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Abstract. Inthe presence of economic globalization joint venture is one of the most common and effective means
of conducting business internationally. By building joint ventures companies form strategic alliances that help
them to enter new economic markets and further their business goals in a cooperative effort without loosing own
independence. Upon building a joint venture company, two or more "parent” companies agree to share capital,
technology, human ressources, risks and rewards in a formation of a new entity under shared control by a "board
of directors”, which consists of representatives of "parent” companies. The establishment of such shared control is
tricky and relies generally on the "trust, but verify” relationship, i.e., companies trust the information they receive
from prospective partners, but it is a good business practice to verify the facts. In this paper we focus on the issue
of the shared financial control in a joint venture. We consider the mostly preferred form of the control where
every member of the board is able to issue payment orders on behalf of the joint venture, but at the same time
representatives of other companies, should be able to monitor the accounting to achieve fairness in the spending
of shared funds. For this form of the shared control we propose a new secure group-oriented signature scheme,
called ademocratic group signaturecheme, which results from the modification of the standard notion of group
signatures by eliminating the role of the group manager. We also show that existing schemes, e.g., ring and group
signatures, cannot be used to realize the required shared control based on the "trust, but verify” relationship.
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1 Introduction

Joint ventures (JV) become an increasingly common way for companies to form strategic alliances for
the means of economic expansion and realization of new business plans, such as entering new economic
markets, developement of new technology or conducting trade internationally. A joint venture arrangement
between partner companies has one of the following two forms: a joint venture agreement (JVA) or a joint
venture company (JVCo). JVA is a simple agreement between participating companies which determines
what each will bring to and gain from the project without forming a separate legal entity, and is considered
to be a "once more” arrangement that is established for the mutual benefit of partners, e.g., arrangement on
a joint distribution network or shared product facilities. JVCo goes a step further in setting up a company in
order to procure the project. It is usually specified by own trade and business plans, has some independence
to pursue own commercial strategy with agreed objectives, and is able to access the market with own trade
mark.

Depending on the arrangement the JVCo may be open for other companies to join if they fulfill certain
criteria and agree to sign the contract. Usually, current JV partners decide together whether a new company
is allowed to join the JVCo. Similarly, a company may resign from the JV contract and leave the JVCo.
Criteria for join and leave are usually defined in a common policy which is agreed by "parent” companies
and is part of the signed contract.

Where a JV company is set up the control of the company is generally proportional to the percentage of
shares held by each "parent” company, which in turn reflects the investment by the companies, respectively.
The so-called "board of directors” of JVCo is legally responsible for the supervision/strategic plans and
active management of JVCo on the basis of a shared control, and consists usually of representatives of
"parent” companies. The organization of the shared control in JVCo is a challenging task, since a specific
trust relationship between "parent” companies, called "trust, but verify” has to be considered. The "trust,
but verify” relationship is followed from the natural objectives of "parent” companies to gain as much as
possible from entering a joint venture while keeping the occuring expenses as little as possible. Therefore,



by the means of cooperation the JV partners generally trust the information they receive from each other,
but should be able to verify the facts.

Our paper focuses on the establishment of the shared financial control in a JVCo, however, we remark that
our model may also be utilized for other shared control issues. We consider a simpler case of a JV arrange-
ment where all "parent” companies provide equal contribution to the shared budget, and have, therefore, an
equal number of representatives in the board, e.g., one. The financial control in the JVCo includes among
other topics the issuing of payment orders on behalf of JVCo and the monitoring of the accounting of the
company. We are not interested in the organization of the JVCo, e.g., whether there is a separate finance
department, and assume for simplicity that the responsibility for the financial control is given to the direc-
tors, i.e., members of the board. The organization of the financial control in JVCo is a subject of the JV
contract which is agreed and signed by all "partner” companies. Since all JV companies have individual
arrangements there is no common form which is applied in all JVCos. However, the following form of the
shared financial control seems to be mostly fair for all JV participants, and is, therefore, preferred in the
most arrangements: "parent” companies agree that each of them independently is allowed to issue payment
orders from the shared budget of the JVCo for the amount which does not exceed their own contribution to
this budget. Obviously, this form alone provides less flexibility, since sometimes companies need to make
investments which are higher than their contributions. For this case an additional clause is usually taken
into the JV arrangement: whenether a company issues a payment order for the amount which exceeds own
contribution, it is obliged to refund the difference to the JVCo’s budget.

In this paper we propose a security model for the described form of the financial control in JVCos. Ac-
cording to the "trust, but verify” relationship "parent” companies should be able to monitor the accounting
of the JVCo, which in turn means that representatives in the "board of directors” should be given a power
for the independent verification of issued payment orders signed by other directors and ability to create
own view on the actual state of all JV partners’ debts to the shared JVCo’s budget.

Another security aspect of this form of the shared financial control is the anonymity of directors who is-
sue the payment orders. For a JVCo the own establishment on the market is of great importance, especially,
when JVCo enters the market with its own trademark. Hence, it is important to hide the information which
concerns the affiliation of the representative who has issued the payment order to his "parent” company
from parties who get this money and are not involved in the JV arrangement. In other words, if a third
party receives a payment order signed on behalf of the JVCo then it must not be able to link the signa-
ture to the "parent” company whose representative has signed the order. Note that for the means of the
shared monitoring of accounting other JV partners should be able to identify the "parent” company (i.e.,
its representative) from the signature of the payment order.

Our model consists of a new group-oriented signature scheme, which results from the modification of
the standard notion of group signatures. The main changes to the classical model of group signatures are:
the absence of a central trusted authority (usually called a group manager), and the ability of the individual
tracing of signatures, i.e., every member of the group (director) is able to open signatures created by other
members. In Sectign 1.1 we describe in detail why the standard model of group signatures, and another
related group-oriented signature schemes called ring signatures are not applicable to the focused scenario
of the shared financial control in JVCos.

1.1 Related Work

The concept ofjroup signaturesvas first introduced by Chaum and van Heyst [13], and further studied

and improved in[11],110],13],14],.[15],171,16],18].l[9]. Classical group signatures allow group members

to sign messages anonymously on behalf of the group. The anonymity is provided not only against non-
members, but also against other group members. However, there exists a designated authordypuplled
managerthat initializes the scheme, adds new group members, and is able to open group signatures, i.e.,
reveal the signer’s identity from the signature. Some schemes/like [10] distinguish between two group
managers with respect to their responsibilities, i.e., membership manager that sets up the scheme and
controls admission to the group, and revocation manager that opens (traces) the signatures. Group signature
schemes can be used by employees of a company to sign documents on behalf of the company, or in



electronic voting and bidding scenarios. Bellateal. have described in_[4] and][6] formal models and
security requirements for classical static and dynamic group signature schemes.

In the following we argue that this standard notion of group signatures is not applicable to the scenario of
the shared financial control in a JVCo described in the introduction. The most disturbing factor is the role
of the group manager that must be trusted by all group members. Assume that a classical group signature
scheme is applied for the financial control in a JVCo. Then, there is a sole member (group manager) of
the "board of directors” who according to the group signature scheme is given a power to decide about the
membership of JV partners and is able to verify all payment orders issued by other directors on behalf of
the JVCo, i.e., open corresponding signatures. Obviously, it is be difficult to agree whose representative
should take this role, because all "parent” companies have equal rights. Even if such group manager is
chosen, the rest of the board must trust him not to compromise the scheme, e.g., not to add other members
to the group. Additionally, this kind of the centralized control contradicts to the idea of the shared financial
control, because other directors are not be able to independently monitor the accounting of the shared
budget. Surely, the group manager can be asked to open every signature and send a natification containing
the signer’s identity to every other member. However, this does not only contradict to the "trust, but verify”
relationship, because other members have to trust that the information provided by the group manager is
correct, but is also inefficient, because the group manager is the only to perform computations needed
for the revocation (tracing), and it also becomes a "single point of failure”. Additional drawbacks of such
centralized management get clear in the context of the dynamic changes. Since "parent” companies may
resign from a JVCo there is a problem in case where the group manager represents a leaving JV partner. In
this case another group manager must be chosen and the scheme has to be reinitialized, because classical
group signature schemes assume that the group manager stays continuously in the group, and do not provide
mechanisms to handle the opposite case. For these reasons classical group signatures cannot be effectively
applied in the described scenario, and do not satisfy the fairness condition stated by the "trust, but verify”
relationship.

Ring signaturesire another kind of group-oriented signature schemes which we consider in the context
of the shared financial control in JV companies. The concept of ring signatures introduced byeRigkst
in [20] and developed further inl[1], [21] and [18], has some significant differencies to the classical group
signature schemes. In ring signature schemes there is no group initialization and no group manager. Thus,
members do not have to perform any interactive protocols (i.e., to cooperate) to initialize the group in dif-
ference to classical group signature schemes, where group members usually perform an interactive protocol
with the group manager to obtain their membership certificates that are then used in the generation of the
group signatures. Thus, in the ring signature schemes any participant may specify a set of possible signers
(usually by their public keys) and produce ring signatures that convince any verifier that the author belongs
to this set without revealing any information that may be used to identify the author. The most important
difference besides the absence of cooperation and the absence of the group manager is the requirement of
unconditional anonymity, i.e., there is no revocation (tracing) authority which is able to reveal the signer’s
identity from the ring signature.

This requirement of unconditional anonymity makes the use of ring signatures in the described scenario
of the shared control impaossible. It disallows the independent monitoring of the accounting and does not
guarrantee that the shared capital is spent fairly by individual "parent” companies. The fact that ring sig-
natures cannot be opened allows directors to sign payment orders which cannot be linked to their "parent”
companies. Hence, directors must trust each other not to cheat while spending the shared capital, and truly
refund the differences to the JVCo’s budget. Obviously, this contradicts to the required "trust, but verify”
relationship, because no independent verification is possible. Additionally, the absence of the group initial-
ization and the fact that every member can define own set of possible signers makes the establishment of a
JVCo as an independent company more difficult.

There exist currently no group-oriented signature schemes which can be effectively used for the means
of the shared control based on the "trust, but verify” relationship. Therefore, in our model we design a
new scheme, which includes some properties of the existing schemes and states new requirements, such as



individual tracing of signatures, and cooperation of participants for the initialization of the scheme, and its
maintenance upon possible dynamic changes.

2 Democratic Group Signatures

In this section we present our model of a group-oriented signature scheme which can be used for the means
of the described scenario of the shared control based on the "trust, but verify” relationship. To emphasize
that the "parent” companies have equal rights in the formation and extension of a JVCo, in the issuing of
payment orders, and in the monitoring of the accounting we call our schelemacratic group signature
scheme (DGS).

2.1 Preliminaries

Roles and Definitionsln order to link the description of our model to the example of the shared financial
control in the introduction we use the following notatiogsoup stands for the "board of directors” of a
JV companygroup memberare representatives of "parent” companies in the board.

Dynamic ChangesAs already described in the introduction a democratic group signature scheme has to
handle the following dynamic events: join and leave of JV partners. Whenether a new "parent” company
signs the JV arrangement it provides its own representative to the board, i.e., a new member is added to the
group. Similar, if a JV partner resigns from the contract its representative leaves the board, i.e., a current
member is excluded from the group. In our model we assume that group members are notified about the
occured dynamic changes.

The individual tracing property of democratic group signatures together with possible dynamic changes
imply two additional (in the following informally defined) security requirements in the context of signer’s
anonymity: (1) a joining member must not be able to open any group signature which has been produced
by a group member before the join event took place, and (2) a leaving member must not be able to open
any group signature which is produced by a group member after the exclusion process. More specific, only
if usersi andj are members during the period between two consecutive changes of the group formation,
then membet can open all signatures that membehas generated within this period, and vice versa.

Note that as a consequence of these requirements, all relevant group secrets that can be used to open group
signatures have to be changed after every dynamic change of the group formation. A trivial solution is

to reinitialize the group after any change of the group formation. Intuitively, this is inefficient because of
additional interaction and computation costs. A more intelligent solution is to provide auxiliary protocols

to hande join and leave events more efficiently, i.e., with less interaction and computation costs compared
to a full reinitialization.

Trust Relationship As mentioned in the introduction democratic group signatures are based on the "trust,
but verify” relationship between group members. Since tracing rights are given individually to every group
member and anonymity is an issue, every group member is trusted not to reveal secrets that may be used
to open group signatures to any other party. However, any group member may want to frame any other
group member into signing a message, or generate a group signature that cannot be opened. This attack
is imaginable in JV companies where partners may try to cheat and spend more money from the JVCo's
budget without refunding the difference to the budget. Additionally, some JV partners may try to collude
against other JV partners and help each other to break the contract rules. In this case we assume that there
is at least one group member who is honest. Obviously, this is a realistic assumption since a collusion
which consists of all JV partners does not make any sense. Further, we assume that every member is able
to authenticate own messages during the interaction with other members. This can be realized using public
key certificates.

Counter. In order to simplify the handling of occuring dynamic events we distinguish between continuously
changed group formations using a counter valtieat consecutively counts occuring dynamic events. The
counter is initialized ag = 0 after the initial group formation and increased by one after every further



dynamic event. Thus, every valdecorresponds to the group formation at the momehgas been set.
Therefore, all parameters of our democratic group signature scheme are bound to a certaiancimay
be changed with respect to the changes in the group formation.

2.2 Protocols and Algorithms

In this section we describe protocols and algorithms of a demaocratic group signature scheme. We denote
by Y};) the group public key, by, the secret signing key of membgrand byiy; the tracing trapdoor

that correspond to a group formation identified by the counter valegy.,Y;;; andY];; denote the group

public keys of the initial formationt(= 0) and after the first dynamic everit¢ 1), respectively.

Definition 1. A democratic group signature scherf®S = {Setup(), Join(), Leave(), Sign(),

Verify(), Trace(), VerifyTrace()} is a digital signature scheme that consists of:

— A randomized protocobetup() betweenn cooperating users for the initial formation of the group.
The public output is the group public ke, . The private outputs are the individual secret signing
keysx;|y for each membei, i € [1, 7] and the tracing trapdodr.

— A randomized protocol/oin() between current group members and a joining memberz lbet a
current counter value, the number of current group members. The public output is the updated public
key Y|;1)- The private outputs are possibly updated secret signingkgys, i € [1,n + 1] for all
members (including the new member) and the updated tracing trapgoor

— A randomized protocaleave() between remaining group members. L& a current counter value,
n — 1 the number of remaining group members. The public output is the updated pubk key The
private outputs are updated secret signing keys 1}, i € [1,n — 1] for all remaining members and
the updated tracing trapdody, ;.

— A randomized algorithn$ign() that on input a secret signing keyj,;, a message:, and the group
public keyY}; outputs a signature.

— A deterministic algorithnieri fy() that on input a candidate signaturea message:, and the group
public keyY}, returnsl if and only if o was generated by a group membet [1, ] usingSign() on
inputz;;,;, m andY}, for any counter value € N.

— Arandomized algorithri'race() that on input a candidate signaturea message:, the group public
key Y};;, and the tracing trapdodiy, returns the identity of the group member who has generated
together with a proof: of this fact for any counter valuec N.

— A deterministic algorithm/eri fyTrace() that on input a signature, a message:, the group public
key Y}, the identity;, and a candidate proafthato has been generated by membegturns 1 if and
only if i and were returned b{'race() on inpute, m, 2, Y}y for any counter value € N.

We remark that/oin() is used by members to add new participants to the group, whéreas:() to
exclude a certain member from the group according to the agreed membership policy.

Remark 1.0Obviously, only the knowledge of the tracing trapdagy allows to open produced group sig-
natures. In order to fulfill the requirement of anonymity with respect to possible dynamic changes and in
the context of the individual tracing rights, i.e., to prevent new members from opening previously generated
group signatures, and former members from opening any further generated group signatures, the tracing
trapdoori; has to be changed whenettés increased after any occured dynamic event. Note that in Def-
inition@ the change of secret signing keys; is not explicitly required (i.e., we write "possibly updated”

in the definition). Therefore, it depends on the concrete realization whether secret signing keys are changed
or not.

2.3 Security Requirements

In this section we specify the security properties of a democratic group signature scheme.
Definition 2 (Correctness).A democratic group signature sche®§S = {Setup(), Join(), Leave(),
Sign(), Verify(), Trace(), VerifyTrace()} is correct if for all Y}, z;), and 2 returned by the
protocols Setup(), Join() and Leave() with respect to the counter valug and for any signature
o = Sign(zy, m, Yj):

Verify(o,m,Yy) =1 A Trace(o,m,Yy, ) = (i,7) N VerifyTrace(o,m,Yy,i,m) = 1.



In other words, the verification algorithiieri fy() acceptss, and tracing algorithm'race() outputsi
together with the proof and verification algorithn¥ eri fyT'race() accepts this proof.

Traceability. We say that a democratic group signature sch@ng&s is traceable if there exists no
polynomial-time adversaryl that can win the following traceability game, whe#és goal is to forge

a group signature that cannot be traced to one of the group members controlled or dﬂw;mﬁ)ur de-
scription of traceability includes collision-resistance, framing and unforgeability requirements as described
in [4]. Let A, denote a set of group members controlled by the adversarydgndenote a set of group
members corrupted by the adversary in the group formation identified by the countet,valsigectively.

Setup: The challenger” performs the protocabetup() for n simulated participants and obtains the
keysY(g), z;j) for all i € [1,n] andi|y), and setg = 0. It provides the adversany with Y[y).

Queries: After obtainingY| adversary4d can make the following queries:

Join. A can initiate.Join() with C and introduce a new group member. Itdie the current counter
value andn the current number of group members. The protocol updates theYkeys ;1) for
alli € [1,n + 1] and @, ). A obtainsY},, 1, #41), the secret signing key, . of the introduced
member. C' adds the introduced membeto A, ;. Note that”' does not learw ;. 1)

Leave. A can initiate Leave() with C' and exclude any membeére [1,n] from the group. Let be

the current counter value amdthe current number of group members. The protocol updates the keys
Yii1]s T4 foralli € [1,n—1] andi(, ). C updates setd,, ;) by removing the excluded member if

he was inAy). If A, is not empty, them obtainsY, 1}, &1}, and the secret signing keys, ;1)

of all controlled members i}, ;;; otherwise it obtains only/ ;.

CorruptMember. A can request the secret signing key of any meniber|1, »] that is not controlled
by A in a group formation identified by artye N. C' returnsz;(; to A, and adds membérto A’[t].

CorruptGroupKey. A can request the tracing trapdagy, for anyt € N. C returns; to A.

Sign. A can request a group signature of an arbitrary messafm any membes € [1, n| that is not
controlled or corrupted byl and any counter value C' computes and returns= Sign(z;y, m, Yj).

Output: Finally, A returns a message, a signaturer, and a counter value A wins if the forgery is
successful, i.e., the following requirements are satisfiedsr (&)accepted by the verification algorithm
Verify(); (2) algorithmT'race() traceso to a group member that is neitherJt,) nor inA’[t], or fails;
and (3)o was not obtained byl from a signing query om to C.

Definition 3. A democratic group signature scheri®GS = {Setup(), Join(), Leave(), Sign(),
Verify(), Trace(), VerifyTrace()} is traceable if the advantage of any polynomial-time adversary
A in winning the traceability game defined AslvtAf = Pr[A outputs a successful forgeéng negligible,
i.e, Advl <e.

Anonymity. We say that a democratic group signature sché&ngS is anonymous if there exists no
polynomial-time adversaryl that can win the following anonymity game, wheté goal is to determine
which of the two keys have been used to generate the signaturel jetenote a set of group members
controlled by the adversary in the group formation identified by the counter ¥dlee the adversary fully
controls the participation of these members in the protocolB®$.

Setup: The challenger” performs the protocabetup() for n simulated participants and obtains the
keysY(g), z;p), @ € [1,n] andiy. It provides the adversany with Yiy).

1 We distinguish between group members that are controlled and group members that are corrdptiéddtintroduces a new
member to the group, then we say thhtontrols this member. I obtains the secret signing key of a member that it has
not introduced, then we say that this member is corrupted b&llowing A to control group members we consider an active
adversary that participates in the protocols that update the group formation.



Typel-Queries:After obtainingY]y algorithm A can make the following queries:

Join. A can initiateJoin() with C' and introduce a new group member. Léke a current counter value
andn the current number of group members. The protocol updates th&’keys ;4.1 @ € [1,n+1]
andz ;). A obtainsY},, 1), Z;4.1), the secret signing key, ;1) of the introduced member. C' notes
that there is a group member controlled Ayn the group formation identified by+ 1, thus adds the
introduced member to the setA|, ). Note thatC' does not learm,; ;.-

Leave. A can initiate Leave() with C' and exclude any membeére [1,n] from the group. Let be

the current counter value amdthe current number of group members. The protocol updates the keys
Yit+1), Tipgq) foralli € [1,n—1] andZ ). C updates setl, ;) by removing the excluded member if

he was inAy;. If A is not empty them obtainsY|, 1}, [;41], and the secret signing keys, ;1)

of all group members; in A, q); otherwise it obtains only}, ;). Note thatC' does not learn any

xai [t+1] "

Sign. A can request a signature on an arbitrary messadger any member € [1,n] that is not
controlled byA and any counter valuec N. C' computesr = Sign(z;j), m, Yjy) and returnsr to A.

Challenge: A outputs a message’, two identities of group members, i; € [1,n] and a counter
value ¢, such thatAy = (. C' chooses a random bit € {0,1}, computes a signature; =
Sign(x;,, m’, Yyy) and returns it tod.

Type2-Queries:After obtaining the challenged can make the following queries:

Join. A can introduce new group members as in Typel-Queries.

Leave. A can exclude group members (also challenged memipensdi,) as in Typel-Queries.
Sign. A can request a signature on an arbitrary messagdelsom’) for any member that is not
controlled byA (also for memberg, andi;) and any counter valuec A as in Typel-Queries.

Output: Finally, A returns a bitd’ trying to guessl, and wins the game it = d.

Definition 4. A democratic group signature scheriaGS = {Setup(), Join(), Leave(), Sign(),
Verify(), Trace(), VerifyTrace()} is anonymous if the advantage of any polynomial-time adverdary
in winning the anonymity game definedAdvd" = Pr[A(c1) = 1] — Pr[A(og) = 1] is negligible, i.e.,
Advi” <e.

We remark that at least two group members have to be in the group identified by the challenged counter
valuet, and Ay = () must hold. Note that the signaturg is bound to a certain counter valtuso that the
informally defined requirements from Sectjon|2.1 (a joining member must not be able to open any group
signature which has been produced by a group member before the join event took place, and a leaving
member must not be able to open any group signature which is produced by a group member after the
exclusion process) are covered by the above anonymity game.

Definition 5 (Security). A democratic group signature scherfi®&yS = {Setup(), Join(), Leave(),
Sign(), Verify(), Trace(), VerifyTrace()} is secure if it is correct, anonymous and traceable.

3 Our Construction

3.1 Number-Theoretic Assumptions

Definition 6 (Discrete Logarithm (DL) Assumption). LetG =< g > be a cyclic group generated Igyof
order ord(G). There is no probabilistic polynomial-time algorithmthat with non-negligible probability
on inputg® wherea € Z, 4 outputsa. LetAdvj"ixI = Pr[A(g") = a] be the advantage of in breaking

the DL assumption. The DL assumption holdg;iif this advantage is negligible, i.é;dvf'il' <e.



Definition 7 (Decisional Diffie-Hellman (DDH) Assumption).Let G =< g > be a cyclic group gen-
erated byg of order ord(G). There is no probabilistic polynomial-time algorithrh that distinguishes
with non-negligible probability between two distributiofl = (g, g%, ¢°, ¢¢) and D; = (g, ¢%, ¢°, g°°)
wherea, b, ¢ € Zyq(c), i.€., A outputsl on input the distributionD;, and0 on input Dy. LetAdv%dh =
Pr[A(D;y) = 1] — Pr[A(Dy) = 1] be the advantage ol in breaking the DDH assumption. The DDH
assumption holds it if this advantage is negligible, i.eAdvad" < .

3.2 Building Blocks

Our scheme consists of the following well known cryptographic primitives: a contributory group key agree-
ment protocol for the initialization of the scheme and its maintenance upon dynamic changes, and signa-
tures of knowledge for the signing and verification processes. Although our scheme may be seen as a
straightforward solution, we note that to the best of our knowledge it is first (!) to consider contributory
group key agreement protocols in the context of group-oriented signature schemes. This provides addi-
tional challenge for the security proof of the scheme, because the security of the interactive setup protocol
has to be considered. Note that in classical group signatures the group manager that sets up the group is
trusted, and, therefore, the security of the initialization procedure is usually omitted.

Contributory Group Key Agreement Protocols Contributory group key agreeme(@GKA) protocols

allow participants to form a group, compute the group secrekkdyy interaction, and update it on occured
dynamic changes. The group secret keyis computed or updated as a function of individual contributions

of all group members. CGKA protocols suit well into the scenario of the shared control based on the "trust,
but verify” relationship, because they are independent of any centralized management and allow group
members to verify the protocol steps towards the computatiol;0fA CGKA protocol suite consists
usually of a setup protocol and of protocols that handle various dynamic events, i.e., join and leave of
single group members, and merge and partition of whole groups. However, for our group signature scheme
we require only setup, join and leave protocols. Therefore, we omit the description of merge and partition
protocols in the following definition.

Definition 8. A CGKA protocol suiteCGK.A = {Setup(), (Join;(), Join,()), Leave()} consists of the
following algorithms and protocols:

— A randomizedinteractive algorithmSetup() that implements the userisside of the homonymous
protocol betweem users to initialize the group. On input an individual seérebdf useri and corre-
sponding contribution;, the algorithm obtains by interaction a set of individual contributions of other
usersZ = {z;|j € [1,n],j # i}, and outputs the group secret kiey and some auxiliary information
aux; for the handling of further dynamic events. Note thatcan be computed only by group members
who patrticipate in the protocol.

— A pair of randomizednteractive algorithmg.Join;(), Join,()) thatimplement memberiand joining
user'su sides of the protocaloin() betweernn group members and the joining user, respectively.
Join;() takes as input a current individual sedegénd current informationuz;, obtains by interaction
the joining user’s contribution,,, and outputs updated;, auzx;, and possibly changed.

Join, () takes as input a new user’s individual sedrgtind corresponding contributiar, obtains by
interaction some auxiliary informatiomz,, (including setZ = {z;|j € [1,n]), and outputs updated
ko andaux,,.

— A randomizedinteractive algorithmLeave() that implements memberisside of the homonymous
protocol between remaining— 1 group members due to exclusion of a mempedn input a current
individual secretk;, leaving member’s contribution; and current informatiomuz;, the algorithm
outputs updated, auz;, and possibly changed.

Remark 2.CGKA protocols that handle dynamic events require usually that some members change their
individual secret key%; during the protocol for the sake of security, e.g., to guarantee the freshness of the
updated group secret key. This is emphasized by the expression "possibly changed” in the above definition
of the protocols/oin;() and Leave(). If such change is required then membehanges:; and updates

own contributionz;. Thus, no other party except for membaver learns:;.



Remark 3.The auxiliary informationauz; returned by the interactive algorithms ©6§X.A depends on

the actual protocol suite. It contains auxiliary values that can be used by group members to handle further
occuring dynamic events. We remark that for our scheme must provide every membewith a current

set of members’ contribution® = {z;|j € [1,n]}, because we usg as part of the group public key.

This requirement is implicitly achieved for most CGKA protocols (including those mentioned below),
because participants broadcast contributions over a public channel. This is also the reason why considering
contributions as part of the group public key is not a hazard to the security of the CGKA protocols.

The security of CGKA protocol suites is usually described by the following (informally described) set of
requirements [([17]):

— Computational group key secrepyquires that for a passive adversary it must be computationally in-
feasible to discover any secret group key.

— Decisional group key secre@yequires that for a passive adversary it must be computationally infeasi-
ble to distinguish any bits of the secret group key from random bits.

— Forward secre(ﬁrequires that any passive adversary being in possession of a subset of old group keys
must not be able to discover any subsequent group key (e.qg. if a member leaves the group knowing the
group key it should not be able to compute the updated group key).

— Backward secrecyequires that any passive adversary being in possession of a subset of contiguous
group keys must not be able to discover any preceding group key (e.g. if a member joins to the group
and learns the updated group key it should not be able to compute the previous group key).

— Key independencequires that any passive adversary being in possession of any subset of group keys
must not be able to discover any other group key.

Note that the adversary is assumed to be passive, i.e., it is not a valid group member during the time
period the attack is taking place. Considering active adversaries, i.e., group members does not make sense,
because every group member learns the group key by the end of the protocol. Thus, group members are
trusted not to reveal the group key or any other secret values that may lead to the computation of the group
key to the third parties. This is exactly the requirement stated for democratic group signatures in Section
[2.] to keep the individual tracing of signatures prior to group members. Further reason for the suitability
of CGKA protocols for the initialization and maintenance of the DGS is the "trust, but verify” relationship
between group members, i.e., some protocols, liké [16] and [17] define a rolspoinsorthat becomes
active on dynamic events and performs some computations on behalf of the group to achieve additional
efficiency. Although this sponsor acts on behalf of the group, there exists at least one other group member
who can verify the sponsor’s actions. Additionally, join and leave protocols can be utilized in DGS to
maintain the scheme efficiently, i.e., without reinitialization.

Members’ contributions in the mentioned CGKA protocols are constructed as follows: every member
chooses own secrét and computes his contribution = ¢*:, whereg is a generator of a cyclic group
G =< g>, where the DL Assumption holds (e.&., with primep or a subgroup of points on an elliptic
curve E over a finite fieldF,).

Our scheme has been designed to work with any CGKA protocol suite that fulfills described security
requirements, and the contributions of group members have the above construction. For example, protocol
suites in [16] and[[17] can be applied in the scheme. In the following we briefly explain how we use the
properties of such CGKA protocols.

The group secret kel computed and updated by the CGKA protocols is used as the tracing trapdoor
& from Definition[]. In order to maintaift after dynamic changes and keep individual tracing rights prior
to group members, the protocd&tup(), (Join,(), Join,()) and Leave() of the CGKA protocol suite
are embedded in the homonymous protocols of our DGS, respectively. Security requirements of CGKA

2 The formal definition of the decisional group key secrecy is given in App A.3 where it is used to prove the anonymity of
our scheme.

% In the context of our security proof (Remcﬁ]k 5) we show that the absence of so-called Perfect Forward Secrecy does not provide
additional risks to the security of our scheme.



protocols take care that no unauthorized users are able to corutd open group signatures. In our
scheme members use their individual secketas secret signing keys from Definition[]. This is possi-

ble, because everl; remains known only to the corresponding member. Our scheme includes the set of
members’ contributiong = {z;|Vi € [1,n]} in the group public key” as shown in Sectidn 3.3.

Signatures of Knowledge Signatures of knowledgéetroduced in[[11], and also used in some classical
group signature schemes, like [10] and [3] are message dependent zero-knowledge proofs of knowledge
of some secret that are made non-interactive using the Fiat-Shamir heuristic [14]. The security of such
schemes is usually shown by proving the security of an underlying interactive zero-knowledge protocol
and then by assuming that no security flaws occur if verifier's computations in the interacive protocol are
replaced by a collision resistant hash functiin: {0,1}* — {0, 1}* with security parametek. The
security of this non-interactive approach can be shown in the random oracle imodel [5].

Signatures of knowledge consist of two polynomial-time algorithifi# Sig(), SKVer()), where
SK Sig() is a randomized signing algorithm asd<Ver() a deterministic verifying algorithm. A signer
Swho is in possession of some secsatan compute the signature of knowledgesadn a message:
usingS K Sig() and send it to a verifiev. In SK Sig() an appropriate one-way functighis applied to the
secret that prevents any leakage of the information about the secret. If algétitirer () performed by
V accepts the signature th&hs convinced thaS knowss, but learns nothing about this secret. However,
if Sdoes not knows or does not use in SK Sig() to compute the signature thétiVer() rejects. A sig-
nature of knowledge is called secure if the probability of producing a forged signature without knowing the
secrets such thatS K Ver() accepts the forgery is negligible, and if any correctly generated signature does
not reveal any sufficient information that may be used to compuBefore we describe the signatures of
knowledge used in our scheme, we give a simple example to explain used notations, borrowédIfrom [11]:
a signature of knowledge on a messagedenotedSK[(«) : y = g“](m), proves the knowledge of the
discrete logarithm of; to the basey as described by the equation on the right side of the colon. By the
convention Greek letters denote secret values, whose knowledge has to be proved, whereas other letters
denote public values.

The following is a combination of the signature of knowledge of the representation and knowledge of
1-out-ofn discrete logarithms. We extend the signature of knowledge of 1-out-of-2 discrete logarithms
from [10]. Note that the signature does not reveal which discrete logarithm the signer knows.

Definition 9. Let G be a cyclic group of ordeord(G) where the Discrete Logarithm Assumption holds.
A 3n-tuple (1, ..., CnySuys-- s Suys Sors- -5 80,) € ({0,1}9)" x Ly satisfyinger @ ... © ¢, =
H(g1, 92U 215 -0 20 Y100 900 o Y g o 25 g5 - o, 25 gy m) s a signature of knowl-
edge of the discrete logarithm of ong i € [1,n] to the basej, and its equality to the exponent of the
go-part ofy, on a messagen € {0,1}*, denoted

SK[(ai, B) :y = g1 95" A (21 = g5* V...V 2 = g5™)](m).

T X2

Assume that the signer knows;, z2) €g Zgrd(G) with y = ¢7"¢5? andz; = g5* for onei € [1,n]. Then

asignatureéS K (o, ) 1 y = g?gg‘i A(z1=g5"V...Vz, =g5")](m) on amessage € {0,1}* can be
computed using the following algorithm:

2 . kyn—1.
] (Tula"'vrun’r’vlw'"T’Un)ERZO?d(G)’ (Cl,...,cz;l,Ci+1,...,0n)€R({0,l} )n ;
Tu,; T, . . o Tu: Tos L Ty
o u =g, v =g, forallj#iu;=y9g9,"9,’ andvjzzjc»]gQJ;
n .
® C; :@j#cj@H(gl,ggjy,ul,...,ui_l,uivi,ui+1,...,un,vl,...,vn,m),

® Sy, = Tu, — GiT1; Sy, = Ty, — Cixg; forall j # it sy, = ry; ands,, =r,,.

The following is a combination of the signatures of knowledge of two equal discrete logarithms and of
the representation describedlinl[11] and [10].
Definition 10. LetG be a cyclic group of ordesrd(G) where the Discrete Logarithm Assumption holds. A
tupel (¢, s1,s2) € {0, 1}* x Z2 ) satisfyinge = H(g1, g2, y1, 42, Y595t Y591 9o, m) is a signature
of knowledge of the representatiomgfto the baseg; andg,, and of the equality of the discrete logarithm
of y; to the basey, and the exponent of thg-part of y,, on a message: € {0, 1}*, denoted

SK[(o, B) : y1 = g5 Ay = g7 g5](m).



Assume the signer knows, z2) eZsz(G) with y; = ¢3! andys = g7" g5%. Then asignatur K [(«, ) :
Yy = gg Ayg = gfgg“] (m) on a message: € {0, 1}* can be computed using the following algorithm:

’T‘wl ’l"w2 .

2 . Twy .

b (rwmrwz)GRZord(G)f W1 =gy ,W2=9; Gg *

o c= H(g1,92, Y1, Y2, W1, W2, M); Sy = Tayy — CT1; Swy = Ty — CT2-

Both schemes can be proven secure in the random oracle flidéietemark that the interactive version
of these protocols are zero-knowledge. Furthermore, these signatures of knowledge can be combined into
a single signature of knowledge as shown in the signing protocol in Séctipn 3.3. Signatures of knowledge
can also be used as non-interactive proofs of knowledge if an empty string is used instead of the message
m, i.e.,SK|[(«) : y = g*]() stands for the proof of knowledge of a discrete logarithmy tf the base.

3.3 The Scheme

In this section we describe in detail our democratic group signature scheme with respect to Definition
[1]. Consider a cyclic grougy =< g > of orderord(G) generated by where the Discrete Logarithm
Assumption holds. Le&EGIK A = {Setup(), (Join;(), Join,()), Leave()} be a secure contributory group

key agreement protocol suite where group members’ contributions are constructed as described in Section
[3.9. We assume that all sent messages are authentic.

Protocol Setup(). The protocol between users to set up a SDG proceeds as follows. Eachiuser

e sets counter value= 0, selects secret signing keyjo) € r Z,q(c), COmputes corresponding contribu-
tion Zifo] = g*ilol,

e performs the instance of the interactive algorith@/C.A.Setup(z;q), 2;0), and obtains the tracing
trapdoor (group secret key)o € Z.q(q) and auxiliary informatioruuz;jo) that contains the set of
contributions of all group members, i.&j,) = {21(g), - - - » Zn[o] }»

e computegjj, = ¢*9, and defines the group public ke = (J10]> Z0])-

The public output of the protocol is the group public Rey . The private outputs ateg, &g andauz;.-

Publishing ofY};. Every group public key}y = {94, Z}; } has to be published in an authentic manner.
Unlike in classical group signatures, where the group manager usually proves the correctness of the group
public key to the certification authority, in DGS all group members have to cooperate for this purpose. We
suggest the following simple solution. Every participahblds an identity certificateert; on a public key
pk; issued by a certification authori€yA and used to authenticate messages dfie corresponding private
key sk; is known only to the participant. Participantomputes the following signature of knowledge on a
messagé\l; = cert;||t||Y:

Si = SK|(i,3) : gy = g7 A ziiy = 97| (M;),

and signs it using a digital signature scheme with his privatedtgyi.e., T, = Sign(sk;, S;). Then,

every member publishdd/;, S;, T;). Every member verifies whether all published tuples are correct, i.e.,

all proofs are verifiable, and every messayge contains the same set of contributiofg; in Y}, and
complains if he discovers any cheating attempt. Obviously, the sign8iymeves that memberknows

the tracing trapdoot;;, own secret;; used to compute the contributiop, and seals the group formation
identified by the counter valug because contributions of all group members are pab/pfThis ensures

that any member’s attempt to cheat will be discovered if there is at least one honest group member (as
required by the trust relationship in Sectjon|2.1). The cheating member can be identified using his signature
T;. The published signatufg can then be used to identify a group membepon his contributior;,.

Remark 4.This procedure has to be performed whenether the group publitkeg updated, i.e., after
the protocols/oin() and Leave(). SinceY}, changes over dynamic events group signatures produced by
our scheme can be used by members only to prove their membership in the group formation identified by
t. To prove the membership in several formations a signature for each formation must be provided.

4 Note that not all protocols, which can be proven to be secure in the random oracle model are also secure in the standard

model as recently shown in [12]. However, it is still believed that for the kind of protocols considered here (i.e., signatures of
knowledge) random oracle provides sufficient proofs.



Protocol Join(). The protocol between the group and a joining membproceeds as follows. Letbe
the current counter value amdthe number of group members.

e Joining member selects his secret signing key; 1] €r Zora(c), COMputes corresponding contri-
bution z,,;4.1) = g*u!4.

e Group members and the joining member perform the prot66a&l.A.Join() by calling the instances
Join;() andJoin,(), respectively:
CGRA.Join;(z;y), aur,y) is called by every member € [1,7n], and outputs the updated, ),
aux;j41], and possibly updated; ;.
CGRA.Joiny (1], zut+1)) iS called by the joining member, and outputs the updated, ;) and

AUL y[t41]- R
e Every group member increaseg, computes g = gt and Yy =
(Yt+1] Z1[t41)> - - > Znt1fe+1])-

The public output of the protocol is the changed group public¥gy;;. The private outputs are;;
Z(p41], @andauz; 1 1). We remark, that current valuean be sent to the joining member as pad@f ;. ;.

This requires a minimal maodification of the underlying CGKA protocol. If no modification is possible, then
one additional message containinyas to be sent between the group and the joining member.

Protocol Leave(). The protocol between the remaining group members after a membas left the
group proceeds as follows. Lebe the current counter value andhe number of group members. Every
remaining group membere [1,n — 1]:

e performs the instance of the interactive algorittiC.A. Leave(z;(, 2,u)), au,))), and obtains the

updatedi(; ), auz;1q), and possibly updated; | );

[ ] InCI’eaSG$, CompUtE@[t_H} — gm[t+1] and}/[t_;’_l} — (g[t_i_l}, Zl[t+1]7 PPN ?Zn—l[t+1])'
The public output of the protocol is the updated group public Xgy,;. The private outputs are;; ),
Ty 1), @ndauz;pq).-
Algorithm Sign(). The signing algorithm is a combination of the signatures of knowledge from Section

. In order to generate a group signature on a message{0, 1}* the algorithm on input;;, m and
Yy = (919, Z|y)) performs the following computations:

® 7 C€R Zord(c): 9 = 9"5 U = U Zile)s
e S=5SK[(a;,3):G=¢°Nij= Q[ﬁt]go‘i A(zig = g** V...V 2y = g*")](m) is computed as follows:
* (Tu1, ey Ty Togy ooy Tug s ) GRZz?d(G); (01, ey Cim1, Cidly e vy Cn) GR({O, 1}k)n—1;

U Jj

* U; = QE;]%, V; = gr”i; w; = gT“i; for a"j 75 7. Uj = QCJ@;} gh’j, v = Z;[t]gij; wj = gcjgruj;
* G = @;L;éz Cj S H(%@[tb@@“h ey Ug—1, WiV4y U1y - o+ Uy U1y e ooy Uy W1, - - . 7wn>m>;
* Sy, = Tu; — GT; Sy, = Toy — Gy forall j # it sy, = 1y, sy, = 1053

kS = (Clyev ey CnySugye ey SupsSury -~y Svn);

The algorithm outputs the group signature= (g, g, .S). Obviously, the signei proves that valuegj, 3)

encrypt his contributior;;) without revealing the latter by proving the knowledge of the representation
of y to the basegy;; andg, and that the same exponent is used to compwtad thej,;-part iny. That
encrypted value is a valid contribution &y, is shown by proving the equality between the exponent in
g-part of j and the discrete logarithm afy,; to the basegy. The fact that the signer knows the discrete
logarithm that has been used to comptg proves that the signer is the owner of this contribution. Note
that the signature does not reveal the contribution of the signer. This is important for the anonymity property
of the scheme.

Algorithm Verify(). The verifying algorithm on input a candidate group signature (g, 7, S), mes-
sagemn, and the group public keYj, = (94, Z|)) verifiesS, i.e.,

o ParseS as(Ci, ..., CnySuyy- -y Suny Svis---sSun)i € = DT ¢

Su,

_ 7 1 5 a1 a7 ou '~ N oun v v n v o u ~Cn U
i CheCkC = H(ga y[t]ag7y7y01y[st]1.gsv1 9 aycnyt} gs n7zﬁt]gs Lyeey Z:L[t}gs nvgqgs Lyenn ,gc gs n’m)
and returng if verification is successful; otherwise the algorithm fails.



Algorithm T'race(). The tracing algorithm on input a candidate signatare: (g,9,.5), @ messagen,
the group public key}; = (g, Zj4), and the tracing trapdodr, proceeds as follows:

e checkVerify(o,m,Y) z 1;
o Vi =g zipy = §/Vi;

° checkzi[ﬂ é Yy
o V= SK(a) : iy = 9° A Vi = 510

It outputs the decrypted signer’s contributieyy and a proof(V1, V») if and only if all checks are suc-
cessful; otherwise the algorithm fail; is a proof thatl; equals to thej-part of g, i.e., Vi = g@]. The
signer’s identity can be easily computed from his contributignas all contributions are part of the group
public keyY};) and have been signed by the corresponding member using his certified keykpait:; ).

Algorithm VerifyTrace(). The algorithm on input a signature= (g, 7, S), a messagen, the group
public keyY}; = (94, Zjy), the contributiorz;;,;, and proving valuegl;, V) proceeds as follows:

2

e checkVerify(o,m,Yy)) = 1;

e checky L Vizipy);
e verify V5;

It outputsl if and only if all checks and verifications are successful; otherwise the algorithm fails.

3.4 Security Analysis

In this section we analyze the security of our scheme with respect to the requirements in Seftion 2.3.
We show that as long as underlying cryptographic building blocks (i.e, CGKA protocol and signatures
of knowledge) are secure our scheme fulfills the stated requirements. Since signatures of knowledge are
provably secure only in the random oracle model we apply this model to prove the security of our scheme.

Lemma 1. The construction of a democratic group signature sch®gé& = {Setup(), Join(), Leave(),
Sign(), Verify(), Trace(), VerifyTrace()} from Sectiof 3]3 is correct.

Proof. The full proof is presented in Appendix A.1.

Lemma 2. The democratic group signature sche@®&S from Sectiorj 3]3 is traceable in the random
oracle model assuming that contributory group key agreement protocol 6dite4 is secure and the
Discrete Logarithm (DL) assumption holds in the grabip=< ¢ >.

Proof. The full proof is presented in Appendix A.2.

Lemma 3. The democratic group signature scheM&sS from Section 313 is anonymous in the random
oracle model assuming that contributory group key agreement protocol GditeéA is secure and the
Decisional Diffie-Hellman (DDH) assumption holds in the grakip=< g >.

Proof. The full proof is presented in Appendix A.3.

Theorem 1. The democratic group signature sche@S from Sectiof 3]3 is secure in the random oracle
model assuming that contributory group key agreement protocol §¢iteA is secure, and the DDH and
DL assumptions hold in the group =< g >.

Proof. The proof of this theorem follows immediately from Definition 5 and Lemas 1, 2 jand 3.



4 Conclusion and Further Directions

In order to handle the shared financial control in JVCos based on the "trust, but verify” relationship we
have proposed a new group-oriented signature scheme, catlethacratic group signaturéNVe have

shown that the classical model of group signatures is not applicable for this scenario because of the group
manager’s role, which contradicts to the requirement of individual tracing of group signatures and joint
control over the membership in the group. Our model can also be used for other issues of the shared
control where the "trust, but verify” relationship is required. The proposed practical construction fulfills
the stated requirements and is secure in the random oracle model. The signature of knowledge used in the
signing algorithm is of independent interest. It may be used to prove ghat encrypts a valug®: from

the sety®?, ..., g®» without revealing the indek In the following we would like to point out some further
research topics in the area of democratic group signatures.

4.1 Dynamic Changes

The presented scheme uses a contributory group key agreement protocol suite to establish and maintain
the group formation upon dynamic changes. The scheme is currently designed to work with any protocol
suite which fulfills the requirements from Section|3.2. However, not all CGKA protocols provide same
efficiency in this context. It would be interesting to analyze, which of the existing CGKA protocol suites
are mostly efficient? Further details and comparison of existing CGKA protocol suites are given in [2].

4.2 Signature and Public Key Sizes

In the proposed practical solution the group public key and generated signatures grow linearly in the num-
ber of current group members, whereas recent classical group signature schemes keep both sizes constant.
The latter is possible because the group manager controls the group formation and maintains a database
with transcripts of join events for all members. This database is used to open group signatures and its size
grows linearly (!) in the number of current group members. A challenging task is to design a DGS which
fulfills the proposed requirements, but keeps the signature size and (or) the group public key size constant.
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A Security Proofs

A.1 Proof of Lemma[] (Correctness)

To prove the correctness of the scheme we have to show according to DeEhition 2 thakforall; with
i€[1,n], andz if o = Sign(z;), m, Y}y) then the following statements hold:

() Verify(o,m,Yy)=1and
(i) Trace(o,m,Y}y, &) = (2, (V1, V2)) andVerifyTrace(o, m, Yy, zijy, (V1,V2)) = 1.

Leto = (g,9,S5) andYyy = (9, 21[4; - - - » Znfr))- The statement erify(o, m,Y}) = 1 holds since any
correctly generated signature of knowledgées accepted by the corresponding verification algorithm. On
input o, m, Y}, and2y the tracing algorithm compute§, = §*1, which is equivalent tq}ft], there-
fore g/Vi = g@]zi[t] /g@] = zj, holds. The contribution;;;; is part of Y}y and reveals the identity of
the signer. The tracing algorithm outputs also the proof of knowlddgewhich is constructed using
the secret group keyy,. Algorithm VerifyTrace() uses the proofVi, V) to verify the correctness

of z;,) returned by the tracing algorithm with the equat@)lq; Vi 2, Which obviously holds, because
Viziy = g)@]zim = g. Verification of V5 is succesfull due to its construction by the tracing algorithm.
Thus,VerifyT'race(o, m, Yy, zj, (V1, V2)) = 1. Hence, the democratic group signature scheme is cor-
rect. 0O

A.2  Proof of Lemma[g (Traceability)

The proof of traceability consists of four parts. First, we describe an oriclbat is used by the
polynomial-time challengeB to performCG K A protocols. Second, we describe the interaction between
B and polynomial-time adversary that is assumed to win the traceability game for the group signature
scheme. Third, we distinguish between different forgery types possibly producddfgurth, we show
how interaction betweeB and A can be modified to compute a discrete logarithm in the g@up< g >
using the forking lemma [19, Theorem 3].

Oracle K. In the following interaction we outsource the challenger’s part of the contributory group key
protocol CGK A used inDGS to an oracleK. The idea is thaiB usesK to initialize the group of
members and acts as a mediator betwdeand K during the interaction withd. Since K initializes the
group all secret key$x;|i € [1,n]} are initially known toK, but not toB. If during the interaction4



gueriesB to perform a dynamic change (join or leave) theémsksK to proceed with the query. Using

we allow indirect participation oB in the CG K A protocols.B is allowed to ask for the computed tracing
trapdoorz and any secret signing kdy; |i € [1, n]}, and receives also contributions of all group members,
i.e., setZ = {z; = g™|i€[1,n]}. Our goal is to use the interaction to compute a secret signing k#at
remains unknown t@ after the interaction is finished. This is equivalent to the computation of the discrete
logarithm inG sincex; = log, 2;.

Let I denote a set of contributions of group members that are controlled by the éfaaledn be the
current number of group members. Orasleanswers to the following queries &f;

Setup. This query can be used to initialize the group. It contaimsN as parametelk picksn secret
values(z1,...,z,) €Er Ly, q(c) Computes corresponding contributions = ¢* for all i € [1,n],
performsn instances of the interactive algorith®@¢x.A.Setup(x;, z;) to obtain the tracing trapdoor
z and auxiliary informatiomuz; for each instance, and séts= {z;|i € [1,n]}. K answers with the
communication transcripgtcript of all protocol messages. Note thatript contains only public data
sent over simulated communication channel and due to the securify=é¢f A does not reveal any
information that may lead to the computation of secrgts € [1, n] or . Among other information
tscript contains the set of public contributiods= {z;|i € [1,n]}.

Join;. This query can be used to introduce a new member to the group that is not controliéd by
K performs| | instances of the interactive algorith8GC.A.Join;(z;, aux;) and obtains the trac-
ing trapdoorz and auxiliary informatiormux; for each instancell answers with the communication
transcripttscript of all protocol messages. Note thatript contains an updated set of public contri-
butionsZ = {z;|i € [1,n + 1]} including the contribution of the joined member.

Leave. This query can be used to exclude a mempdrom the group. It containg; € G as pa-
rameter. Ifz; € K thenK = K — {z;}. K performs|K| instances of the interactive algorithm
CGKA.Leave(x;, z;,aux;), and obtains the tracing trapdodrand auxiliary informatiomua; for
each instancell answers with the communication transcriptript of all protocol messages. Note
thattscript contains an updated set of public contributiéhs= {z;|i € [1,n — 1]}.

SGroupKey. This query can be used to obtain the tracing trapdoand contains no parameters.
answers witht. Note that due to the security requirementsgf K A the tracing trapdoaf: does not
reveal any information that can be used to compute any member’s sgcret

SMemberKey. This query can be used to obtain a membésscretz;. It containsz; € Z as parameter.
K answers withg;.

Interaction between B and A. Assume that there exists a polynomial-time adversampat wins the
traceability game in Sectidn 2.3 with non-negligible probability, ikely > e. Let A}y denote a set of
contributions of group members controlled by the advers4 ya set of contributions of group members
corrupted by the adversary, aift}, a set of contributions of group members that are not controlled and
not corrupted by the adversary in the group formation that is identified with the countertyaodn
be a number of group members of this group formation, such that the following relations hold #for all
Ay UBpy = Zpyg, Ay N By = 0, A’[t] C By, andn = |Apy| + |Bjy|. We stress that group membersp,
are controlled by the oracl&, and that all secret signing keysy, of group members i) are initially
known only toK and not toB.

Setup: B picks a randomn €z N, sets counter value= 0, initializes setsdyg = 0), A’[O] = (), queries
K on Setup with n and obtains communication transcriptript, that reveals the set of contributions
Zio) = {zli € [1,n]}. B definesBj, = Z, queriesK on SGroupKey and obtains the tracing
trapdoorz . B computegjjg = g%, and givesA the group public keylo) = (Jj0)» Zj0))- (Note that
B does not know any secret signing key; used to compute the corresponding contribution.)



Hash Queries: At any time A can query the hash functioH. B answers the query completely at
random while keeping constistency.

Queries:

Join. A picks x4 41] € Zorq(a), COMputes contribution, ;1) = g*«l+Y, and starts the interactive
algorithmsCG KA. Join, (Tafp 41 2Zaft+1)) ANACGILA. Join;(x,,)), auxy,) for all a; with 2z, ) € Ay,
whereask’ uponB’s queryJoin; StartsCGKA. Join; (), auz,py) for all i with ;) € By B forwards
A’s messages té& and vice versa until the protocol is finished. For the instanc@gi€.A..Join,, ()

A obtainsz, ) and auz 1), and for all instances afGK.A. Join;() it obtainsZ 1], auzg, 41
and possibly updated, ;,, whereask obtainsiy, ), auz;;,;) and possibly updated;; . B
receives script von K that includes the set of updated contributidfys i) = {z;p41li € [1, 7 + 1]},
and updatesi; 1) = Ay + {zap+1) ) AEtH} = A/[t} andBj.1) = By accordingly.B queriesk on
SGroupKey and obtainst|, . Both, A and B computegjy, 1) = g*+1 andY, 1) = (Jje+1)> Zje+1))-

Leave. Suppose membej € [1,7] should be excluded from the group. 4y € A} then B up-
dateSA[tH} = A[t} - {ij}, eIseA[tH] = -A[t] If Zjly € B[t] then B[t+1} = B[t] - {Zj[t]}f. else
B = By If 2 € A{t] thenA’[tH] = A,[t] —{zim} eIseA’[tH] = A’[t]. A starts interactive al-
gorithmsCGKA. Leave(z o), 251 auzq,; ) for all a; with z,,, € A4, whereask' upon B's query
Leave with parameter;,) startsCGKA. Leave(z;, ), aux;) for all members with z;, € Bj;4.q). B
forwardsA’s messages t& and vice versa until the protocol is finishedl.obtainsz 1), auz, (111
and possibly updated,,; ], whereask obtainsi, 1}, auz;;41) and possibly updated;, ). B re-
ceivestscript von K that includes the set of updated contributidfys 1) = {z;;+1)li € [1,n— 1]}, and
updates possibly changed contributionsdip, ;) andBj; 1) usingZ,,.;). B querieskK on SGroupKey
and obtainst|;; ;). Both, A and B computej; 1) = gPl+ andYj; 1) = (G115 Zje+1))-

CorruptMember. If A queriesB with a contributionz;,; € By, thenB forwards it toK” asSMemberKey
query and obtains the corresponding secret signingzkgythat it returns toA. B updatesA’m =

A’[t] + {zi[y}. However, ifz;; € Ay then interaction outputs a failure. Note thiatlearns all secret
signing keys that correspond to contributionsﬁi‘g}.

CorruptGroupKey. B answers withi | that it has previously obtained frof.

Sign. B is given a message: € {0, 1}*, a contributionz;; and a counter value If z;; € Ay then
interaction outputs a failure. ;€ A’[t] then B computes the signature= Sign(x;y, m, Y,) and
gives ittoA (note, B knows, for all contributions inA{t]). If 2 €Bpy — A’[t] then B generates the
signatures without knowingz ;) as follows. B picks a random € g Z,,.q(), computes; = ¢", and
y = Uy B computes the signature of knowled§ie= SK[(;, 3) : § = ¢° Aj = g}ﬁ]go‘i Az =
gV .V oz = g%m)](m) without knowing the corresponding exponentusing the random oracle
simulation as follows:
% (Supye vy SupsSvgs---sSv,) ERZ?)ZJ(G); (c1,...,cn)€R ({0,110 6 = b ¢
« forallie[1,n]:u; = yjcizjaa”gs”i, Ui = 2 g™, wi = g
* SetH (g, Uj)> > Uy Uty - - -5 Un,y V1, - - - Up, W1, - - ., Wy, m) = ¢ if the hash oracle has not yet been
gueried on these values antias not been previously returned; otherwitseeselects the randoms;
kS = (Cly.veyCnySuys-veySuysSvyse--sSv, )i
B gives the generated signature= (g, 7, S) to A.
Output: Finally, A outputs a successful forgery consisting of a messagsignatures = (g, 9, .5),
and a counter value The interaction output§n, o, t).
Forgery Types. We distinguish between the following two successful forgery types with respect to the
output of the traceability game in Sectjon|2.3.

Type 1.The forgery(m, o,t) is accepted by the verification algorithm, i.€.¢rify(o, m,Y}) = 1, but
causes the tracing algorithitvace(o, m, Y}, Z|) to fail. A closer look on the tracing algorithm reveals



that such failure can only occur if fof, = 7/Vi with Vi = G the relationz;; ¢ Zj,) holds. This
implies that eithe(g, ) is not a correct encryption of a contribution or that the encrypted contribution is
not part of Z,;, thusS has to be a forged signature of knowledge; otherwise the signatweuld have
been rejected by the verification algorithm. Assuming the security of applied signatures of knowledge
outputs the forgery of type 1 only with some negligible probabdity

Type 2.0n input the forgery(m, o,t) the tracing algorithn¥'race(a, m, Yy, ;) returns the encoded
contributionz; € By — Ay, In the following we show that ifi returns a forgery of type 2 thef is able
to compute the discrete logarithm of the encoded contributigrto the basg in the groupG =< g>. We
modify the interaction betweeR and A and show that the forking lemma for adaptively chosen-message
attacks from[[19, Theorem 3] can be applied.

The forking lemma can be applied to the signatures of the f@rmce, o2) on a message: whereo;
depends only on the random chosen valuéds,a hash value that depends@nando;, andos depends
only onoy, m, ande. We abbreviate the signatuse= (g, g, S) of a message: produced by the signing
algorithm of the group signature scheme in Se 38 as(o1, ¢, 02) with the following parameters:

o 0'1:(g,g,ul,-~~,Un,Ul,»--,Un,W1,»--,wn)
ec=c1D...0cyWithc = H(g, g, 01,m)
® 09 = (Suyy--+ySupyySvys---sSv,)

The forking lemma for adaptively chosen-message attacks requires that the signatieg, c, o2) can
be simulated without knowing the corresponding secret signing key with an indistinguishable distribution
probability. We stress that the computationélescribed in the signing query of the interaction between
B and A provides such simulation in the random oracle model.

Assume that interaction betwed and A outputs a successful forgeryn, o,t) of type 2, where
o = (o1,¢,092). The probability that the interaction outputs the forgery of type 2 withaving queried
the hash oracle ofm, g, Jy, 01) ise2 = (AdVY — €1)(1 — 27%), where2~* stands for the possibility that
A guessed the corresponding value- @?:1 cj without queryingH. Let z;;) € Zj; be a contribution
returned by the tracing algorithm on the forgéry, o, t).

By the forking lemma we can rewind the interaction afdo the moment of this query, repeat the
interaction with different responses éf, and obtain a second successful forgery, o', t) whereo’ =
(01, ,0h) so thatd # c ando), # o9 with the probability at least,. Note that’ = @;L:l c; such that
¢, # ¢;, whereas values; and c;» with j # ¢ are independent from the response of the hash oracle as
shown in the signing algorithm of the group signature scheme, and are not used in the computation of the
discrete logarithm. We compute the corresponding secret signing key= log,, ;) from the equality

Z;:[,.ﬂ g = Zic[;t] g“”@i asz;) = s”;%:z,_”i. Hence, usingd we can compute the discrete logarithmGiwith
a non-negligible probability(AdvY — ¢;)(1 — 27%))2. This is a contradiction to the Discrete Logarithm
assumption. Thusﬁ,\dvf{1 < e andDGS is traceable according to Definiti@w 3. 0

Remark 5.Most of the CGKA protocols do not achieve Perfect Forward Secrecy (PFS) since not all con-
tributions z;;;; are changed every time a group formation changes, and, therefore, the exposure gf one
can possibly reveal tracing trapdoors of multiple sessions gjfiis changed. Note that although we allow

the CorruptMember query, the absence of PFS is not a hazard for the traceability, since the knowledge of
the group key (allowed b orruptGroupKey query) is not sufficient to break the requirement as shown in
the proof.

A.3 Proof of Lemma[3 (Anonymity)

Suppose there exists a polynomial-time adversamhat breaks the anonymity @fS. In the following
we show that it is possible to construct a polynomial-time distinguighagainst the security afGK A



(decisional group key secrecy requirement), and adveiBagainst the DDH assumption (& such that
Adva" < 2AdvEIke 1 oadvadn 4 o

where Adv9@ — Pr[D(tscript,xi) = 1] — Pr[D(tscript, xoq) = 1] is the advantage ob in
distinguishing a secret group key (i.&4y = #;) computed byCGK A from a random number (i.e.,
Xo[] €R Zora(c))- Recall thatscript is the transcript of all protocol messages that contains also the set of
public contributionsZ,) = {z;4li € [1,n]}. Since we assume thatG'K A is a secure protocol suite, and
the DDH assumption holds i@ the right hand side of the inequality is negligible so, the advantage on the
left side is also negligible, anBGS is anonymous according to Definitiph 4.

Construction of D. OracleK introduced in the proof of traceability can be used to generate inpdds to
and performCG K A protocols onD’s queries. However, we modifi to suit the anonymity requirement
as follows. K does not answer t8§GroupKey and SMemberKey queries, otherwisé would be able to
distinguish the tracing trapdoor simply using these querieskletand.A;) denote sets of contributions
of members controlled by and A during the group formation identified kiy respectivelyX proceeds
queriesSetup, Join; and Leave as described i2. Additionally, at the end of each querif = 0
then K chooses a random bit € {0,1} and together withtscript returnsx, to D, such thatx,,
is either the secret group kel if e = 1 or a random valuéy €r Z,.qq) if e = 0. However, if
A # 0 then K returnstscript andZp (this is becausel knows 2y too). D wins the game if for at
least oney.; it can correctly guess. CGK A is said to fulfill decisional group key secrecy requirement
if Adchgka: Pr[D(tscript, x1i)) = 1] — Pr[D(tscript, xog) = 1] is negligible. In the following game
we show, howD usesA to break the security af'G K A. For clarity we omit the operations performed by
K and describe the views @ and A.

Setup: D sets counter value= 0, queriesk on Setup and obtainsZjy; = {z;(g|7 € [1,7]} and .o
It computesyjy) = g9, initializes setd| = (), and givesA the group public keyy) = (9o}, Zjo))-
(Note thatjjq is eitherg™ or g") depending or.)

Hash Queries: At any time A can query the hash functioH. B answers the query completely at
random while keeping constistency.

Typel-Queries:

Join. A picks z4j441) € Zorq(c), COMPUtES, ;41 = g ol+Y, and stant€GKA. Joiny (Tap41]s Zajt+1))
andCGKA.Join (T a1, Za, [ AUT4,[y) fOr all a; with z, 1,y € Ay, D forwardsA’'s messages t& and
vice versa until the protocol is finished. As result@/CA.Join, () A obtainsiy ;) andauz,f1),
and for allCGKA.Join;() it obtains 2, ), auz,,;;4+1) and possibly updated,,;,,;, whereasD
obtainsZ},, ;) and, ) from K. A and D computej,, 1) = gol+1] andYj,1) = (Jj41)» Zje41)- D
updatesAj; 1) = Apy + {zq[41)}-

Leave.Suppose membei € [1,n] should be excluded from the group.Afy € Ay then D updates
Afpr1) = Ay — {Zj[t]}, else it setsd|; 1) = Apy.

) CaSGA[t+1} # 0. A startsCQlCA.Leave(:cai[t],zj[t],auxaim) for all a; with Zat) € A[t+1]- D
forwardsA’s messages té& and vice versa until the protocol is finishedl.obtainsY;; 1), &1
and all secret signing keys,, ;.1), whereas) obtainsZ; , ;; andi; ) from K. A andD compute
Upe+1) = g andYj,11) = (Jj+1]> Zje+1))- D updates possibly changed contributionsiip, ;.

e CaseAy, = 0: D queriesK on Leave with parameter;;, and obtainsZj, ;; and xj;4q)- It
computesjj ) = g*l*+11, and givesA the group public ke, 1) = (§+1], Zj1+1))- (Note that
Jp+1) IS eitherg®+11 or g"++11 depending or.)

Sign. D is given a message: € {0,1}*, a memberj € [1,n] and a counter value If z;;; € Ay
then B aborts. ElseD generates a signature fot using j's contribution as follows.B picks a



randomr €g Zyq(c), computesy = g" andy = g)[’;}zj[t}. B computes the signature of knowledge
S=8SK[ca;,B):§=6¢° NG = g[ﬁt}gai A (21 = g™ V..V 2y = g*)](m) without knowing the
corresponding exponent; using the random oracle simulation as described in the gsigryof the
traceability game if A2, and gives the generated signature(g, 7, S) to A.

Challenge: D is given a message:’ € {0,1}*, two members, andi;, and a counter value.
If Ay # 0 then D aborts. OtherwiseD picks a random bitl € {0, 1}, generates the signature
o4 = (g,9,S) using contributionz; ,;,; as described in the queignof Typel, and gives it toA.
(Note that sinceD responds to the challenge onlyAfy = 0, x.[ is eitherz, or 7', depending om.)

Type2-Queries: D responds to the possible queriesdés described in Typel-Queries.

Output: Eventually,A outputs a bitl’ € {0, 1}. If @’ = d thenD outputsl (indicating thatx.j = Z);
otherwise it outpute (indicating thatx.; = 7).

Casee = 1. The most important observation in this case is fhaf is a tracing trapdoat,; computed in
the sense of'G K A. Hence Y}, = (94, Z}y) is equivalent to the group public key of the proposed scheme
in Sectiorj 3.B. Therefore, signatures generatefliry the random oracle model are indistinguishable from
those in the anonymity game in Sectfon|2.3. ObviouBlyutputsl whenethetA correctly guesses bit
Hence,

Pr[D(tscript, x1j) = 1] = Pr[A(o1) = 1]Pr{d = 1] + Pr[A(og) = 0] Pr[d = 0]

_ %(Pr[A(al) = 1]+ Pr[A(o) = 0))

1
= i(PT'[A(Ul) =1]+1 - Pr[A(og) =1]) (1)

1
= 5(1 + AdvaM

1 1

Casee = 0. The most important observation in this case is tha is a random valuéy;) €g Z,.q(c)-

Note that in both casep; is constructed by asg*<. Hence in this casé, = (7, Z|,)) is a simulated
group public key. Therefore, signaturg generated by is a signature-like looking tuple. These signatures
can be classified into two distributiot%;, d € {0, 1} depending on the choice df Obviously,D outputsl
whenetherA can distinguish whether, belongs to distributiorzy or E1. Hence,Pr[D(tscript, xop) =
1] = Pr[A(Ey) = 1]Pr[d = 1] + Pr[A(Ey) = 0]Pr[d = 0], i.e.,

Pr{D(tseript, xopg) = 1] = 5 (PrlA(Er) = 1] + Pr{A(E) = 0]) @

Instead of precise estimation of this probability we relate it to the probability of breaking the DDH
assumption by the adversady, assuming that there exists adversarythat can distinguish between
signatures sampled from distributioh§ and F; .

Construction of B. AdversaryB is given a tupl€g, T,, = g%, T, = ¢*,T..) € G* wherea, bERZord(c)
and eitherl, = g¢ with c€r Z,q(c), Or Te. = g®. B decides whicl, it was given by interacting witht
as follows. LetA,; denote a set of contributions of group members controlled by the adversaify;,aad
set of contributions of group members that are not controlled bythe group formation that is identified
by the counter valué, respectively, anek be a number of group members of this group formation. Note
that Ay U By = Zjg, Ay N By = (), andn = |A[t]| + |B[t]|.

Setup: B picks a random € N, sets counter value= 0, picks randomgdio), T1(q]; - - - , Tn[0]) ER

Z?&%G). It computegjg = Tl andZjg = {g"|Vi 1, n]}, performsn instances of the interactive



algorithm CGK A.Setup(z;jo), z;j0)) in parallel, and obtaing g and auz, for each instance. It
initializes setA|y = (), setBjy = Zjo), and givesA the group public key[, = (g0}, Zjo})- (Note that
9jo) 1S computed ag®“l and not using the obtained secret Key, and thatB cannot compute
because it does not know Obviously,Y], corresponds to the simulated group public key from the
construction of the distinguishé? above, allowing us later to relate the probabilities of both games.)

Hash Queries: At any time A can query the hash functioH. B answers the query completely at
random while keeping constistency.

Typel-Queries:
Join. A picks ;11 € Zorq(a)» COMputes contribution, ;. = g*«*+1, and starts instances of the
interactive algorithm&G/ICA. Join, (Taji41), 2aft+1)) ANACGKA.J0ini (T o, (s Za,[1, aUT,,}) for all
a; with Za;[t] € .A[t}, whereasB Stal’tSCgKA.JOini($i[t], Zift]s au;rim) for all ¢ with Zi[t] € B[t]. After
the protocol is completed obtainsi, 1}, auz,q), and possibly updated,,,;, whereasB obtains
T 41), aux;4q) and possibly updated;, . ;). Both, A and B computej; ;) = gr+] andYj; ) =
(Yt+1)> Zj1+1))- B adds the contribution of the introduced member to thessgti.e., Ay 1) = Apy +
Zalt+1 }
Lea[lve.}Suppose membeir € [1,n] should be excluded from the group.fy € Ay, then B updates
A[tJrl] = .A[ﬂ — {Zj[t}} andB[tH = B[t], else it SetS4[t+1} = A[? andB[tH'] = B[t} — {Zj[t]}-
o Casedy ) # U: AstartsCGKA. Leave(xq, (4, 2j}, aut,, () for all a; with z,, i € Ay417, whereas
B stantsCGICA. Leave(z;py, 2j11, auz;jy) for all 7 with 2 € Bj,1q). After the protocol is completed
A obtainsY}; 1}, 2441 @nd all secret signing keys, ;. 1], whereass obtainsY|, ), Z;4.1) and all
secret signing keys; ;1. B updates possibly changed contributionsfif, ;; and By, ;.
° CaseA[tH] =0:B startsCQlCA.Leave(xi[t], Zj[t]» aumi[t}) for all ¢ with Zi[t] € B[t+1]v and obtains
Z[i41), auz;pyq) and possibly changed;; ). It picks a randomiy 1) €r Zyrq(c), cOmputes
Yper1) = T, and givesA the group public keWii11) = (Jje+1)> Zj+1))- B updates possibly

changed contributions i, ;. (Note that like in setupy},  is a simulated group public key.)
Sign. B is given a message. € {JO, 1}*, a memberj € [1,nﬁ and a counter value If Ay # () and

zjig & Ap then B computes the signatuke = Sign(x;yy,m, Y}) and gives it toA. If Ay # 0
and z;;; € Ay then B aborts. Else ifA = ( then B generates a signature far using j’s
contribution as follows.B picks a randomr €g Z,q(c), computesg = T (note thatg = ),

andy = Tf [t]sz[t] (note that if7, = g% thengy = g“bﬁ[tl”zj[t] = gjf’t’]”zj[t]; otherwise ifT, = ¢°¢
theny = g)[c;]‘zj[t] for some unkonwn random®* = c¢r/a). B computes the signature of knowledge
S = SK[(aZL,ﬁ) cg=4g° /\g = gﬁ]gai Az =g v ... V Znjy) = g%™)](m) V\{ithou_t knowi_ng the
corresponding exponeptusing the same random oracle simulation as described in ligmyn the
traceability game if A2, and gives the generated signatuse(g, 7, S) to A.

Challenge: B is given a message)’ € {0,1}*, two membersi, andi;, and a counter value.
If Ay # 0 then B aborts. OtherwiseB picks a random bitl € {0,1}, generates the signature
oq = (g,9,S) using contributiory; , as described in the queBignof Typel, and gives it tol.

Type2-Queries: B responds to the possible queriesfés described in Typel-Queries.

Output: Eventually,A outputs a bit’ € {0, 1}. If ' = d thenB outputsl (indicating thatl, = g®);
otherwise it output$ (indicating thatl, = ¢°).

Recall that the advantage aB in breaking the DDH assumption is defined in Sectfon| 3.1 as
Adv‘,"gdh = Pr[B(g, Ta,Ty,9®) = 1] — Pr[B(g,Ta, Ty, ¢g¢) = 1]. In the following we compute
both probabilities and relate them to the probabilities obtained from the game with distingDishéne
previous paragraph.



CaseT. = ¢®. The most important observation in this case is that the signatugenerated by3
in the random oracle model is computed based on the simulated group publi¢key (7, Z,), i.€.,
g =g¢"andy = g)%zid[t]. Therefore, signature, is sampled from the distributiofy; introduced in
the previous paragraph. Obviousk, outputs1l whenetherA correctly guesses the distribution. Hence,
Pr(B(g, Ty, Ty, g?°) = 1] = Pr[A(Ey) = 1]Pr}b = 1] + Pr[A(Ey) = 0]Pr[b = 0]. Considering the
Equatior] 2, we obtain

Pr[B(g, Ta, Ty, g*) = 1] = Pr[D(tscript, xop) = 1] (3)

CaseT. = g¢°. In this case the encryption of the contributief), in the signaturer, given to A is
not correct, i.e.j = ¢" andj = yfﬁzid[t] for some unkown random* = cr/a. Obviously, valuey
is indistinguishable from a random number. Thus, the probabilityl @ guessing bid correctly is not
greater than that of a random guess, iL¢2 + €. Hence,

PT[B(gthMTbvgc) = 1} < 1/2 +€ (4)

In the following we combine results from both parts of the proof. Recall mdt/f?ka =

Pr[D(tscript, x1j) = 1] — Pr[D(tscript, xop) = 1]. With Equationﬂl anE|3 we obtain
1 1
AQVEI@ = © o+ CAdVE -~ PrIB(g, o, Ty ) = 1]

Addition of Pr[B(g,T,, Ty, g°) = 1] on both sides of the above equation combined w@iﬂv%dh =
Pr[B(g, T., Ty, g*) = 1] — Pr[B(g,Ts, Ty, g¢) = 1] implies

1 1
AV Pr{B(g, T, Tiy o) = 1] = 5 + S AV — Advih

By transformation and consideration of the Equaltipn 4 we obtain the required inequality:
Adva" = 2Adv9@ 1 oadvadN 4 o pr(B(g, Ty, Th, g¢) = 1] — 1
< 2AdvS¥@ 4 2AdvIIn 4 2
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