A Note on the Kasami Power Function

Doreen HERTEL†

† Institute for Algebra and Geometry, Faculty of Mathematics, Otto-von-Guericke-University Magdeburg, 39016 Magdeburg, Germany

E-mail: †doreen.hertel@mathematik.uni-magdeburg.de

Abstract This work is motivated by the observation that the function \mathbb{F}_{2^m} to \mathbb{F}_{2^m} defined by $x^d+(x+1)^d+a$ for some $a\in\mathbb{F}_{2^m}$ can be used to construct difference sets. A desired condition is, that the function $\varphi_d(x):=x^d+(x+1)^d$ is a 2^s -to-1 mapping. If s=1, then the function x^d has to be APN. If s>1, then there is up to equivalence only one function known: The function φ_d is a 2^s -to-1 mapping if d is the Gold parameter $d=2^k+1$ with $\gcd(k,m)=s$. We show in this paper, that φ_d is also a 2^s -to-1 mapping if d is the Kasami parameter $d=2^{2k}-2^k+1$ with $\gcd(k,m)=s$ and m/s odd. We hope, that this observation can be used to construct more difference sets.

key words: difference set, finite field, 2^s -to-1 mapping, APN, Kasami power function, Gold power function

1. Introduction

In this paper we consider the properties of the Kasami exponent. In the first section we list some similarities between the Kasami exponent $d=2^{2k}-2^k+1$ and the Gold exponent $d=2^k+1$. In the second section we give a motivation, why considering functions $x^d+(x+1)^d$. In the last part we present our main result.

We denote the finite field with 2^m elements by \mathbb{F}_{2^m} and its multiplicative group by $\mathbb{F}_{2^m}^*$. The reader is referred to [11] for more information on the theory of finite fields.

We define the function $\varphi_d: \mathbb{F}_{2^m} \to \mathbb{F}_{2^m}$ by

$$\varphi_d(x) := x^d + (x+1)^d.$$

Lemma 1: Let the function φ_d be a c-to-1 mapping. Then the function $\varphi_{d'}$ is also a c-to-1 mapping for $d'=2^id$ and, since $\gcd(d,2^m-1)=1$, for $d'=1/d \mod 2^m-1$.

A power function x^d on \mathbb{F}_{2^m} is called **almost perfect nonlinear (APN)**, if the function φ_d is a 2-to-1 mapping. If $\gcd(k,m)=1$, the Gold and the Kasami power functions are both APN. There are more cases of APN functions, see [12]–[14]. So far, there is only one value d known, where the function φ_d is a 2^s -to-1 mapping: Let $s=\gcd(k,m)$. The function φ_{2^k+1} is a 2^s -to-1 mapping. This follows from the fact, that $\varphi_{2^k+1}(x)=x^{2^k}+x+1$ is an affine function, see [3]. For the Kasami exponent $d=2^{2k}-2^k+1$ it is only known, that 1 has exactly 2^s preimage under φ_d , since $s=\gcd(k,m)$, see [2]. We will shown, that φ_d with d is the Kasami exponent, is a 2^s -to-1 mapping, since m/s is odd. For this propose, we need the following well-known proposition, which also shows an other common property of the

Gold and Kasami exponent.

We define the **trace** function $tr: \mathbb{F}_{2^m} \to \mathbb{F}_2$ by $tr(x) = \sum_{i=0}^{r-1} x^{2^i}$ and the **Walsh transform** $\mathcal{W}(f)$ of a function $f: \mathbb{F}_{2^m} \to \mathbb{F}_2$ by

$$\mathcal{W}(f)(y) := \sum_{x \in \mathbb{F}_{2m}} (-1)^{f(x) + tr(yx)}$$

for all $y \in \mathbb{F}_{2^m}$. The function $f^{(d)}$ is defined by $f^{(d)}(x) = f(x^d)$ for all $x \in \mathbb{F}_{2^m}$.

Proposition 1: Let $s = \gcd(m, k)$ and m/s odd. Let $d = 2^k + 1$ or $d = 2^{2k} - 2^k + 1$. Then $\mathcal{W}(tr^{(d)})$ takes on the following three values:

$$\begin{array}{c|cccc} value & multiplicity \\ \hline 2^{(m+s)/2} & 2^{m-s-1} + 2^{(m-s-2)/2} \\ 0 & 2^m - 2^{m-s} \\ -2^{(m+s)/2} & 2^{m-s-1} - 2^{(m-s-2)/2} \\ \end{array}$$

Let $\gcd(k,m)=s$ and m/s be odd. Note, we have $\gcd(d,2^m-1)=1$ for $d=2^k+1$ or $d=2^{2k}-2^k+1$. In this case, $\gcd(d,2^m-1)$ does not depend on $\gcd(k,m)$.

2. Motivation

Let G be a finite abelian additive group with n_1n_2 elements. Let D be a k-subset of the group G, such that every element outside a subgroup N of order n_2 has exactly λ_2 representations as a difference d-d' with elements $d,d'\in D$. Elements in N different from the identity have exactly λ_1 such representations. Any set with this property is called an $(n_1,n_2,k,\lambda_1,\lambda_2)$ -divisible difference set in G relative to N. If $\lambda_1=0$, we call it a **relative difference set**. Note, if $n_2=1$, we speak about (n_1,k,λ) -difference sets. The reader is referred to [4] for more information on difference sets.

Difference sets with parameter $(2^m-1,2^{m-1},2^{m-2})$ or $(2^m-1,2^{m-1}-1,2^{m-2}-1)$ are called **Singer difference sets**. Singer difference sets correpond to binary sequences with ideal two-level autocorrelation, see [7] for example.

We define for $a \in \mathbb{F}_{2^m}$ the set

$$D_{a,d} := \{ \varphi_d(x) + a \mid x \in \mathbb{F}_{2^m}, \varphi_d(x) \neq a \}.$$

Result 1: The set $D_{a,d}$ is a Singer difference set in $\mathbb{F}_{2^m}^*$ for

- 1. $d = 2^k + 1$ or $d = 1/(2^k + 1)$ with gcd(k, m) = 1 and a = 0. It is easy to show, that in this cases $D_{a,d}$ is the classical Singer difference set.
- 2. $d = 2^{2k} 2^{k} + 1$ with $m = 3k \pm 1$ and a = 0. This was conjectured by No, Chung and Yun in [9] and proved by Dillon and Dobbertin in [5], [6].
- 3. $d = 2^{2k} 2^k + 1$ with gcd(k, m) = 1 and a = 1. This was shown by Dillon and Dobbertin in [6].

This result shows, that the Gold and the Kasami exponent may give difference sets in the case gcd(k, m) = 1. Now let us look at the case gcd(k, m) > 1.

Result 2: Let gcd(k,m) = s and m/s be odd and a = 0. Then the set $D_{a,d}$ is a $(\frac{2^m-1}{2^s-1}, 2^s - 1, 2^{m-s}, 0, 2^{m-2s})$ -relative difference set in $\mathbb{F}_{2^m}^*$ for $d = 2^k + 1$ resp. $d = 1/(2^k + 1)$.

As above, this set is the classical affine Singer relative difference set, see [1].

Such $(\frac{2^m-1}{2^s-1}, 2^s-1, 2^{m-s}, 0, 2^{m-2s})$ -relative difference sets can be used to construct Singer difference sets by the GMW method, see [1].

We have tried to construct such relative difference sets in a similar way using the Kasami exponent. To get the desired parameters of the relative difference set, we look for 2^s -to-1 mappings φ_d . The function φ_d with d is the Kasami parameter satisfies this property. But computer results indicate, that in this case $D_{a,d}$ is not a relative difference set for a=0 and a=1.

Question 1: Let $d=2^{2k}-2^k+1$ and $\gcd(k,m)>1$. Do there exists $a\in \mathbb{F}_{2^m}$ such that $D_{a,d}$ is a relative difference set in $\mathbb{F}_{2^m}^*$?

3. Main Theorem

Theorem 1: Let $\gcd(k,m)=s$ and m/s odd. Then the function $\varphi_d:\mathbb{F}_{2^m}\to\mathbb{F}_{2^m}$ with $\varphi_d(x)=x^d+(x+1)^d$ and $d=2^{2k}-2^k+1$ is a 2^s -to-1 mapping.

To prove this, we need the following proposition. Let $I:=\{\varphi_d(x)|x\in\mathbb{F}_{2^m}\}$ be the image of φ_d . If $|\{x\in\mathbb{F}_{2^m}|\varphi_d(x)=y\}|\geq c$ for all $y\in I$, then we say φ_d is at least a c-to-1 mapping.

Proposition 2: Let the function φ_d be at least a 2^s -to-1 mapping and let the Walsh transform of $tr^{(d)}$ take just the values $\pm 2^{(m+s)/2}$ and 0. Then the function φ_d is a 2^s -to-1 mapping.

Proof: We transform

$$\sum_{x \in \mathbb{F}_{2^m}} \left(\mathcal{W}(tr^{(d)})(x) \right)^4 =$$

$$\begin{split} &= \sum\limits_{y,z,v,w \in \mathbb{F}_{2^m}} (-1)^{tr(y^d + z^d + v^d + w^d)} \underbrace{\sum\limits_{x \in \mathbb{F}_{2^m}} (-1)^{tr(x(y + z + v + w))}}_{x \in \mathbb{F}_{2^m}} \\ &= \begin{cases} 2^m & w = y + z + v \\ 0 & \text{otherwise} \end{cases} \\ &= 2^m \sum\limits_{y,z,v \in \mathbb{F}_{2^m}} \sum\limits_{v \in \mathbb{F}_{2^m}} (-1)^{tr(y^d + z^d + v^d + (y + z + v)^d)} \\ &= 2^m \sum\limits_{y,z \in \mathbb{F}_{2^m}} \sum\limits_{v \in \mathbb{F}_{2^m}} (-1)^{tr(v(y^d + (y + v)^d + z^d + (z + v)^d))} \\ &= 2^m \sum\limits_{y,z \in \mathbb{F}_{2^m}} \sum\limits_{v \in \mathbb{F}_{2^m}} (-1)^{tr(v(y^d + (y + 1)^d + z^d + (z + 1)^d))} \end{split}$$

This sum over all $v \in \mathbb{F}_{2^m}$ is 2^m if $y^d + (y+1)^d = z^d + (z+1)^d$ and 0 otherwise, thus

$$\sum_{x \in \mathbb{F}_{2^m}} \left(\mathcal{W}(tr^{(d)})(x) \right)^4 =$$

$$= 2^{2m} |\{ (y, z) \in \mathbb{F}_{2^m} \times \mathbb{F}_{2^m} \mid \varphi_d(y) = \varphi_d(z) \}|. \tag{1}$$

From Proposition 1 we get $(\mathcal{W}(tr^{(d)})(x))^2=2^{m+s}$ exactly 2^{m-1} times and $(\mathcal{W}(tr^{(d)})(x))^2=0$ exactly 2^{m-1} times. Therefore, for the left hand side of (1) we calculate $\sum_{x\in\mathbb{F}_{2^m}}(\mathcal{W}(tr^{(d)})(x))^4=(2^{m+s})^2\cdot 2^{m-s}=2^{3m+s}.$ For the right hand side of (1) we have $|\{(y,z)|\varphi_d(y)=\varphi_d(z)\}|\geq 2^m\cdot 2^s$, since φ_d maps at least 2^s to 1. The right side is minimal, if φ_d is a 2^s -to-1 mapping.

Proof of Theorem 1: We define $\phi_d : \mathbb{F}_{2^m} \to \mathbb{F}_{2^m}$ by

$$\phi_d(x) := \frac{1+x^d}{(1+x)^d}$$

for all $x \in \mathbb{F}_{2^m} \setminus \{1\}$ and $\phi_d(1) := 1$. If the mapping ϕ_d is at least a 2^s -to-1 mapping, then the mapping φ_d is also at least a 2^s -to-1 mapping, since

$$\varphi_d(x) = \phi_d(x^{-1} + 1) \tag{2}$$

for all $x \in \mathbb{F}_{2^m}^*$ and $\varphi_d(0) = \phi_d(1)$.

We show, that the mapping $\phi_{2^{2k}-2^k+1}$ is at least a 2^s -to-1 mapping. Let $x^* \in \mathbb{F}_{2^s}$, then $\phi_{2^{2k}-2^k+1}(x^*)=1$, since $(x^*)^{2^s}=x$ and therefore $(x^*)^{2^{2k}-2^k+1}=x^*$. Now let $x^* \in \mathbb{F}_{2^m} \backslash \mathbb{F}_{2^s}$. We have

$$\left(\phi_{2^{2k}-2^k+1}(x^{2^k+1})\right)^{2^k+1} = \frac{(1+x^{2^{3k}+1})^{2^k+1}}{(1+x^{2^k+1})^{2^{3k}+1}}.$$
 (3)

Note, the function φ_{2^l+1} is at least a 2^s -to-1 mapping, since s|ggT(l,m) and $\varphi_{2^l+1}(x)=x^{2^l}+x+1$. Thus, all elements $x+u,u\in\mathbb{F}_{2^s}$, with $x\in\mathbb{F}_{2^m}$ have the same image under φ_{2^l+1} . We define

$$v := (x^*)^{2^k} + x^* + 1$$
 and $w := (x^*)^{2^{3k}} + x^* + 1$.

We express v and w by the function ϕ_d . Since (2) holds, we

get for all $y^* := (x^* + u)^{-1} + 1, u \in \mathbb{F}_{2^s}$

$$v = \frac{1 + (y^*)^{2^k + 1}}{(1 + y^*)^{2^k + 1}}$$
 and $w = \frac{1 + (y^*)^{2^{3k} + 1}}{(1 + y^*)^{2^{3k} + 1}}$. (4)

We transform (4) and obtain

$$\begin{split} &(1+(y^*)^{2^{3k}+1})^{2^k+1} = \\ &= (w(1+y^*)^{2^{3k}+1})^{2^k+1} \\ &= w^{2^k+1}((1+y^*)^{2^k+1})^{2^{3k}+1} \\ &= w^{2^k+1}(v^{-1}(1+(y^*)^{2^k+1}))^{2^{3k}+1} \\ &= w^{2^k+1}v^{-(2^{3k}+1)}(1+(y^*)^{2^k+1})^{2^{3k}+1}. \end{split}$$

We rewrite this equation and get

$$\frac{(1+(y^*)^{2^{3k}+1})^{2^k+1}}{(1+(y^*)^{2^k+1})^{2^{3k}+1}} = w^{2^k+1}v^{-(2^{3k}+1)}.$$

Therefore, by (3) we obtain

$$\phi_{2^{2k}-2^k+1}(z^*) = wv^{-d}$$

for all $z^* = ((x^* + u)^{-1} + 1)^{1/(2^k + 1)}, u \in \mathbb{F}_{2^s}$, since m/s is odd and therefore $\gcd(d, 2^m - 1) = 1$. Thus, we have shown that the function $\phi_{2^{2k} - 2^k + 1}$ is at least a 2^s -to-1 mapping.

Therefore, the function $\varphi_{2^{2k}-2^k+1}$ is also at least a 2^s -to-1 maping. Proposition 1 together with Proposition 2 completes the proof.

References

- [1] A. Pott, "Finite Geometry and Character Theory" Lecture Notes in Mathematics 1601. Berlin: Springer-Verlag, 1995
- [2] T. Helleseth, J. Lahtonen, P. Rosendahl, "On certain Equations over Finite Fields and Cross-Correlations of m-Sequences" In: K. Feng, H. Niederreiter and C. Xing, editors, Coding, Cryptograhpy and Combinatorics, Progress in Computer Science and Applied Logic, Vol. 23, pp. 169-176, 2004
- [3] K. Nyberg, "Differentially Uniform Mappings for Crytography", Advance in Cryptology, EURO-CRYPT'93, Lecture Notes in Computer Science, Vol.765, pp. 55-64, 1994
- [4] T. Beth, D. Jungnickel, H. Lenz, Design Theory. Encyclopedia of Mathematics and its Applications. Cambridge University Press, Vol. 1, 2nd ed., Cambridge, 1999.
- [5] J.F. Dillon, "Multiplicative Difference Sets via Additive Charakters", Designs, Codes and Cryptography, Vol.17, No.1-3, pp.225-235, 1999.

- [6] J.F. Dillon, H. Dobbertin, "New Cyclic Difference Sets with Singer Parameters", Finite Fields Appl. 10, No.3, pp.342-389, 2004.
- [7] T. Helleseth, P.V. Kumar, "Sequences with low correlation", In: Handbook of Coding Theory, Vol.1,2, North-Holland, pp.1065-1138, Amsterdam, 1998.
- [8] D. Jungnickel, A. Pott, "Perfect and almost perfect sequences", Discrete Applied Mathematics, Vol.95, pp.331-359, 1999.
- [9] J.S. No, H. Chung, M.S. Yun, "Binary Pseudorandom Sequences of Period 2^m-1 with Ideal Autocorrelation Generated by the Polynomial $z^d+(z+1)^d$ ", IEEE Transactions on Information Theory, Vol.44, pp.1278-1282, 1998.
- [10] T. Hellseth, "On the Cross-Correlation of *m*-Sequences and related Sequences with ideal Autocorrelation", Proceedings of the 2nd International Conference, Sequences and Their Applications (SETA'01), Bergen, Norway, May, 2001. Springer, Discrete Mathematics and Theoretical Computer Science, pp.34-45, 2002.
- [11] R. Lidl, H. Niederreiter, "Finite Fields", 2nd ed., Encyclopedia of Mathematics and its Applications, Vol. 20, Cambridge University Press, 1996,
- [12] H. Dobbertin, "Almost perfect nonlinear power functions on $GF(2^n)$: A new case for n divisible by 5." Jungnickel, Dieter (ed.) et al., Finite fields and applications. Proceedings of the fifth international conference on finite fields and applications F_q 5, University of Augsburg, Germany, August 2-6, 1999. Berlin: Springer-Verlag, pp. 113-121, 2001
- [13] H. Dobbertin, "Almost perfect nonlinear power functions on $GF(2^n)$: The Niho case." Inf. Comput., Vol. 151, No.1-2, pp. 57-72, 1999
- [14] H. Dobbertin, "Almost perfect nonlinear power functions on $GF(2^n)$: the Welch case." IEEE Trans. Inf. Theory, Vol. 45, No.4, pp. 1271-1275, 1999