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Abstract. We revisit OCAKE (ACNS 23), a generic recipe that constructs password-based
authenticated key exchange (PAKE) from key encapsulation mechanisms (KEMs), to allow
instantiations with post-quantums KEM like KYBER.
The ACNS23 paper left as an open problem to argue security against quantum attackers, with
its security proof being in the universal composability (UC) framework. This is common for
PAKE, however, at the time of this submission’s writing, it was not known how to prove (com-
putational) UC security against quantum adversaries. Doing this becomes even more involved
if the proof uses idealizations like random oracles or ideal ciphers.
To pave the way towards post-quantum security proofs, we therefore resort to a (still classical)
game-based security proof in the BPR model (EUROCRYPT 2000). We consider this a crucial
stepping stone towards a fully satisfying post-quantum security proof. We also hope that a
game-based proof is easier to (potentially formally) verify.
We prove security of (a minor variation of) OCAKE, assuming the underlying KEM satisfies
notions of ciphertext indistinguishability, anonymity, and (computational) public-key unifor-
mity. Using multi-user variants of these properties, we achieve tight security bounds.
We provide a full detailed proof – something often omitted in publications on game-based
security of PAKE. As a side-contribution, we demonstrate in detail how to handle password
guesses, which is something we were unable to find in the existing literature at the time of
writing.
Finally, we discuss which current PQC KEMs can be plugged into the proposed protocol and
provide a concrete instantiation, accompanied by a proof-of-concept implementation and re-
spective run-time benchmarks.

Keywords: Public-key cryptography, password-based authenticated key exchange, PAKE,
CAKE, OCAKE, post-quantum cryptography, ROM, game-based security.

1 Introduction

A central problem of secure communication is how to securely agree on a shared secret key via
public communication. The generic solution is called an authenticated key exchange (AKE) proto-
col, which usually uses public-key cryptography to agree on the shared secret. This is the basis of
most modern secure communication protocols, including TLS, SSH, or WireGuard. The drawback
of this solution is that it requires users to maintain a cryptographic key pair for authentication. As
cryptographic keys are hard to memorize, they require secure storage with all the related challenges
for usability. Hence, in many scenarios only the server is authenticated during the AKE protocol.
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Users are often authenticated via the use of human-memorable passwords within the already estab-
lished communication that is secured via the shared secret. This is the case as passwords are far
easier to handle for humans. However, this means that additional measures have to be taken to link
the authentication to the session secured via the shared secret. A way out of this is to use a user
password for the purpose of authentication in an AKE. This is called password-authenticated key
exchange (PAKE). In general, PAKE allow the use of any low-entropy shared secret (like a password
or a PIN) to provide the agreement with authentication. Hao and van Oorschot classify in their SoK
on PAKE[HvO22] real-world use-cases of PAKE protocols and the currently used PAKEs related to
them. These include credential recovery using the SRP-6a protocol in iCloud; device pairing (mostly
IoT or embedded devices), using the PACE3 protocol in eIDs or eMRTDs to prevent skimming, as
well as Dragonfly in WPA3 (standard for WiFi connection establishment); and E2E secure channel
establishment using the J-PAKE4 protocol in Thread. A few years ago, interest in the design and
theory surrounding PAKE was increased further when the Crypto Forum Research Group (CFRG)
- advisory body to the Internet Engineering Task Force (IETF) - performed a selection process for
new PAKE standards. The defined requirements5 emphasized high efficiency and simultaneously
high security, supported by a formal security proof.

The quantum threat. While the CFRG announced two winners in 2020, all proposals (including
the winners OPAQUE [JKX18] and CPace [AHH23]) have in common that they rely on the compu-
tational hardness of the Diffie-Hellman (DH) problem – something they share with most currently
deployed public-key cryptography. Since Shor famously showed how to solve this problem on a quan-
tum computer, public-key cryptography based on DH – including the proposed PAKE protocols –
do not offer resilience against quantum attacks. As a first step towards dealing with the quantum
threat, the National Institute of Standards and Technology (NIST) posed a call for proposals in 2017
with the goal to develop quantum-resistant standards for public-key encryption (PKE) and digital
signature schemes, which are the most fundamental building blocks underpinning public-key cryp-
tography. More accurately, rather than aiming at PKE schemes, NIST aimed at key encapsulation
mechanisms (KEMs). A KEM is similar to a PKE, but focused on the use-case of establishing a
shared secret by sending a symmetric key in encrypted form. This allows the encapsulation algo-
rithm to internally chose the key, instead of taking it as an input, and then return it together with a
ciphertext that “encapsulates” it. This change in functionality allows for more efficient constructions
as the key cannot be adversarially chosen during attacks. The NIST process recently selected Ky-
ber [BDK+18] as KEM and Dilithium [DKL+18], Falcon [PFH+22], and SPHINCS+ [BHK+19] as
signatures for standardization. In the context of this work we are only interested in KEMs. It should
be noted that KEMs are fundamentally different from the Diffie-Hellman key exchange (DHKX),
although they serve the same purpose. The DHKX is a non-interactive key exchange (NIKE) with
a lot of additional algebraic structure. In comparison, when KEMs are used for key exchange, the
resulting protocol is interactive, and they do not provide additional structure generically (although
specific proposals do). While NIST is continuing the selection process for further KEM and signature
schemes, there is no process for NIKE. The reason is the lack of an efficient candidate with reliable
security at this time (first proposals exist though [CLM+18, DKS18, RS06, Cou06]).

Designing post-quantum PAKE. A major challenge regarding the transition to post-quantum
secure systems, is to transform existing protocols into post-quantum secure ones, replacing quantum-
vulnerable building blocks by the available KEM and signatures. A general challenge – which also
concerns PAKE – is that the NIST proposals cannot replace the Diffie-Hellman key exchange in a

3 https://www.rfc-editor.org/rfc/rfc6631.html
4 https://www.rfc-editor.org/rfc/rfc8236
5 Specified in datatracker.ietf.org/doc/html/rfc8125, and expanded upon in ietf.org/proceed-

ings/104/slides/slides-104-cfrg-pake-selection-01.pdf
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’plug-n-play‘ way: most PAKE protocols rely on the additional algebraic properties of the group
operation in DHKX which are not known to be offered by KEMs. This gave rise to the requirement
to design new PAKE protocols, preferably in a way that

– is versatile, i.e., designed in a way that works for various PQC proposals or even pre- and
post-quantum hybrids (instead of being tied to a specific proposal’s internal workings);

– works with already proposed algorithms (to avoid having to introduce new primitives);
– avoids complex mapping operations used, e.g., by elliptic-curve-based protocols; and
– satisfies state-of-the-art security notions (supported by a formal security proof).

The first property is motivated by the idea of crypto agility, i.e., the option to easily replace a building
block in case of successful cryptanalysis. Additionally, this also allows for the possibility to select
different candidates depending on specific performance requirements like, e.g., fast computations
or low memory consumption. A candidate proposal that aims at fulfilling the above requirements
is OCAKE, recently proposed by Beguinet, Chevalier, Pointcheval, Ricosset, and Rossi [BCP+23].
OCAKE is based on the EKE paradigm [BM92], but replaces the need for Diffie-Hellman by building
generically on suitable KEMs, thereby setting a foundation to build quantum-resistant PAKE.

Towards post-quantum security of PAKEs. Modern security notions and proofs for PAKE
are usually given in the universal composability (UC) framework introduced in [Can01] (see full
version of this paper for a list of examples). This is also the case for OCAKE. While security proofs
in the UC framework are desirable in the sense that UC-proven building blocks can always be
composed securely, they come with a limitation when addressing post-quantum security: so far, we
are not aware of works that consider computational security against quantum attackers in the UC
framework. Hence, it is not known how these proofs can be translated into a setting that considers
quantum attacks. At the same time, there is continuous progress in lifting game-based security results
to a setting with quantum adversaries. Up to minor complications, such lifts are straight-forward as
long as no idealized models are used [Son14]. However, when proofs are given in idealized models like
the random oracle model (ROM) and/or the ideal cipher (IC) model, lifting becomes less straight-
forward. This is also the case for PAKEs. Both the ROM and the IC model do not account for
quantum attacks and therefore make it necessary to adapt both the models and the proofs. By now,
we have a somewhat well-understood quantum counterpart to the ROM, called quantum-accessible
ROM (QROM) [BDF+11]. Ongoing efforts to develop the necessary techniques for lifting proofs to
the QROM are well under way (see, e.g., [Zha19, DFMS21, CFHL21, GHHM21, HHM22, DFMS22]).
Similar results for the quantum-accessible ideal cipher model are still extremely limited, but a model
exists and first proofs have been done [HY18]. This suggests that game-based security notions and
proofs may be a good target for proving security against quantum attacks. There are several game-
based security models for PAKE [BPR00, AFP05, Lan16]. What is still missing are detailed formal
proofs for PAKE protocols that could be lifted.

Our contribution. In this work, we progress towards a PAKE protocol with proven security against
quantum adversaries. Towards this end, we analyse the security of a minor variation of OCAKE. We
present a rigorous game-based security proof of the protocol in the BPR model for PAKE proposed
by Bellare, Pointcheval, and Rogaway [BPR00]. We give a concrete security bound rather than an
asymptotic relation, thereby allowing to reason about concrete parameter instantiations. To achieve
a tight bound, we make use of multi-user security notions. As a side contribution, we show how to
formally treat password guesses in a detailed game-based proof. So far, we are only aware of detailed
proofs in which this step is hidden within a proof in the generic group model[BFK09]. Interestingly,
in UC, this step is easy to formalize, but verifying the security reasoning can be challenging. Our
proposal differs from OCAKE in two minor points. First, we omit session identifiers which are
included in OCAKE (to enable a proof in the UC framework), but are not necessary for a game-
based proof. Second, we consciously add a final key confirmation message that achieves explicit
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Fig. 1: Our results. Solid (dashed) arrows indicate tight (non-tight) reductions.

mutual authentication. This is not necessary to prove security in the BPR model, but we consider
explicit authentication a relevant feature of a protocol. (BPR already discussed that it can be added
by adding key confirmation.)
A limitation. Although we ultimately aim for security against quantum adversaries, our proof is
still in the (classical) ideal cipher and random oracle model. While it would have likely been possible
to replace the ROM by the QROM for this proof, handling the ideal cipher seems more challenging
due to the limited known proof techniques. This work presents a solid foundation for future work
in which either new techniques to lift results with ideal ciphers are developed, or the use of ideal
ciphers is omitted.
Organization of this paper. After recalling basic notions (including the relevant security notions
for KEMs) in Section 2 and introducing multi-user notions for KEMs in Section 2.1, we describe the
OCAKE protocol extended with a key confirmation in Section 3. We recall the BPR security model
for PAKE in Section 4, and then prove OCAKE secure in Section 5.

1.1 Concurrent and related work

A recent publication [PZ23] gave a game-based proof for CAKE, another protocol from the [BCP+23]
PAKE family. Having proofs for different PAKEs from the same family surely is to be welcomed
since it establishes trust in the family’s overall design approach, we however wanted to also point
out a few advantages of this work:
Protocol advantages. Comparing to CAKE, our protocol avoids the usage of ideal ciphers (ICs) for
its second message and thus reduces overhead in terms of both necessary computations and dealing
with the IC during the proof. So far, IC handling still poses a major barrier when proving security
against quantum attackers, we thus followed the maxim ’the less IC, the better’. (Although it cannot
be ruled out that any IC involvement at all already hinders a proof against quantum attacks.) As
stated in [PZ23], CAKE was chosen over OCAKE because OCAKE only was known to achieve weak
forward secrecy. This limitation seems to stem from the comparably weak anonymity requirement
made in [BCP+23], and is overcome by strengthening the requirement in a way such that it still is
achieved by – amongst others – the post-quantum KEMs Kyber [MX23], McEliece, NTRU, BIKE
and SIKE (all [Xag22]), as well as FrodoKEM [GMP22].
KEM requirement advantages. Both works require anonymity and indistinguishability notions.
In [PZ23], both notions deviate from their standard variant by providing the attacker with an
additional oracle (called PCO). We offer two independent improvements: 1.) Our indistinguishabil-
ity notion does without the additional PCO attack surface and thus leads to an easier-to-analyze
(more standard) requirement with potential for more efficient instantiations. 2.) We attenuate the
anonymity requirement (again creating space for efficiency improvements):
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– In [PZ23], the number of PCO queries may be high – it’s bounded by how many random oracle
queries an attacker could reasonably perform. In comparison, we only need to allow a single
query, which may allow simpler and more efficient designs (see, e.g., [HV22]).

– To adapt [PZ23] to the QROM, PCO needs to be made quantum-accessible, and it is likely that
quantum access to PCO limits with which parameters KEM can still be instantiated securely. In
comparison, our proof technique would allow to still work with a classically-accessible PCO, even
in the QROM, which simplifies both the analysis and the KEM design.

Since multi-instance security of lattice-based cryptosystems (such as Kyber) has recently been sub-
ject to debate [Ber22], we also included (generic, non-tight) single-to-multi-user results that enable
a proof based on single-user security.

Proof advantages. Both proofs deal with attackers that correctly guess a password by defining a
respective ’bad’ event in the security game and proving its probability to be small. Our probability
term compares favorably to the one in [PZ23]: the term in [PZ23] involves the number of all estab-
lished sessions, including observed honest protocol runs (which will be very large in practice), whereas
ours only involves the number of sessions with which an attacker can actively interfere (which in
practice will be limited). We stress, however, that the term in [PZ23] can easily be shrunken down
to our term with a more fine-grained analysis.

Additionally, we believe it might be easier to (formally) verify our treatment of ’bad’ event –
in [PZ23], the event is treated by raising an internal flag and performing flag-dependent changes to
the game. We early on change the game such that correct guesses are ’punished’ by aborting and
analyse how this probability is affected by subsequent game modifications. Second, the recognition
of the ’bad’ event differs due to protocol differences. CAKE encrypts both protocol messages via
the ideal cipher, [PZ23] can thus identify password guesses by connecting the protocol message to a
previous ideal cipher query. In our modification of OCAKE, the second message is not IC-encrypted.
We can, however, identify password guesses via the included authentication tag since it is computed
using a hash function (modelled as a random oracle). The protocol differences also affects how the
simulation deals with server impersonation. Since an attacker may corrupt a server password during
a protocol run, the simulated client must be able to respond to ciphertexts generated by an attacker
in possession of the public key. [PZ23] cover this case by simulating the involved random oracle
in a certain way (’oracle patching’). In particular, the random oracle internally calls the plaintext
checking oracle upon each query. Our authentication tag is the reason why we do not need a random
oracle patching technique- we can directly identify a password guess by connecting the tag to a
previous random oracle query. This allows us to a) limit the number of PCO queries to 1, and b)
work with a non-quantum version of PCO even when adapting the proof to the QROM.

Other related work. There already exists some work on PAKE protocols based on PQC prim-
itives in the literature. However, these designs are not generic and most of them rely directly on
the hardness assumptions of the LWE (Learning with Errors) lattice problem, its variants MLWE
and RLWE, and a smaller number based on isogenies (i.e., CSIDH). In addition to the choice of
underlying hardness assumption, PAKEs can be divided into two classes: augmented (asymmet-
ric) and balanced (symmetric). Most proposed PAKEs are of the augmented PAKE class, which
aim to provide protection against server compromise by not storing the (full) password on the
server. However, these proposals commonly require a trusted setup (e.g., using a CRS (Common
Reference String) or identity based signatures) that takes place prior to the actual authenticated
key agreement. Works following this trusted-setup design are based on lattices [XHCC17, CAK18,
LZJY19, DBK20, WCL+22, GSG+23, CKS23], or isogenies [ZHS14, AEK+22]. Others make use of
Smooth Projective Hash Functions (SPHFs) based on PQC assumptions and lattice primitives such
as [KV09, ZY17, LW18, KAA19, JGH+20, YGS+20, LWM20, TLZ+21, LW22]. The works utilizing
SPHFs incorporate Non-Interactive Zero-Knowledge Proof System (NIZKs) in most cases. Other
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proposals follow a Diffie-Hellman (DH)-like approach, where the password (or a password-derived
value) is used to generate a common generator for commutative key agreement. Works following this
design are mainly based on isogenies [TSJL18, ZG17], since the primitive from this mathematical
structure can be utilized in a manner similar to the classical DH or ECDH key agreement with a
common generator. The protocols (O)CAKE [BCP+23] are in the class of balanced PAKEs, and use
the long-lived secret (i.e., the password) to directly authenticate a public key of the underlying PKE
for the following key agreement. This can be done by using the password (or a password derived
symmetric key) as the encryption key of a block-cipher to encrypt the public key (EKE-style in the
IC model) as in [TY19], or by using its hash value to alter or "mask" the public key (PAK-style in
ROM) as in [DAL+17, YGWX19, RG21, RGW23, SA23]. All of the works mentioned here directly
use a PQC PKE rather than a PQC KEM, most of them provide a game-based (BPR) security
proof in either the standard model or the Random Oracle model (ROM), with a few exceptions that
provide a UC proof. Nevertheless, one cannot consider a comparison between our contribution and
the previous constructions, due to major design differences.
Acknowledgements. We would like to thank Thomas Pöppelmann for valuable discussions about
the design of PAKE protocols, and Afonso Arriaga, Manuel Barbosa, Paul Crowley, Stanislaw
Jarecki, and Marjan Skrobot for valuable discussions.

2 Preliminaries

In the following we recall the ideal cipher model and provide definitions for key encapsulation
mechanisms (KEM). We assume the reader is familiar with the random oracle model (ROM) [BR93].
The Ideal Cipher Model. We prove security of the OCAKE protocol in the ideal cipher model
[Bla06]. Analogously to the ROM for hash functions, the ideal cipher (IC) is an idealized description
of a block cipher.

Definition 1 (Block Cipher (BC)). A block cipher of block length n and key length k consists
of two algorithms BC.enc : {0, 1}k × {0, 1}n → {0, 1}n and BC.dec : {0, 1}k × {0, 1}n → {0, 1}n

such that for every plaintext m ∈ {0, 1}n and key k ∈ {0, 1}k, decryption undoes encryption:
IC.dec(k, IC.enc(k, m)) = m.
Definition 2 (Ideal Cipher (IC)). An ideal cipher is a collection of random permutations indexed
by a key, to which all parties (including the adversary) are given oracle access. I.e., it is a pair of
random functions IC.enc, IC.dec : K × M → M, such that IC.dec(k, IC.enc(k, m)) = m and
IC.enc(k, IC.dec(k, m)) = m for all k, m in K ×M.

We start with the functional definition of KEMs, then discuss their security.

Definition 3 (Key Encapsulation Mechanisms (KEMs)). A KEM is a triple of algorithms
KEM = (KGen, Encap, Decap), together with a public key space PK and secret key space SK.

– KGen→ (pk, sk): On empty input probabilistically return key pair (pk, sk), where pk also defines
a finite key space K and a ciphertext space C.

– Encap (pk) → (c, K): On input pk probabilistically return a pair (K, c) ∈ K × C. We call c the
encapsulation of the key K.

– Decap (sk, c)→ K: On input sk and ciphertext c deterministically return a key K ∈ K.

Definition 4 (δ−Correctness (average-case)). We say that KEM is average-case (1−δ)-correct
if

Pr[Decap(sk, c) = K|(c, K)←$ Encap(pk)] ≥ 1− δ,

where the probability is taken over (pk, sk)← KGen() and the random coins of Encap.
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We use three security notions for KEMs: ANOnymity under Plaintext- Checking Attacks (ANO-PCA),
an extension of the anonymity notion given in [BBDP01, GMP22], INDindistinguishability under
Chosen- Plaintext- Attacks (IND-CPA), and Public Key Uniformity. We begin with the first two as
they share the plaintext checking oracle (PCO). The presence of a PCO may look artificial at a
first glance. Looking ahead, we will need it in our PAKE proof to simulate a proper reaction to a
particular corruption-impersonation pattern. In our proof we require that attackers could mistake
any element of the public-key space for an honestly generated public key. Concretely, we formalise
this below as a public-key uniformity game that asks the attacker to distinguish honestly generated
public keys from uniformly random ones. This property was introduced as fuzziness in [BCP+23],
where it was also proven for the post-quantum KEM Kyber. There also exist stronger (statisti-
cal) definitions – e.g., [BCJ+19] proved statistical public-key uniformity of discrete-log-based PKE
schemes, due to public keys being uniformly chosen group elements.

Definition 5 (Public-key Uniformity (PKU)). Let KEM = (KGen, Encap, Decap) be a key en-
capsulation mechanism with public-key space PK. We define the PKU game as in Fig. 2, relative to
challenge bit b, and the respective advantage function of an adversary A against KEM as

AdvPKU
KEM(A) := |Pr[PKU0(A)⇒ 0]− Pr[PKU1(A)⇒ 0]| .

2.1 Multi-user notions for KEMs

Multi-user security notions were first introduced for public-key encryption in [BBM00] and then ex-
tended to IND-CPA security of KEMs in [GKP18]. To obtain a tight security proof for our PAKE pro-
tocol, we now define multi-user (and multi-challenge) counterparts for the previously introduced se-
curity notions. For IND-CPA and ANO-PCA, the respective notion (IND-CPAn,qC

and ANO-PCAn,qC
)

models the setting where an adversary can ask for up to qC many challenges for each of n many
different key pairs. The adversary wins if it successfully attacks any of the up to nqC challenges.
We will also use a multi-user notion of public-key uniformity (PKUn), where the adversary is tasked
with distinguishing a vector of n many honestly generated public keys from a vector that consists of
elements picked uniformly from the public key space. We include generic reductions between single-
and multi-user security in the full version of this paper.. The loss that occurs in these reductions re-
flects how session guessing would introduce reduction losses in our PAKE proof, where the multi-user
notions replaced by single-user notions.

Definition 6 (Multi-user security notions for KEM). Let KEM be a key encapsulation mecha-
nism with public-key space PK and key space K. For integers n and qC , we define the PKUn game,
the IND-CPAn,qC

game and the ANO-PCAn,qC
game as in Figures 2, Fig. 3 and 4, each relative to

challenge bit b, and the respective advantage function of an adversary A against KEM as

AdvIND-CPAn,qC

KEM (A) := |Pr[IND-CPA0
n,qC

(A)⇒ 0]− Pr[IND-CPA1
n,qC

(A)⇒ 0]| ,

AdvANO-PCAn,qC

KEM (A) := |Pr[ANO-PCA0
n,qC

(A)⇒ 0]− Pr[ANO-PCA1
n,qC

(A)⇒ 0]| and

AdvPKU(n)
KEM (A) := |Pr[PKU0

n(A)⇒ 0]− Pr[PKU1
n(A)⇒ 0]| .

It is known [GKP18, Lemma 3.2] that ’plain’ IND-CPA security lifts generically to its multi-user
counterpart with a loss of n · qC , where n is the number of users (the number of public keys) and
qC is the maximal number of challenge queries per public key. We now show that this also holds for
anonymity for adversaries that also have access to a plaintext checking oracle (ANO-PCA) and public-
key uniformity (PKU) (with a loss of n). The obtained generic bounds may be overly pessimistic
for specific KEMs, considering that a KEM’s underlying structure may allow for tighter reasoning.
However, since multi-instance security of lattice-based cryptosystems (such as Kyber) has recently
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PKUb(A)
01 (pk0, sk0)←$ KGen
02 pk1 ←$PK
03 b′ ← A(pkb)
04 return b′

PKUb
n(A)

05 for j ∈ [n]
06 (pkj,0, skj,0)←$ KGen
07 pkj,1

unif←−−−PK
08 pk.append(pkj,b)
09 b′ ← A(pk)
10 return b′

Fig. 2: Public-key uniformity game PKU for KEM, and its multi-user counterpart PKUn for n many
users. Public-key uniformity is also known as fuzziness.

Game IND-CPAb
n,qC

11 for i ∈ [n]
12 (pki, ski)←$ KGen
13 pk.append(pki)
14 b′ ← AChall(pk)
15 return b′

Challb
qC

(j)
16 (c, K0)←$ Encap(pkj)
17 K1

unif←−−−K
18 return (c, Kb)

Fig. 3: Multi-user indistinguishability game IND-CPAn,qC
for KEM, for n many users. Challenge oracle

Chall can be queried at most qC many times per user.

been subject to debate [Ber22], we also included (generic, non-tight) single-to-multi-user results that
enable a proof based on single-user security in the full version.

Theorem 1. Let KEM be a key encapsulation mechanism. For any ANO-PCAn,qC
adversary A

against KEM, there exists an ANO-PCA adversary B against KEM such that

AdvANO-PCAn,qC

KEM (A) ≤ n · qC ·AdvANO-PCA
KEM (B).

and the running time of B is about that of A.

Proof. We reduce single-user ANO-PCA anonymity of KEM to multi-user anonymity ANO-PCAn,qC
,

using a very similar hybrid argument. Let A be an adversary in the ANO-PCAn,qC
game defined

in Fig. 4. Consider the sequence of hybrid games Gj,i that successively changes the game for A from
b = 1 (all challenges built using pk1) to b = 0 (all challenges built using pk0). We will iterate over
j/i, the number of public keys/queries per public key for which we will implement the change: In
game Gj,i, oracle Chall(j′) upon the i′-th query uses

– the respective public key pk0,j′ from pk0 if (j′ < j) or if (both j′ = j and i′ < i),
– the respective public key pk1,j′ from pk1 if j′ > j or if (both j′ = j and i′ ≥ i).

Using the triangle inequality yields

AdvANO-PCAn,qC

KEM (A) =

∣∣∣∣∣∣
n−1∑
j=0

qC −1∑
i=0

Pr[GA
j,i ⇒ 1]− Pr[GA

j,i+1 ⇒ 1]

∣∣∣∣∣∣
≤

n−1∑
j=0

qC −1∑
i=0

∣∣Pr[GA
j,i ⇒ 1]− Pr[GA

j,i+1 ⇒ 1]
∣∣ .
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Game ANO-PCAb
n,qC

(A)
01 for j ∈ [n]
02 (pk0,j , sk0,j)←$ KGen
03 (pk1,j , sk1,j)←$ KGen
04 pk0.append(pk0,j)
05 pk1.append(pk1,j)
06 b′ ← AO(pk0, pk1)
07 return b′

Challb
qC

(j)
08 (c0, K0)←$ Encap(pk0,j)
09 (c1, K1)←$ Encap(pk1,j)
10 L∗

j ← L∗
j ∪ {cb}

11 return (cb, Kb)

1-PCO(j, c, K) �once per j
12 if c /∈ L∗

j

13 K ′ ← Decap(sk0,j , c)
14 return JK = K ′K
15 else return ⊥

Fig. 4: Multi-user anonymity game ANO-PCAn,qC
for KEM, for n many users. The collection O of A’s

oracles is O = {1-PCO, Challb
qC
}. We make the same query restrictions and initialisation conventions

as in Fig. 3.

where we made the convention that Gj,qC
:= Gj+1,q0 to handle index wrap-arounds.

We now give single-user ANO-PCA adversaries Bji to upper bound the summands∣∣Pr[GA
j,i ⇒ 1]− Pr[GA

j,i+1 ⇒ 1]
∣∣: Bji receives a single set of two challenge public keys, a cipher-

text, and an encapsulated key, so (pk0, pk1, c∗, K∗), from its ANO-PCA challenger. Bji will use its
challenge input to simulate either Gj,i or Gj,i+1: Bji generates 2 vectors of n− 1 many public keys
pk0, pk1 using KGen and turns them into vectors of length n by inserting its own challenge public
keys at the j-th position. Bji then runs A on input pk0, pk1 and answers A’s challenge queries as
follows: upon the i′-th query to Chall(j′), Bji responds with

– a challenge constructed using the respective public key pk0,j′ from pk0 if j′ < j, or if both j′ = j
and i′ < i

– a challenge constructed using the respective public key pk1,j′ from pk1 if j′ > j, or if both j′ = j
and i′ > i

– its own challenge (c∗, K∗) if j′ = j and i′ = i
For all vector positions except for j, Bji possesses the secret key belonging to pkj , thereby being able
to respond to all of A’s respective 1-PCO queries. If A queries the 1-PCO with index j, B forwards
the query to its own 1-PCO oracle. When A outputs a guess to Bji, A forwards the guess to its
own challenger. Since Bji perfectly simulates Gj,i if its own challenge bit is 1, and Gj,i+1 if its own
challenge bit is 0, we have∣∣Pr[GA

j,i ⇒ 1]− Pr[GA
j,i+1 ⇒ 1]

∣∣ ≤ AdvANO-PCA
KEM (Bji) .

The running time of Bji is about that of A. Upper bounding
∣∣Pr[GA

j,i ⇒ 1]− Pr[GA
j,i+1 ⇒ 1]

∣∣ ac-
cordingly yields

n−1∑
j=0

qC −1∑
i=0

∣∣Pr[GA
j,i ⇒ 1]− Pr[GA

j,i+1 ⇒ 1]
∣∣ ≤ n−1∑

j=0

qC−1∑
i=0

∣∣∣AdvANO-PCA
KEM (Bji)

∣∣∣
= n · qC ·AdvANO-PCA

KEM (B) ,

where B stems from folding the adversaries Bji into a single one. The running time of B is about
that of A.

ut

Theorem 2 (Multi-User Public-Key Uniformity from Single-User Public-Key Unifor-
mity). Let KEM be a key encapsulation mechanism. For any PKU(n) adversary A against KEM,
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there exists an PKU adversary B against KEM such that

AdvPKUn,qC

KEM (A) ≤ n ·AdvPKU
KEM(B).

and the running time of B is about that of A.

Proof. We reduce PKU security of KEM to multi-user security anonymity PKUn via a hybrid argu-
ment. Let A be an adversary in the PKUn experiment as defined in Fig. 2.Consider the sequence of
hybrid games Gi that successively changes the game for A from b = 1 (all public keys generated
using KGen) to b = 0 (all public keys sampled uniformly): In game Gi, the first i many public keys
in pk are sampled using KGen, and the last n− i many are sampled uniformly at random from PK.
Using the triangle inequality yields

AdvPKUn

KEM (A) =

∣∣∣∣∣
n−1∑
i=0

Pr[GA
i ⇒ 1]− Pr[GA

i+1 ⇒ 1]

∣∣∣∣∣
≤

n−1∑
i=0

∣∣Pr[GA
i ⇒ 1]− Pr[GA

i+1 ⇒ 1]
∣∣ .

We now give single-user PKU adversaries Bi to upper bound the summands∣∣Pr[GA
i ⇒ 1]− Pr[GA

i+1 ⇒ 1]
∣∣: Bi receives a single public key pk∗ from its PKU challenger.

Bi will use its challenge input to simulate either Gi or Gi+1: Bi generates a vector of n many public
keys pk by using random sampling from PK for the first i − 1 many, inserting its own challenge
public key pk∗ at the i-th position, and using KGen for the positions i + 1 to n. When A outputs its
guess to Bi, Bi forwards the guess to its own challenger. Since Bi perfectly simulates Gi if its own
challenge bit is 1, and Gi+1 if its own challenge bit is 0, we have∣∣Pr[GA

i ⇒ 1]− Pr[GA
i+1 ⇒ 1]

∣∣ ≤ AdvPKU
KEM(Bi) .

Upper bounding
∣∣Pr[GA

i ⇒ 1]− Pr[GA
i+1 ⇒ 1]

∣∣ accordingly yields

n−1∑
i=0

∣∣Pr[GA
i ⇒ 1]− Pr[GA

i+1 ⇒ 1]
∣∣ ≤ n−1∑

i=0

∣∣∣AdvPKU
KEM(Bi)

∣∣∣ = n ·AdvPKU
KEM(B) ,

where B stems from folding the adversaries Bji into a single one. The running time of B is about
that of A.

ut

3 The Protocol OCAKE

We describe a 3-message password-authenticated key exchange (PAKE) protocol based on an ideal
cipher IC and an implicitly-rejecting key encapsulation mechanism KEM in Figure 5. The protocol
achieves mutual authentication and AKE security according to the BPR model, which we prove
in Section 5. Two parties, the initiator (I) and the responder (R), share a common password pw
and proceed in three phases. First, I will generate a KEM key pair, encrypt the public key using
the password, and send the encrypted public key apk to R. After receipt, R uses the password to
recover the public key, then computes an encapsulation c and pre-key K. As response, R sends the
encapsulation c and a responder tag tag1 to I. On receipt, I decapsulates the ciphertext to obtain
a pre-key K ′ and compares the received tag to the one it derives from its own state. If the tags
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Initiator I (Client) OCAKE Protocol Responder R (Server)
Transmit Encrypted

Public Key
kpw ← KDF(pw) kpw ← KDF(pw)
(pk, sk)←$ KGen
apk ← BC.enc(kpw, pk) apk

−−−−−−−−−→
pk′ ← BC.dec(kpw, apk)

Establish Session
Pre-Key

K ′ ← Decap(sk, c) c←−−−−−−−−−− (c, K)←$ Encap(pk′)
tag1←−−−−−−−−−

tag1 ← H(pw, apk, pk′, c, K, ”r”)
tag2 ← H(pw, apk, pk, c, K ′, ”i”) tag2−−−−−−−−−→

Key Confirmation,
Key Derivation

tag′
1 ← H(pw, apk, pk, c, K ′, ”r”) tag′

2 ← H(pw, apk, pk′, c, K, ”i”)
if tag′

1 = tag1 if tag′
2 = tag2

SK ← KDF′(tag1, K ′) SK ′ ← KDF′(tag1, K)
output SK and accept output SK ′ and accept

terminate terminate

Fig. 5: The OCAKE protocol, using a key encapsulation mechanism KEM = (KGen, Encap, Decap)
and a block cipher BC = (BC.enc, BC.dec) that is modeled as an ideal cipher in the proof. Messages
c and tag1 are part of the same round, making this a three-round protocol. The second tag is used to
extend the protocol to achieve mutual authentication and is not needed for our security definition.

match, I outputs a session key SK derived from the pre-key. For key confirmation, I also computes
an initiator tag and sends it to R. The received tag is checked by R against its own state and if it
matches, R outputs a session key SK ′ derived from its pre-key. Under the correctness of KEM, both
parties only output a session key if and only if both parties used the same password, in which case
the two session keys SK and SK ′ are identical.
Instantiating KEM and IC. To instantiate the protocol, it is necessary select a KEM that fulfills
the security requirements in section Section 2. Several post-quantum secure KEMs have recently been
standardized by government standardization agencies such as NIST, BSI and ANSSI. Table Table 1
shows an overview of KEMs and references to the relevant security proofs. This list is non-exhaustive,
but includes schemes currently considered in these standardization efforts. Since PKU is less of a
standard notion, we give a more detailed description.

CRYSTALS-Kyber Beguinet et al [BCP+23] point out that PKU reduces directly to the Deci-
sional (D)-MLWE assumption.

Frodo-KEM in analogous argument as for CRYSTALS-Kyber, PKU reduces directly to the Deci-
sional Learning with Errors (D-LWE) assumption.

Classic McEliece Key generation returns a public key (ek = T ) where T is a Goppa code chosen
uniformly at random from the set, provided that the choice of polynomial α is uniform.

BIKE PKU is equivalent to the hardness of QC-MDPC-McEliece ([ABB+22] Table 2).
HQC PKU reduces tightly to the decisional 2-WCSD Problem. Distinguishing (h, s = x1 + h · x2)

from random is equivalent to distinguishing (H, H ·[x1, x2]>) from random since h and H uniquely
and efficiently identify each other and rot(h)× x>

2 = h · x2.
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Table 1: An overview of PQ KEMs and their relevant properties. Note that ATK-CCA security
implies ATK-PCA security directly. A more detailed overview is given by K. Xagawa [Xag21].

KEM IND-CPA ANO-PCA PKU
CRYSTALS-Kyber [BDK+17] [MX23] [BCP+23] as fuzziness
Frodo-KEM [NAB+20] [GMP21] [BCP+23] argument applies
Classic McEliece [ABC+20] [Xag21]6 this work
BIKE [ABB+20] [Xag21] [ABB+22]
HQC [AAB+20] [Xag21] this work

Instantiating the Ideal cipher As discussed by Beguinet et al [BCP+23], instantiation of the ideal
cipher requires an appropriate choice of encoding of public keys. Where the ideal cipher operates on
the set PK, the block cipher will in general operate on bitstrings of fixed length. Critically, the proof
relies on the assumption that decryption outputs are indistinguishable from honestly generated public
keys. Public-key encodings that include checksums or other structure will not fulfill this property
directly. However, as discussed by Beguinet et al., it is possible to create an encoding from the public
key space to the block cipher domain, provided that the sizes of domains are appropriately chosen,
with negligible distinguishing advantage.
Implementation and performance analysis. To assess the practicality of OCAKE, we provide
a generic implementation framework 7 written in C that compatible with all mentioned KEM, pro-
viding crypto-agility. We present benchmarking for the execution time in a linux-based environment
and an embedded one. On the other hand, we present benchmarking values for the execution time of
the protocol in two settings: a linux-based environment and an embedded one. For the linux-based
environment, the benchmarks were obtained on an Intel(R) Core(TM) i7-8565U CPU @ 1.80GHz
running Ubuntu 22.04.3 LTS Jammy. Speed is measured in the form of cpu clock cycles. The number
of clock cycles was acquired using the clock() function in time.h, and are then converted to millisec-
onds. All binaries for the linux-based speed benchmark are compiled using gcc version 11.4.0 (Arm
GNU Toolchain 10.3.1) at optimization level 0. For the embedded environment, all benchmarks were
obtained on the STM32 NUCLEO-L4R5ZI development board. Speed is also measured in the form of
cpu clock cycles, and all acquired values are averaged over 100 executions of the protocol. Execution
times in seconds are calculated from the number of cpu cycles and the board’s default cpu frequency.
All binaries for speed benchmarks running on the board are compiled using arm-none-eabi-gcc (Arm
GNU Toolchain 10.3.1) at optimization level 2. Currently, we provide benchmarks with various pa-
rameter choices for Kyber, SABER, FrodoKEM, BIKE, and Classic McEliece (only linux-based)
using KEM implementations from the PQClean and the pqm4 projects, and using AES and SHAKE
to instantiate BC and KDF respectively, as shown in Tab. 2 and Tab. 3. As the concurrent works do
not provide any implementations, a comparison to similar constructions is currently not possible.

4 Security Model

Our security analysis is based on the BPR model for authenticated key exchange [BPR00]: security
of a protocol Π is modeled using a security experiment in which the attacker interacts with oracles
that represent honest parties (Execute and Send) as well as oracles that represent leakage of secret
material (Reveal and Corrupt), and wins if it can distinguish an established session key from
random. The involved oracles are described in more detail in Fig. 7. To exclude trivial attacks from
7 Link blinded for review
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consideration, [BPR00] define a freshness condition (Definition 8 below) that permits revealing a
key on one side, and then testing the other (partnered) side, where partnered is defined as follows:

Definition 7 (Partnering). Two instances (P, i), (P ′, j) are partnered iff both have reached an
accept instruction with the same transcript and session key.

Intuitively, ‘unfreshness’ expresses that the adversary may have learned the to-be-tested session’s key
SK in a trivial way, i.e., by having interacted with the oracles revealing secret information in a way
such that SK becomes trivially derivable regardless of the protocol’s nature. Concretely, the cases
we cover in our freshness definition below are a), simply requesting the key from the Reveal oracle,
and b), learning a password pw via Corrupt and then actively interfering with the test session, e.g.,
using pw to manipulate the peer into using a session key of the adversary’s choosing.

Definition 8 (Freshness with Forward Secrecy). Suppose that the adversary made exactly one
Test query, and it was to party P and instance i. We say session i of party P is unfresh if there
was a Reveal query to instance (P, i) or the instance (P ′, j) that it is partnered with. We also say
the session is unfresh if both the following conditions hold:

– Before the Test query, there was a Corrupt query on the test session’s holder P or its partnered
peer P ′.

– One of the messages sent to P concerning the test session was manipulated by the adversary,
i.e., there was a Send(P, i) query.

The session (P, i) is only considered fresh if neither of these conditions are met.

Experiment ExpBPR
Π (A)

16 b
unif←−−−{0, 1}

17 b′ ← AOb(P)
18 return Jb = b′K

Fig. 6: The BPR security game for active adversaries. Ob = indicates the collection of oracles
{Execute, KDF, H, KDF’, IC.enc, IC.dec, Send, Reveal, Corrupt,Testb}. Here, P is the party set.

Definition 9 (Key indistinguishability of PAKE). Let Π be a PAKE protocol. We say that
an adversary A, run in experiment ExpBPR

Π , wins if it correctly guesses the bit according to which the
test query was defined and if the Test query was issued for a party (P, i) that has terminated and is
fresh (see Definition 8). We define the advantage of A against a PAKE protocol Π as

AdvBPR
Π (A) := |Pr[ExpBPR

Π (A)⇒ 1]− 1/2| .

Our modification of OCAKE uses key confirmation tags in both directions. While only the responder
tag actually is needed for our security proof, we additionally include an initiator tag – following
the ’add client-to-server authentication’ (AddCSA) paradigm [BPR00] – to achieve explicit mutual
authentication.

Definition 10 (Explicit Mutual Authentication). A protocol achieves explicit mutual authen-
tication if parties accept if and only if there exists a partnered party that accepts with the same
output.
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5 Security of OCAKE

Our main result is Theorem 3 below which relates forward security of OCAKE to security of the
used KEM, in the combined Random Oracle (RO) and Ideal Cipher (IC) model. During its proof,
we consider an adversary playing the BPR security game for our protocol OCAKE.

Theorem 3 (Tight security of OCAKE in the combined RO and IC model from multi-
user security of KEM). Let KEM be a key encapsulation mechanism that is (1 − δ)-correct, let
KDF, KDF’, and H be modeled as random oracles with domains Kpw and T , BC be modeled as an
ideal cipher, and let A be a BPR adversary against OCAKE[KEM, KDF, KDF′, H, BC], issuing at most
na many Send queries (i.e. active attacks), np many Execute queries (number of transcripts the
adversary can see), qIC.dec many decryption queries to the ideal cipher, qIC many queries to the ideal
cipher in total (encryption or decryption), and qRO many queries to its respective random oracles.
Let ns := na + np be the total number of sessions. We denote the cardinality of a set S as |S|.
Then there exist a multi-user-IND-CPA adversary BIND, a multi-user-ANO-PCA adversary BANO and
a multi-user-PKU adversary BPKU against KEM such that

AdvBPR
OCAKE(A) ≤ na

|D|
+ AdvPKU(qIC.dec+ns)

KEM (BPKU) + 2 ·AdvANO-PCA(qIC.dec+ns,na+1)
KEM (BANO)

+ 2 ·AdvIND-CPA(ns,na+1)
KEM (BIND) + 3 · q2

IC

2 · |PK| + 2 · ns · δ

+ qRO · ns ·
(

2
|SK|

+ 2
|K|

)
+ q2

RO ·
(

1
2 · |T | + 1

2 · |Kpw|

)
and the running time of BIND, BANO, and BPKU is about that of A.

Intuitively, the proof of Theorem 3 reflects three security goals. We show that (SG1) the adversary
can test at most one password per session with which it actively interferes, (SG2) honest protocol
runs do not leak a significant amount of information on the password, and (SG3) the session key
looks independent of both session transcript and password to the adversary unless it manages to
attack the underlying KEM. Since we achieve forward secrecy, goal (SG3) is also achieved for sessions
where the adversary knows the password, as long as the session is not actively attacked. 8 Pseudo-
code for the BPR oracles is shown in Figure 8. Amongst the other oracles, Fig. 8 sketches the Sendi

oracles, where i indicates the flow number to separate the different stages of the protocol. We make
the convention that oracle Send will only proceed if it is in the correct state for the received message:
for example, if an instance receives a ciphertext c without having received a flow-0 message that
caused it to generate a key pair, it will not respond. As shown in Figure 8, we at first will also model
the Execute oracle using the Send oracle. A can query the Test oracle exactly once, for a party and
instance fulfilling the freshness definition.
High-level overview of proof. In the security proof, we argue that for every actively manipulated
session, we can uniquely determine which password was tested. During that argument, we need to
exclude the bad-case that protocol messages could stem from multiple passwords due to collisions.
Game hops G0 to G5 aim at eliminating this bad-case. These game hops follow standard PAKE
techniques and have been omitted due to page constraints. They are shown in full detail in the full
version of the paper and in the appendix.
Then, we address security goals SG2 and SG3 by eliminating leakage on the password and the session
key with game hops G9 to G11. Game hops G6 to G8 are preparation for these changes.
8 We use these intuitive security goals to structure the proof, however the only formal security goal is

indistinguishability of session keys.
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Query Return Value Description

Execute(P, i, P ′, j) (apk, c, tag1, tag2) Passive attack: Return transcript of an honest protocol execution
between parties P and P ′, using the ith/jth session of P /P ′.

Send(P, i, msg, flow) msg′ Active attack: Send message msg to the oracle representing honest
party P , causing it to proceed depending on its state. Flow indicator
enumerates the messages in a run of the protocol and improves
readability of the oracle.

Reveal(P, i) SK[P, i]/⊥ Session key leakage: Return session key SK of (P, i) iff (P, i) termi-
nated, else ⊥; marks this instance and its matching instance "un-
fresh".

Corrupt(P, PWD′) PWD[P, :] Password leakage or overwrite: Either return dictionary of pass-
words PWD[P, :] held by party P , or allow adversary to overwrite
password dictionary with PWD’[P, :].

Testb(P, i) SK[P, i]/SK$ Session key challenge: Attack ith session of party P . Only for fresh,
accepting instances. Returns either real or random session key de-
pending on challenge bit b.

KDF(pw) kpw Random oracle, input password pw ∈ PWD, output Ideal Cipher
key kpw.

H(msg) tag Random oracle, input message msg, output tag ∈ T .

KDF′(msg) SK Random oracle, input message msg, output session key SK ∈ SK.

IC.enc(k, m) c Ideal cipher encryption on input (key, message).

IC.dec(k, c) m Ideal cipher decryption on input (key, ciphertext).

Fig. 7: Overview of the PAKE adversary’s oracles provided by the security game. Top part (above
double midrule): oracles present in the BPR model. Bottom part: Random oracles and ideal cipher
oracles to which the attacker additionally has access to when attacking the OCAKE protocol.

Change Reasoning Loss
G1 Prevent KGen collisions KGen entropy n2

s · ηKGen

G2 Prevent KDF collisions Search Bound q2
KDF

2 · |Kpw|

G3 IC lazy sampling w/ abort Search Bound q2
IC

2 · |PK|

G4 Prevent IC collisions Search Bound q2
IC

|PK|

G5 Prevent resp. tag collision Search Bound q2
H

2 · |T |
G6 Sample IC using KGen pk uniformity (qIC.dec + ns)-PKU
G7 Abort on corr pw Password Guessing na

|D|
+ ∆ Pr[corrPW]

G8 Honest c: Replace Decap Correctness ns · δ
by responder’s pre-key

G9 Randomize public-key pk Anonymity (qIC.dec + ns, na + 1)-ANO-PCA
G10 Randomize pre-key K Indistinguishability (ns, na + 1)-IND-CPA
G11 Randomize tags tag1, tag2 Random Oracle qH · ns

|K|
G12 Randomize session key SK Random Oracle qKDF′ · ns

|SK|

Fig. 9: Overview of all game changes and their associated loss. ∆ Pr[corrPW] is equal to the sum of
all following game hops.
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Initialisation
01 for (P, P ′) ∈ P × P
02 pw ←$ PW()
03 PWD[{P, P ′}] set←−−− pw

Execute(P, i, P ′, j)

04 apk ← Send0(P, i,⊥)
05 c, tag1 ← Send1(P ′, j, apk)
06 tag2 ← Send2(P, i, (c, tag1))
07 Send3(P ′, j, tag2)
08 MANIP[{P,:}]← false
09 return (apk, c, tag2, tag1)

Corrupt(P, PWD’)
10 PWDP ← PWD[{P, :}]
11 CRPT[{P,:}]← true
12 PWD[{P, :}] ←PWD’[{P, :}]
13 return PWDP

Reveal(P, i)
14 RVL[(P, i)]← true
15 return SK[(P, i)]

Testb(P, i)
16 SK0 ← K[(P, i)]
17 SK1

unif←−−−SK
18 if (CRPT[{P,P’}] and
MANIP[(P, i)])
19 or if (RVL[(P, i)] or RVL[(P ′, j)])
20 or if (K[(P, i)] =⊥): return ⊥
21 else: return SKb

Send0(P, i, msg)
22 MANIP[(P, i)]← true
23 kpw ← KDF(pw)
24 (pk, sk)←$ KGen
25 apk ← IC.enc(kpw, pk)
26 return apk

Send1(P, i, msg)
27 MANIP[(P, i)]← true
28 apk

parse←−−−− msg
29 kpw ← KDF(pw)
30 pk′ ← IC.dec(kpw, apk)
31 (c, K)←$ Encap(pk′)
32 tag1 ← H(pw, apk, pk′, c, K, ”r”)
33 return (c, tag1)

Send2(P, i, msg)
34 MANIP[(P, i)]← true
35 c, tag1

parse←−−−− msg
36 K ′ ← Decap(sk, c)
37 if tag1 = H(pw, apk, pk, c, K ′, ”r”):
38 tag2 ← H(pw, apk, pk, c, K ′, ”i”)
39 SK ← KDF′(tag1, K ′)
40 K[(P,i)] set←−−− SK
41 return tag2
42 else: return ⊥

Send3(P, i, msg)
43 MANIP[(P, i)]← true
44 tag2

parse←−−−− msg
45 if tag2 = H(pw, apk, pk′, c, K, ”i”):
46 SK ← KDF′(tag1, K)
47 K[(P,i)] set←−−− SK

Fig. 8: The oracles in the security game for OCAKE. PWD is the dictionary of the parties’ passwords
and CRPT, MANIP and RVL indicate the corruption status of a session. Password generation in
the initialization phase (Initialization) is modeled using the long-lived key generator PW .

5.1 Original Security Game

Original game G0. The first game is the original BPR security game, with oracles Send and
Execute answering queries according to the protocol (see Fig. 8).

AdvBPR
OCAKE(A) = |Pr[G0(A)⇒ 1]| − 1/2 .

In the following game hops, we will use the notational convention Advi := |Pr[Gi(A)⇒ 1]|.

5.2 Eliminating Collisions (SG1)

In a first step, we address collision events that would allow distinct passwords to result in the same
transcript.
Game G1: Abort on Collision in Key Generation. In this game, we abort whenever there
are at least two sessions where the same ephemeral key pair (pk, sk) is sampled by the KEM key
generation. Let ηKGenbe the collision probability of KGen. Since games G0 and G1 are identical
unless a collision occurs, we have that:

|Adv0 −Adv1| = Pr[KDFColl] ≤ n2
s · ηKGen

Game G2: Abort on Key Derivation Function Collisions. First we address collisions in the
key derivation function that would allow an adversary to use an ideal cipher key that corresponds
to multiple passwords. Intuitively, this could mean that an adversary could use this derived key and
succeed in an attack on a session even if a password that is not the correct one for this session is
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used. We now keep a list of all previous queries to the KDF oracle by recording all input-output pairs
(pw, kpw). Let KDFColl be the event there were two queries to the KDF oracle s.t. for two distinct
passwords pw 6= pw′, the derived keys are the same:

KDFColl : kpw = kpw′ for queries kpw ← KDF(pw), kpw′ ← KDF(pw′).

In game G1, we abort whenever this event occurs. Let qKDF be the number of queries to KDF. Since
KDF is modeled as a random oracle, we can bound the probability of this event using a standard colli-
sion bound over the number of queries and the size of the output space of KDF: Pr[KDFColl] ≤ q2

KDF
2·|Kpw| .

Since games G1 and G2 are identical unless KDFColl occurs, the distance of the adversary’s success
probability is bounded:

|Adv1 −Adv2| = Pr[KDFColl] ≤ q2
KDF

2 · |Kpw|

From now on, we can argue that any password-derived key kpw used in some protocol execution or
oracle query corresponds to at most one password.
Game G3: Simulate Ideal Cipher with abort. We now simulate a "modified" ideal cipher by
lazy sampling where instead of choosing an output from the set of remaining outputs, we sample
one from the entire domain and abort in case we sample a value that would violate the permutation
property. For every record, we also record the direction of the query that first created the record,
with a label "enc" for encryption and "dec" for decryption. We give a pseudocode description in
Figure Fig. 10. Sampling this way is done in preparation for games G6 and G9, where we replace
ideal cipher outputs with public keys generated using KGen. Game G3 is identical to G2 unless it

IC.enc(kpw, pk)
01 if ∃ record (kpw, pk, apk, ?):
02 return apk
03 else
04 apk′ unif←−−−PK
05 if ∃ record (kpw, ?, apk′, ?): abort
06 create record (kpw, pk, apk′, "enc")
07 return apk′

IC.dec(kpw, apk)
08 if ∃ record (kpw, pk, apk):
09 return pk
10 else
11 pk′ unif←−−−PK
12 if ∃ record (kpw, pk′, ?, ?): abort
13 create record (kpw, pk′, apk, "dec")
14 return pk′

Fig. 10: The simulated ideal cipher sampling with abort. The star (?) matches any value in that field.

aborts in line 5 of Figure Fig. 10. The probability of this occurring can be bounded using a standard
collision bound in the total number of ideal cipher queries qIC and the size of the public-key space
|PK| and therefore:

|Adv2 −Adv3| ≤
q2

IC

2 · |PK| .

Game G4: Abort on Ideal Cipher Collisions. Next we eliminate collisions in the ideal cipher.
Collisions can allow the adversary to test multiple passwords in a single session, violating security
goal (SG1). The probability of such collisions occurring is therefore directly relevant to the security
of the scheme. There are two types of collision for which this is the case. The first type of collision
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occurs if the adversary finds that some public key and authenticated public key are mapped to each
other under two distinct passwords. Formally, this would imply that there were two queries to the
ideal cipher such that for kpw 6= k′

pw

ICColl1 : (pk, apk) = (pk′, apk′) for two queries:(
either apk ← IC.enc(kpw, pk) or pk ← IC.dec(kpw, apk)

)
and

(
either(apk′ ← IC.enc(k′

pw, pk′) or pk′ ← IC.dec(k′
pw, apk′)

)
To give an example, an adversary sending an apk with this property to the Send oracle could test the
passwords corresponding to kpw and k′

pw in one query. The second type of collision occurs if there
were at least two ideal cipher encryption queries for distinct passwords and public keys that returned
the same authenticated public key. Knowledge of apk with this property allows the adversary to test
both passwords in one query.9 Formally, this would imply that there were two queries to the ideal
cipher such that for kpw 6= k′

pw:

ICColl2 : apk = apk′ for queries: apk ← IC.enc(kpw, pk), apk′ ← IC.enc(k′
pw, pk′)

In game G4, we abort whenever ICColl1 or ICColl2 occur. We define the event ICColl where

IC.encG3(kpw, pk)IC.encG4(kpw, pk)
01 if ∃ record (kpw, pk, apk, ?):
02 return apk
03 else
04 apk′ unif←−−−PK
05 if ∃ record (kpw, ?, apk′, ?): abort
06 if ∃ record (?, pk, apk′, ?): ICColl1
07 if ∃ record (?, ?, apk′, "enc"): ICColl2
08 create record (kpw, pk, apk′, "enc")
09 return apk′

IC.decG3(kpw, apk)IC.decG4(kpw, apk)
10 if ∃ record (kpw, pk, apk, ?):
11 return pk
12 else
13 pk′ unif←−−−PK
14 if ∃ record (kpw, pk′, ?, ?): abort
15 if ∃ record (?, pk′, apk, ?): ICColl1
16 create record (kpw, pk′, apk, "dec")
17 return pk′

Fig. 11: The simulated ideal cipher. In game G4, the game aborts whenever there is a collision in
the ideal cipher that would allow the adversary to test two passwords.

Pr[ICColl] := Pr[ICColl1∨ICColl2]. We argue that the probability of this event is upper-bounded
by a standard collision bound in the total number of ideal cipher queries (encryption and decryption)
qIC and the size of the ideal cipher domain |PK|, since it requires sampling. In game G4, we abort
whenever ICColl occurs. Since games G3 and G4 are identical unless ICColl occurs, it holds that

|Adv3 −Adv4| = Pr[ICColl] ≤ q2
IC

2 · |PK| + q2
IC.enc

2 · |PK| ≤
q2

IC

|PK|
.

9 To further elaborate, this would imply that for this apk, there are two keys kpw 6= kpw′ and therefore two
passwords pw 6= pw′ for which the adversary could know the secret keys associated with the public keys
pk 6= pk′. This would then allow the adversary to decrypt ciphertexts for both these public keys, to derive
two candidate session keys. Either one of them could then be compared to the session key output by the
Test query.
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IC.decG5(kpw, apk)IC.decG6(kpw, apk)
01 if ∃ record (kpw, pk, apk)
02 return pk
03 else
04 pk′ unif←−−−PK pk′ ←$ KGen
05 if ∃ record (kpw, pk′, ?): abort
06 if ∃ record (?, pk′, apk): abort
07 create record (kpw, pk′, apk)
08 return pk′

Fig. 12: The simulated ideal cipher now samples using the KEM’s key generation algorithm KGen
instead of uniformly at random from the domain PK.

Game G5: Abort on Responder Tag Collision. We now create a record for all queries to H by
the adversary and let ROColl be the event that the random oracle outputs the same value twice,
for different inputs, in which case game G5 aborts. The probability of ROColl occurring is bounded
using a standard collision bound given by the number of queries qH to H and the size of the tag space
T : Pr[ROColl] ≤ q2

H
2·|T | . Since games G4 and G5 are identical unless ROColl or occurs, it holds that:

|Adv4 −Adv5| = Pr[ROColl] ≤ q2
H

2 · |T | .

For every responder tag output by the H, there is now exactly one password that was used to create
it. Therefore, whenever a malicious responder adversary submits such a tag, this tag corresponds to
at most one password. At this point, we have proven that it is unlikely for an adversary to be able
to test multiple passwords in a single query, in accordance with security goal 1 (SG1).
Game G6: Sample Ideal Cipher Outputs Using KEM Key Generation. In game G6, we re-
place the way the simulated ideal cipher samples outputs. On decryption queries, instead of sampling
from the output domain uniformly at random, we use the key generation algorithm of KEM. This is
an auxiliary step we do in preparation for the separation of ciphertexts c and the password, which
we will do using the anonymity property of KEM in game G9. The change is depicted in Fig. 12. We
will now argue that an adversary that can distinguish game G5 from G6 can be used to attack the
n−public-key-uniformity (PKUn) property of the underlying KEM for n = qIC.dec + ns, by means of
a reduction BPKU. Let A be the adversary running either in game G5 or G6, issuing at most qIC.dec
many queries to the ideal cipher decryption oracle. We define adversary BPKU against the PKUn

experiment (defined in Fig. 2) as follows (for the sake of formality, we give the pseudo-code of BPKU

in Fig. 13 ):

BPKU receives a vector of challenge public keys pk of dimension n from its PKUn challenger, where
n := qIC.dec + ns. (Depending on the challenger’s bit bPKU, pk is generated using KGen or drawn
uniformly at random from PK.) BPKU samples an own challenge bit b′, runs A and answers A’s
queries to the Oracles H, IC.enc, KDF,KDF’, Reveal, Send, Execute, and Testb′ according to the
oracles in G5. When simulating ideal cipher decryption queries, BPKU embeds the challenge public
keys from its input vector pk: Upon a query to oracle IC.dec, instead of sampling an output like
game G5, BPKU uses the next value in pk. In case a query is repeated, it repeats the respective
public key. BPKU needs to produce at most qIC.dec + ns many outputs for IC.dec, one for each
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Adversary BPKU(pk)
01 pkIndex = 0

02 b
unif←−−−{0, 1}

03 b′ ← AOb(pk)
04 output b′

PKU := [b = b′]

IC.dec(kpw, apk)
05 if ∃ record (kpw, pk, apk):
06 return pk
07 else
08 pk∗ ← pk[pkIndex] //pk∗ is real or random
09 pkIndex += 1
10 if ∃ record (kpw, pk∗, ?): abort
11 if ∃ record (?, pk∗, apk): abort
12 create record (kpw, pk∗, apk)
13 return pk′

Fig. 13: PKU adversary BPKU, used to reason about the hop from game G5 to G6. Adversary A has
access to oracles O = {KDF, KDF’, IC.enc, IC.dec, Execute, Send, Reveal, Corrupt}.

direct query (qIC.dec), and one per protocol session (ns). When A outputs a guess b, BPKU checks if
b = b′ and in that case returns b′

PKU := 1 as its own output bit, otherwise, BPKU returns b′
PKU := 0.

BPKU perfectly simulates G6 when run with KGen-generated public keys, and G5 when run with
uniform public keys.Since BPKU uses at most n = qIC.dec +ns many public keys in total, the difference
between A’s winning probabilities in games G5 and G6 is upper bounded by the n-uniformity
advantage of BPKU against KEM:

|Adv5 −Adv6| ≤ AdvPKU(qIC.dec+ns)
KEM

5.3 Preparing to handle messages involving the correct password

To quantify the protocol’s leakage of the password, we randomize protocol messages in Section 5.4.
For these randomizations to go unnoticed, we need to rule out the case that the adversary sent
messages constructed using the correct password. Therefore, when the adversary makes a Send
query, we check if the correct password was used. If such a query occurs, there are three possible
reasons:

1. trivGuess A obtained the password by corrupting one of the parties involved in the session. We
raise the flag trivGuess for that session and continue the protocol without applying the changes
of the following games, i.e., without randomization. In cases where trivGuess is raised during a
session, in between subsequent Send queries to the same session, it is relevant for which message
this flag is first raised. We denote the event that trivGuess is raised for the flow-i message as
trivGuessi .

2. forward A forwards a message generated honestly by a previous query to the Send oracle.
Clearly, this event does not imply that the adversary has guessed the password or knows any of
the secret information associated with the message. Therefore, we do not count this as a correct
guess and continue by randomizing the outputs according to Section 5.4. The game detects the
event by keeping a record of all honestly generated transcripts.

3. corrPW A guessed the password. We call this event corrPW and abort the game whenever
it occurs. This way, no Test query can be issued to such a session, and we do not have to
randomize the protocol messages. Throughout the games, we will bound how the probability of
event corrPW changes, until we end up with a game in which we can bound the probability of
event corrPW in terms of the dictionary size.
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In conclusion, we will show that we can make the protocol messages independent of the password
for all sessions where neither 1. nor 3. occurred.10

Game G7: Abort on Correct Password. We consider two cases of correct password guesses:

Authenticated Public Key (apk) Consider the event where the adversary sends apk built from
the correct password and the respective message was indeed generated by the adversary, i.e.,
not honestly generated by a previous call to Send. We’ll call this event apkCorrPw. The game
detects this event using a record of honestly generated messages and the ideal cipher encryption
records. The changes in the previous games guarantee that the record is unique.

Responder Tag (tag1) Consider the event where the adversary sends a valid tag1 built from the
correct password and the message was indeed generated by the adversary. We’ll call this event
tagCorrPw. The game detects this as follows: When the adversary submits a responder tag to
the Send oracle, we look for records in H linking this tag to the input used to create it which
contains a password. By the changes made in previous games, there is at most one record for
this tag, uniquely determining the password that was used / tested in this query.

Combining the two cases and ruling out corruptions, we let corrPW be the event that either apkCorrPw
or tagCorrPw occur and that neither party in the session was corrupted. In case the adversary sub-
mits a tag2 (i.e. flow 3 message) formed using the correct password, one of two things has happened:
either the tag matches the responder’s transcript, and we are in the forwarding case, or it does not,
in which case the responder rejects. Therefore, we do not have to consider this event a correct guess.
We let game G7 abort whenever corrPW occurs. Since both games proceed identically unless corrPW
occurs, we have

|Adv6 −Adv7| = Pr[corrPWG7 ]

We track how the probability of event corrPW changes throughout the sequence of games, and finish
by bounding its probability in game G12.

5.4 Randomizing Protocol Messages (SG2)

Next we make the protocol messages independent of password and session key. We then argue that
the modified game is indistinguishable to the adversary, using anonymity and indistinguishability of
KEM. Using these computational assumptions, we can bound the amount of information leaked by
the protocol messages concerning the password. As stated above, the adversary could notice this if
they used the correct password to create a session but this case does not matter anymore since the
game then aborts, anyways. We only need to keep track of how the probability of corrPW changes,
which we can also bound in terms of the computational assumptions on KEM since corrPW is an
event that can be checked by a respective reduction.
Game G8: Do Not Decapsulate Honest Ciphertexts. In game G8, whenever there is a flow 2
query where the message was honestly generated by a matching session, we do not decapsulate to
obtain the pre-key. Instead, if the message was generated by a matching session, we use the pre-key
generated by that instance. Adversarially generated messages as well as ones that are forwarded from
a non-matching session are decapsulated as before. This step is done in preparation for the reductions
in the following two game hops. Games G7 and G8 are indistinguishable unless a correctness error
occurred in game G7 and therefore |Pr[corrPWG7 ]− Pr[corrPWG8 ]| = |Adv7 −Adv8| = ns · δ.
Game G9: Randomize Encapsulation Public Key. In the first randomization step, we make
the following change for all queries to the Send oracles where flag trivGuess is not raised: The public
10 There is a small subtlety here: in an edge-case discussed later, we make the change also when trivGuess

is raised in the middle of a session.
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Send2
G7

(P, i, msg) Send2
G8

(P, i, msg)

01 c, tag1
parse←−−−− msg

02 K ′ ← Decap(sk, c) if forward : K ′ ← responder’s key K
03 else: K ′ ← Decap(sk, c)
04 if tag1 = H(pw, apk, pk, c, K ′, ”r”):
05 tag2 ← H(pw, apk, pk, c, K ′, ”i”)
06 SK ← KDF′(tag1, K ′)
07 K[(P,i)] set←−−− SK
08 return tag2
09 else: return ⊥

Fig. 14: In game G8, whenever forward occurs (i.e., c is a matching responder’s honest ciphertext)
we use the responder’s pre-key K instead of decapsulating c.

Send1
G8

(P, i, msg) Send1
G9

(P, i, msg)

01 apk
parse←−−−− msg

02 kpw ← KDF(pw)
03 pk′ ← IC.dec(kpw, apk)
04 if PK[(kpw, apk)] 6=⊥: pk′

$ ← PK[(kpw, apk)]
else: (pk′

$, sk′
$)←$ KGen

PK[(kpw, apk)] set←−−− pk′
$

05 (c, K)←$ Encap(pk′) (c, K)←$ Encap(pk′
$)

06 tag1 ← H(pw, apk, pk′, c, K, ”r”)
07 return c, tag1

Fig. 15: Game G9: Randomizing public key in Send1 queries. The dictionary PK is a book-keeping
tool introduced in game G9 to ensure consistency of replays.

key used for the encapsulation is now generated independently of the password and the previously
sent session messages (see the pseudo-code in Figure 15). We will now argue that an adversary
noticing this change can be used to attack the multi-user anonymity property ANO-PCAn,qC

where
n := qIC.dec + ns and qC := na + 1. Intuitively, parameter n represents the number of public-keys in
the reduction and is equal to the total number of potential public keys for any ciphertext c output
by the Send oracles. Since the Send and Execute oracles query IC.dec, the number of sessions
has to be added to the number of IC.dec queries the adversary is allowed to make. Parameter qC

represents the maximal number of challenges issued for a given key pair, and is equal to the number
of times an adversary could replay an authenticated public key. We define adversary BANO

0 against
the ANO-PCAn,qC

experiment (defined in Fig. 4) as follows (for the sake of formality, we give the
pseudo-code of BANO

0 in Fig. 16):

BANO
0 receives two vectors of challenge public keys (pk0, pk1) of dimension n = qIC.dec + ns, and

can query its challenge oracle Chall, provided by its ANO-PCAn,qC
challenger, at most qC = na +1

many times. (Depending on the challenger’s bit, the challenges are generated using either pk0 or
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pk1.) BANO
0 samples an own challenge bit b′, runs A and answers A’s queries to the Oracles H,

IC.enc, KDF, KDF’, Send3, Reveal, and Testb′ according to the oracles in G8. Execute queries are
answered using Send as before. On ideal cipher decryption queries, BANO

0 embeds the challenge
public keys contained in pk0 (see Fig. 16). When A queries Send0, BANO

0 uses one of the challenge
public keys in pk0. Whenever A queries the Send1 oracle and trivGuess has not been raised, the
ideal cipher decryption oracle is evaluated on the apk value sent by the initiator and the password-
derived key of that session. Due to the abort conditions in game G3, there must exist j ∈ [n] s.t.
pk′ = pk0,j . Then, to answer the query, BANO

0 queries Chall(j) to receive a challenge (c∗, K∗),
outputs c∗ to A and uses K∗ as K (see Fig. 16). Ciphertexts returned by the Send1 oracle are
then either encapsulations under the public key pk0,j or under pk1,j , depending on the challenge
bit in the ANO-PCAn,qC

game. Note that since A can replay an apk value in each of the na many
sessions, the same public key will sometimes be used to obtain multiple challenges and qC = na +1.
Whenever A queries Send2, there is an edge-case to consider: In case the adversary causes the
trivGuess flag to be raised before Send2 is queried but after Send0 is, the adversary is able to

forge a tag for an arbitrary ciphertext under the challenge public key chosen in Send0. To learn
the pre-key needed to complete the simulation of the initiator, BANO

0 queries the 1-PCO oracle using
the pre-key K ′ matching the record of tag1. If that query returns true, the instance accepts and
with SK ← KDF′(tag1, K ′), and rejects if not. When A outputs a guess b, BANO

0 checks if b = b′. In
the case that corrPW did not occur and that b = b′, it returns 1 as its own output bit, otherwise,
it returns 0.

BANO
0 perfectly simulates G8 when run in the ANO-PCAn,qC

-game with challenge bit 0, G9 when
run with with challenge bit 1, and returns 1 if the adversary wins. Therefore, the difference between
A’s winning probabilities in games G8 and G9 is upper bounded by the respective ANO-PCAn,qC

advantage of BANO
0 against KEM:

|Adv8 −Adv9| ≤ AdvANO-PCA(qIC.dec+ns,na+1)
KEM (BANO

0 )

To keep track of the change in the probability of Pr[corrPW], we can slightly adapt the reduction
BANO

0 : our new reduction BANO
1 behaves exactly like BANO

0 except for its output: BANO
1 returns 1 if

corrPW occurred, and otherwise 0.

|Pr[corrPWG8 ]− Pr[corrPWG9 ]| ≤ AdvANO-PCA(qIC.dec+ns,na+1)
KEM (BANO

1 )

Game G10: Randomize Session Pre-Key. For all queries to the Send or Execute oracles where
flag trivGuess is not raised before the query, we now randomize the pre-key K that is used to derive
the final session key and the responder tag. For more details, see the pseudo-code in Figure 17. This
change makes the pre-key independent of the ciphertext and the password for all fresh sessions. We
now argue that an adversary noticing this change can be used to attack the indistinguishability prop-
erty of the KEM. We define adversary BIND

0 against the IND-CPAn,qC
experiment (defined in Fig. 3)

as follows (for the sake of formality, we give the pseudo-code of BIND
0 in Fig. 18):

BIND
0 receives a vector of challenge public keys pk, of dimension n = ns and can query its challenge

oracle Chall, provided by its IND-CPAn,qC
challenger, at most qC = na + 1 many times. BIND

0
samples a challenge bit b′, runs A and answers A’s queries to the Oracles H, IC.enc, KDF, Reveal,
Send0,Send2, and Testb′ according to the oracles in G9.
On Send1 queries, BIND

0 issues a Chall(j) query to its own challenger receive (c∗, K∗), where j is
the index of the public key which it uses to answer the query. If trivGuess has been raised, BIND

0
generates a key pair and continues the protocol honestly without inserting any challenges in this
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Adversary BANO
0 (pk0, pk1)

01 pkIndex = 0
02 b

unif←−−−{0, 1}
03 b′ ← AOb()
04 b′

ANO := [b = b′]
05 output b′

ANO

IC.dec(kpw, apk)
06 if ∃ record (kpw, pk, apk) return pk:
07 else
08 pk′ ← pk0[pkIndex]//pk′ ←$ KGen
09 pkIndex+= 1
10 if ∃ record (kpw, pk′, ?): abort
11 if ∃ record (?, pk′, apk): abort
12 create record (kpw, pk′, apk)
13 return pk′

Send0(P, i, msg)
14 if trivGuess0 : return Send0(P, i, msg)G7

15 kpw ← KDF(pw)
16 pk ← pk0[pkIndex]//pk′ ←$ KGen
17 pkIndex+= 1
18 apk ← IC.enckpw

(pk)//get challenge pk
19 return apk

Send1(P, i, msg)
20 if trivGuess0 or trivGuess1 : return Send1(P, i, msg)G7

21 apk
parse←−−−− msg

22 kpw ← KDF(pw)
23 pk′ ← IC.dec(kpw, apk)
24 find j s.t. pk′ = pk0[j]//IC returned challenge pk from pk0
25 (c, K)← Chall(j)//(c, K)← Encap(pk′)
26 tag1 ← H(pw, apk, pk′, c, K, ”r”)
27 return c, tag1

Send2(P, i, msg)
28 if trivGuess0 or trivGuess1 : return Send2(P, i, msg)G7

29 c, tag1
parse←−−−− msg

30 if forward : K ′ ← responder’s key K

31 else if ∃ record tag1 = H(pw, apk, pk, c, KA, ”r”): //event trivGuess2
32 find j s.t. pk = pk0[j]//see flow 0 to see this exists
33 if [1-PCO(j, c, KA)⇒ true]: K ′ ← KA
34 else: return ⊥
35 else: return ⊥
36 if tag1 = H(pw, apk, pk, c, K ′, ”r”):
37 tag2 ← H(pw, apk, pk, c, K ′, ”i”)
38 SK ← KDF′(tag1, K)
39 K[(P,i)] set←−−− SK
40 return tag2
41 else: return ⊥

Fig. 16: ANO-PCAn,qC
adversary BANO

0 , used to reason about the hop from game G8 to G9. The
collection O of A’s oracles is O = {KDF, KDF’, IC.enc, IC.dec, Execute, Send, Reveal, Corrupt}. In
case of corruption prior to each query, BANO

0 follows the protocol according to the oracles in game
G7, with the exception of the edge case shown in lines 31 to 35.
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Send1
G9

(P, i, msg) Send1
G10

(P, i, msg)

01 apk
parse←−−−− msg

02 kpw ← KDF(pw)
03 pk′ ← IC.dec(kpw, apk)
04 if PK[(kpw, apk)] 6=⊥:
05 pk′

$ ←PK[(kpw, apk)]
06 else:
07 (pk′

$, sk$)←$ KGen
08 PK[(kpw, apk)] set←−−− pk′

$
09 (c, K)←$ Encap(pk′

$)
10 K$

unif←−−−K
11 tag1 ← H(pw, apk, pk′, c, K, ”r”) tag1 ← H(pw, apk, pk′, c, K$, ”r”)
12 return c, tag1

Fig. 17: In game G10, the pre-key set after querying Send or Execute is sampled independently of
the password and the previous messages. Due to the change in game G8, this also randomizes the
initiator side and we also write K ′

$ ← K$.

session. If the same apk is submitted multiple times for sessions using the same password, the game
is kept consistent by re-using the respective public key. When A outputs a guess b, BIND

0 checks if
b = b′. In the case that b = b′, it returns 1 as its own output bit, otherwise, it returns 0.

BIND
0 perfectly simulates G9 when run in the IND-CPAns,na+1- game with challenge bit 0, G10 when

run with challenge bit 1, and returns 1 if the adversary wins. Therefore, the difference between A’s
winning probabilities in games G9 and G10 is upper bounded by the respective IND-CPAns,na+1
advantage of BIND

0 against KEM:

|Adv9 −Adv10| ≤ AdvIND-CPA(ns,na+1)
KEM (BIND

0 )

To keep track of the change in the probability of Pr[corrPW], we can adapt the reduction BIND
0

exactly like in the game-hop before by redefining the output bit to be 1 iff corrPW occurred and
|Pr[corrPWG9 ]−Pr[corrPWG10 ]| ≤ AdvIND-CPA(ns,na+1)

KEM (BIND
1 ). At this point, pre-key K (for sessions

between non-corrupted parties) is independent of the password and the protocol messages.
Game G11: Randomize Tags. To argue that the responder tag does not leak significant infor-
mation on the password or the session key, we replace it with a random value. The change for
Send queries is shown in Figure 19. Let TagQueried be the event that the adversary has queried
the random oracle H on input (pw, apk, pk′, c, K$, ”r”) or (pw, apk, pk, c, K ′

$, ”i”). We argue that
due to H being a random oracle, games G10 and G11 are indistinguishable to the adversary unless
TagQueried occurs. Therefore, if A can issue at most qH queries to the random oracle H, we have

Pr[corrPWG10 ]− Pr[corrPWG11 ] = |Adv10 −Adv11| ≤ Pr[TagQueried] ≤ qH · ns

|K|
.

5.5 Randomizing Session Key (SG3)

Game G12: Randomize Session Key. Finally, we replace the final session key for all Send and
Execute queries where flag trivGuess did not occur with one chosen independently at random
from the session key space SK, making them independent of previous messages and the password.
Let SKQueried be the event that the adversary has queried KDF’(tag1, K$). In game G12, we abort
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Adversary BIND
0

01 input pk
02 pkIndex = 0
03 b

unif←−−−{0, 1}
04 b′ ← AOb(pk)
05 b′

IND := [b = b′]
06 output b′

IND

Send1(P, i, msg)
07 kpw ← KDF(pw)
08 if ∃ record PK[(kpw, apk)]: //handle replays
09 pk′

$ ←PK[(kpw, apk)]
10 else:
11 pk′

$ ← pk[pkIndex]
12 pkIndex += 1
13 PK[(kpw, apk)] set←−−− pk′

$
14 find j s.t. pk′

$ = pkj

15 (c, K)← Chall(j)
16 tag1 ← H(pw, apk, pk′, c, K, ”r”)
17 return c, tag1

Fig. 18: IND-CPAn,qC
adversary BIND

0 , used to reason about the hop from game G9 to G10. The set
of oracles is O = {KDF, KDF’, IC.enc, IC.dec, Execute, Send, Reveal, Corrupt}.

whenever this occurs. We argue that due to KDF’ being a random oracle, games G11 and G12 are
indistinguishable to the adversary unless SKQueried occurs. Therefore, for an adversary that can
issue at most q′

KDF queries to the random oracle KDF’ and ns potential session keys, we have that

Pr[corrPWG11 ]− Pr[corrPWG12 ] = |Adv11 −Adv12| ≤ Pr[SKQueried] ≤ qKDF′ · ns

|SK|

After this change, the adversary’s Test query always responds with a uniformly random value
independent of the challenge bit. The winning probability of A in game G12 is therefore reduced to
that of random guessing:

Adv12 = 1
2 .

Bounding Correct Password Event. All protocol messages are now independent of the respective
password for all fresh sessions, meaning they do not give the adversary any information about those
passwords. However, the adversary can still attempt a password guess by picking a password from
the password space, using it in a Send query, and observing if the game aborts. We can bound
the probability of a correct guess using the number of send queries and the password distribution.
Assuming a uniform distribution on a password dictionary of size |D|, and A issues na many send
queries, we get the bound: Pr[corrPWG12 ] ≤ na

|D| . Collecting the probabilities, we can now bound the
probability of event corrPW occurring in game 7:

Pr[corrPWG7 ] ≤
11∑

i=7
|Pr[corrPWGi

]− Pr[corrPWGi+1 ]|+ Pr[corrPWG12 ]

≤ na

|D|
+ AdvANO-PCA(qIC.dec+ns,na+1)

KEM (BANO
1 ) + AdvIND-CPA(ns,na+1)

KEM (BIND
1 )

+ qH · ns

|K|
+ qKDF′ · ns

|SK|

To wrap up the proof, we now bound the BPR advantage of an adversary against OCAKE using the
triangle inequality. We also fold the two anonymity adversaries BANO

0 and BANO
1 into one (BANO) and
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Send1
G10

(P, i, msg)Send1
G11

(P, i, msg)

01 apk
parse←−−−− msg

02 kpw ← KDF(pw)
03 pk′ ← IC.dec(kpw, apk)
04 if PK[(kpw, apk)] 6=⊥:
05 pk′

$ ←PK[(kpw, apk)]
06 else:
07 (pk′

$, sk$)←$ KGen
08 PK[(kpw, apk)] set←−−− pk′

$
09 (c, K)←$ Encap(pk′

$)
10 K$

unif←−−−K
11 tag1 ← H(pw, apk, pk′, c, K$, ”r”)
12 tag1$

unif←−−−T
13 return c, tag1 return c, tag1$

Send2
G10

(P, i, msg)Send2
G11

(P, i, msg)

14 c, tag1
parse←−−−− msg

15 if forward :
16 K ′

$ ← responder’s key K$
17 tag′

1$ ← responder’s tag tag1$
18 else:
19 K ′

$ ← Decap(sk′, c)
20 tag1$ ← H(pw, apk, pk, c, K ′

$, ”r”)
21 if tag1 = H(pw, apk, pk, c, K ′

$, ”r”):
22 if tag1 = tag1

′
$:

23 tag2 ← H(pw, apk, pk, c, K ′
$, ”i”)

24 tag2$
unif←−−−T

25 SK ← KDF′(tag1, K ′
$)

26 SK ← KDF′(tag1$, K ′
$)

27 K[(P,i)] set←−−− SK
28 return tag2 return tag2$

Fig. 19: Randomizing tags. The domain of the random oracle H is T . The tag check for the initiator
tag is modified in an equivalent fashion.

the two indistinguishability adversaries BIND
0 and BIND

1 into BIND. We consolidate the random oracles
into RO.

AdvBPR
OCAKE(A) = |Pr[G0 ⇒ 1]︸ ︷︷ ︸

=Adv0

−1
2 | = |Adv0 −Adv1 + Adv1 − · · ·+ Adv12 −

1
2 |

= na

|D|
+ n2

s · ηKGen + q2
KDF

2 · |Kpw|
+ q2

IC

2 · |PK| + q2
IC

|PK|

+ q2
H

2 · |T | + 2 · qH · ns

|K|
+ AdvPKU(qIC.dec+ns)

KEM (BPKU)

+ AdvANO-PCA(qIC.dec+ns,na+1)
KEM (BANO

0 ) + AdvANO-PCA(qIC.dec+ns,na+1)
KEM (BANO

1 )

+ AdvIND-CPA(ns,na+1)
KEM (BIND

0 ) + AdvIND-CPA(ns,na+1)
KEM (BIND

1 )

+ 2 · ns · δ + 2 · qKDF′ · ns

|SK|

≤ na

|D|
+ AdvPKU(qIC.dec+ns)

KEM (BPKU) + 2 ·AdvANO-PCA(qIC.dec+ns,na+1)
KEM (BANO)

+ 2 ·AdvIND-CPA(ns,na+1)
KEM (BIND) + 3 · q2

IC

2 · |PK| + 2 · ns · δ + n2
s · ηKGen

+ qRO · ns ·
(

2
|SK|

+ 2
|K|

)
+ q2

RO ·
(

1
2 · |T | + 1

2 · |Kpw|

)
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Send2
G11

(P, i, msg)Send2
G12

(P, i, msg)

01 c, tag1
parse←−−−− msg

02 if forward :
03 K ′

$ ← responder’s key K$
04 tag′

1$ ← responder’s tag tag1$
05 else:
06 K ′

$ ← Decap(sk′, c)
07 tag1$ ← H(pw, apk, pk, c, K ′

$, ”r”)
08 . . .
09 if tag1 = tag1

′
$:

10 tag2$
unif←−−−T

11 SK ← KDF′(tag1, K ′
$) SK$

unif←−−−SK
12 K[(P,i)] set←−−− SK K[(P,i)] set←−−− SK$
13 return tag2$

Send3
G11

(P, i, msg)Send3
G12

(P, i, msg)

14 tag2
parse←−−−− msg

15 if forward :
16 tag′

2$ ← responder’s tag tag2$
17 else:
18 tag2$ ← H(pw, apk, pk, c, K ′

$, ”i”)
19 if tag2 = tag2

′
$

20 SK ← KDF′(tag1$, K$)
21 K[(P,i)] set←−−− SK K[(P, i)] set←−−− SK$

Fig. 20: In game G12, the final session key is randomized. To remain consistent, the initiator uses
the responder’s session key.
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Table 2: Execution times in ms on Intel(R) Core(TM) i7-8565U @1.80GHz
KEM KGen Decap Encap Hashing Full Protocol

kyber512 0.106 0.181 0.231 0.044 0.570
kyber768 0.181 0.276 0.280 0.060 0.798
kyber1024 0.273 0.370 0.323 0.075 1.048
lightsaber 0.266 0.369 0.321 0.078 1.041

saber 0.373 0.573 0.246 0.006 1.255
firesaber 0.636 0.901 0.293 0.068 1.899

bikel1 10.202 18.247 0.307 0.076 28.849
frodokem640shake 13.658 15.954 1.286 0.407 31.332
frodokem976shake 29.279 32.791 2.011 0.659 64.773
frodokem1344shake 53.376 62.659 2.776 0.920 119.768

mceliece348864f 1125.563 70.416 36.463 8.057 1240.570
mceliece460896f 4411.609 143.784 74.199 16.065 4645.813
mceliece6688128f 4406.359 143.925 74.011 15.941 4640.402
mceliece6960119f 8269.310 263.632 148.240 32.938 8714.488
mceliece8192128f 11216.323 334.980 191.893 41.960 11785.619

Table 3: Execution times in clock cycles on STM32-NUCLEO-L4R5ZI - *Last column in seconds
KEM Impl KGen Decap Encap Hashing Full Protocol Full Protocol*

kyber512 m4fspeed 745668.8 801732.8 611474.6 791643.0 3979406.0 0.9949
m4fstack 745289.5 803584.3 611474.5 791625.0 3979289.0 0.9948

kyber768 m4fspeed 1206150.1 1316398.2 832517.0 1131008.0 5778158.9 1.4445
m4fstack 1202797.1 1317317.0 832512.2 1131007.0 5770321.9 1.4426

kyber1024 m4fspeed 1914393.3 2035966.4 1053568.2 1536296.0 8155277.7 2.0388
m4fstack 1919265.7 2046946.9 1053567.4 1536296.0 8164499.4 2.0411

lightsaber m4fspeed 600635.0 724859.0 537659.8 701149.0 3546177.6 0.8865
m4fstack 672138.0 855452.0 537645.9 701125.0 3750526.8 0.9376

saber m4fspeed 1076086.0 1230242.0 721860.4 1017093.0 5257675.2 1.3144
m4fstack 1253891.0 1497496.0 721841.8 1017047.0 5712326.0 1.4281

firesaber m4fspeed 1646591.0 1829134.0 906052.8 1334116.0 7208626.4 1.8022
m4fstack 1978657.1 2283628.0 906052.0 1334064.0 7982843.9 1.9957

frodokem640shake clean 135141547.0 134830464.0 5686100.0 9133260.0 292227256.8 73.0568
bikel1 m4f 32084596.0 69879800.0 1035143.6 1514263.0 106074175.2 26.5185
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