
Cryptanalysis of The Atmel Cipher in

SecureMemory, CryptoMemory and CryptoRF ⋆

Alex Biryukov, Ilya Kizhvatov, and Bin Zhang

University of Luxembourg
Faculty of Science, Technology and Communication

6, rue Richard Coudenhove-Kalergi, L-1359 Luxembourg
alex.biryukov@uni.lu

Abstract. SecureMemory (SM), CryptoMemory (CM) and CryptoRF
(CR) are the Atmel chip families with wide applications in practice. They
implement a proprietary stream cipher, which we call the Atmel cipher,
to provide authenticity, confidentiality and integrity. At CCS’2010, it
was shown that given 1 keystream frame, the secret key in SM protected
by the simple version of the cipher can be recovered in 239.4 cipher ticks
and if 2640 keystream frames are available, the secret key in CM guarded
by the more complex version of the cipher can be restored in 258 cipher
ticks. In this paper, we show much more efficient and practical attacks on
both versions of the Atmel cipher. The idea is to dynamically reconstruct
the internal state of the underlying register by exploiting the different
diffusion speeds of the different cells. For SM, we can recover the secret
key in 229.8 cipher ticks given 1 keystream frame; for CM, we can re-
cover the secret key in 250 cipher ticks with around 24 frames. Practical
implementation of the full attack confirms our results.

Keywords: Stream ciphers, RFID, Frame, SecureMemory, CryptoMem-
ory

1 Introduction

The Atmel Cipher. The Atmel chips AT88SC153 and AT88SC1608, called
SecureMemory (SM) family, were introduced in 1999 [3]. The CryptoMemory
(CM) family including the AT88SCxxxxC chips was introduced in early 2002
[2] with more advanced cryptographic features. These two families are ISO/IEC
7816 smart cards that communicate through a contact interface; in late 2003,
the CryptoRF (CR) family (ISO/IEC 14443-B smart cards) [10], which is a
variant of the CM family with the AT88SCxxxxCRF chips was introduced with
a RF interface. These chips are widely used in practice all over the world, e.g.
in smart cards (ID and access cards, health care cards, loyalty cards, Internet
kiosks, energy meters and e-government) [4], in the widely sold NVIDIA graphics

⋆ This is the full version of the paper with the same title published at the 9th Inter-
national Conference on Applied Cryptography and Network Security-ACNS 2011,
Springer-Verlag, LNCS vol. 6715, pp. 91-109, last revised December 23, 2011.

cards [12], the Microsoft’s Zune Player [7] and SanDisk’s Sansa Connect [13]. For
more complete and detailed information, please see [4, 8].

A proprietary stream cipher, which we call the Atmel cipher, lies at the core
of the chips to provide authenticity, confidentiality and integrity. The SM family
uses the simple version of the cipher, while in CM and CR, the more complex
version of the cipher is adopted. The difference between the simple version and
the complex one is that there is 1 byte feedback of the output into the other
shift registers every cipher tick in the complex version. Besides, in CM, the
initialization phase and the generation of the authenticators is much more com-
plicated. There are more mixing rounds in CM before the output is produced.
It is commonly believed that the complex version of the Atmel cipher provides
much stronger security.

Previous work. At CCS’2010, the Atmel cipher is described and analyzed in
the authentication mechanism [8]. In such a scenario, the tag and the reader
exchange their 64-bit nonces and use the shared 64-bit key to generate some
keystream nibbles as authenticators. The attacker is assumed to be able to cap-
ture some keystream frames produced by the same shared key, but with different
nonces. Throughout this paper, we call the result of a single authentication ses-
sion (with 128-bit keystream) a keystream frame, or briefly a frame. In [8], it was
shown that there exists a key recovery attack on SM in 239.4 cipher ticks with
probability 0.57, given 1 frame and a key recovery attack on CM in 258 cipher
ticks1, if 2640 frames are available. Hence, in theory, both versions of the cipher
do not provide the full security with respect to their key length. However, in
practice, the challenge is how to efficiently break the cipher with as few frames
as possible? Are there any cryptanalytic techniques that could be used in such
a restricted setting? Note that in our scenario, the attacker can only capture
some random known frames with random nonces, he cannot choose the frames
with the nonces satisfying some specific properties, e.g. some special differences.
Thus, the techniques requiring chosen nonces, e.g. the differential-like chosen
nonces attacks and the cube attacks [5, 6] will not work in this realistic setting,
neither will fast correlation attacks [11] which usually require large amounts of
keystream.

Our contribution. In this paper, we present practical random known nonces
attacks on both version of the Atmel cipher. In contrast to the attack in [8], which
had to exhaustively search the left and right registers for each captured frame,
our attack only makes an exhaustive search of the shortest right-most register
and uses the optimal Viterbi-like decoding techniques [14] to recover the internal
states of the other registers. We exploit the differences in diffusion speeds of the
cells of the registers to restore the internal state efficiently. For SM, by starting
from the most dense part of the known keystream segment of the left register,
our technique can fill the gap of 2-step update for adjacent known keystream
nibbles very well, resulting in a key recovery attack in 229.8 cipher ticks with

1 In [8], this complexity is claimed to be 252 cipher ticks, however, the complexity of
unrolling the cipher 64 steps is ignored [9].

success probability 0.75, given 1 frame. This is about 1000 times faster than
that in [8]. For CM, by a careful analysis of the state update function and the
output function of the underlying register, we can partially determine chunks of
the state with low complexity. The positions of the recovered chunks are chosen
in such a way that we can determine the maximum keystream information solely
based on these states. By starting from the carefully chosen point in time, we
mount an attack on CM in 250 cipher ticks with around 24 frames, which is 28

times faster than that in [8] and uses much less frames. The extremely low data
complexity of our attack makes it more threatening in practice, an attacker can
easily get such a number of frames to mount the attack.

We have fully implemented our attack. It takes several minutes to find a good
frame among the 30 given frames and recover the possible left-right state pairs
subsequently. Then roughly 2 − 6 days are needed to restore the full internal
state of a good frame just after the initialization using the 200 CPU cores and
another 2 hours on a single core are taken for the full key recovery. The short
running time allowed us to run the full attack several times for different keys.

Tables 1 and 2 present a comparison of our new attacks and the attacks of [8]2

on SM and CM respectively. We note that due to the properties of our attack the
use of bit-slicing techniques, which according to [9] were employed in [8], is not
efficient in its implementation. Our original estimates were also very optimistic:
the recovery of just the middle register took only 6 hours and complexity of
the total attack seemed around 245 − 247 cipher ticks, but full implementation
has shown dependencies between all the phases of the attack, raising the total
complexity to about 249 − 250 cipher ticks.

Table 1. Key recovery attacks on SecureMemory

data, frames time success probability running time

attack of [8] 1 239.4 0.57 minutes

this paper 1 229.8 0.75 seconds

Table 2. Key recovery attacks on CryptoMemory (success probability 0.5)

Theoretical Practical

data, frames time memory running time (200 CPU cores) memory

attack of [8] 2640 258 O(232) several weeks (estimated)[9] 16 GB

this paper 30 250 O(224) several days 530 MB

2 The authors have corrected their original complexity of 252 (for which the attack
runs 2 days) to 258 which probably means increase to several months. However,
the authors of [9] used bit-slice implementation which offers some speedup. Our
implementation currently is not bit-sliced.

Organization of the paper. We describe the two versions of the Atmel cipher
in Section 2 together with the concrete authentication protocols. Our attack on
SM is provided in Section 3 and the attack on CM is given in Section 4. We
describe our practical implementation of the full key recovery for CM in Section
5 and give our conclusions in Section 6.

2 Description of the Atmel Cipher and the

Authentication Protocol

In this section, we present a description of the two versions of the Atmel ci-
pher together with the concrete authentication protocols. Let us first specify the
notations used hereafter.

– F
n
2 = {0, 1, . . . , 2n − 1}.

– (x0x1 . . . xn−1) ∈ F
n
2 with x0 being the most and xn−1 being the least sig-

nificant bits.
– suc is the state transition function.
– a ∈ F

8
2 is the input to the state.

– the cipher state s and the successor state s′ = suc1(a, s) = suc(a, s).
– sucn(a, s) = sucn−1(a, suc(a, s)) for n > 1.
– the left register l = (l0, l1, . . . , l6) ∈ (F5

2)
7.

– the middle register m = (m0,m1, . . . ,m6) ∈ (F7
2)

7.
– the right register r = (r0, r1, . . . , r4) ∈ (F5

2)
5.

– the feedback register f = (f0, f1) ∈ (F4
2)

2 for CM.
– L : F

n
2 → F

n
2 is the bitwise left rotation defined by L(x0x1 . . . xn−1) =

(x1 . . . xn−1x0).
– + is the integer addition.
– the modified modular addition ⊞ : Fn

2 × F
n
2 → F

n
2 is defined as:

x⊞ y =

{

x+ y (mod 2n − 1) if x = y = 0 or x+ y 6= 0 (mod 2n − 1)
2n − 1 otherwise

2.1 Specification of the Atmel Cipher

Both versions consist of 3 shift registers, i.e., the left register l, the middle register
m and the right register r. The complex version in CM has an additional feedback
register f to store the last 8 bits of output. The cipher structure is illustrated in
Fig. 1. At each tick, a cipher state s = (l,m, r, f) ∈ F

117
2 (for SM, ignore f and

s ∈ F
109
2) is converted into a successor state s′ = (l′,m′, r′, f ′) as follows. First

inject the input a into s at several cell positions, resulting in an intermediate
state ŝ. For CM, let b = a⊕f0f1; while for SM, let b = a. Then, l̂i = li, m̂j = mj

and r̂k = rk for i 6= 2, j 6= 4 and k 6= 1. For i = 2, j = 4 and k = 1,

l̂2 := l2 ⊕ b3b4b5b6b7, m̂4 := m4 ⊕ b4b5b6b7b0b1b2, r̂1 := r1 ⊕ b0b1b2b3b4.

� ����� ������� ������� �

⊕

⊕⊕

�

�	
��	
�� ��

� � � �

Fig. 1. The ciphers

Second, shift the left, right and middle registers one cell to the right and compute
the new 0th terms by the 1-bit left rotation L and the modified modular addition
⊞.

l′i+1 := l̂i, m′
i+1 := m̂i, for i ∈ {0, 1, . . . , 5},

r′i+1 := r̂i for i ∈ {0, 1, . . . , 3},

l′0 := l̂3 ⊞ L(l̂6), m′
0 := m̂5 ⊞ L(m̂6), r′0 := r̂2 ⊞ r̂4.

Finally, generate the keystream and shift the feedback register f one cell to
the left and set a new 1st entry as the output nibble for CM. Let ‖ be the
concatenation operation, denote by outputl(l′) = l′0,1⊕l′4,1 ‖ l′0,2⊕l′4,2 ‖ l′0,3⊕l′4,3 ‖
l′0,4⊕ l′4,4 the rightmost 4 bits of l′0⊕ l′4 and outputr(r′) = r′0,1⊕r′3,1 ‖ r′0,2⊕r′3,2 ‖
r′0,3 ⊕ r′3,3 ‖ r′0,4 ⊕ r′3,4 the rightmost 4 bits of r′0 ⊕ r′3. The output of s′, denoted
by output(s′), is given by

output(s′)i =

{

outputl(l′)i, if m′
0,i+3 = 0

outputr(r′)i, if m′
0,i+3 = 1. i ∈ {0, . . . , 3}.

(1)

Note that the rightmost 4 bits of m′
0 selects either a bit from outputl(l′) or a bit

from outputr(r′) to be output as the keystream bit. For CM, let f ′
0 = f̂1 = f1

and f ′
1 = output(s′).

2.2 The Authentication Protocol

In the protocol, the tag and the reader exchange the nonces (depicted in Fig. 2)
and use the cipher to generate keystream that will be used as authenticators for
both sides.

Let nt ∈ (F8
2)

8 be a tag nonce, nr ∈ (F8
2)

8 a reader nonce and k ∈ (F8
2)

8 be
the shared key between the tag and the reader. First initialize all the registers l,
m, r and f (for SM, ignore f) to be zero, then the cipher is clocked as follows.

s0 := 0,

si+1 := suc(nri, suc
v(nt2i+1, suc

v(nt2i, si))), i ∈ {0, . . . , 3}

nt
arnr,

at
��� ������

Fig. 2. The authentication protocol

si+5 := suc(nri+4, suc
v(k2i+1, suc

v(k2i, si+4))), i ∈ {0, . . . , 3}

where v = 1 for SM and v = 3 for CM. Table 3 shows the schematic view
of the input in the initialization phase. Note that the states s0, . . . , s7, s8 are

Table 3. The injection procedures

SM CM
s0 nt0, nt1, nr0 nt0, nt0, nt0 nt1, nt1, nt1, nr0
s1 nt2, nt3, nr1 nt2, nt2, nt2 nt3, nt3, nt3, nr1

s2 nt4, nt5, nr2 nt4, nt4, nt4 nt5, nt5, nt5, nr2
s3 nt6, nt7, nr3 nt6, nt6, nt6 nt7, nt7, nt7, nr3
s4 k0, k1, nr4 k0, k0, k0 k1, k1, k1, nr4

s5 k2, k3, nr5 k2, k2, k2 k3, k3, k3, nr5
s6 k4, k5, nr6 k4, k4, k4 k5, k5, k5, nr6
s7 k6, k7, nr7 k6, k6, k6 k7, k7, k7, nr7

s8

non-consecutive. There are 24 setup rounds for SM and 56 setup rounds for
CM respectively. Let at ∈ (F4

2)
16 be the tag authenticators and ar ∈ (F4

2)
16 the

reader authenticators. The precise definitions of the authentication process are
given as follows.

SM Authentication Define the following states and outputs:

si := suc2(0, si−1), i ∈ {9, . . . , 40}.

ati := output(s2i+9), ati+1 := output(s2i+10), i ∈ {0, 2, . . . , 14},

ari := output(s2i+11), ari+1 := output(s2i+12), i ∈ {0, 2, . . . , 14}.

CM Authentication Define the following states and outputs:

s9 := suc5(0, s8), s10 := suc(0, s9), si := suc6(0, si−1) i ∈ {11, 13, . . . , 23};

si := suc(0, si−1) i ∈ {12, 14, . . . , 24}; si := suc(0, si−1) i ∈ {25, 26, . . . , 38};

ari := output(si+9) i ∈ {0, 1, . . . , 15}; at0 := 0xf, at1 := 0xf,

ati := output(si+23) i ∈ {2, 3, . . . , 15}.

Note that there are 16 consecutive keystream nibbles in the frame, i.e., ar14,
ar15, at2, at3, . . . , at15. Since CM and CR use the same version of the cipher, we
will ignore this distinction hereafter. The attacker’s aim is to restore the shared
64-bit key from a number of captured frames, for each of which only a short
keystream segment is known.

3 Our Attack on SecureMemory

First note that from (1), for i ∈ {0, 1, 2, 3} we have

output(s′)i = m′
0,i+3 · outputr(r

′)i ⊕ (1⊕m′
0,i+3) · outputl(l

′)i. (2)

This suggests that P
(

output(s′)i = outputr(r′)i
)

= 3
4

and P
(

output(s′)i =

outputl(l′)i
)

= 3
4
. Thus, we can make an exhaustive search of all the possible s8

states of the right register r and use a classical correlation test to find the correct
state. This is feasible because we can run r independently of l and m. Note that
there are 128 bits of known keystream from 1 SM frame. The correct state of r

could pass the test with probability
∑

128

i=Tr

(

128
i

)

(3
4
)i(1

4
)128−i and a wrong guess

would pass with probability
∑

128

i=Tr

(

128
i

)

(1
2
)128, where Tr is the threshold value

of the correlation test.

0l 3l2l1l

1l

6l5l4l

3l

4l

5l

6l

1−l

3−

2−

1−

0

4l 5l 6l 1−l

3l 4l 5l 6l 1−l 2−l

4l 5l 6l 1−l 2−l 3−l

5l 6l 1−l 2−l 3−l 4−l

6l 1−l 2−l 3−l 4−l 5−l

1−l 2−l 3−l 4−l 5−l 6−l

2−l 3−l 4−l 5−l 6−l 7−l

2l 3l

2l

Fig. 3. The backward diffusion of l in SM

Then, unlike the attack in [8], we do not make a second exhaustive search of
the left register l. To get the candidate states of l matching the keystream bits
where the intermediate output outputr(r′) of r does not generate the correct
bit (There are 32 such bits on average), we regard the known keystream bits
generated by l as the observed events of the internal hidden states, as in the
classical Viterbi decoding scenario [14]. However, we found that it is not easy to
directly use the Viterbi decoding algorithm here. Instead, we exploit the different
diffusion speeds of the different cells in l to enumerate the possible candidates
dynamically. Fig. 3 and 4 show the diffusion process of the cells in l. Let li (i ≥ 0)
be the 5-bit content of the corresponding cell, then for every second step i, we
know some bits of the xor of the 0th cell and the 4th cell. In fact, the bits are
distributed according to the xor between outputr(r′) and at and ar. At some
instance, it may happen that there are no bits known; while at other step, it
also may happen that we know the whole nibble.

Let lki = outputl(l′) at step i, though sometimes lki is unknown. Our obser-
vation is that some cells of the initial state affect the output more often than
others. Hence, if we isolate the low-effect cells and first determine the cells that
have the most extensive effect on the output, it is expected that in this way, we

need not try all the possible states one-by-one. Besides, we can shift the start-
ing point of our decoding algorithm. The chosen criterion is determined by the
problem that which cells we choose to determine first. We have the following
theorem, proved in Appendix A, on the latter problem. For any starting point,
define the starting state to be ls0 = {l0, l1, l2, l3, l4, l5, l6}. The counting of the
predecessor and successor states and the lkis follow Fig. 3 and 4.

Theorem 1. For any starting state ls0, if we choose A = {l0, l1, l3, l4, l6} to de-

termine first, then {lk3, lk5, lk7, lk9, lk11} depend on l8 and A, {lk−3, lk0, lk2, lk4}
only depend on A, {lk−1, lk6} depend on A and l2, and {lk1, lk8, lk10} depend

on A, l2 and l8.

0l 3l2l1l

7l

6l5l4l

8l

9l

10l

11l

12l

13l

14l

15l

16l

17l

18l

19l

20l

21l

7

6

5

4

3

2

1

0

0l 1l 2l 3l 4l 5l

7l 0l 1l 2l 3l 4l

8l 7l 0l 1l 2l 3l

9l 8l 7l 0l 1l 2l

10l 9l 8l 7l 0l 1l

11l 10l 9l 8l 7l 0l

12l 11l 10l
9l 8l 7l

13l 12l 11l 10l 9l 8l

14l
13l 12l 11l 10l 9l

15l 14l 13l 12l 11l 10l

16l 15l
14l 13l 12l 11l

17l 16l 15l
14l 13l 12l

18l 17l 16l 15l 14l 13l

19l
18l 17l 16l 15l 14l

20l 19l 18l
17l 16l 15l

8

9

10

11

16l17l
18l19l20l21l

22l

17l18l19l20l21l
22l23l

18l19l20l21l
22l

23l24l

19l20l21l
22l

23l24l
25l

20l21l
22l23l

24l25l26l

21l
22l23l24l25l

26l27l

22l23l
24l25l

26l27l
28l

23l24l
25l26l

27l28l
29l

Fig. 4. The forward diffusion of l in SM

Theorem 1 shows that if we know A, then we can reduce the possible values of
l8 to a large extent, for there are 5 equations that could be used for check. After
determining l8 and A, other cells of the state ls0 could be restored easily, for we

can just run l forward and backward from ls0 to get the candidates and then
clock back from ls0 to restore the real initial state. This theorem also indicates
how to choose the starting state. Let NH(lki) be number of known bits in lki
for 0 ≤ i ≤ 31, then we define the following function:

Ψ(i) =



















































∑

j∈{0,2,3,4,5,7,9,11}NH(lki+j) for 0 ≤ i ≤ 2
∑

j∈{−3,0,2,3,4,5,7,9,11}NH(lki+j) for 3 ≤ i ≤ 20
∑

j∈{−3,0,2,3,4,5,7,9}NH(lki+j) for 21 ≤ i ≤ 24
∑

j∈{−3,0,2,3,4,5}NH(lki+j) for 25 ≤ i ≤ 26
∑

j∈{−3,0,2,3,4} NH(lki+j) for i = 27
∑

j∈{−3,0,2,3} NH(lki+j) for i = 28
∑

j∈{−3,0,2} NH(lki+j) for i = 29
∑

j∈{−3,0} NH(lki+j) for 30 ≤ i ≤ 31 .

Let I =max0≤i≤31Ψ(i) and Ψ(J) = I, then we can start from the state s8+J in
the real SM authentication, which will have a maximum reduction effect on the
possible candidates. Table 4 shows the distributions of I and J obtained from
experiments. From Table 4, we get P (I ≥ 10, J < 25) ≈ 0.94.

Table 4. The distributions of I and J in SM.

I I ≥ 10 I ≥ 11 I ≥ 12 I ≥ 13 I ≥ 14
0.95 0.87 0.73 0.53 0.34

J J ≥ 21 J ≥ 22 J ≥ 23 J ≥ 24 J ≥ 25
(0.0297, 0.0344) (0.0205, 0.028) (0.003, 0.014) (0.003, 0.007) (0.0006, 0.0018)

Now we are ready to enumerate the possible states of A consistent with
{lk0, lk2, lk4}. We first guess l0 in ls0, there are 25 possibilities. From lk0, we
can get 23 candidates of l4 on average for each l0. Then from lk2, we can get
around 2 candidates of l3 for each l0. Knowing l0 and l3, we could derive l10.
From lk4, we could get 2 candidates on average of l7 for each pair of (l0, l3).
For each l7, we could derive one or two (due to the fact that ⊞ is not injective)
candidates of l6. There are 2

5 candidates of l1, so with a complexity of 25 ·4 = 27,
we could get 25 · 25 · 23 · 2 · 2 = 215 possible combinations of A. Then using the 5
check equations for l8, we can determine several candidates of l8 conditioned on
A, sometimes even 1. For each possible combination of A and l8, we can derive
the corresponding l2 from other lkis. Given l8 and l2, we know l5. Finally, we
run l backwards and forwards from ls0 to further reduce the possibilities. For
each surviving candidate for ls0, run l backwards to recover the real initial state
s8 in the authentication. This procedure has a complexity of 215 · 25 · 23 · 64

3
=

227.4 cipher ticks. The number of candidates of s8 of l is directly determined
by the coincidence bits between the intermediate output, outputr(r′), of r and
the keystream. More coincidence bits, more candidates of s8. From experiments,
we found that with probability around 0.92, there are less than or equal to 100
candidates of s8 recovered. For each right-left candidate pair, we can run the
meet-in-the-middle attack in Section 4.2 of [8] to recover the secret key with

a complexity of around 224.5 cipher ticks. So the total time complexity of our
attack is 227.4 + 224.5 + 225 · 64

3
= 229.8 cipher ticks. And the success probability

of our attack is around
∑

128

i=T

(

128
i

)

(3
4
)i(1

4
)128−i · 0.92 · 0.94, which is around 0.75

if we set T = 91. Given 1 frame, our attack on SM is about 1000 times faster
than that in [8] with a higher success rate. This attack is verified on a single
CPU core in C. In experiments, it takes tens of seconds to restore the s8 state
of l and r in the real authentication.

4 Our Attack on CryptoMemory

The starting point of our attack on CM is the 16 consecutive keystream nibbles,
i.e., we first use the correlation test to find some candidates of the right-most
register r. Because of the existence of the feedback register f in CM, we cannot

0l 3l2l1l

7l

6l5l4l

8l

9l

10l

11l

12l

13l

14l

15l

16l

17l

18l

19l

20l

21l

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

11

15

14

13

12

10

9

8

7

6

5

4

3

2

1

0

0l 1l 2l 3l 4l 5l

7l 0l 1l 2l 3l 4l

8l 7l 0l 1l 2l 3l

9l 8l 7l 0l 1l 2l

10l 9l 8l 7l 0l 1l

11l 10l 9l 8l 7l 0l

12l 11l 10l
9l 8l 7l

13l 12l 11l 10l 9l 8l

14l 13l 12l 11l 10l 9l

15l
14l 13l 12l 11l

10l

16l 15l 14l 13l 12l 11l

17l 16l 15l
14l 13l 12l

18l 17l
16l 15l 14l 13l

19l 18l 17l
16l 15l 14l

20l 19l 18l 17l 16l 15l

Fig. 5. The forward diffusion of l in CM

run l or r independently in general. But when CM generates the 16 consecutive
nibbles, we can run either l or r independently, for in this case we know the
feedback bytes, which is the same as the last 64-bit keystream in one frame.

Conditioned on r, we can derive 16-bit information of the intermediate out-
put of l on average by selecting those keystream bits where the intermediate
output of r does not generate the correct keystream bit. Again, we regard the

known intermediate output of l as the observed events of the corresponding
internal hidden states. The good thing for us is that now we know the interme-
diate output of l for consecutive steps, instead of for every second step. Besides,
we need to exploit the properties of the state update function and the output
function of l to find the most likely internal states that generate the observed
keystream bits. Since both the state update function and the output function
of l only depend on very few variables, some of which are shared, we can par-
tially determine chunks of the state with low complexity. Several overlapping
partial states could be restored in this way. Then we take an intersection of the
overlapping states and use this subset to further reduce the candidates of other
parts. The positions of the recovered states are chosen in such a way that we
can determine the maximum keystream information solely based on these states.
The same techniques are also applied to the middle register m.

4.1 Recovering The Right and Left Registers r and l

Precisely, we first make an exhaustive search of all the possible s24 states of
the right register r and use a correlation test to filter out the wrong guesses
to some extent. The correct candidate could pass the test with probability
∑

64

i=Tr

(

64
i

)

(3
4
)i(1

4
)64−i and a wrong guess would pass with probability

∑
64

i=Tr

(

64
i

)

·(1
2
)64, where Tr is the threshold value in correlation test. Since in CM we can

only use the 64 consecutive bits for correlation test, instead of 128 bits as in the
SM case, we select Tr in such a way that we need not call the following parts
of our attack for each captured frame. Our attack is continued only if there are
some candidates of r pass the correlation test. If for one frame, there are no
output from the correlation test, we discard the frame and try another one.

Now we look at the left register l. We want to restore the s24 state of l without
exhaustively searching all the possibilities. Still, we did not find a way to use the
Viterbi decoding algorithm directly. The following steps have some similarities
with the Viterbi algorithm in the sense that we determine the most likely hidden
state candidates up to a certain point depending only on the current observable
events and the most likely state candidates at the last point. Fig. 5 depicts the
forward diffusion process of l. In fact, we can shift the beginning point of our
counting, i.e., we can make a chosen time point in the middle to be 0. The chosen
criterion is determined by the diffusion properties of the different cells. Again,
let lki be the intermediate output of l, though sometimes lki is unknown. For
any starting point, define the starting state to be ls0 = {l0, l1, l2, l3, l4, l5, l6}.
We have

lk1 = (l3 ⊞ L(l6))⊕ l3, lk2 = (l2 ⊞ L(l5))⊕ l2, (3)

lk3 = (l1 ⊞ L(l4))⊕ l1, lk4 = (l0 ⊞ L(l3))⊕ l0, (4)

lk5 = (l7 ⊞ L(l2))⊕ l7, lk6 = (l8 ⊞ L(l1))⊕ l8. (5)

The above equations indicate that the output function and the state update
function of l depends on very few variables. For example, the 3rd cell of l is used

in the current state update function and in the next step output function. Hence,
with a complexity of 210, we can determine the solution set H0 = {l3, l6} to (3).
Similarly, we derive H1 = {l2, l5}, H2 = {l1, l4}, H3 = {l0, l3}, H4 = {l7, l2},
H5 = {l8, l1} and H6 = {l9, l0} from (4) and (5). The cardinality of Hi depends
on NH(lki). Note that H0,3 = H0 ∩H3 = {l3}, H1,4 = H1 ∩H4 = {l2}, H2,5 =
H2∩H5 = {l1} andH3,6 = H3∩H6 = {l0}. Hence, we can reduce the cardinalities
of Hi and Hj by keeping only those solutions that have the value patterns
existing in the corresponding intersection set Hi,j . Experiments show that the
averaged value of |Hi| is 29.25. After reducing the cardinality by intersection,
the cardinalities sometimes reduce to half or more, sometimes remain. Then,
we combine H0 with H3 to get the possible values for H0,3,6 = {l0, l3, l6}. The
averaged number of solutions of H0,3,6 is 210.96 in 220 times of experiments. Note
that we have to xor the feedback byte b with the recovered l0 in H6 to get the
original value of l0 in ls0. Similar operation has to be done for the recovered
l1 in H5 too. To get a maximum reduction effect on the number of possible
candidates, we define the following function:

Ψ(i) =
∑

j∈{1,3,4,8}

NH(lki+j) for 1 ≤ i ≤ 7 .

This function considers the reduction effect on A = {l0, l1, l3, l4, l6} of the cho-
sen starting state, as can be seen from the diffusion process in Fig. 5. Let
I =max1≤i≤7Ψ(i) and Ψ(J) = I, then we can start from the state s24+J in
the real CM authentication to have a maximum reduction effect on A. Since in
CM, we know the 16 consecutive lkis and Ψ(i) is defined over 1 ≤ i ≤ 7, we
need not build a table similar to Table 4 to list the distributions of I and J , we
just use I and J directly following their definitions. From Fig. 5, we have the
following theorem, proved in Appendix B.

Theorem 2. For any starting state ls0, if we choose A = {l0, l1, l3, l4, l6} to

determine first in CM, then {lk0, lk1, lk3, lk4, lk7, lk8, lk11, lk15} depend only on

A, {lk−1} depends on {l5} and A, and {lk5, lk12} depend on A and l2.

Due to the fact that J is not necessarily equal to 1, some of the lki could
not be used in practice. For example, if J = 7, we can only use the lkis up
to i = 8. Since we define Ψ(i) only over 1 ≤ i ≤ 7, we can use at least
{lk0, lk1, lk3, lk4, lk7, lk8} for the reduction check of A. Then we use lk−1 and
lk5 to reduce the possibilities of H1. After that, we combine the remaining can-
didates of H1 with those of A and run l backwards and forwards to cover the
other lkis. Finally, we clock l back from ls0 to recover the original initial state,
i.e., the state s24 in the real CM authentication. Note that the correct candidate
of the s24 state of l will pass the above procedures with probability 1.

Let nl be the number of candidates of the s24 state of l restored in the above
way. Experiments show that nl is determined by the threshold value Tr in the
correlation test of the right-most register r. For example, if we set Tr = 54, the
averaged value of nl is approximately 225.4, which is very close to 235−64+Tr .
To further reduce the possible candidates, we resort to the correlation test of l,

but restrict ourselves only to the nl candidates. This step has a complexity of
nl · 16−2

3
, instead of 235 · 16−2

3
≈ 237.2. Let Tl be the threshold value used in the

correlation test of the nl candidates, the correct candidate could pass this test

with probability around Pc =
∑

64

i=Tl

(

64
i

)

(3
4
)i(1

4
)64−i, but the wrong candidates

would pass with the probability much larger than
∑

64

i=Tl

(

64

i

)

(1
2
)64. The reason is

that the nl candidates are more likely to be the correct candidate than the ones
in the random case, which has 235 possibilities. We use experiments to determine
this probability. Let Pw be this false alarm probability, we found that if Tr = 54
and Tl = 45, then the averaged value of Pw is about 2−5; if Tr = 54 and Tl = 53,
then the averaged value of Pw is about 2−19. We conjecture that in general, Pw

is around 25 times larger than
∑

64

i=Tl

(

64

i

)

(1
2
)64. After the correlation test of the

nl candidates, we get about (nl − 1) · Pw + 1 · Pc candidates for the left register
l. Then we turn to the middle register m.

4.2 Recovering The Middle Register m

Now we know the candidate s24 (in the real authentication) states of l, r and the
real feedback register f , our aim is to restore the candidate s24 states of m. By

�� �� �!"

#�

$�%�&�

'(&��� �!"��

&��� �!"��#�)(

*(�!"��#�)(+�

 �!"��#�)(+�,-.

/0��#�1�+�,-.,,.

��#�1�+�,-.,,.234

#�)(+�,-.,,.,5.264

)(7(284,,.,5.,9.,:.

7(284,,.,5.264,:.,;.

,-.2242342642<4,;.,=.

224,5.,9.2<4,;.,=.2>4

,5.2642<42?4,=.,@.,A.

264,:.,;.,=.,@.,A.2B4

2<42?4,=.2>4
,A.,C.DEF

2?42G42>42H4,C.IJKDLF

M

N

N

M

N

N

M

N

M

O

N

O

N

P

P

N

QQ

RS

TU

VW

XY

VZ

[

\

]

^

_

`

a

b

c

d

Fig. 6. The forward diffusion process of m in CM

xoring the intermediate outputs outputl(l′) of l and those of r, we could know
the exact values of the intermediate output of m from (1). Let mki denote such

value for the step i. Fig. 6 shows the forward diffusion process of m in CM. To
make a full use of the known information, we start from the state s24+6 = s30
in the real authentication. From Fig. 6, we have

mk7 = m7 ⊞ L(m0), (6)

mki = mi ⊞ L(mi−1). (8 ≤ i ≤ 15) (7)

The above equations indicate that the output function and the state update
function of the middle register m depend on even fewer variables than l. We can
see the content of the feedback cell directly. Hence, with a complexity of 214, we
can determine the candidates of Q0 = {m7,m0} satisfying (6). Similarly, we can
determine Q1 = {m8,m7}, Q2 = {m9,m8}, Q3 = {m10,m9}, Q4 = {m11,m10},
Q5 = {m12,m11}, Q6 = {m13,m12}, Q7 = {m14,m13} and Q8 = {m15,m14}
from (7). The cardinality ofQi depends onNH(mki). Note that Q0,1 = Q0∩Q1 =
{m7},Q1,2 = Q1∩Q2 = {m8},Q2,3 = Q2∩Q3 = {m9},Q3,4 = Q3∩Q4 = {m10},
Q4,5 = Q4 ∩ Q5 = {m11}, Q5,6 = Q5 ∩ Q6 = {m12}, Q6,7 = Q6 ∩ Q7 = {m13}
and Q7,8 = Q7 ∩Q8 = {m14}. Experiments show that the averaged value of |Qi|
is 29.1 in the random case.

We can reduce the cardinalities of Qi and Qi+1 by keeping only those so-
lutions that have the value patterns existing in the corresponding intersection
set Qi,i+1. To get a maximum reduction effect, let I =min0≤i≤8|Qi|. Then we
start the reduction process from QI = {mj,mk} with k = 0 or k = j − 1.
More precisely, if I < 8, we reduce QI+1 = {mj+1,mj} by keeping only those
solutions that have the mj value patterns existing in QI . If I > 0, we reduce
QI−1 = {mk,mk−1} by keeping only those solutions that have the mk value
patterns existing in QI . This reduction process is continued to cover Q0 and Q8,
i.e., we make the reduction step for each Qi. After reducing each Qi (0 ≤ i ≤ 8),
we combine Q0, Q1 and Q2 together to get the possible values for the ith cells
(3 ≤ i ≤ 6) of state s24+6 in the real authentication, i.e., we first fill the 5th
and the 6th cells of s30 from Q0, then we fill the 4th cell from the ’m8’ item
of Q1 with the corresponding ’m7’ item equal to the ’m7’ item of Q0 just filled
in. The same procedure applies to the 3rd cell of s30. This is something like a
chain. Still, we have to xor the corresponding feedback byte with the recovered
m9 item of Q2 to get the value of the 3rd cell of state s30.

Then we can check the 3rd to 6th cells of s30 immediately by mk20 = m14 ⊞

L(m13) = (m8 ⊞ L(m7))⊞ L(m7 ⊞ L(m0)) and mk21 = m15 ⊞ L(m14) = (m9 ⊞

L(m8))⊞L(m8 ⊞L(m7)). Experiments show that with probability around 0.85,
the number of the combined 3rd to 6th cells of state s30 is less than 218 and in
this case the averaged number is 214.6, which is much less than 228. The reduction
effect is obvious. Then, we continue the construction of the chain by filling the
0th to 2nd items of the state s30 from Q3, Q4 and Q5 respectively. Here we can
see the similarity of our method with the Viterbi decoding algorithm. After filling
in, we run m from s30 backwards and forwards to check all the known mkis for
0 ≤ i ≤ 15. Finally, we clock back m from s30 to recover the s24 state in the real
CM authentication. Let nm be the number of candidates of the s24 state of m
obtained in the above way, our experiments show that with probability around

0.72, nm is less than 221 and in this case, the averaged number is 218.8, which
is close to the theoretical value 217 = 249−32. Note that in [8], this number is at
least 1.43 · 109 = 230.41. The gain of our method is obvious.

To further reduce the possible candidates, we now run the whole 117-bit state
of the cipher backwards to cover the authenticators ar13, ar12, ar11, ar10, ar9, ar8.
Here we have to clock the cipher back 21 steps, i.e., we check those candidates of
the middle register that are with the common right-left pair, instead of checking
the candidates of the right-left-middle triple. This batch treatment results in a
good complexity. In fact, what we do is to regroup all the candidates of the right-
left-middle triple of the s24 state in the real CM authentication into subgroups
which has a common right-left pair and check these subgroups one-by-one. In
most cases, we get 1 or 2 candidates of the middle register left corresponding
to a right-left state pair, for the above reduction factor is 2−24. If there are no
surviving candidates of the middle register we conclude that the correspond-
ing right-left pair is a wrong pair. After this step, there are around nm · 2−24

candidates of m left corresponding to a common right-left state pair.
Next, for each survived candidate for m with the common right-left pair we

run the cipher backwards to the s8 state in the real CM authentication. In this
process, we can use the authenticators ari for 0 ≤ i ≤ 7 to further reduce the
possible candidates of m and the right-left pairs. In general, only the correct
right-left pair with the correct candidate for the middle register could pass this
test, since the reduction factor is 2−32.

4.3 Complexity Analysis

In summary, our attack works in three phases. First, we exhaustively search the
shortest register r. In our attack, we set the threshold value Tr of the correlation
test in such a way that for some frames, there are no output of the test. Thus,
we need not run the following phases of our attack for each frame. Second, we
use our method to get the candidates of l without trying all the possible values
and for each candidate, we again call the correlation test with a threshold value
Tl to further reduce the number of candidates. In this way, it is possible that
the correct candidate of l is filtered out. We have to compensate this with more
frames.

Definition 1. We say a frame is a good frame, if both the correct candidate of

l and that of r pass the correlation tests in our attack.

Let Pl =
∑

T
′

l

i=Tl

(

64
i

)

(3
4
)i(1

4
)64−i and Pr =

∑
64

i=Tr

(

64
i

)

(3
4
)i(1

4
)64−i. In theory, with

F =
1

Pl · Pr

=
1

∑
T ′

l

i=Tl

(

64
i

)

(3
4
)i(1

4
)64−i ·

∑64

i=Tr

(

64
i

)

(3
4
)i(1

4
)64−i

(8)

frames, we could encounter a good frame to mount our attack. In practice, we
usually need more than F frames to get a good frame with probability around
0.5. This is mainly caused by the fact that the left and the right registers are

not fully independent from each other. Third, we recover the middle register
conditioned on the candidates of l and r. Since there is an unrolling check in
this phase, we can determine either the correct right-left-middle state triple or
there is no candidate survived, indicating that the frame is not good.

The time complexity of the first phase is 225 · 16−2
3

= 227.8 cipher ticks and
we have to repeat this step from each frame until we meet a good frame. Hence,
in total, the time complexity in the first phase is 227.8 · F cipher ticks. For

about w = F
2
· (Pr + (225 − 1) ·

∑
64

i=Tr

(

64

i

)

(1
2
)64) frames, we have about nr =

1 ·Pr+(225−1) ·
∑

64

i=Tr

(

64

i

)

(1
2
)64 candidates passed from the first phase. In such

cases, we invoke the second phase of our attack to find some candidates for the
left register. The time complexity of a single run of the second phase of our attack

is Cl = nl ·
16−2

3
+ 210.96·210

2Ψ(J) · 210

2NH (lk
−1)+NH (lk5) . We will get about (nl−1)·Pw+1·Pc

candidates after the second phase which is mainly determined by Tl. For each
possible combination of the right-left state candidates pair, we check whether the
underlying frame is a good one or not in the third phase. The time complexity of a
single run of the third phase is at most Cm = 214·9+218·4· 16−2

3
+nm·7+2·(64−21)

cipher ticks. Therefore, the time complexity of our attack so far is around

Ctotal = 227.8 · F + w · (nr · Cl + nr · ((nl − 1) · Pw + 1 · Pc) · Cm) (9)

cipher ticks. If we set Tr = 54, Tl = 45 and T ′
l = 48, we have F = 24 and

Ctotal ≈ 250 cipher ticks
The success probability of our attack depends on the number of captured

frames. Table 5 shows the relation got from 106 experiments with randomly
generated frames.

Table 5. The success probability of our attack if Tr ≥ 54 and Tl = 45, T ′

l = 48.

F 24 30 40 45 60 90 120

Psucc 0.431 0.505 0.608 0.653 0.759 0.877 0.943

5 Practical Implementation

Here we describe the practical implementation of the full key recovery attack on
the CryptoMemory. We have fully implemented our attack. The implementation
consists of three stages:

1. finding a good frame and recovering the left-right pairs;
2. recovering the full internal state s8;
3. recovering the full key from s8.

The first stage is implemented on a single core (of an Intel Core 2 Duo 6600,
2.4 GHz). It takes about 10 minutes to find a possible good frame and recover
the possible left-right state pairs subsequently. The second stage is the most
time-consuming and is implemented on a computing cluster with 200 cores (of

Intel Xeon L5640, 2.26 GHz). It takes roughly 2− 6 days to find the full internal
state (this requires trying several possible good frames found in stage 1). The
last stage is implemented on a single core. It takes on average 2 hours to recover
the full secret key from s8. Note that stage 2 can return several candidates for
s8; in this case we launch stage 3 in parallel on several cores. We will describe
our low-memory (compared to that of [8]) key recovery algorithm in more details
in Section 5.1.

The low complexity of our attack allowed us to run it several times with
different keys. The speed of our programm is about 27 clock cycles per inverse
cipher tick. Here we present the flow of the attack for one of the runs. We
obtained 30 authentication frames from the reference implementation of the
Atmel cipher (which was verified against the hardware according to [8]) with
the secret key 0xf7fb3e25ab1c74d8. After this, we proceeded as if we had not
known the key. We set Tr = 54, Tl = 45 and T ′

l = 48. Then Pr ≈ 0.05 and
Pl ≈ 0.84−0.45 = 0.39. Among the 30 frames we found one possible good frame

nr = 0xa8becfc790ce1272, nt = 0x8bd5987bdf33aec7,

ar = 0x2e0ba95f84eb0a50, at = 0xff3f26fab2fb809e,

for which there were around 220.73 left-right state pairs. For each left-right state
pair, 227.2 inverse cipher ticks are done on average to reduce the number of
possible candidates. We launched the second stage of our attack on 200 CPU
cores. The attack succeeded during the 4th frame. Analysis of the 4th frame
took about 20.4 hours to find 1 possible candidate state of s8, while analysis
of the 3 other frames took several days in total. For this s8 state, we use our
key-recovery technique to restore the key. The secret key 0xf7fb3e25ab1c74d8

was found for the state

s8 = (0x071d0308081a0e, 0x1627033e566b74, 0x1e1a100e1b, 0x0109)

(each two hexadecimal digits in this notation represent a single register cell).

We note that due the properties of our attack (namely, frequent checking of
the cipher output against the keystream while clocking back) its implementation
cannot be significantly sped-up by employing a bit-sliced implementation of the
cipher, as it was the case in [8] according to [9]. During the experiments, we found
an inherent property of CM, i.e., the number of non-coincidence bits between
the two intermediate outputs generated by one possible left-right state pair is a
fixed constant, if the sum of the numbers of coincidence bits between each one
of the intermediate output and the 64-bit keystream is a constant. It is checked
106 times, the experiments show it holds all the time. This property indicates
that we cannot further reduce the time complexity of our attack by setting a
larger Tl. Since in such cases, the entropy of the middle register also increases.
This property also explains why we set Tl = 45 and T ′

l = 48, for we have to
discard the pairs resulting in high entropy middle register.

5.1 Full Key Recovery Using Meet-in-the-Middle

After correctly restoring the s8 state in the real CM authentication, we need to
restore the secret key. The original key recovery stage in [8] for the CM needs
16 GB of storage space3 and therefore requires a machine with a plenty of RAM
to work fast. Motivated by the challenge to make the attack really practical, we
present the following low-memory algorithm for the key recovery that could run
on a standard machine.

We recall that the original key recovery employs the meet-in-the-middle tech-
nique. The first 32 bits of the key are guessed to clock the cipher forward from
the s4 sate in initialization to the state s6. Then the last 32 bits of the key are
guessed to clock the cipher back from s8 to s6. The only intersection in s6 then
leads to the correct full key guess. The forward step of this attack results in a
table of 232 entries containing the 32-bit guess for the first half of the key and
the corresponding value of the 117-bit state s6.

In our attack, we make use of an observation that allows us to reduce the size
of the forward table. Note that after clocking the cipher 3 steps forward, several
bytes of the state remain independent of the inputs at these steps. Namely, let us
consider the state during initialization just before the injection of k3, which we
will denote by t, and the state right after the injection of k3 for 3 times, denoted
by t′. The following 5 cells of t′ do not depend on k3 and can be expressed in
terms of the cells of t.

l′2 = l3 ⊞ L(l6)
l′6 = l3

m′
2 = m5 ⊞ L(m6)

m′
3 = m0

m′
4 = m1

guessing k0, k1, k2

computing without guessing k3

guessing k4, k5, k6, k7

s4

t

t′

s8

l0 l1 l2 l3 l4 l5 l6 m0m1m2m3m4m5m6 r0r1 r2 r3 r4 f0f1

l′2 l′6 m′

2m
′

3m
′

4

Fig. 7. Low memory meet-in-the-middle for key recovery

Note that these cells comprise 31 bit in total. Now we can shift the meet-
in-the-middle point to the state t′, looking for matches in the above 5 cells, as

3 Note that it would be 76 GB in a straightforward way, but according to [9] several
techniques were applied to implement key recovery in 16 GB.

shown in Figure 7. The full meet-in-the-middle phase consists of the following
steps.

1. In the forward step, we guess the first 24 bits of k and build a table with the
entries storing the guess, the corresponding value of the known 5 cells of t′

(to perform matching in the next step) and the full state t (to recover k3 in
the last step).

2. In the backward step, we guess the last 32 bits of k, clock the cipher back
from s8 to t′ and look for matches in the forward table. For each match, we
perform the last step.

3. We guess k3 and clock the cipher forward from t (taken from the forward
table) to t′. If the resulting value matches the one from the backward step,
we have found the full key.

Note that our technique is not equivalent to just shifting the meet-in-the-middle
point to t and guessing for 5 key bytes in the backward step. Our technique
exploits the additional filtering in t′ to perform clocking from t to t′ only for a
portion of guesses and thus has lower complexity.

The memory required for our attack is determined by the size of the forward
table, which is 224 × (3 + 4+15) = 352 MB. The time complexity is determined
by the backward step and the search for k3. The backward step requires 232 ×
15 reverse cipher ticks, and considering states with multiple predecessors (in
practice we observed 1.9 times more states after 15 clock-back steps) this is
about 237 inverse cipher ticks. The search in the forward table is logarithmic in
its size. There will be about 226 matches in t′, for each of them 28 · 3 forward
cipher ticks are required for the k3 check, so 236 forward cipher ticks is the
added complexity of the k3 recovery. The total complexity is thus about 237

inverse cipher ticks in the worst case.
Our practical implementation of this key recovery algorithm requires 530

MB of RAM (larger than the ideal figure due to non-packed but handy data
structures used) and works on average for 2 hours on a single core of an Intel
Core 2 Duo 6600 running at 2.4 GHz. It can be sped up by parallelizing the
backward step.

6 Conclusions

In this paper, we have shown practical key recovery attacks on both versions
of the Atmel cipher. By using the optimal Viterbi-like decoding techniques to
recover the internal states of the left and middle registers and exploiting the
different diffusion speeds of the different cells of the underlying registers, our at-
tacks significantly improved the best previously known results [8]. Our analysis
shows that even the strongest version of the Atmel cipher succumbs to practical
attacks using relatively few captured authentication frames. Our practical im-
plementation recovers the full 64-bit secret key from 30 captured authentication
frames in about 2− 6 days using 200 CPU cores. Table 6 shows the comparison
of the attack on the Atmel CryptoMemory cipher presented in this paper and

that on another proprietary cipher KeeLoq in [1]. One can again conclude that
such proprietary ciphers fail to provide enough security even from a practical
point of view.

Table 6. Comparison of our attack on the Atmel cipher in CryptoMemory and the
attack [1] on KeeLoq

key length, bits data complexity time complexity

KeeLoq 64 216 known plaintexts 244.5

CryptoMemory 64 30 known frames 250

Acknowledgements. We would like to thank Flavio D. Garcia of Radboud
University Nijmegen, the Netherlands for useful discussions.

References

1. W. Aerts, E. Biham, D. de Moitie, E. de Mulder, O. Dunkelman, S. Indesteege,
N. Keller, B. Preneel, G. Vandenbosch, and I. Verbauwhede, A practical attack on
KeeLoq, Journal of Cryptology, to appear.

2. Atmel. CryptoMemory specification, 2007. 5211A-SMIC-04/07.
3. Jean Pierre Benhammou, Vincent C. Colnot, and David J. Moore. Secure memory

device for smart cards, July 2008. US Patent 7395435 B2.
4. Jean Pierre Benhammou and Mary Jarboe. Security at an affordable price. Atmel

Applications Journal, 3:29–30, 2004.
5. Itai Dinur, Adi Shamir. Cube Attacks on Tweakable Black Box Polynomials. Ad-

vances in Cryptology-EUROCRYPT’2009. LNCS vol. 5479, pp. 278-299. Springer-
Verlag 2009.

6. Itai Dinur, Adi Shamir. Breaking Grain-128 with Dynamic Cube Attacks. Fast
Software Encryption-FSE’2011. Springer-Verlag, to appear.

7. Brian Dipert. The Zune HD: more than an iPod touch wanna-be? EDN, pp. 20,
October 2009.

8. Flavio D. Garcia, Peter van Rossum, Roel Verdult and Ronny Wichers Schreur.
Dismantling SecureMemory, CryptoMemory and CryptoRF. 17th ACM Conference
on Computer and Communications Security-CCS’2010, pp. 250-259, 2010, ACM
Press. also available at http://eprint.iacr.org/2010/169.

9. Flavio D. Garcia. Private communication.
10. Mary Jarboe. Introduction to CryptoMemory. Atmel Applications Journal, 3:28,

2004.
11. W. Meier, O. Staffelbach, Fast correlation attacks on certain stream ciphers, Jour-

nal of Cryptology, Springer-Verlag,(1989), pp. 159-176.
12. http://download.nvidia.com/downloads/pvzone/Checklist_for_Building_a_

HDPC.pdf
13. http://www.rockbox.org/wiki/SansaConnect
14. Viterbi AJ. Error bounds for convolutional codes and an asymptotically optimum

decoding algorithm. IEEE Transactions on Information Theory 13 (2): 260-269,
April 1967.

15. Amazon Elastic Compute Cloud (Amazon EC2). http://aws.amazon.com/ec2/
#pricing, accessed 22 January 2010.

A Proof of Theorem 1

Proof. It is sufficient to expand the algebraic expressions of ki by the state
update constraints. From Fig. 3 and 4, we have

lk−3 = l6 ⊕ l−4,

lk−2 = l4 ⊕ l−2,

lk−1 = l2 ⊕ l6,

lk0 = l0 ⊕ l4,

lk1 = l8 ⊕ l2 = (l2 ⊕ L(l5))⊕ l2,

lk2 = l10 ⊕ l0 = (l0 ⊕ L(l3))⊕ l0,

lk3 = l12 ⊕ l8 = (l8 ⊕ L(l1))⊕ l8,

lk4 = l14 ⊕ l10 = (l10 ⊕ L(l7))⊕ l10 = (l0 ⊕ L(l3)⊕ L(l3 ⊕ L(l6)))⊕ (l0 ⊕ L(l3)),

lk5 = l16 ⊕ l12 = (l12 ⊕ L(l9))⊕ l12 = (l8 ⊕ L(l1)⊕ L(l1 ⊕ L(l4)))⊕ (l8 ⊕ L(l1)),

lk6 = l18 ⊕ l14 = (l14 ⊕ L(l11))⊕ l14 = (l10 ⊕ L(l7)⊕ L(l7 ⊕ L(l2)))⊕ (l10 ⊕ L(l7))

= (l0 ⊕ L(l3)⊕ L(l3 ⊕ L(l6))⊕ L(l3 ⊕ L(l6)⊕ L(l2)))⊕ (l0 ⊕ L(l3)⊕ L(l3 ⊕ L(l6))),

lk7 = l20 ⊕ l16 = (l16 ⊕ L(l13))⊕ l16 = (l12 ⊕ L(l9)⊕ L(l9 ⊕ L(l0)))⊕ (l12 ⊕ L(l9))

= (l8 ⊕ L(l1)⊕ L(l1 ⊕ L(l4))⊕ L(l1 ⊕ L(l4)⊕ L(l0)))⊕ (l8 ⊕ L(l1)⊕ L(l1 ⊕ L(l4))),

lk8 = l22 ⊕ l18 = (l18 ⊕ L(l15))⊕ l18 = (l14 ⊕ L(l11)⊕ L(l11 ⊕ L(l8)))⊕ (l14 ⊕ L(l11))

= (l10 ⊕ L(l7)⊕ L(l7 ⊕ L(l2))⊕ L(l7 ⊕ L(l2)⊕ L(l8)))⊕ (l10 ⊕ L(l7)⊕ L(l7 ⊕ L(l2)))

= (l0 ⊕ L(l3)⊕ L(l3 ⊕ L(l6))⊕ L(l3 ⊕ L(l6)⊕ L(l2))⊕ L(l3 ⊕ L(l6)⊕ L(l2)⊕ L(l8)))

⊕ (l0 ⊕ L(l3)⊕ L(l3 ⊕ L(l6))⊕ L(l3 ⊕ L(l6)⊕ L(l2))),

lk9 = l24 ⊕ l20 = (l20 ⊕ L(l17))⊕ l20 = (l16 ⊕ L(l13)⊕ L(l13 ⊕ L(l10)))⊕ (l16 ⊕ L(l13))

= (l12 ⊕ L(l9)⊕ L(l9 ⊕ L(l0))⊕ L(l9 ⊕ L(l0)⊕ L(l10)))⊕ (l12 ⊕ L(l9)⊕ L(l9 ⊕ L(l0)))

= (l8 ⊕ L(l1)⊕ L(l1 ⊕ L(l4))⊕ L(l1 ⊕ L(l4)⊕ L(l0))⊕ L(l1 ⊕ L(l4)⊕ L(l0)⊕ L(l0

⊕ L(l3))))⊕ (l8 ⊕ L(l1)⊕ L(l1 ⊕ L(l4))⊕ L(l1 ⊕ L(l4)⊕ L(l0))),

lk10 = l26 ⊕ l22 = (l22 ⊕ L(l19))⊕ l22 = (l18 ⊕ L(l15)⊕ L(l15 ⊕ L(l12)))⊕ (l18 ⊕ L(l15))

= (l14 ⊕ L(l11)⊕ L(l11 ⊕ L(l8))⊕ L(l11 ⊕ L(l8)⊕ L(l8 ⊕ L(l1))))⊕ (l14 ⊕ L(l11)

⊕ L(l11 ⊕ L(l8)))

= (l10 ⊕ L(l7)⊕ L(l7 ⊕ L(l2))⊕ L(l7 ⊕ L(l2)⊕ L(l8))⊕ L(l7 ⊕ L(l2)⊕ L(l8)

⊕ L(l8 ⊕ L(l1))))⊕ (l10 ⊕ L(l7)⊕ L(l7 ⊕ L(l2))⊕ L(l7 ⊕ L(l2)⊕ L(l8)))

= (l0 ⊕ L(l3)⊕ L(l3 ⊕ L(l6))⊕ L(l3 ⊕ L(l6)⊕ L(l2))⊕ L(l3 ⊕ L(l6)⊕ L(l2)⊕ L(l8))

⊕ L(l3 ⊕ L(l6)⊕ L(l2)⊕ L(l8)⊕ L(l8 ⊕ L(l1))))⊕ (l0 ⊕ L(l3)⊕ L(l3 ⊕ L(l6))

⊕ L(l3 ⊕ L(l6)⊕ L(l2))⊕ L(l3 ⊕ L(l6)⊕ L(l2)⊕ L(l8))),

lk11 = l28 ⊕ l24 = (l24 ⊕ L(l21))⊕ l24 = (l20 ⊕ L(l17)⊕ L(l17 ⊕ L(l14)))⊕ (l20 ⊕ L(l17))

= (l16 ⊕ L(l13)⊕ L(l13 ⊕ L(l10))⊕ L(l13 ⊕ L(l10)⊕ L(l10 ⊕ L(l7))))⊕ (l16 ⊕ L(l13)

⊕ L(l13 ⊕ L(l10)))

= (l12 ⊕ L(l9)⊕ L(l9 ⊕ L(l0))⊕ L(l9 ⊕ L(l0)⊕ L(l0 ⊕ L(l3)))⊕ L(l9 ⊕ L(l0)

⊕ L(l0 ⊕ L(l3))⊕ L(l0 ⊕ L(l3)⊕ L(l3 ⊕ L(l6)))))⊕ (l12 ⊕ L(l9)⊕ L(l9 ⊕ L(l0))

⊕ L(l9 ⊕ L(l0)⊕ L(l0 ⊕ L(l3))))

= (l8 ⊕ L(l1)⊕ L(l1 ⊕ L(l4))⊕ L(l1 ⊕ L(l4)⊕ L(l0))⊕ L(l1 ⊕ L(l4)⊕ L(l0)⊕ L(l0

⊕ L(l3)))⊕ L(l1 ⊕ L(l4)⊕ L(l0)⊕ L(l0 ⊕ L(l3))⊕ L(l0 ⊕ L(l3)⊕ L(l3 ⊕ L(l6)))))

⊕ (l8 ⊕ L(l1)⊕ L(l1 ⊕ L(l4))⊕ L(l1 ⊕ L(l4)⊕ L(l0))⊕ L(l1 ⊕ L(l4)⊕ L(l0)

⊕ L(l0 ⊕ L(l3)))). �

B Proof of Theorem 2

Proof. It is sufficient to expand the algebraic expressions of ki by the state
update constraints.

lk−1 = l1 ⊕ l5,

lk0 = l0 ⊕ l4,

lk1 = l7 ⊕ l3 = (l3 ⊕ L(l6))⊕ l3,

lk2 = l8 ⊕ l2 = (l2 ⊕ L(l5))⊕ l2,

lk3 = l9 ⊕ l1 = (l1 ⊕ L(l4))⊕ l1,

lk4 = l10 ⊕ l0 = (l0 ⊕ L(l3))⊕ l0,

lk5 = l11 ⊕ l7 = (l7 ⊕ L(l2))⊕ l7 = (l3 ⊕ L(l6)⊕ L(l2)⊕ (l3 ⊕ L(l6)),

lk6 = l12 ⊕ l8 = (l8 ⊕ L(l1))⊕ l8 = (l2 ⊕ L(l5)⊕ L(l1)⊕ (l2 ⊕ L(l5)),

lk7 = l13 ⊕ l9 = (l9 ⊕ L(l0))⊕ l9 = (l1 ⊕ L(l4)⊕ L(l0)⊕ (l1 ⊕ L(l4)),

lk8 = l14 ⊕ l10 = (l10 ⊕ L(l7))⊕ l10 = (l0 ⊕ L(l3)⊕ L(l3 ⊕ L(l6)))⊕ (l0 ⊕ L(l3)),

lk9 = l15 ⊕ l11 = (l11 ⊕ L(l8))⊕ l11 = (l7 ⊕ L(l2)⊕ L(l2 ⊕ L(l5)))⊕ (l7 ⊕ L(l2))

= (l3 ⊕ L(l6)⊕ L(l2)⊕ L(l2 ⊕ L(l5)))⊕ (l3 ⊕ L(l6)⊕ L(l2)),

lk10 = l16 ⊕ l12 = (l12 ⊕ L(l9))⊕ l12 = (l8 ⊕ L(l1)⊕ L(l1 ⊕ L(l4)))⊕ (l8 ⊕ L(l1))

= (l2 ⊕ L(l5)⊕ L(l1)⊕ L(l1 ⊕ L(l4)))⊕ (l2 ⊕ L(l5)⊕ L(l1)),

lk11 = l17 ⊕ l13 = (l13 ⊕ L(l10))⊕ l13 = (l9 ⊕ L(l0)⊕ L(l0 ⊕ L(l3)))⊕ (l9 ⊕ L(l0))

= (l1 ⊕ L(l4)⊕ L(l0)⊕ L(l0 ⊕ L(l3)))⊕ (l1 ⊕ L(l4)⊕ L(l0)),

lk12 = l18 ⊕ l14 = (l14 ⊕ L(l11))⊕ l14 = (l10 ⊕ L(l7)⊕ L(l7 ⊕ L(l2)))⊕ (l10 ⊕ L(l7))

= (l0 ⊕ L(l3)⊕ L(l3 ⊕ L(l6))⊕ L(l3 ⊕ L(l6)⊕ L(l2)))⊕ (l0 ⊕ L(l3)

⊕ L(l3 ⊕ L(l6))),

lk13 = l19 ⊕ l15 = (l15 ⊕ L(l12))⊕ l15 = (l11 ⊕ L(l8)⊕ L(l8 ⊕ L(l1)))⊕ (l11 ⊕ L(l8))

= (l7 ⊕ L(l2)⊕ L(l2 ⊕ L(l5))⊕ L(l2 ⊕ L(l5)⊕ L(l1)))⊕ (l7 ⊕ L(l2)

⊕ L(l2 ⊕ L(l5)))

= l3 ⊕ L(l6)⊕ L(l2)⊕ L(l2 ⊕ L(l5))⊕ L(l2 ⊕ L(l5)⊕ L(l1)))⊕ (l3 ⊕ L(l6)⊕ L(l2)

⊕ L(l2 ⊕ L(l5))),

lk14 = l20 ⊕ l16 = (l16 ⊕ L(l13))⊕ l16 = (l12 ⊕ L(l9)⊕ L(l9 ⊕ L(l0)))⊕ (l12 ⊕ L(l9))

= (l8 ⊕ L(l1)⊕ L(l1 ⊕ L(l4))⊕ L(l1 ⊕ L(l4)⊕ L(l0)))⊕ (l8 ⊕ L(l1)

⊕ L(l1 ⊕ L(l4)))

= (l2 ⊕ L(l5)⊕ L(l1)⊕ L(l1 ⊕ L(l4))⊕ L(l1 ⊕ L(l4)⊕ L(l0)))⊕ (l2 ⊕ L(l5)⊕ L(l1)

⊕ L(l1 ⊕ L(l4))),

lk15 = l21 ⊕ l17 = (l17 ⊕ L(l14))⊕ l17 = (l13 ⊕ L(l10)⊕ L(l10 ⊕ L(l7)))⊕ (l13 ⊕ L(l10))

= (l9 ⊕ L(l0)⊕ L(l0 ⊕ L(l3))⊕ L(l0 ⊕ L(l3)⊕ L(l3 ⊕ L(l6))))⊕ (l9 ⊕ L(l0)

⊕ L(l0 ⊕ L(3)))

= (l1 ⊕ L(l4)⊕ L(l0)⊕ L(l0 ⊕ L(l3))⊕ L(l0 ⊕ L(l3)⊕ L(l3 ⊕ L(l6))))⊕ (l1 ⊕ L(l4)

⊕ L(l0)⊕ L(l0 ⊕ L(3))). �

