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Abstract. This paper develops Central Limit arguments for analysing the noise in
ciphertexts in two homomorphic encryption schemes that are based on Ring-LWE.
The first main contribution of this paper is to present and evaluate an average-case
noise analysis for the BGV scheme. Our approach relies on the recent work of
Costache et al. (SAC 2023) that gives the approximation of a polynomial product as
a multivariate Normal distribution. We show how this result can be applied in the
BGV context and evaluate its efficacy. We find this average-case approach can much
more closely model the noise growth in BGV implementations than prior approaches,
but in some cases it can also underestimate the practical noise growth. Our second
main contribution is to develop a Central Limit framework to analyse the noise
growth in the homomorphic Ring-LWE cryptosystem of Lyubashevsky, Peikert and
Regev (Eurocrypt 2013, full version). Our approach is very general: apart from finite
variance, no assumption on the distribution of the noise is required (in particular, the
noise need not be subgaussian). We show that our approach leads to tighter bounds
for the probability of decryption failure than those of prior work.
Keywords: Ring-LWE · Central Limit Theorem · decryption failure probability ·
BGV scheme · homomorphic encryption

1 Introduction
The Learning with Errors or LWE problem [Reg05, Reg10] has become a standard hard
problem in cryptology that is at the heart of lattice-based cryptography [MR09, Pei16].
The Ring Learning with Errors or Ring-LWE problem [SSTX09, LPR12] is a generalisation
of the LWE problem from the ring of integers to certain other number field rings that
potentially give far better efficiency.

A key application area of lattice-based cryptography is (fully, somewhat or levelled)
homomorphic encryption [Gen09]. Homomorphic encryption enables an untrusted party to
operate meaningfully on encrypted data belonging to a different party, without requiring
access to the secret key. A large number of homomorphic encryption schemes have
been proposed in the literature, for example [BGV12, FV12, GSW13, LPR13a, CGGI16,
CKKS17], many of which [BGV12, FV12, LPR13a, CKKS17] are based on Ring-LWE. In
this paper, we consider the widely-used BGV scheme [BGV12], which has been implemented
in many major libraries, including HElib [HEl19] and SEAL [SEA22]. We also consider
the homomorphic cryptosystem given by Lyubashevsky, Peikert and Regev in Section 8.3
of [LPR13a] (the full version of [LPR13b]), which we term the LPRHom cryptosystem.
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2 A Central Limit Approach for Ring-LWE Noise Analysis

Ciphertexts in all homomorphic encryption schemes contain noise, which is needed for
security. As more homomorphic evaluation operations are performed, the noise grows, and
if it exceeds a certain threshold, then decryption will fail. It is thus essential to understand
the noise growth behaviour in order to choose secure and correct parameters. Ideally, the
noise growth behaviour would be modelled tightly, so that the most performant parameters
that meet the security and correctness requirements can be selected.

Noise estimation approaches. Existing models for noise growth in the homomorphic
encryption literature can be classified according to several strands. A first approach,
starting with [GHS12a, GHS12b], seeks to bound the noise in fresh encryption and after
each homomorphic operation. Tracing these bounds through leads to a bound on the
noise in the output ciphertext. A second approach, used e.g. in [CGGI20, CCH+23], and
continued in this work, seeks to obtain distributional results on the noise. For example,
the variance of the noise is traced through each homomorphic operation, and the variance
in the output noise is then converted to a bound. A third approach, considered e.g.
in [LMSS22, ABBB+22], uses empirical measurements of the noise.

The first approach is often described as worst-case (see e.g. [CLP20, GNSJ24]) while
the second is often described as average-case (see e.g. [CCH+23, CNP23]). However, care
should be taken here as even the ‘worst-case’ bounds are typically developed using heuristics
(see e.g. [GHS12a, GHS12b, CS16, Ili19]); and moreover, they may fail, although typically
with very low probability. For example, prior analyses have assumed that a particular
Gaussian random variable is within six [CS16] or ten [HEl19] standard deviations of its
mean. Average-case analyses may also rely on heuristics and assumptions, as is the case
for [CCH+23] and this work.

Bounds on the noise are often given in the canonical norm, i.e. the infinity norm in
the canonical embedding (as in e.g. [GHS12a, GHS12b, CS16, CKKS17, HS20, CLP20,
KPP22]) but they may also be given in the infinity norm in the ciphertext ring (as in
e.g. [KPZ21]). Some works (e.g. [CCH+23, CNP23]) consider both norms. The experiments
of [CNP23] for BGV show that using the infinity norm more closely models practical noise
growth in HElib than using the canonical norm. In this work, for BGV, we conduct our
noise analysis directly in the ciphertext ring and give our eventual noise bounds in the
infinity norm. For LPRHom, we give our analysis under the canonical embedding, where we
consider decryption with respect to an embedding of a particular “decoding basis” (using
the terminology of [LPR13a]).

Most approaches for noise analysis are static, in the sense that the noise estimates
in the given model can be publicly computed based on the scheme parameters. Our
work focuses on this context. A dynamic approach to noise analysis, in which noise is
determined at runtime from a given ciphertext using the secret key, has also been considered
in [LMSS22, ABBB+22].

Motivation for our work. Prior to the development of this work, the noise analyses
presented for BGV [GHS12a, GHS12b, CS16, CLP20, HS20] have provided bounds for the
noise growth after every BGV evaluation operation. By tracing through the bounds after
each operation, the noise growth incurred by the overall evaluation can also be bounded. In
this sense, these prior analyses can all be classified as worst-case. It was shown in [CLP20]
that when using such an approach, there can be an unsatisfying gap between the final
noise bound and the typical size of the noise as observed in experiments, with the gap
growing as more computations are performed.

We are motivated by the noise analysis for the TFHE scheme [CGGI16] that was
presented in [CGGI20]. There, it is assumed that the coefficients of a fresh TFHE
ciphertext are independent subgaussians, and that the coefficients of a ciphertext output of
the gate bootstrapping operation are also independent subgaussians. The latter assumption
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is experimentally verified [CGGI20, Figure 10]. It is shown that every TFHE operation
can be implemented via gate bootstrapping on a linear combination of ciphertexts. Thus,
by linearity and by the assumption on gate bootstrapping, every TFHE ciphertext noise
coefficient can be modelled as a subgaussian. This permits the variance of the noise to be
traced through the overall evaluation.

In this work, we show how for each BGV homomorphic evaluation operation, the input
and output noises can each be modelled as a Normal random variable. This enables us to
trace through the variances of the noise at each operation, and eventually arrive at the
variance of the noise after the evaluation. Therefore, we only need to resort to a bound
after the evaluation: the (modelled) Normal distribution of the given variance implies a
certain tail bound on the noise holds with a certain probability. This can be classified as an
average-case approach. We expect that this approach should enable us to set parameters
that are still large enough to ensure correctness, but may be smaller (and thus more
performant) than those that would be chosen under a worst-case analysis.

The fundamental issue with modelling the noise growth in schemes like BGV or the
LPRHom cryptosystem is that the noise growth in multiplication is nonlinear. In more
detail, if two BGV ciphertexts having noise polynomials v1 and v2 are multiplied, then
the resulting ciphertext has noise polynomial v1 · v2. In particular, if X1 and X2 are
subgaussian random variables arising from such noise polynomials, then the product
X1 ·X2 is not necessarily subgaussian and indeed can have a much heavier tail [MP20].
For this reason, developing an analysis for BGV that models the noise as (sub)gaussian
(as done in [CGGI20] for TFHE) was believed until recently to be a challenging open
question [CLP20]. It was also believed to be challenging for related schemes, such as
CKKS [CKKS17] and BFV [FV12], that have a similar multiplication structure to BGV.
An important step in resolving this question was made in [CCH+23], which showed how
a Central Limit approach could, under certain assumptions, be used to approximate the
noise in CKKS ciphertexts.

Our first main contribution is to apply the approach of [CCH+23] to BGV and evaluate
its efficacy in the BGV context. Our second main contribution is to show how a Central
Limit approach can be used to approximate the output noise of all LPRHom operations as
a Normal distribution. We now overview these contributions in more detail.

1.1 A Central Limit approach for BGV
The first main contribution of this paper is to present and evaluate an average-case noise
analysis for BGV, based on a Central Limit argument. Our approach is built upon the
recent work of [CCH+23] that develops an average-case noise analysis for the CKKS
scheme [CKKS17]. The CKKS scheme closely follows the BGV scheme, differing mainly in
the native plaintext space and in encoding of messages. In particular, the multiplication in
CKKS is essentially the same as for BGV, and thus it is expected that analyses for CKKS
could be applicable in the BGV setting. Indeed, our results crucially rely on Theorem 1
and Corollary 1, developed in [CCH+23]. Our average-case noise analysis for BGV follows
from repeated applications of Corollary 1 and is summarised in Figure 2.

Theorem 1 gives the mean and covariance of a polynomial product Y := ZZ ′ of two
multivariate Normals Z and Z ′; and shows that the components Yi of Y can be well-
approximated by a multivariate Normal distribution. As in [CCH+23], we also rely on
Heuristic 1, which expresses that Y itself can be approximated as a multivariate Normal
distribution of the mean and covariance established in Theorem 1. No detailed justification
for Heuristic 1 is given in [CCH+23]. As an additional contribution of this work, we give a
partial justification in Lemma 3, which establishes the bivariate Normality of (Yi, Yi′) for
any pair of components Yi and Yi′ of Y in the particular case of applying Theorem 1 to
determine the noise growth after a multiplication of two fresh ciphertexts. We also discuss
how this argument be generalised to finite collections of several components {Yi1 , . . . , Yik

}
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and potentially in situtations beyond the multiplication of fresh ciphertexts.

Impact. We conduct an experimental evaluation of the efficacy of our average-case noise
approach for BGV by comparing with the practical noise growth in HElib [HEl19] and
SEAL [SEA22]. Our findings, presented in Tables 1, 2, 3, and 4, are mixed.

On the one hand, the experiments show that in some cases, our approach much more
closely models the noise compared to the prior approach of [CLP20]. Moreover, we show
that our average-case approach can lead to practical improvements for parameter selection
in some cases. In more detail, we are able to exhibit explicit circuits (Tables 3 and 5) for
which the prior approach of [CLP20] implies a larger set of parameters is needed than is
suggested by our average-case approach; and in these cases, we find that the practically
observed noise is such that the smaller parameter set suggested by our average-case
approach is indeed sufficient to support the computation.

On the other hand, for our HElib experiments, we also compare with the inbuilt noise
estimations in the library [HS20], and we find that the [HS20] estimates are generally
closer than ours to the practically observed noise. In addition, for both HElib and
SEAL, our average-case approach sometimes overestimates the remaining noise budget, i.e.,
underestimates the practical BGV noise growth. This is similar to the findings of [CCH+23]
for CKKS and suggests that caution should be employed when relying on this approach
for parameter selection.

Discussion. In this work, we present and evaluate an average-case noise analysis for
BGV. As the findings of our evaluation are mixed, it is natural to wonder how the negative
aspects of our approach can be explained.

Our approach is obtained by directly applying the results of [CCH+23] that were
developed for CKKS. As such, we make the same assumptions as were made in [CCH+23],
and so our work inherits the limitations of these assumptions. One of these assumptions
is that the noise coefficients are independent. This assumption is not experimentally
verified in [CCH+23] or the present work. Subsequent work [BMCM23] has found that
this independence assumption does not hold for the BFV scheme [FV12], and is the
cause for underestimates of noise growth in BFV implementations. Moreover, very
recent work suggests this independence assumption does not hold for the BGV scheme in
general [BM23]. We have not seen a full version of [BM23], so we do not know if it leads
to similar underestimates. However, BGV and CKKS are similar to BFV and so based on
the results of [BMCM23] we suspect this may partly explain the discrepancy between our
predictions and the observed experimental results.

Notably, our approach leads to overestimates of the remaining noise budget after
modulus switching. We did not investigate precisely what causes the analysis to fail for
modulus switching. The reason for not doing so is that the subsequent work [CNP23]
already provides an improved average-case noise analysis for BGV that is specific to its
implementation in HElib, which experiments show closely models HElib noise growth. The
main reason why the [CNP23] noise analysis is so effective is the observation (in [CNP23,
Lemma 8]) that in HElib, the modulus switch noise is dominated by the rounding term
only. In fact, the results of [CNP23] crucially rely on the noise distribution in HElib
ciphertexts effectively being reset by every modulus switch. In contrast, our heuristic
analysis (Lemma 5) is given for a general situation of modulus switching and including
both the rounding term and the term that arises from the scaling of the input noise.

In summary, while the present work gives a first step towards an average-case BGV noise
analysis, the findings of this and subsequent works [BMCM23, CNP23, BM23] illustrate
that further work is needed to refine BGV noise analyses to tightly model noise growth
across different implementations.
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1.2 A Central Limit approach for LPRHom
The second main contribution of this paper is to develop a statistical framework, based on
a Central Limit argument, for analysing the noise in LPRHom ciphertexts. To illustrate the
utility of this approach, we present in Theorem 2 and Corollary 2 new, tighter bounds for
the probabilities of incorrect decryption in degree-1 and degree-2 LPRHom ciphertexts. Our
analysis can similarly be applied for higher-degree ciphertexts [MP20].

In more detail, the Central Limit framework is essentially based on approximating the
mean vector and the covariance matrix of the noise of a ciphertext when embedded into
the complex space H and transformed with respect to an appropriate “decoding” basis,
that is required during decryption [LPR13a]. We show that the approximate Normality of
this embedded noise when expressed in a decoding basis is fundamentally a Central Limit
phenomenon arising from the weighted sum of many random variables, where the weights
arise from a change of basis matrix to the decoding basis.

For example, if C(pΓ) is a vector of dimension n expressing the noise in a ciphertext with
respect to the decoding pΓ-basis for H (Definition 8) and C(T ) is a vector of dimension n
expressing the noise in a ciphertext with respect to the original T -basis for H (Section 2.4),
then C(pΓ) = p∆C(T ) for an appropriate real-valued n× n change of basis matrix ∆ and
“scaling prime” p (which is the plaintext modulus in LPRHom). In particular, this means
that we can express a component c(pΓ)

j of C(pΓ) as

c
(pΓ)
j = p

n∑
k=1

∆jkc
(T )
k .

The components c(T )
1 , . . . , c

(T )
n of C(T ) are identically distributed random variables that

are uncorrelated and, in general, independent, having zero mean E
(
c

(T )
j

)
= 0 and some

finite variance Var
(
c

(T )
j

)
= ρ2. Thus a component c(pΓ)

j of a noise vector in the pΓ-basis is
a weighted sum of uncorrelated and in general independent identically distributed random
variables. We will show that the weightings ∆j1, . . . ,∆jn are of comparable size, which
suggests that a Central Limit argument can be invoked to give a Normal approximation
for a component c(pΓ)

j . For successful decryption, we require each component of C(pΓ) to
be bounded by an appropriate threshold. A Central Limit approach enables us to bound
the probability of incorrect decryption using bounds on the tails of Normal distributions.

Impact. Our decryption failure probability bounds (Theorem 2 and Corollary 2) are
tighter than the prior bounds in the literature [LPR13a]. This demonstrates the im-
provement that can be obtained by using a Central Limit approach, in comparison with
the prior approach of [LPR13a] that uses δ-subgaussian random variables [MP12, MP19].
For example, if η1(n, q, ρ) = 1

2 (n 1
2 ρ)−1q is moderate or large (as defined in Section 2.2),

Theorem 2 gives a decryption failure probability bound of

2n exp(− 1
2η

2
1)

(2π) 1
2 η1

.

This is tighter than the equivalent δ-subgaussian decryption failure probability bound of

2n exp(− 1
2η

2
1)

which is obtained by using the tail bound of [MP19, Lemma 18] in the manner of [LPR13a,
Lemma 6.5]. Asymptotically, ignoring constants, this tightens the bound by a factor of
ω(
√

logn), for power-of-two n and q following [LPR13a, Lemma 8.5].
No concrete parameter recommendations for LPRHom are specified in [LPR13a], so it is

difficult to quantify the concrete improvement. Additionally, to the best of our knowledge,
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no implementation of LPRHom exists, so we did not consider an experimental verification
of our LPRHom results.

More generally, we emphasise that a Central Limit approach has the following advan-
tages over an approach which seeks to derive bounds using δ-subgaussian arguments.

• A Central Limit approach makes no substantive distributional assumption for the
components c(T )

k beyond finite variance, so is potentially applicable to c
(T )
k that

are chosen from heavy-tailed distributions. Thus a Central Limit approach is more
generally applicable than other approaches that for example have a subgaussian
requirement for such random variables.

• A Central Limit approach gives an explicit approximating distribution for the
cryptographic random variable of interest which can be directly used for general
calculation or simulation purposes of use in cryptography. By contrast, a subgaussian
approach can never give an explicit approximating distribution and can only give
tail bounds. These tail bounds are generally weaker, as is evidenced by comparing
our Theorem 2 with the bound that would be obtained following [LPR13a].

• A Central Limit approach gives not only asymptotically an approximation to a Normal
distribution, but also a close approximation concretely, for practically relevant Ring-
LWE dimensions.

This indicates that the techniques developed in our work may also lead to improved
analyses in other application contexts.

1.3 Structure of the paper
We recall relevant background and introduce new tools in Section 2. We present and
evaluate a Central Limit approach for BGV in Section 3. We then present our Central
Limit approach for the LPRHom cryptosystem in Section 4.

2 Background
2.1 Notation
The value or more formally the coset representative of (r mod q) nearest to 0 is denoted
by JrKq = r − q[q−1r], and we use the same notation for a coset of Zq. We can also extend
this idea componentwise to vectors, and we write J·KB

q to indicate such an extension with
respect to a basis B. We use † to denote the complex conjugate transpose of a matrix, so
T † = T

T .

2.2 Central Limit approximations
When giving Central Limit approximations, we use the notation ∼ to denote either “is
exactly distributed as” or “is approximately distributed as” in the sense that we may
use the approximating distribution for practical purposes without significant error, as is
typically done in statistical analysis. Furthermore, whilst Central Limit results are formally
asymptotic results concerning sums or means of random variables, such Central Limit
approximations usually apply in practice with relatively few summands (except perhaps for
pathological distributions) as illustrated by the Berry-Esseen conditions [Str11] and related
multidimensional versions [TV11]. We therefore typically use the phrasing “for moderate
or large . . .” in such a Central Limit context to emphasise the usual applicability of Central
Limit approximations with relatively few summands. For example, such a Central Limit
approximation has been used in a homomorphic encryption context as being empirically
justified with as few as 30 summands [LMSS22], in line with routine statistical practice.
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2.3 Cyclotomic number fields
We consider the ring R = Z[X]/(Φm(X)), where Φm(X) is the mth cyclotomic polynomial
of degree n = ϕ(m), and we let Ra denote R/aR for an integer a. We let ζm denote a
(primitive) mth root of unity. The mth cyclotomic number field K = Q(ζm) is the field
extension of the rational numbers Q obtained by adjoining this mth root of unity ζm, so
K has degree n. Note that here we are using ζm as an abstract root of unity to define K,
but in Definition 8 we will abuse notation and use ζm as an explicit complex number.

There are n ring embeddings σ1, . . . , σn : K → C that fix every element of Q. Such a
ring embedding σk (for 1 ≤ k ≤ n) is defined by ζm 7→ ζk

m, so
∑n

j=1 ajζ
j
m 7→

∑n
j=1 ajζ

kj
m ,

and such ring embeddings occur in conjugate pairs. The canonical embedding σ : K → Cn

is a 7→ (σ1(a), . . . , σn(a))T .
The ring of integers OK of a number field is the ring of all elements of the number field

which are roots of some monic polynomial with coefficients in Z. The ring of integers of
the mth cyclotomic number field K is R = Z [ζm] ∼= Z [x] /(Φm). The canonical embedding
σ embeds R as a lattice σ(R). The conjugate dual of this lattice corresponds to the
embedding of the dual fractional ideal R∨ = {a ∈ K | Tr(aR) ⊂ Z}.

For m an odd prime, if we define b such that b−1 = m−1(1 − ζm), then [LPR13a,
Corollary 2.18] shows that R∨ = ⟨b−1⟩. We let (R∨)k denote the space of products of k
elements of R∨, that is to say

(R∨)k = {s1 . . . sk | s1, . . . , sk ∈ R∨} =
{
b−kr1 . . . rk | r1, . . . , rk ∈ R

}
.

2.4 The complex space H

The ring embeddings σ1, . . . , σn from K into C occur in complex conjugate pairs with
σk = σm−k. Accordingly, much of the analysis of Ring-LWE takes place in a space H of
conjugate pairs of complex numbers.

Definition 1. The conjugate pairs matrix is the complex unitary n × n matrix T , so
T−1 = T †, given by

T = 2− 1
2



1 0 . . . 0 0 . . . 0 i
0 1 . . . 0 0 . . . i 0
...

...
. . .

...
...

...
...

0 0 . . . 1 i . . . 0 0
0 0 . . . 1 −i . . . 0 0
...

...
...

...
. . .

...
...

0 1 . . . 0 0 . . . −i 0
1 0 . . . 0 0 . . . 0 −i


.

Definition 2. The complex conjugate pair space H = T (Rn), where T is the conjugate
pairs matrix.

Definition 3. The I-basis for H is given by the columns of the n× n identity matrix I,
that is to say the I-basis is the standard basis.

Definition 4. The T-basis for H is given by the columns of the conjugate pairs matrix T .

An element of H is expressed via the I-basis as a vector of n′ = 1
2n conjugate pairs.

Such an element of H can also be expressed (by construction) in the T -basis as a real-valued
vector, giving the isomorphism between H and Rn as an inner product space. Note that
our bases are all for H, whereas the “power basis” etc of [LPR13a] are bases for R∨.
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2.5 The BGV scheme
In this section we introduce the BGV scheme [BGV12]. We generally follow the description
of BGV given in [CLP20], reproduced in Figure 3 in Appendix A, that restricts to a
power-of-two cyclotomic ring, R = Z[X]/(XN + 1) for N a power of two. The plaintext
space is given by Rt = Zt[X]/(XN + 1), where the integer t denotes the plaintext modulus.
The ciphertext space is given by Rq = Zq[X]/(XN + 1), where the integer q denotes the
ciphertext modulus. We generally regard a polynomial element of Rq as having coefficients
in {− 1

2 (q − 1), . . . , 1
2 (q − 1)}. A polynomial h ∈ R (or Rq or Rt) is given by

h = h(X) =
n−1∑
i=0

hjX
j = h0 + h1X + . . .+ hn−1X

N−1,

where this polynomial may also be interpreted as vector h = (h0, . . . , hN−1) of coefficients in
an appropriate context. When multiplying such polynomials in Rq, i.e. modulo XN +1, we
express the result using a modified Sign function ξ on the integers given by ξ(z) = Sign(z)
for z ̸= 0 with ξ(0) = 1. A term of (hh′) can then be specified as

(hh′)i =
N−1∑
j=0

ξ(i− j) hi−jh
′
j [i = 0, . . . , N − 1].

and the subscripts are interpreted modulo N to lie in {0, . . . , N − 1}.
We now describe in our notation the relevant parts of the BGV scheme in order to

define the noise in a BGV ciphertext. In our analysis, to derive expression for the BGV
noise growth, we make the following assumptions (which were also made in [CCH+23])
for simplicity. Firstly, we assume that certain quantities are fixed, and we will describe
such quantities as ‘constant’ in these cases. Secondly, we will calculate expressions for the
critical quantity in R, rather than Rq.

SecretKeyGen. For emphasis, we write the secret key as s ∈ {−1, 0, 1}N , a ternary
vector of length N . We regard s as a constant vector known to the genuine receiver. That
is, we will assume that the secret key is fixed, rather than being a random variable. More
generally, s can be regarded as a polynomial of degree N − 1.

PublicKeyGen. The public key (p0, p1) consists of two parts, with the first part p0 a
multivariate random variable and the second part p1 a constant vector. For the second
part p1, a constant vector a ∈ {− 1

2 (q − 1), . . . , 1
2 (q − 1)}n is chosen and p1 is set to a, so

p1 = a. For the first part p0 with secret key s ∈ {−1, 0, 1}N , we have

p0 = −as− tϵ0, where ϵ0 ∼ N(0;σ2IN )

is a spherically symmetric multivariate Normal random variable with component variance
σ2, where as denotes the appropriate polynomial product of a and s. The distribution of
the public key (p0, p1) is therefore given by

p0 ∼ N(−as; t2σ2IN ) and p1 = a.

Noise in BGV. In our analysis, we will give distributions for the multivariate random
variables arising in BGV before any reduction modulo q. That is, we will calculate
expressions for the critical quantity in R, rather than Rq. For convenience, we approximate
discrete random variables in BGV by the obvious appropriate continuous random variable.

For a BGV ciphertext (c0, c1) encrypting a message m, our analysis considers the BGV
Critical Value, W given by

W = c0 + sc1,
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where sc1 denotes the appropriate polynomial product of s and c1. The Noise V is then
given from the Critical Value W by subtracting m.

Modulus switching. The key technical tool for noise management in BGV is modulus
switching. In Lemma 1 we give an alternative expression for the BGV ModSwitch operation
to that given in Figure 3 that will be more convenient for our analysis. Lemma 1 (proved
in Appendix B) can be seen as giving an explicit implementation of the Scale operation
described in earlier analyses of BGV [CS16, GHS12a].

Lemma 1. Suppose that (c0, c1) is a BGV ciphertext with respect to a modulus q and
consider a ModSwitch operation with respect to a new modulus p < q. The BGV ModSwitch
operation maps an input ciphertext part ci to the nearest integer polynomial to p

q
ci having

the same value modulo t as ci. More formally, this output ciphertext (c′
0, c

′
1) after the

ModSwitch operation can be expressed as

c′
i =

⌊
p

q
ci

⌉
+
((

ci −
⌊
p

q
ci

⌉)
mod t

)
[i = 0, 1].

2.6 The LPRHom scheme
In this section we introduce the LPRHom cryptosystem. In order to do so, we first need two
definitions. A description of LPRHom cryptosystem, in the notation of [LPR13a], is then
given in Figure 4 in Appendix C.

Definition 5 ([MP19]). The univariate Balanced Reduction function R on R is the random

function R(a) =
{

1− (⌈a⌉ − a) with probability ⌈a⌉ − a
−(⌈a⌉ − a) with probability 1− (⌈a⌉ − a).

The multivariate Balanced Reduction function R on Rl with support on [−1, 1]l is
the random function R = (R1, . . . ,Rl) with component functions R1, . . . ,Rl that are
independent univariate Balanced Reduction functions.

Definition 6 ([MP19]). Let B be a (column) basis matrix for the n-dimensional lattice
Λ in H. If R is the Balanced Reduction function, then the coordinate-wise randomised
rounding discretisation or CRR discretisation ⌊X⌉BΛ+c of the random variable X on H to
the lattice coset Λ + c with respect to the basis matrix B is the random variable

⌊X⌉BΛ+c = X +B R
(
B−1(c−X)

)
.

We now describe in our notation the relevant parts of the LPRHom cryptosystem in
order to define the noise in a LPRHom ciphertext. We first recall that the LPRHom secret
key is an element s ∈ R, the plaintext space is Rp, and a plaintext µ ∈ Rp is encrypted to
give a linear polynomial over R∨

q .
The first step of the encryption process is to generate a random input for a discretisation

process to a coset depending on the plaintext µ. Accordingly, we let Y be a random
variable on H such that TY ∼ N(0; p2ρ2In) is a spherically symmetric n-dimensional
Normal random variable with component variance p2ρ2 for an appropriately chosen ρ2.
We term Y the Underlying Noise, and Y is a complex-valued random vector expressed in
the I-basis for H.

Specifically, we discretise Y to the coset σ(pR∨)+σ(b−1µ) of the lattice σ(pR∨) obtained
by the canonical embedding of the scaled dual fractional ideal pR∨. We consider the
coordinate-wise randomised rounding discretisation with respect to the pΓ-basis for H, and
following Definition 6 we denote this discretisation of Y by Y ′(µ) = ⌊ Y ⌉pΓ

σ(pR∨)+σ(b−1µ).
The Noise random variable Y ′′(µ) in the encryption of the plaintext µ is then defined to

be Y ′′(µ) = σ−1(Y ′(µ)), and is an element of a coset of pR∨ + b−1µ containing information
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Description Random Variable Range of Random Variable
Underlying Noise Y Complex Space H
Embedded Noise Y ′(µ) Lattice Coset σ(pR∨) + σ(b−1µ)

Noise Y ′′(µ) Number Field Coset pR∨ + b−1µ

Figure 1: Notation for the Noise-related quantities used in encryption of the plaintext µ.

about µ. For obvious reasons, we refer to Y ′(µ) = σ(Y ′′(µ)) as the Embedded Noise, and
we note that Y ′(µ) expresses the Embedded Noise in the I-basis of H. We summarise this
discussion in Figure 1.

In the next step of encryption, we form the ciphertext from the Noise Y ′′(µ) and the
secret key s in the following way. We choose A uniformly in R∨

q , and we let A′(µ) =
−As + Y ′′(µ) ∈ R∨

q . The ciphertext C(θ;µ) is the polynomial in θ over R∨
q defined as

C(θ;µ) = A′(µ) +Aθ. We note that this polynomial can be expressed directly in terms of
the Noise Y ′′(µ) and the secret key s as C(θ;µ) = A(θ− s) + Y ′′(µ). A fresh ciphertext is
defined to be a degree-1 ciphertext, since the polynomial C(θ;µ) is linear.

The output ciphertext of a homomorphic multiplication of two degree-1 ciphertext
polynomials is obtained simply by multiplying these polynomials together. Thus we can
obtain the degree-2 ciphertext polynomial over R∨

q corresponding to the product µ1µ2 of
plaintexts µ1 and µ2 as C(θ;µ1, µ2) = C(θ;µ1) �C(θ;µ2), where C(θ;µ1) = A′

1(µ1) +A1θ
and C(θ;µ2) = A′

2(µ2) + A2θ. This degree-2 ciphertext polynomial is C(θ;µ1, µ2) =
A′

1(µ1)A′
2(µ2) + (A2A

′
1(µ1) +A1A

′
2(µ2)) θ+A1A2θ

2, which is given in terms of the secret
key s and its constituent Noises Y ′′

1 (µ) and Y ′′
2 (µ) by

C(θ;µ1, µ2) = A1A2(θ − s)2 + (A2Y
′′

1 (µ1) +A1Y
′′

2 (µ2)) (θ − s) + Y ′′
1 (µ1)Y ′′

2 (µ2).

The Noise in this degree-2 output ciphertext C(θ;µ1, µ2) is defined to be the product
Y ′′

1 (µ1)Y ′′
2 (µ2) of the Noises Y ′′

1 (µ1) and Y ′′
2 (µ2) of the degree-1 input ciphertexts. This

process extends in the obvious way to give ciphertexts of higher degree.

3 A CLT approach for BGV noise analysis

3.1 Distribution of polynomial products in R
BGV noise analysis requires us to construct the polynomial product in R or Rq, that is
to say modulo XN + 1, of a constant or scalar and a (discretised) multivariate Normal
random variable or of two multivariate Normal random variables. In this section we present
relevant results from [CCH+23], developed for the CKKS context, that we will apply to
give an average-case noise analysis for BGV.

Theorem 1 ([CCH+23]). Suppose that Z ∼ N(µ; ρ2IN ) and Z ′ ∼ N(µ′; ρ′2IN ), then the
polynomial product ZZ ′ (modulo XN + 1) has mean vector E(ZZ ′) and covariance matrix
Cov(ZZ ′) given by

E(ZZ ′) = µ∗ and Cov(ZZ ′) = ρ2
∗IN + S,

where µ∗ is the polynomial product of µ and µ′, ρ2
∗ = Nρ2ρ′2 + ρ′2 ∥µ∥2

2 + ρ2 ∥µ′∥2
2 and S

is an off-diagonal matrix with entries

Si,i′ = ρ′2
N−1∑
j=0

ξ(i− j)ξ(i′ − j)µi−jµi′−j + ρ2
N−1∑
j=0

ξ(i− j)ξ(i′ − j)µ′
i−jµ

′
i′−j ,



Sean Murphy and Rachel Player 11

for a modified sign function ξ given by ξ(z) = Sign(z) for z ≠ 0 and ξ(0) = 1. Furthermore,
the components (ZZ ′)i of this polynomial product can be approximated as a Normal N(µ∗

i , ρ
2
∗)

distribution.

Theorem 1 gives the mean and covariance of the product Y = ZZ ′, and shows the
components Yi of Y can be well-approximated as Normal. As in [CCH+23], our average-case
analysis for BGV will model ZZ ′ as a multivariate Normal distribution of the established
mean and covariance. This is expressed in Heuristic 1.

Heuristic 1 ([CCH+23]). Suppose that Z ∼ N(µ; ρ2IN ) and Z ′ ∼ N(µ′; ρ′2IN ). Then, for
µ∗, ρ2

∗ and S as specified in Theorem 1, the polynomial product ZZ ′ (modulo XN + 1) can
be approximated as a multivariate Normal distribution as

ZZ ′ ∼ N
(
µ∗; ρ2

∗IN + S
)
.

Following the approach of [CCH+23], we make the Small-S assumption: that the
off-diagonal matrix S encountered in Theorem 1 and Heuristic 1 is negligible compared to
ρ2

∗IN and we disregard it. As noted in [CCH+23], examination of the form of S indicates
this assumption may not always hold, for example if the mean vectors have large constant
components. However, the Small-S assumption is reasonable in many circumstances of
interest in BGV when the message components can be modelled as being uniform modulo t.

Corollary 1 ([CCH+23]). Suppose that Z ∼ N(µ; ρ2IN ) and Z ′ ∼ N(µ′; ρ′2IN ) are inde-
pendent, λ is a constant vector and the Small-S assumption is valid. Approximations to
the distribution of λZ, ZZ ′, Z2 are then given by:

λZ ∼ N
(
λµ ; ρ2|λ|2IN

)
,

ZZ ′ ∼ N
(
µµ′ ; Nρ2ρ′2 + ρ′2|µ|2 + ρ2|µ′|2)IN

)
and Z2 ∼ N

(
µ2 ; 2ρ2(nρ2 + 2|µ|2)IN

)
.

We also add a further variant of these results, as adapted in a special case for general
(i.e., not necessarily Normal) distributions Z and Z ′, which we use when considering the
BGV ModSwitch operation.

Lemma 2. Suppose that Z = (Z0, . . . , ZN−1)T and Z ′ = (Z ′
0, . . . , Z

′
N−1)T are independent

vectors of independent and identically distributed components with mean E(Zi) = E(Z ′
i) = 0

and respective variances Var(Zi) = ρ2 and Var(Z ′
i) = ρ′2. The polynomial product ZZ ′ is

well-approximated as a multivariate Normal distribution for large N given by

ZZ ′ ∼ N(0;nρ2ρ′2IN ).

Proof. The proof is similar to that given in [CCH+23] for Theorem 1. A component
(ZZ ′)i of ZZ ′ is the sum of N summands of the form ±ZjZ

′
j′ with mean E(±ZiZ

′
i′) = 0

and variance Var(±ZiZ
′
i′) = ρ2ρ′2. Thus the Central Limit Theorem shows that the

distribution of this component (ZZ ′)i and be approximated for large N as (ZZ ′)i ∼
N(0, Nρ2ρ′2). Furthermore, distinct components (ZZ ′)i and (ZZ ′)i′ (i ̸= i′) have covariance
Cov((ZZ ′)i, (ZZ ′)i′) = 0 (as they have 0 means), which gives the result.

3.2 Partial justification of Heuristic 1
In [CCH+23] no detailed justification was given for Heuristic 1. Lemma 3 provides a
partial justification by establishing the bivariate Normality of (Yi, Yi′) for two components
Yi and Yi′ of Y , where Yi = (ZZ ′)i is the ith component of the product of two independent
spherically symmetric multivariate Normal random variables Z and Z ′ for 1 ≤ i ≤ N . This
lemma is proved in the case that Z and Z ′ arise in the multiplication of fresh ciphertexts
so that certain quantities that arise are bounded and do not depend on N .
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Lemma 3. Suppose that Z ∼ N(µ; ρ2IN ) and Z ′ ∼ N(µ′; ρ′2IN ) are independent and that
Yi = (ZZ ′)i for 1 ≤ i ≤ N . Any linear combination U = γYi + γ′Yi′ of Yi and Yi′ can
be approximated by a univariate Normal distribution for large N . Thus (Yi, Yi′) can be
approximated by a bivariate Normal distribution for large N .

Proof. (Sketch.) For readability, the full proof of Lemma 3 is provided in Appendix D. The
proof relies on Lemmas 8, 9, 10, 11, and 12, which are stated and proved in Appendix D,
and we give a brief sketch here. In Lemma 8, we show that Yi and Yi′ can both be expressed
with respect to a particular quadratic form. In Lemma 9, we show how the result of
Lemma 8 can be generalised to an arbitrary linear combination of Yi and Yi′ , expressed as
U = γYi + γ′Yi′ . In particular Lemma 9 shows how U can be expressed as a sum of two
different random variables: the first is a quadratic form in independent and identically
distributed Normal N(0, 1) random variables, and the second is a Normal random variable.
This quadratic form is defined in terms of the eigenvalues of a specified matrix, which arises
from the polynomial multiplication of Z and Z ′. Thus if we show that this quadratic form
has an approximate Normal distribution, then U overall is also approximately Normal. In
Lemma 10, we establish results about the powers of these eigenvalues that are needed in the
proof of Lemma 11. In Lemma 11, we invoke the Lyapunov Central Limit Theorem [Bil95,
Theorem 27.3] to show that a scaled version of the quadratic form random variable of U
asymptotically has a Normal distribution. This requires that the Lyapunov quotient tends
to zero, which is established using Lemma 12, under an assumption (assured by restricting
to Z and Z ′ arising in the multiplication of fresh ciphertexts) that certain quantities are
bounded. Lemma 3 then follows as a corollary of Lemma 11.

The arguments used in the proof of Lemma 3 can be extended to show that any linear
combination γi1Yi1 + . . .+ γik

Yik
of a finite collection (Yi1 , . . . , Yik

) of k components of Y
can be approximated as a univariate Normal distribution for large N , and so this collection
(Yi1 , . . . , Yik

) has an approximate multivariate Normal distribution for large N .
It would also seem possible to adapt the proof of Lemma 3 to situations beyond the

multiplication of fresh ciphertexts by modelling the dependence on N of components of
µ and µ′. Lemma 12 could then potentially be generalised by using N− 1

2 (1+d) for an
appropriate choice of d, rather than the simpler N− 1

2 used when modelling fresh messages.

3.3 BGV noise analysis
In this section, we apply results from Section 3.1 to give an average-case noise analysis
for BGV. Under the assumptions specified in Section 3.1, these show how the noise in
a ciphertext output from each BGV operation follows a Normal distribution with zero
mean and a specified component variance. As most of these results are obtained entirely
analogously to those for CKKS developed in [CCH+23], we summarise the results in
Table 2 and defer their justification to Appendix E.

An exception is the ModSwitch operation, which is used to move from a ciphertext
modulus q to a smaller modulus p. This operation does not exist for CKKS, although
it is similar to the CKKS operation Rescale1. We first give in Lemma 4 a technical
result (proved in Appendix F) that we will rely on in the following lemma. Lemma 5 then
shows that a Normal distribution approximates the noise random variable for a ciphertext
obtained from a BGV ModSwitch operation.

Lemma 4. Suppose that q and t are odd positive integers with q ≫ t, and let Q =
{− 1

2 (q − 1), . . . , 1
2 (q − 1)} and T = {− 1

2 (t− 1), . . . , 1
2 (t− 1)}. If Z ∼ Uni(Q) and |γ| ≪ 1

1The main difference is that in CKKS the message is in the high-order bits, so Rescale also serves the
purpose of ensuring the message is scaled up by an appropriate amount. In BGV the message is in the
low-order bits, so modulus switching does not affect the encoding of the message.
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BGV Component variance Component variance
Operation of input noise(s) of output noise(s)
Encrypt -

( 4
3N + 1

)
t2σ2

Add ρ2, ρ′2 ρ2 + ρ′2

Multiply ρ2, ρ′2 Nρ2ρ′2 + ρ′2|m|2 + ρ2|m′|2
Relinearize ρ2 ρ2 + 1

12N(ℓ+ 1)w2t2σ2

ModSwitch ρ2 γ2ρ2 + 1
12
( 2

3N + 1
)

(t2 − 1)

Figure 2: Component variances in the zero-mean Normal random variable giving the
noise in the output ciphertext after BGV homomorphic evaluation operations on input
ciphertexts with input noises given by the zero-mean Normal random variables of the given
component variances. The input ciphertexts to Multiply encrypt messages m and m′. The
parameter N denotes the power-of-two cyclotomic ring dimension. The parameter t is the
plaintext modulus. The parameter σ is the standard deviation of the Ring-LWE error. In
Relinearize, a ciphertext component with respect to ciphertext modulus q is decomposed
into ℓ+ 1 terms with in base w where ℓ := ⌊logq (q)⌋. The parameter γ := p/q where q is
the original ciphertext modulus and p is the ciphertext modulus after ModSwitch.

then the random variable
(Z − ⌊γZ⌉) mod t

has a distribution very close to Uniform on T .

Lemma 5. [ModSwitch] Suppose that a BGV ciphertext (c0, c1) with respect to a modulus
q has a 0-mean multivariate Normal noise random variable given by V ∼ N(0; ρ2IN ). Then
the output ciphertext (c′

0, c
′
1) after a ModSwitch operation of this ciphertext to a modulus

p ≪ q has noise random variable Vmod-sw(s) ∼ N(0; ρ2
mod-sw(s)IN ), where the component

variance ρ2
mod-sw(s) is given in terms of the contraction factor γ = p

q
as

ρ2
mod-sw = γ2ρ2 + 1

12 ( 2
3N + 1)(t2 − 1).

Proof. Lemma 1 shows that the output ciphertext (c′
0, c

′
1) (with modulus p) following the

application of the BGV ModSwitch to the input ciphertext (c0, c1) (with modulus q) is
given by

c′
i = ⌊γci⌉+ ((ci − ⌊γci⌉) mod t) [i = 0, 1].

In order to analyse the BGV ModSwitch operation, we define

Ui = ((ci − ⌊γci⌉) mod t) = c′
i − ⌊γci⌉ [i = 0, 1],

which we can regard as integer random variables with independent components Uij taking
values in the set T = { 1

2 (t−1), . . . , 1
2 (t−1)} of modulo t values (where t is odd). Lemma 4

shows that these integer random variables Uij have a distribution very close to Uniform
on T for BGV moduli p≪ q (as |γ| ≪ 1).

The BGV Critical Value Wmod-sw for the decryption of this ciphertext (c′
0, c

′
1) obtained

from the BGV ModSwitch operation is

Wmod-sw(s) = c′
0 + sc′

1 = ⌊γc0⌉+ s⌊γc1⌉+ (U0 + sU1)
= γ(c0 + sc1) + (U0 + sU1) + (⌊γc0⌉+ s ⌊γc1⌉ − γ(c0 + sc1))
= γW + (U0 + sU1) + ((⌊γc0⌉ − γc0) + s(⌊γc1⌉ − γc1)) ,

We note that the final term (⌊γc0⌉−γc0)+s(⌊γc1⌉−γc1) arises from rounding components
to the nearest integers. Thus this term is negligible as each component consists of the
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Table 1: The column x gives the observed mean of the noise budget in HElib ciphertexts
over 10000 trials of the homomorphic evaluation described in the first circuit and in [CLP20]
for parameter sets with dimension N ∈ {2048, 4096, 8192, 16384}. The column [CLP20]
gives an estimate of the noise budget using worst-case heuristic bounds as given in that
work. The column ‘Ours’ gives an estimate of the noise budget using our average case
approach. The column [HS20] gives the remaining noise budget estimated using the
getNoiseBound() function of HElib. The entry ‘-’ denotes that the parameter set was too
small to support this operation.

N
Enc Add Mult ModSwitch

[CLP20] Ours [HS20] x [CLP20] Ours [HS20] x [CLP20] Ours [HS20] x [CLP20] Ours [HS20] x
2048 35.0 41.0 43.2 48.7 34.0 41.0 42.2 48.2 17.0 26.0 31.5 39.1 - - - -
4096 89.0 96.0 97.6 104 88.0 95.0 96.6 103 70.0 80.0 85.4 93.5 39.0 46.0 32.4 40.6
8192 199 206 207 213 198 205 206 213 179 189 194 203 148 155 141 149
16384 417 425 426 433 416 424 425 432 396 407 412 422 366 374 358 368

sum of (1 + |s|) ≈ ( 2
3n+ 1) Uni((− 1

2 ,
1
2 )) rounding random variables, and so for practical

purposes the BGV ModSwitch Critical Value is given by

Wmod-sw(s) = γW + (U0 + sU1).

The BGV ModSwitch noise random variable Vmod-sw corresponding to this BGV
ModSwitch Critical Value is given by

Vmod-sw(s) = γV + (U0 + sU1).

The first term γV ∼ N(0; γ2ρ2IN ) in this expression has a symmetric multivariate Normal
distribution with mean 0 and component variance γ2ρ2. A component (U0 + sU1)i of the
second term U0 + sU1 is a sum of (1 + |s|2) independent Uni(− 1

2 t,
1
2 t) random variables,

so the Central Limit Theorem shows that the component (U0 + sU1)i can be regarded as
having a Normal distribution with N(0, 1

12 (1 + |s|2)(t2 − 1)IN ) for large N with component
variance 1

12 (1 + |s|2)(t2 − 1). Thus the noise random variable Vmod-sw of BGV ModSwitch
operation has a distribution given by

Vmod-sw(s) ∼ N
(

0; ρ2
mod-sw(s)IN

)
, where ρ2

mod-sw(s) = γ2ρ2 + 1
12 (1 + |s|2)(t2 − 1).

We conclude using the fact that s is chosen from a uniform ternary distribution, similarly
to the Justification for Heuristic 2 in Appendix E.

3.4 Experimental evaluation of efficacy
In this section, we illustrate the efficacy of the average-case approach for BGV noise analysis
presented in Section 3.3 by comparing the noise growth predicted by this approach with
observed noise growth in both HElib [HEl19] and SEAL [SEA22] and with the noise growth
predicted by worst-case bounds as developed in [CLP20] following Iliashenko [Ili19]. Our
experiments use HElib version 2.2.1 and SEAL version 4.0. We show that our average-case
analysis can more closely estimate the practical noise growth than the prior worst-case
approach of [CLP20]. To do so, we consider the homomorphic evaluation of two circuits.
The results for HElib are displayed in Tables 1 and 2 respectively. The results for SEAL
are displayed in Tables 3 and 4 respectively. For HElib, we also compared our approach to
the noise predictions that are inbuilt in HElib using the getNoiseBound() function.

Experimental setup. The first circuit considered is the same circuit as was used
in [CLP20]. The evaluation is as follows in the i-th trial. First, fresh ciphertexts ct1 and
ct2 encrypting i + 1 and i are generated. Next, ct3 is generated as the homomorphic
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Table 2: The column x gives the observed mean of the noise budget in HElib ciphertexts
over 10000 trials of the homomorphic evaluation described above in the second circuit for
parameter sets with dimension N ∈ {4096, 8192, 16384}. The column [CLP20] gives an
estimate of the noise budget using worst-case heuristic bounds as given in that work. The
column ‘Ours’ gives an estimate of the noise budget using our average case approach. The
column [HS20] gives the remaining noise budget estimated using the getNoiseBound()
function of HElib.

N
Enc Mult1 Mult2 Mult3

[CLP20] Ours [HS20] x [CLP20] Ours [HS20] x [CLP20] Ours [HS20] x [CLP20] Ours [HS20] x
4096 89.0 96.0 97.6 104 71.0 80.0 86.4 94.3 35.0 49.0 64.0 75.8 0 0 19.2 38.8
8192 199 206 207 213 180 189 195 203 142 156 171 184 66.0 90.0 125 145
16384 417 425 426 433 397 407 413 422 357 372 389 402 277 302 340 361

Table 3: The column x gives the observed mean of the noise budget in SEAL ciphertexts
over 10000 trials of the homomorphic evaluation described in the first circuit and in [CLP20]
for parameter sets with dimension N ∈ {2048, 4096, 8192, 16384}. The column [CLP20]
gives an estimate of the noise budget using worst-case heuristic bounds as given in that
work. The column ‘Ours’ gives an estimate of the noise budget using our average case
approach.

N
Enc Add Mult ModSwitch

[CLP20] Ours x [CLP20] Ours x [CLP20] Ours x [CLP20] Ours x
4096 34.0 40.0 44.0 33.0 40.0 43.0 0 6.00 8.00 0 6.00 2.00
8192 135 142 146 134 141 145 97.0 106 111 95.0 102 95.0
16384 349 357 360 348 356 360 310 321 323 304 312 304
32768 784 792 796 783 792 795 744 755 759 733 741 734

Table 4: The column x gives the observed mean of the noise budget in SEAL ciphertexts
over 10000 trials of the homomorphic evaluation described above in the second circuit for
parameter sets with dimension N ∈ {4096, 8192, 16384}. The column [CLP20] gives an
estimate of the noise budget using worst-case heuristic bounds as given in that work. The
column ‘Ours’ gives an estimate of the noise budget using our average case approach.

N
Enc Mult1 Mult2 Mult3

[CLP20] Ours x [CLP20] Ours x [CLP20] Ours x [CLP20] Ours x
16384 349 357 361 311 321 325 235 250 252 83.0 108 104
32768 784 792 796 745 756 757 667 683 676 511 537 515

addition of ct1 and ct2. Next, ct4 is generated as the homomorphic multiplication of
ct3 and ct2. For N > 2048, ct5 is generated by modulus switching ct4 down to the next
prime in the chain (for N = 2048 the parameters are too small to support this operation).
We measure the noise budget in each of 10000 trials. We then compute the average of
these noise budget measurements, and report that value in our results tables. The results
for HElib and SEAL are presented in Table 1 and Table 3 respectively.

We also explore the noise growth in a second, deeper, circuit, which is a multiplication
tree of eight independent ciphertexts. We used the same parameter settings as the previous
experiment. The evaluation is as follows in the i-th trial. First, fresh ciphertexts ct1,
. . . , ct8 encrypting i+ 1, . . . , i+ 8 respectively are generated. Next, ciphertexts ct9, . . . ,
ct12 are generated as the multiplication of ct1 and ct2; . . . ; ct7 and ct8 respectively.
Next ciphertexts ct13 and ct14 are generated as the multiplication of ct9 and ct10; and
ct11 and ct12 respectively. Finally, ciphertext ct15 is generated as the multiplication of
ct13 and ct14. We measure the noise budget in each of 10000 trials. We then compute
the average of these noise budget measurements, and report that value in our results
tables.The results for HElib and SEAL are presented in Table 2 and Table 4 respectively.
Note that in Tables 1, 2, 3 and 4, the columns labelled as “Mult” refer to the noise after
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the tensor product (i.e. without ciphertext maintenance operations), so as to compare
with Lemma 15.

For both circuits, the HElib parameters were chosen as follows. The standard de-
viation of the error distribution was set to σ = 3.2, the ring dimension was set to
N ∈ {2048, 4096, 8192, 16384} and the corresponding maximal ciphertext modulus q was
set so that log q ∈ {54, 109, 218, 438}. The plaintext modulus was set as t = 3. Other
parameters are set according to HElib default parameter settings, detailed in [CLP20].
The parameter set N = 2048 is omitted in Table 2 as it is too small to support the
homomorphic evaluation of the circuit.

For both circuits, the SEAL parameters were chosen as follows. The standard de-
viation of the error distribution was set to σ = 3.2, the ring dimension was set to
N ∈ {4096, 8192, 16384, 32768} and the corresponding maximal ciphertext modulus q was
set so that log q ∈ {109, 218, 438, 881}. The plaintext modulus was set to be a suitable
integer of 20 bits, a default choice in the SEAL examples. In SEAL, the parameter sets
with N ∈ {4096, 8192} were too small to support the deeper circuit.

Developing bounds from output variance. We present average case bounds for each
operation as follows: we trace through the component variance of the noise polynomial after
each operation, using the formulae in Figure 2. We model the variance after multiplication
as in Heuristic 3. We then translate the variance after each operation into a bound on
the noise after each operation following the approach described in [CCH+23]. That is,
we allow an error tolerance α (we set α = 0.001 in the experiments), such that our noise
bound is exceeded with probability α. Recent work [CSBB24, CCP+24, ABMP24] has
shown that BGV can be vulnerable to attacks if there are decryption errors, and so in
practice, it may be necessary to choose an exponentially small α.

Lemma 6 ([CCH+23]). Suppose a noise polynomial is distributed as N(0, ρ2IN ). For a
threshold T > 0, the error tolerance α = P(∥Z∥∞ > T ) satisfies

T =
√

2 · ρ · erf−1((1− α) 1
N ) .

We express our results in terms of the noise budget (Definition 7). Loosely speaking, the
noise budget is the number of bits left for homomorphic computation before a wraparound
modulo q that would lead to decryption failure. We find the noise budget intuitive to have
an idea of “how much space” is left within log q for the noise to grow. It is also the API
for noise provided by SEAL.

Definition 7 ([CLP20]). Let ct be a BGV ciphertext with respect to modulus q having
Critical Value W modulo q. The noise budget for this ciphertext is defined as

log2 (q)− log2 (∥W∥)− 1 .

Results. Our findings show mixed results. The HElib results in Tables 1 and 2 show
that our average-case approach can much more closely model the observed noise growth
for fresh ciphertexts, addition, and multiplication than the prior approach of [CLP20].
The improvement in closing the heuristic-to-practical gap identified in [CLP20] can be
significant. For example, the gap is reduced by as much as 25 bits in the case of the
deeper circuit. On the other hand, the [HS20] estimates are generally closer than ours to
the practically observed noise, although a gap between these estimates and the observed
noise remains. The difference between our estimates and the [HS20] estimates can be very
minor (e.g. less than two bits for fresh ciphertexts and after addition), but grows with
each multiplication. For modulus switching, Table 1 shows that [CLP20] estimates better
predict the remaining noise budget than the [HS20] estimates.
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The SEAL results of Tables 3 and 4 also show that the average-case heuristics can more
closely model the observed noise growth for fresh ciphertexts, addition, and multiplication,
including deeper multiplication. In several cases, the heuristic-to-practical gap is reduced
to only 3-5 bits. However, in other cases, the average-case heuristic overestimates the
remaining noise budget. This is similar to the findings of [CCH+23] for the CKKS scheme,
and suggests caution should be employed when relying on this average-case analysis for
setting parameters.

Discussion. There are some discrepancies between the SEAL implementation and the
heuristic estimates that may account for differences between the observed and predicted
behaviour. For example, in Table 4, for N = 16384, after the third multiplication, our
average-case heuristic overestimates the remaining noise budget by one bit. We do not
relinearize (in doing so, diverging from the SEAL recommendations), so by the third
multiplication in the second circuit, the ciphertexts are much larger. This introduces
additional noise not accounted for in the heuristics. We would expect such an additional
noise to increase as N increases, and this expectation is confirmed by the results for
N = 32768. Moreover, modifying our experiments to relinearize inputs before the next
multiplication significantly reduces (but does not totally account for) the overestimation.

For modulus switching, in both libraries, the remaining noise budget is overestimated by
our average-case approach. We did not investigate precisely what causes the analysis to fail
for modulus switching. The reason for not doing so is that the subsequent work [CNP23]
already provides an improved average-case noise analysis for BGV that is specific to its
implementation in HElib, which experiments show closely models HElib noise growth. The
main reason why the [CNP23] noise analysis is so effective is the observation that in HElib

— using the natural prime set in accordance with the expected user behaviour — the mod
switch noise is dominated by the rounding term only. In contrast, our heuristic analysis is
given for a general situation of modulus switching to any p.

Both the worst-case and average-case heuristic estimates assume that the secret dis-
tribution is uniform ternary, as is done in our analysis of Section 3.3, and as is the
distribution used in SEAL. The secret distribution implemented in HElib is also ternary,
but with a slightly different variance2. We found that this discrepancy impacts the
heuristic-to-practical gap only minimally. Indeed, adapting the heuristics for the HElib
secret distribution made no difference in the predicted remaining average-case noise budget
in low-depth computation, while for larger N , and after two or more multiplications, the
predicted remaining noise budget was 2 bits closer to the observed remaining noise budget.

Potential practical utility of this average-case approach. The results for N = 4096
in Table 3 give an interesting example where the approach of [CLP20] predicts that there
is no remaining noise budget after the multiplication, suggesting that the parameter
set is too small to support the evaluation of this circuit. In contrast, our average-case
analysis predicts there are 6 bits remaining, and indeed there is an observed average
remaining noise budget of 8 bits. Following the approach of [CLP20] in this context
would suggest to perform the computation in dimension at least N = 8192, leading to a
consequent performance slowdown, as (e.g.) more coefficients must be processed during
each homomorphic operation. In fact, as suggested by the average-case analysis, the
computation can be performed for N = 4096. This illustrates that the use of an average-
case approach can lead to a practical improvement when it comes to parameter selection,
e.g., if N were to be chosen in an automated way based on the predicted noise growth by
an FHE compiler.

2https://github.com/homenc/HElib/blob/f0e3e010009c592cd411ba96baa8376eb485247a/src/keys
.cpp

https://github.com/homenc/HElib/blob/f0e3e010009c592cd411ba96baa8376eb485247a/src/keys.cpp
https://github.com/homenc/HElib/blob/f0e3e010009c592cd411ba96baa8376eb485247a/src/keys.cpp
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Table 5: Estimates of the noise budget for the circuit parameterised by L = 2, ζ = 3,
t = 257, for the parameter set determined by the ring dimension N , obtained using our
average-case approach and the prior approach of [CLP20].

N [CLP20] Ours
4096 0 19
8192 105 124

We can exhibit an additional specific computation for which the average-case approach
predicts lower parameters to support the computation than the worst-case approach. This
example is illustrative and we expect that many other such circuits could be found. To
characterise a broad range of circuits, we focus on an L-level circuit with ζ additions
and one multiplication at each level. We fix ciphertext moduli q that achieve 128-bit
security according to the Homomorphic Encryption Security Standard [ACC+18] for error
distribution standard deviation σ = 3.2, uniform ternary secret, and N ∈ {4096, 8192};
and allow to vary the plaintext modulus t. Given a circuit parameterised by L, ζ and t,
we investigate the predicted noise growth for different parameter sets according to the
average-case and worst-case approaches. Table 5 gives an example for L = 2, ζ = 3, and
t = 257. In this situation, our average-case approach predicts that the N = 4096 parameter
set suffices to support the computation, while the approach of [CLP20] suggests N = 8192
is required. We implemented this circuit in HElib, and found indeed that the computation
could be supported with N = 4096.

4 A CLT approach for LPRHom noise analysis
In this section, we present a Central Limit approach to LPRHom noise analysis. An overall
summary of our approach is as follows. As done in [LPR13a], we analyse noise with respect
to a decoding basis. However, our analysis is in H, whereas the analysis of [LPR13a] is in
R∨; and our analysis uses a Central Limit approach, whereas [LPR13a] uses δ-subgaussians.
The hope is, and what we eventually show is, that the use of this Central Limit approach
leads to tighter bounds for decryption failure probability.

For simplicity, we restrict our discussion to the situation where m is prime, though our
arguments apply more generally.

4.1 Additional background
In this section, we introduce some relevant definitions. Definition 8 specifies the pΓ-basis
for H in which elements of H are expressed as real-valued vectors. The pΓ-basis arises as
the embedding of a basis of conjugate pairs for R∨. The pΓ-basis is a more convenient
basis for H in the case when m is prime, and is a suitable basis for decryption.

Definition 8. The pΓ-basis for H is given by the columns of the matrix pΓ (for p prime),
where

Γ = 1
m


1− ζ1

m 1− ζ2
m 1− ζ3

m . . . 1− ζn
m

1− ζ2
m 1− ζ4

m 1− ζ6
m . . . 1− ζ2n

m
...

...
...

. . .
...

1− ζn
m 1− ζ2n

m 1− ζ3n
m . . . 1− ζn2

m

 .

The pΓ-basis is the embedding under σ of the “decoding basis” (using the terminology
of [LPR13a])

{
p
m (1− ζ1

m), p
m (1− ζ2

m), . . . , p
m (1− ζn

m)
}

of conjugate pairs for R∨ in H.
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If Z is a vector expressing an element of H as a vector of conjugate pairs in the I-basis
(or standard basis) for H, then we have real-valued vectors Z‡ = T †Z and Z∗ = (pΓ)−1Z
expressing this element as a vector in the T -basis and the pΓ-basis for H respectively. The
relevant properties of the (scaled) change-of-basis matrix ∆ = ΓT−1 are given in Lemma 7,
which is proved in Appendix G.

Lemma 7. The change of basis matrix from the T -basis to the pΓ-basis of H is the real
invertible matrix p−1∆, where ∆ = Γ−1T satisfies ∆∆T = mI − J .

The noise in a LPRHom ciphertext obtained as the output of a homomorphic multiplica-
tion of two fresh ciphertexts is the product of the noises in the input ciphertexts. We will
therefore be interested in the ⊗-product (Definition 9) of two elements of H expressed in
the T -basis.

Definition 9. The ⊗-product of two real vectors u = (u11, u12, . . . , un′1, un′2) and v =
(v11, v12, . . . , vn′1, vn′2) of length n = 2n′ is

u⊗ v =


u11
u12
...

un′1
un′2

⊗


v11
v12
...

vn′1
vn′2

 = T † (TuTv) = 2− 1
2


u11v11 − u12v12
u11v12 + u12v11

...
un′1vn′1 − un′2vn′2
un′1vn′2 + un′2vn′1

 .

The ⊗-product of two vectors in H expressed in the T -basis is the expression in the T -basis
of the componentwise product of those two vectors when expressed in the I-basis.

4.2 A Central Limit approximation of the distribution of C(pΓ)

To obtain a Normal approximation for a weighted sum
∑n

j=1 ajXj of the form encountered
in LPRHom, we need a general form of the Central Limit Theorem formally given by the
Lindeberg condition [Bil95, Str11]. We state such a Central Limit result in Lemma 17 in
Appendix H. However, Lemma 17 can be informally expressed as that the weighted sum∑n

j=1 ajXj of the form encountered in Ring-LWE has an approximate Normal distribution
for moderate or large n provided that the absolute weights aj are not dominated by just a
few values.

Proposition 1 gives a Central Limit approximation to a weighted multivariate sum of
the form for independent and identically distributed random variables X1, . . . , Xn. This
proposition is a summary of the Lindeberg condition for a Central Limit Theorem and
essentially states that a good Normal approximation exists for the weighted sum if enough
of the largest (in absolute value) weights are of comparable size. Concretely, in a typical
parameter situation of Ring-LWE where we have n > 102, (or n > 103 in the case of
homomorphic encryption), we can expect Proposition 1 to give a good approximation
when as few as (for example) about 20 of the largest weights are comparable.

Proposition 1. Suppose that X = (X1, . . . , Xn) has components X1, . . . , Xn that are
independent and identically distributed random variables with mean E(Xj) = 0 and finite
variance Var(Xj) = ρ2, so X has covariance matrix ρ2In. If A is a n × n matrix whose
entries Ajk are not dominated by just a few of these entries, then the transformed random
variable AX ∼ N(0, ρ2AAT ) can be approximated as a multivariate Normal distribution
for moderate or large n.

In Proposition 2, we apply Proposition 1 to approximate the distribution of the noise
in a LPRHom ciphertext expressed in an appropriate decryption basis. We start with C(T ),
a vector expressing the noise in a LPRHom ciphertext in the T -basis for H, and observe
that by the structure of H, the components of C(T ) can be split into conjugate pairs.
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In Proposition 1 we split C(T ) into two sets of components where one of each conjugate
pair is in each set. We then apply Proposition 1 twice, once to each set. Note that
to invoke Proposition 1 requires an independence assumption. Fresh ciphertexts should
have independent noise coefficients by construction, but we have not investigated the
independence of noise coefficients in more general LPRHom ciphertexts.

Proposition 2. Suppose that C(T ) is a vector expressing the noise in a LPRHom ciphertext
in the T -basis for H, so a component c(T )

j of C(T ) has mean E
(
c

(T )
j

)
= 0 and finite

variance Var
(
c

(T )
j

)
= ρ2, and suppose that besides its complex conjugate the component

c
(T )
j is independent of the other components. Suppose further that the S-basis given by

the columns of an n× n matrix S is an appropriate basis of H for decryption, and that
Ψ = ST−1 is the change of basis matrix from the T -basis to the S-basis for H. If the
entries Ψjk of Ψ are not dominated by just a few values, then the distribution of the noise
C(S) in this ciphertext in the (decryption) S-basis for H can be approximated as

C(S) ∼ N(0; ρ2ΨΨT ) for moderate or large n.

Proof. We can split Ψ = (Ψ′|Ψ′′) into two n×n′ submatrices and we similarly split C(T ) =(
C(T )′

∣∣∣C(T )′′
)T

into the first n′ components C(T )′ and the final n′ components C(T )′′ .
Furthermore, their conjugate pairs origin means that C(T )′ and C(T )′′ are uncorrelated.
The components c(T )′

1 , . . . , c
(T )′

n′ of C(T )′ are independent and identically distributed with
mean 0 and variance ρ2, so Proposition 1 gives Ψ′C(T )′ ∼ N(0; ρ2Ψ′Ψ′T ), and we similarly
have Ψ′′C(T )′′ ∼ N(0; ρ2Ψ′′Ψ′′T ). Thus

C(S) = ΨC(T ) = Ψ′C(T )′
+ Ψ′′C(T )′′

∼ N(0; ρ2ΨΨT )

as C(S) is the sum of two uncorrelated approximate multivariate Normal random variables,
so has an approximate Normal distribution with covariance matrix ρ2Ψ′Ψ′T + ρ2Ψ′′Ψ′′T =
ρ2ΨΨT .

The Central Limit Theorem is formally a statement about the convergence (in distri-
bution) of an appropriate weighted sum of random variables to a Normal distribution in
the limit as the number of summands n tends to infinity. When such a result is applied
in a concrete setting with a fixed finite n, it is reasonable to question the speed of this
convergence, and in particular how accurate the approximation is. This issue is made more
precise in [MP20], and can be verified empirically.

4.3 LPRHom decryption using the pΓ-basis
We now specify a decryption process for the LPRHom cryptosystem using the pΓ-basis of H
(though any appropriate basis can be used). We recall that we write Z‡ and Z∗ to express
an element of H as a vector in the T -basis and the pΓ-basis respectively.

Decryption of a degree-1 ciphertext polynomial C(θ;µ) begins by evaluating this
polynomial at the secret s. We obtain information about the Noise since C(s;µ) =
Y ′′(µ) mod R∨

q . If we embed C(s;µ) in H under σ and perform a reduction modulo q with
respect to to the pΓ-basis, then we obtain an integer vector Jσ(C(s;µ))KpΓ

q with entries in
[− 1

2q,
1
2q).

The Embedded Noise Y ′(µ) is expressed in the I-basis for H, so Y ′(µ) is expressed
with respect to the T -basis of H as the real vector Y ′(µ)‡ = T †Y (µ). However, the
change of basis from this T -basis to the pΓ-basis of H is given by p−1∆ = p−1Γ−1T ,
so there is a real transformation Y ′(µ)∗ = p−1∆Y (µ)‡ that gives a real vector Y ′(µ)∗

specifying the Embedded Noise expressed in the pΓ-basis for H. This allows us to write
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Y ′(µ)∗ = Jσ(C(s, µ))KpΓ
q if the Embedded Noise is small enough. In this case, we can

recover the real vector Y ′(µ)∗ and hence the real Embedded Noise vector Y ′(µ)‡ with
respect to the T -Basis. This allows us to determine the coset representative σ(b−1µ) for the
coset of the lattice σ(pR∨) corresponding to the plaintext µ ∈ Rp. Thus if the Embedded
Noise is small enough with high probability, then we can recover the plaintext µ with high
probability.

This decryption process generalises to degree-2 and higher degree ciphertexts in a
natural way. For example, if C(θ;µ1) and C(θ;µ2) are two degree-1 ciphertexts with re-
spective Embedded Noises Y ′

1(µ1) and Y ′
2(µ2), then the degree-2 ciphertext C(s;µ1, µ2) =

Y ′′(µ1)Y ′′(µ2) = C(s;µ1)C(s;µ2) mod (R∨)2
q, and so we obtain (Y ′

1(µ1)Y ′
2(µ2))∗ =

Jσ(C(s;µ1, µ2))Km−1pΓ
q for small Embedded Noise. Thus if this Embedded Noise is small

enough with high probability, we can recover the plaintext product µ1µ2 ∈ Rp with high
probability.

4.4 Decryption failure probabilities in the LPRHom cryptosystem
We now present in Theorem 2 and Corollary 2 our main results of this section, which give
(respectively) bounds for the probability of the incorrect decryption of degree-1 and degree-
2 LPRHom ciphertexts. Both results follow from the fact that LPRHom decryption using
(for example) the pΓ-basis for H fundamentally involves a change of basis transformation
between bases for H ultimately to the pΓ-basis.

In the following, we denote by Q the “Q-function” giving the upper tail probability for
a standard Normal N(0, 1) distribution, so

Q(x) = 1√
2π

∫ ∞

x

exp(− 1
2z

2) dz .

This tail probability Q(x) is bounded by its asymptotic expansion, so

Q(x) ≤ (2πx2)− 1
2 exp(− 1

2x
2) ,

and we note that this bound is very tight even for moderate values of x > 0.

Theorem 2. If η1(n, q, ρ) = 1
2 (n 1

2 ρ)−1q is moderate or large, then the probability of the
incorrect decryption of a LPRHom degree-1 ciphertext in the pΓ-basis for H is bounded by

P
(

Incorrect decryption of LPRHom
degree-1 ciphertext in pΓ-basis

)
≤

2n exp(− 1
2η

2
1)

(2π) 1
2 η1

.

Proof. The vector expressing the Embedded Noise in the pΓ-basis for H is of the form(
⌊Z⌉pΓ

Λc

)∗
, where Z = TZ‡ and p−1Z‡ = (p−1T †)Z ∼ N(0, ρ2In). However,

(
⌊Z⌉pΓ

Λc

)∗
=

(pΓ)−1⌊Z⌉pΓ
Λ+c ≈ ∆(p−1T †)Z, so Proposition 2 and Lemma 7 show that(

⌊Z⌉pΓ
Λc

)∗
∼ N(0; ρ2∆∆T ) = N(0; ρ2(mI − J)).

Thus
(
⌊Z⌉pΓ

Λc

)∗
is well-approximated by a multivariate Normal random variable U ∼

N(0; ρ2(mI − J)), with components U1, . . . , Un ∼ N(0, nρ2). These components therefore
have an upper tail probability function given for α > 0 by

P(Uj > α) = P
(

(n 1
2 ρ)−1Uj > (n 1

2 ρ)−1α
)

= Q
(

(n 1
2 ρ)−1α

)
,
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where the Q-function is as defined above. We can now obtain a bound for the tail
probability for the maximum of |U1|, . . . , |Un| for moderate (n 1

2 ρ)−1α by using the union
bound [GS01] to obtain

P (max{|U1|, . . . , |Un|} > α) = 2 P (max{U1, . . . , Un} > α) ≤ 2nP(Uj > α)

≤ 2nQ
(

(n 1
2 ρ)−1α

)
≤ 2n 3

2 ρ

(2π) 1
2α

exp
(
− α2

2nρ2

)
.

We can now give a bound for the probability of decryption failure for a degree-1
ciphertext using the Γ-basis. In this case, decryption fails if the absolute size of any
component of exceeds 1

2q, so taking α = 1
2q for moderate and large η1(n, q, ρ) = 1

2 (n 1
2 ρ)−1q

gives

P
(

Incorrect decryption of LPRHom
degree-1 ciphertext in pΓ-basis

)
≤

2n exp(− 1
2η

2
1)

(2π) 1
2 η1

.

Corollary 2. If η2 = 1
2 (n 1

2mpρ1ρ2)−1q is moderate or large, then the probability of the
incorrect decryption of a LPRHom degree-2 ciphertext in the pΓ-basis for H is bounded by

P
(

Incorrect decryption of LPRHom
degree-2 ciphertext in pΓ-basis

)
≤

2n exp(− 1
2η

2
2)

(2π) 1
2 η2

.

Proof. The decryption of a LPRHom degree-2 ciphertext C(θ;µ1, µ2) involves processing
this ciphertext as Jσ(C(s;µ1, µ2))Km−1pΓ

q , that is to say by regarding this Embedded Noise
expressed as a vector with respect to the rescaled decoding conjugate pair m−1pΓ-basis.
The processing of a degree-2 ciphertext fundamentally therefore simply involves change of
basis transformations for bases for H ultimately to the m−1pΓ-basis. Thus we can adapt the
argument of the proof of Theorem 2 simply by using the appropriate moments, and so we
can replace ρ in η1 with mpρ1ρ2 in to give η2 = η1(n, q,mpρ1ρ2) = 1

2 (n 1
2mpρ1ρ2)−1q.
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The BGV scheme. BGV is a (levelled) FHE scheme parameterised by N , q, t, χ, S,
w, ℓ and λ. Let w be a base, then ℓ + 1 = ⌊logw q⌋ + 1 is the number of terms in the
decomposition into base w of an integer in base q. The Ring-LWE error distribution is
denoted χ and is typically a discrete Normal with standard deviation σ = 3.2 [ACC+18].
The underlying Ring-LWE problem is parameterised by N , q, σ and S, where the parameter
S denotes the secret key distribution. In implementations (e.g [HEl19, SEA22]), S is often
chosen as a polynomial that has coefficients in {−1, 0, 1}. The security parameter is λ.

• SecretKeyGen(λ): Sample s← S and output sk = s.

• PublicKeyGen(sk): Set s = sk and sample a← Rq uniformly at random and e← χ.
Output pk = ([−(as+ te)]q, a).

• EvaluationKeyGen(sk, w): Set s = sk. For i ∈ {0, . . . , ℓ}, sample bi ← Rq uniformly
at random and di ← χ. Output evk =

(
[−(bis+ tdi) + wis2]q, bi

)
.

• Encrypt(pk,m): For the message m ∈ Rt. Let pk = (p0, p1), sample u ← S and
e1, e2 ← χ. Output ct = ([m+ p0u+ te1]q, [p1u+ te2]q).

• Decrypt(sk, ct): Let s = sk and ct = (c0, c1). Output m′ = [[c0 + c1s]q]t.

• Add(ct0, ct1): Output ct = ([ct0[0] + ct1[0]]q, [ct0[1] + ct1[1]]q).

• Multiply(ct0, ct1): Set c0 = [ct0[0]ct1[0]]q, c1 = [ct0[0]ct1[1] + ct0[1]ct1[0]]q, and
c2 = [ct0[1]ct1[1]]q. Output ct = (c0, c1, c2).

• Relinearize(ct, evk) : Let ct[0] = c0, ct[1] = c1 and ct[2] = c2. Let evk[i][0] =
[−(bis+tdi)+wis2]q and evk[i][1] = bi. Express c2 in base w as c2 =

∑ℓ
i=0 c

(i)
2 wi. Set

c′
0 = c0 +

∑ℓ
i=0 evk[i][0]c(i)

2 , and c′
1 = c1 +

∑ℓ
i=0 evk[i][1]c(i)

2 . Output ct′ = (c′
0, c

′
1).

• ModSwitch(ct, p) : For p = q = 1 mod t with p dividing q. Let ct = (c0, c1).
Fix δi such that δi = −ci (mod q

p ) and δi = 0 (mod t). Set c′
0 = p

q (c0 + δ0) and
c′

1 = p
q (c1 + δ1). Output ct = (c′

0, c
′
1).

Figure 3: The BGV scheme as presented in [CLP20].

The output ciphertext parts c′
0 and c′

1 are “modulo p” polynomials with coefficients lying
in {− 1

2 (p− 1), . . . , 1
2 (p− 1)} obtained as the direct contractions of “modulo q” polynomials

as

c′
0 = c0 + δ0

r
= p

q
(c0 + δ0) and c′

1 = c1 + δ1

r
= p

q
(c1 + δ1)

We note that these new ciphertext parts can also be expressed as

c′
0 = c0

r
+ δ0

r
and c′

1 = c0

r
+ δ1

r
,

where δ0

r
and δ1

r
are polynomials with coefficients between − 1

2 t and 1
2 t. Thus the BGV

ModSwitch operation maps an input ciphertext part ci to an output ciphertext part c′
i,

where c′
i is the nearest integer polynomial to ci

r
= p

q
ci having the same value modulo t as

ci, which gives the expression in the statement of the Lemma.
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The LPRHom cryptosystem. Let ψ be a continuous LWE error distribution over KR,
and let ⌊·⌉ denote any valid discretisation to cosets of some scaling of R∨ (e.g. using the
decoding basis of R∨). The cryptosystem is defined formally as follows.

• Gen: choose s′ ← ⌊ψ⌉R∨ , and output s = b · s′ ∈ R as the secret key.

• Encs(µ ∈ Rp): choose e← ⌊pψ⌉b−1µ+pR∨ . Let c0 = −c1 · s+ e ∈ R∨
q for uniformly

random c1 ← R∨
q , and output the ciphertext c(S) = c0 + c1S. The noise in c(S) is

defined to be e.

• Decs(c(S)) for c of degree k: compute c(s) ∈ (R∨)k
q , and decode it to e = Jc(s)K ∈

(R∨)k. Output µ = tk · e mod pR.

For ciphertexts c, c′ of arbitrary degrees k, k′, their homomorphic product is the degree-(k+
k′) ciphertext c(S) � c′(S) = c(S) · c′(S), that is to say standard polynomial multiplication.
The noise in the result is defined to be the product of the noise terms of c, c′. Similarly, for
ciphertexts c, c′ of equal degree k, their homomorphic sum is c(S) ⊞ c′(S) = c(S) + c′(S),
and the noise in the resulting ciphertext is the sum of those of c, c′.

Figure 4: The LPRHom cryptosystem as defined in [LPR13a, Section 8.3].

C The LPRHom cryptosystem
Figure 4 gives the LPRHom cryptosystem as defined in [LPR13a, Section 8.3].
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D Proof of Lemma 3
We consider two distinct components Yi = (ZZ ′)i and Yi′ = (ZZ ′)i′ for i ̸= i′ of the
polynomial product ZZ ′ modulo XN + 1. We establish that the bivariate random variable
(Yi, Yi′) has an approximate bivariate Normal distribution by showing that any arbitrary
linear combination U = γYi + γ′Yi′ has an approximate univariate Normal distribution.

Our approach begins by showing in Lemma 8 that both Yi and Yi′ can be expressed as
a quadratic form in the same 2N independent standard Normal N(0, 1) univariate random
variables.

Lemma 8. Suppose Z ∼ N(µ; ρ2IN ) and Z ′ ∼ N(µ′; ρ′2IN ) are independent symmetric
N -dimensional random variables (representing polynomials), and that:

• η = 1
2ρρ

′ ,

• V =
(

ρ−1(Z − µ)
ρ′−1(Z ′ − µ′)

)
∼ N(0; I2N ) ,

• αi =
( (

−ξ(j) ρµ′
j

)
(ξ(i− j) ρ′µj)

)
is a vector of dimension 2N ,

• Ai is an N×N matrix with (Ai)j′,j =
{
ξ(i− j) [j′ = i− j]

0 [j′ ̸= i− j],

• Qi =
(

0 Ai

Ai 0

)
is a symmetric 2N × 2N matrix,

• µ∗ = µµ′ is the polynomial product of µ and µ∗.

A component Yi = (ZZ ′)i (for i = 0, . . . N − 1) of the polynomial product ZZ ′ (modulo
XN + 1) can be expressed as a quadratic form in a standard Normal 2N-dimensional
random variable V ∼ N(0; I2N ) as

Yi =
N−1∑
j=0

ξ(i− j)Zi−jZ
′
j = η V TQiV + αT

i V + µ∗
i .

Furthermore, another component Yi′ = (ZZ ′)i′ (for i′ ̸= i) of the polynomial product ZZ ′

(modulo XN + 1) can be expressed as a quadratic form in the same standard Normal
2N -dimensional random variable V ∼ N(0; I2N ) with the obvious changes in notation for
αi′ , Ai′ and Qi′ as

Yi′ =
N−1∑
j=0

ξ(i′ − j)Zi′−jZ
′
j = η V TQi′V + αT

i′V + µ∗
i′ .

Proof. The matrix Ai satisfies (Ai)j′,j = 1 if j + j′ = i, (Ai)j′,j = −1 if j + j′ = i + N
and (Ai)j′,j = 0 otherwise. Thus Ai has constant “anti-diagonals” and so Qi is a real
symmetric matrix. We note (interpreting i− j modulo N) that

Zi−jZ
′
j = ρρ′ (Zi−j − µi−j)

ρ

(Z ′
j − µ′

j)
ρ′

+ ρµ′
j

(Zi−j − µi−j)
ρ

+ ρ′µi−j

(Z ′
j − µ′

j)
ρ

+ µi−jµ
′
j

= 2ηVi−jVN+j + ρµ′
jVi−j + ρ′µi−jVN+j + µi−jµ

′
j .
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Thus the quadratic form Yi =
N−1∑
j=0

ξ(i− j)Zi−jZ
′
j is given by

Yi =
N−1∑
j=0

ξ(i− j)
(
2ηVi−jVN+j + ρµ′

jVi−j + ρ′µjVN+j + µi−jµ
′
j

)
= η V TQiV +

N−1∑
j=0

(
−ρξ(j)µ′

i−jVj + ρ′ξ(i− j)µjVN+j

)
+ µ∗

i

= η V TQiV + αT
i V + µ∗

i .

By construction, the 2N -dimensional multivariate random variable V ∼ N(0; I2N ) has
a standard multivariate Normal distribution. The stated result for Yi′ then follows
immediately.

We now consider the arbitrary linear combination U = γYi + γ′Yi′ , where without loss
of generality we assume γ2 + γ′2 = 1, and we show that U has an approximate Normal
distribution. We use the quadratic forms for Yi and Yi′ given in Lemma 8 to express U as
a sum of 2N independent univariate random variables, as detailed in Lemma 9.

Lemma 9. We use the notation of Lemma 8. Suppose that Z ∼ N(µ; ρ2IN ) and Z ′ ∼
N(µ′; ρ′2IN ) are independent symmetric N-dimensional random variables (representing
polynomials), and suppose that λ0, . . . , λ2N−1 are the 2N real eigenvalues of the (2N ×2N)
matrix Q = γQi + γ′Qi′ , where γ2 + γ′2 = 1. The linear combination U = γYi + γ′Yi′ of Yi

and Yi′ can be expressed in terms of a sum of components of an orthogonal transformation
βi of γαi + γ′αi′ and a quadratic form in 2N independent standard Normal random
variables W0, . . . ,W2N−1 ∼ N(0, 1) as

U =
2N−1∑
j=0

(ηλjW
2
j + βjWj) + (γµ∗

i + γ′µ∗
i′).

Proof. Lemma 8 shows that

Yi = η V TQiV + αT
i V + µ∗

i and Yi′ = η V TQi′V + αT
i′V + µ∗

i′ .

The linear combination U = γYi + γ′Yi′ is therefore a quadratic form given by

U = η V T (γQi + γ′Qi′)V + (γαi + γ′αi′)TV + (γµ∗
i + γ′µ∗

i′)
= η V TQV + (γαi + γ′αi′)TV + (γµ∗

i + γ′µ∗
i′).

The matrix Q = γQi + γ′Qi′ is real and symmetric, so its 2N eigenvalues λ0, . . . , λ2N−1
are real and Q can be diagonalised. If P is a 2N × 2N matrix of orthonormal column
eigenvectors of Q, then P is an orthogonal matrix with PTP = PPT = I2N and PTQP =
D = Diag(λ0, . . . , λ2N−1). If set W = PTV , then W is an orthogonal transformation of
the multivariate standard Normal random variable V and so W ∼ N(0; I2N ). Furthermore,
if we set β = PT (γαi + γ′αi′), then β is an orthogonal transformation of (γαi + γ′αi′),
and the quadratic form form Yi can be expressed as

U = η V TQV + (γαi + γ′αi′)TV + (γµ∗
i + γ′µ∗

i′)
= η V T (PPT )Q(PPT )V + (γαi + γ′αi′)T (PPT )V + (γµ∗

i + γ′µ∗
i′)

= η (PTV )T (PTQP )(PTV ) + ((γαi + γ′αi′)TP )(PTV ) + (γµ∗
i + γ′µ∗

i′)
= η WTDW + βTW + (γµ∗

i + γ′µ∗
i′).
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The components W0, . . . ,W2N−1 of W are independent and identically distributed standard
Normal N(0, 1) random variables, and so the quadratic form U can be expressed as

U =
2N−1∑

i=0
ηλjW

2
j +

2N−1∑
i=0

βjWj + (γµ∗
i + γ′µ∗

i′)

=
2N−1∑
j=0

(ηλjW
2
j + βjWj) + (γµ∗

i + γ′µ∗
i′).

The distribution of the linear combination U = γYi + γ′Yi′ depends on the eigenvalues
of the matrix Q = γQi + γ′Qi′ , and in particular the sum of squared eigenvalues and the
sum of fourth powers of eigenvalues. Lemma 10 gives the relevant results for these sums of
powers of eigenvalues of Q.

Lemma 10. The 2N × 2N matrix Q = γQi + γ′Qi′ (where i ̸= i′ and γ2 + γ′2 = 1) is a
real symmetric matrix with real eigenvalues λ0, . . . , λ2N−1 satisfying

2N−1∑
j=0

λ2
j = 2N and

2N−1∑
j=0

λ4
j ≤ 3N.

Proof. The matrix Q = γQi +γ′Qi′ =
(

0 γAi + γ′Ai′

γAi + γ′Ai′ 0

)
is a real symmetric

matrix, so has real eigenvalues. The matrices Ai and Ai′ satisfy A2
i = A2

i′ = IN , as for
example the diagonal entries of A2

i are

(A2
i )j,j =

N−1∑
k=0

(Ai)j,k(Ai)k,j = (Ai)j,i−jξ(i− j) = ξ(i− j)2 = 1,

and the off-diagonal entries (j′ ̸= j) of A2
i are

(A2
i )j′,j =

N−1∑
k=0

(Ai)j′,k(Ai)k,j = (Ai)j′,i−jξ(i− j) = 0.

Similarly, the entries of the matrix AiAi′ (for i ̸= i′) are

(AiAi′)jk =
N−1∑
l=0

(Ai)j,l(Ai′)l,k =
{
ξ(i− j) ξ(j − (i− i′)) [(j − k) = (i− i′)]

0 [(j − k) ̸= (i− i′)],

so in particular the diagonal entries of the matrix AiAi′ (for i ̸= i′) are 0. Thus we have
Tr(A2

i ) = Tr(A2
i′) = N and Tr(AiAi′) = Tr(Ai′Ai) = 0.

The matrix Q2 has eigenvalues λ2
0, . . . , λ

2
2N−1, where

Q2 =
(

0 γAi + γ′Ai′

γAi + γ′Ai′ 0

)2

=
(

(γAi + γ′Ai′)2 0
0 (γAi + γ′Ai′)2

)
.

The submatrix (γAi + γ′Ai′)2 of Q2 is given by

(γAi + γ′Ai′)2 = γ2A2
i + γ′2A2

i′ + γγ′AiAi′ + γγ′AiAi′ = IN + γγ′(AiAi′ +Ai′Ai)

and has trace

Tr
(
(γAi + γ′Ai′)2) = Tr(IN ) + γγ′Tr(AiAi′) + γγ′Tr(Ai′Ai) = N.
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Thus the sum of squared eigenvalues of Q is given by
2N−1∑
j=0

λ2
j = Tr(Q2) = 2Tr

(
(γAi + γ′Ai′)2) = 2N.

Results concerning the sum of fourth powers of eigenvalues of Q can be obtained by
considering the matrix Q4 =

(
(γAi + γ′Ai′)4 0

0 (γAi + γ′Ai′)4

)
, which has eigenvalues

λ4
0, . . . , λ

4
2N−1. We note that

(AiAi′ +Ai′Ai)2 = (AiAi′)2 + (Ai′Ai)2 + (AiA
2
i′Ai) + (Ai′A2

iAi′)
= 2IN + (AiAi′)2 + (Ai′Ai)2

as A2
i = A2

i′ = IN , so the submatrix (γAi + γ′Ai′)4 of Q4 is given by

(γAi + γ′Ai′)4 = (IN + γγ′(AiAi′ +Ai′Ai))2

= IN + γ2γ′2(AiAi′ +Ai′Ai)2 + 2γγ′(AiAi′ +Ai′Ai))
= (1 + 2γ2γ′2)IN + γ2γ′2((AiAi′)2 + (Ai′Ai)2)

+ 2γγ′(AiAi′ +Ai′Ai)

and has trace given by

Tr
(
(γAi + γ′Ai′)4) =

(
1 + 2γ2γ′2)N + γ2γ′2Tr

(
(AiAi′)2 + (Ai′Ai)2) .

The diagonal entries of the matrix (AiAi′)2 are given by

(
(AiAi′)2)

j,j
=

N∑
k=0

(AiAi′)j,k(AiAi′)k,j

For a summand (AiAi′)j,k(AiAi′)k,j of the above sum to be nonzero, we require both
(j − k) = (i − i′) and (k − j) = (i − i′), so 2(i − i′) = N giving the necessary condition
(i− i′) = 1

2N (as i ̸= i′). Thus for the (i− i′) ̸= 1
2N case, we have

(
(AiAi′)2)

j,j
= 0 and

Tr(
(
(AiAi′)2) = 0. In the other case where (i− i′) = 1

2N , we have

AiAi+ 1
2 N = ±

(
0 I 1

2 N

−I 1
2 N 0

)
,

where the sign depends on whether i < 1
2N . Thus (AiAi+ 1

2 N )2 = −IN whatever the value
of the ± sign, and so Tr

(
(AiAi+ 1

2 N )2
)

= −N . In summary, we have

Tr
(
(AiAi′)2) = Tr

(
(Ai′Ai)2) =

{
0 [(i− i′) ̸= 1

2N ]
−N [(i− i′) = 1

2N ].

The trace of the submatrix (γAi + γ′Ai′)4 of Q4 is therefore given by

Tr
(
(γAi + γ′Ai′)4) =

{
(1 + 2γ2γ′2)N [(i− i′) ̸= 1

2N ]
N [(i− i′) = 1

2N ].

However, 2γ2γ′2 ≤ 1
2 for γ2 + γ′2 = 1, so Tr

(
(γAi + γ′Ai′)4) ≤ 3

2N . Thus the sum of
fourth powers of eigenvalues of Q satisfies

2N−1∑
j=0

λ4
j = Tr(Q4) = 2Tr

(
(γAi + γ′Ai′)4) ≤ 3N.
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We now show that that the arbitrary linear combination U = γYi + γ′Yi′ has an
approximate univariate Normal distribution by using the Lyapunov version of the Central
Limit Theorem. This version of the Central Limit Theorem is suitable for situations such
as this where the summands (of U) are independent but not identically distributed.

Theorem 3 (Lyapunov Central Limit Theorem ([Bil95] Theorem 27.3)). Suppose X1, X2
, . . ., Xn, . . . are a sequence of independent random variables with finite mean κj and
finite variance τ2

j , and let sn =
∑n

j=1 τ
2
j . If for some δ > 0, Lyapunov’s condition

lim
n→∞

1
s2+δ

n

n∑
j=1

E
(
|Xj − κj |2+δ

)
= 0 is satisfied,

then 1
sn

n∑
j=1

(Xj − κj) −→ N(0, 1) in distribution as n→∞.

For simplicity, we assume that Z and Z ′ arise in the encryption of fresh messages. We
make this assumption so that all random variables, and associated quantities such as the
components of µ µ′ or related vectors α, α′ and β can be considered as bounded and all
moments are finite, and in particular do not depend on N . We later discuss how to relax
this assumption. In this fresh message situation, we consider the independent random
variables

Tj = (2N)− 1
2 (η λjW

2
j + βjWj) [j = 0, . . . , 2N − 1],

and establish an asymptotic Normality in Lemma 11 (also using the technical Lemma 12)
for the sum of these random variables by using the Lyapunov Central Limit Theorem with
δ = 2.

Lemma 11. The sum of random variables

2N−1∑
j=0

Tj = (2N)− 1
2

2N−1∑
j=0

(η λjW
2
j + βjWj)

tends in distribution to a standard Normal N(0, 1) distribution as N →∞.

Proof. The mean of the random variable Tj is

κj = E(Tj) = (2N)− 1
2
(
ηλjE(W 2

j ) + βjE(Wj)
)

= (2N)− 1
2 ηλj ,

so the centred version of this random variable is

Tj − κj = (2N)− 1
2
(
ηλjW

2
j + βjWj − ηλj

)
= (2N)− 1

2
(
ηλj(W 2

j − 1) + βjWj

)
.

Squaring this random variable gives

(Tj − κj)2 = (2N)−1 (η2λ2
j (W 2

j − 1)2 + β2
jW

2
j

)
+ Odd Degree in Wj .

We note that E((W 2
j − 1)2) = 2, E(W 2

j ) = 1, and E(Odd Degree in Wj) = 0, so Tj has
variance

τ2
j = Var(Tj) = E

(
(Tj − κj)2)

= (2N)−1 (η2λ2
jE
(
(W 2

j − 1)2)+ β2
j E
(
W 2

j

))
= (2N)−1 (2η2λ2

j + β2
j

)
Lemma 10 shows that the sum of these variances is

s2
2N =

2N−1∑
j=0

τ2
j = (2N)−1η2

2N−1∑
j=0

λ2
j + (2N)−1

2N−1∑
j=0

β2
j = η2 + (2N)−1|β|2,
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We now consider the Lyapunov Central Limit Theorem with δ = 2 to establish the
convergence of

1
s2N

2N−1∑
j=0

(Tj − κj) −→ N(0, 1) in distribution as N →∞.

This requires us to establish the limit as N →∞ of the Lyapunov quotient

1
(s2

2N )2

2N−1∑
j=0

E
(
(Xj − κj)4) =

∑2N−1
j=0 E

(
(Xj − κj)4)(∑2N−1

j=0 E ((Xj − κj)2)
)2 .

We first consider the denominator s2
2N = η2 + (2N)−1|β|2 of the Lyapunov quotient.

The vector β is an orthogonal transformation of γα+γ′α′, so |β|2 = |γα+γ′α′|2. However,
the components of γα+ γ′α′ are bounded (with finite second moment under modelling
assumption), and so as N →∞ we have

(s2
2N )2 =

2N−1∑
j=0

(
E((Tj − κj)2)2) = η2 + (2N)−1|γα+ γ′α′|2 → Constant > 0.

Lemma 12 shows that the numerator E
(
(Tj − κj)4) of the Lyapunov quotient satisfies

E
(
(Tj − κj)4)→ 0 as N →∞, so the Lyapunov quotient satisifies∑2N−1

j=0 E
(
(Xj − κj)4)(∑2N−1

j=0 E ((Xj − κj)2)
)2 −→ 0 as N →∞.

Thus the Lyapunov Central Limit Theorem with δ = 2 shows that

1
s2N

2N−1∑
j=0

Tj −→ N(0, 1) in distribution as N →∞.

Lemma 12. The numerator of the Lyapunov quotient satifies

E
(
(Tj − κj)4)→ 0 as N →∞.

Proof. The expression Tj − κj = (2N)− 1
2
(
ηλj(W 2

j − 1) + βjWj

)
is given in the proof of

Lemma 11, so for an appropriate polynomial g of terms of odd degree

(Tj − κj)4 = (2N)−2 (η4λ4
j (W 2

j − 1)4 + β4
jW

4
j + 6η2λ2

jβ
2
j (W 2

j − 1)2W 2
j

)
+ g(Wj).

We note that E((W 2
j − 1)4) = 60, E(W 4

j ) = 3, E((W 2
j − 1)2W 2

j ) = 10 and E(g(Wj)) = 0,
so

E
(
(Tj − κj)4) = (2N)−2

(
η4λ4

jE((W 2
j − 1)4) + β4

j E(W 4
j )

+ 6η2λ2
jβ

2
j E((W 2

j − 1)2W 2
j )

)
= (2N)−2 (60η4λ4

j + 60η2λ2
jβ

2
j + 3β4

j

)
However, the geometric mean (η4λ4

j β
4
j ) 1

2 = η2λ2
j β

2
j of η4λ4

j and β4
j is less than or equal

to the arithmetic mean 1
2 (η4λ4

j + β4
j ), so

60 (η2λ2
j ) β2

j ≤ 30η4λ4
j + 30β4

j ,
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which shows that E
(
(Tj − κj)4) can be bounded as

E
(
(Tj − κj)4) ≤ (2N)−2 (90η4λ4

j + 33β4
j

)
.

Lemma 10 therefore shows that the sum of the fourth power expectations satisfies∑2N−1
j=0 E

(
(Tj − κj)4) ≤ (2N)−2∑2N−1

j=0
(
90η4λ4

j + 33β4
j

)
≤ (2N)−290η4∑2N−1

j=0 λ4
j + 33(2N)−2∑2N−1

j=0 β4
j

≤ (2N)−290η4(3N) + 33(2N)−2∑2N−1
j=0 β4

j

≤ (2N)−1135η4 + 33(2N)−2∑2N−1
j=0 β4

j .

Fourth powers of components of β are bounded under the modelling assumption, so
(2N)−2∑2N−1

j=0 β4
j → 0. Thus we have shown that the Lyapunov quotient numerator

satisfies
∑2N−1

j=0 E
(
(Tj − κj)4)→ 0 as N →∞.

We can finally establish the proof of Lemma 3.

Proof. The arbitrary linear combination U = (γYi + γ′Yi′) can be expressed as

U =
2N−1∑
j=0

(ηλjW
2
j + βjWj) + (γµ∗

i + γ′µ∗
i′) = (2N) 1

2

2N−1∑
j=0

Tj + (γµ∗
i + γ′µ∗

i′).

However, Lemma 11 shows that
∑2N−1

j=0 Tj has an approximate univariate Normal distribu-
tion for large N . Thus any arbitrary linear combination U = γYi + γ′Yi′ of Yi and Yi′ has
an approximate Normal distribution for large N , so (Yi, Yi′) has an approximate bivariate
Normal distribution for large N .

E Details of BGV noise analysis
We give a series of results showing how the noise in a ciphertext output from each BGV
operation follows a Normal distribution with zero mean and a specified component variance,
as summarised in Table 2.

We begin with Lemma 13 about the noise of a fresh BGV ciphertext obtained under
a secret key s and an ephemeral encryption key u. Heuristic 2 then gives a Normal
distribution that accurately approximates the noise random variable for a fresh BGV
ciphertext. We note that a similar result can be inferred from Lemma 1 of [CLP20].

Lemma 13. [Fresh] The noise random variable Vfresh(s,u) for a fresh BGV ciphertext
obtained under a secret key s and an ephemeral encryption key u has a Normal distribution
given by Vfresh(s,u) ∼ N(0; ρ2

fresh(s,u)IN ), where the component variance ρ2
fresh(s,u) is given by

ρ2
fresh(s,u) = (|s|2 + |u|2 + 1)t2σ2.

Proof. The first part of the public key p0 = [−(as+ te)]q (in the notation of Figure 3) can
be expressed as p0 = −as− te+qα for an appropriate integer vector α. For the second part
of the public key p1 = a, we therefore have p0 + sp1 = −te+ qα. The BGV Critical Value
Wfresh(s,u) used for decryption of the fresh ciphertext (c0, c1) given by c0 = m+ p0u+ te1
and c1 = p1u+ te2 corresponding to message m is given by

Wfresh(s,u) = c0 + sc1 = m+ p0u+ te1 + s(p1u+ te2)
= m+ u(−as− te+ qα) + te1 + s(au+ te2)
= m+ quα+ t(−ue+ e1 + se2).
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If the standard deviation of t(−ue+ e1 + se2) is not too large, reducing the BGV Critical
Value W modulo q and then modulo t gives the message m. Thus the noise random
variable corresponding to the BGV Critical Value Wfresh(s,u) is

Vfresh(s,u) = t(−ue+ e1 + se2).

Corollary 1 shows that −ue ∼ N(0; |u|2σ2IN ) and that se2 ∼ N(0; |s|2σ2IN ), so the
distribution of the fresh noise random variable Vfresh(s,u) is

Vfresh(s,u) ∼ N(0; ρ2
fresh(s,u)IN ), where ρ2

fresh(s,u) = (1 + |u|2 + |s|2)t2σ2.

Heuristic 2. [Fresh] The noise random variable Vfresh for a fresh BGV ciphertext is
accurately approximated as Vfresh ∼ N(0; ρ2

freshIN ) by a Normal distribution with component
variance ρ2

fresh given by
ρ2

fresh = ( 4
3N + 1)t2σ2.

Justification. Lemma 13 shows that ρ2
fresh(s,u) = (1 + |u|2 + |s|2)t2σ2, where s is the

secret key and u is an ephemeral key. However s and u are random vectors of length
N with components uniformly distributed in {−1, 0, 1}, so |s|2, |u|2 ∼ Bin(N, 2

3 ) are
independent Binomial random variables each with mean 2

3N and variance 2
9N , giving

|s|2 + |u|2 ∼ Bin(2N, 2
3 ) with mean 4

3N and variance 4
9N . The fresh noise random variable

Vfresh is therefore the mixture of Normal distributions
2N∑
k=0

P(Bin(2N, 2
3 ) = k) N

(
0; (k + 1)t2σ2IN

)
,

weighted by the Binomial probabilities P(Bin(2N, 2
3 ) = k) =

(2N
k

)( 2
3
)k ( 1

3
)2N−k. Thus

Vfresh is a mixture of Normal distributions in which the high weight summand distributions
are very similar, all having mean 0 and component variance close to ( 4

3N + 1)t2σ2, as the
standard deviation of |s|2 + |u|2 is 2

9N
1
2 . The Normal mixture distribution for Vfresh can

therefore be approximated as a Normal distribution as

Vfresh ∼ N(0; ρ2
freshIN ), where ρ2

fresh = ( 4
3N + 1)t2σ2.

Next, Lemma 14 gives the distribution of the noise random variable following the
application of the BGV Add operation to two BGV ciphertexts.

Lemma 14. [Add] Suppose that the noise random variables V and V ′ for two independent
BGV ciphertexts have 0-mean multivariate Normal distributions given by V ∼ N(0; ρ2IN )
and V ′ ∼ N(0; ρ′2IN ). Let Vadd be the noise random variable for the ciphertext output from
the BGV Add operation applied to these two ciphertexts, then Vadd ∼ N(0; ρ2

addIN ), where
the component variance ρ2

add is given by

ρ2
add = ρ2 + ρ′2 .

Proof. Suppose that (c0, c1) and (c′
0, c

′
1) are the independent BGV ciphertexts having

respective underlying messages m and m′ respectively and having the given noise random
variables

V = (c0 + sc1)−m ∼ N(0; ρ2IN ) and V ′ = (c′
0 + sc′

1)−m′ ∼ N(0; ρ′2IN ).

The BGV Add operation gives the new ciphertext (c0 + c1, c
′
0 + c′

1) with message m+m′

and noise random variable

Vadd = (c0 + c′
0) + s(c1 + c′

1)− (m+m′) = V + V ′ ∼ N(0; (ρ2 + ρ′2)IN ).
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The application of the BGV Multiply operation to the BGV ciphertexts (c0, c1) and
(c′

0, c
′
1) gives a 3-part ciphertext

(c∗
0, c

∗
1, c

∗
2) = (c0c

′
0, c0c

′
1 + c1c

′
0, c1c

′
1) .

This 3-part ciphertext can potentially be decrypted by considering the 3-part Multiply
Critical Value

Wmult = c∗
0 + sc∗

1 + s2c∗
2 = c0 + s(c′

0, c0c
′
1 + c1c

′
0) + s2c1c

′
1

= (c0 + sc1)(c′
0 + sc′

1) = WW ′,

whereW = c0+sc1 andW ′ = c′
0+sc′

1 are the BGV Critical Values of the original ciphertexts
(c0, c1) and (c′

0, c
′
1). If m and m′ are the messages corresponding to the ciphertexts (c0, c1)

and (c′
0, c

′
1), then the message m ·m′ corresponding to this 3-part ciphertext can be found

by reducing this Critical Value Wmult modulo q and then modulo t. The distribution of
the noise random variable following the application of the BGV Multiply operation is
given in Lemma 15, and Heuristic 3 then gives a method for using this result by giving an
expression for the component variance in circumstances of practical interest.

Lemma 15. [Multiply] Suppose that the noise random variables V and V ′ for two
independent BGV ciphertexts have 0-mean multivariate Normal distributions given by
V ∼ N(0; ρ2IN ) and V ′ ∼ N(0; ρ′2IN ). Further suppose that the Small-S assumption is
valid for the product distribution (m+ V )(m′ + V ′), where m and m′ are the underlying
messages. Let Vmult be the noise random variables for the ciphertext output from the BGV
Multiply operation applied to these two ciphertexts, then Vmult(m,m′) ∼ N(0; ρ2

mult(m,m′)IN ),
where the component variance ρ2

mult(m,m′) is given by

ρ2
mult(m,m′) = Nρ2ρ′2 + ρ′2|m|2 + ρ2|m′|2.

Proof. Suppose that (c0, c1) and (c′
0, c

′
1) are the independent BGV ciphertexts having

respective underlying messages m and m′ respectively and having the given noise random
variables

V = (c0 + sc1)−m ∼ N(0; ρ2IN ) and V ′ = (c′
0 + sc′

1)−m′ ∼ N(0; ρ′2IN ).

The BGV multiplication operation gives the new 3-part ciphertext

(c0c
′
0, c0c

′
1 + c1c

′
0, c1c

′
1) with corresponding message m ·m′.

The corresponding BGV Critical Value is

Wmult(m,m′) = (c0 + sc1)(c′
0 + sc′

1) = (m+ V )(m′ + V ′).

The corresponding noise random variable Vmult therefore has the same covariance matrix as
the product of m+ V ∼ N(m; ρ2IN ) and m′ + V ′ ∼ N(m′; ρ′2IN ). The result then follows
from Theorem 1, Heuristic 1, and Corollary 1.

Heuristic 3. [Multiply] In practice, we need to approximate |m|2 and |m′|2 to use
Lemma 15. If the components of m and m′ can be regarded as being independently and
uniformly distributed on T = {− 1

2 (t − 1), . . . , 1
2 (t − 1)}, then the overall noise random

variable Vmult for a BGV Multiply ciphertext is accurately approximated as Vmult ∼
N(0; ρ2

multIN ) by a Normal distribution with component variance ρ2
mult given by

ρ2
mult = N

(
ρ2ρ′2 + 1

12 (t2 − 1)(ρ2 + ρ′2)
)
.
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Justification If the components mi and m′
i are uniformly distributed on T , then

Var(mi) = Var(m′
i) = 1

12 (t2 − 1). In this case, we have |m|2, |m′|2 ≈ 1
12N(t2 − 1), and so

a similar argument to the Justification for Heuristic 2 shows that the Normal mixture
distribution for Vmult can be accurately approximated as a Normal distribution as

Vmult ∼ N(0; ρ2
multIN ), where ρ2

mult ≈ N
(
ρ2ρ′2 + 1

12 (t2 − 1)(ρ2 + ρ′2)
)
.

The BGV Relinearize operation is used to convert a 3-part ciphertext arising after
a BGV Multiply operation to a standard 2-part BGV ciphertext. The distribution of
the Noise random variable following the application of a BGV Relinearize operation of
the form described in Figure 3 is given in Lemma 16. The result is analogous to prior
results [CLP20, Ili19, Pla18] about the BGV and BFV Relinearize operations.

We note that well-known implementations of BGV use more extensively optimised
variants of this basic BGV Relinearize operation, so this result may need adapting for
such optimised variants.

Lemma 16. [Relinearize] Suppose that a 3-part BGV ciphertext arising from a BGV
Multiply operation has a 0-mean multivariate Normal noise random variable given by V ∼
N(0; ρ2In). Consider a BGV Relinearize operation with ℓ+ 1 terms in the decomposition
into base w of an integer in base q with ℓ = ⌊logw q⌋ in which a coefficient in {− 1

2 (q −
1), . . . , 1

2 (q − 1)} is represented as vector with (ℓ+ 1) components lying between − 1
2w and

1
2w. Let Vrelin be the noise random variable for the ciphertext output from such a BGV
Relinearize operation, then Vrelin ∼ N(0; ρ2

relinIN ), where the component variance ρ2
relin is

given by
ρ2

relin = ρ2 + 1
12N(ℓ+ 1)w2t2σ2 .

Proof. We consider the 3-part ciphertext (c∗
0, c

∗
1, c

∗
2) = (c0c

′
0, c0c

′
1 + c1c

′
0, c1c

′
1) arising from

the application of the BGV Multiply operation to the ciphertext (c0, c1) and the ciphertext
(c′

0, c
′
1). For a BGV scheme with parameter ℓ, the ciphertext component c∗

2, a polynomial
with coefficients between 1

2 (q − 1) and 1
2 (q − 1), is expressed as

c∗
2 =

∑ℓ
i=0 giw

i, for decompsition polynomials gi(x) =
∑N−1

j=0 gijx
j ,

The integer coefficients gij of these decomposition polynomials gi can be regarded as
independent random variables lying uniformly between − 1

2w and 1
2w, so we have E(gij) = 0

and Var(gij) = 1
12w

2.
The BGV Relinearize operation transforms this 3-part ciphertext into a standard

2-part BGV ciphertext by using the Evaluation Keys

αi = −(βis+ tdi) + wis2 and βi [i = 0, . . . , ℓ],

where β0, . . . , βℓ are independent random elements of Rq and d0, . . . , dℓ are independent
random variables with the error distribution χ, and we note that αi + sβi = s2wi − tdi

The output of the BGV Relinearize operation is the 2-part ciphertext (c0, c1) given by

c0 = c∗
0 +

ℓ∑
i=0

αigi and c1 = c∗
1 +

ℓ∑
i=0

βigi.

The BGV Critical Value Wrelin of this 2-part ciphertext (c0, c1) is given by

Wrelin = c0 + sc1 = c∗
0 +

∑ℓ
i=0 αigi + sc∗

1 + s
∑ℓ

i=0 βigi

= c∗
0 + sc∗

1 +
∑ℓ

i=0(αi + sβi)gi = c∗
0 + sc∗

1 + s2∑ℓ
i=0 w

igi − t
∑ℓ

i=0 digi

= c∗
0 + sc∗

1 + s2c∗
2 − t

∑ℓ
i=0 digi = W − t

∑ℓ
i=0 digi,
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where W = c∗
0 + sc∗

1 + s2c∗
2 is the BGV Critical Value for the 3-part ciphertext (c∗

0, c
∗
1, c

∗
2).

Thus the BGV Relinearize operation has noise random variable Vrelin given by

Vrelin = V − t
∑ℓ

i=0 digi

A component dij of d has mean E(dij) = 0 and variance Var(dij) = σ2, and a component
gij has mean E(gij) = 0 and variance Var(gij) = 1

12w
2 as gij is uniformly distributed

between − 1
2w and 1

2w. Thus Lemma 2 shows that digi ∼ N(0; 1
12Nw

2σ2), and hence that

t
∑ℓ

i=0 digi ∼ N(0; 1
12N(ℓ+ 1)w2t2σ2 IN ).

Thus the BGV Relinearize operation has a noise random variable Vrelin with a distribution

Vrelin ∼ N(0; (ρ2 + 1
12N(ℓ+ 1)w2t2σ2)IN ),

with component variance ρ2
relin = ρ2 + 1

12N(ℓ+ 1)w2t2σ2.

F Proof of Lemma 4
Proof. We address the distribution of ((Z − ⌊γZ⌉) mod t) by considering the mapping

g : Q → T given by g(x) = (x− ⌊γx⌉) mod t.

We first consider the restriction of the mapping g to the set

Qk = {z ∈ Q | z = k mod t}

of “modulo q” values that have the value k modulo t, that is to say the mapping

gk : Qk → T given by gk(x) = (x− ⌊γx⌉) mod t.

For |γ| ≪ 1, the mapping gk can be regarded as a random mapping of the finite set Qk to
the finite set T , so for x ∈ Qk and y ∈ T the random variable

Zk,x,y =
{

1 if gk(x) = y
0 if gk(x) ̸= y

has a Bernoulli distribution with parameter 1
#T = 1

t
. The number the pre-images under

gk in Qk of a given y ∈ T is the random variable

Rk,y =
∑

x∈Qk

Zk,x,y = #{x ∈ Qk | g−1(y) = x}.

Thus the number the pre-images of y ∈ T under gk has a Binomial distribution as it is the
sum of independent Bernoulli random variables, so we have

Rk,y ∼ Bin(#Qk, t
−1).

The number of pre-images under g in Q of an element y ∈ T is the random variable

Py =
∑
k∈T

Rk,y =
∑
k∈T

∑
x∈Qk

Zk,x,y = #{x ∈ Q | g−1(y) = x}.

The number of pre-images of y ∈ T under g in Q is therefore the sum of independent
Binomial random variables with the same probability parameter, so has a Binomial
distribution (noting that

∑
k∈T #Qk = #Q = q) given by

Py ∼ Bin(q, t−1)
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with mean E(Py) = q

t
and variance Var(Py) = q

t

(
1− 1

t

)
. This Binomial distribution for

Py can be approximated using the standard technique of approximating such a Binomial
distribution by an appropriate Normal distribution, given for example by the Central Limit
approximation to the sum of Zk,x,y. Thus we can write

Py ∼ N
(
q

t
,
q

t

(
1− 1

t

))
.

The distribution of g(Z) = ((Z − ⌊γZ⌉) mod t) for Z ∼ Uni(Q) is therefore given by
P(g(Z) = k) for k ∈ T , where

P(g(Z) = k) is given by Py

q
∼ N

(
1
t
,

1
tq

(
1− 1

t

))
,

This random variable has mean E
(
Py

q

)
= 1
t

and standard deviation satisfying

St Dev
(
Py

q

)
= 1

(tq) 1
2

(
1− 1

t

) 1
2

<

(
t

q

) 1
2 1
t
.

However, t ≪ q, so
(
t

q

) 1
2

is very small, showing that P(g(Z) = k) is very close to 1
t
.

Thus g(Z) is approximated by a Uniform distribution on T .

G Proof of Lemma 7
Proof. It is clear that ∆ = Γ−1T is invertible as both Γ−1 and T are invertible. The
matrix ∆−1 = T−1Γ = T †Γ has matrix entries ∆−1

kl satisfying

m∆−1
kl =

{
2− 1

2
((

1− ζkl
m

)
+
(
1− ζ−kl

m

))
= 2 1

2
(
1− Re

(
ζkl
))

[1 ≤ k ≤ n′]
2− 1

2
(
−i
(
1− ζ−kl

m

)
+ i
(
1− ζkl

m

))
= 2 1

2 Im
(
ζkl
)

[n′ < k ≤ n],

so ∆−1 and hence ∆ are real matrices. Thus we have

∆∆T = ∆∆† = (Γ−1T )(Γ−1T )† = Γ−1TT †(Γ−1)† =
(
Γ†Γ

)−1
.

We note that Γ†
jk = m−1(1−ζ−jk

m ) and that
∑n

l=1 ζ
l = −1 and so on. Thus

∑n
l=1 ζ

l(j−k) =
n if k = j and −1 if k ̸= j (for 1 ≤ k, j ≤ n), which yields

(
Γ†Γ

)
jk

=
n∑

l=1
Γ†

jlΓlk = 1
m2

n∑
l=1

(1− ζ−jl)(1− ζlk)

= 1
m2

n∑
l=1

1− 1
m2

n∑
l=1

ζlk − 1
m2

n∑
l=1

ζ−jl + 1
m2

n∑
l=1

ζl(k−j)

=
{

2m−2(n+ 1) = 2m−1 [k = j]
m−2(n+ 1) = m−1 [k ̸= j],

so Γ†Γ = m−1(I + J). Thus ∆∆T = (Γ†Γ)−1 = mI − J .

H Lindeberg Central Limit Theorem
Lemma 17 ([Bil95, Str11]). Suppose X1, X2, . . . are independent and identically dis-
tributed continuous random variables that are symmetric about 0 with mean E(Xj) = 0
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and variance Var(Xj) = 1, and that have common density function fXj
, and suppose that

for constants a1, a2, . . . the sum
∑l

j=1 ajXj has variance function a(l)2 =
∑l

j=1 a
2
j , and

that the functions ãj are defined by ãj(l) = |aj |
a(l) . In this case, Lindeberg’s condition is

that for any given ϵ > 0, the sum

l∑
j=1

ãj(l)2 ΨXj

(
ϵ

ãj(l)

)
→ 0 as l→∞, where ΨXj

(θ) =
∫ ∞

θ

x2fXj
(x) dx.

If Lindeberg’s condition is satisfied, then a(l)−1∑l
j=1 ajXj tends in distribution to a

standard Normal N(0, 1) distribution as l→∞.
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