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Abstract. Many protocols that are based on homomorphic encryption areprivate
only if a client submits inputs from a limited rangeS . Conditional disclosure of
secrets (CDS) helps to overcome this restriction. In a CDS protocol for a setS , the
client obtains server’s secret if and only if the client’s inputs belong toS and thus
the server can guard itself against malformed queries. We extend the existing CDS
protocols to work over additively homomorphic cryptosystems for every set from
NP/poly. The new construction is modular and easy to apply. As an example,
we derive a new oblivious transfer protocol with log-squared communication and
a millionaire’s protocol with logarithmic communication.We also implement pri-
vate, universally verifiable and robust multi-candidate electronic voting so that all
voters only transmit an encryption of their vote. The only hardness assumption
in all these protocols is that the underlying public-key cryptosystem is IND-CPA
secure and the plaintext order does not have small factors.
Keywords. Conditional disclosure of secrets, crypto-computing, homomorphic
encryption, oblivious transfer, two-party computation.

1 Introduction

Homomorphic encryption is a powerful tool that provides efficient private implemen-
tations for many basic operations such as scalar product, oblivious transfer and oblivi-
ous polynomial evaluation. However, basic versions of these protocols without zero-
knowledge proofs of correctness are secure only in a semihonest model, where all
parties submit inputs from a limited range, and are not protected against malicious
behaviour. Consequently, a malicious adversary can completely or partially learn the
secret inputs. Conditional disclosure of secrets [GIKM00,AIR01], also known as input
verification gadget [BGN05], is a protection mechanism against such attacks. Unfortu-
nately, current solutions [AIR01,BGN05] are secure only ifthe plaintext space has a
prime order, whereas most additively homomorphic encryption schemes have a com-
posite plaintext order. We provide the first conditional disclosure of secrets protocol
that works in conjunction withall currently known additively homomorphic encryption
schemes. Hence, we can efficiently and more securely solve many practical problems.

Formally, we consider only two-party protocols between a client and a server, though
our results can be extended to the multiparty setting. At theend of such a protocol the
client should learn the desired value whereas the server should learn nothing. Our main
goal is to achieverelaxed-security; that is, the protocol must be secure against malicious
clients and semihonest servers. Such a model is widely used in current cryptographic
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literature [NP99,AIR01] and is well-justified in practicalapplications: as the number of
possible service providers is relatively small compared tothe clients, it is possible to
force semihonest behaviour with auditing. Moreover, service providers must preserve
their reputation and thus they are less likely to act maliciously.

For clarity and brevity, we state our main results in the public key model, where the
client is guaranteed to know a valid secret key and the serverknows the corresponding
public key. The choice of the model is not too restrictive: with a proper initialisation
phase all our protocols can be implemented in the standard model, see Sect. 7. On the
other hand, such a model enables to prove security of parallel compositions. Compos-
ability together with our new basic construction leads to a simpler and more modular
way to construct complex protocols. Shortly put, relaxed-security follows directly from
the protocol design and there is no need to handcraft the proof. More precisely, we
show how to decompose a protocol into elementary tasks that can be efficiently im-
plemented with any additively homomorphic IND-CPA secure cryptosystem, provided
that the plaintext order does not have unknown small factors.

In Sect. 3, we establish basic security notions and derive a necessary machinery to
analyse parallel compositions. The core results of our papers are presented in Sect. 4.
We note that most existing additively homomorphic protocols are based on the possibil-
ity of computing the next three basic primitives on ciphertexts: addition of ciphertexts,
multiplication with a constant, anddisclose-if-equal(DIE). In a disclose-if-equal proto-
col, the server obliviously releases secretβ only if the client sends a valid encryption of
x, where the coefficientx can be freely chosen by the server. The current cryptographic
literature is full of many useful and efficient two-message protocols that are based on
these three primitives. Unfortunately, the standard DIE protocol defined say in [AIR01],
and then used in many subsequent papers, is secure only if theplaintext space has a
prime order and thus can only be used in conjunction with the lifted ElGamal cryptosys-
tem where one has to compute discrete logarithms to decrypt.We provide a new DIE
protocol that works in conjunction withall currently known additively homomorphic
encryption schemes. As a result, we can naturally simplify or extend many protocols
that utilise the DIE functionality, e.g. [AIR01,Ste98,Lip05,BK04,FNP04,LLM05].

The rest of the paper provides many useful applications of these generic building
blocks. In Sect. 5, we present a two-message protocol for conditional disclosure of se-
crets (CDS), where the client learns a secretβ only if his messageq is a valid encryption
of x ∈ S, whereS is a publicly known set. Hence, the server can useβ as a one-time
pad to protect the protocol output, i.e., the client learns nothing unlessDecsk(q) ∈ S.
The latter forms a basis of the CDS transformation that can guard any two-message
protocol, where the first message is a vector of ciphertexts,against malicious clients.
A slightly extended CDS construction provides an efficient solution to the millionaire
problem and conditional oblivious transfer. Another extension of CDS provides a way
to implement electronic voting and auctions without non-interactive zero-knowledge
proofs in the multi-party setting using threshold-decryption. Finally, we compare our
results with conventional cryptographic methods to provide some interesting insights
and show the theoretical significance of our results, see Sect. 7.

History. The new DIE protocol, together with the CDS protocol and the CDS transfor-
mation date from August 2004 and has been available on eprintsince 2005.
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2 Cryptographic Preliminaries

Distributions. For a a finite setX , let U(X) denote the uniform distribution over
X andx ← X denote a uniform draw fromX . Two distributionsD1 andD2 over
a discrete supportX are statisticallyε-close,D1

ε∼ D2, if their statistical difference
maxS⊆X |Pr [D1 ∈ S]− Pr [D2 ∈ S]| ≤ ε. A shorthandD1 ≡ D2 denotesD1

0∼ D2.

Homomorphic encryption. A public-key cryptosystemπ is defined by three algo-
rithms. A key generation algorithmGen returns a secret and public key pair(sk, pk).
CorrespondingEncpk(·) andDecsk(·) algorithms are used to encrypt and decrypt mes-
sages. LetM andC denote the corresponding message and ciphertext spaces. Then we
requireDecsk(Encpk(x)) = x for everyx ∈ M and assume that there exists efficient
membership test for the ciphertext spaceC. Privacy of encrypted messages is guaran-
teed by IND-CPA security. For anystatefulprobabilistic algorithmA, its IND-CPA
advantage quantifies the ability to distinguish ciphertexts:

AdvIND-CPA

π (A) = 2 ·
∣

∣

∣

∣

∣

Pr

[

(sk, pk)←Gen, (x0, x1)←A(pk), i← {0, 1}
c← Encpk(xi) : A(x0, x1, c) = i

]

− 1

2

∣

∣

∣

∣

∣

,

where the probability is taken over coin tosses of all relevant algorithms. A cryptosys-
temπ is (ε, τ)-IND-CPA-secureif AdvIND-CPA

π (A) ≤ ε for anyτ -time adversaryA.
A cryptosystemπ is additively homomorphic, ifM = ZN for someN , and for any

(sk, pk)← Gen and valid messagesx1, x2 ∈M the distribution of productsEncpk(x1)·
Encpk(x2) coincides with the distribution of ciphertextsEncpk(x1 + x2). To be precise,
the equivalence

Encpk(x1) · Encpk(x2) ≡ Encpk(x1 + x2)

must hold for any fixed ciphertextEncpk(x1). That is, givenEncpk(x1)·Encpk(x2), even
an unbounded adversary learns nothing beyondx1+x2. A cryptosystemπ is multiplica-
tively homomorphic, if Encpk(x1) ·Encpk(x2) ≡ Encpk(x1 ·x2) for any(sk, pk)← Gen

andx1, x2 ∈ M, whereM is a multiplicative group where computing the discrete
logarithm is hard. In many practical applications, multiplicatively homomorphic cryp-
tosystemsEnc are converted to additively homomorphic cryptosystemsEnc by using
the lifted encryption ruleEncpk(x) := Encpk(g

x). Such lifted cryptosystems have re-
duced utility, as the new decryption rule requires computation of discrete logarithms
and one can successfully decrypt only a small fraction of ciphertexts.

Many well-known homomorphic cryptosystems are IND-CPA secure under rea-
sonable complexity assumptions, e.g. [Elg85,Pai99,DJ01]. Existing additively homo-
morphic cryptosystems have a composite plaintext order with large factors. For exam-
ple, the plaintext order of the Paillier cryptosystem [Pai99] is an RSA modulus and
thus its smallest prime factor is approximately

√
N . The Goldwasser-Micali cryptosys-

tem [GM82] is the only known exception, as it is additively homomorphic overZ2.
Such plaintext space is too small for many applications. Allknown cryptosystems with
a large prime plaintext order are multiplicative, e.g., theElGamal cryptosystem [Elg85].
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3 Basic Properties of Two-Message Protocols

Throughout the paper, we consider two-message protocols where a client sends a query
q to a server that replies witha, and then the client computes a desired output from
a. The server should learn nothing about the query. The clientshould learnf(α,β),
whereα denotes client’s private input vector andβ denotes server’s private input vector.
Mostly, we consider the relaxed-security against unbounded clients and computation-
ally bounded servers, but sometimes we consider also the setting where both parties are
computationally bounded. A protocol iscorrect if the client always recoversf(α,β)
when both parties are honest. A priori we do not assume correctness from all protocols,
as sometimes it is sufficient to know that a client cannot learn anything beyondf(α,β).

In the simplest case, the queryq consists of encrypted inputs(α1, . . . , αm) and the
server uses properties of additively homomorphic encryption to compose an appropri-
ate reply. We call such protocolsadditively homomorphic two-message protocols.Here,
we explicitly assume that the server knows public keypk and thus can efficiently ver-
ify that the query consists of valid ciphertexts and ignore malformed queries. Notably,
many interesting tasks can be solved with additively homomorphic two-message proto-
cols. Computationally-private information retrieval [AIR01,Ste98,Lip05], solutions to
millionaire’s problem [BK04,Fis01], and various protocols for privacy-preserving data
mining tasks [FNP04,WY04,GLLM04] form only a small set of such protocols.

Relaxed-security in the PKI model. As usual, we define security by comparing the
real and ideal model. However, we explicitly assume that theclient knows the secret
key, the server knows the corresponding public key and only the client can deviate
from the protocol specification. Formally, a trusted key generator initially runs the key
generation algorithmGen for a cryptosystemπ, and then privately sends(sk, pk) to the
client andpk to the server. In particular, the server knows thatpk corresponds to this
fixed client. This key pair is then possibly used in many different protocol runs.

Note that the PKI model is normal and even desirable in many applications, e.g.
e-voting. Still, we stress that we use the PKI model only for the sake of simplicity of
security proofs. In Sect. 7, we show how to replace the trusted key generator by a key
transfer protocol with a marginal degradation of security.

Since the server obtains no output and is always semihonest,we can decompose
the standard security definition into two orthogonal requirements: client-privacy and
server-privacy. A two-message protocol is(ε, τ)-client-private, if for any τ -time state-
ful adversaryA, the next inequality holds:

2 ·
∣

∣

∣

∣

∣

Pr

[

(sk, pk)←Gen, (α0,α1)←A(pk),

i← {0, 1} , q← qpk(αi) : A(α0,α1, q) = i

]

− 1

2

∣

∣

∣

∣

∣

≤ ε ,

whereqpk(αi) denotes the first message computed by the honest client. Server-privacy
has a slightly more complicated definition, since we must transform any efficient ad-
versary from the real world to an efficient adversary in the ideal model, where a trusted
third party (TTP) computesf(α,β). Hence, the definition incorporates a simulatorSim

and a distinguisherB and we need to explicitly quantify their efficiency. The simulator
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Sim gets(sk, q) as an input and can sendα∗ once to the TTP. ThenSim obtains the
value off∗ = f(α∗,β) and can proceed with the simulation. For brevity, let us define

pr = Pr [(sk, pk)←Gen, (β, q)←A(sk), a← apk(q,β) : B(β, q, a) = 1] ,

pi = Pr [(sk, pk)←Gen, (β, q)←A(sk), â← Simsk(q, f
∗) : B(β, q, â) = 1] ,

wherea(q,β) denotes the answer of the honest server with the inputβ to the query
q. A protocol implements(τ, δ, t, ε)-server-privatelya functionf , if for any τ -time
adversaryA there exists a(t + δ)-time simulatorSim such that|pr − pi| ≤ ε for any
t-time distinguisherB. In the information-theoretical setting, algorithmsA, Sim and
B are unbounded. A protocol isε-server-privateif for any adversaryA there exists a
simulatorSim such that their output distributions are statisticallyε-close. We say that a
protocol is(ε1, τ ; ε2)-relaxed-secureif it is (ε1, τ)-client-private andε2-server-private.
Relaxed-security is widely used standard security assumption, see [NP99,AIR01].

Extractability and simulatability. Usually, the client-privacy follows directly from se-
curity assumptions. For example, additively homomorphic protocols are client-private
by the construction, provided that the cryptosystem is IND-CPA secure. Proofs of
server-privacy can be significantly simplified by considering the following notions of
extractability and simulatability. As client can be malicious, the simulatorSim must
somehow deduce the intended inputα∗. In the PKI model, the simulator can usesk to
determine the inputα∗ directly fromq. A two-message protocol isextractableif there
exists an efficient algorithmExtsk(·) such thatExtsk(qpk(α)) = α for all valid inputs
andExtsk(q) = ⊥ for all invalid queriesq that do not correspond to any input.

In many protocols, the server’s reply can be perfectly or almost perfectly simulated
knowing only the corresponding client’s outputf∗ and a secret keysk. We formalise
this as simulatability. Consider a protocol transcript(q, a) between the honest client
and server. Letf∗ = f(α,β) be the corresponding client’s output. Then the server’s
reply isε2-simulatableif there exists an efficient algorithmSim∗

sk such that the output
distributions(q, a) and(q, â) are statisticallyε2-close even for a fixedq, whereâ ←
Sim∗

sk(q, f
∗). The notion of(t, ε2)-simulatability is defined analogously. Extractability

together with simulatability implies server-privacy:

Theorem 1. If a two-message protocol is extractable,ε2-simulatable and the server
ignores malformed queries, then the protocol is alsoε2-server-private in the PKI model.

Proof. We construct a universal simulatorSim as follows. If the queryq is malformed
then the simulator ignores it. Otherwise,Sim extracts the intended inputα∗ ← Extsk(q)
and sendsα∗ to the TTP. Given the replyf∗ = f(α∗,β) from the TTP, the simulator
usesSim∗

sk(q, f
∗) to simulate the replŷa. Since malformed queries are discarded in

both worlds, the distributions(β, q, a) and(β, q, â) are statisticallyε2-close. ut

Forked composition. We can use Thm. 1 to prove that a parallel composition of ex-
tractable and simulatable protocols preserves server-privacy. It makes sense to consider
protocols that share the query phase as we can always merge different queries into a
single query. Let two-message protocolsΠ1, . . . ,Πs share the first messageq. Then the
forked compositionForked[Π1, . . . ,Πs] is defined as follows:
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1. The client computes the queryq and sends it to the server.
2. The server usesq to compute repliesa1, . . . , as according toΠ1, . . . ,Πs.
3. The server sendsa1, . . . , as to the client.
4. The client computes the private output(f1, . . . , fs) according toΠ1, . . . ,Πs.

It is easy to prove that a client can learn nothing beyondf1(α,β), . . . , fs(α,β).

Theorem 2. LetΠ1, . . . ,Πs be extractable and respectivelyεi-simulatable implemen-
tations of functionalitiesfi. Then the compositionForked[Π1, . . . ,Πs] is an extractable
and(ε1 + · · ·+ εs)-simulatable implementation of the functionalityf = (f1, . . . , fs).

Proof. Extractability is clear. By the definition of simulatability, there exist simula-
tors Sim∗

sk,i that output simulated replieŝai such that(q, ai) and (q, âi) are statisti-
cally εi-close even for fixedq. Now, define a simulatorSim∗

sk that givenq andf∗ =
(f1(α

∗,β), . . . , fs(α
∗,β)) runsSim∗

sk,i(q, f
∗
i ) for i ∈ {1, . . . , s} and outputŝa1, . . . ,

âs. By the construction, the distributions(q, a1, . . . , as) and(q, â1, . . . , âs) are statisti-
cally (ε1 + · · ·+ εs)-close even for a fixedq and the simulatability follows. ut

Reducing communication further with CPIR. In many two-message protocols, the
client must access only a short part of the replya to recover the outputf(α,β) whereas
the rest ofa consists of random noise. Hence, we can significantly decrease the total
communication|q| + |a|, if the client could fetch only useful parts ofa. The latter
can be done usingcomputationally private information retrieval(CPIR). In a1-out-
of-n CPIR protocol, the server maintains a databaseβ = (β1, . . . , βn) of `-bit strings
and the client can fetchβi so that a computationally bounded server learns nothing.
The basic properties of CPIR protocols are determined by parametersn and `. It is
trivial to achieve communication complexityΘ(n`) just by sending the whole database
so one considers only CPIR protocols with sublinear communication. There is a wide
range of such protocols. Recent protocols achieve communication that is low-degree
polylogarithmic in the database size, see [Lip05,GR05] forfurther references.

Now, assume that the server’s reply has a structurea = (a1, . . . , an) and the client
needs to recover at mostt elements. Then the client can uset parallel CPIR queries to
fetch desired partsai1 , . . . , ait . Note that the CPIR queries can be sent together with
the protocolΠ messages, provided that the CPIR instance is run independently from Π
or joining queries does not decrease client-privacy. Server-privacy cannot decrease, as
the replies of CPIR queries are computed from the original reply a.

4 Three Basic Crypto-Computing Primitives

“Crypto-computing” is often used to describe two-message protocols, where a server
uses some basic operations on client’s garbled inputs to compute reply that reveals
only f(α,β). The first comparative study [SYY99] showed how to crypto-compute
predicates with logarithmic circuit depth using the Goldwasser-Micali cryptosystem.
Later, this construction was somewhat generalised to compute the greater-than predi-
cate [Fis01]. Here, we provide three basic crypto-computing primitives for additively
homomorphic cryptosystems with large factors of the plaintext space. Note that the
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server can crypto-compute ciphertexts of sums and productswith one public factor
obliviously from ciphertexts, as

Encpk(x1 + x2) ≡ Encpk(x1) · Encpk(x2) · Encpk(0) (1)

Encpk(x · y) ≡ Encpk(y)
x · Encpk(0) (2)

hold by the definition of additively homomorphic cryptosystems. Here the multiplica-
tion byEncpk(0) is necessary to re-randomise the replies.

But there is also a third generic operation that implicitly “tests” whether a ciphertext
c is an encryption ofx. The existence of this operation depends additionally on the
order of the plaintext group. More precisely, adisclose-if-equal(DIE) protocol allows
releasing of a secretβ only if Decsk(c) = x where the server can freely choosex. The
idealised functionality of DIE protocol is defined as follows

f(α, β) =

{

β, if α = x ,

⊥, if α 6= x .

The simplest implementation of DIE protocol was given in thepaper [AIR01]:

1. The client sendsc← Encpk(α) to the server.
2. If c ∈ C then the server sends a replya← (c ·Encpk(−x))r ·Encpk(β) for r←M.
3. The client outputsDecsk(a) = (α− x)r + β.

If the plaintext space has a prime order, then(α − x)r has uniform distribution over
M whenx 6= α. Consequently, the protocol is perfectly simulatable: iff(α, β) = ⊥
a simulator should output a random encryptionEncpk(m) for m ← M andEncpk(β)
otherwise. Therefore, the basic DIE protocol is also relaxed-secure.

On the other hand, the protocol is not correct, since the client obtains a random
output whenDecsk(c) 6= x. If x is public then the correctness is not an issue, as the
client knows whetherDecsk(c) = x or not. Otherwise, the construction guarantees only
that the client learns nothing aboutβ whenDecsk(c) 6= x. Moreover, if the server sets
the firstk-bits ofβ to 0, then the honest client can detectα 6= x with failure probability
2−k, i.e., there is a trade-off between reliability and throughput.

Unfortunately, the basic DIE protocol is not secure if the message space has a com-
posite order. As an example, consider the Paillier cryptosystem, whereN = pq is an
RSA modulus. If a malicious client sendsc ← Encpk(p + x) thenDecsk(a) = β + rp
mod N and the client can recoverβ mod p althoughDecsk(c) 6= x. Since the DIE
protocol is a building block in many existing protocols, then such leakage might cause
a domino effect that can completely reveal server’s input. For example, the circuit
CDS protocol in Sect. 5 is extremely vulnerable against suchattacks. Therefore, we
devise a new DIE protocol that works in conjunction with all currently known addi-
tively homomorphic cryptosystems. As a result, we can naturally simplify many proto-
cols [AIR01,Ste98,Lip05,BK04,FNP04,LLM05] that use the lifted ElGamal cryptosys-
tem or zero-knowledge correctness proofs to guarantee security of the DIE protocol.

New general construction for DIE. Server-privacy of the basic DIE protocol hinges
on the fact thatαZN = {αr : r ∈ ZN} = ZN for anyα 6= 0. If the message space
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Query phase:
The client sendsq← Encpk(α) to the server.

Transfer phase:
If the ciphertext is invalidq /∈ C then the server returns⊥.
Otherwise, the server returnsa← (c · Encpk(−x))r · Encpk(encode(β)) for r ←M.

Post-processing:
The client computesy = Decsk(a) and returnsdecode(y).

Protocol 1: Disclose-if-equal protocol of̀-bit secrets for the constraintDecsk(q) = x

contains non-trivial additive subgroups (ideals){0} 6= G ( ZN then the client can
choose a ciphertextc so that the replya enables to restore the cosetβ+G. Consequently,
a malicious client can learn up tolog2N − log2 Φ bits of information, whereΦ is
the minimal size of the non-trivial subgroupG. To seal the leakage, we must use a
probabilistic encoding forβ such that the total entropy ofG together with the encoding
encode(β) is roughlylog2N . Let us define an encoding for`-bit strings

encode(β) = β + 2` · t mod N for t← ZT ,

decode(y) = (y mod N) mod 2` ,

whereT = b2−` · Nc and ` < blog2Nc. As there are no modular wrappings, the
decoding is always correct. More importantly, Prot. 1 is nowsecure for small enough̀.

Theorem 3. Let π be an additively homomorphic cryptosystem such that the smallest
factor of the plaintext order is larger thanγ > 2. Then Protocol 1 for transferring̀-bit
strings is extractable and(2`−1/γ)-simulatable.

Proof. Extractability is clear and thus we consider only simulatability. If α 6= x, then
by constructiony = encode(β) + g whereg is chosen uniformly from a non-zero
subgroupG ⊆ ZN . If G = ZN theny is uniformly distributed overZN . Otherwise
G can be represented aspZN , wherep is a non-trivial factor ofN , andy mod p ≡
β + 2` · t mod p, wheret ← ZT andT = b2−` · Nc. Since2 andp are relatively
prime,

{

2` · t : t ∈ Zp
}

= Zp and the term2` · t mod p covers all elements ofZp
almost uniformly. More precisely, the elements ofZp can be divided into two sets:

T0 =
{

c ∈ Zp : Pr[β + 2` · t mod p = c] = a
T

}

with |T0| = p− b ,
T1 =

{

c ∈ Zp : Pr[β + 2` · t mod p = c] = a+1
T

}

with |T1| = b ,

wherea =
⌊

T
p

⌋

andb = T − ap. Consequently, the statistical difference betweeny

mod p and the uniform distributionU(Zp) can be expressed as

ε =
|T0|
2
·
(

1

p
− a

T

)

+
|T1|
2
·
(

a+ 1

T
− 1

p

)

=
b(p− b)
Tp

≤ p

4T
≤ N

4γT
,

asp(p − b) ≤ p2/4 andp ≤ N/γ. Since2`+1 ≤ N we getT = b2−`Nc ≥ N/2`+1

and thusε ≤ 2`−1/γ. Now note that the distributionsencode(β)+U(pZN ) andU(ZN )
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are stillε-close, as we can express

Pr [encode(β) + U(pZN ) = c mod N ] =
p

N
· Pr [encode(β) = c mod p] .

Hence, we can use a simulatorSim∗
sk(q, f

∗) that outputsEncpk(encode(β)) if f∗ = β
andEncpk(m) for m← ZN otherwise. ut

Corollary 1. Letπ be an(τ, ε1)-IND-CPA-secure additively homomorphic cryptosys-
tem such that the smallest factor of the plaintext order is larger thanγ > 2. Then
Protocol 1 for transferring̀ -bit strings is(τ, ε1; ε2)-relaxed-secure forε2 = 2`−1/γ.

The Maximal Throughput of DIE Protocol. First, note that if we want to achieve
ε-server-privacy then we must choose` = blog2(2εγ)c, whereγ is the lower bound to
non-trivial factors ofN . Usually, it is sufficient to takeε = 2−80 and thusN cannot
have smaller factors than280 if the server wants to release Boolean secrets. For the
Paillier cryptosystem the smallest factor ofN is approximately

√
N , and consequently,

one can transfer̀ = blog2(2
√
Nε)c ≈ 0.5 log2N + log2 ε bits. For standard1024-bit

RSA modulus andε = 2−80, one can takè = 433.
As our DIE protocol is extractable and simulatable, a forkedcomposition oft pro-

tocols enables transfer of at`-bit secret, where the achieved server-privacy is|β|
`γ · 2`−1.

Smaller values of̀ increase the maximal length ofβ but also decrease the ratio between
the desired communication|β| and the total communication|q|+ |a| and make the pro-
tocol less efficient. In other words, a bad encodingencode(β) with a small capacity can
significantly decrease efficiency. As our target distribution isU(ZN ) then it is straight-
forward to derive entropy bounds for the capacity:H(ZN ) ≈ H(encode(β)+ pZN ) ≤
H(encode(β))+H(pZN ) ≤ log2 |encode(β)|+H(pZN), where|encode(β)| denotes
the size of the support. As the encoding must be uniquely decodable, the capacity of
a single replỳ ≤ log2

N
|encode(β)| . minpH(pZn) = log2 Φ, whereΦ is the smallest

prime factor ofN . Thus, the encoding is optimal up to a constant additive termlog2 ε.
The result can be generalised for any target distribution using a more detailed analysis.

5 Generic Construction for Conditional Disclosure of Secrets

Many protocols are secure only if client submits inputsα from a limited rangeS.
Cleverly chosenα /∈ S can either partially or completely reveal the server’s input β.
Therefore, the server must somehow verify thatα ∈ S. Classically, this is done by
a zero-knowledge proof thatDecsk(c) ∈ S. However, this either increases the num-
ber of messages or requires a security model with a common reference string or ran-
dom oracles. A conditional disclosure of secrets (CDS) reaches the same goal with-
out extra messages and exotic assumptions. In a CDS protocol, the client should learn
a secretβ only if Decsk(q) ∈ S, where the query vectorq consists of ciphertexts
Encpk(α1), . . . ,Encpk(αm) and the setS is public. Since the server can useβ as a
one-time pad to encrypt the original replya, the client learns nothing about the outputs
of the original protocol ifα /∈ S and the modified protocol becomes server-private.
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A CDS protocol can be straightforwardly constructed as a forked composition of
individual DIE protocols for{Decsk(c) = x}x∈S that share the same secretβ but such
composition is inefficient. Therefore, we show how to use Benaloh-Leichter secret shar-
ing scheme [BL88] together with slightly extended DIE protocols to achieve a more
computation and communication efficient CDS protocol (circuit CDS).

Conjunctive affine zero tests.First, we present an optimisation for specific sets. Re-
call that our DIE protocol is secure sinceencode(β) + U(G)

ε∼ U(ZN ) if G 6= {0}.
Similarly, we can construct CDS protocols forconjunctive affine zero testsΨ0(α) =
∧v
j=1[

∑m
i=1 sijαi

?

=xj ], where{xi} and{sij} are public constants:

1. The client sendsq = (c1, . . . , cm) whereci = Encpk(αi).
2. The server halts if somec1, . . . , cn is not a valid ciphertext, otherwise it replies

a =
∏v
j=1

(
∏m
i=1 c

sij

i · Encpk(−xj)
)rj · Encpk(encode(β)) for r1, . . . , rv ← ZN .

3. The client restoresy = Decsk(a) and outputsdecode(y).

As y =
∑v
j=1 (

∑m
i=1 αisij − xi) rj + encode(β) = encode(β) + G1 + · · · + Gv,

theny = encode(β) + U(G) for a non-zero sub-groupG if some zero-tests do not
hold. The latter follows from the fact thatr1, . . . , rv are independently chosen. Hence,
the claims of Thm. 3 hold also for the CDS protocol given above. Of course, when the
plaintext order is prime then there is no need to use probabilistic encoding and we can
use the construction given in [AIR01]. Notably, such simplified construction has been
used in [BGN05] together with a cryptosystem that has a composite plaintext order.
Paradoxically, the latter construction is still computationally secure, as the client must
compute arbitrary discrete logarithms to recover a cosetβ + G.

Circuit CDS protocol. For any setS, we can write the predicateΨS(α) := [α ∈ S]
as a monotonous combination of affine zero tests, i.e., the formula consists of Boolean
operations∧ and∨ together with atomic termsΨ0(α) =

∧v
j=1[

∑m
i=1 sijαi

?

=xj ]. For
efficiency reasons, we might express the inputα as a bit-vector. The server can later
use properties of additively homomorphic encryption to restore the original ciphertexts.

First, the server uses the Benaloh-Leichter secret sharingscheme to assign sub-
secretsβi to each leaf testΨ0(α) so that the client can reconstruct the secretβ ∈ {0, 1}`
if Ψ(α) holds and the secrets of true leaves are revealed. Fig. 1 illustrates how secret
β is propagated through the circuit ofΨ(α) = [α > x] without optimisation. Namely,
the master secretβ is assigned to the topmost gate of the circuit. For every∨-gate,
the output secret is just pushed downwards. For every∧-gateψ with u children and
a secretβψ assigned to it, sub-secretsβ1, . . . , βu−1 ← {0, 1}` andβu ← βψ − β1 −
· · ·−βu−1 mod 2` are assigned to the children. One can also use threshold operations:
THRv(x1, . . . , xs) = 0 if and only if at leastv valuesxj are equal to1. For a THRv gate,
generate a random(v−1)-degree polynomialfψ with fψ(0) = βψ and assign the secret
fψ(i) to its ith child. Finally, the server uses a forked composition of CDS protocols
for leaf testsΨ0 to release sub-secrets associated to each leaf. The client recomputes the
secret from leaf values by inversely following the secret generation.
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∧

[α2

?

=x2]

[α1

?

=x1]

[α0

?

=1]

[x1

?

=0]

β1
β 2 β

3

β
4

∧

[α2

?

=x2]

[α1

?

=1]

[x1

?

=0]

β5

β
6

β
7

∧

[α2

?

=1]
[x2

?

=0]

β 8

β
9

∨
β

β

β

β β = β1 + β2 + β3 + β4

β = β5 + β6 + β7

β = β8 + β9

Fig. 1. An unoptimised circuit forΨ(α) = [α > x] where secrets are pushed down to DIE leafs.
The circuit can be further optimised by replacing∧-gates with conjunctive affine equality tests

Theorem 4. If the leaf CDS protocol is extractable andε2-simulatable, then the circuit
CDS protocol forΨS is extractable andL(ΨS) · ε2-simulatable, whereL(ΨS) is the
number of leaves. If the cryptosystem is(τ, ε1)-IND-CPA secure andq consists ofm
ciphertexts, then the protocol is(τ −O(1),mε1;L(ΨS) · ε2)-relaxed-secure.

Proof. Given the main secretβ it is straightforward to reconstruct the leaf-level se-
crets. Otherwise, ifΨS(α) = 0 then the sub-secretsβi that are assigned to true atoms
Ψ0(α) = 1 are independent and are uniformly distributed. Hence, a world with L(ΨS)
ideally implemented leaf CDS protocols can be perfectly simulated in the world where
β is released only ifα ∈ S. Now, the simulatability follows directly from Thm. 2. The
second claim follows from Thm. 1 and the basic properties of IND-CPA encryption.

ut

If the CDS protocol is based on the new DIE protocol, then we can estimate how
many bits are needed to transfer`-bit secrets. For the1024-bit Paillier cryptosystem and
2−80-sever-privacy, a single ciphertext can fit393 bits provided that the corresponding
circuit has less than240 leaves; the message expansion is roughly|a| /` ≈ 5.2 · L(Ψ).

As negations can be expressed by conjunctive affine zero tests, then they can appear
only in the leaf level, i.e., the formulaΨ(α) must be in a negation normal form (NNF).
Many practically interesting sets have compact NNF-s, but for some circuitsΨ such
normal form is exponentially larger. We can circumvent the problem by using auxiliary
inputsw. Consider the circuit representation ofΨ that consists of unary¬-gates and
binary∧- and∨-gates. Denote all output wires of logical gates by auxiliary labelswi.
Now, we can represent assignmentswu ← ws∧wt andwu ← ws∨wt with the formulae

[wu
?

=1] ∧ [ws
?

=1] ∧ [wt
?

=1] ∨ [wu
?

=0] ∧ [ws
?

=0] ∨ [wu
?

=0] ∧ [ws
?

=0] .

[wu
?

=0] ∧ [ws
?

=0] ∧ [wt
?

=0] ∨ [wu
?

=1] ∧ [ws
?

=1] ∨ [wu
?

=1] ∧ [ws
?

=1] ,

andwu ← ¬ws as[wu
?

=0]∧ [ws
?

=1]∨ [wu
?

=1]∧ [ws
?

=0]. Therefore, we can in principle
construct a new formulaΨ(α,w) in NNF such thatΨ(α) = 1⇐⇒ ∃w : Ψ(α,w) = 1
and the size ofΨ(α,w) is proportional to the gate count ofΨ(α). Consequently, we
can always construct efficient circuit CDS protocols for efficiently recognisable sets.
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Query phase:
The client sendsq = (c1, . . . , cm) to the server, whereci ← Encpk(αi) for i ∈ {1, . . . , m}.

Transfer phase:
The server computes the replya = (d1, . . . , dn) according to the original protocolΠ
The server applies one-time padei ← di · Encpk(ti) for ti ← ZN andi ∈ {1, . . . , m}.
The server computes the CDS replyacds for Decsk(q) ∈ S with secret aβ = t1‖ . . . ‖tm.
The server replies(e1, . . . , en) andacds.

Post-processing:
The client recovers the secretsti from acds and computeŝdi ← ei · Encpk(−ti).
Next, the client proceeds with the original protocolΠ.

Protocol 2: CDS transformation for additively homomorphic two-message protocols

CDS Transformation. It is straightforward to use a CDS protocol to transform any
additively homomorphic two-message protocol that is secure in the semihonest model
to a modified two-message protocol that is relaxed-secure. Let the queryq consist of
m ciphertexts(c1, . . . , cm). ProtocolΠ is secure in the semihonest model, when there
exist a set of valid inputsS such that the client learns onlyf(α,β), provided that
Decsk(q) = (α1, . . . , αm) ∈ S. Let us use a sufficiently long secretβ as a one-time
pad to decrypt the original replya and release the secret only ifDecsk(q) ∈ S. Then the
corresponding protocol is clearly relaxed-secure. In manycases, the replya consists of
re-randomised ciphertexts and we can reduce the length of the secretβ, see Prot. 2.

Theorem 5. If the two-message additively homomorphic protocolΠ is correct,(τ, ε1)-
client-private andε2-simulatable forα ∈ S and the CDS protocol for the setS is
ε3-simulatable, then Protocol 2 is correct and(τ, ε1; max {ε2, ε3})-relaxed-secure.

Proof. Due to the re-randomisation, the recovered repliesd̂i have the same distribution
asdi, thus correctness is evident. Client-privacy is evident asboth protocols share the
queryq. For server-privacy, note that ifα ∈ S, we can first use the original simulator
to simulatedi and then apply the CDS transformation to the simulation output. The
corresponding simulation isε2-close to the real run, since the original reply is not more
thanε2 away from the simulated one. Otherwise,(e1, . . . , en) are random ciphertexts
and thus perfectly simulatable. Now if we add a simulated CDSreply âcds, then the
aggregated replŷacds, e1, . . . , en is ε3-close to the real protocol transcript, as the CDS
is ε3-simulatable. The claim follows, asDecsk(q) is either inS or not. ut

Optimisations. If all replied ciphertexts of the original protocol are in the fixed range,
i.e.,Decsk(di) ∈ {0, 1}` then full recovery ofti is not necessary. It is sufficient to send
ti mod 2` together with a extra bit needed to indicate a possible wrapping ti ≥ N−2`

and the message expansion rate can be less thanL(Ψ). Secondly, note that the commu-
nication overhead of the CDS transformation is linear in|a|. Therefore, the transfor-
mation is quite inefficient when|a| is long. To get better performance, the server can
use symmetric encryption to garble the original reply and a CDS protocol to release the
corresponding key. The output is still computationally simulatable and thus we achieve
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computational server-privacy. A block cipher in counter mode is the best encryption
method, as then the client can efficiently decrypt only necessary parts ofa.

6 Practical Applications of Crypto-Computing Techniques

In this section, we show how to use additively homomorphic two-message protocols
to solve several important cryptographic tasks. Here, the queryq is a vector of cipher-
texts, and the reply is computed by combining the identities(1) and (2) with Prot. 1.
Note that the outputs of crypto-computed sums and products are perfectly simulat-
able provided that the end result is re-randomised. Consequently, client-privacy fol-
lows form(τ, ε1)-IND-CPA security and server-privacy follows from the basic proper-
ties of forked composition, see Thm. 1 and 2. Shortly put, theresulting protocols are
(τ − O(1),mε1;nε2)-relaxed-secure, wherem is the number of ciphertexts andn is
the number of DIE instances, provided that the basic DIE protocol isε2-simulatable.

Sometimes we must also prove that knowledge off(α,β) is equivalent to the
knowledge off1(α,β), . . . , fs(α,β), i.e., design a protocol forf based on generic
operations. As for1024-bit Paillier and2−80-server-privacy, we can transfer393 bits
in the individual DIE reply whenever the number of DIE instances is less than240, the
resulting protocols are really efficient.

Oblivious Transfer. Recall that a1-out-of-n oblivious transfer(OT) protocol imple-
ments an ideal functionalityf(α;β1, . . . , βn) = βα if α ∈ {1, . . . , n} and⊥ other-
wise. Already in [AIR01], the authors showed that such a protocol can be expressed as
a forked composition ofn individual DIE protocols:

– releaseβ1 if α = 1,
...

– releaseβn if α = n.

Therefore, we get a relaxed-secure implementation of oblivious transfer by using Prot. 1
to implement all instances of DIE protocols. Moreover, a client can use any CPIR pro-
tocol to obliviously choose theαth reply of the DIE. Hence, we have just described a
generic transformation from any CPIR to a relaxed-secure oblivious transfer.

An alternative approach was taken by Chang [Cha04] who proved that the basic
DIE protocol from [AIR01] leaks at mostβα1

mod p1 andβα2
mod p2 whenever

the plaintext order is a product of two primesp1 andp2. In the corresponding1-out-of-
n OT protocol an honest client has to encrypt values that depend on the secret key and
thus the client-privacy does not follow directly from IND-CPA security.

Millionaire’s protocol with logarithmic communication. The millionaire’s problem
is: given client’s private inputα and server’s private inputx, decide whetherα > x.
Although numerous solutions have been proposed for this problem, none of the pro-
posals is completely satisfactory. For example, the two-message protocol of Blake and
Kolesnikov [BK04] is server-secure only in the semihonest model since encrypted in-
puts must be in correct range, it can leak information otherwise. To solve that type of
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problems, consider a circuit CDS protocol for a public setSx = {α ∈ {0, 1}m : α > x}.
Writing α bit by bit (αm−1, . . . , α0), we obtain

ΨSx
(α) =([αm−1

?

=1] ∧ [xm−1
?

=0])∨
([αm−1

?

=xm−1] ∧ [αm−2
?

=1] ∧ [xm−2
?

=0])∨
([αm−1

?

=xm−1] ∧ [αm−2
?

=xm−2] ∧ [αm−3
?

=1] ∧ [xm−3
?

=0]) ∨ · · · ∨
([αm−1

?

=xm−1] ∧ [αm−2
?

=xm−2] ∧ · · · ∧ [α1
?

=x1] ∧ [α0
?

=1] ∧ [x0
?

=0]) .

Here, every row corresponds to one conjunctive affine equality test. Fig. 1 depicts the
corresponding unoptimised circuit. Now consider the modified protocol whereβ0 is
a publicly fixed`-bit secret and the server randomly reorders the leaf CDS replies
a1, . . . , am. Finally, the client outputs1 if one of the recovered CDS outputs isβ0.
As the formulaΨSx

(α) is a disjunction of affine zero tests, then in the ideal world,
the client learns a randomly shuffled set{β0,⊥, . . . ,⊥} if α > x and{⊥,⊥, . . . ,⊥}
otherwise. Hence, the modified protocol is server-private even if x is private and we
have obtained a relaxed-secure solution to the millionaireproblem that fails with prob-
ability 2−`. The total communication of our solution is2m ciphertexts, the client’s
computation isΘ(m) and the server’s computation isΘ(m2), and we only assume that
the underlying additively homomorphic cryptosystem is IND-CPA secure. The server’s
workload can be reducedΘ(m) as in the Blake-Kolesnikov protocol, if we first crypto-
compute a recursionti = (αi − xi)ri + · · ·+ (αm−1 − xm−1)rm−1 for ri ← ZN and
then re-randomise it by crypto-computingui = tisi for si ← ZN .

Interestingly enough, one can view our solution as an efficient generalisation of the
Fischlin protocol [Fis01]. The latter can be alternativelydescribed as a CDS protocol
based on additively homomorphic cryptosystem overZ2. Due to the small message
space, the Fischlin’s protocol requires a parallel run of` protocols to achieve the same
reliability as our protocol, i.e., our protocol is` times more efficient.

Conditional OT. In a conditional oblivious transferprotocol for public predicateΨ ,
the client has a private inputα and the server has a private input(x, β0, β1). The client
obtainsβ1 if Ψ(α, x) = 1 andβ0 otherwise. Assume that the master secretβ is recon-
structed identically for the circuits without witnessesΨ and¬Ψ and the reconstruction
process and the number of true leaves leaks nothing aboutx exceptΨ(α, x). In partic-
ular, assume that the master secret can be reconstructed from randomly shuffled shares.
Let BΨ(α,x) andB¬Ψ(α,x) be the shuffled CDS replies in the ideal world. Then given a
shuffled set of sets{BΨ(α,x),B¬Ψ(α,x)}, one can learn onlyβΨ(α,x) and nothing more,
provided that the number of leaf tests is equal|BΨ(α,x)| = |B¬Ψ(α,x)|.

This leads to the following COT protocol. First, the server assignsβ0 to ¬Ψ and
β1 to Ψ and adds trailing zeroes to leaf secrets of one circuit and trailing ones to the
remaining sub-secrets. Next, the server constructs replies for each leaf CDS and sends
randomly shuffled replies back. Finally, the client restores setsBΨ (α, x) andB¬Ψ(α,x)

and reconstructsβΨ(α,x). The failure probability is bounded by2−k·L(Ψ) wherek is the
number of trailing zeroes and ones. Since[α > x] and[α ≤ x] have such symmetrical
circuits, we can construct a COT protocol for[α > x] and for many other relations.
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Electronic voting and auctions without random oracles.E-voting and auction proto-
cols based on homomorphic encryption [CGS97,DJ01,LAN02] are natural extensions
of homomorphic two-message protocols, since the secret keyis known by the elec-
tion tallier (or a coalition of talliers) to whom the server forwards the second mes-
sage. In such protocols, conditional disclosure of secretscan be used to guarantee se-
curity of the election authority against malicious voters and a semihonest server. As
in [BGN05], consider an electronic voting protocol where every voter sends an encryp-
tion ci ← Encpk(vi) to talliers. We assume that the protocol is secure ifvi ∈ S for some
publicly known setS; this is true in typical e-voting protocols [CGS97,DJ01].

In the existing protocols, it is usually assumed that every voter accompanies his or
her vote with a non-interactive zero-knowledge proof thatvi ∈ S. Instead, the talliers
can jointly apply the CDS protocol, with output secret0, to ci (this can be done very
efficiently if S is the set of powers of a fixed integer) and then threshold-decrypt the
result. If the plaintext is equal to0, talliers accept the vote as correct. Of course, every
step of the talliers has to be accompanied by a zero-knowledge proof of correctness (to
each other and to every possible outside observer), but since the number of talliers is
significantly smaller than the number of voters, this is doable in practise, see [BGN05].

As the result, we get a voter-private, universally verifiable and robust e-voting scheme
where the voters only have to perform one encryption, assuming only that there exists
an IND-CPA secure additively homomorphic public-key cryptosystem. The same trick
can be used to eliminate the need for random oracles in a similar electronic auction
scheme of [LAN02] and in many other similar protocols. Compared to the protocols
of [BGN05], our protocols are more efficient since they are based on genuine addi-
tive homomorphic cryptosystem whereas [BGN05] uses a lifted version of ElGamal
and thus there one has to compute discrete logarithms. Moreover, their cryptosystem is
secure under less established security assumptions.

Multiplicative relations and polynomial arithmetic Finally, we illustrate the power
of using auxiliary witnesses. It is well known that multiplicative relation[z

?

=xy] does
not have a compact NNF. However, we can still construct efficient circuit CDS protocol
by introducing a suitable witnessw. Letx, y ∈ {0, 1}m andz ∈ {0, 1}2m be sent to the
server by individually encrypting each bit ofx, y, z and letw0, . . . , wm−1 be auxiliary
variables such thatwi = xyi. Thenxy = w0 + 2w1 + · · · + 2m−1wm−1 and the
formulaΨ[z=xy] can be expressed as a conjunction of tests: (1)xm−1, . . . , x0 ∈ {0, 1},
(2) [yi

?

=0]∧[wi
?

=0]∨[yi
?

=1]∧[wi
?

=x] for i ∈ {0, . . . ,m− 1} andx is crypto-computed
asx0 + · · ·+ 2m−1xm−1, and (3)[z

?

=w0 + · · ·+ 2m−1wm−1].

Several papers, see e.g. [KS05], use additively homomorphic two-message proto-
cols in a setting where one encrypts the coefficients of some polynomials, where the
important quantity is the set of roots of this polynomial. For example, ifF1 is the set
of roots off1(x) andF2 is the set of roots off2(x) thenF1 ∪ F2 is the set of roots of
f1(x) · f2(x). Consequently, we can also construct a CDS protocol for the set to prove
thatg(x) = f1(x) · f2(x), as theith coefficientgi = f10f2i + · · · + f1if20. Now, we
can also verify that for some setsF1, F2 andG, it holds thatF1 ∪ F2 = G.
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7 Theoretical Implications

Although we stated our results in the PKI model, where a trusted key generator gen-
erates a key pair(sk, pk) ← Gen and privately transfers(sk, pk) to the client andpk

to the server, they can be easily implemented in the standardmodel. Namely, we can
eliminate the PKI assumption if the client executes once, separately and in an isolated
manner (that is, no other messages of different protocols are sent by the client at the
same time), with every server a zero-knowledge proof of knowledge thatpk is valid
and that he knows the corresponding secret key. This is followed by the real protocol.
In the security proof, the simulator extracts the secret keyby rewinding and thereafter
continues to work as previously. Since we require statistical server-security—and thus
can use an unbounded simulator—then it is actually sufficient to have a zero-knowledge
proof that the key is correct: the simulator just computes the secret key corresponding to
the (correct) public key. It is even irrelevant whether the client computes the public key
with a correct distribution, since for the proof we only needthe existence of the secret
key. Therefore, the amortised message complexity is still two-messages in the standard
model, as the verification of a public key must be carried out only once.

It is well known that secure two-party protocols require at least three messages,
therefore, it is impossible to obtain full security of two-message protocols in the ma-
licious model. In fact, one cannot achieve more than relaxed-security in two messages
even in the PKI model. Consequently, the CDS-transformation presented in Sect. 5
is a universal round-optimal transformation from semihonest model to relaxed-secure
model whenever the first message contains only ciphertexts.Moreover, computational
and communication resources are linear in the size of the circuit that is needed to test
a validity of an input. More formally, assume that for setsSm of m-bit strings exists
a polynomial-size formulaΨ(α,w) such thatα ∈ Sm iff ∃w : Ψ(α,w) = 1. Then
there exists also a polynomial-size formulaΨ(α,w) in a negation normal form such
thatα ∈ Sm iff ∃w : Ψ(α,w) = 1. Therefore, there exist a family of polynomial-time
CDS protocols for an arbitrary setS in NP/poly. Such protocols can be automatically
generated in polynomial time for every setS that can be described by anyNP relation.

Alternative classical round-preserving methods that guard against malicious clients
are based on non-interactive zero-knowledge proofs, i.e.,we have to either rely on ran-
dom oracles or use thecommon reference string(CRS) model. While CRS is a plausible
model for protocol design, constructing efficient non-interactive zero-knowledge proto-
cols forNP in the CRS model has been a long-standing open problem. Thus,our result
is also appealing from the complexity-theoretical viewpoint.

As stated already in Sect. 6, the DIE-based OT protocol leadsto a general trans-
formation from CPIR to information-theoretically server-private OT, as the client can
use the CPIR protocol to fetch only the answer of theαth DIE protocol. In particu-
lar, there exists a generic CPIR construction for any IND-CPA secure additively ho-
momorphic cryptosystem [Ste98] with sublinear-but-superpolylogarithmic communi-
cation. Therefore, there exists also an OT protocol with comparable communication
under the sole assumption that IND-CPA secure additively homomorphic cryptosys-
tems exists. Under the assumption that IND-CPA secure length-flexible additively ho-
momorphic cryptosystem exist, one can construct a CPIR protocol [Lip05] with com-
municationΘ(k · log2 n+` · log n) wherek is the security parameter. Consequently, we
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can construct an OT with communicationΘ(k·log2 n+` ·logn), if an IND-CPA secure
length-flexible additively homomorphic cryptosystem exists. Finally due to the results
of Gentry and Ramzan [GR05], there also exists an OT protocolwith optimal commu-
nicationΘ(log n + ` + k), if we assume thatΦ-Hiding is hard and that an IND-CPA
secure additively homomorphic cryptosystem exists.

Another two-message OT protocol was proposed by Kalai [Kal05]. Her protocol is
secure in the standard model, whereas our protocol requiresa zero-knowledgeproof that
the public key is valid. On the other hand, the query of Kalai’s protocol does not consist
of ciphertexts and thus cannot be used for the CDS protocol. Moreover, Thm. 3 holds
even with incorrectly formedpk provided that the corresponding encryption rule is ad-
ditively homomorphic and it is still possible to detect invalid ciphertexts. Therefore, we
can omit the zero-knowledge proofs forpk provided that we can verify that the plain-
text order does not have too small factors. For small enoughγ and public plaintext order
this can be done efficiently by using Lenstra’s Elliptic Curve Method, see App. A for
further details. Hence, it is possible to achieve two messages as non-amortised round-
complexity in the standard model under stronger computational assumptions.

Finally, note that small detectable factors ofN can be effectively eliminated. Namely,
a server can eliminate a known factorp by multiplying a ciphertextEncpk(x) with
Encpk(pr) for r ← ZN . Then the client can learn only a cosetx + pZN , i.e., we have
established a new cryptosystem over a new message spaceZN/pZn ' ZN/p.
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A Non-interactive Partial Public Key Validation

Next, we propose another technique to transform the proposed protocols to be secure in
the the standard model. It does not need extra messages but needs an extra amount of
computations by an honest server. Namely, Thm. 3 holds even with incorrectly formed
pk provided that the corresponding encryption rule is additively homomorphic and it
is still possible to detect invalid ciphertexts. In particular, the Paillier cryptosystem is
homomorphic even if a public modulusN is incorrectly formed. Thus, the verifica-
tion of pk can just consist of computing a lower boundγ on factors ofN . For small
enoughγ this can be done efficiently by using Lenstra’s Elliptic Curve Method [Len87]
which works in timeexp((

√
2 + o(1))

√
ln p · ln ln p) wherep is the smallest factor of

N [ZD06]. If we want the server’s computation to be polynomialin logN then we
have to take a sufficiently small`. To provide some concrete numbers note that ECM
allows “efficient” detection of 88-bit factors. Assume thatthe desired server-privacy
level is2−40. Such a choice ofε2 is most probably sufficient in practise. Then, in the
case of the DIE protocol, one has` = 47, which is sufficient for several applications. In
Spring 2006, we verified this approach by using the suggestedoptimal parameters from
[Zim06b], on an AMD Athlon 64 3000+ processor by using the GMP-ECM software.
As an example, ifN = pq, wherep is an88-bit prime andq is an (1024 − 88)-bit
prime then one has to run the ECM algorithm on an expected206 curves with bounds
B1 = 50 000 andB2 = 5 000 000. Testing on one curve with these parameters takes
approximately2.5 seconds, and thus testing that the smallest factor is greater than289

takes9 minutes on average. On the other hand, ifq is an66-bit prime then it takes an
expected77 curves with boundsB1 = 11 000 andB2 = 1 100 000. On the same plat-
form, testing one curve with these parameters takes approximately0.66 seconds and
checking the bound267 takes51 seconds on average. Given the advances in the ECM,
we would expect the quoted timings to decrease dramaticallyover the next few years.


