
Semi-parallel Logistic Regression for GWAS
on Encrypted Data

Miran Kim1, Yongsoo Song2, Baiyu Li3, and Daniele Micciancio3

1 University of Texas, Health Science Center at Houston, Houston, USA
Miran.Kim@uth.tmc.edu

2 Microsoft Research, Redmond, USA
Yongsoo.Song@microsoft.com

3 University of California, San Diego, USA
{baiyu,daniele}@cs.ucsd.edu

Abstract. The sharing of biomedical data is crucial to enable scientific discoveries across institu-
tions and improve health care. For example, genome-wide association studies (GWAS) based on a
large number of samples can identify disease-causing genetic variants. The privacy concern, how-
ever, has become a major hurdle for data management and utilization. Homomorphic encryption
is one of the most powerful cryptographic primitives which can address the privacy and security
issues. It supports the computation on encrypted data, so that we can aggregate data and per-
form an arbitrary computation on an untrusted cloud environment without the leakage of sensitive
information.
This paper presents a secure outsourcing solution to assess logistic regression models for quantitative
traits to test their associations with genotypes. We adapt the semi-parallel training method by Siko-
rska et al., which builds a logistic regression model for covariates, followed by one-step parallelizable
regressions on all individual single nucleotide polymorphisms (SNPs). In addition, we modify our
underlying approximate homomorphic encryption scheme for performance improvement.
We evaluated the performance of our solution through experiments on real-world dataset. It achieves
the best performance of homomorphic encryption system for GWAS analysis in terms of both com-
plexity and accuracy. For example, given a dataset consisting of 245 samples, each of which has
10643 SNPs and 3 covariates, our algorithm takes about 43 seconds to perform logistic regres-
sion based genome wide association analysis over encryption. We demonstrate the feasibility and
scalability of our solution.

Keywords: Homomorphic encryption · Genome-wide association studies · Logistic regression.

1 Introduction

Since National Institutes of Health (NIH) released the Gemonic Data Sharing policy allowing the use
of cloud computing services for storage and analysis of controlled-access data [1], we are getting more
challenge to ensure security and privacy of data in cloud computing systems. In the United States,
the Health Insurance Portability and Accountability Act regulates medical care data sharing [28]. A
community effort has been made to protect the privacy of genomic data, for example, iDASH (integrating
Data for Analysis, Anonymization, Sharing) has hosted secure genome analysis competition for the past
5 years. This contest has encouraged cryptography experts to develop practical yet rigorous solutions
for privacy preserving genomic data analysis. As a result, we could demonstrate the feasibility of secure
genome data analysis using various cryptographic primitives such as homomorphic encryption (HE),
differential privacy, multi-party computation, and software guard extension. In particular, HE has emerged
as one of the promising solutions for secure outsourced computation over genomic data in practical
biomedical applications [12, 20, 21, 4].

In this work, we provide a solution for the second track of iDASH 2018 competition, which aims
to develop a method for outsourcing computation of Genome Wide Association Studies (GWAS) on
homomorphically encrypted data. We propose a practical protocol to assess logistic regression model to
compute p-values of different single nucleotide polymorphisms (SNPs). We investigate the association of

genotypes and phenotypes by adjusting the models on the basis of covariates. The results will be used
for identifying genetic variants that are statistically correlated with phenotypes of interest.

In iDASH 2017 competition, participants of the third task were challenged to train a single logistic
regression model on encrypted data. Although significant performance improvements over existing solu-
tions have been demonstrated [19, 8], it is still computationally intensive to perform logistic regression
based GWAS. A straightforward implementation would require building one model for each SNP, in-
curring a high performance overhead of secure computation. This motivates the use of the semi-parallel
algorithm, which was previously discussed in [26, 27]. Following the approach, our algorithm proceeds in
two steps over encrypted data: (1) construct a logistic regression model by applying the gradient descent
method of [19] while taking only the covariates into account, (2) compute the regression parameters of
logistic regression corresponding to SNPs with one additional update of Newtons method. The model in
the first step can be computed very efficiently and can be used for all SNPs in the subsequent step. In
the second step, we apply various techniques to enable computing the logistic regression updates for all
SNPs in many parallel sub-steps. This approach enables us to obtain logistic regression based models for
thousands of SNPs all in one.

Our solution is based on a homomorphic scheme by Cheon et al. [9] with support for approximate
fixed-point arithmetic over the real numbers. Recently, a significant performance improvement was made
in [8] based on the Residue Number System (RNS). The authors modified homomorphic operations so
that they do not require any expensive RNS conversions. In this paper, we propose another RNS variant
of approximate HE scheme which has some advantages for this task. Specifically, we adapt a different key-
switching method which is a core operation in homomorphic multiplication or permutation. The earlier
studies [9, 8] were based on the key-switching technique of [16] which introduces a special modulus. A
special modulus had approximately the same bit-size as a ciphertext modulus to reduce the noise of key-
switching procedure, but we observed that it is not the best option when the depth of an HE scheme is
small. Instead, we combine the special modulus technique with RNS-friendly decomposition method [3].
As a result, we could minimize the parameter and thereby improve the performance while guaranteeing
the same security level. We further leverage efficient packing techniques and parallelization approaches
to reduce the storage requirement and running time.

Related Works. There are a number of recent research articles on HE-based machine learning applications.
Kim et al. presented the first secure outsourcing method to train a logistic regression model on encrypted
data [22] and the follow-up showed remarkably good performance with real data [19, 8]. For example,
the training of a logistic regression model took about 3.6 minutes on encrypted data consisting of 1579
samples and 18 features. A slightly different approach is taken in [7], where the authors use Gentry’s
bootstrapping technique in fully homomorphic encryption, so that their solution can run for an arbitrary
number of iterations of gradient descent algorithm.

2 Background

The binary logarithm will be simply denoted by log(·). We denote vectors in bold, e.g. a, and matrices
in upper-case bold, e.g. A. For an n ×m matrix A, we use Ai to denote the i-th row of A, and aj the
j-th column of A. For a d1 × d matrix A1 and a d2 × d matrix A2, (A1;A2) denotes the (d1 + d2) × d
matrix obtained by concatenating two matrices in a vertical direction. If two matrices A1 and A2 have
the same number of rows, (A1|A2) denotes a matrix formed by horizontal concatenation. We let λ denote
the security parameter throughout the paper: all known valid attacks against the cryptographic scheme
under scope should take Ω(2λ) bit operations.

2.1 Logistic Regression

Logistic regression is a widely used statistical model when the response variable is categorical with two
possible outcomes [13]. In particular, it is very popular in biomedical informatics research and serve as
the foundation of many risk calculators [29, 15, 18].

Let the observed phenotype be given as a vector y ∈ {±1}n of length n, the states of p many SNPs
as the n × p matrix S, and the states of k many covariates as the n × k matrix X. Suppose that an
intercept is included in the matrix of covariates, that is, X contains a column of ones. For convenience,
let ui = (Xi, sij) ∈ Rk+1 for i = 1, . . . , n. For each j ∈ [p], logistic regression aims to find an optimal
vector β ∈ Rk+1 which maximizes the likelihood estimator

n∏
i=1

Pr[yi|ui] =

n∏
i=1

σ(−yi · uTi β),

where σ(x) = 1/(1 + exp(−x)) is the sigmoid function, or equivalently minimizes the loss function, defined
as the negative log-likelihood:

L(β) =
1

n

n∑
i=1

log(1 + exp(−yi · uTi β)).

Note that β = (βX|βj) depends on the index j, and we are particularly interested in the last component
βj that corresponds to the j-th SNP.

There is no closed form formula for the regression coefficients that minimizes the loss function. Instead,
we employ an iterative process: we begin with some initial guess for the parameters and then repeatedly
update them to make the loss smaller until the process converges. Specifically, the gradient descent (GD)
takes a step in the direction of the steepest decrease of L. The method of GD can face a problem of
zig-zagging along a local optima and this behavior of the method becomes typical if it increases the
number of variables of an objective function. We can employ Nesterov’s accelerated gradient [23] to
address this phenomenon, which uses moving average on the update vector and evaluates the gradient at
this looked-ahead position.

2.2 Newton’s Method

We can alternatively use Newton algorithm to estimate parameters [24]. It can be achieved by calculating
the first and the second derivatives of the loss function, followed by the update:

β ← β − (∇2
βL(β))−1 · ∇βL(β).

Let pi = σ(uTi β) for i ∈ [n]; then pi represents the probability of success for each sample. We see that

∇βL(β) = UT (y − p),

∇2
βL(β) = −UTWU, (1)

where U is an n × (k + 1) regressor matrix whose i-th row contains the variables ui, p = (pi)
n
i=1 is a

column vector of the estimated probabilities pi, and W is a diagonal weighting matrix with elements
wi = pi(1− pi). Then the above update formula can be rewritten as

β ← (UTWU)−1 ·UTW · (Uβ + W−1(y − p))

= (UTWU)−1 ·UTWz (2)

where z = Uβ + W−1(y− p). Here, the vector z is known as the working response. This method is also
called Iteratively Reweighted Least Squares. More details can be found in [24]. On the other hand, the
Fisher information UTWU can be partitioned into a block form:

A b

bT c

k

1

k 1

where A = XTWX, sj = (sij)
n
i=1 is a column vector of all samples of the j-th SNP, b = XTWsj , and

c = sTj Wsj . Then the inverse of UTWU is
∗ ∗

− 1
tb

TA−1 1
t

where t = c − bTA−1b. Therefore, the estimated SNP effect βj and the variance for the estimation are
computed by

βj = −1

t
· (bTA−1) · (XTWz) +

1

t
· (sTj Wz)

=
|A| · sTj Wz− bT · adj(A) · (XTWz)

|A| · c− bT · adj(A) · b
, (3)

varj =
1

c− bT ·A−1 · b
, (4)

where adj(A) denotes the adjugate matrix and |A| the determinant of A.

3 Full RNS Variant of HEAAN, Revisited

In this paper, we apply the full RNS variant of the CKKS scheme [9], called RNS-CKKS [8], for efficient
arithmetic over the real numbers. In addition, we modify some algorithms to meet our goals.

The previous RNS-CKKS scheme uses some approximate modulus switching algorithms for the key-
switching procedure. The evaluation key should have a much larger modulus compared to encrypted data
due to multiplicative noise. In this work, we developed and implemented a new key-switching algorithm
which provides a trade-off between complexity and parameter. Our new key-switching process requires
more Number Theoretic Transformation (NTT) conversions, but the HE parameters such as the ring
dimension N can be reduced while keeping the same security level. In particular, our method is more
efficient than the previous one when the depth of a circuit to be evaluated is small.

The following is a simple description of RNS-CKKS based on the ring learning with errors (RLWE)
problem. Let R = Z[X]/(XN + 1) be a cyclotomic ring for a power-of-two integer N . An ordinary
ciphertext of RNS-CKKS can be represented as a linear polynomial c(Y) = c0 + c1 · Y over the ring RQ
where Q denotes the ciphertext modulus and RQ = R (mod Q) is the residue ring modulo Q.

• Setup(q, L, η; 1λ). Given a base integer module q, a maximum level L of computation, a bit precision
η, and a security parameter λ, the Setup algorithm generates the following parameters:

- Choose a basis D = {p0, q0, q1, . . . , qL} such that qi/q ∈ (1 − 2−η, 1 + 2−η) for 1 ≤ i ≤ L. We write

Q` =
∏`
i=0 qi for 0 ≤ ` ≤ L.

- Choose a power-of-two integer N .
- Choose a secret key distribution χkey, an encryption key distribution χenc, and an error distribution
χerr over R.

We always use the RNS form with respect to the basis {p0, q0, . . . , q`} (or its sub-basis) to rep-
resent polynomials in our scheme. For example, an element a(X) of RQ`

is identified with the tuple

(a0, a1, . . . , a`) ∈
∏`
i=0Rqi where ai = a (mod qi). We point out that all algorithms in our scheme are

RNS-friendly, so that we do not have to perform any RNS conversions.
The main difference of our scheme from previous work [8] is that the key-switching procedure is based

on both the decomposition and modulus raising techniques. The use of decomposition allows us to use a
smaller parameter, but its complexity may be increased when the level of HE scheme is large. However,
we realize that the GWAS analysis does not require a huge depth, so this new key-switching technique

is beneficial to obtain a better performance in this specific application. The generation of switching key
and key-switching algorithms are described as follows.

• KSGen(s1, s2). Given two secret polynomials s1, s2 ∈ R, sample ãi(X)← U(Rp0·QL
) and errors ẽi ← χerr

for 0 ≤ i ≤ L. Output the switching key

swk = {swki = (b̃i, ãi)}0≤i≤L ∈
(
R2
p0QL

)L+1

where b̃i = −ãi · s2 + ẽi + p0Bi · s1 (mod p0 ·QL) for the integer Bi ∈ ZQL
such that Bi = 1 (mod qi)

and Bi = 0 (mod qj) for all j 6= i.

• KeySwitchswk(ct). For ct = (c0, c1) ∈ R2
Q`

, let c1,i = c1 (mod qi) for 0 ≤ i ≤ `. We first compute

c̃t =
∑`
i=0 c1,i · swki (mod p0Q`), and then return the ciphertext ct′ = (c0, 0) + bp−10 · c̃te (mod Q`).

The idea of key-switching procedure is used to relinearize a ciphertext in homomorphic multiplication
algorithm below. All other algorithms including key generation, encryption and decryption are exactly
same as the previous RNS-based scheme.

• KeyGen(1λ).

- Sample s← χkey and set the secret key as sk = (1, s).
- Sample a← U(RQL

) and e← χerr. Set the public key pk as pk = (b, a) ∈ R2
QL

where b = −a · s+ e
(mod QL).

- Set the evaluation key as evk← KSGen(s2, s).

• Encpk(m). Given m ∈ R, sample v ← χenc and e0, e1 ← χerr. Output the ciphertext ct = v · pk + (m+

e0, e1) (mod QL).

• Decsk(ct). Given ciphertext ct = (ctj)0≤j≤` ∈ R2
Q`

, output 〈ct0, sk〉 (mod q0).

• Add(ct, ct′). Given two ciphertexts ct, ct′ ∈ R2
Q`

, output the ciphertext ctadd = ct + ct′ (mod Q`).

• Multevk(ct, ct
′). For two ciphertexts ct = (c0, c1) and ct′ = (c′0, c

′
1), compute d0 = c0c

′
0, d1 = c0c

′
1 +

c′0c1, d2 = c1c
′
1 (mod Q`). Let c2,i = d2 (mod qi) for 0 ≤ i ≤ `, and compute c̃t =

∑`
i=0 c2,i · evki

(mod p0Q`). Output the ciphertext ct′ = (c0, c1) + bp−10 · c̃te (mod Q`).

Finally, RNS-CKKS provides the rescaling operation to round messages over encryption, thereby en-
abling to control the magnitude of messages during computation.

• ReScale(ct). For given ct ∈ R2
Q`

, return the ciphertext ct′ = bq−1` · cte (mod Q`−1).

It is a common practice to rescale the encrypted message after each multiplication as we round-off the
significant digits after multiplication in plain fixed/floating point computation. In the next section, we
assume that the rescaling procedure is included in homomorphic multiplications for simpler description,
but a rigorous analysis about level consumption will be provided later in the parameter setting section.

As in the original CKKS scheme, the native plaintext space can be understood as an N/2-dimensional
complex vector space (each vector component is called a plaintext slot). Addition and multiplication in
R correspond to component-wise addition and multiplication on plaintext slots. Furthermore, it provides
an operation that shifts the plaintext vector over encryption. For a ciphertext ct encrypting a plaintext
vector (m1, . . . ,m`) ∈ R`, we could obtain an encryption of a shifted vector (mr+1, . . . ,m`,m1, . . . ,mr).
Let us denote such operation by Rot(ct; r). For more detail, we refer the reader to [8]. In the rest of this
paper, we let N2 = N/2 and denote by E(·) the encryption function for convenience.

4 Our Method

4.1 Database Encoding

As noted before, the learning data are recorded into an n × k matrix X of covariates, an n × p binary
matrix S = (sij) of all the SNP data, and an n-dimensional binary column vector y of the dependent

variable. In large-scale GWAS, the number of parameters of SNPs, p can be in the thousands, so we split
the SNP data into several N2-dimensional vectors, encrypt them, and send the resulting ciphertexts to
the server. For simplicity, we assume in the following discussion that each row of S is encrypted into a
single ciphertext. More specifically, for 1 ≤ i ≤ n and for 1 ≤ ` ≤ k, we encrypt

E(xi`Si) = E(xi`si1, . . . , xi`sip).

As mentioned before, we add a column of ones to X to allow for an intercept in the regression; that is,
we assume xi1 = 1 for all 1 ≤ i ≤ n. So, when ` = 1, the ciphertext E(xi1Si) encrypts exactly the i-th
SNP sample.

Next, consider the matrix yTX ∈ Rn×k defined as

yTX =
[
y1X1; · · · ; ynXn

]
=


y1x11 y1x12 · · · y1x1k
y2x21 y2x22 · · · y2x2k

...
...

. . .
...

ynxn1 ynxn2 · · · ynxnk

 .
For simplicity, we assume that n and k are power-of-two integers satisfying log n+ log k ≤ log(N2). Kim
et al. [19] suggested an efficient encoding map to encode the whole matrix yTX in a single ciphertext in
a row-by-row manner. Specifically, we will identify this matrix with a vector in Rn·k, that is,

yTX 7→ (y1X1| · · · |ynXn)

= (y1x11, . . . , y1x1k, . . . , ynxn1, . . . , ynxnk).

Similarly, we identify the matrix X with a vector in Rn·k as follows:

X 7→ (X1| · · · |Xn)

= (x11, . . . , x1k, . . . , xn1, . . . , xnk).

For an efficient implementation, we can make N2/(k · n) copies of each component of yTX and X to
encode them into fully packed plaintext slots. For example, we can generate the encryption of yTX as

E(yTX) = E
(
y1X

(N2/(k·n))
1 | · · · |ynX(N2/(k·n))

n

)
,

where yiX
(N2/(k·n))
i denotes an array containing N2/(k ·n) copies of yiXi. In the case of the target vector

y, we make N2/n copies of each entry, so that the encoding aligns yi with each copies of yiXi and Xi in
the ciphertexts. Let us denote the generated ciphertext by E(y).

Finally, we now consider how to encrypt the covariance matrix XTX which can be used for computing
the adjugate matrix and determinant of A = XTWX. The adjugate adj(A) is a k × k matrix whose

entries are defined as adj(A)j` := (−1)j+` · |Â`j | for 1 ≤ j, ` ≤ k, where |Â`j | is the determinant of Â`j .

Here, Â`j is a (k − 1) × (k − 1) sub-matrix obtained by removing the j-th column and `-th row from

A. For example, when k = 4, the determinant |Â11| is computed by a22(a33a44 − a34a43) + a23(a34a42 −
a32a44) + a24(a32a43 − a33a42), which can be rewritten as a component-wise product of three vectors

A1,1,1 = (a22,−a22, a23,−a23, a24,−a24),

A1,1,2 = (a33,−a34, a34,−a32, a32,−a33),

A1,1,3 = (a44,−a43, a42,−a44, a43,−a42).

In general, we can consider (k − 1)!-dimensional vectors Aj,`,1,Aj,`,2, . . . ,Aj,`,(k−1) that can be used to

compute |Â`j |. To do so, for each i ∈ [n], we first pre-compute the i-th covariance matrix XT
i Xi ∈ Rk×k

and generate the corresponding vector (XT
i Xi)j,`,t for 1 ≤ j ≤ ` ≤ k and 1 ≤ t ≤ k − 1. Suppose that

N2 ≥ n · (k − 1)!. Let φ = N2/(n · (k − 1)!), and we encrypt the following concatenated vector

Σj,`,t =
(

(XT
1 X1)

(φ)
j,`,t | . . . |(X

T
nXn)

(φ)
j,`,t

)
.

We denote the resulting ciphertext by E(Σj,`,t).

An alternative choice is to encrypt SNPs, covariates, and phenotype vectors in a separate way. The
server can reconstruct the aforementioned encryptions by applying homomorphic operations, but it re-
quires additional levels for the computation. So, we used the former encryption algorithm in the imple-
mentation, thereby saving on the depth and time in the evaluation. Our encoding system has another
advantage, in that it can be applied to horizontally partitioned data where each party has a subset of
the rows in dataset. In this case, each party encrypts their locally computed quantities on their data and
sends them to the server. Then the server aggregates them to obtain encryptions of the shared data as
the ones in our encryption method.

4.2 Homomorphic Evaluation of Logistic Regression

The main idea of the semi-parallel logistic regression analysis [26, 27] is to assume that the probabilities
predicted by a model without SNP will not change much once SNP is included to the model. We will
follow their approach, where the first step is to construct a logistic regression model taking only the
covariates into account, and the second step is to compute the model coefficients of the logistic regression
corresponding to the SNP in a semi-parallel way.

We start with a useful aggregation operation across plaintext slots from the literature [17, 10, 11].
This algorithm is referred as AllSum, which is parameterized by integers ψ and α. See Algorithm 1 for an
implementation. Let ` = ψ ·α. Given a ciphertext ct representing a plaintext vector m = (m1, . . . ,m`) ∈
R`, the AllSum algorithm outputs a ciphertext ct′ encrypting

m′ = (

α−1∑
j=0

mψj+1,

α−1∑
j=0

mψj+2, . . .

α−1∑
j=0

mψ(j+1),

α−1∑
j=0

mψj+1,

α−1∑
j=0

mψj+2, . . .

α−1∑
j=0

mψ(j+1), . . .),

i.e., m′i =
∑α−1
j=0 mψj+i for 1 ≤ i ≤ ψ, and m′ψj+i = m′i for 1 ≤ j ≤ α − 1. For example, when ψ = 1, it

returns an encryption of the sum of the elements of m.

As mentioned before, our algorithm consists of two steps to perform the semi-parallel logistic regression
training while taking as input the following ciphertexts: {E(xi`Si)}, E(yTX), E(X), E(y), and {E(Σj,`,t)},
for 1 ≤ i ≤ n, 1 ≤ j ≤ ` ≤ k, and 1 ≤ t ≤ k − 1.

Algorithm 1 AllSum(ct, ψ, α)

Input: ct, input ciphertext, the unit initial amount by which the ciphertext shifts ψ, the number of
summands α

1: for i = 0, 1, . . . , logα− 1 do
2: Compute ct← Add(ct,Rot(ct;ψ · 2i))
3: end for
4: return ct

4.2.1 Logistic Regression Model Training for Covariates

The best solution to train a logistic regression model from homomorphically encrypted dataset is to
evaluate Nesterov’s accelerated gradient descent method [19, 8]. We adapt their evaluation strategy to
train a model for covariates.

Step 0: For simplicity, let vi = yiXi and ` = N2/(k · n). Since the input ciphertext E(yTX) represents `
copies of vi, Step 6 in [19] outputs the following ciphertext that encrypts the same number of copies of
the vectors σ(vTi βX) · vi:

ct6 = E



σ3(vT1 βX) · v11 · · · σ3(vT1 βX) · v1k
...

. . .
...

σ3(vT1 βX) · v11 · · · σ3(vT1 βX) · v1k
...

. . .
...

σ3(vTnβX) · vn1 · · · σ3(vTnβX) · vnk
...

. . .
...

σ3(vTnβX) · vn1 · · · σ3(vTnβX) · vnk


.

Then Step 7 in [19] is changed from AllSum(ct6, k, n) into ct7 = AllSum(ct6, N2/n, n), so that the output
ciphertext is as follows:

ct7 = E


∑
i σ3(vTi βX) · vi1 · · ·

∑
i σ3(vTi βX) · vik∑

i σ3(vTi βX) · vi1 · · ·
∑
i σ3(vTi βX) · vik

...
. . .

...∑
i σ3(vTi βX) · vi1 · · ·

∑
i σ3(vTi βX) · vik

 .
In the end, the model parameters βX are encrypted as a ciphertext with fully-packed plaintext slots.
More precisely, it yields encrypted model parameters E(βX) that represent a plaintext vector containing
N2/k = ` · n copies of βX as follows:

E(βX) =


βX1 βX2 · · · βXk
βX1 βX2 · · · βXk

...
...

. . .
...

βX1 βX2 · · · βXk

 .

4.2.2 Parallel Logistic Regression Model Building for SNPs

Starting with β = (βX, 0) ∈ Rk+1, we will perform one step of Newton’s method for regression with SNPs.
This implies that the regression coefficients multiplied by the values of the predictor are Uβ = XβX, so
for all i ∈ [n], if we let the predicted value be ŷi = uTi β, then we have ŷi = xTi βX. We note that

(Wz)i = wi · zi

= pi(1− pi) ·
(
ŷi +

yi − pi
pi · (1− pi)

)
= pi(1− pi) · ŷi + (yi − pi). (5)

with pi = σ(ŷi). In the following, we describe how to securely evaluate these variables from the model
parameters βX. In the end, the server outputs encryptions of the numerator and the denominator of

Equation (3), denoted by β?j and β†j .

Step 1: Let ŷ = (ŷi)
n
i=1 be a column vector of the predicted values. The goal of this step is to generate

its encryption. The server first performs homomorphic multiplication between two ciphertexts E(βX) and
E(X), and then applies AllSum to the resulting ciphertext:

E(ŷ?)← AllSum(E(βX) · E(X), 1, k). (6)

The output ciphertext E(ŷ?) encrypts the values ŷi at (t · k + 1) positions for (i − 1) · ` ≤ t < i · ` and
some garbage values in the other entries, denoted by ?, i.e.,

E(ŷ?) = E



ŷ1 ? · · · ?
...

...
. . .

...
ŷ1 ? · · · ?
...

...
. . .

...
ŷn ? · · · ?
...

...
. . .

...
ŷn ? · · · ?


.

The server then performs a constant multiplication by c to annihilate the garbage values. The polynomial
c ← Encode(C) is the encoding of the following matrix, where Encode(·) is a standard procedure in [9]
to encode a real vector as a ring element in R:

C =


1 0 · · · 0
1 0 · · · 0
...

...
. . .

...
1 0 · · · 0

 .
The next step is to replicate the values ŷi to other columns:

E(ŷ)← AllSum(CMult(E(ŷ?); c),−1, k),

denoted by CMult(·) a scalar multiplication. So, the output ciphertext E(ŷ) has N2/n = ` · k copies of
ŷi:

E(ŷ) = E



ŷ1 ŷ1 · · · ŷ1
...

...
. . .

...
ŷ1 ŷ1 · · · ŷ1
...

...
. . .

...
ŷn ŷn · · · ŷn
...

...
. . .

...
ŷn ŷn · · · ŷn


.

Step 2: This step is simply to evaluate the approximating polynomial of the sigmoid function by applying
the pure SIMD additions and multiplications:

E(p)← σ3(E(ŷ)).

Then the server securely computes the weights wi and carries out their multiplication with the working
response vector z using Equation (5):

E(w)← E(p) · (1− E(p)),

E(Wz)← E(w) · E(ŷ) + (E(y)− E(p)). (7)

Here the two output ciphertexts containing N2/n copies of the values wi and wizi, respectively:

E(w) = E



w1 w1 · · · w1
...

...
. . .

...
w1 w1 · · · w1
...

...
. . .

...
wn wn · · · wn
...

...
. . .

...
wn wn · · · wn


, E(Wz) = E



w1z1 w1z1 · · · w1z1
...

...
. . .

...
w1z1 w1z1 · · · w1z1

...
...

. . .
...

wnzn wnzn · · · wnzn
...

...
. . .

...
wnzn wnzn · · · wnzn


.

Step 3: The goal of this step is to generate trivial encryptions E(wi) such that for i ∈ [n], E(wi) has wi
in all positions of its plaintext vector. We employ the hybrid algorithm of [17] for replication, denoted by
Replicate(·). The server outputs n ciphertexts

{E(wi)}1≤i≤n ← Replicate(E(w)).

Similarly, the server takes the ciphertext E(Wz) and performs another replication operation:

{E(wizi)}1≤i≤n ← Replicate(E(Wz)).

Step 4: For all j ∈ [p], we define the vector bj = XTWsj ∈ Rk and denote the `-th component of bj
by bj`. We note that bj` = xT` Wsj =

∑n
i=1(xi` · wi · sij), where x` = (xi`)

n
i=1 is the j-th column of the

design matrix X. Then, for all ` ∈ [k], the server generates encryptions of the vectors B` = xT` WS =
(b1`, b2`, . . . , bp`) by computing

E(B`)←
n∑
i=1

E(wi) · E(xi`Si). (8)

On the other hand, since we add a column of ones to the matrix X, we have cj = sTj Wsj =
∑n
i=1 wi ·sij =∑n

i=1 xi1 · wi · sij = b1j for j ∈ [p], which implies that E(B1) can be understood as an encryption of
(c1, c2, . . . , cp).

Step 5: This step is to securely compute the values sTj Wz =
∑n
i=1 sij ·wi · zi for j ∈ [p]. Specifically, the

server performs the following computation:

E(sT1 Wz, . . . , sTpWz)←
n∑
i=1

E(wizi) · E(xi1Si). (9)

Step 6: The goal of this step is to securely compute the vector XTWz such that the `-th element is
obtained by xT` Wz =

∑n
i=1(xi` ·wi ·zi) for ` ∈ [k]. The server first performs the pure SIMD multiplication

between two ciphertexts E(X) and E(Wz):

E(X�Wz)← E(X) · E(Wz). (10)

Here, the output ciphertext E(X�Wz) encrypts the values xi`wizi:

E(X�Wz) = E



x11w1z1 x12w1z1 · · · x1kw1z1
...

...
. . .

...
x11w1z1 x12w1z1 · · · x1kw1z1

...
...

. . .
...

xn1wnzn xn2wnzn · · · xnkwnzn
...

...
. . .

...
xn1wnzn xn2wnzn · · · xnkwnzn


.

Then the server aggregates the values in the same column to obtain a ciphertext encrypting xT` Wz:

E(XTWz)← AllSum(E(X�Wz)), N2/(k · n), n).

Notice that this ciphertext contains the scalar xT` Wz in every entry of the `-th column, for 1 ≤ ` ≤ k:

E(XTWz) = E


xT1 Wz xT2 Wz · · · xTkWz

xT1 Wz xT2 Wz · · · xTkWz
...

...
. . .

...

xT1 Wz xT2 Wz · · · xTkWz

 .

Finally, it outputs k ciphertexts, each encrypting xT` Wz for 1 ≤ ` ≤ k, by applying the replication
operation as follows:

{E(xT` Wz)}1≤`≤k ← Replicate(E(XTWz)).

Step 7: The goal of this step is to compute the encryptions of the adjugate matrix and the determinant
of A = XTWX. We note that

Ar,s,t = (

n∑
i=1

wi ·XT
i Xi)r,s,t =

n∑
i=1

wi · (XT
i Xi)r,s,t

for 1 ≤ r ≤ s ≤ k and 1 ≤ t ≤ k − 1. The server first multiplies the ciphertexts E(Σr,s,t) with the
ciphertext E(w) to obtain

E(Σ′r,s,t)← E(w) · E(Σr,s,t). (11)

Here, the ciphertext E(Σ′r,s,t) encrypts n vectors wi · (XT
i Xi)r,s,t for 1 ≤ i ≤ n. Then we apply AllSum

to aggregate these vectors and obtain Ar,s,t:

E(Ar,s,t)← AllSum(E(Σ′r,s,t), φ, n).

Next, the server performs multiplications between the ciphertexts E(Ar,s,t) as follows:

E(Σr,s)←
k−1∏
t=1

E(Ar,s,t). (12)

The adjugate matrix can be obtained by aggregating (k − 1)! many values in E(Σr,s):

E(adj(A)r,s)← AllSum(E(Σr,s), 1, (k − 1)!).

In addition, the server computes

E(x1rW)← AllSum(E(x1r) · E(w), N2/n, n)

for 1 ≤ r ≤ k, and obtains a trivial encryption of the determinant of A as follows:

E(|A|)←
k∑
r=1

E(x1rW) · E(adj(A)1r).

Step 8: The final step is to securely compute the encryptions of β∗ and β† by pure SIMD additions and
multiplications. We note that multiplication of the vectors Bj from the left side and XTWz from the
right side with the matrix adj(A) can be written as

BT
j · adj(A) · (XTWz) =

k∑
r,s=1

bjr · (adj(A))r,s · (XTWz)s.

So, the server evaluates the numerator of Equation (3) to get the encryption of β∗:

E(β∗)← E(|A|) · E(sT1 Wz, . . . , sTpWz)−
k∑

r,s=1

E(Br) · E(adj(A)rs) · E(xTsWz). (13)

Then the output ciphertext E(β∗) encrypts the values β∗j ’s in a way that E(β∗) = E(β∗1 , β
∗
2 , . . . , β

∗
p).

Similarly, we evaluate the denominator of Equation (3) to get an encryption of β†:

E(β†)← E(|A|) · E(c1, c2, . . . , cp) −
k∑

r,s=1

E(Br) · E(adj(A)rs) · E(Bs). (14)

Hence, the output ciphertext E(β†) represents the values β†j in a way that E(β†) = E(β†1, β
†
2, . . . , β

†
p).

4.2.3 Output Reconstruction

The server sends the resulting ciphertexts E(β∗), E(β†), and E(|A|) to the authority who has the secret
key of the underlying HE scheme. Afterwards, the authority decrypts the values and computes the test
statistics by using the Wald z-test, which are defined by the coefficient estimates divided by the standard

errors of the parameters: βj/
√
varj = β∗j /

√
|A| · β†j for all j ∈ [p]. In the end, the p-values can be obtained

from the definition 2 · pnorm(|βj |/
√
varj).

It includes some post computations after decryption, however, we believe that this is a reasonable
assumption for the following reasons. Its complexity is even less than that of decryption, so this process
does not require any stronger condition on the computing power of the secret key owner. Meanwhile, the
output ciphertexts are encrypting (2p+ 1) scalar values, which is two times more information compared
to the ideal case. Our solution relies on the heuristic assumption that no sensitive information beyond
the desired p-values can be extracted from decrypted results. One alternative is that the server can use a
masking (sampling random values r∗j , r

†
j , rA such that r∗j

2 = r†j · rA and multiplying them to β∗j , β
†
j and

|A|, respectively) on resulting ciphertexts before sending them to the secret key owner to weaken this
assumption.

4.3 Threat Model

We consider the following threat models. Firstly, we assume that the computing server is semi-honest
(i.e., honest but curious). If we can ensure the semantic security of the underlying HE scheme, there is no
information leakage from encrypted data even in malicious setting. Secondly, we assume that the secret
key owner does not collude with the server.

5 Results

In this section, we explain how to set the parameters and report the performance of our regression
algorithms.

5.1 Dataset Description

The dataset provided by the iDASH competition organizers consists of 245 samples, partitioned into two
groups by the condition of high cholesterol, 137 under control group and 108 under disease group. Each
sample contains a binary phenotype along with 10643 SNPs and 3 covariates (age, weight, and height).
This data was extracted from Personal Genome Project [2]. The organizers changed the input size in
terms of SNPs, cohort size, and threshold of significance to test the scalability of submitted solutions.

We may assume that the imputation and normalization are done in the clear prior to encryption.
More precisely, we impute the missing covariate values with the sample mean of the observed covariates.
We also center the covariates matrix X by subtracting the minimum from each column and dividing by
a quantity proportional to the range.

5.2 Parameters Settings

We explain how to choose the parameter sets for building secure semi-parallel logistic regression model.
We begin with a parameter L which determines the largest bitsize of a fresh ciphertext modulus. Since
the plaintext space is a vector space of real numbers, we multiply a scale factor of p to plaintexts before
encryption. It is a common practice to perform the rescaling operation by a factor of p on ciphertexts
after each (constant) multiplication in order to preserve the precision of the plaintexts. This means that
a ciphertext modulus is reduced by log p bits after each multiplication or we can say that a multiplication
operation consumes one level.

Kim et al. [22] proposed the least squares approach to find a global polynomial approximation of the
sigmoid and presented degree 3, 5, and 7 approximation polynomial over the domain [−8, 8]. We observed

that input values of the sigmoid in our data belong to this interval. As noted in [22], these approximations
offer a trade-off between accuracy and efficiency. A low-degree polynomial requires a smaller depth for an
evaluation while a high-degree polynomial has a better precision. So, we adapt the degree 3 approximation
polynomials of the sigmoid function as σ3(x) = 0.5 + 0.15012x − 0.001593x3, which consumes roughly
two levels.

Suppose that we start with v(0) = β
(0)
X = 0 ∈ Rk and the input ciphertext E(yTX) is at level L.

It follows from the parameter analysis of [19] that the ciphertext level of E(βX) after the evaluation of
Nesterov’s accelerated GD is L−(4·(IterNum−1)+1) where IterNum denotes the number of iterations
of the GD algorithm. Similarly, we expect each of Steps 1 and 2 to consume two levels for computing the
ciphertexts E(ŷ) and E(p). This means that E(p) is at level L− (4 · IterNum + 1); so we get

lvl(E(w)) = L− (4 · IterNum + 2),

lvl(E(Wz)) = L− (4 · IterNum + 3).

We now consider the replication procedure in Step 3. Although the input vector w = (wi)
n
i=1 is fully

packed into a single ciphertext (i.e., the length of the corresponding plaintext vector is N2), it suffices
to produce n number of ciphertexts, each of which represents an entry wi across the entire array. As
presented in Section 4.2 of [17], the replication procedure consists of two phases of computation. The
first phase is to partition the entries in the input vector into size-2s blocks and construct n/2s number of
vectors consisting of the entries in the i-th block with replicated N2/2

s times. We use a simple replication
operation n/2s times, which applies multiplicative masking to extract the entry and then perform the
AllSum operation to replicate them as in Step 1; its depth is just a single constant multiplication. The
second phase is to recursively apply replication operations in a binary tree manner, such that in each
stage we double the number of vectors while halving the number of distinct values in each vector; its
depth is s constant multiplications. In total, we expect to consume (s + 1) levels during the replication
procedure; so, we get

lvl(E(wi)) = L− (4 · IterNum + s+ 3),

lvl(E(wizi)) = L− (4 · IterNum + s+ 4).

Later, Step 4 consumes one level from the level lvl(E(wi)) for multiplication; so, we have

lvl(E(B`)) = L− (4 · IterNum + s+ 4). (15)

Similarly, Step 5 consumes one more level from the computation of E(wizi); so we get

lvl(E(sT1 Wz, . . . , sTpWz)) = L− (4 · IterNum + s+ 5).

On the other hand, Step 6 requires one level of multiplication for the evaluation of the update formula (10);
so we know

lvl(E(X�Wz)) = lvl(E(Wz))− 1 = L− (4 · IterNum + 4).

As discussed above, the output ciphertexts E(xT` Wz) consume (s′ + 1) levels during the replication

procedure where 2s
′

is the unit block size of the first step of the replication procedure; so we have

E(xT` Wz) = lvl(E(X�Wz))− (s′ + 1) = L− (4 · IterNum + s′ + 5).

In Step 7, it requires one and log(k − 1) levels of multiplications for the evaluation of the update formu-
las (11) and (12), respectively. If we let `′ = max{lvl(E(w)), lvl(E(Σr,s,t))}, then we have

lvl(E(adj(A)rs) = `′ − (1 + log(k − 1)),

lvl(E(|A|)) = `′ − (2 + log(k − 1)).

It follows from the update formulas (13) and (14) that it suffices to set as lvl(E(adj(A)rs)) = lvl(E(B`)) =
3 for obtaining the correct results. This implies that we need to set the number of levels L to be at least
L ≥ (4 · IterNum + s + 4) + 3 from (15). In the implementation, we set IterNum = 2, s = 4, s′ = 0,
and L = 19. The encryption levels of data are set as follows:

– lvl(E(yTX)) = L = 19,
– lvl(E(X)) = lvl(E(βX)) = 14, from (6)
– lvl(E(y)) = lvl(E(p)) = 10, from (7),
– lvl(E(xi`Si)) = lvl(E(wi)) = 4, from (8),
– lvl(E(Σr,s,t)) = lvl(E(adj(A))) + 3 = 6.

We use log p0 ≈ 60, log q0 ≈ 51, and log qi ≈ 43 for i = 1, . . . , L. Therefore, we derive a lower bound of
the bit size of the largest RLWE modulus Q as

logQ = log q0 + (L− 1) · log qi + log p0 ≈ 885.

Alternatively, we may do a few less or more iterations in the GD algorithm, for example, setting
IterNum = 1 or 3. We conducted tests to compare the trade-offs in using different sets of parameters.

We choose the secret key from the ternary distribution, which means to select uniformly at random
from {−1, 0, 1}. The error is sampled from the discrete Gaussian distribution of standard deviation stdev =
3.2. We follow the recommended parameters from the standardization workshop paper [6], thus providing
at least 128-bits security level of our parameters. We summarize the parameters of our implementation
in Table 1. For comparison, we also listed parameters when using IterNum = 1 and 3.

Table 1: HE parameter sets.

IterNum logN L log p log q0 log p0 logQ

Set-I 1 15 15 43 51 60 713
Set-II 2 15 19 43 51 60 885
Set-III 3 16 23 45 54 62 1106

5.3 Optimization Techniques

The standard method of homomorphic multiplication consists of two steps: raw multiplication and key-
switching. The first step computes the product of two ciphertexts ct(Y) = c0 +c1Y and ct′(Y) = c′0 +c′1Y
(as done in [5]), and returns a quadratic polynomial, called extended ciphertext, ctmult = c0c

′
0 + (c0c

′
1 +

c′0c1)Y + c1c
′
1Y

2. This ciphertext can be viewed as an encryption of the product of plaintexts with the
extended secret (1, s, s2). Afterwards, the key-switching procedure transforms it into a normal (linear)
ciphertext encrypting the same message with the secret key (1, s).

We observe that the second step is much more expensive than the first one since it includes an eval-
uation of NTT (Fourier transformation over the modulo space), and that a simple arithmetic (e.g. linear
operation) is allowed between extended ciphertexts. To reduce the complexity, we adapt the technique
called lazy key-switching, which performs some arithmetic over extended ciphertexts instead of running
the second step right after each raw multiplication. We get a normal ciphertext by performing only one
key-switching operation after evaluating linear circuits over the extended ciphertexts. It can reduce the
number of required key-switching algorithms as well as the total computational cost. For instance, if we
add many terms after raw multiplications in the right hand side of the update (8) and apply key-switching
to the output ciphertext, this takes only one key-switching rather than n.

5.4 Performance Results

We present our implementation results using the proposed techniques. All the experiments were performed
on a Macbook with an Intel Core i7 running with 4 cores rated at 2.5 GHz. Our implementation exploits
multiple cores when available, thereby taking the advantages of parallelization.

In Table 2, we evaluated our model’s performance based on the average running time and the memory
usages in the key generation, encryption, evaluation, and decryption procedures.

We achieved very high level of accuracy in the final output (after decryption) for all three sets of
parameters. The type-I (false positive) and type-II (false negative) errors of the output of our solution

Table 2: Experimental results for iDASH dataset with 245 samples, each has 10643 SNPs and 3 covariates
(4 cores). ms=10−3 sec.

Stage Set-I Set-II Set-III

Key Generation 4.460 sec 2.321 GB 6.665 sec 3.584 GB 9.699 sec 10.721 GB

Encryption 7.059 sec 5.406 GB 7.066 sec 6.669 GB 23.023 sec 12.137 GB

Training with covariates 2.622 sec 7.176 GB 9.367 sec 7.186 GB 62.922 sec 12.137 GB

Training with all SNPs 40.442 sec 10.339 GB 42.567 sec 11.176 GB 108.24 sec 12.137 GB

Total evaluation 43.064 sec − 51.934 sec − 171.162 sec −
Decryption 0.025 sec 10.339 GB 0.025 sec 11.176 GB 0.055 sec 12.137 GB

Reconstruction 0.794 ms 10.339 GB 0.794 ms 11.176 GB 2.821 ms 12.137 GB

Fig. 1: Comparison with the semi-parallel
model (p-value cut-off: 10−5).

Fig. 2: Comparison with the gold standard
model (p-value cut-off: 10−5).

are very small when comparing to both the semi-parallel model and the gold standard model (full logistic
regression) with respect to various p-value cut-off thresholds. See Figures 1 and 2 for comparisons against
these two plain models with a cut-off of 10−5 when IterNum = 2. To better compare the estimated
p-values (above or below certain cut-offs) on the encrypted model against the plaintext one (semi-parallel
GWAS), we measured F1-scores on the p-values obtained from our solution against the two plain models.
The resulting F1-scores are very close to 1 across all cases with different cut-offs (10−2 to 10−5), which
are shown in Table 3.

We also conducted the DeLong’s test [14, 25] to validate our solution against the semi-parallel model.
Specifically, we drawn at uniformly random about 10% of the total SNP test data and transformed the
corresponding p-values to 0-1 labels according to the cut-off threshold; then we constructed the ROC
(Receiver Operating Characteristic) curves for these labels and performed the DeLong’s test to compare
the AUCs (Area Under the Curve) of these curves. Such test was repeated 10 times to obtain the mean
and the standard deviation of the p-values of the test. The results for IterNum = 2 are shown in Table 4.

6 Discussion and Conclusion

One constraint in our approach is that the matrix inverse can be computed in an efficient way when the
input dimension is small. In modern GWAS, it is common to include covariates to account for such factors
as gender, age, other clinical variables and population structure. A significant challenge in performing
efficient secure GWAS on this generalized model is to handle large-scale matrix inversion.

Table 3: F1-Scores on different models.

Cut-off
v.s. Plain semi-parallel model v.s. Plain gold standard model

Set-I Set-II Set-III Set-I Set-II Set-III

10−2 0.9807 0.9830 0.9964 0.9818 0.9808 0.9710

10−3 0.9749 0.9810 0.9975 0.9878 0.9887 0.9740

10−4 0.9745 0.9798 0.9969 0.9878 0.9888 0.9729

10−5 0.9828 0.9852 0.9971 0.9946 0.9970 0.9805

Table 4: DeLong’s Test for AUCs of our solution with Set-II against the plain semi-parallel model.

Cut-off Mean and stdev of the test results

10−2 0.4038±0.3001
10−3 0.5357±0.2704
10−4 0.6404±0.2638
10−5 0.8959±0.2195

In this paper, we showed the state-of-the-art performance of secure logistic regression model training
for GWAS. We have demonstrated the feasibility and scalability of our model in speed and memory
consumption. We expect that the performance can be improved if the underlying HE scheme is rewritten
with optimized code.

References

1. admin. NIH genomic data sharing - offie of science policy. https://osp.od.nih.gov/scientific-sharing/

genomic-data-sharing/.
2. Personal genome project. https://www.personalgenomes.org/us.
3. J.-C. Bajard, J. Eynard, M. A. Hasan, and V. Zucca. A full RNS variant of FV like somewhat homomorphic

encryption schemes. In International Conference on Selected Areas in Cryptography, pages 423–442. Springer,
2016.

4. C. Bonte, E. Makri, A. Ardeshirdavani, J. Simm, Y. Moreau, and F. Vercauteren. Towards practical privacy-
preserving genome-wide association study. BMC bioinformatics, 19(1):537, 2018.

5. Z. Brakerski and V. Vaikuntanathan. Fully homomorphic encryption from Ring-LWE and security for key
dependent messages. In Advances in Cryptology–CRYPTO 2011, pages 505–524. 2011.

6. M. Chase, H. Chen, J. Ding, S. Goldwasser, S. Gorbunov, J. Hoffstein, K. Lauter, S. Lokam, D. Moody,
T. Morrison, A. Sahai, and V. Vaikuntanathan. Security of homomorphic encryption. Technical report,
HomomorphicEncryption.org, Redmond WA, USA, July 2017.

7. H. Chen, R. Gilad-Bachrach, K. Han, Z. Huang, A. Jalali, K. Laine, and K. Lauter. Logistic regression over
encrypted data from fully homomorphic encryption. BMC medical genomics, 11(4):81, 2018.

8. J. H. Cheon, K. Han, A. Kim, M. Kim, and Y. Song. A full RNS variant of approximate homomorphic
encryption. In International Conference on Selected Areas in Cryptography. Springer, 2018.

9. J. H. Cheon, A. Kim, M. Kim, and Y. Song. Homomorphic encryption for arithmetic of approximate numbers.
In Advances in Cryptology–ASIACRYPT 2017, pages 409–437. Springer, 2017.

10. J. H. Cheon, M. Kim, and M. Kim. Search-and-compute on encrypted data. In International Conference on
Financial Cryptography and Data Security, pages 142–159. Springer, 2015.

11. J. H. Cheon, M. Kim, and M. Kim. Optimized search-and-compute circuits and their application to query
evaluation on encrypted data. IEEE Transactions on Information Forensics and Security, 11(1):188–199,
2016.

12. J. H. Cheon, M. Kim, and K. Lauter. Homomorphic computation of edit distance. In International Conference
on Financial Cryptography and Data Security, pages 194–212. Springer, 2015.

13. D. R. Cox. The regression analysis of binary sequences. Journal of the Royal Statistical Society. Series B
(Methodological), pages 215–242, 1958.

https://osp.od.nih.gov/scientific-sharing/genomic-data-sharing/
https://osp.od.nih.gov/scientific-sharing/genomic-data-sharing/
https://www.personalgenomes.org/us

14. E. R. DeLong, D. M. DeLong, and D. L. Clarke-Pearson. Comparing the areas under two or more correlated
receiver operating characteristic curves: A nonparametric approach. Biometrics, 44(3):837–845, 1988.

15. D. A. Freedman. Statistical models: theory and practice, 2009.
16. C. Gentry, S. Halevi, and N. P. Smart. Homomorphic evaluation of the AES circuit. In Advances in Cryptology–

CRYPTO 2012, pages 850–867. 2012.
17. S. Halevi and V. Shoup. Algorithms in HElib. In International Cryptology Conference, pages 554–571.

Springer, 2014.
18. C. W. Hug and P. Szolovits. ICU acuity: real-time models versus daily models. In AMIA annual symposium

proceedings, volume 2009, page 260. American Medical Informatics Association, 2009.
19. A. Kim, Y. Song, M. Kim, K. Lee, and J. H. Cheon. Logistic regression model training based on the

approximate homomorphic encryption. BMC medical genomics, 11(4):83, 2018.
20. M. Kim and K. Lauter. Private genome analysis through homomorphic encryption. BMC medical informatics

and decision making, 15(Suppl 5):S3, 2015.
21. M. Kim, Y. Song, and J. H. Cheon. Secure searching of biomarkers through hybrid homomorphic encryption

scheme. BMC medical genomics, 10(2):42, 2017.
22. M. Kim, Y. Song, S. Wang, Y. Xia, and X. Jiang. Secure logistic regression based on homomorphic encryption:

design and evaluation. JMIR medical informatics, 6(2), 2018.
23. Y. Nesterov. A method of solving a convex programming problem with convergence rate o (1/k2). In Soviet

Mathematics Doklady, volume 27, pages 372–376, 1983.
24. C. Robert. Machine learning, a probabilistic perspective, 2014.
25. X. Robin, N. Turck, A. Hainard, N. Tiberti, F. Lisacek, J.-C. Sanchez, and M. Müller. pROC: an open-source

package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics, 12(1):77, Mar 2011.
26. A. A. Shabalin. Matrix eQTL: ultra fast eQTL analysis via large matrix operations. Bioinformatics,

28(10):1353–1358, 2012.
27. K. Sikorska, E. Lesaffre, P. F. Groenen, and P. H. Eilers. GWAS on your notebook: fast semi-parallel linear

and logistic regression for genome-wide association studies. BMC bioinformatics, 14(1):166, 2013.
28. J. J. Trinckes and Jr. The definitive guide to complying with the HIPAA/HITECH privacy and security rules,

3 Dec. 2012.
29. J. Truett, J. Cornfield, and W. Kannel. A multivariate analysis of the risk of coronary heart disease in

framingham. Journal of chronic diseases, 20(7):511–524, 1967.

	Semi-parallel Logistic Regression for GWAS on Encrypted Data

