Jump to content

Edit filter log

Details for log entry 35775681

19:29, 25 August 2023: 198.60.186.50 (talk) triggered filter 3, performing the action "edit" on Livermorium. Actions taken: Disallow; Filter description: New user blanking articles (examine)

Changes made in edit

'''Livermorium''' is a [[synthetic element|synthetic]] [[chemical element]] with the [[Symbol (chemistry)|symbol]] '''Lv''' and has an [[atomic number]] of 116. It is an extremely [[radioactivity|radioactive]] element that has only been created in a laboratory setting and has not been observed in nature. The element is named after the [[Lawrence Livermore National Laboratory]] in the United States, which collaborated with the [[Joint Institute for Nuclear Research]] (JINR) in [[Dubna]], Russia, to discover livermorium during experiments conducted between 2000 and 2006. The name of the laboratory refers to the city of [[Livermore, California]], where it is located, which in turn was named after the rancher and landowner [[Robert Livermore]]. The name was adopted by [[International Union of Pure and Applied Chemistry|IUPAC]] on May 30, 2012.<ref name="IUPAC-names-114-116" /> Four [[isotopes of livermorium]] are known, with [[mass number]]s between 290 and 293 inclusive; the longest-lived among them is livermorium-293 with a [[half-life]] of about 60&nbsp;[[millisecond]]s. A fifth possible isotope with mass number 294 has been reported but not yet confirmed.
'''Livermorium''' is a [[synthetic element|synthetic]] [[chemical element]] with the [[Symbol (chemistry)|symbol]] '''Lv''' and has an [[atomic number]] of 116. It is an extremely [[radioactivity|radioactive]] element that has only been created in a laboratory setting and has not been observed in nature. The element is named after the [[Lawrence Livermore National Laboratory]] in the United States, which collaborated with the [[Joint Institute for Nuclear Research]] (JINR) in [[Dubna]], Russia, to discover livermorium during experiments conducted between 2000 and 2006. The name of the laboratory refers to the city of [[Livermore, California]], where it is located, which in turn was named after the rancher and landowner [[Robert Livermore]]. The name was adopted by [[International Union of Pure and Applied Chemistry|IUPAC]] on May 30, 2012.<ref name="IUPAC-names-114-116" /> Four [[isotopes of livermorium]] are known, with [[mass number]]s between 290 and 293 inclusive; the longest-lived among them is livermorium-293 with a [[half-life]] of about 60&nbsp;[[millisecond]]s. A fifth possible isotope with mass number 294 has been reported but not yet confirmed.
In the [[periodic table]], it is a [[p-block]] [[transactinide element]]. It is a member of the [[period 7 element|7th period]] and is placed in group 16 as the heaviest [[chalcogen]], but it has not been confirmed to behave as the heavier [[homology (chemistry)|homologue]] to the chalcogen [[polonium]]. Livermorium is calculated to have some similar properties to its lighter homologues ([[oxygen]], [[sulfur]], [[selenium]], [[tellurium]], and polonium), and be a [[post-transition metal]], though it should also show several major differences from them.
In the [[periodic table]], it is a [[p-block]] [[transactinide element]]. It is a member of the [[period 7 element|7th period]] and is placed in group 16 as the heaviest [[chalcogen]], but it has not been confirmed to behave as the heavier [[homology (chemistry)|homologue]] to the chalcogen [[polonium]]. Livermorium is calcula[http://webelements.com/livermorium/ Livermorium at WebElements.com]

==Introduction==
{{Transcluded section|source=Introduction to the heaviest elements}}
{{:Introduction to the heaviest elements}}

== History ==
=== Unsuccessful synthesis attempts ===
The first search for element 116, using the reaction between <sup>248</sup>Cm and <sup>48</sup>Ca, was performed in 1977 by Ken Hulet and his team at the [[Lawrence Livermore National Laboratory]] (LLNL). They were unable to detect any atoms of livermorium.<ref>{{cite journal |doi=10.1103/PhysRevLett.39.385 |title=Search for Superheavy Elements in the Bombardment of <sup>248</sup>Cm with<sup>48</sup>Ca |year=1977 |last1=Hulet |first1=E. K. |journal=Physical Review Letters |volume=39 |pages=385–389 |last2=Lougheed |first2=R. |last3=Wild |first3=J. |last4=Landrum |first4=J. |last5=Stevenson |first5=P. |last6=Ghiorso |first6=A. |last7=Nitschke |first7=J. |last8=Otto |first8=R. |last9=Morrissey |first9=D. |last10=Baisden |first10=P. |last11=Gavin |first11=B. |last12=Lee |first12=D. |last13=Silva |first13=R. |last14=Fowler |first14=M. |last15=Seaborg |first15=G. |bibcode=1977PhRvL..39..385H |issue=7 |display-authors=8}}</ref> [[Yuri Oganessian]] and his team at the Flerov Laboratory of Nuclear Reactions (FLNR) in the [[Joint Institute for Nuclear Research]] (JINR) subsequently attempted the reaction in 1978 and met failure. In 1985, in a joint experiment between Berkeley and Peter Armbruster's team at GSI, the result was again negative, with a calculated [[cross section (physics)|cross section]] limit of 10–100&nbsp;pb. Work on reactions with <sup>48</sup>Ca, which had proved very useful in the synthesis of [[nobelium]] from the <sup>nat</sup>Pb+<sup>48</sup>Ca reaction, nevertheless continued at Dubna, with a superheavy element separator being developed in 1989, a search for target materials and starting of collaborations with LLNL being started in 1990, production of more intense <sup>48</sup>Ca beams being started in 1996, and preparations for long-term experiments with 3 orders of magnitude higher sensitivity being performed in the early 1990s. This work led directly to the production of new isotopes of elements 112 to 118 in the reactions of <sup>48</sup>Ca with actinide targets and the discovery of the 5 heaviest elements on the periodic table: [[flerovium]], [[moscovium]], livermorium, [[tennessine]], and [[oganesson]].<ref>{{cite journal |doi=10.1103/PhysRevLett.54.406 |title=Attempts to Produce Superheavy Elements by Fusion of <sup>48</sup>Ca with <sup>248</sup>Cm in the Bombarding Energy Range of 4.5–5.2&nbsp;MeV/u |year=1985 |last1=Armbruster |first1=P. |journal=Physical Review Letters |volume=54 |pages=406–409 |pmid=10031507 |last2=Agarwal |first2=YK |last3=Brüchle |first3=W |last4=Brügger |first4=M |last5=Dufour |first5=JP |last6=Gaggeler |first6=H |last7=Hessberger |first7=FP |last8=Hofmann |first8=S |last9=Lemmertz |first9=P |last10=Münzenberg |first10=G. |last11=Poppensieker |first11=K. |last12=Reisdorf |first12=W. |last13=Schädel |first13=M. |last14=Schmidt |first14=K. |last15=Schneider |first15=J. |last16=Schneider |first16=W. |last17=Sümmerer |first17=K. |last18=Vermeulen |first18=D. |last19=Wirth |first19=G. |last20=Ghiorso |first20=A. |last21=Gregorich |first21=K. |last22=Lee |first22=D. |last23=Leino |first23=M. |last24=Moody |first24=K. |last25=Seaborg |first25=G. |last26=Welch |first26=R. |last27=Wilmarth |first27=P. |last28=Yashita |first28=S. |last29=Frink |first29=C. |last30=Greulich |first30=N. |issue=5 |bibcode=1985PhRvL..54..406A |url=https://zenodo.org/record/1233843 |display-authors=8}}</ref>

In 1995, an international team led by [[Sigurd Hofmann]] at the [[Gesellschaft für Schwerionenforschung]] (GSI) in [[Darmstadt]], [[Germany]] attempted to synthesise element 116 in a radiative capture reaction (in which the compound nucleus de-excites through pure [[gamma emission]] without evaporating neutrons) between a [[lead]]-208 target and [[selenium]]-82 projectiles. No atoms of element 116 were identified.<ref>{{cite conference |url=https://www.epj-conferences.org/articles/epjconf/pdf/2016/26/epjconf-NS160-06001.pdf |title=The discovery of elements 107 to 112 |last1=Hofmann |first1=Sigurd |journal=EPJ Web of Conferences |date=1 December 2016 |volume=131 |page=06001 |conference=Nobel Symposium NS160 – Chemistry and Physics of Heavy and Superheavy Elements |doi=10.1051/epjconf/201613106001|doi-access=free }}</ref>

=== Unconfirmed discovery claims ===
In late 1998, Polish physicist [[Robert Smolańczuk]] published calculations on the fusion of atomic nuclei towards the synthesis of [[superheavy element|superheavy atoms]], including [[oganesson|elements 118]] and 116.<ref name="Smolanczuk">{{cite journal|author=Smolanczuk, R.|journal=Physical Review C|volume=59|issue=5|date=1999|title=Production mechanism of superheavy nuclei in cold fusion reactions|pages=2634–2639|doi=10.1103/PhysRevC.59.2634|bibcode = 1999PhRvC..59.2634S}}</ref> His calculations suggested that it might be possible to make these two elements by fusing [[lead]] with [[krypton]] under carefully controlled conditions.<ref name="Smolanczuk" />

In 1999, researchers at [[Lawrence Berkeley National Laboratory]] made use of these predictions and announced the discovery of elements 118 and 116, in a paper published in ''[[Physical Review Letters]]'',<ref name="Ninov83.1104">{{cite journal|last1=Ninov|first1=Viktor|last2=Gregorich|first2=K.|last3=Loveland|first3=W.|last4=Ghiorso|first4=A.|last5=Hoffman|first5=D.|last6=Lee|first6=D.|last7=Nitsche|first7=H.|last8=Swiatecki|first8=W.|last9=Kirbach|first9=U.|first10=C. |last10=Laue|first11=J. |last11=Adams|first12=J. |last12=Patin|first13=D. |last13=Shaughnessy|first14=D. |last14=Strellis|first15=P. |last15=Wilk|title=Observation of Superheavy Nuclei Produced in the Reaction of {{SimpleNuclide|Krypton|86}} with {{SimpleNuclide|Lead|208}}|journal=[[Physical Review Letters]]|volume=83|pages=1104–1107|date=1999|doi=10.1103/PhysRevLett.83.1104|bibcode=1999PhRvL..83.1104N|issue=6 |display-authors=10|url=https://zenodo.org/record/1233919}}{{Retraction|doi=10.1103/PhysRevLett.89.039901|intentional=yes}}</ref> and very soon after the results were reported in ''[[Science (journal)|Science]]''.<ref>{{cite journal|author=Service, R. F.|journal=Science|date=1999|volume=284|page=1751|doi=10.1126/science.284.5421.1751|title=Berkeley Crew Bags Element 118|issue=5421|s2cid=220094113}}</ref> The researchers reported to have performed the [[nuclear reaction|reaction]]

:{{nuclide|Krypton|86}} + {{nuclide|Lead|208}} → {{nuclide|oganesson|293}} + {{SubatomicParticle|link=yes|Neutron}} → {{nuclide|Livermorium|289}} + [[alpha particle|α]]

The following year, they published a retraction after researchers at other laboratories were unable to duplicate the results and the Berkeley lab itself was unable to duplicate them as well.<ref>{{cite news|url=http://enews.lbl.gov/Science-Articles/Archive/118-retraction.html|publisher=Berkeley Lab|author=Public Affairs Department|title=Results of element 118 experiment retracted|date=2001-07-21|access-date=2008-01-18|archive-url=https://web.archive.org/web/20080129191344/http://enews.lbl.gov/Science-Articles/Archive/118-retraction.html|archive-date=2008-01-29|url-status=dead}}</ref> In June 2002, the director of the lab announced that the original claim of the discovery of these two elements had been based on data fabricated by principal author [[Victor Ninov]].<ref>{{cite journal|pages=728–729|title=Misconduct: The stars who fell to Earth|journal=[[Nature (journal)|Nature]]|volume=420|doi=10.1038/420728a|date=2002|pmid=12490902|last1=Dalton|first1=R.|issue=6917|bibcode = 2002Natur.420..728D |s2cid=4398009}}</ref><ref>[https://web.archive.org/web/20071012075515/http://physicsworld.com/cws/article/news/2629 Element 118 disappears two years after it was discovered]. Physicsworld.com (August 2, 2001). Retrieved on 2012-04-02.</ref>

=== Discovery ===
<!-- Deleted image removed: [[File:Curium target livermorium.jpg|thumb|left|Curium-248 target used in the synthesis of livermorium]] -->
Livermorium was first synthesized on July 19, 2000, when scientists at [[Dubna]] ([[Joint Institute for Nuclear Research|JINR]]) bombarded a [[curium-248]] target with accelerated [[calcium-48]] ions. A single atom was detected, decaying by [[alpha decay|alpha emission]] with [[decay energy]] 10.54&nbsp;[[electronvolt|MeV]] to an isotope of [[flerovium]]. The results were published in December 2000.<ref name="00Og01">{{cite journal|doi=10.1103/PhysRevC.63.011301|title=Observation of the decay of <sup>292</sup>116|date=2000|author=Oganessian, Yu. Ts.|journal=Physical Review C|volume=63|issue=1|pages=011301|bibcode=2000PhRvC..63a1301O|last2=Utyonkov|last3=Lobanov|last4=Abdullin|last5=Polyakov|last6=Shirokovsky|last7=Tsyganov|last8=Gulbekian|last9=Bogomolov|last10=Gikal|last11=Mezentsev|last12=Iliev|last13=Subbotin|last14=Sukhov|last15=Ivanov|last16=Buklanov|last17=Subotic|last18=Itkis|last19=Moody|last20=Wild|last21=Stoyer|last22=Stoyer|last23=Lougheed|last24=Laue|last25=Karelin|last26=Tatarinov}}</ref>

:{{nuclide|curium|248}} + {{nuclide|calcium|48}} → {{nuclide|livermorium|296}}* → {{nuclide|livermorium|293}} + 3 {{nuclide|neutronium|1}} → {{nuclide|flerovium|289}} + α

The [[decay product|daughter]] flerovium isotope had properties matching those of a flerovium isotope first synthesized in June 1999, which was originally assigned to <sup>288</sup>Fl,<ref name="00Og01" /> implying an assignment of the parent livermorium isotope to <sup>292</sup>Lv. Later work in December 2002 indicated that the synthesized flerovium isotope was actually <sup>289</sup>Fl, and hence the assignment of the synthesized livermorium atom was correspondingly altered to <sup>293</sup>Lv.<ref name="04Og01" />

=== Road to confirmation ===
Two further atoms were reported by the institute during their second experiment during April–May 2001.<ref name="03Pa01">[https://e-reports-ext.llnl.gov/pdf/302186.pdf "Confirmed results of the <sup>248</sup>Cm(<sup>48</sup>Ca,4n)<sup>292</sup>116 experiment"] {{Webarchive|url=https://web.archive.org/web/20160130164119/https://e-reports-ext.llnl.gov/pdf/302186.pdf |date=2016-01-30 }}, ''Patin et al.'', ''LLNL report (2003)''. Retrieved 2008-03-03</ref> In the same experiment they also detected a decay chain which corresponded to the first observed decay of [[flerovium]] in December 1998, which had been assigned to <sup>289</sup>Fl.<ref name="03Pa01" /> No flerovium isotope with the same properties as the one found in December 1998 has ever been observed again, even in repeats of the same reaction. Later it was found that <sup>289</sup>Fl has different decay properties and that the first observed flerovium atom may have been its [[nuclear isomer]] <sup>289m</sup>Fl.<ref name="00Og01" /><ref name="04OgJINRPP">{{cite journal|last1=Oganessian |first1=Yu. Ts. |last2=Utyonkov |first2=V. K. |date=2004 |title=Measurements of cross sections and decay properties of the isotopes of elements 112, 114, and 116 produced in the fusion reactions <sup>233,238</sup>U, <sup>242</sup>Pu, and <sup>248</sup>Cm + <sup>48</sup>Ca |url=http://www.jinr.ru/publish/Preprints/2004/160(E7-2004-160).pdf |journal=[[Physical Review C]] |volume=70 |issue=6 |page=064609 |bibcode=2004PhRvC..70f4609O |doi=10.1103/PhysRevC.70.064609 |last3=Lobanov |first3=Yu. |last4=Abdullin |first4=F. |last5=Polyakov |first5=A. |last6=Shirokovsky |first6=I. |last7=Tsyganov |first7=Yu. |last8=Gulbekian |first8=G. |last9=Bogomolov |first9=S. |last10=Gikal |first10=B. |last11=Mezentsev |first11=A. |last12=Iliev |first12=S. |last13=Subbotin |first13=V. |last14=Sukhov |first14=A. |last15=Voinov |first15=A. |last16=Buklanov |first16=G. |last17=Subotic |first17=K. |last18=Zagrebaev |first18=V. |last19=Itkis |first19=M. |last20=Patin |first20=J. |last21=Moody |first21=K. |last22=Wild |first22=J. |last23=Stoyer |first23=M. |last24=Stoyer |first24=N. |last25=Shaughnessy |first25=D. |last26=Kenneally |first26=J. |last27=Wilk |first27=P. |last28=Lougheed |first28=R. |last29=Il’Kaev |first29=R. |last30=Vesnovskii |first30=S. |url-status=dead |archive-url=https://web.archive.org/web/20080528130343/http://www.jinr.ru/publish/Preprints/2004/160%28E7-2004-160%29.pdf |archive-date=May 28, 2008 }}</ref> The observation of <sup>289m</sup>Fl in this series of experiments may indicate the formation of a parent isomer of livermorium, namely <sup>293m</sup>Lv, or a rare and previously unobserved decay branch of the already-discovered state <sup>293</sup>Lv to <sup>289m</sup>Fl. Neither possibility is certain, and research is required to positively assign this activity. Another possibility suggested is the assignment of the original December 1998 atom to <sup>290</sup>Fl, as the low beam energy used in that original experiment makes the 2n channel plausible; its parent could then conceivably be <sup>294</sup>Lv, but this assignment would still need confirmation in the <sup>248</sup>Cm(<sup>48</sup>Ca,2n)<sup>294</sup>Lv reaction.<ref name="00Og01" /><ref name="04OgJINRPP" /><ref name="Hofmann2016">{{cite journal |last1=Hofmann |first1=S. |last2=Heinz |first2=S. |first3=R. |last3=Mann |first4=J. |last4=Maurer |first5=G. |last5=Münzenberg |first6=S. |last6=Antalic |first7=W. |last7=Barth |first8=H. G. |last8=Burkhard |first9=L. |last9=Dahl |first10=K. |last10=Eberhardt |first11=R. |last11=Grzywacz |first12=J. H. |last12=Hamilton |first13=R. A. |last13=Henderson |first14=J. M. |last14=Kenneally |first15=B. |last15=Kindler |first16=I. |last16=Kojouharov |first17=R. |last17=Lang |first18=B. |last18=Lommel |first19=K. |last19=Miernik |first20=D. |last20=Miller |first21=K. J. |last21=Moody |first22=K. |last22=Morita |first23=K. |last23=Nishio |first24=A. G. |last24=Popeko |first25=J. B. |last25=Roberto |first26=J. |last26=Runke |first27=K. P. |last27=Rykaczewski |first28=S. |last28=Saro |first29=C. |last29=Scheidenberger |first30=H. J. |last30=Schött |first31=D. A. |last31=Shaughnessy |first32=M. A. |last32=Stoyer |first33=P. |last33=Thörle-Popiesch |first34=K. |last34=Tinschert |first35=N. |last35=Trautmann |first36=J. |last36=Uusitalo |first37=A. V. |last37=Yeremin |date=2016 |title=Review of even element super-heavy nuclei and search for element 120 |journal=The European Physical Journal A |volume=2016 |issue=52 |pages=180 |doi=10.1140/epja/i2016-16180-4|bibcode=2016EPJA...52..180H |s2cid=124362890 |url=https://zenodo.org/record/897926 }}</ref>

The team repeated the experiment in April–May 2005 and detected 8 atoms of livermorium. The measured decay data confirmed the assignment of the first-discovered [[isotope]] as <sup>293</sup>Lv. In this run, the team also observed the isotope <sup>292</sup>Lv for the first time.<ref name="04Og01">{{cite journal|title=Measurements of cross sections and decay properties of the isotopes of elements 112, 114, and 116 produced in the fusion reactions <sup>233,238</sup>U, <sup>242</sup>Pu, and <sup>248</sup>Cm+<sup>48</sup>Ca|doi=10.1103/PhysRevC.70.064609|year=2004|journal=Physical Review C|volume=70|page=064609|last1=Oganessian|first1=Yu. Ts.|last2=Utyonkov|first2=V.|last3=Lobanov|first3=Yu.|last4=Abdullin|first4=F.|last5=Polyakov|first5=A.|last6=Shirokovsky|first6=I.|last7=Tsyganov|first7=Yu.|last8=Gulbekian|first8=G.|last9=Bogomolov|first9=S.|first10=B. N. |last10=Gikal|first11=A. N. |last11=Mezentsev|first12=S. |last12=Iliev|first13=V. G. |last13=Subbotin|first14=A. M. |last14=Sukhov|first15=A. A. |last15=Voinov|first16=G. V. |last16=Buklanov|first17=K. |last17=Subotic|first18=V. I. |last18=Zagrebaev|first19=M. G. |last19=Itkis|first20=J. B. |last20=Patin|first21=K. J. |last21=Moody|first22=J. F. |last22=Wild|first23=M. A. |last23=Stoyer|first24=N. J. |last24=Stoyer|first25=D. A. |last25=Shaughnessy|first26=J. M. |last26=Kenneally|first27=P. A. |last27=Wilk|first28=R. W. |last28=Lougheed|first29=R. I. |last29=Il’kaev|first30=S. P. |last30=Vesnovskii|display-authors=10|bibcode = 2004PhRvC..70f4609O|issue=6|url=http://www1.jinr.ru/Preprints/2004/160(E7-2004-160).pdf}}</ref> In further experiments from 2004 to 2006, the team replaced the curium-248 target with the lighter [[curium]] isotope [[curium-245]]. Here evidence was found for the two isotopes <sup>290</sup>Lv and <sup>291</sup>Lv.<ref name="JWP" />

In May 2009, the [[IUPAC]]/[[IUPAP]] Joint Working Party reported on the discovery of [[copernicium]] and acknowledged the discovery of the isotope <sup>283</sup>Cn.<ref name="jwr">{{cite journal|journal = [[Pure Appl. Chem.]]|date = 2009|title = Discovery of the element with atomic number 112|format = IUPAC Technical Report|author = Barber, R. C.|author2 = Gaeggeler, H. W.|author3 = Karol, P. J.|author4 = Nakahara, H.|author5 = Verdaci, E.|author6 = Vogt, E.|name-list-style = amp |url = http://media.iupac.org/publications/pac/2009/pdf/8107x1331.pdf|doi = 10.1351/PAC-REP-08-03-05|volume = 81|page = 1331|issue = 7|s2cid = 95703833}}</ref> This implied the ''de facto'' discovery of the isotope <sup>291</sup>Lv, from the acknowledgment of the data relating to its granddaughter <sup>283</sup>Cn, although the livermorium data was not absolutely critical for the demonstration of copernicium's discovery. Also in 2009, confirmation from Berkeley and the [[Gesellschaft für Schwerionenforschung]] (GSI) in Germany came for the flerovium isotopes 286 to 289, immediate daughters of the four known livermorium isotopes. In 2011, IUPAC evaluated the Dubna team experiments of 2000–2006. Whereas they found the earliest data (not involving <sup>291</sup>Lv and <sup>283</sup>Cn) inconclusive, the results of 2004–2006 were accepted as identification of livermorium, and the element was officially recognized as having been discovered.<ref name="JWP">{{cite journal|last1=Barber |first1=R. C.|last2=Karol |first2=P. J.|last3=Nakahara |first3=H.|last4=Vardaci |first4=E.|last5=Vogt |first5=E. W.|date=2011|title=Discovery of the elements with atomic numbers greater than or equal to 113 (IUPAC Technical Report)|journal=[[Pure and Applied Chemistry]]|volume=83 |issue=7 |page=1485|doi=10.1351/PAC-REP-10-05-01|doi-access=free}}</ref>

The synthesis of livermorium has been separately confirmed at the GSI (2012) and [[RIKEN]] (2014 and 2016).<ref name="gsi12">{{cite journal | doi=10.1140/epja/i2012-12062-1 | volume=48 | issue=5 | pages=62 | title=The reaction <sup>48</sup>Ca + <sup>248</sup>Cm → <sup>296</sup>116<sup>*</sup> studied at the GSI-SHIP | journal=The European Physical Journal A| year=2012 | last1=Hofmann | first1=S. | last2=Heinz | first2=S. | last3=Mann | first3=R. | last4=Maurer | first4=J. | last5=Khuyagbaatar | first5=J. | last6=Ackermann | first6=D. | last7=Antalic | first7=S. | last8=Barth | first8=W. | last9=Block | first9=M. | last10=Burkhard | first10=H. G. | last11=Comas | first11=V. F. | last12=Dahl | first12=L. | last13=Eberhardt | first13=K. | last14=Gostic | first14=J. | last15=Henderson | first15=R. A. | last16=Heredia | first16=J. A. | last17=Heßberger | first17=F. P. | last18=Kenneally | first18=J. M. | last19=Kindler | first19=B. | last20=Kojouharov | first20=I. | last21=Kratz | first21=J. V. | last22=Lang | first22=R. | last23=Leino | first23=M. | last24=Lommel | first24=B. | last25=Moody | first25=K. J. | last26=Münzenberg | first26=G. | last27=Nelson | first27=S. L. | last28=Nishio | first28=K. | last29=Popeko | first29=A. G. | last30=Runke | first30=J. | display-authors=29 | bibcode=2012EPJA...48...62H| s2cid=121930293 }}</ref><ref>{{cite journal|url=http://www.nishina.riken.jp/researcher/APR/APR047/pdf/xi.pdf |title=Measurement of the <sup>248</sup>Cm + <sup>48</sup>Ca fusion reaction products at RIKEN GARIS |page=11 |journal=RIKEN Accel. Prog. Rep. |volume=47 |year=2014 |author=Morita, K.|display-authors=etal}}</ref> In the 2012 GSI experiment, one chain tentatively assigned to <sup>293</sup>Lv was shown to be inconsistent with previous data; it is believed that this chain may instead originate from an [[nuclear isomer|isomeric state]], <sup>293m</sup>Lv.<ref name="gsi12" /> In the 2016 RIKEN experiment, one atom that may be assigned to <sup>294</sup>Lv was seemingly detected, alpha decaying to <sup>290</sup>Fl and <sup>286</sup>Cn, which underwent spontaneous fission; however, the first alpha from the livermorium nuclide produced was missed, and the assignment to <sup>294</sup>Lv is still uncertain though plausible.<ref name="Kaji">{{cite journal |last1=Kaji |first1=Daiya |last2=Morita |first2=Kosuke |first3=Kouji |last3=Morimoto |first4=Hiromitsu |last4=Haba |first5=Masato |last5=Asai |first6=Kunihiro |last6=Fujita |first7=Zaiguo |last7=Gan |first8=Hans |last8=Geissel |first9=Hiroo |last9=Hasebe |first10=Sigurd |last10=Hofmann |first11=MingHui |last11=Huang |first12=Yukiko |last12=Komori |first13=Long |last13=Ma |first14=Joachim |last14=Maurer |first15=Masashi |last15=Murakami |first16=Mirei |last16=Takeyama |first17=Fuyuki |last17=Tokanai |first18=Taiki |last18=Tanaka |first19=Yasuo |last19=Wakabayashi |first20=Takayuki |last20=Yamaguchi |first21=Sayaka |last21=Yamaki |first22=Atsushi |last22=Yoshida |date=2017 |title=Study of the Reaction <sup>48</sup>Ca + <sup>248</sup>Cm → <sup>296</sup>Lv* at RIKEN-GARIS |journal=Journal of the Physical Society of Japan |volume=86 |issue=3 |pages=034201–1–7 |doi=10.7566/JPSJ.86.034201 |bibcode=2017JPSJ...86c4201K }}</ref>

=== Naming ===
[[File:Robert Livermore.jpg|thumb|upright|[[Robert Livermore]], the indirect namesake of livermorium]]
Using [[Mendeleev's predicted elements|Mendeleev's nomenclature for unnamed and undiscovered elements]], livermorium is sometimes called ''eka-[[polonium]]''.<ref>{{cite journal | doi = 10.1088/0031-8949/10/A/001| title = The Search for New Elements: The Projects of Today in a Larger Perspective| journal = Physica Scripta| volume = 10| pages = 5–12| year = 1974| last1 = Seaborg | first1 = Glenn T. | bibcode = 1974PhyS...10S...5S| s2cid = 250809299}}</ref> In 1979 IUPAC recommended that the [[placeholder name|placeholder]] [[systematic element name]] ''ununhexium'' (''Uuh'')<ref name="iupac">{{cite journal|author=Chatt, J.|journal=Pure Appl. Chem.|date=1979|volume=51|pages=381–384|title=Recommendations for the Naming of Elements of Atomic Numbers Greater than 100|doi=10.1351/pac197951020381|issue=2|doi-access=free}}</ref> be used until the discovery of the element was confirmed and a name was decided. Although widely used in the chemical community on all levels, from chemistry classrooms to advanced textbooks, the recommendations were mostly ignored among scientists in the field,<ref name="Folden">{{cite web|url=http://cyclotron.tamu.edu/smp/The%20Heaviest%20Elements%20in%20the%20Universe.pdf |title=The Heaviest Elements in the Universe |author=Folden, Cody |date=31 January 2009 |work=Saturday Morning Physics at Texas A&M |access-date=9 March 2012 |url-status=unfit |archive-url=https://web.archive.org/web/20140810213232/http://cyclotron.tamu.edu/smp/The%20Heaviest%20Elements%20in%20the%20Universe.pdf |archive-date=August 10, 2014 }} "</ref><ref>{{cite journal|url=http://pubs.acs.org/cen/80th/print/darmstadtium.html |title= Darmstadtium and Beyond|journal=Chemical & Engineering News|author=Hoffman, Darleane C. }}</ref> who called it "element 116", with the symbol of ''E116'', ''(116)'', or even simply ''116''.<ref name="Haire" />

According to IUPAC recommendations, the discoverer or discoverers of a new element have the right to suggest a name.<ref>{{cite journal|doi=10.1351/pac200274050787|url=http://media.iupac.org/publications/pac/2002/pdf/7405x0787.pdf|title=Naming of new elements(IUPAC Recommendations 2002)|date=2002|author=Koppenol, W. H.|journal=Pure and Applied Chemistry|volume=74|page=787|issue=5|s2cid=95859397}}</ref> The discovery of livermorium was recognized by the Joint Working Party (JWP) of IUPAC on 1 June 2011, along with that of [[flerovium]].<ref name="JWP" /> According to the vice-director of JINR, the Dubna team originally wanted to name element 116 ''moscovium'', after the [[Moscow Oblast]] in which Dubna is located,<ref name="E114&116">{{cite web|publisher=rian.ru|date=2011|access-date=2011-05-08|url=http://www.rian.ru/science/20110326/358081075.html|title=Russian Physicists Will Suggest to Name Element 116 Moscovium}}: Mikhail Itkis, the vice-director of JINR stated: "We would like to name element 114 after [[Georgy Flerov]] – flerovium, and another one [element 116] – moscovium, not after Moscow, but after [[Moscow Oblast]]".</ref> but it was later decided to use this name for [[moscovium|element 115]] instead. The name ''livermorium'' and the symbol ''Lv'' were adopted on May 23,<ref>{{cite web|last1=Loss|first1=Robert D.|last2=Corish|first2=John|title=Names and symbols of the elements with atomic numbers 114 and 116 (IUPAC Recommendations 2012)|url=http://pac.iupac.org/publications/pac/pdf/2012/pdf/8407x1669.pdf|website=IUPAC; Pure and Applied Chemistry|publisher=IUPAC|access-date=2 December 2015}}</ref> 2012.<ref name="IUPAC-names-114-116" /><ref name="IUPAC">{{cite web|title=News: Start of the Name Approval Process for the Elements of Atomic Number 114 and 116 |url=http://www.iupac.org/news/news-detail/article/start-of-the-name-approval-process-for-the-elements-of-atomic-number-114-and-116.html |work=International Union of Pure and Applied Chemistry |access-date=February 22, 2012 |url-status=dead |archive-url=https://web.archive.org/web/20120302173200/http://www.iupac.org/news/news-detail/article/start-of-the-name-approval-process-for-the-elements-of-atomic-number-114-and-116.html |archive-date=March 2, 2012 }}</ref> The name recognises the [[Lawrence Livermore National Laboratory]], within the city of [[Livermore, California]], US, which collaborated with JINR on the discovery. The city in turn is named after the American rancher [[Robert Livermore]], a naturalized Mexican citizen of English birth.<ref name="IUPAC-names-114-116" /> The naming ceremony for flerovium and livermorium was held in Moscow on October 24, 2012.<ref>{{cite web |url=http://newuc.jinr.ru/img_sections/file/Practice2016/EU/2016-07%20AGP_SHE.pdf |title=Synthesis of superheavy elements |last=Popeko |first=Andrey G. |date=2016 |website=jinr.ru |publisher=[[Joint Institute for Nuclear Research]] |access-date=4 February 2018 |archive-url=https://web.archive.org/web/20180204124109/http://newuc.jinr.ru/img_sections/file/Practice2016/EU/2016-07%20AGP_SHE.pdf |archive-date=4 February 2018 |url-status=dead }}</ref>

== Predicted properties ==
Other than nuclear properties, no properties of livermorium or its compounds have been measured; this is due to its extremely limited and expensive production<ref name="Bloomberg" /><!-- used transcluded, named ref --> and the fact that it decays very quickly. Properties of livermorium remain unknown and only predictions are available.

=== Nuclear stability and isotopes ===
{{Main|Isotopes of livermorium}}
[[File:Island of Stability derived from Zagrebaev.png|right|thumb|upright=1.8|The expected location of the island of stability is marked by the white circle. The dotted line is the line of [[beta decay|beta]] stability.]]
Livermorium is expected to be near an [[island of stability]] centered on [[copernicium]] (element 112) and [[flerovium]] (element 114).<ref name="Zagrebaev">{{cite conference |last1=Zagrebaev |first1=Valeriy |last2=Karpov |first2=Alexander |last3=Greiner |first3=Walter |date=2013 |title=Future of superheavy element research: Which nuclei could be synthesized within the next few years? |publisher=IOP Science |book-title=Journal of Physics: Conference Series |volume=420 |pages=1–15 |url=http://iopscience.iop.org/1742-6596/420/1/012001/pdf/1742-6596_420_1_012001.pdf |access-date=20 August 2013}}</ref><ref>{{cite book|title=Van Nostrand's scientific encyclopedia|first1=Glenn D. |last1= Considine |first2=Peter H. |last2= Kulik|publisher=Wiley-Interscience|date=2002|edition=9th|isbn=978-0-471-33230-5|oclc=223349096}}</ref> Due to the expected high [[fission barrier]]s, any nucleus within this island of stability exclusively decays by alpha decay and perhaps some electron capture and [[beta decay]].{{Fricke1975}} While the known isotopes of livermorium do not actually have enough neutrons to be on the island of stability, they can be seen to approach the island, as the heavier isotopes are generally the longer-lived ones.<ref name="00Og01" /><ref name="JWP" />

Superheavy elements are produced by [[nuclear fusion]]. These fusion reactions can be divided into "hot" and "cold" fusion,{{efn|Despite the name, "cold fusion" in the context of superheavy element synthesis is a distinct concept from the idea that nuclear fusion can be achieved in room temperature conditions (see [[cold fusion]]).<ref>{{cite journal |doi=10.1016/0022-0728(89)80006-3 |title=Electrochemically induced nuclear fusion of deuterium |date=1989 |last1=Fleischmann |first1=Martin |last2=Pons |first2=Stanley |journal=Journal of Electroanalytical Chemistry and Interfacial Electrochemistry |volume=261 |issue=2 |pages=301–308}}</ref>}} depending on the excitation energy of the compound nucleus produced. In hot fusion reactions, very light, high-energy projectiles are accelerated toward very heavy targets ([[actinide]]s), giving rise to compound nuclei at high excitation energy (~40–50&nbsp;[[electronvolt|MeV]]) that may either fission or evaporate several (3 to 5) neutrons.<ref name="fusion">{{cite journal |last1=Barber |first1=Robert C. |last2=Gäggeler |first2=Heinz W. |last3=Karol |first3=Paul J. |last4=Nakahara |first4=Hiromichi |last5=Vardaci |first5=Emanuele |last6=Vogt |first6=Erich |title=Discovery of the element with atomic number 112 (IUPAC Technical Report) |journal=Pure and Applied Chemistry |volume=81 |issue=7 |page=1331 |date=2009 |doi=10.1351/PAC-REP-08-03-05|s2cid=95703833 |url=http://doc.rero.ch/record/297412/files/pac-rep-08-03-05.pdf }}</ref> In cold fusion reactions (which use heavier projectiles, typically from the [[period 4 element|fourth period]], and lighter targets, usually [[lead]] and [[bismuth]]), the produced fused nuclei have a relatively low excitation energy (~10–20&nbsp;MeV), which decreases the probability that these products will undergo fission reactions. As the fused nuclei cool to the [[ground state]], they require emission of only one or two neutrons. Hot fusion reactions tend to produce more neutron-rich products because the actinides have the highest neutron-to-proton ratios of any elements that can presently be made in macroscopic quantities.<ref name="AM89">{{cite journal |first1=Peter |last1=Armbruster |name-list-style=amp |first2=Gottfried |last2=Munzenberg |title=Creating superheavy elements |journal=Scientific American |volume=34 |pages=36–42 |date=1989}}</ref>

Important information could be gained regarding the properties of superheavy nuclei by the synthesis of more livermorium isotopes, specifically those with a few neutrons more or less than the known ones – <sup>286</sup>Lv, <sup>287</sup>Lv, <sup>288</sup>Lv, <sup>289</sup>Lv, <sup>294</sup>Lv, and <sup>295</sup>Lv. This is possible because there are many reasonably long-lived [[isotopes of curium]] that can be used to make a target.<ref name="Zagrebaev" /> The light isotopes can be made by fusing [[curium-243]] with calcium-48. They would undergo a chain of alpha decays, ending at [[transactinide]] isotopes that are too light to achieve by hot fusion and too heavy to be produced by cold fusion.<ref name="Zagrebaev" />

The synthesis of the heavy isotopes <sup>294</sup>Lv and <sup>295</sup>Lv could be accomplished by fusing the heavy curium isotope [[curium-250]] with calcium-48. The [[cross section (physics)|cross section]] of this nuclear reaction would be about 1&nbsp;[[barn (unit)|picobarn]], though it is not yet possible to produce <sup>250</sup>Cm in the quantities needed for target manufacture.<ref name="Zagrebaev" /> After a few alpha decays, these livermorium isotopes would reach nuclides at the [[line of beta stability]]. Additionally, [[electron capture]] may also become an important decay mode in this region, allowing affected nuclei to reach the middle of the island. For example, it is predicted that <sup>295</sup>Lv would alpha decay to <sup>291</sup>[[flerovium|Fl]], which would undergo successive electron capture to <sup>291</sup>Nh and then <sup>291</sup>[[copernicium|Cn]] which is expected to be in the middle of the island of stability and have a half-life of about 1200&nbsp;years, affording the most likely hope of reaching the middle of the island using current technology. A drawback is that the decay properties of superheavy nuclei this close to the line of beta stability are largely unexplored.<ref name="Zagrebaev" />

Other possibilities to synthesize nuclei on the island of stability include quasifission (partial fusion followed by fission) of a massive nucleus.<ref name="ZG" /> Such nuclei tend to fission, expelling doubly [[magic number (physics)|magic]] or nearly doubly magic fragments such as [[calcium-40]], [[tin-132]], [[lead-208]], or [[bismuth-209]].<ref name="jinr20006">{{cite web|title=JINR Annual Reports 2000–2006|url=http://www1.jinr.ru/Reports/Reports_eng_arh.html|publisher=[[Joint Institute for Nuclear Research|JINR]]|access-date=2013-08-27}}</ref> Recently it has been shown that the multi-nucleon transfer reactions in collisions of actinide nuclei (such as [[uranium]] and [[curium]]) might be used to synthesize the neutron-rich superheavy nuclei located at the island of stability,<ref name="ZG">{{cite journal|last1=Zagrebaev |first1=V.|last2=Greiner |first2=W.|date=2008|title=Synthesis of superheavy nuclei: A search for new production reactions|journal=[[Physical Review C]]|volume=78 |issue=3 |page=034610|arxiv=0807.2537|bibcode=2008PhRvC..78c4610Z|doi=10.1103/PhysRevC.78.034610}}</ref> although formation of the lighter elements [[nobelium]] or [[seaborgium]] is more favored.<ref name="Zagrebaev" /> One last possibility to synthesize isotopes near the island is to use controlled [[nuclear explosion]]s to create a [[neutron flux]] high enough to bypass the gaps of instability at <sup>258–260</sup>[[fermium|Fm]] and at [[mass number]] 275 (atomic numbers [[rutherfordium|104]] to [[hassium|108]]), mimicking the [[r-process]] in which the [[actinide]]s were first produced in nature and the gap of instability around [[radon]] bypassed.<ref name="Zagrebaev" /> Some such isotopes (especially <sup>291</sup>Cn and <sup>293</sup>Cn) may even have been synthesized in nature, but would have decayed away far too quickly (with half-lives of only thousands of years) and be produced in far too small quantities (about 10<sup>−12</sup> the abundance of [[lead]]) to be detectable as [[primordial nuclide]]s today outside [[cosmic ray]]s.<ref name="Zagrebaev" />

=== Physical and atomic ===
In the [[periodic table]], livermorium is a member of group 16, the chalcogens. It appears below [[oxygen]], [[sulfur]], [[selenium]], [[tellurium]], and polonium. Every previous chalcogen has six electrons in its valence shell, forming a [[valence electron]] configuration of ns<sup>2</sup>np<sup>4</sup>. In livermorium's case, the trend should be continued and the valence electron configuration is predicted to be 7s<sup>2</sup>7p<sup>4</sup>;<ref name="Haire" /> therefore, livermorium will have some similarities to its lighter [[congener (chemistry)|congeners]]. Differences are likely to arise; a large contributing effect is the [[spin–orbit interaction|spin–orbit (SO) interaction]]—the mutual interaction between the electrons' motion and [[Spin (physics)|spin]]. It is especially strong for the superheavy elements, because their electrons move much faster than in lighter atoms, at velocities comparable to the [[speed of light]].<ref name="Thayer">{{cite book |last1=Thayer |first1=John S. |chapter=Relativistic Effects and the Chemistry of the Heavier Main Group Elements |journal=Relativistic Methods for Chemists |volume=10 |date=2010 |page=83 |doi=10.1007/978-1-4020-9975-5_2|isbn=978-1-4020-9974-8 |series=Challenges and Advances in Computational Chemistry and Physics }}</ref> In relation to livermorium atoms, it lowers the 7s and the 7p electron energy levels (stabilizing the corresponding electrons), but two of the 7p electron energy levels are stabilized more than the other four.<ref name="Faegri">{{cite journal|last1=Faegri |first1=K.|last2=Saue |first2=T.|date=2001|title=Diatomic molecules between very heavy elements of group 13 and group 17: A study of relativistic effects on bonding|journal=[[Journal of Chemical Physics]]|volume=115 |issue=6 |page=2456|bibcode=2001JChPh.115.2456F|doi=10.1063/1.1385366 |doi-access=free}}</ref> The stabilization of the 7s electrons is called the [[inert pair effect]], and the effect "tearing" the 7p subshell into the more stabilized and the less stabilized parts is called subshell splitting. Computation chemists see the split as a change of the second ([[azimuthal quantum number|azimuthal]]) [[quantum number]] ''l'' from 1 to {{frac|1|2}} and {{frac|3|2}} for the more stabilized and less stabilized parts of the 7p subshell, respectively: the 7p<sub>1/2</sub> subshell acts as a second inert pair, though not as inert as the 7s electrons, while the 7p<sub>3/2</sub> subshell can easily participate in chemistry.<ref name="Haire" /><ref name="Thayer" />{{efn|The quantum number corresponds to the letter in the electron orbital name: 0 to s, 1 to p, 2 to d, etc. See [[azimuthal quantum number]] for more information.}} For many theoretical purposes, the valence electron configuration may be represented to reflect the 7p subshell split as 7s{{su|p=2|w=70%}}7p{{su|b=1/2|p=2|w=70%}}7p{{su|b=3/2|p=2|w=70%}}.<ref name="Haire" />

Inert pair effects in livermorium should be even stronger than in polonium and hence the +2 [[oxidation state]] becomes more stable than the +4 state, which would be stabilized only by the most [[electronegative]] [[ligand]]s; this is reflected in the expected [[ionization energy|ionization energies]] of livermorium, where there are large gaps between the second and third ionization energies (corresponding to the breaching of the unreactive 7p<sub>1/2</sub> shell) and fourth and fifth ionization energies.{{Fricke1975|name}} Indeed, the 7s electrons are expected to be so inert that the +6 state will not be attainable.<ref name="Haire" /> The [[melting point|melting]] and [[boiling point]]s of livermorium are expected to continue the trends down the chalcogens; thus livermorium should melt at a higher temperature than polonium, but boil at a lower temperature.<ref name="B&K" /> It should also be [[density|denser]] than polonium (α-Lv: 12.9&nbsp;g/cm<sup>3</sup>; α-Po: 9.2&nbsp;g/cm<sup>3</sup>); like polonium it should also form an α and a β allotrope.{{Fricke1975|name}}<ref>
{{cite web |url=http://cyclotron.tamu.edu/she2015/assets/pdfs/presentations/Eichler_SHE_2015_TAMU.pdf |title=Gas phase chemistry with SHE – Experiments |last=Eichler |first=Robert |date=2015 |website=cyclotron.tamu.edu |publisher=Texas A & M University |access-date=27 April 2017}}</ref> The electron of a [[hydrogen-like atom|hydrogen-like]] livermorium atom (oxidized so that it only has one electron, Lv<sup>115+</sup>) is expected to move so fast that it has a mass 1.86 times that of a stationary electron, due to [[relativistic quantum chemistry|relativistic effects]]. For comparison, the figures for hydrogen-like polonium and tellurium are expected to be 1.26 and 1.080 respectively.<ref name="Thayer" />

=== Chemical ===
Livermorium is projected to be the fourth member of the 7p series of [[chemical element]]s and the heaviest member of group 16 in the periodic table, below polonium. While it is the least theoretically studied of the 7p elements, its chemistry is expected to be quite similar to that of polonium.{{Fricke1975|name}} The group oxidation state of +6 is known for all the chalcogens apart from oxygen which cannot [[Hypervalent molecule|expand its octet]] and is one of the strongest [[redox|oxidizing agents]] among the chemical elements. Oxygen is thus limited to a maximum +2 state, exhibited in the fluoride [[oxygen difluoride|OF<sub>2</sub>]]. The +4 state is known for [[sulfur]], [[selenium]], [[tellurium]], and polonium, undergoing a shift in stability from reducing for sulfur(IV) and selenium(IV) through being the most stable state for tellurium(IV) to being oxidizing in polonium(IV). This suggests a decreasing stability for the higher oxidation states as the group is descended due to the increasing importance of relativistic effects, especially the inert pair effect.<ref name="Thayer" /> The most stable oxidation state of livermorium should thus be +2, with a rather unstable +4 state. The +2 state should be about as easy to form as it is for [[beryllium]] and [[magnesium]], and the +4 state should only be achieved with strongly electronegative ligands, such as in livermorium(IV) fluoride (LvF<sub>4</sub>).<ref name="Haire" /> The +6 state should not exist at all due to the very strong stabilization of the 7s electrons, making the valence core of livermorium only four electrons.{{Fricke1975|name}} The lighter chalcogens are also known to form a −2 state as [[oxide]], [[sulfide]], [[selenide]], [[telluride (chemistry)|telluride]], and [[polonide]]; due to the destabilization of livermorium's 7p<sub>3/2</sub> subshell, the −2 state should be very unstable for livermorium, whose chemistry should be essentially purely cationic,<ref name="Haire" /> though the larger subshell and spinor energy splittings of livermorium as compared to polonium should make Lv<sup>2−</sup> slightly less unstable than expected.<ref name="Thayer" />
Livermorium hydride (LvH<sub>2</sub>) would be the heaviest [[hydrogen chalcogenide|chalcogen hydride]] and the heaviest homolog of [[water]] (the lighter ones are [[hydrogen sulfide|H<sub>2</sub>S]], [[hydrogen selenide|H<sub>2</sub>Se]], [[hydrogen telluride|H<sub>2</sub>Te]], and [[polonium hydride|PoH<sub>2</sub>]]). Polane (polonium hydride) is a more [[covalent]] compound than most metal hydrides because polonium straddles the border between [[metal]] and [[metalloid]] and has some nonmetallic properties: it is intermediate between a [[hydrogen halide]] like [[hydrogen chloride]] (HCl) and a [[metal hydride]] like [[stannane]] ([[tin|Sn]]H<sub>4</sub>). Livermorane should continue this trend: it should be a hydride rather than a livermoride, but still a covalent [[molecule|molecular]] compound.<ref name="Nash">{{cite journal |last1=Nash |first1=Clinton S. |last2=Crockett |first2=Wesley W. |date=2006 |title=An Anomalous Bond Angle in (116)H<sub>2</sub>. Theoretical Evidence for Supervalent Hybridization. |journal=The Journal of Physical Chemistry A |volume=110 |issue=14 |pages=4619–4621 |doi=10.1021/jp060888z |pmid=16599427 |bibcode=2006JPCA..110.4619N |url=https://figshare.com/articles/An_Anomalous_Bond_Angle_in_116_H_sub_2_sub_Theoretical_Evidence_for_Supervalent_Hybridization/3227647 }}</ref> Spin-orbit interactions are expected to make the Lv–H bond longer than expected from [[periodic trends]] alone, and make the H–Lv–H bond angle larger than expected: this is theorized to be because the unoccupied 8s orbitals are relatively low in energy and can [[orbital hybridization|hybridize]] with the valence 7p orbitals of livermorium.<ref name="Nash" /> This phenomenon, dubbed "supervalent hybridization",<ref name="Nash" /> has some analogues in non-relativistic regions in the periodic table; for example, molecular [[calcium difluoride]] has 4s and 3d involvement from the [[calcium]] atom.<ref>{{Greenwood&Earnshaw2nd|page=117}}</ref> The heavier livermorium di[[halide]]s are predicted to be [[linear molecular geometry|linear]], but the lighter ones are predicted to be [[bent molecular geometry|bent]].<ref>{{cite journal | last1 = Van WüLlen | first1 = C. | last2 = Langermann | first2 = N. | doi = 10.1063/1.2711197 | title = Gradients for two-component quasirelativistic methods. Application to dihalogenides of element 116 | journal = The Journal of Chemical Physics | volume = 126 | issue = 11 | page = 114106 | year = 2007 | pmid = 17381195|bibcode = 2007JChPh.126k4106V }}</ref>

== Experimental chemistry ==
Unambiguous determination of the chemical characteristics of livermorium has not yet been established.<ref name="Düllmann">{{cite journal |last1=Düllmann |first1=Christoph E. |date=2012 |title=Superheavy elements at GSI: a broad research program with element 114 in the focus of physics and chemistry |journal=Radiochimica Acta |volume=100 |issue=2 |pages=67–74 |doi=10.1524/ract.2011.1842 |s2cid=100778491 }}</ref><ref name="Eichler">{{cite journal |last=Eichler |first=Robert |date=2013 |title=First foot prints of chemistry on the shore of the Island of Superheavy Elements |arxiv=1212.4292|journal=Journal of Physics: Conference Series |volume=420 |issue=1 |page=012003 |doi=10.1088/1742-6596/420/1/012003 |bibcode=2013JPhCS.420a2003E |s2cid=55653705 }}</ref> In 2011, experiments were conducted to create [[nihonium]], [[flerovium]], and [[moscovium]] isotopes in the reactions between calcium-48 projectiles and targets of americium-243 and [[plutonium-244]]. The targets included [[lead]] and [[bismuth]] impurities and hence some isotopes of bismuth and [[polonium]] were generated in nucleon transfer reactions. This, while an unforeseen complication, could give information that would help in the future chemical investigation of the heavier homologs of bismuth and polonium, which are respectively moscovium and livermorium.<ref name="Eichler" /> The produced nuclides [[bismuth-213]] and [[polonium-212m]] were transported as the hydrides [[bismuthine|<sup>213</sup>BiH<sub>3</sub>]] and [[polonium hydride|<sup>212m</sup>PoH<sub>2</sub>]] at 850&nbsp;°C through a quartz wool filter unit held with [[tantalum]], showing that these hydrides were surprisingly thermally stable, although their heavier congeners McH<sub>3</sub> and LvH<sub>2</sub> would be expected to be less thermally stable from simple extrapolation of [[periodic trends]] in the p-block.<ref name="Eichler" /> Further calculations on the stability and electronic structure of BiH<sub>3</sub>, McH<sub>3</sub>, PoH<sub>2</sub>, and LvH<sub>2</sub> are needed before chemical investigations take place. Moscovium and livermorium are expected to be [[volatility (chemistry)|volatile]] enough as pure elements for them to be chemically investigated in the near future, a property livermorium would then share with its lighter congener polonium, though the short half-lives of all presently known livermorium isotopes means that the element is still inaccessible to experimental chemistry.<ref name="Eichler" /><ref name="Moody">{{cite book |chapter=Synthesis of Superheavy Elements |last1=Moody |first1=Ken |editor1-first=Matthias |editor1-last=Schädel |editor2-first=Dawn |editor2-last=Shaughnessy |title=The Chemistry of Superheavy Elements |publisher=Springer Science & Business Media |edition=2nd |pages=24–8 |isbn=9783642374661|date=2013-11-30 }}</ref>
{{clear}}

== Notes ==
{{notelist}}

== References ==
{{Reflist|colwidth=30em}}

== Bibliography ==
* {{cite journal |title=The NUBASE2016 evaluation of nuclear properties |doi=10.1088/1674-1137/41/3/030001 |last1=Audi |first1=G. |last2=Kondev |first2=F. G. |last3=Wang |first3=M. |last4=Huang |first4=W. J. |last5=Naimi |first5=S. |display-authors=3 |journal=Chinese Physics C |volume=41 |issue=3 <!--Citation bot deny-->|pages=030001 |year=2017
|bibcode=2017ChPhC..41c0001A }}<!--for consistency and specific pages, do not replace with {{NUBASE2016}}-->
* {{cite book|last=Beiser|first=A.|title=Concepts of modern physics|date=2003|publisher=McGraw-Hill|isbn=978-0-07-244848-1|edition=6th|oclc=48965418}}
* {{cite book |last1=Hoffman |first1=D. C. |author-link=Darleane C. Hoffman |last2=Ghiorso |first2=A. |author-link2=Albert Ghiorso |last3=Seaborg |first3=G. T. |title=The Transuranium People: The Inside Story |year=2000 |publisher=[[World Scientific]] |isbn=978-1-78-326244-1 }}
* {{cite book |last=Kragh |first=H. |author-link=Helge Kragh |date=2018 |title=From Transuranic to Superheavy Elements: A Story of Dispute and Creation |publisher=[[Springer Science+Business Media|Springer]] |isbn=978-3-319-75813-8 }}

== External links ==
{{Commons|Livermorium}}
* [http://www.periodicvideos.com/videos/116.htm Livermorium] at ''[[The Periodic Table of Videos]]'' (University of Nottingham)
* [https://web.archive.org/web/20081205080201/http://www.cerncourier.com/main/article/41/8/17 ''CERN Courier'' – Second postcard from the island of stability]
* [http://webelements.com/livermorium/ Livermorium at WebElements.com]


{{Periodic table (navbox)}}
{{Periodic table (navbox)}}

Action parameters

VariableValue
Edit count of the user (user_editcount)
null
Name of the user account (user_name)
'198.60.186.50'
Age of the user account (user_age)
0
Groups (including implicit) the user is in (user_groups)
[ 0 => '*' ]
Rights that the user has (user_rights)
[ 0 => 'createaccount', 1 => 'read', 2 => 'edit', 3 => 'createtalk', 4 => 'writeapi', 5 => 'viewmyprivateinfo', 6 => 'editmyprivateinfo', 7 => 'editmyoptions', 8 => 'abusefilter-log-detail', 9 => 'urlshortener-create-url', 10 => 'centralauth-merge', 11 => 'abusefilter-view', 12 => 'abusefilter-log', 13 => 'vipsscaler-test' ]
Whether the user is editing from mobile app (user_app)
false
Whether or not a user is editing through the mobile interface (user_mobile)
false
Page ID (page_id)
62198
Page namespace (page_namespace)
0
Page title without namespace (page_title)
'Livermorium'
Full page title (page_prefixedtitle)
'Livermorium'
Edit protection level of the page (page_restrictions_edit)
[]
Last ten users to contribute to the page (page_recent_contributors)
[ 0 => 'OAbot', 1 => 'Dr vulpes', 2 => 'Flummiy', 3 => 'DocWatson42', 4 => 'Citation bot', 5 => 'Chris the speller', 6 => 'Double sharp', 7 => 'ClueBot NG', 8 => '2600:1700:E920:4910:2DA8:D158:48C4:39D', 9 => 'RenkoTheBird' ]
Page age in seconds (page_age)
666259000
Action (action)
'edit'
Edit summary/reason (summary)
'/* Introduction */ '
Old content model (old_content_model)
'wikitext'
New content model (new_content_model)
'wikitext'
Old page wikitext, before the edit (old_wikitext)
'{{infobox livermorium}} {{good article}} '''Livermorium''' is a [[synthetic element|synthetic]] [[chemical element]] with the [[Symbol (chemistry)|symbol]] '''Lv''' and has an [[atomic number]] of 116. It is an extremely [[radioactivity|radioactive]] element that has only been created in a laboratory setting and has not been observed in nature. The element is named after the [[Lawrence Livermore National Laboratory]] in the United States, which collaborated with the [[Joint Institute for Nuclear Research]] (JINR) in [[Dubna]], Russia, to discover livermorium during experiments conducted between 2000 and 2006. The name of the laboratory refers to the city of [[Livermore, California]], where it is located, which in turn was named after the rancher and landowner [[Robert Livermore]]. The name was adopted by [[International Union of Pure and Applied Chemistry|IUPAC]] on May 30, 2012.<ref name="IUPAC-names-114-116" /> Four [[isotopes of livermorium]] are known, with [[mass number]]s between 290 and 293 inclusive; the longest-lived among them is livermorium-293 with a [[half-life]] of about 60&nbsp;[[millisecond]]s. A fifth possible isotope with mass number 294 has been reported but not yet confirmed. In the [[periodic table]], it is a [[p-block]] [[transactinide element]]. It is a member of the [[period 7 element|7th period]] and is placed in group 16 as the heaviest [[chalcogen]], but it has not been confirmed to behave as the heavier [[homology (chemistry)|homologue]] to the chalcogen [[polonium]]. Livermorium is calculated to have some similar properties to its lighter homologues ([[oxygen]], [[sulfur]], [[selenium]], [[tellurium]], and polonium), and be a [[post-transition metal]], though it should also show several major differences from them. ==Introduction== {{Transcluded section|source=Introduction to the heaviest elements}} {{:Introduction to the heaviest elements}} == History == === Unsuccessful synthesis attempts === The first search for element 116, using the reaction between <sup>248</sup>Cm and <sup>48</sup>Ca, was performed in 1977 by Ken Hulet and his team at the [[Lawrence Livermore National Laboratory]] (LLNL). They were unable to detect any atoms of livermorium.<ref>{{cite journal |doi=10.1103/PhysRevLett.39.385 |title=Search for Superheavy Elements in the Bombardment of <sup>248</sup>Cm with<sup>48</sup>Ca |year=1977 |last1=Hulet |first1=E. K. |journal=Physical Review Letters |volume=39 |pages=385–389 |last2=Lougheed |first2=R. |last3=Wild |first3=J. |last4=Landrum |first4=J. |last5=Stevenson |first5=P. |last6=Ghiorso |first6=A. |last7=Nitschke |first7=J. |last8=Otto |first8=R. |last9=Morrissey |first9=D. |last10=Baisden |first10=P. |last11=Gavin |first11=B. |last12=Lee |first12=D. |last13=Silva |first13=R. |last14=Fowler |first14=M. |last15=Seaborg |first15=G. |bibcode=1977PhRvL..39..385H |issue=7 |display-authors=8}}</ref> [[Yuri Oganessian]] and his team at the Flerov Laboratory of Nuclear Reactions (FLNR) in the [[Joint Institute for Nuclear Research]] (JINR) subsequently attempted the reaction in 1978 and met failure. In 1985, in a joint experiment between Berkeley and Peter Armbruster's team at GSI, the result was again negative, with a calculated [[cross section (physics)|cross section]] limit of 10–100&nbsp;pb. Work on reactions with <sup>48</sup>Ca, which had proved very useful in the synthesis of [[nobelium]] from the <sup>nat</sup>Pb+<sup>48</sup>Ca reaction, nevertheless continued at Dubna, with a superheavy element separator being developed in 1989, a search for target materials and starting of collaborations with LLNL being started in 1990, production of more intense <sup>48</sup>Ca beams being started in 1996, and preparations for long-term experiments with 3 orders of magnitude higher sensitivity being performed in the early 1990s. This work led directly to the production of new isotopes of elements 112 to 118 in the reactions of <sup>48</sup>Ca with actinide targets and the discovery of the 5 heaviest elements on the periodic table: [[flerovium]], [[moscovium]], livermorium, [[tennessine]], and [[oganesson]].<ref>{{cite journal |doi=10.1103/PhysRevLett.54.406 |title=Attempts to Produce Superheavy Elements by Fusion of <sup>48</sup>Ca with <sup>248</sup>Cm in the Bombarding Energy Range of 4.5–5.2&nbsp;MeV/u |year=1985 |last1=Armbruster |first1=P. |journal=Physical Review Letters |volume=54 |pages=406–409 |pmid=10031507 |last2=Agarwal |first2=YK |last3=Brüchle |first3=W |last4=Brügger |first4=M |last5=Dufour |first5=JP |last6=Gaggeler |first6=H |last7=Hessberger |first7=FP |last8=Hofmann |first8=S |last9=Lemmertz |first9=P |last10=Münzenberg |first10=G. |last11=Poppensieker |first11=K. |last12=Reisdorf |first12=W. |last13=Schädel |first13=M. |last14=Schmidt |first14=K. |last15=Schneider |first15=J. |last16=Schneider |first16=W. |last17=Sümmerer |first17=K. |last18=Vermeulen |first18=D. |last19=Wirth |first19=G. |last20=Ghiorso |first20=A. |last21=Gregorich |first21=K. |last22=Lee |first22=D. |last23=Leino |first23=M. |last24=Moody |first24=K. |last25=Seaborg |first25=G. |last26=Welch |first26=R. |last27=Wilmarth |first27=P. |last28=Yashita |first28=S. |last29=Frink |first29=C. |last30=Greulich |first30=N. |issue=5 |bibcode=1985PhRvL..54..406A |url=https://zenodo.org/record/1233843 |display-authors=8}}</ref> In 1995, an international team led by [[Sigurd Hofmann]] at the [[Gesellschaft für Schwerionenforschung]] (GSI) in [[Darmstadt]], [[Germany]] attempted to synthesise element 116 in a radiative capture reaction (in which the compound nucleus de-excites through pure [[gamma emission]] without evaporating neutrons) between a [[lead]]-208 target and [[selenium]]-82 projectiles. No atoms of element 116 were identified.<ref>{{cite conference |url=https://www.epj-conferences.org/articles/epjconf/pdf/2016/26/epjconf-NS160-06001.pdf |title=The discovery of elements 107 to 112 |last1=Hofmann |first1=Sigurd |journal=EPJ Web of Conferences |date=1 December 2016 |volume=131 |page=06001 |conference=Nobel Symposium NS160 – Chemistry and Physics of Heavy and Superheavy Elements |doi=10.1051/epjconf/201613106001|doi-access=free }}</ref> === Unconfirmed discovery claims === In late 1998, Polish physicist [[Robert Smolańczuk]] published calculations on the fusion of atomic nuclei towards the synthesis of [[superheavy element|superheavy atoms]], including [[oganesson|elements 118]] and 116.<ref name="Smolanczuk">{{cite journal|author=Smolanczuk, R.|journal=Physical Review C|volume=59|issue=5|date=1999|title=Production mechanism of superheavy nuclei in cold fusion reactions|pages=2634–2639|doi=10.1103/PhysRevC.59.2634|bibcode = 1999PhRvC..59.2634S}}</ref> His calculations suggested that it might be possible to make these two elements by fusing [[lead]] with [[krypton]] under carefully controlled conditions.<ref name="Smolanczuk" /> In 1999, researchers at [[Lawrence Berkeley National Laboratory]] made use of these predictions and announced the discovery of elements 118 and 116, in a paper published in ''[[Physical Review Letters]]'',<ref name="Ninov83.1104">{{cite journal|last1=Ninov|first1=Viktor|last2=Gregorich|first2=K.|last3=Loveland|first3=W.|last4=Ghiorso|first4=A.|last5=Hoffman|first5=D.|last6=Lee|first6=D.|last7=Nitsche|first7=H.|last8=Swiatecki|first8=W.|last9=Kirbach|first9=U.|first10=C. |last10=Laue|first11=J. |last11=Adams|first12=J. |last12=Patin|first13=D. |last13=Shaughnessy|first14=D. |last14=Strellis|first15=P. |last15=Wilk|title=Observation of Superheavy Nuclei Produced in the Reaction of {{SimpleNuclide|Krypton|86}} with {{SimpleNuclide|Lead|208}}|journal=[[Physical Review Letters]]|volume=83|pages=1104–1107|date=1999|doi=10.1103/PhysRevLett.83.1104|bibcode=1999PhRvL..83.1104N|issue=6 |display-authors=10|url=https://zenodo.org/record/1233919}}{{Retraction|doi=10.1103/PhysRevLett.89.039901|intentional=yes}}</ref> and very soon after the results were reported in ''[[Science (journal)|Science]]''.<ref>{{cite journal|author=Service, R. F.|journal=Science|date=1999|volume=284|page=1751|doi=10.1126/science.284.5421.1751|title=Berkeley Crew Bags Element 118|issue=5421|s2cid=220094113}}</ref> The researchers reported to have performed the [[nuclear reaction|reaction]] :{{nuclide|Krypton|86}} + {{nuclide|Lead|208}} → {{nuclide|oganesson|293}} + {{SubatomicParticle|link=yes|Neutron}} → {{nuclide|Livermorium|289}} + [[alpha particle|α]] The following year, they published a retraction after researchers at other laboratories were unable to duplicate the results and the Berkeley lab itself was unable to duplicate them as well.<ref>{{cite news|url=http://enews.lbl.gov/Science-Articles/Archive/118-retraction.html|publisher=Berkeley Lab|author=Public Affairs Department|title=Results of element 118 experiment retracted|date=2001-07-21|access-date=2008-01-18|archive-url=https://web.archive.org/web/20080129191344/http://enews.lbl.gov/Science-Articles/Archive/118-retraction.html|archive-date=2008-01-29|url-status=dead}}</ref> In June 2002, the director of the lab announced that the original claim of the discovery of these two elements had been based on data fabricated by principal author [[Victor Ninov]].<ref>{{cite journal|pages=728–729|title=Misconduct: The stars who fell to Earth|journal=[[Nature (journal)|Nature]]|volume=420|doi=10.1038/420728a|date=2002|pmid=12490902|last1=Dalton|first1=R.|issue=6917|bibcode = 2002Natur.420..728D |s2cid=4398009}}</ref><ref>[https://web.archive.org/web/20071012075515/http://physicsworld.com/cws/article/news/2629 Element 118 disappears two years after it was discovered]. Physicsworld.com (August 2, 2001). Retrieved on 2012-04-02.</ref> === Discovery === <!-- Deleted image removed: [[File:Curium target livermorium.jpg|thumb|left|Curium-248 target used in the synthesis of livermorium]] --> Livermorium was first synthesized on July 19, 2000, when scientists at [[Dubna]] ([[Joint Institute for Nuclear Research|JINR]]) bombarded a [[curium-248]] target with accelerated [[calcium-48]] ions. A single atom was detected, decaying by [[alpha decay|alpha emission]] with [[decay energy]] 10.54&nbsp;[[electronvolt|MeV]] to an isotope of [[flerovium]]. The results were published in December 2000.<ref name="00Og01">{{cite journal|doi=10.1103/PhysRevC.63.011301|title=Observation of the decay of <sup>292</sup>116|date=2000|author=Oganessian, Yu. Ts.|journal=Physical Review C|volume=63|issue=1|pages=011301|bibcode=2000PhRvC..63a1301O|last2=Utyonkov|last3=Lobanov|last4=Abdullin|last5=Polyakov|last6=Shirokovsky|last7=Tsyganov|last8=Gulbekian|last9=Bogomolov|last10=Gikal|last11=Mezentsev|last12=Iliev|last13=Subbotin|last14=Sukhov|last15=Ivanov|last16=Buklanov|last17=Subotic|last18=Itkis|last19=Moody|last20=Wild|last21=Stoyer|last22=Stoyer|last23=Lougheed|last24=Laue|last25=Karelin|last26=Tatarinov}}</ref> :{{nuclide|curium|248}} + {{nuclide|calcium|48}} → {{nuclide|livermorium|296}}* → {{nuclide|livermorium|293}} + 3 {{nuclide|neutronium|1}} → {{nuclide|flerovium|289}} + α The [[decay product|daughter]] flerovium isotope had properties matching those of a flerovium isotope first synthesized in June 1999, which was originally assigned to <sup>288</sup>Fl,<ref name="00Og01" /> implying an assignment of the parent livermorium isotope to <sup>292</sup>Lv. Later work in December 2002 indicated that the synthesized flerovium isotope was actually <sup>289</sup>Fl, and hence the assignment of the synthesized livermorium atom was correspondingly altered to <sup>293</sup>Lv.<ref name="04Og01" /> === Road to confirmation === Two further atoms were reported by the institute during their second experiment during April–May 2001.<ref name="03Pa01">[https://e-reports-ext.llnl.gov/pdf/302186.pdf "Confirmed results of the <sup>248</sup>Cm(<sup>48</sup>Ca,4n)<sup>292</sup>116 experiment"] {{Webarchive|url=https://web.archive.org/web/20160130164119/https://e-reports-ext.llnl.gov/pdf/302186.pdf |date=2016-01-30 }}, ''Patin et al.'', ''LLNL report (2003)''. Retrieved 2008-03-03</ref> In the same experiment they also detected a decay chain which corresponded to the first observed decay of [[flerovium]] in December 1998, which had been assigned to <sup>289</sup>Fl.<ref name="03Pa01" /> No flerovium isotope with the same properties as the one found in December 1998 has ever been observed again, even in repeats of the same reaction. Later it was found that <sup>289</sup>Fl has different decay properties and that the first observed flerovium atom may have been its [[nuclear isomer]] <sup>289m</sup>Fl.<ref name="00Og01" /><ref name="04OgJINRPP">{{cite journal|last1=Oganessian |first1=Yu. Ts. |last2=Utyonkov |first2=V. K. |date=2004 |title=Measurements of cross sections and decay properties of the isotopes of elements 112, 114, and 116 produced in the fusion reactions <sup>233,238</sup>U, <sup>242</sup>Pu, and <sup>248</sup>Cm + <sup>48</sup>Ca |url=http://www.jinr.ru/publish/Preprints/2004/160(E7-2004-160).pdf |journal=[[Physical Review C]] |volume=70 |issue=6 |page=064609 |bibcode=2004PhRvC..70f4609O |doi=10.1103/PhysRevC.70.064609 |last3=Lobanov |first3=Yu. |last4=Abdullin |first4=F. |last5=Polyakov |first5=A. |last6=Shirokovsky |first6=I. |last7=Tsyganov |first7=Yu. |last8=Gulbekian |first8=G. |last9=Bogomolov |first9=S. |last10=Gikal |first10=B. |last11=Mezentsev |first11=A. |last12=Iliev |first12=S. |last13=Subbotin |first13=V. |last14=Sukhov |first14=A. |last15=Voinov |first15=A. |last16=Buklanov |first16=G. |last17=Subotic |first17=K. |last18=Zagrebaev |first18=V. |last19=Itkis |first19=M. |last20=Patin |first20=J. |last21=Moody |first21=K. |last22=Wild |first22=J. |last23=Stoyer |first23=M. |last24=Stoyer |first24=N. |last25=Shaughnessy |first25=D. |last26=Kenneally |first26=J. |last27=Wilk |first27=P. |last28=Lougheed |first28=R. |last29=Il’Kaev |first29=R. |last30=Vesnovskii |first30=S. |url-status=dead |archive-url=https://web.archive.org/web/20080528130343/http://www.jinr.ru/publish/Preprints/2004/160%28E7-2004-160%29.pdf |archive-date=May 28, 2008 }}</ref> The observation of <sup>289m</sup>Fl in this series of experiments may indicate the formation of a parent isomer of livermorium, namely <sup>293m</sup>Lv, or a rare and previously unobserved decay branch of the already-discovered state <sup>293</sup>Lv to <sup>289m</sup>Fl. Neither possibility is certain, and research is required to positively assign this activity. Another possibility suggested is the assignment of the original December 1998 atom to <sup>290</sup>Fl, as the low beam energy used in that original experiment makes the 2n channel plausible; its parent could then conceivably be <sup>294</sup>Lv, but this assignment would still need confirmation in the <sup>248</sup>Cm(<sup>48</sup>Ca,2n)<sup>294</sup>Lv reaction.<ref name="00Og01" /><ref name="04OgJINRPP" /><ref name="Hofmann2016">{{cite journal |last1=Hofmann |first1=S. |last2=Heinz |first2=S. |first3=R. |last3=Mann |first4=J. |last4=Maurer |first5=G. |last5=Münzenberg |first6=S. |last6=Antalic |first7=W. |last7=Barth |first8=H. G. |last8=Burkhard |first9=L. |last9=Dahl |first10=K. |last10=Eberhardt |first11=R. |last11=Grzywacz |first12=J. H. |last12=Hamilton |first13=R. A. |last13=Henderson |first14=J. M. |last14=Kenneally |first15=B. |last15=Kindler |first16=I. |last16=Kojouharov |first17=R. |last17=Lang |first18=B. |last18=Lommel |first19=K. |last19=Miernik |first20=D. |last20=Miller |first21=K. J. |last21=Moody |first22=K. |last22=Morita |first23=K. |last23=Nishio |first24=A. G. |last24=Popeko |first25=J. B. |last25=Roberto |first26=J. |last26=Runke |first27=K. P. |last27=Rykaczewski |first28=S. |last28=Saro |first29=C. |last29=Scheidenberger |first30=H. J. |last30=Schött |first31=D. A. |last31=Shaughnessy |first32=M. A. |last32=Stoyer |first33=P. |last33=Thörle-Popiesch |first34=K. |last34=Tinschert |first35=N. |last35=Trautmann |first36=J. |last36=Uusitalo |first37=A. V. |last37=Yeremin |date=2016 |title=Review of even element super-heavy nuclei and search for element 120 |journal=The European Physical Journal A |volume=2016 |issue=52 |pages=180 |doi=10.1140/epja/i2016-16180-4|bibcode=2016EPJA...52..180H |s2cid=124362890 |url=https://zenodo.org/record/897926 }}</ref> The team repeated the experiment in April–May 2005 and detected 8 atoms of livermorium. The measured decay data confirmed the assignment of the first-discovered [[isotope]] as <sup>293</sup>Lv. In this run, the team also observed the isotope <sup>292</sup>Lv for the first time.<ref name="04Og01">{{cite journal|title=Measurements of cross sections and decay properties of the isotopes of elements 112, 114, and 116 produced in the fusion reactions <sup>233,238</sup>U, <sup>242</sup>Pu, and <sup>248</sup>Cm+<sup>48</sup>Ca|doi=10.1103/PhysRevC.70.064609|year=2004|journal=Physical Review C|volume=70|page=064609|last1=Oganessian|first1=Yu. Ts.|last2=Utyonkov|first2=V.|last3=Lobanov|first3=Yu.|last4=Abdullin|first4=F.|last5=Polyakov|first5=A.|last6=Shirokovsky|first6=I.|last7=Tsyganov|first7=Yu.|last8=Gulbekian|first8=G.|last9=Bogomolov|first9=S.|first10=B. N. |last10=Gikal|first11=A. N. |last11=Mezentsev|first12=S. |last12=Iliev|first13=V. G. |last13=Subbotin|first14=A. M. |last14=Sukhov|first15=A. A. |last15=Voinov|first16=G. V. |last16=Buklanov|first17=K. |last17=Subotic|first18=V. I. |last18=Zagrebaev|first19=M. G. |last19=Itkis|first20=J. B. |last20=Patin|first21=K. J. |last21=Moody|first22=J. F. |last22=Wild|first23=M. A. |last23=Stoyer|first24=N. J. |last24=Stoyer|first25=D. A. |last25=Shaughnessy|first26=J. M. |last26=Kenneally|first27=P. A. |last27=Wilk|first28=R. W. |last28=Lougheed|first29=R. I. |last29=Il’kaev|first30=S. P. |last30=Vesnovskii|display-authors=10|bibcode = 2004PhRvC..70f4609O|issue=6|url=http://www1.jinr.ru/Preprints/2004/160(E7-2004-160).pdf}}</ref> In further experiments from 2004 to 2006, the team replaced the curium-248 target with the lighter [[curium]] isotope [[curium-245]]. Here evidence was found for the two isotopes <sup>290</sup>Lv and <sup>291</sup>Lv.<ref name="JWP" /> In May 2009, the [[IUPAC]]/[[IUPAP]] Joint Working Party reported on the discovery of [[copernicium]] and acknowledged the discovery of the isotope <sup>283</sup>Cn.<ref name="jwr">{{cite journal|journal = [[Pure Appl. Chem.]]|date = 2009|title = Discovery of the element with atomic number 112|format = IUPAC Technical Report|author = Barber, R. C.|author2 = Gaeggeler, H. W.|author3 = Karol, P. J.|author4 = Nakahara, H.|author5 = Verdaci, E.|author6 = Vogt, E.|name-list-style = amp |url = http://media.iupac.org/publications/pac/2009/pdf/8107x1331.pdf|doi = 10.1351/PAC-REP-08-03-05|volume = 81|page = 1331|issue = 7|s2cid = 95703833}}</ref> This implied the ''de facto'' discovery of the isotope <sup>291</sup>Lv, from the acknowledgment of the data relating to its granddaughter <sup>283</sup>Cn, although the livermorium data was not absolutely critical for the demonstration of copernicium's discovery. Also in 2009, confirmation from Berkeley and the [[Gesellschaft für Schwerionenforschung]] (GSI) in Germany came for the flerovium isotopes 286 to 289, immediate daughters of the four known livermorium isotopes. In 2011, IUPAC evaluated the Dubna team experiments of 2000–2006. Whereas they found the earliest data (not involving <sup>291</sup>Lv and <sup>283</sup>Cn) inconclusive, the results of 2004–2006 were accepted as identification of livermorium, and the element was officially recognized as having been discovered.<ref name="JWP">{{cite journal|last1=Barber |first1=R. C.|last2=Karol |first2=P. J.|last3=Nakahara |first3=H.|last4=Vardaci |first4=E.|last5=Vogt |first5=E. W.|date=2011|title=Discovery of the elements with atomic numbers greater than or equal to 113 (IUPAC Technical Report)|journal=[[Pure and Applied Chemistry]]|volume=83 |issue=7 |page=1485|doi=10.1351/PAC-REP-10-05-01|doi-access=free}}</ref> The synthesis of livermorium has been separately confirmed at the GSI (2012) and [[RIKEN]] (2014 and 2016).<ref name="gsi12">{{cite journal | doi=10.1140/epja/i2012-12062-1 | volume=48 | issue=5 | pages=62 | title=The reaction <sup>48</sup>Ca + <sup>248</sup>Cm → <sup>296</sup>116<sup>*</sup> studied at the GSI-SHIP | journal=The European Physical Journal A| year=2012 | last1=Hofmann | first1=S. | last2=Heinz | first2=S. | last3=Mann | first3=R. | last4=Maurer | first4=J. | last5=Khuyagbaatar | first5=J. | last6=Ackermann | first6=D. | last7=Antalic | first7=S. | last8=Barth | first8=W. | last9=Block | first9=M. | last10=Burkhard | first10=H. G. | last11=Comas | first11=V. F. | last12=Dahl | first12=L. | last13=Eberhardt | first13=K. | last14=Gostic | first14=J. | last15=Henderson | first15=R. A. | last16=Heredia | first16=J. A. | last17=Heßberger | first17=F. P. | last18=Kenneally | first18=J. M. | last19=Kindler | first19=B. | last20=Kojouharov | first20=I. | last21=Kratz | first21=J. V. | last22=Lang | first22=R. | last23=Leino | first23=M. | last24=Lommel | first24=B. | last25=Moody | first25=K. J. | last26=Münzenberg | first26=G. | last27=Nelson | first27=S. L. | last28=Nishio | first28=K. | last29=Popeko | first29=A. G. | last30=Runke | first30=J. | display-authors=29 | bibcode=2012EPJA...48...62H| s2cid=121930293 }}</ref><ref>{{cite journal|url=http://www.nishina.riken.jp/researcher/APR/APR047/pdf/xi.pdf |title=Measurement of the <sup>248</sup>Cm + <sup>48</sup>Ca fusion reaction products at RIKEN GARIS |page=11 |journal=RIKEN Accel. Prog. Rep. |volume=47 |year=2014 |author=Morita, K.|display-authors=etal}}</ref> In the 2012 GSI experiment, one chain tentatively assigned to <sup>293</sup>Lv was shown to be inconsistent with previous data; it is believed that this chain may instead originate from an [[nuclear isomer|isomeric state]], <sup>293m</sup>Lv.<ref name="gsi12" /> In the 2016 RIKEN experiment, one atom that may be assigned to <sup>294</sup>Lv was seemingly detected, alpha decaying to <sup>290</sup>Fl and <sup>286</sup>Cn, which underwent spontaneous fission; however, the first alpha from the livermorium nuclide produced was missed, and the assignment to <sup>294</sup>Lv is still uncertain though plausible.<ref name="Kaji">{{cite journal |last1=Kaji |first1=Daiya |last2=Morita |first2=Kosuke |first3=Kouji |last3=Morimoto |first4=Hiromitsu |last4=Haba |first5=Masato |last5=Asai |first6=Kunihiro |last6=Fujita |first7=Zaiguo |last7=Gan |first8=Hans |last8=Geissel |first9=Hiroo |last9=Hasebe |first10=Sigurd |last10=Hofmann |first11=MingHui |last11=Huang |first12=Yukiko |last12=Komori |first13=Long |last13=Ma |first14=Joachim |last14=Maurer |first15=Masashi |last15=Murakami |first16=Mirei |last16=Takeyama |first17=Fuyuki |last17=Tokanai |first18=Taiki |last18=Tanaka |first19=Yasuo |last19=Wakabayashi |first20=Takayuki |last20=Yamaguchi |first21=Sayaka |last21=Yamaki |first22=Atsushi |last22=Yoshida |date=2017 |title=Study of the Reaction <sup>48</sup>Ca + <sup>248</sup>Cm → <sup>296</sup>Lv* at RIKEN-GARIS |journal=Journal of the Physical Society of Japan |volume=86 |issue=3 |pages=034201–1–7 |doi=10.7566/JPSJ.86.034201 |bibcode=2017JPSJ...86c4201K }}</ref> === Naming === [[File:Robert Livermore.jpg|thumb|upright|[[Robert Livermore]], the indirect namesake of livermorium]] Using [[Mendeleev's predicted elements|Mendeleev's nomenclature for unnamed and undiscovered elements]], livermorium is sometimes called ''eka-[[polonium]]''.<ref>{{cite journal | doi = 10.1088/0031-8949/10/A/001| title = The Search for New Elements: The Projects of Today in a Larger Perspective| journal = Physica Scripta| volume = 10| pages = 5–12| year = 1974| last1 = Seaborg | first1 = Glenn T. | bibcode = 1974PhyS...10S...5S| s2cid = 250809299}}</ref> In 1979 IUPAC recommended that the [[placeholder name|placeholder]] [[systematic element name]] ''ununhexium'' (''Uuh'')<ref name="iupac">{{cite journal|author=Chatt, J.|journal=Pure Appl. Chem.|date=1979|volume=51|pages=381–384|title=Recommendations for the Naming of Elements of Atomic Numbers Greater than 100|doi=10.1351/pac197951020381|issue=2|doi-access=free}}</ref> be used until the discovery of the element was confirmed and a name was decided. Although widely used in the chemical community on all levels, from chemistry classrooms to advanced textbooks, the recommendations were mostly ignored among scientists in the field,<ref name="Folden">{{cite web|url=http://cyclotron.tamu.edu/smp/The%20Heaviest%20Elements%20in%20the%20Universe.pdf |title=The Heaviest Elements in the Universe |author=Folden, Cody |date=31 January 2009 |work=Saturday Morning Physics at Texas A&M |access-date=9 March 2012 |url-status=unfit |archive-url=https://web.archive.org/web/20140810213232/http://cyclotron.tamu.edu/smp/The%20Heaviest%20Elements%20in%20the%20Universe.pdf |archive-date=August 10, 2014 }} "</ref><ref>{{cite journal|url=http://pubs.acs.org/cen/80th/print/darmstadtium.html |title= Darmstadtium and Beyond|journal=Chemical & Engineering News|author=Hoffman, Darleane C. }}</ref> who called it "element 116", with the symbol of ''E116'', ''(116)'', or even simply ''116''.<ref name="Haire" /> According to IUPAC recommendations, the discoverer or discoverers of a new element have the right to suggest a name.<ref>{{cite journal|doi=10.1351/pac200274050787|url=http://media.iupac.org/publications/pac/2002/pdf/7405x0787.pdf|title=Naming of new elements(IUPAC Recommendations 2002)|date=2002|author=Koppenol, W. H.|journal=Pure and Applied Chemistry|volume=74|page=787|issue=5|s2cid=95859397}}</ref> The discovery of livermorium was recognized by the Joint Working Party (JWP) of IUPAC on 1 June 2011, along with that of [[flerovium]].<ref name="JWP" /> According to the vice-director of JINR, the Dubna team originally wanted to name element 116 ''moscovium'', after the [[Moscow Oblast]] in which Dubna is located,<ref name="E114&116">{{cite web|publisher=rian.ru|date=2011|access-date=2011-05-08|url=http://www.rian.ru/science/20110326/358081075.html|title=Russian Physicists Will Suggest to Name Element 116 Moscovium}}: Mikhail Itkis, the vice-director of JINR stated: "We would like to name element 114 after [[Georgy Flerov]] – flerovium, and another one [element 116] – moscovium, not after Moscow, but after [[Moscow Oblast]]".</ref> but it was later decided to use this name for [[moscovium|element 115]] instead. The name ''livermorium'' and the symbol ''Lv'' were adopted on May 23,<ref>{{cite web|last1=Loss|first1=Robert D.|last2=Corish|first2=John|title=Names and symbols of the elements with atomic numbers 114 and 116 (IUPAC Recommendations 2012)|url=http://pac.iupac.org/publications/pac/pdf/2012/pdf/8407x1669.pdf|website=IUPAC; Pure and Applied Chemistry|publisher=IUPAC|access-date=2 December 2015}}</ref> 2012.<ref name="IUPAC-names-114-116" /><ref name="IUPAC">{{cite web|title=News: Start of the Name Approval Process for the Elements of Atomic Number 114 and 116 |url=http://www.iupac.org/news/news-detail/article/start-of-the-name-approval-process-for-the-elements-of-atomic-number-114-and-116.html |work=International Union of Pure and Applied Chemistry |access-date=February 22, 2012 |url-status=dead |archive-url=https://web.archive.org/web/20120302173200/http://www.iupac.org/news/news-detail/article/start-of-the-name-approval-process-for-the-elements-of-atomic-number-114-and-116.html |archive-date=March 2, 2012 }}</ref> The name recognises the [[Lawrence Livermore National Laboratory]], within the city of [[Livermore, California]], US, which collaborated with JINR on the discovery. The city in turn is named after the American rancher [[Robert Livermore]], a naturalized Mexican citizen of English birth.<ref name="IUPAC-names-114-116" /> The naming ceremony for flerovium and livermorium was held in Moscow on October 24, 2012.<ref>{{cite web |url=http://newuc.jinr.ru/img_sections/file/Practice2016/EU/2016-07%20AGP_SHE.pdf |title=Synthesis of superheavy elements |last=Popeko |first=Andrey G. |date=2016 |website=jinr.ru |publisher=[[Joint Institute for Nuclear Research]] |access-date=4 February 2018 |archive-url=https://web.archive.org/web/20180204124109/http://newuc.jinr.ru/img_sections/file/Practice2016/EU/2016-07%20AGP_SHE.pdf |archive-date=4 February 2018 |url-status=dead }}</ref> == Predicted properties == Other than nuclear properties, no properties of livermorium or its compounds have been measured; this is due to its extremely limited and expensive production<ref name="Bloomberg" /><!-- used transcluded, named ref --> and the fact that it decays very quickly. Properties of livermorium remain unknown and only predictions are available. === Nuclear stability and isotopes === {{Main|Isotopes of livermorium}} [[File:Island of Stability derived from Zagrebaev.png|right|thumb|upright=1.8|The expected location of the island of stability is marked by the white circle. The dotted line is the line of [[beta decay|beta]] stability.]] Livermorium is expected to be near an [[island of stability]] centered on [[copernicium]] (element 112) and [[flerovium]] (element 114).<ref name="Zagrebaev">{{cite conference |last1=Zagrebaev |first1=Valeriy |last2=Karpov |first2=Alexander |last3=Greiner |first3=Walter |date=2013 |title=Future of superheavy element research: Which nuclei could be synthesized within the next few years? |publisher=IOP Science |book-title=Journal of Physics: Conference Series |volume=420 |pages=1–15 |url=http://iopscience.iop.org/1742-6596/420/1/012001/pdf/1742-6596_420_1_012001.pdf |access-date=20 August 2013}}</ref><ref>{{cite book|title=Van Nostrand's scientific encyclopedia|first1=Glenn D. |last1= Considine |first2=Peter H. |last2= Kulik|publisher=Wiley-Interscience|date=2002|edition=9th|isbn=978-0-471-33230-5|oclc=223349096}}</ref> Due to the expected high [[fission barrier]]s, any nucleus within this island of stability exclusively decays by alpha decay and perhaps some electron capture and [[beta decay]].{{Fricke1975}} While the known isotopes of livermorium do not actually have enough neutrons to be on the island of stability, they can be seen to approach the island, as the heavier isotopes are generally the longer-lived ones.<ref name="00Og01" /><ref name="JWP" /> Superheavy elements are produced by [[nuclear fusion]]. These fusion reactions can be divided into "hot" and "cold" fusion,{{efn|Despite the name, "cold fusion" in the context of superheavy element synthesis is a distinct concept from the idea that nuclear fusion can be achieved in room temperature conditions (see [[cold fusion]]).<ref>{{cite journal |doi=10.1016/0022-0728(89)80006-3 |title=Electrochemically induced nuclear fusion of deuterium |date=1989 |last1=Fleischmann |first1=Martin |last2=Pons |first2=Stanley |journal=Journal of Electroanalytical Chemistry and Interfacial Electrochemistry |volume=261 |issue=2 |pages=301–308}}</ref>}} depending on the excitation energy of the compound nucleus produced. In hot fusion reactions, very light, high-energy projectiles are accelerated toward very heavy targets ([[actinide]]s), giving rise to compound nuclei at high excitation energy (~40–50&nbsp;[[electronvolt|MeV]]) that may either fission or evaporate several (3 to 5) neutrons.<ref name="fusion">{{cite journal |last1=Barber |first1=Robert C. |last2=Gäggeler |first2=Heinz W. |last3=Karol |first3=Paul J. |last4=Nakahara |first4=Hiromichi |last5=Vardaci |first5=Emanuele |last6=Vogt |first6=Erich |title=Discovery of the element with atomic number 112 (IUPAC Technical Report) |journal=Pure and Applied Chemistry |volume=81 |issue=7 |page=1331 |date=2009 |doi=10.1351/PAC-REP-08-03-05|s2cid=95703833 |url=http://doc.rero.ch/record/297412/files/pac-rep-08-03-05.pdf }}</ref> In cold fusion reactions (which use heavier projectiles, typically from the [[period 4 element|fourth period]], and lighter targets, usually [[lead]] and [[bismuth]]), the produced fused nuclei have a relatively low excitation energy (~10–20&nbsp;MeV), which decreases the probability that these products will undergo fission reactions. As the fused nuclei cool to the [[ground state]], they require emission of only one or two neutrons. Hot fusion reactions tend to produce more neutron-rich products because the actinides have the highest neutron-to-proton ratios of any elements that can presently be made in macroscopic quantities.<ref name="AM89">{{cite journal |first1=Peter |last1=Armbruster |name-list-style=amp |first2=Gottfried |last2=Munzenberg |title=Creating superheavy elements |journal=Scientific American |volume=34 |pages=36–42 |date=1989}}</ref> Important information could be gained regarding the properties of superheavy nuclei by the synthesis of more livermorium isotopes, specifically those with a few neutrons more or less than the known ones – <sup>286</sup>Lv, <sup>287</sup>Lv, <sup>288</sup>Lv, <sup>289</sup>Lv, <sup>294</sup>Lv, and <sup>295</sup>Lv. This is possible because there are many reasonably long-lived [[isotopes of curium]] that can be used to make a target.<ref name="Zagrebaev" /> The light isotopes can be made by fusing [[curium-243]] with calcium-48. They would undergo a chain of alpha decays, ending at [[transactinide]] isotopes that are too light to achieve by hot fusion and too heavy to be produced by cold fusion.<ref name="Zagrebaev" /> The synthesis of the heavy isotopes <sup>294</sup>Lv and <sup>295</sup>Lv could be accomplished by fusing the heavy curium isotope [[curium-250]] with calcium-48. The [[cross section (physics)|cross section]] of this nuclear reaction would be about 1&nbsp;[[barn (unit)|picobarn]], though it is not yet possible to produce <sup>250</sup>Cm in the quantities needed for target manufacture.<ref name="Zagrebaev" /> After a few alpha decays, these livermorium isotopes would reach nuclides at the [[line of beta stability]]. Additionally, [[electron capture]] may also become an important decay mode in this region, allowing affected nuclei to reach the middle of the island. For example, it is predicted that <sup>295</sup>Lv would alpha decay to <sup>291</sup>[[flerovium|Fl]], which would undergo successive electron capture to <sup>291</sup>Nh and then <sup>291</sup>[[copernicium|Cn]] which is expected to be in the middle of the island of stability and have a half-life of about 1200&nbsp;years, affording the most likely hope of reaching the middle of the island using current technology. A drawback is that the decay properties of superheavy nuclei this close to the line of beta stability are largely unexplored.<ref name="Zagrebaev" /> Other possibilities to synthesize nuclei on the island of stability include quasifission (partial fusion followed by fission) of a massive nucleus.<ref name="ZG" /> Such nuclei tend to fission, expelling doubly [[magic number (physics)|magic]] or nearly doubly magic fragments such as [[calcium-40]], [[tin-132]], [[lead-208]], or [[bismuth-209]].<ref name="jinr20006">{{cite web|title=JINR Annual Reports 2000–2006|url=http://www1.jinr.ru/Reports/Reports_eng_arh.html|publisher=[[Joint Institute for Nuclear Research|JINR]]|access-date=2013-08-27}}</ref> Recently it has been shown that the multi-nucleon transfer reactions in collisions of actinide nuclei (such as [[uranium]] and [[curium]]) might be used to synthesize the neutron-rich superheavy nuclei located at the island of stability,<ref name="ZG">{{cite journal|last1=Zagrebaev |first1=V.|last2=Greiner |first2=W.|date=2008|title=Synthesis of superheavy nuclei: A search for new production reactions|journal=[[Physical Review C]]|volume=78 |issue=3 |page=034610|arxiv=0807.2537|bibcode=2008PhRvC..78c4610Z|doi=10.1103/PhysRevC.78.034610}}</ref> although formation of the lighter elements [[nobelium]] or [[seaborgium]] is more favored.<ref name="Zagrebaev" /> One last possibility to synthesize isotopes near the island is to use controlled [[nuclear explosion]]s to create a [[neutron flux]] high enough to bypass the gaps of instability at <sup>258–260</sup>[[fermium|Fm]] and at [[mass number]] 275 (atomic numbers [[rutherfordium|104]] to [[hassium|108]]), mimicking the [[r-process]] in which the [[actinide]]s were first produced in nature and the gap of instability around [[radon]] bypassed.<ref name="Zagrebaev" /> Some such isotopes (especially <sup>291</sup>Cn and <sup>293</sup>Cn) may even have been synthesized in nature, but would have decayed away far too quickly (with half-lives of only thousands of years) and be produced in far too small quantities (about 10<sup>−12</sup> the abundance of [[lead]]) to be detectable as [[primordial nuclide]]s today outside [[cosmic ray]]s.<ref name="Zagrebaev" /> === Physical and atomic === In the [[periodic table]], livermorium is a member of group 16, the chalcogens. It appears below [[oxygen]], [[sulfur]], [[selenium]], [[tellurium]], and polonium. Every previous chalcogen has six electrons in its valence shell, forming a [[valence electron]] configuration of ns<sup>2</sup>np<sup>4</sup>. In livermorium's case, the trend should be continued and the valence electron configuration is predicted to be 7s<sup>2</sup>7p<sup>4</sup>;<ref name="Haire" /> therefore, livermorium will have some similarities to its lighter [[congener (chemistry)|congeners]]. Differences are likely to arise; a large contributing effect is the [[spin–orbit interaction|spin–orbit (SO) interaction]]—the mutual interaction between the electrons' motion and [[Spin (physics)|spin]]. It is especially strong for the superheavy elements, because their electrons move much faster than in lighter atoms, at velocities comparable to the [[speed of light]].<ref name="Thayer">{{cite book |last1=Thayer |first1=John S. |chapter=Relativistic Effects and the Chemistry of the Heavier Main Group Elements |journal=Relativistic Methods for Chemists |volume=10 |date=2010 |page=83 |doi=10.1007/978-1-4020-9975-5_2|isbn=978-1-4020-9974-8 |series=Challenges and Advances in Computational Chemistry and Physics }}</ref> In relation to livermorium atoms, it lowers the 7s and the 7p electron energy levels (stabilizing the corresponding electrons), but two of the 7p electron energy levels are stabilized more than the other four.<ref name="Faegri">{{cite journal|last1=Faegri |first1=K.|last2=Saue |first2=T.|date=2001|title=Diatomic molecules between very heavy elements of group 13 and group 17: A study of relativistic effects on bonding|journal=[[Journal of Chemical Physics]]|volume=115 |issue=6 |page=2456|bibcode=2001JChPh.115.2456F|doi=10.1063/1.1385366 |doi-access=free}}</ref> The stabilization of the 7s electrons is called the [[inert pair effect]], and the effect "tearing" the 7p subshell into the more stabilized and the less stabilized parts is called subshell splitting. Computation chemists see the split as a change of the second ([[azimuthal quantum number|azimuthal]]) [[quantum number]] ''l'' from 1 to {{frac|1|2}} and {{frac|3|2}} for the more stabilized and less stabilized parts of the 7p subshell, respectively: the 7p<sub>1/2</sub> subshell acts as a second inert pair, though not as inert as the 7s electrons, while the 7p<sub>3/2</sub> subshell can easily participate in chemistry.<ref name="Haire" /><ref name="Thayer" />{{efn|The quantum number corresponds to the letter in the electron orbital name: 0 to s, 1 to p, 2 to d, etc. See [[azimuthal quantum number]] for more information.}} For many theoretical purposes, the valence electron configuration may be represented to reflect the 7p subshell split as 7s{{su|p=2|w=70%}}7p{{su|b=1/2|p=2|w=70%}}7p{{su|b=3/2|p=2|w=70%}}.<ref name="Haire" /> Inert pair effects in livermorium should be even stronger than in polonium and hence the +2 [[oxidation state]] becomes more stable than the +4 state, which would be stabilized only by the most [[electronegative]] [[ligand]]s; this is reflected in the expected [[ionization energy|ionization energies]] of livermorium, where there are large gaps between the second and third ionization energies (corresponding to the breaching of the unreactive 7p<sub>1/2</sub> shell) and fourth and fifth ionization energies.{{Fricke1975|name}} Indeed, the 7s electrons are expected to be so inert that the +6 state will not be attainable.<ref name="Haire" /> The [[melting point|melting]] and [[boiling point]]s of livermorium are expected to continue the trends down the chalcogens; thus livermorium should melt at a higher temperature than polonium, but boil at a lower temperature.<ref name="B&K" /> It should also be [[density|denser]] than polonium (α-Lv: 12.9&nbsp;g/cm<sup>3</sup>; α-Po: 9.2&nbsp;g/cm<sup>3</sup>); like polonium it should also form an α and a β allotrope.{{Fricke1975|name}}<ref> {{cite web |url=http://cyclotron.tamu.edu/she2015/assets/pdfs/presentations/Eichler_SHE_2015_TAMU.pdf |title=Gas phase chemistry with SHE – Experiments |last=Eichler |first=Robert |date=2015 |website=cyclotron.tamu.edu |publisher=Texas A & M University |access-date=27 April 2017}}</ref> The electron of a [[hydrogen-like atom|hydrogen-like]] livermorium atom (oxidized so that it only has one electron, Lv<sup>115+</sup>) is expected to move so fast that it has a mass 1.86 times that of a stationary electron, due to [[relativistic quantum chemistry|relativistic effects]]. For comparison, the figures for hydrogen-like polonium and tellurium are expected to be 1.26 and 1.080 respectively.<ref name="Thayer" /> === Chemical === Livermorium is projected to be the fourth member of the 7p series of [[chemical element]]s and the heaviest member of group 16 in the periodic table, below polonium. While it is the least theoretically studied of the 7p elements, its chemistry is expected to be quite similar to that of polonium.{{Fricke1975|name}} The group oxidation state of +6 is known for all the chalcogens apart from oxygen which cannot [[Hypervalent molecule|expand its octet]] and is one of the strongest [[redox|oxidizing agents]] among the chemical elements. Oxygen is thus limited to a maximum +2 state, exhibited in the fluoride [[oxygen difluoride|OF<sub>2</sub>]]. The +4 state is known for [[sulfur]], [[selenium]], [[tellurium]], and polonium, undergoing a shift in stability from reducing for sulfur(IV) and selenium(IV) through being the most stable state for tellurium(IV) to being oxidizing in polonium(IV). This suggests a decreasing stability for the higher oxidation states as the group is descended due to the increasing importance of relativistic effects, especially the inert pair effect.<ref name="Thayer" /> The most stable oxidation state of livermorium should thus be +2, with a rather unstable +4 state. The +2 state should be about as easy to form as it is for [[beryllium]] and [[magnesium]], and the +4 state should only be achieved with strongly electronegative ligands, such as in livermorium(IV) fluoride (LvF<sub>4</sub>).<ref name="Haire" /> The +6 state should not exist at all due to the very strong stabilization of the 7s electrons, making the valence core of livermorium only four electrons.{{Fricke1975|name}} The lighter chalcogens are also known to form a −2 state as [[oxide]], [[sulfide]], [[selenide]], [[telluride (chemistry)|telluride]], and [[polonide]]; due to the destabilization of livermorium's 7p<sub>3/2</sub> subshell, the −2 state should be very unstable for livermorium, whose chemistry should be essentially purely cationic,<ref name="Haire" /> though the larger subshell and spinor energy splittings of livermorium as compared to polonium should make Lv<sup>2−</sup> slightly less unstable than expected.<ref name="Thayer" /> Livermorium hydride (LvH<sub>2</sub>) would be the heaviest [[hydrogen chalcogenide|chalcogen hydride]] and the heaviest homolog of [[water]] (the lighter ones are [[hydrogen sulfide|H<sub>2</sub>S]], [[hydrogen selenide|H<sub>2</sub>Se]], [[hydrogen telluride|H<sub>2</sub>Te]], and [[polonium hydride|PoH<sub>2</sub>]]). Polane (polonium hydride) is a more [[covalent]] compound than most metal hydrides because polonium straddles the border between [[metal]] and [[metalloid]] and has some nonmetallic properties: it is intermediate between a [[hydrogen halide]] like [[hydrogen chloride]] (HCl) and a [[metal hydride]] like [[stannane]] ([[tin|Sn]]H<sub>4</sub>). Livermorane should continue this trend: it should be a hydride rather than a livermoride, but still a covalent [[molecule|molecular]] compound.<ref name="Nash">{{cite journal |last1=Nash |first1=Clinton S. |last2=Crockett |first2=Wesley W. |date=2006 |title=An Anomalous Bond Angle in (116)H<sub>2</sub>. Theoretical Evidence for Supervalent Hybridization. |journal=The Journal of Physical Chemistry A |volume=110 |issue=14 |pages=4619–4621 |doi=10.1021/jp060888z |pmid=16599427 |bibcode=2006JPCA..110.4619N |url=https://figshare.com/articles/An_Anomalous_Bond_Angle_in_116_H_sub_2_sub_Theoretical_Evidence_for_Supervalent_Hybridization/3227647 }}</ref> Spin-orbit interactions are expected to make the Lv–H bond longer than expected from [[periodic trends]] alone, and make the H–Lv–H bond angle larger than expected: this is theorized to be because the unoccupied 8s orbitals are relatively low in energy and can [[orbital hybridization|hybridize]] with the valence 7p orbitals of livermorium.<ref name="Nash" /> This phenomenon, dubbed "supervalent hybridization",<ref name="Nash" /> has some analogues in non-relativistic regions in the periodic table; for example, molecular [[calcium difluoride]] has 4s and 3d involvement from the [[calcium]] atom.<ref>{{Greenwood&Earnshaw2nd|page=117}}</ref> The heavier livermorium di[[halide]]s are predicted to be [[linear molecular geometry|linear]], but the lighter ones are predicted to be [[bent molecular geometry|bent]].<ref>{{cite journal | last1 = Van WüLlen | first1 = C. | last2 = Langermann | first2 = N. | doi = 10.1063/1.2711197 | title = Gradients for two-component quasirelativistic methods. Application to dihalogenides of element 116 | journal = The Journal of Chemical Physics | volume = 126 | issue = 11 | page = 114106 | year = 2007 | pmid = 17381195|bibcode = 2007JChPh.126k4106V }}</ref> == Experimental chemistry == Unambiguous determination of the chemical characteristics of livermorium has not yet been established.<ref name="Düllmann">{{cite journal |last1=Düllmann |first1=Christoph E. |date=2012 |title=Superheavy elements at GSI: a broad research program with element 114 in the focus of physics and chemistry |journal=Radiochimica Acta |volume=100 |issue=2 |pages=67–74 |doi=10.1524/ract.2011.1842 |s2cid=100778491 }}</ref><ref name="Eichler">{{cite journal |last=Eichler |first=Robert |date=2013 |title=First foot prints of chemistry on the shore of the Island of Superheavy Elements |arxiv=1212.4292|journal=Journal of Physics: Conference Series |volume=420 |issue=1 |page=012003 |doi=10.1088/1742-6596/420/1/012003 |bibcode=2013JPhCS.420a2003E |s2cid=55653705 }}</ref> In 2011, experiments were conducted to create [[nihonium]], [[flerovium]], and [[moscovium]] isotopes in the reactions between calcium-48 projectiles and targets of americium-243 and [[plutonium-244]]. The targets included [[lead]] and [[bismuth]] impurities and hence some isotopes of bismuth and [[polonium]] were generated in nucleon transfer reactions. This, while an unforeseen complication, could give information that would help in the future chemical investigation of the heavier homologs of bismuth and polonium, which are respectively moscovium and livermorium.<ref name="Eichler" /> The produced nuclides [[bismuth-213]] and [[polonium-212m]] were transported as the hydrides [[bismuthine|<sup>213</sup>BiH<sub>3</sub>]] and [[polonium hydride|<sup>212m</sup>PoH<sub>2</sub>]] at 850&nbsp;°C through a quartz wool filter unit held with [[tantalum]], showing that these hydrides were surprisingly thermally stable, although their heavier congeners McH<sub>3</sub> and LvH<sub>2</sub> would be expected to be less thermally stable from simple extrapolation of [[periodic trends]] in the p-block.<ref name="Eichler" /> Further calculations on the stability and electronic structure of BiH<sub>3</sub>, McH<sub>3</sub>, PoH<sub>2</sub>, and LvH<sub>2</sub> are needed before chemical investigations take place. Moscovium and livermorium are expected to be [[volatility (chemistry)|volatile]] enough as pure elements for them to be chemically investigated in the near future, a property livermorium would then share with its lighter congener polonium, though the short half-lives of all presently known livermorium isotopes means that the element is still inaccessible to experimental chemistry.<ref name="Eichler" /><ref name="Moody">{{cite book |chapter=Synthesis of Superheavy Elements |last1=Moody |first1=Ken |editor1-first=Matthias |editor1-last=Schädel |editor2-first=Dawn |editor2-last=Shaughnessy |title=The Chemistry of Superheavy Elements |publisher=Springer Science & Business Media |edition=2nd |pages=24–8 |isbn=9783642374661|date=2013-11-30 }}</ref> {{clear}} == Notes == {{notelist}} == References == {{Reflist|colwidth=30em}} == Bibliography == * {{cite journal |title=The NUBASE2016 evaluation of nuclear properties |doi=10.1088/1674-1137/41/3/030001 |last1=Audi |first1=G. |last2=Kondev |first2=F. G. |last3=Wang |first3=M. |last4=Huang |first4=W. J. |last5=Naimi |first5=S. |display-authors=3 |journal=Chinese Physics C |volume=41 |issue=3 <!--Citation bot deny-->|pages=030001 |year=2017 |bibcode=2017ChPhC..41c0001A }}<!--for consistency and specific pages, do not replace with {{NUBASE2016}}--> * {{cite book|last=Beiser|first=A.|title=Concepts of modern physics|date=2003|publisher=McGraw-Hill|isbn=978-0-07-244848-1|edition=6th|oclc=48965418}} * {{cite book |last1=Hoffman |first1=D. C. |author-link=Darleane C. Hoffman |last2=Ghiorso |first2=A. |author-link2=Albert Ghiorso |last3=Seaborg |first3=G. T. |title=The Transuranium People: The Inside Story |year=2000 |publisher=[[World Scientific]] |isbn=978-1-78-326244-1 }} * {{cite book |last=Kragh |first=H. |author-link=Helge Kragh |date=2018 |title=From Transuranic to Superheavy Elements: A Story of Dispute and Creation |publisher=[[Springer Science+Business Media|Springer]] |isbn=978-3-319-75813-8 }} == External links == {{Commons|Livermorium}} * [http://www.periodicvideos.com/videos/116.htm Livermorium] at ''[[The Periodic Table of Videos]]'' (University of Nottingham) * [https://web.archive.org/web/20081205080201/http://www.cerncourier.com/main/article/41/8/17 ''CERN Courier'' – Second postcard from the island of stability] * [http://webelements.com/livermorium/ Livermorium at WebElements.com] {{Periodic table (navbox)}} {{Authority control}} [[Category:Livermorium| ]] [[Category:Chalcogens]] [[Category:Chemical elements]] [[Category:Ernest Lawrence]] [[Category:Synthetic elements]]'
New page wikitext, after the edit (new_wikitext)
'{{infobox livermorium}} {{good article}} '''Livermorium''' is a [[synthetic element|synthetic]] [[chemical element]] with the [[Symbol (chemistry)|symbol]] '''Lv''' and has an [[atomic number]] of 116. It is an extremely [[radioactivity|radioactive]] element that has only been created in a laboratory setting and has not been observed in nature. The element is named after the [[Lawrence Livermore National Laboratory]] in the United States, which collaborated with the [[Joint Institute for Nuclear Research]] (JINR) in [[Dubna]], Russia, to discover livermorium during experiments conducted between 2000 and 2006. The name of the laboratory refers to the city of [[Livermore, California]], where it is located, which in turn was named after the rancher and landowner [[Robert Livermore]]. The name was adopted by [[International Union of Pure and Applied Chemistry|IUPAC]] on May 30, 2012.<ref name="IUPAC-names-114-116" /> Four [[isotopes of livermorium]] are known, with [[mass number]]s between 290 and 293 inclusive; the longest-lived among them is livermorium-293 with a [[half-life]] of about 60&nbsp;[[millisecond]]s. A fifth possible isotope with mass number 294 has been reported but not yet confirmed. In the [[periodic table]], it is a [[p-block]] [[transactinide element]]. It is a member of the [[period 7 element|7th period]] and is placed in group 16 as the heaviest [[chalcogen]], but it has not been confirmed to behave as the heavier [[homology (chemistry)|homologue]] to the chalcogen [[polonium]]. Livermorium is calcula[http://webelements.com/livermorium/ Livermorium at WebElements.com] {{Periodic table (navbox)}} {{Authority control}} [[Category:Livermorium| ]] [[Category:Chalcogens]] [[Category:Chemical elements]] [[Category:Ernest Lawrence]] [[Category:Synthetic elements]]'
Unified diff of changes made by edit (edit_diff)
'@@ -4,97 +4,5 @@ '''Livermorium''' is a [[synthetic element|synthetic]] [[chemical element]] with the [[Symbol (chemistry)|symbol]] '''Lv''' and has an [[atomic number]] of 116. It is an extremely [[radioactivity|radioactive]] element that has only been created in a laboratory setting and has not been observed in nature. The element is named after the [[Lawrence Livermore National Laboratory]] in the United States, which collaborated with the [[Joint Institute for Nuclear Research]] (JINR) in [[Dubna]], Russia, to discover livermorium during experiments conducted between 2000 and 2006. The name of the laboratory refers to the city of [[Livermore, California]], where it is located, which in turn was named after the rancher and landowner [[Robert Livermore]]. The name was adopted by [[International Union of Pure and Applied Chemistry|IUPAC]] on May 30, 2012.<ref name="IUPAC-names-114-116" /> Four [[isotopes of livermorium]] are known, with [[mass number]]s between 290 and 293 inclusive; the longest-lived among them is livermorium-293 with a [[half-life]] of about 60&nbsp;[[millisecond]]s. A fifth possible isotope with mass number 294 has been reported but not yet confirmed. -In the [[periodic table]], it is a [[p-block]] [[transactinide element]]. It is a member of the [[period 7 element|7th period]] and is placed in group 16 as the heaviest [[chalcogen]], but it has not been confirmed to behave as the heavier [[homology (chemistry)|homologue]] to the chalcogen [[polonium]]. Livermorium is calculated to have some similar properties to its lighter homologues ([[oxygen]], [[sulfur]], [[selenium]], [[tellurium]], and polonium), and be a [[post-transition metal]], though it should also show several major differences from them. - -==Introduction== -{{Transcluded section|source=Introduction to the heaviest elements}} -{{:Introduction to the heaviest elements}} - -== History == -=== Unsuccessful synthesis attempts === -The first search for element 116, using the reaction between <sup>248</sup>Cm and <sup>48</sup>Ca, was performed in 1977 by Ken Hulet and his team at the [[Lawrence Livermore National Laboratory]] (LLNL). They were unable to detect any atoms of livermorium.<ref>{{cite journal |doi=10.1103/PhysRevLett.39.385 |title=Search for Superheavy Elements in the Bombardment of <sup>248</sup>Cm with<sup>48</sup>Ca |year=1977 |last1=Hulet |first1=E. K. |journal=Physical Review Letters |volume=39 |pages=385–389 |last2=Lougheed |first2=R. |last3=Wild |first3=J. |last4=Landrum |first4=J. |last5=Stevenson |first5=P. |last6=Ghiorso |first6=A. |last7=Nitschke |first7=J. |last8=Otto |first8=R. |last9=Morrissey |first9=D. |last10=Baisden |first10=P. |last11=Gavin |first11=B. |last12=Lee |first12=D. |last13=Silva |first13=R. |last14=Fowler |first14=M. |last15=Seaborg |first15=G. |bibcode=1977PhRvL..39..385H |issue=7 |display-authors=8}}</ref> [[Yuri Oganessian]] and his team at the Flerov Laboratory of Nuclear Reactions (FLNR) in the [[Joint Institute for Nuclear Research]] (JINR) subsequently attempted the reaction in 1978 and met failure. In 1985, in a joint experiment between Berkeley and Peter Armbruster's team at GSI, the result was again negative, with a calculated [[cross section (physics)|cross section]] limit of 10–100&nbsp;pb. Work on reactions with <sup>48</sup>Ca, which had proved very useful in the synthesis of [[nobelium]] from the <sup>nat</sup>Pb+<sup>48</sup>Ca reaction, nevertheless continued at Dubna, with a superheavy element separator being developed in 1989, a search for target materials and starting of collaborations with LLNL being started in 1990, production of more intense <sup>48</sup>Ca beams being started in 1996, and preparations for long-term experiments with 3 orders of magnitude higher sensitivity being performed in the early 1990s. This work led directly to the production of new isotopes of elements 112 to 118 in the reactions of <sup>48</sup>Ca with actinide targets and the discovery of the 5 heaviest elements on the periodic table: [[flerovium]], [[moscovium]], livermorium, [[tennessine]], and [[oganesson]].<ref>{{cite journal |doi=10.1103/PhysRevLett.54.406 |title=Attempts to Produce Superheavy Elements by Fusion of <sup>48</sup>Ca with <sup>248</sup>Cm in the Bombarding Energy Range of 4.5–5.2&nbsp;MeV/u |year=1985 |last1=Armbruster |first1=P. |journal=Physical Review Letters |volume=54 |pages=406–409 |pmid=10031507 |last2=Agarwal |first2=YK |last3=Brüchle |first3=W |last4=Brügger |first4=M |last5=Dufour |first5=JP |last6=Gaggeler |first6=H |last7=Hessberger |first7=FP |last8=Hofmann |first8=S |last9=Lemmertz |first9=P |last10=Münzenberg |first10=G. |last11=Poppensieker |first11=K. |last12=Reisdorf |first12=W. |last13=Schädel |first13=M. |last14=Schmidt |first14=K. |last15=Schneider |first15=J. |last16=Schneider |first16=W. |last17=Sümmerer |first17=K. |last18=Vermeulen |first18=D. |last19=Wirth |first19=G. |last20=Ghiorso |first20=A. |last21=Gregorich |first21=K. |last22=Lee |first22=D. |last23=Leino |first23=M. |last24=Moody |first24=K. |last25=Seaborg |first25=G. |last26=Welch |first26=R. |last27=Wilmarth |first27=P. |last28=Yashita |first28=S. |last29=Frink |first29=C. |last30=Greulich |first30=N. |issue=5 |bibcode=1985PhRvL..54..406A |url=https://zenodo.org/record/1233843 |display-authors=8}}</ref> - -In 1995, an international team led by [[Sigurd Hofmann]] at the [[Gesellschaft für Schwerionenforschung]] (GSI) in [[Darmstadt]], [[Germany]] attempted to synthesise element 116 in a radiative capture reaction (in which the compound nucleus de-excites through pure [[gamma emission]] without evaporating neutrons) between a [[lead]]-208 target and [[selenium]]-82 projectiles. No atoms of element 116 were identified.<ref>{{cite conference |url=https://www.epj-conferences.org/articles/epjconf/pdf/2016/26/epjconf-NS160-06001.pdf |title=The discovery of elements 107 to 112 |last1=Hofmann |first1=Sigurd |journal=EPJ Web of Conferences |date=1 December 2016 |volume=131 |page=06001 |conference=Nobel Symposium NS160 – Chemistry and Physics of Heavy and Superheavy Elements |doi=10.1051/epjconf/201613106001|doi-access=free }}</ref> - -=== Unconfirmed discovery claims === -In late 1998, Polish physicist [[Robert Smolańczuk]] published calculations on the fusion of atomic nuclei towards the synthesis of [[superheavy element|superheavy atoms]], including [[oganesson|elements 118]] and 116.<ref name="Smolanczuk">{{cite journal|author=Smolanczuk, R.|journal=Physical Review C|volume=59|issue=5|date=1999|title=Production mechanism of superheavy nuclei in cold fusion reactions|pages=2634–2639|doi=10.1103/PhysRevC.59.2634|bibcode = 1999PhRvC..59.2634S}}</ref> His calculations suggested that it might be possible to make these two elements by fusing [[lead]] with [[krypton]] under carefully controlled conditions.<ref name="Smolanczuk" /> - -In 1999, researchers at [[Lawrence Berkeley National Laboratory]] made use of these predictions and announced the discovery of elements 118 and 116, in a paper published in ''[[Physical Review Letters]]'',<ref name="Ninov83.1104">{{cite journal|last1=Ninov|first1=Viktor|last2=Gregorich|first2=K.|last3=Loveland|first3=W.|last4=Ghiorso|first4=A.|last5=Hoffman|first5=D.|last6=Lee|first6=D.|last7=Nitsche|first7=H.|last8=Swiatecki|first8=W.|last9=Kirbach|first9=U.|first10=C. |last10=Laue|first11=J. |last11=Adams|first12=J. |last12=Patin|first13=D. |last13=Shaughnessy|first14=D. |last14=Strellis|first15=P. |last15=Wilk|title=Observation of Superheavy Nuclei Produced in the Reaction of {{SimpleNuclide|Krypton|86}} with {{SimpleNuclide|Lead|208}}|journal=[[Physical Review Letters]]|volume=83|pages=1104–1107|date=1999|doi=10.1103/PhysRevLett.83.1104|bibcode=1999PhRvL..83.1104N|issue=6 |display-authors=10|url=https://zenodo.org/record/1233919}}{{Retraction|doi=10.1103/PhysRevLett.89.039901|intentional=yes}}</ref> and very soon after the results were reported in ''[[Science (journal)|Science]]''.<ref>{{cite journal|author=Service, R. F.|journal=Science|date=1999|volume=284|page=1751|doi=10.1126/science.284.5421.1751|title=Berkeley Crew Bags Element 118|issue=5421|s2cid=220094113}}</ref> The researchers reported to have performed the [[nuclear reaction|reaction]] - -:{{nuclide|Krypton|86}} + {{nuclide|Lead|208}} → {{nuclide|oganesson|293}} + {{SubatomicParticle|link=yes|Neutron}} → {{nuclide|Livermorium|289}} + [[alpha particle|α]] - -The following year, they published a retraction after researchers at other laboratories were unable to duplicate the results and the Berkeley lab itself was unable to duplicate them as well.<ref>{{cite news|url=http://enews.lbl.gov/Science-Articles/Archive/118-retraction.html|publisher=Berkeley Lab|author=Public Affairs Department|title=Results of element 118 experiment retracted|date=2001-07-21|access-date=2008-01-18|archive-url=https://web.archive.org/web/20080129191344/http://enews.lbl.gov/Science-Articles/Archive/118-retraction.html|archive-date=2008-01-29|url-status=dead}}</ref> In June 2002, the director of the lab announced that the original claim of the discovery of these two elements had been based on data fabricated by principal author [[Victor Ninov]].<ref>{{cite journal|pages=728–729|title=Misconduct: The stars who fell to Earth|journal=[[Nature (journal)|Nature]]|volume=420|doi=10.1038/420728a|date=2002|pmid=12490902|last1=Dalton|first1=R.|issue=6917|bibcode = 2002Natur.420..728D |s2cid=4398009}}</ref><ref>[https://web.archive.org/web/20071012075515/http://physicsworld.com/cws/article/news/2629 Element 118 disappears two years after it was discovered]. Physicsworld.com (August 2, 2001). Retrieved on 2012-04-02.</ref> - -=== Discovery === -<!-- Deleted image removed: [[File:Curium target livermorium.jpg|thumb|left|Curium-248 target used in the synthesis of livermorium]] --> -Livermorium was first synthesized on July 19, 2000, when scientists at [[Dubna]] ([[Joint Institute for Nuclear Research|JINR]]) bombarded a [[curium-248]] target with accelerated [[calcium-48]] ions. A single atom was detected, decaying by [[alpha decay|alpha emission]] with [[decay energy]] 10.54&nbsp;[[electronvolt|MeV]] to an isotope of [[flerovium]]. The results were published in December 2000.<ref name="00Og01">{{cite journal|doi=10.1103/PhysRevC.63.011301|title=Observation of the decay of <sup>292</sup>116|date=2000|author=Oganessian, Yu. Ts.|journal=Physical Review C|volume=63|issue=1|pages=011301|bibcode=2000PhRvC..63a1301O|last2=Utyonkov|last3=Lobanov|last4=Abdullin|last5=Polyakov|last6=Shirokovsky|last7=Tsyganov|last8=Gulbekian|last9=Bogomolov|last10=Gikal|last11=Mezentsev|last12=Iliev|last13=Subbotin|last14=Sukhov|last15=Ivanov|last16=Buklanov|last17=Subotic|last18=Itkis|last19=Moody|last20=Wild|last21=Stoyer|last22=Stoyer|last23=Lougheed|last24=Laue|last25=Karelin|last26=Tatarinov}}</ref> - -:{{nuclide|curium|248}} + {{nuclide|calcium|48}} → {{nuclide|livermorium|296}}* → {{nuclide|livermorium|293}} + 3 {{nuclide|neutronium|1}} → {{nuclide|flerovium|289}} + α - -The [[decay product|daughter]] flerovium isotope had properties matching those of a flerovium isotope first synthesized in June 1999, which was originally assigned to <sup>288</sup>Fl,<ref name="00Og01" /> implying an assignment of the parent livermorium isotope to <sup>292</sup>Lv. Later work in December 2002 indicated that the synthesized flerovium isotope was actually <sup>289</sup>Fl, and hence the assignment of the synthesized livermorium atom was correspondingly altered to <sup>293</sup>Lv.<ref name="04Og01" /> - -=== Road to confirmation === -Two further atoms were reported by the institute during their second experiment during April–May 2001.<ref name="03Pa01">[https://e-reports-ext.llnl.gov/pdf/302186.pdf "Confirmed results of the <sup>248</sup>Cm(<sup>48</sup>Ca,4n)<sup>292</sup>116 experiment"] {{Webarchive|url=https://web.archive.org/web/20160130164119/https://e-reports-ext.llnl.gov/pdf/302186.pdf |date=2016-01-30 }}, ''Patin et al.'', ''LLNL report (2003)''. Retrieved 2008-03-03</ref> In the same experiment they also detected a decay chain which corresponded to the first observed decay of [[flerovium]] in December 1998, which had been assigned to <sup>289</sup>Fl.<ref name="03Pa01" /> No flerovium isotope with the same properties as the one found in December 1998 has ever been observed again, even in repeats of the same reaction. Later it was found that <sup>289</sup>Fl has different decay properties and that the first observed flerovium atom may have been its [[nuclear isomer]] <sup>289m</sup>Fl.<ref name="00Og01" /><ref name="04OgJINRPP">{{cite journal|last1=Oganessian |first1=Yu. Ts. |last2=Utyonkov |first2=V. K. |date=2004 |title=Measurements of cross sections and decay properties of the isotopes of elements 112, 114, and 116 produced in the fusion reactions <sup>233,238</sup>U, <sup>242</sup>Pu, and <sup>248</sup>Cm + <sup>48</sup>Ca |url=http://www.jinr.ru/publish/Preprints/2004/160(E7-2004-160).pdf |journal=[[Physical Review C]] |volume=70 |issue=6 |page=064609 |bibcode=2004PhRvC..70f4609O |doi=10.1103/PhysRevC.70.064609 |last3=Lobanov |first3=Yu. |last4=Abdullin |first4=F. |last5=Polyakov |first5=A. |last6=Shirokovsky |first6=I. |last7=Tsyganov |first7=Yu. |last8=Gulbekian |first8=G. |last9=Bogomolov |first9=S. |last10=Gikal |first10=B. |last11=Mezentsev |first11=A. |last12=Iliev |first12=S. |last13=Subbotin |first13=V. |last14=Sukhov |first14=A. |last15=Voinov |first15=A. |last16=Buklanov |first16=G. |last17=Subotic |first17=K. |last18=Zagrebaev |first18=V. |last19=Itkis |first19=M. |last20=Patin |first20=J. |last21=Moody |first21=K. |last22=Wild |first22=J. |last23=Stoyer |first23=M. |last24=Stoyer |first24=N. |last25=Shaughnessy |first25=D. |last26=Kenneally |first26=J. |last27=Wilk |first27=P. |last28=Lougheed |first28=R. |last29=Il’Kaev |first29=R. |last30=Vesnovskii |first30=S. |url-status=dead |archive-url=https://web.archive.org/web/20080528130343/http://www.jinr.ru/publish/Preprints/2004/160%28E7-2004-160%29.pdf |archive-date=May 28, 2008 }}</ref> The observation of <sup>289m</sup>Fl in this series of experiments may indicate the formation of a parent isomer of livermorium, namely <sup>293m</sup>Lv, or a rare and previously unobserved decay branch of the already-discovered state <sup>293</sup>Lv to <sup>289m</sup>Fl. Neither possibility is certain, and research is required to positively assign this activity. Another possibility suggested is the assignment of the original December 1998 atom to <sup>290</sup>Fl, as the low beam energy used in that original experiment makes the 2n channel plausible; its parent could then conceivably be <sup>294</sup>Lv, but this assignment would still need confirmation in the <sup>248</sup>Cm(<sup>48</sup>Ca,2n)<sup>294</sup>Lv reaction.<ref name="00Og01" /><ref name="04OgJINRPP" /><ref name="Hofmann2016">{{cite journal |last1=Hofmann |first1=S. |last2=Heinz |first2=S. |first3=R. |last3=Mann |first4=J. |last4=Maurer |first5=G. |last5=Münzenberg |first6=S. |last6=Antalic |first7=W. |last7=Barth |first8=H. G. |last8=Burkhard |first9=L. |last9=Dahl |first10=K. |last10=Eberhardt |first11=R. |last11=Grzywacz |first12=J. H. |last12=Hamilton |first13=R. A. |last13=Henderson |first14=J. M. |last14=Kenneally |first15=B. |last15=Kindler |first16=I. |last16=Kojouharov |first17=R. |last17=Lang |first18=B. |last18=Lommel |first19=K. |last19=Miernik |first20=D. |last20=Miller |first21=K. J. |last21=Moody |first22=K. |last22=Morita |first23=K. |last23=Nishio |first24=A. G. |last24=Popeko |first25=J. B. |last25=Roberto |first26=J. |last26=Runke |first27=K. P. |last27=Rykaczewski |first28=S. |last28=Saro |first29=C. |last29=Scheidenberger |first30=H. J. |last30=Schött |first31=D. A. |last31=Shaughnessy |first32=M. A. |last32=Stoyer |first33=P. |last33=Thörle-Popiesch |first34=K. |last34=Tinschert |first35=N. |last35=Trautmann |first36=J. |last36=Uusitalo |first37=A. V. |last37=Yeremin |date=2016 |title=Review of even element super-heavy nuclei and search for element 120 |journal=The European Physical Journal A |volume=2016 |issue=52 |pages=180 |doi=10.1140/epja/i2016-16180-4|bibcode=2016EPJA...52..180H |s2cid=124362890 |url=https://zenodo.org/record/897926 }}</ref> - -The team repeated the experiment in April–May 2005 and detected 8 atoms of livermorium. The measured decay data confirmed the assignment of the first-discovered [[isotope]] as <sup>293</sup>Lv. In this run, the team also observed the isotope <sup>292</sup>Lv for the first time.<ref name="04Og01">{{cite journal|title=Measurements of cross sections and decay properties of the isotopes of elements 112, 114, and 116 produced in the fusion reactions <sup>233,238</sup>U, <sup>242</sup>Pu, and <sup>248</sup>Cm+<sup>48</sup>Ca|doi=10.1103/PhysRevC.70.064609|year=2004|journal=Physical Review C|volume=70|page=064609|last1=Oganessian|first1=Yu. Ts.|last2=Utyonkov|first2=V.|last3=Lobanov|first3=Yu.|last4=Abdullin|first4=F.|last5=Polyakov|first5=A.|last6=Shirokovsky|first6=I.|last7=Tsyganov|first7=Yu.|last8=Gulbekian|first8=G.|last9=Bogomolov|first9=S.|first10=B. N. |last10=Gikal|first11=A. N. |last11=Mezentsev|first12=S. |last12=Iliev|first13=V. G. |last13=Subbotin|first14=A. M. |last14=Sukhov|first15=A. A. |last15=Voinov|first16=G. V. |last16=Buklanov|first17=K. |last17=Subotic|first18=V. I. |last18=Zagrebaev|first19=M. G. |last19=Itkis|first20=J. B. |last20=Patin|first21=K. J. |last21=Moody|first22=J. F. |last22=Wild|first23=M. A. |last23=Stoyer|first24=N. J. |last24=Stoyer|first25=D. A. |last25=Shaughnessy|first26=J. M. |last26=Kenneally|first27=P. A. |last27=Wilk|first28=R. W. |last28=Lougheed|first29=R. I. |last29=Il’kaev|first30=S. P. |last30=Vesnovskii|display-authors=10|bibcode = 2004PhRvC..70f4609O|issue=6|url=http://www1.jinr.ru/Preprints/2004/160(E7-2004-160).pdf}}</ref> In further experiments from 2004 to 2006, the team replaced the curium-248 target with the lighter [[curium]] isotope [[curium-245]]. Here evidence was found for the two isotopes <sup>290</sup>Lv and <sup>291</sup>Lv.<ref name="JWP" /> - -In May 2009, the [[IUPAC]]/[[IUPAP]] Joint Working Party reported on the discovery of [[copernicium]] and acknowledged the discovery of the isotope <sup>283</sup>Cn.<ref name="jwr">{{cite journal|journal = [[Pure Appl. Chem.]]|date = 2009|title = Discovery of the element with atomic number 112|format = IUPAC Technical Report|author = Barber, R. C.|author2 = Gaeggeler, H. W.|author3 = Karol, P. J.|author4 = Nakahara, H.|author5 = Verdaci, E.|author6 = Vogt, E.|name-list-style = amp |url = http://media.iupac.org/publications/pac/2009/pdf/8107x1331.pdf|doi = 10.1351/PAC-REP-08-03-05|volume = 81|page = 1331|issue = 7|s2cid = 95703833}}</ref> This implied the ''de facto'' discovery of the isotope <sup>291</sup>Lv, from the acknowledgment of the data relating to its granddaughter <sup>283</sup>Cn, although the livermorium data was not absolutely critical for the demonstration of copernicium's discovery. Also in 2009, confirmation from Berkeley and the [[Gesellschaft für Schwerionenforschung]] (GSI) in Germany came for the flerovium isotopes 286 to 289, immediate daughters of the four known livermorium isotopes. In 2011, IUPAC evaluated the Dubna team experiments of 2000–2006. Whereas they found the earliest data (not involving <sup>291</sup>Lv and <sup>283</sup>Cn) inconclusive, the results of 2004–2006 were accepted as identification of livermorium, and the element was officially recognized as having been discovered.<ref name="JWP">{{cite journal|last1=Barber |first1=R. C.|last2=Karol |first2=P. J.|last3=Nakahara |first3=H.|last4=Vardaci |first4=E.|last5=Vogt |first5=E. W.|date=2011|title=Discovery of the elements with atomic numbers greater than or equal to 113 (IUPAC Technical Report)|journal=[[Pure and Applied Chemistry]]|volume=83 |issue=7 |page=1485|doi=10.1351/PAC-REP-10-05-01|doi-access=free}}</ref> - -The synthesis of livermorium has been separately confirmed at the GSI (2012) and [[RIKEN]] (2014 and 2016).<ref name="gsi12">{{cite journal | doi=10.1140/epja/i2012-12062-1 | volume=48 | issue=5 | pages=62 | title=The reaction <sup>48</sup>Ca + <sup>248</sup>Cm → <sup>296</sup>116<sup>*</sup> studied at the GSI-SHIP | journal=The European Physical Journal A| year=2012 | last1=Hofmann | first1=S. | last2=Heinz | first2=S. | last3=Mann | first3=R. | last4=Maurer | first4=J. | last5=Khuyagbaatar | first5=J. | last6=Ackermann | first6=D. | last7=Antalic | first7=S. | last8=Barth | first8=W. | last9=Block | first9=M. | last10=Burkhard | first10=H. G. | last11=Comas | first11=V. F. | last12=Dahl | first12=L. | last13=Eberhardt | first13=K. | last14=Gostic | first14=J. | last15=Henderson | first15=R. A. | last16=Heredia | first16=J. A. | last17=Heßberger | first17=F. P. | last18=Kenneally | first18=J. M. | last19=Kindler | first19=B. | last20=Kojouharov | first20=I. | last21=Kratz | first21=J. V. | last22=Lang | first22=R. | last23=Leino | first23=M. | last24=Lommel | first24=B. | last25=Moody | first25=K. J. | last26=Münzenberg | first26=G. | last27=Nelson | first27=S. L. | last28=Nishio | first28=K. | last29=Popeko | first29=A. G. | last30=Runke | first30=J. | display-authors=29 | bibcode=2012EPJA...48...62H| s2cid=121930293 }}</ref><ref>{{cite journal|url=http://www.nishina.riken.jp/researcher/APR/APR047/pdf/xi.pdf |title=Measurement of the <sup>248</sup>Cm + <sup>48</sup>Ca fusion reaction products at RIKEN GARIS |page=11 |journal=RIKEN Accel. Prog. Rep. |volume=47 |year=2014 |author=Morita, K.|display-authors=etal}}</ref> In the 2012 GSI experiment, one chain tentatively assigned to <sup>293</sup>Lv was shown to be inconsistent with previous data; it is believed that this chain may instead originate from an [[nuclear isomer|isomeric state]], <sup>293m</sup>Lv.<ref name="gsi12" /> In the 2016 RIKEN experiment, one atom that may be assigned to <sup>294</sup>Lv was seemingly detected, alpha decaying to <sup>290</sup>Fl and <sup>286</sup>Cn, which underwent spontaneous fission; however, the first alpha from the livermorium nuclide produced was missed, and the assignment to <sup>294</sup>Lv is still uncertain though plausible.<ref name="Kaji">{{cite journal |last1=Kaji |first1=Daiya |last2=Morita |first2=Kosuke |first3=Kouji |last3=Morimoto |first4=Hiromitsu |last4=Haba |first5=Masato |last5=Asai |first6=Kunihiro |last6=Fujita |first7=Zaiguo |last7=Gan |first8=Hans |last8=Geissel |first9=Hiroo |last9=Hasebe |first10=Sigurd |last10=Hofmann |first11=MingHui |last11=Huang |first12=Yukiko |last12=Komori |first13=Long |last13=Ma |first14=Joachim |last14=Maurer |first15=Masashi |last15=Murakami |first16=Mirei |last16=Takeyama |first17=Fuyuki |last17=Tokanai |first18=Taiki |last18=Tanaka |first19=Yasuo |last19=Wakabayashi |first20=Takayuki |last20=Yamaguchi |first21=Sayaka |last21=Yamaki |first22=Atsushi |last22=Yoshida |date=2017 |title=Study of the Reaction <sup>48</sup>Ca + <sup>248</sup>Cm → <sup>296</sup>Lv* at RIKEN-GARIS |journal=Journal of the Physical Society of Japan |volume=86 |issue=3 |pages=034201–1–7 |doi=10.7566/JPSJ.86.034201 |bibcode=2017JPSJ...86c4201K }}</ref> - -=== Naming === -[[File:Robert Livermore.jpg|thumb|upright|[[Robert Livermore]], the indirect namesake of livermorium]] -Using [[Mendeleev's predicted elements|Mendeleev's nomenclature for unnamed and undiscovered elements]], livermorium is sometimes called ''eka-[[polonium]]''.<ref>{{cite journal | doi = 10.1088/0031-8949/10/A/001| title = The Search for New Elements: The Projects of Today in a Larger Perspective| journal = Physica Scripta| volume = 10| pages = 5–12| year = 1974| last1 = Seaborg | first1 = Glenn T. | bibcode = 1974PhyS...10S...5S| s2cid = 250809299}}</ref> In 1979 IUPAC recommended that the [[placeholder name|placeholder]] [[systematic element name]] ''ununhexium'' (''Uuh'')<ref name="iupac">{{cite journal|author=Chatt, J.|journal=Pure Appl. Chem.|date=1979|volume=51|pages=381–384|title=Recommendations for the Naming of Elements of Atomic Numbers Greater than 100|doi=10.1351/pac197951020381|issue=2|doi-access=free}}</ref> be used until the discovery of the element was confirmed and a name was decided. Although widely used in the chemical community on all levels, from chemistry classrooms to advanced textbooks, the recommendations were mostly ignored among scientists in the field,<ref name="Folden">{{cite web|url=http://cyclotron.tamu.edu/smp/The%20Heaviest%20Elements%20in%20the%20Universe.pdf |title=The Heaviest Elements in the Universe |author=Folden, Cody |date=31 January 2009 |work=Saturday Morning Physics at Texas A&M |access-date=9 March 2012 |url-status=unfit |archive-url=https://web.archive.org/web/20140810213232/http://cyclotron.tamu.edu/smp/The%20Heaviest%20Elements%20in%20the%20Universe.pdf |archive-date=August 10, 2014 }} "</ref><ref>{{cite journal|url=http://pubs.acs.org/cen/80th/print/darmstadtium.html |title= Darmstadtium and Beyond|journal=Chemical & Engineering News|author=Hoffman, Darleane C. }}</ref> who called it "element 116", with the symbol of ''E116'', ''(116)'', or even simply ''116''.<ref name="Haire" /> - -According to IUPAC recommendations, the discoverer or discoverers of a new element have the right to suggest a name.<ref>{{cite journal|doi=10.1351/pac200274050787|url=http://media.iupac.org/publications/pac/2002/pdf/7405x0787.pdf|title=Naming of new elements(IUPAC Recommendations 2002)|date=2002|author=Koppenol, W. H.|journal=Pure and Applied Chemistry|volume=74|page=787|issue=5|s2cid=95859397}}</ref> The discovery of livermorium was recognized by the Joint Working Party (JWP) of IUPAC on 1 June 2011, along with that of [[flerovium]].<ref name="JWP" /> According to the vice-director of JINR, the Dubna team originally wanted to name element 116 ''moscovium'', after the [[Moscow Oblast]] in which Dubna is located,<ref name="E114&116">{{cite web|publisher=rian.ru|date=2011|access-date=2011-05-08|url=http://www.rian.ru/science/20110326/358081075.html|title=Russian Physicists Will Suggest to Name Element 116 Moscovium}}: Mikhail Itkis, the vice-director of JINR stated: "We would like to name element 114 after [[Georgy Flerov]] – flerovium, and another one [element 116] – moscovium, not after Moscow, but after [[Moscow Oblast]]".</ref> but it was later decided to use this name for [[moscovium|element 115]] instead. The name ''livermorium'' and the symbol ''Lv'' were adopted on May 23,<ref>{{cite web|last1=Loss|first1=Robert D.|last2=Corish|first2=John|title=Names and symbols of the elements with atomic numbers 114 and 116 (IUPAC Recommendations 2012)|url=http://pac.iupac.org/publications/pac/pdf/2012/pdf/8407x1669.pdf|website=IUPAC; Pure and Applied Chemistry|publisher=IUPAC|access-date=2 December 2015}}</ref> 2012.<ref name="IUPAC-names-114-116" /><ref name="IUPAC">{{cite web|title=News: Start of the Name Approval Process for the Elements of Atomic Number 114 and 116 |url=http://www.iupac.org/news/news-detail/article/start-of-the-name-approval-process-for-the-elements-of-atomic-number-114-and-116.html |work=International Union of Pure and Applied Chemistry |access-date=February 22, 2012 |url-status=dead |archive-url=https://web.archive.org/web/20120302173200/http://www.iupac.org/news/news-detail/article/start-of-the-name-approval-process-for-the-elements-of-atomic-number-114-and-116.html |archive-date=March 2, 2012 }}</ref> The name recognises the [[Lawrence Livermore National Laboratory]], within the city of [[Livermore, California]], US, which collaborated with JINR on the discovery. The city in turn is named after the American rancher [[Robert Livermore]], a naturalized Mexican citizen of English birth.<ref name="IUPAC-names-114-116" /> The naming ceremony for flerovium and livermorium was held in Moscow on October 24, 2012.<ref>{{cite web |url=http://newuc.jinr.ru/img_sections/file/Practice2016/EU/2016-07%20AGP_SHE.pdf |title=Synthesis of superheavy elements |last=Popeko |first=Andrey G. |date=2016 |website=jinr.ru |publisher=[[Joint Institute for Nuclear Research]] |access-date=4 February 2018 |archive-url=https://web.archive.org/web/20180204124109/http://newuc.jinr.ru/img_sections/file/Practice2016/EU/2016-07%20AGP_SHE.pdf |archive-date=4 February 2018 |url-status=dead }}</ref> - -== Predicted properties == -Other than nuclear properties, no properties of livermorium or its compounds have been measured; this is due to its extremely limited and expensive production<ref name="Bloomberg" /><!-- used transcluded, named ref --> and the fact that it decays very quickly. Properties of livermorium remain unknown and only predictions are available. - -=== Nuclear stability and isotopes === -{{Main|Isotopes of livermorium}} -[[File:Island of Stability derived from Zagrebaev.png|right|thumb|upright=1.8|The expected location of the island of stability is marked by the white circle. The dotted line is the line of [[beta decay|beta]] stability.]] -Livermorium is expected to be near an [[island of stability]] centered on [[copernicium]] (element 112) and [[flerovium]] (element 114).<ref name="Zagrebaev">{{cite conference |last1=Zagrebaev |first1=Valeriy |last2=Karpov |first2=Alexander |last3=Greiner |first3=Walter |date=2013 |title=Future of superheavy element research: Which nuclei could be synthesized within the next few years? |publisher=IOP Science |book-title=Journal of Physics: Conference Series |volume=420 |pages=1–15 |url=http://iopscience.iop.org/1742-6596/420/1/012001/pdf/1742-6596_420_1_012001.pdf |access-date=20 August 2013}}</ref><ref>{{cite book|title=Van Nostrand's scientific encyclopedia|first1=Glenn D. |last1= Considine |first2=Peter H. |last2= Kulik|publisher=Wiley-Interscience|date=2002|edition=9th|isbn=978-0-471-33230-5|oclc=223349096}}</ref> Due to the expected high [[fission barrier]]s, any nucleus within this island of stability exclusively decays by alpha decay and perhaps some electron capture and [[beta decay]].{{Fricke1975}} While the known isotopes of livermorium do not actually have enough neutrons to be on the island of stability, they can be seen to approach the island, as the heavier isotopes are generally the longer-lived ones.<ref name="00Og01" /><ref name="JWP" /> - -Superheavy elements are produced by [[nuclear fusion]]. These fusion reactions can be divided into "hot" and "cold" fusion,{{efn|Despite the name, "cold fusion" in the context of superheavy element synthesis is a distinct concept from the idea that nuclear fusion can be achieved in room temperature conditions (see [[cold fusion]]).<ref>{{cite journal |doi=10.1016/0022-0728(89)80006-3 |title=Electrochemically induced nuclear fusion of deuterium |date=1989 |last1=Fleischmann |first1=Martin |last2=Pons |first2=Stanley |journal=Journal of Electroanalytical Chemistry and Interfacial Electrochemistry |volume=261 |issue=2 |pages=301–308}}</ref>}} depending on the excitation energy of the compound nucleus produced. In hot fusion reactions, very light, high-energy projectiles are accelerated toward very heavy targets ([[actinide]]s), giving rise to compound nuclei at high excitation energy (~40–50&nbsp;[[electronvolt|MeV]]) that may either fission or evaporate several (3 to 5) neutrons.<ref name="fusion">{{cite journal |last1=Barber |first1=Robert C. |last2=Gäggeler |first2=Heinz W. |last3=Karol |first3=Paul J. |last4=Nakahara |first4=Hiromichi |last5=Vardaci |first5=Emanuele |last6=Vogt |first6=Erich |title=Discovery of the element with atomic number 112 (IUPAC Technical Report) |journal=Pure and Applied Chemistry |volume=81 |issue=7 |page=1331 |date=2009 |doi=10.1351/PAC-REP-08-03-05|s2cid=95703833 |url=http://doc.rero.ch/record/297412/files/pac-rep-08-03-05.pdf }}</ref> In cold fusion reactions (which use heavier projectiles, typically from the [[period 4 element|fourth period]], and lighter targets, usually [[lead]] and [[bismuth]]), the produced fused nuclei have a relatively low excitation energy (~10–20&nbsp;MeV), which decreases the probability that these products will undergo fission reactions. As the fused nuclei cool to the [[ground state]], they require emission of only one or two neutrons. Hot fusion reactions tend to produce more neutron-rich products because the actinides have the highest neutron-to-proton ratios of any elements that can presently be made in macroscopic quantities.<ref name="AM89">{{cite journal |first1=Peter |last1=Armbruster |name-list-style=amp |first2=Gottfried |last2=Munzenberg |title=Creating superheavy elements |journal=Scientific American |volume=34 |pages=36–42 |date=1989}}</ref> - -Important information could be gained regarding the properties of superheavy nuclei by the synthesis of more livermorium isotopes, specifically those with a few neutrons more or less than the known ones – <sup>286</sup>Lv, <sup>287</sup>Lv, <sup>288</sup>Lv, <sup>289</sup>Lv, <sup>294</sup>Lv, and <sup>295</sup>Lv. This is possible because there are many reasonably long-lived [[isotopes of curium]] that can be used to make a target.<ref name="Zagrebaev" /> The light isotopes can be made by fusing [[curium-243]] with calcium-48. They would undergo a chain of alpha decays, ending at [[transactinide]] isotopes that are too light to achieve by hot fusion and too heavy to be produced by cold fusion.<ref name="Zagrebaev" /> - -The synthesis of the heavy isotopes <sup>294</sup>Lv and <sup>295</sup>Lv could be accomplished by fusing the heavy curium isotope [[curium-250]] with calcium-48. The [[cross section (physics)|cross section]] of this nuclear reaction would be about 1&nbsp;[[barn (unit)|picobarn]], though it is not yet possible to produce <sup>250</sup>Cm in the quantities needed for target manufacture.<ref name="Zagrebaev" /> After a few alpha decays, these livermorium isotopes would reach nuclides at the [[line of beta stability]]. Additionally, [[electron capture]] may also become an important decay mode in this region, allowing affected nuclei to reach the middle of the island. For example, it is predicted that <sup>295</sup>Lv would alpha decay to <sup>291</sup>[[flerovium|Fl]], which would undergo successive electron capture to <sup>291</sup>Nh and then <sup>291</sup>[[copernicium|Cn]] which is expected to be in the middle of the island of stability and have a half-life of about 1200&nbsp;years, affording the most likely hope of reaching the middle of the island using current technology. A drawback is that the decay properties of superheavy nuclei this close to the line of beta stability are largely unexplored.<ref name="Zagrebaev" /> - -Other possibilities to synthesize nuclei on the island of stability include quasifission (partial fusion followed by fission) of a massive nucleus.<ref name="ZG" /> Such nuclei tend to fission, expelling doubly [[magic number (physics)|magic]] or nearly doubly magic fragments such as [[calcium-40]], [[tin-132]], [[lead-208]], or [[bismuth-209]].<ref name="jinr20006">{{cite web|title=JINR Annual Reports 2000–2006|url=http://www1.jinr.ru/Reports/Reports_eng_arh.html|publisher=[[Joint Institute for Nuclear Research|JINR]]|access-date=2013-08-27}}</ref> Recently it has been shown that the multi-nucleon transfer reactions in collisions of actinide nuclei (such as [[uranium]] and [[curium]]) might be used to synthesize the neutron-rich superheavy nuclei located at the island of stability,<ref name="ZG">{{cite journal|last1=Zagrebaev |first1=V.|last2=Greiner |first2=W.|date=2008|title=Synthesis of superheavy nuclei: A search for new production reactions|journal=[[Physical Review C]]|volume=78 |issue=3 |page=034610|arxiv=0807.2537|bibcode=2008PhRvC..78c4610Z|doi=10.1103/PhysRevC.78.034610}}</ref> although formation of the lighter elements [[nobelium]] or [[seaborgium]] is more favored.<ref name="Zagrebaev" /> One last possibility to synthesize isotopes near the island is to use controlled [[nuclear explosion]]s to create a [[neutron flux]] high enough to bypass the gaps of instability at <sup>258–260</sup>[[fermium|Fm]] and at [[mass number]] 275 (atomic numbers [[rutherfordium|104]] to [[hassium|108]]), mimicking the [[r-process]] in which the [[actinide]]s were first produced in nature and the gap of instability around [[radon]] bypassed.<ref name="Zagrebaev" /> Some such isotopes (especially <sup>291</sup>Cn and <sup>293</sup>Cn) may even have been synthesized in nature, but would have decayed away far too quickly (with half-lives of only thousands of years) and be produced in far too small quantities (about 10<sup>−12</sup> the abundance of [[lead]]) to be detectable as [[primordial nuclide]]s today outside [[cosmic ray]]s.<ref name="Zagrebaev" /> - -=== Physical and atomic === -In the [[periodic table]], livermorium is a member of group 16, the chalcogens. It appears below [[oxygen]], [[sulfur]], [[selenium]], [[tellurium]], and polonium. Every previous chalcogen has six electrons in its valence shell, forming a [[valence electron]] configuration of ns<sup>2</sup>np<sup>4</sup>. In livermorium's case, the trend should be continued and the valence electron configuration is predicted to be 7s<sup>2</sup>7p<sup>4</sup>;<ref name="Haire" /> therefore, livermorium will have some similarities to its lighter [[congener (chemistry)|congeners]]. Differences are likely to arise; a large contributing effect is the [[spin–orbit interaction|spin–orbit (SO) interaction]]—the mutual interaction between the electrons' motion and [[Spin (physics)|spin]]. It is especially strong for the superheavy elements, because their electrons move much faster than in lighter atoms, at velocities comparable to the [[speed of light]].<ref name="Thayer">{{cite book |last1=Thayer |first1=John S. |chapter=Relativistic Effects and the Chemistry of the Heavier Main Group Elements |journal=Relativistic Methods for Chemists |volume=10 |date=2010 |page=83 |doi=10.1007/978-1-4020-9975-5_2|isbn=978-1-4020-9974-8 |series=Challenges and Advances in Computational Chemistry and Physics }}</ref> In relation to livermorium atoms, it lowers the 7s and the 7p electron energy levels (stabilizing the corresponding electrons), but two of the 7p electron energy levels are stabilized more than the other four.<ref name="Faegri">{{cite journal|last1=Faegri |first1=K.|last2=Saue |first2=T.|date=2001|title=Diatomic molecules between very heavy elements of group 13 and group 17: A study of relativistic effects on bonding|journal=[[Journal of Chemical Physics]]|volume=115 |issue=6 |page=2456|bibcode=2001JChPh.115.2456F|doi=10.1063/1.1385366 |doi-access=free}}</ref> The stabilization of the 7s electrons is called the [[inert pair effect]], and the effect "tearing" the 7p subshell into the more stabilized and the less stabilized parts is called subshell splitting. Computation chemists see the split as a change of the second ([[azimuthal quantum number|azimuthal]]) [[quantum number]] ''l'' from 1 to {{frac|1|2}} and {{frac|3|2}} for the more stabilized and less stabilized parts of the 7p subshell, respectively: the 7p<sub>1/2</sub> subshell acts as a second inert pair, though not as inert as the 7s electrons, while the 7p<sub>3/2</sub> subshell can easily participate in chemistry.<ref name="Haire" /><ref name="Thayer" />{{efn|The quantum number corresponds to the letter in the electron orbital name: 0 to s, 1 to p, 2 to d, etc. See [[azimuthal quantum number]] for more information.}} For many theoretical purposes, the valence electron configuration may be represented to reflect the 7p subshell split as 7s{{su|p=2|w=70%}}7p{{su|b=1/2|p=2|w=70%}}7p{{su|b=3/2|p=2|w=70%}}.<ref name="Haire" /> - -Inert pair effects in livermorium should be even stronger than in polonium and hence the +2 [[oxidation state]] becomes more stable than the +4 state, which would be stabilized only by the most [[electronegative]] [[ligand]]s; this is reflected in the expected [[ionization energy|ionization energies]] of livermorium, where there are large gaps between the second and third ionization energies (corresponding to the breaching of the unreactive 7p<sub>1/2</sub> shell) and fourth and fifth ionization energies.{{Fricke1975|name}} Indeed, the 7s electrons are expected to be so inert that the +6 state will not be attainable.<ref name="Haire" /> The [[melting point|melting]] and [[boiling point]]s of livermorium are expected to continue the trends down the chalcogens; thus livermorium should melt at a higher temperature than polonium, but boil at a lower temperature.<ref name="B&K" /> It should also be [[density|denser]] than polonium (α-Lv: 12.9&nbsp;g/cm<sup>3</sup>; α-Po: 9.2&nbsp;g/cm<sup>3</sup>); like polonium it should also form an α and a β allotrope.{{Fricke1975|name}}<ref> -{{cite web |url=http://cyclotron.tamu.edu/she2015/assets/pdfs/presentations/Eichler_SHE_2015_TAMU.pdf |title=Gas phase chemistry with SHE – Experiments |last=Eichler |first=Robert |date=2015 |website=cyclotron.tamu.edu |publisher=Texas A & M University |access-date=27 April 2017}}</ref> The electron of a [[hydrogen-like atom|hydrogen-like]] livermorium atom (oxidized so that it only has one electron, Lv<sup>115+</sup>) is expected to move so fast that it has a mass 1.86 times that of a stationary electron, due to [[relativistic quantum chemistry|relativistic effects]]. For comparison, the figures for hydrogen-like polonium and tellurium are expected to be 1.26 and 1.080 respectively.<ref name="Thayer" /> - -=== Chemical === -Livermorium is projected to be the fourth member of the 7p series of [[chemical element]]s and the heaviest member of group 16 in the periodic table, below polonium. While it is the least theoretically studied of the 7p elements, its chemistry is expected to be quite similar to that of polonium.{{Fricke1975|name}} The group oxidation state of +6 is known for all the chalcogens apart from oxygen which cannot [[Hypervalent molecule|expand its octet]] and is one of the strongest [[redox|oxidizing agents]] among the chemical elements. Oxygen is thus limited to a maximum +2 state, exhibited in the fluoride [[oxygen difluoride|OF<sub>2</sub>]]. The +4 state is known for [[sulfur]], [[selenium]], [[tellurium]], and polonium, undergoing a shift in stability from reducing for sulfur(IV) and selenium(IV) through being the most stable state for tellurium(IV) to being oxidizing in polonium(IV). This suggests a decreasing stability for the higher oxidation states as the group is descended due to the increasing importance of relativistic effects, especially the inert pair effect.<ref name="Thayer" /> The most stable oxidation state of livermorium should thus be +2, with a rather unstable +4 state. The +2 state should be about as easy to form as it is for [[beryllium]] and [[magnesium]], and the +4 state should only be achieved with strongly electronegative ligands, such as in livermorium(IV) fluoride (LvF<sub>4</sub>).<ref name="Haire" /> The +6 state should not exist at all due to the very strong stabilization of the 7s electrons, making the valence core of livermorium only four electrons.{{Fricke1975|name}} The lighter chalcogens are also known to form a −2 state as [[oxide]], [[sulfide]], [[selenide]], [[telluride (chemistry)|telluride]], and [[polonide]]; due to the destabilization of livermorium's 7p<sub>3/2</sub> subshell, the −2 state should be very unstable for livermorium, whose chemistry should be essentially purely cationic,<ref name="Haire" /> though the larger subshell and spinor energy splittings of livermorium as compared to polonium should make Lv<sup>2−</sup> slightly less unstable than expected.<ref name="Thayer" /> - -Livermorium hydride (LvH<sub>2</sub>) would be the heaviest [[hydrogen chalcogenide|chalcogen hydride]] and the heaviest homolog of [[water]] (the lighter ones are [[hydrogen sulfide|H<sub>2</sub>S]], [[hydrogen selenide|H<sub>2</sub>Se]], [[hydrogen telluride|H<sub>2</sub>Te]], and [[polonium hydride|PoH<sub>2</sub>]]). Polane (polonium hydride) is a more [[covalent]] compound than most metal hydrides because polonium straddles the border between [[metal]] and [[metalloid]] and has some nonmetallic properties: it is intermediate between a [[hydrogen halide]] like [[hydrogen chloride]] (HCl) and a [[metal hydride]] like [[stannane]] ([[tin|Sn]]H<sub>4</sub>). Livermorane should continue this trend: it should be a hydride rather than a livermoride, but still a covalent [[molecule|molecular]] compound.<ref name="Nash">{{cite journal |last1=Nash |first1=Clinton S. |last2=Crockett |first2=Wesley W. |date=2006 |title=An Anomalous Bond Angle in (116)H<sub>2</sub>. Theoretical Evidence for Supervalent Hybridization. |journal=The Journal of Physical Chemistry A |volume=110 |issue=14 |pages=4619–4621 |doi=10.1021/jp060888z |pmid=16599427 |bibcode=2006JPCA..110.4619N |url=https://figshare.com/articles/An_Anomalous_Bond_Angle_in_116_H_sub_2_sub_Theoretical_Evidence_for_Supervalent_Hybridization/3227647 }}</ref> Spin-orbit interactions are expected to make the Lv–H bond longer than expected from [[periodic trends]] alone, and make the H–Lv–H bond angle larger than expected: this is theorized to be because the unoccupied 8s orbitals are relatively low in energy and can [[orbital hybridization|hybridize]] with the valence 7p orbitals of livermorium.<ref name="Nash" /> This phenomenon, dubbed "supervalent hybridization",<ref name="Nash" /> has some analogues in non-relativistic regions in the periodic table; for example, molecular [[calcium difluoride]] has 4s and 3d involvement from the [[calcium]] atom.<ref>{{Greenwood&Earnshaw2nd|page=117}}</ref> The heavier livermorium di[[halide]]s are predicted to be [[linear molecular geometry|linear]], but the lighter ones are predicted to be [[bent molecular geometry|bent]].<ref>{{cite journal | last1 = Van WüLlen | first1 = C. | last2 = Langermann | first2 = N. | doi = 10.1063/1.2711197 | title = Gradients for two-component quasirelativistic methods. Application to dihalogenides of element 116 | journal = The Journal of Chemical Physics | volume = 126 | issue = 11 | page = 114106 | year = 2007 | pmid = 17381195|bibcode = 2007JChPh.126k4106V }}</ref> - -== Experimental chemistry == -Unambiguous determination of the chemical characteristics of livermorium has not yet been established.<ref name="Düllmann">{{cite journal |last1=Düllmann |first1=Christoph E. |date=2012 |title=Superheavy elements at GSI: a broad research program with element 114 in the focus of physics and chemistry |journal=Radiochimica Acta |volume=100 |issue=2 |pages=67–74 |doi=10.1524/ract.2011.1842 |s2cid=100778491 }}</ref><ref name="Eichler">{{cite journal |last=Eichler |first=Robert |date=2013 |title=First foot prints of chemistry on the shore of the Island of Superheavy Elements |arxiv=1212.4292|journal=Journal of Physics: Conference Series |volume=420 |issue=1 |page=012003 |doi=10.1088/1742-6596/420/1/012003 |bibcode=2013JPhCS.420a2003E |s2cid=55653705 }}</ref> In 2011, experiments were conducted to create [[nihonium]], [[flerovium]], and [[moscovium]] isotopes in the reactions between calcium-48 projectiles and targets of americium-243 and [[plutonium-244]]. The targets included [[lead]] and [[bismuth]] impurities and hence some isotopes of bismuth and [[polonium]] were generated in nucleon transfer reactions. This, while an unforeseen complication, could give information that would help in the future chemical investigation of the heavier homologs of bismuth and polonium, which are respectively moscovium and livermorium.<ref name="Eichler" /> The produced nuclides [[bismuth-213]] and [[polonium-212m]] were transported as the hydrides [[bismuthine|<sup>213</sup>BiH<sub>3</sub>]] and [[polonium hydride|<sup>212m</sup>PoH<sub>2</sub>]] at 850&nbsp;°C through a quartz wool filter unit held with [[tantalum]], showing that these hydrides were surprisingly thermally stable, although their heavier congeners McH<sub>3</sub> and LvH<sub>2</sub> would be expected to be less thermally stable from simple extrapolation of [[periodic trends]] in the p-block.<ref name="Eichler" /> Further calculations on the stability and electronic structure of BiH<sub>3</sub>, McH<sub>3</sub>, PoH<sub>2</sub>, and LvH<sub>2</sub> are needed before chemical investigations take place. Moscovium and livermorium are expected to be [[volatility (chemistry)|volatile]] enough as pure elements for them to be chemically investigated in the near future, a property livermorium would then share with its lighter congener polonium, though the short half-lives of all presently known livermorium isotopes means that the element is still inaccessible to experimental chemistry.<ref name="Eichler" /><ref name="Moody">{{cite book |chapter=Synthesis of Superheavy Elements |last1=Moody |first1=Ken |editor1-first=Matthias |editor1-last=Schädel |editor2-first=Dawn |editor2-last=Shaughnessy |title=The Chemistry of Superheavy Elements |publisher=Springer Science & Business Media |edition=2nd |pages=24–8 |isbn=9783642374661|date=2013-11-30 }}</ref> -{{clear}} - -== Notes == -{{notelist}} - -== References == -{{Reflist|colwidth=30em}} - -== Bibliography == -* {{cite journal |title=The NUBASE2016 evaluation of nuclear properties |doi=10.1088/1674-1137/41/3/030001 |last1=Audi |first1=G. |last2=Kondev |first2=F. G. |last3=Wang |first3=M. |last4=Huang |first4=W. J. |last5=Naimi |first5=S. |display-authors=3 |journal=Chinese Physics C |volume=41 |issue=3 <!--Citation bot deny-->|pages=030001 |year=2017 -|bibcode=2017ChPhC..41c0001A }}<!--for consistency and specific pages, do not replace with {{NUBASE2016}}--> -* {{cite book|last=Beiser|first=A.|title=Concepts of modern physics|date=2003|publisher=McGraw-Hill|isbn=978-0-07-244848-1|edition=6th|oclc=48965418}} -* {{cite book |last1=Hoffman |first1=D. C. |author-link=Darleane C. Hoffman |last2=Ghiorso |first2=A. |author-link2=Albert Ghiorso |last3=Seaborg |first3=G. T. |title=The Transuranium People: The Inside Story |year=2000 |publisher=[[World Scientific]] |isbn=978-1-78-326244-1 }} -* {{cite book |last=Kragh |first=H. |author-link=Helge Kragh |date=2018 |title=From Transuranic to Superheavy Elements: A Story of Dispute and Creation |publisher=[[Springer Science+Business Media|Springer]] |isbn=978-3-319-75813-8 }} - -== External links == -{{Commons|Livermorium}} -* [http://www.periodicvideos.com/videos/116.htm Livermorium] at ''[[The Periodic Table of Videos]]'' (University of Nottingham) -* [https://web.archive.org/web/20081205080201/http://www.cerncourier.com/main/article/41/8/17 ''CERN Courier'' – Second postcard from the island of stability] -* [http://webelements.com/livermorium/ Livermorium at WebElements.com] +In the [[periodic table]], it is a [[p-block]] [[transactinide element]]. It is a member of the [[period 7 element|7th period]] and is placed in group 16 as the heaviest [[chalcogen]], but it has not been confirmed to behave as the heavier [[homology (chemistry)|homologue]] to the chalcogen [[polonium]]. Livermorium is calcula[http://webelements.com/livermorium/ Livermorium at WebElements.com] {{Periodic table (navbox)}} '
New page size (new_size)
1809
Old page size (old_size)
50833
Size change in edit (edit_delta)
-49024
Lines added in edit (added_lines)
[ 0 => 'In the [[periodic table]], it is a [[p-block]] [[transactinide element]]. It is a member of the [[period 7 element|7th period]] and is placed in group 16 as the heaviest [[chalcogen]], but it has not been confirmed to behave as the heavier [[homology (chemistry)|homologue]] to the chalcogen [[polonium]]. Livermorium is calcula[http://webelements.com/livermorium/ Livermorium at WebElements.com]' ]
Lines removed in edit (removed_lines)
[ 0 => 'In the [[periodic table]], it is a [[p-block]] [[transactinide element]]. It is a member of the [[period 7 element|7th period]] and is placed in group 16 as the heaviest [[chalcogen]], but it has not been confirmed to behave as the heavier [[homology (chemistry)|homologue]] to the chalcogen [[polonium]]. Livermorium is calculated to have some similar properties to its lighter homologues ([[oxygen]], [[sulfur]], [[selenium]], [[tellurium]], and polonium), and be a [[post-transition metal]], though it should also show several major differences from them.', 1 => '', 2 => '==Introduction==', 3 => '{{Transcluded section|source=Introduction to the heaviest elements}}', 4 => '{{:Introduction to the heaviest elements}}', 5 => '', 6 => '== History ==', 7 => '=== Unsuccessful synthesis attempts ===', 8 => 'The first search for element 116, using the reaction between <sup>248</sup>Cm and <sup>48</sup>Ca, was performed in 1977 by Ken Hulet and his team at the [[Lawrence Livermore National Laboratory]] (LLNL). They were unable to detect any atoms of livermorium.<ref>{{cite journal |doi=10.1103/PhysRevLett.39.385 |title=Search for Superheavy Elements in the Bombardment of <sup>248</sup>Cm with<sup>48</sup>Ca |year=1977 |last1=Hulet |first1=E. K. |journal=Physical Review Letters |volume=39 |pages=385–389 |last2=Lougheed |first2=R. |last3=Wild |first3=J. |last4=Landrum |first4=J. |last5=Stevenson |first5=P. |last6=Ghiorso |first6=A. |last7=Nitschke |first7=J. |last8=Otto |first8=R. |last9=Morrissey |first9=D. |last10=Baisden |first10=P. |last11=Gavin |first11=B. |last12=Lee |first12=D. |last13=Silva |first13=R. |last14=Fowler |first14=M. |last15=Seaborg |first15=G. |bibcode=1977PhRvL..39..385H |issue=7 |display-authors=8}}</ref> [[Yuri Oganessian]] and his team at the Flerov Laboratory of Nuclear Reactions (FLNR) in the [[Joint Institute for Nuclear Research]] (JINR) subsequently attempted the reaction in 1978 and met failure. In 1985, in a joint experiment between Berkeley and Peter Armbruster's team at GSI, the result was again negative, with a calculated [[cross section (physics)|cross section]] limit of 10–100&nbsp;pb. Work on reactions with <sup>48</sup>Ca, which had proved very useful in the synthesis of [[nobelium]] from the <sup>nat</sup>Pb+<sup>48</sup>Ca reaction, nevertheless continued at Dubna, with a superheavy element separator being developed in 1989, a search for target materials and starting of collaborations with LLNL being started in 1990, production of more intense <sup>48</sup>Ca beams being started in 1996, and preparations for long-term experiments with 3 orders of magnitude higher sensitivity being performed in the early 1990s. This work led directly to the production of new isotopes of elements 112 to 118 in the reactions of <sup>48</sup>Ca with actinide targets and the discovery of the 5 heaviest elements on the periodic table: [[flerovium]], [[moscovium]], livermorium, [[tennessine]], and [[oganesson]].<ref>{{cite journal |doi=10.1103/PhysRevLett.54.406 |title=Attempts to Produce Superheavy Elements by Fusion of <sup>48</sup>Ca with <sup>248</sup>Cm in the Bombarding Energy Range of 4.5–5.2&nbsp;MeV/u |year=1985 |last1=Armbruster |first1=P. |journal=Physical Review Letters |volume=54 |pages=406–409 |pmid=10031507 |last2=Agarwal |first2=YK |last3=Brüchle |first3=W |last4=Brügger |first4=M |last5=Dufour |first5=JP |last6=Gaggeler |first6=H |last7=Hessberger |first7=FP |last8=Hofmann |first8=S |last9=Lemmertz |first9=P |last10=Münzenberg |first10=G. |last11=Poppensieker |first11=K. |last12=Reisdorf |first12=W. |last13=Schädel |first13=M. |last14=Schmidt |first14=K. |last15=Schneider |first15=J. |last16=Schneider |first16=W. |last17=Sümmerer |first17=K. |last18=Vermeulen |first18=D. |last19=Wirth |first19=G. |last20=Ghiorso |first20=A. |last21=Gregorich |first21=K. |last22=Lee |first22=D. |last23=Leino |first23=M. |last24=Moody |first24=K. |last25=Seaborg |first25=G. |last26=Welch |first26=R. |last27=Wilmarth |first27=P. |last28=Yashita |first28=S. |last29=Frink |first29=C. |last30=Greulich |first30=N. |issue=5 |bibcode=1985PhRvL..54..406A |url=https://zenodo.org/record/1233843 |display-authors=8}}</ref>', 9 => '', 10 => 'In 1995, an international team led by [[Sigurd Hofmann]] at the [[Gesellschaft für Schwerionenforschung]] (GSI) in [[Darmstadt]], [[Germany]] attempted to synthesise element 116 in a radiative capture reaction (in which the compound nucleus de-excites through pure [[gamma emission]] without evaporating neutrons) between a [[lead]]-208 target and [[selenium]]-82 projectiles. No atoms of element 116 were identified.<ref>{{cite conference |url=https://www.epj-conferences.org/articles/epjconf/pdf/2016/26/epjconf-NS160-06001.pdf |title=The discovery of elements 107 to 112 |last1=Hofmann |first1=Sigurd |journal=EPJ Web of Conferences |date=1 December 2016 |volume=131 |page=06001 |conference=Nobel Symposium NS160 – Chemistry and Physics of Heavy and Superheavy Elements |doi=10.1051/epjconf/201613106001|doi-access=free }}</ref>', 11 => '', 12 => '=== Unconfirmed discovery claims ===', 13 => 'In late 1998, Polish physicist [[Robert Smolańczuk]] published calculations on the fusion of atomic nuclei towards the synthesis of [[superheavy element|superheavy atoms]], including [[oganesson|elements 118]] and 116.<ref name="Smolanczuk">{{cite journal|author=Smolanczuk, R.|journal=Physical Review C|volume=59|issue=5|date=1999|title=Production mechanism of superheavy nuclei in cold fusion reactions|pages=2634–2639|doi=10.1103/PhysRevC.59.2634|bibcode = 1999PhRvC..59.2634S}}</ref> His calculations suggested that it might be possible to make these two elements by fusing [[lead]] with [[krypton]] under carefully controlled conditions.<ref name="Smolanczuk" />', 14 => '', 15 => 'In 1999, researchers at [[Lawrence Berkeley National Laboratory]] made use of these predictions and announced the discovery of elements 118 and 116, in a paper published in ''[[Physical Review Letters]]'',<ref name="Ninov83.1104">{{cite journal|last1=Ninov|first1=Viktor|last2=Gregorich|first2=K.|last3=Loveland|first3=W.|last4=Ghiorso|first4=A.|last5=Hoffman|first5=D.|last6=Lee|first6=D.|last7=Nitsche|first7=H.|last8=Swiatecki|first8=W.|last9=Kirbach|first9=U.|first10=C. |last10=Laue|first11=J. |last11=Adams|first12=J. |last12=Patin|first13=D. |last13=Shaughnessy|first14=D. |last14=Strellis|first15=P. |last15=Wilk|title=Observation of Superheavy Nuclei Produced in the Reaction of {{SimpleNuclide|Krypton|86}} with {{SimpleNuclide|Lead|208}}|journal=[[Physical Review Letters]]|volume=83|pages=1104–1107|date=1999|doi=10.1103/PhysRevLett.83.1104|bibcode=1999PhRvL..83.1104N|issue=6 |display-authors=10|url=https://zenodo.org/record/1233919}}{{Retraction|doi=10.1103/PhysRevLett.89.039901|intentional=yes}}</ref> and very soon after the results were reported in ''[[Science (journal)|Science]]''.<ref>{{cite journal|author=Service, R. F.|journal=Science|date=1999|volume=284|page=1751|doi=10.1126/science.284.5421.1751|title=Berkeley Crew Bags Element 118|issue=5421|s2cid=220094113}}</ref> The researchers reported to have performed the [[nuclear reaction|reaction]]', 16 => '', 17 => ':{{nuclide|Krypton|86}} + {{nuclide|Lead|208}} → {{nuclide|oganesson|293}} + {{SubatomicParticle|link=yes|Neutron}} → {{nuclide|Livermorium|289}} + [[alpha particle|α]]', 18 => '', 19 => 'The following year, they published a retraction after researchers at other laboratories were unable to duplicate the results and the Berkeley lab itself was unable to duplicate them as well.<ref>{{cite news|url=http://enews.lbl.gov/Science-Articles/Archive/118-retraction.html|publisher=Berkeley Lab|author=Public Affairs Department|title=Results of element 118 experiment retracted|date=2001-07-21|access-date=2008-01-18|archive-url=https://web.archive.org/web/20080129191344/http://enews.lbl.gov/Science-Articles/Archive/118-retraction.html|archive-date=2008-01-29|url-status=dead}}</ref> In June 2002, the director of the lab announced that the original claim of the discovery of these two elements had been based on data fabricated by principal author [[Victor Ninov]].<ref>{{cite journal|pages=728–729|title=Misconduct: The stars who fell to Earth|journal=[[Nature (journal)|Nature]]|volume=420|doi=10.1038/420728a|date=2002|pmid=12490902|last1=Dalton|first1=R.|issue=6917|bibcode = 2002Natur.420..728D |s2cid=4398009}}</ref><ref>[https://web.archive.org/web/20071012075515/http://physicsworld.com/cws/article/news/2629 Element 118 disappears two years after it was discovered]. Physicsworld.com (August 2, 2001). Retrieved on 2012-04-02.</ref>', 20 => '', 21 => '=== Discovery ===', 22 => '<!-- Deleted image removed: [[File:Curium target livermorium.jpg|thumb|left|Curium-248 target used in the synthesis of livermorium]] -->', 23 => 'Livermorium was first synthesized on July 19, 2000, when scientists at [[Dubna]] ([[Joint Institute for Nuclear Research|JINR]]) bombarded a [[curium-248]] target with accelerated [[calcium-48]] ions. A single atom was detected, decaying by [[alpha decay|alpha emission]] with [[decay energy]] 10.54&nbsp;[[electronvolt|MeV]] to an isotope of [[flerovium]]. The results were published in December 2000.<ref name="00Og01">{{cite journal|doi=10.1103/PhysRevC.63.011301|title=Observation of the decay of <sup>292</sup>116|date=2000|author=Oganessian, Yu. Ts.|journal=Physical Review C|volume=63|issue=1|pages=011301|bibcode=2000PhRvC..63a1301O|last2=Utyonkov|last3=Lobanov|last4=Abdullin|last5=Polyakov|last6=Shirokovsky|last7=Tsyganov|last8=Gulbekian|last9=Bogomolov|last10=Gikal|last11=Mezentsev|last12=Iliev|last13=Subbotin|last14=Sukhov|last15=Ivanov|last16=Buklanov|last17=Subotic|last18=Itkis|last19=Moody|last20=Wild|last21=Stoyer|last22=Stoyer|last23=Lougheed|last24=Laue|last25=Karelin|last26=Tatarinov}}</ref>', 24 => '', 25 => ':{{nuclide|curium|248}} + {{nuclide|calcium|48}} → {{nuclide|livermorium|296}}* → {{nuclide|livermorium|293}} + 3 {{nuclide|neutronium|1}} → {{nuclide|flerovium|289}} + α', 26 => '', 27 => 'The [[decay product|daughter]] flerovium isotope had properties matching those of a flerovium isotope first synthesized in June 1999, which was originally assigned to <sup>288</sup>Fl,<ref name="00Og01" /> implying an assignment of the parent livermorium isotope to <sup>292</sup>Lv. Later work in December 2002 indicated that the synthesized flerovium isotope was actually <sup>289</sup>Fl, and hence the assignment of the synthesized livermorium atom was correspondingly altered to <sup>293</sup>Lv.<ref name="04Og01" />', 28 => '', 29 => '=== Road to confirmation ===', 30 => 'Two further atoms were reported by the institute during their second experiment during April–May 2001.<ref name="03Pa01">[https://e-reports-ext.llnl.gov/pdf/302186.pdf "Confirmed results of the <sup>248</sup>Cm(<sup>48</sup>Ca,4n)<sup>292</sup>116 experiment"] {{Webarchive|url=https://web.archive.org/web/20160130164119/https://e-reports-ext.llnl.gov/pdf/302186.pdf |date=2016-01-30 }}, ''Patin et al.'', ''LLNL report (2003)''. Retrieved 2008-03-03</ref> In the same experiment they also detected a decay chain which corresponded to the first observed decay of [[flerovium]] in December 1998, which had been assigned to <sup>289</sup>Fl.<ref name="03Pa01" /> No flerovium isotope with the same properties as the one found in December 1998 has ever been observed again, even in repeats of the same reaction. Later it was found that <sup>289</sup>Fl has different decay properties and that the first observed flerovium atom may have been its [[nuclear isomer]] <sup>289m</sup>Fl.<ref name="00Og01" /><ref name="04OgJINRPP">{{cite journal|last1=Oganessian |first1=Yu. Ts. |last2=Utyonkov |first2=V. K. |date=2004 |title=Measurements of cross sections and decay properties of the isotopes of elements 112, 114, and 116 produced in the fusion reactions <sup>233,238</sup>U, <sup>242</sup>Pu, and <sup>248</sup>Cm + <sup>48</sup>Ca |url=http://www.jinr.ru/publish/Preprints/2004/160(E7-2004-160).pdf |journal=[[Physical Review C]] |volume=70 |issue=6 |page=064609 |bibcode=2004PhRvC..70f4609O |doi=10.1103/PhysRevC.70.064609 |last3=Lobanov |first3=Yu. |last4=Abdullin |first4=F. |last5=Polyakov |first5=A. |last6=Shirokovsky |first6=I. |last7=Tsyganov |first7=Yu. |last8=Gulbekian |first8=G. |last9=Bogomolov |first9=S. |last10=Gikal |first10=B. |last11=Mezentsev |first11=A. |last12=Iliev |first12=S. |last13=Subbotin |first13=V. |last14=Sukhov |first14=A. |last15=Voinov |first15=A. |last16=Buklanov |first16=G. |last17=Subotic |first17=K. |last18=Zagrebaev |first18=V. |last19=Itkis |first19=M. |last20=Patin |first20=J. |last21=Moody |first21=K. |last22=Wild |first22=J. |last23=Stoyer |first23=M. |last24=Stoyer |first24=N. |last25=Shaughnessy |first25=D. |last26=Kenneally |first26=J. |last27=Wilk |first27=P. |last28=Lougheed |first28=R. |last29=Il’Kaev |first29=R. |last30=Vesnovskii |first30=S. |url-status=dead |archive-url=https://web.archive.org/web/20080528130343/http://www.jinr.ru/publish/Preprints/2004/160%28E7-2004-160%29.pdf |archive-date=May 28, 2008 }}</ref> The observation of <sup>289m</sup>Fl in this series of experiments may indicate the formation of a parent isomer of livermorium, namely <sup>293m</sup>Lv, or a rare and previously unobserved decay branch of the already-discovered state <sup>293</sup>Lv to <sup>289m</sup>Fl. Neither possibility is certain, and research is required to positively assign this activity. Another possibility suggested is the assignment of the original December 1998 atom to <sup>290</sup>Fl, as the low beam energy used in that original experiment makes the 2n channel plausible; its parent could then conceivably be <sup>294</sup>Lv, but this assignment would still need confirmation in the <sup>248</sup>Cm(<sup>48</sup>Ca,2n)<sup>294</sup>Lv reaction.<ref name="00Og01" /><ref name="04OgJINRPP" /><ref name="Hofmann2016">{{cite journal |last1=Hofmann |first1=S. |last2=Heinz |first2=S. |first3=R. |last3=Mann |first4=J. |last4=Maurer |first5=G. |last5=Münzenberg |first6=S. |last6=Antalic |first7=W. |last7=Barth |first8=H. G. |last8=Burkhard |first9=L. |last9=Dahl |first10=K. |last10=Eberhardt |first11=R. |last11=Grzywacz |first12=J. H. |last12=Hamilton |first13=R. A. |last13=Henderson |first14=J. M. |last14=Kenneally |first15=B. |last15=Kindler |first16=I. |last16=Kojouharov |first17=R. |last17=Lang |first18=B. |last18=Lommel |first19=K. |last19=Miernik |first20=D. |last20=Miller |first21=K. J. |last21=Moody |first22=K. |last22=Morita |first23=K. |last23=Nishio |first24=A. G. |last24=Popeko |first25=J. B. |last25=Roberto |first26=J. |last26=Runke |first27=K. P. |last27=Rykaczewski |first28=S. |last28=Saro |first29=C. |last29=Scheidenberger |first30=H. J. |last30=Schött |first31=D. A. |last31=Shaughnessy |first32=M. A. |last32=Stoyer |first33=P. |last33=Thörle-Popiesch |first34=K. |last34=Tinschert |first35=N. |last35=Trautmann |first36=J. |last36=Uusitalo |first37=A. V. |last37=Yeremin |date=2016 |title=Review of even element super-heavy nuclei and search for element 120 |journal=The European Physical Journal A |volume=2016 |issue=52 |pages=180 |doi=10.1140/epja/i2016-16180-4|bibcode=2016EPJA...52..180H |s2cid=124362890 |url=https://zenodo.org/record/897926 }}</ref>', 31 => '', 32 => 'The team repeated the experiment in April–May 2005 and detected 8 atoms of livermorium. The measured decay data confirmed the assignment of the first-discovered [[isotope]] as <sup>293</sup>Lv. In this run, the team also observed the isotope <sup>292</sup>Lv for the first time.<ref name="04Og01">{{cite journal|title=Measurements of cross sections and decay properties of the isotopes of elements 112, 114, and 116 produced in the fusion reactions <sup>233,238</sup>U, <sup>242</sup>Pu, and <sup>248</sup>Cm+<sup>48</sup>Ca|doi=10.1103/PhysRevC.70.064609|year=2004|journal=Physical Review C|volume=70|page=064609|last1=Oganessian|first1=Yu. Ts.|last2=Utyonkov|first2=V.|last3=Lobanov|first3=Yu.|last4=Abdullin|first4=F.|last5=Polyakov|first5=A.|last6=Shirokovsky|first6=I.|last7=Tsyganov|first7=Yu.|last8=Gulbekian|first8=G.|last9=Bogomolov|first9=S.|first10=B. N. |last10=Gikal|first11=A. N. |last11=Mezentsev|first12=S. |last12=Iliev|first13=V. G. |last13=Subbotin|first14=A. M. |last14=Sukhov|first15=A. A. |last15=Voinov|first16=G. V. |last16=Buklanov|first17=K. |last17=Subotic|first18=V. I. |last18=Zagrebaev|first19=M. G. |last19=Itkis|first20=J. B. |last20=Patin|first21=K. J. |last21=Moody|first22=J. F. |last22=Wild|first23=M. A. |last23=Stoyer|first24=N. J. |last24=Stoyer|first25=D. A. |last25=Shaughnessy|first26=J. M. |last26=Kenneally|first27=P. A. |last27=Wilk|first28=R. W. |last28=Lougheed|first29=R. I. |last29=Il’kaev|first30=S. P. |last30=Vesnovskii|display-authors=10|bibcode = 2004PhRvC..70f4609O|issue=6|url=http://www1.jinr.ru/Preprints/2004/160(E7-2004-160).pdf}}</ref> In further experiments from 2004 to 2006, the team replaced the curium-248 target with the lighter [[curium]] isotope [[curium-245]]. Here evidence was found for the two isotopes <sup>290</sup>Lv and <sup>291</sup>Lv.<ref name="JWP" />', 33 => '', 34 => 'In May 2009, the [[IUPAC]]/[[IUPAP]] Joint Working Party reported on the discovery of [[copernicium]] and acknowledged the discovery of the isotope <sup>283</sup>Cn.<ref name="jwr">{{cite journal|journal = [[Pure Appl. Chem.]]|date = 2009|title = Discovery of the element with atomic number 112|format = IUPAC Technical Report|author = Barber, R. C.|author2 = Gaeggeler, H. W.|author3 = Karol, P. J.|author4 = Nakahara, H.|author5 = Verdaci, E.|author6 = Vogt, E.|name-list-style = amp |url = http://media.iupac.org/publications/pac/2009/pdf/8107x1331.pdf|doi = 10.1351/PAC-REP-08-03-05|volume = 81|page = 1331|issue = 7|s2cid = 95703833}}</ref> This implied the ''de facto'' discovery of the isotope <sup>291</sup>Lv, from the acknowledgment of the data relating to its granddaughter <sup>283</sup>Cn, although the livermorium data was not absolutely critical for the demonstration of copernicium's discovery. Also in 2009, confirmation from Berkeley and the [[Gesellschaft für Schwerionenforschung]] (GSI) in Germany came for the flerovium isotopes 286 to 289, immediate daughters of the four known livermorium isotopes. In 2011, IUPAC evaluated the Dubna team experiments of 2000–2006. Whereas they found the earliest data (not involving <sup>291</sup>Lv and <sup>283</sup>Cn) inconclusive, the results of 2004–2006 were accepted as identification of livermorium, and the element was officially recognized as having been discovered.<ref name="JWP">{{cite journal|last1=Barber |first1=R. C.|last2=Karol |first2=P. J.|last3=Nakahara |first3=H.|last4=Vardaci |first4=E.|last5=Vogt |first5=E. W.|date=2011|title=Discovery of the elements with atomic numbers greater than or equal to 113 (IUPAC Technical Report)|journal=[[Pure and Applied Chemistry]]|volume=83 |issue=7 |page=1485|doi=10.1351/PAC-REP-10-05-01|doi-access=free}}</ref>', 35 => '', 36 => 'The synthesis of livermorium has been separately confirmed at the GSI (2012) and [[RIKEN]] (2014 and 2016).<ref name="gsi12">{{cite journal | doi=10.1140/epja/i2012-12062-1 | volume=48 | issue=5 | pages=62 | title=The reaction <sup>48</sup>Ca + <sup>248</sup>Cm → <sup>296</sup>116<sup>*</sup> studied at the GSI-SHIP | journal=The European Physical Journal A| year=2012 | last1=Hofmann | first1=S. | last2=Heinz | first2=S. | last3=Mann | first3=R. | last4=Maurer | first4=J. | last5=Khuyagbaatar | first5=J. | last6=Ackermann | first6=D. | last7=Antalic | first7=S. | last8=Barth | first8=W. | last9=Block | first9=M. | last10=Burkhard | first10=H. G. | last11=Comas | first11=V. F. | last12=Dahl | first12=L. | last13=Eberhardt | first13=K. | last14=Gostic | first14=J. | last15=Henderson | first15=R. A. | last16=Heredia | first16=J. A. | last17=Heßberger | first17=F. P. | last18=Kenneally | first18=J. M. | last19=Kindler | first19=B. | last20=Kojouharov | first20=I. | last21=Kratz | first21=J. V. | last22=Lang | first22=R. | last23=Leino | first23=M. | last24=Lommel | first24=B. | last25=Moody | first25=K. J. | last26=Münzenberg | first26=G. | last27=Nelson | first27=S. L. | last28=Nishio | first28=K. | last29=Popeko | first29=A. G. | last30=Runke | first30=J. | display-authors=29 | bibcode=2012EPJA...48...62H| s2cid=121930293 }}</ref><ref>{{cite journal|url=http://www.nishina.riken.jp/researcher/APR/APR047/pdf/xi.pdf |title=Measurement of the <sup>248</sup>Cm + <sup>48</sup>Ca fusion reaction products at RIKEN GARIS |page=11 |journal=RIKEN Accel. Prog. Rep. |volume=47 |year=2014 |author=Morita, K.|display-authors=etal}}</ref> In the 2012 GSI experiment, one chain tentatively assigned to <sup>293</sup>Lv was shown to be inconsistent with previous data; it is believed that this chain may instead originate from an [[nuclear isomer|isomeric state]], <sup>293m</sup>Lv.<ref name="gsi12" /> In the 2016 RIKEN experiment, one atom that may be assigned to <sup>294</sup>Lv was seemingly detected, alpha decaying to <sup>290</sup>Fl and <sup>286</sup>Cn, which underwent spontaneous fission; however, the first alpha from the livermorium nuclide produced was missed, and the assignment to <sup>294</sup>Lv is still uncertain though plausible.<ref name="Kaji">{{cite journal |last1=Kaji |first1=Daiya |last2=Morita |first2=Kosuke |first3=Kouji |last3=Morimoto |first4=Hiromitsu |last4=Haba |first5=Masato |last5=Asai |first6=Kunihiro |last6=Fujita |first7=Zaiguo |last7=Gan |first8=Hans |last8=Geissel |first9=Hiroo |last9=Hasebe |first10=Sigurd |last10=Hofmann |first11=MingHui |last11=Huang |first12=Yukiko |last12=Komori |first13=Long |last13=Ma |first14=Joachim |last14=Maurer |first15=Masashi |last15=Murakami |first16=Mirei |last16=Takeyama |first17=Fuyuki |last17=Tokanai |first18=Taiki |last18=Tanaka |first19=Yasuo |last19=Wakabayashi |first20=Takayuki |last20=Yamaguchi |first21=Sayaka |last21=Yamaki |first22=Atsushi |last22=Yoshida |date=2017 |title=Study of the Reaction <sup>48</sup>Ca + <sup>248</sup>Cm → <sup>296</sup>Lv* at RIKEN-GARIS |journal=Journal of the Physical Society of Japan |volume=86 |issue=3 |pages=034201–1–7 |doi=10.7566/JPSJ.86.034201 |bibcode=2017JPSJ...86c4201K }}</ref>', 37 => '', 38 => '=== Naming ===', 39 => '[[File:Robert Livermore.jpg|thumb|upright|[[Robert Livermore]], the indirect namesake of livermorium]]', 40 => 'Using [[Mendeleev's predicted elements|Mendeleev's nomenclature for unnamed and undiscovered elements]], livermorium is sometimes called ''eka-[[polonium]]''.<ref>{{cite journal | doi = 10.1088/0031-8949/10/A/001| title = The Search for New Elements: The Projects of Today in a Larger Perspective| journal = Physica Scripta| volume = 10| pages = 5–12| year = 1974| last1 = Seaborg | first1 = Glenn T. | bibcode = 1974PhyS...10S...5S| s2cid = 250809299}}</ref> In 1979 IUPAC recommended that the [[placeholder name|placeholder]] [[systematic element name]] ''ununhexium'' (''Uuh'')<ref name="iupac">{{cite journal|author=Chatt, J.|journal=Pure Appl. Chem.|date=1979|volume=51|pages=381–384|title=Recommendations for the Naming of Elements of Atomic Numbers Greater than 100|doi=10.1351/pac197951020381|issue=2|doi-access=free}}</ref> be used until the discovery of the element was confirmed and a name was decided. Although widely used in the chemical community on all levels, from chemistry classrooms to advanced textbooks, the recommendations were mostly ignored among scientists in the field,<ref name="Folden">{{cite web|url=http://cyclotron.tamu.edu/smp/The%20Heaviest%20Elements%20in%20the%20Universe.pdf |title=The Heaviest Elements in the Universe |author=Folden, Cody |date=31 January 2009 |work=Saturday Morning Physics at Texas A&M |access-date=9 March 2012 |url-status=unfit |archive-url=https://web.archive.org/web/20140810213232/http://cyclotron.tamu.edu/smp/The%20Heaviest%20Elements%20in%20the%20Universe.pdf |archive-date=August 10, 2014 }} "</ref><ref>{{cite journal|url=http://pubs.acs.org/cen/80th/print/darmstadtium.html |title= Darmstadtium and Beyond|journal=Chemical & Engineering News|author=Hoffman, Darleane C. }}</ref> who called it "element 116", with the symbol of ''E116'', ''(116)'', or even simply ''116''.<ref name="Haire" />', 41 => '', 42 => 'According to IUPAC recommendations, the discoverer or discoverers of a new element have the right to suggest a name.<ref>{{cite journal|doi=10.1351/pac200274050787|url=http://media.iupac.org/publications/pac/2002/pdf/7405x0787.pdf|title=Naming of new elements(IUPAC Recommendations 2002)|date=2002|author=Koppenol, W. H.|journal=Pure and Applied Chemistry|volume=74|page=787|issue=5|s2cid=95859397}}</ref> The discovery of livermorium was recognized by the Joint Working Party (JWP) of IUPAC on 1 June 2011, along with that of [[flerovium]].<ref name="JWP" /> According to the vice-director of JINR, the Dubna team originally wanted to name element 116 ''moscovium'', after the [[Moscow Oblast]] in which Dubna is located,<ref name="E114&116">{{cite web|publisher=rian.ru|date=2011|access-date=2011-05-08|url=http://www.rian.ru/science/20110326/358081075.html|title=Russian Physicists Will Suggest to Name Element 116 Moscovium}}: Mikhail Itkis, the vice-director of JINR stated: "We would like to name element 114 after [[Georgy Flerov]] – flerovium, and another one [element 116] – moscovium, not after Moscow, but after [[Moscow Oblast]]".</ref> but it was later decided to use this name for [[moscovium|element 115]] instead. The name ''livermorium'' and the symbol ''Lv'' were adopted on May 23,<ref>{{cite web|last1=Loss|first1=Robert D.|last2=Corish|first2=John|title=Names and symbols of the elements with atomic numbers 114 and 116 (IUPAC Recommendations 2012)|url=http://pac.iupac.org/publications/pac/pdf/2012/pdf/8407x1669.pdf|website=IUPAC; Pure and Applied Chemistry|publisher=IUPAC|access-date=2 December 2015}}</ref> 2012.<ref name="IUPAC-names-114-116" /><ref name="IUPAC">{{cite web|title=News: Start of the Name Approval Process for the Elements of Atomic Number 114 and 116 |url=http://www.iupac.org/news/news-detail/article/start-of-the-name-approval-process-for-the-elements-of-atomic-number-114-and-116.html |work=International Union of Pure and Applied Chemistry |access-date=February 22, 2012 |url-status=dead |archive-url=https://web.archive.org/web/20120302173200/http://www.iupac.org/news/news-detail/article/start-of-the-name-approval-process-for-the-elements-of-atomic-number-114-and-116.html |archive-date=March 2, 2012 }}</ref> The name recognises the [[Lawrence Livermore National Laboratory]], within the city of [[Livermore, California]], US, which collaborated with JINR on the discovery. The city in turn is named after the American rancher [[Robert Livermore]], a naturalized Mexican citizen of English birth.<ref name="IUPAC-names-114-116" /> The naming ceremony for flerovium and livermorium was held in Moscow on October 24, 2012.<ref>{{cite web |url=http://newuc.jinr.ru/img_sections/file/Practice2016/EU/2016-07%20AGP_SHE.pdf |title=Synthesis of superheavy elements |last=Popeko |first=Andrey G. |date=2016 |website=jinr.ru |publisher=[[Joint Institute for Nuclear Research]] |access-date=4 February 2018 |archive-url=https://web.archive.org/web/20180204124109/http://newuc.jinr.ru/img_sections/file/Practice2016/EU/2016-07%20AGP_SHE.pdf |archive-date=4 February 2018 |url-status=dead }}</ref>', 43 => '', 44 => '== Predicted properties ==', 45 => 'Other than nuclear properties, no properties of livermorium or its compounds have been measured; this is due to its extremely limited and expensive production<ref name="Bloomberg" /><!-- used transcluded, named ref --> and the fact that it decays very quickly. Properties of livermorium remain unknown and only predictions are available.', 46 => '', 47 => '=== Nuclear stability and isotopes ===', 48 => '{{Main|Isotopes of livermorium}}', 49 => '[[File:Island of Stability derived from Zagrebaev.png|right|thumb|upright=1.8|The expected location of the island of stability is marked by the white circle. The dotted line is the line of [[beta decay|beta]] stability.]]', 50 => 'Livermorium is expected to be near an [[island of stability]] centered on [[copernicium]] (element 112) and [[flerovium]] (element 114).<ref name="Zagrebaev">{{cite conference |last1=Zagrebaev |first1=Valeriy |last2=Karpov |first2=Alexander |last3=Greiner |first3=Walter |date=2013 |title=Future of superheavy element research: Which nuclei could be synthesized within the next few years? |publisher=IOP Science |book-title=Journal of Physics: Conference Series |volume=420 |pages=1–15 |url=http://iopscience.iop.org/1742-6596/420/1/012001/pdf/1742-6596_420_1_012001.pdf |access-date=20 August 2013}}</ref><ref>{{cite book|title=Van Nostrand's scientific encyclopedia|first1=Glenn D. |last1= Considine |first2=Peter H. |last2= Kulik|publisher=Wiley-Interscience|date=2002|edition=9th|isbn=978-0-471-33230-5|oclc=223349096}}</ref> Due to the expected high [[fission barrier]]s, any nucleus within this island of stability exclusively decays by alpha decay and perhaps some electron capture and [[beta decay]].{{Fricke1975}} While the known isotopes of livermorium do not actually have enough neutrons to be on the island of stability, they can be seen to approach the island, as the heavier isotopes are generally the longer-lived ones.<ref name="00Og01" /><ref name="JWP" />', 51 => '', 52 => 'Superheavy elements are produced by [[nuclear fusion]]. These fusion reactions can be divided into "hot" and "cold" fusion,{{efn|Despite the name, "cold fusion" in the context of superheavy element synthesis is a distinct concept from the idea that nuclear fusion can be achieved in room temperature conditions (see [[cold fusion]]).<ref>{{cite journal |doi=10.1016/0022-0728(89)80006-3 |title=Electrochemically induced nuclear fusion of deuterium |date=1989 |last1=Fleischmann |first1=Martin |last2=Pons |first2=Stanley |journal=Journal of Electroanalytical Chemistry and Interfacial Electrochemistry |volume=261 |issue=2 |pages=301–308}}</ref>}} depending on the excitation energy of the compound nucleus produced. In hot fusion reactions, very light, high-energy projectiles are accelerated toward very heavy targets ([[actinide]]s), giving rise to compound nuclei at high excitation energy (~40–50&nbsp;[[electronvolt|MeV]]) that may either fission or evaporate several (3 to 5) neutrons.<ref name="fusion">{{cite journal |last1=Barber |first1=Robert C. |last2=Gäggeler |first2=Heinz W. |last3=Karol |first3=Paul J. |last4=Nakahara |first4=Hiromichi |last5=Vardaci |first5=Emanuele |last6=Vogt |first6=Erich |title=Discovery of the element with atomic number 112 (IUPAC Technical Report) |journal=Pure and Applied Chemistry |volume=81 |issue=7 |page=1331 |date=2009 |doi=10.1351/PAC-REP-08-03-05|s2cid=95703833 |url=http://doc.rero.ch/record/297412/files/pac-rep-08-03-05.pdf }}</ref> In cold fusion reactions (which use heavier projectiles, typically from the [[period 4 element|fourth period]], and lighter targets, usually [[lead]] and [[bismuth]]), the produced fused nuclei have a relatively low excitation energy (~10–20&nbsp;MeV), which decreases the probability that these products will undergo fission reactions. As the fused nuclei cool to the [[ground state]], they require emission of only one or two neutrons. Hot fusion reactions tend to produce more neutron-rich products because the actinides have the highest neutron-to-proton ratios of any elements that can presently be made in macroscopic quantities.<ref name="AM89">{{cite journal |first1=Peter |last1=Armbruster |name-list-style=amp |first2=Gottfried |last2=Munzenberg |title=Creating superheavy elements |journal=Scientific American |volume=34 |pages=36–42 |date=1989}}</ref>', 53 => '', 54 => 'Important information could be gained regarding the properties of superheavy nuclei by the synthesis of more livermorium isotopes, specifically those with a few neutrons more or less than the known ones – <sup>286</sup>Lv, <sup>287</sup>Lv, <sup>288</sup>Lv, <sup>289</sup>Lv, <sup>294</sup>Lv, and <sup>295</sup>Lv. This is possible because there are many reasonably long-lived [[isotopes of curium]] that can be used to make a target.<ref name="Zagrebaev" /> The light isotopes can be made by fusing [[curium-243]] with calcium-48. They would undergo a chain of alpha decays, ending at [[transactinide]] isotopes that are too light to achieve by hot fusion and too heavy to be produced by cold fusion.<ref name="Zagrebaev" />', 55 => '', 56 => 'The synthesis of the heavy isotopes <sup>294</sup>Lv and <sup>295</sup>Lv could be accomplished by fusing the heavy curium isotope [[curium-250]] with calcium-48. The [[cross section (physics)|cross section]] of this nuclear reaction would be about 1&nbsp;[[barn (unit)|picobarn]], though it is not yet possible to produce <sup>250</sup>Cm in the quantities needed for target manufacture.<ref name="Zagrebaev" /> After a few alpha decays, these livermorium isotopes would reach nuclides at the [[line of beta stability]]. Additionally, [[electron capture]] may also become an important decay mode in this region, allowing affected nuclei to reach the middle of the island. For example, it is predicted that <sup>295</sup>Lv would alpha decay to <sup>291</sup>[[flerovium|Fl]], which would undergo successive electron capture to <sup>291</sup>Nh and then <sup>291</sup>[[copernicium|Cn]] which is expected to be in the middle of the island of stability and have a half-life of about 1200&nbsp;years, affording the most likely hope of reaching the middle of the island using current technology. A drawback is that the decay properties of superheavy nuclei this close to the line of beta stability are largely unexplored.<ref name="Zagrebaev" />', 57 => '', 58 => 'Other possibilities to synthesize nuclei on the island of stability include quasifission (partial fusion followed by fission) of a massive nucleus.<ref name="ZG" /> Such nuclei tend to fission, expelling doubly [[magic number (physics)|magic]] or nearly doubly magic fragments such as [[calcium-40]], [[tin-132]], [[lead-208]], or [[bismuth-209]].<ref name="jinr20006">{{cite web|title=JINR Annual Reports 2000–2006|url=http://www1.jinr.ru/Reports/Reports_eng_arh.html|publisher=[[Joint Institute for Nuclear Research|JINR]]|access-date=2013-08-27}}</ref> Recently it has been shown that the multi-nucleon transfer reactions in collisions of actinide nuclei (such as [[uranium]] and [[curium]]) might be used to synthesize the neutron-rich superheavy nuclei located at the island of stability,<ref name="ZG">{{cite journal|last1=Zagrebaev |first1=V.|last2=Greiner |first2=W.|date=2008|title=Synthesis of superheavy nuclei: A search for new production reactions|journal=[[Physical Review C]]|volume=78 |issue=3 |page=034610|arxiv=0807.2537|bibcode=2008PhRvC..78c4610Z|doi=10.1103/PhysRevC.78.034610}}</ref> although formation of the lighter elements [[nobelium]] or [[seaborgium]] is more favored.<ref name="Zagrebaev" /> One last possibility to synthesize isotopes near the island is to use controlled [[nuclear explosion]]s to create a [[neutron flux]] high enough to bypass the gaps of instability at <sup>258–260</sup>[[fermium|Fm]] and at [[mass number]] 275 (atomic numbers [[rutherfordium|104]] to [[hassium|108]]), mimicking the [[r-process]] in which the [[actinide]]s were first produced in nature and the gap of instability around [[radon]] bypassed.<ref name="Zagrebaev" /> Some such isotopes (especially <sup>291</sup>Cn and <sup>293</sup>Cn) may even have been synthesized in nature, but would have decayed away far too quickly (with half-lives of only thousands of years) and be produced in far too small quantities (about 10<sup>−12</sup> the abundance of [[lead]]) to be detectable as [[primordial nuclide]]s today outside [[cosmic ray]]s.<ref name="Zagrebaev" />', 59 => '', 60 => '=== Physical and atomic ===', 61 => 'In the [[periodic table]], livermorium is a member of group 16, the chalcogens. It appears below [[oxygen]], [[sulfur]], [[selenium]], [[tellurium]], and polonium. Every previous chalcogen has six electrons in its valence shell, forming a [[valence electron]] configuration of ns<sup>2</sup>np<sup>4</sup>. In livermorium's case, the trend should be continued and the valence electron configuration is predicted to be 7s<sup>2</sup>7p<sup>4</sup>;<ref name="Haire" /> therefore, livermorium will have some similarities to its lighter [[congener (chemistry)|congeners]]. Differences are likely to arise; a large contributing effect is the [[spin–orbit interaction|spin–orbit (SO) interaction]]—the mutual interaction between the electrons' motion and [[Spin (physics)|spin]]. It is especially strong for the superheavy elements, because their electrons move much faster than in lighter atoms, at velocities comparable to the [[speed of light]].<ref name="Thayer">{{cite book |last1=Thayer |first1=John S. |chapter=Relativistic Effects and the Chemistry of the Heavier Main Group Elements |journal=Relativistic Methods for Chemists |volume=10 |date=2010 |page=83 |doi=10.1007/978-1-4020-9975-5_2|isbn=978-1-4020-9974-8 |series=Challenges and Advances in Computational Chemistry and Physics }}</ref> In relation to livermorium atoms, it lowers the 7s and the 7p electron energy levels (stabilizing the corresponding electrons), but two of the 7p electron energy levels are stabilized more than the other four.<ref name="Faegri">{{cite journal|last1=Faegri |first1=K.|last2=Saue |first2=T.|date=2001|title=Diatomic molecules between very heavy elements of group 13 and group 17: A study of relativistic effects on bonding|journal=[[Journal of Chemical Physics]]|volume=115 |issue=6 |page=2456|bibcode=2001JChPh.115.2456F|doi=10.1063/1.1385366 |doi-access=free}}</ref> The stabilization of the 7s electrons is called the [[inert pair effect]], and the effect "tearing" the 7p subshell into the more stabilized and the less stabilized parts is called subshell splitting. Computation chemists see the split as a change of the second ([[azimuthal quantum number|azimuthal]]) [[quantum number]] ''l'' from 1 to {{frac|1|2}} and {{frac|3|2}} for the more stabilized and less stabilized parts of the 7p subshell, respectively: the 7p<sub>1/2</sub> subshell acts as a second inert pair, though not as inert as the 7s electrons, while the 7p<sub>3/2</sub> subshell can easily participate in chemistry.<ref name="Haire" /><ref name="Thayer" />{{efn|The quantum number corresponds to the letter in the electron orbital name: 0 to s, 1 to p, 2 to d, etc. See [[azimuthal quantum number]] for more information.}} For many theoretical purposes, the valence electron configuration may be represented to reflect the 7p subshell split as 7s{{su|p=2|w=70%}}7p{{su|b=1/2|p=2|w=70%}}7p{{su|b=3/2|p=2|w=70%}}.<ref name="Haire" />', 62 => '', 63 => 'Inert pair effects in livermorium should be even stronger than in polonium and hence the +2 [[oxidation state]] becomes more stable than the +4 state, which would be stabilized only by the most [[electronegative]] [[ligand]]s; this is reflected in the expected [[ionization energy|ionization energies]] of livermorium, where there are large gaps between the second and third ionization energies (corresponding to the breaching of the unreactive 7p<sub>1/2</sub> shell) and fourth and fifth ionization energies.{{Fricke1975|name}} Indeed, the 7s electrons are expected to be so inert that the +6 state will not be attainable.<ref name="Haire" /> The [[melting point|melting]] and [[boiling point]]s of livermorium are expected to continue the trends down the chalcogens; thus livermorium should melt at a higher temperature than polonium, but boil at a lower temperature.<ref name="B&K" /> It should also be [[density|denser]] than polonium (α-Lv: 12.9&nbsp;g/cm<sup>3</sup>; α-Po: 9.2&nbsp;g/cm<sup>3</sup>); like polonium it should also form an α and a β allotrope.{{Fricke1975|name}}<ref>', 64 => '{{cite web |url=http://cyclotron.tamu.edu/she2015/assets/pdfs/presentations/Eichler_SHE_2015_TAMU.pdf |title=Gas phase chemistry with SHE – Experiments |last=Eichler |first=Robert |date=2015 |website=cyclotron.tamu.edu |publisher=Texas A & M University |access-date=27 April 2017}}</ref> The electron of a [[hydrogen-like atom|hydrogen-like]] livermorium atom (oxidized so that it only has one electron, Lv<sup>115+</sup>) is expected to move so fast that it has a mass 1.86 times that of a stationary electron, due to [[relativistic quantum chemistry|relativistic effects]]. For comparison, the figures for hydrogen-like polonium and tellurium are expected to be 1.26 and 1.080 respectively.<ref name="Thayer" />', 65 => '', 66 => '=== Chemical ===', 67 => 'Livermorium is projected to be the fourth member of the 7p series of [[chemical element]]s and the heaviest member of group 16 in the periodic table, below polonium. While it is the least theoretically studied of the 7p elements, its chemistry is expected to be quite similar to that of polonium.{{Fricke1975|name}} The group oxidation state of +6 is known for all the chalcogens apart from oxygen which cannot [[Hypervalent molecule|expand its octet]] and is one of the strongest [[redox|oxidizing agents]] among the chemical elements. Oxygen is thus limited to a maximum +2 state, exhibited in the fluoride [[oxygen difluoride|OF<sub>2</sub>]]. The +4 state is known for [[sulfur]], [[selenium]], [[tellurium]], and polonium, undergoing a shift in stability from reducing for sulfur(IV) and selenium(IV) through being the most stable state for tellurium(IV) to being oxidizing in polonium(IV). This suggests a decreasing stability for the higher oxidation states as the group is descended due to the increasing importance of relativistic effects, especially the inert pair effect.<ref name="Thayer" /> The most stable oxidation state of livermorium should thus be +2, with a rather unstable +4 state. The +2 state should be about as easy to form as it is for [[beryllium]] and [[magnesium]], and the +4 state should only be achieved with strongly electronegative ligands, such as in livermorium(IV) fluoride (LvF<sub>4</sub>).<ref name="Haire" /> The +6 state should not exist at all due to the very strong stabilization of the 7s electrons, making the valence core of livermorium only four electrons.{{Fricke1975|name}} The lighter chalcogens are also known to form a −2 state as [[oxide]], [[sulfide]], [[selenide]], [[telluride (chemistry)|telluride]], and [[polonide]]; due to the destabilization of livermorium's 7p<sub>3/2</sub> subshell, the −2 state should be very unstable for livermorium, whose chemistry should be essentially purely cationic,<ref name="Haire" /> though the larger subshell and spinor energy splittings of livermorium as compared to polonium should make Lv<sup>2−</sup> slightly less unstable than expected.<ref name="Thayer" />', 68 => ' ', 69 => 'Livermorium hydride (LvH<sub>2</sub>) would be the heaviest [[hydrogen chalcogenide|chalcogen hydride]] and the heaviest homolog of [[water]] (the lighter ones are [[hydrogen sulfide|H<sub>2</sub>S]], [[hydrogen selenide|H<sub>2</sub>Se]], [[hydrogen telluride|H<sub>2</sub>Te]], and [[polonium hydride|PoH<sub>2</sub>]]). Polane (polonium hydride) is a more [[covalent]] compound than most metal hydrides because polonium straddles the border between [[metal]] and [[metalloid]] and has some nonmetallic properties: it is intermediate between a [[hydrogen halide]] like [[hydrogen chloride]] (HCl) and a [[metal hydride]] like [[stannane]] ([[tin|Sn]]H<sub>4</sub>). Livermorane should continue this trend: it should be a hydride rather than a livermoride, but still a covalent [[molecule|molecular]] compound.<ref name="Nash">{{cite journal |last1=Nash |first1=Clinton S. |last2=Crockett |first2=Wesley W. |date=2006 |title=An Anomalous Bond Angle in (116)H<sub>2</sub>. Theoretical Evidence for Supervalent Hybridization. |journal=The Journal of Physical Chemistry A |volume=110 |issue=14 |pages=4619–4621 |doi=10.1021/jp060888z |pmid=16599427 |bibcode=2006JPCA..110.4619N |url=https://figshare.com/articles/An_Anomalous_Bond_Angle_in_116_H_sub_2_sub_Theoretical_Evidence_for_Supervalent_Hybridization/3227647 }}</ref> Spin-orbit interactions are expected to make the Lv–H bond longer than expected from [[periodic trends]] alone, and make the H–Lv–H bond angle larger than expected: this is theorized to be because the unoccupied 8s orbitals are relatively low in energy and can [[orbital hybridization|hybridize]] with the valence 7p orbitals of livermorium.<ref name="Nash" /> This phenomenon, dubbed "supervalent hybridization",<ref name="Nash" /> has some analogues in non-relativistic regions in the periodic table; for example, molecular [[calcium difluoride]] has 4s and 3d involvement from the [[calcium]] atom.<ref>{{Greenwood&Earnshaw2nd|page=117}}</ref> The heavier livermorium di[[halide]]s are predicted to be [[linear molecular geometry|linear]], but the lighter ones are predicted to be [[bent molecular geometry|bent]].<ref>{{cite journal | last1 = Van WüLlen | first1 = C. | last2 = Langermann | first2 = N. | doi = 10.1063/1.2711197 | title = Gradients for two-component quasirelativistic methods. Application to dihalogenides of element 116 | journal = The Journal of Chemical Physics | volume = 126 | issue = 11 | page = 114106 | year = 2007 | pmid = 17381195|bibcode = 2007JChPh.126k4106V }}</ref>', 70 => '', 71 => '== Experimental chemistry ==', 72 => 'Unambiguous determination of the chemical characteristics of livermorium has not yet been established.<ref name="Düllmann">{{cite journal |last1=Düllmann |first1=Christoph E. |date=2012 |title=Superheavy elements at GSI: a broad research program with element 114 in the focus of physics and chemistry |journal=Radiochimica Acta |volume=100 |issue=2 |pages=67–74 |doi=10.1524/ract.2011.1842 |s2cid=100778491 }}</ref><ref name="Eichler">{{cite journal |last=Eichler |first=Robert |date=2013 |title=First foot prints of chemistry on the shore of the Island of Superheavy Elements |arxiv=1212.4292|journal=Journal of Physics: Conference Series |volume=420 |issue=1 |page=012003 |doi=10.1088/1742-6596/420/1/012003 |bibcode=2013JPhCS.420a2003E |s2cid=55653705 }}</ref> In 2011, experiments were conducted to create [[nihonium]], [[flerovium]], and [[moscovium]] isotopes in the reactions between calcium-48 projectiles and targets of americium-243 and [[plutonium-244]]. The targets included [[lead]] and [[bismuth]] impurities and hence some isotopes of bismuth and [[polonium]] were generated in nucleon transfer reactions. This, while an unforeseen complication, could give information that would help in the future chemical investigation of the heavier homologs of bismuth and polonium, which are respectively moscovium and livermorium.<ref name="Eichler" /> The produced nuclides [[bismuth-213]] and [[polonium-212m]] were transported as the hydrides [[bismuthine|<sup>213</sup>BiH<sub>3</sub>]] and [[polonium hydride|<sup>212m</sup>PoH<sub>2</sub>]] at 850&nbsp;°C through a quartz wool filter unit held with [[tantalum]], showing that these hydrides were surprisingly thermally stable, although their heavier congeners McH<sub>3</sub> and LvH<sub>2</sub> would be expected to be less thermally stable from simple extrapolation of [[periodic trends]] in the p-block.<ref name="Eichler" /> Further calculations on the stability and electronic structure of BiH<sub>3</sub>, McH<sub>3</sub>, PoH<sub>2</sub>, and LvH<sub>2</sub> are needed before chemical investigations take place. Moscovium and livermorium are expected to be [[volatility (chemistry)|volatile]] enough as pure elements for them to be chemically investigated in the near future, a property livermorium would then share with its lighter congener polonium, though the short half-lives of all presently known livermorium isotopes means that the element is still inaccessible to experimental chemistry.<ref name="Eichler" /><ref name="Moody">{{cite book |chapter=Synthesis of Superheavy Elements |last1=Moody |first1=Ken |editor1-first=Matthias |editor1-last=Schädel |editor2-first=Dawn |editor2-last=Shaughnessy |title=The Chemistry of Superheavy Elements |publisher=Springer Science & Business Media |edition=2nd |pages=24–8 |isbn=9783642374661|date=2013-11-30 }}</ref>', 73 => '{{clear}}', 74 => '', 75 => '== Notes ==', 76 => '{{notelist}}', 77 => '', 78 => '== References ==', 79 => '{{Reflist|colwidth=30em}}', 80 => '', 81 => '== Bibliography ==', 82 => '* {{cite journal |title=The NUBASE2016 evaluation of nuclear properties |doi=10.1088/1674-1137/41/3/030001 |last1=Audi |first1=G. |last2=Kondev |first2=F. G. |last3=Wang |first3=M. |last4=Huang |first4=W. J. |last5=Naimi |first5=S. |display-authors=3 |journal=Chinese Physics C |volume=41 |issue=3 <!--Citation bot deny-->|pages=030001 |year=2017 ', 83 => '|bibcode=2017ChPhC..41c0001A }}<!--for consistency and specific pages, do not replace with {{NUBASE2016}}-->', 84 => '* {{cite book|last=Beiser|first=A.|title=Concepts of modern physics|date=2003|publisher=McGraw-Hill|isbn=978-0-07-244848-1|edition=6th|oclc=48965418}}', 85 => '* {{cite book |last1=Hoffman |first1=D. C. |author-link=Darleane C. Hoffman |last2=Ghiorso |first2=A. |author-link2=Albert Ghiorso |last3=Seaborg |first3=G. T. |title=The Transuranium People: The Inside Story |year=2000 |publisher=[[World Scientific]] |isbn=978-1-78-326244-1 }}', 86 => '* {{cite book |last=Kragh |first=H. |author-link=Helge Kragh |date=2018 |title=From Transuranic to Superheavy Elements: A Story of Dispute and Creation |publisher=[[Springer Science+Business Media|Springer]] |isbn=978-3-319-75813-8 }}', 87 => '', 88 => '== External links ==', 89 => '{{Commons|Livermorium}}', 90 => '* [http://www.periodicvideos.com/videos/116.htm Livermorium] at ''[[The Periodic Table of Videos]]'' (University of Nottingham)', 91 => '* [https://web.archive.org/web/20081205080201/http://www.cerncourier.com/main/article/41/8/17 ''CERN Courier'' – Second postcard from the island of stability]', 92 => '* [http://webelements.com/livermorium/ Livermorium at WebElements.com]' ]
Parsed HTML source of the new revision (new_html)
'<div class="mw-parser-output"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Chemical element, symbol Lv and atomic number 116</div><style data-mw-deduplicate="TemplateStyles:r1066479718">.mw-parser-output .infobox-subbox{padding:0;border:none;margin:-3px;width:auto;min-width:100%;font-size:100%;clear:none;float:none;background-color:transparent}.mw-parser-output .infobox-3cols-child{margin:auto}.mw-parser-output .infobox .navbar{font-size:100%}body.skin-minerva .mw-parser-output .infobox-header,body.skin-minerva .mw-parser-output .infobox-subheader,body.skin-minerva .mw-parser-output .infobox-above,body.skin-minerva .mw-parser-output .infobox-title,body.skin-minerva .mw-parser-output .infobox-image,body.skin-minerva .mw-parser-output .infobox-full-data,body.skin-minerva .mw-parser-output .infobox-below{text-align:center}</style><style data-mw-deduplicate="TemplateStyles:r1158442001">body.skin-minerva .mw-parser-output .infobox-full-data>.wikitable,body.skin-minerva .mw-parser-output .infobox .periodictable{display:table}body.skin-minerva .mw-parser-output .infobox-full-data{width:calc(100% - 20px)}body.skin-minerva .mw-parser-output .infobox-full-data>div{max-width:100%;overflow:auto}body.skin-minerva .mw-parser-output .infobox caption{display:table-caption}</style><table class="infobox"><caption class="infobox-title"><span class="nowrap">Livermorium,&#160;<sub>116</sub>Lv</span></caption><tbody><tr><th colspan="2" class="infobox-header" style="background:#fdff8c">Livermorium</th></tr><tr><th scope="row" class="infobox-label">Pronunciation</th><td class="infobox-data"><span class="rt-commentedText nowrap"><span class="IPA nopopups noexcerpt" lang="en-fonipa"><a href="/https/en.wikipedia.org/wiki/Help:IPA/English" title="Help:IPA/English">/<span style="border-bottom:1px dotted"><span title="/ˌ/: secondary stress follows">ˌ</span><span title="&#39;l&#39; in &#39;lie&#39;">l</span><span title="/ɪ/: &#39;i&#39; in &#39;kit&#39;">ɪ</span><span title="&#39;v&#39; in &#39;vie&#39;">v</span><span title="/ər/: &#39;er&#39; in &#39;letter&#39;">ər</span><span title="/ˈ/: primary stress follows">ˈ</span><span title="&#39;m&#39; in &#39;my&#39;">m</span><span title="/ɔːr/: &#39;ar&#39; in &#39;war&#39;">ɔːr</span><span title="/i/: &#39;y&#39; in &#39;happy&#39;">i</span><span title="/ə/: &#39;a&#39; in &#39;about&#39;">ə</span><span title="&#39;m&#39; in &#39;my&#39;">m</span></span>/</a></span></span>&#x20;<wbr />&#8203;<span class="nowrap">(<a href="/https/en.wikipedia.org/wiki/Help:Pronunciation_respelling_key" title="Help:Pronunciation respelling key"><i title="English pronunciation respelling"><span style="font-size:90%">LIV</span>-ər-<span style="font-size:90%">MOR</span>-ee-əm</i></a>)</span></td></tr><tr><th scope="row" class="infobox-label"><a href="/https/en.wikipedia.org/wiki/Mass_number" title="Mass number">Mass number</a></th><td class="infobox-data">[293]</td></tr><tr><th colspan="2" class="infobox-header" style="background:#fdff8c">Livermorium in the <a href="/https/en.wikipedia.org/wiki/Periodic_table" title="Periodic table">periodic table</a></th></tr><tr><td colspan="2" class="infobox-full-data"> <table class="wikitable" style="text-align:center; width:100%; margin:0; background:#f8f8f8;"> <tbody><tr> <td> <table class="periodictable" style="margin:0 auto"> <tbody><tr> <td style="border:none; width:5px"><div style="background-color:transparent; margin:0; padding:0; text-align:center; border:none;"> <table style="empty-cells:hidden; border:none; padding:0; border-spacing:1px; border-collapse:separate; margin:0;"> <tbody><tr> <td style="border:none;padding:0;"><a href="/https/en.wikipedia.org/wiki/Hydrogen" title="Hydrogen"><span style="display:block;width:6px;height:8px;overflow:hidden;padding:0;color:transparent;background-color:#ff9999;">Hydrogen</span></a> </td> <td colspan="30" style="border:none;padding:0;"> </td> <td style="border:none;padding:0;"><a href="/https/en.wikipedia.org/wiki/Helium" title="Helium"><span style="display:block;width:6px;height:8px;overflow:hidden;padding:0;color:transparent;background-color:#ff9999;">Helium</span></a> </td></tr> <tr> <td style="border:none;padding:0;"><a href="/https/en.wikipedia.org/wiki/Lithium" title="Lithium"><span style="display:block;width:6px;height:8px;overflow:hidden;padding:0;color:transparent;background-color:#ff9999;">Lithium</span></a> </td> <td style="border:none;padding:0;"><a href="/https/en.wikipedia.org/wiki/Beryllium" title="Beryllium"><span style="display:block;width:6px;height:8px;overflow:hidden;padding:0;color:transparent;background-color:#ff9999;">Beryllium</span></a> </td> <td colspan="24" style="border:none;padding:0;"> </td> <td style="border:none;padding:0;"><a href="/https/en.wikipedia.org/wiki/Boron" title="Boron"><span style="display:block;width:6px;height:8px;overflow:hidden;padding:0;color:transparent;background-color:#fdff8c;">Boron</span></a> </td> <td style="border:none;padding:0;"><a href="/https/en.wikipedia.org/wiki/Carbon" title="Carbon"><span style="display:block;width:6px;height:8px;overflow:hidden;padding:0;color:transparent;background-color:#fdff8c;">Carbon</span></a> </td> <td style="border:none;padding:0;"><a href="/https/en.wikipedia.org/wiki/Nitrogen" title="Nitrogen"><span style="display:block;width:6px;height:8px;overflow:hidden;padding:0;color:transparent;background-color:#fdff8c;">Nitrogen</span></a> </td> <td style="border:none;padding:0;"><a href="/https/en.wikipedia.org/wiki/Oxygen" title="Oxygen"><span style="display:block;width:6px;height:8px;overflow:hidden;padding:0;color:transparent;background-color:#fdff8c;">Oxygen</span></a> </td> <td style="border:none;padding:0;"><a href="/https/en.wikipedia.org/wiki/Fluorine" title="Fluorine"><span style="display:block;width:6px;height:8px;overflow:hidden;padding:0;color:transparent;background-color:#fdff8c;">Fluorine</span></a> </td> <td style="border:none;padding:0;"><a href="/https/en.wikipedia.org/wiki/Neon" title="Neon"><span style="display:block;width:6px;height:8px;overflow:hidden;padding:0;color:transparent;background-color:#fdff8c;">Neon</span></a> </td></tr> <tr> <td style="border:none;padding:0;"><a href="/https/en.wikipedia.org/wiki/Sodium" title="Sodium"><span style="display:block;width:6px;height:8px;overflow:hidden;padding:0;color:transparent;background-color:#ff9999;">Sodium</span></a> </td> <td style="border:none;padding:0;"><a href="/https/en.wikipedia.org/wiki/Magnesium" title="Magnesium"><span style="display:block;width:6px;height:8px;overflow:hidden;padding:0;color:transparent;background-color:#ff9999;">Magnesium</span></a> </td> <td colspan="24" style="border:none;padding:0;"> </td> <td style="border:none;padding:0;"><a href="/https/en.wikipedia.org/wiki/Aluminium" title="Aluminium"><span style="display:block;width:6px;height:8px;overflow:hidden;padding:0;color:transparent;background-color:#fdff8c;">Aluminium</span></a> </td> <td style="border:none;padding:0;"><a href="/https/en.wikipedia.org/wiki/Silicon" title="Silicon"><span style="display:block;width:6px;height:8px;overflow:hidden;padding:0;color:transparent;background-color:#fdff8c;">Silicon</span></a> </td> <td style="border:none;padding:0;"><a href="/https/en.wikipedia.org/wiki/Phosphorus" title="Phosphorus"><span style="display:block;width:6px;height:8px;overflow:hidden;padding:0;color:transparent;background-color:#fdff8c;">Phosphorus</span></a> </td> <td style="border:none;padding:0;"><a href="/https/en.wikipedia.org/wiki/Sulfur" title="Sulfur"><span style="display:block;width:6px;height:8px;overflow:hidden;padding:0;color:transparent;background-color:#fdff8c;">Sulfur</span></a> </td> <td style="border:none;padding:0;"><a href="/https/en.wikipedia.org/wiki/Chlorine" title="Chlorine"><span style="display:block;width:6px;height:8px;overflow:hidden;padding:0;color:transparent;background-color:#fdff8c;">Chlorine</span></a> </td> <td style="border:none;padding:0;"><a href="/https/en.wikipedia.org/wiki/Argon" title="Argon"><span style="display:block;width:6px;height:8px;overflow:hidden;padding:0;color:transparent;background-color:#fdff8c;">Argon</span></a> </td></tr> <tr> <td style="border:none;padding:0;"><a href="/https/en.wikipedia.org/wiki/Potassium" title="Potassium"><span style="display:block;width:6px;height:8px;overflow:hidden;padding:0;color:transparent;background-color:#ff9999;">Potassium</span></a> </td> <td style="border:none;padding:0;"><a href="/https/en.wikipedia.org/wiki/Calcium" title="Calcium"><span style="display:block;width:6px;height:8px;overflow:hidden;padding:0;color:transparent;background-color:#ff9999;">Calcium</span></a> </td> <td colspan="14" style="border:none;padding:0;"> </td> <td style="border:none;padding:0;"><a href="/https/en.wikipedia.org/wiki/Scandium" title="Scandium"><span style="display:block;width:6px;height:8px;overflow:hidden;padding:0;color:transparent;background-color:#99ccff;">Scandium</span></a> </td> <td style="border:none;padding:0;"><a href="/https/en.wikipedia.org/wiki/Titanium" title="Titanium"><span style="display:block;width:6px;height:8px;overflow:hidden;padding:0;color:transparent;background-color:#99ccff;">Titanium</span></a> </td> <td style="border:none;padding:0;"><a href="/https/en.wikipedia.org/wiki/Vanadium" title="Vanadium"><span style="display:block;width:6px;height:8px;overflow:hidden;padding:0;color:transparent;background-color:#99ccff;">Vanadium</span></a> </td> <td style="border:none;padding:0;"><a href="/https/en.wikipedia.org/wiki/Chromium" title="Chromium"><span style="display:block;width:6px;height:8px;overflow:hidden;padding:0;color:transparent;background-color:#99ccff;">Chromium</span></a> </td> <td style="border:none;padding:0;"><a href="/https/en.wikipedia.org/wiki/Manganese" title="Manganese"><span style="display:block;width:6px;height:8px;overflow:hidden;padding:0;color:transparent;background-color:#99ccff;">Manganese</span></a> </td> <td style="border:none;padding:0;"><a href="/https/en.wikipedia.org/wiki/Iron" title="Iron"><span style="display:block;width:6px;height:8px;overflow:hidden;padding:0;color:transparent;background-color:#99ccff;">Iron</span></a> </td> <td style="border:none;padding:0;"><a href="/https/en.wikipedia.org/wiki/Cobalt" title="Cobalt"><span style="display:block;width:6px;height:8px;overflow:hidden;padding:0;color:transparent;background-color:#99ccff;">Cobalt</span></a> </td> <td style="border:none;padding:0;"><a href="/https/en.wikipedia.org/wiki/Nickel" title="Nickel"><span style="display:block;width:6px;height:8px;overflow:hidden;padding:0;color:transparent;background-color:#99ccff;">Nickel</span></a> </td> <td style="border:none;padding:0;"><a href="/https/en.wikipedia.org/wiki/Copper" title="Copper"><span style="display:block;width:6px;height:8px;overflow:hidden;padding:0;color:transparent;background-color:#99ccff;">Copper</span></a> </td> <td style="border:none;padding:0;"><a href="/https/en.wikipedia.org/wiki/Zinc" title="Zinc"><span style="display:block;width:6px;height:8px;overflow:hidden;padding:0;color:transparent;background-color:#99ccff;">Zinc</span></a> </td> <td style="border:none;padding:0;"><a href="/https/en.wikipedia.org/wiki/Gallium" title="Gallium"><span style="display:block;width:6px;height:8px;overflow:hidden;padding:0;color:transparent;background-color:#fdff8c;">Gallium</span></a> </td> <td style="border:none;padding:0;"><a href="/https/en.wikipedia.org/wiki/Germanium" title="Germanium"><span style="display:block;width:6px;height:8px;overflow:hidden;padding:0;color:transparent;background-color:#fdff8c;">Germanium</span></a> </td> <td style="border:none;padding:0;"><a href="/https/en.wikipedia.org/wiki/Arsenic" title="Arsenic"><span style="display:block;width:6px;height:8px;overflow:hidden;padding:0;color:transparent;background-color:#fdff8c;">Arsenic</span></a> </td> <td style="border:none;padding:0;"><a href="/https/en.wikipedia.org/wiki/Selenium" title="Selenium"><span style="display:block;width:6px;height:8px;overflow:hidden;padding:0;color:transparent;background-color:#fdff8c;">Selenium</span></a> </td> <td style="border:none;padding:0;"><a href="/https/en.wikipedia.org/wiki/Bromine" title="Bromine"><span style="display:block;width:6px;height:8px;overflow:hidden;padding:0;color:transparent;background-color:#fdff8c;">Bromine</span></a> </td> <td style="border:none;padding:0;"><a href="/https/en.wikipedia.org/wiki/Krypton" title="Krypton"><span style="display:block;width:6px;height:8px;overflow:hidden;padding:0;color:transparent;background-color:#fdff8c;">Krypton</span></a> </td></tr> <tr> <td style="border:none;padding:0;"><a href="/https/en.wikipedia.org/wiki/Rubidium" title="Rubidium"><span style="display:block;width:6px;height:8px;overflow:hidden;padding:0;color:transparent;background-color:#ff9999;">Rubidium</span></a> </td> <td style="border:none;padding:0;"><a href="/https/en.wikipedia.org/wiki/Strontium" title="Strontium"><span style="display:block;width:6px;height:8px;overflow:hidden;padding:0;color:transparent;background-color:#ff9999;">Strontium</span></a> </td> <td style="border:none;padding:0;; width:0;"> </td> <td colspan="13" style="border:none;padding:0;"> </td> <td style="border:none;padding:0;"><a href="/https/en.wikipedia.org/wiki/Yttrium" title="Yttrium"><span style="display:block;width:6px;height:8px;overflow:hidden;padding:0;color:transparent;background-color:#99ccff;">Yttrium</span></a> </td> <td style="border:none;padding:0;"><a href="/https/en.wikipedia.org/wiki/Zirconium" title="Zirconium"><span style="display:block;width:6px;height:8px;overflow:hidden;padding:0;color:transparent;background-color:#99ccff;">Zirconium</span></a> </td> <td style="border:none;padding:0;"><a href="/https/en.wikipedia.org/wiki/Niobium" title="Niobium"><span style="display:block;width:6px;height:8px;overflow:hidden;padding:0;color:transparent;background-color:#99ccff;">Niobium</span></a> </td> <td style="border:none;padding:0;"><a href="/https/en.wikipedia.org/wiki/Molybdenum" title="Molybdenum"><span style="display:block;width:6px;height:8px;overflow:hidden;padding:0;color:transparent;background-color:#99ccff;">Molybdenum</span></a> </td> <td style="border:none;padding:0;"><a href="/https/en.wikipedia.org/wiki/Technetium" title="Technetium"><span style="display:block;width:6px;height:8px;overflow:hidden;padding:0;color:transparent;background-color:#99ccff;">Technetium</span></a> </td> <td style="border:none;padding:0;"><a href="/https/en.wikipedia.org/wiki/Ruthenium" title="Ruthenium"><span style="display:block;width:6px;height:8px;overflow:hidden;padding:0;color:transparent;background-color:#99ccff;">Ruthenium</span></a> </td> <td style="border:none;padding:0;"><a href="/https/en.wikipedia.org/wiki/Rhodium" title="Rhodium"><span style="display:block;width:6px;height:8px;overflow:hidden;padding:0;color:transparent;background-color:#99ccff;">Rhodium</span></a> </td> <td style="border:none;padding:0;"><a href="/https/en.wikipedia.org/wiki/Palladium" title="Palladium"><span style="display:block;width:6px;height:8px;overflow:hidden;padding:0;color:transparent;background-color:#99ccff;">Palladium</span></a> </td> <td style="border:none;padding:0;"><a href="/https/en.wikipedia.org/wiki/Silver" title="Silver"><span style="display:block;width:6px;height:8px;overflow:hidden;padding:0;color:transparent;background-color:#99ccff;">Silver</span></a> </td> <td style="border:none;padding:0;"><a href="/https/en.wikipedia.org/wiki/Cadmium" title="Cadmium"><span style="display:block;width:6px;height:8px;overflow:hidden;padding:0;color:transparent;background-color:#99ccff;">Cadmium</span></a> </td> <td style="border:none;padding:0;"><a href="/https/en.wikipedia.org/wiki/Indium" title="Indium"><span style="display:block;width:6px;height:8px;overflow:hidden;padding:0;color:transparent;background-color:#fdff8c;">Indium</span></a> </td> <td style="border:none;padding:0;"><a href="/https/en.wikipedia.org/wiki/Tin" title="Tin"><span style="display:block;width:6px;height:8px;overflow:hidden;padding:0;color:transparent;background-color:#fdff8c;">Tin</span></a> </td> <td style="border:none;padding:0;"><a href="/https/en.wikipedia.org/wiki/Antimony" title="Antimony"><span style="display:block;width:6px;height:8px;overflow:hidden;padding:0;color:transparent;background-color:#fdff8c;">Antimony</span></a> </td> <td style="border:none;padding:0;"><a href="/https/en.wikipedia.org/wiki/Tellurium" title="Tellurium"><span style="display:block;width:6px;height:8px;overflow:hidden;padding:0;color:transparent;background-color:#fdff8c;">Tellurium</span></a> </td> <td style="border:none;padding:0;"><a href="/https/en.wikipedia.org/wiki/Iodine" title="Iodine"><span style="display:block;width:6px;height:8px;overflow:hidden;padding:0;color:transparent;background-color:#fdff8c;">Iodine</span></a> </td> <td style="border:none;padding:0;"><a href="/https/en.wikipedia.org/wiki/Xenon" title="Xenon"><span style="display:block;width:6px;height:8px;overflow:hidden;padding:0;color:transparent;background-color:#fdff8c;">Xenon</span></a> </td></tr> <tr style="border:none;padding:0;"> <td style="border:none;padding:0;"><a href="/https/en.wikipedia.org/wiki/Caesium" title="Caesium"><span style="display:block;width:6px;height:8px;overflow:hidden;padding:0;color:transparent;background-color:#ff9999;">Caesium</span></a> </td> <td style="border:none;padding:0;"><a href="/https/en.wikipedia.org/wiki/Barium" title="Barium"><span style="display:block;width:6px;height:8px;overflow:hidden;padding:0;color:transparent;background-color:#ff9999;">Barium</span></a> </td> <td style="border:none;padding:0;"><a href="/https/en.wikipedia.org/wiki/Lanthanum" title="Lanthanum"><span style="display:block;width:6px;height:8px;overflow:hidden;padding:0;color:transparent;background-color:#9bff99;">Lanthanum</span></a> </td> <td style="border:none;padding:0;"><a href="/https/en.wikipedia.org/wiki/Cerium" title="Cerium"><span style="display:block;width:6px;height:8px;overflow:hidden;padding:0;color:transparent;background-color:#9bff99;">Cerium</span></a> </td> <td style="border:none;padding:0;"><a href="/https/en.wikipedia.org/wiki/Praseodymium" title="Praseodymium"><span style="display:block;width:6px;height:8px;overflow:hidden;padding:0;color:transparent;background-color:#9bff99;">Praseodymium</span></a> </td> <td style="border:none;padding:0;"><a href="/https/en.wikipedia.org/wiki/Neodymium" title="Neodymium"><span style="display:block;width:6px;height:8px;overflow:hidden;padding:0;color:transparent;background-color:#9bff99;">Neodymium</span></a> </td> <td style="border:none;padding:0;"><a href="/https/en.wikipedia.org/wiki/Promethium" title="Promethium"><span style="display:block;width:6px;height:8px;overflow:hidden;padding:0;color:transparent;background-color:#9bff99;">Promethium</span></a> </td> <td style="border:none;padding:0;"><a href="/https/en.wikipedia.org/wiki/Samarium" title="Samarium"><span style="display:block;width:6px;height:8px;overflow:hidden;padding:0;color:transparent;background-color:#9bff99;">Samarium</span></a> </td> <td style="border:none;padding:0;"><a href="/https/en.wikipedia.org/wiki/Europium" title="Europium"><span style="display:block;width:6px;height:8px;overflow:hidden;padding:0;color:transparent;background-color:#9bff99;">Europium</span></a> </td> <td style="border:none;padding:0;"><a href="/https/en.wikipedia.org/wiki/Gadolinium" title="Gadolinium"><span style="display:block;width:6px;height:8px;overflow:hidden;padding:0;color:transparent;background-color:#9bff99;">Gadolinium</span></a> </td> <td style="border:none;padding:0;"><a href="/https/en.wikipedia.org/wiki/Terbium" title="Terbium"><span style="display:block;width:6px;height:8px;overflow:hidden;padding:0;color:transparent;background-color:#9bff99;">Terbium</span></a> </td> <td style="border:none;padding:0;"><a href="/https/en.wikipedia.org/wiki/Dysprosium" title="Dysprosium"><span style="display:block;width:6px;height:8px;overflow:hidden;padding:0;color:transparent;background-color:#9bff99;">Dysprosium</span></a> </td> <td style="border:none;padding:0;"><a href="/https/en.wikipedia.org/wiki/Holmium" title="Holmium"><span style="display:block;width:6px;height:8px;overflow:hidden;padding:0;color:transparent;background-color:#9bff99;">Holmium</span></a> </td> <td style="border:none;padding:0;"><a href="/https/en.wikipedia.org/wiki/Erbium" title="Erbium"><span style="display:block;width:6px;height:8px;overflow:hidden;padding:0;color:transparent;background-color:#9bff99;">Erbium</span></a> </td> <td style="border:none;padding:0;"><a href="/https/en.wikipedia.org/wiki/Thulium" title="Thulium"><span style="display:block;width:6px;height:8px;overflow:hidden;padding:0;color:transparent;background-color:#9bff99;">Thulium</span></a> </td> <td style="border:none;padding:0;"><a href="/https/en.wikipedia.org/wiki/Ytterbium" title="Ytterbium"><span style="display:block;width:6px;height:8px;overflow:hidden;padding:0;color:transparent;background-color:#9bff99;">Ytterbium</span></a> </td> <td style="border:none;padding:0;"><a href="/https/en.wikipedia.org/wiki/Lutetium" title="Lutetium"><span style="display:block;width:6px;height:8px;overflow:hidden;padding:0;color:transparent;background-color:#99ccff;">Lutetium</span></a> </td> <td style="border:none;padding:0;"><a href="/https/en.wikipedia.org/wiki/Hafnium" title="Hafnium"><span style="display:block;width:6px;height:8px;overflow:hidden;padding:0;color:transparent;background-color:#99ccff;">Hafnium</span></a> </td> <td style="border:none;padding:0;"><a href="/https/en.wikipedia.org/wiki/Tantalum" title="Tantalum"><span style="display:block;width:6px;height:8px;overflow:hidden;padding:0;color:transparent;background-color:#99ccff;">Tantalum</span></a> </td> <td style="border:none;padding:0;"><a href="/https/en.wikipedia.org/wiki/Tungsten" title="Tungsten"><span style="display:block;width:6px;height:8px;overflow:hidden;padding:0;color:transparent;background-color:#99ccff;">Tungsten</span></a> </td> <td style="border:none;padding:0;"><a href="/https/en.wikipedia.org/wiki/Rhenium" title="Rhenium"><span style="display:block;width:6px;height:8px;overflow:hidden;padding:0;color:transparent;background-color:#99ccff;">Rhenium</span></a> </td> <td style="border:none;padding:0;"><a href="/https/en.wikipedia.org/wiki/Osmium" title="Osmium"><span style="display:block;width:6px;height:8px;overflow:hidden;padding:0;color:transparent;background-color:#99ccff;">Osmium</span></a> </td> <td style="border:none;padding:0;"><a href="/https/en.wikipedia.org/wiki/Iridium" title="Iridium"><span style="display:block;width:6px;height:8px;overflow:hidden;padding:0;color:transparent;background-color:#99ccff;">Iridium</span></a> </td> <td style="border:none;padding:0;"><a href="/https/en.wikipedia.org/wiki/Platinum" title="Platinum"><span style="display:block;width:6px;height:8px;overflow:hidden;padding:0;color:transparent;background-color:#99ccff;">Platinum</span></a> </td> <td style="border:none;padding:0;"><a href="/https/en.wikipedia.org/wiki/Gold" title="Gold"><span style="display:block;width:6px;height:8px;overflow:hidden;padding:0;color:transparent;background-color:#99ccff;">Gold</span></a> </td> <td style="border:none;padding:0;"><a href="/https/en.wikipedia.org/wiki/Mercury_(element)" title="Mercury (element)"><span style="display:block;width:6px;height:8px;overflow:hidden;padding:0;color:transparent;background-color:#99ccff;">Mercury (element)</span></a> </td> <td style="border:none;padding:0;"><a href="/https/en.wikipedia.org/wiki/Thallium" title="Thallium"><span style="display:block;width:6px;height:8px;overflow:hidden;padding:0;color:transparent;background-color:#fdff8c;">Thallium</span></a> </td> <td style="border:none;padding:0;"><a href="/https/en.wikipedia.org/wiki/Lead" title="Lead"><span style="display:block;width:6px;height:8px;overflow:hidden;padding:0;color:transparent;background-color:#fdff8c;">Lead</span></a> </td> <td style="border:none;padding:0;"><a href="/https/en.wikipedia.org/wiki/Bismuth" title="Bismuth"><span style="display:block;width:6px;height:8px;overflow:hidden;padding:0;color:transparent;background-color:#fdff8c;">Bismuth</span></a> </td> <td style="border:none;padding:0;"><a href="/https/en.wikipedia.org/wiki/Polonium" title="Polonium"><span style="display:block;width:6px;height:8px;overflow:hidden;padding:0;color:transparent;background-color:#fdff8c;">Polonium</span></a> </td> <td style="border:none;padding:0;"><a href="/https/en.wikipedia.org/wiki/Astatine" title="Astatine"><span style="display:block;width:6px;height:8px;overflow:hidden;padding:0;color:transparent;background-color:#fdff8c;">Astatine</span></a> </td> <td style="border:none;padding:0;"><a href="/https/en.wikipedia.org/wiki/Radon" title="Radon"><span style="display:block;width:6px;height:8px;overflow:hidden;padding:0;color:transparent;background-color:#fdff8c;">Radon</span></a> </td></tr> <tr> <td style="border:none;padding:0;"><a href="/https/en.wikipedia.org/wiki/Francium" title="Francium"><span style="display:block;width:6px;height:8px;overflow:hidden;padding:0;color:transparent;background-color:#ff9999;">Francium</span></a> </td> <td style="border:none;padding:0;"><a href="/https/en.wikipedia.org/wiki/Radium" title="Radium"><span style="display:block;width:6px;height:8px;overflow:hidden;padding:0;color:transparent;background-color:#ff9999;">Radium</span></a> </td> <td style="border:none;padding:0;"><a href="/https/en.wikipedia.org/wiki/Actinium" title="Actinium"><span style="display:block;width:6px;height:8px;overflow:hidden;padding:0;color:transparent;background-color:#9bff99;">Actinium</span></a> </td> <td style="border:none;padding:0;"><a href="/https/en.wikipedia.org/wiki/Thorium" title="Thorium"><span style="display:block;width:6px;height:8px;overflow:hidden;padding:0;color:transparent;background-color:#9bff99;">Thorium</span></a> </td> <td style="border:none;padding:0;"><a href="/https/en.wikipedia.org/wiki/Protactinium" title="Protactinium"><span style="display:block;width:6px;height:8px;overflow:hidden;padding:0;color:transparent;background-color:#9bff99;">Protactinium</span></a> </td> <td style="border:none;padding:0;"><a href="/https/en.wikipedia.org/wiki/Uranium" title="Uranium"><span style="display:block;width:6px;height:8px;overflow:hidden;padding:0;color:transparent;background-color:#9bff99;">Uranium</span></a> </td> <td style="border:none;padding:0;"><a href="/https/en.wikipedia.org/wiki/Neptunium" title="Neptunium"><span style="display:block;width:6px;height:8px;overflow:hidden;padding:0;color:transparent;background-color:#9bff99;">Neptunium</span></a> </td> <td style="border:none;padding:0;"><a href="/https/en.wikipedia.org/wiki/Plutonium" title="Plutonium"><span style="display:block;width:6px;height:8px;overflow:hidden;padding:0;color:transparent;background-color:#9bff99;">Plutonium</span></a> </td> <td style="border:none;padding:0;"><a href="/https/en.wikipedia.org/wiki/Americium" title="Americium"><span style="display:block;width:6px;height:8px;overflow:hidden;padding:0;color:transparent;background-color:#9bff99;">Americium</span></a> </td> <td style="border:none;padding:0;"><a href="/https/en.wikipedia.org/wiki/Curium" title="Curium"><span style="display:block;width:6px;height:8px;overflow:hidden;padding:0;color:transparent;background-color:#9bff99;">Curium</span></a> </td> <td style="border:none;padding:0;"><a href="/https/en.wikipedia.org/wiki/Berkelium" title="Berkelium"><span style="display:block;width:6px;height:8px;overflow:hidden;padding:0;color:transparent;background-color:#9bff99;">Berkelium</span></a> </td> <td style="border:none;padding:0;"><a href="/https/en.wikipedia.org/wiki/Californium" title="Californium"><span style="display:block;width:6px;height:8px;overflow:hidden;padding:0;color:transparent;background-color:#9bff99;">Californium</span></a> </td> <td style="border:none;padding:0;"><a href="/https/en.wikipedia.org/wiki/Einsteinium" title="Einsteinium"><span style="display:block;width:6px;height:8px;overflow:hidden;padding:0;color:transparent;background-color:#9bff99;">Einsteinium</span></a> </td> <td style="border:none;padding:0;"><a href="/https/en.wikipedia.org/wiki/Fermium" title="Fermium"><span style="display:block;width:6px;height:8px;overflow:hidden;padding:0;color:transparent;background-color:#9bff99;">Fermium</span></a> </td> <td style="border:none;padding:0;"><a href="/https/en.wikipedia.org/wiki/Mendelevium" title="Mendelevium"><span style="display:block;width:6px;height:8px;overflow:hidden;padding:0;color:transparent;background-color:#9bff99;">Mendelevium</span></a> </td> <td style="border:none;padding:0;"><a href="/https/en.wikipedia.org/wiki/Nobelium" title="Nobelium"><span style="display:block;width:6px;height:8px;overflow:hidden;padding:0;color:transparent;background-color:#9bff99;">Nobelium</span></a> </td> <td style="border:none;padding:0;"><a href="/https/en.wikipedia.org/wiki/Lawrencium" title="Lawrencium"><span style="display:block;width:6px;height:8px;overflow:hidden;padding:0;color:transparent;background-color:#99ccff;">Lawrencium</span></a> </td> <td style="border:none;padding:0;"><a href="/https/en.wikipedia.org/wiki/Rutherfordium" title="Rutherfordium"><span style="display:block;width:6px;height:8px;overflow:hidden;padding:0;color:transparent;background-color:#99ccff;">Rutherfordium</span></a> </td> <td style="border:none;padding:0;"><a href="/https/en.wikipedia.org/wiki/Dubnium" title="Dubnium"><span style="display:block;width:6px;height:8px;overflow:hidden;padding:0;color:transparent;background-color:#99ccff;">Dubnium</span></a> </td> <td style="border:none;padding:0;"><a href="/https/en.wikipedia.org/wiki/Seaborgium" title="Seaborgium"><span style="display:block;width:6px;height:8px;overflow:hidden;padding:0;color:transparent;background-color:#99ccff;">Seaborgium</span></a> </td> <td style="border:none;padding:0;"><a href="/https/en.wikipedia.org/wiki/Bohrium" title="Bohrium"><span style="display:block;width:6px;height:8px;overflow:hidden;padding:0;color:transparent;background-color:#99ccff;">Bohrium</span></a> </td> <td style="border:none;padding:0;"><a href="/https/en.wikipedia.org/wiki/Hassium" title="Hassium"><span style="display:block;width:6px;height:8px;overflow:hidden;padding:0;color:transparent;background-color:#99ccff;">Hassium</span></a> </td> <td style="border:none;padding:0;"><a href="/https/en.wikipedia.org/wiki/Meitnerium" title="Meitnerium"><span style="display:block;width:6px;height:8px;overflow:hidden;padding:0;color:transparent;background-color:#99ccff;">Meitnerium</span></a> </td> <td style="border:none;padding:0;"><a href="/https/en.wikipedia.org/wiki/Darmstadtium" title="Darmstadtium"><span style="display:block;width:6px;height:8px;overflow:hidden;padding:0;color:transparent;background-color:#99ccff;">Darmstadtium</span></a> </td> <td style="border:none;padding:0;"><a href="/https/en.wikipedia.org/wiki/Roentgenium" title="Roentgenium"><span style="display:block;width:6px;height:8px;overflow:hidden;padding:0;color:transparent;background-color:#99ccff;">Roentgenium</span></a> </td> <td style="border:none;padding:0;"><a href="/https/en.wikipedia.org/wiki/Copernicium" title="Copernicium"><span style="display:block;width:6px;height:8px;overflow:hidden;padding:0;color:transparent;background-color:#99ccff;">Copernicium</span></a> </td> <td style="border:none;padding:0;"><a href="/https/en.wikipedia.org/wiki/Nihonium" title="Nihonium"><span style="display:block;width:6px;height:8px;overflow:hidden;padding:0;color:transparent;background-color:#fdff8c;">Nihonium</span></a> </td> <td style="border:none;padding:0;"><a href="/https/en.wikipedia.org/wiki/Flerovium" title="Flerovium"><span style="display:block;width:6px;height:8px;overflow:hidden;padding:0;color:transparent;background-color:#fdff8c;">Flerovium</span></a> </td> <td style="border:none;padding:0;"><a href="/https/en.wikipedia.org/wiki/Moscovium" title="Moscovium"><span style="display:block;width:6px;height:8px;overflow:hidden;padding:0;color:transparent;background-color:#fdff8c;">Moscovium</span></a> </td> <td style="border:none;padding:0;"><a class="mw-selflink selflink"><span style="display:block;width:6px;height:8px;overflow:hidden;padding:0;color:transparent;background-color:#fdff8c; border:1px solid black; box-sizing: border-box;;">Livermorium</span></a> </td> <td style="border:none;padding:0;"><a href="/https/en.wikipedia.org/wiki/Tennessine" title="Tennessine"><span style="display:block;width:6px;height:8px;overflow:hidden;padding:0;color:transparent;background-color:#fdff8c;">Tennessine</span></a> </td> <td style="border:none;padding:0;"><a href="/https/en.wikipedia.org/wiki/Oganesson" title="Oganesson"><span style="display:block;width:6px;height:8px;overflow:hidden;padding:0;color:transparent;background-color:#fdff8c;">Oganesson</span></a> </td></tr></tbody></table> </div> </td> <td style="vertical-align:middle; text-align:center; font-size:90%; line-height:100%; width:10px; border:none;"><a href="/https/en.wikipedia.org/wiki/Polonium" title="Polonium">Po</a><br />↑<br /><strong>Lv</strong><br />↓<br />(Usn) </td></tr> <tr> <td colspan="2" class="nowrap" style="text-align:center; font-size:90%; line-height:100%; padding-top:0; padding-bottom:1px; border:none;"><a href="/https/en.wikipedia.org/wiki/Moscovium" title="Moscovium">moscovium</a> ← <strong>livermorium</strong> → <a href="/https/en.wikipedia.org/wiki/Tennessine" title="Tennessine">tennessine</a> </td></tr></tbody></table> </td></tr></tbody></table></td></tr><tr><th scope="row" class="infobox-label"><span class="nowrap"><a href="/https/en.wikipedia.org/wiki/Atomic_number" title="Atomic number">Atomic number</a> <span style="font-weight:normal;">(<i>Z</i>)</span></span></th><td class="infobox-data">116</td></tr><tr><th scope="row" class="infobox-label"><a href="/https/en.wikipedia.org/wiki/Group_(periodic_table)" title="Group (periodic table)">Group</a></th><td class="infobox-data"><a href="/https/en.wikipedia.org/wiki/Chalcogen" title="Chalcogen">group&#160;16 (chalcogens)</a></td></tr><tr><th scope="row" class="infobox-label"><a href="/https/en.wikipedia.org/wiki/Period_(periodic_table)" title="Period (periodic table)">Period</a></th><td class="infobox-data"><a href="/https/en.wikipedia.org/wiki/Period_7_element" title="Period 7 element">period&#160;7</a></td></tr><tr><th scope="row" class="infobox-label"><a href="/https/en.wikipedia.org/wiki/Block_(periodic_table)" title="Block (periodic table)">Block</a></th><td class="infobox-data"><span title="color legend: p-block" style="display:inline-block; vertical-align:middle; width:6px; height:8px; border:1px solid black; background:#fdff8c">&#160;</span> <a href="/https/en.wikipedia.org/wiki/Block_(periodic_table)#p-block" title="Block (periodic table)">p-block</a></td></tr><tr><th scope="row" class="infobox-label"><a href="/https/en.wikipedia.org/wiki/Electron_configuration" title="Electron configuration">Electron configuration</a></th><td class="infobox-data">&#91;<a href="/https/en.wikipedia.org/wiki/Radon" title="Radon">Rn</a>&#93; 5f<sup>14</sup> 6d<sup>10</sup> 7s<sup>2</sup> 7p<sup>4</sup>&#x20;<i>(predicted)</i><sup id="cite_ref-Haire_1-0" class="reference"><a href="#cite_note-Haire-1">&#91;1&#93;</a></sup></td></tr><tr><th scope="row" class="infobox-label">Electrons per shell</th><td class="infobox-data">2, 8, 18, 32, 32, 18, 6 <i>(predicted)</i></td></tr><tr><th colspan="2" class="infobox-header" style="background:#fdff8c">Physical properties</th></tr><tr><th scope="row" class="infobox-label"><a href="/https/en.wikipedia.org/wiki/Phase_(matter)" title="Phase (matter)">Phase</a> <style data-mw-deduplicate="TemplateStyles:r886047488">.mw-parser-output .nobold{font-weight:normal}</style><span class="nobold">at&#160;<span title="STP: standard temperature and pressure: 0&#160;°C and 101.325&#160;kPa"><a href="/https/en.wikipedia.org/wiki/Standard_temperature_and_pressure" title="Standard temperature and pressure">STP</a></span></span></th><td class="infobox-data">solid <i>(predicted)</i><sup id="cite_ref-Haire_1-1" class="reference"><a href="#cite_note-Haire-1">&#91;1&#93;</a></sup><sup id="cite_ref-B&amp;K_2-0" class="reference"><a href="#cite_note-B&amp;K-2">&#91;2&#93;</a></sup></td></tr><tr><th scope="row" class="infobox-label"><a href="/https/en.wikipedia.org/wiki/Melting_point" title="Melting point">Melting point</a></th><td class="infobox-data">637–780&#160;<a href="/https/en.wikipedia.org/wiki/Kelvin" title="Kelvin">K</a>&#x20;&#x200b;(364–507&#160;°C,&#x20;&#x200b;687–944&#160;°F)&#x20;<i>(extrapolated)</i><sup id="cite_ref-B&amp;K_2-1" class="reference"><a href="#cite_note-B&amp;K-2">&#91;2&#93;</a></sup></td></tr><tr><th scope="row" class="infobox-label"><a href="/https/en.wikipedia.org/wiki/Boiling_point" title="Boiling point">Boiling point</a></th><td class="infobox-data">1035–1135&#160;K&#x20;&#x200b;(762–862&#160;°C,&#x20;&#x200b;1403–1583&#160;°F)&#x20;<i>(extrapolated)</i><sup id="cite_ref-B&amp;K_2-2" class="reference"><a href="#cite_note-B&amp;K-2">&#91;2&#93;</a></sup></td></tr><tr><th scope="row" class="infobox-label"><a href="/https/en.wikipedia.org/wiki/Density" title="Density">Density</a>&#x20;<span style="font-weight:normal;">(near&#160;<abbr title="room temperature">r.t.</abbr>)</span></th><td class="infobox-data">12.9&#160;g/cm<sup>3</sup>&#x20;<i>(predicted)</i><sup id="cite_ref-Haire_1-2" class="reference"><a href="#cite_note-Haire-1">&#91;1&#93;</a></sup></td></tr><tr><th scope="row" class="infobox-label"><a href="/https/en.wikipedia.org/wiki/Enthalpy_of_fusion" title="Enthalpy of fusion">Heat of fusion</a></th><td class="infobox-data">7.61&#160;<a href="/https/en.wikipedia.org/wiki/Kilojoule_per_mole" class="mw-redirect" title="Kilojoule per mole">kJ/mol</a>&#x20;<i>(extrapolated)</i><sup id="cite_ref-B&amp;K_2-3" class="reference"><a href="#cite_note-B&amp;K-2">&#91;2&#93;</a></sup></td></tr><tr><th scope="row" class="infobox-label"><a href="/https/en.wikipedia.org/wiki/Enthalpy_of_vaporization" title="Enthalpy of vaporization">Heat of vaporization</a></th><td class="infobox-data">42&#160;kJ/mol&#x20;<i>(predicted)</i><sup id="cite_ref-Fricke1975_3-0" class="reference"><a href="#cite_note-Fricke1975-3">&#91;3&#93;</a></sup></td></tr><tr><th colspan="2" class="infobox-header" style="background:#fdff8c">Atomic properties</th></tr><tr><th scope="row" class="infobox-label"><a href="/https/en.wikipedia.org/wiki/Oxidation_state" title="Oxidation state">Oxidation states</a></th><td class="infobox-data">(−2),<sup id="cite_ref-Thayer_p83_4-0" class="reference"><a href="#cite_note-Thayer_p83-4">&#91;4&#93;</a></sup> (<span style="font-size:112%;"><b>+2</b></span>), (+4)&#x20;<i>(predicted)</i><sup id="cite_ref-Haire_1-3" class="reference"><a href="#cite_note-Haire-1">&#91;1&#93;</a></sup></td></tr><tr><th scope="row" class="infobox-label"><a href="/https/en.wikipedia.org/wiki/Ionization_energy" title="Ionization energy">Ionization energies</a></th><td class="infobox-data"><style data-mw-deduplicate="TemplateStyles:r1126788409">.mw-parser-output .plainlist ol,.mw-parser-output .plainlist ul{line-height:inherit;list-style:none;margin:0;padding:0}.mw-parser-output .plainlist ol li,.mw-parser-output .plainlist ul li{margin-bottom:0}</style><div class="plainlist"><ul><li>1st:&#160;663.9&#160;kJ/mol&#x20;<i>(predicted)</i><sup id="cite_ref-VPershina_5-0" class="reference"><a href="#cite_note-VPershina-5">&#91;5&#93;</a></sup></li><li>2nd:&#160;1330&#160;kJ/mol&#x20;<i>(predicted)</i><sup id="cite_ref-Fricke1975_3-1" class="reference"><a href="#cite_note-Fricke1975-3">&#91;3&#93;</a></sup></li><li>3rd:&#160;2850&#160;kJ/mol&#x20;<i>(predicted)</i><sup id="cite_ref-Fricke1975_3-2" class="reference"><a href="#cite_note-Fricke1975-3">&#91;3&#93;</a></sup></li><li>(<a href="/https/en.wikipedia.org/wiki/Molar_ionization_energies_of_the_elements#livermorium" title="Molar ionization energies of the elements">more</a>)&#x20;</li></ul></div></td></tr><tr><th scope="row" class="infobox-label"><a href="/https/en.wikipedia.org/wiki/Atomic_radius" title="Atomic radius">Atomic radius</a></th><td class="infobox-data">empirical:&#x20;183&#160;<a href="/https/en.wikipedia.org/wiki/Picometre" title="Picometre">pm</a>&#x20;<i>(predicted)</i><sup id="cite_ref-Fricke1975_3-3" class="reference"><a href="#cite_note-Fricke1975-3">&#91;3&#93;</a></sup></td></tr><tr><th scope="row" class="infobox-label"><a href="/https/en.wikipedia.org/wiki/Covalent_radius" title="Covalent radius">Covalent radius</a></th><td class="infobox-data">162–166&#160;pm&#x20;<i>(extrapolated)</i><sup id="cite_ref-B&amp;K_2-4" class="reference"><a href="#cite_note-B&amp;K-2">&#91;2&#93;</a></sup></td></tr><tr><th colspan="2" class="infobox-header" style="background:#fdff8c">Other properties</th></tr><tr><th scope="row" class="infobox-label">Natural occurrence</th><td class="infobox-data"><a href="/https/en.wikipedia.org/wiki/Synthetic_element" title="Synthetic element">synthetic</a></td></tr><tr><th scope="row" class="infobox-label"><a href="/https/en.wikipedia.org/wiki/CAS_Registry_Number" title="CAS Registry Number">CAS Number</a></th><td class="infobox-data">54100-71-9&#x20;</td></tr><tr><th colspan="2" class="infobox-header" style="background:#fdff8c">History</th></tr><tr><th scope="row" class="infobox-label">Naming</th><td class="infobox-data">after <a href="/https/en.wikipedia.org/wiki/Lawrence_Livermore_National_Laboratory" title="Lawrence Livermore National Laboratory">Lawrence Livermore National Laboratory</a>,<sup id="cite_ref-IUPAC-names-114-116_6-0" class="reference"><a href="#cite_note-IUPAC-names-114-116-6">&#91;6&#93;</a></sup> itself named partly after <a href="/https/en.wikipedia.org/wiki/Livermore,_California" title="Livermore, California">Livermore, California</a></td></tr><tr><th scope="row" class="infobox-label"><a href="/https/en.wikipedia.org/wiki/Timeline_of_chemical_element_discoveries" title="Timeline of chemical element discoveries">Discovery</a></th><td class="infobox-data"><a href="/https/en.wikipedia.org/wiki/Joint_Institute_for_Nuclear_Research" title="Joint Institute for Nuclear Research">Joint Institute for Nuclear Research</a> and <a href="/https/en.wikipedia.org/wiki/Lawrence_Livermore_National_Laboratory" title="Lawrence Livermore National Laboratory">Lawrence Livermore National Laboratory</a><span class="nowrap">&#x20;(2000)</span></td></tr><tr><th colspan="2" class="infobox-header" style="background:#fdff8c"><a href="/https/en.wikipedia.org/wiki/Isotopes_of_livermorium" title="Isotopes of livermorium">Isotopes of livermorium</a><span style="float:right; padding-right: 0.2em;"><style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1063604349">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/https/en.wikipedia.org/wiki/Template:Infobox_livermorium_isotopes" title="Template:Infobox livermorium isotopes"><abbr title="View this template">v</abbr></a></li><li class="nv-edit"><a class="external text" href="https://en.wikipedia.org/w/index.php?title=Template:Infobox_livermorium_isotopes&amp;action=edit"><abbr title="Edit this template">e</abbr></a></li></ul></div></span></th></tr><tr><td colspan="2" class="infobox-full-data"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1066479718"></td></tr><tr><td colspan="2" class="infobox-full-data"> <table class="wikitable" style="text-align: center; vertical-align: middle; width: 100%; border-collapse: collapse; margin: 0; padding: 0;"> <tbody><tr> <th colspan="3">Main isotopes<sup id="cite_ref-NUBASE2020_7-0" class="reference"><a href="#cite_note-NUBASE2020-7">&#91;7&#93;</a></sup> </th> <th colspan="2"><a href="/https/en.wikipedia.org/wiki/Radioactive_decay" title="Radioactive decay">Decay</a> </th></tr> <tr> <th> </th> <th style="padding: 0.1em;"><a href="/https/en.wikipedia.org/wiki/Natural_abundance" title="Natural abundance">abun&#173;dance</a> </th> <th style="padding: 0.1em;"><a href="/https/en.wikipedia.org/wiki/Half-life" title="Half-life">half-life</a> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r886047488"><span class="nobold">(<i>t</i><sub>1/2</sub>)</span> </th> <th style="padding: 0.1em;"><a href="/https/en.wikipedia.org/wiki/Radioactive_decay#Types_of_decay" title="Radioactive decay">mode</a> </th> <th style="padding: 0.1em;"><a href="/https/en.wikipedia.org/wiki/Decay_product" title="Decay product">pro&#173;duct</a> </th></tr> <tr> <th rowspan="2" style="vertical-align: top;"><sup>290</sup>Lv </th> <td rowspan="2" colspan="1" style="vertical-align: top; text-align: center;"><a href="/https/en.wikipedia.org/wiki/Synthetic_radioisotope" title="Synthetic radioisotope">synth</a> </td> <td rowspan="2" colspan="1" style="vertical-align: top; text-align: right;"><span class="nowrap"><span data-sort-value="6997900000000000000♠"></span>9&#160;ms</span> </td> <td style="text-align: left; vertical-align: top;"><span style="float: left; font-size: 115%; padding: 0;"><a href="/https/en.wikipedia.org/wiki/Alpha_decay" title="Alpha decay">α</a></span><span style="float: right; padding-left: 0.2em;"></span> </td> <td style="text-align: right; vertical-align: middle;"><a href="/https/en.wikipedia.org/wiki/Flerovium-286" class="mw-redirect" title="Flerovium-286"><sup>286</sup>Fl</a> </td></tr> <tr> <td style="text-align: left; vertical-align: top;"><span style="float: left; font-size: 115%; padding: 0;">SF</span><span style="float: right; padding-left: 0.2em;"></span> </td> <td style="text-align: right; vertical-align: middle;"><sup></sup>&#8211; </td></tr> <tr> <th rowspan="1" style="vertical-align: top;"><sup>291</sup>Lv </th> <td rowspan="1" colspan="1" style="vertical-align: top; text-align: center;">synth </td> <td rowspan="1" colspan="1" style="vertical-align: top; text-align: right;"><span class="nowrap"><span data-sort-value="6998260000000000000♠"></span>26&#160;ms</span> </td> <td style="text-align: left; vertical-align: top;"><span style="float: left; font-size: 115%; padding: 0;">α</span><span style="float: right; padding-left: 0.2em;"></span> </td> <td style="text-align: right; vertical-align: middle;"><a href="/https/en.wikipedia.org/wiki/Flerovium-287" class="mw-redirect" title="Flerovium-287"><sup>287</sup>Fl</a> </td></tr> <tr> <th rowspan="1" style="vertical-align: top;"><sup>292</sup>Lv </th> <td rowspan="1" colspan="1" style="vertical-align: top; text-align: center;">synth </td> <td rowspan="1" colspan="1" style="vertical-align: top; text-align: right;"><span class="nowrap"><span data-sort-value="6998160000000000000♠"></span>16&#160;ms</span> </td> <td style="text-align: left; vertical-align: top;"><span style="float: left; font-size: 115%; padding: 0;">α</span><span style="float: right; padding-left: 0.2em;"></span> </td> <td style="text-align: right; vertical-align: middle;"><a href="/https/en.wikipedia.org/wiki/Flerovium-288" class="mw-redirect" title="Flerovium-288"><sup>288</sup>Fl</a> </td></tr> <tr> <th rowspan="1" style="vertical-align: top;"><sup>293</sup>Lv </th> <td rowspan="1" colspan="1" style="vertical-align: top; text-align: center;">synth </td> <td rowspan="1" colspan="1" style="vertical-align: top; text-align: right;"><span class="nowrap"><span data-sort-value="6998700000000000000♠"></span>70&#160;ms</span> </td> <td style="text-align: left; vertical-align: top;"><span style="float: left; font-size: 115%; padding: 0;">α</span><span style="float: right; padding-left: 0.2em;"></span> </td> <td style="text-align: right; vertical-align: middle;"><a href="/https/en.wikipedia.org/wiki/Flerovium-289" class="mw-redirect" title="Flerovium-289"><sup>289</sup>Fl</a> </td></tr> <tr> <th rowspan="1" style="vertical-align: top;"><sup>293m</sup>Lv </th> <td rowspan="1" colspan="1" style="vertical-align: top; text-align: center;">synth </td> <td rowspan="1" colspan="1" style="vertical-align: top; text-align: right;"><span class="nowrap"><span data-sort-value="6998800000000000000♠"></span>80&#160;ms</span> </td> <td style="text-align: left; vertical-align: top;"><span style="float: left; font-size: 115%; padding: 0;">α</span><span style="float: right; padding-left: 0.2em;"></span> </td> <td style="text-align: right; vertical-align: middle;"><sup></sup>? </td></tr></tbody></table></td></tr><tr style="display:none"><td colspan="2"> </td></tr><tr><td colspan="2" class="infobox-below noprint" style="background:#fdff8c"><span class="noviewer" typeof="mw:File"><span title="Category"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/16px-Symbol_category_class.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/23px-Symbol_category_class.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/31px-Symbol_category_class.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span>&#160;<a href="/https/en.wikipedia.org/wiki/Category:Livermorium" title="Category:Livermorium">Category: Livermorium</a><br /><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1063604349"><div class="navbar plainlinks hlist"><ul><li class="nv-view"><a href="/https/en.wikipedia.org/wiki/Template:Infobox_livermorium" title="Template:Infobox livermorium"><span title="View this template">view</span></a></li><li class="nv-talk"><a href="/https/en.wikipedia.org/wiki/Template_talk:Infobox_livermorium" title="Template talk:Infobox livermorium"><span title="Discuss this template">talk</span></a></li><li class="nv-edit"><a class="external text" href="https://en.wikipedia.org/w/index.php?title=Template:Infobox_livermorium&amp;action=edit"><span title="Edit this template">edit</span></a></li></ul></div>&#x20;|&#x20;<a href="/https/en.wikipedia.org/wiki/List_of_data_references_for_chemical_elements" title="List of data references for chemical elements">references</a></td></tr></tbody></table> <p class="mw-empty-elt"> </p><p><b>Livermorium</b> is a <a href="/https/en.wikipedia.org/wiki/Synthetic_element" title="Synthetic element">synthetic</a> <a href="/https/en.wikipedia.org/wiki/Chemical_element" title="Chemical element">chemical element</a> with the <a href="/https/en.wikipedia.org/wiki/Symbol_(chemistry)" class="mw-redirect" title="Symbol (chemistry)">symbol</a> <b>Lv</b> and has an <a href="/https/en.wikipedia.org/wiki/Atomic_number" title="Atomic number">atomic number</a> of 116. It is an extremely <a href="/https/en.wikipedia.org/wiki/Radioactivity" class="mw-redirect" title="Radioactivity">radioactive</a> element that has only been created in a laboratory setting and has not been observed in nature. The element is named after the <a href="/https/en.wikipedia.org/wiki/Lawrence_Livermore_National_Laboratory" title="Lawrence Livermore National Laboratory">Lawrence Livermore National Laboratory</a> in the United States, which collaborated with the <a href="/https/en.wikipedia.org/wiki/Joint_Institute_for_Nuclear_Research" title="Joint Institute for Nuclear Research">Joint Institute for Nuclear Research</a> (JINR) in <a href="/https/en.wikipedia.org/wiki/Dubna" title="Dubna">Dubna</a>, Russia, to discover livermorium during experiments conducted between 2000 and 2006. The name of the laboratory refers to the city of <a href="/https/en.wikipedia.org/wiki/Livermore,_California" title="Livermore, California">Livermore, California</a>, where it is located, which in turn was named after the rancher and landowner <a href="/https/en.wikipedia.org/wiki/Robert_Livermore" title="Robert Livermore">Robert Livermore</a>. The name was adopted by <a href="/https/en.wikipedia.org/wiki/International_Union_of_Pure_and_Applied_Chemistry" title="International Union of Pure and Applied Chemistry">IUPAC</a> on May 30, 2012.<sup id="cite_ref-IUPAC-names-114-116_6-1" class="reference"><a href="#cite_note-IUPAC-names-114-116-6">&#91;6&#93;</a></sup> Four <a href="/https/en.wikipedia.org/wiki/Isotopes_of_livermorium" title="Isotopes of livermorium">isotopes of livermorium</a> are known, with <a href="/https/en.wikipedia.org/wiki/Mass_number" title="Mass number">mass numbers</a> between 290 and 293 inclusive; the longest-lived among them is livermorium-293 with a <a href="/https/en.wikipedia.org/wiki/Half-life" title="Half-life">half-life</a> of about 60&#160;<a href="/https/en.wikipedia.org/wiki/Millisecond" title="Millisecond">milliseconds</a>. A fifth possible isotope with mass number 294 has been reported but not yet confirmed. </p><p>In the <a href="/https/en.wikipedia.org/wiki/Periodic_table" title="Periodic table">periodic table</a>, it is a <a href="/https/en.wikipedia.org/wiki/P-block" class="mw-redirect" title="P-block">p-block</a> <a href="/https/en.wikipedia.org/wiki/Transactinide_element" class="mw-redirect" title="Transactinide element">transactinide element</a>. It is a member of the <a href="/https/en.wikipedia.org/wiki/Period_7_element" title="Period 7 element">7th period</a> and is placed in group 16 as the heaviest <a href="/https/en.wikipedia.org/wiki/Chalcogen" title="Chalcogen">chalcogen</a>, but it has not been confirmed to behave as the heavier <a href="/https/en.wikipedia.org/wiki/Homology_(chemistry)" title="Homology (chemistry)">homologue</a> to the chalcogen <a href="/https/en.wikipedia.org/wiki/Polonium" title="Polonium">polonium</a>. Livermorium is calcula<a rel="nofollow" class="external text" href="http://webelements.com/livermorium/">Livermorium at WebElements.com</a> </p> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1061467846">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}</style></div><div role="navigation" class="navbox" aria-labelledby="Periodic_table" style="padding:3px"><table class="nowraplinks mw-collapsible expanded navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1063604349"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/https/en.wikipedia.org/wiki/Template:Periodic_table_(navbox)" title="Template:Periodic table (navbox)"><abbr title="View this template" style=";;background:none transparent;border:none;box-shadow:none;padding:0;">v</abbr></a></li><li class="nv-talk"><a href="/https/en.wikipedia.org/wiki/Template_talk:Periodic_table_(navbox)" title="Template talk:Periodic table (navbox)"><abbr title="Discuss this template" style=";;background:none transparent;border:none;box-shadow:none;padding:0;">t</abbr></a></li><li class="nv-edit"><a class="external text" href="https://en.wikipedia.org/w/index.php?title=Template:Periodic_table_(navbox)&amp;action=edit"><abbr title="Edit this template" style=";;background:none transparent;border:none;box-shadow:none;padding:0;">e</abbr></a></li></ul></div><div id="Periodic_table" style="font-size:114%;margin:0 4em"><a href="/https/en.wikipedia.org/wiki/Periodic_table" title="Periodic table">Periodic table</a></div></th></tr><tr><td colspan="2" class="navbox-list navbox-odd wraplinks" style="width:100%;padding:0"><div style="padding:0 0.25em"> <table style="table-layout:fixed; width:100%;" aria-describedby="periodic-table-legend"> <tbody><tr> <td style="line-height:100%;"> </td> <th scope="col" style="background:transparent; font-weight:normal;"><a href="/https/en.wikipedia.org/wiki/Alkali_metal" title="Alkali metal">1</a> </th> <th scope="col" style="background:transparent; font-weight:normal;"><a href="/https/en.wikipedia.org/wiki/Alkaline_earth_metal" title="Alkaline earth metal">2</a> </th> <td colspan="14"> </td> <th scope="col" style="background:transparent; font-weight:normal;"><a href="/https/en.wikipedia.org/wiki/Group_3_element" title="Group 3 element">3</a> </th> <th scope="col" style="background:transparent; font-weight:normal;"><a href="/https/en.wikipedia.org/wiki/Group_4_element" title="Group 4 element">4</a> </th> <th scope="col" style="background:transparent; font-weight:normal;"><a href="/https/en.wikipedia.org/wiki/Group_5_element" title="Group 5 element">5</a> </th> <th scope="col" style="background:transparent; font-weight:normal;"><a href="/https/en.wikipedia.org/wiki/Group_6_element" title="Group 6 element">6</a> </th> <th scope="col" style="background:transparent; font-weight:normal;"><a href="/https/en.wikipedia.org/wiki/Group_7_element" title="Group 7 element">7</a> </th> <th scope="col" style="background:transparent; font-weight:normal;"><a href="/https/en.wikipedia.org/wiki/Group_8_element" title="Group 8 element">8</a> </th> <th scope="col" style="background:transparent; font-weight:normal;"><a href="/https/en.wikipedia.org/wiki/Group_9_element" title="Group 9 element">9</a> </th> <th scope="col" style="background:transparent; font-weight:normal;"><a href="/https/en.wikipedia.org/wiki/Group_10_element" title="Group 10 element">10</a> </th> <th scope="col" style="background:transparent; font-weight:normal;"><a href="/https/en.wikipedia.org/wiki/Group_11_element" title="Group 11 element">11</a> </th> <th scope="col" style="background:transparent; font-weight:normal;"><a href="/https/en.wikipedia.org/wiki/Group_12_element" title="Group 12 element">12</a> </th> <th scope="col" style="background:transparent; font-weight:normal;"><a href="/https/en.wikipedia.org/wiki/Boron_group" title="Boron group">13</a> </th> <th scope="col" style="background:transparent; font-weight:normal;"><a href="/https/en.wikipedia.org/wiki/Carbon_group" title="Carbon group">14</a> </th> <th scope="col" style="background:transparent; font-weight:normal;"><a href="/https/en.wikipedia.org/wiki/Pnictogen" title="Pnictogen">15</a> </th> <th scope="col" style="background:transparent; font-weight:normal;"><a href="/https/en.wikipedia.org/wiki/Chalcogen" title="Chalcogen">16</a> </th> <th scope="col" style="background:transparent; font-weight:normal;"><a href="/https/en.wikipedia.org/wiki/Halogen" title="Halogen">17</a> </th> <th scope="col" style="background:transparent; font-weight:normal;"><a href="/https/en.wikipedia.org/wiki/Noble_gas" title="Noble gas">18</a> </th></tr> <tr> <th scope="row" style="background:transparent; font-weight:normal;"><a href="/https/en.wikipedia.org/wiki/Period_1_element" title="Period 1 element">1</a> </th> <td title="H, Hydrogen" style="text-align:center; background-color:#ff9999; border:none; ;"><span class="nowrap"><a href="/https/en.wikipedia.org/wiki/Hydrogen" title="Hydrogen"><span style="display:block">H</span></a></span> </td> <td colspan="30"> </td> <td title="He, Helium" style="text-align:center; background-color:#ff9999; border:none; ;"><span class="nowrap"><a href="/https/en.wikipedia.org/wiki/Helium" title="Helium"><span style="display:block">He</span></a></span> </td></tr> <tr> <th scope="row" style="background:transparent; font-weight:normal;"><a href="/https/en.wikipedia.org/wiki/Period_2_element" title="Period 2 element">2</a> </th> <td title="Li, Lithium" style="text-align:center; background-color:#ff9999; border:none; ;"><span class="nowrap"><a href="/https/en.wikipedia.org/wiki/Lithium" title="Lithium"><span style="display:block">Li</span></a></span> </td> <td title="Be, Beryllium" style="text-align:center; background-color:#ff9999; border:none; ;"><span class="nowrap"><a href="/https/en.wikipedia.org/wiki/Beryllium" title="Beryllium"><span style="display:block">Be</span></a></span> </td> <td colspan="24"> </td> <td title="B, Boron" style="text-align:center; background-color:#fdff8c; border:none; ;"><span class="nowrap"><a href="/https/en.wikipedia.org/wiki/Boron" title="Boron"><span style="display:block">B</span></a></span> </td> <td title="C, Carbon" style="text-align:center; background-color:#fdff8c; border:none; ;"><span class="nowrap"><a href="/https/en.wikipedia.org/wiki/Carbon" title="Carbon"><span style="display:block">C</span></a></span> </td> <td title="N, Nitrogen" style="text-align:center; background-color:#fdff8c; border:none; ;"><span class="nowrap"><a href="/https/en.wikipedia.org/wiki/Nitrogen" title="Nitrogen"><span style="display:block">N</span></a></span> </td> <td title="O, Oxygen" style="text-align:center; background-color:#fdff8c; border:none; ;"><span class="nowrap"><a href="/https/en.wikipedia.org/wiki/Oxygen" title="Oxygen"><span style="display:block">O</span></a></span> </td> <td title="F, Fluorine" style="text-align:center; background-color:#fdff8c; border:none; ;"><span class="nowrap"><a href="/https/en.wikipedia.org/wiki/Fluorine" title="Fluorine"><span style="display:block">F</span></a></span> </td> <td title="Ne, Neon" style="text-align:center; background-color:#fdff8c; border:none; ;"><span class="nowrap"><a href="/https/en.wikipedia.org/wiki/Neon" title="Neon"><span style="display:block">Ne</span></a></span> </td></tr> <tr> <th scope="row" style="background:transparent; font-weight:normal;"><a href="/https/en.wikipedia.org/wiki/Period_3_element" title="Period 3 element">3</a> </th> <td title="Na, Sodium" style="text-align:center; background-color:#ff9999; border:none; ;"><span class="nowrap"><a href="/https/en.wikipedia.org/wiki/Sodium" title="Sodium"><span style="display:block">Na</span></a></span> </td> <td title="Mg, Magnesium" style="text-align:center; background-color:#ff9999; border:none; ;"><span class="nowrap"><a href="/https/en.wikipedia.org/wiki/Magnesium" title="Magnesium"><span style="display:block">Mg</span></a></span> </td> <td colspan="24"> </td> <td title="Al, Aluminium" style="text-align:center; background-color:#fdff8c; border:none; ;"><span class="nowrap"><a href="/https/en.wikipedia.org/wiki/Aluminium" title="Aluminium"><span style="display:block">Al</span></a></span> </td> <td title="Si, Silicon" style="text-align:center; background-color:#fdff8c; border:none; ;"><span class="nowrap"><a href="/https/en.wikipedia.org/wiki/Silicon" title="Silicon"><span style="display:block">Si</span></a></span> </td> <td title="P, Phosphorus" style="text-align:center; background-color:#fdff8c; border:none; ;"><span class="nowrap"><a href="/https/en.wikipedia.org/wiki/Phosphorus" title="Phosphorus"><span style="display:block">P</span></a></span> </td> <td title="S, Sulfur" style="text-align:center; background-color:#fdff8c; border:none; ;"><span class="nowrap"><a href="/https/en.wikipedia.org/wiki/Sulfur" title="Sulfur"><span style="display:block">S</span></a></span> </td> <td title="Cl, Chlorine" style="text-align:center; background-color:#fdff8c; border:none; ;"><span class="nowrap"><a href="/https/en.wikipedia.org/wiki/Chlorine" title="Chlorine"><span style="display:block">Cl</span></a></span> </td> <td title="Ar, Argon" style="text-align:center; background-color:#fdff8c; border:none; ;"><span class="nowrap"><a href="/https/en.wikipedia.org/wiki/Argon" title="Argon"><span style="display:block">Ar</span></a></span> </td></tr> <tr> <th scope="row" style="background:transparent; font-weight:normal;"><a href="/https/en.wikipedia.org/wiki/Period_4_element" title="Period 4 element">4</a> </th> <td title="K, Potassium" style="text-align:center; background-color:#ff9999; border:none; ;"><span class="nowrap"><a href="/https/en.wikipedia.org/wiki/Potassium" title="Potassium"><span style="display:block">K</span></a></span> </td> <td title="Ca, Calcium" style="text-align:center; background-color:#ff9999; border:none; ;"><span class="nowrap"><a href="/https/en.wikipedia.org/wiki/Calcium" title="Calcium"><span style="display:block">Ca</span></a></span> </td> <td colspan="14"> </td> <td title="Sc, Scandium" style="text-align:center; background-color:#99ccff; border:none; ;"><span class="nowrap"><a href="/https/en.wikipedia.org/wiki/Scandium" title="Scandium"><span style="display:block">Sc</span></a></span> </td> <td title="Ti, Titanium" style="text-align:center; background-color:#99ccff; border:none; ;"><span class="nowrap"><a href="/https/en.wikipedia.org/wiki/Titanium" title="Titanium"><span style="display:block">Ti</span></a></span> </td> <td title="V, Vanadium" style="text-align:center; background-color:#99ccff; border:none; ;"><span class="nowrap"><a href="/https/en.wikipedia.org/wiki/Vanadium" title="Vanadium"><span style="display:block">V</span></a></span> </td> <td title="Cr, Chromium" style="text-align:center; background-color:#99ccff; border:none; ;"><span class="nowrap"><a href="/https/en.wikipedia.org/wiki/Chromium" title="Chromium"><span style="display:block">Cr</span></a></span> </td> <td title="Mn, Manganese" style="text-align:center; background-color:#99ccff; border:none; ;"><span class="nowrap"><a href="/https/en.wikipedia.org/wiki/Manganese" title="Manganese"><span style="display:block">Mn</span></a></span> </td> <td title="Fe, Iron" style="text-align:center; background-color:#99ccff; border:none; ;"><span class="nowrap"><a href="/https/en.wikipedia.org/wiki/Iron" title="Iron"><span style="display:block">Fe</span></a></span> </td> <td title="Co, Cobalt" style="text-align:center; background-color:#99ccff; border:none; ;"><span class="nowrap"><a href="/https/en.wikipedia.org/wiki/Cobalt" title="Cobalt"><span style="display:block">Co</span></a></span> </td> <td title="Ni, Nickel" style="text-align:center; background-color:#99ccff; border:none; ;"><span class="nowrap"><a href="/https/en.wikipedia.org/wiki/Nickel" title="Nickel"><span style="display:block">Ni</span></a></span> </td> <td title="Cu, Copper" style="text-align:center; background-color:#99ccff; border:none; ;"><span class="nowrap"><a href="/https/en.wikipedia.org/wiki/Copper" title="Copper"><span style="display:block">Cu</span></a></span> </td> <td title="Zn, Zinc" style="text-align:center; background-color:#99ccff; border:none; ;"><span class="nowrap"><a href="/https/en.wikipedia.org/wiki/Zinc" title="Zinc"><span style="display:block">Zn</span></a></span> </td> <td title="Ga, Gallium" style="text-align:center; background-color:#fdff8c; border:none; ;"><span class="nowrap"><a href="/https/en.wikipedia.org/wiki/Gallium" title="Gallium"><span style="display:block">Ga</span></a></span> </td> <td title="Ge, Germanium" style="text-align:center; background-color:#fdff8c; border:none; ;"><span class="nowrap"><a href="/https/en.wikipedia.org/wiki/Germanium" title="Germanium"><span style="display:block">Ge</span></a></span> </td> <td title="As, Arsenic" style="text-align:center; background-color:#fdff8c; border:none; ;"><span class="nowrap"><a href="/https/en.wikipedia.org/wiki/Arsenic" title="Arsenic"><span style="display:block">As</span></a></span> </td> <td title="Se, Selenium" style="text-align:center; background-color:#fdff8c; border:none; ;"><span class="nowrap"><a href="/https/en.wikipedia.org/wiki/Selenium" title="Selenium"><span style="display:block">Se</span></a></span> </td> <td title="Br, Bromine" style="text-align:center; background-color:#fdff8c; border:none; ;"><span class="nowrap"><a href="/https/en.wikipedia.org/wiki/Bromine" title="Bromine"><span style="display:block">Br</span></a></span> </td> <td title="Kr, Krypton" style="text-align:center; background-color:#fdff8c; border:none; ;"><span class="nowrap"><a href="/https/en.wikipedia.org/wiki/Krypton" title="Krypton"><span style="display:block">Kr</span></a></span> </td></tr> <tr> <th scope="row" style="background:transparent; font-weight:normal;"><a href="/https/en.wikipedia.org/wiki/Period_5_element" title="Period 5 element">5</a> </th> <td title="Rb, Rubidium" style="text-align:center; background-color:#ff9999; border:none; ;"><span class="nowrap"><a href="/https/en.wikipedia.org/wiki/Rubidium" title="Rubidium"><span style="display:block">Rb</span></a></span> </td> <td title="Sr, Strontium" style="text-align:center; background-color:#ff9999; border:none; ;"><span class="nowrap"><a href="/https/en.wikipedia.org/wiki/Strontium" title="Strontium"><span style="display:block">Sr</span></a></span> </td> <td colspan="14"> </td> <td title="Y, Yttrium" style="text-align:center; background-color:#99ccff; border:none; ;"><span class="nowrap"><a href="/https/en.wikipedia.org/wiki/Yttrium" title="Yttrium"><span style="display:block">Y</span></a></span> </td> <td title="Zr, Zirconium" style="text-align:center; background-color:#99ccff; border:none; ;"><span class="nowrap"><a href="/https/en.wikipedia.org/wiki/Zirconium" title="Zirconium"><span style="display:block">Zr</span></a></span> </td> <td title="Nb, Niobium" style="text-align:center; background-color:#99ccff; border:none; ;"><span class="nowrap"><a href="/https/en.wikipedia.org/wiki/Niobium" title="Niobium"><span style="display:block">Nb</span></a></span> </td> <td title="Mo, Molybdenum" style="text-align:center; background-color:#99ccff; border:none; ;"><span class="nowrap"><a href="/https/en.wikipedia.org/wiki/Molybdenum" title="Molybdenum"><span style="display:block">Mo</span></a></span> </td> <td title="Tc, Technetium" style="text-align:center; background-color:#99ccff; border:none; ;"><span class="nowrap"><a href="/https/en.wikipedia.org/wiki/Technetium" title="Technetium"><span style="display:block">Tc</span></a></span> </td> <td title="Ru, Ruthenium" style="text-align:center; background-color:#99ccff; border:none; ;"><span class="nowrap"><a href="/https/en.wikipedia.org/wiki/Ruthenium" title="Ruthenium"><span style="display:block">Ru</span></a></span> </td> <td title="Rh, Rhodium" style="text-align:center; background-color:#99ccff; border:none; ;"><span class="nowrap"><a href="/https/en.wikipedia.org/wiki/Rhodium" title="Rhodium"><span style="display:block">Rh</span></a></span> </td> <td title="Pd, Palladium" style="text-align:center; background-color:#99ccff; border:none; ;"><span class="nowrap"><a href="/https/en.wikipedia.org/wiki/Palladium" title="Palladium"><span style="display:block">Pd</span></a></span> </td> <td title="Ag, Silver" style="text-align:center; background-color:#99ccff; border:none; ;"><span class="nowrap"><a href="/https/en.wikipedia.org/wiki/Silver" title="Silver"><span style="display:block">Ag</span></a></span> </td> <td title="Cd, Cadmium" style="text-align:center; background-color:#99ccff; border:none; ;"><span class="nowrap"><a href="/https/en.wikipedia.org/wiki/Cadmium" title="Cadmium"><span style="display:block">Cd</span></a></span> </td> <td title="In, Indium" style="text-align:center; background-color:#fdff8c; border:none; ;"><span class="nowrap"><a href="/https/en.wikipedia.org/wiki/Indium" title="Indium"><span style="display:block">In</span></a></span> </td> <td title="Sn, Tin" style="text-align:center; background-color:#fdff8c; border:none; ;"><span class="nowrap"><a href="/https/en.wikipedia.org/wiki/Tin" title="Tin"><span style="display:block">Sn</span></a></span> </td> <td title="Sb, Antimony" style="text-align:center; background-color:#fdff8c; border:none; ;"><span class="nowrap"><a href="/https/en.wikipedia.org/wiki/Antimony" title="Antimony"><span style="display:block">Sb</span></a></span> </td> <td title="Te, Tellurium" style="text-align:center; background-color:#fdff8c; border:none; ;"><span class="nowrap"><a href="/https/en.wikipedia.org/wiki/Tellurium" title="Tellurium"><span style="display:block">Te</span></a></span> </td> <td title="I, Iodine" style="text-align:center; background-color:#fdff8c; border:none; ;"><span class="nowrap"><a href="/https/en.wikipedia.org/wiki/Iodine" title="Iodine"><span style="display:block">I</span></a></span> </td> <td title="Xe, Xenon" style="text-align:center; background-color:#fdff8c; border:none; ;"><span class="nowrap"><a href="/https/en.wikipedia.org/wiki/Xenon" title="Xenon"><span style="display:block">Xe</span></a></span> </td></tr> <tr> <th scope="row" style="background:transparent; font-weight:normal;"><a href="/https/en.wikipedia.org/wiki/Period_6_element" title="Period 6 element">6</a> </th> <td title="Cs, Caesium" style="text-align:center; background-color:#ff9999; border:none; ;"><span class="nowrap"><a href="/https/en.wikipedia.org/wiki/Caesium" title="Caesium"><span style="display:block">Cs</span></a></span> </td> <td title="Ba, Barium" style="text-align:center; background-color:#ff9999; border:none; ;"><span class="nowrap"><a href="/https/en.wikipedia.org/wiki/Barium" title="Barium"><span style="display:block">Ba</span></a></span> </td> <td title="La, Lanthanum" style="text-align:center; background-color:#9bff99; border:none; ;"><span class="nowrap"><a href="/https/en.wikipedia.org/wiki/Lanthanum" title="Lanthanum"><span style="display:block">La</span></a></span> </td> <td title="Ce, Cerium" style="text-align:center; background-color:#9bff99; border:none; ;"><span class="nowrap"><a href="/https/en.wikipedia.org/wiki/Cerium" title="Cerium"><span style="display:block">Ce</span></a></span> </td> <td title="Pr, Praseodymium" style="text-align:center; background-color:#9bff99; border:none; ;"><span class="nowrap"><a href="/https/en.wikipedia.org/wiki/Praseodymium" title="Praseodymium"><span style="display:block">Pr</span></a></span> </td> <td title="Nd, Neodymium" style="text-align:center; background-color:#9bff99; border:none; ;"><span class="nowrap"><a href="/https/en.wikipedia.org/wiki/Neodymium" title="Neodymium"><span style="display:block">Nd</span></a></span> </td> <td title="Pm, Promethium" style="text-align:center; background-color:#9bff99; border:none; ;"><span class="nowrap"><a href="/https/en.wikipedia.org/wiki/Promethium" title="Promethium"><span style="display:block">Pm</span></a></span> </td> <td title="Sm, Samarium" style="text-align:center; background-color:#9bff99; border:none; ;"><span class="nowrap"><a href="/https/en.wikipedia.org/wiki/Samarium" title="Samarium"><span style="display:block">Sm</span></a></span> </td> <td title="Eu, Europium" style="text-align:center; background-color:#9bff99; border:none; ;"><span class="nowrap"><a href="/https/en.wikipedia.org/wiki/Europium" title="Europium"><span style="display:block">Eu</span></a></span> </td> <td title="Gd, Gadolinium" style="text-align:center; background-color:#9bff99; border:none; ;"><span class="nowrap"><a href="/https/en.wikipedia.org/wiki/Gadolinium" title="Gadolinium"><span style="display:block">Gd</span></a></span> </td> <td title="Tb, Terbium" style="text-align:center; background-color:#9bff99; border:none; ;"><span class="nowrap"><a href="/https/en.wikipedia.org/wiki/Terbium" title="Terbium"><span style="display:block">Tb</span></a></span> </td> <td title="Dy, Dysprosium" style="text-align:center; background-color:#9bff99; border:none; ;"><span class="nowrap"><a href="/https/en.wikipedia.org/wiki/Dysprosium" title="Dysprosium"><span style="display:block">Dy</span></a></span> </td> <td title="Ho, Holmium" style="text-align:center; background-color:#9bff99; border:none; ;"><span class="nowrap"><a href="/https/en.wikipedia.org/wiki/Holmium" title="Holmium"><span style="display:block">Ho</span></a></span> </td> <td title="Er, Erbium" style="text-align:center; background-color:#9bff99; border:none; ;"><span class="nowrap"><a href="/https/en.wikipedia.org/wiki/Erbium" title="Erbium"><span style="display:block">Er</span></a></span> </td> <td title="Tm, Thulium" style="text-align:center; background-color:#9bff99; border:none; ;"><span class="nowrap"><a href="/https/en.wikipedia.org/wiki/Thulium" title="Thulium"><span style="display:block">Tm</span></a></span> </td> <td title="Yb, Ytterbium" style="text-align:center; background-color:#9bff99; border:none; ;"><span class="nowrap"><a href="/https/en.wikipedia.org/wiki/Ytterbium" title="Ytterbium"><span style="display:block">Yb</span></a></span> </td> <td title="Lu, Lutetium" style="text-align:center; background-color:#99ccff; border:none; ;"><span class="nowrap"><a href="/https/en.wikipedia.org/wiki/Lutetium" title="Lutetium"><span style="display:block">Lu</span></a></span> </td> <td title="Hf, Hafnium" style="text-align:center; background-color:#99ccff; border:none; ;"><span class="nowrap"><a href="/https/en.wikipedia.org/wiki/Hafnium" title="Hafnium"><span style="display:block">Hf</span></a></span> </td> <td title="Ta, Tantalum" style="text-align:center; background-color:#99ccff; border:none; ;"><span class="nowrap"><a href="/https/en.wikipedia.org/wiki/Tantalum" title="Tantalum"><span style="display:block">Ta</span></a></span> </td> <td title="W, Tungsten" style="text-align:center; background-color:#99ccff; border:none; ;"><span class="nowrap"><a href="/https/en.wikipedia.org/wiki/Tungsten" title="Tungsten"><span style="display:block">W</span></a></span> </td> <td title="Re, Rhenium" style="text-align:center; background-color:#99ccff; border:none; ;"><span class="nowrap"><a href="/https/en.wikipedia.org/wiki/Rhenium" title="Rhenium"><span style="display:block">Re</span></a></span> </td> <td title="Os, Osmium" style="text-align:center; background-color:#99ccff; border:none; ;"><span class="nowrap"><a href="/https/en.wikipedia.org/wiki/Osmium" title="Osmium"><span style="display:block">Os</span></a></span> </td> <td title="Ir, Iridium" style="text-align:center; background-color:#99ccff; border:none; ;"><span class="nowrap"><a href="/https/en.wikipedia.org/wiki/Iridium" title="Iridium"><span style="display:block">Ir</span></a></span> </td> <td title="Pt, Platinum" style="text-align:center; background-color:#99ccff; border:none; ;"><span class="nowrap"><a href="/https/en.wikipedia.org/wiki/Platinum" title="Platinum"><span style="display:block">Pt</span></a></span> </td> <td title="Au, Gold" style="text-align:center; background-color:#99ccff; border:none; ;"><span class="nowrap"><a href="/https/en.wikipedia.org/wiki/Gold" title="Gold"><span style="display:block">Au</span></a></span> </td> <td title="Hg, Mercury" style="text-align:center; background-color:#99ccff; border:none; ;"><span class="nowrap"><a href="/https/en.wikipedia.org/wiki/Mercury_(element)" title="Mercury (element)"><span style="display:block">Hg</span></a></span> </td> <td title="Tl, Thallium" style="text-align:center; background-color:#fdff8c; border:none; ;"><span class="nowrap"><a href="/https/en.wikipedia.org/wiki/Thallium" title="Thallium"><span style="display:block">Tl</span></a></span> </td> <td title="Pb, Lead" style="text-align:center; background-color:#fdff8c; border:none; ;"><span class="nowrap"><a href="/https/en.wikipedia.org/wiki/Lead" title="Lead"><span style="display:block">Pb</span></a></span> </td> <td title="Bi, Bismuth" style="text-align:center; background-color:#fdff8c; border:none; ;"><span class="nowrap"><a href="/https/en.wikipedia.org/wiki/Bismuth" title="Bismuth"><span style="display:block">Bi</span></a></span> </td> <td title="Po, Polonium" style="text-align:center; background-color:#fdff8c; border:none; ;"><span class="nowrap"><a href="/https/en.wikipedia.org/wiki/Polonium" title="Polonium"><span style="display:block">Po</span></a></span> </td> <td title="At, Astatine" style="text-align:center; background-color:#fdff8c; border:none; ;"><span class="nowrap"><a href="/https/en.wikipedia.org/wiki/Astatine" title="Astatine"><span style="display:block">At</span></a></span> </td> <td title="Rn, Radon" style="text-align:center; background-color:#fdff8c; border:none; ;"><span class="nowrap"><a href="/https/en.wikipedia.org/wiki/Radon" title="Radon"><span style="display:block">Rn</span></a></span> </td></tr> <tr> <th scope="row" style="background:transparent; font-weight:normal;"><a href="/https/en.wikipedia.org/wiki/Period_7_element" title="Period 7 element">7</a> </th> <td title="Fr, Francium" style="text-align:center; background-color:#ff9999; border:none; ;"><span class="nowrap"><a href="/https/en.wikipedia.org/wiki/Francium" title="Francium"><span style="display:block">Fr</span></a></span> </td> <td title="Ra, Radium" style="text-align:center; background-color:#ff9999; border:none; ;"><span class="nowrap"><a href="/https/en.wikipedia.org/wiki/Radium" title="Radium"><span style="display:block">Ra</span></a></span> </td> <td title="Ac, Actinium" style="text-align:center; background-color:#9bff99; border:none; ;"><span class="nowrap"><a href="/https/en.wikipedia.org/wiki/Actinium" title="Actinium"><span style="display:block">Ac</span></a></span> </td> <td title="Th, Thorium" style="text-align:center; background-color:#9bff99; border:none; ;"><span class="nowrap"><a href="/https/en.wikipedia.org/wiki/Thorium" title="Thorium"><span style="display:block">Th</span></a></span> </td> <td title="Pa, Protactinium" style="text-align:center; background-color:#9bff99; border:none; ;"><span class="nowrap"><a href="/https/en.wikipedia.org/wiki/Protactinium" title="Protactinium"><span style="display:block">Pa</span></a></span> </td> <td title="U, Uranium" style="text-align:center; background-color:#9bff99; border:none; ;"><span class="nowrap"><a href="/https/en.wikipedia.org/wiki/Uranium" title="Uranium"><span style="display:block">U</span></a></span> </td> <td title="Np, Neptunium" style="text-align:center; background-color:#9bff99; border:none; ;"><span class="nowrap"><a href="/https/en.wikipedia.org/wiki/Neptunium" title="Neptunium"><span style="display:block">Np</span></a></span> </td> <td title="Pu, Plutonium" style="text-align:center; background-color:#9bff99; border:none; ;"><span class="nowrap"><a href="/https/en.wikipedia.org/wiki/Plutonium" title="Plutonium"><span style="display:block">Pu</span></a></span> </td> <td title="Am, Americium" style="text-align:center; background-color:#9bff99; border:none; ;"><span class="nowrap"><a href="/https/en.wikipedia.org/wiki/Americium" title="Americium"><span style="display:block">Am</span></a></span> </td> <td title="Cm, Curium" style="text-align:center; background-color:#9bff99; border:none; ;"><span class="nowrap"><a href="/https/en.wikipedia.org/wiki/Curium" title="Curium"><span style="display:block">Cm</span></a></span> </td> <td title="Bk, Berkelium" style="text-align:center; background-color:#9bff99; border:none; ;"><span class="nowrap"><a href="/https/en.wikipedia.org/wiki/Berkelium" title="Berkelium"><span style="display:block">Bk</span></a></span> </td> <td title="Cf, Californium" style="text-align:center; background-color:#9bff99; border:none; ;"><span class="nowrap"><a href="/https/en.wikipedia.org/wiki/Californium" title="Californium"><span style="display:block">Cf</span></a></span> </td> <td title="Es, Einsteinium" style="text-align:center; background-color:#9bff99; border:none; ;"><span class="nowrap"><a href="/https/en.wikipedia.org/wiki/Einsteinium" title="Einsteinium"><span style="display:block">Es</span></a></span> </td> <td title="Fm, Fermium" style="text-align:center; background-color:#9bff99; border:none; ;"><span class="nowrap"><a href="/https/en.wikipedia.org/wiki/Fermium" title="Fermium"><span style="display:block">Fm</span></a></span> </td> <td title="Md, Mendelevium" style="text-align:center; background-color:#9bff99; border:none; ;"><span class="nowrap"><a href="/https/en.wikipedia.org/wiki/Mendelevium" title="Mendelevium"><span style="display:block">Md</span></a></span> </td> <td title="No, Nobelium" style="text-align:center; background-color:#9bff99; border:none; ;"><span class="nowrap"><a href="/https/en.wikipedia.org/wiki/Nobelium" title="Nobelium"><span style="display:block">No</span></a></span> </td> <td title="Lr, Lawrencium" style="text-align:center; background-color:#99ccff; border:none; ;"><span class="nowrap"><a href="/https/en.wikipedia.org/wiki/Lawrencium" title="Lawrencium"><span style="display:block">Lr</span></a></span> </td> <td title="Rf, Rutherfordium" style="text-align:center; background-color:#99ccff; border:none; ;"><span class="nowrap"><a href="/https/en.wikipedia.org/wiki/Rutherfordium" title="Rutherfordium"><span style="display:block">Rf</span></a></span> </td> <td title="Db, Dubnium" style="text-align:center; background-color:#99ccff; border:none; ;"><span class="nowrap"><a href="/https/en.wikipedia.org/wiki/Dubnium" title="Dubnium"><span style="display:block">Db</span></a></span> </td> <td title="Sg, Seaborgium" style="text-align:center; background-color:#99ccff; border:none; ;"><span class="nowrap"><a href="/https/en.wikipedia.org/wiki/Seaborgium" title="Seaborgium"><span style="display:block">Sg</span></a></span> </td> <td title="Bh, Bohrium" style="text-align:center; background-color:#99ccff; border:none; ;"><span class="nowrap"><a href="/https/en.wikipedia.org/wiki/Bohrium" title="Bohrium"><span style="display:block">Bh</span></a></span> </td> <td title="Hs, Hassium" style="text-align:center; background-color:#99ccff; border:none; ;"><span class="nowrap"><a href="/https/en.wikipedia.org/wiki/Hassium" title="Hassium"><span style="display:block">Hs</span></a></span> </td> <td title="Mt, Meitnerium" style="text-align:center; background-color:#99ccff; border:none; ;"><span class="nowrap"><a href="/https/en.wikipedia.org/wiki/Meitnerium" title="Meitnerium"><span style="display:block">Mt</span></a></span> </td> <td title="Ds, Darmstadtium" style="text-align:center; background-color:#99ccff; border:none; ;"><span class="nowrap"><a href="/https/en.wikipedia.org/wiki/Darmstadtium" title="Darmstadtium"><span style="display:block">Ds</span></a></span> </td> <td title="Rg, Roentgenium" style="text-align:center; background-color:#99ccff; border:none; ;"><span class="nowrap"><a href="/https/en.wikipedia.org/wiki/Roentgenium" title="Roentgenium"><span style="display:block">Rg</span></a></span> </td> <td title="Cn, Copernicium" style="text-align:center; background-color:#99ccff; border:none; ;"><span class="nowrap"><a href="/https/en.wikipedia.org/wiki/Copernicium" title="Copernicium"><span style="display:block">Cn</span></a></span> </td> <td title="Nh, Nihonium" style="text-align:center; background-color:#fdff8c; border:none; ;"><span class="nowrap"><a href="/https/en.wikipedia.org/wiki/Nihonium" title="Nihonium"><span style="display:block">Nh</span></a></span> </td> <td title="Fl, Flerovium" style="text-align:center; background-color:#fdff8c; border:none; ;"><span class="nowrap"><a href="/https/en.wikipedia.org/wiki/Flerovium" title="Flerovium"><span style="display:block">Fl</span></a></span> </td> <td title="Mc, Moscovium" style="text-align:center; background-color:#fdff8c; border:none; ;"><span class="nowrap"><a href="/https/en.wikipedia.org/wiki/Moscovium" title="Moscovium"><span style="display:block">Mc</span></a></span> </td> <td title="Lv, Livermorium" style="text-align:center; background-color:#fdff8c; border:3px solid black; ;"><span class="nowrap"><a class="mw-selflink selflink"><span style="display:block">Lv</span></a></span> </td> <td title="Ts, Tennessine" style="text-align:center; background-color:#fdff8c; border:none; ;"><span class="nowrap"><a href="/https/en.wikipedia.org/wiki/Tennessine" title="Tennessine"><span style="display:block">Ts</span></a></span> </td> <td title="Og, Oganesson" style="text-align:center; background-color:#fdff8c; border:none; ;"><span class="nowrap"><a href="/https/en.wikipedia.org/wiki/Oganesson" title="Oganesson"><span style="display:block">Og</span></a></span> </td></tr></tbody></table> </div></td></tr><tr><td colspan="2" class="navbox-list navbox-even wraplinks" style="width:100%;padding:0"><div style="padding:0 0.25em"><div role="presentation" id="periodic-table-legend" style="border: 1px solid #a2a9b1; width:100%; line-height:120%; text-align:center; vertical-align:top; background:#f8f8f8; margin:0; margin:0;"><div style="padding:0.3em;"> <table style="width:100%; line-height:1.2em; table-layout:fixed; overflow:hidden; text-align:center;"> <tbody><tr> <td style="padding:0 1px; background:#ff9999;"><a href="/https/en.wikipedia.org/wiki/S-block" class="mw-redirect" title="S-block">s-block</a> </td> <td style="padding:0 1px; background:#9bff99;"><a href="/https/en.wikipedia.org/wiki/F-block" class="mw-redirect" title="F-block">f-block</a> </td> <td style="padding:0 1px; background:#99ccff;"><a href="/https/en.wikipedia.org/wiki/D-block" class="mw-redirect" title="D-block">d-block</a> </td> <td style="padding:0 1px; background:#fdff8c;"><a href="/https/en.wikipedia.org/wiki/P-block" class="mw-redirect" title="P-block">p-block</a> </td></tr></tbody></table> </div> </div></div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1061467846"></div><div role="navigation" class="navbox authority-control" aria-label="Navbox" style="padding:3px"><table class="nowraplinks hlist navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/https/en.wikipedia.org/wiki/Help:Authority_control" title="Help:Authority control">Authority control</a>: National <span class="mw-valign-text-top noprint" typeof="mw:File/Frameless"><a href="https://www.wikidata.org/wiki/Q1304#identifiers" title="Edit this at Wikidata"><img alt="Edit this at Wikidata" src="//upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/10px-OOjs_UI_icon_edit-ltr-progressive.svg.png" decoding="async" width="10" height="10" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/15px-OOjs_UI_icon_edit-ltr-progressive.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/20px-OOjs_UI_icon_edit-ltr-progressive.svg.png 2x" data-file-width="20" data-file-height="20" /></a></span></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><span class="uid"><a rel="nofollow" class="external text" href="http://uli.nli.org.il/F/?func=find-b&amp;local_base=NLX10&amp;find_code=UID&amp;request=987007593035305171">Israel</a></span></li> <li><span class="uid"><a rel="nofollow" class="external text" href="https://id.loc.gov/authorities/sh2012003543">United States</a></span></li></ul> </div></td></tr></tbody></table></div> <div class="mw-references-wrap"><ol class="references"> <li id="cite_note-Haire-1"><span class="mw-cite-backlink">^ <a href="#cite_ref-Haire_1-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Haire_1-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Haire_1-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Haire_1-3"><sup><i><b>d</b></i></sup></a></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1133582631">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free a,.mw-parser-output .citation .cs1-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited a,.mw-parser-output .id-lock-registration a,.mw-parser-output .citation .cs1-lock-limited a,.mw-parser-output .citation .cs1-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription a,.mw-parser-output .citation .cs1-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:#d33}.mw-parser-output .cs1-visible-error{color:#d33}.mw-parser-output .cs1-maint{display:none;color:#3a3;margin-left:0.3em}.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}</style><cite id="CITEREFHaire2006" class="citation book cs1">Hoffman, Darleane C.; Lee, Diana M.; Pershina, Valeria (2006). "Transactinides and the future elements". In Morss; Edelstein, Norman M.; Fuger, Jean (eds.). <i>The Chemistry of the Actinide and Transactinide Elements</i> (3rd&#160;ed.). Dordrecht, The Netherlands: <a href="/https/en.wikipedia.org/wiki/Springer_Science%2BBusiness_Media" title="Springer Science+Business Media">Springer Science+Business Media</a>. <a href="/https/en.wikipedia.org/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/https/en.wikipedia.org/wiki/Special:BookSources/978-1-4020-3555-5" title="Special:BookSources/978-1-4020-3555-5"><bdi>978-1-4020-3555-5</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Transactinides+and+the+future+elements&amp;rft.btitle=The+Chemistry+of+the+Actinide+and+Transactinide+Elements&amp;rft.place=Dordrecht%2C+The+Netherlands&amp;rft.edition=3rd&amp;rft.pub=Springer+Science%2BBusiness+Media&amp;rft.date=2006&amp;rft.isbn=978-1-4020-3555-5&amp;rft.aulast=Hoffman&amp;rft.aufirst=Darleane+C.&amp;rft.au=Lee%2C+Diana+M.&amp;rft.au=Pershina%2C+Valeria&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALivermorium" class="Z3988"></span></span> </li> <li id="cite_note-B&amp;K-2"><span class="mw-cite-backlink">^ <a href="#cite_ref-B&amp;K_2-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-B&amp;K_2-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-B&amp;K_2-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-B&amp;K_2-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-B&amp;K_2-4"><sup><i><b>e</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1133582631"><cite id="CITEREFBonchevKamenska1981" class="citation journal cs1">Bonchev, Danail; Kamenska, Verginia (1981). <a rel="nofollow" class="external text" href="https://www.researchgate.net/publication/239657207_Predicting_the_properties_of_the_113_to_120_transactinide_elements">"Predicting the Properties of the 113–120 Transactinide Elements"</a>. <i>Journal of Physical Chemistry</i>. American Chemical Society. <b>85</b> (9): 1177–1186. <a href="/https/en.wikipedia.org/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1021%2Fj150609a021">10.1021/j150609a021</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Physical+Chemistry&amp;rft.atitle=Predicting+the+Properties+of+the+113%E2%80%93120+Transactinide+Elements&amp;rft.volume=85&amp;rft.issue=9&amp;rft.pages=1177-1186&amp;rft.date=1981&amp;rft_id=info%3Adoi%2F10.1021%2Fj150609a021&amp;rft.aulast=Bonchev&amp;rft.aufirst=Danail&amp;rft.au=Kamenska%2C+Verginia&amp;rft_id=https%3A%2F%2F1.800.gay%3A443%2Fhttps%2Fwww.researchgate.net%2Fpublication%2F239657207_Predicting_the_properties_of_the_113_to_120_transactinide_elements&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALivermorium" class="Z3988"></span></span> </li> <li id="cite_note-Fricke1975-3"><span class="mw-cite-backlink">^ <a href="#cite_ref-Fricke1975_3-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Fricke1975_3-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Fricke1975_3-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Fricke1975_3-3"><sup><i><b>d</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1133582631"><cite id="CITEREFFricke1975" class="citation journal cs1">Fricke, Burkhard (1975). <a rel="nofollow" class="external text" href="https://www.researchgate.net/publication/225672062">"Superheavy elements: a prediction of their chemical and physical properties"</a>. <i>Recent Impact of Physics on Inorganic Chemistry</i>. Structure and Bonding. <b>21</b>: 89–144. <a href="/https/en.wikipedia.org/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBFb0116498">10.1007/BFb0116498</a>. <a href="/https/en.wikipedia.org/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/https/en.wikipedia.org/wiki/Special:BookSources/978-3-540-07109-9" title="Special:BookSources/978-3-540-07109-9"><bdi>978-3-540-07109-9</bdi></a><span class="reference-accessdate">. Retrieved <span class="nowrap">4 October</span> 2013</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Recent+Impact+of+Physics+on+Inorganic+Chemistry&amp;rft.atitle=Superheavy+elements%3A+a+prediction+of+their+chemical+and+physical+properties&amp;rft.volume=21&amp;rft.pages=89-144&amp;rft.date=1975&amp;rft_id=info%3Adoi%2F10.1007%2FBFb0116498&amp;rft.isbn=978-3-540-07109-9&amp;rft.aulast=Fricke&amp;rft.aufirst=Burkhard&amp;rft_id=https%3A%2F%2F1.800.gay%3A443%2Fhttps%2Fwww.researchgate.net%2Fpublication%2F225672062&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALivermorium" class="Z3988"></span> </span> </li> <li id="cite_note-Thayer_p83-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-Thayer_p83_4-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1133582631"><cite id="CITEREFThayer2010" class="citation journal cs1">Thayer, John S. (2010). "Relativistic Effects and the Chemistry of the Heavier Main Group Elements". <i>Relativistic Methods for Chemists</i>. Challenges and Advances in Computational Chemistry and Physics. <b>10</b>: 83. <a href="/https/en.wikipedia.org/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F978-1-4020-9975-5_2">10.1007/978-1-4020-9975-5_2</a>. <a href="/https/en.wikipedia.org/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/https/en.wikipedia.org/wiki/Special:BookSources/978-1-4020-9974-8" title="Special:BookSources/978-1-4020-9974-8"><bdi>978-1-4020-9974-8</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Relativistic+Methods+for+Chemists&amp;rft.atitle=Relativistic+Effects+and+the+Chemistry+of+the+Heavier+Main+Group+Elements&amp;rft.volume=10&amp;rft.pages=83&amp;rft.date=2010&amp;rft_id=info%3Adoi%2F10.1007%2F978-1-4020-9975-5_2&amp;rft.isbn=978-1-4020-9974-8&amp;rft.aulast=Thayer&amp;rft.aufirst=John+S.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALivermorium" class="Z3988"></span></span> </li> <li id="cite_note-VPershina-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-VPershina_5-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1133582631"><cite id="CITEREFPershina" class="citation book cs1">Pershina, Valeria. "Theoretical Chemistry of the Heaviest Elements". In Schädel, Matthias; Shaughnessy, Dawn (eds.). <i>The Chemistry of Superheavy Elements</i> (2nd&#160;ed.). Springer Science &amp; Business Media. p.&#160;154. <a href="/https/en.wikipedia.org/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/https/en.wikipedia.org/wiki/Special:BookSources/9783642374661" title="Special:BookSources/9783642374661"><bdi>9783642374661</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Theoretical+Chemistry+of+the+Heaviest+Elements&amp;rft.btitle=The+Chemistry+of+Superheavy+Elements&amp;rft.pages=154&amp;rft.edition=2nd&amp;rft.pub=Springer+Science+%26+Business+Media&amp;rft.isbn=9783642374661&amp;rft.aulast=Pershina&amp;rft.aufirst=Valeria&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALivermorium" class="Z3988"></span></span> </li> <li id="cite_note-IUPAC-names-114-116-6"><span class="mw-cite-backlink">^ <a href="#cite_ref-IUPAC-names-114-116_6-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-IUPAC-names-114-116_6-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1133582631"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20120602010328/https://iupac.org/news/news-detail/article/element-114-is-named-flerovium-and-element-116-is-named-livermorium.html">"Element 114 is Named Flerovium and Element 116 is Named Livermorium"</a>. <a href="/https/en.wikipedia.org/wiki/International_Union_of_Pure_and_Applied_Chemistry" title="International Union of Pure and Applied Chemistry">IUPAC</a>. 30 May 2012. Archived from <a rel="nofollow" class="external text" href="http://www.iupac.org/news/news-detail/article/element-114-is-named-flerovium-and-element-116-is-named-livermorium.html">the original</a> on 2 June 2012.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Element+114+is+Named+Flerovium+and+Element+116+is+Named+Livermorium&amp;rft.pub=IUPAC&amp;rft.date=2012-05-30&amp;rft_id=https%3A%2F%2F1.800.gay%3A443%2Fhttp%2Fwww.iupac.org%2Fnews%2Fnews-detail%2Farticle%2Felement-114-is-named-flerovium-and-element-116-is-named-livermorium.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALivermorium" class="Z3988"></span></span> </li> <li id="cite_note-NUBASE2020-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-NUBASE2020_7-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1133582631"><cite id="CITEREFKondevWangHuangNaimi2021" class="citation journal cs1">Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). <a rel="nofollow" class="external text" href="https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf">"The NUBASE2020 evaluation of nuclear properties"</a> <span class="cs1-format">(PDF)</span>. <i>Chinese Physics C</i>. <b>45</b> (3): 030001. <a href="/https/en.wikipedia.org/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1088%2F1674-1137%2Fabddae">10.1088/1674-1137/abddae</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Chinese+Physics+C&amp;rft.atitle=The+NUBASE2020+evaluation+of+nuclear+properties&amp;rft.volume=45&amp;rft.issue=3&amp;rft.pages=030001&amp;rft.date=2021&amp;rft_id=info%3Adoi%2F10.1088%2F1674-1137%2Fabddae&amp;rft.aulast=Kondev&amp;rft.aufirst=F.+G.&amp;rft.au=Wang%2C+M.&amp;rft.au=Huang%2C+W.+J.&amp;rft.au=Naimi%2C+S.&amp;rft.au=Audi%2C+G.&amp;rft_id=https%3A%2F%2F1.800.gay%3A443%2Fhttps%2Fwww-nds.iaea.org%2Famdc%2Fame2020%2FNUBASE2020.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALivermorium" class="Z3988"></span> </span> </li> </ol></div></div>'
Whether or not the change was made through a Tor exit node (tor_exit_node)
false
Unix timestamp of change (timestamp)
'1692991782'