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Abstract. In the newest and strongest security models for group signatures [7, 10, 41], attackers are
given the capability to query an Open Oracle, OO, in order to obtain the signer identity of the queried
signature. This oracle mirrors the Decryption Oracle in security experiments involving encryption
schemes, and the security notion of CCA2-full-anonymity for group signatures mirrors the security
notion of IND-CCA2-security for encryption schemes. Most group signatures escrows the signer iden-
tity to a TTP called the Open Authority (OA) by encrypting the signer identity to OA. Methods to
efficiently instantiate O(1)-sized CCA2-fully-anonymous group signatures using IND-CCA2-secure en-
cryptions, such as the Cramer-Shoup scheme or the twin encryption scheme, exist [7, 10, 41, 49]. However,
it has long been suspected that IND-CCA2-secure encryption to OA is an overkill, and that CCA2-fully-
anonymous group signature can be constructed using only IND-CPA-secure encryptions. Here, we settle
this issue in the positive by constructing CCA2-fully-anonymous group signatures from IND-CPA-secure
encryptions for the OA, without ever using IND-CCA2-secure encryptions. Our technique uses a single
ElGamal or similar encryption plus Dodis and Yampolskiy [35]’s VRF (Verifiable Random Function).
The VRF provides a sound signature with zero-knowledge in both the signer secret and the signer iden-
tity, while it simultaneously defends active OO-query attacks. The benefits of our theoretical advance is
improved efficiency. Instantiations in pairings result in the shortest CCA2-fully-anonymous group sig-
nature at 11 rational points or ≈ 1870 bits for 170-bit curves. It is 27% shorter (and slightly faster) than
the previous fastest [12, 41] at 15 rational points. Instantiations in the strong RSA framework result in
the fastest CCA2-fully-anonymous group signature at 4 multi-base exponentiations for 1024-bit RSA.
It is 25% faster than the previous fastest at 5 multi-base exponentiations [3, 20, 41].

1 Introduction

Chaum and van Heyst pioneered the study of group signatures [28]. Early group signatures grow in size
proportional to the number of members and/or the group manager picks user secrete keys [29, 30, 23]. After
progressive advances, contemporary state-of-the-art group signatures require O(1) size, users choose their
own keys and are free from framing by managers, coalition-resistant, in addition to the basic anonymity and
soundness requirements [3, 20, 7, 10, 41].

In the newest and strongest security models for group signatures [7, 10, 41], attackers are given the capa-
bility to query an Open Oracle, OO, in order to obtain the signer identity of the queried signature. This oracle
mirrors the Decryption Oracle in security experiments involving encryption schemes, and the security notion
of CCA2-full-anonymity for group signatures mirrors the security notion of IND-CCA2-security for encryp-
tion schemes. Most group signatures escrows the signer identity to a TTP called the Open Authority (OA)
by encrypting the signer identity to OA. Method to efficiently instantiate O(1)-sized CCA2-fully-anonymous
group signatures using IND-CCA2-secure encryptions, such as the Cramer-Shoup scheme or the twin encryp-
tion scheme, exist [7, 10, 41, 49]. However, it has long been suspected that IND-CCA2-secure encryption to
OA is an overkill, and that CCA2-fully-anonymous group signature can be constructed using only IND-CPA-
secure encryptions. Here, we settle this issue in the positive by constructing CCA2-fully-anonymous group
signatures from only IND-CPA-secure encryptions without ever converting them to IND-CCA2 encryptions.
The benefits of this theoretical advance is efficiency improvements. We explain below.

Boneh, Boyen, and Shacham constructed a short group signature [12] using pairings. However, their scheme
had only CPA-full-anonymity. Their security is reduced to the DLDH (Decisional Linear Diffie-Hellman)
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Assumption and the q-SDH (Strong Diffie-Hellman) Assumption. Nguyen and Safavi-Naini [49] constructed
additional CPA-fully-anonymous and CCA2-fully-anonymous group signatures in pairings. Their security is
reduced to the DBDH (Decisional Bilinear Diffie-Hellman) Assumption and the q-SDH Assumption. Due to
the use of pairings, [12]’s signatures are the shortest group signatures to date. Its length is about 9 rational
points, for 170-bits curves from contemporary pairings technology. However, the signature verification costs
one expensive pairings and a few multi-base exponentiations online.

The well-known method of twin encryption can be used to modify [12]’s CPA-fully-anonymous group
signature to CCA-fully-anonymous ones [47, 41, 49]. The resulting group signatures remain the shortest to
date versus other CCA-fully-anonymous group signature, roughly 15 rational points. The online signature
verification complexity is one pairings plus 8 multi-base exponentiations. The pairings is expensive to compute.
In comparison, an ordinary (non-group) IND-CCA2-secure RSA signature is 2048 bits long for the 1024-bit
RSA framework. The fastest CCA2-fully-anonymous group signature which can be instantiated by existing
methods [3, 20, 41] stands at 5 online multi-base exponentiations for the 1024-bit RSA framework.

Instantiating our theoretical advance in pairings, we obtain an even shorter CCA2-fully-anonymous group
signature, at roughly 11 rational points for 170-bit curves. That is a 27% improvement. The complexity
is also improved slightly. The cost remains one online pairings but plus only 5 multi-base exponentiations.
Instantiating in the RSA framework, our new CCA2-fully-anonymous group signature costs only 4 online
multi-base exponentiations. That is 25% faster than the previous record.

Our Contributions are
1. We make the theoretical advancement of constructing CCA2-fully-anonymous group signatures using

only CPA-secure encryptions to escrow the signer identity to the OA (Open Authority). Our technique
uses Dodis and Yampolskiy [35]’s Verifiable Random Function (VRF) as a sound signature which is
zero-knowledge about both the signer secret and the signer identity, while simultaneously defends active
attacks via Open Oracle queries.

2. The benefits of our theoretical advancements includes significant improvements in the efficiency of CCA2-
fully-anonymous group signatures.
(a) Instantiating in pairings we obtain the new shortest CCA2-fully-anonymous group signature. It is 27%

faster than the previous fastest [12, 41, 49], reducing from 15 rational points to 11 (at 11λs = 1870
bits). 170-bit curves and 1024-bit RSA are considered contemporary security standards. Note that
an ordinary (non-group) IND-CCA2-secure RSA encryption costs 2048 bits.

(b) Instantiating in the strong RSA framework, we obtain the new fastest CCA2-fully-anonymous group
signature. It is 25% faster than the previous fastest [3, 21, 41], reducing from 5 to 4 multi-base expo-
nentiations for online signature verification. Our scheme also improves the bandwidth cost somewhat.

Related results The mainstream group signature proceeds as follows: A member/user joins a group by
presenting its public key, prove knowledge of its corresponding secrete key, and obtains a certificate from the
Group Manager who serves as a kind of CA (Certificate Authority). The group signature consists of an NIZK
(non-interactive zero-knowledge) proof of simultaneous knowledge of a valid certificate (i.e. certified public
key), of its corresponding secrete key, of proper encryption (escrowing) of the signer identity to the OA. The
results of [3, 21, 7, 10, 41] represent the mainstream group signature well. The group membership certificate is
(A, e) satisfying Aehx1

1 hx2
2 hx3

3 = h0 where group trapdoor is the factoring of a safe product N , the user sk-pk
pair it ((x1, x2, x3), (hx1

1 , hx2
2 , hx3

3 )). Note x1 is user generated, x2 is jointly generated by user and group, and
x3 is generated by group to meet three kinds of principle needs. The group signature is the NIZK (or SPK,
for Signature Proof of Knowledge [24]):

σ = SPK{(A, e, x1, x2, x3) : Aehx1
1 hx2

2 hx3
3 = h0 ∈ QRN ∧ ctxt = Enc(pkOA, A, hx1

1 , ρ)}(M) (1)

Instantiations in pairings are represented by [44, 58, 12, 49]:

σ = SPK{(A, e, x1, x2, x3) : Ae+γhx1
1 hx2

2 hx3
3 = h0 ∈ G1 ∧ ctxt = Enc(pkOA, θ(A, hx1

1 ), ρ)}(M) (2)

where group sk-pk pair is (γ, uγ ∈ G2), and θ implements [24]’s shadow encryption. Incidentally [10]’s generic
group signature excludes shadow encryption which we find eminently useful in group signatures from pairings.
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Variations: Ring signatures [51, 2, 57] and the early [31] are essentially group signatures without the OA.
Direct Digital Attestation (DAA) is essentially the above plus a linking tag [16, 19] of the form hx

new where x is
a user secrete key. The linking tag has also been used in traceable (group) signature [39], linkable group/ring
signatures [45, 46, 42, 19, 37]. The Group Manager and the OA are the same in some group signatures [39,
5, 37]. The results in [44, 40] made connections between group signature and traitor tracing. Membership
revocation which require all members to alter their certificate is optimized in [6, 20, 48]. If the group size is
too large to make this approach efficient, then the CRL (Certificate Revocation List) approach to membership
revocation is advanced in [39].

The intuition of our results: In order to support CA2-full-anonymity, [7, 41, 10] specified the use of
IND-CCA2-secure encryption to escrow the signer identity. However, the state-of-the-art IND-CCA2-secure
encryptions are typically twice as expensive as IND-CPA-secure ones. Examples: twin encryption [47]; the
new three-round OAEP doubles the RSA ciphertext size [9, 50]; the Cramer-Shoup ciphertext[32] is twice as
long as the ElGamal ciphertext.

It has long been suspected that IND-CCA2-secure encryptions should be an overkill for the group signa-
ture. Observe that, in querying the Open Oracle OO, the Adversary A must present a valid group signature.
Therefore OO need not be as powerful as the Decryption Oracle. We set out to exploit this intuition. We
observe that the most threatening attacks query OO with (1) a signature signed by a corrupted user, (2)
with a SO (Signing Oracle) output, or (3) with a successfully forged signature. The recent tecnology of
VRF (Verifiable Random Function) [43] and [35]’s practical instantiation of it can be used to construct a
group signature where the first two kinds of threatening queries can be answered, and the unforgeability
(non-frameability) of the group signature itself means the third kind cannot happen. And we are successful.

Efficiency discussions: Take [12]’s CPA-fully-anonymous group signature, which is the shortest group
signature prior to the current result. The signature size is about 9λs bits, where λs = 170-bit curve is
considered the standard contemporary technology. To break down the bandwidth cost: 5λs bits are for
the linear encryption to escrow the signer identity, 3λs bits are for proof of certified public key and its
corresponding secrete key, and λs bits are for transmitting the challenge of the proof system. [12] does not have
non-frameability, which they termed exculpability. Non-frameability costs extra λs bits to support. Conversion
to twin encryption doubles the encryption cost from 5λs to 10λs bits. Then CCA2-full-anonymity is gained.
But the increase in bandwidth cost is a significant percentage: 50%. By using IND-CPA encryption, we save the
50% percent immediately. The overhead caused by using VRF does not eat up the entire gain. Some additional
but hard-wrought optimization helped a bit. Our new shortest CCA2-fully-anonymous group signature stands
at 11λs bits, and is 27% shorter than the previous shortest. Similar savings when we instantiate in the Strong
RSA framework to break the speed record.

2 Preliminaries

2.1 Pairings, intractability assumptions

We summarize needed intractability assumptions. A pairing is a mapping ê : G1 × G2 → G3 satisfying
ê(ga, hb) = ê(g, h)ab. Consult Boneh and Franklin [13] for further details. Pairings were initially viewed as
a weakness of elliptic curve discrete logarithm when Joux and Nguyen [38] first exhibited GDH (Gap Diffie-
Hellman) groups. Then Boneh and Franklin found its applications to post-certification [13] and a wide variety
of other areas. The web page Pairing-Based Crypto Lounge, maintained by Paulo Barreto, contains a wealth
of news and archival information.

Below, let Ga and Gb be groups. We use the convention that the XYZ Assumption is that no PPA
algorithm has a non-negligible advantage over arbitrary guessing in solving solve a random instance of the
XYZ Problem. Also, the XYZ(Ga,Gb) Problem becomes the XYZ Problem in Ga when Ga = Gb.

The DDH(Ga, Gb) Problem is given g, gx ∈ Ga, h ∈ Gb, distinguish hx ∈ Gb from random, where
0 < x < order(Ga) ≤ order(Gb)

The Decisional Linear Diffie-Hellman Problem for groups Ga and Gb, denoted the DLDH(Ga, Gb) Prob-
lem, is, given g1, g2, gx

1 , gy
2 ∈ Ga, h ∈ Gb, distinguish hz ∈ Gb from random, where 0 < x, y, z < order(Ga) <

order(Gb).
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The q-SDH(Ga, Gb) Problem is, given g, gx′ ∈ Ga and hxi ∈ Gb for 0 ≤ i ≤ q, compute some (e, h1/(e+x′) ∈
Gb), where 0 < x, x′ < order(Ga) ≤ order(Gb), x′ = x ∈ Z. The q-SDDH(Ga, Gb) Problem is, given
g, gx′ ∈ Ga and hxi ∈ Gb for 0 ≤ i ≤ q and R,distinguish h1/(R+x′) ∈ Gb from random, where where
0 < x, x′ < order(Ga) ≤ order(Gb), x′ = x ∈ Z. Note ”SDH” stands for Strong Diffie-Hellman and ”SDDH”
stands for Strong Decisional Diffie-Hellman. Note the q-SDDH Problem specializes to the q-DDHI Problem
[11, 12, 35] when R = 0. We will need the following Lemma:

Lemma 1 The q-SDDH(Ga, Gb) Assumption implies the DDH(Ga, Gb) Assumption.

Proof Sketch: Given the q-SDDH Problem with test value τ , convert it to the DDH Problem instance g, gx,
τ , hτ−e which equals τx if τ = h1/(e+x′). ut

Let N be the product of two primes. The Strong RSA Problem is, given N and random u ∈ QRN , compute
some non-trivial (e, u1/e).

2.2 Zero-knowledge proofs with known discrete logarithm bases

We will use literature results on proving statements about discrete logarithms, suc has (1) proof of knowledge
of a discrete logarithm modulo a prime [52] or modulo a composite [36, 33]; (2) proof of knowledge of equality
of representations modulo two (possibly different) prime [27] or composite [22] moduli; (3) proof that a
commitment opens to the product of two other committed values [22]; (4) proof of range: that a committed
value lies in a given integer interval [26, 22, 15]; (5) proof of the disjunction or conjunction of the previous
[31].

We use mainly the notations from [24]. For example, SPK{(A, e, x) : Aehx = h0 ∈ QRN}(M) means proof
of knowledge of secrete values A, e, and x satisfying the relation Adhx = h0 ∈ QRN . All used symbols/values
that are not explicitly denoted as secrete values are assumed non-secrete and must be made known to the
verifier. These values include, in this example, h, h0, N .

2.3 Verifiable random functions (VRF)

A Verifiable Random Function (VRF) [43] is a pseudo-random function that provides a non-interactive proof
for the correctness of its output. Given an input R and the secrete sk, it is complete to compute the function
value fsk(R) and a universally verifiable proof of correctness π. The output reveals zero-knowledge about the
pair (R, sk). The VRF finds many applications in protocol designs [35]. Dodis and Yamploskiy [35] proposed
the VRF which will be used in this paper: fsk(R) = g1/(sk+R).

3 Security Model

We follow mainly the security model for group signature in [10, 7]. For simplicity we use the stagic group
model [7]. But we include applicable concepts from the more advanced dynamic group model [10] as well.

3.1 Syntax

A group signature is a tuple (Init, OKg, GKg, UKg, Join, Iss, GSig, GVf, Open, Judge) where:

– Init: 1λs 7→ param. On input the security parameter 1λs , generates system-wide public parameters param,
CA (Group Manager) sk-pk pair (u, uγ) ∈ Zq1 × G2, Open Manager (OA) sk-pk pair (skOA, pkOA), a
number of users with sk-pk pairs (xU , hxU ) ∈ Zq1 ×G1, for user U , certificate certU for user U , ..., etc.

– GSig : (pk, sk, cert,M) 7→ σ. On input the keys, certificates and message, outputs a signature σ.
– GVf: (ca, oa,M, σ) 7→ 0 or 1. On input the message and signature, outputs 1 for valid signature and 0 for

invalid signature.
– Open: (ca, xoa, reg,M, σ) 7→ (i, ω). The OA with key xoa has read access to reg. On input a valid signature

σ for message M for ca, output identity i for the corresponding signer, and ω is the proof of this claim.
Output i = ⊥ if no such member is found.
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– Judge: (ca, id, oa,M, σ, ω) 7→ 0 or 1. It checks if the proof ω is a valid proof that id is the real signer of σ
for message M under ca, oa. Outputs 1 for valid and 0 for invalid.

Remarks: Here we use (param, ca) to denote gpk in [10]’s original syntax. We also split the GKg in [10]
into Init, OKg and GKg. It is because we want to emphasize that group managers (CA) and open authorities
(OA) are identity based.

Correctness: The Verification Correctness means honestly signed signatures should pass verification with
overwhelming probability. The Opening Correctness means honestly signed signatures should honestly open
to the actual signer. The group signature is correct if has verification correctness and opening correctness.

3.2 Attacker tools: oracles

We have the following oracles for the adversary to query:

– The Random Oracle H: Ordinary random oracle.
– The User Corruption Oracle UCO: gets user secrete key.
– The Group Corruption Oracle GCO: gets manager secret key.
– The Escrow Corruption Oracle ECO: gets OA’s secret key.
– The Signing Oracle SO: (U,M) → σ.
– The Decisional Open Oracle DOO: (σ,U) → 1 or 0 for U generated the signature σ or not.

We use the static adversary in this paper, where the Adversary A corrupts users (resp. the group manager, the
OA) only at the beginning of the security Experiments, and the Simulator S knows which users are corrupted.
Issues concerning adaptive adversaries, reset adversaries, or UC (universal composability) adversaries are left
to future research.

3.3 Security notions and experiments

3.3.1 Anonymity

Experiment Anon
1. Initialization Phase: Simulator S initializes.
2. Probe-1 Phase: A queries GCO and makes qU queries to UCO. Then it queries H, SO, and DOO in

arbitrary interleaf.
3. Gauntlet Phase: A selects two uncorrupted users, U0 and U1, (called gauntlet users generated in the

Initialization Phase, a message M , and gives them to S. Then S randomly chooses b ∈ {0, 1} and returns
the gauntlet signature σ = GSig(skUb

, certUb
,M).

4. Probe-2 Phase: A queries calH, SO, and DOO in arbitrary interleaf, except it cannot query the gauntlet
signature to DOO.

5. End Game: A delivers an estimate b̂ ∈ {0, 1} of b.

A wins Experiment Anon if b̂ = b. A’s advantage is his probability of winning minus 1/2.

Definition 1. A group signature is fully-CCA2-anonymous if no PPT algorithm has a non-negligible advan-
tage in Experiment Anon.

Remark: The most dangerous threat summarized by Experiment Anon is the AdversaryA’s ability to query
DOO(σ,U) in the Probe-2 Phase, even with U = U1 or U2. The ability to withstand such attacks highlight
the strength of the full-CCA2-anonymity. Note that making queries DOO(σ,U) for every U generated in the
Initialization Phase implements a full-fledged Open Oracle. Therefore there is no dilution in our definition
of the full-CCA2-anonymity from those in the literature [12, 41, 49]. The treatment of queries DOO(σ,U ′)
where σ is a valid signature by an illegitimate user U ′ (i.e. an user who is not generated in the Initialization
Phase but is concocted by the Adversary) is an interesting issue for future research. In this paper, DOO
outputs 0 in our static group model.
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3.3.2 Full Traceability.

Experiment FT
1. Initialization Phase: S initializes. A makes qU queries to UCO.
2. Probe Phase: A queries H, SO, DOO in arbitrary interleaf.
3. Delivery Phase: A delivers a signature σ which is not an SO output.

A wins Experiment FT if GVf(σ) = 1 and Open(skOA, σ) does not output a user corrupted in the Initial-
ization Phase by A. A’s advantage is his probability of winning.

Definition 2. A group signature is fully traceable if no PPT algorithm has a non-negligible advantage in
Experiment FT.

3.3.3 Non-frameability.

Experiment NF
1. Initialization Phase: S initializes. A queries GCO and ECO, and makes qU queries to UCO.
2. Probe Phase: A queries H, SO, DOO in arbitrary interleaf.
3. Delivery Phase: A delivers a valid σ along with a proof π that it opens to U , an uncorrupted user.

A wins Experiment NF if Judge(σ,U, π) = 1. Its advantage is its probability of winning.

Definition 3. A group signature is non-frameable if no PPT algorithm has a non-negligible advantage in
Experiment NF.

3.3.4 Security In summary,

Definition 4. A group signature is a secure CCA2-fully anonymous group signature if it is CCA2-fully-
anonymous, fully traceable, and non-frameable.

4 Construction

We construct CCA2-fully-anonymous group signatures using only IND-CPA-secure encryptions to escrow the
signer identity to the OA.

4.1 Generic construction: Protocol CCAGS-gen

The generic CCA2-fully-anonymous group signature construction uses an IND-CPA-secure public-key en-
cryption Enc is as follows:

SPK{(cert, pkU , skU , ρ) :
cert is valid on (pkU , skU ) ∧ ctxt = Enc(pkU , pkOA, ρ) ∧ S = VRF(R, skU )}(M, param, R) (3)

where VRF is a Verifiable Random Function (VRF) [43, 37, 35, 18].

4.2 Instantiation in pairings: Protocol CCAGS-SDH(G1, GS).

We instantiate the generic construction above in the pairings framework. Let ê : G1 ×G2 → G3 be a pairing
where order(G1) = order(G2) = order(G3) = q1. The OA’s sk-pk is (xE ,gxE

E ) ∈ Zq1 × G3. The CA (GM)’s
sk-pk pair is (γ, uγ) ∈ Zq1 × G2. The certificate on user sk-pk pair (x, hx) ∈ Zq1 × G1 is (A, e) satisfying
Ae+γhx = h0. All discrete logarithm bases are fairly generated. We use the CPA-secure ElGamal encryption
to escrow signer identity to OA. Assume all discrete logarithm bases are fairly generated, e.g. gi = H(′g′, i),
hi = H(′h′, i), gi = H(′g′, i).
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Let GS be a known-order group slightly larger than zq1 . We have in mind GS = Zp with a generator g
whose order at least as large as q1. This choice reduces the signature’s bandwidth. But the more complicated
technique of proving equality of discrete logarithm between two groups is required [15]. Another choice is
GS = G3. This choice is easier to understand but the signature bandwidth is increased significantly because
one element of G3 costs a multiple number of bits to transmit than one element of G1. The signature is

SPK{(A, e, x, ρ) : Ae+γhx = h0 ∈ G1

∧ κ1 = gρ
E ∧ κ2 = ê(hx, gE,2)g

xEρ
E ∧ S = g1/(R+x)

S ∈ GS}(M, param, R) (4)

Using linear encryption let g1 = g
1/a
3 , g2 = g

1/b
3 , where skOA = (a, b). In instantiation details, the

commitments are

T1 = gs1
1 , T2 = gs2

2 , T3 = Ags1+s2
3 ∈ G1,

T̃ 3 = ê(T−1
3 , uγ)ê(h0, u) = ê(T3, u)eê(h, u)xê(g3, u

γ)−(s1+s2)ê(g3, u)−s3 , (5)

T4 = g1/(R+x)
S , T5 = 1 = TR+x

4 g−1
S

D1 = gr1
1 , D2 = gr2

2 ,

D3 = ê(T3, u)re ê(h, u)rx ê(g3, u
γ)−(r1+r2)ê(g3, u)−r3 T̃

c

3,

D4 = gr4
S , D5 = T rx

4 (6)

The challenge is

c = H(param, R, M, T1, T2, T3, T4, D1, D2, D3, D4, D5). (7)

The responses are

z1 = r1 − cs1, z2 = r2 − cs2, ze = re − ce,

zx = rx − cx, z3 = r3 − cs3, z4 = r4 − c/(R + x) (8)

where s3 = e(s1 + s2). The signature is

σ = (param, R, M, T1, T2, T3, T4, c, z1, z2, z3, z4, ze, zx). (9)

param and the nonce R can be considered known or pre-protocoled to GVf and omitted from the transmission.
Protocol GVf(σ): Parse σ and compute

D1 = gz1
1 T c

1 , D2 = gz2
2 T c

2 ,

T̃ 3 = ê(T−1
3 , uγ)ê(h0, u), D3 = ê(T3, u)ze ê(h, u)zx ê(g3, u

γ)−(z1+z2)ê(g3, u)−z3 T̃
c

3, (10)
D4 = gz4

S T c
4 , D5 = T zx

4 (T5gST−R
4 )c

Protocol Open(σ, skOA): Compute A = T−a
1 T−b

2 T3 where skOA = (a, b). Also publish a proof-of-opening:

PK{(a, b) : A = T−a
1 T−b

2 T3 ∧ ga
1 = gb

2 = g3} (11)

Protocol Judge verifies the proof-of-opening.
The security analysis is in the following Theorem, whose proof is sketched in Appendix B.

Theorem 2. Let ê : G1 × G2 → G3 be a pairing and GS = 〈gS〉 be a known-order group at least as big as
G1. Let qS (resp. qU , qH) be the number of Signing Oracle (resp. User Corruption Oracle, Random Oracle)
queries. Protocol CCAGS-SDH(G1, GS) is a group signature which is, assuming the random oracle (RO)
model,

1. corect;
2. CCA2-fully-anonymous provided the qS-SDDH(G1,GS) Assumption and the DLDH(G1) Assumption both

hold;
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3. full traceable provided the qU -SDH(G1) Assumption or the qS-SDH(G1, GS) Assumption holds;
4. non-frameable provided the Discrete Logarithm Assumption holds in G1.

In summary, the CCAGS-SDH group signature is a secure CCA2-fully-anonymous group signature provided
the qS-SDDH(G1,GS) Assumption and the DLDH(G1) both hold in the RO model.

Corollary 3 The CCAGS-SDH(G1, G3) group signature is a secure CCA2-fully-anonymous group signature
provided the qS-SDDH(G1, G3) Assumption and the DLDH(G1) Assumption both hold.

Efficiency discussions: The CCAGS-SDH(G1, G3) group signature has a bandwidth of approximately
what it costs to transmit 10 rational points in G1 and one point in G3. The bandwidth of one point in G3

can be made as small as two in G1. The CCAGS-SDH(G1, GS) signature’s bandwidth costs about 10λs plus
the bandwidth of one GS element, which is slightly larger than λs. Using pairings with 170-bit curves, the
total signature bandwidth is approximately 1870 bits. In comparison, the shortest CCA2-fully-anonymous
group signature that uses IND-CCA2 encryption costs 15λs bits, see our Section 5. Our theoretical advance
of being able to use CPA-encryption saves about 27%. Note an IND-CCA2-secure RSA encryption in the
1024-bit RSA framework cost at least 2048 bits. Following convention, we do not count published system
parameters param, pre-protocoled nonce R, and the message M in comparing lengths. They are either included
or excluded from both sides of the comparison. Many protocols use nonces (or should use this technology) even
if not explicited stated so. All of GSig’s computations can be offline pre-computed. The online computation
of GVf consists of 5 multi-base exponentiations and one pairings. Note the one pairing is the very compressed
ê(T3, u)ze ê(T−1

3 , uγ)c = ê(T3, u
zeu−γc), using a technique from [12]. The pairing is expensive to compute. The

previous shortest CCA2-fully-anonymous group signature costs 1 pairing and 8 multi-base exponentiations
online.

4.3 Instantiation in strong RSA: Protocol CCAGS-SRSA(QRN , GS)

We instantiate in the strong RSA framework. The result is the fastest CCA2-fully anonymous group signature.
Given security parameter 1λs , initializes additional security parameters ε > 1, λp, λ1, λ2, γ1, γ2 satisfying
λ2 > 4`p, λ1 > ε(λ2 + λs) + 2, γ2 > λ1, γ1 > ε(γ2 + λs) + 2. Note `p sets the size of the modulus of the RSA
framework, ε controls the tightness of the zero-knowledge [3]. Generate as product N of two `p-bit safe primes
p and q, i.e. p = 2p′ + 1, q = 2q′ + 1, p′ and q′ are both primes. Generate a known-order group GS = 〈g〉,
where order(GS) = ps which is a (γ1 + 1)-bit prime. The group sk-pk pair is ((p, q), N). Generates a user list
UL which is initially empty. Let all discrete logarithm bases be fairly generated, e.g. gi = H(′g′, i) ∈ QRN ,
hi = H(′h′, i) ∈ QRN , gi = H(′g′, i) ∈ GS . We adopt the flexible notation H which is a full-domain collision-
resistant hash functin mapping from a union of mixed domains to a union of mixed ranges. Ambiguity should
not arise from the context. Denote the intervals Λ =]2λ1 − 2λ2 , 2λ1 + 2λ2 [ and Γ =]2γ1 − 2γ2 , 2γ1 + 2γ2 [.

The OA’s sk-pk is (xE , gxE

E ). The CA (GM)’s sk-pk pair is ((p, q), N). The certificate on user public key
hx is (A, e) satisfying Aehx = h0 ∈ QRN , where e ∈ Λ is a prime and x ∈ Γ . We follow the procedures in
[21] where x = 2λ1 + 2(x′ + x′′) where x′, x′′ ∈]− 2λ2−2, 2λ2−2[, x′ is generated by the user in privace, x′′ is
randomly generated by the GM and given to the user when the user join the group. All discrete logarithm
bases are fairly generated, e.g gi = H(′g′, i). We will use the CPA-secure ElGamal encryption to escrow signer
identity to OA. The signature is

SPK{(A, e, x, ρ) : x2, x2 ∈ Λ ∧ e ∈ Γ

∧ Aehx = h0 ∧ κ1 = gρ
E ∧ κ2 = AgρxE

E ∧ S = g1/(R+x)
S ∈ GS}(M, param, R) (12)

Below, g0 = gE , gA = gsE

E . In further instantiation details, the commitments are (omitted range proofs
for simplicity)

T0 = gs0
0 , TA = Ags0

A , T2 = ge
2,1g

s0
2,2, T3 = g1/(R+x)

S ∈ GS , (13)

D0 = gr0
0 , DA = T re

0 hrxg−r1
A , D1 = T re

0 g−r1
0 , D2 = gre

2,1g
r0
2,2, D3 = T rx

3 .
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Note h0 = T e
0 hxg−s1

A , s1 = es0, 1 = T e
0 g−s1

0 . The challenge is

c = H(param, R, M, T0, TA, T2, T3, D0, DA, D1, D2, D3). (14)

The responses are

z0 = r0 − cs0, z1 = r1 − cs1, ze = re − ce, zx = rx − cx, (15)

The signature is

σ = (param, R, M, T0, TA, T2, T3, c, z0, z1, ze, zx). (16)

The system parameters param and the nonce R are considered known or pre-protocoled to GVf and can be
omitted from the transmission of the signature.

Protocol GVf(σ): Parse σ and compute

D0 = gz0
0 T c

0 , DA = T ze

A hzxg−z1
A hc

0, D1 = T z0
0 g−z1

1 , D2 = gze
2,1g

z0
2,2T

c
2 , D3 = T zx

3 (gST−R
3 )c (17)

Verify the received challenge c equals to that computed by Equation (14).
Protocol Open(σ, skOA): Compute A = T−xE

0 TA where skOA = xE . Also publish a proof-of-opening:

PK{xE : A = T−xE
0 TA ∧ gxE

0 = gA} (18)

Protocol Judge verifies the proof-of-opening.
Security Analysis of Protocol CCAGS-SRSA(QRN , GS) is in the following Theorem.

Theorem 4. Protocol CCAGS-SRSA(QRN , GS) is a group signature which, assuming the RO model, is

1. correct;
2. CCA2-fully-anonymous provided the qS-SDDH(QRN ,GS) Assmption and the DDH(QRN ) Assumption

both hold;
3. full traceable provided the qS-SDH(QRN , GS) Assumption or the Strong RSA Assumption holds;
4. non-frameable provided the Discrete Logarithm Assumption holds in QRN .

In summary Protocol CCAGS-SRSA(QRN , GS) is a secure CCA2-fully-anonymous group signature provided
the qS-SDDH(QRN , GS) Assumption and the DDH(QRN ) Assumption both hold in the RO model.

Efficiency discussions: The signature verification costs 4 multi-base exponentiations in QRN . In com-
parison, the fastest CCA2-fully-anonymous group signature that uses IND-CCA2 encryption costs 5 multi-
base exponentiations, see our Section 5. Our theoretical advancement of being able to use CPA-encryption
saves about 25%. All of GSig’s computations can be offline pre-computed. The online computation of GVf
consists of one pairing and 5 multi-base exponentiations. Pairing are quite expensive to compute in general.

Proof is similar to that of Theorem 2 and is postponed to the full version of this paper. Proof intuitions:
Since our construction adds additional relations to classic constructions [3, 20, 41], the soundness tends to be
enhanced, but the anonymity faces pressure. About soundsness: An attacker must forge all components of
the signature. The forging of each component usually reduces to an intractability assumption. Therefore full
traceability (resp. non-frameability), which is a form of coalition-resistance unforgeability, typically reduces
to the holding of all of several intractability assumptions.

5 Discussions and Conclusions

We describe how to extend our CCA2-fully-anonymous group signatures, Protocols CCAGS-SDH and CCAGS-
SRSA, to support other group signature features, such as revocation [6, 20, 12, 39, 48], identity-based users
and/or OA [48, 56], trapdoor-freeness [4, 49], anonymous authentication in ad hoc groups [34], ring signatures
[31, 51], tracing-by-linking (TbL) group signatures [55, 54, 18].
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5.1 Revocation

Revocation is to prevent blacklisted group members from generating valid signatures. It is a challenge to
revoke anonymous memberships, but the literature contains solutions. There are two major approaches. In the
dynamic accumulator approach [6, 20, 12, 48], the GM alters its public key and publishes certain information
to the general membership in order to blacklist one member. Each remaining member must alter their group
membership certificate according to the published information in order to continue to be able to generate
valid group signatures – its old certificate is no longer valid against the GM’s new public key. The blacklisted
member cannot alter its certificate into one that will be able to generate additional signatures valid against
the GM’s new public key.

In the other approach, called traceable signature by [39] and called Verifier Local Revocation (VLR) by
[14], the members never modify their originally issued group membership certificates. Instead, the GM pub-
lishes a CRL (Certificte Revocation List) containing information about the entirety of blacklisted members.
The Verifier checks otherwise-valid signatures against the CRL for revoked members. Either the dynamic
accumulator approach or the VRL approach has relative efficiencies and drawbacks, in addition to related
synchronization and latency issues [6, 20, 12, 39, 14, 48].

In the following, we extend [39]’s revocation mechanism to our group signatures. In the CCAGS-SRSA
group signature, when a user joins the group in the (Join, Iss) interactive protocol with the GM, it presents
the user public key hx′ , prove knowledge of its discrete logarithm x′, and is issued a certificate (A, e) satisfying
Aehx = h0 by the GM, where x = 2λ1 + 2x′ + 2x′′ where x′, x′′ ∈] − 2−λ2−2, 2−λ2−2[ and e ∈ Γ is a prime.
In order to support VLR, the (Join, Iss) interactive protocol is modified as follows:

Protocol (Join, Iss)

1. The user presents its public key (hx′1
1 , h

x′2
2 ), and a verifiable encryption to OA of x′

2;
2. prove knowledge of the discrete logarithms x′

1 and x′
2, prove the range x′

1 and x′
2 ∈] − 2−λ2−2, 2−λ2−2[,

prove correctness of the verifiable encryption;
3. The GM verifies the proofs; randomly generates x′′

1 and x′′
2 ∈] − 2−λ2−2, 2−λ2−2[, generates a certificate

(A, e) satisfying Aehx1
1 hx2

2 = h0, where e ∈ Γ is a prime.
4. Upon receiving A, e, x′′

1 , x′′
2 , the user verifies and completes.

The signature is, called Protocol CCAGS-VRF,

σ = SPK{(A, e, x1, x2) : Aehx1
1 hx2

2 = h0 ∧ x1, x2 ∈ Λ ∧ e ∈ Γ ∧ S = g1/(R+x2)}(M) (19)

The remaining instantiation details are similar to those of Protocol CCAGS-SRSA and omitted. Protocol
CCAGS-VRF is formulated only in the strong RSA framework above. But it can be easily converted to the
pairings framework. Use the parameters from Protocol CCAGS-SDH. Protocol CCAGS-VRF-SDH has the
following signature:

σ = SPK{(A, e, x1, x2) : Ae+γhx1
1 hx2

2 = h0 ∈ G1 ∧ S = g1/(R+x2) ∈ G3}(M) (20)

To open a signature σ, the OA checks (R,S) against every x2 in its database for a match S = g1/(R+x2).
When a match is found, the member who owns x2 is the signer. To revoke that member, the OA publishes its
x2 to the CRL. Then GVf checks an otherwise valid signature σ’s S against the CRL, where S = g1/(R+x2)

indicates a blacklisted user.
Effieincy discussions. The above CCA2-fully-anonymous group signature has highly efficient signature

generation and signature verification. The tradeoff is that the signature opening protocol becomes inefficient:
it requires an exhaustive search of x2 for every user in its database. In scenarios where signature opening is
infrequent or offline, the above scheme achieves significant online signature generation and signature verifica-
tion. Overall, it achieves a tradeoff of online efficiency of frequently-used protocols against offline or infrequent
signature opening protocol.
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5.2 Identity-based

In identity-based encryption (IBE) [53, 13], the public encryption key is the decryptor’s identity (or a hashed
value of it). The decryption key is derived from the identity by a TTP called the key extractor. The IBE can
be viewed as a post-certified public key cryptosystem. It achieves various convenience and security tradeoffs
versus the more common pre-certified public key cryptosystem where each individual must have its public key
certified by the CA (Certificate Authority) prior to conducting authenticated secure interaction with another
entity. Identity-based identification (IBI) and identity-based signatures (IBS) are also important research
topics [53, 8]. Identity-based group signatures, where the user and/or the OA are identity-based, have also
aroused research interests [56, 48].

Protocol CCAGS-VRF above can be easily modified to support identity-based user and identity-based
OA. To support identity-based OA: First note that Protocol CCAGS-VRF does not verifiably encrypt
the signer’s identity in the signature itself, in the style of state-of-the-art group signatures in [7, 10, 41].
Therefore, not modification to Protocol CCAGS-VRF’s GSig is needed to support identity-based OA. Rather,
the attention to modification should be directed to (Join, Iss). There, a user to join the group must verifiably
encrypt its second secrete key x′

2 to the OA. The state-of-the-art verifiable encryption to an identity-based
decryptor is the general-purpose verfiable encryption of Camenisch and Damgard [17]. It can be used here.
Its complexity is O(λs).

To support identity-based group members: Let R denote the relation specifying members’ identity-
based sk-id pairs. Protocol CCAGS-VRF can be modified as follows to support identity-based group members:

σ = SPK{(A, e, x1, x2, sk, id) : Ae+γhx1
1 hx2

2 = h0 ∈ G1 ∧ S = g1/(R+x2) ∈ G3 ∧ }(M) (21)

5.3 Trapdoor-free group signatures

5.4 Anonymous authentication in ad hoc groups

5.5 Ring signatures

5.6 Tracing-by-linking (TbL) group signatures

5.7 Conclusion:

We prove one can construct CCA2-fully-anonymous group signatures by using only IND-CPA-secure encryp-
tions to escrow the signer identity to the OA (Open Authority). The benefits of this theoretical advance
significantly improves the efficiency. Instantiating in pairings, we construct the new shortest CCA2-fully-
anonymous group signature which is 27% shorter than the previous shortest. Instantiating in the strong RSA
framework, we construct the new fastest CCA2-fully-anonymous group signature which is 25% faster than
the previous fastest.
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A Previous state-of-the-art CCA2-fully-anonymous group signatures

For the purpose of comparing efficiencies against our new group signatures, we instantiate the previous
state-of-the-art CCA2-fully-anonymous group signatures using the best known published techniques. As are
typically the cases, instantiating in pairings results in the (previous) shortest [12, 41, 49] but it incurs expensive
pairings computations to verify the signatures; and instantiating in the strong RSA framework results in group
signaturew with the fastest signature verifications, but the signatures are not as short as those in pairings.
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A.1 The previous shortest CCA2-fully-anonymous group signature: Protocol CCAGS-BBS.
The literature [12, 41, 49] contains sufficient methods to efficiently instantiate a short CCA2-fully-anonymous
group signature, even though no explicit instantiations are published. BOneh, Boyen, and Shacham [12]
published the shortest CPA-fully-anonymous group signature to date. They used Linear Encryption, an IND-
CPA encryption, to escrow the signer identity to the OA. Kiayias and Yung [41] described a method to
convert a CPA-fully-anonymous group signature to a CCA2-fully-anonymous one. Their method is to convert
the IND-CPA escrowing encryption to a twin encryption [47] which is IND-CCA2 secure.

In this Section, we apply [41]’s conversion to the Linear Encryption in [12] to obtain a CCA2-fully-
anonymous group signature called Protocol CCAGS-BBS. We also optimize it to the best of our ability.
The result represents the previous shortest CCA2-fully-anonymous group signature prior to our theoretical
advance in the previous Section.

Using linear encryption let g1 = g
1/a
3 , g2 = g

1/b
3 , g6 = g

1/a′

8 , g7 = g
1/b′

8 , where skOA = (a, b, a′, b′). Using
the parameters from Section 4.2, the CCAGS-BBS group signature is specified below. The commitments are

T1 = gs1
1 , T2 = gs2

2 , T3 = Ags1+s2
3 ∈ G1,

T̃ 3 = ê(T−1
3 , uγ)ê(h0, u) = ê(T3, u)eê(h, u)xê(g3, u

γ)−(s1+s2)ê(g3, u)−s3 , (22)
T4 = 1 = T e

1 g−s3
1 , T5 = 1 = T e

2 g−s4
2 , T6 = gs6

6 , T7 = gs7
7 , T8 = Ags6+s7

8 ∈ G1,

T̃ 8 = T−1
3 T8 = g−s1−s2

3 gs6+s7
8 , D1 = gr1

1 , D2 = gr2
2 ,

D3 = ê(T3, u)re ê(h, u)rx ê(g3, u
γ)−(r1+r2)ê(g3, u)−r3 , D4 = T re

1 g−r3
1 , D5 = T re

2 g−r4
2 , (23)

D6 = gr6
6 , D7 = gr7

7 , D8 = g−r1−r2
3 gr6+r7

8

where s3 = es1, s4 = es2. The challenge is

c = H(param, R, M, T1, T2, T3, T4, T5, T6, T7, T8, D1, D2, D3, D4, D5, D6, D7, D8). (24)

The responses are zi = ri − csi for all indices i, where se = e, sx = x. The signature is

σ = (param, R, M, T1, T2, T3, T6, T7, T8, c, z1, z2, z3, z4, ze, zx, z6, z7). (25)

Its bandwidth is 15λs bits, 36% higher than our CCAGS-SDH group signature which exploits our new
theoretical advance.

Comparing against the CPA-fully-anonymous group signature in [12]: [12] cost 9λs bits, including 5λs for
the linear encryption and 4 for the remainder. [12] did not have non-frameability. To add it costs extra λs.
Converting from single encryption to twin encryption costs extra 5λs bits.

Note [49] instantiated twin ElGamal encryption in their CCA2-fully-anonymous group signature. Their
instantiation’s (the correct version in ePrint, GVf in their Asiacrypt’04 version cannot complete because of
non-knowledge of a discrete logarithm base Si) bandwidth costs at least 24λs bits includes 16λs specified in
their paper plus 8λs for the Proof of the twin ElGamal encryption also specified in their paper. We counted
that each G3 point costs at least twice the bandwidth of a G1 point. The security of Protocol CCAGS-BBS
is analyzed in the Theorem below. Its proof consists of known proofs from [12, 41] and is therefore omitted.

Theorem 5. The CCAGS-BBS group signature is, assuming the random oracle (RO) model,

1. correct;
2. CCA2-fully-anonymous provided the DLDF(G1) Assumption holds.
3. full traceable provided the qS-SDH(G1) Assumption holds;
4. non-frameable provided the Discrete Logarithm Assumption holds in G1.

In summary, the CCAGS-BBS group signature is a secure CCA2-fully-anonymous group signature provided
the DLDF(G1) Assumption and the qS-SDH Assumption both hold in the RO model.
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A.2 The previous fastest CCA2-fully-anonymous group signature: Protocol CCAGS-KY. Ki-
ayias and Yung [41] described a generic method to convert CPA-fully-anonymous group signatures including
[3, 21] to CCA2-fully-anonymous ones. The core technique [41] is the use of twin encryption [47]. We in-
stantiate and optimize it below in the strong RSA framework. The result represents the previous fastest
CCA2-fully-anonymous group signature prior to our advance in the previous Section.

We use the twin ElGamal encryption. The OA’s public encryption key is pkOA= (gsE,1
0,1 , g

sE,2
0,2 ). Its secrete

decryption key is skOA = (sE,1, sE,2). Initializations and system parameters are similar to those of Section
4.3. The group signature, which we call Protocol CCAGS-KY, is as follows. The commitments are

T0,1 = g
s0,1
0,1 , T0,2 = g

s0,2
0,2 , TA,1 = Ag

s0,1
A,1 , TA,2 = Ag

s0,2
A,2 , T2,1 = ge

2,1g
s0,1
2,2 , T2,2 = ge

2,3g
s0,2
2,4 ,

T3 = g1/(R+x)
S , D0,1 = g

r0,1
0,1 , D0,2 = g

r0,2
0,2 , DA,1 = T re

0,1h
rxg

−r1,1
A,1 , DA,2 = T re

0,2h
rxg

−r1,2
A,2 ,

D1,1 = T re
0,1g

−r1,1
0,1 , D1,2 = T re

0,2g
−r1,2
0,2 , D2,1 = gre

2,1g
r0,1
2,2 , D2,2 = gre

2,3g
r0,2
2,4 , D3 = T rx

3 .

Note TA,1T
−1
A,2 = g

s0,1
A,1 g

−s0,2
A,2 , h0 = T e

0,1h
xg

−s1,1
A,1 = T e

0,2h
xg

−s1,2
A,2 , s1,1 = es0,1, s1,2 = es0,2, 1 = T e

0,1g
−s1,1
0,1 =

T e
0,2g

−s1,2
0,2 . The challenge is

c = H(param, R, M, T0,1, T0,2, TA,1, TA,2, T2,1, T2,2, T3, D0,1, D0,2, DA,1, DA,2, D1,1, D1,2, D2,1, D2,2, D3).(26)

The responses are zi = ri − csi for all indices i, with se = e, sx = x. The signature is

σ = (param, R, M, T0,1, T0,2, TA,1, TA,2, T2,1, T2,2, T3, c, z0,1, z0,2, z1,1, z1,2, z3, zx).

Protocol GVf(σ) computes

D0,1 = g
z0,1
0,1 T c

0,1, D0,2 = g
z0,2
0,2 T c

0,2, DA,1 = T ze
0,1h

zxg
−z1,1
A,1 hc

0, DA,2 = T ze
0,2h

zxg
−z1,2
A,2 hc

0,

D1,1 = T ze
0,1g

−z1,1
0,1 , D1,2 = T ze

0,2g
−z1,2
0,2 , D2,1 = gze

2,1g
z0,1
2,2 T c

2,1, D2,2 = gze
2,3g

z0,2
2,4 T c

2,2, D3 = T zx
3 (gST−R

3 )c.

and verifies the received challenge c equals to that computed according to Equation (25).
Protocol CCAGS-KY’s online complexity consists of GVf’s 9 multi-base exponentiations. This complexity

is 80% higher than our Protocol CCAGS-SRSA which exploits our new theoretical advance. Protocol CCAGS-
KY’s signature bandwidth is also higher than that of Protocol CCAGS-SRSA. The security reduction for
Protocol CCAGS-KY is in the Theorem below. Its proof consists of known proofs from [41, 21, 3] and is
therefore omitted.

Theorem 6. The CCAGS-KY group signature is, assuming the RO model, (1) correct; (2) CCA2-fully-
anonymous provided the DDH Assumption holds in QRN ; (3) full traceable provided the Strong RSA As-
sumption holds in QRN ; (4) non-frameable provided the Discrete Logarithm Assumption holds in QRN . In
summary the CCAGS-KY group signature is a secure CCA2-fully-anonymous group signature provided the
DDH Assumption and the Strong RSA Assumption both hold in QRN under the RO model.

B Proof Sketch of Theorem 2

We use the static attacker model, where A corrupts qU users at the beginning, and S knows which qU users
are corrupted at that time. Issues with active, concurrent, reset, or UC (Universal Composability) attackers
are left to future research.

1. CCA2-full-anonymity The crucial issue is the simulation of the Decisional Open Oracle DOO(σ,U).
Some IND-CCA2 encryptions utilize the WI (Witness Indistinguishability) to simulate their Decryption
Oracles. We do not use WI. Instead we exploit the outstanding properties of the group signature. The attacker
A must effectively query DOO with a valid signature σ. But attacker cannot generate a valid signature that
opens to a legitimate user provided Non-Frameability holds. Therefore DOO has a way to detect and reject
all queries from non-corrupted users.

If A has a non-negligible advantage in Experiment Anon, then A can disntinguish at least one of the
following:
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1. A can distinguish via the linear encryption of the certificate value A in the three commitments T1, T2,
T3. Then we will prove A can solve the DLDH(G1) Problem.

2. A can distinguish via T4 = g1/(R+x)
S and known R. Then we will prove A can solve the qS-SDDH(G1,

GS) Problem.
3. A can distinguish via T5 = 1 and gS = TR+x

4 with known R. Then we will prove that A can solve the
DDH(G1, GS) Problem.

For the first case above, that distinguishing via the linear encryption results in solving the Decision Linear
Problem was proved in [12]. For the third case above, the qS-SDDH(Ga, Gb) Assumption implies the DDH(Ga,
Gb) Assumption by Lemma 1. Below, we prove the second case above.

Initialization. Simulator S is given a qS-SDDH(G1,GS) Problem instance for each uncorrupted user.
The problem instance consists of h, hx′ ∈ G1, gxi ∈ GS , 0 ≤ i ≤ qS , x′ = x ∈ Z, 0 < x′ < x < order(G1) <
order(GS), R, and a test value in GS which equals g1/(R+x) or random. S generates group key pair, and
generates the user key pair for each corrupted user to answer Adversaries GCO and uco queries at the
beginning of Experiment Anon.

For each uncorrupted user U , S randomly generates Ri, 1 ≤ i ≤ qS , let fS(x) =
∏qS

i=1(Ri + x) and
compute Si = gfS(x)(Ri+x)−1

. S gives hx as the user public key to U . S generates the OA’s key pair. Assume
the DLDH(G1) Assumption so A cannot distinguish by exploiting the linear encryption, provided we can
simulate DOO which we do below. S (and A) knows the group secrete key to issue certificates.

This setup is similar to the single-inconsistent player (SIP) proof technique in [25, 1], for the static attacker
model. A winner A of Experiment Anon will have a non-negligible probability of solving one of the qS-SDDH
Problem instances. The overall result will be that A can be simulated to solve a random instance of the
qS-SDDH Problem with non-negligible probability. Issues with multiple inconsistent players (MIP) is left to
future research.

Simulating the Oracles. For corrupted users, S answers SO by using the user secrete key. For un-
corrupted user U , S answers the Signing Oracle queries SO(U,Mi) with Si, 1 ≤ i ≤ qS . For simplicity, we
assume there is an equal number, qS , of SO queries for each uncorrupted user. The other case can be proved
similarly. The Decisional Open Oracle DOO(σ,U) is simulated as follows:

1. If U is a corrupted user, then S knows its secrete key skU and S uses it to test if T4
?= g1/(R+x)

S . DOO
outputs 1 (0) if test is positive (negative).

2. If U is an uncorrupted user generated by S in Initialization, test if σ is an SO output for U . If so, output
1. Else, output 0.

3. If U is an user not generated by S in Initialization, output 0.

Intuition: Assuming non-frameability, then A cannot have generated a valid signature that opens to an
uncorrupted user.

The Extraction. In the Gauntlet Phase of Experiment Anon, A presents two gauntlet users U0 and U1.
Both are uncorrupted. S chooses b ∈ {0, 1}, and generates the gauntlet signature σg as follows:

1. Set T4 to the test value prescribed in the qS-SDDH Problem instance for user Ub.
2. Compute σg via the standard HVZK simulation as follows:

(a) Randomly generate the challenge c, all responses zi’s, all secrets si’s except sx = x. (Note a uncor-
rupted user’s public key hx is prescribed from its qS-SDDH Problem instance.)

(b) Compute the Ti’s by Equation (5) and compute the Di’s by Equation (10).
(c) Use the RO to backpatch the hash output to c in Equation (7).

When A eventually returns b̂ in Experiment Anon, S answers yes to the qS-SDDH Problem instance with
user Ub, if b̂ = b. S answers random to qS-SDDH otherwise. If A has a non-negligible advantage in Experiment
Anon, so does S in solving the qS-SDDH Problem. ut
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2. Full traceability Full traceability is essentially coalition-resistance unforgeability. The attacker must
forge all components. To forge T4 is to solve a qS-SDH Problem. The proof above for anonymity can be easily
modified to prove this component here. Below, we reduce full traceability to the qU -SDH Problem in the case
where the qS-SDH Assumption is not used.

Initialization and oracle simulations are similar to the above. Extraction is described below. Simulator
S is given a qU -SDH Problem instance u, uγ , gγi ∈ G1, 0 ≤ i ≤ qU , ê. Then S randomly generates ei, xi,
1 ≤ i ≤ qU , let f(γ) =

∏qU

i=1(ei + γ) and compute Ai = gf(γ)(ei+γ)−1(1−αxi)
−1

where random oracle (RO) is
backpatched to h = hα

0 . Gives (Ai, ei, xi), 1 ≤ i ≤ qU , to each corrupted user.
Assume A has a non-negligible advantage in Experiment FT. Fork-simulate A to extract witnesses s̄1,

bars2, ê, x̄ satisfying

T1 = gs̄1
1 , T2 = gs̄2

2 , h0 = (T3g
−s̄1−s̄2
3 )γ+êhx̄g

(s̄1+s̄2)ē−s̄3
3 (27)

Backpatching the random oracle to g3 = H(′g′, 3) = h
αg,3
0 , and h = H(′h′) = hαh

0 , where αg,3 and αh are
chosen by S in Initialization. Denote δ = 1 − αg,3(s̄1e + s̄2e − s̄3) and Â = (T3g

−s̄1−s̄2
3 )1/δ, x̂ = x̄/δ, then

Â
ê+γ

hx̂ = h0 = gf(γ) Then

h
1/(ê+γ)
0 = gf(γ/(ê+γ) = g

P
i=0qU f̄iγigf̄−1/(ê+γ) (28)

and we obtain (g1/(ê+γ), ê) to solve the qU -SDH Problem. ut

3. Non-frameability The proof of non-frameability is similar to that of full traceability. Except now the
Adversary A can corrupt the group trapdoor and the forgery must open to one of the users initialized in
the beginning. The traceability attacker can generate an arbitrary user sk-pk pair with the obstacle being
computing a certificate without the group trapdoor. The non-frameability attacker has the group trapdoor,
but must forge a signature which opens to an legitimate user initialized with key pair (skU = x, pkU = hx)
where A is given hx but not x.

If A has an advantage in Experiment NF, A can be rewound to extract the witness x, and solve a DLP.
Oracle simulations are as before. The initialization and setup for extraction is straightforward. ut

C Proof Sketch of Theorem 4.

Large parts of this proof is similar to that of Theorem 2. We focus only on the different parts.

1. CCA2-full-anonymity This is mostly similar to its counterpart in Theorem 2 and omitted. ut

2. Full traceability Simulating User Corruption Oracle UCO: Given a Strong RSA Problem instance (N,Z),
Simulator S initializes N to be the group public key. Then S initializes the sk-pk pair and certificates of the
qU corrupted users as follow: Randomly generate xi and primes within regulation range ei, 1 ≤ i ≤ qU , and
randomly generate r. Compute h = Ze1···eqU , h0 = hr. Then compute Ai = he−1

i (−xi+r) and answers A’s
queries to UCO with (Ai, ei, xi) for each i, 1 ≤ i ≤ qU .

Simulating Signing Oracle SO(M,U): If U is corrupted, S knows its secretes and computes a signature.
If U is uncorrupted, S uses the prescribed qS-SDH Problem instances, one instance for each uncorrupted, to
simulate.

The Extraction: Assume A has a non-negligible advantage in Experiment FT. Then fork simulate A to
extract secretes Ā, ē, x̄ satisfying Ā

ē
hx̄ = h0. Noting hr = h0, we have Ā

ē = hδ = Zδe1···eqU . Dividing both
exponents by their GCD, we obtain Ā

a = Zb, with GCD(a,b)=1. Then αa + βb = 1 ∈ Z for some α and β.
Then Z = (AβZα)a solves the strong RSA Problem. ut

3. Non-frameability This part is also similar to Theorem 2 and omitted. ut


