
Homomorphic Training of 30,000 Logistic
Regression Models

Flavio Bergamaschi1, Shai Halevi2, Tzipora T. Halevi3, and Hamish Hunt1

1 IBM Research, UK, {flavio,hamishhun}@uk.ibm.com
2 IBM Research, NY, USA, shaih@alum.mit.edu
3 Brooklyn College, NY, USA, thalevi@nyu.edu

Abstract. In this work, we demonstrate the use the CKKS homomor-
phic encryption scheme to train a large number of logistic regression
models simultaneously, as needed to run a genome-wide association study
(GWAS) on encrypted data. Our implementation can train more than
30,000 models (each with four features) in about 20 minutes. To that
end, we rely on a similar iterative Nesterov procedure to what was used
by Kim, Song, Kim, Lee, and Cheon to train a single model [14]. We
adapt this method to train many models simultaneously using the SIMD
capabilities of the CKKS scheme. We also performed a thorough val-
idation of this iterative method and evaluated its suitability both as a
generic method for computing logistic regression models, and specifically
for GWAS.

Keywords. Approximate numbers, Homomorphic encryption, GWAS, Imple-
mentation, Logistic regression

1 Introduction

In the decade since Gentry’s breakthrough [9] we saw rapid improvement in
homomorphic encryption (HE) techniques. What started as a mere theoretical
possibility is now a promising technology on its way from the lab to the field.
Many of the real-world problems to which this technology was applied originated
in the yearly competitions that are organized by the iDASH center [12]. These
competitions, organized annually since 2014, pose specific technical problems re-
lated to privacy preserving analysis of medical data and ask for solutions using
specific technologies. Some of the problems posed in the 2017 and 2018 instal-
ments dealt with training logistic regression (LR) models on encrypted data.

In 2017, the task was to devise a single model. Many solutions were suggested
that perform this task in a matter of a few minutes to a few hours [14,6,1,15,8,11].
In particular, the winning entry in the 2017 competition was due to Kim et
al. [14], using the HE scheme due to Cheon et al. [7] (which we call below
the CKKS scheme). For 2018, the goal was to train a very large number of
models, as needed for a Genome-Wide Association Study (GWAS). In GWAS
a large number of markers are simultaneously tested for their association with

some condition (such as a specific disease). The modus operandi in GWAS is to
devise a large number of LR models at once, each model using only a handful
of markers, then test these models to see which of them have good predictive
power. For the 2018 competition, the iDASH organizers provided a dataset with
over 10,000 markers, noting that “implementation of linear or logistic regression
based GWAS would require building one model for each SNP, which requires a
lot of time.” (SNP is a single genomic marker.) Instead they suggested to use
the semi-parallel algorithm of Sikorska et al. [18] for that purpose.

1.1 Our Work

The goal of the current work was to show that “building one model for each SNP”
can actually be accomplished with reasonable resources, by a careful adaptation
of the techniques used in the iDASH competition from 2017. Specifically, we
implemented a solution along the same lines as the procedure used by Kim et
al. [14] with some corrections and optimizations. Our implementation is able to
compute more than 30,000 LR models in parallel taking only about 20 minutes.

This work consists of two parts: In one part, we adapted the iterative pro-
cedure of Kim et al. [14] to the setting of GWAS, using the SIMD capabilities
of the CKKS HE scheme, to compute a large number of models simultaneously.
In the other part, we performed a thorough validation of this iterative method,
evaluating its suitability both as a generic method for computing LR models and
specifically for GWAS.

Adapting and validating the iterative procedure. The iterative procedure
of Kim et al. [14] applies Nesterov’s accelerated gradient descent [16] with a
very small number of iterations (and uses the CKKS cryptosystem to run it on
encrypted data). While Kim et al. evaluated the accuracy of their method, the
GWAS setting raises some other demands that were not evaluated in [14]. For
one thing, in [14] they only devised a handful of models on data with a rather
strong signal, whereas in GWAS we need to devise many thousands of models
on data that ranges from having very strong to very weak signal (and many in
between). Moreover, for GWAS we had to train the model on encrypted data,
and also evaluate it homomorphically by computing the log-likelihoods ratio.

We found that some details of the iterative procedure had to be adapted to
this setting. One notable issue was that when the data was not balanced (e.g.,
with more 0’s than 1’s), as the signal weakens the model tends to degenerate
to the constant predictor that always says zero (hence getting a recall value of
zero). In our tests, we found that sub-sampling the training data to ensure that
it is balanced resulted in much better recall values with almost no effect on
the accuracy of the model. We also found and fixed a few minor mistakes and
inconsistencies in the procedure from [14] and its evaluation, see section 3.

In the tests ran, we compared the adequacy of the iterative procedure (in
terms of ordering the genomic markers by relevance) to that of the semi-parallel
algorithm. We concluded that the ordering in both methods are mostly equiv-
alent, but the iterative procedure often provided better model parameters. We

also compared the approximate LR models of the iterative procedure to the LR
models computed by Matlab’s glmfit function. Surprisingly, even when we use
very few iterations, the resulting LR models are just as predictive as the ones
produced by Matlab, see section 3.1.

We used several datasets of very different characteristics for testing. One was
the genome dataset provided by the iDASH team. Others include the Edinburgh
myocardial infarction dataset [13] (also used by Kim et al.), a credit-card fraud
dataset [2] [17], and the dataset related to the sinking of the RMS Titanic [3].4

Homomorphic implementation. Like many contemporary homomorphic en-
cryption schemes, the CKKS approximate number scheme of Cheon et al. [7] sup-
ports Single-Instruction-Multiple-Data (SIMD) operations: ciphertexts in CKKS
encrypt vectors of numbers and each homomorphic operation induces element-
wise operations on the corresponding vectors. This provides the basis of our
GWAS procedure: simply pack the parameters of the different models in differ-
ent entries of these vectors, then use the SIMD structure to run the iterative
procedure on all of them in parallel. Specifically in our setting, we used cipher-
texts that can pack upto 215 = 32768 numbers, so we can compute that many
models in parallel.

Implementing this approach requires some care, particularly with regards to
RAM consumption. We need to ensure that the computation fits in the available
RAM as packed ciphertexts are typically large. A notable optimization described
in section 4.2 takes advantage that CKKS ciphertexts can pack a vector of com-
plex numbers (not just real numbers). Our optimization uses that fact to reduce
the number of operations by almost a factor of two by packing twice as many real
numbers in each ciphertext, but paying some price in larger noise accumulation.

We also mention that our CKKS implementation, done over the HElib engine
[10], differs from other implementations in some details (which makes working
with it a little easier). These details are described in section 4. As mentioned
above, using this implementation we can compute all the LR models for a GWAS
with upto 215 markers and three clinical variables in about twenty minutes.

We note that the running time would grow nearly quadratically with the
number of clinical variables: since to train models with more variables we also
need more records, then the size of the input matrix grows quadratically with
the number of variables. With three clinical variables we were able to train the
models in under 20 minutes, and a back-of-an-envelope calculation indicates that
we could handle 8-10 clinical variables in about an hour.

Organization In section 2, we provide some background on LR, GWAS, and
Nesterov’s Accelerated Gradient Descent [16]. In section 3, we provide details on
our variant of the iterative procedure, and our testing methodology and results.
In section 4, we describe the implementation of this procedure on encrypted data
and provide various runtime measurements.

4 The last three datasets are much smaller than we would like. Nonetheless, they
contain features with strong signal and others with very weak signal, so we can still
use them to evaluate the GWAS setting.

2 Background

2.1 Logistic Regression

Logistic regression (LR) is a machine-learning technique trying to predict one
attribute (condition) from other attributes. In this work, we only deal with
the case where the condition that we want to predict is binary (e.g., sick or
healthy). The data that we get consists of n records (rows) of the form (yi,xi)
with yi ∈ {0, 1} and xi ∈ Rd. We would like to predict the value of y ∈ {0, 1}
given the attributes x, and the logistic regression technique postulates that the
distribution of y given x is given by

Pr[y = 1|x] =
1

1 + exp
(
− w0 −

∑n
i=1 xiwi

) =
1

1 + exp
(
− x′Tw

) ,
where w is some fixed (d + 1)-vector of real weights that we need to find, and
x′
i = (1|xi) ∈ Rd+1. Given the training data {(yi,xi)}ni=1, we thus want to find

the vector w that best matches this data, where the notion of “best match” is
typically maximum likelihood. Using the identity 1 − 1

1+exp(−z) = 1
1+exp(z) , we

therefore want to compute (or approximate)

w∗ = arg max
w

{∏
yi=1

1

1 + exp
(
− x′

i
Tw
) · ∏

yi=0

1

1 + exp
(
x′
i
Tw
)} .

The last condition can be written more compactly: let y′i = 2yi − 1 ∈ {±1} and
zi = y′i · x′

i, then our goal is to compute/approximate

w∗ = arg max
w

{
n∏

i=1

1

1 + exp
(
− ziTw

)} = arg min
w

{
n∑

i=1

log
(
1 + exp(−ziTw)

)}
.

For a candidate weight vector w, we denote the (normalized) loss function for
the given training set by

J(w)
def
=

1

n
·

n∑
i=1

log
(
1 + exp(−ziTw)

)
, (1)

and our goal is to find w that minimizes that loss.

Gradient Descent and Nesterov’s Method. In this work, we use a variant
of the iterative method used by Kim et al. in [14] based on Nesterov’s accelerated

gradient descent [16]. Let σ be the sigmoid function σ(x)
def
= 1/(1 + e−x), it can

be shown that the gradient of the loss function with respect to w is

∇J(w) = − 1

n

n∑
i=1

1

1 + exp(ziTw)
· zi = − 1

n

n∑
i=1

σ
(
− zi

Tw
)
· zi. (2)

Nesterov’s method initializes two evolving vectors (e.g., to the average of the
input records), then in each iteration it computes

w(t+1) = v(t) − αt · ∇J(v(t)),

v(t+1) = (1− γt) ·w(t+1) + γt ·w(t), (3)

where αt, γt are scalar parameters that change from one iteration to the next.
(α is the learning rate and γ is called the moving average smoothing parameter,
see section 3 for how they are set.)

Approximating the Sigmoid. As in [14], we use low-degree polynomials to
approximate the sigmoid function in a bound range around zero. We use the
same degree-3 and degree-7 approximation polynomials in the interval [−8,+8],
namely

SIG3(x)
def
= 0.5− 1.2

(x
8

)
+ 0.81562

(x
8

)3
and (4)

SIG7(x)
def
= 0.5− 1.734

(x
8

)
+ 4.19407

(x
8

)3
− 5.43402

(x
8

)5
+ 2.50739

(x
8

)7
2.2 Genome-Wide Association Study (GWAS)

In genetic studies, LR is often used for Genome-Wide Association Study
(GWAS). Such studies take a large set of genomic markers (SNPs) and determine
which of them are associated with a given trait. A GWAS typically considers
one condition variable (e.g., sick or healthy), a small number of clinical variables
(such as age, gender, etc.) and a large number of SNPs. For each SNP separately,
the study builds a LR model that tries to predict the condition from the clinical
variables and that one SNP, then tests how good that model is at predicting the
condition. (The clinical variables are sometimes called covariates, below we use
these terms almost interchangeably.)

Assessing a Model: Likelihood Ratio, p-values, Accuracy, Recall. One
way to evaluate the quality of a LR model is to compute its loss function J(w),
eq. (1). We note that this number has a semantic meaning, it is the logarithm
of the likelihood of the training data according to the LR model (with param-
eters w). This number can then be used to compute the likelihood-ratio-test
(LRT)5 which is sometimes called the “p-value” of the model. We note that
eq. (1) is not the only formula used for computing p-values (indeed the iDASH
competition organizers used a different formula for it). However, at least accord-
ing to Wikipedia, the LRT is “the recommended method to calculate the p-value
for logistic regression” (cf. [19]).

Another way to evaluate the model is to use it for prediction and test how
well it performs. Typically, you would divide your dataset into training and

5 The LRT measures how much more likely we are to observe the training data if the
true probability distribution of the yi’s is what we compute in the model vs. the
probability to observe the same training data according to the null hypothesis in
which the yi’s are independent of the xi’s.

test data, devise the model on the training data, then use it on the test data
to predict the value of the yi’s (predicting yi = 1 if Pr[y = 1|xi] > 1/2 and
yi = 0 otherwise). The fraction of correct predictions is called the accuracy of
the model. It is common to use five-fold testing where the procedure above is
repeated five times, each time choosing 80% of the records for training and the
rest for testing, then averaging the accuracy values of the five runs.

Overall accuracy may not always be a good measure of performance. For
example, if 90% of the records in our dataset have yi = 0 then even the constant
predictor y = 0 will have 90% accuracy. We therefore also test the recall of the
model, which is its success probability over only the records with yi = 1. This
too is typically measured with a five-fold testing.

3 The Logistic Regression Iterative Procedure

The LR procedure that we used is similar to the one used by Kim et al. [14],
but we had to make some changes and correct a few inaccuracies:

Balancing the input. We observed that when the input dataset is unbalanced,
the model obtained from the iterative procedure is highly biased as well, some-
times to the point of having recall value of zero. Our program therefore trains
the model always on a random subset of the input dataset where 50% of the
records have yi = 0 and 50% have yi = 1. This simple solution corrects the
recall values of the resulting models and in our tests it only has a very minor
effect on their accuracy.

We remark that this solution can be applied even when the data is encrypted,
for example, by storing the y = 0 encrypted records separately from the y = 1
records. This of course will reveal the y value of all the records, but nothing else
about them. If we want to hide also the y value of the records and if we know a
priori the fraction p of records with y = 1, then we could just choose at random
which records to use in the study during encryption. For example, if p < 1/2 we
can choose each y = 1 record with probability one and each y = 0 record with
probability p/(1− p).
The number of iterations. The number of iterations that we can perform
is very limited as we are using a somewhat-homomorphic encryption scheme to
implement the procedure on encrypted data. We denote this number by τ , and
in our implementation and tests we used τ = 7 iterations.

Initializing the evolving state. Since we need to use a small number of
iterations, the initial values of v,w is important to the convergence of the
weights. Our tests show that setting them as the average of the inputs (i.e.,
v(0) = w(0) = 1

n

∑n
i=1 zi) yields better results than choosing them at random.6

The α and γ parameters. The learning-rate parameter α was set just as in
[14], namely in iteration t = 1, . . . , τ we used αt = 10/(t+ 1).

6 This form of initialization differs from the description in [14], but it is consistent
with the code shared online by the authors.

For the moving average smoothing parameter γ, Kim et al. stated in [14]
that they used γ ∈ [0, 1], but positive γ values result in bad performance of the
Nesterov algorithm. Instead, we used negative values for gamma as suggested in
[5]: Setting λ0 = 0, we compute for t = 1, . . . , τ

λt =
1 +

√
1 + 4λ2t−1

2
and γt =

1− λt−1
λt

.

The values of γ for the first few steps are therefore γ ≈ (1, 0,−0.28,−0.43,−0.53,
−0.6,−0.65, . . .)

Precision. We tested our procedure in order to decide how much precision is
needed since the CKKS scheme only offers limited precision. Our tests found
no significant difference in performance, even with only six bits of precision
(i.e. error of upto 2−7 per operation). We therefore decided to set the precision
parameter for the homomorphic scheme at r = 8, corresponding to 2−8 error.
As there was no real effect, we ran most of our plaintext tests below with full
precision.

Computing the log-likelihood. In addition to computing the model param-
eters, we extended the procedure from above to also compute the loss function
(i.e., the log-likelihood of the resulting model). For this purpose, we needed to
approximate also the log-sigmoid function using a low-degree polynomial, in par-
ticular we used the degree-4 approximation in the range [−8, 8] (obtained using
Python’s numpy.polyfit):

LOGSIG4(x)
def
= 0.000527x4 − 0.0822x2 + 0.5x− 0.78 ≈ log(σ(x)) (5)

We then approximate the log-likelihood of each model w as LOSS(w) ≈
−
∑n

i=1 LOGSIG4(zT
i w).

3.1 Experimental Evaluation

We evaluated our procedure across multiple parameters and settings, and com-
pared it to alternative procedures. When attempting such evaluation, it is im-
portant to ensure that the procedure is not over-engineered to fit just one type
of data, so we run our tests against four different datasets with very different
characteristics (though not every test was run on every dataset). These datasets
included the iDASH 2018 dataset for correlating cancer with genomic markers,
a credit-card fraud dataset, the Edinburgh dataset for correlating heart attacks
with various tests and symptoms, and a dataset for correlating various passenger
characteristics with the rate of survival in the Titanic disaster. See appendix B
for more details on these datasets.

Sorting the columns in order of relevance. One focus of this work is GWAS-
like procedures where we want to filter out the irrelevant columns. Hence, many
of our tests examined the order of relevance of the different columns rather
than the actual model parameters for their respective models. In these tests,

we computed all the LR models, one model per SNP (all models containing
the clinical variables), approximated the log-likelihood for each, and ordered the
SNPs in decreasing order of their log-likelihood. This order is our procedure’s
estimate of the order of relevance of the different SNPs to the condition. We
then used the following methodology to evaluate the “quality” of this ordering:

– We applied the Matlab implementation of LR to re-compute the LR model
on the same data, using the glmfit function. The resulting LR models (one
per SNP) could be different than those produced by our iterative procedure;

– Next, we ran a five-fold test on the data using Matlab’s glmval to compute
the predicted condition values, and computed the accuracy and recall for
each model;

– Finally, we plotted the accuracy and recall values against the order of
columns from our iterative procedure.

If the procedure works well, we expect a decreasing order of accuracy and recall,
since the first models in the order are supposed to correspond to the most relevant
SNPs, and hence to the highest accuracy and recall values.

We compared the column ordering from our iterative procedure to the or-
dering generated by the p-values of the semi-parallel algorithm of Sikorska et
al. [18]. (We used the R implementation provided by the iDASH organizers for
that purpose). We also tested the column ordering using the accuracy and re-
call results as produced by the Matlab LR models (using glmfit and glmval),
plotting them against the column ordering of the semi-parallel algorithm.

We stress that for both orderings, we plot the exact same accuracy and
recall numbers, i.e. the ones corresponding to the Matlab LR models. The only
difference is the order in which we plot these numbers.

Evaluating the model parameters. Since our procedure yields not only
the log-likelihood (a.k.a. p-value) for each model but also the model parame-
ters themselves, we ran a few tests to examine how well these models perform.
Namely, we compared the accuracy and recall of our models with those of the
Matlab LR models on the same data. Again, we plotted all the accuracy and
recall results in the order of columns of our iterative procedure.

Different approximations of the sigmoid function. We tested our iterative
procedure in two settings, one using nine iterations with the degree-3 approx-
imation of the sigmoid, and the other using seven iterations with the degree-7
approximation. While there were no significant differences in the order of SNPs
produced by the two variants, the model parameters produced by the degree-7
approximation were often improved than those produced by the degree-3 approx-
imation. We therefore ran most of our tests using only the seven-step degree-7
approximation.

3.2 Accuracy and Recall Results

Here, we summarize the test results. All of these tests were run with our iterative
procedure using the degree-7 approximation of the sigmoid function and τ = 7

iterations. All accuracy and recall results below were obtained using five-fold
testing (described in section 2.2). One point that needs care when running a
five-fold test, is ensuring that the test data has similar characteristics to the
training data: Some datasets are collected from multiple sources, hence the first
records may have very different characteristics than the last ones. (In particular
the data provided for the iDASH competition had that problem.) Randomizing
the order of the records in the dataset before running the test fixes this.

Comparing the column ordering, iterative vs. semi-parallel. As we ex-
plained above, we run our iterative procedure and the semi-parallel algorithm
from [18] side by side on the same data, computing the p-values from each and
ordering the SNPs according to these p-values. We then used the Matlab im-
plementation of LR to compute the accuracy and recall values of the model
corresponding to each SNP (with the same clinical variable), and plotted these
accuracy and recall values in the two orders.

The results for the iDASH dataset are depicted in fig. 2. For that dataset, the
two orders more or less coincide for the most relevant 1500 columns or so (out of
10643). For the next 1500 columns, the orders are no longer the same. Moreover,
while the accuracy results are very similar, the iterative ordering yields better
recall values than the semi-parallel ordering. The last 8000 columns no longer
contain much information on the condition variable, hence the ordering of these
columns is essentially random. We also ran the same test for the credit-card fraud
dataset, which contains only 30 columns. Here while the two orders identify the
same top nine, middle seven, and bottom fourteen columns, the ordering within
each of the first two groups was somewhat more accurate for the semi-parallel
algorithm than for the iterative method.

Comparing the iterative vs. Matlab models. Next, we tried to evaluate
the quality of the models generated by the iterative method to the standard LR
models of Matlab. Since the iterative method with so few steps is only a crude
approximation, we expected the Matlab model to perform better, but wanted to
check by how much. We therefore computed for each column the accuracy and
recall values of both models (iterative vs. Matlab), and plotted them against
the p-value ordering from our procedure. (See the full version for a plot of the
results.)

To our surprise, the crude approximated model computed by the iterative
method performed at least as well (and sometimes better) than the LR model
that Matlab computed for the same data. We can see that the iterative model
has some bias for outputting y = 1, resulting in better recall and somewhat
worse accuracy values. For example, notice that around the 1000’th SNP the
iterative model has recall value of 1, while the Matlab model’s recall values are
capped around 0.9 (with essentially the same accuracy). We ran the same test
also on the Titanic dataset, and again the iterative models did about as well
(and sometimes better) than the Matlab models.

The Edinburgh dataset. We also ran our iterative procedure on the Edinburgh
datasets computing the accuracy/recall for the Matlab model for each column

and plotting these values against the p-value ordering of the columns as produced
by the iterative procedure.

3.3 Conclusions and Some Comments

Summarizing the tests above, the iterative procedure that we used produces mod-
els which are competitive to what we get from Matlab, and that the relevance
order that we get from our p-values is just as reasonable as the one obtained
by the semi-parallel algorithm. While the semi-parallel algorithm is faster (es-
pecially when there are many covariates), for a small number of covariates the
iterative procedure has reasonable performance. A reasonable conclusion to draw
is that one should still run the semi-parallel algorithm in the context of GWAS,
but use the iterative model if it is desired to also get the actual LR models (in
addition to ordering the columns by relevance).

In this context, the semi-parallel algorithm assumes that the model weights
for the covariates are more or less the same when you devise a model for just
the covariates as when you devise a model for the covariates and a single SNP.
For the iDASH dataset, this was true for most SNPs (since most SNPs were
not correlated with the condition at all), but our tests showed that it seems to
not be true for the most relevant SNPs. This observation implies that while the
semi-parallel algorithm is a good screening tool to filter out the irrelevant SNPs
(for which the assumption on the covariates should hold), it probably should not
be used to compute the model parameters for the more relevant SNPs.

Finally, during our work we encountered two minor bugs/inconsistencies in
the literature, notified the relevant authors, and document them in appendix A.

4 Homomorphic Evaluation of the LR Procedure

To evaluate the procedure from section 3 on encrypted data, we used the CKKS
approximate-number HE scheme of Cheon et al. [7], which we implemented in
the HElib library [10]. The underlying plaintext space of this scheme are complex
numbers (with limited precision), and the scheme can pack many such complex
numbers in a single ciphertext. In section 4.3 below, we briefly describe some
details of our HElib-based implementation, see the original work [7] for details
about the scheme itself. The API provided by our implementation is as follows:

Parameters. Security parameter λ, plus two functionality parameters: The
packing parameter ` determines how many complex numbers can be encoded
in a single ciphertext, and the accuracy parameter r determines the supported
precision. Operations of the scheme are accurate up to additive noise of magni-
tude bounded by 2−r. We refer to entries in the encrypted vectors as plaintext
slots.

Noisy Encoding. The native objects manipulated in the CKKS scheme belong
to an algebraic ring (specifically algebraic integers in cyclotomic number fields).
The scheme provides routines to encode and decode plaintext complex vector

v ∈ C` into and out of that ring. However the encoding is noisy, which introduces
additive errors of magnitude up to 2−r in each entry.

Encryption, decryption, and homomorphic operations. Once encoded in
the “native ring,” data can be encrypted and decrypted using the public and
secret keys, respectively.

– The scheme supports addition and multiplication operations, both plaintext-
to-ciphertext and ciphertext-to-ciphertext, including element-wise addi-
tion/multiplication on the underlying complex vectors. Providing wt =
ut + vt for every entry t for addition, and similarly wt = ut · vt for mul-
tiplication.

– There are procedures (which are essentially free) for multiplying and dividing
ciphertexts by real numbers, namely setting vt = ut ·x or vt = ut/x for all t.

– Included is the support for “homomorphic automorphisms”. Our application
uses automorphisms for computing complex conjugates. Namely, given an
encoded (or encrypted) vector u, the conjugate operation outputs a similarly
encoded/encrypted vector v such that vt = ūt for every entry t. Used to
homomorphically extract the real and imaginary parts, via im(x) = (x−x̄)/2i
and re(x) = (x+ x̄)/2 (with i denoting the imaginary square root of −1).

All the operations above (including encoding and encryption) accrue additive
errors. Namely, an operation can return a vector v′ that differs from the intended
result v, with the guarantee that for every entry t we have |vt − v′t| ≤ 2−r.

4.1 The Homomorphic LR Procedure

The input to the LR procedure consists of n records, each containing k covariates
(i.e., clinical variables such as age or gender), N genomic markers (or SNPs),
and a single binary condition variable (sick or healthy). Our solution is tailored
for the case where k is small (up to five), N is large (many thousands) and the
number of records is moderate (hundreds to a few thousands).

Our goal is to compute N (approximate) LR models, one per SNP, where the
t’th model includes parameters for all the k clinical variables and the (single)
t’th SNP. As described in section 3, our approach follows the approach by Kim
et al. [14]. Namely, we run an iterative method using Nesterov’s algorithm and
a low-degree approximation of the sigmoid function implemented on top of the
CKKS approximate-number homomorphic encryption scheme [7].

The main difference is that we use the inherent SIMD properties of CKKS
to compute all the N models at once: We run the LR computation in a bitslice
mode, where we pack the data into a number of N -vectors with the t’th entry
in each vector corresponds to the t’th model. Each input record has k+ 2 input
ciphertexts: One for the condition variable (with all the slots holding the same
condition bit), one for each of the covariates (with all the slots holding the same
covariate value), and one more ciphertext for all the SNPs (with the different
SNPs in the different slots).

Input(n-by-(k + 2) matrix C)

1. w := v := 1
n

∑n
i=1 Ci− // initialize evolving state to average of the rows in C

2. Repeat for τ steps: // run the iterative process
3. x := C × vT // x is a dimension-n column vector
4. y := SIG7(x) // approximate the sigmoid on each entry of x
5. g := −yT × C // the gradient g is a dimension-(k + 2) row vector

6. Compute α, γ ∈ R for this step // see details in section 3

7. w′ := v + α · g
8. v := γ ·w + (1− γ) ·w′ // = γw + (1− γ)v + α(1− γ)g
9. w := w′

10. x := C × vT // compute the log likelihood of the model
11. y := LOGSIG4(x) // approximate the log-sigmoid on each entry of x
12. u =

∑n
i=1 yi // the log-likelihood

13. output w and u // output the resulting model weights and log likelihood

Fig. 1. The homomorphic logistic regression procedure

We denote by C the n × (k + 2) matrix of input ciphertexts, where each
row i corresponds to an input record and each column j corresponds to a model
parameter.7 Given the input matrix C, we evaluate homomorphically the iter-
ative Nesterov-based procedure described in section 3 for as many steps as our
parameters allow. Our main solution uses seven iterations, each employing a
degree-seven approximation of the sigmoid function. The homomorphic proce-
dure is described on a high-level in fig. 1 with details discussed below.

Fitting the computation in RAM. Note that as described in fig. 1, each
iteration of the main loop requires two passes over the input matrix C, one for
computing C × v in Line 3 and another to compute y × C in Line 5. If C does
not fully fit in memory, then each iteration would require swapping it twice in
and out of main memory. Instead, partitioning C into bands that fit in RAM
requires a single pass over it in each iteration. Let I1, I2, . . . , Ib be a partition
of the row indexes [n] and let CI1 , . . . , Cib be the corresponding partition of the
rows of C (and similarly xI1 , . . . ,xib be the partition of the entries of x, and the
same for y). We replace lines 3-5 by the following computation:

7 Another “hidden” dimension are the slots t = 1, . . . , N in each ciphertext, but since
our computation is completely SIMD then we can ignore that dimension.

[...]
2. Repeat for τ steps: // run the iterative process
2a. g := 0
2. For h = 1 to b // go over the bands of C
3′. x

Ih
:= CIh × vT // xIh is part of x

4′. y
Ih

:= SIG7(x
Ih

) // approximate the sigmoid on each entry of x

5′. g := g − yT
Ih
× CIh // the contribution of CIh to the gradient

6. [...] // continue with the update of v,w as before

Computing the log likelihood. As we explained in section 2.2, after comput-
ing the model parameters w we need to also evaluate this model by computing
its p-value, i.e, the loss function from eq. (1). This computation is very similar
to the computation of the gradient, but here we use the approximation of the
log-sigmoid LOGSIG4 instead of the SIG7 approximation of the sigmoid itself.
Namely we first compute x := C ×w, then y := LOGSIG4(x), and finally sum
up (or average) the entries in the vector y.

4.2 Fewer Multiplications Via Complex Packing

We implemented a second variant of our solution, which is faster and uses half
the number of ciphertexts, but adds more noise per iteration. This was done by
packing the data more tightly, utilizing both the real part and the imaginary part
of each plaintext slot, thus encrypting two input records in each ciphertext (one
in the real part of all the slots and the other in the imaginary parts). Specifically,
let z2i−1,j , z2i,j be the two real values that were encrypted in the two ciphertexts
C2i−1,j , C2i,j in the matrix C from above. In the new variant we instead use a
single ciphertext C ′i,j , encrypting the complex value z′i,j = z2i−1,j + i · z2i,j (with
i the imaginary square root of −1). Let C ′ = [C ′i,j] be the resulting ciphertext
matrix, and N ′ = dN/2e be the number of rows in the matrix C ′.

During the computation we maintain the evolving state vectors v,w as real
vectors (i.e., their imaginary part is zero). This sometimes requires spliting the
encrypted complex numbers into their real and imaginary parts (using the con-
jugate operation mentioned above). For example, we initialize the evolving state
by computing the average of the (complex) rows of C ′. Then we split the result
into its real and complex parts and average the two.

Similarly, we sometimes also need to assemble two real values into a complex
one, just by computing zc = zr + i ·zi homomorphically. These split and assemble
operations cause this variant to accrue more noise than before. However, it uses
half as many input ciphertexts and roughly half as many operations per iteration
of the Nesterov algorithm.

Computing the gradient. The most interesting aspect of this complex-packed
procedure is the computation of the gradient in Steps 3-5 from fig. 1. The mul-
tiplication in Step 3 is quite straightforward: since v encrypts a real vector, we

can compute x′ := C ′ × vT just as before and the multiplication by v operates
separately on the real and imaginary parts of C ′.

To apply the sigmoid function, requires spliting the resulting x′ into its
real and imaginary components and compute the sigmoid approximation on
each of them separately. Namely, we set xr := re(x) and xi := im(x), then
yr := SIG7(xr) and yi := SIG7(xi). To save on noise, we fold into the sigmoid
computation some of the multiply-by-constant operations from splitting x′.

More interesting is how to compute the product y × C ′ from Step 5 with
our tightly packed version of the ciphertext matrix. Here we use the happy
coincidence that for complex numbers we have (a + ib)(a′ − ib′) = aa′ + bb′ +
i · something, giving us the inner product 〈(a, b), (a′, b′)〉 in the real part. We
therefore pack y′ := yr − i · yi, compute g′ = −y × C ′, and the real part of g′

turns out to be exactly the gradient vector that we need. To see this, recall that
for all i, j we have y′j = y2j−1 − i · y2j and C ′i,j = z2j−1 + i · z2j , and therefore

g′j =

N ′∑
i=1

y′i · C ′i,j =

N/2∑
i=1

(
y2i−1 − i · y2i

)
·
(
z2i−1,j + i · z2i,j

)
=

N/2∑
i=1

(
y2i−1 · z2i−1,j + y2i · z2i,j + i · something

)
=
(N∑
i=1

yi · zi,j
)

+ i · something′.

We complete the gradient computation just by extracting the real part, g :=
re(g′). This new gradient calculation performs half as many multiplications in
the inner-product steps (3 and 5), the same number of operations in the sigmoid
step 4, and a few more operations to split and recombine complex vectors from
real and imaginary parts. Since the inner product operations are by far the most
expensive parts of each Nesterov computation, this saves nearly half of the overall
number of multiplications. However, in our tests it only saved about 20% of the
running time. (We think that this discrepancy is partially because we worked
harder on optimized the standard procedure than the complex packed one.)

4.3 Implementing CKKS in HElib

The CKKS scheme from [7] is a Regev-type cryptosystem, with a decryption
invariant of the form [〈sk, ct〉]q = p̃t, where sk, ct are the secret-key and ciphertext
vectors, respectively, [·]q denotes reduction modulo q into the interval [−q/2, q/2],
and p̃t is an element that encodes the plaintext and includes also some noise.

The CKKS scheme is similar in many ways to the BGV scheme from [4]:
both schemes use an element p̃t of low norm, |p̃t| � q, and the homomorphic
operations are implemented almost exactly the same in both. The difference
between these schemes lies in the way they interpret the element p̃t, i.e., how it
is decoded into plaintext pt and noise e: We tend to think in the BGV of the
low-order bits of p̃t as pt and the high-order bits as e, and in CKKS it is the
other way around. Specifically, the BGV decodes p̃t = pt + p · e, where p is the
plaintext space modulus and |pt| < p, whereas CKKS decodes p̃t = e + ∆ · pt
where ∆ is some scaling factor and (hopefully) |e| < ∆.

This difference in interpretation of p̃t implies very different plaintext algebras
for the two schemes: While BGV deals with integral plaintext elements modulo p,
in CKKS the plaintext elements are complex numbers with limited precision.
Some other (rather small) differences between the homomorphic operations in
BGV and CKKS are related to the way the scaling factor ∆ is handled:

– The plaintext modulus p in BGV typically does not change throughout the
computation, but the scaling factor ∆ in CKKS does vary: Specifically, ∆ is
squared on multiplication and is scaled via modulus switching.

– In both CKKS and BGV, ciphertexts can only be added when they are
defined relative to the same modulus q. However, it is also important for
CKKS addition that they have the same scaling factor ∆.

Our CKKS implementation in HElib relies on the same chassis as the BGV
cryptosystem that supports the required homomorphic operations and handles
any cyclotomic field.8 Differently from the way it is described in [7], the HElib
implementation does not rely on the application to use explicit scaling, instead
the library can automatically scale all the ciphertexts as needed. Each ciphertext
in our implementation is tagged with both a noise estimate and the scaling
factor ∆ and the library uses these tags to decide how and when to scale these
ciphertexts using modulus-switching. These scaling decisions balance the need
to scale the ciphertexts down before multiplication to keep the noise small with
the need to keep the scaling factor ∆ sufficiently larger than the noise element e.

The cryptosystem is initialized with an accuracy parameter r that from the
application perspective roughly means the additive noise terms in the various
operations is bounded by 2−r in magnitude. The library tries to ensure that op-
erations with added noise term η will only be applied to ciphertexts with scaling
factors ∆ ≥ η · 2r. Note, that this logic only “does the right thing” when the
complex values throughout the computation are close to one in magnitude. For
smaller values, the requested accuracy bound will typically not be enough, while
for larger values the implementation will spend too much resources trying to
keep the precision way too high. The logic works quite well for the LR proce-
dure (section 3) where indeed all the encrypted quantities are kept at size Θ(1).

4.4 Performance of the Homomorphic Procedure

We tested the running time and memory consumption in a few different settings,
depending on the number of available threads, and the number of bands in the
matrix C. (As we explained in section 4.1, using more bands is useful when the
machine has limited RAM and cannot fit all the encrypted input ciphertexts
in memory at once.) We also tested the complex packing optimization from
section 4.2 vs. the “standard” way of packing only real numbers in the slots.

These tests were run on a machine with Intel E5-2640 CPU running at
2.5GHz, with 2×12 cores, 64 GB memory (split 32GB for each chip in a
NUMA configuration), and 15MB cache. The software configurations (on Ubuntu

8 Our logistic regression procedure uses a power of two cyclotomic field for efficiency.

16.04.5) included HElib commit dbaa108b66c5 from Sep 2018, NTL version
11.3.2, GMP version 6.1.2, and Armadillo version 9.200.7. All compiled with gcc
8.1.0 including our LR code.

Parameters. The parameters were chosen so as to get at least 128 security level
while having enough levels to complete seven iterations (followed by computing
the log likelihood of the resulting model). Specifically, the largest modulus in
the chain had |q| = 900 bits, and the scheme was instantiated over the m’th
cyclotomic field with m = 217 = 131072 (so the dimension of the relevant lattice
was φ(m) = 65536). This setting gave us estimated security level of 142 bits.
These parameters give us φ(m)/2 = 32768 slots in which to pack data, so we
could compute up to 32768 LR models in parallel.

The results that we describe below were measured on the iDASH 2018
dataset, where each model has three clinical variables and a single SNP. This
dataset had only 10643 SNPs, so we only packed that many numbers in the slots,
but the performance numbers are not affected by the number of “empty slots,”
we would have identical results even if all 32767 slots were filled.

On the other hand, the number of records in the training set does influence
the running time (as well as the memory consumption). Here we used the fact
that small LR models can be computed accurately by sub-sampling the data.
The common “one in ten” rule of thumb states that a model with k features
requires at least 10k records with 0 and 10k records with 1. Since in these tests
we had four features in each model (three clinical variables and one SNP), and
since we sub-sampled the data to get 50% 0’s and 50% 1’s, then we needed at
least 80 total record, and we run all our tests on 100 records in the training test.

Without the complex-packing optimization, each iteration of the Nesterov
procedure took four levels in the modulus chain. This is a little surprising, as
each iteration includes a degree-7 polynomial sandwiched between two vector-
matrix multiplications so we expect it to take five levels rather than four. The
reason is that we used 44 bits “wide” levels, and the noise management logic
of HElib performed two consecutive operations at the same level. This indicates
some waste in the HElib noise management. With complex packing, we could
only perform six iterations with the same parameters as each iteration of the
Nesterov procedure used an average six levels.

Results. The results are described in Tables 1 and 2. The optimization of using
complex packing cuts the input-reading time in half (as there are half as many
ciphertexts), but only reduces the running time by about 20% (for the same
number of iterations). There is approximately a linear speedup when the number
of threads is increased from one to twelve, but not more due to cache contention
on the testing server architecture. The memory requirements grow slowly with
the number of threads, twelve threads consumed 1.5× to 2× more memory than
a single threads.

Parallelization vs. run-time, seven iterations
threads read input time training time RAM consumption

1 435 sec 8847 sec 24GB

2 220 sec 4190 sec 26GB

6 78 sec 1673 sec 28GB

12 44 sec 1202 sec 30GB

24 44 sec 1128 sec 33GB
Table 1. CPU time and RAM consumption of the “standard packing” method with
seven iterations and a single band, vs. number of threads

Standard vs. complex packing, six iterations
packing # threads read input time training time RAM consumption

standard 1 464 sec 7620 sec 24GB
2 223 sec 3677 sec 26GB
6 79 sec 1449 sec 28GB
12 44 sec 1128 sec 30GB
24 40 sec 1016 sec 33GB

complex 1 223 sec 5960 sec 13GB
2 111 sec 2998 sec 14GB
6 42 sec 1242 sec 16GB
12 25 sec 859 sec 18GB
24 23 sec 818 sec 24GB

Table 2. CPU time and RAM consumption with six iterations and a single band, both
complex and standard packing, vs. number of threads

5 Conclusions

In this work, we demonstrated that the CKKS cryptosystem [7] can be used to
implement homomorphic training of a very large number of logistic regression
models simultaneously in a reasonable amount of time.

For that purpose, we adopted the iterative method used by Kim et al. [14]
based on Nesterov’s accelerated gradient descent. Our implementation can train
simultaneously over 30,000 small models, each with four variables, in about 20
minutes. We estimate that the same number of models with 8-10 variables can
be trained in about an hour. We also provided extensive evaluation of this it-
erative procedure, testing it on a number of different datasets and comparing
its predictive power with a few alternatives. Our tests show that this method is
competitive.

References

1. C. Bonte and F. Vercauteren. Privacy-preserving logistic regression train-
ing. BMC Medical Genomics, 11((Suppl 4)), 2018. https://doi.org/10.1186/

s12920-018-0398-y.
2. G. Bontempi, A. D. Pozzolo, O. Caelen, and R. A. Johnson. Credit Card Fraud

Detection. Technical report, Université Libre de Bruxelles, 2015.
3. A. Bootwala. Titanic for Binary logistic regression. https://www.kaggle.com/

azeembootwala/titanic/home.

4. Z. Brakerski, C. Gentry, and V. Vaikuntanathan. Fully homomorphic encryp-
tion without bootstrapping. In Innovations in Theoretical Computer Science
(ITCS’12), 2012. Available at http://eprint.iacr.org/2011/277.

5. S. Bubeck. ORF523: Nesterov’s accelerated gradient descent. https://blogs.

princeton.edu/imabandit/2013/04/01/acceleratedgradientdescent, accessed
January 2019, 2013.

6. H. Chen, R. Gilad-Bachrach, K. Han, Z. Huang, A. Jalali, K. Laine, and
K. Lauter. Logistic regression over encrypted data from fully homomorphic en-
cryption. BMC Medical Genomics, 11((Suppl 4)), 2018. https://doi.org/10.

1186/s12920-018-0397-z.
7. J. H. Cheon, A. Kim, M. Kim, and Y. S. Song. Homomorphic encryption for

arithmetic of approximate numbers. In ASIACRYPT (1), volume 10624 of Lecture
Notes in Computer Science, pages 409–437. Springer, 2017.

8. J. L. H. Crawford, C. Gentry, S. Halevi, D. Platt, and V. Shoup. Doing real
work with FHE: the case of logistic regression. In M. Brenner and K. Rohloff,
editors, Proceedings of the 6th Workshop on Encrypted Computing & Applied Ho-
momorphic Cryptography, WAHC@CCS 2018, pages 1–12. ACM, 2018. https:

//eprint.iacr.org/2018/202.
9. C. Gentry. Fully homomorphic encryption using ideal lattices. In Proceedings of

the 41st ACM Symposium on Theory of Computing – STOC 2009, pages 169–178.
ACM, 2009.

10. S. Halevi and V. Shoup. HElib - An Implementation of homomorphic encryption.
https://github.com/shaih/HElib/, Accessed January 2019.

11. K. Han, S. Hong, J. H. Cheon, and D. Park. Efficient logistic regression on large
encrypted data. Cryptology ePrint Archive, Report 2018/662, 2018. https://

eprint.iacr.org/2018/662.
12. Integrating Data for Analysis, Anonymization and SHaring (iDASH). https://

idash.ucsd.edu/.
13. R. L. Kennedy, H. S. Fraser, L. N. McStay, and R. F. Harrison. Early diag-

nosis of acute myocardial infarction using clinical and electrocardiographic data
at presentation: derivation and evaluation of logistic regression models. Euro-
pean Heart Journal, 17(8):1181–1191, Aug. 1996. Data obtained from https:

//github.com/kimandrik/IDASH2017/tree/master/IDASH2017/data/edin.txt.
14. A. Kim, Y. Song, M. Kim, K. Lee, and J. H. Cheon. Logistic regression model train-

ing based on the approximate homomorphic encryption. BMC Medical Genomics,
11(4):83, Oct 2018.

15. M. Kim, Y. Song, S. Wang, Y. Xia, and X. Jiang. Secure logistic regression based
on homomorphic encryption: Design and evaluation. JMIR Med. Inform., 6(2):e19,
2018. DOI: 10.2196/medinform.8805. Also available from https://eprint.iacr.

org/2018/074.
16. Y. Nesterov. Introductory Lectures on Convex Optimization: A Basic Course,

volume 87 of Applied Optimization. Springer US, 2004. https://doi.org/10.

1007/978-1-4419-8853-9.
17. A. D. Pozzolo, O. Caelen, R. A. Johnson, and G. Bontempi. Calibrating Probabil-

ity with Undersampling for Unbalanced Classification. In 2015 IEEE Symposium
Series on Computational Intelligence, pages 159–166, Dec. 2015.

18. K. Sikorska, E. Lesaffre, P. J. Groenen, and P. H. Eilers. GWAS on your notebook:
fast semi-parallel linear and logistic regression for genome-wide association studies.
BMC Bioinformatics, 14:166, 2013.

19. Logistic regression. https://en.wikipedia.org/wiki/Logistic_regression#

Discussion. Accessed January 2017.

A Corrections in the Literature

During our work we encountered two minor bugs/inconsistencies in the litera-
ture. We have notified the relevant authors and document these issues here:

– The Matlab code used in the iDASH 2017 competition had a bug in the
way it computed the recall values, computing it as false positive+true positive

false negative+true positive

instead of true positive
false negative+true positive .

– Some of the mean-squared-error (MSE) results reported in [14] seem incon-
sistent with their accuracy values: For the Edinburgh dataset, they report
accuracy value of 86%, but MSE of only 0.00075. We note that 86% accuracy
implies MSE of at least 0.14 · (0.5)2 = 0.035 (likely a typo).

B The Datasets that We Used

Recall that we tested the iterative procedure against a few different datasets, to
ensure that it is not “tailored” too much to the characteristics of just one type
of data. We had some difficulties finding public datasets that we could use for
this evaluation, eventually we converged on the following four:

– The iDASH 2018 dataset, as provided by the organizers of the competition,
is meant to correlate various genetic markers with the risk of developing
cancer. It consists of 245 records, each with a binary condition (cancer or
not), three covariates (age, weight, and height), and 10643 markers (SNPs).
The last 120 records were missing the covariates, so we ran our procedure
by replacing each missing covariate by the average of the same covariate in
the other records.

– A credit card dataset [2] attempts to correlate credit-card fraud with ob-
served characteristics of the transaction. This dataset has 984 records each
with thirty columns.

– The Edinburgh dataset [13] correlates the condition of Myocardial Infarc-
tion (heart attack) in patients who presented to the emergency room in the
Edinburgh Royal Infirmary in Scotland with various symptoms and test re-
sults (e.g., ST elevation, New Q waves, Hypoperfusion, depression, vomiting,
etc.). The same dataset was also used to evaluate the procedure of Kim et
al. [14]. The data includes 1253 records, each with nine features.

– The Titanic dataset [3], consisting of 892 records with sixteen features, cor-
relating passenger’s survival in that disaster with various characteristics such
as gender, age, fare, etc.

The first dataset comes with a distinction between SNPs and clinical vari-
ables, but the other three have just the condition variable and all the rest. We
had to decide which of the features (if any) to use for covariates. We note that
whatever feature we designate as covariate will be present in all the models, so
choosing a feature with very high signal will make the predictive power of all
the models very similar. We therefore typically opted to choose for a covariate
the features which is least correlated with the condition. We also ran the same
test with no covariates, and the results were very similar.

C Model Evaluation Figures

iDASH data column ordering: iterative vs. semi-parallel

(a) Accuracy, iterative Order (b) Recall, iterative Order

(c) Accuracy, semi-parallel order (d) Recall, semi-parallel order

Fig. 2. Accuracy/recall of the Matlab LR models for the iDASH 2018 dataset ordered
according to the p-value order of the iterative procedure (top) or the semi-parallel
algorithm (bottom).

