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Figure 1: One iteration of the block cipher Kaweichel
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Figure 2: The final transformation



Each of the points 1 and 3 to 5 causes the cipher not to be self-
inverse, i.e. for encryption and decryption separate hard- and software
needs to be implemented.

Kaweichel works with a block size of 128 bit, thus each half is 64
bit long. The 64 bit input to the round function is first divided into
eight equal units of eight bit (one byte). Each of these units is used as
an index into a table of 256 = 2® values (s-box) in such a manner, that
the least significant byte is used as input for s-box 0, the next byte for
s-box 1, and so on, and the most significant byte is used as input for
s-box 7. The 64 bit results of two adjacent s-boxes are added modulo
264 e.g. the outputs of s-box 0 and s-box 1. This leaves four values.
Two adjacent of these four values are added modulo 2(XORed). This
leaves two 64 bit values. They are added modulo 2%* to form the
output of the round function. If one denotes the output of the s-boxes
by Sy to S7, the output of the round function becomes:
roundoutput = ((So H S1) & (So H S3)) H ((S4 H S5) @ (Se B S7))
The combination of the output of the s-boxes was changed compared
to Blowfish [8] to allow for a better parallelization in both hard- and
software.

For the number of rounds the author recommends for the time
being N = 32. The maximum key length is thus 30 (i.e. N —2) words
of 64 bits or 1920 bits. Shorter keys are appended with zeros to reach
1920 bit, but the length of key should not fall below 256 bits.

For the rotation the value 11 is used.

For the derivation of the round keys, the keys for the final transfor-
mation and the s-boxes, the following holds: First the round keys and
the keys for the final transformation are assigned random or pseudo-
random values. After that the s-boxes are assigned random or pseu-
dorandom values, beginning with s-box 0 and Index 0 (for details, see
the function init_cipher in the reference implementation). In the ref-
erence implementation (see [6]) the binary digits of 7 (less the initial
3) are used for that purpose. After that, the 1920 bit long userkey
is added modulo 2 (XORed) to the first 30 roundkeys P;,i =0...29.
This limitation of the userkey ensures that in the following encryp-
tions all output bits depend on all the bits of the userkey. After that
the plaintext block is assigned the all-zero string and encrypted once.
The round keys Py and P, are then assigned the right half and the left
half of the ciphertext block. The cipher is then employed in Output
Feedback Mode (OFB) and the values generated are assigned the next
round keys P, and Ps. This is repeated, until all the round keys, the
keys of the final transformation and the s-boxes have been assigned
new values (see function expand key of the reference implementation).
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4 Linear Cryptanalysis

Linear Cryptanalysis was first introduced by Matsui in [4]. If P de-
notes the plaintext, C the ciphertext and K the key, it looks for linear
approximations of the form

PZ']'@f’ik@...@Hm@cin@cio@...@cip:Kiq@KiT@...@Kis
(1)

for certain bits of the plaintext, the ciphertext and the key. Let p be
the probability, that this expression holds. Then ¢ = |p — %| denotes
the bias of the linear approximation. If several approximations are
combined, then for the resulting bias € the Piling-Up Lemma holds:

e=2""1TI" | &

(2)

. The plaintext requirement for this attack ist given by N = ¢~ 2.
Recent research published in [5] is very useful to analyse Kaweichel,
since its keys are added modulo 264, This new research proves that
for addition modulo 2" the best linear approximation for a bit z;,0 <
i < n—1 of the result is ; = p; ® k; if p and k are added with
bias ¢; = 2~ 0D, If we neglect the nonlinearity added by the round
function for sake of simplicity, the logarithm of the biases is given by
—logy €; = (i + 1). Thus by adding the positions increased by one of
the plaintext bits or intermediate bits as they propagate through the
cipher one gets the right results. For the resulting logarithm of the
bias the Piling-Up Lemma is applied and looked for the minimum.
A simple computer program will do that job. The result is that for
16-round Kaweichel, which means nine additions for each half:

PL136®CLs3 = K1,130 K320 K5 550 K744D Ko 33D K11,200K13 110K 150D K 17,53
(3)



(4)

()

Here PLi3 denotes the bit at position 13 of the left plaintext half,
CLs3 denotes the bit at position 53 of the left ciphertext half and
K; ; denotes bit j of round key i. Note that the key for the final
transformation of the left half is Ky7. This approximation holds with
bias € = 27167, which is the largest found. The resulting complexity
of this attack is N = ¢~2 = 2334, Since there are only 2'?® known
plaintexts available, we conclude that 16-round Kaweichel is immune
from linear cryptanalysis.

5 Differential Cryptanalysis

We assume here, that the reader is familiar we the notions of differ-
ential cryptanalysis. If not, we refer her or him to the literature, es-
pecially [1]. For this section extensive use was made of the algorithms
given in [3]. We omit here the swapping of the left and right halves
after each round. Instead we assume that odd rounds are applied from
left to right and even rounds from right to left.

Consider a differential of the form:

0000 0000 0000 00004,0000 0000 0000 0400,

It passes round one with probability 1. After applying the rotation
the right half looks like that:

0000 0000 0000 00004,8000 0000 0000 0000,

This differential passes the addition of the second round key with
probability 1. The difference is now fed into s-box 7. Since the values
of the s-boxes are created randomly, we can assume that a certain
output XOR of that s-box has probability 2-7. We can further assume
that the output XOR spreads to all eight s-boxes in the next round.
The probability of an characteristic for 16 rounds based on these values
18:



P=1*2-7 % [[16,(277)8 = 1% 27 « [[16, 2756 = 2-771
(6)

We assume here that the differential probability of the additions
in the round functions and of the keys is 1. That looks impressive,
but we can do better then that. Go back to round 2 and assume that
a XOR value different from zero occurs only in bits 10 to 3 of s-box
7. This implies that for two outputs of that s-box the other 56 bits
are equal. To derive the probability for such an event, we look at
the probability that a set of 256 randomly selected 56-bit numbers
contains no collision. That probability is:

255 i 255 256_; 256)1 —
P:Hizo(l - 2%) = Hi:o 2256 L= (256)25(§*(226_256)! ~1-—24

(7)

The probability that two or more values are equal is thus 241, The
maximum probability that this 8§ bit XOR-value of s-box 7 remains
confined to bits 10 to 3 in one following addition of that round is
p = 27! We have for this one round characteristiv a probability of
p; =271 %271 %277 = 279 The resulting differenc is:

XX00 0000 0000 00004,8000 0000 0000 00004
(8)

where X denotes a half byte with a XOR difference. In round 3 s-box
7 is again the only active s-box and the resulting difference is:

XX00 0000 0000 00005, XX10 0000 0000 00004
(9)

In round 4 we get 2 active s-boxes. As a result we assume that the
output difference of that round affects all bits with a probability of
(277)2 = 2714, The difference now is:



XXXX XXXX XXXX XXXXz,XX10 0000 0000 00004

(10)

In round 5 we have 8 active s-boxes. The resulting probability is
(277)® = 2756, Tt is assumed that this probability holds for all fol-
lowing rounds. Note that the maximum differential probability for
addition is assumed to be 1. We then get for a 16 round characteris-
tic:

. _ _ —14 16 —56 __ o—T04
P=1%279 %279 x 271 4 [].2, 2756 = 2-70

(11)

A characteristic in which s-box 0 is the only active in rounds 2 and
3 can be derived likewise. It has probability P = 277% The plaintext
difference for this is:

0000 0000 0000 00004,0000 0000 0000 0800,

(12)

The probabilities for the derived characteristics do not allow a
successful differential attack on Kaweichel.

6 Conclusion

The analysis in the previous sections shows, that 16 round Kaweichel is
immune from linear cryptanalysis and suggest that it is immune from
differential cryptanalysis. It is therefore decided to propose versions
of Kaweichel with 16 rounds and 24 rounds, named Kaweichel-16 and
Kaweichel-24. The first version of Kaweichel published in [2, 7] is
now Kaweichel-32. The keylength for Kaweichel-16 is 256 bits to 896
bits, for Kaweichel-24 256 bits to 1408 bit and for Kaweichel-32 256
bits to 1920 bits. In the reference implementation [6] the constant
NUMROUNDS has to be adapted for the new versions. The new
version allow for a tradeoff between speed an security.



7 Open Problems

This analysis of Kaweichel is somewhat incomplete. While the com-
plexity derived for the linear attack is truly a lower bound, the author
thinks further research on Kaweichel is needed. Firstly it is not known
to the author, if characteristics of higher probability then those de-
rived are possible. If one bears in mind, that the round function is
not surjective, it is clear that an input XOR to the round function
different from 0 can cause an output XOR to be 0. This may give rise
to characteristics with higher probabilty.

Another pivotal point are the differential properties of addition
modulo 2%4. Tt was often assumed that the maximum differential
probability is 1. However, this is only the case for a small number
of differentials. In [3] it is shown, that the probability of possible
differentials is:

For n=64 this is P[X # 0] ~ 2713 The question is wether this low
probability together with the low probability of the whole character-
istics makes Kaweichel susceptible to attacks with impossible differ-
entials.

8 Acknowledgements

The author thanks Claus Grupen of Siegen University for continued
encouragement and support.

References

[1] Biham, Eli and Adi Shamir: Differential Cryptanalysis of the
Data Encryption Standard, Springer Verlag, Berlin, Heidelberg,
New York, 1993

[2] Grupen, Claus and Dieter Schmidt:  Beschreibung einer
Blockchiffre -Kaweichel- (in German), available from:
http://www.infoserversecurity.org/itsec_infoserver_v0.5/
sections/science/docs/1095771791/kaweichel. pdf



[3] Lipmaa, Helger and Shiho Moriai: Efficient Algorithms for
Computing Differential Properties of Addition, available from:
http://eprint.iacr.org/2001/001.pdf

[4] Matsui, Mitsuru: Linear Cryptanalysis Method for DES Cipher,
in Helleseth, Tor (Ed.): Advances in Cryptology - EUROCRYPT
’93, Springer Verlag, Berlin, Heidelberg, New York, 1993

[6] Mukhopadhyay, Debdeep and Dipanwita RoyChowdhury: Key
mizing in Block Ciphers through Addition modulo 2™, available
from: http://eprint.iacr.org/2005/383.pdf

[6] Schmidt, Dieter: Reference Implementation of the Block Cipher
Kaweichel in C, available from:
http://www.infoserversecurity.org/itsec_infoserver_v0.5/
sections/science/docs/1095771918/kaweichel.zip

[7] Schmidt, Dieter: Kaweichel, an  Extension  of
Blowfish  for  64-Bit  Architecturs, available  from:
http://eprint.iacr.org/2005/144.pdf

[8] Schuneier, Bruce: Description of a New Variable-Length-Key, 64-
Bit Block Cipher (Blowfish), in Anderson, Ross (Ed.): Fast Soft-
ware Encryption - Cambridge Security Workshop, Proceedings,,
Springer Verlag, Berlin, Heidelberg, New York, 1994

10



