
A Probabilistic Hoare-style logic for

Game-based Cryptographic Proofs

(Extended Version)

Ricardo Corin and Jerry den Hartog
{ricardo.corin,jerry.denhartog}@cs.utwente.nl

Department of Computer Science,
University of Twente, The Netherlands

April 26, 2006

Abstract

We extend a Probabilistic Hoare-style logic to formalize game-based
cryptographic proofs. Our approach provides a systematic and rigorous
framework, thus preventing errors from being introduced. We illustrate
our technique by proving semantic security of ElGamal.

Contents

1 Introduction 3

2 The Probabilistic Hoare-style logic pL 4
2.1 Probabilistic programs . 4
2.2 Reasoning about probabilistic programs 5

3 Extending pL 7
3.0.1 Functions . 7

3.1 Procedures . 8
3.1.1 Distributions and independence 9
3.1.2 Orthogonality . 10

4 Application: Security Analysis of ElGamal 11
4.1 ElGamal . 11

4.1.1 ElGamal Security Analysis in pL 12
4.1.2 ElGamal Semantic security 12

5 Conclusions and Future Work 14

A Proof of Theorem 6 15

B Deriving {RZ∗
q
3,RND,Bool(v1, v2, v3, v4, v5)} BS {P(x1) = 1/2} 16

1 Introduction

A typical proof to show that a cryptographic construction is secure uses a re-
duction from the desired security notion towards some underlying hardness as-
sumption. The security notion is usually represented as a game, in which one
proves that the attacker’s chance of winning the game is (arbitrarily) small.
From a programming language perspective, these games can be thought of as
programs whose behaviour is partially known, since the program typically con-
tains invocations to an unknown function representing an arbitrary attacker. In
this context, the cryptographic reduction is a sequence of valid program trans-
formations.

Even though cryptographic proofs based on game reductions are powerful,
the price one has to pay is high: these proofs are complex, and can easily become
involved and intricated. This makes the verification difficult, with subtle errors
difficult to spot. Some errors may remain uncovered long after publication,
as illustrated for example by Boneh and Franklin’s IBE encryption scheme [4],
whose cryptographic proof has been recently patched by Galindo [7].

Recently, several papers from the cryptographic community (e.g., the work
of Bellare and Rogaway [2], Halevi [8], and Shoup [15]) have recognized the need
to tame the complexity of cryptographic proofs.

There, the need for (development of) rigorous tools to organize cryptographic
proofs in a systematic way is advocated. These tools would prevent subtle easily
overlooked mistakes from being introduced in the proof. As another advantage,
this precise proof development framework would standardize the proof writing
language so that proofs can be checked easily, even perhaps using computer
aided verification.

The proposed frameworks [2, 8, 15] provide ad hoc formalisms to reason
about the sequences of games, providing useful program transformation rules
and illustrating the techniques with several cryptographic proofs from the lit-
erature. As we mentioned earlier, the games may be thought of as computer
programs, and the reductions thought of as valid program transformations, i.e.
transformations that do not change (significantly at least) the “behaviour” of
the program. If we represent program behaviour by predicates that establish
which states are satisfied by the program before and after its execution, we ar-
rive to a well known setting studied by computer scientists for the past thirty
years: program correctness established by a Hoare logic [11, ?, ?]. In Hoare
logic, a programming language statement (e.g., value assignment to a variable)
is prefixed and postfixed with assertions which state which conditions hold be-
fore and after the execution of the statement, respectively. There exists a wealth
of papers building on the basic Hoare logic setting, making it one of the most
studied subjects for establishing (imperative) program correctness.

This paper’s contributions are twofold.

• First, we adapt and extend our earlier work on Probabilistic Hoare-logic [9,
10] to cope with game-based cryptographic proofs.

– In particular, we introduce the notion of arbitrary functions, that can
be used to model the invocation of an unknown computation (e.g.,
an arbitrary attacker function). We also include procedures, which
are subroutines that can be used to “wrap” function invocations. We
provide the associated deduction rules within the logic.

3

– We also present a useful program transformation operation, called
orthogonality, which we use to relate Hoare triples. Orthogonality is
our basic “game stepping” operation.

• Second, to illustrate our approach, we elaborate in full detail a proof of
security of ElGamal [5], by reducing the semantic security of the cryptosys-
tem to the hardness of solving the (well-known) Decisional Diffie-Hellman
problem.

To the best of our knowledge, ours is the first application of a well known
program correctness logic (i.e. Hoare logic) to analyze cryptographic proofs
based on transformation of probabilistic imperative programs.

Related Work Differently from us, almost all formalisms we know of are
directed towards analysing security protocols, thus including concurrency as a
main modelling operation. One prime example is in the work of Ramanathan et
al. [14], where a probabilistic poly-time process algebraic language is presented.
Much effort is paid to measure the computational power of (possibly parallel)
processes, so that an environmental context can be precisely regulated to run in
probabilistic polynomial time. On the other hand, our logic is fitted for proofs on
a simple probabilistic imperative language, without considering parallel systems,
nor communication or composition. This simplifies the reasoning and is closer
to the original cryptographic proofs which always consider imperative programs
(the “games”) in the proofs (This is further elaborated on the Conclusions.)

Tarento [16] develops machine checkable proofs of signature schemes, focus-
ing on formalizing the semantics of the generic and random oracle models. This
differs from the present work, which uses a Hoare-style logic to “derive” the
(syntactic) cryptographic algorithms, and then uses the soundness of the logic
to obtain the security proofs.

Recently, Blanchet [3] has developed an automated procedure to generate se-
curity proofs of protocols; the approach is similar to ours in that also sequences
of games are used, although our technique, based on Hoare-logic derivations,
can be used to develop proofs manually (however proof checking could be auto-
mated); still, it would be interesting to relate the approaches in the future.

2 The Probabilistic Hoare-style logic pL

We shortly recall the probabilistic Hoare style logic pL (see [9, 10]). We in-
troduce probabilistic states, and programs which transform such states. Then
we introduce probabilistic predicates and a reasoning system to establish Hoare
triples which link a precondition and a postcondition to a program.

2.1 Probabilistic programs

We define programs (or statements) s, integer expressions e and Boolean ex-
pressions (or conditions) c by:

s ::= skip | x := e | s ; s | if c then s else s fi | while c do s od | s⊕ρ s

e ::= n | x | e + e | e − e | e · e | e div e | e mod e

c ::= true | false | b | e = e | e < e | c ∧ c | c ∨ c | ¬c | c→ c

4

where x is a variable of type (or ‘has range’) integer, b is a variable of type
Boolean and n a number. We assume it is clear how this can be extended with
additional operators and to other types and mostly leave the type of variables
implicit, assuming that all variables and values are of the correct type.

The basic statements do nothing (skip) and assignment (x := e) can be
combined with sequential composition (;), conditional choice (if), iteration
(while) and probabilistic choice ⊕ρ. In the statement s ⊕ρ s′ a probabilistic
decision is made which results in executing s with probability ρ and statement
s′ with probability 1− ρ.

A deterministic state, σ ∈ S, is a function that maps each program variable
to a value. A probabilistic state, θ ∈ Θ gives the probability of being in a given
deterministic state. Thus a probabilistic state θ can be seen as a (countable)
weighed set of deterministic states which we write as ρ1 · σ1 + ρ2 · σ2 +
Here, the probability of being in the (deterministic) state σi is ρi, i ≥ 0. For
simplicity and without loss of generality we assume that each state σ occurs at
most once in θ; multiple occurrences of a single state can be merged into one
single occurrence by adding the probabilities, e.g. 1 · σ rather than 3

4 · σ + 1
4 · σ.

The sum of all probabilities is at most 1 but may be less. A probability less
than 1 indicates that this execution point may not be always reached (e.g., be-
cause of non-termination or because it is part of an ‘if’ conditional branch).

To manipulate and combine states we have scaling (ρ · θ) which scales the
probability of each state in θ, addition (θ+θ′) which unites the two sets and adds
probabilities if the same state occurs in both θ and θ′, weighed sum (θ ⊕ρ θ′ =
ρ·θ+(1−ρ)·θ′) and conditional selection (c?θ) which selects the states satisfying
c (and removes the rest). For example,

1
2 · (

1
2 · [x = 1] + 1

2 · [x = 2]) = 1
4 · [x = 1] + 1

4 · [x = 2]
(1
4 · [x = 1] + 1

4 · [x = 2]) + 1
4 · [x = 2] = 1

4 · [x = 1] + 1
2 · [x = 2]

(x ≤ 2)?(1
4 · [x = 1] + 1

2 · [x = 2] + 1
4 · [x = 3]) = 1

4 · [x = 1] + 1
2 · [x = 2]

A program s is interpreted as a transformer of probabilistic states, i.e. its seman-
tics D(s) is a function that maps input states of s to output states. The program
transforms the probabilistic state element-wise, with the usual interpretation of
the deterministic operations. (See [9] for the fixed point construction used for
the semantics of while.) For probabilistic choice we use the weighed sum:

D(s⊕ρ s′)(θ) = D(s)(θ)⊕ρ D(s′)(θ)

2.2 Reasoning about probabilistic programs

To reason about deterministic states we use deterministic predicates, dp ∈
DPred. These are first order logical formulas, i.e. Boolean expressions with
the addition of logical variables i, j and the quantification ∀i :,∃i : over such
variables. Similarly, to reason about probabilistic states and programs we in-
troduce probabilistic predicates, p ∈ Pred:

p ::= true | false | b | e = e | e < e | er = er | er < er | p→ p | ¬p
| p ∧ p | p ∨ p | ∃j : p | ∀j : p | ρ · p | p + p | p⊕ρ p | c?p

er ::= ρ | r | P(dp) | er + er | er − er | er ∗ er | er/er | . . .

5

where e is an expression using logical variables rather than program variables,
ρ is a real number and r a variable with range [0, 1]. A probabilistic expression
er is meant to express a probability in [0, 1].

Example 1 We have that (i < j)→ (P(x = 5 ∧ y < x + i) > P(x = j) + 1
4) is a

probabilistic predicate but (x > i) is not as the use of program variable x outside
of the P(·) construction is not allowed.

The value of P(dp), in a given probabilistic state, is the sum of the proba-
bilities for deterministic states that satisfy dp, e.g. in

1
4
· [x = 1] +

1
4
· [x = 2] +

1
4
· [x = 3] +

1
4
· [x = 4]

we have that P(x ≥ 2) = 3
4 . Establishing the value of a probabilistic expression

er and a (basic) predicate p from a probabilistic state θ is standard; the latter
is denoted (as usual) by the satisfaction relation θ |= p. The ‘arithmetical’ op-
erators +, ⊕ρ,ρ·, ? specific to our probabilistic logic are the logical counterparts
of the same operations on states. For example,

θ |= p + p′ when there exists θ1, θ2: θ = θ1 + θ2, θ1 |= p and θ2 |= p′ (1)
θ |= c?p when there exists θ′: θ = c?θ′, θ |= p (2)

The satisfaction relation also includes an interpretation function giving values
to the logical variables, which we omit from the notation when no confusion is
possible. We write |= p if p holds in any probabilistic state.

Hoare triples, also known as program correctness triples, give a precondition
and a postcondition for a program. A triple is called valid, denoted

|= { p } s { q }

if the precondition guarantees the postcondition after execution of the program,
i.e. for all θ with θ |= p we have D(s)(θ) |= q.

Our derivation system for Hoare triples adapts and extends the existing
Hoare logic calculus. The standard rules for skip, assignment, sequential com-
position, precondition strengthening and postcondition weakening remain the
same. The rule for conditional choice is adjusted and a new rule for probabilis-
tic choice is added, along with some structural rules. We only present the main
rules here (see e.g. [9] for a complete overview), noting that the other rules come
directly from Hoare logic or from natural deduction.

{ p[x/e] } x := e { p } (Assign)
{ c?p } s { q } {¬c?p } s′ { q′ }

{ p } if c then s else s′ fi { q + q′ }
(If)

{ p } s { p′ } { p′ } s′ { q }

{ p } s ; s′ { q }
(Seq)

{ p } s { q } { p } s′ { q′ }

{ p } s⊕ρ s′ { q ⊕ρ q′ }
(Prob)

{ p } s { q } { p } s { q′ }

{ p } s { q ∧ q′ }
(And)

|= p′ → p { p } s { q } |= q → q′

{ p′ } s { q′ }
(Cons)

6

These rules are used in the proof of ElGamal in Section 4, but first we extend
the language and logic to cover the necessary elements for cryptographic proofs.

3 Extending pL

We consider two language extensions and one extension of the reasoning method:

• Functions are computations that are a priori unknown. These are useful
to reason about arbitrary attacker functions, for which we do not know
what behavior they will produce. Procedures allow the specification of
subroutines. These are useful to specify cryptographic assumptions that
hold ‘for every procedure’ satisfying some appropriate conditions. Proce-
dures are programs for which its behavior (i.e. the procedure’s body) is
assumed to be partially known (since it may contain an invocation to an
arbitrary function).

We assume that both functions and procedures are deterministic. However
this poses no loss of generality as enough “randomness” can be sampled
before and then passed to the function or procedure as an extra parameter.

We explicitly distinguish functions and procedures for readability and con-
venience, rather than because there is a fundamental difference between
the two; it clarifies the different roles (i.e. procedures are specified routines
and functions are unknown attacker functions) directly in the syntax.

• Orthogonality allows to reason about independent statements. This is a
program transformation operation that is going to be useful when reason-
ing on cryptographic proofs as sequences of games.

3.0.1 Functions

Functions, as opposed to procedures, are undefined (i.e. we do not provide a
body). We use these functions to represent arbitrary attackers, for which we do
not know a priori their behaviour.

To include functions in the language we add function symbols to expressions
(as defined in the previous section):

e ::= . . . | f(e, . . . , e)

We assume that the functions are used correctly, that is functions are always
invoked with the right number of arguments and correct types. Also, note
that by considering functions to be expressions we allow functions to be used
in the (deterministic and probabilistic) predicates. The fact that a function is
deterministic is represented in the logic by the following remark.

Remark 2 For any function f(·) (of arity n) and expressions e1, . . . , en, e′1, . . . , e
′
n

we have

|= (e1 = e′1 ∧ . . . ∧ en = e′n)→ f(e1, . . . , en) = f(e′1, . . . , e
′
n)

To deal with functions in the semantics, we assume that any function symbol
f has some fixed (albeit unknown) deterministic, type correct interpretation f̂ .
Thus, e.g. the semantics for an assignment using f becomes

D(x := f(y))(ρ1 ·σ1 +ρ2 ·σ2 + . . .) = ρ1 ·σ1[f̂(σ1(y)) / x]+ρ2 ·σ2[f̂(σ2(y)) / x]+ . . .

7

The rules given above are also valid for the extended language; extending the
correctness proof [9] for the Assign rule is direct, while the proof for the other
rules remains the same as it only uses structural properties of the denotational
semantics.

3.1 Procedures

We now extend the language with procedures, which are used to model (par-
tially) known subprograms. Each procedure has a list of variables, the formal
parameters (divided in turn into value parameters and variable parameters) and
a set of local variables. We assume that none of these variables occur in the
main program or in other procedures. The procedure also has a body, Bproc,
which is a program statement which uses only the formal parameters and local
variables, only assigns to variable parameters and local variables, and assigns to
a local variable before using its value. We also enforce the procedure to be de-
terministic by excluding any probabilistic choice statement from Bproc. Finally,
we require that the procedure is non-recursive (i.e. we can order procedures such
that any procedure only calls procedures of a lower order). We use the notation

procedure proc(value v1, . . . , vn;var w1, . . . , wm) : Bproc

to list the value and variable parameters and the body of a procedure (any
variables in Bproc that are not formal parameters are local variables).

We add procedures to the language by including procedure calls to the state-
ments,

s ::= . . . | proc(e, . . . , e; x, . . . , x)

Here we assume that there is no aliasing of variables; i.e. a different variable is
used for each variable parameter.

The procedure call proc(e1, . . . , en, x1, . . . , xm) (in state σ) corresponds to
first assigning the value of the appropriate expression (ei or xj) to the formal
parameters, running the body of the program and finally assigning the resulting
value of the variable arguments w1, . . . , wm to x1, . . . , xm. Thus the semantics
is:

D(proc(e1, . . . , en; x1, . . . , xm))(θ) = D(v1 := e1; . . . ; vn := en;
w1 := x1; . . . ; wm := xm;
Bproc; x1 := w1; . . . ; xn := wn)(θ)

To enable reasoning about a procedure proc(value v1, . . . , vn;var w1, . . . , wm) :
Bproc, we add the following derivation rule:

{p} Bproc {q}
{p[e1,...,en,x1,...,xn /v1,...,vn,w1,...,wm]} proc(e1, . . . , en; x1, . . . , xn) {q[x1,...,xn /w1,...,wm]}

(3)
The extended logic including this rule is correct, i.e. any Hoare triple derived
from the proof system is valid. Extending the correctness proof for the added
rule is again a simple exercise using the definition of the semantics given above
and properties of the assignment statement.

8

3.1.1 Distributions and independence

We now illustrate how to express the (joint) distribution of variables (and more
generally of expressions) in the logic. Then we discuss the issue of independence
of variables and expressions.

A commonly used component in (security) games is a variable chosen com-
pletely at random, which in other words is a variable with a uniform distribution
over its (finite) range. Suppose that variable x and i have the same range S.
Then the following predicate expresses that x is uniformly distributed over S:

RS(x) = ∀i : P(x = i) = 1/|S|

where |S| denotes the size of the set S. The variable x can be given a uniform
distribution over S = {v1, . . . , vn} by running the program

x:= v1 ⊕1/n (x := v2 ⊕1/(n−1) (· · · ⊕1/2 x := vn))

As this is a commonly used construction we introduce a shorthand notation
for this statement: x ← S. Using our logic, it is straightforward to derive
(using repeatedly rule (Prob)) that after running this program x has a uniform
distribution over S:

|= {P(true) = 1 } x← S {RS(x) }

More interestingly, after running the program x ← S; y ← S′ we not only
know that x has a uniform distribution over S and y has a uniform distribution
over S′, but we also know that y has a uniform distribution over S′ independently
from the value of x. In other words, the joint distribution of x and y is

RS,S′(x, y) ::= ∀i, j : P(x = i ∧ y = j) = 1/|S| · 1/|S′|

(with i ∈ S, j ∈ S′). This is a stronger property than only the information that
x and y are uniformly distributed. (The difference is exactly the independence
of the variables.) Below we introduce a predicate expressing independence and
generalize these results.

Definition 3 (Independent I(·) and Random R(·) expressions) The pred-
icate I(e1, . . . , en) states independence of expressions e1, . . . , en, and is defined
by (where ij is of the same type as ej, 1 ≤ j ≤ n.):

I(e1, . . . , en) = ∀i1, . . . , in : P(e1 = i1∧. . .∧en = in) = P(e1 = i1)·. . .·P(en = in)

The predicate RS1,...,Sn(e1, . . . , en) states that e1, . . . , en are randomly and in-
dependently distributed over S1, . . . , Sn respectively, is defined as follows:

RS1,...,Sn(e1, . . . , en) = ∀i1, . . . , in : P(e1 = i1∧. . .∧en = in) = 1/|S1|·. . .·1/|Sn|

Lemma 4 (Relations between R(·) and I(·)) 1. An expression list has
a joint uniform distribution when they are independent and each has a
uniform distribution, i.e.

|= RS1,...,Sn(e1, . . . , en)↔ RS1(e1) ∧ . . . ∧RSn(en) ∧ I(e1, . . . , en)

9

2. Separate randomly assigned variables have a joint random distribution:

|= {P(true) = 1 } x1 ← S1; . . . ; xn ← Sn {RS1,...,Sn(x1, . . . , xn) }

3. Independence is maintained by functions; if an expression e is independent
from the inputs e1, . . . , en of a function f , then e is also independent of
f(e1, . . . , en), i.e.,

|= I(e, e1, . . . , en)→ I(e, f(e1, . . . , en))

Both (1) and (3) express basic properties, shown easily to hold semantically for
any (probabilistic) state. The triple in (2) is shown valid by using the logic.

Example 5 The lemma above can be used in a derivation as follows:

{P(true) = 1}
b← Bool ;

{RBool(b)}
x← S;

{RBool,S(b, x)} → {I(b, x)} → {I(b, f(x))}
b′ := f(x) ;

{I(b,b′)}

The derivation above is represented as a so called proof outline, which is a
commonly used way to represent proofs in Hoare logic. Briefly, rather than
giving a complete proof tree only the most relevant steps of the proof are given
in an intuitively clear format. The predicates in between the program statements
give properties that are valid at that point in the execution.

3.1.2 Orthogonality

A (terminating) program that does not change the value of variables in a predi-
cate (i.e. is ‘orthogonal to the predicate’) will not change its truth value. In this
section we make this intuitive property more precise. As we show in the proof
of ElGamal cryptosystem in Section 4, orthogonality is a powerful method to
reason about programs and Hoare triples yet is easy to use as it only requires a
simple syntactical check.

Let Var(p) denote the set of program variables occurring in the probabilistic
predicate p, Var(s) the variables occurring in the statement s and let Vara(s)
denote the set of program variables which are assigned to (i.e. subject to as-
signment) in s (x is assigned to in s if x := e occurs in s for some e or when x is
used as a variable parameter in a procedure call). We write

s ⊥ p

if Vara(s) ∩Var(p) = ∅ and
s ⊥ s′

if Vara(s) ∩Var(s′) = ∅.
Thus we call a program orthogonal to a predicate (or to another program)

if the program does not change the variables used in the predicate (or in the
other program).

The following theorem states that we can add and remove orthogonal state-
ments without changing the validity of a Hoare triple. As we shall see in Sec-
tion 4, this is precisely what is needed to establish the security of ElGamal.

10

Theorem 6 If s′ ⊥ q and s′ ⊥ s′′ then { p } s; s′ ; s′′ { q } is valid if and only
if { p } s ; s′′ { q } is valid.

The theorem asserts that a statement which does not directly affect the
postcondition or the later used values can be removed without affecting the
validity of Hoare triples. We provide a proof in the Appendix A.

The notion of orthogonality ⊥ is a practical and purely syntactically defined
relation, and thus easy to check. On the other hand, ⊥ does not have commonly
used properties of relations such as reflexiveness, transitivity and congruence
properties. Therefore, care must be taken in reasoning with this relation outside
of its intended purpose, that is to add or remove non-relevant program sections
in a derivation, so one can transform a program into the exact required form.

4 Application: Security Analysis of ElGamal

We now apply our technique to derive semantic security for ElGamal [5].

4.1 ElGamal

We describe the setup and key generation, the encryption and decryption mech-
anisms and finally the security analysis.

Let G be a group of prime order q, and let γ ∈ G be a generator. (The
descriptions of G and γ, including q, represent arbitrary “system parameters”).
Let Z∗

q = {1, . . . , q− 1} denote the usual multiplicative group. A key is created
by choosing a number uniformly from Z∗

q , say x ∈ Z∗
q . Then x is the private

key and γx the public key. To encrypt a message m ∈ Z∗
q , a number y ∈ Z∗

q is
chosen uniformly from Z∗

q . Then (c, k) is the ciphertext, for c = m · γxy, and
k = γy. To decrypt using the private key x, compute c/kx, since

c

kx
=

m · γxy

γyx = m

Security Analysis The security of ElGamal cryptosystem is shown w.r.t. the
Decisional Diffie-Hellman (DDH) assumption. Suppose we sample uniformly
the values x, y and z. Fix εddh small and RND large w.r.t. the system pa-
rameters. Then the DDH assumption (for G) states that no effective procedure
D(·) (with randomness given by a uniform sample from {1, . . . ,RND}, encoding
a finite tape of uniformly distributed bits) can distinguish triples of the form
〈γx, γy, γxy〉 from triples of the form 〈γx, γy, γz〉 with a chance better than εddh.

In our formalism we do not precisely define the meanings of “small”, “large”,
“better” and “effective”, as they are not required in the actual proof transforma-
tions. However, one should keep in mind that these notions need to be defined
properly, where e.g. “effective” means time bounded by a polynomial in the
security parameter. Moreover, our fixed values (e.g., εddh) implicitly depend on
the arbitrary system parameters, so asymptotic bounds can be expressed prop-
erly (so in fact εddh is negligible when the security parameter tends to infinity).

Semantic Security The semantic security game for ElGamal cryptosystem
consists of the following four steps:

11

1. Setup: x is sampled from Z∗
q and r is sampled from RND .

2. Attacker chooses m0,m1 using inputs γx, r.

3. y is sampled from Z∗
q , bit b is sampled uniformly, and let c = γxy ·mb.

4. Attacker chooses b′ using inputs γx, γy, r, c.

Now, the attacker wins this game if it outputs b′ equating b, that is the
attacker can guess b with a non-negligible probability (in our case, better than
1/2+εddh). A standard proof (e.g., the one given in [15]) reduces the security of
this notion (i.e. that the attacker cannot win the game) to the DDH assumption
described above. We now describe a similar proof within our formalism.

4.1.1 ElGamal Security Analysis in pL

In our formalism, the DDH assumption ensures that for any effective procedure
D(v1, v2, v3, v4, v5; x1) with inputs v1, v2, v3, v4, v5 and output boolean x1, the
following is a valid Hoare triple.

{P(true) = 1}
x← Z∗

q ; y← Z∗
q ; r1← RND ; b1← Bool ; D(γx, γy, γxy, r1, b1; out1);

z← Z∗
q ; r2← RND ; b2← Bool ; D(γx, γy, γz, r2, b2; out2)

{|P(out1)− P(out2)| ≤ εddh}

Here, the extra provided randomness b1 and b2 to procedure D(·) are given
solely to ease the exposition (as r1 and r2 already provide enough randomness).

4.1.2 ElGamal Semantic security

We assume three attacker functions A0(v1, v4), A1(v1, v4) and A2(v1, v2, v3, v4).
Functions A0(v1, v4) and A1(v1, v4) return two numbers m0 and m1 from Z∗

q .
Similarly, function A2(v1, v2, v3, v4) returns a boolean. From these attacker
functions we define another procedure S(v1, v2, v3, v4, v5; x1) : BS , where the
body BS is defined as follows:

BS
4
= m0 :=A0(v1, v4); m1 :=A1(v1, v4);

if v5 =false then tmp := v3· m0 else tmp := v3· m1 fi;
b :=A2(v1, v2, tmp, v4);
if v5 = b then x1:=true else x1:=false fi;

Proving the semantic security of ElGamal amounts to establish:

Theorem 7 The following is a valid probabilistic Hoare Triple:

{P(true) = 1}
x← Z∗

q ; y← Z∗
q ; r1← RND ; b1← Bool ; S (γx, γy, γxy, r1, b1; out1)

{|P(out1)− 1/2| ≤ εddh}

To establish this result, we first show the following lemma.

Lemma 8 The following is a valid Probabilistic Hoare Triple:

12

{RZ∗
q
3,RND,Bool(γx, γy, γz, r2, b2)} S(γx, γy, γz, r2, b2; out2) {P(out2) = 1/2}

Proof 9 (Sketch) We use rule (3) from Section 3 on the definition of proce-
dure S(·), to establish the validity of the following triple (This triple is formally
derived in the Appendix B):

{RZ∗
q
3,RND,Bool(v1, v2, v3, v4, v5)} BS {P(x1) = 1/2}

Now, to establish Theorem 7, we start by showing the validity of the following
Hoare triple:

{P(true) = 1}
x← Z∗

q ; y← Z∗
q ; z← Z∗

q ; r2← RND ; b2← Bool ;
{RZ∗

q
3,RND,Bool(x, y, z, r2, b2)} → {RZ∗

q
3,RND,Bool(γx, γy, γz, r2, b2)}

S(γx, γy, γz, r2, b2; out2)
{P(out2) = 1/2}

The lower part of the triple is given by Lemma 8. For the upper part, we
use Lemma 4(1) to obtain to obtain {RZ∗

q
3,RND,Bool(x, y, z, r2, b2)} from the

random samples. The implication follows from standard properties of the group
Z∗

q and the generator γ, which is a permutation of Z∗
q (In the appendix we

derive formally a similar property). Finally, we combine the two triples using
rule (Seq).

The next step consists in adding the orthogonal statements (shown boxed
below) between the assignments of y and z of the above triple. Since the added
statements are orthogonal (they assign to r1,b1,out1 only, which do not occur
in the above triple), by Theorem 6 we get that the following triple is valid:

{P(true) = 1}

x← Z∗
q ; y← Z∗

q ; r1← RND ; b1← Bool ; S (γx, γy, γxy, r1, b1; out1);
z← Z∗

q ; r2← RND ; b2← Bool ; S (γx, γy, γz, r2, b2; out2)
{P(out2) = 1/2}

This is the DDH assumption when D(·) is instantiated by S(·). We use rule
(And) and join the postconditions {P(out2) = 1/2} and {|P(out1)−P(out2)}| ≤
εddh:

{P(true = 1)}
x← Z∗

q ; y← Z∗
q ; r1← RND ; b1← Bool ; S (γx, γy, γxy, r1, b1; out1);

z← Z∗
q ; r2← RND ; b2← Bool ; S (γx, γy, γz, r2, b2, out2)

{P(out2) = 1/2 ∧ |P(out1)− P(out2)| ≤ εddh} → {|P(out1)− 1/2| ≤ εddh}

The last application of rule (Cons) follows from replacing P(out2) with 1/2.
Finally, we remove the last line of statements thanks to orthogonality (as the
assigned to variables do not occur elsewhere), and obtain the desired theorem:

{P(true) = 1}
x← Z∗

q ; y← Z∗
q ; r1← RND ; b1← Bool ; S (γx, γy, γxy, r1, b1, out1);

{|P(out1)− 1/2| ≤ εddh}

13

5 Conclusions and Future Work

Cryptographic proofs are complex constructions that use both cryptography
and programming languages concepts. In our opinion, both communities can
benefit from our approach:

• First, Hoare logic is well known in the programming languages community,
and has been used to prove algorithm correctness for more than three
decades. There are readily available computer aided verification systems
that can handle Hoare logic reasoning systems (e.g. HOL [13], PVS [12],
Coq [6]).

• Second, developing cryptographic proofs as games is well known in the
cryptographic community [2, 8, 15]. Our logic allows to derive correctness
proofs directly from these imperative programs, without code modifica-
tions.

Future Work There are several possible directions for future work. A short
term goal is to cover more complex examples [2, 8, 15]. This would probably
require to refine the notion of equivalence between Hoare triples to equivalence
up-to ε, to model transitions based on “bad events unlikely to happen” instead of
the standard equivalence that models transitions based on pure indistinguisha-
bility.

The price to pay for rigorousity is in proof length, as the detailed proofs can
quickly become lengthy. An axiomatization of the logic along with a library
of ready-to-use proofs for standard constructions would help into reducing the
complexity and proof length (this is a matter of ongoing work). Along the same
lines, a longer term goal is to develop an implementation on a theorem prover to
provide machine-checkable cryptographic proofs, following e.g. earlier work on
(standard) Hoare logic formalization [12, 6, 1]). Here axioms and pre-computed
proofs would also greatly increase efficiency and usability.

Acknowledgements We thank Pieter Hartel, Sandro Etalle, Jeroen Doumen,
and the anonymous reviewers of ICALP2006 for helpful comments.

References

[1] P. Audebaud and C. Paulin. Proofs of randomised algorithms in coq. In
MPC’06.

[2] M. Bellare and P. Rogaway. The game-playing technique, December 2004.
At http://www.cs.ucdavis.edu/∼rogaway/papers/games.html.

[3] B. Blanchet. A computationally sound mechanized prover for security pro-
tocols. In IEEE Symposium on Security and Privacy, Oakland, California,
2006.

[4] D. Boneh and M. K. Franklin. Identity-based encryption from the weil
pairing. In CRYPTO’01, pages 213–229. Springer-Verlag, 2001.

[5] T. ElGamal. A public-key cryptosystem and a signature scheme based on
discrete logarithms. IEEE Transactions on Information Theory, IT-31:469–
472, 1985.

14

[6] J.-C. Filliâtre. Why: a multi-language multi-prover verification tool. Tech-
nical report, LRI, Université Paris Sud, 2003.

[7] D. Galindo. Boneh-franklin identity based encryption revisited. In ICALP,
pages 791–802, 2005.

[8] S. Halevi. A plausible approach to computer-aided cryptographic proofs,
2005. At http://eprint.iacr.org/2005/181/.

[9] J.I. den Hartog. Probabilistic Extensions of Semantical Models. PhD thesis,
Vrije Universiteit Amsterdam, 2002.

[10] J.I. den Hartog and E.P. de Vink. Verifying probabilistic programs us-
ing a Hoare like logic. Int. Journal of Foundations of Computer Science,
13(3):315–340, 2002.

[11] C.A.R. Hoare. An axiomatic basis for computer programming. Communi-
cations of the ACM, 12:576–580, 1969.

[12] J. Hooman. Program design in PVS. In Workshop on Tool Support for
System Development and Verification, Germany, 1997.

[13] M.J.C. Gordon. Mechanizing programming logics in higher-order logic. In
Proc. of the Workshop on Hardware Verification, pages 387–439. Springer-
Verlag, 1988.

[14] A. Ramanathan, J. C. Mitchell, A. Scedrov, and V. Teague. Probabilistic
bisimulation and equivalence for security analysis of network protocols. In
FoSSaCS, pages 468–483, 2004.

[15] V. Shoup. Sequences of games: a tool for taming complexity in security
proofs, May 2005. At http://www.shoup.net/papers/games.pdf.

[16] S. Tarento. Machine-checked security proofs of cryptographic signature
schemes. In ESORICS, pages 140–158, 2005.

A Proof of Theorem 6

In this section we give a proof outline for the orthogonality Theorem 6. To
reason about affected and unaffected parts of states we introduce restriction
(↓V) to and equivalence (=V) for a subset V of the program variables PVar:
Restriction of a deterministic state σ to a set V is denoted σ ↓V . Restriction
is lifted to probabilistic states by applying it element wise: To obtain θ ↓V we
replace each ρ · σ in θ by ρ · σ ↓V . As before, the probabilities of states that
collapse into the same state are added. We write θ =V θ′ if θ ↓V = θ′ ↓V .

Lemma 10 If θ =Var(p) θ′ then θ |= p iff θ′ |= p.

Only the distribution of the variables actually occurring in p are used in
the computation of its validity making this property intuitively clear. A formal
proof proceeds by induction on the structure of the predicate p.

Lemma 11 If V ∩Vara(s) = ∅ and s ⊥ s′ then D(s ; s′)(θ) =V D(s′)(θ).

15

Proof 12 We note that a program does not affect the variables it does not assign
to, i.e. if V ∩ Vara(s) = ∅ then θ =V D(s)(θ) (1). Also, if two states agree on
all variables used in a program, execution of the program will not affect this, i.e.
if Var(s) ⊆ V and θ =V θ′ then D(s)(θ) =V D(s)(θ′) (2). These two facts can
be proven by structural induction on the program s.

If we take V ′ = V ∪ Var(s′) then V ′ ∩ Vara(s) = ∅ so by fact (1) we have
θ =V ′ D(s)(θ) and thus by fact (2) D(s ; s′)(θ) = D(s′)(D(s)(θ)) =V ′ D(s′)(θ).
As V ′ contains V this implies D(s ; s′)(θ) =V D(s′)(θ).

By combining these two lemmas we obtain Theorem 6.

Theorem 6. If s′ ⊥ q and s′ ⊥ s′′ then { p } s ; s′ ; s′′ { q } is valid if and
only if { p } s ; s′′ { q } is valid.

Proof 13 Recall that a Hoare triple { p } s { q } is valid when for any state θ s.t.
θ |= p we have D(s)(θ) |= q. By Lemma 11, D(s′ ; s′′)(θ′) =Var(q) D(s′′)(θ′) for
any θ′. Thus D(s ; s′ ; s′′)(θ) = D(s′ ; s′′)(D(s)(θ)) =Var(q) D(s′′)((D(s)(θ)) =
D(s ; s′′)(θ) for any θ.

Now, by Lemma 10, for all θ, D(s;s′ ;s′′)(θ) |= q exactly when D(s;s′′)(θ) |=
q, thus certainly for any θ s.t. θ |= p. Thus { p } s ; s′ ; s′′ { q } is valid exactly
when { p } s ; s′′ { q } is valid.

B Deriving {RZ∗
q
3,RND ,Bool(v1, v2, v3, v4, v5)} BS {P(x1) =

1/2}
We derive {RZ∗

q
3,RND,Bool(v1, v2, v3, v4, v5)} BS {P(x1) = 1/2} in Table 1, in

bottom up fashion. In the last line we use rule (Cons). To show implication
(I7), let θ be a state s.t. θ |= {P(x1) = 1/2} + {P(x1) = 0}. So there exist
θ1 and θ2 s.t. θ = θ1 + θ2, with θ1 |= {P(x1) = 1/2} and θ2 |= {P(x1) = 0}
(see (1)). We use the following general rule, for dp a predicate and r1, r2 real
numbers:
If θ1 |= P(dp) = r1 and θ2 |= P(dp) = r2, then θ1 + θ2 |= P(dp) = r1 + r2

For dp = x1, r1 = 0 and r2 = 1/2 since θ = θ1 + θ2 we get our desired result.
Then we apply rule (If). Implication (I6) is trivial, as any state θ satisfies

θ |= P(false) = 0. To show implication (I5), let θ be a state s.t. θ |= (v5 =
b)?(P(v5 = b) = 1/2). We now use two facts we deduce from (2), for c predicate
and r real number:
(i). If θ |= c?(P(c) = r) then θ |= P(¬c) = 0 and θ |= P(c) = r
(ii). P(true) = P(c) + P(¬c)

For c = (v5 = b) and r = 1/2, combining (i) and (ii) we get θ |= P(true) = 1/2
as desired.

Implication (I4) follows from Definition 3, as I(v5, b) is ∀i, j.P(v5 = i, b =
j) = P(v5 = i) · P(b = j), and since we know RBool(v5) then ∀i, j.P(v5 = i, b =
j) = 1/2 · P(b = j). So P(v5 = b) = P(v5 = true ∧ b = true) + P(v5 =
false ∧ b = false) = 1/2 · (P(b = true) + P(b = false)) = 1/2, given the fact
that P(true) = 1 since P(v5 = false) + P(v5 = true) = 1 by RBool(v5).

Then we use rule (Assign). Implication (I3) follows from Lemma 4(2),4(3).
Implication (I2) is straightforward from the definition of R(·). The following

steps are straightforward from rules (If) and (Assign). Implications (I1a) and

16

{RZ∗
q 3,RND,Bool(v1, v2, v3, v4, v5)} (1)

m0 :=A0(v1, v4); (2)
m1 :=A1(v1, v4); (3)

{RZ∗
q 3,RND,Bool(v1, v2, v3, v4, v5)}

if v5 = false then (4)
{∀j, k, l ∈ Z∗

q ,m ∈ RND :

P(v3 = j, v1 = k, v2 = l, v4 = m, v5 = false) = 1/2 · 1/(q3 · r)} (I1a)→
{∀j, k, l ∈ Z∗

q ,m ∈ RND :
P(v3 · m0 = j, v1 = k, v2 = l, v4 = m, v5 = false) = 1/2 · 1/(q3 · r)}
tmp := v3· m0 (4a)

p1
4
= {∀j, k, l ∈ Z∗

q ,m ∈ RND :

P(tmp = j, v1 = k, v2 = l, v4 = m, v5 = false) = 1/2 · 1/(q3 · r)}
else

{∀j, k, l ∈ Z∗
q ,m ∈ RND :

P(v3 = j, v1 = k, v2 = l, v4 = m, v5 = true) = 1/2 · 1/(q3 · r)} (I1b)→
{∀j, k, l ∈ Z∗

q ,m ∈ RND :
P(v3 · m1 = j, v1 = k, v2 = l, v4 = m, v5 = true) = 1/2 · 1/(q3 · r)}
tmp := v3· m1 (4b)

p2
4
= {∀j, k, l ∈ Z∗

q ,m ∈ RND :

P(tmp = j, v1 = k, v2 = l, v4 = m, v5 = true) = 1/2 · 1/(q3 · r)}
fi

{p1 + p2} (I2)→ {RZ∗
q 3,RND,Bool(v1, v2, tmp, v4, v5)}

(I3)→
{RBool(v5) ∧ I(v5, A2(v1, v2, tmp, v4))}
b :=A2(v1, v2, tmp, v4) (5)

{RBool(v5) ∧ I(v5, b)} (I4)→ {P(v5 = b) = 1/2}
if v5 = b then (6)

{(v5 = b)?(P(v5 = b) = 1/2)} (I5)→ {P(true) = 1/2)}
x1:=true (6a)

{P(x1) = 1/2}
else

{(v5 6= b)?(P(v5 = b) = 1/2)} (I6)→ {P(false) = 0)}
x1:=false (6b)

{P(x1) = 0)}
fi

{P(x1) = 1/2}+ {P(x1) = 0} (I7)→
{P(x1) = 1/2} (7)

Table 1: Derivation of {RZ∗
q
3,RND,Bool(v1, v2, v3, v4, v5)} BS {P(x1) = 1/2}

17

(I1b) follow from the fact that multiplication · has an inverse / in the group:
for any a, b, c we have a · b = c ⇐⇒ a = c/b. Eliminating the ∀j, k, l,m
in the assumption by substituting the expression j/m0, k, l and m for j, k, l
and m respectively gives P(v3 = j/m0, v1 = k, v2 = l, v4 = m, v5 = true) =
1/2 · 1/(q3 · r) by using the equivalence above we get: P(v3 · m0 = j, v1 =
k, v2 = l, v4 = m, v5 = true) = 1/2 · 1/(q3 · r) thus (by using ∀-introduction)
we obtain the required result. Finally the lines (2) and (3) of Table 1 can be
derived trivially, as the pre and post conditions coincide, i.e. they are both
RZ∗

q
3,RND,Bool(v1, v2, v3, v4, v5), in which neither m0 nor m1 occur.

18

