
A Simpli�ed Quadratic Frobenius Primality Test

by Martin Seysen

December 20, 2005

Giesecke & Devrient GmbH
Prinzregentenstr. 159, D-81677 Munich, Germany

martin.seysen@gi-de.com

Abstract

The publication of the quadratic Frobenius primality test [6] has stimulated
a lot of research, see e.g. [4, 10, 11]. In this test as well as in the Miller-Rabin
test [13], a composite number may be declared as probably prime. Repeating
several tests decreases that error probability. While most of the above research
papers focus on minimising the error probability as a function of the number of
tests (or, more generally, of the computational e�ort) asymptotically, we present
a simpli�ed variant SQFT of the quadratic Frobenius test. This test is so simple
that it can easily be implemented on a smart card.

During prime number generation, a large number of composite numbers must
be tested before a (probable) prime is found. Therefore we need a fast test, such as
the Miller-Rabin test with a small basis, to rule out most prime candidates quickly
before a promising candidate will be tested with a more sophisticated variant of
the QFT. Our test SQFT makes optimum use of the information gathered by a
previous Miller-Rabin test. It has run time equivalent to two Miller-Rabin tests;
and it achieves a worst-case error probability of 2−12t with t tests.

Most cryptographic standards require an average-case error probability of at
most 2−80 or 2−100, see e.g. [7], when prime numbers are generated in public key
systems. Our test SQFT achieves an average-case error probability of 2−134 with
two test rounds for 500−bit primes.

We also present a more sophisticated version SQFT3 of our test that has run
time and worst-case error probability comparable to the test EQFTwc presented
in [4] in all cases. The test SQFT3 avoids the computation of cubic residuosity
symbols, as required in the test EQFTwc.

Key Words:
smart card, prime number generation, primality testing, quadratic Frobenius test

1

1 Introduction

E�cient prime number tests are important in theory and practice, e.g. for RSA key
generation and for testing if a system parameter in a public-key system supposed to be
prime is really prime. In this paper we present a fast and simple probabilistic primality
test that can be considered as a variant of the quadratic Frobenius test [6]. All such
tests considered in this paper may declare a composite number prime with a small error
probability; but they never declare a prime number composite.

There are two reasons why primality tests should be fast and simple. First it should
be noted that the key size for public-key cryptosystems such as RSA is likely to increase
considerably in the next ten to 20 years, see e.g. [8]. In many cases, there is also a
requirement to keep the generated primes secret, so that prime number generation must
run in a secure environment, such as a smart card or a shielded cryptographic device.
Compared to a standard PC, the computational power of such a device is usually quite
limited, so that primality testing should not take too much time or storage.

When generating prime numbers for public-key cryptosystems, a cryptographic de-
vice chooses random integers of appropriate size and tests them for primality, until a
probable prime is found. Here the average case error probability of the test must be
small. In other scenarios, public key parameters (e.g. of the Di�e-Hellman key ex-
change protocol) must be veri�ed. Since these parameters may have been chosen by an
adversary, the worst-case error probability of the primality test must be small here.

Many applications use the Miller-Rabin test as the standard tool for primality test-
ing. The worst-case error probability of the Miller-Rabin test is ≤ 4−t when performing
t tests, see [9]. Using di�erent variants of the QFT, we asymptotically obtain a better
error probability for the same computational e�ort.

In case of prime n, the ring Zn of integers modulo n is equivalent to the Galois �eld
GF (n), its multiplicative group Z∗

n is cyclic of order n − 1, and there is exactly one
primitive 2nd root of unity, namely −1. If any of these properties is violated, n cannot
be prime. The basic idea of the Miller-Rabin test is to pick a random element of Z∗

n and
to check if it has order dividing n − 1. Furthermore, some calculations in the 2-Sylow
group of Z∗

n are performed in order to check if square roots of 1 apart for ±1 are present,
as this is the case for most composite n.

Most variants of the QFT work with the ring Zn[x]/f(x), where f(x) is a quadratic
polynomial over Zn. This ring is equivalent to the Galois �eld GF (n2), if n is prime and
f(x) is irreducible over Zn. Fortunately, such polynomials are easy to �nd: A quadratic
polynomial over Zn, n prime, is irreducible if and only if its discriminant is a quadratic
nonresidue modulo n. Again, a variety of properties must hold in GF (n2), n prime, and
can be checked for random elements in (Zn[x]/f(x))∗. First of all, GF (n2) is cyclic of
order n2 − 1, so any z ∈ (Zn[x]/f(x))∗ must have an order dividing n2 − 1. Also, there
is a natural automorphism, called conjugation in Zn[x]/f(x), that must be equivalent
to the Frobenius automorphism z → zn in GF (n2) for prime n. Furthermore, if n is not
divisible by 2 or 3, then n2−1 is divisible by 24, and in case of prime n, the �eld GF (n2)
has a cyclic group of 24th roots of unity, generated by a primitive root. All primitive
q−th roots of unity z, if they exist, must satisfy Φq(z) = 0, for the q−th cyclotomic

2

polynomial Φq. For technical reasons, 4th (or 8th) and 3rd roots of unity are checked
separately. Therefore, calculations in the 2- and 3-Sylow group of (Zn[x]/f(x))∗ are
necessary.

Some or all of the above properties are checked by the di�erent variants of the QFT.
The quadratic polynomial f() may either be chosen at random or �xed. In case of a
random polynomial, one may average over certain suitable polynomials to decrease the
error probability. In case of a �xed polynomial, one may collect roots of unity, when
they appear during the calculations, and check if the group of all roots found so far
is still cyclic. Both approaches have advantages and disadvantages. It turns out that
for most variants of the QFT, the cost for a test round is essentially the cost of an
exponentiation in Zn[x]/f(x) with an exponent of size n. The cost for a test round of
the Miller-Rabin test is essentially the cost of an exponentiation in Zn with an exponent
of the same size. One of the more important advantages of taking a �xed polynomial
f() with small coe�cients is that a test round of the QFT has about twice the run time
of a test round of the Miller-Rabin test. For the QFT with a random polynomial, that
ratio of run times is about three.

In the original Quadratic Frobenius Test proposed by Grantham [6], the quadratic
polynomial f() has been chosen at random. The worst-case error probability is about
7710−t for t test rounds, and the run time is equivalent to about three Miller-Rabin
tests per test round. Müller [10, 11] has proposed a test using 3rd roots of unity with
worst-case error probability about 131000−t and, asymptotically, the same run time as
the original QFT. Depending on n mod 24, better bounds are achieved in some cases.

Damgård and Frandsen [4] have proposed a test EQFTwc (optimised for the worst
case) with a �xed polynomial and worst-case error probability 256 · 576−2t and cost
equivalent to 2 Miller-Rabin tests per test round. However, this test requires a precom-
putation of cubic residuosity symbols, at a cost of about 2 Miller-Rabin tests, to ensure
that the 3-Sylow group of (Zn[x]/f(x))∗ has a suitable structure. As we shall see later,
each cyclic factor of that 3-Sylow group is associated with a prime p dividing n. The
purpose of the precomputations is to ensure that all these factors are large enough in
the sense that they are at least as large as the 3-Sylow group of the cyclic group of
order n2 − 1.

In [4], another test EQFTac (optimised for the average case) has been proposed, and
its average-case complexity has been analysed. This test does not require a precompu-
tation, but it also does not achieve a run time equivalent to two Miller-Rabin tests in
all cases. In this test, nothing must be known about the 3-Sylow group a priori. On the
other hand, if n2 − 1 is divisible by a high power 2 and of 3, the necessary calculations
are asymptotically more expensive than for Algorithm EQFTwc.

So, when dealing with 3rd roots of unity, we may either check by a precomputation,
that all factors of the 3-Sylow group of (Zn[x]/f(x))∗ are su�ciently large, or we have
to do some extra calculations in that 3-Sylow group during each test round, in order to
�nd 3rd roots of unity.

A similar alternative exists for the 8th roots of unity and the computations in the 2-
Sylow group of (Zn[x]/f(x))∗. It turns out that all necessary computations concerning
the 2-Sylow group of (Zn[x]/f(x))∗ can be performed in the �rst test round. In our

3

Table 1: Worst-case error probability for some primality tests at an e�ort of t Miller-
Rabin tests

test error probability precomputation e�ort per
on e�ort t e�ort test round

Miller-Rabin 4−t 0 1
Grantham [6] O(19.8−t) 3
Müller [10, 11] O(50.8−t) 3
EQFTwc [4] ≈ 256 · 5762−t ≈ 2 2
Our test SQFT ≈ 641−t ≈ 1 2
Our test SQFT3 ≈ 16 · 5761−t ≈ 1 2

new primality test an additional precomputation equivalent to a single Miller-Rabin
test with a small basis will give us either a primitive 8− th root of unity in a suitable
quadratic extension of Zn or a proof that n is composite.

In case of prime number generation, the cost for an initial Miller-Rabin test can be
neglected for a random test candidate, since such a random candidate is likely to be
composite, and we need a fast test to rule out composite candidates anyway. Even if
many composite candidates have been ruled out in a prime number generation algorithm
by sieving or trial division, the probability that one of the remaining candidates is prime
is yet considerably smaller than 1/2 in cases of cryptographical interest.

In the following two sections we present a very simple Algorithm SQFT based on
this idea. In order to keep the exposition simple, we ignore the 3rd roots of unity in
that algorithm.

In section 4 we add a 3rd-root-of-unity test to Algorithm SQFT, leading to Algorithm
SQFT3. In section 5 we will bound the run time of Algorithm SQFT3. It turns out
that the run time of Algorithm SQFT3 is asymptotically the same as for the Algorithms
SQFT and Algorithm EQFTac in all cases, which is equivalent to about two Miller-Rabin
tests per test round.

In the following three sections we estimate the worst-case error probability and the
average-case error probability for both, random search and incremental search. Here
we use the same basic idea as in [4]. Since the focus of our paper is to �nd a simple
variant of the QFT, we analyse the average-case error probability of Algorithm SQFT.
It turns out that in cases of cryptographic interest, the requirements in [7] are met
with two test rounds of Algorithm SQFT. We also believe that the additional e�ort of
Algorithm SQFT3, although it can be neglected asymptotically, is yet considerable in
cases of cryptographical interest.

Table 1 shows the worst-case error probabilities for some variants of the QFT. In
Table 1, e�ort t corresponds to the e�ort required for t Miller-Rabin tests; the last two
results in the table are proved in section 6. We also list the precomputation e�ort and
the e�ort required per test round (in units counting the e�ort for one Miller-Rabin test)
for some of the tests.

4

2 Outline of the Simpli�ed Quadratic Frobenius Test

Let Zn denote the ring of integers modulo n. For k, n ∈ Z, n odd, let (k/n) be the Jacobi
symbol. We write (a, b) for gcd(a, b). For any set S we write |S| for its cardinality.
Throughout the paper P(n) denotes the set of primes dividing n for any integer n. For
any integer n and prime p let vp(n) be the exponent m of the highest power pm of p
dividing n. Thus |P(n)| is the number of di�erent prime factors of n and

∏
p∈P(n) pvp(n)

is the prime power factorisation of n. We write Φi for the i-th cyclotomic polynomial.
We mainly deal with Φ3(z) = z2 + z + 1 and Φ8(z) = z4 + 1. The number n will always
be the (odd) integer to be tested for primality.

De�nition 1 For an odd natural number n and a unit c modulo n, let R(n, c) denote
the ring Z[x]/(n, x2 − c).

We represent each element of R(n, c) as a polynomial ax + b of degree 1 in the
variable x with 0 ≤ a, b < n. We write R(n, c)∗ for the multiplicative group of units in
R(n, c).

De�nition 2 For z = ax + b we de�ne the following multiplicative homomorphisms in
R(n, c):

·̄ : R(n, c) → R(n, c) , z̄ = b− ax ;
N(·) : R(n, c) → Zn , N(z) = z̄ · z = b2 − ca2 .

As usual, these two homomorphisms are called conjugation and norm. Note that
conjugation actually is an automorphism in R(n, c).

The following algorithm performs the necessary preparations before starting the
simpli�ed quadratic Frobenius test for a candidate n. Its run time is essentially the run
time for a Miller-Rabin test with a small basis. The algorithm either outputs a small
quadratic nonresidue c modulo n and a primitive 8th root of unity in R(n, c) or proves
that n is composite.

Algorithm MR2 (Miller-Rabin test with basis two or a small nonresidue)

Input An odd integer n .
Output Either the statement "n is composite" or an integer c

with (c/n) = −1 and ε ∈ R(n, c) with ε4 = −1 (i.e. Φ8(ε) = 0) .

[1] If n = 3 (mod 4) then do the following:
Compute α = 2

n−3
4 (mod n) .

If 2α2 6= ±1 (mod n) then output "n is composite" and stop ;
else output c = −1, ε = α + αx and stop .

[2] If n = 5 (mod 8) then do the following:

5

Compute α = 2
n−1

4 (mod n) .
If α2 6= −1 (mod n) then output "n is composite" and stop ;
else output c = 2, ε = 1+α

2
x and stop .

[3] If n = 1 (mod 8) then do the following:
If n is a perfect square then output "n is composite" and stop .
Compute a small random value c with (c/n) = −1 .
// (We will give a more precise de�nition of "small" in section 5.)
Compute α = c

n−1
8 (mod n) .

If α4 6= −1 (mod n) then output "n is composite" and stop ;
else output c, ε = α and stop .

Note that Algorithm MR2 actually performs a Miller-Rabin test with basis 2 in
case n 6= 1 (mod 8) and with basis c in case n = 1 (mod 8). The property ε4 =
−1 (mod R(n, c)) is obvious in case n = 1 (mod 8) and easy to verify by using the
standard representations (±1 ±

√
−1)/

√
2 of the four primitive 8-th roots of unity in

the other cases.
The following algorithm performs a single round of the simpli�ed quadratic Frobe-

nius test.

Algorithm SQFTround
Input An odd integer n , a small integer c with (c/n) = −1 ,

and a value ε ∈ R(n, c) with ε4 = −1 , (i.e. Φ8(ε) = 0).
Output Either the statement "n is composite" or

the statement "n is possibly prime".

[1] Select a random z ∈ R(n, c) with (N(z)/n) = −1 .
[2] If zn 6= z̄ then output "n is composite" and stop .
[3] If z

n2−1
8 6∈ {±ε,±ε3} then output "n is composite" and stop .

[4] output "n is possibly prime" and stop .

Now we present the simpli�ed quadratic Frobenius test. Here we �rst apply Al-
gorithm MR2. This gives us an 8-th root of unity with the e�ort of essentially one
Miller-Rabin test. Then we repeatedly apply Algorithm SQFTround in order to reduce
the probability that a composite n is declared prime.

Algorithm SQFT (Simpli�ed Quadratic Frobenius Test)

Input An integer n with n > 20 and a number t of test rounds.
Output Either the statement "n is composite"

or the statement "n is probably prime".

[1] If n is divisible by a prime p < 20 then output "n is composite" and stop .

6

[2] Call Algorithm MR2 with input n.
[3] If Algorithm MR2 declares n composite then stop .
[4] Let c, ε be the output of Algorithm MR2 if n has been declared prime.
[5] For i = 1, . . . , t do the following:

Call Algorithm SQFTround with input n, c, ε.
If Algorithm SQFTround declares n composite then stop .

[6] output "n is probably prime" and stop .

Remarks
It easy to check that neither Algorithm MR2 nor Algorithm SQFTround will ever

declare a prime n composite.
After the �rst test round we may further simplify Algorithm SQFTround without

deteriorating the error probability, see section 5 for details.
One might argue that the introductory Miller-Rabin test costs some extra e�ort,

but gives us little bene�t compared to the extended quadratic Frobenius test in [4].
However, when generating primes, we have to check many candidates, and only a small
fraction of candidates will eventually turn out to be prime. So we need a fast test
that quickly rules out most composite candidates. Note that the Miller-Rabin test
is at least twice as fast as any known variant of the QFT and rules out almost all
composite candidates in the cases of practical interest. So, anyway, it makes sense to
subject all candidates to a Miller-Rabin test before using more sophisticated primality
tests for prime number generation. In Algorithm SQFT we exploit the information
gained during this introductory Miller-Rabin test phase for simplifying the subsequent
quadratic Frobenius test.

3 A Bound for the Fraction of Liars

In this section we give an upper bound for the probability that Algorithm SQFT declares
a composite number prime.

De�nition 3 For any composite number n we de�ne β1,t(n) as the probability that
Algorithm SQFT (when running with t test rounds) declares the number n prime.

For composite n we de�ne β1,t(n, c) as the probability that Algorithm SQFT (when
running with t test rounds) declares n prime, under the condition that Algorithm MR2
declares n prime and outputs c.

If Algorithm MR2 never outputs c on input n, we de�ne β1,t(n, c) = 0.

Obviously, we have:
β1,t(n) ≤ max

(c/n)=−1
β1,t(n, c) .

The purpose of this section is to show:

7

Proposition 4 Let β1,t(n, c) be de�ned as above. Then β1,t(n, c) is at most (β1(n, c))t,
where (β1(n, c)) is given by:

81−|P(n)| ·
∏

p∈P(n) ,
(c/p)=−1

p2−2vp(n) (n/p− 1, p2 − 1)

p2 − 1
·
∏

p∈P(n) ,
(c/p)=1

p2−2vp(n) (n
2/p2 − 1, p− 1)

(p− 1)2
.

The proof of this proposition is similar to the proof of Lemma 10 in [4]. In order to
keep this paper reasonably self-contained, we give the details of the proof here. We use
a slight modi�cation of the notation in [4] for the proof.

We write ordG(x) for the order of an element x in a group G.
Let c be a unit in Zn. We de�ne the following subsets of R(n, c)∗:

Uν(n, c) = {z ∈ R(n, c)∗ | (N(z)/n) = ν} for ν = ±1 ; (1)

Gq, ε(n, c) =
{

z ∈ R(n, c)∗ | z̄ = zn and z(n2−1)/q = ε
}

, (2)

for q ∈ N, ε ∈ R(n, c)∗ with q|(n2 − 1) , εq = 1 .

The sets U(n, c) and G(n, c) in [4] correspond to U1(n, c) and G2,1 ∩ U1(n, c) in our
notation. For �xed q, ε, ν, the sets Gq, ε and Uν are either empty or cosets of the groups
Gq, 1 and U1, respectively, in R(n, c)∗. Note that Gq,1(n, c) ⊂ Gq′, 1(n, c) for q′|q.

From these de�nitions we immediately obtain:

β1,1(n, c) ≤ max
ε∈R(n,c)∗ , ε4=−1

∣∣(∪ε′∈{±ε,±ε3}G8,ε′(n, c)
)
∩ U−1(n, c)

∣∣
|U−1(n, c)|

. (3)

In order to analyse the structure of G8,ε′(n, c) and U−1(n, c), we factor R(n, c) by
using Chinese remaindering as in [4].

Let Zn be the cyclic group of order n (not to be confused with the ring Zn of integers
modulo n). In [4], Lemma 7, the structure of R(n, c)∗ is given as follows:

Lemma 5 If n is odd and has the prime power factorisation n =
∏ω

i=1 pmi
i , and c is a

unit modulo n then

R(n, c)∗ ∼= R(pm1
1 , c)∗ × . . .×R(pmω

ω , c)∗ ,

and for all prime powers pm dividing n we have:

R(pm, c)∗ ∼= Zpm−1 × Zpm−1 ×R(p, c)∗ .

In case (c/p) = −1 we have

R(p, c)∗ ∼= Zp2−1 and z̄ = zp for z ∈ R(p, c) .

In case (c/p) = 1 we have

R(p, c)∗ ∼= Zp−1 × Zp−1 and zp = z , (z1, z2) = (z2, z1)

for z = (z1, z2) ∈ R(p, c) .

8

For any prime power pm with pm|n there is a natural homomorphism φn,pm from
R(n, c)∗ onto R(pm, c)∗ de�ned by taking coe�cients modulo pm. We explicitly state
that φn,pm operates on the multiplicative group R(n, c)∗ of R(n, c). Note that con-
jugation commutes with φn,pm and N(φn,pm(z)) = N(z) (mod pm) holds for all z ∈
R(pm, c)∗. From the proof of the lemma in [4] it is also clear that φn,pm maps all direct
factors of R(n, c)∗ apart from R(pm, c)∗ to the trivial group, if m = 1 or m = vp(n).

Lemma 6

|U1(n, c)| = |U−1(n, c)| =
1

2
|R(n, c)∗| .

Proof
Since U1(n, c) and, possibly, U−1(n, c) are the only cosets of the group U1(n, c) in

R(n, c)∗, it su�ces to show that U−1(n, c) is not empty. This is shown in [4], Lemma
20.
2

Lemma 7 Let φ be the mapping de�ned by:

φ = φn,p1 × · · · × φn,pω : R(n, c)∗ −→ R(p1, c)
∗×, . . . ,×R(pω, c)∗ ,

where p1, ..., pω are the prime factors of n. Then kerφ ∩G1,1(n, c) = {1}.

Proof
Let pm be a prime power factor of n. Since (p, n2 − 1) = 1, the equation zn2−1 = 1

has exactly one solution z in Zpm−1 . Since R(pm, c)∗ ∼= Zpm−1 × Zpm−1 × R(p, c)∗ by
Lemma 5, we conclude that the system z ∈ R(pm, c)∗, z = 1 (mod p), zn2−1 = 1 also
has exactly one solution z in R(pm, c)∗. By Chinese remaindering we obtain that the
system

z ∈ R(n, c)∗ , z = 1 (mod pi) , zn2−1 = 1 ; i = 1, · · · , ω

has exactly one solution in z in R(n, c)∗. Since any z ∈ G1,1(n, c) ∩ kerφ must solve
this system of equations, we obtain kerφ ∩G1,1(n, c) = {1}.
2

We also show:

Lemma 8

β1,1(n, c) ≤ 8 ·
∏

p∈P(n)

p2−2vp(n) |φn,p (G8,1(n, c))|
|R(p, c)∗|

Proof

9

Let φ be the mapping in Lemma 7. Replacing the cosets G8,ε(n, c) by G8,1(n, c) in
(3) we obtain:

β1,1(n, c) ≤ 8 · |G8,1(n, c)|
|R(n, c)∗|

; by Lemma 6 and (3),

≤ 8 ·
∏

p∈P(n)

|φn,pG8,1(n, c)|
|R(pvp(n), c)∗|

; by Lemma 5, since kerφ ∩G8,1(n, c) = 1,

= 8 ·
∏

p∈P(n)

p2−2vp(n) |φn,pG8,1(n, c)|
|R(p, c)∗|

; by Lemma 5 .

2

Lemma 9 If p is a prime factor of n then φn,p(Gq,1(n, c)) is cyclic and

|φn,p(Gq,1(n, c))| divides
{

gcd(n/p− 1, (p2 − 1), (n2 − 1)/q) if (c/p) = −1 ,
gcd(p− 1, (n2 − 1)/q) if (c/p) = 1 .

Proof
We write G for φn,p(Gq,1(n, c)) .
First consider the case (c/p) = −1. For any z ∈ G we have zn = z = zp and

|R(p, c)∗| = p2 − 1 by Lemma 5. From this and z(n2−1)/q = 1 we obtain

ordG(z) | gcd(n− p, (n2 − 1)/q, p2 − 1) = gcd(n/p− 1, (n2 − 1)/q, p2 − 1) .

The lemma follows, since G ⊂ R(p, c)∗ and R(p, c)∗ is cyclic by Lemma 5.
Next, consider the case (c/p) = 1. We have G ⊂ R(p, c)∗ ∼= Zp−1 × Zp−1 and for

any z ∈ G represented as z = (w1, w2) in Zp−1 × Zp−1 we have z̄ = (w2, w1) by Lemma
5. Since (w2, w1) = z̄ = zn = (wn

1 , wn
2) by de�nition of G , we see that w2 is uniquely

de�ned by w1, implying that G is cyclic of order dividing p−1. |G| also divides (n2−1)/q
by de�nition of G.
2

Lemma 10 If G8,ε(n, c) is not empty for some ε with ε4 = −1 then

|φn,p(G8,1(n, c))| divides
{

gcd(n/p− 1, p2 − 1)/8 if (c/p) = −1 ,
gcd(n2/p2 − 1, p− 1)/8 if (c/p) = 1 .

Proof
For any z ∈ G8,ε(n, c) ⊂ G1,1(n, c) we have z(n2−1)/2 = ε4 = −1. Thus for z1 :=

φn,p(z) ∈ φn,p(G1,1(n, c)) we also have z
(n2−1)/2
1 = −1. Since −1 has order two in

φn,p(G1,1(n, c)) we conclude v2(ordφn,p(G1,1(n,c))(z1)) = v2(n
2−1), and hence v2(n

2−1) ≤
v2(|φn,p(G1,1(n, c))|). By Lemma 9 we obtain v2(n

2 − 1) ≤ v2(gcd(n/p − 1, p2 − 1)) in
case (c/p) = −1 and v2(n

2 − 1) ≤ v2(p− 1) in case (c/p) = 1. Now the lemma follows
from Lemma 9.

10

2

Proof of Proposition 4.
Obviously, β1,t(n, c) = (β1(n, c))t holds. Now Proposition 4 follows from Lemma 5,

8 and 10.
2

4 Adding a 3rd-root-of-unity Test

In order to add a 3rd-root-of-unity test we modify Algorithm SQFT as follows:

Algorithm SQFT3round
Input An integer n with gcd(n, 6) = 1, a small integer c with (c/n) = −1 ,

a value ε ∈ R(n, c) with ε4 = −1 ,
and a value ε3 ∈ R(n, c) with either ε3 = 1 or Φ3(ε3) = 0 .

Output Either the statement "n is composite" or the statement
"n is possibly prime" together with a value ε′3 satisfying ε′3 = 1 or
Φ3(ε

′
3) = 0 . In case ε3 6= 1 , also ε′3 = ε±1

3 holds on output.

[1] Select an random z ∈ R(n, c) with with (N(z)/n) = −1 .
[2] If zn 6= z̄ then output "n is composite" and stop .
[3] If z

n2−1
8 6∈ {±ε,±ε3} then output "n is composite" and stop .

[4] Put u = v3(n
2 − 1), and r such that n2 − 1 = 3ur holds.

[5] Put i := min{j : 0 ≤ j ≤ u , z3jr = 1} .
// Remark: This minimum exists, since zn2−1 = z3ur = 1 holds here.

[6] If i = 0 then output "n is possibly prime" and ε′3 = ε3 and stop .
[7] Put ε′3 = z3i−1r . // Then ε′3 is a non-trivial 3rdroot of unity.
[8] If ε3 = 1 and Φ3(ε

′
3) 6= 0 then output "n is composite" and stop .

[9] If ε3 6= 1 and ε′3 6= ε±1
3 then output "n is composite" and stop ;

[10] output "n is possibly prime" and ε′3 and stop .

The simpli�ed quadratic Frobenius test with a 3rd-root-of-unity test runs as follows:

Algorithm SQFT3 (SQFT with 3rd-root-of-unity test)

Input An odd integer n with n > 200 and a number t of test rounds.
Output Either the statement "n is composite"

or the statement "n is probably prime".

[1] If n is divisible by a prime p < 200 then output "n is composite" and stop .
[2] Call Algorithm MR2 with input n.
[3] If Algorithm MR2 declares n composite then stop .
[4] Let c, ε be the output of Algorithm MR2 if n is declared prime, and put ε3 = 1.

11

[5] For i = 1, . . . , t do the following:
Call Algorithm SQFT3round with input n, c, ε, ε3.
If Algorithm SQFT3round declares n composite then stop .
Put ε3 = ε′3, where ε′3 is the output of Algorithm SQFT3round

when n has been declared prime.
[6] output "n is probably prime" and stop .

De�nition 11 For any composite number n we de�ne β3,t(n) as the probability that
Algorithm SQFT3 (when running with t test rounds) declares the number n prime.

For composite n we de�ne β3,t(n, c) as the probability that Algorithm SQFT3 (when
running with t test rounds) declares n prime, under the condition that Algorithm MR2
declares n prime and outputs c.

If Algorithm MR2 never outputs c on input n, we de�ne β3,t(n, c) = 0.

Obviously, we have:
β3,t(n) ≤ max

(c/n)=−1
β3,t(n, c) .

Let S2, S3 be the 2- and 3-Sylow subgroups of G1,1(n, c), respectively, with G1,1(n, c)
being the group de�ned by (2) .

Let PR3 = PR3(ε3) be the probability that Algorithm SQWT3round declares n
composite, if the auxiliary input ε3 is given, and let PR31 be the probability that
Algorithm SQFT3round outputs ε′ = 1, both under the condition that n has not been
declared composite in steps 1 to 5. Then we have

Lemma 12

PR3(ε) ≤


|S3|−1 If Φ(z) = 0 has no solution z in G1,1(n, c).
3−|P(n)|(1 + 2|P(n)|) If Φ(z) = 0 has a solution in G1,1(n, c) and ε3 = 1 ,

(and in this case also PR31 ≤ 3−|P(n)| holds).
31−|P(n)| If Φ(z) = 0 has a solution in G1,1(n, c) and ε3 6= 1 .

Furthermore, |S3| =
∏

p∈P(n) 3ap, with ap = v3 (|φn,p(G1,1(n, c))|).

Proof
Let z be the value chosen in R(n, c)∗ in Algorithm SQFT3round and assume that n

has not been declared composite in steps 1 to 5. Then zn = z̄ and zn2−1 = 1 hold and
hence z ∈ G1,1(n, c) by (2). G1,1(n, c) has the factorisation G1,1(n, c) ∼= S2× S3×H for
some group H, so that we may write:

z = (z2, z3, z0) ∈ S2 × S3 ×H ∼= G1,1(n, c) .

By Lemma 7 and 9, S3 is a direct product

S3 = C1×, . . . ,×Cω

12

of cyclic 3-groups, where Ci = φn,pi
(S3), and p1, · · · , pω, with ω = |P(n)|, are the

di�erent prime factors of n. The formula for |S3| follows from the fact that Ci is the
3-Sylow group of the cyclic group φn,pi

(G1,1(n, c)).
Furthermore, z satis�es z(n2−1)/8 = ε and (z/n) = −1. But since these conditions

depend only on the component z2 of z, we may assume that z3 is equidistributed in S3.
Note that y := zr satis�es y3u

= zn2−1 = 1 and hence y ∈ S3. So y depends only on
z3. Since 36 | r , the value y is also equidistributed in S3. Obviously, the results of the
following tests in step 6, 8 and 9 depend only on y and ε3.

Then PR3 = PR3a + PR3b , where PR3a and PR3b are the probabilities that n
is declared prime in step 6 and 10, respectively. We have PR3a = |S3|−1, since the
corresponding event occurs only in case y = 1.

In the case that Φ3(z) has no solution in G1,1(n, c), we have PR3b = 0, so that the
proof is �nished for this case.

Now let z0 be such that Φ3(z0) = 0 holds, and put a := min{v3(|Ci|)}. Φ3(z0) = 0
must hold modulo all prime factors pi, implying that φn,pi

(z0) is of order 3 for i =
1, . . . , ω and hence a ≥ 1. Since S3 has ω cyclic factors, there are exactly 2ω values z0

with Φ3(z0) = 0. Note that the equation y3a
= z0 has no solution in G1,1(n, c), since

otherwise all factors Ci would have an order divisible by 3a+1. Hence the set of solutions
of y3i

= z0 is a coset of the subgroup of elements of order 3a−1 in S3 and therefore it has
cardinality 3(a−1)ω. So the probability that ε′3 = z0 holds in step 7 is

(
3(a−1)ω

)
|S3|−1

for a �xed z0 ; and since |S3| ≥ 3aω, this is at most 3−ω.
Counting the number of possible values ε′3 we conclude PR3b = 2ω · 3−ω from the

test in step 8 in case ε3 = 1. In case ε3 6= 1 we obtain PR3b = 2 · 3−ω from the test in
step 9. Note that PR3a = |S3|−1 ≤ 3−ω holds. This proves the formula for PR3.

Note that the algorithm outputs the value ε = 1 only if it stops after step 6, implying
PR31 ≤ PR3a ≤ 3−ω.
2

Proposition 13 For the value β3,t(n, c) we have:

β3,t(n, c) ≤ 2|P(n)|−1 · (β3(n, c, 3))t ,

where β3(n, c, κ) is given by:

241−|P(n)| ·
∏

p∈P(n) ,
(c/p)=−1

p2−2vp(n) (n/p− 1, (p2 − 1)/κ)

(p2 − 1)/κ
·
∏

p∈P(n) ,
(c/p)=1

p2−2vp(n)κ(n2/p2 − 1, p− 1)

(p− 1)2
.

One of the following two improvements is possible (but not both): Either the factor
2|P(n)|−1 in the expression for β3,t(n, c) may be replaced by 3−t or κ may be set to one.

Proof
Let β1(n, c) and β1,t(n, c) be as de�ned in the last section and assume that n is

composite, but declared prime by Algorithm SQFT3.

13

Case 1: Φ3(z) = 0 has no solution in R(n, c).
Then the input ε3 for Algorithm SQFT3round is always one and PR3 = |S3|−1 holds
by Lemma 12. Hence β3,t(n, c) ≤ β1,1(n, c)t · |S3|−t ≤ β1(n, c)t · |S3|−t by Proposition 4.
From Proposition 4 and Lemma 12 we obtain:

β1(n, c) · |S3|−1 ≤ 1

3
· 241−|P(n)| ·

∏
p∈P(n) ,

(c/p)=−1

p2−2vp(n) (n/p− 1, p2 − 1)

3v3(n/p−1 , p2−1)−1 · (p2 − 1)

·
∏

p∈P(n) ,
(c/p)=1

p2−2vp(n) 3(n2/p2 − 1, p− 1)

(p− 1)2
≤ 1

3
· β3(n, c, 3) .

Here we have written v3(a, b) for v3(gcd(a, b)). To check the last inequality, note that
in case v3(n/p− 1, p2 − 1) = 0 we have (n/p− 1, p2 − 1) = (n/p− 1, (p2 − 1)/3), since
3|(p2 − 1) for all p 6= 3.

Case 2: Φ3(z) = 0 has a solution in R(n, c).
First, note that we have:

β3(n, c, 3) ≥ β3(n, c, 1) ≥ 31−|P(n)|β1(n, c) ≥ 31−|P(n)|β1,1(n, c) .

We will show:
β3,t(n, c) ≤ 2|P(n)|−1 · 3t(1−|P(n)|) · (β1,1(n, c))t ,

by in induction over t. For t = 1 this follows from β3,1(n, c) ≤ β1,1(n, c) · PR3(1) and
Lemma 12. If the algorithm computes an ε′3 6= 1 after the �rst test, then the probability
PRX that the algorithm declares n composite in any of the following t − 1 tests is at
most:

PRX ≤ (β(n, c))t−1 · 3(t−1)(1−|P(n)|) ,

by Lemma 12. So we have:

β3,t(n, c) ≤ β1,1(n, c) · (PR31 · β3,t−1(n, c) + (PR3(1)− PR31) · PRX)

≤ (β1,1(n, c))t · 3(t−1)(1−|P(n)|) ·
(
3−|P(n)| · 2|P(n)|−1 + 2|P(n)| · 3−|P(n)|))

= (β1,1(n, c))t · 2|P(n)|−1 · 3t(1−|P(n)|) .

2

5 Implementation

In this section we estimate the run time of Algorithm SQFT3. The main ideas in
this section are similar to the corresponding estimations for Algorithm EQFTac in [4].
We obtain a bound of 2 log2 n(1 + o(1)) for one test round. Since Algorithm SQFT
is a simpli�ed version of Algorithm SQFT3, the same bound also holds for Algorithm
SQFT.

Algorithm EQFTac in [4] achieves the same bound per test round except in cases
where n2 − 1 is divisible by a high power of 2 or 3.

14

5.1 Run Time Estimations for Algorithms SQFT and SQFT3

We represent z ∈ R(n, c) in the usual way by z = Azx + Bz, with Az, Bz ∈ Zn. Then
we have:

Lemma 14 Let w, z ∈ R(n, c). Then w · z can be computed with 3 multiplications and
O(log c) additions in Zn. In case w = z one multiplication can be saved.

Proof
This is Lemma 4 in [4]. Let w = Awx + Bw, z = Azx + Bz. The basic idea is:

z · w = (m1 + m2)x + (cAz + Bz)(Aw + Bw)− cm1 −m2 ,

with m1 = AzBw , m2 = BzAw. Note that m1 = m2 in case w = z.
2

We also take the following lemma from [4].

Lemma 15 Let n be an odd composite number that is not a perfect square. Let π−(x, n)
denote the number of primes p ≤ x with (p/n) = −1, and let π(x) be the total number
of primes p ≤ x. Assuming the extended Riemann Hypothesis (ERH), there exists a
constant c1 (independent of n) such that:

π−(x, n)

π(x)
>

1

3
for all x ≥ c1(log n log log n)2 .

Assuming ERH, Lemma 15 states that we can �nd a "small" nonresidue c of size
O((log n log log n)2) in Algorithm MR2 with (c/n) = −1, with an expected expense of
calculating three Jacobi symbols.

In the sequel we frequently have to compute powers of values z ∈ R(n, c). Here we
use the well-known fact that za can be computed with dlog2 ae squarings and o(log2 a)
multiplications.

We will show a bound for the run time of Algorithm SQFT3round in the following
proposition. We need another lemma to prove this proposotion.

Lemma 16 Let R be a ring, z ∈ R, and let q ∈ N be constant. For any a, b ∈ N, we
can compute zbab/qc with log2a + O(1) squarings and o(log2(a)) multiplications, if zba/qc

and zbb/qc have been precomputed.

Proof
Let εa = a mod q, εb = b mod q and εab = ab mod q be such that 0 ≤ εa, εb, εab < q

holds. Then we have:

zbab/qc = z(ab−εab)/q = (z(b−εb)/q)a(z(a−εa)/q)εb ·z(εaεb−εab)/q = (zbb/qc)a(zba/qc)εb ·z(εaεb−εab)/q .

Now the lemma follows, since 0 ≤ εaεb − εab < q2, 0 ≤ εb < q, and q is constant.
2

15

Proposition 17 On input z ∈ R(n, c) we can do the following computations simulta-
neously with log2 n(1+ o(1)) squarings, o(log2 n) multiplications and O(1) inversions in
R(n, c):

• Computing the value zn .

• Checking that z is invertible in R(n, c) and that z̄ = zn holds.
If any of these two checks fails, we will say that the input z is bad.

• Computing the value z(n2−1)/8 , under the condition that z is not bad.

• Checking if zr = 1 holds, with r given by n2 − 1 = 3ur , u = v3(n
2 − 1),

under the condition that z is not bad.

• Computing the value z3i−1r , with i := min {j : 1 ≤ j ≤ u , z3jr = 1} , or
proving that this minimum does not exist, under the condition that z is not bad.

Proof
Since 3u|(n2 − 1) and u > 0, we can easily �nd integers e, f and g with u = ef + g;

0 ≤ g ≤ f ; e, f > 0 and e, f, g = O(
√

log3 n). We treat the case n = 2 mod 3 in detail,
and we only give the basic idea for the simpler case n = 1 mod 3.
Case n = 2 mod 3

Then we have n + 1 = 3u · s for the integer s = r/(n − 1). We �rst compute the
sequence

t0 = zbs/8c, t1 = zb3
g ·s/8c, t2 = zb3

f+g ·s/8c, t3 = zb3
2f+g ·s/8c, . . . ,

te = zb3
(e−1)f+g ·s/8c, te+1 = zb3

ef+g ·s/8c = zb(n+1)/8c .

Given tj−1 and z3f
, the value tj can be computed with log2 3f + O(1) squarings and

o(log2 3f) multiplications for j > 1 by Lemma 16. Similarly, we need log2 3g + O(1)
squarings and o(log2 3g) multiplications for computing t1 if t0 and z3g are given. We
further need log2 s + O(1) squarings and o(log2 s) multiplications for computing t0.
Precomputation of z3f

, z3g costs O(f) multiplications and squarings, since g ≤ f . Thus
the whole sequence t0 . . . te can be computed with log2 n + O(e + f) squarings and
o(log2 n) + O(e + f) multiplications.

Next we also compute z−1. This costs one inversion in R(n, c)∗. Now from te+1 =
zb(n+1)/8c = z(n+1−ε)/8 (for some integer 0 ≤ ε < 8) and z−1 we can compute zn and
check if z̄ = zn holds. This costs O(1) additional squarings and multiplications.

Next we compute z(n2−1)/8 with O(1) multiplications, squarings and inversions as
follows:

z(n2−1)/8 = zn(n+1−ε)/8z(ε−1)(n+1−ε)/8zε(ε−2)/8 = te+1(te+1)
ε−1zε(ε−2)/8 .

In order to check if zr = 1 holds, we may check zs = zs instead. This is equivalent to
zr = 1, since zs = zns = zr+s and z is invertible. This costs O(1) more multiplications
and squarings.

16

Finally, we have to compute z3i−1r with i := min{j : 1 ≤ j ≤ u , z3jr = 1}. We
assume that this minimum exists. Otherwise the calculations below prove the non-
existence of this minimum. Here we use a backtracing mechanism similar to the one
used in the original QFT in [6].

De�ne τ(j) = max{0, (j − 1)f + g}. Then tj = zb3
τ(j)s/8c. Given tj, j = 0, . . . , e + 1,

we can easily compute the quantities t′j = z3τ(j)s, j = 0, . . . , e + 1. Altogether, it costs
O(e) additional squarings and multiplications to compute t′0, . . . , t

′
e+1. Now z3τ(j)r = 1 is

equivalent to z3τ(j)s = z3τ(j)s, since z̄ = zn, r = s(n− 1), and z is invertible. So we may
�nd J := min{j : 1 ≤ j ≤ e + 1 , z3τ(j)r = 1} with O(e) squarings and multiplications.
The value i− 1 must satisfy τ(J − 1) ≤ i− 1 ≤ τ(J)− 1. Now we compute

z3τ(J−1)r = z3τ(J−1)(ns−s) = z3τ(J−1)sz−3τ(J−1)s = t′J−1(t
′
J−1)

−1.

This costs O(1) multiplications and inversions.
From the above considerations we know that z3i−1r must be a member of the sequence

z3τ(J−1)r, z3·3τ(J−1)r, z32·3τ(J−1)r, . . . , z3f−1·3τ(J−1)r .

But this sequence can be calculated with O(f) additional squarings and multiplications.
Altogether we need log2 n+O(e+ f) = log2 n(1+ o(1)) squarings, o(log2 n)+O(e+

f) = o(log2 n) multiplications, and O(1) inversions.
Case n = 1 mod 3

Then we have n − 1 = 3u · s for the integer s = r/(n + 1). We �rst compute the
sequence

t0 = zbs/8c, t1 = zb3
g ·s/8c, t2 = zb3

f+g ·s/8c, t3 = zb3
2f+g ·s/8c, . . . ,

te = zb3
(e−1)f+g ·s/8c, te+1 = zb3

ef+g ·s/8c = zb(n−1)/8c .

This can be done with n + o(n) squarings and o(n) multiplications as in the case n =
2 mod 3.

Now from te+1 = zb(n−1)/8c = z(n−1−ε)/8 (for some integer 0 ≤ ε < 8) we can compute
zn and check if z̄ = zn holds. This costs O(1) additional squarings and multiplications.

Next we compute z(n2−1)/8 with O(1) multiplications and squarings as follows:

z(n2−1)/8 = z(n+1+ε)(n−1−ε)/8zε(ε+2)/8 = N(te+1)(te+1)
εzε(ε+2)/8 .

De�ne τ(j) = max{0, (j − 1)f + g}. Note that z3τ(j)r = z3τ(j)(n+1)s = N(z3τ(j)s).
So we can compute z3τ(j)r; j = 0, . . . , e + 1 from tj = zb3

τ(j)s/8c with O(e) squarings
and multiplications. Given this sequence, we can compute z3i−1r with i = min{j :
1 ≤ j ≤ u , z3jr = 1} with O(f) squarings and multiplications. Here we use the same
backtracing mechanism as in case n = 2 mod 3.

Altogether we need log2 n(1 + o(1)) squarings, o(log2 n) multiplications, and no in-
version in this case.
2

17

Theorem 18 Assuming ERH, there are implementations of Algorithms SQFT and
SQFT3 that have an expected run time equivalent to (2t + 1) log2 n(1 + o(1)) multi-
plications in Zn. Here t is the number of test rounds.

Proof
It su�ces to show the theorem for Algorithm SQFT3, since Algorithm SQFT is faster

than Algorithm SQFT3. Algorithm SQFT3 consists of one application of Algorithm
MR2 and t applications of Algorithm SQFT3round .

In step 1 of Algorithm SQFT3, a �xed number of trial divisions is performed. This
can be done at cost equivalent to O(1) multiplications in in Zn. In step 2, Algorithm
MR2 is called. There the following calculations must be done:

• Possibly, the computation of
√

n. This costs O(log log n) multiplications.

• Possibly, the computation of Jacobi symbols (c/n) for random integers 2 < c ≤
c1(log n log log n)2. By Lemma 15, the expected number of such computations is
≤ 3. This can be done at cost equivalent to O(log log n) multiplications in Zn.

• Essentially, a Miller-Rabin test with basis 2 or c. This costs log2 n+O(1) squarings
and o(log n) multiplications in Zn.

• The computation of the output value ε of Algorithm MR2. This costs O(1) more
additions and multiplications in Zn.

Thus the cost for steps 1 to 4 in Algorithm SQFT3 can be bounded by the expense
corresponding to log n(1 + o(1)) multiplications in Zn.

In the �nal step 5 of Algorithm SQFT3 we apply Algorithm SQFT3round t times.
In each round we must select a random z ∈ R(n, c) \ {0} with (N(z)/n) 6= 1. (In case
(N(z)/n) = 0 we obtain a factorisation of n). We can do this with an expected run time
equivalent to poly(log log n) multiplications in Zn, corresponding to O(1) calculations
of Jacobi symbols on numbers of size n. Note that the other activities performed by
Algorithm SQFT3round are just the activities enumerated in Proposition 17. So the
bound in that proposition applies for Algorithm SQFT3round , and using Lemma 14
we can bound the expense for that algorithm by log n(2 + o(1)) multiplications in Zn.
Note that the size of c in R(n, c) is bounded by Lemma 15.
2

5.2 Optimisations

Clearly, the implementation of Algorithm SQFT3round sketched in the proof of proposi-
tion 17 is not optimal, as far as space is concerned. There is also room for improvement
in speed; although it is unlikely that the bound for the run time can be much improved.
Note that Algorithm SQFTround can be implemented without inversions in R(n, c)∗.

Next we remark some ideas for optimisations of Algorithms SQFT and SQFT3.
In Step 5 of Algorithm SQFT, we call Algorithm SQFTround t times, once for each

test round. We can modify Algorithm SQFT as follows. Algorithm SQFTround is called

18

only in the �rst test round, and in the subsequent t − 1 test rounds we may call the
following Algorithm SQFTsubs instead:

Algorithm SQFTsubs
Input Same as for Algorithm SQFTround .
Output Same as in Algorithm SQFTround .
[1] Select a random z ∈ R(n, c)∗.
[2] If zn 6= z̄ then output "n is composite" and stop .
[3] If z

n2−1
8 6∈ {±1,±ε,±ε2,±ε3} then output "n is composite" and stop .

[4] output "n is possibly prime" and stop .

This saves t − 1 computations of Jacobi symbols. A similar optimisation can be
applied to Algorithm SQFT3round . The computation of a Jacobi symbol costs es-
sentially one modular inversion in Z∗

n, which is much less than the cost for a modular
exponentiation. However, on smart cards it may well be worth saving modular in-
versions for two reasons. First, some smart cards have special hardware support for
modular multiplication, but not for modular inversion. On the other hand, counter-
measures against hardware attacks may be more expensive for modular inversion than
for modular multiplication.

Proposition 4 also holds for the modi�ed Algorithm SQFT. The reason for this is
as follows: We must �nd a z′ ∈ G8,ε(n, c) ⊂ G1,1(n, c), so that we may apply Lemma
10 in the proof of Proposition 4. In other words, the existence of such a z′ asserts
that all factors of the 2-Sylow groups of R(n, c)∗ have an order divisible by 2v2(n2−1).
The simplest way to establish the existence of such a z′ is to start with a z satisfying
(N(z)/n) = −1 in Algorithm SQFTround . Once that existence has been established
(or n has been proved composite), we no longer need to deal with Jacobi symbols. So we
may replace Algorithm SQFTround by Algorithm SQFTsubs in subsequent test rounds.
A similar idea has also been used in Algorithm EFTCwc in [4].

The most cumbersome part of Algorithm SQFT3round is the computation of the
minimum i in step 5 in cases where v3(n

2 − 1) is large. The bulk of the proof of
Proposition 17 deals with the estimation of the expense for the computation of this
minimum. Although this computation can be done quite e�ciently for large n, the
overhead may be considerable if n has moderate size, as in cryptographic applications.
This is most noteworthy in case of prime n, since composite n are already ruled out
by the preceding application of Algorithm MR2 with high probability. If the value z
selected in step 1 of Algorithm SQFT3round satis�es Φ3(z

(n2−1)/3) = 0, (implying that
the minimum i computed in step 5 equals v3(n

2−1)), then we can omit the computation
of the minimum i in subsequent test rounds; and we can check if z(n2−1)/3 ∈ {1, ε±1

3 }
holds in subsequent iterations instead. The reason for this is that all factors of the
3-Sylow group of R(n, c)∗ have an order divisible by 3v3(n2−1), if any such z exists.
For a random z ∈ R(n, c)∗ and prime n, condition Φ3(z

(n2−1)/3) = 0 is satis�ed with
probability 1/3, since R(n, c)∗ is a cyclic group of order n2 − 1. This is essentially the

19

same idea as above, with the 2-Sylow groups replaced by 3-Sylow groups. Using more
sophisticated variants of this idea, we can avoid the computation of i in subsequent
iterations of step 5 with even higher probability.

6 Worst Case Behaviour

In this section we will show the following worst-case behaviour for Algorithms SQFT
and SQFT3:

Proposition 19 The probability β1,t(n) that Algorithm SQFT declares a composite
number n prime after t rounds is at most 2−12t .

Proposition 20 The probability β3,t(n) that algorithm SQFT3 declares a composite
number n prime after t rounds is at most:

24 · 24−4t ≈ 24−18.36t .

We give the details for the proof of Proposition 20; and we only sketch the (simpler)
proof of Proposition 19.

Let ω := |P(n)| be the number of di�erent prime factors of n. Let Ω :=
∑

p∈P(n) vp(n)
be the number of prime factors, with counting multiplicity.

Proof of Proposition 20
Proposition 13 yields the following bound for β3,t(n):

β3,t(n) ≤ max
(c/n)=−1

2ω−1 · 24t(1−ω) ·
∏

p∈P(n)

pt(2−2vp(n)) ·
∏

p∈P(n) ,
(c/p)=1

3t

(p− 1)t

≤ max
(c/n)=−1

2ω−1 · 24t(1+2ω−3Ω−ν) ; with ν = |{p ∈ P(n) : (c/p) = 1}| . (4)

The last inequality holds, since all prime factors of n satisfy p > 200 > 243/2. Since
(c/n) = −1 and the Jacobi symbol is multiplicative, ν cannot be zero if Ω is even. This
proves the proposition for all cases with Ω ≥ 4 and also for all cases with Ω > ω ≥ 2.
Note that in case Ω = ω (i.e. n is not divisible by a square of a prime) we also have
ω = ν + 1 (mod 2), since (c/n) = −1.

So we are left with the following cases:

Case 1: n = p1p2.
We may assume (c/p1) = −1, (c/p2) = 1. Then from Proposition 13 we obtain:

β3,t(n, c) ≤ 2 · 3t · 24−t · gcd(p2
1 − 1, p2 − 1)t

(p2
1 − 1)t(p2 − 1)t

≤ 2 · 3t · 24−t

(p2
1 − 1)t

≤ 2 · 24−4t ; for p1 ≥ 211 .

(Here the reader should check both possible improvements in Proposition 13 separately!)

20

Case 2: n = p1p2p3.
Then either (c/pi) = 1 holds for exactly two of the primes p1, p2, p3 or for none of

them. In the �rst case, the proposition follows from (4). So we may assume 200 < p1 <
p2 < p3 and (c/pi) = −1 for i = 1, 2, 3. Then from Proposition 13 we obtain:

β3,t(n, c) ≤ 2 · 32t · 24−2t ·
3∏

i=1

(
gcd(n/pi − 1, p2

i − 1)

p2
i − 1

)t

≤ 2 · 32t · 24−2t · 1

(p2
1 − 1)t

; by Lemma 24 in section 9

≤ 2 · 24−4t ; for p1 > 200 .

(Here the reader should check both possible improvements in Proposition 13 separately!)
Case 3: n is a prime power pm.

Since perfect squares are declared composite by Algorithm MR2, we have m ≥ 3
and therefore the proposition follows from (4).
2

Sketch proof of Proposition 19
From Proposition 4 and the fact that p ≥ 23 > 83/2 holds for all prime factors of n,

we obtain:

β1,t(n) ≤ max
(c/n)=−1

2ω−1 · 8t(1+2ω−3Ω−ν) ; with ν = |{p ∈ P(n) : (c/p) = 1}| .

Now all cases can be treated similar to those in the proof of Proposition 20. For the
case n = p1p2, (c/p1) = −1, (c/p2) = 1, we obtain:

β1,t(n, c) ≤ 8−t · gcd(p2
1 − 1, p2 − 1)t

(p2
1 − 1)t(p2 − 1)t

≤ 8−t

(p2
1 − 1)t

≤ 2−12t ; for p1 ≥ 23 .

2

7 Average Case Behaviour

We analyse the average case behaviour of Algorithm SQFT in this section.
Let Mk be the set of odd k−bit integers, i.e. Mk = {n ∈ N : 2k−1 < n < 2k, n odd}.

We consider an algorithm that repeatedly chooses a random number from Mk and
applies Algorithm SQFT with t test rounds to that number, until a number is found
that is declared prime by Algorithm SQFT. We are interested in the error probability
qk,t that the above algorithm (with t tests) returns a composite number in Mk.

Both, the error probabilities calculated for Algorithm SQFT and the error proba-
bilities calculated for Algorithm EQFTac in [4] are also valid for Algorithm SQFT3.
The reason for this is that the bound 5 for the error probability of Algorithm SQFT
as well as the corresponding bound for Algorithm EQFTac in [4] are also valid for
Algorithm SQFT3.

21

Let Ω = Ω(n) be de�ned by Ω(n) :=
∑

p∈P(n) vp(n) as in the last section. Further-
more, let p be the largest prime factor of n.

We use the following bound for the probability β1,t(n) that Algorithm SQFT declares
a composite number n prime:

β1,t(n) ≤ β1(n)t , (5)

with β1(n) being de�ned by:

β1(n) = 81−Ω(n) ·max

{
(n/p− 1, p2 − 1)

p2 − 1
,

1

p− 1

}
. (6)

This bound follows from Proposition 4. In addition to (6), we put β1(n) = 0 if n is
divisible by any prime p < 23. Since prime factors p < 23 are ruled out by trial division,
(5) is still valid with this de�nition.

We de�ne Cm to be the set of odd composite natural numbers with (β1,t)
1/t > 2−m

for all t. Obviously, every n ∈ Cm satis�es β1(n) > 2−m. Proposition 19 implies that
Cm is empty for m ≤ 12.

Our main goal is to estimate |Cm ∩ Mk|. As in [3], [5] and [4] such an estimate
allows us to give e�ective bounds for the error probability of the above algorithm. In
the next section we also use this estimate to obtain a bound for the error probability of
the incremental search version of the above algorithm, using the same techniques as in
[1].

We de�ne N(m, k, j) to be the set of integers n ∈ Cm ∩Mk with Ω(n) = j.
Since (5) and (6) imply (β1,t(n))1/t ≤ β1(n) ≤ 23(1−Ω(n)) we have Ω(n) ≤ m/3 + 1

for any n ∈ Cm. So we have:

|Cm ∩Mk| =
{ ∑

2≤j≤m/3+1 |N(m, k, j)| for m > 12 ;

0 for m ≤ 12 .
(7)

Since any n ∈ N(m, k, j) has j prime factors (counting multiplicity) and is greater
than 2k−1, the largest prime factor p of n satis�es p > 2(k−1)/j.

Now we will estimate |N(m, k, j)|. For our estimation we assume:

m ≤
√

12(k − 1)− 4 . (8)

Then for any j > 0 we have:

m + 4 ≤
√

12(k − 1) ≤ 3j + (k − 1)/j . (9)

For the largest prime factor p of n ∈ N(m, k, j) we have:

1

p− 1
<

2

p

< 21−(k−1)/j ; since p > 2(k−1)/j

≤ 2−m−3(1−j) ; by (9)

< max

{
(n/p− 1, p2 − 1)

p2 − 1
,

1

p− 1

}
. (10)

22

The last inequality follows from (6), since Ω = j and β1(n) > 2−m. We de�ne:

d(p, n) =
p2 − 1

(n/p− 1, p2 − 1)
, (11)

and we put d = d(p, n). Then we have d < 2m+3(1−j) by (10). Therefore, we obtain
an upper bound for |N(m, k, j)| as follows. For any prime p with p > 2(k−1)/j and
integer d with d < 2m+3(1−j) we count the number of n ∈ Mk with the property that
p|n, d = d(p, n) and n 6= p . For each pair (d, p), this is at most the number of solutions
to the system

n = 0 mod p , n = p mod
p2 − 1

d
, n 6= p .

By the Chinese remainder theorem, the number of solutions is at most
2kd

p(p2 − 1)
.

Thus, counting the number of n ∈ Mk with p|n, d = d(p, n) , n 6= p we obtain:

|N(m, k, j)| ≤
∑

p≥2(k−1)/j

∑
d≤2m+3(1−j)

d|(p2−1)

2kd

p(p2 − 1)
.

Changing the summation order and using p ≥ 23, i.e. p2/(p2 − 1) ≤ 529
528

, we obtain:

|N(m, k, j)| ≤ 2k · 529

528
·

∑
d≤2m+3(1−j)

∑
p≥2(k−1)/j

p2=1 mod d

d

p3
. (12)

We proceed as in [4] by estimating the inner sum. Let T (d) be the number of integer
solutions 0 < x ≤ d satisfying x2 = 1 (mod d). Then we have:∑

p≥2(k−1)/j

p2=1 mod d

d

p3
≤ T (d)

∞∑
u=0

d

(du + 2(k−1)/j)3

=
T (d)

d2

∞∑
u=0

(u +
2(k−1)/j

d
)−3

≤ 0.82 · T (d) · 2−2(k−1)/j ; by Lemma 26, since 2(k−1)/j > 2d.

To check the last inequality, note that d ≤ 2m+3(1−j) holds in (12) and hence 2(k−1)/j ·
d−1 ≥ 2 by (9). Now from (12) and Lemma 25 we obtain the following:

|N(m, k, j)| ≤ 2k · 529

528
· 0.82 · 2−2(k−1)/j

∑
d≤2m+3(1−j)

T (d)

≤ 529

528
· 0.82 · 1.205 · 2k · 25m/4+15/4−15j/4−2(k−1)/j

< 2k+5m/4+15/4−15j/4−2(k−1)/j . (13)

From (7) and (13) we immediately obtain:

23

Table 2: Lower bounds for − log2 qk,t

k \ t 1 2 3 4 5
300 48 100 124 143 160
400 57 118 146 169 189
500 65 134 166 192 214
600 72 148 184 212 237
1000 96 197 243 281 314

Proposition 21 We have Cm = ∅ for m ≤ 12; and for positive integers m, k with
12 < m ≤

√
12(k − 1)− 4 we have:

|Cm ∩Mk| ≤ 2k+5m/4+15/4
∑

2≤j≤m/3+1

2−15j/4−2(k−1)/j .

Now, using exactly the same argument as in Proposition 1 of [5], we obtain

qk,t ≤
2−Mt|Mk \ Cm|+

∑M
m=13 2−(m−1)t|Mk ∩ Cm|

π(2k)− π(2k−1)
, (14)

where M is a free parameter to be chosen in the range 13 ≤ M ≤
√

12(k − 1) − 4. If
no such M exists, we still have qk,t ≤ 2−12t|Mk| · (π(2k)− π(2k−1))−1. Proposition 2 in
[5] states

π(2k)− π(2k−1) ≥ 0.71867 · 2k/k . (15)

This allows us to obtain numerical estimates for qk,t from (14), (15) and Proposition
21. Some sample results are shown in Table 2, which contains the negative binary
logarithm of the estimates; so that we claim e.g. q500,2 ≤ 2−134.

Comparing our results with those in [4], we see that our results for Algorithm SQFT
are slightly better than the corresponding values for Algorithm EQFTac in [4] in case
t = 1; they are slightly worse in case t = 2, and considerably worse in case t ≥ 3. We
have the following explanation for this phenomenon. For large t, Algorithm EQFTac has
the advantage of considering also 3rdroots of unity, leading to much better estimates.
For t = 1, however, Algorithm SQFT has the advantage that it needs not "learn" a
4th or 8th root of unity, since such a root has already been computed by the preceding
Miller-Rabin test.

Yet it should be noted that Algorithm SQFT is considerably simpler than Algorithm
EQFTac. Note that both algorithms meet the requirements concerning the error prob-
ability, as stated e.g. in [7], already after two tests in cases of practical interest, such
as 512 ≤ k ≤ 1024.

Theorem 17 in [4] states that for t ≥ 2 the error probability qEQFTack,t of Algorithm
EQFTac is bounded by

O(k3/22(σt+1)tt−1/24−
√

2σttk)

24

with σt = log2(24) − 2/t. Using the same ideas as in [4] we can bound the error
probability for Algorithm SQFT with the same expression, where σt has to be set to 3
for Algorithm SQFT.

8 Average Case Behaviour on Incremental Search

The algorithms analysed in the last section is seldom used in practice. Usually, we
do not want to choose candidates for primes uniformly at random. Instead, one will
choose a starting point n0 in Mk at random and test all values n0, n0 + 2, n0 + 4, . . .
for primality until a probable prime has been found. The reason for doing so is that
trial divisions can be combined with techniques like Eratosthenes's sieve to rule out
candidates with small prime factors quickly. Another reason for doing so is that on
devices with limited computing power, such as smart cards, the generation of random
numbers may be expensive. The e�ciency of an incremental search algorithm using the
Miller-Rabin test for prime number generation is analysed in [2]; its error probability is
analysed in [1]. A similar analysis for the extended quadratic Frobenius test has been
carried out in [4]. Our error analysis is still valid when composite numbers are ruled
out via trial divisions or sieving methods, as long as no prime is ruled out.

For our analysis of the incremental search variant of Algorithm SQFT, we introduce
another parameter s, the sieve length. This means, when searching for a prime, we �rst
test s candidates n0, n0 + 2, n0 + 4, . . . , n0 + 2(s− 1). If none of these candidates turns
out to be probably prime, we have to generate a new random start value n0.

When analysing the incremental search variant of the algorithm SQFT, the error
probabilities are considerably higher than those for the random search variant in the
last section. This is due to the fact that subsequent tests can no longer be considered
as independent. Roughly speaking, the analysis in [1] shows that the error probability
is increased by a factor of about s2, when intervals of length s are considered, and a
probable prime is found in the �rst interval. If many intervals have to be considered,
the error probability becomes even higher, see [4] for an analysis of this case. Note that
the interval size should be s = c2 · log(2k), for some constant c2, if we want to �nd a
prime in that interval with probability, say, greater than 1/2.

There are good reasons to keep the error probability as small as possible also in the
case when several intervals have to be searched. One reason is that future versions of
standards like [7] might require smaller error probabilities. Another reason is that in
practical applications, we might have to �nd a prime in a much smaller set than Mk. For
example, when we search for an RSA key with given public exponent e = 3 ·5 ·7 ·11 ·13,
we will eventually have to reject all primes that are 1 modulo 3, 5, 7, 11, or 13.

One way to keep the error probability small is to slowly increase the number of
tests performed on each candidate, when no probable prime has been found in a certain
number of intervals. Therefore we introduce a new parameter r. If no probable prime
has been found after testing all candidates in r intervals, we will increase the number
of test rounds in the SQFT by 1. So we arrive at the following algorithm:

25

Algorithm SQFTinc Incremental search version of Algorithm SQFT

Input Bit length k , number t of test rounds, interval size s, increment r.
Output A probable prime n in the set Mk, i.e. 2k−1 < n < 2k.

[1] Put t′ = t, i = 0 .
[2] Select a random n0 ∈ Mk .
[3] For n ∈ {n0, n0 + 2, n0 + 4, . . . , n0 + 2(s− 1)} do the following;

Call Algorithm SQFT with input n and number of test rounds t′.
If Algorithm SQFT declares n prime then output n and stop .

[4] Put i = i + 1 .
[5] If i = 0 mod r then put t′ := t′ + 1.
[6] Go to step [2].

In order to analyse Algorithm SQFTinc we give a bound for its expected run time
and for its error probability. We give a rigorous upper bound for the error probability
and a heuristic bound for the expected run time. Note that standards like [7] require
upper bounds for the error probability, but not for the run time, so that we may be less
rigorous when estimating the run time.

Let Qk,t,s,r be the probability that Algorithm SQFTinc returns a composite number
and let qk,t,s be the probability that one execution of the loop in step 3 of the algorithm
returns a composite number.

Using exactly the same argument as in [1] we obtain:

Lemma 22 Let s = c · ln(2k) for some constant c. Then for any M > 12, we have

qk,t,s ≤ s2

M∑
i=13

|Cm ∩Mk|
|Mk|

2−t(m−1) + s · 2−tM

≤ 0.480454(ck)2

M∑
i=13

|Cm ∩Mk|
|Mk|

2−t(m−1) + 0.693148 · ck2−tM .

The lemma is also valid for M = 12, if the sum is replaced by 0. Note that Cm is
empty for m ≤ 12 and that the same argument is also used in [4] for algorithm EQFTac.
Let q̄k,t,s be the bound for qk,t,s stated in Lemma 22. Obviously, qk,t+t1,s ≤ 2−12t1 q̄k,t,s

holds for any t1 ≥ 0. Since any error of Algorithm SQFTinc must occur in one iteration
of step 3, we obtain:

Qk,t,s,r ≤ q̄k,t,s(r + r · 2−12 + r · 2−2·12 + r · 2−3·12 . . .) ≤ 4096

4095
rq̄k,t,s .

Together with Lemma 22 we obtain:

26

Table 3: Lower bounds for − log2 Qk,t,s,r with s = c · ln(2k) and c = r = 10.
k \ t 1 2 3 4 5
300 40 81 105 125 141
400 50 99 127 150 169
500 57 114 146 172 195
600 64 129 164 193 217
1000 88 176 223 261 294

Proposition 23 Let s = c · ln(2k) for some constant c. Then for any M ≥ 12, we have

Qk,t,s,r ≤ 0.5 · r(ck)2

M∑
i=13

|Cm ∩Mk|
|Mk|

2−t(m−1) + 0.7 · rck2−tM ;

(with the sum being empty in case M=12).

Using Proposition 23, we have computed some values − log2 Qk,t,s,r with s = c·ln(2k)
and c = r = 10 in Table 3. We have chosen r = c = 10 to obtain results comparable to
those in [4]. In practice, smaller values for r and c can be chosen.

It remains to bound the run time for Algorithm SQFTinc . As stated above, we may
be less rigorous here than in the analysis of the error probability.

Let PRFAIL(k, s) be the probability that the interval [n0, . . . , n0+2s−2], with n0 cho-
sen uniformly at random in Mk, contains no prime. Assuming Hardy and Littlewood's
prime r-tuple conjecture, it is shown in [1] that PRFAIL(k, c · ln(2k)) ≤ 2 exp(−2c) holds
for su�ciently large k. E.g. in case c ≥ 1, rc ≥ 10 the probability that the number t′ of
test rounds in Algorithm SQFTinc must ever be increased is at most 3 · 10−6 and may
be neglected.

Practical experience shows that strong pseudoprimes are rare for any basis selected
by Algorithm MR2, and that we must test about ln(2k)/2 candidates until we �nd a
prime number, independent of the interval size s.

Thus the expected run time for Algorithm SQFTinc is about

(ln(2k)/2 + 2t)(1 + c3)

(in units counting the e�ort for one Miller-Test) for a small constant c3 � 1, c ≥ 1,
rc ≥ 10, and su�ciently large values k. Note that the term depending on k can be
improved by using trial divisions and sieving methods, as e.g. stated in [2].

For large k, the above argument for bounding the run time could be made more
rigorous by using the prime r-tuple conjecture mentioned above, Lemma 15, and known
facts about the distribution of pseudoprimes, see [12].

27

9 Technical Lemmata

Lemma 24 Let n = p1p2p3 be a product of three di�erent primes p1, p2, p3 with 2 ≤
p1 < p2 < p3. Then the following inequality holds:

3∏
i=1

gcd(n/pi − 1, p2
i − 1)

p2
i − 1

<
1

p2
1 − 1

.

Proof
This lemma has originally been proved in [6]. For another proof, see [4]. We present

a simpler proof here.
De�ne z :=

∏3
i=1(n/pi − 1)/(p2

i − 1). Then a straightforward calculation yields:

z − 1 =

(
3∑

i=1

1

p2
i − 1

)
− p1p2 − 1

(p2
1 − 1)(p2

2 − 1)
− p1p3 − 1

(p2
1 − 1)(p2

3 − 1)
− p2p3 − 1

(p2
2 − 1)(p2

3 − 1)
. (16)

Since pi 6= pj holds for i 6= j, we have:

pipj − 1

(p2
i − 1)(p2

j − 1)
<

(p2
i + p2

j)/2− 1

(p2
i − 1)(p2

j − 1)
=

1

2

1

p2
i − 1

+
1

2

1

p2
j − 1

; for i 6= j .

This proves z − 1 > 0. For i = 2, 3 we have p1 < pi and hence:

p1pi − 1

(p2
1 − 1)(p2

i − 1)
>

1

p2
i − 1

.

Together with (16) we obtain:

0 < z − 1 <
1

p2
1 − 1

− p2p3 − 1

(p2
2 − 1)(p2

3 − 1)
<

1

p2
1 − 1

.

Since z − 1 > 0 holds, the lemma now follows from:

z − 1 =

∏3
i=1(n/pi − 1)−

∏3
i=1(p

2
i − 1)∏3

i=1(p
2
i − 1)

≥
gcd

(∏3
i=1(n/pi − 1),

∏3
i=1(p

2
i − 1)

)∏3
i=1(p

2
i − 1)

≥
∏3

i=1 gcd(n/pi − 1, p2
i − 1)∏3

i=1(p
2
i − 1)

.

2

Lemma 25 Let T (d) be the number of integer solutions 0 ≤ x < d satisfying x2 = 1
(mod d). Then we have

d∑
i=1

T (i) ≤ 64 · (d/24) 5/4 .

28

Proof
We have T (m · n) = T (m) · T (n) if gcd(m, n) = 1. So we may represent the above

sum as an Euler product. It is easy to show that for s > 1 we have:
∞∑

d=1

T (d) · d−s =
(
1 + 1 · 2−s + 2 · 2−2s + 4 · 2−3s + 4 · 2−4s + . . . + 4 · 2−νs + . . .

)
·

∏
p prime , p>2

(
1 + 2 · p−s + 2 · p−2s + 2 · p−3s + . . . + 2 · p−νs + . . .

)
=

1 + 1 · 2−s + 2 · 2−2s + 4 · 2−3s/(1− 2−s)

1 + 2 · 2−s/(1− 2−s)
·
∏

p prime

1− p−2s

(1− p−s)2

=
(
1− 2−s + 2 · 2−2s

)
· ζ(s)2

ζ(2s)
. (17)

To check the factor of the Euler product referring to the prime 2, note that x2 = 1
has one solution in Z2, two solutions in Z4, and four solutions in Z2ν , ν ≥ 3. The above
sum can e�ectively be computed by using Riemann's ζ-function.

Now, we put d0 = 19 · 106, s = 6/5. Then we obtain for d > d0:

d∑
i=d0+1

T (i) =
d∑

i=d0+1

(
T (i) · i−s

)
is ≤

(
∞∑

i=d0+1

T (i) · i−s

)
ds .

A numerical evaluation of the last sum, using (17), yields:

d∑
i=1

T (i) =

d0∑
i=1

T (i) +
d∑

i=d0+1

T (i) ≤ 204535220 + 2.54 · d 6/5 ; for d > 19 · 106 .

This proves the lemma for d ≥ 25 ·106. Smaller values of d are checked computationally.
Note that T (d) · d−5/4 achieves its maximum at d = 24.
2

Lemma 26 For c ≥ 2 we have:

∞∑
u=0

(u + c)−3 ≤ 0.82 c−2 .

Proof
Since the second derivative of (u+ c)−3 with respect to u is positive for u > 0, c > 0,

we obtain for c ≥ 2:
∞∑

u=0

(u + c)−3 ≤ c−3 +

∫ ∞

t=1/2

(t + c)−3dt = c−2

(
c−1 +

c2

2(c + 1/2)2

)
≤ 0.82 c−2 .

Note that c−1 + c2/(2(c + 1/2)2) is strictly monotonic decreasing for c ≥ 1.
2

29

10 Summary

We have presented two probabilistic primality testing Algorithms SQFT and SQFT3.
While Algorithm SQFT3 can be compared with the algorithms EQFTac and EQFTwc
presented in [4], (as far as run time and error probability is concerned), Algorithm SQFT
is much simpler than Algorithm SQFT3, but also asymptotically not as good as Algo-
rithm SQFT3. For prime numbers and error probabilities as required in cryptography,
we believe that Algorithm SQFT is su�cient in most cases of practical interest.

We recommend the use of Algorithm SQFT in devices with limited computational
power for cryptographic applications such as prime number generation. It turns out
that the requirements stated in [7] can be met with Algorithm SQFT and two test
rounds in most cases of practical interest.

If computational power (especially program and storage size) is not critical, we can
use Algorithms SQFT3. There are some special cases of prime candidates n (already
mentioned in [4] for Algorithm EQFTac) where the algorithm is considerably more
complicated than Algorithm SQFT.

Asymptotically, this extra expense can be neglected, since we have found that both
algorithms have run time equivalent to 2t+1 Miller-Rabin tests, when performing t test
rounds. Some hints how to cope with this extra expense for test candidates of moderate
size have been presented in section 5.

We also have stated worst-case and average-case bounds for the error probability of
both algorithms in sections 6 and 7; and we have also analysed an incremental search
version of Algorithms SQFT and SQFT3 in section 8.

References

[1] Jørgen Brandt, Ivan Damgård, On generation of probable primes by incre-
mental search. In Advances in cryptology CRYPTO '92 (Santa Barbara, CA, 1992),
Vol. 740 of Lecture Notes in Comput. Sci., 358-370, Springer, Berlin, 1993.

[2] Jørgen Brandt, Ivan Damgård, Peter Landrock, Speeding up prime num-
ber generation. In Advances in cryptology, ASIACRYPT '91 (Fujiyoshida, 1991),
Vol. 739 of Lecture Notes in Comput. Sci., 440-449, Springer, Berlin, 1993.

[3] Ronald J. Burthe, Jr, Further investigations with the strong probable prime
test. Math. Comp. 65(213), (1996), pp. 373-381.

[4] Ivan B. Damgård, Gudmund S. Frandsen, An Extended Quadratic Frobenius
Primality Test with Average and Worst Case Error Estimates. Series RS-03-8,
BRICS, Department of Computer Science, University of Aarhus, February 2003.

[5] Ivan B. Damgård, Peter Landrock, and Carl Pomerance, Average case
error estimates for the strong probable prime test. Math. Comp. 61(203), (1993),
pp. 177-194.

30

[6] Jon Grantham, A probable prime test with high con�dence. J. Number Theory
72(1), (1998), pp. 32-47.

[7] ISO/IEC 18032: Information technology � Security techniques � Prime number
generation, 2005.

[8] Arjen K. Lenstra, Eric R. Verheul, Selecting Cryptographic Key Sizes. In
J. Cryptology 14(4), (2001), pp. 255-293.

[9] Louis Monier, Evaluation and comparison of two e�cient probabilistic primality
testing algorithms. Theoret. Comp. Sci. 12, (1980), pp. 97-108.

[10] Siguna Müller, A probable prime test with very high con�dence for n = 1 mod
4. In Advances in cryptology, ASIACRYPT 2001 (Gold Coast), Vol. 2248 of Lecture
Notes in Comput. Sci., pp. 87-106, Springer, Berlin, 2001.

[11] Siguna Müller, A probable prime test with very high con�dence for n = 3 mod
4. J. Cryptology 16 (2), (2003), pp. 117-139, Springer, Berlin, 2003.

[12] Carl Pomerance, On the distribution of pseudoprimes.Math. Comp. 37, (1981),
pp. 587-593.

[13] Michael O. Rabin, Probabilistic algorithms for testing primality. J. Number
Theory 12, (1980), pp. 128-138.

31

