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Abstract. Rollup technology today promises long-term solutions to the scalability of the blockchain.
Among a thriving ecosystem, Consensys has launched the Linea zkEVM Rollup network for Ethereum.
At a high level, the Ethereum blockchain can be seen as a state machine and its state transition can
be arithmetized carefully. Linea’s prover protocol uses this arithmetization, along with transactions on
layer two in order to compute a cryptographic proof that the state transition is performed correctly.
The proof is then sent over to the Ethereum layer, where the smart contract (verifier contract) on
Ethereum checks the proof and accepts the state transition if the proof is valid. The interaction between
layer two and Ethereum is costly, which imposes substantial limitations on the proof size. Therefore,
Linea’s prover aims to compress the proof via cryptographic tools such as list polynomial commitments
(LPCs), polynomial interactive oracle proofs (PIOPs), and Succinct Non-Interactive Arguments of
Knowledge (SNARKs).
We introduce Wizard-IOP, a cryptographic tool for handling a wide class of queries (such as range
checks, scalar products, permutations checks, etc.) needed to ensure the correctness of the executions
of the state machines efficiently and conveniently. Another cryptographic tool is the Arcane compiler,
which outputs standard PIOPs and is employed by Wizard-IOP to make different queries homogeneous.
After applying Arcane, all the queries constitute evaluation queries over the polynomials. We then apply
the Unique Evaluation compiler (UniEval), which receives the output of the Arcane and provides us
with a PIOP that requires only a single evaluation check.
At this point, we employ Vortex, a list polynomial commitment (LPC) scheme to convert the resulting
PIOP into an argument of knowledge. The argument of knowledge is then made succinct by applying
different techniques such as self-recursion, standard recursion, and proof aggregations.

Keywords: Linea, zkEVM, SNARK, Ring-SIS, Self-Recursion, Arcane, Wizard-IOP, Range Checks,
Lookup Proofs, Permutation Proofs.

1 Introduction

The advent of blockchain technology and its underlying cryptographic mechanisms have ushered in a new era
of secure and transparent digital transactions. Among these, the Ethereum Virtual Machine (EVM) stands
out as a cornerstone for executing smart contracts on the Ethereum blockchain. As part of this ecosystem,
Linea launched a zk-EVM, a scalable EVM execution environment leveraging cryptographic techniques to
achieve higher transaction processing capability than the main Ethereum network. This paper delves into
the cryptographic applications that ensure the integrity of Linea, specifically focusing on advancements in
zero-knowledge proofs and their applications in zk-Virtual Machines (zk-VMs).

zk-VMs and zk-EVMs In a state machine, a transition is the process of moving from an old state to a
new state by reading a series of inputs and performing sets of opcodes which are a limited and low-level set
of instructions. Ethereum is, in essence, a transaction-based state machine, where the state contains all ac-
count addresses and their mapped account states. The Ethereum Virtual Machine (EVM) is the mechanism
responsible for performing the transitions as a succession of opcodes. zk-VMs (zk-Virtual Machines) and,
more specifically, the zk-EVM (Ethereum Virtual Machine) are complex and powerful cryptographic systems
that allow one party to generate proofs assessing the correct execution of a Virtual Machine using a SNARK
scheme. The proofs can be as short as a few hundred bytes and can be verified in a few milliseconds on any
platform (Groth16 [33]). For these reasons, zk-VMs have important applications in blockchain scalability
and interoperability. This is also the reason why this area of research has recently seen tremendous activity



in research and development: Linea [10], Cairo [30], Polygon-zkEVM [47], RISC0 [50] or Scroll [1]. However,
building a system capable of proving arbitrary executions of the Ethereum Virtual Machine is no easy task.
To give an idea, Linea’s arithmetization [10] models execution traces of the Ethereum Virtual Machine us-
ing hundreds of polynomials and thousands of arithmetic constraints of various types. In this setting, the
total witness size for proving the execution of a regular block consists of hundreds of millions of field elements.

Background and Motivation

Cryptographic primitives such as Polynomial Commitments and Succinct Non-Interactive Arguments of
Knowledge (SNARKs) have been pivotal in enabling blockchain scalability and privacy. These tools can
significantly reduce the computational overhead on the blockchain network. Our research is motivated by
the challenge of proving the correctness of arbitrary execution traces of the EVM as specified in [10] in a
manner that is both computationally efficient and verifiable.

Polynomial Commitments A polynomial commitment [38] is a cryptographic primitive in which a prover
commits to a polynomial P (X) and later proves the evaluation of P (X) at a given point x.

List Polynomial Commitments (LPCs) An LPC is a polynomial commitment with a relaxed security
requirement: the commitment is not associated with a single polynomial but rather with a list of polynomials,
where the prover can open the commitment to any polynomial from the list. Thus the commitment is not
binding to one polynomial but to a list of polynomials.

Succinct Non-Interactive Arguments of Knowledge (SNARKs) Given a binary relation R(x,w),
SNARKs allow proving knowledge of a witness w such that the relationR (usually drawn from a large family)
is satisfied for a public input x. In particular, the verifier needs less time to verify the proof, generated by a
SNARK, rather than to re-do all the computations. In the last few years, an ever-growing number of SNARK
constructions have emerged, including Groth16 [33], Plonk [7], Halo [22], Halo2 [28], Marlin [25], Spartan
[44], Virgo [51], Brakedown [32], Orion [49], Libra [48], Aurora [16], Fractal [24], Sonic [40], Nova [37], and
Lasso [45] to cite a fraction of the existing works.

Interactive Oracle Proofs (IOPs) Interactive Oracle Proofs (IOPs) are a family of abstract ideal proto-
cols in which the verifier is not required to read the prover’s messages in full. Instead, the verifier has oracle
access to the prover’s messages and may probabilistically query them at any positions [14]. IOP protocols
can be transformed into concrete secure argument systems using Merkle trees thanks to the [15]. Later works
have introduced several variants of IOPs such as polynomial-IOPs or tensor-IOPs, where the prover can
perform polynomial evaluation queries [7] or tensor queries [21]. Similarly, these protocols can be converted
into concrete argument systems (including SNARKs) using functional extractable commitments. This type
of approach for building argument systems has led to an extensive line of works and has now become a
standard.

Recursion is a technique that consists of verifying a publicly verifiable non-interactive proof inside another
argument system. This technique can be used for building incrementally verifiable computation (IVC), proof-
carrying data (PCD), proof aggregation, or further compression of proof size. [19] specifies how to instantiate
proof-carrying data through recursion using a pairing-friendly cycle of elliptic curves. The works of Halo [22],
Halo2 [28] and Nova [37] present several techniques to implement PCD or IVC using a (possibly non-pairing-
friendly) cycle of elliptic curves. In [11] the authors present a recursion technique that specifically targets
recursion over the protocol of GKR [31] and more generally any interactive protocol whose Fiat-Shamir
transform involves hashing long string in the first round.
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Contributions

We introduce a novel framework that leverages the Vortex List Polynomial Commitments (LPCs) [13] to
instantiate a SNARK specifically tailored for the execution traces of the EVM. Our approach addresses
the scalability challenges posed by existing zk-VMs and offers a more efficient mechanism for generating
and verifying execution proofs. Furthermore, we present an innovative self-recursion technique and explore
its application in optimizing proof verification, contributing to the broader field of incrementally verifiable
computation (IVC) and post-quantum SNARKs.

In synthesizing these cryptographic techniques, our research not only advances the state of the art in zk-VMs
but also opens new avenues for secure and efficient blockchain computations.

1.1 Our Contributions and Techniques

Arithmetization is a complex step that converts the state transition to some mathematical structure. In
Linea’s system, the structure of the arithmetization is a set of columns of fixed length. The correct state
transition is then verified by sending specific queries on these columns. The queries are usually from a wide
class: range checks, permutation checks, scalar-product checks, etc. Since working with different queries can
be prone to mistakes and more effort, we first homogenize the queries. For this purpose, we employ our
Wizard-IOP, which receives the columns and different types of queries, and uses the Arcane compiler to
provide us with a set of columns and just one type of query. The previous columns (input of Arcane) are
technically a subset of a new set of columns (output of Arcane). The columns are treated as either the
coefficients or evaluations of corresponding polynomials and the homogenized query is the evaluation of
these polynomials.

Wizard-IOP In Section 4, we present the Wizard-IOP framework. It can be viewed as an extension
of the notion of (polynomial-)IOP [15] supporting more complex queries. In this framework, the prover is
allowed to send oracle-access to multiple vectors across several rounds of interactions and the verifier may
perform queries from a wide class. To give an idea, the verifier may send queries evaluating scalar-products
of committed vectors or polynomial evaluations. It may also send queries involving cyclic-shifts of committed
vectors or queries asserting that two vectors are permutations of each other.

Wizard-IOP allows designing protocols in a way that contrasts with the usual polynomial-IOP tech-
niques. Compared to polynomial-IOPs, Wizard-IOP offers a higher-level framework for designing protocols.
This makes Wizard-IOP suitable for designing protocols that would otherwise be more complex using solely
the framework of polynomial-IOP. Most of all, the fact that Wizard-IOP supports queries with this level of
abstraction makes it seamlessly compatible with the work of the zk-EVM specification of [10].

Arcane and UniEval compiler Thereafter, Section 5 introduces the Arcane Compiler, a tool that allows
transforming any secure protocol specified in the Wizard-IOP model into one secure in the polynomial-IOP
model. The UniEval compiler then turns this PIOP into a PIOP where the verifier queries the oracle only
on a single opening point for all polynomials. The techniques we use to build Arcane are derived from
known modular polynomial-IOPs from past works such as Plonk, Halo2, or Cairo [7, 20, 28, 30, 29]. As the
original goal of our work is to build a succinct proof system for the zk-EVM specified in [10], this compiler
approach has numerous benefits. An important one is that it allows specifying and implementing batching
and optimization techniques that would be significantly more complex otherwise. While the sub-protocols
we employ are not new, the succession of steps it follows is endemic to our work. The main feature of our
compilation steps (Arcane and UniEval) is that it yields a single-point evaluation PIOP, allowing us to use
the output of the compiler alongside a non-homomorphic polynomial commitment (i.e., Vortex) to create an
efficient argument system.
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Vortex, a Batchable Polynomial Commitment (BPC) A polynomial commitment allows a prover to
open the committed polynomial over a given point. A Batchable Polynomial Commitment (BPC) allows the
same type of opening for a batch of committed polynomials on the same point. In Section 7, we present
Vortex, an adaptation of Ligero [6] into a BPC scheme inspired by the works of Brakedown [32], batch-FRI
[18], and RedShift [36].

Similarly to Brakedown, our BPC does not rely on the FRI protocol and it has a proximity check and an
evaluation check where the proximity check is indeed the Ligero test. The main difference from Brakedown is
the security regime we are dealing with. Based on encoding schemes, one can imagine two security regimes:
the unique decoding regime that is the counterpart for the standard binding and the list decoding regime
leading to a relaxed binding property where the commitment can be opened to a fixed list.

Working in the list decoding regime requires a new design. Indeed, the evaluation protocol of Vortex is
different from the one in Brakedown, where we combine the proximity check and evaluation check as the
evaluation protocol. More precisely, in Brakedown, the proximity check can be run independently of the
evaluation point, while in Vortex the proximity check is run after seeing the evaluation point. Working in the
list decoding regime also brings trade-offs between efficiency and soundness-error. In particular, if the field
is large enough, the efficiency gain compared to the loss in the soundness-error becomes of practical interest.
We show that a polynomial commitment scheme in the list decoding regime (Vortex LPC) is sufficient for
the compilation of PIOP to an argument of knowledge (AoK).

From the instantiation point of view, for hashing the columns, our Vortex scheme relies on a hash function
based on the Ring-SIS assumption [39] where we also apply an MIMC hash over the output of the SIS-
hash. The first instance of Ring-SIS-based hash functions was introduced in [39]. It is a SNARK-friendly
hash function with a linear structure defined over the ring of polynomials of degree less than d, as Ha(s) =∑
ai(x)si(x) ∈ R for R = Zq(X)/Xd + 1. Another advantage of using such a hash function is the possibility

of using lookup arguments if the hash computation is not computed on the verifier side. To encode the
rows, we use the (systematic) Reed-Solomon encoding [43]. Vortex commitments have size O(

√
|M |), prover

time O(|M | log |M |) and verification time O(
√
|M |). The reason our proving time is not linear is due to

the use of the Reed-Solomon error-correcting codes (whose encoding algorithm requires FFT). Orion and
Brakedown [49, 32] achieve linear-time prover algorithms thanks to dedicated and optimized linear-time
encodable erasure codes. Although we believe our techniques could be adapted to their erasure codes, we
motivate our choice with the fact that Reed-Solomon codes are fast enough for our needs and nicer to work
with for recursion. We leave this as an area of optimization to be explored in later versions of this work.

SNARK via Self-Recursion Since Vortex is interactive and has verifier complexity and proof size O(
√
n),

using the above compilation technique does not yield immediately a SNARK. Indeed, obtaining a SNARK
requires polylogarithmic proof size and non-interactivity. To work around this problem, we use a technique
named self-recursion. It works by re-arithmetizing the Vortex verifier in the Wizard-IOP framework. The
self-recursion reduces the size of the proof by a square root every time it is applied. After O(log logn)
steps of recursion, we obtain a protocol with O(log logn) proof size and verification time. The proof can
then be made non-interactive in the random oracle model (ROM) using a suitably chosen hash function.
Thereafter, the resulting SNARK can optionally be compressed further to O(1) using existing proof systems
such as Groth16[33] or Plonk[7] whose concrete proof sizes are small and verification times are efficient. The
advantage of combining self-recursion together with simple recursion is that it greatly reduces the prover
time compared to going for a simple recursion with Groth16 or Plonk. One might say that self-recursion
compresses the proof loosely but fast, while recursion with pairing-based SNARKs compresses the proof
tightly but slowly.
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1.2 Overview of Vortex and its Self-Recursion

Vortex Similarly to Brakedown [32] and Orion [49], the Vortex construction is simple and can be succinctly
described. Assume that P and V are the prover and the verifier. First, we elaborate on the commitment
procedure. The prover commits to a matrix W in two steps row-encoding and column-hashing. P starts
by encoding the rows of the matrix using a Reed-Solomon code to obtain a new matrix W ′ (namely, row-
encoding). The prover then hashes each column of W ′ and sends them to the verifier as its commitment
(namely, column hashing).

The protocol is then followed by two other phases, proximity check and evaluation check. In the proximity
check, the prover sends a vector u, then the prover and the verifier apply the Ligero proximity test over the
committed matrix and the encoding of vector u (the encoding is called u′). The Ligero test proves that if
the random linear combination of rows is close to codeword u′ then all the rows are close to a codeword.

Setting the distance to the unique decoding radius, there is only one polynomial close to the function
embedded in the matrix. Finally, the evaluation check guarantees that the evaluation of the polynomial
(obtained from the proximity check and unique decoding radius) over a given point x is correct.

The above description is the same as the polynomial commitment in Brakedown [32] and Orion [49]. The
main difference between Vortex and Brakedown is the evaluation protocol, where we combine the Proximity
check and evaluation check as the evaluation protocol. More precisely, in Brakedown, since we are in the
unique decoding regime, the proximity check can be run independently of the evaluation point, while in
Vortex the proximity check is run after seeing the evaluation point.

For the instantiation of the hash used on the columns, we use Ring-SIS hashing on the columns of W ′,
and we then apply MIMC over the SIS hash of the columns. Finally, a Merkle tree (based on MIMC) is used
to achieve a constant-size commitment. SIS hashing can be seen as a variant of the SWIFFT hash function
[39]. Its internal machinery is summed up in the following. Let v ∈ Fm be a vector to hash, and R be a
polynomial ring. First, the bits of v are rearranged in a vector vb of limbs of log b bits each (b is a parameter
of the hash function). In turn, vb is embedded in a vector of polynomials w = (w1, w2, · · · , wm) ∈ Rm such
that each entry of vb corresponds to a coefficient in w in order. Given a randomly sampled public hashing
key A = (A0, A1, · · · , Am) ∈ Rm, the digest hv is obtained as the coefficients of the polynomial

hv(X) =
∑

i

Ai(X)wi(X)

.

Self-Recursion Vortex itself is transformed into a PIOP, and in order to convert this PIOP into a SNARK,
we develop a technique that we call self-recursion. At a very high level, we design a Wizard-IOP for verifying
Vortex proofs. This Wizard-IOP can be once again compiled through the Arcane compiler and Vortex. As
a result, we obtain a shorter proof at the cost of a small overhead on the prover time. This operation can
be repeated, and after O(log logn) iterations, we obtain a short interactive proof that can be compiled into
a SNARK using the Fiat-Shamir transform. Our self-recursion technique relies heavily on the fact that the
Vortex verifier uses the Ring-SIS hash for hashing the columns and the Reed-Solomon code to encode the
alleged evaluations u. Indeed, these two operations are amenable to cheap arithmetization and probabilistic
tests (due to their linear structures). Thus, they allow a very efficient recursion procedure.

2 Preliminaries

Here we define the syntax of our main building blocks; SNARKs and polynomial commitment schemes (PCS).

2.1 Argument of Knowledge

We define Rλ to be a relation generator (i.e., R ← Rλ) such that R is a polynomial time decidable binary
relation. For R(x,w), we call x as the statement and w as the witness. The set of true statements is denoted
by LR = {x : ∃ w s.t. R(x,w) = 1}. The definitions in this section are mainly borrowed from [33].

5



Definition 1 (Non-Interactive Arguments for Rλ). A Non-Interactive Argument for Rλ is a tuple of
three p.p.t. algorithms (Setup,Prove,Verify) defined as follows,

– σ ← Setup(R): on input R ← Rλ generates a reference string σ. All the other algorithms implicitly
receive the relation R.

– π ← Prove(σ, x, w): it receives the reference string σ, statement x and witness w. If R(x,w) = 1 it
outputs a proof π.

– 1/0 ← Verify(σ, x, π): it receives the reference string σ, the statement x and the proof π and returns 0
(reject) or 1 (accept).

Definition 2 (Completeness). Completeness says that given a true statement x ∈ LR, the prover can
convince the honest verifier; for all λ ∈ N, R ∈ Rλ, x ∈ LR:

Pr [1 = Verify(σ, x, π) : σ ← Setup(R), π ← Prove(σ, x, w)] = 1

Definition 3 (Soundness). An argument of knowledge is sound if it is not feasible to convince the verifier
of a wrong statement. More formally, for any non-uniform p.p.t. adversary A we have,

Pr[1 = Verify(σ, x, π) ∧ x /∈ LR : R ← Rλ, σ ← Setup(R), (x, π)← A(σ)] ≈ 0

Definition 4 (Knowledge-Soundness). Knowledge-soundness strengthens the notion of soundness by
adding an extractor that can compute a witness from a given valid proof. The extractor gets full access
to the adversary’s state, including any random coins. Formally, for any non-uniform p.p.t adversary A there
exists a non-uniform (expected polynomial time) extractor XA such that:

Pr
[
1 = Verify(σ, x, π) ∧R(x;w) = 0 : R ← Rλ, σ ← Setup(R),

((x, π), w)← (A ∥ XA)(σ)

]
≈ 0

The advantage of the adversary in the knowledge-soundness game (the probability on the left side) is
called knowledge-error.1

Compared to a non-interactive argument of knowledge, a succinct non-interactive argument of knowledge,
or SNARKs, adds a requirement of succinctness. In short and informally, the proof and the verifier time must
be small compared with the witness of the relation being proven. We adopt a broad notion of succinctness
by only requiring the polylogarithmic proof size and verifier runtime in the witness size.

Definition 5 (Succinctness, SNARK). A non-interactive argument system X for a relation Rλ is suc-
cinct if the size of the proof π produced by the prover and the run-time of the verifier is O(polylog|w|), for
all relations R drawn from Rλ. A non-interactive argument system with this property is called SNARK.

2.2 Roots of unity and Lagrange polynomials

Let Fq be a finite field of prime order q. We call the roots of the polynomials Zk(X) = Xk − 1 the k-th
roots of unity. Together, they form a multiplicative subgroup Ωk of F∗

q , provided that k|q − 1. We say that
Zk(X) = Xk − 1 is the vanishing polynomial of Ωk.

We assume k is a power of 2, for each subgroup Ωk′ of Ωk (thus, k′|k), we have ω′ = ωk/k′ where ω and
ω′ are the generator of Ωk and Ωk′ (res.).

For any subgroup Ωk, the collection of polynomials given by (Lω,Ωk
(X))ω∈Ωk

forms the Lagrange basis
for polynomials of degree k − 1 where,

∀ω ∈ Ωk : Lω,Ωk
(X) = ω(Xk − 1)

k(X − ω)
1 Although we only use the notion of knowledge-soundness throughout this work, a more general notion exists:

witness-extended emulation where the extractor outputs an (indistinguishable) transcript of the protocol.
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Let v = (v1, · · · , vk) be a vector of Fk. We call v(X) the polynomial encoding v and we will often implicitly
refer to a vector and its polynomial encoding with the same notation.

v(X) =
∑
i∈[k]

viLωi,Ωk
(X) = Xk − 1

k

∑
i∈[k]

vi ·
ωi

X − ωi

When k is implicit, we use ω,Ω and Lω instead of ωk, Ωk or Lω,Ωk
for convenience in our notations.

Definition 6 (Domain Selector). We define the (sub)domain-selector as the polynomial Zn,kn(X) that is
1 over the subgroup Ωn of Ωnk, and zero everywhere else. Namely, we have Zn,kn(X) =

∑n−1
j=0 Lωkj ,Ωkn

(X)
and ω (res. ωk) being the generator of Ωnk (res. Ωn).

2.3 Polynomial Commitments

Definition 7. A polynomial commitment is a tuple of p.p.t. algorithms (Setup, Commit, Open) where,
– pp← Setup(1λ, t) generates the public parameters pp suitable to commit to polynomials of degree < k.
– C ← Commit(pp, P (X)) outputs a commitment C to a polynomial P (X) of degree at most k using pp.
– 1/0 ← Open(pp, C, x, y;P (X)) is a (public-coin) protocol between the prover and the verifier where the

prover aims to prove the relation;

R = {(x, y, C;P (X)) : P (x) = y, C = Commit(pp, P (X))}

In this protocol, the prover’s input is (P (X), x, y, C, pp) and the verifier’s input is (x, y, C, pp). The output
of the protocol is 1 if the verifier accepts the proof and 0 otherwise.

We use the definition of the correctness and the knowledge-soundness from [7].

2.4 IOPs and Polynomial-IOPs

An interactive oracle proof (IOP) for a relation R(x,w) is an interactive proof in which the verifier is not
required to read the prover’s messages in their entirety; rather, the verifier has oracle access to the prover’s
messages, and may probabilistically query them. In polynomial IOP (PIOP) the messages are polynomials
and the verifier has oracle access to the evaluation of polynomials on the queried points.

2.5 Reed-Solomon Codes

Definition 8 (Linear Code [49]). A linear error-correcting code with message length k and codeword
length n with k < n is a linear subspace C ⊂ Fn, such that there exists an injective mapping from message to
codeword EC : Fk → C which is called the encoder of the code. Any linear combination of codewords is also a
codeword. The rate of the code is defined as ρ := k/n. The distance between two codewords u, v is the number
of coordinates on which they differ, denoted as the Hamming distance ∆(u, v). The relative (or fractional
Hamming distance) is defined as δ(u, v) = ∆(u, v)/n. The minimum distance is d := minu,v ∆(u, v).

Definition 9 (Reed-Solomon Code). Consider positive integers n, k, a finite field F, and a set D ⊆ F∗

with |D| = n (the set D will be referred to as the domain). The Reed-Solomon code over F with domain D
and the message space of size k is defined as:

RS[F, D, k] := {p(x)|x∈D : p(X) ∈ F[X],deg(p) ≤ k},
By p(x)|x∈D, we denote the set of evaluations of p over the set D and n = |D| is called the codeword

size. For v ∈ D and p ∈ RS[F, D, k], we will also use the notation p|v to refer to p(v).
By F<n[X], we denote the set of polynomials of degree less than or equal to k, i.e.

F<k := {p(X) ∈ F[X] : deg(p) ≤ k},
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Distance to a Reed-Solomon Code Consider arbitrary f ∈ F|D|. The distance of f from the set V =
RS[F, D, k] is defined as ∆(f, V ) := minv∈V ∆(f, v) (and similarly for relative distance).

2.5.1 Reed-Solomon Codes over Roots of Unity In this work, we choose the domain set D = Ωn as
the set of nth roots of unity. Consider a fixed generator ω of Ωk. Then D = {ωi}n−1

i=0 and we will associate
polynomial evaluations p(x)|D, called codeword space, with vectors (p(ω0), p(ω1) . . . p(ωn−1)), ordered by
the natural ordering induced by the exponents of generator ω.

2.6 A General Security Proof for Sub-Protocols

Apart from the security of Vortex that would be discussed in a separate work, all the sub-protocols that
we use (particularly the one for the self-recursion) are secure following the same reasoning. This reasoning
heavily depends on Schwartz-Zippel Lemma.

Lemma 1 (Schwartz-Zippel Lemma). Let P (X) be a non-zero polynomial of degree d over a field F. Let
S be a finite subset of F and let r be selected at random from S. Then

Pr
r∈F

[P (r) = 0] ≤ d/|F|

Throughout the paper, we always represent the sub-protocols in the PIOP framework. This would allow
us to argue their security in a general manner.

PIOP and its Knowledge-Soundness. The PIOP is knowledge-sound if there exists a probabilistic
polynomial time algorithm E (called the extractor) which interacts with the prover on a statement x and it
has the capability: to run the prover for a specified number of steps, inspect its state and rewind it repeatedly
to a previous state. If the prover interactions cause the verifier to accept, the extractor is able to recover a
witness w such that R(x,w) = 1.

Remark Generally, in many other protocols (and the ones we employ) the PIOP relation is reduced to global
constraints which are evaluated at random points. The resulting protocol is secure if the global constraints
are satisfied over the random points and if the size of the finite field is large enough (to have negligible
probability d/|F| in the Schwartz-Zippel Lemma, |F| should be large). Note that the final protocol is made
non-interactive using the final Fiat-Shamir transform and its soundness is not statistical but computational.

It is well-known that a PIOP can be transformed into a concrete AOK by replacing the oracle with a
polynomial commitment. For such a resulting protocol, we have:

Lemma 2 (Knowledge-Soundness of AOK). If the PIOP and the polynomial commitment are knowledge-
sound, then the AOK is knowledge-sound.

Putting everything together, all the sub-protocols can be proven to be knowledge-sound through this
general approach: first the reduction of relations to some global constraints, then the Schwartz-Zippel lemma
is applied to guarantee that the constraints are satisfied, and finally the oracle of the PIOP is replaced by a
polynomial commitment.

2.7 List Polynomial Commitment

We now present the syntax and security of the list polynomial commitment. The definitions here follow the
ones from Redshift ([36]) but extended to a batched setting. Our presentation closely follows the formalization
of [20, 7]. We considered batched openings of multiple polynomials. One difference is that we only consider
openings of all these polynomials at the same evaluation point.

The list polynomial commitment has a relaxed binding property, each commitment corresponding to a
list of polynomials that is determined by a distance parameter. The commitment can be opened to any of
the polynomials belonging to the list. Moreover, the polynomials in the list will jointly agree on the same
agreement set.
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Definition 10 ((Batched) List Polynomial Commitment). A list polynomial commitment scheme is
a triplet (Setup,Commit,OpenEval) that is defined w.r.t. a linear code, distance parameter θ and domain D.
It satisfies:

– Setup(1λ, k) generates public parameters pp (a structured reference string) suitable to commit to polyno-
mials of degree < k. Implicitly, the parameters for encoding are included in pp.

– Commit(pp, f1(X) . . . fn(X)) outputs a commitment C to functions f1(X) . . . fn(X) ∈ F[X]
– OpenEval is an IOP between a prover PPC and a verifier VPC, where the prover is given n functions
f1(X) . . . fn(X) ∈ F[X] and attempts to convince the verifier of the following relation:

∃A ⊂ D s.t |A| ≥ (1− θ) · |D| and ∃(P1 . . . Pn) ∈ (F<k[X])n s.t.(
Pi(x) = yi ∧ fi(a) = Pi(a)|a∈A for all i ∈ [n]

)
∧

∧ C = Commit(pp, f1 . . . fn)

where both parties receive the following:

• security parameter λ, degree bound k and batch size n, such that k, n = poly(λ).
• The public parameters pp, where pp = Setup(1λ, k).
• An evaluation point x and alleged openings y = (y1 . . . yn).
• Alleged commitment C for functions f1(X) . . . fn(X).

In addition, the verifier receives oracle access to evaluations of fi over D.

Definition 11 (Completeness of a List Polynomial Commitment Scheme). We say that a polyno-
mial commitment scheme has (perfect) completeness if for any security parameter λ, any integers k, n =
poly(λ), any polynomials P1(X) . . . Pn(X) ∈ F<k[X], arbitrary evaluation point x and alleged opening y, if
C = Commit(pp, P1(X) . . . Pn(X)) and Pi(x) = yi for all i ∈ [n] then an interaction of (PPC, VPC) where
PPC runs on the aforementioned parameters will result in the verifier accepting with probability one.

Definition 12 (Knowledge Soundness in the Random Oracle Model). There must exist a PPT
extractor E such that for every PPT adversary A and arbitrary degree k = poly(λ), the probability that A
wins the following game is negligible, where the probability is taken over the coins of Setup, A and VPC.
Moreover, the extractor has access to the random oracle queries of A:

– A receives degree k and pp = Setup(1λ, k). A outputs C.
– E receives the commitment C and inspects the random oracle queries made by A in the previous step

and recovers f1(X) . . . fn(X) ∈ [X].
– E applies the efficient list-decoding algorithm on all fi simultaneously to obtain list L, defined as:

L =
{

(P1(X), . . . , Pn(X)) ∈ (F<k[X])n s.t. ∃A ⊂ D, s.t. |A| ≥ |D| · (1− θ)
and fi(a) = Pi(a)|a∈A

}
– A outputs an evaluation point x and claimed openings y := (yi)i.
– A interacts with the VPC verifier of the OpenEval algorithm. The inputs of A for this subprotocol are C,
x and y.

– The extractor may check consistency and output a set S of witnesses, where S ⊆ L.
– A succeeds if VPC accepts and there exists no tuple (P1(X) . . . Pn(X)) ∈ L such that Pi(x) = yi for all
i ∈ [n].
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3 Linea’s Proof System Overview
This section outlines the structure of the prover’s stack of Linea and provides a high-level description of
its subcomponents. Linea’s proof system is designed to ensure the integrity and efficiency of transactions
within the Ethereum Virtual Machine (EVM) through a multi-faceted approach involving several specialized
circuits and proof systems. Each circuit plays a critical role in validating different aspects of transaction
execution and data compression, culminating in an aggregated proof. Below, we detail the components of
the proof systems and their respective functionalities. The current document does not detail the compression
proof and aggregation proofs beyond the current section and is essentially focused around the execution
proof system.

3.1 Execution proof
The execution proof is pivotal in validating the correct execution of transactions within the EVM. It employs
a proof structure that integrates the work Vortex [13] and [12] and Plonk [7]. It represents the largest part of
this work and is comprehensively described in Section 5, Section 6 Section 7, Section 8 and Section 9). The
finality of this process is a Plonk proof based on the BLS12-377 curve. As an outline, the execution proof is
generated from a set of execution traces satisfying the constraints of alex : ref and from a set of EVM state
accumulator proofs (see Appendix C) justifying the state-root transition allegedly from a state-diff indicated
in the traces. The execution proofs statement includes:

– knowledge of EVM traces satisfying the arithmetization constraints
– correctness of the state-accumulator traces and their consistency with the EVM traces.
– the correctness of the execution of the precompiles, Keccak and Secp256k1 ECDSA verifications.
– the consistency of the public inputs of the proof with the above (state root hash transition, encoded

transactions, timestamps, bridge-messages
This is accomplished by following a multi-step cryptographic compilation process

1. A dedicated protocol in the Wizard-IOP model described in Section 4 is constructed specifically for the
relation of the execution proof.

2. The Wizard-IOP protocol is compiled down to a SNARK following the steps described in Section 5,
Section 6 Section 7, Section 8 and Section 9. This is achieved by repeating a cycle of self-recursion
compilation.

3. The resulting SNARK is recursively verified within a Plonk proof to prepare it for the aggregation step

3.2 Compression proof
Complementary to the execution proof, the Compression Circuit focuses on verifying the effective compression
of data streams, which constitute the inputs for the EVM execution circuit. This verification is crucial
for ensuring that the compressed data, once submitted on the Ethereum blockchain, can be accurately
decompressed to reveal the essential inputs for the execution circuit’s validation process. The Compression
Circuit utilizes the Plonk proof system also based on the BLS12-377 curve, to generate proofs of correct data
compression.

3.3 Finalization (Aggregation) proof
At the core of Linea’s proof system lies the Finalization (or Aggregation) Circuit, which serves as the linchpin
for recursively verifying proofs generated by N execution circuits and M compression circuit instances. This
circuit embodies the primary assertion of Linea’s prover system and is the only circuit subjected to external
verification. It leverages a composite proof system that combines several Plonk circuits on the BW6, BLS12-
377, and BN254 curves. This strategic use of 2-chained curves—BLS12-377 and BW6—enables efficient
recursion of proofs. The final proof is formulated on the BN254 curve, chosen for its efficient verifiability
on Ethereum, facilitated by the availability of precompiles. The aggregation proof is also responsible for
“connecting” the public inputs of all proofs and assessing their consistency the public inputs of the final
aggregation proof.

10



4 Wizard IOP

The prover P of an IOP protocol[15] provides oracle access to (possibly large) messages to a verifier V.
The verifier can then send certain kinds of queries (from a small family) to the oracle. Several variants of
IOP exist in the literature. In particular, polynomial-IOPs [40], [25], [7] specify a model in which all prover
messages are viewed as polynomials and the verifier may make queries to evaluations of these polynomials
at random points of the verifier’s choice. More recent works study tensor-IOP [21] protocols in which the
verifier is granted the right to query scalar-products of the prover’s messages (seen as vectors over a field)
by random vectors with the restriction that these vectors must have a tensor structure.

Wizard-IOPs specify a model that extends this perspective on IOPs. The prover sends oracle access to
vectors (columns) over a given field with a prespecified size and the verifier is allowed to perform queries
chosen from a wide class: inclusion, permutation, inner-product, global-constraints. The terminology column
is also used to denote prover messages or offline precomputed vectors of values. As we explain later in this
section, queries can involve several columns or “abstract references” to them. We elaborate on the notion
of “abstract references” later, but to give an initial idea: taking the “cyclic shift” of a column v would be
considered an “abstract reference”. The backbone idea behind Wizard-IOP is that it allows us to specify
ever more complex protocols in the simplest possible way while intermediate protocol design techniques
(such as proving a lookup relation or a permutation relation) are treated as automatable compilation steps.
Subsequently, instead of mentally building modular protocols from the bottom up using the notion of uni-
variate queries as atoms of a more complex system, the framework of Wizard-IOP allows specifying protocols
with a top-down approach. We start from an abstract protocol and work out an optimized polynomial-IOP
throughout the steps of the Arcane compiler Section 5. While this simplifies protocol specification and secu-
rity analysis, it also allows to automate optimizations and batching techniques. The zk-EVM arithmetization
specified in [10] involves hundreds of columns and thousands of constraints. It would be extremely tedious
to manually unfold all the sub-protocols and optimization techniques required in order to present a concrete
polynomial-IOP for this arithmetization. However, since their description is written in a formalism closely
matching the Wizard-IOP model, we can almost directly transpile their arithmetization into a Wizard-IOP.
Another advantage to reasoning in terms of compilation steps rather than sub-protocols is that it facilitates
maintenance processes. Assuming that a new (purely hypothetical) batching technique for “range-check” is
discovered and improves the prover’s runtime by a factor of 2, then we could simply add it to the compiler
and this will propagate on every Wizard-specified protocol. Similarly, if a vulnerability is found in one of the
techniques, fixing a compiler step will fix all protocols using it without any risk of forgetting any part.

4.1 Random coins

The Wizard-IOP framework allows declaring random coins as part of the protocol. As in public-coin protocol,
random coins are random messages sent by the verifier to the prover. Registered coins can then be used in the
following parts of the protocol. The framework offers two types of coins: (1) random field: field elements on
a field of size approximately 256 bits (2) random integer vector a list of integers of bounded size, usually
representing random positions in a vector.

4.2 Columns

Columns are the cornerstone of the Wizard-IOP framework. They symbolically represent a vector of values
used as part of the protocol in a broad sense. They can be used to denote portions of the witness, messages
sent to the verifier, portions of the proving or verifying key or intermediate committed values. Columns are
declared as part of the protocol definition along with their sizes (restricted to be a power of two) and their
visibility (e.g. whether the column is meant to be sent to the verifier, or to be part of the witness).

The framework allows the following column’s visibilities:
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– Ignored: this marks the column as ”already compiled” and being disregardable by the compiler. They
still exist in the protocol but stay purely internal to the prover. An example is: when “Committed”
columns are eventually committed to, the compiler sets the “Ignored” tag on the column to indicate
there is no need to commit a second time to it.

– Committed: this marks the column as being sent to the oracle. Implicitly, this indicates the intent to
commit to this column during the compilation phase and to keep its content as part of the witness or an
intermediate value visible only by the prover.

– Proof : this marks the column as being sent to the verifier directly
– Precomputed: this indicates that the column’s assignment is (1) internal to the prover, (2) destined to

be committed to, (3) known at compile time.
– Verifying-key: the marks the column’s assignment as visible by the verifier and known at compile time.
– Verifier-defined: this indicates that the column is entirely constructible by the verifier from other

values that the verifier has at its disposal. For instance, a column constructed by stacking the multiple
of several random coins would bear this tag.

4.2.1 Abstract references Abstract references are a useful way to refer to vectors directly derived from
pre-existing committed columns. These operators can be combined and used as the object of a query. For
instance, one might declare a global constraint involving a cyclically shifted version of a committed column
v rather than on the entirety of the positions of v. Importantly, abstract references are neither committed
columns nor predicates about columns but can be seen as a way to make queries about committed columns
more expressive. Abstract references do not have a status on their own as they may involve several queries
having a different status in the protocol.

Expression: defined as a polynomial expression involving columns of the same size and possibly scalar
values.

Cyclic shifting: Given a vector v and an integer k (possibly negative), we return a cyclically-shifted version
of v by k elements. We may use the notation v ≪ k to refer to the resulting vector.

4.2.2 Verifier defined columns Verifier-defined columns are columns that are constructed from other
values known from the verifier. They are typically tiny or have a very sparse structure.

– Periodic sampling: A periodic sampling column is a column repeating a sequence of the form 1, 0, 0, 0, . . .
where the pattern size is a power of two.

– Position indicatrice: A column that contains zeroes in every position except for a prespecified one.
– Constant column: A column whose position are all equal to a prespecified constant
– Integer vector coin: A column built by taking the values of a random integers vector coin, padded

with a constant value.
– Stacked values: A column built by stacking values known by the verifier (including columns) padded

with a constant.

4.3 Available queries

In the following, we list and describe the queries available to the verifier V in the wizard-IOP framework.

Range check Let B be a constant bound. The query is made over a column v, and the oracle responds with
1 if and only if all the entries vi of v satisfy 0 ≤ vi < B. We denote the range checks as, “Range” : v < B.

Inclusion check (lookup) Given two lists of columns (or tables) S and T , we check that all rows in S should
be included among the rows of T , ignoring multiplicities. We denote the inclusion query as, “Inclusion” :
S ⊂ T .

Inclusion queries also support additional features:
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– Fragmented tables: The table T can be supplied in the form of several tables with the same number
of columns. In this case, the query is understood as holding for the union of the two tables.

– Conditional inclusion: In addition to S and T , the user can provide a query filter F . The inclusion
constraints will be considered as ”void” in positions where the filter F is zero.

Fixed permutation check Given two lists of columns (seen as tables) and any (imposed) fixed permutation
σ, the oracle checks if the ith row in S must equal the row at index σ(i) in T for all rows i of S. If and only if
that is the case, the oracle returns 1, otherwise 0. The tables S and T must have the same number of rows.
We denote a fixed permutation check as, “FixedPermutation” : S ∼σ T .

Fixed-permutation queries also support optional features:

– Fragmented tables: The table T and S can be supplied in the form of several tables with the same
number of columns. In this case, the query is understood as holding for the union of the two tables.

Permutation check Given two tables (e.g. two lists of tables) S and T , all rows in S should be included
among the rows of T (and vice-versa), accounting for multiplicities. Thus, S and T must have the same
number of rows. Note that in fixed permutation queries, σ is imposed. Here the oracle accepts if a permutation
σ exists. We denote a permutation query as, “Permutation”: S ∼ T .

Permutation queries also support optional features:

– Fragmented tables: The table T and S can be supplied in the form of several tables with the same
number of columns. In this case, the query is understood as holding for the union of the two tables.

Inner product query Given two columns A and B, as well as a scalar c, the oracle returns 1 if and only
if ⟨a|b⟩ = c. We use the notation “InnerProduct” : ⟨a|b⟩ = c to denote the declaration of a query within a
protocol or sub-protocol.

Local constraint The verifier evaluates an arithmetic equality involving possibly random coins, particular
positions of columns or the result of other queries and returns 1 if and only if the equality is satisfied. The
position at which columns are pointed to must be fixed as part of the protocol definition.

For example, let u, v be two columns to which we have oracle access. We may send the local constraint
query “Local”: u[0]−2v[1] == 0 to ask the oracle if the first entry of u equals the double of the second entry
of v. We may conveniently express local constraints over polynomials (rather than vectors) over fixed points.

Global constraint Given a k-variate arithmetic expression C whose (total) degree should be reasonably low
and a list of k columns v1, · · · , vk of the same size n and possibly other scalar values arising in the protocol
(random coins, query response, . . .). The oracle returns 1 if and only if for all i, C(v1,i, · · · , vk,i) = 0.

For instance, the global constraint “Global”: Shift(u, 1) − u = 0 asserts that “all” the entries of u are
equal to the next consecutive entry of u. Thus, this constraint asserts that all entries of u are equal. Again,
we may express a Global constraint based on polynomials (rather than vectors) when convenient.

Global constraints also support the following optional feature:

– Bound cancellation: unless specifically stated otherwise, Global constraints are cancelled implicitly at
positions where the cyclic shifts wraps around. In the above, example the Global constraint would be
ineffective on the last row. This behaviour is motivated by the fact that this is what is intended most of
the time.
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Local position opening: Given a column A and a position k indexing a row of the column A, the oracle
returns y = Ak

Univariate evaluations (UniEval) For a column v of size n, let the polynomial v(X) evaluate to vi on
a subgroup of n-roots of unity. The oracle returns a univariate evaluation of v(X) over an unspecified point
(possibly a random point) chosen by the verifier. For convenience, we will usually talk about one univariate
query for multiple polynomials to let the compiler know these are queried at the same point. Note that they
are not natively supported in the initial protocol definition. The reason is that (1) Lagrange basis evaluations
are not nicely compatible with how the columns are segmented in the splitting compiler in Section 5 (2) the
use cases we know of for this are niche (although far from irrelevance). Nonetheless, it is still possible to
emulate Lagrange basis evaluation in the Wizard-IOP framework without using the Univariate query. We
refer the reader to section Appendix A.2 for an example.

5 The Arcane Compiler: Polynomial-IOP from Wizard-IOP

The Arcane compiler is a cryptographic compiler that converts Wizard Interactive Oracle Proofs (IOPs)
into Polynomial IOPs through a series of compilation steps. Each step is designed to perform either minor
optimizations or apply reduction techniques to simplify the protocol by reducing the variety of queries it
uses. The process begins with substituting the range checks in favour of inclusion checks, which are then
further simplified into local and global constraints. The process continues substituting queries for others
until it ultimately yields a Polynomial IOP, where the only remaining queries are of type “univariate”. The
compilation is performed in such a way that the protocol retains its functionality throughout the compilation
phases only suffering minor polynomial statistical soundness losses.

The Arcane compiler also addresses the challenge of working with columns of heterogeneous sizes and
outputs a P-IOP whose oracle-message (committed columns) are all of the same size. This is achieved thanks
to two complementary new techniques: ”column splitting” and “column sticking”. The former works by seg-
menting large columns into smaller ones preserving the sequentiality of the cells within the segments. The
latter performs the opposite operation, by interleaving small columns into larger ones. An important benefit
of this approach is its compatibility with statistical optimizations. Indeed, it turns out the arithmetization
of [10] uses columns as CPU registers and prepends the “active” rows (i.e. corresponding to actual EVM
execution traces) with padding values so that the resulting columns all have their target sizes. This results
in constant column assignment for the corresponding segments and these can be tracked at runtime and lead
to practical optimizations for the prover.

The organization of the section follows the compilation sub-routines in order:

– Section 5.1 specifies the compilation rules to simplify the range-checks.
– Section 5.2 details the above-mentioned column-splitting phase.
– Section 5.4 explores our techniques for compiling the inclusion queries using methods largely inspired

from [34].
– Section 5.5 and Section 5.6 discuss the reduction of the fixed-permutations and the permutation con-

straints, highlighting techniques inspired from [9] and [7].
– Section 5.7 details the compilation of the inner-product queries, presenting en-route an efficient batch

argument for inner-products.
– Section 5.8 discusses the aforementioned “column sticking” compilation phase.
– Section 5.11 expands on the techniques used of the compilation of the global constraints, initially pre-

sented in [7]
– Section 5.12 concludes the Arcane compilation ironing out all the remaining artefacts into proper uni-

variate queries.
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5.1 Reduction of the range checks

We opt for a simple method for compiling range checks. During a preprocessing phase, we send oracle access
to a column b = (0, 1, 2, · · · , B − 1) (e.g. we tag it as “precomputed”)for each bound B appearing in the
input protocol. Then, all range-checks, “Range” v < B, are converted into inclusion checks, assessing if all
entries of v are entries of b regardless of the positions or multiplicity.

5.2 Splitting the large columns

The splitting compilation step specifically addresses a challenge that we encounter while working with the
EVM arithmetization: we are working with columns of heterogeneous sizes and the polynomial commitment
Vortex expects a regular matrix to commit to. The splitting step is set with a target column length and its
role is to cut all the columns whose length exceeds the target length. To illustrate, say we have a column
A of size 220 and we have a target size of 215. The splitting step cuts A in 32 consecutive column segments
A1, . . . A32 each representing a sequence of 215 consecutive values of A and then replaces all occurrences of
A in the original protocol by occurrences of A1...32, namely in all queries objecting to A.

We detail the replacement procedure for each type of query and abstract references:

– Inclusion check: When A is part of the “including” side of the relation, the query is replaced by an
equivalent one using the fragmented table feature over the segments A1...32. When A is on the “included”
side of the query, then the query is replaced by multiple queries, one for each segment.

– Permutation and fixed-permutation checks: the query is replaced by an equivalent one using the
fragmented table feature over the segments A1...32

– Inner product checks: the query is replaced by one equivalent query for each segment. The verifier
checks that the sum of the alleged values for each segmented query matches the alleged value for the
original one.

– Local openings and local constraints: The query is replaced by an equivalent one pointing to the
relevant segment storing the requested position on the original column.

– Global constraints: This is the tricky bit. Naively replacing the constraint by a sequence of equivalent
ones on each segment is unfortunately not sufficient. When the original constraints refer to a cyclically
shifted version of an original column, applying the same shifting over the segment would cause boundary
issues. To remediate, we cancel the constraint on the segments boundaries and add a “stitching” local
constraint to cover the cancelled positions.

Similarly, another set of technicalities arises when considering queries referencing columns of type expression
and that these expressions refer to cyclically shifted columns. In this case, the “segmented” version of the
shifted column overlaps two segments of the non-shifted segment. The compiler addresses to this by recon-
structing an equivalent segment for the shifted segment by stitching together cyclic-shifting of the segments
of the underlying column. The stitching operation is employed by using the position indicatrice columns,
noted Ik for position k.

Let A be an original column of size N , split in l segments of size n: A1, . . . Al and let us consider the
reconstruction of the l segments of A≪ m (noted Bi) where m is positive (for negative m substitute m by
N +m). Set q = m//n, r = m mod n and set I[r+1,n) =

∑
p∈[r+1,n) Ip . Bi is constructed as

Bi = (Ai+q ≪ r) + I[r+1,n) ((Ai+q+1 ≪ r)− (Ai+q ≪ r))
= (Ai+q+1 ≪ r) + I[0,r) ((Ai+q ≪ r)− (Ai+q+1 ≪ r))

depending on which one is cheaper to represent.
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5.2.1 Example 1: Lookup Let A and B be two columns of size 8 and 4 respectively and let a query
QL : ‘̀Inclusion” : A ⊂ B. Consider running the splitting on the resulting input Wizard with a splitting size
of 4.

A = (a0, a1, a2, a3, a4, a5, a6, a7)
B = (b0, b1, b2, b3)

The compiler, keeps B as is since it already has the target size. A is replaced by two sub-columns (A1, A2)
of size 4 such that A = A1∥A2. QL is also split into two sub-queries QL,1 and QL,2.

A1 = (a0, a1, a2, a3)
A2 = (a4, a5, a6, a7)

QL,1 = “Inclusion” : A1 ⊂ B
QL,2 = “Inclusion” : A2 ⊂ B

5.3 Example 2: Global constraint with shifting

Let A be a column of size 8 and let QG be a global constraint involving A:

A = (a0, a1, a2, a3, a4, a5, a6, a7)
QG = “Global” : A+ 1 = A≪ 1

As in the previous example, A is split into two sub-columns A1 and A2. The query QG is also decomposed
in two sub-queries QG,1, QG,2. Observe, that the same query as QG applied over A1 and A2 does not work
as it dismisses the constraint between a3 and a4 and introduces erroneous constraints between a3, a0 and
a7, a4. Therefore, we construct faithful images of the two sub-columns of A ≪ 1: (A ≪ 1)1, (A ≪ 1)2 and
the corresponding sub-queries as follows:

We have I{3} = (0, 0, 0, 1) and A1 and A2 as above. Then,

(A≪ 1)1 = (A1 ≪ 1)(1− I{3}) + (A2 <<≪ 1)I{3}

= (a1, a2, a3, a0 × 0) + (a5 × 0, a6 × 0, a7 × 0, a4)
= (a1, a2, a3, a4)

(A≪ 1)2 = (A2 ≪ 1)(1− I{3}) + (A1 <<≪ 1)I{3}

= (a5, a6, a7, a0)

QG,1 = “Global” : A1 + 1 = (A≪ 1)1

QG,2 = “Global” : A2 + 1 = (A≪ 1)2
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5.4 Reduction of the inclusion checks

Our present technique is borrowed from [34] (a.k.a. univariate log-derivative lookups). Let S = (S0, . . . , Sk−1)
and T = (T0, . . . , Tk−1) be two tables and assume a query S ⊂ T is being declared. Mathematically speaking,
the techniques relies on the equivalence that S ⊂ T if and only if ∃M ∈ F|T | such the equality of rational
function

∑ 1
Si+X =

∑ Mi

Ti+X holds. Here, the sums are spanning respectively on the length of S and T . To
test the functional equality, the verifier can make a probabilistic check. Namely, he can test it on a random
point of F instead of testing it for all X ∈ F. The soundness of the technique follows from a variant of the
Schwartz-Zippel lemma holding for rational functions. We begin by describing the protocol in case S and T
consist of only a single column in Fig. 1 and explain step-by-step how the protocol is expanded and optimized
to support every feature.

Inclusion(S, T )

1. The prover commits to a column M with an equal number of rows as T . Which contains the occurrence count of
the entries of T in M .

2. The verifier responds with a random coin field element γ.
3. The prover commits to ΣS a polynomial interpolating the vector of partial sums (ΣS) such that (ΣS)[i] =

(ΣS)[i− 1] + 1
Si+γ

and (ΣS)[0] = 1
S0+γ

.
4. The prover commits to ΣT , interpolating the vector of partial sums (ΣT ) such that (ΣT )[i] = (ΣT )[i− 1] + Mi

Ti+γ

and (ΣT )[0] = M0
T0+γ

.
5. The verifier uses a local opening query to open the last positions of ΣS and ΣT and checks that:

(ΣS)[|S| − 1] == (ΣT )[|T | − 1]

6. “Local” constraint :
(ΣS)[0] = 1

S0 + γ

7. “Local” constraint :
(ΣT )[0] = M0

T0 + γ

8. “Global” constraint :
((ΣS)[i]− (ΣS)[i− 1]) (Si + γ) = 1

9. ‘Global‘ query :
((ΣT )[i]− (ΣT )[i− 1]) (Ti + γ) = Mi

Fig. 1. Compilation of a vanilla inclusion query

When the table has multiple columns, we replace S and T by a random linear combination of the
columns of S and T by powers of a distinct random coin field element α to reduce to an equivalent single-
column case. This substitution only occurs in the construction of Σ{S,T } and the queries, beside that α is
the only addition to the protocol.

Batching queries over the same table Sometimes we want to check the inclusion of multiple columns (or
table) S0, S1, S2, S3, · · ·Sn−1 within the same column (or table). In that case, we can run a protocol variant
that is more efficient than running the lookup technique many times in parallel. The protocol is described
in Fig. 2.

Conditional inclusion: We extend the inclusion functionality to subsets of S and T , where the lookup
function receives as additional arguments two boolean vectors A, B. Consider an ordering on sets S =
(s1 . . . sn) , and T = (t1 . . . tm), and define subsets SA = (si|Ai is true), TB = (ti|Bi is true) and we want to
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Inclusion({S0, S1, . . .}, T )

1. The prover commits to a single M , which is the vector of multiplicities of the elements of T in all
S0, S1, S2, · · · , Sn−1.

2. The verifier responds with a random coin field element γ.
3. The prover commits to ΣS,k for all Sk independently as in the original protocol.
4. The prover commits to a single ΣT , interpolating the vector of partial sums (ΣT ) such that

(ΣT )[i] = (ΣT )[i− 1] + Mi

Ti + γ

(ΣT )[0] = M0

T0 + γ

5. The verifier follows uses a local opening query to open the last positions of each ΣS,k and ΣT and checks that:

(ΣS)[|S| − 1] == (ΣT )[|T | − 1]

6. “Local constraint”: for all k

(ΣS,k)[0] = 1
Sk,0 + γ

7. “Local” constraint :
(ΣT )[0] = M0

T0 + γ

8. “Global” constraint, for all k:
((ΣS,k)[i]− (ΣS,k)[i− 1]) (Sk[i] + γ) = 1

9. ‘Global‘ query :
((ΣT )[i]− (ΣT )[i− 1]) (Ti + γ) = Mi

Fig. 2. Multiple queries over the same column batched over the same T

test that the SA is included in TB . This approach avoids extra commitments to the filtered versions of the
columns. Filters B on T can be dealt with in an efficient, elegant and minimal manner. We modify the T and
S tables as follows: we append the filter B column as a column to the T table (for simplicity, imagine it is
the last column of the modified T table. After appending B to table T , we append a corresponding column
containing only values of 1 to the S-table (this is done using “verifier-defined” constant column equal to “1”,
which avoids introducing an extra commitment). It can be easily checked that the conditional inclusion holds
if and only if an ordinary inclusion holds for the modified tables. Filters on S cannot be dealt with as above.
What we opt for instead is to modify our formulas to take into account the A filter, in a way described in
Fig. 3.

Fragmenting the column T We extend the inclusion query to allow Wizard protocol to specify an inclusion
query where the table T is symbolically represented as the union of the rows of smaller tables T0, T1, . . . , Tn.
In this case, the compiler handles in an analogous way of handling multiple table ways S for a single table
T . Namely, the compiler requires the prover to commit to multiple tables M and ΣT , one for each table Ti.
Each table ΣT,i is individually constrained as ΣT in the vanilla protocol. At the end the verifier compares
the sum of the final value of every of these tables instead of just the final value of the vanilla column ΣT .

5.4.1 Security analysis sketch We initially sketch our analysis for the multicolumn case and a condi-
tional filter on S and then highlight how the analysis can be extended to reflect the soundness of the batched
and fragmented cases. We note t as the number of rows in T and s as the number of rows in S and then n
denotes the number of columns. As highlighted earlier in the section, the predicate of the inclusion query is
equivalent to an equality of rational multivariate functions:
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Inclusion(S, A, T )

1. The prover commits to M , which is the vector of multiplicities of the elements of T in SA (SA is set S filtered
on A).

2. The verifier responds with a random coin γ
3. The prover commits to ΣS , a polynomial interpolating the vector of partial sums (ΣS) such that(

(ΣS)[i]− (ΣS)[i− 1]
)(

Si + γ
)

= Ai

(ΣS)[0] = A0

S0 + γ
.

4. The prover commits to ΣT , interpolating the vector of partial sums (ΣT ) such that

(ΣT )[i] = (ΣT )[i− 1] + Mi

Ti + γ

(ΣT )[0] = M0

T0 + γ
.

5. The verifier checks that
(ΣS)[|S| − 1] == (ΣT )[|T | − 1]

. He obtains the values of (ΣS)[|S| − 1] and (ΣT )[|T | − 1] via two local opening queries.
6. “Local” query :

(ΣS)[0] = A0

S0 + γ

7. “Local” query :
(ΣT )[0] = M0

T0 + γ

8. “Global” query :
((ΣS)[i]− (ΣS)[i− 1]) (Si + γ) = Ai

9. The verier makes a “Global” query :

((ΣT )[i]− (ΣT )[i− 1]) (Ti + γ) = Mi

Fig. 3. Compiling a conditional inclusion query

∑
i∈[t]

Mi

X +
∑

j∈[n] Ti,jY j
=

∑
i∈[s]

Ai

X +
∑

j∈[n] Si,jY j

It is worth noting that the S-batching case or the T -fragmentation case are equivalent to splitting
respectively the right and the left hand of the equality. Thus, to analyze these cases, it suffices to consider
the equivalent case where the S and T tables are unified in a single table. Coming back to our soundness
analysis, observe that the described protocol perfectly simulates the evaluation of the above functional
equality at random points (γ, α). Therefore, a malicious prover attacking soundness can only succeed if
she comes up with an assignment such that the two rational functions are unequal but coincide on the
random evaluation points (γ, α). The Schwartz-Zippel applied to rational function gives that the protocol
has statistical soundness error O( (t+s)n

F )

5.4.2 Optimization When many lookups are declared over the same table, a possible optimization is to
“group” multiple ΣS into the same column. This reduces the number of committed columns through the
compilation step at the expense of increasing the degree of the generated global constraints.
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5.5 Reduction of the fixed-permutation checks

The technique we present is inspired by the work of [28] and [7]. Let n,m be integers and let σ be a
permutation of [n] and A = {Ai}i∈[m] and B = {Bi}i∈[m] such that B is obtained by permuting the rows of
A according to σ. As σ is known beforehand, we give oracle-access to a signature of σ in an offline phase.
This signature consists of two vectors s = (1, ω, · · · , ωn−1) and s′ = (ωσ(1)−1, · · · , ωσ(n−1)−1). Naturally, the
same s and s′ can be reused for different queries and since the polynomial encoding of s is s(X) = X there
is implicitly no need to send it to the oracle. The compiler then replaces every fixed permutation query on
A and B by a permutation query on A′ = (A∥s) and B′ = (B∥s′).

5.6 Reduction of the permutation checks

Let A and B be two columns of equal length l. The technique we present is borrowed from a series of works
including [30], [7], [28] originating from the work of [9]. The intuition behind the protocol is as follows: a
column A is a permutation of B if and only if the polynomials defined as

∏
i∈[l](X +Ai) and

∏
i∈[l](X +Bi)

are equal. Our sub-protocol simulates an equality check between these two at a random point X = α. Or
equivalently

Z(α) =
∏
i∈[l]

α+Ai

α+Bi
= 1

This approach can be extended to the case where A and B consist of multiple columns by substituting A
and B in the above polynomial equality by linear combinations of the columns for each table by powers of a
random independent coin r. Fig. 4 gives the pseudo-code of the Arcane compilation step for permutations.
where the permutation function receives two sets of vectors {Ai}i∈[m] and {Bi}i∈[m] and highlights how
Arcane converts a permutation check into local and global constraints.

Permutation({Ai, Bi}i∈[m])

1. if m > 1 :
– Verifier samples r ← F and sends it to the prover
– The prover internally set A′ =

∑
i
riAi and B′ =

∑
i
riBi

else : they set A′ = A0 and B = B0
2. Prover the column Z, defined as:

Zi =
∏
j≤i

A′ + α

B′ + α

3. “Local” query : Z0 = 1
4. “Global” query: (Z >> 1)(B′ + α) = Z(A′ + α) (not cancelled on n-1)

Fig. 4. Reduction of a Permutation Check.

Fragmented table: The case where either the table A orB or both are fragmented is handled by splitting the
rational product in several sub-products. A consequence is that the sub-protocol uses several sub-products.
For optimization, we distinguish the following cases:

– There are fragments in A and B that have the same size, A′, B′: in this case, it is interesting to group
them in a single product ∏

k∈[l]

A′
k + α

B′
k + α

.
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– There are fragments on either side of the permutation A′ or B′ whose size does not match any fragment
on the other side: in this case, they are individually assigned a product∏

k∈[l]

A′
k + α or

∏
k∈[l]

1
B′

k + α

In the sub-protocol description of Fig. 5, we assume that the mapping of the fragments {Ai}, {Bi} to
their respective product are clear from context and we also assume, for simplicity that the tables have a
single column (the multi-column case is handled is in the vanilla case).

Permutation({Ai, Bi}i∈[m])

For each product, indexed by v and their respective fragments A′ and B′ or ∅ if it does not apply

1. Prover sends Z, the unique polynomial such that:

Zv =
∏
i≤k

A′
i + α

B′
i + α

or
∏
k∈[l]

A′
k + α or

∏
k∈[l]

1
B′

k + α

2. “Local” constraint: Zv,0 = 1
3. “Global” constraint: (Zv >> 1)(B′ + α) = Zv(A′ + α)
4. “Local opening”: Zv at the last position

Finally The verifier takes the final value of each Zv and checks that their product equals 1.

Fig. 5. Reduction of a Permutation Check.

5.6.1 Security analysis sketch Let us start with the single-column case. A malicious prover may pass
the verification if and only if

∏
i∈[l](X + v1,i) ̸=

∏
i∈[l](X + v2,i) and the equality holds for X = α. Indeed,

the functional equality between the two products is equivalent to the predicate stated by the permutation
query. Following this, we have that the above sub-protocol has statistical soundness error n

|F| by application
of the Schartz-Zippel lemma. For the multi-column case, the predicate of the permutation query is equivalent
to the following bivariate polynomials equality∏

i∈[l]

(X +
∑

j<ncol
v1,iY

j) =
∏
i∈[l]

(X +
∑

j<ncol
v1,iY

j)

From that point, applying the Schwartz-Zippel lemma gives us statistical soundness with error O( l(ncol)
F ).

The same analysis can be applied to the more complex fragmented case by observing that the sub-protocol
simulates the same evaluation as above for the union of all the tables on both sides.

5.6.2 Optimizations As for the reduction of the inclusion checks, in the fragmented case, it is possible
to pack the construction of multiple grand products into a single column Z if they relate to columns of the
same size. This optimization trades commitment complexity for an increase in the degree of the generated
global constraints.

5.7 Reduction of the inner-product queries

As a reminder, inner-product queries allow the verifier to query the inner product of two committed columns
A and B. We first explain how the inner-product reduction phase handles a single query concretely and then
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explain how to extend it to handle multiple queries. In the outlines, the prover constructs a third column S
storing the cumulative sum of the row-wise products of A and B. The verifier then queries the last entry of
the S and expects it to equal the alleged value of the inner product as claimed by the prover.

InnerProduct(A; B; c)

1. The prover sends the columns A and B to the oracle and claims c.
2. The prover computes S such that Sk =

∑
j≤k

AjBj and sends it to the oracle.
3. “Local”: S0 = A0B0
4. “Global”: Si − Si−1 = AiBi (except for i = 0)
5. “LocalOpening”: the final position of S, c′

6. The verifier checks that c == c′

Fig. 6. Reduction of the inner product Check

Batching This technique can be extended to support multiple queries (A0, B0, c0), (A1, B1, c1), . . . , (An, Bn, cn).
To support this feature, we equip the protocol with a ”batching” random coin r and we construct S as
Sk =

∑
i∈[n]

∑
j≤k r

iAi,jBi,j . The queries created by the compilation step are equivalently modified by
swapping AiBi terms by

∑
i r

iAi,jBi,j . Finally, the verifier compares c′ with
∑

i r
ici.

5.7.1 Security analysis sketch In the single-query case, soundness and completeness are perfect as
S is fully constrained to trace the inner product’s step-by-step computation. In the multi-query case, S
is perfectly constrained to compute the linear combination of the inner product of a and b. This has two
consequences: (1) This justifies perfect completeness (2) The only way for a malicious prover to be successful
with a false statement (c′′

0 , c
′′
1 , . . . , c

′′
n) is that

∑
i∈[n] r

i(c′′
i − A.B) cancels. By the Schwartz-Zippel lemma,

this can happen with probability at most ϵ = 1
|F| . This justifies ϵ-statistical soundness.

5.8 Sticking the small columns together

The sticking compiler performs the opposite of the splitting step. Namely, it applies to all the columns
whose size is smaller than some prespecified target size. These columns are regrouped into larger columns hav-
ing the target size by interleaving. To illustrate, columns A = (a0, a1, a2, . . . an−1) and B = (b0, b1, . . . , bn−1),
assuming they have half of the target size, would be regrouped into a column L = (a0, b0, a1, b1, . . . , an−1, bn−1).
This compilation stage is reached much later than the splitting step. This is motivated by the fact that
(1) this limits the overheads of the inclusion and the permutation stages (2) this simplifies the current com-
pilation stage since it can assume that the incoming protocol does not use inclusion, range, permutation,
inner-product or fixed-permutation queries as they are already compiled out at this stage. The sticking
compilation stage processes the impacted queries as follows:

– Local constraint and local opening: the queries are replaced by equivalent ones pointing to the
corresponding positions in the regrouped columns.

– Global constraints: the query is replaced by an equivalent one retaining the same expression but
whose variables are replaced by the corresponding regrouped column, shifted by the appropriate offset
and multiplied by a periodic sampling column.

The sticker also sets a lower bound on the columns it is working with. All columns smaller than this limit
are sent directly to the verifier and the constraints applying to them are manually checked by the verifier.
Passed this point, we may assume that all the column the protocol commits to are of the same size.
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5.8.1 Example 1: With a global constraint Assume a Wizard-IOP protocol consisting of two columns
A = (a1, a2, a3, a4) and B = (b1, b2, b3, b4) and say we apply the sticker compiler with a target size of 8. And
assume a global constraint QG = “Inclusion” : A2 = B.

The “sticking” compiler step, replaces A and B by L and QG by Q′
G as

L = (a1, b1, a2, b2, a3, b3, a4, b4)
I1 = (1, 0, 1, 0, 1, 0, 1, 0)
I2 = (0, 1, 0, 1, 0, 1, 0, 1)

Q′
G = “Global” : (I0L)2 = (I1L≪ 1)

5.9 Example 2: With a local constraint

Assume a Wizard-IOP protocol consisting of two columns A and B as above and a local constraint stating
that A[0] = B[0]. Then L is constructed identically as above and the constraints QL is replaced by Q′

L as:

Q′
L = “Local” : L[0]2 = L[1]

5.10 Example 3: With a larger target size

Let again reuse a Wizard protocol declaring A and B as above and this time assume we apply the “sticking”
compiler with a target size of 16. In this case, A and B are not large enough together to fill a column. In
this situation, we use virtual ”zero columns” as fillings and construct

L = (a1, b1, 0, 0, a2, b2, 0, 0, a3, b3, 0, 0, a4, b4, 0, 0)

5.11 Reduction of the global constraints

We present a standard technique from the work of Plonk [7]. Let v1, · · · , vk be k columns and a k-variate
arithmetic circuit C(X1, · · · , Xk) of degree d. We denote by v•(X) the polynomials encoding v• in Lagrange
basis. We have that the global constraint is satisfied if and only if there exists a polynomial Q(X) of degree
(d− 1)n such that,

C(v1(X) · · · vk(X)) = (Xn − 1)Q(X)

Following this observation, the Arcane compiler runs the following procedure separately for each global query.

5.11.1 Optimizations For efficiency, the compilation of the global constraint also involves several opti-
mization routines which we outline below:

1. The columns of types “expression” are swallowed into the global constraints using them as input variables.
2. To limit the degree of the expression, an optimization heuristically identifies frequent high-degree terms

and assigns them to an intermediate column. This trades the degree of the constraints for commitment
complexity.

3. The queries are grouped in buckets by degree and for each bucket, we replace them with a merged
constraint which is satisfied if a random linear combination of the initial constraints vanishes.

4. The expressions are symbolically reduced using a symbolic expression simplifier (which performs several
factorization routines)
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GlobalConstraint(C, v1, · · · , vk)

1. The prover computes and commits to Q computed as,

Q = C(v1(X) · · · vk(X)
Xn − 1

2. The verifier samples a random coin α←$ F
3. “Univariate” query : v1(α) . . . vk(α), Q(α)
4. The verifier checks

C(v1(α) . . .) ?= (αn − 1)Q(α)

Fig. 7. Reduction of the Global Constraints

5.11.2 Security analysis sketch We start by analyzing the compilation of a single constraint and then
extend the analysis to cover the merging operation that we carry when dealing with several constraints. First
of all, note that since the existence of the quotient such that

C(v1(X) · · · vk(X)) = (Xn − 1)Q(X)

is satisfied is mathematically equivalent to the predicate of a global constraint, we have a that a malicious
prover can only succeed if the equation does not hold as equality between polynomials but does hold on α.
From the Schwartz-Zippel lemma, it follows that the protocol has statistical soundness with error at most
d

|F| ). In the merged case, we also have to account for the possibility that the merged constraint is satisfied
whereas some of the sub-constraints are not satisfied. This can happen with probability at most n

|F| where n
is the number of constraints. Thus, in this case, the statistical soundness error is at most n

|F| + d
|F|

5.12 Reduction to a polynomial IOP

From this point on, the partially compiled Wizard-IOP only uses local constraints, local opening and uni-
variate queries, possibly involving cyclically shifted columns. We now discuss on the last steps of the Arcane
compiler to reduce to a polynomial-IOP, eliminating the references to shifted columns.

5.12.1 Local constraints and local openings are compiled out by converting them into equivalent
univariate queries by interpreting the committed columns as polynomials expressed in Lagrange basis as we
did during the global constraint reduction step. Accounting for the shifting is quite straightforward as it
suffices to offset the opened point with the relevant number of positions.

5.12.2 Univariate queries over cyclically-shifted columns : it remains to discuss how to convert
them into univariate queries “directly” on oracle-given polynomials (shown by P here). The conversion is
performed following this observation:

(P ≪ k)(x) = y ⇐⇒ P (ωkx) = y

6 UniEval Compiler: from PIOP to UniEval PIOP

Let P be a PIOP protocol, where for i ∈ [n], j ∈ Si, the verifier queries a polynomial Pi over a point xj .
The aim of the compiler, presented here, is to reduce the initial polynomial-IOP to a polynomial-IOP

where the oracle-given polynomials are all queried at a single random point. We will call such a polynomial-
IOP scheme a UniEval polynomial-IOP, and the single query is denoted “Grail query”. For any evaluation
Pi(x) where x is not the Grail query, the verifier gets Pi(x) directly from the prover. In this model, replacing
the oracle with a polynomial commitment scheme requires a proof of the evaluation for all the polynomials
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at the same point i.e., over the Grail query. The gained advantage is that batching at the polynomial
commitment level is now more straightforward as all the polynomials are queried on the same evaluation
point. Indeed, due to this compiler, batching over different points is done at the polynomial-IOP level. At
the polynomial commitment level, we only need batching over the same point. To build our compiler, we
first present a batching technique of multiple polynomials over multiple points. We then use this protocol to
compile any PIOP into a UniEval PIOP. This section briefly outlines the UniEval compiler presented in [13],
we refer to this document for a more comprehensive description and security analysis.

6.1 Multiple-Point to Single-Point Reduction

We assume a set of points T and a set of n polynomials {i ∈ [n] : Pi(X)}, each of degree di ≤ d. Each Pi(X)
is queried on a set of evaluation points Si ⊂ T . Define Ri(X) as the alleged evaluations of Pi(X) over the set
Si, namely, Ri(X) agrees with purported Pi(X) over Si (and Ri(X) is of degree |Si|). The aim is to present
a protocol for the relation;

R := {(Si, Ri(X);Pi(X))i ∀i Pi(X)|Si
= Ri(X)|Si

} (1)

Claim. The relation R holds if and only if:

∀i ∈ [n] : (Pi(X)−Ri(X))
∏

x∈T \Si

(X − x) is divided by
∏
x∈T

(X − x). (2)

Knowing this fact, in Fig. 8 we present our batching protocol for the relation Eq. (1). The protocol is
inspired by the batching approach presented in [20].

MPSP(S1, · · ·Sn, R1, · · · , Rn; P1, · · · , Pn)

1. the prover sends oracle access to Pi.
2. The verifier samples α←$ F.
3. The prover computes and sends oracle-access to:

Q(X) =
∑
i∈[n]

αi Pi(X)−Ri(X)∏
x∈Si

(X − x)

4. The verifier samples z ←$ F and queries P1(z), · · ·Pn(z), Q(z).
5. Finally, the verifier checks that: relation in 3 is satisfied for X = z i.e.,

Q(z)
∏

x′∈T

(z − x′) =
∑
i∈[n]

(
αi(Pi(z)−Ri(z))

∏
x′′ /∈Si

(z − x′′)
)

Fig. 8. Multi-point to single-point reduction procedure.

6.2 Compiler: P-IOP to UniEval P-IOP

We are now ready to compile a PIOP to its UniEval version.

– For any P-IOP, define its associated protocol P-IOP′ as follows; we let all the queries in P-IOP be
sent directly to the prover, and let the prover respond to these queries (the prover replies with alleged
values for the evaluations, without providing a proof at this stage, as that would be handled later in
the protocol). Indeed P-IOP′ is the same as P-IOP where the prover also plays the role of the oracle by
itself.
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– By the end of an execution of P-IOP′, we get the trace of the polynomial queries issued during P-IOP′;
the set of polynomials Pi, the points Si, and the alleged evaluations of Pi(X) over Si which we denote
by Ri(X) (prover’s responses).

– Now, we consider our multi-point to the single-point protocol in Fig. 8, for the statement (Ri, Si) and
the witness Pi(X) from the trace. Call this protocol MPSP(Ri, Si;Pi(X))i.

The compiler first runs P-IOP′, get the trace, and then runs MPSP(Ri, Si;Pi(X))i. The resulting PIOP is
what we call UniEval-PIOP, denoted by UniEval-PIOP.

Knowledge-Soundness. Let ϵUniEval, ϵP-IOP′ and ϵMPSP be, respectively, the soundness-error of proto-
cols UniEval-P-IOP, protocol P-IOP′ and MPSP(Ri, Si;Pi(X))i. Then, we have, ϵUniEval ≤ ϵP-IOP′ +ϵMPSP.

7 Vortex: a List Polynomial Commitment

This section briefly presents the Vortex List Polynomial Commitment scheme introduced in [13] and how we
instantiate it as part of Linea using a lattice-based hash (ring-SIS) hash function. Vortex is a variant of the
commitment scheme proposed in Orion [49] and Brakedown [32], and it relies on a lattice-based hash which
we describe in Section 7.1, and an erasure-code and the MiMC hash function [5].

In this work, we use the systematic version of the Reed-Solomon code which has encoding timeO(N logN),
where N is the size of the codeword. Vortex allows to perform a batched argument of multiple committed
polynomials evaluated over the same given point x. One of the main differences here is the way we treat
not just one polynomial but a batch of polynomials. In Breakdown and Orion, they assume a large degree
polynomial and fold it into a matrix, while here we assume each row of the matrix is a separate polynomial.
This is beneficial for our use case (zkEVM) where we have to deal with many polynomials at once. Another
difference is, that we discuss the security not in the unique decoding regime, but in the list decoding regime.
This point helps us to improve the efficiency of the scheme but brings some challenges regarding the security
proof and for the PIOP transformation into AoK (PIP) through the Vortex commitment which we will ad-
dress later. Vortex is described in Section 7.2. Vortex additionally comes with a batching argument allowing
to open simultaneously multiple matrices at the same point.

For a matrix of size m · n = N , the Vortex commitment and opening arguments have size O(
√
N).

Moreover, the opening arguments have verification time O(
√
N). In Section 9, we present our self-recursion

technique to achieve succinctness.

7.1 Lattice-Based Hash

The lattice-based hash function we present relies on the Ring-SIS assumption to achieve collision resistance.
The design of our hash function is essentially the same as the SWIFFT [39] hash function. The only concrete
difference is that the design of SWIFFT restricts the input set of the Ring-SIS inputs to be {0, 1} while our
hash function accepts an input set of the form [0, 2n − 1] (for small n).

Let q be a prime, Fq be the finite-field, b a power of two such that b < q and d,m two positive integers
such that d is a power of 2 and m > log q

log b . We consider the ring R = Fq [X]
Xd+1 of polynomials whose coefficients

lie in Fq modulo Xd + 1. To instantiate the hash function, we need first to go through a transparent setup
phase where a Ring-SIS key is sampled. We set N = md log b

log q . A description of the procedure is given in Fig. 9
Collision and preimage resistance are derived from the Ring-SIS and the Ring-ISIS2 problems respective

to the instances (q, m, b).
If (q− 1)|(n+ 1), the scalar product of L ·A may be computed with the following procedure. Let ω̄ ∈ Fq

such that ω̄n = −1. Note that {ω̄2i+1} forms a coset of the n-th roots of unity that all vanishes under Xn +1.
We can efficiently compute the evaluations of Li and precompute the one for Ai using the Cooley-Tuckey
2 Inhomogeneous SIS
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Setup(q, m, d, b)→ pp

1. A = (Ai)i<m ←$Rm

2. return pp = A

Hash(x ∈ FN
q )

1. Encode each element of x in log q/ log b limbs li, such that ∥li∥ < b for all i.
2. Arrange the limbs li as coefficients of polynomials to obtain a vector L = (Li)i<m ∈ Rm

3. Compute the scalar product h = A · L (requiring polynomial multiplication in R)
4. return h by returning its coefficients

Fig. 9. Description of the lattice-based hash

algorithm (also known as FFT, or NTT in the literature). In this basis, the multiplication of polynomials
coincides with the Hadamard (entry-wise) product, and we can get h directly in evaluation before switching
back to coefficient basis in the end. Overall, the complexity of the hashing procedure is O(mn logn). For
small values of n and b, other techniques such as Tom-Cook are known to be efficient as well. In Appendix B
we recap the security analysis of this hash function and give concrete parameters for a target level of security.

7.2 Description of Vortex

In this subsection, we expand on the details of Vortex. We will first assume two integers m and k, denoting
the number of rows and columns.

Let H be our hash function (Section 7.1) parameterized to be able to hash vectors of size (at least) m.
We also use a systematic3 Reed-Solomon L with message size k and codeword-size n > k. We denote its
encoding algorithm encodeL. Vortex consists of three algorithms: Setup, Commit, and OpenEval.

1. Setup is a transparent offline phase run by both the prover and verifier. During this phase, they perform
precomputations involving sampling the parameters for the hash and the encoding scheme used as the
public parameters.

2. The Commit algorithm: Let W , be the matrix whose ith row is wi ∈ Fk. Thus, W has m rows and k
columns. The prover encodes each row of W (noted by wi) using the encoding function and obtains W ′

(which has n columns).4 The prover then computes the hash of the columns. The value H = h1, · · · , hn

forms the commitment.
3. The batch-opening phase or OpenEval is an interactive protocol where the prover runs the ProveOpening

algorithm and the verifier runs the VerifyOpening. At the beginning of this phase, the prover holds W,W ′

and the verifier holds the final commitment as input. Both hold the statement x, y. The prover’s goal is
to convince the verifier that for ∀i < m,wi(x) = yi, if W is a batch of polynomials and their evaluations
stand in Lagrange basis. The verifier then sends the random scalar α, and the prover responds with u
claimed to be u := α⊤W , if W is polynomial, where α = (1, α, α2, . . . , αm−1). Then, the verifier samples
t columns q1, · · · qt (qi ≤ n) uniformly at random, and the prover responds with (s1 · · · st) chosen columns
of W ′. The verifier computes u′ as the Reed-Solomon encoding of u and performs the following checks for
all opened columns:

– Proximity Check: the scalar-product α⊤si
?= u′

qi

– the hash of si is correct and consistent with hqi .
– Evaluation Check: the relation u(x) ?= α⊤ · y where the vector u is considered as the coefficient of

polynomial u(x)
3 This means the original block should be a sub-vector of the corresponding codeword. By “checksum”, we refer to

the part of a codeword, that is added beside the original block.
4 Observe that, since the encoding procedure encodeL is systematic, we have that all columns W are also columns

of W ′.
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The first check (the random combination over random columns), is used for checking the proximity of a
batch in [6]. Fig. 10 sums up the above.

Setup(n, m,L, λ)→ pp

1. Setup an instance of hash, Hash, corresponding to the security level λ
2. Choose t (the number of columns that should be opened later) to reach the security level λ
3. Runs pre-computations relative to encodeL (e.g., finding D ⊂ Fq and relevant parameters for the security level

λ)
4. Collect all the computed parameters in pp and return it.

Commit(pp, W )→ (h1 · · ·hn)

1. Encode each row of W and obtain W ′

2. Hash each column of W ′ to obtain (h1 · · ·hn)
3. Return (h1 · · ·hn)

OpenEval with statement (l, y)
ProveOpening(pp, W ′, x, y) VerifyOpening(pp, H, x, y)

← α

u = α⊤W
u→

q←$ [n]t
← q

(s1, · · · , st)→
u′ ← encodeL(u)
for 0 < i ≤ t:

W ′ = encodeL(W )
Denote the columns of W ′ as (s1 · · · sn′ )

⟨si|α⟩
?= u′

qi

Hash(si)
?= hqi

u(x) ?= α · y.

Fig. 10. Vortex Polynomial commitment

Security of Vortex. The security of Vortex is thoroughly analyzed in [13], here we restate the results
of this work. Vortex satisfies the knowledge-soundness of (batched) list polynomial commitment given in
Definition 12 in the Random Oracle Model and has a straight line extractor. Writing F (x) = MiMC(SIS(x))
we heuristically model F as a random oracle and use it to hash the columns. The intuition is that MiMC,
being itself modellable as a random oracle, breaks down all the linear properties of the SIS hash.

List Polynomial Commitment for Long Polynomials Here we show how to build a polynomial com-
mitment from Vortex. The prover P can send a polynomial P whose degree is larger than the number of
columns in W . The polynomial can be folded in several chunks P (X) = P0(X) + XnP1(X) + · · · . Each
one of the chunks Pi(X) is then inserted into W as an entire row. To commit and open the polynomials
P (X) via Vortex, set W as above. The verifier can then recombine the Pi(X) evaluations to obtain the
P (X) evaluation. This allows us to switch between the definitions of batched polynomial commitments to a
version that only commits to one polynomial. This fact is provided as a side note and is not used in Linea’s
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prover since the Arcane compiler is already responsible for splitting polynomials. Besides, our work stands
for polynomials in Lagrange basis.

7.3 Constant-size commitment

As a simple optimization over the commitment size, we apply a SNARK-friendly hash function (e.g., MiMC
hash or Poseidon) over each hi and then compute a Merkle tree over the results. This is particularly useful
for compiling PIOP to AoK via Vortex since the Vortex commitment phase will not be offline anymore and
will be part of the proof. It is important to note, however, that the hash function used in constructing the
Merkle tree needs to be modelled as a random oracle for the scheme to retain extractability.

7.4 Batch opening for several batches of Polynomial

As shown above, Vortex allows committing to several polynomials (forming a matrix) at once. This can be
extended to a “multi-batch” opening protocol in which the prover argues the evaluation of multiple batches
(which may have been committed to at different moments) simultaneously at the same evaluation point. In
this batched protocol, the prover sends only a single linear combination of all the rows of all the matrices as
opposed to one per committed matrix in the non-batched setting. Additionally, during the column opening
phase, the verifier queries the same columns position for all the matrices. This is the version of the protocol
that we actually use to instantiate an Argument of Knowledge.

8 AOK from PIOP and Vortex

This section briefly discusses the compiler described in [13] and compares it with related works. For a in-depth
description of the compiler and its analysis, we refer to [13].

In [23, appendix E], combining a knowledge-sound polynomial commitment with knowledge-sound PIOP
results in a knowledge-sound argument system. This can not be applied directly to our setting. Particularly,
since we are working with polynomial commitments in the list decoding regime (LPC), the knowledge-
soundness of Vortex is not defined w.r.t a standard relation for a PC scheme. In KVP22 [36], they show that
Batch-FRI in the list-decoding regime (as an LPC) can be combined with PLONK-PIOP resulting in an
argument system. Here we generalize their result and show that any PIOP can be combined with an LPC.
There is some evidence that shows that such a transformation can still be possible for special PIOP and
with the cost of losing a factor |L| of the soundness of PIOP [36, 17]. Slightly more formally, let (PO, VO) be
a PIOP for the relation R that is transformed to an AoK (P, V ) via a list polynomial commitment (Pc, Vc).
Then it is conjectured that the soundness of AoK follows from the following,

|L|.ϵPIOP + ϵLPC ≈ O(|L|.kc/|F|+ ϵLPC)

where k is the degree of polynomials involved in PIOP and |L| is the maximum size of the list associated
with LPC. If the size of the field is big compared to |L| working in the list decoding regime can be beneficial.
Here we give our proof intuition asserting the above conjecture is true. The proof is detailed in [13].

Note that for LPC, a cheating prover can leverage the list decoding property to commit to a list and
later decide which one to evaluate. This means for each round, the prover may use a different agreement set
(or visually a different list index), this would increase the soundness loss to |L|r/|F|. We force the prover
to use the same agreement set over all the rounds by applying the evaluation protocol of Vortex over the
concatenation of all the matrices from different rounds. This means that while for each round the commitment
is applied over the relevant matrix, the opening is applied over a bigger matrix which is the concatenation
of all the matrices. By this technique, we succeed in keeping the soundness loss to |L|r/|F|.
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8.1 Compiler sketch

As a reminder, the compiler starts from a UniEval P-IOP which is structured as follows. At every round
and possibly once offline, the prover sends a batch of polynomials to the oracle and short messages to the
prover and the protocol concludes on a Grail-query where all polynomials are queried at the same point.
For simplicity, we will account for the offline precomputed polynomials as being part of the round −1 and
suppose that all the polynomials involved in the protocol have the same size (this is ensured by the Arcane
compiler already). Here, we use the variant of Vortex that uses Merkle roots of the ring-SIS hashes as
commitment. For each of these batches Wh of mh polynomials, the prover computes using Commit sends a
Vortex commitment’s Merkle root Rooth. Fig. 11 expands on how our compiler simulates the oracle. Note
that all randomnesses used in the protocol are still managed as interactive messages between the prover and
the verifier of UniEval and the compilation does not touch these.

AoKCompiler(UniEval)

AoKSetup(λ,L, n)

1. ppUniEval ← UniEvalSetup(λ)
2. Set m as the size of the largest batch of polynomials found in UniEval’s description.
3. ppVortex ← VortexSetup(λ,L, m, n)
4. Set W−1 as the matrix constructed by taking all the precomputed polynomials and commits to it to obtain

Root−1
5. ppAoK ← (ppUniEval, ppVortex, Root−1)
6. return ppAoK

CommitmentPhase(ppAoK, Wh)

1. Prover computes Rooth ← VortexCommit(ppVortex, Wh) and sends it to the verifier

OpeningPhase(ppAoK, Root−1,...,nround , x, y)

1. The prover and the verifier engage in the batch opening protocol of Vortex for all the rounds at once.

Fig. 11. From UniEval P-IOP to AoK using Vortex LPC

9 Self-Recursion of Vortex

As Vortex proofs are large, to obtain a SNARK, we compress the proof via a self-recursion technique where
instead of opening the chosen columns (s1, . . . , st) and sending them to the verifier, the prover computes
the hashes and the scalar-products itself (while the verifier has oracle access to u′ and the hash outputs). It
sends proofs for the following facts:

– The encoding encodeL(u) is correctly computed as u′: in our self-recursion protocol we work directly
with the Reed-Solomon encoded column. It remains to show that u′ is a Reed-Solomon codeword and
this is addressed in Section 9.1.2

– The checks u(x) ?= αT y is addressed in Section 9.1.2, it leverages the fact that u′(x) = u(x) in our
settings.

– The opened columns are consistent with u′ as αT s′
i = u′

qi
: this is addressed in Section 9.4.

– The opened column hashes are included in the commitment trees at the requested positions. This includes
the correctness of the SIS hashing operation from the verifier. This is addressed in Section 9.2 and is the
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most involved part of the section. And additionally, the verifier is required to verify Merkle proofs to
assess the membership of the computed SIS hashes in the trees. This later part is addressed in Section 9.3.

For each of the above relation, a dedicated PIOP protocol is designed. Concretely, the process of self-recursion
transforms Vortex into a Wizard-IOP in which the prover sends oracle access to the relevant messages instead
of sending them to the verifier directly (including the columns, all hash values and vector u of the Vortex
commitment).

The verifier is then tasked to perform a few queries so that he can convince himself that the prover’s
messages add up to an accepting transcript. The resulting protocol can then be recompiled using the Arcane
compiler (developed in Section 5) and Vortex Section 7 and we can reiterate this process by reusing different
instances of Ring-SIS and Reed-Solomon codes. This technique allows us to play with the tradeoff that we
have when choosing the Ring-SIS parameters and the erasure code. Typically, Ring-SIS instances that use
a large modulus degree compress poorly but are very fast to run. On the other hand, Ring-SIS instances
with a small modulus degree compress very well but are slower to run. This creates a trade-off between the
prover time on one side and the verifier time and proof size on the other. The self-recursion strategy allows
us to use Ring-SIS instances with a large degree for the initial steps and progressively reduce the degree.
Similarly, we can use an error-correcting code with a large rate (and small relative distance) at the beginning
and progressively decrease the rate as we loop into more applications of the self-recursion process.

SNARKs from Arguments of Knowledge Consider the AOK presented in Section 8. After applying
multiple steps of self-recursion on Vortex, the proof achieves succinctness, and it is possible to finalize it
into a SNARK using the Fiat-Shamir transform. Note that each of the cycles of self-recursion occurs in the
interactive world, thus the Fiat-Shamir transform is applied only once at the end. The final SNARK has a
proof size and verifier time of O(log log(N)) and linear prover time and the final Vortex proof stands for a
witness of size O(1). While the asymptotic performances are good, the concrete size of the final proof does
not allow it to be directly verified on Ethereum. To remediate, we recursively composite it with the Plonk [7]
proof system. As an optimization, we use MiMC hashes [5] instead of the ring-SIS based hash function that
we present in Section 7.1. The motivation is that, while MiMC’s runtime is slower than the lattice-based
hash, the cost of emulating the computation within a Plonk circuit can be made drastically cheaper thanks
to the optimizations of [12] which uses the GKR [31] proof system to reduce the cost of proving the hashes.
This optimization is also ported to the Fiat-Shamir hashes in the circuit.

9.1 Protocol description

In the following, we assume an initial interactive protocol output by the Vortex compiler using Merkle-tree
hashing for shorter proofs and thus, with the following structure: nround rounds of interactions initiated by
the prover where he sends a Merkle-root and possibly several queries result and the verifier responds with
a sequence of random coins and the protocol concludes on a Vortex proof opening. For simplicity, we make
a small technical assumption that will be helpful for the self-recursion process: the number of committed
polynomials per round is a multiple of K = n log2 β

log2(|F|) , when K > 1 where n is the output-size of the SIS
instance, log2 β the bit size of each limb and F the underlying prime field. This can be ensured by adding
zero polynomials at every round until this is reached. For reference, we use the following variable notations:

– ncol: the number of columns in the committed (and unencoded matrix). This matches the size of the
polynomials we initially committed to using Vortex.

– nrow: the total number of rows, all rounds included and including the precomputation rows.
– nrounds: the number of interaction rounds before the Vortex opening starts in the input protocol
– t: the number of opened column during the Vortex opening
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9.1.1 Casting the Vortex proof into Wizard column As outlined in the introduction of this section,
the initial step of the self-recursion is to convert the Vortex proof messages into committed Wizard columns.
Since the individual commitments are already short, they remain prover messages but they will be used as
part of the protocol. The same goes for the alleged evaluations y, they remain visible to the verifier but are
used within the self-recursion protocol under the hood of a “verifier-defined” column which we name Y . We
list the columns below:

– Rooth: columns of size 1, tagged as “proof messages”
– Y : a “verifier-defined” column storing all the alleged evaluations of the Vortex opening.
– Uα: the random linear combination of the rows of the committed matrices, directly in encoded form.
– Q: a column storing the indices of the opened columns in the protocol as sampled by the verifier. This

column is “verifier-defined”.
– Preimagei: the opened columns of the matrices stacked round by round and limb-decomposed. Namely,

Preimage0 contains concatenated values of the first opened columns for all committed round matrices.
– MerkleProofs: the Merkle-proofs used to justify the membership of the MiMC hashes of the SIS hashes

of the opened columns.

9.1.2 The linear combination of the rows As part of the opening phase of Vortex, the prover sends
Uα, storing the linear combination of the rows of the committed matrix (encoded) by powers of a random
coin α (β in the Vortex section). And the verifier is willing to ensure that:

1. Uα(x) = AT y where A = (1, α1, α2, . . . , αnrow−1) (noted B in the Vortex description)
2. Uα is a Reed-Solomon codeword

The first check can be carried by calling the sub-protocols presented in Appendix A.1 and Appendix A.2
and the Reed-Solomon membership can be taken by a probabilistic argument. Reed-Solomon membership
is equivalent to proving low-degreeness of a polynomial described a Uα in Lagrange basis. As part of this
argument, the prover exhibits a column Ucoeff storing the coefficient of the polynomial represented by Uα in
Lagrange form. Note that the size of Ucoeff is shorter than the size of Uα. The prover and the verifier then
engage in an argument to check that Ucoeff and Uα evaluate to the same value at a random point. Fig. 12
details this sub-protocol.

ReedSolomon(Uα)

1. Prover commits to Ucoeff
2. Verifier samples and sends a random coin r
3. The prover responds with an alleged evaluation point y = Ucoeff(r) = Uα(r) where the first evaluation is in

monomial basis and the second one in Lagrange basis.
4. The prover and the verifier engage in MonomialEval(Ucoeff , r, y) as in Appendix A.1
5. The prover and the verifier engage in LagrangeEval(Uα, r, y) as in Appendix A.2.

Fig. 12. Reed-Solomon membership check

9.2 SIS hashing of the columns

As part of the column opening phase, the verifier is tasked to computes the t ·nround SIS hashes, one for each
of the opened columns as sent by the verifier. We present an outline of how the sub-protocol emulating this
part is constructed. To clarify our settings, recall that each column Preimagei stacks the limbs of the opened
column qi for all the rounds 0 . . . nround − 1. The protocol unfolds as follows:
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1. All Preimage0...t−1 are range-checked. Note that, at this point, the only thing that remains to be proved
is the linear part of verifying SIS hashes.

2. We declare the precomputed columns A0, . . . Ah, . . . Anround−1 , the SIS key shards. They are constructed
by taking A the SIS commitment key of Vortex and shifting it so that the first coefficient of A lines up
with the first row of Preimages• corresponding to round h and all rows of Ah corresponding to rows that
are outside of round h in Preimages• are zeroized.

3. The prover initiates by sending a committed columns ConcatenatedDhQ storing the concatenation of the
t SIS hashes of the t opened column for every round h < nround, with the following ordering ordered as
ConcatenatedDhQit+j = di,j where di,j denotes the SIS hash for round i and the opened column j.

4. From this point, the prover and the verifier engage in a batching argument. The verifier 2 random coins
that we name rmerge and rcollapse. The philosophy of this step is that rcollapse is used to combine items
across the t linearly opened columns together, rmerge to linearly combine items across the nround.
5

5. The prover and the verifier engage in a folding protocol of Appendix A.4 over ConcatenatedDhQ, a first
time over rmerge to obtain a column Dhmerge and a second time over rcollapse to finally obtain Dhmerge,collapse
representing a linear combination of all the individual SIS digests. It is tagged as a “proof” message.s

6. The prover and the verifier set Amerge and Preimagecollapse as aliases for the linear combinations of the
columns Ah by powers of rmerge and of the columns Preimagei by rcollapse

7. At this point, we can reinterpret the columns Amerge and Preimagecollapse as vectors of ring elements
A = (A0(X),A1(X), . . .) and P = (P0(X),P1(X), . . .) in the SIS ring R, expressed in coefficient form
and concatenated within their respective columns. Similarly, Dhmerge,collapse can be viewed as a ring
element D in R. The rest of the protocol aims at proving that D = AT P where the inner-product is
taken modulo Xd + 1. We start from the following observation: let P (X) be a polynomial of degree < 2d
and let Q(X) = P (X) mod Xd + 1 and R(X) = P (X) mod Xd − 1, then we have:

2P (X) = (Xd − 1)Q(X) + (Xd + 1)R(X)

The intent will be to test this equality at a random point. Concretely, the prover sends a column Edual
as “proof”, containing the coefficient of the polynomial AT P mod Xd − 1

8. The verifier samples a coin rfold and engages with the prover in the folding protocol of Appendix A.4 for
both Amerge and Preimagecollapse to obtain Amerge,fold and Preimagecollapse,fold. The verifier then queries the
inner product of these two folded polynomials to obtain p.

9. Finally, the verifier checks that

2p ?= (rd
fold − 1)Dhmerge,collapse(rfold) + (rd

fold + 1)Edual(rfold)

9.3 Inclusion of the SIS hashes in the Merkle roots

This section briefly outlines how the sub-protocol responsible for hashing the SIS hashes into Merkle leaves
and proving inclusion in the commitments Merkle roots. We start from the columns Q storing the indices
of the opened positions, Rooth each storing the roots of all the opened columns. We also reuse the column
ConcatenatedDhQ from the SIS hashing phase, containing the concatenated SIS hashes computed by the
verifier.
5 In fact, in our implementation we use rmerge = rt

collapse
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1. We first invoke the sub-protocol for Appendix A.7 in order to instantiate a column Leaves storing the
hashes of the SIS hashes.

2. Then, we construct the columns MerkleRoots and MerklePositions using two fixed-permutation query
from a verifier-defined column constructed from Rooth and from Q. These will be used to construct the
statement of the Merkle module Appendix A.8

3. We conclude the sub-protocol by invoking the Merkle module using the MerkleProofs column.

9.4 Consistency of the opened columns with Uα

This section briefly outlines how the sub-protocol emulating the check αT si
?= u′

qi
. Our starting point is the

columns Preimagesi storing the values of si in limb-decomposed form and the column Uα. The verifier also
has access to Q, “verifier-defined” storing the opened positions of the column opening phase.

1. The first step of the sub-protocol aims at deriving a column Uα,q from Uα and Q, storing the entries
of Uα at the positions indexed by Q. This is implemented using an inclusion query and a precomputed
table I storing all the integers up to nencoded in increasing order (0, 1, 2, 3, · · · , nencoded − 1). The verifier
queries

“Inclusion” : (Q,Uα,q) ⊂ (I, Uα)

2. Then, it remains to ensure that the linear combination of Preimagesi (recomposed in field elements) with
α matches the entries Uα,i. To this end, we use the coin rcollapse and the column Preimagescollapse and we
use the sub-protocols in Appendix A.1 and Appendix A.3 to check:

MonomialEval(Uα,q, rcollapse) = BivariateEval(Preimagescollapse, 2, α)
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A.1 Monomial basis evaluation protocol

In this sub-protocol, we assume a column P of size n and scalar values r and y, visible to the verifier, whose
assignment value is unspecified during the protocol definition (r is possibly a random coin). The goal of the
Monomial basis sub-protocol is to construct a convincing argument for the statement:

P (r) =
∑
i<n

Pir
i = y

where P (X) is the polynomial whose coefficients are the entries of P . The Horner evaluation algorithm
inspires the sub-protocol we present. The protocol uses an accumulator column H retracing the computation
steps of the algorithm and constructed as:

Hi =
∑

i≤j<n

Pjr
j−i

Fig. 13 describes the protocol:

MonomialEval(P, a, y)

1. The prover constructs and commits to the column H
2. “Local constraint”: Hf = Pf where f indicates that the last value of the column is used.
3. “Global” H = x(H ≪ 1) + P
4. The verifier checks that H0 = y and gets H0 via a local opening query

Fig. 13. Monomial evaluation sub-protocol

A.2 Lagrange basis evaluation protocol

In this sub-protocol, we assume a column P of size n and a verifier with access to a scalar value r and y
whose assignment value is unspecified during the protocol definition (r is possibly a random coin). a must
not be a root of unity. The goal of the Lagrange basis sub-protocol is to construct a convincing argument
for the statement:

P (r) = 1
n

∑
i<n

Pi
a

ωi − 1 = y

where P (X) is the Lagrange interpolation polynomial of P over the usual roots of unity domain without
resorting to using a univariate evaluation query. This addresses a limitation of the Arcane compiler as
univariate queries cannot exist at the beginning of the compilation. As an outline, the sub-protocol requires
the prover to commit to an accumulating polynomial I retracing all the steps of computing P (a) with the
barycentric formula. Let ω be a generator of the groups of roots of unity. The sub-protocol is detailed in
Fig. 14. In the sub-protocol, we introduce, the intermediary alias ∆ = I − (I ≪ −1). We have that

∀i ≥ 1 : ∆i = Pi
a

ωi − 1

ωi = a∆i

∆i + Pi

If we divide the equation by itself substituting i− 1, we eliminate the dependency with wi

ω = ∆i(∆i− 1 + Pi−1)
∆i−1(∆i + Pi)
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We can now rearrange the term to obtain a polynomial relation as below. This us a relation that we can
use for a global constraint.

Interpolation(P, a, y)

1. The prover constructs and commits to the column I such that

∀i < n : Ii =
∑

0≤j≤i

Pj
a

ωj − 1

2. “Local constraint”: I0(a− 1) = P0
3. “Local constraint”: (a− ω)(I1 − I1) = ωP1
4. “Global constraint”:

(ω − 1)∆(∆≪ −1) + ω(∆≪ −1)P −∆(P ≪ −1) = 0
The constraint is cancelled at points 0 and 1, implicitly.

5. The verifier checks that the last value of I equals the alleged value y using a local opening query.

Fig. 14. Lagrange evaluation sub-protocol

A.3 Evaluate in coefficient form a 2-variable polynomial

Consider a column C to the coefficients of a 2-variate polynomial. The protocol that we present here aims at
proving evaluation of C at a point (x, y), where the polynomial has degree k − 1 in x and degree l − 1 in y.
The structure of the sub-protocol is analogous to the univariate coefficient evaluation one: it is also inspired
from the Horner algorithm and uses an accumulating column H such that

∀0 ≤ i < n− 1 : Hi = Pi +Hi+1(Zl,n,i+1x+ (1− Zl,n,i+1)yx−k) (3)
Where Zl,n is a “periodic sampling” column satisfying

i = 0 mod l ⇐⇒ Zl,n,i = 1
i ̸= 0 mod l ⇐⇒ Zl,n,i = 0

The subprotocol is described in Fig. 15

BivariateEval(P, a, y)

1. The prover computes and commits to H
2. Global Constraint:

H = P + (H ≪ 1)((Zl,n ≪ 1)x + (1− (Zl,n ≪ 1)yx−k)
3. Local Constraint: Hf = Pf

4. Local Opening: H0 and the verifier checks H0
?= y

Fig. 15. Monomial bivariate evaluation sub-protocol

A.4 Folding by one variable

By “folding”, we do not mean the popular folding technique introduced in Nova [37]. Consider P a column
seen as a bivariate polynomial in monomial form in X and Y . We aim to obtain the partial polynomial
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P (x, Y ) = Px(Y ) for some value x. To this end we design a dedicated protocol reusing the univariate and
bivariate monomial evaluation protocols:

Folding(P, Px)

1. The verifier samples a random coin ry.
2. The prover proves that P (x, ry) = Px(ry) using the bivariate evaluation technique on the left and the monomial

one on the right.

Fig. 16. Monomial bivariate evaluation sub-protocol

A.5 Periodically subsampling a column

This section presents a sub-protocol that can be used to assert that a column S of size n and obtained by
periodically subsampling a larger column L of size rn with offset k. Namely, the statement of the protocol is

∀i ∈ [n] : Si = Lri+k

The technique used by this protocol is analogue to the folding protocol: the protocol uses a random coin
ρ and simulates the probabilistic check: ∑

i∈[n]

Siρ
i ?=

∑
i∈[rn]

Ii|rLiρ
i/r

where Ii|r is the indicatrice function for i|r. The left hand evaluation is done using the monomial evaluation
protocol and the second is evaluated using an analogue of the bivariate evaluation protocol which we present
in Fig. 17

Subsampling(L, ρ)

1. The prover constructs and commits to the column H
2. “Local constraint”:

Hf = Pf I

where f indicates that the last value of the column is used and I is a periodic sampling column indicating with
a 1 the positions in H to be used.

3. “Global”
H = I [x(H ≪ 1) + P ] + [1− I)](H ≪ 1)

4. The verifier checks that H0 = y and gets H0 via a local opening query

Fig. 17. Subsampling sub-protocol

A.6 MiMC compression function

This section details a sub-protocol for computing the MiMC [5] block compression function. We start by
providing a reminder of the MiMC compression function algorithm in Fig. 20. σ0 denotes the initial state
of the compression function and b denotes the block. α is a small integer coprime with |F| − 1 and N is the
number of rounds of the compression function and ci is the round constant of the round i. The compression
function uses the Miyaguchi-Preneel construction.

39



MiMCCompression(σ0, b)

1. σ ← σ0
2. for round i < N
3. σ ← (σ + b + ci)α

4. end for
5. σ ← 2σ0 + b

Fig. 18. MiMC compression function with the Miyaguchi-Preneel construction

The sub-protocol we present Fig. 20 in the following justifies a statement of the form S1 = MiMCCompression(S0, B)
where S1, S0 and B are columns of the same size and the statement is to be understood as “row-by-row”.
The protocol works by creating intermediate columns for each round of the protocol and global constraints
justifying the correctness of their assignment so that the overall degree of all the constraints stays reasonably
low. To illustrate, we highlight the protocol using the scalar field of BLS-12-377 in our settings. In this
context, α = 17 and N = 62 and the protocol declares two columns (Ai, Bi) for each round i.

MiMCCompression(S0, b, Si)

1. S ← S0
2. for round i < N − 1
3. The prover commits to and constraints (using global constraints) (Ai, Bi) such that

Ai = (S + ci + b)4

Bi = (S + ci + b)A4
i

4. S ← Bi

5. end for
6. The prover commits to Af such that:

Af = (S + ci + b)4

7. “Global constraint”:
S1 = (S + ci + b)A4

i + 2S0 + B

Fig. 19. Wizard sub-protocol for the MiMC compression function

A.7 Linear hashing

This section presents a sub-protocol to justify the correctness of hashing n small vectors of the same size
l. Here, we assume l and n to be powers of two. The statement involves two columns L and H such that
|L| = l|H| and asserts that H is constructed from L as follows:
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LinearHashing(L, H)

1. for i ∈ [n]
2. σ ← 0
3. for j ∈ [l]
4. σ ← MiMCCompress(σ, Lil+j)
5. end for
6. Hi

?= σ
7. end for

Fig. 20. Linear hashing statement

The sub-protocol works in two steps, the first steps operates on L to justify the construction of a column
S storing the intermediate steps of the compression function and the second steps uses the sub-sampling
protocol to checks that the final values of the hashes are the right ones. Thus, here we detail only the first
part. The prover commits to two extra columns: Oσ and Nσ storing respectively, the old state and the new
state of the permutation function. Then, the prover and the verifier engage in the MiMC block compression
sub-protocol to ensure that Oσ and Nσ are consistent at every row and add an extra global constraint to
ensure that the compression function calls are in sequence and that the state is reset at every new hash.
Here, Ir is a periodic sampling column

Oσ = Ir(Nσ ≪ −1)

When the hashes don’t all have the same size , it is possible to extend the above technique by replacing
Ir either by a column provided by the prover whose construction correctness should be enforced externally
or using a precomputed column. This allows handling the cases where n and l are not known in advance
also.

A.8 Merkle-tree membership

This section outlines our techniques to verify binary Merkle-trees, detailing the structure and constraints
involved in the verification process. The technique has also two steps: (1) creating a module responsible
for computing the Merkle proofs and (2) linking the assigment of the computation module into a “result”
module which contains the statement. The second step is made using a subsampling argument between these
two modules.

A.8.1 The result module The result module contains the following columns totalling the statement of
the protocol:

– Leaf: storing the leaves whose membership is proved
– Position: storing the position of the leaves in the tree
– Root: storing the root of each tree, allegedly storing the corresponding leaf at the corresponding position
– IsActive: stores boolean flags indicating whether the current row of the module actually requires a Merkle

proof verification. This is used to cancel constraints in the computation module to allow padding.

A.8.2 The computation module The table in Figure 21 represents how we model Merkle-tree verifica-
tion, where each proof uses a segment of d rows. In each segment, the Merkle root is recomputed bottom-up.
The zero column is implicitly not really committed to (it is a constant). This can be confusing, so we say
”bottom” to mean the last row of a segment, which corresponds to the first hash of the Merkle-proof. For
convenience, we use the following two expressions to construct the constraints:
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IsInactive NewProof IsEndOfProof Root Curr Proof PosBit PosAcc *Zero* Left IntermState Right NodeHash
0 0 1 R0 Hd−1,0 πd−1,0 bd−1,0 = 0 pd−1,0 = bd−1,0 0 Hd−1,0 Id−1,0 πd−1,0 R0
0 0 0 R0 Hd−2,0 πd−2,0 bd−2,0 = 1 pd−2,0 = bd−2,0 + 2pd−1,0 0 πd−2,0 Id−2,0 Hd−2,0 Hd−1,0
· · · · · · · · · · · · · · · · · · · · · · · · 0 · · · · · · · · · · · ·
0 1 0 R0 L0 π0,0 b0,0 = 1 pd−2,0 = b0,0 + 2p1,0 0 π0,0 I0,0 L0 H1,0
0 0 1 R1 Hd−1,1 πd−1,1 bd−1,1 = 1 pd−1,1 = bd−1,1 0 πd−1,1 Id−1,1 Hd−1,1 R0
0 0 0 R1 Hd−2,1 πd−2,1 bd−2,1 = 1 pd−2,1 = bd−2,1 + 2pd−1,1 0 πd−2,1 Id−2,1 Hd−2,1 Hd−1,1
· · · · · · · · · · · · · · · · · · · · · · · · 0 · · · · · · · · · · · ·
0 1 0 R1 L1 π0,1 b0,1 = 0 pd−2,1 = b0,1 + 2p1,1 0 L1 I0,1 π0,1 H1,1
· · · · · · · · · · · · · · · · · · · · · · · · 0 · · · · · · · · · · · ·
0 1 0 Rn Ln π0,n b0,n = 0 pd−2,n = b0,n + 2p1,n 0 Ln I0,n π0,n Hn,n

1 0 0 0 0 0 0 0 0 0 Idead 0 Hdead
· · · · · · · · · · · · · · · · · · · · · · · · 0 · · · · · · · · · · · ·
1 0 0 0 0 0 0 0 0 0 Idead 0 Hdead

Fig. 21. Modeling Merkle-tree verification. Each proof uses a segment of d rows.

NotNewProof = 1−NewProof
IsActive = 1− IsInactive

NotEndOfProof = 1− EndOfProof

These are not materialized by columns but are used as subexpressions in the constraints for clarity. We
now move on to list all the constraints that are enforced by the module:

1. Constance of Root over a segment Root is constant within a segment and it must be inactive when
the ”IsInactive” flag is set.

“Global constraint”:

(Root[i]− IsActive[i]Root[i+ 1])NotNewProof[i] == 0

2. Consistency of Root and Nodehash: At the end of each segment, the root must be equal to Node-
Hash.

“Global constraint”:
EndOfProof[i](Root[i]−NodeHash[i]) == 0

3. Booleanity of PosBit: This enforces PosBit to be boolean and zero if the inactive flag is set.

“Global constraint”:
PosBit[i] = IsActive[i]PosBit[i]2

4. PosAcc packs PosBit in an integer: this is aimed at reconstructing the leaf’s position in the tree
from its binary representation PosBit.PosAcc progressively computes the position of the opened leaf from
the bits. It must be zero when the inactive flag is set.

“Global constraint“:

PosAcc[i] = IsActive[i](PosBit[i] + 2NotEndOfProof[i]PosAcc[i+ 1])

5. Left and Right assignment: the flag PosBit decides which one of Proof or Curr is mapped to Left or
Right.

“Global constraints”:

Left[i] = PosBit[i]Proof[i]− (1− PosBit[i])Curr[i]
Right[i] = PosBit[i]Curr[i]− (1− PosBit[i])Proof[i]
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6. Within a chunk, use the previous node hash as current node: when the inactive flag is set, this
also enforces that Curr is zero.

“Global Constraint”:

NotNewProof[i](Curr[i]− IsActive[i]NodeHash[i+ 1])

7. Correctness of the MiMC computations: this is done by using the MiMC compression function
subprotocol:

MiMC(Zero,Left, Interm)
MiMC(Interm,Right,NodeHash)

8. Zero padding of the proof : this enforces that the proof is padded wherever the inactive flag is set:
“Global constraint”:

Proof[i] = IsActive[i]Proof[i]

B Selecting ring-SIS instances

In Section 7.1, we specify a generalized version of the SWIFFT hash function. In the current section, we
provide an overview of the existing attacks and their costs. As for SWIFFT, our hash function is directly an
instantiation of ring-SIS. The hash function, or rather, the family of hash functions we analyze hashes into
prime fields and support several norm bounds instead of {0, 1} for Ajtai [2] and SWIFFT [39]. The instances
that we analyze span over a large range of parameters, and this requires evaluating both lattice reduction
attacks and combinatorial attacks. Finally, the scope of this work is restricted to the classical setting.

B.1 The Short-Integer-Solution and Its “Ring” Variant

Let m > n be integers, q a prime and b < q.

Definition 13 (Short-Integer-Solution Problem (SIS)). Given random A ∈ Zn×m
q , find x such that

Ax = 0n ∧ ∥x∥∞ < b

Definition 14 (Inhomogeneous-SIS (ISIS)). Given random A ∈ Zn×m
q and t ∈ Zn

q , find x such that
Ax = t

We start with a few observations on SIS:

– SIS (and ISIS) cannot become harder by increasing m. That is because an attacker can always restrict the
search space to m′ < m by arbitrarily forcing some entries of x to zero.

– The problem only becomes harder as we increase n, this corresponds to adding more constraints on what
can be a valid x.

– It can only become harder as we restrict to smaller b. That is because it is equivalent to restricting the
search space.

– b ≥ q makes the problem trivial, as it can be solved by Gaussian elimination in polynomial-time.

Remark 1. The work of [26] uncovered an efficient procedure for solving γ-ideal-SVP in polynomial time, a
problem closely related to ring-SIS. We argue that they do not apply to the scope of our analysis. Indeed,

– They are in the quantum setting
– The approximation factor they apply the attack on is exponential. This is not what we typically use for

cryptographic applications
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– Ring-SIS is not exactly an ideal lattice problem (it is therefore not currently known if an efficient reduction
from ring-SIS to Ideal-SVP actually exists).

Now we define the ring version of the SIS problem.

Definition 15 (The Ring-(Inhomogeneous)SIS Problem). Given A ∈ Rm drawn randomly, following
the uniform distribution (for its coefficients) and b < q, the ring-ISIS problem is to find x ∈ Rm, non-zero,
such that ∥x∥∞ < b ∧Ax = 0R.

The ring-(I)SIS assumptions can be seen as special cases of SIS where A is drawn from a restricted set of
matrices representing the polynomial multiplication module Xn +1. One should note that m means different
things in our definitions of SIS and ring-SIS. For clarity “mSIS = nmRSIS”. Working with ring-SIS has several
practical benefits compared to SIS: the space taken to represent A is n times smaller, and the product Ax
can be computed much faster using FFT algorithms in nm logn instead of mn2.

B.2 Security properties

We require our hash function (as specified in Section 7.1 to have preimage resistance and collision resistance.

Definition 16 (Preimage Resistance). Given y, find x such that H(x) = y

The definition of preimage resistance coincides with the InhomogenousSIS problem. We attack it by
solving SIS (y,A) · (1, x) = 0. This is equivalently as hard as solving SIS with input size m.

Definition 17 (Collision Resistance). Find x, x′ such that H(x) = H(x′)

An attack against collision-resistance is obtained by breaking SIS for the matrix (A∥ − A), under the
constraint that a solution s = (s1∥s2)T satisfies s1 ̸= s2. This is equivalent to multiplying m by 2. From
that, we can deduce the fact that collisions are easier to find than preimages. Thus, in the following, we will
restrict our attention to attacks for finding collisions.

B.3 Overview of the cryptanalysis report

To estimate the hardness of ring-SIS instances, we consider two classes of attacks: combinatorial and lattice
reductions. In practice, no attack is known to work significantly better on ring-SIS rather than an equivalent
SIS instance. Additionally, in practice, the security of our hash function is bottlenecked by attacks on collision
resistance. Thus, we will only consider the equivalent (not-ring)-SIS instance with parameters q, n,m′ =
nm, b.

B.4 Lattice Reduction Techniques (BKZ2.0)

Foremost, we note that solving an SIS instance is the same as finding a short vector in the kernel lattice.

L = Λ⊥(A) = {z ∈ Zm′

q : Az = 0}

We are always free to pick m0 < m′ − n if that is convenient. The best-known algorithm to do so is
BKZ2.0, a generalization of the seminal LLL algorithm. This algorithm works by repeatedly calling an SVP
oracle which optimally reduces lattices to smaller dimension k < m0. The BKZ algorithm will output, with
overwhelming probability, a vector of size b2 = ∥v∥2 = δm0vol(L)1/m0 and thus we need to set,

b2 = δm0qn/m0 ∧ b
√
m0 < q (4)

The second term comes from the fact that if m0 is too big, then the smallest L2-ball containing the L∞
ball of SIS candidate contains the whole space. This does not necessarily mean the instance is broken, but it
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means our estimations are irrelevant. Therefore, we will reject those cases. We recall that for random lattices,
kernels vol(L) = qn with overwhelming probability.

Since the efficiency of BKZ has been widely studied in the L2 norm settings but not in the L∞ setting,
we need a strategy to convert the L∞ instances into equivalent ones over L2. Let B2(r) and B∞(r) denotes
respectively the L2 and L∞ balls of radius r centered at the origin. Then, from the Minkowski bound we
have that

B2(r) ⊂ B∞(r) ⊂ B2(
√
m0r)

To derive a cost estimate for BZK in the L∞ setting, we try values of b2 in the range [ b
2 ;√m0

b
2 ] estimate

their security as we will explain the following of the section, and then account for a probability that the short
L2 is small enough in the L∞ norm to be a solution of the target SIS instance. We retain the estimate of the
value of b2 that minimizes C

P where C is the runtime of BKZ and P is the success probability. We estimate
P by modelling the vector output by BKZ as being normally distributed (each coordinates independently)
with a standard deviation of b2√

m0
as suggested in [27].

Here, we have two free parameters: m0 and δ. δ is what we call the root Hermite factor. It can be in-
terpreted as the “output quality” that we can expect from BKZ. For the most part, it depends on the BKZ
block size k (and also a little on m0).

A comprehensive choice of the oracle, along with a model for their runtime can be found in the work of
[4]. All oracles and models come with different tradeoffs. The most efficient ones (in runtime) are sieve ones,
while enumeration ones require smaller space. Finally, based on the work of [46], we take that LD Sieve is
the fastest sieve algorithm. This gives us the following heuristic runtime formula (in CPU cycles) for a single
call to the SVP oracle.

log toracle = 0.292k + 16.4 (5)

[3] gives the following cost estimates of the overall runtime of BKZ2 (number of calls to the oracle) and
an estimation of the root-Hermite factor achieved by BKZ.

ρ = m0
3

k2 logm0

log2 δ = 1
2(k − 1)

(
log2( k

2πe ) + log2 πk

k

)
(6)

One should note that Eq. (6) is only asymptotically correct and it returns imprecise results. For this
reason, our analysis rules out small values of k by setting a lower bound on the examined values. In practice,
this is not a problem because the arbitrary lower bound that we set does not correspond to instances that
are not hard enough for cryptographic purposes.

B.5 Direct SVP attacks

Although BKZ has been shown to achieve superior results than direct SVP attacks we also consider the
latter. We consider two attacks, one using the sieving algorithm over the L2 norm (as in the BKZ case),
accounting for success probability. And another one derived from the work of [42] directly targeting L∞ SIS.

B.6 Combinatorial Attack

In addition to lattice reduction techniques, an important class of attacks for SIS and ISIS stems from the
field of attacks against the subset-sum problem.
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B.6.1 Camion-Patarin and Wagner attacks The course [41] describes the basic version of these
attacks and gives an easy procedure to determine their efficiency. The attack is also known as CPW. In [8],
the authors present several improved methods over the former method, and they achieve a 10-bit reduction
on SWIFFT. Those improvements have been obtained by generalizing the initial attack for which they used
careful manual tuning of its parameters.

As in [8] suggests, once we have found the optimal list-tree depth k, we can reduce the value of m to the
smallest value that verifies

2k

k + 1 <
m log(b)
n log q

We remind the reader that we are looking for collisions in the input space x ∈ [0; b[m which differs from
∥x∥∞ < b. This explains why our formula uses b in place of 2b − 1 as it can be sometimes found in the
literature. The above attack can, in fact, be generalized to a setting where the output space is split in k
chunks of size l1, l2, . . . , lk such that

∑
i li = n. By tweaking the size of each li we can optimize the attack.

Methodology We will consider two cases:

– If n ≤ 50, we exhaustively try every possible combination of li such that
∑

i li = n for k < log2 m.
And we simulate the attack by counting all operations. To reduce the cost of the exhaustive search, we
restrict the search space to li ≤ li+1.

– If n > 50, then we apply the simplified analysis given in [41]. From [41], the cost this will give us is an
overly pessimistic result, but in practice, these SIS instances are better attacked using lattice reduction
techniques. Thus, this fact is without consequence on our estimations.

In our estimation, for values of n (i.e., the dimension of the output space), we considered a refinement of
the technique to account for the fact that different tunings are possible (splitting the output space in “non-
equals” chunks). We exhaustively search the best set of parameters when n < 50. Otherwise, the exhaustive
search of parameters is too computationally heavy, and we fall back to the method of [41]. This is without
consequence for our estimations. Indeed, in practice, for our choices of q, we observe that SIS instances with
n < 50 are typically bottlenecked by the BKZ attack—for our choices of q—in practice.

To estimate the cost of the attack:

– In the basic case, we use the formula
– In the exhaustive case, we simply count all operations. We assume the running time of merging two lists

is linear in the size of the resulting merged list. We consider that the running time of creating the initial
leaves lists is roughly equal to enumerating all possibilities.

B.6.2 On the HGJ and BCJ refinements Howgrave-Graham and Joux introduced these techniques
in 2010, [35]. This class of attacks is somewhat similar to CPW, in the sense that it relies on recursively
splitting the initial problem and merging the partial solutions. As an outline, the difference there is that it
relies on splitting the problem in “weight” rather than in space.

These techniques have proven to be more effective when the problem has a low-density of solutions,
while CPW is more effective for higher-density instances. In our case, we seek to pick instances of SIS which
maximize the “compression ratio” and hence the density. Typically, our instances have densities that are
above the range of effectiveness of these attacks. Thus, we do not consider them in this work.

B.6.3 On Optimizations for Ring-SIS In [8], the authors present a technique to reduce the cost of the
attack when the set of *acceptable* input polynomials is preserved by multiplication by the transformation
ψ : s(X) → Xs(X). This is the case when either the ring modulus is Xn − 1 or the input space has sign
symmetry (meaning B = −B) and the modulus is Xn + 1. We stress that neither is our case, and we recall
that we use the modulus Xn +1 with B = [0; b[. It is however possible to reduce to a case where this technique
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is applicable nonetheless. Let 1m = (1, 1, 1, . . .),, instead of directly trying to find s such that As = 0 we
seek s′ ∈ B′ =′ B − b−1

2 such that A(s′ + b−1
2 (1, 1, 1, · · · )) = 0. If b is even (our case), then the solution

space for s′ has sign symmetry. We note that although B′ is not a set of short integers, this does not affect
the runtime of CPW. We do not expand on the technical details of the techniques. At a high-level, these
techniques decrease the size of each list by a factor of 2n, where n is the degree of the ring-modulus. Thus,
it achieves a speed-up of 2n.

However, as the work of [8] points out, this optimization is incompatible with the following one, based
on the Hermite Normal Form (HNF).

B.6.4 Optimization using the Hermite Normal Form (HNF) The Hermite Normal Form of a
matrix is an equivalent representation of the (I)-SIS problem. If A = (A0∥A1∥ . . . ∥An−1) is the SIS matrix,
then we call H = (I∥A−1

0 A1∥A−1
0 A1∥ · · · ) = (I∥A′) its normal form. The (I)SIS can then be equivalently

rephrased as, what we call, the approximate (I)SIS problem.

Definition 18 (Approximate (I)SIS problem). Find s, e ∈ B, such that Ax + e = R, where R = 0 in
the homogeneous case.

Based on this, we can adapt the CPW algorithm to turn it into an attack for the approximate (I)SIS
problem. [8] expands on the details of the algorithm.

Some notes on the costs estimates We note that both estimates are missing some hidden costs,

– The attacks we consider are typically as memory intensive as they cost in terms of computation.
– We do not account for the evaluation costs of each partial candidate solution. This would in practice add

a few bits of security.
– The storage of each candidate is not “1”. On top of impacting the memory complexity (which we chose

not to account for anyway), it has an impact on the costs of the memory accesses as well.

For these reasons, we believe the costs are somewhat over-pessimistic. Nonetheless, we prefer to go with
the initial approach and leave it as a future task to evaluate the concrete cost in CPU cycles of these attacks.

B.7 Concrete parameters

Based on the above analysis, we have run a parameter selection. The table in Fig. 22 gives a set of parameters
for the ring-SIS instance. Here, q denotes the order of the underlying prime field, b is the bound of the SIS
instance, and n is the degree of the ring modulus Xn + 1. For the instance, B1 the non-ring version of SIS
is considered. The reason the attack costs are higher than the claimed security level has two explanations.
First, we are willing to take conservative parameters for our SIS instances as our work is, to the best of our
knowledge, the first to take SIS-based hash function in production. The second reason is that we revisited
are our BKZ estimator and found that the our estimation δ = f(k,m0) was returning values that were lower
than what was used in [4] and thus giving very pessimistic results. The results we present Fig. 22 that we
present are consistent with their estimates. We will reconsider these parameters in the future. We stress that
the q we are using are prime numbers

C Linea’s state representation

This section briefly articulates how the state of Linea is Merkle-ized. The solution differs from the Keccak-
based Patricia Merkle-Tree that Ethereum uses. The motivations are multiple: our use cases require a more
prover-efficient solution as using Ethereum’s solution would necessitate in the 10000’s of Keccak per transac-
tion block and this would dominate the prover costs. The second point is that a PMT-based solution involves
more control flow logic making it more complex to arithmetize in practice.
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q b n SVP (L2) SVP (L∞) BKZ attack CPW attack

A1 ≈ 264 22 32 315.41 634.88 371.53 144.0
A2 ≈ 264 24 64 315.41 634.88 358.29 305.57
A3 ≈ 264 26 128 415.27 872.96 415.0 598.14
A4 ≈ 264 210 256 494.99 1111.04 380.99 1272.31
A5 ≈ 264 216 512 614.42 1269.76 344.85 2741.67
A6 ≈ 264 222 1024 886.27 1904.64 401.92 5967.82
B1 ≈ 2254 22 7 275.99 551.18 324.59 259.03
B2 ≈ 2254 24 16 313.07 634.88 355.56 270.0
B3 ≈ 2254 26 32 412.06 853.12 411.68 637.0
B4 ≈ 2254 210 64 491.19 1031.68 377.78 1262.46
B5 ≈ 2254 216 128 609.74 1269.76 341.83 2720.33
B6 ≈ 2254 224 256 807.72 1745.92 333.14 5921.27
B7 ≈ 2254 232 512 1203.09 2539.52 405.68 13013.8

Fig. 22. Lattice parameters targetting 128 bits of security

Our solution employs Sparse Merkle Trees (SMTs) at its foundation and uses them as a random access
memory where memory words are addressed by integers. The SMT is parametrized in such a way that it
minimizes the number of required levels and has 40 levels. Our approach enhances the SMT to support key-
value addressing by building a structure inspired by sorted doubly linked lists at the leaf level where each
leaf references its immediate neighbours in the key set. This allows us to instantiate a key-value addressed
state accumulator which can be addressed either be the hash of an Ethereum address (for the world state)
or by a 32-byte value for the storage of each contract.

C.1 Structure of the tree

Here, we present how to derive the value (and the implicit structure) of the non-empty leaves of the sparse
Merkle tree. We set the (x) leaves as the hash of the following structure:

– HKey: the hash of the key
– Value: the value we wish to store
– Prev: the position of the leaf whose associated HKey is immediately below the current node’s HKey
– Next: the position of the leaf whose associated HKey is immediately above the current node’s HKey

We refer to this structure as the opening of a leaf. Empty leaves have (cryptographically speaking) no
opening since it is infeasible to find a preimage for 0 (which we use for empty leaves in our SMT).

C.2 Initialization of the tree

To initialize our accumulator, we insert two utility leaves in the tree. These leaves do not contain functional
data by themselves. They are only here for convenience and practicality. Insert two nodes (that we will
call the “head” and the “tail” by convention). By “position”, we mean the index of the sparse Merkle-tree
leaves. In our construction, we set up a doubly linked list and “head” and “tail” represent nodes that are
respectively always at the beginning and always at the end of the list. But they are not associated with any
particular “key” in the set. That’s why their HKey field is not the hash of something. It also ensures that
these entries’ values are never accessed via the accumulator protocol.

At position 0 (head):

– HKey 0 (and not Hash(0))
– Value 0
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– Prev 0 (it points to itself as an invariant)
– Next 1 (points to the tail at the beginning, but this will be updated as we add entries in the set)

At position 1 (tail):
– HKey p-1 where p is the size of the BLS12-377 scalar field
– Value 0
– Prev 0 (points to the head at the beginning, but this will be updated as we add entries in the set)
– Next 1 (it points to itself as an invariant)

C.3 Tracking the position of the empty leaves
Without going into the details here, the state manager picks an empty leaf to write over when we insert into
an empty storage address. However, we have a requirement that the position in which we insert new leaves
must be deterministic: any person who looks at the transaction history should be able to reconstitute the
Merkle-tree identically (e.g., with the same leaves at the same positions).

If the state manager were given wiggle room to insert into any position of the SMT, then he would be
able to perform an attack where he uses a random node for insertion and never discloses it. The accumulator
state update would still be correct, but it would be infeasible to reconstruct an identical SMT since the exact
positions where the insertion occurs are ultimately private.

Countermeasure :
As a countermeasure, we introduce the following mechanism: we force the state-manager to insert to

the left. Namely, the state-manager never reuses a position twice even if the corresponding node has been
deleted. While it may seem wasteful to not reuse erased leaves, we will never run out of leaves to write over.
Under plausible hypothesis of storage usage, we estimate it would take over hundreds of years before we run
out of leaves with this solution.

That being said, it should be verifiable externally without maintaining more than a root hash. For that
purpose, we extend the SMT with an extra level on the top whose children are the “SMT root hash” and
position of the next free node: NextFreeNode. Note that the depth of the tree is now 41.

Every time we make an insertion, we fetch the ‘NextFreeNode‘ value from the Merkle tree and increase it
by 1. All updates to this field are justified by a Merkle-Proof (even though it contains only a single element)
as any other leaves. With this modification in mind, when we refer to the root of the SMT, we mean the
root of the upmost node and not the root of the sub-SMT root.

C.4 Operations on Cryptographic Accumulator
The cryptographic accumulator, based on Sparse Merkle Trees (SMTs), facilitates operations such as inser-
tions, deletions, and updates with verifiable proofs. This section outlines the procedures for these operations
and their verification mechanisms.

Insertion Operation To insert an entry (k, v) into the map, the process involves identifying the two
surrounding keys, HKey− and HKey+, which are the largest and smallest keys, respectively, such that
HKey− < hash(k) < HKey+. The positions of these keys within the tree are denoted as i− and i+. The
next free node, i = nextFreeNode, is determined by taking the value stored near the root of the tree. This
value is incremented at the end of the procedure.

Procedure:
1. Obtain Merkle proofs for leaves at positions i+, i−, and i, along with the opening nodes for i+ and i−

(N+ and N−).
2. Verify that N + .P rev = i− and N − .Next = i+ to ensure no intermediate key exists between HKey−

and HKey+.
3. Update the SMT by setting N − .Next = i, inserting the new value of hash(N−), and similarly updating
N+ and the new node N .

4. Increment nextFreeNode and derive the new root hash from the Merkle proof.
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Output: The prover generates three Merkle proofs and the positions i+, i−, and i, along with the modified
openings N− and N+.

Verification: The verifier checks the consistency of N− and N+ with their Merkle proofs and the current
root hash.

Read Zero Operation The ”Read Zero” operation is designed to demonstrate to an external verifier that
a specific key k is not present within the map. This operation is similar in nature to the insertion process,
and thus, a concise explanation is provided here:

Procedure:

1. Identify the two surrounding keys, HKey− and HKey+, which are the largest and smallest keys, re-
spectively, such that HKey− < hash(k) < HKey+. Denote their positions within the tree as i− and
i+.

2. Retrieve and send the openings N− and N+, along with their respective Merkle proofs, to demonstrate
the non-inclusion of key k between these two keys.

Verification: The external verifier conducts the following checks to validate the claim that key k is not part
of the map:

1. Verify the consistency of the Merkle proofs with the alleged openings N− and N+ against the current
root hash of the Sparse Merkle Tree (SMT).

2. Confirm that N + .P rev = i− and N − .Next = i+, and that HKey− < hash(k) < HKey+, ensuring
there is no intermediate key HKey′ that could exist between HKey− and HKey+.

This operation effectively proves the non-existence of a key within the map by leveraging the structure
and verifiability of the Sparse Merkle Tree.

Deletion Operation Deleting a key from the map is analogous to removing an item from a doubly linked
list, essentially reversing the insertion operation.

Procedure:

1. Identify the positions i+, i−, and i for the keys k+, k−, and the key to be deleted.
2. Update N− to point to N+ instead of N and similarly update N+ to point to N−, effectively removing
N from the list.

3. Replace the leaf hash(N) by 0 and update the rest of the SMT.

Output: The prover provides three Merkle proofs and the positions i+, i−, and i, along with the original
openings N−, N , and N+.

Verification: The verifier checks the consistency of the updated nodes with their Merkle proofs and the
current root hash.

Update Operation Updating a value in the map follows a similar procedure to a normal Merkle-tree
update.

Procedure:

1. Locate the position i and the node N for the key to be updated.
2. Obtain the Merkle proof for N .
3. Update the value field of N and derive the new root hash using the Merkle proof.
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Verification: The verifier checks the Merkle proof for N against the current root hash and verifies the updated
value.

Read Operation Reading a key from the map involves a standard Merkle proof verification to confirm the
presence or absence of the key.

Procedure:

1. Find the position i and the node N for the key.
2. Obtain and return the Merkle proof for N .

Verification: The verifier checks the Merkle proof for N against the current root hash to validate the read
operation.

C.4.1 Hash Functions and Sparse Merkle Tree Specifications The MiMC hash function, operating
over the scalar field of the BLS12-377 curve, is selected for its efficiency and security properties. The SMT
is characterized by a binary arity and a depth of 40, ensuring adequate capacity and collision resistance for
our applications. The implementation adheres to the MiMC construction with Miyaguchi-Preneel scheme,
utilizing 62 rounds of the cipher with an S-box exponent of e = 17, in non-Feistel mode. The construction
omits the XOR operations, replacing them with field additions within the BLS12-377 scalar field.
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