
Cryptography in Theory and Practice: The Case of
Encryption in IPsec?

Kenneth G. Paterson and Arnold K.L. Yau??

Information Security Group,
Royal Holloway, University of London,

Egham, Surrey, TW20 0EX,
United Kingdom.

{kenny.paterson,a.yau}@rhul.ac.uk

Abstract. This paper studies the gaps that exist between cryptography as studied in the-
ory, as defined in standards, as implemented by software engineers, and as actually consumed
by users. Our focus is on IPsec, an important and widely-used suite of protocols providing
security at the IP layer of network communications. Despite well-known results in theoret-
ical cryptography highlighting the vulnerabilities of unauthenticated encryption, the IPsec
standards currently mandate its support. We present evidence that such “encryption-only”
configurations are in fact still often selected by users in practice, even with strong warnings
advising against this in the IPsec standards. We then describe a variety of attacks against
such configurations and report on their successful implementation in the case of the Linux
kernel implementation of IPsec. Our attacks are realistic in their requirements, highly ef-
ficient, and recover the complete contents of IPsec-protected datagrams. Our attacks still
apply when integrity protection is provided by a higher layer protocol, and in some cases
even when it is supplied by IPsec itself. Finally in this paper, we reflect on the reasons
why this unsatisfactory situation persists, and make some recommendations for the future
development of IPsec and cryptographic software in general.

Keywords: IPsec, integrity, encryption, ESP.

1 Introduction

The need for authenticated encryption is well understood in the cryptographic research commu-
nity – see for example [4, 5, 14]. That community is concerned with well-equipped attackers who
have access to decryption oracles and who merely need to distinguish the encryption of one ci-
phertext from another to be considered successful. This conservative approach is laudable and is
now finding its way into standards and specifications. However the process of adopting authen-
ticated encryption in fielded systems is slower. Naturally, it takes time to translate theory into
standards, standards into products and finally, for users to take up the latest versions of products.
There is also an inherent resistance to change within user communities, unless there is clear and
easily-absorbed evidence that such change is imperative. This situation is worsened by the gulf in
understanding between the communities of theoreticians and end-users: results that are folklore in
the former community are often only vaguely understood by the latter. This is in spite of several
high-profile examples where the lack of strong integrity checks is known to lead to attacks [30,
6, 8, 33], or where inappropriate use of integrity mechanisms still leaves systems vulnerable [3, 9].
There are also many examples outside the area of authenticated encryption where attacks are
made possible by poor implementation or the failure to use cryptography appropriately – see [7,
22, 25] for examples.

? The work described in this paper was partly supported by the European Commission under contract
IST-2002-507932 (ECRYPT).

?? This author supported by EPSRC and Hewlett-Packard Laboratories Bristol through CASE award
01301027.

But the lack of understanding can go both ways: theoreticians sometimes do not understand
the everyday problems faced by implementors and users, and the pragmatic approach to security
that this produces. Attacks in the cryptographic literature can be rather technical and difficult for
non-experts to understand. In some cases, it may also be that the attacks are not perceived by users
as having a high impact. Theoreticians are rightly concerned about attacks on indistinguishability
of ciphertexts, but users are perhaps less so. Attacks requiring huge numbers of chosen plaintexts
are interesting to theoreticians, but may not unduly concern practitioners. Users may sometimes
disregard attacks if they are attacks on-paper, rather than being fully demonstrated attacks that
work in practice against deployed systems. So one must be careful not to over-estimate the impact
that such “attacks in theory” have on the long-term behaviour of developers and users.

In this paper, our focus is on the use of integrity protection and encryption in IPsec, an
important and widely-used suite of protocols providing security at the IP layer of network com-
munications. We provide a short introduction to IPsec in Section 2. Bellovin [6] was the first to
point out how the lack of integrity protection in the first version of IPsec’s encryption protocol
ESP (Encapsulating Security Payload) [1] leads to security weaknesses. However, the attacks in
[6] are actually quite limited in their practical impact. A close examination of [6] shows that the
attacks presented in [6, Sections 3.1 and 3.2] only work in the rather unrealistic scenario where the
attacker has access to accounts on the two network hosts performing the IPsec processing. The
other concrete attack in [6] is contained in Section 3.8 and is attributed to Wagner. It recovers just
a single byte of plaintext, from datagrams having special formats, and then only if 224 ciphertexts
matching chosen plaintexts are available to the attacker. Moreover, the attacks in [6] (and the re-
lated paper [23]) are really only sketches of what might be possible rather than fully implemented,
working attacks: they are examples of “attacks in theory”. Nevertheless, Bellovin’s attacks are
well-known in the cryptographic and IPsec standards communities, and are cited in subsequent
versions of the ESP standards [16, 18]. The version of ESP used in current deployments [16] refers
to [6] when warning of the dangers of using encryption without additional integrity protection and
requires support for integrity protection. However it also mandates that any implementation of
ESP must include support for encryption-only processing! This surely illustrates the chasm that
exists between the theory and practice of cryptography. Note that we are not saying that the
theoreticians are correct and the practitioners are wrong here – we are merely observing that the
gap exists. Indeed, the developers of [16] had good reasons involving backward-compatibility and
performance for mandating support for an encryption-only mode.1 Perhaps if Bellovin’s attacks
had been more damaging, the IPsec community would have taken a different path and mandated
the use of authenticated encryption in ESP.

It is our belief that the availability of the encryption-only option in IPsec has led many users
into actually using it. After all, users do not generally read RFCs or research papers, and an
inexperienced network administrator might reasonably believe that it is sufficient to use an en-
cryption algorithm on its own to provide confidentiality for data. Since this is precisely what the
encryption-only version of ESP appears to provide, it would be a natural choice when selecting
from amongst the myriad of IPsec options. (This point is also made in [11].) As evidence for our
belief, we note that we have found several on-line tutorials showing, in a command-by-command
fashion, how to build IPsec VPNs that use ESP for encryption, but that appear to provide no
additional integrity protection.2 Further evidence comes from the interactions that we had with
the IPsec vendor and user communities after the release of the vulnerability announcements [26,
31] describing our attacks: while some vendors were aware of Bellovin’s work and had taken steps

1 Particularly informative are IPsec mailing list discussions on this issue: http://www.vpnc.org/

ietf-ipsec/97.ipsec/msg00633.html
2 See for example: http://www.netbsd.org/Documentation/network/ipsec and http://lartc.org/

howto/lartc.ipsec.tunnel.html. As another example, the Cisco IPsec documentation that was avail-
able at http://www.cisco.com/univercd/cc/td/doc/product/ismg/policy/ver21/ipsec/ch01.htm

conspicuously fails to mention the dangers of encryption-only ESP, stating that “If you require data
confidentiality only in your IPSec tunnel implementation, you should use ESP without authentication.
By leaving off the authentication service, you gain some performance speed but lose the authentication
service.” This documentation has now been removed from the Cisco website.

to prevent the selection of encryption-only configurations (despite this meaning that, technically,
they were no longer in compliance with [16]), others were initially much less well-informed, and at
least one vendor has since issued a patch.3

1.1 Our Contribution

Given the above background, it should be evident that the encryption-only configuration of IPsec
is still likely to be in common use, in spite of Bellovin’s work [6]. The main contribution of
this paper is to present new attacks against this configuration of IPsec that are as realistic and
devastating as possible, with the aim of persuading users to migrate away from encryption-only
IPsec configurations. In this respect, our attacks have several attractive features. Firstly, they are
ciphertext-only attacks. Thus they do not require any special operating conditions under which,
for example, the ciphertexts matching chosen plaintexts are generated. Nor do they require large
amounts of ciphertext to be successful: the attacks can be mounted given only a single encrypted
datagram. Secondly, the attacks merely require the attacker to be able to inject IP datagrams
into the network and intercept certain responses. Some variants of our attacks even enable these
responses to be sent directly to the attacker’s machine. Thirdly, the attacks are very efficient.
For example, one variant that we have implemented requires the injection of only a handful of
datagrams to recover the complete contents of a datagram encrypted using AES. Fourthly, the
attacks are flexible, with a range of variants being applicable in different circumstances. And
finally, we have written an attack client which shows that the attacks work in practice against
the native implementation of IPsec in Linux. For example, our client effectively allows a real-time
cryptanalysis of encryption-only IPsec when AES is used as the encryption algorithm. In all these
senses, our attacks improve on the pioneering work of Bellovin [6].

Our work also has consequences for the new version of ESP [18], which repeats the advice of
[16] concerning the need for integrity protection, but then goes on to say:

ESP allows encryption-only [...] because this may offer considerably better performance and
still provide adequate security, e.g., when higher layer authentication/integrity protection
is offered independently.

It is already known in theory that applying authentication followed by encryption to build an
authenticated encryption scheme does not result in a generically secure construction [19]. We
demonstrate here that relying on higher layers for the provision of integrity in IPsec is inherently
insecure in practice as well: as we shall see, our attacks are completed before these higher layers even
have an opportunity to examine the data. Some of our attacks also apply to some configurations
using the IPsec protocol AH (Authentication Header) for integrity protection – for example when
AH is applied end-to-end and tunnelled inside gateway-to-gateway encryption-only ESP. This
configuration appears to be secure, since datagrams are now integrity protected. But integrity
checking and decryption take place at different points, and this opens the door to our attacks.

More generally, our attacks provide a stark illustration, should one still be required, of the
general need to make appropriate use of authenticated encryption in fielded systems. We hope that
this paper will also be of use to theoreticians in the field of authenticated encryption searching for
convincing real-world examples to motivate their work.

A further theme of this paper is to illustrate the gaps that exist between cryptography as
studied in theory, as defined in standards, as implemented by software engineers, and as actually
consumed by users. For example, we have already commented on the gulf in understanding between
theoreticians and users and how this leads to the use of encryption-only ESP in practice. As another
example, our attacks should in fact be prevented by any RFC-compliant implementation of IPsec,
because of some seemingly innocuous post-processing checks specified in the architectural standard
for IPsec [15]. Yet the native Linux version of IPsec fails to implement these checks. Drawing on
our experiences with IPsec, we make some recommendations which we hope will help to bridge
these gaps.
3 See http://www.securityfocus.com/archive/1/407774

1.2 Overview of Paper

In the next section, we provide sufficient background on the IPsec and IP protocols to make the
paper self-contained. In Section 3, we outline a possible attack strategy based on rewriting of
destination IP addresses in inner IP datagrams. This discussion is included as a prelude to our
later attacks. Section 4 presents a class of attacks based on how IP handles options processing.
We also report on an implementation against ESP using DES in that section. Then in Section 5,
we present a third group of attacks, which are based on manipulating the IP header protocol field,
and report on an implementation against ESP using AES. In Section 6, we consider the practical
impact of our attacks as well as obvious countermeasures that prevent them. Our reflections on the
gaps between cryptographic theory and practice in the context of IPsec can be found in Section 7.

2 Background

2.1 IPsec

IPsec, as defined in RFCs 2401–2412, provides security at the IP layer. The interested reader is
invited to consult [10, 13] for accessible introductions to IPsec. Implementations of IPsec exist in
Microsoft Windows 2000 and XP, and in the Linux kernel from release 2.6 onwards.4 Various other
open source projects are also developing IPsec implementations. IPsec is also widely supported
in commercial networking hardware. The IPsec protocols provide data confidentiality, integrity
protection, data origin authentication and anti-replay services as well as supporting automated
key management.

The IPsec protocols can be deployed in two basic modes: transport and tunnel. In tunnel mode,
on which we focus here, cryptographic protection is provided for entire IP datagrams. In essence, a
whole datagram plus security fields is treated as the new payload of an outer IP datagram, with its
own header, called the outer header. The original, or inner, IP datagram is said to be encapsulated
within the outer IP datagram. In tunnel mode, IPsec processing is typically performed at security
gateways on behalf of endpoint hosts. The gateways could be perimeter firewalls or routers. The
use of gateways means that hosts need not be IPsec-aware, but that security is provided from
gateway-to-gateway rather than in an end-to-end fashion.

IPsec provides authentication and integrity protection and/or confidentiality services for net-
work layer data through the AH and ESP protocols. Our focus here is on the ESP protocol, as
defined in [16, 18]. ESP is normally invoked to provide confidentiality, and usually makes use of
a block cipher algorithm operating in CBC mode. Block ciphers in counter mode and dedicated
stream ciphers may also be used, but these are less commonly seen in practice. In tunnel mode,
the entire inner IP datagram is encrypted and forms part of the payload of the outer IP datagram.
The use in ESP of a variety of block ciphers has been specified, including DES [21], triple-DES
[28] and AES [12]. We describe the use of CBC mode in ESP in more detail in the next section.
ESP may also be configured to provide integrity protection through the application of a MAC
algorithm.

IPsec can be configured in a wide variety of ways. One common use is in building Virtual
Private Networks (VPNs), where IPsec is usually configured to use the ESP protocol in tunnel
mode to provide confidentiality. ESP can also be used to provide an integrity protection service
for the VPN traffic, or this service may be provided by AH.

ESP in tunnel mode inserts security information in the form of a header between the outer
IP header and the encrypted version of the inner datagram. This ESP header indicates which
algorithms and keys were used to protect the payload in a 32-bit field called the Security Pa-
rameters Index (SPI). The ESP header also contains a 32-bit sequence number to prevent packet
replays; when ESP is used with encryption-only, this sequence number is simply ignored by IPsec
implementations (as it is not protected in any way). ESP in tunnel mode may also append an

4 All further references to Linux in this paper refer to official release 2.6.8.1 of the Linux kernel from
http://kernel.org.

authentication field after the encrypted portion. This contains the MAC value if ESP’s optional
integrity protection features are in use. The way in which ESP modifies datagrams in tunnel mode
is illustrated in Figure 1.

The AH protocol also provides integrity protection (and prevention of replays), though its scope
of application is different from that of the MAC in ESP. Further discussion of IPsec configuration
and the combined usage of AH and ESP in tunnel and transport modes is beyond the scope of
this paper. IPsec provides an automated key management service through IKE. We will simply
assume that key establishment has taken place, either manually, or using one of the many possible
methods supported by IKE, and that no rekeying takes place during the course of our attacks.

2.2 CBC Mode Encryption in ESP

The variant of CBC mode that is used by ESP in tunnel mode is described below. For more details,
see [16, 21, 12, 28].

First of all, the original (inner) datagram that is to be protected is treated as a sequence of
bytes. This sequence is padded with a particular pattern of bytes and then a single next header
byte is appended. The padding is constructed in such a way that the total number of bytes in the
processed sequence is a multiple of the number of bytes in a block of the encryption algorithm (for
example, 8 for DES and 16 for AES), and so that the padding can be removed unambiguously. It is
permissible for the padding to be of variable length and to extend over multiple blocks. This might
aid in preventing traffic analysis. We assume throughout that the minimum amount of padding
is used, though our attacks are easily modified to handle variable length padding. This padding
occupies the ESP trailer field in Figure 1.

Before applying ESP:

| inner | inner |

| IP hdr | payload |

After applying ESP in tunnel mode:

--

| outer | ESP | inner | inner | ESP | ESP |

| IP hdr | hdr | IP hdr | payload | trailer | auth |

--

|<--------- encrypted -------->|

|<--------- authenticated ---------->|

Fig. 1. ESP datagram structure according to RFC 2406, [16].

Let us assume that the byte sequence after padding consists of q blocks, each of n bits (where
n = 64 for DES and n = 128 for AES, for example). We denote these blocks by P1, P2, . . . , Pq.
We use K to denote the key used for the block cipher algorithm and eK(·) (dK(·)) to denote
encryption (decryption) of blocks using key K. Then the CBC mode encryption in ESP proceeds
as follows. First of all, an n-bit initialization vector, denoted IV , is selected at random. Then
ciphertext blocks are generated according to the equations:

C0 = IV, Ci = eK(Ci−1 ⊕ Pi), (1 ≤ i ≤ q).

The encrypted portion of the outer datagram is then defined to be the sequence of q + 1 blocks
C0, C1, . . . , Cq.

At the receiving security gateway (who is also in possession of the key K), the payload of the
outer datagram can be recovered using the equations:

Pi = Ci−1 ⊕ dK(Ci), (1 ≤ i ≤ q).

Any padding and the next header byte can then be stripped off, revealing the original inner data-
gram. At this point, Section 5.2 of the IPsec architectural RFC [15] mandates that implementations
should check that the cryptographic processing performed to recover inner datagram in fact does
match that specified in local IPsec policies. Presumably, if the check fails, the packet should be
dropped, though this is not made explicit in [15].5 In the Linux kernel implementation of IPsec,
the inner datagram is passed directly to the IP software on the receiving gateway, without any
policy checks being performed. This IP software usually just routes the inner datagram to the
intended destination specified in the destination address of the inner datagram.

2.3 Bit Flipping Attacks

CBC mode has a well-known weakness, commonly known as the bit flipping vulnerability. Suppose
an attacker captures a CBC mode ciphertext C0, C1, . . . , Cq, then flips (inverts) a specific bit j
in Ci−1 and injects the modified ciphertext into the network. Upon receipt and decryption, this
bit flip is transformed into a bit flip in position j in the plaintext block Pi. This can be seen by
examining the decryption equation Pi = Ci−1⊕dK(Ci). Thus an attacker can introduce controlled
changes into the value of block Pi seen by the decrypting party, simply by flipping bits in Ci−1

and injecting modified ciphertexts.
Of course, a problem for the attacker is that any modification to Ci−1 typically results in a

value of Pi−1 that is effectively randomized – this can be seen from the relation Pi−1 = Ci−2 ⊕
dK(Ci−1). On the other hand, if the modification is made in C0 (equal to IV), then no damage to
plaintext blocks will result. Note that in carrying out this attack, the attacker does not directly
gain information about the contents of plaintext blocks; rather he can (to an extent) control the
plaintexts seen by the legitimate decrypting party. This kind of attack is easily prevented by the
appropriate use of an integrity protection mechanism, such as a MAC algorithm.

2.4 IP Datagram Headers

The execution of our attacks on ESP in tunnel mode depends in a detailed way on the structure
of the headers of IP datagrams and on the order in which the fields of these headers are processed.
We focus here only on IPv4 headers, as specified in detail in [20], and on describing those fields
that are key to our attacks. The lay-out of the IP header is shown schematically in Figure 2.

The IHL (Internet Header Length) field is 4 bits long and has a value between 5 and 15. This
field indicates the length of the header in 32-bit words. The typical value is 5, indicating that the
header length is 20 bytes and no additional options bytes are present. If the IHL value is greater
than 5, then additional options bytes are present after the main header, in the Options field. This
field can be up to ten 32-bit words (40 bytes) in length and can be used to allow the header to carry
additional instructions or information. It has a strict format; if the format is not followed, then
IP implementations typically generate an ICMP (Internet Control Message Protocol) “parameter
problem” message which is routed to the host indicated in the Source Address field. For example,
our experiments confirm that, upon receipt of a datagram with random bytes in the Options field,
the implementation of IP in Linux generates an ICMP message with probability roughly 98.5%.
We discuss ICMP in more detail below.

The Protocol field is 8 bits (1 byte) long and indicates which upper layer protocol is carried in
the IP datagram payload. Slightly more than half of the 256 possible values are already allocated
to specific upper layer protocols. The set of values that a host might place here when generating

5 Note that these checks are not specified in the ESP RFCs [16, 18]; the requirement to drop packets has
now been made explicit in [17].

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

|Version| IHL |Type of Service| Total Length |

+-+

| Identification |Flags| Fragment Offset |

+-+

| Time to Live | Protocol | Header Checksum |

+-+

| Source Address |

+-+

| Destination Address |

+-+

| Options | Padding |

+-+

Fig. 2. Structure of IP header according to RFC 791, [20].

a datagram depends on that host’s configuration and the protocols it supports. A minimal set
of supported protocols would include ICMP, TCP and UDP. A typical host may support two or
three more. When an IP datagram reaches its intended destination host (as specified in the 32-bit
Destination Address field), the protocol field is inspected. This value determines to which upper
layer protocol the payload is passed. If the field contains a value corresponding to a protocol that is
not supported at that host, then the local IP implementation should generate an ICMP “protocol
unreachable” message. The protocol field is not usually inspected by intermediate routers.

The Header Checksum field is a 16-bit (2-byte) value that is formed by interpreting the header
(including the Options field if present) as a sequence of 16-bit words, summing them using 1’s
complement arithmetic, and then taking the 1’s complement of the result. The Header Checksum
provides a verification that the information used in processing a datagram has been transmitted
correctly. If the Header Checksum fails, the datagram is discarded silently by the entity which
detects the error. This checksum is not, and was not designed to be, cryptographically robust.

In order to understand our attacks, it is important to reflect on the sequence of steps taken
by IP when processing a datagram. In Linux, the sequence is as follows (where we omit any
discussion of fragmentation for simplicity). First of all, basic checks are performed on the Version
field and IHL field. The next action is to check the Header Checksum field. After this, a datagram
length check is carried out using the Total Length field. The datagram is dropped if any of these
checks fails. Next, options processing is carried out if the IHL field indicates that options are
present. Assuming this is completed successfully, a routing decision is made: either the datagram
is delivered locally or is forwarded to another host (if this host is configured for routing). In the
former case the Protocol field is used to determine the upper layer protocol to which the datagram
payload should be passed. In the latter case, the TTL field is checked and the packet dropped if
the TTL has reached zero.

Given the above discussion, it is evident that any attack based on the processing of a particular
header field must ensure that, with reasonable probability, any header processing taking place
before that field is inspected does not result in the datagram being dropped. This has implications
for the ways in which we can manipulate ciphertext blocks. In particular the attacker needs to
ensure that the header checksum is still correct after making any changes to the header.

2.5 ICMP

Finally in this background section, we provide a brief overview of ICMP. ICMP is a vital part
of IP implementations, allowing network problems to be reported to Internet hosts, routes to be

tested, and diagnostics to be gathered. ICMP was originally specified in [29], and revised for IPv4
routers in [2].

In the event of a “problem datagram” being received by a host, that host generates an ICMP
message. This message includes the entire IP header of the offending datagram (including any
options), together with a variable number of bytes of the datagram’s payload. According to [29], 8
bytes of payload should be included; this is, for example, how ICMP seems to be implemented in
Microsoft Windows 2000. On the other hand, according to [2], the ICMP datagram should contain
as much of the original datagram as possible without the length of the ICMP datagram exceeding
576 bytes. This is intended to aid fault diagnosis, and is how ICMP is implemented in the Linux
kernel. Reference [2] also specifies that ICMP implementations should be able to limit the rate at
which ICMP messages will be generated, as an aid to preventing to Denial-of-Service attacks.

We have discussed above two circumstances under which ICMP messages will be generated:
due to incorrectly formatted options bytes, and due to unsupported upper-layer protocols.

3 Attacks Based on Destination Address Rewriting

We are now ready to discuss our first group of attacks on encryption-only ESP in tunnel mode.
We focus on the case where the block cipher used by ESP has 64-bit blocks, and sketch the 128-
bit version later. The two-phase attack we describe here serves as an introduction to the more
sophisticated attacks to follow. We describe the attack in the context of a pair of security gateways
communicating using encryption-only ESP in tunnel mode to protect the traffic between them.
The attack also works in more general applications of this configuration of ESP.

We need to make one major assumption for the attack to work: we assume that the attacker,
controlling the host located at IP address AttAddr, knows the destination IP address DestAddr
of the target inner datagrams. This assumption will be relaxed shortly.

3.1 The First Phase

The first phase of the attack is based on manipulating the Destination Address field in the inner
datagram. Recall that this field lies in the fifth 32-bit word of the IP header, and therefore forms
the first 32 bits of plaintext block P3 in the sequence of blocks to be encrypted in CBC mode by
ESP. The second 32 bits of this block is the first 32 bits of the payload of the inner datagram.
This phase proceeds as follows, with the attacker at AttAddr listening for IP datagrams during
the attack:

1. Capture a target ESP-protected outer datagram from the network. Let C0, C1, . . . , Cq denote
the encrypted portion of this datagram’s payload.

2. Modify block C2 in the first 32 bits by XORing it with the 32-bit mask M = DestAddr ⊕
AttAddr to obtain a block C ′2.

3. Repeat:
– a. Modify block C ′2, now in the last 32 bits, by setting these bits to a random 32-bit value
R. Let C ′′2 denote the modified block.
– b. Prepare a modified datagram that is identical to the one captured in step 1, except that
block C2 of the encrypted portion is replaced with C ′′2 . Inject this modified datagram into the
network.
Until a datagram is received by the attacker at AttAddr.

To see why this phase might work, notice that each injected datagram now has AttAddr as
the destination address of the inner datagram. So when the security gateway receives the modified
outer datagram and decrypts the encrypted portion, it recovers an inner datagram that will then
be routed directly to the attacker’s machine (we are assuming here that datagrams are not checked
after IPsec processing to see if the correct IPsec policies were applied; this is the case in the Linux
kernel implementation, in contradiction to [15]). The inner datagram is in unencrypted form, and

its payload will be identical to that of the original inner datagram except possibly in the first 32
bits (corresponding to the randomization of the second half of C2). These payload bits can be
recovered easily using the relation P3 = P ′3 ⊕ (M ||R) where P ′3 is the third block in the received
datagram, M is the address mask used in step 2 and R the random bits introduced in step 3.

Of course, because of the modifications made to block C2 during the attack, block P2 of the
inner datagram is essentially randomized, so the header of the modified inner datagram is likely to
be invalid. Block P2 contains the time to live (TTL), protocol, header checksum and source address
fields. Thus the success rate of each iteration of the attack depends on the combined probability
that the TTL is sufficiently large so that the inner datagram reaches the attacker’s machine, that
the checksum is valid for the new header, and that the new inner source address is routable. All
other fields in the header will be correct, since they lie in plaintext block P1 which is not modified
in the attack. Figure 3 illustrates how the attack modifies the various inner header fields.

Based on our experience in implementing our other attacks, we estimate that this success
probability should be roughly 2−17 per iteration, with the largest factor of 2−16 coming from the
requirement for the random checksum to be a valid one. From this, it can be calculated that 217

iterations of steps 3a and 3b of the attack will give a success probability of about 60%.

3.2 The Second Phase – Recovering Further Plaintext

An attacker who has conducted the first phase against an encrypted inner datagram of the form
C0, C1, . . . , Cq does not need to repeat it in order to obtain decrypted versions of further inner
datagrams. The further datagrams need not even be destined for or originate from the same pair
of hosts. Instead, the contents of new datagrams can be recovered much more efficiently, as follows.

The attacker reuses the payload portion C0, C1, C
′′
2 , C3 of the outer datagram that was success-

ful in the first phase, splicing onto it any q − 6 consecutive ciphertext blocks from the encrypted
payload of the new target datagram, and finishing with the last three blocks Cq−2, Cq−1, Cq of the
original target.6 Padding with dummy blocks can be used if necessary to ensure that a total of q
blocks are present.

The attacker then uses this modified byte sequence as the encrypted payload of an outer
datagram. This construction (illustrated in Figure 4) ensures that, upon decryption by the security
gateway, the payload is correctly padded and is interpreted as an inner datagram with a valid
header and a destination address equal to AttAddr. This datagram will be routed to the attacker’s
machine (for the same reasons that the successful datagram from the main attack was). From this
datagram, a total of 64(q − 6) bits of plaintext from the new target datagram can be recovered
(the first 64 bits are obtained using a similar to trick to that used to recover P3 in the main attack;
the remaining bits appear in clear in blocks 5 up to q − 3 of the datagram payload).

It is easy to see how this second phase could be automated to give an efficient method for
recovering the complete contents of multiple captured datagrams, with many plaintext bits being
obtained for each datagram injected into the network. Thus the cost of the main attack can be
amortized over many datagrams. It illustrates an idea that we re-use several times in the attacks
to follow.

3.3 Relaxing the Address Assumption

Our main assumption that the attacker know the complete destination IP address of the inner
datagram can be relaxed. It is enough that the attacker knows a significant portion of this IP
address. This might be more realistic. For example, it may be that the host is on a network whose

6 In fact, often only the last two blocks need to be preserved because the padding rarely extends over
more than one block. Variable length padding of up to 255 bytes is allowed in [16]; our attacks are easily
modified to handle this. Moreover, even though [16] indicates that padding should be checked, it does
not explicitly specify what action should be taken in the event of a padding error. The Linux kernel
implementation simply ignores such errors. In any event, our attacks preserve proper padding and so
the manner in which padding errors are handled is irrelevant here.

network prefix is known to the attacker, perhaps because it is the same as the prefix of the security
gateway, or because it is a widely-used private address prefix.

The main idea is as follows. Instead of using a mask equal to DestAddr ⊕ AttAddr in step
2 of the attack, the attacker instead uses a mask which modifies that portion of the destination
address known to the attacker so that it equals the corresponding portion of the address of his
target machine. He then modifies the remaining bits of the destination address using a counter,
and repeats the main attack for each counter value. One counter value will produce a destination
address exactly matching that of the attacker; for this counter value, the attacker has the same
probability as before (roughly 2−17) of receiving a datagram from the gateway.

As an illustrative example, suppose the attacker knows that the inner datagram has as its
destination a host on the class C private network 192.168.0.0. Then the attacker will be successful
after on average 27 choices of the 28 possible counter values, and hence after the injection of roughly
224 datagrams. After this effort, a more efficient second phase can once again be used.

A further optimization is possible if the attacker can eavesdrop all traffic on a network that
is equal in class to that portion of the address DestAddr that he knows: now there is no need
to use a counter, and the attack works exactly as in Section 3.1. This attack might be realized
if, for example, the attacker controls a router for a network of the appropriate size. An obvious
modification of the attack also works if the attacker knows nothing about the address DestAddr
but is able to eavesdrop on all traffic emanating from the security gateway. In this situation,
it might be useful for the attacker to arrange for a particular bit pattern to appear in the IP
headers so that the datagrams can subsequently be recognized. This can be done, for example, by
modifying the identification and fragmentation fields of the inner header through manipulation of
the IV.

3.4 The 128-Bit Case

We briefly consider the destination address rewriting attack in the case where the block cipher
used by ESP has 128-bit blocks. With notation as before, now the first four 32-bit words of the IP
header are contained in P1 and the destination address is contained in the first 32 bits of P2. Thus
the destination address can only be altered either at the cost of randomizing the entire contents of
P1 (in which case the header of the modified inner datagram is far less likely to be accepted as valid
by the security gateway) or by selecting a random C ′2, in which case the attacker has no control
over this destination address. In the latter situation, the attack is successful if the attacker can
intercept all traffic from the security gateway: now the attacker can create a valid header for the
inner datagram by flipping the bits of C0 (i.e. the IV) in positions corresponding to the location
of the header checksum in P1. This can be done in a systematic fashion so that the average effort
required to produce a valid inner datagram is 215 iterations. After this success, a faster second
phase can be employed, using similar ideas to those that worked in the 64-bit case.

3.5 Attack Implementation

As a proof of concept and as a precursor to our main attacks, we implemented the 128-bit version
of the first phase of this attack against IP and IPsec as implemented in the Linux kernel. We
indeed found that roughly 215 iterations were sufficient to produce the desired plaintext-bearing
datagram. This experiment confirmed the fact that the Linux implementation of IPsec does not
carry out the policy checks described in Section 2.2 (otherwise the modified inner datagrams would
be dropped because they would fail to match the IPsec policies used in their recovery).

4 Attacks Based on IP Options Processing

Our next set of attacks exploits the way in which IP implementations generate ICMP messages
when processing incorrectly formatted options fields in IP headers. We focus on the case where

the block cipher used by ESP has 64-bit blocks. We again describe the attack in the context of a
pair of security gateways communicating using encryption-only ESP in tunnel mode.

We need to make some assumptions for the attack to work. As usual, we assume that the
attacker is able to intercept ESP-protected datagrams and to inject modified datagrams into the
network. We additionally assume that the attacker is able to monitor one of the gateways for
ICMP messages not sent through the IPsec tunnel. A third-party network service provider is in
a perfect position to mount this attack, for example. This would also be easily achievable if the
IPsec traffic was being broadcast on a wireless network in which WEP (or an equivalent) was not
in use. We will see later how this requirement can be relaxed in the 128-bit case, provided the
attacker has (partial) information about inner source addresses.

4.1 The First Phase

We sketch the ideas behind the first phase. As before, the attacker has captured an outer datagram
and wishes to recover the plaintext version of the encrypted portion of its payload. Recall that the
IHL field is located in the first byte of the IP header, and therefore lies in plaintext block P1 in
the sequence of blocks to be encrypted in CBC mode by ESP. The attacker modifies the contents
of the IHL field of the inner datagram by flipping appropriate bits in IV , making the IHL equal
a value greater than 5. When the inner datagram is subsequently processed by the IP software
on the security gateway, the first word(s) of the payload (forming the contents of the second half
of P3 onwards) will be interpreted as options bytes. We randomize the values of these bytes (as
seen by the security gateway) by placing a random value in the last 32 bits of C2. Then with
high probability, these bytes will be incorrectly formatted, resulting in the generation of an ICMP
“parameter problem” message. The payload of this ICMP message will contain the header and a
segment of the payload of the inner datagram. Thus, if it can be captured by the attacker, then
he can learn plaintext information from the inner datagram.

However, randomizing bytes in C2 has the additional effect of randomizing the contents of P2

after decryption by the security gateway. Since P2 contains the TTL, protocol, header checksum
and source address fields, the inner datagram is likely to be dropped silently by the security
gateway before any IP options processing takes place, because of an incorrect checksum value.
Thus, in fact, the ICMP message will not often be generated. Moreover, the ICMP message, if
generated, will be sent to the random source address now specified in the inner datagram. This
helps to ensure that the ICMP message is not sent through the IPsec tunnel between the security
gateways, thus making it visible to the attacker, but also means that this address may not be
routable. However, by iterating the attack sufficiently often and using new random bytes on each
iteration, the attacker achieve a reasonable overall success probability. We will quantify the success
rate for the Linux implementation of IP in Section 4.4 below.

The attack may fail for other reasons too: the security gateways may be programmed to drop
ICMP traffic, or policy checks may mean that all traffic not directed to/from the ESP tunnel
between the gateways is dropped.

This attack is illustrated in Figure 5 and formalized below.

1. Capture a target ESP-protected outer datagram from the network. Let C0, C1, . . . , Cq denote
the encrypted portion of this datagram’s payload.

2. Modify block C0 = IV in the first byte, XORing it with a mask which increases the IHL to a
value greater than 5, obtaining a block C ′0.

3. Repeat:
– a. Modify block C2 in the last 32 bits, by setting these bits to a random 32-bit value R. Let
C ′2 denote the modified block.
– b. Prepare a modified datagram that is identical to the one captured in step 1, except that
blocks C0 and C2 of the encrypted portion are replaced with C ′0 and C ′2. Inject this modified
datagram into the network.
Until an ICMP message is intercepted.

4.2 The Second Phase

Recall that the first phase above captures an ICMP message containing the header and a segment
of the payload of the modified inner datagram. The amount of payload recovered depends on the
variant of ICMP implemented on the gateway, and is possibly as small as 64 bits. Tricks similar to
those introduced in Section 3.2 can be used to speed up the recovery of the remaining payload bytes
from the remainder of the initial target datagram and further target datagrams in a second phase.
Once again, a successful header can be re-used and is guaranteed to always generate an ICMP
message. The attacker can insert a number of target blocks into the ESP-encrypted payload after
the header each time, this number depending on the amount of payload returned by ICMP. The
attacker must again take care to complete the encrypted portion so that the payload is correctly
padded. The speed of recovery of plaintext in this second phase is limited only by the rate at
which the security gateway is permitted to generate ICMP messages.

4.3 The 128-Bit Case

A similar attack is possible when the block cipher used by ESP has 128-bit blocks. Now, however,
the IHL field, Header Checksum field and Source Address field can all be manipulated by bit
flipping in C0 = IV . This allows the possible checksums to be tested systematically, which improves
the success probability. The payload bytes which get interpreted as options bytes by the security
gateway can be randomized by selecting a random value for C2. Again, further plaintext can be
recovered faster in a second phase which re-uses the successful header from the first phase.

Moreover, if the attacker has some (or full) knowledge of the source address of the inner data-
grams, then he can use similar ideas to those explored in Section 3.3 to direct the ICMP response
to his own machine, this time by changing the source address in the inner header by manipulating
the IV. This is an important variant, since it removes the most stringent requirement for our at-
tack, namely that the attacker be able to monitor the security gateway for ICMP messages. This
would make the attacks far easier to mount in practice.

A complication arises when the amount of inner datagram payload returned by the ICMP
message is smaller than the block size of the ESP encryption algorithm. This means that less
than a full block of payload is returned in each ICMP message. This situation occurs when, for
example, ESP uses AES and ICMP returns only 64 bits of payload. In this instance, it is necessary
to align the end of the inner datagram header with a block boundary by setting the IHL field
appropriately, and only a fraction of the bytes of each block can be recovered in the second, fast
phase. It is possible to recover the remaining bytes of each block in a variant of the first phase, by
placing the target block so as to ensure that it is interpreted as being part of the options field in
the inner datagram. We omit the details of this variant.

4.4 Attack Implementation

We have successfully carried out the two phases of our attack against IP and IPsec as implemented
in the Linux kernel. We describe the main features and results of this implementation here.

Figure 6 shows the experimental set-up, with two Linux machines acting as security gateways
for an ESP tunnel using either DES or AES as the encryption algorithm (the end host shown
in this figure is not active during this attack). The tunnel was initiated using scripting to set-up
the required IPsec policies and manual keying. These machines are connected to a hub, as is the
attack platform – this is simply to ease packet sniffing in the network. Also connected to this hub
is a router, configured to act as the default router for the security gateways, thus ensuring that
any ICMP messages can take at least a first hop towards their destinations.

We used a value of 6 for the modified IHL field, so as to maximise the amount of plaintext
bytes returned for each injected datagram in the second phase. The corresponding mask value for
the 4-bit field is 0011.

We have observed experimentally that presenting a datagram with a random source address
and random options bytes to the IP implementation in Linux results in an ICMP “parameter

problem” message with probability about 0.85. Moreover, the probability that a random 16-bit
value represents the correct header checksum for the modified inner datagram is roughly 2−16.
Thus the expected success probability per iteration of the first phase of the attack in the 64-bit
case is roughly 0.85× 2−16, meaning that the success probability after t iterations should be:

1− (1− 0.85× 2−16)t (1)

From this, a theoretical curve can be drawn, showing success probability against the number
of iterations made; it can also be calculated that 216 iterations should give a success rate of 57%.

We performed 100 runs of the first phase of the attack. An average of 77600 iterations (taking
on average 2.64 minutes with our attack client) were needed to successfully generate an ICMP
message. Over these 100 runs, the minimum number of iterations needed was found to be 1884 and
the maximum 292000 (the latter taking about 10 minutes). Figure 7 shows the percentage of runs
needing a particular number of iterations for success, both as predicted by (1) and as observed in
our experiment. It can be seen that theory and experiment are in excellent agreement.

Linux is generous in providing 524 bytes of inner datagram payload in ICMP messages. As a
consequence, the first phase and each injected datagram in the second phase yields 512 bytes of
plaintext data (provided the encrypted payload in the target selected for the first phase is longer
than 568 bytes, including the IV and encrypted inner header). Thus the second phase can rapidly
recover large amounts of plaintext. For example, a typical inner datagram carrying 1500 bytes of
payload can be recovered using just 3 injected datagrams in the second phase.

Our attack client, written in C, captures multiple ESP-protected datagrams, selects the one
of optimum length for the first phase, conducts the first phase, and then runs the second, faster
phase on remaining datagrams. The speed at which our software can break this configuration of
IPsec is restricted only by ICMP rate limiting at the security gateway. Our attack client is also
written to carry out the 128-bit variant of this attack.

5 Attacks Based on Protocol Field Manipulation

Our third class of attacks exploits the way in which IP implementations generate ICMP messages
when faced with unsupported upper layer protocols. We focus on the case where the block cipher
used by ESP has 128-bit blocks, as this is the more efficient case.

We need to make the same assumptions as in Section 4 for the attack to work: the attacker
is able to intercept ESP-protected datagrams, to inject modified datagrams, and to monitor one
of the gateways for ICMP messages not sent through the IPsec tunnel. This last requirement can
again be relaxed, at the cost of a less efficient attack.

5.1 The First Phase

Recall that the protocol field is located in the second byte of the third 32-bit word of the IP header,
and therefore lies in plaintext block P1 in the sequence of blocks to be encrypted in CBC mode
by ESP. The attacker modifies the contents of the protocol field of the inner datagram by flipping
appropriate bits in IV , making the field equal a value corresponding to an upper layer protocol
that is not supported by the end host receiving the inner datagram. Usually, it is sufficient to flip
only the most significant bit of the protocol field to achieve this. Now, when the inner datagram
arrives at the end host that is its final destination, an ICMP “protocol unreachable” message will
be generated. The payload of this ICMP message will contain the header and a segment of the
payload of the inner datagram. Thus, if it can be captured by the attacker, then he can learn
plaintext information from the inner datagram. Note that, in contrast to the attack based on
options processing, the end host, not the security gateway, generates the ICMP message.

An attacker must solve two problems here. Firstly, the attacker must alter the source address
of the inner datagram, otherwise the ICMP response will be routed through the IPsec tunnel back
to the original source of the inner datagram. Secondly, the attacker must fix the header checksum
so that it contains the correct value for the modified inner header – otherwise, the inner datagram

will simply be dropped by the security gateway and never reach the end host. Fortunately, in the
128-bit case, both of these requirements can be met by further manipulating IV .

In fact, a careful attacker who manipulates only a single bit in the protocol field and a single
bit in the source address field can do much better than simply trying all possible header checksum
values in an attempt to correct that checksum (an attack that would require 215 iterations on
average). We sketch next how this can be achieved (see also Figure 8).

Analysis of the IP header checksum algorithm reveals that flipping a single bit in the header
has the effect of XORing the 16-bit checksum value with one of only 17 possible masks, these
masks having a geometric probability distribution. For example, Table 1 shows the table T15 of
masks and their probabilities for the case where the bit flip in the header is in the most significant
(rightmost) position in one of the 16-bit words input to the checksum algorithm7. Similar tables
of masks with identical probabilities can be computed for all other positions: the table of masks
Tj for position j (0 ≤ j < 16) can be obtained by performing a 16-bit left-rotate through 15 − j
positions on the masks in Table 1.

Mask Probability

0000000000000001 1/2
0000000000000011 1/4
0000000000000111 1/8

...
...

1111111111111111 2−16

1111111111111110 2−16

Table 1. Table T15 of masks and their probabilities for bit position 15.

Consider then an attacker who modifies the protocol field by effecting a flip in bit i (where
0 ≤ i < 8) and who alters the inner source address by forcing a flip in bit j (where 0 ≤ j < 32).
To correct the inner header checksum, the attacker effectively needs to XOR it with two masks in
sequence, one from the table Ti+8 (because the protocol field is the most significant byte position
in the 16-bit checksum calculation) and one from the table Tj mod 16. Of course, the attacker does
not know exactly which pair of masks will work. So the attacker’s strategy is to inject a sequence of
datagrams into the network, changing IV in the positions corresponding to the header checksum
at each iteration, using as the mask at each iteration a distinct XOR of masks from the tables Ti+8

and Tj mod 16. Clearly, the attacker should use these masks in decreasing order of probability. The
probability of any mask M1 ⊕M2 can be obtained by multiplying the individual probabilities of
the masks M1 and M2 (taking care that when i + 8 = j mod 16, the same mask can arise in more
than one way). A maximum of 172 = 289 iterations will be needed, with an expected number much
smaller than this because of the geometrical nature of the probability distribution of the individual
masks. In fact, a simple analysis shows that when i+8 6= j mod 16, the expected number is slightly
less than 7, and smaller still when i + 8 = j mod 16. This attack can be formalized just as with
the earlier attacks.

In an important variant of this attack, now requiring on average 215 iterations, the attacker can
additionally exploit knowledge of the inner source address to rewrite this address, thus ensuring
that any ICMP response is directed to a host he controls. This removes the requirement that the
attacker be able to monitor the security gateway for ICMP messages.

5.2 The Second Phase

Just as with the attack in Section 4, once the first phase is complete, a second phase which
recovers the contents of the remainder of the initial target datagram and further target datagrams
7 Note that the checksum algorithm itself regards the rightmost bit, bit 15, as being the least significant

bit for the purposes of performing the checksum arithmetic.

can be invoked. The main idea is to replace blocks C3, C4, . . . of the ESP-encrypted portion of the
successful datagram from the first phase with target ciphertext blocks.

Because of the relationship between header fields and plaintext block boundaries, this second
phase does require ICMP to carry at least 28 bytes of payload of the inner datagram in order to
be completely successful. This condition is certainly met if the end host is running Linux. If ICMP
carries p bytes of payload, where p is between 13 and 28, then p − 12 bytes of every plaintext
block can be recovered efficiently; if p is less than 13, then no further bytes can be recovered in
this second phase. In this case, a variant of the first phase (in which the target ciphertext block
replaces C2) can be used to recover p+4 bytes of plaintext data from each block, using on average
215 iterations per block.

5.3 The 64-Bit Case

A similar, but less efficient, attack is possible when the block cipher used by ESP has 64-bit
blocks, but now the protocol field is manipulated by randomizing the last 32 bits of block C2.
This block then decrypts to give P2 containing a TTL field, protocol field, header checksum and
source address that are effectively random, while the destination address, occupying the first 32
bits of P3, is unscathed. The success probability of the attack is now limited by the need for the
random checksum to have the correct value, and for the random protocol field to represent an
unsupported protocol at the end host. Thus the success probability depends on the number of
unsupported protocols at the end host. In practice, the success probability per iteration is close to
2−16, because, typically, only a handful of protocols are supported. Again, further plaintext can
be recovered faster in a second phase which re-uses the successful header from the first phase. We
omit the details.

5.4 Attack Implementation

We have successfully implemented the two phases of the 128-bit attack against the Linux kernel
implementation of IP and IPsec in our attack client. The experimental set-up is shown in Figure 6.
In our attack, we used values i = 0 and j = 6 (many other pairs worked equally well). According
to the probability analysis sketched in Section 5.1, the expected number of iterations of the first
phase with these parameters is slightly less than 7.

We performed 1000 runs of the first phase of the attack. An average of 6.53 iterations (taking
1.34 seconds with our attack client) was needed to successfully generate an ICMP “protocol un-
reachable” message containing plaintext information. Over these 1000 runs, the minimum number
of iterations needed was found to be 1 and the maximum 80. Our attack client leaves a short
interval between iterations in order to accurately detect ICMP messages. The variants requiring
215 iterations can attempt many more iterations per second, as with the attack in Section 4.4.
Figure 9 shows the percentage of runs needing a particular number of iterations for success, both
as predicted by the analysis sketched in Section 5.1 and as observed in our experiment. Theory
and experiment again agree well.

Because of the way in which Linux implements ICMP, the first phase and each injected data-
gram in the second phase yields about 500 bytes of plaintext data. This means that our attack
client is able to recover large amounts of plaintext easily in the second phase of the attack. Overall,
because of the small number of trials needed, the attack effectively takes place in real time.

6 Impact and Countermeasures

6.1 Impact

We have presented a number of attacks and variants on encryption-only ESP in tunnel mode as
implemented in the Linux kernel. The attacks are efficient and have been demonstrated to work
under realistic network conditions. We have also explained how the attacks can be made even

more effective when information concerning the source address of inner datagrams is available to
the attacker. Perhaps surprisingly, ESP using a 128-bit block cipher such as AES may be more
vulnerable to our attacks than one using a 64-bit block cipher. The underlying reason for this is
that in the 128-bit case, more fields of the inner header can be manipulated by modifying IV ,
without any impact on the contents of plaintext blocks. A related point is that the complexity of
the attacks does not depend on the key size of the block cipher employed by ESP: triple-DES is
just as vulnerable as DES.

We have focussed on Linux in our implementation of the attacks. The open-source nature
of Linux has enabled us to examine in detail its implementation of the IP, ICMP and IPsec
protocols and assess the feasibility of various attack ideas before committing to the laborious
process of code development. The ease with which simple IPsec policies could be specified (and
modified) and network diagnostics performed also simplified our task. We note that, as with
[25], our work demonstrates that the open source approach does not necessarily result in secure
software: an encryption-only configuration was all too easy to select, the IPsec implementation did
not carry out the post-processing checks mandated in the RFCs, and we found other flaws in the
implementation, particularly in the handling of padding (c.f. [32]). Of course, similar issues may
arise in closed-source implementations and the open-source community does have a good track
record in quick release of patches.

We have performed only limited experiments against other IP/IPsec implementations, and
more work is needed to assess their vulnerability to our attacks. As we’ve seen, key factors in
determining this include: the size of payloads in ICMP messages generated by the IP stack; the
way in which the IP stack handles errors during IP options processing; the number of higher
layer protocols supported by the OS; and whether or not IPsec performs policy checks after
cryptographic processing. We have been informed that, like Linux, the Solaris implementation of
IPsec does not perform these checks [24]. With our existing attack client in place, the testing of
further implementations should be straightforward. Whether or not a given deployment of IPsec
is vulnerable to our attacks depends on the aforementioned key factors, as well as further issues
such as IPsec policy, firewall rulesets and so on.

Concerning the real-world impact of our attacks, we have presented evidence in the introduction
that encryption-only IPsec may still be in common use. But this is not an easy area in which to
gather accurate figures. We do know that several vendors attempt to disable encryption-only. For
example, this is the case with Openswan, whose developers present a code fragment showing that
encryption must be combined with integrity protection in their implementation [27]. However,
disabling encryption-only configurations is not enough to prevent our attacks, as they still apply
to some configurations where integrity-protection is supplied by IPsec itself. As just one instance,
the attacks in Sections 3 and 4 still work if AH is applied in transport mode end-to-end and is
tunnelled inside ESP from gateway-to-gateway. This is because the redirection or ICMP generation
take place at the gateway, before any integrity checking occurs. Thus the source code fragment
presented at [27], by itself, may not be sufficient to prevent our attacks, as it appears only to force
users to select some combination of encryption and integrity protection, whereas only particular
combinations will definitely prevent our attacks.

We note too that our attacks are not prevented if integrity protection is offered independently
of IPsec by a higher-layer protocol. This contradicts the statement made in [18] that we quoted
in Section 1.

6.2 Countermeasures

We report here on the immediate countermeasures that can be taken to ensure systems are not
vulnerable to our attacks.

Perhaps the simplest way to guarantee immunity from these attacks is to configure ESP so as to
use both confidentiality and integrity protection (provided of course that the IPsec implementation
supports this). The additional use of integrity protection within ESP foils our attacks, since the
modified datagrams will be immediately rejected with overwhelming probability.

Another option is use the AH protocol alongside ESP to provide integrity protection. However,
as we’ve highlighted above, this must be done carefully: the configuration where AH in transport
mode is applied end-to-end and tunnelled inside ESP is still vulnerable.

Adding some form of integrity protection may not always be desirable or possible in already
fielded systems. For example, it may have an unacceptable impact on throughput, or require
extensive modification to deployed code. In this situation, using an RFC-compliant implementation
that properly implements post-processing checks would be a reasonable approach. An alternative
is to remove the error reporting, by restricting the generation of ICMP messages by IP software
or by filtering these messages at a firewall or security gateway. However, we regard both of these
approaches as being less preferable than using some form of integrity protection.

7 Conclusions

IPsec is a complicated set of protocols, and gaining true security from IPsec lies in the details
of configuration, policy, algorithm selection and key management. Despite many years of devel-
opment, IPsec standards and deployments still allow insecure configurations to be selected. Our
work shows just how weak one such configuration can be.

Our attacks yield several lessons for the IPsec community (including theoreticians, authors of
standards, implementors and users).

Our view is that configurations known to be weak, either in theory or in practice, should be
outlawed in the IPsec standards as much as possible. Our view is that the gap between standards
and users that is created by allowing such configurations is too large to bridge, no matter how many
warnings are issued in the RFCs. Unfortunately, ESPv3 [18] still permits the use of encryption-only
ESP. Naturally, the need for backward-compatibility and the potential for impact on performance
may mean that eliminating this mode is unattractive. It can also be argued that users should be
permitted to make their own choices about how integrity protection is supplied, in which case
it might help if implementors passed on RFC warnings to users. We believe that the dangers of
encryption-only ESP that we have highlighted here, coupled with the difficulty of ensuring that
security-unaware users pick strong configurations from amongst the myriad possibilities, means
that a conservative approach is called for in the standard itself: our experience is that implementors
and users can’t be expected to get it right often enough. We note that ESPv3 has support for
“combined mode algorithms”. These combine encryption and integrity protection into a single
authenticated encryption transform. We believe that their inclusion represents a progressive step
in the development of IPsec.

The complexity of the IPsec standards has been commented on extensively before [11]. It
certainly does not help an implementation team if processing checks important to the security
of one module (ESP) are actually contained in another document altogether (RFC 2401, [15]),
though it is understandable why, in the case of IPsec, these checks were placed in an architectural
document. It is worrying that the security of the encryption-only mode depends completely on
these simple checks being carried out: the security dangles from a very thin thread indeed, as
our attacks on the native Linux implementation make clear. It would help, then, if the reasons
why those checks need to be performed were spelled out in the standard: this would give an
implementor a stronger motivation for getting things right. We note that the quality of the IPsec
RFCs is improving in this area: the relevant checks are given in much more explicit detail in the
new IPsec architecture document [17]. This should help close the gap between the standards and
their implementations.

More generally, we hope that our work can help to bridge the gap between the theory and
practice of cryptography. We have given what we believe to be a compelling demonstration of
the weaknesses of encryption-only ESP. We hope that it will be of interest to everybody in the
cryptographic community, interpreted in its broadest sense.

Acknowledgements

We would like to thank Steve Kent and David Wagner for providing important information and
context. We would also like to thank the members of the NISCC Vulnerability Team for their
assistance in evaluating the impact of our attacks and for helping us in working with the IPsec
vendor and user communities ahead of their vulnerability advisory [26] concerning this work.
Nessim Kisserli’s assistance with lab-space and hardware issues was also invaluable.

References

1. R. Atkinson, “IP Encapsulating Security Payload (ESP)”, RFC 1827, August 1995.
2. F. Baker, “Requirements for IPv4 Routers”, RFC 1812, June 1995.
3. M. Bellare, T. Kohno and C. Namprempre, “Breaking and provably repairing the SSH authenticated

encryption scheme: A case study of the Encode-then-Encrypt-and-MAC paradigm.” ACM Transac-
tions on Information and System Security (TISSEC), Vol. 7, No. 2, May 2004, pp. 206–241.

4. M. Bellare and C. Namprempre, “Authenticated Encryption: Relations among notions and analysis
of the generic composition paradigm.” In T. Okamoto (ed.), Advances in Cryptology – ASIACRYPT
2000, LNCS Vol. 1976, Springer-Verlag, 2000, pp. 531–545.

5. M. Bellare and P. Rogaway, “Encode-then-encipher encryption: How to exploit nonces or redundancy
in plaintexts for efficient cryptography.” In T. Okamoto (ed.), Advances in Cryptology – ASIACRYPT
2000, LNCS Vol. 1976, Springer-Verlag, 2000, pp.317–330.

6. S. Bellovin, “Problem Areas for the IP Security Protocols”, in Proceedings of the Sixth Usenix Unix
Security Symposium, pp. 1–16, San Jose, CA, July 1996.

7. D.Bleichenbacher, “Chosen Ciphertext Attacks Against Protocols Based on the RSA Encryption Stan-
dard PKCS #1”, in H. Krawczyk (ed.), Advances in Cryptology – CRYPTO 1998, LNCS Vol. 1462,
Springer-Verlag, 1998, pp. 1–12.

8. N. Borisov, I. Goldberg and D. Wagner, “Intercepting Mobile Communications: The Insecurity of
802.11”, in Proc. MOBICOM 2001, ACM Press, 2001, pp. 180–189.

9. B.Canvel, A.P. Hiltgen, S. Vaudenay and M. Vuagnoux, “Password Interception in a SSL/TLS Chan-
nel,” in D. Boneh (ed.), Advances in Cryptology – CRYPTO 2003, LNCS Vol. 2729, Springer-Verlag,
2003, pp. 583–599

10. N. Doraswamy and D. Harkins. IPsec: the new security standard for the Internet, Intranets and Virtual
Private Networks (second edition), Prentice Hall PTR, 2003.

11. N. Ferguson and B. Schneier, “A cryptographic evaluation of IPsec.” Unpublished manuscript, Feb.
1999. Available from http://www.schneier.com/paper-ipsec.html.

12. S. Frankel, R. Glenn and S. Kelly, “The AES-CBC Cipher Algorithm and Its Use with IPsec”, RFC
3602, Sept. 2003.

13. S. Frankel, K. Kent, R. Lewkowski, A.D. Orebaugh, R.W. Ritchey and S.R. Sharma, “Guide to IPsec
VPNs”, NIST Special Publication 800-77 (Draft), January 2005.

14. J. Katz and M. Yung, “Unforgeable encryption and chosen ciphertext secure modes of operation.” In
B. Schneier (ed.), FSE 2000, LNCS Vol. 1978, Springer-Verlag 2001, pp. 284–299.

15. S. Kent and R. Atkinson, “Security Architecture for the Internet Protocol”, RFC 2401, Nov. 1998.
16. S. Kent and R. Atkinson, “IP Encapsulating Security Payload (ESP)”, RFC 2406, Nov. 1998.
17. S. Kent and K. Seo, “Security Architecture for the Internet Protocol”, RFC 4301 (obsoletes RFC

2401), Dec. 2005.
18. S. Kent, “IP Encapsulating Security Payload (ESP)”, RFC 4303 (obsoletes RFC 2406), Dec. 2005.
19. H. Krawczyk, “The Order of Encryption and Authentication for Protecting Communications (Or:

How Secure Is SSL?)”, in J. Kilian (ed.), Advances in Cryptology – CRYPTO 2001, LNCS Vol. 2139,
Springer-Verlag 2001, pp. 310–331.

20. Internet Protocol, RFC 791, Sept. 1981.
21. C. Madson and N. Doraswamy, “The ESP DES-CBC Cipher Algorithm With Explicit IV”, RFC 2405,

Nov. 1998.
22. J. Manger, “A chosen ciphertext attack on RSA Optimal Asymmetric Encryption Padding (OAEP) as

standardized in PKCS #1 v2.0,” in J. Kilian (ed.), Advances in Cryptology – CRYPTO 2001, LNCS
Vol. 2139, Springer-Verlag 2001, pp. 230-238.

23. C.B. McCubbin, A.A. Selcuk and D. Sidhu, “Initialization vector attacks on the IPsec protocol suite.”
In 9th IEEE International Workshops on Enabling Technologies: Infrastructure for Collaborative En-
terprises (WETICE 2000), IEEE Computer Society, 2000, pp. 171–175.

24. D. McDonald, personal communication, 6th March 2006.
25. P.Q. Nguyen, “Can we trust cryptographic software? Cryptographic flaws in GNU Privacy Guard

v1.2.3”, in C. Cachin (ed.), Advances in Cryptology – EUROCRYPT 2004, LNCS Vol. 3027, Springer-
Verlag 2004, pp. 555–570.

26. NISCC Vulnerability Advisory IPSEC - 004033, 9th May 2005. Available from http://www.niscc.

gov.uk/niscc/docs/al-20050509-00386.html?lang=en.
27. OpenSwan annoucement “No version of Openswan is vulnerable to NISCC Vulnerability Advisory

IPSEC 004033”, May 13 2005. Available from http://www.openswan.org/niscc.
28. R. Pereira and R. Adams, “The ESP CBC-Mode Cipher Algorithms”, RFC 2451, Nov. 1998.
29. J. Postel, “Internet Control Message Protocol”, RFC 792, Sept. 1981.
30. S. Stubblebine and V. Gligor, “On Message Integrity in Cryptographic Protocols”, in Proc. IEEE

Symposium on Research in Security and Privacy, May 1992, pp. 85–104.
31. US-CERT vulnerability Note VU#302220, 9th May 2005. Available from http://www.kb.cert.org/

vuls/id/302220.
32. S. Vaudenay, “Security flaws induced by CBC padding – applications to SSL, IPSEC, WTLS...”, in

L.R. Knudsen (ed.), Advances in Cryptology – EUROCRYPT 2002, LNCS Vol. 2332, Springer-Verlag
2002, pp. 534–545.

33. T. Yu, S. Hartman and K. Raeburn, “The perils of unauthenticated encryption: Kerberos version 4”,
in Proc. NDSS 2004, The Internet Society, 2004.

I V d KC 1 d K d KC 3 d KC 4
P A Y L O A DD E S T A D D R

① F l i p b i t s h e r e④ S t e p s ① a n d ② r e s u l t i nr a n d o m T T L , p r o t o c o l , c h e c k s u ma n d s o u r c e a d d r e s s fi e l d s ③ T o fl i p b i t s h e r e a n dc r e a t e a d d r e s s i nd e s i r e d r a n g eS R C A D D RT T L P F C S U M P A Y L O A D
C 2 ② R a n d o m i s e h e r e⑤ F i r s t 3 2 b i t s o f p a y l o a da l s o r a n d o m i s e d

Fig. 3. Modifications to inner header fields in destination address rewriting attack, 64-bit case.

I V d KC 1 d K d KC 3 d KT A R G E T B L O C K 1
D E C R Y P T E DB L O C K 1D E S T A D D RP A Y L O A DR a n d o m i s e d T T L , p r o t o c o l ,c h e c k s u m a n d s o u r c e a d d r e s s fi e l d s D e s t i n a t i o n a d d r e s si n d e s i r e d r a n g eS R C A D D RT T L P F C S U M

C ' '2 C qd KC q / 1 d Kd KT A R G E T B L O C K q 1 6
D E C R Y P T E DB L O C K q 1 63 2 b i t s o f r a n d o m i s e dp a y l o a d

q 1 6 t a r g e t c i p h e r t e x t b l o c k s(o r f e w e r w i t h d u m m y b l o c k s)C i p h e r t e x t b l o c k s f r o m fi r s t p h a s e L a s t t h r e e b l o c k s f r o m fi r s t p h a s e

V a l i d E S P t r a i l e r
d KC q / 2

NHPL. . . P A D D I N G . . .
Fig. 4. Re-using a successful header from the first phase.

S R C A D D R
I V d KC 1 d K d KC 3 d KC 4

P A Y L O A DP A Y L O A D⑥ A n d t o r a n d o m i s e s o u r c ea d d r e s s a n d c h e c k s u m h e r e ⑤ T o r a n d o m i s eo p t i o n s b i t s h e r eT T L P F C S U M D E S T A D D R
C 2① F l i p b i t s h e r e② T o c h a n g e h e a d e rl e n g t h h e r e

④ F l i p b i t s h e r e ③ T h e n p a y l o a di n t e r p r e t e d a s o p t i o n sIHL
Fig. 5. Modifications to inner header fields in options processing attack, 64-bit case.

I P s e c G a t e w a y A I P s e c G a t e w a y BA t t a c k e r E n d h o s t
R o u t e r H u b

H u bE S P T u n n e l
Fig. 6. Experimental set-up for attacks based on options processing and protocol field manipulation.

01 02 03 04 05 06 07 08 09 01 0 0

0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0x 1 0 0 0I t e r a t i o n s
S uccessR at e(%) A c t u a lT h e o r e t i c a l

Fig. 7. Performance of 64-bit attack based on options processing.

C 2
d K

C 1
d K d K

C 3
P A Y L O A D

① F l i p b i t s h e r e② T o c h a n g e p r o t o c o l fi e l da n d s o u r c e a d d r e s s h e r e ③ C o r r e c t i o n o f c h e c k s u m v i af u r t h e r I V b i t fl i p s i f n e e d e d
P FS R C A D D RC S U M

I V

P A Y L O A DD E S T A D D R
Fig. 8. Modifications to inner header fields in protocol field attack, 128-bit case.

01 02 03 04 05 06 07 08 09 01 0 0

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0I t e r a t i o n s
S uccessR at e(%) A c t u a lT h e o r e t i c a l

Fig. 9. Performance of 128-bit attack based on manipulation of protocol field.

