
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Key-and-Signature Compact Multi-Signatures for
Blockchain: A Compiler with Realizations

Shaoquan Jiang, Dima Alhadidi and Hamid Fazli Khojir

Abstract—Multi-signature is a protocol where a set of signatures jointly sign a message so that the final signature is significantly
shorter than concatenating individual signatures together. Recently, it finds applications in blockchain, where several users want to
jointly authorize a payment through a multi-signature. However, in this setting, there is no centralized authority and it could suffer from a
rogue key attack where the attacker can generate his own public keys. Further, to minimize the storage on blockchain, it is desired that
the aggregated public-key and the aggregated signature are both as short as possible. In this paper, we find a compiler that converts a
kind of identification (ID) scheme (which we call a linear ID) to a multi-signature so that both the aggregated public-key and the
aggregated signature have a size independent of the number of signers. Our compiler is provably secure. The advantage of our result
is that we reduce a multi-party problem to a weakly secure two-party problem. We realize our compiler with two ID schemes. The first is
Schnorr ID. The second is a new lattice-based ID scheme, which via our compiler gives the first regular lattice-based multi-signature
scheme with a key-and-signature size independent of the number of signers without a restart during the signing process.

Index Terms—Blockchain, Multi-Signature, Identification, Lattice, Random Oracle

F

1 INTRODUCTION

A multi-signature scheme allows a group of signers to
jointly generate a signature while no subset of them

can represent all the members to generate it. It was first
introduced by Itakura and Nakamura [26]. A trivial method
is to ask each signer to generate a signature on the message
and concatenate their signatures together. However, this is
not efficient: (1) the signature size is linear in the number
of signers n; (2) we need to provide n signer public-keys
to verifier; (3) the verification needs to verify n signatures.
This indicates that the complexities of the communication,
verification and receiver storage are all linear in n. In the
blockchain setting, this is not desired as the signature will
be transmitted, verified and stored in all the complete nodes
on the blockchain network. Thus, it is desired to construct
a multi-signature scheme that has a signature with these
measures independent of n.

Early multi-signarture schemes [30], [44] assumed all
keys including attacker keys are generated honestly. In
Bitcoin [41], every user can choose his own public-key.
However, this might raise a very serious issue. For example,
if a user wants to generate a multi-signature with users
of 3 pubic-keys gx1 , gx2 , gx3 , he could choose s randomly
and compute his public-key as pk = gs(gx1+x2+x3)−1. If
the aggregated public-key (which is the only public-key
provided to the verifier) is the multiplication of the four
public-keys, then attacker knows its secret and hence can
forge a multi-signature. This is called a rogue key attack. How
to construct a key-and-signature compact multi-signature
scheme secure against any possible rogue key attack is an
important question.

• Authors are all with School of Computer Science, University of Windsor,
ON, Canada, N9B 3P4. This submission is online at arXiv: 2301.08668.
E-mail: {jiangshq,Dima.Alhadidi,fazlikh}@uwindsor.ca

Manuscript received Jan 1, 2023; revised Jan 1, 2023.

1.1 Related Works

A multi-signature scheme [26] is a special case of aggregate
signature [12] where each signer of the latter can sign a
possibly different message. In this work, we only discuss
a multi-signature scheme with a motivation of blockchain
application where the public-key is arbitrary and the target
is to minimize the aggregated public-key and signature
size. Micali et al. [39] requires an interactive key generation
among signers and hence is not suitable. Boldyreva [11] and
Lu et al. [32] require signers to add proof of possession (PoP) to
their public-keys, which is typically a signature of the user’s
public-key. The main disadvantage of this assumption is
the increase of the public-key size. In the signing process,
it also requires a signer to verify the PoP of all the other
signers. In addition, this assumption is not compatible with
an ordinary signature where PoP is not required.

Bellare and Neven [8] converted the Schnorr signature
[48] into a multi-signature by linearly adding the signature
together. Their protocol is of 3-round but without the key
aggregation. Bagherzandi et al. [3], Ma et al. [36], Syta et al.
[51] and Maxwell et al. [38] attempted to construct a 2-round
multi-signature scheme which essentially tries to remove the
preliminary committing message which is a hash of the first
message in an ID scheme (see [8] for example). However,
Drijvers et al. [17] pointed out that all these schemes have
proof flaws. They then proved that a slightly modified
scheme of Bagherzandi et al. [3] is secure under the PoP
assumption. Other 2-round proposals that support the key-
and-signature aggregation are due to Alper and Burdges [2]
and Nick et al. [42], [43], where Nick et al. [43] employed
a generic NIZK proof while the other two proposals [2],
[42] are efficient in terms of the size of aggregated key and
signature as well as the cost of signature verification (similar
to the original Schnorr signature). Boneh et al. [13] proved
the security of a modified version of Maxwell et al. [38] via

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

key round] limited assump
compact comp Restart signing

[21] No 3 exp No R-LWE
[22] No 3 exp No non-stand
[14] Yes 2 exp No R-MLWE

& R-MSIS
[16] No 2 exp No R-MLWE

& R-MSIS
[20] No 1 0 Yes R-SIS
ours Yes 3 0 No R-SIS

& R-LWE

Fig. 1. Comparison of Lattice-based Secure Multi-Signature
Schemes: compact means the size independent of] signers; all
schemes have compact signatures; schemes requiring a honest
signer KeyGen are not listed;] restart is] of repeated runs of
signing algorithm (in case it aborts); exp means exponential in
either] signers or the security parameter; limited-sign restricts
each user to have a predefined (polynomial) number of signings.

an added preliminary committing message and hence it is
a 3-round scheme. Bellare and Dai [4] proposed a 2-round
multi-signature scheme with a tight reduction without the
key aggregation.

The above constructions are all based on variants of
the discrete logarithm assumption. It is important to find
out quantum-resistant schemes while this is not easy. For
instance, lattice-based scheme [28] is insecure [31]. Also,
the proof for a ring-SIS based scheme [27] is invalid. They
reduced to find a short W for ring-SIS problem AW = 0
with public parameter A. However, their obtained W is
trivially zero which does not contradict the ring-SIS assump-
tion. Some schemes [14], [21], [22], [37] need an exponential
number of restarts during the signing process, due to a
noticeable probability of an abort event. Before our work,
there is no solution for this (unless a predefined bound on
the number of signings is given). The hardness of resolving
this restart issue is discussed in [25]. Some schemes [19],
[37] are provably secure only when all the keys (including
attacker’s keys) are generated honestly which is not suitable
for blockchain. Damgård et al. [16] and Fleischhacker et al.
[20] do not support key aggregations while the latter can
only allow a signer to sign a predefined (polynomial) num-
ber of signatures. Thus, currently no multi-signature scheme
can support a key-and-signature aggregation without a
restart and allow an unlimited number of signing. Since
we consider the polynomial time adversary, this “unlimited
number” should be understood as any polynomial (that is
not predetermined in the system).

1.2 Contribution
In this paper, we consider the key-and-signature compact
multi-signature. That is, both key and signature support
aggregation and have a size independent of the number of
signers. Toward this, we formulate the linear identification
scheme (ID) and propose a compiler that transforms a linear
ID to a key-and-signature compact multi-signature scheme,
where the signature size and the aggregated public-key are
independent of the number of signers. The advantage of
our compiler is that we reduce the multi-party signature
problem to a weakly secure two-party identification prob-
lem. This allows researchers to deal with a much simpler

problem and potentially to propose more efficient multi-
signature schemes. We formulate the linearity of ID via the
R-module from algebra. Our compiler is provably secure.
We realize our compiler with two ID schemes. The first is
Schnorr ID scheme. The second one is a new ID scheme over
ring that is secure under ring-LWE and ring-SIS assumption-
s. Our ID scheme via the compiler gives the first key-and-
signature compact multi-signature without a restart during
the signing process (see Fig. 1 for a comparison with other
schemes), where a signer can do any polynomial number
of signing (unlike [20], which can only do a predetermined
number of signings). The security of ID schemes is formu-
lated in terms of unforgeability against an aggregated key
of multi-users with at least one of them honest. Our ID
schemes are proven secure through a new forking lemma
(called nested forking lemma). Our forking algorithm has
a nested rewinding and is more effective than the previous
algorithms which fork at two or more spots sequentially.

2 PRELIMINARIES

Notations. We will use the following notations.

• x← S samples x uniformly random from a set S.
• For a randomized algorithm A, u = A(x; r) denotes

the output of A with input x and randomness r,
while u ← A(x) denotes the random output (with
unspecified randomness).

• We use PR(r) to denote the probability Pr(R = r);
for Boolean variable G, Pr(G) means Pr(G = 1).

• PPT stands for probabilistic polynomial time.
• Min-entropy H∞(X) = − log(maxx logPX(x)).
• A|B stands for A concatenating with B.
• Non-negative function negl(λ) is negligible if

negl(λ) < λ−k for any constant k ∈ N and when
λ is large enough.

• [ν] denotes set {1, · · · , ν}.

2.1 Ring and Module
In this section, we review a math concept: module (for de-
tails, see [29]). We start with the concept of ring. A ring A is
a set, associated with multiplication and addition operators,
respectively written as a product and a sum, satisfying the
following conditions:

- R-1. A is a commutative group under addition
operator + with the identity element denoted by 0.

- R-2. A is associative under multiplication operator:
for a, b, c ∈ A, (ab)c=a(bc). Also, it has a unit element
1: 1a=a.

- R-3. It satisfies the distributive law: for a, b, c ∈ A,
a(b+ c) = ab+ ac and (b+ c)a = ba+ ca.

In this paper, we only consider a commutative ring: if a, b ∈
A, then ab = ba. That is, when we say ring, it always means
a commutative ring. Note that a non-zero element in a ring
does not necessarily have a (multiplicative) inverse, where
b is an inverse of a if ab = 1. For instance, in Z10, 3 is
an inverse of 7 while 5 does not have an inverse. If A is a
commutative ring with 0 6= 1 and every non-zero element
in A has an inverse, then A is a field.

Now we introduce the concept module.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

Definition 1. Let R be a ring. An Abelian group M (with
group operator �) is a R-module, if (1) it has defined
a multiplication operator • between R and M : for any
r ∈ R,m ∈ M , r •m ∈ M ; (2) the following conditions
are satisfied: for any r, s ∈ R and x, y ∈M ,

1. r • (x� y) = (r • x) � (r • y);
2. (r + s) • x = (r • x) � (s • x)
3. (rs) • x = r • (s • x)
4. 1R • x = x with 1R the multiplicative identity of R.

We remark that the group operator � for M is not
necessarily the regular number addition (e.g., it can be the
integer multiplication). One can easily verify that when R is
a field, a R-module is a vector space. For instance, a vector
space V ⊆ Rn is a R-module. In the following, we give some
other R-modules, where R is not a field.

Example 1. Let q be a prime and M is a group of order
q with generator g (i.e., M = 〈g〉). Examples of M are a
subgroup of Z∗p or a prime group on an elliptic curve. For
x, y ∈ M , xy denotes its group operation in M . Then, M is
a Zq-module with • defined as r •m def

= mr, for r ∈ Zq and
m ∈M . It is well-defined: since mq = 1, any representative
r in Zq such as r, r + q gives the same result r • m. For
r, s ∈ Zq and x, y ∈M , we check the module conditions: (1)
s • (xy) = (xy)s = xsys = (s • x)(s • y); (2) (r + s) •m =
mr+s = mrms = (r•m)(s•m); (3) (rs)•x = xrs = (xs)r =
r • (s • x); (4) 1 • x = x1 = x.

Example 2. For any integer n > 0, M = Zn (as an additive
group) is a Zn-module, where • is simply the modular
multiplication. The verification of module properties is s-
traightforward.

Example 3. Let n be a positive integer. Then, the poly-
nomial ring M = Zn[x] (as an additive group) is a Zn-
module with • being the modular n multiplication: for
s ∈ Zn,m =

∑t
i=0 uix

i, s • m =
∑t
i=0 uisx

i, where uis
is the multiplication over Zn. All the module properties can
be straightforwardly verified.

3 NESTED FORKING LEMMA

The original forking lemma was formulated by Pointcheval
and Stern [46] to analyze Schnorr signature [48]. It basically
shows that if the attacker can forge a Schnorr signature in
the random oracle model [7] with a non-negligible probabili-
ty, then it can generate two forgeries when reminding to the
place where the random oracle value was revised. Bellare
and Neven [8] generalized the forking lemma to a general
algorithm A, without resorting to a signature scheme. This
was further generalized by Bagherzandi et al. [3] so that A
is rewound to many places. However, the algorithm needs
O(n2q/ε) rewindings, where q is the number of random
values in one run of A (which is the number of random
oracle queries in typical cryptographic applications) and ε
is the successful probability of A while n is the number
of rewinding spots. However, this is not efficient and can
even be (sub)exponential for a non-negligible ε. The main
issue comes from the fact the rewinding for each spot is
repeated independently until a new success is achieved. But
it does not relate different rewindings. In this section, we

give a new forking lemma for two rewinding spots (say
at index i, j with i < j) while it can be generalized to n
rewinding spots. The new feature here is that the rewinding
is nested. To see this, suppose that the first run of A uses the
list of random values: h1, · · · , hi−1, hi, · · · , hj−1, hj , · · · , hq
and the rewinding spots are chosen at index i and j. Then,
we execute A for another 3 runs with rewindings that
respectively use the following lists of random values:

h1, · · · , hi−1, hi, · · · , hj−1, h
′
j , · · · , h′q; (1)

h1, · · · , hi−1, h̄i, · · · , h̄j−1, h̄j , · · · , h̄q; (2)

h1, · · · , hi−1, h̄i, · · · , h̄j−1, hj , · · · , h
′
q. (3)

That is, execution (1) rewinds the initial execution to index
j; execution (2) rewinds the initial execution to index i while
execution (3) rewinds the (rewound) execution (2) to index
j. With these related executions, we are able to claim that
all the rewindings run successfully with probability at least
Ω(ε4), which is still non-negligible. The advantage of this
nested forking is that it can be directly used to extract a secret
hidden in recursive random oracle evaluations.

To taste the usefulness of this nested forking, consid-
er the secret extraction task from an attacker’s “forgery”
z = (ax + y)c + r (over Fq for a prime q). Assume that
a, r, c are computed in this order, where a, c is known
but produced by random oracle while r is unknown but
produced by attacker. Suppose that x, y are invariant with x
being the secret to be extracted. Let (a, c) = (hi, hj) in the
initial execution. Let A be the algorithm that uses this forger
(who outputs z) as a subroutine and outputs i|j|(a, c, z).
Using the initial and rewinding executions at Eqs. (1)-(3) of
A, we get the following outputs:

i, j, hi, hj , z = (hix+ y)hj + r (4)
i, j, hi, h

′
j , z
′ = (hix+ y)h′j + r (5)

i, j, h̄i, h̄j , z̄ = (h̄ix+ y)h̄j + r̄ (6)

i, j, h̄i, hj , z = (h̄ix+ y)hj + r̄. (7)

We remind that Eq. (4)(5) use the same r as r is deter-
mined before computing hj while these two executions are
identical prior to hj (as we rewind to the spot hj). The
rewinding h-values are distinct with high probability. So
from Eqs (7)(6), we can compute h̄ix + y; from Eqs (4)(5),
we can compute hix + y. Solving the linear equation gives
x. We remark that this secret extraction is useful only if all
rewindings return the same j, i with j > i ≥ 1. Our forking
lemma claims that this happens with probability Ω(ε4).

Our algorithm will use the following notations.

h[[1, · · · , q]] def= h1, · · · , hq (a sequence of elements);

h[[1, · · · , ̂i, · · · , q]] def= h1, · · · , hi−1, ĥi, · · · , ĥq;
h[[1, · · · , ̂i, · · · , j, j + 1, · · · , q]]

=h1 · · · , hi−1, ĥi, · · · , ĥj , h̄j+1, · · · , h̄q.
Other variants such as h[[1, · · · , i, · · · , j, j + 1, · · · , q]]) can
be defined similarly. Our forking algorithm is in Fig. 2.

Before our forking lemma, we give two facts.

Fact 1. For any random variable I,R and any function F () on
I,R, we have

Pr(I = i ∧ F (I,R) = f) = Pr(I = i ∧ F (i, R) = f).

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

—————————————————————-
Algorithm FA(x)
—————————————————————-
pick coin ρ for A at random
h1, · · · , hq ← H
(I0, J0, σ0)← A(x, h[[1, · · · , q]]; ρ)
If I0 = 0 or J0 = 0 or I0 ≥ J0, return Fail
ĥJ0 , · · · , ĥq ← H

(I1, J1, σ1)← A(x, h[[1, · · · , ̂J0, · · · , q]]; ρ)
If I1 = 0 or J1 = 0, return Fail
h̄I0 , · · · , h̄q ← H
(I2, J2, σ2)← A(x, h[[1, · · · , I0, · · · , q]]; ρ)
If I2 = 0 or J2 = 0, return Fail
hJ0 , · · · , hq ← H

(I3, J3, σ3)← A(x, h[[1, · · ·, I0, · · · , J0 − 1, J0, · · · , q]]; ρ)
If I3 = 0 or J3 = 0, return Fail
Let Flag1 = (I0 = I1 = I2 = I3)∧(J0 = J1 = J2 = J3)

Let Flag2 = (hI0 6= h̄I0)∧(hJ0 6= ĥJ0)∧(h̄J0 6= hJ0)
If Flag1 ∧ Flag2, return (I0, J0, {σi}3i=0)
else return Fail.
—————————————————————-

Fig. 2. Forking Algorithm FA

Proof. For any function G and any random variable W ,
Pr(G(W) = g) =

∑
w:G(w)=g PW (w). Applying this to

W = (I,R) and G = (I, F), a simple calculation gives the
result as (I, F) = (i, f) is I = i ∧ F = f . �

Fact 2. LetB′, B,R be independent random variables withB′, B
identically distributed. Let G be a fixed boolean function. Then,

Pr(G(R,B) ∧G(R,B′)) =
∑
r

PR(r) · Pr2(G(r,B)).

Proof. Notice Pr(X = x) =
∑
r Pr(R = r,X = x) for

variable R,X. Together with Fact 1, we have

Pr(G(R,B) ∧G(R,B′))

=
∑
r

Pr(R = r, {G(R,B) ∧G(R,B′)} = 1)

=
∑
r

Pr(R = r, {G(r,B) ∧G(r,B′)} = 1)

=
∑
r

PR(r) · Pr(G(r,B)) · Pr(G(r,B′))

=
∑
r

PR(r) · Pr2(G(r,B)),

where the third equality uses the independence of R,B,B′

and the last equality uses the fact that B′ and B are identi-
cally distributed. �

Now we are ready to present our forking lemma.

Lemma 1. Let q ≥ 2 be a fixed integer and H be a set
of size N ≥ 2. Let A be a randomized algorithm that
on input x, h1, · · · , hq returns a triple, the first two
elements of which are integers from {0, 1, · · · , q} and
the last element of which is a side output. Let IG be
a randomized algorithm (called input generator). The

accepting probability of A, denoted by acc, is defined
as the probability that I, J ≥ 1 in the experiment

x← IG; h1, · · · , hq ← H;

(I, J, σ)← A(x, h[[1, · · · , q]]).

The forking algorithm FA associated with A is a random-
ized algorithm with input x that proceeds as in Fig. 2.
Let frk = Pr[FA(x) 6= Fail : x← IG]. Then,

frk ≥ 8 · acc4

q3(q − 1)3
− 3

N
. (8)

Proof. With respect to Flag1, we define Flag∗1 as event

(I0 = · · · = I3 ≥ 1) ∧ (J0 = · · · = J3 ≥ 1) ∧ (J0 > I0).

Then, it is easy to check that FA(x) 6= Fail is equivalent to
Flag∗1 ∧ Flag2 = 1. Since hI0 = h̄I0 (resp. hJ0 = ĥJ0 , or,
h̄J0 = hJ0) in ¬Flag2 holds with probability 1/N, we have

frk = Pr(Flag∗1 ∧ Flag2 = 1)

≥Pr(Flag∗1 = 1)− 3/N. (9)

Notice that

Pr(Flag∗1 = 1)

=

q∑
i=1

q∑
j=i+1

Pr(∧3
b=0{Ib = i ∧ Jb = j}). (10)

Let A1 (resp. A2, A12) be three variants of algorithm A
with the only difference in the output which is the first
element (resp. the second element, the first two elements)
of A’s output. For instance, keeping symbols in FA.

J1 =A2(x, h[[1, · · · , J0 − 1, ̂J0, · · · , q]]; ρ), (11)

I2 =A1(x, h[[1, · · · , I0 − 1, I0, · · · , q]]; ρ). (12)

Assigning I0 = i and J0 = j, we denote

J ′1 =A2(x, h[[1, · · · , j − 1, ̂j, · · · , q]]; ρ), (13)

I ′2 =A1(x, h[[1, · · · , i− 1, i, · · · , q]]; ρ). (14)

We can similarly define I ′1, J
′
2, I
′
3, J
′
3. So Ib, Jb for b ≥ 1

are functions (of A’s inputs and randomness) and when
assigning I0 = i and J0 = j, they become I ′b, J

′
b. Hence,

we can apply fact 1 to evaluate Eq. (10). This gives

Pr(Flag∗1 = 1) (15)

=

q∑
i=1

q∑
j=i+1

Pr(∧3
b=0{I ′b = i ∧ J ′b = j}), (16)

where I0, J0 is rewritten as I ′0, J
′
0 (note: I ′0, J

′
0 is undefined

above) for brevity (so the term {I0 = i ∧ J0 = j} becomes
{I ′0 = i ∧ J ′0 = j}). Notice ∧1

b=0(I ′b = i ∧ J ′b = j)
is a random variable, with randomness (R,B), where
R := (x, ρ, h1, · · · , hi−1) and B := (hi, · · · , hq, ĥj , · · · , ĥq).
So we can define

∧1
b=0(I ′b = i ∧ J ′b = j) = G(R,B) (17)

for some boolean function G.
Besides, by checking the inputs of I ′b, J

′
b, we can see that

∧3
b=2(I ′b = i ∧ J ′b = j) = G(R,B′) (18)

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

with B′ = (h̄i, · · · , h̄q, hj , · · · , hq).
Hence, applying Fact 2 to Eq. (16), we have

Pr(Flag∗1 = 1)

=
∑
r

1≤i<j≤q

PR(r)Pr2(∧1
b=0(I ′br = i ∧ J ′br = j))

=
∑
r

1≤i<j≤q

PR(r)Pr2(∧1
b=0(I ′br, J

′
br) = (i, j)). (19)

where I ′br (resp. J ′br) is I ′b (resp. J ′b) with R = r.
Notice that (I ′0r, J

′
0r) = (i, j) is a boolean random

variable (i.e., the result is true only if the equality holds),
determined by hi, · · · , hq . We can define

G′(S,C)
def
= {(I ′0r, J ′0r) = (i, j)} (20)

for some function G′, where S = hi, · · · , hj−1 and C =
hj , · · · , hq .

Since the input of (I ′1r, J
′
1r) is S and (ĥj , · · · , ĥq),

{(I ′1r, J ′1r) = (i, j)} = G′(S,C ′) (21)

with C ′ = ĥj , · · · , ĥq .
Thus, Eq. (19) is

Pr(Flag∗1 = 1)

=
∑
r

PR(r)Pr2
(
G′(S,C) ∧G′(S,C ′)

)
. (22)

Hence, we can apply Fact 2 to Eq. (22) and obtain

Pr(Flag∗1 = 1)

=
∑
r

1≤i<j≤q

PR(r)[
∑
s

PS(s)Pr2((I ′0rs, J
′
0rs) = (i, j))]2

≥
∑

1≤i<j≤q
[
∑
r,s

PR(r)PS(s)Pr2((I ′0rs, J
′
0rs) = (i, j))]2

≥
∑

1≤i<j≤q
[
∑
r,s

PR(r)PS(s)Pr((I ′0rs, J
′
0rs) = (i, j))]4

=
∑

1≤i<j≤q
[Pr((I ′0, J

′
0) = (i, j))]4,

≥

 ∑
1≤i<j≤q

Pr((I ′0, J
′
0) = (i, j))

4

/(q3(q − 1)3/23)

where (I ′0rs, J
′
0rs) is (I ′0r, J

′
0r) with S = s, the first two

inequalities follow from Cauchy-Schwarz inequality1 (the
first one is over distribution PR(·) and the second one
is over distribution PR(·)PS(·)); the last inequality is to
apply Cauchy-Schwarz inequality

∑n
i=1 x

2
i ≥ (

∑
i xi)

2/n
twice by noticing that y4

i = (y2
i)2 so that the first time

we use xi = y2
i for Cauchy-Schwarz inequality. Finally,

notice that I ′0 = I0 and J ′0 = J0 by definition. Also,∑
1≤i<j≤q Pr((I0, J0) = (i, j)) is exactly acc by definition.

It follows that Pr(Flag∗1 = 1) ≥ acc4

q3(q−1)3/23 . From Eq. (9),

we have frk ≥ 8·acc4
q3(q−1)3 − 3/N. �

1.
∑

i pix
2
i ≥ (

∑
i pixi)

2, if pi ≥ 0 and
∑

i pi = 1

4 MODEL OF MULTI-SIGNATURE

In this section, we introduce the model of multi-signature.
It consists of the multi-signature definition and the security
formalization.

4.1 Syntax
Mult-signature is a signature with a group of signers, where
each of them has a public-key and a private key. They
jointly generate a signature. The interaction between them
proceeds in rounds. Signers are pair-wise connected but the
channel is not secure. The signing protocol is to generate a
signature so that the successful verification would indicate
that all signers have agreed to sign the message. The target
is to generate a compact signature that is shorter than
concatenating all signers’ individual signatures together.

Definition 2. A multi-signature is a tuple of algorithms
(Setup, KeyGen, Sign, Verify), described as follows.

Setup. Given security parameter λ, it generates a system
parameter param that serves as part of the input for
KeyGen, Sign, Verify (but for brevity, we omit it).

KeyGen. It takes param as input and outputs for a user a
private key sk and a public-key pk.

Sign. Assume n users with public-keys (pk1, · · · , pkn) want
to jointly sign a message M ∈ {0, 1}∗. Then, each user
i takes its private key ski as input and interacts with
other signers. Finally, each of them outputs a signature
σ (note: this is for simplicity only; in literature, usually a
designated leader outputs σ). Besides, there is a function
F that aggregates (pk1, · · · , pkn) into a compact public-
key pk = F (pk1, · · · , pkn).

Verify. Upon (σ,M) with the aggregated public-key pk =
F (pk1, · · · , pkn), verifier takes σ,M and pk as input,
outputs 1 (for accept) or 0 (for reject).

Remark. The verify algorithm only uses the aggregated key
pk to verify the signature. This is important for blockchain,
where the recipient only uses pk as the public-key. Also,
the redeem signature only uses the multi-signature σ. It
is desired that both pk and σ are independent of n while
no attacker can forge a valid signature w.r.t. this short pk.
Even though, our definition generally does not make any
restriction on pk and it especially can be (pk1, · · · , pkn).

4.2 Security Model
In this section, we introduce the security model [13] of a
multi-signature. It formulates the existential unforgeability.
Essentially, it says that no attacker can forge a valid signa-
ture on a new message as long as the signing group contains
an honest member. Toward this, the attacker can access to
a signing oracle and create fake public-keys at will. The
security is defined through a game between a challenger
CHAL and an attacker A.

Initially, CHAL runs Setup(1λ) to generate system pa-
rameter param and executes KeyGen to generate a public-
key pk∗ and a private key sk∗. It then provides pk∗|param to
A who interacts with CHAL through signing oracle below.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

Sign Os(PK,M). Here PK is a set of distinct public-keys
with pk∗ ∈ PK and M ∈ {0, 1}∗ is any message . Upon this
query, CHAL represents pk∗ andA represents PK−{pk∗} to
run the signing protocol on message M . Finally, Os outputs
the multi-signature σ (if it succeeds) or ⊥ (if it fails).

Forgery. Finally, A outputs a signature σ∗ for a mes-
sage M∗ ∈ {0, 1}∗, w.r.t. a set of distinct public-keys
(pk∗1 , · · · , pk∗N) s.t. pk∗ = pk∗i for some i. A succeed-
s if two conditions are met: (a) Verify(pk∗, σ∗,M∗) =
1 (where pk∗ = F (pk∗1 , · · · , pk∗N)); (b) no query
((pk∗1 , · · · , pk∗N),M∗) was issued to Os. Denote a success
forgery event by succ.

We remark that since M∗ are proposed by attacker, it
might be arbitrarily correlated to pk∗1 , · · · , pk∗N . Now we
can define the security of a multi-signature.
Definition 3. A multi-signature scheme

(Setup,KeyGen,Sign,Verify) is existentially
unforgeable against chosen message attack (or EU-
CMA for short), if satisfies the correctness and existential
unforgeability below.

• Correctness. For (sk1, pk1), · · · , (skn, pkn) generat-
ed by KeyGen, the signature generated by signing
algorithm on a message M will pass the verification,
except for a negligible probability.

• Existential Unforgeability. For any PPT adversary
A, Pr(succ(A)) is negligible.

The multi-signature scheme is said t-EU-CMA, if it is
EU-CMA w.r.t. adversary A who always restricts the
number of signers, in each signing query and also in
the final forgery, to be at most t.

5 MODEL OF CANONICAL LINEAR IDENTIFICATION

In this section, we introduce a variant model of canonical
identification (ID) scheme and extend it with linearity. We
label the ID scheme with a parameter τ . This is needed later
to cover our lattice-based ID scheme as an example ID for
realizing our multi-signature method.

Definition 4. A canonical identification scheme with pa-
rameter τ ∈ N is a tuple of algorithms ID =
(Setup,KeyGen, P, Vτ ,Θ), where Setup takes security
parameter λ as input and generates a system parameter
param; KeyGen is a key generation algorithm that takes
param as input and outputs a public key pk and a private
key sk; P is an algorithm, executed by prover; Vτ is
a verification algorithm parameterized by τ , executed
by Verifier; Θ is a set. ID scheme is a three-round
protocol depicted in Fig. 3, where Prover first generates
a committing message CMT with H∞(CMT) = ω(log λ),
and then Verifier replies with a challenge CH ← Θ and
finally Prover finishes with a response Rsp which will be
either rejected or accepted by Vτ .

Denote the domain of sk, pk, CMT, Rsp respectively by
SK,PK, CMT ,RSP. In the following, we define linearity
and simulability for an ID scheme. Simulatbility follows
from [1]. The linearity property is new.

Remark. Many authors (e.g., [1]) formalized the ID scheme
so that CMT depends on the prover’s key pair (pk, sk).

In our formulation, it only depends on system parameter
param. This is consistent with some existing popular ID
schemes such as Schnorr ID [48]. This allows us to generate
CMT without having pk fixed first. Especially, we can gener-
ate CMT that is compatible with both a dummy public-key 0
and a real public-key pk. We will use this flexibility to avoid
the abort event in a lattice-based ID (while an abortion event
has been a serious issue in the literature [1], [25]).

Linearity. A canonical ID scheme ID =
(Setup,KeyGen, P, Vτ ,Θ) is linear if it satisfies the
following conditions.

i. SK,PK, CMT ,RSP are R-modules for some ring
R with Θ ⊆ R (as a set);

ii. For any λ1, · · · , λt ∈ Θ and public/private pairs
(ski, pki) (i = 1, · · · , t), we have that sk =

∑t
i=1 λi •

ski is a private key of pk =
∑t
i=1 λi • pki.

Note: Operator • between R and SK (resp.
PK, CMT ,RSP) might be different. But we use the
same symbol •, as long as it is clear from the context.

iii. Let λi ← Θ and (pki, ski) ← KeyGen(1λ), for
i = 1, · · · , t. If CMTi|CH|Rspi is a faithfully gener-
ated transcript of the ID scheme w.r.t. pki, then with
probability 1− negl(λ),

Vτ (pk,CMT|CH|Rsp) = 1, (23)

where pk =
∑t
i=1 λi • pki,CMT =

∑t
i=1 λi • CMTi

and Rsp =
∑t
i=1 λi • Rspi.

Note: we require Eq. (23) to hold only if the keys
and transcripts are faithfully generated. If some are
contributed by attacker, this equality might fail. This
property will only be used to guarantee the correct-
ness of our multi-signature framework. That is, if
all signers are honest, they will generate the multi-
signature that passes the verification. If it includes a
dishonest player, then there is no guarantee for the
signature validity. This is fine as an attacker can have
many ways to make the output invalid.

Simulability. ID is simulatable if there exists a PPT algo-
rithm SIM s.t. for (sk, pk) ← KeyGen(1λ), CH ← Θ
and (CMT,Rsp) ← SIM(CH, pk, param), it holds that
CMT|CH|Rsp is indistinguishable from a real transcript,
even if the distinguisher is given pk|param and has ac-
cess to oracle Oid(sk, pk), where Oid(sk, pk) is as follows:
(st,CMT)← P (param); CH← Θ; Rsp← P (st|sk|pk,CH);
output CMT|CH|Rsp.

Now we define the security for an ID scheme. Essentially,
it is desired that an attacker is unable to impersonate a
prover w.r.t. an aggregated public-key, where at least one
of the participating public-keys is generated honestly. Later
we will convert an ID scheme with this security into a EU-
CMA secure multi-signature. In our definition, the prover
does not access to additional information. He is not given
extra capability, either. Thus, our definition is rather weak.

Definition 5. A canonical identification scheme ID =
(Setup,KeyGen, P, Vτ ,Θ) with linearity and τ ∈ N
is secure if it satisfies correctness and security below.

Correctness. When no attack presents, Prover will convince
Verifier, except for a negligible probability.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

Prover (sk, pk|τ) Verifier (pk|τ)

(st,CMT)← P (param)
CMT // CH← Θ
CHoo

Rsp← P (st|sk|pk,CH)
Rsp

//
Vτ (pk,CMT|CH|Rsp)

?
= 1

Fig. 3. Canonical Identification Protocol

Security. For any PPT adversary A, Pr(EXPID,A = 1)
is negligible, where EXPID,A is defined below with
pki ∈ PK for i ∈ [t] and pk =

∑t
i=1 λi • pki.

Experiment EXPID,A(λ)
param← Setup(1λ);
(pk1, sk1)← KeyGen(param);
(st0, pk2, · · · , pkt)← A(param, pk1)
λ1, · · · , λt ← Θ
st1|CMT← A(st0, λ1, · · · , λt);
CH← Θ; Rsp← A(st1,CH);
b← Vt(pk,CMT|CH|Rsp);
output b.

ID is said t∗-secure if the security holds for any t ≤ t∗.

6 FROM CANONICAL LINEAR ID SCHEME TO KEY-
AND-SIGNATURE COMPACT MULTI-SIGNATURE

In this section, we show how to convert a linear ID scheme
into a multi-sinagure so that the aggregated public-key and
signature are both compact. The idea is to linearly add
the member signatures (resp. public-keys) with individual
weights where weights depend on all public-keys.

6.1 Construction
Let

ID = (Setupid,KeyGenid, P, Vτ ,Θ)

be a canonical linear ID with parameter τ ∈ N.
H0, H1 are two random oracles from {0, 1}∗ to Θ with
Θ ⊆ R, where R is the ring defined for the linear-
ity property of ID. Our multi-signature scheme Π =
(Setup,KeyGen,Sign,Verify) is as follows.

Setup. Sample and output param ← Setupid(1
λ). Note:

param should be part of the input to the algorithms below.
But for brevity, we omit it from now.

KeyGen. Sample (pk, sk) ← KeyGenid(param); output
a public-key pk and private key sk.

Sign. Suppose that users with public-keys pki, i =
1, · · · , t want to jointly sign a message M . Let λi =
H0(pki, PK) and pk =

∑t
i=1 λi • pki, where PK =

{pk1, · · · , pkt}. They run the following procedure.

• R-1. User i takes (sti,CMTi) ← P (param) and
sends ri := H0(CMTi|pki) to other users.

• R-2. Upon rj for all j (we do not restrict j 6= i for
simplicity), user i sends CMTi to other users.

• R-3. Upon CMTj , j = 1, · · · , t, user i verifies
if rj = H0(CMTj |pkj). If no, it aborts; otherwise,

it computes CMT =
∑t
j=1 λj • CMTj and also

CH = H1(pk|CMT|M). Finally, it computes Rspi =
P (sti|ski|pki,CH) and sends it to other signers.

• Output. Upon Rspj , j = 1, · · · , t, user i computes
Rsp =

∑t
j=1 λj • Rspj , and outputs the aggregated

public-key pk|t and multi-signature CMT|Rsp.

Verify. Upon signature (CMT,Rsp) on message
M with the aggregated public key pk|t, it outputs
Vt(pk,CMT|CH|RSP), where CH = H1(pk|CMT|M).

Correctness. This states that when {(ski, pki)}ti=1 are hon-
estly generated and signers faithfully execute the signing
protocol, then the resulting multi-signature (CMT,Rsp) will
pass the verification. This directly follows from linearity (iii).

Remark. (1) Since pk|t is the aggregated public-key, we
assume that it will be correctly computed and available to
verifier, which is true for the Bitcoin application.
(2) The most damaging attack to a multi-signature is the
rogue key attack, where an attacker chooses his public-
key after seeing other signers’ public-keys. By doing this,
the attacker could manage to reach an aggregated key
for which he knows the private key. In our construction,
attacker can not achieve this. To see this, let us assume that
PK = {pk1, · · · , pkn} is the set of public-keys for the multi-
signature with all but pkn are generated by attacker. Hence,
pk = H0(pkn, PK) • pkn +

∑n−1
i=1 H0(pki, PK) • pki. The

hash-value weights can be computed only after PK has
been determined. Since pkn is the honest user’s key, it is
quite random. So, H0(pkn, PK) (hence H0(pkn, PK) • pkn
and also pk) will be random, given other variables in pk. So
it is unlikely that attacker can predetermine pk and so the
rogue key attack can not succeed.

6.2 Security Theorem
In this section, we prove the security of our scheme. The
idea is as follows. We notice that the multi-signature is
(CMT,RSP) that satisfies Vt(pk,CMT|CH|RSP) = 1, where
CH = H0(pk|CMT|M). Assume PK = {pk1, · · · , pkt},
where pk1 is an honest user’s key and other keys are created
by attacker. We want to reduce the multi-signature security
to the security of ID scheme. In this case, pk will be the
aggregated key with weights λi = H0(pki, PK). If an
attacker can forge a multi-signature with respect to pk, we
want to convert it into an impersonation attack to the ID
scheme w.r.t. pk. There are two difficulties for this task.
First, we need to simulate the signing oracle without sk1,
where we have to compute the response Rsp for user of
pk1 without sk1. Our idea is to use the simulability of the
ID scheme to help: take a random CH and simulate an ID

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

transcript CMT′|CH|Rsp′. Then, we send CMT1 = CMT′ as
the committing message. The simulation will be well done
if we can manage to define CH as H1(pk|CMT|M). This
will be fine if pk|CMT|M was never queried to H1 oracle.
Fortunately, this is true with high probability: due to the
initial registration message at round R-1, attacker can not
know CMT1 before registering CMTj using rj (hence CMTj
is known to us through oracle H0). Hence, CMT will have a
min-entropy of H∞(CMT1), which is super-logarithmic and
hence can not be guessed. That is, pk|CMT|M was unlikely
to be queried to H1 before. Hence, the signing oracle will be
simulated without difficulty. The second difficulty is how to
convert the forgery into an impersonating attack. In the ID
attack, CH is provided by challenger while in the forgery,
CH is the hash value from H1. The attacker could make a
query pk|CMT|M to H1 oracle. However, the problem is
that we do not know if this query is used by attacker for his
final forgery output or not. Hence, we do not know which
CMT should be sent to our ID challenger and consequently
we do not know which H1-query should be answered with
our challenger’s CH. Fortunately, this is not a big issue as
we can guess which H1-query from attacker will be used for
his forgery. There are a polynomial number of such queries.
Our random guess only degrades the success probability
by a polynomial fraction. This completes our idea. Now we
give full details below.

Theorem 1. Let H0, H1 : {0, 1}∗ → Θ be random oracles.
Assume that h ← Θ is invertible in R with probability
1 − negl(λ). Let ID = (Setupid,KeyGenid, P, Vτ ,Θ)
be a secure ID with linearity and simulability. Then, our
multi-signature scheme is EU-CMA secure.

Proof. We show that if the multi-signature is broken by
D with non-negligible probability ε, then we can construct
an attacker B to break ID scheme with a non-negligible
probability ε′. Given the challenge public-key pk∗1 , B needs
to come up with some other public-keys pk∗2 , · · · , pk∗ν for
some ν of his choice and receives a list of random numbers
λ∗i ← Θ for i = 1, · · · , ν. Then, he needs to play as a prover
in the ID protocol for public-key pk∗ =

∑ν
i=1 λ

∗
i • pk∗i to

convince the verifier (his challenger). Toward this, B will
simulate an environment for D and use the responses from
D to help complete his attack activity. The details follow.

Upon receiving the challenge public-key pk∗1 and system
parameter param, B samples `∗H0

← {1, · · · , q∗H0
}, where

q∗H0
is the upper bound on the number of new queries (i.e.,

not queried before) of form (pk, PK) to random oracle
H0 s.t. pk, pk∗1 ∈ PK (call it a Type-I irregular query).
In addition, a new query of format CMT|pk∗|∗ to oracle
H1 after the `∗H0

th Type-I irregular query will be called
a Type-II irregular query, where CMT ∈ CMT , pk∗ =∑ν
i=1H0(pk∗i , PK

∗)•pk∗i and PK∗ = {pk∗1 , · · · , pk∗ν} is the
public-key set for the `∗H0

th Type-I irregular query. Let q∗ch
be the upper bound on the number of the Type-II irregular
queries. It then samples `∗ch ← {1, · · · , q∗ch}. B invokes D
with pk∗1 and param and answers his random oracle queries
and signing queries as follows.

Random Oracle H(·). For simplicity, we maintain one
random oracle H with H0(x) = H(0, x) and H1(x) =
H(1, x). The query x to Hb is automatically interpreted as

query b|x to H . With this in mind, it maintains a hash list
LH (initially empty), consisting of records of form (u, y),
where y = H(u). Upon a query b|x, it first checks if there
was a record (b|x, y) in LH for some y. If yes, it returns y;
otherwise, there are three cases (all irregular queries will be
in these cases as they were not queried by definition).

• x is not a (Type-I or Type-II) irregular query to Hb. In
this case, it takes y ← Θ and adds (b|x, y) into LH .

• x is a Type-I irregular query to Hb (thus b = 0). In this
setting, there are two cases.

- x is not the `∗H0
th irregular query. In this case,

for each pk′ ∈ PK, it takes h ← Θ and adds
(0|(pk′, PK), h) into LH . Note for convenience, we
treat each new record in LH as created due to a
hash query (from either simulator B or D). For the
technical reason, for given PK with pk∗1 ∈ PK, we
treat (0|(pk∗1 , PK), ∗) as the last record created in LH
among all records of (0|(pk′, PK), ∗) with pk′ ∈ PK.
Our treatment is well-defined and perfectly consis-
tent with random oracle, as our treatment on Type-
I irregular query has a convention: all records of
(pk′, PK) with pk′, pk∗1 ∈ PK will be recorded in
LH simultaneously whenever it receives a Type-I
irregular query (which is 0|x in our case).

- x is the `∗H0
th irregular query. In this case, let

0|x = 0|(pk, PK∗) with PK∗ = {pk∗1 , · · · , pk∗ν} for
some ν ≥ 2. B sends {pk∗2 , · · · , pk∗ν} to his challenger
and receives λ∗1, · · · , λ∗ν (each of which is uniformly
random over Θ). Then, B inserts (0|(pk∗i , PK∗), λ∗i)
into LH for i = 1, · · · , ν. This treatment is per-
fectly consistent with random oracles: a Type-I ir-
regular query by definition is an unrecorded query
(i.e., not queried before) and 0|(pk′, PK∗) for each
pk′ ∈ PK∗ will be recorded in LH within one hash
query (thus none of them was queried before).

• x is a Type-II irregular query to Hb (thus b = 1). In this
setting, there are two cases.

- x is not the `∗chth Type-II irregular query. In this case, it
takes y ← Θ and adds (1|x, y) into LH .

- x is the `∗chth Type-II irregular query. In this case, it
parses x = pk∗|CMT∗|M∗ with CMT∗ ∈ CMT .
Then, it sends CMT∗ to its challenger and receive
CH∗. Then, it adds (1|x,CH∗) to LH .

After our treatment above, x now has been recorded in LH .
Then, the oracle returns y for (b|x, y) ∈ LH .

Sign Os (pk1, · · · , pkn,M). By our security model, we
can assume that pk∗1 = pkt for some t. Then, B plays the
role of user pkt while D plays users of pkj for j 6= t in the
signing algorithm. The action of B is as follows.

• R-1. B generates rt ← Θ and sends to other signers
(played by D).

• R-2. Upon {rj}j 6=t from D, B first issues hash
queries (pki, PK) for each pki ∈ PK to compute
λi = H0(pki, PK), where PK = {pk1, · · · , pkn}.
Then, it computes pk, takes h ← Θ and run-
s SIM(h, pkt, param) to simulate an ID transcript
(CMT′, h,Rsp′). Then, he defines CMTt = CMT′. He

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

also adds (0|CMTt|pkt, rt) into LH if (0|CMTt|pkt, ∗)
is not recorded in LH ; and otherwise, it aborts with
⊥ (denoted by event Bad0). Next, for each j 6= t, it
searches a record (0|CMTj |pkj , rj) in LH for some
CMTj , which results in two cases.
(i) If (0|CMTj |pkj , rj) for all j 6= t are found in
LH , it computes CMT =

∑n
i=1 λi •CMTi and checks

whether (1|pk|CMT|M,y) ∈ LH for some y. If this
y does not exist, it records (1|pk|CMT|M,h) into LH
and defines CH = h and sends CMTt toD; otherwise
(denote this event by Bad1), B aborts with ⊥ .
(ii) If (0|CMTj∗ |pkj∗ , rj∗) does not exist in LH for
some j∗, it sends CMTt to D (normally). However,
we remark that CMTj∗ later in Step R-3 (from j∗) sat-
isfies H0(CMTj∗ |pkj∗) = rj∗ (which will be checked
there) only negligibly (so this case will not raise
a simulation difficulty), as the hash value is even
undefined yet and hence equals rj with probability
1/|Θ| only (which will be ignored from now).

• R-3. Upon {CMTj}j 6=t, B checks if
H0(CMTj |pkj) = rj for each j. If it does not hold
for some j, Os outputs ⊥ (normally); otherwise, it
sends Rspt := Rsp′ to D. We clarify two events: (1)
some CMTj found in R-2(i) is different from that
received in the current step. In this case, the check
in the current step is consistent with a negligible
probability only as H for two different inputs are
independent. (2) R-2(ii) occurs to some j∗ (so CMTj∗
is not found there) while CMTj∗ received in the
current step is consistent with rj . As seen above,
this holds with probability 1/|Θ| only. Ignoring
these events, CH and {CMTj}j have already
been determined in R-2(i) and such {CMTj}j are
consistent with those received in the current step.

• Output. Upon Rspj for j 6= t, it computes RSP =∑n
j=1 λj • Rspj . The final signature is (CMT,RSP)

with the aggregated key pk|t.

Finally, D outputs a forgery (α, β) for message M ′ and
public keys PK ′. If α|PK ′|M ′ 6= CMT∗|PK∗|M∗ (from the
`∗chth Type-II irregular query) or α|β is an invalid signature
w.r.t. (M ′, PK ′) (when verified using V (·)), B exits with ⊥;
otherwise, he defines Rsp∗ = β and sends it back to his ID
challenger. This completes the description of B.

We now analyze the success probability of B. First, the
view of D is identical to the real game, except for the
following events.

a. In step R-2 of Os, (CMT′, h,Rsp′) is simulated by
SIM (instead of being computed using sk∗1). How-
ever, by hybrid reduction to simulability of ID, the
view of D is indistinguishable from his view when
this transcript is generated using sk∗1 .

b. In step R-2 of oracleOs, when (0|CMTt|pkt, y) ∈ LH ,
Bad0 occurs for some y (hence the view of D is
inconsistent if y 6= rt). However, since CMT′ (i.e.,
CMTt) is just simulated in this oracle query and
H∞(CMT′) = ω(log λ), CMT′ is independent of
current records inLH . Hence, Bad0 occurs with prob-
ability at most Q/2H∞(CMT′) (negligible), where Q

is the number of records in LH . We ignore this
negligible probability from now on.

c. In step R-2 (i), if (1|pk|CMT|M,y) ∈ LH for some y,
then event Bad1 occurs. In this case, A can not define
CH = h and the simulation can not continue. How-
ever, since CMT = λt •CMT′+

∑
j 6=t λj •CMTj and

CMT′ is simulated in the current oracle and hence
independent of the rest variables in this equation.
Hence, as long as λt is invertible (which is violated
only negligibly), CMT has a min-entropy at least
H∞(CMT) = ω(log λ). Thus, similar to Bad0 event,
Bad1 occurs negligibly only.

d. Finally, when D outputs (α, β) for message M ′ and
public-key set PK ′, B will abort if PK ′|α|M ′ 6=
PK∗|CMT∗|M∗. Since (α, β) has been verified, a
Type-I irregular query (pk, PK ′) and a Type-II irreg-
ular query α|pk′|M must have been issued: the first
query (pk, PK ′) for some pk ∈ PK ′ is the Type-
I irregular query while the first query of α|pk′|M
is the Type-II query; the existence of such queries
are guaranteed as the verification of (α, β) by B will
certainly issue these queries.
Since `∗H and `∗ch are chosen uniformly random, the
`∗H th Type-I irregular query and `∗chth Type-II irregu-
lar query happen to equal the foregoing queries w.r.t.
(α, β) with probability 1

q∗Hq
∗
ch
≥ 1

q0q1
, where q0 (resp.

q1) is the upper bound on] queries to H0 (resp. H1).

From the analysis of (a)(b)(c), their occurrence changes the
adversary view negligibly. Ignoring this, from item d, when
`∗H and `∗ch is chosen correctly, the view of D is indistin-
guishable from its view in the real game. On the other
hand, it is easy to verify that conditional on this correct
choice, a valid forgery indicates a successful attack by B.
Hence, B can break the ID security with probability at least
ε/q0q1, non-negligible. This contradicts the security of our
ID scheme. �

If the adversary always restricts the number of signers
in the signing query and the forgery to be at most T , then
Theorem 1 immediately implies the following corollary.

Corollary 1. Let T ≥ 2 and H0, H1 be two random oracles.
Assume that h ← Θ is invertible in R with probability
1 − negl(λ). Let ID = (Setupid,KeyGenid, P, Vτ ,Θ)
be a T -secure ID scheme with linearity and simulability.
Then, our multi-signature scheme is T -EU-CMA secure.

7 REALIZATIONS

In this section, we will realize our compiler with ID schemes:
Schnorr ID scheme and a lattice-based ID scheme. The first
scheme is similar to Boneh et al. [13]. But we keep it as it
is very simple and efficient and can demonstrate the usage
of our compiler. The second one is new and breaks a barrier
that the previous schemes can not overcome.

7.1 Realization I: Schnorr Identification

In this section, we apply our compiler to the well-known
Schnorr ID scheme [48]. Toward this, we only need to show

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

Prover (s,A = gs) Verifier (A = gs)

x← Zq, X = gx
X // c← Zq
coo

z = sc+ x mod q
z //

gz
?
= AcX

Fig. 4. Schnorr Identification Scheme

that it is linear with simulability and security. For clarity, we
first review this scheme.

Let q be a large prime. Consider a prime group of order
q with a random generator g (e.g., the group on elliptic
curve secp256k1 of y2 = x3 + 7 for Bitcoin). The Schnorr
identification is depicted in Fig. 4. This scheme can be
regarded as a realization of the parameterized ID scheme
but the parameter τ is never used. In the following, we show
that Schnorr ID scheme satisfies the three properties.

Linearity. Notice that SK = RSP = R = Θ = Zq ,
CMT = PK = 〈g〉. We now verify the linearity property.

i. As seen in Section 2.1, Zq and 〈g〉 are both Zq-
modules, where the multiplication • between R =
Zq and Zq is the multiplication of Zq , while • be-
tweenR = Zq and 〈g〉 is exponentiation: s•m = ms.
Hence, SK,PK, CMT ,RSP are R-modules.

ii. Let pki = gsi with ski = si, i = 1, · · · , n. Let
λ1, · · · , λn ∈ R. Then, sk =

∑n
i=1 λi • ski =∑n

i=1 λisi, where the addition is the group opera-
tion for SK (i.e., addition in Zq). Note the group
operation for PK is the multiplication in 〈g〉. Hence,
pk =

∏n
i=1 λi • pki =

∏n
i=1 pk

λi
i = g

∑n
i=1 λisi . Thus,

sk ∈ SK is the private key of pk ∈ PK.
iii. Let Xi|c|zi be a transcript of ID w.r.t., pki = gsi and

ski = si, i = 1, · · · , n. For λi ∈ R, X =
∏n
i=1 λi •

Xi =
∏n
i=1X

λi
i and z =

∑n
i=1 λi • zi =

∑n
i=1 λizi.

If gzi = pkciXi, then
∏n
i=1 g

λizi =
∏n
i=1(pkciXi)

λi .
Hence, gz = pk

c
X, desired!

Simulability. Let pk = gs be the public-key and sk = s
be the private key. For c ← Zq , we define SIM by taking
z ← Zq and X = gzpk−c. The simulated ID transcript is
X|c|z. Obviously, this transcript is valid (i.e., it passes the
verification). Now we show that for any (even unbound-
ed) distinguisher D that has oracle access to Oid can not
distinguish the output of SIM from the real ID transcript.
Notice for both simulated and real transcripts X|c|z, it
satisfies gz = pkcX . Hence, X = gx for some x ∈ Zq
and z = cs + x. In the real transcript, x ← Zq while the
simulated transcript z ← Zq . Hence, given c, (x, z) (hence
X, z) in both transcripts has the same distribution. Since c
is uniformly random in Zq in the simulation, the simulated
and real transcripts have the same distribution (independent
of adversary view before the challenge which includes the
responses from Oid). Thus, the adversary view, given oracle
access to Oid, in both cases has the same distribution. The
simulability follows.

Security. We now prove the security of Schnorr ID
scheme under Definition 5.

Lemma 2. Under discrete logarithm assumption, Schnorr ID
scheme is secure w.r.t. Definition 5.

Proof. The correctness is obvious. We now consider the
security property. If there exists an adversary D that breaks
the Schnorr ID scheme with non-negligible probability ε,
then we construct an adversary A that breaks discrete
logarithm in 〈g〉 with a non-negligible probability ε′. The
idea is to make use of D to construct an algorithm A for the
nested forking lemma and then use the output of the forking
algorithm to derive the discrete logarithm for the challenge.
Upon a challengeA1 = gx and parameters q, g,A constructs
A((A1, g, q), λ1, c; ρ) as follows (so h1|h2 = λ1|c with q = 2
in the forking algorithm), where A =

∑t
i=1A

λi
i .

Algorithm A((A1, g, q), λ1, c; ρ)
Parse ρ as two parts: ρ = ρ0|ρ1

(st0, A2, · · · , At)← D(q, g, A1; ρ0)
λ2, · · · , λt ← Zq using randomness ρ1

st1|X ← D(st0, λ1, · · · , λt);
z ← D(st1, c);
If gz = A

c ·X , then b = 1;
else b = 0;
output (b, 2b, {Ai|λi}t1|X|z|c|g|q).

From the description of A and the forking algorithm FA (for
the forking lemma), the rewinding in the forking algorithm
FA only changes λ1 and/or c as well as those affected by
(λ1, c). In terms of forking lemma terminology, we have
(h1, h2) = (λ1, c) and I0 = 1, J0 = 2 (for a successful
execution; otherwise, A will abort when I0 ≤ J0). Let us
now analyze algorithm forking algorithm FA. When four
executions are executed successfully (i.e., b = 1 for all cases),
then the output for each execution will be described as
follows. Let Ai = gai for i = 1, · · · , t.

- Execution 0. It outputs (1, 2, {Ai|λi}t1|X|z|c|g|q). As
the verification passes,

z = (
t∑
i=1

λiai)c+ x, (24)

where X = gx.
- Execution 1. Compared with execution 0, the input

only changes c to ĉ. From the code of A, the output is
(1, 2, {Ai|λi}t1|X|ẑ|ĉ|g|q). As the verification passes,

ẑ = (
t∑
i=1

λiai)ĉ+ x. (25)

- Execution 2. Compared with execution 0, the input
changes λ1 to λ̄1 and c to c̄. From the code of A,

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

the output is (1, 2, {Ai|λi}t2|A1|λ̄1|X ′|z̄|c̄|g|q). As the
verification passes,

z̄ = (λ̄1a1 +
t∑
i=2

λiai)c̄+ x′, (26)

where X ′ = gx
′
.

- Execution 3. Compared with execution 0, the input
changes λ1 to λ̄1 and c to c. From the code of A,
the output is (1, 2, {Ai|λi}t2|A1|λ̄1|X ′|z|c|g|q). As the
verification passes,

z = (λ̄1a1 +
t∑
i=2

λiai)c+ x′. (27)

From Eqs. (27)(26), A can derive λ̄1a1 +
∑t
i=2 λiai, as

long as c 6= c′ in Zq . Similarly, from Eqs. (25)(24), A
can derive λ1a1 +

∑t
i=2 λiai, as long as c̄ 6= c. This can

further give a1, as long as λ1 6= λ̄1 in Zq . Finally, if the
forking algorithm does not fail, then the four executions
succeeds and (c 6= c′) ∧ (c̄ 6= c) ∧ (λ1 6= λ̄1) =True. By
forking lemma, it does not fail with probability at least
8ε4/(2 · 1)3− 3/|Θ| = ε4− 3/q. Hence, A can obtain a1 with
probability at least ε4−3/q, non-negligible. This contradicts
to the discrete logarithm assumption. �

Key-and-Signature Compact Multi-Signature from
Schnorr ID Scheme. Since Schnorr ID scheme satisfies the
linearity, simulability and security, the multi-signature from
this scheme using our compiler is obtained. For clarity, we
give the complete signature in the following. Let pki = gsi

be the public-key with private key ski = si for i = 1, · · · , n.
When users PK = {pk1, · · · , pkn} want to jointly sign a
message M , they act as follows.

• R-1. User i generates Xi = gxi for xi ← Zq and
sends H0(Xi|pki) to other users.

• R-2. Upon {rj}nj=1, user i sends Xi to other users.

• R-3. Upon {Xj}nj=1, user i checks rj
?
= H0(Xj |pkj)

for all j. If not, he rejects; otherwise, he computes

pk =
n∏
i=1

pk
H0(pki,PK)
i (28)

X =
n∏
i=1

X
H0(pki,PK)
i . (29)

Then, he computes

c = H1(pk|X|M), zi = sic+ xi (30)

and sends zi to leader.
• Output. Receiving all zj ’s, user i computes

z =
n∑
j=1

H0(pkj , PK)zj .

Finally, it outputs (X, z) as the multi-signature of M
with the aggregated public-key pk (note: the compil-
er protocol includes n in the aggregated key; we omit
it here as it is not used in the verification).

• Verification. To verify signature (X, z) for M
with the aggregated public-key pk, it computes c =
H1(pk|X|M). It accepts only if gz = pk

c ·X.

We denote this signature scheme by Schnorr-MultiSig.
Notice that c ← Zq is invertible in R with probability
1 − 1/q. As it satisfies linearity, simulability and security,
by Theorem 1, we have the following.

Corollary 2. Let H0, H1 be two random oracles. If Dis-
crete logarithm assumption in 〈g〉 holds, then Schnorr-
MultiSig is EU-CMA.

Remark. Boneh et al. [13] proposed a method that trans-
forms Schnorr ID to a key-and-signature compact multi-
signature. Their protocol is an improvement of Maxwell
et al. [38] to overcome a simulation flaw. Their protocol
is also 3-round. Their scheme is computationally more
efficient in the signing process than ours. However, our
sizes of aggregated public-key and signature as well as the
verification cost are all the same as theirs (which are also
identical to that of the original Schnorr signature with a
single signer). Aggregated public-key and signature have
impacts on the storage at a large number of blockchain
nodes and the verification cost has the impact on the power
consumption on these nodes. The signing cost is relatively
not so important as it only has impact on the signers.
Boneh et al. [13] uses λisi as a secret for public-key pkλii
to generate a member signature Xi|c|zi and the final multi-
signature X̃ =

∏
iXi and z̃ =

∑
i zi. Their main saving

(over us) is to avoid n exponentiations in computing our
X . One might be motivated to modify our general compiler
so that it uses λi • pki (whose private key is λi • ski) to
generate a member signature CMTi|Rspi so that the final
multi-signature is C̃MT|R̃SP with C̃MT =

∑
i CMTi and

R̃SP =
∑
i Rspi. However, this looking secure scheme has a

simulation issue in general when we prove Theorem 1: it is
required that {SIM(CH, λ•pk)}λ is indistinguishable from
the list of real transcripts for a fixed but random pk while it
is not clear how this can be proven generally.

Implementation. We have provided a solidity implemen-
tation for our Schnorr-MultiSig. The prime group uses the
standard elliptic curve secp256k1. Our initial motivation
is to run the multi-signature computation over blockchain.
However, we find the gas usage is high. In our test for three
signers, the gas usage for all signers in total is 33629066.
However, there is certainly no reason to execute the multi-
signature itself on the blockchain as there is no trust issue
here. We really only need to verify the final aggregated
multi-signature on the chain. In this case, the gas usage
drops to a reasonable value 2398282 that is 7% of the above
usage. The implementation is not optimized. The source
code of this implementation is available at github:

https://github.com/JSQ2023/Schnorr-Multi-Signature.

7.2 Realization II: a new lattice-based ID scheme

In this section, we propose a new ID scheme from lat-
tice and then apply our compiler to obtain a lattice-based
multi-signature scheme. This is the first lattice-based multi-
signature that has both a compact public-key and a compact
signature without a restart during the signing process.

Notations. The following notations are specific for this
section (in addition to the list in Section 2).

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

• As a convention for lattice over ring, this section uses
security parameter n (a power of 2), instead of λ;

• q is a prime with q ≡ 3 mod 8;
• R = Z[x]/(xn + 1); Rq = Zq[x]/(xn + 1); R∗q is the

set of invertible elements in Rq ;
• for a vector w, we implicitly assume it is a column

vector and the ith component is wi or w[i];
• for a matrix or vector X , XT is its transpose;
• 1 denotes the all-1 vector (1, · · · , 1)T of dimension

that is clear from the context;
• for u =

∑n−1
i=0 uix

i with ui ∈ Z, ||u||∞ = maxi |ui|;
• α ∈ Zq always uses the default representative with
−(q−1)/2 ≤ α ≤ (q−1)/2 and similarly, for u ∈ Rq ,
each coefficient of u by default belongs to this range;

• e = 2.71828 · · · is the Euler’s number;
• C = {c ∈ R | ||c||∞ ≤ log n,deg(c) < n/2}
• Y = {y ∈ R | ||y||∞ ≤ n1.5σ log3 n}
• Z = {z ∈ R | ||z||∞ ≤ (n− 1)n1/2σ log3 n}.

7.2.1 Ring-LWE and Ring-SIS
In this section, we introduce the ring-LWE amd ring-SIS
assumptions (see [33], [35], [45] for details). For σ > 0,
distribution DZn,σ assigns the probability proportional to
e−π||y||

2/σ2

for any y ∈ Zn and 0 for other cases. As in [1],
y ← DR,σ samples y =

∑n−1
i=0 yix

i from R with yi ← DZ,σ.
The Ring Learning With Error (Ring-LWEq,σ,2n) prob-

lem over R with standard deviation σ is defined as fol-
lows. Initially, it takes s ← DR,σ as secret. It then takes
a← Rq, e← DR,σ and outputs (a, as+e). The problem is to
distinguish (a, as+ e) from a tuple (a, b) for a, b← Rq. The
Ring-LWEq,σ,2n assumption is to say that no PPT algorithm
can solve Ring-LWEq,σ,2n problem with a non-negligible
advantage. According to [18], [34], ring-LWE assumption
with σ = Ω̃(n3/4) is provably hard and so it is safe to
assume σ = Ω(n).

The Small Integer Solution problem with parameters
q,m, β over ring R (ring-SISq,m,β) is as follows: given
m uniformly random elements a1, · · · , am over Rq , find
(t1, · · · , tm) so that ||ti||∞ ≤ β and a1t1 + · · · + amtm = 0
(note: here we use || · ||∞ norm while the literature regularly
uses square-root norm ||·||. However, the gap is only a factor
n on β and does not affect the validity of the assumption
according to the current research status for ring-SIS). We
consider the case m = 3. Recall that prime q = 3 mod 8.
By [9, Theorem 1], we can factor xn + 1 = Φ1(x)Φ2(x) for
some irreducible polynomials Φ1(x),Φ2(x) of degree n/2.
For instance, x1024 + 1 mod 1187 by maple is factored as

(x512 + 504x256 − 1) ∗ (x512 − 504x256 − 1).
So by Chinese remainder theorem, ai is invertible, except
for probability 2q−n/2. Hence, ring-SIS is equivalent to the
case of invertible a2 which is further equivalent to problem
a1t1 + t2 + a3t3 = 0, as we can multiply it by a−1

2 . By
[15], [33], the best quantum polynomial algorithm for ring-
SIS problem with q,m can only solve β = 2Õ(

√
n) case. Thus,

it is safe to assume Ring-SISq,m,β for any polynomial β or
even β = 2

4
√
n.

7.2.2 Construction
We now describe our new ID scheme from ring R. Initially,
take s1, s2 ← DR,σ, a← R∗q and compute u = as1 + s2. The

system parameter is a; the public key is u and the private
key is (s1, s2). Our ID scheme is as follows; also see Fig. 5.

1. Prover generates y1,y2 ← Yµ and computes v =
ay1 + y2 and sends v to Verifier, where µ ≥ log2 n.

2. Receiver samples c← C and sends it to Prover.
3. Upon c, Prover does the following:

a. Compute z1 = s1c · 1 + y1, z2 = s2c · 1 + y2;
b. Let A = {j | z1j , z2j ∈ Z} (recall that for any

vector u, uj is its jth component). If A = ∅,
abort; otherwise, take j∗ ← A and compute

z1 = z1j∗ +
∑
j 6=j∗

y1j , z2 = z2j∗ +
∑
j 6=j∗

y2j .

4. Upon z1, z2, Verifier checks

µ∑
i=1

vi
?
= az1 + z2 − uc, ||zb||∞

?
≤ ηt, b = 1, 2,

where ηt = 5σn2
√
tµ log6 n and t is a positive

integer (see the remark below) and recall that (as a
convention) vi is the ith component of v. If all are
valid, it accepts; otherwise, it rejects.

Remark. We give two clarifications.
(1) ηt is defined to depend on t. However, the cor-
rectness does not need this dependency. Actually, η1 =
3σn1.5√µ log4 n suffices for this. However, the dependency
of ηt on t is necessary for the linearity and later for the
multi-signature. Especially, ηt is used to support linearity
with t transcripts; for the multi-signature case, t stands for
the number of signers.
(2) It should be pointed out that the choice of j∗ (if it
exists) does not affect z1, z2 at all as zb = sbc+

∑t
j=1 ybj for

b = 1, 2. In addition, the probability that j∗ does not exist is
exponentially small in n and so defining j∗ is unnecessary.
However, we keep it for ease of analysis later.

Correctness. We now prove the correctness with ηt replaced
by a smaller value η1 = 3σn1.5√µ log4 n. When all signers
are honest, the protocol is easily seen to be correct if we can
show A = ∅ or ||zb||∞ > η1 has a negligible probability. The
former is shown in Lemma 5 below. For the latter, notice
that z1 = s1c + y11 + · · · + y1µ. If we use w ∈ R to denote
the coefficient vector of the polynomial w, then

y11 + · · ·+ y1µ = y11 + · · ·+ y1µ. (31)

Notice each component of y1j is uniformly random in
{−σn1.5 log3 n, · · · , σn1.5 log3 n}. By Hoeffding inequality
(https://en.wikipedia.org/wiki/Hoeffding%27s inequality)
on each of the vector component in Eq. (31), ||

∑
i y1i||∞ >

2σn1.5√µ log4 n only has a probability at most 2ne− log2 n.
By Lemma 3 below, ||sc||∞ > σn1/2 log3 n with probability
at most e−Ω(log2 n). Hence, correctness holds for bound η1,
except for probability at most e−Ω(log2 n) (note: for brevity,
this quantity should be understood as there exists constant
C so that the exception probability is at most e−C log2 n; we
will later keep this convention without a mention).

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

Prover ((s1, s2), u|t) Verifier (u|t)

y1,y2 ← Yµ,v = ay1 + y2

v //

b = 1, 2 : zb = sbc · 1 + yb
A = {j | z1j , z2j ∈ Z}, j∗ ← A
b = 1, 2 : zb = zbj∗ +

∑
j 6=j∗ ybj

c← C
coo

z1,z2 // b = 1, 2 : ||zb||∞ < ηt?∑µ
j=1 vj

?
= az1 + z2 − uc

Fig. 5. Our Lattice-based ID Scheme (Note: Membership checks c ∈ C at Prover is important but omitted in the figure; 1 is the vector of all 1 of length µ.)

7.2.3 Analysis
In this section, we analyze our ID scheme. We start with
some preparations. The following lemma is adapted from
[1, Lemma 4], where our restriction that the element c of C
has a degree at most n/2, does not affect the proof.

Lemma 3. [1] If s← DR,σ and c← C, then

Pr(||sc||∞ ≤ σn1/2 log3 n) ≥ 1− e−Ω(log2 n),

where e = 2.71828 · · · is the Euler’s number

The lemma below was in the proof of [1, Lemma 3].
Lemma 4. [1] Fix γ ∈ R with ||γ||∞ ≤ σn1/2 log3 n. Then,

for y ← Y , we have

Pr(γ + y ∈ Z) ≥ 1

e
− 1

en

Pr(γ + y = g | γ + y ∈ Z) =
1

|Z|
,∀g ∈ Z.

Lemma 5. Let A be the index set in our ID scheme. Then,
Pr(A = ∅) < e−Ω(log2 n) for µ ≥ Ω(log2 n).

Proof. Notice zbj = sc + ybj for b = 1, 2. By Lemma
3, ||sc||∞ ≤ σn1/2 log3 n with probability 1 − e−Ω(log2 n).
Fixing sc (that satisfies this condition), zbj for b = 1, 2, j =
1, · · · , µ are independent and thus by Lemma 4, A = ∅ with
probability at most (1 − 1

e2 (1 − 1
n)2)µ < (1 − 1

4e2)µ, expo-
nentially small. Together with the probability for ||sc||∞ ≤
σn1/2 log3 n, we conclude the lemma. �

Lemma 6. If u ← C, then u is invertible in Rq with
probability 1− (1 + 2 log n)−n/2.

Proof. Recall that q ≡ 3 mod 8 in this section. By Blake
et al. [9, Theorem 1], xn + 1 = Φ1(x)Φ2(x) mod q, where
Φ1(x),Φ2(x) have degree n/2 and are irreducible over Zq .
By Chinese remainder theorem, u is invertible in Rq if and
only if it is non-zero mod Φb(x) for both b = 1, 2. Since u
has a degree at most n/2 − 1, u remains unchanged after
mod Φb(x). Hence, it is invertible in Rq if and only if u is
non-zero. This has a probability 1− (1 + 2 log n)−n/2. �

Simulability. We now show the simulability of our ID
scheme. Given the public-key u and c ← C, we define the
simulator SIM as follows.

- Sample j∗ ← [µ] and z1j∗ , z2j∗ ← Z ; compute vj∗ =
az1j∗ + z2j∗ − uc;

- For j ∈ [µ]−{j∗}, sample y1j , y2j ← Y and compute
vj = ay1j + y2j .

- Compute zb = zbj∗ +
∑
j 6=j∗ ybj , b = 1, 2.

- Output v = (v1, · · · , vµ)T and z1, z2.

This simulation is valid by the following lemma.
Lemma 7. The output of SIM is statistically close to the real

transcript, even if the distinguisher has oracle access to
O((s1, s2), u), where (s1, s2) ← D2

R,σ is the private key
and u = as1 + s2 is the public-key.

Proof. First, we can assume A 6= ∅ for the real transcript
as by Lemma 5 this is violated negligibly only. Then, by
symmetry, j∗ for the real transcript is uniformly random
over {1, · · · , µ}. By the definition of j∗, we know that
z1j∗ , z2j∗ both belong to Z . In this case, by Lemma 4,
sc + y1j∗ , sc + y2j∗ for the real transcript with given sc
satisfying ||sc||∞ < σn1/2 log3 n, are independent and u-
niformly random over Z . By lemma 3, we conclude that
z1j∗ and z2j∗ are statistically close to uniform over Z if
they belong to Z . On the other hand, when z1j∗ and z2j∗

are given, vj∗ is fixed as vj∗ = az1j∗ + z2j∗ − uc. Thus,
our simulation of z1j∗ , z2j∗ , vj∗ is statistically close to that
in the real transcript. On the other hand, our simulation
of y1j , y2j , vj for j 6= j∗ is exactly according to the real
distribution. Thus, our simulation is statistically close to the
real transcript. This closeness holds (even given adversary
view, which includes the responses from Oid). Hence, the
simulability follows. �

Discussion. One might wonder why our ID scheme uses
a committing message as a vector v ∈ Yµ (instead of
simply v = ay1 + y2 ∈ Y , followed by the response
z1 = s1c + y1, z2 = s2c + y2 and the verification that
v = z1c + zc − uc, and that ||z1||∞ and ||z2||∞ are both
small). However, in this setting, z1, z2 might leak the in-
formation about s1, s2. This is similar to the following
issue: if B is uniformly random over {0, · · · , 99} and A is
secret and uniformly random over {0, · · · , 4}, then given
Z = A + B = 102, we can conclude A = 3 or 4. This
obviously leaks the information about A. However, if we
decide that Z is NOT given to attacker when Z 6∈ [4, 96],
A will still remain uniformly random over {0, 1, 2, 3, 4}. In
the literature, our event “Z is not provided” corresponds to
an abortion event. For a general description of the issue, see
[25]. Carrying the problem to a signature from ID, the signer
has to restart the signing process if an abortion event occurs.
In the literature, the abortion event mostly has a constant

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 14

probability. In the multi-signature setting, this restart event
explodes exponentially in the number of signers or the
security parameter. Our construction avoids this issue by
providing a vector v of committing messages. For each vi,
we do not guarantee that the response z1i, z2i lies in a good
set (in which the abortion event can be avoided). But we
have a high probability that one of index i will have this
property. By symmetry, this i is uniformly random in [µ].
That allows to achieve the simulability without an abort.

Security. Now we prove the security of our ID scheme,
where the attacker needs to generate z1, z2 (given challenge
c) to pass the verification w.r.t. an aggregated public-key u.
We show that this is unlikely by the ring-SIS assumption.

Lemma 8. Under ring-LWEq,σ,2n and ring-SIS3,q,βt∗ assump-
tions, our scheme is t∗-secure (with respect to Definition
5), where βt∗ = 16ηt∗

√
n log2 n and σ = Ω(n).

Proof. If there exists an adversary D that breaks our ring-
based ID scheme with non-negligible probability ε, then we
construct an adversary A that breaks ring-SIS assumption
with a non-negligible probability ε′. The idea is to make
use of D to construct an algorithm A for the nested forking
lemma and then uses the output of the forking algorithm
to obtain a solution for ring-SIS problem. Upon a challenge
u1 and a (both uniformly over Rq), A needs to find short
α1, α2, α3 ∈ R so that aα1 + α2 + u1α3 = 0. Toward this,
A constructs an algorithm A((u1, a), λ1, c; ρ) as follows (so
q = 2 in the forking algorithm), where λi, c ← C and u =∑t
i=1 λi ·ui with ui ∈ Rq (in the description of A) and t ≤ t∗.

Algorithm A((u1, a), λ1, c; ρ)

Parse ρ as two parts: ρ = ρ0|ρ1

(st0, u2, · · · , ut)← D(u1, a; ρ0)

λ2, · · · , λt ← C using randomness ρ1

st1|v← D(st0, λ1, · · · , λt);
(z1, z2)← D(st1, c);
If ||zb||∞ < ηt and

∑µ
j=1 vj = az1 + z2 − uc, then

b = 1;
else b = 0;
Output (b, 2b, {ui|λi}t1|v|z1|z2|c|a).

From the description of A and the forking algorithm FA

(for the forking lemma), the rewinding in FA only updates
λ1 and/or c as well as variables affected by (λ1, c). In terms
of forking lemma terminology, we have (h1, h2) = (λ1, c)
and I0 = 1, J0 = 2 (for a successful execution; otherwise,
A will abort when I0 ≤ J0). Let us now analyze algorithm
forking algorithm FA. When four executions are executed
successfully (i.e., b = 1 for all cases), then the output for
each execution will be described as follows.

- Execution 0. It outputs (1, 2, {ui|λi}t1|v|z1|z2|c|a).
Since it succeeds, ||zb||∞ ≤ ηt (b = 1, 2) and

µ∑
i=1

vi = az1 + z2 − uc. (32)

- Execution 1. Compared with execution 0, the input
only changes c to ĉ. From the code of A, the out-

put is (1, 2, {ui|λi}t1|v|ẑ1|ẑ2|ĉ|a). Since it succeeds,
||ẑb||∞ ≤ ηt (b = 1, 2) and

µ∑
i=1

vi = aẑ1 + ẑ2 − uĉ. (33)

- Execution 2. Compared with execution 0, the input
changes λ1 to λ̄1 and changes c to c̄. From the code
of A, the output is (1, 2, {ui|λi}t2|u1|λ̄1|v′|z̄1|z̄2|c̄|a).
Since it succeeds, ||z̄b||∞ ≤ ηt (b = 1, 2) and

µ∑
i=1

v′i = az̄1 + z̄2 − u′c̄, (34)

where u′ = λ̄1u1 +
∑t
i=2 λiui.

- Execution 3. Compared with execution 0, the input
changes λ1 to λ̄1 and changes c to c. From the code
of A, the output is (1, 2, {ui|λi}t2|u1|λ̄1|v′|z1|z2|c|a).
Since it succeeds, ||zb||∞ ≤ ηt (b = 1, 2) and

µ∑
i=1

v′i = az1 + z2 − u′c. (35)

From Eqs. (35)(34), A can derive

a(z1 − z̄1) + (z2 − z̄2)− u′(c− c) = 0. (36)

From Eqs. (33)(32),

a(ẑ1 − z1) + (ẑ2 − z2)− u(ĉ− c) = 0. (37)

Notice that Eq. (36)×(ĉ− c)-Eq. (37)×(c− c) gives

aα1 + α2 − u1α3 = 0, (38)

where

α1 =(z1 − z̄1)(ĉ− c)− (ẑ1 − z1)(c− c) (39)
α2 =(z2 − z̄2)(ĉ− c)− (ẑ2 − z2)(c− c) (40)

α3 =(λ1 − λ̄1)(ĉ− c)(c− c). (41)

Hence, (α1, α2,−α3) forms a solution to ring-SIS problem
with parameter (a, 1, u). It suffices to verify that each αi
is short and also at least one of them is non-zero. For the
second condition, it suffices to make sure that the probabil-
ity for α3 = 0 is small. Notice that by Chinese remainder
theorem, α3 = 0 implies λ1 = λ̄1 mod Φ1(x) or c = c mod
Φ1(x) or ĉ = c mod Φ1(x). Similarly, this must also hold
for modular Φ2(x) but it suffices to consider Φ1(x) only.
Since λ1, λ̄1, c, c, ĉ is uniformly random over C, each of the
equality holds with probability (1 + 2 log n)−n/2 only and
hence Pr(α3 = 0) ≤ 3(1 + 2 log n)−n/2, negligible! For the
first condition, we first show that α1 is short. Notice that
||ĉ − c||∞ ≤ 2 log n and ||z1 − z1||∞ ≤ 2ηt. Further, the
constant term of (ĉ− c)(z1 − z1) is

(ĉ− c)[0] · (z1 − z1)[0]−
n
2−1∑
k=1

(ĉ− c)[k] · (z1 − z1)[n− k]

which, by Heoffding inequality on the randomness of ĉ− c,
has an absolute value at most

√
n/2 log n · 8ηt log n ≤

8ηt
√
n log2 n, with probability at least 1 − e−Ω(log2 n). The

constant term of (ẑ1 − z1)(c− c) is similar. Hence, |α1[0]| ≤
16ηt
√
n log2 n, with probability at least 1 − e−Ω(log2 n).

The general case of α1[i] is similar. Hence, ||α1||∞ ≤

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 15

16ηt
√
n log2 n with probability 1 − e−Ω(log2 n). Similarly,

||α2||∞ has the same property. We can use the above proof
technique to show that ||(ĉ−c)(c−c)||∞ ≤ 8 log n·

√
n log2 n

with probability 1 − e−Ω(log2 n). Since λ1, λ̄1 is uniform-
ly random over C, using the same technique, we have
||α3||∞ ≤

√
n log n · 32

√
n log4 n = 32n log5 n, with prob-

ability 1 − e−Ω(log2 n). Thus, we find a ring-SIS solution
(α1, α2,−α3) of length at most 16ηt

√
n log2 n. Assume

that the probability that D succeeds in one execution is
ε̂. Then, by forking lemma, it succeeds in four executions
with probability ε̂4 − 3(1 + 2 log n)−n/2. This implies that
A breaks the ring-SIS assumption with probability at least
ε̂4 − 3(1 + 2 log n)−n/2 − e−Ω(log2 n).

Finally, notice that the input u1 is uniformly random
over Rq while in our ID scheme u1 = as1 + s2 for
s1, s2 ← DR,σ. However, under ring-LWE assumption, it
is immediate that ε̂ ≥ ε − negl(n). Hence, A can succeed
with probability at least ε4 − negl(n), this contradicts the
assumption of ring-SIS. �

Linearity. Let SK = RSP = (Rq, Rq), CMT = Rµq ,PK =
Rq,R = Rq . We now verifies the linearity.

i. Obviously, SK is a R-module under the operation •:
for (s1, s2) ∈ SK and c ∈ R, c • (s1, s2) = (cs1, cs2),
where cs1 and cs2 are multiplications in Rq. Other
cases are similar.

ii. If (s1i, s2i) ∈ SK and λi ∈ C for i = 1, · · · , t,
then

∑t
i=1(λis1i, λis2i) = (

∑t
i=1 λis1i,

∑t
i=1 λis2i)

is obviously the private key of
∑t
i=1 λi ·(as1i+s2i) =

a(
∑t
i=1 λis1i) + (

∑t
i=1 λis2i). However, we empha-

size that this key is not necessarily short. But for
randomly generated (pki, ski, λi)’s, Lemma 9 im-
plicitly implies that the aggregated private key has
length at most 2

√
ntσ log3 n (except for probability

e−Ω(log2 n)); see maxv |Sv| with |Sv| given in the
proof of Lemma 9).

iii. If {(vi, c, z1i, z2i)}ti=1 are honestly generated accept-
ing transcripts w.r.t the honestly generated pub-
lic/private key pairs {(ui, (s1i, s2i))}i, then

µ∑
j=1

vij = az1i + z2i − uic. (42)

Together with Lemma 9 below, for h1, · · · , ht ←
C, (

∑t
i=1 hivi, c,

∑t
i=1 hiz1i,

∑t
i=1 hiz2i) passes the

verification at the verifier. That is, it satisfies (except
for probability e−Ω(log2 n))

||
t∑
i=1

hiz1i||∞ ≤ηt, ||
t∑
i=1

hiz1i||∞ ≤ ηt,

µ∑
j=1

(
t∑
i=1

hivij) =a(
t∑
i=1

hiz1i) + (
t∑
i=1

hiz2i)− (
t∑
i=1

hiui)c,

where ηt = 5σn2
√
tµ log6 n. The linearity follows.

Lemma 9. Fix integer t ≥ 2 and σ ≥ ω(log n). Assume
si ← DR,σ, hi ← C, yij ← Y for i ∈ [t], j ∈ [µ], c ← C.
Let

Z =
t∑
i=1

hi(sic+

µ∑
j=1

yij). (43)

Then, ||Z||∞ ≤ ηt with probability 1− e−Ω(log2 n).

Proof. Notice

Z[0] =
n−1∑
v=0

Sv · c[v]−
t∑
i=1

n−1∑
k=0

hi[n− k] · Yik,

where Yik =
∑µ
j=1 yij [k], hi[n]

def
= −hi[0] and

Sv =
t∑
i=1

n−1∑
k=0

hi[n− k]si[k − v].

By [24, Lemma 4.2], ||si||∞ ≤ σ log n, except for prob-
ability e−Ω(log2 n). When this is satisfied, terms hi[n −
k]si[k − v] in Sv are independent random variables in the
range [−σ log2 n, σ log2 n]. By Heoffding inequality, |Sv| ≤
2
√
ntσ log3 n, except for probability e−Ω(log2 n). Since yij [k]

is uniformly random over [−σn1.5 log3 n, σn1.5 log3 n], by
Heoffding inequality, |Yik| ≤ 2σ

√
µn1.5 log4 n, except for a

probability e− log2 n. Assuming these inequalities for Sv and
Yik, we know that from Heoffding inequality again,

|
n−1∑
v=1

Sv · c[v]| ≤ 4σn
√
t log5 n

|
∑
i,k

hi[n− k] · Yik| ≤
√
nt log n · 4σ√µn1.5 log5 n,

except for probability e−Ω(log2 n). Hence, we conclude that
|Z[0]| ≤ 5σn2

√
tµ log6 n, except for e−Ω(log2 n). We can sim-

ilarly bound Z[i] for i ≥ 1 and so ||Z||∞ ≤ 5σn2
√
tµ log6 n,

except for probability e−Ω(log2 n). �

7.2.4 Key-and-Signature Compact Multi-signature Scheme
from our ID scheme.

With the simulability, linearity and security for our ID,
we can use our compiler to convert it into a secure multi-
signature. We now describe this scheme as follows.

Let (s1i, s2i) be the private key of public-key ui =
as1i + s2i for i = 1, · · · , t. If the users of u1, · · · , ut want
to jointly sign M , they compute the aggregated public-key
u|t and execute the protocol as follows, where H0, H1 :
{0, 1}∗ → C and we define w =

∑t
i=1H0(ui, U)wi for

any list of variables w1, · · · , wt in the description below and
U = (u1, · · · , ut) (e.g., v =

∑t
i=1H0(ui, U) · vi).

• R-1. User generates y1i,y2i ← Yµ, computes vi =
ay1i + y2i and sends H0(vi|ui) to other users.

• R-2. Upon receiving all rj , j = 1, · · · , t, user i
sends vi to other users.

• R-3. Upon all vj , user i checks if rj = H0(vj |uj). If
verification fails, it rejects; otherwise, it computes v
and c = H1(u|v|M) as well as the response (z1i, z2i)
for challenge c in the ID scheme with committing
message vi.

• output. After receiving (z1j , z2j) for j ∈ [t], user i
computes multi-signature (z1, z2,v). The aggregated
public-key is u|t.

• Verify. Upon (z1, z2,v), it verifies the following
with u|t and accepts only if it is valid:

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 16

||z1||∞ ≤ ηt, ||z2||∞ ≤ ηt, (44)
µ∑
j=1

vj = az1 + z2 − uc, (45)

where ηt = 5σn2
√
tµ log6 n. Denote this multi-signature

scheme by RLWE-MultiSig. From our compiler and the prop-
erties of our ID scheme, we obtain the following.
Corollary 3. Let ηt∗ = 5σn2

√
t∗µ log6 n, σ = Ω(n) and

βt∗ = 16ηt∗
√
n log2 n. Let H0, H1 be two random or-

acles. Then, under Ring-LWEq,σ,2n and Ring-SIS3,q,βt∗

assumptions, RLWE-MultiSig is t∗-EU-CMA secure. Es-
pecially, if these harness assumptions hold for t∗ = 2

4
√
n,

then RLWE-MultiSig is EU-CMA secure.

Remark. As the best algorithm [15], [33] can only solve ring-
SISq,3,β with β = 2Õ(

√
n), it is safe to assume ring-SISq,3,β

with any polynomial β. If the assumption is sound for β =
2

4
√
n, our multi-signature scheme is EU-CMA secure, as for

a PPT adversary, the number of signers in a signing query
or forgery is polynomially bounded.

Implementation. Our analysis is conducted in the asymptotic
notation. The parameters are not optimized. But still, we
have provided a proof-of-concept implementation on Ubun-
tu 20.04 VM using Python for the protocol with 3 signers.
For n = 1024 and q = 291 + 11259, the protocol has a total
runtime of about 30 seconds. We found that the main cost
comes from polynomial multiplications for computing vi
and v̄. It is not surprising as we do not use the fast multi-
plication algorithm. When n = 1024, vi requires to do 100
multiplications of polynomial of degree 1023 over Fq. This
should be greatly improved if a fast Fourier transform (FFT)
is applied. Our implementation can not be directly used on
a blockchain for the transaction as the existing blockchains
are not based on lattice and the gas consumption will be
high also. However, once a multi-signature is generated, we
use the following contract to achieve the payment.

contract FlexPay {
mapping (address=>uint256) CTR;
mapping (address=>uint) Balance;

function Counter (address addr) public view {
return CTR[addr];
}
function Pay (bytes calldata barPK||barX||barz,

address to, uint val) public {
from=address of barPK;
M=to||val||CTR[from];
require(Ver(barX, barz, barPK, M)=true);
require (Balance[from]≥val);
decrease Balance[from] by val;
payable(to).transfer(val);
increment CTR[from];
}
function RecvPay (address addr) public payable {

increase Balance[addr] by msg.value;
}

}
In this code, contract FlexPay can be regarded as a bank

of all addresses including the address (say, addr0) of PK.

Although PK is not an Ethereum public-key, addr0 can still
receive Ether as any uint256 value is an address. Anyone
can pay to addr0 through RecvPay function. In this case,
the balance Balance[addr0] of addr0 in FlexPay is updated.
If the members of PK want to pay money val to address to,
they can first generate a multi-signature (using our python
code) and then use this signature to run Pay function.
The result is that the account Balance[addr0] is decreased
by val while the contract transfers val money to address
to. To avoid the double spending using the same multi-
signature, a counter for each address is maintained and it
is increased after a multi-signature payment on the current
counter is consumed. The multi-signature is generated using
the message M = to||val|CTR[addr0], where a counter
is used which can be retrieved using Counter function
before jointly generating the multi-signature. The signers
can communicate through a public server as a channel. Since
the signature model does not require a secure channel, this
server can simply be any TCP server (especially, no secure
connection such as TLS is required).

Our python multi-signature source code is available at
https://github.com/JSQ2023/Ring-LWE-Multi-Signature.
The contract’s Web3-based connection with a python code
based multi-signature execution (as well as its parameter
optimization) does not seem to be an easy task. We
take it as our continued work and will post the detailed
implementation on the same site in the near future.

8 CONCLUSION

In this paper, we proposed a compiler that converts a type of
identification scheme to a key-and-signature compact multi-
signature. This special type of ID owns a linear property.
The aggregated public-key and multi-signature are of size
both independent of the number of signers. We formulated
this compiler through linear ID via the language of R-
module and proved the security through a new forking lem-
ma called nested forking lemma. Under our compiler, the
compact multi-signature problem has been reduced from a
multi-party problem to a two-party problem. We realized
our compiler with Schnorr ID scheme and a new lattice-
based scheme. Our lattice multi-signature is the first of its
kind that is key-and-signature compact without a restart in
the signing process.

ACKNOWLEDGMENT

Authors would like to thank all reviewers for their valuable
comments that help improve the paper. S. Jiang dedicates
this work to the memory of his SKLOIS teacher Prof. Dingyi
Pei.

REFERENCES

[1] Michel Abdalla, Pierre Alain Fouque, Vadim Lyubashevsky, Meh-
di Tibouchi, Tightly-Secure Signatures from Lossy Identification
Schemes. EUROCRYPT 2012, 572-590.

[2] H. K. Alper and J. Burdges. Two-round trip schnorr multi-
signatures via delinearized witnesses. In T. Malkin and C. Peikert,
editors, CRYPTO 2021, Part I, volume 12825 of LNCS, pages 157-
188, Virtual Event, Aug. 2021. Springer, Heidelberg.

[3] Ali Bagherzandi, Jung Hee Cheon and Stanislaw Jarecki, Mul-
tisignatures secure under the discrete logarithm assumption and
a generalized forking lemma. CCS 2008, pp. 449-458, 2008.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 17

[4] Mihir Bellare, Wei Dai, Chain Reductions for Multi-signatures and
the HBMS Scheme. ASIACRYPT 2021, Part IV: 650-678

[5] Mihir Bellare, Adriana Palacio, GQ and Schnorr Identification
Schemes: Proofs of Security against Impersonation under Active
and Concurrent Attacks. CRYPTO 2002: 162-177.

[6] M. Bellare and G. Neven, Identity-Based Multi-signatures from
RSA, CT-RSA 2007, M. Abe (Ed.), LNCS 4377, pp. 145-162, 2007.

[7] Mihir Bellare, Phillip Rogaway: Random Oracles are Practical: A
Paradigm for Designing Efficient Protocols. CCS 1993: 62-73, 1993.

[8] Mihir Bellare, Gregory Neven: Multi-signatures in the plain public-
Key model and a general forking lemma. CCS 2006: 390-399

[9] Ian F. Blake, Shuhong Gao and Ronald C. Mullin, Explicit Factor-
ization of x2k + 1 over Fp with Prime p ≡ 3 mod 4. Appl. Algebra
Eng. Commun. Comput. 4:89-94 (1993)

[10] Florian Böhl, Dennis Hofheinz, Tibor Jager, Jessica Koch,
Christoph Striecks: Confined Guessing: New Signatures From S-
tandard Assumptions. J. Cryptol. 28(1): 176-208 (2015)

[11] Alexandra Boldyreva, Threshold Signatures, Multisignatures and
Blind Signatures Based on the Gap-Diffie-Hellman-Group Signa-
ture Scheme. Public Key Cryptography 2003: 31-46.

[12] D. Boneh, C. Gentry, B. Lynn, and H. Shacham. Aggregate and
verifiably encrypted signatures from bilinear maps. In E. Biham,
editor, EUROCRYPT 2003, volume 2656 of LNCS, pages 416-432.
Springer-Verlag, 2003.

[13] Dan Boneh, Manu Drijvers, Gregory Neven: Compact Multi-
signatures for Smaller Blockchains. ASIACRYPT (2) 2018: 435-464

[14] Cecilia Boschini, Akira Takahashi, and Mehdi Tibouchi. Musig-
L: Lattice-based multi-signature with single-round online phase,
CRYPTO’22.

[15] Ronald Cramer, Léo Ducas, and Benjamin Wesolowski. Short
stickelberger class relations and application to ideal-svp. Eurocrypt
2017.

[16] Ivan Damgård, Claudio Orlandi, Akira Takahashi, and Mehdi
Tibouchi. Two-round n-out-of-n and multisignatures and trapdoor
commitment from lattices. PKC 2021, LNCS 12710, pages 99-130,
2021.

[17] Manu Drijvers, Kasra Edalatnejad, Bryan Ford, Eike Kiltz, Julian
Loss, Gregory Neven, Igors Stepanovs, On the Security of Two-
Round Multi-Signatures. IEEE Symposium on Security and Privacy
2019, pp. 1084-1101, IEEE, 2019.

[18] Léo Ducas and Alain Durmus. Ring-lwe in polynomial rings. In
PKC 2012, LNCS 7293, pages 34-51. Springer, 2012.

[19] Rachid El Bansarkhani and Jan Sturm. An efficient lattice-based
multisignature scheme with applications to bitcoins, CANS’16,
pages 140-155.

[20] Nils Fleischhacker, Mark Simkin, Zhenfei Zhang: Squirrel: Ef-
ficient Synchronized Multi-Signatures from Lattices. CCS 2022,
papges 1109-1123, 2022.

[21] Masayuki Fukumitsu and Shingo Hasegawa. A tightly-secure
lattice-based multisignature. The 6th Asia Public-Key Cryptography
Workshop 2019, page 3-11, 2019.

[22] Masayuki Fukumitsu and Shingo Hasegawa. A lattice-based prov-
ably secure multisignature scheme in quantum random oracle
model, ProvSec 2020.

[23] C. Gentry and Z. Ramzan. Identity-based aggregate signatures. In
M. Yung, editor, PKC 2006, volume 3958 of LNCS, pages 257-273.
Springer-Verlag, 2006.

[24] C. Gentry, C. Peikert, and V. Vaikuntanathan. Trapdoors for hard
lattices and new cryptographic constructions. STOC’08, pp. 197-206,
2008.

[25] Vadim Lyubashevsky: Fiat-Shamir with Aborts: Applications to
Lattice and Factoring-Based Signatures. ASIACRYPT 2009: 598-616

[26] K. Itakura and K. akamura, A public-key cryptosystem suitable for
digital multisignatures. NEC Research & Development, 71:1-8, 1983.

[27] Meenakshi Kansal, Amit Kumar Singh, Ratna Dutta, Efficient
Multi-Signature Scheme Using Lattice. Comput. J. 65(9): 2421-2429
(2022)

[28] Meenakshi Kansal and Ratna Dutta, Round Optimal Secure Mul-
tisignature Schemes from Lattice with Public Key Aggregation and
Signature Compression. AFRICACRYPT 2020, pages 281-300, 2020.

[29] Serge Lang, Algebra, GTM 211, Springer-Verlag, 2002.
[30] C. M. Li, T. Hwang, and N. Y. Lee. Threshold-multisignature

schemes where suspected forgery implies traceability of adversarial
shareholders. In A. D. Santis, editor, EUROCRYPT’94, volume 950
of LNCS, pages 194-204. Springer, Heidelberg, May 1995

[31] Zi-Yuan Liu, Yi-Fan Tseng, and Raylin Tso. Cryptanalysis of a
round optimal lattice-based multisignature scheme. Cryptology
ePrint Archive, Report 2020/1172, 2020.

[32] Steve Lu, Rafail Ostrovsky, Amit Sahai, Hovav Shacham, Brent
Waters: Sequential Aggregate Signatures and Multisignatures With-
out Random Oracles. EUROCRYPT 2006: 465-485

[33] Vadim Lyubashevsky and Daniele Micciancio, Generalized Com-
pact Knapsacks Are Collision Resistant. ICALP 2006, part 2, pages
144-155, 2006.

[34] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal
lattices and learning with errors over rings. J. ACM, 60(6):43:1-
43:35, 2013.

[35] V. Lyubashevsky, C. Peikert, and O. Regev. A toolkit for ring-LWE
cryptography. EUROCRYPT’13, pages 35-54, 2013.

[36] Changshe Ma, Jian Weng, Yingjiu Li, Robert H. Deng: Efficient
discrete logarithm based multi-signature scheme in the plain public
key model. Des. Codes Cryptogr. 54(2): 121-133 (2010)

[37] Changshe Ma, Mei Jiang, Practical Lattice-Based Multisignature
Schemes for Blockchains. IEEE Access 7: 179765-179778 (2019)

[38] Maxwell, G., Poelstra, A., Seurin, Y., Wuille, P.: Sim-
ple schnorr multi-signatures with applications to bitcoin.
Cryptology ePrint Archive, Report 2018/068 (2018), http-
s://eprint.iacr.org/2018/068/20180118:124757

[39] Silvio Micali, Kazuo Ohta, Leonid Reyzin: Accountable-subgroup
multisignatures: extended abstract. CCS 2001: 245-254.

[40] D. Micciancio and O. Regev. Worst-case to average-case reductions
based on gaussian measures. SIAM J. Comput., 37(1): 267-302, 2007.

[41] Satoshi Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System,
2008. Available at http://bitcoin.org/bitcoin.pdf

[42] J. Nick, T. Ruffing, and Y. Seurin. MuSig2: Simple two-round
Schnorr multi-signatures. CRYPTO 2021, Part I, LNCS 12825, pp.
189-221, Springer, 2021.

[43] J. Nick, T. Ruffing, Y. Seurin, and P. Wuille. MuSig-DN: Schnorr
multi-signatures with verifiably deterministic nonces. In J. Ligatti,
X. Ou, J. Katz, and G. Vigna, editors, ACM CCS 2020, pages 1717-
1731. ACM Press, Nov. 2020.

[44] K. Ohta and T. Okamoto. A digital multisignature scheme based
on the Fiat-Shamir scheme. In H. Imai, R. L. Rivest, and T. Mat-
sumoto, editors, ASIACRYPT’91, volume 739 of LNCS, pages 139-
148. Springer, Heidelberg, Nov. 1993.

[45] Chris Peikert, Alon Rosen, Efficient Collision-Resistant Hashing
from Worst-Case Assumptions on Cyclic Lattices. TCC 2006, pages
145-166, 2006.

[46] D. Pointcheval and J. Stern. Security arguments for digital sig-
natures and blind signatures. Journal of Cryptology, 13(3):361-396,
2000.

[47] Ronald L. Rivest, Adi Shamir, Leonard M. Adleman: A Method
for Obtaining Digital Signatures and Public-Key Cryptosystems.
Commun. ACM 21(2): 120-126, 1978.

[48] C. P. Schnorr, Efficient Signature Generation by Smart Cards,
Journal of Cryptology, vol 4, no. 3, pp. 161-174, 1991.

[49] Damien Stehlé and Ron Steinfeld, Making NTRU as secure as
worst-case problems over ideal lattices, EUROCRYPT 2011, K. G.
Paterson (ed.), LNCS 6632, pp. 27-47, 2011.

[50] Damien Stehlé and Ron Steinfeld, Making NTRUEncrypt and
NTRUSign as secure as standard worst-case problems over
ideal lattices, Cryptology ePrint Archive, Report 2013/004, 2013,
http://eprint.iacr.org/. Full version of [49].

[51] Ewa Syta, Iulia Tamas, Dylan Visher, David Isaac Wolinsky, Philip-
p Jovanovic, Linus Gasser, Nicolas Gailly, Ismail Khoffi, and Bryan
Ford. Keeping authorities “honest or bust” with decentralized
witness cosigning. IEEE Symposium on Security and Privacy 2016,
pp. 526-545. IEEE Computer Society Press, May 2016.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 18

Shaoquan Jiang received the B.S. and M.S.
degrees in mathematics from the University
of Science and Technology of China, Hefei,
China, in 1996 and 1999, respectively. He
received the Ph.D degree in Electrical and
Computer Engineering from the University of
Waterloo, Waterloo, ON, Canada, in 2005.

From 1999 to 2000, he was a research as-
sistant at the Institute of Software, Chinese
Academy of Sciences, Beijing; from 2005 to
2013, he was a faculty member at the Uni-

versity of Electronic Science and Technology of China, Chengdu,
China; from 2013 to 2020, he was a faculty member at Mianyang
Normal University, Mianyang, China. Since May 2020, he is a faculty
at University of Windsor. He was a postdoc at the University of
Calgary from 2006 to 2008 and a visiting research fellow at Nanyang
Technological University from 2008 to 2009. His interests are secu-
rity protocols, network security, blockchain, (post-)quantum cryp-
tography and information theoretical security.

Dima Alhadidi is an assistant professor in
the School of Computer Science at the U-
niversity of Windsor. She received her PhD
degree in Computer Science and Software
Engineering from Concordia University. Be-
fore joining the University of Windsor, she
was an assistant professor at the University
of New Brunswick and Zayed University, a
researcher at the Canadian Institute for Cy-
bersecurity, and a research associate at Con-

cordia University. She has been selected by an independent panel
of judges to be honored as one of Canada’s 2021 Top Women in
Cybersecurity. Her research addresses data privacy and security
issues in emerging technologies such as cloud computing and
healthcare.

Hamid Fazli Khojir obtained the B.Sc in Com-
puter Engineering from the University of
Tehran in 2020 and the M.Sc in Computer Sci-
ence from the University of Windsor in 2023.
Hamid won the Vector Institute for Artificial
Intelligence during his graduate study. He
completed an internship at Linux Foundation
by working on a privacy-preserving federated
learning project based on the Hyperledger
ecosystem. Hamid is Software Designer in
CamCloud, which provides cloud-based so-

lutions for integrating security cameras. His research interests are
privacy and machine learning.

