDM CLIENT

321

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

 idview: idview_for_host01
 anchor: audio
 GID: 63

3. Save the file.

4. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i inventory give-idm-group-
access-to-sound-card-on-idm-client.yml

Verification

1. On an IdM client, obtain IdM administrator’s credentials:

$ kinit admin
Password:

2. Create a test IdM user:

$ ipa user-add testuser --first test --last user --password
User login [tuser]:
Password:
Enter Password again to verify:

Added user "tuser"

3. Add the user to the IdM audio group:

$ ipa group-add-member --tuser audio

4. Log in to host01.idm.example.com as tuser:

$ ssh tuser@host01.idm.example.com

5. Verify the group membership of the user:

$ id tuser
uid=702801456(tuser) gid=63(audio) groups=63(audio)

Additional resources

The idoverridegroup, idview and ipagroup ansible-freeipa upstream documentation

Enabling group merging for local and remote groups in IdM

36.15. MIGRATING NIS DOMAINS TO IDENTITY MANAGEMENT

You can use ID views to set host specific UIDs and GIDs for existing hosts to prevent changing
permissions for files and directories when migrating NIS domains into IdM.

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

322

https://github.com/freeipa/ansible-freeipa/blob/master/README-idoverridegroup.md
https://github.com/freeipa/ansible-freeipa/blob/master/README-idview.md
https://github.com/freeipa/ansible-freeipa/blob/master/README-group.md
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_idm_users_groups_hosts_and_access_control_rules/managing-user-groups-in-idm-cli_managing-users-groups-hosts#enabling-group-merging-for-local-and-remote-groups-in-idm_managing-user-groups-in-idm-cli

Prerequisites

You authenticated yourself as an admin using the kinit admin command.

Procedure

1. Add users and groups in the IdM domain.

a. Create users using the ipa user-add command. For more information see: Adding users to
IdM.

b. Create groups using the ipa group-add command. For more information see: Adding
groups to IdM.

2. Override IDs IdM generated during the user creation:

a. Create a new ID view using ipa idview-add command. For more information see: Getting
help for ID view commands.

b. Add ID overrides for the users and groups to the ID view using ipa idoverrideuser-add and
idoverridegroup-add respectively.

3. Assign the ID view to the specific hosts using ipa idview-apply command.

4. Decommission the NIS domains.

Verification

1. To check if all users and groups were added to the ID view correctly, use the ipa idview-show
command.

$ ipa idview-show example-view
 ID View Name: example-view
 User object overrides: example-user1
 Group object overrides: example-group

CHAPTER 36. USING AN ID VIEW TO OVERRIDE A USER ATTRIBUTE VALUE ON AN IDM CLIENT

323

CHAPTER 37. USING ID VIEWS FOR ACTIVE DIRECTORY
USERS

You can use ID views to specify new values for the POSIX attributes of your Active Directory (AD) users
in an IdM-AD Trust environment.

By default, IdM applies the Default Trust View to all AD users. You can configure additional ID views on
individual IdM clients to further adjust which POSIX attributes specific users receive.

37.1. HOW THE DEFAULT TRUST VIEW WORKS

The Default Trust View is the default ID view that is always applied to AD users and groups in trust-
based setups. It is created automatically when you establish the trust using the ipa-adtrust-install
command and cannot be deleted.

NOTE

The Default Trust View only accepts overrides for AD users and groups, not for IdM users
and groups.

Using the Default Trust View, you can define custom POSIX attributes for AD users and groups, thus
overriding the values defined in AD.

Table 37.1. Applying the Default Trust View

 Values in AD Default Trust View Result

Login ad_user ad_user ad_user

UID 111 222 222

GID 111 (no value) 111

You can also configure additional ID Views to override the Default Trust View on IdM clients. IdM applies
the values from the host-specific ID view on top of the Default Trust View:

If an attribute is defined in the host-specific ID view, IdM applies the value from this ID view.

If an attribute is not defined in the host-specific ID view, IdM applies the value from the Default
Trust View.

Table 37.2. Applying a host-specific ID view on top of the Default Trust View

 Values in AD Default Trust
View

Host-specific ID
view

Result

Login ad_user ad_user (no value) ad_user

UID 111 222 333 333

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

324

GID 111 (no value) 333 333

 Values in AD Default Trust
View

Host-specific ID
view

Result

NOTE

You can only apply host-specific ID views to override the Default Trust View on IdM
clients. IdM servers and replicas always apply the values from the Default Trust View.

Additional resources

Using an ID view to override a user attribute value on an IdM client

37.2. DEFINING GLOBAL ATTRIBUTES FOR AN AD USER BY
MODIFYING THE DEFAULT TRUST VIEW

If you want to override a POSIX attribute for an Active Directory (AD) user throughout your entire IdM
deployment, modify the entry for that user in the Default Trust View. This procedure sets the GID for
the AD user ad_user@ad.example.com to 732000006.

Prerequisites

You have authenticated as an IdM administrator.

A group must exist with the GID or you must set the GID in an ID override for a group.

Procedure

1. As an IdM administrator, create an ID override for the AD user in the Default Trust View that
changes the GID number to 732000006:

ipa idoverrideuser-add 'Default Trust View' ad_user@ad.example.com --
gidnumber=732000006

2. Clear the entry for the ad_user@ad.example.com user from the SSSD cache on all IdM servers
and clients. This removes stale data and allows the new override value to apply.

sssctl cache-expire -u ad_user@ad.example.com

Verification

Retrieve information for the ad_user@ad.example.com user to verify the GID reflects the
updated value.

id ad_user@ad.example.com
uid=702801456(ad_user@ad.example.com) gid=732000006(ad_admins)
groups=732000006(ad_admins),702800513(domain users@ad.example.com)

37.3. OVERRIDING DEFAULT TRUST VIEW ATTRIBUTES FOR AN AD

CHAPTER 37. USING ID VIEWS FOR ACTIVE DIRECTORY USERS

325

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/using-an-id-view-to-override-a-user-attribute-value-on-an-idm-client_configuring-and-managing-idm

37.3. OVERRIDING DEFAULT TRUST VIEW ATTRIBUTES FOR AN AD
USER ON AN IDM CLIENT WITH AN ID VIEW

You might want to override some POSIX attributes from the Default Trust View for an Active Directory
(AD) user. For example, you might need to give an AD user a different GID on one particular IdM client.
You can use an ID view to override a value from the Default Trust View for an AD user and apply it to a
single host. This procedure explains how to set the GID for the ad_user@ad.example.com AD user on
the host1.idm.example.com IdM client to 732001337.

Prerequisites

You have root access to the host1.idm.example.com IdM client.

You are logged in as a user with the required privileges, for example the admin user.

Procedure

1. Create an ID view. For example, to create an ID view named example_for_host1:

$ ipa idview-add example_for_host1

Added ID View "example_for_host1"

 ID View Name: example_for_host1

2. Add a user override to the example_for_host1 ID view. To override the user’s GID:

Enter the ipa idoverrideuser-add command

Add the name of the ID view

Add the user name, also called the anchor

Add the --gidnumber= option:

$ ipa idoverrideuser-add example_for_host1 ad_user@ad.example.com --
gidnumber=732001337

Added User ID override "ad_user@ad.example.com"

 Anchor to override: ad_user@ad.example.com
 GID: 732001337

3. Apply example_for_host1 to the host1.idm.example.com IdM client:

$ ipa idview-apply example_for_host1 --hosts=host1.idm.example.com

Applied ID View "example_for_host1"

hosts: host1.idm.example.com

Number of hosts the ID View was applied to: 1

NOTE

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

326

NOTE

The ipa idview-apply command also accepts the --hostgroups option. The
option applies the ID view to hosts that belong to the specified host group, but
does not associate the ID view with the host group itself. Instead, the --
hostgroups option expands the members of the specified host group and
applies the --hosts option individually to every one of them.

This means that if a host is added to the host group in the future, the ID view
does not apply to the new host.

4. Clear the entry for the ad_user@ad.example.com user from the SSSD cache on the
host1.idm.example.com IdM client. This removes stale data and allows the new override value
to apply.

[root@host1 ~]# sssctl cache-expire -u ad_user@ad.example.com

Verification

1. SSH to host1 as ad_user@ad.example.com:

[root@r8server ~]# ssh ad_user@ad.example.com@host1.idm.example.com

2. Retrieve information for the ad_user@ad.example.com user to verify the GID reflects the
updated value.

[ad_user@ad.example.com@host1 ~]$ id ad_user@ad.example.com
uid=702801456(ad_user@ad.example.com) gid=732001337(admins2)
groups=732001337(admins2),702800513(domain users@ad.example.com)

37.4. APPLYING AN ID VIEW TO AN IDM HOST GROUP

The ipa idview-apply command accepts the --hostgroups option. However, the option acts as a one-
time operation that applies the ID view to hosts that currently belong to the specified host group, but
does not dynamically associate the ID view with the host group itself. The --hostgroups option expands
the members of the specified host group and applies the --hosts option individually to every one of
them.

If you add a new host to the host group later, you must apply the ID view to the new host manually, using
the ipa idview-apply command with the --hosts option.

Similarly, if you remove a host from a host group, the ID view is still assigned to the host after the
removal. To unapply the ID view from the removed host, you must run the ipa idview-unapply
id_view_name --hosts=name_of_the_removed_host command.

Follow this procedure to achieve the following goals:

1. How to create a host group and add hosts to it.

2. How to apply an ID view to the host group.

3. How to add a new host to the host group and apply the ID view to the new host.

Prerequisites

CHAPTER 37. USING ID VIEWS FOR ACTIVE DIRECTORY USERS

327

Ensure that the ID view you want to apply to the host group exists in IdM. For example, to create
an ID view to override the GID for an AD user, see Overriding Default Trust View attributes for
an AD user on an IdM client with an ID view

Procedure

1. Create a host group and add hosts to it:

a. Create a host group. For example, to create a host group named baltimore:

[root@server ~]# ipa hostgroup-add --desc="Baltimore hosts" baltimore

Added hostgroup "baltimore"

Host-group: baltimore
Description: Baltimore hosts

b. Add hosts to the host group. For example, to add the host102 and host103 to the
baltimore host group:

[root@server ~]# ipa hostgroup-add-member --hosts={host102,host103} baltimore
Host-group: baltimore
Description: Baltimore hosts
Member hosts: host102.idm.example.com, host103.idm.example.com

Number of members added 2

2. Apply an ID view to the hosts in the host group. For example, to apply the example_for_host1 ID
view to the baltimore host group:

[root@server ~]# ipa idview-apply --hostgroups=baltimore
ID View Name: example_for_host1

Applied ID View "example_for_host1"

 hosts: host102.idm.example.com, host103.idm.example.com

Number of hosts the ID View was applied to: 2

3. Add a new host to the host group and apply the ID view to the new host:

a. Add a new host to the host group. For example, to add the somehost.idm.example.com
host to the baltimore host group:

[root@server ~]# ipa hostgroup-add-member --hosts=somehost.idm.example.com
baltimore
 Host-group: baltimore
 Description: Baltimore hosts
 Member hosts: host102.idm.example.com,
host103.idm.example.com,somehost.idm.example.com

Number of members added 1

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

328

b. Optional: Display the ID view information. For example, to display the details about the
example_for_host1 ID view:

[root@server ~]# ipa idview-show example_for_host1 --all
 dn: cn=example_for_host1,cn=views,cn=accounts,dc=idm,dc=example,dc=com
 ID View Name: example_for_host1
[...]
 Hosts the view applies to: host102.idm.example.com, host103.idm.example.com
 objectclass: ipaIDView, top, nsContainer

The output shows that the ID view is not applied to somehost.idm.example.com, the
newly-added host in the baltimore host group.

c. Apply the ID view to the new host. For example, to apply the example_for_host1 ID view to
somehost.idm.example.com:

[root@server ~]# ipa idview-apply --host=somehost.idm.example.com
ID View Name: example_for_host1

Applied ID View "example_for_host1"

 hosts: somehost.idm.example.com

Number of hosts the ID View was applied to: 1

Verification

Display the ID view information again:

[root@server ~]# ipa idview-show example_for_host1 --all
 dn: cn=example_for_host1,cn=views,cn=accounts,dc=idm,dc=example,dc=com
 ID View Name: example_for_host1
[...]
 Hosts the view applies to: host102.idm.example.com, host103.idm.example.com,
somehost.idm.example.com
 objectclass: ipaIDView, top, nsContainer

The output shows that ID view is now applied to somehost.idm.example.com, the newly-added
host in the baltimore host group.

CHAPTER 37. USING ID VIEWS FOR ACTIVE DIRECTORY USERS

329

CHAPTER 38. ADJUSTING ID RANGES MANUALLY
An IdM server generates unique user ID (UID) and group ID (GID) numbers. By creating and assigning
different ID ranges to replicas, it also ensures that they never generate the same ID numbers. By default,
this process is automatic. However, you can manually adjust the IdM ID range during the IdM server
installation, or manually define a replica’s DNA ID range.

38.1. ID RANGES

ID numbers are divided into ID ranges. Keeping separate numeric ranges for individual servers and
replicas eliminates the chance that an ID number issued for an entry is already used by another entry on
another server or replica.

Note that there are two distinct types of ID ranges:

The IdM ID range, which is assigned during the installation of the first server. This range cannot
be modified after it is created. However, you can create a new IdM ID range in addition to the
original one. For more information, see Automatic ID ranges assignment and Adding a new IdM
ID range.

The Distributed Numeric Assignment (DNA) ID ranges, which can be modified by the user.
These have to fit within an existing IdM ID range. For more information, see Assigning DNA ID
ranges manually.
Replicas can also have a next DNA ID range assigned. A replica uses its next range when it runs
out of IDs in its current range. Next ranges are not assigned automatically when a replica is
deleted and you must assign them manually .

The ranges are updated and shared between the server and replicas by the DNA plug-in, as part of the
back end 389 Directory Server instance for the domain.

The DNA range definition is set by two attributes:

The server’s next available number: the low end of the DNA range

The range size: the number of ID’s in the DNA range

The initial bottom range is set during the plug-in instance configuration. After that, the plug-in updates
the bottom value. Breaking the available numbers into ranges allows the servers to continually assign
numbers without overlapping with each other.

38.2. AUTOMATIC ID RANGES ASSIGNMENT

IdM ID ranges

By default, an IdM ID range is automatically assigned during the IdM server installation. The ipa-server-
install command randomly selects and assigns a range of 200,000 IDs from a total of 10,000 possible
ranges. Selecting a random range in this way significantly reduces the probability of conflicting IDs in
case you decide to merge two separate IdM domains in the future.

NOTE

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

330

NOTE

This IdM ID range cannot be modified after it is created. You can only manually adjust the
Distributed Numeric Assignment (DNA) ID ranges, using the commands described in
Assigning DNA ID ranges manually . A DNA range matching the IdM ID range is
automatically created during installation.

DNA ID ranges

If you have a single IdM server installed, it controls the whole DNA ID range. When you install a new
replica and the replica requests its own DNA ID range, the initial ID range for the server splits and is
distributed between the server and replica: the replica receives half of the remaining DNA ID range that
is available on the initial server. The server and replica then use their respective portions of the original
ID range for new user or group entries. Also, if the replica is close to depleting its allocated ID range and
fewer than 100 IDs remain, the replica contacts the other available servers to request a new DNA ID
range.

IMPORTANT

When you install a replica, it does not immediately receive an ID range. A replica receives
an ID range the first time the DNA plug-in is used, for example when you first add a user.

If the initial server stops functioning before the replica requests a DNA ID range from it, the replica is
unable to contact the server to request the ID range. Attempting to add a new user on the replica then
fails. In such situations, you can find out what ID range is assigned to the disabled server , and assign an
ID range to the replica manually.

38.3. ASSIGNING THE IDM ID RANGE MANUALLY DURING SERVER
INSTALLATION

You can override the default behavior and set an IdM ID range manually instead of having it assigned
randomly.

IMPORTANT

Do not set ID ranges that include UID values of 1000 and lower; these values are reserved
for system use. Also, do not set an ID range that would include the 0 value; the SSSD
service does not handle the 0 ID value.

Procedure

You can define the IdM ID range manually during server installation by using the following two
options with ipa-server-install:

--idstart gives the starting value for UID and GID numbers.

--idmax gives the maximum UID and GID number; by default, the value is the --idstart
starting value plus 199,999.

Verification

To check if the ID range was assigned correctly, you can display the assigned IdM ID range by
using the ipa idrange-find command:

CHAPTER 38. ADJUSTING ID RANGES MANUALLY

331

ipa idrange-find

1 range matched

 Range name: IDM.EXAMPLE.COM_id_range
 First Posix ID of the range: 882200000
 Number of IDs in the range: 200000
 Range type: local domain range

Number of entries returned 1

38.4. ADDING A NEW IDM ID RANGE

In some cases, you may want to create a new IdM ID range in addition to the original one; for example,
when a replica has run out of IDs and the original IdM ID range is depleted.

IMPORTANT

Adding a new IdM ID range does not create new DNA ID ranges automatically. You must
assign new DNA ID ranges to replicas manually as needed. For more information about
how to do this, see assigning DNA ID ranges manually .

Procedure

1. To create a new IdM ID range, use the ipa idrange-add command. You must specify the new
range name, the first ID number of the range, the range size, and the first RID number of the
primary and secondary RID range:

ipa idrange-add IDM.EXAMPLE.COM_new_range --base-id 5000 --range-size 1000 --
rid-base 300000 --secondary-rid-base 1300000 --type ipa-local

ipa: WARNING: Service dirsrv@IDM-EXAMPLE-COM.service requires restart on IPA server
<all IPA servers> to apply configuration changes.
--
Added ID range "IDM.EXAMPLE.COM_new_range"
--
 Range name: IDM.EXAMPLE.COM_new_range
 First Posix ID of the range: 5000
 Number of IDs in the range: 1000
 First RID of the corresponding RID range: 300000
 First RID of the secondary RID range: 1300000
 Range type: local domain range

2. Restart the Directory Server service on all IdM servers in the deployment:

systemctl restart dirsrv@IDM-EXAMPLE-COM.service

This ensures that when you create users with UIDs from the new range, they have security
identifiers (SIDs) assigned.

3. Optional: Update the ID range immediately:

a. Clear the System Security Services Daemon (SSSD) cache:

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

332

sss_cache -E

b. Restart the SSSD daemon:

systemctl restart sssd

NOTE

If you do not clear the SSSD cache and restart the service, SSSD only detects the
new ID range when it updates the domain list and other configuration data stored
on the IdM server.

Verification

You can check if the new range is set correctly by using the ipa idrange-find command:

ipa idrange-find

2 ranges matched

 Range name: IDM.EXAMPLE.COM_id_range
 First Posix ID of the range: 882200000
 Number of IDs in the range: 200000
 Range type: local domain range

 Range name: IDM.EXAMPLE.COM_new_range
 First Posix ID of the range: 5000
 Number of IDs in the range: 1000
 First RID of the corresponding RID range: 300000
 First RID of the secondary RID range: 1300000
 Range type: local domain range

Number of entries returned 2

38.5. THE ROLE OF SECURITY AND RELATIVE IDENTIFIERS IN IDM ID
RANGES

An Identity Management (IdM) ID range is defined by several parameters:

The range name

The first POSIX ID of the range

The range size: the number of IDs in the range

The first relative identifier (RID) of the corresponding RID range

The first RID of the secondary RID range

You can view these values by using the ipa idrange-show command:

$ ipa idrange-show IDM.EXAMPLE.COM_id_range

CHAPTER 38. ADJUSTING ID RANGES MANUALLY

333

 Range name: IDM.EXAMPLE.COM_id_range
 First Posix ID of the range: 196600000
 Number of IDs in the range: 200000
 First RID of the corresponding RID range: 1000
 First RID of the secondary RID range: 1000000
 Range type: local domain range

Security identifiers

The data from the ID ranges of the local domain are used by the IdM server internally to assign unique
security identifiers (SIDs) to IdM users and groups. The SIDs are stored in the user and group objects.
A user’s SID consists of the following:

The domain SID

The user’s relative identifier (RID), which is a four-digit 32-bit value appended to the domain
SID

For example, if the domain SID is S-1-5-21-123-456-789 and the RID of a user from this domain is 1008,
then the user has the SID of S-1-5-21-123-456-789-1008.

Relative identifiers

The RID itself is computed in the following way:

Subtract the first POSIX ID of the range from the user’s POSIX UID, and add the first RID of the
corresponding RID range to the result. For example, if the UID of idmuser is 196600008, the first POSIX
ID is 196600000, and the first RID is 1000, then idmuser's RID is 1008.

NOTE

The algorithm computing the user’s RID checks if a given POSIX ID falls into the ID range
allocated before it computes a corresponding RID. For example, if the first ID is
196600000 and the range size is 200000, then the POSIX ID of 1600000 is outside of
the ID range and the algorithm does not compute a RID for it.

Secondary relative identifiers

In IdM, a POSIX UID can be identical to a POSIX GID. This means that if idmuser already exists with the
UID of 196600008, you can still create a new idmgroup group with the GID of 196600008.

However, a SID can define only one object, a user or a group. The SID of S-1-5-21-123-456-789-1008
that has already been created for idmuser cannot be shared with idmgroup. An alternative SID must be
generated for idmgroup.

IdM uses a secondary relative identifier, or secondary RID, to avoid conflicting SIDs. This secondary
RID consists of the following:

The secondary RID base

A range size; by default identical with the base range size

In the example above, the secondary RID base is set to 1000000. To compute the RID for the newly
created idmgroup: subtract the first POSIX ID of the range from the user’s POSIX UID, and add the first
RID of the secondary RID range to the result. idmgroup is therefore assigned the RID of 1000008.
Consequently, the SID of idmgroup is S-1-5-21-123-456-789-1000008.

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

334

IdM uses the secondary RID to compute a SID only if a user or a group object was previously created
with a manually set POSIX ID. Otherwise, automatic assignment prevents assigning the same ID twice.

Additional resources

Using Ansible to add a new local IdM ID range

38.6. USING ANSIBLE TO ADD A NEW LOCAL IDM ID RANGE

In some cases, you may want to create a new Identity Management (IdM) ID range in addition to the
original one; for example, when a replica has run out of IDs and the original IdM ID range is depleted. The
following example describes how to create a new IdM ID range by using an Ansible playbook.

NOTE

Adding a new IdM ID range does not create new DNA ID ranges automatically. You need
to assign new DNA ID ranges manually as needed. For more information about how to do
this, see Assigning DNA ID ranges manually .

Prerequisites

You know the IdM admin password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

Procedure

1. Navigate to your ~/MyPlaybooks/ directory:

$ cd ~/MyPlaybooks/

2. Create the idrange-present.yml playbook with the following content:

- name: Playbook to manage idrange
 hosts: ipaserver
 become: no

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Ensure local idrange is present
 ipaidrange:

CHAPTER 38. ADJUSTING ID RANGES MANUALLY

335

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

 ipaadmin_password: "{{ ipaadmin_password }}"
 name: new_id_range
 base_id: 12000000
 range_size: 200000
 rid_base: 1000000
 secondary_rid_base: 200000000

3. Save the file.

4. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i inventory idrange-
present.yml

5. SSH to ipaserver and restart the Directory Server:

systemctl restart dirsrv@IDM.EXAMPLE.COM.service

This ensures that when you create users with UIDs from the new range, they have security
identifiers (SIDs) assigned.

6. Optional: Update the ID range immediately:

a. On ipaserver, clear the System Security Services Daemon (SSSD) cache:

sss_cache -E

b. On ipaserver, restart the SSSD daemon:

systemctl restart sssd

NOTE

If you do not clear the SSSD cache and restart the service, SSSD only detects the
new ID range when it updates the domain list and other configuration data stored
on the IdM server.

Verification

You can check if the new range is set correctly by using the ipa idrange-find command:

ipa idrange-find

2 ranges matched

 Range name: IDM.EXAMPLE.COM_id_range
 First Posix ID of the range: 882200000
 Number of IDs in the range: 200000
 Range type: local domain range

 Range name: IDM.EXAMPLE.COM_new_id_range
 First Posix ID of the range: 12000000
 Number of IDs in the range: 200000

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

336

 Range type: local domain range

Number of entries returned 2

Additional resources

The role of security and relative identifiers in IdM ID ranges

38.7. REMOVING AN ID RANGE AFTER REMOVING A TRUST TO AD

If you have removed a trust between your IdM and Active Directory (AD) environments, you might want
to remove the ID range associated with it.

WARNING

IDs allocated to ID ranges associated with trusted domains might still be used for
ownership of files and directories on systems enrolled into IdM.

If you remove the ID range that corresponds to an AD trust that you have removed,
you will not be able to resolve the ownership of any files and directories owned by
AD users.

Prerequisites

You have removed a trust to an AD environment.

Procedure

1. Display all the ID ranges that are currently in use:

[root@server ~]# ipa idrange-find

2. Identify the name of the ID range associated with the trust you have removed. The first part of
the name of the ID range is the name of the trust, for example AD.EXAMPLE.COM_id_range.

3. Remove the range:

[root@server ~]# ipa idrange-del AD.EXAMPLE.COM_id_range

4. Restart the SSSD service to remove references to the ID range you have removed.

[root@server ~]# systemctl restart sssd

Additional resources

See Removing the trust using the command line .

CHAPTER 38. ADJUSTING ID RANGES MANUALLY

337

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-trust-between-idm-and-ad_installing-identity-management#proc_removing-the-trust-using-the-command-line_installing-trust-between-idm-and-ad

See Removing the trust using the IdM Web UI .

38.8. DISPLAYING CURRENTLY ASSIGNED DNA ID RANGES

You can display both the currently active Distributed Numeric Assignment (DNA) ID range on a server,
as well as its next DNA range if it has one assigned.

Procedure

To display which DNA ID ranges are configured for the servers in the topology, use the following
commands:

ipa-replica-manage dnarange-show displays the current DNA ID range that is set on all
servers or, if you specify a server, only on the specified server, for example:

ipa-replica-manage dnarange-show
serverA.example.com: 1001-1500
serverB.example.com: 1501-2000
serverC.example.com: No range set

ipa-replica-manage dnarange-show serverA.example.com
serverA.example.com: 1001-1500

ipa-replica-manage dnanextrange-show displays the next DNA ID range currently set on
all servers or, if you specify a server, only on the specified server, for example:

ipa-replica-manage dnanextrange-show
serverA.example.com: 2001-2500
serverB.example.com: No on-deck range set
serverC.example.com: No on-deck range set

ipa-replica-manage dnanextrange-show serverA.example.com
serverA.example.com: 2001-2500

38.9. MANUAL ID RANGE ASSIGNMENT

In certain situations, it is necessary to manually assign a Distributed Numeric Assignment (DNA) ID
range, for example when:

A replica has run out of IDs and the IdM ID range is depleted
A replica has exhausted the DNA ID range that was assigned to it, and requesting additional IDs
failed because no more free IDs are available in the IdM range.

To solve this situation, extend the DNA ID range assigned to the replica. You can do this in two
ways:

Shorten the DNA ID range assigned to a different replica, then assign the newly available
values to the depleted replica.

Create a new IdM ID range, then set a new DNA ID range for the replica within this created
IdM range.
For information about how to create a new IdM ID range, see Adding a new IdM ID range .

A replica stopped functioning

A replica’s DNA ID range is not automatically retrieved when the replica stops functioning and

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

338

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-trust-between-idm-and-ad_installing-identity-management#removing-the-trust-using-the-idm-web-ui_installing-trust-between-idm-and-ad

A replica’s DNA ID range is not automatically retrieved when the replica stops functioning and
must be deleted, which means the DNA ID range previously assigned to the replica becomes
unavailable. You want to recover the DNA ID range and make it available for other replicas.

To do this, find out what the ID range values are , before manually assigning that range to a
different server. Also, to avoid duplicate UIDs or GIDs, make sure that no ID value from the
recovered range was previously assigned to a user or group; you can do this by examining the
UIDs and GIDs of existing users and groups.

You can manually assign a DNA ID range to a replica using the commands in Assigning DNA ID ranges
manually.

NOTE

If you assign a new DNA ID range, the UIDs of the already existing entries on the server or
replica stay the same. This does not pose a problem because even if you change the
current DNA ID range, IdM keeps a record of what ranges were assigned in the past.

38.10. ASSIGNING DNA ID RANGES MANUALLY

In some cases, you may need to manually assign Distributed Numeric Assignment (DNA) ID ranges to
existing replicas, for example to reassign a DNA ID range assigned to a non-functioning replica. For
more information, see Manual ID range assignment .

When adjusting a DNA ID range manually, make sure that the newly adjusted range is included in the IdM
ID range; you can check this using the ipa idrange-find command. Otherwise, the command fails.

IMPORTANT

Be careful not to create overlapping ID ranges. If any of the ID ranges you assign to
servers or replicas overlap, it could result in two different servers assigning the same ID
value to different entries.

Prerequisites

Optional. If you are recovering a DNA ID range from a non-functioning replica, first find the ID
range using the commands described in Displaying currently assigned DNA ID ranges .

Procedure

To define the current DNA ID range for a specified server, use ipa-replica-manage dnarange-
set:

ipa-replica-manage dnarange-set serverA.example.com 1250-1499

To define the next DNA ID range for a specified server, use ipa-replica-manage
dnanextrange-set:

ipa-replica-manage dnanextrange-set serverB.example.com 1500-5000

Verification

You can check that the new DNA ranges are set correctly by using the commands described in
Displaying the currently assigned DNA ID ranges .

CHAPTER 38. ADJUSTING ID RANGES MANUALLY

339

CHAPTER 39. MANAGING SUBID RANGES MANUALLY
In a containerized environment, sometimes an IdM user needs to assign subID ranges manually. The
following instructions describe how to manage the subID ranges.

39.1. GENERATING SUBID RANGES USING IDM CLI

As an Identity Management (IdM) administrator, you can generate a subID range and assign it to IdM
users.

Prerequisites

The IdM users exist.

You have obtained an IdM admin ticket-granting ticket (TGT). See Using kinit to log in to IdM
manually for more details.

You have root access to the IdM host where you are executing the procedure.

Procedure

1. Optional: Check for existing subID ranges:

ipa subid-find

2. If a subID range does not exist, select one of the following options:

Generate and assign a subID range to an IdM user:

ipa subid-generate --owner=idmuser

Added subordinate id "359dfcef-6b76-4911-bd37-bb5b66b8c418"

 Unique ID: 359dfcef-6b76-4911-bd37-bb5b66b8c418
 Description: auto-assigned subid
 Owner: idmuser
 SubUID range start: 2147483648
 SubUID range size: 65536
 SubGID range start: 2147483648
 SubGID range size: 65536

Generate and assign subID ranges to all IdM users:

/usr/libexec/ipa/ipa-subids --all-users

Found 2 user(s) without subordinate ids
 Processing user 'user4' (1/2)
 Processing user 'user5' (2/2)
Updated 2 user(s)
The ipa-subids command was successful

3. Optional: Assign subID ranges to new IdM users by default:

ipa config-mod --user-default-subid=True

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

340

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/logging-in-to-ipa-from-the-command-line_configuring-and-managing-idm#using-kinit-to-log-in-to-ipa_logging-in-to-ipa-from-the-command-line

Verification

Verify that the user has a subID range assigned:

ipa subid-find --owner=idmuser

1 subordinate id matched

 Unique ID: 359dfcef-6b76-4911-bd37-bb5b66b8c418
 Owner: idmuser
 SubUID range start: 2147483648
 SubUID range size: 65536
 SubGID range start: 2147483648
 SubGID range size: 65536

Number of entries returned 1

39.2. GENERATING SUBID RANGES USING IDM WEBUI INTERFACE

As an Identity Management (IdM) administrator, you can generate a subID range and assign it to a user
in the IdM WebUI interface.

Prerequisites

The IdM user exists.

You have obtained an IdM admin Kerberos ticket (TGT). See Logging in to IdM in the Web UI:
Using a Kerberos ticket for more details.

You have root access to the IdM host where you are executing the procedure.

Procedure

1. In the IdM WebUI interface expand the Subordinate IDs tab and choose the Subordinate IDs
option.

2. When the Subordinate IDs interface appears, click the Add button in the upper-right corner of
the interface. The Add subid window appears.

3. In the Add subid window choose an owner, that is the user to whom you want to assign a subID
range.

4. Click the Add button.

Verification

View the table under the Subordinate IDs tab. A new record shows in the table. The owner is
the user to whom you assigned the subID range.

39.3. VIEWING SUBID INFORMATION ABOUT IDM USERS BY USING
IDM CLI

As an Identity Management (IdM) user, you can search for IdM user subID ranges and view the related

CHAPTER 39. MANAGING SUBID RANGES MANUALLY

341

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/logging-in-to-ipa-in-the-web-ui-using-a-kerberos-ticket_configuring-and-managing-idm

As an Identity Management (IdM) user, you can search for IdM user subID ranges and view the related
information.

Prerequisites

You have configured a subID range on the IdM client .

You have obtained an IdM user ticket-granting ticket (TGT). See Using kinit to log in to IdM
manually for more details.

Procedure

To view the details about a subID range:

If you know the unique ID hash of the Identity Management (IdM) user that is the owner of
the range:

$ ipa subid-show 359dfcef-6b76-4911-bd37-bb5b66b8c418

 Unique ID: 359dfcef-6b76-4911-bd37-bb5b66b8c418
 Owner: idmuser
 SubUID range start: 2147483648
 SubUID range size: 65536
 SubGID range start: 2147483648
 SubGID range size: 65536

If you know a specific subID from that range:

$ ipa subid-match --subuid=2147483670

1 subordinate id matched

 Unique ID: 359dfcef-6b76-4911-bd37-bb5b66b8c418
 Owner: uid=idmuser
 SubUID range start: 2147483648
 SubUID range size: 65536
 SubGID range start: 2147483648
 SubGID range size: 65536

Number of entries returned 1

39.4. LISTING SUBID RANGES USING THE GETSUBID COMMAND

As a system administrator, you can use the command-line interface to list the subID ranges of
Identity Management (IdM) or local users.

Prerequisites

The idmuser user exists in IdM.

The shadow-utils-subid package is installed.

You can edit the /etc/nsswitch.conf file.

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

342

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/logging-in-to-ipa-from-the-command-line_configuring-and-managing-idm#using-kinit-to-log-in-to-ipa_logging-in-to-ipa-from-the-command-line

Procedure

1. Open the /etc/nsswitch.conf file and configure the shadow-utils utility to use IdM subID
ranges by setting the subid variable to the sss value:

[...]
subid: sss

NOTE

You can provide only one value for the subid field. Setting the subid field to the
file value or no value instead of sss configures the shadow-utils utility to use
the subID ranges from the /etc/subuid and /etc/subgid files.

2. List the subID range for an IdM user:

$ getsubids idmuser
0: idmuser 2147483648 65536

The first value, 2147483648, indicates the subID range start. The second value, 65536,
indicates the size of the range.

CHAPTER 39. MANAGING SUBID RANGES MANUALLY

343

CHAPTER 40. MANAGING HOSTS IN IDM CLI
This chapter introduces hosts and host entries in Identity Management (IdM), and the following
operations performed when managing hosts and host entries in IdM CLI:

Host Enrollment

Adding IdM host entries

Deleting IdM host entries

Re-enrolling hosts

Renaming hosts

Disabling hosts

Re-enabling hosts

Delegating access to hosts and services

The chapter also contains an overview table of the prerequisites, the context, and the consequences of
these operations.

40.1. HOSTS IN IDM

Identity Management (IdM) manages these identities:

Users

Services

Hosts

A host represents a machine. As an IdM identity, a host has an entry in the IdM LDAP, that is the 389
Directory Server instance of the IdM server.

The host entry in IdM LDAP is used to establish relationships between other hosts and even services
within the domain. These relationships are part of delegating authorization and control to hosts within
the domain. Any host can be used in host-based access control (HBAC) rules.

IdM domain establishes a commonality between machines, with common identity information, common
policies, and shared services. Any machine that belongs to a domain functions as a client of the domain,
which means it uses the services that the domain provides. IdM domain provides three main services
specifically for machines:

DNS

Kerberos

Certificate management

Hosts in IdM are closely connected with the services running on them:

Service entries are associated with a host.

A host stores both the host and the service Kerberos principals.

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

344

40.2. HOST ENROLLMENT

This section describes enrolling hosts as IdM clients and what happens during and after the enrollment.
The section compares the enrollment of IdM hosts and IdM users. The section also outlines alternative
types of authentication available to hosts.

Enrolling a host consists of:

Creating a host entry in IdM LDAP: possibly using the ipa host-add command in IdM CLI, or the
equivalent IdM Web UI operation .

Configuring IdM services on the host, for example the System Security Services Daemon
(SSSD), Kerberos, and certmonger, and joining the host to the IdM domain.

The two actions can be performed separately or together.

If performed separately, they allow for dividing the two tasks between two users with different levels of
privilege. This is useful for bulk deployments.

The ipa-client-install command can perform the two actions together. The command creates a host
entry in IdM LDAP if that entry does not exist yet, and configures both the Kerberos and SSSD services
for the host. The command brings the host within the IdM domain and allows it to identify the IdM server
it will connect to. If the host belongs to a DNS zone managed by IdM, ipa-client-install adds DNS
records for the host too. The command must be run on the client.

40.3. USER PRIVILEGES REQUIRED FOR HOST ENROLLMENT

The host enrollment operation requires authentication to prevent an unprivileged user from adding
unwanted machines to the IdM domain. The privileges required depend on several factors, for example:

If a host entry is created separately from running ipa-client-install

If a one-time password (OTP) is used for enrollment

User privileges for optionally manually creating a host entry in IdM LDAP

The user privilege required for creating a host entry in IdM LDAP using the ipa host-add CLI command
or the IdM Web UI is Host Administrators. The Host Administrators privilege can be obtained through
the IT Specialist role.

User privileges for joining the client to the IdM domain

Hosts are configured as IdM clients during the execution of the ipa-client-install command. The level of
credentials required for executing the ipa-client-install command depends on which of the following
enrolling scenarios you find yourself in:

The host entry in IdM LDAP does not exist. For this scenario, you need a full administrator’s
credentials or the Host Administrators role. A full administrator is a member of the admins
group. The Host Administrators role provides privileges to add hosts and enroll hosts. For
details about this scenario, see Installing a client using user credentials: interactive installation .

The host entry in IdM LDAP exists. For this scenario, you need a limited administrator’s
credentials to execute ipa-client-install successfully. The limited administrator in this case has
the Enrollment Administrator role, which provides the Host Enrollment privilege. For details,
Installing a client using user credentials: interactive installation .

The host entry in IdM LDAP exists, and an OTP has been generated for the host by a full or

CHAPTER 40. MANAGING HOSTS IN IDM CLI

345

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/managing-hosts-cli_configuring-and-managing-idm#adding-host-entry-cmd_managing-hosts-cli
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/adding-hosts-ui_configuring-and-managing-idm#adding-host-entry-ui_managing-hosts-ui
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/assembly_installing-an-idm-client_installing-identity-management#proc_installing-a-client-by-using-user-credentials-interactive-installation_assembly_installing-an-idm-client
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/assembly_installing-an-idm-client_installing-identity-management#proc_installing-a-client-by-using-user-credentials-interactive-installation_assembly_installing-an-idm-client

limited administrator. For this scenario, you can install an IdM client as an ordinary user if you run
the ipa-client-install command with the --password option, supplying the correct OTP. For
details, see Installing a client by using a one-time password: Interactive installation .

After enrollment, IdM hosts authenticate every new session to be able to access IdM resources. Machine
authentication is required for the IdM server to trust the machine and to accept IdM connections from
the client software installed on that machine. After authenticating the client, the IdM server can respond
to its requests.

40.4. ENROLLMENT AND AUTHENTICATION OF IDM HOSTS AND
USERS: COMPARISON

There are many similarities between users and hosts in IdM, some of which can be observed during the
enrollment stage as well as those that concern authentication during the deployment stage.

The enrollment stage (User and host enrollment):

An administrator can create an LDAP entry for both a user and a host before the user or
host actually join IdM: for the stage user, the command is ipa stageuser-add; for the host,
the command is ipa host-add.

A file containing a key table or, abbreviated, keytab, a symmetric key resembling to some
extent a user password, is created during the execution of the ipa-client-install command
on the host, resulting in the host joining the IdM realm. Analogically, a user is asked to create
a password when they activate their account, therefore joining the IdM realm.

While the user password is the default authentication method for a user, the keytab is the
default authentication method for a host. The keytab is stored in a file on the host.

Table 40.1. User and host enrollment

Action User Host

Pre-enrollment $ ipa stageuser-add user_name [-
-password]

$ ipa host-add host_name [--
random]

Activating the
account

$ ipa stageuser-activate
user_name

$ ipa-client install [--password]
(must be run on the host itself)

The deployment stage (User and host session authentication):

When a user starts a new session, the user authenticates using a password; similarly, every
time it is switched on, the host authenticates by presenting its keytab file. The System
Security Services Daemon (SSSD) manages this process in the background.

If the authentication is successful, the user or host obtains a Kerberos ticket granting ticket
(TGT).

The TGT is then used to obtain specific tickets for specific services.

Table 40.2. User and host session authentication

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

346

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/assembly_installing-an-idm-client_installing-identity-management#proc_installing-a-client-by-using-a-one-time-password-interactive-installation_assembly_installing-an-idm-client

 User Host

Default means of
authentication

Password Keytabs

Starting a session
(ordinary user)

$ kinit user_name [switch on the host]

The result of
successful
authentication

TGT to be used to obtain access to
specific services

TGT to be used to obtain access to
specific services

TGTs and other Kerberos tickets are generated as part of the Kerberos services and policies defined by
the server. The initial granting of a Kerberos ticket, the renewing of the Kerberos credentials, and even
the destroying of the Kerberos session are all handled automatically by the IdM services.

Alternative authentication options for IdM hosts

Apart from keytabs, IdM supports two other types of machine authentication:

SSH keys. The SSH public key for the host is created and uploaded to the host entry. From
there, the System Security Services Daemon (SSSD) uses IdM as an identity provider and can
work in conjunction with OpenSSH and other services to reference the public keys located
centrally in IdM.

Machine certificates. In this case, the machine uses an SSL certificate that is issued by the IdM
server’s certificate authority and then stored in IdM’s Directory Server. The certificate is then
sent to the machine to present when it authenticates to the server. On the client, certificates are
managed by a service called certmonger.

40.5. HOST OPERATIONS

The most common operations related to host enrollment and enablement, and the prerequisites, the
context, and the consequences of performing those operations are outlined in the following sections.

Table 40.3. Host operations part 1

Action What are the
prerequisites
of the action?

When does it
make sense to
run the
command?

How is the action performed by a system
administrator? What command(s) does he run?

CHAPTER 40. MANAGING HOSTS IN IDM CLI

347

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_certificates_in_idm/using-certmonger_working-with-idm-certificates#certmonger_certmonger-for-issuing-renewing-service-certs

Enrolling a
client

see Preparing
the system for
Identity
Management
client
installation in
Installing
Identity Manage
ment

When you
want the host
to join the IdM
realm.

Enrolling machines as clients in the IdM domain is a
two-part process. A host entry is created for the
client (and stored in the 389 Directory Server
instance) when the ipa host-add command is run,
and then a keytab is created to provision the client.
Both parts are performed automatically by the ipa-
client-install command. It is also possible to
perform those steps separately; this allows for
administrators to prepare machines and IdM in
advance of actually configuring the clients. This
allows more flexible setup scenarios, including bulk
deployments.

Disabling a
client

The host must
have an entry
in IdM. The
host needs to
have an active
keytab.

When you
want to
remove the
host from the
IdM realm
temporarily,
perhaps for
maintenance
purposes.

ipa host-disable host_name

Enabling a
client

The host must
have an entry
in IdM.

When you
want the
temporarily
disabled host
to become
active again.

ipa-getkeytab

Re-enrolling
a client

The host must
have en entry
in IdM.

When the
original host
has been lost
but you have
installed a host
with the same
host name.

ipa-client-install --keytab or ipa-client-install
--force-join

Un-enrolling
a client

The host must
have an entry
in IdM.

When you
want to
remove the
host from the
IdM realm
permanently.

ipa-client-install --uninstall

Action What are the
prerequisites
of the action?

When does it
make sense to
run the
command?

How is the action performed by a system
administrator? What command(s) does he run?

Table 40.4. Host operations part 2

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

348

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/preparing-the-system-for-ipa-client-installation_installing-identity-management

Action On which machine
can the
administrator run
the command(s)?

What happens when the action is performed? What are the
consequences for the host’s functioning in IdM? What
limitations are introduced/removed?

Enrolling a
client

In the case of a
two-step
enrollment: ipa
host-add can be
run on any IdM
client; the second
step of ipa-
client-install
must be run on the
client itself

By default this configures SSSD to connect to an IdM server for
authentication and authorization. Optionally one can instead
configure the Pluggable Authentication Module (PAM) and the
Name Switching Service (NSS) to work with an IdM server over
Kerberos and LDAP.

Disabling a
client

Any machine in
IdM, even the host
itself

The host’s Kerberos key and SSL certificate are invalidated, and
all services running on the host are disabled.

Enabling a
client

Any machine in
IdM. If run on the
disabled host,
LDAP credentials
need to be
supplied.

The host’s Kerberos key and the SSL certificate are made valid
again, and all IdM services running on the host are re-enabled.

Re-enrolling a
client

The host to be re-
enrolled. LDAP
credentials need
to be supplied.

A new Kerberos key is generated for the host, replacing the
previous one.

Un-enrolling a
client

The host to be un-
enrolled.

The command unconfigures IdM and attempts to return the
machine to its previous state. Part of this process is to unenroll
the host from the IdM server. Unenrollment consists of disabling
the principal key on the IdM server. The machine principal in
/etc/krb5.keytab (host/<fqdn>@REALM) is used to
authenticate to the IdM server to unenroll itself. If this principal
does not exist then unenrollment will fail and an administrator
will need to disable the host principal (ipa host-disable
<fqdn>).

40.6. HOST ENTRY IN IDM LDAP

An Identity Management (IdM) host entry contains information about the host and what attributes it can
contain.

An LDAP host entry contains all relevant information about the client within IdM:

Service entries associated with the host

The host and service principal

CHAPTER 40. MANAGING HOSTS IN IDM CLI

349

Access control rules

Machine information, such as its physical location and operating system

NOTE

Note that the IdM Web UI Identity → Hosts tab does not show all the information about a
particular host stored in the IdM LDAP.

Host entry configuration properties

A host entry can contain information about the host that is outside its system configuration, such as its
physical location, MAC address, keys, and certificates.

This information can be set when the host entry is created if it is created manually. Alternatively, most of
this information can be added to the host entry after the host is enrolled in the domain.

Table 40.5. Host Configuration Properties

UI Field Command-Line Option Description

Description --desc=description A description of the host.

Locality --locality=locality The geographic location of the
host.

Location --location=location The physical location of the host,
such as its data center rack.

Platform --platform=string The host hardware or
architecture.

Operating system --os=string The operating system and version
for the host.

MAC address --macaddress=address The MAC address for the host.
This is a multi-valued attribute.
The MAC address is used by the
NIS plug-in to create a NIS
ethers map for the host.

SSH public keys --sshpubkey=string The full SSH public key for the
host. This is a multi-valued
attribute, so multiple keys can be
set.

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

350

Principal name (not editable) --principalname=principal The Kerberos principal name for
the host. This defaults to the host
name during the client
installation, unless a different
principal is explicitly set in the -p.
This can be changed using the
command-line tools, but cannot
be changed in the UI.

Set One-Time Password --password=string This option sets a password for
the host which can be used in bulk
enrollment.

- --random This option generates a random
password to be used in bulk
enrollment.

- --certificate=string A certificate blob for the host.

- --updatedns This sets whether the host can
dynamically update its DNS
entries if its IP address changes.

UI Field Command-Line Option Description

40.7. ADDING IDM HOST ENTRIES FROM IDM CLI

Follow this procedure to add host entries in Identity Management (IdM) using the command-line
interface (CLI).

Host entries are created using the host-add command. This commands adds the host entry to the IdM
Directory Server. Consult the ipa host manpage by typing ipa help host in your CLI to get the full list of
options available with host-add.

There are a few different scenarios when adding a host to IdM:

At its most basic, specify only the client host name to add the client to the Kerberos realm and
to create an entry in the IdM LDAP server:

$ ipa host-add client1.example.com

If the IdM server is configured to manage DNS, add the host to the DNS resource records using
the --ip-address option.

Example 40.1. Creating Host Entries with Static IP Addresses

$ ipa host-add --ip-address=192.168.166.31 client1.example.com

If the host to be added does not have a static IP address or if the IP address is not known at the

CHAPTER 40. MANAGING HOSTS IN IDM CLI

351

If the host to be added does not have a static IP address or if the IP address is not known at the
time the client is configured, use the --force option with the ipa host-add command.

Example 40.2. Creating Host Entries with DHCP

$ ipa host-add --force client1.example.com

For example, laptops may be preconfigured as IdM clients, but they do not have IP addresses at
the time they are configured. Using --force essentially creates a placeholder entry in the IdM
DNS service. When the DNS service dynamically updates its records, the host’s current IP
address is detected and its DNS record is updated.

40.8. DELETING HOST ENTRIES FROM IDM CLI

Use the host-del command to delete host records. If your IdM domain has integrated DNS, use
the --updatedns option to remove the associated records of any kind for the host from the
DNS:

$ ipa host-del --updatedns client1.example.com

40.9. RE-ENROLLING AN IDENTITY MANAGEMENT CLIENT

This section describes the different way you can re-enroll an Identity Management client.

40.9.1. Client re-enrollment in IdM

During the re-enrollment, the client generates a new Kerberos key and SSH keys, but the identity of the
client in the LDAP database remains unchanged. After the re-enrollment, the host has its keys and other
information in the same LDAP object with the same FQDN as previously, before the machine’s loss of
connection with the IdM servers.

IMPORTANT

You can only re-enroll clients whose domain entry is still active. If you uninstalled a client
(using ipa-client-install --uninstall) or disabled its host entry (using ipa host-disable),
you cannot re-enroll it.

You cannot re-enroll a client after you have renamed it. This is because in Identity Management, the key
attribute of the client’s entry in LDAP is the client’s hostname, its FQDN. As opposed to re-enrolling a
client, during which the client’s LDAP object remains unchanged, the outcome of renaming a client is
that the client has its keys and other information in a different LDAP object with a new FQDN. Therefore,
the only way to rename a client is to uninstall the host from IdM, change the host’s hostname, and install
it as an IdM client with a new name. For details on how to rename a client, see Renaming Identity
Management client systems.

What happens during client re-enrollment

During re-enrollment, Identity Management:

Revokes the original host certificate

Creates new SSH keys

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

352

Generates a new keytab

40.9.2. Re-enrolling a client by using user credentials: Interactive re-enrollment

Follow this procedure to re-enroll an Identity Management client interactively by using the credentials of
an authorized user.

1. Re-create the client machine with the same host name.

2. Run the ipa-client-install --force-join command on the client machine:

ipa-client-install --force-join

3. The script prompts for a user whose identity will be used to re-enroll the client. This could be,
for example, a hostadmin user with the Enrollment Administrator role:

User authorized to enroll computers: hostadmin
Password for hostadmin@EXAMPLE.COM:

Additional resources

See Installing a client by using user credentials: Interactive installation in Installing
Identity Management.

40.9.3. Re-enrolling a client by using the client keytab: Non-interactive re-
enrollment

You can re-enroll an Identity Management (IdM) client non-interactively by using the krb5.keytab
keytab file of the client system from the previous deployment. For example, re-enrollment using the
client keytab is appropriate for an automated installation.

Prerequisites

You have backed up the keytab of the client from the previous deployment on another system.

Procedure

1. Re-create the client machine with the same host name.

2. Copy the keytab file from the backup location to the re-created client machine, for example its
/tmp/ directory.

IMPORTANT

Do not put the keytab in the /etc/krb5.keytab file as old keys are removed from
this location during the execution of the ipa-client-install installation script.

3. Use the ipa-client-install utility to re-enroll the client. Specify the keytab location with the --
keytab option:

ipa-client-install --keytab /tmp/krb5.keytab

NOTE

CHAPTER 40. MANAGING HOSTS IN IDM CLI

353

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/assembly_installing-an-idm-client_installing-identity-management#proc_installing-a-client-by-using-user-credentials-interactive-installation_assembly_installing-an-idm-client

NOTE

The keytab specified in the --keytab option is only used when authenticating to
initiate the re-enrollment. During the re-enrollment, IdM generates a new keytab
for the client.

40.9.4. Testing an Identity Management client after installation

The command-line interface informs you that the ipa-client-install was successful, but you can also do
your own test.

To test that the Identity Management client can obtain information about users defined on the server,
check that you are able to resolve a user defined on the server. For example, to check the default admin
user:

[user@client1 ~]$ id admin
uid=1254400000(admin) gid=1254400000(admins) groups=1254400000(admins)

To test that authentication works correctly, su - as another IdM user:

[user@client1 ~]$ su - idm_user
Last login: Thu Oct 18 18:39:11 CEST 2018 from 192.168.122.1 on pts/0
[idm_user@client1 ~]$

40.10. RENAMING IDENTITY MANAGEMENT CLIENT SYSTEMS

The following sections describe how to change the host name of an Identity Management client system.

WARNING

Renaming a client is a manual procedure. Do not perform it unless changing the host
name is absolutely required.

Renaming an Identity Management client involves:

1. Preparing the host. For details, see Preparing an IdM client for its renaming .

2. Uninstalling the IdM client from the host. For details, see Uninstalling an Identity Management
client.

3. Renaming the host. For details, see Renaming the host system.

4. Installing the IdM client on the host with the new name. For details, see Installing an Identity
Management client in Installing Identity Management..

5. Configuring the host after the IdM client installation. For details, see Re-adding services, re-
generating certificates, and re-adding host groups.

40.10.1. Preparing an IdM client for its renaming

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

354

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/assembly_installing-an-idm-client_installing-identity-management

Before uninstalling the current client, make note of certain settings for the client. You will apply this
configuration after re-enrolling the machine with a new host name.

Identify which services are running on the machine:

Use the ipa service-find command, and identify services with certificates in the output:

$ ipa service-find old-client-name.example.com

In addition, each host has a default host service which does not appear in the ipa service-
find output. The service principal for the host service, also called a host principal, is
host/old-client-name.example.com.

For all service principals displayed by ipa service-find old-client-name.example.com,
determine the location of the corresponding keytabs on the old-client-name.example.com
system:

find / -name "*.keytab"

Each service on the client system has a Kerberos principal in the form
service_name/host_name@REALM, such as ldap/old-client-
name.example.com@EXAMPLE.COM.

Identify all host groups to which the machine belongs.

ipa hostgroup-find old-client-name.example.com

40.10.2. Uninstalling an Identity Management client

Uninstalling a client removes the client from the Identity Management domain, along with all of the
specific Identity Management configuration of system services, such as System Security Services
Daemon (SSSD). This restores the previous configuration of the client system.

Procedure

1. Run the ipa-client-install --uninstall command:

[root@client]# ipa-client-install --uninstall

2. Remove the DNS entries for the client host manually from the server:

[root@server]# ipa dnsrecord-del
Record name: old-client-client
Zone name: idm.example.com
No option to delete specific record provided.
Delete all? Yes/No (default No): true

Deleted record "old-client-name"

3. For each identified keytab other than /etc/krb5.keytab, remove the old principals:

[root@client ~]# ipa-rmkeytab -k /path/to/keytab -r EXAMPLE.COM

4. On an IdM server, remove the host entry. This removes all services and revokes all certificates

CHAPTER 40. MANAGING HOSTS IN IDM CLI

355

4. On an IdM server, remove the host entry. This removes all services and revokes all certificates
issued for that host:

[root@server ~]# ipa host-del client.example.com

40.10.3. Renaming the host system

Rename the machine as required. For example:

[root@client]# hostnamectl set-hostname new-client-name.example.com

You can now re-install the Identity Management client to the Identity Management domain with the new
host name.

40.10.4. Re-adding services, re-generating certificates, and re-adding host groups

Procedure

1. On the Identity Management (IdM) server, add a new keytab for every service identified in the
Preparing an IdM client for its renaming .

[root@server ~]# ipa service-add service_name/new-client-name

2. Generate certificates for services that had a certificate assigned in the Preparing an IdM client
for its renaming. You can do this:

Using the IdM administration tools

Using the certmonger utility

3. Re-add the client to the host groups identified in the Preparing an IdM client for its renaming .

40.11. DISABLING AND RE-ENABLING HOST ENTRIES

This section describes how to disable and re-enable hosts in Identity Management (IdM).

40.11.1. Disabling Hosts

Complete this procedure to disable a host entry in IdM.

Domain services, hosts, and users can access an active host. There can be situations when it is
necessary to remove an active host temporarily, for maintenance reasons, for example. Deleting the host
in such situations is not desired as it removes the host entry and all the associated configuration
permanently. Instead, choose the option of disabling the host.

Disabling a host prevents domain users from accessing it without permanently removing it from the
domain.

Procedure

Disable a host using the host-disable command. Disabling a host kills the host’s current, active
keytabs. For example:

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

356

$ kinit admin
$ ipa host-disable client.example.com

As a result of disabling a host, the host becomes unavailable to all IdM users, hosts and services.

IMPORTANT

Disabling a host entry not only disables that host. It disables every configured service on
that host as well.

40.11.2. Re-enabling Hosts

Follow this procedure to re-enable a disabled IdM host.

Disabling a host killed its active keytabs, which removed the host from the IdM domain without otherwise
touching its configuration entry.

Procedure

To re-enable a host, use the ipa-getkeytab command, adding:

the -s option to specify which IdM server to request the keytab from

the -p option to specify the principal name

the -k option to specify the file to which to save the keytab.

For example, to request a new host keytab from server.example.com for client.example.com, and
store the keytab in the /etc/krb5.keytab file:

$ ipa-getkeytab -s server.example.com -p host/client.example.com -k /etc/krb5.keytab -D
"cn=directory manager" -w password

NOTE

You can also use the administrator’s credentials, specifying -D
"uid=admin,cn=users,cn=accounts,dc=example,dc=com". It is important that the
credentials correspond to a user allowed to create the keytab for the host.

If the ipa-getkeytab command is run on an active IdM client or server, then it can be run without any
LDAP credentials (-D and -w) if the user has a TGT obtained using, for example, kinit admin. To run the
command directly on the disabled host, supply LDAP credentials to authenticate to the IdM server.

40.12. DELEGATING ACCESS TO HOSTS AND SERVICES

By delegating access to hosts and services within an IdM domain, you can retrieve keytabs and
certificates for another host or service.

Each host and service has a managedby entry that lists what hosts and services can manage it. By
default, a host can manage itself and all of its services. You can configure a host to manage other hosts,
or services on other hosts within the IdM domain.

NOTE

CHAPTER 40. MANAGING HOSTS IN IDM CLI

357

NOTE

When you delegate authority of a host to another host through a managedby entry, it
does not automatically grant management rights for all services on that host. You must
perform each delegation independently.

Host and service delegation

40.12.1. Delegating service management

You can delegate permissions to a host to manage a service on another host within the domain.

When you delegate permissions to a host to manage another host, it does not automatically include
permissions to manage its services. You must delegate service management independently.

Procedure

1. Delegate the management of a service to a specific host by using the service-add-host
command:

ipa service-add-host principal --hosts=<hostname>

You must specify the service principal using the principal argument and the hosts with control
using the --hosts option.

For example:

[root@server ~]# ipa service-add HTTP/web.example.com
[root@server ~]# ipa service-add-host HTTP/web.example.com --hosts=client1.example.com

2. Once the host is delegated authority, the host principal can be used to manage the service:

[root@client1 ~]# kinit -kt /etc/krb5.keytab host/client1.example.com
[root@client1 ~]# ipa-getkeytab -s server.example.com -k /tmp/test.keytab -p
HTTP/web.example.com
Keytab successfully retrieved and stored in: /tmp/test.keytab

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

358

3. To generate a certificate for the delegated service, create a certificate request on the host with
the delegated authority:

[root@client1]# kinit -kt /etc/krb5.keytab host/client1.example.com
[root@client1]# openssl req -newkey rsa:2048 -subj
'/CN=web.example.com/O=EXAMPLE.COM' -keyout /etc/pki/tls/web.key -out /tmp/web.csr -
nodes
Generating a 2048 bit RSA private key
...+++
..+++
Writing new private key to '/etc/pki/tls/private/web.key'

4. Use the cert-request utility to submit the certificate request and load the certification
information:

[root@client1]# ipa cert-request --principal=HTTP/web.example.com web.csr
Certificate: MIICETCCAXqgA...[snip]
Subject: CN=web.example.com,O=EXAMPLE.COM
Issuer: CN=EXAMPLE.COM Certificate Authority
Not Before: Tue Feb 08 18:51:51 2011 UTC
Not After: Mon Feb 08 18:51:51 2016 UTC
Serial number: 1005

Additional resources

Managing certificates for users, hosts, and services using the integrated IdM CA

40.12.2. Delegating host management

You can delegate authority for a host to manage another host by using the host-add-managedby utility.
This creates a managedby entry. After the managedby entry is created, the managing host can retrieve
a keytab for the host it manages.

Procedure

1. Log in as the admin user:

[root@server ~]# kinit admin

2. Add the managedby entry. For example, this delegates authority over client2 to client1:

[root@server ~]# ipa host-add-managedby client2.example.com --
hosts=client1.example.com

3. Obtain a ticket as the host client1:

[root@client1 ~]# kinit -kt /etc/krb5.keytab host/client1.example.com

4. Retrieve a keytab for client2:

[root@client1 ~]# ipa-getkeytab -s server.example.com -k /tmp/client2.keytab -p
host/client2.example.com
Keytab successfully retrieved and stored in: /tmp/client2.keytab

CHAPTER 40. MANAGING HOSTS IN IDM CLI

359

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/managing-certificates-for-users-hosts-and-services-using-the-integrated-idm-ca_configuring-and-managing-idm#doc-wrapper

40.12.3. Accessing delegated services

When a client has delegated authority, it can obtain a keytab for the principal on the local machine for
both services and hosts.

With the kinit command, use the -k option to load a keytab and the -t option to specify the keytab. The
principal format is <principal>/hostname@REALM. For a service, replace <principal> with the service
name, for example HTTP. For a host, use host as the principal.

Procedure

To access a host:

[root@server ~]# kinit -kt /etc/krb5.keytab host/ipa.example.com@EXAMPLE.COM

To access a service:

[root@server ~]# kinit -kt /etc/httpd/conf/krb5.keytab
HTTP/ipa.example.com@EXAMPLE.COM

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

360

CHAPTER 41. ADDING HOST ENTRIES FROM IDM WEB UI
This chapter introduces hosts in Identity Management (IdM) and the operation of adding a host entry in
the IdM Web UI.

41.1. HOSTS IN IDM

Identity Management (IdM) manages these identities:

Users

Services

Hosts

A host represents a machine. As an IdM identity, a host has an entry in the IdM LDAP, that is the 389
Directory Server instance of the IdM server.

The host entry in IdM LDAP is used to establish relationships between other hosts and even services
within the domain. These relationships are part of delegating authorization and control to hosts within
the domain. Any host can be used in host-based access control (HBAC) rules.

IdM domain establishes a commonality between machines, with common identity information, common
policies, and shared services. Any machine that belongs to a domain functions as a client of the domain,
which means it uses the services that the domain provides. IdM domain provides three main services
specifically for machines:

DNS

Kerberos

Certificate management

Hosts in IdM are closely connected with the services running on them:

Service entries are associated with a host.

A host stores both the host and the service Kerberos principals.

41.2. HOST ENROLLMENT

This section describes enrolling hosts as IdM clients and what happens during and after the enrollment.
The section compares the enrollment of IdM hosts and IdM users. The section also outlines alternative
types of authentication available to hosts.

Enrolling a host consists of:

Creating a host entry in IdM LDAP: possibly using the ipa host-add command in IdM CLI, or the
equivalent IdM Web UI operation .

Configuring IdM services on the host, for example the System Security Services Daemon
(SSSD), Kerberos, and certmonger, and joining the host to the IdM domain.

The two actions can be performed separately or together.

If performed separately, they allow for dividing the two tasks between two users with different levels of

CHAPTER 41. ADDING HOST ENTRIES FROM IDM WEB UI

361

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/managing-hosts-cli_configuring-and-managing-idm#adding-host-entry-cmd_managing-hosts-cli
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/adding-hosts-ui_configuring-and-managing-idm#adding-host-entry-ui_managing-hosts-ui

If performed separately, they allow for dividing the two tasks between two users with different levels of
privilege. This is useful for bulk deployments.

The ipa-client-install command can perform the two actions together. The command creates a host
entry in IdM LDAP if that entry does not exist yet, and configures both the Kerberos and SSSD services
for the host. The command brings the host within the IdM domain and allows it to identify the IdM server
it will connect to. If the host belongs to a DNS zone managed by IdM, ipa-client-install adds DNS
records for the host too. The command must be run on the client.

41.3. USER PRIVILEGES REQUIRED FOR HOST ENROLLMENT

The host enrollment operation requires authentication to prevent an unprivileged user from adding
unwanted machines to the IdM domain. The privileges required depend on several factors, for example:

If a host entry is created separately from running ipa-client-install

If a one-time password (OTP) is used for enrollment

User privileges for optionally manually creating a host entry in IdM LDAP

The user privilege required for creating a host entry in IdM LDAP using the ipa host-add CLI command
or the IdM Web UI is Host Administrators. The Host Administrators privilege can be obtained through
the IT Specialist role.

User privileges for joining the client to the IdM domain

Hosts are configured as IdM clients during the execution of the ipa-client-install command. The level of
credentials required for executing the ipa-client-install command depends on which of the following
enrolling scenarios you find yourself in:

The host entry in IdM LDAP does not exist. For this scenario, you need a full administrator’s
credentials or the Host Administrators role. A full administrator is a member of the admins
group. The Host Administrators role provides privileges to add hosts and enroll hosts. For
details about this scenario, see Installing a client using user credentials: interactive installation .

The host entry in IdM LDAP exists. For this scenario, you need a limited administrator’s
credentials to execute ipa-client-install successfully. The limited administrator in this case has
the Enrollment Administrator role, which provides the Host Enrollment privilege. For details,
Installing a client using user credentials: interactive installation .

The host entry in IdM LDAP exists, and an OTP has been generated for the host by a full or
limited administrator. For this scenario, you can install an IdM client as an ordinary user if you run
the ipa-client-install command with the --password option, supplying the correct OTP. For
details, see Installing a client by using a one-time password: Interactive installation .

After enrollment, IdM hosts authenticate every new session to be able to access IdM resources. Machine
authentication is required for the IdM server to trust the machine and to accept IdM connections from
the client software installed on that machine. After authenticating the client, the IdM server can respond
to its requests.

41.4. ENROLLMENT AND AUTHENTICATION OF IDM HOSTS AND
USERS: COMPARISON

There are many similarities between users and hosts in IdM, some of which can be observed during the
enrollment stage as well as those that concern authentication during the deployment stage.

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

362

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/assembly_installing-an-idm-client_installing-identity-management#proc_installing-a-client-by-using-user-credentials-interactive-installation_assembly_installing-an-idm-client
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/assembly_installing-an-idm-client_installing-identity-management#proc_installing-a-client-by-using-user-credentials-interactive-installation_assembly_installing-an-idm-client
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/assembly_installing-an-idm-client_installing-identity-management#proc_installing-a-client-by-using-a-one-time-password-interactive-installation_assembly_installing-an-idm-client

The enrollment stage (User and host enrollment):

An administrator can create an LDAP entry for both a user and a host before the user or
host actually join IdM: for the stage user, the command is ipa stageuser-add; for the host,
the command is ipa host-add.

A file containing a key table or, abbreviated, keytab, a symmetric key resembling to some
extent a user password, is created during the execution of the ipa-client-install command
on the host, resulting in the host joining the IdM realm. Analogically, a user is asked to create
a password when they activate their account, therefore joining the IdM realm.

While the user password is the default authentication method for a user, the keytab is the
default authentication method for a host. The keytab is stored in a file on the host.

Table 41.1. User and host enrollment

Action User Host

Pre-enrollment $ ipa stageuser-add user_name [-
-password]

$ ipa host-add host_name [--
random]

Activating the
account

$ ipa stageuser-activate
user_name

$ ipa-client install [--password]
(must be run on the host itself)

The deployment stage (User and host session authentication):

When a user starts a new session, the user authenticates using a password; similarly, every
time it is switched on, the host authenticates by presenting its keytab file. The System
Security Services Daemon (SSSD) manages this process in the background.

If the authentication is successful, the user or host obtains a Kerberos ticket granting ticket
(TGT).

The TGT is then used to obtain specific tickets for specific services.

Table 41.2. User and host session authentication

 User Host

Default means of
authentication

Password Keytabs

Starting a session
(ordinary user)

$ kinit user_name [switch on the host]

The result of
successful
authentication

TGT to be used to obtain access to
specific services

TGT to be used to obtain access to
specific services

TGTs and other Kerberos tickets are generated as part of the Kerberos services and policies defined by
the server. The initial granting of a Kerberos ticket, the renewing of the Kerberos credentials, and even
the destroying of the Kerberos session are all handled automatically by the IdM services.

CHAPTER 41. ADDING HOST ENTRIES FROM IDM WEB UI

363

Alternative authentication options for IdM hosts

Apart from keytabs, IdM supports two other types of machine authentication:

SSH keys. The SSH public key for the host is created and uploaded to the host entry. From
there, the System Security Services Daemon (SSSD) uses IdM as an identity provider and can
work in conjunction with OpenSSH and other services to reference the public keys located
centrally in IdM.

Machine certificates. In this case, the machine uses an SSL certificate that is issued by the IdM
server’s certificate authority and then stored in IdM’s Directory Server. The certificate is then
sent to the machine to present when it authenticates to the server. On the client, certificates are
managed by a service called certmonger.

41.5. HOST ENTRY IN IDM LDAP

An Identity Management (IdM) host entry contains information about the host and what attributes it can
contain.

An LDAP host entry contains all relevant information about the client within IdM:

Service entries associated with the host

The host and service principal

Access control rules

Machine information, such as its physical location and operating system

NOTE

Note that the IdM Web UI Identity → Hosts tab does not show all the information about a
particular host stored in the IdM LDAP.

Host entry configuration properties

A host entry can contain information about the host that is outside its system configuration, such as its
physical location, MAC address, keys, and certificates.

This information can be set when the host entry is created if it is created manually. Alternatively, most of
this information can be added to the host entry after the host is enrolled in the domain.

Table 41.3. Host Configuration Properties

UI Field Command-Line Option Description

Description --desc=description A description of the host.

Locality --locality=locality The geographic location of the
host.

Location --location=location The physical location of the host,
such as its data center rack.

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

364

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_certificates_in_idm/using-certmonger_working-with-idm-certificates#certmonger_certmonger-for-issuing-renewing-service-certs

Platform --platform=string The host hardware or
architecture.

Operating system --os=string The operating system and version
for the host.

MAC address --macaddress=address The MAC address for the host.
This is a multi-valued attribute.
The MAC address is used by the
NIS plug-in to create a NIS
ethers map for the host.

SSH public keys --sshpubkey=string The full SSH public key for the
host. This is a multi-valued
attribute, so multiple keys can be
set.

Principal name (not editable) --principalname=principal The Kerberos principal name for
the host. This defaults to the host
name during the client
installation, unless a different
principal is explicitly set in the -p.
This can be changed using the
command-line tools, but cannot
be changed in the UI.

Set One-Time Password --password=string This option sets a password for
the host which can be used in bulk
enrollment.

- --random This option generates a random
password to be used in bulk
enrollment.

- --certificate=string A certificate blob for the host.

- --updatedns This sets whether the host can
dynamically update its DNS
entries if its IP address changes.

UI Field Command-Line Option Description

41.6. ADDING HOST ENTRIES FROM THE WEB UI

1. Open the Identity tab, and select the Hosts subtab.

2. Click Add at the top of the hosts list.

Figure 41.1. Adding Host Entries

CHAPTER 41. ADDING HOST ENTRIES FROM IDM WEB UI

365

Figure 41.1. Adding Host Entries

3. Enter the machine name and select the domain from the configured zones in the drop-down
list. If the host has already been assigned a static IP address, then include that with the host
entry so that the DNS entry is fully created.
The Class field has no specific purpose at the moment.

Figure 41.2. Add Host Wizard

DNS zones can be created in IdM. If the IdM server does not manage the DNS server, the zone
can be entered manually in the menu area, like a regular text field.

NOTE

Select the Force check box if you want to skip checking whether the host is
resolvable via DNS.

4. Click the Add and Edit button to go directly to the expanded entry page and enter more
attribute information. Information about the host hardware and physical location can be
included with the host entry.

Figure 41.3. Expanded Entry Page

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

366

Figure 41.3. Expanded Entry Page

CHAPTER 41. ADDING HOST ENTRIES FROM IDM WEB UI

367

CHAPTER 42. MANAGING HOSTS USING ANSIBLE
PLAYBOOKS

Ansible is an automation tool used to configure systems, deploy software, and perform rolling updates.
Ansible includes support for Identity Management (IdM), and you can use Ansible modules to automate
host management.

The following concepts and operations are performed when managing hosts and host entries using
Ansible playbooks:

Ensuring the presence of IdM host entries that are only defined by their FQDNs

Ensuring the presence of IdM host entries with IP addresses

Ensuring the presence of multiple IdM host entries with random passwords

Ensuring the presence of an IdM host entry with multiple IP addresses

Ensuring the absence of IdM host entries

42.1. ENSURING THE PRESENCE OF AN IDM HOST ENTRY WITH FQDN
USING ANSIBLE PLAYBOOKS

Follow this procedure to ensure the presence of host entries in Identity Management (IdM) using Ansible
playbooks. The host entries are only defined by their fully-qualified domain names (FQDNs).

Specifying the FQDN name of the host is enough if at least one of the following conditions applies:

The IdM server is not configured to manage DNS.

The host does not have a static IP address or the IP address is not known at the time the host is
configured. Adding a host defined only by an FQDN essentially creates a placeholder entry in the
IdM DNS service. For example, laptops may be preconfigured as IdM clients, but they do not
have IP addresses at the time they are configured. When the DNS service dynamically updates
its records, the host’s current IP address is detected and its DNS record is updated.

NOTE

Without Ansible, host entries are created in IdM using the ipa host-add command. The
result of adding a host to IdM is the state of the host being present in IdM. Because of
the Ansible reliance on idempotence, to add a host to IdM using Ansible, you must create
a playbook in which you define the state of the host as present: state: present.

Prerequisites

You know the IdM administrator password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

368

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

Procedure

1. Create an inventory file, for example inventory.file, and define ipaserver in it:

[ipaserver]
server.idm.example.com

2. Create an Ansible playbook file with the FQDN of the host whose presence in IdM you want to
ensure. To simplify this step, you can copy and modify the example in the
/usr/share/doc/ansible-freeipa/playbooks/host/add-host.yml file:

- name: Host present
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Host host01.idm.example.com present
 ipahost:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: host01.idm.example.com
 state: present
 force: true

3. Run the playbook:

$ ansible-playbook --vault-password-file=password_file -v -i
path_to_inventory_directory/inventory.file path_to_playbooks_directory/ensure-host-
is-present.yml

NOTE

The procedure results in a host entry in the IdM LDAP server being created but not in
enrolling the host into the IdM Kerberos realm. For that, you must deploy the host as an
IdM client. For details, see Installing an Identity Management client using an Ansible
playbook.

Verification

1. Log in to your IdM server as admin:

$ ssh admin@server.idm.example.com
Password:

2. Enter the ipa host-show command and specify the name of the host:

$ ipa host-show host01.idm.example.com

CHAPTER 42. MANAGING HOSTS USING ANSIBLE PLAYBOOKS

369

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-client-using-an-ansible-playbook_installing-identity-management

 Host name: host01.idm.example.com
 Principal name: host/host01.idm.example.com@IDM.EXAMPLE.COM
 Principal alias: host/host01.idm.example.com@IDM.EXAMPLE.COM
 Password: False
 Keytab: False
 Managed by: host01.idm.example.com

The output confirms that host01.idm.example.com exists in IdM.

42.2. ENSURING THE PRESENCE OF AN IDM HOST ENTRY WITH DNS
INFORMATION USING ANSIBLE PLAYBOOKS

Follow this procedure to ensure the presence of host entries in Identity Management (IdM) using Ansible
playbooks. The host entries are defined by their fully-qualified domain names (FQDNs) and their IP
addresses.

NOTE

Without Ansible, host entries are created in IdM using the ipa host-add command. The
result of adding a host to IdM is the state of the host being present in IdM. Because of
the Ansible reliance on idempotence, to add a host to IdM using Ansible, you must create
a playbook in which you define the state of the host as present: state: present.

Prerequisites

You know the IdM administrator password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

Procedure

1. Create an inventory file, for example inventory.file, and define ipaserver in it:

[ipaserver]
server.idm.example.com

2. Create an Ansible playbook file with the fully-qualified domain name (FQDN) of the host
whose presence in IdM you want to ensure. In addition, if the IdM server is configured to manage
DNS and you know the IP address of the host, specify a value for the ip_address parameter.
The IP address is necessary for the host to exist in the DNS resource records. To simplify this

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

370

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

step, you can copy and modify the example in the /usr/share/doc/ansible-
freeipa/playbooks/host/host-present.yml file. You can also include other, additional
information:

- name: Host present
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Ensure host01.idm.example.com is present
 ipahost:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: host01.idm.example.com
 description: Example host
 ip_address: 192.168.0.123
 locality: Lab
 ns_host_location: Lab
 ns_os_version: CentOS 7
 ns_hardware_platform: Lenovo T61
 mac_address:
 - "08:00:27:E3:B1:2D"
 - "52:54:00:BD:97:1E"
 state: present

3. Run the playbook:

$ ansible-playbook --vault-password-file=password_file -v -i
path_to_inventory_directory/inventory.file path_to_playbooks_directory/ensure-host-
is-present.yml

NOTE

The procedure results in a host entry in the IdM LDAP server being created but not in
enrolling the host into the IdM Kerberos realm. For that, you must deploy the host as an
IdM client. For details, see Installing an Identity Management client using an Ansible
playbook.

Verification

1. Log in to your IdM server as admin:

$ ssh admin@server.idm.example.com
Password:

2. Enter the ipa host-show command and specify the name of the host:

$ ipa host-show host01.idm.example.com
 Host name: host01.idm.example.com
 Description: Example host
 Locality: Lab
 Location: Lab
 Platform: Lenovo T61

CHAPTER 42. MANAGING HOSTS USING ANSIBLE PLAYBOOKS

371

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-client-using-an-ansible-playbook_installing-identity-management

 Operating system: CentOS 7
 Principal name: host/host01.idm.example.com@IDM.EXAMPLE.COM
 Principal alias: host/host01.idm.example.com@IDM.EXAMPLE.COM
 MAC address: 08:00:27:E3:B1:2D, 52:54:00:BD:97:1E
 Password: False
 Keytab: False
 Managed by: host01.idm.example.com

The output confirms host01.idm.example.com exists in IdM.

42.3. ENSURING THE PRESENCE OF MULTIPLE IDM HOST ENTRIES
WITH RANDOM PASSWORDS USING ANSIBLE PLAYBOOKS

The ipahost module allows the system administrator to ensure the presence or absence of multiple host
entries in IdM using just one Ansible task. Follow this procedure to ensure the presence of multiple host
entries that are only defined by their fully-qualified domain names (FQDNs). Running the Ansible
playbook generates random passwords for the hosts.

NOTE

Without Ansible, host entries are created in IdM using the ipa host-add command. The
result of adding a host to IdM is the state of the host being present in IdM. Because of
the Ansible reliance on idempotence, to add a host to IdM using Ansible, you must create
a playbook in which you define the state of the host as present: state: present.

Prerequisites

You know the IdM administrator password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

Procedure

1. Create an inventory file, for example inventory.file, and define ipaserver in it:

[ipaserver]
server.idm.example.com

2. Create an Ansible playbook file with the fully-qualified domain name (FQDN) of the hosts
whose presence in IdM you want to ensure. To make the Ansible playbook generate a random
password for each host even when the host already exists in IdM and update_password is

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

372

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

limited to on_create, add the random: true and force: true options. To simplify this step, you
can copy and modify the example from the /usr/share/doc/ansible-freeipa/README-host.md
Markdown file:

- name: Ensure hosts with random password
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Hosts host01.idm.example.com and host02.idm.example.com present with random
passwords
 ipahost:
 ipaadmin_password: "{{ ipaadmin_password }}"
 hosts:
 - name: host01.idm.example.com
 random: true
 force: true
 - name: host02.idm.example.com
 random: true
 force: true
 register: ipahost

3. Run the playbook:

$ ansible-playbook --vault-password-file=password_file -v -i
path_to_inventory_directory/inventory.file path_to_playbooks_directory/ensure-hosts-
are-present.yml
[...]
TASK [Hosts host01.idm.example.com and host02.idm.example.com present with random
passwords]
changed: [r8server.idm.example.com] => {"changed": true, "host":
{"host01.idm.example.com": {"randompassword": "0HoIRvjUdH0Ycbf6uYdWTxH"},
"host02.idm.example.com": {"randompassword": "5VdLgrf3wvojmACdHC3uA3s"}}}

NOTE

To deploy the hosts as IdM clients using random, one-time passwords (OTPs), see
Authorization options for IdM client enrollment using an Ansible playbook or Installing a
client by using a one-time password: Interactive installation.

Verification

1. Log in to your IdM server as admin:

$ ssh admin@server.idm.example.com
Password:

2. Enter the ipa host-show command and specify the name of one of the hosts:

$ ipa host-show host01.idm.example.com
 Host name: host01.idm.example.com
 Password: True

CHAPTER 42. MANAGING HOSTS USING ANSIBLE PLAYBOOKS

373

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-client-using-an-ansible-playbook_installing-identity-management#authorization-options-for-idm-client-enrollment-using-an-ansible-playbook_client-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/assembly_installing-an-idm-client_installing-identity-management#proc_installing-a-client-by-using-a-one-time-password-interactive-installation_assembly_installing-an-idm-client

 Keytab: False
 Managed by: host01.idm.example.com

The output confirms host01.idm.example.com exists in IdM with a random password.

42.4. ENSURING THE PRESENCE OF AN IDM HOST ENTRY WITH
MULTIPLE IP ADDRESSES USING ANSIBLE PLAYBOOKS

Follow this procedure to ensure the presence of a host entry in Identity Management (IdM) using Ansible
playbooks. The host entry is defined by its fully-qualified domain name (FQDN) and its multiple IP
addresses.

NOTE

In contrast to the ipa host utility, the Ansible ipahost module can ensure the presence or
absence of several IPv4 and IPv6 addresses for a host. The ipa host-mod command
cannot handle IP addresses.

Prerequisites

You know the IdM administrator password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

Procedure

1. Create an inventory file, for example inventory.file, and define ipaserver in it:

[ipaserver]
server.idm.example.com

2. Create an Ansible playbook file. Specify, as the name of the ipahost variable, the fully-qualified
domain name (FQDN) of the host whose presence in IdM you want to ensure. Specify each of
the multiple IPv4 and IPv6 ip_address values on a separate line by using the ip_address syntax.
To simplify this step, you can copy and modify the example in the /usr/share/doc/ansible-
freeipa/playbooks/host/host-member-ipaddresses-present.yml file. You can also include
additional information:

- name: Host member IP addresses present
 hosts: ipaserver

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

374

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Ensure host101.example.com IP addresses present
 ipahost:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: host01.idm.example.com
 ip_address:
 - 192.168.0.123
 - fe80::20c:29ff:fe02:a1b3
 - 192.168.0.124
 - fe80::20c:29ff:fe02:a1b4
 force: true

3. Run the playbook:

$ ansible-playbook --vault-password-file=password_file -v -i
path_to_inventory_directory/inventory.file path_to_playbooks_directory/ensure-host-
with-multiple-IP-addreses-is-present.yml

NOTE

The procedure creates a host entry in the IdM LDAP server but does not enroll the host
into the IdM Kerberos realm. For that, you must deploy the host as an IdM client. For
details, see Installing an Identity Management client using an Ansible playbook .

Verification

1. Log in to your IdM server as admin:

$ ssh admin@server.idm.example.com
Password:

2. Enter the ipa host-show command and specify the name of the host:

$ ipa host-show host01.idm.example.com
 Principal name: host/host01.idm.example.com@IDM.EXAMPLE.COM
 Principal alias: host/host01.idm.example.com@IDM.EXAMPLE.COM
 Password: False
 Keytab: False
 Managed by: host01.idm.example.com

The output confirms that host01.idm.example.com exists in IdM.

3. To verify that the multiple IP addresses of the host exist in the IdM DNS records, enter the ipa
dnsrecord-show command and specify the following information:

The name of the IdM domain

The name of the host

$ ipa dnsrecord-show idm.example.com host01
[...]
 Record name: host01

CHAPTER 42. MANAGING HOSTS USING ANSIBLE PLAYBOOKS

375

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/installing_identity_management/installing-an-identity-management-client-using-an-ansible-playbook_installing-identity-management

 A record: 192.168.0.123, 192.168.0.124
 AAAA record: fe80::20c:29ff:fe02:a1b3, fe80::20c:29ff:fe02:a1b4

The output confirms that all the IPv4 and IPv6 addresses specified in the playbook are correctly
associated with the host01.idm.example.com host entry.

42.5. ENSURING THE ABSENCE OF AN IDM HOST ENTRY USING
ANSIBLE PLAYBOOKS

Follow this procedure to ensure the absence of host entries in Identity Management (IdM) using Ansible
playbooks.

Prerequisites

IdM administrator credentials

Procedure

1. Create an inventory file, for example inventory.file, and define ipaserver in it:

[ipaserver]
server.idm.example.com

2. Create an Ansible playbook file with the fully-qualified domain name (FQDN) of the host
whose absence from IdM you want to ensure. If your IdM domain has integrated DNS, use the
updatedns: true option to remove the associated records of any kind for the host from the
DNS.
To simplify this step, you can copy and modify the example in the /usr/share/doc/ansible-
freeipa/playbooks/host/delete-host.yml file:

- name: Host absent
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Host host01.idm.example.com absent
 ipahost:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: host01.idm.example.com
 updatedns: true
 state: absent

3. Run the playbook:

$ ansible-playbook --vault-password-file=password_file -v -i
path_to_inventory_directory/inventory.file path_to_playbooks_directory/ensure-host-
absent.yml

NOTE

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

376

NOTE

The procedure results in:

The host not being present in the IdM Kerberos realm.

The host entry not being present in the IdM LDAP server.

To remove the specific IdM configuration of system services, such as System Security
Services Daemon (SSSD), from the client host itself, you must run the ipa-client-install --
uninstall command on the client. For details, see Uninstalling an IdM client .

Verification

1. Log into ipaserver as admin:

$ ssh admin@server.idm.example.com
Password:
[admin@server /]$

2. Display information about host01.idm.example.com:

$ ipa host-show host01.idm.example.com
ipa: ERROR: host01.idm.example.com: host not found

The output confirms that the host does not exist in IdM.

42.6. ADDITIONAL RESOURCES

See the /usr/share/doc/ansible-freeipa/README-host.md Markdown file.

See the additional playbooks in the /usr/share/doc/ansible-freeipa/playbooks/host directory.

CHAPTER 42. MANAGING HOSTS USING ANSIBLE PLAYBOOKS

377

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/uninstalling-an-ipa-client_installing-identity-management

CHAPTER 43. MANAGING HOST GROUPS USING THE IDM CLI
Learn more about how to manage host groups and their members in the command-line interface (CLI)
by using the following operations:

Viewing host groups and their members

Creating host groups

Deleting host groups

Adding host group members

Removing host group members

Adding host group member managers

Removing host group member managers

43.1. HOST GROUPS IN IDM

IdM host groups can be used to centralize control over important management tasks, particularly access
control.

Definition of host groups

A host group is an entity that contains a set of IdM hosts with common access control rules and other
characteristics. For example, you can define host groups based on company departments, physical
locations, or access control requirements.

A host group in IdM can include:

IdM servers and clients

Other IdM host groups

Host groups created by default

By default, the IdM server creates the host group ipaservers for all IdM server hosts.

Direct and indirect group members

Group attributes in IdM apply to both direct and indirect members: when host group B is a member of
host group A, all members of host group B are considered indirect members of host group A.

43.2. VIEWING IDM HOST GROUPS USING THE CLI

Follow this procedure to view IdM host groups using the command-line interface (CLI).

Prerequisites

Administrator privileges for managing IdM or User Administrator role.

An active Kerberos ticket. For details, see Using kinit to log in to IdM manually .

Procedure

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

378

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/logging-in-to-ipa-from-the-command-line_configuring-and-managing-idm#using-kinit-to-log-in-to-ipa_logging-in-to-ipa-from-the-command-line

1. Find all host groups using the ipa hostgroup-find command.

$ ipa hostgroup-find

1 hostgroup matched

 Host-group: ipaservers
 Description: IPA server hosts

Number of entries returned 1

To display all attributes of a host group, add the --all option. For example:

$ ipa hostgroup-find --all

1 hostgroup matched

 dn: cn=ipaservers,cn=hostgroups,cn=accounts,dc=idm,dc=local
 Host-group: ipaservers
 Description: IPA server hosts
 Member hosts: xxx.xxx.xxx.xxx
 ipauniqueid: xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx
 objectclass: top, groupOfNames, nestedGroup, ipaobject, ipahostgroup

Number of entries returned 1

43.3. CREATING IDM HOST GROUPS USING THE CLI

Follow this procedure to create IdM host groups using the command-line interface (CLI).

Prerequisites

Administrator privileges for managing IdM or User Administrator role.

An active Kerberos ticket. For details, see Using kinit to log in to IdM manually .

Procedure

1. Add a host group using the ipa hostgroup-add command.
For example, to create an IdM host group named group_name and give it a description:

$ ipa hostgroup-add --desc 'My new host group' group_name

Added hostgroup "group_name"

 Host-group: group_name
 Description: My new host group

43.4. DELETING IDM HOST GROUPS USING THE CLI

CHAPTER 43. MANAGING HOST GROUPS USING THE IDM CLI

379

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/logging-in-to-ipa-from-the-command-line_configuring-and-managing-idm#using-kinit-to-log-in-to-ipa_logging-in-to-ipa-from-the-command-line

Follow this procedure to delete IdM host groups using the command-line interface (CLI).

Prerequisites

Administrator privileges for managing IdM or User Administrator role.

An active Kerberos ticket. For details, see Using kinit to log in to IdM manually .

Procedure

1. Delete a host group using the ipa hostgroup-del command.
For example, to delete the IdM host group named group_name:

$ ipa hostgroup-del group_name

Deleted hostgroup "group_name"

NOTE

Removing a group does not delete the group members from IdM.

43.5. ADDING IDM HOST GROUP MEMBERS USING THE CLI

You can add hosts as well as host groups as members to an IdM host group using a single command.

Prerequisites

Administrator privileges for managing IdM or User Administrator role.

An active Kerberos ticket. For details, see Using kinit to log in to IdM manually .

Optional. Use the ipa hostgroup-find command to find hosts and host groups.

Procedure

1. To add a member to a host group, use the ipa hostgroup-add-member and provide the
relevant information. You can specify the type of member to add using these options:

Use the --hosts option to add one or more hosts to an IdM host group.
For example, to add the host named example_member to the group named group_name:

$ ipa hostgroup-add-member group_name --hosts example_member
Host-group: group_name
Description: My host group
Member hosts: example_member

Number of members added 1

Use the --hostgroups option to add one or more host groups to an IdM host group.
For example, to add the host group named nested_group to the group named group_name:

$ ipa hostgroup-add-member group_name --hostgroups nested_group

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

380

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/logging-in-to-ipa-from-the-command-line_configuring-and-managing-idm#using-kinit-to-log-in-to-ipa_logging-in-to-ipa-from-the-command-line
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/logging-in-to-ipa-from-the-command-line_configuring-and-managing-idm#using-kinit-to-log-in-to-ipa_logging-in-to-ipa-from-the-command-line

Host-group: group_name
Description: My host group
Member host-groups: nested_group

Number of members added 1

You can add multiple hosts and multiple host groups to an IdM host group in one single
command using the following syntax:

$ ipa hostgroup-add-member group_name --hosts={host1,host2} --hostgroups=
{group1,group2}

IMPORTANT

When adding a host group as a member of another host group, do not create recursive
groups. For example, if Group A is a member of Group B, do not add Group B as a
member of Group A. Recursive groups can cause unpredictable behavior.

43.6. REMOVING IDM HOST GROUP MEMBERS USING THE CLI

You can remove hosts as well as host groups from an IdM host group using a single command.

Prerequisites

Administrator privileges for managing IdM or User Administrator role.

An active Kerberos ticket. For details, see Using kinit to log in to IdM manually .

Optional. Use the ipa hostgroup-find command to confirm that the group includes the member
you want to remove.

Procedure

1. To remove a host group member, use the ipa hostgroup-remove-member command and
provide the relevant information. You can specify the type of member to remove using these
options:

Use the --hosts option to remove one or more hosts from an IdM host group.
For example, to remove the host named example_member from the group named
group_name:

$ ipa hostgroup-remove-member group_name --hosts example_member
Host-group: group_name
Description: My host group

Number of members removed 1

Use the --hostgroups option to remove one or more host groups from an IdM host group.
For example, to remove the host group named nested_group from the group named
group_name:

$ ipa hostgroup-remove-member group_name --hostgroups example_member

CHAPTER 43. MANAGING HOST GROUPS USING THE IDM CLI

381

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/logging-in-to-ipa-from-the-command-line_configuring-and-managing-idm#using-kinit-to-log-in-to-ipa_logging-in-to-ipa-from-the-command-line

Host-group: group_name
Description: My host group

Number of members removed 1

NOTE

Removing a group does not delete the group members from IdM.

You can remove multiple hosts and multiple host groups from an IdM host group in one single
command using the following syntax:

$ ipa hostgroup-remove-member group_name --hosts={host1,host2} --hostgroups=
{group1,group2}

43.7. ADDING IDM HOST GROUP MEMBER MANAGERS USING THE CLI

You can add hosts as well as host groups as member managers to an IdM host group using a single
command. Member managers can add hosts or host groups to IdM host groups but cannot change the
attributes of a host group.

Prerequisites

Administrator privileges for managing IdM or User Administrator role.

An active Kerberos ticket. For details, see Using kinit to log in to IdM manually .

You must have the name of the host or host group you are adding as member managers and the
name of the host group you want them to manage.

Procedure

1. Optional: Use the ipa hostgroup-find command to find hosts and host groups.

2. To add a member manager to a host group, use the ipa hostgroup-add-member-manager.
For example, to add the user named example_member as a member manager to the group
named group_name:

$ ipa hostgroup-add-member-manager group_name --user example_member
Host-group: group_name
Member hosts: server.idm.example.com
Member host-groups: project_admins
Member of netgroups: group_name
Membership managed by users: example_member

Number of members added 1

3. Use the --groups option to add one or more host groups as a member manager to an IdM host
group.
For example, to add the host group named admin_group as a member manager to the group
named group_name:

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

382

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/logging-in-to-ipa-from-the-command-line_configuring-and-managing-idm#using-kinit-to-log-in-to-ipa_logging-in-to-ipa-from-the-command-line

$ ipa hostgroup-add-member-manager group_name --groups admin_group
Host-group: group_name
Member hosts: server.idm.example.com
Member host-groups: project_admins
Member of netgroups: group_name
Membership managed by groups: admin_group
Membership managed by users: example_member

Number of members added 1

NOTE

After you add a member manager to a host group, the update may take some time to
spread to all clients in your Identity Management environment.

Verification

Using the ipa group-show command to verify the host user and host group were added as
member managers.

$ ipa hostgroup-show group_name
Host-group: group_name
Member hosts: server.idm.example.com
Member host-groups: project_admins
Membership managed by groups: admin_group
Membership managed by users: example_member

Additional resources

See ipa hostgroup-add-member-manager --help for more details.

See ipa hostgroup-show --help for more details.

43.8. REMOVING IDM HOST GROUP MEMBER MANAGERS USING THE
CLI

You can remove hosts as well as host groups as member managers from an IdM host group using a single
command. Member managers can remove hosts group member managers from IdM host groups but
cannot change the attributes of a host group.

Prerequisites

Administrator privileges for managing IdM or User Administrator role.

An active Kerberos ticket. For details, see Using kinit to log in to IdM manually .

You must have the name of the existing member manager host group you are removing and the
name of the host group they are managing.

Procedure

1. Optional: Use the ipa hostgroup-find command to find hosts and host groups.

CHAPTER 43. MANAGING HOST GROUPS USING THE IDM CLI

383

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/logging-in-to-ipa-from-the-command-line_configuring-and-managing-idm#using-kinit-to-log-in-to-ipa_logging-in-to-ipa-from-the-command-line

2. To remove a member manager from a host group, use the ipa hostgroup-remove-member-
manager command.
For example, to remove the user named example_member as a member manager from the
group named group_name:

$ ipa hostgroup-remove-member-manager group_name --user example_member
Host-group: group_name
Member hosts: server.idm.example.com
Member host-groups: project_admins
Member of netgroups: group_name
Membership managed by groups: nested_group

Number of members removed 1

3. Use the --groups option to remove one or more host groups as a member manager from an IdM
host group.
For example, to remove the host group named nested_group as a member manager from the
group named group_name:

$ ipa hostgroup-remove-member-manager group_name --groups nested_group
Host-group: group_name
Member hosts: server.idm.example.com
Member host-groups: project_admins
Member of netgroups: group_name

Number of members removed 1

NOTE

After you remove a member manager from a host group, the update may take some time
to spread to all clients in your Identity Management environment.

Verification

Use the ipa group-show command to verify that the host user and host group were removed as
member managers.

$ ipa hostgroup-show group_name
Host-group: group_name
Member hosts: server.idm.example.com
Member host-groups: project_admins

Additional resources

See ipa hostgroup-remove-member-manager --help for more details.

See ipa hostgroup-show --help for more details.

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

384

CHAPTER 44. MANAGING HOST GROUPS USING THE IDM
WEB UI

Learn more about how to manage host groups and their members in the Web interface (Web UI) by
using the following operations:

Viewing host groups and their members

Creating host groups

Deleting host groups

Adding host group members

Removing host group members

Adding host group member managers

Removing host group member managers

44.1. HOST GROUPS IN IDM

IdM host groups can be used to centralize control over important management tasks, particularly access
control.

Definition of host groups

A host group is an entity that contains a set of IdM hosts with common access control rules and other
characteristics. For example, you can define host groups based on company departments, physical
locations, or access control requirements.

A host group in IdM can include:

IdM servers and clients

Other IdM host groups

Host groups created by default

By default, the IdM server creates the host group ipaservers for all IdM server hosts.

Direct and indirect group members

Group attributes in IdM apply to both direct and indirect members: when host group B is a member of
host group A, all members of host group B are considered indirect members of host group A.

44.2. VIEWING HOST GROUPS IN THE IDM WEB UI

Follow this procedure to view IdM host groups using the Web interface (Web UI).

Prerequisites

Administrator privileges for managing IdM or User Administrator role.

You are logged-in to the IdM Web UI. For details, see Accessing the IdM Web UI in a web
browser.

CHAPTER 44. MANAGING HOST GROUPS USING THE IDM WEB UI

385

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/accessing-the-ipa-web-ui-in-a-web-browser_configuring-and-managing-idm

Procedure

1. Click Identity → Groups, and select the Host Groups tab.

The page lists the existing host groups and their descriptions.

You can search for a specific host group.

2. Click on a group in the list to display the hosts that belong to this group. You can limit results to
direct or indirect members.

3. Select the Host Groups tab to display the host groups that belong to this group (nested host
groups). You can limit results to direct or indirect members.

44.3. CREATING HOST GROUPS IN THE IDM WEB UI

Follow this procedure to create IdM host groups using the Web interface (Web UI).

Prerequisites

Administrator privileges for managing IdM or User Administrator role.

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

386

You are logged-in to the IdM Web UI. For details, see Accessing the IdM Web UI in a web
browser.

Procedure

1. Click Identity → Groups, and select the Host Groups tab.

2. Click Add. The Add host group dialog appears.

3. Provide the information about the group: name (required) and description (optional).

4. Click Add to confirm.

44.4. DELETING HOST GROUPS IN THE IDM WEB UI

Follow this procedure to delete IdM host groups using the Web interface (Web UI).

Prerequisites

Administrator privileges for managing IdM or User Administrator role.

You are logged-in to the IdM Web UI. For details, see Accessing the IdM Web UI in a web
browser.

Procedure

1. Click Identity → Groups and select the Host Groups tab.

2. Select the IdM host group to remove, and click Delete. A confirmation dialog appears.

3. Click Delete to confirm

NOTE

Removing a host group does not delete the group members from IdM.

44.5. ADDING HOST GROUP MEMBERS IN THE IDM WEB UI

CHAPTER 44. MANAGING HOST GROUPS USING THE IDM WEB UI

387

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/accessing-the-ipa-web-ui-in-a-web-browser_configuring-and-managing-idm
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/accessing-the-ipa-web-ui-in-a-web-browser_configuring-and-managing-idm

Follow this procedure to add host group members in IdM using the web interface (Web UI).

Prerequisites

Administrator privileges for managing IdM or User Administrator role.

You are logged-in to the IdM Web UI. For details, see Accessing the IdM Web UI in a web
browser.

Procedure

1. Click Identity → Groups and select the Host Groups tab.

2. Click the name of the group to which you want to add members.

3. Click the tab Hosts or Host groups depending on the type of members you want to add. The
corresponding dialog appears.

4. Select the hosts or host groups to add, and click the > arrow button to move them to the
Prospective column.

5. Click Add to confirm.

44.6. REMOVING HOST GROUP MEMBERS IN THE IDM WEB UI

Follow this procedure to remove host group members in IdM using the web interface (Web UI).

Prerequisites

Administrator privileges for managing IdM or User Administrator role.

You are logged-in to the IdM Web UI. For details, see Accessing the IdM Web UI in a web
browser.

Procedure

1. Click Identity → Groups and select the Host Groups tab.

2. Click the name of the group from which you want to remove members.

3. Click the tab Hosts or Host groups depending on the type of members you want to remove.

4. Select the check box next to the member you want to remove.

5. Click Delete. A confirmation dialog appears.

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

388

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/accessing-the-ipa-web-ui-in-a-web-browser_configuring-and-managing-idm
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/accessing-the-ipa-web-ui-in-a-web-browser_configuring-and-managing-idm

6. Click Delete to confirm. The selected members are deleted.

44.7. ADDING IDM HOST GROUP MEMBER MANAGERS USING THE
WEB UI

Follow this procedure to add users or user groups as host group member managers in IdM using the web
interface (Web UI). Member managers can add hosts group member managers to IdM host groups but
cannot change the attributes of a host group.

Prerequisites

Administrator privileges for managing IdM or User Administrator role.

You are logged-in to the IdM Web UI. For details, see Accessing the IdM Web UI in a web
browser.

You must have the name of the host group you are adding as member managers and the name
of the host group you want them to manage.

Procedure

1. Click Identity → Groups and select the Host Groups tab.

2. Click the name of the group to which you want to add member managers.

3. Click the member managers tab User Groups or Users depending on the type of member
managers you want to add. The corresponding dialog appears.

4. Click Add.

CHAPTER 44. MANAGING HOST GROUPS USING THE IDM WEB UI

389

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/accessing-the-ipa-web-ui-in-a-web-browser_configuring-and-managing-idm

5. Select the users or user groups to add, and click the > arrow button to move them to the
Prospective column.

6. Click Add to confirm.

NOTE

After you add a member manager to a host group, the update may take some time to
spread to all clients in your Identity Management environment.

Verification

On the Host Group dialog, verify the user group or user has been added to the member
managers list of groups or users.

44.8. REMOVING IDM HOST GROUP MEMBER MANAGERS USING THE
WEB UI

Follow this procedure to remove users or user groups as host group member managers in IdM using the
web interface (Web UI). Member managers can remove hosts group member managers from IdM host
groups but cannot change the attributes of a host group.

Prerequisites

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

390

Administrator privileges for managing IdM or User Administrator role.

You are logged-in to the IdM Web UI. For details, see Accessing the IdM Web UI in a web
browser.

You must have the name of the existing member manager host group you are removing and the
name of the host group they are managing.

Procedure

1. Click Identity → Groups and select the Host Groups tab.

2. Click the name of the group from which you want to remove member managers.

3. Click the member managers tab User Groups or Users depending on the type of member
managers you want to remove. The corresponding dialog appears.

4. Select the user or user groups to remove and click Delete.

5. Click Delete to confirm.

NOTE

After you remove a member manager from a host group, the update may take
some time to spread to all clients in your Identity Management environment.

Verification

On the Host Group dialog, verify the user group or user has been removed from the member
managers list of groups or users.

CHAPTER 44. MANAGING HOST GROUPS USING THE IDM WEB UI

391

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/accessing-the-ipa-web-ui-in-a-web-browser_configuring-and-managing-idm

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

392

CHAPTER 45. MANAGING HOST GROUPS USING ANSIBLE
PLAYBOOKS

To learn more about host groups in Identity Management (IdM) and using Ansible to perform operations
involving host groups in Identity Management (IdM), see the following:

Host groups in IdM

Ensuring the presence of IdM host groups

Ensuring the presence of hosts in IdM host groups

Nesting IdM host groups

Ensuring the presence of member managers in IdM host groups

Ensuring the absence of hosts from IdM host groups

Ensuring the absence of nested host groups from IdM host groups

Ensuring the absence of member managers from IdM host groups

45.1. HOST GROUPS IN IDM

IdM host groups can be used to centralize control over important management tasks, particularly access
control.

Definition of host groups

A host group is an entity that contains a set of IdM hosts with common access control rules and other
characteristics. For example, you can define host groups based on company departments, physical
locations, or access control requirements.

A host group in IdM can include:

IdM servers and clients

Other IdM host groups

Host groups created by default

By default, the IdM server creates the host group ipaservers for all IdM server hosts.

Direct and indirect group members

Group attributes in IdM apply to both direct and indirect members: when host group B is a member of
host group A, all members of host group B are considered indirect members of host group A.

45.2. ENSURING THE PRESENCE OF IDM HOST GROUPS USING
ANSIBLE PLAYBOOKS

Follow this procedure to ensure the presence of host groups in Identity Management (IdM) using
Ansible playbooks.

NOTE

CHAPTER 45. MANAGING HOST GROUPS USING ANSIBLE PLAYBOOKS

393

NOTE

Without Ansible, host group entries are created in IdM using the ipa hostgroup-add
command. The result of adding a host group to IdM is the state of the host group being
present in IdM. Because of the Ansible reliance on idempotence, to add a host group to
IdM using Ansible, you must create a playbook in which you define the state of the host
group as present: state: present.

Prerequisites

You know the IdM administrator password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

Procedure

1. Create an inventory file, for example inventory.file, and define ipaserver in it with the list of
IdM servers to target:

[ipaserver]
server.idm.example.com

2. Create an Ansible playbook file with the necessary host group information. For example, to
ensure the presence of a host group named databases, specify name: databases in the -
ipahostgroup task. To simplify this step, you can copy and modify the example in the
/usr/share/doc/ansible-freeipa/playbooks/user/ensure-hostgroup-is-present.yml file.

- name: Playbook to handle hostgroups
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 # Ensure host-group databases is present
 - ipahostgroup:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: databases
 state: present

In the playbook, state: present signifies a request to add the host group to IdM unless it already
exists there.

3. Run the playbook:

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

394

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

$ ansible-playbook --vault-password-file=password_file -v -i
path_to_inventory_directory/inventory.file path_to_playbooks_directory/ensure-
hostgroup-is-present.yml

Verification

1. Log into ipaserver as admin:

$ ssh admin@server.idm.example.com
Password:
[admin@server /]$

2. Request a Kerberos ticket for admin:

$ kinit admin
Password for admin@IDM.EXAMPLE.COM:

3. Display information about the host group whose presence in IdM you wanted to ensure:

$ ipa hostgroup-show databases
 Host-group: databases

The databases host group exists in IdM.

45.3. ENSURING THE PRESENCE OF HOSTS IN IDM HOST GROUPS
USING ANSIBLE PLAYBOOKS

Follow this procedure to ensure the presence of hosts in host groups in Identity Management (IdM)
using Ansible playbooks.

Prerequisites

You know the IdM administrator password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

The hosts you want to reference in your Ansible playbook exist in IdM. For details, see Ensuring
the presence of an IdM host entry using Ansible playbooks.

The host groups you reference from the Ansible playbook file have been added to IdM. For
details, see Ensuring the presence of IdM host groups using Ansible playbooks .

CHAPTER 45. MANAGING HOST GROUPS USING ANSIBLE PLAYBOOKS

395

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

Procedure

1. Create an inventory file, for example inventory.file, and define ipaserver in it with the list of
IdM servers to target:

[ipaserver]
server.idm.example.com

2. Create an Ansible playbook file with the necessary host information. Specify the name of the
host group using the name parameter of the ipahostgroup variable. Specify the name of the
host with the host parameter of the ipahostgroup variable. To simplify this step, you can copy
and modify the examples in the /usr/share/doc/ansible-
freeipa/playbooks/hostgroup/ensure-hosts-and-hostgroups-are-present-in-hostgroup.yml
file:

- name: Playbook to handle hostgroups
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 # Ensure host-group databases is present
 - ipahostgroup:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: databases
 host:
 - db.idm.example.com
 action: member

This playbook adds the db.idm.example.com host to the databases host group. The action:
member line indicates that when the playbook is run, no attempt is made to add the databases
group itself. Instead, only an attempt is made to add db.idm.example.com to databases.

3. Run the playbook:

$ ansible-playbook --vault-password-file=password_file -v -i
path_to_inventory_directory/inventory.file path_to_playbooks_directory/ensure-hosts-
or-hostgroups-are-present-in-hostgroup.yml

Verification

1. Log into ipaserver as admin:

$ ssh admin@server.idm.example.com
Password:
[admin@server /]$

2. Request a Kerberos ticket for admin:

$ kinit admin
Password for admin@IDM.EXAMPLE.COM:

3. Display information about a host group to see which hosts are present in it:

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

396

$ ipa hostgroup-show databases
 Host-group: databases
 Member hosts: db.idm.example.com

The db.idm.example.com host is present as a member of the databases host group.

45.4. NESTING IDM HOST GROUPS USING ANSIBLE PLAYBOOKS

Follow this procedure to ensure the presence of nested host groups in Identity Management (IdM) host
groups using Ansible playbooks.

Prerequisites

You know the IdM administrator password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

The host groups you reference from the Ansible playbook file exist in IdM. For details, see
Ensuring the presence of IdM host groups using Ansible playbooks .

Procedure

1. Create an inventory file, for example inventory.file, and define ipaserver in it with the list of
IdM servers to target:

[ipaserver]
server.idm.example.com

2. Create an Ansible playbook file with the necessary host group information. To ensure that a
nested host group A exists in a host group B: in the Ansible playbook, specify, among the -
ipahostgroup variables, the name of the host group B using the name variable. Specify the
name of the nested hostgroup A with the hostgroup variable. To simplify this step, you can copy
and modify the examples in the /usr/share/doc/ansible-
freeipa/playbooks/hostgroup/ensure-hosts-and-hostgroups-are-present-in-hostgroup.yml
file:

- name: Playbook to handle hostgroups
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:

CHAPTER 45. MANAGING HOST GROUPS USING ANSIBLE PLAYBOOKS

397

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

 # Ensure hosts and hostgroups are present in existing databases hostgroup
 - ipahostgroup:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: databases
 hostgroup:
 - mysql-server
 - oracle-server
 action: member

This Ansible playbook ensures the presence of the myqsl-server and oracle-server host groups
in the databases host group. The action: member line indicates that when the playbook is run,
no attempt is made to add the databases group itself to IdM.

3. Run the playbook:

$ ansible-playbook --vault-password-file=password_file -v -i
path_to_inventory_directory/inventory.file path_to_playbooks_directory/ensure-hosts-
or-hostgroups-are-present-in-hostgroup.yml

Verification

1. Log into ipaserver as admin:

$ ssh admin@server.idm.example.com
Password:
[admin@server /]$

2. Request a Kerberos ticket for admin:

$ kinit admin
Password for admin@IDM.EXAMPLE.COM:

3. Display information about the host group in which nested host groups are present:

$ ipa hostgroup-show databases
 Host-group: databases
 Member hosts: db.idm.example.com
 Member host-groups: mysql-server, oracle-server

The mysql-server and oracle-server host groups exist in the databases host group.

45.5. ENSURING THE PRESENCE OF MEMBER MANAGERS IN IDM
HOST GROUPS USING ANSIBLE PLAYBOOKS

The following procedure describes ensuring the presence of member managers in IdM hosts and host
groups using an Ansible playbook.

Prerequisites

You know the IdM administrator password.

You have configured your Ansible control node to meet the following requirements:

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

398

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

You must have the name of the host or host group you are adding as member managers and the
name of the host group you want them to manage.

Procedure

1. Create an inventory file, for example inventory.file, and define ipaserver in it:

[ipaserver]
server.idm.example.com

2. Create an Ansible playbook file with the necessary host and host group member management
information:

- name: Playbook to handle host group membership management
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Ensure member manager user example_member is present for group_name
 ipahostgroup:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: group_name
 membermanager_user: example_member

 - name: Ensure member manager group project_admins is present for group_name
 ipahostgroup:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: group_name
 membermanager_group: project_admins

3. Run the playbook:

$ ansible-playbook --vault-password-file=password_file -v -i
path_to_inventory_directory/inventory.file path_to_playbooks_directory/add-member-
managers-host-groups.yml

Verification

You can verify if the group_name group contains example_member and project_admins as member
managers by using the ipa group-show command:

CHAPTER 45. MANAGING HOST GROUPS USING ANSIBLE PLAYBOOKS

399

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

1. Log into ipaserver as administrator:

$ ssh admin@server.idm.example.com
Password:
[admin@server /]$

2. Display information about testhostgroup:

ipaserver]$ ipa hostgroup-show group_name
 Host-group: group_name
 Member hosts: server.idm.example.com
 Member host-groups: testhostgroup2
 Membership managed by groups: project_admins
 Membership managed by users: example_member

Additional resources

See ipa hostgroup-add-member-manager --help.

See the ipa man page.

45.6. ENSURING THE ABSENCE OF HOSTS FROM IDM HOST GROUPS
USING ANSIBLE PLAYBOOKS

Follow this procedure to ensure the absence of hosts from host groups in Identity Management (IdM)
using Ansible playbooks.

Prerequisites

You know the IdM administrator password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

The hosts you want to reference in your Ansible playbook exist in IdM. For details, see Ensuring
the presence of an IdM host entry using Ansible playbooks.

The host groups you reference from the Ansible playbook file exist in IdM. For details, see
Ensuring the presence of IdM host groups using Ansible playbooks .

Procedure

1. Create an inventory file, for example inventory.file, and define ipaserver in it with the list of

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

400

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

1. Create an inventory file, for example inventory.file, and define ipaserver in it with the list of
IdM servers to target:

[ipaserver]
server.idm.example.com

2. Create an Ansible playbook file with the necessary host and host group information. Specify the
name of the host group using the name parameter of the ipahostgroup variable. Specify the
name of the host whose absence from the host group you want to ensure using the host
parameter of the ipahostgroup variable. To simplify this step, you can copy and modify the
examples in the /usr/share/doc/ansible-freeipa/playbooks/hostgroup/ensure-hosts-and-
hostgroups-are-absent-in-hostgroup.yml file:

- name: Playbook to handle hostgroups
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 # Ensure host-group databases is absent
 - ipahostgroup:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: databases
 host:
 - db.idm.example.com
 action: member
 state: absent

This playbook ensures the absence of the db.idm.example.com host from the databases host
group. The action: member line indicates that when the playbook is run, no attempt is made to
remove the databases group itself.

3. Run the playbook:

$ ansible-playbook --vault-password-file=password_file -v -i
path_to_inventory_directory/inventory.file path_to_playbooks_directory/ensure-hosts-
or-hostgroups-are-absent-in-hostgroup.yml

Verification

1. Log into ipaserver as admin:

$ ssh admin@server.idm.example.com
Password:
[admin@server /]$

2. Request a Kerberos ticket for admin:

$ kinit admin
Password for admin@IDM.EXAMPLE.COM:

3. Display information about the host group and the hosts it contains:

CHAPTER 45. MANAGING HOST GROUPS USING ANSIBLE PLAYBOOKS

401

$ ipa hostgroup-show databases
 Host-group: databases
 Member host-groups: mysql-server, oracle-server

The db.idm.example.com host does not exist in the databases host group.

45.7. ENSURING THE ABSENCE OF NESTED HOST GROUPS FROM IDM
HOST GROUPS USING ANSIBLE PLAYBOOKS

Follow this procedure to ensure the absence of nested host groups from outer host groups in
Identity Management (IdM) using Ansible playbooks.

Prerequisites

You know the IdM administrator password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

The host groups you reference from the Ansible playbook file exist in IdM. For details, see
Ensuring the presence of IdM host groups using Ansible playbooks .

Procedure

1. Create an inventory file, for example inventory.file, and define ipaserver in it with the list of
IdM servers to target:

[ipaserver]
server.idm.example.com

2. Create an Ansible playbook file with the necessary host group information. Specify, among the -
ipahostgroup variables, the name of the outer host group using the name variable. Specify the
name of the nested hostgroup with the hostgroup variable. To simplify this step, you can copy
and modify the examples in the /usr/share/doc/ansible-
freeipa/playbooks/hostgroup/ensure-hosts-and-hostgroups-are-absent-in-hostgroup.yml
file:

- name: Playbook to handle hostgroups
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

402

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

 tasks:
 # Ensure hosts and hostgroups are absent in existing databases hostgroup
 - ipahostgroup:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: databases
 hostgroup:
 - mysql-server
 - oracle-server
 action: member
 state: absent

This playbook makes sure that the mysql-server and oracle-server host groups are absent
from the databases host group. The action: member line indicates that when the playbook is
run, no attempt is made to ensure the databases group itself is deleted from IdM.

3. Run the playbook:

$ ansible-playbook --vault-password-file=password_file -v -i
path_to_inventory_directory/inventory.file path_to_playbooks_directory/ensure-hosts-
or-hostgroups-are-absent-in-hostgroup.yml

Verification

1. Log into ipaserver as admin:

$ ssh admin@server.idm.example.com
Password:
[admin@server /]$

2. Request a Kerberos ticket for admin:

$ kinit admin
Password for admin@IDM.EXAMPLE.COM:

3. Display information about the host group from which nested host groups should be absent:

$ ipa hostgroup-show databases
 Host-group: databases

The output confirms that the mysql-server and oracle-server nested host groups are absent from the
outer databases host group.

45.8. ENSURING THE ABSENCE OF IDM HOST GROUPS USING
ANSIBLE PLAYBOOKS

Follow this procedure to ensure the absence of host groups in Identity Management (IdM) using Ansible
playbooks.

NOTE

CHAPTER 45. MANAGING HOST GROUPS USING ANSIBLE PLAYBOOKS

403

NOTE

Without Ansible, host group entries are removed from IdM using the ipa hostgroup-del
command. The result of removing a host group from IdM is the state of the host group
being absent from IdM. Because of the Ansible reliance on idempotence, to remove a
host group from IdM using Ansible, you must create a playbook in which you define the
state of the host group as absent: state: absent.

Prerequisites

You know the IdM administrator password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

Procedure

1. Create an inventory file, for example inventory.file, and define ipaserver in it with the list of
IdM servers to target:

[ipaserver]
server.idm.example.com

2. Create an Ansible playbook file with the necessary host group information. To simplify this step,
you can copy and modify the example in the /usr/share/doc/ansible-
freeipa/playbooks/user/ensure-hostgroup-is-absent.yml file.

- name: Playbook to handle hostgroups
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - Ensure host-group databases is absent
 ipahostgroup:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: databases
 state: absent

This playbook ensures the absence of the databases host group from IdM. The state: absent
means a request to delete the host group from IdM unless it is already deleted.

3. Run the playbook:

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

404

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

$ ansible-playbook --vault-password-file=password_file -v -i
path_to_inventory_directory/inventory.file path_to_playbooks_directory/ensure-
hostgroup-is-absent.yml

Verification

1. Log into ipaserver as admin:

$ ssh admin@server.idm.example.com
Password:
[admin@server /]$

2. Request a Kerberos ticket for admin:

$ kinit admin
Password for admin@IDM.EXAMPLE.COM:

3. Display information about the host group whose absence you ensured:

$ ipa hostgroup-show databases
ipa: ERROR: databases: host group not found

The databases host group does not exist in IdM.

45.9. ENSURING THE ABSENCE OF MEMBER MANAGERS FROM IDM
HOST GROUPS USING ANSIBLE PLAYBOOKS

The following procedure describes ensuring the absence of member managers in IdM hosts and host
groups using an Ansible playbook.

Prerequisites

You know the IdM administrator password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

You must have the name of the user or user group you are removing as member managers and
the name of the host group they are managing.

Procedure

CHAPTER 45. MANAGING HOST GROUPS USING ANSIBLE PLAYBOOKS

405

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

1. Create an inventory file, for example inventory.file, and define ipaserver in it:

[ipaserver]
server.idm.example.com

2. Create an Ansible playbook file with the necessary host and host group member management
information:

- name: Playbook to handle host group membership management
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Ensure member manager host and host group members are absent for
group_name
 ipahostgroup:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: group_name
 membermanager_user: example_member
 membermanager_group: project_admins
 action: member
 state: absent

3. Run the playbook:

$ ansible-playbook --vault-password-file=password_file -v -i
path_to_inventory_directory/inventory.file path_to_playbooks_directory/ensure-
member-managers-host-groups-are-absent.yml

Verification

You can verify if the group_name group does not contain example_member or project_admins as
member managers by using the ipa group-show command:

1. Log into ipaserver as administrator:

$ ssh admin@server.idm.example.com
Password:
[admin@server /]$

2. Display information about testhostgroup:

ipaserver]$ ipa hostgroup-show group_name
 Host-group: group_name
 Member hosts: server.idm.example.com
 Member host-groups: testhostgroup2

Additional resources

See ipa hostgroup-add-member-manager --help.

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

406

See the ipa man page.

CHAPTER 45. MANAGING HOST GROUPS USING ANSIBLE PLAYBOOKS

407

CHAPTER 46. CONFIGURING HOST-BASED ACCESS
CONTROL RULES

You can use host-based access control (HBAC) rules to manage access control in your Identity
Management (IdM) domain. HBAC rules define which users or user groups can access specified hosts or
host groups by using which services or services in a service group. For example, you can use HBAC rules
to achieve the following goals:

Limit access to a specified system in your domain to members of a specific user group.

Allow only a specific service to be used to access the systems in your domain.

By default, IdM is configured with a default HBAC rule named allow_all, which allows universal access to
every host for every user via every relevant service in the entire IdM domain.

You can fine-tune access to different hosts by replacing the default allow_all rule with your own set of
HBAC rules. For centralized and simplified access control management, you can apply HBAC rules to
user groups, host groups, or service groups instead of individual users, hosts, or services.

46.1. CONFIGURING HBAC RULES IN AN IDM DOMAIN USING THE
WEBUI

To configure your domain for host-based access control, complete the following steps:

1. Create HBAC rules in the IdM WebUI .

2. Test the new HBAC rules .

3. Disable the default allow_all HBAC rule.

NOTE

Do not disable the allow_all rule before creating your custom HBAC rules as if you do so,
no users will be able to access any hosts.

46.1.1. Creating HBAC rules in the IdM WebUI

To configure your domain for host-based access control using the IdM WebUI, follow the steps below.
For the purposes of this example, the procedure shows you how to grant a single user, sysadmin access
to all systems in the domain using any service.

NOTE

IdM stores the primary group of a user as a numerical value of the gidNumber attribute
instead of a link to an IdM group object. For this reason, an HBAC rule can only reference
a user’s supplementary groups and not its primary group.

Prerequisites

User sysadmin exists in IdM.

Procedure

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

408

1. Select Policy>Host-Based Access Control>HBAC Rules.

2. Click Add to start adding a new rule.

3. Enter a name for the rule, and click Add and Edit to open the HBAC rule configuration page.

4. In the Who area, select Specified Users and Groups. Then click Add to add the users or
groups.

5. Select the sysadmin user from the list of the Available users and click > to move to the list of
Prospective users and click Add.

6. In the Accessing area, select Any Host to apply the HBAC rule to all hosts.

7. In the Via Service area, select Any Service to apply the HBAC rule to all services.

NOTE

Only the most common services and service groups are configured for HBAC
rules by default.

To display the list of services that are currently available, select Policy>Host-
Based Access Control>HBAC Services.

To display the list of service groups that are currently available, select
Policy>Host-Based Access Control>HBAC Service Groups.

To add more services and service groups, see Adding HBAC Service Entries for
Custom HBAC Services and Adding HBAC Service Groups.

8. To save any changes you make on the HBAC rule configuration page, click Save at the top of
the page.

46.1.2. Testing HBAC rules in the IdM WebUI

IdM allows you to test your HBAC configuration in various situations using simulated scenarios.
Performing these simulated tests, you can discover misconfiguration problems or security risks before
deploying HBAC rules in production.

IMPORTANT

Always test custom HBAC rules before you start using them in production.

Note that IdM does not test the effect of HBAC rules on trusted Active Directory (AD) users. Because
the IdM LDAP directory does not store the AD data, IdM cannot resolve group membership of AD users
when simulating HBAC scenarios.

Procedure

1. Select Policy>Host-Based Access Control>HBAC Test.

2. On the Who window, specify the user under whose identity you want to perform the test, and
click Next.

3. On the Accessing window, specify the host that the user will attempt to access, and click Next.

CHAPTER 46. CONFIGURING HOST-BASED ACCESS CONTROL RULES

409

4. On the Via Service window, specify the service that the user will attempt to use, and click Next.

5. On the Rules window, select the HBAC rules you want to test, and click Next. If you do not select
any rule, all rules are tested.
Select Include Enabled to run the test on all rules whose status is Enabled. Select Include
Disabled to run the test on all rules whose status is Disabled. To view and change the status of
HBAC rules, select Policy>Host-Based Access Control>HBAC Rules.

IMPORTANT

If the test runs on multiple rules, it passes successfully if at least one of the
selected rules allows access.

6. On the Run Test window, click Run Test.

7. Review the test results:

If you see ACCESS DENIED, the user is not granted access in the test.

If you see ACCESS GRANTED, the user is able to access the host successfully.

By default, IdM lists all the tested HBAC rules when displaying the test results.

Select Matched to display the rules that allowed successful access.

Select Unmatched to display the rules that prevented access.

46.1.3. Disabling HBAC rules in the IdM WebUI

You can disable an HBAC rule but it only deactivates the rule and does not delete it. If you disable an
HBAC rule, you can re-enable it later.

NOTE

Disabling HBAC rules is useful when you are configuring custom HBAC rules for the first
time. To ensure that your new configuration is not overridden by the default allow_all
HBAC rule, you must disable allow_all.

Procedure

1. Select Policy>Host-Based Access Control>HBAC Rules.

2. Select the HBAC rule you want to disable.

3. Click Disable.

4. Click OK to confirm you want to disable the selected HBAC rule.

46.2. CONFIGURING HBAC RULES IN AN IDM DOMAIN USING THE CLI

To configure your domain for host-based access control, complete the following steps:

1. Create HBAC rules in the IdM CLI .

2. Test the new HBAC rules .

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

410

3. Disable the default allow_all HBAC rule.

NOTE

Do not disable the allow_all rule before creating your custom HBAC rules. If you disable it
before creating your custom rules, access to all hosts for all users will be denied.

46.2.1. Creating HBAC rules in the IdM CLI

To configure your domain for host-based access control using the IdM CLI, follow the steps below. For
the purposes of this example, the procedure shows you how to grant a single user, sysadmin, access to all
systems in the domain using any service.

NOTE

IdM stores the primary group of a user as a numerical value of the gidNumber attribute
instead of a link to an IdM group object. For this reason, an HBAC rule can only reference
a user’s supplementary groups and not its primary group.

Prerequisites

User sysadmin exists in IdM.

Procedure

1. Use the ipa hbacrule-add command to add the rule.

$ ipa hbacrule-add
Rule name: rule_name

Added HBAC rule "rule_name"

 Rule name: rule_name
 Enabled: TRUE

2. To apply the HBAC rule to the sysadmin user only, use the ipa hbacrule-add-user command.

$ ipa hbacrule-add-user --users=sysadmin
Rule name: rule_name
 Rule name: rule_name
 Enabled: True
 Users: sysadmin

Number of members added 1

NOTE

To apply a HBAC rule to all users, use the ipa hbacrule-mod command and
specify the all user category --usercat=all. Note that if the HBAC rule is
associated with individual users or groups, ipa hbacrule-mod --usercat=all fails.
In this situation, remove the users and groups using the ipa hbacrule-remove-
user command.

CHAPTER 46. CONFIGURING HOST-BASED ACCESS CONTROL RULES

411

3. Specify the target hosts. To apply the HBAC rule to all hosts, use the ipa hbacrule-mod
command and specify the all host category:

$ ipa hbacrule-mod rule_name --hostcat=all

Modified HBAC rule "rule_name"

 Rule name: rule_name
 Host category: all
 Enabled: TRUE
 Users: sysadmin

NOTE

If the HBAC rule is associated with individual hosts or groups, ipa hbacrule-mod
--hostcat=all fails. In this situation, remove the hosts and groups using the ipa
hbacrule-remove-host command.

4. Specify the target HBAC services. To apply the HBAC rule to all services, use the ipa hbacrule-
mod command and specify the all service category:

$ ipa hbacrule-mod rule_name --servicecat=all

Modified HBAC rule "rule_name"

 Rule name: rule_name
 Host category: all
 Service category: all
 Enabled: True
 Users: sysadmin

NOTE

If the HBAC rule is associated with individual services or groups, ipa hbacrule-mod --
servicecat=all fails. In this situation, remove the services and groups using the ipa
hbacrule-remove-service command.

Verification

Verify that the HBAC rule has been added correctly.

a. Use the ipa hbacrule-find command to verify that the HBAC rule exists in IdM.

b. Use the ipa hbacrule-show command to verify the properties of the HBAC rule.

Additional resources

See ipa hbacrule-add --help for more details.

See Adding HBAC service entries for custom HBAC services .

See Adding HBAC service groups .

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

412

46.2.2. Testing HBAC rules in the IdM CLI

IdM allows you to test your HBAC configuration in various situations using simulated scenarios.
Performing these simulated tests, you can discover misconfiguration problems or security risks before
deploying HBAC rules in production.

Always test custom HBAC rules before you start using them in production.

Note that IdM does not test the effect of HBAC rules on trusted Active Directory (AD) users. Because
the IdM LDAP directory does not store the AD data, IdM cannot resolve group membership of AD users
when simulating HBAC scenarios.

Procedure

1. Use the ipa hbactest command to test your HBAC rule. You have the option to test a single
HBAC rule or multiple HBAC rules.

To test a single HBAC rule:

$ ipa hbactest --user=sysadmin --host=server.idm.example.com --service=sudo --
rules=rule_name

Access granted: True

 Matched rules: rule_name

To test multiple HBAC rules:

a. Add a second rule only allowing the sysadmin to use ssh on all hosts:

$ ipa hbacrule-add --hostcat=all rule2_name
$ ipa hbacrule-add-user --users sysadmin rule2_name
$ ipa hbacrule-add-service --hbacsvcs=sshd rule2_name
 Rule name: rule2_name
 Host category: all
 Enabled: True
 Users: admin
 HBAC Services: sshd

Number of members added 1

b. Test multiple HBAC rules by running the following command:

$ ipa hbactest --user=sysadmin --host=server.idm.example.com --service=sudo --
rules=rule_name --rules=rule2_name

Access granted: True

 Matched rules: rule_name
 Not matched rules: rule2_name

In the output, Matched rules list the rules that allowed successful access while Not matched rules list
the rules that prevented access. Note that if you do not specify the --rules option, all rules are applied.
Using --rules is useful to independently test each rule.

CHAPTER 46. CONFIGURING HOST-BASED ACCESS CONTROL RULES

413

Additional resources

See ipa hbactest --help for more information.

46.2.3. Disabling HBAC rules in the IdM CLI

You can disable an HBAC rule but it only deactivates the rule and does not delete it. If you disable an
HBAC rule, you can re-enable it later.

NOTE

Disabling HBAC rules is useful when you are configuring custom HBAC rules for the first
time. To ensure that your new configuration is not overridden by the default allow_all
HBAC rule, you must disable allow_all.

Procedure

Use the ipa hbacrule-disable command. For example, to disable the allow_all rule:

$ ipa hbacrule-disable allow_all

Disabled HBAC rule "allow_all"

Additional resources

See ipa hbacrule-disable --help for more details.

46.3. ADDING HBAC SERVICE ENTRIES FOR CUSTOM HBAC SERVICES

The most common services and service groups are configured for HBAC rules by default, but you can
also configure any other pluggable authentication module (PAM) service as an HBAC service. This
allows you to define custom PAM services in an HBAC rule. These PAM services files are in the
etc/pam.d directory on RHEL systems.

NOTE

Adding a service as an HBAC service is not the same as adding a service to the domain.
Adding a service to the domain makes it available to other resources in the domain, but it
does not allow you to use the service in HBAC rules.

46.3.1. Adding HBAC service entries for custom HBAC services in the IdM WebUI

To add a custom HBAC service entry, follow the steps described below.

Procedure

1. Select Policy>Host-Based Access Control>HBAC Services.

2. Click Add to add an HBAC service entry.

3. Enter a name for the service, and click Add.

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

414

46.3.2. Adding HBAC service entries for custom HBAC services in the IdM CLI

To add a custom HBAC service entry, follow the steps described below.

Procedure

Use the ipa hbacsvc-add command. For example, to add an entry for the tftp service:

$ ipa hbacsvc-add tftp

Added HBAC service "tftp"

 Service name: tftp

Additional resources

See ipa hbacsvc-add --help for more details.

46.4. ADDING HBAC SERVICE GROUPS

HBAC service groups can simplify HBAC rules management. For example, instead of adding individual
services to an HBAC rule, you can add a whole service group.

46.4.1. Adding HBAC service groups in the IdM WebUI

To add an HBAC service group in the IdM WebUI, follow the steps outlined below.

Procedure

1. Select Policy>Host-Based Access Control>HBAC Service Groups.

2. Click Add to add an HBAC service group.

3. Enter a name for the service group, and click Edit.

4. On the service group configuration page, click Add to add an HBAC service as a member of the
group.

46.4.2. Adding HBAC service groups in the IdM CLI

To add an HBAC service group in the IdM CLI, follow the steps outlined below.

Procedure

1. Use the ipa hbacsvcgroup-add command in your terminal to add an HBAC service group. For
example, to add a group named login:

$ ipa hbacsvcgroup-add
Service group name: login

Added HBAC service group "login"

 Service group name: login

2. Use the ipa hbacsvcgroup-add-member command to add an HBAC service as a member of

CHAPTER 46. CONFIGURING HOST-BASED ACCESS CONTROL RULES

415

2. Use the ipa hbacsvcgroup-add-member command to add an HBAC service as a member of
the group. For example, to add the sshd service to the login group:

$ ipa hbacsvcgroup-add-member
Service group name: login
[member HBAC service]: sshd
 Service group name: login
 Member HBAC service: sshd

Number of members added 1

Additional resources

See ipa hbacsvcgroup-add --help for more details.

See ipa hbacsvcgroup-add-member --help for more details.

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

416

CHAPTER 47. ENSURING THE PRESENCE OF HOST-BASED
ACCESS CONTROL RULES IN IDM USING ANSIBLE

PLAYBOOKS
Ansible is an automation tool used to configure systems, deploy software, and perform rolling updates.
It includes support for Identity Management (IdM).

Learn more about Identity Management (IdM) host-based access policies and how to define them using
Ansible.

47.1. HOST-BASED ACCESS CONTROL RULES IN IDM

Host-based access control (HBAC) rules define which users or user groups can access which hosts or
host groups by using which services or services in a service group. As a system administrator, you can
use HBAC rules to achieve the following goals:

Limit access to a specified system in your domain to members of a specific user group.

Allow only a specific service to be used to access systems in your domain.

By default, IdM is configured with a default HBAC rule named allow_all, which means universal access to
every host for every user via every relevant service in the entire IdM domain.

You can fine-tune access to different hosts by replacing the default allow_all rule with your own set of
HBAC rules. For centralized and simplified access control management, you can apply HBAC rules to
user groups, host groups, or service groups instead of individual users, hosts, or services.

47.2. ENSURING THE PRESENCE OF AN HBAC RULE IN IDM USING AN
ANSIBLE PLAYBOOK

Follow this procedure to ensure the presence of a host-based access control (HBAC) rule in
Identity Management (IdM) using an Ansible playbook.

Prerequisites

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

The users and user groups you want to use for your HBAC rule exist in IdM. See Managing user
accounts using Ansible playbooks and Ensuring the presence of IdM groups and group
members using Ansible playbooks for details.

The hosts and host groups to which you want to apply your HBAC rule exist in IdM. See

CHAPTER 47. ENSURING THE PRESENCE OF HOST-BASED ACCESS CONTROL RULES IN IDM USING ANSIBLE PLAYBOOKS

417

https://docs.ansible.com
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

The hosts and host groups to which you want to apply your HBAC rule exist in IdM. See
Managing hosts using Ansible playbooks and Managing host groups using Ansible playbooks for
details.

Procedure

1. Create an inventory file, for example inventory.file, and define ipaserver in it:

[ipaserver]
server.idm.example.com

2. Create your Ansible playbook file that defines the HBAC policy whose presence you want to
ensure. To simplify this step, you can copy and modify the example in
the /usr/share/doc/ansible-freeipa/playbooks/hbacrule/ensure-hbacrule-allhosts-
present.yml file:

- name: Playbook to handle hbacrules
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 # Ensure idm_user can access client.idm.example.com via the sshd service
 - ipahbacrule:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: login
 user: idm_user
 host: client.idm.example.com
 hbacsvc:
 - sshd
 state: present

3. Run the playbook:

$ ansible-playbook --vault-password-file=password_file -v -i
path_to_inventory_directory/inventory.file path_to_playbooks_directory/ensure-new-
hbacrule-present.yml

Verification

1. Log in to the IdM Web UI as administrator.

2. Navigate to Policy → Host-Based-Access-Control → HBAC Test.

3. In the Who tab, select idm_user.

4. In the Accessing tab, select client.idm.example.com.

5. In the Via service tab, select sshd.

6. In the Rules tab, select login.

7. In the Run test tab, click the Run test button. If you see ACCESS GRANTED, the HBAC rule is
implemented successfully.

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

418

Additional resources

See the README-hbacsvc.md, README-hbacsvcgroup.md, and README-hbacrule.md
files in the /usr/share/doc/ansible-freeipa directory.

See the playbooks in the subdirectories of the /usr/share/doc/ansible-freeipa/playbooks
directory.

CHAPTER 47. ENSURING THE PRESENCE OF HOST-BASED ACCESS CONTROL RULES IN IDM USING ANSIBLE PLAYBOOKS

419

CHAPTER 48. MANAGING PUBLIC SSH KEYS FOR USERS AND
HOSTS

SSH (Secure Shell) is a protocol which provides secure communications between two systems using a
client-server architecture. SSH allows users to log in to server host systems remotely and also allows one
host machine to access another machine.

48.1. ABOUT THE SSH KEY FORMAT

IdM accepts the following two SSH key formats:

OpenSSH-style key

Raw RFC 4253-style key

Note that IdM automatically converts RFC 4253-style keys into OpenSSH-style keys before saving
them into the IdM LDAP server.

The IdM server can identify the type of key, such as an RSA or DSA key, from the uploaded key blob. In a
key file such as ~/.ssh/known_hosts, a key entry is identified by the hostname and IP address of the
server, its type, and the key. For example:

host.example.com,1.2.3.4 ssh-rsa AAA...ZZZ==

This is different from a user public key entry, which has the elements in the order type key== comment :

"ssh-rsa ABCD1234...== ipaclient.example.com"

A key file, such as id_rsa.pub, consists of three parts: the key type, the key, and an additional comment
or identifier. When uploading a key to IdM, you can upload all three key parts or only the key. If you only
upload the key, IdM automatically identifies the key type, such as RSA or DSA, from the uploaded key.

If you use the host public key entry from the ~/.ssh/known_hosts file, you must reorder it to match the
format of a user key, type key== comment :

ssh-rsa AAA...ZZZ== host.example.com,1.2.3.4

IdM can determine the key type automatically from the content of the public key. The comment is
optional, to make identifying individual keys easier. The only required element is the public key blob.

IdM uses public keys stored in the following OpenSSH-style files:

Host public keys are in the known_hosts file.

User public keys are in the authorized_keys file.

Additional resources

See RFC 4716

See RFC 4253

48.2. ABOUT IDM AND OPENSSH

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

420

https://www.rfc-editor.org/rfc/rfc4716
https://www.rfc-editor.org/rfc/rfc4253

During an IdM server or client installation, as part of the install script:

An OpenSSH server and client is configured on the IdM client machine.

SSSD is configured to store and retrieve user and host SSH keys in cache. This allows IdM to
serve as a universal and centralized repository of SSH keys.

If you enable the SSH service during the client installation, an RSA key is created when the SSH service
is started for the first time.

NOTE

When you run the ipa-client-install install script to add the machine as an IdM client, the
client is created with two SSH keys, RSA and DSA.

As part of the installation, you can configure the following:

Configure OpenSSH to automatically trust the IdM DNS records where the key fingerprints are
stored using the --ssh-trust-dns option.

Disable OpenSSH and prevent the install script from configuring the OpenSSH server using the
--no-sshd option.

Prevent the host from creating DNS SSHFP records with its own DNS entries using the --no-
dns-sshfp option.

If you do not configure the server or client during installation, you can manually configure SSSD later.
For information on how to manually configure SSSD, see Configuring SSSD to Provide a Cache for the
OpenSSH Services. Note that caching SSH keys by SSSD requires administrative privileges on the local
machines.

48.3. GENERATING SSH KEYS

You can generate an SSH key by using the OpenSSH ssh-keygen utility.

Procedure

1. To generate an RSA SSH key, run the following command:

$ ssh-keygen -t rsa -C user@example.com
Generating public/private rsa key pair.

Note if generating a host key, replace user@example.com with the required hostname, such as
server.example.com,1.2.3.4.

2. Specify the file where you are saving the key or press enter to accept the displayed default
location.

Enter file in which to save the key (/home/user/.ssh/id_rsa):

Note if generating a host key, save the key to a different location than the user’s ~/.ssh/
directory so you do not overwrite any existing keys. for example, /home/user/.ssh/host_keys.

3. Specify a passphrase for your private key or press enter to leave the passphrase blank.

CHAPTER 48. MANAGING PUBLIC SSH KEYS FOR USERS AND HOSTS

421

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/linux_domain_identity_authentication_and_policy_guide/openssh-sssd
mailto:user@example.com

Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in /home/user/.ssh/id_rsa.
Your public key has been saved in /home/user/.ssh/id_rsa.pub.
The key fingerprint is:
SHA256:ONxjcMX7hJ5zly8F8ID9fpbqcuxQK+ylVLKDMsJPxGA user4@example.com
The key's randomart image is:
+---[RSA 3072]----+
| ..o |
| .o + |
| E. . o = |
| ..o= o . + |
| +oS. = + o.|
| . .o .* B =.+|
| o + . X.+.= |
| + o o.*+. .|
| . o=o . |
+----[SHA256]-----+

To upload this SSH key, use the public key string stored in the displayed file.

48.4. MANAGING PUBLIC SSH KEYS FOR HOSTS

OpenSSH uses public keys to authenticate hosts. One machine attempts to access another machine
and presents its key pair. The first time the host authenticates, the administrator on the target machine
has to approve the request manually. The machine then stores the host’s public key in a known_hosts
file. Any time that the remote machine attempts to access the target machine again, the target machine
checks its known_hosts file and then grants access automatically to approved hosts.

48.4.1. Uploading SSH keys for a host using the IdM Web UI

Identity Management allows you to upload a public SSH key to a host entry. OpenSSH uses public keys
to authenticate hosts.

Prerequisites

Administrator privileges for managing the IdM Web UI or User Administrator role.

Procedure

1. You can retrieve the key for your host from a ~/.ssh/known_hosts file. For example:

server.example.com,1.2.3.4 ssh-rsa
AAAAB3NzaC1yc2EAAAABIwAAAQEApvjBvSFSkTU0WQW4eOweeo0DZZ08F9Ud21xlLy6F
OhzwpXFGIyxvXZ52+siHBHbbqGL5+14N7UvElruyslIHx9LYUR/pPKSMXCGyboLy5aTNl5OQ5
EHwrhVnFDIKXkvp45945R7SKYCUtRumm0Iw6wq0XD4o+ILeVbV3wmcB1bXs36ZvC/M6riefn
9PcJmh6vNCvIsbMY6S+FhkWUTTiOXJjUDYRLlwM273FfWhzHK+SSQXeBp/zIn1gFvJhSZMR
i9HZpDoqxLbBB9QIdIw6U4MIjNmKsSI/ASpkFm2GuQ7ZK9KuMItY2AoCuIRmRAdF8iYNHBT
XNfFurGogXwRDjQ==

You can also generate a host key. See Generating SSH keys .

2. Copy the public key from the key file. The full key entry has the form host name,IP type key==.

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

422

2. Copy the public key from the key file. The full key entry has the form host name,IP type key==.
Only the key== is required, but you can store the entire entry. To use all elements in the entry,
rearrange the entry so it has the order type key== [host name,IP].

cat /home/user/.ssh/host_keys.pub
ssh-rsa AAAAB3NzaC1yc2E...tJG1PK2Mq++wQ== server.example.com,1.2.3.4

3. Log into the IdM Web UI.

4. Go to the Identity>Hosts tab.

5. Click the name of the host to edit.

6. In the Host Settings section, click the SSH public keys Add button.

7. Paste the public key for the host into the SSH public key field.

8. Click Set.

9. Click Save at the top of the IdM Web UI window.

Verification

Under the Hosts Settings section, verify the key is listed under SSH public keys.

48.4.2. Uploading SSH keys for a host using the IdM CLI

Identity Management allows you to upload a public SSH key to a host entry. OpenSSH uses public keys
to authenticate hosts. Host SSH keys are added to host entries in IdM, when the host is created using
host-add or by modifying the entry later.

Note RSA and DSA host keys are created by the ipa-client-install command, unless the SSH service is
explicitly disabled in the installation script.

Prerequisites

Administrator privileges for managing IdM or User Administrator role.

Procedure

1. Run the host-mod command with the --sshpubkey option to upload the base64-encoded
public key to the host entry.
Because adding a host key changes the DNS Secure Shell fingerprint (SSHFP) record for the
host, use the --updatedns option to update the host’s DNS entry. For example:

$ ipa host-mod --sshpubkey="ssh-rsa RjlzYQo==" --updatedns host1.example.com

A real key also usually ends with an equal sign (=) but is longer.

2. To upload more than one key, enter multiple --sshpubkey command-line parameters:

--sshpubkey="RjlzYQo==" --sshpubkey="ZEt0TAo=="

NOTE

CHAPTER 48. MANAGING PUBLIC SSH KEYS FOR USERS AND HOSTS

423

NOTE

A host can have multiple public keys.

3. After uploading the host keys, configure SSSD to use Identity Management as one of its identity
domains and set up OpenSSH to use the SSSD tools for managing host keys, covered in
Configuring SSSD to Provide a Cache for the OpenSSH Services .

Verification

Run the ipa host-show command to verify that the SSH public key is associated with the
specified host:

$ ipa host-show client.ipa.test
...
SSH public key fingerprint:
SHA256:qGaqTZM60YPFTngFX0PtNPCKbIuudwf1D2LqmDeOcuA
 client@IPA.TEST (ssh-rsa)
...

48.4.3. Deleting SSH keys for a host using the IdM Web UI

You can remove the host keys once they expire or are no longer valid. Follow the steps below to remove
an individual host key by using the IdM Web UI.

Prerequisites

Administrator privileges for managing the IdM Web UI or Host Administrator role.

Procedure

1. Log into the IdM Web UI.

2. Go to the Identity>Hosts tab.

3. Click the name of the host to edit.

4. Under the Host Settings section, click Delete next to the SSH public key you want to remove.

5. Click Save at the top of the page.

Verification

Under the Host Settings section, verify the key is no longer listed under SSH public keys.

48.4.4. Deleting SSH keys for a host using the IdM CLI

You can remove the host keys once they expire or are no longer valid. Follow the steps below to remove
an individual host key by using the IdM CLI.

Prerequisites

Administrator privileges for managing the IdM CLI or Host Administrator role.

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

424

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/linux_domain_identity_authentication_and_policy_guide/openssh-sssd

Procedure

To delete all SSH keys assigned to a host account, add the --sshpubkey option to the ipa host-
mod command without specifying any key:

$ kinit admin
$ ipa host-mod --sshpubkey= --updatedns host1.example.com

Note that it is good practice to use the --updatedns option to update the host’s DNS entry.

IdM determines the key type automatically from the key, if the type is not included in the uploaded key.

Verification

Run the ipa host-show command to verify that the SSH public key is no longer associated with
the specified host:

ipa host-show client.ipa.test
 Host name: client.ipa.test
 Platform: x86_64
 Operating system: 4.18.0-240.el8.x86_64
 Principal name: host/client.ipa.test@IPA.TEST
 Principal alias: host/client.ipa.test@IPA.TEST
 Password: False
 Member of host-groups: ipaservers
 Roles: helpdesk
 Member of netgroups: test
 Member of Sudo rule: test2
 Member of HBAC rule: test
 Keytab: True
 Managed by: client.ipa.test, server.ipa.test
 Users allowed to retrieve keytab: user1, user2, user3

48.5. MANAGING PUBLIC SSH KEYS FOR USERS

Identity Management allows you to upload a public SSH key to a user entry. The user who has access to
the corresponding private SSH key can use SSH to log into an IdM machine without using Kerberos
credentials. Note that users can still authenticate by providing their Kerberos credentials if they are
logging in from a machine where their private SSH key file is not available.

48.5.1. Uploading SSH keys for a user using the IdM Web UI

Identity Management allows you to upload a public SSH key to a user entry. The user who has access to
the corresponding private SSH key can use SSH to log into an IdM machine without using Kerberos
credentials.

Prerequisites

Administrator privileges for managing the IdM Web UI or User Administrator role.

Procedure

1. Log into the IdM Web UI.

CHAPTER 48. MANAGING PUBLIC SSH KEYS FOR USERS AND HOSTS

425

2. Go to the Identity>Users tab.

3. Click the name of the user to edit.

4. In the Account Settings section, click the SSH public keys Add button.

5. Paste the Base 64-encoded public key string into the SSH public key field.

6. Click Set.

7. Click Save at the top of the IdM Web UI window.

Verification

Under the Accounts Settings section, verify the key is listed under SSH public keys.

48.5.2. Uploading SSH keys for a user using the IdM CLI

Identity Management allows you to upload a public SSH key to a user entry. The user who has access to
the corresponding private SSH key can use SSH to log into an IdM machine without using Kerberos
credentials.

Prerequisites

Administrator privileges for managing the IdM CLI or User Administrator role.

Procedure

1. Run the ipa user-mod command with the --sshpubkey option to upload the base64-encoded
public key to the user entry.

$ ipa user-mod user --sshpubkey="ssh-rsa AAAAB3Nza...SNc5dv== client.example.com"

Note in this example you upload the key type, the key, and the hostname identifier to the user
entry.

2. To upload multiple keys, use --sshpubkey multiple times. For example, to upload two SSH keys:

--sshpubkey="AAAAB3Nza...SNc5dv==" --sshpubkey="RjlzYQo...ZEt0TAo="

3. To use command redirection and point to a file that contains the key instead of pasting the key
string manually, use the following command:

ipa user-mod user --sshpubkey="$(cat ~/.ssh/id_rsa.pub)" --sshpubkey="$(cat
~/.ssh/id_rsa2.pub)"

Verification

Run the ipa user-show command to verify that the SSH public key is associated with the
specified user:

$ ipa user-show user
User login: user
 First name: user

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

426

 Last name: user
 Home directory: /home/user
 Login shell: /bin/sh
 Principal name: user@IPA.TEST
 Principal alias: user@IPA.TEST
 Email address: user@ipa.test
 UID: 1118800019
 GID: 1118800019
 SSH public key fingerprint:
SHA256:qGaqTZM60YPFTngFX0PtNPCKbIuudwf1D2LqmDeOcuA
 user@IPA.TEST (ssh-rsa)
 Account disabled: False
 Password: False
 Member of groups: ipausers
 Subordinate ids: 3167b7cc-8497-4ff2-ab4b-6fcb3cb1b047
 Kerberos keys available: False

48.5.3. Deleting SSH keys for a user using the IdM Web UI

Follow this procedure to delete an SSH key from a user profile in the IdM Web UI.

Prerequisites

Administrator privileges for managing the IdM Web UI or User Administrator role.

Procedure

1. Log into the IdM Web UI.

2. Go to the Identity>Users tab.

3. Click the name of the user to edit.

4. Under the Account Settings section, under SSH public key, click Delete next to the key you
want to remove.

5. Click Save at the top of the page.

Verification

Under the Account Settings section, verify the key is no longer listed under SSH public keys.

48.5.4. Deleting SSH keys for a user using the IdM CLI

Follow this procedure to delete an SSH key from a user profile by using the IdM CLI.

Prerequisites

Administrator privileges for managing the IdM CLI or User Administrator role.

Procedure

1. To delete all SSH keys assigned to a user account, add the --sshpubkey option to the ipa user-
mod command without specifying any key:

CHAPTER 48. MANAGING PUBLIC SSH KEYS FOR USERS AND HOSTS

427

$ ipa user-mod user --sshpubkey=

2. To only delete a specific SSH key or keys, use the --sshpubkey option to specify the keys you
want to keep, omitting the key you are deleting.

Verification

Run the ipa user-show command to verify that the SSH public key is no longer associated with
the specified user:

$ ipa user-show user
User login: user
 First name: user
 Last name: user
 Home directory: /home/user
 Login shell: /bin/sh
 Principal name: user@IPA.TEST
 Principal alias: user@IPA.TEST
 Email address: user@ipa.test
 UID: 1118800019
 GID: 1118800019
 Account disabled: False
 Password: False
 Member of groups: ipausers
 Subordinate ids: 3167b7cc-8497-4ff2-ab4b-6fcb3cb1b047
 Kerberos keys available: False

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

428

CHAPTER 49. CONFIGURING THE DOMAIN RESOLUTION
ORDER TO RESOLVE SHORT AD USER NAMES

By default, you must specify fully qualified names in the format user_name@domain.com or
domain.com\user_name to resolve and authenticate users and groups from an Active Directory (AD)
environment. The following sections describe how to configure IdM servers and clients to resolve short
AD usernames and group names.

How domain resolution order works

Setting the global domain resolution order on an IdM server

Setting the domain resolution order for an ID view on an IdM server

Using Ansible to create an ID view with a domain resolution order

Setting the domain resolution order in SSSD on an IdM client

49.1. HOW DOMAIN RESOLUTION ORDER WORKS

In Identity Management (IdM) environments with an Active Directory (AD) trust, Red Hat recommends
that you resolve and authenticate users and groups by specifying their fully qualified names. For
example:

<idm_username>@idm.example.com for IdM users from the idm.example.com domain

<ad_username>@ad.example.com for AD users from the ad.example.com domain

By default, if you perform user or group lookups using the short name format, such as ad_username,
IdM only searches the IdM domain and fails to find the AD users or groups. To resolve AD users or
groups using short names, change the order in which IdM searches multiple domains by setting the
domain resolution order option.

You can set the domain resolution order centrally in the IdM database or in the SSSD configuration of
individual clients. IdM evaluates domain resolution order in the following order of priority:

The local /etc/sssd/sssd.conf configuration.

The ID view configuration.

The global IdM configuration.

Notes

You must use fully qualified usernames if the SSSD configuration on the host includes the
default_domain_suffix option and you want to make a request to a domain not specified with
this option.

If you use the domain resolution order option and query the compat tree, you might receive
multiple user IDs (UIDs). If this might affect you, see Pagure bug report Inconsistent compat
user objects for AD users when domain resolution order is set.

IMPORTANT

CHAPTER 49. CONFIGURING THE DOMAIN RESOLUTION ORDER TO RESOLVE SHORT AD USER NAMES

429

https://pagure.io/freeipa/issue/7748

IMPORTANT

Do not use the full_name_format SSSD option on IdM clients or IdM servers. Using a
non-default value for this option changes how usernames are displayed and might disrupt
lookups in an IdM environment.

Additional resources

Active Directory Trust for Legacy Linux Clients .

49.2. SETTING THE GLOBAL DOMAIN RESOLUTION ORDER ON AN
IDM SERVER

This procedure sets the domain resolution order for all the clients in the IdM domain. This example sets
the domain resolution order to search for users and groups in the following order:

1. Active Directory (AD) root domain ad.example.com

2. AD child domain subdomain1.ad.example.com

3. IdM domain idm.example.com

Prerequisites

You have configured a trust with an AD environment.

Procedure

Use the ipa config-mod --domain-resolution-order command to list the domains to be
searched in your preferred order. Separate the domains with a colon (:).

[user@server ~]$ ipa config-mod --domain-resolution-
order='ad.example.com:subdomain1.ad.example.com:idm.example.com'
Maximum username length: 32
Home directory base: /home
...
 Domain Resolution Order:
ad.example.com:subdomain1.ad.example.com:idm.example.com
...

Verification

Verify you can retrieve user information for a user from the ad.example.com domain using only
a short name.

[root@client ~]# id <ad_username>
uid=1916901102(ad_username) gid=1916900513(domain users)
groups=1916900513(domain users)

49.3. SETTING THE DOMAIN RESOLUTION ORDER FOR AN ID VIEW
ON AN IDM SERVER

This procedure sets the domain resolution order for an ID view that you can apply to a specific set of IdM

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

430

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/windows_integration_guide/trust-legacy

servers and clients. This example creates an ID view named ADsubdomain1_first for IdM host
client1.idm.example.com, and sets the domain resolution order to search for users and groups in the
following order:

1. Active Directory (AD) child domain subdomain1.ad.example.com

2. AD root domain ad.example.com

3. IdM domain idm.example.com

NOTE

The domain resolution order set in an ID view overrides the global domain resolution
order, but it does not override any domain resolution order set locally in the SSSD
configuration.

Prerequisites

You have configured a trust with an AD environment.

Procedure

1. Create an ID view with the --domain-resolution-order option set.

[user@server ~]$ ipa idview-add ADsubdomain1_first --desc "ID view for resolving AD
subdomain1 first on client1.idm.example.com" --domain-resolution-order
subdomain1.ad.example.com:ad.example.com:idm.example.com

Added ID View "ADsubdomain1_first"

ID View Name: ADsubdomain1_first
Description: ID view for resolving AD subdomain1 first on client1.idm.example.com
Domain Resolution Order:
subdomain1.ad.example.com:ad.example.com:idm.example.com

2. Apply the ID view to IdM hosts.

[user@server ~]$ ipa idview-apply ADsubdomain1_first --hosts
client1.idm.example.com

Applied ID View "ADsubdomain1_first"

 hosts: client1.idm.example.com

Number of hosts the ID View was applied to: 1

Verification

Display the details of the ID view.

[user@server ~]$ ipa idview-show ADsubdomain1_first --show-hosts
 ID View Name: ADsubdomain1_first
 Description: ID view for resolving AD subdomain1 first on client1.idm.example.com

CHAPTER 49. CONFIGURING THE DOMAIN RESOLUTION ORDER TO RESOLVE SHORT AD USER NAMES

431

 Hosts the view applies to: client1.idm.example.com
 Domain resolution order:
subdomain1.ad.example.com:ad.example.com:idm.example.com

Verify you can retrieve user information for a user from the subdomain1.ad.example.com
domain using only a short name.

[root@client1 ~]# id <user_from_subdomain1>
uid=1916901106(user_from_subdomain1) gid=1916900513(domain users)
groups=1916900513(domain users)

49.4. USING ANSIBLE TO CREATE AN ID VIEW WITH A DOMAIN
RESOLUTION ORDER

You can use the ansible-freeipa idview module to add, modify, and delete ID views in your Identity
Management (IdM) deployment. For example, you can create an ID view with a domain resolution order
to enable short name notation.

Short name notation substitutes a full user name from Active Directory (AD), such as
aduser05@ad.example.com, with a short login, in this case aduser05. That means that when using SSH
to log in to an IdM client, aduser05 can enter ssh aduser05@client.idm.example.com instead of ssh
aduser05@ad.example.com@client.idm.example.com. The same applies to other commands, such as id.

Complete this procedure to use Ansible to:

Define a string of colon-separated domains used for short name qualification. In the example,
the string is ad.example.com:idm.example.com.

Create an ID view that instructs SSSD to first search a user name in the first domain identified in
the string. In the example, this is ad.example.com.

Apply the ID view to a specific host. In the example, this is testhost.idm.example.com.

NOTE

You can apply only one ID view to an IdM client. Applying a new ID view automatically
removes the previous ID view, if applicable.

Prerequisites

On the control node:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package.

You have created an Ansible inventory file with the fully-qualified domain name (FQDN) of
the IdM server in the ~/MyPlaybooks/ directory.

You are using RHEL 8.10 and later.

You have stored your ipaadmin_password in the secret.yml Ansible vault.

testhost.idm.example.com is an IdM client.

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

432

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

Procedure

1. Navigate to your ~/MyPlaybooks/ directory and create an Ansible playbook file add-id-view-
with-domain-resolution-order.yml with the following content:

- name: Playbook to add idview and apply it to an IdM client
 hosts: ipaserver
 vars_files:
 - /home/<user_name>/MyPlaybooks/secret.yml
 become: false
 gather_facts: false

 tasks:
 - name: Add idview and apply it to testhost.idm.example.com
 ipaidview:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: test_idview
 host: testhost.idm.example.com
 domain_resolution_order: "ad.example.com:ipa.example.com"

2. Run the playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i inventory add-id-view-
with-domain-resolution-order.yml

Verification

1. SSH to testhost.idm.example.com.

2. Verify you can retrieve user information for a user from the ad.example.com domain using only
a short name.

[root@testhost ~]# id aduser05
uid=1916901102(aduser05) gid=1916900513(domain users) groups=1916900513(domain
users)

Additional resources

The idview module in ansible-freeipa upstream docs

49.5. SETTING THE DOMAIN RESOLUTION ORDER IN SSSD ON AN IDM
CLIENT

This procedure sets the domain resolution order in the SSSD configuration on an IdM client. This
example configures IdM host client2.idm.example.com to search for users and groups in the following
order:

1. Active Directory (AD) child domain subdomain1.ad.example.com

CHAPTER 49. CONFIGURING THE DOMAIN RESOLUTION ORDER TO RESOLVE SHORT AD USER NAMES

433

https://github.com/freeipa/ansible-freeipa/blob/master/README-idview.md

2. AD root domain ad.example.com

3. IdM domain idm.example.com

NOTE

The domain resolution order in the local SSSD configuration overrides any global and ID
view domain resolution order.

Prerequisites

You have configured a trust with an AD environment.

Procedure

1. Open the /etc/sssd/sssd.conf file in a text editor.

2. Set the domain_resolution_order option in the [sssd] section of the file.

domain_resolution_order = subdomain1.ad.example.com, ad.example.com,
idm.example.com

3. Save and close the file.

4. Restart the SSSD service to load the new configuration settings.

[root@client2 ~]# systemctl restart sssd

Verification

Verify you can retrieve user information for a user from the subdomain1.ad.example.com
domain using only a short name.

[root@client2 ~]# id <user_from_subdomain1>
uid=1916901106(user_from_subdomain1) gid=1916900513(domain users)
groups=1916900513(domain users)

49.6. ADDITIONAL RESOURCES

Using an ID view to override a user attribute value on an IdM client

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

434

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/using-an-id-view-to-override-a-user-attribute-value-on-an-idm-client_configuring-and-managing-idm

CHAPTER 50. ENABLING AUTHENTICATION USING AD USER
PRINCIPAL NAMES IN IDM

50.1. USER PRINCIPAL NAMES IN AN AD FOREST TRUSTED BY IDM

As an Identity Management (IdM) administrator, you can allow AD users to use alternative User
Principal Names (UPNs) to access resources in the IdM domain. A UPN is an alternative user login that
AD users authenticate with in the format of user_name@KERBEROS-REALM. As an AD administrator,
you can set alternative values for both user_name and KERBEROS-REALM, since you can configure
both additional Kerberos aliases and UPN suffixes in an AD forest.

For example, if a company uses the Kerberos realm AD.EXAMPLE.COM, the default UPN for a user
is user@ad.example.com. To allow your users to log in using their email addresses, for
example user@example.com, you can configure EXAMPLE.COM as an alternative UPN in AD.
Alternative UPNs (also known as enterprise UPNs) are especially convenient if your company has
recently experienced a merge and you want to provide your users with a unified logon namespace.

UPN suffixes are only visible for IdM when defined in the AD forest root. As an AD administrator, you can
define UPNs with the Active Directory Domain and Trust utility or the PowerShell command line tool.

NOTE

To configure UPN suffixes for users, Red Hat recommends to use tools that perform
error validation, such as the Active Directory Domain and Trust utility.

Red Hat recommends against configuring UPNs through low-level modifications, such as
using ldapmodify commands to set the userPrincipalName attribute for users, because
Active Directory does not validate those operations.

After you define a new UPN on the AD side, run the ipa trust-fetch-domains command on an IdM server
to retrieve the updated UPNs. See Ensuring that AD UPNs are up-to-date in IdM .

IdM stores the UPN suffixes for a domain in the multi-value attribute ipaNTAdditionalSuffixes of the
subtree cn=trusted_domain_name,cn=ad,cn=trusts,dc=idm,dc=example,dc=com.

Additional resources

How to script UPN suffix setup in AD forest root

How to manually modify AD user entries and bypass any UPN suffix validation

Trust controllers and trust agents

50.2. ENSURING THAT AD UPNS ARE UP-TO-DATE IN IDM

After you add or remove a User Principal Name (UPN) suffix in a trusted Active Directory (AD) forest,
refresh the information for the trusted forest on an IdM server.

Prerequisites

IdM administrator credentials.

Procedure

CHAPTER 50. ENABLING AUTHENTICATION USING AD USER PRINCIPAL NAMES IN IDM

435

https://docs.microsoft.com/en-us/powershell/module/activedirectory/set-adforest
https://docs.microsoft.com/en-us/microsoft-365/enterprise/prepare-a-non-routable-domain-for-directory-synchronization
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/planning_identity_management/planning-a-cross-forest-trust-between-idm-and-ad_planning-identity-management#trust-controllers-and-trust-agents_planning-a-cross-forest-trust-between-idm-and-ad

Enter the ipa trust-fetch-domains command. Note that a seemingly empty output is expected:

[root@ipaserver ~]# ipa trust-fetch-domains
Realm-Name: ad.example.com

No new trust domains were found

Number of entries returned 0

Verification

Enter the ipa trust-show command to verify that the server has fetched the new UPN. Specify
the name of the AD realm when prompted:

[root@ipaserver ~]# ipa trust-show
Realm-Name: ad.example.com
 Realm-Name: ad.example.com
 Domain NetBIOS name: AD
 Domain Security Identifier: S-1-5-21-796215754-1239681026-23416912
 Trust direction: One-way trust
 Trust type: Active Directory domain
 UPN suffixes: example.com

The output shows that the example.com UPN suffix is now part of the ad.example.com realm entry.

50.3. GATHERING TROUBLESHOOTING DATA FOR AD UPN
AUTHENTICATION ISSUES

Follow this procedure to gather troubleshooting data about the User Principal Name (UPN)
configuration from your Active Directory (AD) environment and your IdM environment. If your AD users
are unable to log in using alternate UPNs, you can use this information to narrow your troubleshooting
efforts.

Prerequisites

You must be logged in to an IdM Trust Controller or Trust Agent to retrieve information from an
AD domain controller.

You need root permissions to modify the following configuration files, and to restart IdM
services.

Procedure

1. Open the /usr/share/ipa/smb.conf.empty configuration file in a text editor.

2. Add the following contents to the file.

[global]
log level = 10

3. Save and close the /usr/share/ipa/smb.conf.empty file.

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

436

4. Open the /etc/ipa/server.conf configuration file in a text editor. If you do not have that file,
create one.

5. Add the following contents to the file.

[global]
debug = True

6. Save and close the /etc/ipa/server.conf file.

7. Restart the Apache webserver service to apply the configuration changes:

[root@server ~]# systemctl restart httpd

8. Retrieve trust information from your AD domain:

[root@server ~]# ipa trust-fetch-domains <ad.example.com>

9. Review the debugging output and troubleshooting information in the following log files:

/var/log/httpd/error_log

/var/log/samba/log.*

Additional resources

See Using rpcclient to gather troubleshooting data for AD UPN authentication issues .

CHAPTER 50. ENABLING AUTHENTICATION USING AD USER PRINCIPAL NAMES IN IDM

437

https://access.redhat.com/solutions/5825651

CHAPTER 51. ENABLING AD USERS TO ADMINISTER IDM

51.1. ID OVERRIDES FOR AD USERS

In Red Hat Enterprise Linux (RHEL) 7, external group membership allows Active Directory (AD) users
and groups to access Identity Management (IdM) resources in a POSIX environment with the help of
the System Security Services Daemon (SSSD).

The IdM LDAP server has its own mechanisms to grant access control. RHEL 8 introduces an update
that allows adding an ID user override for an AD user as a member of an IdM group. An ID override is a
record describing what a specific Active Directory user or group properties should look like within a
specific ID view, in this case the Default Trust View. As a consequence of the update, the IdM LDAP
server is able to apply access control rules for the IdM group to the AD user.

AD users are now able to use the self service features of IdM UI, for example to upload their SSH keys,
or change their personal data. An AD administrator is able to fully administer IdM without having two
different accounts and passwords.

NOTE

Currently, selected features in IdM may still be unavailable to AD users. For example,
setting passwords for IdM users as an AD user from the IdM admins group might fail.

IMPORTANT

Do not use ID overrides of AD users for sudo rules in IdM. ID overrides of AD users
represent only POSIX attributes of AD users, not AD users themselves.

Additional resources

Using ID views for Active Directory users

51.2. USING ID OVERRIDES TO ENABLE AD USERS TO ADMINISTER
IDM

Follow this procedure to create and use an ID override for an AD user to give that user rights identical to
those of an IdM user. During this procedure, work on an IdM server that is configured as a trust controller
or a trust agent.

Prerequisites

The idm:DL1 stream is enabled on your Identity Management (IdM) server and you have
switched to the RPMs delivered through this stream:

yum module enable idm:DL1
yum distro-sync

The idm:DL1/adtrust profile is installed on your IdM server.

yum module install idm:DL1/adtrust

The profile contains all the packages necessary for installing an IdM server that will have a trust

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

438

The profile contains all the packages necessary for installing an IdM server that will have a trust
agreement with Active Directory (AD).

A working IdM environment is set up. For details, see Installing Identity Management .

A working trust between your IdM environment and AD is set up.

Procedure

1. As an IdM administrator, create an ID override for an AD user in the Default Trust View. For
example, to create an ID override for the user ad_user@ad.example.com:

kinit admin
ipa idoverrideuser-add 'default trust view' ad_user@ad.example.com

2. Add the ID override from the Default Trust View as a member of an IdM group. This must be a
non-POSIX group, as it interacts with Active Directory.
If the group in question is a member of an IdM role, the AD user represented by the ID override
gains all permissions granted by the role when using the IdM API, including both the command
line interface and the IdM web UI.

For example, to add the ID override for the ad_user@ad.example.com user to the IdM admins
group:

ipa group-add-member admins --idoverrideusers=ad_user@ad.example.com

3. Alternatively, you can add the ID override to a role, such as the User Administrator role:

ipa role-add-member 'User Administrator' --
idoverrideusers=ad_user@ad.example.com

Additional resources

Using ID views for Active Directory users

51.3. USING ANSIBLE TO ENABLE AD USERS TO ADMINISTER IDM

Follow this procedure to use an Ansible playbook to ensure that a user ID override is present in an
Identity Management (IdM) group. The user ID override is the override of an Active Directory (AD) user
that you created in the Default Trust View after you established a trust with AD. As a result of running
the playbook, an AD user, for example an AD administrator, is able to fully administer IdM without having
two different accounts and passwords.

Prerequisites

You know the IdM admin password.

You have installed a trust with AD .

The user ID override of the AD user already exists in IdM. If it does not, create it with the ipa
idoverrideuser-add 'default trust view' ad_user@ad.example.com command.

The group to which you are adding the user ID override already exists in IdM .

You are using the 4.8.7 version of IdM or later. To view the version of IdM you have installed on

CHAPTER 51. ENABLING AD USERS TO ADMINISTER IDM

439

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/index
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/assembly_using-id-views-for-active-directory-users_configuring-and-managing-idm
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-trust-between-idm-and-ad_installing-identity-management
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/managing-user-groups-using-ansible-playbooks_configuring-and-managing-idm#ensuring-the-presence-of-IdM-groups-and-group-members-using-Ansible-playbooks_managing-user-groups-using-ansible-playbooks

You are using the 4.8.7 version of IdM or later. To view the version of IdM you have installed on
your server, enter ipa --version.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

Procedure

1. Navigate to your ~/MyPlaybooks/ directory:

$ cd ~/MyPlaybooks/

2. Create an add-useridoverride-to-group.yml playbook with the following content:

- name: Playbook to ensure presence of users in a group
 hosts: ipaserver

 - name: Ensure the ad_user@ad.example.com user ID override is a member of the admins
group:
 ipagroup:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: admins
 idoverrideuser:
 - ad_user@ad.example.com

In the example:

Secret123 is the IdM admin password.

admins is the name of the IdM POSIX group to which you are adding the
ad_user@ad.example.com ID override. Members of this group have full administrator
privileges.

ad_user@ad.example.com is the user ID override of an AD administrator. The user is stored
in the AD domain with which a trust has been established.

3. Save the file.

4. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i inventory add-
useridoverride-to-group.yml

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

440

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

Additional resources

ID overrides for AD users

/usr/share/doc/ansible-freeipa/README-group.md

/usr/share/doc/ansible-freeipa/playbooks/user

Using ID views in Active Directory environments

51.4. VERIFYING THAT AN AD USER CAN PERFORM CORRECT
COMMANDS IN THE IDM CLI

This procedure checks that an Active Directory (AD) user can log into Identity Management (IdM)
command-line interface (CLI) and run commands appropriate for his role.

1. Destroy the current Kerberos ticket of the IdM administrator:

kdestroy -A

NOTE

The destruction of the Kerberos ticket is required because the GSSAPI
implementation in MIT Kerberos chooses credentials from the realm of the target
service by preference, which in this case is the IdM realm. This means that if a
credentials cache collection, namely the KCM:, KEYRING:, or DIR: type of
credentials cache is in use, a previously obtained admin or any other IdM
principal’s credentials will be used to access the IdM API instead of the AD user’s
credentials.

2. Obtain the Kerberos credentials of the AD user for whom an ID override has been created:

kinit ad_user@AD.EXAMPLE.COM
Password for ad_user@AD.EXAMPLE.COM:

3. Test that the ID override of the AD user enjoys the same privileges stemming from membership
in the IdM group as any IdM user in that group. If the ID override of the AD user has been added
to the admins group, the AD user can, for example, create groups in IdM:

ipa group-add some-new-group

Added group "some-new-group"

 Group name: some-new-group
 GID: 1997000011

51.5. USING ANSIBLE TO ENABLE AN AD USER TO ADMINISTER IDM

You can use the ansible-freeipa idoverrideuser and group modules to create a user ID override for an
Active Directory (AD) user from a trusted AD domain and give that user rights identical to those of an
IdM user. The procedure uses the example of the Default Trust View ID view to which the

CHAPTER 51. ENABLING AD USERS TO ADMINISTER IDM

441

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/enabling-ad-users-to-administer-idm_configuring-and-managing-idm#id-overrides-for-ad-users_enabling-ad-users-to-administer-idm
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/assembly_using-id-views-for-active-directory-users_configuring-and-managing-idm

administrator@addomain.com ID override is added in the first playbook task. In the next playbook task,
the administrator@addomain.com ID override is added to the IdM admins group as a member. As a
result, an AD administrator can administer IdM without having two different accounts and passwords.

Prerequisites

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

You are using RHEL 8.10 or later.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The AD forest is in trust with IdM. In the example, the name of the AD domain is addomain.com
and the fully-qualified domain name (FQDN) of the AD administrator is
administrator@addomain.com.

The ipaserver host in the inventory file is configured as a trust controller or a trust agent.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

Procedure

1. On your Ansible control node, create an enable-ad-admin-to-administer-idm.yml playbook
with a task to add the administrator@addomain.com user override to the Default Trust View:

- name: Enable AD administrator to act as a FreeIPA admin
 hosts: ipaserver
 become: false
 gather_facts: false

 tasks:
 - name: Ensure idoverride for administrator@addomain.com in 'default trust view'
 ipaidoverrideuser:
 ipaadmin_password: "{{ ipaadmin_password }}"
 idview: "Default Trust View"
 anchor: administrator@addomain.com

2. Use another playbook task in the same playbook to add the AD administrator user ID override to
the admins group:

 - name: Add the AD administrator as a member of admins
 ipagroup:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: admins
 idoverrideuser:
 - administrator@addomain.com

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

442

mailto:administrator@addomain.com
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

3. Save the file.

4. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i inventory enable-ad-
admin-to-administer-idm.yml

Verification

1. Log in to the IdM client as the AD Administrator:

$ ssh administrator@addomain.com@client.idm.example.com

2. Verify that you have obtained a valid ticket-granting ticket (TGT):

$ klist
Ticket cache: KCM:325600500:99540
Default principal: Administrator@ADDOMAIN.COM
Valid starting Expires Service principal
02/04/2024 11:54:16 02/04/2024 21:54:16 krbtgt/ADDOMAIN.COM@ADDOMAIN.COM
renew until 02/05/2024 11:54:16

3. Verify your admin privileges in IdM:

$ ipa user-add testuser --first=test --last=user

Added user "tuser"

 User login: tuser
 First name: test
 Last name: user
 Full name: test user
[...]

Additional resources

The idoverrideuser and ipagroup ansible-freeipa upstream documentation

Enabling AD users to administer IdM

CHAPTER 51. ENABLING AD USERS TO ADMINISTER IDM

443

https://github.com/freeipa/ansible-freeipa/blob/master/README-idoverrideuser.md
https://github.com/freeipa/ansible-freeipa/blob/master/README-group.md
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/managing_idm_users_groups_hosts_and_access_control_rules/index#enabling-ad-users-to-administer-idm_managing-users-groups-hosts

CHAPTER 52. USING EXTERNAL IDENTITY PROVIDERS TO
AUTHENTICATE TO IDM

You can associate users with external identity providers (IdP) that support the OAuth 2 device
authorization flow. When these users authenticate with the SSSD version available in RHEL 8.7 or later,
they receive RHEL Identity Management (IdM) single sign-on capabilities with Kerberos tickets after
performing authentication and authorization at the external IdP.

Notable features include:

Adding, modifying, and deleting references to external IdPs with ipa idp-* commands.

Enabling IdP authentication for users with the ipa user-mod --user-auth-type=idp command.

52.1. THE BENEFITS OF CONNECTING IDM TO AN EXTERNAL IDP

As an administrator, you might want to allow users stored in an external identity source, such as a cloud
services provider, to access RHEL systems joined to your Identity Management (IdM) environment. To
achieve this, you can delegate the authentication and authorization process of issuing Kerberos tickets
for these users to that external entity.

You can use this feature to expand IdM’s capabilities and allow users stored in external identity
providers (IdPs) to access Linux systems managed by IdM.

52.2. HOW IDM INCORPORATES LOGINS VIA EXTERNAL IDPS

SSSD 2.7.0 contains the sssd-idp package, which implements the idp Kerberos pre-authentication
method. This authentication method follows the OAuth 2.0 Device Authorization Grant flow to delegate
authorization decisions to external IdPs:

1. An IdM client user initiates OAuth 2.0 Device Authorization Grant flow, for example, by
attempting to retrieve a Kerberos TGT with the kinit utility at the command line.

2. A special code and website link are sent from the Authorization Server to the IdM KDC backend.

3. The IdM client displays the link and the code to the user. In this example, the IdM client outputs
the link and code on the command line.

4. The user opens the website link in a browser, which can be on another host, a mobile phone, and
so on:

a. The user enters the special code.

b. If necessary, the user logs in to the OAuth 2.0-based IdP.

c. The user is prompted to authorize the client to access information.

5. The user confirms access at the original device prompt. In this example, the user hits the Enter
key at the command line.

6. The IdM KDC backend polls the OAuth 2.0 Authorization Server for access to user information.

What is supported:

Logging in remotely via SSH with the keyboard-interactive authentication method enabled,

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

444

Logging in remotely via SSH with the keyboard-interactive authentication method enabled,
which allows calling Pluggable Authentication Module (PAM) libraries.

Logging in locally with the console via the logind service.

Retrieving a Kerberos ticket-granting ticket (TGT) with the kinit utility.

What is currently not supported:

Logging in to the IdM WebUI directly. To log in to the IdM WebUI, you must first acquire a
Kerberos ticket.

Logging in to Cockpit WebUI directly. To log in to the Cockpit WebUI, you must first acquire a
Kerberos ticket.

Additional resources

Authentication against external Identity Providers

RFC 8628: OAuth 2.0 Device Authorization Grant

52.3. CREATING A REFERENCE TO AN EXTERNAL IDENTITY
PROVIDER

To connect external identity providers (IdPs) to your Identity Management (IdM) environment, create
IdP references in IdM. Complete this procedure to create a reference called my-keycloak-idp to an IdP
based on the Keycloak template. For more reference templates, see Example references to different
external IdPs in IdM.

Prerequisites

You have registered IdM as an OAuth application to your external IdP, and obtained a client ID.

You can authenticate as the IdM admin account.

Your IdM servers are using RHEL 8.7 or later.

Your IdM servers are using SSSD 2.7.0 or later.

Procedure

1. Authenticate as the IdM admin on an IdM server.

[root@server ~]# kinit admin

2. Create a reference called my-keycloak-idp to an IdP based on the Keycloak template, where
the --base-url option specifies the URL to the Keycloak server in the format server-
name.$DOMAIN:$PORT/prefix.

[root@server ~]# ipa idp-add my-keycloak-idp \
 --provider keycloak --organization main \
 --base-url keycloak.idm.example.com:8443/auth \
 --client-id id13778
--

CHAPTER 52. USING EXTERNAL IDENTITY PROVIDERS TO AUTHENTICATE TO IDM

445

https://freeipa.readthedocs.io/en/latest/workshop/12-external-idp-support.html
https://www.rfc-editor.org/rfc/rfc8628

Added Identity Provider reference "my-keycloak-idp"
--
 Identity Provider reference name: my-keycloak-idp
 Authorization URI:
https://keycloak.idm.example.com:8443/auth/realms/main/protocol/openid-connect/auth
 Device authorization URI:
https://keycloak.idm.example.com:8443/auth/realms/main/protocol/openid-
connect/auth/device
 Token URI: https://keycloak.idm.example.com:8443/auth/realms/main/protocol/openid-
connect/token
 User info URI: https://keycloak.idm.example.com:8443/auth/realms/main/protocol/openid-
connect/userinfo
 Client identifier: ipa_oidc_client
 Scope: openid email
 External IdP user identifier attribute: email

Verification

Verify that the output of the ipa idp-show command shows the IdP reference you have
created.

[root@server ~]# ipa idp-show my-keycloak-idp

Additional resources

Example references to different external IdPs in IdM

Options for the ipa idp-* commands to manage external identity providers in IdM

The --provider option in the ipa idp-* commands

ipa help idp-add

52.4. EXAMPLE REFERENCES TO DIFFERENT EXTERNAL IDPS IN IDM

The following table lists examples of the ipa idp-add command for creating references to different IdPs
in IdM.

Identity
Provider

Important options Command example

Microsoft
Identity
Platform,
Azure AD

--provider microsoft
--organization # ipa idp-add my-azure-idp \

 --provider microsoft \
 --organization main \
 --client-id <azure_client_id>

Google --provider google
ipa idp-add my-google-idp \
 --provider google \
 --client-id <google_client_id>

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

446

GitHub --provider github
ipa idp-add my-github-idp \
 --provider github \
 --client-id <github_client_id>

Keycloak,
Red Hat Single
Sign-On

--provider keycloak
--organization
--base-url

ipa idp-add my-keycloak-idp \
 --provider keycloak \
 --organization main \
 --base-url
keycloak.idm.example.com:8443/auth \
 --client-id <keycloak_client_id>

NOTE

The Quarkus version of Keycloak 17
and later have removed the /auth/
portion of the URI. If you use the
non-Quarkus distribution of Keycloak
in your deployment, include /auth/ in
the --base-url option.

Okta --provider okta
ipa idp-add my-okta-idp \
 --provider okta
 --base-url dev-12345.okta.com \
 --client-id <okta_client_id>

Identity
Provider

Important options Command example

Additional resources

Creating a reference to an external identity provider

Options for the ipa idp-* commands to manage external identity providers in IdM

The --provider option in the ipa idp-* commands

52.5. OPTIONS FOR THE IPA IDP-* COMMANDS TO MANAGE
EXTERNAL IDENTITY PROVIDERS IN IDM

The following examples show how to configure references to external IdPs based on the different IdP
templates. Use the following options to specify your settings:

--provider

the predefined template for one of the known identity providers

--client-id

the OAuth 2.0 client identifier issued by the IdP during application registration. As the application

CHAPTER 52. USING EXTERNAL IDENTITY PROVIDERS TO AUTHENTICATE TO IDM

447

the OAuth 2.0 client identifier issued by the IdP during application registration. As the application
registration procedure is specific to each IdP, refer to their documentation for details. If the external
IdP is Red Hat Single Sign-On (SSO), see Creating an OpenID Connect Client .

--base-url

base URL for IdP templates, required by Keycloak and Okta

--organization

Domain or Organization ID from the IdP, required by Microsoft Azure

--secret

(optional) Use this option if you have configured your external IdP to require a secret from
confidential OAuth 2.0 clients. If you use this option when creating an IdP reference, you are
prompted for the secret interactively. Protect the client secret as a password.

NOTE

SSSD in RHEL 8.7 only supports non-confidential OAuth 2.0 clients that do not use a
client secret. If you want to use external IdPs that require a client secret from
confidential clients, you must use SSSD in RHEL 8.8 and later.

Additional resources

Creating a reference to an external identity provider

Example references to different external IdPs in IdM

The --provider option in the ipa idp-* commands

52.6. MANAGING REFERENCES TO EXTERNAL IDPS

After you have created a reference to an external identity provider (IdP), you can find, show, modify, and
delete that reference. This example shows you how to manage a reference to an external IdP named
keycloak-server1.

Prerequisites

You can authenticate as the IdM admin account.

Your IdM servers are using RHEL 8.7 or later.

Your IdM servers are using SSSD 2.7.0 or later.

You have created a reference to an external IdP in IdM. See Creating a reference to an external
identity provider.

Procedure

1. Authenticate as the IdM admin on an IdM server.

[root@server ~]# kinit admin

2. Manage the IdP reference.

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

448

https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.6/html-single/server_administration_guide/index#proc-creating-oidc-client_server_administration_guide

To find an IdP reference whose entry includes the string keycloak:

[root@server ~]# ipa idp-find keycloak

To display an IdP reference named my-keycloak-idp:

[root@server ~]# ipa idp-show my-keycloak-idp

To modify an IdP reference, use the ipa idp-mod command. For example, to change the
secret for an IdP reference named my-keycloak-idp, specify the --secret option to be
prompted for the secret:

[root@server ~]# ipa idp-mod my-keycloak-idp --secret

To delete an IdP reference named my-keycloak-idp:

[root@server ~]# ipa idp-del my-keycloak-idp

52.7. ENABLING AN IDM USER TO AUTHENTICATE VIA AN EXTERNAL
IDP

To enable an IdM user to authenticate via an external identity provider (IdP), associate the external IdP
reference you have previously created with the user account. This example associates the external IdP
reference keycloak-server1 with the user idm-user-with-external-idp.

Prerequisites

Your IdM client and IdM servers are using RHEL 8.7 or later.

Your IdM client and IdM servers are using SSSD 2.7.0 or later.

You have created a reference to an external IdP in IdM. See Creating a reference to an external
identity provider.

Procedure

Modify the IdM user entry to associate an IdP reference with the user account:

[root@server ~]# ipa user-mod idm-user-with-external-idp \
 --idp my-keycloak-idp \
 --idp-user-id idm-user-with-external-idp@idm.example.com \
 --user-auth-type=idp

Modified user "idm-user-with-external-idp"

 User login: idm-user-with-external-idp
 First name: Test
 Last name: User1
 Home directory: /home/idm-user-with-external-idp
 Login shell: /bin/sh
 Principal name: idm-user-with-external-idp@idm.example.com
 Principal alias: idm-user-with-external-idp@idm.example.com
 Email address: idm-user-with-external-idp@idm.example.com

CHAPTER 52. USING EXTERNAL IDENTITY PROVIDERS TO AUTHENTICATE TO IDM

449

 UID: 35000003
 GID: 35000003
 User authentication types: idp
 External IdP configuration: keycloak
 External IdP user identifier: idm-user-with-external-idp@idm.example.com
 Account disabled: False
 Password: False
 Member of groups: ipausers
 Kerberos keys available: False

Verification

Verify that the output of the ipa user-show command for that user displays references to the
IdP:

[root@server ~]# ipa user-show idm-user-with-external-idp
 User login: idm-user-with-external-idp
 First name: Test
 Last name: User1
 Home directory: /home/idm-user-with-external-idp
 Login shell: /bin/sh
 Principal name: idm-user-with-external-idp@idm.example.com
 Principal alias: idm-user-with-external-idp@idm.example.com
 Email address: idm-user-with-external-idp@idm.example.com
 ID: 35000003
 GID: 35000003
 User authentication types: idp
 External IdP configuration: keycloak
 External IdP user identifier: idm-user-with-external-idp@idm.example.com
 Account disabled: False
 Password: False
 Member of groups: ipausers
 Kerberos keys available: False

52.8. RETRIEVING AN IDM TICKET-GRANTING TICKET AS AN
EXTERNAL IDP USER

If you have delegated authentication for an Identity Management (IdM) user to an external identity
provider (IdP), the IdM user can request a Kerberos ticket-granting ticket (TGT) by authenticating to
the external IdP.

Complete this procedure to:

1. Retrieve and store an anonymous Kerberos ticket locally.

2. Request the TGT for the idm-user-with-external-idp user by using kinit with the -T option to
enable Flexible Authentication via Secure Tunneling (FAST) channel to provide a secure
connection between the Kerberos client and Kerberos Distribution Center (KDC).

Prerequisites

Your IdM client and IdM servers use RHEL 8.7 or later.

Your IdM client and IdM servers use SSSD 2.7.0 or later.

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

450

You have created a reference to an external IdP in IdM. See Creating a reference to an external
identity provider.

You have associated an external IdP reference with the user account. See Enabling an IdM user
to authenticate via an external IdP.

The user that you are initially logged in as has write permissions on a directory in the local
filesystem.

Procedure

1. Use Anonymous PKINIT to obtain a Kerberos ticket and store it in a file named ./fast.ccache.

$ kinit -n -c ./fast.ccache

2. Optional: View the retrieved ticket:

$ klist -c fast.ccache
Ticket cache: FILE:fast.ccache
Default principal: WELLKNOWN/ANONYMOUS@WELLKNOWN:ANONYMOUS

Valid starting Expires Service principal
03/03/2024 13:36:37 03/04/2024 13:14:28
krbtgt/IDM.EXAMPLE.COM@IDM.EXAMPLE.COM

3. Begin authenticating as the IdM user, using the -T option to enable the FAST communication
channel.

[root@client ~]# kinit -T ./fast.ccache idm-user-with-external-idp
Authenticate at https://oauth2.idp.com:8443/auth/realms/master/device?user_code=YHMQ-
XKTL and press ENTER.:

4. In a browser, authenticate as the user at the website provided in the command output.

5. At the command line, press the Enter key to finish the authentication process.

Verification

Display your Kerberos ticket information and confirm that the line config: pa_type shows 152
for pre-authentication with an external IdP.

[root@client ~]# klist -C
Ticket cache: KCM:0:58420
Default principal: idm-user-with-external-idp@IDM.EXAMPLE.COM

Valid starting Expires Service principal
05/09/22 07:48:23 05/10/22 07:03:07 krbtgt/IDM.EXAMPLE.COM@IDM.EXAMPLE.COM
config: fast_avail(krbtgt/IDM.EXAMPLE.COM@IDM.EXAMPLE.COM) = yes
08/17/2022 20:22:45 08/18/2022 20:22:43
krbtgt/IDM.EXAMPLE.COM@IDM.EXAMPLE.COM
config: pa_type(krbtgt/IDM.EXAMPLE.COM@IDM.EXAMPLE.COM) = 152

The pa_type = 152 indicates external IdP authentication.

CHAPTER 52. USING EXTERNAL IDENTITY PROVIDERS TO AUTHENTICATE TO IDM

451

52.9. LOGGING IN TO AN IDM CLIENT VIA SSH AS AN EXTERNAL IDP
USER

To log in to an IdM client via SSH as an external identity provider (IdP) user, begin the login process on
the command linel. When prompted, perform the authentication process at the website associated with
the IdP, and finish the process at the Identity Management (IdM) client.

Prerequisites

Your IdM client and IdM servers are using RHEL 8.7 or later.

Your IdM client and IdM servers are using SSSD 2.7.0 or later.

You have created a reference to an external IdP in IdM. See Creating a reference to an external
identity provider.

You have associated an external IdP reference with the user account. See Enabling an IdM user
to authenticate via an external IdP.

Procedure

1. Attempt to log in to the IdM client via SSH.

[user@client ~]$ ssh idm-user-with-external-idp@client.idm.example.com
(idm-user-with-external-idp@client.idm.example.com) Authenticate at
https://oauth2.idp.com:8443/auth/realms/main/device?user_code=XYFL-ROYR and press
ENTER.

2. In a browser, authenticate as the user at the website provided in the command output.

3. At the command line, press the Enter key to finish the authentication process.

Verification

Display your Kerberos ticket information and confirm that the line config: pa_type shows 152
for pre-authentication with an external IdP.

[idm-user-with-external-idp@client ~]$ klist -C
Ticket cache: KCM:0:58420
Default principal: idm-user-with-external-idp@IDM.EXAMPLE.COM

Valid starting Expires Service principal
05/09/22 07:48:23 05/10/22 07:03:07 krbtgt/IDM.EXAMPLE.COM@IDM.EXAMPLE.COM
config: fast_avail(krbtgt/IDM.EXAMPLE.COM@IDM.EXAMPLE.COM) = yes
08/17/2022 20:22:45 08/18/2022 20:22:43
krbtgt/IDM.EXAMPLE.COM@IDM.EXAMPLE.COM
config: pa_type(krbtgt/IDM.EXAMPLE.COM@IDM.EXAMPLE.COM) = 152

52.10. THE --PROVIDER OPTION IN THE IPA IDP-* COMMANDS

The following identity providers (IdPs) support OAuth 2.0 device authorization grant flow:

Microsoft Identity Platform, including Azure AD

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

452

Google

GitHub

Keycloak, including Red Hat Single Sign-On (SSO)

Okta

When using the ipa idp-add command to create a reference to one of these external IdPs, you can
specify the IdP type with the --provider option, which expands into additional options as described
below:

--provider=microsoft

Microsoft Azure IdPs allow parametrization based on the Azure tenant ID, which you can specify with
the --organization option to the ipa idp-add command. If you need support for the live.com IdP,
specify the option --organization common.
Choosing --provider=microsoft expands to use the following options. The value of the --
organization option replaces the string ${ipaidporg} in the table.

Option Value

--auth-uri=URI https://login.microsoftonline.com/${ipaidporg}/oauth2/v2.0/
authorize

--dev-auth-uri=URI https://login.microsoftonline.com/${ipaidporg}/oauth2/v2.0/
devicecode

--token-uri=URI https://login.microsoftonline.com/${ipaidporg}/oauth2/v2.0/t
oken

--userinfo-uri=URI https://graph.microsoft.com/oidc/userinfo

--keys-uri=URI https://login.microsoftonline.com/common/discovery/v2.0/k
eys

--scope=STR openid email

--idp-user-id=STR email

--provider=google

Choosing --provider=google expands to use the following options:

Option Value

--auth-uri=URI https://accounts.google.com/o/oauth2/auth

--dev-auth-uri=URI https://oauth2.googleapis.com/device/code

--token-uri=URI https://oauth2.googleapis.com/token

CHAPTER 52. USING EXTERNAL IDENTITY PROVIDERS TO AUTHENTICATE TO IDM

453

--userinfo-uri=URI https://openidconnect.googleapis.com/v1/userinfo

--keys-uri=URI https://www.googleapis.com/oauth2/v3/certs

--scope=STR openid email

--idp-user-id=STR email

Option Value

--provider=github

Choosing --provider=github expands to use the following options:

Option Value

--auth-uri=URI https://github.com/login/oauth/authorize

--dev-auth-uri=URI https://github.com/login/device/code

--token-uri=URI https://github.com/login/oauth/access_token

--userinfo-uri=URI https://openidconnect.googleapis.com/v1/userinfo

--keys-uri=URI https://api.github.com/user

--scope=STR user

--idp-user-id=STR login

--provider=keycloak

With Keycloak, you can define multiple realms or organizations. Since it is often a part of a custom
deployment, both base URL and realm ID are required, and you can specify them with the --base-url
and --organization options to the ipa idp-add command:

[root@client ~]# ipa idp-add MySSO --provider keycloak \
 --org main --base-url keycloak.domain.com:8443/auth \
 --client-id <your-client-id>

Choosing --provider=keycloak expands to use the following options. The value you specify in the --
base-url option replaces the string ${ipaidpbaseurl} in the table, and the value you specify for the --
organization `option replaces the string `${ipaidporg}.

Option Value

--auth-uri=URI https://${ipaidpbaseurl}/realms/${ipaidporg}/protocol/openi
d-connect/auth

Red Hat Enterprise Linux 8 Managing IdM users, groups, hosts, and access control rules

454

--dev-auth-uri=URI https://${ipaidpbaseurl}/realms/${ipaidporg}/protocol/openi
d-connect/auth/device

--token-uri=URI https://${ipaidpbaseurl}/realms/${ipaidporg}/protocol/openi
d-connect/token

--userinfo-uri=URI https://${ipaidpbaseurl}/realms/${ipaidporg}/protocol/openi
d-connect/userinfo

--scope=STR openid email

--idp-user-id=STR email

Option Value

--provider=okta

After registering a new organization in Okta, a new base URL is associated with it. You can specify this
base URL with the --base-url option to the ipa idp-add command:

[root@client ~]# ipa idp-add MyOkta --provider okta --base-url dev-12345.okta.com --client-id
<your-client-id>

Choosing --provider=okta expands to use the following options. The value you specify for the --
base-url option replaces the string ${ipaidpbaseurl} in the table.

Option Value

--auth-uri=URI https://${ipaidpbaseurl}/oauth2/v1/authorize

--dev-auth-uri=URI https://${ipaidpbaseurl}/oauth2/v1/device/authorize

--token-uri=URI https://${ipaidpbaseurl}/oauth2/v1/token

--userinfo-uri=URI https://${ipaidpbaseurl}/oauth2/v1/userinfo

--scope=STR openid email

--idp-user-id=STR email

Additional resources

Pre-populated IdP templates

CHAPTER 52. USING EXTERNAL IDENTITY PROVIDERS TO AUTHENTICATE TO IDM

455

https://freeipa.readthedocs.io/en/latest/designs/external-idp/idp-api.html#pre-populated-idp-templates

	Table of Contents
	PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
	CHAPTER 1. INTRODUCTION TO THE IDM COMMAND-LINE UTILITIES
	1.1. WHAT IS THE IPA COMMAND LINE INTERFACE
	1.2. WHAT IS THE IPA HELP
	1.3. USING IPA HELP TOPICS
	1.4. USING IPA HELP COMMANDS
	1.5. STRUCTURE OF IPA COMMANDS
	1.6. USING AN IPA COMMAND TO ADD A USER ACCOUNT TO IDM
	1.7. USING AN IPA COMMAND TO MODIFY A USER ACCOUNT IN IDM
	1.8. HOW TO SUPPLY A LIST OF VALUES TO THE IDM UTILITIES
	1.9. HOW TO USE SPECIAL CHARACTERS WITH THE IDM UTILITIES

	CHAPTER 2. MANAGING USER ACCOUNTS USING THE COMMAND LINE
	2.1. USER LIFE CYCLE
	2.2. ADDING USERS USING THE COMMAND LINE
	2.3. ACTIVATING USERS USING THE COMMAND LINE
	2.4. PRESERVING USERS USING THE COMMAND LINE
	2.5. DELETING USERS USING THE COMMAND LINE
	2.6. RESTORING USERS USING THE COMMAND LINE

	CHAPTER 3. MANAGING USER ACCOUNTS USING THE IDM WEB UI
	3.1. USER LIFE CYCLE
	3.2. ADDING USERS IN THE WEB UI
	3.3. ACTIVATING STAGE USERS IN THE IDM WEB UI
	3.4. DISABLING USER ACCOUNTS IN THE WEB UI
	3.5. ENABLING USER ACCOUNTS IN THE WEB UI
	3.6. PRESERVING ACTIVE USERS IN THE IDM WEB UI
	3.7. RESTORING USERS IN THE IDM WEB UI
	3.8. DELETING USERS IN THE IDM WEB UI

	CHAPTER 4. MANAGING USER ACCOUNTS USING ANSIBLE PLAYBOOKS
	4.1. USER LIFE CYCLE
	4.2. ENSURING THE PRESENCE OF AN IDM USER USING AN ANSIBLE PLAYBOOK
	4.3. ENSURING THE PRESENCE OF MULTIPLE IDM USERS USING ANSIBLE PLAYBOOKS
	4.4. ENSURING THE PRESENCE OF MULTIPLE IDM USERS FROM A JSON FILE USING ANSIBLE PLAYBOOKS
	4.5. ENSURING THE ABSENCE OF USERS USING ANSIBLE PLAYBOOKS
	4.6. ADDITIONAL RESOURCES

	CHAPTER 5. MANAGING USER PASSWORDS IN IDM
	5.1. WHO CAN CHANGE IDM USER PASSWORDS AND HOW
	5.2. CHANGING YOUR USER PASSWORD IN THE IDM WEB UI
	5.3. RESETTING ANOTHER USER’S PASSWORD IN THE IDM WEB UI
	5.4. RESETTING THE DIRECTORY MANAGER USER PASSWORD
	5.5. CHANGING YOUR USER PASSWORD OR RESETTING ANOTHER USER’S PASSWORD IN IDM CLI
	5.6. ENABLING PASSWORD RESET IN IDM WITHOUT PROMPTING THE USER FOR A PASSWORD CHANGE AT THE NEXT LOGIN
	5.7. CHECKING IF AN IDM USER’S ACCOUNT IS LOCKED
	5.8. UNLOCKING USER ACCOUNTS AFTER PASSWORD FAILURES IN IDM
	5.9. ENABLING THE TRACKING OF LAST SUCCESSFUL KERBEROS AUTHENTICATION FOR USERS IN IDM

	CHAPTER 6. DEFINING IDM PASSWORD POLICIES
	6.1. WHAT IS A PASSWORD POLICY
	6.2. PASSWORD POLICIES IN IDM
	6.3. ENSURING THE PRESENCE OF A PASSWORD POLICY IN IDM USING AN ANSIBLE PLAYBOOK
	6.4. ADDITIONAL PASSWORD POLICY OPTIONS IN IDM
	6.5. APPLYING ADDITIONAL PASSWORD POLICY OPTIONS TO AN IDM GROUP
	6.6. USING AN ANSIBLE PLAYBOOK TO APPLY ADDITIONAL PASSWORD POLICY OPTIONS TO AN IDM GROUP

	CHAPTER 7. MANAGING EXPIRING PASSWORD NOTIFICATIONS
	7.1. WHAT IS THE EXPIRING PASSWORD NOTIFICATION TOOL
	7.2. INSTALLING THE EXPIRING PASSWORD NOTIFICATION TOOL
	7.3. RUNNING THE EPN TOOL TO SEND EMAILS TO USERS WHOSE PASSWORDS ARE EXPIRING
	7.4. ENABLING THE IPA-EPN.TIMER TO SEND AN EMAIL TO ALL USERS WHOSE PASSWORDS ARE EXPIRING
	7.5. MODIFYING THE EXPIRING PASSWORD NOTIFICATION EMAIL TEMPLATE

	CHAPTER 8. GRANTING SUDO ACCESS TO AN IDM USER ON AN IDM CLIENT
	8.1. SUDO ACCESS ON AN IDM CLIENT
	8.2. GRANTING SUDO ACCESS TO AN IDM USER ON AN IDM CLIENT USING THE CLI
	8.3. GRANTING SUDO ACCESS TO AN AD USER ON AN IDM CLIENT USING THE CLI
	8.4. GRANTING SUDO ACCESS TO AN IDM USER ON AN IDM CLIENT USING THE IDM WEB UI
	8.5. CREATING A SUDO RULE ON THE CLI THAT RUNS A COMMAND AS A SERVICE ACCOUNT ON AN IDM CLIENT
	8.6. CREATING A SUDO RULE IN THE IDM WEBUI THAT RUNS A COMMAND AS A SERVICE ACCOUNT ON AN IDM CLIENT
	8.7. ENABLING GSSAPI AUTHENTICATION FOR SUDO ON AN IDM CLIENT
	8.8. ENABLING GSSAPI AUTHENTICATION AND ENFORCING KERBEROS AUTHENTICATION INDICATORS FOR SUDO ON AN IDM CLIENT
	8.9. SSSD OPTIONS CONTROLLING GSSAPI AUTHENTICATION FOR PAM SERVICES
	8.10. TROUBLESHOOTING GSSAPI AUTHENTICATION FOR SUDO
	8.11. USING AN ANSIBLE PLAYBOOK TO ENSURE SUDO ACCESS FOR AN IDM USER ON AN IDM CLIENT

	CHAPTER 9. USING LDAPMODIFY TO MANAGE IDM USERS EXTERNALLY
	9.1. TEMPLATES FOR MANAGING IDM USER ACCOUNTS EXTERNALLY
	9.2. TEMPLATES FOR MANAGING IDM GROUP ACCOUNTS EXTERNALLY
	9.3. USING LDAPMODIFY COMMAND INTERACTIVELY
	9.4. PRESERVING AN IDM USER WITH LDAPMODIFY

	CHAPTER 10. SEARCHING IDM ENTRIES USING THE LDAPSEARCH COMMAND
	10.1. USING THE LDAPSEARCH COMMAND
	10.2. USING THE LDAPSEARCH FILTERS

	CHAPTER 11. CONFIGURING IDM FOR EXTERNAL PROVISIONING OF USERS
	11.1. PREPARING IDM ACCOUNTS FOR AUTOMATIC ACTIVATION OF STAGE USER ACCOUNTS
	11.2. CONFIGURING AUTOMATIC ACTIVATION OF IDM STAGE USER ACCOUNTS
	11.3. ADDING AN IDM STAGE USER DEFINED IN AN LDIF FILE
	11.4. ADDING AN IDM STAGE USER DIRECTLY FROM THE CLI USING LDAPMODIFY
	11.5. ADDITIONAL RESOURCES

	CHAPTER 12. MANAGING KERBEROS PRINCIPAL ALIASES FOR USERS, HOSTS, AND SERVICES
	12.1. ADDING A KERBEROS PRINCIPAL ALIAS
	12.2. REMOVING A KERBEROS PRINCIPAL ALIAS
	12.3. ADDING A KERBEROS ENTERPRISE PRINCIPAL ALIAS
	12.4. REMOVING A KERBEROS ENTERPRISE PRINCIPAL ALIAS

	CHAPTER 13. STRENGTHENING KERBEROS SECURITY WITH PAC INFORMATION
	13.1. PRIVILEGE ATTRIBUTE CERTIFICATE (PAC) USE IN IDM
	13.2. ENABLING SECURITY IDENTIFIERS (SIDS) IN IDM

	CHAPTER 14. MANAGING KERBEROS TICKET POLICIES
	14.1. THE ROLE OF THE IDM KDC
	14.2. IDM KERBEROS TICKET POLICY TYPES
	14.3. KERBEROS AUTHENTICATION INDICATORS
	14.4. ENFORCING AUTHENTICATION INDICATORS FOR AN IDM SERVICE
	14.4.1. Creating an IdM service entry and its Kerberos keytab
	14.4.2. Associating authentication indicators with an IdM service using IdM CLI
	14.4.3. Associating authentication indicators with an IdM service using IdM Web UI
	14.4.4. Retrieving a Kerberos service ticket for an IdM service
	14.4.5. Additional resources

	14.5. CONFIGURING THE GLOBAL TICKET LIFECYCLE POLICY
	14.6. CONFIGURING GLOBAL TICKET POLICIES PER AUTHENTICATION INDICATOR
	14.7. CONFIGURING THE DEFAULT TICKET POLICY FOR A USER
	14.8. CONFIGURING INDIVIDUAL AUTHENTICATION INDICATOR TICKET POLICIES FOR A USER
	14.9. AUTHENTICATION INDICATOR OPTIONS FOR THE KRBTPOLICY-MOD COMMAND

	CHAPTER 15. KERBEROS PKINIT AUTHENTICATION IN IDM
	15.1. DEFAULT PKINIT CONFIGURATION
	15.2. DISPLAYING THE CURRENT PKINIT CONFIGURATION
	15.3. CONFIGURING PKINIT IN IDM
	15.4. ADDITIONAL RESOURCES

	CHAPTER 16. MAINTAINING IDM KERBEROS KEYTAB FILES
	16.1. HOW IDENTITY MANAGEMENT USES KERBEROS KEYTAB FILES
	16.2. VERIFYING THAT KERBEROS KEYTAB FILES ARE IN SYNC WITH THE IDM DATABASE
	16.3. LIST OF IDM KERBEROS KEYTAB FILES AND THEIR CONTENTS
	16.4. VIEWING THE ENCRYPTION TYPE OF YOUR IDM MASTER KEY

	CHAPTER 17. USING THE KDC PROXY IN IDM
	17.1. CONFIGURING AN IDM CLIENT TO USE KKDCP
	17.2. VERIFYING THAT KKDCP IS ENABLED ON AN IDM SERVER
	17.3. DISABLING KKDCP ON AN IDM SERVER
	17.4. RE-ENABLING KKDCP ON AN IDM SERVER
	17.5. CONFIGURING THE KKDCP SERVER I
	17.6. CONFIGURING THE KKDCP SERVER II

	CHAPTER 18. MANAGING SELF-SERVICE RULES IN IDM USING THE CLI
	18.1. SELF-SERVICE ACCESS CONTROL IN IDM
	18.2. CREATING SELF-SERVICE RULES USING THE CLI
	18.3. EDITING SELF-SERVICE RULES USING THE CLI
	18.4. DELETING SELF-SERVICE RULES USING THE CLI

	CHAPTER 19. MANAGING SELF-SERVICE RULES USING THE IDM WEB UI
	19.1. SELF-SERVICE ACCESS CONTROL IN IDM
	19.2. CREATING SELF-SERVICE RULES USING THE IDM WEB UI
	19.3. EDITING SELF-SERVICE RULES USING THE IDM WEB UI
	19.4. DELETING SELF-SERVICE RULES USING THE IDM WEB UI

	CHAPTER 20. USING ANSIBLE PLAYBOOKS TO MANAGE SELF-SERVICE RULES IN IDM
	20.1. SELF-SERVICE ACCESS CONTROL IN IDM
	20.2. USING ANSIBLE TO ENSURE THAT A SELF-SERVICE RULE IS PRESENT
	20.3. USING ANSIBLE TO ENSURE THAT A SELF-SERVICE RULE IS ABSENT
	20.4. USING ANSIBLE TO ENSURE THAT A SELF-SERVICE RULE HAS SPECIFIC ATTRIBUTES
	20.5. USING ANSIBLE TO ENSURE THAT A SELF-SERVICE RULE DOES NOT HAVE SPECIFIC ATTRIBUTES

	CHAPTER 21. MANAGING USER GROUPS IN IDM CLI
	21.1. THE DIFFERENT GROUP TYPES IN IDM
	21.2. DIRECT AND INDIRECT GROUP MEMBERS
	21.3. ADDING A USER GROUP USING IDM CLI
	21.4. SEARCHING FOR USER GROUPS USING IDM CLI
	21.5. DELETING A USER GROUP USING IDM CLI
	21.6. ADDING A MEMBER TO A USER GROUP USING IDM CLI
	21.7. ADDING USERS WITHOUT A USER PRIVATE GROUP
	21.7.1. Users without a user private group
	21.7.2. Adding a user without a user private group when private groups are globally enabled
	21.7.3. Disabling user private groups globally for all users
	21.7.4. Adding a user when user private groups are globally disabled

	21.8. ADDING USERS OR GROUPS AS MEMBER MANAGERS TO AN IDM USER GROUP USING THE IDM CLI
	21.9. VIEWING GROUP MEMBERS USING IDM CLI
	21.10. REMOVING A MEMBER FROM A USER GROUP USING IDM CLI
	21.11. REMOVING USERS OR GROUPS AS MEMBER MANAGERS FROM AN IDM USER GROUP USING THE IDM CLI
	21.12. ENABLING GROUP MERGING FOR LOCAL AND REMOTE GROUPS IN IDM
	21.13. USING ANSIBLE TO GIVE A USER ID OVERRIDE ACCESS TO THE LOCAL SOUND CARD ON AN IDM CLIENT

	CHAPTER 22. MANAGING USER GROUPS IN IDM WEB UI
	22.1. THE DIFFERENT GROUP TYPES IN IDM
	22.2. DIRECT AND INDIRECT GROUP MEMBERS
	22.3. ADDING A USER GROUP USING IDM WEB UI
	22.4. DELETING A USER GROUP USING IDM WEB UI
	22.5. ADDING A MEMBER TO A USER GROUP USING IDM WEB UI
	22.6. ADDING USERS OR GROUPS AS MEMBER MANAGERS TO AN IDM USER GROUP USING THE WEB UI
	22.7. VIEWING GROUP MEMBERS USING IDM WEB UI
	22.8. REMOVING A MEMBER FROM A USER GROUP USING IDM WEB UI
	22.9. REMOVING USERS OR GROUPS AS MEMBER MANAGERS FROM AN IDM USER GROUP USING THE WEB UI

	CHAPTER 23. MANAGING USER GROUPS USING ANSIBLE PLAYBOOKS
	23.1. THE DIFFERENT GROUP TYPES IN IDM
	23.2. DIRECT AND INDIRECT GROUP MEMBERS
	23.3. ENSURING THE PRESENCE OF IDM GROUPS AND GROUP MEMBERS USING ANSIBLE PLAYBOOKS
	23.4. USING ANSIBLE TO ADD MULTIPLE IDM GROUPS IN A SINGLE TASK
	23.5. USING ANSIBLE TO ENABLE AD USERS TO ADMINISTER IDM
	23.6. ENSURING THE PRESENCE OF MEMBER MANAGERS IN IDM USER GROUPS USING ANSIBLE PLAYBOOKS
	23.7. ENSURING THE ABSENCE OF MEMBER MANAGERS IN IDM USER GROUPS USING ANSIBLE PLAYBOOKS

	CHAPTER 24. AUTOMATING GROUP MEMBERSHIP USING IDM CLI
	24.1. BENEFITS OF AUTOMATIC GROUP MEMBERSHIP
	24.2. AUTOMEMBER RULES
	24.3. ADDING AN AUTOMEMBER RULE USING IDM CLI
	24.4. ADDING A CONDITION TO AN AUTOMEMBER RULE USING IDM CLI
	24.5. VIEWING EXISTING AUTOMEMBER RULES USING IDM CLI
	24.6. DELETING AN AUTOMEMBER RULE USING IDM CLI
	24.7. REMOVING A CONDITION FROM AN AUTOMEMBER RULE USING IDM CLI
	24.8. APPLYING AUTOMEMBER RULES TO EXISTING ENTRIES USING IDM CLI
	24.9. CONFIGURING A DEFAULT AUTOMEMBER GROUP USING IDM CLI

	CHAPTER 25. AUTOMATING GROUP MEMBERSHIP USING IDM WEB UI
	25.1. BENEFITS OF AUTOMATIC GROUP MEMBERSHIP
	25.2. AUTOMEMBER RULES
	25.3. ADDING AN AUTOMEMBER RULE USING IDM WEB UI
	25.4. ADDING A CONDITION TO AN AUTOMEMBER RULE USING IDM WEB UI
	25.5. VIEWING EXISTING AUTOMEMBER RULES AND CONDITIONS USING IDM WEB UI
	25.6. DELETING AN AUTOMEMBER RULE USING IDM WEB UI
	25.7. REMOVING A CONDITION FROM AN AUTOMEMBER RULE USING IDM WEB UI
	25.8. APPLYING AUTOMEMBER RULES TO EXISTING ENTRIES USING IDM WEB UI
	25.8.1. Rebuilding automatic membership for all users or hosts
	25.8.2. Rebuilding automatic membership for a single user or host only

	25.9. CONFIGURING A DEFAULT USER GROUP USING IDM WEB UI
	25.10. CONFIGURING A DEFAULT HOST GROUP USING IDM WEB UI

	CHAPTER 26. USING ANSIBLE TO AUTOMATE GROUP MEMBERSHIP IN IDM
	26.1. PREPARING YOUR ANSIBLE CONTROL NODE FOR MANAGING IDM
	26.2. USING ANSIBLE TO ENSURE THAT AN AUTOMEMBER RULE FOR AN IDM USER GROUP IS PRESENT
	26.3. USING ANSIBLE TO ENSURE THAT A SPECIFIED CONDITION IS PRESENT IN AN IDM USER GROUP AUTOMEMBER RULE
	26.4. USING ANSIBLE TO ENSURE THAT A CONDITION IS ABSENT FROM AN IDM USER GROUP AUTOMEMBER RULE
	26.5. USING ANSIBLE TO ENSURE THAT AN AUTOMEMBER RULE FOR AN IDM USER GROUP IS ABSENT
	26.6. USING ANSIBLE TO ENSURE THAT A CONDITION IS PRESENT IN AN IDM HOST GROUP AUTOMEMBER RULE
	26.7. ADDITIONAL RESOURCES

	CHAPTER 27. DELEGATING PERMISSIONS TO USER GROUPS TO MANAGE USERS USING IDM CLI
	27.1. DELEGATION RULES
	27.2. CREATING A DELEGATION RULE USING IDM CLI
	27.3. VIEWING EXISTING DELEGATION RULES USING IDM CLI
	27.4. MODIFYING A DELEGATION RULE USING IDM CLI
	27.5. DELETING A DELEGATION RULE USING IDM CLI

	CHAPTER 28. DELEGATING PERMISSIONS TO USER GROUPS TO MANAGE USERS USING IDM WEBUI
	28.1. DELEGATION RULES
	28.2. CREATING A DELEGATION RULE USING IDM WEBUI
	28.3. VIEWING EXISTING DELEGATION RULES USING IDM WEBUI
	28.4. MODIFYING A DELEGATION RULE USING IDM WEBUI
	28.5. DELETING A DELEGATION RULE USING IDM WEBUI

	CHAPTER 29. DELEGATING PERMISSIONS TO USER GROUPS TO MANAGE USERS USING ANSIBLE PLAYBOOKS
	29.1. DELEGATION RULES
	29.2. CREATING AN ANSIBLE INVENTORY FILE FOR IDM
	29.3. USING ANSIBLE TO ENSURE THAT A DELEGATION RULE IS PRESENT
	29.4. USING ANSIBLE TO ENSURE THAT A DELEGATION RULE IS ABSENT
	29.5. USING ANSIBLE TO ENSURE THAT A DELEGATION RULE HAS SPECIFIC ATTRIBUTES
	29.6. USING ANSIBLE TO ENSURE THAT A DELEGATION RULE DOES NOT HAVE SPECIFIC ATTRIBUTES

	CHAPTER 30. MANAGING ROLE-BASED ACCESS CONTROLS IN IDM USING THE CLI
	30.1. ROLE-BASED ACCESS CONTROL IN IDM
	30.1.1. Permissions in IdM
	30.1.2. Default managed permissions
	30.1.3. Privileges in IdM
	30.1.4. Roles in IdM
	30.1.5. Predefined roles in Identity Management

	30.2. MANAGING IDM PERMISSIONS IN THE CLI
	30.3. COMMAND OPTIONS FOR EXISTING PERMISSIONS
	30.4. MANAGING IDM PRIVILEGES IN THE CLI
	30.5. COMMAND OPTIONS FOR EXISTING PRIVILEGES
	30.6. MANAGING IDM ROLES IN THE CLI
	30.7. COMMAND OPTIONS FOR EXISTING ROLES

	CHAPTER 31. MANAGING ROLE-BASED ACCESS CONTROLS USING THE IDM WEB UI
	31.1. ROLE-BASED ACCESS CONTROL IN IDM
	31.1.1. Permissions in IdM
	31.1.2. Default managed permissions
	31.1.3. Privileges in IdM
	31.1.4. Roles in IdM
	31.1.5. Predefined roles in Identity Management

	31.2. MANAGING PERMISSIONS IN THE IDM WEB UI
	31.3. MANAGING PRIVILEGES IN THE IDM WEBUI
	31.4. MANAGING ROLES IN THE IDM WEB UI

	CHAPTER 32. PREPARING YOUR ENVIRONMENT FOR MANAGING IDM USING ANSIBLE PLAYBOOKS
	CHAPTER 33. USING ANSIBLE PLAYBOOKS TO MANAGE ROLE-BASED ACCESS CONTROL IN IDM
	33.1. PERMISSIONS IN IDM
	33.2. DEFAULT MANAGED PERMISSIONS
	33.3. PRIVILEGES IN IDM
	33.4. ROLES IN IDM
	33.5. PREDEFINED ROLES IN IDENTITY MANAGEMENT
	33.6. USING ANSIBLE TO ENSURE AN IDM RBAC ROLE WITH PRIVILEGES IS PRESENT
	33.7. USING ANSIBLE TO ENSURE AN IDM RBAC ROLE IS ABSENT
	33.8. USING ANSIBLE TO ENSURE THAT A GROUP OF USERS IS ASSIGNED TO AN IDM RBAC ROLE
	33.9. USING ANSIBLE TO ENSURE THAT SPECIFIC USERS ARE NOT ASSIGNED TO AN IDM RBAC ROLE
	33.10. USING ANSIBLE TO ENSURE A SERVICE IS A MEMBER OF AN IDM RBAC ROLE
	33.11. USING ANSIBLE TO ENSURE A HOST IS A MEMBER OF AN IDM RBAC ROLE
	33.12. USING ANSIBLE TO ENSURE A HOST GROUP IS A MEMBER OF AN IDM RBAC ROLE

	CHAPTER 34. USING ANSIBLE PLAYBOOKS TO MANAGE RBAC PRIVILEGES
	34.1. USING ANSIBLE TO ENSURE A CUSTOM IDM RBAC PRIVILEGE IS PRESENT
	34.2. USING ANSIBLE TO ENSURE MEMBER PERMISSIONS ARE PRESENT IN A CUSTOM IDM RBAC PRIVILEGE
	34.3. USING ANSIBLE TO ENSURE AN IDM RBAC PRIVILEGE DOES NOT INCLUDE A PERMISSION
	34.4. USING ANSIBLE TO RENAME A CUSTOM IDM RBAC PRIVILEGE
	34.5. USING ANSIBLE TO ENSURE AN IDM RBAC PRIVILEGE IS ABSENT
	34.6. ADDITIONAL RESOURCES

	CHAPTER 35. USING ANSIBLE PLAYBOOKS TO MANAGE RBAC PERMISSIONS IN IDM
	35.1. USING ANSIBLE TO ENSURE AN RBAC PERMISSION IS PRESENT
	35.2. USING ANSIBLE TO ENSURE AN RBAC PERMISSION WITH AN ATTRIBUTE IS PRESENT
	35.3. USING ANSIBLE TO ENSURE AN RBAC PERMISSION IS ABSENT
	35.4. USING ANSIBLE TO ENSURE AN ATTRIBUTE IS A MEMBER OF AN IDM RBAC PERMISSION
	35.5. USING ANSIBLE TO ENSURE AN ATTRIBUTE IS NOT A MEMBER OF AN IDM RBAC PERMISSION
	35.6. USING ANSIBLE TO RENAME AN IDM RBAC PERMISSION
	35.7. ADDITIONAL RESOURCES

	CHAPTER 36. USING AN ID VIEW TO OVERRIDE A USER ATTRIBUTE VALUE ON AN IDM CLIENT
	36.1. ID VIEWS
	36.2. POTENTIAL NEGATIVE IMPACT OF ID VIEWS ON SSSD PERFORMANCE
	36.3. ATTRIBUTES AN ID VIEW CAN OVERRIDE
	36.4. GETTING HELP FOR ID VIEW COMMANDS
	36.5. USING AN ID VIEW TO OVERRIDE THE LOGIN NAME OF AN IDM USER ON A SPECIFIC HOST
	36.6. MODIFYING AN IDM ID VIEW
	36.7. ADDING AN ID VIEW TO OVERRIDE AN IDM USER HOME DIRECTORY ON AN IDM CLIENT
	36.8. APPLYING AN ID VIEW TO AN IDM HOST GROUP
	36.9. USING ANSIBLE TO OVERRIDE THE LOGIN NAME AND HOME DIRECTORY OF AN IDM USER ON A SPECIFIC HOST
	36.10. USING ANSIBLE TO CONFIGURE AN ID VIEW THAT ENABLES AN SSH KEY LOGIN ON AN IDM CLIENT
	36.11. USING ANSIBLE TO GIVE A USER ID OVERRIDE ACCESS TO THE LOCAL SOUND CARD ON AN IDM CLIENT
	36.12. USING ANSIBLE TO ENSURE AN IDM USER IS PRESENT IN AN ID VIEW WITH A SPECIFIC UID
	36.13. USING ANSIBLE TO ENSURE AN IDM USER CAN LOG IN TO AN IDM CLIENT WITH TWO CERTIFICATES
	36.14. USING ANSIBLE TO GIVE AN IDM GROUP ACCESS TO THE SOUND CARD ON AN IDM CLIENT
	36.15. MIGRATING NIS DOMAINS TO IDENTITY MANAGEMENT

	CHAPTER 37. USING ID VIEWS FOR ACTIVE DIRECTORY USERS
	37.1. HOW THE DEFAULT TRUST VIEW WORKS
	37.2. DEFINING GLOBAL ATTRIBUTES FOR AN AD USER BY MODIFYING THE DEFAULT TRUST VIEW
	37.3. OVERRIDING DEFAULT TRUST VIEW ATTRIBUTES FOR AN AD USER ON AN IDM CLIENT WITH AN ID VIEW
	37.4. APPLYING AN ID VIEW TO AN IDM HOST GROUP

	CHAPTER 38. ADJUSTING ID RANGES MANUALLY
	38.1. ID RANGES
	38.2. AUTOMATIC ID RANGES ASSIGNMENT
	38.3. ASSIGNING THE IDM ID RANGE MANUALLY DURING SERVER INSTALLATION
	38.4. ADDING A NEW IDM ID RANGE
	38.5. THE ROLE OF SECURITY AND RELATIVE IDENTIFIERS IN IDM ID RANGES
	38.6. USING ANSIBLE TO ADD A NEW LOCAL IDM ID RANGE
	38.7. REMOVING AN ID RANGE AFTER REMOVING A TRUST TO AD
	38.8. DISPLAYING CURRENTLY ASSIGNED DNA ID RANGES
	38.9. MANUAL ID RANGE ASSIGNMENT
	38.10. ASSIGNING DNA ID RANGES MANUALLY

	CHAPTER 39. MANAGING SUBID RANGES MANUALLY
	39.1. GENERATING SUBID RANGES USING IDM CLI
	39.2. GENERATING SUBID RANGES USING IDM WEBUI INTERFACE
	39.3. VIEWING SUBID INFORMATION ABOUT IDM USERS BY USING IDM CLI
	39.4. LISTING SUBID RANGES USING THE GETSUBID COMMAND

	CHAPTER 40. MANAGING HOSTS IN IDM CLI
	40.1. HOSTS IN IDM
	40.2. HOST ENROLLMENT
	40.3. USER PRIVILEGES REQUIRED FOR HOST ENROLLMENT
	40.4. ENROLLMENT AND AUTHENTICATION OF IDM HOSTS AND USERS: COMPARISON
	40.5. HOST OPERATIONS
	40.6. HOST ENTRY IN IDM LDAP
	40.7. ADDING IDM HOST ENTRIES FROM IDM CLI
	40.8. DELETING HOST ENTRIES FROM IDM CLI
	40.9. RE-ENROLLING AN IDENTITY MANAGEMENT CLIENT
	40.9.1. Client re-enrollment in IdM
	40.9.2. Re-enrolling a client by using user credentials: Interactive re-enrollment
	40.9.3. Re-enrolling a client by using the client keytab: Non-interactive re-enrollment
	40.9.4. Testing an Identity Management client after installation

	40.10. RENAMING IDENTITY MANAGEMENT CLIENT SYSTEMS
	40.10.1. Preparing an IdM client for its renaming
	40.10.2. Uninstalling an Identity Management client
	40.10.3. Renaming the host system
	40.10.4. Re-adding services, re-generating certificates, and re-adding host groups

	40.11. DISABLING AND RE-ENABLING HOST ENTRIES
	40.11.1. Disabling Hosts
	40.11.2. Re-enabling Hosts

	40.12. DELEGATING ACCESS TO HOSTS AND SERVICES
	40.12.1. Delegating service management
	40.12.2. Delegating host management
	40.12.3. Accessing delegated services

	CHAPTER 41. ADDING HOST ENTRIES FROM IDM WEB UI
	41.1. HOSTS IN IDM
	41.2. HOST ENROLLMENT
	41.3. USER PRIVILEGES REQUIRED FOR HOST ENROLLMENT
	41.4. ENROLLMENT AND AUTHENTICATION OF IDM HOSTS AND USERS: COMPARISON
	41.5. HOST ENTRY IN IDM LDAP
	41.6. ADDING HOST ENTRIES FROM THE WEB UI

	CHAPTER 42. MANAGING HOSTS USING ANSIBLE PLAYBOOKS
	42.1. ENSURING THE PRESENCE OF AN IDM HOST ENTRY WITH FQDN USING ANSIBLE PLAYBOOKS
	42.2. ENSURING THE PRESENCE OF AN IDM HOST ENTRY WITH DNS INFORMATION USING ANSIBLE PLAYBOOKS
	42.3. ENSURING THE PRESENCE OF MULTIPLE IDM HOST ENTRIES WITH RANDOM PASSWORDS USING ANSIBLE PLAYBOOKS
	42.4. ENSURING THE PRESENCE OF AN IDM HOST ENTRY WITH MULTIPLE IP ADDRESSES USING ANSIBLE PLAYBOOKS
	42.5. ENSURING THE ABSENCE OF AN IDM HOST ENTRY USING ANSIBLE PLAYBOOKS
	42.6. ADDITIONAL RESOURCES

	CHAPTER 43. MANAGING HOST GROUPS USING THE IDM CLI
	43.1. HOST GROUPS IN IDM
	43.2. VIEWING IDM HOST GROUPS USING THE CLI
	43.3. CREATING IDM HOST GROUPS USING THE CLI
	43.4. DELETING IDM HOST GROUPS USING THE CLI
	43.5. ADDING IDM HOST GROUP MEMBERS USING THE CLI
	43.6. REMOVING IDM HOST GROUP MEMBERS USING THE CLI
	43.7. ADDING IDM HOST GROUP MEMBER MANAGERS USING THE CLI
	43.8. REMOVING IDM HOST GROUP MEMBER MANAGERS USING THE CLI

	CHAPTER 44. MANAGING HOST GROUPS USING THE IDM WEB UI
	44.1. HOST GROUPS IN IDM
	44.2. VIEWING HOST GROUPS IN THE IDM WEB UI
	44.3. CREATING HOST GROUPS IN THE IDM WEB UI
	44.4. DELETING HOST GROUPS IN THE IDM WEB UI
	44.5. ADDING HOST GROUP MEMBERS IN THE IDM WEB UI
	44.6. REMOVING HOST GROUP MEMBERS IN THE IDM WEB UI
	44.7. ADDING IDM HOST GROUP MEMBER MANAGERS USING THE WEB UI
	44.8. REMOVING IDM HOST GROUP MEMBER MANAGERS USING THE WEB UI

	CHAPTER 45. MANAGING HOST GROUPS USING ANSIBLE PLAYBOOKS
	45.1. HOST GROUPS IN IDM
	45.2. ENSURING THE PRESENCE OF IDM HOST GROUPS USING ANSIBLE PLAYBOOKS
	45.3. ENSURING THE PRESENCE OF HOSTS IN IDM HOST GROUPS USING ANSIBLE PLAYBOOKS
	45.4. NESTING IDM HOST GROUPS USING ANSIBLE PLAYBOOKS
	45.5. ENSURING THE PRESENCE OF MEMBER MANAGERS IN IDM HOST GROUPS USING ANSIBLE PLAYBOOKS
	45.6. ENSURING THE ABSENCE OF HOSTS FROM IDM HOST GROUPS USING ANSIBLE PLAYBOOKS
	45.7. ENSURING THE ABSENCE OF NESTED HOST GROUPS FROM IDM HOST GROUPS USING ANSIBLE PLAYBOOKS
	45.8. ENSURING THE ABSENCE OF IDM HOST GROUPS USING ANSIBLE PLAYBOOKS
	45.9. ENSURING THE ABSENCE OF MEMBER MANAGERS FROM IDM HOST GROUPS USING ANSIBLE PLAYBOOKS

	CHAPTER 46. CONFIGURING HOST-BASED ACCESS CONTROL RULES
	46.1. CONFIGURING HBAC RULES IN AN IDM DOMAIN USING THE WEBUI
	46.1.1. Creating HBAC rules in the IdM WebUI
	46.1.2. Testing HBAC rules in the IdM WebUI
	46.1.3. Disabling HBAC rules in the IdM WebUI

	46.2. CONFIGURING HBAC RULES IN AN IDM DOMAIN USING THE CLI
	46.2.1. Creating HBAC rules in the IdM CLI
	46.2.2. Testing HBAC rules in the IdM CLI
	46.2.3. Disabling HBAC rules in the IdM CLI

	46.3. ADDING HBAC SERVICE ENTRIES FOR CUSTOM HBAC SERVICES
	46.3.1. Adding HBAC service entries for custom HBAC services in the IdM WebUI
	46.3.2. Adding HBAC service entries for custom HBAC services in the IdM CLI

	46.4. ADDING HBAC SERVICE GROUPS
	46.4.1. Adding HBAC service groups in the IdM WebUI
	46.4.2. Adding HBAC service groups in the IdM CLI

	CHAPTER 47. ENSURING THE PRESENCE OF HOST-BASED ACCESS CONTROL RULES IN IDM USING ANSIBLE PLAYBOOKS
	47.1. HOST-BASED ACCESS CONTROL RULES IN IDM
	47.2. ENSURING THE PRESENCE OF AN HBAC RULE IN IDM USING AN ANSIBLE PLAYBOOK

	CHAPTER 48. MANAGING PUBLIC SSH KEYS FOR USERS AND HOSTS
	48.1. ABOUT THE SSH KEY FORMAT
	48.2. ABOUT IDM AND OPENSSH
	48.3. GENERATING SSH KEYS
	48.4. MANAGING PUBLIC SSH KEYS FOR HOSTS
	48.4.1. Uploading SSH keys for a host using the IdM Web UI
	48.4.2. Uploading SSH keys for a host using the IdM CLI
	48.4.3. Deleting SSH keys for a host using the IdM Web UI
	48.4.4. Deleting SSH keys for a host using the IdM CLI

	48.5. MANAGING PUBLIC SSH KEYS FOR USERS
	48.5.1. Uploading SSH keys for a user using the IdM Web UI
	48.5.2. Uploading SSH keys for a user using the IdM CLI
	48.5.3. Deleting SSH keys for a user using the IdM Web UI
	48.5.4. Deleting SSH keys for a user using the IdM CLI

	CHAPTER 49. CONFIGURING THE DOMAIN RESOLUTION ORDER TO RESOLVE SHORT AD USER NAMES
	49.1. HOW DOMAIN RESOLUTION ORDER WORKS
	49.2. SETTING THE GLOBAL DOMAIN RESOLUTION ORDER ON AN IDM SERVER
	49.3. SETTING THE DOMAIN RESOLUTION ORDER FOR AN ID VIEW ON AN IDM SERVER
	49.4. USING ANSIBLE TO CREATE AN ID VIEW WITH A DOMAIN RESOLUTION ORDER
	49.5. SETTING THE DOMAIN RESOLUTION ORDER IN SSSD ON AN IDM CLIENT
	49.6. ADDITIONAL RESOURCES

	CHAPTER 50. ENABLING AUTHENTICATION USING AD USER PRINCIPAL NAMES IN IDM
	50.1. USER PRINCIPAL NAMES IN AN AD FOREST TRUSTED BY IDM
	50.2. ENSURING THAT AD UPNS ARE UP-TO-DATE IN IDM
	50.3. GATHERING TROUBLESHOOTING DATA FOR AD UPN AUTHENTICATION ISSUES

	CHAPTER 51. ENABLING AD USERS TO ADMINISTER IDM
	51.1. ID OVERRIDES FOR AD USERS
	51.2. USING ID OVERRIDES TO ENABLE AD USERS TO ADMINISTER IDM
	51.3. USING ANSIBLE TO ENABLE AD USERS TO ADMINISTER IDM
	51.4. VERIFYING THAT AN AD USER CAN PERFORM CORRECT COMMANDS IN THE IDM CLI
	51.5. USING ANSIBLE TO ENABLE AN AD USER TO ADMINISTER IDM

	CHAPTER 52. USING EXTERNAL IDENTITY PROVIDERS TO AUTHENTICATE TO IDM
	52.1. THE BENEFITS OF CONNECTING IDM TO AN EXTERNAL IDP
	52.2. HOW IDM INCORPORATES LOGINS VIA EXTERNAL IDPS
	52.3. CREATING A REFERENCE TO AN EXTERNAL IDENTITY PROVIDER
	52.4. EXAMPLE REFERENCES TO DIFFERENT EXTERNAL IDPS IN IDM
	52.5. OPTIONS FOR THE IPA IDP-* COMMANDS TO MANAGE EXTERNAL IDENTITY PROVIDERS IN IDM
	52.6. MANAGING REFERENCES TO EXTERNAL IDPS
	52.7. ENABLING AN IDM USER TO AUTHENTICATE VIA AN EXTERNAL IDP
	52.8. RETRIEVING AN IDM TICKET-GRANTING TICKET AS AN EXTERNAL IDP USER
	52.9. LOGGING IN TO AN IDM CLIENT VIA SSH AS AN EXTERNAL IDP USER
	52.10. THE --PROVIDER OPTION IN THE IPA IDP-* COMMANDS

