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Abstract Despite considerable achievements of deep

learning-based side-channel analysis, overfitting repre-

sents a significant obstacle in finding optimized neural

network models. This issue is not unique to the side-

channel domain. Regularization techniques are popular

solutions to overfitting and have long been used in var-

ious domains. At the same time, the works in the side-

channel domain show sporadic utilization of regulariza-

tion techniques. What is more, no systematic study in-

vestigates these techniques’ effectiveness. In this paper,

we aim to investigate the regularization effectiveness on

a randomly selected model, by applying four powerful

and easy-to-use regularization techniques to eight com-

binations of datasets, leakage models, and deep learn-

ing topologies. The investigated techniques are L1, L2,

dropout, and early stopping. Our results show that

while all these techniques can improve performance in

many cases, L1 and L2 are the most effective. Finally,

if training time matters, early stopping is the best tech-

nique.

Keywords Side-channel Analysis, Deep Learning,

Regularization, Overfitting, ASCON, AES

1 Introduction

Embedded security products like smart cards and IoT

devices are used daily. To protect the confidential and
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private information they contain, manufacturers utilize

cryptographic solutions. After implementing a crypto-

graphic algorithm (in hardware or software), there is

often a dependency between the secret data processed

during cryptographic operation and the side-channel

measurements such as the power consumption [17] or

electromagnetic emanation [32] from the chip running

those implementations. An attacker can thus find the

secret data by exploiting this dependency and using the

techniques introduced as side-channel analysis (SCA) [22].

Implementing countermeasures can decrease this de-

pendency. However, even after using countermeasures,

there can still remain some leaks in implementations.

As a result, an attacker can still perform SCA by ap-

plying more powerful techniques. Evaluators conduct

side-channel analysis to ensure that despite the men-

tioned dependencies, the products might still be con-

sidered secure against known side-channel attacks such

that if a certain attack is possible, then the attacker

needs extensive resources to succeed (deeming the at-

tack non-profitable or not feasible) [29].

SCA is typically divided into non-profiling and pro-

filing attacks [7]. In the non-profiling attacks, the adver-

sary has access to a large number of side-channel mea-

surements from the device under attack and he/she an-

alyzes those measurements using statistical techniques.

Simple and differential power analysis [17], correlation

power analysis [5] and mutual information analysis [11]

are examples of non-profiling SCA. On the other hand,

profiling attacks take advantage of a clone device to

create a fingerprint of an instruction or data (or a pro-

file), then use this profile to analyze the device under

attack. Template attack [7] and machine learning-based

attacks [14,19,28] are examples of profiling SCA.

Deep learning-based side-channel analysis (DL-SCA)

is a powerful approach to profiling SCA. Multilayer
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perceptron (MLP) and Convolutional Neural Networks

(CNNs) are two deep learning architectures that have

been used widely in DL-SCA. CNN and MLP are capa-

ble of learning even higher-order leakages derived from

masking-protected implementations. They can also han-

dle the features pre-processing (finding Points of Inter-

est) implicitly [6,16]. However, using deep learning has

certain bottlenecks. One of the well-known problems is

overfitting. Overfitting happens when a deep model fits

the training measurements perfectly but cannot gen-

eralize to previously unseen measurements. Hence, an

overfitted model cannot evaluate the product correctly.

Regularization techniques are used during the train-

ing to decrease the complexity of the model on the

fly and prevent overfitting. So far, many regulariza-

tion techniques have been introduced. However, while

there is a strong recommendation for using regulariza-

tion techniques in DL-SCA from previous research [30],

no comprehensive study shows a practical consequence

of using them in DL-SCA. Indeed, while most of the

previous works that consider regularization techniques

do advocate the usage of those, they do not rely on

systematic evaluation nor meaningful comparisons.

This work aims to fill this gap and show how the

most commonly used regularization techniques, i.e., L1,

L2, dropout, and early stopping, can improve deep learning-

based SCA. The main contributions of this paper can

be summarized as follows:

– We compare the influence of four popular regular-

ization techniques (L1, L2, dropout, and early stop-

ping) on randomly selected models in DL-SCA. For

this analysis, we run hundreds of deep learning mod-

els with and without regularization techniques. We

consider software- and hardware-based datasets and

two different cryptographic algorithms to make our

comparison more complete and thorough. The con-

sidered datasets are 1) ASCAD, a protected soft-

ware implementation of the AES algorithm; 2)

AES HD, an unprotected hardware implementation

of the AES algorithm; and 3) Unprotected ASCON,

an unprotected software implementation of ASCON.

Besides, depending on the considered dataset, we

utilize two widely used deep learning models (MLP

and CNN) and three different leakage models (Ham-

ming weight, Hamming distance, and Identity leak-

age model).

– We show that the improvements that many tech-

niques in deep learning offer heavily depend on the

model’s characteristics (its architectural and learn-

ing hyperparameters). In many cases, the combina-

tion of the hyperparameters and the used technique

decreases the performance (while one would expect

improvement).

– We introduce the deterioration rate to show how

reliable a specific regularization technique is. This

metric shows the probability that a model worsens

after applying a regularization technique. We also

consider profiling time as another metric providing

insights into the performance of various techniques.

– We consider the baseline model’s performance and

its relation to the improvements that the regular-

ized model can offer. We show that when the im-

plicit regularization of the baseline model is high,

adding a regularization technique worsens it. In con-

trast, applying regularization techniques improves

the performance when the baseline model’s implicit

regularization is low.

– In this study, we apply deep learning models to at-

tack the ASCON primitive. Although some works

evaluate and attack ASCON via various methods

like differential power analysis [33] and Soft Ana-

lytical Side-Channel Attack [21], relatively few have

exploited the power of deep learning to assess its

side-channel vulnerabilities [34,38]. We pinpoint an

attack vector in the initialization phase of this prim-

itive, demonstrating that ASCON is vulnerable to

conventional deep learning used against the AES al-

gorithm.

2 Background

2.1 Deep Learning-based Side-channel Analysis

Profiling SCA runs in two steps. In the first step (pro-

filing phase), a profile is built using the measurements

collected from a clone device. In the second step (attack

phase), the adversary uses the profile to find the key

used on the target device. The assumption is that the

measurements collected from clone and target devices

follow the same distribution. Profiling and attack steps

match the training and test phases of machine/deep

learning. 1

DL-SCA is defined as a classification problem. The

profiling set X containsNp measurements collected while

multiple cryptographic operations were performed on

Np plaintexts and key pairs. Depending on the chosen

leakage model, the measurements’ labels are calculated

using a combination of their corresponding plaintexts

and keys. The goal is to find the underlying distribution

of the profiling data. The deep learning model learns

this distribution by tuning its parameters (the neurons’

weights and biases) using the profiling data.

1 Our focus here is on deep learning. However, all the de-
scriptions are also accurate for machine learning.
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In the attack phase, the learned distribution is used

to classify Na measurements from the target device.

For each key candidate, an Sk score is calculated as

Sk =
∑Na

i=1 log p(xi, cj), where Na is the number of

measurements in the attack set and p(xi, cj) indicates

the probability that a measurement xi belongs to class

cj . The final step is sorting the keys based on the cal-

culated scores. The key with the biggest score is con-

sidered the most probable key used for cryptographic

operation on the target device.

The guessing entropy (GE) and required number of

attack traces (NT) metrics can be defined using this

score vector. Let us suppose that the correct key (k⋆)

used during cryptographic operation is placed in the rth

place. This place is called the rank of the k⋆ among all

the possible keys. Guessing Entropy is defined as the

average rank of k⋆ over a number of experiments. The

second metric, the required number of attack traces, is

defined as the average minimum number of measure-

ments the model needs to place k⋆ in the first place (to

reach GE = 1) [36].

2.2 Regularization Techniques

The primary goal of training a deep learning model is to

prepare it to predict unseen data accurately. This goal

is interpreted as improving the generalization power of

a deep neural network. The challenge is that the model

is learning from the training data, so it tries to increase

the accuracy (or decrease the loss) in the training set by

fitting the training examples and reducing the training

error. Nevertheless, the final goal is to use the model for

a test set and decrease the generalization error (test er-
ror). Thus, an appropriate learning algorithm: 1) should

make the training error small, and 2) should make the

gap between training and test error minimal [12]. Un-

derfitting occurs when a deep learning model does not

reach a sufficiently small error value in the training set.

Overfitting happens when a model cannot reduce the

gap between training and test error. While both under-

fitting and overfitting should be avoided, the latter is

more challenging to control. Especially in deep learn-

ing, where much input training data and many input

features are available, the best strategy is to fix under-

fitting by choosing more complex models [10].

Regularization is a well-studied and widely used so-

lution to improve the generalization power of machine

learning and deep neural models. In general, regular-

ization is defined as “any modification we make to a

learning algorithm tending to reduce the test error but

not the training error [12].” This definition covers many

techniques, from adding penalties to the objective func-

tion to multi-task learning and ensemble methods. The

shared part of all these techniques is reducing overfit-

ting and improving generalization. This paper inspects

the influence of applying four regularization techniques

on DL-SCA. Those techniques are L1 and L2 norm

penalties, dropout, and early stopping, which have all

been used for a long time in machine learning and now

in deep learning.

2.2.1 L2 and L1 Norm Penalties

L2 parameter norm penalty or weight decay adds a

penalty term in the form of all the model’s squared

weights to the objective function. The simplest form of

formulating L2 regularization is shown in Eq. (1):

Ẽ(W;X, y) = E(W;X, y) +
1

2
λ
∑
ij

w2
ij, (1)

where E is an arbitrary objective function measuring

the training error. X are the training examples and y

are their corresponding labels. W is the current weights

matrix, and λ is a parameter governing how strongly

large weights are penalized. When using L2 regulariza-

tion, λ is a hyperparameter that should be tuned. Ẽ

is the modified objective function. Considering Eq. (1),

when updating weights using gradient descent, a con-

stant term in the form of λW subtracts from updated

weights in each step. This term controls the growth of

the weights and suppresses irrelevant components of the

weight vector [18].

L1 regularization is another way to penalize the

size of the models (number of parameters). The dif-

ference between L1 and L2 regularization stems from

the penalty term added to the objective function. One

can see the modified objective function after using L1

in Eq. (2):

Ẽ(W;X, y) = E(W;X, y) +
1

2
λ
∑
ij

∣∣wij

∣∣ , (2)

where
∣∣wij

∣∣ is the sum of all the model’s absolute values

of weights. Adding this term to the objective function

shows itself as λsign(W) term in the weight update

operation using gradient descent. In practice, L1 can be

seen as a built-in feature selection mechanism because

it tends to shrink some weights toward zero. Using L1

adds λ to the hyperparameters that should be tuned.

2.2.2 Dropout

The idea of this technique is to temporarily remove ran-

dom neural units along with their connections from the

primary network during the training. Each unit may be

removed with a q probability called the dropout rate.
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The dropout rate is a hyperparameter and should be

tuned. Dropout, in essence, is training multiple smaller

networks selected randomly from the bigger primary

neural network by removing some neural units in each

training step. Since these smaller networks share the

primary neural network’s weights, the averaging at test

time is as simple as using the primary network without

any dropout [39].

Since regular dropout can not prevent overfitting

in CNN, we used spatial dropout [40] for combinations

with CNN topology. In CNN models, when a filter is

applied to an input vector (or matrix in the case of

2D convolution), it extracts a vector (or matrix) called

feature map 2 and its elements are highly correlated.

Dropping just one of these correlated elements may not

prevent overfitting; instead, we can drop the whole fea-

ture map. Applying each filter to the convolutional layer

input creates a feature map. If a convolution layer has

m filters, the outcome of the layer is a set with m fea-

ture maps. Spatial dropout drops one or more entire

extracted feature maps selected randomly among these

m feature maps.

2.2.3 Early Stopping

In the general definition of early stopping, when train-

ing a neural network with sufficient capacity for and

enough epochs, the training error keeps decreasing, while

the validation error starts to rise again after a while.

This rise is a sign that overfitting starts. With early

stopping, we can stop training as soon as validation

error starts to rise. However, the drop and rise of the

validation error are not very smooth in reality. The vali-

dation error curve shows many ups and downs, and find-

ing the exact point where the validation error starts to

increase is not possible. One solution is to stop training

if the generalization does not improve after a specific

number of epochs. This specific number of epochs is

called “patience”.

2.3 Related Work

The competitive performance of the DL-SCA methods

compared to more traditional SCA methods has at-

tracted much attention in recent years. Many researchers

utilized different notions and techniques used in deep

learning like reinforcement learning [36], wight visual-

ization [41], and information bottleneck [25], to improve

the performance of DL-SCA even further. Regularizers

have been used from the early days of machine learning

2 In a Convolutional Neural Network (CNN), a feature map
is the output of a filter applied to the previous layer.

emergence, and their practicality was noticed in vari-

ous domains. DL-SCA is not an exception. For exam-

ple, in [25], Perin et al. proposed a technique based on

the information bottleneck to monitor the training evo-

lution. Using this technique, they could find the best

epoch to stop the training. In [37], Robissout et al. in-

troduced a metric to evaluate the performance of a deep

neural network in the side-channel domain during the

profiling phase. They used this metric as a monitoring

metric for early stopping. In [16], Kim et al. used sev-

eral regularization techniques, including dropout, L2,

and data augmentation. In [35], Rezaeezade et al. in-

spected the influence of increasing the training set size

on the generalization power of CNN and MLP neural

networks for SCA in the presence of dropout. In [26],

Perin et al. used the ensemble method to improve the

model’s generalization and reduce overfitting. The en-

semble method is a regularization technique combining

multiple classifiers to form a better hypothesis. This

technique reduces the final model’s dependencies on the

structural hyperparameters. Perin et al. showed that

ensembles of many non-optimal models could even per-

form better than the best-obtained model. Batch nor-

malization is another regularization technique [15] used

in many DL-SCA works, e.g., [23, 31]. We note that

while a number of related works used some form of reg-

ularization, they do not compare the results with and

without the regularization. Hence, it is difficult to as-

sess how well those methods performed or whether they

were even necessary.

3 Experimental Setup

3.1 Neural Network Topologies

Multilayer Perceptron (MLP) is a simple feed-forward

neural network consisting of input, output, and one or

more hidden layers. The input layer takes training ex-

amples as input and sends them through a fully con-

nected graph of hidden layers to the output layer. The

output layer represents output classes in classification

problems. MLP approximates the underlying distribu-

tion of training examples by updating the network’s

weights using gradient descent and the backpropaga-

tion algorithm.

Convolutional Neural Network (CNN) is an-

other type of feed-forward neural networks. It has one

or more convolutional layers after the input layer. The

layer highlights the most important features using ker-

nels that are vectors of coefficients (or matrices of coef-

ficients in case of 2D convolution) updated using back-

propagation. After each convolution layer, there is an
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activation function, and then there can be a max/average-

pooling layer. The network extracts the most important

features using pooling layers. After these layers, there

is usually one or more fully connected layers.

3.2 Datasets and Leakage Models

In our experiments, we consider two publicly available

datasets: ASCAD random key, which contains measure-

ments from a software implementation of AES-128, and

AES HD, which includes measurements from a hard-

ware implementation of AES-128. To check if the out-

comes can be generalized to other primitives, we add

a third dataset, which contains measurements from an

unprotected software implementation of ASCON. For

software-based implementation, the leakage can be mod-

eled with Hamming Weight (HW) and Identity (ID)

leakage models. In contrast, for hardware-based imple-

mentation, Hamming Distance (HD) models the leak-

age more precisely.

ASCAD Random Keys 3: This dataset was pro-

vided using an assembly implementation of AES-128

published by ANSSI. The implementation is protected

with Boolean masking. To collect the measurements,

while the cryptographic operation was running on an

ATMega8515 MCU target [1], the side-channel mea-

surements were collected by measuring the target’s elec-

tromagnetic emanations (EM). Each measurement has

250 000 time samples, which were finally reduced to a

window containing 1 400 most-leaky time samples. The

cryptographic operation was repeated 200 000 times with

varying plaintext and keys to collect the profiling set

examples, then repeated another 100 000 times with

varying plaintext and a fixed key to collect the at-

tack set examples. Details about the cryptographic de-

sign are provided in [31]. Since the first and second

bytes are masked with zero (so they can be broken

with first-order SCA), we attack the third byte us-

ing Y = Sbox[P3 ⊕ k3] for the ID leakage model and

Y = HW (Sbox[P3 ⊕ k3]) for the HW leakage model.

AES HD4: This dataset is collected using an FPGA

implementation of AES-128 on Xilinx Virtex-5. The

implementation is unprotected. The side-channel mea-

surements are the target’s electromagnetic emanations

(EM), which are represented by 1 250 time samples. In

total, 500 000 traces were captured when the target en-

crypted 500 000 randomly generated plaintexts with a

fixed key. From these 500 000 measurements, we se-

lect the first 450 000 as profiling examples and the last

3 https://github.com/ANSSI-FR/ASCAD/tree/master/

ATMEGA_AES_v1/ATM_AES_v1_variable_key
4 https://github.com/AISyLab/AES_HD_Ext

50 000 as attack examples. We attacked the last round’s

Sbox−1 output overwriting in a register that contains

the previous inverse ShiftRows operation value. The

leakage is modeled as Y = HW (Sbox−1[Cj⊕kj ]⊕Cj′),

where Cj and Cj′ are two ciphertext bytes related ac-

cording to the inverse ShiftRows operation, and kj is

the corresponding round key byte. In our experiments,

j = 10 and j′ = 6.

Unprotected Ascon: This dataset collected using

multiple operations of the reference software implemen-

tation of ASCON-1285. More information about AS-

CON primitive is provided in Appendix A. The traces

contain power samples during the first round permu-

tation of the ASCON-128 initialization. The initializa-

tion phase of ASCON-128 uses a 128-bit key, a 128-bit

nonce, and a 64-bit constant IV which are split up into

five 64-bit words x0 to x4. The x0 contains the constant,

x1 and x2 contain the key, and x3 and x4 contain the

fresh nonce. We propose to attack half of the key using

Y = k
(1)
1 &(255⊕IV1⊕M

(1)
1 )⊕M

(1)
1 ⊕M

(2)
1 leakage mode

where k(1) is half of the key written in x1 and M
(1)
1 and

M
(2)
1 are the first and second half of the variable nonce

(the superscripts show the first or second half of the

key and nonce). The other half can be recover using

Y = k
(2)
1 &(255 ⊕ k

(1)
1 ⊕ M

(1)
1 ) ⊕ k

(1)
1 &(255 ⊕ M

(1)
1 ) ⊕

IV1⊕M
(1)
1 ⊕M

(2)
1 leakage model with x1 being plugged

in as known parameter. The nonce is public and fresh

for every encryption, so it can be used as something

that we know in SCA. The proposed Y is an Identity

leakage model and can recover eight bits (one byte) of

the key in each attack. More information about the at-

tack point is provided in Appendix B. The training set

contains 50 000 traces captured during the first round

permutation in the initialization phase of ASCON us-

ing randomly generated nonces and randomly gener-

ated keys. The test set contains 10 000 traces captured

during the first round permutation in the initialization

phase of ASCON using randomly generated nonces and

a fixed key. Each trace contains 772 time samples cover-

ing the targeted permutation. The traces are collected

using ChipWhisperer Lite board and its internal oscillo-

scope, and the target is the STM32F4 microcontroller,

a 32-bit platform.

3.3 Analysis Methodology

This paper aims to inspect the impact of applying L1,

L2, dropout, and early stopping on the performance of

DL-SCA. To interpret the results, we compare the av-

erage performance of a large number of neural networks

5 https://github.com/ascon/ref

https://github.com/ANSSI-FR/ASCAD/tree/master/ATMEGA_AES_v1/ATM_AES_v1_variable_key
https://github.com/ANSSI-FR/ASCAD/tree/master/ATMEGA_AES_v1/ATM_AES_v1_variable_key
https://github.com/AISyLab/AES_HD_Ext
https://github.com/ascon/ascon-c/tree/main/crypto_aead/ascon128v12/ref
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that use a regularization technique with their average

performance without any regularization technique. The

following steps outline the methodology we use to com-

pare the performance with and without regularization

techniques:

– Acquiring baseline models: In this step, we start

by generating 500 neural networks with the random

search. We consider a specific combination of the

dataset, neural network topology, and leakage model

for the search. The ranges used for searching hyper-

parameters of MLP and CNN are listed in Table 1.

These ranges are chosen based on the ranges re-

ported in the previous works [27,31,41]. Since those

500 neural networks are generated randomly, many

of them cannot decrease GE. Then, we select the 200

best as the “baseline models” and make the primary

pool of models to start from.

It is worth mentioning that in a fixed number of

randomly generated neural networks, the number

of MLP models that reached GE = 1 was signifi-

cantly larger than CNN. For example, among 500

randomly generated MLPs with the HW leakage

model in the ASCAD dataset, 172 models reached

GE = 1, and the rest were able to decrease the

GE to small numbers (less than 10). In the case of

CNNs with the HW leakage model, only 70 mod-

els reached GE = 1, and many models could not

even decrease the GE lower than a random guess.

However, at the same time, the best CNN models

could converge to GE = 1 with far fewer attack

traces than MLP models. In the previous example,

the five best MLP models ranked the key in first

place with 550 attack traces on average, while this

metric was around 50 for the five best CNN models.

We refer to this observation as the “general ability

of MLP models to find the key” and the “poten-

tial ability of CNN models to find the key”. These

names are selected according to this practical expe-

rience that MLP models are less dependent on their

hyperparameters to find the correct key. In contrast,

CNN models are sensitive to slight hyperparameter

changes.

– The average performance of baseline models:

We use two metrics to represent the average per-

formance of baseline models. The average GE that

200 baseline models can reach in an attack set with

5 000 attack traces is called “AVERAGE GE”. The

average required number of attack traces the base-

line models need to reach GE = 1 is referred to as

“AVERAGE NT”. For those neural networks that

cannot reach GE = 1 with 5 000 attack traces, we

assume NT = 5000.

Table 1: Searched range of MLP and CNN hyperparam-

eters. For both MLP and CNN dense layers, we used the

ranges shown in Dense layers part of Table 1.

Hyperparameters Range

Dense layers

Number of neurons [10, 90], step = 10 + [100, 500], step = 100
Number of layers [1, 8], step = 1

Convolution layers

Number of layers [1, 4], step = 1
Number of kernels [4, 20], step = 1
First layer’s filter
size

[2, 4, 8, 12, 16]

i(th) layer filter size ((i − 1)filter size)2

Pooling “Average”, “Max”
Pooling size [2, 10], step = 2
Pooling stride [2, 10], step = 2

Learning hyperparameters

Optimizer “Adam”, “RMSprop”
Weight initialization “random uniform”, “he uniform”,

“glorot uniform”,
Activation function “relu”, “selu”, “elu”
Batch size [100, 900], step = 100
Learning rate [0.005, 0.001, 0.0005, 0.0001, 0.00005, 0.00001]
Epochs 200 in ASCAD and AES HD,

30 in Unprotected ASCON

– Re-training regularized models:We re-train the

baseline neural networks in the presence of differ-

ent regularization techniques (L1, L2, dropout, and

early stopping). These regularization techniques have

their own hyperparameters, which should be tuned

for each neural network. To do this tuning, we exam-

ine a range for each regularization hyperparameter.

Then we consider the best-acquired performance as

the performance of that baseline model in the pres-

ence of a specific regularization technique. Again,

the considered metrics are GE and NT. The tuned

baseline model with the best performance is called

the “regularized model.”

An example can clarify the process: we want to re-

train each baseline model in the presence of L1 reg-

ularization. To do so, while all the other hyperpa-

rameters6 of the baseline models stay the same, we

add L1 regularization to neural network layers. L1

has a regularization constant λ that can take 12 dif-

ferent values listed in Table 2.7 We build 12 models

similar to the baseline model but having L1 reg-

ularization with different λ values. Among the 12

re-trained models, we consider the model with the

smallest GE as the best-tuned model and report its

performance (the value of GE and its corresponding

NT) as the regularized model’s performance. If a

neural network can reach GE = 1 with two or more

6 Including the architectural and learning specifications.
7 These values have been specified based on the grid search

strategy.
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Table 2: Hyperparameters of L1, L2, dropout, and early stopping regularization techniques and the experimented

ranges.

Technique HyperparameterRange

Weightdecay(L1) λ [5× 10−2, 10−2, 5× 10−3, 10−3, 5× 10−4, 10−4, 5× 10−5, 10−5, 5× 10−6, 10−6, 5× 10−7, 10−7]

Weightdecay(L2) λ [5× 10−2, 10−2, 5× 10−3, 10−3, 5× 10−4, 10−4, 5× 10−5, 10−5, 5× 10−6, 10−6, 5× 10−7, 10−7]

Dropout Dropout rate [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]

Earlystopping Patience [10, 15, 20, 25, 30] in the ASCAD and the AES HD datasets
[3, 5, 7] in the ASCON datasets

λ values, we consider the smallest NT and GE = 1

as the performance of the regularized model.

Table 3: Eight different combinations considered in the

experimental setup.

Dataset NN topology Leakage model Combinations
ASCAD HW MLP

ASCAD HW ASCAD HW CNN
MLP ASCAD ID MLP

ASCAD ID CNN
AES HD HD AES HD MLP

CNN AES HD CNN
ASCON ID MLP

ASCON ID ASCON ID CNN

– The average performance of regularized mod-

els: The AVERAGE GE and the AVERAGE NT

are calculated as performance metrics for the reg-

ularized models. We compare the AVERAGE GE

and AVERAGE NT of the baseline and the regular-

ized models for each regularization technique. This

way, the influence of each regularization technique

on the performance of DL-SCA can be observed.

The examined ranges for hyperparameters of differ-

ent regularization techniques are listed in Table 2.

We considered three different datasets, including pro-

tected and unprotected implementations on hardware

and software of two different primitives (AES and AS-

CON), with the intention of covering a more compre-

hensive range of side-channel evaluation use cases and

showing that our conclusions hold under different cir-

cumstances. Also, we considered two widely used neu-

ral network topologies in SCA (CNN and MLP) and

three common leakage models in the SCA community

(ID, HW, and HD) to show how the results are affected

using different regularizations. The experimented com-

binations are listed in Table 3.

4 Experimental Results

First, we explore the modifications of the AVERAGE NT

and AVERAGE GE for baseline and regularized mod-

els in Section 4.1. Then, we evaluate the models’ de-

terioration rate in Section 4.2. Finally, in Section 4.3,

we monitor the effect of using different regularization

techniques on profiling time.

4.1 Performance Comparison

4.1.1 L1 Regularization

L1 regularization penalizes the size of the model pa-

rameters in a way that causes a subset of them to be-

come zero. The effect of this is an implicit feature selec-

tion. As a result, L1 regularization will be most effective

when the input is noisy, and the traces include samples

that do not carry information. In other words, L1 regu-

larization helps the neural networks to extract the point

of interest more efficiently. In our experiments, we use

L1 regularization in every dense and convolution layer

in both MLP and CNN topologies. Figure 1a shows

the AVERAGE GE and the AVERAGE NT for base-

line and regularized models for the ASCAD dataset.

Notice how regularized models always reach lower av-

erage GE than the baseline ones. The difference is espe-

cially pronounced for the ID leakage model and CNN.

The differences become even more clear once consider-

ing the average number of traces to break the target.

In three out of four settings, regularization allows for

reducing the number of required attack traces in half.

The results for the ASCAD dataset show that L1 reg-

ularization is effective for all the combinations, but it

tends to perform better with MLP models. That is be-

cause the CNN models naturally provide more effective

feature selection than MLP models, and the influence

of feature selection is more tangible in the case of MLP.

Next, Figure 1b demonstrates the AVERAGE GE

and the AVERAGE NT for baseline and regularized

models for the AES HD dataset. For this dataset, the

baseline models perform well on average but require

many traces to break the target. Adding L1 reduces

the average GE up to five times on average and the re-

quired number of traces to break the target for ≈ 40%.
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Fig. 1: The average performance with and without L1 regularization, for ASCAD, AES HD and Unpro-

tected ASCON datasets. The AVERAGE GE (left) is calculated for baseline (blue) and regularized (orange)

models. The AVERAGE NT is calculated for baseline (green) and regularized (red) models.

We believe we do not see an even larger influence on

the number of attack traces due to a limited attack set

size. Indeed, when a model fails to find the correct key,

we do not have any estimation of the number of traces

it would need to find the key, so we use the maximum

number of traces in the attack set to show that the

model did not succeed in finding the key.

Finally, Figure 1c shows the AVERAGE GE and
the AVERAGE NT for baseline and regularized mod-

els for Unprotected ASCON dataset. Since this dataset

contains measurements from unprotected software im-

plementation of a primitive, and the traces are col-

lected using ChipWhisperer, it can be considered an

easy dataset to attack. As a consequence, starting from

the first step of our methodology to acquire baseline

models, more than 200 of the random models were con-

verging to GE = 1 in each scenario, which means AV-

ERAGE GE would be equal to one, and no more im-

provement would be possible in this regard. So we slightly

modified the methodology. The modification is replac-

ing 20% of the primary baseline models with models

that do not converge (GE > 10) (these models are

randomly selected too). This will give the regulariza-

tion techniques a chance to improve some models that

are not useful in the first place. We discuss the effect

of adding regularization after this modification to the

baseline models’ pool here. To see what improvement

regularization techniques can offer when GE = 1, we

discuss the results before modification in Appendix C.

As shown in Figure 1c, the AVERAGE GE and AVER-

AGE NT are already low for baseline models. However,

adding L1 regularization decreased AVERAGE GE to

less than half in the CNN with ID leakage model. While

the effect of adding L1 is smaller for the MLP with ID

leakage model, it still improves models that do not con-

verge without any regularization. The effect of adding

L1 on the AVERAGE NT of CNN models is consider-

able as well. In Figure 1c, one can see that using L1

can decrease the required number of attack traces up

to two times for CNN models.

Comparing CNN-HW and MLP-HW combinations

in Figure 1a, CNN-ID and MLP-ID combinations again

in Figure 1a, and the CNN-ID and MLP-ID combina-

tions in Figure 1c we can see the “general ability of MLP

models to find the key” mentioned in Section 3.3 more

clearly. While the AVERAGE GE and AVERAGE NT

are similar for CNN-HD and MLP-HD combinations in

Figure 1b, this ability is recognizable after applying L1

regularization.

4.1.2 L2 Regularization

L2 regularization shrinks the weights to values close to

zero but rarely counts irrelevant features out. In our

experiments, we use L2 regularization in every dense

and convolution layer in both MLP and CNN topolo-
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Fig. 2: The average performance with and without L2 regularization, for ASCAD, AES HD and Unpro-

tected ASCON datasets. The AVERAGE GE (left) is calculated for baseline (blue) and regularized (orange)

models. The AVERAGE NT is calculated for baseline (green) and regularized (red) models.

gies. Figure 2a shows the AVERAGE GE and the AV-

ERAGE NT for the baseline and regularized models

for the ASCAD dataset. As one can see, the regular-

ized models can always reach lower AVERAGE GE and

AVERAGE NT. The AVERAGE GE sharp decrease in

all four settings is noticeable. This decrease shows that

the L2 regularization improves models that cannot con-

verge to GE = 1. The difference between baseline and

regularized AVERAGE GE is the most pronounced for

the CNN with the ID leakage model. The effectiveness

of L2 regularization is also apparent when considering

the average number of attack traces. Applying this reg-

ularization reduces AVERAGE NT by half or less in

three out of four settings. The improvement for the

MLP with the ID leakage model is the most significant

one. The observed improvements are the consequence

of reducing overfitting by making the weights smaller

and close to zero.

Figure 2b demonstrates the AVERAGE GE and the

AVERAGE NT for the baseline and regularized mod-

els for the AES HD dataset. As the AVERAGE GE and

the AVERAGE NT reflect, the average performance of

baseline models is almost the same for both combina-

tions. However, the L2 regularization improves the re-

sults more for MLP models. Adding L2 reduces the av-

erage GE five times in the CNN-ID and seven times

in the MLP-HD settings. The influence on the required

number of attack traces is not as significant, but it is

still more in the MLP-HD combination. Besides the rea-

sons mentioned in Section 4.1.1, this limited effect on

AVERAGE NT results from the noise level and type in

this dataset.

Lastly, Figure 2c represents the AVERAGE GE and

the AVERAGE NT for the baseline and regularized

models for the Unprotected ASCON dataset. The AV-

ERAGE GE plot shows almost three times improve-

ment in CNN networks and almost two times improve-

ment in MLP networks after using L2 regularization.

The impact on the required number of attack traces

does not strictly follow those numbers. However, the

effect is considerable, especially for the CNN networks

where regularized models need twice fewer traces than

baseline models.

L1 and L2 regularization considerably enhance the

performance in all datasets. However, the L2 regular-

ization is slightly more effective for the ASCAD and

Unprotected ASCON datasets, while L1 is more effec-

tive for AES HD. This observation stems from the dis-

tinct effect of these regularization techniques and the

nature of noise in the considered datasets. L1 bypasses

the influence of irrelevant features by implicit feature

selection while L2 considers almost all the input fea-

tures. The input in the ASCAD dataset is a narrowed

window of the entire measurement, including the time

samples corresponding to the first round S-box calcu-

lation. The input in the Unprotected ASCON dataset



10 Azade Rezaeezade, Lejla Batina

CNN-HW CNN-ID MLP-HW MLP-ID
0

5

10

15

20

25

30

35

AV
ER

AG
E_

GE

Baseline_GE
Regularized_GE

CNN-HW CNN-ID MLP-HW MLP-ID
0

500

1000

1500

2000

2500

AV
ER

AG
E_

NT

Baseline_NT
Regularized_NT

(a) ASCAD

CNN-HD MLP-HD
0

2

4

6

8

10

AV
ER

AG
E_
GE

Baseline_GE
Regularized_GE

CNN-HD MLP-HD
0

500

1000

1500

2000

2500

3000

3500

4000
AV

ER
AG

E_
NT

Baseline_NT
Regularized_NT

(b) AES HD

CNN-Y4 MLP-Y4
0

1

2

3

4

5

6

7

AV
ER

AG
E_

GE

Baseline_GE
Regularized_GE

CNN-Y4 MLP-Y4
0

250

500

750

1000

1250

1500

1750

AV
ER

AG
E_
NT

Baseline_NT
Regularized_NT

(c) ASCON

Fig. 3: The average performance with and without dropout regularization for ASCAD, AES HD, and Unpro-

tected ASCON datasets. The AVERAGE GE (left) is calculated for baseline (blue) and regularized (orange)

models. The AVERAGE NT is calculated for baseline (green) and regularized (red) models.

is with time samples restricted to the first round of

permutation in the initialization phase. Quite the con-

trary, in the AES HD dataset, the input contains all the

samples collected during the AES decryption operation.

Therefore, input includes many irrelevant samples col-

lected during pre-processing, ten rounds of AES, and

the final processing. As a result, the AES HD dataset

needs stronger feature selection to confine the effect

of these irrelevant time samples. The results indicate

that both regularization techniques have different but

equally valuable properties.

4.1.3 Dropout

As mentioned in Section 2.2.2, the dropout technique

used in different neural network layers depends on the

layer type. In our experiment, we used typical dropout

after every dense layer in MLP and CNN models and

spatial dropout after every convolution layer in CNN.

Figure 3a shows the AVERAGE GE and the AVER-

AGE NT for the baseline and regularized models for

the ASCAD dataset. Looking at Figure 3a, one can

see that the average GE for CNN-HW and MLP-ID

combinations increased after applying dropout. This

observation indicates that adding dropout may cause

inferior performance in many cases. A closer look at

the GE and NT measurements for each baseline and

dropout regularized model shows that many models de-

teriorate after applying dropout (more description is in

Section 4.2). However, we still can see a decrease in the

AVERAGE NT for these two combinations, which indi-

cates the potential of dropout when it is effective. The

effectiveness of this technique when it does not deterio-

rate a model is so significant that it can compensate for

the increase in the required number of attack traces im-

posed by deteriorated models. In the other two combi-

nations (CNN-ID and MLP-HW), the AVERAGE GE

and AVERAGE NT decrease slightly, showing model

deterioration happens here as well. Still, it is less com-

pared to CNN-HW and MLP-ID combinations.

Figure 3b shows the results for the AES HD dataset.

With the decrease in the AVERAGE GE and the AV-

ERAGE NT of regularized models, the deterioration ef-

fect is not detectable here. Still, one can see that the

AVERAGE GE and AVERAGE NT improvement after

applying dropout is less compared to L1 and L2.

Figure 3c shows the AVERAGE GE and AVER-

AGE NT for baseline and regularized models using drop-

out for Unprotected ASCON dataset. Considering the

AVERAGE GE, one can see that after adding dropout,

the performance improved for the CNN-ID combina-

tion, while it declined slightly for the MLP-ID combi-

nation (because of the deterioration of some models).

For the AVERAGE NT, still, the average for the MLP-

ID combination improved a bit because the number of
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Fig. 4: The average performance with and without early stopping regularization for ASCAD, AES HD, and Un-

protected ASCON datasets. The AVERAGE GE (left) is calculated for baseline (blue) and regularized (orange)

models. The AVERAGE NT is calculated for baseline (green) and regularized (red) models.

models that deteriorated was scant, and they could not

degrade the average influence of adding dropout.

Dropout works better when using MLP with fewer

output classes (HW or HD leakage models), which is

the indirect effect of the deep learning model size. In

the case of the ID leakage model, there are 256 output

classes, while the number of output classes for HW and

HD leakage models is 9. However, since the number of

input samples and training examples is the same for

all leakage models, significantly larger models cannot

be used for the ID leakage model. As a result, dropout

regularization cannot produce enough distinct smaller

networks to reflect the ensemble effect for 256 output

classes.

4.1.4 Early Stopping

Early stopping controls overfitting by manipulating the

number of training iterations (epochs). This technique

is adequate when the initial number of epochs is signif-

icantly larger than what the model needs to learn the

underlying leakage distribution. Figure 4a indicates the

AVERAGE GE and AVERAGE NT for baseline and

regularized models for the ASCAD dataset. Based on

the results, the AVERAGE GE improvement is min-

imal in the ASCAD dataset, which means early stop-

ping cannot improve models that do not converge with-

out early stopping. The effect is more evident in CNN-

ID and MLP-ID settings. If a baseline model does not

reach GE = 1 without early stopping, using this tech-

nique does not significantly help the model to reach

GE = 1. On the other hand, the epoch-wise evolu-

tion of GE shows that when GE reaches 1, it rarely

increases again. Early stopping seems helpful regarding

the required number of attack traces. The regularized

models managed to achieve smaller AVERAGE NT in

all four settings. Stopping a model as soon as it reaches

GE = 1 reduces overfitting and helps the model find

the key with fewer attack traces.

Next, Figure 4b depicts the AVERAGE GE and

AVERAGE NT for baseline and regularized models for

the AES HD dataset. The early stopping effectiveness

on this dataset is similar to L1 and L2 regularization.

This outcome shows that even early stopping regular-

ization can improve GE and the required number of

attack traces in a noisy dataset like AES HD. This tech-

nique is considerably helpful in settings with MLP and

limited output classes (HW and HD).

Finally, Figure 4c demonstrates the AVERAGE GE

and AVERAGE NT before and after using early stop-

ping for Unprotected ASCON. As mentioned in Sec-

tion 4.1.1, Unprotected ASCON is considered an easy

dataset. Therefore, neural networks generally need fewer

epochs to learn the pattern. As expressed in Table 1, we

used 30 epochs in this dataset. The results show that

this value is sufficient because a large number of models

could converge with this number of epochs. This smaller



12 Azade Rezaeezade, Lejla Batina

Table 4: The deterioration rate.

ASCAD AES HD Unprotected ASCON

CNN-HW CNN-ID MLP-HW MLP-ID CNN-HD MLP-HD CNN-Y4 MLP-Y4

L1 1.5% 4.5% 0% 6.5% 3% 0.5% 0.5% 9%

L2 0% 2% 0% 1.5% 2% 0.5% 2% 1.5%

Dropout 29.5% 19% 7.5% 23.5% 22.5% 10.5% 10% 5.5%

Early stopping 8.5% 18% 0.5% 19% 14% 4% 9.5% 2%

value for the number of epochs imposes a smaller value

for the patience hyperparameter for early stopping. As

shown in Table 2, we used three different values for the

patience hyperparameter. However, comparing the AV-

ERAGE GE for baseline and regularized models shows

that this regularization technique is not effective in

the Unprotected ASCON. Early stopping is suggested

for long training or problems with smooth learning,

i.e., problems with less fluctuation in validation accu-

racy or validation loss. In the Unprotected ASCON,

none of these conditions are fulfilled. Therefore, using

early stopping does not improve model performance in

many cases. A deeper look into the models shows that

only a handful of non-converging baseline models con-

verged after adding early stopping. Besides, early stop-

ping with the used patience hyperparameters caused

underfitting for some other models. These two facts jus-

tify increasing the AVERAGE GE for regularized mod-

els. Surprisingly, the improvement provided by early

stopping for the rest of the models is significant enough

to promote the AVERAGE NT and to compensate for

underfitting caused by early stopping.

4.2 Deterioration Rate

Although all results (Figure 1a to Figure 4a) give in-

sights into the influence of regularization techniques on

DL-SCA attack performance, we can extract even more

information from the experiments. One example is the

percentage of models that deteriorate after using a reg-

ularization technique. We call this metric the “deterio-

ration rate,” which is the percentage of the regularized

models that perform worse than their baseline coun-

terparts. This metric shows how confident we can be

that adding specific regularization techniques helps to

improve the final performance. One can see the dete-

rioration rates for L1, L2, dropout, and early stopping

techniques in Table 4.

The deterioration rate for L1 regularizer is a bit

higher for CNN-ID and MLP-ID combinations in the

ASCAD dataset and MLP-ID combination in Unpro-

tected ASCON dataset compared to the rest. The se-

lected leakage model (ID) causes this higher deteriora-

tion rate. The larger number of output classes makes

the model more sensitive to changes. The dispersion of

the traces that we collect is fixed and independent from

the leakage model that we select. When the selected

leakage model leads into more output classes, we are

partitioning the same data into more classes. This can

make the model more sensitive to small variations in the

input features. This could potentially make the model

less robust to noise or other small changes in the input.

Besides, with more output classes, the model generally

becomes more complex, requiring more parameters to

learn. This can make the model more sensitive to the

nuances in the training data. Looking carefully, one can

see that the columns with the ID leakage model in Ta-

ble 4 show higher deterioration rates on average.

The deterioration rate for L2 regularization is less

than 2% for all the settings showing that L2-regularized

models almost always perform better than the baseline

model regardless of the selected settings. This outcome

confirms that adding L2 regularization will improve the

performance or, in the worst case, will simply not help.

The situation is different when dropout is used. De-

terioration rates in Table 4 indicate that dropout de-

grades many regularized models. CNN with the HW

leakage model suffers the most from applying dropout.

After that, MLP with ID leakage model and CNN with

HD leakage models are the combinations that worsen

considerably after using dropout. The variation in the

leakage models and network topology that experience

the highest deterioration rate shows that the root cause

of this observation is beyond the selected settings. The

recognized deterioration after applying dropout is not

unique to DL-SCA. In [9], Gabrin et al. reported re-

duced test accuracy after using dropout. Li et al. [20]

showed that dropout could help accuracy but not in all

cases. In [39], Srivastava et al. noted the necessity of

changing the training and architectural hyperparame-

ters to tune the model again after using dropout.

While the situation is better for early stopping com-

pared to dropout, using it can still degrade some mod-

els. Again, CNN-ID is the combination that deterio-

rated the most, resulting from both neural network and

leakage model selection. MLP-HW and MLP-HD show

low deterioration rates after applying early stopping.
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Table 5: Average profiling time (in seconds) for baseline and regularized models with different regularization

techniques.

ASCAD AES HD Unprotected ASCON

CNN-HW CNN-ID MLP-HW MLP-ID CNN-HD MLP-HD CNN-Y4 MLP-Y4

Baseline models 933 986 651 663 825 465 16 12

L1 3739 4620 1854 2603 6027 4832 23 18

L2 3934 3958 1396 2097 6881 4194 28 17

Dropout 2420 3299 1209 1626 3759 1967 25 16

Early stopping 632 898 165 579 432 256 14 9

However, for MLP-ID, it seems to be dependent on

the dataset. Looking at Table 4 column-wise, MLP-HW

combinations for the ASCAD dataset, MLP-HD com-

bination for the AES HD dataset and MLP ID combi-

nation for the Unprotected ASCON dataset have the

lowest deterioration rates for all regularization tech-

niques. As mentioned in Section 3.3, MLP models are

“generally able to find the key”, while CNN models are

“potentially able to find the key”, and they should be

tuned to work well. As a result, MLPs “absorb” changes

in hyperparameters or added regularization techniques

while applying small changes prevents CNNs from find-

ing the key. In essence, the changes imposed on MLP

models by regularization techniques do not deteriorate

the models. This is why the combinations containing

MLP show more improvements after applying regular-

ization techniques, especially when models are smaller,

i.e., when the number of output classes is less.

4.3 Profiling Time Changes

The average profiling time is the last considered met-

ric that gives us useful information about the influ-

ence of regularization techniques on the models’ per-

formance. Table 5 shows the calculated profiling time

for baseline and regularized models. The numbers show

that early stopping can reduce profiling time. The only

change this technique imposes on the models is forc-

ing them to stop the training as soon as the accu-

racy does not change for a number of epochs. This

way, it can stop the training process earlier and reduce

the profiling time. All the other techniques increase

the profiling time considerably. The smaller numbers

for Unprotected ASCON dataset can be justified using

two facts. Firstly, the number of epochs in this dataset

is 30, while it is 200 for the other two datasets. Be-

sides, the number of input time samples for this dataset

is 772, while it is almost twice as much in the other

two datasets (1 400 for the ASCAD and 1 250 for the

AES HD dataset). These two together will result in an

average less training time for both combinations for the-

Unprotected ASCON dataset.

5 Discussion

So far, the experiments have investigated the influence

of different regularization techniques on DL-SCA. Based

on the experiments, the overall view confirms the de-

pendency of regularized model improvement on differ-

ent factors like the level of the dataset’s noise, leakage

model, and neural network topology. In other words, the

improvement that a specific regularization technique of-

fers differs per model and depends on the model’s char-

acteristics. However, it is still relevant to answer these

two general questions:

– What is the most effective regularization technique

among L1, L2, dropout, and early stopping?

– When does a regularization technique work at its

best?

This section tries to find an answer to these two

questions.

5.1 Different Techniques Effectiveness in General

Considering the results in Section 4, it is not easy to

say which regularization technique is the most effec-

tive among the four experimented ones. As mentioned

earlier, the effectiveness of a regularization technique

depends on different factors. However, Figures 5 and 6

try to give an overall comparison of L1, L2, dropout,

and early stopping effectiveness in DL-SCA. The plots

present the required number of attack traces (NT) over

the size of all the baseline or regularized models for

ASCAD HW MLP and AES HD CNN combinations.

As shown in Figure 5, the baseline models spread

almost all around the plot (the green spots) for the

ASCAD HW MLP combination. Adding L1 (red) or

L2(yellow), regularization pushes the spots to the bot-

tom part of the plot so that the NT is less than 2000

traces for all L1 and L2-regularized models. In contrast,

while adding dropout (blue) increases the density at the
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Fig. 5: The dispersion of baseline and regularized models NT over their size in ASCAD HW MLP combination.
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Fig. 6: The dispersion of baseline and regularized models NT over their size in AES HD CNN combination.

bottom of the plot, many spots remain on the upper

side, which means it cannot improve many models as

good as L1 and L2. Early stopping (purple) influence is

considerably better than dropout but not as good as L1

and L2. Based on the dispersion of spots, L1 improves

the models slightly more than L2.

The plots in Figure 6 (AES HD CNN combination)

confirm the mentioned conclusion. In this combination,

most of the selected models are small.8 Therefore, the

spots group in the left part of the plots. However, one

can still see the sparseness of baseline models along the

y-axis. Adding L1 and L2 regularization pushes the red

and yellow spots to the lower corner. The better effec-

tiveness happens for L1 again. Early stopping pushes

8 The small size of neural networks is imposed during the
hyperparameter search and baseline model selection. In gen-
eral, hyperparameter tuning imposes selecting smaller models
that offer a better implicit regularization.
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down the purple spots, and its effectiveness is close to

L2 regularization. In the case of dropout, while there

are a few spots lower than 1500 (the other three reg-

ularization techniques could not push more than one

spot under 1500), the rest of the spots mostly spread

from 2000 to around 3500. This spreading range shows

the poorer effectiveness of dropout.

5.2 Implicit and Explicit Regularization Comparison

Recent works have studied implicit and explicit regu-

larizations and their connections. Here, we use simpli-

fied definitions of those terms without getting into the

details to specify when it is a good idea to use reg-

ularization techniques. Implicit regularization9 is the

effect imposed by the characteristics of the neural net-

work architecture and the learning algorithm. In other

words, it is the regularization that can be provided

with a model and the learning algorithm. Designing a

model using hyperparameter tuning along with deep

and detailed knowledge about the dataset in hand can

result in finding the optimal hyperparameters and pa-

rameter10 set for the problem, which provides a model

with sufficient implicit regularization. This regulariza-

tion does not change the objective function [2] [13]. The

gradient descent algorithm (and stochastic gradient de-

scent as its extension) offers implicit regularization in-

herently [2] [3]. On the other hand, explicit regular-

ization modifies the expected loss and objective func-

tion and reduces the effective capacity of a given model

to reduce overfitting. Explicit regularization is mostly

provided by regularization techniques like dropout and

norm penalties [13].

Implicit and explicit notions and the best and the

worst baseline models in each combination are used to

state when applying regularization techniques is effec-

tive. Among the baseline models selected for each com-

bination, some models work very well and can rank

the correct key in the first place with a few attack

traces. These are the models close to carefully designed

networks and offer adequate implicit regularization by

themselves. They reduce overfitting and increase gener-

alization sufficiently with the learning algorithm. Also,

some other models can only find the key with a signif-

icant number of traces or cannot rank the key in the

first place even after using the maximum available at-

tack traces. The implicit regularization of these models

is insufficient, and they usually need extra regulariza-

tion to reduce overfitting (and increase generalization).

9 Also, algorithmic regularization.
10 The internal variables of a neural network that are learned
during the training process.

In Figure 7, one can see the AVERAGE NT for ten

baseline models that perform the best (green spots in

Figure 7a) and ten baseline models that perform the

worst (green spots in Figure 7b) among 200 selected

baseline models in ASCAD HW CNN combination. In

Figure 7a, one can see that the best ten selected baseline

models have an acceptable performance before apply-

ing any regularization techniques. On the other hand,

their counterpart regularized models perform worse in

almost all cases. Figure 7a indicates the worst ten se-

lected baseline models in the ASCAD HW CNN combi-

nation. As the opposite of best-selected models, the AV-

ERAGE NT for these baseline models is around 5000,

while regularized models’ performance is far better. In

many cases, the performance of the worst models after

applying a regularization technique is comparable with

the best baseline models. Figure 8 shows the same be-

havior for the AES HD CNN combination. As depicted

in Figure 8, the best ten baseline models worsen after

adding regularization techniques. At the same time, the

worst ten baseline models show good performance after

applying regularization techniques.

This observation shows that regularization techniques

are more effective when the selected baseline model does

not offer enough regularization by itself. Thus, it seems

efficient to use regularization techniques specially when

the model is selected randomly and does not provide

excellent performance.

6 Conclusions and Future Work

This work provides an in-depth study of L1, L2, dropout,

and early stopping influence on the performance of DL-
SCA (eight different combinations of datasets, leakage

models, and deep learning network topologies). Our ex-

perimental results show that while all these techniques

can improve the DL-SCA performance, some of them

are more effective than others. Considering the aver-

age required attack traces (AVERAGE NT), the aver-

age guessing entropy (AVERAGE GE), and the deteri-

oration rate, we observe that L1 and L2 are the most

effective regularization techniques. While early stop-

ping has moderate effectiveness, it can reduce training

time. In comparison, other techniques increase train-

ing time considerably. Since the dropout deterioration

rate is very high compared to the other techniques and

it increases the training time, we recommend using it

carefully. Overall, there is potential in using regulariza-

tion techniques to resolve the overfitting issue in SCA,

but they should be used with care and consideration for

their strength and weakness.

In future work, it would be interesting to compare

the influence of other, more advanced regularization
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Fig. 7: (a) Ten best baseline models in ASCAD HW CNN combination along with their L1, L2, dropout, and early

stopping regularized counterparts. Baseline models have better performance than their regularized counterparts.

(b) Ten worst baseline models in ASCAD HW CNN combination along with their L1, L2, dropout, and early

stopping regularized counterparts. Regularized models have better performance than their baseline counterparts
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Fig. 8: (a) Ten best baseline models in AES HD CNN combination along with their L1, L2, dropout, and early

stopping regularized counterparts. Baseline models have better performance than their regularized counterparts.

(b) Ten worst baseline models in AES HD CNN combination along with their L1, L2, dropout, and early stopping

regularized counterparts. Regularized models have better performance than their baseline counterparts

techniques, like batch normalization and data augmen-

tation, with the current work results. Another inter-

esting direction is combining different techniques and

checking if adding two or more regularization techniques

can improve the performance further. We tried it al-

ready for a limited number of models with dropout

and L2 regularization together. The results showed that

a model using both dropout and L2 performed bet-

ter than the baseline or regularized model with only

dropout or L2. However, to generalize the observation,

a more comprehensive study is needed. Besides, while

we used ASCAD random key, AES HD, and Unpro-

tected ASCON for our experiments, other datasets, es-

pecially from public cryptography, can be targeted to



Fighting Overfitting in DL-SCA 17

further investigate regularization techniques’ effective-

ness.
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A ASCON

Ascon is a lightweight cryptographic algorithm selected by
NIST in February 2023 to be standardized [24]. Ascon is a
sponge-based [4] cryptography primitive. It is an authenti-
cated encryption with an associated data algorithm, which
means that besides encrypting the message to ensure confi-
dentiality, the algorithm adds a tag to the encrypted message
used to ensure the integrity of the encrypted message and the
associated data. This algorithm takes four inputs, including
plaintext P , associated data A, nonce M , and a key k, and
produces the authenticated ciphertext C and the authentica-
tion tag T as output. The 128-bit key, the 128-bit fresh nonce,
and a 64-bit constant build the 320-bit initial state processed
in five 64-bit words x0 to x4. Figure 9 shows four phases of
Ascon Initialization, Associated Data Process, Plaintext Process
(Ciphertext Process in decryption), and Finalization. The initial
state (x0 to x4) updates through these four phases and uses
as the secret state for encryption and tag generation. Since
the key is straightly processed in the Initialization and Fi-
nalization phases, these two are candidates for side-channel
attacks. In Ascon-128, the Initialization phase includes twelve
same permutation function, paa = 12, that processes the 320-
bit initial state. The permutation function has three parts: 1)
the addition of the round constants, 2) the non-linear five-bit
S-box (substitution layer), and 3) the linear diffusion layer.
Our attack point is the S-box output described in more de-
tail in Appendix B. The optional associated data processing
phase handles the data that does not need encryption, but its
integrity needs to be maintained. The encryption phase xors
the 64-bit plaintext blocks with the secret state. In Ascon-128,

https://csrc.nist.gov/News/2023/lightweight-cryptography-nist-selects-ascon
https://csrc.nist.gov/News/2023/lightweight-cryptography-nist-selects-ascon
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Fig. 9: Ascon’s mode of operation and S-box

each plaintext block Pi goes through six consecutive permu-
tations, pbb = 6, to produce ciphertext block Ci. The Final-
ization phase provides the 128-bit authentication tag T . For
more details about different parts of Ascon primitive, one can
see [8].

B Substitution Layer in Ascon and Our Attack

Point

The substitution layer of Ascon performs S-box on the five 64-
bit states horizontally, i.e., S-box operation takes 5-bit input
that includes only one bit from each word x0 to x4 and gives
5-bit output (Figure 10).
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Fig. 10: Ascon column-wise S-box and the yi outputs.

The lookup table of Ascon includes 32 entries. Since we
have 64 columns (each xi has 64 bits), the S-box applies 64
times which takes time if we use the lookup table. The ad-
vantage of the Ascon S-box operation is that it can be imple-
mented as xor operations on xis much faster than the lookup
table. Figure 11 shows the implementation of Ascon S-box
with xors.
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Fig. 11: Ascon S-box implementation with xor.

Looking at Figure 11 and taking xis as the inputs of the
substitution layer and yis as the outputs of this layer, the

outputs of non-linear S-box can be expressed as:

y0 = x0 + x1 + x2 + x3 + x1x2 + x0x1 + x1x4

y1 = x0 + x1 + x2 + x3 + x4 + x1x2 + x1x3 + x2x3

y2 = x1 + x2 + x4 + x3x4 + 1

y3 = x0 + x1 + x2 + x3 + x4 + x0x3 + x0x4

y4 = x1 + x3 + x4 + x0x1 + x1x4

(3)

where x0 is the public constant, x1 and x2 are the high and
low part of the secret key, and x3 and x4 are the high and low
part of the public nonce. Looking into 3, one can see that in
y4, all the parameters are public except x1. This fact makes y4
a good intermediate value for side-channel attacks. Besides, it
is possible to recover x1 with the divide and conquer strategy.
We propose to use the following leakage model to recover the
whole x1 in eight attacks. Each attack recovers eight bits of
x1.

Y = k
(1)
1 &(255⊕ IV1 ⊕M

(1)
1 )⊕M

(1)
1 ⊕M

(2)
1 (4)

Two significant differences exist between the used intermedi-
ate value for attacking AES primitive (ASCAD and AES HD)
and Ascon primitive (Unprotected Ascon). Firstly, the known
and variable parts used in the former are plaintext (ASCAD)
and ciphertext (AES HD), while it is nonce for the latter.
Secondly, for recovering 128 bits of the key for the former,
we use the same intermediate value and leakage model for all
16 S-box outputs. In contrast, we can recover half of the key
with the selected intermediate value for Ascon. To obtain the
remaining key bits, we use y0 or y1 (since they have non-linear
terms including x2). The other recovered half of the key, x1,
is plugged into the next selected intermediate value, and we
can recover the rest of the key.

C Regularizer Benefit When GE Is One

As mentioned in Section 4.1.1, more than 200 of the randomly
generated models in ASCON ID MLP and ASCON ID CNN
scenarios converged to GE = 1 (In fact, their final GE was less
than two). With a view of this, after selecting the 200 best
models in each scenario, the AVERAGE GE was less than
two for baseline models. Since all the baseline models could
find the key in the first place, inspecting the effect of regular-
ization techniques in such a situation is compelling. Figure 12
shows the AVERAGE GE and AVERAGE NT for the base-
line and regularized models after using L1, L2, dropout, and
early stopping. Interestingly one can see that while the AV-
ERAGE GE increased most of the time, the AVERAGE NT
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decreased in almost all the cases. It means that even if a model
is good and can recover the key without any regularization
techniques, we can still improve the performance by adding a
regularization technique that appears as less required attack
traces. Compared to the rest, the improvement is more pro-
nounced for L1 and L2 regularization for the CNN-ID com-
bination. For the CNN-ID combination, the required attack
traces decreased up to two times for regularized models with
L1 and L2, even the AVERAGE NT decreased slightly. The
improvement for this combination after using dropout and
early stopping is not as sharp as L1 and L2 but is better
compared to the MLP-ID combination. The improvement of
AVERAGE NT for the MLP-ID combination is minimal for
all the regularization techniques.

A closer look into the modified baseline models’ deteriora-
tion rates in Unprotected ASCON dataset in Table 4 and the
deterioration rates for the primary selected models (the ones
with AV ERAGE GE < 2) in Table 6 approves that in both
schemes more or less similar number of models deteriorated.

Table 6: The deterioration rate for primary baseline

models.

Unprotected ASCON

CNN-Y4 MLP-Y4

L1 1% 9%

L2 1.5% 1.5%

Dropout 7% 7.5%

Early stopping 6.5% 2%
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(a) L1 regularization
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(b) L2 regularization
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(c) Dropout
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(d) Early stopping

Fig. 12: The average performance with and without L1, L2, dropout and early stopping regularization, for Un-

protected ASCON dataset. The AVERAGE GE (left) is calculated for baseline (blue) and regularized (orange)

models. The AVERAGE NT is calculated for baseline (green) and regularized (red) models.
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