
Efficient Threshold FHE for Privacy-Preserving

Applications

Siddhartha Chowdhury1, Sayani Sinha1, Animesh Singh1, Shubham Mishra2,
Chandan Chaudhary1, Sikhar Patranabis3, Pratyay Mukherjee4, Ayantika

Chatterjee1, and Debdeep Mukhopadhyay1

1IIT Kharagpur
2UC Berkeley

3IBM Research, India
4SupraOracles Research

July 18, 2024

Abstract

Threshold Fully Homomorphic Encryption (ThFHE) enables arbitrary computation
over encrypted data while keeping the decryption key distributed across multiple par-
ties at all times. ThFHE is a key enabler for threshold cryptography and, more generally,
secure distributed computing. Existing ThFHE schemes relying on standard hardness as-
sumptions, inherently require highly inefficient parameters and are unsuitable for practical
deployment. In this paper, we take a novel approach towards making ThFHE practically
usable by (i) proposing an efficient ThFHE scheme with a new analysis resulting in signif-
icantly improved parameters; (ii) and providing the first practical ThFHE implementation
benchmark based on Torus FHE.

• We propose the first practical ThFHE scheme with a polynomial modulus-to-noise ratio
that supports practically efficient parameters while retaining provable security based
on standard quantum-safe assumptions. We achieve this via Rényi divergence-based
security analysis of our proposed threshold decryption mechanism.

• We present a prototype software implementation of our proposed ThFHE scheme that
builds upon the existing Torus-FHE library and supports (distributed) decryption on
highly resource-constrained ARM-based handheld devices. Along the way, we implement
several extensions to the Torus FHE library, including a Torus-based linear integer secret
sharing subroutine to support ThFHE key sharing and distributed decryption for any
threshold access structure.

We illustrate the efficacy of our proposal via an end-to-end use case involving encrypted
computations over a real medical database and distributed decryptions of the computed
result on resource-constrained ARM-based handheld devices.
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1 Introduction

Outsourced Computation. The recent advent of cloud computing technologies [Hay08,
WVLY+10] enables individuals and organizations to outsource heavy computations to poten-
tially untrusted third-party servers. However, this poses new challenges for the security and
privacy of the data, particularly when the data contains sensitive information such as individual
medical records, etc. For compliance, regulation, and other essential privacy requirements, the
data must be kept secure at rest, in transit, and during computation.

Fully Homomorphic Encryption (FHE). While traditional encryption procedures are use-
ful for securing data at rest and in transit, they often fail to achieve any security during
computation. FHE [Gen09,BGV14,BGG+18] resolves this problem by enabling computation
on encrypted data. This motivates a significant body of research work [SS10,CNT12,DM15a,
CGGI20,CGBH+18, SFK+21] to focus on building practically efficient fully homomorphic en-
cryption systems.

Threshold Cryptography. While FHE resolves the crucial problem of computation on en-
crypted data, one must store the decryption key securely to get any real benefit out of it.
Typical enterprise key management solutions involve using secure hardware solutions such
as HSMs, SGXs, etc. While they provide reasonable security in practice, they often suffer
from a lack of programmability, cumbersome setup procedures, scalability, high cost, side-
channel attacks etc [KHF+19,LSG+18]. An alternative approach, that uses threshold cryptog-
raphy [Sha79,DF90,DDFY94] is offered by enterprises like Hashicorp Vault1. In that approach,
the key is shared among multiple servers (say T ) to avoid a “single point of failure” and a thresh-
old number of them (say t) can collaborate to recompute the decryption key. However, this defies
the purpose as a single compromise at the decryption server, during a key reconstruction, would
reveal the key entirely. An ideal solution must have the decryption key distributed at all time.
This is achieved by a ThFHE (Threshold-FHE) scheme [AJL+12, MW16, BGG+18, CCK23],
where the decryption is performed jointly by any threshold number of parties without recon-
structing the key at any one place. In particular, parties compute partial decryption with
their shares of the key and send them over to the decryptor, who, once obtains t such par-
tial decryptions in total (may include its own partial decryption), combines them to get the
message.

Practical ThFHE. While there are several ThFHE schemes in the literature [AJL+12,MW16,
BGG+18, MS+11, JRS17, CCK23], they are far from being practical. This is in contrast to
the literature in FHE, in that many practical proposals and prototypes exist2. Perhaps the
most crucial bottleneck of the existing schemes comes from the security requirement imposed
by the threshold decryption procedure, which might involve up to t− 1 corrupted servers (we
only consider passive/semi-malicious corruption here). In slightly more detail, the modulus-
to-noise ratio used in the existing threshold schemes must be set super-polynomial (in the
security parameter) compared to the non-threshold FHE schemes that require only a polyno-
mial modulus-to-noise ratio. The use of super-polynomial modulus-to-noise ratio stems from a
technique called smudging (alternatively noise flooding), which is used to achieve security when
the parties are corrupt during the distributed decryption. In this work, we propose an efficient
ThFHE scheme, which uses polynomial modulus-to-noise ratio – we achieve this by adapting a

1https://www.vaultproject.io/
2https://homenc.github.io/HElib/,

https://www.microsoft.com/en-us/research/project/microsoft-seal/, https://tfhe.github.io/tfhe/,
https://palisade-crypto.org/
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Rényi divergence-based technique for distinguishing problems with public sampleability prop-
erty as discussed in [BLRL+18,TT15]. This dramatically improves the system’s efficiency, as
shown by our prototype software implementation.

1.1 Our Contribution

In this work we significantly improve the state-of-art for practical ThFHE scheme by both
new theoretical analysis and first prototype implementations. Finally, we complement this by
providing a use case for a real-world, end-to-end system that securely computes outsourced
medical data, and distributed decryption of the computed result is performed by distributing
the key among different lightweight devices that medical personnel hold while avoiding the
single-point of failure, thus enabling enhanced privacy.

Practical Threshold FHE Scheme with Polynomial Modulus-to-Noise Ratio. Our
construction is based on the prior constructions [AJL+12, MW16, CM15]. In particular, we
plug-in the threshold decryption technique from Asharov et al. [AJL+12] into the FHE scheme
by Gentry, Sahai and Water [GSW13] (GSW) – as a result, we get a single-key ThFHE ver-
sion of the scheme by Mukherjee and Wichs [MW16] with two crucial differences: (i) the
smudging noise is sampled from a Gaussian distribution; (ii) a polynomial modulus is used.
In our analysis, which is inspired by the works such as [BLRL+18, TT15, ASY22], we use
Rényi divergence instead of statistical distance, which essentially made those changes possible
and achieves indistinguishability-based notion of security [JRS17]. As a result, we obtain the
practically efficient ThFHE scheme with polynomial modulus-to-noise ratio. Remarkably, poly-
nomial modulus-to-noise ratio not only improves the efficiency significantly but also makes the
scheme potentially more secure – this is because such a ratio for the underlying Learning with
Errors problem [Reg09] implies reduction to the corresponding worst-case lattice problem with
polynomial approximation factor, which is believed to be significantly harder than the same
problem with super-polynomial approximation factor, which is obtained if a super-polynomial
ratio is used. For more details, we refer to, for example, [BV14].

First Software Prototype for Threshold FHE. We provide the first prototype implemen-
tation of a ThFHE system with a benchmark in software. We expand further below.

• In our software implementation, we provide an extension of the existing library for Torus-
FHE1. We also provide the first software implementation of a linear integer secret sharing
scheme extended from [DT06] to support Torus Ring-LWE secret key sharing, which may
be of independent interest. Our extended Torus-FHE library supports arbitrary t-out-of-T
threshold decryption while maintaining a polynomial modulus-to-noise ratio.

• To emulate our intended use-case of decryption in handheld devices, we develop a portable
implementation of the threshold decryption routines. We provide the results from its exper-
imentation on a Raspberry Pi 3b board that uses a 64 bit ARM CPU.

A Practical Use-case. Finally, as a use-case, we provide a detailed description of an end-
to-end secure computation system over outsourced encrypted medical data. The goal is to
have encrypted medical data stored in the cloud, such that any heavy computation may be
performed on that encrypted data. At the same time, the decryption key must be stored in an
easily accessible but secure way. In particular, a medical personnel who owns many lightweight

1https://tfhe.github.io/tfhe/
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devices should be able to access the result of the computation by using t devices, but if any
t− 1 device are compromised, then the decryption key must not be revealed, even if the com-
promised device participates in several decryption sessions. For example, in a (5,8)-threshold
decryption system, any five devices should be able to perform the distributed decryption, and
the decryption key should remain secure as long as the number of compromised parties is less
than five. Furthermore, the system should be such that the encryption or the computation on
the encrypted data should be oblivious to the values of t or T . In particular, one may think
about changing those values later. Our system satisfies all of these aspects.

2 Related Works

2.1 Threshold FHE

The concept of ThFHE, introduced by Asharov et al. [AJL+12], has been majorly studied
in two related but slightly different contexts: (i) to build low-round multiparty computation
protocols [AJL+12, MW16, GLS15, BJMS20]; (ii) and as a key enabler for threshold cryp-
tography [BGG+18, JRS17, CCK23]. At a technical level these two categories of schemes
follow slightly different definitions because of different application requirements. The MPC-
motivated works (category (i) above) consider mainly (T, T )-threshold settings (Badrinarayan
et al. [BJMS20] is an exception), whereas the later works are focused towards achieving (t, T )
(t ≤ T ) setting (which is standard in the threshold cryptography literature). Furthermore, the
former works (necessarily, due to requirement of MPC) considered distributed key-generation
for single-key schemes,1 unless, of course, a specialized public-key infrastructure was assumed.
The only distributed step considered by the threshold-inspired works (category-(ii) above) was
distributed decryption, in that every party has a common ciphertext and their own share of
secret decryption key; and then each party broadcasts a partially decrypted ciphertext gener-
ated locally, which are then combined together to obtain the decrypted value – this is similar
to threshold public-key encryption [BBH06, Fra90, DF90, SG02]. The distributed decryption
step is modular and essentially agnostic of how the ciphertext is generated. In particular, such
decryption protocol can be plugged-in to schemes with appropriate distributed key-generation
protocol or can be used in a multi-key scheme a la [MW16,BJMS20] (or even with a symmetric-
key scheme).2 Therefore, distributed decryption step appears in both categories of the above
work. Our focus here is more aligned with the threshold cryptography literature, and hence
we follow the second approach. One common aspect of all of the above distributed decryption
constructions is the use of the so-called noise smudging technique to achieve a simulation-
based security guarantee when up to (t− 1) parties are (semi-maliciously) corrupt. The main
idea is to sample noise from a Gaussian distribution and then use it to “smudge” (alterna-
tively “flood”) the “sensitive LWE noise” in the partially decrypted ciphertext. The analysis
(based on simple statistical distance measurements) crucially relies on the smudging noise being
super-polynomially larger than the LWE noise; then to ensure correctness one must use a super-
polynomial modulus-to-noise ratio – this results in impractical parameters. In this paper, we
instead use a novel Rényi divergence-based analysis inspired by [BLRL+18,TT15] – this allows

1The multi-key schemes are the exceptions. For e.g., Mukherjee and Wichs [MW16] naturally dispensed with
the key-generation step, which was the key-step to achieve round-optimal MPC in the common random string
model.

2In a (T, T ) setting the distributed key-generation is trivial [AJL+12]. In the (t, T ) setting, a non-trivial
protocol (using a generic MPC protocol a la [BJMS20] or more efficient protocols [GHL22]) is required. This is
not the focus of our work.
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us to use a polynomially large smudging noise and subsequently a polynomial modulus-to-noise
ratio, thereby putting ThFHE in the practical regime.

Comparison with a Few Concurrent and Independent Works. We compare our work 1

with a few concurrent and independent works [BS23b,DWF22,MS23,DDEK+23] that also aim
to design ThFHE schemes with polynomial modulus-to-noise ratio with some of them relying
on Renýi divergence-based arguments. In particular, we highlight the key technical differences
between our approach and the approaches used in these works, and the resulting differences in
terms of security, practical efficiency, and reliance on assumptions (such as random oracles or
non-standard hardness assumptions).

Comparison with [BS23b]. Boudgoust and Scholl [BS23b] proposed a poly-modulus threshold
FHE scheme that achieves full-fledged IND-CPA security with partial decryption query sim-
ulatability. They follow a two-step proof strategy: (a) argue one-way CPA security based on
Rényi divergence (which, unlike our approach, does not require a public sampleability argu-
ment), and (b) use an additional transformation to achieve full-fledged security, which either
uses a random oracle (RO) or Goldreich-Levin (GL) hard-core predicates [GL89]. As mentioned
in [BS23b], the RO-based construction incurs significant limitations in terms of homomorphic
computation capabilities (in particular, since the RO itself does not have an efficient circuit
description), while the hardcore predicate-based construction incurs additional overheads, par-
ticularly due to larger ciphertext size. On the other hand, we prove the indistinguishability-
based security of ThFHE using a Rényi divergence-based public sampleability argument in the
standard model, thereby avoiding random oracles and preserving the fully homomorphic com-
putation capabilities of the underlying scheme without any additional overheads.

Comparison with [DWF22]. Dai et al. [DWF22] proposed a ThFHE scheme while relying on
Rényi divergence-based arguments. The work proposes two approaches – the first based on
leakage-resilient Dual-GSW [BHP17], and the other based on RO. The first approach relies on
a security argument that seems to hold only for a single (or at most a constant number of) partial
decryption query (queries), and it is unclear how the analysis would extend to polynomially
many partial decryption queries (and what the corresponding effect on the scheme’s noise
parameters would be). On the other hand, our security model allows polynomially many
partial decryption queries and we prove the security of our proposed ThFHE scheme in this
model, while also formalizing the effect of the number of queries on the noise parameters for
our scheme. We believe that for real-world applications, it is reasonable to assume that the
adversary is allowed to see polynomially many decryption queries, and any restriction thereof
is perhaps undesirable. Finally, our approach avoids the use of RO (and any restrictions to the
homomorphic computation capabilities resulting from such an approach).

Comparison with [DDEK+23]. In a recent work, Dahl et al. [DDEK+23] targeted to construct
a practical ThFHE scheme with polynomial modulus. However they have an incomparable
security model with respect to ours. [DDEK+23] supports at most t < T

3 malicious corruptions,
whereas we allow any t < T semi-honest corruptions. From the perspective of performance,
our implementation outperforms [DDEK+23] significantly in terms of threshold decryption
while maintaining the same homomorphic evaluation performance. Given a ciphertext with
modulus “q” and dimension “n”, [DDEK+23] uses a two-step approach for every threshold
decryption, which requires more than 300 milliseconds overall: (a) The first step (switch-and-
squash) requires around 300 milliseconds (Table-2 of [DDEK+23]), (b) The second step is
the actual threshold decryption. Even ignoring the additional computation/communication

1Full version of this work is available at https://eprint.iacr.org/2022/1625
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required by an additional offline step in [DDEK+23] for larger values of
(
T
t

)
, the reported

execution time in Section 5 of [DDEK+23] is around 2 milliseconds. Our threshold decryption
has an execution time of 0.05 milliseconds (Figure 9), ignoring network latency. Including
latency (assuming 5 Mbps network), our end-to-end threshold decryption time is around 6
milliseconds (Figure 8), which is significantly smaller than [DDEK+23].

In contrast, our approach results in a decryption protocol which is always just one round.
Apart from that, to achieve stronger multiparty security guarantees such as robustness, re-
silience against malicious adversaries etc., [DDEK+23] restricts to the cases of either honest
supermajority (t < T

3 ) or honest majority (t < T
2 ); whereas, our protocol achieves security in

semi-honest settings for arbitrary threshold t.

Comparison with [MS23]. In another very recent work, Micciancio et al. [MS23] proposed a
threshold FHE that requires only polynomial modulus even when the adversary is allowed to
perform arbitrarily any polynomial number of partial decryption queries. This is in contrast
to our proposed threshold FHE where we achieve a polynomial modulus with a priori bounded
number of queries. However, the difference is that our construction does not require any
additional hardness assumption for thresholdization of the existing FHE scheme whereas their
threshold construction relies on a new variant of the RLWE problem called “Known-Covariance
RLWE” whose hardness is yet to be well-understood. In this context, we believe both of
these works are of independent interest: one achieves a polynomial modulus with standard
assumptions but a priori bounded number of queries, while another is based on non-standard
assumptions but allows a polynomial number of queries. Both these insights can potentially
lead to future schemes with practical parameters based on standard cryptographic assumptions
while allowing polynomially many queries.

Comparison with [STH+23]. In this paper [STH+23], Sugizaki et al. proposed a Threshold FHE
with distributed key generation and distributed decryption on Torus-FHE library [CGGI20].
While they primarily focus on distributed key generation, the smudging noise parameter re-
quired in distributed decryption remains unaltered (super-polynomial). On the contrary, our
main focus is to develop a threshold FHE with threshold decryption requiring only polynomial
smudging noise parameter. Apart from that, our proposed threshold decryption has signifi-
cantly better performance. For example, Table-3 of [STH+23] reports an execution time of
20 milliseconds for a 3-out-of-8 threshold scenario, whereas our proposed threshold decryption
takes around 0.05 milliseconds. Also, [STH+23] reports a communication time of 350 millisec-
onds assuming LAN with 10 Gbps bandwidth, and our scheme requires only 6 milliseconds of
communication time, assuming just 5 Mbps network.

Table 1 provides a summary of comparison of our work with other concurrent and independent
works for several parameters. In the next subsection, we mention some additional related works
with different goals and/or security models compared to ours.

2.2 Additional Related Works

More Threshold Cryptosystem. In [BD10], Bendlin and Damg̊ard proposed a generic
technique to construct a threshold cryptosystem from the Regev cryptosystem, however, re-
quiring a super-polynomially large modulus-to-noise ratio. Agrawal et al. [ASY22] uses a Rényi
divergence-based technique for tightening their security and does achieve polynomial-modulus
but in the context of lattice-based threshold signature. Gur et al. [GKS23] build threshold
lattice-based signatures from a threshold homomorphic encryption (HE) scheme while sup-

7



Table 1: Comparison with concurrent works

Scheme

Dis-
tributed
key

gener-
ation

Dis-
tributed
de-

cryp-
tion

Smudg-
ing Noise

Threat
model

Arbi-
trary
cor-
rup-
tion

Allowed
queries

Assumption

Boudgoust
and

Scholl [BS23b]
No Yes

Polyno-
mial

Semi-
honest

Yes
Adaptive
and poly-
nomial

RLWE + RO
model

Dahl et al.
[DDEK+23]

No Yes
Polyno-
mial

Mali-
cious

No
Adaptive
and poly-
nomial

RLWE +
MPC (pre-
processing)

Dai et
al. [DWF22]

No Yes
Polyno-
mial

Semi-
malicious

Yes
Adaptive

and
constant

Leakage-
resilient
dual-

GSW/RO
model

Micciancio
et al. [MS23]

No Yes
Polyno-
mial

Semi-
honest

Yes
Adaptive
and poly-
nomial

Known-
Covariance
RLWE

Sugizaki et
al. [STH+23]

Yes Yes
Super-

Polynomial
Semi-
honest

Yes
Adaptive
and poly-
nomial

Super-
polynomial
RLWE

Ours No Yes
Polyno-
mial

Semi-
honest

Yes
Selective
and poly-
nomial

RLWE

porting active security in distributed key-generation and threshold decryption, but their HE
scheme is linearly homomorphic and their smudging parameter is chosen based on statistical ar-
gument which requires a super-polynomially large modulus. In contrast to the above-mentioned
works, our proposed scheme requires only a polynomially large modulus while thresholdizing
the Torus-FHE scheme which is fully homomorphic.

Efficient FHE Bootstrapping. In a recent work, Lee et al. [LMK+23] proposed improved
bootstrapping methods for FHEW/Torus FHE [DM15b,CGGI20] and their threshold versions.
They do not focus on achieving ThFHE with polynomial modulus-to-noise ratio, which is the
main focus of our work. Our techniques are agnostic of the bootstrapping procedure used during
homomorphic evaluations (and can be potentially combined with the bootstrapping techniques
of [LMK+23] to achieve more efficient ThFHE schemes; we leave this as an interesting open
question).

Approximate and Circuit-Private FHE. Other recent works [LMSS22, KS23] focus on
achieving stronger security notions (namely IND-CPAD security) and circuit-privacy for ap-
proximate FHE schemes (e.g., CKKS [CKKS17]) using differential privacy tools. Again, their
goals and security models are orthogonal to ours, as we focus on designing efficient threshold
decryption mechanisms for exact FHE schemes (such as Torus FHE) under a different (and in-
comparable) security definition as compared to IND-CPAD. Consequently, the security analysis
and lower bounds on parameter choices described in [LMSS22,KS23] are seemingly inapplica-
ble to our scheme and differ conceptually from our Rényi divergence-based security analysis of
ThFHE.
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Multi-Key FHE. In a multi-key FHE scheme, the parties encrypt their input with individ-
ual keys (generated locally) and then broadcast them; subsequently, an extended ciphertext is
constructed using all the encryptions from the involved parties, and any arbitrary homomor-
phic operation can be performed on the extended ciphertext [LATV12, CM15,MW16, BP16,
PS16,CZW17,CO17,CCS19,AJJM20,Par21]. We do not focus on multi-key FHE in this work;
however, as mentioned earlier, our distributed/threshold decryption approach and the cor-
responding security analyses can be adapted to the multi-key setting. We leave this as an
interesting direction of future research.

Multiparty HE. Mouchet et al. [MTBH21] recently considered a new notion of multiparty ho-
momorphic encryption scheme (MPHE), which is very similar to the Asharov’s et al. [AJL+12]’s
threshold FHE notion, that has both distributed key-generation plus distributed decryption, al-
beit for a (T, T ) access structure. They also included an implementation benchmark [MBTPH20].
A subsequent construction secure against malicious adversary has been proposed [CMS+23] re-
cently. However, a major shortcoming of their definition is the absence of a simulation-based
definition for their partial decryption protocol – so it does not capture a realistic threat model
where adversary can corrupt parties while participating in the decryption procedure. There-
fore, they did not need to use any noise smudging. Therefore, their implementation can not
be counted as a predecessor of ours. Another work by Ananth et al. [AJJM20] defines another
primitive, which they also call multiparty homomorphic encryption – this is a slightly weaker
variant of multi-key FHE, in that the decryption computation complexity grows with the cir-
cuit being evaluated. Padron and Vargas [PV21] define an even weaker primitive (where the
evaluator holds part of the secret key) and calls it multiparty homomorphic encryption. Our
notion of ThFHE and the corresponding security definition differ significantly from all of the
above mentioned notions.

Software Frameworks. Recent works have accelerated FHE (non-threshold) implementations
via GPU based parallelizations. Based on [CGGI20], a Python library NuFHE 1 has been de-
veloped. In [CDS15], the Cingulata (formerly, Armadillo) C++ toolchain and run-time envi-
ronment were introduced for running programs over FHE ciphertexts, which now supports Torus
FHE. Lattigo2 [MBTPH20] on the other hand is a Go based module that builds secure proto-
cols based on Multiparty-Homomorphic-Encryption and Ring-Learning-With-Errors-based Ho-
momorphic Encryption Primitives. Some recent extensions proposed in [MBH23,MTBH21] do
support threshold decryption; however, all of these implementations fundamentally require a
superpolynomial modulus-to-noise ratio. Additionally, they only support leveled homomor-
phic versions (i.e., without bootstrapping) of the BGV [BGV14], BFV [Bra12, FV12] and
CKKS [CKKS17] FHE schemes. Our ThFHE implementation builds upon and extends the
Torus FHE library in a natural way (including the bootstrapping procedure), and is cross-
compatible with all of these computation frameworks.

3 Preliminaries and Background

In this section, we introduce the notations and some preliminary background on cryptographic
primitives used in this paper.

1https://nufhe.readthedocs.io/en/latest/
2https://github.com/tuneinsight/lattigo
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3.1 Notations and Mathematical Background

Notations. We use T to denote the Torus (i.e., the set of all real numbers modulo 1). We write
x← χ to represent that an element x is sampled uniformly at random from a set/distribution
X . For a, b ∈ Z such that a, b ≥ 0, we denote by [a] and [a, b] the set of integers lying between 1
and a (both inclusive), and the set of integers lying between a and b (both inclusive). We refer
to λ ∈ N as the security parameter, and denote by poly(λ) and negl(λ) any generic (unspecified)
polynomial function and negligible function in λ, respectively.1

LWE Assumption and its Variants. Here, we recall the Learning with Errors (LWE)
assumption and some of its variants, including the Ring LWE (RLWE) and the Binary RLWE
assumption.

LWE Assumption. Let λ ∈ N be a security parameter, and let q, n,m = poly(λ). For each
i ∈ [m], let

ai ← Zn
q , bi = ai · s+ ei, ui ← Zq,

where s ← Zn
q is a uniformly sampled secret vector, ei ← ψ where ψ is a Gaussian noise

distribution over Zq, and ai · s denotes the vector dot-product between the vectors ai and
s. The LWE hardness assumption states that, for any probabilistic polynomial-time (PPT)
adversary A, the following holds:

|Pr[A({ai, bi}i∈[m]) = 0]− Pr[A({ai, ui}i∈[m]) = 0]| < negl(λ).

RLWE Assumption. Let λ ∈ N be a security parameter, and let q,N,m = poly(λ). For each
i ∈ [m], let

Ai(X)← Zq[X]/(XN + 1), Bi(X) = Ai(X) · S(x) + Ei(X),

Ui(X)← Zq[X]/(XN + 1),

where S(X)← Zq[X]/(XN+1) is a uniformly sampled secret polynomial, Ei(X)← ψ[X]/(XN+
1) where ψ is a Gaussian noise distribution over Zq, and Ai(X) · S(X) denotes the polynomial
multiplication modulo (XN + 1) between Ai(X) and S(X). The Ring LWE (RLWE) hardness
assumption states that, for any PPT adversary A, we have:∣∣Pr [A ({Ai(X), Bi(X)}i∈[m]

)
= 0
]
−

Pr
[
A
(
{Ai(X), Ui(X)}i∈[m]

)
= 0
] ∣∣ < negl(λ).

Binary RLWE. The Binary RLWE (BRLWE) hardness assumption is a variant of the RLWE
hardness assumption described above where, the secret key polynomial S(X) is sampled from
B[X]/(XN +1) as opposed to Zq[X]/(XN +1), where B = {0, 1}. Note that although an equiv-
alence between the LWE with binary secrets assumption and the standard LWE assumption is
known [Mic18], a similar result for BRLWE and RLWE is not known to the best of our knowl-
edge. However, the BRLWE hardness assumption is widely believed to hold [BBPS19,BD20].

Threshold Access Structure. For any T, t ∈ N such that t ≤ T , a (t, T )-threshold access
structure over any set P = {P1, . . . , PT } is defined as a collection of qualified subsets of the form
At,T = {P ⊆ P :

∣∣P∣∣ ≥ t}, which (informally) states that any subset with t or more parties is
a qualified subset. If At,T is a minimal (t, T )-threshold access structure, then it only consists

1Note that a function f : N→ N is said to be negligible in λ if for every positive polynomial p, f(λ) < 1/p(λ)
when λ is sufficiently large.
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of subsets of size exactly t; in other words, we have |At,T | =
(
T
t

)
. Observe that this access

structure can be represented efficiently [BGG+18]. In particular, there exists a polynomial-size
circuit that takes as input T -length vectors and outputs a bit, such that for every valid subset
S ∈ At,T , on input the T -sized binary vector V = {Vi}i∈[T ] with Vi = 1 if and only if Pi ∈ S,
the circuit outputs 1 (see [BGG+18] for details).

Rényi Divergence. Let Supp(P ) and Supp(Q) denote the supports of distributions P and Q
respectively, such that Supp(P ) ⊆ Supp(Q). For a ∈ (1,+∞), the Rényi divergence of order a
is

Ra(P ||Q) =

 ∑
x∈Supp(P )

P (x)a

Q(x)a−1

 1
a−1

.

This definition extends naturally to continuous distributions (see [BLRL+18] for details).

3.2 Fully Homomorphic Encryption (FHE)

Fully Homomorphic Encryption (FHE) is a form of encryption that permits computations
directly over encrypted data without decrypting it first. The result of this computation is also
encrypted. Below, we recall the definition of fully homomorphic encryption (FHE) [Gen09,
GHS12] for any message spaceM.

Definition 1 (Fully Homomorphic Encryption). A fully homomorphic encryption (FHE)
scheme is a tuple of four algorithms (Gen,Enc,Dec,Eval) with respect to a class of Boolean
functions F = {Fℓ}ℓ∈N (represented as Boolean circuits with ℓ-bit inputs) such that the tuple
(Gen,Enc,Dec) is an IND-CPA-secure public-key encryption (PKE) scheme as defined below,
and the evaluation algorithm Eval satisfies the homomorphism and compactness properties as
defined below:

IND-CPA security: For any (pk, sk) ← Gen(1λ), for any messages m0,m1 ∈ M, and for
any probabilistic polynomial-time (PPT) adversary A, letting ct0 ← Enc(pk,m0) and ct1 ←
Enc(pk,m1),

|Pr[A(pk,m0,m1, ct0) = 1]− Pr[A(pk,m0,m1, ct1)] = 1| ≤ negl(λ).

Correctnesss: The homomorphism of the FHE scheme ensures correctness. For any (Boolean)
function f : {0, 1}ℓ → {0, 1} ∈ F and any sequence of ℓ messages m1, . . . ,mℓ, letting (pk, sk)←
Gen(1λ), and cti ← Enc(pk,mi) for each i ∈ [ℓ], we have the following:

Pr[Dec(sk,Eval(pk, f, ct1, . . . ctℓ)) ̸= f(m1, . . . ,mℓ)] ≤ negl(λ).

Compactness: There exists a polynomial p(λ) such that, for any (Boolean) function f :
{0, 1}ℓ → {0, 1} ∈ F and any sequence of ℓ messages m1, . . . ,mℓ, letting (pk, sk) ← Gen(1λ),
and cti ← Enc(pk,mi) for each i ∈ [ℓ], we have

|ct∗ ← Eval(pk, f, ct1, . . . ctℓ))| ≤ p(λ),

where p(λ) is independent of size of f and the number ℓ of inputs.

In the definition mentioned above, we assumed that the evaluation key is included as part of
the public key.
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3.3 Threshold FHE

In this section, we define Threshold FHE (or ThFHE in short), which is aligned with ThFHE
definition of [BGG+18].

Definition 2 (Threshold Fully Homomorphic Encryption (ThFHE)). Let S be a class of efficient
access structures on a set of parties P = {P1, . . . , PT }. A ThFHE scheme for S over a message
spaceM is a tuple of probabilistic polynomial-time algorithms

ThFHE = (ThFHE.Gen,ThFHE.Enc,ThFHE.Eval,ThFHE.PartialDec,ThFHE.Combine),

defined as follows:

• ThFHE.Gen(1λ, 1d,A): On input the security parameter λ, a depth bound d, and an access
structure A ∈ S, the setup algorithm outputs an encryption (public) key pk, a decryption (se-
cret) key sk, and a set of secret key shares sk1, . . . , skT .

• ThFHE.Enc(pk, µ): On input pk and a plaintext µ, the encryption algorithm outputs a cipher-
text ct.

• ThFHE.Eval(pk,C, ct1, . . . , ctℓ): On input a public key pk, a Boolean circuit C of depth1 at
most d, and a set of ciphertexts ct1, . . . , ctℓ, the evaluation algorithm outputs a ciphertext
ct∗.

• ThFHE.PartialDec(ski, ct): On input a secret key share ski and a ciphertext ct, the partial
decryption algorithm outputs a partial decryption pi.

• ThFHE.Combine({pi}i∈S): On input a set of partial decryptions {pi}i∈S for some subset
S ⊆ {P1, . . . , PT }, the combination algorithm either outputs a plaintext µ or the symbol ⊥.

Trusted vs. Transparent setup. The key generation step of threshold FHE can be achieved
in two different ways. One approach uses a “top-down” technique [BGG+18, JRS17] in which
a trusted key dealer generates a public key-secret key pair, and then secret-shares the secret
decryption key among the parties. Another approach alleviates the need for a trusted key
dealer by allowing the parties to generate their secret key-public key pairs. Then, it uses a
“bottom-up” technique [AJL+12, STH+23,KJY+20] to generate the common public key and
evaluation key. In our work, we follow the top-down approach to generate the keys. However,
we can support the bottom-up approach of distributed key generation in our threshold FHE
scheme using the method proposed by Sugizaki et al. [STH+23] at an additional cost of key
generation and homomorphic computation time, thus affecting the efficiency significantly.

Correctness and Compactness. Correctness and compactness of a ThFHE scheme are very
similar in flavor to those for traditional FHE (Section 3.2). In case of correctness, while FHE
requires that any honestly generated ciphertext should be decrypted to the correct plaintext,
ThFHE requires that given an honestly generated ciphertext from homomorphic evaluation of
some circuit on some encrypted inputs, recombining its partial decryptions by a threshold
number of parties should result in correct circuit output. See [BGG+18] for formal definitions.

IND-Security. We adopt a selective version of the definition of IND-secure ThFHE from [JRS17].
Consider a ThFHE scheme over a message spaceM for a threshold access structure At,T for a

1As we deal with FHE with bootstrapping in Torus-FHE, any circuit with arbitrary depth can be evaluated.
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set of T parties P = {P1, . . . , PT }. Let λ be the security parameter and d be the depth bound
for the ThFHE scheme. We define below a game GThFHE,A,At,T

(1λ, 1d) between a PPT challenger
C and a PPT adversary A.

GThFHE,A,At,T
(1λ, 1d):

1. The challenger C runs ThFHE.Gen(1λ, 1d,At,T ) to obtain pk, sk, sk1, . . . , skT , such that ski
is the secret share corresponding to Pi, and provides the public key pk to the adversary A.

2. The adversary A outputs a set S ⊂ {P1, . . . , PT } such that S /∈ At,T , and receives the set of
secret key shares {ski}Pi∈S from C.

3. The adversary A outputs two set of messages m0 = (m0
1, . . . ,m

0
ℓ), m1 = (m1

1, . . . ,m
1
ℓ) ∈M,

along with a set of Q (= poly(λ)) circuits {Ci : Mℓ → M}i∈[Q] of its choice (where each
circuit Ci has depth at most d), such that ∀i ∈ [Q], we have

Ci(m
0
1, . . . ,m

0
ℓ) = Ci(m

1
1, . . . ,m

1
ℓ).

4. The challenger C randomly samples a bit b← {0, 1} and provides A with ct⋆ = {ct⋆i }i∈[ℓ] =

{ThFHE.Enc(pk,mb
i )}i∈[ℓ].

5. In response to each query circuit Ci, where i ∈ [Q], A receives
(
ĉti, {pi,j}

)
for each Pj /∈ S,

where

ĉti = ThFHE.Eval(pk, Ci, ct
⋆), pi,j = ThFHE.PartialDec(skj , ĉti).

6. The adversary A eventually outputs a bit b′ ∈ {0, 1}.

7. If b′ = b, output 1, otherwise output 0.

We say that a threshold FHE scheme ThFHE is IND-secure if, for any security parameter λ ∈ N,
for any depth d = poly(λ), for any threshold access structure At,T , and for any PPT adversary
A, letting γβ = Pr[GThFHE,A,At,T

(1λ, 1d) = β], for β ∈ {0, 1} (where the probability is over the
random coins used by ThFHE.Gen, ThFHE.Enc, ThFHE.Eval and the adversary A), we have∣∣γ0 − γ1∣∣ ≤ negl(λ).

A Detailed Discussion on Security Notions of ThFHE. The IND-security definition of
ThFHE from [JRS17] effectively combines in sequence the definitions of simulation and semantic
security for ThFHE from prior works [MW16,BGG+18,CCK23]. Informally, a ThFHE scheme
is said to provide semantic security if a PPT adversary cannot efficiently distinguish between
encryptions of arbitrarily chosen plaintext messages m0 and m1 [BGG+18,CCK23]. Addition-
ally, a ThFHE scheme is said to provide simulation security if there exists an efficient algorithm
to simulate partial decryptions of honest parties on ciphertexts that are produced by evaluat-
ing one or more circuits on (honestly generated) ciphertexts, without any knowledge of secret
shares of honest parties [MW16,BGG+18,CCK23]. The IND-security definition of [JRS17] can
be viewed as an indistinguishability-based security notion where we essentially require these
two notions of security to hold simultaneously against a PPT adversary that is given the secret
key shares of a set of corrupt parties belonging to an invalid access structure set S.
As noted in [JRS17], IND-security is a natural notion of security for ThFHE, and is implied by
the simulation security definitions in prior works [MW16,BGG+18]. As is the case for many
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other cryptographic primitives (e.g., functional encryption [BSW11]), indistinguishability-based
security suffices for real-world applications (e.g., it suffices for the application presented subse-
quently as part of our case study in Section 6). We adopt a selective version of this definition
from [JRS17] for our work and prove the security of our proposed ThFHE scheme under this
definition.

Our notion of IND-security. The main difference between our notion of IND-security pre-
sented in the game GThFHE,A,At,T

(1λ, 1d) above and the security notion in [JRS17] is that we do
not allow the adversary to adaptively decide the circuits for its partial decryption queries after
seeing the challenge ciphertext. This restriction ensures that the adversary cannot “embed” the
challenge ciphertext into the queried circuits, and is used in our proof of security (see Section 4.3
for a discussion). Notably, this IND-security definition allows us to port existing technical ma-
chinery for Rényi divergence-based analysis of other lattice-based cryptosystems [BLRL+18] to
the context of threshold FHE (unfortunately, the original simulation security definition from
prior works [MW16,BGG+18,CCK23] is not amenable to such techniques). Rényi divergence
has previously been applied to achieve better parameter choices, particularly in case of search
problems, for e.g., [ASY22,BLRL+18,BGM+16]. Applying Rényi divergence in the context of
distinguishing problems is not straightforward. However, in this work, we can use techniques
from [BLRL+18] to argue that for any ThFHE scheme, as long as the adversary’s views of
the real and simulated partial decryptions in our security game are publicly sampleable and
have a bounded Rényi divergence, it cannot distinguish between encryptions of m0 and m1

with non-negligible probability without breaking the original semantic security guarantees of
underlying FHE scheme. Looking ahead, for our proposed ThFHE scheme, we can achieve the
desired bounds on the Rényi divergence while only using a polynomial modulus-to-noise ratio,
which is the technical crux of our contribution. On the contrary, it is seemingly hard to achieve
the original notion of simulation security proposed in [MW16, BGG+18, CCK23] without a
superpolynomial modulus-to-noise ratio while relying on well-studied assumptions. However,
[DDEK+23] achieves simulation security by maintaining a polynomial modulus while only sup-
porting a priori number of bounded queries, on the other hand [MS23] achieves polynomial
modulus by relying on non-standard variants of the ring LWE assumption (“Known-Covariance
RLWE”) that are yet to be well-understood.

Relation with IND-CPAD Security of Approximate FHE. A (seemingly) related no-
tion of IND-CPAD security emerged in order to make approximate homomorphic encryption
schemes secure against a specific key-recovery attack [LM21], which exploits the fact that a
decryption oracle access to the adversary for the honestly generated ciphertexts helps it to re-
trieve the ciphertext noise in this scenario. However, the notion of IND-CPAD security reduces
to IND-CPA security for the exact homomorphic schemes [LM21]. And as we deal with exact
fully homomorphic encryption schemes (albeit in the threshold setting), we do not provide
exactly that decryption oracle access (for honestly generated ciphertexts) to the adversary.
Instead, we allow the adversary to query for honest parties’ partial decryptions on honestly
generated ciphertexts with proper constraints as described in the game GThFHE,A,At,T

(1λ, 1d).
Therefore, though both definitions are augmented from standard IND-CPA security, there are
crucial differences in the settings that seemingly make them orthogonal. For IND-CPAD, the
entire secret key is in one place and the decryption oracle performs the entire decryption and
then returns an erroneous plaintext, whereas, in the IND-secure security definition, a partial
decryption oracle just returns a (possibly noisy) partial ciphertext computed using a share of
the key. One may notice that a special case of IND-secure security, where there is only one party
(essentially a centralized FHE) coincides with the standard IND-CPA, as we are in the exact
setting. However, as long as the secret key is shared between more than one party, IND-secure
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security appears to become orthogonal to IND-CPAD, despite high-level similarities in terms
of allowing decryption.1

Discussion on active security. Our proposed threshold FHE scheme is secure against
semi-honest adversaries which can corrupt the decryption servers. However, to enhance se-
curity against malicious adversaries, it is imperative to verify partial decryption performed
by each decryption server using a quantum-safe Non-Interactive Zero Knowledge (NIZK) pro-
tocol [CDG+17, BLNS20, GCZ16] based verifiable distributed decryption techniques [LNP22,
LNPS21,ABGS23], integrated with efficient commitment schemes [ACL+22,BS23a]. Presently
available quantum-safe NIZKs suffer from practical inefficiencies. Therefore, their utilization
within our threshold FHE scheme may significantly degrade the performance of the threshold
decryption protocol.

3.4 Linear Integer Secret Sharing Scheme (LISSS)

In this work, we base our constructions and software implementation of Threshold FHE on
a special class of secret sharing schemes called Linear Integer Secret Sharing Scheme (LISSS)
defined below.

Definition 3 (LISSS). Let P = {P1, . . . , PT } be a set of parties, and let S be a class of efficient
access structures on P. A secret sharing scheme SS with secret space K = Zp for some prime p
is called a linear integer secret sharing scheme (LISSS) if there exist the following algorithms:

• SS.Share(k ∈ K,A): There exists a matrix M ∈ Zd×e
p with dimensions determined by the

access structure A ∈ S called the distribution matrix, and each party Pi is associated with a
partition Ti ⊆ [d]. To create the shares on a secret k ∈ K, the sharing algorithm uniformly
samples ρ2, . . . , ρe ← Zp, defines a vector s = (s1, . . . , sd)

T = M · (k, ρ2, . . . , ρe)T, and
outputs to each party Pi the corresponding set of shares sharei = {sj}j∈Ti .

• SS.Combine({sharei}Pi∈P): For any qualified subset of parties P ∈ A, there exists a set of
efficiently computable “recovery coefficients” {cj}j∈∪Pi∈PTi , such that∑

j∈∪Pi∈PTi

cj ·M[j] = (1, 0, . . . , 0),

where M[j] denotes the j-th row of the matrix M described earlier. Then, the final secret k
can be re-computed using these recovery coefficients as

k =
∑

j∈∪Pi∈PTi

cj · sj .

Definition 4 ({−1, 0, 1}-LISSS). Let P = {P1, . . . , PT } be a set of parties, and let S be a
class of efficient access structures on P. Any LISSS scheme SS = (SS.Share,SS.Combine) as
defined above is a {−1, 0, 1}-LISSS if it is guaranteed that for any set of “recovery coefficients”
{cj} generated by SS.Combine (on input the set of shares corresponding to a qualified subset of
parties P ∈ A for an access structure A ∈ S), we must have cj ∈ {−1, 0, 1}.

In this paper, we use a special instance of {−1, 0, 1}-LISSS, called the Benaloh-Leichter LISSS [DT06].
We expand more on Benaloh-Leichter LISSS in Section 4.4.1.

1Though we do not provide formal proof of orthogonality, one can observe that, as long as the secret key is
shared, it is not clear how a reduction can work.
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4 Our Proposal: Torus-FHE with Threshold Decryption

In this section, we present our novel construction of practical threshold FHE. We introduce
two protocols - threshold secret sharing of the decryption key and threshold decryption, to
realize our final ThFHE. Along the way, we describe our two main theoretical contributions -
an extension of the standard LISSS due to Benaloh and Leichter [DT06] to support the secret
key structure which consists of binary polynomials, and the usage of Rényi Divergence based
analysis to achieve only a small polynomial blowup in the noise level for our proposed ThFHE
built upon Torus-FHE scheme. We first describe the generic decryption algorithm of any Ring-
LWE based FHE scheme and then build its thresholdized construction. Our security proofs
rely on the hardness of the LWE problem in the ring setting with binary secrets.

Remark. We remark here that our threshold decryption technique can, in fact, be generalized
to any lattice-based encryption scheme where the decryption procedure involves computing a
linear function of the secret key (in particular, Regev-style decryption based on computing an
inner-product of the ciphertext vector and the secret key vector). However, since our concrete
goal is to realize a threshold version of the Torus-FHE scheme from [CGGI20], we keep our
theoretical discussion aligned with the Torus-FHE scheme (and the Torus-FHE library) for ease
of exposition.

4.1 Decryption in Torus-FHE

For ease of exposition, we start with describing the generic decryption algorithm of a Ring-LWE
based Torus-FHE scheme over a message space M = T[X]/(XN + 1). We assume TRLWE to
be an instantiation of such a scheme, represented by a tuple of PPT algorithms as follows,

TRLWE = (TRLWE.Gen,TRLWE.Enc,TRLWE.Eval,TRLWE.Dec).

The scheme has two fixed parameters N and k to denote size of polynomials and number of
polynomials respectively. The secret key (say, SK) in TRLWE has the following structure with
SKi,j ∈ {0, 1} ∀1 ≤ i ≤ k, ∀1 ≤ j ≤ N ,

SK =

 N∑
j=1

SK1,jx
j−1, . . . ,

N∑
j=1

SKk,jx
j−1

 .

The ciphertext in TRLWE can be written as CT = (A,B), where B =
∑k

i=1A[i] ·SK[i]+m+ e.
Here m ∈ M is the underlying plaintext and A can be represented as the following with each
Ai,j ∈ T,

A =

 N∑
j=1

A1,jx
j−1, . . . ,

N∑
j=1

Ak,jx
j−1

 .

Also, A[i]·SK[i] is the polynomial multiplication between ith polynomial of A and ith polynomial
of SK modulo (xN +1). In order to avoid notational complexity, we will henceforth use A ·SK
to denote

∑k
i=1A[i] · SK[i] in the paper. And, e =

∑N
j=1 ejx

j−1 is RLWE noise polynomial
with each ej ← G (a Gaussian distribution).

We focus on distributed decryption of a Ring-LWE ciphertext and rely on a public key adapta-
tion [Rot11] of underlying FHE scheme to perform the encryption and evaluation operations.
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Hence we do not discuss those algorithms (TRLWE.Enc, TRLWE.Eval) here. We discuss the
original decryption algorithm TRLWE.Dec first, then modify it later in order to support thresh-
old decryption.
TRLWE.Dec(SK,CT): Given the secret key SK and a ciphertext CT = (A,B), the decryption
algorithm proceeds as follows:

• TRLWE.Decode0(SK,CT): On input ciphertext CT and secret key SK, this step of the
decryption calculates Φ = B − A · SK, which is equal to m + e. Here, m is the plaintext
polynomial and e is the ring-LWE noise polynomial.

• TRLWE.Decode1(Φ): This final step rounds up each of the N coefficients of Φ to return the
“exact” coefficients of the plaintext polynomial m.

The security of TRLWE follows from the hardness of the Binary Ring Learning with Errors
(BRLWE) problem (see Section 3.1 for the formal definition). Note that although a reduction
from binary LWE to LWE exists [Mic18], a reduction for its ring-variant is not yet known;
nonetheless, binary RLWE is widely [BBPS19,BD20] believed to be computationally hard.

Our main contribution is a proposal for thresholdizing the decryption of the aforementioned
TRLWE scheme. We discuss the specific case of (T, T )-threshold decryption and its security
analysis based on Rényi Divergence in subsequent sections. We provide the generalized (t, T )-
threshold decryption along with its security analysis in Section 4.4.

4.2 Achieving (T, T )-Distributed Decryption

Let us assume P = {P1, . . . , PT } is the set of T parties and they are willing to perform
TRLWE.Dec on a Torus Ring-LWE ciphertext CT = (A,B) in a distributed way. We are in
the dealer-based model, i.e., we assume that a trusted dealer uses some secret sharing algorithm
to distribute the Torus Ring-LWE secret SK to each Pi as SHi, such that SK =

∑T
i=1 SHi. In

this context, each Pi ∈ P individually performs the following steps:

• TRLWE.PartialDec(SHi,CT): On input of the secret share SHi and the ciphertext CT =
(A,B), this algorithm generates partially decrypted ciphertext part decrypti = A·SHi+e

i
sm.

Here, eism is the smudging noise polynomial added by Pi, where each coefficient of eism is
sampled from the Gaussian smudging noise distribution Gsm (we expand on the smudging
noise subsequently in Section 4.3). The partial decryption part decrypti is then broadcast
to the rest of the (T − 1) parties.

• TRLWE.Combine({part decrypti}i∈[T ],CT): This algorithm takes all the partially decrypted
ciphertexts {part decrypti}i∈[T ] and the ciphertext CT = (A,B) as input, and calculates

Φ = B −
∑T

i=1 part decrypti. Note that Φ is essentially
(
m+ e−

∑T
i=1 e

i
sm

)
.

• TRLWE.Decode1(Φ): On input of the phase Φ, its N coefficients are rounded up to retrieve
N coefficients of the plaintext m.

Theorem 1 (Correctness). Let q = 2λ1 be the TRLWE modulus (or equivalently, suppose that
the Torus-FHE scheme supports a maximum precision of λ1 bits) and let p = 2λ2 be the size
of the space of message-polynomial coefficients (or equivalently, suppose that the Torus-FHE
scheme supports message-polynomial coefficients with a precision of λ2 bits) such that p ≤ q.
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Also assume ∆ = q/p = 2λ1−λ2 . Then, decryption correctness of the proposed (T, T )-threshold
TRLWE is the same as of the original (non-threshold) TRLWE as described in Section 4.1, if
∥esm∥∞ < ∆/(2(T + 1)). Here, ∥ · ∥∞ denotes the infinity norm of a polynomial.

Proof. This theorem provides an upper bound on the smudging noise that each party can add,
and here, we allow the maximum possible smudging noise that does not affect the correctness
of the distributed decryption protocol. At a high level, to ensure the correctness of (T, T )-
distributed decryption, we need the total noise in the combined ciphertext (i.e., the output of
TRLWE.Combine) to be upper bounded by ∆/2. For correctness of (T, T )-distributed decryption
to hold, we must have ∥e∥∞ + T · ∥esm∥∞ < ∆/2. Since ∥esm∥∞ > ∥e∥∞ (i.e., smudging noise
must be large enough to hide the ciphertext noise), we choose ∥esm∥∞ < ∆/(2(T + 1)).

This (T, T ) distributed decryption is very specific, in the sense that the participation of each
party is mandatory to perform a distributed decryption. Later, we generalize this to (t, T )
threshold decryption for any 0 < t < T in Section 4.4.

4.3 Security of Proposed (T, T )-Threshold FHE

We now elaborate on our main theoretical contribution, namely, achieving a polynomial modulus-
to-noise ratio (i.e. a polynomial ratio between the modulus q and the Ring LWE noise e) for our
proposed threshold version of Torus-FHE (abbreviated as TRLWE henceforth) via: (a) a novel
usage of Gaussian smudging noise during partial decryption (as described earlier in Section 4.2
and Section 4.4), and (b) application of Rényi Divergence for distinguishing problems with
public sampleability property to prove the security of our proposed Threshold FHE scheme
TRLWE (under our proposed security definition in Section 3.3).

Let us first formally state our argument on the security of (T, T )-threshold version of TRLWE.

Theorem 2 (Security). Let σ and α be the standard deviations of Gsm and G respectively and
Q be the number of selective partial decryption queries. The proposed (T, T )-threshold TRLWE
is IND-secure (ref. Section 3.3) if the underlying non-threshold TRLWE is IND-CPA secure
and σ ≥ c · α ·

√
Q ·N for some constant c.

Proof. We will prove this theorem in a stepwise manner in this section and then show that, it
provides a lower bound on the value of the smudging noise parameter.

Our Approach: Rényi Divergence-based Analysis of Smudging Noise. In this paper,
due to our novel approach of using Gaussian smudging noise and then using a Rényi Divergence
based analysis akin to that of [BLRL+18, TT15] as opposed to the statistical distance-based
analysis used in prior works [MW16, BGG+18, CCK23], it suffices to sample the smudging
noise from a Gaussian distribution with standard deviation only polynomially larger than the
standard deviation of the Gaussian distribution pertaining to the RLWE noise. As a result,
from a theoretical point of view, we obtain a practical ThFHE scheme with polynomial modulus
to noise ratio. From an implementation point of view, it leads to a practically efficient prototype
implementation in software (ref. Section 5). We expand on our approach below.

Analyzing (T, T )-Distributed Decryption. For the ease of exposition, we now describe the
Rényi Divergence-based analysis of our proposed distributed decryption protocol for TRLWE
for the special case of (T, T )-distributed decryption (described originally in Section 4.2).
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The Adversarial Model. Recall from Section 4.2 that for the case of (T, T )-distributed
decryption, the Torus Ring-LWE secret SK is linearly secret-shared across {P1, . . . , PT } as

SK =
∑T

i=1 SHi, where party Pi holds the secret key share SHi. Now consider a scenario where,
as per our security definition in Section 3.3, an adversary A corrupts all but one party (say
party P1 without loss of generality), and gains access to the secret key shares of all of the
corrupted parties (i.e., SH2, . . . , SHT ). Keeping analogy to our security definition, assume
that A chooses two set of plaintexts M0 = {M0

i }i∈[ℓ] and M1 = {M1
i }i∈[ℓ], along with Q-

many partial decryption queries. Each query consists of a new circuit C of bounded depth
with a constraint that C({M0

i }i∈[ℓ]) = C({M1
i }i∈[ℓ]). A then receives a challenge set of honest

encryptions CT⋆ = {CT⋆
i }, which is component-wise encryption of either M0 or M1.

For each query circuit C, the challenger computes a resultant ciphertext ĈT = (A,B) by
homomorphically evaluating C on the set CT⋆. The adversary A is then allowed to see the

partial decryption of ĈT by the honest party P1, computed (in the “real” security game) as
part decrypt1 = A · SH1 + esm, where esm is the smudging noise polynomial added by party
P1 (each coefficient is sampled from a Gaussian distribution Gsm with standard deviation σ).

“Simulating” an Honest Partial Decryption. We now construct a simulator S that

“simulates” a partial decryption of ĈT on behalf of the honest party P1 without the knowledge
of the partial decryption key SH1, but simply from the knowledge of the underlying plaintext
m and the knowledge of the corrupted partial decryption keys {SHj}j∈[2,T ]. Before delving
into the description of the simulator S, we briefly motivate the construction of such a simulator
S. Observe that S has no additional information beyond what A already knows. So, A is not
able to distinguish CT0 from CT1, i.e., the component-wise encryption of two set of plaintexts
M0 and M1 of its choice, due to the hardness of Binary Ring-LWE assumption, on which the
original Torus-FHE scheme relies.

We now construct the simulator S as follows. Given the ciphertext ĈT = (A,B), its underlying
plaintext message m, and the corrupted partial decryption keys {SHj}j∈[2,T ], the simulator S
outputs a “simulated” partial decryption

part decryptSim1 = B −m−
T∑

i=2

A · SHi + esm,

where esm is a smudging noise polynomial (again, each coefficient of this polynomial is sampled
from a Gaussian distribution Gsm with standard deviation σ). Now, observe that, letting

γ = B −m−
∑T

i=2A · SHi, we have

part decrypt1 = γ − e+ esm, part decryptSim1 = γ + esm,

where e is the RLWE noise polynomial embedded in ĈT.

Rényi Divergence-based Analysis. Let η be the set of fixed parameters instantiating the
security game described in Section 3.3 as follows,

η = (PK,SK, {SKi}i∈[T ],M0,M1, {Ci}i∈[Q]).

Let a distribution

Dη
b (r) = (PK, {SKi}i∈[2,T ],M0,M1,CTb, {ĈT

b

i}i∈[Q], {pbi}i∈[Q])
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represent the view of the adversary, when the challenger C samples bit b in Step 4 of the game.
The set of noise values r = {ri}i∈[Q] is used in the computation of honest party P1’s partial
decryption pi = γ + ri and each ri is sampled either from distribution of (esm − e) or from dis-
tribution of esm, depending on whether C provides real or simulated partial decryptions to A.
Let δ and δ′ denote the advantages with which A distinguishes Dη

0(r) from Dη
1(r) in the pres-

ence of real or simulated partial decryptions respectively. Assuming that the aforementioned
distinguishing problems are “publicly sampleable” [BLRL+18], the relation below follows from

known results in [BLRL+18]: δ′ ≥ δ
4Ra(Ψ||Ψ′) ·

(
δ
2

) a
a−1 , where Ψ and Ψ′ denote the distribution

of (esm − e) and the distribution of esm respectively and Ra(Ψ||Ψ′) is the Rényi divergence of
order a between the distributions Ψ and Ψ′.

Arguing Public Sampleability. In order to invoke the aforementioned relation, we first
need to argue that the aforementioned distinguishing problems satisfy the notion of public
sampleability as defined in [BLRL+18]. Given a bit b′ ∈ {0, 1} and a sample x from Dη

b (r),
we can publicly sample a fresh element x′ of Dη

b′(r) by (i) replacing CTb of x with CTb′ =

{TRLWE.Enc(PK,M b′

j )}j∈[ℓ], (ii) replacing {ĈT
b

i}i∈[Q] with {ĈT
b′

i }i∈[Q] = {TRLWE.Eval(PK, Ci,Mb′)}i∈[Q]

and, (iii) replacing the last component {pbi}i∈[Q] with {pb
′

i }i∈[Q] such that pb
′

i = γb
′
+ ri. Here,

computation of γb
′
requires the knowledge of ĈT

b′

i and computation of ri requires the knowledge

of ĈT
b

i and pbi . Hence Dη
b (r) is indeed publicly sampleable.

Remark. The above argument relies on the fact that the partial decryption queries are made
selectively and not adaptively; since the adversary cannot embed any information about the
challenge ciphertext CTb in the circuits corresponding to the partial decryption queries, the
distribution of these circuits is statistically independent of b, which allows directly using the
randomness term r = {ri}i∈[Q] to publicly re-sample the partial decryption outputs in Dη

b′(r).

Completing the Proof. We can now invoke known results from [TT15] and the multiplicative
property of Rényi Divergence to argue that for any a ∈ (1,∞), we have,

Ra(Ψ||Ψ′) ≤ exp

(
a · π ·N · ∥e∥2∞

σ2

)
,

where ∥e∥∞ denotes the infinity norm of the degree (N − 1)-RLWE noise polynomial e. As-
suming that ∥e∥∞ ≤ cα, where c is some constant and α is the standard deviation of Gaussian

RLWE noise distribution G, we have, Ra(Ψ||Ψ′) ≤ exp
(

a·π·N ·c2·α2

σ2

)
.

Finally, for the scenario where the adversary A sees a maximum of Q = poly(λ) such partial
decryption samples, we invoke the multiplicative properties of Rényi Divergence to state the
following:

Ra(Ψ||Ψ′) ≤ exp

(
a · π ·Q ·N · c2 · α2

σ2

)
.

Parameter Choices (Lower Bounds). At this point, we are ready to propose the asymp-
totic parameter choices for our ThFHE scheme TRLWE supporting (T, T )-threshold decryption.
Assume that the adversary A sees at most Q = poly(λ) partial decryption samples, let σ and α
be the standard deviation parameters for the Gaussian distributions pertaining to the smudging
noise and RLWE noise, respectively, and let c be a constant such that |e| ≤ cα (e being the
RLWE noise polynomial). It suffices for us to choose σ such that

σ ≥ c · α ·
√
Q ·N,
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since this yields Ra(Ψ||Ψ′) ≤ exp (a · π), and hence

δ′ ≥ δ

4
·
(
δ

2

) a
a−1

· exp(−a · π).

Taking any value of a > 1 yields the desired condition on δ and δ′, i.e., non-negligible δ would
result in non-negligible δ′. Note that it suffices for σ to be only polynomially larger than α.
Hence, our scheme is secure whenever σ ≥ c · α ·

√
Q ·N .

Achieving polynomial modulus-to-noise ratio. Combining the lower bounds on the
smudging noise imposed by Theorem 2 with the upper bounds imposed by Theorem 1, we
thus avoid the super-polynomial modulus-to-noise ratio (ratio between modulus q and any co-
efficient of RLWE noise polynomial e) incurred by all prior works on ThFHE, thereby yielding
a practical ThFHE scheme with polynomial modulus-to-noise ratio.

The above Rényi Divergence-based analysis immediately generalizes to (t, T )-threshold decryp-
tion for any t ≤ T . The detailed security analysis for the general case appears in the subsequent
section.

4.4 Generalized (t, T )-Threshold Decryption Protocol

In this section, we describe the generalized (t, T )-threshold decryption algorithm for our pro-
posed threshold Torus-FHE. Here, we propose an extended version of Benaloh-Leichter LISSS
to share the secret key across the various parties (as opposed to a simple additive shar-
ing in the (T, T )-case in Section 4.2). Consequently, we modify the TRLWE.PartialDec and
TRLWE.Combine algorithms to enable correct and efficient decryption by any t′-sized subset of
the T parties for t′ ≥ t.

4.4.1 Extending Benaloh-Leichter LISSS

For the purpose of (t, T )-threshold secret sharing, we resort to using Benaloh-Leichter LISSS
[DT06], as it supports an efficient final combination of partial decryptions, in contrast to mul-
tiplying partial decryptions with large Lagrange coefficients while using Shamir’s secret shar-
ing [Sha79], that leads to noise-blowup in the ciphertext and incorrect decryption. The original
scheme [DT06] shares a scalar secret, but we propose an extended Benaloh-Leichter LISSS
to support (t, T )-threshold secret sharing of the TRLWE secret which is composed of k num-
ber of N -sized binary polynomials (see Section 4.1). Let SK be the Torus-RLWE secret key,
which is to be shared among T parties belonging to the set P = {P1, . . . , PT } according to a
(t, T )-threshold access structure. We first describe some pre-processing steps.

Formation of Distribution Matrix M. Formation of distribution matrix M depends upon
the monotone Boolean formula (MBF1) of a (t, T )-threshold access structure. Since an MBF
is a combination of AND and OR of Boolean variables, we can construct distribution matrix
of any MBF by taking care of the following three cases:
A Boolean variable. The identity matrix of dimension k (Ik), represents the distribution
matrix of each Boolean variable xi.

1By MBF, we refer to Boolean formulae having a single output and consisting of only AND and OR combi-
nation of variables.

21



Algorithm 1 t-out-of-T Secret Sharing

1: function ShareSecret(t, T,M, ρ, d, k)
2: shares←M · ρ
3: row ← 1
4: while row ≤ d do
5: gid← ⌈row/kt⌉
6: pt← findParties(gid, t, T )
7: for i = 1 to t do
8: rowcount← row + (i− 1)k
9: curr share← TRLweKey() ▷ New TRLWE Key
10: for j = 0 to k − 1 do
11: curr share[j]← shares[rowcount+ j]

12: cur share.party id← pt[i− 1]
13: cur share.group id← gid

14: row ← row + kt

AND-ing of two MBFs. Let us suppose, matrix Mfa and Mfb are the distribution matrices
for MBFs fa and fb respectively and have dimension da× ea and db× eb respectively. Then we
form Mfa∧fb to represent fa ∧ fb as follows:

cka cka Ca 0
0 ckb 0 Cb

Here, cka and ckb denote first k columns and Ca and Cb denote the rest of the columns of Mfa

and Mfb respectively. Resulting Mfa∧fb has dimension (da + db)× (ea + eb).

OR-ing of two MBFs. Assuming matrices Mfa and Mfb of dimension da × ea and db × eb
respectively to be the distribution matrices for Boolean formula fa and fb respectively, we form
Mfa∨fb of dimension (da + db)× (ea + eb − k) to represent fa ∨ fb as following:

cka Ca 0
ckb 0 Cb

Again, cka and ckb denote first k columns and Ca and Cb denote the rest of the columns of Mfa

and Mfb respectively.
It can be easily verified that, the distribution matrix M for (t, T )-threshold secret sharing has
dimension d× e, where d =

(
T
t

)
kt and e = (

(
T
t

)
kt− (

(
T
t

)
− 1)k).

Formation of Share Matrix ρ. Though ρ is a vector in the original scheme [DT06], in our
extended version, ρ is a matrix with dimension e × N . Its first k rows are populated from
the coefficients of k binary polynomials in SK. The rest of the rows of the matrix are filled
uniformly randomly from {0, 1}.
Sharing. The number of t-sized subsets of P is

(
T
t

)
. We enumerate over all these subsets and

tag each of them with the corresponding enumerating serial number and call it the group id.
During the sharing process (Algorithm 1), total d =

(
T
t

)
kt rows of shares matrix consists of(

T
t

)
t number of key shares, each having k consecutive rows. Each key share is tagged with the

following two attributes:

• party id: refers to which party the key share belongs to.

• group id: refers to the t-sized group for the key share.
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Figure 1: Maximum size of secret shares held by a party

Once the sharing process is complete, each party Pi gets
(
T−1
t−1

)
number of key shares to store,

for each possible t-sized group, that Pi can belong to. Note that the findParties(gid, t, T)
procedure in Algorithm 1, returns a list of party ids present in gidth t-sized group (subset) of
P.

Reconstruction. Any t-sized group of parties should be able to reconstruct SK, with the
help of the key shares, they have. Given a t-sized group P ′ = {P ′

1, P
′
2, . . . , P

′
t} ⊂ P, each of the

t parties will have one key share with group id corresponding to P ′. Let us denote these t key
shares as {SH1, SH2, . . . , SHt}. We observe (Appendix B) that exactly one share among them
will have non-binary coefficients in its k polynomials. We call the party, having non-binary
key share, the group leader of the t-sized group. In any t-sized group, the group leader has the
minimum value of party id.
Now, without loss of generality, let us assume P ′

1 is the group leader of P ′ and its non-binary
key share is SH1. Then the secret S can be reconstructed as: SK = SH1 −

∑t
i=2 SHi. Hence,

recovery coefficient c1 is 1 for the group leader and ci is −1 for each of other (t− 1) parties. We
exploit this reconstruction property in final combination stage of (t, T )-threshold decryption
technique.

Size of Secret Shares. After applying (t, T )-threshold secret sharing on SK, each party
gets

(
T−1
t−1

)
key shares to store. For any t-sized group, the group leader’s share size (in number

of bits) is upper bounded by ⌈log2 t⌉ · N · k, and each of the other (t − 1) parties has share
of size exactly N · k bits. This can be proved by close observation of the secret shares (See
Appendix B). Thus, for (t, T )-threshold secret sharing, a party needs a maximum storage of((

T−1
t−1

)
· ⌈log2 t⌉ ·N · k

)
bits. Figure 1 depicts the maximum storage a party requires to keep

all its secret shares.

We refer interested readers to Appendix C for a detailed security analysis of the extended
Benaloh-Leichter LISSS.

4.4.2 Proposed (t, T )-Threshold Decryption

Let P = {P1, . . . , PT } be a set of T parties and P ′ = {Pid1
, . . . , Pidt

} ⊂ P be a t-sized subset
of P with group id j, authorized to threshold-decrypt a ciphertext CT = (A,B). Also, without
loss of generality, let us assume id1 < · · · < idt, so that Pid1

is the group leader of P ′.

We begin by assuming that all of the T parties in P have already received their key shares
after the successful execution of the (t, T )-threshold secret sharing scheme on SK. Hence, each
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Pidi
∈ P ′ has exactly one key share corresponding to group id j. We denote these t key shares

as {SHid1,j , . . . , SHidt,j}. Recall from Section 4.4.1 that,

SK = SHid1,j −
t∑

i=2

SHidi,j .

The threshold decryption of CT consists of the following steps, performed by each Pidi
∈ P ′

individually:

• TRLWE.PartialDec(SHidi,j ,CT): On input TRLWE ciphertext CT and a key share SHidi,j ,
Pidi

calculates the following:

part decryptidi
= A · SHidi,j + eidi

sm,

where eidi
sm is a smudging noise polynomial and each coefficient of eidi

sm is sampled from a
Gaussian smudging noise distribution Gsm. Then, Pidi

broadcast part decryptidi
to rest of

the (t− 1) parties.

• TRLWE.Combine({part decryptidi
}i∈[t],CT): On input all t partial decryptions, each party

calculates the phase

ϕ = B − (part decryptid1 −
t∑

i=2

part decryptidi),

where ϕ equals m+ e− eid1
sm +

∑t
i=2 e

idi
sm.

• TRLWE.Decode1(ϕ): Each of the N coefficients of ϕ is rounded up to extract the coefficients
of the message m.

4.4.3 Correctness and Security of the Proposed Scheme

We formalize the correctness and security of the proposed (t, T )-threshold FHE through The-
orem 3 and Theorem 4 below.

Theorem 3 (Correctness). Decryption correctness of the proposed (t, T )-threshold TRLWE
is same as of the original (non-threshold) TRLWE as described in Section 4.1 if ∥esm∥∞ <
∆/(2(t+ 1)).

Proof. We prove the above theorem and discuss the upper bounds for different noise parameters
to ensure the correctness of our proposed (t, T )-threshold decryption procedure.

Some Notations. Let us assume q = 2λ1 to be the modulus in TRLWE and |M| = p = 2λ2

to be the size of the space of coefficients of message-polynomial such that p ≤ q. Now, let
∆ = q

p = 2λ1−λ2 denote the distance between two consecutive values of a message coefficient in
M. Note that we assume ∆ = 1 throughout the paper, as in Torus-FHE library λ1 = λ2 = 32
have been considered.

TRLWE noise. When applying TRLWE.Decode0 on a TRLWE ciphertext CT = (A,B), we
effectively compute Φ = B−A ·SK, which essentially equals ∆ ·m+e. Now, ∆ being a constant
we can rewrite Φ as

∑N−1
i=0 (∆ ·mi + ei)x

i. Next, we round up and approximate each coefficient
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of Φ during TRLWE.Decode1 as ∆ ·mi + ei
round−−−−→ ∆ ·mi

approximate−−−−−−−−→ mi. For correctness, we
need |ei| < ∆/2.

Smudging noise. The parties eventually combine their partial decryptions to compute an
unmasking component part decryptf . Without loss of generality, for party P1, part decryptf
is computed as: (

A · SH1 −
t∑

j=2

A · SHj + e1sm −
t∑

j=2

ejsm

)
.

The final message recovery step proceeds as:

B − part decryptf = ∆ ·m+ e−
(
e1sm −

t∑
l=2

elsm

)
.

Here, e = e0+e1x+ · · ·+eN−1x
N−1 is the RLWE noise polynomial and eism = eism,0+e

i
sm,1x+

· · · + eism,N−1x
N−1 is the smudging noise polynomial added by party Pi. Hence, for correct

decryption, the following condition should hold for each z ∈ [0, N − 1]:

|ez − e1sm,z +

t∑
l=2

elsm,z)| <
∆

2
.

Let ∥e∥∞ and ∥esm∥∞ denote the infinity norms of the RLWE noise polynomial e and the
smudging noise polynomial esm, respectively. Then, we must have:

∥e∥∞ + t · ∥esm∥∞ < ∆/2.

Since ∥esm∥∞ > ∥e∥∞ (by the lower bound argument presented above), it suffices to choose
∥esm∥∞ < ∆/(2(t+ 1)).

Theorem 4 (Security). Let σ and α be the standard deviations of Gsm and G respectively and
Q be the number of selective partial decryption queries. Proposed (t, T )-threshold TRLWE is
IND-secure (ref. Section 3.3), if the underlying non-threshold TRLWE is IND-CPA secure and
σ ≥ c · α ·

√
Q · (T − t+ 1) ·N for some constant c.

Proof. Let us recall the notion of security in the form of a game between adversary A and
challenger C from Section 3.3 for our proposed threshold FHE scheme TRLWE. We prove the
above theorem in a step-by-step manner in the following.

A Close Look at Partial Decryptions. First, we take a close look at the partial decryption
component returned by the challenger C in the partial decryption query phase (Step 5) of the
security game. We allow the corrupted subset S in the security game to be of maximal size, i.e.,

|S| = (t − 1). Let us assume ĈTi to be the ith evaluated ciphertext during partial decryption

query phase (Step 5), i.e., ĈTi is obtained by homomorphically evaluating Ci on the set of inputs
CT⋆ = {CT⋆

j}j∈[ℓ] for some i ∈ [Q]. Here, CT⋆ = {CT⋆
j}j∈[ℓ] is the challenge set returned to

the adversary in Step 4 of the security game. A partial decryption of ĈTi = (Âi, B̂i) by some
honest party Pj /∈ S corresponds to a t-sized group Pj

⋃
S with group id g and we denote it

with pi,j . Challenger C computes pi,j as follows,

pi,j = Âi · SHj,g + esm,
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where SHj,g is Pj ’s secret share corresponding to group id g and esm is a smudging noise
polynomial with each coefficient sampled from Gsm. However using the linear reconstruction
property of Benaloh-Leichter {0, 1}-LISSS (Section 4.4.1), we can alternatively express pi,j as
following,

pi,j = B̂i −mi − e−
∑
Pk∈S

Âi · SHk,g + esm,

where e is the RLWE noise polynomial of ciphertext ĈTi with each of its coefficients sampled
from G, and mi is the expected output of the circuit Ci in plaintext, i.e., Ci(m

0
1, . . . ,m

0
ℓ) =

Ci(m
1
1, . . . ,m

1
ℓ) = mi. Letting γi = B̂i −mi −

∑
Pk∈S Âi · SHk,g, we get

pi,j = γi + ri,j ,

such that ri,j is sampled from distribution of (esm − e).
We can publicly simulate the partial decryption by some honest party Pj /∈ S as follows,

p′i,j = γi + r′i,j ,

where r′i,j is sampled from distribution of esm.

Defining Some Distributions. Recall the security game between the challenger C and the
adversary A in Section 3.3 with respect to our proposed scheme TRLWE. Let η is the set of
some fixed parameters in a particular instance of the game as follows,

η = (PK,SK, {SKi}i∈[T ],S,M0,M1, {Ci}i∈[Q]).

Let r = {ri,j}i∈[Q],Pj /∈S be a set of noise parameters. We define the distribution Dη
b (r) param-

eterized by η as follows,

Dη
b (r) = (PK, {SKi}Pi∈S ,M0,M1,CTb, {ĈT

b

i}i∈[Q], {pbi,j}i∈[Q],Pj /∈S).

Here each component is analogous to the components described in GThFHE,A,At,T
(1λ, 1d) of

Section 3.3. Component CTb of D
η
b (r) denotes the scenario when the challenge set CT⋆ in the

game is component-wise encryption of Mb, i.e., CT
⋆
j = TRLWE.Enc(PK,M b

j ) for each j ∈ [ℓ].

Public Sampleability of Dη
b (r). We argue the public sampleability [BLRL+18] of Dη

b (r) by
providing a public sampling algorithm PS in Algorithm 5. Given any sample

x = (PK, {SKi}Pi∈S ,M0,M1,CTb, {ĈT
b

i}i∈[Q], {pbi,j}i∈[Q],Pj /∈S),

from Dη
b (r) with unknown bit b and a bit b′, it generates fresh sample

x′ = (PK, {SKi}Pi∈S ,M0,M1,CTb′ , {ĈT
b′

i }i∈[Q], {pb
′

i,j}i∈[Q],Pj /∈S),

of Dη
b′(r) efficiently.

Note that the algorithm requires the knowledge of PK, the output of the circuit evaluations
in plaintext (i.e., {mi}i∈[Q], which is independent of bit b due to the constraint on the choice
of adversarially chosen post-challenge partial decryption query circuits), and the secret shares
of the corrupted parties in S. All this information is publicly available. Besides, the values
of noise samples {ri,j}i∈[Q],Pj /∈S can be retrieved from the knowledge of evaluated ciphertexts
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Algorithm 2 Public Sampling Algorithm PS

Input:

x = (PK, {SKi}Pi∈S ,M0,M1,CTb, {ĈT
b

i}i∈[Q], {pbi,j}i∈[Q],Pj /∈S),

b′ ∈ {0, 1}.

Output: x′ ∈ Dη
b′ (r).

1: Compute a new challenge set CTb′ , which is component-wise fresh encryption of Mb′ .

2: For each i ∈ [Q], generate an evaluated ciphertext ĈT
b′

i = (Âb′
i , B̂b′

i ) = TRLWE.Eval(PK, Ci,CTb′ ).

3: For each i ∈ [Q], first compute γb
i = B̂b

i − mi −
∑

Pk∈S(Â
b
i · SHk,g) and next retrieve the noise value

ri,j = pbi,j − γb
i for each honest party Pj /∈ S. Here g is group id of Pj

⋃
S.

4: For each i ∈ [Q], compute γb′
i = B̂b′

i −mi −
∑

Pk∈S(Â
b′
i · SHk,g) and then for each honest party Pj /∈ S,

compute partial decryption pb
′

i,j = γb′
i + ri,j .

5: Return a fresh sample x′ as,

x′ = (PK, {SKi}Pi∈S ,M0,M1,CTb′ , {ĈT
b′

i }i∈[Q], {pb
′

i,j}i∈[Q],Pj /∈S).

{ĈT
b

i} and partial decryptions {pbi,j} in x, and then further be used during computation of

partial decryptions {pb′i,j} in x′. Hence we can indeed publicly generate a valid sample x′ of
Dη

b′(r) efficiently. Hence we conclude that the distribution Dη
b (r) is publicly sampleable.

Proof Outline. Notice that Dη
b (r) captures the view of the adversary in the security game

when the challenger C samples the bit b in Step 4 and r = {ri,j} is the set of noise values
sampled from the distribution of esm − e and used in computing partial decryptions {pi,j}
for all i ∈ [Q] and Pj /∈ S. However in simulated world, we can simulate partial decryptions
p′i,j = γi + r′i,j , by just sampling each r′i,j from the distribution of esm. Let us denote a
problem P as distinguishing a sample of Dη

0(r) from a sample of Dη
1(r) and the problem P′

as distinguishing a sample of Dη
0(r

′) from a sample of Dη
1(r

′). Using a novel Rényi divergence
based analysis, we show that non-negligible distinguishing advantage of problem P leads to
non-negligible distinguishing advantage of problem P′. But due to hardness of binary ring-
LWE problem, no PPT adversary can distinguish CT0 from CT1 in the simulated world, as
it gains no effective information about the actual secret shares of honest parties by seeing the
simulated partial decryptions. Thus distinguishing advantage of problem P′ is already known
to be negligible due to binary ring-LWE assumption. Now by contradiction we conclude that
the distinguishing advantage in P is negligible, making our TRLWE a secure ThFHE scheme.

Rényi Divergence based Analysis. Recall from Theorem 4.2 of [BLRL+18], due to public
sampleability property of Dη

b (r), if there exists a τ -time distinguisher D for problem P with
distinguishing probability δ, then there must exists a distinguisher D′ for Problem P’ with
distinguishing probability δ′ with run-time τ ′, such that,

δ′ ≥ δ

4Ra(Ψ||Ψ′)
·
(
δ

2

) a
a−1

,

τ ′ ≤ 64

δ2
log(

8Ra(Ψ||Ψ′)

δa/(a−1)+1
)(τS + τ).

Here, τS is the run-time of public sampling algorithm for Dη
b (r). Also Ψ is the distribution of

(esm − e) and Ψ′ is the distribution of esm. Now, with the results from Lemma 5 in [TT15]
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and multiplicative property of Rényi Divergence we argue that for any a ∈ (1,∞):

Ra(Ψ||Ψ′) ≤ exp

(
a · π ·N · ∥e∥2∞

σ2

)
,

where ∥e∥∞ denotes the infinity norm of the (N − 1)-degree RLWE noise polynomial e. As-
suming that ∥e∥∞ ≤ cα, where c is some constant and α is the standard deviation of RLWE
noise distribution G, we have

Ra(Ψ||Ψ′) ≤ exp

(
a · π ·N · c2 · α2

σ2

)
.

Finally, considering the scenario that the adversary A does Q = poly(λ) number of queries,
and thus is able to see a total of Q · (T − t+1) number of partial decryptions corresponding to
(T−t+1) number of honest parties, we invoke the multiplicative properties of Rényi Divergence
from [TT15] to state the following:

Ra(Ψ||Ψ′) ≤ exp

(
a · π ·Q · (T − t+ 1) ·N · c2 · α2

σ2

)
.

Observe that it suffices for us to choose σ such that

σ ≥ c · α ·
√
Q · (T − t+ 1) ·N,

since this yields Ra(Ψ||Ψ′) ≤ exp (a · π), and hence:

δ′ ≥ δ

4
·
(
δ

2

) a
a−1

· exp(−a · π) = 1

2
·
(
δ

2

) 2a−1
a−1

· exp(−a · π).

and for the run-time we have,

τ ′ ≤ 64

δ2
log(

8 · exp(a · π)
δa/(a−1)+1

)(τS + τ).

Hence the condition σ ≥ c · α ·
√
Q · (T − t+ 1) ·N (i.e., smudging noise is only polynomially

larger than RLWE noise) implies that, for any a > 1, non-negligible δ would result in non-
negligible δ′. This completes the proof of security for our proposed TRLWE scheme supporting
(t, T )-threshold decryption.

Appendix A discusses the simulation of partial decryptions in the proof of security when less
than (t− 1) parties are corrupted.

5 Software Implementation and Experimental Evaluation

We now describe a prototype implementation of our (t, T )-threshold decryption scheme over
Torus-FHE on two extreme varieties of computing platforms - a high-end x86-based server, and a
low-end resource-constrained ARM-based platform1. Although Torus-FHE library implements

1Our implementation code and additional (low-level) implementation details are available at: https://

anonymous.4open.science/r/ThFHE_artifacts-2FD3
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Table 2: Parameters used in experimental setting

Parameter Value
k (Number of polynomials in Torus-RLWE ciphertext) 1

n (Torus-LWE dimension) 1024
N (Degree of Torus-RLWE polynomial is (N − 1)) 1024
α (Standard deviation of Torus-RLWE noise) 2−25

Q (Number of partial decryption queries) 220

σ (Standard deviation of smudging noise) 2−7

a symmetric-key version of the underlying FHE scheme, we use the idea of [Rot11] to implement
its public-key version and extend it to support threshold decryption in order to get the desired
implementation of ThFHE, namely TRLWE. We stress that this is, to the best of our knowledge,
the first practical implementation of any ThFHE scheme with the capability of executing the
threshold decryption algorithm practically on resource-constrained platforms.

In our setting, the threshold secret sharing is performed by a trusted cloud server with suffi-
cient computational resources. Subsequently, homomorphic evaluations happen on encrypted
data stored on the cloud server. The key focus of our implementation is on realizing the
proposed threshold decryption algorithm on resource-constrained handheld devices; hence our
experiments and evaluation focus purely on the performance of our threshold decryption im-
plementation.

For the sake of completeness, we implement our threshold decryption algorithm on two kinds
of platforms, lying at two extreme ends of the spectrum of computational capabilities: (a) a
high-end workstation with an Intel(R) Xeon(R) CPU E5-2690 v4 CPU (2.60GHz clock-frequency),
28 physical cores, and 128GB RAM, and (b) a low-end Raspberry Pi 3b board with a Quad
Core 1.2GHz Broadcom BCM2837 64bit CPU and 1 GB RAM running Raspberry Pi OS Lite
(Linux kernel version: 5.10.63-v7+).

5.1 Implementation Details

We implement the natural public-key analogue of the Torus-FHE library while leaving imple-
mentation of the homomorphic evaluation unchanged. This makes our implementation cross-
compatible with other libraries (e.g., NuFHE) that build directly upon Torus-FHE. Since our
core contribution lies in thresholdizing the decryption process, which only requires the secret
key, we keep our discussion limited to generating and sharing the secret key.

We extend the Torus-FHE library to support threshold secret sharing and threshold decryption.
We use the Torus-RLWE secret key generation routine to generate the secret key with a set
of parameters chosen by relying on our proposed Rényi divergence-based security argument.
In particular, this analysis enables a polynomial modulus-to-noise ratio, which crucially allows
our implementation to be practically deployable on a resource-constrained platform.

Once the key has been generated, we build the distribution matrix M and share matrix ρ (see
Section 4.4.1). The distribution matrix generation, when implemented directly in software, re-
sults in a recursive implementation, which potentially results in high memory access overheads,
and is unsuitable for resource-constrained platforms. However, we can avoid these excess func-
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Figure 2: Minimum and maximum values of σ, the standard deviation of smudging noise distribution.
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Figure 3: Minimum values of σ with different values of Q for a fixed value of (t, T ) = (4, 7)

tion call overheads and generate them iteratively in one go by exploiting a regular pattern, as
discussed in Appendix B.

For the partial and threshold decryption functions, we have two implementations. The first
implementation targets a high-end processor and directly leverages Torus-FHE APIs for fast
polynomial multiplication using Fast Fourier Transform (FFT), as is required in the partial de-
cryption phase. The other is a portable implementation suited for low-end resource-constrained
handheld devices. In particular, the latter replaces the FFT polynomial multiplication, which
depends on x86 AVX instructions for efficiency, with a näıve school-book multiplication. This
is done to keep the implementation as architecture-agnostic and lightweight as possible. In
the porting process, we have removed multiple dynamic memory allocation steps to achieve
better memory efficiency. Also, our observation that each of the participating parties except
one receives a binary key share through (t, T )-threshold secret sharing significantly contributes
to reduce the cycle counts in polynomial multiplication in both implementations.

5.2 Experimental Evaluation

In this section, we validate our proposed threshold decryption technique by an implementation
over Torus-FHE library and the steps involved are summarized in Algorithm 3. The output of
BootstrappedOR in step 4 here is a Torus-LWE ciphertext and we convert it to a Torus-RLWE
ciphertext in step 5, to support packing of multiple plaintext bits together.

In accordance with our intended use-case, we experimentally evaluate steps 1 through 6 of
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Algorithm 3 Software implementation of cryptosystem with (t, T )-threshold decryption

Input: inp1 ∈ N, inp2 ∈ N, t ∈ N, T ∈ N, P ⊂ [1, T ] s.t |P| = t
Output: outp← inp1 ∨ inp2
1: (LweSK,LwePK)←LweKeyGen
2: cipher1 ←Encrypt(LwePK, inp1), cipher2 ←Encrypt(LwePK, inp2)
3: eval res← BootstrappedOR(cipher1, cipher2, LwePK)
4: (rcipher,RLweSK)←ConvertLWEtoRLWE(eval res, LweSK)
5: ShareSecret(RLweSK, t, T ) ▷ Now all parties get their key shares. Each party i ∈ P calculates outp on

its own.
6: outp← ThresholdDecrypt(rcipher,P, t, T, i)
7: return outp
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Figure 4: Secret Sharing and Threshold Decryption time in high-End server.

Algorithm 3 on a high-end server, and step 7 on both the high-end server and a low-end
resource-constrained handheld device. In particular, in our experiments we measure the time
taken by steps 6 and 7. Note that step 7 includes both partial decryption and final combination.

Concrete parameters choices. Table 2 lists the concrete parameters used in our experiments.
The choices for n, N and α are directly adopted from the Torus-FHE library. For smooth
conversion in step 5 of Algorithm 3, we fix k = 1. Figure 2 plots the minimum and maximum
values of the smudging noise parameter σ for different values of (t, T ) used in our experimental
evaluations (the bounds are derived as per Theorems 4 and 3 when the allowed number of
partial decryption queries Q is set to 220, the constant c = 21, and the parameter ∆ = 1

2
for correctness of the Torus-FHE scheme). In particular, for all the (t, T ) values used in our
experimental evaluation, the choice of smudging noise σ = 2−7 (Table 2) satisfies the lower and
upper bounds in Figure 2. Moreover, Figure 3 depicts how the minimum value of the smudging
parameter (σ) varies with the allowed number of partial decryption queries (Q) according to
Theorem 4 for a fixed value of (t, T ) = (4, 7) and constant c = 2. The y-axis plots log2 σ instead
of σ.

Figures 4 and 5 show the secret key sharing time, the partial decryption time, the final decryp-
tion time, and the plain decryption time on a high-end workstation in terms of milliseconds
and clock cycles respectively, while Figures 6 and 7 show the partial and final decryption times
in milliseconds and clock cycle counts respectively on the low-end Raspberry Pi 3b platform.
All four graphs have logarithmic y-axis.

1We choose c = 2 since the absolute value of the TRLWE noise sampled from G with standard deviation α is
upper bounded by 2α with probability 95.44%.
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Figure 5: Secret Sharing and Threshold Decryption clock cycles in high-End server
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Figure 6: Threshold Decryption time in handheld device
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Figure 7: Threshold Decryption clock cycles in handheld device

The partial decryption time in all the figures follow a constant trend as in our use case, it is
done parallelly in individual devices and the vector or polynomial sizes do not change with the
number of parties. We emphasize that, as a direct consequence of the efficient parameter choices
for threshold FHE enabled by our Rényi Divergence-based analysis, the threshold decryption
timing is practical even on a highly resource-constrained ARM-based platform.

Finally, Figure 9 and Figure 10 with logarithmic y-axis show that our proposed threshold
decryption incurs only minimal time overhead over the plain (baseline) decryption algorithm
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Figure 8: Final Decryption time in high-end server and low-end handheld device with Additional
Communication Delay considering 5 MBps bandwidth between decryption servers
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Figure 9: Time comparison between Plain Decryption and Threshold Decryption for high-end server
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Figure 10: Time comparison between Plain Decryption and Threshold Decryption for handheld device

specified in the original Torus-FHE library, for both the high-end workstation and the resource-
constrained device. Since each participating party executes the partial decryption phase in
parallel, threshold decryption time includes the time required for single partial decryption and
final re-combination of all partial descriptions. Threshold decryption time is dominated by the
partial decryption time, which is independent of (t, T ); hence, both the graphs in Figure 9 and
Figure 10 grow minimally with increasing (t, T ) values.

Figure 8 depicts the final combination time on both high-end server and resource-constrained
handheld device considering latency due to communication of the partial decryptions through a
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Algorithm 4 KNN over encrypted medical data

Input: test data = Encrypt(k, test patient),
train data = {Encrypt(k, patient1), . . . ,Encrypt(k, patientn)},
bk = bootstrapping key, K = KNN parameter.

Output: decisional bit = Encrypt(k, predicted bit)
1: Initialize a Torus-LWE ciphertext array distant of size n
2: for i = 1 to n do
3: distant[i] ←Manhattan(test data, train data[i], bk)

4: sorted train data←BubbleSort(distant, train data, bk)
5: Initialize a counter ciphertext count = Encrypt(k, zero) to count the decision of K-

Nearest Neighbours
6: for i = 1 to K do
7: count← count+ Decision(sorted train data[i]))

8: Initialize a Torus-LWE variable threshold = Encrypt(k, ⌊K/2⌋)
9: decisional bit← Difference(threshold, count, bk)

10: return decisional bit

network with reduced bandwidth of 5 MBps. In particular, the time required for communicating
all (t − 1) partial descriptions parallelly to the combiner is added with the time required to
compute the final decryption as shown in Figure 8 with logarithmic y-axis for varying (t, T )
values. Since the communication cost is independent of (t, T ) values and is quite higher than
the final decryption time on high-end server, the plot for the high-end server grows minimally
with increasing (t, T ) values.

6 Case-Study: Computing over Encrypted Medical Data

In this section, we use our proposed ThFHE scheme over the Torus to realize an end-to-end
usecase of outsourced computations over encrypted medical datasets, where the final outcome
is computed in a distributed manner by multiple entities (e.g. doctors, research laborato-
ries, or other medical practitioners). Concretely, we illustrate the efficacy of our proposal via
experiments evaluating encrypted computations over a real medical database, as well as dis-
tributed decryptions of the computed result on resource-constrained handheld devices, where
both the encryption and distributed decryption operations are performed using our proposed
ThFHE scheme. We perform an encrypted K-Nearest Neighbours (KNN) classification [SCK14]
that outputs an encrypted prediction bit indicating the possibility of cardiovascular disease.
The classification is done based on a patient’s encrypted medical records and pre-computed
encrypted training data.

6.1 Encrypted KNN Computation

The encrypted KNN algorithm (Algorithm 4) takes as input: (a) an encrypted set of test data,
which is to be predicted, (b) an encrypted set of training data to train the KNN algorithm, (c)
the bootstrapping key bk, which is a part of public key and (d) KNN parameter K to output
an encrypted single prediction bit. Following the approach outlined in [RC19], we sub-divide
the encrypted KNN computation algorithm into three parts as described below.
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Table 3: Encrypted KNN execution time

K
Neighbour

size

Prediction
time

without
OpenMP

(in minutes)

Prediction
time with
OpenMP

(in minutes)

Prediction
time with
OpenMP

(cycle count
in 1012)

5

10 154.88 15.96 2.49
20 369.90 29.71 4.64
30 558.36 49.96 7.79
40 850.70 60.11 9.38
50 1062.86 72.90 11.37

7

10 194.81 18.50 2.89
20 431.41 33.66 5.25
30 726.13 50.08 7.81
40 975.01 63.83 9.96
50 1282.08 79.78 12.45

9

10 235.30 24.23 3.78
20 527.98 46.66 7.28
30 844.36 60.55 9.45
40 1146.26 80.81 12.61
50 1498.43 99.31 15.49

Encrypted Manhattan Distance Computation. First, the encrypted Manhattan distances
between the testing data and all the training data are homomorphically computed and stored
in the distant variable. The Manhattan distance is preferred over other distances to avoid the
“curse of dimensionality” problem in machine learning [AHK01]. To compute the difference
between two ciphertexts (ThFHEDIFF between Encrypt(k, P lain1) and Encrypt(k, P lain2)), we
use the 2’s complement form representation.

Sorting over Encrypted Data. In this step, the neighbors are sorted in ascending order
based on the calculated distances. The encrypted-bubble-sort implementation directly uses
encrypted-comparison and sorting techniques from prior-works [RC19,CSS20,CS20, ÇDSS15].
Our encrypted bubble sort implementation takes the bootstrapping key, the patient’s encrypted
data and their corresponding encrypted Manhattan distances, and outputs the sorted patient
data based on these encrypted distances.

Prediction over Encrypted Data. The encrypted decision bits of KNN computation are
added to get Encrypt(k, count) (line 7, Algorithm 4), which is then compared homomorphically
with the threshold value (Encrypt(k, ⌊K/2⌋)) to arrive at the (encrypted) decision. The final
plaintext decision is recovered via threshold decryption.

6.2 Experimental Results

We consider a cardiovascular disease-related dataset1 that comprises of 70000 data instances
and 12 features like age days, height, weight, ap lo (Diastolic Blood Pressure), ap hi (Systolic
Blood Pressure), gender, cholesterol, glucose, smoke, alcohol, active, id, and cardio. Out of 12
features, cardio is the target feature which needs to be predicted based on the rest 11 features.

1https://www.kaggle.com/sulianova/cardiovascular-disease-dataset

35



An accuracy of 70% has been achieved with 60 (training=40, testing =20) data-rows and that
can be improved further by performing more hyperparameter tuning and by incorporating more
data-rows into account. Out of 70000 data instances, we randomly select 60 data instances and
divide them into different training-to-testing ratios. Table 3 shows the execution time of KNN
algorithm in two variants, with (using OpenMP) and without any parallel processing techniques.
The OpenMP version has a big advantage of parallelizing multiple loops to facilitate smaller
execution time, as shown in Table 3 for K = 5, 7, 9. Note that the number of OpenMP threads
used during each execution is equal to the neighbour size listed in Table 3. The execution
platform is equipped with Intel(R) Xeon(R) CPU E5-2690 v4 with 2.60GHz clock. The system
has 132GB of RAM and 56 available physical cores.

7 Conclusion and Future Work

We presented the design, analysis and practical implementation for a novel threshold FHE
scheme from the hardness of Binary Ring-LWE with polynomial modulus-to-noise ratio. We
showed, for the first time, that threshold FHE can actually be deployed in a fast, scalable and
reasonably resource-efficient manner for real-world applications via benchmarking experiments
on two extreme varieties of computing platforms - a high-end x86-based server and a low-end
resource-constrained ARM-based platform. We showcased an end-to-end implementation of
our proposed system and used it for fast, scalable yet secure k-nearest-neighbor computations
over encrypted medical data outsourced to a cloud service provider.

Our work gives rise to many interesting directions of future research. In particular, we leave it
as an open question to extend our Rényi divergence-based security analysis techniques to the
setting of multi-key FHE with threshold decryption, for which all known realizations still require
super-polynomial modulus-to-noise ratio. Such an extension would enable efficient realizations
of richer applications such as round-optimal multi-party computation.
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[BD20] Zvika Brakerski and Nico Döttling. Lossiness and entropic hardness for ring-lwe.
In Theory of Cryptography Conference, pages 1–27. Springer, 2020.

[BGG+18] Dan Boneh, Rosario Gennaro, Steven Goldfeder, Aayush Jain, Sam Kim, Peter
M. R. Rasmussen, and Amit Sahai. Threshold cryptosystems from threshold
fully homomorphic encryption. In Hovav Shacham and Alexandra Boldyreva,
editors, CRYPTO 2018, Part I, volume 10991 of LNCS, pages 565–596. Springer,
Heidelberg, August 2018.

37



[BGM+16] Andrej Bogdanov, Siyao Guo, Daniel Masny, Silas Richelson, and Alon Rosen.
On the hardness of learning with rounding over small modulus. In Theory of
Cryptography Conference, pages 209–224. Springer, 2016.

[BGV14] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled) fully homo-
morphic encryption without bootstrapping. ACM Transactions on Computation
Theory (TOCT), 6(3):1–36, 2014.

[BHP17] Zvika Brakerski, Shai Halevi, and Antigoni Polychroniadou. Four round secure
computation without setup. In Theory of Cryptography: 15th International Con-
ference, TCC 2017, Baltimore, MD, USA, November 12-15, 2017, Proceedings,
Part I, pages 645–677. Springer, 2017.

[BJMS20] Saikrishna Badrinarayanan, Aayush Jain, Nathan Manohar, and Amit Sahai. Se-
cure MPC: Laziness leads to GOD. In Shiho Moriai and Huaxiong Wang, editors,
ASIACRYPT 2020, Part III, volume 12493 of LNCS, pages 120–150. Springer,
Heidelberg, December 2020.

[BLNS20] Jonathan Bootle, Vadim Lyubashevsky, Ngoc Khanh Nguyen, and Gregor Seiler.
A non-pcp approach to succinct quantum-safe zero-knowledge. In Annual Inter-
national Cryptology Conference, pages 441–469. Springer, 2020.
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Algorithm 5 Public Sampling Algorithm PS

Input:

x = (PK, {SKi}Pi∈S ,M0,M1,CTb, {ĈT
b

i}i∈[Q], {pbi,j}i∈[Q],Pj /∈S
⋃

S′ ,

{p̂bi,j}i∈[Q],Pj∈S′ ), b′ ∈ {0, 1}.

Output: x′ ∈ Dη
b′ (r).

1: Compute a new challenge set CTb′ , which is component-wise fresh encryption of Mb′ .

2: For each i ∈ [Q], generate an evaluated ciphertext ĈT
b′

i = (Âb′
i , B̂b′

i ) = TRLWE.Eval(PK, Ci,CTb′ ).
3: Let us denote the shares of pseudo-corrupt set S′ with {SKi}Pi∈S′ .

4: For each i ∈ [Q], for each honest party Pj /∈ S
⋃
S′, first compute γb

i = B̂b
i −mi −

∑
Pk∈S

⋃
S′ (Âb

i · SHk,g)

and next retrieve the noise value ri,j = pbi,j − γb
i . Here g is group id of Pj

⋃
S
⋃
S′.

5: For each i ∈ [Q], compute γb′
i = B̂b′

i − mi −
∑

Pk∈S
⋃

S′ (Âb′
i · SHk,g) and then for each honest party

Pj /∈ S
⋃
S′, compute partial decryption pb

′
i,j = γb′

i + ri,j .

6: For each i ∈ [Q], for each pseudo-corrupt party Pj ∈ S′, compute γb
i = Âb

i · SHj,g for a specific t-sized

group with group id g. Compute γb′
i = Âb′

i · SHj,g for the same group. Now compute partial decryption

p̂b
′

i,j = p̂bi,j − γb
i + γb′

i .

7: Return a fresh sample x′ as,

x′ = (PK, {SKi}Pi∈S ,M0,M1,CTb′ , {ĈT
b′

i }i∈[Q], {pb
′

i,j}i∈[Q],Pj /∈S
⋃

S′ ,

{p̂b
′

i,j}i∈[Q],Pj∈S′ ).

A Security Proof of (t, T )-threshold FHE for Any t′ ≤ (t−
1) Corruptions

In this section, we prove that our proposed (t, T )-threshold decryption of Section 4.4 is secure
for any corruptions up to (t − 1) while considering the security notion of Section 3.3. Let us
assume that the adversary has corrupted some t′ ≤ (t − 1) number of parties, i.e., |S| = t′,
where S is the corrupted subset. Then, at the beginning of the game, we choose an arbitrary
set S ′ of honest parties, such that |S ′| = (t− 1− t′). We call this set pseudo-corrupt to allow
a maximal pseudo-corruption of (t− 1) parties. Apart from the shares of the corrupted parties
in S, the simulator uses the shares of the parties in S ′ for simulating the partial decryption of
any honest party Pj /∈ S

⋃
S ′.

A Close Look at Partial Decryptions. First, we take a close look at the partial decryption
component returned by the challenger C in the partial decryption query phase (Step 5) of the

security game. Let us assume ĈTi to be the ith evaluated ciphertext during partial decryption

query phase (Step 5), i.e., ĈTi is obtained by homomorphically evaluating Ci on the set of
inputs CT⋆ = {CT⋆

j}j∈[ℓ] for some i ∈ [Q]. Here, CT⋆ = {CT⋆
j}j∈[ℓ] is the challenge set

returned to the adversary in Step 4 of the security game. For each such honestly evaluated

ciphertext ĈTi, the following set of partial descriptions is returned to the adversary:

(i) For each honest party Pj /∈ S
⋃
S ′, return a single partial decryption pi,j = Âi · SHj,g +

esm, where g is the group id of the t-sized subset Pj

⋃
S
⋃
S ′, SHj,g is Pj ’s secret share

corresponding to group id g and esm is a smudging noise polynomial with each coefficient
sampled from Gsm.

(ii) For each pseudo-corrupt party Pj ∈ S ′, which is honest in the view of the adversary,
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return a single partial description corresponding to one of the
(
T−1−t′

t−1−t′

)
t-sized group

that consists of S and Pj itself. Let g be the group id of this t-sized group. Then,

p̂i,j = Âi · SHj,g + esm is returned.

As mentioned earlier, the actual partial decryption of an honest party Pj /∈ S
⋃
S ′ can be

expressed as γi + ri,j , where γi = B̂i−mi−
∑

Pk∈S
⋃

S′ Âi ·SHk,g and ri,j is sampled from the

distribution of (esm − e).
Simulation of honest partial decryptions. As described in the previous section, the partial
decryption of an honest party Pj /∈ S

⋃
S ′, is computed using the shares of the parties in

pseudo-corrupt set S ′ and corrupt set S as follows,

pi,j = γi + r′i,j ,

where γi = B̂i −mi −
∑

Pk∈S
⋃

S′ Âi · SHk,g and r′i,j is sampled from the distribution of esm.

Note that, since we consider the parties in S ′ to be pseudo-corrupt, partial decryption of a party
Pj ∈ S ′ does not need any simulation, hence real partial decryption of the form Âi ·SHj,g+esm
is returned corresponding to one of the t-sized group that Pj and parties in S belong to.

Defining Some Distributions. Recall the security game between the challenger C and the
adversary A in Section 3.3 with respect to our proposed scheme TRLWE. Let η is the set of
some fixed parameters in a particular instance of the game as follows,

η = (PK,SK, {SKi}i∈[T ],S,S ′,M0,M1, {Ci}i∈[Q]).

Let r = {ri,j}i∈[Q],Pj /∈S
⋃

S′ be a set of noise parameters. We define the distribution Dη
b (r)

parameterized by η as follows,

Dη
b (r) = (PK, {SKi}Pi∈S ,M0,M1,CTb, {ĈT

b

i}i∈[Q],

{pbi,j}i∈[Q],Pj /∈S
⋃

S′ , {p̂bi,j}i∈[Q],Pj∈S′).

Here each component is analogous to the components described in GThFHE,A,At,T
(1λ, 1d) of

Section 3.3. Component CTb of D
η
b (r) denotes the scenario when the challenge set CT⋆ in the

game is component-wise encryption of Mb, i.e., CT
⋆
j = TRLWE.Enc(PK,M b

j ) for each j ∈ [ℓ].

Public Sampleability of Dη
b (r). We argue the public sampleability [BLRL+18] of Dη

b (r) by
providing a public sampling algorithm PS in Algorithm 5. Given any sample

x = (PK, {SKi}Pi∈S ,M0,M1,CTb, {ĈT
b

i}i∈[Q],

{pbi,j}i∈[Q],Pj /∈S
⋃

S′ , {p̂bi,j}i∈[Q],Pj∈S′),

from Dη
b (r) with unknown bit b and a bit b′, it generates fresh sample

x′ = (PK, {SKi}Pi∈S ,M0,M1,CTb′ , {ĈT
b′

i }i∈[Q],

{pb
′

i,j}i∈[Q],Pj /∈S
⋃

S′ , {p̂b
′

i,j}i∈[Q],Pj∈S′),

of Dη
b′(r) efficiently.

Note that the algorithm requires the knowledge of PK, the output of the circuit evaluations
in plaintext (i.e., {mi}i∈[Q], which is independent of bit b due to the constraint on the choice

45



of adversarially chosen post-challenge partial decryption query circuits), and the secret shares
of the corrupted parties in S. All this information is publicly available. Besides, the values
of noise samples {ri,j}i∈[Q],Pj /∈S can be retrieved from the knowledge of evaluated ciphertexts

{ĈT
b

i} and partial decryptions {pbi,j} in x, and then further be used during computation of

partial decryptions {pb′i,j} in x′. Hence we can indeed publicly generate a valid sample x′ of
Dη

b′(r) efficiently. Hence we conclude that the distribution Dη
b (r) is publicly sampleable.

Proof Outline. Provided that the view of the adversary is publicly sampleable with less than
(t− 1) corruptions, the rest of the proof proceeds essentially in a similar manner.

B Observing the Pattern of Secret Shares

We state our observation on the pattern of the secret shares, generated by the (t, T )-threshold
secret sharing using Benaloh-Leichter LISSS (Section 4.4.1), in the form of a theorem and
provide the corresponding proof here.

Theorem 5. P ′ = {Pid1 , Pid2 , . . . , Pidt} ⊂ P = {P1, P2, . . . , PT } is a t-sized group with group id
value of gid, where id1 < id2 < · · · < idt. ∀1 ≤ i ≤ t, Pidi

has a key share SHi, tagged with
group id value of gid. Then all key shares except SH1, have only binary coefficients in their k
polynomials, while SH1 will have coefficient value upper-bounded by t in its k polynomials.

In order to prove Theorem 5, we will first state two lemmas related to the structure of the
distribution matrixM for (t, T ) threshold secret sharing of a TRLWE secret key S. We consider
the number of polynomials in S is k and Ik denotes the identity matrix of dimension k.
The first lemma is about the pattern of the distribution matrix for Boolean formula of the form
x1 ∧ x2 ∧ · · · ∧ xt for any t.

Lemma 1. We consider 0 to be a notation of zero matrix of dimension k×k. Then, distribution
matrix Mf for Boolean formula f = x1 ∧ x2 ∧ · · · ∧ xt follows the following structure.



Ik Ik Ik . . . Ik Ik
0 0 0 . . . 0 Ik
0 0 . . . 0 Ik 0
...
0 0 Ik 0 . . . 0
0 Ik 0 0 . . . 0


kt×kt

Proof of Lemma 1. We prove the lemma by induction on the value of t.
For t = 1, f = x1 and Mf = Ik. Hence, the stated matrix structure is satisfied by default.
For t = 2, f = x1 ∧ x2. We follow the ANDing procedure (see Section 4.4.1) of Mx1 = Ik and

Mx2
= Ik and get Mx1∧x2

=

[
Ik Ik
0 Ik

]
, which clearly satisfies the claimed structure.

Let us assume that the claimed structure of the distribution matrix holds for t = i, i.e., for
f = x1 ∧ x2 ∧ · · · ∧ xi, Mf is as shown below. Also, xi+1 being a Boolean variable, Mxi+1

= Ik.
ANDing Mf and Mxi+1

produces Mf1 = Mf∧xi+1
as shown below. Mf has a dimension of
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ki× ki and Mf1 has a dimension of k(i+ 1)× k(i+ 1).

Mf =



Ik Ik Ik . . . Ik Ik
0 0 0 . . . 0 Ik
0 0 . . . 0 Ik 0
...
0 0 Ik 0 . . . 0
0 Ik 0 0 . . . 0



Mf1 =



Ik Ik Ik Ik . . . Ik Ik
0 0 0 0 . . . 0 Ik
0 0 0 . . . 0 Ik 0
...
0 0 0 Ik 0 . . . 0
0 0 Ik 0 0 . . . 0
0 Ik 0 0 0 . . . 0


Clearly, the structure is maintained for t = i + 1. Hence, by induction, the lemma is true for
any t ≥ 1.

And the second lemma is about the pattern of distribution matrix for Boolean formula consisting
of disjunction of l number of such t-sized conjunctive terms, i.e., (x1,1 ∧ x1,2 ∧ · · · ∧ x1,t)∨ · · · ∨
(xl,1 ∧ xl,2 ∧ · · · ∧ xl,t).

Lemma 2. Let us assume that f ′ = (x1,1 ∧ x1,2 ∧ · · · ∧ x1,t) ∨ · · · ∨ (xl,1 ∧ xl,2 ∧ · · · ∧ xl,t)
is a Boolean formula, where ∀1 ≤ i ≤ l, 1 ≤ j ≤ t, xi,j is a binary variable and each of the
(xi,1 ∧ xi,2 ∧ · · · ∧ xi,t) terms is represented by distribution matrix Mf , as stated in Lemma 1.
We denote the first k columns of Mf by F of dimension kt× k and the rest of the columns of
Mf by R of dimension kt × k(t − 1). 0 denotes zero matrix of dimension kt × k(t − 1). The
distribution matrix Mf ′ has the following structure:


F R 0 0 . . . 0
F 0 R 0 . . . 0
...
F 0 . . . 0 R 0
F 0 0 . . . 0 R


lkt×(lkt−(l−1)k)

Proof of Lemma 2. We prove the lemma by induction on the value of l.
For l = 1, f ′ = f = (x1,1 ∧ x1,2 ∧ · · · ∧ x1,t) and Mf ′ = Mf =

[
F R

]
, which satisfies the

claimed structure by default.
For, l = 2, f ′ = (x1,1 ∧ x1,2 ∧ · · · ∧ x1,t) ∨ (x2,1 ∧ x2,2 ∧ · · · ∧ x2,t). We perform ORing on
Mx1,1∧x1,2∧···∧x1,t =Mf and Mx2,1∧x2,2∧···∧x2,t =Mf (see Section 4.4.1) and get

Mf ′ =

[
F R 0
F 0 R

]
2kt×(2kt−k)

This structure follows the lemma.
Let us assume that the structure is maintained ∀l ≤ j. So, with f ′ = (x1,1 ∧ x1,2 ∧ · · · ∧ x1,t)∨

47



· · · ∨ (xj,1 ∧ xj,2 ∧ · · · ∧ xj,t) and f ′′ = (xj+1,1 ∧ xj+1,2 ∧ · · · ∧ xj+1,t), Mf ′ has a dimension of
jkt× jkt− (j − 1)k and Mf ′′ has a dimension of kt× kt. Mf ′ follows the structure as shown
below. Mf ′′ =

[
F R

]
. Now, ORing Mf ′ and Mf ′′ produces Mf2 = Mf ′∨f ′′ with dimension

(j + 1)kt× ((j + 1)kt− jk) as shown below.

Mf ′ =


F R 0 0 . . . 0
F 0 R 0 . . . 0
...
F 0 . . . 0 R 0
F 0 0 . . . 0 R



Mf2 =



F R 0 0 . . . 0 0
F 0 R 0 0 . . . 0
...
F 0 . . . 0 R 0 0
F 0 0 . . . 0 R 0
F 0 0 . . . 0 0 R


So, the lemma is true for l = (j + 1).
Hence, by induction, the lemma is true for any l ≥ 1.

Now we use Lemma 1 and Lemma 2 to provide here the proof of Theorem 5.

Proof of Theorem 5. Let us recall from Section 4.4.1 that the monotone Boolean formula for
(t, T )-threshold secret sharing can be written as f = (x1,1 ∧x1,2 ∧ · · · ∧x1,t)∨ · · · ∨ (xl,1 ∧xl,2 ∧
· · ·∧xl,t), where l =

(
T
t

)
. If 0 denotes zero matrix of dimension kt×(kt−k), from Lemma 1 and

Lemma 2, we know that structure of the corresponding distribution matrix M with dimension(
T
t

)
kt× (

(
T
t

)
kt− (

(
T
t

)
− 1)k) is as follows:

M =


F R 0 0 . . . 0
F 0 R 0 . . . 0
...
F 0 . . . 0 R 0
F 0 0 . . . 0 R



F =


Ik
0
0
...
0

 R =


Ik Ik Ik . . . Ik
0 0 . . . 0 Ik
...
0 Ik 0 . . . 0
Ik 0 0 . . . 0


A detailed look into the above matrixM reveals that F has a structure of dimension kt×k and
R has a structure with dimension kt× (kt− k) as shown in the above matrix structure. In F
and R, 0 denotes a zero matrix of dimension k× k. It is obvious from the structure of M that
each of its

(
T
t

)
horizontal sections contain exactly one F and one R along with (

(
T
t

)
− 1) zero

matrices 0kt×(kt−k). Now, the structure of F shows that each of its first k rows contains one
‘1’ entry. No other row below has any ‘1’ in it and the structure of R reveals that each of its
first k rows contains exactly (t− 1) number of ‘1’ in it. Each of the other rows below contains
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exactly one ‘1’ in it. Hence, each of the first k rows of any one horizontal section (out of total(
T
t

)
sections) of M has exactly t number of ‘1’ in it. Each of the rest of the rows below in that

section contains exactly one ‘1’ in it.
Let us recall that, each section of M corresponds to one section of shares (shares = M · ρ)
from Section 4.4.1 in the paper, i.e, the key shares of any t-sized subset of collaborating parties.
ρ is a binary matrix. During matrix multiplication, the dot product between one row of M and
one column of ρ produces an entry in shares. The dot product between two binary vectors
is always upper bound by the number of ‘1’ in any of the two vectors. As, each of the first
k rows of any section of M contains exactly t number of ‘1’, the entries of the first k rows of
any section in shares are always upper bounded by t. First k rows of any section of shares
form one key-share. Clearly, that key share will have non-binary entries in it. Similarly, each
of the other (kt− k) rows below in any section of M contains exactly one ‘1’, so the entries of
the (kt− k) number of rows below in any section of shares are upper-bounded by 1. In other
words, those entries can be either 0 or 1. Hence, the rest of the (t− 1) key shares of any t-sized
subset of parties, have only binary entries in it.
Hence we conclude that, in our proposed (t, T ) threshold LISSS for a t-sized subset of parties
PT ′ = {Pid1

, Pid2
, . . . , Pidt

}, where id1 < id2 < · · · < idt, all the parties except Pid1
will have

binary key shares.

C A Discussion on extended Benaloh-Leichter LISSS

We recall from [DT06] that an LISSS needs to be correct and private. Informally, an LISSS
is correct if a qualified/valid subset of parties are able to reconstruct the secret by taking an
integer linear combination of their shares while the coefficients of linear combination depend
upon the qualified set. Whereas, an LISSS is said to be private if given an unqualified/invalid
subset of parties, the secret is completely undetermined in an information theoretic sense. We
also recall that M = (M,ψ, ϵ) is said to be an integer span program (ISP) if M is an integer
matrix of dimension d × e, ψ : [d] → [T ] is a surjective mapping to label each row of M to
an integer, and ϵ = (1, 0, · · · , 0)⊤ is the e-dimensional “target vector”. And the following two
properties of an ISP are useful to build a correct and private LISSS from it.

• If A is a qualified subset, andMA denotes the union of all rows ofM corresponding to the
party-ids in A, then there exists a d-dimensional vector λ such that M⊤

A λ = ϵ. Informally
the rows of M owned by a qualified set must include the target vector in their span.

• If A is a invalid set, then there exists a sweeping vector κ of dimension e such that
MAκ = 0, a d-dimensional vector of all zeros.

In this section, we show that our proposed method of generating distribution matrix for a
given monotone Boolean formula (MBF) f (representing an access structure) in the extended
Benaloh-Leichter LISSS (ref. 4.4.1) to support t-out-of-T sharing of a secret of dimension k×N ,
essentially satisfies all the required properties such thatM = (M,ψ, ϵ) continues to be a valid
integer span program (ISP).

Before going into details, we would like to emphasize the difference between original Benaloh-
Leichter LISSS that aims to secret-share a scalar or a vector and the proposed extended Benaloh-
Leichter LISSS (ref. 4.4.1) to support secret-sharing of a matrix of dimension k×N in Table 4
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Table 4: Original Benaloh-Leichter LISSS vs. Extended Benaloh-Leichter LISSS

Parameter Original scheme Extended scheme
ϵ (Target

vector/matrix)
e-dimensional vector with first element

1
e×N dimensional matrix with all 1’s

in the first k rows

ψ (The surjective
mapping)

ψ : [d]→ [T ] (Each row of M
corresponds to a secret share)

ψ : [ dk ]→ [T ] (A bunch of k
consecutive rows corresponds to a

secret share)
Mxi

(Distribution
matrix for MBF

f = xi)

A 1× 1 matrix with 1 as its only
element

An identity matrix Ik of dimension
k × k

Mfa∧fb

(Distribution
matrix for MBF
fa ∧ fb given Mfa

and Mfb)

A matrix with dimension
(da + db)× (ea + eb − 1), where first
column is vertical concatenation of
first columns of Mfa and Mfb , next
(ea − 1) columns are columns of Mfa

vertically appended with appropriate
number of zeros, last (eb − 1) columns

are appropriate number of zeros
vertically appended with columns of

Mfb

A matrix with dimension
(da + db)× (ea + eb − k), first k

columns are vertical concatenation of
first k columns of Mfa and Mfb , and
rest of the columns are formed in the
same manner as of the original scheme.

Mfa∨fb

(Distribution
matrix for MBF
fa ∨ fb given Mfa

and Mfb)

A matrix with dimension
(da + db)× (ea + eb), where first
column is the first column of Mfa

concatenated with appropriate number
of zeros, second column is the vertical
concatenation of first column of Mfa

and Mfb , next (ea − 1) columns are
columns of Mfa vertically appended

with appropriate number of zeros, last
(eb − 1) columns are appropriate

number of zeros vertically appended
with columns of Mfb

A matrix with dimension
(da + db)× (ea + eb), where first k
columns are the first column of Mfa

vertically concatenated with
appropriate number of zeros, second k
columns are the vertical concatenation
of first k columns of Mfa and Mfb , and
rest of the columns are formed in the
same manner as of the original scheme.

to reflect upon the natural extension in terms of the dimensions of several parameters. For ease
of exposition, we keep the notations (e.g., ψ, ϵ,κ etc.) in this section aligned with [DT06].

Note that the correctness of the extended LISSS is obvious from its construction in Section 4.4.1.
Now to show that our proposed extended Benaloh-Leichter LISSS is secure, it suffices to prove
that the underlying ISP is a valid one with the two above-mentioned properties. After taking
into account the changes in dimension as depicted in Table 4, we provide the following lemmas.

Lemma 3. If A is a qualified set with respect to a given access structure A (corresponding to
an MBF f), and M is the distribution matrix for f with a dimension of d × e, there exists a
d×N -dimensional matrix λA, such that M⊤

A λA = ϵ.

Proof. The proof is based on induction on the MBF f , that represents the access structure A
and is analogous to the proof of the original scheme as shown in the proof of Lemma 4 of [DT06].

As the base case, let us assume the MBF f = xi, consisting of a single Boolean variable. The
corresponding distribution matrix isM = Ik. Clearly the target vector is a matrix of dimension
k × N with all 1’s in it. Hence, we can form λ to be a matrix of dimension k × N such that
M⊤λ = ϵ.
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Let us now consider the MBF f = fa ∨ fb. Mfa and Mfb are the distribution matrices for fa
and fb respectively. So, by induction, there must exist λa such that M⊤

fa
λa = ϵ, such that ϵ has

dimension ea×N and λa has dimension da×N . Now we define λ to be λa vertically appended
with appropriate number of zeros such that λ has dimension (da + db)×N , and M⊤

fa∨fb
λ = ϵ

such that ϵ is now of dimension (ea + eb − k)×N .

Next we consider the MBF f = fa ∧ fb. Mfa and Mfb are the distribution matrices for fa
and fb respectively. So, by induction, there must exist λa such that M⊤

fa
λa = ϵ, such that ϵ

has dimension ea × N and λa has dimension da × N . Similarly there also exists λb such that
M⊤

fb
λb = ϵ, such that ϵ has dimension eb × N and λb has dimension db × N . Now we define

λ to be vertical concatenation of λa and −λb such that dimension of λ is (da + db) × N , and
M⊤

fa∧fb
λ = ϵ is satisfied for ϵ of dimension (ea + eb)×N .

Thus we conclude that by induction, it is always possible to find a λ corresponding to the
distribution matrix M of a MBF f such that M⊤λ = ϵ.

Lemma 4. If A is a forbidden set with respect to a given access structure A (corresponding to
an MBF f), and M is the distribution matrix for f with a dimension of d × e, there exists a
sweeping vector κ of dimension e, with its first k entries fixed to 1, such that MAκ = 0.

Proof. The proof by induction follows analogously as provided in the proof of Lemma 5 of [DT06].
As elaborated in [DT06], the base case is formula of the form f = fa ∧ fb such that both fa
and fb consist of purely all ∨ operators. Mfa and Mfb are distribution matrices for fa and
fb respectively. The Boolean variables in f representing the parties in A cannot be on both
sides of the ∧ operator, since that would make A qualify trivially as a valid set. This fur-
ther implies that the parties cannot own rows in both the upper and lower part of the matrix
Mfa∧fb . If the parties in A own rows in the top part of Mfa∧fb , the sweeping vector becomes
κ = (1, · · · , 1, 0, · · · , 0)⊤, such that there are k leading 1’s followed by (ea + eb − k) number
of zeros. On the other hand, if the parties in A own rows in the bottom part of Mfa∧fb , then
the sweeping vector becomes κ = (1, · · · , 1,−1, · · · ,−1, 0, · · · , 0)⊤, with 1’s in first k positions,
−1’s in next k positions and 0’s in the rest of the positions.

Given a formula f = fa∨fb, with their corresponding distribution matricesMfa andMfb , by in-
duction we know the existence of κa = (1, · · · , 1, κa,k+1, · · · , κa,ea)⊤ and κb = (1, · · · , 1, κb,k+1, · · · , κb,eb)⊤
such thatMfaκ = 0 for invalid sets according to fa andMfbκ = 0 for invalid sets according to fb.
Then sweeping vector for Mfa∨fb becomes κ = (1, · · · , 1, κa,k+1, · · · , κa,ea , κb,k+1, · · · , κb,eb)⊤.
Given a formula f = fa∨fb, with their corresponding distribution matricesMfa andMfb , by in-
duction we know the existence of κa = (1, · · · , 1, κa,k+1, · · · , κa,ea)⊤ and κb = (1, · · · , 1, κb,k+1, · · · , κb,eb)⊤
such that Mfaκ = 0 for invalid sets according to fa and Mfbκ = 0 for invalid sets ac-
cording to fb. If the given set A qualifies to reconstruct secret from fa, but not from fb,
then there exists κb such that (Mfb)Aκb = 0; and the sweeping vector for Mfa∧fb becomes
κ = (1, · · · , 1,−1, · · · ,−1, 0, · · · , 0,−κb,k+1, · · · ,−κb,eb)⊤ such that first k entries are 1, next k
entries are −1, next (ea − 1) entries are 0, and last (eb − 1) entries are from κb. If A does not
qualify as a valid set with respect to fa, then there exists κa such that (Mfa)Aκa = 0. Now
the sweeping vector for Mfa∧fb becomes κ = (1, · · · , 1, 0, · · · , 0, κa,k+1, · · · , κa,ea , 0, · · · , 0)⊤.
In both the cases κ has a dimension of (ea + eb).

From the above two lemmas we conclude that the ISP corresponding to the extended Benaloh-
Leichter LISSS for sharing a secret matrix of dimension k × N is a valid one, thus leading to
the correctness and privacy of the LISSS.
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