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programming. The numerical analysis demonstrates that the proposed homomorphic comparison operation reduces running time by
approximately 45% (resp. 41%) on average, compared with the previous algorithm if running time (resp. depth consumption) is to be
minimized. In addition, when N is 217, and the precision parameter α is 20, the previous algorithm does not achieve 128-bit security,
while the proposed algorithm achieves 128-bit security due to small depth consumption.
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1 INTRODUCTION

HOMOMORPHIC encryption (HE) is a cryptographic al-
gorithm that allows algebraic operations on encrypted

data. Before Gentry’s seminal work [1] in 2009, HE schemes
were able to perform only a few specific operations on the
encrypted data. Fully homomorphic encryption (FHE) is a
cryptographic algorithm that was first developed in [1] and
allows all algebraic operations on the encrypted data with-
out restriction. Accordingly, FHE has attracted significant
attention in various applications, and its standardization
process is in progress.

FHE schemes can be classified as bitwise and word-wise.
Word-wise FHE, such as Brakerski/Fan–Vercauteren [2] and
Cheon–Kim–Kim–Song (CKKS) [3], allows the addition and
multiplication of an encrypted array over C or Zp for a
positive integer p > 2. All other operations in word-wise
FHE should be performed using these two basic operations.
By contrast, the basic operations of a bitwise FHE scheme,
such as fast fully homomorphic encryption over the torus
[4], are logic gates such as NAND gates. Recently, word-
wise FHE has been widely used in several applications such
as deep learning [5], [6].

Although word-wise FHE can support virtually all arith-
metic operations on encrypted data, several applications
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require non-arithmetic operations. One of the core non-
arithmetic operations is the comparison operation, which is
denoted as comp(u, v) and outputs 1 if u > v, 1/2 if u = v,
and 0 if u < v. This comparison operation is widely used in
various real-world applications including machine learning
algorithms such as support-vector machines, cluster analy-
sis, and gradient boosting [7], [8].

The max function max(u, v) is another core non-
arithmetic operation, and it is particularly important in
deep learning. The max pooling operation in deep learning,
which is the same as the max function, is used to extract
the most distinctive feature from some layers in a neural
network, and prevents the model from overfitting. Several
deep learning models, such as AlexNet [9], VGGNet [10],
GoogleNet [11], Inception [12], and ResNet [13], use the
max pooling operation. In addition, sorting algorithms with
the max function are used as subroutines of various other
algorithms because it is frequently required to use sorted
rather than unsorted data. Thus, it is important to efficiently
evaluate the max function on encrypted data, termed ho-
momorphic max function, because this directly improves
the performance of the max pooling operation in privacy-
preserving deep learning models and of sorting algorithms
on encrypted data, termed homomorphic sorting algorithms
[14].

Several studies have been conducted to efficiently imple-
ment the comparison operation on encrypted data, termed
homomorphic comparison operation, and homomorphic
max function. The comparison operation and max function
can be easily implemented using the sign function, that
is, comp(u, v) = 1

2 (sgn(u − v) + 1) and max(u, v) =
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Fig. 1. Comparison between the proposed minimax approximate polynomial and the previous polynomials f4 and g4 in [15].

(u+v)+(u−v) sgn(u−v)
2 , where sgn(x) = x/|x| for x 6= 0, and

0, otherwise. Thus, implementing sgn(x) leads directly to
implementing comp(u, v) and max(u, v), and we focus on
implementing sgn(x) in this paper.

Since sgn(x) is not a polynomial, to evaluate sgn(x) in
FHE, which provides only addition and multiplication, it is
necessary to determine and evaluate a polynomial p(x) that
approximates sgn(x). Since sgn(x) is discontinuous at x =
0, the small neighborhood (−ε, ε) of zero is not considered
when measuring the difference between p(x) and sgn(x).
Specifically, it is required that

|p(x)− sgn(x)| ≤ 21−α for x ∈ [−1,−ε] ∪ [ε, 1], (1)

which implies that 1
2 (p(u− v) + 1) is an approximate value

of comp(u, v) within 2−α error for u, v ∈ [0, 1] satisfying
|u − v| ≥ ε. Here, ε and α determine the input and
output precisions of comparison operation, respectively. It
is desirable to determine an approximate polynomial that
requires less running time and depth consumption. To this
end, it is desirable to reduce the polynomial degree as much
as possible.

A method to approximate sgn(x) using a composite
polynomial was recently proposed in [15], and it was
proved that this method achieves the optimal asymptotic
complexity. However, the functions fn and gn used in [15]
do not ensure approximation optimality, and thus, finding
better composite polynomials that approximate sgn(x) is an
important study.

Let p = pk ◦ pk−1 ◦ · · · ◦ p1 be a composite polynomial
that approximates sgn(x). Since sgn(x) is an odd function,
it is natural to approximate sgn(x) by using a composition
of polynomials with odd-degree terms. Thus, we assume
that p1, p2, · · · , pk are polynomials with odd-degree terms,
and because of the symmetry, it suffices to consider only
the case of x > 0 to verify that the composite polynomial
p = pk ◦ pk−1 ◦ · · · ◦ p1 satisfies the error condition in (1).
Let p1([ε, 1]) = [a1, b1], p2 ◦ p1([ε, 1]) = [a2, b2], · · · , pk ◦
· · · ◦ p1([ε, 1]) = [ak, bk]. Each component polynomial pi can
be seen as performing a task of mapping a given interval
[ai−1, bi−1] = pi−1 ◦ · · · ◦ p1([ε, 1]) into a smaller interval
[ai, bi], and we should have [ak, bk] ∈ [1 − 21−α, 1 + 21−α],

which implies that the error condition in (1) is satisfied.
The most challenging point in approximating sgn(x) is that
the interval [ε, 1], whose size is nearly one, should finally
be mapped to a tiny interval [1 − 21−α, 1 + 21−α], whose
size is 22−α, through k component polynomials. Our key
observation is that finding good polynomials that efficiently
reduce the given intervals is the core of an efficient compar-
ison operation implementation. Then, the natural question
would be

“Given an interval [ai−1, bi−1] = pi−1 ◦ · · · ◦ p1([ε, 1]) and an
upper bound of degree di, what is the best polynomial with

odd-degree terms pi of degree at most di that maps this interval
into the smallest interval?”

1.1 Our Results
1.1.1 Minimax Composite Polynomial
First, for [ai, bi] = pi([ai−1, bi−1]), we consider the case
when bi should be one. Then, we note that the best poly-
nomial of degree at most di that maps [ai−1, bi−1] into the
smallest interval [ai, bi] is the minimax approximate poly-
nomial of degree at most di on [−bi−1,−ai−1] ∪ [ai−1, bi−1]
(for c sgn(x) for some constant c < 1 such that bi = 1). Thus,
we come up with the idea of using a composite polyno-
mial of minimax approximate polynomials, called minimax
composite polynomial, where each component polynomial pi
is the minimax approximate polynomial of degree at most
di defined on [−bi−1,−ai−1] ∪ [ai−1, bi−1] = pi−1 ◦ · · · ◦
p1([−1,−ε] ∪ [ε, 1]).

The two functions fn and gn used in [15] cause some
inefficiency compared to the proposed method. First, since
fn is not the minimax approximate polynomial, it does not
efficiently reduce the size of the interval compared to the
minimax approximate polynomial. In addition, although gn
is the minimax approximate polynomial (for c sgn(x) for
some c < 1), it is the minimax approximate polynomial
on a different domain from [−bi−1,−ai−1] ∪ [ai−1, bi−1],
which results in some inefficiency. Fig. 1 shows that us-
ing the proposed minimax approximate polynomial on
[−bi−1,−ai−1] ∪ [ai−1, bi−1] reduces the size of the interval
more efficiently than using fn or gn (that is, [a′i, 1] ⊂ [ai, 1]).
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Fig. 2. The component polynomials of an example of the proposed minimax composite polynomial p = p3 ◦ p2 ◦ p1 on D = [−1,−0.01] ∪ [0.01, 1]
for {d1, d2, d3} = {9, 9, 9}.

In this paper, the range [ai, bi] = pi([ai−1, bi−1]) is actually
in the form of [1− τi, 1 + τi] (centered at one) for i ≥ 2, not
in the form such that bi = 1 as shown in Fig. 1. However,
it is possible to arbitrarily change the range of a component
polynomial by scaling while maintaining the performance of
the homomorphic comparison operation the same. Specifi-
cally, if cpi(x) is used instead of pi(x) and pi+1(x/c) instead
of pi+1(x) for some i and c > 0, we can scale the range
[ai, bi] = pi ◦ · · · ◦ p1([ε, 1]) by c times while maintaining
the same performance of the homomorphic comparison
operation because the degrees of pi(x) and pi+1(x) do not
change. Thus, although minimax approximate polynomials
whose range is centered at one are used in this paper, the
minimax approximate polynomial in Fig. 1 is scaled so that
bi = 1 for comparison with fn and gn in [15].

Now, the formal definition of the proposed minimax
composite polynomial is described. For a set of polynomials
{pi}1≤i≤k, the composite polynomial pk ◦ pk−1 ◦ · · · ◦ p1 is
called a minimax composite polynomial onD = [−b,−a]∪[a, b]
if there exists {di}1≤i≤k that satisfies the following:
• p1 is the minimax approximate polynomial of degree at

most d1 on D for sgn(x).
• For 2 ≤ i ≤ k, pi is the minimax approximate polyno-

mial of degree at most di on pi−1 ◦pi−2 ◦ · · · ◦p1(D) for
sgn(x).

Let τi be the minimax approximation error of the min-
imax approximate polynomial pi for 1 ≤ i ≤ k. Here, τi
becomes smaller as i increases, and if τk ≤ 21−α, then
p = pk ◦ · · · ◦ p1 satisfies the error condition in (1). The
component polynomials of the minimax composite poly-
nomial efficiently reduce the size of the given interval
without inefficiencies caused by fn and gn in [15]. Fig. 2
shows the component polynomials of an example of the
proposed minimax composite polynomial p = p3 ◦ p2 ◦ p1

on D = [−1,−0.01] ∪ [0.01, 1] for {d1, d2, d3} = {9, 9, 9}.

1.1.2 Finding Optimal Degrees by Using Dynamic Pro-
gramming
We prove that approximating sgn(x) using minimax com-
posite polynomial is the optimal method with respect to
the number of non-scalar multiplications and depth con-
sumption. That is, we prove that for any given compos-
ite polynomial that approximates sgn(x) and satisfies the
error condition in (1), there exists a minimax composite

polynomial for some set of degrees {di}1≤i≤k that satisfies
the error condition in (1) and requires a smaller or equal
depth consumption and number of non-scalar multiplica-
tions than the given composite polynomial. Now, our goal
is to find the optimal set of degrees for minimax composite
polynomial. Specifically, for a given depth consumption D,
we find the optimal set of degrees such that the minimax
composite polynomial for the set of degrees requires the
minimum number of non-scalar multiplications while con-
suming depth D.

First, we can think of brute-force searching for all num-
bers of compositions and the degrees of the component
polynomials to find the optimal set of degrees. However,
for the upper bound of the numbers of compositions k̄ and
that of the degrees of component polynomials d̄, this brute-
force search requires O(d̄k̄) times, which is too much when
α is large. We propose a fast method to find the optimal set
of degrees using dynamic programming.

Specifically, the values of h(m,n, τ) and G(m,n, τ) (de-
fined in Section 3.3) are evaluated using a recursion equation
(see Theorem 3), and the optimal sets of degrees are ob-
tained using these values (see Algorithm 5). It is proved that
the minimax composite polynomial for the set of degrees
determined from the proposed algorithm is optimal with
respect to depth consumption and the number of non-scalar
multiplications.

For the upper bound of the number of non-scalar mul-
tiplications m̄, that of depth consumption n̄, and that of
degrees of component polynomials d̄, the time complexity
of the proposed algorithm is O(m̄n̄d̄). It is pretty fast when
implemented, and we obtain the optimal set of degrees for
input precision α from 5 to 20 (see Table 2).

1.1.3 Improved Performance of Homomorphic Comparison
Operation
It can be seen that when the HEAAN library [3] is used, the
proposed homomorphic comparison operation algorithm
reduces running time by approximately 45% (resp. 41%)
on average, compared with the previous algorithm CompG
(referred to as NewCompG in [15]) if running time (resp.
depth consumption) is to be minimized. In addition, the
proposed homomorphic comparison operation algorithm
reduces the ciphertext modulus bit by approximately 41%
(resp. 45%) on average if running time (resp. depth con-
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sumption) is to be minimized. In particular, it is noteworthy
that when the precision parameter α is 20, the proposed ho-
momorphic comparison operation achieves 128-bit security
due to small depth consumption while the homomorphic
comparison operation in [15] does not achieve 128-bit secu-
rity.

1.1.4 Improved Performance of Homomorphic Max Func-
tion and Homomorphic Sorting

Since we have max(u, v) = (u+v)+(u−v) sgn(u−v)
2 , max(u, v)

can be easily implemented using the proposed method of
approximating sgn(x). As a result, the proposed homo-
morphic max function algorithm reduces running time by
approximately 41% (resp. 35% ) on average and reduces the
ciphertext modulus bit by approximately 33% (resp. 45%)
on average, compared with the previous algorithm MaxG
(referred to as NewMaxG in [15]) if running time (resp.
depth consumption) is to be minimized.

Furthermore, we implement the homomorphic sorting of
three and four numbers using the proposed homomorphic
max function. As a result, the homomorphic sorting algo-
rithm using the proposed homomorphic max function algo-
rithm is approximately two times as fast as using the previ-
ous homomorphic max function algorithm. In addition, the
sorting algorithm that uses the previous homomorphic max
function algorithm does not achieve 128-bit security, while
the sorting algorithm that uses the proposed homomorphic
max function algorithm achieves 128-bit security due to
small depth consumption.

1.2 Related Works

Some research has been conducted on determining poly-
nomials that approximate sgn(x) or comp(u, v) in FHE.
An analytic method to approximate the sign function us-
ing Fourier series was proposed in [16]. In [17], the sign
function was approximated using the approximate equation
tanh(jx) = ejx−e−jx

ejx+e−jx ' sgn(x) for large j > 0. Recently,
an iterative algorithm was proposed that performs a ho-
momorphic comparison using the equation lim

j→∞
uj

uj+vj =

comp(u, v) in [18], where the inverse operation can be
performed using the Goldschmidt division algorithm [19].
However, the use of the inverse operation results in ineffi-
cient computation. More recently, in [15], the homomorphic
comparison operation was approximated using composite
polynomials with a smaller depth consumption and number
of non-scalar multiplications than in previous methods. It
was also shown that this homomorphic comparison op-
eration has optimal asymptotic computational complexity.
However, its performance can be further improved because
the composite polynomials used in [15] do not optimally
approximate the sign function.

1.3 Outline

The remainder of this paper is organized as follows. Section
2 presents preliminaries regarding the concept of FHE,
comparison operation in FHE, approximation theory, and
the algorithms for minimax approximation. In Section 3, a
new method for approximating the sign function using a

composition of minimax approximate polynomials is pro-
posed, and it is proved that the proposed approximation
method is optimal. In addition, a polynomial-time algorithm
to obtain the optimal minimax composite polynomial for
the homomorphic comparison operation is proposed using
dynamic programming, and the performance achieved by
the optimal minimax composite polynomial is compared
with the previous algorithm when depth consumption and
the number of non-scalar multiplications are minimized, re-
spectively. In Section 4, the proposed method of approximat-
ing sign function is applied to homomorphic max function
and homomorphic sorting. In Section 5, numerical results
for the proposed homomorphic comparison operation, the
proposed homomorphic max function, and a homomorphic
sorting algorithm that uses this function are provided in the
HEAAN library [3]. Finally, concluding remarks are given
in Section 6.

2 PRELIMINARIES

2.1 Fully Homomorphic Encryption

FHE schemes are classified as bitwise and word-wise. The
basic operations of the former are logic gates, whereas the
basic operations of the latter are algebraic, such as addition
and multiplication. In this paper, we focus only on word-
wise FHE, and the term FHE refers to word-wise FHE. The
definition of FHE is as follows:

Definition 1. An FHE scheme is a set of five polynomial-time
algorithms that satisfy the following:
• KeyGen(λ) → (pk, sk, evk); KeyGen takes a security

parameter λ as input, and outputs a public key pk, a secret
key sk, and an evaluation key evk.
• Enc(µ,pk) → ct; Enc takes a public key pk and a message
µ as input, and outputs a ciphertext ct of µ.
• Dec(ct, sk) → µ′ or ⊥; Dec takes a ciphertext ct and a

secret key sk as input, and outputs a message µ′. If the
decryption procedure fails, Dec outputs a special symbol ⊥.
• Add(ct1, ct2, evk); Add takes ciphertexts ct1 and ct2 of µ1

and µ2, respectively, and an evaluation key evk as input,
and outputs a ciphertext ctadd of µ1 + µ2.
• Mult(ct1, ct2, evk); Mult takes ciphertexts ct1 and ct2 of µ1

and µ2, respectively, and an evaluation key evk as input,
and outputs a ciphertext ctmult of µ1 · µ2.

The CKKS scheme has two types of multiplication: scalar
and non-scalar. The latter is the multiplication of two vari-
ables, and the former is the multiplication of a variable and
a constant. Non-scalar multiplications require significantly
more running time than scalar multiplications. Thus, in this
paper, when the homomorphic comparison operation and
homomorphic max function are considered, we focus on
reducing depth consumption and the number of non-scalar
rather than scalar multiplications.

2.2 Comparison Operation in Fully Homomorphic En-
cryption

FHE schemes support addition and multiplication opera-
tions on the encrypted data, but not non-arithmetic oper-
ations, such as comparison operation. Thus, the approxi-
mation of the comparison operation should be performed
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by using additions and multiplications. The comparison
operation and the sign function are denoted as

comp(u, v) =


1 if u > v

1/2 if u = v

0 if u < v

, sgn(x) =


1 if x > 0

0 if x = 0 .

−1 if x < 0

Our objective is to approximate comp(u, v) using addi-
tions and multiplications only. We note that comp(u, v) and
sgn(x) are related as follows:

comp(u, v) =
sgn(u− v) + 1

2
.

Thus, the approximation of comp(u, v) is equivalent to
that of sgn(x). Therefore, we only focus on the polynomial
approximation of sgn(x). Definition 2 quantifies how close a
polynomial that approximates sgn(x) is to sgn(x). sgn(x) is
discontinuous at x = 0, and thus it is impossible to exactly
approximate sgn(x) near x = 0. Definition 2 implies that
the approximation error is ensured to be below 2−α only for
ε ≤ |x| ≤ 1.

Definition 2 ( [15]). For α > 0 and 0 < ε < 1, a polynomial
p is said to be (α, ε)-close to sgn(x) over [−1, 1] if p satisfies the
following:

||p(x)− sgn(x)||∞,[−1,−ε]∪[ε,1] ≤ 2−α,

where || · ||∞,D denotes the infinity norm over the domain D.

For precision parameters, α and ε, a polynomial p̃(u, v)
that approximates comparison operation should satisfy the
following error condition:

|p̃(u, v)− comp(u, v)| ≤ 2−α

for any u, v ∈ [0, 1] satisfying |u− v| ≥ ε. (2)

Since comp(u, v) = sgn(u−v)+1
2 , if a polynomial p(x)

approximating sgn(x) is (α − 1, ε)-close, then p̃(u, v) =
p(u−v)+1

2 satisfies the comparison operation error condition
in (2). Thus, we find (α− 1, ε)-close composite polynomials
that approximate sgn(x).

It is known that non-scalar multiplication requires a
considerable running time. In addition, as bootstrapping is
time-consuming, minimizing the depth consumption for the
homomorphic comparison operation is also important, as it
reduces bootstrapping. Thus, it is necessary to approximate
sgn(x) by polynomials that minimize depth consumption as
well as the number of non-scalar multiplications.

2.3 Approximation Theory
Herein, certain concepts from approximation theory are
introduced.

Definition 3. Let D be a closed subset of [a, b], and let f be
a continuous function on D. A polynomial p is said to be the
minimax approximate polynomial of degree at most n on D for
f if p minimizes maxD||p(x) − f(x)||∞ among polynomials of
degree at most n.

It is known that for any continuous function f on D,
the minimax approximate polynomial of degree at most n
on D is unique [20]. We set f(x) = sgn(x) because we are

concerned with polynomials that approximate sgn(x) in this
paper. Moreover, we are only concerned with cases in which
D is the union of two symmetric closed intervals [−b,−a]∪
[a, b].

We refer to the definition of Haar’s condition [20] for a
set of functions, which deals with the generalized version
of polynomial bases such as power basis or Chebyshev
polynomial basis. It is well known that the power basis and
Chebyshev polynomial basis satisfy Haar’s condition. Thus,
if an argument deals with a set of functions that satisfy
Haar’s condition, it naturally includes the case of power
basis or Chebyshev polynomial basis.

Definition 4 (Haar’s condition and generalized polynomial
[20]). A set of functions {φ1, φ2, · · · , φn} satisfies Haar’s con-
dition if each φi is continuous and the determinant

D[x1, · · · , xn] =

∣∣∣∣∣∣∣
φ1(x1) · · · φn(x1)

...
. . .

...
φ1(xn) · · · φn(xn)

∣∣∣∣∣∣∣
is not zero for any n distinct points x1, · · · , xn. A linear

combination of {φ1, φ2, · · · , φn} is referred to as a generalized
polynomial.

The following theorem and lemmas are required for
some proofs in Section 3.

Theorem 1 (Chebyshev alternation theorem [20]). Let D be
a closed subset of [a, b], and let {φ1, φ2, · · · , φn} be a set of
continuous functions on [a, b] that satisfy Haar’s condition. A
polynomial p =

∑
i ciφi is the minimax approximate polynomial

on D for any given continuous function f on D if and only if
there are n+ 1 elements x0 < · · · < xn in D such that

r(xi) = −r(xi−1) = ± sup
x∈D
|r(x)|, 1 ≤ i ≤ n (3)

for the error function r = f − p restricted on D.

Remark 1. The condition in (3) is called the equioscillation
condition. Let D be [−b,−a] ∪ [a, b]. As r(xi) = ± sup

x∈D
|r(x)|

for 0 ≤ i ≤ n, it follows that r(x) should have extreme points at
xi for 0 ≤ i ≤ n. Thus, p′(xi) = 0 and xi ∈ (−b,−a) ∪ (a, b),
or xi ∈ {−b,−a, a, b}.

Lemma 1 (Generalized de La Vallee Poussin theorem [21]).
Let {φ1, φ2, · · · , φn} be a set of continuous functions on [a, b]
that satisfy Haar’s condition. LetD be a closed subset of [a, b], and
let f(x) be a continuous function on D. Let xi, 0 ≤ i ≤ n be n+
1 consecutive points in D. Let p(x) be a generalized polynomial
such that p − f has alternately positive and negative values at
xi, 0 ≤ i ≤ n. Let p∗(x) be a minimax approximate polynomial
onD for f , and let e(f) be the corresponding approximation error
of p∗(x). Then,

e(f) ≥ min
i
|p(xi)− f(xi)|.

Lemma 2 ( [22]). If f(x) is an odd function, the minimax
approximate polynomial of degree at most n to f(x) is also an
odd function.

2.4 Algorithms for Minimax Approximation
The Remez algorithm [23] in Algorithm 1 obtains the
minimax approximate polynomial for a continuous func-
tion on an interval. First, it initializes reference points
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{x1, · · · , xn+1}, which will converge to the extreme points
of the minimax approximate polynomial. Then, it deter-
mines a polynomial p(x) with basis {φ1, ..., φn} that satisfies
p(xi) − f(xi) = (−1)iE, 1 ≤ i ≤ n + 1 for some E > 0;
that is, it determines coefficients c1, · · · , cn that satisfy
c1φ1(xi) + · · ·+ cnφn(xi)− f(xi) = (−1)iE, 1 ≤ i ≤ n+ 1.
These equations form a system of linear equations consist-
ing of n + 1 equations and n + 1 unknowns (coefficients
c1, · · · , cn and E). This system is guaranteed not to be
singular by Haar’s condition, and thus the polynomial p(x)
can be uniquely determined.

Then, we find n zeros z1, · · · , zn of p(x) − f(x), where
xi < zi < xi+1, and we also find n + 1 extreme points
y1, · · · , yn+1 of p(x) − f(x) such that yi ∈ [zi−1, zi], where
z0 = a and zn+1 = b. If the extreme points satisfy the
equioscillation condition in (3), the Remez algorithm out-
puts p(x) as the minimax approximate polynomial. Oth-
erwise, it replaces the reference points with these extreme
points and proceeds with the above steps again. It was
proved in [23] that this polynomial p(x) always converges
to the minimax approximate polynomial.

Algorithm 1: Remez algorithm [21]

Input: A basis {φ1, · · · , φn}, a domain [a, b], an
approximation parameter γ, and a
continuous function f on [a, b]

Output: The minimax approximate polynomial p for
f

1 Choose x1, · · · , xn+1 ∈ [a, b], where
x1 < · · · < xn+1;

2 Find the polynomial p(x) in terms of {φ1, · · · , φn}
such that p(xi)− f(xi) = (−1)iE, 1 ≤ i ≤ n+ 1 for
some E;

3 Divide the domain [a, b] into n+ 1 sections
[zi−1, zi], i = 1, · · · , n+ 1.
z1, · · · , zn are the zeros of p(x)− f(x), where
xi < zi < xi+1, and z0 = a, zn+1 = b;

4 Find the maximum or minimum point of p− f for
each section when p(xi)− f(xi) has a positive or
negative value, respectively. These points
y1, · · · , yn+1 are called extreme points;

5 εmax ← max
1≤i≤n+1

|p(yi)− f(yi)|;
6 εmin ← min

1≤i≤n+1
|p(yi)− f(yi)|;

7 if (εmax − εmin)/εmin < γ then
8 Return p(x);
9 else

10 Replace xi with yi for all i. Go to line 2;
11 end

Recently, Lee et al. [21] proposed the improved multi-
interval Remez algorithm that determines the minimax ap-
proximate polynomial on multiple intervals and proved that
this algorithm can always obtain the minimax approximate
polynomial for any piecewise continuous function. In this
paper, it is required to determine the minimax approximate
polynomial for the sign function, and this can be obtained
by the improved multi-interval Remez algorithm in Algo-
rithm 2.

The improved multi-interval Remez algorithm is similar

Algorithm 2: Improved Multi-Interval Remez algo-
rithm [21]

Input: A basis {φ1, · · · , φn}, an approximation
parameter γ, an input domain
D =

⋃l
i=1[ai, bi] ⊂ R, and a continuous

function f on D
Output: The minimax approximate polynomial p for

f
1 Choose x1, · · · , xn+1 ∈ D, where x1 < · · · < xn+1;
2 Find the polynomial p(x) in terms of {φ1, · · · , φn}

such that p(xi)− f(xi) = (−1)iE, 1 ≤ i ≤ n+ 1 for
some E;

3 Collect all the extreme and boundary points of p− f
on D such that µ(x)(p(x)− f(x)) ≥ |E| and put
them in a set B;

4 Find n+ 1 extreme points y1 < y2 < · · · < yn+1 in
B that satisfy the alternating condition and
maximum absolute sum condition;

5 εmax ← max
1≤i≤n+1

|p(yi)− f(yi)|;
6 εmin ← min

1≤i≤n+1
|p(yi)− f(yi)|;

7 if (εmax − εmin)/εmin < γ then
8 Return p(x);
9 else

10 Replace xi with yi for all i. Go to line 2;
11 end

to the Remez algorithm; however, unlike in the Remez
algorithm, there may be more than n + 1 extreme points in
the improved multi-interval Remez algorithm. Thus, n + 1
extreme points y1, · · · , yn+1 should be chosen among all
candidate extreme points. µ(x) is a function that is required
to describe how to choose the n+ 1 extreme points, and it is
defined as

µ(x) =


1, p(x)− f(x) is concave at x on D
−1, p(x)− f(x) is convex at x on D

0, otherwise.

Then, the n + 1 extreme points in Algorithm 2 can be
selected based on the following three criteria:

(i) Local extreme value condition. We have min
i
µ(yi)(p(yi)−

f(yi)) ≥ E, where E is the value obtained when line 2
in Algorithm 2 is performed.

(ii) Alternating condition. µ(yi) · µ(yi+1) = −1 for i =
1, · · · , n.

(iii) Maximum absolute sum condition.
n+1∑
i=1
|p(yi) − f(yi)| is

maximized for all candidate sets of extreme points
satisfying the local extreme value and the alternating
condition.

The improved multi-interval Remez algorithm operates
with n basis functions {φ1, · · · , φn}. The minimax approx-
imate polynomial p(x) is represented by the basis func-
tions as p(x) =

∑n
i=1 ciφi(x), and the improved multi-

interval Remez algorithm determines the coefficients ci
of p(x). Although the simplest basis is a power basis,
{1, x, x2, · · · , xn−1}, when the sign function is approxi-
mated using this basis, the magnitudes of the coefficients



7

ci are often unstable (i.e., excessively small or large values),
resulting in more numerical errors. Thus, the Chebyshev
polynomials are used as basis functions in this paper. The
Chebyshev polynomials Ti on [−1, 1] are defined by the
following recursion:

T0(x) = 1

T1(x) = x

Ti(x) = 2xTi−1(x)− Ti−2(x) for i ≥ 2.

If the sign function should be approximated on a domain
larger than [−1, 1], then scaled Chebyshev polynomials
T̃i(x) = Ti(x/w) should be used for some w > 1 instead
of Ti for all i.

3 APPROXIMATION OF SIGN FUNCTION BY US-
ING OPTIMAL COMPOSITION OF MINIMAX APPROX-
IMATE POLYNOMIALS

3.1 New Approximation Method for Sign Function Us-
ing Composition of Minimax Approximate Polynomials
In [15], sgn(x) was approximated using a composition of
polynomials fn on [−1, 1], where fn(x) =

∑n
i=0

1
4i

(2i
i

)
x(1−

x2)i. If n and the number of compositions sn of fn increase,
the composite polynomial f (sn)

n better approximates sgn(x).
In addition, by defining and using another acceleration
polynomial gn together with fn for composition, the effi-
ciency of the composite polynomial was further improved
with a smaller number of required compositions. How-
ever, the polynomials fn and gn cause some inefficiency
in approximation and thus do not ensure approximation
optimality.

In this paper, we construct composite polynomials using
new component polynomials pi, which are different from
the polynomials fn or gn used in [15], and the repeated com-
position of each pi is not used. As sgn(x) is an odd function,
it is natural to approximate sgn(x) by using a composition
of polynomials with odd-degree terms. Let pk◦pk−1◦· · ·◦p1

be a composition of polynomials with odd-degree terms
approximating sgn(x) on [−1,−ε] ∪ [ε, 1]. Because of the
symmetry, it suffices to consider only the case of x > 0 to
check that the composite polynomial pk ◦ pk−1 ◦ · · · ◦ p1 is
(α − 1, ε)-close. Let [a0, b0] = [ε, 1], p1([a0, b0]) = [a1, b1],
p2([a1, b1]) = [a2, b2], · · · , pk([ak−1, bk−1]) = [ak, bk]. We
note that pk ◦ pk−1 ◦ · · · ◦ p1 is (α− 1, ε)-close if and only if
pk ◦ pk−1 ◦ · · · ◦ p1([ε, 1]) = [ak, bk] ⊆ [1− 21−α, 1 + 21−α].
As [ak, bk] should be a very small interval, it is desirable
that each pi on the domain [ai−1, bi−1] reduces the range as
much as possible. The key observation is that if the minimax
approximate polynomials are used in the composition, the
range [ai, bi] can be rapidly reduced as i increases. Thus,
we use a composition of minimax approximate polynomials
that can be obtained by the improved multi-interval Remez
algorithm.

In [15], the coefficients of approximate polynomials are
rounded to j

2i for some integers i and j, and the multiplica-
tion by coefficients is implemented by adding a ciphertext
j times and then removing i least significant bits. Thus,
the depth consumption due to scalar multiplications does
not need to be considered in [15]. On the other hand, we

TABLE 1
Required Depth Consumption and the Number of Non-Scalar

Multiplications for Evaluating Polynomials of Degree d with Odd-Degree
Terms Using the Odd Baby-Step Giant-Step Algorithm [24] and the

Optimal Level Consumption Technique [25]

polynomial depth consumption multiplications
degree d dep(d) mult(d)

3 2 2
5 3 3
7 3 5
9 4 5
11 4 6
13 4 7
15 4 8
17 5 8
19 5 8
21 5 9
23 5 9
25 5 10
27 5 10
29 5 11
31 5 12

implement the multiplication by coefficients using scalar
multiplication in this paper, and thus, we should consider
both the depth consumption due to scalar multiplications
and that due to non-scalar multiplications. The approxi-
mate polynomials are evaluated with the minimum depth
consumption using the odd baby-step giant-step algorithm
[24] and the optimal level consumption technique [25],
which consider both the depth consumption due to scalar
multiplications and that due to non-scalar multiplications.
For an odd integer d, the two functions, dep(d) and mult(d),
denote the required depth consumption and the number
of non-scalar multiplications, respectively, for evaluating a
polynomial of degree d with odd-degree terms using the
odd baby-step giant-step algorithm and the optimal level
consumption technique. Table 1 shows the values of dep(d)
and mult(d) for odd degrees d up to 31.

In this paper, the goal is to determine an (α− 1, ε)-close
polynomial p(x), and we consider a minimax composite
polynomial p = pk◦pk−1 · · ·◦p1 where p1([−1,−ε]∪[ε, 1]) =
[−1− τ1,−1 + τ1]∪ [1− τ1, 1 + τ1] and pi([−1− τi−1,−1 +
τi−1]∪[1−τi−1, 1+τi−1]) = [−1−τi,−1+τi]∪[1−τi, 1+τi],
2 ≤ i ≤ k for some τ1, · · · , τk ∈ (0,∞). For a concise
description of Sections 3.2 and 3.3, however, it is also
necessary to consider a minimax composite polynomial
p = pk◦pk−1 · · ·◦p1 where p1([−1−δ,−1+δ]∪[1−δ, 1+δ]) =
[−1− τ1,−1 + τ1]∪ [1− τ1, 1 + τ1] and pi([−1− τi−1,−1 +
τi−1]∪[1−τi−1, 1+τi−1]) = [−1−τi,−1+τi]∪[1−τi, 1+τi],
2 ≤ i ≤ k for some δ, τ1, · · · , τk ∈ (0,∞). The following
definition quantifies how close this composite polynomial is
to sgn(x).

Definition 5 ( [15]). For α > 0 and 0 < δ < 1, a polynomial
p(x) is said to be (α, δ)-two-sided-close to sgn(x) if it satisfies
the following:

||p(x)− sgn(x)||∞,[−1−δ,−1+δ]∪[1−δ,1+δ] ≤ 2−α,

where || · ||∞,D denotes the infinity norm over the domain D.

Later, we will show that determining (α, δ)-two-sided-
close composite polynomial and determining (α, ε)-close
composite polynomial are equivalent for δ = 1−ε

1+ε . In fact,
δ is just a temporary precision parameter that is introduced
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for a concise description, and when users perform the pro-
posed algorithms in Algorithms 4, 5, 6, and 7, they should
use ε rather than δ.

We define two functions MultNum and DepNum, which
output the total number of non-scalar multiplications and
depth consumption, respectively, required for evaluating a
composite polynomial.

Definition 6. Let {pi}1≤i≤k be a set of polynomials satisfy-
ing deg(pi) = di, 1 ≤ i ≤ k. MultNum({pi}1≤i≤k) and
DepNum({pi}1≤i≤k) denote the sum of the number of non-scalar
multiplications and the sum of depth consumptions, respectively,
required to evaluate pi for 1 ≤ i ≤ k by using the Paterson–
Stockmeyer algorithm. That is,

MultNum({pi}1≤i≤k) =
k∑
i=1

mult(deg(pi))

DepNum({pi}1≤i≤k) =
k∑
i=1

dep(deg(pi)).

Our objective is to determine an (α − 1, ε)-close com-
posite polynomial pk ◦ pk−1 ◦ · · · ◦ p1 and minimize
MultNum({pi}1≤i≤k) as well as DepNum({pi}1≤i≤k). The
following lemma implies that this is equivalent to deter-
mining an (α− 1, δ)-two-sided-close composite polynomial
p̃k ◦ p̃k−1 ◦ · · · ◦ p̃1 when δ = 1−ε

1+ε .

Lemma 3. For a set of polynomials with odd-degree terms
{pi}1≤i≤k, let {p̃i}1≤i≤k be a set of polynomials with odd-
degree terms such that p̃1(x) = p1( 1+ε

2 x) and p̃i(x) = pi(x),
2 ≤ i ≤ k. Then, pk ◦ pk−1 ◦ · · · ◦ p1 is (α − 1, ε)-close if and
only if p̃k ◦ p̃k−1 ◦ · · · ◦ p̃1 is (α − 1, δ)-two-sided-close when
δ = 1−ε

1+ε .

Proof. Let pk◦pk−1◦· · ·◦p1 be an (α−1, ε)-close composition
of polynomials with odd-degree terms. As pk ◦ pk−1 ◦ · · · ◦
p1(x) is a polynomial with odd-degree terms, it suffices to
consider the case of x > 0. Then, pk ◦ pk−1 ◦ · · · ◦ p1(x) ∈
[1 − 2−(α−1), 1 + 2−(α−1)] for ε ≤ x ≤ 1. Let x′ = 2

1+εx.
ε ≤ x ≤ 1 corresponds to 1−δ ≤ x′ ≤ 1+δ. Then, p̃k◦p̃k−1◦
· · ·◦p̃1(x′) = pk◦pk−1◦· · ·◦p1(x) ∈ [1−2−(α−1), 1+2−(α−1)]
for 1− δ ≤ x′ ≤ 1 + δ. Thus, p̃k ◦ p̃k−1 ◦ · · · ◦ p̃1 is (α− 1, δ)-
two-sided-close.

Conversely, let p̃k ◦ p̃k−1 ◦ · · · ◦ p̃1(x′) ∈ [1−2−(α−1), 1 +
2−(α−1)] for 1 − δ ≤ x′ ≤ 1 + δ. Let x = 1+ε

2 x′. 1 − δ ≤
x′ ≤ 1 + δ corresponds to ε ≤ x ≤ 1. Then, pk ◦ pk−1 ◦ · · · ◦
p1(x) = p̃k ◦ p̃k−1 ◦ · · · ◦ p̃1(x′) ∈ [1− 2−(α−1), 1 + 2−(α−1)]
for ε ≤ x ≤ 1, which implies that pk ◦ pk−1 ◦ · · · ◦ p1 is
(α− 1, ε)-close. Thus, the lemma is proved.

We note that as deg(pi) = deg(p̃i), 1 ≤ i ≤ k in Lemma
3, we have

MultNum({pi}1≤i≤k) = MultNum({p̃i}1≤i≤k),

DepNum({pi}1≤i≤k) = DepNum({p̃i}1≤i≤k),

Thus, for any m,n ∈ N, a composition of poly-
nomials with odd-degree terms pk ◦ pk−1 ◦ · · · ◦ p1 is
(α − 1, ε)-close and satisfies MultNum({pi}1≤i≤k) = m and
DepNum({pi}1≤i≤k) = n if and only if the corresponding
composite polynomial p̃k ◦ p̃k−1 ◦ · · · ◦ p̃1 is (α − 1, δ)-
two-sided-close and satisfies MultNum({p̃i}1≤i≤k) = m and

DepNum({p̃i}1≤i≤k) = n when δ = 1−ε
1+ε . That is, it can be

seen that the following two algorithms are equivalent:
(i) An algorithm that determines the (α − 1, ε)-close com-

posite polynomial pk ◦ · · · ◦ p1 that minimizes depth
consumption and the number of non-scalar multiplica-
tions.

(ii) An algorithm that determines the (α− 1, δ)-two-sided-
close composite polynomial p̃k ◦ p̃k−1 ◦ · · · ◦ p̃1 that
minimizes depth consumption and the number of non-
scalar multiplications, where δ = 1−ε

1+ε .
Thus, we henceforth focus on the latter.

The minimax composite polynomial, which is the core of
the proposed homomorphic comparison method, is now
defined as follows. The principle of the proposed approxi-
mation method is to use the minimax composite polynomial
to approximate the sign function.

Definition 7. Let {pi}1≤i≤k be a set of polynomials. Let D
be [−b,−a] ∪ [a, b]. pk ◦ pk−1 ◦ · · · ◦ p1 is called a minimax
composite polynomial on D if there exists {di}1≤i≤k that satisfies
the following:
• p1 is the minimax approximate polynomial of degree at most
d1 on D for sgn(x).
• For 2 ≤ i ≤ k, pi is the minimax approximate polynomial of

degree at most di on pi−1 ◦ pi−2 ◦ · · · ◦ p1(D) for sgn(x).

We denote [−1 − τ,−1 + τ ] ∪ [1 − τ, 1 + τ ] by Rτ for
τ > 0. Let τi be the minimax approximation error of the
minimax approximate polynomial pi for 1 ≤ i ≤ k. We note
that pi ◦ pi−1 ◦ · · · ◦ p1(D) = Rτi for 1 ≤ i ≤ k by Theorem
1. In fact, τi decreases as i increases. It can be seen that if
pk◦pk−1◦· · ·◦p1 is a minimax composite polynomial onD =
[−b,−a]∪ [a, b], then {pi}1≤i≤k is a set of polynomials with
odd-degree terms by Lemma 2. If τk ≤ 2−(α−1), then the
minimax composite polynomial on Rδ becomes (α − 1, δ)-
two-sided-close. The principle is to determine the optimal
set of degrees {di}1≤i≤k such that the minimax composite
polynomial on Rδ for the set of degrees is optimal with
respect to the depth consumption and the number of non-
scalar multiplications among all (α − 1, δ)-two-sided-close
such polynomials.

3.2 Optimality of Approximation of the Sign Function
by a Minimax Composite Polynomial
In this subsection, we prove that approximating sgn(x)
using minimax composite polynomial is the optimal method
with respect to the number of non-scalar multiplications
and depth consumption. That is, we prove that for any
given (α− 1, δ)-two-sided-close composite polynomial that
approximates sgn(x), there is an (α − 1, δ)-two-sided-close
minimax composite polynomial for some degrees {di}1≤i≤k
that requires a smaller or equal depth consumption and
number of non-scalar multiplications than those for the
given composite polynomial. The following definition and
lemmas are required to prove the optimality of the proposed
minimax composite polynomial method.

Definition 8. Let {pi}1≤i≤k be a set of polynomials. pk ◦pk−1 ◦
· · · ◦ p1 is called a 1-centered range composite polynomial on Rδ
if {pi}1≤i≤k is a set of polynomials with odd-degree terms, and
there exists {τi}1≤i≤k such that p1([1−δ, 1+δ]) = [1−τ1, 1+
τ1] and pi([1− τi−1, 1 + τi−1]) = [1− τi, 1 + τi] for 2 ≤ i ≤ k.
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Lemma 4. Let p1 be the minimax approximate polynomial of
degree at most d on [−b1,−a1] ∪ [a1, b1] for sgn(x). Let p2

be the minimax approximate polynomial of degree at most d on
[−b2,−a2] ∪ [a2, b2] for sgn(x). If [a2, b2] ⊆ [a1, b1], then the
minimax approximation error e2 of p2 is less than or equal to the
minimax approximation error e1 of p1.

Proof. The maximum approximation error e1 when p1 ap-
proximates sgn(x) on [−b1,−a1] ∪ [a1, b1] is larger than
or equal to the maximum approximation error e′1 when p1

approximates sgn(x) on [−b2,−a2] ∪ [a2, b2]. By the defi-
nition of the minimax approximate polynomial, among all
polynomials that approximate sgn(x) on [−b2,−a2]∪[a2, b2]
and have degree less than or equal to d, p2 has the small-
est maximum approximation error. As the degree of p1 is
smaller than or equal to d, we have that e2 ≤ e′1 ≤ e1, and
the lemma is proved.

Lemma 5. Let p̃k ◦ p̃k−1 ◦ · · · ◦ p̃1 be any (α− 1, δ)-two-sided-
close 1-centered-range composite polynomial on Rδ . Then, there
is an (α − 1, δ)-two-sided-close minimax composite polynomial
p̂k ◦ p̂k−1 ◦ · · · ◦ p̂1 on Rδ such that deg(p̂i) ≤ deg(p̃i) for i,
1 ≤ i ≤ k.

Lemma 6. Let pk ◦ pk−1 ◦ · · · ◦ p1 be any (α− 1, δ)-two-sided-
close composition of polynomials with odd-degree terms. Then,
there is an (α− 1, δ)-two-sided-close 1-centered-range composite
polynomial p̃k◦p̃k−1◦· · ·◦p̃1 onRδ such that deg(p̃i) = deg(pi)
for all i, 1 ≤ i ≤ k.

The proofs of Lemmas 5 and 6 can be found in Appen-
dices A and B, respectively. The optimality of the proposed
method of using a minimax composite polynomial is now
proved in Theorem 2.

Theorem 2. Let pk ◦ pk−1 ◦ · · · ◦ p1 be any (α − 1, δ)-two-
sided-close composition of polynomials with odd-degree terms.
Then, there is an (α − 1, δ)-two-sided-close minimax composite
polynomial p̂k◦p̂k−1◦· · ·◦p̂1 onRδ such that deg(p̂i) ≤ deg(pi)
for all i, 1 ≤ i ≤ k.

Proof. Let pk◦pk−1◦· · ·◦p1 be any (α−1, δ)-two-sided-close
composition of polynomials with odd-degree terms. By
Lemma 6, there is an (α − 1, δ)-two-sided-close 1-centered-
range composite polynomial p̃k ◦ p̃k−1 ◦ · · · ◦ p̃1 on Rδ
such that deg(p̃i) = deg(pi), 1 ≤ i ≤ k. In addition, by
Lemma 5, there is an (α − 1, δ)-two-sided-close minimax
composite polynomial p̂k ◦ p̂k−1 ◦ · · · ◦ p̂1 on Rδ such
that deg(p̂i) ≤ deg(p̃i), 1 ≤ i ≤ k. Thus, there is an
(α − 1, δ)-two-sided-close minimax composite polynomial
p̂k ◦ p̂k−1 ◦ · · · ◦ p̂1 on Rδ such that deg(p̂i) ≤ deg(pi) for all
i, 1 ≤ i ≤ k.

Remark 2. In Theorem 2, as deg(p̂i) ≤ deg(pi) for 1 ≤ i ≤
k, we have MultNum({p̂i}1≤i≤k) ≤ MultNum({pi}1≤i≤k) and
DepNum({p̂i}1≤i≤k) ≤ DepNum({pi}1≤i≤k).

3.3 Achieving Polynomial-Time Algorithm for New Ap-
proximation Method by Using Dynamic Programming
From Section 3.2, it can be seen that the method of ap-
proximating sgn(x) using minimax composite polynomial
is the optimal approximation method. For a given depth
consumption D, degrees d1, · · · , dk are called optimal if the

minimax composite polynomial for the degrees is (α−1, δ)-
two-sided-close, and requires depth consumption D and a
smaller or equal number of non-scalar multiplications than
any (α − 1, δ)-two-sided-close composite polynomial that
consumes depth D. In this section, we propose a method
to find the optimal set of degrees for minimax composite
polynomial.

First, we can think of a naive method to determine the
optimal degrees among all sets of degrees by brute-force
searching for all composition numbers k and the degrees
of the component polynomials d1, · · · , dk. However, for the
upper bound of the composition number k̄ and that of
degrees of component polynomials d̄, this requires O(d̄k̄)
times, which is too much for large α. Thus, dynamic pro-
gramming is used to determine the minimax composite
polynomial on Rδ in polynomial time and we propose a
related algorithm.

Before describing the proposed algorithm that
uses dynamic programming, we define MinErr(d, τ),
InvMinErr(d, τ), h(m,n, τ), and G(m,n, τ) as follows:

Definition 9. For d ∈ N and τ ∈ (0, 1), MinErr(d, τ) is
the minimax approximation error of the minimax approximate
polynomial of degree at most d on Rτ for sgn(x).

Lemma 7. For a fixed odd d ∈ N, MinErr(d, τ) is a strictly
increasing continuous function of τ on (0, 1).

The proof of Lemma 7 can be found in Appendix C. If
the minimax approximate polynomial of degree at most d
on Rτ narrows the domain Rτ to a range R′τ , MinErr(d, τ)
outputs τ ′. As MinErr(d, τ) is a strictly increasing function
of τ on (0, 1), its inverse function exists and is defined as
follows:

Definition 10. For d ∈ N and τ ∈ (0, 1), InvMinErr(d, τ) is
equal to a value τ ′ ∈ (0, 1) such that MinErr(d, τ ′) = τ .

The approximate value of InvMinErr(d, τ) can be ob-
tained by a binary search using the improved multi-interval
Remez algorithm.

Definition 11. h(m,n, τ) is the maximum value of τ ′ ∈
(0, 1) such that there exists a minimax composite polynomial
pk ◦ pk−1 ◦ · · · ◦ p1 on Rτ ′ satisfying pk ◦ pk−1 ◦ · · · ◦ p1([1−
τ ′, 1 + τ ′]) ⊆ [1− τ, 1 + τ ],MultNum({pi}1≤i≤k) ≤ m, and
DepNum({pi}1≤i≤k) ≤ n.

Definition 11 implies that h(m,n, τ) outputs the max-
imum τ ′ > 0 when the range of a minimax composite
polynomial on R′τ becomes smaller than Rτ , with m or
less non-scalar multiplications and a depth consumption
of n or less. The degrees of the k component polynomi-
als for the corresponding minimax composite polynomial
pk ◦ pk−1 ◦ · · · ◦ p1 on R′τ in Definition 11 are stored in
G(m,n, τ) as an ordered set.

If the value of h(m,n, τ) can be computed for any
τ ∈ (0, 1) and m,n ∈ N, it is easy to obtain the minimum
number of non-scalar multiplications and depth consump-
tion. For example, for sufficiently large nmax, the smallest i
satisfying h(i, nmax, 2

1−α) ≥ δ is the minimum number of
non-scalar multiplications. It is trivial that if 0 ≤ m ≤ 1 or
0 ≤ n ≤ 1, then h(m,n, τ) = τ . However, it is not easy to
obtain the value of h(m,n, τ) for m ≥ 2 and n ≥ 2 using
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the definition directly. Thus, we introduce a useful recursion
for h(m,n, τ), which is the core of dynamic programming,
and the following theorem shows that the recursion holds.

Theorem 3. For m ≥ 2 and n ≥ 2, the following recursion for
h(m,n, τ) holds:

h(m,n, τ) =

max
1≤j

mult(2j+1)≤m
dep(2j+1)≤n

InvMinErr(2j + 1, h(m−mult(2j + 1),

n− dep(2j + 1), τ)).

The proof of Theorem 3 can be found in Appendix D.
Then, h(m,n, τ) and G(m,n, τ) are recursively computed
by Algorithm 3 using the recursion equation in Theorem 3.
In the 9th line of Algorithm 3, {2j + 1} ∪G(m−mult(2j +
1), n − dep(2j + 1), τ) is the insertion of 2j + 1 into the
ordered set G(m − mult(2j + 1), n − dep(2j + 1), τ) as the
first component. Here, mmax and nmax are set large enough.
In this paper, only minimax approximate polynomials of
degree at most 31 are used because using polynomials of
higher degree may cause more numerical errors. As the
analysis in Section 3.4 demonstrates that only minimax
approximate polynomials of degree at most 9 are used
to minimize the number of non-scalar multiplications, it
appears that degrees of at most 31 are sufficient. However,
when we minimize the depth consumption, the required
depth consumption may be further reduced if minimax
approximate polynomials of degrees larger than 31 are also
used.

Algorithm 3: Computation of h(m,n, τ) and
G(m,n, τ) using dynamic programming

Input: τ
Output: 2-dimensional tables h(m,n, τ), G(m,n, τ)

for 0 ≤ m ≤ mmax and 0 ≤ n ≤ nmax

1 Generate a 2-dimensional table G(m,n, τ) for
0 ≤ m ≤ mmax and 0 ≤ n ≤ nmax, where the
components are all empty sets.

2 for m← 0 to mmax do
3 for n← 0 to nmax do
4 if m ≤ 1 or n ≤ 1 then
5 h(m,n, τ)← τ
6 else
7 j ← argmax

1≤k
mult(2k+1)≤m
dep(2k+1)≤n

InvMinErr(2k + 1, h(m−

mult(2k + 1), n− dep(2k + 1), τ))
8 h(m,n, τ)← InvMinErr(2j + 1, h(m−

mult(2j + 1), n− dep(2j + 1), τ))
9 G(m,n, τ)← {2j + 1} ∪G(m−mult(2j +

1), n− dep(2j + 1), τ)
10 end
11 end
12 end

The algorithms ComputeMinDep in Algorithm 4 and
ComputeMinMultDegs in Algorithm 5 are now intro-
duced. They use the values of h(m,n, τ) and G(m,n, τ) ob-
tained by Algorithm 3. First, ComputeMinDep determines

the minimum required depth consumption Mdep. The user
then chooses the depth consumption D(≥Mdep) to use and
obtain the minimum number of non-scalar multiplications
Mmult and corresponding optimal set of degrees Mdegs from
ComputeMinMultDegs. Here, mmax and nmax should be
set large enough for these two algorithms to obtain the
accurate outputs, and we experimentally confirm that these
algorithms obtain accurate outputs when mmax = 70 and
nmax = 40 for α ≤ 20. If the algorithms fail to obtain Mdep

or Mmult because mmax and nmax are not large enough,
they return an error symbol ⊥. The procedure to obtain
the optimal minimax composite polynomial using dynamic
programming is summarized as follows:

(i) h(m,n, τ) and G(m,n, τ) are computed recursively
using dynamic programming in Algorithm 3.

(ii) From the values of h(m,n, τ) and G(m,n, τ), and
depth consumption D that user chooses, Mdegs is de-
termined in Algorithms 5.

(iii) The component minimax approximate polynomials pi
for 1 ≤ i ≤ k are determined using the improved multi-
interval Remez algorithm with Mdegs.

Algorithm 4: ComputeMinDep

Input: Precision parameters α and ε
Output: Minimum depth consumption Mdep

1 Obtain 2-dimensional tables h(m,n, 21−α) and
G(m,n, 21−α) for 0 ≤ m ≤ mmax and
0 ≤ n ≤ nmax using Algorithm 3

2 for i← 0 to nmax do
3 if h(mmax, i, 2

1−α) ≥ δ = 1−ε
1+ε then

4 Mdep ← i
5 return Mdep

6 end
7 if i = nmax then
8 return ⊥
9 end

10 end

Algorithm 5: ComputeMinMultDegs

Input: Precision parameters α and ε, and depth
consumption D

Output: Minimum number of multiplications Mmult

and optimal set of degrees Mdegs

1 Obtain 2-dimensional tables h(m,n, 21−α) and
G(m,n, 21−α) for 0 ≤ m ≤ mmax and
0 ≤ n ≤ nmax using Algorithm 3

2 for j ← 0 to mmax do
3 if h(j,D, 21−α) ≥ δ = 1−ε

1+ε then
4 Mmult ← j
5 Go to line 11
6 end
7 if j = mmax then
8 return ⊥
9 end

10 end
11 Mdegs ← G(Mmult, D, 2

1−α) // Mdegs: ordered set

12 return Mmult and Mdegs
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Theorem 4 shows that Mdep obtained from Compute-
MinDep is the minimum depth consumption. For Mmult

and Mdegs obtained from ComputeMinMultDegs, Theo-
rem 5 shows that Mmult is the minimum number of non-
scalar multiplications when the depth consumption is D,
and Mdegs is the corresponding optimal set of degrees.

Theorem 4. Let Mdep be the output value of Algorithm 4 for
inputs α and ε. Then, Mdep ≤ DepNum({pi}1≤i≤k) for any
(α−1, ε)-close composition of polynomials with odd-degree terms
pk ◦ pk−1 ◦ · · · ◦ p1.

Proof. Let pk ◦ pk−1 ◦ · · · ◦ p1 be any (α − 1, ε)-close
composition of polynomials with odd-degree terms. Let
MultNum({pi}1≤i≤k) = m and DepNum({pi}1≤i≤k) = n.
From Lemma 3, there exists an (α − 1, δ)-two-sided-close
composition of polynomials with odd-degree terms p̃k ◦· · ·◦
p̃1 such that MultNum({p̃i}1≤i≤k) = MultNum({pi}1≤i≤k)
and DepNum({p̃i}1≤i≤k) = DepNum({pi}1≤i≤k). In addi-
tion, from Theorem 2, there exists an (α − 1, δ)-two-sided-
close minimax composite polynomial p̂k ◦ p̂k−1 ◦ · · · ◦ p̂1 on
Rδ such that MultNum({p̂i}1≤i≤k) ≤ MultNum({p̃i}1≤i≤k)
and DepNum({p̂i}1≤i≤k) ≤ DepNum({p̃i}1≤i≤k). We as-
sume that n < Mdep. Then, DepNum({p̂i}1≤i≤k) ≤
DepNum({p̃i}1≤i≤k) ≤ DepNum({pi}1≤i≤k) = n < Mdep.
As n < Mdep, and Mdep is the smallest i that satisfies
h(mmax, i, 2

1−α) ≥ δ, we have h(mmax, n, 2
1−α) < δ. Thus,

there is no minimax composite polynomial p̄k◦ p̄k−1◦· · ·◦ p̄1

on Rδ such that p̄k ◦ p̄k−1 ◦ · · · ◦ p̄1([1 − δ, 1 + δ]) ⊆
[1 − 21−α, 1 + 21−α], MultNum({p̄i}1≤i≤k) ≤ mmax, and
DepNum({p̄i}1≤i≤k) ≤ n. This leads to a contradiction
because p̂k ◦ p̂k−1 ◦ · · · ◦ p̂1 is an (α − 1, δ)-two-sided-
close minimax composite polynomial on Rδ such that
MultNum({p̂i}1≤i≤k) ≤ mmax and DepNum({p̂i}1≤i≤k) ≤
n.

Theorem 5. Let Mmult and Mdegs be the output values of
Algorithm 5 for depth consumption D, and precision parame-
ters α and ε. Then, Mmult ≤ MultNum({pi}1≤i≤k) for any
(α−1, ε)-close composition of polynomials with odd-degree terms
pk ◦ pk−1 ◦ · · · ◦ p1 satisfying DepNum({pi}1≤i≤k) = D.

Proof. Let pk ◦ pk−1 ◦ · · · ◦ p1 be any (α − 1, ε)-close
composition of polynomials with odd-degree terms. Let
MultNum({pi}1≤i≤k) = m and DepNum({pi}1≤i≤k) = D.
From Lemma 3, there exists an (α − 1, δ)-two-sided-close
composition of polynomials with odd-degree terms p̃k ◦· · ·◦
p̃1 such that MultNum({p̃i}1≤i≤k) = MultNum({pi}1≤i≤k)
and DepNum({p̃i}1≤i≤k) = DepNum({pi}1≤i≤k). In addi-
tion, from Theorem 2, there exists an (α − 1, δ)-two-sided-
close minimax composite polynomial p̂k ◦ p̂k−1 ◦ · · · ◦ p̂1 on
Rδ such that MultNum({p̂i}1≤i≤k) ≤ MultNum({p̃i}1≤i≤k)
and DepNum({p̂i}1≤i≤k) ≤ DepNum({p̃i}1≤i≤k). We as-
sume that m < Mmult. Then, MultNum({p̂i}1≤i≤k) ≤
MultNum({p̃i}1≤i≤k) ≤ MultNum({pi}1≤i≤k) = m <
Mmult. As m < Mmult, and Mmult is the smallest j that
satisfies h(j,D, 21−α) ≥ δ, we have h(m,D, 21−α) < δ.
Thus, there is no minimax composite polynomial p̄k ◦ p̄k−1 ◦
· · · ◦ p̄1 on Rδ such that p̄k ◦ p̄k−1 ◦ · · · ◦ p̄1([1 − δ, 1 +
δ]) ⊆ [1 − 21−α, 1 + 21−α], MultNum({p̄i}1≤i≤k) ≤ m,
and DepNum({p̄i}1≤i≤k) ≤ D. This leads to a contra-
diction because p̂k ◦ p̂k−1 ◦ · · · ◦ p̂1 is an (α − 1, δ)-two-

sided-close minimax composite polynomial on Rδ such that
MultNum({p̂i}1≤i≤k) ≤ m and DepNum({p̂i}1≤i≤k) ≤ D.

The MinimaxComp algorithm, which outputs an ap-
proximate value of comp(u, v), is now proposed in Algo-
rithm 6. It uses the optimal set of degrees Mdegs obtained
from ComputeMinMultDegs for α, ε, and D. Then, the
error between the output of the proposed algorithm Min-
imaxComp and comp(u, v) is bounded by 2−α for any
u, v ∈ [0, 1] satisfying |u − v| ≥ ε. Here, ε and α are pre-
cision parameters that users of homomorphic comparison
operation can choose, and they determine input precision
and output precision, respectively. MinimaxErr(a, b; d) and
MinimaxFunc(a, b; d) are defined for the description of
MinimaxComp as follows.

Definition 12. For a, b ∈ R and d ∈ N, let
MinimaxFunc(a, b; d) be the minimax approximate polynomial
of degree at most d on [−b,−a] ∪ [a, b] for sgn(x), and
MinimaxErr(a, b; d) be the minimax approximation error of
MinimaxFunc(a, b; d).

Algorithm 6: MinimaxComp

Input: Inputs u, v ∈ (0, 1), precision parameters α
and ε, and depth consumption D

Output: Approximate value of comp(u, v)
1 Obtain Mdegs = {d1, d2, · · · , dk} from
ComputeMinMultDegs for α, ε, and D

2 p1 ← MinimaxFunc(1− ε, 1; d1)
3 τ1 ← MinimaxErr(1− ε, 1; d1)
4 for i← 2 to k do
5 pi ← MinimaxFunc(1− τi−1, 1 + τi−1; di)
6 τi ← MinimaxErr(1− τi−1, 1 + τi−1; di)
7 end
8 return pk◦pk−1◦···◦p1(u−v)+1

2

3.4 Optimal Composite Polynomials for Homomorphic
Comparison and Their Performance

Herein, using dynamic programming and the algorithm
ComputeMinMultDegs, the optimal set of degrees and
the corresponding number of non-scalar multiplications are
obtained for a given depth consumption D. Fig. 3 shows the
minimum number of non-scalar multiplications of minimax
composite polynomials for homomorphic comparison oper-
ation according to depth consumption D. It can be seen that
there is a tradeoff between the required depth consumption
and the number of non-scalar multiplications. The empty
mark implies that the option does not need to be used by
users because another option uses the same number of non-
scalar multiplications as the option and uses smaller depth
consumption than the option.

We analyze the performance for the option of mini-
mizing the number of non-scalar multiplications and that
of minimizing depth consumption among several opti-
mal options in Fig. 3. Table 2 shows the ordered sets
Mdegs that store the degrees of the optimal component
minimax approximate polynomials when depth consump-
tion and the number of non-scalar multiplications, respec-
tively, are minimized. The minimum depth consumption
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Fig. 3. The minimum number of non-scalar multiplications of minimax
composite polynomials for homomorphic comparison operation accord-
ing to depth consumption D.

TABLE 2
Optimal Set of Degrees Mdegs Obtained from ComputeMinMultDegs

Algorithm That Stores the Degrees of the Component Minimax
Approximate Polynomials When Depth Consumption and the Number

of Non-Scalar Multiplications, Respectively, are Minimized

α
ordered set of degrees of the optimal component

minimax approximate polynomials Mdegs

minimize multiplications minimize depth
4 {3, 3, 5} {27}
5 {5, 5, 5} {7, 13}
6 {3, 5, 5, 5} {15, 15}
7 {3, 3, 5, 5, 5} {7, 7, 13}
8 {3, 3, 5, 5, 9} {7, 15, 15}
9 {5, 5, 5, 5, 9} {7, 7, 7, 13}
10 {5, 5, 5, 5, 5, 5} {7, 7, 13, 15}
11 {3, 5, 5, 5, 5, 5, 5} {7, 15, 15, 15}
12 {3, 5, 5, 5, 5, 5, 9} {15, 15, 15, 15}
13 {3, 5, 5, 5, 5, 5, 5, 5} {15, 15, 15, 31}
14 {3, 3, 5, 5, 5, 5, 5, 5, 5} {7, 7, 15, 15, 27}
15 {3, 3, 5, 5, 5, 5, 5, 5, 9} {7, 15, 15, 15, 27}
16 {3, 3, 5, 5, 5, 5, 5, 5, 5, 5} {15, 15, 15, 15, 27}
17 {5, 5, 5, 5, 5, 5, 5, 5, 5, 5} {15, 15, 15, 29, 29}
18 {3, 3, 5, 5, 5, 5, 5, 5, 5, 5, 5} {15, 15, 29, 29, 31}
19 {5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5} {15, 29, 31, 31, 31}
20 {5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 9} {29, 31, 31, 31, 31}

and the minimum number of required non-scalar mul-
tiplications are computed using ComputeMinDep and
ComputeMinMultDegs. Other options that are not shown
in Table 2 can be seen in Appendix E.

For an integer n = 4 and precision parameters α
and ε, the lower bounds of depth consumption and the
number of non-scalar multiplications for the previous al-
gorithm CompG (referred to as NewCompG in [15]) are
both 4(d 1

log 0.98c2n
· log(2/ε)e+ d 1

log(n+1) · log(α−2)e), where
cn = 2n+1

4n

(2n
n

)
, which can be obtained from Lemmas 1 and

3 in [15]. This lower bound is very close to that obtained
experimentally. In this paper, the performances of the pre-
vious and proposed homomorphic comparison algorithms
are both analyzed when ε = 2−α.

Fig. 4 (a) shows a comparison of the number of required
non-scalar multiplications and depth consumption between
the previous homomorphic comparison operation algorithm
and the proposed algorithm MinimaxComp when the num-
ber of non-scalar multiplications is minimized. We note that
the previous algorithm has the same number of non-scalar
multiplications and depth consumption. This is because the
degrees of all of the component polynomials used in [15] are
nine, and the required number of non-scalar multiplications
and depth consumption of polynomials of degree nine using
the polynomial evaluation method in [15] are both four.
It can be seen that the minimum number of the required
non-scalar multiplications and the corresponding depth
consumption for the proposed algorithm are reduced by
approximately 30% and 31% on average, respectively, com-
pared with the corresponding values for the previous algo-
rithm. In this case, the proposed algorithm MinimaxComp,
which uses the output Mdegs of ComputeMinMultDegs,
is aimed at minimizing the number of non-scalar multipli-
cations; however, the corresponding depth consumption is
also reduced.

Fig. 4 (b) shows a comparison of the number of required
non-scalar multiplications and depth consumption between
the previous algorithm and the proposed homomorphic
comparison algorithm MinimaxComp when depth con-
sumption is minimized. It can be seen that the minimum
depth consumption for the proposed algorithms is reduced
by approximately 48% on average, and the corresponding
number of non-scalar multiplications is increased by ap-
proximately 4% on average. Although the number of non-
scalar multiplications for the proposed algorithm is slightly
larger than that for the previous algorithm, when bootstrap-
ping is required, the proposed algorithm would require less
running time than the previous algorithm because boot-
strapping, owing to the large depth consumption, requires
much more running time than non-scalar multiplication
operations.

3.5 Proposed Homomorphic Comparison Operation
Using Margin

The proposed homomorphic comparison operation in Algo-
rithm 6 satisfies the comparison operation error condition
well if there are no other errors than those caused by
polynomial approximation. However, if Algorithm 6 is used
in approximate homomorphic encryption CKKS scheme, the
difference between pi ◦ · · · ◦ p1(x) and sgn(x) for some
i(≤ k) and x ∈ [ε, 1] can be greater than the minimax
approximation error τi of pi. It means that pi◦· · ·◦p1(x) does
not fall into [1− τi, 1 + τi], which is the domain of the next
minimax approximate polynomial pi+1, and this can lead to
a failure of homomorphic comparison operation. Thus, we
propose an improved algorithm, which is Algorithm 7, and
the algorithm adds the use of margins to Algorithm 6 to
make it resistant to errors caused by the CKKS scheme. This
Algorithm 7 is used instead of Algorithm 6 in the numerical
analysis in Section 5.

If the value of margin η becomes larger, the homo-
morphic comparison operation will become more resistant
to errors caused by CKKS scheme. Thus, the margin η
is set as large as possible among valid values of margin
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Fig. 4. Comparison of the minimum number of non-scalar multiplications and depth consumption between the previous and the proposed algorithms
when the number of non-scalar multiplications or the depth consumption is minimized.

Algorithm 7: MinimaxComp (using margin)

Input: Inputs u, v ∈ (0, 1), precision parameters α
and ε, depth consumption D, and margin η

Output: Approximate value of comp(u, v)
1 Obtain Mdegs = {d1, d2, · · · , dk} from
ComputeMinMultDegs for D, α, and ε

2 p1 ← MinimaxFunc(1− ε, 1; d1)
3 τ1 ← MinimaxErr(1− ε, 1; d1) + η
4 for i← 2 to k do
5 pi ← MinimaxFunc(1− τi−1, 1 + τi−1; di)
6 τi ← MinimaxErr(1− τi−1, 1 + τi−1; di) + η
7 end
8 return pk◦pk−1◦···◦p1(u−v)+1

2

such that τk ≤ 21−α, which implies that the homomorphic
comparison operation using margin satisfies the comparison
operation error condition.

4 APPLICATION TO MIN/MAX AND SORTING

The max function can be used in several applications, in-
cluding the max pooling operation in deep learning and
sorting algorithms. It can be easily implemented using the
sign function, that is,

max(u, v) =
(u+ v) + (u− v) sgn(u− v)

2
.

Thus, the proposed method of determining polynomials
that approximate sgn(x) can also be used to determine
polynomials that approximate the max function. The min
function can be easily implemented by using the max func-
tion, that is, min(u, v) = u+ v −max(u, v).

For some polynomial p(x) that approximates sgn(x), the
error between (u+v)+(u−v)p(u−v)

2 and max(u, v) should be
bounded by 2−α for any u, v ∈ [0, 1]. Algorithm 8 is the pro-
posed homomorphic max function that uses the optimal set
of degrees Mdegs obtained from ComputeMinMultDegs. It

should be noted that the inputs of ComputeMinMultDegs
to perform the proposed homomorphic max function are
different from those to perform the proposed homomor-
phic comparison operation. First, ζ · 2−α for some max
function factor ζ > 1 is used instead of ε. This is be-
cause, for a polynomial p(x) that approximates sgn(x),
the error condition of p(x) is different when used to im-
plement the homomorphic max function and when used
to implement the homomorphic comparison operation. In
addition, depth consumption D − 1 is used instead of
depth consumption D because another depth is required
to compute (u−v)pk◦pk−1◦···◦p1(u−v)+(u+v)

2 in homomorphic
max function. The larger the value of ζ , the smaller the
depth consumption and the number of non-scalar multipli-
cations that this homomorphic max function requires. We
experimentally set the value of ζ as large as possible among
valid values of ζ such that the homomorphic max function
satisfies the error condition.

Algorithm 8: MinimaxMax (using margin)

Input: Inputs u, v ∈ (0, 1), precision parameter α,
max function factor ζ , depth consumption D,
and margin η

Output: Approximate value of max(u, v)
1 Obtain Mdegs = {d1, d2, · · · , dk} from
ComputeMinMultDegs for D − 1, α, and ζ · 2−α

2 p1 ← MinimaxFunc(1− ε, 1; d1)
3 τ1 ← MinimaxErr(1− ε, 1; d1) + η
4 for i← 2 to k do
5 pi ← MinimaxFunc(1− τi−1, 1 + τi−1; di)
6 τi ← MinimaxErr(1− τi−1, 1 + τi−1; di) + η
7 end
8 return (u−v)pk◦pk−1◦···◦p1(u−v)+(u+v)

2

The proposed homomorphic max function algorithm can
be used for sorting. In this paper, we analyze the perfor-
mance of sorting algorithms for three numbers and four
numbers using the proposed homomorphic max function.
Fig. 5 shows the diagrams representing these sorting algo-
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rithms. Each arrow, the start and end points of which are ui
and uj , respectively, indicates the sorting of the data ui and
uj . After the sorting, max(ui, uj) and min(ui, uj) are at the
end and start point of the arrow, respectively.

u1

u2

u3

(a) Three numbers

u1

u2

u3

u4
(b) Four numbers

Fig. 5. Diagrams representing sorting algorithms for three and four
numbers.

5 NUMERICAL RESULTS

In this section, numerical results regarding the algorithms
for the proposed homomorphic comparison operation, ho-
momorphic max function, and homomorphic sorting using
the proposed homomorphic max function are presented.
The performances of the proposed algorithms are evaluated
and compared with those of the previous algorithms in
[15]. The numerical analysis is conducted using the CKKS
scheme library HEAAN [3] on a Linux PC with an Intel
Core i7-10700 CPU at 2.90GHz with 8 threads.

5.1 CKKS Scheme
The CKKS scheme is a representative word-wise FHE
scheme that supports the evaluation of encrypted real or
complex data with approximation. The ciphertext modulus
of bit-length ` is denoted by q` = 2` for 1 ≤ ` ≤ L,
where L is the bit length of the initial ciphertext modulus.
Let R = Z[X]/(XN + 1) and Rq = R/qR, where N
is a power-of-two integer. Let χkey, χerr, and χenc be the
key distribution, the error distribution, and the distribution
for encryption over R, respectively, and these distributions
can be determined by the security analysis. We set the
key distribution χkey = HWTN (256), which samples an
element inRwith ternary coefficients that have 256 nonzero
values uniformly at random. Let U(Rq) denote the uni-
form distribution over Rq . There is a field isomorphism
τ̄ : R[X]/(XN + 1) → CN/2. This isomorphism is used
for decoding, and its inverse isomorphism τ̄−1 is used for
encoding. The CKKS scheme is described as follows:
• KeyGen: Sample s̄ ← χkey, ē, ē

′ ← χerr, ā ← U(RqL),
and ā′ ← U(Rq2L), and set sk ← (1, s̄), pk ← (−ā · s̄ +

ē, ā) ∈ R2
qL , and evk← (−ā′ · s̄+ ē′+ qL · s̄2, ā′) ∈ R2

q2L
.

• Encpk(z; ∆): For a plaintext vector z =
(z0, · · · , zN/2−1) ∈ CN/2 and a scaling factor ∆,
encode z by m̄ ← b∆ · τ̄−1(z)e ∈ R, where b·e
denotes the rounding operation. Then, sample
v̄ ← χenc and ē0, ē1 ← χerr, and output the ciphertext
ct = dv̄ · pk + (m̄+ ē0, ē1)eqL .

• Decsk(ct; ∆): For a ciphertext ct = (c̄0, c̄1) ∈ R2
q`

, com-
pute the plaintext polynomial m̄′ ← [c̄0 + c̄1 · s̄]q` , and
output the plaintext vector z′ ← ∆−1 · τ̄(m̄′) ∈ CN/2.

• Add(ct, ct′): Output ctadd ← [ct + ct′]q` .
• Multevk(ct, ct′): For ct = (c̄0, c̄1) and ct′ = (c̄′0, c̄

′
1),

compute (d̄0, d̄1, d̄2) = (c̄0c̄
′
0, c̄0c̄

′
1 + c̄′0c̄1, c̄1c̄

′
1) and

ct′mult ← [(d̄0, d̄1) + bq−1
L · d̄2 · evke]q` . Then, output

ctmult ← [b∆−1 · ct′multe]q`/∆.
It should be noted that an attack method on the CKKS

scheme has recently been proposed in [26]. The CKKS
scheme satisfies indistinguishability under chosen-plaintext
attack (IND-CPA) security, and it is sufficient if the secret
key owner does not share decryption results with people
who do not own the secret key. However, in [26], it was
shown that the CKKS scheme could be broken if the secret
key owner shares the decryption results with others, and a
stronger notion of security called IND-CPA+ was proposed.
Then, an attack prevention method was proposed in [27].
This method adds a Gaussian error at the end of the decryp-
tion procedure, which allows the CKKS scheme to satisfy
IND-CPA+. Procedures other than the decryption procedure
do not need to be modified, and thus, the proposed homo-
morphic comparison operation can be used without change,
even with this attack prevention method.

5.2 Parameter Setting
The precision parameters, ε and α, determine the input and
output precisions of the homomorphic comparison opera-
tion, respectively. We set ε = 2−α, implying that the input
and output of the homomorphic comparison operation have
the same precision bits. Unlike the homomorphic compari-
son operation, there is only one precision parameter αwhich
determines the output precision in the homomorphic max
function. We set N = 217, and the initial ciphertext modulus
qL can be set up to 21700 to achieve 128-bit security which is
estimated by Albrecht’s LWE estimator [28]. The script for
security estimation can be found in [15]. We simultaneously
perform homomorphic comparison operation or homomor-
phic max function for N/2 tuples of real numbers. Thus,
the amortized running time is computed by dividing the
running time by N/2.

5.2.1 Scaled Values and Margins
If the power basis is used, the coefficients often become
excessively small or large, and thus, the accuracy of the
homomorphic comparison operation is sometimes poor.
Accordingly, we use the scaled Chebyshev polynomials
T̃i(t) = Ti(t/w) for some scaled value w ≥ 1 as basis
polynomials. The scaled Chebyshev polynomials can be
evaluated using the following recursion:

T̃0(x) = 1

T̃1(x) = x/w

T̃i+j(x) = 2T̃i(x)T̃j(x)− T̃i−j(x) for i ≥ j ≥ 1.

We experimentally obtain the scaled values w and mar-
gins η, which is used in Algorithms 7 and 8, and the
obtained values that we use are shown in Table 3.

5.2.2 Initial Modulus
When we execute the homomorphic comparison operation,
we set the initial modulus qL so that the final modulus
bit is log ∆ + 10 after the execution of each homomorphic
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TABLE 3
Set of Scaled Values and Margins for the Proposed Homomorphic Comparison Operation and Homomorphic Max Function

α
proposed homomorphic comparison operation MinimaxComp proposed homomorphic max function MinimaxMax

minimize running time minimize depth minimize running time minimize depth
scaled values w margin η scaled values w margin η scaled values w margin η scaled values w margin η

8 {1,2,1.6} 2−12 {1,2,1.6} 2−12 {1,2,1.6} 2−9 {1,1.6} 2−10.5

12 {1,2,2,2,1.6} 2−15 {1,2,2,1.6} 2−14 {1,2,2,1.6} 2−13 {1,2,1.7} 2−13

16 {1,2,2,2,2,1.7} 2−18 {1,2,2,2,1.6} 2−17 {1,2,2,2,2,1.6} 2−16 {1,2,2,2,1.6} 2−17

20 {1,2,2,2,2,2,2,2,1.6} 2−21 {1,2,2,2,1.6} 2−22 {1,2,2,2,2,1.6} 2−20.5 {1,2,2,2,1.6} 2−20

comparison operation as in [15]. For a composite polyno-
mial pk ◦ pk−1 ◦ · · · ◦ p1, where deg(pi) = di, the depth∑k
i=1 dep(di) is consumed. In addition, additional depth

consumption is required because of the required multipli-
cation by 1/w in computing scaled Chebyshev polynomial
T̃1(x) and of the required multiplication by 1/2 in com-
puting pk◦pk−1◦···◦p1(u−v)+1

2 in Algorithm 6. However, for
a set of scaled values {w1, w2, · · · , wk}, if we multiply the
coefficients of pi by 1/wi+1 for 1 ≤ i ≤ k − 1 and those of
pk by 1/2, then no additional depth consumption is required
by using these modified coefficients instead. Then, the initial
modulus bit log qL is

log qL = log ∆ · (dep(d1) + · · ·+ dep(dk)) + log ∆ + 10.

When we execute the homomorphic max function, the
initial modulus bit is

log qL = log ∆ · (dep(d1) + · · ·+ dep(dk)) + 2 log ∆ + 10,

which is log ∆ bit larger than the initial modulus bit in
homomorphic comparison operation because homomor-
phic max function requires one more depth in computing
(u−v)pk◦pk−1◦···◦p1(u−v)+(u+v)

2 in Algorithm 8.

5.2.3 Scaling Factor
Increasing the scaling factor ∆ increases the accuracy of
the homomorphic comparison operation and homomorphic
max function. The homomorphic comparison operation or
homomorphic max function is said to fail for one input tuple
of two real numbers u and v if the output does not satisfy the
comparison operation or max function error condition. We
perform the proposed homomorphic comparison operation
or homomorphic max function for 65536 × 16 = 220 input
tuples for each α, and we obtain the number of failures.
Then, the failure rate is the number of failures divided by the
total number of input tuples, that is, 220. We set the scaling
factor so that the homomorphic comparison operation or
homomorphic max function does not fail in any slot, and
the failure rate is said to be less than 10−6 in this case.
Table 4 shows the failure rate of the proposed homomor-
phic comparison algorithm MinimaxComp according to the
scaling factor for various α when running time and the
depth consumption are minimized, respectively. We note
that if the scaling factor is larger than a certain threshold
value, the number of failures is zero. In this paper, log ∆
is set to 40 when α is 8, 12, or 16, and set to 44 when α
is 20. It is confirmed that the failure rates of homomorphic
comparison operation and homomorphic max function are

TABLE 4
Failure Rate of the Proposed Algorithm MinimaxComp on HEAAN According to the Scaling Factor for Various α When Running Time and the

Depth Consumption Are Minimized, Respectively

log ∆

failure rate of the proposed algorithm MinimaxComp
minimize running time minimize depth consumption

α
8 12 16 20 8 12 16 20

32 < 10−6 < 10−6 0.004653 0.522744 < 10−6 < 10−6 0.009860 0.974903
34 < 10−6 < 10−6 0.000075 0.202683 < 10−6 < 10−6 0.000801 0.390946
36 < 10−6 < 10−6 < 10−6 0.125566 < 10−6 < 10−6 0.000004 0.171154
38 < 10−6 < 10−6 < 10−6 0.000921 < 10−6 < 10−6 < 10−6 0.006707
40 < 10−6 < 10−6 < 10−6 0.000019 < 10−6 < 10−6 < 10−6 0.000655
42 < 10−6 < 10−6 < 10−6 < 10−6 < 10−6 < 10−6 < 10−6 0.000020
44 < 10−6 < 10−6 < 10−6 < 10−6 < 10−6 < 10−6 < 10−6 < 10−6

TABLE 5
Optimal Set of Degrees for the Proposed Homomorphic Comparison Operation and Homomorphic Max Function When Running Time and the

Depth Consumption Are Minimized, Respectively

α
optimal set of degrees

proposed homomorphic comparison operation MinimiaxComp proposed homomorphic max function MinimaxMax
minimize running time minimize depth ζ minimize running time minimize depth

8 {7,15,15} {7,15,15} 12 {3,5,9} {7,15}
12 {7,7,7,13,13} {15,15,15,15} 15 {5,7,7,15} {7,15,27}
16 {7,7,7,13,13,27} {15,15,15,15,27} 19 {5,5,5,7,7,15} {7,7,7,15,15}
20 {5,5,5,7,7,7,7,7,27} {29,31,31,31,31} 21 {7,7,7,13,13,27} {15,15,15,15,27}
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TABLE 6
Running Time (Amortized Running Time) and Ciphertext Modulus Bit Consumption of CompG (Cheon et al. [15]) and the Proposed

MinimaxComp on HEAAN for Various α; an Asterisk (*) Indicates That the Parameter Set Does Not Achieve 128-bit Security Because of the
Large log qL ≥ 1700

α log ∆
CompG (Cheon et al. [15]) proposed algorithm MinimaxComp

minimize running time minimize depth
running log( qL

qf
) running log( qL

qf
) running log( qL

qf
)

time time time
8 40 15 s (0.22 ms) 844 8 s (0.12 ms) 440 8s (0.12 ms) 440

12 40 28 s (0.42 ms) 1184 15 s (0.22 ms) 680 16s (0.24 ms) 640
16 40 45 s (0.68 ms) 1524 24 s (0.36 ms) 880 25s (0.38 ms) 840
20 44 62 s* (0.94 ms) 1854* 38 s (0.57 ms) 1276 43s (0.65 ms) 1100

TABLE 7
Running Time (Amortized Running Time) and Ciphertext Modulus Bit Consumption of MaxG (Cheon et al. [15]) and the Proposed MinimaxMax

on HEAAN for Various α

α log ∆
MaxG (Cheon et al. [15]) proposed algorithm MinimaxMax

minimize running time minimize depth
running log( qL

qf
) running log( qL

qf
) running log( qL

qf
)

time time time
8 40 8 s (0.12 ms) 548 4 s (0.06 ms) 400 5s (0.07 ms) 320

12 40 16 s (0.24 ms) 885 10 s (0.15 ms) 560 11s (0.16 ms) 520
16 40 29 s (0.44 ms) 1225 16 s (0.24 ms) 800 17s (0.25 ms) 720
20 44 41 s (0.62 ms) 1527 28 s (0.42 ms) 1012 29s (0.44 ms) 968

less than 10−6 for these scaling factors.

5.2.4 Optimal Degrees

In this numerical analysis, the initial modulus is determined
according to the depth consumption, and thus, not only the
number of non-scalar multiplications but also depth con-
sumption affect running time. Thus, minimizing number of
non-scalar multiplications does not necessarily correspond
to minimizing running time, and we perform numerical
analysis when running time and the depth consumption are
minimized, respectively. Table 5 shows the optimal set of
degrees for the proposed homomorphic comparison oper-
ation and homomorphic max function when running time
and the depth consumption are minimized, respectively.

5.3 Performance of the Proposed Homomorphic Com-
parison Algorithm MinimaxComp

We compare the performance of the proposed homomorphic
comparison algorithm MinimaxComp in Algorithm 7 with
that of the previous algorithm CompG [15] using the scaled
values w and margins η in Table 3. Table 6 shows the
running time (amortized running time) of CompG and the
proposed algorithm MinimaxComp on HEAAN for various
α. It can be seen that the proposed algorithm Minimax-
Comp reduces running time by approximately 45% (resp.
41%) on average, compared with the previous algorithm
CompG if running time (resp. depth consumption) is to be
minimized.

In addition, Table 6 shows the ciphertext modulus bit
consumption of CompG and the proposed algorithm Min-
imaxComp on HEAAN for various α. Let qL and qf be
the moduli of the initial ciphertext and the final ciphertext,
respectively, after the homomorphic comparison operation.
It can be seen that the proposed algorithm MinimaxComp

reduces ciphertext modulus bit consumption by approxi-
mately 41% (resp. 45%) on average, compared with the pre-
vious algorithm CompG if running time (resp. depth con-
sumption) is to be minimized. It should be noted that when
the precision parameter α is 20, the previous algorithm does
not achieve 128-bit security, while the proposed algorithm
achieves 128-bit security due to small depth consumption.

We note that the proposed algorithm MinimaxComp
requires slightly more running time when the depth con-
sumption is minimized than when running time is mini-
mized. However, less ciphertext modulus bit consumption
is required in the former case, resulting in less frequent boot-
strapping and hence considerably reduced running time for
FHE applications that use bootstrapping.

5.4 Performance of the Proposed Homomorphic Max
Function Algorithm MinimaxMax

We compare the performance of the proposed homomorphic
max function MinimiaxMax in Algorithm 8 with that of
the previous algorithm MaxG using the scaled values w
and margins η in Table 3. Table 7 shows the running time
(amortized running time) and the ciphertext modulus bit
consumption of MaxG (referred to as NewMaxG in [15])
and the proposed algorithm MinimaxMax on HEAAN for
various α. It can be seen that when we minimize running
time (resp. depth consumption), the proposed algorithm
MinimaxMax reduces running time by approximately 41%
(resp. 35%) on average, and reduces the ciphertext modulus
bit by approximately 33% (resp. 40%) on average, compared
with the previous algorithm MaxG.

5.5 Performance of the Homomorphic Sorting Algo-
rithm Using MinimaxMax

We compare the performance of homomorphic sorting algo-
rithms for three and four numbers using the proposed max
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TABLE 8
Running Time (Amortized Running Time) and the Ciphertext Modulus
Bit Consumption of Sorting When We Use MaxG (Cheon et al. [15])
and the Proposed MinimaxMax on HEAAN; an Asterisk (*) Indicates

That the Parameter Set Does Not Achieve 128-Bit Security Because of
the Large log qL ≥ 1700

MaxG
MinimaxMax

(minimize depth)
sorting running 140 s* 76 s
of three time (2.13 ms) (1.15 ms)
numbers log(qL/qf ) 2655* 1560
sorting running 252 s* 136 s
of four time (3.84 ms) (2.07 ms)

numbers log(qL/qf ) 2655* 1560

function algorithm MinimaxMax with that achieved by
using the previous algorithm MaxG, and we set α = 12. As
in the numerical analysis of the homomorphic comparison
operation and max function, we set the initial modulus
qL such that the final modulus bit is log ∆ + 10 after the
execution of the sorting algorithm.

Table 8 shows the running time (amortized running
time) and the ciphertext modulus bit consumption of sorting
when we use MaxG (Cheon et al. [15]) and the proposed
MinimaxMax on HEAAN. It can be seen that the sorting
algorithm using the proposed max function algorithm Min-
imaxMax is approximately two times as fast as the sorting
algorithm using the previous max function MaxG. In ad-
dition, ciphertext modulus bit consumption is reduced by
41%. It should be noted that the sorting algorithm that use
the previous homomorphic max function algorithm does
not achieve 128-bit security, while the sorting algorithm that
use the proposed homomorphic max function algorithm
achieves 128-bit security due to small depth consumption.

6 CONCLUSION

We proposed the optimal method of approximating sgn(x)
for the homomorphic comparison operation, which uses the
proposed minimax composite polynomials. Its principle is to
determine the optimal set of degrees such that the minimax
composite polynomial for the set of degrees is optimal with
respect to number of non-scalar multiplications and depth
consumption among all minimax composite polynomials
that satisfy the comparison operation error condition. It was
proved that for any given composition of polynomials with
odd-degree terms that satisfies the comparison operation er-
ror condition, there exists a minimax composite polynomial
for some set of degrees that satisfies the error condition and
requires a smaller or equal depth consumption and num-
ber of non-scalar multiplications than those for the given
composite polynomial. As a brute-force search requires
considerable running time for α, we proposed polynomial-
time algorithms that obtain the optimal minimax composite
polynomials by using dynamic programming.

The numerical analysis demonstrated that if running
time (resp. depth consumption) was to be minimized,
the proposed homomorphic comparison algorithm reduced
running time by approximately 45% (resp. 41%) on average,
compared with the previous algorithm when the HEAAN
library was used. In addition, the proposed homomorphic

max function algorithm reduced running time by approx-
imately 41% (resp. 35%) on average, compared with the
previous algorithm if running time (resp. depth consump-
tion) was to be minimized. Finally, the homomorphic sorting
algorithm using the proposed homomorphic max function
algorithm was approximately two times as fast as the homo-
morphic sorting algorithm using the previous homomorphic
max function algorithm.

APPENDIX A
PROOF OF LEMMA 5
Proof. As p̃k ◦ p̃k−1 ◦ · · · ◦ p̃1 is a 1-centered-range composite
polynomial on Rδ , there exists {τi}1≤i≤k such that p̃1([1 −
δ, 1 + δ]) = [1 − τ1, 1 + τ1] and p̃i([1 − τi−1, 1 + τi−1) =
[1 − τi, 1 + τi] for all i, 2 ≤ i ≤ k. Then, p̃k ◦ p̃k−1 ◦ · · · ◦
p̃1([1 − δ, 1 + δ]) = [1 − τk, 1 + τk]. As p̃k ◦ p̃k−1 ◦ · · · ◦
p̃1 is (α − 1, δ)-two-sided-close, τk ≤ 2−(α−1) should hold.
Let deg(p̃i) = di for 1 ≤ i ≤ k. Let p̂1 be the minimax
approximate polynomial of degree at most d1 on Rδ , and
let τ ′1 be the approximation error of p̂1. Then, τ ′1 ≤ τ1. Let
τ ′i be the approximation error of p̂i, which is the minimax
approximate polynomial of degree at most di on Rτ ′i−1

for
sgn(x) for i, 2 ≤ i ≤ k. Then, p̂k ◦ p̂k−1 ◦· · ·◦ p̂1 is a minimax
composite polynomial on Rδ . We prove by induction that
τ ′i ≤ τi, 2 ≤ i ≤ k. We assume that τ ′i−1 ≤ τi−1. Let τ ′′i
be the error in the approximation of sgn(x) by the minimax
approximate polynomial of degree at most di on Rτi−1

. By
Lemma 4, we have τ ′i ≤ τ ′′i . As p̃i([1 − τi−1, 1 + τi−1]) =
[1 − τi, 1 + τi], we have τ ′′i ≤ τi. Thus, τ ′i ≤ τ ′′i ≤ τi. We
conclude by induction that τ ′i ≤ τi for all i, 2 ≤ i ≤ k. As
τ ′k ≤ τk ≤ 2−(α−1), we have that p̂k ◦ p̂k−1 ◦ · · · ◦ p̂1 is an
(α − 1, δ)-two-sided-close minimax composite polynomial
on Rδ such that deg(p̂i) ≤ deg(p̃i) for all i, 1 ≤ i ≤ k.

APPENDIX B
PROOF OF LEMMA 6
Proof. Let p1([1 − δ, 1 + δ]) = [a1, b1], p2([a1, b1]) =
[a2, b2], · · · , pk([ak−1, bk−1]) = [ak, bk]. As {pi}1≤i≤k is
a set of polynomials with odd-degree terms, we have
p1([−1 − δ,−1 + δ]) = [−b1,−a1], p2([−b1,−a1]) =
[−b2,−a2], · · · , pk([−bk−1,−ak−1]) = [−bk,−ak]. As the
composite polynomial is (α−1, δ)-two-sided-close, we have
[ak, bk] ⊆ [1 − 2−(α−1), 1 + 2−(α−1)] and 0 < ai < bi for
i, 1 ≤ i ≤ k.

Let p̃1(x) = 2
a1+b1

p1(x), p̃i(x) = 2
ai+bi

pi(
ai+bi

2 x), 2 ≤
i ≤ k. Then, p̃1([1 − δ, 1 + δ]) = [1 − b1−a1

a1+b1
, 1 + b1−a1

a1+b1
] and

p̃i([1 − bi−1−ai−1

ai−1+bi−1
, 1 + bi−1−ai−1

ai−1+bi−1
]) = [1 − bi−ai

ai+bi
, 1 + bi−ai

ai+bi
],

2 ≤ i ≤ k, and p̃k ◦ p̃k−1 ◦ · · · ◦ p̃1 is a 1-centered-
range composite polynomial on Rδ . We now show that
[1− bk−ak

ak+bk
, 1 + bk−ak

ak+bk
] = [ 2ak

ak+bk
, 2bk
ak+bk

] ⊆ [1− 2−(α−1), 1 +

2−(α−1)], implying that p̃k ◦ p̃k−1 ◦ · · · ◦ p̃1 is (α− 1, δ)-two-
sided-close. If ak + bk ≤ 2, then 1− 2−(α−1) ≤ ak ≤ 2ak

ak+bk

and 2bk
ak+bk

= 2− 2ak
ak+bk

≤ 2− ak ≤ 1 + 2−(α−1), whereas if
ak + bk > 2, then 2bk

ak+bk
< bk ≤ 1 + 2−(α−1) and 2ak

ak+bk
=

2− 2bk
ak+bk

> 2− bk ≥ 1− 2−(α−1). Thus, p̃k ◦ p̃k−1 ◦ · · · ◦ p̃1

is an (α − 1, δ)-two-sided-close 1-centered range composite
polynomial on Rδ satisfying deg(p̃i) = deg(pi) for all i,
1 ≤ i ≤ k.
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APPENDIX C
PROOF OF LEMMA 7
Proof. Let d be 2i+1. We consider the minimax approximate
polynomial p(x) of degree at most 2i + 1 on Rτ for sgn(x).
Let τ ′ be the minimax approximation error of p(x) on Rτ .
As sgn(x) is an odd function, it can be seen from Lemma
2 that the minimax approximate polynomial of degree at
most 2i + 1 to sgn(x) is equal to the minimax approximate
polynomial of degree at most 2i + 2 to sgn(x). In addition,
p(x) is a polynomial with odd-degree terms by Lemma
2. We now show that there exist i + 2 distinct points
x0, x1, · · · , xi+1 ∈ [1 − τ, 1 + τ ] that satisfy the following
three properties:

Prop 1. 1− τ = x0 < x1 < · · · < xi+1 = 1 + τ .
Prop 2. p(xj) = 1 + (−1)j+1τ ′, 0 ≤ j ≤ i+ 1.
Prop 3. p(x) is strictly increasing on (0, x1). For j,

1 ≤ j ≤ i, p(x) is strictly increasing on (xj , xj+1) when j is
even, and strictly decreasing on (xj , xj+1) when j is odd. In
addition, p(x) is strictly increasing on (xi,∞) if i is even, and
strictly decreasing on (xi,∞) if i is odd.

|p(x) − sgn(x)| should have maximum values at 2i + 4
distinct points in Rτ by Theorem 1. However, there are
at most 2i distinct points x such that p′(x) = 0. If we
consider the case x > 0, |p(x) − sgn(x)| should have
maximum values at i + 2 distinct points on [1 − τ, 1 + τ ],
and there are at most i distinct points x such that p′(x) = 0.
If |p(x) − sgn(x)| has a maximum value at x = x̄,
then p′(x̄) = 0 or x = x̄ is a boundary point, that is,
x̄ ∈ {1 − τ, 1 + τ}. Thus, |p(x) − sgn(x)| should have
maximum values at two boundary points x = 1 − τ
and x = 1 + τ . Let x0, · · · , xi+1 be the i + 2 distinct
points in (0,∞) such that |p(x) − sgn(x)| has maximum
values at those points. Then, x0 = 1 − τ, xi+1 = 1 + τ
and p′(x1) = p′(x2) = · · · = p′(xi) = 0. In addition,
considering p(0) = 0 and p(x1) > 0, p(x) is strictly
increasing on (0, x1). As p(x0) < p(x1), we have that
p(x0) = 1 − τ ′, p(x1) = 1 + τ ′, p(x2) = 1 − τ ′, · · · for
some τ ′ > 0 by Theorem 1. Moreover, it can be seen that
Prop 3 is satisfied by Theorem 1. Thus, there exist i + 2
points x0, x1, · · · , xi+1 ∈ (0,∞) that satisfy the above three
properties. We now show that MinErr(d, τ) is a strictly
increasing continuous function of τ with domain (0, 1) as
follows:

(i) Strictly increasing:

Let 0 < τ1 < τ2 < 1. Let p1(x) and p2(x) be
the minimax approximate polynomials of degree
at most 2i + 1 on Rτ1 and Rτ2 , respectively. It
is trivial that MinErr(d, τ1) ≤ MinErr(d, τ2). We
assume that MinErr(d, τ1) = MinErr(d, τ2) = τ ′.
Then, by the uniqueness property of the minimax
approximate polynomial, p1(x) = p2(x). We note
that p1(x) is the minimax approximate polynomial
of degree at most 2i + 1 on Rτ1 . Then, it can be
seen that 0 < p1(1 − τ2) < p1(1 − τ1) = 1 − τ ′

by Prop 3. Considering p1(x) = p2(x), the minimax
approximation error of p2(x) on Rτ2 is larger than

τ ′. That is, MinErr(d, τ1) < MinErr(d, τ2), which is a
contradiction. Thus, MinErr(d, τ) is a strictly increasing
function of τ .

(ii) Continuous:

We now show that MinErr(d, τ) is continuous at τ = τ0,
that is, for any δ′ > 0, there exists ε′ > 0 such that
|τ − τ0| ≤ ε′ implies |MinErr(d, τ)−MinErr(d, τ0)| ≤ δ′.
Let p(x) be the minimax approximate polynomial of
degree at most 2i+ 1 on Rτ0 , and let τ ′ be the minimax
approximation error of p(x). It suffices to consider only
the case δ′ < τ ′. There exist i + 2 distinct points
x0, x1, · · · , xi+1 ∈ (0,∞) that satisfy the above three
properties. There exists a unique x ∈ (0, x0) such that
p(x) = 1− τ ′ − δ′. Let ε′1 be 1− τ0 − x for this unique
x. In addition, there exists a unique x ∈ (xi+1,∞) such
that p(x) = 1 + τ ′ + δ′ when i is even, and unique
x ∈ (xi+1,∞) such that p(x) = 1 − τ ′ − δ′ when i is
odd. Let ε′2 be x−1− τ0 for the unique x. There exists a
unique x ∈ (x0, x1) such that p(x) = 1− τ ′ + δ′. Let ε′3
be x− 1 + τ0 for this unique x. In addition, there exists
a unique x ∈ (xi, xi+1) such that p(x) = 1 + τ ′ − δ′

when i is even, and unique x ∈ (xi, xi+1) such that
p(x) = 1−τ ′+δ′. Let ε′4 be−x+1+τ0 for this unique x.
Let now ε′ be min(ε′1, ε

′
2, ε
′
3, ε
′
4). Then, p([1− τ0− ε′, 1 +

τ0 + ε′]) ⊆ [1− τ ′ − δ′, 1 + τ ′ + δ′]. Thus, the minimax
approximation error of the minimax approximate poly-
nomial onRτ0+ε′ is smaller than or equal to τ ′+δ′. That
is, MinErr(d, τ0+ε′) ≤ τ ′+δ′. Furthermore, let x′0 = x0+
ε′, x′1 = x1, · · · , x′i = xi, x

′
i+1 = xi+1 − ε′. We consider

2i+ 4 points −x′i+1,−x′i, · · · ,−x′0, x′0, · · · , x′i, x′i+1. By
Lemma 1, the minimax approximation error of the
minimax approximate polynomial on Rτ0−ε′ is larger
than or equal to τ ′ − δ′. That is, MinErr(d, τ0 − ε′) ≥
τ ′ − δ′. As MinErr(d, τ) is an increasing function, if
|τ − τ0| ≤ ε′, then |MinErr(d, τ) − MinErr(d, τ0)| ≤ δ′.
Thus, MinErr(d, τ) is continuous at τ = τ0.

APPENDIX D
PROOF OF THEOREM 3

Proof. Let τ ′ = h(m,n, τ). We assume that

τ ′ >

max
1≤j

mult(2j+1)≤m
dep(2j+1)≤n

InvMinErr(2j + 1, h(m−mult(2j + 1),

n− dep(2j + 1), τ)).

Then, there exists a minimax composite polynomial
pk ◦ pk−1 ◦ · · · ◦ p1 satisfying pk ◦ pk−1 ◦ · · · ◦ p1([1 −
τ ′, 1 + τ ′]) ⊆ [1 − τ, 1 + τ ],MultNum({pi}1≤i≤k) ≤ m, and
DepNum({pi}1≤i≤k) ≤ n. Let d1 be the degree of p1, and let
p1([1−τ ′, 1+τ ′]) = [1−τ1, 1+τ1]. As the minimax composite
polynomial pk ◦pk−1◦· · ·◦p2 on Rτ1 satisfies pk ◦pk−1◦· · ·◦
p2([1− τ1, 1 + τ1]) ⊆ [1− τ, 1 + τ ], MultNum({pi}2≤i≤k) ≤
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m −mult(d1), and DepNum({pi}2≤i≤k) ≤ n − dep(d1), we
have that τ1 ≤ h(m−mult(d1), n− dep(d1), τ). Then,

τ ′ = InvMinErr(d1, τ1)

≤ InvMinErr(d1, h(m−mult(d1), n− dep(d1), τ))

≤ max
1≤j

mult(2j+1)≤m
dep(2j+1)≤n

InvMinErr(2j + 1, h(m−mult(2j + 1),

n− dep(2j + 1), τ)),

which leads to a contradiction.
We assume that

τ ′ < max
1≤j

mult(2j+1)≤m
dep(2j+1)≤n

InvMinErr(2j + 1, h(m−mult(2j + 1),

n− dep(2j + 1), τ)).

InvMinErr(2i+ 1,h(m−mult(2i+ 1), n− dep(2i+ 1), τ))

= max
1≤j

mult(2j+1)≤m
dep(2j+1)≤n

InvMinErr(2j + 1, h(m−mult(2j + 1),

n− dep(2j + 1), τ))

for some i. Let τ1 be InvMinErr(2i+1, h(m−mult(2i+1), n−
dep(2i+ 1), τ)). Let τ2 be h(m−mult(2i+ 1), n− dep(2i+
1), τ) = MinErr(2i + 1, τ1). Then, there exists a minimax
composite polynomial pk ◦ pk−1 ◦ · · · ◦ p2 satisfying

pk ◦ pk−1 ◦ · · · ◦ p2([1− τ2, 1 + τ2]) ⊆ [1− τ, 1 + τ ]

MultNum({pi}2≤i≤k) ≤ m−mult(2i+ 1)

DepNum({pi}2≤i≤k) ≤ n− dep(2i+ 1).

Let p1 be the minimax approximate polynomial of degree
at most 2i+1 on [1−InvMinErr(2i+1, τ2), 1+InvMinErr(2i+
1, τ2)]. As p1([1 − InvMinErr(2i + 1, τ2), 1 + InvMinErr(2i +
1, τ2)]) = [1 − τ2, 1 + τ2], we have that pk ◦ pk−1 ◦ · · · ◦
p1([1−InvMinErr(2i+1, τ2), 1+InvMinErr(2i+1, τ2)]) ⊆ [1−
τ, 1 + τ ]. In addition, MultNum(pk ◦ pk−1 ◦ · · · ◦ p1) ≤ m and
DepNum(pk ◦ pk−1 ◦ · · · ◦ p1) ≤ n. Thus, τ ′ = h(m,n, τ) <
InvMinErr(2i+ 1, τ2), which is a contradiction. Thus,

τ ′ = max
1≤j

mult(2j+1)≤m
dep(2j+1)≤n

InvMinErr(2j + 1, h(m−mult(2j + 1),

n− dep(2j + 1), τ))

and the theorem is proved.

APPENDIX E
OPTIMAL SET OF DEGREES FOR HOMOMORPHIC
COMPARISON OPERATION
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α depth #mults degrees depth #mults degrees

4 5 10 {27} 6 8 {5,7}
7 7 {3,3,5}

5 7 12 {7,13} 8 10 {3,5,7}
9 9 {5,5,5}

6 8 16 {15,15} 9 14 {3,7,13}
10 12 {5,5,11} 11 11 {3,5,5,5}

7 10 17 {7,7,13} 11 15 {3,5,7,7}
12 14 {5,5,5,7} 13 13 {3,3,5,5,5}

8 11 21 {7,15,15} 12 19 {3,7,7,13}
13 17 {5,5,7,11} 14 15 {3,3,5,5,9}

9 13 22 {7,7,7,13} 14 20 {3,5,7,7,7}
15 18 {3,5,5,5,13} 16 17 {5,5,5,5,9}

10
14 25 {7,7,13,15} 15 23 {5,7,7,7,7}
16 21 {5,5,5,7,13} 17 20 {3,3,5,5,5,13}
18 18 {5,5,5,5,5,5}

11
15 29 {7,15,15,15} 16 26 {5,7,7,7,15}
17 24 {3,3,5,7,7,13} 18 23 {3,5,5,5,7,13}
19 21 {5,5,5,5,5,11} 20 20 {3,5,5,5,5,5,5}

12
16 32 {15,15,15,15} 17 29 {7,7,7,13,13}
18 27 {3,5,7,7,7,13} 19 25 {5,5,5,5,7,15}
20 24 {3,5,5,5,5,7,7} 21 22 {3,5,5,5,5,5,9}

13

17 36 {15,15,15,31} 18 32 {7,7,7,13,27}
19 30 {5,7,7,7,7,13} 20 28 {5,5,5,7,13,13}
21 26 {3,5,5,5,5,7,13} 22 25 {5,5,5,5,5,5,13}
23 23 {3,5,5,5,5,5,5,5}

14

19 36 {7,7,15,15,27} 20 33 {7,7,7,7,11,13}
21 31 {3,5,5,7,7,7,15} 22 29 {5,5,5,5,7,7,13}
23 28 {3,3,5,5,5,5,7,13} 24 26 {3,5,5,5,5,5,5,11}
25 25 {3,3,5,5,5,5,5,5,5}

15

20 39 {7,15,15,15,27} 21 36 {7,7,7,7,11,27}
22 34 {5,5,7,7,7,7,15} 23 32 {3,3,5,5,7,7,7,13}
24 30 {3,5,5,5,5,5,7,15} 25 28 {5,5,5,5,5,5,5,13}
26 27 {3,3,5,5,5,5,5,5,9}

16

21 42 {15,15,15,15,27} 22 39 {7,7,7,13,13,27}
23 37 {5,7,7,7,7,13,13} 24 35 {3,5,5,7,7,7,7,13}
25 33 {5,5,5,5,5,7,7,15} 26 31 {3,3,5,5,5,5,5,7,13}
27 29 {3,5,5,5,5,5,5,5,11} 28 28 {3,3,5,5,5,5,5,5,5,5}

17

22 46 {15,15,15,29,29} 23 42 {7,7,13,13,15,27}
24 40 {3,7,7,7,7,7,7,15} 25 38 {5,5,7,7,7,7,7,13}
26 36 {5,5,5,5,7,7,13,13} 27 34 {3,5,5,5,5,5,7,7,13}
28 32 {5,5,5,5,5,5,5,5,15} 29 31 {3,3,5,5,5,5,5,5,5,11}
30 30 {5,5,5,5,5,5,5,5,5,5}

18

23 50 {15,15,29,29,31} 24 45 {7,13,13,15,15,27}
25 42 {7,7,7,7,7,7,7,13} 26 40 {5,5,7,7,7,7,13,13}
27 38 {3,5,5,5,7,7,7,7,13} 28 36 {5,5,5,5,5,5,7,7,15}
29 35 {5,5,5,5,5,5,5,13,13} 30 33 {3,5,5,5,5,5,5,5,5,13}
31 31 {3,3,5,5,5,5,5,5,5,5,5}

19

24 55 {15,29,31,31,31} 25 48 {13,13,15,15,15,27}
26 45 {7,7,7,7,7,7,7,27} 27 43 {3,5,7,7,7,7,7,7,15}
28 41 {5,5,5,7,7,7,7,7,13} 29 39 {5,5,5,5,5,7,7,7,23}
30 37 {3,5,5,5,5,5,5,7,7,13} 31 35 {5,5,5,5,5,5,5,5,5,15}
32 34 {3,3,5,5,5,5,5,5,5,5,11} 33 33 {5,5,5,5,5,5,5,5,5,5,5}

20

25 59 {29,31,31,31,31} 26 51 {13,15,15,15,27,27}
27 48 {7,7,7,7,7,7,15,27} 28 46 {5,7,7,7,7,7,7,7,15}
29 44 {5,5,5,7,7,7,7,7,27} 30 42 {3,5,5,5,5,7,7,7,7,15}
31 40 {5,5,5,5,5,5,7,7,7,13} 32 38 {5,5,5,5,5,5,5,5,7,23}
33 36 {3,5,5,5,5,5,5,5,5,5,13} 34 35 {5,5,5,5,5,5,5,5,5,5,9}
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