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Abstract  This work is motivated by the observation that Gold and Kasami exponent.

the functionFym to Fom defined byz? + (z + 1)% + a for B
somea € Fom can be used to construct difference sets. AWe deflne thetirace functiontr : Fan — F by tr(z) =

desired condition is, that the functigry () := 24+ (z+1)? >-i «* and thewalsh transform W(f) of a functionf :
is a2°-to-1 mapping. Ifs = 1, then the function:? has to Fom — T2 by

be APN. If s > 1, then there is up to equivalence only one

function known: The functiorp, is a2°-to-1 mapping ifd W()(y) = Z (_1)1'(z)+tr(ym)

is the Gold parametet = 2% + 1 with ged(k, m) = s. We

show in this paper, that, is also a2°-to-1 mapping ifd is
the Kasami parameter= 22¢ — 2% + 1 with ged(k, m) =
andm/s odd. We hope, that this observation can be used t
construct more difference sets.

x€EFom

I)or all y € Fym. The functionf(?) is defined byf(® (z) =
x?) for all x € Fom.

keywords: difference set, finite field;’-to-1 mapping, APN, - proposition 1: Let s = ged(m, k) andm/s odd. Letd =
Kasami power function, Gold power function 9% +1ord = 22¢ — 2% + 1. ThenW(tr(9)) takes on the

following three values:
1. Introduction

value | multiplicity
In this paper we consider the properties of the Kasami ex- 9(m+s)/2" | gm—s—T  9(m—5-2)/2
ponent. In the first section we list some similarities betwee 0 om _ gm=—s
the Kasami exponent = 22* — 2% 4 1 and the Gold expo- _o(m+s)/2 | gm—s—1 _ 9(m—s-2)/2

nentd = 2% + 1. In the second section we give a motivation,
why considering functions? + (z + 1)?. In the last part we

present our main result Let ged(k,m) = s andm/s be odd. Note, we have

ged(d,2m —1)=1ford=2F+1ord =2% —2F +1.In
We denote the finite field with™ elements byF,» and its  this caseged(d, 2™ — 1) does not depend aged(k, m).
multiplicative group byF... The reader is referred to [11]

for more information on the theory of finite fields. . .
y 2. Motivation

We define the functiop : Fom — Fom by
Let G be a finite abelian additive group with n, elements.

va(z) ==z + (z + 1)L Let D be ak-subset of the grougr, such that every ele-
ment outside a subgroup of orderns has exactly\, rep-
resentations as a differende- d’ with elementsi, d’ € D.
Elements inN different from the identity have exactly,
such representations. Any set with this property is called a
(n1,ne, k, A1, A2)-divisible difference set in G relative to
N. If \; = 0, we call it arelative difference set. Note,
if no = 1, we speak aboutny, k, \)-difference sets. The
reader is referred to [4] for more information on difference

Lemmal: Letthe functionp; be ac-to-1 mapping. Then
the functionp, is also ac-to-1 mapping ford’ = 2id and,
sinceged(d,2™ — 1) =1, ford’ = 1/d mod 2™ — 1.

A power functionz? on Fy is calledalmost perfect non-
linear (APN), if the functiony, is a 2-to-1 mapping. If
ged(k,m) = 1, the Gold and the Kasami power functions
are both APN. There are more cases of APN functions, see

[12]-[14]. So far, there is only one valueknown, where Difference sets with paramet¢e™ — 1,2m~1 2m=2) or

the functionyy is a2°-to-1 mapping: Lets = ged(k,m). (2™ —1,2m~1 — 1,22 — 1) are calledSinger difference

The functionp,x , , is a2%-to-1 mapping. This follows from sets. Singer difference sets correpond to binary sequences
the fact, thatpye 1 () = 22° + x + 1 is an affine function, With ideal two-level autocorrelation, see [7] for example.

see [3]. For the Kasami exponedit= 22% — 2% + 1 itis
only known, that 1 has exactBf preimage undep,, since
s = ged(k, m), see [2]. We will shown, thap, with d is the
Kasami exponent, is 2°-to-1 mapping, sincen/s is odd. Da,a = { va(r) +alz € Fom, pa(x) # a}.

For this propose, we need the following well-known propo-

sition, which also shows an other common property of theResult 1: The setD, 4 is a Singer difference set ;.. for

We define fora € Fan the set



1.d=2"+1ord=1/(2" + 1) with ged(k,m) = 1 and
a = 0. It is easy to show, that in this casgs 4 is the
classical Singer difference set.

2. d = 2%k —2F 4 1withm = 3k+1anda = 0. Thiswas

conjectured by No, Chung and Yunin [9] and proved by

Dillon and Dobbertin in [5], [6].
3. d = 2%¢ — 2F 4 1 with ged(k,m) = 1 anda = 1. This
was shown by Dillon and Dobbertin in [6].

This result shows, that the Gold and the Kasami exponent _ om >

may give difference sets in the cagel(k, m) = 1. Now let
us look at the casged(k, m) > 1.

Result 2: Let ged(k,m) = s andm/s be odd andh =
0. Then the seD, 4 is a(3:—F,2° — 1,2m7%,0,2m%)-
relative difference set ifi'.. for d = 2¥ + 1 resp. d =

1/(2F +1).

_ Z (_1)tr(yd+zd+vd+wd) Z(_l)tr(z(y+z+u+w))

y,z,0,wEFom z€EFom

72m
1o

wW=Y+z+v
otherwise

—9m Z (_1)tr(yd+zd+vd+(y+z+u)d)
Y,z,vEFm
=2 3 3 (_1)tr(yd+(y+v)d+zd+(z+v>d)

Yy,2EFom vEFm

S (1)@ ) D)D)
y,z€EFom veEFom

This sum over alb € Fom is 2™ if y? + (y + 1) = 24 +
(z 4+ 1)? and 0 otherwise, thus

> (Wtr D))" =

x€Fom

=2""[{ (y,2) € FanxFam | a(y) = ¢a(z) }. ()

As above, this set is the classical affine Singer relative dif

ference set, see [1].

Such(Z=L,

From Proposition 1 we getW(tr(®)(z))? = 2™+ ex-

95_1,2m% 0, 2m—2¢)-relative difference sets actly 2~ times and(W(tr(?)(z))*> = 0 exactly2™ !

can be used to construct Singer difference sets by the GMWmes. Therefore, for the left hand side of (1) we calcu-

method, see [1].

late S, e, (W(tr®) () = (2m+9)2 . 2m—s = g9ms,
For the right hand side of (1) we havé(y, z)|pa(y) =

We have tried to construct such relative difference sets in g ,(;)1| > 2m . 25 since, maps at least® to 1. The

similar way using the Kasami exponent. To get the desiregignt side is minimal, ifp, is a2°-to-1 mapping.

parameters of the relative difference set, we lookfoto-1

O

mappingspq. The functionp, with d is the Kasami parame- Proof of Theorem 1: We definep : Fom — Fam by

ter satisfies this property. But computer results indidatz,
in this caseD,, 4 is not a relative difference set far= 0 and
a=1.

Quegtion 1: Letd = 22¢ — 2% + 1 andgcd(k, m) > 1. Do
there exists: € Fom such thatD, 4 is a relative difference
setinFJ,.?

3. Main Theorem

Theorem 1: Let ged(k,m) = s andm/s odd. Then the
functionyy : Fom — Fam With o4(z) = 2¢ 4 (z +1)% and
d = 2% —2F 1 1is a2°-to-1 mapping.

To prove this, we need the following proposition.
I := {pq(z)|zr € Fam} be the image ofp,. If |[{z €
Fom|pa(z) = y}| > cforall y € I, then we sayp, is
at least a-to-1 mapping.

Proposition 2:  Let the functiony, be at least &°-to-1
mapping and let the Walsh transform wf?) take just the
values+2(m+9)/2 and 0. Then the function, is a2*-to-1

mapping.

Proof: We transform

> (Wtr@) (@) =

x€EFom

1+ z¢
(1+ z)d

¢d($) =

forall z € Fom\{1} andg,(1) := 1. If the mappingp, is at
least a2°-to-1 mapping, then the mappinyg is also at least
a2%-to-1 mapping, since

pa(r) = ga(z™" +1) 2

forall z € F3.. andygg(0) = ¢q(1).

We show, that the mappingy:x o1, is at least &°-to-1
mapping. Letr* € Fas, thengyer _or 1 (2*) = 1, since
(z*)?" = z and thereforgz*)2” ~2"+1 = 2*. Now let

Let z* € Fam \F2s. We have

2k 41

(¢22k72k+1($2k+1)) =

(1 +x23k+1)2k+1
(1 +x2k+1)23k+1‘

®3)

Note, the functiorpy: | is at least &°-to-1 mapping, since

slggT(I,m) andpqr 1 (x) = 22 +z+1. Thus, all elements
x + u,u € Fas, with z € Fom have the same image under
wor 1. We define

V= (w*)2k+ z*+1 and w:= (x*)23k+ o+ 1.

We expres® andw by the functionp,. Since (2) holds, we



getforally* := (z* +u) "t + 1,u € Fas

B 1+ (y*)2k+l

1+ )P
(14y*)2"+!

(4)

We transform (4) and obtain

* 3k k
(1 )" )7 =
(w(l +y*)23’“+1)2’“+1
w2’“+1((1 +y*)2k+1)23k+1
_ w2k+1(v—1(1+(y*)2"+1))23"+1
w

2k+1v_(23k+1)(1 +

w2k 3k
(y )2 +1)2 +1_

(10]

We rewrite this equation and get

Therefore, by (3) we obtain

3k k
(14 @yH)> )+ 2F 1, — (255 1)

(11 ()=

—d

[6] J.F. Dillon, H. Dobbertin, "New Cyclic Difference Sets

with Singer Parameters”, Finite Fields Appl. 10, No.3,
pp.342-389, 2004.

[7] T.Helleseth, P.V. Kumar, "Sequences with low correla-

(8]
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(11]

2k _ ok Z* = Wwv
¢2 2 +1( )

forall 2* = ((z* +u) =1+ 1)@+ 4 € Fy., sincem/s is

odd and thereforged(d, 2™ —1) = 1. Thus, we have shown
that the functionpezx ok, is at least 2°-to-1 mapping.

Therefore, the functiop,zr o, ¢ is also at least @°-to-1
maping. Proposition 1 together with Proposition 2 comlete

the proof.
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