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Abstract
We present a new mechanized prover for secrecy properties of
security protocols. In contrast to most previous provers, our tool
does not rely on the Dolev-Yao model, but on the computational
model. It produces proofs presented as sequences of games;
these games are formalized in a probabilistic polynomial-time
process calculus. Our tool provides a generic method for speci-
fying security properties of the cryptographic primitives, which
can handle shared-key and public-key encryption, signatures,
message authentication codes, and hash functions. Our tool pro-
duces proofs valid for a number of sessions polynomial in the
security parameter, in the presence of an active adversary. We
have implemented our tool and tested it on a number of exam-
ples of protocols from the literature.

1 Introduction
There exist two main approaches for analyzing security proto-
cols. In the computational model, messages are bitstrings, and
the adversary is a probabilistic polynomial-time Turing machine.
This model is close to the real execution of protocols, but the
proofs are usually manual and informal. In contrast, in the for-
mal, Dolev-Yao model, cryptographic primitives are considered
as perfect blackboxes, modeled by function symbols in an al-
gebra of terms, possibly with equations. The adversary can
compute using these blackboxes. This abstract model makes
it possible to build automatic verification tools, but the security
proofs are in general not sound with respect to the computational
model.

Since the seminal paper by Abadi and Rogaway [3], there has
been much interest in relating both frameworks (see for exam-
ple [1, 9, 12, 24, 28, 29, 38, 39]), to show the soundness of the
Dolev-Yao model with respect to the computational model, and
thus obtain automatic proofs of protocols in the computational
model. However, this approach has limitations: since the com-
putational and Dolev-Yao models do not correspond exactly, ad-
ditional hypotheses are necessary in order to guarantee sound-
ness. (For example, key cycles have to be excluded, or a specific
security definition of encryption is needed [5].)

In this paper, we propose a different approach for automat-
ically proving protocols in the computational model: we have
built a mechanized prover that works directly in the computa-
tional model, without considering the Dolev-Yao model. Our
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tool produces proofs valid for a number of sessions polynomial
in the security parameter, in the presence of an active adversary.
These proofs are presented as sequences of games, as used by
cryptographers [17,45,46]: the initial game represents the proto-
col to prove; the goal is to show that the probability of breaking
a certain security property (secrecy in this paper) is negligible in
this game; intermediate games are obtained each from the pre-
vious one by transformations such that the difference of prob-
ability between consecutive games is negligible; the final game
is such that the desired probability is obviously negligible from
the form of the game. The desired probability is then negligible
in the initial game.

We represent games in a process calculus. This calculus is in-
spired by the pi-calculus and by the calculi of [34, 35, 40] and
of [33]. In this calculus, messages are bitstrings, and cryp-
tographic primitives are functions from bitstrings to bitstrings.
The calculus has a probabilistic semantics, and all processes run
in polynomial time. The main tool for specifying security prop-
erties is observational equivalence: Q is observationally equiv-
alent to Q′, Q ≈ Q′, when the adversary has a negligible prob-
ability of distinguishing Q from Q′. With respect to previous
calculi mentioned above, our calculus introduces an important
novelty which is key for the automatic proof of security proto-
cols: the values of all variables during the execution of a process
are stored in arrays. For instance, x[i] is the value of x in the i-
th copy of the process that defines x. Arrays replace lists often
used by cryptographers in their manual proofs of protocols. For
example, consider the definition of security of a message authen-
tication code (MAC). Informally, this definition says that the ad-
versary has a negligible probability of forging a MAC, that is,
that all correct MACs have been computed by calling the MAC
oracle. So, in cryptographic proofs, one defines a list containing
the arguments of calls to the MAC oracle, and when checking a
MAC of a message m, one can additionally check that m is in
this list, with a negligible change in probability. In our calculus,
the arguments of the MAC oracle are stored in arrays, and we
perform a lookup in these arrays in order to find the message
m. Arrays make it easier to automate proofs since they are al-
ways present in the calculus: one does not need to add explicit
instructions to insert values in them, in contrast to the lists used
in manual proofs. Therefore, many trivially sound but difficult
to automate syntactic transformations disappear. Furthermore,
relations between elements of arrays can easily be expressed by
equalities, possibly involving computations on array indices.

Our prover relies on a collection of game transformations, in
order to transform the initial protocol into a game on which the
desired security property is obvious. The most important kind
of transformations exploits the definition of security of crypto-
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graphic primitives in order to obtain a simpler game. As de-
scribed in Section 3.2, these transformations can be specified
in a generic way: we represent the definition of security of each
cryptographic primitive by an observational equivalence L ≈ R,
where the processes L and R encode functions: they input the
arguments of the function and send its result back. Then, the
prover can automatically transform a process Q that calls the
functions of L (more precisely, contains as subterms terms that
perform the same computations as functions of L) into a process
Q′ that calls the functions of R instead. We have used this tech-
nique to specify several variants of shared-key and public-key
encryption, signature, message authentication codes, and hash
functions, simply by giving the appropriate equivalence L ≈ R
to the prover. Other game transformations are syntactic trans-
formations, used in order to be able to apply the definition of
cryptographic primitives, or to simplify the game obtained after
applying these definitions.

In order to prove protocols, these game transformations are
organized using a proof strategy based on advice: when a trans-
formation fails, it suggests other transformations that should be
applied before, in order to enable the desired transformation.
Thanks to this strategy, protocols can often be proved in a fully
automatic way. For delicate cases, our prover has an interac-
tive mode, in which the user can manually specify the trans-
formations to apply. It is usually sufficient to specify a few
transformations coming from the security definitions of primi-
tives, by indicating the concerned cryptographic primitive and
the concerned secret key if any; the prover infers the intermedi-
ate syntactic transformations by the advice strategy. This mode
is helpful for proving some public-key protocols, in which sev-
eral security definitions of primitives can be applied, but only
one leads to a proof of the protocol. Importantly, our prover
is always sound: whatever indications the user gives, when the
prover shows a security property of the protocol, the property in-
deed holds assuming the given hypotheses on the cryptographic
primitives.

Our prover CryptoVerif has been implemented in Ocaml
(17300 lines of code for version 1.03 of CryptoVerif) and
is available at http://www.di.ens.fr/˜blanchet/
cryptoc-eng.html.

1.1 Outline

The next section presents our process calculus for representing
games. Section 3 describes the game transformations that we
use for proving protocols. Section 4 gives criteria for proving se-
crecy properties of protocols. Section 5 explains how the prover
chooses which transformation to apply at each point. Section 6
presents our experimental results. Section 7 discusses related
work and Section 8 concludes. The appendices contain addi-
tional formal details, proof sketches, and details on the modeling
of some cryptographic primitives.

1.2 Notations

We recall the following standard notations. We denote by
{M1/x1, . . . ,Mm/xm} the substitution that replaces xj with
Mj for each j ≤ m. The cardinal of a set or multiset S is

M,N ::= terms
i replication index
x[M1, . . . ,Mm] variable access
f(M1, . . . ,Mm) function application

Q ::= input process
0 nil
Q | Q′ parallel composition
!i≤nQ replication n times
newChannel c;Q channel restriction
c[M1, . . . ,Ml](x1 [̃i] : T1, . . . , xk [̃i] : Tk);P

input

P ::= output process
c[M1, . . . ,Ml]〈N1, . . . , Nk〉;Q output
new x[i1, . . . , im] : T ;P random number
let x[i1, . . . , im] : T = M in P assignment
if defined(M1, . . . ,Ml) ∧M then P else P ′

conditional
find (

⊕m
j=1 uj1 [̃i] ≤ nj1, . . . , ujmj [̃i] ≤ njmj

suchthat defined(Mj1, . . . ,Mjlj ) ∧Mj then Pj)
else P array lookup

Figure 1: Syntax of the process calculus

denoted by |S|. If S is a finite set, x
R←S chooses a random

element uniformly in S and assigns it to x. If A is a probabilis-
tic algorithm, x ← A(x1, . . . , xm) denotes the experiment of
choosing random coins r and assigning to x the result of running
A(x1, . . . , xm) with coins r. Otherwise, x←M is a simple as-
signment statement.

2 A Calculus for Games

2.1 Syntax and Informal Semantics

The syntax of our calculus is summarized in Figure 1. This
calculus was inspired by the pi calculus and by the calculi
of [34, 35, 40] and of [33]. We denote by η the security pa-
rameter, which determines in particular the length of keys.

This calculus assumes a countable set of channel names, de-
noted by c. There is a mapping maxlenη from channels to inte-
gers, such that maxlenη(c) is the maximum length of a message
sent on channel c. Longer messages are truncated. For all c,
maxlenη(c) is polynomial in η. (This is key to guaranteeing
that all processes run in probabilistic polynomial time.)

Our calculus also uses parameters, denoted by n, which cor-
respond to integer values polynomial in the security parameter.
So, denoting by Iη(n) the interpretation of n for a given value
of the security parameter η, Iη(n) is a polynomially bounded,
efficiently computable function of η.

Our calculus also uses types, denoted by T . For each value
of the security parameter η, each type corresponds to a subset
Iη(T ) of Bitstring ∪ {⊥} where Bitstring is the set of all bit-
strings and ⊥ is a special symbol. The set Iη(T ) must be recog-
nizable in polynomial time, that is, there exists an algorithm that
decides whether x ∈ Iη(T ) in time polynomial in the length of
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x and the value of η. Let fixed-length types be types T such that
Iη(T ) is the set of all bitstrings of a certain length, this length
being a function of η bounded by a polynomial. Let large types
be types T such that 1

|Iη(T )| is negligible. (f(η) is negligible
when for all polynomials q, there exists ηo ∈ N such that for
all η > η0, f(η) ≤ 1

q(η) .) Particular types are predefined: bool ,
such that Iη(bool) = {true, false}, where false is 0 and true is
1; bitstring , such that Iη(bitstring) = Bitstring ; bitstring⊥
such that Iη(bitstring⊥) = Bitstring ∪ {⊥}; [1, n] where n
is a parameter, such that Iη([1, n]) = [1, Iη(n)]. (We consider
integers as bitstrings without leading zeroes.)

The calculus also uses function symbols f . Each function
symbol comes with a type declaration f : T1 × . . . × Tm →
T . For each value of η, each function symbol f corresponds to
a function Iη(f) from Iη(T1) × . . . × Iη(Tm) to Iη(T ), such
that Iη(f)(x1, . . . , xm) is computable in polynomial time in the
lengths of x1, . . . , xm and the value of η. Particular functions
are predefined, and some of them use the infix notation: M = N
for the equality test, M 6= N for the inequality test (both taking
two values of the same type T and returning a value of type
bool ), M ∨ N for the boolean or, M ∧ N for the boolean and,
¬M for the boolean negation (taking and returning values of
type bool ).

In this calculus, terms represent computations on bitstrings.
The replication index i is an integer which serves in distin-
guishing different copies of a replicated process !i≤n. (Repli-
cation indices are typically used as array indices.) The vari-
able access x[M1, . . . ,Mm] returns the content of the cell of
indices M1, . . . ,Mm of the m-dimensional array variable x.
We use x, y, z, u as variable names. The function application
f(M1, . . . ,Mm) returns the result of applying function f to
M1, . . . ,Mm.

The calculus distinguishes two kinds of processes: input pro-
cesses Q are ready to receive a message on a channel; output
processes P output a message on a channel after executing some
internal computations. The input process 0 does nothing; Q | Q′
is the parallel composition of Q and Q′; !i≤nQ represents n
copies of Q in parallel, each with a different value of i ∈ [1, n];
newChannel c;Q creates a new private channel c and executes
Q; the semantics of the input c[M1, . . . ,Ml](x1 [̃i] : T1, . . . ,

xk [̃i] : Tk);P will be explained below together with the seman-
tics of the output.

The output process new x[i1, . . . , im] : T ;P chooses a new
random number uniformly in Iη(T ), stores it in x[i1, . . . , im],
and executes P . (The type T must be a fixed-length type,
because probabilistic polynomial-time Turing machines can
choose random numbers uniformly only in such types.) Func-
tion symbols represent deterministic functions, so all random
numbers must be chosen by new x[i1, . . . , im] : T . Determinis-
tic functions make automatic syntactic manipulations easier: we
can duplicate a term without changing its value. The process
let x[i1, . . . , im] : T = M in P stores the bitstring value of M
(which must be in Iη(T )) in x[i1, . . . , im] and executes P . Next,
we explain the process find (

⊕m
j=1 uj1 [̃i] ≤ nj1, . . . , ujmj [̃i] ≤

njmj suchthat defined(Mj1, . . . ,Mjlj ) ∧Mj then Pj) else P ,
where ĩ denotes a tuple i1, . . . , im′ . The order and array in-
dices on tuples are taken component-wise, so for instance,

uj1 [̃i] ≤ nj1, . . . , ujmj [̃i] ≤ njmj can be further abbreviated
ũj [̃i] ≤ ñj . A simple example is the following: find u ≤ n
suchthat defined(x[u]) ∧ x[u] = a then P ′ else P tries to find
an index u such that x[u] is defined and x[u] = a, and when
such a u is found, it executes P ′ with that value of u; other-
wise, it executes P . In other words, this find construct looks
for the value a in the array x, and when a is found, it stores
in u an index such that x[u] = a. Therefore, the find con-
struct allows us to access arrays, which is key for our purpose.
More generally, find u1 [̃i] ≤ n1, . . . , um [̃i] ≤ nm suchthat
defined(M1, . . . ,Ml)∧M then P ′ else P tries to find values of
u1, . . . , um for which M1, . . . ,Ml are defined and M is true. In
case of success, it executes P ′. In case of failure, it executes P .
This is further generalized to m branches: find (

⊕m
j=1 uj1 [̃i] ≤

nj1, . . . , ujmj [̃i] ≤ njmj suchthat defined(Mj1, . . . ,Mjlj ) ∧
Mj then Pj) else P tries to find a branch j in [1,m] such that
there are values of uj1, . . . , ujmj for which Mj1, . . . ,Mjlj are
defined and Mj is true. In case of success, it executes Pj .
In case of failure for all branches, it executes P . More for-
mally, it evaluates the conditions defined(Mj1, . . . ,Mjlj )∧Mj

for each j and each value of uj1 [̃i], . . . , ujmj [̃i] in [1, nj1] ×
. . . × [1, njmj ]. If none of these conditions is true, it exe-
cutes P . Otherwise, it chooses randomly with uniform1 prob-
ability one j and one value of uj1 [̃i], . . . , ujmj [̃i] such that the
corresponding condition is true and executes Pj . The condi-
tional if defined(M1, . . . ,Ml) ∧M then P else P ′ executes P
if M1, . . . ,Ml are defined and M evaluates to true. Otherwise,
it executes P ′. This conditional is defined as syntactic sugar for
find suchthat defined(M1, . . . ,Ml) ∧M then P else P ′. The
conjunct defined(M1, . . . ,Ml) can be omitted when l = 0 and
M can be omitted when it is true.

Finally, let us explain the output c[M1, . . . ,Ml]〈N1, . . . ,
Nk〉;Q. A channel c[M1, . . . ,Ml] consists of both a chan-
nel name c and a tuple of terms M1, . . . ,Ml. Channel names
c allow us to define private channels to which the adver-
sary can never have access, by newChannel c. (This is use-
ful in the proofs, although all channels of protocols are of-
ten public.) Terms M1, . . . ,Ml are intuitively analogous to
IP addresses and ports which are numbers that the adversary
may guess. A semantic configuration always consists of a
single output process (the process currently being executed)
and several input processes. When the output process exe-
cutes c[M1, . . . ,Ml]〈N1, . . . , Nk〉;Q, one looks for an input
on channel c[M ′l . . . ,M

′
l ], where M ′1, . . . ,M

′
l evaluate to the

same bitstrings as M1, . . . ,Ml, and with the same arity k,
in the available input processes. If no such input process is
found, the process blocks. Otherwise, one such input process
c[M ′1, . . . ,M

′
l ](x1 [̃i] : T1, . . . , xk [̃i] : Tk);P is chosen ran-

domly with uniform probability. The communication is then ex-
ecuted: for each j ≤ k, the output message Nj is evaluated, its
result is truncated to length maxlenη(c), the obtained bitstring

1A probabilistic polynomial-time Turing machine can choose a random num-
ber uniformly in a set of cardinal m only when m is a power of 2. When m is
not a power of 2, there exist approximate algorithms: for example, in order to
obtain a random integer in [0,m − 1], we can choose a random integer r uni-
formly among [0, 2k − 1] for a certain k large enough and return r mod m.
The distribution can be made as close as we wish to the uniform distribution by
choosing k large enough.
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is stored in xj [̃i] if it is in Iη(Tj) (otherwise the process blocks).
Finally, the output process P that follows the input is executed.
The input processQ that follows the output is stored in the avail-
able input processes for future execution. Note that the syntax
requires an output to be followed by an input process, as in [33].
If one needs to output several messages consecutively, one can
simply insert fictitious inputs between the outputs. The adver-
sary can then schedule the outputs by sending messages to these
inputs.

Using different channels for each input and output allows the
adversary to control the network. For instance, we may write
!i≤nc[i](x[i] : T ) . . . c′[i]〈M〉 . . . The adversary can then decide
which copy of the replicated process receives its message, sim-
ply by sending it on c[i] for the appropriate value of i.

An else branch of find or if may be omitted when it is
else yield〈〉; 0. (Note that “else 0” would not be syntactically
correct.) A trailing 0 after an output may be omitted.

Variables can be defined by assignments, inputs, restrictions,
and array lookups. The current replication indices at a certain
program point in a process are i1, . . . , im where the replications
above the considered program point are !i1≤n1 . . . !im≤nm . We
often abbreviate x[i1, . . . , im] by x when i1, . . . , im are the cur-
rent replication indices, but it should be kept in mind that this is
only an abbreviation. Variables defined under a replication must
be arrays: for example !i1≤n1 . . . !im≤nm let x[i1, . . . , im] : T =
M in . . . More formally, we require the following invariant:

Invariant 1 (Single definition) The processQ0 satisfies Invari-
ant 1 if and only if

1. in every definition of x[i1, . . . , im] in Q0, the indices
i1, . . . , im of x are the current replication indices at that
definition, and

2. two different definitions of the same variable x in Q0 are in
different branches of a find (or if).

Invariant 1 guarantees that each variable is assigned at most once
for each value of its indices. (Indeed, item 2 shows that only one
definition of each variable can be executed for given indices in
each trace.)

Invariant 2 (Defined variables) The process Q0 satisfies In-
variant 2 if and only if every occurrence of a variable access
x[M1, . . . ,Mm] in Q0 is either

• syntactically under the definition of x[M1, . . . ,Mm] (in
which case M1, . . . ,Mm are in fact the current replication
indices at the definition of x);

• or in a defined condition in a find process;

• or in M ′j or Pj in a process of the form find (
⊕m′′

j=1 ũj [̃i] ≤
ñj suchthat defined(M ′j1, . . . ,M

′
jlj

) ∧M ′j then Pj) else

P where for some k ≤ lj , x[M1, . . . ,Mm] is a subterm of
M ′jk.

Invariant 2 guarantees that variables can be accessed only when
they have been initialized. It checks that the definition of the
variable access is either in scope (first item) or checked by a find

(last item). Both invariants are checked by the prover for the
initial game and preserved by all game transformations.

We say that a function f : T1 × . . . × Tm → T is poly-
injective when it is injective and its inverses can be computed in
polynomial time, that is, there exist functions f−1j : T → Tj
(1 ≤ j ≤ m) such that f−1j (f(x1, . . . , xm)) = xj and f−1j can
be computed in polynomial time in the length of f(x1, . . . , xm)
and in the security parameter. When f is poly-injective,
we define a pattern matching construct let f(x1, . . . , xm) =
M in P else Q as an abbreviation for let y : T = M in
let x1 : T1 = f−11 (y) in . . . let xm : Tm = f−1m (y) in
if f(x1, . . . , xm) = y then P else Q. We naturally generalize
this construct to let N = M in P else Q where N is built from
poly-injective functions and variables.

We denote by var(P ) the set of variables that occur in P and
by fc(P ) the set of free channels of P . (We use similar notations
for input processes.)

2.2 Example
Let us introduce two cryptographic primitives that we use below.

Definition 1 Let Tmr, Tmk, and Tms be types that correspond
intuitively to random seeds, keys, and message authentication
codes, respectively; Tmr is a fixed-length type. A message au-
thentication code [15] consists of three function symbols:

• mkgen : Tmr → Tmk where Iη(mkgen) = mkgenη is
the key generation algorithm taking as argument a random
bitstring and returning a key. (Usually, mkgen is a ran-
domized algorithm; here, since we separate the choice of
random numbers from computation, mkgen takes an addi-
tional argument representing the random coins.)

• mac : bitstring × Tmk → Tms where Iη(mac) = macη
is the MAC algorithm taking as argument a message and
a key, and returning the corresponding tag. (We assume
here that mac is deterministic; we could easily encode a
randomized mac by adding an additional argument as for
mkgen.)

• check : bitstring×Tmk×Tms → bool where Iη(check) =
checkη is a checking algorithm such that checkη(m, k, t) =
true if and only if t is a valid MAC of messagem under key
k. (Since mac is deterministic, checkη(m, k, t) is typically
macη(m, k) = t.)

We have ∀m ∈ Bitstring ,∀r ∈ Iη(Tmr), checkη(m,
mkgenη(r),macη(m,mkgenη(r))) = true.

A MAC is UF-CMA (satisfies unforgeability under chosen
message attacks) if and only if for all polynomials q,

max
A

Pr

[
r
R← Iη(Tmr); k ← mkgenη(r);

(m, t)← Amacη(.,k),checkη(.,k,.) : checkη(m, k, t)

]

is negligible, where the adversary A is any probabilistic Turing
machine, running in time q(η), with oracle access to macη(., k)
and checkη(., k, .), and A has not called macη(., k) on message
m.
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Definition 2 Let Tr and T ′r be fixed-length types; let Tk and
Te be types. A symmetric encryption scheme [13] consists of
three function symbols kgen : Tr → Tk, enc : bitstring ×
Tk × T ′r → Te, and dec : Te × Tk → bitstring⊥, with
Iη(kgen) = kgenη , Iη(enc) = encη , Iη(dec) = decη , such
that for all m ∈ Bitstring , r ∈ Iη(Tr), and r′ ∈ Iη(T ′r),
decη(encη(m, kgenη(r), r′), kgenη(r)) = m.

Let LR(x, y, b) = x if b = 0 and LR(x, y, b) = y if b = 1,
defined only when x and y are bitstrings of the same length.
A symmetric encryption scheme is IND-CPA (satisfies indistin-
guishability under chosen plaintext attacks) if and only if for all
polynomials q,

max
A

2 Pr

[
b
R←{0, 1}; r R← Iη(Tr); k ← kgenη(r);

b′ ← Ar′
R← Iη(T

′
r);encη(LR(.,.,b),k,r′) : b′ = b

]
− 1

is negligible, where the adversary A is any probabilis-
tic Turing machine, running in time q(η), with oracle ac-
cess to the left-right encryption algorithm which, given
two bitstrings a0 and a1 of the same length, returns

r′
R← Iη(T ′r); encη(LR(a0, a1, b), k, r

′), that is, encrypts a0
when b = 0 and a1 when b = 1.

Example 1 Let us consider the following trivial protocol:

A→ B : e,mac(e, xmk) where e = enc(x′k, xk, x
′′
r )

and x′′r , x
′
k are fresh random numbers

A and B are assumed to share a key xk for a symmetric encryp-
tion scheme and a key xmk for a message authentication code.
A creates a fresh key x′k and sends it encrypted under xk to B.
A MAC is appended to the message, in order to guarantee in-
tegrity. The goal of the protocol is that x′k should be a secret key
shared between A and B. This protocol can be modeled in our
calculus by the following process Q0:

Q0 = start(); new xr : Tr; let xk : Tk = kgen(xr) in

new x′r : Tmr; let xmk : Tmk = mkgen(x′r) in

c〈〉; (QA | QB)

QA = !i≤ncA[i](); new x′k : Tk; new x′′r : T ′r;

let xm : bitstring = enc(k2b(x′k), xk, x
′′
r ) in

cA[i]〈xm,mac(xm, xmk)〉

QB = !i
′≤ncB [i′](x′m, xma);

if check(x′m, xmk, xma) then

let i⊥(k2b(x′′k)) = dec(x′m, xk) in cB [i′]〈〉

When Q0 receives a message on channel start, it begins execu-
tion: it generates the keys xk and xmk by choosing random coins
xr and xr′ and applying the appropriate key generation algo-
rithms. Then it yields control to the context (the adversary), by
outputting on channel c. After this output, n copies of processes
for A and B are ready to be executed, when the context outputs
on channels cA[i] or cB [i] respectively. In a session that runs
as expected, the context first sends a message on cA[i]. Then
QA creates a fresh key x′k (Tk is assumed to be a fixed-length
type), encrypts it under xk with random coins x′′r , computes the

MAC under xmk of the ciphertext, and sends the ciphertext and
the MAC on cA[i]. The function k2b : Tk → bitstring is the
natural injection Iη(k2b)(x) = x; it is needed only for type
conversion. The context is then expected to forward this mes-
sage on cB [i]. When QB receives this message, it checks the
MAC, decrypts, and stores the obtained key in x′′k . (The func-
tion i⊥ : bitstring → bitstring⊥ is the natural injection; it is
useful to check that decryption succeeded.) This key x′′k should
be secret.

The context is responsible for forwarding messages fromA to
B. It can send messages in unexpected ways in order to mount
an attack.

Although we use a trivial running example due to length con-
straints, this example is sufficient to illustrate the main features
of our prover. Section 6 presents results obtained on more real-
istic protocols.

2.3 Type System
We use a type system to check that bitstrings of the proper type
are passed to each function and that array indices are used cor-
rectly.

To be able to type variable accesses used not under their defi-
nition (such accesses are guarded by a find construct), the type-
checking algorithm proceeds in two passes. In the first pass,
it builds a type environment E , which maps variable names x
to types [1, n1] × . . . × [1, nm] → T , where the definition of
x[i1, . . . , im] of type T occurs under replications !i1≤n1 , . . . ,
!im≤nm . The tool checks that all definitions of the same variable
x yield the same value of E(x), so that E is properly defined.

In the second pass, the process is typechecked in the type en-
vironment E by a simple type system. This type system is de-
tailed in Appendix A. It defines the judgment E ` Q, which
means that the process Q is well-typed in environment E .

Invariant 3 (Typing) The process Q0 satisfies Invariant 3 if
and only if the type environment E for Q0 is well-defined, and
E ` Q0.

We require the adversary to be well-typed. This requirement
does not restrict its computing power, because it can always de-
fine type-cast functions f : T → T ′ to bypass the type system.
Similarly, the type system does not restrict the class of protocols
that we consider, since the protocol may contain type-cast func-
tions. The type system just makes explicit which set of bitstrings
may appear at each point of the protocol.

2.4 Formal Semantics
The semantics is defined by a probabilistic reduction relation
formally detailed in Appendix B. The notation E,M ⇓ ameans
that the term M evaluates to the bitstring a in environment E.
We denote by Pr[Q η c〈a〉] the probability that at least one of
the outputs of Q on channel c sends the bitstring a. (When c is
not free in Q, Pr[Q η c〈a〉] = 0.)

Our semantics is such that, for each process Q, there exists
a probabilistic polynomial time Turing machine that simulates
Q. (Processes run in polynomial time since the number of pro-
cesses created by a replication and the length of messages sent
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on channels are bounded by polynomials.) Conversely, our cal-
culus can simulate a probabilistic polynomial-time Turing ma-
chine, simply by choosing coins by new and by applying a func-
tion symbol defined to perform the same computations as the
Turing machine.

2.5 Observational Equivalence
A context is a process containing a hole [ ]. An evaluation con-
text C is a context built from [ ], newChannel c;C, Q | C, and
C | Q. We use an evaluation context to represent the adversary.
We denote by C[Q] the process obtained by replacing the hole
[ ] in the context C with the process Q. Our definition of ob-
servational equivalence is adapted from definitions for previous
calculi such as [40].

Definition 3 (Observational equivalence) Let Q and Q′ be
two processes and V a set of variables. Assume that Q and Q′

satisfy Invariants 1, 2, and 3 and the variables of V are defined
in Q and Q′, with the same types.

An evaluation context is said to be acceptable for Q, Q′, V
if and only if var(C) ∩ (var(Q) ∪ var(Q′)) ⊆ V and C[Q]
satisfies Invariants 1, 2, and 3. (Then C[Q′] also satisfies these
invariants.)

We say that Q and Q′ are observationally equivalent with
public variables V , written Q ≈V Q′, when for all evaluation
contexts C acceptable for Q, Q′, V , for all channels c and bit-
strings a, |Pr[C[Q] η c〈a〉]− Pr[C[Q′] η c〈a〉]| is negligi-
ble.

Intuitively, the goal of the adversary represented by context
C is to distinguish Q from Q′. When it succeeds, it performs a
different output, for example c〈0〉 when it has recognized Q and
c〈1〉 when it has recognized Q′. When Q ≈V Q′, the context
has negligible probability of distinguishing Q from Q′.

The unusual requirement on variables of C comes from the
presence of arrays and of the associated find construct which
gives C direct access to variables of Q and Q′: the context C is
allowed to access variables ofQ andQ′ only when they are in V .
(In more standard settings, the calculus does not have constructs
that allow the context to access variables of Q and Q′.) The
following result is not difficult to prove:

Lemma 1 ≈V is an equivalence relation, andQ ≈V Q′ implies
that C[Q] ≈V ′ C[Q′] for all evaluation contexts C acceptable
for Q, Q′, V and all V ′ ⊆ V ∪ (var(C) \ (var(Q) ∪ var(Q′))).

We denote by Q ≈V0 Q′ the particular case in which for all
evaluation contexts C acceptable for Q, Q′, V , for all channels
c and bitstrings a, Pr[C[Q]  η c〈a〉] = Pr[C[Q′]  η c〈a〉].
When V is empty, we write Q ≈ Q′ instead of Q ≈V Q′ and
Q ≈0 Q

′ instead of Q ≈V0 Q′.

3 Game Transformations
In this section, we describe the game transformations that al-
low us to transform the process that represents the initial proto-
col into a process on which the desired security property can be

proved directly, by criteria given in Section 4. These transforma-
tions are parametrized by the set V of variables that the context
can access. As we shall see in Section 4, V contains variables
that we would like to prove secret. (The context will contain
test queries that access these variables.) These transformations
transform a process Q0 into a process Q′0 such that Q0 ≈V Q′0.

3.1 Syntactic Transformations
RemoveAssign(x): When x is defined by an assignment
let x[i1, . . . , il] : T = M in P , we replace x with its value.
Precisely, the transformation is performed only when x does
not occur in M (non-cyclic assignment). When x has sev-
eral definitions, we simply replace x[i1, . . . , il] with M in P .
(For accesses to x guarded by find, we do not know which
definition of x is actually used.) When x has a single defini-
tion, we replace everywhere in the game x[M1, . . . ,Ml] with
M{M1/i1, . . . ,Ml/il}. We additionally update the defined
conditions of find to preserve Invariant 2 and to make sure that,
if a condition of find guarantees that x[M1, . . . ,Ml] is defined in
the initial game, then so does the corresponding condition of find
in the transformed game. (Essentially, when y[M ′1, . . . ,M

′
l′ ] oc-

curs in M , the transformation typically creates new occurrences
of y[M ′′1 , . . . ,M

′′
l′ ] for some M ′′1 , . . . ,M

′′
l′ , so the condition that

y[M ′′1 , . . . ,M
′′
l′ ] is defined must sometimes be explicitly added

to conditions of find in order to preserve Invariant 2.) When
x ∈ V , its definition is kept unchanged. Otherwise, when x
is not referred to at all after the transformation, we remove the
definition of x. When x is referred to only at the root of defined
tests, we replace its definition with a constant. (The definition
point of x is important, but not its value.)

Example 2 In the process of Example 1, the transforma-
tion RemoveAssign(xmk) substitutes mkgen(x′r) for xmk in
the whole process and removes the assignment let xmk :
Tmk = mkgen(x′r). After this substitution, mac(xm,
xmk) becomes mac(xm,mkgen(x′r)) and check(x′m, xmk,
xma) becomes check(x′m,mkgen(x′r), xma), thus exhibiting
terms required in Section 3.2. The situation is similar for
RemoveAssign(xk).

SArename(x): The transformation SArename (single assign-
ment rename) aims at renaming variables so that each vari-
able has a single definition in the game; this is useful for dis-
tinguishing cases depending on which definition of x has set
x[̃i]. This transformation can be applied only when x /∈ V .
When x has m > 1 definitions, we rename each definition of
x to a different variable x1, . . . , xm. Terms x[̃i] under a defini-
tion of xj [̃i] are then replaced with xj [̃i]. Each branch of find
FB = ũ[̃i] ≤ ñ suchthat defined(M ′1, . . . ,M

′
l′) ∧M then P

where x[M1, . . . ,Ml] is a subterm of some M ′k for k ≤ l′ is re-
placed with m branches FB{xj [M1, . . . ,Ml]/x[M1, . . . ,Ml]}
for 1 ≤ j ≤ m.

Example 3 Consider the following process

start(); new rA : Tr; let kA : Tk = kgen(rA) in

new rB : Tr; let kB : Tk = kgen(rB) in yield〈〉; (QK | QS)
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QK = !i≤nc[i](h : Th, k : Tk)

if h = A then let k′ : Tk = kA in yield〈〉 else

if h = B then let k′ : Tk = kB in yield〈〉 else

let k′ : Tk = k in yield〈〉

QS = !i
′≤n′c′[i′](h′ : Th); find u ≤ n suchthat

defined(h[u], k′[u]) ∧ h′ = h[u] thenP1(k′[u]) elseP2

The process QK stores in (h, k′) a table of pairs (host name,
key): the key for A is kA, for B, kB , and for any other h, the ad-
versary can choose the key k. The process QS queries this table
of keys to find the key k′[u] of host h′, then executes P1(k′[u]).
If h′ is not found, it executes P2.

By the transformation SArename(k′), we can perform a case
analysis, to distinguish the cases in which k′ = kA, k′ = kB ,
or k′ = k. After transformation, we obtain the following pro-
cesses:

Q′K = !i≤nc[i](h : Th, k : Tk)

if h = A then let k′1 : Tk = kA in yield〈〉 else

if h = B then let k′2 : Tk = kB in yield〈〉 else

let k′3 : Tk = k in yield〈〉

Q′S = !i
′≤n′c′[i′](h′ : Th);

find u ≤ n suchthat defined(h[u], k′1[u])

∧ h′ = h[u] then P1(k′1[u])

⊕ u ≤ n suchthat defined(h[u], k′2[u])

∧ h′ = h[u] then P1(k′2[u])

⊕ u ≤ n suchthat defined(h[u], k′3[u])

∧ h′ = h[u] then P1(k′3[u]) else P2

After the simplification (sketched below), Q′S becomes:

Q′′S = !i
′≤n′c′[i′](h′ : Th);

find u ≤ n suchthat defined(h[u], k′1[u])

∧ h′ = A then P1(kA)

⊕ u ≤ n suchthat defined(h[u], k′2[u])

∧ h′ = B then P1(kB)

⊕ u ≤ n suchthat defined(h[u], k′3[u])

∧ h′ = h[u] then P1(k[u]) else P2

since, when k′1[u] is defined, k′1[u] = kA and h[u] = A, and
similarly for k′2[u] and k′3[u].

Simplify: The prover uses a simplification algorithm, based on
an equational prover, using an algorithm similar to the Knuth-
Bendix completion [30]. This equational prover uses:

• User-defined equations, of the form ∀x1 : T1, . . . ,∀xm :
Tm,M which mean that for all environments E, if for all
j ≤ m, E(xj) ∈ Iη(Tj), then E,M ⇓ true. For exam-
ple, considering MAC and encryption shemes as in Defini-
tions 1 and 2 respectively, we have:

∀r : Tmr,∀m : bitstring ,

check(m,mkgen(r),mac(m,mkgen(r))) = true

(mac)

∀m : bitstring ;∀r : Tr,∀r′ : T ′r,

dec(enc(m, kgen(r), r′), kgen(r)) = i⊥(m)
(enc)

We express the poly-injectivity of the function k2b of Ex-
ample 1 by

∀x : Tk,∀y : Tk, (k2b(x) = k2b(y)) = (x = y)

∀x : Tk, k2b−1(k2b(x)) = x
(k2b)

where k2b−1 is a function symbol that denotes the inverse
of k2b. We have similar formulas for i⊥.

• Equations that come from the process. For example, in the
process if M then P else P ′, we have M = true in P and
M = false in P ′.

• The low probability of collision between random values.
For example, when x is defined by new x : T and T is
a large type, x[M1, . . . ,Mm] = x[M ′1, . . . ,M

′
m] implies

M1 = M ′1, . . . , Mm = M ′m up to negligible probability.

Similarly, when 1) x is defined by new x : T and T is a
large type, 2) for each value of M1, there is at most one
value of x (or of a part of x of a large type) that can yield
that value of M1, and 3) M2 does not depend on x, then
M1 6= M2 up to negligible probability. The fact that M2

does not depend on x is proved using a dependency analy-
sis.

The prover combines these properties to simplify terms, and uses
simplified forms of terms to simplify processes. For example, if
M simplifies to true, then if M then P else P ′ simplifies to
P . Similarly, a branch of find is removed when the associated
condition simplifies to false.

Details on the simplification procedure can be found in Ap-
pendix C and the proof of the following proposition in Ap-
pendix E.1.

Proposition 1 Let Q0 be a process that satisfies Invariants 1,
2, and 3 and Q′0 the process obtained from Q0 by one of the
transformations above. Then Q′0 satisfies Invariants 1, 2, and 3,
and Q0 ≈V Q′0.

3.2 Applying the Definition of Security of Primi-
tives

The security of cryptographic primitives is defined using obser-
vational equivalences given as axioms. Importantly, this formal-
ism allows us to specify many different primitives in a generic
way. Such equivalences are then used by the prover in order to
transform a game into another, observationally equivalent game,
as explained below in this section.

The primitives are specified using equivalences of the form
(G1, . . . , Gm) ≈ (G′1, . . . , G

′
m) where G is defined by the fol-

lowing grammar, with l ≥ 0 and m ≥ 1:

G ::= group of functions
!i≤nnew y1 : T1; . . . ; new yl : Tl; (G1, . . . , Gm)

replication, restrictions
(x1 : T1, . . . , xl : Tl)→ FP function
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FP ::= functional processes
M term
new x[̃i] : T ; FP random number
let x[̃i] : T = M in FP assignment
find (

⊕m
j=1 ũj [̃i] ≤ ñj suchthat

defined(Mj1, . . . ,Mjlj ) ∧Mj then FP j) else FP
array lookup

Intuitively, (x1 : T1, . . . , xl : Tl) → FP represents a function
that takes as argument values x1, . . . , xl of types T1, . . . , Tl re-
spectively and returns a result computed by FP . The obser-
vational equivalence (G1, . . . , Gm) ≈ (G′1, . . . , G

′
m) expresses

that the adversary has a negligible probability of distinguish-
ing functions in the left-hand side from corresponding functions
in the right-hand side. Formally, functions can be encoded as
processes that input their arguments and output their result on
a channel, as shown in Figure 2: [[FP ]]j̃

ĩ
denotes the transla-

tion of the functional process FP into an output process; [[G]]j̃
ĩ

denotes the translation of the group of functions G into an in-
put process. The translation of !i≤nnew y1 : T1; . . . ; new yl :
Tl; (G1, . . . , Gm) inputs and outputs on channel cj̃ so that the
context can trigger the generation of random numbers y1, . . . , yl.
The translation of (x1 : T1, . . . , xl : Tl) → FP inputs the argu-
ments of the function on channel cj̃ and translates FP , which
outputs the result of FP on cj̃ . (In the left-hand side of equiv-
alences, the result FP of functions must simply be a term M .)
The observational equivalence (G1, . . . , Gm) ≈ (G′1, . . . , G

′
m)

is then an abbreviation for [[(G1, . . . , Gm)]] ≈ [[(G′1, . . . , G
′
m)]].

For example, the security of a MAC (Definition 1) is repre-
sented by the equivalence L ≈ R where:

L = !i
′′≤n′′new r : Tmr; (

!i≤n(x : bitstring)→ mac(x,mkgen(r)),

!i
′≤n′(m : bitstring ,ma : Tms)→
check(m,mkgen(r),ma))

R = !i
′′≤n′′new r : Tmr; (

!i≤n(x : bitstring)→ mac′(x,mkgen′(r)),

!i
′≤n′(m : bitstring ,ma : Tms)→
find u ≤ n suchthat defined(x[u]) ∧ (m = x[u])

∧ check′(m,mkgen′(r),ma) then true else false)

(maceq)

where mac′, check′, and mkgen′ are function symbols with the
same types as mac, check, and mkgen respectively. (We use
different function symbols on the left- and right-hand sides, just
to prevent a repeated application of the transformation induced
by this equivalence. Since we add these function symbols, we
also add the equation

∀r : Tmr,∀m : bitstring ,

check′(m,mkgen′(r),mac′(m,mkgen′(r))) = true
(mac′)

which restates (mac) for mac′, check′, and mkgen′.) Intuitively,
the equivalence L ≈ R leaves MAC computations unchanged
(except for the use of primed function symbols in R), and al-
lows one to replace a MAC checking check(m,mkgen(r),ma)

with a lookup in the array x of messages whose mac has been
computed with key mkgen(r): if m is found in the array x and
check(m,mkgen(r),ma), we return true; otherwise, the check
fails (up to negligible probability), so we return false. (If the
check succeeded with m not in the array x, the adversary would
have forged a MAC.) Obviously, the form of L requires that r
is used only to compute or check MACs, for the equivalence to
be correct. Formally, the following result shows the correctness
of our modeling. It is a fairly easy consequence of Definition 1,
and is proved in Appendix E.3.

Proposition 2 If (mkgen,mac, check) is a UF-CMA message
authentication code, Iη(mkgen′) = Iη(mkgen), Iη(mac′) =
Iη(mac), and Iη(check′) = Iη(check), then [[L]] ≈ [[R]].

Similarly, if (kgen, enc,dec) is an IND-CPA symmetric en-
cryption scheme (Definition 2), then we have the following
equivalence:

!i
′≤n′new r : Tr; !i≤n(x : bitstring)→

new r′ : T ′r; enc(x, kgen(r), r′)

≈ !i
′≤n′new r : Tr; !i≤n(x : bitstring)→

new r′ : T ′r; enc′(Z(x), kgen′(r), r′)

(enceq)

where enc′ and kgen′ are function symbols with the same types
as enc and kgen respectively, and Z : bitstring → bitstring
is the function that returns a bitstring of the same length as
its argument, consisting only of zeroes. Using equations such
as ∀x : T,Z(T2b(x)) = ZT , we can prove that Z(T2b(x))
does not depend on x when x is of a fixed-length type and
T2b : T → bitstring is the natural injection. The representation
of other primitives can be found in Appendix D.3. The equiva-
lences that formalize the security assumptions on primitives are
designed and proved correct by hand from security assumptions
in a more standard form, as in the MAC example. Importantly,
these manual proofs are done only once for each primitive, and
the obtained equivalence can be reused for proving many differ-
ent protocols automatically.

We use such equivalences L ≈ R in order to transform a
process Q0 observationally equivalent to C[[[L]]] into a process
Q′0 observationally equivalent to C[[[R]]], for some evaluation
contextC. In order to check thatQ0 ≈V C[[[L]]], the prover uses
sufficient conditions, which essentially guarantee that all uses of
certain secret variables of Q0, in a set S, can be implemented by
calling functions of L. LetM be a set of occurrences of terms,
corresponding to uses of variables of S. Informally, the prover
shows the following properties.

• For each M ∈ M, there exist a term NM , which is the
result of a function of L, and a substitution σM such that
M = σMNM . (Precisely, σM applies to the abbreviated
form of NM in which we write x instead of x[̃i].) Intu-
itively, the evaluation of M in Q0 will correspond to a call
to the function with result NM in C[[[L]]].

• The variables of S do not occur in V , are bound by restric-
tions in Q0, and occur only in terms M = σMNM ∈ M
in Q0, at occurrences that are images by σM of variables
bound by restrictions in L. (To be precise, the variables of
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[[(G1, . . . , Gm)]] = [[G1]]1 | . . . | [[Gm]]m

[[!i≤nnew y1 : T1; . . . ; new yl : Tl; (G1, . . . , Gm)]]j̃
ĩ

=

!i≤ncj̃ [̃i, i](); new y1 : T1; . . . ; new yl : Tl; cj̃ [̃i, i]〈〉; ([[G1]]j̃,1
ĩ,i
| . . . | [[Gm]]j̃,m

ĩ,i
)

[[(x1 : T1, . . . , xl : Tl)→ FP ]]j̃
ĩ

= cj̃ [̃i](x1 : T1, . . . , xl : Tl); [[FP ]]j̃
ĩ

[[M ]]j̃
ĩ

= cj̃ [̃i]〈M〉

[[new x[̃i] : T ; FP ]]j̃
ĩ

= new x[̃i] : T ; [[FP ]]j̃
ĩ

[[let x[̃i] : T = M in FP ]]j̃
ĩ

= let x[̃i] : T = M in [[FP ]]j̃
ĩ

[[find (
⊕m

j=1 ũj [̃i] ≤ ñj suchthat defined(Mj1, . . . ,Mjlj ) ∧Mj then FP j) else FP ]]j̃
ĩ

=

find (
⊕m

j=1 ũj [̃i] ≤ ñj suchthat defined(Mj1, . . . ,Mjlj ) ∧Mj then [[FP j ]]
j̃

ĩ
) else [[FP ]]j̃

ĩ

where cj̃ are pairwise distinct channels, ĩ = i1, . . . , il′ , and j̃ = j0, . . . , jl′ .

Figure 2: Translation from functional processes to processes

S are also allowed to occur at the root of defined condi-
tions; in that case, their value does not matter, just the fact
that they are defined.)

• Let ĩ and ĩ′ be the sequences of current replication indices
atNM inL and atM inQ0, respectively. The prover shows
that there exists a function mapIdxM that maps the array
indices at M in Q0 to the array indices at NM in L: the
evaluation of M when ĩ′ = ã will correspond in C[[[L]]]

to the evaluation of NM when ĩ = mapIdxM (ã). Thus,
σM and mapIdxM induce a correspondence between terms
and variables of Q0 and variables of L: for all M ∈ M,
for all x[ĩ′′] that occur in NM , (σMx){ã/ĩ′} corresponds
to x[ĩ′′]{mapIdxM (ã)/̃i}, that is, (σMx){ã/ĩ′} in a trace
of Q0 has the same value as x[ĩ′′]{mapIdxM (ã)/̃i} in the
corresponding trace ofC[[[L]]] (ĩ′′ is a prefix of ĩ). We detail
below conditions that this correspondence has to satisfy.

For example, consider a process Q0 that contains M1 =
enc(M ′1, kgen(xr), x

′
r[i1]) under a replication !i1≤n1 and M2 =

enc(M ′2, kgen(xr), x
′′
r [i2]) under a replication !i2≤n2 , where

xr, x′r, x
′′
r are bound by restrictions. Let S = {xr, x′r, x′′r},

M = {M1,M2}, and NM1 = NM2 = enc(x[i′, i], kgen(r[i′]),
r′[i′, i]). The functions mapIdxM1

and mapIdxM2
are defined

by

mapIdxM1
(a1) = (1, a1) for a1 ∈ [1, Iη(n1)]

mapIdxM2
(a2) = (1, a2 + Iη(n1)) for a2 ∈ [1, Iη(n2)]

Then M ′1{a1/i1} corresponds to x[1, a1], xr to r[1], x′r[a1]
to r′[1, a1], M ′2{a2/i2} to x[1, a2 + Iη(n1)], and x′′r [a2] to
r′[1, a2 + Iη(n1)]. The functions mapIdxM1

and mapIdxM2

are such that xr′ [a1] and xr′′ [a2] never correspond to the same
cell of r′; indeed, xr′ [a1] and xr′′ [a2] are independent random
numbers in Q0, so their images in C[[[L]]] must also be indepen-
dent random numbers.

The above correspondence must satisfy the following sound-
ness conditions:

• when x is a function argument in L, the term that corre-
sponds to x[ã′] must have the same type as x[ã′], and when
two terms correspond to the same x[ã′], they must evaluate
to the same value;

• when x is bound by new x : T in L, the term that corre-
sponds to x[ã′] must evaluate to z[ã′′] where z ∈ S and z is
bound by new z : T in Q0, and the relation that associates
z[ã′′] to x[ã′] is an injective function (so that independent
random numbers in L correspond to independent random
numbers in Q0).

It is easy to check that, in the previous example, these conditions
are satisfied.

The transformation of Q0 into Q′0 consists in two steps. First,
we replace the restrictions that define variables of S with re-
strictions that define fresh variables corresponding to variables
bound by new in R. The correspondence between variables of
Q0 and variables of C[[[L]]] is extended to include these fresh
variables. Second, we reorganizeQ0 so that each evaluation of a
termM ∈M first stores the values of the arguments x1, . . . , xm
of the function (x1 : T1, . . . , xm : Tm) → NM in fresh vari-
ables, then computesNM and stores its result in a fresh variable,
and uses this variable instead of M ; then we simply replace the
computation of NM with the corresponding functional process
of R, taking into account the correspondence of variables.

The full formal description of this transformation is given Ap-
pendix D.1. The following proposition shows the soundness of
the transformation and is proved in Appendix E.4.

Proposition 3 Let Q0 be a process that satisfies Invariants 1,
2, and 3 and Q′0 the process obtained from Q0 by the above
transformation. Then Q′0 satisfies Invariants 1, 2, and 3 and,
if [[L]] ≈ [[R]] for all polynomials maxlenη(cj0,...,jl) and Iη(n)
where n is any replication bound of L or R, then Q0 ≈V Q′0.

Example 4 In order to treat Example 1, the prover is given as
input the indication that Tmr, Tr, T ′r, and Tk are fixed-length
types; the type declarations for the functions mkgen,mkgen′ :
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Tmr → Tmk, mac,mac′ : bitstring × Tmk → Tms,
check, check′ : bitstring × Tmk × Tms → bool , kgen, kgen′ :
Tr → Tk, enc, enc′ : bitstring × Tk × T ′r → Te, dec :
Te × Tk → bitstring⊥, k2b : Tk → bitstring , i⊥ :
bitstring → bitstring⊥, Z : bitstring → bitstring , and the
constant Zk : bitstring ; the equations (mac), (mac′), (enc),
and ∀x : Tk,Z(k2b(x)) = Zk (which expresses that all keys
have the same length); the indication that k2b and i⊥ are poly-
injective (which generates the equations (k2b) and similar equa-
tions for i⊥); equivalences L ≈ R for MAC (maceq) and encryp-
tion (enceq); and the process Q0 of Example 1.

The prover first applies RemoveAssign(xmk) to the pro-
cess Q0 of Example 1, as described in Example 2. The pro-
cess can then be transformed using the security of the MAC.
Let S = {x′r}, M1 = mac(xm[i],mkgen(x′r)), M2 =
check(x′m[i′],mkgen(x′r), xma[i′]), and M = {M1,M2}.
We have NM1 = mac(x[i′′, i],mkgen(r[i′′])), NM2 =
check(m[i′′, i′],mkgen(r[i′′]),ma[i′′, i′]), mapIdxM1

(a1) =
(1, a1), and mapIdxM2

(a2) = (1, a2), so xm[a1] corresponds
to x[1, a1], x′r to r[1], x′m[a2] to m[1, a2], and xma[a2] to
ma[1, a2].

After transformation, we get the following process Q′0:

Q′0 = start(); new xr : Tr; let xk : Tk = kgen(xr) in

new x′r : Tmr; c〈〉; (Q′A | Q′B)

Q′A = !i≤ncA[i](); new x′k : Tk; new x′′r : T ′r;

let xm : bitstring = enc(k2b(x′k), xk, x
′′
r ) in

cA[i]〈xm,mac′(xm,mkgen′(x′r))〉

Q′B = !i
′≤ncB [i′](x′m, xma);

find u ≤ n suchthat defined(xm[u]) ∧ x′m = xm[u] ∧
check′(x′m,mkgen′(x′r), xma) then

(

if true then let i⊥(k2b(x′′k)) = dec(x′m, xk) in

cB [i′]〈〉
)

else

(

if false then let i⊥(k2b(x′′k)) = dec(x′m, xk) in

cB [i′]〈〉
)

The initial definition of x′r is removed and replaced with a
new definition, which we still call x′r. The term mac(xm,
mkgen(x′r)) is replaced with mac′(xm,mkgen′(x′r)). The term
check(x′m,mkgen(x′r), xma) becomes find u ≤ n suchthat
defined(xm[u])∧x′m = xm[u]∧check′(x′m,mkgen′(x′r), xma)
then true else false, which yields Q′B after transformation of
functional processes into processes. The process looks up the
message x′m in the array xm, which contains the messages
whose MAC has been computed with key mkgen(x′r). If the
MAC of x′m has never been computed, the check always fails (it
returns false) by the definition of security of the MAC. Other-
wise, it returns true when check′(x′m,mkgen′(x′r), xma).

After applying Simplify, Q′A is unchanged and Q′B becomes

Q′′B = !i
′≤ncB [i′](x′m, xma);

find u ≤ n suchthat defined(xm[u], x′k[u]) ∧
x′m = xm[u] ∧ check′(x′m,mkgen′(x′r), xma) then

let x′′k : Tk = x′k[u] in cB [i′]〈〉

First, the tests if true then . . . and if false then . . . are simpli-
fied. The term dec(x′m, xk) is simplified knowing x′m = xm[u]
by the find condition, xm[u] = enc(k2b(x′k[u]), xk, x

′′
r [u]) by

the assignment that defines xm, xk = kgen(xr) by the assign-
ment that defines xk, and dec(enc(m, kgen(r), r′), kgen(r)) =
i⊥(m) by (enc). So we have dec(x′m, xk) = i⊥(k2b(x′k[u])).
By injectivity of i⊥ and k2b, the assignment to x′′k simply
becomes x′′k = x′k[u], using the equations ∀x : bitstring ,
i−1⊥ (i⊥(x)) = x and ∀x : Tk, k2b−1(k2b(x)) = x.

After applying RemoveAssign(xk), we apply the se-
curity of encryption: enc(k2b(x′k), kgen(xr), x

′′
r ) becomes

enc′(Z(k2b(x′k)), kgen(xr), x
′′
r ). After Simplify, it becomes

enc′(Zk, kgen(xr), x
′′
r ), using ∀x : Tk,Z(k2b(x)) = Zk (which

expresses that all keys have the same length).
So we obtain the following game:

Q′′0 = start(); new xr : Tr; new x′r : Tmr; c〈〉; (Q′′A | Q′′B)

Q′′A = !i≤ncA[i](); new x′k : Tk; new x′′r : T ′r;

let xm : bitstring = enc(Zk, kgen(xr), x
′′
r ) in

cA[i]〈xm,mac′(xm,mkgen′(x′r))〉

where Q′′B remains as above.

Using arrays instead of lists simplifies this transformation:
we do not need to add instructions that insert values in the list,
since all variables are always implicitly arrays. Moreover, if
there are several occurrences of mac(xi, k) with the same key
in the initial process, each check(mj , k,maj) is replaced with a
find with one branch for each occurrence of mac. Therefore,
the prover distinguishes automatically the cases in which the
checked MAC maj comes from each occurrence of mac, that
is, it distinguishes cases depending on the value of i such that
mj = xi. Typically, distinguishing these cases is useful in the
following steps of the proof of the protocol. (A similar situation
arises for other cryptographic primitives specified using find.)

4 Criteria for Proving Secrecy Proper-
ties

Let us now define syntactic criteria that allow us to prove secrecy
properties of protocols. The proofs for these results can be found
in Appendix E.5.

Definition 4 (One-session secrecy) The process Q preserves
the one-session secrecy of x when Q | Qx ≈ Q | Q′x, where

Qx = c(u1 : [1, n1], . . . , um : [1, nm]);

if defined(x[u1, . . . , um]) then c〈x[u1, . . . , um]〉
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Q′x = c(u1 : [1, n1], . . . , um : [1, nm]);

if defined(x[u1, . . . , um]) then new y : T ; c〈y〉

c /∈ fc(Q), u1, . . . , um, y /∈ var(Q), and E(x) = [1, n1]× . . .×
[1, nm]→ T .

Intuitively, the adversary cannot distinguish a process that out-
puts the value of the secret from one that outputs a random num-
ber. The adversary performs a single test query, modeled by Qx
and Q′x.

Proposition 4 (One-session secrecy) Consider a process Q
such that there exists a set of variables S such that 1) the defi-
nitions of x are either restrictions new x[̃i] : T and x ∈ S, or
assignments let x[̃i] : T = z[M1, . . . ,Ml] where z is defined
by restrictions new z[i′1, . . . , i

′
l] : T , and z ∈ S, and 2) all ac-

cesses to variables y ∈ S in Q are of the form “let y′ [̃i] : T ′ =
y[M1, . . . ,Ml]” with y′ ∈ S. Then Q | Qx ≈0 Q | Q′x, hence
Q preserves the one-session secrecy of x.

Intuitively, only the variables in S depend on the restriction that
defines x; the sent messages and the control flow of the process
are independent of x, so the adversary obtains no information
on x. In the implementation, the set S is computed by fixpoint
iteration, starting from x or z and adding variables y′ defined by
“let y′ [̃i] : T ′ = y[M1, . . . ,Ml]” when y ∈ S.

Definition 5 (Secrecy) The process Q preserves the secrecy of
x when Q | Rx ≈ Q | R′x, where

Rx = !i≤nc(u1 : [1, n1], . . . , um : [1, nm]);

if defined(x[u1, . . . , um]) then c〈x[u1, . . . , um]〉
R′x = !i≤nc(u1 : [1, n1], . . . , um : [1, nm]);

if defined(x[u1, . . . , um]) then

find u′ ≤ n suchthat defined(y[u′], u1[u′], . . . , um[u′])

∧ u1[u′] = u1 ∧ . . . ∧ um[u′] = um

then c〈y[u′]〉 else new y : T ; c〈y〉

c /∈ fc(Q), u1, . . . , um, u′, y /∈ var(Q), E(x) = [1, n1] × . . . ×
[1, nm]→ T , and Iη(n) ≥ Iη(n1)× . . .× Iη(nm).

Intuitively, the adversary cannot distinguish a process that out-
puts the value of the secret for several indices from one that out-
puts independent random numbers. In this definition, the ad-
versary can perform several test queries, modeled by Rx and
R′x. This corresponds to the “real-or-random” definition of se-
curity [4]. (As shown in [4], this notion is stronger than the
more standard approach in which the adversary can perform a
single test query and some reveal queries, which always reveal
x[u1, . . . , um].)

Proposition 5 (Secrecy) Assume that Q satisfies the hypothesis
of Proposition 4.

When T is a trace of C[Q] for some evaluation context C,
we define defRestrT (x[ã]), the defining restriction of x[ã] in
trace T , as follows: if x[ã] is defined by new x[ã] : T in
T , defRestrT (x[ã]) = x[ã]; if x[ã] is defined by let x[ã] :
T = z[M1, . . . ,Ml], defRestrT (x[ã]) = z[a′1, . . . , a

′
l] where

E,Mk ⇓ a′k for all k ≤ l and E is the environment in T at the
definition of x[ã].

Assume that for all evaluation contextsC acceptable forQ, 0,
{x}, the probability Pr[∃(T , ã, ã′), C[Q] reduces according to
T ∧ã 6= ã′∧defRestrT (x[ã]) = defRestrT (x[ã′])] is negligible.
Then Q preserves the secrecy of x.

The last hypothesis can be verified using the same equational
prover as for Simplify in Section 3.1, as detailed in Ap-
pendix E.2. Intuitively, this hypothesis guarantees that when
ã 6= ã′, we have defRestrT (x[ã]) 6= defRestrT (x[ã′]) except in
cases of negligible probability, so x[ã] and x[ã′] are defined by
different restrictions, so they are independent random numbers.

As we show in [19], this notion of secrecy composed with cor-
respondence assertions [49] can be used to prove security of a
key exchange. (Correspondence assertions are properties of the
form “if some event e(M̃) has been executed then some events
ei(M̃i) for i ≤ m have been executed”. We have recently im-
plemented the verification of correspondence assertions in Cryp-
toVerif [19].)

Lemma 2 If Q ≈{x} Q′ and Q preserves the one-session se-
crecy of x then Q′ preserves the one-session secrecy of x. The
same result holds for secrecy.

We can then apply the following technique. When we want
to prove that Q0 preserves the (one-session) secrecy of x, we
transformQ0 by the transformations described in Section 3 with
V = {x}. By Propositions 1 and 3, we obtain a processQ′0 such
thatQ0 ≈V Q′0. We use Propositions 4 or 5 to show thatQ′0 pre-
serves the (one-session) secrecy of x and finally conclude that
Q0 also preserves the (one-session) secrecy of x by Lemma 2.

Example 5 After the transformations of Example 4, the only
variable access to x′k in the considered process is let x′′k : Tk =
x′k[u] and x′′k is not used in the considered process. So by Propo-
sition 4, the considered process preserves the one-session se-
crecy of x′′k (with S = {x′k, x′′k}). By Lemma 2, the process of
Example 1 also preserves the one-session secrecy of x′′k . How-
ever, this process does not preserve the secrecy of x′′k , because
the adversary can force several sessions of B to use the same
key x′′k , by replaying the message sent by A. (Accordingly, the
hypothesis of Proposition 5 is not satisfied.)

The criteria given in this section might seem restrictive, but
in fact, they should be sufficient for all protocols, provided the
previous transformation steps are powerful enough to transform
the protocol into a simpler protocol, on which these criteria can
then be applied.

5 Proof Strategy
Up to now, we have described the available game transforma-
tions. Next, we explain how we organize these transformations
in order to prove protocols.

At the beginning of the proof and after each successful crypto-
graphic transformation (that is, a transformation of Section 3.2),

11



the prover executes Simplify and tests whether the desired se-
curity properties are proved, as described in Section 4. If so, it
stops.

In order to perform the cryptographic transformations and the
other syntactic transformations, our proof strategy relies of the
idea of advice. Precisely, the prover tries to execute each avail-
able cryptographic transformation in turn. When such a cryp-
tographic transformation fails, it returns some syntactic trans-
formations that could make the desired transformation work.
(These are the advised transformations.) Then the prover tries to
perform these syntactic transformations. If they fail, they may
also suggest other advised transformations, which are then ex-
ecuted. When the syntactic transformations finally succeed, we
retry the desired cryptographic transformation, which may suc-
ceed or fail, perhaps with new advised transformations, and so
on.

The prover determines the advised transformations as follows:

• Assume that we try to execute a cryptographic transfor-
mation, and need to recognize a certain term M of L,
but we find in Q0 only part of M , the other parts being
variable accesses x[. . .] while we expect function appli-
cations. In this case, we advise RemoveAssign(x). For
example, if Q0 contains enc(M ′, xk, x

′
r) and we look for

enc(xm, kgen(xr), xr′), we advise RemoveAssign(xk). If
Q0 contains let xk = mkgen(xr) and we look for mac(xm,
mkgen(xr)), we also advise RemoveAssign(xk). (The
transformation of Example 2 is advised for this reason.)

• When we try to execute RemoveAssign(x), x has several
definitions, and there are accesses to variable x guarded by
find in Q0, we advise SArename(x).

• When we check whether x is secret or one-session se-
cret, we have an assignment let x[̃i] : T = y[M̃ ] in P ,
and there is at least one assignment defining y, we advise
RemoveAssign(y).

When we check whether x is secret or one-session secret,
we have an assignment let x[̃i] : T = y[M̃ ] in P , y is
defined by restrictions, y has several definitions, and some
variable accesses to y are not of the form let y′[ĩ′] : T =

y[M̃ ′] in P ′, we advise SArename(y).

These pieces of advice are the only ones we use, but one may
obviously extend them if needed.

6 Experimental Results
We have successfully tested our prover on a number of protocols
given in the literature. All these protocols have been tested in a
configuration in which the honest participants are willing to run
sessions with the adversary, and we prove secrecy of keys for
sessions between honest participants. In these examples, shared-
key encryption is encoded using a symmetric encryption scheme
and a MAC as in Example 1, public-key encryption is assumed
to be IND-CCA2 (indistinguishability under adaptive chosen-
ciphertext attacks) [14], public-key signature is assumed to be
UF-CMA (unforgeability under chosen message attacks).

For each proof, the prover outputs the sequence of games it
has built, a succinct explanation of the transformation performed
between consecutive games, and an indication whether the proof
succeeded or failed. When the proof fails, the prover still outputs
a sequence of games, but the last game of this sequence does not
show the desired property and cannot be transformed further by
the prover. Manual inspection of this game often makes it possi-
ble to understand why the proof failed: because there is an attack
(if there is an attack on the last game), because of a limitation of
the prover (if it should in fact be able to prove the property or to
transform the game further), for other reasons (such as the proto-
col cannot be proved from the given assumptions; this situation
may not lead immediately to a practical attack in the computa-
tional model).

Otway-Rees [43] We automatically prove the secrecy of the
exchanged key.

Yahalom [21] For the original version of the protocol, our
prover cannot show the one-session secrecy of the exchanged
key, because the protocol is not secure, at least using encrypt-
then-MAC as definition of encryption. Indeed, there is a con-
firmation round {NB}K where K is the exchanged key. This
message may reveal some information on K. After removing
this confirmation round, our prover shows the one-session se-
crecy of K. However, it cannot show the secrecy of K, since
in the absence of a confirmation round, the adversary may force
several sessions of Yahalom to use the same key.

Needham-Schroeder shared-key [41] As in the Yahalom
protocol, a key confirmation round may reveal some informa-
tion on the key. After removing this round, our prover shows the
one-session secrecy of the exchanged key. It does not prove the
secrecy of the exchanged key, because the adversary may force
several sessions of the protocol to use the same key. Our prover
shows the secrecy for the corrected version [42].

Denning-Sacco public-key [26] Our prover cannot show the
one-session secrecy of the exchanged key, since there is an at-
tack against this protocol [2]. The one-session secrecy of the
exchanged key is proved for the corrected version [2]. Secrecy
is not proved since the adversary can force several sessions of
the protocol to use the same key. (We do not model timestamps
in this protocol.) In contrast to the previous examples, we give
the main proof steps to the prover manually, as follows:

SArename Rkey
crypto enc rkB
crypto sign rkS
crypto sign rkA
success

The variable Rkey defines a table of public keys and is assigned
at three places, corresponding to principals A and B, and to
other principals defined by the adversary (like the variable k′

in Example 3). The instruction SArename Rkey allows us
to distinguish these three cases. The instruction crypto enc
rkBmeans that the prover should apply the definition of security
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of encryption (primitive enc), for the key generated from ran-
dom number rkB. The instruction success means that prover
should check whether the desired security properties are proved.

Needham-Schroeder public-key [41] This protocol is an au-
thentication protocol. Since our prover cannot check authen-
tication yet, we transform it into a key exchange protocol in
several ways, by choosing for the key either one of the nonces
NA and NB shared between A and B, or H(NA, NB) where
H is a hash function (in the random oracle model). When the
key is H(NA, NB), the one-session secrecy of the key cannot
be proved for the original protocol, due to the well-known at-
tack [36]. For the corrected version [36], our prover shows se-
crecy of the key H(NA, NB). For both the original and the cor-
rected versions, the prover cannot prove the one-session secrecy
of NA or NB . For NB , the failure of the proof corresponds to
an attack: the adversary can check whether it is given NB or a
random number by sending {N ′B}pkB to B as the last message
of the protocol: B accepts if and only if N ′B = NB . For NA,
the failure of the proof comes from limitations of our prover: the
prover cannot take into account that NA is accepted only after
all messages that containNA have been sent, which prevents the
previous attack. (This is the only case in our examples where
the failure of the proof comes from limitations of the prover.
This problem could probably be solved by improving the trans-
formation Simplify.) Like for the Denning-Sacco protocol, we
provided the main proof steps to the prover manually, as follows
when the distributed key is NA or NB :

SArename Rkey
crypto sign rkS
crypto enc rkA
crypto enc rkB
success

When the distributed key isH(NA, NB), the proof is as follows:

SArename Rkey
crypto sign rkS
crypto enc rkA
crypto enc rkB
crypto hash
SArename Na_39
simplify
success

The total runtime for all these tests is 77 s on a Pen-
tium M 1.8 GHz, for version 1.03 of our prover CryptoVerif.
These examples are included in the CryptoVerif distribu-
tion available at http://www.di.ens.fr/˜blanchet/
cryptoc-eng.html.

7 Related Work
Results that show the soundness of the Dolev-Yao model with
respect to the computational model, e.g. [24,29,39], make it pos-
sible to use Dolev-Yao provers in order to prove protocols in the
computational model. However, these results have limitations,
in particular in terms of allowed cryptographic primitives (they

must satisfy strong security properties so that they correspond to
Dolev-Yao style primitives), and they require some restrictions
on protocols (such as the absence of key cycles).

Several frameworks exist for formalizing proofs of protocols
in the computational model. Backes, Pfitzmann, and Waid-
ner [7, 9, 10] have designed an abstract cryptographic library in-
cluding symmetric and public-key encryption, message authen-
tication codes, signatures, and nonces and shown its soundness
with respect to computational primitives, under arbitrary active
attacks. Backes and Pfitzmann [8] relate the computational and
formal notions of secrecy in the framework of this library. Re-
cently, this framework has been used for a computationally-
sound machine-checked proof of the Needham-Schroeder-Lowe
protocol [47]. Canetti [22] introduced the notion of universal
composability. With Herzog [23], they show how a Dolev-Yao-
style symbolic analysis can be used to prove security properties
of protocols within the framework of universal composability,
for a restricted class of protocols using public-key encryption
as only cryptographic primitive. Then, they use the automatic
Dolev-Yao verification tool Proverif [18] for verifying proto-
cols in this framework. Lincoln, Mateus, Mitchell, Mitchell,
Ramanathan, Scedrov, and Teague [34, 35, 37, 40, 44] developed
a probabilistic polynomial-time calculus for the analysis of se-
curity protocols. They define a notion of process equivalence
for this calculus, derive compositionality properties, and de-
fine an equational proof system for this calculus. Datta, Derek,
Mitchell, Shmatikov, and Turuani [25] have designed a com-
putationally sound logic that enables them to prove computa-
tional security properties using a logical deduction system. The
frameworks mentioned in this paragraph can be used to prove
security properties of protocols in the computational sense, but,
except for [23] which relies on a Dolev-Yao prover and for the
machine-checked proofs of [47], they have not been mechanized
up to now, as far as we know.

Laud [31] designed an automatic analysis for proving secrecy
for protocols using shared-key encryption, with passive adver-
saries. He extended it [32] to active adversaries, but with only
one session of the protocol. This work is the closest to ours. We
extend it considerably by handling more primitives and a poly-
nomial number of sessions.

Recently, Laud [33] designed a type system for proving se-
curity protocols in the computational model. This type sys-
tem handles shared-key and public-key encryption, with an un-
bounded number of sessions. This system relies on the Backes-
Pfitzmann-Waidner library. A type inference algorithm is given
in [6].

Barthe, Cerderquist, and Tarento [11, 48] have formalized
the generic model and the random oracle model in the inter-
active theorem prover Coq, and proved signature schemes in
this framework. In contrast to our specialized prover, proofs in
generic interactive theorem provers require a lot of human effort,
in order to build a detailed enough proof for the theorem prover
to check it.

Halevi [27] explains that implementing an automatic prover
based on sequences of games would be useful and suggests ideas
in this direction, but does not actually implement one.
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8 Conclusion
This paper presents a prover for security protocols sound in the
computational model. This prover works with no or very little
help from the user, can handle a wide variety of cryptographic
primitives in a generic way, and produces proofs valid for a poly-
nomial number of sessions in the presence of an active adver-
sary. Thus, it represents important progress with respect to pre-
vious work in this area.

We have recently extended our prover to provide exact se-
curity proofs (that is, proofs with an explicit probability of an
attack, instead of the asymptotic result that this probability is
negligible) [20] and to prove correspondence assertions [19]. In
the future, it would also be interesting to handle even more cryp-
tographic primitives, such as Diffie-Hellman key agreements.
(The equivalence !i≤nnew a : T ; new b : T ; (() → ga, () →
gb, () → gab) ≈ !i≤nnew a : T ; new b : T ; new c : T ; (() →
ga, ()→ gb, ()→ gc) models the decisional Diffie-Hellman as-
sumption. However, it is not sufficient for our prover to handle
protocols that use Diffie-Hellman key agreements, because the
corresponding cryptographic transformation would require gab

to be formed only for a and b chosen in the same copy of a sin-
gle replicated process, which is typically not the case: a and b
are chosen by two different participants of the protocol. So a
more involved equivalence is needed, and in fact the language
of equivalences that we use to specify the security properties of
primitives will need to be extended.)

The essential idea of simulating proofs by sequences of games
in an automatic tool can be applied to any protocol or crypto-
graphic scheme. However, our tool applies in a fairly direct way
the security assumptions on the primitives and cannot perform
deep mathematical reasoning. Therefore, it is best suited for
proving security protocols that use rather high-level primitives
such as encryption and signatures. It is more limited for proving
the security of such primitives from lower-level primitives, since
more subtle mathematical arguments are often needed.
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Appendices

A Type System
In this section, we define the type system, used in our calculus
to check that bitstrings belong to the expected type.

To be able to type variable accesses used not under their defi-
nition (such accesses are guarded by a find construct), the type-
checking algorithm proceeds in two passes. In the first pass, we
build a type environment E , which maps variable names x to
types T1 × . . . × Tm → T , where T1, . . . , Tm are the interval
types of the indices of x, and T is the type of x[i1, . . . , im]. This
type environment is built as follows:

• If x is defined by new x[i1, . . . , im] : T , let x[i1, . . . ,
im] : T = M , or c[M1, . . . ,Ml](. . . , x[i1, . . . , im] : T,
. . .), and the replications above this subprocess are !i1≤n1 ,
. . . , !im≤nm , then E(x) = [1, n1]× . . .× [1, nm]→ T .

• If u is defined by find . . . ⊕ . . . u[i1, . . . , im] ≤
n . . . suchthat defined(. . .) ∧ . . . then . . . ⊕ . . . and the
replications above this find are !i1≤n1 , . . . , !im≤nm , then
E(u) = [1, n1]× . . .× [1, nm]→ [1, n].

We require that all definitions of the same variable x yield the
same value of E(x), so that E is properly defined.

A process can then be typechecked in the type environment E
using the rules of Figure 3. This figure defines three judgments:
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E(i) = T

E ` i : T
(TIndex)

E(x) = T1 × . . .× Tm → T ∀j ≤ m, E `Mj : Tj
E ` x[M1, . . . ,Mm] : T

(TVar)

f : T1 × . . .× Tm → T ∀j ≤ m, E `Mj : Tj
E ` f(M1, . . . ,Mm) : T

(TFun)

E ` 0 (TNil)

E ` Q E ` Q′

E ` Q | Q′
(TPar)

E [i 7→ [1, n]] ` Q
E ` !i≤nQ

(TRepl)

E ` Q
E ` newChannel c;Q

(TNewChannel)

∀j ≤ l, E `Mj : T ′j ∀j ≤ k, E ` xj [̃i] : Tj E ` P
E ` c[M1, . . . ,Ml](x1 [̃i] : T1, . . . , xk [̃i] : Tk);P

(TIn)

∀j ≤ l, E `Mj : T ′j ∀j ≤ k, E ` Nj : Tj E ` Q
E ` c[M1, . . . ,Ml]〈N1, . . . , Nk〉;Q

(TOut)

T fixed-length type E ` x[̃i] : T E ` P
E ` new x[̃i] : T ;P

(TNew)

E `M : T E ` x[̃i] : T E ` P
E ` let x[̃i] : T = M in P

(TLet)

∀j ≤ m,∀k ≤ mj , E ` ujk [̃i] : [1, njk]
∀j ≤ m,∀k ≤ lj , E `Mjk : Tjk

∀j ≤ m, E `Mj : bool ∀j ≤ m, E ` Pj E ` P
E ` find (

⊕m
j=1 uj1 [̃i] ≤ nj1, . . . , ujmj [̃i] ≤ njmj suchthat

defined(Mj1, . . . ,Mjlj ) ∧Mj then Pj) else P

(TFind)

Figure 3: Typing rules

• E ` M : T means that term M has type T in environment
E .

• E ` P and E ` Q mean that the output process P and the
input process Q are well-typed in environment E , respec-
tively.

In x[M1, . . . ,Mm], M1, . . . ,Mm must be of the suitable in-
terval type. When f(M1, . . . ,Mm) is called and f : T1 × . . .×
Tm → T , Mj must be of type Tj , and f(M1, . . . ,Mm) is then
of type T . The type system requires each subterm to be well-
typed. Furthermore, in let x : T = M in P , M must be of type
T . In

find (
⊕m

j=1 uj1 [̃i] ≤ nj1, . . . , ujmj [̃i] ≤ njmj suchthat

defined(Mj1, . . . ,Mjlj ) ∧Mj then Pj) else P

Mj is of type bool for all j ≤ m. In !i≤nQ, i is of type [1, n] in
Q. For new x[̃i] : T , T must be a fixed-length type.

We say that an occurrence of a term M in a process Q is of
type T when E ` M : T where E is the type environment of Q
extended with i 7→ [1, n] for each replication !i≤n above M in
Q.

B Formal Semantics

B.1 Definition of the Semantics
The formal semantics of our calculus is presented in Figures 4
and 5. In this figure and in the rest of the appendix, we use ] for
multiset union. When S is a multiset, S(x) is the number of el-
ements of S equal to x. A semantic configuration is a quadruple
E,P,Q, C, where E is an environment mapping array cells to
bitstrings or ⊥, P is the output process currently scheduled, Q
is the multiset of input processes running in parallel with P , C
is the set of channels already created. The semantics is defined
by reduction rules of the form E,P,Q, C p−→η,t E

′, P ′,Q′, C′
meaning that E,P,Q, C reduces to E′, P ′,Q′, C′ with probabil-
ity p, when the security parameter is η. The value of the security
parameter is often omitted to lighten the notation. The index t
just serves in distinguishing reductions that yield the same con-
figuration with the same probability in different ways, so that the
probability of a certain reduction can be computed correctly:

Pr[E,P,Q, C →η E
′, P ′,Q′, C′] =

∑
E,P,Q,C

p−→η,tE′,P ′,Q′,C′

p

The probability of a trace is computed as follows:

Pr[E1, P1,Q1, C1 →η . . .→η E
′
m, P

′
m,Q′m, C′m]

=

m−1∏
j=1

Pr[Ej , Pj ,Qj , Cj →η E
′
j+1, P

′
j+1,Q′j+1, C′j+1]

We define an auxiliary relation for evaluating terms: E,M ⇓η
a, or simply E,M ⇓ a, means that the term M evaluates to
the bitstring a in environment E. Rule (Cst) simply evaluates
constants to themselves. This rule serves for replication indices,
which are substituted with constant values when reducing the
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Terms and find conditions:

E, a ⇓ a (Cst)

∀j ≤ m,E,Mj ⇓ aj x[a1, . . . , am] ∈ Dom(E)

E, x[M1, . . . ,Mm] ⇓ E(x[a1, . . . , am])
(Var)

∀j ≤ m,E,Mj ⇓ aj f : T1 × . . .× Tm → T
∀j ≤ m, aj ∈ Iη(Tj)

E, f(M1, . . . ,Mm) ⇓ Iη(f)(a1, . . . , am)
(Fun)

¬∀k ≤ l,∃ak, E,Mk ⇓ ak
E, (defined(M1, . . . ,Ml) ∧M) ⇓ false

(Def1)

∀k ≤ l,∃ak, E,Mk ⇓ ak E,M ⇓ a a ∈ {false, true}
E, (defined(M1, . . . ,Ml) ∧M) ⇓ a

(Def2)

Input processes:

E, {0} ] Q, C  E,Q, C (Nil)
E, {Q1 | Q2} ] Q, C  E, {Q1, Q2} ] Q, C (Par)

E, {!i≤nQ} ] Q, C  E, {Q{a/i} | a ∈ [1, Iη(n)]} ] Q, C
(Repl)

c′ /∈ C
E, {newChannel c;Q} ] Q, C
 E, {Q{c′/c}} ] Q, C ∪ {c′}

(NewChannel)

∀j ≤ l, E,Mj ⇓ aj
E, {c[M1, . . . ,Ml](x1[ã′] : T1, . . . , xk[ã′] : Tk);P} ] Q, C
 E, {c[a1, . . . , al](x1[ã′] : T1, . . . , xk[ã′] : Tk);P} ] Q, C

(Input)

reduce(E,Q, C) is the normal form of E,Q, C by  

Figure 4: Semantics (1)

replication. Rule (Var) looks for the value of the array variable
in the environment. Rule (Fun) evaluates the function call. Rules
(Def1) and (Def2) evaluate conditions of find: When some Mk

is not defined, defined(M1, . . . ,Ml)∧M returns false by (Def1).
Otherwise, it returns the boolean value of M by (Def2).

We use an auxiliary reduction relation η , or simply , for
reducing input processes. This relation transforms configura-
tions of the form E,Q, C. Rule (Nil) removes nil processes.
Rules (Par) and (Repl) expand parallel compositions and repli-
cations, respectively. Rule (NewChannel) creates a new channel
and adds it to C. Semantic configurations are considered equiva-
lent modulo renaming of channels in C, so that a single semantic
configuration is obtained after applying (NewChannel). Rule
(Input) evaluates the terms in the input channel. The input it-
self is not executed: the communication is done by the (Output)
rule. The relation is convergent (confluent and terminating),
so it has normal forms. Since processes in Q in configurations
E,P,Q, C are in normal form by  , they always start with an
input.

Rules (New) to (Find2) simply reduce the scheduled process.
As explained in the footnote page 3, we use an approximately
uniform probability distribution for choosing an element among
a set S when m = |S| is not a power of 2. Let k be the smallest

Output processes:

T fixed-length type a ∈ Iη(T )

E, new x[ã′] : T ;P,Q, C
1

|Iη(T )|−−−−→N(a) E[x[ã′] 7→ a], P,Q, C
(New)

E,M ⇓ a a ∈ Iη(T )

E, let x[ã′] : T = M in P,Q, C 1−→L E[x[ã′] 7→ a], P,Q, C
(Let)

∀j ≤ m,∀ṽ ≤ ñj , E[ũj [ã′] 7→ ṽ], (Dj ∧Mj) ⇓ aj,ṽ
S = {j, ṽ | aj,ṽ = true} aj0,ṽ0 = true

Ej0,ṽ0 = E[ũj0 [ã′] 7→ ṽ0]

E, find (
⊕m

j=1 ũj [ã
′] ≤ ñj suchthat Dj ∧Mj then Pj)

else P,Q, C among(S)−−−−−−→F1(j0,ṽ0) Ej0,ṽ0 , Pj0 ,Q, C
(Find1)

∀j ≤ m, ∀ṽ ≤ ñj , E[ũj [ã′] 7→ ṽ], (Dj ∧Mj) ⇓ false

E, find (
⊕m

j=1 ũj [ã
′] ≤ ñj suchthat Dj ∧Mj then Pj)

else P,Q, C 1−→F2 E,P,Q, C
(Find2)

∀j ≤ l, E,Mj ⇓ aj ∀j ≤ k,E,Nj ⇓ bj
E,Q′, C′ = reduce(E, {Q′′}, C)

S = {Q ∈ Q | for some x′1, . . . , x
′
k, ã
′′, T ′1, . . . , T

′
k, P

′,

Q = c[a1, . . . , al](x
′
1[ã′′] : T ′1, . . . , x

′
k[ã′′] : T ′k).P ′}

Q0 = c[a1, . . . , al](x1[ã′] : T1, . . . , xk[ã′] : Tk).P ∈ S
∀j ≤ k, b′j = bj&(2maxlenη(c) − 1) ∈ Iη(Tj)

E, c[M1, . . . ,Ml]〈N1, . . . , Nk〉.Q′′,Q, C
S(Q0)×among(S)−−−−−−−−−−−→O(Q0)

E[x1[ã′] 7→ b′1, . . . , xk[ã′] 7→ b′k], P,Q]Q′ \ {Q0}, C′
(Output)

Figure 5: Semantics (2)
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integer such that 2k ≥ m. We choose a random integer r uni-
formly among [0, 2k+f(η) − 1] for a certain function f . When r
is in [0, (2k+f(η) divm×m)− 1], r mod m returns a random
integer in [0,m−1], with the same probability for all elements of
[0,m−1]. When r is in [2k+f(η) divm×m, 2k+f(η)−1], we can
do anything; we choose to block. The probability of being in this
case is (2k+f(η) mod m)/2k+f(η) ≤ m/2k+f(η) ≤ 1/2f(η),
so it can be made as small as we wish by choosing f(η) large
enough. We choose f(η) ≥ αη for some α > 0, so that it is
negligible. The probability of choosing each element of S is
then among(S) = 2k+f(η) divm

2k+f(η)
. Then among(S) approximates

1/m. Rules (Find1) and (Find2) evaluate a find. They compute
the value of all conditions Dj ∧ Mj of this find for all possi-
ble values ṽ of the indices ũj [ã′]. When all these conditions are
false, rule (Find2) executes the else branch of the find. When
at least one of these conditions is true, rule (Find1) chooses one
such true case (for j = j0 and ṽ = ṽ0) with approximately uni-
form probability, and executes the corresponding then branch of
the find.

Rule (Output) performs communications: it evaluates the
terms in the channel and the sent messages, selects an input
on the desired channel randomly, and immediately executes the
communication. The scheduled process after this rule is the re-
ceiving process. (The process blocks if no suitable input is avail-
able.)

The initial configuration for running process Q0 is
initConfig(Q0) = ∅, start〈〉,Q, C where ∅,Q, C =
reduce(∅, {Q0}, fc(Q0)).

Definition 6 Let c be a channel name and a be a bitstring.
We say that E,P,Q, C executes c〈a〉 immediately when P =
c〈M〉.Q and E,M ⇓ a for some Q and M .

The probability that Q executes c〈a〉 is denoted Pr[Q  η

c〈a〉]. When c ∈ fc(Q), Pr[Q  η c〈a〉] =
∑
T ∈T Pr[T ] where

T is the set of traces initConfig(Q) →η . . . →η Em, Pm,Qm,
Cm such that Em, Pm,Qm, Cm executes c〈a〉 immediately and
for all j < m,Ej , Pj ,Qj , Cj does not execute c〈a〉 immediately.
When c /∈ fc(Q), Pr[Q η c〈a〉] = 0.

B.2 Each Variable is Defined at Most Once
In this section, we show that Invariant 1 implies that each array
cell is assigned at most once during the execution of a process.

When S and S′ are multisets, max(S, S′) is the multiset such
that max(S, S′)(x) = max(S(x), S′(x)). We define the mul-
tiset of variable accesses that may be defined by a process as
follows:

Defined(0) = ∅
Defined(Q1 | Q2) = Defined(Q1) ]Defined(Q2)

Defined(!i≤nQ) =
⊎

a∈[1,Iη(n)]

Defined(Q{a/i})

Defined(newChannel c;Q) = Defined(Q)

Defined(c[M1, . . . ,Ml](x1[ã] : T1, . . . , xk[ã] : Tk);P ) =

{xj [ã] | j ≤ k} ]Defined(P )

Defined(c[M1, . . . ,Ml]〈N1, . . . , Nk〉;Q) = Defined(Q)

Defined(new x[ã] : T ;P ) = {x[ã]} ]Defined(P )

Defined(let x[ã] : T = M in P ) = {x[ã]} ]Defined(P )

Defined(find (
⊕m

j=1 ũj [ã] ≤ ñj suchthatdefined(Mj1,

. . . ,Mjlj ) ∧Mj then Pj) else P ) =

max(
m

max
j=1
{ũj [ã]} ]Defined(Pj),Defined(P ))

We define Defined(E) = Dom(E), Defined(E,P,Q, C) =
Defined(E) ]Defined(P ) ]

⊎
Q∈QDefined(Q).

Invariant 4 (Single definition, for executing games) The se-
mantic configuration E,P,Q, C satisfies Invariant 4 if and only
if Defined(E,P,Q, C) does not contain duplicate elements.

Lemma 3 If Q0 satisfies Invariant 1, then initConfig(Q0) sat-
isfies Invariant 4.

Lemma 4 If E,P,Q, C p−→t E′, P ′,Q′, C′ with p > 0 and
E,P,Q, C satisfies Invariant 4, then so does E′, P ′,Q′, C′.

Proof sketch We show by cases following the defini-
tion of

p−→t that if E,P,Q, C p−→t E′, P ′,Q′, C′ then
Defined(E,P,Q, C) ⊆ Defined(E′, P ′,Q′, C′). The result fol-
lows. �

Therefore, if Q0 satisfies Invariant 1, then each variable is de-
fined at most once for each value of its array indices in a trace of
Q0. Indeed, by Invariant 4, just before executing a definition of
x[ã], Defined(E,P,Q, C) does not contain duplicate elements,
so x[ã] /∈ Dom(E) since x[ã] ∈ Defined(P ) ]Defined(Q).

B.3 Variables are Defined Before Being Used
In this section, we show that Invariant 2 implies that all variables
are defined before being used. In order to show this property, we
use the following invariant:

Invariant 5 (Defined variables, for executing games) The se-
mantic configuration E,P,Q, C satisfies Invariant 5 if and only
if every occurrence of a variable access x[M1, . . . ,Mm] in P or
Q is either

• present in Dom(E): for all j ≤ m, E,Mj ⇓ aj and
x[a1, . . . , am] ∈ Dom(E);

• or syntactically under the definition of x[M1, . . . ,Mm] (in
which case for all j ≤ m, Mj is a constant or variable
replication index);

• or in a defined condition in a find process;

• or in M ′j or Pj in a process of the form find (
⊕m′′

j=1 ũj [̃i] ≤
ñj suchthat defined(M ′j1, . . . ,M

′
jlj

) ∧M ′j then Pj else P

where for some k ≤ lj , x[M1, . . . ,Mm] is a subterm of
M ′jk.

Lemma 5 If Q0 satisfies Invariant 2, then initConfig(Q0) sat-
isfies Invariant 5.
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Lemma 6 If E,P,Q, C p−→t E′, P ′,Q′, C′ with p > 0 and
E,P,Q, C satisfies Invariant 5, then so does E′, P ′,Q′, C′.

Proof sketch If x[M1, . . . ,Mm] is in the second case of In-
variant 5, and we execute the definition of x[M1, . . . ,Mm],
then for all j ≤ m, Mj is a constant replication index and
x[M1, . . . ,Mm] is added to Dom(E) by rules (New), (Let),
(Find1), or (Output), so it moves to the first case of Invariant 5.

If x[M1, . . . ,Mm] is in the third case of Invariant 5, and we
execute the corresponding find, this access to x simply disap-
pears.

If x[M1, . . . ,Mm] is in the last case of Invariant 5, and we
execute the find selecting branch j, then x[M1, . . . ,Mm] is a
subterm of M ′jk for k ≤ lj . We show by induction on M that,
if E,M ⇓ a, then for all subterms x[M1, . . . ,Mm] of M , for
all j′ ≤ m, E,Mj′ ⇓ aj′ and x[a1, . . . , am] is in Dom(E).
Therefore, by hypothesis of the semantic rule for find, for all
j′ ≤ m, E,Mj′ ⇓ aj′ and x[a1, . . . , am] is in Dom(E). So
x[M1, . . . ,Mm] also moves to the first case of Invariant 5.

In all other cases, the situation remains unchanged. �

Therefore, if Q0 satisfies Invariant 2, then in traces of Q0, the
test x[a1, . . . , am] ∈ Dom(E) in rule (Var) always succeeds,
except when the considered term occurs in a defined condition
of a find.

Indeed, consider an application of rule (Var), where the ar-
ray access x[M1, . . . ,Mm] is not in a defined condition of a
find. Then, this array access is not under any variable definition
or find, so for all j ≤ m, E,Mj ⇓ aj and x[a1, . . . , am] ∈
Dom(E). Hence, the test x[a1, . . . , am] ∈ Dom(E) succeeds.

B.4 Typing
In this section, we show that our type system is compatible with
the semantics of the calculus, that is, we define a notion of typing
for semantic configurations and show that typing is preserved by
reduction (subject reduction). Finally, the property that semantic
configurations are well-typed shows that certain conditions in
the semantics always hold.

We say that E `η E if and only if E(x[a1, . . . , am]) = a
implies E(x) = T1 × . . . × Tm → T with for all j ≤ m, aj ∈
Iη(Tj) and a ∈ Iη(T ). We define E `η P as E ` P , E `η Q
as E ` Q, and E `η M : T as E ` M : T , with the additional
rule E `η a : T if and only if a ∈ Iη(T ). (This rule is useful
to type constant replication indices. In the formulas giving the
typing rules, replication indices i may then also be constants a.)
We say that E `η E,P,Q, C if and only if E `η E, E `η P , and
for all Q ∈ Q, E `η Q. Similarly, E `η E,Q, C if and only if
E `η E and for all Q ∈ Q, E `η Q.

Lemma 7 If E `η E, E `η M : T , and E,M ⇓ a, then E `η
a : T

Proof sketch By induction on the derivation of E,M ⇓ a. �

Lemma 8 If E `η E,Q, C andE,Q, C  E′,Q′, C′, then E `η
E′,Q′, C′.

So, if E `η E,Q, C, then E `η reduce(E,Q, C).

Proof sketch By cases on the derivation of E,Q, C  
E′,Q′, C′. In the case of the replication, we use a substitution
lemma, noticing that a ∈ Iη([1, n]), so E `η a : [1, n]. In the
case of the input, we use Lemma 7. �

Lemma 9 If E ` Q0, then E `η initConfig(Q0).

Proof sketch By Lemma 8 and the previous definitions. �

Lemma 10 (Subject reduction) If E `η E,P,Q, C and
E,P,Q, C p−→t E′, P ′,Q′, C′ with p > 0, then E `η
E′, P ′,Q′, C′.

Proof sketch By cases on the derivation of E,P,Q, C p−→t

E′, P ′,Q′, C′, using Lemmas 7 and 8. �

As an immediate consequence of Lemmas 9, 10, and 7, we
obtain: if Q0 satisfies Invariant 3, then in traces of Q0, the tests
T fixed-length type in rule (New), a ∈ Iη(T ) in rule (Let), ∀j ≤
m, aj ∈ Iη(Tj) in rule (Fun), and the test a ∈ {false, true} in
rule (Def2) always succeed.

B.5 Runtime
Proposition 6 For each process Q, there exists a probabilistic
polynomial time Turing machine that simulates Q.

Proof We give a very brief sketch of this proof here. We
refer the reader to [40] for a more detailed proof for a different
calculus; their proof could be adapted to our calculus.

The length of all bitstrings manipulated by processes is poly-
nomial in the security parameter η. Indeed, by hypothesis, the
length of received messages is limited by maxlenη , so polyno-
mial in the security parameter η. The length of random bitstrings
is also polynomial in the security parameter by hypothesis on
the types. Function symbols correspond to functions that run in
polynomial time, so they output bitstrings of size polynomial in
the size of their inputs, so also polynomial in the security param-
eter.

Since the number of copies generated by each replication
is polynomial in the security parameter, the total number of
executed instructions is polynomial in the security parameter.
Moreover, it is easy to see that each instruction runs in polyno-
mial time since bitstrings are of polynomial length. Therefore,
processes run in polynomial time. �

C Simplification
In this section, we define the transformation Simplify, which
is used to simplify games. The simplification proceeds as fol-
lows. It uses information from several sources: equations and
rewrite rules given by user, that come in particular from alge-
braic properties of cryptographic primitives; facts that hold at
certain points in the game due to the form of the game; depen-
dency information obtained by two dependency analyses. (The
global dependency analysis tracks which variables depend on
any element of the array x at any program point. The local de-
pendency analysis tracks which terms depend on the current cell
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of the array x, x[̃i], at each program point.) The simplification
algorithm uses this information in order to infer equalities using
a Knuth-Bendix-like equational prover. The obtained equalities
are used to simplify the game, by replacing a term with an equal
term or by simplifying find when the system proves that some
branches cannot be taken.

C.1 User-defined Rewrite Rules

The user can give two kinds of information:

• claims of the form ∀x1 : T1, . . . ,∀xm : Tm,M which
mean that for all environments E, if for all j ≤ m,
E(xj) ∈ Iη(Tj), then E,M ⇓ true.

Such claims must be well-typed, that is, {x1 7→ T1, . . . ,
xm 7→ Tm} `M : bool .

They are translated into rewrite rules as follows:

– If M is of the form M1 = M2 and var(M2) ⊆
var(M1), we generate the rewrite rule ∀x1 : T1, . . . ,
∀xm : Tm,M1 →M2.

– If M is of the form M1 6= M2, we generate the
rewrite rules ∀x1 : T1, . . . ,∀xm : Tm, (M1 =
M2) → false, ∀x1 : T1, . . . ,∀xm : Tm, (M1 6=
M2) → true. (Such rules are used for instance to
express that different constants are different.)

– Otherwise, we generate the rewrite rule ∀x1 : T1, . . . ,
∀xm : Tm,M → true.

The term M reduces into M ′ by the rewrite rule ∀x1 : T1,
. . . ,∀xm : Tm,M1 → M2 if and only if M = C[σM1],
M ′ = C[σM2], where C is a term context and σ is a sub-
stitution that maps xj to any term of type Tj for all j ≤ m.

• claims of the form new y1 : T ′1, . . . , new yl : T ′l ,∀x1 : T1,
. . . ,∀xm : Tm,M1 ≈ M2 with var(M2) ⊆ var(M1).
Informally, these claims mean that M1 and M2 evaluate
to the same bitstring except in cases of negligible proba-
bility, provided that y1, . . . , yl are chosen randomly with
uniform probability and independently among T ′1, . . . , T

′
l

respectively, and that x1, . . . , xm are of type T1, . . . , Tm.
(x1, . . . , xm may depend on y1, . . . , yl.) Formally, these
claims are defined as: for all polynomials q, there exists a
negligible p(η) such that

max
A

Pr[E(y1)
R← Iη(T ′1); . . . E(yl)

R← Iη(T ′l );

(E(x1), . . . , E(xm))← A(E(y1), . . . , E(yl));

E,M1 ⇓ a;E,M2 ⇓ a′ : a 6= a′] ≤ p(η)

where A is a probabilistic Turing machine running in time
q(η).

The above claim must be well-typed, that is, {x1 7→ T1,
. . . , xm 7→ Tm, y1 7→ T ′1, . . . , yl 7→ T ′l } `M1 = M2.

This claim is translated into the rewrite rule new y1 : T ′1,
. . . , new yl : T ′l ,∀x1 : T1, . . . ,∀xm : Tm,M1 →M2.

The prover has built-in rewrite rules for defining boolean
functions:

¬true→ false ¬false→ true ∀x : bool ,¬(¬x)→ x

∀x : T, ∀y : T,¬(x = y)→ x 6= y

∀x : T, ∀y : T,¬(x 6= y)→ x = y

∀x : T, x = x→ true ∀x : T, x 6= x→ false

∀x : bool ,∀y : bool ,¬(x ∧ y)→ (¬x) ∨ (¬y)

∀x : bool ,∀y : bool ,¬(x ∨ y)→ (¬x) ∧ (¬y)

∀x : bool , x ∧ true→ x ∀x : bool , x ∧ false→ false

∀x : bool , x ∨ true→ true ∀x : bool , x ∨ false→ x

The prover also has support for commutative function sym-
bols, that is, binary function symbols f : T × T → T ′ such
that for all x, y ∈ Iη(T ), Iη(f)(x, y) = Iη(f)(y, x). For such
symbols, all equality and matching tests are performed modulo
commutativity. The functions ∧, ∨, =, and 6= are commutative.
So, for instance, the last four rewrite rules above may also be
used to rewrite true∧M intoM , false∧M into false, true∨M
into true, and false ∨M into M . Used-defined functions may
also be declared commutative; xor is an example of such a com-
mutative function.

C.2 Collecting True Facts from a Game

We use facts to represent properties that hold at certain program
points in processes. We consider two kinds of facts: defined(M)
means thatM is defined, and a termM means thatM is true (the
boolean termM evaluates to true). In this section, we show how
to compute a set of facts FP that are guaranteed to hold at the
program point P of the game.

The function collectFacts collects facts that hold at each pro-
gram point of the game. More precisely, for each occurrence P
of a subprocess of the game, it computes a set FP of facts that
hold at that occurrence. (It is important that P is an occurrence
and not a process: processes at several occurrences may be equal
and must be distinguished from one another here.) The function
collectFacts also computes a set D containing pairs (x[̃i], P )

where x[̃i] has been defined just above process P . (If there are
several definitions of x, there is one such pair for each definition
of x.) Finally, for output processes P , collectFacts(P ) returns
a set of facts that will hold when the next output is executed
and stores this set in FFut

P . (The superscript Fut stands for fu-
ture, since these facts do not hold yet at P , but will hold in the
future.)

The function collectFacts is defined in Figure 6. It is initially
called by collectFacts(Q0). It takes into account that x[̃i] may
be defined by an input, a restriction, a let, or a find and updates
D accordingly. Furthermore, when we execute let x[̃i] : T =

M in P ′, x[̃i] = M holds in P ′ and x[̃i] is defined in P ′. When
we execute find (

⊕m
j=1 uj1 [̃i] ≤ nj1, . . . , ujmj [̃i] ≤ njmj

suchthat defined(Mj1, . . . ,Mjlj ) ∧Mj then Pj) else P ′, Mj

holds in Pj , Mj1, . . . ,Mjlj , uj1 [̃i], . . . , ujmj [̃i] are defined in
Pj , and ¬Mj holds in P ′ when mj = lj = 0.

After calling collectFacts(Q0), we complete the computed
sets FP (where P may be an input or output process) by adding
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collectFacts(Q) =

if Q = Q1 | Q2 then collectFacts(Q1); collectFacts(Q2)

if Q = !i≤nQ′ then collectFacts(Q′)

if Q = newChannel c;Q′ then collectFacts(Q′)

if Q = c[M1, . . . ,Ml](x1 [̃i] : T1, . . . , xk [̃i] : Tk);P then

FP = {defined(xj [̃i]) | j ≤ k};FFut
P = collectFacts(P )

D = D ∪ {(xj [̃i], P ) | j ≤ k}

collectFacts(P ) =

if P = c[M1, . . . ,Ml]〈N1, . . . , Nk〉;Q then

collectFacts(Q); return ∅

if P = new x[̃i] : T ;P ′ then

FP ′ = {defined(x[̃i])};FFut
P ′ = collectFacts(P ′)

D = D ∪ {(x[̃i], P ′)}; return FP ′ ∪ FFut
P ′

if P = let x[̃i] : T = M in P ′ then

FP ′ = {defined(x[̃i]), x[̃i] = M}
FFut
P ′ = collectFacts(P ′)

D = D ∪ {(x[̃i], P ′)}; return FP ′ ∪ FFut
P ′

if P = find (
⊕m

j=1
uj1 [̃i] ≤ nj1, . . . , ujmj [̃i] ≤ njmj

suchthat defined(Mj1, . . . ,Mjlj ) ∧Mj then Pj) elseP ′

then
for each j ≤ m,

FPj = {defined(uj1[ĩ′]), . . . , defined(ujmj [ĩ
′]),

defined(Mj1), . . . , defined(Mjlj ),Mj}
FFut
Pj = collectFacts(Pj);

D = D ∪ {(uj1[ĩ′], Pj), . . . , (ujmj [ĩ
′], Pj)}

FP ′ = {¬Mj | mj = lj = 0};FFut
P ′ = collectFacts(P ′)

return (FP ′ ∪ FFut
P ′ ) ∩

m⋂
j=1

(FPj ∪ FFut
Pj )

Figure 6: The function collectFacts

facts that come from processes above P :

FP ← FP ∪ FP ′ if P is immediately under P ′

We also add facts that we can deduce from facts defined(M).
Precisely, if defined(M) ∈ FP and x[M1, . . . ,Mm] is a sub-
term of M , then we take into account facts that are known to be
true at the definitions of x by adding them to FP as follows:

FP ← FP ∪

 ⋂
(x[i1,...,im],P ′)∈D


σ(FP ′ ∪ (FFut

P ′ ∩ FP ))

if P is under P ′

σ(FP ′ ∪ FFut
P ′ ) otherwise


where σ = {M1/i1, . . . ,Mm/im}. Indeed, if defined(M) ∈
FP and x[M1, . . . ,Mm] is a subterm of M , then x[M1, . . . ,
Mm] is defined at P , so some definition of x[M1, . . . ,Mm], just
above the process P ′, must have been executed before reaching
P , so the facts that hold at P ′ also hold at P , with a suitable
substitution of indices: we have σFP ′ , that is, FP ′{M1/i1, . . . ,
Mm/im}. Moreover, if the occurrence P is not syntactically
under the occurrence P ′, then the code of P ′ must have been
executed until the next output before yielding control to some
other code and reaching P , so in fact σ(FP ′ ∪ FFut

P ′ ) hold. If
P is syntactically under P ′, it is possible that the code of P ′

has been executed until reaching P instead of until reaching the
next output, so we have only σ(FP ′ ∪ (FFut

P ′ ∩ FP )). If there
are several definitions of x, we do not know which one has been
executed, so we only add to FP the facts that hold in all cases,
by taking the intersection on all definitions of x.

This operation may add new defined facts to FP , so it is
executed until a fixpoint is reached, except that, in order to
avoid infinite loops, we do not execute this step for definitions
defined(M) in which M contains nested occurrences of the
same symbol (such as x[. . . x[. . .] . . .]).

We also consider an additional fact that serves in express-
ing that the condition part of a find failed. Precisely, the
fact elsefind((u1 ≤ n1, . . . , um ≤ nm), (M1, . . . ,Ml),M)
means that for all u1 ∈ [1, n1], . . . , um ∈ [1, nm],
the terms M1, . . . ,Ml are not all defined or M is false.
The function collectElseFind described in Figure 7 collects
elsefind facts that hold at each occurrence. The function
collectElseFind(P,F) is called when F is the set of true
elsefind facts at occurrence P . It sets the value of FElseFind

P

to F .

• In the case of restrictions, assignments, and then branches
of find, it takes into account that a variable x or
uj1, . . . , ujmj is newly defined. Hence elsefind facts that
claim that one of these variables is not defined are removed.

• In the case of the else branch of a find, it adds the new
elsefind facts that hold when the conditions of the find fail.
These conditions express that each then branch of the find
fails by a elsefind fact. To construct this fact, we replace
(by applying σj) the terms uj1 [̃i], . . . , ujmj [̃i] with fresh
variables u1, . . . , umj , respectively.

• In the case of an output, any code may be executed before
the input processes under it, so any variable may be defined
by that code, and all elsefind facts are removed. That is
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collectElseFind(Q) =

if Q = Q1 | Q2 then

collectElseFind(Q1); collectElseFind(Q2)

if Q = !i≤nQ′ then collectElseFind(Q′)

if Q = newChannel c;Q′ then collectElseFind(Q′)

if Q = c[M1, . . . ,Ml](x1 [̃i] : T1, . . . , xk [̃i] : Tk);P then

collectElseFind(P, ∅)

collectElseFind(P,F) =

FElseFind
P = F

if P = c[M1, . . . ,Ml]〈N1, . . . , Nk〉;Q then

collectElseFind(Q)

if P = new x[̃i] : T ;P ′

or P = let x[̃i] : T = M in P ′ then
F ′ = {elsefind((ũ ≤ ñ), (M1, . . . ,Ml),M) ∈ F |

x does not occur in M1, . . . ,Ml}
collectElseFind(P ′,F ′)

if P = find (
⊕m

j=1
uj1 [̃i] ≤ nj1, . . . , ujmj [̃i] ≤ njmj

suchthat defined(Mj1, . . . ,Mjlj ) ∧Mj then Pj) elseP ′

then
for each j ≤ m,
F ′j = {elsefind((ũ ≤ ñ), (M1, . . . ,Ml),M) ∈ F

| uj1, . . . , ujmj do not occur in M1, . . . ,Ml}
collectElseFind(Pj ,F ′j)

σj = {u1/uj1 [̃i], . . . , umj/ujmj [̃i]}
collectElseFind(P ′,F∪
{elsefind((u1 ≤ nj1, . . . , umj ≤ njmj ),
σj(Mj1, . . . ,Mjlj ), σjMj) | j ∈ {1, . . . ,m}})

Figure 7: The function collectElseFind

why the function collectElseFind for input processes has
noF argument (this argument would always be empty) and
calls collectElseFind(P, ∅) for processes P that follow an
input.

The elsefind facts can be used to add new facts to the facts FP .
Indeed, if FP implies that M1, . . . ,Ml are defined for some
values of u1, . . . , um, then the fact elsefind((u1 ≤ n1, . . . ,
um ≤ nm), (M1, . . . ,Ml),M) implies that M is false for these
values of u1, . . . , um. Precisely, we execute:

FP ← FP ∪ {¬σM | elsefind((u1 ≤ n1, . . . , um ≤ nm),

(M1, . . . ,Ml),M) ∈ FElseFind
P ,Dom(σ) = {u1, . . . , um},

for each j ∈ {1, . . . , l}, σMj is a subterm of M ′j and

defined(M ′j) ∈ FP }

The possible images of σ are found by exploring the set of
defined facts in FP .

In the implementation, an additional fact expresses that
a pattern-matching failed: in the else branch of let N =
M in P else Q, we know that ∀x1, . . . , xl, N 6= M , where
x1, . . . , xl are the variables bound in the pattern N . In this re-
port, we consider that the pattern-matching is encoded using as-
signments and tests, so we do not consider this fact further.

Furthermore, when the previous update of FP adds facts, we
again complete the computed sets FP by adding facts that come
from processes above P :

FP ← FP ∪ FP ′ if P is immediately under P ′

We could also iterate the addition of consequences of defined
facts. (However, for simplicity, the current implementation does
not perform such an iteration.)

C.3 Global Dependency Analysis
For each variable x, the global dependency analysis tries to find
a set of variables S such that only variables in S depend on x.
In particular, when the global dependency analysis succeeds, the
control flow and the view of the adversary do not depend on x,
except in cases of negligible probability.

Let x be a variable defined only by restrictions new x : T
where T is a large type. Let Sdef be a set of variables defined
only by assignments. Let Sdep be a set of variables containing
x. (Intuitively, Sdep will be a superset of variables that depend
on x.)

We say that a function f : T → T ′ is uniform when each
element of Iη(T ′) has at most |Iη(T )|/|Iη(T ′)| antecedents by
f . In particular, this is true in the following two cases:

• f is such that f(x) is uniformly distributed in Iη(T ′) if x is
uniformly distributed in Iη(T ).

• f is the restriction to the image of f ′ of an inverse of f ′,
where f ′ is a poly-injective function. (We consider that
f(x) is undefined when x is not in the image of f ′. Here,
in contrast to the rest of the paper, we allow f : T → T ′ to
be defined only on a subset of Iη(T ).) Precisely, when xk ∈
Sdef is defined by a pattern-matching let f ′(x1, . . . , xn) =
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M in P else P ′, we have xk = f ′
−1
k (M), but furthermore

when xk is defined we know that the value of M is in the
image of f ′, so we have xk = f(M) where f = f ′

−1
k |im f ′ .

We say that M characterizes a part of x with Sdef ,Sdep

when for all M0 obtained from M by substituting variables
of Sdef with their definition (when there is a dependency cy-
cle among variables of Sdef , we do not substitute a variable in-
side its definition), αM0 = M0 implies f1(. . . fk((αx)[M̃ ′])) =

f1(. . . fk(x[M̃ ])) for some uniform functions f1, . . . , fk and for
some M̃ and M̃ ′, where α is a renaming of variables of Sdep to
fresh variables, x[M̃ ] is a subterm ofM0, (αx)[M̃ ′] is a subterm
of αM0, the variables in Sdep do not occur in M̃ or M̃ ′, T is the
type of the result of f1 (or of x when k = 0), and T is a large
type. In that case, the value of M uniquely determines the value
of f1(. . . fk(x[M̃ ])).

We use a simple rewriting prover to determine that. We con-
sider the set of terms M0 = {αM0 = M0}, and we rewrite
elements ofM0 using the first kind of user-defined rewrite rules
mentioned in Section C.1 and the rule {M1 ∧ M2} ∪ M′ →
{M1,M2} ∪M′.

When M0 can be rewritten to a set that contains an equal-
ity of the form f1(. . . fk(x[M̃ ])) = f1(. . . fk((αx)[M̃ ′])) or
f1(. . . fk((αx)[M̃ ′])) = f1(. . . fk(x[M̃ ])) for some M̃ and M̃ ′

such that the variables in Sdep do not occur in M̃ or M̃ ′, we
have that M characterizes a part of x with Sdef , Sdep.

We say that M characterizes a part of x when M character-
izes a part of x with ∅, S′ where S′ is {x} union the set of all
variables except those defined by restrictions. (We know that
variables different from x and defined by restrictions do not de-
pend on x, so in the absence of more precise information, we
can set Sdep = S′.)

We say that only dep(x) = S when intuitively, only variables
in S depend on x, and the adversary cannot see the value of x.
Formally, only dep(x) = S when

• S ∩ V = ∅.

• Variables of S do not occur in input or output channels or
messages, that is, they do not occur in the terms M1, . . . ,
Mm, N1, . . . , Nk in the input c[M1, . . . ,Mm](x1 [̃i] : T1,

. . . , xk [̃i] : Tk) or in the output c[M1, . . . ,Mm]〈N1, . . . ,
Nk〉.

• Variables of S except x are defined only by assignments.

• If a variable y ∈ S occurs in M in let z : T = M in P ,
then z ∈ S.

• Variables in S may occur in defined conditions of find but
only at the root of them.

• All termsMj in processes find (
⊕m

j=1 ũj [̃i] ≤ ñj suchthat
defined(Mj1, . . . ,Mjlj )∧Mj then Pj) else P ′ are combi-
nations by ∧, ∨, or ¬ of terms that either do not contain
variables in S or are of the form M1 = M2 or M1 6= M2

where M1 characterizes a part of x with S \ {x}, S and no
variable of S occurs in M2, or M2 characterizes a part of x
with S \ {x}, S and no variable of S occurs in M1.

The last item implies that the result of tests does not depend on
the values of variables in S, except in cases of negligible proba-
bility. Indeed, the tests M1 = M2 with M1 characterizes a part
of x with S \ {x}, S and M2 does not depend on variables in
S are false except in cases of negligible probability, since the
value of M1 uniquely determines the value of f1(. . . fk(x[M̃ ]))

and M2 does not depend on f1(. . . fk(x[M̃ ])), so the equal-
ity M1 = M2 happens for a single value of f1(. . . fk(x[M̃ ])),
which yields a negligible probability because f1, . . . , fk are uni-
form, x is chosen with uniform probability, and the type of the
result of f1 is large. Similarly, the tests M1 6= M2 are true ex-
cept in cases of negligible probability.

In checking the conditions of only dep(x) = S, we do not
consider the parts of the code that are unreachable due to tests
whose result is known by the conditions above.

The set S is computed by a fixpoint iteration, starting from
{x} and adding variables defined by assignments that depend
on variables already in S.

If we manage to show that only dep(x) = S, we transform
the game as follows:

• We replace with false termsM1 = M2 in conditions of find
where M1 characterizes a part of x with S \ {x}, S and no
variable of S occurs in M2, or symmetrically.

• We replace with true termsM1 6= M2 in conditions of find
where M1 characterizes a part of x with S \ {x}, S and no
variable of S occurs in M2, or symmetrically.

C.4 Local Dependency Analysis
For each program point P and each variable x, the local depen-
dency analysis tries to find which variables and terms depend on
x[̃i] at program point P , where ĩ denotes the current replication
indices at the definition of x. It simplifies the game on-the-fly
when possible.

For each occurrence of a process P and each variable x such
that a restriction new x : T occurs above P and T is a large
type, we compute a set of terms indepP (x) that are indepen-
dent of x[̃i] where ĩ denotes the current replication indices at the
definition of x.

For each occurrence of a process P and each variable x such
that a restriction new x : T occurs above P and T is a large
type, we also compute dependP (x) which can be either > (I
don’t know) or a set of pairs (y,M) where y[̃i] depends on x[̃i]

by assignments, and M is a term defining y[̃i] as a function of
x[̃i]. (The tuple ĩ denotes the current replication indices at the
definition of x and of y.)

We define “M characterizes a part of x[̃i] at P ” as
follows. Let α be defined by α(f(M1, . . . ,Mm)) =
f(αM1, . . . , αMm); α(i) = i where i is a replication index;
α(M ′) = M ′ when M ′ ∈ indepP (x); α(y[M1, . . . ,Mm′ ]) =
y[αM1, . . . , αMm′ ] when y 6= x and y either is defined only by
restrictions or dependP (x) 6= > and (y,M ′) /∈ dependP (x)
for any M ′; α(y[M1, . . . ,Mm′ ]) = y′[αM1, . . . , αMm′ ] where
y′ is a fresh variable, otherwise. We write y′ = αy in this
case. We say that M characterizes a part of x[̃i] at P when
αM = M implies f1(. . . fk((αx)[̃i])) = f1(. . . fk(x[̃i])) for
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depAnal(Q, indep) =

∀y,dependQ(y) = >; indepQ = indep

if Q = Q1 | Q2 then

depAnal(Q1, indep); depAnal(Q2, indep)

if Q = !i≤nQ′ then depAnal(Q′, indep)

if Q = newChannel c;Q′ then depAnal(Q′, indep)

if Q = c[M1, . . . ,Ml](x1 [̃i] : T1, . . . , xk [̃i] : Tk);P then

depAnal(P, {∀y, y 7→ >}, indep)

Figure 8: Local dependency analysis (1)

some uniform functions f1, . . . , fk, where x[̃i] is a subterm of
M , (αx)[̃i] is a subterm of αM , T ′ is the type of the result of f1
(or of x when k = 0), and T ′ is a large type. In that case, the
value of M uniquely determines the value of f1(. . . fk(x[̃i])).
This property is shown by a simple rewriting prover, as in the
global dependency analysis.

We denote by subterms(M) the set of subterms of the term
M .

We say that M does not depend on x at P when M is
built by function applications from terms in indepP (x), repli-
cations indices, and terms y[M1, . . . ,Mm] such that M1, . . . ,
Mm do not depend on x at P , y 6= x, and either y is defined
only by restrictions or dependP (x) 6= > and y 6= y′ for all
(y′,M ′) ∈ dependP (x). Since terms in indepP (x) do not de-
pend on x[̃i] and when dependP (x) 6= >, variables not in the
first component of dependP (x) do not depend on x[̃i], the con-
ditions above guarantee that M does not depend on x[̃i], where
ĩ are the current replication indices at the definition of x.

When depend 6= >, we denote by Mdepend the term ob-
tained from M by replacing y[̃i] with M ′ for each (y,M ′) ∈
depend, where ĩ denotes the replication indices at the definition
of y.

We define simplifyTerm such that simplifyTerm(M,P ) is a
simplified version of M , equal to M except in cases of negli-
gible probability. The term simplifyTerm(M,P ) is defined as
follows:

• Case 1: M is M1 = M2. For each x, we proceed as fol-
lows. If dependP (x) = >, let M0 = M1; otherwise, let
M0 = M1dependP (x). Let M ′0 and M ′2 be obtained re-
spectively from M0 and M2 by replacing all array indices
that depend on x at P with fresh replication indices. If M ′0
characterizes a part of x[̃i] at P , and M ′2 does not depend
on x at P , then simplifyTerm(M,P ) = false. Indeed, M
is equal to false up to negligible probability in this case.
We have similar cases swapping M1 and M2 or when M
is M1 6= M2. (In the latter case, simplifyTerm(M,P ) =
true.)

• Case 2: M is M1 ∧M2. Let M ′1 = simplifyTerm(M1, P )
and M ′2 = simplifyTerm(M2, P ). If M ′1 or M ′2 are false,
we return false. IfM ′1 is true, we returnM ′2. IfM ′2 is true,
we return M ′1. Otherwise, we return M ′1 ∧M ′2. We have
similar cases when M is M1 ∨M2 or ¬M1.

depAnal(P,depend, indep) =

dependP = depend; indepP = indep

if P = c[M1, . . . ,Ml]〈N1, . . . , Nk〉;Q then

depAnal(Q, indep)

if P = new x[̃i] : T ;P ′ then

if T is a large type then
depend′(x) = ∅
indep′(x) =

⋃
defined(M)∈FP subterms(M)

∀y 6= x, depend′(y) = depend(y),

indep′(y) = indep(y) ∪ {x[̃i]}
depAnal(P ′,depend′, indep′)

if P = let x[̃i] : T = M in P ′ then

∀y, if M does not depend on y at P then
depend′(y) = depend(y)

indep′(y) = {x[̃i]} ∪ indep(y)

else
if depend(y) 6= > then

depend′(y) = depend(y)∪{(x,Mdepend(y))}
else

depend′(y) = >
indep′(y) = indep(y)

depAnal(P ′,depend′, indep′)

if P = find (
⊕m

j=1
uj1 [̃i] ≤ nj1, . . . , ujmj [̃i] ≤ njmj

suchthat defined(Mj1, . . . ,Mjlj ) ∧Mj then Pj) elseP ′

then
for each j ≤ m,M ′j = simplifyTerm(Mj , P )

replace Mj with M ′j
if M ′j = false then remove the j-th branch

if M ′j = true and lj = 0 then replace P ′with yield〈〉
if m = 0 then

replace P with P ′; depAnal(P ′,depend, indep)

else if m = 1, m1 = l1 = 0, and M1 = true then
replace P with P1; depAnal(P1,depend, indep)

else
∀y, if ∀j, k, Mjk and M ′j do not depend on y at P then

depend′(y) = depend(y)

for each j ≤ m, indepj(y) = indep(y) ∪ {M ′ |
M ′∈subterms(M) for some defined(M)∈FPj ,
M ′ does not depend on y at P}

else
depend′(y) = >
for each j ≤ m, indepj(y) = indep(y)

for each j ≤ m,depAnal(Pj ,depend′, indepj)

depAnal(P ′,depend′, indep)

Figure 9: Local dependency analysis (2)
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• In all other cases, simplifyTerm(M,P ) = M .

The local dependency analysis is defined in Figures 8 and 9.
The function depAnal is initially called with depAnal(Q0, ∅)
where ∅ designates the function defined nowhere.

• For input processes, depAnal sets dependQ(y) to >, so
that dependQ gives no information, and propagates indep.
Indeed, when y[̃i′] is set in some output process P0, the
value of y[̃i′] may be output by P0 or read by find in other
output processes executed after P0, so as soon as P0 passes
control to another process by the first output after the def-
inition of y, we lose track of exactly which variables de-
pend on y[̃i′]. However, variables already defined before
P0 passes control to another process and proved to be in-
dependent of y[̃i′] remain independent of y[̃i′], so we can
propagate indep in all subprocesses of P0.

• In the case of an output, depAnal forgets the information
in dependP as mentioned above.

• In the case of a restriction new x[̃i] : T , if T is a large type,
we create the dependency information for the newly de-
fined variable x: no variable depends on x[̃i], and all terms
already defined before the restriction are independent of
x[̃i]. We also note that x[̃i] is independent of y[̃i′] for other
variables y by adding x[̃i] to indep(y).

• In the case of an assignment let x[̃i] : T = M , if M de-
pends on y[̃i′] for some variable y, then x[̃i] depends on
y[̃i′], so x is added to depend(y) (if it is not >); otherwise,
x[̃i] does not depend on y[̃i′] so it is added to indep(y).

• In the case of a find, we first simplify each condition of
the find, remove branches when we can prove that they are
taken with negligible probability, and remove the find itself
when we know which branch is taken and this branch of
the find does not define variables. Furthermore, if some
condition of find depends on y[̃i] for some variable y,
depend′(y) is set to >: the control flow depends on y[̃i]

so future assignments in fact depend on y[̃i] even if the as-
signed expression itself does not, so we can no longer keep
track precisely of which variables depend on y[̃i]. Other-
wise, we add all terms that are guaranteed to be defined
and independent of y[̃i] to indep(y).

C.5 Equational Prover
We use an algorithm inspired by the Knuth-Bendix completion
algorithm [30], with differences detailed below.

The prover manipulates pairs F ,R where F is a set of facts
(M or defined(M)) and R is a set of rewrite rules M1 → M2.
We say that M reduces into M ′ by M1 → M2 when M =
C[M1] and M ′ = C[M2] for some term context C. (That is, all
variables in rewrite rules ofR are considered as constants.) The
prover starts with a certain set of facts F and R = ∅. Then the
prover transforms the pairs (F ,R) by the following rules (the
rule F,R

F ′,R′ means that F ,R is transformed into F ′,R′):

F ∪ {F},R
F ∪ {F ′},R

if F reduces into F ′ by a rule ofR or
a user-defined rewrite rule knowing F ,R (1)

F ∪ {M1 ∧M2},R
F ∪ {M1,M2},R

(2)

F ∪ {x[M1, . . . ,Mm] = x[M ′1, . . . ,M
′
m]},R

F ∪ {M1 = M ′1, . . . ,Mm = M ′m},R
when x is defined only by restrictions
new x : T and T is a large type

(3)

F ∪ {M1 = M2},R
{false},R

when one of the following conditions
holds:

• denoting by M ′1 the term obtained from M1 by replac-
ing all array indices that are not replication indices with
fresh replication indices, we have the following proper-
ties: x occurs in M ′1, x is defined only by restrictions
new x : T , T is a large type, M ′1 characterizes a part of
x, and M2 is obtained by optionally applying function
symbols to terms of the form y[M̃ ] where y is defined
only by restrictions and y 6= x;

• simplifyTerm(M1 = M2, P ) = false, where P is the
current program point.

(4)

F ∪ {M = M ′},R
F ,R∪ {M →M ′}

if M > M ′ (5)

F ,R∪ {M1 →M2}
F ∪ {M1 = M ′2},R

if M2 reduces into M ′2 by a rule ofR
or a user-defined rewrite rule knowing
F ,R

(6)

F ,R∪ {M1 →M2}
F ∪ {M ′1 = M2},R

if M1 reduces into M ′1 by a rule ofR

(7)

We also use the symmetrics of Rules (4) and (5) obtained by
swapping the two sides of the equality.

Rule (1) simplifies facts using rewrite rules. Let us define
whenM reduces intoM ′ by a user-defined rewrite rule knowing
F ,R. For the first kind of rewrite rules of Section C.1, this is
simply when M reduces into M ′ by the considered rewrite rule.
For the second kind of rewrite rules of Section C.1, consider a
rewrite rule new y1 : T ′1, . . . , new yl : T ′l ,∀x1 : T1, . . . ,∀xm :
Tm,M1 →M2. Suppose that M = C[σM1], where C is a term
context and σ is a substitution that maps xj to any term of type
Tj for all j ≤ m and yj to terms to the form zj [M̃j ] where zj
is defined only by restrictions new zj : T ′j for all j ≤ l. Let
Cond = {M̃j = M̃j′ | j 6= j′ ∧ zj = zj′}.

• If Cond = ∅, the restrictions zj [M̃j ] are independent, so
M = C[σM1] reduces into M ′ = C[σM2].

• If Cond 6= ∅, let Cond = {cond1, . . . , condk}. When
cond1 ∨ . . .∨ condk is true, the restrictions zj [M̃j ] are not
independent, so we must leave M as it is. When cond1 ∨
. . . ∨ condk is false, M reduces into M ′ = C[σM2]. Sup-
pose that M ′ = false. Hence, we could rewrite M into if
cond1 ∨ . . . ∨ condk then M else false, that is, (cond1 ∨
. . .∨condk)∧M , that is, (cond1∧M)∨. . .∨(condk∧M).
However, since this term itself containsM , this transforma-
tion could lead to a loop. We avoid it as follows. If for all
k′ = 1, . . . , k, M is transformed into M ′k′ by rewrite rules
generated by our equational prover from F ∪ {condk′},R
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and user-defined rewrite rules, using only the first kind of
user-defined rewrite rules of Section C.1, and M ′k′ 6= Mk,
then we rewriteM into (cond1∧M ′1)∨. . .∨(condk∧M ′k).
Otherwise, M does not rewrite by the considered user-
defined rewrite rule knowing F ,R.

Rule (2) decomposes conjunctions of facts. Rules (3) and (4)
exploit the elimination of collisions between random values.
Rule (3) takes into account that, when x is defined by a restric-
tion of a large type, two different cells of x have a negligible
probability of containing the same value. So when two cells of
x contain the same value, we can conclude up to negligible prob-
ability that they are the same cell. Rule (4) expresses that M1

and M2 have a negligible probability of being equal when x is
defined by a restriction of a large type, M1 characterizes a part
of x, and M2 does not depend of x. The first item of (4) estab-
lishes these properties without further dependency analysis and
the second item exploits the local dependency analysis. Addi-
tionally, if F contains M1 = M2 such that x occurs in M1, x is
defined only by restrictions new x : T , T is a large type, andM1

characterizes a part of x, we trigger the global dependency anal-
ysis (Section C.3). If the global dependency analysis succeeds
in transforming the game, the simplification is restarted from the
game obtained after global dependency analysis.

Rule (5) is applied only when Rules (1) to (4) cannot be ap-
plied. Rule (5) transforms equations into rewrite rules by ori-
enting them. We say that M > M ′ when either M is the form
x[M̃ ], x does not occur in M ′, and x is not defined only by
restrictions, or M = x[M1, . . . ,Mm], M ′ = x[M ′1, . . . ,M

′
m],

and for all j ≤ m, Mj > M ′j . Intuitively, our goal is to re-
place M with M ′ when M ′ defines the content of the variable
M . (Notice that this is not an ordering; the Knuth-Bendix al-
gorithm normally uses a reduction ordering to orient equations.
However, we tried some reduction orderings, namely the lex-
icographic path ordering and the Knuth-Bendix ordering, and
obtained disappointing results: the prover fails to prove many
equalities because too many equations are left unoriented. The
simple heuristic given above succeeds more often, at the expense
of a greater risk of non-termination, but that does not cause prob-
lems in practice on our examples. We believe that this comes
from the particular structure of equations, which come from let
definitions and from conditions of find or if, and tend to define
variables from other variables without creating dependency cy-
cles.)

Rules (6) and (7) are systematically applied to simplify all
rewrite rules of R after a new rewrite rule has been added by
Rule (5). Since all terms in rewrite rules of R are considered as
constants, Rule (7) in fact includes the deduction of equations
from critical pairs done by the standard Knuth-Bendix comple-
tion algorithm.

We say that F yields a contradiction when the prover, starting
from (F , ∅), derives false.

C.6 Game Simplification

We use the following transformations in order to simplify games.
These transformations exploit the information collected as ex-
plained in the previous sections.

• Each termM in the game is replaced with a simplified term
M ′ obtained by reducing M by user-defined rewrite rules
knowing FPM (see Sections C.1 and C.5) and the rewrite
rules obtained from FPM by the above equational prover
where PM is the smallest process containing M . The re-
placement is performed only when at least one user-defined
rewrite rule has been used, to avoid complicating the game
by substituting all variables with their value.

• If P = find (
⊕m

j=1 uj1 [̃i] ≤ nj1, . . . , ujmj [̃i] ≤ njmj
suchthat defined(Mj1, . . . ,Mjlj ) ∧Mj then Pj) else P ′,
ujk [̃i] reduces into M ′ by user-defined rewrite rules know-
ing FPj (see Sections C.1 and C.5) and the rewrite rules
obtained from FPj , ujk does not occur in M ′, and Mj1,
. . . , Mjlj , Mj make no array accesses to ujk (with in-
dices different from the current indices), then ujk is re-
moved from the j-th branch of this find, ujk [̃i] is replaced
with M ′ in Mj1, . . . ,Mjlj ,Mj and Pj is replaced with
let ujk [̃i] : [1, njk] = M ′ in Pj . (Intuitively, ujk [̃i] = M ′,
so the value of ujk [̃i] can be computed by evaluating M ′

instead of performing an array lookup. We remove ujk [̃i]

from the variables looked up by find and replace ujk [̃i] with
its value M ′.)

• Suppose that P = find (
⊕m

j=1 uj1 [̃i] ≤ nj1, . . . ,

ujmj [̃i] ≤ njmj suchthat defined(Mj1, . . . ,Mjlj ) ∧
Mj then Pj) else P ′, there exists a term M such that
defined(M) ∈ FPj , x[N1, . . . , Nl] is a subterm of M ,
x 6= ujk for all k ≤ mj , and none of the following con-
ditions holds: a) P is under a definition of x in Q0; b) Q0

contains Q1 | Q2 such that a definition of x occurs in Q1

and P is under Q2 or a definition of x occurs in Q2 and P
is underQ1; c)Q0 contains lp+1 replications above a pro-
cessQ that contains a definition of x and P , where lp is the
length of the longest common prefix between N1, . . . , Nl
and the current replication indices at the definitions of x.
Then the j-th branch of the find is removed. (In this case,
x[N1, . . . , Nl] cannot be defined at P , so the j-th branch of
the find cannot be taken.)

• Suppose that P = find (
⊕m

j=1 uj1 [̃i] ≤ nj1, . . . ,

ujmj [̃i] ≤ njmj suchthat defined(Mj1, . . . ,Mjlj ) ∧ Mj

then Pj) else P ′, there exist terms M , M ′ such that
defined(M) ∈ FPj , x[N1, . . . , Nl] is a subterm of M ,
defined(M ′) ∈ FPj , x′[N ′1, . . . , N ′l′ ] is a subterm of M ′,
Nk = N ′k for all k ≤ min(l, l′), x 6= x′, and x and x′ are
incompatible, then the j-th branch of the find is removed.
Two variables x and x′ are said to be compatible when ei-
ther there exists Q1 | Q2 in the game such that x is defined
in Q1 and x′ is defined in Q2, or there is a definition of x′

under a definition of x, or symmetrically.

• If P = find (
⊕m

j=1 ũj [̃i] ≤ ñj suchthat defined(Mj1, . . . ,
Mjlj )∧Mj thenPj) elseP ′ andFPj yields a contradiction,
then the j-th branch of the find is removed.

• If P = find else P ′, then P is replaced with P ′.
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• If find (
⊕m

j=1 ũj [̃i] ≤ ñj suchthat defined(Mj1, . . . ,
Mjlj ) ∧Mj then Pj) else P ′ and FP ′ yields a contradic-
tion, then P ′ is replaced with yield〈〉.

• If P = find ũ[̃i] ≤ ñ suchthat M then P1 else P ′, FP ′
yields a contradiction, and the variables in ũ are not used
outside P and are not in V , then P is replaced with P1.
(When the find defines variables ũ used elsewhere, we can-
not remove it.)

• If P = find (
⊕m

j=1 ũj [̃i] ≤ ñj suchthat defined(Mj1, . . . ,

Mjlj ) ∧ Mj then yield〈〉) else yield〈〉 and the variables
in ũj are not used outside P and are not in V , then P is
replaced with yield〈〉.

• The defined conditions of find are updated so that Invari-
ant 2 is satisfied. (When such a defined condition guaran-
tees that M is defined, defined(M) implies defined(M ′),
and after simplificationM ′ appears in the scope of this con-
dition, then M ′ has to be added to this condition if it is not
already present.)

• If P = new x : T ;P ′ or let x : T = M in P ′ and x is not
used in the game and is not in V , then P is replaced with
P ′.

C.7 Further Simplifications
After applying the game simplifications described above, we fur-
ther apply the following transformations:

Move(all): We move restrictions and assignments downwards
in the code as much as possible. A restriction new x[̃i] : T or
assignment let x[̃i] : T = M cannot be moved under a repli-
cation, or under a parallel composition when both sides use x,
or a let let y[̃i] : T = M in . . ., input c[M1, . . . ,Ml](x1 [̃i] :

T1, . . . , xk [̃i] : Tk), output c[M1, . . . ,Ml]〈N1, . . . , Nk〉 when
x occurs in M,M1, . . . ,Ml, N1, . . . , Nk, or a find (or if) when
the conditions use x. It can be moved under the other constructs,
duplicating it if necessary, when we move it under a find (or if)
that uses x in several branches. Note that when the restriction
new x[̃i] : T or assignment let x[̃i] : T = M cannot be moved
under an input, a parallel composition, or a replication, it must
be written above the output that is located above the considered
input, parallel composition or replication, so that the syntax of
processes is not violated. When there are array accesses to x,
the restriction new x[̃i] : T or assignment let x[̃i] : T = M can
be moved only inside the same output process, without moving
it under an output or under a find that makes an array access to
x.

The conditions above are necessary for the soundness of the
move. Furthermore, the move is performed only if it is helpful,
following conditions that we detail next.

For restrictions, the move is performed only when the restric-
tion can be moved under a find (or if). When this transformation
duplicates a new x[̃i] : T by moving it under a find that uses x in
several branches, a subsequent SArename(x) enables us to dis-
tinguish several cases depending in which branch x is created,
which is useful in some proofs.

For assignments, the assignment to x is moved only when
there are no array accesses to x, the assignment to x can be
moved under a find (or if), and x is used in a single branch of
that find (or if). In this case, the assignment can be performed
only in the branch that uses x, so it will be computed in fewer
cases thanks to the move.

RemoveAssign(useless): As a particular case of the transfor-
mation RemoveAssign, we remove useless assignments, that is,
assignments to x when x is unused and assignments let x[̃i] :

T = y[M̃ ]. Since removing such assignments may also remove
uses of other variables, we repeat this removal until a fixpoint is
reached.

SArename(auto): As a particular case of the transformation
SArename, when x has m > 1 definitions and all variable ac-
cesses to x are of the form x[i1, . . . , il] under a definition of
x[i1, . . . , il], where i1, . . . , il are the current replication indices
at this definition of x (that is, x has no array access using find),
we rename x to x1, . . . , xm with a different name for each defi-
nition.

D Applying the Definition of Security of
Primitives

D.1 Formalization of the Transformation
In this appendix, we formalize the transformation performed by
exploiting equivalences that come from the definition of security
of cryptographic primitives. We require the following conditions
for the equivalencesL ≈ R that model cryptographic primitives:

H0. [[L]] and [[R]] satisfy Invariants 1, 2, and 3. Furthermore, the
result of each function in R has the same type as the result
of the corresponding function of L.

H1. In L, the functional processes FP are simply terms M ; all
their array accesses use the current replication indices. (Al-
lowing let or find in L is difficult, because we need to rec-
ognize the terms M in a context and in a possibly syntacti-
cally modified form.)

H2. L and R have the same structure: same replications, same
number of functions, same number of arguments with the
same types for each function.

H3. The variables yj defined by new and xj defined by function
inputs in L and R are distinct from other variables defined
in R.

H4. Under !i≤n with no restriction in L, one can have
only a single function (x1 : T1, . . . , xl : Tl) → FP .
(One can transform !i≤n((x̃1 : T̃1) → FP1, . . . ,

(x̃m : T̃m) → FPm, !
i1≤n1 . . . , . . . , !im′≤nm′ . . .) into

(!i≤n(x̃1 : T̃1) → FP1, . . . , !
i≤n(x̃m : T̃m) → FPm,

!i1≤n
′
1 . . . , . . . , !im′≤n

′
m′ . . .) in order to eliminate situa-

tions that do not satisfy this requirement.)

H5. Replications in L (resp. R) must have pairwise distinct
bounds n. (This strengthens the typing: the typing then
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guarantees that, if several variables are accessed with the
same array indices, then these variables are defined under
the same replication.)

H6. For all restrictions new y : T that occur above a term M
in L, y occurs in M . (This guarantees that, in Hypothe-
sis H′3.1 below, zjk[Mj1, . . . ,Mjqj ] is defined for all j ≤ l
and k ≤ mj . With Hypothesis H4, this guarantees that
indexj is well-defined in Hypothesis H′3.1.3 below.)

H7. Finds in R are of the form

find (
⊕m

j=1 ũj ≤ ñj suchthat defined(zj1[ũj1], . . . ,

zjlj [ũjlj ]) ∧Mj then FP j) else FP ′

where the following conditions are satisfied:

• For all 1 ≤ k ≤ lj , ũjk is the concatenation of a prefix
of the current replication indices (the same prefix for
all k) and a non-empty prefix of ũj .

• When ũj is non-empty, at least one ũjk for 1 ≤ k ≤
lj is the concatenation of a prefix of the current repli-
cation indices with the whole sequence ũj .

• When lj 6= 0, there exists k ∈ {1, . . . , lj} such that
for all k′ 6= k, zjk′ is defined syntactically above all
definitions of zjk and ũjk′ is a prefix of ũjk. (This
implies that the same find cannot access variables de-
fined in different functions under the same replication
in R.)

• Finally, variables zjk are not defined by a find in R.
(Otherwise, the transformation would be considerably
more complicated.)

Such equivalences L ≈ R are used by the prover by replacing
a processQ0 observationally equivalent toC[[[L]]] with a process
Q′0 observationally equivalent to C[[[R]]], for some evaluation
context C. We now give sufficient conditions for a process to
be equivalent to C[[[L]]]. These conditions essentially guarantee
that all uses of certain secret variables of Q0, in a set S, can
be implemented by calling functions of L. These conditions are
explained in more detail below.

We first define the function extract used in order to extract
information from the left- or right-hand sides of the equivalence.

extract((x1 : T1, . . . , xl : Tl)→ M, ()) =

(x1 : T1, . . . , xl : Tl)→ M

extract(!i≤nnew y1 : T1; . . . ; new yl : Tl; (G1, . . . , Gm),

(j1, . . . , jk)) =

(y1 : T1, . . . , yl : Tl), extract(Gj1 , (j2, . . . , jk))

extract((G1, . . . , Gm), (j0, . . . , jk)) =

extract(Gj0 , (j1, . . . , jk))

We rename the variables of Q0 such that variables of L and R
do not occur in Q0. Assume that there exist a set of variables S
and a setM of occurrences of terms in Q0 such that:

H′1. S ∩ V = ∅.

H′2. No term in M occurs in the condition part of a find
(defined(M1, . . . ,Ml) ∧M ) or in the channel of an input.

H′3. For each M ∈ M, there exist a sequence BL(M) =
(j0, . . . , jl) such that extract(L,BL(M)) = (y11 : T11,
. . . , y1m1 : T1m1), . . . , (yl1 : Tl1, . . . , ylml : Tlml),
(x1 : T1, . . . , xm : Tm) → N and a substitution σ such
that M = σN (σ applies to the abbreviated form of N
in which we write x instead of x[̃i]) and the following con-
ditions hold:

H′3.1. For all j ≤ l and k ≤ mj , σyjk is a variable access
zjk[Mj1, . . . ,Mjqj ], with zjk ∈ S. We define zjk =
varImL(yjk,M).

H′3.1.1. All definitions of zjk in Q0 are of the form
new zjk[. . .] : Tjk, and for all k ≤ mj , they oc-
cur under the same replications (but they may oc-
cur under different replications for different val-
ues of j).

H′3.1.2. When j 6= j′ or k 6= k′, zjk 6= zj′k′ .
H′3.1.3. The sequence of array indices Mj1, . . . ,Mjqj

is the same for all k ≤ mj (but may depend
on j). We denote by indexj(M) a substitu-
tion that maps the current replication indices at
the definition of zjk to Mj1, . . . ,Mjqj respec-
tively. If ml = 0, indexl(M) is not set by
the previous definition, so we set indexl(M)
to map the current replication indices at M
to themselves. For each j < l, there exists
a substitution ρj(M) such that indexj(M) =
indexj+1(M) ◦ ρj(M) and the image of ρj(M)
does not contain the current replication indices at
M . We denote by im indexj(M) the sequence
image by indexj(M) of the sequence of current
replication indices at the definition of zjk (so,
im indexj(M) = (Mj1, . . . ,Mjqj )). We define
im ρj(M) similarly.

H′3.2. For all j ≤ m, σxj is a term of type Tj .

H′3.3. All occurrences in Q0 of a variable in S are either as
zjk above or at the root of an argument of a defined
test in a find process.

To make it precise which termM each element refers to, we
add M as a subscript, writing yjk,M for yjk, zjk,M for zjk,
Tjk,M for Tjk, xj,M for xj , Tj,M for Tj , NM for N , and
σM for σ. We also define nNewj,M = mj , nNewSeqM =
l, and nInputM = m.

H′4. We say that two terms M,M ′ ∈ M share the first l′ se-
quences of random variables when yjk,M = yjk,M ′ and
zjk,M = zjk,M ′ for all j ≤ l′ and k ≤ nNewj,M =
nNewj,M ′ 6= 0. Let l′ be the greatest integer such that
M and M ′ share the first l′ sequences of random variables.
Then we require:

H′4.1. The sets of variables {zjk,M | j > l′ and k ≤
nNewj,M} and {zjk,M ′ | j > l′ and k ≤ nNewj,M ′}
must be disjoint.
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H′4.2. ρj(M) = ρj(M
′) for all j < l′.

H′4.3. If l′ = nNewSeqM and NM = NM ′ , then there
exists M0 such that M = (indexl′(M))M0, M ′ =
(indexl′(M

′))M0, and M0 does not contain the cur-
rent replication indices at M or M ′.

When these conditions are satisfied, there exists a context C
such that Q0 ≈V0 C[[[L]]].

Terms in M must not occur in conditions of find (Hypothe-
sis H′2) because such terms may refer to variables defined by
find, and by the transformation, these variables might be moved
outside their scope, thus violating Invariant 2. Terms inMmust
not occur in the channel of an input, because otherwise, after the
transformation, the input process might need to perform compu-
tations by find or let, forbidden by the syntax. (This requirement
is not a limitation in practice, since terms in channels of inputs
are typically the current replication indices, so they do not con-
tain cryptographic primitives.)

In Hypothesis H′3, the sequence BL(M) indicates which
branch of L corresponds to the term M .

Hypothesis H′3.2 checks that the values received by inputs in
L are of the proper type. Hypothesis H′3.1.1 checks that vari-
ables zjk,M that correspond to variables defined by new in L are
of the proper type. The variables yjk defined by new in L are
used only in terms N in L. Correspondingly, Hypothesis H′3.3
checks that the corresponding variables zjk,M ∈ S are not used
elsewhere in Q0 and Hypothesis H′1 checks that they cannot be
used directly by the context.

In L, for distinct j, k, the variables yjk correspond to inde-
pendent random numbers. Correspondingly, Hypothesis H′3.1.2
requires that the variables zjk,M are created by different restric-
tions for distinct j, k. In L, the variables yjk are accessed with
the same indices for any k (but a fixed j). Correspondingly, Hy-
pothesis H′3.1.3 requires that the variables zjk,M are accessed
with the same indices im indexj(M) for any k. When instances
of N and N ′ both refer to yjk with the same indices, then they
also refer to yj′k′ with the same indices when j′ ≤ j. Corre-
spondingly, if M and M ′ refer to the same zjk, by Hypothe-
sis H′4.1, they also refer to the same zj′k′ for j′ ≤ j. More-
over, if indexj(M) and indexj(M

′) evaluate to the same bit-
strings, then indexj′(M) and indexj′(M

′) also evaluate to the
same bitstrings, since indexj′(M) = indexj(M) ◦ ρj−1(M) ◦
. . . ◦ ρj′(M) by Hypothesis H′3.1.3 and ρk(M) = ρk(M ′) for
k < j by Hypothesis H′4.2. These conditions guarantee that we
can establish a correspondence from the array cells of variables
of S in Q0 to the array cells of variables defined by new in L,
and that this correspondence is an injective function, as required
in Section 3.2.

Finally, a term N in L is evaluated at most once for each
value of the indices of yl1, . . . , ylml , so N is computed for a
single value of the arguments x1, . . . , xm. Correspondingly, by
Hypothesis H′4.3, when M and M ′ share the l = nNewSeqM
sequences of random variables and indexl(M) and indexl(M

′)
evaluate to the same bitstring, then M and M ′ evaluate to the
same bitstring.

We compute the possible values of the sets S andM by fix-
point iteration. We start withM = ∅ and S containing a single
variable of Q0 bound by a restriction. (We try all possible vari-

ables.) When a term M of Q0 contains a variable in S, we try to
find a function in L that corresponds to M , and if we succeed,
we addM toM, and add to S variables inM that correspond to
variables bound by restrictions in L. (If we fail, the transforma-
tion is not possible.) We continue until a fixpoint is reached, in
which case all occurrences of variables of S are in terms ofM.

We now describe how we construct a process Q′0 such that
Q′0 ≈V0 C[[[R]]].

1. We first move restrictions in the right-hand side of the
equivalence, so that they occur above the reception of the
arguments of functional processes instead of inside func-
tional processes. As explained below, this is necessary
for the correctness of the subsequent transformation of Q0,
when restrictions appear in the corresponding part of the
left-hand side. More precisely, we transform the right-
hand side of the equivalence, R, as follows: for each
j1, . . . , jl, if extract(L, (j1, . . . , jl)) = (y11 : T11, . . . ,
y1m1

: T1m1
), . . . , (yl1 : Tl1, . . . , ylml : Tlml), (x1 : T1,

. . . , xm : Tm) → N with ml 6= 0 and extract(R, (j1,

. . . , jl)) = (y′11 : T ′11, . . . , y
′
1m′1

: T ′1m′1
), . . . , (y′l1 : T ′l1,

. . . , y′lm′l
: T ′lm′l

), (x1 : T1, . . . , xm : Tm) → FP , for each
new z : T in FP ,

• we add z : T in the sequence of random variables
y′l1 : T ′l1, . . . , y

′
lm′l

: T ′lm′l
;

• if z does not occur in defined conditions of find in R,
we remove new z : T from FP ;

• otherwise, we replace new z : T with let z′ : T = cst

for some constant cst and add z′[M̃ ] to each defined

condition of R that contains z[M̃ ].

This transformation is needed, because in the right-hand
side, a new random number must be chosen exactly for each
different call to the function (x1 : T1, . . . , xm : Tm) →
FP . This would not be guaranteed without that transfor-
mation, because when the left-hand side N is evaluated at
several occurrences with the same random numbers yl1 :
Tl1, . . . , ylml : Tlml (ml 6= 0), these occurrences all corre-
spond to a single call to (x1 : T1, . . . , xm : Tm)→ N , so a
single call to (x1 : T1, . . . , xm : Tm)→ FP , but we create
a copy of FP for each occurrence. After the transforma-
tion, FP contains no choice of random numbers, so we can
evaluate it several times without changing the result. When
ml = 0, evaluations of N at several occurrences can cor-
respond to different calls to (x1 : T1, . . . , xm : Tm) → N ,
so the transformation is not necessary.

2. Next, we create fresh variables corresponding to vari-
ables of the right-hand side of the equivalence. For
each M ∈ M, let extract(R,BL(M)) = (y′11,M :
T ′11,M , . . . , y

′
1m′1,M

: T ′1m′1,M
), . . . , (y′l1,M : T ′l1,M , . . . ,

y′lm′l,M
: T ′lm′l,M

), (x1,M : T1,M , . . . , xm,M : Tm,M ) →
FPM with l = nNewSeqM , m = nInputM and we de-
fine nNew′j,M = m′j . We create fresh variables z′jk,M =
varImR(y′jk,M ,M) for each j ≤ nNewSeqM , k ≤
nNew′j,M , and M ∈ M, such that if M and M ′ share the
first l′ sequences of random variables, then z′jk,M = z′jk,M ′
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for j ≤ l′ and k ≤ nNew′j,M . All variables z′jk,M are oth-
erwise pairwise distinct.

We also create a fresh variable varImR(xj,M ,M) for each
j ≤ nInputM and each M ∈ M, and a fresh variable
varImR(z,M) for each variable z defined by let or new in
FPM and each M ∈M.

3. We update the defined conditions of finds, in order to pre-
serve Invariant 2. More precisely, if a defined condition of
a find contains zj1,M [M1, . . . ,Ml′ ] for some M , we add
defined(z′jk′,M [M1, . . . ,Ml′ ]) for all k′ ≤ nNew′j,M to
this condition. (So that accesses to z′jk′,M [M1, . . . ,Ml′ ]
created when transforming term M satisfy Invariant 2,
since accesses to zj1,M [M1, . . . ,Ml′ ] occur in M and sat-
isfy Invariant 2.)

4. We update restrictions corresponding to restrictions of the
left-hand side of the equivalence: we either remove them
or replace them with restrictions corresponding to the
right-hand side of the equivalence. More precisely, when
x ∈ S occurs at the root of a term Mk in a condition
defined(M1, . . . ,Ml), we replace its definition new x :
T ;Qwith let x : T = cst inQ for some constant cst; when
it does not occur in defined tests, we remove its definition.
If x = zj1,M for some M , we add new z′jk,M : T ′jk,M for
each k ≤ nNew′j,M where new x : T was.

5. Finally, we transform the terms M ∈ M corresponding to
functions of the left-hand side of the equivalence into their
corresponding functional process in the right-hand side.
For each term M ∈ M, let PM = CM [M ] be the smallest
process containing M . (Note that M never occurs in an in-
put, so PM is an output process.) Let l = nNewSeqM . We
replace PM with (new z′lk,M : T ′lk,M ; )k≤nNew′l,M

P ′M if
nNewl,M = 0 and nNew′l,M > 0, and with P ′M otherwise,
where

– P ′M = (let varImR(xk,M ,M) : Tk,M = σMxk,M
in)k≤nInputM transfφ0,CM (FPM ).

– φ0 is defined as follows:

φ0(xj,M [i1, . . . , il]) = varImR(xj,M ,M)[i′1, . . . , i
′
l′ ]

φ0(z[i1, . . . , il]) = varImR(z,M)[i′1, . . . , i
′
l′ ]

φ0(y′jk,M [i1, . . . , ij ]) =

varImR(y′jk,M ,M)[im indexj(M)]

where i1, . . . , il are the current replication indices at the
definition of xj,M in R, i′1, . . . , i

′
l′ are the current replica-

tion indices at M in Q0, and z is a variable defined by let
or new in FPM .

– A function φ from array accesses to array accesses is ex-
tended to terms as a substitution, by φ(f(M1, . . . ,Mm)) =
f(φ(M1), . . . , φ(Mm)).

– transfφ,CM (FP) is defined recursively as follows:

transfφ,CM (M ′) = CM [φ(M ′)]

transfφ,CM (new z : T ; FP ′) =

new varImR(z,M) : T ; transfφ,CM (FP ′)

transfφ,CM (let z : T = M ′ in FP ′) =

let varImR(z,M) : T = φ(M ′) in transfφ,CM (FP ′)

transfφ,CM (find(
⊕m

j=1
FB j) else FP ′) =

find(
⊕m

j=1
transfφ,CM (FB j)) else transfφ,CM (FP ′)

and for find branches FB , transfφ,CM (FB) is defined as
follows:

transfφ,CM (suchthat M ′ then FP ′) =

suchthat φ(M ′) then transfφ,CM (FP ′)

transfφ,CM (ũ ≤ ñ suchthat

defined(zk[Mk1, . . . ,Mkl′k
]1≤k≤l) ∧M1 then FP ′) =⊕

M ′∈M′
ũ′ ≤ ñ′ suchthat

defined(φ′(zk[Mk1, . . . ,Mkl′k
])1≤k≤l) ∧

im indexj1(M ′){ũ′/ĩ′} = im indexj1(M) ∧
φ′(M1) then transfφ′,CM (FP ′)

where l 6= 0; j1 is the length of the prefix of the current
replication indices that occurs in Mk1, . . . ,Mkl′k

(by
Hypothesis H7); M′ is the set of M ′ ∈ M such that
varImR(zk,M

′) is defined for k ≤ l and M ′ and M

share the first j1 sequences of random variables; ĩ′ is
the sequence of current replication indices at M ′; ũ′ is a
sequence formed with a fresh variable for each variable
in ĩ′; ñ′ is the sequence of bounds of replications above
M ′; φ′ is an extension of φ with φ′(zk[Mk1, . . . ,Mkl′k

]) =

varImR(zk,M
′)[im indexj(M

′){ũ′/ĩ′}] if zk = y′jk′,M ′
for some k′, and φ′(zk[Mk1, . . . ,Mkl′k

]) =

varImR(zk,M
′)[ũ′] if zk is defined by let or by a

function input. Optimizations for the definition of
transfφ,CM (FB) are presented in Appendix D.2.1.

The two essential parts of the transformation are the last two
ones, numbered 4 and 5. In step 4, we add the restrictions to
create random variables that correspond to random variables of
R. We create the variables z′jk,M at the place where zj1,M was
created in the initial game (We could have chosen zjk′,M for
any k′.), or when there is no zj1,M , we have j = nNewSeqM
and we create z′jk,M just before evaluating M . In step 5, we
transform the term M itself into the corresponding functional
process of R, FPM . The only delicate part for evaluating FPM

is the case of find: instead of looking up arrays of R, we look up
the corresponding arrays of Q′0 given by the mapping φ.

D.2 Extensions
D.2.1 Optimizations for transfφ,CM (FB)

We can apply two optimizations to the definition of
transfφ,CM (FB):

• When im indexj1(M ′) is a prefix of ĩ′,
im indexj1(M ′){ũ′/ĩ′} is a prefix of ũ′, so the equality
im indexj1(M ′){ũ′/ĩ′} = im indexj1(M) defines the
value of a prefix of ũ′. We simply substitute the fixed
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elements of ũ′ with their value, and remove them from the
sequence of variables to be looked up by find.

• When all variables zk are yjk′,M ′ for some j, k′, and M ′,
with max j = j0, we use the following definition instead:

transfφ,CM (̃i ≤ ñ suchthat

defined(zk[Mk1, . . . ,Mkl′k
]1≤k≤l) ∧M1 then FP ′) =⊕

M ′∈M′
ũ′ ≤ ñ′ suchthat

defined(φ′(zk[Mk1, . . . ,Mkl′k
])1≤k≤l)∧

im (ρj0−1(M ′) ◦ . . . ◦ ρj1(M ′)){ũ′/ĩ′} =

im indexj1(M) ∧ φ′(M1) then transfφ′,CM (FP ′)

where j1 is the length of the prefix of the current repli-
cation indices that occurs in Mk1, . . . ,Mkl′k

(by Hy-
pothesis H7); M′ is the set of M ′ ∈ M such that
varImR(zk,M

′) is defined for k ≤ l and M ′ and M

share the j1 first sequences of random variables; ĩ′ is
the sequence of current replication indices at the defini-
tion of zj0k,M ′ ; ũ′ is a sequence formed with a fresh
variable for each variable in ĩ′; ñ′ is the sequence of
bounds of replications above the definition of zj0k,M ′ ;
φ′ is an extension of φ with φ′(zk[Mk1, . . . ,Mkl′k

]) =

varImR(zk,M
′)[im (ρj0−1(M ′) ◦ . . . ◦ ρj(M ′)){ũ′/ĩ′}]

if zk = y′jk,M ′ .

The composition ρj0−1(M ′) ◦ . . . ◦ ρj(M ′) computes the
indices of z′jk′,M ′ for any k′ from the indices of z′j0k′′,M ′
for any k′′.

When several terms M ′ ∈ M share the first j0 sequences
of random variables, they generate the same φ′, so only one
find branch needs to be added for all of them, which can
reduce considerably the number of find branches to add.

An optimization similar to the first one above also applies
to this case, when im (ρj0−1(M ′)◦. . .◦ρj1(M ′)) is a prefix
of ĩ′.

D.2.2 Guiding the Application of Equivalences

We introduce a small extension to the equivalences (G1, . . . ,
Gm) ≈ (G′1, . . . , G

′
m) described in Section 3.2. These equiva-

lences become (G1 mode1, . . . , Gm modem) ≈ (G′1, . . . , G
′
m),

where modej is either empty or [all ]. The mode [all ] is an indi-
cation for the prover, to guide the application of the equivalence
without changing its semantics. When modej = [all ],M must
contain all occurrences in the initial game Q of the root function
symbols of terms M inside Gj . When modej is empty, at least
one variable defined by new in Gj must correspond to a variable
in S.

The following hypotheses guarantee the good usage of modes:

H8. At most one modej can be empty. (Otherwise, when
several sets of random variables can be chosen for each
Gj , there are many possible combinations for applying the
transformation.)

H9. If Gj is of the form !i≤n(x1 : T1, . . . , xl : Tl)→ FP with-
out any restriction, then modej = [all ]. (A restriction is
needed in the definition of empty mode.)

An equivalence can be declared [manual ]. In this case, this
equivalence is not applied by the automatic proof strategy. It
can be used only by manual proof indications. This is useful,
for instance, if applying the equivalence would yield an infinite
loop.

Each function in the left-hand side can also be labeled with an
integer [n], which represents a priority: CryptoVerif preferably
uses functions labeled with a lower integer. (The absence of la-
bel corresponds to the label [0].) Each function in the left-hand
side can finally be labeled with [useful change]. This indication
is also used for the proof strategy: if at least one [useful change]
indication is present, CryptoVerif applies the transformation de-
fined by the equivalence only when at least one [useful change]
function is called in the game.

D.2.3 Relaxing Hypothesis H6

Hypothesis H6 requires that for all restrictions new y : T that
occur above a term N in the left-hand side of an equivalence, y
occurs inN . We can relax this hypothesis, by allowing that some
random variables y do not occur in N , provided that the miss-
ing variables can be determined using Hypothesis H′4.1: when
some termM shares some variable y in the l′-th sequence of ran-
dom variables with some other term M ′, we know that it must
also share with M ′ all random variables in sequences above and
including the l′-th sequence; so, knowing the random variables
associated to M ′, we can determine some of those associated
to M . The transformation simply fails when the algorithm de-
scribed above cannot fully determine the random variables asso-
ciated to some term M .

With this extension, we additionally need to make sure that,
when an expression of the right-hand side uses a variable y de-
fined by a restriction, this variable will be defined in the trans-
formed game before the expression is evaluated. To do that, we
establish a correspondence between the restrictions before the
transformation and the restrictions after, such that, as far as pos-
sible, if a variable is used in a transformed expression, the corre-
sponding variable before transformation is also used in the initial
expression. For variables that appear in a transformed expres-
sion but are not used in the initial expression, we check when
performing the game transformation that they will correctly be
defined. If they are not correctly defined, the transformation
fails.

D.2.4 Relaxing Hypothesis H′2

Hypothesis H′2 requires that no term N transformed by
the equivalence occurs in the condition part of a find
(defined(M1, . . . ,Ml) ∧M ). We can relax this hypothesis by
allowing N to occur in M (but not in the defined test), provided

• the variables ũ bound by this find do not occur in the fol-
lowing terms in the transformed expression of N :

– N ′ in processes of the form let x : T = N ′ in . . .;

– N ′jk and N ′j in processes of the form
find (

⊕m
j=1 uj1 [̃i] ≤ nj1, . . . , ujmj [̃i] ≤ njmj

suchthat defined(N ′j1, . . . , N
′
jlj

) ∧N ′j then . . .) else
. . ..
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(If the variables ũ bound by find occurred in such terms,
the transformation would move them outside the scope of
their definition.)

• if N depends on the variables ũ bound by this find, then
the corresponding left-hand side of the equivalence N ′ is
under a replication !i≤n with no restriction in L. (Oth-
erwise, L contains new y1 : T1; . . . ; new yl : Tl; (. . . ,
(x1 : T ′1, . . . , xl′ : T ′l′) → N ′, . . .) and L allows a sin-
gle evaluation of N ′ for each execution of the restrictions
new y1 : T1; . . . ; new yl : Tl, while the termN is evaluated
several times, once for each value of ũ, so the transforma-
tion is impossible. In other words, the variables ũ must be
considered as replication indices in this transformation.)

D.3 Modeling other Primitives
This appendix gives the definition of a number of cryptographic
primitives in our prover.

D.3.1 Shared-key Encryption

IND-CPA and INT-CTXT Encryption

Tr large, fixed length;T ′r fixed length
enc : bitstring × Tk × T ′r → Te

dec : Te × Tk → bitstring⊥

kgen : Tr → Tk

Z : bitstring → bitstring

i⊥ : bitstring → bitstring⊥

∀m : T, ∀r : Tr,∀r′ : T ′r,

dec(enc(m, kgen(r), r′), kgen(r)) = i⊥(m)

!ik≤nknew r : Tr;

!ie≤ne(x : bitstring)→ new r′ : T ′r; enc(x, kgen(r), r′)

≈
!ik≤nknew r : Tr;

!ie≤ne(x : bitstring)→ new r′ : T ′r; enc′(Z(x), kgen′(r), r′)

!ik≤nknew r : Tr; (

!ie≤nenew r′ : T ′r; (x : bitstring)→ enc(x, kgen(r), r′),

!id≤nd(y : Te)→ dec(y, kgen(r)))

≈
!ik≤nknew r : Tr; (

!ie≤nenew r′ : T ′r; (x : bitstring)→
let z : Te = enc(x, kgen′(r), r′) in z,

!id≤nd(y : Te)→
find u ≤ ne suchthat defined(x[u], r′[u], z[u]) ∧ z[u] = y

then i⊥(x[u]) else ⊥).

The first equivalence represents the IND-CPA property, as ex-
plained in the body of the paper. The second one represents the
INT-CTXT property (ciphertext integrity). This property means

that, up to negligible probability, decryption succeeds only if the
given ciphertext y has been generated by the encryption oracle
(y = z[u] for some u ≤ ne). In this case, decryption returns the
corresponding cleartext x[u]; otherwise, it fails by returning the
special symbol ⊥.

IND-CCA2 and INT-PTXT Encryption

Tr large, fixed length;T ′r fixed length
enc : bitstring × Tk × T ′r → Te

dec : Te × Tk → bitstring⊥

kgen : Tr → Tk

Z : bitstring → bitstring

i⊥ : bitstring → bitstring⊥

∀m : T, ∀r : Tr,∀r′ : T ′r,

dec(enc(m, kgen(r), r′), kgen(r)) = i⊥(m)

!ik≤nknew r : Tr; (

!ie≤nenew r′ : T ′r; (x : bitstring)→ enc(x, kgen(r), r′),

!id≤nd(y : Te)→ dec′(y, kgen(r)))

≈
!ik≤nknew r : Tr; (

!ie≤nenew r′ : T ′r; (x : bitstring)→
let z : Te = enc′(Z(x), kgen′(r), r′) in z,

!id≤nd(y : Te)→
find u ≤ ne suchthat defined(x[u], r′[u], z[u]) ∧
y = z[u] then i⊥(x[u]) else dec′(y, kgen′(r)))

!ik≤nknew r : Tr; (

!ie≤nenew r′ : T ′r; (x : bitstring)→ enc(x, kgen(r), r′),

!id≤nd(y : Te)→ dec(y, kgen(r)))

≈
!ik≤nknew r : Tr; (

!ie≤nenew r′ : T ′r; (x : bitstring)→ enc(x, kgen(r), r′),

!id≤nd(y : Te)→
let z : T = dec′(y, kgen(r)) in

find u ≤ ne suchthat defined(x[u]) ∧ z = i⊥(x[u])

then i⊥(x[u]) else ⊥).

The first equivalence represents the IND-CCA2 property. It re-
places encryptions with encryptions of zeroes. For decryption,
if the ciphertext received as argument has been produced by the
encryption oracle, it returns the corresponding cleartext. Other-
wise, it decrypts normally. The decryption oracle uses the sym-
bol dec′ in the left-hand side, because the IND-CCA2 property
will be applied after the INT-PTXT property, which transforms
dec into dec′.

The second equivalence represents the INT-PTXT property
(plaintext integrity). It leaves encryptions unchanged. Up to
negligible probability, decryption succeeds only when the plain-
text obtained by decryption z has been given to the encryption
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oracle. Otherwise, decryption fails by returning the special sym-
bol ⊥.

Super-Pseudo-Random Permutations (SPRP)

Tr large, fixed length;T large, fixed length
enc,dec : T × Tk → T

kgen : Tr → Tk

∀m : T, ∀r : Tr,dec(enc(m, kgen(r)), kgen(r)) = m

∀m : T, ∀r : Tr, enc(dec(m, kgen(r)), kgen(r)) = m

!ik≤nknew r : Tr; (

!ie≤ne(me : T )→ enc(me, kgen(r)),

!id≤nd(md : T )→ dec(md, kgen(r)))

≈
!ik≤nknew r : Tr; (

!ie≤ne(me : T )→
find u ≤ ne suchthat defined(me[u], re[u]) ∧

me = me[u] then re[u]

⊕ u ≤ nd suchthat defined(md[u], rd[u]) ∧
me = rd[u] then md[u]

else new re : T ; re,

!id≤nd(md : T )→
find u ≤ ne suchthat defined(me[u], re[u]) ∧

md = re[u] then me[u]

⊕ u ≤ nd suchthat defined(md[u], rd[u]) ∧
md = md[u] then rd[u]

else new rd : T ; rd)

This equivalence expresses that the encryption and decryp-
tion oracles can be replaced with inverse random permutations.
These random permutations are built as follows for the encryp-
tion oracle: when we receive an argument me already passed to
the encryption oracle, we return the previous result; when we
receive the result of a previous call to the decryption oracle, we
return the argument of the decryption oracle in that call; oth-
erwise, we return a fresh random number. (Collisions between
random numbers in Tr have negligible probability, so we ob-
tain permutations except in cases of negligible probability.) The
construction is similar for the decryption oracle.

Pseudo-Random Permutations (PRP)

Tr large, fixed length;T large, fixed length
enc,dec : T × Tk → T

kgen : Tr → Tk

∀m : T, ∀r : Tr,dec(enc(m, kgen(r)), kgen(r)) = m

!ik≤nknew r : Tr;

!ie≤ne(x : T )→ enc(x, kgen(r))

≈

!ik≤nknew r : Tr;

!ie≤ne(me : T )→
find u ≤ ne suchthat defined(me[u], re[u]) ∧

me = me[u] then re[u]

else new re : T ; re

This model is obtained from SPRP by removing the decryption
oracle. It means that encryption is a random permutation. (We
eliminate collisions between random elements re, which have
negligible probability.)

D.3.2 Public-Key Cryptography

UF-CMA Signature

Tr large, fixed length;T ′r fixed length
sign, sign′ : T × Tsk × T ′r → Ts

check, check′ : T × Tpk × Ts → bool

skgen, skgen′ : Tr → Tsk

pkgen,pkgen′ : Tr → Tpk

∀m : T, ∀r : Tr,∀r′ : T ′r,

check(m,pkgen(r), sign(m, skgen(r), r′)) = true

∀m : T, ∀r : Tr,∀r′ : T ′r,

check′(m,pkgen′(r), sign′(m, skgen′(r), r′)) = true

new x : Tr; new y : Tr; f(x) = f(y) ≈ false

for f ∈ {pkgen, skgen,pkgen′, skgen′}
new x : Tr; new y : Tr; pkgen(x) = pkgen′(y) ≈ false

new x : Tr; new y : Tr; skgen(x) = skgen′(y) ≈ false

!ik≤nknew r : Tr; (

()→[2] pkgen(r),

!is≤nsnew r′ : T ′r; (x : T )→ sign(x, skgen(r), r′)

!ic≤nc(m′ : T, si′ : Ts)→ check(m′,pkgen(r), si′)),

!i≤n(m : T, y : Tpk, si : Ts)→[3] check(m, y, si) [all ]

≈
1. !ik≤nknew r : Tr; (

2. ()→ pkgen′(r),

3. !is≤nsnew r′ : T ′r; (x : T )→ sign′(x, skgen′(r), r′)

4. !ic≤nc(m′ : T, si′ : Ts)→
5. find us ≤ ns suchthat defined(x[us]) ∧m′ = x[us]

6. ∧ check′(m′,pkgen(r), si′) then true else false),

7. !i≤n(m : T, y : Tpk, si : Ts)→
8. find u ≤ nk, us ≤ ns suchthat defined(r[u], x[u, us])

9. ∧ y = pkgen′(r[u]) ∧m = x[u, us]

10. ∧ check′(m, y, si) then true else

11. find u ≤ nk suchthat defined(r[u])

12. ∧ y = pkgen′(r[u]) then false else

13. check(m, y, si)
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The first three lines of each side of the equivalence express
that the generation of public keys and the computation of the
signature are left unchanged in the transformation. The verifica-
tion of a signature check(m′,pkgen(r), si′) is replaced with a
lookup in the previously computed signatures: the signature can
be valid only when it has been computed by the signature oracle
sign′(x, skgen′(r), r′), that is, when m = x[us] for some us.
Lines 5-6 of the right-hand side of the equivalence try to find
such a us and return true when they succeed, and false other-
wise.

The last oracle considers signature verifications in which the
verification key may not be explicitly known: it can be any
term, which we represent by a variable y. This can happen
fort instance when the verification key is received in a pre-
vious message. In this case, the verification of a signature
check(m, y, si) is also replaced with a lookup in the previously
computed signatures: if the signature is checked using one of
the keys pkgen′(r[u]) (that is, if y = pkgen′(r[u])), then it can
be valid only when it has been computed by the signature oracle
sign′(x, skgen′(r[u]), r′), that is, when m = x[u, us] for some
us. Lines 8-10 of the right-hand side of the equivalence try to
find such a u′ and return true when they succeed. Lines 11-12
of the right-hand side returns false when no such u′ is found in
lines 8-10, but y = pkgen′(r[u]) for some u. The last line han-
dles the case when the key y is not pkgen′(r[u]). In this case,
we check the signature as before. (Using c and not c′ in the last
line of the transformation allows to reapply this transformation
with another value of r.)

The priorities [2] and [3] in the left-hand side on the equiv-
alence specify that the oracle check(m′,pkgen(r), si′) should
be used when possible, rather than using the two oracles
pkgen(r) and check(m, y, si) to encode the same computa-
tion. (Priorities are defined in Section D.2.2.) Using the oracle
check(m′,pkgen(r), si′) yields a simpler transformed game.

We can model deterministic signatures in a similar way, by
removing the third argument of s.

SUF-CMA Signature Strongly unforgeable signatures can be
modeled in a similar way. The equivalence is replaced with:

!ik≤nknew r : Tr; (

()→[2] pkgen(r),

!is≤nsnew r′ : T ′r; (x : T )→ sign(x, skgen(r), r′)

!ic≤nc(m′ : T, si′ : Ts)→ check(m′,pkgen(r), si′)),

!i≤n(m : T, y : Tpk, si : Ts)→[3] check(m, y, si) [all ]

≈
1. !ik≤nknew r : Tr; (

2. ()→ pkgen′(r),

3. !is≤nsnew r′ : T ′r; (x : T )→
let s : Ts = sign′(x, skgen′(r), r′) in s

4. !ic≤nc(m′ : T, si′ : Ts)→
5. find us ≤ ns suchthat defined(x[us]) ∧m′ = x[us]

6. ∧ si′ = s[us] then true else false),

7. !i≤n(m : T, y : Tpk, si : Ts)→
8. find u ≤ nk, us ≤ ns suchthat defined(r[u], x[u, us])

9. ∧ y = pkgen′(r[u]) ∧m = x[u, us]

10. ∧ si = s[u, us] then true else

11. find u ≤ nk suchthat defined(r[u])

12. ∧ y = pkgen′(r[u]) then false else

13. check(m, y, si)

This equivalence requires the signature given to the verification
oracle to be exactly the signature generated by the signature or-
acle (si′ = s[us] line 6 and si = s[u, us] line 10).

SUF-CMA MACs can be modeled by modifying the defini-
tion of UF-CMA MACs (maceq) along similar lines.

IND-CCA2 Public-Key Encryption

Tr large, fixed length;T ′r fixed length
enc, enc′ : T × Tpk × T ′r → Te

dec,dec′ : Te × Tsk → T⊥

skgen, skgen′ : Tr → Tsk

pkgen,pkgen′ : Tr → Tpk

i⊥ : T → T⊥ (poly-injective)
ZT : T

∀m : T, ∀r : Tr,∀r′ : T ′r,

dec(enc(m,pkgen(r), r′), skgen(r)) = i⊥(m)

∀m : T, ∀r : Tr,∀r′ : T ′r,

dec′(enc′(m, pkgen′(r), r′), skgen′(r)) = i⊥(m)

new x : Tr; new y : Tr; f(x) = f(y) ≈ false

for f ∈ {pkgen,pkgen′, skgen, skgen′}
new x : Tr; new y : Tr; pkgen(x) = pkgen′(y) ≈ false

new x : Tr; new y : Tr; skgen(x) = skgen′(y) ≈ false

!ik≤nknew r : Tr; (

()→[2] pkgen(r),

!ie≤nenew r′ : T ′r; (x′ : T )→ enc(x′,pkgen(r), r′)

!id≤nd(m : Te)→ dec(m, skgen(r))),

!i≤nnew r′′ : T ′r; (x : T, y : Tpk)→[3] enc(x, y, r′′) [all ]

≈
!ik≤nknew r : Tr; (

()→ pkgen′(r),

!ie≤nenew r′ : T ′r; (x′ : T )→
let m′ : Te = enc′(ZT ,pkgen′(r), r′) in m′,

!id≤nd(m : Te)→
find u ≤ ne suchthat defined(m′[u], x′[u]) ∧m = m′[u]

then i⊥(x′[u]) else

find u ≤ n suchthat defined(m′′[u], x[u], y[u]) ∧
y[u] = pkgen′(r) ∧m = m′′[u] then i⊥(x[u]) else

dec′(m, skgen′(r))),

35



!i≤n(x : T, y : Tpk)→
find uk ≤ nk suchthat defined(r[uk]) ∧ y = pkgen′(r[uk])

then new r′′ : T ′r;

let m′′ : Te = enc′(ZT ,pkgen′(r[uk]), r′′) in m′′

else new r′′′ : T ′r; enc(x, y, r′′′)

In the right-hand side, the encryption oracles encrypt zeroes
(ZT ) instead of the real plaintext, when the encryption key is
a pkgen′(r). The decryption oracle uses array lookups to see
if the received ciphertext m is the result of an encryption ora-
cle. If it is, it returns the corresponding plaintext. Otherwise, it
decrypts normally.

The result of decryption can be either the plaintext, or the spe-
cial symbol ⊥, which represents a failure of decryption. Hence,
when decryption returns i⊥(x), it means that decryption suc-
ceeded with plaintext x.

Similarly to signatures, the priorities [2] and [3] in the
left-hand side on the equivalence specify that the oracle
enc(x′,pkgen(r), r′) should be used when possible, rather than
using the two oracles pkgen(r) and enc(x, y, r′′) to encode the
same computation.

When the decryption oracle is removed from the equivalence,
we obtain a model of IND-CPA public key encryption.

D.3.3 Hash Functions

Collision Resistant Hash Function

Tk fixed length
h : Tk × bitstring → T

new k : Tk;∀x : bitstring ,∀y : bitstring ,

h(k, x) = h(k, y) ≈ x = y

Hash Function in the Random Oracle Model

Tk, T fixed length
h : Tk × bitstring → T

!ih≤nh new k : Tk; !i≤n(x : bitstring)→ h(k, x)

≈0

!ih≤nh !i≤n(x : bitstring)→
find u ≤ n suchthat defined(x[u], r[u]) ∧ x = x[u]

then r[u]

else new r : T ; r

In this model, the hash function is keyed: the choice of the key
models the choice of the hash function. The key k must be
chosen randomly at the beginning of the game, and the game
must include, in parallel with the protocol to verify, the process
!i≤nc(x : bitstring); c〈h(k, x)〉 which represent a hash oracle.
Otherwise, CryptoVerif would incorrectly assume that the ad-
versary cannot compute the hash function. This particularity is
related to the fact that a random oracle is unimplementable: oth-
erwise, the adversary could implement it without being explic-
itly given access to it.

D.3.4 Ideal Cipher Model

Tck fixed length;Tb large, fixed length
enc,dec : Tck × Tb × Tk → Tb

∀ck : Tck,∀m : Tb,∀k : Tk,dec(ck , enc(ck ,m, k), k) = m

!ick≤nck new ck : Tck;

(!ie≤ne(me : Tb, ke : Tk)→ enc(ck ,me, ke),

!id≤nd(md : Tb, kd : Tk)→ dec(ck ,md , kd))

≈
!ick≤nck

(!ie≤ne(me : Tb, ke : Tk)→
find j ≤ ne suchthat defined(me[j], ke[j], re[j]) ∧

me = me[j] ∧ ke = ke[j] then re[j]

⊕ k ≤ ne suchthat defined(rd [k],md [k], kd [k]) ∧
me = rd [k] ∧ ke = kd [k] then md [k]

else new re : Tb; re,

!id≤nd(md : Tb, kd : Tk)→
find j ≤ ne suchthat defined(me[j], ke[j], re[j]) ∧

md = re[j] ∧ kd = ke[j] then me[j]

⊕ k ≤ nd suchthat defined(rd [k],md [k], kd [k]) ∧
md = md [k] ∧ kd = kd [k] then rd [k]

else new rd : Tb; rd)

The ideal cipher model has been introduced in [16] in order to
model block ciphers. It is in the same vein as the random ora-
cle model, but with families of perfectly random permutations.
The encryption and decryption functions map bitstrings of type
Tb (for a block) to bitstrings of type Tb; they take two keys as
additional arguments: the standard encryption/decryption key of
type Tk, but also a key ck of type Tck that models the choice
of the scheme itself (much like in the random oracle model).
This key ck must be chosen randomly at the beginning of the
game, and the game must include, in parallel with the protocol
to verify, the process !i≤nc(x : Tb, k : Tk); c〈enc(ck, x, k)〉 |
!i
′≤n′c′(x : Tb, k : Tk); c′〈dec(ck, x, k)〉 which represent the

encryption and decryption oracles.
The left- and right-hand sides of the equivalence define the

encryption and decryption oracles. In the left-hand side, they
call the encryption and decryption functions. In the right-
hand side, they are replaced with lookups in previous encryp-
tion/decryption queries. For instance, for encryption, we look
for a previous encryption query of the same cleartext (me =
me[j]) under the same key (ke = ke[j]) and, if we find one,
we return the same ciphertext re[j]. We also look for a previ-
ous decryption query that has returned as cleartext the cleartext
to encrypt (me = rd [k]) using the same key (ke = kd[k]) and,
if we find one, we return the corresponding ciphertext md [k].
Otherwise, we return a fresh random ciphertext re. This defi-
nition does not yield random permutations, because the random
choices of re and rd may return several times the same result
and may collide with previous values of me and md . However,
these collisions have a negligible probability of occurring, so the
equivalence holds.
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D.3.5 Xor

xor : T × T → T (commutative)

∀x : T, y : T, xor(x, xor(x, y)) = y.

∀x : T, y : T, z : T, (xor(x, z) = xor(y, z)) = (x = y).

!i≤nnew k : T ; (x : T )→ xor(x, k)

≈0

!i≤nnew k : T ; (x : T )→ k

This modeling of xor could be improved by taking into account
more equations, in particular associativity.

E Proofs

E.1 Proof of Proposition 1
The proof that Q′0 satisfies Invariants 1, 2, and 3 is in general
easy, and the proof of Q0 ≈V0 Q′0 relies on a correspondence
between traces of C[Q0] and traces of C[Q′0], with the same
probability and such that a configuration of the trace of C[Q0]
executes c〈a〉 immediately if and only if the corresponding con-
figuration of the corresponding trace of C[Q′0] executes c〈a〉 im-
mediately. This correspondence is obtained by replacing some
internal actions ofQ0 with corresponding internal actions ofQ′0.
We sketch the proof only for the cases of SArename(x) and
Simplify, and leave the case of RemoveAssign(x) to the reader.

Proof sketch of Proposition 1 for SArename(x) The pro-
cess Q′0 satisfies Invariant 1 because definitions of variables du-
plicated by SArename all occur in a different branch of a find.

For Invariant 2, each variable access xj [M1, . . . ,Ml] in Q′0
comes from a variable access x[M1, . . . ,Ml] in Q0. Since Q0

satisfies Invariant 2, either this access is under its definition, in
which case SArename(x) has replaced this definition of x with
a definition of xj , so xj [M1, . . . ,Ml] is under its definition in
Q′0; or this access is in a defined test, in which case it is also in
a defined test in Q′0; or this access is in a branch of find with
a condition defined(N1, . . . , Nl′) such that x[M1, . . . ,Ml] is a
subterm of Nj for some j ≤ l′, in which case x[M1, . . . ,Ml]
has been substituted with xj [M1, . . . ,Ml] in this branch of find,
so xj [M1, . . . ,Ml] is under a suitable defined condition. There-
fore, Q′0 satisfies Invariant 2.

For Invariant 3, the type environment E ′ for Q′0 is obtained
from the type environment E for Q0, by setting E ′(x1) = . . . =
E ′(xm) = E(x) and E ′(x) is not defined. (Indeed, all definitions
of x in Q0 have the same type E(x), which is therefore the type
of the definitions of xj , j ≤ m in Q′0.) The proof of E ′ ` Q′0
is obtained from the proof of E ` Q0, by replacing requests
to E(x) with requests to E(xj) for some j ≤ m, and duplicat-
ing parts of the proof of E ` Q0 that correspond to duplicated
branches of find.

Finally, let us prove that Q0 ≈V0 Q′0. We denote by
SArename(x,Q) the process obtained by applying SAre-
name(x) to Q. Let j be a partial function from l-tuples of
indices a1, . . . , al to subscripts 1, . . . ,m of variable x. Infor-
mally, j is such that x[a1, . . . , al] in a trace ofQ0 corresponds to

xj(a1,...,al)[a1, . . . , al] in the corresponding trace of Q′0. We de-
fine a function SArenamej that relates configurations in a trace
of Q0 to configurations in a trace of the renamed process Q′0.
Below, we will show that this function maps traces of Q0 to
traces of Q′0 of the same probability, which will show the de-
sired equivalence Q0 ≈V0 Q′0.

• We define SArenamej for terms so that SArenamej(x,E,
M) replaces occurrences of x in M with the appropriate
xj . More precisely,

SArenamej(x,E, x[M1, . . . ,Ml]) =

xj(a1,...,al)[SArenamej(x,E,M1), . . . ,

SArenamej(x,E,Ml)]

when E,Mk ⇓ ak for k ≤ l and
x[a1, . . . , al] ∈ Dom(E);

SArenamej(x,E, y[M1, . . . ,Ml]) =

y[SArenamej(x,E,M1), . . . ,SArenamej(x,E,Ml)]

when y 6= x;

SArenamej(x,E, f(M1, . . . ,Ml)) =

f(SArenamej(x,E,M1), . . . ,SArenamej(x,E,Ml));

SArenamej(x,E, i) = i

• We define SArenamej for (input and output) pro-
cesses as follows: SArenamej(x,E, P1) first computes
SArename(x, P1) = P2. More precisely, it renames each
definition of x to the name used when renaming the whole
process Q0; it replaces variable accesses to x with variable
accesses to xj when the definition of x that caused this re-
placement in Q0 also occurs in P1; it duplicates branches
of find as SArename(x,Q0), renaming variable accesses
to x into variable accesses to xj when the find that caused
this replacement in Q0 also occurs in P1. (When a variable
access to x is under both a definition of x and find, or un-
der several nested finds that guarantee that it is defined, it
is important to follow exactly the renaming procedure that
happened in Q0. Formally, this can be done by annotat-
ing each construct in processes with a distinct occurrence
symbol and by reducing annotated processes. When we
perform SArename(x,Q0), we can then remember the oc-
currence symbols of the constructs that cause each variable
renaming.) Finally, SArenamej replaces each term M in
P2 with SArenamej(x,E,M).

• We also define SArenamej for environments: E′ =
SArenamej(x,E) if and only if E′(xj(a1,...,al)[a1, . . . ,
al]) = E(x[a1, . . . , al]) when x[a1, . . . , al] ∈ Dom(E),
E′(y[a1, . . . , al]) = E(y[a1, . . . , al]) when y 6= x and
y[a1, . . . , al] ∈ Dom(E), and E′(y[a1, . . . , al]) is unde-
fined in all other cases.

• We extend SArenamej to semantic configurations:

SArenamej(x, (E,P,Q, C)) =

(SArenamej(x,E),SArenamej(x,E, P ),

{SArenamej(x,E,Q1) | Q1 ∈ Q}, C)

We also define SArenamej(x, (E,Q, C)) in the same way.
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We first show that if E,M ⇓ a, then

SArenamej(x,E),SArenamej(x,E,M) ⇓ a

The proof proceeds by induction on M . The only inter-
esting case is M = x[M1, . . . ,Ml]. Since E,M ⇓ a
has been derived by (Var), E,Mk ⇓ ak for all k ≤
l and a = E(x[a1, . . . , al]). By induction hypothesis,
SArenamej(x,E),SArenamej(x,E,Mk) ⇓ ak for all k ≤ l.
Moreover,

SArenamej(x,E, x[M1, . . . ,Ml]) =

xj(a1,...,al)[SArenamej(x,E,M1), . . . ,

SArenamej(x,E,Ml)]

and

SArenamej(x,E)(xj(a1,...,al)[a1, . . . , al]) =

E(x[a1, . . . , al]) = a

so SArenamej(x,E),SArenamej(x,E,M) ⇓ a.
Next, we can show by cases on the reduction E,Q, C  

E′,Q′, C′ that, if E,Q, C  E′,Q′, C′, then

SArenamej(x, (E,Q, C)) SArenamej(x, (E
′,Q′, C′)).

Hence

SArenamej(x, reduce(E,Q, C)) =

reduce(SArenamej(x, (E,Q, C)))

Let C be any evaluation context acceptable for Q0, Q′0,
V . We show that for each trace initConfig(C[Q0]) →η . . .
→η Em, Pm,Qm, Cm, there exists a trace initConfig(C[Q′0])
→η . . . →η E′m, P

′
m,Q′m, Cm with the same proba-

bility, and a function jm such that E′m, P
′
mQ′m, Cm =

SArenamejm(x, (Em, Pm,Qm, Cm)). The proof proceeds by
induction on the length m of the trace. For the induction step,
we distinguish cases depending on the last reduction step of the
trace.

• Initial case m = 0: fc(C[Q0]) = fc(C[Q′0]) since the
transformation SArename does not modify channels. Let
j0 be the function defined nowhere. We have, C[Q′0] =
SArenamej0(x, ∅, C[Q0]). Indeed, since x /∈ V , x /∈
var(C), so

SArenamej0(x, ∅, C[Q0]) = SArename(x,C[Q0]) =

C[SArename(x,Q0)] = C[Q′0]

Therefore,

SArenamej0(x, (∅, {C[Q0]}, fc(C[Q0]))) =

(∅, {C[Q′0]}, fc(C[Q′0]))

Hence we have

SArenamej0(x, reduce(∅, {C[Q0]}, fc(C[Q0]))) =

reduce(∅, {C[Q′0]}, fc(C[Q′0]))

Thus,

SArenamej0(x, initConfig(C[Q0])) =

initConfig(C[Q′0])

• The last step of the trace is a definition of x[a1, . . . , al]:
By induction hypothesis, we have a trace of length m − 1,
with an associated function jm−1. Since C[Q0] satisfies
Invariant 1, the configuration Em−1, Pm−1,Qm−1, Cm−1
satisfies Invariant 4, so x[a1, . . . , al] /∈ Dom(Em−1).
Since P ′m−1 = SArenamejm−1

(x,Em−1, Pm−1), the
first instruction of P ′m−1 is a definition of xk[a1, . . . , al]
for some k (using the property “if E,M ⇓ a, then
SArenamej(x,E),SArenamej(x,E,M) ⇓ a” shown
above to prove that the indices of x, resp. xk, are the
same in the execution of Pm−1 and of P ′m−1). We define
jm = jm−1[(a1, . . . , al) 7→ k], and show that we obtain a
suitable trace of length m with this function jm.

• The last step of the trace is a find whose defined condi-
tion refers to x: By induction hypothesis, we have a trace
of length m − 1, with an associated function jm−1. If a
branch FB of the find in Pm−1 succeeds for certain values
of the variables defined by find, exactly one of its copies
succeeds in P ′m−1, the copy whose defined condition refers
to xjm−1(a1,...,al)[a1, . . . , al] when the defined condition of
the branch FB in Pm−1 refers to x[a1, . . . , al]. If a branch
of the find fails in Pm−1, all its copies fail in P ′m−1. There-
fore, the number |S| of successful choices of the find is
the same in Pm−1 and in P ′m−1. Hence, the probability
that each successful branch is taken is the same. When
Pm−1 executes a successful branch, we build the corre-
sponding trace of P ′m−1 by executing the successful copy
of this branch. When Pm−1 executes the else branch, P ′m−1
also executes the else branch. So we obtain a suitable trace
of length m with associated function jm = jm−1 (except
when the find also defines x[a′1, . . . , a

′
l], in which case the

previous item of the proof must also be applied).

• All other cases are easy: they execute in the same way in
Pm−1 and in P ′m−1.

We also show the converse property, that for each trace
initConfig(C[Q′0]) →η . . . →η E

′
m, P

′
m,Q′m, Cm, there exists

a trace initConfig(C[Q0]) →η . . . →η Em, Pm,Qm, Cm with
the same probability and

E′m, P
′
mQ′m, Cm = SArenamejm(x, (Em, Pm,Qm, Cm)).

The proof is similar to the proof above.
If E′m, P

′
mQ′m, Cm = SArenamejm(x, (Em, Pm,Qm, Cm)),

then for all channels c and bitstrings a, Em, Pm,Qm, Cm exe-
cutes c〈a〉 immediately if and only if E′m, P

′
m,Q′m, Cm executes

c〈a〉 immediately. So Pr[C[Q0]  η c〈a〉] = Pr[C[Q′0]  η

c〈a〉]. Therefore, Q0 ≈V0 Q′0. �

Proof sketch of Proposition 1 for Simplify The proof of In-
variants 1, 2, and 3 is relatively easy, so we focus on the proof
of Q0 ≈V Q′0.

Let C be any evaluation context acceptable for Q0, Q′0, V .
Let q(η) be the maximum runtime of C[Q0], where q is a poly-
nomial. We denote by C0 the initial configuration of C[Q0],
initConfig(C[Q0]).

We define pmax(η) = max({ 1
|Iη(T )| | T is a large type} ∪

{p(η) associated to user-defined rewrite rules, for an adversary
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of runtime q(η)}). The probability pmax(η) is negligible, since
it is the maximum of a constant number of negligible functions.
We shall prove below that the probability that a desired fact does
not hold is at most q′(η)pmax(η), where q′ is a polynomial, so it
is negligible.

The proof follows the structure of the simplification algo-
rithm: we prove the correctness of each component of the al-
gorithm separately.

Correctness of the collection of true facts. We consider a
slightly modified semantics for our calculus, in which each pro-
cess is accompanied with a substitution that defines the values
of the replication indices in that process. For example, the rule
(Repl) becomes in this semantics:

E, {(σ, !i≤nQ)} ] Q, C  
E, {(σ[i 7→ a], Q) | a ∈ [1, Iη(n)]} ] Q, C

When evaluating a term M in a process with substitution (σ,Q)
or (σ, P ), we now use E, σ,M ⇓ a instead of E,M ⇓ a, with
the rule E, σ, i ⇓ σi instead of (Cst), and the other rules modi-
fied accordingly.

The judgment E, σ ` F means that a fact F holds in en-
vironment E and substitution σ. It is defined by E, σ ` M
if and only if E, σ,M ⇓ true; E, σ ` defined(M) if and
only if E, σ,M ⇓ a for some a; E, σ ` elsefind((u1 ≤
n1, . . . , um ≤ nm), (M1, . . . ,Ml),M) if and only if for
all x1 ∈ [1, Iη(n1)], . . . , xm ∈ [1, Iη(nm)], we have
E, σ′, (defined(M1, . . . ,Ml)∧M) ⇓ false where σ′ = σ[u1 7→
x1, . . . , um 7→ xm]. We extend this definition to sets of facts
naturally. We say that FP is correct for all P when C0

p−→t

. . .
p′−→t′ E, (σ, P ),Q, C implies E, σ ` FP . Our goal is to

show that FP is indeed correct for all P .
For occurrences of processes P , Q in C and in the process

start〈〉; 0 used in the initial configuration, we let FP = FQ =
FFut
P = FElseFind

P = FElseFind
Q = ∅.

We show S0: immediately after calling collectFacts, if
E1, (σ1, P1),Q1, C1

p−→t E, (σ, P ),Q, C then E, σ ` FP .
If the reduced process is in C, the result is obvious since
FP = ∅. Otherwise, we proceed by cases on the reduction
E1, (σ1, P1),Q1, C1

p−→t E, (σ, P ),Q, C. For example, in the
case (Let), E1, σ,M ⇓ a, a ∈ Iη(T ), and E1, (σ, let x[̃i] : T =

M in P ),Q, C 1−→L E = E1[x[σĩ] 7→ a], (σ, P ),Q, C. We
have FP = {defined(x[̃i]), x[̃i] = M}. Since E, σ, x[̃i] ⇓ a,
we have E, σ ` defined(x[̃i]). We also have E, σ,M ⇓ a, so
E, σ ` x[̃i] = M , so E, σ ` FP . We proceed in a similar way
for the other cases.

We show that, immediately after calling collectFacts, FP is

correct for all P , that is, if C0
p−→t . . .

p′−→t′ E, (σ, P ),Q, C then
E, σ ` FP . For the initial configuration, the property is obvious
since FP = ∅. For the other configurations, we conclude by
(S0).

We show the invariant S1: FC[Q0] = ∅ and if Q is an input
process and P is the input or output process just above Q, then
FQ ⊆ FP . This property is obvious after collectFacts since
FQ = ∅, and it is preserved by all updates to FQ (provided the
consequences of defined facts are not added inQ before they are
added in P , which we can easily satisfy).

We prove S2: if E,Q, C  E′,Q′, C′ and for all (σ,Q) ∈
Q, E, σ ` FQ, then for all (σ,Q) ∈ Q′, E′, σ ` FQ.
The proof is easy by cases on the derivation of E,Q, C  
E′,Q′, C′, using (S1). Therefore, we have S2’: if E′,Q′, C′ =
reduce(E,Q, C) and for all (σ,Q) ∈ Q, E, σ ` FQ, then for all
(σ,Q) ∈ Q′, E′, σ ` FQ.

Next, we prove that if FP is correct for all P , then F ′P ob-
tained by

F ′P = FP ∪ FP ′ if P is immediately under P ′

is correct for all P . We show that, if C0
p−→t . . .

p′−→t′

E, (σ, P ),Q, C then for all (σ′, P ′) ∈ {(σ, P )} ] Q, E, σ′ `
F ′P ′ . The proof proceeds by induction on the length of the trace.
For the initial configuration, FC[Q0] = ∅ by (S1), so ∅, ∅ `
FC[Q0], and ∅, ∅ ` Fstart〈〉, so the property follows immediately
from (S2’). For the inductive step, if the last reduction of the

trace is (Output), we have E1, (σ1, P1), {(σ,Q)} ]Q1, C1
p′−→t′

E, (σ, P ),Q, C with P1 = c[M1, . . . ,Ml]〈N1, . . . , Nk〉.Q1,
Q = c[M ′1, . . . ,M

′
l ](x1 [̃i] : T1, . . . , xk [̃i] : Tk).P , E =

E1[x1[σĩ] 7→ . . . , . . . , xk[σĩ] 7→ . . .], Q = Q1 ] Q2, and
E1,Q2, C = reduce(E1, {(σ1, Q1)}, C1). If P is in C, F ′P = ∅,
so E, σ ` F ′P . Otherwise, E, σ ` F ′Q by induction hypoth-
esis. Moreover E, σ ` FP since FP is correct for all P , so
E, σ ` F ′P since F ′P = FQ ∪ FP ⊆ F ′Q ∪ FP . By induc-
tion hypothesis, for all (σ′, Q′) ∈ Q1, E1, σ

′ ` F ′Q′ . Also by
induction hypothesis, E1, σ1 ` F ′P1

, so E1, σ1 ` F ′Q1
⊆ F ′P1

by (S1). By (S2’), for all (σ′, Q′) ∈ Q2,E1, σ
′ ` F ′Q′ . So for all

(σ′, Q′) ∈ Q = Q1 ] Q2, E1, σ
′ ` F ′Q′ , so E, σ′ ` F ′Q′ since

E is an extension ofE1. If the last reduction is not (Output), it is
of the form E1, (σ, P

′),Q, C p−→t E, (σ, P ),Q, C where E is an
extension of E1. By induction hypothesis, for all (σ′, Q′) ∈ Q,
E1, σ

′ ` F ′Q′ , so for all (σ′, Q′) ∈ Q, E, σ′,` F ′Q′ . Since FP
is correct for all P ,E, σ ` FP andE1, σ ` FP ′ , soE, σ ` FP ′ ,
so E, σ ` F ′P = FP ∪ FP ′ .

We show S3: if E, (σ, P ),Q, C p−→t . . .
p′−→t′

E′, (σ′, P ′),Q′, C′ where P ′ is an output and no process be-
fore P ′ in this trace is an output, then E′, σ′ ` FFut

P . Since
no process before P ′ in this trace is an output, this trace does
not contain the reduction rule (Output). The proof proceeds
by induction on P . If P is an output, the result is obvi-
ous since FFut

P = collectFacts(P ) = ∅. Otherwise, let
P1, . . . , Pm be the immediate subprocesses of P . We have
E, (σ, P ),Q, C p−→t E1, (σ, Pj),Q, C for some extension E1

of E and some j ∈ {1, . . . ,m}. Moreover, by definition of
collectFacts, FFut

P = collectFacts(P ) =
⋂m
j=1(FPj ∪ FFut

Pj
),

where the value of FPj is considered immediately after calling
collectFacts. By (S0), E1, σ ` FPj , so E′, σ′ ` FPj since E′

is an extension of E1 and σ′ = σ since no (Output) reduction
occurs in this trace. By induction hypothesis, E′, σ′ ` FFut

Pj
,

so E′, σ′ ` FPj ∪ FFut
Pj

for some j ∈ {1, . . . ,m}. Therefore,
E′, σ′ ` FFut

P .
We now show that if FP is correct for all P , and F ′P is ob-

tained by

F ′P = FP ∪

 ⋂
(x[i1,...,im],P ′)∈D


σ′(FP ′ ∪ (FFut

P ′ ∩ FP ))

if P is under P ′

σ′(FP ′ ∪ FFut
P ′ ) otherwise


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where σ′ = {M1/i1, . . . ,Mm/im}, when defined(M) ∈ FP
and x[M1, . . . ,Mm] is a subterm of M , and F ′P = FP oth-
erwise, then F ′P is also correct for all P . We assume that

C0
p−→t . . .

p′−→t′ E, (σ, P ),Q, C and show that E, σ ` F ′P .
Since FP is correct for all P , E, σ ` FP . Since E, σ `
defined(M), E, σ,Mj ⇓ aj for all j ≤ m and x[a1, . . . , am] ∈
Dom(E). Therefore, some definition of x[a1, . . . , am] has been
executed in the considered trace. Next, we show that, for some
(x[i1, . . . , im], P ′) ∈ D, we have E, σ1 ` FP ′ ; if P is un-
der P ′ then E, σ1 ` FFut

P ′ ∩ FP ; and if P is not under P ′

then E, σ1 ` FFut
P ′ , where σ1(i1) = a1, . . . , σ1(im) = am.

The desired result follows. Let E1, (σ1, P1),Q1, C1
p1−→t1

E2, (σ1, P2),Q2, C2 be the reduction that defines x[a1, . . . , am]
in the considered trace. We have E2, σ1 ` FP2 since FP
is correct for all P . So E, σ1 ` FP2

since E is an exten-
sion of E2 so all facts that hold in E2 also hold in E. We
have (x[i1, . . . , im], P2) ∈ D. If P is not under P2, the trace

E2, (σ1, P2),Q2, C2
p2−→t2 . . .

p′−→t′ E, (σ, P ),Q, C must ex-
ecute an output, so by (S3), E3, σ3 ` FFut

P2
where the con-

figuration in which the first output after E2, (σ1, P2),Q2, C2 is
executed is E3, (σ3, P3),Q3, C3, so E, σ1 ` FFut

P2
. (We have

σ3 = σ1, since the substitution σ is changed only when ex-
ecuting a communication.) If P is under P2, two cases can

happen. Either the trace E2, (σ1, P2),Q2, C2
p2−→t2 . . .

p′−→t′

E, (σ, P ),Q, C executes an output, and we have E, σ1 ` FFut
P2

as above, orE2, (σ1, P2),Q2, C2
p2−→t2 . . .

p′−→t′ E, (σ, P ),Q, C
executes no output, so σ = σ1. (The substitution σ is changed
only when executing a communication.) Since FP is correct for
all P , E, σ ` FP , hence E, σ1 ` FP . Then, in both cases,
E, σ1 ` FFut

P2
∩ FP .

Next, we show S4: if C0
p−→t . . .

p′−→t′ E, (σ, P ),Q, C then
E, σ ` FElseFind

P . The proof proceeds by induction on the
length of the trace. For the initial configuration, the result is ob-
vious since FElseFind

P = ∅. For the inductive step, if the reduced
process is in C, the result is obvious since FElseFind

P = ∅. Oth-
erwise, we proceed by cases on the last reduction of the trace.
In the (Output) case, the result is obvious since FElseFind

P = ∅.
In the (New), (Let), and (Find1) cases, σ is unchanged, E is
extended with definitions for some variables, and elsefind facts
that claim that these variables are not defined are removed from
FElseFind
P , so we still have E, σ ` FElseFind

P . In the (Find2)
case for P ′ = find (

⊕m
j=1 uj1 [̃i] ≤ nj1, . . . , ujmj [̃i] ≤ njmj

suchthat defined(Mj1, . . . ,Mjlj ) ∧ Mj then Pj) else P , E
and σ are unchanged and since (Find2) is executed, ∀j ≤ m,
∀a1 ∈ [1, Iη(nj1)], . . . , ∀amj ∈ [1, Iη(njmj )], E[uj1[σĩ] 7→
a1, . . . , ujmj [σĩ] 7→ amj ], σ, (defined(Mj1, . . . ,Mjlj )∧Mj) ⇓
false. FElseFind

P = FElseFind
P ′ ∪ {elsefind((u1 ≤ nj1, . . . ,

umj ≤ njmj ), σj(Mj1, . . . ,Mjlj ), σjMj) | j ∈ {1, . . . ,m}}
where σj = {u1/uj1 [̃i], . . . , umj/ujmj [̃i]}. By induction hy-
pothesis E, σ ` FElseFind

P ′ . Moreover, E, σ ` elsefind((u1 ≤
nj1, . . . , umj ≤ njmj ), σj(Mj1, . . . ,Mjlj ), σjMj) for j ∈
{1, . . . ,m}, so E, σ ` FElseFind

P .

We now show that ifFP is correct for all P , thenF ′P obtained

by

F ′P = FP ∪ {¬σ′M | elsefind((u1 ≤ n1, . . . , um ≤ nm),

(M1, . . . ,Ml),M) ∈ FElseFind
P ,Dom(σ′) = {u1, . . . , um},

for each j ∈ {1, . . . , l}, σ′Mj is a subterm of M ′j and

defined(M ′j) ∈ FP }

is also correct for all P . Assuming that C0
p−→t . . .

p′−→t′

E, (σ, P ),Q, C, we show that E, σ ` F ′P . Since FP is cor-
rect for all P , E, σ ` FP . By (S4), E, σ ` FElseFind

P . As-
sume elsefind((u1 ≤ n1, . . . , um ≤ nm), (M1, . . . ,Ml),M) ∈
FElseFind
P and for each j ∈ {1, . . . , l}, σ′Mj is a subterm of M ′j

and defined(M ′j) ∈ FP . Let ak be such that E, σ, σ′uk ⇓ ak for
each k ∈ {1, . . . ,m}. Let σ′′ = σ[u1 7→ a1, . . . , um 7→ am].
Since E, σ ` defined(M ′j), we have E, σ,M ′j ⇓ a′j for some a′j
so E, σ, σ′Mj ⇓ a′′j for some a′′j , so E, σ′′,Mj ⇓ a′′j . (This is
proved by induction on Mj .) By definition of elsefind facts,
E, σ′′, (defined(M1, . . . ,Ml) ∧ M) ⇓ false so E, σ′′,M ⇓
false, that is, E, σ, σ′M ⇓ false, so E, σ ` ¬σ′M . So
E, σ ` F ′P .

Therefore, we conclude that at the end of the computation,
FP is correct for all P .

Correctness of the local dependency analysis. As above in
the correctness of the collection of true facts, we denote by P
an occurrence of a process, so that we can distinguish identical
subprocesses that occur at several occurrences in a process.

We first show the soundness of the local dependency analy-
sis ignoring modifications in the game performed by depAnal.
Then we will show the soundness of the game modifications,
that is, that these modifications change the behavior of the game
only with negligible probability. Since the game modifications
do not change the part of the computation of depend and indep
performed before the modification, the depAnal procedure is
equivalent to performing a full dependency analysis without
game modification, performing game modification, redoing the
whole dependency analysis analysis on the modified game, and
so on, until a fixpoint is reached. Therefore, the separate proof
of the dependency analysis and the game modifications outlined
above is sufficient to prove the correctness of the depAnal pro-
cedure.

We have S5: if y is defined only by restrictions and y 6= x,
then there exists no M such that (y,M) ∈ dependP (x). This
property is obvious since the only case in which an element
(y,M) is added in dependP (x) is in the assignment let y[̃i] :
T = M ′ in P ′, so such an addition cannot happen when y is
defined only by restrictions.

For each σ, depend, indep, we define an equivalence relation
∼σ,depend,indep on environments byE ∼σ,depend,indep E′ if and
only if

• for all M ∈ indep, for all b, E, σ,M ⇓ b if and only if
E′, σ,M ⇓ b;

• if depend 6= >, then for all z[ã] such that z[ã] 6= x[σĩ] and
there exists no (y,M) ∈ depend such that z[ã] = y[σĩ],
E(z[ã]) is defined if and only if E′(z[ã]) is defined and
when they are defined, E(z[ã]) = E′(z[ã]) (̃i denotes the
current replication indices at definition of x);
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• and for all y such that y 6= x and y is defined only by
restrictions, for all ã, E(y[ã]) is defined if and only if
E′(y[ã]) is defined and when they are defined, E(y[ã]) =
E′(y[ã]).

When E ∼σ,depend,indep E′, the environments E and E′ dif-
fer only by variables that depend on x[σĩ], according to the
information contained in depend and indep. That is, terms
in indep have the same value in E and E′ (first item); when
depend 6= >, variables not in depend have the same value in
E and E′ (second item); variables defined only by restrictions
have the same value in E and E′ (third item). We abbreviate
∼σ,dependP (x),indepP (x) by ∼σ,P .

We show S6: if M ′ does not depend on x at P and E ∼σ,P
E′, then E, σ,M ′ ⇓ b if and only if E′, σ,M ′ ⇓ b. This
property expresses the correctness of the definition of “M ′ does
not depend on x at P ”. We prove that if E, σ,M ′ ⇓ b then
E′, σ,M ′ ⇓ b, by induction on the derivation that M ′ does not
depend on x at P . The converse follows immediately by swap-
ping the roles of E and E′.

• Case M ′ = f(M ′1, . . . ,M
′
m) and for all j ≤ m, M ′j does

not depend on x at P . Since E, σ,M ′ ⇓ b, E, σ,M ′j ⇓ bj
and Iη(f)(b1, . . . , bm) = b for some b1, . . . , bm. Hence by
induction hypothesis, E′, σ,M ′j ⇓ bj , so E′, σ,M ′ ⇓ b.

• Case M ′ ∈ indepP (x). The result comes from the defini-
tion of ∼σ,P .

• Case M ′ is a replication index. We have E, σ,M ′ ⇓ σM ′
and E′, σ,M ′ ⇓ σM ′, so the result holds.

• Case M ′ = y[M ′1, . . . ,M
′
m], M ′1, . . . ,M

′
m do not de-

pend on x at P ′, y 6= x, and either y is defined only
by restrictions or dependP (x) 6= > and y 6= y′ for all
(y′,M ′′) ∈ dependP (x). Since E, σ,M ′ ⇓ b, E, σ,M ′j ⇓
bj and E(y[b1, . . . , bk]) = b for some b1, . . . , bk. Hence
by induction hypothesis, E′, σ,M ′j ⇓ bj . By definition
of ∼σ,P , E′(y[b1, . . . , bk]) = E(y[b1, . . . , bk]) = b, so
E′, σ,M ′ ⇓ b.

Let us consider the following property L0:

1. If Pr[C0 →∗ E, (σ, P ),Q, C] > 0, dependP (x) 6= >, and
(y,M) ∈ dependP (x), then E, σ,M ⇓ E(y[σĩ]) where ĩ
denotes the current replication indices at P ;

2. If Pr[C0 →∗ E, (σ, P ),Q, C] > 0 and M ∈ indepP (x),
then E, σ,M ⇓ a for some a;

3. For each b ∈ Iη(T ), for each σ, for each E0, Pr[∃E,∃Q,
∃C,C0 →∗ E, (σ, P ),Q, C ∧ E ∼σ,P E0 ∧ E(x[σĩ]) =
b] ≤ 1

|Iη(T )| Pr[∃E,∃Q,∃C,C0 →∗ E, (σ, P ),Q, C ∧
E ∼σ,P E0] where ĩ denotes the current replication indices
at the definition of x.

We will show that if dependP (x) 6= >, then (L0) holds at
P . This property expresses the correctness of the local depen-
dency analysis at P , when dependP (x) 6= >. (We will consider
the general case below, Property L1.) Item 1 says that, when
(y,M) ∈ dependP (x),M evaluates to the contents of y. Item 2

says that, when M ∈ indepP (x), the value of M is always de-
fined at P . Finally, the last item is the most important one: it
expresses the independence properties. Essentially, the traces
that differ by the value of x[σĩ] all have the same probability,
and differ only by the values of variables that depend on x[σĩ],
collected in dependP (x), so their environments are related by
∼σ,P . When the value of x[σĩ] is fixed to b, the probability of
reaching an environment related to E0 by ∼σ,P is then 1

|Iη(T )|
times the probability of reaching such an environment for any
value of x[σĩ].

We first show S7: if (L0) holds at P with indep instead of
indepP (x), for all E, σ such that Pr[C0 →∗ E, (σ, P ),Q, C] >
0, E, σ,M ′ ⇓ a for some a, and M ′ does not depend on x at
P with indep instead of indepP (x), then (L0) also holds at P
with indep∪{M ′} instead of indepP (x). Essentially, this prop-
erty means that M ′ can be added to indepP (x) when M ′ does
not depend on x at P . Items 1 and 2 of (L0) hold by hypoth-
esis. If E ∼σ,dependP (x),indep E′, by (S6), E, σ,M ′ ⇓ b if
and only if E′, σ,M ′ ⇓ b, so E ∼σ,dependP (x),indep∪{M ′} E

′.
Conversely, we have obviously: if E ∼σ,dependP (x),indep∪{M ′}
E′, then E ∼σ,dependP (x),indep E′, so ∼σ,dependP (x),indep =
∼σ,dependP (x),indep∪{M ′}. This proves Item 3 of (L0), and con-
cludes the proof of (L0).

Next, we prove S8: if dependP (x) 6= > then (L0) holds at
P , by decreasing induction on the process P . The only cases in
which dependP (x) 6= > are as follows:

• P occurs in P ′ = new x[̃i] : T ;P where T is a large
type. We have dependP (x) = ∅ and indepP (x) =⋃

defined(M)∈FP ′
subterms(M). Item 1 of (L0) holds triv-

ially. For all traces of non-zero probability that reach P ,
the last reduction reduces P ′ by (New), so these traces are
all of the form C0 →∗ E′, (σ, P ′),Q, C → E, (σ, P ),Q, C
where E = E′[x[σĩ] 7→ a′] for some a′ ∈ Iη(T ). Since
FP is correct for all P , E′, σ ` FP ′ , so for all M ′ ∈
subterms(M) such that defined(M) ∈ FP ′ ,E′, σ,M ′ ⇓ a
for some a, hence E, σ,M ′ ⇓ a since E is an exten-
sion of E′, which proves Item 2 of (L0). By the se-
mantic rule (New), for all b ∈ Iη(T ), Pr[∃E,∃Q,∃C,
C0 →∗ E, (σ, P ),Q, C ∧ E ∼σ,P E0 ∧ E(x[σĩ]) = b] =

1
|Iη(T )| Pr[∃E,∃Q,∃C,C0 →∗ E, (σ, P ),Q, C ∧ E ∼σ,P
E0] since the condition E ∼σ,P E0 does not use the value
of E(x[σĩ]). (The first item of E ∼σ,P E0 does not use
the value of E(x[σĩ]) because the elements of indepP (x)

are all defined inE′ andE′(x[σĩ]) is not defined. The other
two items never useE(x[σĩ]).) Therefore, we obtain Item 3
of (L0).

• P occurs in P ′ = new y[̃i] : T ′;P with y 6= x. We
have dependP (x) = dependP ′(x) and indepP (x) =

indepP ′(x) ∪ {y[̃i]}. For all traces of non-zero probabil-
ity that reach P , the last reduction reduces P ′ by (New), so
these traces are all of the form C0 →∗ E′, (σ, P ′),Q, C →
E, (σ, P ),Q, C where E = E′[y[σĩ] 7→ a′] for some
a′ ∈ Iη(T ′). Item 1 of (L0) comes from the induction
hypothesis (at P ′) and the fact that E is an extension of
E′. Item 2 of (L0) comes from the induction hypothesis (at
P ′), the fact that E is an extension of E′, and the fact that
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E(y[σĩ]) is defined. Let E′0 = E
0|y[σĩ]

be the environment

E0 restricted to the variables defined at P ′.

Pr

[
∃(E,Q, C),C0 →∗ E, (σ, P ),Q, C
∧ E ∼σ,P E0 ∧ E(x[σĩ]) = b

]
=

1

|Iη(T ′)|
Pr

[
∃(E′,Q, C),C0 →∗ E′, (σ, P ′),Q, C
∧ E′ ∼σ,P ′ E′0 ∧ E(x[σĩ]) = b

]

≤ 1

|Iη(T ′)|
1

|Iη(T )|
Pr

∃(E′,Q, C),C0 →∗ E′, (σ, P ′),Q, C
∧ E′ ∼σ,P ′ E′0


≤ 1

|Iη(T )|
Pr

[
∃(E,Q, C),C0 →∗ E, (σ, P ),Q, C
∧ E ∼σ,P E0

]
The first step is by the semantic rule (New), the second step
by induction hypothesis, and the last step by the semantic
rule (New) again. Therefore, we obtain Item 3 of (L0).

• P occurs in P ′ = let y[̃i] : T ′ = M in P with y 6= x.
For all traces of non-zero probability that reach P , the last
reduction reduces P ′ by (Let), so these traces are all of the
form C0 →∗ E′, (σ, P ′),Q, C → E, (σ, P ),Q, C where
E′, σ,M ⇓ a′ andE = E′[y[σĩ] 7→ a′]. LetE′0 = E

0|y[σĩ]
.

If M does not depend on x at P ′, we have dependP (x) =

dependP ′(x) and indepP (x) = indepP ′(x) ∪ {y[̃i]}. In
this case, by (S6), E′, σ,M ⇓ a′ if and only if E′0, σ,M ⇓
a′ (where E′ ∼σ,P ′ E′0 are environments at P ′). We can
then show that (L0) holds at P using the induction hypoth-
esis. (We have E ∼σ,P E0 if and only if E′ ∼σ,P ′ E′0 and
E0 = E′0[y[σĩ] 7→ a′].)

Otherwise, we have dependP (x) = dependP ′(x) ∪
{(y,MdependP ′(x))} and indepP (x) = indepP ′(x). By
induction hypothesis, for all (y′,M ′) ∈ dependP ′(x),
E′, σ,M ′ ⇓ E′(y′[σĩ]), so E, σ,M ′ ⇓ E(y′[σĩ]), hence
E, σ,MdependP ′(x) ⇓ a′ = E(y[σĩ]), so we obtain
Item 1 of (L0). Item 2 of (L0) follows immediately from
the induction hypothesis. Item 3 of (L0) also follows from
the induction hypothesis. (We have E ∼σ,P E0 if and only
if E′ ∼σ,P ′ E′0.)

• P occurs in P ′ = find (
⊕m

j=1 uj1 [̃i] ≤ nj1, . . . , ujmj [̃i] ≤
njmj suchthat defined(Mj1, . . . ,Mjlj )∧Mj then Pj) else
P ′′, P is either P ′′ or Pj for some j ≤ m, and for all
j, k, Mjk and M ′j do not depend on x at P ′. We have
dependP (x) = dependP ′(x), indepP (x) = indepP ′(x)
if P = P ′′, and indepP (x) = indepP ′(x) ∪ {M ′ |
M ′ ∈ subterms(M) for some defined(M) ∈ FPj , M ′
does not depend on x at P ′} if P = Pj . By (S6), we
can show that the same branch of the find is taken with
the same probability for all E such that E ∼σ,P ′ E0 for
the same E0. Using the induction hypothesis, we can
then show that (L0) holds at P with indepP ′(x) instead
of indepP (x). This concludes the proof when P = P ′′.
When P = Pj , let M ′′1 , . . . ,M

′′
l be the terms M ′ such

that M ′ ∈ subterms(M) for some defined(M) ∈ FPj and
M ′ does not depend on x at P ′. Since FPj is correct and
Pr[C0 →∗ E, (σ, P ),Q, C] = p > 0 then E, σ ` FPj , so
E, σ,M ′′k ⇓ a for some a. The term M ′′k does not depend

on x at P with indepP ′(x) ∪ {M ′′1 , . . . ,M ′′k−1} instead
of indepP (x). By (S7) applied at P with indepP ′(x) ∪
{M ′′1 , . . . ,M ′′k−1} instead of indepP (x), if (L0) holds at P
with indepP ′(x) ∪ {M ′′1 , . . . ,M ′′k−1}, then (L0) holds at
P with indepP ′(x) ∪ {M ′′1 , . . . ,M ′′k }. So (L0) holds at P
with indepP ′(x) ∪ {M ′′1 , . . . ,M ′′l } = indepP (x).

For each σ, P , we define a special semantics of processes.
This semantics executes the process C[Q0] normally until it
reaches a configuration E′, (σ′, P ′),Q, C such that P ′ is the
smallest superprocess of P such that dependP ′(x) 6= > and
σ′(i) = σ(i) for all i ∈ Dom(σ′). After reaching this con-
figuration, it executes restrictions for all variables defined only
by restrictions in C[Q0] that have not been assigned yet and
executes the not-executed-yet restrictions and the assignments
P1 = let y : T = M in P2 such that M does not depend on
x at P1 between P ′ and P . In the second part of the trace,
a configuration is only E′′, (σ′′, P ′′); σ′′ is always set to be
σ restricted to the current replication indices at P ′′. We write
C0→′∗E, (σ, P ) to designate a trace in this special semantics.
(When dependP (x) 6= >, this semantics executes the process
normally, and finally executes restrictions for all variables de-
fined only by restrictions that have not been assigned yet.)

We will show the following property L1:

1. If Pr[C0 →∗ E, (σ, P ),Q, C] > 0, dependP (x) 6= >, and
(y,M) ∈ dependP (x), then E, σ,M ⇓ E(y[σĩ]) where ĩ
denotes the current replication indices at P ;

2. If Pr[C0 →∗ E, (σ, P ),Q, C] > 0 and M ∈ indepP (x),
then E, σ,M ⇓ a for some a;

3. For each b ∈ Iη(T ), for each σ, for each E0,
Pr[∃(E,Q, C),C0 →∗ E, (σ, P ),Q, C ∧ E ∼σ,P E0 ∧
E(x[σĩ]) = b] ≤ 1

|Iη(T )| Pr[∃E1,C0→′∗E1, (σ, P ) ∧
E1|Dom(E0) ∼σ,P E0] where ĩ denotes the current repli-
cation indices at the definition of x.

Property (L1) expresses the correctness of the local dependency
analysis at P . It differs from (L0) by the use of the special
semantics →′ in Item 3. This semantics is necessary when
dependP (x) = >, because in that case the control-flow may
also depend on the value of x[σĩ], so P may not be reachable
for certain values of x[σĩ], which breaks the inequality between
probabilities of (L0), Item 3. In contrast, the special semantics
→′ computesE1, (σ, P ) without taking into account the control-
flow, so this problem is avoided.

Property (S7) also holds for (L1), with the same proof as
for (L0).

We show S9: if (L0) holds at P , then (L1) holds at P .
Let E1 be E extended with values for all variables defined
only by restrictions. If E ∼σ,P E0, the variables defined
only by restrictions are defined for the same indices in E and
in E0, so E1|Dom(E0) = E, hence E1|Dom(E0) ∼σ,P E0.
Therefore, Pr[∃(E,Q, C),C0 →∗ E, (σ, P ),Q, C ∧ E ∼σ,P
E0] ≤ Pr[∃E1,C0→′∗E1, (σ, P ) ∧ E1|Dom(E0) ∼σ,P E0],
which proves (L1).

We show S9’: if (L0) holds at P , then (L1) holds at
P with ∼σ,>,indepP (x) instead of ∼σ,P . If E ∼σ,P E′,
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then E ∼σ,>,indepP (x) E′. So each equivalence class of
∼σ,>,indepP (x) is a union of equivalence classes of ∼σ,P . So we
obtain (L0) with∼σ,>,indepP (x) instead of∼σ,P by adding prob-
abilities. We conclude that (L1) holds at P with ∼σ,>,indepP (x)

instead of ∼σ,P using a proof similar to that of (S9).
We show S10: If P is an output process, P ′ is the small-

est output process such that P is a strict subprocess of P ′,
(L1) holds at P ′ with ∼σ,>,indepP ′ (x) instead of ∼σ,P ′ , and
dependP (x) = >, then (L1) holds at P with indepP ′(x) in-
stead of indepP (x). The equivalence between environments
for (L1) at P with indepP ′(x) instead of indepP (x) is also
∼σ,>,indepP ′ (x), since dependP (x) = >. Item 1 of (L1) holds
trivially at P since dependP (x) = >. For the proof of Item 3
of (L1), we let p = Pr[∃(E,Q, C),C0 →∗ E, (σ, P ),Q, C ∧
E ∼σ,>,indepP ′ (x) E0 ∧ E(x[σĩ]) = b].

• Case P ′ = let y[̃i] : T ′ = M in P . In traces of non-
zero probability that reach P , the last reduction of the trace
reduces P ′ by (Let), so these traces are all of the form:

C0 →∗ E′, (σ, P ′),Q, C → E, (σ, P ),Q, C

where E′, σ,M ⇓ a and E = E′[y[σĩ] 7→ a] and the corre-
sponding trace of→′ is

C0→′
∗
E′1, (σ, P

′)→′ E1, (σ, P )

where E′1, σ,M ⇓ a′ and E1 = E′1[y[σĩ] 7→ a′]. Let E′0 =
E

0|y[σĩ]
be the environment E0 restricted to the variables

defined at P ′. For all M ′ ∈ indepP ′(x), E1, σ,M
′ ⇓ b

for some b since (L1) holds at P ′. Then E, σ,M ′ ⇓ b,
so Item 2 of (L1) holds at P with indepP ′(x) instead of
indepP (x). Since all elements of indepP ′(x) must be de-
fined at P ′ (by Item 2 of (L1) at P ′), y[σĩ] is not defined
at P ′, and y is not defined only by restrictions, the con-
dition E ∼σ,>,indepP ′ (x) E0 in Item 3 of (L1) at P with
indepP ′(x) instead of indepP (x) does not use the value
of E(y[σĩ]), hence E ∼σ,>,indepP ′ (x) E0 if and only if
E′ ∼σ,>,indepP ′ (x) E′0, and E1|Dom(E0) ∼σ,>,indepP ′ (x)
E0 if and only if E′1|Dom(E′0)

∼σ,>,indepP ′ (x) E
′
0, so the

probabilities that occur in Item 3 of (L1) are the same for P ′

and for P with indepP ′(x) instead of indepP (x). There-
fore, Item 3 of (L1) holds at P with indepP ′(x) instead of
indepP (x).

• Case P ′ = new y[̃i] : T ′;P , where y is not defined only by
restrictions. In traces of non-zero probability that reach P ,
the last reduction of the trace reduces P ′ by (New). This
case is similar to the let case above.

• Case P ′ = new y[̃i] : T ′;P , where y is defined only by
restrictions. In traces of non-zero probability that reach P ,
the last reduction of the trace reduces P ′ by (New). Item 2
is proved as in the let case above. Let us consider Item 3.
Let E′0 = E

0|y[σĩ]
be the environment E0 restricted to the

variables defined at P ′. Let ĩ′ be the replication indices at

the definition of x. (̃i′ is a prefix of ĩ.)

p = Pr

∃(E,E′,Q, C),C0 →∗ E′, (σ, P ′),Q, C → E, (σ, P ),Q, C
∧ E ∼σ,>,indepP ′ (x) E0 ∧ E(x[σĩ′]) = b


=

1

|Iη(T ′)|
Pr

∃(E′,Q, C),C0 →∗ E′, (σ, P ′),Q, C
∧ E′ ∼σ,>,indepP ′ (x) E

′
0

∧ E′(x[σĩ′]) = b


≤ 1

|Iη(T ′)|
1

|Iη(T )|
Pr

[
∃E′1,C0→′∗E′1, (σ, P ′) ∧
E′1|Dom(E′0)

∼σ,>,indepP ′ (x) E
′
0

]
≤ 1

|Iη(T )|
Pr

[
∃E1,C0→′∗E1, (σ, P )
∧ E1|Dom(E0) ∼σ,>,indepP ′ (x) E0

]
The first step comes from the semantic rule (New), the sec-
ond step from (L1) at P ′, the last step from the assign-
ment of variables defined only by restrictions in the spe-
cial →′ semantics. (Note that E′1 = E1, but the con-
dition E′1|Dom(E′0)

∼σ,>,indepP ′ (x) E′0 does not use the

value of E′1(y[σĩ]).) This inequality proves (L1) at P with
indepP ′(x) instead of indepP (x).

• Cases in which there is no assignment and no restriction
between P and P ′. Everything that is defined at P ′ is also
defined at P , since the environment at P is an extension of
the environment at P ′, so Item 2 of (L1) holds at P since
it holds at P ′. Let us now prove Item 3 of (L1). The final
environment E′ of the →′ trace is the same for P and for
P ′, so the right-hand side of the inequality is the same for
P and for P ′. The left-hand side decreases from P ′ to P ,
since all traces that reach P must first have reached P ′, so
the inequality still holds.

From the previous results, we show that (L1) holds at all out-
put processes P . The proof proceeds by decreasing induction
on P . If dependP (x) 6= >, we have the result using (S8)
and (S9). Otherwise, let P ′ be the smallest output process such
that P is a strict subprocess of P ′. If dependP ′(x) 6= >,
by (S8) and (S9’), (L1) holds at P ′ with ∼σ,>,indepP ′ (x) instead
of ∼σ,P ′ . If dependP ′(x) = >, by induction hypothesis, (L1)
holds at P ′, that is, (L1) holds at P ′ with ∼σ,>,indepP ′ (x) in-
stead of ∼σ,P ′ . In both cases, by (S10), (L1) holds at P with
indepP ′(x) instead of indepP (x). The only cases in which
indepP ′(x) 6= indepP (x) are as follows:

• Case P ′ = new y[̃i] : T ′;P , y 6= x, indepP (x) =

indepP ′(x)∪{y[̃i]}. When y is defined only by restrictions,
y[̃i] does not depend on x at P with indepP ′(x) instead of
indepP (x), so, by (S7), (L1) holds at P . Otherwise, in
traces of non-zero probability that reach P , the last reduc-
tion of the trace reduces P ′ by (New), so these traces are
all of the form:

C0 →∗ E′, (σ, P ′),Q, C → E, (σ, P ),Q, C

where E = E′[y[σĩ] 7→ a] for some a ∈ Iη(T ′). So Item 2
of (L1) holds at P . Let E′0 = E

0|y[σĩ]
. Let ĩ′ be the repli-

cation indices at the definition of x. (̃i′ is a prefix of ĩ.) We
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prove Item 3 of (L1) as follows:

p = Pr

∃(E,E′,Q, C),C0 →∗ E′, (σ, P ′),Q, C → E, (σ, P ),Q, C
∧ E ∼σ,>,indepP (x) E0 ∧ E(x[σĩ′]) = b


=

1

|Iη(T ′)|
Pr

∃(E′,Q, C),C0 →∗ E′, (σ, P ′),Q, C
∧ E′ ∼σ,>,indepP ′ (x) E

′
0

∧ E′(x[σĩ′]) = b


≤ 1

|Iη(T ′)|
1

|Iη(T )|
Pr

[
∃E′1,C0→′∗E′1, (σ, P ′) ∧
E′1|Dom(E′0)

∼σ,>,indepP ′ (x) E
′
0

]

≤ 1

|Iη(T )|
Pr

∃(E1, E
′
1),

C0→′∗E′1, (σ, P ′)→′ E1, (σ, P )
∧ E1|Dom(E0) ∼σ,>,indepP (x) E0


The first step comes from the semantic rule (New), the sec-
ond step from (L1) at P ′, the last step from the special→′
semantics of new. This inequality proves (L1) at P .

• Case P ′ = find (
⊕m

j=1 uj1 [̃i] ≤ nj1, . . . , ujmj [̃i] ≤ njmj
suchthat defined(Mj1, . . . ,Mjlj ) ∧ Mj then Pj) else
P ′′, dependP (x) = dependP ′(x) = >, P = Pj ,
indepP (x) = indepP ′(x) ∪ {M ′ | M ′ ∈ subterms(M)
for some defined(M) ∈ FPj , M ′ does not depend on x at
P ′}. For all M ′ such that M ′ ∈ subterms(M) for some
defined(M) ∈ FPj and M ′ does not depend on x at P ′,
M ′ does not depend on x at P with indepP ′(x) instead of
indepP (x). Since FP is correct for all P , for all E, σ such
that Pr[C0 →∗ E, (σ, P ),Q, C] > 0, we have E, σ ` FP ,
so E, σ,M ′ ⇓ a for some a. So, by (S7), (L1) holds at P .

• Case P ′ = let y[̃i] : T ′ = M in P , y 6= x, M does not
depend on x at P ′. The term M does not depend on x at P
with indepP ′(x) instead of indepP (x). By (S7), (L1) holds
at P with indepP ′(x) ∪ {M} instead of indepP (x). In all
traces (of non-zero probability) considered in (L1), we have
E, σ, y[̃i] ⇓ b if and only if E, σ,M ⇓ b and E1, σ, y[̃i] ⇓
b if and only if E1, σ,M ⇓ b, so (L1) holds at P with
indepP (x) = indepP ′(x) ∪ {y[̃i]}.

This result concludes the proof of soundness of the dependency
analysis.

We now show the soundness of simplifyTerm. Essentially,
whenM simplifies toM ′,M andM ′ evaluate to the same value
except in cases of negligible probability. More precisely, we
show S11: for each P , M , M ′, if M ′ = simplifyTerm(M,P ),
then Pr[∃(E, σ,Q, C),C0 →∗ E, (σ, P ),Q, C ∧ E, σ, (M ′ =
M) ⇓ false] ≤ q′(η)pmax(η) for some polynomial q′.
The proof proceeds by induction on the derivation that
M ′ = simplifyTerm(M,P ). We only consider the case
simplifyTerm(M1 = M2, P ) = false; the other cases are simi-
lar or easy. We show that if simplifyTerm(M1 = M2, P ) =
false then p = Pr[∃(E, σ,Q, C),C0 →∗ E, (σ, P ),Q, C ∧
E, σ, (M1 = M2) ⇓ true] ≤ q′(η)pmax(η) for some polyno-
mial q′. When dependP (x) = >, let M0 = M1; otherwise,
let M0 = M1dependP (x). Let M ′0 and M ′2 be obtained re-
spectively from M0 and M2 by replacing all array indices that
depend on x at P with fresh replication indices. We assume that
M ′0 characterizes a part of x[̃i] at P , and M ′2 does not depend on
x at P .

Let σ and σ′ be fixed, such that σ′ is an extension of σ to
the fresh replication indices of M ′0 and M ′2. We denote by E
equivalence classes for∼σ,P=∼σ′,P . We show that for all a, for
all E, there exists b such that for all E ∈ E, if E, σ′,M ′0 ⇓ a,
then E, σ′, f1(. . . fk(x[̃i])) ⇓ b.

• Assume that there exists E′ ∈ E such that E′, σ′,M ′0 ⇓ a.
We define an environment E′′ by E′′(y[ã]) = E(y[ã])
for all y[ã] ∈ Dom(E) and E′′((αy)[ã]) = E′(y[ã])
for variables y renamed to fresh variables by α. We
have E′′((αy)[ã]) = E′(y[ã]) for all y[ã] ∈ Dom(E′),
since when αy = y, E′(y[ã]) = E(y[ã]) since E ∼σ,P
E′. Hence E′′, σ′,M ′0 ⇓ a and E′′, σ′, αM ′0 ⇓ a,
so E′′, σ′, (αM ′0 = M ′0) ⇓ true. So by rewriting,
E′′, σ′, (f1(. . . fk((αx)[̃i])) = f1(. . . fk(x[̃i]))) ⇓ true.
Let b such that E′′, σ′, f1(. . . fk((αx)[̃i])) ⇓ b. Then
E′′, σ′, f1(. . . fk(x[̃i])) ⇓ b.

• Otherwise, there exists no E ∈ E such that E, σ′,M ′0 ⇓ a,
so the result holds trivially.

So there exists a function f such that for all a, for all E, for
all E ∈ E, if E, σ′,M ′0 ⇓ a, then E, σ′, f1(. . . fk(x[̃i])) ⇓
f(a, σ′, E).

If E, σ, (M1 = M2) ⇓ true and E ∈ E, E, σ,M1 ⇓ a and
E, σ,M2 ⇓ a for some a. Then E, σ,M0 ⇓ a by Item 1 of (L1).
So there exists an extension σ′ of σ to the fresh replication in-
dices ofM ′0 andM ′2 such thatE, σ′,M ′0 ⇓ a andE, σ′,M ′2 ⇓ a.
Then E, σ′, f1(. . . fk(x[̃i])) ⇓ f(a, σ′, E). Since E, σ′,M ′2 ⇓ a
and M ′2 does not depend on x at P , by (S6), we have a =
f ′(σ′, E) for some function f ′, hence E(x[σĩ]) ∈ Sx(σ′, E) =
(Iη(f1) ◦ . . . ◦ Iη(fk))−1(f(f ′(σ′, E), σ′, E)). Let T1, . . . , Tk
be the types of the arguments of f1, . . . , fk respectively; let
T0 = T ′ be the type of the result of f1; Tk = T . We have
|Sx(σ′, E)| ≤ |Iη(T1)|

|Iη(T0)| × . . .×
|Iη(Tk)|
|Iη(Tk−1)| =

|Iη(Tk)|
|Iη(T0)| =

|Iη(T )|
|Iη(T ′)| ,

since f1, . . . , fk are uniform. Let ĩ′ = Dom(σ) be the current
replication indices at P .

p = Pr

[
∃(E, σ,Q, C),C0 →∗ E, (σ, P ),Q, C
∧ E, σ, (M1 = M2) ⇓ true

]
≤
∑
E

∑
σ′

Pr

[
∃(E,Q, C),C0 →∗ E, (σ′|̃i′ , P ),Q, C
∧ E ∈ E ∧ E(x[σ ′̃i]) ∈ Sx(σ′, E)

]

≤
∑
E

∑
σ′

∑
b∈Sx(σ′,E)

Pr

∃(E,Q, C),C0 →∗ E, (σ′|̃i′ , P ),Q, C
∧ E ∈ E ∧ E(x[σ ′̃i]) = b


≤
∑
E

∑
σ′

∑
b∈Sx(σ′,E)

1

|Iη(T )|
Pr

[
∃E′,C0→′∗E′, (σ′|̃i′ , P )

∧ E′|Dom(E)
∈ E

]

by Item 3 of (L1). (Dom(E) denotes the domain of an element
of E, for instance the smallest one.)

p ≤ 1

|Iη(T ′)|
∑
σ′

∑
E

Pr

[
∃E′,C0→′∗E′, (σ′|̃i′ , P )

∧ E′|Dom(E)
∈ E

]

≤ q1(η)

|Iη(T ′)|
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where q1(η) is the number of possible σ′, which is polynomial
in η.

We now show the correctness of the game simplifications
performed in depAnal. If Q0 is the process before sim-
plification and Q′0 the process after simplification, we show
that Q0 ≈V Q′0. For simplicity, we consider one trans-
formation at a time, and use transitivity of ≈V to conclude
when several transformations are applied. For each trace
initConfig(C[Q0]) →∗ Em, Pm,Qm, Cm, except in cases of
negligible probability, we show that there exists a corresponding
trace initConfig(C[Q′0]) →∗ E′m′ , P ′m′ ,Q′m′ , C′m′ with E′m′ =
Em, P ′m′ is obtained from Pm by the same transformation asQ′0
from Q0, Q′m′ is obtained fromQm by the same transformation
asQ′0 fromQ0, C′m′ = Cm, with the same probability. The proof
proceeds by induction on m. The case m = 0 is obvious, since
the game simplifications do not change input processes. For the
inductive step, we reason by cases on the last reduction step of
the trace of C[Q0]. We consider only the cases in which the
transition may be altered by the game simplification.

• Case 1: When simplifyTerm(M,P ) = M ′, we replace M
with M ′ in P . We exclude traces such that E, σ 6` M =
M ′. (They have negligible probability by (S11).) In the
remaining traces, E, σ ` M = M ′. So E, σ,M ⇓ a if and
only if E, σ,M ′ ⇓ a, and the transformed process reduces
in the same way as the initial process.

• Case 2: When Mj = false, we remove the j-th branch
of find (

⊕m
j=1 uj1 [̃i] ≤ nj1, . . . , ujmj [̃i] ≤ njmj suchthat

defined(Mj1, . . . ,Mjlj )∧Mj then Pj) else P ′ In all traces
E, σ, (defined(Mj1, . . . ,Mjlj ) ∧ Mj) ⇓ false, so in the
reduction rule (Find1), the set S never contains (j, ṽ) for
any ṽ, hence by (Find1) or (Find2), the process takes the
same branch of the find with the same probability, whether
or not the j-th branch is present.

• The other cases are similar.

We also show the converse property: for each trace ofC[Q′0], ex-
cept in cases of negligible probability, there exists a correspond-
ing trace of C[Q0] with the same probability. Moreover, for
all channels c and bitstrings a, Em, Pm,Qm, Cm executes c〈a〉
immediately if and only if E′m′ , P

′
m′ ,Q′m′ , C′m′ executes c〈a〉

immediately, so Pr[C[Q0]  η c〈a〉] = Pr[C[Q′0]  η c〈a〉],
which yields the desired equivalence Q0 ≈V Q′0.

Correctness of the equational prover. We say that E, σ `
(F ,R) when E, σ ` F and for all (M1 → M2) ∈ R,
E, σ ` M1 = M2. For each P , the equational prover rewrites
pairs F ,R starting from (FP , ∅) according to a certain se-
quence. We denote by (Fj ,Rj)(P ) the j-th element of this se-
quence. So we have (F0,R0)(P ) = (FP , ∅), and for all j, we
have (Fj−1,Rj−1)(P )

(Fj ,Rj)(P ) . Let pm′(P ) = Pr[∃(E, σ,Q, C),C0 →∗

E, (σ, P ),Q, C ∧ E, σ 6` (Fm′ ,Rm′)(P )]. We show S12: for
each P , pm′(P ) ≤ q′(η)pmax(η) for some polynomial q′. We
first prove (S12) for the case in which we use only the first kind
of user-defined rewrite rules of Section C.1. The proof proceeds
by induction on m′. For m′ = 0, this is an immediate con-
sequence of the property that E, σ ` (F0,R0)(P ) = (FP , ∅)

since FP is correct for all P , with q′(η) = 0. For the inductive
step,

pm′(P ) ≤ pm′−1(P )

+ Pr

∃(E, σ,Q, C),C0 →∗ E, (σ, P ),Q, C
∧ E, σ ` (Fm′−1,Rm′−1)(P )
∧ E, σ 6` (Fm′ ,Rm′)(P )


By induction hypothesis, pm′−1(P ) ≤ q′(η)pmax(η) for some
polynomial q′. So we just have to show that if F,R

F ′,R′ then
Pr[∃(E, σ,Q, C),C0 →∗ E, (σ, P ),Q, C ∧ E, σ ` (F ,R) ∧
E, σ 6` (F ′,R′)] ≤ q′(η)pmax(η) for some polynomial q′. We
proceed by cases on the derivation of F,RF ′,R′ .

• The cases (2), (5), (7), as well as the cases (1) and (6) when
the reduction uses a rule of R or a user-defined rule of the
first kind, are obvious and there is no loss of probability
(that is, q′(η) = 0.)

• Case (3): Assume that E, σ ` (F ,R) and E, σ 6`
(F ′,R′). So for all j ≤ m, E, σ,Mj ⇓ aj ,
E, σ,M ′j ⇓ a′j , (a1, . . . , am) 6= (a′1, . . . , a

′
m), and

E(x[a1, . . . , am]) = E(x[a1, . . . , am]). Since for each
a1, . . . , am, x[a1, . . . , am] is chosen randomly with uni-
form probability among |Iη(T )| values, the probability that
this happens is smaller than q′′(η)(q′′(η)−1)

2|Iη(T )| where q′′(η) is
the number of possible values of a1, . . . , am, which is a
polynomial in η.

• Case (4): We first show that, if M characterizes a part of x
with Sdef , Sdep, then for all M0 obtained from M by sub-
stituting variables of Sdef with their definition, there exist
a tuple of terms M̃ , a large type T , and uniform functions
f1, . . . , fk such that T is the type of the result of f1 (or of
x when k = 0) and for each a, E0, and σ, there exists b
such that for all E such that E equals E0 on variables not
in Sdep, if E, σ,M0 ⇓ a then E, σ, f1(. . . fk(x[M̃ ])) ⇓ b.
Indeed, M0 = {αM0 = M0} is rewritten into a set that
contains f1(. . . fk((αx)[M̃ ′])) = f1(. . . fk(x[M̃ ])). Due
to the form of rewrite rules, (αx)[M̃ ′] is a subterm of αM0

and x[M̃ ] is a subterm of M0. Moreover, the variables in
Sdep do not occur in M̃ or M̃ ′.

– If a is such that there exists E′ such that E′ equals
E0 on variables not in Sdep, E′, σ, αM0 ⇓ a
and E′ defines variables of αM0, let b such that
E′, σ, f1(. . . fk((αy)[M̃ ′])) ⇓ b. Then for all E
such that E equals E0 on variables not in Sdep and
E, σ,M0 ⇓ a, we can define the E′′ that maps
variables of M0 as E and variables of αM0 as E′.
Then E′′, σ, (αM0 = M0) ⇓ true, so by rewriting
E′′, σ, f1(. . . fk((αx)[M̃ ′])) = f1(. . . fk(x[M̃ ])) ⇓
true, so E, σ, f1(. . . fk(x[M̃ ])) ⇓ b.

– Otherwise, there is no E such that E equals E0 on
variables not in Sdep and E, σ,M0 ⇓ a, so the result
holds trivially.

So there exists a function f such that for each a, σ, E,
if E, σ,M0 ⇓ a then E, σ, f1(. . . fk(x[M̃ ])) ⇓ f(a, σ,
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E|Sdep
). Since the variables in Sdep do not occur in M̃ ,

there exists a tuple of functions f̃ such that E, σ, M̃ ⇓
f̃(σ,E|Sdep

). So E, σ, f1(. . . fk(x[f̃(σ,E|Sdep
)])) ⇓

f(a, σ,E|Sdep
).

Let us now consider the three cases of Rule (4). In
each case, we show that p = Pr[∃E,∃σ, ∃Q,∃C,C0 →∗
E, (σ, P ),Q, C ∧ E, σ ` M1 = M2] ≤ q′(η)pmax(η) for
some polynomial q′ and forM1,M2 that satisfy the hypoth-
esis of Rule (4).

– First case: M ′1 is obtained fromM1 by replacing all array
indices that are not replication indices with fresh replication
indices, x occurs inM ′1, x is defined by restrictions new x :
T ′, T ′ is a large type, M ′1 characterizes a part of x, and
M2 is obtained by optionally applying function symbols to
terms of the form y[M̃ ′] where y is defined by restrictions
and y 6= x.

Let M ′2 be obtained from M2 by replacing all array indices
that are not replication indices with fresh replication in-
dices. Let Sindep be the set of variables defined only by
restrictions, excluding x. Since M ′1 characterizes a part of
x, there exist a large type T , functions f and f̃ , and uni-
form functions f1, . . . , fk such that T is the type of the
result of f1 (or of x when k = 0) and for each a, E, and σ,
if E, σ,M1 ⇓ a then E, σ, f1(. . . fk(x[f̃(σ,E|Sindep

)])) ⇓
f(a, σ,E|Sindep

).

If E, σ ` M1 = M2 then we have E, σ,M1 ⇓ a and
E, σ,M2 ⇓ a for some a. Then there exists an exten-
sion σ′ of σ to the fresh replication indices of M ′1 and
M ′2 such that E, σ′,M ′1 ⇓ a and E, σ′,M ′2 ⇓ a. So
E, σ′, f1(. . . fk(x[f̃(σ′, E|Sindep

)])) ⇓ f(a, σ′, E|Sindep
)

and since only the variables of Sindep occur in M ′2, there
is a function f ′ such that a = f ′(σ′, E|Sindep

). So

E(x[f̃(σ′, E|Sindep
)]) ∈ Sx(σ,E|Sindep

) = (Iη(f1) ◦
. . . ◦ Iη(fk))−1(f(f ′(σ′, E|Sindep

), σ′, E|Sindep
)).

Let T1, . . . , Tk be the types of the arguments of f1, . . . , fk
respectively; T0 = T , Tk = T ′. We have
|Sx(σ,E|Sindep

)| ≤ |Iη(T1)|
|Iη(T0)| × . . .×

|Iη(Tk)|
|Iη(Tk−1)| =

|Iη(Tk)|
|Iη(T0)| =

|Iη(T ′)|
|Iη(T )| since f1, . . . , fk are uniform. Let Eindep be an en-

vironment giving values to variables of Sindep. Let ĩ′ =
Dom(σ) be the current replication indices at P .

p ≤
∑
σ′

∑
Eindep

Pr

∃(E,Q, C),C0 →∗ E, (σ′ĩ′ , P ),Q, C
∧ E|Sindep

= Eindep ∧
E(x[f̃(σ′, Eindep)]) ∈ Sx(σ′, Eindep)


≤
∑
σ′

1

|Iη(T )|
∑
Eindep

Pr

∃(E,Q, C),C0 →∗ E, (σ, P ),Q, C
∧ E|Sindep

= Eindep


≤ q1(η)

|Iη(T )|

where q1(η) is the number of possible σ′, which is polyno-
mial in η. So the result follows with q′(η) = q1(η).

– Second case: simplifyTerm(M1 = M2, P ) = false. The
result follows immediately from the correctness of the local
dependency analysis, Property (S11).

The case in which global dependency analysis is triggered leads
to a separate game transformation, which is proved correct be-
low.

Let us now prove (S12) in the general case in which we can
use any user-defined rewrite rule of Section C.1. The proof pro-
ceeds as in the previous case, except that we now have to con-
sider cases (1) and (6) when the reduction uses a user-defined
rewrite rule of the second kind new y1 : T ′1, . . . , new yl :
T ′l ,∀x1 : T1, . . . ,∀xm : Tm,M1 → M2, with associated prob-
ability p(η). Suppose that this user-defined claim is correct. We
first prove that, if σ′ is a substitution that maps xj to any term
of type Tj for all j ≤ m and yj to terms to the form zj [M̃j ]
where xj is defined only by restrictions new zj : T ′j for all
j ≤ l, and Cond = {M̃j = M̃j′ | j 6= j′ ∧ zj = zj′} =
{cond1, . . . , condk}, then

Pr[∃(E, σ,Q, C),C0 →∗ E, (σ, P ),Q, C ∧
E, σ ` σ′M1 6= σ′M2 ∧ ¬(cond1 ∨ . . . ∨ condk)]

≤ q(η)pmax(η)

(8)

for some polynomial q.
By definition of the user-defined rewrite rule,

Pr[E′(y1)
R← Iη(T ′1); . . . E′(yl)

R← Iη(T ′l );

(E′(x1), . . . , E′(xm))← A(E′(y1), . . . , E′(yl));

E′,M1 ⇓ a;E′,M2 ⇓ a′ : a 6= a′] ≤ pmax(η)

where A is a probabilistic Turing machine running in time at
most the maximum runtime of C[Q0].

Let us define A as follows. Let S denote the set of possi-
ble values (ã1, . . . , ãl) for the indices of z1, . . . , zl, such that
(zj , ãj) 6= (zj′ , ãj′) when j 6= j′. A chooses indices ã1, . . . , ãl
at random uniformly in S. Next, it runs the game starting
from C0 normally, except that it sets zj [ãj ] to E′(yj) for all
j ≤ l instead of choosing zj [ãj ] randomly. If for all j ≤ l,
E, M̃j ⇓ ãj , thenA returns (b1, . . . , bm) such that for all j ≤ m,
E, σ, σ′xj ⇓ bj . Otherwise, A fails. If A does not fail, then
E′,M1 ⇓ a such that E, σ, σ′M1 ⇓ a and E′,M2 ⇓ a′ such that
E, σ, σ′M2 ⇓ a′. Hence, if E, σ ` σ′M1 6= σ′M2, then a 6= a′.

Let q(η) be the cardinal of S, which is polynomial in η. Then

Pr

E′(y1)
R← Iη(T ′1); . . . E′(yl)

R← Iη(T ′l );
(E′(x1), . . . , E′(xm))← A(E′(y1), . . . , E′(yl));
E′,M1 ⇓ a;E′,M2 ⇓ a′ : a 6= a′



= Pr

∃(E, σ,Q, C), (ã1, . . . , ãl) R←S;C0 →∗ E, (σ, P ),Q, C
∧ E, σ ` σ′M1 6= σ′M2 ∧ ¬(cond1 ∨ . . . ∨ condk)

∧ ∀j ≤ l, E, M̃j ⇓ ãj


=

1

q(η)
Pr

[
∃(E, σ,Q, C),C0 →∗ E, (σ, P ),Q, C ∧
E, σ ` σ′M1 6= σ′M2 ∧ ¬(cond1 ∨ . . . ∨ condk)

]
since, when the other conditions are satisfied, the last condition
∀j ≤ l, E, M̃j ⇓ ãj holds for exactly one element of S, and
there are q(η) elements in S. Since the initial probability is at
most pmax(η), we obtain (8).
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When E, σ ` (F ,R) but E, σ 6` (F ′,R′), we have that M
reduces into M ′ by a user-defined rewrite rule knowing F ,R,
and E, σ `M 6= M ′.

• First case: in the definition of M reduces into M ′ by the
user-defined rewrite rule, Cond = ∅.

We have M = C[σ′M1], M ′ = C[σ′M2], where C is a
term context and σ′ is a substitution that maps xj to any
term of type Tj for all j ≤ m and yj to terms to the form
zj [M̃j ] where xj is defined only by restrictions new zj : T ′j
for all j ≤ l. We have Cond = {M̃j = M̃j′ | j 6= j′∧zj =
zj′} = ∅.

Therefore,

Pr

[
∃(E, σ,Q, C),C0 →∗ E, (σ, P ),Q, C ∧
E, σ ` (F ,R) ∧ E, σ 6` (F ′,R′)

]
≤ Pr

[
∃(E, σ,Q, C),C0 →∗ E, (σ, P ),Q, C ∧
E, σ ` (F ,R) ∧ E, σ `M 6= M ′

]
≤ Pr

[
∃(E, σ,Q, C),C0 →∗ E, (σ, P ),Q, C ∧
E, σ ` σ′M1 6= σ′M2

]
≤ q(η)pmax(η)

by (8).

• Second case: in the definition of M reduces into M ′ by the
user-defined rewrite rule, Cond 6= ∅.

We have M = C[σ′M1], C[σ′M2] = false, where C is a
term context and σ′ is a substitution that maps xj to any
term of type Tj for all j ≤ m and yj to terms to the form
zj [M̃j ] where xj is defined only by restrictions new zj : T ′j
for all j ≤ l. We have Cond = {M̃j = M̃j′ | j 6= j′∧zj =
zj′} = {cond1, . . . , condk}. M is transformed into M ′k′
by rewrite rules generated by our equational prover from
F ∪{condk′},R and user-defined rewrite rules, using only
the first kind of user-defined rewrite rules of Section C.1,
and M ′ = (cond1 ∧M ′1) ∨ . . . ∨ (condk ∧M ′k).

Therefore,

Pr

[
∃(E, σ,Q, C),C0 →∗ E, (σ, P ),Q, C ∧
E, σ ` (F ,R) ∧ E, σ 6` (F ′,R′)

]
≤ Pr

[
∃(E, σ,Q, C),C0 →∗ E, (σ, P ),Q, C ∧
E, σ ` (F ,R) ∧ E, σ `M 6= M ′

]
≤ Pr

[
∃(E, σ,Q, C),C0 →∗ E, (σ, P ),Q, C ∧
E, σ `M 6= (cond1 ∨ . . . ∨ condk) ∧M

]

+ Pr

∃(E, σ,Q, C),C0 →∗ E, (σ, P ),Q, C ∧
E, σ ` (F ,R) ∧ E, σ ` ((cond1 ∨ . . . ∨ condk)
∧M 6= (cond1 ∧M ′1) ∨ . . . ∨ (condk ∧M ′k))


≤ Pr

[
∃(E, σ,Q, C),C0 →∗ E, (σ, P ),Q, C ∧
E, σ `M 6= false ∧ ¬(cond1 ∨ . . . ∨ condk)

]

+

k∑
k′=1

Pr

∃(E, σ,Q, C),C0 →∗ E, (σ, P ),Q, C ∧
E, σ ` (F ,R) ∧
E, σ ` condk′ ∧M 6= condk′ ∧M ′k′



≤ Pr

[
∃(E, σ,Q, C),C0 →∗ E, (σ, P ),Q, C ∧
E, σ ` σ′M1 6= σ′M2 ∧ ¬(cond1 ∨ . . . ∨ condk)

]

+

k∑
k′=1

Pr

∃(E, σ,Q, C),C0 →∗ E, (σ, P ),Q, C ∧
E, σ ` (F ∪ {condk′},R) ∧
E, σ `M 6= M ′k′


≤ q(η)pmax(η)

+

k∑
k′=1

Pr

∃(E, σ,Q, C),C0 →∗ E, (σ, P ),Q, C ∧
E, σ ` (F ∪ {condk′},R) ∧
E, σ 6` (F ′k′ ,R′k′)


where the first term has been bounded by (8) and in the sec-
ond term, the equational prover applied toF∪{condk′},R
yields F ′k′ ,R′k′ using only the first kind of user-defined
rewrite rules. (When E, σ ` (F ′k′ ,R′k′), all rewrite rules
of R′k′ hold, so E, σ ` M = M ′k′ .) By the correctness
of the equational prover using only the first kind of user-
defined rewrite rules (shown above), the probability is then
bounded by q(η)pmax(η)+

∑k
k′=1 qk′(η)pmax(η) for some

polynomials qk′ .

This concludes the proof of (S12).
Similarly, we also have S12’: For each Q′, Pr[∃(E,

σ, P,Q, C, c,M1, . . . ,Ml, N1, . . . , Nk, Q
′′, σ′,Q′, C′),C0 →∗

E, (σ, P ),Q, C ∧ P = c[M1, . . . ,Ml]〈N1, . . . , Nk〉.Q′′ ∧
E, {(σ,Q′′)}, C  ∗ E,Q′, C′ ∧ (σ′, Q′) ∈ Q′ ∧ E, σ′ 6`
(Fm′ ,Rm′)(Q′)] ≤ q′(η)pmax(η) for some polynomial q′.

We have FQ′ = FP , hence (Fm′ ,Rm′)(Q′) =
(Fm′ ,Rm′)(P ), and σ′ is an extension of σ, so E, σ `
(Fm′ ,Rm′)(P ) implies E, σ′ ` (Fm′ ,Rm′)(Q′). So the result
follows from (S12).

Correctness of game simplification. For simplicity, we con-
sider one transformation at a time, and use transitivity of ≈V
to conclude when several transformations are applied. For
each trace initConfig(C[Q0]) →∗ Em, Pm,Qm, Cm, except in
cases of negligible probability, we show that there exists a cor-
responding trace initConfig(C[Q′0]) →∗ E′m′ , P ′m′ ,Q′m′ , C′m′
with E′m′ = Em, P ′m′ is obtained from Pm by the same trans-
formation as Q′0 from Q0, Q′m′ is obtained from Qm by the
same transformation as Q′0 from Q0, C′m′ = Cm, with the same
probability. The proof proceeds by induction on m.

For the casem = 0, the only simplification that can be applied
to input processes is the simplification of terms in input chan-
nels. Moreover, if Q′ is the transformed process, FQ′ = ∅ since
FC[Q0] = ∅ and Q′ is obtained from C[Q0] by  , which re-
duces only input processes. So (F0,R0)(Q′) = (∅, ∅). No rule
of the equational prover applies on (∅, ∅), so (Fm′ ,Rm′)(Q′) =
(∅, ∅), hence no rewrite rule of Rm′ can be applied. So one can
only simplify terms in the input channel of Q′ by a user-defined
rewrite rule. The proof then proceeds exactly as in Case 1 below.

For the inductive step, we reason by cases on the last reduction
step of the trace of C[Q0]. We consider only the cases in which
the transition may be altered by the game simplification.

• Case 1: M reduces into M ′ by a user-defined rewrite rule,
and we replaceM withM ′ in the smallest (input or output)
process PM = CM [M ] that contains M . If E, σ,M ⇓ a
then E, σ,M ′ ⇓ a′ (since the variable accesses in M ′ are
included in those of M and M and M ′ are well-typed). If
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the user-defined rewrite rule is of the first kind, we always
have a = a′. If the user-defined rewrite rule is of the second
kind, we show as in the proof of (S12), that the probability
that a 6= a′ (that is, E, σ ` M 6= M ′) is negligible, so this
situation can be excluded. Otherwise, a = a′, and CM [M ′]
reduces in the same way as PM = CM [M ].

• Case 2: M reduces into M ′ by a rule of R, and we re-
place M with M ′ in the smallest process PM = CM [M ]
that contains M , where R is the set of rewrite rules ob-
tained by the equational prover from FPM . We first as-
sume that PM is an output process. We exclude traces
such that E, σ 6` (Fm′ ,Rm′)(PM ). (They have negli-
gible probability by (S12).) In the remaining traces, for
all (M1 → M2) ∈ R = Rm′ , E, σ ` M1 = M2,
so E, σ ` M = M ′. So E, σ,M ⇓ a if and only if
E, σ,M ′ ⇓ a, and CM [M ′] reduces in the same way as
PM = CM [M ]. When we reduce a term in the channel
of an input, we have a similar proof with an input process
QM = CM [M ] instead of PM and using (S12’) instead
of (S12).

• Case 3: P = find (
⊕m

j=1 uj1 [̃i] ≤ nj1, . . . , ujmj [̃i] ≤
njmj suchthat defined(Mj1, . . . ,Mjlj ) ∧ Mj then Pj)
else P ′, FPj yields a contradiction, and we remove the
j-th branch of the find. We exclude traces in which
E, σ, (defined(Mj1, . . . ,Mjlj ) ∧ Mj) ⇓ true. Let S we
the set defined in the reduction rule (Find1). We have
|S| ≤

∑m
j=1

∏mj
l=1 njl = q(η) for some polynomial q,

and among(S) = 2k+f(η) div |S|
2k+f(η)

where k is the smallest

integer such that 2k ≥ |S|, so among(S) ≥ 2f(η)

2k+f(η)
≥

1
2k
≥ 1

2|S| ≥
1

2q(η) . By (Find1), P reduces into Pj

with probability at least among(S), so at least 1
2q(η) , when

E, σ, (defined(Mj1, . . . ,Mjlj ) ∧Mj) ⇓ true. Therefore,

Pr

[
∃(E, σ,Q, C),C0 →∗ E, (σ, P ),Q, C
∧ E, σ, (defined(Mj1, . . . ,Mjlj ) ∧Mj) ⇓ true

]
≤ 2q(η) Pr [∃(E, σ,Q, C),C0 →∗ E, (σ, Pj),Q, C]

≤ 2q(η) Pr

[
∃(E, σ,Q, C),C0 →∗ E, (σ, Pj),Q, C
∧ E, σ 6` (Fm′ ,Rm′)(Pj)

]
since E, σ 6` (Fm′ ,Rm′)(Pj) is always true since FPj
yields a contradiction. So the excluded traces have neg-
ligible probability by (S12). In the remaining traces,
E, σ, (defined(Mj1, . . . ,Mjlj ) ∧Mj) ⇓ false, so the set S
never contains (j, ṽ) for any ṽ, hence by (Find1) or (Find2),
the process takes the same branch of the find with the same
probability, whether or not the j-th branch is present.

• Case 4: P0 = find (
⊕m

j=1 uj1 [̃i] ≤ nj1, . . . , ujmj [̃i] ≤
njmj suchthat defined(Mj1, . . . ,Mjlj )∧Mj then Pj) else
P ′, there exists a term M such that defined(M) ∈ FPj ,
x[N1, . . . , Nl] is a subterm of M , x 6= ujk for all k ≤
mj , and none of the following conditions holds: a) P0 is
under a definition of x in Q0; b) Q0 contains Q1 | Q2

such that a definition of x occurs in Q1 and P0 is under
Q2 or a definition of x occurs in Q2 and P0 is under Q1;
c) Q0 contains lp + 1 replications above a process Q that

contains a definition of x and P0, where lp is the length
of the longest common prefix between N1, . . . , Nl and the
current replication indices at the definitions of x. The j-th
branch of the find is removed.

We show that x[N1, . . . , Nl] cannot be defined at P0 as fol-
lows. We say that the formula φ(E, (σ, P ),Q, C) is true
when one of the following condition holds:

A. x[a1, . . . , am] ∈ Dom(E), (σ′′, P ′′) ∈ Q]{(σ, P )},
P0 is under P ′′, and σ′′i′′k = ak for all k ≤
min(lp, |Dom(σ′′)|), where i′′k is the k-th replication
index at P ′′;

B. {(σ′, P ′), (σ′′, P ′′)} ⊆ Q ] {(σ, P )} (multi-
set inclusion), P ′ contains a definition of x,
P0 is under P ′′, σ′i′k = σ′′i′′k for all k ≤
min(lp, |Dom(σ′)|, |Dom(σ′′)|) where i′k is the k-th
replication index at P ′ and i′′k is the k-th replication
index at P ′′;

C. (σ′, P ′) ∈ Q ] {(σ, P )} where
C.a. P0 is under a definition of x in P ′;
C.b. or P ′ contains Q1 | Q2 such that a definition of

x occurs inQ1 and P0 is underQ2 or a definition
of x occurs in Q2 and P0 is under Q1;

C.c. or P ′ contains lp + 1 − |Dom(σ′)| replications
above a process Q that contains a definition of x
and P0.

If the j-th branch of the find is taken in configu-
ration E, (σ, P0),Q, C, this configuration reduces into
E′, (σ, Pj),Q, C by executing the find. By correctness
of the collection of true facts, E′, σ ` FPj , so E′, σ `
defined(M), soE′, σ ` defined(x[N1, . . . , Nl]), that is, by
definition of lp, E′, σ ` defined(x[i1, . . . , ilp, Nlp+1, . . . ,
Nl]) where ik is the k-th replication index at P0. Hence,
x[a1, . . . , am] ∈ Dom(E′) where σik = ak for all k ≤ lp.
Since E′ = E[uj1 7→ . . . , . . . , ujmj 7→ . . .] and x 6= ujk
for all k ≤ mj , x[a1, . . . , am] ∈ Dom(E). There-
fore, φ(E, (σ, P0),Q, C) holds (Case A with (σ′′, P ′′) =
(σ, P0)).

Next, we show that if a configuration in the trace satisfies
φ, then the previous configuration also satisfies φ.

More precisely, we first show that if φ(E, (σ, P ),Q′′ ]
Q′, C′) and E,Q, C  E,Q′, C′, then φ(E, (σ, P ),Q′′ ]
Q, C). The proof is by cases on the reduction rule of  .
Case (Nil) is obvious. For rule (Par), if we are in case B
and both processes P ′ and P ′′ are generated by (Par), then
before applying (Par), we are in case C.b. In all other cases,
we remain in the same case of the definition of φ before ap-
plying (Par). For rule (Repl), if we are in case B and both
processes P ′ and P ′′ are generated by (Repl), then before
applying (Repl), we are in case C.c. In all other cases, we
remain in the same case before applying (Repl). For rules
(NewChannel) and (Input), we remain in the same case.

Therefore, if φ(E, (σ, P ),Q′′ ] Q′, C′) and E,Q′, C′ =
reduce(E,Q, C), then φ(E, (σ, P ),Q′′ ]Q, C).

We also show that, if φ(E′, (σ′, P ′),Q′, C′) and
E, (σ, P ),Q, C p−→t E′, (σ′, P ′),Q′, C′, then φ(E,
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(σ, P ),Q, C). The proof is by cases on the reduction rule
of

p−→t. For rule (Find2), we remain in the same case
of the definition of φ. For rules (New), (Let), (Find1),
if we are in case A after applying the reduction and the
reduction defines x[a1, . . . , am], then we are in case
C.a before the reduction if (σ′′, P ′′) is (σ, P ) and in
case B otherwise. Otherwise, we remain in the same
case. For rule (Output), E, (σ, c[M̃ ]〈N1, . . . , Nk〉.Q′′),
{(σ′, c[ã](x1[ã′] : T1, . . . , xk[ã′] : Tk).P )} ] Q, C
is transformed into E′, (σ′, P ),Q ] {(σ,Q′′)}, C,
where E′ = E[x1[ã′] 7→ . . . , . . . , xk[ã′] 7→ . . .],
then we reduce E′, {(σ,Q′′)}, C by the function
reduce. By the property shown for reduce, we have
φ(E′, (σ′, P ),Q ] {(σ,Q′′)}, C). If we are in case A
and the input defines x[a1, . . . , am], then before (Output),
we are in case C.a if (σ′′, P ′′) is (σ, P ) and in case B
otherwise. Otherwise, we remain in the same case.

Next, we show that if the j-th branch of the find is taken by
(Find1) when evaluating P0, then the last configuration of
the trace satisfies φ. In this case, x[a1, . . . am] ∈ Dom(E)
in a configuration E, (σ, P0),Q, C such that σik = ak for
all k ≤ lp, where ik is the k-th replication index at P0. So
φ(E, (σ, P0),Q, C) (case A).

Therefore, by the previous proof, φ holds for the initial con-
figuration, so we have φ(∅, (∅, start〈〉), {(∅, C[Q0])}, ∅).
Case A cannot happen because E is empty; case B cannot
happen because start〈〉 contains neither P0 nor a definition
of x and (σ′, P ′) and (σ′′, P ′′) cannot be the same process
(∅, C[Q0]). So we are in case C with P ′ = C[Q0] and
σ′ = ∅. Since C contains neither P0 nor a definition of x,
we obtain that one of the conditions a), b), c) holds, which
contradicts the hypothesis. So the j-th branch of the find
cannot be taken, and can be removed.

• Case 5: P0 = find (
⊕m

j=1 uj1 [̃i] ≤ nj1, . . . , ujmj [̃i] ≤
njmj suchthat defined(Mj1, . . . ,Mjlj )∧Mj then Pj) else
P ′, there exist terms M , M ′ such that defined(M) ∈ FPj ,
x[N1, . . . , Nl] is a subterm of M , defined(M ′) ∈ FPj ,
x′[N ′1, . . . , N

′
l′ ] is a subterm of M ′, Nk = N ′k for all

k ≤ min(l, l′), x 6= x′, and x and x′ are incompatible.
The j-th branch of the find is removed.

If the j-th branch of the find is taken, yielding configu-
ration E, (σ, Pj),Q, C, by correctness of the collection of
true facts, we have E, σ ` defined(x[N1, . . . , Nl]) and
E, σ ` defined(x′[N ′1, . . . , N

′
l′ ]). Suppose that E, σ,Nk ⇓

ak and E, σ,N ′k ⇓ a′k. Then x[a1, . . . , al] ∈ Dom(E),
x′[a′1, . . . , a

′
l′ ] ∈ Dom(E), and ak = a′k for all k ≤

min(l, l′).

Suppose for instance that x′[a′1, . . . , a
′
l′ ] is defined af-

ter x[a1, . . . , al]. (The other case is symmetric.) At
the definition of x′[a′1, . . . , a

′
l′ ], we are in a configura-

tion E′, (σ′, P ′),Q′, C′ with x[a1, . . . , al] ∈ Dom(E′),
σ′ik = a′k for all k ≤ l′ where ik is the k-th replication in-
dex at P ′. Therefore, φ(E′, (σ′, P ′),Q′, C′) holds, where
φ has been defined in Case 4 above: we are in case A, with
(σ′′, P ′′) = (σ′, P ′), lp = l, P0 = P ′ is the process that
defines x′. By the proof of Case 4, φ holds for the initial

configuration (∅, (∅, start〈〉), {(∅, C[Q0])}, ∅), and in this
configuration, cases A and B are impossible, so we are in
case C, so

– Case C.a: P0 is under a definition of x in C[Q0],
therefore x′ is defined under a definition of x.

– or Case C.b: C[Q0] contains Q1 | Q2 such that a
definition of x occurs in Q1 and P0 is under Q2 or
a definition of x occurs in Q2 and P0 is under Q1,
therefore x is defined in Q1 and x′ is defined in Q2

or symmetrically. (Moreover, the process Q1 | Q2 is
inside Q0, because no definition of x or x′ occurs in
C.)

– or Case C.c: C[Q0] contains lp+1 = l+1 replications
above a process Q that contains a definition of x and
P0. This case is impossible because the definition of
x is under l replications.

Therefore, in all cases, x and x′ are compatible. Contra-
diction. So the j-th branch of the find cannot be taken, and
can be removed.

• The other cases can be handled in a way similar to cases
1–3.

We also show the converse property: for each trace ofC[Q′0], ex-
cept in cases of negligible probability, there exists a correspond-
ing trace of C[Q0] with the same probability. Moreover, for
all channels c and bitstrings a, Em, Pm,Qm, Cm executes c〈a〉
immediately if and only if E′m′ , P

′
m′ ,Q′m′ , C′m′ executes c〈a〉

immediately, so Pr[C[Q0]  η c〈a〉] = Pr[C[Q′0]  η c〈a〉],
which yields the desired equivalence.

Correctness of global dependency analysis Suppose that
global dependency analysis succeeds in transforming the game,
so that only dep(x) = S. We obtain a game Q′0 from Q0 by
replacing tests M1 = M2 with false and M1 6= M2 with true in
Q0, where M1 characterizes a part of x with S \ {x}, S, and no
variable in S occurs in M2.

We consider traces of C[Q′0] that differ by the choices of val-
ues of x. Since only dep(x) = S, these traces differ only by the
values of variables in S.

If C[Q0] behaves differently from C[Q′0], then there is a test
M1 = M2 or M1 6= M2 in Q0, such that E, σ, (M1 = M2) ⇓
true, M1 characterizes a part of x with S \ {x}, S, and no vari-
able in S occurs in M2.

In the considered traces ofC[Q′0], the value ofM2 is the same
a, which is therefore a function of σ andE|S , so a = f ′(σ,E|S).
Since E, σ, (M1 = M2) ⇓ true, we have E, σ,M1 ⇓ a. Then
there is some M0 obtained from M1 by substituting variables in
S\{x}with their definition such thatE, σ,M0 ⇓ a. (We choose
the definition of these variables used to set them in environment
E.) The number of choices of M0 is independent of η: it can
be bounded knowing the number of different definitions of vari-
ables in S and the number of occurrences of these variables in
the terms M1.

Due to the properties of “characterize”, there exist a large type
T , functions f and f̃ , and uniform functions f1, . . . , fk such that
T is the type of the result of f1 (or of xwhen k = 0) and for each

49



a, σ, E, if E, σ,M0 ⇓ a then E, σ, f1(. . . fk(x[f̃(σ,E|S)])) ⇓
f(a, σ,E|S). SoE(x[f̃(σ,E|S)]) ∈ Sx(σ,E|S) = (Iη(f1)◦. . .◦
Iη(fk))−1(f(f ′(σ,E|S), σ, E|S). Let T1, . . . , Tk be the types of
the arguments of f1, . . . , fk respectively; T0 = T , Tk = T ′. We
have |Sx(σ,E|S)| ≤ |Iη(T1)|

|Iη(T0)| × . . . ×
|Iη(Tk)|
|Iη(Tk−1)| =

|Iη(Tk)|
|Iη(T0)| =

|Iη(T ′)|
|Iη(T )| since f1, . . . , fk are uniform.

The probability that E, σ, (M1 = M2) ⇓ true is at
most the sum for all choices of M0 of the probability that
E(x[f̃(σ,E|S)]) ∈ Sx(σ,E|S), so it is at most

∑
M0

1
|Iη(T )| .

(Note that T may depend on the choice of M0.) Therefore, the
probability thatC[Q0] behaves differently fromC[Q′0] is at most∑
M1,M2

∑
M0

q1(η)
|Iη(T )| where the number of possible σ, that is,

the number of executions of the test M1 = M2 or M1 6= M2 is
at most q1(η), polynomial in η. This probability is negligible, so
Q0 ≈V Q′0.

We leave the proof of the additional transformations
Move(all), RemoveAssign(useless), and SArename(auto) to
the reader. The proof technique is similar to that for SAre-
name(x). �

E.2 Proving the Last Hypothesis of Proposition 5
In this section, we show how to prove the last hypothesis of
Proposition 5. We use the notations of Proposition 5 and of the
proof of Simplify in the previous section.

For each definition P of x inQ, we define defRestrP (x[̃i]) as
follows:

defRestrP (x[̃i]) =
x[̃i] if P = new x[ĩ′] : T ;P ′

z[M1, . . . ,Ml]{̃i/ĩ′}
if P = let x[ĩ′] : T = z[M1, . . . ,Ml] in P ′

Let FP [̃i] denote the facts that hold at P with current replica-
tion indices renamed to ĩ, that is, FP [̃i] = FP {̃i/ĩ′} where the
replication indices at P are ĩ′.

For each pair of definitions of x, P, P ′, we check that, if
defRestrP (x[̃i]) = z[M1, . . . ,Ml] and defRestrP ′(x[ĩ′]) =

z[M ′1, . . . ,M
′
l ], then FP [̃i] ∪ FP ′ [ĩ′] ∪ {̃i 6= ĩ′,M1 =

M ′1, . . . ,Ml = M ′l} yields a contradiction. That is, ĩ 6=
ĩ′∧M1 = M ′1∧ . . .∧Ml = M ′l is false except in cases of negli-
gible probability, taking into account the facts that are known to
hold at P and P ′. When this check succeeds, the last hypothesis
of Proposition 5 holds, as shown by the next proposition.

Proposition 7 Assume that, for all pairs P , P ′ of defini-
tions of x in Q, if defRestrP (x[̃i]) = z[M1, . . . ,Ml] and
defRestrP ′(x[ĩ′]) = z[M ′1, . . . ,M

′
l ], thenFP [̃i]∪FP ′ [ĩ′]∪{̃i 6=

ĩ′,M1 = M ′1, . . . ,Ml = M ′l} yields a contradiction (with local
dependency analysis disabled).

Then Pr[∃(T , ã, ã′), C[Q] reduces according to T ∧ ã 6= ã′∧
defRestrT (x[ã]) = defRestrT (x[ã′])] is negligible.

The local dependency analysis is disabled because it gives infor-
mation valid only at a certain process occurrence, and here we
combine facts obtained at two occurrences P and P ′.

Proof Consider a trace T of C[Q] and ã 6= ã′ such that
defRestrT (x[ã]) = defRestrT (x[ã′])]. Let P and P ′ be the
processes that define x[ã] and x[ã′], respectively, in this trace.
Let σ be mapping the replication indices at P to ã, σ′ be map-
ping the replication indices at P ′ to ã′, and σ′′ be mapping ĩ to
ã and ĩ′ to ã′. Let E′′ be the environment at the end of T .

Just before the definition of x[ã] is executed, the configura-
tion of T is of the form E, (σ, P ), . . ., so, since FP is cor-
rect for all P , E, σ ` FP , so E′′, σ′′ ` FP [̃i]. Similarly,
E′′, σ′′ ` FP ′ [ĩ′]. Since ã 6= ã′, E′′, σ′′ ` ĩ 6= ĩ′. Since
defRestrT (x[ã]) = defRestrT (x[ã′])], defRestrP (x[̃i]) =

z[M1, . . . ,Ml], defRestrP ′(x[ĩ′]) = z[M ′1, . . . ,M
′
l ], for some

z,M1, . . . ,Ml,M
′
1, . . . ,M

′
l , and E′′, σ′′ ` M1 = M ′1, . . . ,

E′′, σ′′ ` Ml = M ′l . So E′′, σ′′ ` FP,P ′ , where FP,P ′ =

FP [̃i] ∪ FP ′ [ĩ′] ∪ {̃i 6= ĩ′,M1 = M ′1, . . . ,Ml = M ′l}.
Hence Pr[∃(T , ã, ã′), C[Q] reduces according to T ∧

ã 6= ã′ ∧ defRestrT (x[ã]) = defRestrT (x[ã′])] ≤∑
P,P ′ Pr[∃(E′′, σ′′),C0 →∗ E′′, . . . ∧ E′′, σ′′ ` FP,P ′ ].
When the local dependency analysis is disabled, the proof of

correctness of the equational prover (S12) shown in the previous
section also shows that, if F,RF ′,R′ , then

Pr

[
∃(E′′, σ′′),C0 →∗ E′′, . . .
∧ E′′, σ′′ ` F ,R∧ E′′, σ′′ 6` F ′,R′

]
is negligible. Moreover, for all P and P ′ definitions
of x in Q, since FP,P ′ yields a contradiction, FP,P ′ , ∅
is transformed into false,R′ by the equational prover, so
Pr [∃(E′′, σ′′),C0 →∗ E′′, . . . ∧ E′′, σ′′ ` FP,P ′ ] is negligible,
which shows the desired result. �

E.3 Proof of Proposition 2
Proof of Proposition 2 The idea of the proof is to show that
if an adversary (represented by a context C) distinguishes [[L]]
from [[R]], then we can build an adversaryAa against the security
of the mac for the key mkgen(r[a]), for some a ∈ Iη(n′′).

Let C be an evaluation context acceptable for [[L]], [[R]], ∅.
We define a probabilistic polynomial Turing machine Aa, for

a ∈ [1, Iη(n′′)], as follows. Aa uses oracles mac(., k) and
check(., k, .). Aa simulates C[[[L]]] except that:

• for a′ < a, in copies corresponding to i′′ = a′ of L,
Aa computes find u ≤ n suchthat defined(x[u]) ∧ (m =
x[u]) ∧ check(m,mkgen(r),ma) then true else false in-
stead of check(m,mkgen(r),ma), and

• in the copy corresponding to i′′ = a, Aa does not choose
a random number r[a], it calls the oracle mac(., k) on x
instead of computing mac(x,mkgen(r)), and instead of
computing check(m,mkgen(r),ma), it computes b1 =
check(m, k,ma) using the oracle check(., k, .) and b2 =
find u ≤ n suchthat defined(x[u])∧ (m = x[u])∧ b1 then
true else false; if b1 6= b2, the execution of the Turing ma-
chine stops, with result (m,ma); otherwise, the execution
continues using value b1 = b2.

When Aa has not stopped due to the last item above, it returns
⊥ when the simulation of C[[[L]]] terminates.
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When Aa returns (m, t), b1 6= b2. Moreover, if b1 = 0, then
b2 = 0 by definition of b2. So b1 = 1 and b2 = 0. Therefore,
there is no u such that m = x[u], hence Aa has not called the
oracle mac(., k) on m. Moreover, there exists a polynomial q
such that for all a, Aa runs in time q(η). So by Definition 1,
maxa pa(η) is negligible, where

pa(η) = Pr

[
r
R← Iη(Tmr); k ← mkgenη(r); (m, t)← Aa :

checkη(m, k, t)

]

Since Iη(n′′) is polynomial in η,
∑
a∈[1,Iη(n′′)] pa(η) ≤

maxa pa(η)× Iη(n′′) is also negligible.
On the other hand, let c be a channel and a′ be a bitstring. We

need to evaluate |Pr[C[[[L]]] η c〈a′〉]−Pr[C[[[R]]] η c〈a′〉]|.
We consider three categories of pairs of traces (T , T ′) where T
and T ′ are traces of C[[[L]] and C[[[R]]] respectively:

1. Traces T and T ′ have the same configurations except for
the replacement of L with R in processes, they terminate,
and none of their configurations executes c〈a′〉 immedi-
ately.

2. Traces T and T ′ have the same configurations except for
the replacement of L with R in processes up to a point
at which their corresponding configurations both execute
c〈a′〉 immediately.

3. Traces T and T ′ have the same configurations except for
the replacement of L with R in processes up to a point
at which their configurations differ because for some a ∈
[1, Iη(n′′)], for some messages m, ma received on chan-
nel c2[a] (where c2 is the channel used in [[L]] and [[R]] for
the second parallel process of L and R), the result returned
by [[L]] differs from the one returned by [[R]]. In this case,

the simulating Turing machine that runs r
R← Iη(Tmr); k ←

mkgenη(r) and executes Aa will return (m,ma), by con-
struction.

All traces of C[[[L]]] fall in one of the above categories, and sim-
ilarly for traces of C[[[R]]]. Traces of the first category have
no contribution to Pr[C[[[L]]]  η c〈a′〉] and to Pr[C[[[R]]]  η

c〈a′〉]; traces of the second category cancel out when computing
Pr[C[[[L]]] η c〈a′〉]− Pr[C[[[R]]] η c〈a′〉]. So

|Pr[C[[[L]]] η c〈a′〉]− Pr[C[[[R]]] η c〈a′〉]|
≤ Pr[(T , T ′) is in the third category]

≤
∑

a∈[1,Iη(n′′)]

Pr[r
R← Iη(Tmr); k ← mkgenη(r); (m, t)← Aa]

≤
∑

a∈[1,Iη(n′′)]

pa(η)

Hence |Pr[C[[[L]]] η c〈a′〉]−Pr[C[[[R]]] η c〈a′〉]| is neg-
ligible, so [[L]] ≈ [[R]]. �

E.4 Proof of Proposition 3
Let us first introduce some notations. We denote by
Lj0,...,jk the subtrees of L defined as follows by induc-
tion on k. We define L1, . . . , Lm′ such that L =

(L1, . . . , Lm′). The functional process Lj0,...,jk being defined,
we define Lj0,...,jk,1, . . . , Lj0,...,jk,m′ to be the immediate sub-
functional-processes of Lj0,...,jk , so that Lj0,...,jk is of the
form !i≤nnew y1 : T1; . . . ; new ym : Tm; (Lj0,...,jk,1, . . . ,
Lj0,...,jk,m′).

When Lj0,...,jk = !i≤nnew y1 : T1; . . . ; new ym :
Tm; (Lj0,...,jk,1, . . . , Lj0,...,jk,m′), we define ij0,...,jk = i,
nj0,...,jk = n, y(j0,...,jk),k′ = yk′ , and nNewj0,...,jk = m.

When Lj0,...,jl = (x1 : T1, . . . , xm : Tm) → FP , we say
that Lj0,...,jl is a leaf of L, and we define x(j0,...,jl),k′ = xk′ ,
T(j0,...,jl),k′ = Tk′ , and nInputj0,...,jl = m.

In order to prove Proposition 3, we define a context C such
that Q0 ≈V0 C[[[L]]] and C[[[R]]] ≈V0 Q′0. While Q0 evaluates
the terms inM directly, the contextC will send messages to [[L]]
in order to evaluate these terms in C[[[L]]]. Similarly, the process
Q′0 contains inlined versions of the functional processes in R,
while C[[[R]]] computes the same result by sending messages to
[[R]].

In order to define C, we first define a process relay(L) as
follows:

relay((G1, . . . , Gm)) = relay(G1)1 | . . . | relay(Gm)m

relay(!i≤nnew y1 : T1; . . . ; new yl : Tl; (G1, . . . , Gm))j̃
ĩ

=

!i≤ndj̃ [̃i, i](); cj̃ [̃i, i]〈〉; cj̃ [̃i, i](); dj̃ [̃i, i]〈〉;

(relay(G1)j̃,1
ĩ,i
| . . . | relay(Gm)j̃,m

ĩ,i
|

!i
′≤n′dj̃ [̃i, i](); dj̃ [̃i, i]〈〉)

relay((x1 : T1, . . . , xl : Tl)→ FP)j̃
ĩ

=

dj̃ [̃i](x1 : T1, . . . , xl : Tl); cj̃ [̃i]〈x1, . . . , xl〉;

cj̃ [̃i](r : bitstring); dj̃ [̃i]〈r〉;

!i
′≤n′dj̃ [̃i](x1 : T1, . . . , xl : Tl); dj̃ [̃i]〈r〉

where ĩ = i1, . . . , il′ and j̃ = j0, . . . , jl′ . The relay process
corresponding to replicated restrictions relays messages sent on
channel dj̃ to channel cj̃ (used in [[L]] and [[R]]) so that the corre-
sponding random numbers y1, . . . , yl are chosen by [[L]]. When
those random numbers have already been chosen, the process ac-
cepts messages on dj̃ but yields control back to the sending pro-
cess without executing anything by outputting on dj̃ . Thus, the
caller of the relay process can harmlessly ask several times for
choosing the same random numbers. Similarly, the relay process
corresponding to a function relays the arguments of the function
received on channel dj̃ to channel cj̃ , so that [[L]] replies on chan-
nel cj̃ with the result r of the function, which is forwarded to
channel dj̃ . The relay process also allows calling several times

the same function with the same values of j̃ and ĩ, in which case
it always returns the same result r. (We make sure in the follow-
ing that when a function is called several times, the calls all use
the same arguments.) Since L and R are required to have the
same structure by Hypothesis H2, relay(L) = relay(R).

We introduce the following auxiliary definitions, which allow
us to define the correspondence mapIdxM from replication in-
dices at M in Q0 to replication indices at NM in L:
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• For each M ∈ M and k ≤ nNewSeqM , we define
countη(k,M) as follows. Let n1, . . . , nl be the sequence
of bounds of replications above the definition of zkk′,M for
any k′. Let l′ be the length of the longest common prefix
of im indexk(M) and im indexk0(M) for k0 < k. We
define countη(k,M) = Iη(nl′+1) × . . . × Iη(nl). We
define parameters countk,M such that Iη(countk,M ) =
countη(k,M).

We define function symbols numk,M : [1, n1] × . . . ×
[1, nl] → [1, countk,M ] such that Iη(numk,M )(a1, . . . ,
al) = 1+(al′+1−1)+Iη(nl′+1)×((al′+2−1)+Iη(nl′+2)×
. . .+ Iη(nl−1)× (al− 1)). Then numk,M establishes a bi-
jection between the last l − l′ components of its argument
and its result.

• We define tot countη(j0, . . . , jk) as the sum of
countη(k + 1,M ′′) for all M ′′ such that the first
k + 1 elements of BL(M ′′) are equal to j0, . . . , jk,
counting only once terms M ′′ that share the first k + 1
sequences of random variables.

We set Iη(nj0,...,jk) = tot countη(j0, . . . , jk), where
nj0,...,jk is the bound of the replication at the root of
Lj0,...,jk in L. The value of Iη(nj0,...,jk) is then large
enough so that there is always an available copy of the de-
sired replicated process when we need to execute one.

The replication at the root of relay(Lj0,...,jk)j0,...,jki1,...,ik
is

also bounded by nj0,...,jk . The other replication of
relay(Lj0,...,jk)j0,...,jki1,...,ik

is bounded by n′, where Iη(n′) is
the sum for all M ∈ M of Iη(n1) × . . . × Iη(nl) where
n1, . . . , nl is the sequence of bounds of replications above
M in Q0.

• We order the term occurrences inM arbitrarily, with a to-
tal ordering. Let startη(k,M) be defined as follows. Let
M ′ the smallest (in the chosen ordering of M) term oc-
currence of M that shares the first k sequences of ran-
dom variables with M . Then startη(k,M) is the sum of
countη(k,M ′′) for all M ′′ smaller than M ′ such that the
first k elements of BL(M ′′) are equal to the first k ele-
ments of BL(M ′), counting only once termsM ′′ that share
the first k sequences of random variables.

We define function symbols addstartk,M : [1,
countk,M ] → [1, nj0,...,jk ] where BL(M) = (j0, . . . , jk,
. . .), such that Iη(addstartk,M )(a) = startη(k,M) + a.

• Let us define convindex(k,M) as the sequence of terms

convindex(k,M) =

(addstart1,M (num1,M (im index1(M))),

. . . , addstartk,M (numk,M (im indexk(M))))

This sequence of terms implements the function mapIdxM
mentioned in the explanation of the transformation,
in Section 3.2. More precisely, mapIdxM (ã) =

convindex(l,M){ã/̃i}, where ĩ is the sequence of current
replication indices at M and l = nNewSeqM .

Then we define C = (newChannel cj̃ ; newChannel dj̃ ; )j̃([ ] |
relay(L) | Q′′0) where the process Q′′0 is defined from Q0 as
follows:

• When x ∈ S, we replace its definition new x : T ;Q with
let x : T = cst in Q for some constant cst.

• For each M ∈ M, let PM = CM [M ] be the
smallest subprocess of Q0 containing M . Let l =
nNewSeqM and m = nInputM . Let BL(M) =
(j0, . . . , jl). Let dM = dj0,...,jl [convindex(l,M)] and
for all k ≤ l, dM,k = dj0,...,jk−1

[convindex(k,M)].
We replace PM with dM,1〈〉; dM,1(); . . . dM,l〈〉; dM,l();
dM 〈σMx1,M , . . . , σMxm,M 〉; dM (y : bitstring);CM [y]
where y is a fresh variable.

Instead of evaluating the terms M ∈ M directly as in Q0, Q′′0
sends messages to the relay process relay(L), which will then
forward them to [[L]] in C[[[L]]] and to [[R]] in C[[[R]]].

Lemma 11 Q0 ≈V0 C[[[L]]]

Proof The bounds of replications of [[L]] and relay(L) have
been defined above. As outlined in the proof of Proposition 6,
the length of all bitstrings manipulated byQ0 is polynomial in η.
We can therefore define maxlenη(cj̃) to be a polynomial large
enough so that messages sent on cj̃ by C[[[L]]] are never trun-
cated. We define maxlenη(dj̃) = maxlenη(cj̃); then messages
on dj̃ are never truncated.

Let C ′ be any evaluation context acceptable for Q0, C[[[L]]],
V . We relate traces of C ′[Q0] and of C ′[C[[[L]]]] as follows.

We assume that the channels cj̃ and dj̃ do not occur in C ′

and Q0, and that during reductions (NewChannel), these chan-
nels are substituted by themselves. (This is easy to guarantee by
renaming; this assumption simplifies notations in the proof.)

We write M =E M ′ when E,M ⇓ a and E,M ′ ⇓ a for
some bitstring a. We denote by k-th(̃i) the k-th component of
the tuple ĩ, and by |̃i| the number of elements of the tuple ĩ.

We define a relation between variables of S in Q0

and variables y defined by new in [[L]]: we say that
y[a1, . . . , aj ]

var−−→E varImL(y,M)[ã′] when for all
k′ ≤ j, E, addstartk′,M (numk′,M (im (ρj−1(M) ◦ . . . ◦
ρk′(M)){ã′/̃i})) ⇓ ak′ , where ĩ ≤ ñ are the current replication
indices at the definition of varImL(y,M) with their associated
bounds, and for all l ≤ |̃i|, l-th(ã′) ∈ [1, Iη(l-th(ñ))]. (Note
that var−−→ depends on η.)

We show that the relation var−−→E is a (partial) function, that
is, if y[a1, . . . , aj ]

var−−→E MV and y[a1, . . . , aj ]
var−−→E M ′V

then MV = M ′V . Assume that y[a1, . . . , aj ]
var−−→E z′[ã′] and

y[a1, . . . , aj ]
var−−→E z′′[ã′′]. Then

• we have z′ = varImL(y,M ′) and

E, addstartk′,M ′(numk′,M ′(im (ρj−1(M ′) ◦

. . . ◦ ρk′(M ′)){ã′/ĩ′})) ⇓ ak′ for all k′ ≤ j

where ĩ′ ≤ ñ′ are the current replication indices at the defi-
nition of z′ with their associated bounds, and for all l ≤ |ĩ′|,
l-th(ã′) ∈ [1, Iη(l-th(ñ′))],

• we have z′′ = varImL(y,M ′′) and

E, addstartk′,M ′′(numk′,M ′′(im (ρj−1(M ′′) ◦

. . . ◦ ρk′(M ′′)){ã′′/ĩ′′})) ⇓ ak′ for all k′ ≤ j
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where ĩ′′ ≤ ñ′′ are the current replication indices at the
definition of z′′ with their associated bounds, and for all
l ≤ |ĩ′′|, l-th(ã′′) ∈ [1, Iη(l-th(ñ′′))].

For all terms M ′′, we have either startη(k′,M ′′) ≤
startη(k′,M ′) or startη(k′,M ′′) ≥ startη(k′,M ′) +
countη(k′,M ′) since startη(k′,M ′′) is computed by adding
countη(k′,M3) for some terms M3 in a fixed order. Moreover,
numk′,M ′(. . .) evaluates to a bitstring in [1, countη(k′,M ′)].
Therefore, startη(k′,M ′′) ≤ startη(k′,M ′). By sym-
metry, startη(k′,M ′′) ≥ startη(k′,M ′). So we have
for all k′ ≤ j, startη(k′,M ′) = startη(k′,M ′′) and
numk′,M ′(im (ρj−1(M ′) ◦ . . . ◦ ρk′(M

′)){ã′/ĩ′}) =E

numk′,M ′′(im (ρj−1(M ′′) ◦ . . . ◦ ρk′(M ′′)){ã′′/ĩ′′}). Since
startη(j,M ′) = startη(j,M ′′), by definition of startη , M ′

shares the first j sequences of random variables with M ′′.
Since y has j indices, y is defined under j replications in L,
so varImL(y,M ′) = varImL(y,M ′′), that is, z′ = z′′. So
|ã′| = |ã′′|. By Hypothesis H′4.2, ρk′(M ′) = ρk′(M

′′) for all
k′ < j. By definition of num, Iη(numk′,M ′) = Iη(numk′,M ′′)
for all k′ ≤ j.

We show by induction on k′ that if for all k′′ ≤ k′,
numk′′,M ′(im (ρk′−1(M ′) ◦ . . . ◦ ρk′′(M ′)){ã′/ĩ′}) =E

numk′′,M ′(im (ρk′−1(M ′) ◦ . . . ◦ ρk′′(M ′)){ã′′/ĩ′}), where
ĩ′ ≤ ñ′ are the current replication indices at the definition of
zk′ ,M ′ with their associated bounds, and l-th(ã′), l-th(ã′′) ∈
[1, Iη(l-th(ñ′))], then ã′ = ã′′.

• For k′ = 1, we assume num1,M ′(ã′) =E num1,M ′(ã′′).
The longest common prefix of index1(M ′) and
indexj′′(M

′) for j′′ < 1 is empty, since indexj′′(M
′)

is defined only for j′′ ≥ 1. So num1,M ′ establishes a
bijection between the tuples ã′ smaller than the current
replication bounds at definition of z1 ,M ′ and the interval
[1, countη(1,M ′)]. So ã′ = ã′′.

• For k′ > 1, we assume that numk′′,M ′(im (ρk′−1(M ′) ◦
. . . ◦ ρk′′(M ′)){ã′/ĩ′}) =E numk′′,M ′(im (ρk′−1(M ′) ◦
. . . ◦ ρk′′(M ′)){ã′′/ĩ′}) for all k′′ ≤ k′. Let k′ind <

k′. Let E, im (ρk′−1(M ′) ◦ . . . ◦ ρk′ind
(M ′)){ã′/ĩ′} ⇓

ã′ind and E, im (ρk′−1(M ′) ◦ . . . ◦ ρk′ind
(M ′)){ã′′/ĩ′} ⇓

ã′′ind. By hypothesis, we have for all k′′ ≤
k′ind, numk′′,M ′(im (ρk′ind−1(M ′) ◦ . . . ◦ ρk′′(M

′))

{ã′ind/ĩ′ind}) =E numk′′,M ′(im (ρk′ind−1(M ′) ◦ . . . ◦
ρk′′(M

′)){ã′′ind/ĩ′ind}) where ĩ′ind ≤ ñ′ind are
the current replication indices at the definition of
zk′ind ,M

′ with their associated bounds. By induc-

tion hypothesis, ã′ind = ã′′ind, so for all k′′ <
k′, im (ρk′−1(M ′) ◦ . . . ◦ ρk′′(M

′)){ã′/ĩ′} =E

im (ρk′−1(M ′) ◦ . . . ◦ ρk′′(M ′)){ã′′/ĩ′}. For k′′ = k′,
we have numk′,M ′(ã′) =E numk′,M ′(ã′′).

Let l be the length of the longest common prefix of
im indexk′(M

′) and im indexk′′0 (M ′) for k′′0 < k′. Since
indexk′′0 (M ′) = indexk′(M

′)◦ρk′−1(M ′)◦. . .◦ρk′′0 (M ′),
the first l components of im (ρk′−1(M ′) ◦ . . . ◦ ρk′′0 (M ′))

are then the first l components of ĩ′, so the first l compo-
nents of ã′ and ã′′ are equal. Moreover numk′,M ′ estab-
lishes a bijection between the last |ã′|− l components of its
argument and the interval [1, countη(k′,M ′)]. So the last
|ã′|− l components of ã′ and ã′′ are equal. Hence ã′ = ã′′.

Therefore, we conclude that ã′ = ã′′, so z′[ã′] = z′′[ã′′].
Next, we show that the function var−−→E is injective. If

y′[a′1, . . . , a
′
j′ ]

var−−→E z[a1, . . . , aj ] and y′′[a′′1 , . . . , a
′′
j′′ ]

var−−→E

z[a1, . . . , aj ], then z = varImL(y′,M ′) and z =
varImL(y′′,M ′′). By Hypothesis H′4.1, M ′ and M ′′ share
at least the first j′ = j′′ sequences of random variables and
y′ = y′′. By Hypothesis H′4.2, ρk′(M ′) = ρk′(M

′′) for all k′ <
j′ = j′′. By definition of addstart and num, startη(k′,M ′) =
startη(k′,M ′′) and Iη(numk′,M ′) = Iη(numk′,M ′′) for all
k′ ≤ j′ = j′′. Hence a′k′ = a′′k′ for all k′ ≤ j′ = j′′. So
y′[a′1, . . . , a

′
j′ ] = y′′[a′′1 , . . . , a

′′
j′′ ].

For each trace initConfig(C ′[Q0]) → . . . → Em, Pm,Qm,
Cm of C ′[Q0] of probability pm, we show that there exists a
trace initConfig(C ′[C[[[L]]]]) → . . . → E′m′ , P

′
m′ ,Q′m′ , C′m′ of

C ′[C[[[L]]]] of probability p′m′ such that

• For all z /∈ S, E′m′(z[a
′
1, . . . , a

′
j′ ]) = Em(z[a′1, . . . , a

′
j′ ]);

for all z ∈ S, z[a′1, . . . , a
′
j′ ] is in Dom(Em) if and only

if it is in Dom(E′m′); if y is defined by new in L and
y[a1, . . . , aj ] ∈ Dom(E′m′) then there exists MV such that
y[a1, . . . , ak]

var−−→Em MV and MV ∈ Dom(Em) and for
all such MV , E′m′(y[a1, . . . , aj ]) = Em(MV ).

• P ′m′ is obtained from Pm as Q′′0 from Q0 (transforming
only the occurrences that appear in Pm), Q′m′ = Q1

m′ ]
Q2
m′ ] Q3

m′ , where Q1
m′ is obtained from Qm as Q′′0 from

Q0 (transforming only the occurrences that appear inQm),
Q2
m′ is what remains of relay(L) after partial execution,

and Q3
m′ is what remains of [[L]] after partial execution.

More precisely, let

relay(La1,...,akj0,...,jk
) =

relay(Lj0,...,jk)j0,...,jki1,...,ik
{a1/i1, . . . , ak/ik}

[[La1,...,akj0,...,jk
]] = [[Lj0,...,jk ]]j0,...,jki1,...,ik

{a1/i1, . . . , ak/ik}

where i1, . . . , ik are the replications indices of L above
Lj0,...,jk . These processes correspond respectively to the
relay process and to the translation of the subtree Lj0,...,jk
of L, for the value of the replication indices a1, . . . , ak.
Let redRepl(a, !i≤nP ) = P{a/i}. Then Q2

m′ and Q3
m′

are formed as follows:

– for each j0, . . . , jk−1, a1, . . . , ak such that

y(j0,...,jk−1),k′ [a1, . . . , ak] ∈ Dom(E′m′),

Q2
m′ contains

dj0,...,jk−1
[a1, . . . , ak](); dj0,...,jk−1

[a1, . . . , ak]〈〉

possibly several times.
– for each j0, . . . , jk−1, a1, . . . , ak such that

y(j0,...,jk−2),k′′ [a1, . . . , ak−1] ∈ Dom(E′m′) and

y(j0,...,jk−1),k′ [a1, . . . , ak] /∈ Dom(E′m′),
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Q2
m′ contains redRepl(ak, relay(L

a1,...,ak−1

j0,...,jk−1
)) and

Q3
m′ contains redRepl(ak, [[L

a1,...,ak−1

j0,...,jk−1
]]).

– for each j0, . . . , jl, a1, . . . , al such that

y(j0,...,jl−1),k′ [a1, . . . , al] ∈ Dom(E′m′)

and Lj0,...,jl is a leaf of L, either Q2
m′ contains

relay(La1,...,alj0,...,jl
) and Q3

m′ contains [[La1,...,alj0,...,jl
]], or

Q2
m′ contains

dj0,...,jl [a1, . . . , al](x(j0,...,jl),1 : T(j0,...,jl),1, . . . ,

x(j0,...,jl),l′ : T(j0,...,jl),l′); dj0,...,jl [a1, . . . , al]〈r〉

with l′ = nInputj0,...,jl , possibly several times,
and there exist M ′ ∈ M and ã′ such that
Em, convindex(l,M ′){ã′/ĩ′} ⇓ a1, . . . , al,
Em,M

′{ã′/ĩ′} ⇓ r, and BL(M ′) = (j0, . . . , jl),
where ĩ′ is the sequence of replication indices at M ′.

where for each k, ak is a bitstring in [1, tot countη(j0, . . . ,
jk−1)].

• C′m′ = Cm ∪ {cj̃ , dj̃ | j̃}.

• p′m′ = pm ×
∏
z,a′1,...,a

′
j′
|Iη(T )| where T is the type of

z and z ∈ S, a′1, . . . , a
′
j′ are such that z[a′1, . . . , a

′
j′ ] ∈

Dom(Em) and there exists no y[a1, . . . , aj ] ∈ Dom(E′m′)

such that y[a1, . . . , aj ]
var−−→Em z[a′1, . . . , a

′
j′ ].

Note that the same trace of C ′[C[[[L]]]] corresponds to∏
z,a′1,...,a

′
j′
|Iη(T )| traces of C ′[Q0] that differ only by the val-

ues of Em(z[a′1, . . . , a
′
j′ ]) for z ∈ S, a′1, . . . , a

′
j′ as defined in

the last item above.
The proof proceeds by induction on the length m of the trace

of C ′[Q0]. For the induction step, we distinguish cases depend-
ing on the last reduction step of the trace.

• For the initial case, we show by induction on C ′′ that for all
C ′′,Q, C, σ such that σ substitutes channel names for chan-
nel names without touching cj̃ and dj̃ , there existQ′, C′, σ′
such that σ′ substitutes channel names for channel names
without touching cj̃ and dj̃ , ∅, {C

′′[σQ0]} ] Q, C  ∗
∅, {σ′Q0} ] Q′, C′, and ∅, {C ′′[σC[[[L]]]]} ] Q, C  ∗
∅, {σ′C[[[L]]]} ] Q′, C′. This is obvious when C ′′ = [ ],
with σ′ = σ, Q′ = Q, and C′ = C. We show this result by
applying (Par) when C ′′ = C1 | Q1 or C ′′ = Q1 | C1, and
(NewChannel) when C ′′ = newChannel c;C1.

So we can apply this result to C ′′ = C ′, σ = Id,
Q = ∅, and C = fc(C ′[Q0]). We have fc(C ′[Q0]) =
fc(C ′[C[[[L]]]]), since fc(Q0) = fc(Q′′0) = fc(C[[[L]]]).
Therefore, there exist Q, C, σ such that σ substitutes chan-
nel names for channel names without touching cj̃ and dj̃ ,
∅, {C ′[Q0]}, fc(C ′[Q0]) ∗ ∅, {σQ0} ] Q, C, and

∅, {C ′[C[[[L]]]]}, fc(C ′[C[[[L]]]]) ∗ ∅, {σC[[[L]]]} ] Q, C

 ∗ ∅, {σQ′′0 , relay(L), [[L]]} ] Q, C ∪ {cj̃ , dj̃ | j̃}
by (NewChannel) and (Par)

 ∗ ∅, {σQ′′0} ] Q2
0 ]Q3

0 ]Q, C ∪ {cj̃ , dj̃ | j̃}
by (Par) and (Repl)

where Q2
0 = {redRepl(a, relay(Lj0)j0) | j0, a ∈

[1, tot countη(j0)]} is what remains from relay(L) after
expansion of parallel compositions and replications and
Q3

0 = {redRepl(a, [[Lj0 ]]j0) | j0, a ∈ [1, tot countη(j0)]}
is what remains of [[L]] after expansion of parallel compo-
sitions and replications.

Moreover, σQ′′0 is obtained from σQ0 as Q′′0 from Q0, and
Q does not contain any occurrence modified when trans-
forming Q0 into Q′′0 , so {σQ′′0} ] Q is obtained from
{σQ0} ] Q as Q′′0 from Q0.

Reducing {σQ′′0} ] Q and {σQ0} ] Q by  until they
are in normal form, we obtain that reduce(∅, {C ′[Q0]},
fc(C ′[Q0])) = (∅,Q0, C′) and reduce(∅, {C ′[C[[[L]]]]},
fc(C ′[C[[[L]]]])) = (∅,Q1

0 ] Q2
0 ] Q3

0, C′ ∪ {cj̃ , dj̃ | j̃}),
where Q1

0 is obtained from Q0 as Q′′0 from Q0. There-
fore, initConfig(C ′[Q0]) and initConfig(C ′[C[[[L]]]]) sat-
isfy the desired invariant.

• When the trace of C ′[Q0] executes new x[a1, . . . , al] : T
by (New) for x ∈ S at step m, the corresponding trace
of C ′[C[[[L]]]] executes let x[a1, . . . , al] : T = cst in by
(Let) at step m′. This yields |Iη(T )| traces of C ′[Q0], one
for each value of Em(x[a1, . . . , al]), each with probability
pm = pm−1/|Iη(T )|. In contrast, this yields a single trace
of C ′[C[[[L]]]], with probability p′m′ = p′m′−1.

Moreover, there exists no y[a′1, . . . , a
′
l′ ] ∈ Dom(E′m′)

such that y[a′1, . . . , a
′
l′ ]

var−−→Em x[a1, . . . , al]. Other-
wise, by the first point of the invariant, before the def-
inition of x[a1, . . . , al], there would exist MV such that
y[a′1, . . . , a

′
l′ ]

var−−→Em−1 MV and MV ∈ Dom(Em−1).
Since Em is an extension of Em−1, y[a′1, . . . , a

′
l′ ]

var−−→Em

MV . Since var−−→Em is injective, MV = x[a1, . . . , al].
This yields a contradiction, since MV ∈ Dom(Em−1)
but x[a1, . . . , al] /∈ Dom(Em−1) by Invariant 4. (The ar-
ray cell x[a1, . . . , al] cannot be defined several times in a
trace.)

It is then easy to see that the invariant is satisfied.

• When the trace of C ′[Q0] executes σiPM for M ∈ M, the
corresponding trace of C ′[C[[[L]]]] executes

σi(dM,1〈〉; dM,1(); . . . dM,l〈〉; dM,l();

dM 〈σMx1,M , . . . , σMxm,M 〉; dM (y : bitstring);CM [y])

where σi = {ã/̃i}, ĩ is the sequence of current replication
indices at PM , and BL(M) = (j0, . . . , jl).

For k ≤ l, let ak be such that

Em, addstartk,M (numk,M (σi(im indexk(M))))) ⇓ ak

and let b̃k be such that Em, σi(im indexk(M)) ⇓ b̃k.

Let m′k be the step of the trace of C ′[C[[[L]]]]
after executing σidM,k〈〉;σidM,k(), where dM,k =
dj0,...,jk−1

[convindex(k,M)]. We show by induction on
k that for all k′, y(j0,...,jk−1),k′ [a1, . . . , ak] ∈ Dom(E′m′k

)

and that the invariant is satisfied at step m′k except that
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σi(dM,1〈〉; dM,1(); . . . ; dM,k〈〉; dM,k()) has been removed
from P ′m′k

. Let zkk′ = varImL(y((j0,...,jk−1),k′ ,M). We

have y(j0,...,jk−1),k′ [a1, . . . , ak]
var−−→Em zkk′ [b̃k]. More-

over, zkk′ [b̃k] ∈ Dom(Em) since zkk′ [σi(im indexk(M))]
occurs in σiM , and σiM is successfully evaluated in the
trace of C ′[Q0]. We distinguish two cases:

– 1) y((j0,...,jk−1),k′ [a1, . . . , ak] ∈ Dom(E′m′k−1
).

By the invariant at step m′k−1, Q2
m′k−1

contains

dj0,...,jk−1
[a1, . . . , ak](); dj0,...,jk−1

[a1, . . . , ak]〈〉.
So we can execute σidM,k〈〉;σidM,k() by two
(Output) steps, without changing the environment,
so y(j0,...,jk−1),k′ [a1, . . . , ak] ∈ Dom(E′m′k

) and
the invariant is satisfied at step m′k except that
σi(dM,1〈〉; dM,1(); . . . dM,k〈〉; dM,k()) is removed
from P ′m′k

.

– 2) y(j0,...,jk−1),k′ [a1, . . . , ak] /∈ Dom(E′m′k−1
). By

induction hypothesis, y(j0,...,jk−2),k′ [a1, . . . , ak−1] ∈
Dom(E′m′k−1

). By the invariant at step m′k−1,

redRepl(ak, relay(L
a1,...,ak−1

j0,...,jk−1
)) ∈ Q2

m′k−1
and

redRepl(ak, [[L
a1,...,ak−1

j0,...,jk−1
]]) ∈ Q3

m′k−1
.

By (Output) twice, we send an empty message on
dj0,...,jk−1

[a1, . . . , ak] and on cj0,...,jk−1
[a1, . . . , ak].

By (New), we define y(j0,...,jk−1),k′ [a1, . . . , ak] for
each k′. We choose Em(zkk′ [b̃k]) as value of
y(j0,...,jk−1),k′ [a1, . . . , ak] (with probability 1

|Iη(T )|
where T is the type of y(j0,...,jk−1),k′ ). Finally,
by (Output) twice, we send an empty message on
cj0,...,jk−1

[a1, . . . , ak] and on dj0,...,jk−1
[a1, . . . , ak].

Then the invariant is satisfied at step m′k except that
σi(dM,1〈〉; dM,1(); . . . dM,k〈〉; dM,k()) is removed
from P ′m′k

. (Note that the probability of the trace
of C ′[C[[[L]]]] is divided by

∏
k′ |Iη(T(j0,...,jk−1),k′)|

where T(j0,...,jk−1),k′ is the type of y(j0,...,jk−1),k′ [a1,
. . . , ak]. This is what is required by the invariant since
y(j0,...,jk−1),k′ [a1, . . . , ak] is defined at step m′k but
was not at step m′k−1.)

So y(j0,...,jk−1),k′ [a1, . . . , ak] ∈ Dom(E′m′l
) for all k ≤

l and k′, and the invariant is satisfied at step m′l ex-
cept that σi(dM,1〈〉; dM,1(); . . . dM,l〈〉; dM,l()) is removed
from P ′m′l

. Let a be such that Em, σiM ⇓ a. Let
m′′ be the step of the trace of C ′[C[[[L]]]] after executing
σi(dM 〈σMx1,M , . . . , σMxl′,M 〉; dM (y : bitstring)) with
l′ = nInputM . By the invariant, we have two cases:

– 1) relay(La1,...,alj0,...,jl
) ∈ Q2

m′l
and [[La1,...,alj0,...,jl

]] ∈ Q3
m′l

.

The process σidM 〈σMx1,M , . . . , σMxl′,M 〉 sends
the value of σiσMxk′,M for k′ ≤ l′ on chan-
nel dj0,...,jl [a1, . . . , al]. By (Output), this mes-
sage is received by relay(La1,...,alj0,...,jl

), which for-
wards it by (Output) again to [[La1,...,alj0,...,jl

]] on chan-
nel cj0,...,jl [a1, . . . , al]. On reception of this mes-
sage by [[La1,...,alj0,...,jl

]], E′m′′(x(j0,...,jl),k′ [a1, . . . , al]) is

set to the received value, so Em, σiσMxk′,M ⇓
E′m′′(x(j0,...,jl),k′ [a1, . . . , al]) for each k′ ≤ l′. For
all k ≤ l and k′, since y(j0,...,jk−1),k′ [a1, . . . ,

ak]
var−−→Em zkk′ [b̃k], by the invariant we have

E′m′l
(y(j0,...,jk−1),k′ [a1, . . . , ak]) = Em(zkk′ [b̃k]), so

E′m′′(y(j0,...,jk−1),k′ [a1, . . . , ak]) = Em(zkk′ [b̃k]).
Moreover, σMykk′,M = zkk′ [im indexk(M)], so

Em, σiσMykk′,M ⇓ E′m′′(y(j0,...,jk−1),k′ [a1, . . . , ak])

Therefore, for all variables x of NM defined under
k replications, Em, σiσMx ⇓ E′m′′(x[a1, . . . , ak]).
Since M = σMNM , we have Em, σiσMNM ⇓
a, so E′m′′ , NM{a1/i1, . . . , al/il} ⇓ a, where
i1, . . . , il are the replication indices of L above
Lj0,...,jl . Hence [[La1,...,alj0,...,jl

]] sends back a on channel
cj0,...,jl [a1, . . . , al] by (Output), which is forwarded
on channel dj0,...,jl [a1, . . . , al] by relay(La1,...,alj0,...,jl

) by
(Output) again, so a is stored in y[ã] by Q′′. Thus
E′m′′(y[ã]) = a.
In order to show that the invariant still holds after this
step, we remark that, after these outputs, the relay
process makes available the following process

dj0,...,jl [a1, . . . , al](x(j0,...,jl),1 : T(j0,...,jl),1, . . . ,

x(j0,...,jl),l′ : T(j0,...,jl),l′); dj0,...,jl [a1, . . . , al]〈a〉

and we have Em, convindex(l,M){ã/̃i} ⇓ a1, . . . ,
al, Em,M{ã/̃i} ⇓ a, and BL(M) = (j0, . . . , jl).

– 2) dj0,...,jl [a1, . . . , al](x(j0,...,jl),1 : T(j0,...,jl),1, . . . ,

x(j0,...,jl),l′ : T(j0,...,jl),l′); dj0,...,jl [a1, . . . , al]〈r〉 ∈
Q2
m′l

and there exist M ′ ∈ M and ã′ such

that Em, convindex(l,M ′){ã′/ĩ′} ⇓ a1, . . . , al,
Em,M

′{ã′/ĩ′} ⇓ r, and BL(M ′) = (j0, . . . , jl),
where ĩ′ is the sequence of current replication indices
at M ′.
We haveEm, convindex(l,M){ã/̃i} ⇓ a1, . . . , al by
definition of a1, . . . , al. So

convindex(l,M ′){ã′/ĩ′} =Em

convindex(l,M){ã/̃i}

so, as shown in the proof that var−−→E is a function,
indexl(M

′){ã′/ĩ′} =Em indexl(M){ã/̃i} =Em b̃l
and M ′ and M share the first l sequences of random
variables, that is, all sequences of random variables,
or ml = 0 and M = M ′. Moreover, BL(M) =
BL(M ′) = (j0, . . . , jl), so NM = NM ′ .
If ml = 0 and M = M ′, ã′ = ã, so Em, σiM ⇓ r, so
r = a.
Otherwise, by Hypothesis H′4.3, there exists a term
M0 such that M = (indexl(M))M0, M ′ =
(indexl(M

′))M0, and M0 does not contain the cur-
rent replication indices at M or M ′. Then a =Em

M{ã/̃i} =Em M0{b̃l/ĩ′′} =Em M ′{ã′/ĩ′} =Em r

where ĩ′′ is the sequence of current replication indices
at definition of zlk′,M for any k′.
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Therefore, in all cases, we obtain E′m′′(y[ã]) = a, so
σiCM [y] in the trace of C ′[C[[[L]]]] executes in the same
way as σiCM [M ] in the trace of C ′[Q0], which yields the
desired invariant.

• The other cases are easy: both sides reduce in the same
way.

Conversely, we show that all traces of C ′[C[[[L]]]] correspond to
a trace of C ′[Q0] with the same relation as above. The proof
follows a technique similar to the previous proof.

So
∏
z,a′1,...,a

′
j′
|Iη(T )| traces of C ′[Q0], each of probabil-

ity pm, correspond to one trace of C ′[C[[[L]]]] with probability
p′m′ = pm ×

∏
z,a′1,...,a

′
j′
|Iη(T )|. Moreover, for all channels

c and bitstrings a, Em, Pm,Qm, Cm executes c〈a〉 immediately
if and only if E′m′ , P

′
m′ ,Q′m′ , C′m′ executes c〈a〉 immediately.

So Pr[C ′[Q0]  η c〈a〉] = Pr[C ′[C[[[L]]]]  η c〈a〉]. Hence
Q0 ≈V0 C[[[L]]]. �

Lemma 12 Q′0 ≈V0 C[[[R]]]

Proof sketch The proof uses the same technique as the proof
of Lemma 11. The main addition is that, in contrast to L, R
may contain functional processes that are more complex than
just terms. In order to handle them, we need to define a re-
lation between variables of Q′0 and variables of R defined by
let or new in functional processes: when y is such a variable,
y[a1, . . . , al]

var−−→E varImR(y,M)[ã′] where for all k ≤ l,
E, addstartk,M (numk,M (im indexk(M){ã′/̃i})) ⇓ ak and ĩ
is the sequence of current replication indices at M . The relation
var−−→E is not a function for these variables, but we can show that

when y[a1, . . . , al] is related to several variables, these variables
hold the same value at runtime.

The most delicate case is that of find functional processes

FP = find (
⊕m

j=1 ũj ≤ ñj suchthat defined(zj1[ũj1], . . . ,

zjlj [ũjlj ]) ∧Mj then FP j) else FP ′

where for each k, ũjk is the concatenation of the prefix of the
current replication indices of length l′0 and of a non-empty pre-
fix of ũj . When executing such a find process, [[R]] tests the
value of zjk[a1, . . . , al′1 ] for all indices of a1, . . . , al′1 such that
a1, . . . , al′0 correspond to a prefix of the current replication in-
dices. Correspondingly, transfφ,CM (FP) tests the values of all
variables that are related to zjk[a1, . . . , al′1 ] by var−−→. �

Lemma 13 Process Q′0 satisfies Invariant 1.

Proof Process Q′0 satisfies Invariant 1 since all newly created
definitions concern fresh variables; for variables of Q′0 that cor-
respond to variables defined by new or by an input in R, there
is a single definition for each of them in Q′0; for variables of Q′0
that correspond to variables defined by let inR, there are several
definitions only when there are several definitions of these vari-
ables in R, and since [[R]] satisfies Invariant 1, these definitions
are in different branches of find (or if) in R, so also in Q′0. �

Lemma 14 Process Q′0 satisfies Invariant 2.

Proof The only variable accesses created in Q′0 come from
transfφ0,CM (FP). We show by induction on FP that the only
variable accesses created by transfφ,CM (FP) and not guarded
by a corresponding find are in im φ. (We do not consider vari-
able accesses in CM , which already existed in Q0.) So the
only variable accesses created by transfφ0,CM (FPM ) and not
guarded by a corresponding find are in im φ0. Moreover, vari-
able accesses in im φ0 are of three kinds:

1. varImR(xj,M ,M)[i′1, . . . , i
′
l′ ] which are defined in P ′M ,

just above transfφ0,CM (FPM ).

2. varImR(y′jk,M ,M)[im indexj(M)] where

(a) either nNewj,M > 0 and zj1,M [im indexj(M)] is
guaranteed to be defined, since it occurs at this point
in the initial process Q0 which satisfies Invariant 2.
By the addition of defined conditions in find and the
fact that z′jk,M = varImR(y′jk,M ,M) is defined in
Q′0 where zj1,M was defined in Q0, this implies that
varImR(y′jk,M ,M)[im indexj(M)] is also defined.

(b) or nNewj,M = 0, then im indexj(M) is the se-
quence of current replication indices at M , and
varImR(y′jk,M ,M)[im indexj(M)] is defined just
above P ′M .

3. varImR(z,M)[i′1, . . . , i
′
l′ ] where z is defined by

let in FPM . Since [[R]] satisfies Invariant 2, ac-
cesses to z[i1, . . . , il] in FPM occur under the
definition of z[i1, . . . , il] in FPM , so accesses to
varImR(z,M)[i′1, . . . , i

′
l′ ] = φ0(z[i1, . . . , il]) also occur

under their definition in transfφ0,CM (FPM ).

Therefore, Q′0 satisfies Invariant 2. �

Lemma 15 Process Q′0 satisfies Invariant 3.

Proof The only newly added variable definitions are
let varImR(xj,M ,M) : Tj,M = σMxj,M and new z′jk,M :
T ′jk,M . Each variable varImR(xj,M ,M) has at most one def-
inition in Q′0. For variables z′jk,M , when several of these def-
initions are added for the same variable z′jk,M , they are added
in place of the definition(s) of zj1,M , so by Hypothesis H′3.1.1,
they occur under the same replications, so they all have the same
type. Therefore, the type environment for Q′0 is well-defined.

Assume that M ∈ M and PM = CM [M ] is the small-
est process containing M . Let EL be the type environment at
PM = CM [M ] in Q0; let ER be the type environment at P ′M
in Q′0; let E ′L be the type environment at NM in L; let E ′R be
the type environment at FPM in R. We know that EL ` PM ,
and show that ER ` P ′M . It is then easy to see that Q′0 is well-
typed knowing that Q0 is well-typed. We note that ER is an
extension of EL with types for variables varImR(y′jk,M ′ ,M

′),
varImR(xj,M ′ ,M

′), and varImR(z,M ′) when z is defined
by let in FPM ′ , for each M ′ ∈ M. By Hypothesis H′3.2,
EL ` σMxj,M : Tj,M , so ER ` σMxj,M : Tj,M , since ER
is an extension of EL. Then, in order to show ER ` P ′M , it is
enough to show ER ` transfφ0,CM (FPM ).

We say that φ is well-typed when z[M̃ ] ∈ Dom(φ) and E ′R `
z[M̃ ] : T ′ implies ER ` φ(z[M̃ ]) : T ′.
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First, it is easy to show by induction on M ′ that for all well-
typed φ, for all M ′ such that E ′R ` M ′ : T , we have ER `
φ(M ′) : T .

Next, we show that for all well-typed φ, if E ′R ` [[FP ′]]j̃
ĩ

and the type of the result of FP ′ is the type of NM , then
ER ` transfφ,CM (FP ′), by induction on FP ′.

• If FP ′ = M ′, we have to show that ER ` CM [φ(M ′)]. Let
T such that EL `M : T .

We have M = σMNM , so if NM contains a function sym-
bol, E ′L ` NM : T . If NM = xj,M , M = σMxj,M
is of type Tj,M by Hypothesis H′3.2, so T = Tj,M ,
hence we also have E ′L ` NM : T . If NM = yjk,M ,
M = σMyjk,M = zjk,M [im indexj(M)] is of type Tjk,M
by Hypothesis H′3.1.1, so T = Tjk,M and we also have
E ′L ` NM : T .

By hypothesis, we have then E ′R ` M ′ : T , so ER `
φ(M ′) : T . Since EL ` CM [M ] with EL ` M : T , by
a substitution lemma, we conclude that ER ` CM [φ(M ′)].

• The inductive cases follow easily using E ′R ` [[FP ′]]j̃
ĩ

and
the property proved above to type terms.

In the case of a find branch with non-empty defined condi-
tions, we extend φ into φ′ as follows. Let ĩ′ be the sequence
of current replication indices at M ′ and ũ′ be a sequence
formed with a fresh variable for each variable in ĩ′.

– If zk = y′jk′,M ′ for some k′, then

φ′(zk[Mk1, . . . ,Mkl′k
]) =

varImR(zk,M
′)[im indexj(M

′){ũ′/ĩ′}].

Since varImR(zk,M
′) is defined where zj1,M ′ is

defined, the indices of varImR(zk,M
′) are the in-

dices of zj1,M ′ , so im indexj(M
′) is of the suit-

able type. Moreover, ũ′ and ĩ′ have the same types,
so by a substitution lemma, im indexj(M

′){ũ′/ĩ′}
is of the suitable type. Moreover zk in R and
varImR(zk,M

′) in Q′0 are both declared of type
T ′jk′,M ′ , so E ′R ` zk[Mk1, . . . ,Mkl′k

] : T ′jk′,M ′ and
ER ` varImR(zk,M

′)[im indexj(M
′){ũ′/ĩ′}] :

T ′jk′,M ′ .

– If zk is defined by let or by a function in-
put, φ′(zk[Mk1, . . . ,Mkl′k

]) = varImR(zk,M
′)[ũ′].

varImR(zk,M
′) is declared under the same replica-

tions asM ′, so ũ′ is of the suitable type. The variables
zk in R and varImR(zk,M

′) in Q′0 are declared of
the same type, so if E ′R ` zk[Mk1, . . . ,Mkl′k

] : T ′

then ER ` varImR(zk,M
′)[ũ′] : T ′.

So φ′ is well-typed.

Moreover, we show that ER ` im indexj1(M ′){ũ′/ĩ′} =
im indexj1(M) : bool . We have zj1k,M = zj1k,M ′ since
M and M ′ share the j1 first sequences of random vari-
ables, so im indexj1(M ′) and im indexj1(M) are of the
same type, since they are both used as indices of zj1k,M .

Since ũ′ and ĩ′ are of the same type, by a substitution
lemma, im indexj1(M ′){ũ′/ĩ′} and im indexj1(M) are of
the same type, which yields the desired result.

It is easy to see that φ0 is well-typed. Moreover E ′R ` [[FPM ]]j̃
ĩ

and the type of the result of FPM is the type of NM by Hypoth-
esis H0, so ER ` transfφ0,CM (FPM ). �

Proof of Proposition 3 Invariants 1, 2, and 3 have been
proved in Lemmas 13, 14, and 15 respectively. Finally, we
show that Q0 ≈V Q′0. After renaming variables so that V
and C do not contain variables of L and R, by Lemmas 1, 11,
and 12, Q0 ≈V0 C[[[L]]] ≈V C[[[R]]] ≈V0 Q′0, so by transitivity
Q0 ≈V Q′0. �

E.5 Proofs for Section 4

Proof of Proposition 4 Let C be an acceptable context for
Q | Qx, Q | Q′x, ∅. We relate the traces of C[Q | Qx] and
C[Q | Q′x] as follows:

• If a trace of C[Q | Qx] never executes the subprocess
c〈x[u1, . . . , um]〉 of Qx, then we obtain a trace of C[Q |
Q′x] with the same probability, by just replacing Qx with
Q′x and subprocesses of Qx with the corresponding sub-
process of Q′x.

• Otherwise, the considered trace of C[Q | Qx] executes
the subprocess c〈x[u1, . . . , um]〉 of Qx exactly once, with
E(u1) = a1, . . . , E(um) = am, and E(x[a1, . . . , am]) =
a, where E is the environment when c〈x[u1, . . . , um]〉 is
executed. By hypothesis, the definition of x[a1, . . . , am] in
this trace is either a restriction new x[a1, . . . , am] : T , or
an assignment let x[a1, . . . , am] : T = z[M1, . . . ,Ml] with
E,Mk ⇓ a′k for all k ≤ l, and the definition of z[a′1, . . . , a

′
l]

in this trace is new z[a′1, . . . , a
′
l] : T .

We build |Iη(T )| traces of C[Q | Q′x] from this
trace, by choosing any value of Iη(T ) for the restriction
new x[a1, . . . , am] : T or new z[a′1, . . . , a

′
l] : T defined

above, and the value a for the restriction new y : T of Q′x.
By definition of S, these traces are the same as the trace of
C[Q | Qx] except perhaps for values of variables in S, and
for the process Q′x instead of Qx. The probability of each
of these traces is 1/|Iη(T )| times the probability of the con-
sidered trace of C[Q | Qx], since these traces choose one
more random number in Iη(T ) than the trace ofC[Q | Qx].

Moreover, all traces of C[Q | Q′x] are obtained by the previous
construction. (To show that, we rebuild a trace of C[Q | Qx]
from the trace of C[Q | Q′x] by the reverse construction of the
one detailed above.)

For each configurationEm, Pm,Qm, Cm of the trace ofC[Q |
Qx], and corresponding configuration E′m′ , P

′
m′ ,Q′m′ , C′m′ of

the trace of C[Q | Q′x], for all channels c and bitstrings
a, Em, Pm,Qm, Cm executes c〈a〉 immediately if and only if
E′m′ , P

′
m′ ,Q′m′ , C′m′ executes c〈a〉 immediately.

Therefore, Pr[C[Q | Qx]  η c〈a〉] = Pr[C[Q | Q′x]  η

c〈a〉], so Q | Qx ≈0 Q | Q′x. �
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Proof sketch of Proposition 5 Let C be an acceptable con-
text for Q | Qx, Q | Q′x, ∅.

We first exclude traces T such that defRestrT (x[ã]) =

defRestrT (x[ã′]) and ã 6= ã′. These traces have negligible
probability by hypothesis, since C[ | Qx] is an acceptable con-
text for Q, 0, {x}. So this removal does not change the result.

For the remaining traces, when ã 6= ã′, defRestrT (x[ã]) 6=
defRestrT (x[ã′]), so the definitions of x[ã] and x[ã′] do not
come from a single execution of the same restriction. (So x[ã]

and x[ã′] are independent random numbers.) Then we can apply
a proof similar to that of Proposition 4, except that we replace
each tested value of x[ã′] with independent random numbers in-
stead of single one. �

Proof of Lemma 2 Let us prove the result for one-session
secrecy. (The proof is essentially the same for secrecy.) The
contexts [ ] | Qx and [ ] | Q′x are acceptable contexts for Q, Q′,
{x} (after renaming u1, . . . , um, y so that they do not occur in
Q and Q′). We have Q ≈{x} Q′. So, by Lemma 1, Q | Qx ≈
Q′ | Qx and Q | Q′x ≈ Q′ | Q′x. Since Q preserves the one-
session secrecy of x, Q | Qx ≈ Q | Q′x. So, by transitivity of
≈, Q′ | Qx ≈ Q′ | Q′x. Therefore, Q′ preserves the one-session
secrecy of x. �
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