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1. Introduction

In this chapter we propose to use probabilistic complexigoty, which is also known as the founda-
tion of modern cryptography, to study very complex systemthé form of large-scale self-organizing
networks. A very complex system is typically probabilisticd stochastic in its nature. In such a sys-
tem, it is impossible to describe every system behavior ietardhinistic manner. We have to adopt
a probabilistic framework. Like what is advocated by modern cryptographiersegard to an input
metric x measuring the operational algorithms being studied (i@l)r such as security attacks and
countermeasures, we speak of the “feasibility or infeéigibiof breaking the system rather than the
“possibility or impossibility” of breaking the same system

As the first step to initiate our course, the circulatory sgsin human body is selected to be the very
complex system defying researcher’s deterministic desoris to understand its complex and proba-
bilistic behaviors. In bioinformatics, analyzing mobjlitelated problems is a new challenge. Typical
research efforts in sequence alignment, gene finding, geramsembly, protein structure alignment,
protein structure prediction, and the modeling of evolutito not study molecule level mobility and
related security threats. For instance, many biologicad&ts use the circulatory system as their en-
trance to disable the life sustaining functions. Relatealyais must study a large amount of molecules
moving in the circulatory system. Due to the probabilistiture of each molecule’s mobility pattern
and the intractable complexity caused by the sheer amoumotgcules, it is a non-trivial challenge
to deliver a meaningful analysis to answer the followingsiisms: How do we quantitatively measure
the impact of a simple algorithmic attacking strategy in avirenment with probabilistic mobility and
huge amount of nodes? What types of metrics can we use toifyuthethighly complex behavior in the
system (in the example, the circulatory system)? Does thiesyhave any stable states or equilibriums
by any chance?



The system metric X

Figure 1.A probabilistic complex system with the input metric x

In this work we answer these questions by identifying theneation between the biological threats
and probabilistic complexity theory. Our study shows thgeaeric class of self-organizing network
algorithms can be modeled by a variant of computati@oeahplexity theoryf commonly used compu-
tational metrics are replaced with network metrics. We stimt biologicalcyanide poisoning/ick &
Froehlich) 1985)(Sykes, 1981) is a real-world example Wiielongs to the network-metric complex-
ity class. This network-metric complexity class has welfided properties, such as some asymptotic
invariants, similar to the “amplification” property of tH&PP class used in modern cryptography.

1.1 Notation
For the ease of formal presentation, we list the notions us#ds paper below:

N network scale (number of nodes in the network)

0 percentage of compromised nodes, BelN nodes is compromiseq
x| the cardnality of a set

T least network time granularity (e.g., 1 nano-second)

a = poly(N) « is a polynomial ofN

Y < O(poly(N)) | Xisasymptotically less thapoly(N)

S the size of the entire network space

s the size of an average node “position”

! the size of the largest mobile node’s Turing tape storage

1.2 Complexity-theoretic Overview

First, we adopt a formal approach to characterize a genatafory of random algorithms, which
belongs to the family of Monte Carlo algorithms with 1-sided-sided errors.

We seek to prove that the success (or failure) probability wétwork operation isegligiblein regard
to anetwork metricr, which in this chapter ithe network scaléV (the total number of network nodes)
in the finite network space.
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Figure 2.The negligible function with respect to an input system
metric x, which is the key size in modern cryptography or the
network size in our research
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Figure 3. Polynomial-time Monte Carlo algorithm family tviisymptotically stableeviatione(x)

Second, not all Monte Carlo algorithms are qualified in thes fiemal model. As depicted in Fig-

ure[3(a) and13(b), we explore a constraint similar to the pafyial-time “amplification” approach in

modern cryptography, which is about the probability déiece between polynomial-time Las Vegas
algorithms and Monte Carlo algorithms. If an algorithm Ingje to the Las Vegas random algorithm
family, then the randomized algorithm always producesemrresult but the algorithm execution is
probabilistically efficient, sometimes inefficient or inagtical. If an algorithm belongs to the Monte
Carlo algorithm family, then the algorithm execution is aj@ efficient but with probabilistic 1-sided or
2-sided errors/deviations from the ideal Las Vegas reslitparticular, we use a special Monte Carlo

algorithm family with clearly defined metric bounds:

1. The special class of Monte Carlo algorithm used in thiskwm@longs to the complexity class

P. It ends inpolynomial-time(or polynomial-step) and withegligible deviatiore(x) (Figure2)
from the ideal result defined by a counterpart Las Vegas ilgor

2. Moreover, as depicted in Figurk 3, the deviation stay®gkgible in polynomial stepgoly(x).
That is, the negligible deviatioa(x) is an asymptotic invariant in terms of an input metric
We show that it meets the definition of Lyapunossymptotic stabilittandexponential stability



3. The input metrice of any polynomial discussed in this paper is definedVashe total number
of network members in the finite network space (or equivllenetwork densityf we treat the
finite network space as a single unit).

Unlike formal cryptology based on thBPP or P/Poly class with 2-sided errors, in this work we
use theR P class with 1-sided errors. We prove the depigbetiynomial-time asymptotically stable
negligibility propertyin the 1-sided error model to illustrateow a node-wise simple local behavior
affects global behaviors of the entire system wi\th< poly(N) peer nodes Therefore, we seek to
explain simpler node-wise local behaviors in a complex philistic system, then the complex global
behaviors can be assessed safely due to the important ptaplerty.

Third, we define a concept 07V G polynomial-time algorithrh(or “ GVG polynomial-step protocol”
in network term) by introducing )G oracle in network complexity theory. Given a “global virtua
god” (GVG) that virtually oversees the network, we show that the nunabesteps in a protocol is
indeed polynomially bounded in regard to the number of ndde$his includes the following modeling
aspects:

¢ RP (n-runs) model Like BPP class used in modern cryptography, @@ (n-runs) class
characterizes probabilistic polynomial-time algorithma cyanide poisoning, the circulatory
oxygen-transport function is reduced imtegativeG)VG — R P class, which has negligible suc-
cess probability (N) at every step and globally.

Table 1. Probabilistic behaviors of various algorithm séts

Monte Carlo Answer
Las Vegas Answer R P (1-run) class GVG— RP & RP (n-runs) class NegativeGV G — RP (n-runs) class
SUCCESS/YES FAILURE/NO SUCCESS/YES FAILURE/NO SUCCESS/YES FAILURE/NO
SUCCESSIYES > % +e(x) < % —e(x) >1—¢(x) <e(x) <e(x) >1—¢e(x)
FAILURE/NO 0 1 0 1 0 1

¢ Polynomially-bounded adversary The adversary is allowed to compromise a fractioof N
(sinced- N is a polynomial ofN) network members. In cyanide poisoning, a hemoglobin bigdi
with cyanide ion but not oxygen is a compromised node, otlsenit is uncompromised. The
cyanide ions dmot (directly) kill biological cells or organs like the hearhé centralized server),
but rather disable the fully distributed oxygen-transioriction.

1.3 Biological Overview

Hemoglobin (Hb) is the oxygen-transport metalloproteithia red cells of the blood in mammals and
other animals. For example, hemoglobin in human’s ciroujasystem transports oxygen from the
lungs to the rest of the body, such as to the muscles, wheskedses the oxygen load. If this function
is blocked, the host will quickly die from hypoxia.

The hemoglobin’s binding of oxygen is affected by molecudesh as cyanide ion (CN-), carbon
monoxide (CO), sulfur monoxide (SO), etc. For example, hglotin’s binding affinity for CO is 200
times greater than its affinity for oxygen, and for cyanidedffinity is thousands of times greater (Kind-
wall,[1977)(Vick & Froehlichl 1985)(Sykes, 1981). This meahat small amounts of cyanide (or CO,
SO, etc.) dramatically inhibits oxygen-binding, reducesibglobin’s ability to transport oxygen, hence
causes grave toxicity and eventually déath

1 Another basis for cyanide poisoning is by binding cyanidehi active site of cytochrome oxidase, there by
stopping aerobic cell metabolism so that the cell can nodorgrobically produce ATP for energy. But this
biological effect is beyond the scope of this paper.
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Figure 4. Abstraction of circulatory system as an enclosed finite
network spaceS holding the mobile hemoglobin nodes

As Figure[4 shows, at a highly abstract level we can treat ifeailatory system as an enclosed (3-
dimensional) space. Each hemoglobin is a molecular agete mdo carries a message, which is
oxygen, from one region in the space to another. Any attaak shccessfully blocks the message-
transport function also destroys the circulatory systemistion.

1.4 Researchers that inspired our approach

Since 1940s, the foundation of cryptology has seen two dpugg phases: (1) the information-theoretic
notion developed by Shannon in (Sharrion, 1949) and (2) tmplexity-theoretic notion developed in
1980s by Blum-Micalil(Blum & Micali[ 1982)(Blum & Micalli. 184), Yao (Yabl 1962), et al.

Information-theoretic security In (Shanndr, 1949), Shannon proposed the conceprbéct secrecy
which is a Zero-error Probabilistic Polynomial-time (ZR®,, the trivial Las Vegas case of encryption)
algorithm producing truly random ciphertext bits from trare length truly random key bits by ap-
plying a Latin Square ciphér Shannon’s algorithm ends exactlysrsteps (which< poly(n) steps).
Unfortunately, this ZPP algorithm is impractical becausmnnot process any message longer than

Complexity-theoretic security Formal cryptology developed since the Diffie-Hellman ([2if& Hell-
man/1976) and RSA (Rivest et al., 1078) era is founded orferelift base. In early 1980s, Yao (Yao,
[1982), Blum and Micali[(Blum & Micali! 1982)(Blum & Miczli. 984) were the earliest complex-
ity theorists who formally defined security using complgxtasses like Bounded-error Probabilistic
Polynomial-time BPP) class and non-uniform polynomial-size circui8 (Poly). The concept of
being ‘negligible’ is central in the definitions of these complexity classes.

Definition 1. (Negligible function) A continuous functioa(x) is negligibleif for all sufficiently large

x’s, for every positive polynomialoly(x) > 0 such thate(x)| < poly( oIy ()"

2 Theexclusive-ORoperation used in Vernam cipher is an instance of Latin Sxcipher.



In complexity-theoretic cryptography, a security schesmgavably securéf the probability of security
failure (e.g., inverting a one-way function, distinguistpicryptographically strong pseudorandom bits
from truly random bits) is negligible(x) in terms ofx = n the cryptographic key length.

In general, provably secure algorithms are Monte-Carloritlyns belonging to certain well-defined
complexity classes (e.g., BPP, P/Poly) with the input roetras the key lengtl. A provably secure
algorithm must ensure that an adversary cannot break itsiseguarantee with non-negligible prob-
ability. For example, a sequence of provably secure pseaidem ciphertext bits is polynomially
indistinguishablg(IND) from a sequence of truly random bits (coin-flips, ctaisses), where the term
“indistinguishability” is defined as the polynomial advangs incapability of distinguishing pseudoran-
dom ciphertext bits (opoly(x) length) from truly random bits (of the same length) with neegligible
probability. Given adversaries with various capabilit@grovably secure crypto-scheme features vari-
ous levels of ciphertext indistinguishability shown belpWD-CPA, IND-CCA1 and IND-CCA2.

Polynomial-time adversary] Security guarantee |

Chosen plaintext attacker | IND-CPA (aka.

(CPA) semantic security (Goldwasser & Micali, 1984))
Chosen ciphertext attacker IND-CCAL (aka.

(CCAl) non-malleable security (Naor & Yung, 1990))
Adaptive chosen ciphertext IND-CCA2 (aka.

attacker (CCA2) non-malleable security (Dolev et al., 1991))

Similar to complexity-theoretic cryptographers, we perslie same direction when studying network
security problems. In many complexity-theoretic probleassociated with networks and graphs, e.g.,
the Hamilton Circuit problem, the problem’s complexity iasured by the number of the nodésn

a network/graph. Here the termdlynomial-time algorithm/protocbdirefers to an algorithm/protocol
which must end in polynomially bounded stops/steps at thosles.

In complexity-based modern cryptography, a security sehisprovably securéf the probability of se-
curity failure (e.g., inverting a one-way function, digiinishing cryptographically strong pseudorandom
bits from truly random bits) is negligible in terms of the ptggraphic key lengtlh = 1. Nevertheless,
the general notion of negligibility has never said that tlystem input parameter must be the key
lengthn. Indeed,x can be any predetermined system metric and corresponditftematic analysis
would illustrate some hidden analytical behaviors of theteyn. Hence in our analysis, the input pa-
rameterx for any negligibility notion is changed from the cryptoghépkey lengthi to certain network
metric, in particular, network densigy(the number of network nodes per unit area) or network s¥ale
(the number of network nodes if we treat the finite networlaa® the unit).

2. Complexity-theoretic model of cyanide poisoning

In below we propose a concept off ¥G-polynomial timé& protocol/algorithm as the formal model
of network security and the explanation of the probabdistature of cyanide poisoning. As in typi-
cal randomized complexity-theoretic analysis, our coteepe defined on top of probabilistic Turing
Machines with polynomially-bounded tapes.

Given a probabilistic Turing Machine controlled by a vittesacle “global virtual god” GV G) who
oversees the entire network, the number of protocol stepsligiomially bounded by = N, the
number of network nodes.

2.1 Required Turing Machines
At first, we use the same probabilistic Turing Machines usefdimal cryptology. A Turing machine
consists of a tape, a head, a state register, and an actien fsdzording to the number of used tapes



Turing machine is classified into two classes, namely 1-taqukk-tape Turing machine. We define now
formally Turing machine.

Definition 2. A Turing machine is a septuple = (Q,T, %, g1, #,F,§), where
¢ Qis afinite set of states.
« T'is afinite set of the tape alphabet.
« ¥ C T'is afinite set of the input alphabet.
* g1€Q isthe initial state.
#€(T — %) is the blank symbol.
FCQ is the set of final or accepting states.
¢ is the transition set. For 1-tape Turing Machin®eis

J:QxT+QxT x{LeRi},

while for k-tape Turing Machiney is
6:QxTF—Q x (T x {Le,Ri, St} )k
Here Le is left shift,Ri is right shift, andSt is stationary without shift. O

Figure 5. 1-tape Turing Machine M in con-
figuration (g, ¢, t, )

Using 1-tape Turing Machine as an example, as depicted i€, aconfiguration or instantaneous
description of M is a quadruple

(9,9, t,9), oy €Tx, tel, geQ

in which the rightmost symbol o is not#. The string of symbolspti is called thetape of the
configuration. Ifp = A andg = q;, the configuration is amitial configurationof M.

Upon each left (or rightnove the current symbot under the tape head is replaced thyand the
tape head is moved to the immediate left (or right) of theaepti symbol. TheM's current statey

is replaced by;’. If a machine enters a staécF or has no moves from a given configuration, the
configuration islead Otherwise, we say that

Aqut ) = (¢',9,t,9")

is acomputatiorof M, if M has a sequence of moves leading from the initial configurdtiog, ¢, )
to the final configuratior(¢’, 4’,#,¢’), and call the computatiohalted if the final configuration is
dead.



Definition 3. A Turing Machine isleterministic Turing Machine (DTMj at most one move is possible
from each configuration in the machine’s transition &et

A Turing Machine ision-deterministic Turing Machine (NDTMf)more than one move is possible from
each configuration in the machine’s transition get

A Turing Machine igprobabilistic Turing Machine (PTMif it is NDTM and the different moves are
taken with certain probabilistic distributions.C

A probabilistic Turing machine is a non-deterministic Tiimachine which randomly chooses between
the available transitions at each point with certain prdiigbAs a consequence, a probabilistic Turing
machine can (unlike a deterministic Turing Machine) hawelsastic results; on a given input and
instruction state machine, it may have different run tinoest may not halt at all; further, it may accept
an input in one execution and reject the same input in anetkerution.

A common reformulation of PTM is a DTM with an addeahdom tapé&ull of random bits, which are
pre-determined by an oracle’s coin-flips and placed on the ta replace the DTM’s own coin-flips in
decision. The DTM with added random tape is equivalent tdh# if the oracle’s coin-flips and the
DTM'’s (assumed-to-be) coin-flips follow the same probatiti distribution.

2.2 Required complexity classes
Then we define the ideal Las Vegas protocol for mobile ad hasage/oxygen transportation:

Definition 4. (Theideal Las Vegas message/oxygen transporting) The ideal Las Vegas case of mes-
sage/oxygen transporting is characterized by a pair of phility quantitiesP;,, and P,’v, when there are
no other molecules blocking an oxygen molecule combinirly tive nearest hemoglobin. The prob-
ability Py, is the success probability an oxygen molecule can combittette nearest hemoglobin,
while Pl’v = 1— Py, is the failure probability the same oxygen molecule can éoentwith the nearest
hemoglobin. O

If such Las Vegas algorithm/protocol returns FAILURE/NBen any Monte Carlo algorithm/protocol
also returns FAILURE/NO (since there are some other thisigsh as cyanide ions or carbon monoxide
molecules, interfering the combination of oxygen-hembgi@ombination). There is no error/deviation
when the protocols return NO. Thus only 1-sided Monte-Cartor/deviation is possible when the Las
Vegas protocol returns YES. This is the reason why we uselddsérrorR P algorithm class in our
modeling.

We then define th& P protocol/algorithm class with 1-sided errors.

Let x be the input in the polynomial size of a system paramstetet M(x) be the random variable
denoting the output of a PTWI. Let

_ Hae{o, 130 My(x) =y}

o rtm(x)

whered is a truly random coin-flipt(x) is the polynomial number of coin-flips made by on input
x, and M, (x) denotes the output d¥1 on inputx, whend is the outcome of its coin-flips (i.e., the
random tape of an equivalent DTM).

Pr[M(x) = y]

Definition 5. (Randomized Polynomial-time, RP class): We say that. is recognized by the proba-
bilistic polynomial-time Turing Machin&1 with biased single-sided errors if



« for everyxeL it holds thaf Pr(M accepts x] > 1 + m for every polynomiapoly(n).

« for everyx¢L it holds thatPr[M accepts x| = 0.

RP is the class of languages that can be recognized by such abiltiic polynomial time Turing
Machine. O

Definition 6. (RP n-runs class): We say that_ is recognized by the probabilistic polynomial-time
Turing MachineM with negligible single-sided errors if

« for everyxeL it holds thatPr[M accepts x] > 1 — m for every polynomiapoly(n).

« for everyx¢L it holds thatPr[M accepts x| = 0.

RP n-runs class is the class of languages that can be recognigeslith a probabilistic polynomial
time Turing Machine. O

Definition 7. (Negative R P n-runsclass): We say thal. is recognized by the probabilistic polynomial-
time Turing MachineV with negligible single-sided success if

« for everyxelL it holds thatPr[M accepts x] < m for every polynomiapoly(n).

« for everyx¢L it holds thatPr[M accepts x| = 0.

Negative R P n-runs class is the class of languages that can be recognigesubh a probabilistic
polynomial time Turing Machine.O

The procedure to obtaiR P n-runs class fronR P 1-run class is calle® P amplification which triv-
ially runs anR P 1-run class algorithm times, then the failure probability of @ P n-runs algorithm
(i.e., not returning YES after running tH@ P 1-run algorithmn times) exponentially decreases, and
becomes negligible.

2.3 ¢(x) as the polynomial-time asymptotically stable equilibrium

Now we prove the property dR P (n-runs) depicted in Figuid 3(b) This property illustrates that how
a node-wise local behavior at each individual peer nodefte network-wise global behavior of the
entire probabilistic system, which is comprisedf< poly(N) independent peer nodes.

Theorem 1. If an R P (n-runs) protocolX’s failure probability is negligible, then the failure prability
stays as negligible when the same protak¥dk independently executed polynomial times.

Proof: By assumptionX will be repeatedp(N) steps, wherg(N) is a positive polynomial. Given
that per-step security success probabilityPis,.;i;e, the probability of success of the entire execution

Ppolytime is

Ppolytime =1- (1 - Ponetime)p(N>~

31n the definition% can be replaced by any constant fraction number in the opegerf..1), not necessarily the
value .
4 The same property d8PP in Figure[3(a) is known to be true by applying Chernoff's bdimits proof.



By assumptionP,,,.;in.. iS negligible, thus is asymptotically less than any gi\ﬁﬁ%, whereg(N)
is a positive polynomial and se(N)-g(N) is also a positive polynomial. In other words, there exists a
positive integeiN. > 0, such thatP,, ;.. < m for all x > N.. Then we have

p(N) 1
— . p(N) _ # — =
(1 Ponetzme) > (1 P(N)Q(N)) >e 1N

since(1—1)¥ > ¢! forall x > 1.

Accordingxto Lagrange mean value theorem, for a funcifém) continuous ora, b], there exists a
c€(a,b) such thatf(b) = f(a) + f'(c)- (b—a) for 0 < a < b. Then letf(x) = e~*, there exists a
¢€(0,z), suchthat=* =1+ (—e %)z > 1 —z. Thus we have
PN < o7 !
(1= Ponetime) >e N >1— ——.

q(N)

Therefore, for any polynomigl(N) and sufficiently largeN,

1
Ppolytime =1- (1 - Ponetime)p(N) < W o

According to our model using the input metric= N, any Monte Carlo network protocol belongs to
one of the four categories (Figtik 6) in regards to the stalpitoperty:

Exponentially
Stable

Asymptoticall
yS!pable Y

Major Upgrade/Downgrade
—_—

Minor Upgrade/Downgrade
,,,,,, e

Lyapunov

Stable

Figure 6.The classification of network protocols with respect to thernput met-
ric x = N. Inside each category it is only possible to do minor upgrader
downgrade. Major upgrade or downgrade happens when the netark proto-
col is optimized or damaged from one category to another.



1. The Monte Carlo protocol isnstable The probability difference between the Monte Carlo
protocol and the ideal Las Vegas baselineasbounded in the open interval (0,1). For example,
a Monte Carlo protocol in negativR P class has a FAILURE/NO probility — e(x), which is
bounded in (0,1], but not in (0,1).

2. The Monte Carlo protocol isyapunov stable The probability difference between the Monte
Carlo protocol and the ideal Las Vegas case is bounded i {fyfithe bound isot an invariant
if the protocol is repeated independently polynomial times

3. The Monte Carlo protocol iasymptotically stabte The probability difference between the
Monte Carlo protocol and the ideal Las Vegas case is bounu€d,1), and the bound is an
invariant if the protocol is repeated independently polyrad times. In our study, this invariant
is the negligible quantitg (N).

4. The Monte Carlo protocol isxponentially stabteThe probability difference between the Monte
Carlo protocol and the ideal Las Vegas case is bounded i}y yi.the bound is an exponential
invariant if the protocol is repeated independently polyrad times.

It is possible to upgrade an unstable protocol to be Lyapwtavie, then asymptotically stable, finally
exponentially stable. This is calledajor upgradeor major optimization Afterwards, it is only possible
to dominor upgrade/optimizatiomside the exponentially stable category. That s, it iyqassible to
adjust the exponent of the exponentially negligible qugrtiside this category.

Likewise, it is possible to downgrade an exponentially lgtgivotocol on the reverse direction to be
unstable eventually. Afterwards, it is only possible tordmor degrade/damagmside the unstable
category.

2.4 Modeling mobile networks: a PTM approach with a GVG oracle

We propose to use a special form of PTM to model the probébiksochastic behaviors of a mobile
network. The fundamental idea is to usglabal virtual god(G ) G) oracle to handle the PTM’s control
states, while each mobile node is only treated as a tapecarri

As depicted in Figur€l7, the entire network space is of finite §. The finite network spac§ is
divided into large number of tiles (or cubes for 3-D spacelif sizes, and each tile/cube is smaller
than the physical size of any single mobile node. In otherdwoeach tile/cube is virtually a node
“position” to place on. The number of node “positions™= % is quite large. It is nevertheless a finite
number. In a nutshely = % is a large constant, but is always asymptotically less fhdg(N), that
is, 7 < O(poly(N)).

Tape Each mobile node functions as a carrier ahaving tapeof polynomial size of the network scale
N. That is, each mobile node carries a tapeddipoly(N)) bits. A moving tape is intuitively the
computer memory snapshot of the corresponding mobile riaetd. < O(poly(N)) be the size of the
largest moving tape. An empty node “position” is occupiedaldylank tape of blank symbols. This
blank tape is replaced with a node’s moving tape once thesponding position is taken by the node,
or the tape goes back to the blank tape upon the node’s leafithg position. If the largest tape length
of each mobile node can carrylis< O(poly(N)), then theGVG PTM's consummate taplength is
1-L, which is< O(poly(n7))-O(poly(N)), thus< O(poly(N)).

Control state operations Each mobile node’s decision of network operation (e.g.keatansmis-
sion), though autonomous in nature, can be translated inégaivalent formas if all the decisions are
made by th&7 )G using coin-flips Along the timeline, there exists a minimal time granularitsuch
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Figure 7.A GV G Probabilistic Turing Machine (GVG PTM) to model mobile nodes in a finite
cubic space (only 2-D depicted) with a large number of node “psitions”. The figure shows
that N =3 of y (N <« 1 < O(poly(N))) such “positions” have been taken byN = 3 mobile
nodes. Each empty “position” is filled with a tape ofpoly(N) blank symbols, and the blank
tape is replaced with a mobile node’s tape once the correspding position is taken, or the
tape goes back to the blank tape upon the node’s leaving of theosition. If the largest tape
length of each mobile node can carry i$ < O(poly(N)), then the GVG PTM’s consummate
tape length isy-I. The GVG PTM’s tape head always parks at the place corresponding to
the current symbol of the first mobile node (i.e., the node wh least node index). The mobile
node’s mobility patterns are “as if” decided by the GV G using coin-flips. In theory, theGVG
does all symbol processing and coin-flipping operations anitk operation speed is fast enough
to process all symbols on its tape within the least network the granularity T

that any Turing Machine operation latency less thamill make no difference in network protocol ex-
ecution. We model that th@)G can make decisions for all mobile nodes and emulate all thisides
globally within the granularityr (e.g., 1 nano-second).

The mobile nodes are indexed from 1Xo At the beginning/end of eachtime granularity, the PTM’s
tape head always parks at the place corresponding to thentwymbol of the first mobile node (with
node index 1). During a interval, the PTM processes every mobile node’s tape onenby(tveating
the corresponding node as a puppet Turing Machine oft§).

Environmental randomness As to environmental conditions, for each network operaf®g., mes-
sage delivery), th¢ VG emulates the physical condition (e.g., blood condition @lostacles that affect
blood flowing) in a perfect manner, and precisely moves eaefsage from one node to another. That
is, the message content is deleted from the sending nodemgi@pe, and the received message con-
tent is added to the proper place of the receiving node’s ngotape. In the eyes of th@VG, any
message transportation is simply a movement of a set of fapled from one place of its consummate
tape to another place.

PTM as DTM with random tape If we use DTM rather than PTM to model the network protocol
execution, the7V G can pre-cast many coin-flips to emulate the probabilistenev in the network,
and place the result of the coin-flips to an added consumnaatéom tape. These probabilistic events
include mobile node’s probabilistic moving pattern, proitiatic message delivery requests at the mes-
sage sources and destinations, and so on. The total numbeineflips (or the length of the consum-



mate random tape) is bounded by network space and netwdek<sa@(poly(77))-O(poly(N)), thus
< O(poly(N)).

Definition of GVG PTM We formally defing7 VG Probabilistic Turing Machine and) G polynomial-
time protocols in below.

Definition 8. A GV G Polynomial-time Probabilistic Turing Maching P G-PPTM)is an octuple
M= (N,GVG(Q,r),T,%,q1,#F,9),

« Nis apre-defined system parametirquantifies the size of tHg)’G-PPTM'’s input and output.
For any configuration(q, ¢,t, ), ¢y € I'x, t€l', g€Q on any single tape of the machine,

¢l [$] < O(poly(N)).

* GVG(Q,r) is aglobal virtual god oracle with finite set of stat€sand a probabilistic coin-flip
sequence (i.e., the random tape input of an equivalent DTM)/ and |r| are < O(poly(N)).

e T'is afinite set of the tape alphabet.

« ¥ C T'is afinite set of the input alphabet.

* gr€Q isthe initial state.

e #c(T — X) is the blank symbol.

e FCQisthe set of final or accepting states.

¢ is the transition set. For 1-tap6VG-PPTM,J is

J:QxT+QxT x{LeRi},
while fork-tapeGVG-PPTM,4 is
6:QxTF—Q x (T x {Le,Ri, St} )k

Here Le is left shift,Ri is right shift, andSt is stationary without shift.

We say thaL is recognized by th§VG-PPTM M with negligible errors if

« for everyxeL it holds thatPr[M accepts x] > 1 — m for every polynomiapoly(N);

« for everyx£L it holds thatPr[M accepts x| = 0.

GVG — RP (n-runs) is the class of languages that can be recognized Byagd’G-PPTM.
We say thaL is recognized by th§VG-PPTM M with negligible success if

« for everyxelL it holds thatPr[M accepts x] < m for every polynomiapoly(N);

« for everyx£L it holds thatPr[M accepts x| = 0.

NegativeGVG — RP (n-runs) is the class of languages that can be recognized by asgd’G-PPTM.
O

For everyx€L, Pr[M accepts x] means “probability of protocol success”, while its compéetiPr [M rejects x|
means “probability of protocol failure”. 11GVG — RP5, the former one must bk — e(N) and the
latter one must be(N) in terms of network scala/.

5 In this paper, the notionGVG-RP” denotes GV G-RP (n-runs)” class for the ease of presentation.



Example 1. (Modeling mobile message transportation using Figure[7) In a mobile ad hoc network,
peer nodes can be viewed as controlled proxy agents ofj#h€. Based on the random coin-flips
(or the random tape of an equivalent DTM) that simulate thebpbilistic environmentG)V G initi-
ates a message/oxygen on a source node. When intendedatiestimode successfully accepts the
message/oxygert; VG enters a final acceptance state to finish the mobile messdyerge For a
poisoned oxygen transportation process which is in the teg&)V G — RP class, the probability of
hemoglobin’s oxygen-transportation being FAILURE/R@iestination cannot receive oxygen] must be

1 — e(N), while the probability of transportation SUCCESS/Ytetfestination receives oxygen] must
bee(N). O

2.5 Mobility model

In an enclosed network spaée we divide the network spacginto a large amount of small virtual
tiles (cubes) of area (voluma) so that the tile area (cube volume) is even smaller than hiysigal
size of the smallest network node. This way, each tile (ciseilther empty, or is occupied by a single
node. Also because the network space is much larger thamth@fall mobile nodes’ physical size,
the probability that a tile (cube) is occupied by a mobile@éivery small.

Now a binomial distributiorB(1;, p) defines the probabilistic distribution of how these tilesties) are
occupied by each mobile ad hoc node. Here- % the total number of “positions”, is very large but
< O(poly(N)); andp, the probability that a cube is occupied by the single ncgleery small. When
1 is large andp is small, it is well-known that a binomial distributioB(7;, p) approaches Poisson
distribution with parametep; = #-p. Hence this binomial spatial distribution is translatetbia
spatial Poisson point proce 3) to model the random presence of the netvamt&sn In
other wordsp; can be treated as a mobile node’s arrival rate of each presposition”. Moreover,
suppose thalN events occur in spacg (here an event is a mobile node’s physical presence)= %
(wherep,, = N - p; by treatingp; as the average node PDF amongstltheodes) is equivalent to a
random sampling of with ratep, .

Eulerian and Lagrangian motion modelsin kinematics, a given flow's motion depends not only upon
position but upon time as well. Consider any scalar quantityhich is a continuous function of the
four independent variables representing position and {imeg, z) and¢, with ¢ being time, for which
the space and time derivatives exists. The total rate ofgghafu with time is in general defined by an
0 D

perators;:

D _d 90 dx 0 dy 0 dz _ o oo

Dt" ot ox dt 9y dt dz dt ot Ve

where the differential displacements, dy, dz are specified for the elapsed tinie Here—<y is the
gradientof a scalar:

755.34,_“.24_2.3
VEEe Y oy 0z
andV is theflow vector
V = f.d_x+*,d_y+z,@
ar Y ar dt’

- = -

whereX,ij,Z are unit vectors in the, y, z directions, respectively. Clearly, the ter%etﬁ represents

the local time rate of change of the quantityat a fixed position point. The terf - Vo is a scalar
representing the advectional or field changes in the floncéastsal with the motion of the flow.



For a network of many mobile nodes flowing through a finite avea can specify either the field of
V or the paths (trajectories) of the mobile nodes. The formearormally referred to as tHeulerian
description of motionwhile the latter is endowed with the title bhgrangian description of motion

In below, we will adopt an Eulerian description in our stosti@mobility analysis. The scalar quantity
o is thearrival rate of an average node on a position, that is, the probabilityrobeerage node’s
presence at a position.

The stochastic mobility PDF Let p; denote the mobility probability distribution function ofsingle
node in the bounded network spage For a network deployed in a bounded system space, let the
random variablg) = (X, Y, Z) denote the Cartesian location of a mobile node in the 3-déioeal
network space at an arbitrary time instant

The spatial distribution of a node is expressed in termseptiobability density function

o1 = fxyz(x,y,z) =

lim Pr[(x—%<X§x+%)/\(y—%<Y§y+%)A(z—%<Z§z+%)]
50 58

The probability that a given node is located in a subsd#aef the system spacg can be computed by
integratingp; over this subspace

Prinode inS'] = Pr[(X,Y,Z)es'] = //S Fxyz(x,1,2) dS

wherefxyz(x,y,z) can be computed by a stochastic analysis of an arbitrarylityoiiodel.
Let x denote the random variable of number of independent mobiles1in any network space con-
cerned.

* (Uniform p;) the probability that there are exacttynodes in a specific spac® following a
uniform distribution model is

07 - SNk ,
Prix=k = w.e—”ﬁrs. (1)

* (Non-uniformp;) More generally, in arbitrary distribution models incladinon-uniform mod-
els, the arrival rate itocation dependentThe probability that there are exacttynodes in a

specific space’ is
Prix=k = /// (W'E‘N'”) ds. 2

The choice ofp; depends on the underlying mobility model. Some stochastibility models which
directly choose a destination direction rather than a dastin point and allow a bound back or wrap-
around behavior at the border of the system area, includiagandom walk model on a 2-D torus
surface, are able to achieve a uniform spatial distribu{B®itstetter et al., 2004)(Bettstetter & Wagner,
[2002)(Bettstetted, 2001). Howevar; is typically non-uniform. Fortunately, ou§VG — RP and
negativeGVG — RP models donot assume any specific mobility model and mobile node presence
PDF. As depicted in Figulld 8, the stochastic PDF can be atrampbut continuous function over the
network area/space.




N
/

[
o
!

-
!

o
o
!

Node Stochastic Presence PDF [

oo
i

50 50 X (unit)

Y (unit)

Figure 8.Stochastic node presence PDF in an arbitrary mobility modeby Eulerian
description (in a 50 unit x 50 unit network space)

2.6 Cyanide poisoning: formal specification

In this section, we use the negligibility-based model tda&ixpa theoretic reason why cyanide poisoning
is fatal. We show that theuccess probability of carrying message at a single risdeegligible under
cyanide poisoning.

As specified previously, there aié nodes in the bounded network area, amongst them ther islre
compromised (i.e.,binding with- N cyanide ions) andl — 6)-N uncompromised nodes. The random
variabley denotes the number of uncompromised nodes in an arbitragesp. The probability that
there arek uncompromised nodes in the spatleis

ety =4 = [[[. (@=0)N-p1)' -0 g

Let z denote the random variable of number of compromised nodégisame spacg’. The proba-
bility that there arék compromised nodes in the spaSkis

Priz=4k] = ///, 7(9'Nk'!p1)k-e_9'N'Pl ds

We assume that oxygen molecules are always available initt@atory system. When there is no
poisoning agents like cyanide ion or carbon monoxide in tieosed finite space, given a hemoglobin
in binding mode, its oxygen binding success ratio is

Pregular = Pr[yzl] = 1_Pr[y:0}

1= [[[ e 0-0Neas

- 1- //Ie(N)dS
(N)

= 1-—¢



This Pyeqular IS the characteristic probabilityy, defined in Definitio 4.

Given a hemoglobin in binding mode, one cyanide ion withia Hinding areas’ will deprive the
chance of nearby oxygen molecules’ chance to bind with thedgéobin. The hemoglobin node’s
oxygen binding success ratit the presence of cyanide ioissreduced to be

Psuccess = Prly>1]-Pr{z =0]

//// —(1- 9)Np1) 79-N-p1) ds
I, (@=eye) as
////E(N) ds

e(N)

where S’ denotes the nominal size of the biochemical binding rangke&V) denotes a negligible
quantity with respect t&N. This Pg;,cess IS the hemoglobin node’s oxygen binding success probgbilit
as in the Monte Carlo case with 1-sided error. The probahiiilh‘erencepmgum — Psyccess 1S Of our
concern. IR P (n-runs) case, this difference should be negligidl&/). In negativeR P (n-runs) case,
this difference is however — e(N).

A

The mobility PDFp is arbitrary in our study as long as it is continuous in thecegs thus could be
location dependent and becomes a function of the locatiacesp. Therefore, triple integrals must be
used here. Fortunately, becausés a fixed point in differential and integral calculus, tf’ﬁat%“% =¥
and [ e* dx = e* + C = O(e"), such integrals or differentials do not change the magnitofierder. In

a nutshell, exponential orde(eN) and polynomial order® (poly(N)) are unchanged in magnitude
through these integrals or differentials. And this conekuthat the last step ¢(N) holds.

Hence we have proved that cyanide poisoning reduces stapswccess probability of oxygen-transport
from 1 — ¢(N) to e(N) for every single hemoglobin node. This single binding stepiichanged
(identically distributed) and repeated independeptiyy(N) times. Then by the asymptotic stability
proved in Theorerfi]1, the network-wise global success pitbityabf oxygen-transport counting all
N < poly(N) nodes stays as(N). In a nutshell, cyanide poisoning reduces the hemoglobiygen-
transport protocol into the negative)’G — RP class. The protocol under poisoning belongs to the
unstableprotocol category, the worst category in Figure 6.

2.7 Countermeasuring treatments

Nevertheless, it is easy to restore an algorithm/protocwhfthe negativéR P class to theR P class.
This can be done by introducing treatment agents that haveca greater binding affinity for cyanide
ion than hemoglobin(Vick & Froehlich, 1988)(Heijst & Meriéfti [1990)(Mushett, 1952). For exam-
ple, cyanide preferentially bonds to methemoglobin rathan the cytochrome oxidase, and hydrox-
ycobalamin (a form of vitamin B) can be used to bind cyanide to form the harmless vitamiy B
cyanocobalamin. A treatment like this can be analyzed helow

Suppose we can introduce N treatment agent nodes to bind with cyanide ion. The proibabiiat
there arec such treatment agents in the spa&tds

B // r(%i;'pfl)k'e_"“"f’l ds




WhenevelPr [w>1], a cyanide ion will bind toward the treatment agent rathanth hemoglobin node.
A hemoglobin node’s oxygen binding success probabilityhsnged to be

Psyccess = Pr{y>1]-Prlw>1]

//// ((1 — e (1=O)N-p1y (1 67(177)-N-m) as

I, @=e-a=e) as

][ =2¢(n)) as.

Thisis al — e(N) quantity. In contrast, the failure probability becona¢a/). This way, the hemoglobin
node’s oxygen-transport scheme is converted from the ivegRtP class back to th& P class. The
protocol under countermeasuring healing belongs texpenentially stablprotocol category, the best
category in Figurgl6.

\

3. Summary

In this work we have formally described the behavior of cganpoisoning following a complexity-
theoretic approach. Like modern cryptography, securitgethin our network-centric model is defined
on the complexity-theoretic concept of “negligible(’x ), which is asymptotically sub-polynomial with
respect to a pre-defined system parametérhe parameter is the key length: in modern cryptogra-
phy, but is changed to the total number of network nades our model.

When the victim circulatory system is treated as an enclostdork space, a hemoglobin is treated
as a mobile node, and a hemoglobin binding with cyanide idrested as a compromised node, we
define a randomized complexity clag3’G — RP to show how cyanide poisoning can reduce the
probability of oxygen/message delivery te@\) quantity. This is accomplished in two steps: (1) We
prove that the negligibility property(N) is an asymptotic invariant in terms of the input parameter
N for any polynomial-time algorithm; (2) We also prove that tlife-sustaining node-wise oxygen-
transport function succeeds (or fails in case of poisonirgtinent) withe(N) probability, then by
the invariant property the network-wise oxygen-transgoriction also succeeds (or fails in case of
poisoning treatment) with the invariaaf N) probability. This leads to a new analysis of biological
threats based on network and complexity theoretic study.

Within this complexity-theoretic model, we classify themation result of any self-organizing network
protocol into four categoriesinstable Lyapunov stableasymptotically stablandexponentially stable
Research efforts could produce optimizing designs to umthe target protocol to be exponentially
stable eventually, or attacking designs to downgrade tiget@rotocol to be unstable eventually.
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