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Abstract. Cellular Automaton (CA) has been shown to be capable of
generating complex and random patterns out of simple rules. There has
been constant efforts of applying CA to develop ciphers, but the attempts
have not been successful. This paper describes how repeated application
of simple CA transforms may be used to achieve confusion and diffusion,
needed in block ciphers. The components have been evaluated for their
robustness against conventional cryptanalysis and the results have been
found to be comparable to standards. Finally, the parts are assembled
in an unconventional way to construct a self-invertibe CA based round,
which is resistant against linear and differential cryptanalysis and yet
can be efficiently implemented.
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1 Introduction

Almost all cryptographic applications depend on the underlying strength of their
primitives. Certain basic blocks are repeated in order to build cryptographic al-
gorithms. The requirements on these sub-components or functions are varied and
depends on the applications which are built out of them. But there are certain
cryptographic properties, like non-linearity, avalanche effect which the primitives
must satisfy. For the functions to be used for block ciphers, invertible mappings
are necessary. With the advent of electronic commerce and portable devices for
communications, cryptographic implementations have become exceedingly im-
portant. Hence, it is also imperative for the designers of crypto-algorithms that
the designs are amenable to both hardware and software implementations.
Cellular Automaton (CA) was first introduced by von Neumann and later by
Wolfram [1] as simple models for physical, biological and computational systems.
The fact that the simple underlying rules of the CA can be very efficiently
implemented and repeated applications of these simple rules can demonstrate
complex behaviors, have lured researchers to develop CA based ciphers. In [2],
non-homogenous Cellular Automata, which have different rules for different cells,
were proposed for public-key cryptography. But the paper lacks specifications
like key-size, key generation procedures and also real life examples. This makes it
difficult to perform cryptanalysis of the cipher, thus leaving its security untested.
The block ciphers and stream ciphers proposed in [3] were broken in [4] due to
the affine property of the used CAs. In [5] another block cipher was proposed
but it was unable to get rid of the affine property and thus could not achieve
the claimed security. In [6] an extended Cellular Automaton (GF(2%)) was used
to develop a cryptosystem which used the Galois Field multiplication as the
non-linear step. However the paper also lacked detailed cryptanalysis and the



key generation algorithm. The recent CA based block cipher, proposed in [7]
mixes an affine CA with non-affine mappings. However the block cipher has
been successfully cryptanalyzed in [8].

The reasons behind the failure should not be attributed to the Cellular Au-
tomaton, which is on the contrary a wonderful machine conducive for cipher
design. In [9] the CA has been revisited and a generalised block cipher round
has been composed using a special technique. The elegance of the composition
was the fact that the combination of the linear and non-linear part did not
disturb the cyclic structure of the linear part. However in order to develop a
complete block cipher many details like block sizes (of both the data and the
key), number of rounds required and a detailed security analysis have to be
performed, which were missing in the previous attempts of designing CA based
cryptosystems [8]. In the present work we thus adopt a ”tame” approach [10] in
building the block cipher. In this approach first cryptographic primitives, with
well defined properties are built from simple rules. Then the components are
composed using the technique of [9] along with some other new methodologies
to build the complete cipher. In this work it is shown for the first time in the
literature of Cellular Automata based cipher design how the features of a ci-
pher based on Substitution and Permutation can be derived using CA rules.
The paper discusses the construction of blocks imparting adequate non-linearity
(through S-Box) and avalanche effect through Diffusion Box (D-Box) to the ci-
pher. The paper explains that varying the number of ”cycles” of the non-linear
CA, one can obtain S-Boxes of very high resistance against Differential Crypt-
analysis. The linear part providing diffusion is implemented using three linear
CA such that the Avalanche criterion is satisfied. Further instead of key mixing
using the traditional exclusive-or (xor), we perform key mixing using addition
modulo 2" and subtraction modulo 2™, where n is the block size. Such a key xor
helps to foil Linear Cryptanalysis as the bias reduces exponentially fast with the
bit position [15]. The CA based round thus constructed has the properties of
self-invertiblility and fast-forwardness, thus leading to efficient implementations.
Finally, a technique is presented through which the CA based rounds can be
composed to build the complete cipher, with the property of self-invertibility
retained. Computation of the number of rounds required is currently underway.

The paper is organised as follows: Section 2 describes some of the preliminar-
ies required in the work. Section 3 constructs the CA based round and describes
the internal blocks. The security analysis of the round of the block cipher is
presented in section 4. Section 5 describes the composition of rounds and future
scope of work. Finally the work is concluded in section 6.

2 Preliminaries

In the current section some of the preliminary concepts used in the work have
been stated.

2.1 Cellular Automata

A Cellular Automaton (CA) consists of a number of cells arranged in a regular
manner, where the state transitions of each cell depends on the states of its
neighbors. The next state of a particular cell is assumed to depend only on itself
and on its two neighbors (3-neighborhood dependency). The state q of the it
cell at time (¢ + 1) is denoted as ¢;*' = g(q!_,, ¢!, qt,,), where g¢ denotes the
state of the i¢” cell at time t and g is the next state function called the rule of the
automaton[1]. Since g is a function of 3 variables, there are 22° or 256 possible



next state functions. The decimal equivalent of the output column in the truth
table of the function is denoted as the rule number. The next state function for
Rule 90 and Rule 150 are as below :

Rule 90 : ¢/*' =gt ®qt,,

Rule 150 : ¢/ = ¢!, @ ¢t @ ¢l 4

The CA preliminaries where the CA is in GF(2) are described in the book
[11]. An outline of it is as follows.

For an n-cell one dimensional CA, it can be shown that the linear operator
is an n x n matrix whose i*" row corresponds to the neighborhood relation of
the i*" cell. The next state of the CA is generated by applying this linear opera-
tor on the present state. The operation is simple matrix multiplication, but the
addition involved is modulo-2 sum. The matrix is termed as the characteristic
matrix of the CA and is denoted by T'.

If X; represents the state of the automaton at the #** instant of time, then
the next state, i.e., the state at the (¢ + 1)** time, is given by

Xt—‘,—l =Tx Xt
that iS, Xt-‘rp =TP % Xt-

If for a CA all states in the state transition graph lie in some cycle, it is
called a group CA; otherwise it is called a non group CA. It has been shown in
[11] that for a group CA its T matrix is non-singular, i.e., det[T] = 1.

If the characteristic matrix T of a CA is singular , i.e. det[T] = 0, then the
CA is a non group CA. In a non group CA , all the states are not cyclic.

An n cell GF(2) CA can be characterized by a n x n characteristic matrix
T as follows:

1 if the next state of the it* cell depends on the
T= present state of the j¥* cell
0 otherwise

Fundamental Transformations

The Cellular Automata having certain rules 195, 153 and 51 are known as
fundamental transformations. They are also referred to as the complemented
CA. They have the following definitions
z;(t) = znor(z;—1(t — 1), z;(t — 1)),
z;(t) = znor(z;(t — 1), 241 (t — 1)),
z;(t) = znor(z;(t — 1))
Each of these rules is a group rule and thus the corresponding CA exhibits group-
rule properties. It can be observed that such a CA forms equal cycles of even
lengths.

2.2 Definitions related to the Security Analysis of a Block Cipher

Definition 1. Balancedness: The vector space of n tuples of elements from
GF (2) is denoted by V,. Let f be a (Boolean) function from V, to GF(2).
The truth table of f is defined as (f (o), f(a1),-.,f (a2n—1)), where a;, i =
0,1,...,2" — 1, denote vectors in V,,. f is said to be balanced if its truth table has
an equal number of zeroes and ones.

Definition 2. Affine Function: We call h(z)=a121 ® ... ® anz, ® ¢ an affine
function where © = (21, ...,%,) and a;,c € GF(2). In particular, h will be called
a linear function if ¢ = 0.



Definition 3. Hamming Weight: The Hamming weight of a vector x, denoted
by W (z), is the number of ones in x.

Definition 4. Hamming Distance: Let f and g be functions on V,,. Then d(f, g)
=) f(x)£e(z) 1, where the addition is over the reals, is called the Hamming dis-
tance between f and g.

Definition 5. Non-linearity: Let 1qg,... W¥ont+1_; be the affine functions on V.
Then Ny = min;—q, . on+1_1 d(f ;) is called the non-linearity of f. It is well-
known that the non-linearity of f on V, satisfies Ny < 2"~1-27/2=1 when n is
even.

Definition 6. Bias of linear approrimation: Let the linear approximation be of
the form:

<X ®Xp®... Xy >®<Y;;8Y;,...0Y; >=0

where X; represents the i-th bit of the input X = [X1,X,,...] and Y} rep-
resents the j-th bit of the output Y = [Y1,Y>,...]. This equation is representing
the exclusive OR of u input bits and v output bits.

If the bits are chosen randomly then the above approximated linear expression
will hold with probability 1/2. If p, is the probability with which the expression
holds then the bias is defined as |p; — 1/2|.

Definition 7. Robustness of S-Box [12]: Let F=(fi,...,fs) be an n x s S-boz,
where f; is a function on V,, i =1,...;s, and n > s. We denote by L the largest
value in the difference distribution table of F', and by R the number of non-zero
entries in the first column of the table. In either case the value 2™ in the first row
is not counted. Then we say that F' is e-robust against differential cryptanalysis,
where € is defined by

e= (1-R/2")(1-L/2") (1)
3 Construction of a round using CA Transforms

In this section a round of the CA based block cipher is presented. As depicted
in figure 1 an input to the round, denoted by X is transformed by the round to
result in the output Y. The round key is denoted by K and the size of the block
of data and key by n. It is suggested that the value of n is 128 for adequate
security margin, though the algorithm is scalable. The composition is based on
the technique proposed in [9)].

The round of the block cipher, denoted by 7, has essentially three parts:

— A non-linear, invertible transform f
— A linear part denoted by ¢ (Diffusion Box)
— The inverse non-linear transform f—!

The composition of the round of the cipher is expressed as r = f~! o ¢l o f.
One of the interesting properties of the construction is that the structure can
be programmed easily to perform both encryption and decryption. Encryption
is achieved when ¢ = n — 1, while the round performs decryption when ¢ = n+ 1.
When the round performs encryption we denote the round by Ex and when it
performs decryption by Ef(l. Apart from having self-invertibility, the non-linear
components do not disturb the cyclic nature of the linear CA. The result is easily
derived from the following theorem.

Theorem 1. [9] The cycle structure of any transformation Ty is the same as
that of To = f Lo T o f.
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Fig.1. The CA based round

Thus, the cyclic structure of the transformation Th = ¢! is the same as that
of Th=r=flocof.

Further, the round has a fast forwardness property [9], resulting in high speed
ciphers. Finally the non-linear part f has two sub-components:first, a key mixing
step performed through addition modulo 2™ with the round key K and then a
non-linear S-Box. Likewise the part f~! has two components:first the inverse S-
Box and then the inverse key mixing step obtained through subtraction modulo
2™ with the round key K.

Next, we describe the individual steps of the round and explain how confusion
and diffusion are achieved through the CA based transforms.

3.1 Construction of the Diffusion Box

The Diffusion Box (D-Box) comprises of linear transformations, aimed at pro-
viding diffusion to the cipher. The crux of the D-Box is a complemented Cellular
Automata characterized in [13] and generalised in [14]. For example when a Cel-
lular Automaton with rule 153 [11] is fed with an initial seed of X, it produces
an output T(X) = T(X) + IF. Here T is the transformation matrix which has
the ith and the (i + 1)th elements of the ith row as 1 with the exception of the
last row where it has only its last element as 1. I is the identity matrix and F' is
the vector with all 1’s. Also, the length of a cycle of an n-cell CA implemented
with rule 153 can be characterized in the following theorem :

Theorem 2. The length of cycle for an n-cell CA, having rule T, is
| = 2llogn]+1 ,n>2 (2)
The cyclic property of the complemented CA leads to the fact that the same
transformation can be used to both encrypt and decrypt. For, example if the

length of the cycle is I, then we have the identity I = T Thus, if the D-Box is

. .2 - .
characterized by the transformation T 2 ieD=T /2) the same transformation
performs both encryption and decryption.



Inspite of its cyclic property, the CA cannot be as it is applied to contsruct
the D-Box. A serious weakness in the linear transformation is that at each step of
the application of rule 153, the last bit of the input simply gets toggled. Indeed,
as we have [/2 even, as is evident from Theorem 2, the last bit of the output will
be the same as the last bit of the input to the linear transformation.

Thus, the transformation is augmented with the transformation D = (AT A~1)!/2,
where A is an invertible linear function. A is chosen so as to thwart the above
weakness. The overall transformation is still cyclic according to theorem 1. Also,
the overhead is almost same, due to the fast forwardness property [9]. According
to the property, D = (ATA1)!/2 = A(T)"/?A 1.

That is when /2 number of clock cycles are applied to the transformation
AT A~1 is the same as applying A~1, followed by 1/2 clock cycles of T and then
finally A.

An important property of the Diffusion Box is that it should satisfy the
avalanche criterion. According to the criterion, if one bit of the input is changed
then at least half of the output bits should be affected. From the Cellular Au-
tomata theory it may be observed that if the transformation T is applied for n/2
clock cycles, then the overall avalanche is poor. To observe this, let two inputs
to the complemented CA (T) X; and X, differ at a single bit position. Then
the output xor can be represented by T(X;) & T X,) = T(X;) ® T(X,)=T(X)
where X is X; @& X5. The number of ones in the xor of the outputs reflects the
number of output bits which change when a single bit in the input flips.

Thus, after the [/2th application of T the xor of the outputs would be
T'/?(X). Since, the block size n is usually chosen to be a power of 2 (in our
case 128) 1/2 is equal to n (from theorem 2).

Thus, the output xor is reduced to T™(X) which can be shown to be X itself
(as T™ is the identity matrix I [11]). Thus a change in a single position in the
input to the complemented CA transformation confines itself to that particular
position in the output and does not get diffused. Inorder to obtain a healthy
diffusion thus T is applied (n — 1) times while encrypting and (n+ 1) times while
decrypting. This leads to a stronger avalanche effect.

To further improve on the Avalanche effect the matrix A and its inverse are
applied. We give our example with a 8 bit structure. However, the matrix is
extendible to any block size. The matrices A and A~ are as follows:

11111111
11111110
01111110
00111110
00111100
00111000
00011000
00001000

and its inverse:

01100000
00110000
00000110
00000011
00000001
00001100
00011000
11000000

The regularity in the structure of A helps us to extend it to any dimension
and the matrices can also be synthesized using Cellular Automata.




3.2 Construction of the S-Box

In order to construct the S-Box using Cellular Automata, we first require a non-
linear Cellular Automata rule which is reversible. Also, the Cellular Automata
based S-Box should satisfy the various properties required for a robust S-Box
design [12]. A skewed version of rule 30 is:

2l =2} © (zpt + ;).

The inverse rule for the non-linear CA may be obtained, as the above rule
is invertible, unlike rule 30 CA. However, a serious flaw with it is that the last
bit in it passes unchanged. To avoid this, we propose to use ”cycles” of this
simple rule. After each cycle the output is completely reversed, that is the last
bit becomes the first, the second last the second and so on. It is interesting to
observe that the robustness of the thus developed S-Box is a function of the
number of clock cycles. Indeed in a later section we fix the number of cycles of
the simple non-linear rule required to obtain a cryptographically strong S-Box.
Indeed, we show that the robustness of the S-box is comparable to some of the
strongest S-Boxes obtained in the paper of [12], with the advantage that the
implementation is very simple. The idea of repeating simple rules to obtain the
behavior is also in conformation with the concept envisaged by [1].

3.3 Performing Key Mixing Using Addition Modulo 2™

The classical technique to perform key mixing in block ciphers is through exclusive-
or (exor). In the CA based block cipher we perform the key mixing using addition
modulo 2", when the size of the data and the key block is n-bits. It can be shown
both theoretically and experimentally that in such a case the bias of the linear
approximations falls exponentially fast and helps in foiling Linear Cryptanalysis
[15].

The result may be summarised with the following theorems proved in [15].

Theorem 3. For given n-bit inputs x and k the output is denoted by another
n-bit number y=(x+k) mod 2". The probability that each output bit y[i] can be
denoted by the linear function z[i] ® k[i] is denoted by p;, 0 < i < n. Then
pi=1/24 (1/2)7*! and 1/2 < p; < 1.

Theorem 4. For given n-bit inputs x and k the output is denoted by another
n bit number y = (x + k) mod 2". The largest bias of a linear approximation of

y[i] is (1/2)HF1,
From the above results it is evident that:

Corollary 1. The best linear approzimation for s[i] is a[i] ® k[i], where the
probability of match is 1/2 + 2=+ and hence the bias is 2~ 01

So, if the key-mixing step in the block cipher is an addition modulo 2" step,
the probability of any linear expression relating to the key elements may be
estimated using the above result and the Piling-Up lemma [16]. If the resulting
linear expression involves any particular bit position, say the i** bit of the key,
the bias of the resulting equation is lesser than (1/2)+! and as the following
table suggests the biases become negligible very fast.

The biases of the linear expression relating the key bits have been computed
using the above expression and tabulated in table 1.

We see that the bias of the linear approximations involving the key bits
falls very fast. With a key size of 128 the bias of the linear approximations is
almost zero (negligible) beyond a bit position of six (marked in table 1). This
fact makes the finding of linear approximations in the cipher with a large bias a



Table 1. Biases of Linear Approximations Involving Key Bits
Key Bit )

PositionO‘l 2‘3 4 5‘6 7‘8‘9‘10
Bias [0.5]0.25/0.125]0.0625]0.0313|0.0156]0.0079]0.0039]0.0020|0.0010]0.0004

more difficult task. Discovering the key through Linear Cryptanalysis becomes
improbable. The result have also been experimentally verified in [15].

Thus, the overall round of the CA based block cipher is elaborated in figure 2.
The parameters of the block in the figure have been explained in the next section.

4 Security analysis of the block cipher

In this section the round of the block is evaluated for its security against various
security parameters.

4.1 Avalanche Criterion

We first consider the linear transform (D-Box) of the cipher, that is the D =

AT" ' A~ unit. While discussing the motivation for choosing A, we have indi-
cated that the block is expected to have a strong avalanche effect. Though the
discussion was for 8 bits, the matrix can be easily extended to larger block sizes.
We have experimentally performed the test on a block size of 128 bits and found
out that on an average the outputs differ in 80 bits when the inputs differ in
only one bit. The frequency distribution table for the number of bits affected in
the output is provided in table 2. The results demonstrate that the block cipher
satisfies avalanche criterion.

Table 2. Avalanche Effect of the proposed Cipher

Number of bits
where the outputs|Frequency

differ
0-10 4
10-20 5
20-30 5
30-40 5
40-50 5
50-60 5
60-70 11
70-80 15
80-90 15
90-100 15

100-110 15

110-120 15

120-130 15

4.2 Evaluation of the S-Box

The S-Box is a crucial component of Substitution Permutation Networks. The
S-boxes are supposed to be defiant against Linear Cryptanalysis (LC) and Dif-
ferential Cryptanalysis (DC). For this they should satisfy various properties like
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high non-linearity, balancedness, robustness against differential cryptanalysis
and small biases of linear approximations.

Non-linearity and Balancedness:

First, the non-linearity of the S-Box output bits should be high and also they
should represent a balaned boolean function. If we consider a m bit S-Box, the
non-linear CA (mentioned earlier) gives us a permutation on V,,, that is, we have
an invertibe mapping. So the enumeration of the truth tables of the output bits
show that all the possible elements of V,,, appear. Thus the truth table of each
output bit has an equal number of zeros and ones, resulting in the balancedness
of the output function. Now, a balanced boolean function cannot attain the
highest non-linearity, but it should be close to the maximum non-linearity value.
As already mentioned in the preliminaries the maximum non-linearity value for
a function on V,, is 2m~1 — 2m/2-1_ Ag described before we iterate the simple
non-linear rule over some ”cycles”. Our observation is that as the number of
cycles increase the non-linearity of the S-Box varies and gradually approaches
its maximum value. The non-linearity of the cipher for different number of bits
in a block and cycles is tabulated in table 3.

Table 3. Non-linearity for different bits and rounds for the cipher

No of bits|Number of cycles|Non-linearity| Maximum non- Ratio
(Ny) linearity (N7*")|(Ny/N7*")

4 4 4 6 0.67

4 8 4 6 0.67

8 4 64 120 0.53

8 8 82 120 0.68

Based on the above result we choose to construct a S-Box on 8 bits. Thus
each bit is a boolean function of 8 bits and has a high non-linearity. We, next
perform a Linear Cryptanalysis and show that the biases obtained are less. In
order to facilitate the respresentation we tabulate the result for a 4 bit S-Box,
although the 8 bit Linear Approximation Table is even better.

Linear Cryptanalysis:

Linear Cryptanalysis essentially deals with the probability of approximating
the input and output of non-linear functions, used in the block cipher with
linear expressions [17,18]. The approach in linear cryptanalysis is to determine
expressions of the form below which have a high or low probability of occurrence
[17,18]

Let us consider an expression of the form:

<X ®Xpp®.. Xy >0<Y;;®8Yj,...0Y;, >=0

where X; represents the i-th bit of the input X = [X;, X»,...] and Yj rep-
resents the j-th bit of the output Y = [¥1,Y5,...]. This equation represents the
exclusive OR of u input bits and v output bits.

If the bits are chosen randomly then the above approximated linear expres-
sion will hold with probability 1/2. It is the deviation from the probability of
1/2 (bias) for an expression to hold that is exploited in linear cryptanalysis: the
further away a linear expression is from holding with a probability of 1/2, the
better the cryptanalyst is able to apply linear cryptanalysis. We thus prepare
a linear approximation table 4 for the non-linear S-Box of the cipher round.
Each element in the table represents the number of matches between the linear
equation represented in hexadecimal as ”Input Sum” and the sum of the output
bits represented in hexadecimal as ”OQutput Sum” minus 8. The hexadecimal
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value representing a sum, when viewed as a binary value indicates the variables
involved in the sum. As we can see from table 4 the biases are small and thus
the corresponding equations will offer no considerable help for the cryptanaly-
sis. This table is comparable to the table that we obtain while doing a similar
analysis for the S-boxes of DES.

Table 4. Linear Approximation Table for 4 bit S-Box

012345678 9101112131415
00000000000 O0O0CO0OO0OO0
110-22102240-2-2402-20
20022020-4-202-24200 2
30-4002-22204002-22 2
41002222002-2400-4-22
5020220-2420-2-4020 2
602-420-2022024-20220
700-22002-22-2006 200
80000-222-24400-22-22
910-220200-20-22 0-24 4 2
1002 204-220022 00 2-24
1104 000040-400 0000 4
12002 2-40-22-22 402 200
13020602022022022020
1402 42-202020-200-24 -2
1500-2226 00-220 00 0 2 -2

Also, to be noted is that the effect of the non-linear key mixing (described
previously) does not give linear approximations of the cipher with high bias. The
results of Theorem 3, 4 and Corollary 1 show that the bias of linear approxi-
mations through the key mixing step goes down exponentially fast with the bit
size. Thus, we do not get linear approximations of the cipher rounds with large
bias.

Differential Cryptanalysis:

Next, we evaluate the robustness of the S-Box against Differential Crypt-
analysis (DC). Differential cryptanalysis takes the advantage of entries with high
values in the difference distribution tables of S-boxes employed by block ciphers.
The difference distribution table for an x s S-box is a 2™ x 2% matrix. The rows
of the matrix, indexed by the vectors in V,, represent the change in the input,
while the columns, also indexed by the vectors in V,, represent the change in the
output of the S-box.

An entry in the table indexed by (AX, AY) indicates the number of input
vectors which when changed by AX (bitwise XOR), result in a change in the
output by AY (bitwise XOR).

From the definition of robustness against DC, it is evident that the values of
L and R have to be less. That is, in addition to the requirement of having no
large values, the difference distribution table of an S-box should also contain as
less non-zero entries as possible in its first column [12].

We again observe that the robustness against Differential Cryptanalysis varies
with the number of ” cycles” of the S-Box. The robustness of the non-linear trans-
formation of our cipher for different values of the number of bits in a block and
the number of cycles are shown in table 5.
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Table 5. e-robustness against Differential Cryptanalysis

Number of bits|Number of cycles| e |L|R|/Maximum value of €(e,, ) |Ratio(e/em )
4 4 0.6250( 6 |0 0.875 0.71
4 8 0.5000| 8 |0 0.875 0.57
8 4 0.8125(48|0 0.992 0.82
8 8 0.9297(18|0 0.992 0.94

It follows from the above tables that among all the values, the ratios for
non-linearity and e-robustness against differential cryptanalysis are the highest
when the block size is 8 bits and the number of cycles is 8.

The performance of the S-Box, with respect to the powerful Differential
Cryptanalysis may be compared with that of the some of the standard S-Boxes
in literature table 6. From the results we see that the S-Box constructed out of
the simple non-linear rule of a CA results in a S-Box which is comparable to
that of the standard ciphers. The elegance of the CA based S-Box is that it is
simple and extremely easy to implement.

Table 6. Comparision of robustness against Differential Cryptanalysis

| S-Box [Robustness (e)]

S, (DES) 0.316
S, (DES) 0.363
Ss (DES) 0.316
Ss (DES) 0.469
Ss (DES) 0.387
Se (DES) 0.367
S7 (DES) 0.340
Ss (DES) 0.328
[12] 0.875
[12] 0.96875
[12] 0.992
CA based S-Box 0.9297

4.3 Parameters of a Round of the Cipher

Based on the above discussion and the available computational resources of
a modern day adversary we decide upon the following structure of the self-
invertible CA based round of the block cipher. The block size is 128 bits both
for the data and the key. The input to the round and the key are mixed with
addition modulo 2'28. Next, the data is divided into 16 smaller groups of 8 bits.
Each block is operated with the non-linear S-Boxes independently. The S-Box is
thus a 8 x 8 S-box, where the number of cycles is 8. Then the Diffusion Box comes
to play and is applied to the 128 bit output of the 16 S-Boxes. The number of
iterations of the linear step is 127 for encryption andd 129 for decryption. Next,
the data is then divided into 16 blocks and the inverse non-linear step is also
applied for 8 cycles. Finally, the 128 bit data is mixed with the round key, this
time with a subtraction modulo 2!28,
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5 Composition of Rounds

Key Mixing is a necessary part of cipher design. According to the basic princi-
ples of cryptography the security of an algorithm lies in the key. We compose the
unconventional CA based block ciphers (as opposed to a SPN cipher) developed
recursively using the same composition principle that we have used (Theorem
1). We thus always have the self-invertible property retained. Figure 3 shows the
composition of three CA based rounds. There are two encryption rounds (Ex;
and Ek,) and one decryption round Ex, '. The encryption rounds have two
round keys K; and K> and the linear part is cycled 127 times, while the decryp-
tion block also has the round key K; and number of cycles of the linear part
is 129. We are currently working on computing the number of such recursions
required and in devising a key scheduling algorithm based on the CA Transforms
developed in this work.

E Ky ~— Round Key

E K, ~— Round Key
-1

E Ky ~— Round Key

i

Fig. 3. Composition of the Rounds

6 Conclusions

For the first time, the paper discusses how confusion and diffusion can be
achieved in block ciphers using CA based transforms. The self-invertible round
proposed is a combination of linear and non-linear CA. The paper shows how
repeated applications of simple non-linear rules can help to devise an S-Box with
security features comparable to that of the strongest ciphers. Finally, the rounds
are also composed recursively to develop a complete block cipher. An interest-
ing future scope of work will be to compute the number of rounds required to
achieve the security margin provided by the best block ciphers.
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