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Abstract. In the presence of economic globalization joint venture is one of the most common and effective means
of conducting business internationally. By building joint ventures companies form strategic alliances that help
them to enter new economic markets and further their business goals in a cooperative effort without loosing own
independence. Upon building a joint venture company, two or more ”parent” companies agree to share capital,
technology, human ressources, risks and rewards in a formation of a new entity under shared control by a ”board
of directors”, which consists of representatives of ”parent” companies. The establishment of such shared control is
tricky and relies generally on the ”trust, but verify” relationship, i.e., companies trust the information they receive
from prospective partners, but it is a good business practice to verify the facts. In this paper we focus on the issue
of the shared financial control in a joint venture. We consider the mostly preferred form of the control where
every member of the board is able to issue payment orders on behalf of the joint venture, but at the same time
representatives of other companies, should be able to monitor the accounting to achieve fairness in the spending
of shared funds. For this form of the shared control we propose a new secure group-oriented signature scheme,
called ademocratic group signaturescheme, which results from the modification of the standard notion of group
signatures by eliminating the role of the group manager. We also show that existing schemes, e.g., ring and group
signatures, cannot be used to realize the required shared control based on the ”trust, but verify” relationship.
Key words: group-oriented signatures, ”trust, but verify”, anonymity, joint membership control, individual tracing

1 Introduction

Joint ventures (JV) become an increasingly common way for companies to form strategic alliances for
the means of economic expansion and realization of new business plans, such as entering new economic
markets, developement of new technology or conducting trade internationally. A joint venture arrangement
between partner companies has one of the following two forms: a joint venture agreement (JVA) or a joint
venture company (JVCo). JVA is a simple agreement between participating companies which determines
what each will bring to and gain from the project without forming a separate legal entity, and is considered
to be a ”once more” arrangement that is established for the mutual benefit of partners, e.g., arrangement on
a joint distribution network or shared product facilities. JVCo goes a step further in setting up a company in
order to procure the project. It is usually specified by own trade and business plans, has some independence
to pursue own commercial strategy with agreed objectives, and is able to access the market with own trade
mark.

Depending on the arrangement the JVCo may be open for other companies to join if they fulfill certain
criteria and agree to sign the contract. Usually, current JV partners decide together whether a new company
is allowed to join the JVCo. Similarly, a company may resign from the JV contract and leave the JVCo.
Criteria for join and leave are usually defined in a common policy which is agreed by ”parent” companies
and is part of the signed contract.

Where a JV company is set up the control of the company is generally proportional to the percentage of
shares held by each ”parent” company, which in turn reflects the investment by the companies, respectively.
The so-called ”board of directors” of JVCo is legally responsible for the supervision/strategic plans and
active management of JVCo on the basis of a shared control, and consists usually of representatives of
”parent” companies. The organization of the shared control in JVCo is a challenging task, since a specific
trust relationship between ”parent” companies, called ”trust, but verify” has to be considered. The ”trust,
but verify” relationship is followed from the natural objectives of ”parent” companies to gain as much as
possible from entering a joint venture while keeping the occuring expenses as little as possible. Therefore,



by the means of cooperation the JV partners generally trust the information they receive from each other,
but should be able to verify the facts.

Our paper focuses on the establishment of the shared financial control in a JVCo, however, we remark that
our model may also be utilized for other shared control issues. We consider a simpler case of a JV arrange-
ment where all ”parent” companies provide equal contribution to the shared budget, and have, therefore, an
equal number of representatives in the board, e.g., one. The financial control in the JVCo includes among
other topics the issuing of payment orders on behalf of JVCo and the monitoring of the accounting of the
company. We are not interested in the organization of the JVCo, e.g., whether there is a separate finance
department, and assume for simplicity that the responsibility for the financial control is given to the direc-
tors, i.e., members of the board. The organization of the financial control in JVCo is a subject of the JV
contract which is agreed and signed by all ”partner” companies. Since all JV companies have individual
arrangements there is no common form which is applied in all JVCos. However, the following form of the
shared financial control seems to be mostly fair for all JV participants, and is, therefore, preferred in the
most arrangements: ”parent” companies agree that each of them independently is allowed to issue payment
orders from the shared budget of the JVCo for the amount which does not exceed their own contribution to
this budget. Obviously, this form alone provides less flexibility, since sometimes companies need to make
investments which are higher than their contributions. For this case an additional clause is usually taken
into the JV arrangement: whenether a company issues a payment order for the amount which exceeds own
contribution, it is obliged to refund the difference to the JVCo’s budget.

In this paper we propose a security model for the described form of the financial control in JVCos. Ac-
cording to the ”trust, but verify” relationship ”parent” companies should be able to monitor the accounting
of the JVCo, which in turn means that representatives in the ”board of directors” should be given a power
for the independent verification of issued payment orders signed by other directors and ability to create
own view on the actual state of all JV partners’ debts to the shared JVCo’s budget.

Another security aspect of this form of the shared financial control is the anonymity of directors who is-
sue the payment orders. For a JVCo the own establishment on the market is of great importance, especially,
when JVCo enters the market with its own trademark. Hence, it is important to hide the information which
concerns the affiliation of the representative who has issued the payment order to his ”parent” company
from parties who get this money and are not involved in the JV arrangement. In other words, if a third
party receives a payment order signed on behalf of the JVCo then it must not be able to link the signa-
ture to the ”parent” company whose representative has signed the order. Note that for the means of the
shared monitoring of accounting other JV partners should be able to identify the ”parent” company (i.e.,
its representative) from the signature of the payment order.

Our model consists of a new group-oriented signature scheme, which results from the modification of
the standard notion of group signatures. The main changes to the classical model of group signatures are:
the absence of a central trusted authority (usually called a group manager), and the ability of the individual
tracing of signatures, i.e., every member of the group (director) is able to open signatures created by other
members. In Section 1.1 we describe in detail why the standard model of group signatures, and another
related group-oriented signature schemes called ring signatures are not applicable to the focused scenario
of the shared financial control in JVCos.

1.1 Related Work

The concept ofgroup signatureswas first introduced by Chaum and van Heyst [13], and further studied
and improved in [11], [10], [3], [4], [15], [7], [6], [8], [9]. Classical group signatures allow group members
to sign messages anonymously on behalf of the group. The anonymity is provided not only against non-
members, but also against other group members. However, there exists a designated authority, calledgroup
managerthat initializes the scheme, adds new group members, and is able to open group signatures, i.e.,
reveal the signer’s identity from the signature. Some schemes, like [10] distinguish between two group
managers with respect to their responsibilities, i.e., membership manager that sets up the scheme and
controls admission to the group, and revocation manager that opens (traces) the signatures. Group signature
schemes can be used by employees of a company to sign documents on behalf of the company, or in



electronic voting and bidding scenarios. Bellareel. al. have described in [4] and [6] formal models and
security requirements for classical static and dynamic group signature schemes.

In the following we argue that this standard notion of group signatures is not applicable to the scenario of
the shared financial control in a JVCo described in the introduction. The most disturbing factor is the role
of the group manager that must be trusted by all group members. Assume that a classical group signature
scheme is applied for the financial control in a JVCo. Then, there is a sole member (group manager) of
the ”board of directors” who according to the group signature scheme is given a power to decide about the
membership of JV partners and is able to verify all payment orders issued by other directors on behalf of
the JVCo, i.e., open corresponding signatures. Obviously, it is be difficult to agree whose representative
should take this role, because all ”parent” companies have equal rights. Even if such group manager is
chosen, the rest of the board must trust him not to compromise the scheme, e.g., not to add other members
to the group. Additionally, this kind of the centralized control contradicts to the idea of the shared financial
control, because other directors are not be able to independently monitor the accounting of the shared
budget. Surely, the group manager can be asked to open every signature and send a notification containing
the signer’s identity to every other member. However, this does not only contradict to the ”trust, but verify”
relationship, because other members have to trust that the information provided by the group manager is
correct, but is also inefficient, because the group manager is the only to perform computations needed
for the revocation (tracing), and it also becomes a ”single point of failure”. Additional drawbacks of such
centralized management get clear in the context of the dynamic changes. Since ”parent” companies may
resign from a JVCo there is a problem in case where the group manager represents a leaving JV partner. In
this case another group manager must be chosen and the scheme has to be reinitialized, because classical
group signature schemes assume that the group manager stays continuously in the group, and do not provide
mechanisms to handle the opposite case. For these reasons classical group signatures cannot be effectively
applied in the described scenario, and do not satisfy the fairness condition stated by the ”trust, but verify”
relationship.

Ring signaturesare another kind of group-oriented signature schemes which we consider in the context
of the shared financial control in JV companies. The concept of ring signatures introduced by Rivestet. al.
in [20] and developed further in [1], [21] and [18], has some significant differencies to the classical group
signature schemes. In ring signature schemes there is no group initialization and no group manager. Thus,
members do not have to perform any interactive protocols (i.e., to cooperate) to initialize the group in dif-
ference to classical group signature schemes, where group members usually perform an interactive protocol
with the group manager to obtain their membership certificates that are then used in the generation of the
group signatures. Thus, in the ring signature schemes any participant may specify a set of possible signers
(usually by their public keys) and produce ring signatures that convince any verifier that the author belongs
to this set without revealing any information that may be used to identify the author. The most important
difference besides the absence of cooperation and the absence of the group manager is the requirement of
unconditional anonymity, i.e., there is no revocation (tracing) authority which is able to reveal the signer’s
identity from the ring signature.

This requirement of unconditional anonymity makes the use of ring signatures in the described scenario
of the shared control impossible. It disallows the independent monitoring of the accounting and does not
guarrantee that the shared capital is spent fairly by individual ”parent” companies. The fact that ring sig-
natures cannot be opened allows directors to sign payment orders which cannot be linked to their ”parent”
companies. Hence, directors must trust each other not to cheat while spending the shared capital, and truly
refund the differences to the JVCo’s budget. Obviously, this contradicts to the required ”trust, but verify”
relationship, because no independent verification is possible. Additionally, the absence of the group initial-
ization and the fact that every member can define own set of possible signers makes the establishment of a
JVCo as an independent company more difficult.

There exist currently no group-oriented signature schemes which can be effectively used for the means
of the shared control based on the ”trust, but verify” relationship. Therefore, in our model we design a
new scheme, which includes some properties of the existing schemes and states new requirements, such as



individual tracing of signatures, and cooperation of participants for the initialization of the scheme, and its
maintenance upon possible dynamic changes.

2 Democratic Group Signatures

In this section we present our model of a group-oriented signature scheme which can be used for the means
of the described scenario of the shared control based on the ”trust, but verify” relationship. To emphasize
that the ”parent” companies have equal rights in the formation and extension of a JVCo, in the issuing of
payment orders, and in the monitoring of the accounting we call our scheme ademocratic group signature
scheme (DGS).

2.1 Preliminaries

Roles and Definitions.In order to link the description of our model to the example of the shared financial
control in the introduction we use the following notations:groupstands for the ”board of directors” of a
JV company;group membersare representatives of ”parent” companies in the board.

Dynamic Changes.As already described in the introduction a democratic group signature scheme has to
handle the following dynamic events: join and leave of JV partners. Whenether a new ”parent” company
signs the JV arrangement it provides its own representative to the board, i.e., a new member is added to the
group. Similar, if a JV partner resigns from the contract its representative leaves the board, i.e., a current
member is excluded from the group. In our model we assume that group members are notified about the
occured dynamic changes.

The individual tracing property of democratic group signatures together with possible dynamic changes
imply two additional (in the following informally defined) security requirements in the context of signer’s
anonymity: (1) a joining member must not be able to open any group signature which has been produced
by a group member before the join event took place, and (2) a leaving member must not be able to open
any group signature which is produced by a group member after the exclusion process. More specific, only
if usersi andj are members during the period between two consecutive changes of the group formation,
then memberi can open all signatures that memberj has generated within this period, and vice versa.
Note that as a consequence of these requirements, all relevant group secrets that can be used to open group
signatures have to be changed after every dynamic change of the group formation. A trivial solution is
to reinitialize the group after any change of the group formation. Intuitively, this is inefficient because of
additional interaction and computation costs. A more intelligent solution is to provide auxiliary protocols
to hande join and leave events more efficiently, i.e., with less interaction and computation costs compared
to a full reinitialization.

Trust Relationship.As mentioned in the introduction democratic group signatures are based on the ”trust,
but verify” relationship between group members. Since tracing rights are given individually to every group
member and anonymity is an issue, every group member is trusted not to reveal secrets that may be used
to open group signatures to any other party. However, any group member may want to frame any other
group member into signing a message, or generate a group signature that cannot be opened. This attack
is imaginable in JV companies where partners may try to cheat and spend more money from the JVCo’s
budget without refunding the difference to the budget. Additionally, some JV partners may try to collude
against other JV partners and help each other to break the contract rules. In this case we assume that there
is at least one group member who is honest. Obviously, this is a realistic assumption since a collusion
which consists of all JV partners does not make any sense. Further, we assume that every member is able
to authenticate own messages during the interaction with other members. This can be realized using public
key certificates.

Counter. In order to simplify the handling of occuring dynamic events we distinguish between continuously
changed group formations using a counter valuet that consecutively counts occuring dynamic events. The
counter is initialized ast = 0 after the initial group formation and increased by one after every further



dynamic event. Thus, every valuet corresponds to the group formation at the momentt has been set.
Therefore, all parameters of our democratic group signature scheme are bound to a certain valuet and may
be changed with respect to the changes in the group formation.

2.2 Protocols and Algorithms
In this section we describe protocols and algorithms of a democratic group signature scheme. We denote
by Y[t] the group public key, byxi[t] the secret signing key of memberi, and byx̂[t] the tracing trapdoor
that correspond to a group formation identified by the counter valuet, e.g.,Y[0] andY[1] denote the group
public keys of the initial formation (t = 0) and after the first dynamic event (t = 1), respectively.
Definition 1. A democratic group signature schemeDGS = {Setup(), Join(), Leave(), Sign(),
V erify(), Trace(), V erifyTrace()} is a digital signature scheme that consists of:
– A randomized protocolSetup() betweenn cooperating users for the initial formation of the group.

The public output is the group public keyY[0]. The private outputs are the individual secret signing
keysxi[0] for each memberi, i ∈ [1, n] and the tracing trapdoor̂x[0].

– A randomized protocolJoin() between current group members and a joining member. Lett be a
current counter value,n the number of current group members. The public output is the updated public
key Y[t+1]. The private outputs are possibly updated secret signing keysxi[t+1], i ∈ [1, n + 1] for all
members (including the new member) and the updated tracing trapdoorx̂[t+1].

– A randomized protocolLeave() between remaining group members. Lett be a current counter value,
n−1 the number of remaining group members. The public output is the updated public keyY[t+1]. The
private outputs are updated secret signing keysxi[t+1], i ∈ [1, n − 1] for all remaining members and
the updated tracing trapdoorx̂[t+1].

– A randomized algorithmSign() that on input a secret signing keyxi[t], a messagem, and the group
public keyY[t] outputs a signatureσ.

– A deterministic algorithmV erify() that on input a candidate signatureσ, a messagem, and the group
public keyY[t] returns1 if and only if σ was generated by a group memberi ∈ [1, n] usingSign() on
inputxi[t], m andY[t] for any counter valuet ∈ N.

– A randomized algorithmTrace() that on input a candidate signatureσ, a messagem, the group public
key Y[t], and the tracing trapdoor̂x[t] returns the identityi of the group member who has generatedσ
together with a proofπ of this fact for any counter valuet ∈ N.

– A deterministic algorithmV erifyTrace() that on input a signatureσ, a messagem, the group public
keyY[t], the identityi, and a candidate proofπ thatσ has been generated by memberi returns 1 if and
only if i andπ were returned byTrace() on inputσ, m, x̂[t], Y[t] for any counter valuet ∈ N.

We remark thatJoin() is used by members to add new participants to the group, whereasLeave() to
exclude a certain member from the group according to the agreed membership policy.

Remark 1.Obviously, only the knowledge of the tracing trapdoorx̂[t] allows to open produced group sig-
natures. In order to fulfill the requirement of anonymity with respect to possible dynamic changes and in
the context of the individual tracing rights, i.e., to prevent new members from opening previously generated
group signatures, and former members from opening any further generated group signatures, the tracing
trapdoorx̂[t] has to be changed whenethert is increased after any occured dynamic event. Note that in Def-
inition 1 the change of secret signing keysxi[t] is not explicitly required (i.e., we write ”possibly updated”
in the definition). Therefore, it depends on the concrete realization whether secret signing keys are changed
or not.

2.3 Security Requirements
In this section we specify the security properties of a democratic group signature scheme.
Definition 2 (Correctness).A democratic group signature schemeDGS = {Setup(), Join(), Leave(),
Sign(), V erify(), Trace(), V erifyTrace()} is correct if for all Y[t], xi[t], and x̂[t] returned by the
protocols Setup(), Join() and Leave() with respect to the counter valuet, and for any signature
σ = Sign(xi[t],m, Y[t]):

V erify(σ,m, Y[t]) = 1 ∧ Trace(σ,m, Y[t], x̂[t]) = (i, π) ∧ V erifyTrace(σ,m, Y[t], i, π) = 1.



In other words, the verification algorithmV erify() acceptsσ, and tracing algorithmTrace() outputsi
together with the proofπ and verification algorithmV erifyTrace() accepts this proof.

Traceability. We say that a democratic group signature schemeDGS is traceable if there exists no
polynomial-time adversaryA that can win the following traceability game, whereA’s goal is to forge
a group signature that cannot be traced to one of the group members controlled or corrupted1 by A. Our de-
scription of traceability includes collision-resistance, framing and unforgeability requirements as described
in [4]. Let A[t] denote a set of group members controlled by the adversary, andA′

[t] denote a set of group
members corrupted by the adversary in the group formation identified by the counter valuet, respectively.

Setup: The challengerC performs the protocolSetup() for n simulated participants and obtains the
keysY[0], xi[0] for all i ∈ [1, n] andx̂[0], and setst = 0. It provides the adversaryA with Y[0].

Queries:After obtainingY[0] adversaryA can make the following queries:
Join. A can initiateJoin() with C and introduce a new group member. Lett be the current counter
value andn the current number of group members. The protocol updates the keysY[t+1], xi[t+1] for
all i ∈ [1, n + 1] andx̂[t+1]. A obtainsY[t+1], x̂[t+1], the secret signing keyxa[t+1] of the introduced
membera. C adds the introduced membera toA[t+1]. Note thatC does not learnxa[t+1].

Leave. A can initiateLeave() with C and exclude any memberi ∈ [1, n] from the group. Lett be
the current counter value andn the current number of group members. The protocol updates the keys
Y[t+1], xi[t+1] for all i ∈ [1, n−1] andx̂[t+1]. C updates setA[t+1] by removing the excluded member if
he was inA[t]. If A[t+1] is not empty, thenA obtainsY[t+1], x̂[t+1], and the secret signing keysxai[t+1]

of all controlled members inA[t+1]; otherwise it obtains onlyY[t+1].

CorruptMember. A can request the secret signing key of any memberi ∈ [1, n] that is not controlled
by A in a group formation identified by anyt ∈ N. C returnsxi[t] to A, and adds memberi toA′

[t].

CorruptGroupKey. A can request the tracing trapdoorx̂[t] for anyt ∈ N. C returnsx̂[t] to A.

Sign. A can request a group signature of an arbitrary messagem for any memberi∈ [1, n] that is not
controlled or corrupted byA and any counter valuet. C computes and returnsσ = Sign(xi[t],m, Y[t]).

Output: Finally, A returns a messagem, a signatureσ, and a counter valuet. A wins if the forgery is
successful, i.e., the following requirements are satisfied: (1)σ is accepted by the verification algorithm
V erify(); (2) algorithmTrace() tracesσ to a group member that is neither inA[t] nor inA′

[t], or fails;
and (3)σ was not obtained byA from a signing query onm to C.

Definition 3. A democratic group signature schemeDGS = {Setup(), Join(), Leave(), Sign(),
V erify(), Trace(), V erifyTrace()} is traceable if the advantage of any polynomial-time adversary
A in winning the traceability game defined asAdvtr

A = Pr[A outputs a successful forgery] is negligible,
i.e.,Advtr

A ≤ ε.

Anonymity. We say that a democratic group signature schemeDGS is anonymous if there exists no
polynomial-time adversaryA that can win the following anonymity game, whereA’s goal is to determine
which of the two keys have been used to generate the signature. LetA[t] denote a set of group members
controlled by the adversary in the group formation identified by the counter valuet, i.e., the adversary fully
controls the participation of these members in the protocols ofDGS.

Setup: The challengerC performs the protocolSetup() for n simulated participants and obtains the
keysY[0], xi[0], i ∈ [1, n] andx̂[0]. It provides the adversaryA with Y[0].

1 We distinguish between group members that are controlled and group members that are corrupted byA. If A introduces a new
member to the group, then we say thatA controls this member. IfA obtains the secret signing key of a member that it has
not introduced, then we say that this member is corrupted byA. Allowing A to control group members we consider an active
adversary that participates in the protocols that update the group formation.



Type1-Queries:After obtainingY[0] algorithmA can make the following queries:
Join. A can initiateJoin() with C and introduce a new group member. Lett be a current counter value
andn the current number of group members. The protocol updates the keysY[t+1], xi[t+1], i ∈ [1, n+1]
andx̂[t+1]. A obtainsY[t+1], x̂[t+1], the secret signing keyxa[t+1] of the introduced membera. C notes
that there is a group member controlled byA in the group formation identified byt + 1, thus adds the
introduced membera to the setA[t+1]. Note thatC does not learnxa[t+1].

Leave. A can initiateLeave() with C and exclude any memberi ∈ [1, n] from the group. Lett be
the current counter value andn the current number of group members. The protocol updates the keys
Y[t+1], xi[t+1] for all i ∈ [1, n−1] andx̂[t+1]. C updates setA[t+1] by removing the excluded member if
he was inA[t]. If A[t+1] is not empty thenA obtainsY[t+1], x̂[t+1], and the secret signing keysxai[t+1]

of all group membersai in A[t+1]; otherwise it obtains onlyY[t+1]. Note thatC does not learn any
xai[t+1].

Sign. A can request a signature on an arbitrary messagem for any memberi ∈ [1, n] that is not
controlled byA and any counter valuet ∈ N. C computesσ = Sign(xi[t],m, Y[t]) and returnsσ to A.

Challenge: A outputs a messagem′, two identities of group membersi0, i1 ∈ [1, n] and a counter
value t, such thatA[t] = ∅. C chooses a random bitd ∈R {0, 1}, computes a signatureσd =
Sign(xid[t],m

′, Y[t]) and returns it toA.

Type2-Queries:After obtaining the challenge,A can make the following queries:
Join. A can introduce new group members as in Type1-Queries.
Leave. A can exclude group members (also challenged membersi0 andi1) as in Type1-Queries.
Sign. A can request a signature on an arbitrary messagem (alsom′) for any memberi that is not
controlled byA (also for membersi0 andi1) and any counter valuet ∈ N as in Type1-Queries.

Output: Finally, A returns a bitd′ trying to guessd, and wins the game ifd′ = d.

Definition 4. A democratic group signature schemeDGS = {Setup(), Join(), Leave(), Sign(),
V erify(), Trace(), V erifyTrace()} is anonymous if the advantage of any polynomial-time adversaryA
in winning the anonymity game defined asAdvan

A = Pr[A(σ1) = 1] − Pr[A(σ0) = 1] is negligible, i.e.,
Advan

A ≤ ε.

We remark that at least two group members have to be in the group identified by the challenged counter
valuet, andA[t] = ∅ must hold. Note that the signatureσd is bound to a certain counter valuet so that the
informally defined requirements from Section 2.1 (a joining member must not be able to open any group
signature which has been produced by a group member before the join event took place, and a leaving
member must not be able to open any group signature which is produced by a group member after the
exclusion process) are covered by the above anonymity game.

Definition 5 (Security). A democratic group signature schemeDGS = {Setup(), Join(), Leave(),
Sign(), V erify(), Trace(), V erifyTrace()} is secure if it is correct, anonymous and traceable.

3 Our Construction

3.1 Number-Theoretic Assumptions

Definition 6 (Discrete Logarithm (DL) Assumption). LetG =<g> be a cyclic group generated byg of
order ord(G). There is no probabilistic polynomial-time algorithmA that with non-negligible probability
on inputga wherea ∈ Zord(G) outputsa. LetAdvdl

A = Pr[A(ga) = a] be the advantage ofA in breaking

the DL assumption. The DL assumption holds inG if this advantage is negligible, i.e,Advdl
A ≤ ε.



Definition 7 (Decisional Diffie-Hellman (DDH) Assumption).Let G =< g > be a cyclic group gen-
erated byg of order ord(G). There is no probabilistic polynomial-time algorithmA that distinguishes
with non-negligible probability between two distributionsD0 = (g, ga, gb, gc) andD1 = (g, ga, gb, gab)
wherea, b, c ∈ Zord(G), i.e.,A outputs1 on input the distributionD1, and0 on inputD0. Let Advddh

A =
Pr[A(D1) = 1] − Pr[A(D0) = 1] be the advantage ofA in breaking the DDH assumption. The DDH
assumption holds inG if this advantage is negligible, i.e.,Advddh

A ≤ ε.

3.2 Building Blocks
Our scheme consists of the following well known cryptographic primitives: a contributory group key agree-
ment protocol for the initialization of the scheme and its maintenance upon dynamic changes, and signa-
tures of knowledge for the signing and verification processes. Although our scheme may be seen as a
straightforward solution, we note that to the best of our knowledge it is first (!) to consider contributory
group key agreement protocols in the context of group-oriented signature schemes. This provides addi-
tional challenge for the security proof of the scheme, because the security of the interactive setup protocol
has to be considered. Note that in classical group signatures the group manager that sets up the group is
trusted, and, therefore, the security of the initialization procedure is usually omitted.

Contributory Group Key Agreement Protocols Contributory group key agreement(CGKA) protocols
allow participants to form a group, compute the group secret keykG by interaction, and update it on occured
dynamic changes. The group secret keykG is computed or updated as a function of individual contributions
of all group members. CGKA protocols suit well into the scenario of the shared control based on the ”trust,
but verify” relationship, because they are independent of any centralized management and allow group
members to verify the protocol steps towards the computation ofkG. A CGKA protocol suite consists
usually of a setup protocol and of protocols that handle various dynamic events, i.e., join and leave of
single group members, and merge and partition of whole groups. However, for our group signature scheme
we require only setup, join and leave protocols. Therefore, we omit the description of merge and partition
protocols in the following definition.

Definition 8. A CGKA protocol suiteCGKA = {Setup(), (Joini(), Joinu()), Leave()} consists of the
following algorithms and protocols:
– A randomizedinteractive algorithmSetup() that implements the user’si side of the homonymous

protocol betweenn users to initialize the group. On input an individual secretki of useri and corre-
sponding contributionzi, the algorithm obtains by interaction a set of individual contributions of other
usersZ = {zj |j ∈ [1, n], j 6= i}, and outputs the group secret keykG and some auxiliary information
auxi for the handling of further dynamic events. Note thatkG can be computed only by group members
who participate in the protocol.

– A pair of randomizedinteractive algorithms(Joini(), Joinu()) that implement member’si and joining
user’su sides of the protocolJoin() betweenn group members and the joining user, respectively.
Joini() takes as input a current individual secretki and current informationauxi, obtains by interaction
the joining user’s contributionzu, and outputs updatedkG, auxi, and possibly changedki.
Joinu() takes as input a new user’s individual secretku and corresponding contributionzu, obtains by
interaction some auxiliary informationauxu (including setZ = {zj |j ∈ [1, n]), and outputs updated
kG andauxu.

– A randomizedinteractive algorithmLeave() that implements member’si side of the homonymous
protocol between remainingn− 1 group members due to exclusion of a memberj. On input a current
individual secretki, leaving member’s contributionzj and current informationauxi, the algorithm
outputs updatedkG, auxi, and possibly changedki.

Remark 2.CGKA protocols that handle dynamic events require usually that some members change their
individual secret keyski during the protocol for the sake of security, e.g., to guarantee the freshness of the
updated group secret key. This is emphasized by the expression ”possibly changed” in the above definition
of the protocolsJoini() andLeave(). If such change is required then memberi changeski and updates
own contributionzi. Thus, no other party except for memberi ever learnski.



Remark 3.The auxiliary informationauxi returned by the interactive algorithms ofCGKA depends on
the actual protocol suite. It contains auxiliary values that can be used by group members to handle further
occuring dynamic events. We remark that for our schemeauxi must provide every memberi with a current
set of members’ contributionsZ = {zj |j ∈ [1, n]}, because we useZ as part of the group public key.
This requirement is implicitly achieved for most CGKA protocols (including those mentioned below),
because participants broadcast contributions over a public channel. This is also the reason why considering
contributions as part of the group public key is not a hazard to the security of the CGKA protocols.

The security of CGKA protocol suites is usually described by the following (informally described) set of
requirements ([17]):

– Computational group key secrecyrequires that for a passive adversary it must be computationally in-
feasible to discover any secret group key.

– Decisional group key secrecy2 requires that for a passive adversary it must be computationally infeasi-
ble to distinguish any bits of the secret group key from random bits.

– Forward secrecy3 requires that any passive adversary being in possession of a subset of old group keys
must not be able to discover any subsequent group key (e.g. if a member leaves the group knowing the
group key it should not be able to compute the updated group key).

– Backward secrecyrequires that any passive adversary being in possession of a subset of contiguous
group keys must not be able to discover any preceding group key (e.g. if a member joins to the group
and learns the updated group key it should not be able to compute the previous group key).

– Key independencerequires that any passive adversary being in possession of any subset of group keys
must not be able to discover any other group key.

Note that the adversary is assumed to be passive, i.e., it is not a valid group member during the time
period the attack is taking place. Considering active adversaries, i.e., group members does not make sense,
because every group member learns the group key by the end of the protocol. Thus, group members are
trusted not to reveal the group key or any other secret values that may lead to the computation of the group
key to the third parties. This is exactly the requirement stated for democratic group signatures in Section
2.1 to keep the individual tracing of signatures prior to group members. Further reason for the suitability
of CGKA protocols for the initialization and maintenance of the DGS is the ”trust, but verify” relationship
between group members, i.e., some protocols, like [16] and [17] define a role of asponsorthat becomes
active on dynamic events and performs some computations on behalf of the group to achieve additional
efficiency. Although this sponsor acts on behalf of the group, there exists at least one other group member
who can verify the sponsor’s actions. Additionally, join and leave protocols can be utilized in DGS to
maintain the scheme efficiently, i.e., without reinitialization.

Members’ contributions in the mentioned CGKA protocols are constructed as follows: every member
chooses own secretki and computes his contributionzi = gki , whereg is a generator of a cyclic group
G =< g >, where the DL Assumption holds (e.g.,Z∗

p with primep or a subgroup of points on an elliptic
curveE over a finite fieldFq).

Our scheme has been designed to work with any CGKA protocol suite that fulfills described security
requirements, and the contributions of group members have the above construction. For example, protocol
suites in [16] and [17] can be applied in the scheme. In the following we briefly explain how we use the
properties of such CGKA protocols.

The group secret keykG computed and updated by the CGKA protocols is used as the tracing trapdoor
x̂ from Definition 1. In order to maintain̂x after dynamic changes and keep individual tracing rights prior
to group members, the protocolsSetup(), (Joini(), Joinu()) andLeave() of the CGKA protocol suite
are embedded in the homonymous protocols of our DGS, respectively. Security requirements of CGKA

2 The formal definition of the decisional group key secrecy is given in Appendix A.3 where it is used to prove the anonymity of
our scheme.

3 In the context of our security proof (Remark 5) we show that the absence of so-called Perfect Forward Secrecy does not provide
additional risks to the security of our scheme.



protocols take care that no unauthorized users are able to computex̂ and open group signatures. In our
scheme members use their individual secretski as secret signing keysxi from Definition 1. This is possi-
ble, because everyki remains known only to the corresponding member. Our scheme includes the set of
members’ contributionsZ = {zi|∀i ∈ [1, n]} in the group public keyY as shown in Section 3.3.
Signatures of Knowledge Signatures of knowledge, introduced in [11], and also used in some classical
group signature schemes, like [10] and [3] are message dependent zero-knowledge proofs of knowledge
of some secrets that are made non-interactive using the Fiat-Shamir heuristic [14]. The security of such
schemes is usually shown by proving the security of an underlying interactive zero-knowledge protocol
and then by assuming that no security flaws occur if verifier’s computations in the interacive protocol are
replaced by a collision resistant hash functionH : {0, 1}∗ → {0, 1}k with security parameterk. The
security of this non-interactive approach can be shown in the random oracle model [5].

Signatures of knowledge consist of two polynomial-time algorithms(SKSig(), SKV er()), where
SKSig() is a randomized signing algorithm andSKV er() a deterministic verifying algorithm. A signer
S who is in possession of some secrets can compute the signature of knowledge ofs on a messagem
usingSKSig() and send it to a verifierV. In SKSig() an appropriate one-way functionf is applied to the
secret that prevents any leakage of the information about the secret. If algorithmSKV er() performed by
V accepts the signature thenV is convinced thatSknowss, but learns nothing about this secret. However,
if Sdoes not knows or does not uses in SKSig() to compute the signature thenSKV er() rejects. A sig-
nature of knowledge is called secure if the probability of producing a forged signature without knowing the
secrets such thatSKV er() accepts the forgery is negligible, and if any correctly generated signature does
not reveal any sufficient information that may be used to computes. Before we describe the signatures of
knowledge used in our scheme, we give a simple example to explain used notations, borrowed from [11]:
a signature of knowledge on a messagem, denotedSK[(α) : y = gα](m), proves the knowledge of the
discrete logarithm ofy to the baseg as described by the equation on the right side of the colon. By the
convention Greek letters denote secret values, whose knowledge has to be proved, whereas other letters
denote public values.

The following is a combination of the signature of knowledge of the representation and knowledge of
1-out-of-n discrete logarithms. We extend the signature of knowledge of 1-out-of-2 discrete logarithms
from [10]. Note that the signature does not reveal which discrete logarithm the signer knows.

Definition 9. Let G be a cyclic group of orderord(G) where the Discrete Logarithm Assumption holds.
A 3n-tuple (c1, . . . , cn, su1 , . . . , sun , sv1 , . . . , svn) ∈ ({0, 1}k)n × Z2n

ord(G) satisfyingc1 ⊕ . . . ⊕ cn =

H(g1, g2, y, z1, . . . , zn, yc1g
su1
1 g

sv1
2 , . . . , ycng

sun
1 g

svn
2 , zc1

1 g
sv1
2 , . . . , zcn

n g
svn
2 ,m) is a signature of knowl-

edge of the discrete logarithm of onezi, i ∈ [1, n] to the baseg2 and its equality to the exponent of the
g2-part ofy, on a messagem ∈ {0, 1}∗, denoted

SK[(αi, β) : y = gβ
1 gαi

2 ∧ (z1 = gα1
2 ∨ . . . ∨ zn = gαn

2 )](m).

Assume that the signer knows(x1, x2)∈R Z2
ord(G) with y = gx1

1 gx2
2 andzi = gx2

2 for onei ∈ [1, n]. Then

a signatureSK[(αi, β) : y = gβ
1 gαi

2 ∧ (z1 = gα1
2 ∨ . . .∨ zn = gαn

2 )](m) on a messagem ∈ {0, 1}∗ can be
computed using the following algorithm:

• (ru1 , . . . , run , rv1 , . . . , rvn)∈R Z2n
ord(G); (c1, . . . , ci−1, ci+1, . . . , cn)∈R ({0, 1}k)n−1;

• ui = g
rui
1 ; vi = g

rvi
2 ; for all j 6= i: uj = ycjg

ruj

1 g
rvj

2 andvj = z
cj

j g
rvj

2 ;
• ci =

⊕n
j 6=i cj ⊕H(g1, g2, y, u1, . . . , ui−1, uivi, ui+1, . . . , un, v1, . . . , vn,m);

• sui = rui − cix1; svi = rvi − cix2; for all j 6= i: suj = ruj andsvj = rvj .

The following is a combination of the signatures of knowledge of two equal discrete logarithms and of
the representation described in [11] and [10].

Definition 10. LetG be a cyclic group of orderord(G) where the Discrete Logarithm Assumption holds. A
tupel(c, s1, s2) ∈ {0, 1}k ×Z2

ord(G) satisfyingc = H(g1, g2, y1, y2, y
c
1g

sw1
2 , yc

2g
sw1
1 g

sw2
2 ,m) is a signature

of knowledge of the representation ofy2 to the basesg1 andg2, and of the equality of the discrete logarithm
of y1 to the baseg2 and the exponent of theg1-part ofy2, on a messagem ∈ {0, 1}∗, denoted

SK[(α, β) : y1 = gβ
2 ∧ y2 = gβ

1 gα
2 ](m).



Assume the signer knows(x1, x2)∈Z2
ord(G) with y1 = gx1

2 andy2 = gx1
1 gx2

2 . Then a signatureSK[(α, β) :

y1 = gβ
2 ∧ y2 = gβ

1 gα
2 ](m) on a messagem ∈ {0, 1}∗ can be computed using the following algorithm:

• (rw1 , rw2)∈R Z2
ord(G); w1 = g

rw1
2 ; w2 = g

rw1
1 g

rw2
2 ;

• c = H(g1, g2, y1, y2, w1, w2,m); sw1 = rw1 − cx1; sw2 = rw2 − cx2.

Both schemes can be proven secure in the random oracle model.4 We remark that the interactive version
of these protocols are zero-knowledge. Furthermore, these signatures of knowledge can be combined into
a single signature of knowledge as shown in the signing protocol in Section 3.3. Signatures of knowledge
can also be used as non-interactive proofs of knowledge if an empty string is used instead of the message
m, i.e.,SK[(α) : y = gα]() stands for the proof of knowledge of a discrete logarithm ofy to the baseg.

3.3 The Scheme

In this section we describe in detail our democratic group signature scheme with respect to Definition
1. Consider a cyclic groupG =< g > of orderord(G) generated byg where the Discrete Logarithm
Assumption holds. LetCGKA = {Setup(), (Joini(), Joinu()), Leave()} be a secure contributory group
key agreement protocol suite where group members’ contributions are constructed as described in Section
3.2. We assume that all sent messages are authentic.

Protocol Setup(). The protocol betweenn users to set up a SDG proceeds as follows. Each useri:

• sets counter valuet = 0, selects secret signing keyxi[0]∈R Zord(G), computes corresponding contribu-
tion zi[0] = gxi[0] ,

• performs the instance of the interactive algorithmCGKA.Setup(xi[0], zi[0]), and obtains the tracing
trapdoor (group secret key)̂x[0] ∈ Zord(G) and auxiliary informationauxi[0] that contains the set of
contributions of all group members, i.e.,Z[0] = {z1[0], . . . , zn[0]},

• computeŝy[0] = gx̂[0] , and defines the group public keyY[0] = (ŷ[0], Z[0]).
The public output of the protocol is the group public keyY[0]. The private outputs arexi[0], x̂[0] andauxi[0].

Publishing ofY[t]. Every group public keyY[t] = {ŷ[t], Z[t]} has to be published in an authentic manner.
Unlike in classical group signatures, where the group manager usually proves the correctness of the group
public key to the certification authority, in DGS all group members have to cooperate for this purpose. We
suggest the following simple solution. Every participanti holds an identity certificatecerti on a public key
pki issued by a certification authorityCA and used to authenticate messages ofi. The corresponding private
keyski is known only to the participant. Participanti computes the following signature of knowledge on a
messageMi = certi||t||Y[t]:

Si = SK[(αi, β) : ŷ[t] = gβ ∧ zi[t] = gαi ](Mi),

and signs it using a digital signature scheme with his private keyski, i.e., Ti = Sign(ski, Si). Then,
every member publishes(Mi, Si, Ti). Every member verifies whether all published tuples are correct, i.e.,
all proofs are verifiable, and every messageMi contains the same set of contributionsZ[t] in Y[t], and
complains if he discovers any cheating attempt. Obviously, the signatureSi proves that memberi knows
the tracing trapdoor̂x[t], own secretxi[t] used to compute the contributionzi[t] and seals the group formation
identified by the counter valuet, because contributions of all group members are part ofMi. This ensures
that any member’s attempt to cheat will be discovered if there is at least one honest group member (as
required by the trust relationship in Section 2.1). The cheating member can be identified using his signature
Ti. The published signatureTi can then be used to identify a group memberi upon his contributionzi[t].

Remark 4.This procedure has to be performed whenether the group public keyY[t] is updated, i.e., after
the protocolsJoin() andLeave(). SinceY[t] changes over dynamic events group signatures produced by
our scheme can be used by members only to prove their membership in the group formation identified by
t. To prove the membership in several formations a signature for each formation must be provided.

4 Note that not all protocols, which can be proven to be secure in the random oracle model are also secure in the standard
model as recently shown in [12]. However, it is still believed that for the kind of protocols considered here (i.e., signatures of
knowledge) random oracle provides sufficient proofs.



Protocol Join(). The protocol between the group and a joining memberu proceeds as follows. Lett be
the current counter value andn the number of group members.

• Joining memberu selects his secret signing keyxu[t+1] ∈R Zord(G), computes corresponding contri-
butionzu[t+1] = gxu[t] .

• Group members and the joining member perform the protocolCGKA.Join() by calling the instances
Joini() andJoinu(), respectively:
CGKA.Joini(xi[t], auxi[t]) is called by every memberi ∈ [1, n], and outputs the updated̂x[t+1],
auxi[t+1], and possibly updatedxi[t+1].
CGKA.Joinu(xu[t+1], zu[t+1]) is called by the joining memberu, and outputs the updated̂x[t+1] and
auxu[t+1].

• Every group member increasest, computes ŷ[t+1] = gx̂[t+1] and Y[t+1] =
(ŷ[t+1], z1[t+1], . . . , zn+1[t+1]).

The public output of the protocol is the changed group public keyY[t+1]. The private outputs arexi[t+1],
x̂[t+1], andauxi[t+1]. We remark, that current valuet can be sent to the joining member as part ofauxu[t+1].
This requires a minimal modification of the underlying CGKA protocol. If no modification is possible, then
one additional message containingt has to be sent between the group and the joining member.

Protocol Leave(). The protocol between the remaining group members after a memberu has left the
group proceeds as follows. Lett be the current counter value andn the number of group members. Every
remaining group memberi ∈ [1, n− 1]:

• performs the instance of the interactive algorithmCGKA.Leave(xi[t], zu[t], auxi[t]), and obtains the
updated̂x[t+1], auxi[t+1], and possibly updatedxi[t+1];

• increasest, computeŝy[t+1] = gx̂[t+1] andY[t+1] = (ŷ[t+1], z1[t+1], . . . , zn−1[t+1]).

The public output of the protocol is the updated group public keyY[t+1]. The private outputs arexi[t+1],
x̂[t+1], andauxi[t+1].

Algorithm Sign(). The signing algorithm is a combination of the signatures of knowledge from Section
3.2. In order to generate a group signature on a messagem ∈ {0, 1}∗ the algorithm on inputxi[t], m and
Y[t] = (ŷ[t], Z[t]) performs the following computations:

• r ∈R Zord(G); g̃ = gr; ỹ = ŷr
[t]zi[t];

• S = SK[(αi, β) : g̃ = gβ ∧ ỹ = ŷβ
[t]g

αi ∧ (z1[t] = gα1 ∨ . . .∨zn[t] = gαn)](m) is computed as follows:
∗ (ru1 , . . . , run , rv1 , . . . , rvn , )∈R Z2n

ord(G); (c1, . . . , ci−1, ci+1, . . . , cn)∈R ({0, 1}k)n−1;

∗ ui = ŷ
rui

[t] ; vi = grvi ; wi = grui ; for all j 6= i: uj = ỹcj ŷ
ruj

[t] grvj , vj = z
cj

j[t]g
rvj ; wj = g̃cjgruj ;

∗ ci =
⊕n

j 6=i cj ⊕H(g, ŷ[t], g̃, ỹ, u1, . . . , ui−1, uivi, ui+1, . . . , un, v1, . . . , vn, w1, . . . , wn,m);
∗ sui = rui − cir; svi = rvi − cixi[t]; for all j 6= i: suj = ruj , svj = rvj ;
∗ S = (c1, . . . , cn, su1 , . . . , sun , sv1 , . . . , svn);

The algorithm outputs the group signatureσ = (g̃, ỹ, S). Obviously, the signeri proves that values(g̃, ỹ)
encrypt his contributionzi[t] without revealing the latter by proving the knowledge of the representation
of ỹ to the baseŝy[t] andg, and that the same exponent is used to computeg̃ and theŷ[t]-part in ỹ. That
encrypted value is a valid contribution inZ[t] is shown by proving the equality between the exponent in
g-part of ỹ and the discrete logarithm ofzi[t] to the baseg. The fact that the signer knows the discrete
logarithm that has been used to computezi[t] proves that the signer is the owner of this contribution. Note
that the signature does not reveal the contribution of the signer. This is important for the anonymity property
of the scheme.

Algorithm V erify(). The verifying algorithm on input a candidate group signatureσ = (g̃, ỹ, S), mes-
sagem, and the group public keyY[t] = (ŷ[t], Z[t]) verifiesS, i.e.,

• ParseS as(c1, . . . , cn, su1 , . . . , sun , sv1 , . . . , svn); c̄ =
⊕n

j=1 cj ;

• checkc̄
?= H(g, ŷ[t], g̃, ỹ, ỹc1 ŷ

su1

[t] gsv1 , . . . , ỹcn ŷ
sun

[t] gsvn , zc1
1[t]g

sv1 , . . . , zcn

n[t]g
svn , g̃c1gsu1 , . . . , g̃cngsun ,m)

and returns1 if verification is successful; otherwise the algorithm fails.



Algorithm Trace(). The tracing algorithm on input a candidate signatureσ = (g̃, ỹ, S), a messagem,
the group public keyY[t] = (ŷ[t], Z[t]), and the tracing trapdoor̂x[t] proceeds as follows:

• checkV erify(σ,m, Y[t])
?= 1;

• V1 = g̃x̂[t] ; zi[t] = ỹ/V1;

• checkzi[t]

?
∈ Y[t];

• V2 = SK[(α) : ŷ[t] = gα ∧ V1 = g̃α]()

It outputs the decrypted signer’s contributionzi[t] and a proof(V1, V2) if and only if all checks are suc-
cessful; otherwise the algorithm fails.V2 is a proof thatV1 equals to thêy[t]-part of ỹ, i.e.,V1 = ŷr

[t]. The
signer’s identity can be easily computed from his contributionzi[t] as all contributions are part of the group
public keyY[t] and have been signed by the corresponding member using his certified key pair(ski, pki).

Algorithm V erifyTrace(). The algorithm on input a signatureσ = (g̃, ỹ, S), a messagem, the group
public keyY[t] = (ŷ[t], Z[t]), the contributionzi[t], and proving values(V1, V2) proceeds as follows:

• checkV erify(σ,m, Y[t])
?= 1;

• checkỹ
?= V1zi[t];

• verify V2;

It outputs1 if and only if all checks and verifications are successful; otherwise the algorithm fails.

3.4 Security Analysis

In this section we analyze the security of our scheme with respect to the requirements in Section 2.3.
We show that as long as underlying cryptographic building blocks (i.e, CGKA protocol and signatures
of knowledge) are secure our scheme fulfills the stated requirements. Since signatures of knowledge are
provably secure only in the random oracle model we apply this model to prove the security of our scheme.

Lemma 1. The construction of a democratic group signature schemeDGS = {Setup(), Join(), Leave(),
Sign(), V erify(), Trace(), V erifyTrace()} from Section 3.3 is correct.

Proof. The full proof is presented in Appendix A.1.

Lemma 2. The democratic group signature schemeDGS from Section 3.3 is traceable in the random
oracle model assuming that contributory group key agreement protocol suiteCGKA is secure and the
Discrete Logarithm (DL) assumption holds in the groupG =<g>.

Proof. The full proof is presented in Appendix A.2.

Lemma 3. The democratic group signature schemeDGS from Section 3.3 is anonymous in the random
oracle model assuming that contributory group key agreement protocol suiteCGKA is secure and the
Decisional Diffie-Hellman (DDH) assumption holds in the groupG =<g>.

Proof. The full proof is presented in Appendix A.3.

Theorem 1. The democratic group signature schemeDGS from Section 3.3 is secure in the random oracle
model assuming that contributory group key agreement protocol suiteCGKA is secure, and the DDH and
DL assumptions hold in the groupG =<g>.

Proof. The proof of this theorem follows immediately from Definition 5 and Lemmas 1, 2, and 3.



4 Conclusion and Further Directions

In order to handle the shared financial control in JVCos based on the ”trust, but verify” relationship we
have proposed a new group-oriented signature scheme, called ademocratic group signature. We have
shown that the classical model of group signatures is not applicable for this scenario because of the group
manager’s role, which contradicts to the requirement of individual tracing of group signatures and joint
control over the membership in the group. Our model can also be used for other issues of the shared
control where the ”trust, but verify” relationship is required. The proposed practical construction fulfills
the stated requirements and is secure in the random oracle model. The signature of knowledge used in the
signing algorithm is of independent interest. It may be used to prove that(g̃, ỹ) encrypts a valuegαi from
the setgα1 , . . . , gαn without revealing the indexi. In the following we would like to point out some further
research topics in the area of democratic group signatures.

4.1 Dynamic Changes
The presented scheme uses a contributory group key agreement protocol suite to establish and maintain
the group formation upon dynamic changes. The scheme is currently designed to work with any protocol
suite which fulfills the requirements from Section 3.2. However, not all CGKA protocols provide same
efficiency in this context. It would be interesting to analyze, which of the existing CGKA protocol suites
are mostly efficient? Further details and comparison of existing CGKA protocol suites are given in [2].

4.2 Signature and Public Key Sizes
In the proposed practical solution the group public key and generated signatures grow linearly in the num-
ber of current group members, whereas recent classical group signature schemes keep both sizes constant.
The latter is possible because the group manager controls the group formation and maintains a database
with transcripts of join events for all members. This database is used to open group signatures and its size
grows linearly (!) in the number of current group members. A challenging task is to design a DGS which
fulfills the proposed requirements, but keeps the signature size and (or) the group public key size constant.
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A Security Proofs

A.1 Proof of Lemma 1 (Correctness)

To prove the correctness of the scheme we have to show according to Definition 2 that for allY[t], xi[t] with
i∈ [1, n], andx̂[t] if σ = Sign(xi[t],m, Y[t]) then the following statements hold:

(i) V erify(σ,m, Y[t]) = 1 and
(ii) Trace(σ,m, Y[t], x̂[t]) = (zi[t], (V1, V2)) andV erifyTrace(σ,m, Y[t], zi[t], (V1, V2)) = 1.

Let σ = (g̃, ỹ, S) andY[t] = (ŷ[t], z1[t], . . . , zn[t]). The statementV erify(σ,m, Y[t]) = 1 holds since any
correctly generated signature of knowledgeS is accepted by the corresponding verification algorithm. On
input σ, m, Y[t], and x̂[t] the tracing algorithm computesV1 = g̃x̂[t] , which is equivalent tôyr

[t], there-
fore ỹ/V1 = ŷr

[t]zi[t]/ŷr
[t] = zi[t] holds. The contributionzi[t] is part ofY[t] and reveals the identity of

the signer. The tracing algorithm outputs also the proof of knowledgeV2, which is constructed using
the secret group keŷx[t]. Algorithm V erifyTrace() uses the proof(V1, V2) to verify the correctness

of zi[t] returned by the tracing algorithm with the equationỹ
?= V1zi[t], which obviously holds, because

V1zi[t] = ŷr
[t]zi[t] = ỹ. Verification ofV2 is succesfull due to its construction by the tracing algorithm.

Thus,V erifyTrace(σ,m, Y[t], zi[t], (V1, V2)) = 1. Hence, the democratic group signature scheme is cor-
rect.

A.2 Proof of Lemma 2 (Traceability)

The proof of traceability consists of four parts. First, we describe an oracleK that is used by the
polynomial-time challengerB to performCGKA protocols. Second, we describe the interaction between
B and polynomial-time adversaryA that is assumed to win the traceability game for the group signature
scheme. Third, we distinguish between different forgery types possibly produced byA. Fourth, we show
how interaction betweenB andA can be modified to compute a discrete logarithm in the groupG =<g>
using the forking lemma [19, Theorem 3].

Oracle K. In the following interaction we outsource the challenger’s part of the contributory group key
protocolCGKA used inDGS to an oracleK. The idea is thatB usesK to initialize the group ofn
members and acts as a mediator betweenA andK during the interaction withA. SinceK initializes the
group all secret keys{xi|i ∈ [1, n]} are initially known toK, but not toB. If during the interactionA



queriesB to perform a dynamic change (join or leave) thenB asksK to proceed with the query. UsingK
we allow indirect participation ofB in theCGKA protocols.B is allowed to ask for the computed tracing
trapdoorx̂ and any secret signing key{xi|i∈ [1, n]}, and receives also contributions of all group members,
i.e., setZ = {zi = gxi |i∈ [1, n]}. Our goal is to use the interaction to compute a secret signing keyxj that
remains unknown toB after the interaction is finished. This is equivalent to the computation of the discrete
logarithm inG sincexj = logg zj .

LetK denote a set of contributions of group members that are controlled by the oracleK, andn be the
current number of group members. OracleK answers to the following queries ofB:

Setup. This query can be used to initialize the group. It containsn∈N as parameter.K picksn secret
values(x1, . . . , xn) ∈R Zn

ord(G) computes corresponding contributionszi = gxi for all i ∈ [1, n],
performsn instances of the interactive algorithmCGKA.Setup(xi, zi) to obtain the tracing trapdoor
x̂ and auxiliary informationauxi for each instance, and setsK = {zi|i ∈ [1, n]}. K answers with the
communication transcripttscript of all protocol messages. Note thattscript contains only public data
sent over simulated communication channel and due to the security ofCGKA does not reveal any
information that may lead to the computation of secretsxi, i ∈ [1, n] or x̂. Among other information
tscript contains the set of public contributionsZ = {zi|i ∈ [1, n]}.

Joini. This query can be used to introduce a new member to the group that is not controlled byK.
K performs|K| instances of the interactive algorithmCGKA.Joini(xi, auxi) and obtains the trac-
ing trapdoorx̂ and auxiliary informationauxi for each instance.K answers with the communication
transcripttscript of all protocol messages. Note thattscript contains an updated set of public contri-
butionsZ = {zi|i ∈ [1, n + 1]} including the contribution of the joined member.

Leave. This query can be used to exclude a memberj from the group. It containszj ∈ G as pa-
rameter. Ifzj ∈ K thenK = K − {zj}. K performs |K| instances of the interactive algorithm
CGKA.Leave(xi, zj , auxi), and obtains the tracing trapdoorx̂ and auxiliary informationauxi for
each instance.K answers with the communication transcripttscript of all protocol messages. Note
thattscript contains an updated set of public contributionsZ = {zi|i ∈ [1, n− 1]}.

SGroupKey. This query can be used to obtain the tracing trapdoorx̂ and contains no parameters.K
answers witĥx. Note that due to the security requirements ofCGKA the tracing trapdoor̂x does not
reveal any information that can be used to compute any member’s secretxi.

SMemberKey. This query can be used to obtain a member’si secretxi. It containszi∈Z as parameter.
K answers withxi.

Interaction betweenB and A. Assume that there exists a polynomial-time adversaryA that wins the
traceability game in Section 2.3 with non-negligible probability, i.e.,Advtr

A > ε. LetA[t] denote a set of
contributions of group members controlled by the adversary,A′

[t] a set of contributions of group members
corrupted by the adversary, andB[t] a set of contributions of group members that are not controlled and
not corrupted by the adversary in the group formation that is identified with the counter valuet, andn
be a number of group members of this group formation, such that the following relations hold for allt:
A[t] ∪B[t] = Z[t],A[t] ∩B[t] = ∅,A′

[t] ⊆ B[t], andn = |A[t]|+ |B[t]|. We stress that group members inB[t]

are controlled by the oracleK, and that all secret signing keysxi[t] of group members inB[t] are initially
known only toK and not toB.

Setup:B picks a randomn∈R N, sets counter valuet = 0, initializes setsA[0] = ∅,A′
[0] = ∅, queries

K on Setup with n and obtains communication transcripttscript, that reveals the set of contributions
Z[0] = {zi[0]|i ∈ [1, n]}. B definesB[0] = Z[0], queriesK on SGroupKey and obtains the tracing
trapdoorx̂[0]. B computeŝy[0] = gx̂[0] , and givesA the group public keyY[0] = (ŷ[0], Z[0]). (Note that
B does not know any secret signing keyxi[0] used to compute the corresponding contribution.)



Hash Queries:At any timeA can query the hash functionH. B answers the query completely at
random while keeping constistency.

Queries:
Join. A picks xa[t+1] ∈ Zord(G), computes contributionza[t+1] = gxa[t+1] , and starts the interactive
algorithmsCGKA.Joinu(xa[t+1], za[t+1]) andCGKA.Joini(xai[t], auxai) for all ai with zai[t] ∈A[t],
whereasK uponB’s queryJoini startsCGKA.Joini(xi[t], auxi[t]) for all i with zi[t]∈B[t]. B forwards
A’s messages toK and vice versa until the protocol is finished. For the instance ofCGKA.Joinu()
A obtainsx̂[t+1] andauxa[t+1], and for all instances ofCGKA.Joini() it obtainsx̂[t+1], auxai[t+1]

and possibly updatedxai[t+1], whereasK obtainsx̂[t+1], auxi[t+1] and possibly updatedxi[t+1]. B
receivestscript vonK that includes the set of updated contributionsZ[t+1] = {zi[t+1]|i∈ [1, n + 1]},
and updatesA[t+1] = A[t] + {za[t+1]}, A′

[t+1] = A′
[t] andB[t+1] = B[t] accordingly.B queriesK on

SGroupKey and obtainŝx[t+1]. Both,A andB computeŷ[t+1] = gx̂[t+1] andY[t+1] = (ŷ[t+1], Z[t+1]).

Leave. Suppose memberj ∈ [1, n] should be excluded from the group. Ifzj[t] ∈ A[t] then B up-
datesA[t+1] = A[t] − {zj[t]}, elseA[t+1] = A[t]. If zj[t] ∈ B[t] thenB[t+1] = B[t] − {zj[t]}, else
B[t+1] = B[t]. If zj[t] ∈ A′

[t] thenA′
[t+1] = A′

[t] − {zj[t]}, elseA′
[t+1] = A′

[t]. A starts interactive al-
gorithmsCGKA.Leave(xai[t], zj[t], auxai) for all ai with zai[t] ∈A[t+1], whereasK uponB’s query
Leave with parameterzj[t] startsCGKA.Leave(xi[t], zj[t], auxi) for all membersi with zi[t]∈B[t+1]. B
forwardsA’s messages toK and vice versa until the protocol is finished.A obtainsx̂[t+1], auxai[t+1]

and possibly updatedxai[t+1], whereasK obtainsx̂[t+1], auxi[t+1] and possibly updatedxi[t+1]. B re-
ceivestscript vonK that includes the set of updated contributionsZ[t+1] = {zi[t+1]|i∈ [1, n−1]}, and
updates possibly changed contributions inA[t+1] andB[t+1] usingZ[t+1]. B queriesK on SGroupKey
and obtainŝx[t+1]. Both,A andB computeŷ[t+1] = gx̂[t+1] andY[t+1] = (ŷ[t+1], Z[t+1]).

CorruptMember. If A queriesB with a contributionzi[t]∈B[t] thenB forwards it toK asSMemberKey
query and obtains the corresponding secret signing keyxi[t] that it returns toA. B updatesA′

[t] =
A′

[t] + {zi[t]}. However, ifzi[t] ∈ A[t] then interaction outputs a failure. Note thatB learns all secret
signing keys that correspond to contributions inA′

[t].

CorruptGroupKey. B answers witĥx[t] that it has previously obtained fromK.

Sign. B is given a messagem ∈ {0, 1}∗, a contributionzj[t] and a counter valuet. If zj[t] ∈A[t] then
interaction outputs a failure. Ifzj[t]∈A′

[t] thenB computes the signatureσ = Sign(xj[t],m, Y[t]) and
gives it toA (note,B knowsxj[t] for all contributions inA′

[t]). If zj[t]∈B[t]−A′
[t] thenB generates the

signatureσ without knowingxj[t] as follows.B picks a randomr ∈R Zord(G), computes̃g = gr, and

ỹ = ŷr
[t]zj[t]. B computes the signature of knowledgeS = SK[(αi, β) : g̃ = gβ∧ ỹ = ŷβ

[t]g
αi ∧(z1[t] =

gα1 ∨ . . .∨ zn[t] = gαn)](m) without knowing the corresponding exponentαi using the random oracle
simulation as follows:
∗ (su1 , . . . , sun , sv1 , . . . , svn)∈R Z2n

ord(G); (c1, . . . , cn)∈R ({0, 1}k)n; c̄ =
⊕n

i=1 ci;

∗ for all i∈ [1, n]: ui = ỹci ŷ
sui

[t] gsvi , vi = zci

i[t]g
svi , wi = g̃cigsui ;

∗ setH(g, ŷ[t], g̃, ỹ, u1, . . . , un, v1, . . . , vn, w1, . . . , wn,m) := c̄ if the hash oracle has not yet been
queried on these values andc̄ has not been previously returned; otherwiseB reselects the randoms;

∗ S = (c1, . . . , cn, su1 , . . . , sun , sv1 , . . . , svn);
B gives the generated signatureσ = (g̃, ỹ, S) to A.

Output: Finally, A outputs a successful forgery consisting of a messagem, signatureσ = (g̃, ỹ, S),
and a counter valuet. The interaction outputs(m,σ, t).

Forgery Types.We distinguish between the following two successful forgery types with respect to the
output of the traceability game in Section 2.3.

Type 1.The forgery(m,σ, t) is accepted by the verification algorithm, i.e.,V erify(σ,m, Y[t]) = 1, but
causes the tracing algorithmTrace(σ,m, Y[t], x̂[t]) to fail. A closer look on the tracing algorithm reveals



that such failure can only occur if forzi[t] = ỹ/V1 with V1 = g̃x̂[t] the relationzi[t] 6∈ Z[t] holds. This
implies that either(g̃, ỹ) is not a correct encryption of a contribution or that the encrypted contribution is
not part ofZ[t], thusS has to be a forged signature of knowledge; otherwise the signatureσ would have
been rejected by the verification algorithm. Assuming the security of applied signatures of knowledgeA
outputs the forgery of type 1 only with some negligible probabilityε1.

Type 2.On input the forgery(m, σ, t) the tracing algorithmTrace(σ,m, Y[t], x̂[t]) returns the encoded
contributionzi[t]∈B[t] −A′

[t]. In the following we show that ifA returns a forgery of type 2 thenB is able
to compute the discrete logarithm of the encoded contributionzi[t] to the baseg in the groupG =<g>. We
modify the interaction betweenB andA and show that the forking lemma for adaptively chosen-message
attacks from [19, Theorem 3] can be applied.

The forking lemma can be applied to the signatures of the form(σ1, c, σ2) on a messagem whereσ1

depends only on the random chosen values,c is a hash value that depends onm andσ1, andσ2 depends
only onσ1, m, andc. We abbreviate the signatureσ = (g̃, ỹ, S) of a messagem produced by the signing
algorithm of the group signature scheme in Section 3.3 asσ = (σ1, c, σ2) with the following parameters:

• σ1 = (g̃, ỹ, u1, . . . , un, v1, . . . , vn, w1, . . . , wn)
• c = c1 ⊕ . . .⊕ cn with c = H(g, ŷ[t], σ1,m)
• σ2 = (su1 , . . . , sun , sv1 , . . . , svn)

The forking lemma for adaptively chosen-message attacks requires that the signatureσ = (σ1, c, σ2) can
be simulated without knowing the corresponding secret signing key with an indistinguishable distribution
probability. We stress that the computation ofS described in the signing query of the interaction between
B andA provides such simulation in the random oracle model.

Assume that interaction betweenB and A outputs a successful forgery(m,σ, t) of type 2, where
σ = (σ1, c, σ2). The probability that the interaction outputs the forgery of type 2 withA having queried
the hash oracle on(m, g, ŷ[t], σ1) is ε2 = (Advtr

A − ε1)(1− 2−k), where2−k stands for the possibility that
A guessed the corresponding valuec =

⊕n
j=1 cj without queryingH. Let zi[t] ∈ Z[t] be a contribution

returned by the tracing algorithm on the forgery(m,σ, t).

By the forking lemma we can rewind the interaction andA to the moment of this query, repeat the
interaction with different responses ofH, and obtain a second successful forgery(m, σ′, t) whereσ′ =
(σ1, c

′, σ′
2) so thatc′ 6= c andσ′

2 6= σ2 with the probability at leastε2. Note thatc′ =
⊕n

j=1 c′j such that
c′i 6= ci, whereas valuescj andc′j with j 6= i are independent from the response of the hash oracle as
shown in the signing algorithm of the group signature scheme, and are not used in the computation of the
discrete logarithm. We compute the corresponding secret signing keyxi[t] = logg zi[t] from the equality

zci

i[t]g
svi = z

c′i
i[t]g

s′vi asxi[t] =
s′vi

−svi

ci−c′i
. Hence, usingA we can compute the discrete logarithm inG with

a non-negligible probability((Advtr
A − ε1)(1 − 2−k))2. This is a contradiction to the Discrete Logarithm

assumption. Thus,Advtr
A ≤ ε andDGS is traceable according to Definition 3.

Remark 5.Most of the CGKA protocols do not achieve Perfect Forward Secrecy (PFS) since not all con-
tributionszi[t] are changed every time a group formation changes, and, therefore, the exposure of onexi[t]

can possibly reveal tracing trapdoors of multiple sessions untilxi[t] is changed. Note that although we allow
theCorruptMember query, the absence of PFS is not a hazard for the traceability, since the knowledge of
the group key (allowed byCorruptGroupKey query) is not sufficient to break the requirement as shown in
the proof.

A.3 Proof of Lemma 3 (Anonymity)

Suppose there exists a polynomial-time adversaryA that breaks the anonymity ofGS. In the following
we show that it is possible to construct a polynomial-time distinguisherD against the security ofCGKA



(decisional group key secrecy requirement), and adversaryB against the DDH assumption inG such that

Advan
A ≤ 2Advcgka

D + 2Advddh
B + 2ε,

whereAdvcgka
D = Pr[D(tscript, χ1[t]) = 1] − Pr[D(tscript, χ0[t]) = 1] is the advantage ofD in

distinguishing a secret group key (i.e.,χ1[t] = x̂[t]) computed byCGKA from a random number (i.e.,
χ0[t] ∈R Zord(G)). Recall thattscript is the transcript of all protocol messages that contains also the set of
public contributionsZ[t] = {zi[t]|i ∈ [1, n]}. Since we assume thatCGKA is a secure protocol suite, and
the DDH assumption holds inG the right hand side of the inequality is negligible so, the advantage on the
left side is also negligible, andDGS is anonymous according to Definition 4.

Construction of D. OracleK introduced in the proof of traceability can be used to generate inputs toD
and performCGKA protocols onD’s queries. However, we modifyK to suit the anonymity requirement
as follows.K does not answer toSGroupKey andSMemberKey queries, otherwiseD would be able to
distinguish the tracing trapdoor simply using these queries. LetK[t] andA[t] denote sets of contributions
of members controlled byK andA during the group formation identified byt, respectively.K proceeds
queriesSetup, Joini andLeave as described in A.2. Additionally, at the end of each query ifA[t] = ∅
then K chooses a random bite ∈ {0, 1} and together withtscript returnsχe[t] to D, such thatχe[t]

is either the secret group keŷx[t] if e = 1 or a random valuêr[t] ∈R Zord(G) if e = 0. However, if
A[t] 6= ∅ thenK returnstscript and x̂[t] (this is becauseA knows x̂[t] too). D wins the game if for at
least oneχe[t] it can correctly guesse. CGKA is said to fulfill decisional group key secrecy requirement

if Advcgka
D = Pr[D(tscript, χ1[t]) = 1]− Pr[D(tscript, χ0[t]) = 1] is negligible. In the following game

we show, howD usesA to break the security ofCGKA. For clarity we omit the operations performed by
K and describe the views ofD andA.

Setup: D sets counter valuet = 0, queriesK on Setup and obtainsZ[0] = {zi[0]|i∈ [1, n]} andχe[0].
It computeŝy[0] = gχe[0] , initializes setA[0] = ∅, and givesA the group public keyY[0] = (ŷ[0], Z[0]).
(Note thatŷ[0] is eithergx̂[0] or gr̂[0] depending one.)

Hash Queries:At any timeA can query the hash functionH. B answers the query completely at
random while keeping constistency.

Type1-Queries:
Join.A picksxa[t+1]∈Zord(G), computesza[t+1] = gxa[t+1] , and startsCGKA.Joinu(xa[t+1], za[t+1])
andCGKA.Joini(xai[t], zai[t], auxai[t]) for all ai with zai[t]∈A[t]. D forwardsA’s messages toK and
vice versa until the protocol is finished. As result ofCGKA.Joinu() A obtainsx̂[t+1] andauxa[t+1],
and for all CGKA.Joini() it obtains x̂[t+1], auxai[t+1] and possibly updatedxai[t+1], whereasD
obtainsZ[t+1] andx̂[t+1] from K. A andD computeŷ[t+1] = gx̂[t+1] andY[t+1] = (ŷ[t+1], Z[t+1]). D
updatesA[t+1] = A[t] + {za[t+1]}.

Leave.Suppose memberj ∈ [1, n] should be excluded from the group. Ifzj[t] ∈ A[t] thenD updates
A[t+1] = A[t] − {zj[t]}, else it setsA[t+1] = A[t].
• CaseA[t+1] 6= ∅: A startsCGKA.Leave(xai[t], zj[t], auxai[t]) for all ai with zai[t] ∈ A[t+1]. D

forwardsA’s messages toK and vice versa until the protocol is finished.A obtainsY[t+1], x̂[t+1]

and all secret signing keysxai[t+1], whereasD obtainsZ[t+1] andx̂[t+1] from K. A andD compute
ŷ[t+1] = gx̂[t+1] andY[t+1] = (ŷ[t+1], Z[t+1]). D updates possibly changed contributions inA[t+1].

• CaseA[t+1] = ∅: D queriesK on Leave with parameterzj[t], and obtainsZ[t+1] andχe[t+1]. It
computeŝy[t+1] = gχe[t+1] , and givesA the group public keyY[t+1] = (ŷ[t+1], Z[t+1]). (Note that
ŷ[t+1] is eithergx̂[t+1] or gr̂[t+1] depending one.)

Sign.D is given a messagem ∈ {0, 1}∗, a memberj ∈ [1, n] and a counter valuet. If zj[t] ∈ A[t]

then B aborts. ElseD generates a signature form using j’s contribution as follows.B picks a



randomr ∈R Zord(G), computes̃g = gr and ỹ = ŷr
[t]zj[t]. B computes the signature of knowledge

S = SK[(αi, β) : g̃ = gβ ∧ ỹ = ŷβ
[t]g

αi ∧ (z1[t] = gα1 ∨ . . . ∨ zn[t] = gαn)](m) without knowing the
corresponding exponentαi using the random oracle simulation as described in the querySign of the
traceability game in A.2, and gives the generated signatureσ = (g̃, ỹ, S) to A.

Challenge: D is given a messagem′ ∈ {0, 1}∗, two membersi0 and i1, and a counter valuet.
If A[t] 6= ∅ then D aborts. Otherwise,D picks a random bitd ∈R {0, 1}, generates the signature
σd = (g̃, ỹ, S) using contributionzid[t] as described in the querySignof Type1, and gives it toA.
(Note that sinceD responds to the challenge only ifA[t] = ∅, χe[t] is eitherx̂[t] or r̂[t] depending one.)

Type2-Queries:D responds to the possible queries ofA as described in Type1-Queries.

Output: Eventually,A outputs a bitd′∈{0, 1}. If d′ = d thenD outputs1 (indicating thatχe[t] = x̂[t]);
otherwise it outputs0 (indicating thatχe[t] = r̂[t]).

Casee = 1. The most important observation in this case is thatχ1[t] is a tracing trapdoor̂x[t] computed in
the sense ofCGKA. Hence,Y[t] = (ŷ[t], Z[t]) is equivalent to the group public key of the proposed scheme
in Section 3.3. Therefore, signatures generated byD in the random oracle model are indistinguishable from
those in the anonymity game in Section 2.3. Obviously,D outputs1 whenetherA correctly guesses bitd.
Hence,

Pr[D(tscript, χ1[t]) = 1] = Pr[A(σ1) = 1]Pr[d = 1] + Pr[A(σ0) = 0]Pr[d = 0]

=
1
2
(Pr[A(σ1) = 1] + Pr[A(σ0) = 0])

=
1
2
(Pr[A(σ1) = 1] + 1− Pr[A(σ0) = 1])

=
1
2
(1 + Advan

A )

=
1
2

+
1
2

Advan
A

(1)

Casee = 0. The most important observation in this case is thatχ0[t] is a random valuêr[t] ∈R Zord(G).
Note that in both caseŝy[t] is constructed byD asgχe[t] . Hence in this case,Y[t] = (ŷ[t], Z[t]) is a simulated
group public key. Therefore, signatureσd generated byD is a signature-like looking tuple. These signatures
can be classified into two distributionsEd, d∈{0, 1} depending on the choice ofd. Obviously,D outputs1
whenetherA can distinguish whetherσd belongs to distributionE0 or E1. Hence,Pr[D(tscript, χ0[t]) =
1] = Pr[A(E1) = 1]Pr[d = 1] + Pr[A(E0) = 0]Pr[d = 0], i.e.,

Pr[D(tscript, χ0[t]) = 1] =
1
2
(Pr[A(E1) = 1] + Pr[A(E0) = 0]) (2)

Instead of precise estimation of this probability we relate it to the probability of breaking the DDH
assumption by the adversaryB, assuming that there exists adversaryA that can distinguish between
signatures sampled from distributionsE0 andE1.

Construction of B. AdversaryB is given a tuple(g, Ta = ga, Tb = gb, Tc) ∈ G4 wherea, b∈R Zord(G)

and eitherTc = gc with c∈R Zord(G), or Tc = gab. B decides whichTc it was given by interacting withA
as follows. LetA[t] denote a set of contributions of group members controlled by the adversary, andB[t] a
set of contributions of group members that are not controlled byA in the group formation that is identified
by the counter valuet, respectively, andn be a number of group members of this group formation. Note
thatA[t] ∪ B[t] = Z[t],A[t] ∩ B[t] = ∅, andn = |A[t]|+ |B[t]|.

Setup: B picks a randomn∈R N, sets counter valuet = 0, picks randoms(û[0], x1[0], . . . , xn[0])∈R

Zn+1
ord(G). It computeŝy[0] = T

û[0]
a andZ[0] = {gxi[0] |∀i∈ [1, n]}, performsn instances of the interactive



algorithm CGKA.Setup(xi[0], zi[0]) in parallel, and obtainŝx[0] and auxi[0] for each instance. It
initializes setA[0] = ∅, setB[0] = Z[0], and givesA the group public keyY[0] = (ŷ[0], Z[0]). (Note that
ŷ[0] is computed asgaû[0] and not using the obtained secret keyx̂[0], and thatB cannot computeaû[0]

because it does not knowa. Obviously,Y[0] corresponds to the simulated group public key from the
construction of the distinguisherD above, allowing us later to relate the probabilities of both games.)

Hash Queries:At any timeA can query the hash functionH. B answers the query completely at
random while keeping constistency.

Type1-Queries:
Join. A picksxa[t+1] ∈ Zord(G), computes contributionza[t+1] = gxa[t+1] , and starts instances of the
interactive algorithmsCGKA.Joinu(xa[t+1], za[t+1]) andCGKA.Joini(xai[t], zai[t], auxai[t]) for all
ai with zai[t] ∈A[t], whereasB startsCGKA.Joini(xi[t], zi[t], auxi[t]) for all i with zi[t] ∈ B[t]. After
the protocol is completedA obtainsx̂[t+1], auxa[t+1], and possibly updatedxai[t], whereasB obtains
x̂[t+1], auxi[t+1] and possibly updatedxi[t+1]. Both,A andB computeŷ[t+1] = gx̂[t+1] andY[t+1] =
(ŷ[t+1], Z[t+1]). B adds the contribution of the introduced member to the setA[t], i.e.,A[t+1] = A[t] +
{za[t+1]}.
Leave.Suppose memberj ∈ [1, n] should be excluded from the group. Ifzj[t] ∈ A[t] thenB updates
A[t+1] = A[t] − {zj[t]} andB[t+1] = B[t], else it setsA[t+1] = A[t] andB[t+1] = B[t] − {zj[t]}.
• CaseA[t+1] 6= ∅: A startsCGKA.Leave(xai[t], zj[t], auxai[t]) for all ai with zai[t]∈A[t+1], whereas

B startsCGKA.Leave(xi[t], zj[t], auxi[t]) for all i with zi[t]∈B[t+1]. After the protocol is completed
A obtainsY[t+1], x̂[t+1] and all secret signing keysxai[t+1], whereasB obtainsY[t+1], x̂[t+1] and all
secret signing keysxi[t+1]. B updates possibly changed contributions inA[t+1] andB[t+1].

• CaseA[t+1] = ∅: B startsCGKA.Leave(xi[t], zj[t], auxi[t]) for all i with zi[t]∈B[t+1], and obtains
x̂[t+1], auxi[t+1] and possibly changedxi[t+1]. It picks a random̂u[t+1] ∈R Zord(G), computes

ŷ[t+1] = T
û[t+1]
a , and givesA the group public keyY[t+1] = (ŷ[t+1], Z[t+1]). B updates possibly

changed contributions inB[t+1]. (Note that like in setupY[t+1] is a simulated group public key.)
Sign.B is given a messagem ∈ {0, 1}∗, a memberj ∈ [1, n] and a counter valuet. If A[t] 6= ∅ and
zj[t] 6∈ A[t] thenB computes the signatureσ = Sign(xj[t],m, Y[t]) and gives it toA. If A[t] 6= ∅
and zj[t] ∈ A[t] then B aborts. Else ifA[t] = ∅ then B generates a signature form using j’s
contribution as follows.B picks a randomr ∈R Zord(G), computes̃g = T r

b (note thatg̃ = gbr),

and ỹ = T
û[t]r
c zj[t] (note that ifTc = gab then ỹ = gabû[t]rzj[t] = ŷbr

[t]zj[t]; otherwise ifTc = gc

then ỹ = ŷc∗

[t]zj[t] for some unkonwn randomc∗ = cr/a). B computes the signature of knowledge

S = SK[(αi, β) : g̃ = gβ ∧ ỹ = ŷβ
[t]g

αi ∧ (z1[t] = gα1 ∨ . . . ∨ zn[t] = gαn)](m) without knowing the
corresponding exponentβ using the same random oracle simulation as described in querySign in the
traceability game in A.2, and gives the generated signatureσ = (g̃, ỹ, S) to A.

Challenge: B is given a messagem′ ∈ {0, 1}∗, two membersi0 and i1, and a counter valuet.
If A[t] 6= ∅ then B aborts. Otherwise,B picks a random bitd ∈R {0, 1}, generates the signature
σd = (g̃, ỹ, S) using contributionzid[t] as described in the querySignof Type1, and gives it toA.

Type2-Queries:B responds to the possible queries ofA as described in Type1-Queries.

Output: Eventually,A outputs a bitd′∈{0, 1}. If d′ = d thenB outputs1 (indicating thatTc = gab);
otherwise it outputs0 (indicating thatTc = gc).

Recall that the advantage ofB in breaking the DDH assumption is defined in Section 3.1 as
Advddh

B = Pr[B(g, Ta, Tb, g
ab) = 1] − Pr[B(g, Ta, Tb, g

c) = 1]. In the following we compute
both probabilities and relate them to the probabilities obtained from the game with distinguisherD in the
previous paragraph.



CaseTc = gab. The most important observation in this case is that the signatureσd generated byB
in the random oracle model is computed based on the simulated group public keyY[t] = (ŷ[t], Z[t]), i.e.,
g̃ = gbr and ỹ = ŷbr

[t]zid[t]. Therefore, signatureσd is sampled from the distributionEd introduced in
the previous paragraph. Obviously,B outputs1 whenetherA correctly guesses the distribution. Hence,
Pr[B(g, Ta, Tb, g

ab) = 1] = Pr[A(E1) = 1]Pr[b = 1] + Pr[A(E0) = 0]Pr[b = 0]. Considering the
Equation 2, we obtain

Pr[B(g, Ta, Tb, g
ab) = 1] = Pr[D(tscript, χ0[t]) = 1] (3)

CaseTc = gc. In this case the encryption of the contributionzid[t] in the signatureσd given toA is
not correct, i.e.,̃g = gbr and ỹ = ŷc∗

[t]zid[t] for some unkown randomc∗ = cr/a. Obviously, valueỹ
is indistinguishable from a random number. Thus, the probability ofA in guessing bitd correctly is not
greater than that of a random guess, i.e.,1/2 + ε. Hence,

Pr[B(g, Ta, Tb, g
c) = 1] ≤ 1/2 + ε (4)

In the following we combine results from both parts of the proof. Recall thatAdvcgka
D =

Pr[D(tscript, χ1[t]) = 1]− Pr[D(tscript, χ0[t]) = 1]. With Equations 1 and 3 we obtain

Advcgka
D =

1
2

+
1
2

Advan
A − Pr[B(g, Ta, Tb, g

ab) = 1]

Addition of Pr[B(g, Ta, Tb, g
c) = 1] on both sides of the above equation combined withAdvddh

B =
Pr[B(g, Ta, Tb, g

ab) = 1]− Pr[B(g, Ta, Tb, g
c) = 1] implies

Advcgka
D + Pr[B(g, Ta, Tb, g

c) = 1] =
1
2

+
1
2

Advan
A − Advddh

B

By transformation and consideration of the Equation 4 we obtain the required inequality:

Advan
A = 2Advcgka

D + 2Advddh
B + 2Pr[B(g, Ta, Tb, g

c) = 1]− 1

≤ 2Advcgka
D + 2Advddh

B + 2ε
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