Jump to content

Iridium: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
No edit summary
Tags: Reverted Mobile edit Mobile web edit
→‎Historical: The word "since" should not be used because this statement is no longer the case. Changed "since" to "starting in" (to avoid the indication that it is still the case).
(41 intermediate revisions by 27 users not shown)
Line 1: Line 1:
{{distinguish|Indium}}
{{distinguish|Iron|Indium}}

{{About|the chemical element}}
{{About|the chemical element}}
{{pp-move-indef}}
{{pp-move}}
{{Infobox iridium}}
{{Infobox iridium}}


'''Iridium''' is a [[chemical element]]; it has [[Symbol (chemistry)|symbol]] '''Ir''' and [[atomic number]] 77. A very hard, brittle,and silvery-white [[transition metal]] of the [[platinum group]]. It is considered the second-densest naturally occurring metal (after [[osmium]]) with a density of {{cvt|22.56|g/cm3}}<ref>{{Cite web |title=Iridium - Element information, properties and uses {{!}} Periodic Table |url=https://www.rsc.org/periodic-table/element/77/Iridium |access-date=2023-10-26 |website=www.rsc.org}}</ref> as defined by experimental [[X-ray crystallography]].{{efn|At room temperature and standard atmospheric pressure, iridium has been calculated to have a density of {{cvt|22.65|g/cm3}}, {{cvt|0.04|g/cm3}} higher than osmium measured the same way.<ref>{{cite web |url=https://www.thoughtco.com/densest-element-on-the-periodic-table-606626 |last=Helmenstine |first=Anne Marie |title=What is the Densest Element on the Periodic Table? |date=May 6, 2022 |access-date=October 9, 2022 |website=Thoughtco.com}}</ref> Still, the experimental X-ray crystallography value is considered to be the most accurate, and as such iridium is considered to be the second densest element.<ref>{{cite journal |journal=Platinum Metals Rev. |year=1989 |volume=33 |issue=1 |pages=14–16 |title=Densities of Osmium and Iridium Recalculations Based upon a Review of the Latest Crystallographic Data |last=Arblaster |first=J. W. |url=https://www.technology.matthey.com/article/33/1/14-16/ }}</ref>}} It is one of the most [[corrosion]]-resistant metals,<ref>{{Cite web |title=Iridium (Ir) {{!}} AMERICAN ELEMENTS ® |url=https://www.americanelements.com/ir.html |access-date=2023-11-22 |website=American Elements: The Materials Science Company |language=en}}</ref> even at temperatures as high as {{cvt|2000|°C}}. However, corrosion-resistance is not quantifiable in absolute terms: although only certain molten salts and [[halogen]]s are corrosive to solid iridium, finely divided iridium dust is much more reactive and can be flammable, whereas gold dust is not flammable but it can be attacked by substances that iridium resists, such as [[aqua regia]].
'''Iridium''' is a [[chemical element]]; it has [[Symbol (chemistry)|symbol]] '''Ir''' and [[atomic number]] 77. A very hard, brittle, silvery-white [[transition metal]] of the [[platinum group]], it is considered the second-densest naturally occurring metal (after [[osmium]]) with a density of {{cvt|22.56|g/cm3}}<ref>{{Cite web |title=Iridium Element information, properties and uses {{!}} Periodic Table |url=https://www.rsc.org/periodic-table/element/77/Iridium |access-date=2023-10-26 |website=www.rsc.org}}</ref> as defined by experimental [[X-ray crystallography]].{{efn|At room temperature and standard atmospheric pressure, iridium has been calculated to have a density of {{cvt|22.65|g/cm3}}, {{cvt|0.04|g/cm3}} higher than osmium measured the same way.<ref>{{cite web |url=https://www.thoughtco.com/densest-element-on-the-periodic-table-606626 |last=Helmenstine |first=Anne Marie |title=What is the Densest Element on the Periodic Table? |date=May 6, 2022 |access-date=October 9, 2022 |website=Thoughtco.com}}</ref> Still, the experimental X-ray crystallography value is considered to be the most accurate, and as such iridium is considered to be the second densest element.<ref>{{cite journal |journal=Platinum Metals Rev. |year=1989 |volume=33 |issue=1 |pages=14–16 |title=Densities of Osmium and Iridium Recalculations Based upon a Review of the Latest Crystallographic Data |last=Arblaster |first=J. W. |doi=10.1595/003214089X3311416 |s2cid=267570193 |url=https://www.technology.matthey.com/article/33/1/14-16/ }}</ref>}} <sup>191</sup>Ir and <sup>193</sup>Ir are the only two naturally occurring [[isotope]]s of iridium, as well as the only [[stable isotope]]s; the latter is the more abundant. It is one of the most [[corrosion]]-resistant metals,<ref>{{Cite web |title=Iridium (Ir) {{!}} AMERICAN ELEMENTS |url=https://www.americanelements.com/ir.html |access-date=2023-11-22 |website=American Elements: The Materials Science Company |language=en}}</ref> even at temperatures as high as {{cvt|2000|°C}}.

Iridium was discovered in 1803 among insoluble impurities in natural [[platinum]]. [[Smithson Tennant]], the primary discoverer, named it after the Greek goddess [[Iris (mythology)|Iris]], personification of the rainbow, because of the striking and diverse colors of its salts. Iridium is [[Abundance of elements in Earth's crust|one of the rarest elements]] in [[Crust (geology)#Earth's crust|Earth's crust]], with estimated annual production and consumption of only {{convert|7.3|t|e3lb|abbr=off}} in 2018.<ref name=usgs2018>{{cite book|url=https://d9-wret.s3.us-west-2.amazonaws.com/assets/palladium/production/atoms/files/myb1-2018-plati.pdf|title=2018 Minerals Yearbook |chapter=Platinum-Group Metals|publisher=USGS|date=August 2021|page=57.11|first1=Sheryl A.|last1=Singerling|first2=Ruth F.|last2=Schulte}}</ref> <sup>191</sup>Ir and <sup>193</sup>Ir are the only two naturally occurring [[isotope]]s of iridium, as well as the only [[stable isotope]]s; the latter is the more abundant.


Iridium was discovered in 1803 in the acid-insoluble residues of [[platinum]] ores by the English chemist [[Smithson Tennant]]. The name ''iridium'', derived from the Greek word ''iris'' (rainbow), refers to the various colors of its compounds. Iridium is [[Abundance of elements in Earth's crust|one of the rarest elements]] in [[Crust (geology)#Earth's crust|Earth's crust]], with an estimated annual production of only {{convert|15,000|lb|order=flip}} in 2023.<ref name=":0">{{Cite web |title=Iridium supply worldwide 2023 |url=https://www.statista.com/statistics/1421318/iridium-supply-worldwide/ |access-date=2024-05-23 |website=Statista |language=en}}</ref>
The dominant uses of iridium are the metal itself and its alloys, as in high-performance [[spark plug]]s, [[crucible]]s for recrystallization of semiconductors at high temperatures, and electrodes for the production of chlorine in the [[chloralkali process]]. Important compounds of iridium are chlorides and iodides in industrial [[catalysis]]. Iridium is a component of some [[OLED]]s.


The dominant uses of iridium are the metal itself and its alloys, as in high-performance [[spark plug]]s, [[crucible]]s for recrystallization of semiconductors at high temperatures, and electrodes for the production of chlorine in the [[chloralkali process]]. Important compounds of iridium are chlorides and iodides in industrial [[catalysis]]. Iridium is a component of some [[OLED]]s.
Iridium is found in [[meteorite]]s in much higher abundance than in the Earth's crust.<ref name="Becker2002">{{cite journal |first1=Luann |last1=Becker |url=http://www.miracosta.edu/home/kmeldahl/articles/blows.pdf |title=Repeated Blows |access-date=January 19, 2016 |journal=Scientific American |year=2002 |volume=286 |issue=3 |pages=77–83 |bibcode=2002SciAm.286c..76B |doi=10.1038/scientificamerican0302-76 |pmid=11857903}}</ref> For this reason, the unusually high abundance of iridium in the clay layer at the [[Cretaceous–Paleogene boundary]] gave rise to the [[Alvarez hypothesis]] that the impact of a massive extraterrestrial object caused the [[Cretaceous–Paleogene extinction event|extinction of dinosaurs and many other species 66&nbsp;million years ago]], now known to be produced by the impact that formed the [[Chicxulub crater]]. Similarly, an iridium anomaly in core samples from the [[Pacific Ocean]] suggested the [[Eltanin impact]] of about 2.5&nbsp;million years ago.<ref name="Kyte1981">{{cite journal |last=Kyte |first=Frank T. |author2=Zhiming Zhou |author3=John T. Wasson |authorlink3=John T. Wasson |date=1981 |title=High noble metal concentrations in a late Pliocene sediment |journal=Nature |volume=292 |issue=5822 |pages=417–420 |issn=0028-0836 |doi=10.1038/292417a0 |bibcode=1981Natur.292..417K |s2cid=4362591}}</ref>


Iridium is found in [[meteorite]]s in much higher abundance than in the Earth's crust.<ref name="Becker2002">{{cite journal |first1=Luann |last1=Becker |url=http://www.miracosta.edu/home/kmeldahl/articles/blows.pdf |title=Repeated Blows |access-date=January 19, 2016 |journal=Scientific American |year=2002 |volume=286 |issue=3 |pages=77–83 |bibcode=2002SciAm.286c..76B |doi=10.1038/scientificamerican0302-76 |pmid=11857903}}</ref> For this reason, the unusually high abundance of iridium in the clay layer at the [[Cretaceous–Paleogene boundary]] gave rise to the [[Alvarez hypothesis]] that the impact of a massive extraterrestrial object caused the [[Cretaceous–Paleogene extinction event|extinction of dinosaurs and many other species 66&nbsp;million years ago]], now known to be produced by the impact that formed the [[Chicxulub crater]]. Similarly, an iridium anomaly in core samples from the Pacific Ocean suggested the [[Eltanin impact]] of about 2.5&nbsp;million years ago.<ref name="Kyte1981">{{cite journal |last=Kyte |first=Frank T. |author2=Zhiming Zhou |author3=John T. Wasson |authorlink3=John T. Wasson |date=1981 |title=High noble metal concentrations in a late Pliocene sediment |journal=Nature |volume=292 |issue=5822 |pages=417–420 |issn=0028-0836 |doi=10.1038/292417a0 |bibcode=1981Natur.292..417K |s2cid=4362591}}</ref>
It is thought that the total amount of iridium in the planet Earth is much higher than that observed in crustal rocks, but as with other platinum-group metals, the high density and [[Siderophile elements|tendency]] of iridium to bond with iron caused most iridium to descend below the crust when the planet was young and still molten.ʘ⁠‿⁠ʘ(⁠ノ⁠◕⁠ヮ⁠◕⁠)⁠ノ⁠*⁠.⁠✧


==Characteristics==
==Characteristics==
Line 18: Line 17:
===Physical properties===
===Physical properties===
[[File:iridium2.jpg|left|thumb|{{convert|1|ozt|g|4|spell=In|abbr=off|lk=on}} of arc-melted iridium|alt=A flattened drop of dark gray substance]]
[[File:iridium2.jpg|left|thumb|{{convert|1|ozt|g|4|spell=In|abbr=off|lk=on}} of arc-melted iridium|alt=A flattened drop of dark gray substance]]
A member of the [[platinum group]] [[metal]]s, iridium is white, resembling [[platinum]], but with a slight yellowish cast. Because of its [[hardness]], [[brittleness]], and very high [[melting point]], solid iridium is difficult to machine, form, or work; thus [[powder metallurgy]] is commonly employed instead.<ref name="greenwood" /> It is the only metal to maintain good mechanical properties in air at temperatures above {{convert|1600|C|F}}.<ref name="hunt">{{cite journal |title=A History of Iridium |first=L. B. |last=Hunt |journal=Platinum Metals Review |volume=31 |issue=1 |date=1987 |pages=32–41 |url=https://technology.matthey.com/documents/496120/626258/pmr-v31-i1-032-041.pdf/}}</ref> It has the 10th highest [[List of elements by boiling point|boiling point among all elements]] and becomes a [[superconductor]] at temperatures below {{convert|0.14|K|°C °F|lk=in}}.<ref>{{cite book |last=Kittel |first=C.|title=[[Introduction to Solid State Physics]] |edition=7th |publisher=Wiley-India |date=2004 |isbn=978-81-265-1045-0}}</ref>
A member of the [[platinum group]] metals, iridium is white, resembling platinum, but with a slight yellowish cast. Because of its hardness, brittleness, and very high [[melting point]], solid iridium is difficult to machine, form, or work; thus [[powder metallurgy]] is commonly employed instead.<ref name="greenwood" /> It is the only metal to maintain good mechanical properties in air at temperatures above {{convert|1600|C|F}}.<ref name="hunt">{{cite journal |title=A History of Iridium |first=L. B. |last=Hunt |journal=Platinum Metals Review |volume=31 |issue=1 |date=1987 |pages=32–41 |doi=10.1595/003214087X3113241 |s2cid=267552692 |url=https://technology.matthey.com/documents/496120/626258/pmr-v31-i1-032-041.pdf/ |access-date=2022-09-29 |archive-date=2022-09-29 |archive-url=https://web.archive.org/web/20220929092320/https://technology.matthey.com/documents/496120/626258/pmr-v31-i1-032-041.pdf/ |url-status=dead }}</ref> It has the 10th highest [[List of elements by boiling point|boiling point among all elements]] and becomes a [[superconductor]] at temperatures below {{convert|0.14|K|°C °F|lk=in}}.<ref>{{cite book |last=Kittel |first=C.|title=[[Introduction to Solid State Physics]] |edition=7th |publisher=Wiley-India |date=2004 |isbn=978-81-265-1045-0}}</ref>


Iridium's [[modulus of elasticity]] is the second-highest among the metals, being surpassed only by [[osmium]].<ref name="hunt" /> This, together with a high [[shear modulus]] and a very low figure for [[Poisson's ratio]] (the relationship of longitudinal to lateral [[strain (chemistry)|strain]]), indicate the high degree of [[stiffness]] and resistance to deformation that have rendered its fabrication into useful components a matter of great difficulty. Despite these limitations and iridium's high cost, a number of applications have developed where mechanical strength is an essential factor in some of the extremely severe conditions encountered in modern technology.<ref name="hunt" />
Iridium's [[modulus of elasticity]] is the second-highest among the metals, being surpassed only by [[osmium]].<ref name="hunt" /> This, together with a high [[shear modulus]] and a very low figure for [[Poisson's ratio]] (the relationship of longitudinal to lateral [[strain (chemistry)|strain]]), indicate the high degree of stiffness and resistance to deformation that have rendered its fabrication into useful components a matter of great difficulty. Despite these limitations and iridium's high cost, a number of applications have developed where mechanical strength is an essential factor in some of the extremely severe conditions encountered in modern technology.<ref name="hunt" />


The measured [[density]] of iridium is only slightly lower (by about 0.12%) than that of osmium, the [[List of elements by density|densest metal]] known.<ref>{{cite journal|title=Osmium, the Densest Metal Known |author=Arblaster, J. W. |journal=Platinum Metals Review |volume=39 |issue=4 |date=1995 |page=164 |url=http://www.platinummetalsreview.com/dynamic/article/view/pmr-v39-i4-164-164 |access-date=2008-10-02 |archive-url=https://web.archive.org/web/20110927045236/http://www.platinummetalsreview.com/dynamic/article/view/pmr-v39-i4-164-164 |archive-date=2011-09-27 |url-status=dead}}</ref><ref>{{cite book |last=Cotton |first=Simon |title=Chemistry of Precious Metals |page=78 |publisher=Springer-Verlag New York, LLC |date=1997 |isbn=978-0-7514-0413-5}}</ref> Some ambiguity occurred regarding which of the two elements was denser, due to the small size of the difference in density and difficulties in measuring it accurately,<ref name="crc">{{cite book |author=Lide, D. R. |title=CRC Handbook of Chemistry and Physics. |url=https://archive.org/details/crchandbookofche00lide |url-access=registration |edition=70th |publisher=Boca Raton (FL):CRC Press |date=1990 |isbn=9780849304712}}</ref> but, with increased accuracy in factors used for calculating density, [[X-ray crystallography|X-ray crystallographic]] data yielded densities of {{cvt|22.56|g/cm3}} for iridium and {{cvt|22.59|g/cm3}} for osmium.<ref>{{cite journal|url=https://technology.matthey.com/article/33/1/14-16/|title=Densities of osmium and iridium: recalculations based upon a review of the latest crystallographic data|author=Arblaster, J. W.|journal=Platinum Metals Review|volume=33|issue=1|date=1989|pages=14–16|access-date=2008-09-17|archive-date=2012-02-07|archive-url=https://web.archive.org/web/20120207064113/http://www.platinummetalsreview.com/pdf/pmr-v33-i1-014-016.pdf|url-status=dead}}</ref>
The measured [[density]] of iridium is only slightly lower (by about 0.12%) than that of osmium, the [[List of elements by density|densest metal]] known.<ref>{{cite journal|title=Osmium, the Densest Metal Known |author=Arblaster, J. W. |journal=Platinum Metals Review |volume=39 |issue=4 |date=1995 |page=164 |doi=10.1595/003214095X394164164 |s2cid=267393021 |url=http://www.platinummetalsreview.com/dynamic/article/view/pmr-v39-i4-164-164 |access-date=2008-10-02 |archive-url=https://web.archive.org/web/20110927045236/http://www.platinummetalsreview.com/dynamic/article/view/pmr-v39-i4-164-164 |archive-date=2011-09-27 |url-status=dead}}</ref><ref>{{cite book |last=Cotton |first=Simon |title=Chemistry of Precious Metals |page=78 |publisher=Springer-Verlag New York, LLC |date=1997 |isbn=978-0-7514-0413-5}}</ref> Some ambiguity occurred regarding which of the two elements was denser, due to the small size of the difference in density and difficulties in measuring it accurately,<ref name="crc">{{cite book |author=Lide, D. R. |title=CRC Handbook of Chemistry and Physics. |url=https://archive.org/details/crchandbookofche00lide |url-access=registration |edition=70th |publisher=Boca Raton (FL):CRC Press |date=1990 |isbn=9780849304712}}</ref> but, with increased accuracy in factors used for calculating density, [[X-ray crystallography|X-ray crystallographic]] data yielded densities of {{cvt|22.56|g/cm3}} for iridium and {{cvt|22.59|g/cm3}} for osmium.<ref>{{cite journal|url=https://technology.matthey.com/article/33/1/14-16/|title=Densities of osmium and iridium: recalculations based upon a review of the latest crystallographic data|author=Arblaster, J. W.|journal=Platinum Metals Review|volume=33|issue=1|date=1989|pages=14–16|doi=10.1595/003214089X3311416 |s2cid=267570193 |access-date=2008-09-17|archive-date=2012-02-07|archive-url=https://web.archive.org/web/20120207064113/http://www.platinummetalsreview.com/pdf/pmr-v33-i1-014-016.pdf|url-status=dead}}</ref>


Iridium is extremely brittle, to the point of being hard to weld because the heat-affected zone cracks, but it can be made more ductile by addition of small quantities of [[titanium]] and [[zirconium]] (0.2% of each apparently works well).<ref>{{cite patent|country=US |number=3293031A|invent1=Cresswell, Peter|invent2=Rhys, David|pridate=23/12/1963|fdate=27/11/1964|pubdate=20/12/1966}}</ref>
Iridium is extremely brittle, to the point of being hard to [[Welding|weld]] because the heat-affected zone cracks, but it can be made more ductile by addition of small quantities of [[titanium]] and [[zirconium]] (0.2% of each apparently works well).<ref>{{cite patent|country=US |number=3293031A|invent1=Cresswell, Peter|invent2=Rhys, David|pridate=23/12/1963|fdate=27/11/1964|pubdate=20/12/1966}}</ref>


The [[Vickers hardness]] of pure platinum is 56&nbsp;HV, whereas platinum with 50% of iridium can reach over 500&nbsp;HV.<ref>{{cite journal| url = https://technology.matthey.com/article/4/1/18-26/| journal = Platinum Metals Review| title = Iridium Platinum Alloys - A Critical Review Of Their Constitution And Properties| first = A. S.|last = Darling| date = 1960| volume =4| issue = 1| pages = 18–26}} Reviewed in {{Cite journal|s2cid=4211238 | doi = 10.1038/186211a0| bibcode = 1960Natur.186Q.211.| title = Iridium–Platinum Alloys| journal = Nature| year = 1960| volume = 186| issue = 4720| page = 211| doi-access = free}}</ref><ref>{{cite journal|doi = 10.1595/147106705X24409| title = The Hardening of Platinum Alloys for Potential Jewellery Application| first = T.|last = Biggs| author2=Taylor, S. S.| author3=van der Lingen, E.| journal = Platinum Metals Review| date = 2005| volume = 49| issue = 1| pages = 2–15| doi-access = free}}</ref>
The [[Vickers hardness]] of pure platinum is 56&nbsp;HV, whereas platinum with 50% of iridium can reach over 500&nbsp;HV.<ref>{{cite journal| url = https://technology.matthey.com/article/4/1/18-26/| journal = Platinum Metals Review| title = Iridium Platinum Alloys A Critical Review Of Their Constitution And Properties| first = A. S.|last = Darling| date = 1960| volume =4| issue = 1| pages = 18–26| doi = 10.1595/003214060X411826| s2cid = 267392937}} Reviewed in {{Cite journal|s2cid=4211238 | doi = 10.1038/186211a0| bibcode = 1960Natur.186Q.211.| title = Iridium–Platinum Alloys| journal = Nature| year = 1960| volume = 186| issue = 4720| page = 211| doi-access = free}}</ref><ref>{{cite journal|doi = 10.1595/147106705X24409| title = The Hardening of Platinum Alloys for Potential Jewellery Application| first = T.|last = Biggs| author2=Taylor, S. S.| author3=van der Lingen, E.| journal = Platinum Metals Review| date = 2005| volume = 49| issue = 1| pages = 2–15| doi-access = free}}</ref>


===Chemical properties===
===Chemical properties===
Iridium is the most [[corrosion-resistant]] metal known:<ref name="Emsley" /> it is not attacked by [[acid]]s, including [[aqua regia]]. In the presence of oxygen, it reacts with [[cyanide]] salts.<ref name="emsley">{{cite book|last=Emsley|first=John|title=Nature's Building Blocks: An A–Z Guide to the Elements|edition=New|year=2011 |publisher=Oxford University Press|location=New York |isbn=978-0-19-960563-7}}</ref> Traditional oxidants also react, including the [[halogen]]s and oxygen<ref name="perry">{{cite book|title=Handbook of Inorganic Compounds| author=Perry, D. L.| pages=203–204| date=1995| isbn=978-1439814611| publisher=CRC Press}}</ref> at higher temperatures.<ref name="lagowski">{{cite book| title=Chemistry Foundations and Applications| volume=2| editor=Lagowski, J. J.| pages=[https://archive.org/details/chemistryfoundat0000unse/page/250 250–251]| date=2004| isbn=978-0028657233| publisher=Thomson Gale| url=https://archive.org/details/chemistryfoundat0000unse/page/250}}</ref> Iridium also reacts directly with [[sulfur]] at atmospheric pressure to yield [[iridium disulfide]].<ref name = Munson-1968>{{cite journal
Iridium is the most [[corrosion-resistant]] metal known.<ref name="Emsley" /> It is not attacked by [[acid]]s, including [[aqua regia]], but it can be dissolved in concentrated hydrochloric acid in the presence of sodium perchlorate.<ref name=":0" /> In the presence of [[oxygen]], it reacts with [[cyanide]] salts.<ref name="emsley">{{cite book|last=Emsley|first=John|title=Nature's Building Blocks: An A–Z Guide to the Elements|edition=New|year=2011 |publisher=Oxford University Press|location=New York |isbn=978-0-19-960563-7}}</ref> Traditional [[Oxidizing agent|oxidants]] also react, including the [[halogen]]s and oxygen<ref name="perry">{{cite book|title=Handbook of Inorganic Compounds| author=Perry, D. L.| pages=203–204| date=1995| isbn=978-1439814611| publisher=CRC Press}}</ref> at higher temperatures.<ref name="lagowski">{{cite book| title=Chemistry Foundations and Applications| volume=2| editor=Lagowski, J. J.| pages=[https://archive.org/details/chemistryfoundat0000unse/page/250 250–251]| date=2004| isbn=978-0028657233| publisher=Thomson Gale| url=https://archive.org/details/chemistryfoundat0000unse/page/250}}</ref> Iridium also reacts directly with [[sulfur]] at atmospheric pressure to yield [[iridium disulfide]].<ref name = Munson-1968>{{cite journal
|url = https://htracyhall.org/ocr/HTH-Archives/Cabinet%208/Drawer%203%20(MATI%20-%20MOZ)/(Munson,%20R.A.)%20(Muntoni,%20C.)%20(Murase,%20K.)%20(linked)/(Munson,%20R.A.)%20(Muntoni,%20C.)%20(Murase,%20K.)-237_OCR.pdf
|url = https://htracyhall.org/ocr/HTH-Archives/Cabinet%208/Drawer%203%20(MATI%20-%20MOZ)/(Munson,%20R.A.)%20(Muntoni,%20C.)%20(Murase,%20K.)%20(linked)/(Munson,%20R.A.)%20(Muntoni,%20C.)%20(Murase,%20K.)-237_OCR.pdf
|author-last = Munson
|author-last = Munson
Line 48: Line 47:
===Isotopes===
===Isotopes===
{{Main|Isotopes of iridium}}
{{Main|Isotopes of iridium}}
Iridium has two naturally occurring stable [[isotope]]s, <sup>191</sup>Ir and <sup>193</sup>Ir, with [[natural abundance]]s of 37.3% and 62.7%, respectively.<ref name="nubase" /> At least 37 [[radioisotope]]s have also been synthesized, ranging in [[mass number]] from 164 to 202. [[iridium-192|<sup>192</sup>Ir]], which falls between the two stable isotopes, is the most stable radioisotope, with a [[half-life]] of 73.827&nbsp;days, and finds application in [[brachytherapy]]<ref name="mager" /> and in industrial [[radiography]], particularly for nondestructive testing of welds in steel in the oil and gas industries; iridium-192 sources have been involved in a number of radiological accidents. Three other isotopes have half-lives of at least a day—<sup>188</sup>Ir, <sup>189</sup>Ir, and <sup>190</sup>Ir.<ref name="nubase" /> Isotopes with masses below 191 decay by some combination of [[Beta decay#β+ decay|β<sup>+</sup> decay]], [[alpha decay|α decay]], and (rare) [[proton emission]], with the exception of <sup>189</sup>Ir, which decays by [[electron capture]]. Synthetic isotopes heavier than 191 decay by [[Beta decay#β− decay|β<sup>−</sup> decay]], although <sup>192</sup>Ir also has a minor electron capture decay path.<ref name="nubase">{{NUBASE 2003}}</ref> All known isotopes of iridium were discovered between 1934 and 2008, with the most recent discoveries being <sup>200–202</sup>Ir.<ref>{{cite journal |title=Discovery of tantalum, rhenium, osmium, and iridium isotopes |last1=Robinson |first1=R. |last2=Thoennessen |first2=M. |journal=Atomic Data and Nuclear Data Tables |volume=98 |issue=5 |date=2012 |pages=911–932 |arxiv=1109.0526 |doi=10.1016/j.adt.2011.09.003 |bibcode=2012ADNDT..98..911R |s2cid=53992437}}</ref>
Iridium has two naturally occurring stable [[isotope]]s, <sup>191</sup>Ir and <sup>193</sup>Ir, with [[natural abundance]]s of 37.3% and 62.7%, respectively.<ref name="nubase" /> At least 37 [[radioisotope]]s have also been synthesized, ranging in [[mass number]] from 164 to 202. [[iridium-192|<sup>192</sup>Ir]], which falls between the two stable isotopes, is the most stable [[Radionuclide|radioisotope]], with a [[half-life]] of 73.827&nbsp;days, and finds application in [[brachytherapy]]<ref name="mager" /> and in industrial [[radiography]], particularly for [[nondestructive testing]] of welds in steel in the oil and gas industries; iridium-192 sources have been involved in a number of radiological accidents. Three other isotopes have half-lives of at least a day—<sup>188</sup>Ir, <sup>189</sup>Ir, and <sup>190</sup>Ir.<ref name="nubase" /> Isotopes with masses below 191 decay by some combination of [[Beta decay#β+ decay|β<sup>+</sup> decay]], [[alpha decay|α decay]], and (rare) [[proton emission]], with the exception of <sup>189</sup>Ir, which decays by [[electron capture]]. Synthetic isotopes heavier than 191 decay by [[Beta decay#β− decay|β<sup>−</sup> decay]], although <sup>192</sup>Ir also has a minor electron capture decay path.<ref name="nubase">{{NUBASE 2003}}</ref> All known isotopes of iridium were discovered between 1934 and 2008, with the most recent discoveries being <sup>200–202</sup>Ir.<ref>{{cite journal |title=Discovery of tantalum, rhenium, osmium, and iridium isotopes |last1=Robinson |first1=R. |last2=Thoennessen |first2=M. |journal=Atomic Data and Nuclear Data Tables |volume=98 |issue=5 |date=2012 |pages=911–932 |arxiv=1109.0526 |doi=10.1016/j.adt.2011.09.003 |bibcode=2012ADNDT..98..911R |s2cid=53992437}}</ref>


At least 32 [[nuclear isomer|metastable isomers]] have been characterized, ranging in mass number from 164 to 197. The most stable of these is <sup>192m2</sup>Ir, which decays by [[isomeric transition]] with a half-life of 241&nbsp;years,<ref name="nubase" /> making it more stable than any of iridium's synthetic isotopes in their ground states. The least stable isomer is <sup>190m3</sup>Ir with a half-life of only 2&nbsp;μs.<ref name="nubase" /> The isotope <sup>191</sup>Ir was the first one of any element to be shown to present a [[Mössbauer effect]]. This renders it useful for [[Mössbauer spectroscopy]] for research in physics, chemistry, biochemistry, metallurgy, and mineralogy.<ref name="ir-191">{{cite book |title=Handbook of Ceramics and Composites |author=Chereminisoff, N. P. |publisher=CRC Press |date=1990 |isbn=978-0-8247-8006-7 |page=424}}</ref>
At least 32 [[nuclear isomer|metastable isomers]] have been characterized, ranging in mass number from 164 to 197. The most stable of these is <sup>192m2</sup>Ir, which decays by [[isomeric transition]] with a half-life of 241&nbsp;years,<ref name="nubase" /> making it more stable than any of iridium's synthetic isotopes in their ground states. The least stable isomer is <sup>190m3</sup>Ir with a half-life of only 2&nbsp;μs.<ref name="nubase" /> The isotope <sup>191</sup>Ir was the first one of any element to be shown to present a [[Mössbauer effect]]. This renders it useful for [[Mössbauer spectroscopy]] for research in physics, chemistry, [[biochemistry]], [[metallurgy]], and [[mineralogy]].<ref name="ir-191">{{cite book |title=Handbook of Ceramics and Composites |author=Chereminisoff, N. P. |publisher=CRC Press |date=1990 |isbn=978-0-8247-8006-7 |page=424}}</ref>


==Chemistry==
==Chemistry==
{{See also|Category:Iridium compounds}}
{{See also|Iridium compounds}}
{|class="wikitable" style="float:right;margin:1em"
{|class="wikitable" style="float:right;margin:1em"
|-
|-
Line 87: Line 86:


===Binary compounds===
===Binary compounds===
Iridium does not form [[binary compound|binary]] [[hydride]]s. Only one [[binary phase|binary oxide]] is well-characterized: [[Iridium(IV) oxide|iridium dioxide]], {{chem|IrO|2}}. It is a blue black solid that adopts the [[fluorite structure]].<ref name="greenwood" /> A [[sesquioxide]], {{chem|Ir|2|O|3}}, has been described as a blue-black powder, which is oxidized to {{chem|IrO|2}} by {{chem|HNO|3}}.<ref name="perry" /> The corresponding disulfides, diselenides, sesquisulfides, and sesquiselenides are known, as well as {{chem|IrS|3}}.<ref name="greenwood" />
Iridium does not form [[binary compound|binary]] [[hydride]]s. Only one [[binary phase|binary oxide]] is well-characterized: [[Iridium(IV) oxide|iridium dioxide]], {{chem|IrO|2}}. It is a blue black solid that adopts the [[fluorite structure]].<ref name="greenwood" /> A [[sesquioxide]], {{chem|Ir|2|O|3}}, has been described as a blue-black powder, which is oxidized to {{chem|IrO|2}} by {{chem|HNO|3}}.<ref name="perry" /> The corresponding [[disulfide]]s, [[diselenide]]s, [[sesquisulfide]]s, and sesquiselenides are known, as well as {{chem|IrS|3}}.<ref name="greenwood" />


Binary trihalides, {{chem|IrX|3}}, are known for all of the halogens.<ref name="greenwood" /> For oxidation states +4 and above, only the [[Iridium(IV) fluoride|tetrafluoride]], [[Iridium(V) fluoride|pentafluoride]] and [[Iridium hexafluoride|hexafluoride]] are known.<ref name="greenwood" /> Iridium hexafluoride, {{chem|IrF|6}}, is a volatile yellow solid, composed of octahedral molecules. It decomposes in water and is reduced to {{chem|link=iridium tetrafluoride|IrF|4}}.<ref name="greenwood" /> Iridium pentafluoride is also a strong oxidant, but it is a [[tetramer]], {{chem|Ir|4|F|20}}, formed by four corner-sharing octahedra.<ref name="greenwood" />
Binary trihalides, {{chem|IrX|3}}, are known for all of the halogens.<ref name="greenwood" /> For oxidation states +4 and above, only the [[Iridium(IV) fluoride|tetrafluoride]], [[Iridium(V) fluoride|pentafluoride]] and [[Iridium hexafluoride|hexafluoride]] are known.<ref name="greenwood" /> Iridium hexafluoride, {{chem|IrF|6}}, is a volatile yellow solid, composed of octahedral molecules. It decomposes in water and is reduced to {{chem|link=iridium tetrafluoride|IrF|4}}.<ref name="greenwood" /> Iridium pentafluoride is also a strong oxidant, but it is a [[tetramer]], {{chem|Ir|4|F|20}}, formed by four corner-sharing octahedra.<ref name="greenwood" />
Line 95: Line 94:
Iridium has extensive [[coordination chemistry]].
Iridium has extensive [[coordination chemistry]].


Iridium in its complexes is always [[low-spin]]. Ir(III) and Ir(IV) generally form [[octahedral molecular geometry|octahedral complexes]].<ref name="greenwood" /> Polyhydride complexes are known for the +5 and +3 oxidation states.<ref>{{cite book| last = Holleman| first = A. F.| author2=Wiberg, E.| author3=Wiberg, N.| title=Inorganic Chemistry| edition=1st| publisher=Academic Press| date=2001| isbn=978-0-12-352651-9| oclc =47901436}}</ref> One example is {{chem2|IrH5(P<sup>i</sup>Pr3)2}}.<ref>{{cite journal |doi=10.1021/acs.chemrev.6b00080|title=Polyhydrides of Platinum Group Metals: Nonclassical Interactions and σ-Bond Activation Reactions |year=2016 |last1=Esteruelas |first1=Miguel A. |last2=López |first2=Ana M. |last3=Oliván |first3=Montserrat |journal=Chemical Reviews |volume=116 |issue=15 |pages=8770–8847 |pmid=27268136 |doi-access=free |hdl=10261/136216 |hdl-access=free }}</ref> The ternary hydride {{chem|Mg|6|Ir|2|H|11}} is believed to contain both the {{chem|IrH|5|4-}} and the 18-electron {{chem|IrH|4|5-}} anion.<ref>{{cite journal| title = {{chem|Mg|6|Ir|2|H|11}}, a new metal hydride containing saddle-like {{chem|IrH|4|5-}} and square-pyramidal {{chem|IrH|5|4-}} hydrido complexes | last = Černý| first = R.| author2=Joubert, J.-M.| author3=Kohlmann, H.| author4=Yvon, K. | journal = Journal of Alloys and Compounds| volume = 340| issue = 1–2| date = 2002|pages = 180–188| doi=10.1016/S0925-8388(02)00050-6}}</ref>
Iridium in its complexes is always [[low-spin]]. Ir(III) and Ir(IV) generally form [[octahedral molecular geometry|octahedral complexes]].<ref name="greenwood" /> Polyhydride complexes are known for the +5 and +3 oxidation states.<ref>{{cite book| last = Holleman| first = A. F.| author2=Wiberg, E.| author3=Wiberg, N.| title=Inorganic Chemistry| edition=1st| publisher=Academic Press| date=2001| isbn=978-0-12-352651-9| oclc =47901436}}</ref> One example is {{chem2|IrH5(P<sup>i</sup>Pr3)2}}.<ref>{{cite journal |doi=10.1021/acs.chemrev.6b00080|title=Polyhydrides of Platinum Group Metals: Nonclassical Interactions and σ-Bond Activation Reactions |year=2016 |last1=Esteruelas |first1=Miguel A. |last2=López |first2=Ana M. |last3=Oliván |first3=Montserrat |journal=Chemical Reviews |volume=116 |issue=15 |pages=8770–8847 |pmid=27268136 |doi-access=free |hdl=10261/136216 |hdl-access=free }}</ref> The ternary hydride {{chem|Mg|6|Ir|2|H|11}} is believed to contain both the {{chem|IrH|5|4-}} and the 18-electron {{chem|IrH|4|5-}} anion.<ref>{{cite journal| title = {{chem|Mg|6|Ir|2|H|11}}, a new metal hydride containing saddle-like {{chem|IrH|4|5-}} and square-pyramidal {{chem|IrH|5|4-}} hydrido complexes | last = Černý| first = R.| author2=Joubert, J.-M.| author3=Kohlmann, H.| author4=Yvon, K. | journal = Journal of Alloys and Compounds| volume = 340| issue = 1–2| date = 2002|pages = 180–188| doi=10.1016/S0925-8388(02)00050-6}}</ref>


Iridium also forms [[oxyanion]]s with oxidation states +4 and +5. {{chem|K|2|IrO|3}} and {{chem|KIrO|3}} can be prepared from the reaction of [[potassium oxide]] or [[potassium superoxide]] with iridium at high temperatures. Such solids are not soluble in conventional solvents.<ref>{{cite journal|title=The chemistry of ruthenium, osmium, rhodium, iridium, palladium and platinum in the higher oxidation states|journal=Coordination Chemistry Reviews|volume=46|date=1982 |pages=1–127|author=Gulliver, D. J.|author2=Levason, W.|doi=10.1016/0010-8545(82)85001-7}}</ref>
Iridium also forms [[oxyanion]]s with oxidation states +4 and +5. {{chem|K|2|IrO|3}} and {{chem|KIrO|3}} can be prepared from the reaction of [[potassium oxide]] or [[potassium superoxide]] with iridium at high temperatures. Such solids are not soluble in conventional solvents.<ref>{{cite journal|title=The chemistry of ruthenium, osmium, rhodium, iridium, palladium and platinum in the higher oxidation states|journal=Coordination Chemistry Reviews|volume=46|date=1982 |pages=1–127|author=Gulliver, D. J.|author2=Levason, W.|doi=10.1016/0010-8545(82)85001-7}}</ref>


Just like many elements, iridium forms important chloride complexes. Hexachloroiridic (IV) acid, {{chem|H|2|IrCl|6}}, and its ammonium salt are the most common iridium compounds from both industrial and preparative perspectives.<ref name="ullmann-pt" /> They are intermediates in the purification of iridium and used as precursors for most other iridium compounds, as well as in the preparation of [[anode]] coatings. The {{chem|IrCl|6|2-}} ion has an intense dark brown color, and can be readily reduced to the lighter-colored {{chem|IrCl|6|3-}} and vice versa.<ref name="ullmann-pt" /> [[Iridium(III) chloride|Iridium trichloride]], {{chem|IrCl|3}}, which can be obtained in anhydrous form from direct oxidation of iridium powder by [[chlorine]] at 650&nbsp;°C,<ref name="ullmann-pt" /> or in hydrated form by dissolving {{chem|Ir|2|O|3}} in [[hydrochloric acid]], is often used as a starting material for the synthesis of other Ir(III) compounds.<ref name="greenwood" /> Another compound used as a starting material is ammonium hexachloroiridate(III), {{chem|(NH|4|)|3|IrCl|6}}.{{citation needed|date=November 2023}}
Just like many elements, iridium forms important chloride complexes. Hexachloroiridic (IV) acid, {{chem|H|2|IrCl|6}}, and its [[ammonium]] salt are the most common iridium compounds from both industrial and preparative perspectives.<ref name="ullmann-pt" /> They are intermediates in the purification of iridium and used as precursors for most other iridium compounds, as well as in the preparation of [[anode]] coatings. The {{chem|IrCl|6|2-}} ion has an intense dark brown color, and can be readily reduced to the lighter-colored {{chem|IrCl|6|3-}} and vice versa.<ref name="ullmann-pt" /> [[Iridium(III) chloride|Iridium trichloride]], {{chem|IrCl|3}}, which can be obtained in [[anhydrous]] form from direct oxidation of iridium powder by [[chlorine]] at 650&nbsp;°C,<ref name="ullmann-pt" /> or in hydrated form by dissolving {{chem|Ir|2|O|3}} in [[hydrochloric acid]], is often used as a starting material for the synthesis of other Ir(III) compounds.<ref name="greenwood" /> Another compound used as a starting material is ammonium hexachloroiridate(III), {{chem|(NH|4|)|3|IrCl|6}}.{{citation needed|date=November 2023}}


In the presence of air, iridium metal dissolves in molten alkali-metal cyanides to produce the {{chem|Ir(CN)|6|3-}} (hexacyanoiridate) ion and upon oxidation produces the most stable oxide.{{citation needed|date=November 2023}}
In the presence of air, iridium metal dissolves in molten alkali-metal cyanides to produce the {{chem|Ir(CN)|6|3-}} ([[Ferricyanide|hexacyanoiridate]]) ion and upon oxidation produces the most stable oxide.{{citation needed|date=November 2023}}


===Organoiridium chemistry===
===Organoiridium chemistry===
[[File: Ir2Cl2 cod 2improved.svg|thumb|left|[[Cyclooctadiene iridium chloride dimer]] is a common complex of Ir(I).]]
[[File: Ir2Cl2 cod 2improved.svg|thumb|left|[[Cyclooctadiene iridium chloride dimer]] is a common complex of Ir(I).]]
[[Organoiridium compound]]s contain iridium–[[carbon]] bonds. Early studies identified the very stable [[tetrairidium dodecacarbonyl]], {{chem|Ir|4|(CO)|12}}.<ref name="greenwood" /> In this compound, each of the iridium atoms is bonded to the other three, forming a tetrahedral cluster. The discovery of [[Vaska's complex]] ({{chem|IrCl(CO)[P(C|6|H|5|)|3|]|2}}) opened the door for [[oxidative addition]] reactions, a process fundamental to useful reactions. For example, [[Crabtree's catalyst]], a [[homogeneous catalyst]] for [[hydrogenation]] reactions.<ref>{{cite journal|first = R. H.| last = Crabtree| author-link =Robert H. Crabtree| title = Iridium compounds in catalysis| journal = Accounts of Chemical Research| date = 1979| volume = 12| pages = 331–337| doi = 10.1021/ar50141a005|issue = 9}}</ref><ref>{{cite book| title=The Organometallic Chemistry of the Transition Metals| url=http://chimicibicocca.altervista.org/data/chimica_lucidi.pdf| author=Crabtree, R. H.| date=2005| publisher=Wiley| isbn=978-0471662563| oclc=224478241| author-link=Robert H. Crabtree| url-status=dead| archive-url=https://web.archive.org/web/20121119073400/http://chimicibicocca.altervista.org/data/chimica_lucidi.pdf| archive-date=2012-11-19}}</ref>
[[Organoiridium compound]]s contain iridium–[[carbon]] bonds. Early studies identified the very stable [[tetrairidium dodecacarbonyl]], {{chem|Ir|4|(CO)|12}}.<ref name="greenwood" /> In this compound, each of the iridium atoms is bonded to the other three, forming a [[Tetrahedron|tetrahedral]] cluster. The discovery of [[Vaska's complex]] ({{chem|IrCl(CO)[P(C|6|H|5|)|3|]|2}}) opened the [[door]] for [[oxidative addition]] reactions, a process fundamental to useful reactions. For example, [[Crabtree's catalyst]], a [[homogeneous catalyst]] for [[hydrogenation]] reactions.<ref>{{cite journal|first = R. H.| last = Crabtree| author-link =Robert H. Crabtree| title = Iridium compounds in catalysis| journal = Accounts of Chemical Research| date = 1979| volume = 12| pages = 331–337| doi = 10.1021/ar50141a005|issue = 9}}</ref><ref>{{cite book| title=The Organometallic Chemistry of the Transition Metals| url=http://chimicibicocca.altervista.org/data/chimica_lucidi.pdf| author=Crabtree, R. H.| date=2005| publisher=Wiley| isbn=978-0471662563| oclc=224478241| author-link=Robert H. Crabtree| url-status=dead| archive-url=https://web.archive.org/web/20121119073400/http://chimicibicocca.altervista.org/data/chimica_lucidi.pdf| archive-date=2012-11-19}}</ref>


[[File:C-HactnBergGrah.png|upright=2|left|thumb|Oxidative addition to hydrocarbons in [[organoiridium chemistry]]<ref name="RGB">{{cite journal|title=Carbon-hydrogen activation in completely saturated hydrocarbons: direct observation of M + R-H → M(R)(H)|author=Janowicz, A. H.|author2=Bergman, R. G.|journal=Journal of the American Chemical Society|date=1982|volume=104|issue=1|pages=352–354|doi=10.1021/ja00365a091}}</ref><ref name="WAGG">{{cite journal|title=Oxidative addition of the carbon-hydrogen bonds of neopentane and cyclohexane to a photochemically generated iridium(I) complex|author=Hoyano, J. K.|author2=Graham, W. A. G.|journal=Journal of the American Chemical Society|date=1982|volume=104|issue=13|pages=3723–3725|doi=10.1021/ja00377a032}}</ref>|alt=Skeletal formula presentation of a chemical transformation. The initial compounds have a C5H5 ring on their top and an iridium atom in the center, which is bonded to two hydrogen atoms and a P-PH3 group or to two C-O groups. Reaction with alkane under UV light alters those groups.]]
[[File:C-HactnBergGrah.png|upright=2|left|thumb|Oxidative addition to hydrocarbons in [[organoiridium chemistry]]<ref name="RGB">{{cite journal|title=Carbon-hydrogen activation in completely saturated hydrocarbons: direct observation of M + R-H → M(R)(H)|author=Janowicz, A. H.|author2=Bergman, R. G.|journal=Journal of the American Chemical Society|date=1982|volume=104|issue=1|pages=352–354|doi=10.1021/ja00365a091}}</ref><ref name="WAGG">{{cite journal|title=Oxidative addition of the carbon-hydrogen bonds of neopentane and cyclohexane to a photochemically generated iridium(I) complex|author=Hoyano, J. K.|author2=Graham, W. A. G.|journal=Journal of the American Chemical Society|date=1982|volume=104|issue=13|pages=3723–3725|doi=10.1021/ja00377a032}}</ref>|alt=Skeletal formula presentation of a chemical transformation. The initial compounds have a C5H5 ring on their top and an iridium atom in the center, which is bonded to two hydrogen atoms and a P-PH3 group or to two C-O groups. Reaction with alkane under UV light alters those groups.]]
Iridium complexes played a pivotal role in the development of [[C-H bond activation|Carbon–hydrogen bond activation]] (C–H activation), which promises to allow functionalization of hydrocarbons, which are traditionally regarded as unreactive.<ref>{{cite journal |doi=10.1039/c0cs00156b|title=Regioselectivity of the Borylation of Alkanes and Arenes |year=2011 |last1=Hartwig |first1=John F. |journal=Chemical Society Reviews |volume=40 |issue=4 |pages=1992–2002 |pmid=21336364 }}</ref>
Iridium complexes played a pivotal role in the development of [[C-H bond activation|Carbon–hydrogen bond activation]] (C–H activation), which promises to allow functionalization of [[hydrocarbon]]s, which are traditionally regarded as [[Reactivity (chemistry)|unreactive]].<ref>{{cite journal |doi=10.1039/c0cs00156b|title=Regioselectivity of the Borylation of Alkanes and Arenes |year=2011 |last1=Hartwig |first1=John F. |journal=Chemical Society Reviews |volume=40 |issue=4 |pages=1992–2002 |pmid=21336364 }}</ref>


==History==
==History==
Line 114: Line 113:
[[File:Winged goddess Cdm Paris 392.jpg|thumb|upright|The Greek goddess [[Iris (mythology)|Iris]], after whom iridium was named.|alt=Photo of part of a black vase with brown picture on it: A woman with wings on her back hold an arrow with right hand and gives a jar to a man. A small deer is standing in front of the woman.]]
[[File:Winged goddess Cdm Paris 392.jpg|thumb|upright|The Greek goddess [[Iris (mythology)|Iris]], after whom iridium was named.|alt=Photo of part of a black vase with brown picture on it: A woman with wings on her back hold an arrow with right hand and gives a jar to a man. A small deer is standing in front of the woman.]]


The discovery of iridium is intertwined with that of platinum and the other metals of the platinum group. The first European reference to platinum appears in 1557 in the writings of the [[Italy|Italian]] humanist [[Julius Caesar Scaliger]] as a description of an unknown noble metal found between [[Darién Province|Darién]] and Mexico, "which no fire nor any Spanish artifice has yet been able to liquefy".<ref name="weeks">{{cite journal | last=Weeks | first=Mary Elvira | title=The discovery of the elements. VIII. The platinum metals | journal=Journal of Chemical Education | publisher=American Chemical Society (ACS) | volume=9 | issue=6 | year=1932 | issn=0021-9584 | doi=10.1021/ed009p1017 | pages=1017–1034| bibcode=1932JChEd...9.1017W }}{{cite book |title=Discovery of the Elements |url=https://archive.org/details/discoveryofeleme07edunse |url-access=registration |pages=[https://archive.org/details/discoveryofeleme07edunse/page/385 385]–407 |author=Weeks, M. E. |date=1968 |edition=7th |publisher=Journal of Chemical Education |isbn=978-0-8486-8579-9 |oclc=23991202}}</ref> From their first encounters with platinum, the Spanish generally saw the metal as a kind of impurity in gold, and it was treated as such. It was often simply thrown away, and there was an official decree forbidding the [[adulteration]] of gold with platinum impurities.<ref name="history">{{cite book |title=A History of Platinum and its Allied Metals |pages=7–8 |author=Donald McDonald, Leslie B. Hunt |date=1982 |publisher=Johnson Matthey Plc |isbn=978-0-905118-83-3}}</ref>
The discovery of iridium is intertwined with that of platinum and the other metals of the [[platinum group]]. The first European reference to platinum appears in 1557 in the writings of the Italian humanist [[Julius Caesar Scaliger]] as a description of an unknown noble metal found between [[Darién Province|Darién]] and Mexico, "which no fire nor any Spanish artifice has yet been able to [[Liquefaction|liquefy]]".<ref name="weeks">{{cite journal | last=Weeks | first=Mary Elvira | title=The discovery of the elements. VIII. The platinum metals | journal=Journal of Chemical Education | publisher=American Chemical Society (ACS) | volume=9 | issue=6 | year=1932 | issn=0021-9584 | doi=10.1021/ed009p1017 | pages=1017–1034| bibcode=1932JChEd...9.1017W }}{{cite book |title=Discovery of the Elements |url=https://archive.org/details/discoveryofeleme07edunse |url-access=registration |pages=[https://archive.org/details/discoveryofeleme07edunse/page/385 385]–407 |author=Weeks, M. E. |date=1968 |edition=7th |publisher=Journal of Chemical Education |isbn=978-0-8486-8579-9 |oclc=23991202}}</ref> From their first encounters with platinum, the Spanish generally saw the metal as a kind of [[impurity]] in gold, and it was treated as such. It was often simply thrown away, and there was an official decree forbidding the [[adulteration]] of gold with platinum impurities.<ref name="history">{{cite book |title=A History of Platinum and its Allied Metals |pages=7–8 |author=Donald McDonald, Leslie B. Hunt |date=1982 |publisher=Johnson Matthey Plc |isbn=978-0-905118-83-3}}</ref>
[[File:Platinum symbol.svg|thumb|left|upright=0.4|alt=A left-pointing crescent, tangent on its right to a circle containing at its center a solid circular dot|This [[alchemical symbol]] for platinum was made by joining the [[symbols]] of [[silver]] ([[moon]]) and [[gold]] ([[sun]]).]]
[[File:Platinum symbol.svg|thumb|left|upright=0.4|alt=A left-pointing crescent, tangent on its right to a circle containing at its center a solid circular dot|This [[alchemical symbol]] for platinum was made by joining the symbols of silver (moon) and gold (sun).]]
[[File:Almirante Antonio de Ulloa.jpg|thumb|[[Antonio de Ulloa]] is credited in European history with the discovery of platinum.]]
[[File:Almirante Antonio de Ulloa.jpg|thumb|[[Antonio de Ulloa]] is credited in European history with the discovery of platinum.]]


In 1735, [[Antonio de Ulloa]] and [[Jorge Juan y Santacilia]] saw Native Americans mining platinum while the Spaniards were travelling through Colombia and Peru for eight years. Ulloa and Juan found mines with the whitish metal nuggets and took them home to Spain. Antonio de Ulloa returned to Spain and established the first mineralogy lab in Spain and was the first to systematically study platinum, which was in 1748. His historical account of the expedition included a description of platinum as being neither separable nor [[calcination|calcinable]]. Ulloa also anticipated the discovery of platinum mines. After publishing the report in 1748, Ulloa did not continue to investigate the new metal. In 1758, he was sent to superintend mercury mining operations in [[Huancavelica]].<ref name="weeks" />
In 1735, [[Antonio de Ulloa]] and [[Jorge Juan y Santacilia]] saw Native Americans mining platinum while the [[Spaniards]] were travelling through [[Colombia]] and [[Peru]] for eight years. Ulloa and Juan found mines with the whitish metal [[Chicken nugget|nuggets]] and took them home to Spain. Ulloa returned to Spain and established the first [[mineralogy]] lab in Spain and was the first to systematically study platinum, which was in 1748. His historical account of the expedition included a description of platinum as being neither [[Separation process|separable]] nor [[calcination|calcinable]]. Ulloa also anticipated the discovery of platinum mines. After publishing the report in 1748, Ulloa did not continue to investigate the new metal. In 1758, he was sent to superintend [[Mercury (element)|mercury]] mining operations in [[Huancavelica]].<ref name="weeks" />


In 1741, Charles Wood,<ref>{{cite book |url=https://books.google.com/books?id=525bAAAAQAAJ&pg=PP7 |page=52 |title=The literary life of William Brownrigg. To which are added an account of the coal mines near Whitehaven: And Observations on the means of preventing epidemic fevers |last1=Dixon |first1=Joshua |last2=Brownrigg |first2=William |date=1801 |url-status=live |archive-url=https://web.archive.org/web/20170324090058/https://books.google.com/books?id=525bAAAAQAAJ&pg=PP7 |archive-date=24 March 2017 |df=dmy-all}}</ref><!--https://books.google.com/books?id=S1lFAAAAcAAJ&pg=PA672--> a British [[metallurgy|metallurgist]], found various samples of Colombian platinum in Jamaica, which he sent to [[William Brownrigg]] for further investigation.
In 1741, [[Charles Wood (metallurgist)|Charles Wood]],<ref>{{cite book |url=https://books.google.com/books?id=525bAAAAQAAJ&pg=PP7 |page=52 |title=The literary life of William Brownrigg. To which are added an account of the coal mines near Whitehaven: And Observations on the means of preventing epidemic fevers |last1=Dixon |first1=Joshua |last2=Brownrigg |first2=William |date=1801 |url-status=live |archive-url=https://web.archive.org/web/20170324090058/https://books.google.com/books?id=525bAAAAQAAJ&pg=PP7 |archive-date=24 March 2017 |df=dmy-all}}</ref><!--https://books.google.com/books?id=S1lFAAAAcAAJ&pg=PA672--> a British [[metallurgy|metallurgist]], found various samples of Colombian platinum in Jamaica, which he sent to [[William Brownrigg]] for further investigation.


In 1750, after studying the platinum sent to him by Wood, Brownrigg presented a detailed account of the metal to the [[Royal Society]], stating that he had seen no mention of it in any previous accounts of known minerals.<ref>{{cite journal |pages = 584–596 |doi = 10.1098/rstl.1749.0110 |title = Several Papers concerning a New Semi-Metal, Called Platina; Communicated to the Royal Society by Mr. Wm. Watson F. R. S |date = 1749 |last1 = Watson |first1 = Wm |last2 = Brownrigg |first2 = William |journal = Philosophical Transactions |volume = 46 |issue = 491–496 |df = dmy-all |bibcode = 1749RSPT...46..584W |s2cid = 186213277 |doi-access = free }}</ref> Brownrigg also made note of platinum's extremely high melting point and refractory metal-like behaviour toward [[borax]]. Other chemists across Europe soon began studying platinum, including [[Andreas Sigismund Marggraf]],<ref>{{cite book |url=https://books.google.com/books?id=GWNQAAAAcAAJ |title=Versuche mit dem neuen mineralischen Körper Platina del pinto genannt |last1=Marggraf |first1=Andreas Sigismund |date=1760 |url-status=live |archive-url=https://web.archive.org/web/20170324173956/https://books.google.com/books?id=GWNQAAAAcAAJ |archive-date=24 March 2017 |df=dmy-all}}</ref> [[Torbern Bergman]], [[Jöns Jakob Berzelius]],<!--http://www.google.de/url?sa=t&rct=j&q=pmr-v23-i4-155-156&source=web&cd=4&ved=0CFoQFjAD&url=https%3A%2F%2F1.800.gay%3A443%2Fhttp%2Fwww.platinummetalsreview.com%2Fpdf%2Fpmr-v23-i4-155-156.pdf&ei=FxWTT_6YOoOLswaKy7XeBA&usg=AFQjCNFn8__okV3fK4xcNSg1bQ-Nm_NZHg--> [[William Lewis (scientist)|William Lewis]],<!--http://www.google.de/url?sa=t&rct=j&q=platina+William+Lewis&source=web&cd=1&ved=0CC4QFjAA&url=https%3A%2F%2F1.800.gay%3A443%2Fhttp%2Fwww.platinummetalsreview.com%2Fpdf%2Fpmr-v7-i2-066-069.pdf&ei=hhWTT4-YNozLsgb14LGLBA&usg=AFQjCNHCECiLbEjXypnkLTujKyMs47FANQ{{cite journal| title=The Platinum of New Granada: Mining and Metallurgy in the Spanish Colonial Empire| author=McDonald, M.| journal=Platinum Metals Review| volume=3| issue=4| date=1959| pages=140–145| url=http://www.platinummetalsreview.com/dynamic/article/view/pmr-v3-i4-140-145}}{cite journal| title=The So-Called 'Platinum' Inclusions in Egyptian Goldwork| first=J. M.| last=Ogden| journal=The Journal of Egyptian Archaeology| volume=62| date=1976| pages=138–144| jstor=3856354| doi=10.2307/3856354}}</ref> and by South American cultures<ref name="preCol">{{cite journal| journal=Platinum Metals Review| date=1980| volume=24| issue=21| pages=70–79| title=The Powder Metallurgy of Platinum| first=J. C.| last=Chaston |url=http://www.technology.matthey.com/pdf/pmr-v24-i2-070-079.pdf}}{{cite book| author=Juan, J.| author2=de Ulloa, A.| date=1748| title=Relación histórica del viage a la América Meridional| page=606| language=es| url=https://books.google.com/books?id=BdSGz0Ea7h8C&| series=Primera parte, tomo secondo}}--> and [[Pierre Macquer]]. In 1752, [[Henrik Teofilus Scheffer|Henrik Scheffer]] published a detailed scientific description of the metal, which he referred to as "white gold", including an account of how he succeeded in fusing platinum ore with the aid of [[arsenic]]. Scheffer described platinum as being less pliable than gold, but with similar resistance to corrosion.<ref name="weeks" />
In 1750, after studying the platinum sent to him by Wood, Brownrigg presented a detailed account of the metal to the [[Royal Society]], stating that he had seen no mention of it in any previous accounts of known minerals.<ref>{{cite journal |pages = 584–596 |doi = 10.1098/rstl.1749.0110 |title = Several Papers concerning a New Semi-Metal, Called Platina; Communicated to the Royal Society by Mr. Wm. Watson F. R. S |date = 1749 |last1 = Watson |first1 = Wm |last2 = Brownrigg |first2 = William |journal = Philosophical Transactions |volume = 46 |issue = 491–496 |df = dmy-all |bibcode = 1749RSPT...46..584W |s2cid = 186213277 |doi-access = free }}</ref> Brownrigg also made note of platinum's extremely high melting point and refractory metal-like behaviour toward [[borax]]. Other chemists across Europe soon began studying platinum, including [[Andreas Sigismund Marggraf]],<ref>{{cite book |url=https://books.google.com/books?id=GWNQAAAAcAAJ |title=Versuche mit dem neuen mineralischen Körper Platina del pinto genannt |last1=Marggraf |first1=Andreas Sigismund |date=1760 |url-status=live |archive-url=https://web.archive.org/web/20170324173956/https://books.google.com/books?id=GWNQAAAAcAAJ |archive-date=24 March 2017 |df=dmy-all}}</ref> [[Torbern Bergman]], [[Jöns Jakob Berzelius]],<!--http://www.google.de/url?sa=t&rct=j&q=pmr-v23-i4-155-156&source=web&cd=4&ved=0CFoQFjAD&url=https%3A%2F%2F1.800.gay%3A443%2Fhttp%2Fwww.platinummetalsreview.com%2Fpdf%2Fpmr-v23-i4-155-156.pdf&ei=FxWTT_6YOoOLswaKy7XeBA&usg=AFQjCNFn8__okV3fK4xcNSg1bQ-Nm_NZHg--> [[William Lewis (scientist)|William Lewis]],<!--http://www.google.de/url?sa=t&rct=j&q=platina+William+Lewis&source=web&cd=1&ved=0CC4QFjAA&url=https%3A%2F%2F1.800.gay%3A443%2Fhttp%2Fwww.platinummetalsreview.com%2Fpdf%2Fpmr-v7-i2-066-069.pdf&ei=hhWTT4-YNozLsgb14LGLBA&usg=AFQjCNHCECiLbEjXypnkLTujKyMs47FANQ{{cite journal| title=The Platinum of New Granada: Mining and Metallurgy in the Spanish Colonial Empire| author=McDonald, M.| journal=Platinum Metals Review| volume=3| issue=4| date=1959| pages=140–145| url=http://www.platinummetalsreview.com/dynamic/article/view/pmr-v3-i4-140-145}}{cite journal| title=The So-Called 'Platinum' Inclusions in Egyptian Goldwork| first=J. M.| last=Ogden| journal=The Journal of Egyptian Archaeology| volume=62| date=1976| pages=138–144| jstor=3856354| doi=10.2307/3856354}}</ref> and by South American cultures<ref name="preCol">{{cite journal| journal=Platinum Metals Review| date=1980| volume=24| issue=21| pages=70–79| title=The Powder Metallurgy of Platinum| first=J. C.| last=Chaston |url=http://www.technology.matthey.com/pdf/pmr-v24-i2-070-079.pdf}}{{cite book| author=Juan, J.| author2=de Ulloa, A.| date=1748| title=Relación histórica del viage a la América Meridional| page=606| language=es| url=https://books.google.com/books?id=BdSGz0Ea7h8C&| series=Primera parte, tomo secondo}}--> and [[Pierre Macquer]]. In 1752, [[Henrik Teofilus Scheffer|Henrik Scheffer]] published a detailed scientific description of the metal, which he referred to as "white gold", including an account of how he succeeded in fusing platinum ore with the aid of [[arsenic]]. Scheffer described platinum as being less [[pliable]] than gold, but with similar resistance to [[corrosion]].<ref name="weeks" />


===Discovery===
===Discovery===
Chemists who studied platinum dissolved it in [[aqua regia]] (a mixture of [[hydrochloric acid|hydrochloric]] and [[nitric acid]]s) to create soluble salts. They always observed a small amount of a dark, insoluble residue.<ref name="hunt" /> [[Joseph Louis Proust]] thought that the residue was [[graphite]].<ref name="hunt" /> The French chemists [[Victor Collet-Descotils]], [[Antoine François, comte de Fourcroy]], and [[Louis Nicolas Vauquelin]] also observed the black residue in 1803, but did not obtain enough for further experiments.<ref name="hunt" />
[[Chemist]]s who studied platinum [[Dissolution (chemistry)|dissolved]] it in [[aqua regia]] (a mixture of [[hydrochloric acid|hydrochloric]] and [[nitric acid]]s) to create [[Solubility|soluble]] salts. They always observed a small amount of a dark, [[Solubility|insoluble]] residue.<ref name="hunt" /> [[Joseph Louis Proust]] thought that the residue was [[graphite]].<ref name="hunt" /> The French chemists [[Victor Collet-Descotils]], [[Antoine François, comte de Fourcroy]], and [[Louis Nicolas Vauquelin]] also observed the black residue in 1803, but did not obtain enough for further experiments.<ref name="hunt" />


In 1803, British scientist [[Smithson Tennant]] (1761–1815) analyzed the insoluble residue and concluded that it must contain a new metal. Vauquelin treated the powder alternately with alkali and acids<ref name="Emsley" /> and obtained a volatile new oxide, which he believed to be of this new metal—which he named ''ptene'', from the Greek word {{lang|el|πτηνός}} ''ptēnós'', "winged".<ref>{{cite book |title=A System of Chemistry of Inorganic Bodies |url=https://archive.org/details/asystemchemistr07thomgoog |author=Thomson, T. |author-link=Thomas Thomson (chemist) |publisher=Baldwin & Cradock, London; and William Blackwood, Edinburgh |date=1831 |volume=1 |page=[https://archive.org/details/in.ernet.dli.2015.32266/page/n721/mode/2up 693]}}</ref><ref name="griffith">{{cite journal |url=http://www.technology.matthey.com/article/48/4/182-189/ |title=Bicentenary of Four Platinum Group Metals. Part II: Osmium and iridium – events surrounding their discoveries |author=Griffith, W. P. |journal=Platinum Metals Review |volume=48 |issue=4 |date=2004 |pages=182–189 |doi=10.1595/147106704x4844|doi-access=free }}</ref> Tennant, who had the advantage of a much greater amount of residue, continued his research and identified the two previously undiscovered elements in the black residue, iridium and osmium.<ref name="hunt" /><ref name="Emsley" /> He obtained dark red crystals (probably of {{chem|Na|2|[IrCl|6}}]·''n''{{chem|H|2|O}}) by a sequence of reactions with [[sodium hydroxide]] and [[hydrochloric acid]].<ref name="griffith" /> He named iridium after [[Iris (mythology)|Iris]] ({{lang|el|Ἶρις}}), the Greek winged goddess of the rainbow and the messenger of the Olympian gods, because many of the [[Salt (chemistry)|salts]] he obtained were strongly colored.{{efn|''Iridium'' literally means "of rainbows".}}<ref>{{cite book |title=Discovery of the Elements |url=https://archive.org/details/discoveryofeleme0000week |url-access=registration |pages=[https://archive.org/details/discoveryofeleme0000week/page/414 414–418] |author=Weeks, M. E. |date=1968 |edition=7th |publisher=Journal of Chemical Education |isbn=978-0-8486-8579-9 |oclc=23991202}}</ref> Discovery of the new elements was documented in a letter to the [[Royal Society]] on June 21, 1804.<ref name="hunt"/><ref>{{cite journal |title=On Two Metals, Found in the Black Powder Remaining after the Solution of Platina |first=S. |last=Tennant |journal=Philosophical Transactions of the Royal Society of London |volume=94 |date=1804 |pages=411–418 |jstor=107152 |doi=10.1098/rstl.1804.0018 |url=https://zenodo.org/record/1432312 |doi-access=free}}</ref>
In 1803 British scientist [[Smithson Tennant]] (1761–1815) analyzed the insoluble residue and concluded that it must contain a new metal. Vauquelin treated the powder alternately with [[alkali]] and acids<ref name="Emsley" /> and obtained a volatile new oxide, which he believed to be of this new metal—which he named ''[[Osmium|ptene]]'', from the Greek word {{lang|el|πτηνός}} ''ptēnós'', "[[wing]]ed".<ref>{{cite book |title=A System of Chemistry of Inorganic Bodies |url=https://archive.org/details/asystemchemistr07thomgoog |author=Thomson, T. |author-link=Thomas Thomson (chemist) |publisher=Baldwin & Cradock, London; and William Blackwood, Edinburgh |date=1831 |volume=1 |page=[https://archive.org/details/in.ernet.dli.2015.32266/page/n721/mode/2up 693]}}</ref><ref name="griffith">{{cite journal |url=http://www.technology.matthey.com/article/48/4/182-189/ |title=Bicentenary of Four Platinum Group Metals. Part II: Osmium and iridium – events surrounding their discoveries |author=Griffith, W. P. |journal=Platinum Metals Review |volume=48 |issue=4 |date=2004 |pages=182–189 |doi=10.1595/147106704x4844|doi-access=free }}</ref> Tennant, who had the advantage of a much greater amount of residue, continued his research and identified the two previously undiscovered elements in the black residue, iridium and [[osmium]].<ref name="hunt" /><ref name="Emsley" /> He obtained dark red crystals (probably of {{chem|Na|2|[IrCl|6}}]·''n''{{chem|H|2|O}}) by a sequence of reactions with [[sodium hydroxide]] and [[hydrochloric acid]].<ref name="griffith" /> He named iridium after [[Iris (mythology)|Iris]] ({{lang|el|Ἶρις}}), the Greek winged goddess of the [[rainbow]] and the messenger of the [[Twelve Olympians|Olympian gods]], because many of the [[Salt (chemistry)|salts]] he obtained were strongly colored.{{efn|''Iridium'' literally means "of rainbows".}}<ref>{{cite book |title=Discovery of the Elements |url=https://archive.org/details/discoveryofeleme0000week |url-access=registration |pages=[https://archive.org/details/discoveryofeleme0000week/page/414 414–418] |author=Weeks, M. E. |date=1968 |edition=7th |publisher=Journal of Chemical Education |isbn=978-0-8486-8579-9 |oclc=23991202}}</ref> Discovery of the new elements was documented in a letter to the [[Royal Society]] on June 21, 1804.<ref name="hunt"/><ref>{{cite journal |title=On Two Metals, Found in the Black Powder Remaining after the Solution of Platina |first=S. |last=Tennant |journal=Philosophical Transactions of the Royal Society of London |volume=94 |date=1804 |pages=411–418 |jstor=107152 |doi=10.1098/rstl.1804.0018 |url=https://zenodo.org/record/1432312 |doi-access=free}}</ref>


===Metalworking and applications===
===Metalworking and applications===
British scientist [[John George Children]] was the first to melt a sample of iridium in 1813 with the aid of "the greatest galvanic battery that has ever been constructed" (at that time).<ref name="hunt" /> The first to obtain high-purity iridium was [[Robert Hare (chemist)|Robert Hare]] in 1842. He found it had a density of around {{cvt|21.8|g/cm3}} and noted the metal is nearly immalleable and very hard. The first melting in appreciable quantity was done by [[Henri Sainte-Claire Deville]] and [[Jules Henri Debray]] in 1860. They required burning more than {{convert|300|L|USgal}} of pure {{chem|O|2}} and {{chem|H|2}} gas for each {{convert|1|kg}} of iridium.<ref name="hunt" />
British scientist [[John George Children]] was the first to melt a sample of iridium in 1813 with the aid of "the greatest galvanic battery<!-- No page for "Galvanic Battery" --> that has ever been constructed" (at that time).<ref name="hunt" /> The first to obtain high-purity iridium was [[Robert Hare (chemist)|Robert Hare]] in 1842. He found it had a density of around {{cvt|21.8|g/cm3}} and noted the metal is nearly [[Ductility|immalleable]] and very hard. The first melting in appreciable quantity was done by [[Henri Sainte-Claire Deville]] and [[Jules Henri Debray]] in 1860. They required burning more than {{convert|300|L|USgal}} of pure {{chem|O|2}} and {{chem|H|2}} gas for each {{convert|1|kg}} of iridium.<ref name="hunt" />


These extreme difficulties in melting the metal limited the possibilities for handling iridium. [[John Isaac Hawkins]] was looking to obtain a fine and hard point for fountain pen nibs, and in 1834 managed to create an iridium-pointed gold pen. In 1880, [[John Holland (pen maker)|John Holland]] and [[William Lofland Dudley]] were able to melt iridium by adding [[phosphorus]] and patented the process in the United States; British company [[Johnson Matthey]] later stated they had been using a similar process since 1837 and had already presented fused iridium at a number of [[World's fair|World Fairs]].<ref name="hunt" /> The first use of an alloy of iridium with ruthenium in [[thermocouple]]s was made by Otto Feussner in 1933. These allowed for the measurement of high temperatures in air up to {{convert|2000|C}}.<ref name="hunt" />
These extreme difficulties in melting the metal limited the possibilities for handling iridium. [[John Isaac Hawkins]] was looking to obtain a fine and hard point for [[fountain pen]] [[Nib (pen)|nibs]], and in 1834 managed to create an iridium-pointed gold pen. In 1880, [[John Holland (pen maker)|John Holland]] and [[William Lofland Dudley]] were able to melt iridium by adding [[phosphorus]] and patented the process in the United States; British company [[Johnson Matthey]] later stated they had been using a similar process since 1837 and had already presented fused iridium at a number of [[World's fair|World Fairs]].<ref name="hunt" /> The first use of an [[alloy]] of iridium with [[ruthenium]] in [[thermocouple]]s was made by Otto Feussner<!-- No page for "Otto Feussner"
--> in 1933. These allowed for the measurement of high temperatures in air up to {{convert|2000|C}}.<ref name="hunt" />


In Munich, Germany in 1957 [[Rudolf Mössbauer]], in what has been called one of the "landmark experiments in twentieth-century physics",<ref>{{cite book |pages=179–190 |title=Landmark Experiments in Twentieth Century Physics |author=Trigg, G. L. |publisher=Courier Dover Publications |isbn=978-0-486-28526-9 |date=1995 |oclc=31409781 |chapter=Recoilless Emission and Absorption of Radiation |url=https://books.google.com/books?id=YOQ9fi5yQ4sC}}</ref> discovered the resonant and [[Atomic Recoil|recoil]]-free emission and absorption of [[gamma ray]]s by atoms in a solid metal sample containing only <sup>191</sup>Ir.<ref>{{cite journal |first=R. L. |last=Mössbauer |s2cid=121129342 |author-link=Rudolf Mössbauer |title=Gammastrahlung in Ir<sup>191</sup> |journal=Zeitschrift für Physik A |volume=151 |issue=2 |pages=124–143 |date=1958 |language=de |doi=10.1007/BF01344210 |bibcode=1958ZPhy..151..124M}}</ref> This phenomenon, known as the [[Mössbauer effect]] resulted in the awarding of the [[Nobel Prize in Physics]] in 1961, at the age 32, just three years after he published his discovery.<ref>{{cite book |title=Nobel Lectures, Physics 1942–1962 |publisher=Elsevier |date=1964 |chapter=The Nobel Prize in Physics 1961: presentation speech |first=I. |last=Waller |chapter-url=http://nobelprize.org/nobel_prizes/physics/laureates/1961/press.html}}</ref>
In [[Munich]], Germany in 1957 [[Rudolf Mössbauer]], in what has been called one of the "landmark experiments in twentieth-century physics",<ref>{{cite book |pages=179–190 |title=Landmark Experiments in Twentieth Century Physics |author=Trigg, G. L. |publisher=Courier Dover Publications |isbn=978-0-486-28526-9 |date=1995 |oclc=31409781 |chapter=Recoilless Emission and Absorption of Radiation |url=https://books.google.com/books?id=YOQ9fi5yQ4sC}}</ref> discovered the resonant and [[Atomic Recoil|recoil]]-free emission and absorption of [[gamma ray]]s by [[atom]]s in a solid metal sample containing only <sup>191</sup>Ir.<ref>{{cite journal |first=R. L. |last=Mössbauer |s2cid=121129342 |author-link=Rudolf Mössbauer |title=Gammastrahlung in Ir<sup>191</sup> |journal=Zeitschrift für Physik A |volume=151 |issue=2 |pages=124–143 |date=1958 |language=de |doi=10.1007/BF01344210 |bibcode=1958ZPhy..151..124M}}</ref> This phenomenon, known as the [[Mössbauer effect]] resulted in the awarding of the [[Nobel Prize in Physics]] in 1961, at the age 32, just three years after he published his discovery.<ref>{{cite book |title=Nobel Lectures, Physics 1942–1962 |publisher=Elsevier |date=1964 |chapter=The Nobel Prize in Physics 1961: presentation speech |first=I. |last=Waller |chapter-url=http://nobelprize.org/nobel_prizes/physics/laureates/1961/press.html}}</ref>


==Occurrence==
==Occurrence==


Along with all elements having [[atomic weight]]s higher than that of [[iron]], iridium is only naturally formed by the [[r-process]] (rapid neutron capture) in [[supernovae]] and [[neutron star merger]]s.<ref>{{cite web |url=http://herschel.jpl.nasa.gov/chemicalOrigins.shtml |title=History/Origin of Chemicals |publisher=NASA |access-date=1 January 2013}}</ref><ref name="chen">{{cite journal | last1=Chen | first1=Hsin-Yu | last2=Vitale | first2=Salvatore | last3=Foucart | first3=Francois | title=The Relative Contribution to Heavy Metals Production from Binary Neutron Star Mergers and Neutron Star–Black Hole Mergers | journal=The Astrophysical Journal Letters | publisher=American Astronomical Society | volume=920 | issue=1 | date=2021-10-01 | issn=2041-8205 | doi=10.3847/2041-8213/ac26c6 | page=L3| arxiv=2107.02714 | bibcode=2021ApJ...920L...3C | hdl=1721.1/142310 | s2cid=238198587 | doi-access=free }}</ref>
Along with many elements having [[atomic weight]]s higher than that of iron, iridium is only naturally formed by the [[r-process]] (rapid [[neutron]] capture) in [[neutron star merger]]s and possibly rare types of supernovae.<ref>{{cite web |url=http://herschel.jpl.nasa.gov/chemicalOrigins.shtml |title=History/Origin of Chemicals |publisher=NASA |access-date=1 January 2013}}</ref><ref name="chen">{{cite journal | last1=Chen | first1=Hsin-Yu | last2=Vitale | first2=Salvatore | last3=Foucart | first3=Francois | title=The Relative Contribution to Heavy Metals Production from Binary Neutron Star Mergers and Neutron Star–Black Hole Mergers | journal=The Astrophysical Journal Letters | publisher=American Astronomical Society | volume=920 | issue=1 | date=2021-10-01 | issn=2041-8205 | doi=10.3847/2041-8213/ac26c6 | page=L3| arxiv=2107.02714 | bibcode=2021ApJ...920L...3C | hdl=1721.1/142310 | s2cid=238198587 | doi-access=free }}</ref><ref>{{Cite journal |last1=Arlandini |first1=Claudio |last2=Kappeler |first2=Franz |last3=Wisshak |first3=Klaus |last4=Gallino |first4=Roberto |last5=Lugaro |first5=Maria |last6=Busso |first6=Maurizio |last7=Straniero |first7=Oscar |date=1999-11-10 |title=Neutron Capture in Low-Mass Asymptotic Giant Branch Stars: Cross Sections and Abundance Signatures |url=https://iopscience.iop.org/article/10.1086/307938 |journal=The Astrophysical Journal |language=en |volume=525 |issue=2 |pages=886–900 |doi=10.1086/307938 |issn=0004-637X|arxiv=astro-ph/9906266 |bibcode=1999ApJ...525..886A }}</ref>


[[File:Elemental abundances.svg|thumb|upright=1.7|alt=Graph sowing on the x axis the elements by atomic number and on y-axis the amount in earth's crust compared to Si abundance. There is a green area with high abundance for the lighter elements between oxygen and iron. The yellow area with lowest abundant elements includes the heavier platinum group metals, tellurium and gold. The lowest abundance is clearly iridium. |Iridium is one of the least abundant elements in Earth's crust.]]
[[File:Elemental abundances.svg|thumb|upright=1.7|alt=Graph sowing on the x axis the elements by atomic number and on y-axis the amount in earth's crust compared to Si abundance. There is a green area with high abundance for the lighter elements between oxygen and iron. The yellow area with lowest abundant elements includes the heavier platinum group metals, tellurium and gold. The lowest abundance is clearly iridium. |Iridium is one of the least abundant elements in Earth's crust.]]
[[File:Willamette Meteorite AMNH.jpg|thumb|upright|The [[Willamette Meteorite]], the sixth-largest meteorite found in the world, has 4.7&nbsp;ppm iridium.<ref>{{cite journal |title=The chemical classification of iron meteorites—VII. A reinvestigation of irons with Ge concentrations between 25 and 80 ppm |author=Scott, E. R. D. |author2=Wasson, J. T. |author3=Buchwald, V. F. |journal=Geochimica et Cosmochimica Acta |date=1973 |volume=37 |pages=1957–1983 |doi=10.1016/0016-7037(73)90151-8 |bibcode= 1973GeCoA..37.1957S |issue=8}}</ref>|alt=A large black egg-shaped boulder of porous structure standing on its top, tilted]]
[[File:Willamette Meteorite AMNH.jpg|thumb|upright|The [[Willamette Meteorite]], the sixth-largest meteorite found in the world, has 4.7&nbsp;ppm iridium.<ref>{{cite journal |title=The chemical classification of iron meteorites—VII. A reinvestigation of irons with Ge concentrations between 25 and 80 ppm |author=Scott, E. R. D. |author2=Wasson, J. T. |author3=Buchwald, V. F. |journal=Geochimica et Cosmochimica Acta |date=1973 |volume=37 |pages=1957–1983 |doi=10.1016/0016-7037(73)90151-8 |bibcode= 1973GeCoA..37.1957S |issue=8}}</ref>|alt=A large black egg-shaped boulder of porous structure standing on its top, tilted]]
Iridium is one of the nine least abundant stable elements in Earth's crust, having an average mass fraction of 0.001&nbsp;[[parts per million|ppm]] in crustal rock; [[platinum]] is 10 times more abundant, [[gold]] is 40 times more abundant, and [[silver]] and [[mercury (element)|mercury]] are 80 times more abundant.<ref name="greenwood" /> [[Tellurium]] is about as abundant as iridium.<ref name="greenwood" /> In contrast to its low abundance in crustal rock, iridium is relatively common in [[meteorite]]s, with concentrations of 0.5&nbsp;ppm or more.<ref name="argonne" /> The overall concentration of iridium on Earth is thought to be much higher than what is observed in crustal rocks, but because of the density and [[Goldschmidt classification|siderophilic]] ("iron-loving") character of iridium, it descended below the crust and into [[Earth's core]] when the planet was still molten.<ref name="ullmann-pt">{{cite book |display-authors=8 |author=Renner, H. |author2=Schlamp, G. |author3=Kleinwächter, I. |author4=Drost, E. |author5=Lüschow, H. M. |author6=Tews, P. |author7=Panster, P. |author8=Diehl, M. |author9=Lang, J. |author10=Kreuzer, T. |author11=Knödler, A. |author12=Starz, K. A. |author13=Dermann, K. |author14=Rothaut, J. |author15=Drieselman, R. |chapter=Platinum group metals and compounds |title=Ullmann's Encyclopedia of Industrial Chemistry |publisher=Wiley |date=2002 |doi=10.1002/14356007.a21_075 |isbn=978-3527306732}}</ref>
Iridium is one of the nine least abundant stable [[Periodic table|elements]] in [[Earth's crust]], having an average [[Mass fraction (chemistry)|mass fraction]] of 0.001&nbsp;[[parts per million|ppm]] in crustal rock; [[platinum]] is 10 times more abundant, gold is 40 times more abundant, silver and mercury are 80 times more abundant.<ref name="greenwood" /> [[Tellurium]] is about as abundant as iridium.<ref name="greenwood" /> In contrast to its low abundance in crustal rock, iridium is relatively common in [[meteorite]]s, with concentrations of 0.5&nbsp;ppm or more.<ref name="argonne" /> The overall concentration of iridium on Earth is thought to be much higher than what is observed in crustal rocks, but because of the density and [[Goldschmidt classification|siderophilic]] ("iron-loving") character of iridium, it descended below the crust and into [[Earth's core]] when the planet was still [[Lava|molten]].<ref name="ullmann-pt">{{cite book |display-authors=8 |author=Renner, H. |author2=Schlamp, G. |author3=Kleinwächter, I. |author4=Drost, E. |author5=Lüschow, H. M. |author6=Tews, P. |author7=Panster, P. |author8=Diehl, M. |author9=Lang, J. |author10=Kreuzer, T. |author11=Knödler, A. |author12=Starz, K. A. |author13=Dermann, K. |author14=Rothaut, J. |author15=Drieselman, R. |chapter=Platinum group metals and compounds |title=Ullmann's Encyclopedia of Industrial Chemistry |publisher=Wiley |date=2002 |doi=10.1002/14356007.a21_075 |isbn=978-3527306732}}</ref>
<!-- upper crust in 10.1016/j.gca.2012.06.026-->
<!-- upper crust in 10.1016/j.gca.2012.06.026-->


Iridium is found in nature as an uncombined element or in natural [[alloy]]s, especially the iridium–osmium alloys [[osmiridium]] (osmium-rich) and [[iridosmium]] (iridium-rich).<ref name="Emsley">{{cite book| title=Nature's Building Blocks: An A–Z Guide to the Elements| last=Emsley| first=J.| publisher=[[Oxford University Press]]| date=2003| location=Oxford, England, UK| isbn=978-0-19-850340-8| chapter=Iridium| pages=[https://archive.org/details/naturesbuildingb0000emsl/page/201 201–204]| chapter-url=https://archive.org/details/naturesbuildingb0000emsl/page/201}}</ref> In [[nickel]] and [[copper]] deposits, the platinum group metals occur as [[sulfide]]s, [[telluride (chemistry)|tellurides]], [[antimonide]]s, and [[arsenide]]s. In all of these compounds, platinum can be exchanged with a small amount of iridium or osmium. As with all of the platinum group metals, iridium can be found naturally in alloys with raw nickel or [[native copper|raw copper]].<ref>{{cite journal| doi=10.1016/j.mineng.2004.04.001| journal=Minerals Engineering| volume=17| date=2004| pages=961–979| title=Characterizing and recovering the platinum group minerals—a review| first1=Z.| last1=Xiao| last2=Laplante| first2=A. R.| issue=9–10| bibcode=2004MiEng..17..961X}}</ref> A number of iridium-dominant minerals, with iridium as the species-forming element, are known. They are exceedingly rare and often represent the iridium analogues of the above-given ones. The examples are irarsite and cuproiridsite, to mention some.<!--<ref>{{cite web |url=https://www.mindat.org/min-2042.html |title=Irarsite: Mineral information, data and localities |website=Mindat.org |access-date=27 September 2022}}</ref><ref>{{cite web| url=https://www.mindat.org/element/Iridium| title=Iridium: The mineralogy of Iridium| website=Mindat.org| access-date=27 September 2022}}</ref><ref>{{cite web |url=http://nrmima.nrm.se/|title=International Mineralogical Association - Commission on New Minerals, Nomenclature and Classification|website=nrmima.nrm.se|access-date=2018-10-06|archive-url=https://web.archive.org/web/20190810195707/http://nrmima.nrm.se//|archive-date=2019-08-10|url-status=dead}}</ref>--><ref>{{cite web|url=http://www.handbookofmineralogy.org/pdfs/cuproiridsite.pdf|title= Cuproiridsite CuIr<sub>2</sub>S<sub>4</sub>| website=Handbook of mineralogy.org|access-date=3 March 2022}}</ref><ref>{{cite journal| url=https://www.fmm.ru/images/8/89/NDM_2010_45_Stepanov_eng.pdf |journal=New Data on Minerals|date=2010|volume=45|page=23|title=Irasite Discovery in Copper-Nickel Ores of Shanuch Deposit (KAMCHATKA) |author1=Vitaly A. Stepanov|author2=Valentina E. Kungurova|author3=Vitaly I. Gvozdev|access-date=3 March 2022}}</ref><ref>{{cite journal|url=https://rruff.info/uploads/CM33_509.pdf|journal=The Canadian Mineralogist|date=1995|volume=33|pages=509–520|title=Iridium, Rhodium, and Platinum Sulfides in Chromitites from the Ultramafic Massifs of Finero, Italy, and Ojen, Spain |first1=Giorgio |last1= Garuti | first2 = Moreno | last2 = Gazzotti | first3= Jose | last3 = Torres-Ruiz |access-date=2 November 2022}}</ref> Within Earth's crust, iridium is found at highest concentrations in three types of geologic structure: igneous deposits (crustal intrusions from below), impact craters, and deposits reworked from one of the former structures. The largest known primary reserves are in the [[Bushveld igneous complex]] in [[South Africa]],<ref name="kirk-pt" /> (near the largest known impact structure, the [[Vredefort impact structure]]) though the large copper–nickel deposits near [[Norilsk#Norilsk-Talnakh nickel deposits|Norilsk]] in [[Russia]], and the [[Sudbury Basin]] (also an impact crater) in [[Canada]] are also significant sources of iridium. Smaller reserves are found in the United States.<ref name="kirk-pt" /> Iridium is also found in secondary deposits, combined with platinum and other platinum group metals in [[alluvium|alluvial]] deposits. The alluvial deposits used by [[pre-Columbian]] people in the [[Chocó Department]] of [[Colombia]] are still a source for platinum-group metals. <!-- The second large alluvial deposit was found in the [[Ural mountain]]s, Russia, which is still mined.{{Citation needed|date=September 2008}} --> As of 2003, world reserves have not been estimated.<ref name="Emsley" />
Iridium is found in nature as an uncombined element or in natural [[alloy]]s, especially the iridium–[[osmium]] alloys [[osmiridium]] (osmium-rich) and [[iridosmium]] (iridium-rich).<ref name="Emsley">{{cite book| title=Nature's Building Blocks: An A–Z Guide to the Elements| last=Emsley| first=J.| publisher=[[Oxford University Press]]| date=2003| location=Oxford, England, UK| isbn=978-0-19-850340-8| chapter=Iridium| pages=[https://archive.org/details/naturesbuildingb0000emsl/page/201 201–204]| chapter-url=https://archive.org/details/naturesbuildingb0000emsl/page/201}}</ref> In [[nickel]] and copper deposits, the [[platinum group]] metals occur as [[sulfide]]s, [[telluride (chemistry)|tellurides]], [[antimonide]]s, and [[arsenide]]s. In all of these compounds, [[platinum]] can be exchanged with a small amount of iridium or osmium. As with all of the platinum group metals, iridium can be found naturally in alloys with raw nickel<!-- no page for "Raw Nickel" --> or [[native copper|raw copper]].<ref>{{cite journal| doi=10.1016/j.mineng.2004.04.001| journal=Minerals Engineering| volume=17| date=2004| pages=961–979| title=Characterizing and recovering the platinum group minerals—a review| first1=Z.| last1=Xiao| last2=Laplante| first2=A. R.| issue=9–10| bibcode=2004MiEng..17..961X}}</ref> A number of iridium-dominant [[mineral]]s, with iridium as the species-forming element, are known. They are exceedingly rare and often represent the iridium analogues of the above-given ones. The examples are irarsite<!-- No page for "irarsite" --> and cuproiridsite<!-- No page for "cuproiridsite" -->, to mention some.<!--<ref>{{cite web |url=https://www.mindat.org/min-2042.html |title=Irarsite: Mineral information, data and localities |website=Mindat.org |access-date=27 September 2022}}</ref><ref>{{cite web| url=https://www.mindat.org/element/Iridium| title=Iridium: The mineralogy of Iridium| website=Mindat.org| access-date=27 September 2022}}</ref><ref>{{cite web |url=http://nrmima.nrm.se/|title=International Mineralogical Association Commission on New Minerals, Nomenclature and Classification|website=nrmima.nrm.se|access-date=2018-10-06|archive-url=https://web.archive.org/web/20190810195707/http://nrmima.nrm.se//|archive-date=2019-08-10|url-status=dead}}</ref>--><ref>{{cite web|url=http://www.handbookofmineralogy.org/pdfs/cuproiridsite.pdf|title= Cuproiridsite CuIr<sub>2</sub>S<sub>4</sub>| website=Handbook of mineralogy.org|access-date=3 March 2022}}</ref><ref>{{cite journal| url=https://www.fmm.ru/images/8/89/NDM_2010_45_Stepanov_eng.pdf |journal=New Data on Minerals|date=2010|volume=45|page=23|title=Irasite Discovery in Copper-Nickel Ores of Shanuch Deposit (KAMCHATKA) |author1=Vitaly A. Stepanov|author2=Valentina E. Kungurova|author3=Vitaly I. Gvozdev|access-date=3 March 2022}}</ref><ref>{{cite journal|url=https://rruff.info/uploads/CM33_509.pdf|journal=The Canadian Mineralogist|date=1995|volume=33|pages=509–520|title=Iridium, Rhodium, and Platinum Sulfides in Chromitites from the Ultramafic Massifs of Finero, Italy, and Ojen, Spain |first1=Giorgio |last1= Garuti | first2 = Moreno | last2 = Gazzotti | first3= Jose | last3 = Torres-Ruiz |access-date=2 November 2022}}</ref> Within Earth's crust, iridium is found at highest concentrations in three types of [[Geology|geologic]] structure: [[Igneous rock|igneous]] deposits (crustal intrusions from below), [[impact crater]]s, and deposits reworked from one of the former structures. The largest known primary reserves are in the [[Bushveld igneous complex]] in South Africa,<ref name="kirk-pt" /> (near the largest known impact structure, the [[Vredefort impact structure]]) though the large copper–[[nickel]] deposits near [[Norilsk#Norilsk-Talnakh nickel deposits|Norilsk]] in Russia, and the [[Sudbury Basin]] (also an impact crater) in Canada are also significant sources of iridium. Smaller reserves are found in the United States.<ref name="kirk-pt" /> Iridium is also found in secondary deposits, combined with [[platinum]] and other [[platinum group]] metals in [[alluvium|alluvial]] deposits. The alluvial deposits used by [[pre-Columbian]] people in the [[Chocó Department]] of [[Colombia]] are still a source for platinum-group metals. <!-- The second large alluvial deposit was found in the [[Ural mountain]]s, Russia, which is still mined.{{Citation needed|date=September 2008}} --> As of 2003, world reserves have not been estimated.<ref name="Emsley" />


===Marine oceanography===
===Marine oceanography===
Iridium is found within marine organisms, [[sediment]]s, and the water column. The abundance of iridium in seawater<ref name="Goldberg">{{cite journal |last1=Goldberg |first1=Hodge |last2=Kay |first2=V |last3=Stallard |first3=M |last4=Koide |first4=M |title=Some comparative marine chemistries of platinum and iridium |journal=Applied Geochemistry |date=1986 |volume=1 |issue=2 |pages=227–232 |doi=10.1016/0883-2927(86)90006-5|bibcode=1986ApGC....1..227G }}</ref> and organisms<ref name="Wells">{{cite journal |last1=Wells |first1=Boothe |title=Iridium in marine organisms |journal=Geochimica et Cosmochimica Acta |date=1988 |volume=52 |issue=6 |pages=1737–1739 |doi=10.1016/0016-7037(88)90242-6|bibcode=1988GeCoA..52.1737W }}</ref> is relatively low, as it does not readily form [[Transition metal chloride complex|chloride complexes]].<ref name="Wells"/> The abundance in organisms is about 20 parts per trillion, or about five [[orders of magnitude]] less than in [[sedimentary rock]]s at the [[Cretaceous–Paleogene boundary|Cretaceous–Paleogene (K–T) boundary]].<ref name="Wells" /> The concentration of iridium in seawater and marine sediment is sensitive to [[Oxygenation (environmental)|marine oxygenation]], seawater temperature, and various geological and biological processes.<ref name="Sawlowicz">{{cite journal |last1=Sawlowicz |first1=Z |title=Iridium and other platinum-group elements as geochemical markers in sedimentary environments |journal=Palaeogeography, Palaeoclimatology, Palaeoecology |date=1993 |volume=104 |issue=4 |pages=253–270 |doi=10.1016/0031-0182(93)90136-7|bibcode=1993PPP...104..253S }}</ref>
Iridium is found within marine organisms, [[sediment]]s, and the water column. The abundance of iridium in seawater<ref name="Goldberg">{{cite journal |last1=Goldberg |first1=Hodge |last2=Kay |first2=V |last3=Stallard |first3=M |last4=Koide |first4=M |title=Some comparative marine chemistries of platinum and iridium |journal=Applied Geochemistry |date=1986 |volume=1 |issue=2 |pages=227–232 |doi=10.1016/0883-2927(86)90006-5|bibcode=1986ApGC....1..227G }}</ref> and organisms<ref name="Wells">{{cite journal |last1=Wells |first1=Boothe |title=Iridium in marine organisms |journal=Geochimica et Cosmochimica Acta |date=1988 |volume=52 |issue=6 |pages=1737–1739 |doi=10.1016/0016-7037(88)90242-6|bibcode=1988GeCoA..52.1737W }}</ref> is relatively low, as it does not readily form [[Transition metal chloride complex|chloride complexes]].<ref name="Wells"/> The abundance in organisms is about 20 parts per trillion, or about five [[orders of magnitude]] less than in [[sedimentary rock]]s at the [[Cretaceous–Paleogene boundary|Cretaceous–Paleogene (K–T) boundary]].<ref name="Wells" /> The concentration of iridium in seawater and marine sediment is sensitive to [[Oxygenation (environmental)|marine oxygenation]], seawater temperature, and various geological and biological processes.<ref name="Sawlowicz">{{cite journal |last1=Sawlowicz |first1=Z |title=Iridium and other platinum-group elements as geochemical markers in sedimentary environments |journal=Palaeogeography, Palaeoclimatology, Palaeoecology |date=1993 |volume=104 |issue=4 |pages=253–270 |doi=10.1016/0031-0182(93)90136-7|bibcode=1993PPP...104..253S }}</ref>


Iridium in sediments can come from [[cosmic dust]], volcanoes, [[precipitation (chemistry)|precipitation]] from seawater, microbial processes, or [[hydrothermal vent]]s,<ref name="Sawlowicz" /> and its abundance can be strongly indicative of the source.<ref name="Macdougall">{{cite journal |last1=Crocket |first1=Macdougall |last2=Harriss |first2=R |title=Gold, palladium and iridium in marine sediments |journal=Geochimica et Cosmochimica Acta |date=1973 |volume=37 |issue=12 |pages=2547–2556 |doi=10.1016/0016-7037(73)90264-0|bibcode=1973GeCoA..37.2547C }}</ref><ref name="Sawlowicz" /> It tends to associate with other ferrous metals in [[manganese nodule]]s.<ref name="Goldberg" /> Iridium is one of the characteristic elements of extraterrestrial rocks, and, along with osmium, can be used as a tracer element for meteoritic material in sediment.<ref name="Peucker-Ehrenbrink">{{cite book |last1=Peucker-Ehrenbrink |first1=B |title=Accretion of Extraterrestrial Matter Throughout Earth's History |chapter=Iridium and Osmium as Tracers of Extraterrestrial Matter in Marine Sediments |date=2001 |pages=163–178 |doi=10.1007/978-1-4419-8694-8_10|isbn=978-1-4613-4668-5 }}</ref><ref name="Barker">{{cite journal |last1=Barker |first1=J |last2=Edward |first2=A |title=Accretion rate of cosmic matter from iridium and osmium contents of deep-sea sediments |journal=Geochimica et Cosmochimica Acta |date=1968 |volume=32 |issue=6 |pages=627–645 |doi=10.1016/0016-7037(68)90053-7|bibcode=1968GeCoA..32..627B }}</ref> For example core samples from the [[Pacific Ocean]] with elevated iridium levels suggested the [[Eltanin impact]] of about 2.5&nbsp;million years ago.<ref name="Kyte1981"/>
Iridium in sediments can come from [[cosmic dust]], volcanoes, [[precipitation (chemistry)|precipitation]] from seawater, microbial processes, or [[hydrothermal vent]]s,<ref name="Sawlowicz" /> and its abundance can be strongly indicative of the source.<ref name="Macdougall">{{cite journal |last1=Crocket |first1=Macdougall |last2=Harriss |first2=R |title=Gold, palladium and iridium in marine sediments |journal=Geochimica et Cosmochimica Acta |date=1973 |volume=37 |issue=12 |pages=2547–2556 |doi=10.1016/0016-7037(73)90264-0|bibcode=1973GeCoA..37.2547C }}</ref><ref name="Sawlowicz" /> It tends to associate with other ferrous metals in [[manganese nodule]]s.<ref name="Goldberg" /> Iridium is one of the characteristic elements of extraterrestrial rocks, and, along with osmium, can be used as a tracer element for meteoritic material in sediment.<ref name="Peucker-Ehrenbrink">{{cite book |last1=Peucker-Ehrenbrink |first1=B |title=Accretion of Extraterrestrial Matter Throughout Earth's History |chapter=Iridium and Osmium as Tracers of Extraterrestrial Matter in Marine Sediments |date=2001 |pages=163–178 |doi=10.1007/978-1-4419-8694-8_10|isbn=978-1-4613-4668-5 }}</ref><ref name="Barker">{{cite journal |last1=Barker |first1=J |last2=Edward |first2=A |title=Accretion rate of cosmic matter from iridium and osmium contents of deep-sea sediments |journal=Geochimica et Cosmochimica Acta |date=1968 |volume=32 |issue=6 |pages=627–645 |doi=10.1016/0016-7037(68)90053-7|bibcode=1968GeCoA..32..627B }}</ref> For example, core samples from the Pacific Ocean with elevated iridium levels suggested the [[Eltanin impact]] of about 2.5&nbsp;million years ago.<ref name="Kyte1981"/>


Some of the [[mass extinction]]s, such as the [[Cretaceous extinction]], can be identified by anomalously high concentrations of iridium in sediment, and these can be linked to major [[asteroid impact]]s.<ref name="Colodner">{{cite journal |last1=Colodner |first1=D |last2=Edmond |first2=J |title=Post-depositional mobility of platinum, iridium and rhenium in marine sediments |journal=Nature |date=1992 |volume=358 |issue=6385 |pages=402–404 |doi=10.1038/358402a0|bibcode=1992Natur.358..402C |s2cid=37386975 }}</ref>
Some of the [[mass extinction]]s, such as the [[Cretaceous extinction]], can be identified by anomalously high concentrations of iridium in sediment, and these can be linked to major [[asteroid impact]]s.<ref name="Colodner">{{cite journal |last1=Colodner |first1=D |last2=Edmond |first2=J |title=Post-depositional mobility of platinum, iridium and rhenium in marine sediments |journal=Nature |date=1992 |volume=358 |issue=6385 |pages=402–404 |doi=10.1038/358402a0|bibcode=1992Natur.358..402C |s2cid=37386975 }}</ref>
Line 159: Line 159:
{{Main|Cretaceous–Paleogene extinction event}}
{{Main|Cretaceous–Paleogene extinction event}}


The [[Cretaceous–Paleogene boundary]] of 66 million years ago, marking the temporal border between the [[Cretaceous]] and [[Paleogene]] periods of [[Geologic time scale|geological time]], was identified by a thin [[stratum]] of [[iridium anomaly|iridium-rich clay]].<ref name="Alvarez" /> A team led by [[Luis Walter Alvarez|Luis Alvarez]] proposed in 1980 an extraterrestrial origin for this iridium, attributing it to an [[asteroid]] or [[comet]] impact.<ref name="Alvarez">{{cite journal|title=Extraterrestrial cause for the Cretaceous–Tertiary extinction|author=Alvarez, L. W.|author-link=Luis Walter Alvarez|author2=Alvarez, W.|author3=Asaro, F.|author4=Michel, H. V.|s2cid=16017767|date=1980|journal=Science|volume=208|issue=4448|pages=1095–1108|doi=10.1126/science.208.4448.1095|pmid=17783054|bibcode = 1980Sci...208.1095A |url=http://chaos.swarthmore.edu/courses/soc26/bak-sneppan/13_alverez.pdf|citeseerx=10.1.1.126.8496}}</ref> Their theory, known as the [[Alvarez hypothesis]], is now widely accepted to explain the extinction of the non-avian [[dinosaur]]s. A large buried impact crater structure with an estimated age of about 66 million years was later identified under what is now the [[Yucatán Peninsula]] (the [[Chicxulub crater]]).<ref>{{cite journal |last=Hildebrand |first=A. R. |author2=Penfield, Glen T. |author3=Kring, David A. |author4=Pilkington, Mark |author5=Zanoguera, Antonio Camargo |author6=Jacobsen, Stein B. |author7= Boynton, William V. |title=Chicxulub Crater; a possible Cretaceous/Tertiary boundary impact crater on the Yucatan Peninsula, Mexico |date=1991 |volume=19 |issue=9 |journal=[[Geology (journal)|Geology]] |pages=867–871 |doi=10.1130/0091-7613(1991)019<0867:CCAPCT>2.3.CO;2 |bibcode=1991Geo....19..867H}}</ref><ref>{{cite book|author=Frankel, C.|title=The End of the Dinosaurs: Chicxulub Crater and Mass Extinctions|date=1999|publisher=Cambridge University Press|isbn=978-0-521-47447-4|oclc=40298401|url-access=registration |url=https://archive.org/details/endofdinosaursch00fran}}</ref> Dewey M. McLean and others argue that the iridium may have been of [[volcano|volcanic]] origin instead, because [[Earth]]'s core is rich in iridium, and active volcanoes such as [[Piton de la Fournaise]], in the island of [[Réunion]], are still releasing iridium.<ref>{{cite book|title=The Cretaceous-Tertiary Event and Other Catastrophes in Earth History|author=Ryder, G.|author2=Fastovsky, D. E.|author3=Gartner, S.|publisher=Geological Society of America|date=1996|isbn=978-0-8137-2307-5|page=47}}</ref><ref>{{cite journal |author=Toutain, J.-P.|author2=Meyer, G.|date=1989|title=Iridium-Bearing Sublimates at a Hot-Spot Volcano (Piton De La Fournaise, Indian Ocean)|journal=Geophysical Research Letters|volume=16|issue=12|pages=1391–1394|doi=10.1029/GL016i012p01391|bibcode=1989GeoRL..16.1391T}}</ref>
The [[Cretaceous–Paleogene boundary]] of 66 million years ago, marking the temporal border between the [[Cretaceous]] and [[Paleogene]] periods of [[Geologic time scale|geological time]], was identified by a thin [[stratum]] of [[iridium anomaly|iridium-rich clay]].<ref name="Alvarez" /> A team led by [[Luis Walter Alvarez|Luis Alvarez]] proposed in 1980 an extraterrestrial origin for this iridium, attributing it to an [[asteroid]] or [[comet]] impact.<ref name="Alvarez">{{cite journal|title=Extraterrestrial cause for the Cretaceous–Tertiary extinction|author=Alvarez, L. W.|author-link=Luis Walter Alvarez|author2=Alvarez, W.|author3=Asaro, F.|author4=Michel, H. V.|s2cid=16017767|date=1980|journal=Science|volume=208|issue=4448|pages=1095–1108|doi=10.1126/science.208.4448.1095|pmid=17783054|bibcode = 1980Sci...208.1095A |url=http://chaos.swarthmore.edu/courses/soc26/bak-sneppan/13_alverez.pdf|citeseerx=10.1.1.126.8496}}</ref> Their theory, known as the [[Alvarez hypothesis]], is now widely accepted to explain the extinction of the non-avian dinosaurs. A large buried impact crater structure with an estimated age of about 66 million years was later identified under what is now the [[Yucatán Peninsula]] (the [[Chicxulub crater]]).<ref>{{cite journal |last=Hildebrand |first=A. R. |author2=Penfield, Glen T. |author3=Kring, David A. |author4=Pilkington, Mark |author5=Zanoguera, Antonio Camargo |author6=Jacobsen, Stein B. |author7= Boynton, William V. |title=Chicxulub Crater; a possible Cretaceous/Tertiary boundary impact crater on the Yucatan Peninsula, Mexico |date=1991 |volume=19 |issue=9 |journal=[[Geology (journal)|Geology]] |pages=867–871 |doi=10.1130/0091-7613(1991)019<0867:CCAPCT>2.3.CO;2 |bibcode=1991Geo....19..867H}}</ref><ref>{{cite book|author=Frankel, C.|title=The End of the Dinosaurs: Chicxulub Crater and Mass Extinctions|date=1999|publisher=Cambridge University Press|isbn=978-0-521-47447-4|oclc=40298401|url-access=registration |url=https://archive.org/details/endofdinosaursch00fran}}</ref> Dewey M. McLean and others argue that the iridium may have been of [[volcano|volcanic]] origin instead, because Earth's core is rich in iridium, and active volcanoes such as [[Piton de la Fournaise]], in the island of [[Réunion]], are still releasing iridium.<ref>{{cite book|title=The Cretaceous-Tertiary Event and Other Catastrophes in Earth History|author=Ryder, G.|author2=Fastovsky, D. E.|author3=Gartner, S.|publisher=Geological Society of America|date=1996|isbn=978-0-8137-2307-5|page=47}}</ref><ref>{{cite journal |author=Toutain, J.-P.|author2=Meyer, G.|date=1989|title=Iridium-Bearing Sublimates at a Hot-Spot Volcano (Piton De La Fournaise, Indian Ocean)|journal=Geophysical Research Letters|volume=16|issue=12|pages=1391–1394|doi=10.1029/GL016i012p01391|bibcode=1989GeoRL..16.1391T}}</ref>


==Production==
==Production==
{|class="wikitable" style="text-align:center; float:right; margin-left:0.5em"
{|class="wikitable" style="text-align:center; float:right; margin-left:0.5em"
!Year!!Consumption<br />(tonnes)!!Price ([[United States dollar|USD]])<ref name="usgs">[http://minerals.usgs.gov/minerals/pubs/commodity/platinum/ Platinum-Group Metals]. U.S. Geological Survey Mineral Commodity Summaries</ref>
!Year!!Consumption<br />(tonnes)!!Price (US$)<ref name="usgs">[http://minerals.usgs.gov/minerals/pubs/commodity/platinum/ Platinum-Group Metals]. U.S. Geological Survey Mineral Commodity Summaries</ref>
|-
|-
|2001|| 2.6||{{convert|415.25|$/ozt|$/g|abbr=on|lk=in}}
|2001|| 2.6||{{convert|415.25|$/ozt|$/g|abbr=on|lk=in}}
Line 206: Line 206:
|-
|-
|2021||n.d.||{{convert|5400.00|$/ozt|$/g|abbr=on|lk=in}}
|2021||n.d.||{{convert|5400.00|$/ozt|$/g|abbr=on|lk=in}}
|-
|2022||n.d.||{{convert|3980.00|$/ozt|$/g|abbr=on|lk=in}}
|-
|2023||n.d.||{{convert|4652.38|$/ozt|$/g|abbr=on|lk=in}}
|-
|2024||n.d.||{{convert|5000.00|$/ozt|$/g|abbr=on|lk=in}}
|}
|}
<!-- Should be updated sometime! A good source is http://www.platinum.matthey.com/prices/price-charts -->
<!-- Should be updated sometime! A good source is http://www.platinum.matthey.com/prices/price-charts -->


Worldwide production of iridium was about {{convert|7300|kg}} in 2018.<ref name=usgs2018 /> The price is high and varying (see table). Illustrative factors that affect the price include oversupply of Ir crucibles<ref name="usgs" /><ref>{{cite journal|author=Hagelüken, C. |journal=Metall |volume=60 |issue=1–2 |date=2006 |pages=31–42 |title=Markets for the catalysts metals platinum, palladium, and rhodium |url=http://www.preciousmetals.umicore.com/publications/articles_by_umicore/general/show_Metal_PGMmarkets_200602.pdf |url-status=dead |archive-url=https://web.archive.org/web/20090304195307/http://www.preciousmetals.umicore.com/publications/articles_by_umicore/general/show_Metal_PGMmarkets_200602.pdf |archive-date=March 4, 2009 }}</ref>
Worldwide production of iridium was about {{convert|7300|kg}} in 2018.<ref name="usgs2018">{{cite book |last1=Singerling |first1=Sheryl A. |url=https://d9-wret.s3.us-west-2.amazonaws.com/assets/palladium/production/atoms/files/myb1-2018-plati.pdf |title=2018 Minerals Yearbook |last2=Schulte |first2=Ruth F. |date=August 2021 |publisher=USGS |page=57.11 |chapter=Platinum-Group Metals}}</ref> The price is high and varying (see table). Illustrative factors that affect the price include oversupply of Ir crucibles<ref name="usgs" /><ref>{{cite journal|author=Hagelüken, C. |journal=Metall |volume=60 |issue=1–2 |date=2006 |pages=31–42 |title=Markets for the catalysts metals platinum, palladium, and rhodium |url=http://www.preciousmetals.umicore.com/publications/articles_by_umicore/general/show_Metal_PGMmarkets_200602.pdf |url-status=dead |archive-url=https://web.archive.org/web/20090304195307/http://www.preciousmetals.umicore.com/publications/articles_by_umicore/general/show_Metal_PGMmarkets_200602.pdf |archive-date=March 4, 2009 }}</ref>
and changes in [[LED]] technology.<ref>
and changes in [[LED]] technology.<ref>
{{cite web
{{cite web
Line 219: Line 225:
</ref>
</ref>


Platinum metals occur together as dilute ores. Iridium is one of the rarer platinum metals: for every 190 tonnes of platinum obtained from ores, only 7.5 tonnes of iridium is isolated.<ref name=JM>{{cite web |url=https://matthey.com/en/iridium-supply-hydrogen-electrolysers|title=Recycling and thrifting: the answer to the iridium question in electrolyser growth|first1=Marge |last1=Ryan |date=2022-11-16}}</ref> To separate the metals, they must first be brought into [[Solution (chemistry)|solution]]. Two methods for rendering Ir-containing ores soluble are (i) fusion of the solid with [[sodium peroxide]] followed by extraction of the resulting glass in [[aqua regia]] and (ii) extraction of the solid with a mixture of [[chlorine]] with [[hydrochloric acid]].<ref name="ullmann-pt" /><ref name="kirk-pt" /> From soluble extracts, iridium is separated by precipitating solid [[ammonium hexachloroiridate]] ({{chem|(NH|4|)|2|IrCl|6}}) or by extracting {{chem|IrCl|6|2-}} with organic amines.<ref>{{cite journal| title = The Platinum Metals| first = Raleigh| last = Gilchrist| journal = Chemical Reviews| date = 1943| volume = 32| issue = 3| pages = 277–372| doi = 10.1021/cr60103a002| s2cid = 96640406}}</ref> The first method is similar to the procedure Tennant and Wollaston used for their original separation. The second method can be planned as continuous [[liquid–liquid extraction]] and is therefore more suitable for industrial scale production. In either case, the product, an iridium chloride salt, is reduced with hydrogen, yielding the metal as a powder or ''[[metal sponge|sponge]]'', which is amenable to [[powder metallurgy]] techniques.<ref>{{cite journal| title =Processing of Iridium and Iridium Alloys| first = E. K.| last = Ohriner| journal = Platinum Metals Review| volume = 52| issue = 3| date = 2008| pages = 186–197| doi =10.1595/147106708X333827| doi-access = free}}</ref><ref>{{cite journal| first = L. B.| last = Hunt| author2 = Lever, F. M.| journal = Platinum Metals Review| volume = 13| issue = 4| date = 1969| pages = 126–138| title = Platinum Metals: A Survey of Productive Resources to industrial Uses| url = http://www.platinummetalsreview.com/pdf/pmr-v13-i4-126-138.pdf| access-date = 2008-10-01| archive-date = 2008-10-29| archive-url = https://web.archive.org/web/20081029205825/http://www.platinummetalsreview.com/pdf/pmr-v13-i4-126-138.pdf| url-status = dead}}</ref> Iridium is also obtained commercially as a by-product from [[nickel]] and [[copper]] mining and processing. During [[Copper extraction techniques#Electrorefining|electrorefining of copper]] and nickel, noble metals such as silver, gold and the [[platinum group metal]]s as well as [[selenium]] and [[tellurium]] settle to the bottom of the cell as ''anode mud'', which forms the starting point for their extraction.<ref name="usgs" />
Platinum metals occur together as dilute ores. Iridium is one of the rarer platinum metals: for every 190 tonnes of platinum obtained from ores, only 7.5 tonnes of iridium is isolated.<ref name=JM>{{cite web |url=https://matthey.com/en/iridium-supply-hydrogen-electrolysers|title=Recycling and thrifting: the answer to the iridium question in electrolyser growth|first1=Marge |last1=Ryan |date=2022-11-16}}</ref> To separate the metals, they must first be brought into [[Solution (chemistry)|solution]]. Two methods for rendering Ir-containing ores soluble are (i) fusion of the solid with [[sodium peroxide]] followed by extraction of the resulting glass in [[aqua regia]] and (ii) extraction of the solid with a mixture of [[chlorine]] with [[hydrochloric acid]].<ref name="ullmann-pt" /><ref name="kirk-pt" /> From soluble extracts, iridium is separated by precipitating solid [[ammonium hexachloroiridate]] ({{chem|(NH|4|)|2|IrCl|6}}) or by extracting {{chem|IrCl|6|2-}} with organic amines.<ref>{{cite journal| title = The Platinum Metals| first = Raleigh| last = Gilchrist| journal = Chemical Reviews| date = 1943| volume = 32| issue = 3| pages = 277–372| doi = 10.1021/cr60103a002| s2cid = 96640406}}</ref> The first method is similar to the procedure Tennant and Wollaston used for their original separation. The second method can be planned as continuous [[liquid–liquid extraction]] and is therefore more suitable for industrial scale production. In either case, the product, an iridium chloride salt, is reduced with hydrogen, yielding the metal as a powder or ''[[metal sponge|sponge]]'', which is amenable to [[powder metallurgy]] techniques.<ref>{{cite journal| title =Processing of Iridium and Iridium Alloys| first = E. K.| last = Ohriner| journal = Platinum Metals Review| volume = 52| issue = 3| date = 2008| pages = 186–197| doi =10.1595/147106708X333827| doi-access = free}}</ref><ref>{{cite journal| first = L. B.| last = Hunt| author2 = Lever, F. M.| journal = Platinum Metals Review| volume = 13| issue = 4| date = 1969| pages = 126–138| title = Platinum Metals: A Survey of Productive Resources to industrial Uses| doi = 10.1595/003214069X134126138| s2cid = 267561907| url = http://www.platinummetalsreview.com/pdf/pmr-v13-i4-126-138.pdf| access-date = 2008-10-01| archive-date = 2008-10-29| archive-url = https://web.archive.org/web/20081029205825/http://www.platinummetalsreview.com/pdf/pmr-v13-i4-126-138.pdf| url-status = dead}}</ref> Iridium is also obtained commercially as a by-product from [[nickel]] and copper mining and processing. During [[Copper extraction techniques#Electrorefining|electrorefining of copper]] and nickel, noble metals such as silver, gold and the [[platinum group metal]]s as well as [[selenium]] and [[tellurium]] settle to the bottom of the cell as ''anode mud'', which forms the starting point for their extraction.<ref name="usgs" />


{{mw-datatable}}{{static row numbers}}
{{mw-datatable}}{{static row numbers}}
Line 242: Line 248:


===Ir metal and alloys===
===Ir metal and alloys===
Resistance to heat and corrosion are the bases for several uses of iridium and its alloys.
Resistance to heat and corrosion are the bases for several uses of iridium and its alloys.


Owing to its high melting point, hardness, and [[corrosion resistance]], iridium is used to make crucibles. Such [[crucible]]s are used in the [[Czochralski process]] to produce oxide single-crystals (such as [[sapphire]]s) for use in computer memory devices and in solid state lasers.<ref name="Handley">{{cite journal|title= Increasing Applications for Iridium| first = J. R.| last = Handley| journal = Platinum Metals Review| volume = 30| issue = 1| date = 1986| pages = 12–13| url = https://technology.matthey.com/article/30/1/12-13/}}</ref><ref>{{cite journal|title= On the Use of Iridium Crucibles in Chemical Operations| first = W.| last = Crookes|author-link=William Crookes| journal = Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character| volume = 80| issue = 541| date = 1908| pages = 535–536| jstor = 93031|doi= 10.1098/rspa.1908.0046|bibcode = 1908RSPSA..80..535C | doi-access = free}}</ref> The crystals, such as [[gadolinium gallium garnet]] and yttrium gallium garnet, are grown by melting pre-sintered charges of mixed oxides under oxidizing conditions at temperatures up to {{cvt|2100|°C}}.<ref name="hunt" />
Owing to its high melting point, hardness, and [[corrosion resistance]], iridium is used to make crucibles. Such [[crucible]]s are used in the [[Czochralski process]] to produce oxide single-crystals (such as [[sapphire]]s) for use in computer memory devices and in solid state lasers.<ref name="Handley">{{cite journal|title= Increasing Applications for Iridium| first = J. R.| last = Handley| journal = Platinum Metals Review| volume = 30| issue = 1| date = 1986| pages = 12–13| doi = 10.1595/003214086X3011213| url = https://technology.matthey.com/article/30/1/12-13/}}</ref><ref>{{cite journal|title= On the Use of Iridium Crucibles in Chemical Operations| first = W.| last = Crookes|author-link=William Crookes| journal = Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character| volume = 80| issue = 541| date = 1908| pages = 535–536| jstor = 93031|doi= 10.1098/rspa.1908.0046|bibcode = 1908RSPSA..80..535C | doi-access = free}}</ref> The crystals, such as [[gadolinium gallium garnet]] and yttrium gallium garnet, are grown by melting pre-sintered charges of mixed oxides under oxidizing conditions at temperatures up to {{cvt|2100|°C}}.<ref name="hunt" />


Certain long-life aircraft engine parts are made of an iridium alloy, and an iridium–[[titanium]] alloy is used for deep-water pipes because of its corrosion resistance.<ref name="Emsley" /> Iridium is used for [[multi-pored]] [[Spinneret (polymers)|spinnerets]], through which a plastic polymer melt is extruded to form fibers, such as [[rayon]].<ref>{{cite journal|title= Spinnerets for viscose rayon cord yarn| journal = Fibre Chemistry| volume =10| issue = 4| date = 1979| doi = 10.1007/BF00543390| pages = 377–378| first = R. V.| last = Egorova|author2=Korotkov, B. V. |author3=Yaroshchuk, E. G. |author4=Mirkus, K. A. |author5=Dorofeev N. A. |author6= Serkov, A. T. | s2cid = 135705244}}</ref> Osmium–iridium is used for [[compass]] bearings and for balances.<ref name="hunt" />
Certain long-life aircraft engine parts are made of an iridium alloy, and an iridium–[[titanium]] alloy is used for deep-water pipes because of its corrosion resistance.<ref name="Emsley" /> Iridium is used for [[multi-pored]] [[Spinneret (polymers)|spinnerets]], through which a plastic polymer melt is extruded to form fibers, such as [[rayon]].<ref>{{cite journal|title= Spinnerets for viscose rayon cord yarn| journal = Fibre Chemistry| volume =10| issue = 4| date = 1979| doi = 10.1007/BF00543390| pages = 377–378| first = R. V.| last = Egorova|author2=Korotkov, B. V. |author3=Yaroshchuk, E. G. |author4=Mirkus, K. A. |author5=Dorofeev N. A. |author6= Serkov, A. T. | s2cid = 135705244}}</ref> Osmium–iridium is used for compass bearings and for balances.<ref name="hunt" />


Because of their resistance to arc erosion, iridium alloys are used by some manufacturers for electrical contacts for [[spark plug]]s,<ref name="Handley" /><ref>{{cite book | last1=Graff | first1=Muriel | last2=Kempf | first2=Bernd | last3=Breme | first3=Jürgen | title=Materials for Transportation Technology | chapter=Iridium Alloy for Spark Plug Electrodes | publisher=Wiley-VCH Verlag GmbH & Co. KGaA | publication-place=Weinheim, FRG | date=2005-12-23 | pages=1–8 | doi=10.1002/3527606025.ch1| isbn=9783527301249 }}</ref> and iridium-based spark plugs are particularly used in aviation.
Because of their resistance to arc erosion, iridium alloys are used by some manufacturers for the centre electrodes of [[spark plug]]s,<ref name="Handley" /><ref>{{cite book | last1=Graff | first1=Muriel | last2=Kempf | first2=Bernd | last3=Breme | first3=Jürgen | title=Materials for Transportation Technology | chapter=Iridium Alloy for Spark Plug Electrodes | publisher=Wiley-VCH Verlag GmbH & Co. KGaA | publication-place=Weinheim, FRG | date=2005-12-23 | pages=1–8 | doi=10.1002/3527606025.ch1| isbn=9783527301249 }}</ref> and iridium-based spark plugs are particularly used in aviation.


===Catalysis===
===Catalysis===
Iridium compounds are used as [[catalysis|catalysts]] in the [[Cativa process]] for [[carbonylation]] of [[methanol]] to produce [[acetic acid]].<ref name="ullmann-acetic">{{cite book|first=H.|last= Cheung| author2=Tanke, R. S.| author3=Torrence, G. P.|chapter=Acetic acid|title=Ullmann's Encyclopedia of Industrial Chemistry|publisher=Wiley|date=2000|doi=10.1002/14356007.a01_045|isbn= 978-3527306732}}</ref><ref name = "Jones">{{cite journal | last1 = Jones | first1 = Jane H. | title = The cativa™ process for the manufacture of acetic acid. | journal = Platinum Metals Review | volume = 44 | issue = 3 | year = 2000 | pages= 94–105 | url = https://technology.matthey.com/article/44/3/94-105/}}</ref>
Iridium compounds are used as [[catalysis|catalysts]] in the [[Cativa process]] for [[carbonylation]] of [[methanol]] to produce [[acetic acid]].<ref name="ullmann-acetic">{{cite book|first=H.|last= Cheung| author2=Tanke, R. S.| author3=Torrence, G. P.|chapter=Acetic acid|title=Ullmann's Encyclopedia of Industrial Chemistry|publisher=Wiley|date=2000|doi=10.1002/14356007.a01_045|isbn= 978-3527306732}}</ref><ref name = "Jones">{{cite journal | last1 = Jones | first1 = Jane H. | title = The cativa™ process for the manufacture of acetic acid. | journal = Platinum Metals Review | volume = 44 | issue = 3 | year = 2000 | pages= 94–105 | doi = 10.1595/003214000X44394105 | url = https://technology.matthey.com/article/44/3/94-105/| doi-access = free }}</ref>


Iridium complexes are often active for [[asymmetric hydrogenation]] both by traditional [[hydrogenation]].<ref>{{cite journal|doi=10.1021/ar700113g|date=2007|author=Roseblade, S. J.|author2=Pfaltz, A.|title=Iridium-catalyzed asymmetric hydrogenation of olefins|volume=40|issue=12|pages=1402–1411|pmid=17672517|journal=[[Accounts of Chemical Research]]}}</ref> and [[transfer hydrogenation]].<ref>{{cite journal |doi=10.1021/ar700134q|title=Asymmetric Transfer Hydrogenation of Ketones with Bifunctional Transition Metal-Based Molecular Catalysts† |year=2007 |last1=Ikariya |first1=Takao |last2=Blacker |first2=A. John |journal=Accounts of Chemical Research |volume=40 |issue=12 |pages=1300–1308 |pmid=17960897 }}</ref> This property is the basis of the industrial route to the [[chiral]] [[herbicide]] [[(S)-metolachlor]]. As practiced by Syngenta on the scale of 10,000 tons/year, the complex [[ [Ir(COD)Cl]<sub>2</sub> in the presence of [[Josiphos ligands]].<ref>{{cite book|editor=Matthias Beller, Hans-Ulrich Blaser|series=Topics in Organometallic Chemistry|volume=42|publisher=Springer|location=Berlin, Heidelberg|year=2012|isbn=978-3-642-32832-9|title=Organometallics as Catalysts in the Fine Chemical Industry}}</ref>
Iridium complexes are often active for [[asymmetric hydrogenation]] both by traditional [[hydrogenation]].<ref>{{cite journal|doi=10.1021/ar700113g|date=2007|author=Roseblade, S. J.|author2=Pfaltz, A.|title=Iridium-catalyzed asymmetric hydrogenation of olefins|volume=40|issue=12|pages=1402–1411|pmid=17672517|journal=[[Accounts of Chemical Research]]}}</ref> and [[transfer hydrogenation]].<ref>{{cite journal |doi=10.1021/ar700134q|title=Asymmetric Transfer Hydrogenation of Ketones with Bifunctional Transition Metal-Based Molecular Catalysts† |year=2007 |last1=Ikariya |first1=Takao |last2=Blacker |first2=A. John |journal=Accounts of Chemical Research |volume=40 |issue=12 |pages=1300–1308 |pmid=17960897 }}</ref> This property is the basis of the industrial route to the [[chiral]] [[herbicide]] [[(S)-metolachlor]]. As practiced by Syngenta on the scale of 10,000 tons/year, the complex [Ir(COD)Cl]<sub>2</sub> in the presence of [[Josiphos ligands]].<ref>{{cite book|editor=Matthias Beller, Hans-Ulrich Blaser|series=Topics in Organometallic Chemistry|volume=42|publisher=Springer|location=Berlin, Heidelberg|year=2012|isbn=978-3-642-32832-9|title=Organometallics as Catalysts in the Fine Chemical Industry}}</ref>


===Medical imaging===
===Medical imaging===
The radioisotope [[iridium-192]] is one of the two most important sources of energy for use in industrial [[Industrial radiography#Radioisotope sources|γ-radiography]] for [[non-destructive testing]] of [[metal]]s.<ref>{{cite journal| title=The use and scope of Iridium 192 for the radiography of steel| first=R.| last=Halmshaw| date=1954| journal=British Journal of Applied Physics| volume=5| issue=7| pages=238–243| doi=10.1088/0508-3443/5/7/302| bibcode=1954BJAP....5..238H}}</ref><ref name="Hellier">{{cite book| last=Hellier| first=Chuck| title=Handbook of Nondestructive Evlaluation| publisher=The McGraw-Hill Companies| date=2001| isbn=978-0-07-028121-9}}</ref> Additionally, {{SimpleNuclide|Ir|192}} is used as a source of [[gamma radiation]] for the treatment of cancer using [[brachytherapy]], a form of radiotherapy where a sealed radioactive source is placed inside or next to the area requiring treatment. Specific treatments include high-dose-rate prostate brachytherapy, biliary duct brachytherapy, and intracavitary cervix brachytherapy.<ref name="Emsley" /> [[Iridium-192]] is normally produced by neutron activation of isotope [[iridium-191]] in natural-abundance iridium metal.<ref name="iridium-192">{{cite book |author1=Jean Pouliot |author2=Luc Beaulieu |chapter=13 - Modern Principles of Brachytherapy Physics: From 2-D to 3-D to Dynamic Planning and Delivery |editor1=Richard T. Hoppe |editor2=Theodore Locke Phillips |editor3=Mack Roach |title=Leibel and Phillips Textbook of Radiation Oncology |edition=3rd |publisher=W.B. Saunders |year=2010 |pages=224–244 |isbn=9781416058977 |doi=10.1016/B978-1-4160-5897-7.00013-5 |url=https://www.sciencedirect.com/topics/medicine-and-dentistry/iridium-192}}</ref>
The radioisotope [[iridium-192]] is one of the two most important sources of energy for use in industrial [[Industrial radiography#Radioisotope sources|γ-radiography]] for [[non-destructive testing]] of metals.<ref>{{cite journal| title=The use and scope of Iridium 192 for the radiography of steel| first=R.| last=Halmshaw| date=1954| journal=British Journal of Applied Physics| volume=5| issue=7| pages=238–243| doi=10.1088/0508-3443/5/7/302| bibcode=1954BJAP....5..238H}}</ref><ref name="Hellier">{{cite book| last=Hellier| first=Chuck| title=Handbook of Nondestructive Evlaluation| publisher=The McGraw-Hill Companies| date=2001| isbn=978-0-07-028121-9}}</ref> Additionally, {{SimpleNuclide|Ir|192}} is used as a source of [[gamma radiation]] for the treatment of cancer using [[brachytherapy]], a form of radiotherapy where a sealed radioactive source is placed inside or next to the area requiring treatment. Specific treatments include high-dose-rate prostate brachytherapy, biliary duct brachytherapy, and intracavitary cervix brachytherapy.<ref name="Emsley" /> [[Iridium-192]] is normally produced by neutron activation of isotope [[iridium-191]] in natural-abundance iridium metal.<ref name="iridium-192">{{cite book |author1=Jean Pouliot |author2=Luc Beaulieu |chapter=13 Modern Principles of Brachytherapy Physics: From 2-D to 3-D to Dynamic Planning and Delivery |editor1=Richard T. Hoppe |editor2=Theodore Locke Phillips |editor3=Mack Roach |title=Leibel and Phillips Textbook of Radiation Oncology |edition=3rd |publisher=W.B. Saunders |year=2010 |pages=224–244 |isbn=9781416058977 |doi=10.1016/B978-1-4160-5897-7.00013-5 |url=https://www.sciencedirect.com/topics/medicine-and-dentistry/iridium-192}}</ref>


===Photocatalysis and OLEDs===
===Photocatalysis and OLEDs===
Line 263: Line 269:
===Scientific===
===Scientific===
[[File:Platinum-Iridium meter bar.jpg|thumb|[[International Prototype Meter]] bar|alt=NIST Library US Prototype meter bar]]
[[File:Platinum-Iridium meter bar.jpg|thumb|[[International Prototype Meter]] bar|alt=NIST Library US Prototype meter bar]]
An alloy of 90% platinum and 10% iridium was used in 1889 to construct the [[International Prototype Meter]] and [[Kilogram#International prototype kilogram|kilogram]] mass, kept by the [[Bureau International des Poids et Mesures|International Bureau of Weights and Measures]] near [[Paris]].<ref name="Emsley" /> The meter bar was replaced as the definition of the fundamental unit of length in 1960 by a line in the [[atomic spectrum]] of [[Krypton#Metric role|krypton]],{{efn|The definition of the meter was changed again in 1983. The meter is currently defined as the distance traveled by light in a vacuum during a time interval of {{frac|299,792,458}} of a second.}}<ref name="meter">{{cite web| url=https://www.nist.gov/document/museum-timelinepdf| publisher = National Institute for Standards and Technology|first = W. B.| last = Penzes|title=Time Line for the Definition of the Meter|date=2001|access-date=2008-09-16}}</ref> but the kilogram prototype remained the international standard of mass [[2019 redefinition of SI base units|until 20 May 2019]], when the kilogram was redefined in terms of the [[Planck constant]].<ref>General section citations: ''Recalibration of the U.S. National Prototype Kilogram'', R.{{nbsp}}S.{{nbsp}}Davis, Journal of Research of the National Bureau of Standards, '''90''', No. 4, {{nowrap|July–August}} 1985 ([http://nvlpubs.nist.gov/nistpubs/jres/090/jresv90n4p263_A1b.pdf 5.5{{nbsp}}MB PDF] {{Webarchive|url=https://web.archive.org/web/20170201170330/http://nvlpubs.nist.gov/nistpubs/jres/090/jresv90n4p263_A1b.pdf |date=2017-02-01 }}); and ''The Kilogram and Measurements of Mass and Force'', Z.{{nbsp}}J.{{nbsp}}Jabbour ''et al.'', J. Res. Natl. Inst. Stand. Technol. '''106''', 2001, {{nowrap|25–46}} ([https://www.nist.gov/sites/default/files/documents/calibrations/j61jab.pdf 3.5{{nbsp}}MB PDF])<sub>{{nbsp}}</sub></ref>
An alloy of 90% platinum and 10% iridium was used in 1889 to construct the [[International Prototype Meter]] and [[Kilogram#International prototype kilogram|kilogram]] mass, kept by the [[Bureau International des Poids et Mesures|International Bureau of Weights and Measures]] near Paris.<ref name="Emsley" /> The meter bar was replaced as the definition of the fundamental unit of length in 1960 by a line in the [[atomic spectrum]] of [[Krypton#Metric role|krypton]],{{efn|The definition of the meter was changed again in 1983. The meter is currently defined as the distance traveled by light in a vacuum during a time interval of {{frac|299,792,458}} of a second.}}<ref name="meter">{{cite web| url=https://www.nist.gov/document/museum-timelinepdf| publisher = National Institute for Standards and Technology|first = W. B.| last = Penzes|title=Time Line for the Definition of the Meter|date=2001|access-date=2008-09-16}}</ref> but the kilogram prototype remained the international standard of mass [[2019 redefinition of SI base units|until 20 May 2019]], when the kilogram was redefined in terms of the [[Planck constant]].<ref>General section citations: ''Recalibration of the U.S. National Prototype Kilogram'', R.{{nbsp}}S.{{nbsp}}Davis, Journal of Research of the National Bureau of Standards, '''90''', No. 4, {{nowrap|July–August}} 1985 ([http://nvlpubs.nist.gov/nistpubs/jres/090/jresv90n4p263_A1b.pdf 5.5{{nbsp}}MB PDF] {{Webarchive|url=https://web.archive.org/web/20170201170330/http://nvlpubs.nist.gov/nistpubs/jres/090/jresv90n4p263_A1b.pdf |date=2017-02-01 }}); and ''The Kilogram and Measurements of Mass and Force'', Z.{{nbsp}}J.{{nbsp}}Jabbour ''et al.'', J. Res. Natl. Inst. Stand. Technol. '''106''', 2001, {{nowrap|25–46}} ([https://www.nist.gov/sites/default/files/documents/calibrations/j61jab.pdf 3.5{{nbsp}}MB PDF])<sub>{{nbsp}}</sub></ref>
<!--
<!--
Iridium is often used as a coating for non-conductive materials in preparation for observation in [[scanning electron microscopes]] (SEM).
Iridium is often used as a coating for non-conductive materials in preparation for observation in [[scanning electron microscopes]] (SEM).
Line 282: Line 288:
[[File:Gama Supreme Flat Top ebonite eyedropper fountain pen 3.JPG|right|thumb|[[Fountain pen]] nib labelled ''Iridium Point'']]
[[File:Gama Supreme Flat Top ebonite eyedropper fountain pen 3.JPG|right|thumb|[[Fountain pen]] nib labelled ''Iridium Point'']]


Iridium–osmium alloys were used in [[fountain pen]] [[Nib (pen)#Nib tipping|nib tip]]s. The first major use of iridium was in 1834 in nibs mounted on gold.<ref name="hunt" /> Since 1944, the famous [[Parker 51]] fountain pen was fitted with a nib tipped by a ruthenium and iridium alloy (with 3.8% iridium). The tip material in modern fountain pens is still conventionally called "iridium", although there is seldom any iridium in it; other metals such as [[ruthenium]], [[osmium]], and [[tungsten]] have taken its place.<ref>{{cite journal|url=https://www.nibs.com/blog/nibster-writes/wheres-iridium|journal=The PENnant|volume=XIII|issue=2|date=1999|title=Notes from the Nib Works—Where's the Iridium?|author=Mottishaw, J.}}</ref>
Iridium–osmium alloys were used in [[fountain pen]] [[Nib (pen)#Nib tipping|nib tip]]s. The first major use of iridium was in 1834 in nibs mounted on gold.<ref name="hunt" /> Starting in 1944, the famous [[Parker 51]] fountain pen was fitted with a nib tipped by a ruthenium and iridium alloy (with 3.8% iridium). The tip material in modern fountain pens is still conventionally called "iridium", although there is seldom any iridium in it; other metals such as [[ruthenium]], [[osmium]], and [[tungsten]] have taken its place.<ref>{{cite journal|url=https://www.nibs.com/blog/nibster-writes/wheres-iridium|journal=The PENnant|volume=XIII|issue=2|date=1999|title=Notes from the Nib Works—Where's the Iridium?|author=Mottishaw, J.}}</ref>


An iridium–platinum alloy was used for the [[touch hole]]s or vent pieces of [[cannon]]. According to a report of the [[Exposition Universelle (1867)|Paris Exhibition of 1867]], one of the pieces being exhibited by [[Johnson and Matthey]] "has been used in a Whitworth gun for more than 3000 rounds, and scarcely shows signs of wear yet. Those who know the constant trouble and expense which are occasioned by the wearing of the vent-pieces of cannon when in active service, will appreciate this important adaptation".<ref>{{cite journal|editor=Crookes, W.|volume=XV|date=1867|journal=The Chemical News and Journal of Physical Science|title=The Paris Exhibition|page=182 | url = https://en.wikisource.org/w/index.php?title=File:The_chemical_news._Volume_15,_January_-_June_1867._(IA_s713id13683370).pdf&page=188}}</ref>
An iridium–platinum alloy was used for the [[touch hole]]s or vent pieces of [[cannon]]. According to a report of the [[Exposition Universelle (1867)|Paris Exhibition of 1867]], one of the pieces being exhibited by [[Johnson and Matthey]] "has been used in a Whitworth gun for more than 3000 rounds, and scarcely shows signs of wear yet. Those who know the constant trouble and expense which are occasioned by the wearing of the vent-pieces of cannon when in active service, will appreciate this important adaptation".<ref>{{cite journal|editor=Crookes, W.|volume=XV|date=1867|journal=The Chemical News and Journal of Physical Science|title=The Paris Exhibition|page=182 | url = https://en.wikisource.org/w/index.php?title=File:The_chemical_news._Volume_15,_January_-_June_1867._(IA_s713id13683370).pdf&page=188}}</ref>
Line 289: Line 295:


== Precautions ==
== Precautions ==
{{update-section|date=January 2023}}
{{update section|date=January 2023}}
Iridium in bulk metallic form is not biologically important or hazardous to health due to its lack of reactivity with tissues; there are only about 20&nbsp;[[parts per notation|parts per trillion]] of iridium in human tissue.<ref name="Emsley" /> Like most metals, finely divided iridium powder can be hazardous to handle, as it is an irritant and may ignite in air.<ref name="kirk-pt">{{cite book|title=Kirk Othmer Encyclopedia of Chemical Technology|first = R. J.| last = Seymour|author2=O'Farrelly, J. I.|chapter=Platinum-Group Metals|doi=10.1002/0471238961.1612012019052513.a01.pub3|date=2012|publisher=Wiley| isbn=978-0471238966 }}</ref> By 2015 very little is known about the toxicity of iridium compounds,<ref name="Iavicoli">{{cite book|doi = 10.1016/B978-0-444-59453-2.00040-8| chapter=Iridium | title=Handbook on the Toxicology of Metals | year=2015 | last1=Iavicoli | first1=Ivo | last2=Leso | first2=Veruscka | pages=855–878 | isbn=9780444594532 }}</ref> primarily because it is used so rarely that few people come in contact with it and those who do only with very small amounts. However, soluble salts, such as the iridium halides, could be hazardous due to elements other than iridium or due to iridium itself.<ref name="mager" /> At the same time, most iridium compounds are insoluble, which makes absorption into the body difficult.<ref name="Emsley" />
Iridium in bulk metallic form is not biologically important or hazardous to health due to its lack of reactivity with tissues; there are only about 20&nbsp;[[parts per notation|parts per trillion]] of iridium in human tissue.<ref name="Emsley" /> Like most metals, finely divided iridium powder can be hazardous to handle, as it is an irritant and may ignite in air.<ref name="kirk-pt">{{cite book|title=Kirk Othmer Encyclopedia of Chemical Technology|first = R. J.| last = Seymour|author2=O'Farrelly, J. I.|chapter=Platinum-Group Metals|doi=10.1002/0471238961.1612012019052513.a01.pub3|date=2012|publisher=Wiley| isbn=978-0471238966 }}</ref> By 2015 very little is known about the toxicity of iridium compounds,<ref name="Iavicoli">{{cite book|doi = 10.1016/B978-0-444-59453-2.00040-8| chapter=Iridium | title=Handbook on the Toxicology of Metals | year=2015 | last1=Iavicoli | first1=Ivo | last2=Leso | first2=Veruscka | pages=855–878 | isbn=9780444594532 }}</ref> primarily because it is used so rarely that few people come in contact with it and those who do only with very small amounts. However, soluble salts, such as the iridium halides, could be hazardous due to elements other than iridium or due to iridium itself.<ref name="mager" /> At the same time, most iridium compounds are insoluble, which makes absorption into the body difficult.<ref name="Emsley" />



Revision as of 15:26, 15 July 2024

Iridium, 77Ir
Pieces of pure iridium
Iridium
Pronunciation/ɪˈrɪdiəm/ (i-RID-ee-əm)
AppearanceSilvery white
Standard atomic weight Ar°(Ir)
Iridium in the periodic table
Hydrogen Helium
Lithium Beryllium Boron Carbon Nitrogen Oxygen Fluorine Neon
Sodium Magnesium Aluminium Silicon Phosphorus Sulfur Chlorine Argon
Potassium Calcium Scandium Titanium Vanadium Chromium Manganese Iron Cobalt Nickel Copper Zinc Gallium Germanium Arsenic Selenium Bromine Krypton
Rubidium Strontium Yttrium Zirconium Niobium Molybdenum Technetium Ruthenium Rhodium Palladium Silver Cadmium Indium Tin Antimony Tellurium Iodine Xenon
Caesium Barium Lanthanum Cerium Praseodymium Neodymium Promethium Samarium Europium Gadolinium Terbium Dysprosium Holmium Erbium Thulium Ytterbium Lutetium Hafnium Tantalum Tungsten Rhenium Osmium Iridium Platinum Gold Mercury (element) Thallium Lead Bismuth Polonium Astatine Radon
Francium Radium Actinium Thorium Protactinium Uranium Neptunium Plutonium Americium Curium Berkelium Californium Einsteinium Fermium Mendelevium Nobelium Lawrencium Rutherfordium Dubnium Seaborgium Bohrium Hassium Meitnerium Darmstadtium Roentgenium Copernicium Nihonium Flerovium Moscovium Livermorium Tennessine Oganesson
Rh

Ir

Mt
osmiumiridiumplatinum
Atomic number (Z)77
Groupgroup 9
Periodperiod 6
Block  d-block
Electron configuration[Xe] 4f14 5d7 6s2
Electrons per shell2, 8, 18, 32, 15, 2
Physical properties
Phase at STPsolid
Melting point2719 K ​(2446 °C, ​4435 °F)
Boiling point4403 K ​(4130 °C, ​7466 °F)
Density (at 20° C)22.562 g/cm3[3]
when liquid (at m.p.)19 g/cm3
Heat of fusion41.12 kJ/mol
Heat of vaporization564 kJ/mol
Molar heat capacity25.10 J/(mol·K)
Vapor pressure
P (Pa) 1 10 100 1 k 10 k 100 k
at T (K) 2713 2957 3252 3614 4069 4659
Atomic properties
Oxidation states−3, –2, −1, 0, +1, +2, +3, +4, +5, +6, +7, +8, +9[4]
ElectronegativityPauling scale: 2.20
Ionization energies
  • 1st: 880 kJ/mol
  • 2nd: 1600 kJ/mol
Atomic radiusempirical: 136 pm
Covalent radius141±6 pm
Color lines in a spectral range
Spectral lines of iridium
Other properties
Natural occurrenceprimordial
Crystal structureface-centered cubic (fcc) (cF4)
Lattice constant
Face-centered cubic crystal structure for iridium
a = 383.92 pm (at 20 °C)[3]
Thermal expansion6.47×10−6/K (at 20 °C)[3]
Thermal conductivity147 W/(m⋅K)
Electrical resistivity47.1 nΩ⋅m (at 20 °C)
Magnetic orderingparamagnetic[5]
Molar magnetic susceptibility+25.6 × 10−6 cm3/mol (298 K)[6]
Young's modulus528 GPa
Shear modulus210 GPa
Bulk modulus320 GPa
Speed of sound thin rod4825 m/s (at 20 °C)
Poisson ratio0.26
Mohs hardness6.5
Vickers hardness1760–2200 MPa
Brinell hardness1670 MPa
CAS Number7439-88-5
History
Discovery and first isolationSmithson Tennant (1803)
Isotopes of iridium
Main isotopes[7] Decay
abun­dance half-life (t1/2) mode pro­duct
191Ir 37.3% stable
192Ir synth 73.827 d β 192Pt
ε 192Os
192m2Ir synth 241 y IT 192Ir
193Ir 62.7% stable
 Category: Iridium
| references

Iridium is a chemical element; it has symbol Ir and atomic number 77. A very hard, brittle, silvery-white transition metal of the platinum group, it is considered the second-densest naturally occurring metal (after osmium) with a density of 22.56 g/cm3 (0.815 lb/cu in)[8] as defined by experimental X-ray crystallography.[a] 191Ir and 193Ir are the only two naturally occurring isotopes of iridium, as well as the only stable isotopes; the latter is the more abundant. It is one of the most corrosion-resistant metals,[11] even at temperatures as high as 2,000 °C (3,630 °F).

Iridium was discovered in 1803 in the acid-insoluble residues of platinum ores by the English chemist Smithson Tennant. The name iridium, derived from the Greek word iris (rainbow), refers to the various colors of its compounds. Iridium is one of the rarest elements in Earth's crust, with an estimated annual production of only 6,800 kilograms (15,000 lb) in 2023.[12]

The dominant uses of iridium are the metal itself and its alloys, as in high-performance spark plugs, crucibles for recrystallization of semiconductors at high temperatures, and electrodes for the production of chlorine in the chloralkali process. Important compounds of iridium are chlorides and iodides in industrial catalysis. Iridium is a component of some OLEDs.

Iridium is found in meteorites in much higher abundance than in the Earth's crust.[13] For this reason, the unusually high abundance of iridium in the clay layer at the Cretaceous–Paleogene boundary gave rise to the Alvarez hypothesis that the impact of a massive extraterrestrial object caused the extinction of dinosaurs and many other species 66 million years ago, now known to be produced by the impact that formed the Chicxulub crater. Similarly, an iridium anomaly in core samples from the Pacific Ocean suggested the Eltanin impact of about 2.5 million years ago.[14]

Characteristics

Physical properties

A flattened drop of dark gray substance
One troy ounce (31.1035 grams) of arc-melted iridium

A member of the platinum group metals, iridium is white, resembling platinum, but with a slight yellowish cast. Because of its hardness, brittleness, and very high melting point, solid iridium is difficult to machine, form, or work; thus powder metallurgy is commonly employed instead.[15] It is the only metal to maintain good mechanical properties in air at temperatures above 1,600 °C (2,910 °F).[16] It has the 10th highest boiling point among all elements and becomes a superconductor at temperatures below 0.14 K (−273.010 °C; −459.418 °F).[17]

Iridium's modulus of elasticity is the second-highest among the metals, being surpassed only by osmium.[16] This, together with a high shear modulus and a very low figure for Poisson's ratio (the relationship of longitudinal to lateral strain), indicate the high degree of stiffness and resistance to deformation that have rendered its fabrication into useful components a matter of great difficulty. Despite these limitations and iridium's high cost, a number of applications have developed where mechanical strength is an essential factor in some of the extremely severe conditions encountered in modern technology.[16]

The measured density of iridium is only slightly lower (by about 0.12%) than that of osmium, the densest metal known.[18][19] Some ambiguity occurred regarding which of the two elements was denser, due to the small size of the difference in density and difficulties in measuring it accurately,[20] but, with increased accuracy in factors used for calculating density, X-ray crystallographic data yielded densities of 22.56 g/cm3 (0.815 lb/cu in) for iridium and 22.59 g/cm3 (0.816 lb/cu in) for osmium.[21]

Iridium is extremely brittle, to the point of being hard to weld because the heat-affected zone cracks, but it can be made more ductile by addition of small quantities of titanium and zirconium (0.2% of each apparently works well).[22]

The Vickers hardness of pure platinum is 56 HV, whereas platinum with 50% of iridium can reach over 500 HV.[23][24]

Chemical properties

Iridium is the most corrosion-resistant metal known.[25] It is not attacked by acids, including aqua regia, but it can be dissolved in concentrated hydrochloric acid in the presence of sodium perchlorate.[12] In the presence of oxygen, it reacts with cyanide salts.[26] Traditional oxidants also react, including the halogens and oxygen[27] at higher temperatures.[28] Iridium also reacts directly with sulfur at atmospheric pressure to yield iridium disulfide.[29]

Isotopes

Iridium has two naturally occurring stable isotopes, 191Ir and 193Ir, with natural abundances of 37.3% and 62.7%, respectively.[30] At least 37 radioisotopes have also been synthesized, ranging in mass number from 164 to 202. 192Ir, which falls between the two stable isotopes, is the most stable radioisotope, with a half-life of 73.827 days, and finds application in brachytherapy[31] and in industrial radiography, particularly for nondestructive testing of welds in steel in the oil and gas industries; iridium-192 sources have been involved in a number of radiological accidents. Three other isotopes have half-lives of at least a day—188Ir, 189Ir, and 190Ir.[30] Isotopes with masses below 191 decay by some combination of β+ decay, α decay, and (rare) proton emission, with the exception of 189Ir, which decays by electron capture. Synthetic isotopes heavier than 191 decay by β decay, although 192Ir also has a minor electron capture decay path.[30] All known isotopes of iridium were discovered between 1934 and 2008, with the most recent discoveries being 200–202Ir.[32]

At least 32 metastable isomers have been characterized, ranging in mass number from 164 to 197. The most stable of these is 192m2Ir, which decays by isomeric transition with a half-life of 241 years,[30] making it more stable than any of iridium's synthetic isotopes in their ground states. The least stable isomer is 190m3Ir with a half-life of only 2 μs.[30] The isotope 191Ir was the first one of any element to be shown to present a Mössbauer effect. This renders it useful for Mössbauer spectroscopy for research in physics, chemistry, biochemistry, metallurgy, and mineralogy.[33]

Chemistry

Oxidation states[b]
−3 [Ir(CO)
3
]3−
−1 [Ir(CO)3(PPh3)]1−
0 Ir4(CO)12
+1 [IrCl(CO)(PPh3)2]
+2 Ir(C5H5)2
+3 IrCl3
+4 IrO2
+5 Ir4F20
+6 IrF
6
+7 [Ir(O2)O2]+
+8 IrO4
+9 [IrO4]+[4]

Oxidation states

Iridium forms compounds in oxidation states between −3 and +9, but the most common oxidation states are +1, +2, +3, and +4.[15] Well-characterized compounds containing iridium in the +6 oxidation state include IrF6 and the oxides Sr2MgIrO6 and Sr2CaIrO6.[15][34] iridium(VIII) oxide (IrO4) was generated under matrix isolation conditions at 6 K in argon.[35] The highest oxidation state (+9), which is also the highest recorded for any element, is found in gaseous [IrO4]+.[4]

Binary compounds

Iridium does not form binary hydrides. Only one binary oxide is well-characterized: iridium dioxide, IrO
2
. It is a blue black solid that adopts the fluorite structure.[15] A sesquioxide, Ir
2
O
3
, has been described as a blue-black powder, which is oxidized to IrO
2
by HNO
3
.[27] The corresponding disulfides, diselenides, sesquisulfides, and sesquiselenides are known, as well as IrS
3
.[15]

Binary trihalides, IrX
3
, are known for all of the halogens.[15] For oxidation states +4 and above, only the tetrafluoride, pentafluoride and hexafluoride are known.[15] Iridium hexafluoride, IrF
6
, is a volatile yellow solid, composed of octahedral molecules. It decomposes in water and is reduced to IrF
4
.[15] Iridium pentafluoride is also a strong oxidant, but it is a tetramer, Ir
4
F
20
, formed by four corner-sharing octahedra.[15]

Complexes

Hydrated iridium trichloride, a common salt of iridium.

Iridium has extensive coordination chemistry.

Iridium in its complexes is always low-spin. Ir(III) and Ir(IV) generally form octahedral complexes.[15] Polyhydride complexes are known for the +5 and +3 oxidation states.[36] One example is IrH5(PiPr3)2.[37] The ternary hydride Mg
6
Ir
2
H
11
is believed to contain both the IrH4−
5
and the 18-electron IrH5−
4
anion.[38]

Iridium also forms oxyanions with oxidation states +4 and +5. K
2
IrO
3
and KIrO
3
can be prepared from the reaction of potassium oxide or potassium superoxide with iridium at high temperatures. Such solids are not soluble in conventional solvents.[39]

Just like many elements, iridium forms important chloride complexes. Hexachloroiridic (IV) acid, H
2
IrCl
6
, and its ammonium salt are the most common iridium compounds from both industrial and preparative perspectives.[40] They are intermediates in the purification of iridium and used as precursors for most other iridium compounds, as well as in the preparation of anode coatings. The IrCl2−
6
ion has an intense dark brown color, and can be readily reduced to the lighter-colored IrCl3−
6
and vice versa.[40] Iridium trichloride, IrCl
3
, which can be obtained in anhydrous form from direct oxidation of iridium powder by chlorine at 650 °C,[40] or in hydrated form by dissolving Ir
2
O
3
in hydrochloric acid, is often used as a starting material for the synthesis of other Ir(III) compounds.[15] Another compound used as a starting material is ammonium hexachloroiridate(III), (NH
4
)
3
IrCl
6
.[citation needed]

In the presence of air, iridium metal dissolves in molten alkali-metal cyanides to produce the Ir(CN)3−
6
(hexacyanoiridate) ion and upon oxidation produces the most stable oxide.[citation needed]

Organoiridium chemistry

Cyclooctadiene iridium chloride dimer is a common complex of Ir(I).

Organoiridium compounds contain iridium–carbon bonds. Early studies identified the very stable tetrairidium dodecacarbonyl, Ir
4
(CO)
12
.[15] In this compound, each of the iridium atoms is bonded to the other three, forming a tetrahedral cluster. The discovery of Vaska's complex (IrCl(CO)[P(C
6
H
5
)
3
]
2
) opened the door for oxidative addition reactions, a process fundamental to useful reactions. For example, Crabtree's catalyst, a homogeneous catalyst for hydrogenation reactions.[41][42]

Skeletal formula presentation of a chemical transformation. The initial compounds have a C5H5 ring on their top and an iridium atom in the center, which is bonded to two hydrogen atoms and a P-PH3 group or to two C-O groups. Reaction with alkane under UV light alters those groups.
Oxidative addition to hydrocarbons in organoiridium chemistry[43][44]

Iridium complexes played a pivotal role in the development of Carbon–hydrogen bond activation (C–H activation), which promises to allow functionalization of hydrocarbons, which are traditionally regarded as unreactive.[45]

History

Platinum group

Photo of part of a black vase with brown picture on it: A woman with wings on her back hold an arrow with right hand and gives a jar to a man. A small deer is standing in front of the woman.
The Greek goddess Iris, after whom iridium was named.

The discovery of iridium is intertwined with that of platinum and the other metals of the platinum group. The first European reference to platinum appears in 1557 in the writings of the Italian humanist Julius Caesar Scaliger as a description of an unknown noble metal found between Darién and Mexico, "which no fire nor any Spanish artifice has yet been able to liquefy".[46] From their first encounters with platinum, the Spanish generally saw the metal as a kind of impurity in gold, and it was treated as such. It was often simply thrown away, and there was an official decree forbidding the adulteration of gold with platinum impurities.[47]

A left-pointing crescent, tangent on its right to a circle containing at its center a solid circular dot
This alchemical symbol for platinum was made by joining the symbols of silver (moon) and gold (sun).
Antonio de Ulloa is credited in European history with the discovery of platinum.

In 1735, Antonio de Ulloa and Jorge Juan y Santacilia saw Native Americans mining platinum while the Spaniards were travelling through Colombia and Peru for eight years. Ulloa and Juan found mines with the whitish metal nuggets and took them home to Spain. Ulloa returned to Spain and established the first mineralogy lab in Spain and was the first to systematically study platinum, which was in 1748. His historical account of the expedition included a description of platinum as being neither separable nor calcinable. Ulloa also anticipated the discovery of platinum mines. After publishing the report in 1748, Ulloa did not continue to investigate the new metal. In 1758, he was sent to superintend mercury mining operations in Huancavelica.[46]

In 1741, Charles Wood,[48] a British metallurgist, found various samples of Colombian platinum in Jamaica, which he sent to William Brownrigg for further investigation.

In 1750, after studying the platinum sent to him by Wood, Brownrigg presented a detailed account of the metal to the Royal Society, stating that he had seen no mention of it in any previous accounts of known minerals.[49] Brownrigg also made note of platinum's extremely high melting point and refractory metal-like behaviour toward borax. Other chemists across Europe soon began studying platinum, including Andreas Sigismund Marggraf,[50] Torbern Bergman, Jöns Jakob Berzelius, William Lewis, and Pierre Macquer. In 1752, Henrik Scheffer published a detailed scientific description of the metal, which he referred to as "white gold", including an account of how he succeeded in fusing platinum ore with the aid of arsenic. Scheffer described platinum as being less pliable than gold, but with similar resistance to corrosion.[46]

Discovery

Chemists who studied platinum dissolved it in aqua regia (a mixture of hydrochloric and nitric acids) to create soluble salts. They always observed a small amount of a dark, insoluble residue.[16] Joseph Louis Proust thought that the residue was graphite.[16] The French chemists Victor Collet-Descotils, Antoine François, comte de Fourcroy, and Louis Nicolas Vauquelin also observed the black residue in 1803, but did not obtain enough for further experiments.[16]

In 1803 British scientist Smithson Tennant (1761–1815) analyzed the insoluble residue and concluded that it must contain a new metal. Vauquelin treated the powder alternately with alkali and acids[25] and obtained a volatile new oxide, which he believed to be of this new metal—which he named ptene, from the Greek word πτηνός ptēnós, "winged".[51][52] Tennant, who had the advantage of a much greater amount of residue, continued his research and identified the two previously undiscovered elements in the black residue, iridium and osmium.[16][25] He obtained dark red crystals (probably of Na
2
[IrCl
6
nH
2
O
) by a sequence of reactions with sodium hydroxide and hydrochloric acid.[52] He named iridium after Iris (Ἶρις), the Greek winged goddess of the rainbow and the messenger of the Olympian gods, because many of the salts he obtained were strongly colored.[c][53] Discovery of the new elements was documented in a letter to the Royal Society on June 21, 1804.[16][54]

Metalworking and applications

British scientist John George Children was the first to melt a sample of iridium in 1813 with the aid of "the greatest galvanic battery that has ever been constructed" (at that time).[16] The first to obtain high-purity iridium was Robert Hare in 1842. He found it had a density of around 21.8 g/cm3 (0.79 lb/cu in) and noted the metal is nearly immalleable and very hard. The first melting in appreciable quantity was done by Henri Sainte-Claire Deville and Jules Henri Debray in 1860. They required burning more than 300 litres (79 US gal) of pure O
2
and H
2
gas for each 1 kilogram (2.2 lb) of iridium.[16]

These extreme difficulties in melting the metal limited the possibilities for handling iridium. John Isaac Hawkins was looking to obtain a fine and hard point for fountain pen nibs, and in 1834 managed to create an iridium-pointed gold pen. In 1880, John Holland and William Lofland Dudley were able to melt iridium by adding phosphorus and patented the process in the United States; British company Johnson Matthey later stated they had been using a similar process since 1837 and had already presented fused iridium at a number of World Fairs.[16] The first use of an alloy of iridium with ruthenium in thermocouples was made by Otto Feussner in 1933. These allowed for the measurement of high temperatures in air up to 2,000 °C (3,630 °F).[16]

In Munich, Germany in 1957 Rudolf Mössbauer, in what has been called one of the "landmark experiments in twentieth-century physics",[55] discovered the resonant and recoil-free emission and absorption of gamma rays by atoms in a solid metal sample containing only 191Ir.[56] This phenomenon, known as the Mössbauer effect resulted in the awarding of the Nobel Prize in Physics in 1961, at the age 32, just three years after he published his discovery.[57]

Occurrence

Along with many elements having atomic weights higher than that of iron, iridium is only naturally formed by the r-process (rapid neutron capture) in neutron star mergers and possibly rare types of supernovae.[58][59][60]

Graph sowing on the x axis the elements by atomic number and on y-axis the amount in earth's crust compared to Si abundance. There is a green area with high abundance for the lighter elements between oxygen and iron. The yellow area with lowest abundant elements includes the heavier platinum group metals, tellurium and gold. The lowest abundance is clearly iridium.
Iridium is one of the least abundant elements in Earth's crust.
A large black egg-shaped boulder of porous structure standing on its top, tilted
The Willamette Meteorite, the sixth-largest meteorite found in the world, has 4.7 ppm iridium.[61]

Iridium is one of the nine least abundant stable elements in Earth's crust, having an average mass fraction of 0.001 ppm in crustal rock; platinum is 10 times more abundant, gold is 40 times more abundant, silver and mercury are 80 times more abundant.[15] Tellurium is about as abundant as iridium.[15] In contrast to its low abundance in crustal rock, iridium is relatively common in meteorites, with concentrations of 0.5 ppm or more.[62] The overall concentration of iridium on Earth is thought to be much higher than what is observed in crustal rocks, but because of the density and siderophilic ("iron-loving") character of iridium, it descended below the crust and into Earth's core when the planet was still molten.[40]

Iridium is found in nature as an uncombined element or in natural alloys, especially the iridium–osmium alloys osmiridium (osmium-rich) and iridosmium (iridium-rich).[25] In nickel and copper deposits, the platinum group metals occur as sulfides, tellurides, antimonides, and arsenides. In all of these compounds, platinum can be exchanged with a small amount of iridium or osmium. As with all of the platinum group metals, iridium can be found naturally in alloys with raw nickel or raw copper.[63] A number of iridium-dominant minerals, with iridium as the species-forming element, are known. They are exceedingly rare and often represent the iridium analogues of the above-given ones. The examples are irarsite and cuproiridsite, to mention some.[64][65][66] Within Earth's crust, iridium is found at highest concentrations in three types of geologic structure: igneous deposits (crustal intrusions from below), impact craters, and deposits reworked from one of the former structures. The largest known primary reserves are in the Bushveld igneous complex in South Africa,[67] (near the largest known impact structure, the Vredefort impact structure) though the large copper–nickel deposits near Norilsk in Russia, and the Sudbury Basin (also an impact crater) in Canada are also significant sources of iridium. Smaller reserves are found in the United States.[67] Iridium is also found in secondary deposits, combined with platinum and other platinum group metals in alluvial deposits. The alluvial deposits used by pre-Columbian people in the Chocó Department of Colombia are still a source for platinum-group metals. As of 2003, world reserves have not been estimated.[25]

Marine oceanography

Iridium is found within marine organisms, sediments, and the water column. The abundance of iridium in seawater[68] and organisms[69] is relatively low, as it does not readily form chloride complexes.[69] The abundance in organisms is about 20 parts per trillion, or about five orders of magnitude less than in sedimentary rocks at the Cretaceous–Paleogene (K–T) boundary.[69] The concentration of iridium in seawater and marine sediment is sensitive to marine oxygenation, seawater temperature, and various geological and biological processes.[70]

Iridium in sediments can come from cosmic dust, volcanoes, precipitation from seawater, microbial processes, or hydrothermal vents,[70] and its abundance can be strongly indicative of the source.[71][70] It tends to associate with other ferrous metals in manganese nodules.[68] Iridium is one of the characteristic elements of extraterrestrial rocks, and, along with osmium, can be used as a tracer element for meteoritic material in sediment.[72][73] For example, core samples from the Pacific Ocean with elevated iridium levels suggested the Eltanin impact of about 2.5 million years ago.[14]

Some of the mass extinctions, such as the Cretaceous extinction, can be identified by anomalously high concentrations of iridium in sediment, and these can be linked to major asteroid impacts.[74]

Cretaceous–Paleogene boundary presence

A cliff with pronounced layered structure: yellow, gray, white, gray. A red arrow points between the yellow and gray layers.
The red arrow points to the Cretaceous–Paleogene boundary.

The Cretaceous–Paleogene boundary of 66 million years ago, marking the temporal border between the Cretaceous and Paleogene periods of geological time, was identified by a thin stratum of iridium-rich clay.[75] A team led by Luis Alvarez proposed in 1980 an extraterrestrial origin for this iridium, attributing it to an asteroid or comet impact.[75] Their theory, known as the Alvarez hypothesis, is now widely accepted to explain the extinction of the non-avian dinosaurs. A large buried impact crater structure with an estimated age of about 66 million years was later identified under what is now the Yucatán Peninsula (the Chicxulub crater).[76][77] Dewey M. McLean and others argue that the iridium may have been of volcanic origin instead, because Earth's core is rich in iridium, and active volcanoes such as Piton de la Fournaise, in the island of Réunion, are still releasing iridium.[78][79]

Production

Year Consumption
(tonnes)
Price (US$)[80]
2001 2.6 $415.25/ozt ($13.351/g)
2002 2.5 $294.62/ozt ($9.472/g)
2003 3.3 $93.02/ozt ($2.991/g)
2004 3.60 $185.33/ozt ($5.958/g)
2005 3.86 $169.51/ozt ($5.450/g)
2006 4.08 $349.45/ozt ($11.235/g)
2007 3.70 $444.43/ozt ($14.289/g)
2008 3.10 $448.34/ozt ($14.414/g)
2009 2.52 $420.4/ozt ($13.52/g)
2010 10.40 $642.15/ozt ($20.646/g)
2011 9.36 $1,035.87/ozt ($33.304/g)
2012 5.54 $1,066.23/ozt ($34.280/g)
2013 6.16 $826.45/ozt ($26.571/g)
2014 6.1 $556.19/ozt ($17.882/g)
2015 7.81 $544/ozt ($17.5/g)
2016 7.71 $586.90/ozt ($18.869/g)
2017 n.d. $908.35/ozt ($29.204/g)
2018 n.d. $1,293.27/ozt ($41.580/g)
2019 n.d. $1,485.80/ozt ($47.770/g)
2020 n.d. $1,633.51/ozt ($52.519/g)
2021 n.d. $5,400.00/ozt ($173.614/g)
2022 n.d. $3,980.00/ozt ($127.960/g)
2023 n.d. $4,652.38/ozt ($149.577/g)
2024 n.d. $5,000.00/ozt ($160.754/g)

Worldwide production of iridium was about 7,300 kilograms (16,100 lb) in 2018.[81] The price is high and varying (see table). Illustrative factors that affect the price include oversupply of Ir crucibles[80][82] and changes in LED technology.[83]

Platinum metals occur together as dilute ores. Iridium is one of the rarer platinum metals: for every 190 tonnes of platinum obtained from ores, only 7.5 tonnes of iridium is isolated.[84] To separate the metals, they must first be brought into solution. Two methods for rendering Ir-containing ores soluble are (i) fusion of the solid with sodium peroxide followed by extraction of the resulting glass in aqua regia and (ii) extraction of the solid with a mixture of chlorine with hydrochloric acid.[40][67] From soluble extracts, iridium is separated by precipitating solid ammonium hexachloroiridate ((NH
4
)
2
IrCl
6
) or by extracting IrCl2−
6
with organic amines.[85] The first method is similar to the procedure Tennant and Wollaston used for their original separation. The second method can be planned as continuous liquid–liquid extraction and is therefore more suitable for industrial scale production. In either case, the product, an iridium chloride salt, is reduced with hydrogen, yielding the metal as a powder or sponge, which is amenable to powder metallurgy techniques.[86][87] Iridium is also obtained commercially as a by-product from nickel and copper mining and processing. During electrorefining of copper and nickel, noble metals such as silver, gold and the platinum group metals as well as selenium and tellurium settle to the bottom of the cell as anode mud, which forms the starting point for their extraction.[80]

Leading iridium-producing countries (kg)[88]
Country 2016 2017 2018 2019 2020
 World 7,720 7,180 7,540 7,910 8,170
 South Africa * 6,624 6,057 6,357 6,464 6,786
 Zimbabwe 598 619 586 845 836
 Canada * 300 200 400 300 300
 Russia * 200 300 200 300 250

Applications

Due to iridium's resistance to corrosion it has industrial applications. The main areas of use are electrodes for producing chlorine and other corrosive products, OLEDs, crucibles, catalysts (e.g. acetic acid), and ignition tips for spark plugs.[84]

Ir metal and alloys

Resistance to heat and corrosion are the bases for several uses of iridium and its alloys.

Owing to its high melting point, hardness, and corrosion resistance, iridium is used to make crucibles. Such crucibles are used in the Czochralski process to produce oxide single-crystals (such as sapphires) for use in computer memory devices and in solid state lasers.[89][90] The crystals, such as gadolinium gallium garnet and yttrium gallium garnet, are grown by melting pre-sintered charges of mixed oxides under oxidizing conditions at temperatures up to 2,100 °C (3,810 °F).[16]

Certain long-life aircraft engine parts are made of an iridium alloy, and an iridium–titanium alloy is used for deep-water pipes because of its corrosion resistance.[25] Iridium is used for multi-pored spinnerets, through which a plastic polymer melt is extruded to form fibers, such as rayon.[91] Osmium–iridium is used for compass bearings and for balances.[16]

Because of their resistance to arc erosion, iridium alloys are used by some manufacturers for the centre electrodes of spark plugs,[89][92] and iridium-based spark plugs are particularly used in aviation.

Catalysis

Iridium compounds are used as catalysts in the Cativa process for carbonylation of methanol to produce acetic acid.[93][94]

Iridium complexes are often active for asymmetric hydrogenation both by traditional hydrogenation.[95] and transfer hydrogenation.[96] This property is the basis of the industrial route to the chiral herbicide (S)-metolachlor. As practiced by Syngenta on the scale of 10,000 tons/year, the complex [Ir(COD)Cl]2 in the presence of Josiphos ligands.[97]

Medical imaging

The radioisotope iridium-192 is one of the two most important sources of energy for use in industrial γ-radiography for non-destructive testing of metals.[98][99] Additionally, 192
Ir
is used as a source of gamma radiation for the treatment of cancer using brachytherapy, a form of radiotherapy where a sealed radioactive source is placed inside or next to the area requiring treatment. Specific treatments include high-dose-rate prostate brachytherapy, biliary duct brachytherapy, and intracavitary cervix brachytherapy.[25] Iridium-192 is normally produced by neutron activation of isotope iridium-191 in natural-abundance iridium metal.[100]

Photocatalysis and OLEDs

Iridium complexes are key components of white OLEDs. Similar complexes are used in photocatalysis.[101]

Scientific

NIST Library US Prototype meter bar
International Prototype Meter bar

An alloy of 90% platinum and 10% iridium was used in 1889 to construct the International Prototype Meter and kilogram mass, kept by the International Bureau of Weights and Measures near Paris.[25] The meter bar was replaced as the definition of the fundamental unit of length in 1960 by a line in the atomic spectrum of krypton,[d][102] but the kilogram prototype remained the international standard of mass until 20 May 2019, when the kilogram was redefined in terms of the Planck constant.[103]

Historical

Fountain pen nib labelled Iridium Point

Iridium–osmium alloys were used in fountain pen nib tips. The first major use of iridium was in 1834 in nibs mounted on gold.[16] Starting in 1944, the famous Parker 51 fountain pen was fitted with a nib tipped by a ruthenium and iridium alloy (with 3.8% iridium). The tip material in modern fountain pens is still conventionally called "iridium", although there is seldom any iridium in it; other metals such as ruthenium, osmium, and tungsten have taken its place.[104]

An iridium–platinum alloy was used for the touch holes or vent pieces of cannon. According to a report of the Paris Exhibition of 1867, one of the pieces being exhibited by Johnson and Matthey "has been used in a Whitworth gun for more than 3000 rounds, and scarcely shows signs of wear yet. Those who know the constant trouble and expense which are occasioned by the wearing of the vent-pieces of cannon when in active service, will appreciate this important adaptation".[105]

The pigment iridium black, which consists of very finely divided iridium, is used for painting porcelain an intense black; it was said that "all other porcelain black colors appear grey by the side of it".[106]

Precautions

Iridium in bulk metallic form is not biologically important or hazardous to health due to its lack of reactivity with tissues; there are only about 20 parts per trillion of iridium in human tissue.[25] Like most metals, finely divided iridium powder can be hazardous to handle, as it is an irritant and may ignite in air.[67] By 2015 very little is known about the toxicity of iridium compounds,[107] primarily because it is used so rarely that few people come in contact with it and those who do only with very small amounts. However, soluble salts, such as the iridium halides, could be hazardous due to elements other than iridium or due to iridium itself.[31] At the same time, most iridium compounds are insoluble, which makes absorption into the body difficult.[25]

A radioisotope of iridium, 192
Ir
, is dangerous, like other radioactive isotopes. The only reported injuries related to iridium concern accidental exposure to radiation from 192
Ir
used in brachytherapy.[31] High-energy gamma radiation from 192
Ir
can increase the risk of cancer. External exposure can cause burns, radiation poisoning, and death. Ingestion of 192Ir can burn the linings of the stomach and the intestines.[108] 192Ir, 192mIr, and 194mIr tend to deposit in the liver, and can pose health hazards from both gamma and beta radiation.[62]

Notes

  1. ^ At room temperature and standard atmospheric pressure, iridium has been calculated to have a density of 22.65 g/cm3 (0.818 lb/cu in), 0.04 g/cm3 (0.0014 lb/cu in) higher than osmium measured the same way.[9] Still, the experimental X-ray crystallography value is considered to be the most accurate, and as such iridium is considered to be the second densest element.[10]
  2. ^ Most common oxidation states of iridium are in bold. The right column lists one representative compound for each oxidation state.
  3. ^ Iridium literally means "of rainbows".
  4. ^ The definition of the meter was changed again in 1983. The meter is currently defined as the distance traveled by light in a vacuum during a time interval of 1299,792,458 of a second.

References

  1. ^ "Standard Atomic Weights: Iridium". CIAAW. 2017.
  2. ^ Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN 1365-3075.
  3. ^ a b c Arblaster, John W. (2018). Selected Values of the Crystallographic Properties of Elements. Materials Park, Ohio: ASM International. ISBN 978-1-62708-155-9.
  4. ^ a b c Wang, Guanjun; Zhou, Mingfei; Goettel, James T.; Schrobilgen, Gary G.; Su, Jing; Li, Jun; Schlöder, Tobias; Riedel, Sebastian (2014). "Identification of an iridium-containing compound with a formal oxidation state of IX". Nature. 514 (7523): 475–477. Bibcode:2014Natur.514..475W. doi:10.1038/nature13795. PMID 25341786. S2CID 4463905.
  5. ^ Lide, D. R., ed. (2005). "Magnetic susceptibility of the elements and inorganic compounds". CRC Handbook of Chemistry and Physics (PDF) (86th ed.). Boca Raton (FL): CRC Press. ISBN 0-8493-0486-5.
  6. ^ Weast, Robert (1984). CRC, Handbook of Chemistry and Physics. Boca Raton, Florida: Chemical Rubber Company Publishing. pp. E110. ISBN 0-8493-0464-4.
  7. ^ Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  8. ^ "Iridium – Element information, properties and uses | Periodic Table". www.rsc.org. Retrieved 2023-10-26.
  9. ^ Helmenstine, Anne Marie (May 6, 2022). "What is the Densest Element on the Periodic Table?". Thoughtco.com. Retrieved October 9, 2022.
  10. ^ Arblaster, J. W. (1989). "Densities of Osmium and Iridium Recalculations Based upon a Review of the Latest Crystallographic Data". Platinum Metals Rev. 33 (1): 14–16. doi:10.1595/003214089X3311416. S2CID 267570193.
  11. ^ "Iridium (Ir) | AMERICAN ELEMENTS". American Elements: The Materials Science Company. Retrieved 2023-11-22.
  12. ^ a b "Iridium supply worldwide 2023". Statista. Retrieved 2024-05-23.
  13. ^ Becker, Luann (2002). "Repeated Blows" (PDF). Scientific American. 286 (3): 77–83. Bibcode:2002SciAm.286c..76B. doi:10.1038/scientificamerican0302-76. PMID 11857903. Retrieved January 19, 2016.
  14. ^ a b Kyte, Frank T.; Zhiming Zhou; John T. Wasson (1981). "High noble metal concentrations in a late Pliocene sediment". Nature. 292 (5822): 417–420. Bibcode:1981Natur.292..417K. doi:10.1038/292417a0. ISSN 0028-0836. S2CID 4362591.
  15. ^ a b c d e f g h i j k l m n Greenwood, N. N.; Earnshaw, A. (1997). Chemistry of the Elements (2nd ed.). Oxford: Butterworth–Heinemann. pp. 1113–1143, 1294. ISBN 978-0-7506-3365-9. OCLC 213025882.
  16. ^ a b c d e f g h i j k l m n o Hunt, L. B. (1987). "A History of Iridium". Platinum Metals Review. 31 (1): 32–41. doi:10.1595/003214087X3113241. S2CID 267552692. Archived from the original on 2022-09-29. Retrieved 2022-09-29.
  17. ^ Kittel, C. (2004). Introduction to Solid State Physics (7th ed.). Wiley-India. ISBN 978-81-265-1045-0.
  18. ^ Arblaster, J. W. (1995). "Osmium, the Densest Metal Known". Platinum Metals Review. 39 (4): 164. doi:10.1595/003214095X394164164. S2CID 267393021. Archived from the original on 2011-09-27. Retrieved 2008-10-02.
  19. ^ Cotton, Simon (1997). Chemistry of Precious Metals. Springer-Verlag New York, LLC. p. 78. ISBN 978-0-7514-0413-5.
  20. ^ Lide, D. R. (1990). CRC Handbook of Chemistry and Physics (70th ed.). Boca Raton (FL):CRC Press. ISBN 9780849304712.
  21. ^ Arblaster, J. W. (1989). "Densities of osmium and iridium: recalculations based upon a review of the latest crystallographic data" (PDF). Platinum Metals Review. 33 (1): 14–16. doi:10.1595/003214089X3311416. S2CID 267570193. Archived from the original on 2012-02-07. Retrieved 2008-09-17.
  22. ^ US 3293031A, Cresswell, Peter & Rhys, David, published 20/12/1966 
  23. ^ Darling, A. S. (1960). "Iridium Platinum Alloys – A Critical Review Of Their Constitution And Properties". Platinum Metals Review. 4 (1): 18–26. doi:10.1595/003214060X411826. S2CID 267392937. Reviewed in "Iridium–Platinum Alloys". Nature. 186 (4720): 211. 1960. Bibcode:1960Natur.186Q.211.. doi:10.1038/186211a0. S2CID 4211238.
  24. ^ Biggs, T.; Taylor, S. S.; van der Lingen, E. (2005). "The Hardening of Platinum Alloys for Potential Jewellery Application". Platinum Metals Review. 49 (1): 2–15. doi:10.1595/147106705X24409.
  25. ^ a b c d e f g h i j Emsley, J. (2003). "Iridium". Nature's Building Blocks: An A–Z Guide to the Elements. Oxford, England, UK: Oxford University Press. pp. 201–204. ISBN 978-0-19-850340-8.
  26. ^ Emsley, John (2011). Nature's Building Blocks: An A–Z Guide to the Elements (New ed.). New York: Oxford University Press. ISBN 978-0-19-960563-7.
  27. ^ a b Perry, D. L. (1995). Handbook of Inorganic Compounds. CRC Press. pp. 203–204. ISBN 978-1439814611.
  28. ^ Lagowski, J. J., ed. (2004). Chemistry Foundations and Applications. Vol. 2. Thomson Gale. pp. 250–251. ISBN 978-0028657233.
  29. ^ Munson, Ronald A. (February 1968). "The Synthesis of Iridium Disulfide and Nickel diarsenide having the Pyrite Structure" (PDF). Inorganic Chemistry. 7 (2): 389–390. doi:10.1021/ic50060a047. Archived from the original (PDF) on 2019-04-12. Retrieved 2019-01-19.
  30. ^ a b c d e Audi, Georges; Bersillon, Olivier; Blachot, Jean; Wapstra, Aaldert Hendrik (2003), "The NUBASE evaluation of nuclear and decay properties", Nuclear Physics A, 729: 3–128, Bibcode:2003NuPhA.729....3A, doi:10.1016/j.nuclphysa.2003.11.001
  31. ^ a b c Mager Stellman, J. (1998). "Iridium". Encyclopaedia of Occupational Health and Safety. International Labour Organization. pp. 63.19. ISBN 978-92-2-109816-4. OCLC 35279504.
  32. ^ Robinson, R.; Thoennessen, M. (2012). "Discovery of tantalum, rhenium, osmium, and iridium isotopes". Atomic Data and Nuclear Data Tables. 98 (5): 911–932. arXiv:1109.0526. Bibcode:2012ADNDT..98..911R. doi:10.1016/j.adt.2011.09.003. S2CID 53992437.
  33. ^ Chereminisoff, N. P. (1990). Handbook of Ceramics and Composites. CRC Press. p. 424. ISBN 978-0-8247-8006-7.
  34. ^ Jung, D.; Demazeau, Gérard (1995). "High Oxygen Pressure and the Preparation of New Iridium (VI) Oxides with Perovskite Structure: Sr
    2
    MIrO
    6
    (M = Ca, Mg)". Journal of Solid State Chemistry. 115 (2): 447–455. Bibcode:1995JSSCh.115..447J. doi:10.1006/jssc.1995.1158.
  35. ^ Gong, Y.; Zhou, M.; Kaupp, M.; Riedel, S. (2009). "Formation and Characterization of the Iridium Tetroxide Molecule with Iridium in the Oxidation State +VIII". Angewandte Chemie International Edition. 48 (42): 7879–7883. doi:10.1002/anie.200902733. PMID 19593837.
  36. ^ Holleman, A. F.; Wiberg, E.; Wiberg, N. (2001). Inorganic Chemistry (1st ed.). Academic Press. ISBN 978-0-12-352651-9. OCLC 47901436.
  37. ^ Esteruelas, Miguel A.; López, Ana M.; Oliván, Montserrat (2016). "Polyhydrides of Platinum Group Metals: Nonclassical Interactions and σ-Bond Activation Reactions". Chemical Reviews. 116 (15): 8770–8847. doi:10.1021/acs.chemrev.6b00080. hdl:10261/136216. PMID 27268136.
  38. ^ Černý, R.; Joubert, J.-M.; Kohlmann, H.; Yvon, K. (2002). "Mg
    6
    Ir
    2
    H
    11
    , a new metal hydride containing saddle-like IrH5−
    4
    and square-pyramidal IrH4−
    5
    hydrido complexes". Journal of Alloys and Compounds. 340 (1–2): 180–188. doi:10.1016/S0925-8388(02)00050-6.
  39. ^ Gulliver, D. J.; Levason, W. (1982). "The chemistry of ruthenium, osmium, rhodium, iridium, palladium and platinum in the higher oxidation states". Coordination Chemistry Reviews. 46: 1–127. doi:10.1016/0010-8545(82)85001-7.
  40. ^ a b c d e Renner, H.; Schlamp, G.; Kleinwächter, I.; Drost, E.; Lüschow, H. M.; Tews, P.; Panster, P.; Diehl, M.; et al. (2002). "Platinum group metals and compounds". Ullmann's Encyclopedia of Industrial Chemistry. Wiley. doi:10.1002/14356007.a21_075. ISBN 978-3527306732.
  41. ^ Crabtree, R. H. (1979). "Iridium compounds in catalysis". Accounts of Chemical Research. 12 (9): 331–337. doi:10.1021/ar50141a005.
  42. ^ Crabtree, R. H. (2005). The Organometallic Chemistry of the Transition Metals (PDF). Wiley. ISBN 978-0471662563. OCLC 224478241. Archived from the original (PDF) on 2012-11-19.
  43. ^ Janowicz, A. H.; Bergman, R. G. (1982). "Carbon-hydrogen activation in completely saturated hydrocarbons: direct observation of M + R-H → M(R)(H)". Journal of the American Chemical Society. 104 (1): 352–354. doi:10.1021/ja00365a091.
  44. ^ Hoyano, J. K.; Graham, W. A. G. (1982). "Oxidative addition of the carbon-hydrogen bonds of neopentane and cyclohexane to a photochemically generated iridium(I) complex". Journal of the American Chemical Society. 104 (13): 3723–3725. doi:10.1021/ja00377a032.
  45. ^ Hartwig, John F. (2011). "Regioselectivity of the Borylation of Alkanes and Arenes". Chemical Society Reviews. 40 (4): 1992–2002. doi:10.1039/c0cs00156b. PMID 21336364.
  46. ^ a b c Weeks, Mary Elvira (1932). "The discovery of the elements. VIII. The platinum metals". Journal of Chemical Education. 9 (6). American Chemical Society (ACS): 1017–1034. Bibcode:1932JChEd...9.1017W. doi:10.1021/ed009p1017. ISSN 0021-9584.Weeks, M. E. (1968). Discovery of the Elements (7th ed.). Journal of Chemical Education. pp. 385–407. ISBN 978-0-8486-8579-9. OCLC 23991202.
  47. ^ Donald McDonald, Leslie B. Hunt (1982). A History of Platinum and its Allied Metals. Johnson Matthey Plc. pp. 7–8. ISBN 978-0-905118-83-3.
  48. ^ Dixon, Joshua; Brownrigg, William (1801). The literary life of William Brownrigg. To which are added an account of the coal mines near Whitehaven: And Observations on the means of preventing epidemic fevers. p. 52. Archived from the original on 24 March 2017.
  49. ^ Watson, Wm; Brownrigg, William (1749). "Several Papers concerning a New Semi-Metal, Called Platina; Communicated to the Royal Society by Mr. Wm. Watson F. R. S". Philosophical Transactions. 46 (491–496): 584–596. Bibcode:1749RSPT...46..584W. doi:10.1098/rstl.1749.0110. S2CID 186213277.
  50. ^ Marggraf, Andreas Sigismund (1760). Versuche mit dem neuen mineralischen Körper Platina del pinto genannt. Archived from the original on 24 March 2017.
  51. ^ Thomson, T. (1831). A System of Chemistry of Inorganic Bodies. Vol. 1. Baldwin & Cradock, London; and William Blackwood, Edinburgh. p. 693.
  52. ^ a b Griffith, W. P. (2004). "Bicentenary of Four Platinum Group Metals. Part II: Osmium and iridium – events surrounding their discoveries". Platinum Metals Review. 48 (4): 182–189. doi:10.1595/147106704x4844.
  53. ^ Weeks, M. E. (1968). Discovery of the Elements (7th ed.). Journal of Chemical Education. pp. 414–418. ISBN 978-0-8486-8579-9. OCLC 23991202.
  54. ^ Tennant, S. (1804). "On Two Metals, Found in the Black Powder Remaining after the Solution of Platina". Philosophical Transactions of the Royal Society of London. 94: 411–418. doi:10.1098/rstl.1804.0018. JSTOR 107152.
  55. ^ Trigg, G. L. (1995). "Recoilless Emission and Absorption of Radiation". Landmark Experiments in Twentieth Century Physics. Courier Dover Publications. pp. 179–190. ISBN 978-0-486-28526-9. OCLC 31409781.
  56. ^ Mössbauer, R. L. (1958). "Gammastrahlung in Ir191". Zeitschrift für Physik A (in German). 151 (2): 124–143. Bibcode:1958ZPhy..151..124M. doi:10.1007/BF01344210. S2CID 121129342.
  57. ^ Waller, I. (1964). "The Nobel Prize in Physics 1961: presentation speech". Nobel Lectures, Physics 1942–1962. Elsevier.
  58. ^ "History/Origin of Chemicals". NASA. Retrieved 1 January 2013.
  59. ^ Chen, Hsin-Yu; Vitale, Salvatore; Foucart, Francois (2021-10-01). "The Relative Contribution to Heavy Metals Production from Binary Neutron Star Mergers and Neutron Star–Black Hole Mergers". The Astrophysical Journal Letters. 920 (1). American Astronomical Society: L3. arXiv:2107.02714. Bibcode:2021ApJ...920L...3C. doi:10.3847/2041-8213/ac26c6. hdl:1721.1/142310. ISSN 2041-8205. S2CID 238198587.
  60. ^ Arlandini, Claudio; Kappeler, Franz; Wisshak, Klaus; Gallino, Roberto; Lugaro, Maria; Busso, Maurizio; Straniero, Oscar (1999-11-10). "Neutron Capture in Low-Mass Asymptotic Giant Branch Stars: Cross Sections and Abundance Signatures". The Astrophysical Journal. 525 (2): 886–900. arXiv:astro-ph/9906266. Bibcode:1999ApJ...525..886A. doi:10.1086/307938. ISSN 0004-637X.
  61. ^ Scott, E. R. D.; Wasson, J. T.; Buchwald, V. F. (1973). "The chemical classification of iron meteorites—VII. A reinvestigation of irons with Ge concentrations between 25 and 80 ppm". Geochimica et Cosmochimica Acta. 37 (8): 1957–1983. Bibcode:1973GeCoA..37.1957S. doi:10.1016/0016-7037(73)90151-8.
  62. ^ a b "Iridium" (PDF). Human Health Fact Sheet. Argonne National Laboratory. 2005. Archived from the original (PDF) on March 4, 2012. Retrieved 2008-09-20.
  63. ^ Xiao, Z.; Laplante, A. R. (2004). "Characterizing and recovering the platinum group minerals—a review". Minerals Engineering. 17 (9–10): 961–979. Bibcode:2004MiEng..17..961X. doi:10.1016/j.mineng.2004.04.001.
  64. ^ "Cuproiridsite CuIr2S4" (PDF). Handbook of mineralogy.org. Retrieved 3 March 2022.
  65. ^ Vitaly A. Stepanov; Valentina E. Kungurova; Vitaly I. Gvozdev (2010). "Irasite Discovery in Copper-Nickel Ores of Shanuch Deposit (KAMCHATKA)" (PDF). New Data on Minerals. 45: 23. Retrieved 3 March 2022.
  66. ^ Garuti, Giorgio; Gazzotti, Moreno; Torres-Ruiz, Jose (1995). "Iridium, Rhodium, and Platinum Sulfides in Chromitites from the Ultramafic Massifs of Finero, Italy, and Ojen, Spain" (PDF). The Canadian Mineralogist. 33: 509–520. Retrieved 2 November 2022.
  67. ^ a b c d Seymour, R. J.; O'Farrelly, J. I. (2012). "Platinum-Group Metals". Kirk Othmer Encyclopedia of Chemical Technology. Wiley. doi:10.1002/0471238961.1612012019052513.a01.pub3. ISBN 978-0471238966.
  68. ^ a b Goldberg, Hodge; Kay, V; Stallard, M; Koide, M (1986). "Some comparative marine chemistries of platinum and iridium". Applied Geochemistry. 1 (2): 227–232. Bibcode:1986ApGC....1..227G. doi:10.1016/0883-2927(86)90006-5.
  69. ^ a b c Wells, Boothe (1988). "Iridium in marine organisms". Geochimica et Cosmochimica Acta. 52 (6): 1737–1739. Bibcode:1988GeCoA..52.1737W. doi:10.1016/0016-7037(88)90242-6.
  70. ^ a b c Sawlowicz, Z (1993). "Iridium and other platinum-group elements as geochemical markers in sedimentary environments". Palaeogeography, Palaeoclimatology, Palaeoecology. 104 (4): 253–270. Bibcode:1993PPP...104..253S. doi:10.1016/0031-0182(93)90136-7.
  71. ^ Crocket, Macdougall; Harriss, R (1973). "Gold, palladium and iridium in marine sediments". Geochimica et Cosmochimica Acta. 37 (12): 2547–2556. Bibcode:1973GeCoA..37.2547C. doi:10.1016/0016-7037(73)90264-0.
  72. ^ Peucker-Ehrenbrink, B (2001). "Iridium and Osmium as Tracers of Extraterrestrial Matter in Marine Sediments". Accretion of Extraterrestrial Matter Throughout Earth's History. pp. 163–178. doi:10.1007/978-1-4419-8694-8_10. ISBN 978-1-4613-4668-5.
  73. ^ Barker, J; Edward, A (1968). "Accretion rate of cosmic matter from iridium and osmium contents of deep-sea sediments". Geochimica et Cosmochimica Acta. 32 (6): 627–645. Bibcode:1968GeCoA..32..627B. doi:10.1016/0016-7037(68)90053-7.
  74. ^ Colodner, D; Edmond, J (1992). "Post-depositional mobility of platinum, iridium and rhenium in marine sediments". Nature. 358 (6385): 402–404. Bibcode:1992Natur.358..402C. doi:10.1038/358402a0. S2CID 37386975.
  75. ^ a b Alvarez, L. W.; Alvarez, W.; Asaro, F.; Michel, H. V. (1980). "Extraterrestrial cause for the Cretaceous–Tertiary extinction" (PDF). Science. 208 (4448): 1095–1108. Bibcode:1980Sci...208.1095A. CiteSeerX 10.1.1.126.8496. doi:10.1126/science.208.4448.1095. PMID 17783054. S2CID 16017767.
  76. ^ Hildebrand, A. R.; Penfield, Glen T.; Kring, David A.; Pilkington, Mark; Zanoguera, Antonio Camargo; Jacobsen, Stein B.; Boynton, William V. (1991). "Chicxulub Crater; a possible Cretaceous/Tertiary boundary impact crater on the Yucatan Peninsula, Mexico". Geology. 19 (9): 867–871. Bibcode:1991Geo....19..867H. doi:10.1130/0091-7613(1991)019<0867:CCAPCT>2.3.CO;2.
  77. ^ Frankel, C. (1999). The End of the Dinosaurs: Chicxulub Crater and Mass Extinctions. Cambridge University Press. ISBN 978-0-521-47447-4. OCLC 40298401.
  78. ^ Ryder, G.; Fastovsky, D. E.; Gartner, S. (1996). The Cretaceous-Tertiary Event and Other Catastrophes in Earth History. Geological Society of America. p. 47. ISBN 978-0-8137-2307-5.
  79. ^ Toutain, J.-P.; Meyer, G. (1989). "Iridium-Bearing Sublimates at a Hot-Spot Volcano (Piton De La Fournaise, Indian Ocean)". Geophysical Research Letters. 16 (12): 1391–1394. Bibcode:1989GeoRL..16.1391T. doi:10.1029/GL016i012p01391.
  80. ^ a b c Platinum-Group Metals. U.S. Geological Survey Mineral Commodity Summaries
  81. ^ Singerling, Sheryl A.; Schulte, Ruth F. (August 2021). "Platinum-Group Metals". 2018 Minerals Yearbook (PDF). USGS. p. 57.11.
  82. ^ Hagelüken, C. (2006). "Markets for the catalysts metals platinum, palladium, and rhodium" (PDF). Metall. 60 (1–2): 31–42. Archived from the original (PDF) on March 4, 2009.
  83. ^ "Platinum 2013 Interim Review" (PDF). Platinum Today. Johnson Matthey. Retrieved 2014-01-10.
  84. ^ a b Ryan, Marge (2022-11-16). "Recycling and thrifting: the answer to the iridium question in electrolyser growth".
  85. ^ Gilchrist, Raleigh (1943). "The Platinum Metals". Chemical Reviews. 32 (3): 277–372. doi:10.1021/cr60103a002. S2CID 96640406.
  86. ^ Ohriner, E. K. (2008). "Processing of Iridium and Iridium Alloys". Platinum Metals Review. 52 (3): 186–197. doi:10.1595/147106708X333827.
  87. ^ Hunt, L. B.; Lever, F. M. (1969). "Platinum Metals: A Survey of Productive Resources to industrial Uses" (PDF). Platinum Metals Review. 13 (4): 126–138. doi:10.1595/003214069X134126138. S2CID 267561907. Archived from the original (PDF) on 2008-10-29. Retrieved 2008-10-01.
  88. ^ "Mineral Yearbook 2020 tables-only release". USGS.
  89. ^ a b Handley, J. R. (1986). "Increasing Applications for Iridium". Platinum Metals Review. 30 (1): 12–13. doi:10.1595/003214086X3011213.
  90. ^ Crookes, W. (1908). "On the Use of Iridium Crucibles in Chemical Operations". Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character. 80 (541): 535–536. Bibcode:1908RSPSA..80..535C. doi:10.1098/rspa.1908.0046. JSTOR 93031.
  91. ^ Egorova, R. V.; Korotkov, B. V.; Yaroshchuk, E. G.; Mirkus, K. A.; Dorofeev N. A.; Serkov, A. T. (1979). "Spinnerets for viscose rayon cord yarn". Fibre Chemistry. 10 (4): 377–378. doi:10.1007/BF00543390. S2CID 135705244.
  92. ^ Graff, Muriel; Kempf, Bernd; Breme, Jürgen (2005-12-23). "Iridium Alloy for Spark Plug Electrodes". Materials for Transportation Technology. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA. pp. 1–8. doi:10.1002/3527606025.ch1. ISBN 9783527301249.
  93. ^ Cheung, H.; Tanke, R. S.; Torrence, G. P. (2000). "Acetic acid". Ullmann's Encyclopedia of Industrial Chemistry. Wiley. doi:10.1002/14356007.a01_045. ISBN 978-3527306732.
  94. ^ Jones, Jane H. (2000). "The cativa™ process for the manufacture of acetic acid". Platinum Metals Review. 44 (3): 94–105. doi:10.1595/003214000X44394105.
  95. ^ Roseblade, S. J.; Pfaltz, A. (2007). "Iridium-catalyzed asymmetric hydrogenation of olefins". Accounts of Chemical Research. 40 (12): 1402–1411. doi:10.1021/ar700113g. PMID 17672517.
  96. ^ Ikariya, Takao; Blacker, A. John (2007). "Asymmetric Transfer Hydrogenation of Ketones with Bifunctional Transition Metal-Based Molecular Catalysts†". Accounts of Chemical Research. 40 (12): 1300–1308. doi:10.1021/ar700134q. PMID 17960897.
  97. ^ Matthias Beller, Hans-Ulrich Blaser, ed. (2012). Organometallics as Catalysts in the Fine Chemical Industry. Topics in Organometallic Chemistry. Vol. 42. Berlin, Heidelberg: Springer. ISBN 978-3-642-32832-9.
  98. ^ Halmshaw, R. (1954). "The use and scope of Iridium 192 for the radiography of steel". British Journal of Applied Physics. 5 (7): 238–243. Bibcode:1954BJAP....5..238H. doi:10.1088/0508-3443/5/7/302.
  99. ^ Hellier, Chuck (2001). Handbook of Nondestructive Evlaluation. The McGraw-Hill Companies. ISBN 978-0-07-028121-9.
  100. ^ Jean Pouliot; Luc Beaulieu (2010). "13 – Modern Principles of Brachytherapy Physics: From 2-D to 3-D to Dynamic Planning and Delivery". In Richard T. Hoppe; Theodore Locke Phillips; Mack Roach (eds.). Leibel and Phillips Textbook of Radiation Oncology (3rd ed.). W.B. Saunders. pp. 224–244. doi:10.1016/B978-1-4160-5897-7.00013-5. ISBN 9781416058977.
  101. ^ Ulbricht, Christoph; Beyer, Beatrice; Friebe, Christian; Winter, Andreas; Schubert, Ulrich S. (2009). "Recent Developments in the Application of Phosphorescent Iridium(III) Complex Systems". Advanced Materials. 21 (44): 4418–4441. Bibcode:2009AdM....21.4418U. doi:10.1002/adma.200803537. S2CID 96268110.
  102. ^ Penzes, W. B. (2001). "Time Line for the Definition of the Meter". National Institute for Standards and Technology. Retrieved 2008-09-16.
  103. ^ General section citations: Recalibration of the U.S. National Prototype Kilogram, R. S. Davis, Journal of Research of the National Bureau of Standards, 90, No. 4, July–August 1985 (5.5 MB PDF Archived 2017-02-01 at the Wayback Machine); and The Kilogram and Measurements of Mass and Force, Z. J. Jabbour et al., J. Res. Natl. Inst. Stand. Technol. 106, 2001, 25–46 (3.5 MB PDF) 
  104. ^ Mottishaw, J. (1999). "Notes from the Nib Works—Where's the Iridium?". The PENnant. XIII (2).
  105. ^ Crookes, W., ed. (1867). "The Paris Exhibition". The Chemical News and Journal of Physical Science. XV: 182.
  106. ^ Pepper, J. H. (1861). The Playbook of Metals: Including Personal Narratives of Visits to Coal, Lead, Copper, and Tin Mines, with a Large Number of Interesting Experiments Relating to Alchemy and the Chemistry of the Fifty Metallic Elements. Routledge, Warne, and Routledge. p. 455.
  107. ^ Iavicoli, Ivo; Leso, Veruscka (2015). "Iridium". Handbook on the Toxicology of Metals. pp. 855–878. doi:10.1016/B978-0-444-59453-2.00040-8. ISBN 9780444594532.
  108. ^ "Radioisotope Brief: Iridium-192 (Ir-192)" (PDF). Radiation Emergencies. Centers for Disease Control and Prevention. 2004-08-18. Retrieved 2008-09-20.