
On the Impossibility of Algebraic Vector
Commitments in Pairing-Free Groups

Dario Catalano1, Dario Fiore2, Rosario Gennaro3, and Emanuele Giunta2,4

1 University of Catania, Italy.
catalano@dmi.unict.it

2 IMDEA Software Institute, Madrid, Spain.
{dario.fiore, emanuele.giunta}@imdea.org

3 Protocol Labs.
rosario.gennaro@protocol.ai

4 Universidad Politecnica de Madrid, Spain.

Abstract. Vector Commitments allow one to (concisely) commit to a
vector of messages so that one can later (concisely) open the commitment
at selected locations. In the state of the art of vector commitments, al-
gebraic constructions have emerged as a particularly useful class, as they
enable advanced properties, such as stateless updates, subvector open-
ings and aggregation, that are for example unknown in Merkle-tree-based
schemes. In spite of their popularity, algebraic vector commitments re-
main poorly understood objects. In particular, no construction in stan-
dard prime order groups (without pairing) is known.
In this paper, we shed light on this state of affairs by showing that a large
class of concise algebraic vector commitments in pairing-free, prime order
groups are impossible to realize.
Our results also preclude any cryptographic primitive that implies the
algebraic vector commitments we rule out, as special cases. This means
that we also show the impossibility, for instance, of succinct polynomial
commitments and functional commitments (for all classes of functions
including linear forms) in pairing-free groups of prime order.

mailto:catalano@dmi.unict.it
mailto:dario.fiore@imdea.org,emanuele.giunta@imdea.org
mailto:rosario.gennaro@protocol.ai

Table of Contents

1 Introduction 3
1.1 Our Results . 4
1.2 Our Techniques . 5
1.3 Interpretation of our impossibility and further implications 7
1.4 Related Work . 7
1.5 Organization of the paper . 8

2 Preliminaries 9
2.1 Vector Commitments . 9
2.2 Digital Signatures . 10

3 Algebraic Vector Commitments 10
3.1 Generic Transformation from VCs to Signatures 11
3.2 ϑ-Unforgeability . 12

4 Algebraic Signatures 14
4.1 Attack to Schemes with Strictly Linear Verification 15
4.2 Attack to Schemes with Generic Verification 21

5 Conclusions 22
5.1 Impossibility of Algebraic Vector Commitments 22
5.2 Impossibility of Algebraic Signatures . 25

A More Preliminaries 28
A.1 Linear Algebra . 28
A.2 Min-Entropy . 29
A.3 Arithmetic circuits and R1CS . 30
A.4 Generic Group Model . 31

B Examples and Constructions 32
B.1 Linear vs Generic Verification for Signatures 32
B.2 Secure Signatures with Linear Verification . 33
B.3 Succinct Vector Commitments with Linear Verification 35
B.4 Tightness of Algebraic VC Lower Bounds . 38
B.5 Tightness of Algebraic Signatures Lower Bounds 40

C Postponed Proofs 41
C.1 Generic Transformation to Signatures . 41
C.2 Attack to Schemes with Strictly Linear Verification 42
C.3 Attack to Schemes with Generic Verification 46

1 Introduction

Vector commitments [LY10, CF13] (VC) are a class of commitment schemes that
allow a sender to commit to a vector v of n messages, in such a way that she
can later open the commitment at selected positions. Namely, the sender can
convince anyone that the i-th message in the committed vector is vi. A secure
scheme shall satisfy position binding, i.e. generating valid openings to different
values vi ̸= v′i for the same position i is computationally infeasible.

The distinguishing feature of vector commitments is that commitments and
openings must be succinct. In the original notion of [LY10, CF13], this means
that their size is independent of n, the length of the vector, but a relaxed notion
allowing a logarithmic dependence in n may be considered, as in the case of the
celebrated Merkle tree construction [Mer88].

Mainly thanks to their succinctness property, vector commitments have been
shown to be a useful building block in several applications, such as zero-knowledge
sets [MRK03, LY10, CF13], verifiable databases [BGV11, CF13], succinct argu-
ments [Kil94, Mic94, BBF19, LM19], proofs of retrievability [JK07, Fis18], and
stateless blockchains [CPZ18, BBF19].

Analyzing the state of the art of VC schemes, we see that VC constructions
are based on two main approaches.

On one side, we have tree-based VCs, notably Merkle trees [Mer88] and
their generalizations [Kus18]. These constructions have the advantage of being
realizable from collision resistant hash functions, and thus can be based on the
hardness of virtually any cryptographic problem including factoring, discrete
logarithm, SIS and many more. In fact, we notice that VCs with logarithmic-size
openings are equivalent to collision-resistant hash functions. The main drawback
of tree-based schemes is that their openings are of size O(log n). Additionally,
the tree-based approach seems to inherently impede the realization of properties
such as subvector openings [BBF19, LM19] and aggregation [CFG+20], that turn
useful in both theoretical and practical applications of VCs.

On the other side, we have algebraic vector commitments, notably based on
bilinear pairings [LY10, KZG10, CF13], groups of unknown order [CF13], and
lattices [PSTY13, PPS21]. Roughly speaking, an algebraic VC is one in which the
commitment and verification algorithm only use algebraic operations over the
group that underlies the construction (this rules out hashing group elements for
example). The main advantage of these constructions is that they admit open-
ings of constant size,5 that are virtually optimal – a single group element in most
constructions. Moreover, algebraic schemes naturally achieve useful properties
such as (additive) homomorphism, stateless updatability [CF13], subvector open-
ings [BBF19, LM19] and aggregation [CFG+20]. Yet, the powerful versatility of
existing VCs with constant-size openings contrasts with the limited theoretical
understanding of their foundations.

5 We include lattice-based schemes in the ‘algebraic’ category although they do not
perfectly fit our notion of using a group in a black box way; also, existing schemes
still need (poly) logarithmic-size openings.

3

We see two main open questions related to algebraic VCs. The first one
concerns the minimal general assumption that implies them. While tree-based
schemes with logarithmic openings are well understood, being de facto equivalent
to collision-resistant hash functions6, we have no generic recipe to build algebraic
VCs with constant-size openings.7 The second question is whether algebraic VCs
can be built from “standard” prime-order groups without pairings. In this setting,
known constructions rely either on the tree-based approach (e.g., building a
Merkle tree on top of Pedersen hash function), or on inner-product arguments
in the random oracle model [BCC+16, BBB+18]. Both these approaches entail
logarithmic-size openings and a non-algebraic verification.

We believe that settling these two questions would improve our understanding
of vector commitments. In this work, we focus on the second question for two
important reasons: (i) on the theoretical front, studying algebraic VCs in this
minimal setting helps us understand conceptually what are the “ingredients”
needed to build them; (ii) on the practical side, pairing-free groups of known
order are the simplest and most efficient cryptographic setting, and yet we know
of no construction of algebraic VCs there.

Our results are negative: we show that a broad class of VC schemes in this
setting cannot both be succinct and satisfy position binding.

1.1 Our Results

We informally call a vector commitment built on top of a group G of prime order
q “algebraic” if all its procedures use G in a black box way, i.e. without relying on
the representation of group elements. We show the following two main results.

Impossibility of algebraic VCs with linear verification. We start by looking at the
class of algebraic VC schemes in which the verification algorithm is a set of linear
equations over G. Specifically, for a message m and position i the verification
consists of checking that

A(z,m, i) ·X ?
= B(z,m, i) ·Y (1)

where X = (X1,X2) are the group elements appearing respectively in the public
parameters and the commitment, openings are of the form (Y, z) with Y being a
vector of group elements and z of field elements, and A,B are functions defining
matrices with coefficients in Fq.

We believe this to be the simplest and most natural form of verification using
only group operations. However we show that whenever A depends affinely on
z,m and B is independent from them (we say such a scheme has strictly linear
6 A Merkle tree is a VC with logarithm openings that can be realized from any CRHF.

Conversely, in any non trivial VC the commitment procedure has to be shrinking
and collision resistant, from which CRHF can be built.

7 The only generic construction with constant size opening is the folklore one that
combines a hash function and a constant-size SNARK; yet this is non-algebraic due
to the need of encoding the hash computation in the SNARK’s constraint system.

4

verification), then it is impossible to achieve both position binding and succinct-
ness. More specifically we prove that if a scheme has position binding, commit-
ments of bit-length ℓc and opening proofs of bit-length ℓπ, then asymptotically
their product is lower bounded by the length of the vector we are committing
to, i.e. ℓc · ℓπ = Ω(n). Thus either ℓc = Ω(

√
n) or ℓπ = Ω(

√
n). Interestingly,

this family of schemes captures generalizations of Pedersen commitments [BG12]
which, as we show in the Appendix B.4, achieve this lower bound.

Next, we investigate how crucial are our requirements on the dependence of
A(·) and B(·) on z,m. We show they are necessary. Indeed, if we allow either
A to depend quadratically, or B affinely, on z,m then there exist succinct VC
constructions whose verification can be written in the above form over a group
G. We provide examples in the Appendix B.3. The schemes we find however rely
on arithmetization techniques to encode arbitrary circuits as constraint systems
of degree 2 over a finite field [GGPR13]. This for instance means that, for proper
choice of A and B, it is possible to express, using an algebraic verification equa-
tion as (1), computations like the validity tests for a Merkle tree path, or any
arbitrary VC verification algorithm.

Despite being secure and succinct, VC schemes built this way do not satis-
factorily answer our question in a positive way, as they appear to bypass the
underlying group as their source of hardness. Indeed, either their security comes
from problems unrelated to G, or if they depend on G, they must do it in a
non-black-box way8.

Impossibility of algebraic VCs with generic group verification. Motivated by
these findings, we investigate whether VCs can be built given only black-box
access to a cryptographic group. To study this case, we just assume the VC
(which we call algebraic with generic verification) to use the underlying group
generically, without any further constraint on its verification procedure.

Eventually we provide a black-box separation in Maurer’s Generic Group
Model [Mau05]. This informally implies that any VC using G generically and
whose position binding reduces to a hard problem in G (such as DLP or CDH)
cannot be succinct, as it must hold ℓc · ℓπ = Ω(n).

1.2 Our Techniques

Our strategy to prove our impossibility results on algebraic vector commitments
consists of two main steps. (A) We show that from a VC it is possible to con-
struct a class of signature schemes. In particular, if the VC is algebraic with
linear (resp. generic) verification, the resulting signature scheme’s verification
has analogous algebraic properties. (B) We prove the insecurity of this class of
signature schemes in pairing-free groups of known order. To achieve the latter
result we build on, and extend, the recent techniques of [DHH+21], that provide
negative results for a somewhat smaller family of algebraic signatures.

In what follows we give an overview on each step.
8 For example, one may consider a Merkle-tree of Pedersen commitments which must

use the group representation to go from one level to another.

5

From VCs to Signatures. Given a VC scheme for vectors of length n our transfor-
mation produces a signature scheme with polynomially bounded message space
{1, . . . , n}. In a nutshell, the public key is a commitment c to a vector of n ran-
dom values (s1, . . . , sn). The signature on the message i ∈ [n] is the pair (si, πi)
where πi is the VC opening proof that c opens to si at position i. Verification
simply runs the VC verification algorithm to check that the opening is valid.

Conveniently, this transformation maps algebraic VCs with linear/generic
verification to signature schemes with the analogous property, which we then
call algebraic signatures with linear/generic verification. This happens since the
verification algorithm is essentially the same in both primitives.

The resulting signature however may not be proved existentially unforgeable
if it comes from a VC satisfying only position binding. Indeed the latter property
does not imply that every opening proof is hard to compute. However, assuming
that the scheme is also succinct, an adversary who produces ‘many’ correct
openings should have to correctly guess the value of several messages si used
to generate the commitment. This can be shown to be information-theoretically
hard if the commitment and opening proofs provided have significantly smaller
bit-length than the min-entropy of those messages.

For this reason we introduce a relaxed security notion, called ϑ-unforgeability,
where an adversary must provide not only one but at least more than ϑ-many9

forgeries for non-queried messages. Setting ϑ as a proper function of the number
of queries made by the adversary, we prove that signatures from VCs are ϑ-
unforgeable.

Impossibility of Algebraic Signatures, revisited. To conclude our impossibility re-
sult for VCs, we finally provide an impossibility result and a black-box separation
for algebraic signatures with strictly linear and generic verification respectively.
In particular, we show in both cases that the message space in a ϑ-unforgeable
construction is upper-bounded by n + ϑ with n being the number of group el-
ements in the verification key. We also show this to be tight by providing a
construction that achieves this bound in Appendix B.5.

Notice that similar results were already proved in [DHH+21]. In their work
signatures are assumed to be of the form (Y, t) with Y a vector of group elements
and t ∈ {0, 1}κ. Moreover the verification procedure is assumed to consist of a
linear check as in Equation 1. For this class of signatures, which can be shown
equivalent to our notion of algebraic with linear verification, they provide an
attack running in time O(2κ · poly(λ)).

Thus their adversary is efficient only when t = O(log λ), whereas our impossi-
bility result applies to schemes with strictly linear verification, where signatures
may contain several field elements. Likewise, their black-box separation only cap-
tures schemes with linear verification, while we extend it to signatures where all
procedures are simply required to be generic. To show that this class of schemes
is indeed more general we provide examples in Appendix B.1.

9 Where ϑ may depend on the public parameters as well as the number of queries.

6

We finally stress that, as in [DHH+21], our results hold in Maurer’s Generic
Group Model [Mau05]. For a comparison with other models of generic compu-
tation, such as Shoup’s Generic Group Model [Sho97], we refer to the discussion
in [Zha22].

1.3 Interpretation of our impossibility and further implications

As mentioned earlier, both our impossibility results specify precise bounds and
conditions under which VCs cannot be built generically in pairing-free groups.
The bottom line is that, whenever a position-binding VC scheme uses the group
in a black box way (and relies on it for security), then it cannot be succinct,
which we recall is the distinguishing feature of this primitive.

Another interesting aspect of our impossibility results is that they imply anal-
ogous impossibilities for any primitive that allows one to construct algebraic VCs
(with either strictly linear or generic-group verification) in pairing-free groups.
Notably, our impossibility applies to polynomial commitments [KZG10], and
functional commitments [LRY16] supporting any class of functions that includes
projections, i.e., Ci(v) = vi (already captured by linear forms). Indeed, each of
these primitives allows one to build a VC with exactly the same succinctness
and type of verification.10 Therefore we obtain that any secure functional com-
mitment or polynomial commitment using a pairing-free group in a black-box
way cannot be succinct (or, more precisely, they must satisfy ℓc · ℓπ = Ω(n)).

Our impossibility for algebraic signatures instead can be shown to imply
analogous results for verifiable random functions [MRV99] and identity-based
encryption [Sha84, BF01], the latter through the Naor-trick reduction, as ob-
served in [DHH+21]. In this way our black-box separation for signatures yield a
simpler argument for the tight result in [SGS21].

An interesting question left open by our work is understanding if our results
can imply the impossibility of further cryptographic primitives via a connection
to the classes of algebraic signatures and vector commitments that we rule out.
Another open question concerns the minimal assumptions required to describe
a VC with constant-size commitment and openings. We notice that our impos-
sibility for VCs with generic verification holds in Maurer’s generic group model
[Mau05]. When using Shoup’s GGM [Sho97], our results may not hold as one
could use the group oracle as a random oracle [ZZ21], e.g., to build a Merkle
tree of Pedersen hashes (see a similar discussion for signatures in [DHH+21]).
However, to the best of our knowledge all these techniques would in the best
case lead to schemes with logarithmic-size openings.

1.4 Related Work

The study of impossibility results about the construction of cryptographic prim-
itives in restricted models is an important area of research that provides insights
on the foundations of a cryptographic problem. Starting with the seminal paper
10 These constructions are trivial/folklore and we do not elaborate further on them.

7

of Impagliazzo and Rudich [IR89], a line of works study the (in)feasibility of
constructing cryptographic primitives in a black-box way from general assump-
tions, such as one-way functions or trapdoor permutations (e.g. [Sim98, KST99,
GT00, GKM+00, GMR01, GGK03]).

Another line of works (more closely related to ours), initiated by Papakon-
stantinou, Rackoff and Vahlis [PRV12], considers the problem of proving impos-
sibility of cryptographic primitives that make black-box use of a cryptographic
group without pairings. Specifically, [PRV12] prove that identity-based encryp-
tion (IBE) algorithms built in this model of computation cannot be secure.
Following [PRV12], more recent works study the impossibility, in generic group
models for pairing-free groups of known order, of other cryptographic primi-
tives, such as verifiable delay functions [RSS20], identity-based encryption (with
a result tighter than [PRV12]) [SGS21] and signature schemes [DHH+21]. In
addition to proving impossibility for algebraic signatures with generic-group al-
gorithms, [DHH+21] also prove the generic impossibility of a class of algebraic
signatures whose verification is a system of linear equations over a group.

In [SGS20], Schul-Ganz and Segev prove a lower bound on the number of
group operations needed to verify batch membership proofs in accumulators
that make black-box use of a cryptographic group. Their lower bound applies
analogously to the verification of subvector openings in vector commitments.
Despite the result and the techniques of [SGS20] differ from ours, both [SGS20]
and our work show certain limitations of constructing VCs in prime order groups.

Finally, we mention the work of Abe, Haralambiev and Ohkubo [AHO12]
that also considers a question related to constructing vector commitments. Fol-
lowing a research line on structure-preserving cryptography, Abe et al. [AHO12]
investigate if it is possible to construct commitment schemes in bilinear groups
in which messages, keys, commitments, and decommitments are elements of bi-
linear groups, and whose openings are verified by pairing product equations. For
this class of schemes, they prove that the commitment cannot be shrinking. Im-
plicitly this result also implies the impossibility of constructing succinct vector
commitments in this structure-preserving setting in bilinear groups.

1.5 Organization of the paper

In Section 3 we define algebraic VCs and show our transformation to ϑ-unforgeable
signatures. Section 4 presents the definition of algebraic signatures and our im-
possibility results for strictly linear verification and generic group verification.
Finally, in Section 5 we illustrate how to relate the parameters of our VC-to-
signatures transformation with those needed by the impossibility of algebraic
signatures. In Appendix B we present several constructions showing: the tight-
ness of our impossibility, secure signatures and succinct vector commitment with
linear, but not strictly linear, verification.

8

2 Preliminaries

Notation. We denote the security parameter by λ and negligible functions with
negl(λ). We say that an algorithm is PPT if it runs in probabilistic polynomial
time. For a positive integer n, [n] denotes the set {1, . . . , n}. We use (G,+) to
denote a group of known prime order q with canonical generator G, and Fq for
the field of order q. The identity (or zero) element is denoted as 0 ∈ G. Given a
vector x ∈ Fn

q , we denote x ·G = (x1G, . . . , xnG).
Fn,m
q is the space of matrices A with m columns and n rows and entries in Fq.

rkA denotes the rank of A, i.e. the maximum number of linearly independent
rows. A⊤ is the transposed of A. All x ∈ Fn

q are assumed to be column vectors,
whereas row vectors are denoted as x⊤.

In what follows ‘GGM’ stands for Maurer’s Generic Group Model [Mau05]
for a group of known prime order q. This model can be defined through two
stateful oracles Oadd and O0

eq such that: group element are labeled with progres-
sively increasing indices, the first being associated to the canonical generator G,
Oadd(X,Y) associate the next index to the element X+Y and O0

eq(X) returns 1
if X equals the identity element, 0 otherwise. See Appendix A.4 for more details.

2.1 Vector Commitments

We recall the definition of vector commitments from [CF13].

Definition 1 (VC). A Vector Commitment scheme is a tuple of algorithms
(VC.Setup,VC.Com,VC.Open,VC.Vfy) and a message space VC.M such that

– VC.Setup(1λ) $→ pp generates the public parameters.

– VC.Com(pp,m1, . . . ,mn)
$→ c, aux produce a commitment to m1, . . . ,mn ∈

VC.M together with some auxiliary information.

– VC.Open(pp,m, i, aux) $→ π return an opening proof that the i-th entry of a
given commitment is mi.

– VC.Vfy(pp, c,m, i, π)→ 0/1 verifies the opening proof’s correctness.

We require a vector commitment scheme to satisfy perfect correctness, that is,
given public parameters pp←$ VC.Setup(1λ), commitment c, aux←$ VC.Com(pp,m1,
. . . ,mn) for any mi ∈ VC.M, and opening π ←$ VC.Open(pp,mi, i, aux), it holds

Pr [VC.Vfy(pp, c,m, i, π)→ 1] = 1

Moreover, to avoid trivial cases, in this paper we assume |VC.M| ≥ 2.
The main security property for a vector commitments is the so called position

binding, which informally states that no adversary can open the same position
of a given commitment to two different values. Formally

9

Definition 2 (Position binding). A vector commitment scheme satisfies po-
sition binding if for any PPT adversary A there exists a negligible function ε(λ)
such that

Pr

VC.Vfy(pp, c,m, i, π)→ 1
VC.Vfy(pp, c,m′, i, π′)→ 1
m ̸= m′

∣∣∣∣∣∣ pp←
$ VC.Setup(1λ)

A(pp)→ (c,m,m′, i, π, π′)

 ≤ ε(λ).

The property that distinguishes VCs from classical binding commitments
is succinctness Following [LY10, CF13], a VC scheme is said succinct if there
is a fixed p(λ) = poly(λ) such that for any n the size of honestly generated
commitments and openings is bounded by p(λ). One may also consider weaker
notions where the size may be bounded by p(λ) log n or p(λ, log n).

Since in our work we are interested in understanding the feasibility of VCs
based on their level of succinctness, we consider a parametric notion. We say
that a VC has succinctness (ℓc, ℓπ) if for any m1, . . . ,mn ∈ VC.M, commitment
c, aux ←$ VC.Com(pp,m1, . . . ,mn) and opening π ←$ VC.Open(pp,mi, i, aux)
for any i ∈ [n], we have that c (resp. π) has bit-length ℓc(λ, n) (resp. ℓπ(λ, n)).

2.2 Digital Signatures

Definition 3. A signature scheme is a tuple of PPT algorithms (S.Setup, S.Sign,
S.Vfy) and a message space set S.M such that

– S.Setup(1λ) $→ (sk, vk) generates the secret and verification keys
– S.Sign(sk,m) $→ σ returns the signature of a message m ∈ S.M

– S.Vfy(vk,m, σ)→ 0/1 verifies the signature σ for a message m ∈ S.M

We further require a signature scheme to satisfy perfect correctness, meaning
that if (sk, vk) ←$ S.Setup(1λ) and σ ←$ S.Sign(sk,m) for any m ∈ S.M then
the verification algorithm accepts always, i.e.

Pr [S.Vfy(vk,m, σ)→ 1] = 1.

3 Algebraic Vector Commitments

In this paper we focus on vector commitments built on a pairing-free group of
known order, using it in a black box way. We start by introducing a notion of
algebraic vector commitments where the verification algorithm only consists of
a system of linear equations.

Definition 4 (Algebraic VCs with linear verification). A vector commit-
ment scheme is said to be algebraic with linear verification if the message space
is VC.M = Fq and

– VC.Setup(1λ) $→ pp such that pp = (X1, s1) ∈ Gν1 × {0, 1}∗.
– VC.Com(pp,m1, . . . ,mn)

$→ c, aux such that c = (X2, s2) ∈ Gν2 × {0, 1}∗.

10

– VC.Open(pp,m, i, aux)→ π such that π = (Y, z) with Y ∈ Gk and z ∈ Fh
q .

– There exist A : Fh+1
q ×[n]×{0, 1}∗ → Fℓ,n

q and B : Fh+1
q ×[n]×{0, 1}∗ → Fℓ,k

q

matrices such that VC.Vfy(pp, c,m, i, π) → 1 if and only if, calling X =
X1||X2 and s = s1||s2

A(z,m, i, s) ·X = B(z,m, i, s) ·Y.

For the ease of presentation we will omit s in A and B when clear from the
context. Notice that the definition imposes linearity only with respect to group
elements while it allows procedures A,B to depend non-linearly on the field
vector element z.

As we shall see, our first impossibility result states that whenever A is an
affine function of z,m and B does not depends on z,m, then the resulting scheme
cannot be both “succinct” and position binding. We call these schemes strictly
linear since their verification equations depend linearly both in z and Y.

Definition 5 (Algebraic VCs with strictly linear verification). A vector
commitment is said to be algebraic with strictly linear verification if it satisfies
Definition 4, A(z,m, i) is an affine function11 of z,m and B(i) does not depends
on z,m.

However, if we allow A to depend quadratically, or B linearly, on z,m then we
could use arithmetization techniques, such as R1CS, to encode a circuit repre-
senting for example a Merkle tree verification into the verification equation of
Definition 4. This means that we can construct algebraic VC schemes with linear
verification that are succinct and position binding. We formalize this result in
Appendix B.3.

This technique however either bypasses the underlying group and may reduce
security to external problems, or rely on non-black-box usage of the group. An
example of the latter comes by encoding a Merkle tree built using an hash
function whose collision resistance is based on discrete logarithm over the same
group G, such as Pedersen hash. Note that this construction would not retain
algebraic properties from the underlying group. For this reason, following an
approach similar to [PRV12, DHH+21], we study whether in the Generic Group
Model (GGM) the security of a VC can be reduced to hard problems on the
underlying group. To this aim we provide the following more general definition.

Definition 6 (Algebraic VCs with generic verification). A vector commit-
ment scheme is said to be algebraic with generic verification if, in the GGM, the
algorithms VC.Setup,VC.Com,VC.Open,VC.Vfy are oracle machines with access
to Oadd and O0

eq.

3.1 Generic Transformation from VCs to Signatures

The strategy we adopt to show our impossibility results is to establish a connec-
tion between vector commitments and signatures, providing a way to construct
11 i.e. A(z,m, i) = A0(i) + z1A1(i) + . . .+ zhAh(i) +mAh+1(i)

11

the latter from the former generically. This way we will be able to bridge ex-
tensions of the impossibility results in [DHH+21] for algebraic signatures to
algebraic vector commitments.

More specifically, for a given VC (not necessarily algebraic) our transfor-
mation produces a signature scheme with polynomially bounded message space
{1, . . . , n}. The high-level idea is to compute a commitment c to random mes-
sages m1, . . . ,mn, and use (pp, c) as the verification key and the auxiliary infor-
mation aux as the secret key. In order to sign a message i ∈ {1, . . . , n}, the signer
returns mi and π, the message and opening proof for the i-th position, while ver-
ification is performed by checking the correctness of π. A formal description of
the transformation is presented in Fig. 1.

SVC.Setup(1
λ):

1 : VC.Setup(1λ)→ pp

2 : m1, . . . ,mn ←$ VC.M

3 : c, aux←$ VC.Com(pp,m1, . . . ,mn)

4 : vk← (pp, c) sk← (aux, {mi}ni=1)

5 : Return vk, sk

SVC.Sign(sk, i):

1 : Parse sk = (aux, {mi}ni=1)

2 : π ← VC.Open(pp,mi, i, aux)

3 : σ ← (mi, π)

4 : Return σ

SVC.Vfy(vk, i, σ):

1 : Parse vk = (pp, c) and σ = (mi, π). Return VC.Vfy(pp, c,mi, i, π)

Fig. 1. Generic transformation from VCs to signature schemes

3.2 ϑ-Unforgeability

In terms of security the transformation in Fig. 1 fails in general to realize a UF-
CMA-secure signature scheme. Informally, the problem is that position binding
and succinctness do not imply, per se, that every opening proof is hard to com-
pute, after having seen other openings. Indeed the latter property could be easily
violated, for example, by a VC where VC.Open attaches to every opening the
proof (m1, π1) for position 1. Notice that one could modify any VC to do so
without violating succinctness nor position binding. Yet starting from such a
VC would allow an adversary to easily forge a signature for message 1 in the
scheme in Fig. 1.

Observe that, informally, if the VC scheme were hiding, meaning that no
information about messages in unopened positions is leaked, and |VC.M| is large
enough, then the associated signature would be secure, since an adversary would
have to guess the right message in the i-th position. This intuition can be ex-
tended to general VC assuming that the scheme is succinct. Indeed, even though

12

the commitment c or its openings π may leak information about unopened mes-
sages among m1, . . . ,mn, if their bit length is significantly smaller than n, no
adversary can produce “too many” forgeries given only a few openings, as cor-
rectly guessing these message would be information-theoretically hard.

For this reason we introduce a relaxed notion of unforgeability for signatures,
called ϑ-unforgeability, which is enough for our purposes. In a nutshell, it requires
a winning adversary to produce at least ϑ forgeries on distinct messages, with
ϑ being a function of the queries performed and the public parameters. Next,
using the intuition above, we prove that signature schemes obtained through the
transformation in Fig. 1 satisfy this weaker notion.

Definition 7 (ϑ-UF). Given a function ϑ : {0, 1}∗ → N and a signature scheme
we define the ϑ-Unforgeability Experiment as in Fig. 2. The advantage of an
adversary A is defined as

Advϑ-UF(A) = Pr
[
Expϑ-UF

A = 1
]
.

A scheme is ϑ-Unforgeable if any PPT adversary has negligible advantage.

Expϑ-UF
A with adversary A:

1 : Initialize Q← ∅, generate sk, vk←$ S.Setup(1λ) and send A ← vk

2 : When A → m ∈ S.M:
3 : Sign σ ←$ S.Sign(sk,m), store Q← Q ∪ (m,σ) and send A ← σ

4 : When A → F :
5 : Return 1 if the following conditions are satisfied:
6 : For all (m,σ) ∈ F , the signature is correct, i.e. S.Vfy(vk,m, σ)→ 1

7 : Messages in F were not queried, i.e. (m,σ) ∈ F ⇒ (m, ·) /∈ Q

8 : |{m : (m, ·) ∈ F}| > ϑ(vk, Q)

9 : Else return 0

Fig. 2. ϑ-Unforgeability Experiment for a given signature scheme

To provide more intuition about this notion we observe that setting ϑ =
0 yields the classic unforgeability under chosen message attacks (UF-CMA)
[GMR88] security definition. For higher values of ϑ we obtain progressively
weaker definitions until ϑ(vk, Q) = |S.M|, which is trivially true for any scheme.
The notion of t-time security is also captured by our definition setting

ϑ(vk, Q) =

{
0 If |Q| ≤ t

|S.M| If |Q| > t

Finally we can show that a signature scheme obtained from a “succinct” VC
satisfy this notion. A proof appears in Appendix C.1.

13

Theorem 1. Given a Vector Commitment with commitments of bit-length ℓc =
ℓc(n, λ) and opening proofs of bit-length ℓπ = ℓπ(n, λ), then there exists a PPT
black box reduction R of ϑ-UF for the derived signature scheme described in
Fig. 1 to the position binding property, where

ϑ(vk, Q) =
λ+ ℓc + |Q| · (ℓπ + log |VC.M|)

log |VC.M|
.

In particular for any position binding VC, the resulting signature is ϑ-UF with
ϑ as specified above.

4 Algebraic Signatures

Having established a connection between VC and signatures we now provide
the analogous of algebraic VC with (strictly) linear/generic verification in the
signature setting. The first one is equivalent to the notion of algebraic signature
in [DHH+21] and simply constrain the verification procedure to test a system
of linear equations, albeit with a minor addition: as these signatures may come
in our case from a VC, we split S.Setup in a CRS-generator S.SetupCRS which
returns the public parameters (a list of group elements X1) and the actual key
generation algorithm S.SetupKey(X1) which produces vk and sk. Note there is
no loss of generality assuming this structure as S.SetupCRS may return an empty
vector which could then be ignored by S.SetupKey.

Definition 8. A signature scheme (S.Setup,S.Sign,S.Vfy) is said to be algebraic
with linear verification if

– S.Setup is divided into two algorithms S.SetupCRS and S.SetupKey such that
S.SetupCRS(1λ) $→ (X1, s1) ∈ Gn1 and S.SetupKey(1λ,X1, s1)

$→ sk, vk
with

vk = (X, s) ∈ Gn×{0, 1}∗ : X = X1||X2, X2 ∈ Gn2 , s = s1||s2.

– S.Sign(sk,m) $→ σ where σ = (Y, z) with Y ∈ Gk and z ∈ Fh
q .

– There exist A : Fh
q ×S.M×{0, 1}∗ → Fℓ,n

q and B : Fh
q ×S.M×{0, 1}∗ → Fℓ,k

q

matrices such that S.Vfy(vk,m, σ)→ 1 if and only if σ = (z,Y) and

A(z,m, s)X = B(z,m, s)Y.

Furthermore the scheme is said to have strictly linear verification if A(z,m, s)
is an affine function of z and B(m, s) does not depend on z.

When clear from the context we will omit for clarity the argument s in
the matrices A,B above. Next we provide an analogous for algebraic vector
commitments with generic verification. As in the previous definition we split the
setup algorithm into a procedure that prepares the CRS and another one that
uses the CRS, oblivious to any trapdoor information about it, to compute the
secret and verification keys.

14

Definition 9. A signature scheme (S.Setup,S.Sign,S.Vfy) is said to be alge-
braic with generic verification if, in the GGM, all algorithms have access to
Oadd and O0

eq. Furthermore we require S.Setup to be divided into two algo-
rithms S.SetupCRS and S.SetupKey such that S.SetupCRS(1λ) $→ (X1, s1) ∈
Gn1 × {0, 1}∗ and S.SetupKey(1λ,X1, s1)

$→ sk, vk with

vk = (X, s) ∈ Gn × {0, 1}∗ : X = X1||X2, X2 ∈ Gn2 , s = s1||s2.

4.1 Attack to Schemes with Strictly Linear Verification

We now provide an attack for algebraic signatures with strictly linear verification.
The same notation of Definition 8 will be used below without further reference.

Theorem 2. Given a signature scheme with strictly linear verification, for any
ϑ polynomially bounded such that n2+ϑ ≤ |S.M| there exists a PPT algorithm A
that in the unforgeability experiment in Fig. 2 performs at most n2 queries and
produces ϑ distinct forgeries with significant probability.

Proof. For the sake of presentation we build A describing first a subroutine B
which could break security by doing potentially more signing queries that n2.
Next, we show how A can use B in a black-box way to realize the full attack
with n2 queries.

Similarly to the attack described in [DHH+21], upon receiving the verification
key (X, s), the subroutine B (described formally in Figure 3) keeps track of
all possible exponents of X in an affine space L ⊆ Fn

q . Then for each message
mi either a forgery can be produced or a new condition on X is found, thus
decreasing dimL, at the cost of a signature query. This is done by checking if
the system A(z,m)x = B(m)y can be solved for a given z ∈ Fh

q and all x ∈ L.
More specifically we define S(L,m), the solutions set, as the collection of all
those z for which any x ∈ L makes the systems solvable, formally

S(L,m) = {z ∈ Fh
q : A(z,m) · L ⊆ ImB(m)}.

If S(L,m) is easy to compute, a strategy for B is to check whether S(L,m) ̸= ∅
and in this case to get any z ∈ S(L,m) and find, using pseudo-inverses or Gaus-
sian elimination, a vector Y ∈ Gk such that A(z,m)X = B(m)Y. Conversely,
if S(L,m) = ∅, B may request a signature (Y, z), which implies that the ex-
ponent x of X satisfies the condition A(z,m)x ∈ ImB(m). Notice that, unlike
the attack presented in [DHH+21], B is required to be PPT and thus computing
S(L,m) efficiently is essential in our argument. This will follow as we assumed
the verification to be strictly linear, implying that S(L,m) is an affine space.

Although B effectively breaks security, we can only upper bound the number
of signatures queried by n1 + n2, i.e. one for each group element in the CRS
X1 and verification key X2, since initially L = Fn1+n2

q with dimension n1 + n2.
In order to reduce the requested signatures to be at most n2 we introduce a
preprocessing phase to find as many linear relations among group elements of
the CRS as possibile and then run B providing as input a refined space L.

15

Informally, if B is unable to find new relations among the elements of X1, then
dimL can at most decrease by n2, yielding the desired upper bound.

To conclude we then need to describe how the preprocessing is carried out:
The core idea is to initialize the set of possible exponents V = Fn1

q and exe-
cute several times B(vk∗, V) replying to signing queries with S.Sign(sk∗, ·) where
vk∗, sk∗ ←$ S.SetupKey(1λ,X1, s1) is freshly sampled each time. If in some of
those executions B is able to find a new relation among the group elements, then
V is updated accordingly (lowering its dimension by at least 1), and a new round
of simulations is run. Conversely if B(vk∗, V) fails to find new relations several
times in this simulated environment, then it is executed one last time with the
real verification key vk and signing oracle. If no new relation is found in this
last execution, A concludes by returning the forgeries found by B. Otherwise A
aborts.

Informally A aborts with low probability since the simulated and real ex-
ecutions are identically distributed from B perspective and in particular since
no relation is found among the many simulated executions, it is unlikely this
will happen in the real one. Finally we remark that simulating the signature
challenger in this preprocessing phase is crucial. In this way the only signature
queries performed by A are those requested by the last execution of B.

A more detailed proof appears in the appendix, Section C.2.

Adversary B(vk, V):

1 : Set L← V × Fn2
q ⊆ Fn1+n2

q

2 : Initialize the set of forgeries F ← ∅ and call θ ← n2 + ϑ

3 : Sample m1, . . . ,mθ ←$ S.M distinct messages
4 : For i ∈ {1, . . . , θ}:
5 : If S(L,mi) ̸= ∅:
6 : Get a vector z ∈ S(L,mi)

7 : Find a solution Y ∈ Gk such that A(z,mi)X = B(mi)Y

8 : Set σ ← (Y, z) and store F ← F ∪ {(mi, σ)}
9 : Else:

10 : Query mi to the challenger and get σ = (Y, z)

11 : Update L← L ∩ {x ∈ Fn
q : A(z,mi)x ∈ ImB(mi)}

12 : Return F,L

Fig. 3. B breaking ϑ-UF of an algebraic signature with strictly linear verification.

Proof of Theorem 2. Having provided the intuition behind the attacker A built
on top of B, we now proceed to prove the theorem through a sequence of claims.
We begin by stating the following properties about B(vk, V) where we denote
vk = (X, s) with X = X1||X2, x1 the discrete logarithm of X1 and x the discrete

16

Adversary AS.Sign(sk, ·)(vk):

1 : Parse vk = (X, s) with X = X1||X2 and s = s1||s2
2 : Initialize V ← Fn1

q the space of potential exponents of X1

3 : Do:
4 : For 2n1 + 1 times:
5 : vk∗, sk∗ ←$ S.SetupKey(1λ,X1, s1)

6 : Execute F ∗, L∗ ←$ BS.Sign(sk∗, ·)(vk∗, V)

7 : Set V ∗ ← {x1 : ∃x2 : x1||x2 ∈ L∗} the projection of L∗ on Fn1
q

8 : If V ∗ ̸= V :
9 : Update V ← V ∗, break

10 : Until the for-cycle ends without interruptions
11 : Execute F,L←$ BS.Sign(sk, ·)(vk, V)

12 : Compute V ∗ as the projection of L on Fn1
q

13 : If V ∗ ̸= V : Return fail

14 : Else: Return F

Fig. 4. A breaking the ϑ-UF of an algebraic signature using as subroutine an algorithm
B, which is that of Fig. 3 in the case of schemes with strictly linear verification, or that
of Fig. 5 in the case of schemes with generic verification.

logarithm of X. Finally we denote π : Fn1
q × Fn2

q → Fn1
q the projection on first

component, i.e. π(x1,x2) = x1.

Claim 1 If L is an affine space, S(L,m) is an affine space. Moreover an affine
base for S(L,m) can be computed in polynomial time.

Claim 2 If x1 ∈ V then at any step of B(vk, V), x ∈ L.

Claim 3 If x1 ∈ V , B is PPT and upon returning (F,L), F is a set of valid
forgeries.

Claim 4 For a given mi, if the condition at step 5 is not satisfied, i.e. S(L,mi) =
∅, then after step 11 the dimension of L decreases strictly.

Claim 5 After the execution of line 1, Fig 3, dimL = n2+dimV and if B(vk, V)
returns (F,L) with π(L) = V then dimL ≥ dimV .

Next we state the following properties about A

Claim 6 A is PPT.

Claim 7 At any step of A execution, x1 ∈ V .

Claim 8 A fails with probability Pr [A(vk)→ fail] ≤ 1/2.

17

First we observe these claims imply the thesis. Indeed by Claim 8, with
probability greater than 1/2, A does not return fail. By construction, this implies
that in the last execution B(vk, V) returns (F,L) with π(L) = V . Thus by
Claim 5 n2 + dimV ≥ L ≥ dimV at any step of B during its last execution.
As a consequence dimL can decrease at most n2 times. Applying Claim 4 we
conclude that S(L,mi) = ∅ can happen at most n2 times because each time this
occurs, dimL decreases. It follows then that for at least θ − n2 = ϑ messages,
the condition S(L,mi) ̸= ∅ is satisfied, meaning that B adds a new signature to
the set F , which in the end will have cardinality |F | ≥ ϑ. Finally, since x ∈ V
by Claim 7, we can apply Claim 3 to conclude that F is a valid set of forgeries,
implying that A breaks ϑ-UF.

Next, we provide a proof for each of these claims:

Proof of Claim 1. We start observing that if L is any set and x1, . . . ,xd ∈ L is
a base for the linear span of L then S(L,m) =

⋂d
i=1 S(xi,m). By construction,

xi ∈ L implies S(L,m) ⊆ S(xi,m), and in particular S(L,m) ⊆ ∩di=1S(xi,m).
Conversely let z be a vector in the intersection of all S(xi,m). We can find
vectors ui ∈ Fk

q such that A(z,m)xi = B(m)ui. Since x1, . . . ,xd is a base for
the linear span of L, for any x ∈ L we can express it as a linear combination
α1x1 + . . .+ αdxd. In conclusion

A(z,m)x =

d∑
i=1

αiA(z,m)xi =

d∑
i=1

αiB(m)ui = B(m)

d∑
i=1

αiui.

Thus A(z,m)x ∈ ImB(m) and in particular z ∈ S(L,m).
In order to show that S(L,m) is efficiently computable it suffices to show that

S(x,m) can be computed in polynomial time for any point x. To this aim let
fx : Fh

q → Fℓ
q be such that f(z) = A(z,m)x. Since the scheme has strictly linear

verification (Definition 8) A(· ,m) is an affine map and so is f . Furthermore
by construction S(x,m) = f−1

x (ImB(m)) since z ∈ S(x,m) if and only if
A(z,m)x ∈ ImB(m). This concludes the argument as the preimage through
an affine map of a linear space is an affine space which can be computed in
polynomial time.

Proof of Claim 2. If x1 ∈ V then x = x1||x2 ∈ V × Fn2
q which by construction

implies that, when L is initialized, x ∈ L. Next assume by induction x ∈ L in all
previous steps. The only instruction in B that may modify L is in step 11 and
when this is executed, since σ = (Y, z) is a valid signature by perfect correctness,
we have

A(z,mi)X = B(mi)Y ⇒ A(z,mi)x ∈ ImB(mi).

Proof of Claim 3. To prove that B is a PPT algorithm, observe that the for-loop
is executed θ = n2 + ϑ, that is polynomially bounded, times. Inside the loop,
checking S(L,mi) ̸= ∅ and possibly computing a z ∈ S(L,mi) can be done
efficiently from Claim 1 by computing a base for it. Next, calling x the discrete
logarithm of X, we have that A(z,mi)x ∈ ImB(mi) because

z ∈ S(L,mi) ⇒ A(z,mi) · L ⊆ ImB(mi) ⇒ A(z,mi)x ∈ ImB(mi)

18

where the last implication follows as x ∈ L by Claim 2 and the assumption
x1 ∈ V . Thus, calling H a weak-inverse of B(mi), which can be computed
efficiently by Proposition 2, the vector Y can be set as H · A(z,mi)X. Indeed,
as A(z,mi)X ∈ ImB(mi) there exists a vector Z ∈ Gk such that A(z,mi)X =
B(mi)Z and in particular

B(mi)Y = B(mi)HA(z,mi)X = B(mi)HB(mi)Z = B(mi)Z = A(z,mi)X.

Finally, given the bases of two affine spaces, a base of their intersection can be
computed efficiently. This conclude the proof that B is PPT.

For the second part, by construction each entry in F is of the form (mi,Y, z)
such that

A(z,mi)X = B(mi)Y.

Therefore, by our definition of signatures with linear verification scheme, the
verifier accepts (mi,Y, z). The claim is thus proven.

Proof of Claim 4. Since the condition at step 5 is not satisfied, S(L,mi) = ∅ and
in particular z /∈ S(L,mi) implying that A(z,mi)x /∈ ImB(mi) for some x ∈ L.
Therefore L is not contained in the space of all x such that A(z,mi)x ∈ ImB(mi)
and in particular its dimension decreases after the execution of step 11

Proof of Claim 5. The first part follow as L is initially V × Fn2
q of dimension

dimV +n2. The second part follows by linear algebra since dimL ≥ dimπ(L) =
dimV .

Proof of Claim 6. Since S.SetupKey,S.Sign and B are PPT algorithm, by Claim 3
in the last case, each step in the loop can be computed efficiently. In particular, as
2n1+1 is polynomially bounded, each for-loop in A can be performed efficiently.

Next we show that the procedure inside the Do-Until loop is repeated at
most n1 + 1 times. The key observation is that during the execution of B, the
space L forms a monotone decreasing sequence, implying that when B(vk∗, V)→
(F ∗, L∗) then L∗ ⊆ V ×Fn2

q . In particular this implies that π(L∗) ⊆ π(V ×Fn2
q) =

V . Thus if at any point the for-loop is halted, π(L∗) = V ∗ ̸= V implies V ∗ ⊆ V .
Hence the dimension of V strictly decreases, and since initially dim(V) = n1,
the foor-loop can be halted at most n1 times.

Finally, using again that B is an efficient algorithm, computing F,L can be
done in polynomial time. It follows that A is PPT.

Proof of Claim 7. We proceed by induction. Initially V = Fn1
q implies x1 ∈ V .

Next we observe that the value of V is only changed if, within the for-loop,
V ∗ ̸= V (see step 8, Fig. 4). Assume by induction that before this step is executed
x1 ∈ V . Then, when this happens, B(vk∗, V)→ (F ∗, L∗) had been executed with
x1 ∈ V . By Claim 2 this implies that x ∈ L∗ and in particular x1 = π(x) ∈
π(L∗) = V ∗. Thus when A sets V ← V ∗, x1 ∈ V .

Proof of Claim 8. Define the following events:

19

– Ei,j = "During the i-th iteration of the Do-Until loop, and the j-th iteration
of the for loop, BS.Sign(sk∗, ·)(vk∗, V) returns (F ∗, L∗) such that π(L∗) = V ".

– Elast = "BS.Sign(sk, ·)(vk, V) returns F,L with π(L) = V ".

Furthermore let I ∼ {1, . . . , n1 + 1} be the random variable such that A termi-
nates the Do-Until loop after the I-th execution. Then we observe that, condi-
tioned on X1, s1 and the V at iteration i, the event Ei,j depends only on the
random coins used for B, S.SetupKey and S.Sign which are chosen independently
at each execution of B. In particular, for a fixed i, the events {Ei,j}j are inde-
pendent and, since for Ei,j , Ei,k with j ̸= k the procedure B is invoked with the
same input

Pr [Ei,j] = Pr [Ei,k] .

We may therefore define pi = Pr [Ei,1] as the success probability of each execution
of B during the i-th loop. Similarly, if I = i, the vector space V given in input
to B is by construction equal to the one used during the i-th execution of the
Do-Until loop. In particular

pi = Pr [Elast|I = i] .

To conclude we show that

Pr [A → fail] = Pr [¬Elast] =

n1+1∑
i=1

Pr [¬Elast|I = i] · Pr [I = i]

≤
n1+1∑
i=1

Pr [¬Elast|I = i] · Pr [Ei,1 ∧ . . . ∧ Ei,2n1+1]

=

n1+1∑
i=1

Pr [¬Elast|I = i] ·
2n1+1∏
j=1

Pr [Ei,j]

=

n1+1∑
i=1

(1− pi) · p2n1+1
i

≤
n1+1∑
i=1

1

2n1 + 2
=

n1 + 1

2n1 + 2
=

1

2
.

where the first inequality comes from the fact that I = i implies Ei,j for all
j ∈ {1, . . . , 2n1 + 1}, while the second inequality comes from the fact that the
function ft(x) = (1−x)xt is upper bounded by 1/(t+1) when x ∈ [0, 1]. Indeed
ft(0) = ft(1) = 0 and its derivative vanishes only at t/(t + 1), which has to be
the maximum point, implying that

(1− x) · xt ≤
(
1− t

t+ 1

)
·
(

t

t+ 1

)t

≤ 1

t+ 1
.

20

4.2 Attack to Schemes with Generic Verification

Theorem 3. Given an algebraic signature scheme with generic verification, for
any ϑ such that n2 + ϑ ≤ |S.M| there exists an adversary A that in the unforge-
ability experiment in Fig. 2 performs at most n2 signature queries and produces
ϑ distinct forgeries.

Moreover, calling κ an upper bound on the signature bit-length, and χ an
upper bound on the number of queries S.Vfy performs to O0

eq, then A runs in
time O(ϑ · 2κ · 2χ · poly(λ)) and performs O(ϑ · poly(λ)) queries to Oadd and O0

eq.

Proof. As done in Theorem 4 we begin by providing an attack B which breaks
the scheme but performs potentially n1 + n2 signature queries.

At a high level B, given the verification key vk = (X, s), will keep track of all
possible exponents of X in a set L and for each message m either the dimension
of L decreases by one or B finds a forgery. Assume without loss of generality
that signatures are of the form (Y′, t′) with Y′ ∈ Gk and t′ ∈ {0, 1}κ.

For any m, our adversary attempts to produce a forgery as follows: For all
possible t ∈ {0, 1}κ, it executes the verification algorithm by simulating a generic
group G̃ with oracles Õadd and Õ0

eq. More specifically, since S.Vfy requires as
input the verification key (X, s), the message m and the signatures (Y, t), B
reproduces all the group elements involved by assigning dummy indexes for X̃,
Ỹ and runs S.Vfy((X̃, s),m, (Ỹ, t)). During the execution, each query to Õadd is
emulated by simply returning new incremental indexes, while to emulate Õ0

eq, χ
bits β1, . . . , βχ are chosen at the beginning of the execution so that the answer
to the i-th query will be βi. Note that each element Ti the verifier queries to
Õ0

eq has to be a linear combination of the initial group elements he received,
i.e. Ti = a⊤i X̃ − b⊤

i Ỹ − ci · G̃ obtained though Õadd, and B can extract these
coefficients.

Repeating the execution of S.Vfy for different values of β1, . . . , βχ implicitly
defines a tree of height χ in which paths are determined by the replies B gave at
the i-th query to Õ0

eq. If at some point a path β1, . . . , βχ that makes the verifier
accept is found, B can try to find a vector Y in the real GGM, such that the
i-query S.Vfy would do to O0

eq will be answered with βi. If such a Y is found,
then (Y, t) will be a valid forgery for m.

Recalling that the i-th query has the form Ti = aiX̃− biỸ − ci ·G, then B
needs to find a vector Y such that for all i ∈ {1, . . . , χ}

a⊤i X = b⊤
i Y + ci ·G when βi = 1, a⊤i X ̸= b⊤

i Y + ci ·G when βi = 0

Regarding the equations on the left side, they can be packed up into a system
AX = BY + c ·G. Through pseudo-inverses or Gaussian elimination is easy to
check if solutions exists for all x ∈ L (as in the proof of Theorem 2). If this is
not the case B simply discards this path and continues its brute-force search.
However, even if the previous condition is satisfied, for some of the points x in L
it may be the case that any vector y satisfying Ax = By+c fails to satisfy some
of the inequalities above a⊤i x ̸= b⊤

i y+ ci, implying that no solution Y ∈ Gk can

21

be found if x is the discrete logarithm of X. We call these points x ∈ L faulty
and, more specifically, the set of faulty points is defined as

FA,B,c
a,b,c = {x : Ax ∈ ImB+c, ∀y ∈ Fm

q Ax = By+c ⇒ a⊤x = b⊤y+c}.

Three possible cases may occur now:

– If all points in L are faulty with respect to some inequality constraint, then
B gives up on the path as the solution Y does not exist.

– If not all points are faulty B attempts to solve the system, which requires
expensive queries to Oadd,O0

eq: if a solution Y satisfying all constraints is
found, this is a valid forgery.

– If not all points are faulty, but no solution can be found, it means that x,
the discrete log of X, has to be a faulty point. This information reduces the
dimension of L as not all points in L are faulty.

Finally, if no solution can be found for any t ∈ {0, 1}κ and path β1, . . . , βχ,
B queries a signature for m and uses this information to reduce the dimension of
L. As for the proof of Theorem 2, B might overall query n1 + n2 signatures (as
opposed to the desired n1) since initially it has no information on the exponents
of X, i.e. dimL = n1 + n2, and each signature query may reveal only one new
linear combination among these group elements. To address this issue we use
the same strategy presented in Theorem 2, that is, we use B in a black-box way
inside the algorithm A, formally described in Fig. 4. The main idea is again
that A initially extracts linear combinations among CRS elements that could
be found by B, and finally executes B providing the retrieved information as
input. In this way B will, with significant probability, only find relations among
elements of X2, thus requesting at most n2 signatures.

A detailed description of A appears in Fig. 5, while a more detailed proof of
the Theorem appears in the appendix, Section C.3.

5 Conclusions

5.1 Impossibility of Algebraic Vector Commitments

Using both the negative results provided in the previous sections for algebraic
signatures and Theorem 1 connecting the efficiency of a VC to the security of
the associated signature scheme, we obtain two lower bounds for algebraic vector
commitments

Theorem 4. Given a position binding algebraic VC with strictly linear verifica-
tion, let ℓc = ℓc(n) and ℓπ = ℓπ(n) be respectively the commitment and opening
bit length to commit to a vector of n entries. Then

ν2 +
λ+ ℓc + ν2 · (ℓπ + log |VC.M|)

log |VC.M|
≥ n.

22

Adversary B(vk, V):

1 : Initialize F ← ∅ the set of forgeries
2 : Call L = V × Fn2

q the set of possible exponents of X

3 : Call θ = n+ ϑ and sample m1, . . . ,mθ ←$ S.M distinct messages
4 : For m ∈ {m1, . . . ,mθ}:
5 : For t ∈ {0, 1}κ and (β1, . . . , βχ) ∈ {0, 1}χ:

6 : Simulate a Generic Group G̃ with generator G̃ and oracles Õadd and Õ0
eq

7 : Assign indices for two vectors X̃ ∈ G̃n and Ỹ ∈ G̃k

8 : Run S.Vfy((X̃, s),m, (Ỹ, t)) using G̃
9 : When S.Vfy queries Õadd(T, S):

10 : Store a way to express T + S as a linear combination of X̃, Ỹ and G̃

11 : Return to S.Vfy a label for T + S

12 : When S.Vfy queries Õ0
eq(Ti) the i-th time:

13 : Store ai ∈ Fn
q , bi ∈ Fk

q and ci ∈ Fq such that Ti = a⊤
i X̃− b⊤

i Ỹ − ci · G̃
14 : Return βi to S.Vfy

15 : When S.Vfy halts and returns b ∈ {0, 1}:
16 : Let A = (ai : βi = 1), B = (bi : βi = 1) and c = (ci : βi = 1)

17 : If b = 0:
18 : Continue cycle in line 5
19 : Elif A · L ⊈ ImB + c:
20 : Continue cycle in line 5

21 : Elif ∃i : βi = 0 and L ⊆ FA,B,c
ai,bi,ci

:

22 : Continue cycle in line 5

23 : Elif ∃i : βi = 0 and X ∈ FA,B,c
ai,bi,ci

·G:

24 : Update L← L ∩ FA,B,c
ai,bi,ci

25 : Break cycle in line 5
26 : Else:
27 : Find Y ∈ Gk s.t. AX = BY + cG and a⊤

i X ̸= b⊤
i Y + ciG for βi = 0

28 : Store σ ← (Y, t) and F ← F ∪ {(m,σ)}
29 : Break cycle in line 5
30 : If the cycle ended without interruptions:
31 : Query a signature for m and wait for (Y, t)

32 : Reconstruct A,B, c as in step 16 using (X, s,m,Y, t) and the group G
33 : Update L← L ∩ {x ∈ Fn

q : Ax ∈ ImB + c}
34 : Return F,L

Fig. 5. B breaking security of an algebraic signature scheme with generic verification.

23

Proof. Assume there exists an algebraic VC with strictly linear verification con-
tradicting the above inequality and satisfying position binding. Then by Theo-
rem 1 the signature scheme obtained through the transformation in Fig. 1 would
satisfy ϑ-UF with

ϑ(vk, Q) =
λ+ ℓc + |Q| · (ℓπ + log |VC.M|)

log |VC.M|

and its message space would have size |SVC.M| = n. Since vk contains ν2 group
elements excluding those that belong to the CRS, i.e. the public parameters of
the original Vector Commitment, the attacker A from Theorem 2 can produce at
least n− ν2 forgeries performing at most ν2 queries. Called Q the set of queries
performed by A we would have that

ϑ(vk, Q) ≤ λ+ ℓc + ν2 · (ℓπ + log |VC.M|)
log |VC.M|

< n− ν2

where we use the fact that |Q| ≤ ν2 in the first inequality. This is then a contra-
diction since A would breaks the ϑ-UF of the derived signature, implying that
the given vector commitment was not binding.

Theorem 5. Given an algebraic VC with generic verification that is position
binding against unbounded adversaries performing polynomially bounded queries
to the GGM oracles Oadd, O0

eq, using the same notation of Theorem 4, then

ν2 +
λ+ ℓc + ν2 · (ℓπ + log |VC.M|)

log |VC.M|
≥ n.

Proof. Assuming again by contradiction that the above inequality is not satis-
fied, Theorem 1 implies that the associated signature scheme is ϑ-UF against
any unbounded adversary C making at most polynomially many signature and
group operations queries, or otherwiseRC would break position binding with sig-
nificant advantage. Notice that since R is PPT, RC still performs polynomially
many generic group operations. As in the proof of Theorem 4 then, our initial
assumption implies ϑ ≤ n − ν2. Since the adversary A of Theorem 3 returns
n − ν2 signatures performing at most ν2 queries, this contradicts the ϑ-UF of
the associated signature against this adversary.

Corollary 1. Given an algebraic vector commitment with strictly linear verifi-
cation, then ℓc · ℓπ = Ω(n). Analogously, given an algebraic vector commitment
with generic verification position binding against unbounded adversary perform-
ing at most polynomially many queries to the GGM oracles, ℓc · ℓπ = Ω(n).

Note that this lower bound implies in both cases that either ℓc = Ω(
√
n) or

ℓπ = Ω(
√
n).

24

5.2 Impossibility of Algebraic Signatures

As a by-product of our study on VC we also obtain the following two impossibility
results for algebraic signatures which extend the one presented in [DHH+21] to
a broader family of schemes.

Theorem 6. For any UF-CMA algebraic signature scheme with strictly linear
verification, n1 ≥ |S.M|.

Theorem 7. For any algebraic signature scheme with generic verification UF-
CMA secure against any unbounded adversary performing at most polynomially
many queries to the GGM oracles, n1 ≥ |S.M|.

Acknowledgments

This work has received funding in part from the European Research Coun-
cil (ERC) under the European Union’s Horizon 2020 research and innovation
program under project PICOCRYPT (grant agreement No. 101001283), by the
Spanish Government under projects SCUM (ref. RTI2018-102043-B-I00), RED2018-
102321-T, and SECURING (ref. PID2019-110873RJ-I00), by the Madrid Re-
gional Government under project BLOQUES (ref. S2018/TCS-4339), by a re-
search grant from Nomadic Labs and the Tezos Foundation, by the Programma
ricerca di ateneo UNICT 35 2020-22 linea 2 and by research gifts from Protocol
Labs.

References

AHIV17. Scott Ames, Carmit Hazay, Yuval Ishai, and Muthuramakrishnan Venkita-
subramaniam. Ligero: Lightweight sublinear arguments without a trusted
setup. In Bhavani M. Thuraisingham, David Evans, Tal Malkin, and
Dongyan Xu, editors, ACM CCS 2017, pages 2087–2104. ACM Press, Oc-
tober / November 2017.

AHO12. Masayuki Abe, Kristiyan Haralambiev, and Miyako Ohkubo. Group to
group commitments do not shrink. In David Pointcheval and Thomas Jo-
hansson, editors, EUROCRYPT 2012, volume 7237 of LNCS, pages 301–
317. Springer, Heidelberg, April 2012.

BBB+18. Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter
Wuille, and Greg Maxwell. Bulletproofs: Short proofs for confidential trans-
actions and more. In 2018 IEEE Symposium on Security and Privacy, pages
315–334. IEEE Computer Society Press, May 2018.

BBF19. Dan Boneh, Benedikt Bünz, and Ben Fisch. Batching techniques for accu-
mulators with applications to IOPs and stateless blockchains. In Alexandra
Boldyreva and Daniele Micciancio, editors, CRYPTO 2019, Part I, volume
11692 of LNCS, pages 561–586. Springer, Heidelberg, August 2019.

BCC+16. Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Jens Groth, and
Christophe Petit. Efficient zero-knowledge arguments for arithmetic circuits
in the discrete log setting. In Marc Fischlin and Jean-Sébastien Coron, ed-
itors, EUROCRYPT 2016, Part II, volume 9666 of LNCS, pages 327–357.
Springer, Heidelberg, May 2016.

25

BF01. Dan Boneh and Matthew K. Franklin. Identity-based encryption from the
Weil pairing. In Joe Kilian, editor, CRYPTO 2001, volume 2139 of LNCS,
pages 213–229. Springer, Heidelberg, August 2001.

BG12. Stephanie Bayer and Jens Groth. Efficient zero-knowledge argument for
correctness of a shuffle. In David Pointcheval and Thomas Johansson, edi-
tors, EUROCRYPT 2012, volume 7237 of LNCS, pages 263–280. Springer,
Heidelberg, April 2012.

BGV11. Siavosh Benabbas, Rosario Gennaro, and Yevgeniy Vahlis. Verifiable del-
egation of computation over large datasets. In Phillip Rogaway, editor,
CRYPTO 2011, volume 6841 of LNCS, pages 111–131. Springer, Heidel-
berg, August 2011.

CF13. Dario Catalano and Dario Fiore. Vector commitments and their applica-
tions. In Kaoru Kurosawa and Goichiro Hanaoka, editors, PKC 2013, vol-
ume 7778 of LNCS, pages 55–72. Springer, Heidelberg, February / March
2013.

CFG+20. Matteo Campanelli, Dario Fiore, Nicola Greco, Dimitris Kolonelos, and
Luca Nizzardo. Incrementally aggregatable vector commitments and appli-
cations to verifiable decentralized storage. In Shiho Moriai and Huaxiong
Wang, editors, ASIACRYPT 2020, Part II, volume 12492 of LNCS, pages
3–35. Springer, Heidelberg, December 2020.

CPZ18. Alexander Chepurnoy, Charalampos Papamanthou, and Yupeng Zhang.
Edrax: A cryptocurrency with stateless transaction validation. Cryptol-
ogy ePrint Archive, Report 2018/968, 2018. https://eprint.iacr.org/
2018/968.

DHH+21. Nico Döttling, Dominik Hartmann, Dennis Hofheinz, Eike Kiltz, Sven
Schäge, and Bogdan Ursu. On the impossibility of purely algebraic sig-
natures. In Theory of Cryptography Conference, pages 317–349. Springer,
2021.

Fis18. Ben Fisch. PoReps: Proofs of space on useful data. Cryptology ePrint
Archive, Report 2018/678, 2018. https://eprint.iacr.org/2018/678.

GGK03. Rosario Gennaro, Yael Gertner, and Jonathan Katz. Lower bounds on the
efficiency of encryption and digital signature schemes. In 35th ACM STOC,
pages 417–425. ACM Press, June 2003.

GGPR13. Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova.
Quadratic span programs and succinct NIZKs without PCPs. In Thomas
Johansson and Phong Q. Nguyen, editors, EUROCRYPT 2013, volume
7881 of LNCS, pages 626–645. Springer, Heidelberg, May 2013.

GKM+00. Yael Gertner, Sampath Kannan, Tal Malkin, Omer Reingold, and Mahesh
Viswanathan. The relationship between public key encryption and oblivious
transfer. In 41st Annual Symposium on Foundations of Computer Science,
FOCS 2000, 12-14 November 2000, Redondo Beach, California, USA, pages
325–335. IEEE Computer Society, 2000.

GMR88. Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital signature
scheme secure against adaptive chosen-message attacks. SIAM Journal on
Computing, 17(2):281–308, April 1988.

GMR01. Yael Gertner, Tal Malkin, and Omer Reingold. On the impossibility of
basing trapdoor functions on trapdoor predicates. In 42nd FOCS, pages
126–135. IEEE Computer Society Press, October 2001.

Gol87. Oded Goldreich. Two remarks concerning the Goldwasser-Micali-Rivest
signature scheme. In Andrew M. Odlyzko, editor, CRYPTO’86, volume
263 of LNCS, pages 104–110. Springer, Heidelberg, August 1987.

26

https://eprint.iacr.org/2018/968
https://eprint.iacr.org/2018/968
https://eprint.iacr.org/2018/678

GT00. Rosario Gennaro and Luca Trevisan. Lower bounds on the efficiency of
generic cryptographic constructions. In 41st Annual Symposium on Foun-
dations of Computer Science, FOCS 2000, 12-14 November 2000, Redondo
Beach, California, USA, pages 305–313. IEEE Computer Society, 2000.

IR89. Russell Impagliazzo and Steven Rudich. Limits on the provable conse-
quences of one-way permutations. In 21st ACM STOC, pages 44–61. ACM
Press, May 1989.

JK07. Ari Juels and Burton S. Kaliski Jr. Pors: proofs of retrievability for large
files. In Peng Ning, Sabrina De Capitani di Vimercati, and Paul F. Syverson,
editors, ACM CCS 2007, pages 584–597. ACM Press, October 2007.

Kil94. Joe Kilian. On the complexity of bounded-interaction and noninteractive
zero-knowledge proofs. In 35th FOCS, pages 466–477. IEEE Computer
Society Press, November 1994.

KST99. Jeong Han Kim, Daniel R. Simon, and Prasad Tetali. Limits on the effi-
ciency of one-way permutation-based hash functions. In 40th Annual Sym-
posium on Foundations of Computer Science, FOCS ’99, 17-18 October,
1999, New York, NY, USA, pages 535–542. IEEE Computer Society, 1999.

Kus18. John Kuszmaul. Verkle trees, 2018.
KZG10. Aniket Kate, Gregory M. Zaverucha, and Ian Goldberg. Constant-size com-

mitments to polynomials and their applications. In Masayuki Abe, editor,
ASIACRYPT 2010, volume 6477 of LNCS, pages 177–194. Springer, Hei-
delberg, December 2010.

LM19. Russell W. F. Lai and Giulio Malavolta. Subvector commitments with
application to succinct arguments. In Alexandra Boldyreva and Daniele
Micciancio, editors, CRYPTO 2019, Part I, volume 11692 of LNCS, pages
530–560. Springer, Heidelberg, August 2019.

LRY16. Benoît Libert, Somindu C. Ramanna, and Moti Yung. Functional com-
mitment schemes: From polynomial commitments to pairing-based accu-
mulators from simple assumptions. In Ioannis Chatzigiannakis, Michael
Mitzenmacher, Yuval Rabani, and Davide Sangiorgi, editors, ICALP 2016,
volume 55 of LIPIcs, pages 30:1–30:14. Schloss Dagstuhl, July 2016.

LY10. Benoît Libert and Moti Yung. Concise mercurial vector commitments and
independent zero-knowledge sets with short proofs. In Daniele Micciancio,
editor, TCC 2010, volume 5978 of LNCS, pages 499–517. Springer, Heidel-
berg, February 2010.

Mau05. Ueli M. Maurer. Abstract models of computation in cryptography (invited
paper). In Nigel P. Smart, editor, 10th IMA International Conference on
Cryptography and Coding, volume 3796 of LNCS, pages 1–12. Springer,
Heidelberg, December 2005.

Mer88. Ralph C. Merkle. A digital signature based on a conventional encryption
function. In Carl Pomerance, editor, CRYPTO’87, volume 293 of LNCS,
pages 369–378. Springer, Heidelberg, August 1988.

Mic94. Silvio Micali. CS proofs (extended abstracts). In 35th FOCS, pages 436–
453. IEEE Computer Society Press, November 1994.

MPZ20. Ueli Maurer, Christopher Portmann, and Jiamin Zhu. Unifying generic
group models. Cryptology ePrint Archive, Report 2020/996, 2020. https:
//eprint.iacr.org/2020/996.

MRK03. Silvio Micali, Michael O. Rabin, and Joe Kilian. Zero-knowledge sets. In
44th FOCS, pages 80–91. IEEE Computer Society Press, October 2003.

27

https://eprint.iacr.org/2020/996
https://eprint.iacr.org/2020/996

MRV99. Silvio Micali, Michael O. Rabin, and Salil P. Vadhan. Verifiable random
functions. In 40th FOCS, pages 120–130. IEEE Computer Society Press,
October 1999.

PPS21. Chris Peikert, Zachary Pepin, and Chad Sharp. Vector and functional com-
mitments from lattices. In Theory of Cryptography Conference, pages 480–
511. Springer, 2021.

PRV12. Periklis A. Papakonstantinou, Charles Rackoff, and Yevgeniy Vahlis. How
powerful are the DDH hard groups? Electron. Colloquium Comput. Com-
plex., page 167, 2012.

PSTY13. Charalampos Papamanthou, Elaine Shi, Roberto Tamassia, and Ke Yi.
Streaming authenticated data structures. In Thomas Johansson and
Phong Q. Nguyen, editors, EUROCRYPT 2013, volume 7881 of LNCS,
pages 353–370. Springer, Heidelberg, May 2013.

RSS20. Lior Rotem, Gil Segev, and Ido Shahaf. Generic-group delay functions re-
quire hidden-order groups. In Anne Canteaut and Yuval Ishai, editors, EU-
ROCRYPT 2020, Part III, volume 12107 of LNCS, pages 155–180. Springer,
Heidelberg, May 2020.

SGS20. Gili Schul-Ganz and Gil Segev. Accumulators in (and beyond) generic
groups: Non-trivial batch verification requires interaction. In Rafael Pass
and Krzysztof Pietrzak, editors, TCC 2020, Part II, volume 12551 of LNCS,
pages 77–107. Springer, Heidelberg, November 2020.

SGS21. Gili Schul-Ganz and Gil Segev. Generic-Group Identity-Based Encryption:
A Tight Impossibility Result. In Stefano Tessaro, editor, 2nd Conference
on Information-Theoretic Cryptography (ITC 2021), volume 199 of Leib-
niz International Proceedings in Informatics (LIPIcs), pages 26:1–26:23,
Dagstuhl, Germany, 2021. Schloss Dagstuhl – Leibniz-Zentrum für Infor-
matik.

Sha84. Adi Shamir. Identity-based cryptosystems and signature schemes. In G. R.
Blakley and David Chaum, editors, CRYPTO’84, volume 196 of LNCS,
pages 47–53. Springer, Heidelberg, August 1984.

Sho97. Victor Shoup. Lower bounds for discrete logarithms and related problems.
In Walter Fumy, editor, EUROCRYPT’97, volume 1233 of LNCS, pages
256–266. Springer, Heidelberg, May 1997.

Sim98. Daniel R. Simon. Finding collisions on a one-way street: Can secure hash
functions be based on general assumptions? In Advances in Cryptology
- EUROCRYPT ’98, volume 1403 of Lecture Notes in Computer Science,
pages 334–345. Springer, 1998.

Zha22. Mark Zhandry. To label, or not to label (in generic groups). Cryptology
ePrint Archive, Report 2022/226, 2022. https://eprint.iacr.org/2022/
226.

ZZ21. Mark Zhandry and Cong Zhang. The relationship between idealized models
under computationally bounded adversaries. Cryptology ePrint Archive,
Report 2021/240, 2021. https://eprint.iacr.org/2021/240.

A More Preliminaries

A.1 Linear Algebra

We recall basic definitions and facts from linear algebra that we use in our proofs.

28

https://eprint.iacr.org/2022/226
https://eprint.iacr.org/2022/226
https://eprint.iacr.org/2021/240

Definition 10. Given A ∈ Fn,m
q , a weak left inverse of A is a matrix H ∈ Fm,n

q

such that AHA = A.

Proposition 1. Given A ∈ Fn,m
q and H ∈ Fm,n

q then H is a weak left inverse
of A if and only if for any y ∈ ImA, AHy = y.

Proposition 2. There exists a PPT algorithm that given a matrix A ∈ Fn,m
q

returns a weak left inverse of A.

Proof sketch. Calling V = ImA, let k = dimV and v1, . . . ,vk be a base of V ,
which can be extended to v1, . . . ,vn base of Fn

q . Then, since the map A : Fm
q →

V ≤ Fn
q is surjective, there exists wi ∈ Fm

q such that Awi = vi for all i ≤ k.
Then, letting H : Fn

q → Fm
q a linear function such that Hvi = wi for i ≤ k and

Hvi = 0 otherwise, we show H is a weak left inverse for A.
To do this is enough to prove that the linear map AH : Fn

q → Fn
q is the

identity over V , which is equivalent to show AH is the identity over a base of
V . Indeed for all vi, AHvi = Awi = vi.

Finally we remark that computing a base of ImA, extending it, finding preim-
ages wi, and computing the matrix H are all steps that can be performed in
polynomial time.

Definition 11. Given L ≤ Fn
q be an affine space, we call its direction dirL the

only linear subspace of Fn
q such that L = x+ dirL for some x ∈ Fn

q .

A.2 Min-Entropy

For a given random variable, the min-entropy measures informally how hard is
it to correctly guess it without any information.

Definition 12. Given X ∼ X random variable distributed over a finite set X
we define its min-entropy as

H∞(X) = − log

(
max
x∈X

Pr [X = x]

)
.

Definition 13. Given X ∼ X and Y ∼ Y two random variables over finite sets,
the conditional min-entropy of X given Y is defined as

H∞(X|Y) = − log

∑
y∈Y

Pr [Y = y] ·max
x∈X

Pr [X = x|Y = y]

 .

Proposition 3. Given X ∼ X and Y ∼ Y random variables over finite sets,
then

H∞(X|Y) ≥ H∞(X)− log |Y|

29

Proof.∑
y∈Y

Pr [Y = y] ·max
x∈X

Pr [X = x|Y = x] =
∑
y∈Y

max
x∈X

Pr [X = x|Y = y] Pr [Y = y]

=
∑
y∈Y

max
x∈X

Pr [X = x, Y = y]

≤
∑
y∈Y

max
x∈X

Pr [X = x]

= |Y| ·max
x∈X

Pr [X = x] .

Applying − log(·) to both sides yields the claimed inequality.

A.3 Arithmetic circuits and R1CS

In this section we introduce circuit satisfiability and the rank one constraint
system relations, which will be used later to provide examples of secure algebraic
signatures with linear verification. Informally we define an arithmetic circuit C
as a tuple (n, g1, . . . , gm) where there first n gates (g1, . . . , gn) = (1, . . . , n) are
input gates and the remaining gates gi are of the form (◦, j, k) where j, k < i or
(◦, j, α) with j < i and α ∈ Fq and ◦ ∈ {+, ·} is a binary operator. The last gate
gm is also considered to be the output gate.

Given an arithmetic circuit and an input x ∈ Fn
q we can define the evaluation

function evx from the gates of C to Fq recursively as
evx(gi) = xi If i ≤ n

evx(gi) = evx(gj) ◦ evx(gk) If gi = (◦, j, k)
evx(gi) = evx(gj) ◦ α If gi = (◦, j, α)

A circuit it said to return a value y on input x, in symbols C(x) = y, if the
output gate evaluates to evx(gm) = y.

The problem of determining whether a circuit is satisfiable, i.e. if there exists
an input x such that C(m) returns 1, is notoriously NP-complete and tightly
related to the more algebraic rank one constraints system (R1CS in short) sat-
isfiability problem. Informally an instance of R1CS is a system of quadratic
equations of the form

M1w ∗M2w = M3w + b

where ∗ is the entry-wise product between same length vectors, M1,M2,M3 ∈
Fn,m
q and b ∈ Fm

q . A given instance is said to be satisfiable if the above equation
admits a solution w ∈ Fn

q .
As both circuit satisfiability and R1CS relations are NP-complete, there ex-

ists an efficient reduction T that takes as input a circuit C and return a R1CS
instance M1,M2,M3,b, and, if provided an input x ∈ Fn

q that satisfies C, it
further returns w satisfying the produced R1CS. Moreover, if M1,M2,M3,b are

30

obtained from C as above, there also exists an efficient procedure that, given in
input a witness w for the R1CS, returns an input x satisfying C.

A detailed description of the reduction T can be found in [AHIV17, GGPR13],
although we provide a sketch here for completeness. Given a circuit C = (n, g1,
. . . , gm), T builds the matrices M1,M2,M3 ∈ Fm,m−n+1

q ,b ∈ Fm,m−n+1
q adding:

– for each gate gi = (+, j, k) [resp. gi = (+, j, α)] the constraint wi = wj +wk

[resp. wi = wj + α]
– for each gate gi = (·, j, k) [resp. gi = (·, j, α)] the constraint wi = wj · wk

[resp. wi = wj · α]
– the constrain wm = 1.

Furthermore if an input x such that C(x) = 1 is provided, T returns also a
solution w such that wi = evx(gi). By the way ev was defined is immediate to
verify by induction that w satisfies the given set of constraints if C(x) = 1.
Moreover if w is a solution to the given system, then x = (w1, . . . , wn) is such
that C(x) = 1, implying that from any solution, a satisfying input for C can be
computed efficiently.

A.4 Generic Group Model

We now introduce more in details the Generic Group Model proposed by Maurer
in [Mau05] and revised by Maurer, Portmann and Zhu [MPZ20]. Even though
the definitions proposed in these papers are given in higher generality to capture
a broad class of generic algorithms and problems, below we only present their
instantiation to the case of a group of known prime order q.

Definition 14. A generic group of prime order q is an interactive Turing ma-
chine B which at any step stores a list of elements L = (V1, . . . , Vm) with Vi ∈ Fq.
Initially L is empty and m = 0. Furthermore, upon receiving:

– (gen): Sets Vm+1 ← 1, appends Vm+1 to L and increments m← m+ 1.
– (add, i, j): if i, j ∈ {1, . . . ,m}, sets Vm+1 ← Vi +Vj, appends Vm+1 to L and

increments m← m+ 1.
– (eq, i, j): if i, j ∈ {1, . . . ,m}, sets b the bit Vi == Vj and returns b.

A remarkable difference between this computational model and Shoup Generic
Group Model [Sho97] is that a machine interacting with B has no access to a rep-
resentation of group elements, and has to “remember” their indices as it queries
them. This To avoid the issue of explicitly keeping track of them, which may ren-
der the description of generic algorithms more verbose, we may assume without
loss of generality that after (gen) or (add, i, j), B returns m+ 1, the newly gen-
erated element’s index. Furthermore, for notational simplicity, we model usage
of the generic group through three oracles Ogen, Oadd, Oeq such that

– Ogen() queries (gen) to B and return the new group element’s index G.

31

– Oadd(X,Y), queries (add, X, Y) to B and return the new group element’s
index Z

– Oeq(X,Y), queries (eq, X, Y) to B and return the bit b it receives back from
B.

Noticeably, without loss of generality, one may assume that Ogen is queried
only once at the beginning of any algorithm’s execution – or equivalently that
the list L maintained by B is initialized with 1 in its first entry. Similarly one
may also assume that, up to performing at most 2 log q queries to Oadd, an index
for the group identity 0 is known - which could be obtained by computing q ·G.
Analogously, given the index of an element X, its inverse can be computed in
at most 2 log q queries to Oadd by computing (q − 1)X. Finally we observe that,
since inverses can be computed efficiently, for algorithms that are bounded to
perform at most a polynomial number of queries to B, it is enough to provide
access to the identity equality test oracle O0

eq defined as

– O0
eq(X): Given a precomputed index for 0, it queries (eq, X, 0) to B and

returns the bit b it receives back from B.

Given access to this oracleOeq(X,Y) can then be simulated queryingO0
eq(X−Y).

B Examples and Constructions

B.1 Linear vs Generic Verification for Signatures

In this section we compare the definitions of algebraic signature with linear and
generic verification. The first one, as mentioned, is equivalent to the notion of
algebraic signatures proposed in [DHH+21] whereas the second, seemingly more
general, only requires the algorithms involved to use the group generically.

In order to prove that the second notion is strictly more general we will
provide an algebraic signature scheme that has generic verification but is not
equivalent to any scheme with linear verification. The core idea is that, when
S.Vfy has no restriction it can test through O0

eq whether a given group element
X has discrete logarithm in base G equals to 0 or 1, and continue the verification
according to the result. In this way, given any signature scheme in the standard
model, the signer can encode in the exponent a bit representation of a given
signature while the verifier can extract these exponents and then verify the
extracted string is a valid signature.

More formally, let (S.Setup,S.Sign,S.Vfy) be a secure signature scheme in
the standard model (e.g., stateless constructions are known from trapdoor claw-
free permutations, [GMR88, Gol87]). Then an algebraic signature scheme can
be constructed as shown in Fig. 6.

A PPT adversary against the unforgeability of this scheme clearly reduces to
the security of the underlying signature. Thus using an existentially unforgeable
scheme for this construction we would end up with a secure algebraic signature
with generic verification.

To conclude, we prove that this scheme does not have linear verification

32

S∗.Setup(1λ)

1 : vk, sk←$ S.Setup(1λ)

2 : Parse vk = (β1, . . . , βn) ∈ {0, 1}n

3 : Set X = (β1G, . . . , βnG)

4 : Set vk∗ ← X and sk∗ ← sk

5 : Return vk, sk

S∗.Sign(sk∗,m)

1 : σ ←$ S.Sign(sk,m)

2 : Parse σ = (γ1, . . . , γk) ∈ {0, 1}k

3 : Set Y = (γ1G, . . . , γkG)

4 : Return Y

S∗.Vfy(vk∗,m, σ∗)

1 : Parse vk = X = (X1, . . . , Xn) and σ∗ = Y = (Y1, . . . , Yk)

2 : For each i ∈ {1, . . . , n} set βi the outcome of O0
eq(Xi −G)

3 : For each i ∈ {1, . . . , k} set γi the outcome of O0
eq(Yi −G)

4 : Set vk = (β1, . . . , βn) ∈ {0, 1}n and σ = (γ1, . . . , γk) ∈ {0, 1}k

5 : Run b←$ S.Vfy(vk, σ,m) and return b

Fig. 6. Algebraic Signature Scheme with linear verification

Proposition 4. There exist no matrices A,B such that S.Vfy(X,m,Y) accepts
if and only if

A(m)X = B(m)Y

Proof. Assuming by contradiction such A and B exist, then (S∗.Setup,S∗.Sign,
S∗.Vfy) would be an algebraic scheme with linear verification and in particular
the adversary A described in [DHH+21] for algebraic signatures can be used
to break the security of this construction. Note that for a general algebraic
scheme with linear verification, assuming each signature is of the form (Y, t)
with Y ∈ Gk and t ∈ {0, 1}κ, the adversary A runs in time O(2κ ·poly(λ)). Since
for the scheme described in Fig. 6 κ = 0 the adversary A would run in polynomial
time, contradicting our assumption on the underlying signature scheme.

B.2 Secure Signatures with Linear Verification

The first attack we describe in Theorem 2 for algebraic signature schemes with
linear verification only holds if the equation tested by the verifier is of the form

A(z,m)X = B(m)Y

with the entries A(z,m) being polynomials of degree one in z, and B(m) being
independent from z.

In this section we show that secure signatures with exponential message space
and linear verification which do not satisfy at least one of these two hypothe-
ses exist. To get these results we only assume the existence of a secure signa-
ture schemes (S.Setup,S.Sign,S.Vfy) in the plain model with exponential mes-
sage space, e.g. stateless constructions form trapdoor claw-free permutations
[GMR88, Gol87].

33

First we propose a scheme where in the verification equation A(z,m) depends
quadratically from z. The high-level idea is to observe that the satisfiability
of a circuit (in this case S.Vfy(vk,m, ·)) can be checked by testing whether a
system of equations of degree at most 2 admits solutions. In this way, using the
transformation sketched in Section A.3 we can compile C = S.Vfy(vk,m, ·) to an
R1CS instance M1,M2,M3,b such that, from any witness σ ∈ {0, 1}k satisfying
C(σ) = 1, a vector w can be computed so that

M1w ∗M2w = M3w + b

where ∗ is the entry-wise multiplication of two vectors with the same length.
Moreover we recall that given any vector w satisfying the above system of
quadratic equations, a string σ ∈ {0, 1}k such that C(σ) = 1 can be computed
efficiently.

A detailed description of the resulting scheme is presented in Figure 7

S1.Setup(1
λ)

1 : vk, sk←$ S.Setup(1λ)

2 : Return vk, sk

S1.Sign(sk,m)

1 : σ ←$ S.Sign(sk,m)

2 : Compile S.Vfy(vk,m, ·), σ to M1,M2,M3,b,w

3 : Return σ∗ ← w

S1.Vfy(vk,m, σ∗)

1 : Compile S.Vfy(vk,m, ·) to M1,M2,M3,b

2 : Return 1 if (M1w ∗M2w −M3w − b) ·G = 0

Fig. 7. Algebraic signature scheme with linear verification

Proposition 5. If (S.Setup,S.Sign,S.Vfy) is a UF-CMA secure signature, so is
the scheme described in Figure 7.

Proof. First of all correctness comes from the underlying scheme and the prop-
erties of the reduction between circuit satisfiability and rank one constraint sys-
tems. Indeed, for any m ∈ S.M, σ ←$ S.Sign(sk,m) implies S.Vfy(vk,m, σ)→ 1.
Hence σ is a witness for that circuit, implying that M1w ∗M2w = M3w + b.
Thus S1.Vfy(vk,m,w) accepts.

Next, if A is a PPT adversary for the scheme in Figure 7, we describe an
adversary B for the underlying signature. Upon receiving vk, B forwards vk
to A. Each time A queries a signature for m, B forwards the request to its
signing oracle, getting σ. Later, it compiles S.Vfy(vk,m, ·), σ to M1,M2,M3,b,w
and returns w. Finally, when A outputs m,w, B compiles S.Vfy(vk,m, ·) to
M1,M2,M3,b and check if M1w∗M2w = M3w+b. If that is the case it recover
a witness σ for that circuit from w and returns (m,σ).

34

Clearly B perfectly simulates S1.Sign(sk, ·) as it performs the same steps and,
when A successfully return a valid forgery (m,w), the couple (m,σ) is a forgery
for B since:

– B queries the same messages queried by A, thus m was not queried by both.
– By the property of the reduction from circuit satisfiability to rank one con-

straints system, M1w ∗M2w = M3w + b implies that S.Vfy(vk,m, σ)→ 1.

Thus Adv(A) = Adv(B).

Next we sketch a scheme where the verification equation is of the form
A(z,m)X = B(z,m)Y, where both A(z,m) and B(z,m) have an affine de-
pendence on z (i.e. each of their entries is a polynomial of degree at most one
in z). The idea is identical to the previous construction with the exception that
now the terms of degree 2 have to come from B(z,m)Y. To do this, having
compiled for a given signed message (m,σ) the circuit S.Vfy(vk,m, ·), σ into
M1,M2,M3,b,w, the signer simply set Y = w · G and returns (Y,w). The
verifier then locally checks

Y = w ·G, (M3w + b) ·G = M1w ∗M2Y.

To see why the equation on the right hand side can be expressed in the form
B(z,m) observe that the map fz : Gm → Gm mapping Y 7→ M1z ∗M2Y is
linear and depends linearly on z. Moreover, if both checks are satisfied, then

Y = w ·G ⇒ (M3w + b) ·G = (M1w ∗M2w) ·G

which immediately yields that w is a solution for the given R1CS.

B.3 Succinct Vector Commitments with Linear Verification

In Section B.2 we showed how dropping the assumption of strict linear verifica-
tion in algebraic signatures implies the existence of secure constructions under
mild assumptions. Because of this, there is no hope to obtain lower bounds for
algebraic VCs from analogous results on signatures when the verification pro-
cedure is linear but not strictly. In this section we prove that this is the case
because, when either A(z,m, i) is allowed to depend quadratically or B(z,m, i)
affinely on z,m, there exist succinct VCs.

Given a (not necessarily algebraic) position binding and succinct VC (VC.Setup,
VC.Com,VC.Open,VC.Vfy) such that Fq ⊆ VC.M, the key idea as before is to
exploit the quadratic terms in the verification equations to encode arbitrary
circuits, in this case C(· , ·) = VC.Vfy(pp, c, · , i, ·) which takes in input a mes-
sage m and an opening proof π. More specifically, the new setup algorithm
simply forwards the CRS produced by VC.Setup. Analogously a commitment to
(m1, . . . ,mn) can simply be set as the commitment c returned by VC.Com. In
order to open to a message m we can compute an opening π through VC.Open,
compile VC.Vfy(pp, c, · , i, ·),m, π to a R1CS M1,M2,M3,w where w1 = m, and

35

return w. Finally, the verification algorithm simply compiles VC.Vfy(pp, c, · , i, ·)
to the same R1CS M1,M2,M3 and, on input m,w, i verifies the following con-
ditions:

(M1w ∗M2w −M3w) ·G = 0, (w1 −m) ·G = 0.

where the last test ensure that the first input of the circuit is precisely the
message m. A more detailed construction appears in Figure. 8

VC∗.Setup(1λ)

1 : ppS.Setup(1λ)

2 : Return pp

VC∗.Com(pp,m1, . . . ,mn)

1 : c, aux←$ VC.Com(pp,m1, . . . ,mn)

2 : Return (c, aux||c)

VC∗.Open(pp,m, i, aux||c)

1 : π ← VC.Open(pp,m, i, aux)

2 : Compile VC.Vfy(pp, c, · , i, ·), (m,π) to M1,M2,M3,w

3 : Return w

VC∗.Vfy(pp, c,m, i,w)

1 : Compile VC.Vfy(pp, c, · , i, ·) to M1,M2,M3.
2 : Accept if the following conditions are satisfied:
3 : (M1w ∗M2w −M3w) ·G = 0

4 : (m− w1) ·G = 0

Fig. 8. Algebraic VC scheme with linear verification

Proposition 6. The VC scheme described in Figure 8 is algebraic with linear
verification. Furthermore if (VC.Setup,VC.Com,VC.Open,VC.Vfy) satisfy posi-
tion binding, so does this construction.

Proof. The first part is immediate as B can be simply set to be the zero matrix
while

A(w,m, i, (pp||c)) = (M1w ∗M2w −M3w) || (m− w1)

depends quadratically on w and m, and arbitrarily on pp||c and i which are
hard-coded into the circuit that is later compiled to the R1CS M1,M2,M3.

To prove that the resulting scheme is secure let A(pp) be a PPT adversary
breaking positing binding. Then we can describe an adversary B that breaks
the position binding property of the underlying VC. To do so, B(pp) runs A
on input pp and waits for it to return (c,m,m′, i,w,w′) with m ̸= m′. Then
it checks whether (m,w) and (m′,w′) are both correct openings for position i,
i.e. such that, calling M1,M2,M3 matrices representing the R1CS obtained from

36

the circuit C = VC.Vfy(pp, c, · , i, ·), they satisfy

M1w ∗M2w = M3w M1w
′ ∗M2w

′ = M3w
′.

and m = w1, m′ = w′
1. If this is the case it finally extracts, as detailed in

Section A.3, two inputs (m̃, π̃) and (m̃′, π̃′) that make the circuit C evaluate to
1, i.e. such that

VC.Vfy(pp, c, m̃, i, π̃)→ 1 VC.Vfy(pp, c, m̃′, i, π̃′)→ 1.

and returns (c, m̃, m̃′, i, π̃, π̃′). Note that, since the extraction of an input that
makes C return 1 from a solution to the related R1CS is performed by taking the
first t elements, where t is the arity of C, then m̃ = w1 = m and m̃′ = w′

1 = m′

implying that m̃ ̸= m̃′. This concludes the argument.

Although the construction in Figure 8 provides us a way to construct alge-
braic vector commitments with linear verification from any VC in the standard
model, it is yet not enough to show that our lower bounds may not be extended
to this case. Indeed, the reduction preserves the commitment length of the un-
derlying VC but not the opening proof size. Indeed, as mentioned in Section A.3,
the length of w equals the number of gates in the circuit from which we built
the R1CS instance. This means that even though the underlying VC has short
opening proof, if the verifier performs a significant number of operations which
depends on n, the resulting scheme may not be succinct.

Thus, in order to show that this construction leads to VCs with constant size
commitment and opening proof length, we need to provide a (non necessarily
algebraic) scheme in which the circuit VC.Vfy(pp, c, · , i, ·) has a constant number
of gates. One such example is the pairing based construction provided in [CF13]
whose security is equivalent to CDH. More specifically in that case, given a
pairing e : G×G→ GT and a generator G ∈ G the setup produces the following
CRS for uniformly random zi ←$ Fq

∀i ∈ {1, . . . , n} Hi ← zi ·G, ∀i, j ∈ {1, . . . , n}, i ̸= j Hi,j ← zizj ·G.

Next a commitment to m1, . . . ,mn is defined as K = m1H1 + . . .+mnHn while
an opening proof for position i is computed as

Λi ←
∑
j ̸=i

miHi,j = zi
∑
j ̸=i

miHi.

Finally, the verification algorithm on input (pp,K,m, i, Λ) recovers from the
public parameter the group element Hi and checks that

e(K −miHi) = e(Λi, G).

Observe that in the circuit we want to compile to a R1CS, pp and i are hard-
coded constants, so is Hi, meaning that the circuit does not have to read the
whole pp to recover it. Finally we have that in this case VC.Vfy(pp,K, · , i, ·)

37

as an arithmetic circuit requires only one exponentiation mi · Hi, one inver-
sion/addition over G to compute K−miHi, two pairings and one equality check
over GT . Since the number of gates required to express these operations as
circuits only depends on λ, and we only need a constant number of them, we
conclude that with respect to n the circuit VC.Vfy(pp,K, · , i, ·) can be expressed
with a constant number of gates. The following proposition follows

Proposition 7. Given a symmetric pairing e : G×G→ GT such that CDH is
hard in G, then there exists an algebraic VC with linear verification such that
A(z,m, i) depends quadratically in z,m, B(i) does not depends on z,m and,
calling ℓc, ℓπ respectively the commitment and opening proof bit length, ℓc, ℓπ =
Oλ(1).

We finally informally remark that the same construction can be repeated if we
let A(z,m, i) and B(z,m, i) both depend affinely on z,m.

B.4 Tightness of Algebraic VC Lower Bounds

We now show the tightness of the asymptotic lower bound ℓc · ℓπ = Ω(n) proved
in Corollary 1 for an algebraic VC with strictly linear verification, where n is the
length of the vector, ℓc the commitment bit-length and ℓπ the opening proof bit
length. To this end, calling ℓG the bit length of a group element representation,
we describe a family of schemes parameterized by α = α(n) ≤ n where ℓc = α·ℓG
and ℓπ = β · ℓG with

β(n) =

⌈
n

α(n)

⌉
.

Since ℓG is polynomially bounded in λ but independent from n we have that
asymptotically ℓc · ℓπ = Θ(n) as

n

α(n)
≤ β(n) ≤ n

α(n)
+ 1 ⇒ n ≤ α(n)β(n) ≤ n+ α(n) ≤ 2n

⇒ ℓ2G · n ≤ ℓc · ℓπ ≤ 2ℓ2G · n.

In particular this family of schemes achieves our asymptotic bound. The high
level idea, assuming for the moment that α(n) divides n, is to perform the com-
mitment to a vector of n message m1, . . . ,mn by dividing them into β smaller
vectors of α entries each, and perform a regular (non-hiding) Pedersen com-
mitment to each sub-vector. To open a position i we simply open the entire
sub-vector containing the desired message, resulting in an opening proof of β
field elements.

As a final note, we remark that the security of a Pedersen commitment re-
duces to the hardness of the DLP in the underlying group. Thus this scheme
would also be secure for the class of unbounded adversaries which perform at
most a polynomial number of generic operations. In particular we conclude that
even against this class of adversaries our lower bound in Corollary 1 is tight.

38

VC.Setup(1λ, n)

1 : H1, . . . , Hα ←$ G
2 : pp← (H1, . . . , Hα)

3 : Return pp

VC.Com(pp,m1, . . . ,mn)

1 : β ← ⌈n/α⌉, µ← α · β
2 : (mn+1, . . . ,mµ)← (0, . . . , 0)

3 : For k ∈ {0, . . . , β − 1}:
4 : ck ←

∑α
j=1 mj+kα ·Hj

5 : c← (ck)
β−1
k=0 , aux← (mi)

µ
i=1

6 : Return c, aux

VC.Open(pp,m, i, aux)

1 : Write i = j + kα with j ∈ {0, . . . , β − 1} and k ∈ {1, . . . , α}
2 : π ← (m1+kα, . . . ,m(k+1)α). Return π

VC.Vfy(pp, c,m, i, π)

1 : Write i = j∗ + kα with j ∈ {1, . . . , α} and k ∈ {0, . . . , β − 1}
2 : Parse π = (m′

1, . . . ,m
′
α), c = (c0, . . . , cβ−1) and pp = (Hj)

α
j=1

3 : If ck =
∑α

j=1 m
′
j ·Hj and m = m′

j∗ :

4 : Return 1

5 : Else: Return 0

Fig. 9. Vector commitment over a prime order group, parameterized by α

Proposition 8. The vector commitment in Figure 9 is algebraic with strictly
linear verification. Moreover if the DLP problem is hard in G, it satisfies position
binding.

Proof. To show the first part of the proof we have to provide matrices A, B
that characterize the verification algorithm. Since Y is not provided, B can only
be the zero matrix, which is indeed independent from the field elements in the
opening proof. Conversely, calling X1 = (G,H1, . . . ,Hα), X2 = (c0, . . . , cβ−1),
π = (m′

1, . . . ,m
′
α), i = j + k∗α, the matrix A(π,m, i) is

A =

[
m−m′

1 0 . . . 0 0 . . . 0 . . . 0
0 m′

1 . . . m′
α 0 . . . −1 . . . 0

]
where −1 is in the (1 + α + k)-th column. Notice each entry is a polynomial of
degree at most 1 in m and m′

i.
Regarding position binding, given an adversaryA which returns (c, m̂i, m̂

′
i, iπi, π

′
i)

with mi ̸= m′
i, we can trivially transform this into an adversary B breaking the

binding property of Pedersen commitment. Having decomposed i = j + αk for
j ∈ {1, . . . , α}, k ∈ {0, . . . , β − 1}, and parsed

c = (c0, . . . , cβ−1), πi = (m1, . . . ,mα), π′
i = (m′

1, . . . ,m
′
α)

39

B returns (ck, (m1, . . . ,mα), (m
′
1, . . . ,m

′
α)). If A succeeds in returning two valid

openings for different messages, then B succeed as well. Indeed since mk =
m̂i ̸= m̂′

i = m′
k, the two vectors are distinct and, as both openings are valid,∑α

j=1 mj ·Hj = ck =
∑α

j=1 m
′
j ·Hj . This concludes the proof as (generalized)

Pedersen commitments are binding if the DLP is hard.

B.5 Tightness of Algebraic Signatures Lower Bounds

As done for the impossibility results of algebraic vector commitments, we show
that our lower bounds for algebraic signatures with strictly linear/general ver-
ification (Theorems 6 and 7) cannot be improved. We do so by providing for
each n a family of UF-CMA secure signatures whose verification key contains
n group elements and the message space has cardinality n. The idea is simply
to set vk = (x1 · G, . . . , xn · G) and, in order to sign the message i ∈ {1, . . . , n}
the signer returns xi. In this way producing a forgery reduces to breaking the
discrete logarithm of at least one group element in the verification key, implying
intuitively that the scheme is secure.

S.Setup(1λ):

1 : Sample x1, . . . , xn ←$ Fq and compute Hi ← xi ·G
2 : sk← (x1, . . . , xn), vk← (H1, . . . , Hn). Return (sk, vk)

S.Sign(sk,m):

1 : Parse sk = (x1, . . . , xn). Return xm

S.Vfy(vk,m, σ):

1 : Parse vk = (H1, . . . , Hn). Return Hm == σ ·G

Fig. 10. Secure algebraic signature scheme with strictly linear verification and message
space S.M = {1, . . . , n}.

Proposition 9. The scheme in figure 10 is algebraic with strictly linear verifi-
cation. Moreover, if the DLP is hard in G, it is UF-CMA secure.

Proof. The strictly linear property of verification follows trivially by setting X =
(G,H1, . . . ,Hn), A(σ,m) = (−σ, 0, . . . , 1, . . . , 0) with 1 being in the m + 1-th
position, and B(m) as the zero matrix.

To prove security, we reduce any adversary A executed in game 2 to an
adversary B which solves the DLP. Given a random H ∼ U(G), B samples an
index j ∈ {1, . . . , n} which is a guess on the message that A will chose for his
forgery, and set Hj = H and Hi = xi ·G for all other i by sampling xi ←$ Fq. If

40

A queries j B aborts. If it queries i ̸= j, send A ← xi. Finally when A returns
(m,σ), abort if m ̸= j, otherwise return σ.

Since A has no information on j the probability it will attempt to forge that
message is 1/n. Moreover if A returns a correct signature σ, then H = Hj = σ·G,
meaning that B correctly solved the DLP. Hence Adv(A) = n · Adv(B) that is
negligible.

C Postponed Proofs

C.1 Generic Transformation to Signatures

Proof of Theorem 1. Given an adversary A breaking ϑ-UF for this signature
scheme, we provide a PPT algorithm R that breaks the underlying VC’s position
binding using A in a black-box way. For notational convenience let us denote
Q = {(j,mj , πj)}j∈S the set of all queries recorded in the experiment 2 with S
being the set of queried positions.

Adversary R(pp):

1 : Samples m1, . . . ,mn ←$ VC.M and get c, aux←$ VC.Com(pp,m1, . . . ,mn)

2 : Set vk← (pp, c), S ← ∅ and send A ← vk

3 : When A queries j ∈ {1, . . . , n}:
4 : Compute the opening π ←$ VC.Open(pp,mj , j, aux) and set σ ← (mj , π)

5 : Update S ← S ∪ {j} and send A ← σ

6 : When A returns a set F :
7 : If ∃(i, σ) ∈ F : i ̸∈ S ∧ σ = (m̂, π̂) ∧ m̂ ̸= mi:
8 : Compute πi ← VC.Open(pp,mi, i, aux) and return (c,mi, m̂, i, πi, π̂)

9 : Else: Return ⊥

Fig. 11. Reduction R breaking position binding.

As a first step we argue that with overwhelming probability, if A produces
more than ϑ forgeries, then at least one them contains an opening to a message
that differs from the committed one.

Claim 1 Let F = {(i, m̂i, π̂i)}i∈I be the set of forgeries A produces. If |I| ≥
ϑ(vk, Q) and I ∩ S = ∅, calling bad the event m̂i = mi, ∀i ∈ I, then

Pr [bad] ≤ 2−λ.

Proof of Claim 1. {mi}i∈I are uniformly distributed and independent from pp,
but may not be independent from c and {mj , πj}j∈S . Notice that, by the way
we defined ℓc and ℓπ, we have that

(c, {πj}j∈S , {mj}j∈S) ∈ {0, 1}ℓc+|S|ℓπ × VC.M|S|.

41

Applying Proposition 3 we can then lower bound the conditional min-entropy
H∞({mi}i∈I | c, {mj , πj}j∈S) ≥

≥ H∞({mi}i∈I)− ℓc − |S| · ℓπ − |S| · log |VC.M|
= |I| · log |VC.M| − ℓc − |S| · (ℓπ + log |VC.M|)
≥ ϑ(vk, Q) · log |VC.M| − ℓc − |Q| · (ℓπ + log |VC.M|)
= λ

Where the first equality follows as, without conditioning on c, πj ,mj , mii∈I and
I are independent, the second inequality uses |I| ≥ ϑ(vk, Q) and |S| = |Q|
while the last equality applies our assumption on ϑ(vk, Q). In conclusion, the
probability of correctly guessing {mi}i∈I given c and {mj , πj}j∈S is smaller
than 2−λ, proving the claim.

To conclude the Theorem’s proof, if A wins in game 2 then all the forgeries
returned are correct signatures of non-queried messages. In particular if bad does
not occur, among the forgeries returned by A, R will find m̂i ̸= mi and π̂i such
that

VC.Vfy(pp, c,mi, i, πi)→ 1 VC.Vfy(pp, c, m̂i, i, π̂i)→ 1.

which breaks the position binding. Therefore Adv(A) ≤ Adv(R) + 2−λ which is
negligible.

C.2 Attack to Schemes with Strictly Linear Verification

Proof of Theorem 2. Having provided the intuition behind the attacker A built
on top of B, we now proceed to prove the theorem through a sequence of claims.
We begin by stating the following properties about B(vk, V) where we denote
vk = (X, s) with X = X1||X2, x1 the discrete logarithm of X1 and x the discrete
logarithm of X. Finally we denote π : Fn1

q × Fn2
q → Fn1

q the projection on first
component, i.e. π(x1,x2) = x1.

Claim 1 If L is an affine space, S(L,m) is an affine space. Moreover an affine
base for S(L,m) can be computed in polynomial time.

Claim 2 If x1 ∈ V then at any step of B(vk, V), x ∈ L.

Claim 3 If x1 ∈ V , B is PPT and upon returning (F,L), F is a set of valid
forgeries.

Claim 4 For a given mi, if the condition at step 5 is not satisfied, i.e. S(L,mi) =
∅, then after step 11 the dimension of L decreases strictly.

Claim 5 After the execution of line 1, Fig 3, dimL = n2+dimV and if B(vk, V)
returns (F,L) with π(L) = V then dimL ≥ dimV .

Next we state the following properties about A

42

Claim 6 A is PPT.

Claim 7 At any step of A execution, x1 ∈ V .

Claim 8 A fails with probability Pr [A(vk)→ fail] ≤ 1/2.

First we observe these claims imply the thesis. Indeed by Claim 8, with
probability greater than 1/2, A does not return fail. By construction, this implies
that in the last execution B(vk, V) returns (F,L) with π(L) = V . Thus by
Claim 5 n2 + dimV ≥ L ≥ dimV at any step of B during its last execution.
As a consequence dimL can decrease at most n2 times. Applying Claim 4 we
conclude that S(L,mi) = ∅ can happen at most n2 times because each time this
occurs, dimL decreases. It follows then that for at least θ − n2 = ϑ messages,
the condition S(L,mi) ̸= ∅ is satisfied, meaning that B adds a new signature to
the set F , which in the end will have cardinality |F | ≥ ϑ. Finally, since x ∈ V
by Claim 7, we can apply Claim 3 to conclude that F is a valid set of forgeries,
implying that A breaks ϑ-UF.

Next, we provide a proof for each of these claims:

Proof of Claim 1. We start observing that if L is any set and x1, . . . ,xd ∈ L is
a base for the linear span of L then S(L,m) =

⋂d
i=1 S(xi,m). By construction,

xi ∈ L implies S(L,m) ⊆ S(xi,m), and in particular S(L,m) ⊆ ∩di=1S(xi,m).
Conversely let z be a vector in the intersection of all S(xi,m). We can find
vectors ui ∈ Fk

q such that A(z,m)xi = B(m)ui. Since x1, . . . ,xd is a base for
the linear span of L, for any x ∈ L we can express it as a linear combination
α1x1 + . . .+ αdxd. In conclusion

A(z,m)x =

d∑
i=1

αiA(z,m)xi =

d∑
i=1

αiB(m)ui = B(m)

d∑
i=1

αiui.

Thus A(z,m)x ∈ ImB(m) and in particular z ∈ S(L,m).
In order to show that S(L,m) is efficiently computable it suffices to show that

S(x,m) can be computed in polynomial time for any point x. To this aim let
fx : Fh

q → Fℓ
q be such that f(z) = A(z,m)x. Since the scheme has strictly linear

verification (Definition 8) A(· ,m) is an affine map and so is f . Furthermore
by construction S(x,m) = f−1

x (ImB(m)) since z ∈ S(x,m) if and only if
A(z,m)x ∈ ImB(m). This concludes the argument as the preimage through
an affine map of a linear space is an affine space which can be computed in
polynomial time.

Proof of Claim 2. If x1 ∈ V then x = x1||x2 ∈ V × Fn2
q which by construction

implies that, when L is initialized, x ∈ L. Next assume by induction x ∈ L in all
previous steps. The only instruction in B that may modify L is in step 11 and
when this is executed, since σ = (Y, z) is a valid signature by perfect correctness,
we have

A(z,mi)X = B(mi)Y ⇒ A(z,mi)x ∈ ImB(mi).

43

Proof of Claim 3. To prove that B is a PPT algorithm, observe that the for-loop
is executed θ = n2 + ϑ, that is polynomially bounded, times. Inside the loop,
checking S(L,mi) ̸= ∅ and possibly computing a z ∈ S(L,mi) can be done
efficiently from Claim 1 by computing a base for it. Next, calling x the discrete
logarithm of X, we have that A(z,mi)x ∈ ImB(mi) because

z ∈ S(L,mi) ⇒ A(z,mi) · L ⊆ ImB(mi) ⇒ A(z,mi)x ∈ ImB(mi)

where the last implication follows as x ∈ L by Claim 2 and the assumption
x1 ∈ V . Thus, calling H a weak-inverse of B(mi), which can be computed
efficiently by Proposition 2, the vector Y can be set as H · A(z,mi)X. Indeed,
as A(z,mi)X ∈ ImB(mi) there exists a vector Z ∈ Gk such that A(z,mi)X =
B(mi)Z and in particular

B(mi)Y = B(mi)HA(z,mi)X = B(mi)HB(mi)Z = B(mi)Z = A(z,mi)X.

Finally, given the bases of two affine spaces, a base of their intersection can be
computed efficiently. This conclude the proof that B is PPT.

For the second part, by construction each entry in F is of the form (mi,Y, z)
such that

A(z,mi)X = B(mi)Y.

Therefore, by our definition of signatures with linear verification scheme, the
verifier accepts (mi,Y, z). The claim is thus proven.

Proof of Claim 4. Since the condition at step 5 is not satisfied, S(L,mi) = ∅ and
in particular z /∈ S(L,mi) implying that A(z,mi)x /∈ ImB(mi) for some x ∈ L.
Therefore L is not contained in the space of all x such that A(z,mi)x ∈ ImB(mi)
and in particular its dimension decreases after the execution of step 11

Proof of Claim 5. The first part follow as L is initially V × Fn2
q of dimension

dimV +n2. The second part follows by linear algebra since dimL ≥ dimπ(L) =
dimV .

Proof of Claim 6. Since S.SetupKey,S.Sign and B are PPT algorithm, by Claim 3
in the last case, each step in the loop can be computed efficiently. In particular, as
2n1+1 is polynomially bounded, each for-loop in A can be performed efficiently.

Next we show that the procedure inside the Do-Until loop is repeated at
most n1 + 1 times. The key observation is that during the execution of B, the
space L forms a monotone decreasing sequence, implying that when B(vk∗, V)→
(F ∗, L∗) then L∗ ⊆ V ×Fn2

q . In particular this implies that π(L∗) ⊆ π(V ×Fn2
q) =

V . Thus if at any point the for-loop is halted, π(L∗) = V ∗ ̸= V implies V ∗ ⊆ V .
Hence the dimension of V strictly decreases, and since initially dim(V) = n1,
the foor-loop can be halted at most n1 times.

Finally, using again that B is an efficient algorithm, computing F,L can be
done in polynomial time. It follows that A is PPT.

44

Proof of Claim 7. We proceed by induction. Initially V = Fn1
q implies x1 ∈ V .

Next we observe that the value of V is only changed if, within the for-loop,
V ∗ ̸= V (see step 8, Fig. 4). Assume by induction that before this step is executed
x1 ∈ V . Then, when this happens, B(vk∗, V)→ (F ∗, L∗) had been executed with
x1 ∈ V . By Claim 2 this implies that x ∈ L∗ and in particular x1 = π(x) ∈
π(L∗) = V ∗. Thus when A sets V ← V ∗, x1 ∈ V .

Proof of Claim 8. Define the following events:

– Ei,j = "During the i-th iteration of the Do-Until loop, and the j-th iteration
of the for loop, BS.Sign(sk∗, ·)(vk∗, V) returns (F ∗, L∗) such that π(L∗) = V ".

– Elast = "BS.Sign(sk, ·)(vk, V) returns F,L with π(L) = V ".

Furthermore let I ∼ {1, . . . , n1 + 1} be the random variable such that A termi-
nates the Do-Until loop after the I-th execution. Then we observe that, condi-
tioned on X1, s1 and the V at iteration i, the event Ei,j depends only on the
random coins used for B, S.SetupKey and S.Sign which are chosen independently
at each execution of B. In particular, for a fixed i, the events {Ei,j}j are inde-
pendent and, since for Ei,j , Ei,k with j ̸= k the procedure B is invoked with the
same input

Pr [Ei,j] = Pr [Ei,k] .

We may therefore define pi = Pr [Ei,1] as the success probability of each execution
of B during the i-th loop. Similarly, if I = i, the vector space V given in input
to B is by construction equal to the one used during the i-th execution of the
Do-Until loop. In particular

pi = Pr [Elast|I = i] .

To conclude we show that

Pr [A → fail] = Pr [¬Elast] =

n1+1∑
i=1

Pr [¬Elast|I = i] · Pr [I = i]

≤
n1+1∑
i=1

Pr [¬Elast|I = i] · Pr [Ei,1 ∧ . . . ∧ Ei,2n1+1]

=

n1+1∑
i=1

Pr [¬Elast|I = i] ·
2n1+1∏
j=1

Pr [Ei,j]

=

n1+1∑
i=1

(1− pi) · p2n1+1
i

≤
n1+1∑
i=1

1

2n1 + 2
=

n1 + 1

2n1 + 2
=

1

2
.

where the first inequality comes from the fact that I = i implies Ei,j for all
j ∈ {1, . . . , 2n1 + 1}, while the second inequality comes from the fact that the

45

function ft(x) = (1−x)xt is upper bounded by 1/(t+1) when x ∈ [0, 1]. Indeed
ft(0) = ft(1) = 0 and its derivative vanishes only at t/(t + 1), which has to be
the maximum point, implying that

(1− x) · xt ≤
(
1− t

t+ 1

)
·
(

t

t+ 1

)t

≤ 1

t+ 1
.

C.3 Attack to Schemes with Generic Verification

Proof of Theorem 3. Having provided a description of the adversary A, which
uses in a block-box way the procedure B described in Fig. 5, we now show that
this adversary satisfies the requirements of the Theorem. As in the previous
section we break down the proof into a sequence of Claims which imply the
thesis, beginning with a list of properties related to B. In the following we denote
vk = (X, s) with X = X1||X2, x1 the discrete logarithm of X1 and x the discrete
logarithm of X. Moreover we call again π : Fn1

q × Fn2
q the projection on the first

component, i.e. π(x1,x2) = x1.

Claim 1 For all B, c and a,b, c, the set FA,B,c
a,b,c is an affine space.

Claim 2 An affine base for FA,B,c
a,b,c is efficiently computable.

Claim 3 If xi ∈ V then at any step of B(vk, V), L ⊆ Fn
q is an affine subspace

and x ∈ L.

Claim 4 If xi ∈ V , then B(vk, V) performs a polynomially bounded number of
queries to the GGM oracles.

Claim 5 Every time either condition at step 23 or 30 is satisfied, when step 24
or 33 respectively are executed, the dimension of L strictly decreases.

Claim 6 When step 27 is executed, then (Y, t) is a correct signature for m.

Claim 7 After step 2, dimL = n2 + dimV . Moreover, when B(vk, V) returns
(F,L) with π(L) = V , then dimL ≥ dimV .

Next we provide a sequence of claims about the adversary A, when executed
with B as in Fig. 5.

Claim 8 At any given step of A(vk), x1 ∈ V .

Claim 9 A performs a polynomially bounded number of queries to the GGM
oracles.

Claim 10 A(vk) fails with probability Pr [A(vk)→ fail] ≤ 1/2.

46

Proof of Claim 1. Given u,v,w ∈ FA,B,c
a,b,c we should show that w + (u − v) ∈

FA,B,c
a,b,c . Let d = u−v. Then Au, Av ∈ ImB+c implies the existence of r, s ∈ Fm

q

such that Au = Br + c and Av = Bs + c, therefore Ad = B(r − s). Moreover
by construction

a⊤u = b⊤r+ c, a⊤v = b⊤s+ c ⇒ a⊤d = b⊤(r− s).

Turning our attention to the vector w+d, its image through A lies in ImB + c
because Ad ∈ ImB. Furthermore for all y ∈ Fm

q such that By + c = A(w + d)

B(y − (r− s)) = Aw ⇒ a⊤w = b⊤(y − (r− s)) + c

⇒ a⊤w + a⊤d = b⊤y + c

⇒ a⊤(w + d) = b⊤y + c.

Thus w + d ∈ FA,B,c
a,b,c proving the claim.

Proof of Claim 2. Let H a weak left inverse of B, then we can rewrite FA,B,c
a,b,c

as the set of all x such that Ax ∈ ImB + c and

∀w a⊤x = b⊤(HAx+ (I −BH)w)− b⊤Hc+ c

using the fact that all solutions to By+c = t are of the form H(t−c)+(I−BH)w
for arbitrary w. Next we introduce an auxiliary space Vr,s,t defined as

Vr,s,t = {(x, z) ∈ Fn
q × Fn

q : r⊤x = s⊤z+ t}

Calling π : Vr,s,t → Fn
q the projection on the first component (x,w) 7→ x then it’s

easy to prove that, letting r = a−A⊤H⊤b, s = (I−BH)⊤b and t = −b⊤Hc+c

0× Fn
q ⊈ dir (Vr,s,t) ⇒ FA,B,c

a,b,c = ∅

0× Fn
q ⊆ dir (Vr,s,t) ⇒ FA,B,c

a,b,c = π(Vr,s,t) ∩ {x : Ax ∈ ImB + c}

Since Vr,s,t is an affine hyper-plane, a base of ImB+ c is efficiently computable,
and so is its preimage through A. Thus the thesis follows.

Proof of Claim 3. L is an affine subspace since initially L = V × Fn2
q . By in-

duction, assume that, at a given step, L is an affine subspace. Then it is only
updated at step 24 or 33. In both cases, by Claim 1, we have that L is the
intersection of two affine subspaces.

For the second part, initially x1 ∈ V implies x = x1||x2 ∈ V × Fn
q = L. Next

assume by induction x ∈ L. If step 24 is executed then the condition 23 is true,
meaning that x ∈ FA,B,c

ai,bi,ci
. Therefore x still lies in L. Conversely, if step 33 is

executed then by construction the signature satisfies AX = BY + c meaning
that Ax ∈ ImB + x. Thus again x ∈ L after step 33.

47

Proof of Claim 4. The only instructions involving generic group operation (ex-
cluding those using the simulated oracles) in the description of B (Fig. 5) are in
line 23 to check if X ∈ FA,B,c

ai,bi,ci
·G and in line 27 to compute Y.

For each message mi, within the cycle starting at step 5, these instructions
are executed at most once. Indeed if the condition in line 23 is satisfied then the
cycle is halted. Conversely if the condition is not satisfied, line 27 is executed
and subsequently the cycle is once again halted. Thus it suffices to show that
both these operations can be computed efficiently.

To check that X ∈ FA,B,c
ai,bi,ci

· G, given a base of this vector space (which
can be computed efficiently from Claim 2) it suffices to verify that for each v
in a base of the dual, it holds v⊤X = 1. Since the dual has dimension at most
n = n1+n2, this step can be performed using at most n2 external multiplications
and n(n− 1) additions.

Regarding the second instruction, when it is executed we have that x ∈ L by
Claim 3 and A ·L ⊆ ImB+c since the check at step 19 had to fail. In particular
Ax ∈ ImB+c. As shown in the proof of Claim 3, Section C.2, one can efficiently
compute a vector Y0 such that AX+BY0 = c ·G, and in particular this requires
only polynomially many generic group operations.

To conclude we need to improve this solution in such a way that for all
i ∈ {1, . . . , χ} such that βi = 0, a⊤i X + b⊤

i Y0 ̸= ci. To this aim call I = {i ≤
χ : βi = 0} and for all i ∈ I

Wi = {y : a⊤i x+ bi
⊤ = ci}.

First we observe that the solution for the system AX + BY = c · G is Y0 +
(KerB) ·G. Indeed for any vector Y, using the fact that Y0 is a solution too,

AX+BY = c ·G ⇔ B(Y −Y0) = 0 ⇔ Y ∈ Y0 + (KerB) ·G.

Next, calling y0 the discrete logarithm of Y0, i.e. such that Y0 = y0 · G, then
for all i ∈ I we prove that y0+KerB ⊈ Wi. Assuming by contradiction that for
some i this is not true, then, since y0 + KerB is the set of all solutions to the
linear system defined by A,B, c, we would have that for all y

Ax+By = c ⇒ y ∈Wi ⇒ a⊤i x+ b⊤
i y = ci.

In particular x ∈ FA,B,c
ai,bi,ci

which implies X ∈ FA,B,c
ai,bi,ci

·G, which is a contradic-
tion.

Observing now that Wi are hyperplanes and that dirWi = {y : b⊤
i y = 0}

we have that either Wi ∩ (y0 + KerB) = ∅ or KerB ⊈ dirWi. Let now J ⊆ I
be the set of indices i of those spaces such that Y0 ∈ Wi. If J were empty, Y0

would be the desired solution. Otherwise, for each of these spaces Wi, we can
efficiently find ui such that ui ∈ KerB \ dimWi, i.e. ui ∈ KerB and b⊤

i ui ̸= 0.
We claim, but not prove immediately, that a vector v that is not orthogonal

to any bi for i ∈ J and that lies in the span of uii∈J can be computed in
polynomial time. Assuming for the moment that the latter is true, then we can
conclude that the desired solution is one of the vectors in

{Y0 + (α · v) ·G : α ∈ {1, . . . , χ+ 1}}.

48

Indeed all these points (all distinct because χ− 1 < q, the order of G) lie on an
affine line passing through Y0 and with direction v. Since ui ∈ KerB, then also
the vector v ∈ KerB as it belongs to the span of {ui}i∈J , implying that the
line (and in particular the set described above) is contained in (y0 +KerB) ·G.
Next, by construction Y0 ∈ Wi for i ∈ J but v /∈ dirWi, we have that these
hyperplanes intersect the line only in Y0. Conversely the hyperplanes Wi with
i /∈ J by definition do not contain the point Y0 and in particular can intersect
the line in at most 1 point. As the number of these spaces is at most χ, by the
pigeonhole principle at least one among χ+1 points on the line does not belong
in any of them. As checking membership in Wi can be done with polynomially
many group operations as shown before, and χ is polynomially bounded, we can
find a point Y ∈ Y0 + (KerB) ·G such that Y /∈ Wi ·G for all i ∈ I. From the
way we defined Wi we thus proved that

Y ∈ Y0 + (KerB) ·G ⇒ AX+BY = c

Y /∈Wi ·G ⇒ a⊤i X+ b⊤
i Y = ci ·G.

That is a solution to the given system.
Before concluding the proof of the claim we are left with showing an algorithm

for computing v efficiently. This is presented if Figure 12. We show correctness

ExtPoint(b1, . . . ,bn,u1, . . . ,un):

1 : If n = 1: Return u1

2 : Else:
3 : v← ExtPoint(b1, . . . ,bn−1,u1, . . . ,un)

4 : If v⊤u ̸= 0: Return v

5 : Else:
6 : For α ∈ {1, . . . , n}:
7 : If (αv + un)

⊥bi = 0 for all i ∈ {1, . . . , n− 1}:
8 : Return αv + un

Fig. 12. ExtPoint, given b⊤
i ui ̸= 0 returns v a linear combination of ui s.t. b⊤

i v ̸= 0.

by induction. If n = 1, v = u1 is not orthogonal by hypothesis to b1 and
trivially lies on the span of u1. Assuming that correctness holds for n− 1, then
the intermediate vector v computed is not orthogonal to any b1, . . . ,bn−1 and
is a linear combination of u1, . . . ,un−1. If v is also non orthogonal to bn, then
it satisfies the desired property. Conversely, we have that for all α ∈ {0, 1}

(αv + un)
⊤bn = u⊤

nbn ̸= 0.

49

Regarding the other vector observe that for each i there can exists at most one
α ∈ Fq such that (αv + un)

⊤bi = 0, that is

α =
u⊤
nbi

v⊤bi
.

Since n < q the values of α we consider are all distinct and by the pigeonhole
there has then to exists an α such that (αv⊤ + un) is not orthogonal to any bi

for i < n. In conclusion (αv⊤ + un) is not orthogonal to any bi and it is, by
the inductive hypothesis, a linear combination of u1, . . . ,un. This concludes the
proof.

Proof of Claim 5. First of all, if condition at step 23 is satisfied, then by con-
struction the condition at step 21 is not (or step 23 is not executed). Hence
L ∩ FA,B,c

ai,bi,ci
is a proper subspace of L, which implies that after step 24 the

dimension of L decreases strictly.
If instead the condition at step 33 is satisfied, as done for the proof of Claim 6,

we can assume with loss of generality that X̃ and Ỹ share the same labels of X
and Y. Executing S.Vfy on input (X, s,m,Y, t) and calling β1, . . . , βχ the bits
returned by O0

eq invoked during this execution, we have that at least one of the
conditions on steps 17, 19 or 21 is satisfied (since the other conditions would
break the cycle). However

– If the check on step 17 is satisfied then S.Vfy on input (X, s,m,Y, t) would
output 0, meaning that the queried signature is rejected. This contradicts
correctness of the underlying scheme.

– If the test on step 21 is satisfied, by Claim 3 x ∈ L and in particular X ∈
FA,B,c

ai,bi,ci
for some i such that βi = 0. By construction this means that for

any Y′ that satisfies AX = BY + c ·G, then a⊤i X = b⊤
i Y

′ + ci ·G.
As A,B, c consist of the linear constraints tested by S.Vfy that X, Y and G
verifies, then AX = BY + c · G. In particular a⊤i X = b⊤

i Y + ci · G, which
contradicts the hypothesis that O0

eq(·) returns βi = 0 for the i-th query.

In conclusion we obtain that A · L ⊈ ImB + c, implying that {x ∈ L : Ax ∈
ImB + c} is a proper subspace of L. Hence after step 33 the dimension of L
strictly decreases.

Proof of Claim 6. First of all we remark that step 27 can be efficiently computed
since A · L ⊆ ImB + c, which by Claim 3 implies that, calling x the discrete
logarithm of X, Ax ∈ ImB + c, and x /∈ FA,B,c

ai,bi,ci
. In particular, calling V the

affine space of solutions y ∈ Fk
q such that Ax = By + c, and Vi the subspace of

V such that a⊤i x = b⊤
i y + ci we have two possible cases:

– dimV = 0: then since condition on step 23 is not satisfied, Vi ⊊ V , which
means that Vi = ∅ for all i such that βi = 0. In particular Y is the only
solution to the system AX = BY + c ·G, which is obtained by

Y = H · (AX− c ·G)

50

with H a left weak inverse of B, and it automatically satisfies all the condi-
tions of the form a⊤i X ̸= b⊤Y + ci ·G.

– dimV ≥ 1: then since condition on step 23 is not satisfied, Vi ⊊ V is a proper
subspace of V . It follows that

⋃
i:βi=0 Vi contains at most χ ·qdimV−1 points.

Since χ is polynomially bounded (or the verification algorithm would not be
efficient) χ < q and in particular the set V \

⋃
i:βi=0 Vi is not empty and a

vector Y satisfying the above conditions can be obtained for instance with
overwhelming probability greater than 1− χ · q−1 by setting

Y = H(AX− c ·G) + (I −HB)w ·G

with H a weak left inverse of B and w←$ Fn
q .

Finally to show that (Y, t) is a valid signature we first observe that without
loss of generality we may assume that X and Y have the same labels of X̃ and
Ỹ. Indeed A can set X̃ with the same labels of X and Ỹ with large enough
labels so that, for a given Y ∈ Gk, up to performing dummy operations (adding
zeroes for instance), it is possible to obtain a new vector Y′ representing the
same group elements of Y and with the same labels of Y.

As the inputs (X, s,m,Y, t) and (X̃, s,m, Ỹ, t) are equal, the deterministic
algorithm S.Vfy performs the same queries to Oadd and O0

eq. In particular, for
the i-th query, if βi = 0 then a⊤i X ̸= b⊤

i Y+ ci ·G, meaning that O0
eq(·) returns

0 = βi. Conversely if βi = 1, then a⊤X = b⊤Y + ci · G, meaning that O0
eq(·)

returns 1 = βi. Hence the execution of S.Vfy produces the same output b it
returns when executed with the simulated group G̃. As condition on step 17 is
not satisfied, b = 1, meaning that the signature (Y, t) is valid for m.

Proof of Claim 7. Initially L = V×Fn2
q implies dimL = n2+dimV . If B(vk, V)→

(F,L) with π(L) = V then dimL ≥ dimπ(L) ≥ dimV .

Proof of Claim 8. Analogous to the proof of Claim 7.

Proof of Claim 9. As in the proof of Claim 6, it can be shown that A executes
its subroutine a polynomial number of times. By Claim 4 each execution requires
a polynomial number of queries to the GGM and not other query is performed
explicitly by A. The thesis follows.

Proof of Claim 10. Analogous to the proof of Claim 8.

51

	Introduction
	Our Results
	Our Techniques
	Interpretation of our impossibility and further implications
	Related Work
	Organization of the paper

	Preliminaries
	Vector Commitments
	Digital Signatures

	Algebraic Vector Commitments
	Generic Transformation from VCs to Signatures
	-Unforgeability

	Algebraic Signatures
	Attack to Schemes with Strictly Linear Verification
	Attack to Schemes with Generic Verification

	Conclusions
	Impossibility of Algebraic Vector Commitments
	Impossibility of Algebraic Signatures

	More Preliminaries
	Linear Algebra
	Min-Entropy
	Arithmetic circuits and R1CS
	Generic Group Model

	Examples and Constructions
	Linear vs Generic Verification for Signatures
	Secure Signatures with Linear Verification
	Succinct Vector Commitments with Linear Verification
	Tightness of Algebraic VC Lower Bounds
	Tightness of Algebraic Signatures Lower Bounds

	Postponed Proofs
	Generic Transformation to Signatures
	Attack to Schemes with Strictly Linear Verification
	Attack to Schemes with Generic Verification

