
Interactive Multi-Credential Authentication
Deepak Maram

sm2686@cornell.edu
Cornell Tech, Mysten Labs

New York, USA

Mahimna Kelkar

mahimna@cs.cornell.edu
Cornell Tech

New York, USA

Ittay Eyal

ittay@technion.ac.il
Technion

Haifa, Israel

ABSTRACT
Authentication is the first, crucial step in securing digital assets

like cryptocurrencies and online services like banking. It relies on

principals maintaining exclusive access to credentials like crypto-

graphic signing keys, passwords, and physical devices. But both

individuals and organizations struggle to manage their credentials,

resulting in loss of assets and identity theft.

In this work, we study mechanisms with back-and-forth inter-
action with the principals. For example, a user receives an email

notification about sending money from her bank account and is

given a period of time to abort.

We define the authentication problem, where a mechanism inter-

acts with a user and an attacker. A mechanism’s success depends on

the scenario—which credentials each principal knows. The profile
of a mechanism is the set of scenarios in which it succeeds. The sub-

set relation on profiles defines a partial order on mechanisms. We

bound the profile size and discover three types of novel mechanisms

that are maximally secure.
We show the efficacy of our model by analyzing existing mecha-

nisms and make concrete improvement proposals: Using “sticky”

messages for security notifications, prioritizing credentials when

accessing one’s bank account, and using one of our maximal mecha-

nisms to improve a popular cryptocurrency wallet. We demonstrate

the practicality of our mechanisms by implementing the latter.

CCS CONCEPTS
• Security and privacy→Multi-factor authentication; Formal
security models.

KEYWORDS
authentication, interactive protocols, synchronous networks

ACM Reference Format:
Deepak Maram, Mahimna Kelkar, and Ittay Eyal. 2024. Interactive Multi-

Credential Authentication. In Proceedings of the 2024 ACM SIGSAC Con-
ference on Computer and Communications Security (CCS ’24), October 14–
18, 2024, Salt Lake City, UT, USA. ACM, New York, NY, USA, 23 pages.

https://doi.org/10.1145/3658644.3670378

1 INTRODUCTION
Authentication plays a critical role in safeguarding online services

and digital assets. An authentication mechanism binds a user’s phys-

ical identity to a digital identity [11, 16]. It relies on the user’s ex-

clusive access to credentials like a password, a one-time PIN (OTP),

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA
© 2024 Copyright held by the owner/author(s).

This is the author’s version of the work. It is posted here for your personal use. Not for

redistribution. The definitive Version of Record was published in Proceedings of the 2024
ACM SIGSAC Conference on Computer and Communications Security (CCS ’24), October
14–18, 2024, Salt Lake City, UT, USA, https://doi.org/10.1145/3658644.3670378.

or a cryptographic signing key. But credential management is chal-

lenging [20, 24, 38]: identity theft in the US is rampant [27]; an esti-

mated 20% of Bitcoin have disappeared as a result of key loss [23];

and $600M in cryptocurrency were stolen recently due to a single

company’s key mismanagement [34].

Some practical mechanisms employ interaction. For example,

the Argent cryptocurrency wallet [6] uses multiple cryptographic

signing keys as credentials. In a possible configuration, any 1-out-of-

3 credentials can initiate a change of credentials, but the change only

happens after two days, duringwhich the operation can be cancelled

with any 2-out-of-3 credentials. In online banking, some banks

(e.g., [3]) introduce an artificial delay period before transferring

funds; they notify the client and allow her to abort an erroneous

transaction during this period. Government agencies (e.g., [32])

send a notice by (physical) mail about reversible account activity,

allowing victims to revert in case of identity theft attempts [27].

But despite being used in practice, to the best of our knowledge,

interactive authentication has never been formally studied, and

its advantages are therefore underutilized. Prior work (§2) focused

on proposing frameworks that only model non-interactive mecha-

nisms [26, 30], or consider specific interactive mechanisms like the

ones mentioned above [6, 45], which we show to be sub-optimal.

Multi-factor authentication is typically defined as requiring multi-

ple credentials [43], i.e., combine credentials using a conjunction

(AND) operator, without taking advantage of interactivity. Similarly,

multi-sig or threshold mechanisms (𝑘-out-of-𝑛 keys) are popular in

the cryptocurrency industry [15, 28, 31], but are non-interactive.

In this work, we formally study interactive authentication mech-

anisms. We first define the authentication problem (§3), consisting

of a mechanism and two players: a user and an attacker that stands
for all entities trying to authenticate as the user. The mechanism is

a deterministic finite automaton using 𝑛 ≥ 1 credentials to identify

the user. Each credential can be in one of four states [26]: safe (only
the user has it), stolen (only the attacker has it), leaked (both have it)

or lost (neither has it). The states of all credentials define a scenario,
with a total of 4

𝑛
scenarios possible.

The players send to the mechanism messages carrying proofs of

the credentials they have, and eventually the mechanism decides
which of them is the user. A mechanism succeeds in a scenario

if it is correct irrespective of what the attacker does; otherwise

it fails. When the communication channels are synchronous, the
mechanism can rely on an interactive message exchange with the

players.

To evaluate mechanisms, we define the security profile of a mech-

anism to be the set of all scenarios in which it is successful. For

example, with two credentials denoted by 𝑐1 and 𝑐2, consider the

OR-mechanism where either 𝑐1 or 𝑐2 can be used to authenticate,

i.e., 𝑐1∨𝑐2. Its profile has three scenarios: (𝑐1 and 𝑐2 safe), (𝑐1 safe, 𝑐2

lost) and (𝑐1 lost, 𝑐2 safe). The mechanism succeeds in the latter

two because the user knows enough credentials to authenticate and

https://doi.org/10.1145/3658644.3670378
https://doi.org/10.1145/3658644.3670378

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Deepak Maram, Mahimna Kelkar, and Ittay Eyal

the attacker does not. Note that the mechanism fails in scenarios

where both players have 1–2 credentials, e.g., (𝑐1 stolen, 𝑐2 safe),

because we conservatively assume that the adversary controls the

order in which messages are delivered to the mechanism.

The security profile defines a relation between any two mech-

anisms 𝑀1 and 𝑀2 using the same number of credentials: 𝑀1 is

better than𝑀2 if the profile of𝑀1 is a superset of the profile of𝑀2.

𝑀1 is equivalent to𝑀2 if they have the same profile. Otherwise,𝑀1

and 𝑀2 are incomparable. A mechanism is maximally secure or
simply maximal if no other mechanism is better. For example, if a

2-credential mechanism𝑀 succeeds in all three scenarios where the

OR-mechanism is successful plus some additional scenarios, then

we can say that𝑀 is better than the 2-credential OR-mechanism.

By proving constraints on the profile sets any mechanism could

achieve, we bound the profile size (§4). We find that with 𝑛-

credentials, no mechanism succeeds in more than 𝑃 (𝑛) = 4
𝑛−2

𝑛

2

scenarios. For example, 𝑃 (2) = 6, that is, a 2-credential mechanism

can win in at most 6 scenarios. Using automatons as a generic

computational model enables us to prove this impossibility result.

The bound is tight as we discover several maximal mechanisms

meeting it (§5). We discover a generic class of maximal mecha-

nisms that follow a simple template: Either player can initiate the

mechanism, at which point the mechanism starts a timer. Until the

time runs out, each player can submit messages to the mechanism,

carrying one or more credentials. Finally, the mechanism decides

on the winner. We refer to mechanisms (maximal or otherwise)

following the above structure as bounded-delay mechanisms. They
only differ in the way a winner is decided.

We identify three sufficient properties for a bounded-delay mech-

anism to be maximal: (1) ID-Agnostic: the mechanism only de-

cides based on messages, not other information; (2) Knowledge-
rewarding: if a player submits a credential set that is a superset of

its counterpart’s set, then the mechanism decides on the former;

and (3) Transitive-knowledge-rewarding: submitting additional cre-

dentials cannot lead to a worse outcome for the submitting player.

We discover three classes of bounded-delay mechanisms that

satisfy these properties. The first two are fairly intuitive: Majority
mechanisms choose whoever submits the most credentials, with

some tie-breaking function. Priority mechanisms use a priority vec-

tor defined over the 𝑛-credentials, and the winner is the player

that submits a unique higher priority credential. For example, con-

sider the priority vector [𝑐2, 𝑐3, 𝑐1]: if player P1 submits {𝑐1, 𝑐2} and
player P2 submits {𝑐2, 𝑐3}, P2 wins due to the higher priority of 𝑐3

over 𝑐1. The third class is a variation of priority mechanisms.

We can now illustrate the advantage of interactivity by going

back to the 2-credential setting. Consider the 2-credential priority

mechanism defined by the vector [𝑐1, 𝑐2]. Its profile contains (𝑐1

and 𝑐2 safe); (𝑐1 safe, 𝑐2 leaked or lost or stolen) because only the

user knows the highest-priority credential 𝑐1; and (𝑐1 leaked or

lost, 𝑐2 safe) because 𝑐2 is safe and 𝑐1 is known to either both the

players or to neither. In total, the size of the profile is six, equal to

the upper bound 𝑃 (2) that any 2-credential mechanism can reach.

Note that the priority mechanism offers better security than the

OR-mechanism because the former’s profile is a superset of the

latter with three more scenarios: (𝑐1 safe, 𝑐2 leaked or stolen) and

(𝑐2 safe, 𝑐1 leaked).

The three mechanism classes cover the complete set of 𝑛-

credential maximal mechanisms for 𝑛 ≤ 3 (§6), i.e., any mechanism

must be either worse than or equivalent to a mechanism in the three

classes. It follows that for any given probability distribution of

credential states, one of the complete set mechanisms is the most

secure, i.e., has the highest probability of being secure.

We show the efficacy of our model by analyzing deployed inter-

active mechanisms (§7). Specifically, we examine the widely used

cryptocurrency wallet Argent [6] used by over a million users [12]

and a prominent bank [3] that serves over a 100 million users. We

apply our framework to model their mechanisms, accurately assess

their security levels, pinpoint existing vulnerabilities, and propose

enhancements.

Argent lets the user select𝑚 key guardians (e.g., friends) and

keeps one key on the user’s phone for a total of𝑛 =𝑚+1 credentials.

It provides functionality to transfer funds and modify credentials.

We find that Argent’s profile has 5 scenarios if 𝑛 = 2 and 22 sce-

narios if 𝑛 = 3 when used according to the Argent documentation.

Therefore, Argent achieves much better security than commonly

used non-interactive designs, e.g., the popular 1-out-of-2 and 2-out-

of-3 wallets only succeed in 3 and 14 scenarios respectively.

However, our analysis also reveals that Argent is not maximally

secure, as it succeeds in 6 scenarios when 𝑛 = 2 and in 28 scenarios

when 𝑛 = 3. This is attributable to three reasons: (i) the wallet’s

inability to execute multiple transactions atomically, (ii) the absence

of a prioritization scheme among guardians and (iii) the implemen-

tation of a feature termed “fast withdrawals”, that facilitates instant

money transfers without delays. Argent’s security can be improved

either by fixing these issues individually or by adopting our maxi-

mal mechanisms, which has the added benefit of vastly simplifying

the design.

We illustrate the practicality of our mechanisms through the

implementation of a priority mechanism in Solidity (App. A). Our

implementation incurs fees similar to those of Argent (§7.1).

Similarly, we analyze a (slightly) simplified version of the au-

thentication mechanism employed for logging into the website

for HDFC bank—the largest bank in India (§7.2). We find that the

mechanism’s security is over-reliant on the security of a one-time

password (OTP), received on a registered mobile device. For exam-

ple, the bank’s protocol permits an instantaneous password reset

with an OTP. Using a 2-credential priority mechanism before a

password reset instead can significantly enhance HDFC’s security.

Specifically, this simple change can improve the security profile

from 20 to 28 scenarios, thus achieving maximal security.

Lastly, a practical insight arising from this work is the criticality

of the assumed synchronous channel. In practice, such a channel

must be implemented. For example, consider email (or text message)

serving as the notification channel from a bank to its clients. If the

attacker gained even temporary access to a user’s mobile device,

she could delete any notifications, thus voiding the channel’s ef-

fectiveness. We propose to overcome this vulnerability by making

such notification emails sticky – they cannot be deleted for, say,

24 hours. In other settings such as blockchain smart contracts, the

notifications are public, but the user should use multiple devices to

monitor the chain [1] (as used for other goals, e.g., [29, 37, 39]).

Interactive Multi-Credential Authentication CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

This work opens the door to a plethora of questions on authenti-

cation mechanisms in alternative models (§8), e.g., with asynchro-

nous communication channels, under different knowledge models

and with usability considerations. Addressing those is the next step

towards secure authentication mechanisms fit for contemporary

challenges.

In summary (§9), our main contributions are:

(1) A definition of the authentication problem, in particular under

synchrony,

(2) a metric of the security level of an authentication mechanism,

namely security profiles,

(3) a tight upper bound on the profile size of any mechanism,

(4) novel maximally-secure 𝑛-credential mechanisms,

(5) the complete sets of maximal mechanisms for 𝑛 ≤ 3,

(6) security analysis of deployed mechanisms with concrete im-

provement proposals, and

(7) Solidity implementation of a maximally-secure wallet.

2 RELATEDWORK
To the best of our knowledge, previous work did not provide a gen-

eral definition of the authentication problem or analyze interactive

authentication under a corruption model for credentials.

Eyal’s cryptocurrency wallet design [26] also designs secure

authentication mechanisms, however with a different model and

with more specific results. Eyal’s mechanisms are restricted to ones

defined by boolean formulae, resulting in a smaller design space, a

strict subset with respect to our work’s general automata that take

advantage of a synchronous network. Eyal also considers only a

probabilistic model for credential failures (which we adopt briefly

in App. D). In terms of results, Eyal uses brute force or heuristics to

find optimal mechanisms in particular cases, whereas we discover

a hierarchy in the broader design space of interactive mechanisms,

and identify new families of maximal mechanisms. Finally, our

model allows reasoning and improving practical mechanisms (§7)

that are not covered by Eyal’s model.

Hammann et al. [30] use a restrictive model but their focus is

orthogonal to ours, namely, to uncover vulnerabilities arising from

the links between different mechanisms a user uses. Mouallem and

Eyal [42] explore the authentication problem but in asynchronous

settings; mechanisms there are substantially weaker, underscoring

the advantage of using interactive mechanisms when possible.

There is substantial interest in analyzing the security of multi-

factor authentication mechanisms. For example, Jacomme et al. [33]

and Barbosa et al. [14] analyze Google’s 2FA and Fido’s U2F. But

they do not propose generic frameworks; moreover, these mech-

anisms are also one-shot. The symbolic verification of security

protocols is widely studied in formal methods [25, 40], however

not under a corruption model for credentials.

Elaborate authentication mechanisms are common for cryptocur-

rency assets [10, 15, 21, 31]; some of which even use interactive

schemes like Argent [6], SmartCustody [8] and CoinVault [13]

(which was part of the inspiration for this work). Interactive designs

are sometimes seen in traditional contexts too, e.g., e-commerce

platforms often provide customers with a limited timeframe to can-

cel orders, financial and governmental agencies use it for enhancing

account security [3, 32]. These demonstrate the practicality of in-

teractive schemes, but also the need for rigor, as we demonstrate

by analyzing and proposing improvements for the popular Argent

cryptocurrency wallet and for HDFC bank access in §7.

Paralysis Proofs [45] leverages interactivity to deal with cre-

dential loss; similar ideas were recently proposed in the Bitcoin

community [8].We discuss this approach (§7.3) and show that our

mechanisms have larger security profiles.

Vaults [41] (the first interactive wallet design we know of) and

KELP [17] leverage interactivity to deal with key leakage and loss,

respectively. But their models are distinct from ours: Vaults [41]

treats the casewhere neither player canwithdraw funds as a success,

since it removes the motivation for an attack; we conservatively

treat this outcome as a failure. KELP [17] considers temporary ex-

clusive knowledge to the user – a user knows about a lost key before

anyone else; in §8we consider a strongermodel where the user can’t

tell whether a key is lost or stolen. Both works consider specific

mechanisms while we find bounds and maximal mechanisms.

Authorization research has focused on implementing security

policies [18, 19, 44]. In some contexts, our mechanisms can be

implemented using those solutions.

3 MODEL
We formalize the authentication problem.We describe an execution,

its participants and communication (§3.1), credentials (§3.2), the

automaton model for authentication mechanisms (§3.3), and player

strategies (§3.4), all summarized in Algorithm 1. Finally, we define

security profiles, with which we evaluate mechanisms (§3.5).

3.1 Execution: participants, time and network
The system comprises an authentication mechanism 𝑀 and two

players, a user U and an attacker A.
An execution begins with the environment (an entity we use to

orchestrate a real-world situation) assigning distinct player iden-
tifiers to the user and to the attacker from the set P = {0, 1}. It
picks 𝛾 ∈ P and assigns 𝛾U to the user and 𝛾A to the attacker, e.g.,

if 𝛾 = 0, then the user is player 0 and the attacker is player 1. The

identifiers are akin to cookies used to identify a website visitor

during a single session. We refer to 𝛾 as the environment’s strategy.
Time progresses in discrete steps. During the execution, both

parties interact with the mechanism by sending and receiving mes-

sages. Communication channels are reliable and synchronous – if a

message is sent in time step 𝑎, it reaches the recipient in step 𝑎 + 1.

The attacker controls message order within a time step. That

is, if both user and attacker send messages to the mechanism at

the same time step, the attacker can choose which of the two is

received first.

The mechanism decides either 0 or 1 to end an execution, and

the player with this identifier wins. This is a one-time irrevocable

operation corresponding to, say, withdrawing money out of a bank.

3.2 Credentials, scenarios and messages
The system contains a set of 𝑛 credentials, Call = {𝑐1, 𝑐2, . . . , 𝑐𝑛}.
Each credential is in one of four states [26]: (1) Safe: Only U has

it, (2) Lost: No one has it, (3) Leaked: Both U and A have it, or (4)

Stolen: Only A has it. Denote the state of credential 𝑐𝑖 by 𝜎𝑖 , so for

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Deepak Maram, Mahimna Kelkar, and Ittay Eyal

all 1 ≤ 𝑖 ≤ 𝑛 : 𝜎
𝑖
∈ {safe, lost, leaked, stolen}. A scenario 𝜎 is a

vector of the 𝑛 credential states and Σ = {safe, lost, leaked, stolen}𝑛
is the set of all scenarios, i.e. 𝜎 ∈ Σ.

The credential set of the user (resp., attacker) contains all the
credentials available to that player, denoted 𝐶𝑈

𝜎 = {𝑐𝑖 |𝜎𝑖 ∈
{safe, leaked}} (resp., 𝐶𝐴

𝜎 = {𝑐𝑖 |𝜎𝑖 ∈ {leaked, stolen}}).
At the start of an execution, the environment picks a sce-

nario 𝜎 ∈ Σ and initializes U and A with the credential sets 𝐶𝑈
𝜎

and 𝐶𝐴
𝜎 , respectively. The scenario 𝜎 is common knowledge, i.e., the

state of all 𝑛 credentials is known to both parties.

Each message sent by U or A consists of a player identifier 𝑝 ∈ P
and a set of credentials 𝐶 . A message can only carry a subset of

the credentials available to the sender, i.e., a user (resp., attacker)

message can carry a set of credentials𝐶 s.t.𝐶 ⊆ 𝐶𝑈
𝜎 (resp.,𝐶 ⊆ 𝐶𝐴

𝜎).

To avoid credential leakage by listening to the channel, a message

should actually contain encrypted credentials or zero knowledge

proofs of credential knowledge, e.g., signatures for private keys etc.

We avoid this detail for simplicity.

Although an attacker cannot include a credential not assigned to

it, we do not preclude the attacker from forging credentials. Forgery

is modeled as leakage or stealing.

3.3 Authentication mechanism
The mechanism𝑀 is a deterministic one-clock timed automaton [7]

known to both the user and attacker [35, 36], defined by the follow-

ing elements:

States: The automaton has a finite set T of states. It includes a
special starting state 𝐼init and two disjoint sets of final states, T fin

0

and T fin
1

. The execution ends as soon as the automaton reaches

a final state, i.e., if 𝑠 ∈ T fin
𝑖

, then the winner is the player with

identifier 𝑖 .

Clock: A 𝑐𝑙𝑜𝑐𝑘 has some value 𝑡 ∈ Z≥0, initialized with 𝑡 = 0,

and incremented by 1 in each step. The automaton can reset the

clock back to its initial state (𝑡 = 0).

A tuple (𝑠, 𝑣) of an automaton state 𝑠 and a clock state 𝑡 is called

the system state. At the start of an execution, we have 𝑠 ← 𝐼init
and 𝑡 ← 0.

Transitions: An automaton transition is a 6-tuple consisting of

a source and a destination state, three types of guards and a clock

reset bit, as follows.

The Clock Reset R = {True, False} represents the reset of the

clock state or no reset. Resetting means that the clock is set back to

its initial state (𝑡 ← 0) upon taking the transition.

Transitions take place on message arrival. A guard 𝑔 is a con-

straint specifying that the message must meet a condition for the

transition to take place. A guard with the value ⊥ indicates no

constraint. There are three types of guards:

A Player guard means the message must be sent by a certain

player ID. The set of player identifier guards is Gid = P ∪ {⊥}.
If a player 𝑝 ∈ P satisfies the guard 𝑔plr we denote 𝑝 ⊢ 𝑔plr. For
example, 0 ⊢ 𝑔plr only if 𝑔plr ∈ {0,⊥}.

A Credential guard means that the message must carry cer-

tain credentials. The set of credential guards G𝑐 includes all non-
constant monotone boolean formulae of the availability of the cre-

dentials in the set Call and ⊥. For example, if 𝑛 = 2, then G𝑐 =

{𝑐1, 𝑐2, 𝑐1 ∧ 𝑐2, 𝑐1 ∨ 𝑐2,⊥}. A credential set 𝐶 satisfies a credential

guard𝑔cd, denoted𝐶 ⊢ 𝑔cd, if the credentials in𝐶 satisfy the boolean

formula 𝑔cd. For example, if 𝑔cd = 𝑐1∨𝑐2 and𝐶 = {𝑐1}, then𝐶 ⊢ 𝑔cd.
A Clock guard is a condition on the clock state 𝑡 expressed

through a comparison operator ∼ ∈ {<, ≤,=, ≥, >} and a natural

number 𝑙 ∈ N, i.e., (𝑡 ∼ 𝑙). The set of all clock guards (including ⊥)
is G𝑡 . For example, a guard 𝑔clk = (𝑡 < 5) specifies that the clock
state 𝑡 must be less than 5. Denote by 𝑡 ⊢ 𝑔clk that the clock state 𝑡

satisfies the guard 𝑔clk.

In summary, D ⊆ T × Gid × G𝑐 × G𝑡 × R × T is the set of

transitions of𝑀 . (The source state must be a non-final state, and

the target state not the beginning state.) And an automaton𝑀 is a

6-tuple given by𝑀 = (Call,T , 𝑐𝑙𝑜𝑐𝑘,D,T fin
0

,T fin
1
).

If the current state is 𝑠 and the automaton receives a message

satisfying all the guards of an outgoing transition of 𝑠 , then the desti-

nation state of the transition becomes the new state. There can exist

at most one such transition because we consider a deterministic au-

tomaton, i.e., we require: For all states 𝑠 ∈ T , all clock states 𝑡 ∈ Z≥0,

all sets of credentials 𝐶 ⊆ Call, and all player identifiers 𝑝 ∈ P,
there exists at most one transition (𝑠, 𝑔plr, 𝑔cd, 𝑔clk, 𝑟 , 𝑠′) ∈ D such

that all the guards are satisfied, i.e., 𝑝 ⊢ 𝑔plr, 𝐶 ⊢ 𝑔cd and 𝑡 ⊢ 𝑔clk.
The automaton informs both parties of each state change, even

if multiple transitions occur within a single time step.

Note 1. We use a clock in automatons for illustrative reasons. It
can be removed to construct a DFA using standard techniques (see
region automata [7]).

3.4 Player strategies and mechanism success
The user strategy 𝑆𝑈 specifies which messages the user sends in

any given extended mechanism state:

Definition 1 (User strategy). A user strategy is a function of
the system state 𝑒 = (𝑠, 𝑡), 𝑆𝑈 (𝑒) that returns ⊥ or an ordered list of
credential sets {𝐶𝑖 }.

Denote 𝑌U
as the set of user messages that the user sends when

the system state is 𝑒 , i.e., 𝑌U ← {(𝛾U,𝐶) |𝐶 ∈ 𝑆𝑈 (𝑒)}.

Definition 2 (Attacker strategy). An attacker strategy is a
function of the system state 𝑒 and user’s messages 𝑌U, 𝑆𝐴 (𝑒, 𝑌U) that
returns an ordered list of messages 𝑌 all = {𝑝𝑖 ,𝐶𝑖 } containing both
user and attacker messages such that no user message is lost, i.e.,
∀(𝛾U,𝐶) ∈ 𝑌U, (𝛾U,𝐶) ∈ 𝑌 all.

A user (resp., attacker) strategy is playable in a scenario 𝜎 if for

all possible systems states 𝑒 and for all𝐶𝑖 ∈ 𝑆𝑈 (𝑒) : 𝐶𝑖 ⊆ 𝐶𝑈
𝜎 (resp.,

for all user messages 𝑌U
, (𝛾A,𝐶𝑖) ∈ 𝑆𝐴 (𝑒, 𝑌U) : 𝐶𝑖 ⊆ 𝐶𝐴

𝜎). In other

words, a strategy becomes playable only if the player knows the

credentials required to execute it in all possible system states.

A player adopting a strategy 𝑆 means that if the current extended

state is 𝑒 , then the user sends its messages 𝑌U ← {(𝛾U,𝐶) |𝐶 ∈
𝑆𝑈 (𝑒)}, and after seeing user’s messages, the attacker sends the

final set of messages 𝑆𝐴 (𝑒, 𝑌U).

Interactive Multi-Credential Authentication CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

Algorithm 1: Execution with players U and A and mecha-

nism𝑀 = (Call,T , 𝑐𝑙𝑜𝑐𝑘,D,T fin
0

,T fin
1
)

Input: The environment chooses a scenario 𝜎 ∈ Σ
and 𝛾 ∈ {0, 1}. It initializes U (resp., A) with the

player identifier 𝛾U = 𝛾 (resp., 𝛾A = 1 − 𝛾) and the

set of credentials 𝐶𝑈
𝜎 (resp., 𝐶𝐴

𝜎).

1 𝑠 ← 𝐼init, 𝑡 ← 0 ; // State and clock

2 repeat; // Execute loop once per time step

3

4 𝑌U ← {(𝛾U,𝐶) |𝐶 ∈ 𝑆𝑈 ((𝑠, 𝑡))} ; // U’s messages

5 𝑌 all ← 𝑆𝐴 ((𝑠, 𝑡), 𝑌U) ; // A adds messages and

orders them

6 for 𝑖 = 1, 2, . . . , |𝑌 all | do ; // 𝑀 processes messages

7

8 if ∃(𝑠′, 𝑔plr, 𝑔cd, 𝑔clk, 𝑟 , 𝑠′′) ∈ D, 𝑠 = 𝑠′,
𝑝𝑖 ⊢ 𝑔plr, 𝐶𝑖 ⊢ 𝑔cd, and 𝑡 ⊢ 𝑔clk then

9 𝑠 ← 𝑠′′ ; // Update automaton state

10 if 𝑟 = True then 𝑡 ← −1;

11 if 𝑠 ∈ T fin
0

then return 0;

12 if 𝑠 ∈ T fin
1

then return 1;

13 𝑡 ← 𝑡 + 1 ; // Advance clock

14 until;

An execution 𝐸 is fully defined by an automaton𝑀 , a scenario 𝜎 ,

player strategies 𝑆𝑈 and 𝑆𝐴 , and the environment’s strategy 𝛾 ,

i.e., 𝐸 = (𝑀,𝜎, 𝑆𝑈 , 𝑆𝐴, 𝛾). The details of how an execution unfolds

are specified in Algorithm 1. The user wins only if the mechanism

chooses it:

Definition 3 (Execution winner). Given an execution 𝐸 =

(𝑀,𝜎, 𝑆𝑈 , 𝑆𝐴, 𝛾), the winner of an execution is the player decided
by the automaton 𝑀 , or the attacker A if 𝑀 never decides. We de-
note Winexec (𝐸) ∈ {U, A} accordingly.

An environment strategy change can affect the outcome of two

executions that use the same player strategies.

A mechanism𝑀 succeeds in a scenario 𝜎 , denoted Suc(𝑀,𝜎), if
the user wins irrespective of other’s strategies:

Definition 4 (Success). Given a mechanism𝑀 and a scenario 𝜎 ,
we say that the mechanism is successful, denoted Suc(𝑀,𝜎), if the
user has a strategy that wins in every execution against any at-
tacker’s strategy and environment’s strategy, i.e., ∃𝑆𝑈win: ∀𝑆

𝐴,∀𝛾 , 𝐸 =

(𝑀,𝜎, 𝑆𝑈win, 𝑆
𝐴, 𝛾) and Winexec (𝐸) = U. Otherwise, the mechanism

fails, denoted ¬Suc(𝑀,𝜎).
Let 𝑋 = (𝑀,𝜎) denote a mechanism and a scenario, and call 𝑋

an extended scenario. We say Win𝑋 (𝑆𝑈 , 𝑆𝐴) = U if the strategy 𝑆𝑈

wins for the user in all executions where the attacker employs 𝑆𝐴 ,

i.e., independent of the environment’s strategy. A strategy 𝑆𝑈win is

a winning user strategy if it wins against any attacker strategy,

i.e., ∀𝑆𝐴 : Win𝑋 (𝑆𝑈win, 𝑆
𝐴) = U.

On the other hand,Win𝑋 (𝑆𝑈 , 𝑆𝐴) = A means that 𝑆𝐴 wins for

the attacker in some execution where the user employs 𝑆𝑈 , i.e., with

some player identifier allocation. And 𝑆𝐴win is a winning strategy

for the attacker if ∀𝑆𝑈 : Win𝑋 (𝑆𝑈 , 𝑆𝐴win) = A. Note that if the user

Notation Description

U, A User, Attacker

Call = {𝑐1, . . . , 𝑐𝑛} The 𝑛 credentials

𝜎 , 𝜎 Scenario and its complement

𝜎𝑖 ∈ {safe, lost, leaked, stolen} State of 𝑐𝑖

𝐶𝑈
𝜎 /𝐶𝐴

𝜎 Credentials of user / attacker in 𝜎

Σws, Σns All with-safe, no-safe scenarios

Σwt, Σnt All with-stolen, no-stolen scenarios

P = {0, 1} Player identifiers

𝑀 = (Call,T , 𝑐𝑙𝑜𝑐𝑘,D,T fin
0

,T fin
1
) Automaton / Mechanism

T fin
0
/T fin

1
Final states where 0 / 1 wins

G𝑐 ,G𝑡 ,Gid Credential, clock and player guards

𝐶 ⊢ 𝑔cd Credential guard

𝑐𝑙𝑜𝑐𝑘, 𝑡 The clock and its state

𝑔clk := 𝑡 ∼ 𝑙 , 𝑡 ⊢ 𝑔clk Clock guard

𝑟 ∈ {True, False} Clock reset

(𝑠, 𝑔plr, 𝑔cd, 𝑔clk, 𝑟 , 𝑠′) ∈ D A 6-tuple edge in the automaton

Suc(𝑀,𝜎) Is the mechanism successful in 𝜎?

𝑆𝑈 , 𝑆𝐴 Strategies of user and attacker

Winexec (𝐸) Winner of an execution

Win𝜎 (𝑆𝑈 , 𝑆𝐴) Winner under specified strategies

prof(𝑀) Security profile of the scheme𝑀

𝑃 (𝑛) Bound on the profile size

M𝑛 All 𝑛-credential mechanisms

O𝑛 Complete set of mechanisms

Table 1: Notation

doesn’t have a winning strategy, the attacker does due to Zermelo’s

Theorem (App. G).

We conclude this section with a few remarks.

Parallel executions: Multiple executions can run in parallel at the

same time although we do not explicitly model it.

State updates: Recall that we assume that any state change is

immediately informed to both the user and attacker. This is both a

strict and conservative assumption: strict (resp., conservative) be-

cause the user (resp., attacker) knows all the state updates, including

any authentication attempts by the attacker (resp., user).

3.5 Mechanism profiles
Having defined mechanism success, we can now evaluate and com-

pare mechanisms. A mechanism’s profile is a concise representation
of its security level containing all the scenarios in which it succeeds.

Definition 5 (Profile). The profile of a mechanism𝑀 denoted
by prof(𝑀) is the set of all scenarios where𝑀 succeeds, i.e., prof(𝑀) =
{𝜎 |𝜎 ∈ Σ ∧ Suc(𝑀,𝜎)}.

The profile can also be viewed as an 𝑛-dimensional matrix

where 𝑛 is the number of credentials. Each cell represents a distinct

scenario and the value in it is 1 or 0 if the scenario is in the profile

or isn’t, respectively (e.g., Fig. 1).

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Deepak Maram, Mahimna Kelkar, and Ittay Eyal

The profiles define a partial order on the set of all 𝑛-credential
mechanisms, denoted byM𝑛 . Two mechanisms 𝑀,𝑀′ ∈ M𝑛 are

equivalent, denoted by 𝑀 � 𝑀′, if one’s profile can be obtained

from the other’s by permuting the credential set:

Definition 6 (Eqivalence). Given a permutation 𝜋 :

{1, . . . , 𝑛} → {1, . . . , 𝑛} and a scenario 𝜎 , define the permuted sce-
nario 𝜎𝜋 by 𝜎𝜋

𝑖
= 𝜎

𝜋 (𝑖) . Then, 𝑀 � 𝑀′ if ∃𝜋 :

⋃
𝜎∈prof(𝑀) 𝜎

𝜋 =

prof(𝑀′).

A mechanism 𝑀1 is better than another mechanism 𝑀2, de-

noted by 𝑀1 ≻ 𝑀2, or 𝑀2 is worse than 𝑀1, if ∃𝑀3 � 𝑀2 such

that prof(𝑀1) ⊃ prof(𝑀3). 𝑀1 is better than or equivalent to 𝑀2,

denoted by 𝑀1 ⪰ 𝑀2, if 𝑀1 ≻ 𝑀2 or 𝑀1 � 𝑀2 (⪯ defined anal-

ogously). And 𝑀1 is incomparable to 𝑀2, denoted by 𝑀1 ≁ 𝑀2,

if𝑀1 ̸⪰ 𝑀2 ∧𝑀1 ̸⪯ 𝑀2.

We give an example to illustrate the relations. The profile of the

2-credential OR-mechanism 𝑐1 ∨ 𝑐2 has three scenarios: (𝑐1 and 𝑐2

safe), (𝑐1 safe, 𝑐2 lost) and (𝑐1 lost, 𝑐2 safe). Now consider the AND-

mechanism 𝑐1 ∧ 𝑐2: its profile also has three scenarios, namely (𝑐1

and 𝑐2 safe), (𝑐1 safe, 𝑐2 leaked) and (𝑐1 leaked, 𝑐2 safe). We can see

that the two mechanisms are incomparable.

The above relations naturally defines maximal mechanisms:

Definition 7 (Maximally secure mechanism). A mecha-
nism 𝑀 ∈ M𝑛 is maximally secure or maximal if for all 𝑀′ ∈
M𝑛 :𝑀′ ⪯ 𝑀 or𝑀′ ≁ 𝑀 .

4 PROFILE SIZE BOUND
We find an upper bound on the profile set size, i.e., given 𝑛, we

find the maximum number of scenarios in which an 𝑛-credential

mechanism succeeds. Before that, we prove some useful results

(§4.1). We use a symmetric argument to prove why the mechanism

must fail in certain scenarios, either because the user wins in a

complement scenario (Lemma 2) or the scenario is favorable to the

attacker (Lemma 3). Using these two results, we develop a counting

argument that establishes an upper bound on the profile set size

(§4.2).

4.1 Useful results
First, we define runs. A run 𝑟 = {(𝑝1,𝐶1, 𝑎1), . . . , (𝑝𝑧 ,𝐶𝑧 , 𝑎𝑧)} tracks
all the timestamped messages (𝑎𝑖 denotes the time step) received

by the automaton during an execution that lead to a state change.

First, we show that any two executions with the same run have the

same winning identifier.

Observation 1. If two executions 𝐸1 and 𝐸2 using the same mech-
anism𝑀 have the same finite run, then the winner of both executions
has the same player identifier.

If 𝐸1 and 𝐸2 share the same run and use the same automaton,

then they will cause the same state changes because we are using

a deterministic automaton, and thus have the same final state 𝑠 .

Based on whether 𝑠 ∈ T fin
0

or 𝑠 ∈ T fin
1

, player 0 or 1, respectively,

wins in both executions 𝐸1 and 𝐸2.

Next we prove that if the user wins in all executions where

the attacker employs a specific strategy (i.e., independent of the

environment’s strategy), then switching the strategies allows the

attacker to win an execution.

Before doing so, we first introduce some notation that allows

us to specify a translation from a user strategy to an attacker

strategy. Define 𝑆𝐴ord as the attacker’s ordering strategy that takes

the attacker and user messages as input and outputs an order-

ing of both. Given a user strategy 𝑆𝑈 , define the attacker strat-

egy 𝑆𝐴 = (𝑆𝑈 , 𝑆𝐴ord) where ∀𝑒, 𝑌
U

: 𝑆𝐴 (𝑒, 𝑌U, 𝜎) = 𝑆𝐴ord (𝑆
𝑈 (𝑒), 𝑌U).

Unless specified otherwise, the attacker uses attacker-first order-
ing Ord𝐴 , i.e., Ord𝐴 (𝑌A, 𝑌U) = 𝑌A | |𝑌U

. Sometimes, we also con-

sider a user-first ordering Ord𝑈 , i.e., Ord𝑈 (𝑌A, 𝑌U) = 𝑌U | |𝑌A
.

Lemma 1. Let there be a mechanism 𝑀 , two extended scenar-
ios 𝑋1 = (𝑀,𝜎1), 𝑋2 = (𝑀,𝜎2), and two user strategies 𝑆1, 𝑆2 such
that 𝑆1 is playable by U in 𝜎1 and by A in 𝜎2 and 𝑆2 is playable by U

in 𝜎2 and by A in 𝜎1. There exists a reordering strategy 𝑆𝐴ord such that

the two attacker strategies 𝑆𝐴
1
= (𝑆2,Ord𝐴), 𝑆𝐴

2
= (𝑆1, 𝑆

𝐴
ord) satisfy

(Win𝑋1
(𝑆1, 𝑆

𝐴
1
) = U) =⇒ (Win𝑋2

(𝑆2, 𝑆
𝐴
2
) = A).

Proof. Win𝑋1
(𝑆1, 𝑆

𝐴
1
) = U means that the user wins in all ex-

ecutions where the attacker’s strategy is 𝑆𝐴
1
. Consider such an

execution 𝐸 = (𝑀,𝜎1, 𝑆1, (𝑆2,Ord𝐴), 0), i.e., the user is assigned 0

and wins. Denote the run of 𝐸 by 𝑟 . We should show that there

exists at least one execution in the second scenario 𝜎2 where the

attacker wins.

Consider the execution in the second scenario 𝐸′ =

(𝑀,𝜎2, 𝑆2, (𝑆1, 𝑆
𝐴
ord), 1), i.e., the attacker is assigned 0 and 𝑆𝐴ord =

Ord𝑈 is the user-first ordering strategy. If the mechanism in ex-

ecution 𝐸′ does not decide, i.e., 𝐸′ runs forever, then by defini-

tion Winexec (𝐸′) = A and we are done. Now say the mechanism

in 𝐸′ decides; let its run be 𝑟 ′. We now prove that the two runs are

same, i.e., 𝑟 = 𝑟 ′. First, note that in both executions, player 0 uses

the strategy 𝑆1 and player 1 uses the strategy 𝑆2. Secondly, since the

attacker’s reordering strategy prioritizes the attacker in 𝐸 and the

user in 𝐸′, the messages sent by 1 are prioritized in both executions.

Therefore, the messages the mechanism receives in all time steps

are the same in both executions including the order of messages.

Therefore 𝑟 = 𝑟 ′. Since player 0 (user) wins 𝐸, by Observation 1,

the attacker wins execution 𝐸′. □

We now define complementary scenarios, where the players’ cre-
dential availability is inverted, and show that no mechanism suc-

ceeds in both a scenario and its complement.

Definition 8 (Complement scenario). A scenario 𝜎 is the com-

plement scenario of 𝜎 if for all 𝑖 : 𝜎𝑖 = stolen if 𝜎
𝑖
= safe, 𝜎𝑖 = safe

if 𝜎
𝑖
= stolen, and 𝜎𝑖 = 𝜎

𝑖
otherwise.

Lemma 2. If a mechanism succeeds in a scenario 𝜎 , then it fails in
its complement 𝜎 : Suc(𝑀,𝜎) =⇒ ¬Suc(𝑀,𝜎).

Proof. Let 𝑆𝑈 denote a winning user strategy in the extended

scenario 𝑋 = (𝑀,𝜎) (one such 𝑆𝑈 is the submit-all strategy 𝑆𝑈all).

Since 𝑆𝑈 wins in all executions, we have ∀𝑆𝐴 : Win𝑋 (𝑆𝑈 , 𝑆𝐴) = U.

We now produce a winning strategy 𝑆𝐴 for the attacker in 𝑋 =

(𝑀,𝜎) based on 𝑆𝑈 . To do this, we need to show two things, namely,

that 𝑆𝑈 is a playable strategy for the attacker in 𝜎 , and that it

succeeds in at least one execution.

The first follows in a straightforward way from the definition

of a complement. It is easy to see that 𝐶𝑈
𝜎 = 𝐶𝐴

𝜎
. Therefore, any

Interactive Multi-Credential Authentication CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

user strategy, including 𝑆𝑈 , in the scenario 𝜎 is a playable attacker

messaging strategy in the complement scenario 𝜎 .

Next we need to show that the attacker wins an execution

with 𝑆𝑈 in 𝜎 . Recall that Ord𝐴 denotes the attacker-first reordering

strategy. Let the attacker’s strategy be

𝑆𝐴 = (𝑆𝑈 ,Ord𝐴) .

We need to show that no user strategy succeeds in all executions

of 𝑋 = (𝑀,𝜎), i.e., �𝑆𝑈 : Win𝑋 (𝑆𝑈 , 𝑆𝐴) = U.

We prove by contradiction. Assume the existence of a winning

user strategy 𝑆𝑈 , i.e.,

Win𝑋 (𝑆
𝑈 , 𝑆𝐴) = U.

We will use the successful strategy 𝑆𝑈 to devise a strategy 𝑆𝐴 for

the attacker in the original scenario.

Apply Lemma 1 by setting 𝜎1 = 𝜎 , 𝜎2 = 𝜎 , 𝑆1 = 𝑆𝑈 and 𝑆2 = 𝑆𝑈 .

A pre-condition for this lemma is that 𝑆1 (𝑆𝑈) needs to be playable

by the attacker in 𝜎2 (𝜎), which holds because 𝐶𝑈
𝜎

= 𝐶𝐴
𝜎 . Lemma 1

guarantees the existence of an ordering strategy 𝑆𝐴ord such that

Win𝑋 (𝑆
𝑈 , 𝑆𝐴) = U =⇒ Win𝑋 (𝑆𝑈 , 𝑆𝐴) = A.

We thus found an attacker strategy (𝑆𝐴) that wins an execution

against the user winning strategy 𝑆𝑈 in the original scenario 𝜎—a

contradiction. Therefore, the assumption was wrong and there does

not exist a winning strategy for 𝜎 . □

After dealing with complementary scenarios, we show that if

no credential is safe, then no mechanism succeeds. We call such

scenarios bad.
Next we show that if no credential is safe, then no mechanism

succeeds. We call such scenarios bad.

Lemma 3. Given a bad scenario 𝜎bad ∈ {lost, leaked, stolen}𝑛 ,
where all credentials are unsafe, �𝑀 ∈ M𝑛 : Suc(𝑀,𝜎bad).

Proof. By contradiction, assume there exists a mechanism 𝑀

that succeeds in a bad scenario, i.e., Suc(𝑀,𝜎bad). Denote the ex-
tended scenario𝑋 = (𝑀,𝜎bad). Let the winning user strategy be 𝑆𝑈 ,

so for all 𝑆𝐴 , Win𝑋 (𝑆𝑈 , 𝑆𝐴) = U. Consider the attacker strat-

egy 𝑆∗
1
= (𝑆𝑈 ,Ord𝐴). We haveWin𝑋 (𝑆𝑈 , 𝑆∗1) = U.

Apply Lemma 1 by setting 𝜎1 = 𝜎 , 𝜎2 = 𝜎 , 𝑆1 = 𝑆𝑈 , and 𝑆2 =

𝑆𝑈 . A pre-condition for this lemma is that 𝑆𝑈 is playable by both

user and attacker in 𝜎 . This is true because in any scenario 𝜎 ∈
𝜎bad, 𝐶𝑈

𝜎 ⊆ 𝐶𝐴
𝜎 . Consequently, for any set of credentials 𝐶 , if 𝐶 ⊆

𝐶𝑈
𝜎 then 𝐶 ⊆ 𝐶𝐴

𝜎 . So 𝑆
𝑈
is playable by the attacker.

We haveWin𝑋 (𝑆𝑈 , 𝑆∗1) = U, therefore due to Lemma 1, there ex-

ists some 𝑆𝐴ord such that if 𝑆∗
2
= (𝑆𝑈 , 𝑆𝐴ord) thenWin𝑋 (𝑆𝑈 , 𝑆∗2) = A.

This completes the proof because 𝑆∗
2
wins against 𝑆𝑈 , contradicting

the assumption that 𝑆𝑈 is a winning user strategy. Therefore the

assumption was wrong and no user strategy in a bad scenario is

winning. □

4.2 Profile size bound
We can now bound the size of feasible security profiles using

Lemma 2 and Lemma 3.

Theorem 1. The maximum number of scenarios an 𝑛-credential
mechanism succeeds is

𝑃 (𝑛) = (4𝑛 − 2
𝑛)/2 , (1)

i.e., ∀𝑀 ∈ M𝑛 : |prof(𝑀) | ≤ 𝑃 (𝑛).

For proving, we first identify four subsets of scenarios, which

will also be useful later. Define a with-safe scenario (resp., with-
stolen scenario) as a scenario in which at least one credential’s state

is safe (resp., stolen). Denote the set of all with-safe (resp., with-

stolen) scenarios by Σws (resp., Σwt; we use the second letter, ‘t’).

Define a no-safe scenario (resp., no-stolen scenario) as a scenario in

which no credential’s state is safe (resp., stolen). Denote the set

of all no-safe (resp., no-stolen) scenarios by Σns (resp., Σnt). The
number of no-safe scenarios is |Σns | = 3

𝑛
and all mechanisms fail

in all of them (Lemma 3). Denote by𝑇 the complement set of𝑇 , i.e.,

𝑇 = Σ \𝑇 . Note that Σ̂ws = Σns and Σ̂wt = Σnt.
Denote with-safe-with-stolen scenarios by Σwswst = Σws ∩ Σwt;

these play a special role in our proofs, so we count them now. By

De-Morgan’s law, �Σwswst = Σns ∪ Σnt = |Σns | + |Σnt | − |Σns ∩ Σnt |.
Substitute |Σns | = |Σnt | = 3

𝑛
and |Σns∩Σnt | = 2

𝑛
(as each credential

is either leaked or lost). So we have

|Σwswst | = |Σ| − |�Σwswst | = 4
𝑛 − 2 · 3𝑛 + 2

𝑛 . (2)

We can now prove Theorem 1.

Proof. If 𝑛 = 1, there are 4 scenarios in total and all mechanisms

fail in the 3 unsafe ones (Lemma 3). Hence 𝑃 (1) = 1.

For 𝑛 ≥ 2, observe that for each with-safe-with-stolen sce-

nario 𝜎 ∈ Σwswst (which exist for all 𝑛 ≥ 2) that a mecha-

nism𝑀 ∈ M𝑛 succeeds in, there is a complement 𝜎 where it fails

(Lemma 2). Crucially, 𝜎 ∈ Σwswst because a with-safe-with-stolen
scenario has (at least) one safe and one stolen credential, and the

safe, stolen states are switched in the complement. Therefore, 𝑀

cannot succeed in more than half with-safe-with-stolen scenarios.

The number of with-safe scenarios where all mechanisms fail is

lower-bounded by 𝑄ws (𝑛) = |Σwswst |/2
eq.(2)
= 4

𝑛−2·3𝑛+2𝑛
2

.

The number of scenarios in which all mechanisms fail is lower-

bounded by 𝑄 (𝑛) = 𝑄ws (𝑛) + |Σns | = 4
𝑛−2·3𝑛+2𝑛

2
+ 3

𝑛 = 4
𝑛+2𝑛

2
.

Hence, the number of scenarios in which any mechanism succeeds

is bounded by 𝑃 (𝑛) = |Σ| −𝑄 (𝑛) = 4
𝑛 − 4

𝑛+2𝑛
2

= 4
𝑛−2

𝑛

2
. □

5 MAXIMAL MECHANISMS
We now specify an approach to generate maximal mechanisms.

These mechanisms wait for a bounded time allowing both players

to submit credentials, therefore called bounded-delay mechanisms.
Any player can initiate authentication with a bounded-delay

mechanism, which then starts a timer. Both U and A can send mes-

sages carrying credentials until the time elapses. Say the set of

credentials submitted by player 0 is 𝐶0 and player 1 is 𝐶1. A de-

terministic judging function 𝐽 selects the winner: It takes the two

sets of credentials sent by the players and outputs an identifier,

i.e., 𝐽 (𝐶0,𝐶1) ↦→ {0, 1}. Bounded-delay mechanisms are realizable

through the automaton model in a straightforward manner. Details

are in App. F. Given a judging function 𝐽 , we denote the correspond-

ing mechanism by𝑀 (𝐽).

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Deepak Maram, Mahimna Kelkar, and Ittay Eyal

We present three properties of judging functions (§5.1) and show

that they are sufficient to produce a maximally secure mechanism

(§5.2). Then, we present three functions that produce, for any 𝑛,

maximal mechanisms, along with some non-bounded-delay maxi-

mal mechanisms (§5.3).

5.1 Well-formed judging functions
Any bounded-delay mechanism with judging functions satisfying

the following properties are maximal.

The first property intuitively says that the mechanism only de-

cides based on messages, not other information.

Definition 9 (ID-Agnostic (IA)). A judging function 𝐽 is ID-
Agnostic if the identifier assignment does not affect the result, i.e.,
if 𝐶 ≠ 𝐶′ then (𝐽 (𝐶,𝐶′) = 0) ⇔ (𝐽 (𝐶′,𝐶) = 1).

If a judging function 𝐽 satisfies IA, then we can compare any two

sets of credentials and say that one of them is better than the other.

We use the notation 𝐶 ≻𝐽 𝐶′ (subscript omitted when obvious) to

mean that 𝐶 is better than 𝐶′ according to 𝐽 . Similarly, 𝐶 ⪰𝐽 𝐶′

means that either the two sets are the same or 𝐶 is better than 𝐶′.
Note that we do not say anything about the case where 𝐶 = 𝐶′

in the above definition, so an ID-Agnostic function can choose to

output either 0 or 1. WLOG all functions we present follow ∀𝐶 :

𝐽 (𝐶,𝐶) = 0.

The next property says that if a player submits a credential

set that is a superset of its counterpart’s set, then the mechanism

decides on the former.

Definition 10 (Knowledge-rewarding (KR)). A judging func-
tion is knowledge rewarding if, when the credentials submitted by
one player are a strict subset of those submitted by the other, then it
returns the latter, i.e., if 𝐶′ ⊂ 𝐶 then 𝐶′ ≺ 𝐶 .

The last property says that submitting additional credentials

cannot lead to a worse outcome for the submitting player.

Definition 11 (Transitive knowledge-rewarding (TKR)). A
judging function is transitive knowledge rewarding if additional
credentials cannot weaken a player’s strategy, i.e., if 𝐶0 ≠ 𝐶1, 𝐶1 ≠

𝐶2, 𝐶0 ≻ 𝐶1, and 𝐶1 ≻ 𝐶2, then 𝐶0 ⊈ 𝐶2.

Note that 𝐶0 ≠ 𝐶2 is implied above because if instead 𝐶0 = 𝐶2,

then 𝐶1 is both better and worse than 𝐶0, which is not possible for

an ID-Agnostic judging function.

A judging function with all the three properties and its resultant

mechanism are well formed.

Definition 12 (Well-formedness). If a judging function 𝐽 satis-
fies IA, KR, and TKR then it iswell-formed, and the resulting bounded-
delay mechanism𝑀 (𝐽) is well-formed.

Note that a well-formed judging function 𝐽 need not be transitive,
i.e., it could allow: 𝐶0 ≻𝐽 𝐶1, 𝐶1 ≻𝐽 𝐶2 and 𝐶2 ≻𝐽 𝐶0. Examples of

such functions appear later.

5.2 Maximality of well-formed mechanisms
We now prove that any well-formed mechanism is maximal. Two

lemmas do a bulk of the work: Lemma 5 shows that the user can win

in all with-safe-no-stolen scenarios and Lemma 8 shows that the

user can win in exactly half of the with-safe-with-stolen scenarios.

Using these results, Lemma 9 shows that the profile size of any 𝑛-

credential well-formed mechanism is 𝑃 (𝑛), which in turn implies

maximality.

Before proving when well-formed algorithms succeed, we de-

fine submit-early strategies and prove Lemma 4, which we use

throughout the rest of the proofs.

Definition 13 (Submit-early strategy). A submit-early strat-

egy involves sending a single credential set when the automaton is in
its initial state and nothing thereafter.

The next lemma says that if a player employs a submit-early

strategy (Definition 13) with credentials 𝐶 , the opponent can only

win by submitting a better or equal credential set.

Lemma 4. Given a well-formed bounded-delay mechanism𝑀 and
a scenario 𝜎 , if one player employs a submit-early strategy with
credential set 𝐶 , but the other player wins an execution, then the
winning player must have submitted better or equal credentials 𝐶′,
i.e., 𝐶′ ⪰ 𝐶 .

Proof. Say player 0 submits credentials 𝐶 as part of a submit-

early strategy, but player 1 wins an execution. Denote the final

set of credentials submitted by player 1 (perhaps across multiple

messages) as 𝐶′.
Two cases emerge based on the order in which the two sets of

credentials, 𝐶 and 𝐶′, are processed by the automaton. But, irre-

spective of the order, player 1 wins only if 𝐶′ ⪰ 𝐶: IA guarantees

that, if on the contrary 𝐶′ ≺ 𝐶 , then the automaton would not

prefer player 1 irrespective of the player identifier (0 or 1) assigned

to it. So player 1 cannot win an execution, and therefore, it must be

that 𝐶′ ⪰ 𝐶 . □

Denote by 𝑆𝑈all (resp., 𝑆
𝐴
all) the submit-early strategy where all

credentials owned by the user𝐶𝑈
𝜎 (resp., attacker𝐶𝐴

𝜎) are submitted.

(𝑆𝐴all uses attacker-first ordering, as is the case whenever we do not

explicitly specify it.)

We now prove the first major lemma.

Lemma 5. Well-formed mechanisms succeed in with-safe-no-stolen
scenarios, i.e., for all well-formed mechanisms𝑀 and scenarios 𝜎 ∈
Σwsnt: Suc(𝑀,𝜎) = True.

Proof. Assume for contradiction that the mechanism fails in

a with-safe-no-stolen scenario 𝜎 ∈ Σwsnt. This means that the

attacker wins at least one execution when the user follows the

submit-early strategy 𝑆𝑈all where it submits all its credentials 𝐶𝑈
𝜎 .

Then, due to Lemma 4, the attacker must know a set of creden-

tials 𝐶 ⊆ 𝐶𝐴
𝜎 such that 𝐶 ⪰ 𝐶𝑈

𝜎 . And since the scenario 𝜎 is a

with-safe-no-stolen scenario, we have𝐶𝐴
𝜎 ⊂ 𝐶𝑈

𝜎 , and since𝐶 ⊆ 𝐶𝐴
𝜎 ,

we conclude that 𝐶 ⊂ 𝐶𝑈
𝜎 .

But due to the knowledge-rewarding (KR) property, 𝐶 ⊂ 𝐶𝑈
𝜎

implies 𝐶 ≺ 𝐶𝑈
𝜎 , thereby contradicting 𝐶 ⪰ 𝐶𝑈

𝜎 . Thus the attacker

cannot win an execution in a with-safe-no-stolen scenario and the

mechanism succeeds. □

Our next goal is to prove that the user wins in half of the with-

safe-with-stolen scenarios Σwswst. Our approach is as follows. Re-

call that for every with-safe-with-stolen scenario 𝜎 , it’s comple-

ment 𝜎 is also a with-safe-with-stolen scenario. Since any mecha-

nism fails in one of 𝜎 or 𝜎 (Lemma 2), we use a winning attacker

Interactive Multi-Credential Authentication CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

strategy in 𝜎 or 𝜎 to derive a winning user strategy in the other

scenario.

First, we show that if an attacker winning strategy exists for an

execution, then the submit-early strategy with all credentials also

wins for that execution. Let 𝑆𝐴all define the submit-early strategy for

the attacker where it submits all its credentials and uses attacker-

first ordering.

Lemma 6. Given a well-formed mechanism 𝑀 , let the winning
strategy of an attacker in a with-safe-with-stolen scenario 𝜎 ∈ Σwswst
be 𝑆𝐴 ≠ 𝑆𝐴all, then 𝑆

𝐴
all is also a winning strategy. That is, if𝑋 = (𝑀,𝜎)

and ∀𝑆𝑈 : Win𝑋 (𝑆𝑈 , 𝑆𝐴) = A then ∀𝑆𝑈 : Win𝑋 (𝑆𝑈 , 𝑆𝐴all) = A.

The proof, which follows from the KR and the TKR properties, is

deferred to App. G.3. Now, we prove that 𝑆𝑈all is a winning strategy

for the user in the complement scenario 𝜎 .

Lemma 7. If 𝑆𝐴all is a winning strategy for the attacker in a with-
safe-with-stolen scenario 𝜎 ∈ Σwswst, then the user strategy 𝑆𝑈all is a
winning strategy for the user in the complement with-safe-with-stolen
scenario 𝜎 .

We defer this proof to App. G.3; again, it follows from the IA and

TKR properties. Now we can prove the second major lemma.

Lemma 8. For all well-formed mechanisms𝑀 and with-safe-with-
stolen scenarios 𝜎 ∈ Σwswst, M succeeds in either 𝜎 or in its comple-
ment 𝜎 , i.e., Suc(𝑀,𝜎) ∨ Suc(𝑀,𝜎).

Proof. For each scenario 𝜎 ∈ Σwswst, its complement 𝜎 satis-

fies 𝜎 ≠ 𝜎 and 𝜎 ∈ Σwswst. Consider a pair of complement sce-

narios 𝜎, 𝜎 ∈ Σwswst. No well-formed mechanism 𝑀 succeeds in

both 𝜎 and 𝜎 (Lemma 2). WLOG assume that𝑀 fails in 𝜎 , i.e., there

exists a winning strategy 𝑆𝐴 for the attacker that allows it to win

an execution in 𝜎 . By Lemma 6, the existence of a winning strat-

egy 𝑆𝐴 implies that the submit-early strategy 𝑆𝐴all is also a winning

strategy. And by Lemma 7, 𝑆𝑈all is a winning strategy for the user in

the complement scenario 𝜎 . □

We conclude by proving that the profile size of a well-formed

mechanism is 𝑃 (𝑛).

Lemma 9. The profile size of any well-formed 𝑛-credential mecha-
nism is 𝑃 (𝑛).

Proof. Lemma 5 shows that a well-formed mechanism succeeds

in all with-safe-no-stolen scenarios (Σwsnt = Σws∩Σnt). By basic set
theory, |Σwsnt | = |Σnt | − |Σnt \Σws | and |Σnt \Σws | = |Σnt∩ Σ̂ws | =
|Σnt ∩ Σns |. Finally, since |Σnt | = 3

𝑛
and |Σnt ∩ Σns | = 2

𝑛
, we

have |Σwsnt | = 3
𝑛 − 2

𝑛
.

Lemma 8 shows that a well-formed mechanism succeeds in ex-

actly half of the with-safe-with-stolen scenarios (Σwswst = Σws ∩
Σwt). From eq. (2), |Σwswst | = (4𝑛 − 2 · 3𝑛 + 2

𝑛).
In total, a well-formed mechanism succeeds in |Σwsnt | +

|Σwswst |/2 = (4𝑛 − 2
𝑛)/2 = 𝑃 (𝑛) scenarios. □

Corollary 1. A well-formed mechanism is maximally secure.

This is straightforward because the existence of a mechanism

better than a well-formed mechanism (Lemma 9) violates the profile

size bound (Theorem 1).

Algorithm 2: Priority judging functions: Priority (PR) 𝐽𝑉pr

and Priority with exception (PRE) 𝐽𝑉pre. Highlighted lines

only for PRE.

Input: 𝑉 is a permutation over the elements of the set Call.
𝐶0 ⊆ Call, 𝐶1 ⊆ Call

1 Function 𝐽𝑉 (𝐶0,𝐶1):
2 if 𝐶0 = {𝑉𝑛−1} ∧𝐶1 = {𝑉𝑛} then
3 return 1 ; // Only for 𝐽𝑉pre
4 if 𝐶0 = {𝑉𝑛} ∧𝐶1 = {𝑉𝑛−1} then
5 return 0 ; // Only for 𝐽𝑉pre
6 for 𝑐 = 𝑉1,𝑉2, . . . ,𝑉𝑛 do
7 if 𝑐 ∈ 𝐶0 ∧ 𝑐 ∉ 𝐶1 then
8 return 0 ; // 𝐶0 ≻ 𝐶1

9 if 𝑐 ∈ 𝐶1 ∧ 𝑐 ∉ 𝐶0 then
10 return 1 ; // 𝐶1 ≻ 𝐶0

11 return 0 ; // Default

5.3 Algorithms for maximal mechanisms
We now specify three algorithms that produce maximal𝑛-credential

mechanisms for any 𝑛.

5.3.1 Priority mechanisms. Let a vector 𝑉 define an ordering over

all the credentials, then the priority judging function using 𝑉 (Al-

gorithm 2, uncolored) decides on the player that submits a unique

high-priority credential.

Denote the priority mechanism corresponding to the judging

function 𝐽𝑉pr by𝑀𝑉
pr. For example, the 2-credential priority mecha-

nism𝑀
[𝑐1,𝑐2]
pr along with its profile is in Fig. 1. Note that player 0

(resp., 1) can only take dashed (resp., dotted) edges and tries to

reach 𝑓0 (resp., 𝑓1), and R denotes a clock reset. A proof for the

profile computation is in App. G . Note that for any 𝑛, Algorithm 2

yields exactly one distinct mechanism because changes in the per-

mutation 𝑉 yield equivalent mechanisms, e.g.,𝑀
[𝑐1,𝑐2]
pr � 𝑀

[𝑐2,𝑐1]
pr .

Multi-timeouts. It is also possible to implement a priority mecha-

nism using a timeout-based approach. These mechanisms leverage

multiple timeouts and are not bounded-delay (which just use a

single timeout). This does not impact our formalization as multiple

clocks can be removed [7].

We illustrate the idea with a 2-credential mechanism. The mech-

anism defines two time thresholds, 𝑥1 and 𝑥2 for credentials 𝑐1

and 𝑐2 respectively. It uses timers 𝑡1 and 𝑡2 to track the time elapsed

since credential 𝑐1 and 𝑐2 were submitted. The mechanism ends

when 𝑡1 = 𝑥1 or 𝑡2 = 𝑥2 and the player that most recently submit-

ted the credential associated with the elapsed timer wins. Setting

𝑥1 < 𝑥2 effectively prioritizes 𝑐1 over 𝑐2.

Priority mechanisms can also be constructed by mixing the two

aforementioned approaches. For example, a 4-credential priority

mechanism can be designed by combining the 2-credential mecha-

nism given in Fig. 1 with a timeout of 𝑥1 and a 2-credential multi-

timeout mechanism with timeouts 𝑥2 and 𝑥3 where 𝑥1 < 𝑥2 < 𝑥3.

Multi-timeout-mechanisms are suited in settings with asymmet-

ric credentials where credentials require different timeouts (cf. §7.2).

Details about multi-timer priority mechanisms are in App. B.

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Deepak Maram, Mahimna Kelkar, and Ittay Eyal

𝐼init

start

𝑓0
𝑓1

𝑡1

𝑡2

𝑡3𝑡4

𝑡5

𝑡6
𝑐1,R

𝑐
2 ,R

𝑐
1 ∧

𝑐
2 ,R

𝑐
1 , 𝑡 < 𝑙

𝑐1,R

𝑐 2
,R𝑐 1

∧ 𝑐 2
,R

𝑐 1
, 𝑡
< 𝑙

𝑡
=
𝑙

𝑡
=
𝑙𝑡 =

𝑙
𝑡 =

𝑙𝑡
=
𝑙

𝑡
=
𝑙

𝑐1

𝑐2

St Le Lo Sa

St 0 0 0 0

Le 0 0 0 1

Lo 0 0 0 1

Sa 1 1 1 1

Figure 1:𝑀 [𝑐1,𝑐2]
pr and its profile.

𝑐1 safe

𝑐2

𝑐3 St Le Lo Sa

St 0 1 1 1

Le 1 1 1 1

Lo 1 1 1 1

Sa 1 1 1 1

𝑐1 lost

𝑐2

𝑐3 St Le Lo Sa

St 0 0 0 0

Le 0 0 0 1

Lo 0 0 0 1

Sa 1 1 1 1

𝑐1 leaked

𝑐2

𝑐3 St Le Lo Sa

St 0 0 0 0

Le 0 0 0 1

Lo 0 0 0 1

Sa 1 1 1 1

𝑐1 stolen

𝑐2

𝑐3 St Le Lo Sa

St 0 0 0 0

Le 0 0 0 0

Lo 0 0 0 0

Sa 0 0 0 1

Table 2: Profile of a majority 3-cred mechanism𝑀
[𝑐1,𝑐2,𝑐3]
maj

5.3.2 Priority with exception. Mechanisms in this category are sim-

ilar to priority mechanisms except when the last two credentials

in the priority rule are submitted by the two players. For exam-

ple, if the priority vector is 𝑉 = [𝑐2, 𝑐3, 𝑐1], then the exception

is {𝑐1} ≻ {𝑐3}. The resultant judging function is denoted by 𝐽𝑉pre
and is specified in Algorithm 2. Like with priority mechanisms, this

algorithm yields at most one maximal mechanism.

5.3.3 Majority mechanisms. Mechanisms in this category favor the

player submitting the most credentials, so 𝐶 ≻ 𝐶′ if |𝐶 | > |𝐶′ |. To
break ties, different strategies are possible which we model through

a tie-breaking function 𝑇 (𝐶0,𝐶1) ↦→ {0, 1}. We only consider ID-

Agnostic tie-breaking functions, i.e., if 0 ← 𝑇 (𝐶0,𝐶1) then 1 ←
𝑇 (𝐶1,𝐶0). The resultant judging function is denoted 𝐽𝑇maj and is

specified in Algorithm 3. The profile of a majority mechanism

using the priority vector [𝑐1, 𝑐2, 𝑐3] to break ties is in Tab. 2. Note

that it differs from the profile of a priority mechanism using the

same priority vector (Tab. 5 in Appendix) only in two scenarios,

namely, the scenario (𝑐1 safe, 𝑐2 and 𝑐3 stolen) and its complement.

Unlike the two priority-based mechanisms, this algorithm yields

many distinct maximal mechanisms for all 𝑛 > 2. The total number

ofmajoritymechanisms including credential permutations is𝑞(𝑛) =

2

(
(2𝑛−1

𝑛−1
)−2

𝑛−1

)
(App. C.2). For𝑛 = 3, we manually discard equivalent

mechanisms to find a total of 12 distinct majority mechanisms (out

of 𝑞(3) = 64).

Algorithm 3: The majority judging function 𝐽𝑇maj

Input: 𝐶0 ⊆ Call,𝐶1 ⊆ Call
1 Function 𝐽𝑇maj(𝐶0,𝐶1):
2 if |𝐶0 | > |𝐶1 | then return 0 ;

3 if |𝐶1 | > |𝐶0 | then return 1 ;

4 return 𝑇 (𝐶0,𝐶1) ; // If |𝐶0 | = |𝐶1 |

6 COMPLETE MAXIMAL SETS
A complete maximal mechanism set is a minimal set of 𝑛-credential

mechanisms such that any other 𝑛-credential mechanism is either
equivalent to or worse than some mechanism in this set.

Definition 14 (Complete set). A complete maximal mecha-

nism set of 𝑛-credential mechanisms O = {𝑀1, 𝑀2 . . .} ⊂ M𝑛 satis-
fies three properties: (1) each𝑀 ∈ O is maximal; (2) any two distinct
members are incomparable, i.e., ∀𝑀,𝑀′ ∈ O, 𝑀 ≠ 𝑀′ : 𝑀 ≁ 𝑀′;
and (3) any 𝑛-credential mechanism is worse or equivalent to some
mechanism in O, i.e., ∀𝑀 ∈ M𝑛 : ∃𝑀′ ∈ O s.t.𝑀 ⪯ 𝑀′.

Complete maximal sets are important because one of the mecha-

nisms in this set has the highest probability of succeeding in any

real-world setting, i.e., for any given probability distribution of cre-

dential states [26] (See App. D). Several different complete maximal

sets exist, but all their sizes are the same as each mechanism in a

maximal set will have an equivalent in the other (App. G).

We now present complete maximal sets for all 𝑛 ≤ 3. These sets

are composed of bounded-delay mechanisms. For one-credential

mechanisms, the attacker wins in three of the four possible scenar-

ios (Lemma 3). Hence, the priority mechanism 𝑀
[𝑐1]
pr is the only

one in the complete maximal set O1.

2-credentials: The complete maximal set of 2-credential mecha-

nisms is of size one. We find a set with a priority mechanism.

Theorem 2. A complete maximal set of 2-credential mechanisms
is O2 = {𝑀 [𝑐1,𝑐2]

pr }.

Proof. We prove O2 satisfies the three requirements (Defini-

tion 14). The first is that𝑀
[𝑐1,𝑐2]
pr is maximal (Lemma 13). The sec-

ond is that every pair of mechanisms in O2 must be incomparable

to each other, which is vacuously true.

Interactive Multi-Credential Authentication CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

The third is that any 2-credential mechanism𝑀 must satisfy𝑀 ⪯
𝑀
[𝑐1,𝑐2]
pr . Recall that𝑀 ⪯ 𝑀

[𝑐1,𝑐2]
pr implies the existence of a mech-

anism 𝑀′ � 𝑀
[𝑐1,𝑐2]
pr such that prof(𝑀) ⊆ prof(𝑀′). There are

only two choices for 𝑀′ that yield distinct profiles, namely 𝑀′ ∈
{𝑀 [𝑐1,𝑐2]

pr , 𝑀
[𝑐2,𝑐1]
pr }. And we are trying to prove that for any𝑀 , one

of prof(𝑀) ⊆ prof(𝑀 [𝑐1,𝑐2]
pr) or prof(𝑀) ⊆ prof(𝑀 [𝑐2,𝑐1]

pr) is true.
We prove by contradiction. Assume there exists a mechanism𝑀

such that prof(𝑀) ⊈ prof(𝑀 [𝑐1,𝑐2]
pr) and prof(𝑀) ⊈ prof(𝑀 [𝑐2,𝑐1]

pr).
Consider the set of seven with-safe scenarios Σws = {𝜎̂1, . . . , 𝜎̂7}.

Without loss of generality, let 𝜎̂1 = (safe, stolen) (i.e., 𝑐1 safe, 𝑐2

stolen) and 𝜎̂7 = (stolen, safe) is the complement of 𝜎̂1. Figure 1

shows that prof(𝑀 [𝑐1,𝑐2]
pr) = {𝜎̂1, . . . , 𝜎̂6} and prof(𝑀 [𝑐2,𝑐1]

pr) =

{𝜎̂2, . . . , 𝜎̂7}.
By Lemma 3, the profile of𝑀 is a subset of Σws, i.e., prof(𝑀) ⊆

Σws. By basic set theory, the only way to guarantee prof(𝑀) ⊈
prof(𝑀 [𝑐1,𝑐2]

pr) and prof(𝑀) ⊈ prof(𝑀 [𝑐2,𝑐1]
pr) is if {𝜎̂1, 𝜎̂7} ∈

prof(𝑀). But Lemma 2 rules this out as they are complement sce-

narios. □

Note 2. The above mechanism can also be viewed as a major-
ity mechanism with a priority rule to break ties or a priority with
exception mechanism.

3-credentials: The complete maximal set of 3-credential mech-

anisms is of size 14. We group the constituents into majority and

priority mechanisms, denoted by Omaj,3 and Opr,3 respectively,

i.e., O3 = Omaj,3 ∪ Opr,3. The set Opr,3 contains two priority-based

mechanisms: the regular one (Algorithm 2) and with an exception

(Algorithm 2).

The set Omaj,3 contains 12 majority mechanisms that differ in

their tie-breaking rule. Two tie rules are possible: linear priority, e.g.,

𝑐1 ≻ 𝑐2, 𝑐2 ≻ 𝑐3, 𝑐1 ≻ 𝑐3, or cyclic priority, e.g., 𝑐1 ≻ 𝑐2, 𝑐2 ≻ 𝑐3, 𝑐3 ≻
𝑐1 (last one switched). Note that a cyclic rule makes the resultant

judging function non-transitive. The twelve majority mechanisms

differ in the choice of tie rule used to break ties between 1-credential

and 2-credential sets, e.g., one of them uses a linear rule for 1-

credential sets and a cyclic rule for 2-credential sets. More details

are in App. C.

Note 3. It remains an open question how to analytically find
complete maximal sets for larger number of credentials.

7 APPLICATIONS
We now apply our framework to analyze a popular cryptocurrency

wallet (§7.1), a bank account (§7.2) and all known 2-credential

mechanisms (§7.3).

7.1 The Argent Cryptocurrency Wallet
Social recovery is a prominent approach [22] to design non-

custodial cryptocurrency wallets where a user’s social circle, e.g.,

friends and family, is used to manage keys. We analyze Argent [6],

a popular social-recovery wallet [12]. We describe Argent’s opera-

tion as an automaton (§7.1.1), find the resultant profile (§7.1.2) and

present security improvements (§7.1.3).

7.1.1 Operation. The Argent mechanism𝑀𝑚
Arg uses𝑚 + 1 creden-

tials, consisting of an owner credential 𝑜 and a set of𝑚 so-called

𝐼init 𝑊𝑡 𝐹𝑡

𝑜, R0

𝑜, (𝑡0 < 1.5𝑑) 𝑜, (𝑡0 > 1.5𝑑)

(a) Transfer to an unapproved address

𝑈 𝐹𝑡
𝑜 ∧ {G}⌈𝑚/2⌉

(b) Immediately transfer to an unapproved address

𝐼init/𝑊𝑡 𝑊𝑔 𝐹𝑔

𝑜, R1

𝑜 ∨ (𝑡1 > 2𝑑)
(1.5𝑑 < 𝑡1 ≤ 2𝑑)

(c) Change guardians

𝑈 𝐿 𝑊𝑜

{Call }1, R2

{Call }1 ∨ (𝑡2 > 5𝑑)

{G}⌈𝑚/2⌉ , R3

(d) Locking wallet

𝑈 𝑊𝑜

𝐹𝑜

{G}⌈𝑚/2⌉ , R3

{Call }⌈𝑚+1/2⌉ , (𝑡3 < 2𝑑)

(𝑡 3

>
2𝑑
)

𝑜 ∧ {G}⌈𝑚/
2⌉

(e) Change owner

𝐿 𝑊 𝐿
𝑔

𝐹𝑔

𝑊𝑔

𝑜, R1

(1.5𝑑 < 𝑡1
≤ 2𝑑)

{Call }1 ∨ (𝑡
2 > 5𝑑)

𝑊𝑜 𝑊𝑂
𝑔

𝐹𝑔

𝑊𝑔
𝐹𝑜

𝑜, R1

(1.5𝑑 < 𝑡1
≤ 2𝑑)

{Call }⌈𝑚+1/2⌉ , (𝑡
3 < 2𝑑)

(𝑡 3

> 2𝑑
)

(f) Delete guardians when locked

Figure 2: Argent mechanism𝑀𝑚
Arg sub-automata

guardian credentials G = {𝑔1, 𝑔2, . . . , 𝑔𝑚}. The owner credential is
a cryptographic key on the user’s mobile phone. Guardians can

be anything from a friend’s cryptocurrency wallet to a hardware

wallet or a paid third-party service. Thus, in our notation, Call =
{𝑜, 𝑔1, 𝑔2, . . . , 𝑔𝑚}.

The user maintains a list of approved addresses (called trusted
contacts) to which she can send funds immediately. Transferring

funds to a unapproved address requires additional steps. The Argent

wallet allows adding or removing approved addresses, adding or

removing guardians, replacing the owner credential (if her phone

is lost or stolen) and transferring deposited funds.

Figure 2 depicts several automata, each capturing a different

functionality of the Argent mechanism. The state 𝐼init is the starting

state of the automaton. Dashed edges indicate an edge that can

only be taken by player 0 whereas solid edges can be taken by

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Deepak Maram, Mahimna Kelkar, and Ittay Eyal

either player. We only show half of the automaton, the portion

containing the winning states for 0; we omit the other half because

it is symmetric.

We consider any action that withdraws money or changes the

set of credentials to be sensitive and mark them as final. Three final

states exist: 𝐹𝑡 (transfer money), 𝐹𝑔 (add / remove guardians) and

𝐹𝑜 (replace owner). We model credential changes as final states

because in the case of Argent, the ability to change credentials

(against all opponent’s strategies) is powerful enough (App. H.1.1).

Note that we use multiple clocks to simplify the presentation: in

particular, R𝑖 denotes a reset of 𝑖th clock, i.e., 𝑡𝑖 ← 0.

There are two ways for a player to withdraw funds to an address

it controls without changing the credentials (Fig. 2a, Fig. 2b). She

can add this address to the approved list and then withdraw, a

process we call slow withdrawal. In order to do so, the owner needs

to initiate an action (𝐼init to𝑊𝑡). The addition becomes effective

after 1.5 days, at which point the owner can withdraw (𝑊𝑡 to 𝐹𝑡).

The approval process can be cancelled by the owner during the 1.5

day period (𝑊𝑡 to 𝐼init): this is useful if the owner credential 𝑜 is

leaked.

Another way is to order a fast withdrawal with the owner and

at least half of the guardians (Fig. 2b).

Argent allows changing the set of guardians (Fig. 2c). The owner

initiates the process (𝐼init to𝑊𝑔) and can be finalized only during

a time window that starts 1.5 days after initiation and lasts for 12

hours thereafter (𝑊𝑔 to 𝐹𝑔). As in the slow withdrawal case, the

guardian change process can be cancelled by 𝑜 .

Argent implements locking, a feature intended for situations

when the owner suspects a credential fault [6]. As shown in Fig. 2d,

the mechanism can be moved from any state into a locked state

with any one credential. A limited set of actions are possible in

the locked state, namely, change owner and unlock. Unlocking the

automaton, i.e., moving back into its previous state can be done

with any credential. The state𝑈 represents all unlocked states, i.e.,

the initial state 𝐼init, or the waiting states𝑊𝑡 or𝑊𝑔 .

Argent allows changing the owner, a process they call recovery,
in two ways (Fig. 2e). If the current owner credential is lost, the

automaton can be moved from any unlocked state to the recovery

state𝑊𝑜 with ⌈𝑚/2⌉ guardian credentials. The new owner address

is specified in this step. Finalizing this new owner takes 2 days (𝑊𝑜

to 𝐹𝑜). In this period, owner change can be cancelled with ⌈(𝑚 +
1)/2⌉ credentials, which can include the original owner: this is

useful if the owner credential was not actually lost. Note that Argent

doesn’t treat the state𝑊𝑜 as an unlocked state, i.e., it is not part

of𝑈 .

The second way is for when the owner credential is safe, e.g.,

if the user wants to transfer the Argent app between phones. In

this case, there is no need to wait. The owner can be changed

immediately with the owner credential 𝑜 and ⌈𝑚/2⌉ guardians, a
process we call fast owner-change.

Finally, Argent allows guardian revocation (but not addition)

from a locked (or recovery) state (Fig. 2f). Confirming revocation

can be done after 1.5 days like before, but canceling it requires

unlocking (or canceling recovery) first.

7.1.2 Profile analysis. We now analyze the security of Argent𝑀𝑚
Arg

with one and with two guardians (𝑚 = 1, 2).

𝑔1

𝑜 stolen leaked lost

safe 0 0 (1) 1

𝑜
𝑔1 stolen leaked lost

safe 1 1 1

Table 3: Profile of the one-guardian Argent mechanism and
our proposed improvement (in brackets). The former has five
scenarios (both 𝑔1 and 𝑜 safe is not shown above) while the
latter has six.

The one guardian case has just two credentials: an owner 𝑜 and

a guardian 𝑔1. If one of the credentials is lost but the other is safe,

then the user wins by revoking the lost credential.

If 𝑜 is safe and 𝑔1 is stolen, the user wins by revoking the unsafe

guardian credential (from any state). In particular, even if the at-

tacker initiates an owner change before (𝐼init to𝑊𝑜), the user can

revoke guardian (reach𝑊𝑂
𝑔 in Fig. 2f). A similar strategy lets the

user win if 𝑜 is safe and 𝑔1 is leaked.

If 𝑔1 is safe and 𝑜 is leaked or stolen, the mechanism fails and the

attacker’s winning strategy is to lock the automaton if the current

state is unlocked, and cancel a recovery if the current state is𝑊𝑜

(i.e., owner change was initiated).

In summary, the profile of 1-guardian Argent has 5 scenarios

(Tab. 3), and is hence weaker than our maximal mechanism with 6

scenarios, i.e., 𝑀1

Arg ≺ 𝑀
[𝑜,𝑔1]
pr (Fig. 1). We similarly analyze 2-

guardian Argent in App. H to find that it is worse than a priority

mechanism (22 vs 28 scenarios), i.e.,𝑀2

Arg ≺ 𝑀
[𝑜,𝑔1,𝑔2]
pr .

7.1.3 Improving Argent. We propose a simple strategy to improve

Argent’s profile: executing multiple transactions atomically, com-

monly known as a multicall [2]. For example, consider the scenario

(𝑜 leaked, 𝑔1 safe) where Argent previously failed. It succeeds now

because the user can atomically execute two transitions: unlock

and fast withdrawal from a locked state (𝐿 or𝑊𝑜). With a mul-

ticall, Argent becomes maximal with 1 guardian, but not with 2

guardians or more. For example, with two guardians, the profile

of Argent with multicalls has 24 scenarios, weaker than 28 in a

maximal mechanism.

While it is technically feasible to run a multicall with Argent’s

contracts today (e.g., using Uniswap’s contract [2]), we could not

find a mention of this technique in Argent’s documentation and

Argent does not natively support it.

As noted before, the use of multicalls only helps improve Ar-

gent’s profile to an extent. One can attain better security with

our maximal mechanisms to achieve the same functionality as Ar-

gent, except we omit locking as it does not improve security in

our model. Rather than using different mechanisms for the various

functions, e.g., change owner / guardian, we propose the use of a

maximal mechanism for all functionalities, thus vastly simplifying

the design. We propose the use of a majority mechanism with some

tie-breaking function due to its simplicity.

One missing feature from our proposed design is fast with-

drawals (Fig. 2b) or fast owner change (Fig. 2e). However, it is

easy to add it: simply move to the final state if all the credentials are
submitted. The modified mechanism is still maximal, i.e., doesn’t

break PA, KR and TKR, since the fast path can only be enabled if all

Interactive Multi-Credential Authentication CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

𝑐𝑚
𝑐𝑝 stolen leaked lost

safe 1 1 1

𝑐𝑝
𝑐𝑚 stolen leaked lost

safe 0 0 (1) 1

Table 4: Profile of the HDFC mechanism and our proposed
improvement (in brackets) when 𝑐𝑖𝑑 is safe and one of 𝑐𝑝 or
𝑐𝑚 is safe.

the credentials are provided. However, it does incur a usability hit:

for all𝑚 > 1, the user needs to do more work in gathering guardian

approvals than with Argent. (If𝑚 = 1, the user needs to submit all

the credentials anyway.)

We demonstrate the practicality of our mechanisms with a proof-

of-concept priority mechanism in Solidity (App. A). Our implemen-

tation takes about 100 lines of code and requires 210k gas for the

costliest function, compared to 150k for Argent ($7.6 and $5.4 resp.,

assuming a gas price of 30gwei and Ethereum price of $1200).

7.2 HDFC Online Bank Account
We model the authentication mechanisms used by the HDFC bank

website [3]. The bank provides a web portal for the users to login

with their password credential 𝑐𝑝 . We assume that 2FA is enabled,

in particular, one time PINs are received on the registered mobile

number; this credential is denoted 𝑐𝑚 . The bank allows users to

add additional factors if needed, e.g., email, but we do not model it

for simplicity.

To change the password, the user must authenticate via mo-

bile. And to change the registered mobile number, the user must

submit a form at the bank
1
along with an ID proof [5], and the

change happens after 3 days [4]. We could not find information

on whether the web account is locked during this process in the

bank’s documentation. We assume that no such locked state exists

for our analysis. We model any acceptable identity proof using the

credential 𝑐𝑖𝑑 (modeled in the first automaton in Fig. 4.)

Like before, we discuss how to withdraw money to a new ac-

count number and how to change credentials. Transferring money

involves using the password 𝑐𝑝 to login and authenticating via

mobile 𝑐𝑚 to initiate the third-party addition process. This process

takes 30 minutes, during which it can be cancelled by logging in to

the bank portal.
2
After the time elapses, money can be transferred

to the new account. This requires another 2FA.

7.2.1 Profile analysis. Before analyzing the profile, we discuss

probable scenarios based on the nature of credential vulnerabilities.

We assume that ID proofs are predominantly safe and that one of

password or mobile is safe.

We now evaluate HDFC’s profile in these scenarios. The mecha-

nism succeeds irrespective of the state of 𝑐𝑝 when 𝑐𝑚 is safe or lost.

In the former case (𝑐𝑚 safe), the user’s winning strategy is to change

the password. Whereas in the latter (𝑐𝑚 lost), the winning strategy

is to change the mobile number by physically submitting the ID

credential. However, if 𝑐𝑚 is stolen (or leaked), the mechanism fails

1
There are other ways to change the mobile number [4], e.g., use a debit card and visit

an ATM. We do not model these for simplicity.

2
The delay is only present when transferring funds to a new account. Transfers to

previously added accounts are instantaneous. We assume that an attacker’s account

number was not previously added.

because the three day delay is enough for the attacker to withdraw

money. Like in the case of Argent, a win for the user implies that

the user will be able to transfer money. In total, HDFC’s profile has

20 scenarios. A subset of its complete profile in the likely scenarios

is in Tab. 4. The automaton and a complete profile is in App. H.

7.2.2 Improving HDFC. We propose a minor yet effective modifi-

cation to HDFC’s existing authentication mechanism: use a two-

credential priority mechanism between 𝑐𝑚 and 𝑐𝑝 , prioritizing 𝑐𝑚
over 𝑐𝑝 , for withdrawals and password resets. This adjustment,

while keeping the rest of the mechanism involving the ID credential

unchanged, yields a significant improvement in security. It effec-

tively transforms HDFC into a multi-timeout priority mechanism

with 𝑐𝑚 ⊐ 𝑐𝑝 ⊐ 𝑐𝑖𝑑 (§5.3, App. B).

In total, the improved mechanism succeeds in 28 scenarios. No-

tably, it secures one additional scenario among the likely scenarios

shown in Tab. 4: (𝑐𝑝 safe, 𝑐𝑚 leaked).
3
This improvement primar-

ily addresses HDFC’s excessive dependence on mobile credentials.

However, it introduces a minor inconvenience by extending the

time needed for password resets (withdrawals already faced delays).

Lastly, we suggest another improvement to the manner in which

security notifications are treated by email and messaging providers.

Even a short temporary access to a user’s mobile device is sufficient

for an attacker to delete any sensitive notifications (email or text).

We propose to make such notifications sticky, i.e., ensure they can-

not be deleted for a short period. This improves the synchronous

channel’s effectiveness significantly.

7.3 Prior Two-Credential Mechanisms
We compare (Fig. 3) all distinct 𝑛-credential mechanisms where 𝑛 ≤
2 (that we know of) in a single graph, covering common approaches

used in practice, mechanisms from recent prior work, and our new

ones. Each rectangle represents a mechanism. Arrows between rect-

angles show the ≻ relation, i.e., an arrow frommechanism𝑀1 to𝑀2

signifies𝑀2 ≻ 𝑀1. Adjoining a node is the profile of the mechanism

restricted to with-safe scenarios. The first row corresponds to 𝑐1

being safe and 𝑐2 being stolen, leaked or lost in that order, and the

reverse for the second row.

The bottom row in the figure shows standard approaches to

storing a private key: either you store it as is, or split the key

(𝑐1 ∧ 𝑐2), or keep two separate copies (𝑐1 ∨ 𝑐2).

The middle row represents a Paralysis Proofs [45], which is the

most secure 2-credential mechanism from prior work to the best of

our knowledge. We model their mechanism, denoted by𝑀
(𝑐1,𝑐2)
pp ,

in App. H. With two credentials, they use an AND-mechanism 𝑐1 ∧
𝑐2 with an additional feature. Any credential can be challenged,

and if no response is received within a fixed duration, then the

challenged credential is removed. For example, if 𝑐1 is successfully

challenged, the new mechanism becomes just 𝑐2. In this manner,

they handle credential loss, and achieve better security than both

AND and OR mechanisms. But they do not encode the priority

between credentials, so it fails in both the scenarios where one

credential is safe and another is stolen.

3
Further security improvement is possible under the assumption that passwords are

less likely to be stolen than mobile credentials. Assigning higher priority to passwords,

i.e., 𝑐𝑝 ⊐ 𝑐𝑚 ⊐ 𝑐𝑖𝑑 secures the more likely scenario: (𝑐𝑝 safe, 𝑐𝑚 stolen).

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Deepak Maram, Mahimna Kelkar, and Ittay Eyal

𝑐1 ∧ 𝑐2

0 1 0

0 1 0

𝑐1 ∨ 𝑐2

0 0 1

0 0 1

𝑐1

1 1 1

0 0 0

𝑐2

0 0 0

1 1 1

𝑀
(𝑐1,𝑐2)
pp

0 1 1

0 1 1

𝑀
[𝑐1,𝑐2]
pr

1 1 1

0 1 1
𝑀
[𝑐2,𝑐1]
pr

0 1 1

1 1 1

Figure 3: One and two credential mechanisms. The 2x3 tables
portray the profiles: the first row corresponds to 𝑐1 being
safe and 𝑐2 being stolen, leaked or lost in that order, and the
reverse for the second row.

Finally, the top row contains our two maximal mechanisms,

namely, 𝑀
[𝑐1,𝑐2]
pr and its isomorphism. As Fig. 3 illustrates, our 2-

credential mechanisms achieve better security.

8 EXTENSIONS AND FUTUREWORK
Ourwork represents one of the first formal treatments of the authen-

tication problem. Using symbolic analysis tools [40] to automate

the hand-done analysis (cf. §7) is a natural direction for future work.

We now provide a brief overview of some alternative models.

Partial knowledge: So far we assumed the user had full knowledge
of the scenario 𝜎 . We now explore an extension—where only the

attacker fully knows 𝜎 , while the user’s knowledge is limited only to

its own credentials. This extension captures a common real-world

setting where the user may not realize whether her credentials are

held by an attacker. For instance, if the user possesses a credential,

she can only infer that the credential is either safe or leaked, without
being able to ascertain the true state. A similar ambiguity exists

between the lost and stolen states. As the execution progresses, the

user may gain additional information about the true state due to

e.g., credentials submitted by the attacker. Formally, each credential

can now be in one of six (instead of four) states from the user’s point

of view: {safe, lost, leaked, stolen, {safe, leaked}, {lost, stolen}}.
We find that the analysis in our case studies directly applies to the

partial knowledge setting. Considering Argent’s 2-credential case

as an example, the user’s winning strategies are very similar to be-

fore: revoke a lost-or-stolen credential and assume a safe-or-leaked

credential is safe until attacker’s submissions reveal otherwise. This

happens due to the use of generous timeouts before sensitive ac-

tions in Argent (and HDFC), which end up revealing parts of 𝜎 to

the user, thus making the user’s lack of knowledge irrelevant.

However, analyzing the partial knowledge model raises a the-

oretical question. In brief, it is possible that a winning strategy

exists for the user but is impossible to find. This is not possible

in our current complete knowledge model because the user can

use her knowledge of 𝜎 to enumerate attacker strategies and find

the winning strategy. In App. E, we show a concrete mechanism

that suffers from the above problem. Though the mechanism is

theoretical in nature and unlikely to be seen in practice, it does

raise an important modeling challenge that we leave for future

work to resolve. However, note that our maximal mechanisms re-

main maximal even in a stronger model where success is defined

irrespectively of whether the user can find the winning strategy.

The user winning strategies in maximal mechanisms do not suffer

from this problem as the simple strategy of submitting all their

credentials wins.

Alternate models: Other interesting models to explore include

asynchronous communication [42], dynamic scenarios, temporary

exclusive knowledge (user knows about a lost credential before the

attacker) [17], mechanisms whose logic is hidden from the attacker,

and economic incentives [41].

Another crucial direction is to formalize usability considerations.

For example, can we design maximally secure mechanisms where

the user need not submit too many credentials or wait too long?

9 CONCLUSION
We formalize the authentication problem in a synchronous environ-

ment and define the security profile for evaluating authentication

mechanisms. After bounding the profile size for any number of

credentials 𝑛, we discover three types of interactive mechanisms

that achieve this bound, and are hence maximally secure. We find

that they cover all maximal mechanisms for 𝑛 ≤ 3.

A key insight of our work is the importance of interaction. In-

tuitively, interactive mechanisms offer better security than non-

interactive ones because they can delay the execution of a sensitive

action, notifying the user and allowing them to abort it.

Our framework is rich enough to model complex real-world

authentication protocols used by millions of users and suggest

concrete improvements. Harnessing our results can strengthen

existing systems and bolster the security of digital assets and online

services.

ACKNOWLEDGMENTS
This work was supported in part by Avalanche Foundation and by

IC3.

REFERENCES
[1] [n. d.]. How to get notified on Ethereum. https://vittominacori.

medium.com/how-to-get-notified-on-ethereum-or-tokens-received-
4b71859a064b.

[2] [n. d.]. Multicall | Uniswap. https://docs.uniswap.org/protocol/
reference/periphery/base/Multicall

[3] 2022. Cooling Period: Get time to review newly added beneficiaries. https:
//www.hdfcbank.com/personal/useful-links/security/security-
measures/cooling-period.

[4] 2022. How to change mobile number in HDFC bank: 2 easy ways. https:
//thebankhelp.com/how-to-change-mobile-number-in-hdfc-bank/.

[5] 2022. How to Update Contact Details at a Branch. https://www.hdfcbank.
com/personal/useful-information/change-contact-details.

[6] April 2021. Argent Specification. https://github.com/argentlabs/argent-
contracts/blob/develop/specifications/specifications.pdf.

[7] Rajeev Alur and David L. Dill. 1994. A Theory of Timed Automata. Theor. Comput.
Sci. 126, 2 (1994), 183–235. https://doi.org/10.1016/0304-3975(94)90010-
8

[8] Shannon Appelcline. 2021. Using Timelocks to Protect Digital Assets.

https://github.com/BlockchainCommons/SmartCustody/blob/master/
Docs/Timelocks.md. [Accessed Sep 2022].

[9] Robert J Aumann. 2019. Lectures on game theory. CRC Press.

[10] Jean-Philippe Aumasson, Adrian Hamelink, and Omer Shlomovits. 2020. A survey

of ECDSA threshold signing. Cryptology ePrint Archive (2020).
[11] Fred B. Schneider. 2009, retrieved Oct’22. Authentication for People (draft

textbook chapter). https://www.cs.cornell.edu/fbs/publications/chptr.
AuthPeople.pdf.

https://vittominacori.medium.com/how-to-get-notified-on-ethereum-or-tokens-received-4b71859a064b
https://vittominacori.medium.com/how-to-get-notified-on-ethereum-or-tokens-received-4b71859a064b
https://vittominacori.medium.com/how-to-get-notified-on-ethereum-or-tokens-received-4b71859a064b
https://docs.uniswap.org/protocol/reference/periphery/base/Multicall
https://docs.uniswap.org/protocol/reference/periphery/base/Multicall
https://www.hdfcbank.com/personal/useful-links/security/security-measures/cooling-period
https://www.hdfcbank.com/personal/useful-links/security/security-measures/cooling-period
https://www.hdfcbank.com/personal/useful-links/security/security-measures/cooling-period
https://thebankhelp.com/how-to-change-mobile-number-in-hdfc-bank/
https://thebankhelp.com/how-to-change-mobile-number-in-hdfc-bank/
https://www.hdfcbank.com/personal/useful-information/change-contact-details
https://www.hdfcbank.com/personal/useful-information/change-contact-details
https://github.com/argentlabs/argent-contracts/blob/develop/specifications/specifications.pdf
https://github.com/argentlabs/argent-contracts/blob/develop/specifications/specifications.pdf
https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1016/0304-3975(94)90010-8
https://github.com/BlockchainCommons/SmartCustody/blob/master/Docs/Timelocks.md
https://github.com/BlockchainCommons/SmartCustody/blob/master/Docs/Timelocks.md
https://www.cs.cornell.edu/fbs/publications/chptr.AuthPeople.pdf
https://www.cs.cornell.edu/fbs/publications/chptr.AuthPeople.pdf

Interactive Multi-Credential Authentication CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

[12] Eduard Banulescu. July 2022. Argent Wallet: Everything You Need To Know.

https://beincrypto.com/learn/argent-wallet/.
[13] Praveen Baratam. 2020. Secure Cryptocurrency Exchange & Wallet.

https://www.coinvault.tech/wp-content/uploads/2020/10/CoinVault-
Secure-Cryptocurrency-Exchange.pdf.

[14] Manuel Barbosa, Alexandra Boldyreva, Shan Chen, and Bogdan Warinschi. 2021.

Provable security analysis of FIDO2. In CRYPTO. 125–156.
[15] Tal Be’ery. 2018. Threshold Signatures: The Future of Private Keys. https:

//zengo.com/threshold-signatures-the-future-of-private-keys/.
[16] Matt Bishop. 2004. Introduction to Computer Security. Addison-Wesley.

[17] Sam Blackshear, Konstantinos Chalkias, Panagiotis Chatzigiannis, Riyaz Faizul-

labhoy, Irakliy Khaburzaniya, Eleftherios Kokoris Kogias, Joshua Lind, David

Wong, and Tim Zakian. 2021. Reactive Key-Loss Protection in Blockchains. In

WTSC@FC. 431–450.
[18] Matt Blaze, Joan Feigenbaum, and Angelos D Keromytis. 1998. KeyNote: Trust

management for public-key infrastructures. In Security Protocols. 59–63.
[19] Matt Blaze, Joan Feigenbaum, and Jack Lacy. 1996. Decentralized trust manage-

ment. In IEEE S&P. 164–173.
[20] Joseph Bonneau, Cormac Herley, Paul C Van Oorschot, and Frank Stajano. 2012.

The quest to replace passwords: A framework for comparative evaluation of web

authentication schemes. In 2012 IEEE S&P. 553–567.
[21] Joseph Bonneau, Andrew Miller, Jeremy Clark, Arvind Narayanan, Joshua A

Kroll, and Edward W Felten. 2015. SoK: Research perspectives and challenges

for Bitcoin and cryptocurrencies. In IEEE S&P. 104–121.
[22] Vitalik Buterin. 2021. Why we need wide adoption of social recovery wallets.

https://vitalik.ca/general/2021/01/11/recovery.html.
[23] Chainalysis. 2020. 60% of Bitcoin is Held Long Term as Digital Gold.

What About the Rest? https://blog.chainalysis.com/reports/bitcoin-
market-data-exchanges-trading/.

[24] Jessica Colnago, Summer Devlin, Maggie Oates, Chelse Swoopes, Lujo Bauer,

Lorrie Cranor, and Nicolas Christin. 2018. “It’s Not Actually That Horrible”:

Exploring Adoption of Two-Factor Authentication at a University. In In ACM
CHI. 1–11.

[25] Danny Dolev and Andrew Yao. 1983. On the security of public key protocols.

IEEE Transactions on information theory 29, 2 (1983), 198–208.

[26] Ittay Eyal. 2021. On cryptocurrency wallet design. In Tokenomics. 4:1–4:16.
[27] Federal Trade Commission. 2022. Consumer sentinel network data book 2021.

[28] Rosario Gennaro, Steven Goldfeder, and Arvind Narayanan. 2016. Threshold-

optimal DSA/ECDSA signatures and an application to Bitcoin wallet security. In

ACNS. 156–174.
[29] Lewis Gudgeon, Pedro Moreno-Sanchez, Stefanie Roos, Patrick McCorry, and

Arthur Gervais. 2020. SoK: Layer-two blockchain protocols. In FC. 201–226.
[30] Sven Hammann, Saša Radomirović, Ralf Sasse, and David Basin. 2019. User

account access graphs. In ACM CCS. 1405–1422.
[31] Colin Harper. 2020. Multisignature Wallets Can Keep Your Coins Safer (If You

Use Them Right). Coindesk.

[32] Internal Revenue Service. 2022. Taxpayer Guide to Identity Theft. https://www.
irs.gov/newsroom/taxpayer-guide-to-identity-theft.

[33] Charlie Jacomme and Steve Kremer. 2021. An extensive formal analysis of multi-

factor authentication protocols. ACM TOPS 24, 2 (2021), 1–34.
[34] Prashant Jha. 2022. The aftermath of Axie Infinity’s $650M Ronin Bridge hack.

Cointelegraph (2022). https://cointelegraph.com/news/the-aftermath-
of-axie-infinity-s-650m-ronin-bridge-hack.

[35] Auguste Kerckhoffs. 1883. La cryptographie militaire. Journal des sciences
militaires IX (Jan 1883), 5–38.

[36] Auguste Kerckhoffs. 1883. La cryptographie militaire. Journal des sciences
militaires IX (Feb 1883), 161–191.

[37] Majid Khabbazian, Tejaswi Nadahalli, and Roger Wattenhofer. 2019. Outpost: A

responsive lightweight watchtower. In AFT. 31–40.
[38] Easwar Vivek Mangipudi, Udit Desai, Mohsen Minaei, Mainack Mondal, and

Aniket Kate. 2022. Uncovering Impact of Mental Models towards Adoption of

Multi-device Crypto-Wallets. Cryptology ePrint Archive (2022).
[39] Patrick McCorry, Surya Bakshi, Iddo Bentov, Sarah Meiklejohn, and Andrew

Miller. 2019. Pisa: Arbitration outsourcing for state channels. In AFT. 16–30.
[40] Simon Meier, Benedikt Schmidt, Cas Cremers, and David Basin. 2013. The

TAMARIN prover for the symbolic analysis of security protocols. In Computer
Aided Verification: 25th International Conference, CAV 2013, Saint Petersburg, Rus-
sia, July 13-19, 2013. Proceedings 25. Springer, 696–701.

[41] Malte Möser, Ittay Eyal, and Emin Gün Sirer. 2016. Bitcoin covenants. In FC.
[42] Marwa Mouallem and Ittay Eyal. 2023. Asynchronous Authentication. arXiv

preprint arXiv:2312.13967 (2023).

[43] Lawrence O’Gorman. 2003. Comparing passwords, tokens, and biometrics for

user authentication. Proc. IEEE 91, 12 (2003), 2021–2040.

[44] Ronald L Rivest and Butler Lampson. 1996. SDSI - A simple distributed security

infrastructure. In USENIX Security.
[45] Fan Zhang, Philip Daian, Iddo Bentov, Ian Miers, and Ari Juels. 2019. Paralysis

Proofs: Secure Dynamic Access Structures for Cryptocurrency Custody and More.

In AFT. 1–15.

A PRIORITY MECHANISM SMART
CONTRACT

A proof-of-concept implementation of the priority mechanism is

below. Note that this is strictly an academic prototype meant to

elucidate its inner workings, not to be used in production environ-

ments.

1 // SPDX -License -Identifier: GPL -3.0

2 pragma solidity >=0.7.0 <0.9.0;

3

4 contract PriorityWallet {

5 uint public numCredentials;

6 mapping(address => uint) public priority;

7 bool public withdrawalInProgress = false;
8 uint public maxClaimID = 0;

9 struct Details {

10 bool[] supporters;

11 uint amount;

12 address payable addr;

13 }

14 Details [] public claimDetails;

15 uint64 constant public delay = 30;

16 uint64 public expiryTime;

17

18 // Set the guardians and the priority vector. Ideally

, you'd also want to deposit some money.

19 constructor(address [] memory credentialList_) payable
{

20 numCredentials = credentialList_.length;
21 for (uint i = 0; i < credentialList_.length; i++)

{

22 priority[credentialList_[i]] = i + 1;

23 }

24 }

25 function getBalance () public view returns (uint) {

26 return address(this).balance;
27 }

28 // start a new withdrawal. Internally creates a new

claim

29 function initiateWithdrawal () public {

30 assert (priority[msg.sender] > 0);

31 assert (! withdrawalInProgress);

32 withdrawalInProgress = true;
33 expiryTime = uint64(block.timestamp + delay);

34 // purge previous claim data (if any)

35 delete claimDetails;

36 maxClaimID = 0;

37 }

38 function getClaimSupporters(uint claimID) public view
returns (bool[] memory) {

39 return claimDetails[claimID]. supporters;

40 }

41 // adds approval to an existing claim

42 function addApproval(uint claimID) public {

43 assert (withdrawalInProgress);

44 assert (claimID < maxClaimID);

45 assert (uint64(block.timestamp) <= expiryTime);

46 assert (priority[msg.sender] > 0);

47 claimDetails[claimID]. supporters[priority[msg.
sender]] = true;

48 }

49 function createNewClaimForWithdrawal(uint amount ,

address payable ToAddress) public returns (uint
claimID) {

50 assert (priority[msg.sender] > 0);

51 assert (withdrawalInProgress); // otherwise call

initiateWithdrawal

52 assert (uint64(block.timestamp) <= expiryTime);

https://beincrypto.com/learn/argent-wallet/
https://www.coinvault.tech/wp-content/uploads/2020/10/CoinVault-Secure-Cryptocurrency-Exchange.pdf
https://www.coinvault.tech/wp-content/uploads/2020/10/CoinVault-Secure-Cryptocurrency-Exchange.pdf
https://zengo.com/threshold-signatures-the-future-of-private-keys/
https://zengo.com/threshold-signatures-the-future-of-private-keys/
https://vitalik.ca/general/2021/01/11/recovery.html
https://blog.chainalysis.com/reports/bitcoin-market-data-exchanges-trading/
https://blog.chainalysis.com/reports/bitcoin-market-data-exchanges-trading/
https://www.irs.gov/newsroom/taxpayer-guide-to-identity-theft
https://www.irs.gov/newsroom/taxpayer-guide-to-identity-theft
https://cointelegraph.com/news/the-aftermath-of-axie-infinity-s-650m-ronin-bridge-hack
https://cointelegraph.com/news/the-aftermath-of-axie-infinity-s-650m-ronin-bridge-hack

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Deepak Maram, Mahimna Kelkar, and Ittay Eyal

53

54 bool[] memory supporters = new bool [](
numCredentials + 1);

55 supporters[priority[msg.sender]] = true;
56 claimDetails.push(Details(supporters , amount ,

ToAddress));

57

58 claimID = maxClaimID; // create new claimID

59 maxClaimID = maxClaimID + 1;

60 }

61 function withdraw () public {

62 assert(uint64(block.timestamp) > expiryTime);

63 assert(withdrawalInProgress);
64 bool[] memory potentialWinners = new bool [](

maxClaimID);

65 for (uint c = 0; c < maxClaimID; c++) {

66 potentialWinners[c] = true;
67 }

68 for (uint p = 1; p <= numCredentials; p++) {

69 bool foundAny = false;
70 for (uint c = 0; c < maxClaimID; c++) {

71 if (potentialWinners[c] && claimDetails[c

]. supporters[p]) {

72 foundAny = true;
73 }

74 }

75 if (foundAny) {

76 for (uint c = 0; c < maxClaimID; c++) {

77 if (potentialWinners[c] && !

claimDetails[c]. supporters[p]) {

78 potentialWinners[c] = false;
79 }

80 }

81 }

82 }

83 for (uint c = 0; c < maxClaimID; c++) {

84 if (potentialWinners[c]) {

85 uint winningClaimID = c;

86 bool sent = claimDetails[winningClaimID].

addr.send(claimDetails[
winningClaimID]. amount);

87 require(sent , "Failed to send Ether");

88 withdrawalInProgress = false;
89 break;
90 }

91 }

92 }

93 }

B MULTI-TIMER PRIORITY MECHANISMS
In this section, we present a few different approaches to construct

priority mechanisms. Unlike the methods specified in Section 5, the

below ones are not bounded-delay mechanisms (which employ a

single timer) and they employ multiple timers.

Given 𝑛 credentials Call = {𝑐1, 𝑐2, . . . , 𝑐𝑛} and a priority vector

𝑉 which is a permutation over the set Call. Let 𝑉 = [𝑐1, 𝑐2, . . . , 𝑐𝑛]
without loss of generality.

Mechanism: Define a sequence of timeouts 𝑥1 < 𝑥2 < . . . < 𝑥𝑛 .

The mechanism operates on a simple premise: any participant, de-

noted as 𝑝 , may submit a credential 𝑐𝑖 at any time to initiate its

corresponding timer, 𝑡𝑖 . This timer counts towards a predefined

threshold, 𝑥𝑖 . Once the time elapsed exceeds 𝑥𝑖 (i.e., 𝑡𝑖 > 𝑥𝑖), the

mechanism transitions to its final state, resulting in a win for par-

ticipant 𝑝 . It’s important to note that before a timer 𝑡𝑖 surpasses

𝑐1 safe

𝑐2

𝑐3 St Le Lo Sa

St 1 1 1 1

Le 1 1 1 1

Lo 1 1 1 1

Sa 1 1 1 1

𝑐1 lost

𝑐2

𝑐3 St Le Lo Sa

St 0 0 0 0

Le 0 0 0 1

Lo 0 0 0 1

Sa 1 1 1 1

𝑐1 leaked

𝑐2

𝑐3 St Le Lo Sa

St 0 0 0 0

Le 0 0 0 1

Lo 0 0 0 1

Sa 1 1 1 1

𝑐1 stolen

𝑐2

𝑐3 St Le Lo Sa

St 0 0 0 0

Le 0 0 0 0

Lo 0 0 0 0

Sa 0 0 0 0

Table 5: Profile of a priority 3-credential mechanism
𝑀
[𝑐1,𝑐2,𝑐3]
pr

its threshold 𝑥𝑖 , it can be reset by resubmitting the corresponding

credential 𝑐𝑖 .

This setup intricately embeds a priority mechanism through the

staggered timing thresholds, ensuring that credentials earlier in the

priority vector reach final states sooner.

Profile analysis: If 𝑐1 is safe, then because ∀𝑗 ≠ 1, 𝑥1 < 𝑥 𝑗 , the

mechanism succeeds. Similarly if 𝑐1 is stolen, the mechanism fails.

If 𝑐1 is lost, then the mechanism can be recursively analyzed.

If 𝑐1 is leaked, then one party can initiate the timer 𝑡1 but the

other party can always cancel it just before the intended time 𝑥1

elapses. Thusmechanism’s success depends on the state of 𝑐2, which

can be recursively analyzed.

Thus the profile of this mechanism is the same as that of priority

mechanism, i.e., it is equivalent to the priority mechanism.

Intuitively, the original priority mechanism only had one timer

and it encoded the priorities between all credentials explicitly

within a judging function. On the other hand, the above mech-

anism has 𝑛 timers and it encodes the priorities indirectly via the 𝑛

timeouts.

It is also possible to consider hybrids between the two extremes,

e.g., employ a 𝑘-credential single-timer priority mechanism be-

tween credentials 𝑐1, . . . , 𝑐𝑘 with a time out of 𝑥0 together with a

𝑛 − 𝑘-credential multi-timer priority mechanism with time outs

𝑥𝑛−𝑘 < 𝑥𝑛−𝑘+1 < . . . < 𝑥𝑛 . Crucially, set 𝑥0 < 𝑥𝑛−𝑘 which encodes

the fact that credentials 1 through k are of higher priority than the

later ones.

For example, to instantiate a 3-credential priority mechanism,

we can employ a (i) 2-credential single-timer priority mechanism

between 𝑐1 and 𝑐2 with a time out of 𝑥 and (ii) a 1-credential multi-

timer priority mechanism, i.e., any party can submit 𝑐3 to start a

timer 𝑡3 with a time out of 𝑥 ′ such that 𝑥 < 𝑥 ′. In fact, this is the

mechanism we recommend for HDFC (§7.2).

Interactive Multi-Credential Authentication CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

C COMPLETE SETS DETAILS
C.1 Omaj,3 mechanisms
The twelve majority mechanisms in O3 are:

Both linear (6 mechanisms): Fix [𝑐1, 𝑐2, 𝑐3] as the linear priority
rule to break ties between 1-credential sets, and use all the six

permutations of [𝑐1, 𝑐2, 𝑐3] to break ties between 2-credential sets.

Both cyclic (2 mechanisms): Two possible cyclic rules exist: clock-
wise (𝑐1 ≻ 𝑐2, 𝑐2 ≻ 𝑐3, 𝑐3 ≻ 𝑐1) or counter-clockwise. The two

mechanisms are: use same or different rules for both 1-credential

and 2-credential tie-breakers.

Linear and cyclic (4 mechanisms): Fix [𝑐1, 𝑐2, 𝑐3] as the linear

priority rule to break ties between 1-credential sets and use clock-

wise or counter-clockwise rule for 2-credential sets to produce 2

mechanisms. Use cyclic rule for 1-credential sets and linear rule for

2-credential sets to obtain two more.

C.2 Count of majority judging functions
We now count the number of different majority functions, i.e., tie-

breaking functions. A tie occurs when 𝐶0 ≠ 𝐶1 but |𝐶0 | = |𝐶1 |.
Let |𝐶0 | = |𝐶1 | = 𝑠 where 1 ≤ 𝑠 < 𝑛 (note that 𝑠 can’t be equal to 𝑛

since 𝐶0 ≠ 𝐶1). For a given 𝑠 , there are

𝑓 (𝑛, 𝑠) =
(𝑛
𝑠

) ((𝑛
𝑠

)
− 1

)
2

,

possible tie situations. This is because, there are

(𝑛
𝑠

)
ways of picking

an 𝑠-sized set 𝐶0, and

(𝑛
𝑠

)
− 1 ways of picking another set 𝐶1 ≠ 𝐶0.

We divide by two as each tie situation repeats twice. Summing over

all 𝑠 , the total number of distinct tie situations is

𝑞(𝑛) =
𝑛−1∑︁
𝑠=1

𝑓 (𝑛, 𝑠) . (3)

A tie-breaking function can decide each situation in two ways:

pick 𝐶0 or 𝐶1. So there are 2
𝑞 (𝑛)

different tie-breaking functions,

or in other words, 2
𝑞 (𝑛)

different majority functions.

𝑞(𝑛) =
𝑛−1∑︁
𝑠=1

(𝑛
𝑠

)
(
(𝑛
𝑠

)
− 1)

2

=
1

2

𝑛−1∑︁
𝑠=1

(
𝑛

𝑠

)
2

− 1

2

𝑛−1∑︁
𝑠=1

(
𝑛

𝑠

)
=

1

2

[(
2𝑛

𝑛

)
−
(
𝑛

0

)
2

−
(
𝑛

𝑛

)
2

]
− 1

2

[
2
𝑛 − 2

]
=

1

2

[(
2𝑛

𝑛

)
− 2

]
− 1

2

[
2
𝑛 − 2

]
=

1

2

[(
2𝑛

𝑛

)
− 2

𝑛

]
=

(
2𝑛 − 1

𝑛 − 1

)
− 2

𝑛−1

C.3 Proving 3-credential complete sets
Theorem 3. A complete maximal set of 3-credential mechanisms

is O3 = Opr,3 ∪ Omaj,3.

Proving the first two requirements of Definition 14 is straightfor-

ward. We prove the last requirement that no mechanism is better

than a mechanism in O3 by contradiction. Assume that a mecha-

nism 𝑀 exists such that it is incomparable with any mechanism

in O3. We encode this as a constraint in a constraint solver and have

it search for a satisfying profile. We also add another constraint

relying on the observation that if 𝑀 fails in a scenario 𝜎 , then it

must fail in all scenarios 𝜎 that are worse than 𝜎 where 𝜎 is worse
than 𝜎 if the attacker knows the same or more credentials whereas

the user knows the same or fewer credentials. We find that the

constraint solver is unable to find a solution, therefore no such

mechanism exists. The details are in App. C.

Note 4. It remains an open question how to analytically find
complete maximal sets for larger number of credentials.

Before proving that these mechanisms form the complete max-

imal set for 3 credentials we present a few lemmas. The first one

says that if both players use fixed strategies, then a change in the

scenario does not change the execution winner.

Lemma 10. Given two scenarios𝜎 ,𝜎′ using the samemechanism𝑀

and a user strategy 𝑆𝑈 , attacker strategy 𝑆𝐴 such that they can be em-
ployed in both the scenarios. Then Win𝜎 (𝑆𝑈 , 𝑆𝐴) = Win𝜎 ′ (𝑆𝑈 , 𝑆𝐴).

Proof. The proof follows straightforwardly because we are us-

ing a deterministic automaton and the strategies are deterministic,

so irrespective of the scenario, the executions will be the same, and

hence the winner. □

The next lemma says that, if the mechanism fails in a scenario 𝜎 ,

then it also fails in all scenarios 𝜎 that are worse than 𝜎 . 𝜎 is worse
than𝜎 as the attacker knows (equal or)more credentials whereas the

user knows (equal or) fewer credentials. Formally, given a scenario

𝜎 , we define a worse scenario 𝜎 through the following transform:

safe ↦→ safe/leaked/lost/stolen
stolen ↦→ stolen

leaked ↦→ leaked/stolen
lost ↦→ lost/stolen.

Lemma 11. If a mechanism fails in a scenario 𝜎 , then it also fails
in a worse scenario 𝜎 , ∀𝑀 , ¬Suc(𝑀,𝜎) =⇒ ¬Suc(𝑀,𝜎).

Note that proving the above also implies that success in a worse

scenario 𝜎 implies success in 𝜎 .

Proof. Observe that (a) 𝐶𝐴
𝜎 ⊆ 𝐶𝐴

𝜎
and (b) 𝐶𝑈

𝜎
⊆ 𝐶𝑈

𝜎 .

We prove by contradiction. That is, assume that the attacker

succeeds in a scenario 𝜎 but the user succeeds in the transformed

scenario 𝜎 . Let the successful strategy for the user in 𝜎 be 𝑆𝑈 . Since

𝐶𝑈
𝜎
⊆ 𝐶𝑈

𝜎 , the user can employ the strategy 𝑆𝑈 in the scenario 𝜎 . By

our initial assumption, the attacker succeeds in 𝜎 . Let the successful

attacker strategy be 𝑆𝐴 . 𝑆𝐴 must win some executions against any

user strategy including 𝑆𝑈 . So we haveWin𝜎 (𝑆𝑈 , 𝑆𝐴) = A.

Since 𝐶𝐴
𝜎 ⊆ 𝐶𝐴

𝜎
, the attacker can employ the strategy 𝑆𝐴 in the

scenario 𝜎 . Any execution in the scenario 𝜎 where the user employs

𝑆𝑈 and the attacker employs 𝑆𝐴 results in a win for the user. So we

have Win𝜎 (𝑆𝑈 , 𝑆𝐴) = U.

But 𝜎 and 𝜎 use the same underlying mechanism 𝑀 . And if the

strategies of the two parties are same, then bothWin𝜎 (𝑆𝑈 , 𝑆𝐴) = A

and Win𝜎 (𝑆𝑈 , 𝑆𝐴) = U cannot be true due to Lemma 10 and we

arrive at a contradiction. □

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Deepak Maram, Mahimna Kelkar, and Ittay Eyal

We now prove Theorem 3, i.e., that O3 is made up of the two

priority and twelve majority mechanisms only.

Proof. Proving a complete maximal set requires satisfying three

requirements per Definition 14:

(1) All mechanisms in O3 must be maximal.

(2) All mechanisms in O3 must be incomparable.

(3) No other mechanism exists s.t. it is incomparable to each

mechanism in O3.

The first requirement is met due to Lemma 13, Lemma 14 and

Lemma 15. The second one is also met, as can be verified by in-

specting the 76 mechanism profiles. (We cross-check this through

code.)

We prove the third requirement using a similar approach taken

in Theorem 2, but done at a larger scale. We use a constraint solver

to show that no 3-credential mechanism 𝑀 exists satisfying two

types of constraints, explained below.

The first type of constraint encodes that𝑀 must be incomparable

with any mechanism in O3. Satisfying it requires that for each

mechanism𝑀′ ∈ O3, there exists at least one scenario 𝜎 ∈ prof(𝑀)
that satisfies 𝜎 ∉ prof(𝑀′). This scenario 𝜎 must be a with-safe

scenario due to Lemma 3. Rephrasing the above, we get ∃𝜎 ∈
prof(𝑀) such that 𝜎 ∈ Σws \ prof(𝑀′).

Observe that for any 𝑀′ ∈ O3, prof(𝑀′) contains all the with-
safe scenarios except some with-safe-with-stolen scenarios. There-

fore Σws \ prof(𝑀′) ⊂ Σwswst. And consequently, prof(𝑀) must

include at least one with-safe-with-stolen scenario.

So to prove that no mechanism 𝑀 exists, it suffices to prove

that prof(𝑀) does not contain a with-safe-with-stolen scenario. Let

prof wswt (𝑀) denote the subset of prof(𝑀) containing just the with-
safe-with-stolen scenarios. We want to show that |prof wswt (𝑀) | =
0.

We prove this by consider the set of all subsets of the 18 with-

safe-with-stolen scenarios satisfying Lemma 2, i.e., no two scenarios

in a subset are complements of each other. Denote this set by Δ
(|Δ| = 3

9
because the 18 with-safe-with-stolen scenarios can be

arranged into 9 rows with each row containing 2 complement

scenarios. And we have three ways of making a selection in each

row: {none, first scenario, second scenario}). Observe that this is

the set of all possible values for prof wswt, i.e., for any mechanism

𝑀 , it must be that prof wswt (𝑀) ∈ Δ.
And we want to find a set in Δ satisfying the two constraints.

The first constraint, explained before, is ∀𝑀′ ∈ O3, prof wswt (𝑀) ∩
(Σws \ prof(𝑀′)) ≠ 𝜙 .

The second constraint relies on the following observation. If the

mechanism wins in a with-safe-with-stolen scenario 𝜎 , Lemma 2

implies that it fails in the complement scenario 𝜎 . But then, due

to Lemma 11, the mechanism fails in any scenario worse than

𝜎 . For example, prof(𝑀) cannot contain the two scenarios 𝜎 =

{stolen, stolen, safe} and 𝜎′ = {lost, safe, stolen}. This is because
themechanism fails in the complement of𝜎 ,𝜎 = {safe, safe, stolen},
and 𝜎′ is a worse scenario than 𝜎 .

The second constraint is∀𝜎 ∈ prof wswt (𝑀), �𝜎′ ∈ prof wswt (𝑀)
s.t. the complement 𝜎 is worse than 𝜎′.

The constraint solver
4
outputs the empty set, i.e., no such

prof wswt (𝑀) exists and hence |prof wswt (𝑀) | = 0. This completes

the proof that O3 is complete. □

D SETTINGS
We now formalize settings following [26], and then prove some

results on complete maximal sets.

Definition 15. Given a credential set Call, a setting 𝑃 specifies
the probability distributions governing the credential states for all
credentials. Let 𝑃 (𝑐, 𝑠𝑡𝑎𝑡𝑒) denotes the probability that the credential 𝑐
is in the given state. We have, ∀𝑐 ∈ Call, 𝑃 (𝑐, safe) + 𝑃 (𝑐, stolen) +
𝑃 (𝑐, leaked) + 𝑃 (𝑐, lost) = 1.

For example, with two credentials, if 𝑐1 is always safe and 𝑐2

is either safe or stolen with equal probability, we can represent it

through a setting as follows: 𝑃 (𝑐1, safe) = 1, 𝑃 (𝑐2, safe) = 0.5, and

𝑃 (𝑐2, stolen) = 0.5.

Given a setting 𝑃 , the probability that a scenario 𝜎 occurs is

given by 𝑃𝜎 = Π𝑖∈1,2,...,𝑛𝑃 (𝑐𝑖 , 𝜎𝑖). Further, given amechanism𝑀 , its

success probability in a setting is given by Γ(𝑀, 𝑃) = Σ𝜎∈prof(𝑀)𝑃𝜎 .
We find that one of the complete maximal set mechanisms is the

most secure (succeeds the most) in any given setting, i.e., ∃𝑀∗ ∈
O𝑛, Γ(𝑀∗, 𝑃) ≥ Γ(𝑀, 𝑃) for any𝑀 (using the same credential set).

The proof follows from the definition of complete sets and is pre-

sented below.

We now prove that a mechanism in the complete maximal set is

the most secure in any given setting.

Lemma 12. Given a set of 𝑛 credentials Call and an associated
setting 𝑃 , one of the mechanisms in the complete maximal set is
the most secure in this setting, i.e., ∃𝑀∗ ∈ O𝑛 such that for all
mechanisms𝑀 using Call, we have that Γ(𝑀, 𝑃) ≤ Γ(𝑀∗, 𝑃).

Proof. By contradiction, assume the existence of a mecha-

nism 𝑀′ using Call such that it is not part of the complete set,

i.e., 𝑀′ ∉ O𝑛 , and is more secure than any complete set mecha-

nism Γ(𝑀′, 𝑃) > Γ(𝑀′′, 𝑃) for all𝑀′′ ∈ O𝑛 .
By Definition 14, given any 𝑛-credential mechanism 𝑀 , there

exists a mechanism 𝑀′′ ∈ O𝑛 such that 𝑀 ⪯ 𝑀′′. Applying it

for𝑀′, denote the corresponding mechanism in the complete set

by𝑀′′. We have𝑀′ ⪯ 𝑀′′, or equivalently prof(𝑀′) ⊆ prof(𝑀′′).
It follows that Γ(𝑀′, 𝑃) = Σ𝜎∈prof(𝑀 ′)𝑃𝜎 ≤ Γ(𝑀′′, 𝑃) =

Σ𝜎∈prof(𝑀 ′′) . So we arrive at a contradiction. Therefore, it must

be that one of the complete set mechanisms is the most secure in

any setting. □

Note that the above doesn’t rule out the possibility that a non-

maximal mechanism is as secure as a maximal one in a given setting.

For example, given two credentials, consider the setting: 𝑃 (𝑐1, safe)
= 1, P(𝑐2, safe) = 0.5, P(𝑐2, stolen) = 0.5. In this setting, themechanism

that just uses 𝑐1 without using 𝑐2 would be as secure as our 2-

credential priority mechanism (And you might indeed want to

use the simpler one-credential mechanism in practice for usability

reasons).

4
Code at https://pastebin.com/RqjesNZe .

https://pastebin.com/RqjesNZe

Interactive Multi-Credential Authentication CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

E PARTIAL KNOWLEDGE CHALLENGE
Given three credentials 1, 2, and 3, credential 1 beats 2, 2 beats 3, 3

beats 1, and submitting more than one credential loses. Take the

two scenarios in the partial knowledge model (§8):

(1) Credentials 1 and 2 are safe, but credential 3 is leaked. Sub-

mitting credential 2 is a winning strategy.

(2) Credentials 2 and 3 are safe, but credential 1 is leaked. Sub-

mitting credential 3 is a winning strategy.

The scenarios are indistinguishable for the user - all the creden-

tials are safe-or-leaked. And even though there exists a winning

user strategy in each scenario, the user cannot determine it.

F BOUNDED-DELAY AUTOMATON
CONSTRUCTION

Given a judging function 𝐽 , we now explain how to construct a

bounded-delay mechanism automaton𝑀 (𝐽).
The high-level idea is as follows. The automaton has states in two

levels below the start state. The intermediate level contains a state

for each combination of player and set of credentials submitted,

forming the children of the start state 𝐼init. Then, for each interme-

diate state, we find all possible credential sets the second player can

submit in order to win and add outgoing edges correspondingly.

There are only two final states, one each for the respective players.

Consider the example automaton in Fig. 1. It corresponds to the

following mechanism: Given two credentials 𝑐1, 𝑐2, consider the

judging function 𝐽 that prioritizes 𝑐1 over 𝑐2. As shown, the start

state has six children corresponding to the 3 possible credential

sets (𝑐1, 𝑐2, 𝑐1 ∧ 𝑐2) from the 2 parties (0, 1). These six states form

the intermediate states. Only two final states 𝑓0 and 𝑓1 exist. Player

0 (resp., 1) wins if the execution reaches 𝑓0 (resp., 𝑓1). Player guards

are depicted through dashed and dotted edges: 0 can only take

dashed edges while 1 can only take dotted edges.

Note that we assume that each party can only submit one mes-

sage. This is done to simplify the automaton construction.

We briefly explain the construction of a bounded-delay mecha-

nism from a judging function. Given a judging function 𝐽 defined

over a set of credentials Call, we describe an authentication mecha-

nism𝑀 = (Call,T , 𝑐𝑙𝑜𝑐𝑘,D,T fin
0

,T fin
1
). Note that we assume that

each player submits all their credentials at once to simplify the

construction.

Let the set of all AND-credential-guards that use ∧ connector

only be 𝐺 . |𝐺 | = 2
𝑛 − 1 as each credential can either be present or

absent and we omit the 𝜀-transition.

The set of all states T consists of 2 · (2𝑛 − 1) intermediate states

and 2 final states. An intermediate state 𝑡 is created for each player

ID guard 𝑔plr ∈ P and credential guard 𝑔cd𝛾 ∈ 𝐺 , with a transition

between the start state and this new state, (𝐼init, 𝑔plr, 𝑔cd𝛾 ,⊥, True, 𝑡),
i.e., no clock guard, with clock reset.

The two final states are 𝑓0, 𝑓1. The set T fin
0

contains 𝑓0 and the

set T fin
1

contains 𝑓1.

The set of all transitions D consists of edges between the start

and intermediate states (explained before) and those between the

intermediate and final states (explained next).

There are two different types of transitions between the inter-

mediate and final states. The first type allows the first-mover to

win but only after some time elapses. For each intermediate state 𝑡 ,

if the player identifier that submitted credentials before is id𝛾 ∈ P,
then there is a transition (𝑡, 𝑝,⊥, 𝑡 = 𝑙, False, 𝑓𝛾), i.e., no credential

guard.

The second type allows the other party to win, but only if they

submit better credentials. Let 𝐶𝛾 denote the set of credentials sub-

mitted by the player id𝛾 (in 𝑔cd𝛾) to reach an intermediate state 𝑡 .

Let 𝑝′ = id1−𝛾 .
Find the set of credential guards 𝐺 ′ that result in the second-

mover winning, i.e., if 𝛾 = 0, find all 𝑔cd
1
∈ G𝑐 such that𝐶1 contains

the credentials in 𝑔cd
1

and 𝐽 (𝐶0,𝐶1) = 1. And if 𝑝 = 1, find 𝑔cd
1

s.t.

𝐽 (𝐶1,𝐶0) = 0. Add all such guards to 𝐺 ′. For each 𝑔cd ∈ 𝐺 ′, there
is a transition (𝑡, 𝑝′, 𝑔cd, 𝑡 < 𝑙, False, 𝑓1−𝛾).

G OTHER RESULTS
G.1 Well-formedness proofs

Lemma 13. Given a permutation 𝑉 over elements of the set Call,
the priority judging function 𝐽𝑉pr is well-formed.

Proof. We prove each of the three properties (Definition 12). IA

requires (𝐽𝑉pr (𝐶0,𝐶1) = 0) ⇔ (𝐽𝑉pr (𝐶1,𝐶0) = 1). This holds because
the priority function selects the unique high-priority credential

irrespective of the order. KR requires 𝐶0 ⊂ 𝐶1 =⇒ 𝐶0 ≺ 𝐶1. This

holds because 𝐶1 has at least one credential not in 𝐶0 but 𝐶0 has

no credentials not in 𝐶1.

To prove TKR, we need to show that given three distinct creden-

tial sets 𝐶0, 𝐶1 and 𝐶2, if 𝐶0 ≻ 𝐶1 and 𝐶1 ≻ 𝐶2 then 𝐶0 ⊈ 𝐶2. By

contradiction, assume 𝐶0 ⊂ 𝐶2 (since 𝐶0 ≠ 𝐶2 by definition).

𝐶0 ≻ 𝐶1 implies the existence of a credential 𝑐 that satisfies 𝑐 ∈
𝐶0 \𝐶1 such that {𝑐} ≻ 𝐶1 \𝐶0.

Observe that 𝐶0 ⊂ 𝐶2 implies 𝐶1 \𝐶2 ⊆ 𝐶1 \𝐶0.

We can rewrite the previous equation as {𝑐} ≻ 𝐶1 \𝐶2 due to

the transitive nature of the priority judging function.

But the existence of 𝑐 ∈ 𝐶0 ⊂ 𝐶2 such that {𝑐} ≻ 𝐶1 \ 𝐶2

implies that𝐶2 ≻ 𝐶1. This contradicts the TKR assumption𝐶1 ≻ 𝐶2,

so 𝐶0 ⊂ 𝐶2 cannot be true and TKR is satisfied. □

Lemma 14. Given a permutation 𝑉 over set Call, the priority with
exception judging function 𝐽𝑉pre is well-formed.

Proof. It is straightforward to see that the judging function

satisfies IA and KR. To satisfy TKR, we want to show that given

three different credential sets𝐶0,𝐶1 and𝐶2, if𝐶0 ≻ 𝐶1 and𝐶1 ≻ 𝐶2

then 𝐶0 ⊈ 𝐶2.

Since 𝐶0 ≻ 𝐶1, we have two cases: (A) 𝐶0 ≻ 𝐶1 is not the

exception or (B)𝐶0 ≻ 𝐶1 is the exception. Similarly𝐶1 ≻ 𝐶2 means:

(I)𝐶1 ≻ 𝐶2 is not the exception or (II)𝐶1 ≻ 𝐶2 is the exception. One

of the four cases: A-I, B-I, A-II and B-II must be true. We consider

each one separately.

The proof for the case A-I (no exceptions) is exactly the same as

the one in Lemma 13.

Case B-II (both exceptions) is impossible because there is only

one exception and the three credential sets are different.

The case B-I where𝐶0 ≻ 𝐶1 is the exception can also be ruled out

due to the way we define an exception, namely, that the credential

declared worse by the exception is the worst non-empty set of

credentials. For example, if the priority vector is 𝑉 = [𝑐2, 𝑐3, 𝑐1],

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Deepak Maram, Mahimna Kelkar, and Ittay Eyal

then case B-I corresponds to 𝐶0 = {𝑐1} and 𝐶1 = {𝑐3}. But no non-

empty set 𝐶2 exists s.t. 𝐶1 ≻ 𝐶2. So 𝐶2 = 𝜙 and therefore 𝐶0 ⊈ 𝐶2.

The remaining case is A-II where 𝐶1 ≻ 𝐶2 is the exception. We

prove this by contradiction, i.e., assume 𝐶0 ⊆ 𝐶2 or to be pre-

cise𝐶0 ⊂ 𝐶2 because𝐶0 ≠ 𝐶2. But no non-empty𝐶0 exists because

the only possible 𝐶0 satisfying 𝐶0 ⊂ 𝐶2 is 𝐶0 = 𝜙 and it does not

satisfy 𝐶0 ≻ 𝐶1. This concludes the proof since we ruled out all the

four cases. □

Lemma 15. Given any ID-agnostic tie-breaking function 𝑇 , the
majority judging function 𝐽𝑇maj is well-formed.

Proof. We prove the three properties. The IA and KR proofs are

immediate. We now prove TKR. Given three different credential

sets 𝐶0, 𝐶1 and 𝐶2 s.t. 𝐶0 ≻ 𝐶1, and 𝐶1 ≻ 𝐶2, we want to show

that 𝐶0 ⊈ 𝐶2 to satisfy TKR.

For any majority-based judging function, if 𝐶 ≻ 𝐶′ then |𝐶 | ≥
|𝐶′ |. So we have |𝐶0 | ≥ |𝐶1 | ≥ |𝐶2 |.

So either |𝐶0 | > |𝐶2 | or |𝐶0 | = |𝐶2 | is true. If |𝐶0 | > |𝐶2 |
then 𝐶0 ⊈ 𝐶2 and we are done.

It remains to prove for |𝐶0 | = |𝐶2 |. But in this case 𝐶0 ⊈ 𝐶2

follows as 𝐶0 ≠ 𝐶2 (by definition) and |𝐶0 | = |𝐶2 |. □

G.2 Zermelo’s
Lemma 16. Given any mechanism 𝑀 and scenario 𝜎 , either the

user has a winning strategy or the attacker does.

Proof. Like Zermelo [9], we prove the result for a family of

games including the current one. Each game has: (1) a starting

position determined by a system state, i.e., an automaton state and

clock state, and (2) a positive integer𝑚 such that if the run does

not end in𝑚 moves, then the attacker wins. (We will prove at the

end that the actual execution we care about is a part of this family.)

We prove by induction on𝑚. If𝑚 = 1, then any run that ends in

more than one move leads to a win for the attacker. If neither party

has a valid move to make in the current state, then the attacker wins.

Now say the attacker has a valid move. Then irrespective of what

the user does, the attacker can order its move at the front and win.

This is because either the move is winning and the attacker wins

immediately, or if the move is not winning, then the run length is

guaranteed to be greater than 1. Now say the attacker doesn’t have

a valid move, but the user does. Then if that move is winning the

user wins. Else the attacker wins because either the run never ends

or the run length is greater than 1.

Assume the statement is true for all𝑚 < 𝑙 and prove for𝑚 = 𝑙 .

Say that the system state is 𝑒 . By induction hypothesis, if a move

is made, either the user or attacker has a winning strategy in the

resultant position. If ∃𝑆𝑈 , 𝑌U ← 𝑆𝑈 (𝑒) s.t. ∀𝑆𝐴 the final set of

messages input to the automaton 𝑆𝐴 (𝑒, 𝑌U) results in states where

the user has a winning strategy, then the user wins. If no such 𝑆𝑈

exists, the attacker wins simply by not making a move.

This completes the proof that in all games in the family of games,

either the user wins or the attacker does.

We now prove that the original execution is a part of this family.

It satisfies the first requirement because the starting state 𝐼init is a

valid position.

We now show that it satisfies the second requirement. First note

that only a finite number of system states are possible (recall that

each system state is a tuple 𝑒 = (𝑠, 𝑡)). This is because: (a) the
number of states in the automaton is finite, and (b) the clocks can

be removed to construct a DFA [7].

Next observe that if the same system state repeats in a run, then

the attacker wins. This is because both players have deterministic

strategies, so the run will be stuck in a loop, i.e., will never end;

therefore the attacker wins.

A corollary of the previous two observations is that there exists

a value 𝑁 such that if the length of the run exceeds 𝑁 , then the

attacker wins.

Now the proof is complete because we have seen that for all𝑚

there is a winning strategy, in particular for𝑚 ≥ 𝑁 . □

G.3 Proofs of §5
Lemma 17. The profile matrix of𝑀 [𝑐1,𝑐2]

pr is as per Fig. 1.

Proof. The 3x3 grid with no safe scenarios are unsuccessful, i.e.,

won by the attacker due to Lemma 3.

Since the priority judging function is well-formed, 𝑀
[𝑐1,𝑐2]
pr is

maximal (Lemma 13). Corollary 1 says that all maximal mechanisms

are secure in with-safe-no-stolen scenarios Σwsnt = Σws ∩ Σnt and
half of the with-safe-with-stolen scenarios (Σwswst = Σws ∩ Σwt).

This fixes the values in all scenarios of the matrix except two: the

scenario 𝜎 = {safe, stolen} and its complement 𝜎 = {stolen, safe}.
Corollary 1 says that at most one of 𝜎 , 𝜎 is secure; we need to

find out which. The judging function 𝐽
[𝑐1,𝑐2]
pr favors the user in the

scenario 𝜎 and the attacker in 𝜎 . □

Finally, we repeat Lemma 6 and Lemma 7 for the sake of com-

pleteness and prove them both now.

Lemma 18. Given a well-formed mechanism 𝑀 , let the winning
strategy of an attacker in a with-safe-with-stolen scenario 𝜎 ∈ Σwswst
be 𝑆𝐴 ≠ 𝑆𝐴all, then 𝑆

𝐴
all is also a winning strategy. That is, if𝑋 = (𝑀,𝜎)

and ∀𝑆𝑈 : Win𝑋 (𝑆𝑈 , 𝑆𝐴) = A then ∀𝑆𝑈 : Win𝑋 (𝑆𝑈 , 𝑆𝐴all) = A.

Proof. Assume for contradiction the existence of a user strat-

egy 𝑆𝑈 such that the strategy 𝑆𝐴all never wins an execution. By

Lemma 4, it must be that the user submits a credential set𝐶𝑈 ⊆ 𝐶𝑈
𝜎

that is better than or equal to 𝐶𝐴
𝜎 , i.e., 𝐶

𝑈 ⪰ 𝐶𝐴
𝜎 . Furthermore,

the inequality is strict, i.e., 𝐶𝑈 ≻ 𝐶𝐴
𝜎 , because if 𝐶𝑈 = 𝐶𝐴

𝜎 then

since𝐶𝑈 ⊆ 𝐶𝑈
𝜎 , we get𝐶𝐴

𝜎 ⊆ 𝐶𝑈
𝜎 , which is not true for a with-safe-

with-stolen scenario 𝜎 ∈ Σwswst.
Start again from the assumption. Since 𝑆𝐴 is a successful attacker

strategy, it must win an execution against the submit-early strategy

with credential set𝐶𝑈
. And because of Lemma 4, the attacker must

have submitted a credential set 𝐶𝐴
such that 𝐶𝐴 ⪰ 𝐶𝑈

.

We have two cases: 𝐶𝐴 = 𝐶𝑈
or 𝐶𝐴 ≻ 𝐶𝑈

. If 𝐶𝐴 = 𝐶𝑈
,

since 𝐶𝑈 ≻ 𝐶𝐴
𝜎 , we have 𝐶

𝐴 ≻ 𝐶𝐴
𝜎 . But KR says that if 𝐶𝐴 ⊆ 𝐶𝐴

𝜎 ,

then 𝐶𝐴 ⪯ 𝐶𝐴
𝜎 , which leads to a contradiction.

Next, if 𝐶𝐴 ≻ 𝐶𝑈
, since 𝐶𝑈 ≻ 𝐶𝐴

𝜎 , the TKR property implies

that𝐶𝐴 ⊈ 𝐶𝐴
𝜎 (note that𝐶𝐴 ≠ 𝐶𝑈

and𝐶𝑈 ≠ 𝐶𝐴
𝜎 hold, allowing the

use of TKR.) But we have a contradiction as𝐶𝐴 ⊆ 𝐶𝐴
𝜎 by definition.

So we conclude that the strategy 𝑆𝐴all is also winning. □

Lemma 19. If 𝑆𝐴all is a winning strategy for the attacker in a with-
safe-with-stolen scenario 𝜎 ∈ Σwswst, then the user strategy 𝑆𝑈all is a

Interactive Multi-Credential Authentication CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

winning strategy for the user in the complement with-safe-with-stolen
scenario 𝜎 .

Proof. Since 𝑆𝐴all is a winning strategy in scenario 𝜎 , it must

win against any user strategy, including 𝑆𝑈all. By Lemma 4, since

the user follows a submit-early strategy, the attacker must have

submitted 𝐶 such that 𝐶 ⪰ 𝐶𝑈
𝜎 . Since the attacker also follows a

submit-early strategy 𝑆𝐴all, the attacker submits credentials exactly

once. Therefore, it must be that 𝐶 = 𝐶𝐴
𝜎 and hence 𝐶𝐴

𝜎 ⪰ 𝐶𝑈
𝜎 . The

inequality is strict, i.e.,

𝐶𝐴
𝜎 ≻ 𝐶𝑈

𝜎 , (4)

since 𝐶𝐴
𝜎 ≠ 𝐶𝑈

𝜎 for a with-safe-with-stolen scenario 𝜎 ∈ Σwswst
and due to the mechanism’s IA property.

Assume for contradiction that 𝑆𝑈all is not a winning strategy for

the user in the complement scenario 𝜎 . It means that there exists

an attacker strategy 𝑆𝐴 that wins against 𝑆𝑈all in some executions

of 𝜎 . Applying Lemma 4 again, the attacker must have submitted

a set of credentials 𝐶 ⊆ 𝐶𝐴
𝜎
such that 𝐶 ⪰ 𝐶𝑈

𝜎
. Since 𝜎 is also

a with-safe-with-stolen scenario and due to the mechanism’s IA

property, the inequality is strict, i.e., 𝐶 ≻ 𝐶𝑈
𝜎
.

We claim that

𝐶𝐴
𝜎
⪰ 𝐶𝑈

𝜎
. (5)

This is because, if instead𝐶𝑈
𝜎
≻ 𝐶𝐴

𝜎
, then because𝐶 ≻ 𝐶𝑈

𝜎
and TKR,

we get 𝐶 ⊈ 𝐶𝐴
𝜎
, which is false because 𝐶 ⊆ 𝐶𝐴

𝜎
.

By definition, for any pair of complement scenarios, we

have 𝐶𝑈
𝜎 = 𝐶𝐴

𝜎
and 𝐶𝑈

𝜎
= 𝐶𝐴

𝜎 . Recasting the equation C2, we

get 𝐶𝑈
𝜎 ⪰ 𝐶𝐴

𝜎 , which contradicts the equation C1. Thus 𝑆𝐴all is a

winning user strategy in 𝜎 . □

G.4 Complete Maximal Sets Proofs
Lemma 20. For all 𝑛, the size of all 𝑛-credential complete maximal

sets is the same.

Proof. Consider two different completemaximal setsO1 andO2.

Each mechanism𝑀2 ∈ O2 must be equivalent to or worse from a

mechanism𝑀1 ∈ O1 (Definition 14). But all mechanisms in a com-

plete maximal set are maximal, therefore it must be that𝑀2 � 𝑀1.

So, for each mechanism in O2, there exists an equivalent mech-

anism in the other set O1, and vice versa. And because no two

mechanisms within O1 (or O2) can be equivalent, there exists a

one-to-one mapping between O1 and O2. So |O1 | = |O2 |. □

H APPLICATIONS
Wepresent details of Argent in App. H.1 andHDFC bank inApp. H.2.

The Paralysis Proofs [45] mechanism is in Fig. 5.

H.1 Argent
H.1.1 Modeling choice. In the main paper, we modelled both cre-

dential changes and money transfers as final states. This is because

we find that, in the case of Argent, if the user has a winning strategy

in the above model, i.e., they are are able to reach a final state, then

they can also transfer money. In particular, if the Argent mecha-

nism succeeds, then there exists a winning user strategy where each

winning execution ends either in a money transfer or in a change of

an unsafe credential. This process can be iterated sufficiently many

𝐼init/𝑀 𝐴 𝐹0

𝑐𝑝 ∧ 𝑐𝑚,R0

𝑐𝑝

𝑐𝑝 ∧ 𝑐𝑚, 𝑡0 > 30𝑚

𝐼init/𝑀 𝐹 ′
0

𝑐𝑚

𝐼init/𝐴 𝑀 𝐹 ′′
0

𝑐𝑖𝑑 ,R1 𝑡1 > 3𝑑

Figure 4: HDFC bank sub-automata: send money to a new
account, change password, and change mobile number re-
spectively.

𝑐𝑖𝑑 safe

𝑐𝑚
𝑐𝑝 St Le Lo Sa

St 0 0 0 0

Le 0 0 0 0

Lo 1 1 1 1

Sa 1 1 1 1

𝑐𝑖𝑑 lost

𝑐𝑚
𝑐𝑝 St Le Lo Sa

St 0 0 0 0

Le 0 0 0 0

Lo 0 0 0 0

Sa 1 1 1 1

𝑐𝑖𝑑 leaked

𝑐𝑚
𝑐𝑝 St Le Lo Sa

St 0 0 0 0

Le 0 0 0 0

Lo 0 0 0 0

Sa 1 1 1 1

𝑐𝑖𝑑 stolen

𝑐𝑚
𝑐𝑝 St Le Lo Sa

St 0 0 0 0

Le 0 0 0 0

Lo 0 0 0 0

Sa 1 1 1 1

Table 6: Profile of the bank mechanism.

times to remove all the unsafe credentials and transfer money. A

similar statement also holds for the attacker, except that they are

either able to successfully transfer money or keep the mechanism

unusable. Note that the winning strategies (both user and attacker)

provided in §7.1.2 for the Argent 1-guardian case already satisfy

this property.

Finally, note that the above isn’t true in general. There may be

algorithms where a credential change does not imply a win. To

support such mechanisms, we need to extend our model to capture

scenario changes. One could do this by introducing a new type of

automaton state that leads to a reconfiguration, i.e., the execution

switches to a new automaton and a new scenario. This is only

meaningful if scenarios change over time, so a reconfiguration can

secure a mechanism at a future time. We leave such analysis, which

includes a definition of dynamic scenarios where key availability

changes over time, for future work.

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Deepak Maram, Mahimna Kelkar, and Ittay Eyal

𝑐𝑖𝑑 safe

𝑐𝑚
𝑐𝑝 St Le Lo Sa

St 0 0 0 0

Le 0 1 1 1

Lo 0 1 1 1

Sa 1 1 1 1

𝑐𝑖𝑑 lost

𝑐𝑚
𝑐𝑝 St Le Lo Sa

St 0 0 0 0

Le 0 0 0 1

Lo 0 0 0 1

Sa 1 1 1 1

𝑐𝑖𝑑 leaked

𝑐𝑚
𝑐𝑝 St Le Lo Sa

St 0 0 0 0

Le 0 0 0 1

Lo 0 0 0 1

Sa 1 1 1 1

𝑐𝑖𝑑 stolen

𝑐𝑚
𝑐𝑝 St Le Lo Sa

St 0 0 0 0

Le 0 0 0 1

Lo 0 0 0 1

Sa 1 1 1 1

Table 7: Profile of the improved HDFC mechanism.

𝑐1 safe

𝑐2

𝑐3 St Le Lo Sa

St 0 0 0 1

Le 0 0 0 1

Lo 0 0 0 1

Sa 1 1 1 1

𝑐1 lost

𝑐2

𝑐3 St Le Lo Sa

St 0 0 0 0

Le 0 0 0 1

Lo 0 0 0 0

Sa 0 1 0 1

𝑐1 leaked

𝑐2

𝑐3 St Le Lo Sa

St 0 0 0 0

Le 0 0 0 0

Lo 0 0 0 1

Sa 0 0 1 1

𝑐1 stolen

𝑐2

𝑐3 St Le Lo Sa

St 0 0 0 0

Le 0 0 0 0

Lo 0 0 0 0

Sa 0 0 0 1

Table 8: Profile of the 2-out-of-3 mechanism.

H.1.2 2 guardians. We analyze the profile of Argent’s mechanism

with 2 guardians𝑀2

Arg (Tab. 10). Since any mechanism fails in all

no-safe scenarios (Lemma 3), we only discuss with-safe scenarios.

Like in the 1-guardian case, at a high level, the user’s strategy is to

revoke any lost or stolen credential.

𝑜 safe / stolen: If the owner is safe, the user can revoke all the

leaked and stolen guardians (if any), and win. Note that even if the

attacker initiates an owner change before (possible in scenarios

where the attacker knows one guardian), the user can delete the

unsafe guardians after learning that the guardian is leaked (Fig. 2f).

Similarly, if the owner is stolen, the attacker can execute the above

strategy and win.

𝑜 lost: If each of the guardians is either lost or safe, the user wins

by using the safe credential to change the lost credentials. Note

that a single guardian is enough to change the owner.

𝑐1 safe

𝑐2

𝑐3 St Le Lo Sa

St 0 0 0 0

Le 0 0 0 0

Lo 0 0 0 1

Sa 0 0 1 1

𝑐1 lost

𝑐2

𝑐3 St Le Lo Sa

St 0 0 0 0

Le 0 0 0 0

Lo 0 0 0 1

Sa 0 0 1 1

𝑐1 leaked

𝑐2

𝑐3 St Le Lo Sa

St 0 0 0 0

Le 0 0 0 0

Lo 0 0 0 0

Sa 0 0 0 0

𝑐1 stolen

𝑐2

𝑐3 St Le Lo Sa

St 0 0 0 0

Le 0 0 0 0

Lo 0 0 0 0

Sa 0 0 0 0

Table 9: Profile of the 1-out-of-3 mechanism.

𝐼init 𝐹0𝐹1

𝐵0

𝐵1

𝑐0 ∧ 𝑐1

𝑐0 ∧ 𝑐1

R𝑐0

𝑐 1
, 𝑡
>
𝛿𝑐

1 , 𝑡 >
𝛿

R 𝑐1

𝑐
0 , 𝑡 >

𝛿𝑐 0
, 𝑡
>
𝛿

Figure 5: Paralysis Proofs Mechanism [45] with 2-credentials

In case one of the guardians gets either leaked or stolen, the

attacker wins. The attacker’s winning strategy is to make the wallet

unusable by bringing the automaton to the owner change state𝑊𝑜

(requires one guardian). Even if the user can cancel the owner

change (possible in certain scenarios), the attacker can immediately

initiate another owner change.

𝑜 leaked: If both guardians are safe or if one is safe and another

is lost, the user wins because she is able to initiate an owner change

and the attacker does not know enough credentials to cancel it.

Note that starting a guardian change does not help the attacker as

the user can cancel it just before the 1.5 day period ends.

If one of the guardians is leaked / stolen, the attacker wins by

executing a fast withdrawal.

In summary, the profile of𝑀2

Arg has 22 scenarios in comparison

to our maximal mechanisms with 28 scenarios. A more commonly

used 2-out-of-3 mechanism’s profile has 14 scenarios in comparison

(see Tab. 8). But𝑀2

Arg is worse than the priority mechanism where

owner credential has the highest priority, i.e., 𝑀2

Arg ≺ 𝑀
[𝑜,𝑔1,𝑔2]
pr

(see Tab. 5).

Interactive Multi-Credential Authentication CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

𝑜 safe

𝑔1

𝑔2 St Le Lo Sa

St 1 1 1 1

Le 1 1 1 1

Lo 1 1 1 1

Sa 1 1 1 1

𝑜 lost

𝑔1

𝑔2 St Le Lo Sa

St 0 0 0 0

Le 0 0 0 0

Lo 0 0 0 1

Sa 0 0 1 1

𝑜 leaked

𝑔1

𝑔2 St Le Lo Sa

St 0 0 0 0

Le 0 0 0 0

Lo 0 0 0 1

Sa 0 0 1 1

𝑜 stolen

𝑔1

𝑔2 St Le Lo Sa

St 0 0 0 0

Le 0 0 0 0

Lo 0 0 0 0

Sa 0 0 0 0

Table 10: Profile of Argent with 2 guardians

Multicalls: With multicalls, the mechanism additionally wins

in the scenarios: (𝑜 lost, 𝑔1 leaked, 𝑔2 safe) and (𝑜 lost, 𝑔1 safe, 𝑔2

leaked). Everything else remains the same.

The winning strategy based on the automaton’s state: (a) if it

is𝑊𝑜 and the owner change is not started by the user, cancel the

current owner change, and immediately start a new owner change,

and (b) if the state is anything else, execute an owner change. After

the owner becomes safe, we move to an already analyzed scenario

where the mechanism succeeds. Observe that 𝑀2

Arg ≺ 𝑀
[𝑜,𝑔1,𝑔2]
pr

holds even with multicalls.

H.1.3 Future extensions. We now discuss some modeling exten-

sions that can enrich the analysis.

Sending money to a trusted address could be treated as win

for the user. This can be reasonable when the address belongs

to friends / family and their accounts are safe. Note that this is

an asymmetric capability that the user alone possesses, i.e., the

attacker cannot leverage it. Modeling it is an interesting direction

for future work. Exploring larger guardian numbers and attacks that

initiate concurrent calls, withdrawing small amounts or changing

guardians with overlapping delay periods, would require additional

tooling outside the scope of this work.

H.2 Bank
We illustrate the bank automaton in Fig. 4 and explain its resultant

profile (Tab. 6).

If 𝑐𝑚 is safe, then irrespective of the state of password, the mech-

anism succeeds because the user can reset password (if it is unsafe)

and then send money to a new account. Even if 𝑐𝑖𝑑 is unsafe, the

user can send all the money to a new account in the three days it

takes to change the mobile number. Note that this is true because

we assume that the user is notified of any mobile number change

requests made by the attacker.

The mechanism fails if 𝑐𝑚 is leaked or stolen (corresponding to

phone hijacking attacks like SIM swapping) because the attacker

can reset the password.

The mechanism succeeds if 𝑐𝑚 is lost and 𝑐𝑖𝑑 is safe because the

user can change their mobile number by waiting for 3 days.

Finally, the mechanism fails if 𝑐𝑚 is lost and 𝑐𝑖𝑑 is unsafe because

either the attacker changes the mobile (𝑐𝑖𝑑 leaked / stolen) or no

one does and the account is unusable (𝑐𝑖𝑑 lost).

H.2.1 Improving bank’s profile. We recommend using a 2-

credential maximal mechanism between the password and mobile

credentials and leaving the portion involving the ID credential as is.

This is because submitting the ID credential involves a demanding

task of submitting documents by physically visiting a bank. Thus,

we adopt the philosophy of the HDFC bank automaton to use the

ID credential sparingly.

Concretely, we recommend using a 2-credential priority mecha-

nism with a higher priority assigned to 𝑐𝑚 over 𝑐𝑝 . This mechanism

can be used for withdrawals and resetting the password, i.e., the

first two sub-automata in Fig. 4 (leaving the third one as is). For us-

ability reasons, we assume that the delay in the priority mechanism

is less than that of the third automaton (3d), e.g., say 30m.

Surprisingly, this small modification makes the mechanism max-

imally secure—it results in a multi-timer priority mechanism (§5.3,

App. B) with 𝑐𝑚 ⊐ 𝑐𝑝 ⊐ 𝑐𝑖𝑑 .

H.2.2 Analyzing success probabilities. We make some baseline

assumptions about the probability distribution 𝑃 governing the

credential states to arrive at the optimal mechanism. Say that

the ID credential is always safe, 𝑃 (𝑐𝑖𝑑 , safe) = 1; passwords are

equally prone to loss and leakage, i.e., 𝑃 (𝑐𝑝 , lost) = 𝑃 (𝑐𝑝 , leaked) =
0.15, 𝑃 (𝑐𝑝 , safe) = 0.7; and the mobile credential is more safe than

a password but is prone to getting stolen (e.g., SIM swaps), i.e.,

𝑃 (𝑐𝑚, safe) = 0.9, 𝑃 (𝑐𝑚, stolen) = 0.1.

In this setting, the original HDFC mechanism’s success probabil-

ity is 0.9 (probability that 𝑐𝑚 is safe or lost).

Of our maximal mechanisms, priority mechanisms where the ID

credential is prioritized the most are the most secure, i.e., achieve a

success probability of 1. But in practice, submitting an ID credential

requires physically submitting documents at the bank. So we aim

to keep the usage of the ID credential to a minimum, much like the

existing HDFC mechanism.

Concretely, in the above setting, the success probability of our

proposed mechanism is 0.97, higher than HDFC’s success probabil-

ity of 0.9. This security improvement comes from winning in an

additional scenario: (𝑐𝑝 safe, 𝑐𝑚 stolen, 𝑐𝑖𝑑 safe). In essence, our

mechanism improves upon HDFC by reducing the over-reliance

of it on the security of the mobile credential, 𝑐𝑚 . However, it in-

troduces a minor inconvenience by extending the time needed for

password resets (note that withdrawals already faced delays).

Note that we set 𝑐𝑝 ⊐ 𝑐𝑚 in order to exploit the fact that pass-

words are less likely to be stolen compared to mobile (the success

probability of the mechanism with 𝑐𝑚 ⊐ 𝑐𝑝 ⊐ 𝑐𝑖𝑑 is only 0.9).

	Abstract
	1 Introduction
	2 Related work
	3 Model
	3.1 Execution: participants, time and network
	3.2 Credentials, scenarios and messages
	3.3 Authentication mechanism
	3.4 Player strategies and mechanism success
	3.5 Mechanism profiles

	4 Profile size bound
	4.1 Useful results
	4.2 Profile size bound

	5 Maximal mechanisms
	5.1 Well-formed judging functions
	5.2 Maximality of well-formed mechanisms
	5.3 Algorithms for maximal mechanisms

	6 Complete maximal sets
	7 Applications
	7.1 The Argent Cryptocurrency Wallet
	7.2 HDFC Online Bank Account
	7.3 Prior Two-Credential Mechanisms

	8 Extensions and Future Work
	9 Conclusion
	Acknowledgments
	References
	A Priority Mechanism Smart Contract
	B Multi-timer Priority Mechanisms
	C Complete Sets Details
	C.1 Omaj,3 mechanisms
	C.2 Count of majority judging functions
	C.3 Proving 3-credential complete sets

	D Settings
	E Partial knowledge challenge
	F Bounded-delay automaton construction
	G Other Results
	G.1 Well-formedness proofs
	G.2 Zermelo's
	G.3 Proofs of sec:boundeddelay
	G.4 Complete Maximal Sets Proofs

	H Applications
	H.1 Argent
	H.2 Bank

