
Data Transfer in Partitioned
Multi-Physics Simulations:

Interpolation & Communication

Vom Stuttgarter Zentrum für Simulationswissenschaften (SC SimTech) und
der Fakultät für Informatik, Elektrotechnik und Informationstechnik

der Universität Stuttgart zur Erlangung der Würde eines Doktors
der Naturwissenschaften (Dr. rer. nat.) genehmigte Abhandlung

Vorgelegt von

Florian Lindner
aus Kirchheimbolanden

Hauptberichter: Prof. Dr. rer. nat. habil. Miriam Mehl

Mitberichter: Prof. Dr. rer. nat. habil. Hans-Joachim Bungartz
Prof. Dr. rer. nat. habil. Daniel Weiskopf

Tag der mündlichen Prüfung: 22. Juli 2019

Institut für Parallele und Verteilte Systeme der Universität Stuttgart

2019

Submitted to the University of Stuttgart

Involved institutions and departments:

Cluster of Excellence in Simulation Technology

Institute for Parallel and Distributed Systems

Chair of Simulation of Large Systems

Florian Lindner

University of Stuttgart

Universitätsstrasse 38

70569 Stuttgart

Germany

D 93 (dissertation)

Typeset using LATEX and cover design by the author.

Copyright © 2019 Florian Lindner.

This work is licensed under the

Creative Commons Attribution-ShareAlike 4.0 International License.

To view a copy of this license, visit https://creativecommons.org/licenses/by-sa/4.0/ or send

a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Although this thesis was written with utmost care, it cannot be ruled out that it contains errors.

Please send any corrections and mistakes to florian.lindner@xgm.de.

https://creativecommons.org/licenses/by-sa/4.0/
mailto:florian.lindner@xgm.de

Abstract

Partitioned multi-physics simulations allow to reuse existing solvers and to combine them

to multi-physics scenarios. This provides not only greater flexibility and improved time-to-

solution, but also helps to manage the increasing complexity of modern scientific software.

This thesis sees itself as a continuation of the works of B. Gatzhammer and B. Uekermann

who developed a comprehensive tool to couple independent simulation codes. I focus

on the two important aspects of interpolation between non-matching grids as well as

communication between several parallel codes and conclude with aspects of software

development of the coupling library preCICE.

The interpolation part puts special emphasis on radial-basis function interpolation. It

starts with a thorough review of existing interpolation methods with special consideration of

the black-box approach to multi-physics simulations and explores promising enhancements

to RBF interpolation. Numerical experiments provide a rigorous testing for accuracy, stability

and scaling behavior of different variants of RBF implementations. Following the insights

gained from the numerical experiments, a highly-optimized parallel implementation for

preCICE is developed, containing various measures to improve accuracy and stability of

the interpolation.

The communication part first defines the requirements for partitioned simulations in

terms of communication. A new technique for peer-to-peer communication networks

between distinct MPI domains is developed and evaluated against existing approaches.

Furthermore, a fast method to establish connections via the file system is presented. Both

measures optimize the initialization phase and achieve a considerable speedup. Finally, a

strategy to fully decouple algorithmically independent participants on the communication

protocol level is implemented and tested.

In the last part, the software-related challenges in developing a parallel scientific ap-

plication involving multiple independent solvers are outlined. I show how the preCICE

project handles testing, profiling and integration of a large parallel scientific software with

multiple participants. A profiling library for distributed applications has been developed

and is extensively used in preCICE and potentially other projects.

3

Abstract

Kurzzusammenfassung

Partitionierte Mehr-Physik Simulationen erlauben es vorhandene Simulationsprogramme

wiederzuverwenden und zu komplexen Mehr-Physik Szenarien zu kombinieren. Damit

wird nicht nur eine größere Flexibilität und kürzere Entwicklungszyklen erreicht, eben-

falls erlaubt es bessere Beherrschung der hohen Komplexität moderner wissenschaftlicher

Software.

Diese Arbeit kann als Fortführung der Arbeiten von B. Gatzhammer und B. Uekermann

verstanden werden. Diese entwickelten eine umfassende Software zum Koppeln mehrerer

unabhängiger Simulationsprogramme. In dieser Arbeit konzentriere ich mich auf zwei

wichtige Aspekte, der Interpolation zwischen nicht-übereinstimmenden Gittern und der

Kommunikation zwischen mehreren parallelen Programmen. Abschließend gebe ich einen

Überblick über Software-Entwicklung der Kopplungsbibliothek preCICE.

Die Interpolation konzentriert sich auf die Methode der radialen Basisfunktionen. Ausge-

hend von einem umfassenden Überblick bestehender Methoden mit spezieller Berücksich-

tigung des Black-Box Ansatzes bei Mehr-Physik Simulationen, werden vielversprechende

Erweiterungen der RBF Interpolation behandelt. Mithilfe von numerischen Experimenten

werden diese auf Genauigkeit, Stabilität und Skalierungsfähigkeit untersucht. Die gewonnen

Erkenntnisse wurden anschließend in einer hoch-optimierten, parallelen Implementierung

der Interpolation für preCICE umgesetzt.

Zur Kommunikation werden zuvorderst die Anforderungen partitionierter Simulationen

definiert. Eine neue Herangehensweise um peer-to-peer Netzwerke zwischen getrennten

MPI-Domänen zu realisieren wird entwickelt und getestet. Weiterhin wird eine neue Me-

thode um den Verbindungsaufbau über das Dateisystem zu beschleunigen gezeigt. Beide

Methoden tragen dazu bei, die Initialisierungsphase der Simulation erheblich zu beschleu-

nigen. Ebenso wird eine Methode gezeigt und umgesetzt die algorithmisch unabhängige

Kopplungsteilnehmer auch auf der Kommunikationsebene entkoppelt.

Im letzten Teil dieser Arbeit werden die Herausforderungen beim Entwickeln einer wis-

senschaftlichen Anwendung die mehrere Löser umfasst dargestellt. Ich zeige, wie das Testen

von Software, Profiling und die Integration von preCICE mit mehreren Simulationsprogram-

men gelöst wurde. Dabei wird eine Bibliothek zum Profilen von verteilten Anwendungen

entwickelt und eingesetzt.

4

Acknowledgments

In science, they say, you are standing on the shoulder of giants1. While one usually thinks

about the uber-giants from former times, such as Turing, Newton or Darwin, I also want to

thank the millions of little giants who make me see further, even if their names are long

forgotten.

In particular, it has been a great honor to not only stand on their shoulders, but at the same

time standing side by side with some of these giants and having the opportunity to meet

them at conferences, to work with them in projects and to receive advice and guidance

from them.

I would like to thank everyone, who contributed directly or indirectly to this thesis, and

some of them in particular.

My advisor Prof. Miriam Mehl for discussions, guidance and putting things back into

perspective and especially for an always open door. Prof. Hans Bungartz not only being my

co-examiner but who also forwarded my application as a doctoral candidate from Munich

to Stuttgart and is responsible for the great time I have.

My colleagues at the University of Stuttgart, making our workplace a fun and stimulating

place for computer science and far beyond.

The entire preCICE project team for being part of a small academic project which grew into

a viable open-source project.

All this would never be possible, without those giants that produce the stack of open-source

software on which almost any scientific software project is based.

Not only in science you are standing on the shoulders of giants, likewise in your entire life

you can never stand as a solitary.

A big thank you goes out to my family, my parents, my girlfriend and her parents for

creating moments of vacation to guide me out of the rabbit hole.

Last but not least, I give thanks to the gift of music, that focused my thoughts when they

went astray.

1These giants obviously also introduced the tradition of writing an acknowledgments section, to which I
will obey here.

5

Contents

Abstract 4

Acknowledgments 6

List of Symbols and Acronyms 12

1 Partitioned Multi-Physics Simulations 16

1.1 Introduction . 16

1.2 The ExaFSA Project . 18

1.3 The preCICE Project & Software . 18

1.3.1 Structure and Design . 19

1.3.2 The Distributed Architecture of preCICE 20

1.3.3 Applications . 25

1.4 Contributions . 27

1.5 Structure of this Thesis . 28

2 Interpolation Methods for Multi-Physics Simulations 30

2.1 Problem Formulation . 31

2.2 Interpolation Methods . 33

2.2.1 Nearest-Neighbor . 33

2.2.2 Nearest-Projection . 34

2.2.3 Radial-Basis Functions Interpolation . 35

2.2.4 Polynomial Interpolation . 35

2.2.5 (Localized) Lagrangian Multiplier Methods 37

2.2.6 Mortar Methods . 37

2.3 Interpolation with Radial-Basis Functions . 38

2.3.1 Polynomial Extension . 42

2.3.2 Convergence and Stability Properties 43

2.3.3 Error Saturation . 47

7

Contents

2.4 Solution Approaches for RBF problems . 48

2.4.1 Preconditioning . 51

2.4.2 Basis Transformations . 51

2.4.3 Finding an Optimal Shape Parameter 52

2.4.4 Adaptive Techniques . 53

2.4.5 Multiscale Interpolation . 54

2.4.6 Rescaled Interpolation . 57

3 Optimization & Implementation of RBFs in preCICE 60

3.1 Basis Functions . 61

3.2 Evaluation of the Polynomial . 62

3.2.1 Consistent Interpolation . 62

3.2.2 Conservative Interpolation . 64

3.3 Rescaling of the Interpolant . 65

3.4 Algorithmic & Implementation Overview . 66

3.4.1 Dimensionality of Input Data and Dead Dimensions 68

3.4.2 Re-Partitioning of Meshes . 68

3.4.3 Vertex & Row Ordering . 69

3.4.4 Matrix Assembly & Preallocation . 72

3.4.5 Solving the Linear Systems . 82

3.5 Conclusion . 83

4 Numerical Experiments & Results 84

4.1 Test Setup . 84

4.1.1 Numerical Test Functions . 85

4.1.2 Error Metrics . 87

4.1.3 Condition Number . 90

4.1.4 Implementation . 91

4.2 Standard RBF Interpolation . 92

4.3 Integrated and Separated Polynomial . 107

4.4 Rescaled Interpolant . 118

4.5 Adaptive Shape Parameters . 120

4.6 RBF-QR Basis Transformation . 124

4.7 Conservative Interpolation . 128

4.8 Runtime Characteristics of PETSc Linear Solvers 131

4.8.1 Test Setup . 131

8

Contents

4.8.2 Results . 132

4.9 Upscaling of the RBF Implementation . 137

4.9.1 Offline-Phase . 137

4.9.2 Online-Phase . 143

4.10 The Cylinder Flap Test Case . 146

4.11 Conclusions . 150

5 Efficient Communication on HPC Machines 154

5.1 Communication in preCICE . 154

5.2 Fundamental Communication Protocols . 155

5.2.1 Protocol Semantics & Abstraction in preCICE 157

5.3 Establishing Peer-to-Peer Communication Networks 159

5.3.1 Implementation Status of TCP and MPI 160

5.3.2 Exchange of Initial Connection Information 161

5.3.3 Creating the Communication Channels 164

5.4 Scaling & Compatibility . 164

5.4.1 Performance of MPI Ports . 165

5.4.2 Communication Decoupling of Participants 167

5.5 Conclusions . 172

6 Software Development 174

6.1 Profiling . 175

6.1.1 Measuring Time for Distributed Applications 179

6.1.2 Visualization . 181

6.2 Testing . 182

6.2.1 Unit Tests . 183

6.2.2 System Tests . 185

6.2.3 ASTE – A Flexible Coupling Test Framework 187

7 Conclusions 190

Bibliography 192

Declaration of Authorship 202

Publications 204

9

11

List of Symbols and Acronyms

List of Symbols and Acronyms

Symbols

Symbol Meaning

Γ Interface Mesh

Ξ Input Mesh

ξ Input Data Site

∆ Output Mesh

δ Output Data Site

Ω Problem Domain

ϕ Basis Function

λ Basis Function Weighting Factor

s RBF Interpolant Operator

h Mesh Width

H Mapping Operator

d Dimensionality

u Velocity

p Pressure

F Force

ρ Density

ν Kinematic Viscosity

µ Shear Modulus

νs Poisson’s Ratio

Re Reynolds Number

St Strouhal Number

t Time as measured by the system clock

t̃ Time as measured by the steady clock

Rd Real Numbers in d-dimensional space

Pn Polynomial space of degree n

L∞ Infinity Norm

O (f (x)) Big-O Landau notation

12

Acronyms

Acronym Meaning

CI Continuous Integration

CFD Computational Fluid Dynamics

CPU Central Processing Unit

CSM Computational Structure Mechanics

FSI Fluid-Structure Interaction

FLOPS Floating Point Operations per Second

GPFS IBM General Parallel File System

HPC High-Performance Computing

HLRS Höchstleistungsrechenzentrum Stuttgart

IP Internet Protocol

I/O Input/Output

LB Lattice-Boltzmann

LES Large Eddy Simulation

LRZ Leibniz-Rechenzentrum

M2N Many-to-Many Communication

MPI Message Passing Interface

MQ Multi-Quadrics Basis Function

RBF Radial-Basis Function Interpolation

RMSE Root Mean Squared Error

STL Stereolithiography Format

TCP Transmission Control Protocol

TPS Thin-Plate Splines Basis Function

UDP User Datagram Protocol

URANS Unsteady Reynolds Averaged Navier Stokes

UUID Universally Unique Identifier

VS Volume Splines Basis Function

VTK Visual Toolkit

13

1 Partitioned Multi-Physics

Simulations

If anything, there’s a reverse Moore’s Law observable in software: As

processors become faster and memory becomes cheaper, software

becomes correspondingly slower and more bloated, using up all

available resources.

Jaron Lanier

1.1 Introduction

In spite of the dystopian quote I decided to start this chapter with, science and society

expect results from the ever growing computing power available to us. Results that give

insight into the mechanics of climate change or aortic dissection, into the dynamics of a

flapping wing or an artificial fish.

There is nothing easier in simulation sciences than burning ever more computing power.

By turning up spatial or temporal resolution, the complexity of a given simulation case

can easily be tuned to use up all available computing power. However, your mileage may

vary. For simulations that are already converged to a validated result, the insight gained

from increasing the resolution is minimal. As Uekermann put it in his thesis [105], more

computing power does not automatically lead to more resolved physical effects. There is

much work to be done turning the surplus of computing power into adequate results or, to

put it in another way, keeping up the science per FLOP.

Multi-physics simulations are a way to actually turn the investment of new and faster

computers into novel scientific and engineering insight. In reality, more often than not,

more than one “physics” actually drive a concrete problem. From a physicist or philosophers

point of view, there is just one physics. From a methodological and simulation perspective,

there are many. High-speed fluid dynamics warrant a different simulation approach than

15

1 Partitioned Multi-Physics Simulations

static structural mechanics. This change of perspective yields two different approaches that

multi-physics simulations can be distinguished into.

The monolithic approach, on one hand, uses a single system of equations to describe and

solve the coupled problem. On the other hand, partitioned methods use existing single-

physics solvers and couple them to a simulation that strives to solve the overall coupled

problem.

The monolithic approach can be more efficient and robust for a single simulation case.

After all, the solver “knows” about the physics involved and this knowledge can consequently

be integrated into the solver. However, the monolithic architecture makes the integration

of new physics or the adaption to vastly different simulation cases hard. A partitioned

approach fosters modularization and with that easier exchange of principal components of

the simulation. As such, the partitioned approach can be one way to break the vicious cycle

suggested by Jaron Lanier in the opening quote. The modularization of the partitioned

approach can help to manage the increasing complexity of simulations involving more and

physical effects.

Three main areas of interest can be identified in a partitioned multi-physics simulation:

• Equation coupling is responsible for steering the coupled simulation, i.e., determin-

ing convergence and minimal time step sizes as well as controlling the subcyling

of coupling iterations in one time step. Furthermore, acceleration schemes such as

quasi-Newton can be used to speed up convergence of the iterative solution of the

coupling equations.

• Data interpolation or mapping is crucial for transferring data between solvers that

use different meshes at the coupling interface. This is usually the case, as each mesh

is adapted to the solver’s respective problem domain.

• Efficient communication takes place between solvers as well as between processors

of the same solver. Avoiding expensive all-to-all communication patterns requires set-

ting up a sparse communication network between solvers. In partitioned simulations,

communication is a special challenge, as each solver can bring its own communica-

tion model and framework, which might be challenging to integrate with.

In this thesis, I focus on the two latter fields, interpolation and communication. Equation

coupling and quasi-Newton schemes as used in the coupling library preCICE are covered in

[9, 70] or in broader context in the doctoral thesis of Klaudius Scheufele [92].

16

1.2 The ExaFSA Project

1.2 The ExaFSA Project

The ExaFSA “Exascale Simulation of Fluid-Structure-Acoustics Interactions” project is part

of the DFG priority program 1648 “Software for Exascale Computing” (SPPEXA)1.

The SPPEXA project works as an umbrella organization for a number of more or less

independent projects. The overarching mission is to develop algorithms, system and

application software as well as tools for programming and data exploration for the field of

future high-performance computing. Upcoming systems with more than 107 processing

units and a compute power ranging up to exaflops, i.e., more than 1018 floating point

operations per second require to transition from sequential or moderately parallel to

massively parallel processing. The various sub-groups of the SPPEXA project provide

software from infrastructure to application level to leverage this transition.

The objective of the ExaFSA project is to develop efficient massively parallel simulations of

fluid-structure-acoustics interactions. It takes a modular approach and, thus, the developed

methods and software are going to be re-usable for other coupled multi-physics simulations.

Project partners within the ExaFSA project are the University of Siegen contributing with

the fluid and acoustic solver Ateles [113], the Technical University of Darmstadt with the

fluid and acoustic solver FASTEST [68, 72], Tohoku University in Japan with the code

translation framework Xevolver [99] and the University of Stuttgart together with the

Technical University of Munich with the coupling library preCICE [21].

1.3 The preCICE Project & Software

preCICE (Precise Code Interaction Coupling Environment) is a library that facilitate con-

necting multiple single-physics simulation codes. This way, complex multi-physics scenarios

can be constructed in a plug-and-play manner.

The project was started by Bernhard Gatzhammer as part of his PhD thesis [50] and

further pursued by Benjamin Uekermann [105]. The current development team consists of

G. Chourdakis, B. Rüth, F. Simonis, A. Totounferoush, B. Uekermann and myself.

The software is open-source, licensed under the GNU Lesser General Public License

(LGPL) version 3 [51]. The development takes place in an open and public process, much

of the project coordination happening at GitHub2. As of April 2019, the main repository

contains almost 2700 commits from 23 authors.
1http://www.sppexa.de
2https://github.com/precice/

17

http://www.sppexa.de
https://github.com/precice/

1 Partitioned Multi-Physics Simulations

1.3.1 Structure and Design

preCICE is designed as an object-oriented application, written in C++. It tries to leverage

the features provided by the C++11 standard to the fullest and as such requires a moderately

modern compiler.

preCICE is not used as a standalone application but as a library. It is used by means of

solver-specific adapter codes, that translate data structures such as meshes and vertex data

and simulation steering commands between the solver and the preCICE library, see also

Fig. 1.3. How such an adapter is implemented and integrated with the solver depends on

the solver and very much on the kind of API provided by the solver as well as the openness

of the code. Open-source solvers usually integrate the calls to preCICE directly in their

main solver loop.

The software is organized in packages, reflected in a sub directory for each package. The

following packages exist inside preCICE (in alphabetical order).

action defines callback functionality that can be used to call pre-defined functions or

arbitrary Python code at certain points of the simulation. These functions can, e.g.,

modify data before they are sent to the coupling partner.

com provides abstractions for MPI and socket communication to general communication

routines. For more information see Sec. 5.2.1.

drivers holds the main function for building the preCICE executable.

io implements exporting functionality of the coupling meshes and data to, e.g., VTK files.

logging contains logging routines used by all packages. The logging is implemented based

on the Boost Logging library.

m2n defines the parallel communication between the participants based on the abstract

routines from the com package.

math provides general mathematical routines and constants. This also includes compari-

son functions for floating point numbers.

mapping implements the nearest-neighbor, nearest-projection and radial basis-function

interpolation for mapping exchanged data between the participant’s grids. This

functionality is covered in depth in Chapters 2 to 4.

mesh holds methods and data structures for mesh and coupling data. It is used by almost

every other package.

18

1.3 The preCICE Project & Software

partition computes the partitioning of meshes at the initialization of the simulation, based

on the local partitioning in the involved parallel solvers.

query holds functionality to query for certain points inside a mesh.

testing provides the framework for writing serial or parallel unit as well as integration

tests, see Sec. 6.2.

utils collects general functionality that is used by most packages and does not warrant its

own package.

xml is the XML configuration framework and abstraction to the libxml2 XML parsing library.

Each package follows a uniform directory layout and contains the following sub directo-

ries:

config/ contains callback functions that configure the package. These callbacks are set up

for certain XML tags and called when these tags are encountered in the configuration

file. It enables a decentralized and self-contained configuration for each package.

impl/ contains functionality that is not part of the public interface of the package.

tests/ contains unit tests that automate testing the functionality contained in the package.

As unit tests, these tests focus on testing the functionality directly provided by the

package in an isolated environment. They are supplemented by integration tests,

provided by the precice package.

Figure 1.1 shows the dependency relation of the packages which provide the preCICE

core functionality.

1.3.2 The Distributed Architecture of preCICE

In the first evolutionary step, as developed and implemented by Gatzhammer in [50],
preCICE was implemented as a centralized architecture. One server instance as a central

aggregation point was launched alongside with the processes of each solver, as shown in

Fig. 1.2. In the initialization phase of a coupled simulation, the server collects the interface

meshes from each solver process and reconstructs the full interface mesh. During the

simulation, all coupling related computation is performed on the server and communication

is relayed through it. For simulation runs that comprise tens of thousands of processes, it

19

1 Partitioned Multi-Physics Simulations

mesh

actioncomio mapping query

m2n
cplscheme partition

precice

Figure 1.1: Dependency of the principal preCICE packages. Every package depends on
the mesh package. On the other hand, the precice package depends on every
other package. The dependency edges for these two packages are therefore
omitted for brevity. Dependencies that exist only inside the tests sub-package
are ignored.

quickly becomes obvious, that this application architecture is inherently not scalable to a

sufficient degree.

Before I continue to dive into the details of the current distributed architecture, a word

on nomenclature. We prefer the term distributed vs. centralized in contrast to parallel vs.

sequential. While the terms are often confused and a clear distinction is not easy, [83]
aims for a concept formation. He states, that parallelism’s fundamental issue consists in

mastering efficiency, whereas distributed computing is about mastering uncertainty. In

distributed computing, each entity knows only about a subset of the whole set of inputs.

Furthermore, the geographical3 distribution of the problem is not a design choice, but is an

input parameter.

These key concepts outlined above align very well with the challenges faced during the

transition of preCICE to a distributed application architecture and the resulting design

decisions made in the second evolutionary step. For instance, each rank holds only a portion

of the interface mesh. These challenges, posed by the distributed way information is held

amongst the ranks, will be detailed in the following.

In [105], preCICE was re-designed to become a distributed application, as far as possible

devoid of a central command, control, communication or computation instance. The main

goal, as stated by Uekermann, is not a classical speed-up, but rather rendering a central

instance unnecessary, or, in other words, to not get into the way of the scalability of the

3here, geographical refers to the distribution of the problem set among different ranks and nodes

20

1.3 The preCICE Project & Software

solver A1

solver A2

solver A3

preCICE
Client

preCICE
Client

preCICE
Client

Server
A

Equation Coupling

Communication

...01110100101100101101011...

Data Mapping

solver B1

solver B2

solver B3

preCICE
Client

preCICE
Client

preCICE
Client

Server
A

Figure 1.2: Old communication scheme of preCICE as implemented in [50]. For each
participant, one server instance of preCICE was launched to perform coupling
related computation and communication.

involved solvers.

Figure 1.3 shows the new communication scheme of preCICE. The most obvious difference

is the absence of a server component. However, there is still a master for each solver who

acts as a primus inter pares. One rank of each participant runs in master mode, whereas all

the other ranks run in slave mode. The master is currently hard-coded to rank 0, which

is however an arbitrary decision and can be adapted easily. From a user perspective, this

choice is transparent, i.e., all ranks appear identical and each can potentially hold a part of

the mesh.

Given the two participants A and B with the number of ranks pA and pB, the two coupling

meshes are defined as
pA
⋃

i=1

Γ i
A = ΓA,

pB
⋃

i=1

Γ i
B = ΓB (1.1)

where Γ i
A, Γ i

B denote the local parts and ΓA, ΓB the complete solver meshes as the union

of all local parts. As mentioned above, the decomposition of the meshes is supplied by

the participants A and B and can not be influenced by preCICE. The local meshes are not

necessarily disjoint, a vertex with the same coordinates might be defined multiple times,

e.g, due to ghost layers in the participant’s partitions. This case is handled by treating the

two vertices as separate, albeit with same coordinates. While this usually is not problematic,

it might introduce undefined behavior for some cases, such as nearest-neighbor mapping

selecting a value from a random one of the identical vertices.

21

1 Partitioned Multi-Physics Simulations

solver A1

solver A2

solver A3

preCICE
Master

preCICE
Slave

preCICE
Slave

Steering

Equation Coupling

Communication

...01110100101100101101011...

Data Mapping

solver B1

solver B2

solver B3

preCICE
Master

preCICE
Slave

preCICE
Slave

Steering

Figure 1.3: New communication scheme without a central server, as designed in [105]. A
master rank acts as a steering instance for tasks which are not yet parallelized.
Outside the initialization phase, all communication happens in a peer-to-peer
fashion directly between slaves.

The mapping or interpolation of values from one mesh to another happens at one of the

participants, as defined in the configuration file. In order to perform that mapping, the

respective participant has to have knowledge of both of the meshes ΓA and ΓB. Without loss

of generality we assume that the mapping happens at participant A and, thus, ΓB needs to

be transferred from B to A. At A, each slave computes the vertices from B it requires to

perform the mapping. Based on this information, ΓB is re-partitioned at A. Two different

strategies, called broadcast/filter and pre-filter/post-filter are available and can be selected

in the configuration file. Figure 1.4 visualizes this process in the broadcast/filter variant,

Tab. 1.1 contrasts the two variants.

The selected mapping plays an important role in the re-partitioning process, as it deter-

mines in step IV which vertices are required for a processor-local portion of the mapping to

take place. The technical details of this are described in Sec. 3.4.2.

Both variants posses their individual advantages and disadvantages, which are discussed

in [105, p. 73]. Whereas the broadcast/filter variant features a computationally expensive

filtering of the entire mesh (step IV), the pre-filter/post-filter variant first does a pre-filtering

using the bounding box for each slave’s partition, which reduces the computational load. On

the other hand, step III in the pre-filter/post-filter variant is sequential, which is a potential

bottleneck in simulations with a large number of processors. Due to the broadcasting

in step III of the broadcast/filter, it benefits from efficient broadcast routines as the ones

22

1.3 The preCICE Project & Software

I: Gather Mesh
II: Communicate Mesh
III: Broadcast Mesh
IV: Filter
V: Feedback

ΓB

Γ 1
B

Γ 2
B

Γ 3
B

I

II

III
IV

IV

IV

IV

V

A B

Γ̃B

Γ̃ 1
B

Γ̃ 2
B

Γ 1
A

Γ 2
A

Figure 1.4: Re-partitioning of meshes, in the broadcast/filter variant. Participant A (left)
and B (right) run on three and four processors, respectively. Only local mesh
contributions Γ i from each processor i are given to preCICE. To allow for a
mapping to take place at participant A, ΓB needs to be available at A. In step I,
ΓB =

⋃

i Γ̃
i
B is gathered at the master process of B and then sent to the master

process of A (II). At A, ΓB is now broadcasted to all slaves (III) and filtered locally
by each slave (IV). This results in a re-partitioning Γ̃B of ΓB. The information
containing the new partitioning is finally send back to the master of A (V). Note
that, for sake of simplicity, both masters do not hold a mesh here and slaves
can as well hold no mesh information. Figure courtesy of Benjamin Uekermann
[105]

.

23

1 Partitioned Multi-Physics Simulations

broadcast/filter pre-filter/post-filter

I MB gathers ΓB I MB gathers ΓB
II MB transfers ΓA to B II MB transfers ΓA to B
III MA broadcasts ΓB to each S i

A III Every S i
A sends a bounding box round

Γ i
A to MA. MA filters ΓB accordingly and

distributes the filtered mesh to all S i
A

(pre-filter).
IV Each S i

A filters ΓB based on the map-
ping method

IV Each S i
A filters ΓB based on the map-

ping method (post-filter).
V MA gathers the mesh distribution in-

formation from all S i
A

V MA gathers the mesh distribution in-
formation from all S i

A

Table 1.1: Mesh re-partitioning strategies

usually found in MPI implementations.

The technical realization of the communication, i.e., the underlying protocols such as

MPI or TCP/IP are detailed further in Chapter 5.

1.3.3 Applications

In this section, I quickly summarize four publications as examples how preCICE is used

by researchers outside the SPPEXA ExaFSA group. They include classical fluid-structure

interaction problems and a fluid-fluid coupling between diverse discretization schemes and

turbulence models.

In [96], preCICE is used in the field of nuclear reactor simulations. Turbulence induced

vibrations from the cooling fluid surrounding the fuel rods are the main source of excitation

of the rods. Sharma, Santis, and Shams describe an extension to the standard URANS

(Unsteady Reynolds Averaged Navier Stokes) turbulence model that more accurately models

these vibrations. The strongly-coupled fluid-structure system is simulated by coupling

a finite-volume fluid with a finite-element structure solver. The solvers are coupled by

preCICE and the resulting framework is described as “very flexible and powerful” by the

authors. The fluid-structure simulations use preCICE’s implicit IQN-ILS (Interface Quasi-

Newton with Inverse Jacobian from Least-Squares) to accelerate the convergence between

the two black-box solvers, resulting in much faster convergence than classical Gauss-Seidel

methods. The mapping of values between the coupling interfaces is achieved by using

nearest-neighbor interpolation. The resulting setup is validated against a number of test

cases, including the well-known Turek [103] test case, showing good agreement with the

24

1.3 The preCICE Project & Software

experimental results.

Santasmasas et al. use preCICE to implement a hybrid RANS-LES method in [89]. In

contrast to the classical case of fluid-structure interaction, mentioned in the previous para-

graph, the coupling is performed between two fluid regions, which use URANS and LES as

their respective turbulence modeling methods. The solvers coupled are a Lattice-Boltzmann

(LB) solver using LES turbulence modelling, running on a GPU and an OpenFOAM based

Navier-Stokes solver with a URANS turbulence model, running on CPUs. As both solvers

posses a region of overlap, preCICE was modified to allow for transferring both data from

boundary cells as well as internal cells in the overlap region. The solvers are executed

simultaneously using the parallel-explicit coupling method from preCICE. Their research is

still at the early stages, subsequent research will also include evaluating further coupling

schemes, such as implicit ones.

Another classical fluid-structure interaction application is demonstrated in [26]. Cin-

quegrana and Vitagliano use preCICE to couple a URANS flow solver called ZEN with the

open-source structural solver CALCULIX4. The decision for preCICE as a coupling library is

driven by the open-source environment of the project, its ease of implementation and learn-

ing curve for using the structural solver and the availability of both explicit and implicit

coupling methods as well as the choice of mapping algorithms. To interface CALCULIX with

preCICE, the existing adapter5, developed in the preCICE project is used. For the ZEN fluid

solver, a new adapter to preCICE is developed. The coupled setup is first verified using

an oscillating flap and subsequently applied to a supersonic panel flutter problem. The

cases use RBF with thin-plate splines and nearest-neighbor interpolation, respectively. The

publication concludes with encouraging, though only preliminary results.

A more unusual scenario is investigated by Luo et al. In [71], a bio-inspired fish is

modeled using an in-house Navier-Stokes solver coupled via preCICE to the finite-element

solver CALCULIX. The effect of fin flexibility on the propulsive performance of the fish-

model is evaluated. For that, a numerical validation using two FSI examples is performed.

First, a scenario similar to the cylinder flap, presented in Sec. 4.10 is validated in terms of

shedding frequency. Second, the bending of a three-dimensional flexible plate in uniform

flow is evaluated. For the actual simulation, conservative radial-basis function interpolation

is used for data transfer and IQN-ILS quasi-Newton methods to accelerate the coupling

iterations.
4http://www.calculix.de
5https://github.com/precice/calculix-adapter

25

http://www.calculix.de
https://github.com/precice/calculix-adapter

1 Partitioned Multi-Physics Simulations

1.4 Contributions

As mentioned above, this thesis focus on the aspects of interpolation and communication

for partitioned multi-physics simulations. In a nutshell, the main contributions of this thesis

are

• Provide an exhaustive overview of the theoretical aspects of interpolation with radial-

basis functions with special consideration of the black-box coupling approach. This

includes the evaluation of various solution approaches for fundamental problems of

this type of interpolation.

• Two different methods for algorithmically treating the RBF interpolation augmented

by a polynomial for either consistent or conservative implementation are developed.

• In order to provide a meaningful assessment of the error for conservative interpolation,

two new error metrics are presented.

• Numerous variants of the RBF interpolation algorithm and parameters are scrutinized

for accuracy and stability for a large number of parameters.

• A highly-optimized parallel implementation of the RBF interpolation for preCICE is

developed. This also involves the efficient and reusable integration of a tree-based

search structure of spatial queries in preCICE. The efficiency of the implementation

is validated using weak and strong scaling.

• Implementations of MPI on the HazelHen and SuperMUC HPC systems are evaluated

for suitability to create peer-to-peer communication methods. A new method to

establish a communication between coupling participants using MPI is implemented

and evaluated.

• A framework to effortless instrument and profile partitioned, multi-node and multi-

participant simulations is developed.

• A testing framework ranging from atomic unit tests with special consideration of

parallel applications to multi-participant system tests is implemented. Furthermore,

a flexible tool chain for numerical experiments involving preCICE is created.

26

1.5 Structure of this Thesis

1.5 Structure of this Thesis

Chapter 2: Interpolation Methods for Multi-Physics Simulations gives an introduction

to interpolation methods found in multi-physics simulation software. Interpolation using

radial-basis functions is presented in detail. The chapter gives an overview on current

research regarding convergence and stability properties as well as different methods to

improve weak spots of RBF interpolation.

The implementation of the RBF algorithm is presented in Chapter 3: Optimization &

Implementation of RBFs in preCICE. The chapter details the actual implementation of

the algorithm using the PETSc library. It also discusses how a spatial index to facilitate fast

construction of the linear systems is integrated in preCICE.

In the final chapter about interpolation, Chapter 4: Numerical Experiments & Results,

numerous variations of the algorithm and the parameters are evaluated for stability and

accuracy. The C++ implementation of the interpolation algorithm is tested for scalability.

Furthermore, different linear solvers and preconditioners contained in PETSc are tested for

their suitability to solve the resulting linear systems.

Chapter 5: Efficient Communication on HPC Machines introduces how preCICE uses

different communication channels and the resulting requirements. The implementation

status of TCP/IP and MPI at the HazelHen and SuperMUC HPC systems are charted. A new

method to exchange the initial connection tokens is presented and benchmarked. Finally,

the improved implementation of MPI communication in preCICE is evaluated on the two

HPC systems.

In Chapter 6: Software Development is about discussing two important aspects in

the development of preCICE. First, the challenges of profiling a distributed, partitioned

simulation application are outlined. For that, a new, reusable framework that eases profiling

and instrumentation as well as visualization of the results of such types of applications

is developed. Second, the important aspect of automated software testing also holds

special challenges for distributed and parallel applications. It is explained how the preCICE

project tackles automated testing from unit tests to system tests of cases involving multiple

participants.

27

2 Interpolation Methods for

Multi-Physics Simulations

The purpose of computing is insight, not numbers.

Richard Hamming

In partitioned multi-physics simulations each solver not only uses algorithms that are

tailored for the respective physical domain, but also utilizes appropriate meshes. Fluid

simulations (CFD) typically require much finer mesh resolutions than structural simulations

(CSM) and special features such as highly resolved boundary layers.

Therefore, one of the crucial parts of a partitioned multi-physics coupling is data interpo-

lation between non-matching meshes. Due to our black-box approach, we assume that the

mesh is represented as a point cloud, i.e., without surface triangulation. While solvers can

optionally provide such a triangulation by defining basic primitives such as edges, triangles

and quads, the coupling library cannot rely on it. Furthermore, the missing information

about the solver’s discretization scheme, mesh topology and shape functions restricts the

choice of applicable data mapping algorithms.

Several interpolation methods that work on point cloud data exist, of which interpolation

by radial basis functions is among the most commonly used. In this chapter, I will first

compare RBF interpolation methodologically briefly with alternative interpolation methods.

The interpolation quality and numerical condition on different meshes as well as test

functions will be evaluated in Chapter 4.

Special emphasis will be given to the well-known fact, that radial basis function inter-

polation produces ill-conditioned systems, which harms the solution accuracy and the

time-to-solution, in particular for large systems. Methods to cope with this are reviewed

in this work. These methods include basis transformations, preconditioning, re-scaling of

the interpolant and an alternative numerical treatment of the additional polynomial that is

used to properly capture globally constant or linear components of the data.

29

2 Interpolation Methods for Multi-Physics Simulations

2.1 Problem Formulation

The general, high-level problem setting consists of two independent solvers with two

problem domains. A coupling interface Γ connects the two domains. While the two

domains are mostly disjoint, a small overlap occurs in practice and should not pose a

problem for the interpolation. Over the interface arbitrary quantities are exchanged. In a

fluid-structure interaction setting, as an example, these quantities are usually displacements

from the structure to the fluid solver and pressures or forces vice-versa. The quantities

to be exchanged usually live on different meshes, therefore a mapping or interpolation

between the source and the target mesh is needed.

Without loss of generality, this problem formulation for mapping focuses on the specific

case of fluid-structure interaction, because some concepts such as virtual work only make

sense this way. The results are however, independent of the concrete application. In this

section, I denote the fluid side with the index f and the structure side with the index s.

This introduction follows [108].
We consider the continuous vector field of displacement values u(x) and the scalar field

of pressure values p(x), with x ∈ Γ . The kinematic and dynamic coupling conditions at the

interface Γ are

u f (x) = us(x),

ps(x) = p f (x)
(2.1)

In the following, I consider only scalar fields, since vector fields are mapped component

wise in the same way for each dimension.

The continuous fields are approximated by still continuous fields uh and ph, respectively,

in a suitable basis representation with coefficient vectors ū or p̄:

u f (x)≈ uh
f (x) = N T

f (x) ū f (2.2)

p f (x)≈ ph
f (x) = N T

f (x) p̄ f (2.3)

us(x)≈ uh
s (x) = N T

s (x) ū f (2.4)

ps(x)≈ ph
s (x) = N T

s (x) p̄s (2.5)

where Nf and Ns are vectors of shape functions, ū the nodal displacements and p̄ the nodal

pressure values. In a black-box coupling scenario, only ū and p̄ are known to the coupling

component. The bases Nf (x) and Ns(x), on the other hand, remain opaque, as they depend

on the discretization method used for displacements or pressure.

30

2.1 Problem Formulation

The nodal forces on the fluid- and the structure mesh can be obtained from the pressure

values by integration

F̄ f =

∫

Γ f

Nf (x)p
h
f (x)dΓ =

∫

Γ f

Nf (x)N
T
f (x)p̄ f dΓ = M f f p̄ f

F̄s =

∫

Γs

Ns(x)p
h
s (x)dΓ =

∫

Γs

Ns(x)N
T
s (x)p̄ f dΓ = Mss p̄s.

(2.6)

The mapping H is a linear operator that translates from values located at nodes of one

mesh to nodes at the other mesh. We assume - without loss of generality - that we map the

displacements ūs from structure (index s) to fluid (index f) via an operator H f s and Hs f

vice versa.

ū f = H f s ūs (2.7)

F̄s = Hs f F̄ f (2.8)

This defines a direct or consistent mapping if the row-sum of H f s is equal to 1, i.e., a constant

field of values is mapped exactly from one mesh to another. Consistent mapping is usually

used for displacements and pressures.

Conservation of energy at the interface is expressed as

∫

Γ

u f (x) p f (x)dΓ =

∫

Γ

us(x) ps(x)dΓ . (2.9)

The fluid- and the structure solver can use different discretizations of Γ , the fluid interface

mesh Γ f and the structure interface mesh Γs, respectively.

The discrete form of the energy conservation Eq. (2.9) at the interface can be derived as,

ūT
f F̄ f = ūT

s F̄s. (2.10)

The conservative form of interpolation can be directly derived from the discrete formula-

tion of energy conservation Eq. (2.10)

F̄s = HT
f s F̄ f . (2.11)

For pressure values, this gives the conservative mapping

p̄s = M−1
ss HT

f s M f f p̄ f , (2.12)

31

2 Interpolation Methods for Multi-Physics Simulations

if H f s is a consistent mapping. This obviously requires knowledge of Mss and M f f . In order

to ensure conservation of virtual work in a black-box coupling environment, the mapping

has to be restricted to ū and F̄ .

The conservative mapping is usually used for integral values, such as forces and ensures

that

Γ f
∑

i

F̄ f ,i =
Γs
∑

i

F̄s,i. (2.13)

From the transposition of H f s it is obvious, that the column-sum of a conservative mapping

matrix HT
f s is equal to 1 and, furthermore, that a consistent interpolation can be made

conservative by transposition and inverting the mapping direction and vice-versa.

Note that though for each of the following interpolation methods such a mapping matrix

H f s can be defined, it is usually never created explicitly.

While obviously a mapping H f s or Hs f can be both consistent and conservative, ensuring

this requires access to the underlying solver’s shape functions N(x) and is, thus, not suited

for black-box coupling [50]. For each quantity, it needs to be decided, whether the mapping

should be consistent or conservative. This question needs to be decided by the user, taking

the overlying type of multi-physics problem into account.

A more in-depth discussion of that topic, including the conservation of virtual work over

interfaces can be found in [10, 50].

2.2 Interpolation Methods

Various methods exist for interpolation that are used in the context of multi-physics sim-

ulations. As laid out by [50], the original choice of mapping methods implemented in

preCICE is based on the comparisons done in [10, 11]. Relevant criteria are conservation

and consistency properties, accuracy, computational efficiency and - last but not least -

compatibility with the black-box approach. I will give a short overview over the mapping

methods commonly found in the fluid-structure interaction context. This list in no way

aims to be exhaustive.

2.2.1 Nearest-Neighbor

The nearest-neighbor interpolation method, also known as proximal or nearest-element

interpolation is based on finding the geometrically nearest neighbor, i.e., the vertex with

32

2.2 Interpolation Methods

consistent conservative

Figure 2.1: Nearest-neighbor mapping from blue (empty circles) to red (filled circles). The
consistent mapping looks for a nearest neighbor for every vertex in the output
mesh (red) whereas conservative mapping looks for a neighbor for every vertex
in the input mesh (blue). As a result, for the consistent mapping, values from
the input mesh potentially end up unmapped. For the conservative mapping,
vertices on the output mesh may not receive a value or receive multiple values,
which are summed up.

the shortest distance from the target or source vertex. Usually, the Euclidean norm is

used for distance calculations. The value at the nearest neighbor of an output vertex

is copied to the latter, resulting in first order accuracy. Benefits of this methods are

its easy implementation and the absence of an interpolation matrix, thus dramatically

reducing memory consumption. It does not take any information of the mesh beyond vertex

positions into account. After the indices of the nearest neighbors of the output vertices

have been computed, the method acts purely on local data and is therefore embarrassingly

parallel. To derive a conservative mapping from this consistent formulation, we transpose

the mapping matrix (see also Fig. 2.1), which may result in a mapping, where some output

vertices do not receive a value, whereas at others, several values from the input mesh may

be accumulated and summed up.

2.2.2 Nearest-Projection

The nearest-projection method can be regarded as an extension to the nearest-neighbor

mapping. Because this method works on mesh elements, such as edges, triangles or quads,

a suitable triangulation of the input mesh has to be provided by the solver.

It is based on an orthogonal projection from the output vertex on the nearest element

of the input mesh. For this nearest element, the barycentric coordinates of the projection

result are computed. For a triangle, the barycentric coordinates α, β and γ of a point d are

computed from the coordinates of the triangle nodes a, b, c:

d = αa+ β b+ γ c (2.14)

33

2 Interpolation Methods for Multi-Physics Simulations

a) b)

Figure 2.2: a) illustrates how a nearest-projection mapping first interpolates from the blue
vertices to the orthogonal projection of an output vertex on the edge (small
black circles) and after that copies the result to the output vertices (red circles).
b) shows the interpolation scheme for a triangle.

and normalized according to

α+ β + γ= 1. (2.15)

The output vertex value is eventually computed as the linearly interpolated value at the

projection point using the barycentric coordinates as interpolation weights.

Figure 2.2 shows the mapping procedure with edges and triangles as mesh elements of

the input mesh.

A more in depth explanation of the implemented algorithm can be found in [17, 50].
The barycentric interpolation is second order accurate, the mapping from the projection

point to the output vertex is first order accurate. Based on the assumption that the gap

between source and target meshes of the interpolation is small, compared to the mesh

width, the nearest-projection interpolation is second order accurate in practice.

2.2.3 Radial-Basis Functions Interpolation

The interpolation with radial-basis functions works on scattered data and requires no

additional information beyond the coordinates of the mesh nodes. The interpolator is

defined as a weighted sum of radially symmetric functions placed at the input mesh’s nodes.

This method is presented in Sec. 2.3 in depth.

The three methods above, namely nearest-neighbor, nearest-projection and radial basis

function interpolation are implemented in preCICE.

2.2.4 Polynomial Interpolation

This interpolation method works by finding a polynomial p ∈ Pn of degree n or lower that

goes through the n+ 1 distinct support points (ξ, fξ) with ξ ∈ Ξ the set of data sites and

34

2.2 Interpolation Methods

fξ = f (ξ) of an unknown function f that is to be interpolated. The interpolation condition

reads

p(ξ) = fξ ∀ξ ∈ Ξ. (2.16)

Given the case of n + 1 distinct support points, such a polynomial always exists and is

unique [82].
Besides the representation as the linear combination of the standard polynomial basis γ

p =
n
∑

k=0

akγk (2.17)

with coefficients a, a number of different representations exist. From the standard basis and

interpolation condition, a linear system arises, similar to Eq. (2.32). Its dense interpolation

matrix is called Vandermonde-Matrix. Solving the system results in an infeasible high

computational complexity of O
�

n3
�

. Other polynomial representations exist that can

mitigate the computational complexity, such as Barycentric Lagrange interpolation or the

Newton basis.

However, any of the different representations of the interpolating polynomial produces

high-order polynomials when applied to real-world problems. This gives rise to extreme

ill-conditioning of the problem, causing the problem to become unstable. If the locations

ξ can be chosen freely, the roots of the Chebyshev polynomials can be used as such. This

yields an optimal interpolation and minimises the unstable behavior [18]. In black-box

applications, the interpolation points are supplied by the solvers. This makes interpolation

by Chebyshev polynomials and other methods that require a special distribution of points

impracticable here.

Instead of using the entire mesh to form an interpolant, one might split up the mesh

into chunks and build localized interpolants by piecewise interpolation on each chunk, also

called spline interpolation. This requires a triangulation of the data sites, either implicitly

given by means of a regular grid or explicitly by the solvers. Especially in more than

two dimensions, the triangulation is very difficult to provide. Furthermore, a degree of

smoothness when the polynomials are joined together has to be given, which becomes

challenging even in two dimensions [20, p. 41]. These properties result in a considerable

set-up work for piecewise interpolation, especially compared to the nearly effortless (in

this regard) radial-basis function interpolation.

35

2 Interpolation Methods for Multi-Physics Simulations

2.2.5 (Localized) Lagrangian Multiplier Methods

The method of Lagrange multipliers was originally developed for particle and celestial

mechanics, where constrained bodies are directly connected by interaction forces. The

problem is first formulated as if no interaction forces exist. The interface constraints are

then multiplied by an indeterminate coefficient and added to the virtual work of the systems

[78]. These coefficients are called Lagrange multipliers. This corresponds to an interface

potential connecting different partitions, such as for the fluid domain:

π f =

∫

Γ

λ f (u f − ub)dΓ , (2.18)

where Γ denotes an interface, ub and u f the frame displacements on each side of the

interface and λ f the Lagrange multiplier. In the general case, upon discretization, the

nodes of Γ match neither of the interface meshes. As a result, the integral is carried out

twice for each side of Γ . The potential π is then enforced as a boundary condition on the

energy functional of the respective partitions. A localized version of the formulation can be

derived by using Dirac delta functions.

For matching meshes, the construction of the intermediate mesh Γ is straightforward, for

non-matching meshes however this is non-trivial, but allows to enforce conservation of a

physical quantity.

As it becomes obvious from the formulation above, the interpolation needs access to

the energy functional, which is usually part of the inner implementation of solvers. This

requirement renders the method not applicable to black-box coupling.

2.2.6 Mortar Methods

The Mortar method can also be viewed as a global Lagrange multiplier method, having a

single Lagrange multiplier field [87]. These methods [8] have become a popular choice in

the case the shape function N(x) is known [105, p. 18].
Starting from the from the weak form of the coupling conditions Eq. (2.1), given as

∫

Γ

ψ(x)
�

u f (x)− us(x)
�

dΓ = 0 (2.19)

with ψ(x) the vector of test functions. Following the same principles as given in Sec. 2.1

36

2.3 Interpolation with Radial-Basis Functions

above, it can be discretized.

∫

Γ

ψ(x)N T
f (x)dΓ ū f =

∫

Γ

ψ(x)N T
s (x)dΓ ūs (2.20)

The standard Mortar method is based on the weak-form Eq. (2.20) and uses the shape

functions also as test functions ψ(x) := Nf (x):

∫

Γ f

Nf (x)N
T
f (x)dΓ f U f =

∫

Γs→ f

Nf (x)N
T
s (x)dΓs→ f Us, (2.21)

where Γs→ f is the overlap area between the fluid mesh and the projections of the structure

elements. To be able to evaluate Nf (x)N T
s (x) on Γs→ f , the structure elements are projected

from Γs to Γs→ f , forming M f s. It can be rewritten into matrix-vector form

M f f U f = M f s Us ⇒ H f s = M−1
f s Ms f . (2.22)

M f f can be obtained from Eq. (2.6), while M f s must be constructed on the newly created

mesh Γs→ f .

Enhancements, such as the Dual Mortar methods, presented in [111], render the mapping

highly efficient.

Still, it is immediately eminent, that the Mortar method requires access to the shape

functions N(x) and is therefore not suitable for black-box coupling.

2.3 Interpolation with Radial-Basis Functions

The goal of any interpolation is to find a transformation from a set of distinct values to

a continuous function or, to put it another way, to obtain values between the given ones.

This section will give an introduction to the mathematical theory of interpolation by means

of radial-basis functions. It follows [19, 20] in structure and nomenclature.

Given data in d dimensions, consisting of data sites ξ ∈ Rd and associated values fξ ∈ R,

we seek an approximant s : Rd → R. The values are assumed to stem from a function

f : Rd → R, with fξ = f (ξ). The function f itself is unknown or at least unavailable for a

sufficiently large number of evaluations. The following analytical results, however, assume

that f is given in closed form, e.g., for the purpose of comparing f and s for approximation

quality measurements. Typical error estimates also require some smoothness of f .

The data sites can usually be restricted to a domain Ω ⊂ Rd , where Ω is prescribed

37

2 Interpolation Methods for Multi-Physics Simulations

from the overarching problem, e.g., a simulation domain. In this case, one seeks an

approximation s : Ω→ R.

Here, the approximation will take place by way of interpolation, i.e., s(ξ) = fξ, ∀ξ ∈ Ξ,

with Ξ ⊂ Rd denoting the set of data sites. This is called the interpolation condition.

Nonetheless, other choices, such as least squares approximation or “quasi-interpolation”

are possible. Here, I will focus on the exact interpolation condition.

If the underlying data received is multi-dimensional, i.e., stems from a vector-valued

function F : Rd → Rm, m> 1, the approximation is performed component wise.

For interpolation with radial-basis functions, the approximant s is a linear combination of

translated basis functions ϕ(‖·‖) where ‖·‖ is the Euclidean norm. Applying the norm gives

the method a certain insensitivity to the dimensionality of the problem domain. Radially

symmetric means that the function value solely depends on the distance from the origin

and is invariant to rotations. The functions are translated by the data sites in Ξ. That also

means that Ξ has a two-fold impact on the approximation, first as support points of the

interpolation problem, second as the translation vector for the basis functions ϕ(‖· − ξ‖).
These translations are called centres and make the approximation space S depending on

the set of data sites Ξ:

S =

(

∑

ξ∈Ξ

λξϕ(‖· − ξ‖)
�

�

�

�

λξ ∈ R

)

. (2.23)

Together with the general definition of the basis function

ϕ(‖· − ξ‖) : R+→ R, ξ ∈ R, (2.24)

the standard interpolant can be given as

s(x) =
∑

ξ∈Ξ

λξϕ(‖x − ξ‖), x ∈ Rd , λξ ∈ R. (2.25)

Table 2.1 and Fig. 2.3 show a selection of commonly used basis functions. Their choice

among others determines important properties, such as convergence rate, accuracy and

parallelizability.

Together with the interpolation condition

s(ξ) = fξ, ∀ξ ∈ Ξ, (2.26)

38

2.3 Interpolation with Radial-Basis Functions

0

0.5

1

Gaussian

ε= 2
ε= 4
ε= 8

0

0.5

1

Volume Splines

−0.2

−0.1

0

Thin Plate Splines

0

0.5

1

Compact Thin Plate Spline C2

r = 1
r = 0.5
r = 0.25

1

2

3

Multi Quadrics

ε= 1
ε= 2
ε= 3

0.4

0.6

0.8

1

Inverse Multi Quadrics

ε= 1
ε= 2
ε= 3

−1 −0.5 0 0.5 1
0

0.5

1

x

Compact Polynomial C0

r = 0.1
r = 0.5
r = 0.25

−1 −0.5 0 0.5 1
0

0.5

1

x

Compact Polynomial C6

r = 1
r = 0.5
r = 0.25

Figure 2.3: Selection of radial-basis functions available in preCICE. For the definition and
meaning of the parameters ε and r, see Tab. 2.1

39

2 Interpolation Methods for Multi-Physics Simulations

ϕ(x) Support

Gaussian exp
�

− (ε‖x‖)2
�

global

Multiquadrics
Æ

ε2 + ‖x‖2 global

Inverse Multiquadrics 1/
Æ

ε2 + ‖x‖2 global
Thin Plate Splines ‖x‖2 log (‖x‖) global
Volume Splines ‖x‖ global
Compact Thin Plate Splines C2 1− 30 r̃2 − 10 r̃3 + 45 r̃4 − 6 r̃5 − 60 r̃3 log r̃ local
Compact Polynomial C0 (1− r̃)2 local
Compact Polynomial C6 (1− r̃)8(32 r̃3 + 25 r̃2 + 8 r̃ + 1) local

Table 2.1: Types of standard radial-basis functions implemented in preCICE for data map-
ping between non-matching meshes. ε is the so-called shape-parameter, ‖x‖
the Euclidean distance of the evaluation point from the center of the basis func-
tion. For basis functions with local support, the support radius is given by r, i.e.,
ϕ(‖x‖) = 0 for ‖x‖ > r and r̃ = ‖x‖/r denotes the normalized distance from
the center.

Eq. (2.25) can be expressed as a system of linear equations

C ·λ= f (2.27)

with

C = {ϕ (‖ξ− ζ‖)}ξ,ζ∈Ξ (2.28)

λ= (λξ)ξ∈Ξ (2.29)

f = (fξ)ξ∈Ξ (2.30)

from which the weights λ can be computed.

C in many cases is positive definite, in such cases the radial-basis function is called

positive definite, as well. The Gaussian basis function with a positive shape parameter ε is

an example of a positive definite basis function. Another one is the inverse multiquadric

function. On the other hand, functions such as thin-plate splines are only conditionally

positive definite of some order k [19]. To be uniquely solvable, the linear system that arises

from these functions, require augmentation by a polynomial of degree k− 1, see Sec. 2.3.1

below.

Due to the definition of the interpolation matrix and the radial symmetry of the basis

function, we also know that C is symmetric.

40

2.3 Interpolation with Radial-Basis Functions

0 0.2 0.4 0.6 0.8 1

0

5

10

15

20

x

s(
x)

0 0.2 0.4 0.6 0.8 1

0

5

10

15

20

x

s(
x)

f (x) s(x) p(x)

Figure 2.4: Comparison of the interpolation of f (x) = 16x2 + 4 with and without linear
polynomial. Interpolation points are marked and the shifted and scaled Gaussian
basis functions with a shape parameter of ≈ 6.83 are shown.

For the evaluation of the interpolants at the output mesh, I define the set ∆ ⊂ Rd of

target sites. The basis functions, translated by ξ and evaluated at output data sites δ, can

be written in matrix-form

A= {ϕ (‖ξ−δ‖)}ξ∈Ξ,δ∈∆ (2.31)

and then be applied to obtain the interpolated values sδ

sδ = A ·λ= AC−1 · f . (2.32)

In practice, C will usually not be inverted explicitly, but λ will be determined by applying

an iterative solver.

2.3.1 Polynomial Extension

To improve accuracy and condition of the interpolation, it can be helpful to add a polynomial

p(x) ∈ Pk−1
d of degree k− 1 in d unknowns to the right-hand side of Eq. (2.25).

In the case of a basis function which is only conditionally positive definite, the polynomial

also renders the problem uniquely solvable again. Thin-plate splines basis functions are

such a case of a conditionally positive definite basis function [19], where the polynomial

41

2 Interpolation Methods for Multi-Physics Simulations

even is necessary to ensure a unique solution. The approximant consequently becomes

s(x) =
∑

ξ∈Ξ

λξϕ(‖x − ξ‖) + p(x). (2.33)

This, obviously, introduces extra degrees of freedom for the coefficients of the polynomial.

We restrict to the commonly used linear polynomial p ∈ P1
d . Accordingly, we add additional

conditions by requiring the coefficient vector λ to be orthogonal to the polynomial space

P1
d (Ξ), which denotes the polynomials, restricted to the centers ξ=

�

ξ(i)
�

i=1...d
in Ξ:

∑

ξ∈Ξ

λξ q(ξ) = 0, ∀q ∈ P1
d (2.34)

⇔
∑

ξ∈Ξ

λξξ
(i) = 0, ∀i = 1, . . . , d and

∑

ξ∈Ξ

λξ = 0 (2.35)

which are then enforced alongside the interpolation conditions Eq. (2.26). For a unique

solution of the polynomial to exist, I require Pk−1
d -unisolvency on Ξ. For k = 2 and d ≥ 2,

for instance, this means that Ξ must not be a subset of a straight line. Furthermore, for

solvability, k ≤ ‖Ξ‖ is required [90]. I take both conditions for granted in the following.

Even in cases, where this is not needed from an analytical point of view, the polynomial

helps to improve accuracy, especially for certain distributions of points in the input or

output meshes. This is illustrated by the obvious ability to reproduce polynomials of degree

one exactly. Figure 2.4 shows this on a simple example.

Later on, in Sec. 3.2, I will discuss different strategies to treat the polynomial extension

in the solution algorithm as well results for polynomials of higher degrees.

2.3.2 Convergence and Stability Properties

Convergence and stability are among the most important properties of an interpolation

scheme or algorithm. In this section, I will present analytical results from literature. These

results will be verified and extended later by using numerical techniques.

Let h be the mesh width, or more exactly, in cases of anisotropic meshes, the largest

width between two adjacent nodes, defined by

h= hmax := sup
x∈Ω

min
1≤i≤|Ξ|

‖x − ξi‖2 , (2.36)

also called the fill distance or mesh norm. It can be seen as the radius of the largest sphere

completely contained in Ω that contains no data sites. hmax is important for understanding

42

2.3 Interpolation with Radial-Basis Functions

approximation and convergence orders.

Furthermore, the separation distance q is defined as

q := min
ξ,ζ∈Ξ, ξ 6=ζ

‖ξ− ζ‖2 (2.37)

and gives the smallest distance between the two closest nodes. For a uniform mesh, the

mesh width and separation distance are equal, i.e., h= q.

For basis functions of thin-plate spline type, convergence results have been published in

[19]. Given ϕ is a basis function of such type in d dimensions, defined by

ϕ(r) =







r2k−d log r, if 2k− d is an even integer,

r2k−d , if 2k− d is not an even integer,
(2.38)

and s the standard interpolant with polynomial Eq. (2.33).

Then, according to [19, Theorem 2], there exists an h-independent constant c such that,

‖s− f ‖∞,Ω ≤ c















h
p

log(h−1), if 2k− d = 2,
p

h, if 2k− d = 1 and 0≤ h≤ 1,

h, in all other cases .

(2.39)

As mentioned above, in practice a linear polynomial is used, thus k = 2. Given the two-

dimensional case, d = 2, thin-plate splines as described in Tab. 2.1 obviously fit this type of

function. Multiquadrics can be derived from this type by composition with
p

a2 + r2 and

ϕ(r) in three dimensions.

Still, for other basis functions used in applications, such as thin-plate splines in three

dimensions or Gaussians, the restriction on certain classes of functions and dimensionalities

makes the aforementioned proof not applicable.

Geometry wise, the results above hold for a very general, bounded domain Ω, given it

contains the aforementioned Pk−1
d -unisolvent subset, making the polynomial unique on that

domain.

Further results are available for functions to be approximated f ∈ H2k(Ω) in the Sobolev

spaces. On infinite grids (Ξ= hZd) an optimal uniform convergence rate can be given as

O
�

h2k
�

.

A number of convergences proofs require that is f is a function in the so-called native

space. Given a positive distributional Fourier transform ϕ̂(‖·‖) : Rd \ {0} → R of the basis

43

2 Interpolation Methods for Multi-Physics Simulations

function ϕ and f̂ as the Fourier transform of f , the square of the native space norm is

‖ f ‖2
ϕ

:=
1

(2π)d

∫

1
ϕ̂(‖t‖)

�

� f̂ (t)
�

�

2
dt (2.40)

and the native space X is the space of all f on Rn for which Eq. (2.40) is finite. The native

space, belonging to the basis function ϕ, can be seen as defined by all distributions f that

make this particular seminorm finite [19]. A more comprehensive introduction and survey

concerning native spaces can be found in [91].
For practical use cases, the requirement of f ∈ X seriously restricts the practical usefulness

of proofs that are based on it. Many analytic functions are excluded from X and it is difficult

to characterize which of them are contained in X . Also, for some basis functions, notably

Gaussians, the native spaces are quite small [79]. Moreover, in a black-box scenario, an

analytic function can not be given at all. I will still give literature results that use this

requirement and compare them later to results retrieved from experiments.

For Gaussians, exponential convergence rates can be given, under the condition of f ∈ X

‖s− f ‖∞,Ω ≤ exp
�

−c
log h

h

�

‖ f ‖X (2.41)

and also for inverse quadrics

‖s− f ‖∞,Ω ≤ exp
�

−c
1
h

�

‖ f ‖X . (2.42)

A similar error bound also holds for multiquadrics [79].
Requiring f ∈ X also allows to refine the result from Eq. (2.39) for k = d = 2. Then, c

can be expressed as c = c̃ ‖ f ‖ϕ, where c̃ only depends on Ω [19].
In [79, 80] the general convergence behavior for RBF interpolation with focus on Gaussian

basis functions is analyzed. Platte compares the convergence to the best polynomial

approximation. The Lebesgue constant compares the approximation quality of s to the best

polynomial approximation (not necessarily interpolation) [58, p. 47]. It is defined as

‖ f − s‖ ≤ (Λn + 1)‖ f − p∗‖ , (2.43)

where p∗ is defined as

p∗ = argmin
p∈Pn

‖ f − p‖ , (2.44)

the best polynomial approximation of degree n. Therefore the interpolation s is at most a

44

2.3 Interpolation with Radial-Basis Functions

factor Λn + 1 worse than the best possible polynomial interpolation of a given degree.

In the following I will use the L∞-norm. Λ= ‖s‖op will then be the maximum L1-norm

of a row of S [102].
An exponential growth of Λ indicates unstable interpolation behavior. This unstability

may stem from the existence of a Runge phenomenon and in fact the Lebesgue constant

provides a very well measure of the Runge phenomenon [47, s. 6.1.1] when used together

with the L∞-norm.

In [79] the general convergence behavior for Gaussian und inverse quadrics basis func-

tions with varying shape parameter is reviewed. Platte compares RBF interpolation with

polynomial interpolation and again uses the Lebesgue constant to define unstable behavior.

He states for equally spaced nodes, while polynomial and Gaussian RBF interpolation signif-

icantly differ, this difference decreases with diminishing shape parameter ε and increasing

number of nodes N , more precicely as ε2/N → 0. For interpolation with Gaussian RBFs, he

distinguishes between three regimes of interpolation behavior, depending on the shape

parameter choice.

For ε→ 0, the flat limit, the RBF method with smooth basis functions becomes identical

to polynomial interpolation and unstable, exhibiting a Runge phenomenon. A proof is

given in [34].
With a fixed shape parameter, the RBF interpolation convergences asymptotically, as N →
∞, similarly to Lagrange polynomial interpolation and yields unstable behavior according

to the definition above using the Lebesgue constant. Also, if polynomial interpolation fails

to converge to a given target function, then RBF interpolation will also fail.

Of particular interest is the case of ε= O
�p

N
�

. This case exhibits exponential conver-

gence behavior for sufficiently smooth functions but due to the existence of Runge regions,

the process is still unstable.

As a last case [79]mentions the stationary case, i.e. ε = O (n), where the interpolant fails

to converge due to saturation error, but it leads to better conditioned interpolation matrices

and a stable interpolation process. Given a constant size of the domain Ω, the Gaussian

basis function scales the same way as the mesh density, therefore the term stationary. This

scaling was also used by me to define the shape parameter independently from the mesh

width in Eq. (3.2).

In general, RBF interpolation is susceptible to the Runge phenomenon and large Lebesgue

constants for both equidistant as well as Gauss-Chebyshev distributed nodes, albeit to a

lesser extend in the latter case. As with polynomial interpolation, the rapid growth of Λn

can be prevented by selecting best nodes for interpolation.

45

2 Interpolation Methods for Multi-Physics Simulations

2.3.3 Error Saturation

Aside from the questions of convergence and stability, touched in the previous section

Sec. 2.3.2, another accuracy limiting phenomenon exists. Even as h approaches zero, the

error may not converge to zero, but may have a lower bound es, the saturation error. Error

saturation exists for many types of basis functions, including Gaussians, as reviewed in [43,

p. 130]. The saturation error is a function of the width of the basisfunctions relative to the

mesh width. Therefore, to properly analyze the saturation error, the shape parameter ε

is scaled with the mesh width h. This is called the stationary case, as the basis functions

remains stationary compared to the mesh. ε is chosen inversely proportional to the mesh

width or fill distance, such that

ε=
α

h
. (2.45)

Note that, m from Eq. (3.2) and α are interchangeable by α =
p
− ln10−9/m. The Gaussian

basis function is then given as

ϕ(x) = exp
�

−α2
� x

h

�2�

. (2.46)

For infinite, uniform grids and Gaussian basis functions, Boyd and Wang [73] and Maz’ya

and Schmidt [16] have shown, that the saturation error is

‖s− f ‖∞ = es(α) = 4 exp
�

−
π2

α2

�

· ‖ f ‖∞ (2.47)

for a smooth function f and its RBF interpolant s.

On infinite, non-uniform grids, the situation becomes worse, as shown in [14] and the

saturation error rises with

‖s− f ‖∞ = es(α) = c · exp
�

−
π2

4α2

�

· ‖ f ‖∞ . (2.48)

However, no analytical results on the practical case of finite grids are available. The

analytical results for infinite grids are assumed to be a lower bound for finite grid cases.

In [12], Boyd uses a combination of analytical and numerical methods to reach results

on the behavior of the saturation error on finite grids for Gaussian basis functions. He gives

an approximation to the saturation error on finite, uniform grids as

es ≈ 0.058exp
�

−
0.467
α2

�

, (2.49)

46

2.4 Solution Approaches for RBF problems

which, notably, has the same form as the analytical results on infinite grids, i.e., es ∼
exp (1/α2). The result is obtained by interpolating the smoothest possible function, f (x)≡ 1

to provide a practical lower bound for the saturation number, compared to more realistic

and rougher functions.

Obviously, the saturation error can be arbitrarily small if choosing a sufficiently small α,

i.e., large basis functions. However, this causes the condition number of the matrix C to

increase until it becomes an accuracy limiting factor, replacing one problem by another.

For infinite grids, Boyd and Wang concludes that α≈ 0.5 is a safe operating value, as the

saturation error is below machine epsilon and the condition number of the interpolation

matrix still reasonably low. This corresponds to a value of m≈ 9.1.

The results above give the order of a lower bound to the saturation error on uniform

or infinite grids, respectively. For general, irregular grids and different test functions, the

saturation error will only be larger.

2.4 Solution Approaches for RBF problems

It is a well-known problem of RBFs to produce ill-conditioned linear systems, described in

[13] as “a major curse for RBF methods”. Figure 2.5 illustrates that. The condition as well

as accuracy increase together with a growing support radius (or flatness) of the Gaussian

basis functions. The algorithm eventually reaches a point, where the rounding errors due to

the ill-conditioning do not allow the accuracy to improve further, indicated by oscillations

in both. The existing unique solution of the linear system may, therefore, never been found.

In the figure, the shape parameter ε is controlled by the parameter m which normalizes it

to mesh width, see Eq. (3.2).

According to [45], errors in typical RBF implementations grow with the number of

nodes for quasi-uniform distributions for two reasons. The first reason is the increased

condition number. The second reason is an intrinsic ill-conditioning for a quasi-uniform

point distribution leading to large errors near the boundaries.

[47] showed that the eigenvalues of the matrix C follow a distinct pattern where the

47

2 Interpolation Methods for Multi-Physics Simulations

magnitude of the eigenvalues scales with powers of the shape parameter ε:

{O (1)},

{O
�

ε2
�

,O
�

ε2
�

},

{O
�

ε4
�

,O
�

ε4
�

,O
�

ε4
�

},

{O
�

ε6
�

,O
�

ε6
�

,O
�

ε6
�

,O
�

ε6
�

},

. . .

(2.50)

until the last eigenvalue is reached. The kind of pattern depends on the dimensionality

of input data and whether it is arranged on a sphere. It holds true for inverse quadrics,

multiquadrics and Gaussian basis functions, though for (inverse) multiquadrics Fornberg

and Zuev uses a slightly different definition, reading

ϕ(x) =
Æ

1+ (εr)2, (2.51)

for multiquadrics and analog for inverse multiquadrics.

The pattern Eq. (2.50) is valid for two-dimensional data on non-periodic meshes, for

other kinds of input problems, similar patterns can be found. Furthermore, the scattering

of the input points does not play a role.

It is obvious from that pattern, that the problem of ill-conditioning becomes worse with

• larger problems, since then eigenvalues proportional to higher powers of the shape

parameter come into play, and

• smaller shape parameters, since the condition grows with the smallest eigenvalue

shrinking with O (εn) according to the foregoing pattern.

As a result, the entries of RBF coefficient vector λ become very large (some positive,

some negative), causing a lot of numerical cancellation to happen. The final result is

therefore obtained by two potentially ill-conditioned steps, Eqs. (2.25) and (2.31). The

values s(δ),δ ∈∆ to be obtained, however, generally depends in a well-conditioned way

on the data {ξ, fξ}.
In [15], Boyd and Gildersleeve provide experimental results for the growth of the condi-

tion number κ for several basis functions in the case of sufficiently large and uniform grids.

For Gaussians in one-dimensional space, they get

κ=
1
2

exp
�

� π

4εh

�2�

(2.52)

48

2.4 Solution Approaches for RBF problems

0 5 10 15 20 25 30
10−1

104

109

1014

1019

10−5

10−4

10−3

10−2

10−1

100

101

m

C
on

di
ti

on

R
M

SE

No Polynomial
Integrated Polynomial

Figure 2.5: Condition (solid line) and root mean squared error (dashed line) for Gaussian
basis function on [0, 1] with 500 support points for increasing support width.

and

κ=
1
4

exp
�

� π

2εh

�2�

(2.53)

for Gaussians in two-dimensional space. Furthermore, results are given for inverse multi-

quadrics

κ=
1
2

exp
� π

εh

�

, (2.54)

and

κ= 0.363 n2 exp
�

3.07
εh

�

(2.55)

for multiquadrics, both in one-dimensional space. For thin-plate splines, which do not have

a shape parameter,

κ= 0.1198139997 n4 (2.56)

could be obtained. While all of the results were obtained from numerical experiments, only

for the first two they were able to match them to known numbers (such as π here). For

non-uniform meshes κ generally is larger, possibly by orders of magnitude.

The exponential growth of the condition number with 1/ε very well illustrates the numer-

ical challenges one needs to overcome when using larger support radii to achieve higher

accuracy. Adjusting ε allows to control this trade-off between stability and accuracy, but

will always be a compromise and does not yield optimal accuracy.

In the following subsections I will review general approaches to circumvent the problem

of ill-conditioning to increase numerical stability and/or accuracy. The methods will be

49

2 Interpolation Methods for Multi-Physics Simulations

reviewed in terms of their compatibility with the black box coupling implemented in

preCICE. Methods which are suitable in terms of parallelizability and are realizable in a

black-box coupling environment will be evaluated further in Chapter 4.

2.4.1 Preconditioning

Besides the standard preconditioning techniques for linear systems, there exist methods

specifically tailored for RBF interpolation.

One example is preconditioning by accelerated iterated approximate moving least squares,

presented in [42]. The technique has shown good first results reducing the condition

number on uniform meshes. However, achieving stability on non-uniform meshes remains

problematic, as the method requires control of the distance of the interpolation system

matrix to the identity matrix. In the core of the method is the truncated Neumann series
∑n

k=0(I − A)k that converges to A−1 if and only if ‖I − A‖ < 1. Thus, the method is not

fully applicable to coupled problems with black-box solvers where the eigenvalues of the

interpolation matrix are not known a priori.

2.4.2 Basis Transformations

The idea of this group of methods is to replace the basis based of translates on radial basis

functions by a basis that spans the same function space, but lessens the ill-conditioning

and therefore is less prone to numerical instability.

[29] presents first results of a basis transformation, also based on the concept of native

spaces. However, their research was still in the early stages and requires a suitable set of

support points, such as trigonometric Gauss or Gauss-Legendre points to support a stable

multi-dimensional quadrature. Furthermore, the basis arises from a weighted singular

value decomposition, which is required for the kernel matrix C .

In [45], Fornberg, Larsson, and Flyer propose a basis that does not show ill-conditioning

with decreasing shape parameter ε. Based on earlier research in [46], which requires the

input points to be located on a sphere, they were able to generalize the method to up to

three dimensions. The basic idea of the method is to express the original vector of RBF

evaluations Φ as

Φ(x) = ϕ ‖x − ξ‖ξ∈Ξ (2.57)

= K E y(x) (2.58)

50

2.4 Solution Approaches for RBF problems

where K is a matrix with entries of size O (1), y is a vector of spherical harmonics and

E = diag {ε0,ε2,ε4, . . .} a diagonal matrix of increasing powers of ε. As an example, it is

shown here for the two-dimensional, non-periodic case. The pattern of powers of ε stems

from an expansion of the basis function ϕ and matches the pattern given in Eq. (2.50).

The scaling of the basis function has therefore been confined to the matrix E.

By multiplying from the left and splitting up K = Q R using QR-decomposition, a new

basis Ψ can be created while the space that is spanned by Φ remains the same.

Ψ(x)= E−1
N QT Φ(x) = E−1

N QT K E y(x)= E−1
N R E y(x) (2.59)

where Ek denotes the first k× k part of E. The expression E−1
N R E is well-conditioned and

upper triangular.

However, there are a number of downsides of this method. To construct the decomposition

shown in Eq. (2.59), one needs an expansion of the basis function into this particular

structure. This needs to be done separately for each function and dimensionality. So

far, the authors were only able to find such an expansion for Gaussian and Bessel type

basis functions in up to three-dimensional space. Furthermore, Eq. (2.59) requires a QR-

decomposition of the dense matrix C . While this only needs to be done in the initialization

or offline-phase of the algorithm, it is potentially very costly in terms of computation and

communication.

The method has been implemented as part of [97] and will be further scrutinized in

Sec. 4.6.

2.4.3 Finding an Optimal Shape Parameter

Some basis functions have a shape parameter, such as Gaussians or (inverse) multiquadrics.

It is usually treated as a parameter to the algorithm, i.e., it must be set manually. Especially

for Gaussians the shape parameter is of importance since it controls the size of the function’s

support and has direct influence on the sparsity patterns of the resulting matrices C and A,

as well as condition and accuracy. Accuracy losses both occur in the high ε-regime, due to

lacking basis function support in parts of the domain, as well as for low values of ε due

to severe ill-conditioning. Most of the guidelines given in literature are trying to find a

suitable balance between these adverse effects.

It is common practice to include at least the nearest neighbor [11, 31] in both the input

and the output mesh. For a non-uniform mesh, the largest distance should be considered

[10]. While these statements are based on experiences, [41] gives a systematic approach

51

2 Interpolation Methods for Multi-Physics Simulations

to this issue, based on leave-one-out cross validation (LOOCV). Whereas naive LOOCV

requires to create one interpolant for each vertex followed by an optimization step, [85]
was able to simplify the algorithm such that the interpolant needs to be generated only

once for all vertices. Because it is still followed by the optimization step to determine

the shape parameter and needs to explicitly create the inverse of the interpolation matrix,

it significantly increases the computational cost. The algorithm also optimises only with

respect to accuracy and does not take the harming effect of the ill-conditioning into account.

Therefore, I use a heuristic approach to determine the best value for m taking the guidelines

given above into account.

2.4.4 Adaptive Techniques

A number of different approaches exist to how adaptiveness can be achieved for a RBF

implementation. The basis function used in the algorithm is considered fixed, but can be

parameterized with the shape parameter ε. Together with the set of input data sites Ξ, ε

determines the algorithm’s behavior.

The simplest method of “adaptiveness” is to calculate a global shape parameter from the

mesh width as given in Eq. (2.36). Especially for Gaussians, a “good” relation between h

and ε can be found by means of setting the width of the basis function in terms of h, using

Eq. (3.2). This is a global method and only yields good results on uniform meshes. There

are methods to find an optimal shape parameter systematically, see Sec. 2.4.3.

An extension is to introduce a shape parameter εi for each basis function, based on a

local measure of mesh density. This way, a compactly supported basis function can be

scaled so that it always includes the m nearest-neighbors. A support radius including a

fixed number of vertices directly reflects in the sparsity pattern of the interpolation matrix

C , resulting in 2 m+ 1 non-zero entries per row. On the other hand, an adaptive support

radius breaks the symmetry of the matrix and it can not be guaranteed to be non-singular

anymore. Given the scattered data mapping constraints, a local mesh density measure can

not be assumed to exist and needs to be computed beforehand. To explore the obvious

advantages for non-uniform meshes, I will still evaluate a locally adaptive shape parameter

in Sec. 4.5.

Many adaptive methods require that the target function f can be evaluated at any

time. In [35] a residual sub-sampling method is used. The interpolant is created on a

uniform grid which is subsequently refined at intermediate points placed halfway between

centers. If the error exceeds a certain threshold, additional points are inserted. Driscoll and

Heryudono also adapt the shape parameter to be constant with respect to the local mesh

52

2.4 Solution Approaches for RBF problems

density, sharing the effects mentioned in the previous paragraph. Still, the most prominent

drawback is that f must be evaluable at runtime.

Zhang, Zhao, and Levesley pursue in [112] a similar idea of adding and removing data

sites based on a pointwise error estimator. The main difference to the aforementioned

method is that no additional function evaluations are required. Instead, the error indicator

is based on the idea that two different interpolation methods will give significantly different

results in regions challenging for the interpolations. For each point ξ an neighboring set

of points is created from which an interpolant is constructed. The difference from this

interpolator to the global interpolator on the working set of points will be used as an error

indicator and points will be added (refined) or removed (coarsened) from the working set

accordingly. The method is described only for multiquadrics basis function with a variable

shape parameter which is scaled reciprocal to the distance to the nearest neighbor. In

principle, the method, however, should work with any basis function.

All the aforementioned methods require knowledge about the local mesh density to

create new points in a neighborhood of existing ones or to control the support radius of

the basis functions. Computing this information purely from scattered data can not only

be infeasible expensive but might also lead to unexpected results in highly anisotropic

meshes. Furthermore, runtime modification of the mesh and evaluation of f at arbitrary

locations require communication with the respective solvers and would violate the black-

box coupling principle.

2.4.5 Multiscale Interpolation

Wendland describes a multilevel approximation method in [110]. In contrast to the two

aforementioned methods, the basic version does not adaptively refine or coarsen the existing

mesh, but instead uses a sequence of meshes Ξ1,Ξ2, . . . ,Ξn that can be created a priori.

However, extensions to multiscale interpolation, that do an adaptive discarding of points

are also presented below. The idea resembles the multigrid linear solver method, in how it

builds the interpolant on the residual, rather than the target values.

On each of the meshes Ξ j an interpolation space can be built

Wj = span{ϕ j(·, x) : x ∈ Ξ j}. (2.60)

The final approximation of the function f comes from the sum of these spaces

Vn :=W1 +W2 + . . .+Wn (2.61)

53

2 Interpolation Methods for Multi-Physics Simulations

for n→∞. Algorithm 1 gives the basic idea of the algorithm.

Data: fξ, Number of levels n
Result: Approximate solution gn ∈W1 + . . .+Wn

1 g0← 0, e0← fξ
2 for j = 1, . . . , n do
3 Determine the local interpolant s j ∈Wj to e j−1

4 g j ← g j−1 + s j

5 e j ← e j−1 − s j

6 end

Algorithm 1: Basic multiscale interpolation

The basis function ϕ j on Ξ j, which is used in constructing the interpolant s j is scaled, so

that the support radius is r j. Given a basis function ϕ : Rd → R with support in the unit

sphere, the scaled version can be defined as

ϕ j(x , y) := r−d
j ϕ

�

x − y
r j

�

. (2.62)

The scaling and the refinement is controlled by two critical parameters µ ∈ (0, 1) and ν.

The first parameter µ controls the refinement of the sequence of meshes between subsequent

levels, so that the mesh width at level j+1 is h j+1 ≈ µh j. This ensures a certain uniformity

in decrease. Analogously, ν controls the decrease of the support radius r j+1 ≈ ν r j. The

parameters allow to control the size and the number of non-zeros of the interpolation

matrix at each level and have therefore direct influence on the computational cost. For

simplicity, one can set ν= µ−1.

Wendland proposes two variations of the algorithm, which both work by discarding

certain information. The first one, originally introduced in [69], discards all coefficients

|λ| ≤ τ of the interpolant with an absolute value smaller then τ, as given in Alg. 2. For the

meaning of λ, see Eq. (2.25). The threshold τ should depend on the level j.

The second variation uses adaptive refinement of the sequence of meshes. It computes

the error e j = e j−1 − s j on the upcoming mesh X j+1 and will discard those points from X j+1

where the absolute error is below a level-depended threshold κ, see Alg. 3.

As it becomes evident from the algorithms given above, the method requires a number of

parameters set, namely µ, ν and τ or κ, respectively. Wendland uses a value of µ = 0.5 for

the refinement factor and ν in the range of 3 . . . 11. The support radius is then controlled

by setting ri = νq j, based on the separation distance q, Eq. (2.37).

54

2.4 Solution Approaches for RBF problems

Data: fξ, Number of levels n, Threshold τ
Result: Approximate solution gn ∈W1 + . . .+Wn

1 g̃0← 0, ẽ0← fξ
2 for j = 1, . . . , n do
3 Determine the local interpolant s j ∈Wj to ˜e j−1

4 Drop all coefficients |λ(j)k | ≤ τ j in s j to define s̃ j

5 g̃ j ← g̃ j−1 + s̃ j

6 e j ← e j−1 − s̃ j

7 end

Algorithm 2: Multiscale interpolation with dynamical discarding of interpolation
coefficients smaller then τ.

Data: fξ, Number of levels n, Thresholds κ, Meshes Ξ̃1, . . . , Ξ̃n

Result: Approximate solution gn ∈W1 + . . .+Wn

1 g0← 0, e0← fξ, Ξ1← Ξ̃1

2 for j = 1, . . . , n do
3 Determine the local interpolant s j = IX j ,ϕ j

e j−1 ∈Wj

4 g j ← g j−1 + s j

5 e j ← e j−1 − s j

6 for x ∈ Ξ̃ j+1 do
7 if |e j(x)|> κ j then
8 Ξ j+1 = Ξ j+1 ∪ {x}
9 end

10 end
11 end

Algorithm 3: Multiscale interpolation with adaptive discarding of points

55

2 Interpolation Methods for Multi-Physics Simulations

0 0.2 0.4 0.6 0.8 1

1

1.5

x

f(
x)

f (x) = (x − 0.1)2 + 1
None-Rescaled Interpolant

Rescaled Interpolant

0 0.2 0.4 0.6 0.8 1

−0.2

−0.1

0

x

s(
x)
−

f(
x)

Figure 2.6: Demonstration of insufficient width or density of basis functions and how rescal-
ing can mitigate the effect. Gaussian basis functions with a shape parameter of
ε= 9 are used.

As with other methods mentioned in this section, the most significant drawback is the

requirement of a sequence of increasingly finer meshes. These meshes need to be created

manually beforehand or algorithmically, which in turn requires neighborship information.

While this information can be assembled in O (|Ξn| · log |Ξn|) using tree-based algorithms

(see also Sec. 3.4), it still requires a coarsening strategy and can lead to unexpected results

in heavily distorted meshes.

2.4.6 Rescaled Interpolation

In [31] a rescaling procedure is proposed. The method does not try to directly address

the ill-conditioning, but improves interpolation quality. This makes it possible to use basis

functions with a smaller support radius, which, in turn, improves the condition number of

the interpolation problem as well as its parallelizability. The method shows very promising

results during first investigations and is further evaluated in Sec. 4.4. For a thorough

theoretical underpinning of the method, see [28]. Basically, it works by constructing a

rescaled interpolant sr by

sr(x) =
s f (x)

s1(x)
(2.63)

where s f (x) denotes the interpolant constructed from the given values as shown in Eq. (2.25)

and s1(x) is the interpolant of the constant function g(x) = 1.

The rescaling addresses an issue with localized, e.g. Gaussian, basis function which

decrease monotonically with increasing distance to their centers. Figure 2.6 demonstrates

56

2.4 Solution Approaches for RBF problems

the effect, dubbed hanging laundry effect. When the local density of support points is too

low, the interpolant sags between two neighboring support points.

Substantial improvements can be observed in particular for small m without negatively

affecting the conditioning. The additional computational cost remains moderate as it only

involves the computation of one additional interpolant for each set of data positions to be

mapped. Furthermore, parts of the computation can be reused for solving the interpolation

system later.

57

3 Optimization & Implementation of

RBFs in preCICE

The real problem is that programmers have spent far too much time

worrying about efficiency in the wrong places and at the wrong times;

premature optimization is the root of all evil (or at least most of it) in

programming.

Donald E. Knuth

In this section, some special aspects of RBF interpolation as realized in preCICE are

highlighted further.

The mapping algorithm is implemented within preCICE in two different versions. A basic,

non-parallel version uses a direct QR-solver. The Eigen [55] linear algebra library is used

for matrix storage and solving. This version does not implement features such as using a

separated polynomial.

The more advanced version, on which I will focus here, is based on the PETSc suite.

PETSc, pronounced PET-see (the S is silent), is a suite of data structures and routines for the

scalable (parallel) solution of scientific applications modeled by partial differential equations.

It supports MPI, and GPUs through CUDA or OpenCL, as well as hybrid MPI-GPU parallelism.

PETSc (sometimes called PETSc/Tao) also contains the Tao optimization software library. (from

Balay et al. [4]). Components used in this implementation are the matrix and vector libraries

as well as application orderings (AO), Krylov subspace (KSP) and QR-decomposition based

solvers.

Specifics of the implementation are detailed here, including re-enumeration of vertices

by using a mapping between an application and a PETSc specific ordering, employing

preallocation for fast matrix assembly and the usage of a spatial index for fast finding of

vertices inside a specific sphere. Furthermore, the implementation of the different basis

functions as well as how the matrix expressions are evaluated, are laid out in this section.

59

3 Optimization & Implementation of RBFs in preCICE

3.1 Basis Functions

The basis function ϕ : R+→ R forms the kernel of the method. As mentioned before, its

choice among others determines important properties of the algorithm, such as convergence

rate, accuracy and parallelizability. Table 2.1 shows a number of standard basis functions

implemented in preCICE.

Global, but monotonically decreasing basis functions, such as Gaussians can be trans-

formed to local functions by introducing a cut-off radius r and shifting them to achieve

continuous functions:

ϕlocal(x) =







ϕglobal(x)−ϕglobal(r) for x < r,

0 for x ≥ r
. (3.1)

This ensures that the interpolation matrix C is sparse, even for global basis functions, given

a sufficiently small cut-off radius. Obviously, a meaningful cut-off radius can only be given,

when ϕ(x)→ 0 as x →∞.

Some basis functions have a so-called shape parameter ε. Its effect on the basis function

and thereby on the whole interpolation depends on the type of basis function. For Gaussians

it controls the slenderness of the function, while for multiquadrics the effect is more that

of a vertical shift and with inverse multiquadrics it mostly effects the value at x = 0, see

Fig. 2.3 for the effect of the shape parameters on ϕ. The concrete ramifications of different

basis functions and values for the shape parameter are further detailed in Chapter 4.

In the following, I use a fixed cut-off value of r = 10−9, i.e., return a value of 0 for

ϕ(x) < 10−9. This cut-off procedure is especially suited for Gaussians, since from an

analytical perspective they never reach 0, albeit from a numerically perspective they fall

under machine precision1 when x > 6.06
p
ε−1 and below the cut-off when x > 4.55

p
ε−1.

For some basis functions, in particular Gaussians, the support radius can be expressed as

multiples m of the mesh width, i.e., r = m · hmax. hmax is the maximum mesh width of the

input mesh, as defined in Eq. (2.36). Based on the definition of the Gaussian basis function,

the corresponding shape parameter ε can then given by

ε=
p
− ln10−9

m · hmax
(3.2)

This ensures that the basis function decays to 10−9 within the m neighboring vertices from

1which is 2−52 for a 64 bit double

60

3.2 Evaluation of the Polynomial

its center if the distance between data points is hmax.

For the other compact basis functions, Compact Thin Plate Splines C2, Compact Polynomial

C0 and Compact Polynomial C6, according to their definitions, see Tab. 2.1, the shape

parameter immediately determines the support radius. Thus, the shape parameter for these

three basis function is simply given by

ε= m · hmax. (3.3)

A suitable choice for the shape parameter ε is of tremendous importance for the resulting

approximation quality and convergence properties. This can be illustrated by ε→ 0, an

infinitely flat basis function. The resulting matrix would only consist of ones and thus

be singular, which corresponds to condition number ∞. On the other hand, ε → ∞
yields singular peaks as basis functions, resulting in a diagonal system matrix but very poor

interpolation quality.

In preCICE, the basis function is implemented as a class which is given the support radius

and shape parameter ε at instantiation time, if applicable. For Gaussians, the effective

cut-off radius r is then set as r =min{supportRadius,
p

− log10−9/ε} and henceforth the basis

function is evaluated as given in Eq. (3.1).

3.2 Evaluation of the Polynomial

3.2.1 Consistent Interpolation

Starting from the standard interpolant with polynomial, Eq. (2.33), there are different

variants of evaluating Eq. (2.32) together with the polynomial, affecting both stability and

accuracy of the results as well as load-balancing in parallel scenarios.

The polynomial can be integrated by augmenting matrices C and A, yielding the extended

coefficient vector λ̃ and the vector sδ of values at the evaluation points:











0 QT

Q C











︸ ︷︷ ︸

C̃











β

λ











︸ ︷︷ ︸

λ̃

=











0

fξ











︸ ︷︷ ︸

f̃ξ

⇒ λ̃= C̃−1 · f̃ξ, (3.4)

61

3 Optimization & Implementation of RBFs in preCICE

sδ =






V A







︸ ︷︷ ︸

Ã

·λ̃= Ã C̃−1 · f̃ξ. (3.5)

where Q and V hold the coordinates of the input or output mesh, respectively, defined as

Q = (1ξ(1)i . . . ξ(d)i) ∈ R
|Ξ|×(d+1) and V = (1δ(1)i . . . δ(d)i) ∈ R

|∆|×(d+1).

β ∈ Rd+1 holds the corresponding coefficients of the polynomial.

The polynomial can also be solved separately from the core RBF interpolation. This

involves solving for the coefficients β , subtracting the polynomial from the input vector fξ
and finally adding the polynomial to the output vector, as outlined below:

1. Solve the over-determined system using a QR decomposition Q = Q̄ R̄. This yields

the least-squares solution for the coefficients of the polynomial β , according to






Q






·
�

β
�

≈






fξ






⇒ β = R̄−1 Q̄T fξ =Q+ · fξ. (3.6)

Q+ denotes the pseudo-inverse R̄−1 Q̄T of Q.

2. Subtract the polynomial p(ξ) from the input vector, i.e., solve

C ·λ= fξ −Q ·β

⇔ λ= C−1
�

fξ −Q ·β
�

= C−1
�

fξ −QQ+ · fξ
�

.

(3.7)

3. Add p(δ) = V ·β , evaluated at the output sites to the output vector, i.e.,

sδ = A ·λ+ V ·β

= A · C−1
�

fξ −Q Q+ · fξ
�

+ V Q+ · fξ
(3.8)

62

3.2 Evaluation of the Polynomial

3.2.2 Conservative Interpolation

Equation (2.32) gives the consistent formulation of the interpolant. From that, the conser-

vative interpolation can be derived by transposing the interpolation operator:

sδ =
�

AC−1
�T
· fξ = C−1 AT · fξ. (3.9)

Based on Eq. (3.9), the conservative interpolation with integrated polynomial can be

constructed similarly to the consistent version, outlined above:

sδ = C̃−1 ÃT · f̃ξ. (3.10)

The version with separated polynomial for conservative interpolation can be constructed

by transposing Eq. (3.8).

sδ = H · fξ =
�

AC−1
�

I −QQ+
�

+ V Q+
�T

︸ ︷︷ ︸

H

· fξ (3.11)

=



C−1 AT
︸ ︷︷ ︸

2

−Q+T

QT C−1 AT

︸ ︷︷ ︸

3

− V T
︸︷︷︸

1

!



 · fξ. (3.12)

The actual evaluation of Eq. (3.11) is done in multiple steps, as indicated by the underbraced

numbers and detailed in the following steps:

1.

ω := V T · fξ (3.13)

2. Compute C−1 AT fξ. This involves solving the linear system C .

η := AT · fξ (3.14)

C ·µ= η ⇒ µ := C−1 ·η= C−1 AT · fξ. (3.15)

3.

τ :=QT ·µ−ω (3.16)

4.

σ :=Q+T ·τ (3.17)

Again, Q+ denotes the pseudo-inverse of Q. The QR-decomposition yields Q = Q̄ R̄

63

3 Optimization & Implementation of RBFs in preCICE

and thus:

σ =
�

Q̄ R̄−T
�

·τ. (3.18)

5. The result can finally be given as:

sδ = µ−σ.

The evaluation requires one solve of a linear system, one QR-decomposition of the tall-

and-skinny matrix Q and four matrix-vector products per interpolation step.

As mentioned above, Q and V hold the coordinates of the input or output vertices,

respectively, and therefore are both densely populated matrices. In cases of compactly

supported basis functions, C and A are sparse matrices and, given an appropriate ordering

of vertices, even diagonally dominant. These favourable properties are destroyed or at least

impaired for the integrated polynomial as shown in Eqs. (3.4) and (3.9).

While the integrated and separated formulation are mathematically not equal, they yield

almost identical results. In Sec. 4.3, both variants will be compared for both numerical

stability/condition as well as equivalence of results.

3.3 Rescaling of the Interpolant

The rescaling of the interpolant as presented in Sec. 2.4.6 and in [28, 31] is straightforward

to implement. The coefficients λ1 for the constant right-hand side gξ = 1 can be computed

once in the offline phase as

λ1 = C−1 · gξ. (3.19)

Thus, for each interpolation in the online phase, we only have to calculate

s1 := Aλ1 and (3.20)

sδ :=
sδ
s1

, (3.21)

where the fraction above is interpreted as pointwise division of two vectors. Occasionally,

entries of value zero may occur in s1, which therefore must be checked for prior to division.

This happens, when the basis function’s support radius is chosen too small for the input

mesh and points are not supported by at least one basis function. In this case, however,

not only the rescaling procedure is impaired, but the mapping as a whole will suffer from

severe accuracy degradation.

64

3.4 Algorithmic & Implementation Overview

The rescaling is currently only implemented for consistent interpolation with separated

polynomial. For the integrated polynomial, the matrix C̃ from Eq. (3.4) yields a perfect

approximation of gξ, as the polynomial alone gives a perfect fit. Using C without the

integrated polynomial doesn’t allow reusing of the matrix C as well as the associated

solver and hence requires to duplicate the creation and solving for the interpolation matrix.

These steps constitute for a significant amount of computational effort of the offline phase.

Furthermore, the presence of the polynomial makes sδ not exhibiting the same hanging

laundry effect (compare Sec. 2.4.6) as the corrector s1, which is thus not suited for correcting

it.

Using the rescaling method for conservative interpolation, regardless of the type of

polynomial, is also not feasible, since it would break conservativness of the interpolation.

3.4 Algorithmic & Implementation Overview

The implementation of a basic RBF algorithm is easy and straightforward. Most of the

complexity stems from the setup involving different parallel solvers, from optimizations

and from the fact that we hand over the system to PETSc as a solver library.

Two stages can be identified, usually called online and offline. The latter must be executed

only at the beginning of the simulation or - more precisely - whenever the locations of

support or evaluation points change. The principal steps of the algorithm are:

1. Creation of the mapping between preCICE and PETSc vertex indices, as described

later in this section.

2. Preallocation of the system matrix C and evaluation matrix A, see Sec. 3.4.4.

3. Filling of these matrices, together with Q and V , if applicable. See Alg. 4.

4. Initialization of the linear solvers for matrices C and Q.

5. Computation of the rescaling coefficients by solving the linear system C for gξ = 1.

6. Filling of evaluation vectors, solving of the system and copying results back into

preCICE data structures.

Steps 1 through 5 are part of the offline phase while step 6 needs to be performed on every

coupling iteration. Step 5 is mostly equivalent to step 6 for the specific right-hand side of

gξ = 1.

65

3 Optimization & Implementation of RBFs in preCICE

Data: InputMesh, OutputMesh, Basis Function ϕ
Result: C , A, Q, V

1 if conservativeMapping then
2 Ξ← OutputMesh
3 ∆← InputMesh
4 else if consistentMapping then
5 Ξ← InputMesh
6 ∆← OutputMesh
7 end
8 for i = 1, . . . , |Ξ| do
9 if ξi not owned by current rank then continue

10 if polynomial = Integrated then C·,i+d+1← (1ξ
(1)
i . . . ξ(d)i)

T

11 if polynomial = Separated then Q i,·← (1ξ
(1)
i . . . ξ(d)i)

12 for j, . . . , |Ξ| do
13 if supportRadius<

ξi − ξ j

 then
14 k, l ← AOApplicationToPetsc(i, j)
15 Ck,l ← ϕ(

ξi − ξ j

)
16 end
17 end
18 end
19 for i = 1, . . . , |∆| do
20 if polynomial = Integrated then Ai,·← (1δ

(1)
i . . . δ(d)i)

21 if polynomial = Separated then Vi,·← (1δ
(1)
i . . . δ(d)i)

22 for j, . . . , |Ξ| do
23 if supportRadius<

δi − ξ j

 then
24 l ← AOApplicationToPetsc(j)
25 Ai,l ← ϕ(

δi − ξ j

)
26 end
27 end
28 end

Algorithm 4: Filling of the matrices, including the mapping from application
ordering using preCICE global indices to PETSc ordering. The preallocation as well
as the treatment of dead dimensions is omitted here for the sake of brevity.

66

3.4 Algorithmic & Implementation Overview

3.4.1 Dimensionality of Input Data and Dead Dimensions

The spatial dimensionality of the input data coordinates is given at runtime to the RBF

implementation. While the RBF method is dimension-agnostic by using the L2-norm on the

argument of the basis function, the implementation limits the dimensionality to three.

Some solvers, notably OpenFOAM, always work on three dimensional data, even when

the actual problem is of lesser dimensionality. The solver then uses an empty boundary

condition to denote that a dimension is not used. To reflect this behavior inside preCICE,

dimensions can be marked as dead, which causes its coordinates set to zero with respect to

the interpolation. Algorithm 5 shows the treatment of dead dimensions when filling matrix

C . The respective part of the algorithm for matrix A works alike.

1 x = ξi − ξ j

2 for k = 1, . . . , d do
3 if k is marked dead then
4 xk← 0
5 end
6 end
7 Ci j ← ϕ(‖x‖)

Algorithm 5: Treatment of dead dimensions when computing the entry Ci j inside
the inner loop of the respective part of Alg. 4.

3.4.2 Re-Partitioning of Meshes

As outlined in Sec. 1.3.2, the selected mapping plays an important role in the process of

re-partitioning the mesh supplied by the solvers. Again, without loss of generality, we

assume that the mapping happens at participant A and the interface mesh ΓB must therefore

be made available to participant A. In step IV of the re-partitioning process, see Tab. 1.1

and Fig. 1.4, the mapping is responsible for selecting which vertices are needed on a

particular slave to successfully perform the distributed mapping.

The selection of vertices required for the mapping works in a two-level tagging process,

realized by two callback functions tagMeshFirstRound and tagMeshSecondRound, which are

implemented as part of the mapping code. The process is illustrated in Fig. 3.1, the steps

in the following refer to that illustration.

First, each slave at participant A constructs a bounding box, enlarged by the support

radius of the selected basis function, around its local mesh. Then all vertices of the remote

67

3 Optimization & Implementation of RBFs in preCICE

mesh ΓB that are contained in that bounding box (step I) are marked. Note that, if the pre-

filter/post-filter variant is used, ΓB was already pre-filtered in step III. From this first round

marking, the owner information is derived, i.e., each vertex is owned by one particular rank.

To guarantee uniqueness, the ownership assignment is done in a centralized fashion by the

master. The information which vertices are marked is sent back to the master. Since a vertex

can be and in practice is marked by multiple ranks, but can only be owned by one, the

master first equally distributes vertices among ranks. The leftover vertices are subsequently

assigned to the ranks that marked them, in order of ranks. While this approach does not

generate a perfect load distribution, it performs sufficiently well. The owner information

for each slave is then send back to it. This ensures that the evaluation matrix A can be

constructed distributed among all ranks.

In the second round, step III, vertices needed for the local construction of matrix C are

marked. The procedure is similar to the first round. A bounding box, enlarged by the

support radius, is constructed around all owned vertices. All vertices inside that box are

then marked as needed for the construction of C .

The final mesh Γ̃ i
B at slave i of participant A is the result of the union of both rounds

of tagging. It now contains all vertices needed to perform the mapping. The information

which vertex is present at which rank is finally sent to the master. Thus, a re-partitioning

of ΓB = ∪ Γ̃ i
B has been achieved. Figure 3.1 illustrates the procedure. Note that, the support

radius can be infinite in case of globally supported basis functions. In that case, the entire

mesh ΓB is present at each rank of A. In the course of the process, each vertex is assigned a

global index, which is used to uniquely identify a vertex among all ranks and to assign it

to a row in the distributed construction of the global matrices A and C , see the following

sections.

The re-partitioning using the other mapping methods, i.e., nearest-projection and nearest-

neighbor interpolation, work alike, albeit adapted to their specific requirements to perform

a local mapping.

3.4.3 Vertex & Row Ordering

As mentioned above, preCICE uses the PETSc library to provide the functionality for

distributed linear algebra. In order to leverage the performance of the built-in parallel

solvers, the matrix assembly must additionally be parallelized. PETSc uses a row-wise

decomposition of matrices, i.e., each complete row is assigned to one rank and each rank

holds a continuous chunk of rows of a matrix or vector. The parallel layout of C and A

resembles the parallel layout of the input and output meshes, i.e., each local support point

68

3.4 Algorithmic & Implementation Overview

ΓB

rr

I

ΓB

II

ΓB

r III

Γ̃ i
B

Figure 3.1: Process of the re-partitioning of meshes with RBF mapping. Compare Fig. 1.4
and Tab. 1.1 for a high-level overview. In step I, all vertices of ΓB (light blue cir-
cles) that are contained in a bounding box around Γ i

A (orange circles), enlarged
by the support radius r are marked (blue circles). These vertices are required
for constructing the evaluation matrix A. In step II, a subset of the marked
vertices are assigned to the rank i and said to be owned by it (blue dots). Again,
an enlarged bounding box is used to mark the vertices needed for construction
of the interpolation matrix C in step III. The resulting, re-partitioned mesh Γ̃ i

B
finally contains all vertices needed to perform the mapping locally on rank i.

ξ corresponds to a local row of matrix C and each local output vertex δ corresponds to a

local row of A, respectively. Filling of the matrices can not be done purely locally, as for

each row or ξ ∈ Ξ the basis function ϕ(‖ξ− ζ‖) must be evaluated for all ζ ∈ Ξ. Even for

basis functions that are only defined on a constrained support radius, some of the vertices

ζ are located on a non-local rank.

From that problem setting, two requirements arise. First, non-local vertices, that are

required for evaluation of the basis function of any local vertex, must be made available to

the local rank. Second, in order to assign a vertex to a matrix row, a globally unique ID for

each vertex is required.

preCICE provides different ways of identifying a vertex. The id of a vertex is set and

fixed when the vertex is created during initialization. At this time, there may not yet be a

connection established between the different ranks of one participant. Because of that and

also for reasons of efficiency, the vertex id is simply implemented as a counter and does not

guarantee uniqueness beyond the scope of one rank. However, it guarantees that the ids

are continuous within each rank. This property is widely used throughout preCICE, e.g., for

addressing coordinates of a vertex from a linear storage, which would not be possible using

a generator for a so-called universally unique identifier (UUID) such as the library Boost

UUID. The latter types of IDs are globally unique with extremely high probability and can

be locally created, but cannot create continuously arranged integers. A vertex in preCICE

can also be identified by its global index, which is globally unique among all vertices on

69

3 Optimization & Implementation of RBFs in preCICE

1

6

11

16

21

2

7

12

17

22

3

8

13

18

23

4

9

14

19

24

5

10

15

20

25

non-local vertices that are available locally

vertices that are local and owned by that rank

13→ 5
14→ 6
18→ 7
19→ 8

0 0

C or A
...

...

































Figure 3.2: Mapping of vertices from their global index to a local position in matrix C or A
using a PETSc application ordering. Here, the vertices with the global indices
{13,14,18,19} are mapped to rows {5,6,7,8}. Only the hatched part of the
matrix is saved locally.

all all ranks. However, the global index is not available before the mesh re-partitioning

is performed and the index is not guaranteed to be continuous among the vertices of one

rank.

The re-partitioning process guarantees the validity of the global index, as aforementioned

and that all vertices needed to create the local part of the mapping are present on the local

rank. This includes the local part of the mesh, enlarged by the basis function’s support

radius, which may also be infinite. In this case, the entire input mesh Ξ has to be present

to create a complete row of C or A. The entire process is explained in detail in the previous

section. To distinguish these ghost vertices from the local part of the mesh, the local

vertices are said to be owned by one rank and a corresponding property is set on each

vertex. Figure 3.2 illustrates this concept. Each rank defines a local mapping by assigning

all vertices it owns to continuous chunks of local rows. The size of the local portion of the

matrices are given to PETSc at creation and equal the number of owned vertices, possibly

plus the space needed for the polynomial on rank zero. From that local mapping, a global

mapping needs to be created from the union of all local mappings.

PETSc offers so-called Application Ordering (AO) objects to facilitate a globally shared

dictionary. In contrast to PETSc index sets, they allow “holes” in the indexing range, i.e.,

global indices that are not mapped to a row. This occurs when a vertex is filtered out by

the re-partitioning process, e.g., when it is not part of the coupling interface and does not

participate in the mapping. This can be the case when the vertex is either an inner vertex or

the coupling interfaces of the participants do not entirely overlap. The application ordering

object is created on the global MPI communicator and initialized locally with the mapping

70

3.4 Algorithmic & Implementation Overview

created from the owned vertices at each rank. Indices that use the preCICE addressing

scheme based on the global index can then be translated to the PETSc addressing scheme

using the PETSc routine AOApplicationToPetsc. This guarantees that all local vertices are

mapped to continuous chunks of local rows.

3.4.4 Matrix Assembly & Preallocation

The major workload during initialization of the RBF mapping is filling of the two matrices,

composed of two major blocks. First, there is the cost of computing the value of each matrix

entry by evaluating the basis function on each pair of vertices. Second, memory for A and C

needs to be allocated, a significant factor due to the potentially large number of entries to

be set in the two matrices. While both issues are separate in theory, in implementation they

are tightly related. In this section, I will first show how to limit the number of necessary

basis function evaluations, followed by a discussion of the issue of memory allocation.

Finally, it is shown how both relate in the implementation.

In a naive implementation of the algorithm, each vertex must be subtracted from every

other to form the argument of the basis function, resulting in a complexity of O
�

|Ξ|2
�

for

C and of O (|Ξ| · |∆|) for A. Various methods are implemented to restrict the number of

vertices that are to be taken into account.

For local basis functions, such as Compact Thin Plate Splines C2 and Compact Polynomial

C0 and C2, a support radius r according to Tab. 2.1 can be defined. For global, but

monotonically decreasing functions, it can be defined as shown in Eq. (3.1). A known

support radius is only useful if the vertices within that radius can efficiently be identified.

Since preCICE works on non-structured grids which not necessarily carry topological, i.e.,

neighborhood information, we can not rely upon information that makes fast spatial queries

possible. Still, we have to avoid an exhaustive search through the entire mesh.

Spatial trees are one method to perform fast queries on multi-dimensional data. One

popular choice for such an indexing structure are R-trees, proposed by Guttman in [56]. A

R-tree is a height-balanced tree. Each node of the tree stores a box describing the space

occupied by its children nodes. These boxes or sub-regions do not have to be disjoint, i.e.,

can be overlapping. Only the leaf nodes store index records, containing pointers to the data.

The splitting algorithm defines when and how leaf are nodes splitted when new information

needs to be integrated into the tree. Three different node splitting algorithms are available:

linear, quadratic and rstar, each controlled by two parameters, usually called M and m.

These parameters define the maximum (M) and minimum (m ≤ M
2) number of index

records in the leaf nodes. The resulting height of such a tree containing N index records is

71

3 Optimization & Implementation of RBFs in preCICE

at most logm(N − 1), thus, resulting in a search complexity of O
�

logm N
�

. The efficiency

holds not only for exact searches, but also for nearest neighbor searches as demonstrated

in [25].
(k− d − b)-trees are another multi-level balanced tree structure, suitable for handling

n-dimensional point data. In contrast to R-trees, the domain is partitioned into disjoint

sub-regions. The performance for queries other than exact searches is, however, inferior to

that of an R-tree [53].
The Geometry2 library, which is part of the Boost project, implements spatial indices

based on R-trees. Existing geometric data structures can be used by the geometry library

by adapting them to so called concepts, such as a Point, Box or Polygon. These concepts

provide an abstract model of geometric primitives. A sphere concept is, however, not

supported. Relationships of these concepts to the mesh can be queried using different

predicates, most notably nearest, within or the generic predicate satisfies. The Boost-

based library was preferred over other implementations for various reasons. The software

preCICE already makes heavy use of Boost libraries, so that no additional dependency is

introduced. Furthermore, Boost libraries have shown a high level of code quality and long

lasting support.

A mesh in preCICE is modeled as a collection of mesh::Vertex objects. By adapting the

mesh::Vertex class to the point concept, preCICE vertices can be used by the library. The

underlying storage container, utils::PtrVector is also adapted, so that it can directly be

used as a container for the library and no copying of the vertices from the preCICE mesh

into the tree data structures is required. Both adaptions are done by means of template

specialisation, taking place at compile time. These adapters enable Boost Geometry to

directly use the preCICE data structures that comprise the search space, i.e., the mesh.

The matrix assembly procedure requires to find all vertices, that lay within a support

radius r of the vertex ξ in consideration. As noted above, the tree library does not offer a

sphere concept, which would be a perfect match for querying points within a support radius.

Hence, this type of query needs to be emulated using the existing predicates. Hereafter,

different methods are evaluated in terms of performance.

naive serves as a baseline to compare the other methods to. For each query, it compares all

vertices and checks if the distance is smaller then the given radius. The tree-structure

is not used in this approach.

satisfy uses an anonymous λ-function, which is evaluated for every vertex ζi in the tree

2https://www.boost.org/doc/libs/1_69_0/libs/geometry/doc/html/index.html

72

https://www.boost.org/doc/libs/1_69_0/libs/geometry/doc/html/index.html

3.4 Algorithmic & Implementation Overview

and checks if it is included in the support radius of the vertex ξ, i.e., if ‖ζi − ξ‖< r.

Together with the satisfies predicate of the library, it selects all vertices in the tree, for

which the condition above holds true.

While this method uses the tree-structure, it does not use the spatial query function-

ality. Compared to the naive method, the complexity is not reduced, because the

λ-function needs to be evaluated for all vertices.

boxThenDistance uses a box, that is constructed to enclose the support radius and the

within predicate for tree-based pre-filtering of points. The preliminary resulting set

of points is then filtered using the naive method.

boxAndSatisfy is logically equivalent to the previous method, but uses a logical and to

combine both filtering steps into one expression using the enclosing box with the

beforementioned satisfy predicate.

neareastThenDistance uses a tree-based k-nearest-neighbor query, followed by a point-

wise distance filtering. This method requires an additional parameter k for the

number of points to query for. Because the number of points inside the sphere with

support radius r is unknown, a heuristic value with a safety factor that includes all

points inside the sphere is required. On the other hand, k must not be too large to

ensure an efficient filtering.

Each of these query methods as well as the time it took to create the R-tree are evaluated

for different mesh sizes.

The heart of the R-tree algorithm is the node insertion and splitting algorithm used for

creating the tree. The selection of the most efficient algorithm and parameter set for a given

problem is subject to a number of factors. These include distribution of vertices inside the

mesh or whether emphasis is placed on either creation or query performance, the sum of

the two yielding the total cost. Here, the modification of nodes or recreation of the tree can

happen only when mesh movement has taken place or a simulation restart was performed.

Compared to querying for vertices, modifications of the tree are currently extremely rare

events. For that reason, I put special emphasis on the query performance, rather than the

creation performance.

Beckmann et al. compare in [7] existing insertion strategies and perform optimization

with respect to different criteria such as the area covered or the overlap between rectangles.

This optimization leads to the R*-tree insertion algorithm which is presented there. Here, I

73

3 Optimization & Implementation of RBFs in preCICE

will compare the original linear and quadratic algorithm from [56] as well as the aforemen-

tioned R*-tree algorithm. The library offers run- or compile-time selection of the algorithm.

I use compile-time selection, to closely reproduce how the library will eventually be used

in preCICE. For the parameters M and m, the default values of M = 16 and m = 0.3 ·M
are used.

The results for the initialization times can be found in Fig. 3.3 and those for query

performance in Figs. 3.4 and 3.5.

The performance for finding all points inside a radius r = 0.05 is evaluated. While this

value is chosen arbitrarily, it represents a realistic support radius. For the measurements, a

test mesh consisting of n2 grid points is set up. Vertex coordinates are constructed using

the following rule:

P(nx , ny) =







nx
n + 5

ny

n
ny

n + 3
ny

n

2 nx
n + 2

ny

n






+







0.01

0.02

−0.01






(3.22)

with nx , ny = 0 . . . n. This results in a two-dimensional, anisotropic mesh in three-dimensional

space.

Search points are created equally distributed on the mesh, using a fixed size of n= 100,

resulting in n2 = 10000 queries. To remove direct correspondence to the index mesh, the

constant shift from Eq. (3.22) is not applied. The parameter k of the nearestThenDistance

method depends on the size of the current mesh and is set to 0.001 n2. This estimate is

based on the dimensions of the test mesh and the search radius r and includes a generous

safety margin to reflect the uncertainty present in an actual use case.

The runs were performed on one node of the sgscl13 cluster.

Comparing the results in Fig. 3.3 with Figs. 3.4 and 3.5 shows the trade-off between

creation and query performance. While all algorithms posses linear runtime complexity

when it comes to creating the data structure, the R*-tree algorithm needs considerably

more time building the tree. Though the performance disadvantage at creation time is

confirmed by the original paper from Beckmann et al. [7], the difference observed here is

much larger than in the original paper. One possible explanation for this discrepancy is

the emphasis the author put on paging behavior of the algorithms. Paging is a memory

management technique to swap parts of main memory to secondary memory (usually a

hard disk). This helps to overcome situations where main memory size may not be sufficient

for a given problem. Due to the large memory sizes of modern computers, paging only

38 Intel Xeon CPU E3-1585 v5 @ 3.50GHz, 32 GB memory

74

3.4 Algorithmic & Implementation Overview

0 0.5 1 1.5

·105

0

200

400

600

Mesh points n

Ti
m

e
[m

s]

R* 16
Linear 16

Quadratic 16

Figure 3.3: R-tree creation time for different splitting algorithms. Parameters used for the
splitting algorithms are M = 16 and m = 0.3 m. It immediately becomes evident,
that the R* 16 splitting algorithm is not optimized for insertion performance.
Linear and quadratic splitting algorithms enable much faster insertions, albeit
at the expense of query performance.

0 0.5 1 1.5

·105

0

1000

2000

3000

Mesh points n

Ti
m

e
[m

s]

Figure 3.4: Time for 10000 neighbor queries using the naive method on different mesh
sizes.

75

3 Optimization & Implementation of RBFs in preCICE

0 0.5 1 1.5

·105

103

104

Ti
m

e
[m

s]

satisfy

0 0.5 1 1.5

·105

101

102

boxThenDistance

0 0.5 1 1.5

·105

101

102

Mesh points n

Ti
m

e
[m

s]

boxAndSatisfy

0 0.5 1 1.5

·105

102

103

Mesh points n

nearestThenDistance

R* 16 Linear 16 Quadratic 16

Figure 3.5: Time for 10 000 neighbor queries for points within a given support radius for
different mesh sizes.

76

3.4 Algorithmic & Implementation Overview

rarely occurs. Most HPC systems do not even have paging activated. Looking at query

performance, the R* algorithm performs best when compared for query performance, while

Linear and Quadratic split algorithms are mostly on par.

For query performance, the naive algorithm serves as a baseline, showing almost perfect

linear complexity for a constant number of queries on an increasingly large mesh. Without

surprise, the satisfy method performs worst, even outperformed by the naive approach.

It does not make use of any of the geometric concepts offered by the library and instead

requires checking each vertex for the distance to the search point. With that it is logically

equivalent to the naive approach. The worse runtime performance stems from the overhead

of the tree structure, which is clearly not optimized for a simple traversal. boxThenDistance

and boxAndDistance are not only logically equivalent, as outlined above but show also similar

performance. The nearestThenDistance is in the middle of the field. Its main disadvantage

is the additional parameter which determines the number of nearest neighbors that are

initially queried for. That parameter requires assumptions about the local mesh density

which is not known a priori.

The tree must be re-created each time the mesh is changed. preCICE does not support

restarting at this time, so this can happen only at startup, when the mesh is given from the

solvers to preCICE. The resulting tree data structure is cached at a central location, so that

it can easily be re-used in different parts of preCICE. Therefore, good query performance is

preferred over initialization performance and the R*-tree with boxAndSatisfy query method

was implemented in preCICE.

In preCICE, the spatial tree is used in the mapping component for all three methods of

mapping. The nearest neighbor mapping queries for one nearest neighbor of the vertex in

consideration. Alike, the nearest projection mapping uses an adaption of tree indices to

more complex mesh elements than vertices, i.e, edges, triangles and quads4 and performs

nearest element queries on the tree.

For the RBF mapping, the usage of the spatial tree is, however, more involved. As a first

step of optimization, the spatial tree is used to limit the number of vertex pairings that need

to be evaluated. This limits the set of vertices to be tested in the inner loop of Alg. 4, lines

12 and 22. In the actual implementation, this optimization is used tightly together with

another optimization measure that reduces the number of necessary memory allocations

and is detailed in the next section.
4Quad type elements remain to be implemented, as of today

77

3 Optimization & Implementation of RBFs in preCICE

Preallocation

Allocation is the act of reserving chunks of memory that are used to store values. The

size of memory that is to be reserved is determined by the number of values and the

respective data type. Allocation can be done individually for each datum whenever the

value is computed. For matrices, this results in a number of allocations equal or higher to

the number of non-zero elements. Memory allocation is a potentially expensive operation,

its computational cost depends on a number of factors such as memory fragmentation and

the size of the allocated chunk.

According to [32], the computational complexity of an allocator has a per-object and a

per-byte component, dominated by the per-object component. A strategy to mitigate the

cost of per-object allocations is using preallocation, i.e., allocating the memory needed

for a complex data structure in one big allocation, in contrast to a multitude of smaller

allocations. To be able do that, the number of allocations, i.e., the number of non-zeros in

the matrices must be known a priori.

In our algorithm, for the radial-basis function interpolation, allocation becomes an issue

when the matrices A and C are filled. For basis functions, that are defined globally, both

matrices are dense and there are no non-zero entries. Otherwise, for locally defined basis

functions, the number of non-zeros is not trivially known a priori. Five different methods

to compute the number of non-zeros have been implemented and tested. The results are

shown in Fig. 3.6.

No preallocation means to omit the explicit computation of memory allocation for the

whole matrix and do the allocation whenever new elements are inserted. Albeit

entries are collected for each row before committed to PETSc, resulting in much less

allocations than the number of non-zeros. However, the performance is still much

worse than with the other methods surveyed.

Explicit computation without using spatial indexing is the most straightforward

method. The algorithm is basically traversed twice, as recommended by the PETSc

manual [3]. The first time, only the number of necessary allocations and the respec-

tive matrix row are computed. On the second traversal, the actual values are set. This

works well for some numerical schemes such as FEM, where the number of non-zeros

can easily be computed from the type of elements and boundary conditions.

For RBF interpolation on unstructured meshes, each vertex pairing needs to be

evaluated. As the filtering, by using the tree is not used here, this results in O
�

|Ξ|2
�

operations for matrix C respective O (|Ξ| · |∆|) operations for matrix A. This holds

78

3.4 Algorithmic & Implementation Overview

true even for locally defined basis functions, where the resulting matrix is sparse.

Furthermore, each operation involves a norm computation. The evaluation of the

basis function itself can be omitted by computing a support radius beforehand,

explicitly given or defined by a cut-off value, see Sec. 3.1.

Compute and save is an extension of the previous scheme. The distance values that

are computed in the first traversal anyway are not discarded after, but saved in a

matrix-like data structure. This data structure is realized as a vector with size equal

to the number of rows, containing vectors with dynamically allocated entries. Both

vectors are standard C++ std::vector data types. The second traversal then sets the

previously computed values row wise. Even though this method allocates twice the

amount of total memory, compared to the beforementioned method, it results in an

increased performance, see Fig. 3.6.

The presumed cause is the speculative allocation usually done by implementations

of C++ standard library. Given a std::vector of size s. An insertion of n elements,

triggers the allocation of max(s, n) elements for the GCC libstd++ 5, and max(2 s, n)
elements for the LLVM/Clang libstd++6. PETSc, on the other hand, does no specula-

tive allocations at all, which thus results in inferior filling performance compared to

the C++ vector types.

Filtering using spatial indexing uses a spatial index, based on the Boost Geometry

library. Analogous to the previous method, the result is saved and set in the second

traversal.

Estimating the number of non-zeros is an approach that was only considered theo-

retically. The basic idea is to estimate a local density, based on the known bounding

box and the number of vertices of the mesh. Using the support radius of the basis

function, an average of covered points per basis function can be computed. In theory,

this works well on isotropic, rectangular and axis-aligned meshes. For meshes that

are not rectangular and axis-aligned, the bounding box does not accurately reflect

the size of the mesh. For anisotropic meshes, the local density varies. Meshes that are

encountered in real simulations are usually both anisotropic and unaligned, which

renders this method impracticable for most use cases.

5https://gcc.gnu.org/onlinedocs/gcc-8.2.0//libstdc++/api/a00599_source.html, line 1645
6http://llvm.org/viewvc/llvm-project/libcxx/trunk/include/vector?view=markup, line 1013

79

https://gcc.gnu.org/onlinedocs/gcc-8.2.0//libstdc++/api/a00599_source.html
http://llvm.org/viewvc/llvm-project/libcxx/trunk/include/vector?view=markup

3 Optimization & Implementation of RBFs in preCICE

No preallocation

Explici
tly

computed

Computed & saved

Spatial tre
e

100

101

102

103

104

Ti
m

e
[m

s]

No preallocation

Explici
tly

computed

Computed & saved

Spatial tre
e

Filling evaluation Preallocation evaluation
Filling interpolation Preallocation interpolation

Figure 3.6: Comparison of different preallocations methods for mesh sizes 6400 and 10 000
on two ranks per participant. The plot compares times spent in the stages of
preallocation and filling of matrices for evaluation (A) and interpolation (C).
The total time required is the sum of all bars of one measurement. Note the
logarithmic scaling of the axis.

Figure 3.6 gives an overview about the times spent in the different stages of the preallocation

and filling algorithm and compares the aforementioned methods.

As a conclusion, the main challenge is posed by the non-linear nature of the problem.

Unstructured grids and lacking information about local mesh density thereof, makes guess-

ing correct values for the number of vertices that are included in the support radius next to

impossible. Furthermore, there can’t be any guarantees about the spatial ordering of the

vertices from the solvers.

The measurements clearly show, that the effort of creating a spatial index is worth the

performance gain. Initialization of the tree must be done only once at simulation startup.

Furthermore, the created index can be used in other parts of preCICE, such as nearest

neighbor and nearest projection interpolation methods. The Boost Geometry library helps

to minimize the implementation and optimization effort of the tree index. Adapting it to

preCICE internal data structures helps to keep computational and memory expensive copy

operations to a minimum. The adapter was recently extended to further mesh primitives,

which now can be queried for, as well.

80

3.4 Algorithmic & Implementation Overview

3.4.5 Solving the Linear Systems

The need to solve a linear system arises at various points in the RBF algorithm. The weighting

coefficients λ must be computed from C λ= fξ. For separated or no polynomial, C either

consists purely of evaluated basis functions as given in Eq. (2.28), while for integrated

polynomial it has the structure as shown in Eq. (3.4).

In case of a separated polynomial, the QR-decomposition from Eq. (3.6) respectively

Eq. (3.18) of the input coordinate matrix Q has to be computed. For that, the PETSc solver

KSPLSQR is used.

To compute the rescaled interpolant, C λ1 = gξ has to be solved. Beside the changed

right-hand side gξ this is equivalent to the aforementioned solve and the solver instance

can be reused, thus saving time needed to factorize C again.

The major computational effort stems from solving for the interpolation weights λ. Direct

methods, such as Gaussian-elimination or Cholesky-decomposition for positive definite

matrices are not feasible due to their complexity of O
�

n3
�

.

PETSc offers a range of preconditioners and Krylov subspace solvers7. To select a suitable

one, it must be implemented for the matrix type of C , which is MATSBAIJ for symmetric

block sparse matrices and exist in a parallel version. In Sec. 4.8, different combinations of

preconditioners and solvers for computing λ are compared.

For an efficient parallel solve, the structure of the matrices is important. Using basis

functions with a compact support yields sparse matrices C and A. However, Q and V that

represent the polynomial are dense. Using the integrated polynomial therefore adds global

communication overhead in the process of solving the ill-conditioned system. The separated

polynomial, on the other hand, solves a smaller, better conditioned system, resulting in less

global communication.

As an effect of the black-box approach to coupling, we reuse the surface partitioning of

the respective solver and, therefore, cannot guarantee optimal load balancing. In practice,

however, the partitioning already provides a good clustering of the vertices. As a result,

the matrices C and A are band-matrices and, thus, the corresponding systems are easy to

solve in parallel.

7https://www.mcs.anl.gov/petsc/documentation/linearsolvertable.html

81

https://www.mcs.anl.gov/petsc/documentation/linearsolvertable.html

3 Optimization & Implementation of RBFs in preCICE

3.5 Conclusion

Six different variants to evaluate the basic RBF interpolant are presented. Either with

integrated, separated or no polynomial for consistent as well as conservative interpolation.

The conservative variant with separated polynomial has not been published so far, to the

best of my knowledge.

The C++ implementation described in this chapter makes heavy use of two libraries:

(i) PETSc is used to provide distributed data structures for matrices and vectors as well

as solvers for linear systems. A re-enumeration of the vertices supplied to preCICE by the

solvers is used to provide PETSc with continuously enumerated rows for each local partition.

To efficiently fill the PETSc data structures, one should strive to eliminate unnecessary

memory allocations. Not possessing a priori knowledge of the mesh supplied by the solver

brings the need for efficient spatial queries on the mesh. Therefore, (ii) the geometry library

from the Boost project, in particular its implementation of R-trees, which is designed to

integrate well into existing code bases, is used. This way, it is possible to use the spatial

tree on the existing mesh data structures from preCICE without expensive copy operations

of vertex data. Subsequently, the tree is used for quick nearest-neighbor type queries to

compute the exact number of allocations needed for each of the interpolation matrices.

Once integrated, the spatial tree also proved to increase efficiency in the process to re-

partitioning, which is steered by the mapping implementation. In the future, the spatial

tree can furthermore become a viable building block in the process of implementing and

exploring the possibilities of multiscale interpolation and other adaptive methods.

With all these functionalities and choices implemented, preCICE provides a highly opti-

mized implementation of radial-basis interpolation in the presence of challenges imposed

by the partitioned coupling approach.

82

4 Numerical Experiments & Results

There are two possible outcomes: if the result confirms the hypothesis,

then you’ve made a measurement. If the result is contrary to the

hypothesis, then you’ve made a discovery.

Enrico Fermi

In Sec. 2.3, a number of analytical results regarding the fundamental properties of in-

terpolations with radial-basis functions are presented. These properties include conver-

gence with decreasing mesh width, i.e., as h approaches 0, stability of the interpolation

and uniqueness of the results. In spite of the analytical results, the mathematical theory

of RBF interpolation is still incomplete and does not cover all important cases found in

applications. For that reason, it is said, that RBF interpolation is loved by engineers, due to

the ease of implementation and universal applicability and hated by mathematicians as

their fundamental theory is still lacking.

In this chapter, I will use numerical methods to evaluate the interpolation behavior.

Different variants of the basic algorithm will be compared. For that, appropriate test

functions are used, resembling traits also found in applications. Finally, not only the

interpolation itself is scrutinized, but also how common linear solver implementations cope

with the resulting linear systems.

4.1 Test Setup

This section will establish a set of common parameters for the experiments. It consists of

a standard domain size, test functions and methodology for error and condition number

assessment. These parameters are not set in stone and for some evaluations the experiments

will deviate from it when appropriate.

For the experiments, unless explicitly stated otherwise, the interpolant or input mesh

is always created on the interval [0, 1]. The error evaluation is, however, performed on a

smaller grid, e.g., [0.08, 0.92] for hmax = 1/100 and m = 8. This should minimize effects from

83

4 Numerical Experiments & Results

0 0.2 0.4 0.6 0.8 1
10

15

20

25

2

2.5

3

3.5

4

x

f(
x)

f(
x)

High Frequency
Low Frequency

Jump

Figure 4.1: One-dimensional analytical test function variants as given in Eqs. (4.1) and (4.2)

the boundary and thus resembles the interpolation on infinite grids as closely as possible.

For global basis functions with an infinite support radius, the boundary influence can not

be reliably isolated from the uninfluenced inner grid. I therefore use the support radius

from the local basis functions as the measure when selecting a mesh region for evaluation.

4.1.1 Numerical Test Functions

To evaluate convergence and accuracy properties, a set of analytic test functions is required.

They should mimic traits that also occur in data produced by actual simulations.

Three different one-dimensional test functions f : [0,1]→ R are defined:

f (x) = exp(3 x) + 4 sin(5 x) + sin(80 x) + 2,

f (x) = exp(3 x) + 4 sin(5 x) + 2.
(4.1)

The first function combines low- and high-frequency periodic components. It also features

a monotonically increasing term and a constant shift in positive y-direction. The second

function, obviously, is identical up to the high-frequency term.

To analyse the influence of discontinuities, as produced by discontinues Galerkin dis-

cretization on the interpolation quality, a jump function is used in addition as a third

84

4.1 Test Setup

function:

f (x) =







2 x ≤ 0.5,

4 x > 0.5.
(4.2)

To evaluate the interpolation on two-dimensional data, three different functions [0, 1]×
[0,1]→ R have been selected.

In order to provide “realistic” data distributions, two fundamentally different standard

test functions are used. Both functions have been slightly modified from the definitions

found in literature so that they are defined on the unit square.

First, the so-called Eggholder function, Eq. (4.3) and Fig. 4.2 is used. It has been shifted

by a constant in z-direction, as quantities from simulations such as pressure distributions

normally are not zero averaged.

x̃ = (x − 0.5) + 512, ỹ = (y − 0.5) + 512

f (x̃ , ỹ) = − (ỹ + 47) · sin

√

√

√

�

�

�

�

x̃
2
+ ỹ + 47

�

�

�

�

− x̃ · sin
Æ

| x̃ − (ỹ + 47)|+ 400
(4.3)

With its large number of local minima it is usually employed in testing optimization

algorithms. Its highly oscillatory behavior also mimics the behavior usually found in

complex flow simulations..

The Rosenbrock function, Eq. (4.4) and Fig. 4.2 is also frequently used in the field of

optimization [86]. Here, it is used to compare the Eggholder function to a much smoother

example.

a = 1, b = 100,

x̃ = (x − 0.5) · 4, ỹ = (y − 0.5) · 4,

f (x̃ , ỹ) = (a− x)2 + b ·
�

y − x2
�2

.

(4.4)

As a third function, I use a two-dimensional jump function, similar to the one-dimensional

equivalent in Eq. (4.2):

f (x) =



























2 x1 ≤ 0.5∧ x2 ≤ 0.5

5 x1 ≤ 0.5∧ x2 > 0.5

7 x1 > 0.5∧ x2 > 0.5

8 x1 > 0.5∧ x2 ≤ 0.5.

(4.5)

85

4 Numerical Experiments & Results

0 0.2
0.4

0.6
0.8

1

0

0.5

1

0

2000

0 0.2
0.4

0.6
0.8

1

0

0.5

1

0

500

Figure 4.2: Rosenbrock (left) and Eggholder (right) three-dimensional test functions

4.1.2 Error Metrics

To assess the quality of the interpolation, a set of support points ξ ∈ Ξ with values from

the test function f (ξ) is created. The interpolant s is then created using this set of support

points and values. Subsequently, the interpolant is evaluated on another set of points δ ∈∆
and compared to f (δ). Some consideration when creating this test mesh must be taken into

account. Due to the interpolation condition Eq. (2.26), s(ξ) = fξ, the interpolant is exact

at these points. ∆ should therefore not be chosen identical to Ξ, also, integral multiples of

the mesh width should be avoided, as they frequently yield identical coordinates in both

meshes. If the error is periodic, the density of the test mesh must be suitable to sample

the error frequency fe and thus the mesh width h∆ should suffice fe < 1/h∆ [95]. Since the

error frequency is most likely non known a-priori, the test mesh should be chosen, so that

|∆| � |Ξ| and integral multiples should be avoided.

For the consistent interpolation, the usual metric for the pointwise error e is a suitable

measure:

e(δ) = sδ − f (δ). (4.6)

To acquire an integral value, the L∞-norm gives the maximum pointwise error

e(δ)∞ = ‖sδ − f (δ)‖∞ (4.7)

86

4.1 Test Setup

or the root mean squared error (RMSE) as a weighted average

RMSE=

√

√

√

∑

δ (sδ − f (δ))2

n
. (4.8)

Analytical convergence proofs typically use the L∞-norm, which I will generally use here,

too, unless explicitly stated.

For conservative interpolation, this is not suitable. Foremost, the conservation needs to

be fulfilled
∑

δ

sδ =
∑

ξ

fξ (4.9)

which obviously conflicts with minimizing the pointwise difference of s and f , unless the

two meshes have a comparable number of vertices, i.e., |Ξ| ≈ |∆|.
Two different error metrics, that still produce a meaningful result for conservative

interpolation, are proposed.

First, a weighted error ew, which takes the number of elements in each mesh into account:

ew(δ) = sδ ·
|∆|
|Ξ|
− f (δ). (4.10)

This basically does a constant shift of the interpolant, based on the ratio of mesh sizes.

For regular meshes, this is an appropriate offset to compensate for the constant offset that

stems from the conservation condition. However, non-regular meshes may contain parts

with equal (i.e., matching) mesh density, where conservation and accuracy can both be

fulfilled at the same time, and parts with divergent mesh sizes, where the above-mentioned

problem comes into play.

Equation (4.11) shows an alternative error formulation. It uses the rescaled interpolant

s1 which is created similar to sδ but from the function g(x)≡ 1, thus resembles x = 1 while

showing the same conservative behavior as sδ. The s1 interpolant does not use a polynomial

here.

er(δ) = sδ ·
1
s1
− f (δ), g(x)≡ 1 (4.11)

Figure 4.3 shows the inevitable offset of the conservative interpolant sδ from fξ. The

conservation condition is fulfilled by an error of only 5.7 · 10−14 . The rescaled interpolant,

while matching the original function much better, has a conservation error of 254. The

bottom plot shows the error as computed with Eq. (4.6), the weighted error ew from

Eq. (4.10) and the rescaled error er from Eq. (4.11). It can clearly be seen, that the local

87

4 Numerical Experiments & Results

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40
fξ
sδ
sr
s1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

10

20

30

x

Pointwise Difference e
Weighted Error ew

Rescaled Error er

Figure 4.3: Conservative mapping from an input mesh composed of 4 Gauss-Chebyshev
cells of order 12 (resulting in 48 points) to an isotropic output mesh with 20
points. The basis functions used are Gaussians with m= 6 together with the
integrated polynomial interpolant. Top: high frequency test function f , see
Eq. (4.1), evaluated at the input mesh, interpolant at the output mesh and
rescaled interpolant sr = s/s1. Bottom: three different difference and error
metrics.

88

4.1 Test Setup

mesh density has a great influence on pointwise difference. Due to the localized Gaussian

basis function, conservation needs to be fulfilled locally. This naturally results in higher

function values in places where the input mesh density is higher. The difference peaks at

these locations, likewise the weighted error, merely multiplied by a constant factor.

The s1 interpolant shows a similar behavior, depending on the mesh density as sδ. Using

it to rescale the interpolant irons out the offsets created by the conservation condition and

yields a much closer, however obviously not conservative result. It can be used to create

the rescaled error er as shown in Eq. (4.11), which gives a representation of the accuracy

of the interpolant in the presence of the conservation condition.

4.1.3 Condition Number

For a numerical problem to be well-posed or stable, we require that the solution depends

continuously on the input data. The condition number is a measure how the solution

changes with small perturbations of the input data. These perturbation δd can originate

from noisy input data or numerical errors. In the case here, I will focus on the numerical

sources of errors, such as rounding errors, which are a prominent source in iterative

algorithms. The condition number κ is a measure for the factor by which input errors are

amplified in the solution. However, it is important to note that it does not give an exact

value of the inaccuracy, but only an asymptotic upper bound.

[24, p. 406] and [112] give the rule of thumb, if the condition number is κ= 10k, then

one may lose up to k digits of accuracy when solving the linear system.

According to [82, p. 34], given a perturbed problem

F(x +δx , d +δd) = 0 (4.12)

of the original problem F(x , d) = 0 with input data d and solution x , we require that

∃η0 = η0(d)> 0, ∃K0 = K0(d) such that

if ‖δd‖ ≤ η0 then ‖δx‖ ≤ K0 ‖δd‖
(4.13)

which means we require the perturbation of the solution ‖δx‖ to be bound by K0 ‖δd‖.
From this, an absolute and relative condition number can be derived. The absolute condition

number is given by

κabs(d) = sup
§

‖δx‖
‖δd‖

, δd 6= 0, d +δd ∈ D
ª

(4.14)

89

4 Numerical Experiments & Results

for the set D of viable input parameters.

Here, I am looking at the case of solving the interpolation matrix C for the weights λ of

the RBF interpolation, given as the linear system in Eq. (2.27):

C ·λ= fξ

with the right-hand side fξ representing the potentially distorted input data. The condition

number for linear systems, with respect to a perturbed right-hand side can be defined as

κ(fξ)'

C−1

 fξ

C−1 fξ

≤ ‖C‖

C−1

= κ(C). (4.15)

In the upcoming numerical experiments, the Python function numpy.linalg.cond(x, p=None)

is used to compute the condition number.

The algorithm is based on the fact that, if the Euclidean norm L2 is used in the equations

above (which means p=None or p=2 as an argument to numpy.linalg.cond), the condition

number can be expressed in terms of the singular values σ

κ(C) =
σmax(C)
σmin(C)

, (4.16)

where σmax(C) and σmin(C) are the largest and smallest absolute value, respectively, of all

singular values of C .

This direct computation of the condition number hence requires a computational costly

singular value decomposition, which is still feasible for small experiments.

4.1.4 Implementation

The numerical experiments are performed using PyRBF1, a Python implementation of RBF

interpolation using the well-known libraries NumPy [107], SciPy [64] and Pandas [75].
The linear systems are solved using numpy.linalg.solve which in turn calls the LAPACK

routine _gesv. LAPACK [2] employs a LU-decomposition with partial pivoting to solve the

linear system.

PyRBF implements the same algorithms that are found in preCICE and additional en-

hancements for experimentation, that may eventually end up in preCICE as well. It focuses

on extensibility and flexibility, rather than performance.

1https://github.com/floli/PyRBF/

90

https://github.com/floli/PyRBF/

4.2 Standard RBF Interpolation

4.2 Standard RBF Interpolation

In this section, I will examine the behavior of the standard RBF interpolant Eq. (2.25).

This formulation is devoid of extensions, such as additional polynomials, rescaling or an

alternative basis. It will serve to form a baseline to which more ambitious implementations

can be compared. In the following, I will assess accuracy and condition number in the

case of decreasing mesh width h, examine how discontinuities and different frequencies of

the input data influence the interpolating and observe the influence of the basis function’s

different shape parameters. The effect of error saturation will be analyzed and how the

condition number varies with mesh sizes and shape parameters. Finally, the interpolation

on non-uniform and two-dimensional meshes will be assessed.

Mesh Convergence for Different Basis Functions Figures 4.4 to 4.6 show the L∞-

error as the mesh width h approaches 0 for various combinations of basis functions and

test functions.

The interpolation using the multiquadrics basis function was not able to converge to a

stable solution for a range of shape parameters ε = 0.1 . . . 16, Fig. 4.4 only show the largest

and smallest of the shape parameters assessed. The instability is indicated by the chaotic

fluctuations in the solution and the high condition number of κ≈ 1020.

The accuracy of thin-plate splines and volume splines basis functions significantly depend

on the test function used. It is best for the constant function and gets worse from low-

frequency over high-frequency to the jump function.

If we look at the analytical investigations as summarized in Sec. 2.3.2, we see, that with

the given setup, none of the basis functions can be considered of thin-plate spline type,

following the definition from Eq. (2.38). The absence of the polynomial in one-dimensional

space yields k = 0 and d = 1. The convergence results from Eq. (2.39) then only apply

to basis functions of the form r−1, which is not the case here. In addition, it is unclear,

whether the underlying mathematical theory holds for cases without a polynomial, as some

basis functions need it to be uniquely solvable. I will revisit this fact in Sec. 4.3 when

looking at the results of interpolation with polynomials. Still, the mentioned convergence

rates of h
p

log(h−1) and
p

h, for 2k − d = 2 or 2k − d = 1, respectively or h otherwise,

can be considered an upper bound up to an unknown constant factor for the case under

investigation. For some test functions, however, the actual error is much lower. The first

example is the volume spline basis function interpolating the constant test function, where

the L∞-error remains in the range of 10−15 and at this level is probably influenced by the

machine precision. The second example is the discontinuous jump test function. All basis

91

4 Numerical Experiments & Results

10−410−310−2
10−15

10−10

10−5

100

105
L ∞

-e
rr

or
High-Frequency

10−410−310−2
10−15

10−10

10−5

100

105

Low-Frequency

10−410−310−2
10−15

10−10

10−5

100

105

h

L ∞
-e

rr
or

Constant 1

10−410−310−2
10−15

10−10

10−5

100

105

h

Jump

MultiQuadrics, ε= 16 MultiQuadrics, ε= 0.1
Thin-Plate Splines Volume Splines

h
p

log(1/h)
p

h

Figure 4.4: RBF interpolation for different test functions and basis functions. The L∞-error
for increasing mesh resolution and multiquadrics, thin-plate splines and volume
splines basis functions is shown. Test functions used are the high- and low-
frequency variants, Eq. (4.1) and the discontinuous jump function Eq. (4.2).
Additionally, a constant function g(x) ≡ 1 is used as a test function. Dashed
lines show the theoretical error in unbounded domains (up to a unknown
constant).

92

4.2 Standard RBF Interpolation

10−410−310−2
10−9

10−6

10−3

100

103

L ∞
-e

rr
or

High-Frequency

10−410−310−2
10−9

10−6

10−3

100

103

Low-Frequency

10−410−310−2
10−9

10−6

10−3

100

103

h

L ∞
-e

rr
or

Constant 1

10−410−310−2
10−9

10−6

10−3

100

103

h

Jump

Gaussian, m= 16 Gaussian, m= 12
Gaussian, m= 8 Gaussian, m= 4

Figure 4.5: RBF interpolation for different test functions and Gaussian basis functions. The
L∞-error for increasing mesh resolution and different shape parameters m is
shown. Test functions used are the high- and low-frequency variants, Eq. (4.1)
and the discontinuous jump function Eq. (4.2). Additionally, a constant function
g(x)≡ 1 is used as a test function.

93

4 Numerical Experiments & Results

10−410−310−2
10−5

10−4

10−3

10−2

10−1

100

101

L ∞
-e

rr
or

High-Frequency

10−410−310−2
10−5

10−4

10−3

10−2

10−1

100

101

Low-Frequency

10−410−310−2
10−5

10−4

10−3

10−2

10−1

100

101

h

L ∞
-e

rr
or

Constant 1

10−410−310−2
10−5

10−4

10−3

10−2

10−1

100

101

h

Jump

CompactPolynomialC0, m= 100 CompactPolynomialC0, m= 75
CompactPolynomialC0, m= 50 CompactPolynomialC0, m= 40
CompactPolynomialC0, m= 20 CompactPolynomialC0, m= 8

Figure 4.6: RBF interpolation for different test functions and Compact Polynomial C0 basis
functions. The L∞-error for increasing mesh resolution and different shape
parameters m is shown. Test functions used are the high- and low-frequency
variants, Eq. (4.1) and the discontinuous jump function Eq. (4.2). Additionally,
a constant function g(x)≡ 1 is used as a test function.

94

4.2 Standard RBF Interpolation

functions perform exceptionally bad when confronted with discontinuities. The almost

regular up and down pattern of the volume and thin-plate spline basis functions can be

attributed to interference between the input mesh Ξ and the test function, as some specific,

recurring offset between the discontinuity and the mesh vertices happens to slightly improve

the interpolation, compared to other offsets.

Figures 4.5 and 4.6 show the error for the Gaussian and Compact Polynomial C0 type

basis function for a selection of support radii. Both show a similar behavior, fundamentally

different from the global basis functions. Gaussians show usefulness only in a narrow

range of shape parameters m. A value of m = 4 results in sharp basis function defined

only one a small support radius. This results in an inadequate density of basis functions

and inferior error rates, even for the constant test function. On the other hand, a support

radius which is too large results in unstable behavior of the linear solver, as indicated by

random fluctuations and an average condition number of κ = 5 · 1012. The case of too

small support radii can be improved by using the rescaling technique, see Sec. 4.4.

Though graphically, their shape is very much equal to Gaussians, compact polynomial type

basis functions exhibit a vastly different behavior regarding stability and accuracy. While

compact polynomials are stable up to much higher values of m, compared to Gaussians,

the achieved accuracy is significantly lower, even with a much larger support radius. The

influence of the different test functions is more pronounced then with Gaussians, but less

than with the global basis functions.

Interpolation of Discontinuous Functions Figure 4.7 illustrates the effects of bound-

aries and discontinuities on the interpolant and the coefficients of λ. For localized basis

functions, a distance of the support radius is therefore sufficient to exclude boundary effects

from the interpolation.

For global basis functions, such as thin-plate splines and volume splines, the situation is

more diverse. In contrast to their global nature, the effect of boundaries and discontinuities

is still very localized. Discontinuities, however, can lead to large coefficients, both negative

and positive, near the locus of the discontinuity.

Good interpolation of functions that include discontinuities pose a challenge for RBF

interpolation, regardless of the basis used. The L∞-error on the entire mesh (including

boundary) compared to a mesh that excludes the discontinuity, i.e., [0, 1]\[0.4, 0.6] is up to

several orders of magnitude larger. The numbers range from a factor of ≈ 7 for Gaussians,

≈ 10 for compact polynomials, ≈ 91 for thin-plate splines to ≈ 4 · 1014 for volume splines.

This extremely wide range of ratios is not caused by superior handling of the discontinuity

95

4 Numerical Experiments & Results

−0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
−4

−2

0

2

4

6
Gaussian with m= 4

−0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
−4

−2

0

2

4

6

Compact Polynomials with r = 0.2

−0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
−4

−2

0

2

4

6

Thin Plate Splines

−0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
−4

−2

0

2

4

6

x

Volume Splines

Interpolated Function Interpolant Basis Coefficients Basis Function centered at x = 0.2

Figure 4.7: RBF interpolation for the jump function to analyze the effects from boundaries
and discontinuities on the interpolants and weights of the basis functions λ
(brown dots). Additionally, the scaled basis function at x = 0.2 is shown. Note
that some weights are omitted, due to the y-axis scaling.

96

4.2 Standard RBF Interpolation

0 500 1000 1 500 2000 2500 3000
10−12

10−10

10−8

10−6

10−4

10−2

Frequency f

L ∞
-e

rr
or

Gaussian
Thin-Plate Splines

Volume Splines
Compact Polynomial C0

Figure 4.8: RBF interpolation of a test function g(x) = sin(f · x) with increasing frequency
f . The error is shown for Gaussian with m = 6, for Compact Polynomial C0
with m= 40, for Volume Splines and Thin-Plate Splines. To capture the high-
frequency oscillations a fine input mesh on [0,1] consisting of 10000 nodes
and a test mesh on [0.3,0.7] of 23 000 mesh nodes are used.

of, e.g., volume splines, but is the consequence of better interpolation of the constant part

of the function. If we look at the errors only in the neighborship of the discontinuity, i.e.,

[0.45,0.55], all basis functions yield surprisingly equal and high numbers of L∞ ≈ 1.99.

Frequency Dependency Observations made in the previous section point at a frequency

dependency on the test function of the interpolation. Figure 4.8 shows how the L∞-error

varies with the frequency of the test function. For that, the simple function g(x) = sin(f · x)
was interpolated on [0,1] and evaluated on [0.3,0.7] to ignore boundary effects.

The global basis functions, i.e., volume splines and thin-plate splines exhibit a strong

dependency on the frequency of the test function. The error increases monotonically with

the frequency showing an asymptotic behavior. Compact polynomials are only minimally

influenced, converging to a similar L∞-error as the volume splines. The Gaussian basis

functions, on the other hand, show not to be influenced by the frequency at all.

Error Saturation & Shape Parameter for Compact Polynomials & Gaussians Fig-

ures 4.5 and 4.6 furthermore show the effect of error saturation, a stagnating error, even as

h decreases. Theoretical considerations of the effect are detailed in Sec. 2.3.3. The effect is

not only visible with Gaussian basis functions, but also for the compact polynomials. The

test function used, with the exception of the discontinuous jump, show only little influence

97

4 Numerical Experiments & Results

0 5 10 15 20
10−9

10−7

10−5

10−3

10−1

m

L ∞
-e

rr
or

0 20 40 60 80 100
10−14

10−11

10−8

10−5

10−2

101

m

Gaussian Compact Thin Plate Splines C2
Compact Polynomial C0 Approximation

Figure 4.9: Influence of the shape parameter m on the L∞-error of the interpolation. Nu-
merical results for Gaussians, Compact Thin-Plate Splines and Compact Poly-
nomial C0 are shown together with the approximation according to Eq. (2.49)
(dashed lines). Mesh width is h= 6.6 · 10−5 (15000 mesh nodes on [0, 1]).

on error saturation. A Gaussian basis function with a small support of m= 4 is unable to

adequately resolve the test functions and achieved L∞-errors of 0.002 to 0.02. Choosing

a large support of m = 16, on the other hand, results in an unstable interpolation. For

interpolations with m = 12 and m = 8, an error saturation of 2.9 · 10−8 to 2.4 · 10−9 can be

observed. In contrast to the results in Sec. 2.3.3, the final accuracy is almost identical, not

depending on the support radius.

Figure 4.9 shows how the accuracy changes with the support radius for compact basis

functions. As already mentioned above, Gaussians and also compact thin-plate splines

achieved a stable interpolation only in a small range of support radii.

Compact polynomials remain stable up to a large support of m = 100, though the gain in

accuracy diminishes.

In all cases, the approximation from Eq. (2.49) does not provide a sufficiently accurate

estimation of the error saturation as a function of the support radius.

Condition Number for Different Basis, Shape Parameters & Mesh Resolutions

Figure 4.10 shows the condition number κ for multiquadrics, volume splines and thin-plate

splines global basis functions as well as for Gaussians and compact polynomials local basis

functions with different values of m. Since the condition number is independent of the test

98

4.2 Standard RBF Interpolation

10−410−310−2
102

107

1012

1017

1022

κ

MQ/VS/TP

MQ, ε= 16 MQ, ε= 0.1
TPS VS

10−410−310−2

100

104

108

1012

Gaussian

m= 16 m= 12
m= 8 m= 4

10−410−310−2

102

103

104

h

κ

Compact Polynomial C0

m= 100 m= 75
m= 50 m= 40
m= 20 m= 8

10−410−310−2

102

103

104

105

106

107

h

Compact Thin-Plate Spline C2

m= 16 m= 12
m= 8 m= 4

Figure 4.10: Condition number κ of the interpolation matrix C for different basis functions
and shape parameters over the mesh width h. Consistent interpolation with
standard radial-basis functions is used.

99

4 Numerical Experiments & Results

function, i.e. the right-hand side of the respective linear system, it is only shown for one

test function.

For the two local basis functions, Gaussians and compact polynomials, the condition

number remains almost constant over h. As I use m to control for the shape parameter, the

basis functions width remains constant relative to the mesh. The support radius, expressed

in the number of vertices proves to be an adequate measure to control the condition number.

For all local basis functions κ increases with the support radius. This behavior limits

measures to improve the accuracy by increasing the support radius, as the interpolation

eventually becomes unstable. This can be seen here for the multiquadrics basis functions.

For the compact polynomials the condition number remains low, compared to Gaussians.

This is the case even for large support radii. However, as we have previously seen, the error

remains high.

Global basis functions show a moderate increase of the condition number with the mesh

size. Likewise with local basis functions, this can be seen as an increase of vertices included

in their support radius and thus showing a consistent behavior of increasing κ with m.

Influence of Non-Uniform Meshes The preceeding measurements revealed that the

support radius relative to the mesh density plays a tremendous role for accuracy and

stability of the interpolation. Especially Gaussian basis functions are susceptible. For

uniform meshes, i.e., where h = hmax holds, finding an appropriate value for m is easy.

For non-uniform meshes, i.e., with non-constant h, this is a daunting task. Non-uniform

meshes are, however, used regularly in practice, e.g., in meshes refined at certain feature

edges of the geometry or solvers based on the discontinuous-Galerkin method. These type

of solvers use a Gauss-Chebyshev distribution of nodes. The position of the k-th, k ≤ p

vertex inside a cell is given by

xk = cos
�

2 k− 1
2 p

π

�

, k = 1, . . . , p (4.17)

for polynomial degree p in the one-dimensional interval (−1,1).
Figure 4.11 illustrates the non-uniform mesh width of two cells with Gauss-Chebyshev

vertex distribution of polynomial degree n = 24 and how the the local support radius,

expressed in terms of m varies. Furthermore, it shows how the pointwise error of an

interpolation using Gaussian basis functions (with a constant shape parameter based on

m= 4 at hmax) depends on the local mesh density.

The number of vertices inside one cell is equivalent to the polynomial degree p used.

100

4.2 Standard RBF Interpolation

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

0

10

20

30

40

50

−1

−0.5

0

0.5

x

Lo
ca

lm
·10−2

L ∞
-e

rr
or

Figure 4.11: Illustration of two cells with a Gauss-Chebyshev vertex distribution for poly-
nomial order p = 24 (blue). In red, the local support radius in terms of m
for a constant shape parameter ε is shown, with m = 4 for hmax ≈ 0.065 at
x = ±0.5. Additionally, brown (left y-axis) shows the pointwise error of an
interpolation using Gaussian basis functions.

To define the shape parameter, the maximum mesh width hmax is used. For a given basis

function and shape parameter ε, a local m can be defined, with m = mmin at hmax and mmax

at hmin. The relation of the maximum to the minimum mesh width is not constant as p goes

up, but approximately hmax/hmin ≈ p/2.

Figure 4.12 shows the behavior of an interpolation using Gaussian basis functions as the

polynomial order of the underlying Gauss-Chebyshev vertex distribution increases from 4 up

to 56. For m = 4 and m = 6, two regions can clearly be distinguished. Up to approximately

mmax ≈ 100 convergence can be observed, regardless of the polynomial degree. After that,

the interpolation becomes unstable. For m= 8 the separation is not as clearly visible, but

still existing. Naturally, the interpolation becomes unstable at higher polynomial degrees

determining the vertex distribution, as mmax increases, even if m = mmin is held constant. In

Fig. 4.5, it can be seen that the interpolation on uniform meshes becomes unstable between

values for m between 12 and 16. In contrast to this, the number of vertices contained in

the support radius, can be much higher for non-uniform meshes, as long as the increased

mesh density is limited to only a part of the input mesh.

Compact polynomial basis functions behave analogously and consistent to the results

presented previously in this section, as can be seen in Fig. 4.13 The interpolation is stable

101

4 Numerical Experiments & Results

0 5 10 15 20 25 30 35 40 45 50 55 60

10−3

10−1

101

0 5 10 15 20 25 30 35 40 45 50 55 60
10−3

10−2

10−1

100

101

102

0 5 10 15 20 25 30 35 40 45 50 55 60

10−2

10−1

100

0

100

200

0

50

100

150

0

50

100

L ∞
-e

rr
or

m= 8

L ∞
-e

rr
or

m= 6

Polynomial Degree p

L ∞
-e

rr
or

m= 4

m
m

ax
m

m
ax

m
m

ax

Gaussian

Constant Test Function High-Frequency Test Function mmax

Figure 4.12: RBF interpolation on a mesh with Gauss-Chebyshev distributed vertices of
two test functions using a Gaussian basis for different values of m. The L∞-
error and mmax, computed from hmin and the given m are shown. The mesh
cell size is 0.0625 on [0, 1], resulting in 16 cells with polynomial of degree p.

102

4.2 Standard RBF Interpolation

0 10 20 30 40 50 60

10−2

10−1

100

0 10 20 30 40 50 60

10−3

10−2

10−1

0 10 20 30 40 50 60
10−4

10−3

10−2

10−1

100

0

100

200

300

0

500

1000

0

1000

2000

L ∞
-e

rr
or

m= 10

L ∞
-e

rr
or

m= 40

Polynomial Degree p

L ∞
-e

rr
or

m= 80

m
m

ax
m

m
ax

m
m

ax

Compact Polynomial C0

Constant Test Function High-Frequency Test Function mmax

Figure 4.13: RBF interpolation on a mesh with Gauss-Chebyshev distributed vertices of
two test functions using a Compact Polynomial C0 basis for different values of
m. The L∞-error and mmax, computed from hmin and the given m are shown.
The mesh cell size is 0.0625 on [0, 1], resulting in 16 cells with polynomial of
degree p.

103

4 Numerical Experiments & Results

up to much larger support radii. In fact, no unstable interpolation occurred up to values

of m = mmin = 80 and mmax = 10 400 for a polynomial degree determining the vertex

distribution of p = 256. While the accuracy was consistently better than with Gaussians

in the stable regime, it remained low with the L∞-error experienced saturation at about

10−4 for the constant test function and 5 · 10−3 for the high frequency test function. For the

given mesh setup, the evaluation of larger values of m is not advisable, as the mesh sizes

for 16 cells of polynomial degree p = 256 boundary effects become dominant for large

values of m.

Two-dimensional Interpolation Interpolation with radial-basis functions is dimension

agnostic in theory. By evaluating the basis function on the norm of the distance of two points,

the dimensionality of the input or output mesh is effectively taken out of the algorithm.

In this section, I will give an overview on results for two-dimensional meshes and how

far the results achieved so far for one-dimensional interpolation apply to two-dimensional

cases.

In Fig. 4.14, the result and the point-wise error from the interpolation of two-dimensional

test functions is shown. For the definition and visualization of the test functions used, see

Eqs. (4.3) to (4.5) and Fig. 4.2.

The result of the piecewise-constant (jump) test function shows similar traits compared

to one-dimensional interpolation. The largest errors occur at the locus of the discontinuities.

Elsewhere, the error is constant on a moderate level.

For the Rosenbrock function, a low error level was achieved for the inner, lower-gradient

parts of the test function. Going towards the border of the interpolation regime, two effects

become visible. First, the usual decay in accuracy towards the boundary, even for lower-

gradient regions, such as around x = 0.5 and y = 1, is seen as a ridge parallel to the

boundary. Second, the high-gradient corners of the Rosenbrock function cause significant

negative peaks in the error, i.e., the interpolation underestimates the real function value.

The shape of the Rosenbrock function is particularly problematic here, as the high-gradient

regions occur near the boundaries, were the effect of insufficient coverage by the basis

functions also comes into play.

The highly oscillatory nature of the Eggholder function obviously posed a challenge to

the interpolation, as can be seen by the highest error among the three test functions. In the

error plot, diagonal lines the error stick out. It is currently not known, what causes this

effect. Their existence is independent from different resolutions of the input and output

meshes, different support radii or even different basis functions.

104

4.2 Standard RBF Interpolation

0 0.2
0.4

0.6
0.8

1

0

0.5

1
0

5

x
y

0 0.2
0.4

0.6
0.8

1

0

0.5

1

−1

0

1

x
y

0 0.2
0.4

0.6
0.8

1

0

0.5

1

0

2000

x
y

0 0.2
0.4

0.6
0.8

1

0

0.5

1

−20

0

x
y

0 0.2
0.4

0.6
0.8

1

0

0.5

1

0

500

x
y

0 0.2
0.4

0.6
0.8

1

0

0.5

1

−50

0

50

x
y

Jump

Rosenbrock

Eggholder

Results Error

Figure 4.14: Two-dimensional RBF interpolation for a mesh with 1002 to 602 elements
for the three test functions Eqs. (4.3) to (4.5). Gaussian basis functions with
m = 8 are used. The result (left) as well as the point-wise error (right) is
shown.

105

4 Numerical Experiments & Results

Test Function m L∞-error RMSE mopt L∞-error at mopt RMSE at mopt

Jump 8 1.2835 0.0384 5 1.1691 0.0337
Rosenbrock 8 35.9896 0.7585 16 0.1951 0.0226
Eggholder 8 63.8469 1.2790 8 63.8469 1.2790

Table 4.1: Interpolation results for two-dimensional basis functions. The optimal value for
m is based on the minimum RMSE.

Table 4.1 lists the results for m = 8 and for an optimal value of m that achieved the

lowest RMSE for a test function. The jump-function works best with a small support radius

of 5 or even 4 vertices (which achieved a slightly better L∞-error). A small support radius

helps to better resolve the unsteady jump. The Rosenbrock function, on the other hand,

achieved best results using a large support radius of 16 vertices. An even larger support

radius of m= 18 achieved a slightly better result for the L∞-error.

4.3 Integrated and Separated Polynomial

In the previous section, the RBF interpolation was implemented without an additional

polynomial, in its simplest form as given in Eq. (2.25). In Sec. 2.3.1, the standard interpolant

is extended by an additional polynomial. The polynomial can either be integrated in

the interpolation matrix or evaluated separately, as described in Sec. 3.2. Unless stated

otherwise, the polynomial is of first degree, i.e., linear here.

Numerical results confirm that the two implementation variants of the polynomial,

integrated (see Eq. (3.4) and Eq. (3.9)) and separated (see Eq. (3.8) and Eq. (3.11)), while

mathematically not equivalent, yield almost identical results. For that reason, I will resort

to evaluate only the separated variant here, unless explicitly stated.

Mesh Convergence for Different Basis Functions Looking again at the analytical

results for convergence behavior in Sec. 2.3.2, we find that for the one-dimensional case

with a linear polynomial (d = 1 and k = 2), the thin-plate spline type functions according

to Eq. (2.38) are of the form ϕ = r2 k−d = r3. For these type of functions, a convergence

rate of ‖s− f ‖∞ ≤ c ·h, according to Eq. (2.39) can be expected. The actual basis functions

used, e.g., ϕTPS = ‖x‖
2 log (‖x‖), do not match the definition of Eq. (2.39). The mentioned

convergence rates can therefore only give an orientation, but the mathematical proof,

however, is not applicable here.

106

4.3 Integrated and Separated Polynomial

10−410−310−2
10−17

10−12

10−7

10−2

103

L ∞

High-Frequency

10−410−310−2
10−17

10−12

10−7

10−2

103

Low-Frequency

10−410−310−2
10−17

10−12

10−7

10−2

103

h

L ∞

Constant 1

10−410−310−2
10−17

10−12

10−7

10−2

103

h

Jump

MultiQuadrics, ε= 16 MultiQuadrics, ε= 0.1
Thin-Plate Splines Volume Splines

Figure 4.15: RBF interpolation using a separated polynomial for different test functions
and basis functions. The L∞-error for increasing mesh resolution and multi-
quadrics, thin-plate splines and volume splines basis functions is shown. Test
functions used are the high- and low-frequency variants, Eq. (4.1) and the dis-
continuous jump function Eq. (4.2). Additionally, a constant function g(x)≡ 1
is used as a test function. Dashed lines show the error of the respective inter-
polation without a polynomial for comparison.

107

4 Numerical Experiments & Results

10−410−310−2
10−17

10−12

10−7

10−2

103

L ∞
-e

rr
or

High-Frequency

10−410−310−2
10−17

10−12

10−7

10−2

103

Low-Frequency

10−410−310−2
10−17

10−12

10−7

10−2

103

h

L ∞
-e

rr
or

Constant 1

10−410−310−2
10−17

10−12

10−7

10−2

103

h

Jump

Gaussian, m= 16 Gaussian, m= 12
Gaussian, m= 8 Gaussian, m= 4

Figure 4.16: RBF interpolation with separated polynomial for different test functions and
Gaussian basis functions. The L∞-error for increasing mesh resolution and
different shape parameters m is shown. Test functions used are the high-
and low-frequency variants, Eq. (4.1) and the discontinuous jump function
Eq. (4.2). Additionally, a constant function g(x) ≡ 1 is used as a test func-
tion. Dashed lines show the error of the respective interpolation without a
polynomial for comparison.

108

4.3 Integrated and Separated Polynomial

10−410−310−2
10−17

10−13

10−9

10−5

10−1

L ∞
-e

rr
or

High-Frequency

10−410−310−2
10−17

10−13

10−9

10−5

10−1

Low-Frequency

10−410−310−2
10−17

10−13

10−9

10−5

10−1

h

L ∞
-e

rr
or

Constant 1

10−410−310−2
10−17

10−13

10−9

10−5

10−1

h

Jump

CompactPolynomialC0, m= 100 CompactPolynomialC0, m= 75
CompactPolynomialC0, m= 40 CompactPolynomialC0, m= 20
CompactPolynomialC0, m= 8

Figure 4.17: RBF interpolation with separated polynomial for different test functions and
Compact Polynomial C0 basis functions. The L∞-error for increasing mesh
resolution and different shape parameters m is shown. Test functions used are
the high- and low-frequency variants, Eq. (4.1) and the discontinuous jump
function Eq. (4.2). Additionally, a constant function g(x)≡ 1 is used as a test
function. Dashed lines show the error of the respective interpolation without
a polynomial for comparison.

109

4 Numerical Experiments & Results

Figs. 4.15 to 4.17 show the L∞-error as the mesh width h decreases for RBF interpolation

using a separated polynomial.

The most notable difference between the standard interpolant and the interpolant with the

polynomial added can be seen with the interpolation of the constant test function. All basis

functions achieve an extremely low error error of 10−16, with the unstable multiquadrics

and Gaussian with m = 16 oscillating around 10−13. This comes as little surprise, the

polynomial can perfectly approximate the constant function. The computed weights λ for

the basis functions are all close to zero then. The same, obviously, is true for any linear

polynomial test function. Apart from the constant test function, the additional polynomial

has only little influence on the results.

A possible explanation for the negligible effect is, that all test functions are relatively close

to zero at the test interval. This, however, is only partially confirmed, as seen in Fig. 4.18.

There, the implementations with and without polynomial are compared with respect to

the high frequency test function undergoing a constant shift in y-direction. Gaussians

and compact polynomial basis function are directly and in the same way influenced by

the shift ∆y as the error grows with the shift when the RBF interpolant is not augmented

by an polynomial. With a polynomial, however, the effect of the shift in y-direction is

completely neutralized, as the error is constant, independent from the shift. The two global

basis functions, volume and thin-plate splines show a different behavior. Volume splines,

regardless of whether a polynomial is added or not, are unaffected by the shift. This can

also be seen in the close to zero values in the lower plot of Fig. 4.18. Thin-plate splines,

on the other hand, show a behavior similar to the compact basis functions, as the error

increases with the shift, albeit on a much smaller level. Most notably, unlike for the other

basis functions, the polynomial has an slightly adverse effect on the error when using thin-

plate splines. This is not immediately visible from the plot, since only the absolute value of

the error difference is plotted, so that a logarithmic scale can be used. At moderate shifts

in the range of ∆y ≈ −120 . . . 60, the error deteriorates by using the polynomial. Outside

that range (not shown in the plot), the effect is inversed and the polynomial improves the

results.

Error Saturation & Shape Parameter for Compact Polynomials & Gaussians

The effect of error saturation when the the compact basis function are used is also present

with an RBF interpolant augmented by a polynomial. The absolute value of the saturation

error slightly improves when a polynomial is used by less than one order of magnitude,

compare Figs. 4.16 and 4.17. Beyond that, the polynomial shows only little influence on

110

4.3 Integrated and Separated Polynomial

−120 −100 −80 −60 −40 −20 0 20 40 60 80 100 120

10−3

10−2

10−1

100

101

L ∞
-e

rr
or

−120 −100 −80 −60 −40 −20 0 20 40 60 80 100 120

10−15

10−11

10−7

10−3

101

Shift ∆y

|L
no

ne
∞
−

Lse
p
∞
|

Gaussian, m= 6 CompactPolynomial C0, m= 6
Volume Splines Thin-Plate Splines

Figure 4.18: Comparison of interpolation with and without polynomial under a constant
shift ∆y of the high frequency test function. At the top plot, the dashed lines
indicate the interpolation using the separated polynomial, while the solid lines
are without any polynomial. The bottom plot shows the absolute difference
between the errors of interpolation with and without polynomial over ∆y .

111

4 Numerical Experiments & Results

10−410−310−2
10−14

10−11

10−8

10−5

10−2

101

h

� � �

Lin
t
∞
−

Lse
p
∞

Lse
p
∞

� � �

Gaussian, m= 8, High Frequency Gaussian, m= 12, High Frequency
CP0, m= 50, Low Frequency CP0, m= 100, Low Frequency

Thin-Plate Splines, High Frequency Volume Splines, High Frequency

Figure 4.19: Relative difference of the L∞-error of interpolations with integrated and
separated polynomial for different basis and test functions.

the error saturation.

Comparing the Integrated and Separated Formulations In the introduction of this

section, I stated that the RBF formulation with integrated Eq. (3.4) and the one with

separated polynomial Eq. (3.9) yield almost identical results.

Figure 4.19 compares both implementations and shows the relative difference of the

error between them. Even though the absolute value of the relative difference is shown to

avoid negative values in a logarithmic scale, in the vast majority of samples, the separated

polynomial implementation outperforms the integrated polynomial, when looking at the

error. A notable exception to that is the interpolation of the constant function (not shown

here). The interpolation with the integrated polynomial achieved an exact interpolation

with L∞ = 0, while the implementation using the separated polynomial only reached close-

to-zero values of L∞ < 10−15.

As stated before, the separated polynomial does not change the interpolation or evaluation

matrices and therefore C and A remain identical to the standard RBF interpolant without

polynomial extensions. The integrated polynomial adds 2 (1+d)·|Ξ| entries to matrix C and

(1+ d) · |∆| entries to matrix A for an interpolation problem in d dimensions. These densely

populated blocks added to the matrices hold the coordinates of the input or output mesh,

respectively. This comes with some downsides affecting the computational properties. The

112

4.3 Integrated and Separated Polynomial

10−410−310−2
102

108

1014

1020

1026

κ

MQ/VS/TP

MQ, ε= 16 MQ, ε= 0.1
TPS VS

10−410−310−2

101

105

109

1013

Gaussian

m= 16 m= 12
m= 8 m= 4

10−410−310−2

102

103

104

h

κ

Compact Polynomial C0

m= 100 m= 75
m= 50 m= 40
m= 20 m= 8

10−410−310−2

102

103

104

105

106

107

h

Compact Thin-Plate Spline C2

m= 16 m= 12
m= 8 m= 4

Figure 4.20: Condition number κ of the interpolation matrix C with integrated polynomial
for different basis functions and shape parameters over the mesh width h.

113

4 Numerical Experiments & Results

Test Function m L∞-error RMSE mopt L∞-error at mopt RMSE at mopt

Jump 8 1.2835 0.0363 4 0.9674 0.0236
Rosenbrock 8 25.8512 0.5584 16 0.1476 0.0176
Eggholder 8 64.7353 1.2000 5 70.9040 1.1051

Table 4.2: Interpolation results for two-dimensional basis functions with separated polyno-
mial. The optimal value for m is based on the minimum RMSE.

row-wise decomposition used by PETSc and the fact that the rows holding the coordinates

are all assigned to rank zero introduces some load imbalance to the problem. Depending

on the selected (compact) basis function and shape parameter, the basis function values

are close to zero for most of the vertices and therefore yield a sparse matrix. This sparsity

can be exploited by numerical schemes and by using an appropriate storage format, which

is potentially hindered by the dense blocks added. The symmetry of A and C , on the other

hand, is not impaired by the integrated polynomial.

Figure 4.20 shows the condition number of the matrix C with integrated polynomial.

To compare with variants without or with separated polynomial, refer to Fig. 4.10. The

integrated polynomial causes a moderate increase of the condition number throughout

all cases observed. In Fig. 4.10 it can be seen, that the compact basis functions, without

or with separated polynomial show a constant condition number over the mesh size and

appropriately scaled basis functions. The integrated polynomial, on the other hand, causes

the condition number to increase steadily with h, leading to numerical instability at lower

values of m and, thus, a lower level of accuracy that can be achieved.

Two-dimensional Interpolation Finally, the two-dimensional test functions are evalu-

ated and compared to the results with the standard interpolant from Sec. 4.2. The visual-

ization of the results is almost identical to Fig. 4.14 and for that reason won’t be shown

here. Also, most of the analysis there also applies to the interpolation with polynomial.

The results are very similar and consistent with the data from one-dimensional interpo-

lation. The polynomial ensured a moderate improvement in the RMSE and, apart from

the Rosenbrock test function, also in the L∞-error. While the test function values are not

centered around z = 0, they are not far off. As demonstrated in Fig. 4.18, a shift of the

function has a direct effect on the effectiveness of the polynomial.

Higher Degree Polynomials Previously in this section, the polynomial used always

was of linear degree, i.e., k = 2. Here, I will briefly discuss the opportunities of extending

114

4.3 Integrated and Separated Polynomial

Eq. (2.33) with a polynomial of higher degree for one-dimensional test cases.

The implementation essentially works like the separated polynomial, in the sense that it

subtracts the fitted polynomial from the input data before the core RBF interpolation takes

place. Afterwards, the fitted polynomial is evaluated on the output mesh and added to the

results. In contrast to the implementation described in Sec. 3.2, I do not explicitly create

the Vandermonde matrices Q and V , but use an implementation of polynomial fitting from

NumPy.

Figure 4.21 shows how using a polynomial of higher degrees effects the accuracy. Addi-

tionally to the test mesh of the same geometric dimensions as the input mesh, the error is

also evaluated on a slightly larger interval of [−0.1, 1.1] to explore a potential benefit on

the interpolation quality outside the input domain.

The effect is strongly dependent on the test function used. The low-frequency test

function profits most from higher degrees. A polynomial with degree 19 achieved an

absolute improvement in the L∞-error of 0.249 on the normal sized mesh and an absolute

improvement of 12 on the larger mesh, which is a relative improvement of 1.4 · 1013 on the

normal mesh and 2.3 · 1011 on the larger mesh. For the high-frequency test function, the

optimal degree is only 3, with an absolute improvements in the L∞-error of 0.2 and 8.6 or

an relative improvement of 28.5 and 3.5, respectively. For the remaining test functions,

higher degrees have a rather detrimental effect on accuracy. This is especially evident when

looking at the jump function, where it can be attributed to the Runge phenomenon.

While these first numbers partly look promising at first, higher degree polynomials

come with a number of disadvantages. The dependency on the test data, which is not

known beforehand in simulations comes first. Even though the low-frequency test function

contains exponential and trigonometric terms, it seems to “fit” the polynomial interpolation

here and probably is a positive outlier. It is well-known that polynomial interpolation

tends to produce heavy oscillations at higher orders, which eventually become harmful

to the accuracy. Furthermore in a parallel algorithm, it introduces an amount of global

communication increasing with higher polynomial degrees.

For these reasons, I decided to not pursue using polynomials of higher than degree one

together with the RBF interpolation.

115

4 Numerical Experiments & Results

0 5 10 15 20 25 30
10−18

10−12

10−6

100

106

L ∞
-e

rr
or

High-Frequency

0 5 10 15 20 25 30
10−18

10−12

10−6

100

106

Low-Frequency

0 5 10 15 20 25 30
10−18

10−12

10−6

100

106

Polynomial Degree k+ 1

L ∞
-e

rr
or

Constant 1

0 5 10 15 20 25 30
10−18

10−12

10−6

100

106

Polynomial Degree k+ 1

Jump

Test mesh on [0,1] Test mesh on [−0.1,1.1]

Figure 4.21: Error for RBF interpolation using a Gaussians (m = 6) basis together with
polynomials of different degrees. The interpolant is constructed on [0, 1] and
evaluated on two different test mesh.

116

4.4 Rescaled Interpolant

4.4 Rescaled Interpolant

The method of rescaling the interpolant, as presented in Sections 2.4.6 and 3.3 is expected

to mitigate the adverse effects of an insufficient density of basis functions. For a visualization

of this effect, dubbed hanging laundry, due to its resemblance in appearance, see Fig. 2.6.

The rescaling is less a modification of the interpolation process but can rather be seen as

a post-processing method. The interpolation matrix C and the evaluation matrix A are not

modified, such that the condition number and stability remain unaffected.

The results of the rescaling procedure are quite diverse and vary with the basis function

used. For the compact basis functions in Fig. 4.23, it shows a significant improvement

of the results, especially for small support radii. For Gaussians, the results are shown in

Fig. 4.22. In the stable regime, up to m≈ 13, the non-rescaled and no-polynomial variant

performs worst. For the non-polynomial variant, the rescaling is able to achieve a constant

improvement in the L∞-error of about 2 · 10−8 in the range m = 7 . . . 13. For smaller values

of m, the improvement increases monotonically, to 0.6 for m = 3 and more. The comparison

between the rescaled and non-rescaled variants with a polynomial shows a similar behavior,

albeit less improvement due to the rescaling can be observed. At m= 3 the difference in

error is 0.14, declining to 5 · 10−9 in the same range of m = 7 . . . 13. In the unstable regime

beyond m = 13, the rescaling still improves the results, though the instability makes an

accurate interpolation impossible.

In Fig. 4.23, the results for the same setup using compact polynomial basis functions

are shown. The general behavior is similar to the interpolation with Gaussian in the sense

that the rescaling improves accuracy. As expected, the effect is most significant for smaller

support radii and diminishes for larger values of m. The relative improvement by the

rescaling show an asymptotic behavior, while the L∞-error experiences error saturation.

The data from both compact basis functions, show that the accuracy of the rescaled

versions with and without polynomials are error-wise on par. With rescaling, the effect of

the polynomial is negligible. This has been confirmed for different basis functions, also

variations that feature a large shift in y-direction. A notable exception to this is the constant

test function, where the polynomial provides a significant advantage in the regime of small

support radii, i.e., small values of m.

Global basis functions, i.e., volume splines and thin-plate splines remain largely unaf-

fected by the rescaling and the polynomial. In Fig. 4.4, it can be seen that volume splines

achieve an interpolation of the constant function with accuracy up to machine tolerance.

Thin-plate splines also yield very accurate results on the constant function. Thus, the rescal-

117

4 Numerical Experiments & Results

2 4 6 8 10 12 14 16 18 20
10−10

10−7

10−4

10−1

102

m

L ∞
-e

rr
or

No Polynomial / non-rescaled No Polynomial / rescaled

Separated Polynomial / non-rescaled Separated Polynomial / rescaled

Figure 4.22: RBF interpolation of the high frequency test function using a Gaussian basis
on [0,1] with h= 0.001, evaluated on [0.2,0.8]. The effect of rescaling for
interpolation variants with and without polynomial is shown.

0 50 100 150 200 250 300

10−3

10−2

10−1

100

m

L ∞
-e

rr
or

No Polynomial / non-rescaled No Polynomial / rescaled

Separated Polynomial / non-rescaled Separated Polynomial / rescaled

Figure 4.23: RBF interpolation of the high frequency test function using a Compact Polyno-
mial C0 basis on [0, 1] with h= 0.001, evaluated on [0.2, 0.8]. The effect of
rescaling for interpolation variants with and without polynomial is shown.

118

4.5 Adaptive Shape Parameters

ing interpolant s1 becomes almost 1 everywhere, making the rescaling ineffective.

The rescaling procedure adds some computational effort to the interpolation. It requires

an additional solver step as the interpolant s1 of the constant function g(x) = 1 needs to be

computed. This solve is only required in the offline phase of the interpolation, i.e., once at

the beginning. Furthermore, for solving the actual interpolant C−1 fξ = λ, information from

solving the rescaled interpolant can be reused. This potentially includes the preconditioner

of C and factorizations.

4.5 Adaptive Shape Parameters

So far, the shape parameter is chosen based on the mesh density as given in Eq. (3.2) for

Gaussians or Eq. (3.3) for non-Gaussian, compact basis functions. The shape parameter is

calculated using the maximum mesh width hmax, resulting in a basis function support which

includes a minimum of m vertices in every direction in the support radius for any basis

function on a given mesh. In Sec. 4.2 and, furthermore, in Figs. 4.5, 4.6, 4.16 and 4.17, it

is shown that a too large support radius can lead to unstable interpolation results.

The obvious remedy to this problem is to use a non-constant shape parameter, i.e., the

basis function ϕi, i ≤ |Ξ| evaluated at each ξ ∈ Ξ uses an individual shape parameter εi

such that always the nearest m vertices of ξ in every direction are included in the support

radius. In Sec. 2.4.4, this method is detailed further.

This method comes with a number of potential problems:

• Using a non-constant shape parameter ε destroys the symmetry of the matrices A and

C as ϕi(|ξ− ζ|) 6= ϕ j(|ζ− ξ|) for i 6= j. This impairs the numerical properties, e.g.,

the matrices are not guaranteed to be non-singular anymore.

• The vector of shape parameters ε ∈ R|Ξ| has to be retained in order to construct A.

For the online-phase, i.e., for the subsequent coupling iterations, ε is not required

anymore.

• A definition of the local mesh width must be available. While this is trivial for one-

dimensional meshes, it becomes exceedingly harder for meshes of higher dimension-

ality. From a theoretical point of view, finding appropriate definitions of a mesh width

in high dimensions is non-trivial. From the practical point of view, information about

neighborship in not generally available, i.e., it must be computed beforehand, which

is computationally expensive, though spatial trees can be used for more efficiency,

see Sec. 3.4.4.

119

4 Numerical Experiments & Results

For those reasons, the method is currently not implemented in preCICE. Nevertheless, I

will evaluate it here to explore chances for future inclusion into preCICE.

Based on a global value for m, a basis function is created for each vertex ξ of a one-

dimensional, non-uniform, ordered mesh Ξ, based on a local mesh width hi. I define the

local mesh width as

hi =
Ξi−1 −Ξi+1

2
. (4.18)

The local shape parameter is then computed according to the usual definitions, Eq. (3.2) or

Eq. (3.3).

Non-adaptive basis functions use hmax to scale the basis functions. That means, they

are adjusted to high accuracy at the expense of stability in regions of lower mesh width,

i.e., where hi � hmax. The support radius of the adaptive basis functions will therefore

be smaller in such regions than in the non-adaptive case. Adaptiveness, as it is employed

here, works as a measure to improve stability, not accuracy for a specific value of m. In the

stable interpolation regime, the accuracy of adaptive interpolation with thus only be worse

compared to non-adaptive interpolation. On the other hand, a stable interpolation can be

achieved with an adaptive shape parameter in regions which would otherwise be unstable.

As a first test case, a mesh with continuously increasing mesh width is created, which

ξi = ξi−1 + 0.001 i, resulting in 359 vertices on [0,1] with hmax/hmin = 4.6. The results for

Gaussian basis functions are shown in Fig. 4.24.

First results show an improvement regarding the error of the interpolation. At m = 8

and m= 10, the non-adaptive interpolation shows instability at the fine parts of the mesh

up to x = 45 or x = 70, respectively. The adaptive interpolation avoided this instability by

using basis functions with a smaller support radius. As the mesh width approaches hmax,

the adaptive interpolation convergences to the non-adaptive. The slight increase in error

on the right side of the mesh probably indicates the beginning of instability. Boundary

effects are excluded by evaluating only an appropriately padded subset of the input mesh.

The adaptive interpolation comes with a significant reduction of the condition number

of matrix C by up to 9 orders of magnitude for m= 8 and still 3 orders of magnitude for

m= 30.

Figure 4.25 compares adaptive with non-adaptive interpolation on a mesh with a Gauss-

Chebyshev point distribution for increasing underlying polynomial orders. In the non-

adaptive plot, the region of stability can clearly be discerned from the unstable region. For

small support radii, such as m = 4, instability begins at higher orders. It sets in earlier

as the support radius m grows larger. Even though hmax is computed for each Gauss-

Chebyshev distribution of a certain order p, since higher order does not only result in a

120

4.5 Adaptive Shape Parameters

0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85
10−8

10−6

L ∞
-e

rr
or

m= 8

0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85
10−8

10−7

10−6

10−5

L ∞
-e

rr
or

m= 10

0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85
10−5

10−3

10−1

x

L ∞
-e

rr
or

m= 20

Adaptive Non-Adaptive

Figure 4.24: Adaptive and non-adaptive interpolation using Gaussian basis function on a
mesh with continuously increasing mesh width. The input data are generated
from the high frequency test function. To smoothen the highly oscillatory
error, 5000 samples on [0.2, 0.8] are aggregated to 100 data points by taking
the maximum of each chunk of 50 samples.

121

4 Numerical Experiments & Results

0 5 10 15 20 25 30 35 40 45 50 55 60 65
10−5

10−4

10−3

10−2

10−1

100

101

R
M

SE
Adaptive

0 5 10 15 20 25 30 35 40 45 50 55 60 65
10−5

10−4

10−3

10−2

10−1

100

101

Order p used for Gauss-Chebyshev point generation

R
M

SE

Non-Adaptive

m= 4 m= 6 m= 8 m= 10

Figure 4.25: Adaptive and non-adaptive interpolation using Gaussian basis functions on a
mesh with a Gauss-Chebyshev point distribution. The mesh consists of 16 cells
of size 0.0625 with polynomial order in the range p = 4 . . . 65. The test mesh’s
spatial extension is identical to the input mesh. To not overstate boundary
effects, the root mean-squared error is used here instead of the L∞-error.

122

4.6 RBF-QR Basis Transformation

finer mesh resolution, but also in a larger mesh width inequality hmax/hmin ≈ p/2, high orders

will inevitably lead to disproportionately scaled basis functions and with that to unstable

interpolation. The adaptive interpolation is much less affected by the order of the mesh,

resulting in a consistently stable interpolation for sufficiently small support radii. Still, the

correct choice of m is critical, as can be seen from the result for m= 10.

It should be noted, that the used definition of mesh width Eq. (4.18) does not guarantee

that a particular basis function ϕi and shape parameter εi exactly include the desired

number m of neighboring vertices in every direction. Instead, it provides an approximation

of the local mesh width, based on the two next neighbors. The quality of this approximation

will deteriorate with higher orders, as the mesh width inequality increases.

4.6 RBF-QR Basis Transformation

The RBF-QR algorithm uses a transformation of the standard RBF basis in order to achieve

a system matrix with improved properties. It is briefly introduced in Sec. 2.4.2. The

mathematical theory and a Matlab implementation can be found in [45]. Here, the Python

implementation, based on the work in [97] is used.

The RBF-QR algorithm uses a series expansion of the basis function, which must be

constructed manually for each dimensionality and basis function. In [45], expansions for

Gaussian and Bessel functions in up to three dimensions are presented. Here, I will focus

on the Gaussian basis function in one dimension. Furthermore, as of today, no conservative

formulation of the RBF-QR algorithm exists.

For brevity, I will denote the standard RBF algorithm with separated polynomial as RBF-P

in this section.

The algorithm aims to be stable, even in the limit of increasingly flat basis functions, i.e.,

as ε→ 0. Figure 4.26 shows RBF-QR and RBF-P using a shape parameter of ε= 0.0004.

Even smaller values for ε make the matrix C of the RBF-P implementation become singular.

The given shape parameter results in a support radius of approximately 11 381, converging

to the so-called flat limit of Gaussian basis functions. The figure clearly shows that the

theoretical gain in accuracy of increasingly flat basis function can not be exploited due to

instabilities in the RBF-P algorithm. RBF-QR, on the other hand, achieves low error values

even for small shape parameter, i.e., large support radii.

For the numerical experiments, I therefore use a small, constant shape parameter of

ε= 10−5 for RBF-QR and m= 6 for RBF-P.

Figure 4.27 compares RBF-P and RBF-QR interpolation of the high frequency test function

123

4 Numerical Experiments & Results

101 102

10−14

10−9

10−4

101

10−1

105

1011

1017

Input Mesh Size

L ∞
-e

rr
or

C
on

di
ti

on
N

um
be

r
κ

RBF-P
RBF-QR

Figure 4.26: Error and condition number for the RBF-QR and RBF with separated poly-
nomial (RBF-P) algorithms. The high frequency test function is used. The
RBF-P algorithm uses a Gaussian basis function. RBF-QR and RBF-P use the
same support radius based on a shape parameter of ε = 0.0004. The error
is evaluated on [0.2,0.8] to avoid boundary effects. Solid lines indicate the
error, dotted lines the condition number.

101 102 103

10−14

10−10

10−6

10−2

102

10−1

104

109

1014

1019

Input Mesh Size

L ∞
-e

rr
or

C
on

di
ti

on
N

um
be

r
κ

RBF-P
RBF-QR

Figure 4.27: Error and condition number for the RBF-QR and RBF with separated polyno-
mial (RBF-P) algorithms. The high frequency test function is used. The RBF-P
algorithm uses Gaussian basis functions with m= 6, RBF-QR uses a constant
shape parameter of ε = 10−5. The error is evaluated on [0.2,0.8] to avoid
boundary effects. Solid lines indicate the error, dotted lines the condition
number.

124

4.6 RBF-QR Basis Transformation

on a uniform mesh. For small mesh sizes both yield a similar accuracy. The RBF-P accuracy

improves until it reaches a stable level due to the effect of error saturation (cf. Sec. 2.3.3).

The RBF-QR implementation quickly falls to a low error of around 10−12, where is stagnates

with oscillations. These oscillations are also reflected in the condition number. While κ

from matrix C of the RBF-P algorithm remains constant due to scaling of the basis functions,

RBF-QR peaks at κ = 1018 in the unstable regime. Experiments with much larger mesh

sizes show that this trend continues.

The interpolation on non-uniform meshes of Gauss-Chebyshev type shows diverse results.

In Fig. 4.28 (top) promising results for a single cell are shown. The condition number

remains constant at a low level for increasing underlying polynomial order p, in contrast

to the steady increase of κ of the RBF-P. Note that the increase in the condition number

does not originate from the large mesh as such, but from the increasing non-uniformity

with increasing order. The error for higher orders p > 75 falls to values in the order the

machine precision, whereas the RBF-P is not able to achieve an accuracy better than 10−3.

An explanation to this almost optimal performance on a single Gauss-Chebyshev cell can

be found in [45, Sect. 4.1.2], where the expansion of the Gaussian basis function is done

in a Chebyshev basis. Thus, the RBF-QR is essentially performing polynomial interpolation

with Chebyshev polynomials on Gauss-Chebyshev points.

When looking at more than one cell of Gauss-Chebyshev type, shown in the bottom of

Fig. 4.28, the results are less promising. In further experiments, the RBF-QR algorithm

shows that towards the boundaries of the interpolation region, the quality quickly dete-

riorates with heavy oscillations in the interpolant. These oscillation at the boundaries

also dominate the error in the data shown. If the domain of the test mesh is limited to

[−0.6, 0.6], it can be shown that the results of the RBF-QR improve tremendously, e.g., for

an order of 100, the L∞-error improves from 32 to 2.8 · 10−5 when restricting the error

measurement on [−0.6,0.6].
This experimental data show that, while the RBF-QR interpolation is not susceptible to

the increase of the condition number as ε→ 0, it is sensitive to an increasing mesh size,

especially for uniform meshes. This sensitivity, however, is on a similar level as for the

standard RBF-P interpolation with constant m.

The more problematic trait of the RBF-QR is the extreme loss of accuracy near the

boundary. While this is also present with standard RBF interpolation, it is much more

pronounced in the RBF-QR results. However, reducing the size of the output, relative to

the input domain is usually not an option in standard coupling scenarios.

125

4 Numerical Experiments & Results

101 102
10−15

10−11

10−7

10−3

101

101 102

10−3

10−1

101

103

105

10−1

104

109

1014

1019

101

106

1011

1016

1021

L ∞
-e

rr
or

Order p

L ∞
-e

rr
or

C
on

di
ti

on
N

um
be

r
κ

C
on

di
ti

on
N

um
be

r
κ

RBF-P RBF-QR

Figure 4.28: Error and condition number for the RBF-QR and RBF with separated polyno-
mial (RBF-P) algorithms on a mesh on [−1,1] with Gauss-Chebyshev type
point distribution of order up to 128. The top plot show results for increasing
underlying polynomial order for a single cell, the bottom plot for 8 cells. The
high frequency test function is used. The RBF-P algorithm uses Gaussian basis
functions with m= 6, RBF-QR uses a constant shape parameter of ε= 10−5.
The error is evaluated on [−0.9,0.9]. Solid lines indicate the error, dotted
lines the condition number.

126

4.7 Conservative Interpolation

4.7 Conservative Interpolation

The algorithms evaluated in this chapter so far are the consistent variants of the radial-basis

function interpolation. In this section, I will focus on the conservative formulation. For a

general introduction of the differences between consistent and conservative interpolation,

see Sec. 2.1 and Sec. 3.2.2. In Sec. 4.1.2, some of the problems regarding the evaluation of

conservative interpolation methods are detailed. For consistent interpolation, the output

mesh has no direct influence on the interpolation, as long as, for measurements, a sufficiently

fine output mesh is used to ensure a valid evaluation of the error.

Conservative interpolation needs to fulfil the conservation condition
∑

Ξ ξi =
∑

∆ s(δi),
which rules out ‖s(δi)− f (δi)‖ as a informative error metric. I will therefore not only

evaluate the usual error metrics, i.e., RMSE and L∞-error, but also use the alternative

methods presented in Sec. 4.1.2.

I show results for the high frequency test function and increasing output mesh resolutions

in Fig. 4.29. The input mesh is perturbed by a random value in the range of ±0.15h to

avoid identical meshes. In contrast to consistent interpolation, conservative interpolation

constructs the matrix C from the output mesh. For that reason the Gaussian and compact

polynomial basis functions are scaled relative to the output mesh.

Comparing
∑

Ξ ξi and
∑

∆ s(δi) gives a measure how far the conservation property is

violated. I call this value the conservative delta. In all cases, the difference between the

values remain in the range of 10−13 and, therefore, conservation is fulfilled up to a very

small error.

In the present setup, the input mesh size is fixed, while the output mesh size is varied.

Reversing that situation, i.e., fixed output mesh and variable input mesh, gives the experi-

mental setup similar to the one used for the evaluation of consistent interpolation. The

results of this setup follow the trends seen in Fig. 4.29. Conservativness is fulfilled in all

cases, as well.

Figure 4.30 illustrates results for varying output mesh sizes and with this shows the effect

of the conservativity on the output. It shows the interpolation of the high frequency test

function from an input mesh of 300 nodes to 250, 300 and 350 nodes. The corresponding

results are given in Tab. 4.3. The different mesh sizes on the output mesh cause a shift up-

or downwards, respectively. This shift is almost linear, with a weak dependency on the

value of the input data. From this figure, we can easily see, why the rescaled error is the

suitable metric for conservative mapping: It does not correlate with the inevitable offset,

caused by different numbers of nodes in the input and output meshes. Furthermore, it was

127

4 Numerical Experiments & Results

200 250 300 350 400
0

5

10

15

200 250 300 350 400

200 250 300 350 400
0

5

10

15

200 250 300 350 400

200 250 300 350 400
0

5

10

15

200 250 300 350 400

10−13

10−8

10−3

102

10−13

10−8

10−3

102

10−13

10−8

10−3

102

Gaussian, m= 6 Gaussian, m= 8

CompactPolynomialC0, m= 40 CompactPolynomialC0, m= 80

Output Mesh Size

VolumeSplines

Output Mesh Size

ThinPlateSplines

L∞-error
Weighted Error

Conservative Delta
Rescaled Error

Figure 4.29: Conservative Interpolation using RBFs with separated polynomial on the high
frequency test function. The input mesh consists of 300 vertices that are
shifted by a random value between ±0.15 h to avoid a perfect match between
input and output mesh. The conservative delta is the difference of the sum
of all values on each mesh. Note that the line for conservative delta is broken
where the results are numerically 0.

128

4.7 Conservative Interpolation

−0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
−5

0

5

10

15

20

x

High Frequency Test Function
Interpolation to 250 nodes
Interpolation to 350 nodes

Error for 250 nodes
Error for 350 nodes

Figure 4.30: Conservative interpolation with Gaussians and separated polynomial of the
high frequency test function. Shown are interpolation results for output
meshes of different sizes and the pointwise difference to the test function.

250 nodes 300 nodes 350 nodes

L∞-Error 4.0606 4.9738 · 10−14 3.3315
Weighted Error 1.6638 4.9738 · 10−14 2.0055
Rescaled Error 0.0162 7.8160 · 10−14 0.0202
Conservative Delta −4.5475 · 10−13 −1.3642 · 10−12 1.3642 · 10−12

Table 4.3: Results for conservative interpolation with a Gaussian basis from 300 nodes to
250, 300 and 350 nodes.

tested with tainted data (e.g. comparing against a different test function than the target

function for the interpolation) and in situations where an accurate interpolation can not

be achieved (e.g. basis function with a very small support radius). In these situations, the

rescaled error shows to appropriately reflect the artificial error. The conservative delta, on

the other hand, is only a global metric and does not reflect local effects in the interpolation

domain. It is always almost zero, even in interpolation conditions, where an error measure

should be significantly higher. For a point-wise comparison of the different error metrics,

see Fig. 4.3.

As both the weighted error and the rescaled error are pointwise error definitions, the

L∞-norm is applied.

Conservative interpolation brings an extra level of complexity into the interpolation

problem. The stability and accuracy not only depend on the input mesh and the selected

basis function, as it is the case with consistent interpolation, but also on the output mesh.

129

4 Numerical Experiments & Results

Even when the input mesh is held constant, instability can occur. For basis functions that

have a parameterized support radius, such as Gaussians or compact polynomials, scaling

the function according to the input mesh, as opposed to the output mesh produces almost

identical results and hence no improvement in the stability range.

4.8 Runtime Characteristics of PETSc Linear Solvers

This section explores how the runtime characteristics of the PETSc RBF implementation

varies with changes to the interpolation parameters. I will observe the global time to solution,

the time for the linear solver and the number of iterations for different combinations of

basis functions, shape parameters, linear solvers and preconditioners.

4.8.1 Test Setup

In contrast to the previous tests, I do not use the Python implementation of the RBF

algorithm, but the parallel C++ implementation from preCICE. The input mesh is two

dimensional [0,1]× [0,1] with 1002 elements in total. This results in a mesh width of

h = 1/100. The input data are generated as fξ = i + j + 1, with i, j = 1 . . . 100 being the

vertex indices. The output mesh has no influence on the interpolation matrix C , it is simply

chosen identical.

The solvers are evaluated on three different basis functions. Gaussians, with different

shape parameters, ranging from m= 10 up to m= 100, as an example of a basis function

that is defined on a local support, thus yielding sparse matrices. It is compared to thin-plate

splines and volume splines, which both have a global support.

Both participants are executed on two processors each.

I limit the selection of solvers to the ones included in the PETSc default installation.

The selection of applicable solvers is further limited by the type of the matrix C , which

is MATSBAIJ for symmetric block sparse matrices. Furthermore, the solver must exist in a

parallel version.

The Generalized Minimal Residual method (GMRES) as given in [88] is the default solver

from PETSc. It works for non-symmetric matrices and is known to generally perform well.

The Biconjugate Gradient method (BiCG) [44] is a variant of the conjugate gradient method,

which also works on non-symmetric and indefinite systems. A stabilized variant of the BiCG

method, the Biconjugate Gradient Stabilized method (BiCG-stab) [106] is also tested.

All of the aforementioned methods are Krylov subspace methods. This family of methods

130

4.8 Runtime Characteristics of PETSc Linear Solvers

usually requires a preconditioning in order to reach good convergence rates. In PETSc, pre-

conditioners are implemented as a decomposition algorithm and the actual preconditioner,

which works only on the local block of the matrix.

For decomposition, I evaluate the Restricted Additive Schwarz [36] (asm) and the Block

Jacobi (bjacobi) methods. As the inner, local preconditioner, an Incomplete Cholesky Factor-

ization [23] (icc) is used.

Convergence or divergence is checked for against a number of criteria. Let A x = b be

the linear system to be solved and rk = b− A xk the residual at iteration k. As laid out in

[3, p. 90], the convergence (or divergence) is determined by PETSc using three quantities,

a limiter for the residual norm relative to the norm of the right hand side t r , a threshold

for the absolute size of the residual norm ta and a divergence limit for the relative residual

norm td . Convergence is detected if

‖rk‖2 <max(t r · ‖b‖2 , ta). (4.19)

Divergence is detected if

‖rk‖2 > td · ‖b‖2 . (4.20)

Divergence according to Eq. (4.20) is marked by DIV DTOL in the following. The maximum

number of solver iterations is set to 20000, twice the default. A solver run that fails due

to hitting the iteration bound is marked by DIV ITS. Furthermore, DIV BREAK indicates a

general breakdown in the Krylov method, likely due to a singular matrix or preconditioner.

4.8.2 Results

The results of interpolation using Gaussian basis functions with different shape parameters

are listed in Tables 4.5 and 4.6. Without surprise, the time per iteration increases with

the support radius, i.e., decreasing ε or increasing the number of non-zeros entries in the

matrix.

Table 4.4 lists the results for basis functions of the types thin-plate splines and volume

splines. Both are defined on a global support and, thus, produce dense interpolation

matrices, resulting in a significantly lower iteration speed than with Gaussians. For volume

splines, the linear solver is able to achieve convergence in more cases than with thin-plate

splines.

Comparing the integrated and the separated formulations of the polynomial for thin-

plate splines yields that, for the integrated polynomial only the stabilized BiCG method is

131

4 Numerical Experiments & Results

not able to achieve convergence. The picture for volume-splines is less pronounced, but

alike showing the fact, that, for the linear system from the separated RBF formulation, it is

significantly harder to achieve convergence.

For almost all combinations of basis function, solver and preconditioner, it turns out that

the separated polynomial has an negative effect on the convergence rate. Frequently, the

variant with the separate polynomial is not able to achieve convergence within the maximum

number of iterations. For Gaussians, only with the integrated polynomial, convergence is

achieved for larger support radii. Combinations where the separate polynomial requires

less iterations to achieve convergence, such as volume splines with GMRES and bjacobi/icc

preconditioner can not be generalized to, e.g., other basis functions.

The integrated polynomial adds d+1, d being the dimensionality of the problem, densely

populated rows and columns to the matrix C . The additional communication effort due to

the additional entries is reflected in a lower number of iterations per second. However, the

overall time to solution is clearly dominated by the number of iterations, not by the time

per iteration.

Due to the high number of parameters of the test setup, an exhaustive comparison of

all possible parameter combinations is clearly out of reach. From the available data, it is

hard to draw conclusions and to give a definitive recommendation for an optimal solver.

For Gaussians, especially using the integrated polynomial, the GMRES solver with asm/icc

preconditioner stands out, being the only one achieving convergence at larger support radii.

For thin-plate splines and volume splines, the BiCG solver with asm/icc preconditioner

seems to be a good choice.

132

4.8 Runtime Characteristics of PETSc Linear Solvers

BF Polynomial Solver PC Iterations TG [s] TS [s] Its/TS [s−1]

TPS integrated bcgs asm/icc DIV BREAK – – –
TPS separate bcgs asm/icc DIV DTOL – – –
TPS integrated bcgs bjacobi/icc 594 339 194 3
TPS separate bcgs bjacobi/icc DIV ITS – – –
TPS integrated bicg asm/icc 831 715 571 1
TPS separate bicg asm/icc 6453 4935 2756 2
TPS integrated bicg bjacobi/icc 867 404 261 3
TPS separate bicg bjacobi/icc 10610 3793 2375 4
TPS integrated gmres asm/icc 1284 624 482 3
TPS separate gmres asm/icc DIV ITS – – –
TPS integrated gmres bjacobi/icc 498 262 119 4
TPS separate gmres bjacobi/icc DIV ITS – – –
VS integrated bcgs asm/icc DIV DTOL – – –
VS separate bcgs asm/icc 2034 3118 876 2
VS integrated bcgs bjacobi/icc 689 317 175 4
VS separate bcgs bjacobi/icc 1223 2456 266 5
VS integrated bicg asm/icc 645 633 491 1
VS separate bicg asm/icc 1019 1112 435 2
VS integrated bicg bjacobi/icc 874 364 224 4
VS separate bicg bjacobi/icc 1287 675 294 4
VS integrated gmres asm/icc 3016 992 854 4
VS separate gmres asm/icc 2729 1342 603 5
VS integrated gmres bjacobi/icc 2481 441 301 8
VS separate gmres bjacobi/icc 3666 836 409 9

Table 4.4: Behavior of different linear solver and preconditioner combinations for thin-
plate splines and volume splines. TG denotes the global time for the entire
interpolation, TS the time for the linear solver only. “–” indicates that no solution
is achieved.

133

4 Numerical Experiments & Results

BF Polynomial ε Solver PC Iterations TG [s] TS [s] Its/TS [s−1]

GS separate 207.23 gmres bjacobi/icc 3 0 0 3000
GS separate 103.62 gmres bjacobi/icc 4 0 0 1333
GS separate 69.08 gmres bjacobi/icc 8 1 0 667
GS integrated 51.81 bicg bjacobi/icc 722 4 3 216
GS separate 51.81 gmres asm/icc 7 1 0 318
GS separate 51.81 gmres bjacobi/icc 14 1 0 400
GS separate 46.05 bcgs asm/icc 111 3 1 160
GS separate 46.05 bcgs bjacobi/icc 6246 91 35 179
GS separate 46.05 bicg asm/icc 78 2 0 160
GS integrated 46.05 bicg bjacobi/icc DIV ITS – – –
GS separate 46.05 bicg bjacobi/icc 265 4 1 179
GS integrated 46.05 gmres asm/icc 321 3 2 200
GS separate 46.05 gmres asm/icc 145 2 0 303
GS integrated 46.05 gmres bjacobi/icc 1050 4 3 330
GS separate 46.05 gmres bjacobi/icc DIV ITS – – –
GS integrated 41.45 bcgs asm/icc 237 4 3 89
GS separate 41.45 bcgs asm/icc DIV DTOL – – –
GS integrated 41.45 bcgs bjacobi/icc 1071 9 7 145
GS separate 41.45 bcgs bjacobi/icc DIV DTOL – – –
GS separate 41.45 bicg asm/icc DIV ITS – – –
GS integrated 41.45 bicg bjacobi/icc 9247 65 63 146
GS separate 41.45 bicg bjacobi/icc DIV ITS – – –
GS integrated 41.45 gmres asm/icc 421 4 2 169
GS separate 41.45 gmres asm/icc DIV ITS – – –
GS integrated 41.45 gmres bjacobi/icc DIV ITS – – –
GS separate 41.45 gmres bjacobi/icc DIV ITS – – –

Table 4.5: Behavior of different linear solver and preconditioner combinations for Gaussian
basis functions and shape parameters ε = 207.23 . . . 41.45. TG denotes the
global time for the entire interpolation, TS the time for the linear solver only. “–”
indicates that no solution is achieved.

134

4.8 Runtime Characteristics of PETSc Linear Solvers

BF Polynomial ε Solver PC Iterations TG [s] TS [s] Its/TS [s−1]

GS integrated 37.68 bicg asm/icc 779 11 9 84
GS separate 37.68 bicg asm/icc DIV ITS – – –
GS integrated 37.68 bicg bjacobi/icc 13043 111 110 118
GS integrated 37.68 gmres asm/icc 540 6 4 145
GS integrated 37.68 gmres bjacobi/icc DIV ITS – – –
GS integrated 34.54 bicg bjacobi/icc 16061 159 156 103
GS separate 34.54 gmres asm/icc DIV ITS – – –
GS integrated 31.89 bicg bjacobi/icc 16364 190 188 87
GS integrated 27.63 bicg bjacobi/icc 15605 235 231 67
GS integrated 24.38 bicg bjacobi/icc 12737 238 233 55
GS integrated 20.72 bcgs asm/icc 454 27 19 23
GS integrated 20.72 bcgs bjacobi/icc 3050 80 73 42
GS integrated 20.72 bicg asm/icc 1655 71 64 26
GS integrated 20.72 bicg bjacobi/icc 15517 388 381 41
GS integrated 20.72 gmres asm/icc 2754 62 55 50
GS separate 20.72 gmres asm/icc DIV ITS – – –
GS integrated 20.72 gmres bjacobi/icc DIV ITS – – –

Table 4.6: Behavior of different linear solver and preconditioner combinations for Gaussian
basis functions and shape parameters ε = 37.68 . . . 20.72. TG denotes the global
time for the entire interpolation, TS the time for the linear solver only. “–”
indicates that no solution is achieved.

135

4 Numerical Experiments & Results

4.9 Upscaling of the RBF Implementation

In this section, I will present the results of upscaling runs of the C++ implementation of

radial-basis function interpolation in preCICE. The runs are performed using ASTE, which

acts as an artificial minimal surrogate solver to preCICE, see Sec. 6.2.3. As mentioned

previously, for the linear algebra heavy-lifting, i.e., management of distributed matrix data

structures and solving of linear systems, PETSc is used.

The input and output meshes are created on the unit square [0,1]2 with the same

number n of mesh vertices in x- and y-direction. The mapping computation is performed

on participant B. For that reason, only this participant is upscaled, whereas participant A

runs on a constant number of processors. The size of the matrix C and, in this case also

of A, is n2 × n2. This, however, does not reflect the actual number of non-zero elements,

which is much lower, as detailed below. The exponential growth of the matrix size needs to

be taken into account when analysing the upscaling results.

The values on the source mesh are set according to the function f (x , y, z) = sin(x)·exp(z).
The meshes are decomposed according to the target number of processors using the uniform

decomposition method, see Sec. 6.2.3.

4.9.1 Offline-Phase

In this section I will focus on the phase of the algorithm which needs to be computed only

once for a simulation run, unless the mesh changes.

In Fig. 4.31, a qualitative comparison of the runtime contributions of different stages of

the RBF algorithm is shown. In a nutshell, the principal stages are

Preallocation computes the number and values of the entries, i.e., evaluates the basis

function and saves the number of non-zero entries per row, compare Sec. 3.4.4

Filling feeds the already computed entries into the PETSc data structures.

Post Filling assembles the PETSc matrices, e.g., distributes entries that are set off-rank to

the correct rank.

Compute Rescaling solves C with a right-hand side of 1 for the rescaling interpolant.

Depending on the linear solver, this phase already does a significant part of the actual

solving of the interpolation system, such as factorization for preconditioners.

136

4.9 Upscaling of the RBF Implementation

Processors for input mesh participant

Fr
ac

ti
on

of
to

ta
lr

un
ti

m
e
[%
]

Mesh Size 6002

Processors for input mesh participant

Mesh Size 2002

10 20 30 40 50 60
0

10

20

30

40

50

10 20 30 40 50 60
0

10

20

30

40

50

Preallocation C Filling C Preallocation A
Filling A Post Filling Compute Rescaling

Figure 4.31: Relative runtime fractions of the stages of the RBF algorithm in a strong
upscaling run for two different mesh sizes with Gaussian (m = 6) basis
functions. 100% is the total runtime and also includes times not related
to the mapping. The dashed plot line represents the percentage of the overall
function computeMapping. Note that it may be slightly higher than the sum of its
parts, as the times shown are the maximum overall ranks. The measurements
were made on the Neon machine.

137

4 Numerical Experiments & Results

2 4 8 16 32 64

102

103

104

105

−0.76

Processors for input mesh participant

Ti
m

e
[m

s]

Gaussian, m= 4

2 4 8 16 32 64

102

103

104

105

−0.82

Processors for input mesh participant

Gaussian, m= 6

2002 elements 4002 elements

6002 elements 8002 elements

Figure 4.32: Strong upscaling on different mesh sizes with Gaussian basis functions on up
to 64 processors. The time spent in the computeMapping event is shown, i.e.,
the entire offline phase of the mapping. Additionally, a linear regression is
performed for one mesh size and the slope is indicated. The measurements
were made on the Neon machine and the maximum time of all ranks is shown.

Figure 4.31 shows that the fraction of time used by the mapping decreases with higher

number of processors and, thus, that the interpolation process does not pose an upscaling

bottle neck as processor counts increase.

Figures 4.32, 4.33 and 4.36 show upscaling results from the Neon2 machine on up to 64

processes for participant B and a fixed number of 2 processes for participant A. In this case,

no inter-node communication took place. Results are shown for a strong scaling setup, i.e.,

the global problem size n remains constant as the number of processors grows, as well as

for weak scaling. The weak scaling setup uses a fixed mesh size per rank. This corresponds

to a fixed dimension of the matrix per rank.

Looking at the absolute times, the global basis functions, i.e., volume splines and thin-

plate splines need tremendously more time compared to Gaussian basis functions. Thin-

plate splines with 502 mesh elements are roughly on par with Gaussian (m= 4) and 6002

mesh elements, though the mesh size is smaller by a factor of 1/144. This, of course, comes

at no surprise, as the global basis functions produce densely populated system matrices.

272 × Intel Xeon E7-8800 @ 2.3 GHz

138

4.9 Upscaling of the RBF Implementation

2 4 8 16 32 64
102

103

104

105

−0.71

−0.62

Processors for input mesh participant

Ti
m

e
[m

s]

VS, 402 mesh VS, 502 mesh

TPS, 402 mesh TPS, 502 mesh

Figure 4.33: Strong upscaling on different mesh sizes with volume splines and thin-
plate splines basis functions on up to 64 processors. The time spent in the
computeMapping event is shown, i.e., the entire offline phase of the mapping.
Additionally a linear regression is performed for one mesh size and the slope
is indicated. The measurements were made on the Neon machine and the
maximum time of all ranks is shown.

24 72 192 480 1536 4224

101

102

103

104

105

−0.84

Processors for input mesh participant

Ti
m

e
[m

s]

Mesh Size 12002

24 72 192 480 1536 4224

101

102

103

104

105

−0.9

Processors for input mesh participant

Mesh Size 20002

Overall (computeMapping) Filling A
Filling C Preallocation A

Preallocation C Compute Rescaling

Figure 4.34: Strong upscaling for mesh sizes 12002 and 20002 with Gaussian (m = 6) basis
functions on up to 4224 processors on the HazelHen HPC system. Additionally
to the computeMapping event, timings for the different phases of the algorithm
are shown. The slope for the Preallocation C event is shown.

139

4 Numerical Experiments & Results

24 72 192 480 1 536

102

103

104

−0.94

Processors for input mesh participant

Ti
m

e
[m

s]

Overall (computeMapping) Filling A
Filling C Preallocation A

Preallocation C Compute Rescaling

Figure 4.35: Strong upscaling for a mesh size of 10002 with Gaussian (m= 6) basis func-
tions to up to 2016 processors on the SuperMUC HPC system. Additionally to
the computeMapping event, timings for the different phases of the algorithm
are shown. The slope for the Preallocation C event is shown.

For the number of non-zero elements in C , an upper bound can be given from the support

radius and mesh size n as 0.5 · πm2 · n2. For global basis functions, on the other hand,

the number of non-zero elements is approximately 0.5 · n4. The approximative factor of

0.5 stems from the symmetry of C . Volume splines consistently perform better than thin-

plate splines. This can be attributed to the computation of the logarithm in the thin-plate

spline function, needing considerably more CPU cycles than the simple volume-splines

function which only involves computing the absolute value of the argument. Due to the

low performance, especially as meshes grow larger, the global basis functions will not be

considered for larger upscaling runs.

For Gaussians, the shape parameter has only little influence on the upscaling slope,

ranging from −0.83 to at worst −0.69 for a mesh size of n = 200 and m = 4. In general, for

smaller runs and with Gaussian basis function, the RBF implementation shows a satisfactory

upscaling behavior.

Larger runs are performed on the HazelHen and SuperMUC HPC systems, see Figs. 4.34

and 4.35. The runs still exhibit some problems when upscaled to higher number of cores.

While the core parts (preallocation & filling), which are the computationally most expensive

parts of the algorithm when executed on a single node show an excellent scaling with an

140

4.9 Upscaling of the RBF Implementation

2 4 8 16 32 64

102

103

104

105

0.5

Processors for input mesh participant

Ti
m

e
[m

s]

Gaussian, m= 4

2 4 8 16 32 64

102

103

104

105

0.48

Processors for input mesh participant

Gaussian, m= 6

1002 elements 2002 elements

Figure 4.36: Weak upscaling on different mesh sizes with Gaussian basis functions to up
to 64 processors. The time spent in the computeMapping event is shown, i.e.,
in the offline phase of the mapping. The mesh size indicated in the legend is
the base mesh size for one rank. Additionally a linear regression is performed
on one run and the slope is indicated. The measurements were made on the
Neon machine and the maximum time of all ranks is shown.

141

4 Numerical Experiments & Results

exemplary slope of −0.84 for the preallocation part, the overall scaling leaves room for

improvement. Closer scrutinization of the different parts of computeMapping reveals three

parts that become significant at higher numbers of processors and possibly also due to

increased inter-node communication. Visible in Figs. 4.34 and 4.35 is that the time for

the computation of the rescaling interpolant stagnates. Not shown here is the significant

time that is taken by setup of the PETSc distributed matrices and initialization of the AO

(application ordering) object as part of the computation. Both operations are collective on

the respective communicator and involve multiple collective communication operations,

e.g., AOCreateMapping dispatches three calls to MPI_Allgather which initiates an all-to-all

communication.

4.9.2 Online-Phase

Certain parts of the algorithm are executed for each interpolation step, i.e., whenever the

right-hand side fξ of Eq. (2.25) changes. The phase mainly consists of copying data between

PETSc and preCICE data structures and solving the linear system C λ = fξ. Note that parts of

the solving procedure, such as factorization for the preconditioners are already accomplished

during the offline-phase by the computation of the rescaling interpolant, which solves the

linear system for a different right-hand side. The plots henceforth distinguish two phases,

the overall execution time of the function mapData and the time to solve the linear system.

The latter being part of the overall timings of mapData.

Figures 4.37 to 4.39 show strong scaling of the overall mapping time for each interpolation

step and the time consumed for solving the linear system. Compared to the offline-phase

which setups the interpolation, the online phase needs less time. For Gaussians, copying

between data structures of preCICE and PETSc dominates the time for a higher number of

cores, the share used for solving the linear system drops from more than 60% to 14% of the

total time of mapData as the number of processors increases to 64. The measurements for a

larger number of processors on the HPC systems confirm that observation. With thin-plate

splines and volume splines, on the other hand, solving the densely populated linear system

dominates over copying data structures.

The scaling of the online phase is much less monotonic than the results of the offline

phase, with the SuperMUC system being a laudable exception. At higher number of

processors, the workload per processor diminishes, e.g., at 4224 processors, the mesh size

is only around 15× 15 vertices per rank. Tasks that become more expensive with higher

number of processors such as communication and setup of parallel data structure likely

dominate the timings in this case.

142

4.9 Upscaling of the RBF Implementation

2 4 8 16 32 64
100

101

102

103

104

105

Processors for input mesh participant

Ti
m

e
[m

s]

Gaussian, m= 6

2002 elements 6002 elements

2 4 8 16 32 64
100

101

102

103

104

105

Processors for input mesh participant

Thin-Plate Splines & Volume Splines

VS, 502 elements

TPS, 502 elements

Figure 4.37: Strong upscaling of the online-phase at Neon machine. The overall needed
time is plotted with solid lines. The dashed lines indicate the time needed
for solving the linear system. For thin-plate splines and volume-splines the
dashed and solid lines are practically identical.

24 72 192 480 1536 4224

102

103

Processors for input mesh participant

Ti
m

e
[m

s]

12002 elements

20002 elements

Figure 4.38: Strong upscaling of the online phase with a mesh size of 12002 and 20002 with
Gaussian (m= 6) basis functions to up to 4224 processors on the HazelHen
HPC system. The overall needed time is plotted with solid lines. The dashed
lines indicate the time needed for solving the linear system.

143

4 Numerical Experiments & Results

24 72 192 480 1 536

102

103

−0.72

Processors for input mesh participant

Ti
m

e
[m

s]

Figure 4.39: Strong upscaling of the online phase with a mesh size of 10002 with Gaussian
(m = 6) basis functions to up to 2016 processors on the SuperMUC HPC
system. The overall time of mapData is plotted with solid lines. The dashed
lines indicate the time needed for solving the linear system.

2 4 8 16 32 64
101

102

103

104

105

0.6

Processors for input mesh participant

Ti
m

e
[m

s]

1002 elements 2002 elements

Figure 4.40: Weak upscaling of the online-phase at Neon machine, based on mesh sizes of
1002 and 2002 on 2 ranks and Gaussian (m= 6) basis functions. The overall
time of mapData is plotted with solid lines. The dashed lines indicate the time
needed for solving the linear system. For thin-plate splines and volume-splines,
the dashed and solid lines are practically identical.

144

4.10 The Cylinder Flap Test Case

Figure 4.40 shows a weak scaling to up to 64 processors. In a weak scaling scenario,

the optimal slope is the constant horizontal line. The moderate slope of 0.6 can still be

considered adequate weak scaling, whereas measurements to higher number of processors

are required to make definite conclusions.

The results of the presented upscaling runs exhibit a quite diverse and sometimes incon-

clusive behavior. This is the result of various effects that determine the measured results.

First, the runtime of the purely local portions of the algorithms, preallocation and filling do

not require any communication between processors. On the other hand, computation of

the rescaling interpolant as well as solving the actual interpolation system involve heavy

communication across ranks. While nodes are assigned to a compute job exclusively, the

network must be considered a shared medium with other users and, therefore, adding fluc-

tuations to the measurements. The entire process (preallocation, filling as well as solving)

again depends on the mesh decomposition. The decomposition of the two-dimensional

mesh is performed by ASTE, using the uniform algorithm, see Sec. 6.2.3. It strives to achieve

a quadratic partitioning, i.e., to have an equal number of partitions in x and y direction as

far as possible. Some, most notably prime, number of processors generate decompositions,

that only have one partition in one direction, influencing the interpolation algorithm.

Still, the data shown in Fig. 4.38 is lacking a valid explanation. As the measurements are

reproducible, possible explanation approaches can be found in the mesh decomposition as

outlined above and in the various tuning parameters set by the vendor for the MPI and

PETSc libraries.

Overall, the upscaling runs yield satisfactory results, with the principal parts of the

algorithm exhibit a good scaling behavior. Potential impediments for scaling are the

setup of the PETSc matrices and the application ordering objects. In the future, it might be

possible to replace the latter by a changed vertex enumeration scheme in preCICE.

4.10 The Cylinder Flap Test Case

In this section, I will finally examine a “real” fluid-structure interaction case with actual

solvers involved. While my focus is still on the interpolation, I observe the effects of different

interpolations on the outcome of the simulation and not on isolated properties, such as

condition number or accuracy, as it is the case in the previous sections.

This two-dimensional case consists of a laminar incompressible channel flow. In the

channel, attached to a rigid cylinder, an elastic flap produces self-induced oscillations and

vortex shedding downstream. See Fig. 4.41 for a visualization. This case resembles the

145

4 Numerical Experiments & Results

x

y

Figure 4.41: The cylinder flap test case with coloring according to the absolute velocity
magnitude.

widely used Turek test case [103]. The geometry is intentionally slightly asymmetric to

ensure a consistent onset of the flap oscillations independently of the precision of the

computation. A difference from the reference test case is the inlet profile. Whereas

Turek uses a parabolic profile, I use a uniform, time-dependent inlet velocity profile. The

boundary condition ramps up the velocity, such that the final velocity of u = (2, 0, 0)T is

reached at t = 2. This helps to stabilize the simulation. With the given inlet velocity, the

resulting Reynolds number is Re = 200, based on the cylinder diameter as the characteristic

length measure. The case setup corresponds to the FSI3 setup from [103]. The parameter

settings are summarized in Tab. 4.7.

The channel flow is simulated using the OpenFOAM pimpleFoam solver and the CALCULIX

finite-element solver acts as a structure solver for the elastic flap.

Two setups are compared, differing in the size of the mesh. The coarse case consists of

6306 cells in the fluid domain and 280 elements the structural domain. From that, the fine

case is derived by doubling the resolution in each direction, resulting in 26772 cells and

1120 elements, respectively. The time step size in both cases is dt= 0.001.

This test case is used to investigate the influence of different interpolation methods and

mesh sizes on the dynamic behavior of the flap. For that, the displacement of the elastic

flap in y-direction is studied, the point probe location is marked in Fig. 4.41 by a .

The periodic displacements of the flap for different basis functions are plotted in Fig. 4.42.

The used basis function has little influence on the amplitude and frequency on both the

coarse and fine grid. All interpolations on the coarse mesh exhibit a dominant frequency

of 4.5 s−1 and an associated amplitude of 0.01155± 2.06 · 10−5. The spectrum shown in

Fig. 4.43 does not show significant differences between different interpolations on the

coarse mesh.

The finer mesh resolution has a much stronger effect than the interpolation parameters.

The dominant frequency on the finer mesh is 4.1 s−1 with an associated amplitude of

0.0097± 2 · 10−8. The results together with the reference results are shown in Tab. 4.8.

146

4.10 The Cylinder Flap Test Case

Parameter Value Unit

Fluid density ρ f 1000 kg/m3

Fluid kinematic viscosity ν f 0.001 m2/s
Inlet velocity u 2 m/s

Structure density ρs 1000 kg/m3

Poisson’s ratio νs 0.4 −
Shear modulus µs 2 · 106 kg/ms2

Reynolds number Re 200 −

Table 4.7: Physical parameter settings for the cylinder flap test case

−1 0 1 2 3 4 5 6 7 8 9 10 11

−3.5

−2

0

2

3.7

·10−2

D
is

pl
ac

em
en

t
in

y-
di

re
ct

io
n

Thin-Plate Splines
Volume Splines

Gaussian (m= 4)
Gaussian (m= 6)

−1 0 1 2 3 4 5 6 7 8 9 10 11

−2.9
−2

0

2

3

·10−2

t

D
is

pl
ac

em
en

t
in

y-
di

re
ct

io
n

Gaussian (m= 6)
Thin-Plate Splines

Figure 4.42: Displacement of the flap in y-direction of the cylinder flap test case on the
coarse mesh (top) and fine mesh (bottom) with the maximum and minimum
amplitudes marked.

147

4 Numerical Experiments & Results

10−1 100 101 102 103

10−6

10−5

10−4

10−3

10−2

Frequency [1⁄s]

A
m

pl
it

ud
e

Coarse Mesh
Fine Mesh

Figure 4.43: Spectrum of flap movement in y-direction of the cylinder flap test case for
Gaussian basis functions (m = 6) on different meshes, computed by using
Fourier analysis.

Basis Function Mesh Displacement [·10−3] Frequency [s−1]

Volume Splines coarse 1.064± 35.727 4.5
Thin-Plate Splines coarse 1.063± 35.728 4.5
Gaussian (m= 4) coarse 1.062± 35.723 4.5
Gaussian (m= 4) coarse 1.062± 35.727 4.5
Thin-Plate Splines fine 0.502± 29.279 4.1
Gaussian (m= 6) fine 0.500± 29.279 4.1
Reference from [103] – 1.48± 34.38 5.3

Table 4.8: Results of the cylinder flap test case. The displacement in y-direction is shown
as mean ± amplitude.

148

4.11 Conclusions

Although, the frequency of 4.1 s−1 on the fine mesh agrees with the vortex shedding

frequency of a cylinder which is, according to Strouhal [98],

St=
f · d

u
≈ 0.21 ⇒ f = 4.2 s−1, (4.21)

the accordance with the results from Turek and Hron leave plenty of room for improvement.

The reference frequency is given as 5.3 s−1. The results on the coarse grid generally show

better accordance with the reference results. A possible reason for the underestimated

frequency are linear elements that are used in modelling the elastic flap and likely result in

an exaggerated stiffness. Using higher-order elements might result in more accurate results

here.

4.11 Conclusions

This chapter provides a broad overview of radial-basis function interpolation under different

parametrizations.

Naturally, the most important parameter of an RBF interpolation is the type of basis

function. In this section, I evaluated Gaussians, compact polynomial C0 splines, thin-plate

splines, volume splines and multiquadrics functions. Publications looking more at the

mathematical side of the algorithm [45, 90, 91, 110] propose a number of additional

basis functions, such as Bessel, Wendland functions or Sobolev splines. More engineering

oriented papers [6, 10, 101] rather focus on thin-plate splines and Gaussians for compact

basis functions. For compact basis functions, the support radius plays a decisive role for

stability and accuracy of the interpolation. To facilitate comparability between different

shape parameters, I use an alternative formulation in terms of the number of vertices m

included in the basis functions support in each direction, in contrast to the shape parameter

ε, which has different meanings depending on the basis function.

Multiquadrics functions are quickly ruled out as a suitable basis function choice due

to their inability to reach a stable solution. Without surprise, the remaining global basis

functions, volume and thin-plate splines, give the best results in terms of accuracy among

all functions tested. With the general exception of the discontinuous jump test function,

both basis function show consistently 2nd-order convergence in the input mesh width h for

volume splines and 3rd-order convergence for thin-plate splines. The convergence rates are

independent of whether a polynomial is added to the interpolation process or not.

The compact basis functions, namely Gaussians and compact polynomials perform worse

149

4 Numerical Experiments & Results

than the global functions. This is a well-known fact and goes so far as “there is an ongoing

discussion [in the approximation theory community] about usefulness of radial basis

functions of compact support because of their inferior convergence properties [...].” [19].
I would not go so far as to dispute the usefulness of compact basis functions, but their

numerical properties tend to be much more intricate. The stability greatly depends on the

support radius chosen. For Gaussians, I explore a range of support radii m = 4 . . . 16. Only

m = 8 to m = 12 prove to useful. Smaller support radii achieve stable interpolation, though

with inferior accuracy while support radii too large cause the interpolation to become

unstable and with that also inaccurate. The effect of error saturation prove to be a lower

bound for the accuracy in the range of 10−9 for the relative L∞-error. The stability range of

support radii for compact polynomials is much larger, albeit the accuracy remains inferior

to Gaussians. Like Gaussians, compact polynomials are also subject to error saturation.

For compact basis functions with small support radii, the rescaled interpolant provides an

effective measure to improve the accuracy and adds only little additional computational

cost to the algorithm.

Augmenting the RBF interpolant by a linear polynomial has little influence on the

convergence rates, but consistently improves the absolute accuracy for all basis functions,

depending on the y-offset and linear trend of the input data. The integrated polynomial

worsens the condition number of C . Global basis functions experienced a larger condition

number, but no increase in the condition number with decreasing input mesh width. For

compact basis function, the condition number does increase with decreasing input mesh

width. The separated polynomial has no effect on the condition number at all, but improves

accuracy in a similar way as the integrated polynomial.

Non-uniform meshes are a special challenge for compact basis functions, as the optimal

shape parameter is not constant over the mesh. Adaptive shape parameters, depending on

the local mesh width can improve this situation, but come with a number of downsides

impairing the numerical properties, such as loosing the symmetry in C . Furthermore,

knowledge of the local mesh density is required, which is usually not provided by the solver.

The basis transformation of C performed by the RBF-QR algorithm provides promising

first results, but also shows weaknesses for certain situations, such as interpolation near

boundaries. Furthermore, for each basis function an analytic expansion needs to be found

first.

Evaluating conservative interpolation requires a new approach in measuring the error. For

that, I propose a new rescaled error measure, which accurately reflects the local interpolation

error.

150

4.11 Conclusions

Results show that interpolation by RBF is powerful and works well on uniformly scattered

data. On uniform meshes, the width m of the basis functions is an effective parameter

to control the accuracy-condition trade-off and is applicable to meshes of different sizes.

For non-uniform meshes, the choice of a suitable support radius remains a challenge.

Nevertheless, the methods presented here have improved interpolation in that case as well.

To correctly use RBF interpolation, a sizable amount of expert knowledge regarding the

choice of parameters is required from the user. Future work should look into automatisms

for optimal parameter selection.

Mainly thanks to the re-partitioning scheme and using the highly efficient PETSc numeri-

cal library, the RBF implementation achieve good parallelism and a satisfactory upscaling

behavior. The offline-phase dominates the timings and due to the constant linear system

during the simulation the online-phase is no bottleneck for upscaling multi-physics simula-

tions. Still, the upscaling also revealed problems which are, however, mostly out of scope

for preCICE and need to be addressed by the HPC vendors.

As a last and final plot in this chapter, I would like to show Fig. 4.44. It gives an overview

in terms of condition number and RMSE accuracy as the support radius grows larger over a

selection of the methods previously presented. While this in no way can replace thorough

study of parameters, it shows the general effectiveness of the improvements presented in

this chapter.

151

4 Numerical Experiments & Results

10−5 10−4 10−3 10−2 10−1 100 101
10−1

101

103

105

107

109

1011

bett
er

RMSE

C
on

di
ti

on
N

um
be

r
κ

Standard
Integrated Polynomial
Separated Polynomial
Standard + Rescaling
Separated + Rescaling

3rd Degree Polynomial

Figure 4.44: Comparison of different methods on a mesh of size 192 for the high fre-

quency test function. Basis functions used are Gaussians with support radius

m = 1 . . . 16. The RBF implementations compared are: Standard: bare RBF

interpolation without polynomial, Separated/Integrated Polynomial: using a

linear polynomial in either the separated or integrated formulation, Standard

+ Rescaling and Separated + Rescaling: is either the standard RBF implementa-

tion without polynomial or the linear, separated polynomial formulation with

additional rescaling, 3rd Degree Polynomial: uses a separated polynomial of

third (cubic) degree.

152

5 Efficient Communication on HPC

Machines

You don’t have to be responsible for the world that you’re in.

John von Neumann

Efficient communication is of paramount importance for preCICE. The partitioned type

of coupling requires data exchange at each coupling iteration, which can be multiple times

per timestep.

In this chapter, I will shortly describe the fundamental communication channels as well

as suitable communication protocols. A method to establish peer-to-peer communication

networks on high-performance computers is presented and tested for scaling. Furthermore,

a technique to extend the amount of asynchronicity between participants is presented.

5.1 Communication in preCICE

As a coupling tool, efficient communication inside and between participants is one of

preCICE’s prime objectives.

The basic connection topology is created by the process described in Sec. 1.3.2. The

selected mapping defines which connections are to be established by marking vertices as

required to perform the mapping, see Sec. 3.4.2. In this chapter, I will focus on the lower-

level parts of the communication.

preCICE uses three different communication channels for steering the simulation, ex-

change of coupling data between participants, and intra-participant communication. Fig-

ure 5.1 shows these three different communication channels. Accordingly, we require the

following types of communication:

Master Communication provides a channel between the masters, i.e., rank zero of each

participant. Master communication is mostly used for exchanging meshes at the

initialization of the simulation, coordination of the participants during setup and

153

5 Efficient Communication on HPC Machines

Master A

Slave A1

Slave A2

. . .

Participant A

Master B

Slave B1

Slave B2

. . .

Participant B

Figure 5.1: Basic types of communication schemes used in preCICE: Master (), Master-
Slave () and M2N communication ()

tear-down as well as steering of the overall simulation, e.g., deciding on convergence

of coupling iterations.

M2N Communication is established between slaves of both participants. It is used to

exchange coupling data between participants during the simulation run.

MasterSlave Communication is used for communication between the master and slaves

of a participant. Meshes received from the other participant’s master are distributed

to the slaves via masterslave communication. It is also involved in collective intra-

participant operations performed by the quasi-Newton algorithms.

From these three communication channels, two different communication domains can be

identified. Communication within one participant and communication between participants.

While similar in the used techniques and protocols, fundamental differences how the

communication is established exist.

5.2 Fundamental Communication Protocols

Before comparing possible candidates for communication protocols in the field of partitioned

multi-physics simulations, I will provide a set of diverse criteria that can be used to compare

different protocols.

Availability The communication protocol has to be available on all supported systems,

ranging from personal computers to large high-performance machines. This also

154

5.2 Fundamental Communication Protocols

includes the actual implementation status available at a particular system. A complex

API like MPI may have the core parts available, while lacking in other areas.

Bandwidth mostly depends on the underlying networking hardware. As communication

protocols are usually optimized towards high bandwidth, the criterion can be consid-

ered as granted.

Latency Data can be exchanged multiple times per time step. Algorithms, such as linear

system solvers do a high-number of small sized transfers across the nodes. This makes

low latency communication an important factor [1, page 20].

Communication Scope While a lot of IPC protocols, such as D-Bus or COM fulfill the re-

quirements above, their scope is usually on the local system only. Large distributed

simulations require communication across node boundaries.

Reliability Applications built upon a certain protocol must be able to rely on certain features.

This includes guarantees of message ordering, i.e., messages are not able to overtake

each other, and reliable delivery. This frees the application from the burden of

implementing its own transmission control layer.

Asynchronicity While asynchronous send or receive operations usually are considered a

client-side concern, some protocols offer special support for them.

Topology Most protocols natively only support one-to-one connections, while others also

provide collective operations, such as broadcasting or even reduction operations.

Especially in scientific computing, efficient implementation of collective operations

can provide gains in performance.

The Message Passing Interface (MPI) is a standard for a message oriented communi-

cation protocol geared towards high-performance computing. The standard [48] defines

the methods and their interfaces as well as semantics. Based on the standard, different

implementations exist, most notable, OpenMPI [49] and MPICH [54]. HPC vendors usu-

ally tailor their hardware for efficient support of MPI messages. An example is the Aries

network of Cray XC40 machines [1].
The Open Systems Interconnection model (OSI) [63] defines a layered model to charac-

terize network protocols. The following protocols are located at the network layer 3, the

transport layer 4 and the session layer 5. The network layer is responsible for addressing

and routing of data packets though the network. The higher transport layer controls reliabil-

ity of a communication link by addressing flow-control, segmentation and desegmentation

155

5 Efficient Communication on HPC Machines

(splitting of packets that exceed the maximum transfer size) as well as error control. On the

session layer 5, the establishment, management and termination of connection takes place.

From the operating system the connection management is abstracted by means of sockets.

TCP/IP and UDP/IP are a family of communication protocols which are ubiquitous on

modern computing systems. The lower-level Internet Protocol (IP) [60] or its successor,

the IPv6 [30] protocol is responsible for the addressing of nodes in the communication

network. It corresponds to the network layer 3 in the OSI model [63]. Both TCP and UDP

are located on the transport layer 4 of the OSI model.

The User Datagram Protocol (UDP) [81] is a connection-less, state-less protocol based on

IP for data transfer in packet-switched communication networks. Its lack of a transmission

control layer, i.e., a mechanism that detects failed transmissions of packets and repeats the

transmissions, makes it a bad choice regarding reliability.

This re-transmission mechanism is available in the Transmission Control Protocol (TCP)

[61], which is a state-full, connection oriented communication protocol, also based on IP.

In the following, for easier readability, I will refer only to TCP when talking about TCP/IP.
Given a distributed file system, shared among all participating nodes, files can be used

for communication. While this method shares the universality of TCP sockets, it becomes

prohibitively slow and therefore lacks important features, such as low latency and high

bandwidth.

When compared to MPI, TCP is still considered a low-level protocol. It is programmed

by using sockets provided by the operating system. These sockets accept a stream of bits.

In contrast to this, MPI accepts messages that have a certain data type. TCP also lacks

collective operations provided by MPI such as broadcasting or gather/scatter. MPI also

provides support for asynchronous sending and receive operations, which is not available

with TCP per se. With these semantics, MPI can be placed at the presentation layer 6 of the

OSI model. The MPI implementation translates between application data formats (e.g. an

array of doubles with associated size) and network formats (the resulting stream of bytes).

5.2.1 Protocol Semantics & Abstraction in preCICE

MPI provides powerful communication primitives, geared towards patterns that typically

arise in scientific computing. This includes one-to-one communication methods in syn-

chronous and asynchronous variants. Similar one-to-one communication semantics are

also provided by TCP. A communication handle, which is a communicator for MPI can be

found in the form of a socket for TCP. Here, first important semantic differences arise. While

an MPI communicator can hold an arbitrary number of connections or ranks, a TCP socket

156

5.2 Fundamental Communication Protocols

Communication

- _isConnected : bool

+ send / receive : void
+ aSend / aReceive : Request
+ broadcast : void
+ reduceSum : void
+ allReduceSum : void

SocketCommunication

MPIDirectCommunication

MPIPortsCommunication

MPISinglePortsCommunication

Request

+ test()
+ wait()

Figure 5.2: Communication related classes in preCICE.

can only hold one connection, identified by an address/port tuple for each side of the

connection.

MPI knows a number of collective operations such as broadcast (one-to-many), gather

(many-to-one) or more complex ones, like reduction or distributed I/O. In addition to the

communication operations, MPI also offers operations to produce new communicators from

sets of ranks or from existing communicators as well as synchronization operations such as

barriers. TCP, however, not aware of multiple peers, is devoid of these collective operations.

For that reason, an abstraction layer is needed in order to provide a uniform set of methods

for communication. This abstraction layer is designed with no intention of emulating every

MPI operation using TCP primitives, but a restricted set of required and relatively easy to

implement methods. The low-level socket handling is implemented using the Boost Asio1

(which stands for asynchronous IO) library.

Synchronous send/receive operations are the most straightforward and the most simi-

lar in MPI and TCP. For sending arrays, TCP requires two send-receive operations to

transfer the size first, for MPI, the Get_count function can be used instead.

Asynchronous send/receive is implemented with MPI using Irecv and Isend, respec-

tively. Both return a request handler, which is encapsulated by a Request object, see

Fig. 5.2. For sockets, a callback mechanism is used on the returned Request object.

1https://www.boost.org/doc/libs/1_69_0/doc/html/boost_asio.html

157

https://www.boost.org/doc/libs/1_69_0/doc/html/boost_asio.html

5 Efficient Communication on HPC Machines

The test or wait methods can then be used to check for completion of the request.

Additionally, for sockets to ensure correct ordering of multiple asynchronous requests,

a queuing technique is employed, see Sec. 5.4.2. For MPI, the correct order of mes-

sages is guaranteed by the standard.

Broadcast and reduction are collective operations over multiple ranks, which are not

supported for sockets. Therefore, they are replicated by a looped send over all ranks.

Reduction operations are performed by collecting all input data at one particular

rank, performing the reduction and finally broadcast the result. Currently, only the

reduce-sum operation is implemented.

From the description above, it is obvious that for the given case, MPI is clearly the

preferred communication protocol. Its support for collective operation not only eases

implementation, but may lead to increased performance by using optimized algorithms.

Note that, however, no such performance guarantees are given by the MPI standard.

The correct ordering of messages, on the other hand, is guaranteed by the standard and

constitutes an important factor when compared to TCP.

The actual intrinsics of the different protocols are abstracted from the higher levels of

preCICE.

5.3 Establishing Peer-to-Peer Communication

Networks

In this section, I concentrate on the technical implementation of the communication, in

particular establishing communication channels between ranks of different participants.

The algorithmic side, i.e., computing the communication topology is described in Sec. 1.3.2.

As outlined above, we use TCP and MPI as the fundamental communication protocols.

TCP defines it communication domain as all IP addresses which are routable. MPI, on the

other hand, creates a communication domain for each application it starts, usually with

the mpiexec binary. Coupled simulations are usually started by running each solver inside

a distinct communication domain. To connect these domains, the ports part of the MPI

standard is used.

158

5.3 Establishing Peer-to-Peer Communication Networks

5.3.1 Implementation Status of TCP and MPI

TCP implementations at the target operating systems, which is Linux for HPC applications

and furthermore Microsoft Windows and Apple MacOS X can be considered mature and

feature complete.

For MPI, the picture is less clear. MPI ports are a part of the MPI Dynamic Process

Management (DPM), which appeared in version 2 of the standard, released in June 1997.

Though being around for a long time, the support of this part of the standard is still

incomplete in major implementations. Reason is, as I have been told by operators, that

DPM is a rather rarely requested feature. Most parallel application purely rely on the point-

to-point and collection operations parts of the standard.

Cray MPI is built on MPICH2 distribution from Argonne [1, page 20]. A white paper [77]
details the implementation status of the dynamic process management. On Cray machines,

DPM can be supported through two different techniques, either pdomains or Dynamic RDMA

Credentials (DRC). The DRC require the Cray Linux Environment at version CLE 6.0 UP06.

The HLRS HazelHen machine is at UP05 as of August 2018. I therefore use pdomains to

achieve DPM capabilities.

Tests on SuperMUC were done with the software stack on phase 2 as of August 23, 2018

using modules mpi.intel/2017_gcc, gcc/6. The Intel MPI implementations we use at

SuperMUC supports MPI ports, albeit only for communication not involving multiple islands

of the computer. This restriction is not specific to MPI Ports, but generally applies when

using the Intel MPI implementation.

With MPICH, I experienced the least problems. The implementation fully supports the

MPI ports features I tested for.

On its homepage, OpenMPI claims full MPI-3.1 compatibility. However, to connect two

OpenMPI applications, a central instance of the ompi-server is required. This server can

be used to exchange the connection information (see Sec. 5.3.2) by means of Publish and

Lookup and acts as a key-value store. While this is certainly covered by the standards, it

is an additional pitfall as the external server needs to be launched by the user prior to

starting the application. Furthermore, it requires an additional code path, as exchange of

connection information via a third party, e.g., file system is not possible.

The information given above makes it clear, that, while MPI is clearly preferable, an

alternative, fallback protocol must be available. This protocol is TCP.

159

5 Efficient Communication on HPC Machines

5.3.2 Exchange of Initial Connection Information

In order to establish a connection between two processes at different solvers, a token that

identifies the acceptor of the communication link needs to be exchanged. For TCP/IP
connections, that token is the IP-address and port of the listening socket, for MPI Ports

connections, it is the information acquired from MPI_Open_port. Exchanging that token

requires a common communication domain to exist a priori. For most applications, the

only communication domain which can be taken for granted is a network file system, i.e., a

file system which is shared among all nodes that participate in the simulation.

The number of connections that are to be established depends on the decomposition of

the geometry among the ranks and the mapping method chosen. Given nA ranks at the

acceptor participant, nB ranks at the requester and m meshes to be transferred, the number

of connections is nA · nB ·m when a mapping method that uses all vertices, such as RBF

with a global basis function is used. The number of meshes are a factor due to the current

implementation in preCICE which does not reuse existing connections, but establishes an

own set of connections for each mesh to be mapped.

Using a global mapping method is discouraged for large simulations, but still the number

of connections can be significant. For each connection, one token must be transferred to

the requesting rank.

Most parallel file system experience performance degradation, when too many files or

directories are created within one directory. What exactly “too many” is, varies greatly

among file systems and individual settings of the system’s operator. The LRZ, operator of

the SuperMUC HPC system considers as little as 1000s of files per directory as too many

for the IBM General Parallel File System (GPFS) [84].

The original scheme implemented in preCICE was to create files, named after .A-

B-4.address, which holds the connection information needed to connect to rank 4 on

participant B from participant A. For each mesh, a separate set of connections is established,

as the connection patterns are potentially different for each.

For runs on a large number of ranks, this quickly turns out to be an hindrance to efficient

upscaling. It was subsequently augmented by a workaround that introduces an additional

level of directories named .B-MeshName-4.address/, for connection info files to rank

4 on participant B for mesh MeshName. Connection info files holding information on

connections to participant B for that particular mesh are henceforth placed in that directory.

Thus, we create one folder per mesh containing one per file per rank of participant B. The

total number of files remains constant, but the files are split up across different directories

160

5.3 Establishing Peer-to-Peer Communication Networks

for each mesh and receiving participant. This workaround proved to be effective in moving

the limit to a higher number of connections which, however, will inevitably be reached

soon. For that reason, a more flexible and definitive scheme is proposed, implemented and

tested here.

The proposed scheme composes a string from the name of the accepting and the

requesting participant and the accepting rank. The resulting string is then hashed using

the SHA-1 [38] algorithm. The resulting 160 bit number can be represented as a string

of 40 hexadecimal digits. The first two digits are used to define the directory name, the

remaining 38 characters are used as the name of the connection info file stored in the

respective directory.

As an example, the connection information from the request above, i.e., from A to rank 4

of B, is placed into a file precice-run/62/2a190c33ecf761d0ea546bc48696c1270f3c16.

While, at first glance, this might appear needlessly complex, the scheme features a

number of unique advantages. Due to the avalanche effect of hashing functions, similar

input data are mapped uniformly to the entire image of the hash function. This ensures

that the created files are spread evenly among the directories. The number n of digits

cut from the hash to form the directory determines the maximum number of directories

as 16n. This way, the scheme can be tuned to the characteristics of the underlying file

system. By choosing other number representations, the number of directories can be set in

steps other than powers of 16. Alternatively, to control the number of entries per directory,

the scheme can be extended to generate more than one directory level from the hash.

Furthermore, other information than the participants names and the rank of the recipient

can easily be incorporated into the hashed string, making it future proof to modifications

of the connection scheme.

It is well known, that the SHA-1 hashing function can be considered broken and should

not be used anymore. This recommendation, however, is only relevant for cryptographic

purposes which is not the case here.

In contrast to the node’s CPU, the file system is a shared resource among all users and

as such afflicted with a high variance between measurements. For that reason, Fig. 5.3

shows a statistical breakdown of 5 runs on the SuperMUC and HazelHen HPC systems. The

figure compares the old scheme of writing connection info files with the new one, using the

hashing naming scheme. As the mapping is responsible for the connection pattern between

the participants (whom connects to whom?), different mappings results in different number

of connections to be established. For the setup used on SuperMUC, nearest-neighbor

161

5 Efficient Communication on HPC Machines

1000 1200 1400 1600 1800 2000 2200 2400

Hash
Nearest-Neighbor

No Hash
Nearest-Neighbor

Hash
RBF

No Hash
RBF

SuperMUC

−0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

·104

Hash
Nearest-Neighbor

No Hash
Nearest-Neighbor

Hash
RBF

No Hash
RBF

Time [ms]

HazelHen

Figure 5.3: Performance comparison between connection info files naming schemes with
and without hashing for two different mappings. 5 measurements on for each
configuration are made, using 280 processors per participant on SuperMUC
and 600 processors on HazelHen. The box spans the 0.25 to 0.75 quantile of
the data (interquartile range), the whiskers indicate the smallest respectively
largest datum that is still contained in 1.5 times the interquartile range. Further
the median is marked with a vertical line, the mean with a rhombus.

162

5.4 Scaling & Compatibility

mapping results in an average of 1.19 connections per rank, while the RBF mapping with

a Gaussian basis function and m= 6 results in 8.2 connections per rank. The connection

numbers for the mesh setup used at HazelHen are 1.2 for nearest-neighbor and 68 for RBF

interpolation.

The new variant, using the hashed filenames and directories consistently reduces the

time needed for writing the connection information to the file system. It also reduces the

variance, as can be seen by the smaller interquartile range visualized as boxes in the plot.

5.3.3 Creating the Communication Channels

preCICE implements four variants basic communication variants.

SocketCommunication is based on TCP. It is mainly used for master and m2n communi-

cation. In cases where MPI can not be used for master-slave communication, which can

be the case with proprietary solvers using a closed MPI variant, it can also be used for

intra-participant communication.

MPIDirectCommunication connects two disjoint groups of MPI ranks. These groups,

however, must be represented in a common communicator and are usually the result of a

communicator split. This communication can only be used for master-slave communication,

i.e., intra-participant communication.

MPIPortsCommunication and MPISinglePortsCommunication are two variants that both

use the MPI ports functionality to create a communicator from two sets of independently

launched MPI processes. The first variant creates a communicator for each pair of connected

ranks, resulting in a large number of communicators. The latter variant, on the other

hand, uses one communicator that encompasses all ranks from the participants, thus

resulting in just one communicator per participant. These two variants are used for the

m2n inter-participant communication. The performance is studied in greater detail below.

The actual connection establishment works alike in all variants and results in one or

more communicators or sockets, respectively. A single rank from the other participant is

always addressed by its participant-local rank number. The translation to the actually used

communicator and rank is performed by the communication classes.

5.4 Scaling & Compatibility

In this section, I will analyze two important performance aspects of a coupled simulation.

First, the phases of establishing the communication network using MPI are benchmarked.

163

5 Efficient Communication on HPC Machines

Second, a measure to improve the overall scalability of an coupled simulation by reducing

dependency between the participants is presented.

5.4.1 Performance of MPI Ports

In this section, benchmark results for the different connection variants are presented.

Compared are the connection schemes using a communicator for each connection and

using a single communicator for all connections. These variants are implemented in

MPIPortsCommunication and MPISinglePortsCommunication, respectively.

The MPI performance is tested by using a variable number of connections per rank,

based on the total number of processors n, where both participants always run on the same

number of processors. On SuperMUC, each rank connects to 0.4 n ranks, on HazelHen,

with a higher number of ranks per node, each rank connects to 0.3 n ranks. Thus, this

scenario corresponds to a weak scaling. However, it is not directly comparable to a strong

or weak scaling of a coupled simulation. Given a basis function that is scaled with the

mesh, i.e., m= const., strong scaling of a coupled simulation means that the connections

per rank decrease, weak scaling that the connections per rank remain constant, as the

number of processors goes up. The amount of data transferred between the two ranks of

each participants is held constant with 1000 rounds of transfer of an array of double values

of size 500, 200 and 4000 from participant B to A.

Each measurement is performed five times, the fastest and the slowest run are ignored.

From the remaining three, the mean is presented here. The times are taken from rank zero,

which is synchronized with all other ranks by a barrier, making the measurements from

each rank identical. Note, that the measurements are not directly comparable between

SuperMUC and HazelHen, as an identical number of ranks does not correspond to an

identical number of nodes.

Three phases are compared in Figs. 5.4 to 5.6. (i) Publishing involves acquiring the

connection token from MPI_Open_port and writing it to the file system. The single ports

variant has a conceptual advantage here, as it only needs to write one file from rank 0. For

that reason, the timings of this variant, being almost zero are not shown in Fig. 5.4.

(ii) The connection is established using the methods MPI_Comm_accept and MPI_Comm_connect.

This is an implicit synchronization point between the participants and the lines for A and B

in Fig. 5.5 are almost identical. Showing a similar scaling behavior, the single ports variant

consistently performs two orders of magnitude better than the old approach.

(iii) The timings for the actual data transfer shows little difference between the variants

in Fig. 5.6. The single ports variant for small amounts of data at SuperMUC is an exception

164

5.4 Scaling & Compatibility

0 50 100 150 200 250 300

102

103

Number of ranks

Ti
m

e
[m

s]

SuperMUC: Many
HazelHen: Many

Figure 5.4: Publishing of MPI connection information from participant A. The timings from
single ports are not shown, as they are almost negligible with a maximum of
2 ms.

50 100 150 200 250 300
10−1

100

101

102

103

104

105

Number of ranks

Ti
m

e
[m

s]

SuperMUC

50 100 150 200 250
10−1

100

101

102

103

104

105

Number of ranks

HazelHen

Single A Single B Many A Many B

Figure 5.5: Establishing the connection between the participants using MPI_Comm_accept

and MPI_Comm_connect.

165

5 Efficient Communication on HPC Machines

to this, showing a degraded performance. The reason for this remains unknown. The

performance of the HPC systems are almost on par, whereas in the previous phase, Fig. 5.5,

the HazelHen system showed superior performance.

As a conclusion, it can be said, that the newly implemented design, using only one

communicator shows a vastly improved performance in the two phases of connection

establishment. For the actual data transfer, both variants are on par, with the noted

exception. This exception can probably be attributed to a singular performance degradation,

due to unfortunate setting of parameters by the operator exhibited by an unrealistic small

amount of data to be transferred.

5.4.2 Communication Decoupling of Participants

While most multi-physics simulations are two-way coupled simulations, one-way coupling

scenarios can also exist, e.g, a fluid simulation coupled to an acoustic far-field simulation.

From an algorithmic perspective, the sending participant (here the fluid simulation) can

run completely independent from the receiving one. However, this concurrency is limited

by interleaved send and receive operations in the implementation and the amount of

asynchronicity provided. Figure 5.8 (top) visualizes the issue. The situation shown involves

a fluid solver using a splitting approach, performing incompressible fluid dynamics, followed

by a near-field acoustic simulation with sub-cycling inside one timestep. Such a splitting

approach is implemented in the solver FASTEST [72] and used in the fence test case,

Fig. 5.7. The near-field accoustics solver performs a uni-directional coupling with a far-field

acoustics solver and sends coupling data each sub-cycle step. Without buffering, each send

operations can only be completed, when the far-field solver has reached the same sub-cycle

and is ready to receive the results. Careful load-balancing avoids idle times in participant

A by matching the time consumed by the near-field acoustics (FA) and far-field acoustics

(AFF) solvers. Idle times in solver B, however, can not be avoided this way. A buffer, as

shown in Fig. 5.8 decouples the two solvers and this way prevents idle times and allows for

more flexible assignment of computational resources.

This issue is alleviated by the existence of internal buffers, either within the MPI imple-

mentation or from the operating systems TCP/IP stack. These internal buffers give the

simulation a limited decoupling, even without explicit buffer management in the coupling

library. This, however, is insufficient and unreliable. The size of internal buffers is opaque

to the user and differs from system to system. In the case of TCP-buffers, their size can

not be modified as a non-root user. While the buffer size of MPI implementations can be

modified by the user, it is usually tuned by the vendor to hit a sweet spot of the machine

166

5.4 Scaling & Compatibility

50 100 150 200 250 300
101

102

103

104

105

Ti
m

e
[m

s]

SuperMUC

50 100 150 200 250
101

102

103

104

105

HazelHen

50 100 150 200 250 300
101

102

103

104

105

Number of ranks

Ti
m

e
[m

s]

50 100 150 200 250
101

102

103

104

105

Number of ranks

Single A Single B Many A Many B

Figure 5.6: Times for 1000 rounds of a data transfer of a vector of 500 doubles (top row)
respectively 2000 doubles (bottom row) from participant B to A. For the transfer
the synchronous MPI routines (MPI_Send and MPI_Recv) have been used.

167

5 Efficient Communication on HPC Machines

FAR FIELD ACOUSTICS

Coupling Interface ΓFA

CFD & NEAR FIELD ACCOUSTICS

ΓSF

C
SM

Displacements

Forces

Velocity, Pressure, Density

Inflow Outflow

Figure 5.7: Fence test case with a splitted CFD/near-field acoustics setup coupled to struc-
ture and far-field acoustics solver. The CSM solver used is FEAP [100], the
CFD and near-field acoustics solver is FASTEST and the far-field acoustics is
computed by Ateles. Note, that the geometry is not to scale.

performance wise. In both cases, too large buffer sizes might result in a phenomenon which

is known as bufferbloat [22] and might affect the overall performance of the simulation.

Both MPI or TCP sockets implementations provide fully asynchronous send operations.

These operations take a pointer to a buffer and return a handler for the request. Using

the handler, one can test for completion of the send operation and subsequently release

the buffer. The obvious implementation strategy of such a buffer manager would be to

create a separate thread, which periodically iterates through the stored requests and tests

for completion. The sending thread adds the request handle and the pointer to the buffer

to a shared data structure and proceeds.

The resulting multi-threading, however, requires special caution to avoid data races and

other synchronization issues. This so called thread safety is not only needed in the main

application but also in libraries that are used in a multi-threading context.

Points that need synchronization in a multi-threaded implementation to ensure correct

ordering of buffers are handover of the handler and buffer, testing for completion and

removal of the handler and buffer. The first and the latter are easy to synchronize, using

mechanism such as a lock guard, the testing operations warrants closer inspection.

The implementation of socket communication inside preCICE is based on Boost Asio.

It uses callback functions to signal the completion of an asynchronous request and thus

requires no special synchronization.

MPI implementations are however much less transparent. According to [48, p. 12.4]
MPI defines four levels of thread safety

THREAD_SINGLE Only one thread will execute

168

5.4 Scaling & Compatibility

A

B

FI FA

AFF

FI FA

AFF

FI

t2 t3

idle idle

. . .

. . .

Runtime t

A

B

FI FA

AFF

FI FA

AFF

Buffer

t2 t3

t2 t3

. . .

. . .

Figure 5.8: One way coupling scenario between participant A, performing incompressible
fluid (FI), followed by near-field acoustic simulation (FA). The near-field acous-
tics solver performs subcyling and the result of each sub-step is transmitted to
far-field acoustic solver (AFF). Top: Without buffering idle times for participant
B are created. FA is bound to AFF though send operations, therefore, the run-
times of FA and AFF are matched through careful load-balancing. Bottom: A
send buffer decouples fluid and acoustics solver for send operations, prevents
idle times and allows for more flexible processor assignment.

169

5 Efficient Communication on HPC Machines

System Implementation Default level Highest level

ArchLinux Open MPI 3.1.0 Single Multiple
ArchLinux Open MPI 4.0.1 Single Multiple
ArchLinux MPICH 3.3 Single Multiple
Ubuntu 16.04 Open MPI 1.10.2 Single Serialized
Ubuntu 16.04 MPICH 3.2 Single Multiple
SuperMUC Intel MPI 2017.4 Funneled Multiple
SuperMUC IBM MPI 1.4 Single Multiple
HazelHen Cray MPICH 7.70 Single Serialized

Table 5.1: Highest provided and default level of thread safety of different MPI implementa-
tions / systems

THREAD_FUNNELED Multiple threads may be running, but only the main thread makes

MPI calls

SERIALIZED MPI calls are allowed from multiple threads, but not concurrently, only one

at a time

MULTIPLE Multiple threads are possible, with no restrictions

While one might think, that a call merely testing a request for completion is read-only on

internal MPI data structures, each call to an MPI function triggers the progress engine and

may as well initiate pending sending or receiving operations. The multi-threaded buffer

manager requires the highest level of thread safety, which is MPI_THREAD_MULTIPLE.

This can become problematic due to two different reasons. Table 5.1 shows a sample of

the default and highest level of thread safety different MPI implementations provide. Two

of the tested implementations do not provide the highest level and would, thus, be unable

to use the buffer manager or even to safely run preCICE as a whole.

Furthermore, the desired level of thread safety must be requested at initialization time

by a call to MPI_Init_thread. In a typical simulation setup involving preCICE, the MPI

initialization is done by the host application, i.e., the solver. preCICE has no influence on

the kind of MPI initialization without additional cooperation from the adapter or the solver.

Such a cooperation, however, is not desirable in terms of easy black-box integration. The

default level provided, furthermore, is insufficient for all implementations.

Because of the problems outlined above, a non-threaded implementation was developed.

The implementation consists of two parts:

(i) The higher-level part takes care of the memory management of the buffers. Data

buffers which are sent asynchronously are saved in a list together with their respective

170

5.5 Conclusions

request. The requests saved in the list are regularly checked for the their status and the

memory is freed if the data was sent. For reasons given above, no thread is used here and,

instead, the checks are triggered at certain occasions, e.g., after a new asynchronous send

operation was dispatched and before the communication is destructed.

(ii) The lower-level part is only relevant for TCP socket communication. Asynchronous

sending operations can “overwrite” itself, i.e., a buffer which is not yet sent completely is

then sent interleaved with other chunks of data that can originate from asynchronous or

synchronous send operations initiated after the first. This obviously leads to mangled data

at the recipient. For that reasons, asynchronous send operations on TCP sockets are not

directly given to the TCP stack, but instead placed in a queue. Using a callback mechanism,

a completed operation calls the next one in the queue. Likewise, a queue sweep is initiated

whenever a new element has been added to it. MPI does not require such a mechanism, as

it guarantees to preserve the order of messages.

The effectiveness of this change has been validated using the fence test case on the

SuperMUC system, see Fig. 5.7 for description. The case was intentionally configured with

a high load imbalance, giving 124 cores to FASTEST, performing the inner, fluid simulation

and only 2 cores to Ateles for the outer, far-field acoustic simulation. Before the simulation

was terminated after 30 minutes, the decoupled variant was able to perform 1963 coupling

iterations compared to 55 iterations for the non-decoupled variant.

5.5 Conclusions

preCICE implements three different communication channels needed for distributed, par-

titioned multi-physics simulations. These three channels, which are MasterSlave, Master

and M2N communication, are realized using either TCP or MPI in different variants.

During initialization, a large number of connection tokens must be passed from each rank

at one participant to the other participant. To reduce the load on the file system caused by

creating a large number of files containing connection information, a flexible and future

proof scheme to distribute that information among directories and files has been presented.

MPI is the state of the art communication protocol in scientific computing, shining with

its collective operations and hardware support from HPC vendors. However, preCICE uses

significant parts of the dynamic process management features from the MPI standard. While

testing on different machines, it has turned out that this part of the standard is problematic

in practice. This ranges from crucial features not being supported to more subtle limitations

such as severe performance degradation or limits in the number of ranks. For these reasons,

171

5 Efficient Communication on HPC Machines

a mature TCP sockets implementation is, though inferior in theory, a must-have.

In preCICE, the MPI ports mirrored the TCP implementation, in so far that it used one

handle (communicator or socket, respectively) for each connection. For MPI, this turned

out to result in sub-optimal results performance wise. Using just one communicator that

encompasses all ranks, even if a connection to some of the ranks is not required, results in

superior performance.

The low-level characteristics of TCP raises distinct challenges. The lacking guarantees

regarding message order are countered by implementing a message queuing system inside

preCICE. This enables preCICE to fully asynchronously perform send operations, a use case

that is motivated from a concrete issue that arose in the ExaFSA project, see Sec. 1.2.

172

6 Software Development

Computer science research is different from these more traditional

disciplines. Philosophically it differs from the physical sciences

because it seeks not to discover, explain, or exploit the natural world,

but instead to study the properties of machines of human creation. In

this it is analogous to mathematics, and indeed the “science” part of

computer science is, for the most part mathematical in spirit. But an

inevitable aspect of computer science is the creation of computer

programs: objects that, though intangible, are subject to commercial

exchange.

Dennis Ritchie

For a computer scientist, the software is not only a tool for research, but can be the

objective of research itself.

In this chapter, I will present how the preCICE project tackles challenges, that arise

with developing a partitioned, multi-physics simulation software, focused on large HPC

installations.

Developing software is not only about technical aspects, but also a product of a team effort.

The development process of scientific software differs substantially from that of commercial

software. Commercial software is developed using requirements engineering and strong

leadership. The explorative nature of scientific application development makes it impossible

to apply a strict process of requirements elicitation. Furthermore, the involvement of

different stakeholders such as students focusing on their thesis, principal investigators

focusing on specific projects and domain specific scientists on a particular problem, often

results in a highly distributed development process. For characterizations and models of

scientific software development, see [5, 27, 94], or [76] for an literature overview.

In this section, I will concentrate on the technical aspects of certain parts of preCICE’s

development, mainly those of profiling and testing.

173

6 Software Development

6.1 Profiling

Profiling is a form of program analysis that measures the application during runtime.

Quantities that are measured can include but are not limited to memory consumption, hard

disk or network input/output operations and frequency or duration of certain function calls.

The retrieved data from the profiling run serves as a database for subsequent optimization

of the application.

Profiling, together with rigorous systematic testing is a pre-requisite for ensuring high-

quality and reliability of research software, in particular if developed in large and diverse

teams. Leveraging the high computing power of modern HPC machines makes thorough

profiling crucial for applications in the high-performance computing area.

Profiling is achieved by instrumenting either the program source code or its binary

executable form using a tool called a profiler (or code profiler). Profilers may use a number

of different techniques, such as event-based, statistical, instrumented, and simulation

methods.

Sequential applications can usually be profiled using methods such as

Automatic instrumentation modifies the application’s source code. This happens, using

a preprocessor or by support from the compiler itself. Gprof [52] is a popular, though

slightly outdated, example of compiler based instrumentation. It adds moderate

overhead of five to thirty percent to the runtime of the program being profiled.

Manual instrumentation relies on the developer to choose the source code blocks and

functions to be instrumented using statements from the respective programming

language or using a preprocessor language. This is something every developer usually

does in a more or less systematic manner, ranging from simple timing statements

scattered in the code to elaborate frameworks.

Sampling measures the application’s state at certain time intervals. It usually uses support

of the CPU to count hardware events such as instructions executed or cache misses and

does not rely on instrumentation. Whereas instrumentation can provide exact times,

sampling is inherently a statistical approximation. perf1 is a well known example of

a sampling tool.

While manual instrumentation for a complete application is certainly too much effort, it

allows the programmer to focus only on relevant parts and to add supplemental information,

such as iteration counts or FLOPS spent.
1https://perf.wiki.kernel.org/index.php/Main_Page

174

https://perf.wiki.kernel.org/index.php/Main_Page

6.1 Profiling

Profiling distributed, parallel applications adds additional complexity to the task. While

a single rank of a parallel application can be profiled the same way as a purely sequential

application, the developer is usually also interested in the parallel behavior of the application,

to identify dependencies between ranks, load imbalances or an overview over all ranks,

something which can become challenging for high rank counts.

In order to support the developer as well as the user to perform manual instrumentation

and analyse the output in a sustainable way, the EventTimings2 package has been developed

and integrated into preCICE. It is available as a stand-alone project, licensed under LGPL3

[51]. Requiring no external dependencies beyond the C++11 standard library and MPI

makes integration into existing codes effortless.

It is partly inspired by the PETSc Logging subsystem, sharing the idea of an Event that can

be started and stopped at certain locations in the code. On the other hand, by employing

modern object oriented techniques based on the C++11 standard, it requires less boiler-

plate code.

The EventTimings framework is designed for software that is parallelized using the

Message Passing Framework (MPI). Thus, at the end of a profiled run, data from all ranks

are collected and timings are normalized, as detailed in Sec. 6.1.1.

The overhead of profiling and data acquisition is small enough, so that the profiling code

could stay in place for production runs.

Listing 6.1 shows the basic initialization and finalization of the framework.

1 EventRegistry::instance().initialize(appName, runName, mpiComm);
2 [...]
3 EventRegistry::instance().finalize();
4 EventRegistry::instance().printAll();

Listing 6.1: EventTimings initialization with optional parameters and de-initialization

During initialization an optional appName and runName can be given. The first identifies

the participant and influences the naming of the output files. The latter can be freely

chosen. It is written to the result files and can be used to identify a particular test setup

later. The MPI communicator used defaults to MPI_COMM_WORLD. It can be set to the one used

by the application. Note, that all ranks that use events must be contained in the supplied

communicator.

The core is the EventRegistry singleton, which holds an RankData instance, storing the

information for all events of a particular rank. EventData instances are used to store infor-

mation for each distinctively named event. Information stored there is already aggregated,

2https://github.com/precice/EventTimings

175

6 Software Development

e.g., minimum, maximum and average execution times. The principal components of

framework are shown in Fig. 6.1.

1 Event e("Name", barrier, autostart);
2 // timed code
3 e.pause();
4 // non-timed code
5 e.start();
6 // timed code
7 e.addData("IterationNumber", iterationNumber);
8 e.stop();

Listing 6.2: Usage example for an Event, demonstrating creation, pausing and re-starting
of an event, as well as adding supplemental data.

Listing 6.2 demonstrates the basic use of events. Events posses three states, which are

started, paused and stopped. Pausing and restarting an event merely stops and restarts

the timer, whereas stopping and restarting an event is counted as a new invocation of the

event. All state changes are logged, collected from all ranks, normalized and written to

a log file named appName-events.json upon finalization. The log file is formatted using

the JavaScript Object Notation (JSON), which has evolved as a standard for lightweight

hierarchical data formats. The format can easily be parsed for post-processing. The Python

programming language includes a JSON parser in its standard library.

Additionally, arbitrary integer data can be appended to an event, such as an iteration

number. The data are stored in a key-value store associated with an event name. Like the

timings, they are written to the JSON file at the end of a run.

Synchronisation points In order to achieve maximal parallel efficiency, synchronization

points, such as barriers, should be limited to a minimum. On the other hand, to gain insight

into the parallel behavior of an application, it can be helpful to have explicit synchronisation

points. For that, preCICE offers a configuration option to set a sync mode, enabling explicit

synchronisation. Synchronisation points at the beginning and end of most events are

then activated and work at the scope of the participant. Additionally, an inter-participant

synchronisation is performed before the beginning of the send and receive operations of

coupling data between participants. While synchronisation inside a participant can easily

be achieved using a call to MPI_Barrier, inter-participant synchronisation is implemented

using a three-way handshake, i.e., send-receive-send operations on the sender side and

receive-send-receive on the receiver side.

176

6.1 Profiling

1 *

1

*

1
*

Event

+ name : string
+ stateChanges : StateChange [*]

+ start(barrier : bool) : void
+ stop(barrier : bool) : void
+ pause(barrier : bool) : void
+ addData(name : string, data : int)

StateChange

+ State = {started, stopped, paused}
+ Clock

EventData

+ rank : int
+ max : Clock::duration
+ min : Clock::duration
+ total : Clock::duration
+ stateChanges : StateChange [*]
- data : int [*]

+ put(event : Event) : void
+ getAvg / Max / Min / Total : long
+ getCount : long

RankData

+ rank : int
+ initializedAt, finalizedAt : time_point
+ initializedAtTicks, finalizedAtTicks : time_ticks

+ initialize() : void
+ finalize() : void
+ put(event : Event) : void
+ normalizeTo(t0 : time_point)

Figure 6.1: UML-like diagram of the principal components of the EventTimings library.
An Event represents a single event and its state. After stopping the event it is
aggregated in the EventData class, which stores data for one type of event at a
particular rank. All event data at one rank are saved in the RankData class.

177

6 Software Development

6.1.1 Measuring Time for Distributed Applications

Selecting a Suitable Clock Source

Performing exact timings on modern multi-tasking computers and correlating them between

different machines is a challenging task. Some of the intricate complexity of establishing a

common time base across a set of nodes in a distributed system is detailed, e.g., in [67].
Critical features of a clock are

Accuracy in terms of the official standard time as well as stability of the tick frequency.

This can only be influenced by the underlying hardware and the operator thereof. In

the following, I assume this criterion to be met.

Monotonicity guarantees that the time can never decrease as the physical time moves

forward. A decrease in time can happen if the system clock is adjusted at intervals

to maintain accuracy. Monotonicity is required for a reliable measurement of time

durations.

Resolution gives the smallest time interval or tick that can be measured by the clock.

Absoluteness determines if points from two completely separate measurements can be

correlated, i.e., they are related to a common universal zero-point. Separate here

means, that they are done on different machines, from different processes or on a

system that was rebooted between measurements.

Accuracy to the official standard time and monotonicity are contradicting feature require-

ments as, to keep accuracy, the clock needs to be re-adjusted periodically. Consequently, no

available clock source can deliver all of these features.

This contradiction is also reflected in the low level clock sources, as offered by the

POSIX functions for Linux systems. Clock sources available are either CLOCK_REALTIME or

CLOCK_MONOTONIC. The latter measures the time since some unspecified starting point.

The system clock (also called wall-clock or real time clock) can be changed in both

forward and backward direction anytime, e.g. by the NTP daemon. On the other hand, the

monotonic clock acts like a stopwatch, which is suitable for measuring durations, but can

not be correlated to a specific time point.

The C++ programming language introduced the <chrono> library in its 2011 revision

[62], providing an object-oriented and type safe method to work with time points and

durations. The design of the library is such that accuracy loosing conversions require

explicit casting. Time points and durations are derived from a specific clock source to retain

178

6.1 Profiling

its accuracy. The library offers two clock sources, a system clock and a steady clock. While

the first meets the feature of absoluteness, the latter does not, but provides a monotonic

clock, suited for duration measurements.

A much simpler approach is offered by the MPI’s MPI_Wtime [48, section 8.6] function.

It returns a double-precision number of seconds since some arbitrary time in the past,

also called the epoch. This time point is guaranteed to not change during the life of a

process. Therefore, this clock source provides monotonicity and sufficient resolution, but

no absoluteness.

As both preCICE and the EventTimings framework are implemented in terms of C++11,

the chrono library was chosen.

Normalizing measured times

The duration of an event is logged using the start and end time point of it, given by the

steady clock. For a useful interpretation of the measurements over multiple ranks and

participants, it is required to absolutely correlate the start and end time points of events.

Since the steady clock’s epoch can be different for each machine, they cannot be related to

the system clock without further reference.

For every rank, at the beginning of the run, the system clock and steady clock times,

t0 and t̃0 are recorded. These times can later be used to normalize the timestamps to a

common t0. This t0 is chosen as the first, i.e., minimum starting time over all ranks, as

shown in Alg. 6.

Data: Ranks R, Timestamps S
Result: Normalized time stamps s ∈ S

1 t0 :=min
r∈R

t0,r

2 for r ∈ R do
3 δ := t0,r − t0

4 for s ∈ Sr do
5 s← s− t̃0,r +δ
6 end
7 end

Algorithm 6: Time normalization among ranks of one participant of a coupled
simulation. Time stamps relative to the steady clock are denoted as t̃. Line 1 can
be implemented as an MPI reduce collective operation. The following lines are
rank-local and can be executed in parallel.

Algorithm 6 is employed right after a run and normalizes the times for all ranks of a

179

6 Software Development

single participant in a coupled simulation. In a partitioned coupling scenario, however,

there is the need to also correlate times of events from different participants, stemming

from two or more different log files. As a post-processing step, a second normalization is

employed. Very similar to the rank-scoped normalization, Alg. 7 shows the normalization

among the participants.

Data: Participants P, Timestamps S
Result: Normalized time stamps s ∈ S

1 t0 :=min
p∈P

t0,p

2 for p ∈ P do
3 δ := t0 − t0,p

4 for s ∈ Sp do
5 s← s+δ
6 end
7 end

Algorithm 7: Time normalization among multiple participants. Ranks of one
participant are already normalized by means of the previous algorithm.

As this algorithm works on the log files, the accuracy is limited to the resolution used in

the log files, which is currently milliseconds. Algorithm 6, on the other hand, works on

chrono library objects and therefore retains the maximal accuracy available.

6.1.2 Visualization

The insight that can be gained from data acquired during a run is not only related to

correctness and the amount of data. A coupled parallel simulation can generate tens of

thousands of events, resulting in huge log files, which are incomprehensible without proper

visualization. We use the trace-viewer3, a JavaScript application that powers the front end

of Chrome’s about:tracing interface and the Android systrace. The application also uses

the concept of events that are recorded when started or stopped and its data model maps

nicely with the data generated by the EventTimings framework. The EventTimings output

files for a single participant or from a run with multiple participants can be converted

into one trace file in the trace-viewers format4. For that, a utility named events2trace.py

is provided. This post-processing step also performs the time normalization as shown in

Alg. 7.

3https://github.com/catapult-project/catapult/tree/master/tracing
4https://docs.google.com/document/d/1CvAClvFfyA5R-PhYUmn5OOQtYMH4h6I0nSsKchNAySU

180

https://github.com/catapult-project/catapult/tree/master/tracing
https://docs.google.com/document/d/1CvAClvFfyA5R-PhYUmn5OOQtYMH4h6I0nSsKchNAySU

6.2 Testing

Figure 6.2: Screenshot of EventTimings visualization using the trace-viewer. It shows the
startup of a coupled simulation consisting of two participants, “Fluid” and
“Solid”.

Figure 6.2 shows the events at the beginning of a coupled simulation, with the times being

normalized according to the aforementioned algorithms. Using the trace-viewer allows to

pan and zoom freely and thus to analyze events ranging from durations of milliseconds to

hours. It also allows to select events inside a certain time slice and query them for statistics,

such as average times, or the time that this event is active exclusively.

To facilitate using a wider range of visualization tools, the Open Trace Format Version 2

(OTF2)5 could be added as an output format in the future. The OTF2 format is used by

various post-processing tools, such as Scalasca Cube6 or the Intel Trace Analyzer7. OTF2

uses the a similar data model, also driven by the concept of events. However, the format

is much more powerful, including record types, such as for I/O and MPI send or receive

operations.

6.2 Testing

Software testing is well established and recognized as a good practice of software devel-

opment. While this is also true for scientific software, this type of software holds special

challenges to software testing [57]. The exploratory nature of scientific programming

makes using a test driven approach hard, since test results are defined as a formal set of

requirements. Whereas in a scientific process, they are not known a priori, but established

5https://www.vi-hps.org/projects/score-p/
6http://scalasca.org/software/cube-4.x/
7https://software.intel.com/en-us/trace-analyzer

181

https://www.vi-hps.org/projects/score-p/
http://scalasca.org/software/cube-4.x/
https://software.intel.com/en-us/trace-analyzer

6 Software Development

and refined iteratively. These kinds of problems are called oracle problems. Kanewala and

Bieman [65] identify the oracle problems as one of the two main challenges in testing sci-

entific software. Cultural differences between domain scientists and software engineers is

identified as the second main challenge. preCICE can be perceived as an effort to overcome

the latter challenge. The partitioned coupling approach can help to maintain a separation

of concerns between the solver or simulation experts and the developers of the coupling

library. Furthermore, the partitioned approach also enables to consider the participating

solvers as independent instances and, thus, leads to improved testability.

Studies about defect density claim a rate of about 20 to 50 errors per 1000 lines of

code [40, 74] in general software projects. Scientific software projects are frequently not

developed by computer scientists or trained software developers but by scientists working

in a particular domain, such as physicists or chemists. This gives reason, that the error rate

in scientific software is even higher than in commercial projects.

Automatic software tests are one step to reduce the error rate in software. They can

be embedded in a continuous integration (CI) process [37]. A CI server is the core of a

continuous integration system. It builds and tests the software in a reproducible manner

after each source code change. preCICE uses Travis CI8, a cloud-based CI service that can

be used at no charge from open-source projects.

In this section, I will address the special challenges a parallel coupling software faces

when developing unit and system tests. For a general introduction to testing, I refer to

Continuous Integration: Improving Software Quality and Reducing Risk [37].

6.2.1 Unit Tests

Unit tests are tests of the smallest functional units of a software, i.e., single functions or

classes. Unit tests consist of test cases that are arranged in test suites. Test suites can be

nested in a hierarchical manner. Each test case tests one functionality using one or more

assertions. Tests that require certain pre-conditions can declare a fixture to setup and tear

down prerequisites of the tests. To ease the development of unit tests, the Boost Test9

framework is used for preCICE.

Much of the functionality contained in preCICE can not be tested on a single processor

but only in parallel. We use so-called decorators to express requirements regarding the

parallel execution of tests in a declarative manner.

8https://travis-ci.org
9https://www.boost.org/doc/libs/1_69_0/libs/test/doc/html/index.html

182

https://travis-ci.org
https://www.boost.org/doc/libs/1_69_0/libs/test/doc/html/index.html

6.2 Testing

Single Rank declares that the MPI communicator used by this test should be restricted

to only contain a single processor. The test itself, however, is still executed on all

processors, albeit each in their own disjoint communication space. A use case is a

MPI aware function that should be tested on a single processor.

On Ranks allows to restrict the execution of the test to certain processors only, e.g., for

testing a function on a specific number of processors.

On Master likewise restricts the execution to processor zero. This can be used for non-

parallel code that should not be run independently on multiple ranks, e.g, because it

performs input/output operations.

Min Ranks declares the minimum size of the communicator required by the test to run. If

the test binary is executed on an insufficient number of processors, the test is skipped.

While the declarations above restrict the execution of tests to certain conditions or modify

the communication environment, fixtures can be used to establish pre- or post-conditions

for the tests. They can be used to setup and tear-down connections before and after a test,

respectively. To understand the different kinds of communication channels preCICE uses,

please refer to Chapter 5.

Sync Processors forces the processors to sync before and after a test, e.g., using an

MPI_Barrier. This is especially useful to keep the output of the test run on different

ranks closely together.

MPI Comm Restrict accepts a vector of ranks and creates an MPI communicator that

only consists of the given ranks. After the test, the global communicator is reset to

its former state.

Master Com Fixture establishes a communication between processor 0 as master and

all other processors as slaves, used for, e.g., testing the re-partitioning of a received

mesh inside one participant.

M2N Fixture creates an M2N connection between two participants. The fixture declares

an instance of com::M2N that can be used by the test to access the communication.

Split Participants Fixture splits the communicator into two groups, without establish-

ing a communication. The first group consists of the former rank 0, the second group

contains all other ranks.

183

6 Software Development

To accurately describe the requirements regarding parallel execution, usually multiple

declarations are combined, e.g., to establish a master-slave communication the test obviously

requires a minimum of two processors. Listing 6.3 shows an example of multiple decorators

to setup suitable parallel testing conditions.

1 BOOST_FIXTURE_TEST_CASE(TestName, testing::M2NFixture,
2 * testing::MinRanks(2)
3 * boost::unit_test::fixture<
4 testing::MPICommRestrictFixture>(std::vector<int>({0, 1})))
5 {
6 // test code that needs an established M2N connection
7 BOOST_TEST(m2n.isConnected() == true);
8 }

Listing 6.3: Unit test example with decorators that declares a minimum number of ranks,
a fixture to create and tear-down a M2N connection and restricts the MPI
communicator to only contain ranks 1 and 2

In addition to unit tests, which test the smallest functional units of a software, there are

also integration tests. Integration tests work by combining the basic functionality into higher

level tests. As an example, a unit test uses three test cases to test if a mesh correctly supports

adding and deleting vertices as well as merging with another mesh. The integration test,

on the other hand, creates two participants with meshes, connects them and performs a

mapping between the two participants. In preCICE, integration tests are implemented

similar to unit tests and can use the same set of decorators and fixtures.

6.2.2 System Tests

While the unit and integration tests from the previous section look at the tests from a

developer perspective, system tests perform the testing from a user perspective, i.e., the

system is tested the same way a user would use it.

As preCICE is a library to couple single-physics solvers, these kind of tests require a

minimum of two applications (here, preCICE does not count as a application, since it is

linked to the solver and therefore becomes part of the solver’s process space). To provide

a constant and reliable environment for compilation and execution, we use the Docker10

container platform. Docker provides operating system level virtualization for software

packages, called containers, isolated from each other. Containers are instantiated from

images (the image – container relationship is much like the object – class relationship in

object-oriented programming). Images are created by shell-script like instructions from a

Dockerfile and can be derived from already existing images.

10https://www.docker.com

184

https://www.docker.com

6.2 Testing

The first version of the system test framework11 was developed by Hoshaber as part of

his Bachelor thesis [59]. The principal steps of a test run, following a build-run-compare

scheme are

1. Creation of the preCICE base image from the Dockerfile by cloning the repository

and build preCICE from source.

2. Based on this image, the actual solver image is created. It contains both solvers

and the test data, i.e., the geometry and description of the case that is going to be

simulated.

3. Running the simulation. At the end of the simulation, the result data are copied into

a designated directory inside the container.

4. Copying the results from the container and comparing it with the given reference

data.

5. A report of the test outcome is uploaded to a separate repository. In case of a failing

test, the generated results are also included.

Currently, test cases for three different open-source solvers are implemented. OpenFOAM

[109] is used for fluid and conjugate heat-transfer simulations. Calculix [33] is a free

three-dimensional structural finite element program. It is coupled with the SU2 [39]
fluid-simulation code.

Using these solvers, three system test cases exist:

OpenFOAM - Calculix is a fluid–heat-transfer simulation of a shell-and-tube heat ex-

changer. It features a complicated geometry and laminar flow. The case can also be

found as part of the preCICE tutorials12. See Sec. 4.10 for a more information on

that case.

OpenFOAM - OpenFOAM simulates a conjugate heat-transfer between a plate and a

fluid. OpenFOAM is used for both participants, simulating the fluid flow and the

temperature distribution in the plate.

SU2 - Calculix models a moving fluid in a channel that actuates a flexible flap.

11https://github.com/precice/systemtests
12https://github.com/precice/tutorials

185

https://github.com/precice/systemtests
https://github.com/precice/tutorials

6 Software Development

make_mesh.py

x , y,δx ,δ y

eval_mesh.pymesh.txt

f (x)

partition_mesh.pymesh.txt

mesh.vtk
n= 256

mesh/[0,. . . ,n]mpiexec preciceMap...join_mesh.py mesh/[0,. . . ,n]

mesh.txt mesh.vtk

Figure 6.3: Schematics and workflow of the ASTE test suite, showing creation of a mesh,
evaluating a function on it, execution and reconstruction of the result mesh.
Executables are shown in rectangles, data in rectangles with rounded corners,
input in ellipses.

The system tests are integrated into the continuous integration system. Because the

computational load by the compilation of the solvers and the subsequent simulation runs

are considerably high, the system tests are not run on every commit. Instead, they are are

executed on a daily basis on the recent development branch of preCICE.

6.2.3 ASTE – A Flexible Coupling Test Framework

ASTE13 (dubbed Artificial Solver Testing Environment) is a suite of tools that are developed

to ease the testing of preCICE. As a library, preCICE itself is intended to be used by other

applications. ASTE uses the official API of preCICE and behaves like a solver to preCICE.

To be flexible and adaptable, ASTE is developed as a suite of small applications, most of

them written in the Python programming language. Figure 6.3 shows a workflow how a

mesh can be created with values from a function evaluated on it and partitioned to the

target number of processes. After execution of preciceMap which is the solver to preCICE,

the output mesh can be reconstructed and analyzed.

make_mesh.py can be used to generate a rectangular uniform mesh in two dimensions

with given extension in x- and y-direction and a given number of elements in each direction.

The mesh is technically three-dimensional, but its extension in z-direction is 0. The mesh is

saved as a textual representation in the format x y z v, where v is a scalar value for the

13https://github.com/precice/aste

186

https://github.com/precice/aste

6.2 Testing

particular vertex, initially set to zero. The value v can be set by executing eval_mesh.py,

which is supplied a function f (x , y, z), evaluated on each vertex. v represents the value

that is send/mapped to the other participant via preCICE.

partition_mesh.py decomposes the mesh into a given number of partitions. It uses

the VTK toolkit [93], which enables it to read in a range of mesh formats, including,

but not limited to, variants of VTK, STL (stereo-lithography) meshes, PLY Polygon File

Format [104] and, of course, the textual format generated by make_mesh.py. To achieve a

suitable decomposition, different algorithms, based on the existence of mesh connectivity

information and the geometry of the mesh can be used. Some mesh formats contain cell

connectivity information. This enables the use of graph-based partitioning algorithms,

such as METIS [66]. If no such information is available, k-means clustering can generate

a suitable decomposition for meshes with a challenging geometry. The outcome of the

k-means algorithm heavily depends on the initial placement of k centroids that form the

centers of the clusters. In some cases, the method can return empty clusters, i.e., processors

to which are no vertices are assigned. A warning is issued in such a case. A third method of

decomposition is meant to be used on uniform, quasi two-dimensional meshes, such as the

ones generated by ASTE. It provides a predictable decomposition into uniform, rectangular

partitions. Figure 6.4 compares the outcome of the uniform and k-means partitioning.

The partitioned mesh is read by preciceMap, which implements a minimal client to

preCICE. It is given the mesh directory and the participant, which can be either A or B,

and the XML configuration file of preCICE. As the application is focused on testing the

interpolation implemented in preCICE, it only does a mapping from A to B and writes out

the received values. The output mesh directory can be transformed into either a VTK file or

the textual mesh representation using join_mesh.py.

187

6 Software Development

Figure 6.4: Different decompositions of a 100× 100 mesh to 15 partitions. Left: Uniform
partitioning, right k-means clustering

188

7 Conclusions

There is no real ending. Its just the place where you stop the story.

Frank Herbert

This thesis touches two, seemingly disconnected, fields: Interpolation and communication

in the context of partitioned, black-box multi-physics simulations.

The interpolation with radial-basis functions proved to be a simple, yet powerful inter-

polation method. Compared with other interpolation methods, it stands out by requiring

only minimal information from the input and output meshes. That makes it an ideal choice

for interpolation in black-box multi-physics scenarios. Still, interpolation in the aforemen-

tioned context faces special challenges for the RBF method. Neither input nor output points

can be chosen by the algorithm but are given and fixed by the coupling participants. Many

extensions of the RBF interpolation assume that either one or both point sets can be chosen

by the algorithm. This makes these kinds of extensions to the algorithm, e.g., multi-scale

interpolation and adaptive methods that add or remove points based on a local error esti-

mate not an option. The optimal support radius, as one of the most important parameters

of the RBF algorithm is tightly linked to the mesh density. On non-uniform meshes, the

choice of the basis function’s shape parameter is always a trade-off between the dense and

coarse parts of the mesh. For measuring the error of conservative interpolation a new error

metric is presented and successfully used in the evaluation. Despite the shortcomings in

accuracy due to error saturation, localized Gaussian basis functions with a support radius

of m = 6 . . . 8 provide a good compromise between stability and accuracy if combined with

additional measures such as re-scaling as implemented in this thesis. The insights gained

from the theoretical and experimental evaluations led to a highly-optimized algorithm for

RBF interpolation. It is tailored for the very specific requirements that come with preCICE’s

re-partitioning strategy and the black-box approach as such. I integrated a tree index that

allows for fast spatial queries and, thus to perform an efficient construction of the inter-

polation matrices. The developed parallel algorithm proved to scale well and its clean

implementation provide a viable base for future extensions.

The second field, communication, involves setting up communication networks for

189

7 Conclusions

transmitting data between processors of one participant as well as between different

participants. In an ideal world, MPI would be the only protocol required for communication,

as it is tailored for HPC applications. Solver applications potentially bring their own

implementation of MPI or alike with them and are tied to it, potentially not allowing

a library to integrate with it. Furthermore, the implementation status of MPI regarding

missing parts in the implementation of the required dynamic process management brings

additional uncertainty. The topic of communication therefore contrasts interpolation by

being less of a mathematical and algorithmic topic but tightly connected to the architecture

of existing software and hardware systems. The newly implemented version of the MPI

Ports communication together with the new scheme to exchange the initial connection

information shows great improvements for the initialization phase and thus paves the way to

even higher number of processors. The additional buffering in the TCP/IP implementation

contributes to making the high-level communication of preCICE independent of the lower-

level parts and to make TCP/IP “feel” more like the more sophisticated MPI. The decoupling

of participants omits idle times that are unnecessary from an algorithmic point of view.

Upon closer inspection, however, interpolation and communication show significant

overlap in the way they are used within preCICE. The layout of the parallel data structures

in the implemented algorithm is determined by the layout of the respective participants.

Communication, on the other hand, is steered by the data requirements of the interpolation.

The uncertainty that comes with not being in control of the parallel layout requires careful

implementation of the interpolation and communication by handling special cases, such as

empty processors or disconnected partitions on one processor.

Partitioned simulations also provide new challenges with respect to profiling, debugging

and testing. To profile preCICE on thousands of processors the EventTimings framework

has been developed. It can effortless be integrated into other codes and the generated

structured output files can easily be post-processed. For that reason, it is designed as a

project independent from preCICE. In addition, the unit and integration test framework has

been extended in this work to allow tests to express the requirements regarding parallel

execution in a declarative manner. Furthermore, the system tests framework ensures easy

testability and reproducible results of multi-solver configurations.

The preCICE project itself is on the best way to become a self-sustainable and healthy

open-source project. The investment into clean code together with automated and thorough

testing pays off. A growing number of adapters to different solvers are maintained within

the project or as a part of the solvers itself. The mailing list and support channels reflect a

growing number of active users who employ preCICE in their multi-physics simulations.

190

Bibliography

[1] Bob Alverson et al. Cray XC Series Network. Tech. rep. Cray Inc., 2012, pp. 1–28.

[2] E. Anderson et al. LAPACK Users’ Guide. Third. Philadelphia, PA: Society for Indus-

trial and Applied Mathematics, 1999.

[3] Satish Balay et al. PETSc Users Manual. Argonne National Laboratory, 2017.

[4] Satish Balay et al. PETSc Web page. http://www.mcs.anl.gov/petsc. 2016.

[5] Roscoe A Bartlett. “Integration strategies for Computational Science & Engineering

software”. In: 2009 ICSE Workshop on Software Engineering for Computational

Science and Engineering. Vancouver, BC, Canada: IEEE, May 2009, pp. 35–42.

[6] Armin Beckert and Holger Wendland. “Multivariate interpolation for fluid-structure-

interaction problems using radial basis functions”. In: Aerospace Science and Tech-

nology 5.2 (Feb. 2001), pp. 125–134.

[7] Norbert Beckmann et al. “The R*-tree: an efficient and robust access method for

points and rectangles”. In: SIGMOD Rec. 19.2 (1990), pp. 322–331.

[8] C. Bernardi, Y. Maday, and A. T. Patera. “Domain Decomposition by the Mortar

Element Method”. In: Asymptotic and Numerical Methods for Partial Differential

Equations with Critical Parameters. Ed. by Hans G. Kaper, Marc Garbey, and Gail W.

Pieper. Dordrecht: Springer Netherlands, 1993, pp. 269–286.

[9] David Blom et al. “A Review on Fast Quasi-Newton and Accelerated Fixed-Point

Iterations for Partitioned FluidStructure Interaction Simulation”. In: Advances in

Computational Fluid-Structure Interaction and Flow Simulation. Ed. by Yuri Bazilevs

and Kenji Takizawa. Springer International Publishing, 2016, pp. 257–269.

[10] Aukje de Boer, Alexander van Zuijlen, and Hester Bijl. “Comparison of conservative

and consistent approaches for the coupling of non-matching meshes”. In: Computer

Methods in Applied Mechanics and Engineering 197.49-50 (Sept. 2008), pp. 4284–

4297.

191

http://www.mcs.anl.gov/petsc

Bibliography

[11] Aukje de Boer, Alexander van Zuijlen, and Hester Bijl. “Review of coupling meth-

ods for non-matching meshes”. In: Computer Methods in Applied Mechanics and

Engineering 196.8 (Jan. 2007), pp. 1515–1525.

[12] John P. Boyd. “Error saturation in Gaussian radial basis functions on a finite interval”.

In: Journal of Computational and Applied Mathematics 234.5 (2010), pp. 1435–1441.

[13] John P. Boyd. “Six strategies for defeating the Runge Phenomenon in Gaussian radial

basis functions on a finite interval”. In: Computers & Mathematics with Applications

60.12 (Dec. 2010), pp. 3108–3122.

[14] John P. Boyd and Lauren R. Bridge. “Sensitivity of RBF interpolation on an other-

wise uniform grid with a point omitted or slightly shifted”. In: Applied Numerical

Mathematics 60.7 (2010), pp. 659–672.

[15] John P. Boyd and Kenneth W. Gildersleeve. “Numerical experiments on the condi-

tion number of the interpolation matrices for radial basis functions”. In: Applied

Numerical Mathematics 61.4 (2011), pp. 443–459.

[16] John P. Boyd and Lei Wang. “Asymptotic coefficients for Gaussian radial basis

function interpolants”. In: Applied Mathematics and Computation 216.8 (2010),

pp. 2394–2407.

[17] Markus Brenk. “Algorithmische Aspekte der Fluid-Struktur-Wechselwirkung auf

kartesischen Gittern”. PhD Thesis. University of Stuttgart, 2007.

[18] I. N. Bronstein et al. Taschenbuch der Mathematik. 6. Frankfurt am Main: Verlag

Harri Deutsch, 2005.

[19] Martin Buhmann. “Radial basis functions”. In: Acta Numerica 9.January 2000

(2000), pp. 1–38.

[20] Martin D. Buhmann. Radial Basis Functions - Theory and Implementations. Cam-

bridge Monographs on Applied and Computational Mathematics. Cambridge Uni-

versity Press, 2003.

[21] Hans-Joachim Bungartz et al. “preCICE - A Fully Parallel Library for Multi-Physics

Surface Coupling”. In: Computers and Fluids 141 (2016), pp. 250–258.

[22] Vint Cerf et al. “BufferBloat: What’s wrong with the internet?” In: Communications

of the ACM 55.2 (Feb. 2012), p. 40.

192

[23] Tony F. Chan and Henk A. Van der Vorst. “Approximate and Incomplete Factoriza-

tions”. In: Parallel Numerical Algorithms. Ed. by David E. Keyes, Ahmed Sameh,

and V. Venkatakrishnan. Dordrecht: Springer Netherlands, 1997, pp. 167–202.

[24] Ward Cheney and David Kincaid. Numerical Mathematics and Computing. Cengage

Learning, 2012.

[25] King Lum Cheung and Ada Wai-chee Fu. “Enhanced Nearest Neighbour Search on

the R-tree”. In: SIGMOD Rec. 27.3 (1998), pp. 16–21.

[26] Davide Cinquegrana and Pier Luigi Vitagliano. “Fluid Structure Interaction Problems

with CIRA structured CFD solver”. In: 6th European Conference on Computational

Mechanics (ECCM 6), 7th European Conference on Computational Fluid Dynamics

(ECFD 7). Ed. by Roger Owen et al. June. Glasgow: International Center for Nu-

merical Methods in Engineerin (CIMNE), 2018.

[27] Carlton A Crabtree et al. “An empirical characterization of scientific software

development projects according to the Boehm and Turner model: A progress report”.

In: 2009 ICSE Workshop on Software Engineering for Computational Science and

Engineering. IEEE, May 2009, pp. 22–27.

[28] Stefano De Marchi, Andrea Idda, and Gabriele Santin. “A rescaled method for RBF

approximation”. In: Springer Proceedings in Mathematics and Statistics 201 (2017),

pp. 39–59. arXiv: 1611.10034.

[29] Stefano De Marchi and Gabriele Santin. “A new stable basis for radial basis function

interpolation”. In: Journal of Computational and Applied Mathematics 253 (Dec.

2013), pp. 1–13.

[30] S. Deering and R. Hinden. Internet Protocol, Version 6 (IPv6) Specification. RFC

8200. Internet Engineering Task Force, July 2017.

[31] Simone Deparis, Davide Forti, and Alfio Quarteroni. “A Rescaled Localized Radial

Basis Function Interpolation on Non-Cartesian and Nonconforming Grids”. In: SIAM

J. Sci. Comput. 36.6 (2014), A2745–A2762.

[32] David Detlefs, Al Dosser, and Benjamin Zorn. “Memory allocation costs in large C

and C++ programs”. In: Software: Practice and Experience 24.6 (1994), pp. 527–

542.

[33] Guido Dhondt. The Finite Element Method for Three-Dimensional Thermomechanical

Applications. Wiley, 2004.

193

https://arxiv.org/abs/1611.10034

Bibliography

[34] Tobin A. Driscoll and Bengt Fornberg. “Interpolation in the limit of increasingly fiat

radial basis functions”. In: Computers and Mathematics with Applications 43 (2002),

pp. 413–422.

[35] Tobin A. Driscoll and Alfa R.H. Heryudono. “Adaptive residual subsampling methods

for radial basis function interpolation and collocation problems”. In: Computers

and Mathematics with Applications 53.6 (2007), pp. 927–939.

[36] Maksymilian Dryja and Olof Widlund. An additive variant of the Schwarz alternating

method for the case of many subregions. Tech. rep. New York: New York University,

Courant Institute of Mathematical Sciences, 1987.

[37] Paul Duvall, Stephen M. Matyas, and Andrew Glover. Continuous Integration: Im-

proving Software Quality and Reducing Risk. Addison-Wesley Signature Series. Upper

Saddle River, NJ: Addison-Wesley, 2007.

[38] D. Eastlake and P. Jones. US Secure Hash Algorithm 1 (SHA1). RFC 3174. Internet

Engineering Task Force, Network Working Group, Sept. 2001.

[39] Thomas D. Economon et al. “SU2: An Open-Source Suite for Multiphysics Simula-

tion and Design”. In: AIAA Journal 54.3 (2015), pp. 828–846.

[40] Nancy Eickelmann and Animesh Anant. “Statistical process control: what you don’t

measure can hurt you!” In: IEEE Software 20.2 (Mar. 2003), pp. 49–51.

[41] Gregory E. Fasshauer and Jack G. Zhang. “On choosing optimal shape parameters

for RBF approximation”. In: Numerical Algorithms 45.1-4 (Aug. 2007), pp. 345–368.

[42] Gregory E. Fasshauer and Jack G. Zhang. “Preconditioning of Radial Basis Function

Interpolation Systems via Accelerated Iterated Approximate Moving Least Squares

Approximation”. In: Progress on Meshless Methods. Ed. by A. J. M. Ferreira et al.

Dordrecht: Springer Netherlands, 2009, pp. 57–75.

[43] Gregory F. Fasshauer. Meshfree Approximation Methods with MATLAB. River Edge,

NJ, USA: World Scientific Publishing Co., Inc., 2007.

[44] R. Fletcher. “Conjugate gradient methods for indefinite systems”. In: Numerical

Analysis. Ed. by G. Alistair Watson. Springer Berlin Heidelberg, 1976, pp. 73–89.

[45] Bengt Fornberg, Elisabeth Larsson, and Natasha Flyer. “Stable Computations with

Gaussian Radial Basis Functions”. In: SIAM Journal on Scientific Computing 33.2

(Jan. 2011), pp. 869–892.

194

[46] Bengt Fornberg and Cécile Piret. “A Stable Algorithm for Flat Radial Basis Functions

on a Sphere”. In: SIAM Journal on Scientific Computing 30.1 (2007), pp. 60–80.

arXiv: 1302.5877.

[47] Bengt Fornberg and Julia Zuev. “The Runge phenomenon and spatially variable

shape parameters in RBF interpolation”. In: Computers & Mathematics with Applica-

tions 54.3 (Aug. 2007), pp. 379–398.

[48] Message Passing Interface Forum. MPI: A Message-Passing Interface Standard, Version

3.1. Stuttgart: High-Performance Computing Center Stuttgart, Aug. 2015, p. 836.

[49] Edgar Gabriel et al. “Open MPI: Goals, Concept, and Design of a Next Genera-

tion MPI Implementation”. In: Proceedings, 11th European PVM/MPI Users’ Group

Meeting. Budapest, Hungary, Sept. 2004, pp. 97–104.

[50] Bernhard Gatzhammer. “Efficient and Flexible Partitioned Simulation of Fluid-

Structure Interactions”. PhD Thesis. Technische Universität München, 2014, p. 261.

[51] GNU Lesser General Public License. Version 3. Free Software Foundation, June 29,

2007.

[52] Susan L. Graham, Peter B. Kessler, and Marshall K. Mckusick. “Gprof: A Call Graph

Execution Profiler”. In: SIGPLAN Not. 17 (1982), pp. 120–126.

[53] Diane Greene. “An implementation and performance analysis of spatial data access

methods”. In: The Fifth International Conference on Data Engineering 4871 (1989),

pp. 606–614.

[54] William Gropp. “MPICH2: A New Start for MPI Implementations”. In: Recent Ad-

vances in Parallel Virtual Machine and Message Passing Interface. Ed. by Dieter

Kranzlmüller et al. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002, pp. 7–7.

[55] Gaël Guennebaud, Benoît Jacob, et al. Eigen v3. http://eigen.tuxfamily.org. 2010.

[56] Antonin Guttman. “R-Trees: A Dynamic Index Structure for Spatial Searching”. In:

SIGMOD Rec. 14.2 (1984), pp. 47–57.

[57] Jo Erskine Hannay et al. “How do scientists develop and use scientific software?”

In: 2009 ICSE Workshop on Software Engineering for Computational Science and

Engineering. IEEE, May 2009, pp. 1–8.

[58] Jan S. Hesthaven and Tim Warburton. Nodal Discontinuous Galerkin Methods. Texts

in Applied Mathematics. Springer, 2008.

195

https://arxiv.org/abs/1302.5877

Bibliography

[59] Yakup Hoshaber. “Entwurf und Implementierung von Systemtests für eine verteilte

Multi-Physik Simulationssoftware”. Bachelor Thesis. Universität Stuttgart, 2018.

[60] University of Southern California Information Sciences Institute. Internet Protocol.

RFC 791. Internet Engineering Task Force, Sept. 1981.

[61] University of Southern California Information Sciences Institute. Transmission

Control Protocol. RFC 793. Internet Engineering Task Force, Sept. 1981.

[62] International Organization for Standardization (ISO). ISO/IEC 14882:2011 Stan-

dard for Programming Language C++ (Working Draft). 2011, p. 1334.

[63] Telecommunication Standardization Sector of ITU. Open Systems Interconnection

- Model and Notation. ITU-T Recommendation. Internation Telecommunication

Union, 1994.

[64] Eric Jones, Travis Oliphant, Pearu Peterson, et al. SciPy: Open source scientific tools

for Python. [Online]. 2001.

[65] Upulee Kanewala and James M. Bieman. “Testing scientific software: A systematic

literature review”. In: Information and Software Technology 56.10 (2014), pp. 1219–

1232. arXiv: arXiv:1804.01954v1.

[66] George Karypis and Vipin Kumar. “A Fast and High Quality Multilevel Scheme for

Partitioning Irregular Graphs”. In: SIAM Journal on Scientific Computing 20.1 (Jan.

1998), pp. 359–392.

[67] Hermann Kopetz and Wilhelm Ochsenreiter. “Clock Synchronization in Distributed

Real-Time Systems”. In: IEEE Transactions on Computers C-36.8 (1987), pp. 933–

940.

[68] Michael Kornhaas, Michael Schäfer, and Dörte C. Sternel. “Efficient numerical

simulation of aeroacoustics for low Mach number flows interacting with structures”.

In: Computational Mechanics 55.6 (2015), pp. 1143–1154.

[69] Q. T. Le Gia and Holger Wendland. “Data compression on the sphere using multiscale

radial basis function approximation”. In: Advances in Computational Mathematics

40.4 (Aug. 2014), pp. 923–943.

[70] Florian Lindner et al. “A comparison of various quasi-newton schemes for parti-

tioned fluid-structure interaction”. In: A comparison of various quasi-newton schemes

for partitioned fluid-structure interaction. 2015, pp. 1–12.

196

https://arxiv.org/abs/arXiv:1804.01954v1

[71] Yang Luo et al. “A fluid-structure interaction study on a passively deformed fish fin”.

In: Proceedings of the ASME 2019 38th International Conference on Ocean, Offshore

and Arctic Engineering. June. Glasgow, Scotland, 2019.

[72] Fachgebiet Numerische Berechnungsverfahren im Maschinenbau. FASTEST Manual.

2005.

[73] Vladimir Maz’ya and Gunther Schmidt. “On approximate approximations using

Gaussian kernels”. In: IMA Journal of Numerical Analysis 16.1 (1996), pp. 13–29.

arXiv: arXiv:1011.1669v3.

[74] Steve McConnell. Code Complete: A Practical Handbook of Software Construction.

2nd ed. Best Practices for Developers. Redmond, WA: Microsoft Press, 2004.

[75] Wes McKinney. “Data Structures for Statistical Computing in Python”. In: Proceedings

of the 9th Python in Science Conference. Ed. by Stéfan van der Walt and Jarrod

Millman. 2010, pp. 51–56.

[76] Miriam Mehl et al. “The Scalability-Efficiency/Maintainability-Portability Trade-

off in Simulation Software Engineering: Examples and a Preliminary Systematic

Literature Review”. In: 2016 Fourth International Workshop on Software Engineering

for High Performance Computing in Computational Science and Engineering. 2016,

pp. 26–34.

[77] Nick Radcliffe (Cray Inc.) MPI Dynamic Process Management MPI. Tech. rep. 2018,

pp. 1–10.

[78] K. C. Park and Carlos A. Felippa. “A variational principle for the formulation of

partitioned structural systems”. In: International Journal for Numerical Methods in

Engineering 47.1-3 (Jan. 2000), pp. 395–418.

[79] Rodrigo B. Platte. “How fast do radial basis function interpolants of analytic func-

tions converge?” In: IMA Journal of Numerical Analysis 31.4 (2011), pp. 1578–

1597. arXiv: 1409.2923.

[80] Rodrigo B. Platte and Tobin A. Driscoll. “Polynomials and Potential Theory for

Gaussian Radial Basis Function Interpolation”. In: SIAM Journal on Numerical

Analysis 43.2 (2005), pp. 750–766.

[81] J. Postel. User Datagram Protocol. RFC 768. Internet Engineering Task Force, Aug.

1980.

[82] Alfio Quarteroni, Riccardo Sacco, and Fausto Saleri. Numerical Mathematics. New

York; Heidelberg [u.a.]: Springer, 2000.

197

https://arxiv.org/abs/arXiv:1011.1669v3
https://arxiv.org/abs/1409.2923

Bibliography

[83] Michel Raynal. “Parallel Computing vs. Distributed Computing: A Great Confusion?

(Position Paper)”. In: Lecture Notes in Computer Science (including subseries Lecture

Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Ed. by Sascha

Hunold et al. Vol. 9523. Cham: Springer International Publishing, 2015, pp. 41–53.

[84] Leibniz Rechenzentrum. LRZ: Using GPFS. 2019. URL: https://www.lrz.de/

services/compute/supermuc/filesystems/gpfs-usage/#donot (visited on

04/09/2019).

[85] Shmuel Rippa. “An algorithm for selecting a good value for the parameter c in

radial basis function interpolation”. In: Advances in Computational Mathematics 11

(1999), pp. 193–210.

[86] H. H. Rosenbrock. “An Automatic Method for Finding the Greatest or Least Value

of a Function”. In: The Computer Journal 3.3 (1960), pp. 175–184. eprint: /oup/

backfile/content_public/journal/comjnl/3/3/10.1093/comjnl/3.3.175/

2/030175.pdf.

[87] Michael R. Ross et al. “Treatment of acoustic fluid-structure interaction by localized

Lagrange multipliers: Formulation”. In: Computer Methods in Applied Mechanics

and Engineering 197.33-40 (2008), pp. 3057–3079.

[88] Youcef Saad and Martin H. Schultz. “GMRES: A Generalized Minimal Residual

Algorithm for Solving Nonsymmetric Linear Systems”. In: SIAM Journal on Scientific

and Statistical Computing 7.3 (1986), pp. 856–869. arXiv: fld.1 [DOI: 10.1002].

[89] Marta Camps Santasmasas et al. “Dual Navier-Stokes / Lattice-Boltzmann Method

for Urban Wind Flow”. In: 12th International ERCOFTAC Symposium on Engineering

Turbulence Modelling and Measurements (ETMM12). Montpellier, France, 2018.

[90] Robert Schaback. “Error estimates and condition numbers for radial basis function

interpolation”. In: Advances in Computational Mathematics 3.3 (Apr. 1995), pp. 251–

264.

[91] Robert Schaback. “Native Hilbert Spaces for Radial Basis Functions I”. In: New

Developments in Approximation Theory. Ed. by Manfred W. Müller et al. Basel:

Birkhäuser Basel, 1999, pp. 255–282.

[92] Klaudius Scheufele. “Coupling Schemes and Inexact Newton for Multi-Physics and

Coupled Optimization Problems”. PhD Thesis. University of Stuttgart, 2019.

[93] Will Schroeder, Ken Martin, and Bill Lorensen. The Visualization Toolkit. 4th ed.

Clifton Park, N.Y: Kitware, 2006.

198

https://www.lrz.de/services/compute/supermuc/filesystems/gpfs-usage/#donot
https://www.lrz.de/services/compute/supermuc/filesystems/gpfs-usage/#donot
/oup/backfile/content_public/journal/comjnl/3/3/10.1093/comjnl/3.3.175/2/030175.pdf
/oup/backfile/content_public/journal/comjnl/3/3/10.1093/comjnl/3.3.175/2/030175.pdf
/oup/backfile/content_public/journal/comjnl/3/3/10.1093/comjnl/3.3.175/2/030175.pdf
https://arxiv.org/abs/fld.1

[94] Judith Segal. “Models of scientific software development”. In: SECSE 08, First

International Workshop on Software Engineering in Computational Science and Engi-

neering. Leipzig, Germany, 2008.

[95] C.E. Shannon. “Communication in the Presence of Noise”. In: Proceedings of the

IRE 37.1 (Jan. 1949), pp. 10–21.

[96] S. Sharma, D. de Santis, and A. Shams. “An advanced URANS solver to predict

turbulence induced vibrations in nuclear reactor applications”. In: Computational

Fluid Dynamics (CFD) in Nuclear Reactor Safety. 2018, pp. 1–13.

[97] David Sommer. “Stable Radial Basis Function Interpolation for Multi-Physics Simu-

lation Applications”. Bachelor thesis. University of Stuttgart, 2018.

[98] V. Strouhal. “Über eine besondere Art der Tonerregung”. In: Annalen der Physik

241.10 (1878), pp. 216–251. eprint: https://onlinelibrary.wiley.com/doi/

pdf/10.1002/andp.18782411005.

[99] Hiroyuki Takizawa et al. “Xevolver: An XML-based code translation framework for

supporting HPC application migration”. In: 2014 21st International Conference on

High Performance Computing, HiPC 2014. IEEE, 2014, pp. 1–11.

[100] Robert L. Taylor and Sanjay Govindjee. FEAP - - A Finite Element Analysis Program.

English. Version 8.5. University of California at Berkeley.

[101] Claudio E. Torres and L. A. Barba. “Fast radial basis function interpolation with

Gaussians by localization and iteration”. In: Journal of Computational Physics 228.14

(Aug. 2009), pp. 4976–4999.

[102] Joel Aaron Tropp. “Topics in Sparse Approximation”. PhD thesis. University of Texas

at Austin, 2004.

[103] Stefan Turek and Jaroslav Hron. “Proposal for numerical benchmarking of fluid-

structure interaction between an elastic object and laminar incompressible flow”.

In: Fluid-Structure Interaction 53 (2006), pp. 371–385.

[104] Greg Turk. The PLY Polygon File Format. https : / / web . archive . org / web /

20161204152348/http://www.dcs.ed.ac.uk/teaching/cs4/www/graphics/

Web/ply.html. 1994.

[105] Benjamin Uekermann. “Partitioned Fluid-Structure Interaction on Massively Parallel

Systems”. PhD Thesis. Technical University of Munich, 2016.

199

https://onlinelibrary.wiley.com/doi/pdf/10.1002/andp.18782411005
https://onlinelibrary.wiley.com/doi/pdf/10.1002/andp.18782411005
https://web.archive.org/web/20161204152348/http://www.dcs.ed.ac.uk/teaching/cs4/www/graphics/Web/ply.html
https://web.archive.org/web/20161204152348/http://www.dcs.ed.ac.uk/teaching/cs4/www/graphics/Web/ply.html
https://web.archive.org/web/20161204152348/http://www.dcs.ed.ac.uk/teaching/cs4/www/graphics/Web/ply.html

Bibliography

[106] H. A. van der Vorst. “Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG

for the Solution of Nonsymmetric Linear Systems”. In: SIAM Journal on Scientific

and Statistical Computing 13.2 (Mar. 1992), pp. 631–644.

[107] Stéfan van der Walt, S. Chris Colbert, and Gaël Varoquaux. “The NumPy Array:

A Structure for Efficient Numerical Computation”. In: Computing in Science &

Engineering 13.2 (2011), pp. 22–30. eprint: https://aip.scitation.org/doi/

pdf/10.1109/MCSE.2011.37.

[108] Tianyang Wang et al. “Assessment and practical application of mapping algorithms

for beam elements in computational FSI”. In: European Journal of Computational

Mechanics 25.5 (2016), pp. 417–445.

[109] H. G. Weller et al. “A tensorial approach to computational continuum mechanics

using object-oriented techniques”. In: Computers in Physics 12.6 (1998), p. 620.

[110] Holger Wendland. “Multiscale Radial Basis Functions”. In: Frames and Other Bases

in Abstract and Function Spaces. Ed. by I. Pesenson et al. Vol. 1. Birkhäuser, Cham,

2017, pp. 265–299.

[111] Barbara I. Wohlmuth. “A Mortar Finite Element Method Using Dual Spaces for the

Lagrange Multiplier”. In: SIAM Journal on Numerical Analysis 38.3 (2000), pp. 989–

1012.

[112] Qi Zhang, Yangzhang Zhao, and Jeremy Levesley. “Adaptive radial basis function

interpolation using an error indicator”. In: Numerical Algorithms (Jan. 2017).

[113] Jens Zudrop et al. “A fully distributed CFD framework for massively parallel sys-

tems”. In: Cray User Group Conference. Stuttgart: Cray User Group, 2012.

200

https://aip.scitation.org/doi/pdf/10.1109/MCSE.2011.37
https://aip.scitation.org/doi/pdf/10.1109/MCSE.2011.37

Declaration of Authorship

I hereby declare that this thesis titled

Data Transfer in Partitioned Multi-Physics Simulations:

Interpolation & Communication

was independently completed.

Information taken directly or indirectly from external sources is properly marked as such.

Stuttgart, April 30, 2019

201

Publications

Publications

• F. Lindner, M. Mehl, B. Uekermann: Radial Basis Function Interpolation for Black-

Box Multi-Physics Simulations

International Center for Numerical Methods in Engineering (CIMNE), Proceedings of

the VII International Conference on Coupled Problems in Science and Engineering,

2017.

• H.-J. Bungartz, F. Lindner, B. Gatzhammer, M. Mehl, K. Scheufele, A. Shukaev, B.

Uekermann: preCICE – A Fully Parallel Library for Multi-Physics Surface Coupling

Computers & Fluids, Elsevier, 2016.

• H.-J. Bungartz, F. Lindner, M. Mehl, K. Scheufele, A. Shukaev, B. Uekermann: Parti-

tioned FluidStructureAcoustics Interaction on Distributed Data: Coupling via

preCICE

H.-J. Bungartz, P, Neumann, W.E. Nagel: Software for Exascale Computing – SPPEXA

2013-2015, Springer International Publishing, 2016.

• D. Pflüger, M. Mehl, J. Valentin, F. Lindner, D. Pfander, S. Wagner, D. Graziotin, Y.

Wang: The Scalability-Efficiency/Maintainability-Portability Trade-Off in Simu-

lation Software Engineering: Examples and a Preliminary Systematic Literature

Review

Proceedings of 2016 Fourth International Workshop on Software Engineering for High

Performance Computing in Computational Science and Engineering (SE-HPCCSE

2016), held in conjunction with SC16, Salt Lake City, Utah.

• D. Blom, F. Lindner, M. Mehl, K. Scheufele, A. van Zuijlen: A Review on Fast Quasi-

Newton and Accelerated Fixed Point Iterations for Partitioned Fluid-Structure

Interaction Simulation

203

Publications

Advances in Computational Fluid-Structure Interaction, Springer International Pub-

lishing, 2015.

• H.-J. Bungartz, H. Klimach, V. Krupp, F. Lindner, M. Mehl, S. Roller, B. Uekermann:

Fluid-Acoustics Interaction on Massively Parallel Systems

M. Mehl, M. Bischoff, Manfred, M. Schäfer: Recent Trends in Computational Engi-

neering, Berlin, Heidelberg, New York: Springer, 2015.

• F. Lindner, M. Mehl, B. Uekermann: preCICE - A versatile partitioned coupling

library

Poster, SIAM CSE 2015, Salt Lake City.

• H.J. Bungartz, F. Lindner, M. Mehl, B. Uekermann: A plug-and-play coupling ap-

proach for parallel multi-field simulations

Computational Mechanics. Vol. 55(6), Berlin, Heidelberg, New York: Springer, 2015.

• F. Lindner, M. Mehl, K. Scheufele, B. Uekermann: A Comparison of various Quasi-

Newton Schemes for Partitioned Fluid-Structure Interaction

Coupled Problems, 2015.

204

	Abstract
	Acknowledgments
	List of Symbols and Acronyms
	Partitioned Multi-Physics Simulations
	Introduction
	The ExaFSA Project
	The preCICE Project & Software
	Structure and Design
	The Distributed Architecture of preCICE
	Applications

	Contributions
	Structure of this Thesis

	Interpolation Methods for Multi-Physics Simulations
	Problem Formulation
	Interpolation Methods
	Nearest-Neighbor
	Nearest-Projection
	Radial-Basis Functions Interpolation
	Polynomial Interpolation
	(Localized) Lagrangian Multiplier Methods
	Mortar Methods

	Interpolation with Radial-Basis Functions
	Polynomial Extension
	Convergence and Stability Properties
	Error Saturation

	Solution Approaches for RBF problems
	Preconditioning
	Basis Transformations
	Finding an Optimal Shape Parameter
	Adaptive Techniques
	Multiscale Interpolation
	Rescaled Interpolation

	Optimization & Implementation of RBFs in preCICE
	Basis Functions
	Evaluation of the Polynomial
	Consistent Interpolation
	Conservative Interpolation

	Rescaling of the Interpolant
	Algorithmic & Implementation Overview
	Dimensionality of Input Data and Dead Dimensions
	Re-Partitioning of Meshes
	Vertex & Row Ordering
	Matrix Assembly & Preallocation
	Solving the Linear Systems

	Conclusion

	Numerical Experiments & Results
	Test Setup
	Numerical Test Functions
	Error Metrics
	Condition Number
	Implementation

	Standard RBF Interpolation
	Integrated and Separated Polynomial
	Rescaled Interpolant
	Adaptive Shape Parameters
	RBF-QR Basis Transformation
	Conservative Interpolation
	Runtime Characteristics of PETSc Linear Solvers
	Test Setup
	Results

	Upscaling of the RBF Implementation
	Offline-Phase
	Online-Phase

	The Cylinder Flap Test Case
	Conclusions

	Efficient Communication on HPC Machines
	Communication in preCICE
	Fundamental Communication Protocols
	Protocol Semantics & Abstraction in preCICE

	Establishing Peer-to-Peer Communication Networks
	Implementation Status of TCP and MPI
	Exchange of Initial Connection Information
	Creating the Communication Channels

	Scaling & Compatibility
	Performance of MPI Ports
	Communication Decoupling of Participants

	Conclusions

	Software Development
	Profiling
	Measuring Time for Distributed Applications
	Visualization

	Testing
	Unit Tests
	System Tests
	ASTE – A Flexible Coupling Test Framework

	Conclusions
	Bibliography
	Declaration of Authorship
	Publications

