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Abstract This work is motivated by the observation that
the functionF2m to F2m defined byxd + (x + 1)d + a for
somea ∈ F2m can be used to construct difference sets. A
desired condition is, that the functionϕd(x) := xd+(x+1)d

is a2s-to-1 mapping. Ifs = 1, then the functionxd has to
be APN. If s > 1, then there is up to equivalence only one
function known: The functionϕd is a2s-to-1 mapping ifd
is the Gold parameterd = 2k + 1 with gcd(k, m) = s. We
show in this paper, thatϕd is also a2s-to-1 mapping ifd is
the Kasami parameterd = 22k −2k +1 with gcd(k, m) = s
andm/s odd. We hope, that this observation can be used to
construct more difference sets.
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1. Introduction

In this paper we consider the properties of the Kasami ex-
ponent. In the first section we list some similarities between
the Kasami exponentd = 22k − 2k + 1 and the Gold expo-
nentd = 2k +1. In the second section we give a motivation,
why considering functionsxd + (x+ 1)d. In the last part we
present our main result.

We denote the finite field with2m elements byF2m and its
multiplicative group byF ∗

2m . The reader is referred to [11]
for more information on the theory of finite fields.

We define the functionϕd : F2m → F2m by

ϕd(x) := xd + (x + 1)d.

Lemma 1: Let the functionϕd be ac-to-1 mapping. Then
the functionϕd′ is also ac-to-1 mapping ford′ = 2id and,
sincegcd(d, 2m − 1) = 1, for d′ = 1/d mod 2m − 1.

A power functionxd on F2m is calledalmost perfect non-
linear (APN), if the functionϕd is a 2-to-1 mapping. If
gcd(k, m) = 1, the Gold and the Kasami power functions
are both APN. There are more cases of APN functions, see
[12]–[14]. So far, there is only one valued known, where
the functionϕd is a 2s-to-1 mapping: Lets = gcd(k, m).
The functionϕ2k+1 is a2s-to-1 mapping. This follows from

the fact, thatϕ2k+1(x) = x2k

+ x + 1 is an affine function,
see [3]. For the Kasami exponentd = 22k − 2k + 1 it is
only known, that 1 has exactly2s preimage underϕd, since
s = gcd(k, m), see [2]. We will shown, thatϕd with d is the
Kasami exponent, is a2s-to-1 mapping, sincem/s is odd.
For this propose, we need the following well-known propo-
sition, which also shows an other common property of the

Gold and Kasami exponent.

We define thetrace function tr : F2m → F2 by tr(x) =
∑r−1

i=0 x2i

and theWalsh transform W(f) of a functionf :
F2m → F2 by

W(f)(y) :=
∑

x∈F2m

(−1)f(x)+tr(yx)

for all y ∈ F2m . The functionf (d) is defined byf (d)(x) =
f(xd) for all x ∈ F2m .

Proposition 1: Let s = gcd(m, k) andm/s odd. Letd =
2k + 1 or d = 22k − 2k + 1. ThenW(tr(d)) takes on the
following three values:

value multiplicity
2(m+s)/2 2m−s−1 + 2(m−s−2)/2

0 2m − 2m−s

−2(m+s)/2 2m−s−1 − 2(m−s−2)/2

Let gcd(k, m) = s and m/s be odd. Note, we have
gcd(d, 2m − 1) = 1 for d = 2k + 1 or d = 22k − 2k + 1. In
this case,gcd(d, 2m − 1) does not depend ongcd(k, m).

2. Motivation

Let G be a finite abelian additive group withn1n2 elements.
Let D be ak-subset of the groupG, such that every ele-
ment outside a subgroupN of ordern2 has exactlyλ2 rep-
resentations as a differenced − d′ with elementsd, d′ ∈ D.
Elements inN different from the identity have exactlyλ1

such representations. Any set with this property is called an
(n1, n2, k, λ1, λ2)-divisible difference set in G relative to
N . If λ1 = 0, we call it arelative difference set. Note,
if n2 = 1, we speak about(n1, k, λ)-difference sets. The
reader is referred to [4] for more information on difference
sets.

Difference sets with parameter(2m − 1, 2m−1, 2m−2) or
(2m − 1, 2m−1 − 1, 2m−2 − 1) are calledSinger difference
sets. Singer difference sets correpond to binary sequences
with ideal two-level autocorrelation, see [7] for example.

We define fora ∈ F2m the set

Da,d := { ϕd(x) + a | x ∈ F2m , ϕd(x) 6= a}.

Result 1: The setDa,d is a Singer difference set inF ∗

2m for



1. d = 2k + 1 or d = 1/(2k + 1) with gcd(k, m) = 1 and
a = 0. It is easy to show, that in this casesDa,d is the
classical Singer difference set.

2. d = 22k−2k +1 with m = 3k±1 anda = 0. This was
conjectured by No, Chung and Yun in [9] and proved by
Dillon and Dobbertin in [5], [6].

3. d = 22k − 2k + 1 with gcd(k, m) = 1 anda = 1. This
was shown by Dillon and Dobbertin in [6].

This result shows, that the Gold and the Kasami exponent
may give difference sets in the casegcd(k, m) = 1. Now let
us look at the casegcd(k, m) > 1.

Result 2: Let gcd(k, m) = s and m/s be odd anda =
0. Then the setDa,d is a (2m

−1
2s−1 , 2s − 1, 2m−s, 0, 2m−2s)-

relative difference set inF ∗

2m for d = 2k + 1 resp. d =
1/(2k + 1).

As above, this set is the classical affine Singer relative dif-
ference set, see [1].

Such(2m
−1

2s−1 , 2s−1, 2m−s, 0, 2m−2s)-relative difference sets
can be used to construct Singer difference sets by the GMW
method, see [1].

We have tried to construct such relative difference sets in a
similar way using the Kasami exponent. To get the desired
parameters of the relative difference set, we look for2s-to-1
mappingsϕd. The functionϕd with d is the Kasami parame-
ter satisfies this property. But computer results indicate,that
in this caseDa,d is not a relative difference set fora = 0 and
a = 1.

Question 1: Let d = 22k − 2k + 1 andgcd(k, m) > 1. Do
there existsa ∈ F2m such thatDa,d is a relative difference
set inF

∗

2m?

3. Main Theorem

Theorem 1: Let gcd(k, m) = s andm/s odd. Then the
functionϕd : F2m → F2m with ϕd(x) = xd + (x + 1)d and
d = 22k − 2k + 1 is a2s-to-1 mapping.

To prove this, we need the following proposition. Let
I := {ϕd(x)|x ∈ F2m} be the image ofϕd. If |{x ∈
F2m |ϕd(x) = y}| ≥ c for all y ∈ I, then we sayϕd is
at least ac-to-1 mapping.

Proposition 2: Let the functionϕd be at least a2s-to-1
mapping and let the Walsh transform oftr(d) take just the
values±2(m+s)/2 and 0. Then the functionϕd is a2s-to-1
mapping.

Proof: We transform

∑

x∈F2m

(
W(tr(d))(x)

)4
=

=
∑

y,z,v,w∈F2m

(−1)tr(yd+zd+vd+wd)
∑

x∈F2m

(−1)tr(x(y+z+v+w))

︸ ︷︷ ︸

=

8

<

:

2m w = y + z + v
0 otherwise

= 2m ∑

y,z,v∈F2m

(−1)tr(yd+zd+vd+(y+z+v)d)

= 2m ∑

y,z∈F2m

∑

v∈F2m

(−1)tr(yd+(y+v)d+zd+(z+v)d)

= 2m ∑

y,z∈F2m

∑

v∈F2m

(−1)tr(v(yd+(y+1)d+zd+(z+1)d))

This sum over allv ∈ F2m is 2m if yd + (y + 1)d = zd +
(z + 1)d and 0 otherwise, thus

∑

x∈F2m

(
W(tr(d))(x)

)4
=

= 22m|{ (y, z) ∈ F2m×F2m | ϕd(y) = ϕd(z) }|. (1)

From Proposition 1 we get(W(tr(d))(x))2 = 2m+s ex-
actly 2m−1 times and(W(tr(d))(x))2 = 0 exactly 2m−1

times. Therefore, for the left hand side of (1) we calcu-
late

∑

x∈F2m
(W(tr(d))(x))4 = (2m+s)2 · 2m−s = 23m+s.

For the right hand side of (1) we have|{(y, z)|ϕd(y) =
ϕd(z)}| ≥ 2m · 2s, sinceϕd maps at least2s to 1. The
right side is minimal, ifϕd is a2s-to-1 mapping.

Proof of Theorem 1: We defineφd : F2m → F2m by

φd(x) :=
1 + xd

(1 + x)d

for all x ∈ F2m\{1} andφd(1) := 1. If the mappingφd is at
least a2s-to-1 mapping, then the mappingϕd is also at least
a2s-to-1 mapping, since

ϕd(x) = φd(x−1 + 1) (2)

for all x ∈ F
∗

2m andϕd(0) = φd(1).

We show, that the mappingφ22k−2k+1 is at least a2s-to-1
mapping. Letx∗ ∈ F2s , thenφ22k−2k+1(x

∗) = 1, since

(x∗)2
s

= x and therefore(x∗)2
2k

−2k+1 = x∗. Now let
x∗ ∈ F2m\F2s . We have

(

φ22k−2k+1(x
2k+1)

)2k+1

=
(1 + x23k+1)2

k+1

(1 + x2k+1)23k+1
. (3)

Note, the functionϕ2l+1 is at least a2s-to-1 mapping, since

s|ggT (l, m) andϕ2l+1(x) = x2l

+x+1. Thus, all elements
x + u, u ∈ F2s , with x ∈ F2m have the same image under
ϕ2l+1. We define

v := (x∗)2
k

+ x∗+ 1 and w := (x∗)2
3k

+ x∗+ 1.

We expressv andw by the functionφd. Since (2) holds, we



get for ally∗ := (x∗ + u)−1 + 1, u ∈ F2s

v =
1 + (y∗)2

k+1

(1 + y∗)2k+1
and w =

1 + (y∗)2
3k+1

(1 + y∗)23k+1
. (4)

We transform (4) and obtain

(1 + (y∗)2
3k+1)2

k+1 =

= (w(1 + y∗)2
3k+1)2

k+1

= w2k+1((1 + y∗)2
k+1)2

3k+1

= w2k+1(v−1(1 + (y∗)2
k+1))2

3k+1

= w2k+1v−(23k+1)(1 + (y∗)2
k+1)2

3k+1.

We rewrite this equation and get

(1 + (y∗)2
3k+1)2

k+1

(1 + (y∗)2k+1)23k+1
= w2k+1v−(23k+1).

Therefore, by (3) we obtain

φ22k−2k+1(z
∗) = wv−d

for all z∗ = ((x∗+u)−1+1)1/(2k+1), u ∈ F2s , sincem/s is
odd and thereforegcd(d, 2m−1) = 1. Thus, we have shown
that the functionφ22k−2k+1 is at least a2s-to-1 mapping.

Therefore, the functionϕ22k−2k+1 is also at least a2s-to-1
maping. Proposition 1 together with Proposition 2 completes
the proof.
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