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Abstract. The learning with errors (LWE) assumption is a powerful
tool for building encryption schemes with useful properties, such as plau-
sible resistance to quantum computers, or support for homomorphic com-
putations. Despite this, essentially the only method of achieving thresh-
old decryption in schemes based on LWE requires a modulus that is
superpolynomial in the security parameter, leading to a large overhead
in ciphertext sizes and computation time.

In this work, we propose a (fully homomorphic) encryption scheme that
supports a simple t-out-of-n threshold decryption protocol while allowing
for a polynomial modulus. The main idea is to use the Rényi divergence
(as opposed to the statistical distance as in previous works) as a mea-
sure of distribution closeness. This comes with some technical obstacles,
due to the difficulty of using the Rényi divergence in decisional security
notions such as standard semantic security. We overcome this by con-
structing a threshold scheme with a weaker notion of one-way security
and then showing how to transform any one-way (fully homomorphic)
threshold scheme into one guaranteeing (selective) indistinguishability-
based security.

1 Introduction

In a public key encryption (PKE) scheme, one needs the secret key sk to decrypt
an encrypted message. Giving one single party control of the whole secret key can
be seen as a single point of failure. The study of PKE with threshold decryption
aims to mitigate this by splitting the secret key into n key shares skq,...,sk,,
such that several key shares are needed to be able to decrypt ciphertexts. This
is known as threshold public key encryption (ThPKE). In the common ¢-out-of-n
setting, any set of ¢ parties or fewer learns no information about encrypted mes-
sages, while any set of ¢ + 1 parties can jointly decrypt ciphertexts. To decrypt,
the parties first compute their own partial decryption shares and then combine
them together to recover the encrypted message. When ¢t = n — 1, we call it
full-threshold decryption.
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Recently, NIST announced the standardization of the first cryptosystems to
provide security even in the presence of quantum computers.! Among the finalists
to be standardized, a majority base their security on the presumed hardness of
(structured) lattice problems, such as Dilithium [Lyu+20] and Kyber [Sch+20]
based on the (module) learning with errors problem (M-LWE) [LS15]. NIST
also just began a project on threshold cryptography,”’which aims to produce
guidelines and recommendations for implementing threshold cryptosystems.

It is thus a very important research question to study the possibility of
thresholdizing lattice-based PKE schemes. This line of research has been ini-
tiated by [BD10], where they proposed a threshold key generation and decryp-
tion starting from Regev’s encryption scheme [Reg05]. To split the secret key
they use replicated secret sharing, which has a complexity that scales with (7;)
Later, it has been shown that we can even build full-threshold decryption for
fully homomorphic encryption (FHE) schemes [Ash+12]. A threshold fully homo-
morphic encryption scheme (ThFHE) allows to perform arbitrary computations
on encrypted data and afterwards to partially decrypt the outcome of the com-
putations. Their results have then been extended to t-out-of-n threshold and
other access structures [Bon+18].

All works above have in common that they use a technique called noise flood-
ing to guarantee that partial decryption shares do not leak any information on
the underlying secret key. More precisely, each party first computes a “noiseless”
partial decryption of a ciphertext using their secret key share. The noiseless
partial decryptions allow recovering the message, but also reveal a small noise
term e that depends on the given ciphertext and the secret key. To prevent this
leakage, every party locally adds some fresh noise on their decryption share be-
fore they jointly combine the necessary number of shares to recover the message.
After decryption, the revealed noise term becomes eq + €/, where € < Djoog
is a noise term that is hidden to the adversary. When proving security, the real
partial decryption shares are replaced by simulated ones which do not depend on
the secret key, and instead reveal noise terms of the form e’ < Dyooq. By argu-
ing that the statistical distance between both ways of deriving partial decryption
shares is negligible, one can argue security. While this approach has the advan-
tage of being rather simple, it has the drawback of requiring the ratio between
the flooding noise and the size of the ciphertext noise e to be superpolyno-
mial in the security parameter. This in turn requires the LWE problem to be
secure with a superpolynomial modulus-to-noise ratio, which weakens security
and requires larger LWE parameters to compensate.

Recently, multi-party reusable non-interactive secure computation (MrNISC)
was constructed from LWE with a polynomial modulus [Ben+21; Shi22]. This
leads to a construction of full-threshold (multi-key) FHE with a polynomial mod-
ulus. It seems plausible that their construction can also be extended to build ¢-
out-of-n threshold FHE with polynomial modulus; however, their techniques are
very complex, due to a non-black-box “round-collapsing” technique based on gar-

! https://csrc.nist.gov/projects/post-quantum-cryptography
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bled circuits, so unlikely to be practical. We thus started our work asking the
following research question:

Is it possible to construct a fully homomorphic encryption scheme that
supports a simple t-out-of-n threshold decryption while allowing for a
polynomial modulus?

Our Results. We give a positive answer to this question. On a high level, we
show that the simple threshold decryption technique from previous works [BD10;
Bon+18] can be significantly improved by replacing the noise flooding analysis
with respect to the statistical distance by one with respect to the Rényi diver-
gence (RD). Doing so comes with the benefit of only requiring a polynomial
ratio between ciphertext noise and flooding noise, hence allowing for the desired
polynomial modulus. However, it comes with several additional challenges. First,
the Rényi divergence fits well in search-based security notions, such as OW-CPA
security®, but does not work well with decision-based security notions, such as
the standard IND-CPA security.* Furthermore, it is especially difficult to apply
the Rényi divergence to obtain simulation-based security, as required for typical
notions of threshold decryption, since a small RD between two distributions does
not imply a small statistical distance.

To overcome these challenges, we define new game-based notions of OW-CPA
and adaptive/selective IND-CPA security for threshold homomorphic cryptosys-
tems, which are compatible with Rényi divergence-based proofs, whilst also giv-
ing desirable security guarantees for applications. Then, we give general trans-
formations from OW-CPA to IND-CPA security for ThPKE and ThFHE schemes.
Whereas the first transformation only applies to standard PKE and is in the
random oracle model, it comes with the advantage of guaranteeing adaptive
indistinguishability as well as a form of robustness against up to t malicious
parties, with no extra cost. The second transformation is in the standard model
and also applies to the fully homomorphic setting, but does only give selective
indistinguishability while not giving robustness. For the latter transformation
to go through, we also need the OW-CPA ThFHE scheme to be circuit private;
while this property is often achieved using noise flooding techniques that require
a large modulus, it is also possible to use bootstrapping [DS16] or GSW-style
FHE [Bou+16] to obtain circuit privacy with a polynomial modulus. Finally,
we also show how to construct OW-CPA schemes based on the (module) LWE
assumption with a polynomial modulus.

Put together, these techniques lead to our main result of ThFHE from (mod-
ule) LWE with a polynomial modulus. More precisely, in our construction the
modulus ¢ scales as O(\/Z), where ¢ is the number of partial decryption queries
made by an adversary within the security game, so ¢ is polynomial as long as ¢
is polynomially-bounded in advance.

3 OW-CPA security for PKE roughly says that given the public key and an encryption
of a random message m, it is hard to guess m.
4 Unless a property called public sampleability is fulfilled [Bai+18].
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What about IND-CCA security? We could likely upgrade our construction (for PKE)
to be IND-CCA secure using non-interactive zero-knowledge proofs, similarly
to [Dev-+21a]. However, note that (adaptive) IND-CCA security is not possi-
ble for homomorphic encryption, and IND-CPA is still useful for standard PKE;
indeed, [HV22] showed that an IND-CPA secure KEM sulffices to prove security
of TLS-1.3. Furthermore, when running TLS with ephemeral keys and no key
re-use, the adversary only ever sees a single ciphertext under any public key —
this is an ideal use-case for using our ThPKE construction in a threshold post-
quantum TLS setting (e.g. for hardening security of a TLS server), since we only
need to choose the parameters to be secure against a single decryption query.

1.1 Overview of Techniques

Defining IND-CPA security for ThFHE (Section 3). Most of the previous IND-CPA
security definitions of ThFHE required the underlying FHE scheme to be IND-CPA
secure and the partial decryptions to be statistically simulatable, e.g. [Bon+18].
When replacing the statistical distance by the Rényi divergence, however, we
cannot prove the statistical simulation anymore and instead have to move to a
game-based notion that combines the IND-CPA game and the partial decryption
queries together into one single game. Here, to support homomorphic compu-
tations, we consider a game where in each partial decryption query, first some
homomorphic evaluation is performed on a set of ciphertexts, before giving de-
cryptions of the result to the adversary. When and how the adversary gets access
to the partial decryption oracle within the IND-CPA game crucially impacts the
strength of the achieved security. For example, one can allow the adversary to
only query partial decryptions before seeing the challenge ciphertext. This was
done in a previous version of the ThFHE scheme proposed in [Cho-+22a], which
also uses a Rényi divergence based analysis. Or, one can allow the adversary to
only query partial decryptions on ciphertexts that do not contain the challenge
ciphertext. This is what we voted for in an earlier version of this paper [BS23a].
A more realistic setting, is to provide partial decryptions of circuit evaluations
that involve the challenge ciphertext(s). Again, there are multiple choices here.
If the adversary sends a list of message pairs and circuits to be encrypted, eval-
uated and decrypted all at one in the beginning of the game, we call it selec-
tive IND-CPA. If the adversary can switch between challenge encryption queries
and partial decryption queries, we call it adaptive-IND-CPA.> Of course, to pro-
hibit trivial attacks, in both adaptive and selective flavors, the partial decryption
oracle refuses to answer to queries which would directly leak which message has
been encrypted when computing the challenge ciphertext. Both flavors of secu-
rity notion, while lacking simulation-based security, still offer a strong guarantee

® The notion introduced in [JRS17] (which is also used in an updated version
of [Cho+22b]) lies in between our selective and adaptive notions of IND-CPA. In
their version, the IND-CPA game is split into two sequential phases, where the ad-
versary first sends all messages to be encrypted at once and in a second phase sends
all circuits to be evaluated and then partially decrypted, again at once. The latest
version of [Cho+22c| uses selective IND-CPA.
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in the form of input indistinguishability: given partial decryptions for an evalua-
tion f(x1,z2), where z; is known to the adversary and x5 is hidden, our security
games imply that the adversary cannot distinguish whether the input zo was
used, or some other input x4 such that f(z1,z2) = f(z1,2%). Similar notions
have been used in secure multi-party computation [MPR06; CPP16].

To further motivate our definition, we highlight that allowing partial de-
cryption queries that involve the challenge ciphertext is critical to achieving a
meaningful notion of security. In a typical use-case, the goal of using ThFHE
is to compute some function f(x1,...,x,), the result of which only reveals a
small amount of information compared to the inputs x;. However, in a security
game it is always the challenge ciphertext that contains the hidden information,
so disallowing this in partial decryption queries does not capture the desired
goals. Indeed, consider the following ThFHE scheme that is obviously insecure
in this setting: firstly, modify the evaluation algorithm to output not only an
encryption of f(x1,...,x,), but also the encryption of x1; secondly, modify the
partial decryption algorithm to also output partial decryptions for x;. Given a
set of partial decryptions for f(z1,...,2,), the parties will also learn 7 which is
exactly what we want to avoid. Going back to the definition of IND-CPA security
for ThFHE, as the security game of [Cho+22a] only allows for partial decryp-
tion queries before seeing the challenge ciphertext, the above obviously insecure
construction could actually be shown secure using their definition.

Defining OW-CPA security for ThFHE (Section 3). As mentioned above, the
Rényi divergence is hard to use in the context of decision-based security notions,
such as IND-CPA. We give some intuition on why this is the case in the follow-
ing. The probability preservation property of RD allows us to reason about the
probability of a bad event happening in two different games. Roughly speak-
ing, this says that if D, Dy are distributions such that the Rényi divergence
of Dy from D5 is at most J, then for any event F, it holds that Pr[D;(E)] <
(Pr[Dy(E)] - )¢, for some constant ¢ close to 1. If the event E occurs with neg-
ligible probability in game D, then we can get by with a polynomial-sized ¢
to argue the same holds in D;. However, this is inherently hard to make use of
in distinguishing games like IND-CPA, where probabilities of winning are close
to 1/2.

Instead of IND-CPA security, therefore we first aim for OW-CPA security,
which is easier to prove with the Rényi divergence. When defining OW-CPA in the
(fully homomorphic) threshold setting, the main changes are that the adversary
also obtains ¢ shares of the secret key and has access to a bounded number of
partial decryption queries. In order to avoid trivial attacks, the partial decryption
oracle refuses to answer to queries which would leak too much information on the
challenge messages which the adversary tries to recover. As a measurement of
too much information we use conditional min-entropy [Dod+08]. In other words,
the oracle only answers to queries if the min-entropy of the challenge message
conditioned on all the previously queried circuits and circuit evaluations is not
much smaller then the original min-entropy of the challenge message.
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Constructing full-threshold OW-CPA-secure ThFHE (Section 5). To simplify the
presentation in the introduction, we first describe our construction in the full-
threshold setting and then explain how to get t-out-of-n threshold. As a starting
point, we take any encryption scheme whose decryption function is nearly linear,
as is the case for most LWE-based encryption schemes (including FHE). That is,
for a given ciphertext ct on a message m with respect to a key pair (sk, pk), it
holds that (sk,ct) = m + e, where e is what we earlier called decryption noise
and depends on the ciphertext and the secret key.’

To achieve threshold decryption, we use standard additive secret sharing to
split the secret key into sky,...,sk, in a setup phase. By linearity, we could
simply set the partial decryption shares as d; = (ct, sk;). However, after sum-
ming all shares together, the parties recover e, which leaks information on sk.
As in previous threshold solutions for lattice-based schemes, to compute their
decryption share d; every party now locally adds to d; a noise term e; which is
sampled from the noise flooding distribution Dfooq. When summing those partial
decryption shares together, the parties learn m + et + Y., €;.

To prove the OW-CPA security of our construction, we modify the security
experiment such that in a first step, the answers to the partial decryption queries
no longer depend on the underlying secret key sk (reflected by e.t), and in a sec-
ond step the secret key shares are also independent of sk. In this case, OW-CPA
security of the threshold scheme is implied by the OW-CPA security of the un-
derlying standard encryption scheme. We simulate the partial decryption noise
term ecc+ Y., €; by sampling some independent noise €’ <— Dgim. As long as the
Rényi divergence between the two noise distributions is bounded by a constant,
we can appeal to the probability preservation property, and the negligible prob-
ability of some PPT adversary guessing the message is preserved in both games.
Note that previous works always chose Dgm = Drood, but we later exploit in
Section 6 that choosing a different Dy, can lead to better parameters.

From full-threshold to t-out-of-n threshold (Section 5). When moving to the ¢-
out-of-n setting, a natural choice is to use Shamir secret sharing. However, this
leads to the problem that reconstruction is no longer addition, and instead re-
quires multiplying the partial decryptions with Lagrange interpolation coeffi-
cients. These coefficients may be large, which in turn blows up the noise, breaking
correctness. We offer two different solutions to this issue.

First, as in [Bon+ 18], we can use a special type of linear secret sharing scheme
with binary coefficients, so that reconstruction is always a simple sum. Efficient
threshold schemes with this property exist, for any n,t. We also consider a sec-
ond method based on pseudorandom secret sharing [CDIO5], which allows the
parties to generate sharings of bounded, pseudorandom values without interac-
tion. This uses replicated secret sharing, which is more expensive, but on the
other hand, allows the partial decryptions to be converted into Shamir sharings

6 Actually, it only reveals an encoding of m, which is easy to decode as long as pa-
rameters are set accordingly.
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before reconstruction. This leads to smaller partial decryptions, slightly better
parameters and gives a form of robustness via Shamir error correction.

From OW-CPA to IND-CPA security, Transform 1 (Section /). Our first trans-
formation (Section 4.1) can be seen as the generalization of an existing OW-CPA
to IND-CPA transformation in the random oracle model [HHK17] to the threshold
setting. The main idea is to use the OW-CPA-secure scheme to encrypt random
messages. The vector x composed of those random messages then serves as input
to a random oracle F, whose output hides the message m we are about to encrypt.
By appending the output of a second and independent random oracle G queried
on the same vector x, we make sure that no adversary can provide incorrect de-
cryption shares without getting caught. To this end, we define in Section 3.2 two
new notions of robustness for (passively secure) threshold public key encryption,
which might be of independent interest. The length of the vector x provides
a trade-off between the security loss of the reduction and the compactness of
ciphertexts. The resulting flavor of IND-CPA is the adaptive version. We stress
that, as we explain below, we apply this transformation only to plain ThPKE,
not to the fully-homomorphic case.

From OW-CPA to IND-CPA security, Transform 2 (Section /). Whereas the re-
duction from above is simple and tight, it has the disadvantage of needing a
random oracle to mask the message m. When we consider threshold decryption
in the fully homomorphic setting, we need to make sure that we can homomor-
phically evaluate ciphertexts. However, the use of the random oracle makes such
an evaluation impossible, as there is no efficient circuit description of random
oracles. We thus propose in Section 4.2 a second transformation which now is in
the standard model (but does not give robustness).

The high level idea is to encrypt a message m of § bits, is to sample a ran-
dom message x and to encrypt it using the OW-CPA-secure scheme. Then, the
message bits are hidden by § hard-core bits coming from a concatenation of ¢
Goldreich-Levin extractors. We use the notion of unpredictable entropy [HLROT7]
to give a bound on how many pseudorandom bits can be extracted from this con-
struction. We say that a message x has unpredictability entropy k if for any PPT
adversary A the probability of finding x given Enc(pk, x) is at most 27%. We can
then use existing results that show that a concatenation of é Goldreich-Levin
extractors can be used to extract kK — O(log(1/¢)) pseudorandom bits, where ¢ is
the desired distinguishing advantage. Those pseudorandom bits then allow us to
encrypt a message such that the ciphertexts of two given messages are computa-
tionally indistinguishable. We stress that the resulting flavor of IND-CPA is only
the selective version. This is due to the use of the Goldreich-Levin extractor. We
wrongly claimed adaptive security in an earlier version of this paper [BS23b].

To prove this construction IND-CPA secure, we additionally need to assume
circuit privacy of the underlying OW-CPA secure FHE scheme. Intuitively, this
is necessary because the IND-CPA security definition says that an adversary
should not be able to distinguish between the partial decryptions of a ciphertext
encrypting f(z1,22) and those for a ciphertext encrypting f(xy,z5) for some
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xh # xo where f(x1,22) = f(z1,25). If, for instance, af, = 25 @ 1, this is equiva-
lent to distinguishing between ciphertexts for f(x1,x2) and g(x1,x3), where the
function g is defined as g(x,y) = f(z,y®1). This can be seen as a circuit privacy
problem, thus, intuitively, it seems that some form of circuit privacy is necessary
to build IND-CPA-secure FHE.

Sample Parameters and Security Analysis (Section 6). We conclude our work
by discussing how to choose concrete sample parameters for our threshold PKE
scheme, when instantiating it with the lattice-based scheme Kyber [Sch+20].

As an example, to obtain 1-out-of-2 threshold decryption with a single query
(e.g. for ephemeral key exchange), we can use the same parameters as Kyber1024
with a modulus increased only by a factor of 5, while supporting > 100 bits of
classical hardness from our reduction. In a setting with up to 232 queries, we
need to use a 39-bit modulus and slightly larger module rank; this increases the
ciphertext size by around 5x.

Finally, we show in Section 6.2 that using the Rényi divergence noise flooding
leads to almost optimal parameters by providing an attack if the adversary
gets access to slightly more partial decryptions (while fixing the flooding noise).
Equivalently, the attack succeeds if slightly lower flooding noise would be used
while fixing the number of partial decryption queries.

1.2 Related work

Similarly to our work, [Cho+22a; Cho+22b; Cho+22c] used the Rényi divergence
to obtain threshold FHE from LWE with a polynomial modulus-to-noise ratio. By
arguing that the public sampleability property applies in their setting, they di-
rectly used the Rényi divergence to prove IND-CPA security. However, their work
focuses on a specific construction of ThFHE based on Torus-FHE, whereas our
results are phrased generically for all encryption schemes with nearly linear de-
cryption. Lastly, they focus on linear integer secret sharing schemes, whereas we
additionally propose pseudorandom secret sharing and different ways of achiev-
ing robustness.

The Rényi divergence has seen widespread use in security proofs in lattice-
based cryptography, since [Bai+18]. Replacing statistical noise flooding by Rényi
noise flooding has led to a significant improvement in parameters for security
reductions, for instance when proving the hardness of (structured) LWE with
a binary secret [Bou+20], when designing multi-key FHE [DWF22], or more
recently, in the context of lattice-based threshold signatures [ASY22]. The lat-
ter work of [ASY22] is quite similar to ours, since they also apply Rényi noise
flooding to threshold FHE; however, they do not directly prove security of the
threshold FHE scheme, and instead analyze the resulting threshold signature
scheme directly (which is based on a search problem, so amenable to a Rényi
divergence analysis). They additionally show the optimality of their noise flood-
ing by providing an attack when a smaller noise flooding ratio is used. As the
attack uses that their signature scheme is deterministic, it does not directly ap-
ply to our randomized encryption scheme. Previous works [Dev-+21b; Nae+20]
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have already observed that OW-CPA allows to bypass the issues caused by the
Rényi divergence. However, both are in the PKE setting, whereas our work fo-
cused on the FHE setting. This required some care: it is not straightforward
to define a OW-CPA notion in the fully-homomorphic setting and the standard
transformation used in [Dev+21b; Nae+20] to lift one-way security to indistin-
guishability is not suited for the fully-homomorphic setting neither.

In an independent line of work, another noise flooding technique, called gen-
tle noise flooding, has been studied in order to avoid the superpolynomial pa-
rameter blow-up [BD20a]. It was first used in theoretical hardness results on
entropic (structured) LWE [BD20a; BD20b]. Later, a similar technique was used
in [Cas+22] for improving parameters in additively homomorphic encryption
with circuit privacy. The setting of [Cas+22]| is quite different to ours, however,
since with circuit privacy, the challenge is to deal with leakage on a plaintext
rather than the secret key. This is handled via gentle noise flooding by applying
a randomized encoding to the plaintext, so that leaking a constant fraction of its
coordinates does not reveal anything about the plaintext. A similar technique
does not seem to work in the threshold setting, with leakage on the secret key.

From a high level perspective, our adaptive notion of IND-CPA security has
some similarities to the notion of IND-CPA” security introduced in [LM21] in
the context of approximate FHE. For instance, partial decryption queries in our
setting correspond to decryption queries in their setting. Our security notion
further matches with the game-based input-indistinguishability notion in the
context of secure multi-party computation from [MPR06; CPP16], when realizing
the latter with the help of ThFHE.

Another approach to build threshold key generation and decryption protocols
is to use general multi-party computation tools like garbled circuits. This was
done in [Kra+19] for a Ring-LWE based scheme. Their solution does not need
any noise flooding or increased parameters of the underlying scheme, however,
it relies on generic multi-party computation techniques like garbled circuits,
and the partial decryption shares are generated using an expensive, interactive
protocol rather than non-interactively as in our setting.

1.3 Changelog

This paper has been updated multiple times since its first apparition on the
TACR ePrint server. To better help navigating the different versions, we give a
quick summary of the changes below.

— [BS23a] We correctly used weak-£-IND-CPA security (Def. 25).

— [BS23b] After having observed, that weak-¢-IND-CPA is not a very realistic
security notion, we switched to adaptive-¢-IND-CPA security (Def. 20) for
both OW-CPA to IND-CPA transformations in Section 4.

— [BS23c] An issue with the proof of Theorem 3 was found by anonymous

reviewer(s). As a fix, we added the circuit privacy condition (also for the
published version [BS23d]).
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— This version: We were made aware that the proof of Theorem 3 is not correct

as it is. We don’t obtain adaptive-¢-IND-CPA security, but only selective-¢-IND-CPA

security for the transformation in Section 4.2. The transformation in Sec-
tion 4.1 still leads to adaptive-¢-IND-CPA security.

2 Preliminaries

For any positive integer ¢, we denote by Z, the integers modulo ¢ and for any
positive integer n, we denote by [n] the set {1,...,n}. Vectors are denoted in
bold lowercase and matrices in bold capital letters. The identity matrix of or-
der m is denoted by I,,. The concatenation of two matrices A and B with the
same number of rows is denoted by [A|B]. The abbreviation PPT stands for
probabilistic polynomial-time. When we split a PPT adversary A in several sub
algorithms (A4;);, we implicitly assume that A4; outputs a state that is passed to
the next A; ;1. We call a function negl(-) negligible in \ if negl(A) = A=«() i.e.,
it decreases faster towards 0 than the inverse of any polynomial.

Throughout the paper we make use of the random oracle model (ROM), where
we assume the existence of perfectly random functions, realized by oracles. For
a random oracle F: {0,1}" — {0,1}" it holds that Pr[F(z) = y] = 27™ and
that Pr[F(z) = F(z') = y: 2 # 2'] = Pr[F(z) = y] - Pr[F(2’) = y] = 272™. Hence,
random oracles are per definition collision resistant. For z,y € {0,1}" we denote
by x @ y the bit-wise XOR, operator.

2.1 Probability and Entropy

For a finite set S, we denote its cardinality by |S| and the uniform distribution
over S by U(S). The operation of sampling an element « € S according to a
distribution D over S is denoted by x < D, where the set S is implicit.

For standard deviation o > 0 and mean ¢ € R, we define the continuous
Gaussian distribution D, .: R — (0,1] by Dy e(x) = 1/(0v27) - exp(—(z —
¢)?/(20?)). We also define the rounded Gaussian distribution over Z, by rounding
the result to the nearest integer, and denote this by | Dy .].

A random variable X over R is called 7-subgaussian for some 7 > 0 if for
all s it holds E[exp(sX)] < exp(72s%/2). A 7-subgaussian random variable sat-
isfies E[X] = 0 and E[X?] < 72. We associate to X the width o = /E[X?2].
The continuous Gaussian distribution D, and its rounded version |D,| are o-
subgaussian. Further, the uniform distribution over [—a, a] NZ is a-subgaussian.

The statistical distance between two probability distributions X and Y, de-
noted by sdist(X,Y), is defined as maxy|Pr[T(X) = 1] — Pr[T(Y) = 1]|, where T
is any test function. The computational distance with respect to size s circuits,
denoted by cdist,(X,Y"), limits T to be any circuit of size s. For any event E,
the probability preservation property of sdist (resp. cdists) states that X (E) <
Y(E) + sdist(X,Y) (resp. X(E) <Y (F) + cdists(X,Y)).

The notion of unpredictable entropy has been introduced and studied in [HLRO07]

in the context of conditional computational entropy.
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Definition 1 (Unpredictable Entropy). For a distribution (X,Z), we say
that X has unpredictable entropy at least k conditioned on Z, if there exists
a collection of distributions Yz (giving rise to a joint distribution (Y, Z)) such
that cdists((X, Z2), (Y, Z)) < e, and for all circuits C of size s,

Pr[C(Z) =Y] < 27"
We write HX"P(X|Z) > k.

Definition 2 (Concatenated Goldreich-Levin Extractor). Fiz n,é € N.
We define the concatenated Goldreich-Levin extractor £: {0, 1}" x ({0,1}")° —
{0,1}° x ({0,1}")° as

E(x,81,...,85) = ({x,81) mod 2,...,(x,s5) mod 2,s1,...,8s).

Definition 3 (Reconstruction procedure [HLRO7, Def. 6]). Let E : {0,1}"x
{0,1}¢ — {0,1}™ x {0,1}? be a function whose last d outputs equal the last d in-
put bits. E has (¢, ¢)-reconstruction if there is a pair of oracle algorithms (C, D),
where C) : {0,1}" — {0,1}¢ is compressing, while D) : {0,1}* — {0,1}" is
a “decompressor” that runs in time polynomial in n. Furthermore, for every x
and distinguisher T, if |Pr[T(E(z,Ug)) = 1] — Pr[T (U, x Ug) = 1]| > € then
Pr[DT(CT(z)) = z] > 1/2.

Lemma 1. The concatenated Goldreich-Levin extractor € has (0 + £, de)-recon-
struction for any € € (0,1] and ¢ = log, 2n + 2log,(1/¢).

Proof. This is a consequence of the proof of the Goldreich-Levin theorem [GL&9].
First, let T be a distinguisher for the Goldreich-Levin extractor with § = 1.
Suppose that the advantage of T is larger than ¢, that is, for any z, it holds that
|Pr[T'(E(z,Uy)) = 1] — Pr[T'(Uy x U,) = 1]| > e. From the GL theorem (see, for
instance, the presentation by Bellare [Bel99, Thm. 3]), there exists an algorithm
A that, given oracle access to T, runs in time O(n3c~%) and outputs a list £ of
M = 2n/e? strings, such that Pr[z € £] > 1/2. Define the algorithm C' to simply
run A and output the index of x in £, which is log, M bits, and define D to
iteratively compute £ and output the corresponding element. This shows that the
GL extractor with § = 1 has (¢, ¢)-reconstruction for £ = log, (M) = log,(2n/c?).
For ¢ > 1, from [HLRO7, Prop. 1] we obtain that the concatenation of 4 extractors
with (¢, e)-reconstruction has (0 + ¢, §e)-reconstruction. O

Using the reconstruction property of Goldreich-Levin, we get the following
bound on the number of pseudorandom bits that can be extracted.

Lemma 2 (JHLRO7, Lemma 6]). Let X be a distribution with unpredictable
entropy H"P(X|Z) > k and let £ be the concatenated Goldreich-Levin extractor
for somen,0 € N. If k = 0+1log, 2n+3log, 1/¢, then & extracts 6 pseudorandom
bits, i.e.,

cdisty ((Z,€(X,U({0,1}"%))), (Z,U({0,1}° x {0,1}™))) < 50¢,

where s' = O(sn=3e%).
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Let x follow a distribution on a set X, and z follow a possibly correlated
distribution on a set Z. The average conditional min-entropy [Dod+08] of x
given z is defined by

Hoo(x|z) = —log, (EZ/ Lr(rllg))g Prjx = x|z = z’]]) .

Lemma 3 ([Dod+08, Lem. 2.2]). Let x,y, z be three random variables, where z
takes at most 2* values. Then

ﬁoo(x‘y?z) > E’oo(x|y) - A

The Rényi divergence (RD) defines an alternative measure of distribution
closeness. We follow [Bai+18] and use a definition of the RD which is the expo-
nential of the classical definition. We restrict the order a to be in (1, 00).

Definition 4 (Rényi Divergence). Let P and Q) be two discrete probability
distributions such that Supp(P) C Supp(Q). Fora € (1,00) the Rényi divergence
of order a is defined by

o= Y oW

z€Supp(P)

The definitions are extended in the natural way to continuous distributions.
We recall some useful properties of the RD. The first two were proven in [EH14]
and the last one was proven in [Ros20, Prop. 2].

Lemma 4. Let P,Q be two discrete probability distributions with Supp(P) C
Supp(Q). For a € (1,00), it yields:

Data Processing Inequality: RD,(g(P)||g(Q)) < RD,(P|Q) for any func-
tion g, where g(P) (resp. g(Q)) denotes the distribution of g(y) induced by
sampling y < P (resp. y + Q).

Probability Preservation: Let E C Supp(Q) be an event, then for a € (1,00)

Q(E)-RD4(P|Q) > P(E)aT.

Multiplicativity: Let P,Q be two probability distributions of a pair of random
variables (Y1,Ys). For i € {1,2}, let P; (resp. Q;) denote the marginal dis-
tribution of Y; under P (resp. Q), and let Py1(-|y1) (resp. Q21(+|y1)) denote
the conditional distribution of Ya given that Y1 = y1. Then for a € (1,00)

RD,(P||Q) < RD,(P1|Q1) " nax RDq(Pop1 (+|y)[| Q21 (+y1))-

The Rényi divergence of two shifted Gaussians is given below. This also allows
us to bound the RD of rounded Gaussians by the data processing inequality.
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Lemma 5 (J[GAL13]). Let o be a positive real number and ¢ € Z. Then for a €
(1,00) it yields

CL02
RD.(Ds .|| Dy) = — .
(DrilDr) = o0 (53

Lemma 6. Let D1, Dy be two probability distributions over Z and eq,...,en be
(possibly dependent) random variables over Z N [—B, B| for some B € Z, for
which there exist a € (1,00) and p > 1 such that for all § with |8] < B, it holds
that Supp(D; + ) C Supp(Ds), and furthermore, RD, (D1 + B||D2) < p. Then,

RD,((D1 +en, ..., D1 + )| DY) < p

Proof. We apply N times the multiplicativity property of the Rényi divergence
as follows. Let P = (Dy + en,...,D; + e1) and Q = DY. Our goal is to
bound RD,(P||Q). We start with setting their marginal distributions as P; =
(Dl +6N_1, . 71)1 +€1), Ql = Dév_l, PQ = D1+€N and Q2 = DQ. FOI‘j S [N],
let F; denote the random variable given by the distribution D;+e;. By Lemma 4,
it yields

RD.(P||Q) < RD.(P1]|Q1) ;ngg/( RDy (D1 + en|Y1 = 11| D2|Y1 = 11)
1 1
< RD.(P1|Q1) + nax RD. (D1 + B|Y1 = y1||D2|Y1 = 1)
1 1

< RD.(P1]|Q1) - RDo (D1 + SB[ D2)
< p-RD.(P1[|Q1),

where (3 is such that |3] < B and Y7 = (En_1,...,E1). From line 2 to line 3
we used the fact that neither D1 + 8 nor Dy depend on Y; anymore. Finally, we
obtain RD,(P||Q) < p" by induction. O

2.2 Linear Secret Sharing

We use linear secret sharing schemes (LSSS) for monotone access structures with
a special {0, 1}-reconstruction property, as follows.

Definition 5 (Monotone Access Structure). Let P = {Py,...,P,} be a set
of parties and 2% its power set. A monotone access structure is a collection of
sets A C 27, such that for any S € A, if T D S then T € A. We say that A is
efficient if membership of A can be verified in time poly(\), where A is viewed
as a function of \.

In this work, we only consider efficient access structures. To ease notation,
we identify a party P; with its index 4, viewing each set S € A as a subset of [n].
For any S C [n] and vector v = (vy1,...,V,), we let v|g denote the vector of
shares restricted to v; for indices i € S.

Definition 6 (Linear Secret Sharing Scheme). Let g, L,n be positive in-
tegers and A a monotone access structure. A linear secret sharing scheme LSSS
for A is defined by a randomized algorithm Share : Z; — (ZqL)" and a family of
deterministic algorithms Recg : (Zé)‘s‘ — Zg, for S C [n], which satisfy:
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Privacy: ForanysetS ¢ A, anyx,z’ € Zy andv € ZqL‘S‘, it holds that Pr[Share(z)|s =
v] = Pr[Share(z)|s = v].

Reconstruction: For any set S € A, any x € Z, and v = Share(z), the recon-
struction algorithm outputs Recg(v|s) = z.

Linearity: For any «, 8 € Zg, any set S with |S| > t and any share vectors u, v,
it holds that Recg(au|s + Bv]s) = aRecg(ulg) + SRec(v]g).

When the set of shares is S = [n], we write Rec instead of Recy.
We need the following notion of valid and invalid share sets [Bon+18].

Definition 7. Letx € Zg, (v1,...,Vyn) = Share(z), and write v; = (Vi 1,...,ViL).
A set of pairs of indices T C [n] x [L] is an invalid set of share elements if the
corresponding shares (Vi ;) jer reveal no information about x. Otherwise, we
say that T is a valid set of share elements. We additionally say:

— T C [n] x [L] is a maximal invalid set of share elements if it is invalid,
but for any (i,7) € [n] x [L]\ T, the set T U {(4,7)} is a valid set of share
elements.

— T C[n] x [L] is a minimal valid set of share elements if it is valid, but for
any T" C T, the set T' is an invalid set of share elements.

Note that in any LSSS, a valid set as defined above always allows reconstruc-
tion of the secret x. This is because an LSSS can equivalently be defined by a
matrix M, such that each share element v; ; is computed as the inner product of
some row of M and (x,r1,...,7,—1), where r is the randomness used in Share.
Reconstruction is possible for a given set of share elements iff the corresponding
set of rows of M span the target vector (1,0,...,0). This definition implies that
any set of rows is either invalid — and reveals nothing about x — or valid, and
allows full reconstruction. For further details, see e.g. [Bei96, Chapter 4].

Our main construction requires that the reconstruction function Recg takes
a 0/1 combination of its inputs. In the following, we require this to hold not
only for any set of shares corresponding to a valid set of parties in A, but for
any valid set of share elements. This property is equivalent to the notion of a
derived {0, 1}-LSSS, used in [JRS17].”

Definition 8 (Strong {0, 1}-Reconstruction). We say that a LSSS has strong

{0,1}-reconstruction if for any secret x and (vi,...,vy,) = Share(z), for any
valid set of share elements T C [n] x [L], there exists a subset T'" C T such that
> ijer Vi = T, where vi = (vi1, ..., viL).

Sharing Values in R,4. In our constructions, we share x € R}, where R, =
Z4[X]/f(X), instead of just in Z,;. We do this coefficient-wise, by separately
sharing each coefficient of the r polynomials in x. Each party’s share then lies
in (RZ)L, and the parties can perform R,-linear operations on these shares.

" [Bon+18] only assumed a weaker property for their threshold FHE construc-
tion. However, this is a mistake introduced when merging the two works [JRS17]
and [Bon+17] (and has been confirmed by the authors of [JRS17]).



Simple Threshold FHE From LWE With Polynomial Modulus 15

Ezxample Linear Secret Sharing Schemes. In Table 1, we detail a few example
secret sharing schemes we consider. The schemes are for ¢-out-of-n access struc-
tures, where any ¢ 4+ 1 parties can reconstruct, and they all have strong {0, 1}-
reconstruction. In the table, we show two quantities Tmax, Tmin, Which are relevant
for choosing parameters in our constructions of Section 5 and we will refer to
later. By Tmax we denote the size of the smallest maximal invalid set of share
elements, while 7., is the size of the largest minimal valid set of share elements.

Table 1. Example t-out-of-n linear secret sharing schemes with strong {0,1}-
reconstruction. Details for the last row are omitted, due to their complexity.

Scheme  Sharing method Pys share L Tona Tomin

Additive — x = Z ;i i 1 n—1 n

Replicated z = Z zA {zatiga ("7 (=t -1D (D)

Naive T = Azmclr,:,i, |Al=t+1 {zaitiea (")) t(,70) t+1
i€A

Monotone Boolean formula

4.3 5.3 5.3
for threshold fn. [Val84] o(n*?) O(n’”) O(n™?)

Additive Secret Sharing. In the (n— 1)-out-of-n case, we use simple additive
secret sharing, where z is split into random shares 1, ..., z, € Z, such that z =
>i, x;. Every party receives exactly one share, hence L = 1, Tmax = n — 1
and Tmin = n.

Replicated Secret Sharing [ISN89]. To share x using replicated secret shar-
ing (also called CNF sharing), first sample a set of additive shares {s4} 4, over
all size-t subsets A C [n], such that ) , s4 = x. Then, party P;’s share consists
of every s, where i ¢ A. The share size is L = (")

A maximal invalid set contains all the copies of s4 for A # A’, for some A'.
Since n — t parties get A’, this gives Tmax =nL — (n —t) = (n —t)((}) — 1). On
the other hand, a minimal valid set of share elements contains every share s4,

SO Trmin = (Ttb)

Naive Threshold Secret Sharing. In the simplest form of threshold secret
sharing, which can be seen as the dual of replicated secret sharing, the dealer

distributes a fresh sharing of  to each set S of size ¢ 4 1. There are (,};) such

sets, but only (";') of these contain party P;, so L = (";'). It's easy to see

that Tmax = t(t+1> and Tmin =t + 1.
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Threshold LSS From Monotone Boolean Formulae. An asymptotically
more efficient approach is the construction of Benaloh and Leichter [BL90]|, which
builds a linear secret scheme for A using any monotone Boolean formula for veri-
fying membership of A. A monotone Boolean formula is a circuit with AND/OR
gates of fan-in 2 and fan-out 1, where the input wires may have multiple fan-out.
The share size of party P; equals the fan-out of the i-th input wire in the circuit.

Valiant [Val84] described a randomized construction of a monotone Boolean
formula for threshold functions with size O(n°3). This leads to an average share
size of O(n*3). In [HMPO06|, an improved circuit of size O(n'tv?2) was given,
however, their circuit is not a formula, so cannot be used to build threshold
LSS.

2.3 Learning With Errors

In the following, we recall the definitions of the decision (module) LWE prob-
lem [Reg05; LS15], formulated with a bounded uniform secret and noise. Let R, =
Z4[X]/ f(X) for some irreducible f(X) of degree d. Further, we define Sg = {a €
R: ||a| < B} with 3 € N.

Definition 9 (M-LWE). Let m,r, 3,q € N. The Module Learning With Errors
problem M-LWEy ,, . 5 is defined as follows. Given A < U(R;"™") and t € R}".

Decide whether t < U(R;") or if t = [A[L,] - s, where s + U(S5™").

The special case of d = 1, where the ring R is isomorphic to Z, is simply
denoted LWE (and is historically the one that has been introduced first).

We also define a computational variant of LWE, where no reduction modulo ¢
is performed [Boo+18], which will be relevant in Section 6.

Definition 10 (I-LWE). Let m,r € N and let X, X be two probability distri-
butions over Z. The Integer Learning With Errors problem I-LWE,, . . . is de-
fined as follows. Given W < x1'*" andt = Wz+e, wherez € Z" and e < x".
Find z. We call (W,t = Wz + e) an instance of the I-LWE distribution.

Theorem 1 ([Boo+18, Thm. 4.5]). Suppose that x., is T, -subgaussian and x.
is Te-subgaussian. Let (W,t = Wz + e) be an instance of the I-LWE,, , y. .
distribution for some z € Z". There exist constants C1,Cy > 0 such that for
all v > 1 the least square method recovers z with probability 1 — % — 27V 4f

72
(Cir + Cov) and m > 320—‘; log,(2r).

w

-
m >4

gqu;‘s.u

3 Threshold Fully Homomorphic Encryption

In this section, we recall the definition of threshold fully homomorphic encryption
schemes (ThFHE) and give different notions of robustness for threshold public
key encryption, which model an adversary who may send incorrect or missing
partial decryptions. We then define our notions of OW-CPA and IND-CPA secu-
rity for ThFHE schemes.
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3.1 Syntax and Basic Properties of Threshold FHE /PKE

We first recall the syntax of a fully homomorphic threshold public key encryption
scheme. We implicitly assume that after Setup, all algorithms are given the
public parameters as input. We omit the partial verification algorithm used in
previous works (e.g., [BBHO06]), which was only used to model stronger notions
of robustness that also capture CCA attacks.

Definition 11 (ThFHE). A fully homomorphic threshold public key encryption
scheme (ThFHE) for a message space M and circuits of depth & is a tuple of PPT
algorithms ThFHE = (Setup, Enc, Eval, PartDec, Combine) defined as follows:

Setup(1*,1%,n,t) — (pp, pk,sky, ...,sk,): On input the security parameter ),
a bound on the circuit depth k, the number of parties n and a threshold
valuet € {1,...,n—1}, the setup algorithm outputs the public parameters pp,
a public key pk and a set of secret key shares skq,...,sk,,.

Enc(pk,m) — ct: On input the public key pk and a message m € M, the en-
cryption algorithm outputs a ciphertext ct.

Eval(pk, C,cty,...,cty) — ct: On input the public key pk, a circuit C: M* —
M of depth at most k and a set of ciphertexts cty,...,cty, the evaluation
algorithm outputs a ciphertext ct.

PartDec(sk;, ct) — d;: On input a key share sk; for some i € [n] and a cipher-
text ct, the partial decryption algorithm outputs a partial decryption share d;.

Combine({d; }ics,ct) — m's On input a set of decryption shares {d;};,cs and a
ciphertext ct, where S C [n] is of size at least t + 1, the combining algorithm
outputs a message m’ € M U {1}.

The above can be seen as a generalization encompassing non-threshold and
threshold PKE and FHE.

Definition 12 (ThPKE). A threshold public key encryption scheme (ThPKE)
for a message space M is a ThFHE scheme, where k = 1 and the only allowed
circuit C: M — M is the identity. In this case, we drop the trivial evaluation
algorithm Eval and the parameter k in the scheme’s specifications.

Definition 13 (FHE). A fully homomorphic public key encryption scheme (FHE)
for a message space M is a ThFHE scheme, where n = 1. In this case, we drop
the parameters n and t in the scheme’s specifications. To simplify notations,
we merge PartDec and Combine into one single algorithm that we denote Dec.
Hence, the algorithm Dec takes sk and ct as input and outputs m’ € {MU{L}}.

We require compactness and correctness, whose definitions we recall in App. A.

In Section 4, we also need FHE schemes which are circuit private, defined
below. To achieve this, we will rely on the construction of [DS16], which allows
for LWE with polynomial modulus, since it can upgrade essentially any LWE-
based FHE scheme to achieve circuit privacy without substantially increasing the
parameters.®

& We could also use the construction of [Bou+16], however, it is restricted to evaluating
log-depth circuits.
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Definition 14 (Circuit Privacy). Let s,e > 0. A ThFHE scheme with mes-
sage space M and mazimal circuit depth r fulfills (s,e)-circuit privacy if for
every circuit C' of depth at most k it yields

CdiSts (((Ski)i€n7 Eval(pk, Ca cty,. .. 7Ctk))a ((Skz)ze[n]7 Enc(pk, C(mla s 7mk))) < &,

where m; € M and ct; < Enc(pk,m;) for all i € [k] and for honestly generated
keys (pk,skyq,...,sk,).

3.2 Robustness

We now introduce two definitions of robustness for threshold public key encryp-
tion. We do not define these in the fully homomorphic case, where our construc-
tion assumes a passive adversary. We call the first one weak chosen-ciphertext
robustness and the second strong chosen-plaintext robustness.

In the first case, it should be hard for an adversary, having access to all secret
key shares, to provide one single ciphertext and two different set of decryption
shares such that they combine to two different messages. Our definition is closely
related to the notion of consistency, as for instance defined by [BBHO06], with the
difference that we do not allow the adversary to win by making the decryption
output L. (This is unavoidable in our setting, since we do not have a separate
PartVerify algorithm to verify validity of decryption shares.)

Definition 15 (Weak Chosen-Ciphertext Robustness). We call a ThPKE
scheme weakly chosen-ciphertext robust if for all \,n,t and for all PPT adver-
saries A it yields

AdVSHE™ (A) = PrlExptiy ot (1, n, 1) = 1] = negl(\),

where Exptﬁfﬁ;g’ﬁ?t is the experiment specified in Figure 1.

-cc-robust (1 A
Expt’y Trpke (17, 7,1)

1: (pp,pk,sky,...,sk,) < Setup(1*,n,t)

(ct, S, 8" {di}ies, {di}ies') < A(pp, Pk, {sk;}icin))
m <— Combine({d; }ies, ct)

m’ < Combine({d;};cs, ct)

return m’ ZmA L ¢ {m,m’'}

T W W

Fig. 1. Experiment for the weak chosen-ciphertext robustness of ThPKE schemes.

In the second case, the adversary is given the secret key shares of the cor-
rupted parties together with an honestly formed ciphertext. In order to win the
experiment, they have to come up with partial decryption shares such that the
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combine algorithm, together with honestly generated partial decryption shares,
outputs a different message (including the abort message ).

We note that for ¢ < n/2, it’s possible to transform any weakly chosen-
ciphertext robust ThPKE scheme into one that guarantees strong chosen-plaintext
robustness. To do so, one simply lets Combine try all possible subsets of size t+1.
As t < n/2, there exists a set of size t + 1 composed of only honest partial de-
cryption shares and hence, it successfully combines to a message.

Definition 16 (Strong Chosen-Plaintext Robustness). A ThPKE scheme
provides strong chosen-plaintext robustness if for all A\,n,t and for all PPT
adversaries A = (A;, Ag) it yields

AdvS RSt (4 = Pr[Expt;f?hrgbK“ét(l’\,n7t) = 1] = negl(\),

where ExptzcﬁerK“Et is the experiment specified in Figure 2.

s-cp-robust /4 X
Expt’ Treke (1757, 1)

1: (pp,pk,sky,...,sk,) <—Setup(1k,n,t)
2: (S,m) + Ai(pp,pk): SC [n]A|S| <t
3: ct+ Enc(pk,m)

4: dj + PartDec(sk;,ct), Vj € [n] \ S

5: {ditics < Az(pk, {sk;}ies, {d;};gs,ct)
6: m' + Combine({d;}ic[n;ct)

7: returnm' #m

Fig. 2. Experiment for strong chosen-plaintext robustness of ThPKE schemes.

3.3 One-Wayness

We now present our definition of OW-CPA security for ThFHE schemes.

The high level idea of the security game is the following. At the beginning,
the adversary decides on the parties they want to corrupt and receives the corre-
sponding secret key shares. We call this the static corruption setting. Then the
adversary has access to three different oracles. The first, OEnc, allows them to ob-
tain honestly generated, fresh ciphertexts on messages of their choice. Through
the second oracle, OChallEnc, the adversary obtains encryptions of unknown,
randomly chosen messages, which we call the challenge messages and challenge
ciphertexts. Finally, they can query up to ¢ times the last oracle, OPartDec,
by inputting a circuit and a list of indices referring to previous encryption and
challenge encryption queries, and receiving the corresponding partial decryption
shares of all parties (after the evaluation algorithm has been applied). However,
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the partial decryption oracle aborts if for one of the challenge messages the con-
ditional min-entropy has decreased more than an allowed amount v, after having
learned the circuit evaluation. Note that we do not condition the information-
theoretical min-entropy on ChallCT as it uniquely defines ChallM. Implicitly, we
assume that the entropy condition can be efficiently verified for the circuits in-
put to OPartDec. One way to practically implement this, is to ask the adversary
to input an algorithm which verifies the entropy condition when querying the
oracle. We stress that in the transformation of Section 4 we only query circuits
for which the entropy condition can be checked efficiently. To highlight the query
bound ¢ and the entropy loss bound v, we write (¢, v)-OW-CPA.

Definition 17 ((¢,v)-OW-CPA for ThFHE). We call a ThFHE scheme (¢,v)-OW-CPA
secure for the security parameter X\, the circuit depth bound k, the threshold pa-
rameters n,t, the query bound ¢ and the entropy bound v, if for all PPT adver-
saries A = (A1, Az)

(¢,)-OW-CPA

£,1/)-OW-CPA x
Adviiilie (A) = PrlExpty e (1 1%, 1,1) = 1] = negl(A),

where Exptffﬁ)h}%vg'CPA is the experiment in Fig. 3 with ctr =0, idx =0 and L =

at the beginning.

Definition 18 (¢{-OW-CPA for ThPKE). We call a ThPKE scheme ¢-OW-CPA
secure for the security parameter A, the threshold parameters n,t and the query
bound ¢, if it is (£,0)-OW-CPA secure as ThFHE scheme, where k = 1 and the
only allowed circuit C is the identity. In this case, the OPartDec oracle from
Figure 3 only replies to ciphertexts that have been output by OEnc and aborts
if the ciphertext has been output by OChallEnc, as the entropy is zero for ev-
ery challenge ciphertext and hence never passes the entropy check. For a PPT

adversary A, we denote their advantage by Adviiore " (A).

3.4 Indistinguishability

In the following, we present two definitions of IND-CPA security for ThFHE, both
with an apriori upper bound ¢ on the number of partial decryption queries. We
call the first selective-£-IND-CPA. It can be seen as a slightly weaker version of the
original game-based security notion in [JRS17, Def. 14]. Both definitions have a
selective nature. The only difference is that in our definition, challenge messages
and circuit queries are sent together, whereas in [JRS17] the messages and cir-
cuit queries are are sent in two different phases. We call the second version we
introduce adaptive--IND-CPA. It is significantly stronger, as the adversary can
now adaptively query the (challenge) encryption and partial decryption oracles.
For completeness, we also state a much weaker notion of indistinguishability in
A.2 which appeared in the first version of this paper [BS23a]. Our first transfor-
mation in Section 4.1 applying to ThPKE fulfills the stronger adaptive notion,
whereas the second transformation in Section 4.2 applying to ThFHE only leads
to a scheme fulfilling the weaker selective notion. As explained in the introduc-
tion, the published version [BS23d| and earlier versions of this paper [BS23c]
wrongly claimed that the resulting scheme even fulfills the adaptive notion.
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£,1)-OW-CPA .
EXptEA,T)hFHE (1%, 1%, n,1)

1: (pp, pk,sky, ...,sk,) < Setup(1*,1%,n, 1)

2: S+ Ai(pp,pk): S C[n]AIS| <t

3 (ml,j) «— J48Enc,OChaIIEnc,OPartDec(pk7 {Ski}ies)
4: (bj,mj,ctj) = LL]]

5: returnm; =m' Ab;j =1

OEnc(m) OChallEnc()
1: if m¢ Mthenreturn L 1: idx=idx+1
2: idx=idx+1 2: m+— M
3: ct « Enc(pk,m) 3: ChallM = ChallMU {m}
4: CT=CTU{ct} 4: ct <« Enc(pk,m)
5: L[idx] := {(0,m,ct)} 5: ChallCT = ChallCT U {ct}
6: return ct 6 : L[idx] := {(1,m,ct)}

7: return ct

OPartDec(C, t1, ..., k)

=

—
=

11 :
12
13 :
14 :

Fig. 3. Experiment and oracles for (£, v)-OW-CPA security of ThFHE schemes.

© o N Ut s W

ctr =ctr+1
if ctr > ¢ then return L
if 35 € [k]: ¢; > |L| then return L
if depth(C) > k then return L
(bj,mj,ct;) ==Ll;], j € [K]
ct + Eval(pk, C, cty,...,cty)
d; < PartDec(sk;,ct), i € [n]
d = (di)ie(n]
for m € ChallM

if Hoo(m|EU{(C,C(mu,...,mg))}) < Hoo(m) — v then

return L

E=EU{(C,C(m1,...,mg))}
PartD = PartD U {d}

return d

21
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Selective Indistinguishability. After having received the secret key shares of the
statically corrupted parties, the adversary outputs a list of length ¢ composed
of message pairs and circuits. Upon receiving the corresponding challenge ci-
phertexts and partial decryption shares, the adversary then outputs a guess.

Definition 19 (selective-(-IND-CPA for ThFHE). A ThFHE scheme is said to
fulfill selective--IND-CPA security for the security parameter A, the circuit depth
bound k, the threshold parameters n,t and the query bound ¢, if for all PPT

adversaries A = (A1, Ag, A3)
_ . 1
AdVEERE N CPA () i [Pr{Bxpts e O A (10,17 m, 1) = 1] = 5| = negl(M),

where Exptj{eﬁ'ﬁ’ﬁf"ND'cpA is the experiment in Fig. /.

selective-Z-IND-CPA (1A 1k
Expt’y Thene (1%,17%,n, 1)

1: (pp, pk,sky, ...,sk,) < Setup(1*,1%,n,t)
2: S+ Ai(pp,pk): SCn]A|S| <t
5. (), m", Ci)ier + A2(pk, {sk; }ies)

3

4: b+ {0,1}

5: forie[l]:

6: if depth(C;) > « then return L
7 if Ci(ﬁigo)) # C; (mﬁ”) then return L
8: parse ﬁl,gb) = (mgl{), e ,mgz))
9: for j € [K] :

10 : cti; < Enc(pk, mg))

11 ctii= (Ctij) jer]

12 ct; + Eval(pk, Ci, ct;)

13 : for j € [n] :

14 : dij + PartDec(skj,c/t\i)

—

15 : di = (dij)jem)
16: b« A3((C¥i,d_;')ie[€])

17: returnb=1%

Fig. 4. Experiment for selective-/-IND-CPA security of ThFHE schemes.

Adaptive Indistinguishability. As for the OW-CPA security, we allow for static
corruptions and access to three different oracles. The first, OEnc, is the same



Simple Threshold FHE From LWE With Polynomial Modulus 23

as in the OW-CPA game. To the second oracle, OChallEnc, the adversary inputs
two messages and obtains the encryption of one of it. Finally, they can again
query up to ¢ times OPartDec, by inputting a circuit and a list of indices and
receiving the corresponding partial decryption shares of all parties. This time,
the partial decryption oracle aborts if the circuit evaluates to different values on
the corresponding input messages to the OChallEnc oracle.

Definition 20 (adaptive-(-IND-CPA for ThFHE). A ThFHE scheme is said to
fulfill adaptive-¢-IND-CPA security for the security parameter A, the circuit depth

bound k, the threshold parameters n,t and the query bound ¢, if for all PPT
adversaries A = (A1, As)

. . 1
AdvEERE A (A) = Pr(Bxpt e (N 17 ) = 1] = S| = negl(V),

where Exptf?ﬁgﬁf'lND'cm is the experiment in Fig. 5 with ctr = 0, idx = 0
and L = () at the beginning.

As Section 4.1 only applies to ThPKE we state for completeness the definition
of adaptive-/-IND-CPA security in this special case.

Definition 21 (adaptive-¢-IND-CPA for ThPKE). We call a ThPKE scheme
adaptive-¢-IND-CPA secure for the security parameter X\, the threshold parame-
ters n,t and the query bound ¢, if it is adaptive-¢-IND-CPA secure as ThFHE
scheme, where k =1 and the only allowed circuit C is the identity. In this case,
the OPartDec oracle from Figure 5 only replies to ciphertexts that have been
output by OEnc and aborts if the ciphertext has been output by OChallEnc. For

a PPT adversary A, we denote their advantage by Adv?riag’lgée'z'lND'CPA(A).

4 From One-Wayness to Indistinguishability

4.1 Transformation for Weakly Robust Threshold Decryption

A tight reduction from OW-CPA security to IND-CPA security for standard PKE
schemes in the random oracle model (ROM) was provided in [HHK17, Sec. 3.4]. In
the following, we adapt the transformation to the threshold setting and show how
a small modification allows to obtain a weakly chosen-ciphertext robust threshold
scheme as in Definition 15. The concrete flavor of indistinguishability obtained
through this transformation is the adaptive-¢-IND-CPA security, cf. Definition 21.

The construction. The transformation is parameterized by § € N which allows
for a trade-off between the security loss of the reduction and the compactness of
ciphertexts. Given ThPKE = (Setup, Enc, PartDec, Combine) with message space
M being OW-CPA secure, we define ThPKE' = (Setup’, Enc’, PartDec’, Combine’)
with message space an abelian group (M’ +), which fulfills IND-CPA security,
as follows. Let F: M? — M’ and G: M?® — {0,1}** be two random oracles.
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EXr-)ti(‘ﬁ:‘ajlfthi;le_;é—|NDfCPA(1)\7 11{7 n, t)
1: (pp, pk,sky, ...,sk,) < Setup(1*,1% n, 1)
2: S« Ai(pp,pk): S C[n]A|S| <t
3: b« {0,1}
4 b/ -~ ASEnc,OChaIIEnc,OPar‘tDec(pk’ {Ski}iES)
5: returnb=1"
OEnc(m) OChallEnc(m®, m™)
1: if m¢é Mthenreturn L 1: if (m”,m®") ¢ M x M then return L
2: idx=idx+1 2: idx=1idx+1
3: ct< Enc(pk,m) 3: cty « Enc(pk, m®)
4: L[idx] := {(m,m,ct)} 4 Lid o= {(m®, m®, cty)}
5: return ct

5: return ct

OPartDec(C, t1, ..., i)

1:
2
3

ctr=ctr+1

if ctr > ¢ then return L

if 35 € [k]: ¢; > |L| then return L
if depth(C') > « then return L

§m ) =1l € (K
if C(mgo), . ,m,(c(])) # C’(mgl)7 co m;,l)) then return L
ct « Eval(pk,C,cty, ..., ctx)

d; < PartDec(sk;,ct), i€ [n]

(m

return (d;);cqn)

Fig. 5. Experiment and oracles for adaptive-¢-IND-CPA security of ThFHE schemes.
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Setup’: On input (1*,n,t), it outputs (pp, pk,sky, . ..,sk, ) < Setup(1*,n,t).

Enc’: On input (pk,m) with m € M, it samples x = (z1,...,75) + U(M?)
and sets co = m+F(x) and ¢541 = G(x). Then, it computes ¢; < Enc(pk, z;)
for j € [0] and outputs ct := (co, ..., Cs+1)-

PartDec’: On input (sk;,ct) for some i € [n], it computes d;; + PartDec(sk;, ¢;)
for all j € [0] and outputs d; := (ds;)e(s)-

Combine’: On input ((di)ies,ct) with ct = (Cj)0§j§5+1 and d; = (dij)j€[5]7 it
computes z; <~ Combine({d;; }ies,c;) for j € [d], sets X' = (z7,...,2}) and
computes m’ := ¢y — F(x'). If ¢s11 = G(x') it outputs m’. Else, it outputs L.

Cliphertext expansion. The ratio between the bit size of the plaintext and the
ciphertext is give by
let] _ [m[+6-e]+2A
Iml ml

)

where c is a ciphertext coming from ThPKE. We can see that with larger § the
ciphertext expansion gets worse.
We prove the decryption correctness of the resulting scheme in Appendix B.1.

Lemma 7 (Weak Chosen-Ciphertext Robustness). The scheme ThPKE’
is weakly chosen-ciphertext robust. More precisely, if there is a PPT adversary A
such that Advi;Scer"st(A) > e for some € > 0, then there exists a PPT adver-
sary B breaking collision resistance of the random oracle G with probability > €.

Proof. Fix A\,n and t. We show that if there exists a PPT adversary A that
has advantage € in the experiment defined in Figure 1, then there exists a PPT
adversary B that finds a collision for the random oracle G with the same proba-
bility €. Let B play the role of the challenger in the weak robustness game, run-
ning the Setup’ algorithm on (1*,n,t) and forwarding (pp, pk, {sk; }ic[n)) to A.
Assume that A wins the weak robustness game by outputting two sets of decryp-
tion shares {d;};cs and {d}};cs such that Combine’({d;}ics,ct) — m # m’ +
Combine’({d}};es’, ct) for the same ciphertext ct = (¢;)o<i<s+1, and neither m
nor m’ equals 1. Let x,x’ denote the vectors recovered during the combining
procedure. As ¢g = m+F(x) = m’+F(x’), m # m’ and F is deterministic, we can
deduce that x # x’. This implies that G(x) = ¢s+1 = G(x’) for distinct x # x’
and hence B has found a collision in G. O

Theorem 2 (Security). Let 6,¢ € N. If ThPKE is (£6)-OW-CPA secure, then
ThPKE' fulfills adaptive-/-IND-CPA security in the ROM. More precisely, for any
adaptive-¢-IND-CPA adversary A that does at most qr queries to the random
oracle F and q. queries to the oracle OChallEnc’, there exists an (¢5)-OW-CPA
adversary B with

daptive-£-IND-CPA 1/8 £5)-OW-CPA
Adv?l’halflzg’: (A) <qc- qF/ 'Adv'(l'hlzKE (B).



26 K. Boudgoust and P. Scholl

Note that the number of queries to G doesn’t impact the tightness of the
reduction as the output G(x) is completely independent of F(x) for any x € M?.
Moreover, there is no entropy bound involved as we are in the standard ThPKE
setting (Def. 18).

Proof. The proof closely follows the original proof in [HHK17, Thm. 3.7]. The
main modifications compared to the original proof are that A can make multiple
queries to OChallEnc (leading to a security loss of ¢.), can further query up to ¢
partial decryption outputs to some oracle OPartDec during the game and that
we added a second random oracle G to obtain weak robustness.

Let A = (A;, A2) be a PPT adversary against the adaptive-¢-IND-CPA se-
curity of ThPKE'. We consider two games Gy and G, as described in Figure 6,
where we specify the security game, the queries to the random oracles F and G
and to the oracle OChallEnc’ from Def. 21. We omit the specification of OEnc’
and OPartDec’ as they follow directly from the construction of the scheme and
the security definition. The lists L and Lg are initialized as empty sets and the
counters ctr and idx are set to 0 at the beginning. Both games only differ in the
way how queries to F are handled.

Games Go and G4 OChallEnc’ (m®, m™)
1: (pp, pk,sky,...,sk,) < Setup(lk,n, t) 1: idx =idx+ 1
2: S+ Ai(pp,pk): S C[n]A|S| <t 2: choose next unused x € ChallX
3: ChallX < U((M°)%) 3: co=mp+F(x)
4: b AQENCOChAIENCOPDecF.G Ly f 1. ) 41 € Enc(pk, z;): j € [4]
5: return b’ 50 o1 =G(x)
6 : Ctb:(c(),...,c(s_H)

7: Llidx] = {(m”, m™, ct,}

8 : return ctp

F(x) G(x)

1: if 3r: (x,7) € Lr 1 if 3r: (x,7) € Lo
2 then return r 2 then return r
3: if x € ChallX /G 3. r«U{0,1}*)

4 flag = true 1Gi a: Lg:=LeU{(x,7)}
5 thenreturn L /G1 5. returnr

6: r+ U{0,1}")
7: Lr:=LfU {(X,T)}

8§: returnr

Fig. 6. Games Gy and GG for the proof of Theorem 2.
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Game Gy. Note that Game Gy is exactly the original adaptive-/-IND-CPA game
(as in Def. 21) and hence Adv?riaglzé?'g'lND'CPA(A) = |Pr[Go(A) = 1] — 1/2].

Game G;. The only modification between game Gy and G is that we added
line 3—5 in the specification of F. More precisely, F raises a flag and aborts if it is
queried by one of the vectors in ChallX that are used for the challenge ciphertexts
issued from OChallEnc’. Hence, |Pr[Go(A) = 1] — Pr[G1(A) =1]| < Pr[flag].
Now, as F aborts when queried on x € ChallX, the view of A is independent
of the bit b chosen in the experiment and defining OChallEnc’. This implies
that Pr[G1(A) = 1] = 1/2, leading to Advf’ria;"t('?e'lND_CPA(A) < Pr|flag]. The
only thing left to do is to bound the latter probability. A direct adaptation of
Lemma 3.8 in [HHK17], together with the union bound, bounds this probability
above by ¢, - q;/ 0 -Adv(TngkoEW'CPA(A). Here, the adversary A is embedded in B’s
own (£§)-OW-CPA security game and hence B takes care of simulating the ran-
dom oracles F and G as well as the oracles OEnc’, OChallEnc’ and OPartDec’. The
latter is done by querying their own partial decryption oracle OPartDec. Note
that the increase from ¢ to ¢6 comes from the fact that B must do § queries
to OPartDec for every query to OPartDec’ by .A. O

4.2 For Fully Homomorphic Threshold Decryption

Whereas the reduction from above is simple and tight, it has the disadvantage of
needing the random oracle F to mask the message m. When considering not only
threshold PKE, but more generally threshold FHE, we need to make sure that
we can homomorphically evaluate ciphertexts. The use of the random oracle F
when computing cp = m + F(x) makes such an evaluation impossible, as there
is no finite circuit description of the random oracle F. We thus need another
transformation which allows for homomorphic evaluation of ciphertexts.

In the following, we describe a generic way of transforming a OW-CPA se-
cure ThFHE scheme into an IND-CPA secure one in the standard model, via
hardcore bits. The concrete flavor of indistinguishability obtained through this
transformation is the selective-¢-IND-CPA security, cf. Definition 19.

The construction. The transformation is parameterized by 6,7 € N. Given
ThFHE = (Setup, Enc, Eval, PartDec, Combine) with message space M = {0,1}"
being OW-CPA secure, we define ThFHE' = (Setup’, Enc’, Eval’, PartDec’, Combine”)
with message space M’ = {0,1}%, which we show to fulfill IND-CPA security, as
follows.

Setup’: Oninput (1%, 1%,n, ), it outputs (pp, pk, skq, . . . ,sk,,) < Setup(1*, 1%, n, t).

Enc’s On input (pk,m) with m = (m;);es € M’, it samples z < U(M) and
computes ¢y < Enc(pk,z). For j € [0], it samples s; « U(M) and com-
putes ¢; = (z,s;) + m; mod 2. It outputs ct = (co, 51,...,55,C1,-..,Cs)-

Eval’: Oninput I := (pk, C,cty,...,cty), where ct; = (Cio, Si1, - - -, Sig» Cils - - - » Ci§)
such that c;o < Enc(pk, z;) for i € [k] and C: (M")* — M/, it first defines
a circuit C: (M)¥ — M as follows:
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— C takes as input (21,...,zx) and has the information I hard-coded
— It computes m;; = ¢;; + (x4, 8;5) mod 2, for j € [§] and i € [k]
— It outputs C(my,...,my), where m; = (my;) e

It then outputs ct’ = Eval(pk, C,cro,. ., Cko)-
PartDec’: On input (sk;, ct’), it outputs d; = PartDec(sk;, ct’).
Combine’: On input ({d;};ecs,ct’), it outputs m = Combine({d;}ics, ct’).

Ciphertext expansion. The ratio between the bit size of the plaintext and the
ciphertext is give by

fet] _ Jeol +6(y+1)
m] 5

where ¢ is the OW-CPA ciphertext encrypting v bits coming from ThFHE. We
can see that with larger § the ciphertext expansion gets better.
We prove compactness and decryption correctness in Appendix B.2.

Remark 1. One way to reduce the size of the ciphertext to |co|+7v+0 (and hence
to improve the ciphertext expansion) is to replace the é random seeds s1, ..., ss
by one single seed and a random oracle F. More precisely, one could define s; :=
F(r,7) for a random seed r <— U(M) and j € [4]. As a result, the transformation
wouldn’t be in the standard, but in the random oracle model. As the random
oracle is only used to derive the seeds, not when masking the message, this
transformation still applies to the threshold FHE setting.

Remark 2. Note that the reduction in the standard model restricted to ThPKE,
in contrast to the one from Section 4.1, doesn’t satisfy weak robustness (Def. 15).

Theorem 3 (Security). Fiz (,k,0,7,\, s € N and ¢ > 0, where k denotes the
number of variables that every circuit takes as input. Let ThFHE be an (¢(k +
1),0)-OW-CPA secure scheme with M = {0,1}7, such that any adversary B of
circuit size s has advantage Adv(T(,fﬁlE)z’é)'OW'CPA(B) < 272, where A > 3log,(1/e)+
log,(2v)+6. Further, we assume that ThEHE fulfills (s, €')-circuit privacy, where
s' = O(sy3e™)? and ' = 5kée. Then, ThFHE' is selective-¢-IND-CPA secure

with M’ = {0,1}°; concretely, for any adversary A of circuit size s it yields
i 25(k + 1)lée +1
Ad select|V§-Z-IND-CPA A) < )
VThFHE (A) < - 9

9 The hidden constant in the O(-) notation is the same as that in the proof of Lemma 1,
which can be derived from the Goldreich-Levin theorem.
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Choosing the Parameters. To ensure a small enough advantage, since k, ¢, § are
relatively small, it suffices to choose a small enough ¢, which we denote € = 2=
We then require A = ¢ + 3\ + log,(27), which determines the required security
level of the original OW-CPA scheme. There’s therefore a tradeoff between the
increased security requirement and the value §, which improves ciphertext ex-
pansion. For instance, if A’ = 128 then by choosing § = 118,y = 512, we can
pack 118 message bits into each FHE ciphertext, which must encrypt 512 actual
bits using the OW-CPA scheme. In this case, to achieve security according to
the reduction, the parameters of the OW-CPA scheme would need to be chosen
for A = 512-bit security. We note that this way of setting parameters may be
overly conservative, since our reduction is not tight — unlike with the number
of queries ¢ and the matching attack (Section 6.2), we are not aware of any
weaknesses from choosing smaller values of .

Proof. Recall that we are given an OW-CPA secure threshold decryption scheme
ThFHE = (Setup, Enc, Eval, PartDec, Combine) with message space M = {0,1}"
and we want to construct a new threshold scheme ThFHE' = (Setup’,Enc’,
Eval’, PartDec’, Combine’) with message space M’ = {0,1}?, which fulfills the
selective-¢-IND-CPA security. In the selective-¢-IND-CPA security game (Def. 19),
the adversary, after having received secret key shares of the corrupted parties,
sends a list of challenge messages and circuits, for which they receive as an-
swer the corresponding challenge ciphertexts and partial decryption shares. In
the following, we define a sequence of games which modify how the answers to
the adversary are computed. The first game consists of the selective-¢-IND-CPA
security game, where b = 1. The last game consists of the selective-¢-IND-CPA
security game, where b = 0.

Gameg : Let (n’igo),n‘igl),@)ie[g] be the ¢ message vector pairs (each vector of
dimension k) and /¢ circuits output by the adversary.

Encryption Queries: Every of the / message vector pairs is composed of k
simple message pairs. For every of those k - £ message pairs m(® m®) e
{0,1}° = M’, sample z,51,...,s5 + U(M), compute cq <+ Enc(pk, z), and
set ¢; = (x,8;) + mz(-l) for all ¢ € [§]. Output ct = (co,81,.-,85,C1,---,C5)-
Partial Decryption Queries: For each of the ¢ circuits C and corresponding
challenge ciphertexts cty, ..., cty (computed above), compute ct < Eval’(pk, C, cty,...,cty)
(by internally calling Eval on associated circuit C) and then d; < PartDec’ (sk;, ct)
(by internally calling PartDec) for all i € [n]. Output d = (d;);c[n)-

Game; :

Encryption Queries: as in Gameg
Partial Decryption Queries: For each of the £ circuits C and corresponding
challenge messages mgl), e 7m,(cl), define the constant circuit C which, on
any input simply outputs C(mgl), ... ,m,(cl)). First compute ct < Enc(pk, C~'(:c§1)7 ... ,,T](Cl)))
(on arbitrary input xgl)) and then d; < PartDec(sk;, ct) for all ¢ € [n]. Out-
put d= (dz)ze[n]
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Game; :

Encryption Queries: For each of the k-¢ message pairs m(®), m(Y) € {0,1}° =
M, sample z,s1,...,85 + U(M) and compute ¢y < Enc(pk, ). Further,
sample 71,...,75 < U({0,1}) and set ¢; = r; + ml(-l) mod 2 for all i € [4].
Output ct = (cg, 81, --,85,C1,---,C5)-

Partial Decryption Queries: as in Game;

Games :

Encryption Queries: For each of the k- ¢ message pairs m(®), m(?) € {0,1}% =
M’ sample z,s1,...,85 < U(M) and compute cg < Enc(pk,x). Further,
sample 71,...,75 < U({0,1}) and set ¢; = r; + mgo) mod 2 for all i € [4].
Output ct = (co, 81, .- -,85,C1,.-.,C5).

Partial Decryption Queries: as in Game,

Gamey :

Encryption Queries: For each of the k-¢ message pairs m(®), m(Y) € {0,1}° =
M, sample z,s1,...,85 + U(M), compute ¢y < Enc(pk,z) and set ¢; =
(x,s:) + mgo) mod 2 for all ¢ € [§]. Qutput ct = (o, 81, -,88,C1,---,Cs)-

Partial Decryption Queries: as in Games

Games :

Encryption Queries: as in Gamey
Partial Decryption Queries: For each of the ¢ circuits C and corresponding
challenge messages mgl), e ,m,il), compute ct + Eval’(pk,C,cty,...,cty)

and then d; < PartDec’(sk;, ct) for all i € [n]. Output d = (d;) e[

Claim. Assume there is an adversary A of circuit size s' who wins the selective-¢-IND-CPA
game against ThFHE' with probability at least p. Then, there exists an i €
{0,...,4} such that cdists;/(Game;, Game; 1) > (2p — 1)/5 :=¢E.
Proof. By assumption, it yields
b < PHBRETEL 1
= Pr[Exptiﬁ[eTcﬁiﬁ’ﬁ'é'lND'cpA(1>‘, 1%, n,t) =1
+ PrlBpt RN PAN 1%, 5, 1) = 1
(

~+
~
I

— Pr[EXptselective—é—lND—CPA

A
A, ThFHE 17,1%,n,t)

1]b=1]
n (1 — PrlExptSiSie e NOCPAIA 1% 1) = 0] b = o]) :

Now, we observe that Pr[Exptsj{eTcﬁi}'ﬁ'é'lND'cpA(1’\,1"‘,n7t) =1|b = 1] corre-

sponds to Pr[A outputs 1 in Gameg] and Pr[ExptSire > A (1A, 1%, n,t) =
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0 | b = 0] corresponds to Pr[A outputs 1 in Games]. By the definition of cdist
this implies cdist,/ (Gamey, Games) > (p—%)Z = 2p—1. Using the triangle inequal-
ity, there exists i € {0,...,4} such that cdisty (Game;, Game; 1) > (2p—1)/5 =
E. [ ]

Next, we argue for all ¢ € {0,...,4}, if cdisty'(Game;, Game; 1) > &, it either
breaks one-way security of ThFHE or circuit privacy of ThFHE'. Note that the
modifications from Game; to Game; are the same (in reverse order) as from
Gamey to Games. Similarly, the modifications from Game; to Game, are the
same as from Games to Gamey. Moreover, Gamey; and Gameg are information-
theoretically close to each other, because the challenge messages m(® or m() are
hidden by truly random bits. We thus focus on the step from Gameg to Game;
and the step from Game; to Games in the following. The step from Gamej to
Game; is necessary to correctly apply the Goldreich-Levin extractor argument in
the next step. By replacing the evaluation algorithm with the direct encryption
of the evaluated circuit, we make sure that partial decryptions do not leak any
information on the challenge bit b = 1.19

Claim (Gameg to Game; ). Assuming that cdisty (Gameg, Game;) > € contradicts
the (s',£/¢)-circuit privacy of ThFHE'.

Proof. As Gameg and Game; only differ on how the ¢ partial decryption queries
are answered, it yields

£ < cdist, (Gameg, Game,; ) < ¢ - cdist, (d, d),

where d is a vector of partial decryptions output in Gamegy and d a vector
of partial decryptions output‘ in Game;. Using that applying the randomized
function PartDec’(sk;, ) does not increase the computational distance and using
the definitions of PartDec’ and Eval’ (through PartDec and Eval, respectively),
we observe that £/¢ is bounded above by

cdist, (((ski)i, Eval(pk, C,cty, . .. cty)), ((sk,):, Enc(pk, C(z"”, ... ,x;j))))) ,

contradicting the (s’,£/¢)-circuit privacy of ThFHE (cf. Def. 14). We later link &
to €’ as in the theorem statement. |

Claim (Game; to Games). Assuming that cdisty (Game;, Gamey) > € contradicts
the (4(k + 1), 0)-OW-CPA security assumption of ThFHE.

Proof. As Game; and Game, only differ on how the k¢ encryption queries are
answered, it yields

£ < cdisty (Game;, Gamey) < k/ - cdist, (ct, ct),

19 We have overseen this subtlety in an earlier version of this paper [BS23b] and thank
the Asiacrypt’23 reviewers for pointing it out to us.
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where ct is an encryption output in Game; and ct is an encryption output
in Gamey. We can rewrite ct using the concatenated Goldreich-Levin extractor £
from Definition 2. We define m := (0,...,0,m™M) € M? x M, X := U(M)
and Z := (Enc(pk, X), (sk;)ics, E, PartD), the latter being the random variable
defined by the randomized encryption algorithm for uniform random messages,
the corrupted secret key shares, the circuit evaluations and the partial decryp-
tions given by the partial decryption queries in the security game. Furthermore,
we set Y = X, such that cdisty ((X, Z), (Y, Z)) < ¢ for all s’,e > 0. We observe
that ct = (Z,E(X,U(M?%) +m) and ct = (Z,U(M?® x M’) +m). It holds that

&/(kt) < cdisty (ct, ct) < cdisty ((Z,E(X,U(M?)),(Z,UM° x M"))).

Applying Lemma 2 implies an upper bound on the unpredictability entropy,
iLe, HI"P(X|Z) < A, where ¢ = ﬁ;é, s = O(s'y3e*) and A = § + log, 2y +
3logy 1/e.tt To conclude the proof of the claim, we link the unpredictability
entropy of X given Z to the OW-CPA security of ThFHE via a reduction. In the
following, we explain how the corresponding oracle queries for ThFHE" (which
define X and Z) can be answered by having access to the three analogue oracles
(denoted OEnc, OChallEnc and OPartDec) from the OW-CPA security game, cf.
Definition 17.

Reduction to OW-CPA Game. Let (m§0>,m§1>,c,»)ie[g] be the ¢ message vector
pairs (each vector of dimension k) and /¢ circuits output by the selective-¢-IND-CPA
adversary. For simplicity, the reduction always calls the OChallEnc oracle, and
never calls the OEnc oracle of the OW-CPA game.

Encryption Queries: Every of the ¢ message vector pairs is composed of k
simple message pairs. For every of those k - ¢ message pairs m(® m®) ¢
{0,1}° = M’, query OChallEnc (on no input) and get back an encryp-
tion ¢g = Enc(pk, z) for an unknown x. For ¢ € [d], sample s; <— U(M). De-

fine the circuit C' which takes as input 2 and computes (x,s;) + 7@51) mod 2
for every i € [0]. Then query OPartDec on ¢y and the circuit C. For ev-
ery i € [d], the partial decryption oracle outputs all partial decryption

shares that can be combined to ¢; = (z,s;) + mz(-l). Output the cipher-
text ct = (60,81, ey 88,C1y .. 705).
Partial Decryption Queries: For each of the £ circuits C and corresponding

challenge messages mgl), e 7m,(cl), define the constant circuit C’ which, on

any input, simply outputs C(mgl), - ,m,(cl)). Query OPartDec on the cir-

cuit C’. On output d = (d;);e[n of the oracle OPartDec, output d.

All of the (k + 1)¢ queries to OPartDec done within encryption queries and
within partial decryption queries do pass the entropy-check with the entropy

' Here, we see why the proof in our earlier versions [BS23b; BS23c; BS23d] was flawed:
in Lemma 2 the leakage Z is assumed to be indepentent of the uniform elements
in the Goldreich-Levin extractor. We can guarantee this only in a selective-query
model.
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bound § (cf. line 10 of Figure 3). Regarding the first case, by Lemma 3, every
inner product (z, s;) mod 2 leaks at most one bit of z. Hence, at most ¢ bits are
leaked in total when querying OPartDec on circuit C. Similarly, the circuit C”
leaks at most ¢ bits for every x; with ¢ € [k]. To conclude the proof, we observe
that H!P(X|Z) < X implies that for any adversary B of circuit size s

27} < Pr[B(Z) = X] < Adv{{fit D60-OW-CPA g
n

Regarding the parameters from the theorem statement, we observe from the
above two sub proofs that ¢/ = £/¢ = e5kl5/¢ = £5kd and s’ = O(sy3e™4) as
stated. O

5 Threshold Fully Homomorphic Encryption From LWE
With Polynomial Modulus

We now present our construction of a t-out-of-n ThFHE scheme with OW-CPA
security. First, we describe and analyze our main construction based on any LSSS
with strong {0, 1}-reconstruction. Then, in Section 5.5, we give an alternative
construction that combines pseudorandom secret sharing with Shamir sharing
to improve efficiency when (?) is small.

By applying the OW-CPA to IND-CPA transformation for ThFHE from Sec-
tion 4.2, we hence obtain an IND-CPA secure scheme. When we restrict our-
selves to standard PKE, our construction gives us a standard ThPKE scheme
(cf. Def. 12). We can then also apply the alternative transformation from Sec-

tion 4.1, which additionally achieves some form of robustness.

5.1 Nearly Linear Decryption of FHE

We use the following abstraction of LWE-based encryption schemes, where de-
cryption is viewed as a linear function of the secret key that outputs a “noisy”
version of the correct message. Similar notions were used in [BKS19; Bra+19].

Definition 22 (FHE with (8,¢)-linear decryption). Let FHE := (Setup,
Enc, Dec, Eval) be a fully homomorphic encryption scheme (as in Def 13) with
message space M C R, and ciphertext space Rj. Suppose that Setup outputs a
secret key sk € Ry which has the form (1,s) for some s € R;‘l.

Let 8 = B(\) € Nje = ¢(\) € [0,1]. We say that FHE has (8, ¢)-linear
decryption if for any A,k € N, (pp,pk,sk) < Setup(1*,1%), depth-r circuit
C: MF — M, messages my,...,my € R, ciphertexts c; < Enc(pk,m;) € Ry
and ct < Eval(pk,cy,...,ck), it holds that

(sk,ct) = |g/p-C(my,...,mi)] +e mod g,

for some e € R, such that Pr[|le|lcc < 8] > 1 — ¢ (where the probability is taken
over the randomness of Setup, Enc and Eval).
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In standard (Module)-LWE based constructions, it’s possible to securely set
the parameters such that the ratio 8/¢ can be made arbitrarily small, and as
long as we have 8/q = 1/poly()), then g is poly()).

For security, we require that FHE is IND-CPA secure.'? This can be instan-
tiated under the Module-LWE assumption to obtain (leveled) FHE using, for
instance, the BGV scheme [BGV12| (with superpolynomial ¢). For p =2, d=1
and R = Z, we also get (leveled) FHE under the standard LWE assumption with
a polynomial modulus g [BV14].

5.2 Construction from LSSS with Strong {0, 1}-Reconstruction

Our construction works over the ring R = Z[X]/f(X) for some degree-d irre-
ducible polynomial f, and uses the following main ingredients:

Driood: & noise distribution over Z, with magnitude bounded by Bood,

— Dgim: a noise distribution over Z,, where RD(Dsim || Dhiood + B) < €rp,, for
some a € (1,00),erp, > 1 and for all B with |B| < Bfe,

LSS: a t-out-of-n linear secret sharing scheme LSS = (Share, (Recs)gcin))
with strong {0, 1}-reconstruction, associated parameters L, Tmax, Tmin and
shares in Z[ (cf. Def. 7),

FHE: a OW-CPA secure FHE = (Setup’, Enc, Eval, Dec) scheme with message
space M C Ry, ciphertext space Ry, and (SBfhe, ¢)-linear decryption for some
Bthe < q/(2p) — TminBricod and some negligible e.

We now define the scheme ThFHE := (Setup, Enc, Eval, PartDec, Combine) by
using Enc and Eval from the underlying FHE scheme and setting Setup, PartDec
and Combine as specified in Figure 7. We prove its correctness in Appendix C.

Setup(lA,l”,n,t) PartDec(sk;, ct)

1: (pp, pk,sk) < Setup’(1*,1%) 1: €ij < Diood,r, for j € [L]

2: /| sk € Ry, sk; € (R))" 2 J sk; = (sk;y,. .. ki) € (RD)E
3: (skq,...,sk,) < LSS.Share(sk) 3: dij + (ct,sk; ;) +e;

4: return (pp,pk,skq,...,sk,) 4: returnd; « (dii1,...,ds 1)

Combine({d; }ics, ct)

1: y <+ Recs((ds)ies)
2: return [(p/q) - y]

Fig. 7. Setup, partial decrypt and combine algorithms for OW-CPA secure ThFHE. The
Enc and Eval algorithms are the same as for FHE.

2 Tn our main construction, we assume M is large and only rely on OW-CPA security
of FHE. When extending to smaller M in Sec. 5.3, we instead need IND-CPA security.
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For now, we assume the plaintext space M C R, is superpolynomial in the
security parameter, so that FHE is OW-CPA secure. In Section 5.3, we show how
to extend this to use FHE with any plaintext space, which allows instantiating
from LWE with polynomial modulus.

We write Dﬂood’R;' (resp. Dsim,Rg) to refer to the distribution consisting of rd
independent Dfooq (resp. Dsim) random variables, used to sample the coefficients
of r elements of R,.

We show security in the following.

Theorem 4 (Security). For any adversary A against the (¢,v)-OW-CPA prop-
erty of the ThFHE scheme in Fig. 7 with message space M, there exists an
adversary B against the IND-CPA property of FHE, such that

(a=1)/a
AdviLD-OW-CPA (1) < [|Cha11M| (Adv'FNHDE'CPA(B) + 2*1°g2<IM\>+V) - ghdnL =) +le

where L and Tmax are parameters from the LSS and |ChallM| is the number of
challenge ciphertexts the adversary queried.

Proof. The high-level idea is to modify the (¢, v)-OW-CPA game (Figure 3) such
that the t secret shares and the answers to the ¢ partial decryption queries pro-
vided to the adversary no longer depend on the underlying secret key sk. This
is reflected by the sequence of games from Gy to G4. In the new game G4, the
adversary still learns the circuit evaluations, stored in the set E, which might
leak some information on the challenge messages, stored in ChallM. In a fi-
nal step, when going to G5, we make those circuit evaluations independent of
the challenge ciphertexts, by tweaking the oracle OChallEnc to output random
ciphertexts (independent of the challenge messages). Here we need to assume
the IND-CPA security of the underlying non-threshold FHE scheme. By argu-
ing that the circuit evaluations coming from the partial decryption queries do
not leak too much information on the challenge messages, we can bound the
advantage of the resulting adversary in the last game G5 to be negligible.

Game Gy: This is the real threshold (¢,v)-OW-CPA experiment as in Fig-
ure 3. The view of A is given by

V = (pp, pk, {sk; }ics, CT,ChallCT,E, PartD),

where pp are the public parameters, pk is the public key, {sk;}ics are the se-
cret key shares given to the adversary, CT and ChallCT contain the (challenge)
ciphertexts the adversary has queried, E and PartD store the results of up to ¢
adaptive circuit evaluations and partial decryption queries. In each partial de-
cryption query, A inputs a circuit C' and list of indices (i1, ..., %), and receives
(di)ig[n), where d; is the partial decryption of ct < Eval(pk, C, ct;,, ..., ct;, ) un-
der sk;. Once the adversary knows all the partial decryption shares, they can re-

construct the circuit evaluation C(m,, ..., m;, ). It yields, Adv{S2iON A (A) =

G
AdvTieue(A)-

Game G1: In this game, we redefine how the partial decryptions are com-
puted. After the adversary chooses the set S C [n] of corrupt parties, let

)
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St = {(4,J)}ies,jer) be the corresponding set of share elements. Fix T' O Sy, to
be a maximal invalid set of share elements. Then, compute the partial decryp-
tions d; for a ciphertext ct as follows:

1. For (i,7) € T, let d; ; = (ct,sk; ;);

2. For (i,7) € ([n] x [L)\T, let T; ; € T U {(4,5)} be a minimal valid set of
share elements, and compute d;,; = (ct, sk) = >_ ¢ e \((1.5)} Deuts

3. Sample €; <= Dfood,pr and compute d; = d; +e;, for i € [n].

Game Gs: In this game, before outputting the partial decryptions for a
ciphertext ct, we first check that (ct,sk) = |¢/p] - C(m1,...,my) + e for some e
with |le|loc < Bhe. If not, the game aborts.

Game G3: We replace the partial decryptions corresponding to shares out-
side of T" with simulated ones. Firstly, in step (2) above, for (7, j) € ([n]x [L])\T,
we now compute d; ; as d;; = |g¢/p-C(m1,...,my)]| — Z(k,l)eTi,j\{(i,j)} dy .
Secondly, in step (3), instead of always sampling e; ; < Dfiood,r,, We Only sam-
ple €; ; < Diood,R, if (i,j) € T, and e; j <~ Dsm R, otherwise.

Game G4. In the next game, we change how the secret key shares are sam-
pled: pick (skj,...,sk!,) < LSS.Share(0) and give to A the shares {sk;}cs.

Game G5. In the last game, we replace the oracle OChallEnc by OChallEnc’,
as defined in Figure 8. In the new oracle, two independent m and m’ are sampled.
Whereas m is added to the challenge message list ChallM, the encryption of m/’
is added to the challenge ciphertext list ChallCT.

OChallEnc/()

1: idx=idx+1

2: m,m — M

3: ChallM = ChallMU {m}

4: ct + Enc(pk,m’)

5: ChallCT = ChallCT U {ct}
6: L[idx] :={(1,m,ct)}

7

return ct

Fig. 8. Modified OChallEnc’ oracle.

The theorem then follows from the following lemmata relating the advantages
between the different games and showing that the final advantage in the last
game is negligibly small.

Lemma 8. For any PPT adversary A in Games Gy and Gy, it holds that

AdvT e (A) = AdvTieye(A).
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Proof. Note that the view of A in G is identical to that in Gy, due to the strong
{0, 1}-reconstruction property of LSS. This is because every share belonging to
the maximally invalid set 7' is computed the same way as in Gg, using the
shares sk;, while each share outside this set is deterministically fixed to be a
sharing of the correct secret (ct,sk), plus noise sampled from Dyood, as in Go.
Hence, Adv$epe(A) = AdvEpe (A). [ |

Lemma 9. For any PPT adversary A in Games G1 and Go, it holds that
AdvTiene(A) < Advizege(A) + Le.

Proof. Due to the (Bme, €)-linear decryption property of FHE, and applying a
union bound over the ¢ queries, we have that Adv$rye(A) < Advieye(A) +
Le. |

Lemma 10. For any PPT adversary A in Games Go and Gs, it holds that
AdvEieye (A) < (AdvEipe(A) - e )07,
where Tmax 18 the size of the smallest maximal invalid share set in LSS.

Proof. We compute the Rényi divergence between the views of the adversary in
each game. Each view consists of the adversary’s random tape and

V = (pp, pk, {sk; }ics, CT, ChallCT,E, PartD),

where CT and ChallCT store the (challenge) ciphertexts and E and PartD the
circuit evaluations and partial decryption shares after the ¢ partial decryption
queries. For simpler notation, we set i := (if,...,7}) and m" := (m] ,...,m] )
for the index list and corresponding message vector of the n-th query. Let Dy and
D3 denote the distributions of V in games G5 and G5, respectively. Since the par-
tial decryption queries are adaptive, note that the circuit C" and the index list i"
input during the n-th query depend on the previous queries to OEnc, OChallEnc
and OPartDec and the corresponding responses. However, since each (C",i") is
a deterministic function of the other values in the view (including the random
tape), by the data processing inequality (Lem. 4), RD,(Dz||D3) < RD, (D} D%),
where D5, DY are the distributions with the C",i" values removed. D} are Dj are
now defined identically, except in the way the partial decryption components dZ j
are computed for indices (¢,j) ¢ T. In G, d?,j is computed using (amongst other
values) (ct”,sk) 4+ Dfiood,r,, Whereas G instead uses |q/p-C(m")| + Dsm g, -
Since (ct”,sk) = |g/p-C(m")]| + e, for some e, with |e,|l«« < SBne, and the
view contains nL — |T'| pairs (i, ) ¢ T where the sampling of d}/; changes from
G2 to G3, to compute RD, (D5 ||D5), it suffices to compute

RD, (((e1 + Dhiod,,) " X171, (e + pﬂoodﬁq)num)||D§%Z\T\>) .

Applying Lem. 6 with N = d¢(nL — |T|), D1 = Dhiood;s D2 = Dsim, We get
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RD, (D}||D}) < e t170,

Applying the probability preservation property of Rényi divergence, we bound
the success probability of the adversary as required. |
Lemma 11. For any PPT adversary A in Games G3 and Gy, it holds that

G G
Advrirne(A) = Advieye (A)-

Proof. Note that the view of A in Gy is perfectly indistinguishable from the one
in G5 by the perfect privacy property of LSS. Hence, Adv%:’FHE(A) = Adv%‘FHE(A).
|

Lemma 12. For any PPT adversary A in Games G4 and G5, it holds that
Adviieye(A) < Adviieye(A) + [Challl] - Advig ™ (A).

Proof. The view of A in G5 and G4 are computationally indistinguishable as-
suming the IND-CPA security of the non-threshold FHE scheme for every query
to OChallEnc’. In total, there are |ChallM| many such queries. Hence, we ob-
tain Adv@iye(A) < AdvEire(A) + [Challl| - Adviyiz “A(A). |

Lemma 13. For any PPT adversary A in Game G5, it yields that
AdvETeyg(A) < go - 27 s M0 2,

where M is the message space, v the bound on the entropy leakage guaranteed
in the (¢,v)-OW-CPA game and q. := |ChallM| the number of queried ciphertext
challenges. If v is logarithmic, |M| exponential and q. polynomial in A, the
advantage is negligible in .

Proof. Let V denote the views of A in Game Gj. It is given by
V = (pp, pk, {sk; }ies, CT,ChallCT, E, PartD).

Note that in Game G5, all challenge messages in ChallM are independent of the
challenge ciphertexts in ChallCT. Furthermore, the secret key shares {sk;};cs
are independent of the secret key sk and hence also independent of the challenge
messages in ChallM. The same is true for the simulated partial decryption shares
stored in PartD. The public parameters pp, public key pk and normal ciphertexts
stored in CT, are trivially independent of ChallM. Thus, Ho(m|V) = Hoo(m|E).
Overall, it yields

M) € 3 2R 2 30 et

m&EChallM m&ChallM

< Z 271’?00 (m,)Jru7
mEChallM
where we used that the leakage is guaranteed to be bounded above by v. Fi-
nally, we use that every m € ChallM is sampled uniformly at random over M,

thus Huo(m) = log,(|M|), leading to Adv&iee(A) < [ChallM| - 2 leg2(IMD) .
2v, |

O
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5.3 Supporting a Larger Plaintext Space

The above construction works for a plaintext space M C R,. Since we only
obtain one-way security, this requires |R,| to be superpolynomial in A to give a
meaningful security guarantee. If R, is small, we can easily modify our threshold
scheme to still be secure by using several ciphertexts to encrypt larger messages
with the underlying FHE scheme. Note that this change is necessary to obtain an
instantiation from LWE with polynomial modulus, since there M = R, = Zs.
Concretely, suppose that FHE is IND-CPA secure and has small message space
M. Define FHE' with message space M¥, such that |./\/l*k’ is negligible, by en-
crypting each of the k message components separately under FHE. We then
instantiate our threshold scheme using FHE' instead of FHE, where during the
partial decrypt and combine steps, we run the algorithms for the previous con-
struction on each component separately. If FHE is IND-CPA secure, then so is
FHE’, and the proof carries over in the same way, except that the ¢ values in the
statement of Theorem 4 will be replaced with k¢, to account for the fact that
each of the ¢ decryption queries involves k decryptions of ciphertexts from FHE.

5.4 Bounding the Rényi Divergence

We now analyze parameters and instantiate the distributions Dfooq and Dgip,. For
now, we simply choose them both to be rounded Gaussian distributions | D, |
with the same standard deviation o. In Sec. 6.1, we obtain tighter parameters by
carefully optimizing the choice of distributions. If FHE has a maximum ciphertext
noise bound of Spe, then using Lem. 5 with our choice of distributions, we get

ERD, = RDa(Dflood + thelleim) < exp (aﬁg‘e> . If FHE has Arne bits of security,

202

then from Thm. 4, the resulting ThFHE scheme is Atppne-bit secure, such that

a—1
ATheHE > (ArHE — €d(nL — Tmax) l0gs €rD, ) 4 1)

Combining the above two equations, we obtain Athgpe > “T_IAFHE —d(nL —

2
Tmax) (@ — 1)5{;“; log, e. Setting for instance a = Athene, and choosing o, ¢, Bte

such that 0 = O(Bme\/ld(nL — Tmax)(a — 1)) while decryption is still correct,
the loss in security is only a constant factor. Smaller values of a give different
tradeoffs between the size of ¢ and the security loss. Note that in any case, if ¢
and nL are polynomially bounded then both ¢ and the modulus ¢ can be also.

5.5 Alternative Construction Using Pseudorandom Secret Sharing

We also give a different construction based on pseudorandom secret sharing
(PRSS), which improves upon the previous one in some aspects. Instead of having
each party perturb their share by an independent, random noise term, we will
use PRSS [GI99; CDIO5]. This allows them to jointly sample replicated secret
sharings of small noise terms, without interaction, after a one-time setup that
distributes PRF keys. We also exploit the fact that replicated secret shares can
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be locally converted to any other LSS, and convert the secret shared noise terms
into Shamir sharings before using them for partial decryption. This means that
the partial decryptions are Shamir shares, which are much smaller, consisting of
only 1 element over R, each. Furthermore, this leads to improved parameters in
the security reduction (by avoiding the nL — Tmax term in Equation 1), and we
can additionally take advantage of the error-correction capability of Shamir to
achieve strong robustness (Def. 16) when ¢ < n/3. This offers a way of getting
robustness for ThFHE instead of only ThPKE with our previous transformations,
with the drawback that we require (?) to be not too large, due to using replicated
secret, sharing.

To sum up, PRSS is a lightweight tool for achieving robustness with a small
number of parties. The details and security proof of this construction are in Ap-
pendix D.

6 Sample Parameters and Security Estimates

In this section, we discuss how to choose concrete parameters for our OW-CPA
secure threshold construction, where we take as a starting point the lattice-based
scheme Kyber [Sch+20]. Hence, we are not in the fully homomorphic case, but in
the standard PKE case and thus obtain a standard ThPKE scheme. We denote
the thresholdized version of Kyber by TKyber.

After deriving sample parameter sets in Section 6.1, we give in Section 6.2 an
attack if the adversary has access to sufficiently many partial decryptions. We
will see that the bound is close to the one obtained in Section 5, showing that
using the Rényi divergence leads to almost optimal results.

We recall the high level description of Kyber in App. E. The relevant param-
eters for Kyber are the ring degree d, the rank r, the modulus ¢ and the width 7
of the secret key and encryption randomness distributions. Whereas the specifi-
cations of Kyber only consider three parameter sets, called Kyber512, Kyber768
and Kyber1024, we additionally consider three more parameter sets, that we
subsequently call Kyber1280, Kyber1536 and Kyber1792. As the name suggest,
they are obtained in a similar manner as the previous parameter sets, simply
by increasing the rank by +1. All parameter sets are summarized in Table 4 in
Appendix E.

6.1 Security From the Reduction

Let Apke (resp. Athpke) denote the security level of the starting PKE (resp.
the resulting ThPKE) from Theorem 4. Further, we set Ay := Apke — AThPKE;
which describe the security loss in our reduction. Instantiating Equation 1 in the
standard PKE setting yields

a—1

AThPKE > - (Apke — ld(nL — Tmax) logy €D, ) 5 (2)

where ¢ is the number of partial decryption queries, d the degree of the ring R, L
and Tmax parameters of the underlying LSSS and erp, an upper bound on the
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Rényi divergence RDg(Dsim||Dhiood + Bpke) Of order a. Here, Dsim (resp. Diicod)
denotes the simulating (resp. flooding) noise distribution and Bpke is @ bound
on the decryption noise that depends on the concrete parameters of Kyber, in
particular on the ring degree d, the module rank r and the parameter 7, as
well as the maximal failure probability ¢ we want to achieve. For concreteness
we set A\pke as the core-SVP classical hardness, i.e., the resulting BKZ block
estimated from the Lattice Estimator [APS15] size multiplied by 0.292.

Table 2 and Table 3 present some sample parameters. We explain in Ap-
pendix E in more details how we concretely derived them. The relevant differ-
ence between the two is that in the first table, we focus on larger numbers of
parties n and samples ¢ while accepting a modulus of up to 39 bits. For sim-
plicity, we assume that both Djooq and Dgy, follow a Gaussian distribution of
width o. In contrast, in the second table we fine-tuned the flooding and simu-
lation distributions so that we can allow for very small ¢ (only multiplying the
original Kyber modulus by small constants up to 10).

Table 2. Sample parameters and security estimates following the reduction from
Thm. 4 using a generic approach.

Set (Bokes€)  m t £ [log, o] [log, q] Apke Atheke Ax
TKyber1024| (390,27%°) 2 1 1 17 23 120 117 3
TKyber1024(934,273%) 2 1 1 18 24 111 108 3
TKyber1024| (390,27%°) 10 9 1 17 25 105 102 3
TKyber1280| (435,27%°) 10 5 1 21 29 120 117 3
TKyber1536| (476,27%°) 20 10 10 27 36 112 109 3
TKyber1792| (513,27%°) 2 1 2%2 33 39 123 120 3

Table 3. Sample parameters and security estimates following the reduction from
Thm. 4 obtained from a hand-tuned Python program.

Set q 1 t £ Diood Dsim AThPKE Ax
TKyber1024 5-3329 211 947 1087 100 111
TKyber1024 10-3329 2 12 1994 2034 104 91
TKyber1024 9-3329 3 21 1197 1297 106 92

6.2 Statistical Attack

In the following, we describe an attack against our proposed threshold decryption
scheme if the adversary obtains sufficiently many partial decryption queries. Note
that the obtained lower bound on the samples for this attack is only slightly
higher than the upper bound for security from Section 5. This shows that using
the Rényi divergence leads to quasi optimal parameters.
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As in the previous section, we focus on Kyber and denote by TKyber the
thresholdized scheme as in Section 5. For simplicity, we consider the full-threshold
setting for n parties using additive secret sharing. We use as flooding noise dis-
tribution a rounded Gaussian LDf|ood7 RJ of width ofeod-

Lemma 14. Let q,d,r,n be the Kyber parameters (as introduced in App. E).
Further, let ¢ denote the number of partial decryption queries to TKyber an
adversary A has access to. Further, let v € N. If

0_2
d=02(2r+1)d+v) and (d=9 (;'72" log, (2d(2r + 1))) ,

then A can recover the secret key of TKyber with probability 1—1/2d(2r+1)—27".

Proof. As we use additive secret sharing, every party receives exactly one secret
key share sk;, where sk = """ | sk;.

Following the description of Kyber from App. E and the threshold function
from Figure 7, a partial decryption of TKyber is of the form d = (d;);¢n), With

di:v-li—uTsi—l-ei,

where 1; is a share of 1 (e.g. 1; = 1 if i = 1 and 0 otherwise) and e; <— Dpood, R, -

Without loss of generality, we say that Party 1 is honest and all other parties
are controlled by the adversary A. After receiving all n decryption shares, the
adversary can sum them up to obtain

n
Zdi =rle—els+ey+ |q/2] m—!—Zei,
i=1 i

where (r,eq,ez) is the encryption randomness used for this query.

We can re-write >, d; = (w,z) + |¢/2] m+ >, €;, where w = (r,e1,e2)” «
CBD&?TH)d and z = (e, —s,1)7.

After subtracting |q/2] m, the adversary obtains d’ = (w,z)+> ., e;. More-
over, the adversary knows the flooding noise of the corrupted parties and can
further subtract it from d’, leading to d”’ = (w,z) + e;.

Interestingly, we observe that all elements appearing in the equation of d”
are of small norm, thus no reduction modulo ¢ is necessary. After applying the
coefficient embedding, we can interpret d”’ as d samples of I-LWE as defined
in Section 2.3. Due to the concrete shape of R, = Z,[X]/(X% + 1) in Kyber,
the resulting public matrix W of the I-LWE instance is now the concatenation
of nega-cyclic matrices over Z,. Overall, after ¢ partial decryption queries, the
adversary has seen an instance of the I-LWE distribution of parameters R :=
(2r+1)d and M := ¢d with underlying secret z € Z*. Recall that in TKyber, the
distribution of w is given by a centered binomial distribution of parameter 7,
defining a n-subgaussian distribution with o, = /E[x2] < +/#? = 5. The
noise follows a rounded Gaussian distribution, is thus ogeoq-subgaussian. Thus,
Theorem 1 leads to an attacker with success probability 1 —1/2R — 27" if M =
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2
2(2r+1)d+v)and M = 2 (U;‘]";d log, (2d(2r + 1))) Here we use that the least
square method performs for W (with the nega-cyclic structure) as good as for
matrices where every entry is independent of all the others. That is the case, as
the nega-cyclic structure preserves the required properties to prove Theorem 1.

O

2
In comparison, in Section 5.4 we require M = ¢d = O (Lg"") Recall that Be
fhe

is the bound on the ciphertext noise, which depends on the decryption failure
probability one wants to tolerate. Some concrete parameters for TKyber are given
in Table 2. In all cases, fme > 1/ log,(2d(2r + 1)) and hence our upper bound
from Section 5 is below the lower bound from the attack.

Note that [ASY22] showed that the Rényi divergence in their threshold signa-
ture leads to optimal bounds by providing an attack for larger bounds. As they
use a deterministic signature scheme, their analysis boils down to a straightfor-
ward averaging attack. In our case, we argue with the results on Integer LWE,
using the least square method, as our encryption scheme is randomized.
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Appendix A Missing Definitions of Section 3

A.1 Compactness and Decryption Correctness

We define the properties of compactness and decryption correctness in the fol-
lowing. Note that compactness is only relevant in the fully homomorphic setting.

Definition 23 (Compactness). We say that a ThFHE scheme satisfies com-
pactness if there exists a polynomial poly such that for all \, k,n,t, C with C: MF —
M a circuit of depth at most k and for all (m;);cm € MPF the following holds.
For (pp, pk,sky,...,sk,) < Setup(1*,1%,n,t), ct; < Enc(pk,m;) for j € [K]
and ct < Eval(pk, C,cty, ..., cty), it yields

jct] < poly(A, &, 7),
where |ct| denotes the bit size of ct.

Definition 24 (Decryption Correctness). We say that a ThFHE scheme sat-
isfies decryption correctness if there ezists a negligible function negl(X) such that
for all \,k,n,t, S, C with S C [n] of size at least t+1 and C: M* — M of depth

at most r, and for all (m;)je(r) € MF the following holds. For (pp, pk,sky, ..., sk,)
Setup(1*,1%,n,t), ct; < Enc(pk,m;) for j € [k], ct < Eval(pk, C,cty,...,ct)
and decryption shares d; < PartDec(sk;,ct) for i € S, it holds

Pr[Combine({d;}ics,ct) = C(mq,...,mg)] = 1 — negl(N).

A.2 More on Game-Based Indistinguishability

In the following, we present a third flavor of game-based ¢-IND-CPA security for
ThFHE, which we used in the first version of this paper [BS23a]. Compared to
the other two notions already presented in Section 3.4, this one is much weaker,
which is why we call it weak-/-IND-CPA.

Weak Indistinguishability. In this version of indistinguishability, the adversary
can only query partial decryptions of freshly encrypted ciphertexts, cf. Line 5 of
OPartDec. Hence, those ciphertexts are completely independent of the provided
challenge ciphertext.

Definition 25 (weak-/-IND-CPA for ThFHE). A ThFHE scheme is said to
fulfill weak-€-IND-CPA security for the security parameter X\, the circuit depth

bound k, the threshold parameters n,t and the query bound ¢, if for all PPT
adversaries A = (A1, As, A3, Ay)

1
Adviieak-LIND-CPA( 1) . Pr[EXptvxaTlré'__liED_cpA(l,\’ 1%,n,t) =1 — 3= negl(\),

where Expt%aTk,{é,‘_l,'ED‘cpA is the experiment in Fig. 9 with ctr = 0 at the beginning.
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Expt"ff‘ﬁﬁﬂéD'CPA(l)‘, 1%, n,t) OPartDec(C,myu, ..., mx)

1: (pp,pk,sky,...,sk,) < Setup(1*,1%,n,t) 1: ctr=ctr+1

2: S« Ai(pp,pk): SC[n]A|S| <t 2: if ctr > ¢ then return L
3: state < AST"°(pp, pk, {sk; }ics) 3: if (my); ¢ M" then return L
4: b« U{0,1}) 4: if depth(C) > k then return L
51 (mo,m1) < As(pp, pk, {sk; }ics) 5: ctj < Enc(pk,m;), Vj € []
6: cty < Enc(pk,msp) 6 : p =randomness used for Enc
b o« AgpaftDeC(pK {sk;}ics, cty) 7: ct <+ Eval(pk,C,cti,...,ctg)
return b =0’ 8: d; + PartDec(sk;,ct), i€ [n]
9: return p, (d;);cqn)

Fig. 9. Experiment weak-/-IND-CPA security of ThFHE schemes.

Appendix B Missing Proofs of Section 4

B.1 Missing Proofs of Section 4.1

Lemma 15 (Decryption Correctness). The scheme ThPKE' of Section 4.1
satisfies decryption correctness, if ThPKE satisfies decryption correctness and § =

poly()\).

Proof. Fix \;n,t,S with S C [n] of size at least t + 1 and let m € M’. Com-
pute (pp, pk,sky,...,sk,) « Setup’(1*,n,t) and ct <+ Enc’(pk,m). For i € S
we denote by (dij)jeis) = di « PartDec(sk;,ct) the decryption shares. The
inequality Combine’({d;};cs, ct) # m holds if for at least one j € [d] the inequal-
ity Combine({d;;}ics,c;) # x; is true. By the union bound we have

Pr [Combine’({d;}ics,ct) = m] = 1 — Pr [Combine’({d;}ics, ct) # m]

—1—Pr U Combine({dij}iGS’ij) #
J€ld]

<1—6-negl(A) =1 — negl(N),

when § = poly(A). O

B.2 Missing Proofs of Section 4.2

Lemma 16 (Compactness). The scheme ThFHE' of Section /.2 satisfies com-
pactness if ThFHE satisfies compactness and 0,y = poly(\, k,n).

Proof. It yields |ct| = |co| + (v + 1)d. From the compactness of ThFHE follows
that |cg| < poly(A, k,n) and hence the claim follows. O

Lemma 17 (Decryption Correctness). The scheme ThFHE' of Section /.2
satisfies decryption correctness if ThFHE satisfies decryption correctness.
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Proof. Fix \,k,n,t,S,C’ with S C [n] of size at least t+1 and C": (M")F — M’

of depth at most x. Further, let (m;) ;e € (M')*. Compute (pp, pk,sky, . .., sk, )
Setup’(1*,1%,n,t), ct; < Enc’(pk,m;) for j € [k] and ct « Eval(pk, C’, cty, ..., cty).
Then,

Pr [Combine'({d;}ics,ct) = C'(my, ..., my)]
=Pr [Combine({di}igs, Co) = 0(171, . ,Sﬁk)]
=1 — negl()\),

where C is defined as in Eval'. O

Appendix C Missing Proofs of Section 5

Theorem 5. The construction in Fig. 7 satisfies decryption correctness.

Proof. Let S C [n] be of size > t, and ct be a ciphertext output from Eval on
input a set of honestly generated ciphertexts and a circuit C of depth < k. Let
d; < PartDec(sk;,ct) for i € S, where (sky,...,sk,) = Share(sk).

By the strong {0, 1}-reconstruction property of LSS and the validity of S,
there exists a minimal valid set of share elements T'C S x [L] such that

Recs((sk;)ics) = Z sk; ; = sk.
(i,7)€T

It follows that

Combine({d;}ics,ct) = |(p/q) - ((ct;sk) + > eij)

(i,9)€T

= |(p/a)- | Llla/p)m] + e + Z €

(i,9)€T

= (p/q) ’ (Q/p)m + €md + €ct + Z € 5
(i,9)€T

=m+ |(p/Q)(emsteat+ Y €|,
(i,4)€T

where e is the ciphertext error and e, g is a rounding polynomial with coef-
ficients < 1/2. Letting ¢ = é;nq + ... be the sum of the 3 error terms, by the
(Bfhe, €)-linear decryption property of FHE, except with probability ¢, we have
||e||oo < ]-/2 + ﬁfhe + |T| ' Bflood- Since ﬁfhe < Q/(2p) - TminBﬂood —land T is a
minimal valid set (s0 |T'| < Tmin), we have |le|lcc < ¢/(2p), so the resulting error
term rounds to zero, giving the correct message m. O
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Appendix D Details on PRSS-based Construction

D.1 Pseudorandom Secret Sharing

Pseudorandom secret sharing (PRSS) [GI99; CDI05] allows parties to non-interactively
obtain secret-sharings of pseudorandom values, after a one-time setup phase
which distributes PRF keys among the parties. We use a variant of PRSS over
the integers, where the parties do not get shares of uniform values, but instead
values bounded from a small range (similarly to [BD10]).

Using a PRF F : {0,1}* x {0,1}* — [~B, B] N Z, the t-out-of-n threshold
case works as follows:

— As setup, for each size-t subset A C [n], sample k4 < {0,1}*. Give k4 to
each party P, for ¢ € [n] where i ¢ A.

— To sample a pseudorandom share on input a nonce v, party P; computes the
shares s4 = F(ka,v), for each size-t A where i ¢ A.

The resulting set of shares {s4}| 4= form a replicated secret sharing of s =
> 454, and we have |s| < B - (7). Furthermore, for any collusion of ¢ parties,
there is always one share s4 € [—B, B] that remains unknown.

Converting to Another LSS. A useful property of replicated secret sharing is
that replicated shares can be locally converted into any linear secret sharing
scheme for the same access structure via a simple linear transformation [CDI05].
We write the procedure of converting a share s; into a share s for a LSSS as:
s; = Convertrep—155(S;)-

D.2 Construction

The construction is shown in Fig. 10. It uses a PRF F : {0,1}* x R} — Z N
[—Biood;s Briood], where we require that the outputs of F' are indistinguishable from
samples from Dgooq.'>

ThFHE.Setup is modified to sample a set of (7) keys k4 and distribute these
to the parties in a replicated secret sharing manner. Meanwhile, the secret key of
the PKE scheme is shared using standard Shamir sharing. Then, during partial
decryption, the parties use the PRF to obtain replicated secret shares of a noise
vector. Finally, the parties convert these to Shamir sharings of the same value,
exploiting the generality of replicated secret sharing. The Combine algorithm is
identical to the previous construction, but using Shamir reconstruction.

Correctness. The proof of correctness follows similarly to the proof of Theorem 5.
Since the PRF outputs are bounded by ffood, the noise term sampled with
pseudorandom secret-sharing is bounded by (?) - Bflood- After converting this to
Shamir shares, the parties obtain a sharing of the same noise term, so decryption
succeeds under the same conditions as in Theorem 5, with Ty = (7).

3 We can use any PRF, and use the resulting pseudorandom bits to sample from Diooq.
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ThFHE.Setup(1*, n, ) ThFHE.PartDec((sk;, k), ct)

1: (pp, pk,sk) < PKE.KGen(1*) 1: J ki = (ka)iga, for all |[A| =t
2: ka+ {0,1}*, for AC [n],|A| =t 2: ea <+ F(ka,ct),fori¢ A

30 ki< (ka)iga 3: e; + Convertrep—sshamir((€4)iga)
4: (skq,...,sk,) < Shamir.Share(sk) 4: J ei€ Ry

5: return (pp, pk, (sky,ki1),..., (sk,, kn)) 5: return d; < (ct,sk;) +e;

Fig. 10. Setup and partial decrypt algorithms for the variant of the OW-CPA threshold
PKE/FHE scheme using pseudorandom secret sharing.

Security. We show security in the following theorem. Note that we improve the
security loss compared with Theorem 4, since there is no longer an nL — Tax
term in the exponent of erp,.

Theorem 6. For any adversary A against the (¢,v)-OW-CPA property of the
ThFHE scheme in Fig. 10, there exists an adversary B against the OW-CPA
property of PKE, such that

+ le

a

(a-1)/a
AV ) < [a. (AdVBEEA(B) + 27 M) ey |

Proof. The proof follows a similar structure to that of Theorem 4, so we only
highlight the main differences.

Recall that Game G| is the construction. In Game G, we changed the way
the partial decryptions were computed, for all shares outside of a maximally
invalid set of share elements. Since we now only need to simulate partial de-
cryptions of Shamir shares, we instead define a maximally invalid set of parties,
T D S, where S is the set of corrupted parties and T has size t. We then simulate
the partial decryptions as follows:

1. For i € T, honestly compute e4 < F(ka,ct), for each size-t set A C [n] with
i ¢ A, and let d; = (ct, sk;) + Convertrep—sshamir((€,4) )

2. Sample er < Diood,R,

Compute e =3 4 4= €4

4. Fori ¢ T, let T" = T U {i} and compute

w

d; = /\5/1,1' | (ct,sk) +e— Z)\T',jda‘

jeT

where A7/ ; are the reconstruction coeflicients for Shamir secret sharing,
defined by the Lagrange basis for polynomial interpolation at points in 7”.

Note that the d; shares for ¢ ¢ T are computed such that the partial de-
cryptions form a valid Shamir sharing of (ct,sk) + e. This is exactly as in the
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real protocol, except that here the one share er that is not part of any shares
in the maximally invalid set T is sampled from Dygeoq (step 2) instead of with
the PRF. Since the PRF key kr is not given to the adversary, this hybrid is
indistinguishable from the real game Gy, by the security of the PRF.

Game G2 then makes the same change as in Theorem 4, removing the pos-
sibility of decryption failure. This is indistinguishable from the previous game,
except with probability /e.

In Game (3, in the noise term e, the share er sampled in step 2 is sampled
with simulated noise using Dgim, r, - At the same time, we remove the ciphertext
noise term in (ct, sk), so instead of the last step above, we will now compute

di =Myt | Lla/p) - m] +e= > A jd;
JET
Notice that the difference between games G5 and Gj is that G uses the real
ciphertext noise and er < Diood, g, to simulate the missing partial decryptions,
while G'3 instead uses zero ciphertext noise and er < Dgim,r, - Let et = (ct, sk) —
|(¢/p) - m] be the ciphertext noise. Using Lemma 6, we have

RDa(Dflood,Rq + ect”,l)sim,Rq) < 5dRDa

Similarly to the proof of Theorem 4, for ¢ decryption queries we obtain

(a=1)/a
AdvTZepe(A) < (Advgle('A) '5%3@)

and the result follows. O

Achieving Strong Robustness. An advantage of this construction is that if
t < n/3, we can exploit the error-correction properties of Shamir sharing to guar-
antee that Combine outputs the correct message, even in the presence of ¢ mali-
ciously chosen partial decryptions. This is because a properly generated PartDec
output is a valid Shamir share, so the parties can always use Reed-Solomon error
correction to reconstruct the secret and decrypt, given at least n/3 valid shares.
This allows the construction to satisfy the strong chosen-plaintext robustness
property (Def. 16). While this is also possible to achieve using the OW-CPA
to IND-CPA transformation from Section 4 (and even with ¢t < n/2), by using
Shamir we avoid the (’Z) cost of finding the correct subset of partial decryptions,
significantly improving the efficiency of the Combine algorithm. Furthermore,
the Shamir approach is compatible with FHE and not just PKE.

Appendix E More Details on Parameters of Section 6

We recall the high level design of Kyber with messages of the form m € Ry =
{0,1}4, where d denotes the degree of the ring R. The scheme uses the centered
binomial distribution with parameter € N, denoted by CBD,. We say that
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a ring element is sampled from CBD,, if all its d coefficients are independently
sampled from CBD,,. This generalizes to vectors in R", where r is the underlying
module rank. Let Kyber = (Setup, Enc, Dec) be as follows:

Setup(1?): Sample short vectors s, e € Ry, from CBD,, and a uniform matrix A €
Ry Set sk = (s,e) and pk = (A, t), where t = As +e.

Enc(pk,m): Sample a short vector r € R} from CBD, and e; € Rj and ez € R,
from CBD,,. Set u = ATr+e; and v = rTt+ea+|g/2]-m. Output ct = (u,v).

Dec(sk,ct): Compute ¢’ = v—uls =rTe—els+ez+[q/2]-m. Output |¢ - 2/q].

For simplicity, we omit the additional rounding usually applied to ciphertexts
to further reduce their size.

Table 4. Parameter sets for Kyber.

Set ‘ dr q n
Kyber768 256 3 3329 2
Kyber1024 {256 4 3329 2
Kyber1280 256 5 3329 2
Kyber1536 (256 6 3329 2
Kyber1792 {256 7 3329 2

Generic Parameters for Large Numbers of Parties. We first describe a
simplified way of deriving parameters, where we assume that Dgpy, and Drood
both are uncut rounded Gaussian distributions of the same width o.

Using Lemma 5 with our choice of distributions, Equation 2 simplifies to

a—1 aﬁ?,ke
AThPKE > — Apke — ld(nL — Tmax)? logye | . (3)

When setting 0 = Soke/fd(RL — Tmax)(a — 1) log, e, the above simplifies to

a—1

AThPKE = “Apke — 1, (4)
which promises a rather small security loss at the expense of a larger modu-
lus. Note that we have to set ¢ > 4(Bpke + TminSfiood) i order to guarantee
correctness (Thm. 5). Let’s for concreteness set Bfood = 100 and a = 100. Re-
call that Kyber is a PKE with (Bpke, €)-linear decryption, where fpke depends on
the maximal failure probability ¢ we tolerate. If we take as a concrete exam-
ple Kyber1024, it offers (390,27°) as well as (934,273%)-linear decryption.
When considering full threshold, we use additive secret sharing and when
considering non-full threshold, we assume naive secret sharing, defining the pa-
rameters L, Tmax, Tmin @S in Table 1. After having set ¢ and ¢, one can use the
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Lattice Estimator [APS15] to derive Apkg. For simplicity we set Apke as the core-
SVP classical hardness, i.e., the resulting BKZ block size multiplied by 0.292.
The resulting Athpke and Ay then come from Equation 4. We give some sample
parameters for TKyber1024 in Table 2. Note that we mean by TKyber1024 that
we take all the original Kyber1024 parameters, but modify the modulus q.

Hand-Tuned Parameters for Small Number of Parties. We now describe
how we can obtain tighter concrete parameters (in particular a small modulus ¢)
by allowing for different flooding and simulating Gaussian distributions and op-
timizing their concrete width. Throughout this section, we set Dgm (resp. Diood)
as the rounded Gaussian distribution of width ogm (resp. ofiood), Where we ad-
ditionally apply a tail cut after 2 - ogm (resp. 2 - Ofiood)-

By extending the Python program for computing security estimates of Kyber!
we design a Python program that proceeds in the following three steps:

4

Step 1: Finding Diood- The high level idea is to find the largest ofo0q We can
use in our ThPKE such that we still guarantee correctness (Theorem 5). This
is how we optimally make use of our modulus ¢. For simplicity, we set p = 2
and hence correctness is fulfilled as long as the infinity norm of the final noise is
at most ¢/4. This procedure depends on the Kyber parameters (that define the
noise from the decryption algorithm) as well as the maximal decryption failure
probability we want to aim for. We fix this probability to be 2769, At the end,
the procedure outputs o004 and the bound B.

Step 2: Finding Dsim. Once we have computed Dyoogd, we can find Dg;r, such that
the Rényi divergence RDa(Diiood+B|| Dsim) is smallest. We start by setting Dgim =
Diiood and compute the Rényi divergence of order 2. We now (slightly) in-
crease Dgp, step by step and expect the Rényi divergence to decrease up to
some optimal sweet spot. Once we observe that the Rényi divergence increases
again, we stop increasing Dg;, and take this as the optimal choice. Note that for
fixed Dfiood, B and Dgm, it yields RDa (Dflood + BHDsim) <RD, (Dflood + BHDsim)
for all a > 1. Hence, it is reasonable to compute the sweet spot for the order 2.

Step 3: Finding erp,, . As we now have Diiood, Dsim and B, we can find the optimal
order of the Rényi divergence. Note that, even though egrp, doesn’t decrease for
increasing a, the factor (a—1)/a in Equation 2 suggests that the optimal a might
not necessarily be a = 2. For concreteness, we search the minimum among the
orders a € [2,...,11]. We then output the optimal choice of a together with
the resulting Rényi divergence erp,. Finally, we have everything together to
compute the upper bound on Athpke.

Table 3 summarizes our findings. We use as base security Apkg the core-
SVP classical hardness of the underlying LWE instance, which can be easily
computed using any LWE estimator. For convenience, we used the leaky LWE

" https://github.com/pq-crystals/security-estimates
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estimator [Dac+20]. We give some estimates for the final security Arnpke for dif-
ferent choices of small numbers of parties n, threshold ¢ and number of queries .
For all computations, we apply a (rather aggressive) Gaussian tail cut after 2
times the Gaussian width and assume a failure probability bound of 2769,

Here, we consider variants of the Kyber1024 parameter set, where we multiply
the modulus ¢ by some scaling factor. This scaling factor is intended to give an
idea of the order of magnitude of the modulus we need. We remark that multiples
of 3329 might not necessarily be the optimal choice when taking implementation
characteristics into account.

Comparing The Rényi Divergences. We would like to highlight that the
two strategies assume different flooding and simulating noise distributions Dyjpeq
and Dg,. Whereas in the first we assume the same and (quasi) uncut rounded
Gaussian distributions, we computed the parameters in the second case with a
different and tail cut rounded Gaussian distributions. When fixing a maximal
decryption failure probability, one can choose the modulus ¢ much smaller in the
latter case. However, the sharper we cut off the rounded Gaussian distribution,
the more the Rényi divergences from Lemma 5 and one computed by our Python
program diverge from each other.

E.1 Proof of Lemma 14

Proof. As we use additive secret sharing, every party receives exactly one secret
key share sk;, where sk = > _""_| sk;.

Following the description of Kyber from App. E and the threshold function
from Figure 7, a partial decryption of TKyber is of the form d = (d;);c[n), with

di:v~1¢7uTsi+ei,

where 1; is a share of 1 (e.g. 1; = 1if i = 1 and 0 otherwise) and e; <~ Dfiood, R, -

Without loss of generality, we say that Party 1 is honest and all other parties
are controlled by the adversary A. After receiving all n decryption shares, the
adversary can sum them up to obtain

Zdi =rTe—els+ey+ Lq/ﬂm—i—Zei,

i=1 %

where (r, e, es) is the encryption randomness used for this query.

We can re-write Y, d; = (w,z) + |¢/2] m+ ), e;, where w = (r, ey, e2)” +
CBDY % and z = (e, —s,1)7.

After subtracting |g/2] m, the adversary obtains d’ = (w,z)+Y .-, e;. More-
over, the adversary knows the flooding noise of the corrupted parties and can
further subtract it from d’, leading to d’ = (w,z) + e;.

Interestingly, we observe that all elements appearing in the equation of d”
are of small norm, thus no reduction modulo ¢ is necessary. After applying the
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coefficient embedding, we can interpret d’ as d samples of I-LWE as defined
in Section 2.3. Due to the concrete shape of R, = Z,[X]/(X?% + 1) in Kyber,
the resulting public matrix W of the I-LWE instance is now the concatenation
of nega-cyclic matrices over Z,. Overall, after ¢ partial decryption queries, the
adversary has seen an instance of the [-.LWE distribution of parameters R :=
(2r+1)d and M := ¢d with underlying secret z € Z. Recall that in TKyber, the
distribution of w is given by a centered binomial distribution of parameter 7,
defining a n-subgaussian distribution with o, = /E[x?] < \/7? = n. The
noise follows a rounded Gaussian distribution, is thus ogeoq-subgaussian. Thus,
Theorem 1 leads to an attacker with success probability 1 —1/2R—27" if M =

2(2r+1)d+v)and M = 12 (% log,(2d(2r + 1))) Here we use that the least

square method performs for W (with the nega-cyclic structure) as good as for
matrices where every entry is independent of all the others. That is the case, as

the nega-cyclic structure preserves the required properties to prove Theorem 1.
O
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