
More Efficient Zero-Knowledge Protocols over Z2k

via Galois Rings

Fuchun Lin, Chaoping Xing, and Yizhou Yao

Shanghai Jiao Tong University
{linfuchun,xingcp,yaoyizhou0620}@sjtu.edu.cn

Abstract. A recent line of works on zero-knowledge (ZK) protocols
with a vector oblivious linear function evaluation (VOLE)-based offline
phase provides a new paradigm for scalable ZK protocols featuring fast
proving and small prover memory. Very recently, Baum et al. (Crypto’23)
proposed the VOLE-in-the-head technique, allowing such protocols to
become publicly verifiable. Many practically efficient protocols for proving
circuit satisfiability over any Galois field are implemented, while protocols
over rings Z2k are significantly lagging behind, with only a proof-of-
concept pioneering work called Appenzeller to Brie (CCS’21) and a first
proposal called MozZ2karella (Crypto’22). The ring Z232 or Z264 , though
highly important (it captures computation in real-life programming and
the computer architectures such as CPU words), presents non-trivial
difficulties because, for example, unlike Galois fields F2k , the fraction of
units in Z2k is 1/2. In this work, we first construct ZK protocols over a
high degree Galois ring extension of Z2k (fraction of units close to 1) and
then convert them to Z2k efficiently using amortization techniques. Our
results greatly change the landscape of ZK protocols over Z2k .
(1) We propose a competing ZK protocol that has many advantages over
the state-of-the-art MozZ2karella. We remove the undesirable dependence
of communication complexity on the security parameter, and achieve
communication complexity strictly linear in the circuit size. Furthermore,
our protocol has better concrete efficiency. For 40, 80 bits soundness
on circuits over Z232 and Z264 , we offer 1.15×–2.9× improvements in
communication.
(2) Inspired by the recently proposed interactive message authentication
code technique (Weng et al., CCS’22), we construct a constant round
ZK protocol over Z2k with sublinear (in the circuit size) communication
complexity, which was previously achieved only over fields.
(3) We show that the pseudorandom correlation generator approach can
be adapted to efficiently implement VOLE over Galois rings, with analysis
of the hardness of underlying LPN assumptions over Galois rings.
(4) We adapt the VOLE-in-the-head technique to make it work for Z2k ,
yielding publicly verifiable non-interactive ZK protocols over Z2k which
preserve most of the efficiency metrics of the VOLE-based ZK protocols.

1 Introduction

A proof system (of knowledge) for circuit satisfiability allows a prover to convince
a verifier that he holds a witness w for a given circuit C such that C(w) = 1.

The proof is zero-knowledge (ZK) if no information about w beyond the fact
that C(w) = 1 is revealed to the verifier. Typically, the circuit C can either be a
Boolean circuit that consists of AND gates and XOR gates, or an arithmetic circuit
that consists of Add gates and Mult gates over some ring R.

Over decades of studies, numerous ZK proof systems have been developed,
which have various properties and also diverse in efficiency metrics (round
complexity, communication complexity, prover/verifier computation complexity,
prover/verifier memory, etc.). We briefly review ZK proof systems that admit
practically efficient ZK protocols for circuit satisfiability, with special emphasis
on scalability to large circuits.

The MPC-in-the-head (MPCitH) paradigm [47], offers a publicly verifiable
solution to non-interactive ZK (NIZK), where the prover emulates in his head
the evaluation of a circuit with imaginary parties via a multi-party computation
(MPC) protocol and proves to the verifier that the circuit is honestly evalu-
ated. The bottleneck of MPCitH is either big proof size [47,40,24,50], or small
proof size but large prover time and memory [2]. The garbled circuit [65] ZK
(GCZK) [48,37,66,46] paradigm, where the verifier plays the role of garbler who
garbles the circuit, admits ZK protocols with small prover time and memory, but
large proof size. The interactive oracle proof (IOP)-based ZK protocols admit
zero-knowledge succinct non-interactive arguments of knowledge (zk-SNARK)
protocols [43,20,9,38,10,26,58]. Most zk-SNARKs achieve short proof size and
small verification time simultaneously assuming the existence of a setup phase.
However, many of them require that the prover should have sufficient computation
power, namely, large prover time and memory. We remark that very recently,
there is a line of works [12,14,62,55,13,42] focusing on zk-SNARKs with linear
prover time1, as prover time is a bottleneck for large circuits. To our best knowl-
edge, succinctness for both proof size and verification time can only be achieved
when R is a finite field of size Ω(|C|) [14,62,42], and succinct proof size can be
achieved for any finite field [55,13]. However, these constructions are not scalable,
due to large memory consumption.

VOLE-based ZK. The focus of this work is on a new paradigm of active research
usually described as vector oblivious linear function evaluation (VOLE)-based ZK.
The (random) VOLE is a primitive that allows the sender to obtain two (random)
vectors M,x and the receiver to obtain a (random) scalar ∆ and a (random)
vector K such that K = M+ x ·∆ over some ring R. In general, VOLE-based
ZK protocols have main advantages of scalable prover memory, linear prover
time, and linear proof size. At a high level, we view a ZK protocol as a special
case of secure two-party computation (2-PC), where only the prover (sender)
has private inputs. VOLE-based ZK protocols first authenticate the value on
each wire using a linearly homomorphic message authentication code (MAC) and
then prove to the verifier (receiver) that these authenticated values satisfy the
circuit topology. In more detail, VOLE-based ZK protocols have two phases, an

1 We say a ZK protocol has linear prover time, if the number of ring operations required
for the prover is linear in the circuit size.

2

offline phase that generates random VOLE-based MACs, and an online phase
that securely evaluates the circuit by consuming the previously generated MACs.

Boyle et al. [15,17] initiated the study of VOLE-based ZK, by introducing
a new cryptographic primitive, the pseudorandom correlation generator (PCG).
Generally, PCG is an extension of pseudorandom generator (PRG) from gen-
erating a batch of randomness to a batch of correlated randomness between
some parties. PCG offers a low-communication candidate for generating random
VOLE correlations in the offline phase. The authors of [16] presented a two-
round maliciously secure construction of PCG for VOLE, and showed that when
combining with a non-interactive online phase, a designated verifier NIZK for
circuit satisfiability over arbitrary field can be obtained. The subsequent work
Wolverine [60] constructed an efficient constant round online phase over any
field (communicates 4 field elements per multiplication gate), and an efficient
interactive PCG construction for VOLE. The work [32] introduced line point
zero knowledge (LPZK), which essentially admits a more efficient online phase
over a sufficiently large field (communicates 1 finite field element per multiplica-
tion gate). Concurrent to Wolverine and LPZK, Mac’n’Cheese [7] proposed two
different online phase protocols that have sublinear communication complexity
when used for disjunction. Follow-up works to the above include QuickSilver [63]
and then improved LPZK [31], AntMan [61]. QuickSilver combined the idea of
LPZK and Wolverine to achieve one field element per multiplication gate for
arbitrary field. Also QuickSilver proposed an online phase for proving low degree
polynomials with sublinear communication. Improved LPZK [31] reduced the
communication from 1 field element per multiplication gate to 1/2. AntMan [61]
proposed an online phase over arbitrary field with sublinear (in the circuit size)
communication, by employing a novel authentication technique. We refer to a
recent survey [6] for more details of VOLE-base ZK protocols over fields.

Very recently, Baum et al. [5] discovered an interesting way of combining
the VOLE-based ZK paradigm and the MPCitH ZK paradigm to achieve the
best of the two worlds: an NIZK protocol that inherits some favorable efficiency
features from the VOLE-based ZK paradigm, and also achieves public verifiability.
This approach was dubbed VOLE-in-the-head (VOLEitH), as it essentially keeps
the structure of a VOLE-based ZK protocol and replaces the PCG-style VOLE
protocol with an emulation through first reducing VOLE to (N − 1)-out-of-N
OT as done in [56] and then emulating the underlying OT using a commitment
scheme in an MPCitH fashion. This intermediate ZK protocol then is made
non-interactive and publicly verifiable via Fiat-Shamir transform, as long as the
original ZK is public-coin in the VOLE-hybrid model. Note that in PCG-style
VOLE protocols the sender of the underlying OT is playing the role of VOLE
receiver (hence the verifier), rendering it not compatible with the MPCitH fashion
emulation (see Section 5.2 for more details). The communication complexity of
the MPCitH ZK protocols is linear in the circuit size of the statement being
proved with usually quite large hidden constant. Recent efforts [45,49] on lowering
this hidden constant have allowed MPCitH to shine in settings where a small
prover run time is critical, and/or when proving statements of small-to-medium

3

sized circuits, where the linear proof size may not have a big impact. Compared
to these MPCitH ZK protocols, the VOLEitH protocols proposed in [5] have
an edge in offering simpler, smaller and faster solutions to practical application
scenarios such as signature schemes.
ZK over integer rings. As the models of computation in real-life programming
and the computer architectures (such as CPU words) are formulated as operations
over the ring Z232 or Z264 , ZK protocols designed for Z2k are more efficient when
implemented. However, the fact that half of the ring Z2k are zero divisors presents
non-trivial technical difficulties. This results in that, for instance, though the ring
Z2k has size 2k, its exceptional sets can only contain two elements. To our best
knowledge, there are only a few existing works that constructed ZK protocols
over Z2k .

Ganesh et al. [39] proposed Rinocchio by adapting Pinocchio [53], a SNARK
for field arithmetic, to work for ring arithmetic. To illustrate the Rinocchio proof
system, the authors focus on the ring Z2k and use a Galois extension that admits
large enough exceptional sets, yielding a designated verifier zk-SNARK with
succinct proof size, but not with succinct verification. However, Rinocchio inherits
from its predecessors Pinocchio (and most SNARK’s) the bottleneck of large
prover computation and memory, when scaling up to prove large statements.
Following the blueprint of VOLE-based ZK protocols over finite fields, and also
inspired by the idea of SPDZ2k [27], Baum et al. proposed two online constructions
in Appenzeller to Brie [3], and later a more efficient online protocol with a PCG
construction for VOLE over Z2k in MozZ2karella [4] 2. These constructions did
obtain highly scalable ZK protocols over Z2k , except that, due to the SPDZ2k

[27] techniques, their efficiency has an inherent undesirable dependency on the
security parameter. More recently, Braun et al. [18] adapted the recent efficient
MPCitH protocols [50,8,57,36] to work over the ring Z2k through a Galois ring
extension with suitable exceptional sets, yielding efficient publicly verifiable NIZK
protocols over Z2k . Same as their MPCitH predecessors for fields, these protocols
require heavy prover computation and memory.

In the light of the recent success of MozZ2karella [4] and given the width and
depth of the theoretical study on ZK protocols over finite fields, the current state
of protocols over rings Z2k leaves too much to be desired.

1.1 Our Contributions

On top of making sophisticated use of existing techniques for ZK over Z2k ,
we introduce more powerful tools, namely, the reverse multiplication friendly
embedding (RMFE) techniques [22,23,28,34], from the MPC literature into the
literature of VOLE-based ZK. We focus on optimizing the efficiency of VOLE-
based ZK over Z2k , and obtain the following results.

(1) Targeting the state-of-the-art ZK protocol over Z2k , MozZ2karella, we
propose a competing online phase protocol Πm,n,t

ZK , which is also public-coin.

2 Appenzeller to Brie adapted the online phases of Wolverine [60] and Mac’n’Cheese
[7]. MozZ2karella adapted the online phase of QuickSilver [63].

4

Our protocol has the main advantage that the efficiency is independent of the
security parameter (see Theorem 2). Thus, in all high security region applications,
our protocol has overwhelming advantage over MozZ2karella. We then compare
concrete performance between the two statistical security parameter choices
κ = 40 and κ = 80 over Z232 and Z264 in Table 1, assuming the circuit whose
satisfiability to be proved is a single instruction multiple data (SIMD) circuit.

Table 1: Concrete (online phase) comparison against MozZ2karella. “Comm.”
denotes the communication complexity (counted in bits) per multiplication gate,
and ‘R’ denotes the ring on which the protocol is running. For κ = 40, we use
(16, 45)-RMFEs, while for κ = 80, we use (27, 85)-RMFEs.3

k κ
MozZ2karella This work (Πm,n,t

ZK)

Comm. R Comm. R

32
40 179 Z2130 93 GR(232, 45)
80 302 Z2212 104 GR(232, 85)

64
40 211 Z2162 183 GR(264, 45)
80 334 Z2244 205 GR(264, 85)

(2) Targeting the ZK protocol over fields with sublinear communication
complexity, AntMan, we construct the first VOLE-based ZK protocol Πm,n,t

slZK over
Z2k with the same sublinear communication complexity. We remark that it seems
difficult to achieve similar efficiency by the MozZ2karella approach. For concrete
efficiency, similar to AntMan, we also require a large circuit size (estimated at
least 220) to allow the computational cost of setting up the new authentication
coding scheme to be averaged out. For 40-bit statistical security, we estimate
that Πm,n,t

slZK outperforms Πm,n,t
ZK when computing an SIMD circuit over Z232 for

more than 16× 12 copies of data 4.
(3) To complement our VOLE-based ZK protocols, we present efficient con-

structions for VOLE over Galois rings following the PCG paradigm. The first
primal-LPN based construction is constant-round, and has practical efficiency.
The second dual-LPN based construction is two-round at a cost of slightly larger
computation complexity, and it plays a crucial role in the non-interactive secure
computation setting [51]. We analyse the security of LPN over Galois rings. The
underlying LPN assumptions over GR(2k, d) are weaker than that of MozZ2karella.
As indicated in MozZ2karella, they have to carefully select LPN parameters to
mitigate the effect of a leakage that the adversary can learn c noise entries with
probability 1/2c.

(4) By utilizing the algebraic structure of a Galois ring extension to a new
level, we manage to adapt the VOLEitH techniques [5] to work for Z2k . These

3 We select RMFEs over binary field according to [22], and lift to Galois rings via the
approach in [28].

4 This estimation uses an estimation of the additively homomorphic encryption (AHE)
ciphertext size c < 8920 bits.

5

new publicly verifiable NIZK protocols over Z2k inherit the majority of the
desirable efficiency metrics from VOLE-based ZK protocols. Hence, they provide
simpler, faster and possibly smaller solutions compared to the recent MPCitH
ZK protocols over Z2k in [18].

1.2 Technical Overview

We sketch how we construct VOLE-based ZK protocols over Z2k . In a high
level, the first step is to adapt existing ZK protocols over Galois field to Galois
ring GR(2k, d). The adaption is straightforward, where we only need to “replace”
the field with GR(2k, d). We remark that VOLE-based ZK protocols over any
field [60,63,61] actually work on a sufficiently large field for security guarantee.
Similarly, for the security of Galois ring analogue protocols, the degree d of
GR(2k, d) is required to be sufficiently large accordingly.

The second step is to modify the above ZK protocols over GR(2k, d) to efficiently
prove statements over Z2k . As GR(2k, d) is a ring extension of Z2k , we can simply
view circuits over Z2k as circuits over GR(2k, d), and naively applying ZK protocols
over GR(2k, d). However, working on GR(2k, d) instead of Z2k already incurs d
times overhead (d needs to be linear in the security parameter), and for malicious
security, the prover needs to additionally prove that the witness w is over Z2k .
Our idea is to use RMFEs.

An RMFE over Z2k consists of two Z2k -linear maps, ϕ : Zm
2k → GR(2k, d),

and ψ : GR(2k, d) → Zm
2k , such that ψ(ϕ(x) · ϕ(y)) = x ∗ y, for any x,y ∈ Zm

2k ,
where m is some positive integer and ∗ denotes the entry-wise multiplication.
Intuitively, ϕ “packs” m multiplications over Z2k to one multiplication over
GR(2k, d), while ψ “unpacks” the product over GR(2k, d). Since ϕ, ψ are Z2k -linear
maps, m evaluations of a circuit C over Z2k can be simultaneously emulated by
GR(2k, d) operations, through applying ϕ, ψ iteratively. Existing works [22,23,1,34]
that deployed RMFEs in MPC, have spent great efforts to guarantee that ϕ, ψ
are applied honestly in order to achieve malicious security.

Observe that in the ZK setting, for proving circuit satisfiability, the prover
(of the ZK protocol over GR(2k, d)) can compute all wire values of the m copies
of circuit C over Z2k on his own, and invoke ϕ in parallel after all values are
computed. Intuitively, achieving malicious security in this setting can be done
more efficiently. Our main innovation in this part is a novel mechanism that
allows the prover to efficiently prove honest RMFE encoding to the verifier.
Our re-embedding technique and basic ZK. Let [x] denote that x ∈ GR(2k, d)
is authenticated by a linearly homomorphic MAC. In the ZK setting, the problem
can be reduced to proving that for a given [x], x belongs to the image of ϕ
(denoted by x ∈ Im(ϕ)). Recall that the offline phase produces MACs for random
values. Given [µ], µ $← GR(2k, d), [x] is obtained by the prover sending δ := x− µ
to the verifier ([x] := [µ]+δ by additive homomorphism). Let τ = ϕ◦ψ. According
to RMFE properties presented in Section 2, we observe that

x = µ+ δ =⇒ τ(x) = τ(µ+ δ) = τ(µ) + τ(δ),

6

and

x = τ(x) ⇐⇒ µ+ δ = τ(µ) + τ(δ).

Note that for any x ∈ GR(2k, d), τ(x) ∈ Im(ϕ) by definition, and assuming
ϕ(1) = 1, we have x ∈ Im(ϕ) ⇐⇒ x = τ(x) (Lemma 3). From the above
observations, if [τ(µ)] is also generated in the offline phase, then the two parties
can compute [τ(x)] := [τ(µ)]+τ(δ). In some sense, [x] is “re-embedded” into [τ(x)].
Thus, we name it the re-embedding technique. We formulate the ideal functionality
required for the offline phase as the re-embedding VOLE (embVOLE), and provide
an efficient construction from the sacrifice idea. It is worth highlighting that our
re-embedding technique also plays a crucial role in checking multiplications when
constructing our first ZK protocol Πm,n,t

ZK .

ZK with a sublinear online phase. For our second ZK protocol Πm,n,t
slZK with

sublinear communication complexity, we compile the above RMFE re-embedding
with an online phase adapted from AntMan [61]. Consider an SIMD circuit
with m = m1 ×m2 copies of data over Z2k . We first use RMFEs to map m1

copies of data over Z2k into one copy of data over GR(2k, d). Then we apply
a Galois ring analogue of the information-theoretic polynomial authentication
code (IT-PAC) amortisation technique proposed in AntMan that operates on a
batch of m2 elements in GR(2k, d). Our protocol has sublinear communication
complexity mainly due to IT-PACs, and the use of RMFEs incurs only a constant
(d/m1 > 1) communication overhead. Therefore, in practice we select (m1, d)-
RMFEs with d

m1
as small as possible (m2 as large as possible) under the premise

of GR(2k, d) being sufficiently large to satisfy the security requirement. At a high
level, an IT-PAC authenticates a polynomial, which is determined by m2 elements
in GR(2k, d) via Lagrange interpolation. Namely, an IT-PAC authenticates m2

elements simultaneously. Note that it seems difficult to obtain a Z2k+s analogue of
IT-PAC, on which MozZ2karella is working, as the maximum size of exceptional
sets of Z2k+s is only 2. Therefore, we are not aware of any approach to obtain
a sublinear ZK by combining MozZ2karella with IT-PACs. Tricks of reducing
computing a generic circuit to computing an SIMD circuit are proposed in [61]
that we postpone to the end of Section 3. We quickly point out some possible
disadvantages of the IT-PAC without dwelling on them. The interactive generation
of IT-PAC increases the computation complexity considerably and moreover it is
not public-coin.

Instantiations of VOLE over GR(2k, d). The online phases of our ZK protocols
require a single VOLE correlation of sufficiently large length. The similarity of
Galois fields and Galois rings makes it natural to seamlessly generalize different
VOLE protocols over Galois fields to VOLE protocols over Galois rings with
all their different features well-preserved. However, when adapting the SoftSpo-
kenOT [56]-style VOLE construction (which is crucial for applying VOLEitH),
the large Galois ring constitutes a bottleneck of computation efficiency. We
significantly reduce the computation by restricting the receiver’s input to be
sampled from its “subfield” and applying the repetition idea of [5].

7

2 Preliminaries

Notations. In this paper, bold letters (e.g., a,b) are used to denote vectors.
Besides, we use xi to denote the i-th component of the vector x. We use [a, b]
(or [a, b + 1) sometimes) to denote the set of integers in the range from a to
b, if a = 1, it is simplified by [b], which is not to be confused with the MAC
notation. We also use x[a : b] to denote the set {xi | i ∈ [a, b]}. We use x $← R
to denote that x is uniformly sampled from a ring R and denote the uniform
distribution over R by UR. For a map ϕ : R1 → R2, we naturally extend it to
be defined over vector space Rn

1 and matrix space Rm×n
1 . Let Im(ϕ) denote the

set {ϕ(x) | x ∈ R1} and Ker(ϕ) denote the set {x ∈ R1 | ϕ(x) = 0}.
Galois Rings. Let p be a prime, and k, d ≥ 1 be integers. Let f(X) ∈ Zpk [X]

be a monic polynomial of degree d such that f(X) := f(X) mod p is irreducible
over Fp. Denote the Galois ring over Zpk of degree d by GR(pk, d), which is a
ring extension Zpk [X]/(f(X)) of Zpk . The readers may refer to [59] for a friendly
exposition.

We emphasize that Galois rings have a special algebraic structure that,
GR(pk, d)/(p) ∼= Fpd , and every element a of GR(pk, d) can be uniquely written as
a0 + a1 · p+ . . .+ ak−1 · pk−1, where ai ∈ Fpd , i ∈ [0, k). Moreover, zero divisors
of GR(pk, d) are of the form a1 · p+ . . .+ ak−1 · pk−1, for all ai ∈ Fpd , i ∈ [k − 1].
Therefore, 1/pd fraction of elements are zero divisors in GR(pk, d), or equivalently,
(1− 1/pd) fraction of elements are invertible. For polynomials over Galois rings,
there is an upper bound on the number of roots.

Lemma 1 ([34]). A nonzero degree-r polynomial over GR(pk, d) has at most
rp(k−1)d roots.

Lemma 1 immediately implies that for any nonzero degree-r polynomial f(x)
over GR(pk, d), we have that Pr

[
f(α) = 0

∣∣∣α $← GR(pk, d)
]
≤ rp−d.

Reverse Multiplicative Friendly Embedding. Reverse Multiplicative Friendly
Embedding (RMFE) was first introduced by Cascudo et al. [22], which allows
packing multiple multiplications over a field Fq into one multiplication over an
extension field Fqd . It was further shown by Cramer et al. [28] that RMFEs over
finite fields can be lifted to Galois rings. Very recently, Escudero et al. [33] showed
that RMFEs can be extended to have larger multiplication capacity. We recall
the definition of RMFE, and then present some of its important properties.

Definition 1 (RMFE [28]). Let p be a prime, k, r,m, d ≥ 1 be integers. A
pair (ϕ, ψ) is called an (m, d)-RMFE over GR(pk, r) if ϕ : GR(pk, r)m → GR(pk, rd)
and ψ : GR(pk, rd)→ GR(pk, r)m are two GR(pk, r)-linear maps such that

x ∗ y = ψ
(
ϕ(x) · ϕ(y)

)
(1)

for all x,y ∈ GR(pk, r)m. Here ∗ denotes component-wise product of vectors.

8

By Proposition 2 of [33], if (ϕ, ψ) is an RMFE, then ϕ is injective while ψ is
surjective. Therefore, it is necessary for m less than or equal to d. The following
lemma shows the existence of RMFE with a constant ratio d

m .

Lemma 2 (Existence of RMFE [22,28]). There exists a family of (m, d)-
RMFEs over Galois ring GR(pk, r) with d = O(m).

Given an (m, d)-RMFE (ϕ, ψ), we can always assume that ϕ(1) = 1. First, we
show that ϕ(1) is invertible in GR(pk, rd) by contradiction. Assume ϕ(1) is a zero
divisor and hence pk−1 · ϕ(1) = 0. Due to the linearity of ϕ, we also have pk−1 ·
ϕ(1) = ϕ(pk−1 ·1). This implies that pk−1 ·1 is another preimage of 0, which leads
to a contradiction since ϕ is injective. Then, define ϕ′ : GR(pk, r)m → GR(pk, rd)
as ϕ′(a) := ϕ(a) · ϕ(1)−1 and ψ′ : GR(pk, rd)→ GR(pk, r)m as ψ′(b) := ψ(b · ϕ(1)).
It is straightforward to verify that (ϕ′, ψ′) is an (m, d)-RMFE with ϕ′(1) = 1.
From now on, we assume ϕ(1) = 1 without explicitly mentioning it.

Lemma 3. Let (ϕ, ψ) be an (m, d)-RMFE over Galois ring GR(pk, r), then
GR(pk, rd) = Im(ϕ)⊕Ker(ψ).

Proof. As ϕ is injective and ψ is surjective, ψ induces a bijection from the set
Im(ϕ) to GR(pk, r)m since ψ(ϕ(x)) = ψ(ϕ(x) · ϕ(1)) = x ∗ 1 = x. Together with
the fact that ψ : GR(pk, rd) → GR(pk, r)m is a GR(pk, r)-linear map, we have
GR(pk, rd) = Im(ϕ)⊕Ker(ψ). ⊓⊔

We also define τ = ϕ ◦ψ : GR(pk, rd)→ GR(pk, rd). As ϕ, ψ are Zpk linear, so is τ .
A simple observation shows that x ∈ Im(ϕ) if and only if τ(x) = x.

In this work, we mainly consider RMFEs with r = 1 and p = 2, i.e., a family
of (m, d)-RMFEs over Z2k . As shown in [22], such families of RMFEs exist with
limm→∞

d
m = 4.92.

VOLE and MAC. (Random) vector oblivious linear function evaluation (VOLE)
is a functionality that allows two parties PS , PR to obtain random correlated
values. In more detail, the sender PS obtains two vectors M,x, while the receiver
PR obtains a scalar ∆ and a vector K such that K = M+ x ·∆. We formalize
the ideal functionality of VOLE over Galois ring GR(2k, d) in Figure 1.

The above VOLE correlation can be viewed as Message Authentication Codes
(MACs) that authenticate x, denoted by [x]. We then call M the MAC tags, K
the local keys and ∆ the global key. It is easy to see that such MAC is linearly
homomorphic. Given authenticated values [x1], . . . , [xℓ] and public coefficients
c, c1, . . . , cℓ ∈ GR(pk, d), the two parties can locally compute [y] = c+

∑
i∈[ℓ] ci ·[xi]

by setting y = c+
∑

i∈[ℓ] ci ·xi,My =
∑

i∈[ℓ] ci ·Mxi , andKy = ∆·c+
∑

i∈[ℓ] ci ·Kxi .
In particular, we have [y] = [x] + (y− x). Then given [x] for a random x, the two
parties can obtain [y] by having PS send y − x to PR.

Security Model and Functionalities. We prove the security of our protocols
in the universal composability (UC) framework [21]. In particular, we consider
active adversary and static corruption. More details can be found in Appendix A.
The goal of this work is to design secure zero-knowledge protocols realizing
functionality Fm

ZK, which allows a prover to prove knowledge of m witnesses

9

Functionality FGR(2k,d)
VOLE

Init: Upon receiving (Init) from both parties, sample ∆ $← GR(2k, d) if PR is
honest, and receive ∆ ∈ GR(2k, d) from the adversary A otherwise. Store ∆ and
send it to PR. All further (Init) commands will be ignored.
Extend: Upon receiving (Extend, n) from both parties, proceed as follows:

1. If PR is honest, sample K
$← GR(2k, d)n. Otherwise receive K from A.

2. If PS is honest, sample x $← GR(2k, d)n and compute M := K−∆·x ∈ GR(2k, d)n.
Otherwise, receive x ∈ GR(2k, d)n and M ∈ GR(2k, d)n from A and then
recompute K := M+∆ · x.

3. Send (x,M) to PS and K to PR.

Fig. 1: Ideal functionality for VOLE over GR(2k, d).

satisfying the same circuit C. Details of Fm
ZK are in Figure 2. In particular, an

interactive ZK protocol is public-coin, if each message from the verifier sent to
the prover is a random string.

Functionality Fm
ZK

Upon receiving (prove, C,w(1), . . . ,w(m)) from a prover P and (verify, C) from a
verifier V, where the same circuit C is input by both parties, send (true) to V if
C(w(j)) = 1 for all j ∈ [m] and (false) otherwise.

Fig. 2: Functionality for zero-knowledge proofs for circuit satisfiability.

We also require some fundamental functionalities for our VOLE constructions.
The equality test functionality FEQ (see Figure 12, Appendix A.2) allows two
parties P and V to learn if their inputs are equal and reveals P ’s input to V . The
oblivious transfer functionality FOT (see Figure 13, Appendix A.2) receives a
single bit b from the receiver and two strings m0,m1 from the sender, and then
returns mb to the receiver.

3 Zero-Knowledge Protocols over Z2k

Inspired by the methodology of [34], where the authors constructed efficient
dishonest majority MPC over Z2k by first giving an MPC over GR(2k, d) and
then converting it to work over Z2k , we make use of RMFEs in the context of
VOLE-based ZK protocols, and develop novel, highly efficient techniques.

10

To obtain efficient zero-knowledge protocols over Z2k , we first introduce a
new functionality FGR(2k,d)

embVOLE and present a construction that UC-realizes it in
the FGR(2k,d)

VOLE -hybrid model in Section 3.1. In Section 3.2, we present a public-coin
ZK protocol over Z2k . In Section 3.3, we construct a ZK protocol over Z2k with
communication complexity sublinear in the circuit size. Both ZK constructions
are in the FGR(2k,d)

embVOLE-hybrid model.

3.1 Re-embedding VOLE over GR(2k, d)

Jumping ahead, to construct ZK protocols over Z2k , our first step is to construct
ZK protocols over GR(2k, d). Following the blueprint of ZK protocols over the
Galois fields, e.g., [60,32,63], the first step is quite straightforward. The key
observation is that the soundness error of these protocols is related to the fraction
of zero divisors of the underlying ring. For example, the ZK protocol over a large
field Fq in QuickSilver [63] has soundness error O(1/q). Therefore, realizing a
Galois ring GR(2k, d) analogue of QuickSilver induces soundness error O

(
1/2d

)
,

which can be set negligible by choosing a sufficiently large parameter d = Ω(κ).
Here, κ is the statistical security parameter.

The main obstacle of constructing ZK over Z2k lies in the second step, where
we need to do the conversion. A naive solution is to run the ZK protocol over
GR(2k, d) from the first step by treating each element in Z2k as an element in
GR(2k, d). However, this already incurs Ω(κ) overhead to achieve a negligible
soundness error, needless to say that, the prover is additionally required to prove
that his inputs (i.e., the witness) are over Z2k . The above solution essentially
uses the naive embedding Z2k ↪→ GR(2k, d), which can be viewed as an inefficient
RMFE over Z2k with the ratio d

m = d
1 = Ω(κ). Fortunately, there exist more

efficient (m, d)-RMFEs over Z2k [22] with an asymptotically constant ratio, which
are exactly the RMFEs that we will make use of to accomplish the conversion.

Let ϕ : Zm
2k → GR(2k, d) and ψ : GR(2k, d) → Zm

2k be an (m, d)-RMFE pair
over Z2k . Suppose the prover has m witnesses over Z2k , and he will use ϕ to
map them to one “witness” over GR(2k, d). However, there are two issues that we
have to overcome if we use such general and more efficient RMFEs for conversion.
The first one is that the prover is required to prove that his inputs are over
Im(ϕ), as opposed to Z2k in the naive embedding case. The second one is how to
guarantee honest circuit evaluation. Unlike the naive embedding that has infinite
multiplication capacity, (ϕ, ψ) only preserves one time multiplication inherently.

To solve the above issues, we propose a novel, highly efficient technique, the
re-embedding VOLE. We show how re-embedding VOLE solves the first issue,
and defer the solution to the second issue to Section 3.2. Our key observation is
that GR(2k, d) is the direct sum of Im(ϕ) and Ker(ψ) (Lemma 3), and the inputs
over Z2k one-to-one correspond to a vector over Im(ϕ). Therefore, it suffices to
find an efficient approach that removes the kernel part of [x], i.e., re-embed [x]
to [τ(x)]. A direct way is to reveal x− τ(x) to the receiver5, so that they can

5 This is the mistake that we made in the previous version of this paper.

11

Functionality FGR(2k,d)
embVOLE

FGR(2k,d)
embVOLE extends the existing VOLE functionality FGR(2k,d)

VOLE (Figure 1). Init and

Extend are identical to those in FGR(2k,d)
VOLE , respectively. Let (ϕ, ψ) be an (m, d)-

RMFE pair over Z2k , and τ := ϕ ◦ ψ.
Extend-pair: Upon receiving (Extend-pair, n) from both parties, proceed as
follows:

1. If PS is honest, sample x,M(1),M(2) $← GR(2k, d)n; otherwise, receive
x,M(1),M(2) ∈ GR(2k, d)n from A.

2. If PR is honest, compute K(1) := M(1) + ∆ · x,K(2) := M(2) + ∆ · τ(x) ∈
GR(2k, d)n; otherwise, receive K(1),K(2) ∈ GR(2k, d)n from A and recompute
M(1) := K(1) −∆ · x, M(2) := K(2) −∆ · τ(x).

3. Send (x,M(1),M(2)) to PS and (K(1),K(2)) to PR.

Fig. 3: Ideal functionality for re-embedding VOLE over GR(2k, d).

compute [τ(x)] := [x] − (x − τ(x)). However, this would leak information, as
typically x on intermediate wires might be the product of two elements of Im(ϕ).
To this end, we let them obtain random pairs of ([µ], [τ(µ)]), so that they can
compute [τ(x)] := [τ(µ)] + τ(δ), where δ := x − µ is revealed to the receiver.
Since µ is conjectured to be uniformly random, δ will not leak any information
about x. Through this way, [x] is “automatically” re-embeded into [τ(x)], as
desired. We call ([µ], [τ(µ)]) re-embedding pair MACs.

We define the re-embedding VOLE functionality FGR(2k,d)
embVOLE in Figure 3. To

construct a secure re-embedding VOLE protocol, the two parties generate n+s re-
embedding pair MACs and then sacrifice the extra s re-embedding pair MACs. The
sacrifice is done by taking s random Z2k -linear combinations of n re-embedding
pair MACs to obtain s equations, with each masked by an extra re-embedding
pair MAC. If any one of the n re-embedding pair MACs is not honestly generated,
the correctness check will fail, except with probability at most 2−s + 2−d, which
can be made negligible by setting s, d large enough (e.g., s = d = κ+ 1). We give
the protocol ΠGR(2k,d)

embVOLE in Figure 4, whose security is guaranteed by Theorem 1.
The proof is deferred to Appendix C.1.

Theorem 1. ΠGR(2k,d)
embVOLE UC-realizes FGR(2k,d)

embVOLE in the FGR(2k,d)
VOLE -hybrid model. In

particular, there exists a PPT simulator such that no PPT environment Z can
distinguish the real world execution from the ideal world simulation except with
advantage at most 2−s + 2−d.

To obtain n re-embedding pair MACs, our construction consumes a VOLE
correlation of length (2n+2s), and communicates (n+3s+1) Galois ring elements
and ns coefficients in Z2k , or equivalently, on average (1+(3s+1)/n+s/d) Galois

12

ring elements. As n is sufficiently large for most ZK applications, the overhead
for constructing a single re-embedding pair MAC is close to O(1) Galois ring
elements.

Protocol ΠGR(2k,d)
embVOLE

Init: Both parties send (Init) to FGR(2k,d)
VOLE , which returns ∆ ∈ GR(2k, d) to PR.

Extend: Both parties send (Extend, n) to FGR(2k,d)
VOLE , which returns M,x ∈

GR(2k, d)n to PS and K ∈ GR(2k, d)n to PR.
Extend-pair: To generate n authenticated re-embedding pairs, both parties
proceed as follows:

1. Construct:
(a) Both parties send (Extend, 2n + 2s) to FGR(2k,d)

VOLE . PS receives
M(1),M′,x,y ∈ GR(2k, d)n+s, and PR receives K(1),K′ ∈ GR(2k, d)n+s,
such that K(1) = M(1) + x · ∆, and K′ = M′ + y · ∆ hold. Thus, the
parties now obtain [xi], [yi], i ∈ [n+ s].

(b) PS computes η := τ(x)− y, then sends η ∈ GR(2k, d)n+s to PR.
(c) PS sets M(2) := M′, and PR sets K(2) := K′ + η ·∆. Note that K(2) =

M(2) + τ(x) ·∆ holds, so the parties now obtain [τ(xi)], i ∈ [n+ s].
2. Sacrifice:

(a) PR samples χ(1), ...,χ(s) $← Zn
2k , and sends them to PS .

(b) For i ∈ [s], PS computes ai = xn+i +
∑

j∈[n] χ
(i)
j · xj , bi = τ(xn+i) +∑

j∈[n] χ
(i)
j · τ(xj), M̂

(1)
i := M

(1)
xn+i +

∑
j∈[n] χ

(i)
j · M

(1)
xj , and M̂

(2)
i :=

M
(2)
xn+i +

∑
j∈[n] χ

(i)
j ·M

(2)
xj . Let M̂(1) = (M̂

(1)
1 , . . . , M̂

(1)
s), and M̂(2) =

(M̂
(2)
1 , . . . , M̂

(2)
s). Send a = (a1, . . . , as),b = (b1, . . . , bs) to PR.

(c) PR checks b = τ(a). If the check fails, PR aborts. Otherwise, PR

computes M̃
(1)
i := K

(1)
xn+i +

∑
j∈[n] χ

(i)
j · K

(1)
xj − ai · ∆, and M̃

(2)
i :=

K
(2)
xn+i +

∑
j∈[n] χ

(i)
j ·K

(2)
xj − bi ·∆ for i ∈ [s]. Let M̃(1) = (M̃

(1)
1 , . . . , M̃

(1)
s)

and M̃(2) = (M̃
(2)
1 , . . . , M̃

(2)
s).

(d) PS sends M̂(1), M̂(2) to PR. The latter checks whether M̂(1) = M̃(1), and
M̂(2) = M̃(2) and aborts if the check fails.

3. Output: Output ([xi], [τ(xi)]), for i ∈ [n].

Fig. 4: Protocol for authenticating re-embedding pairs over GR(2k, d) in the
FGR(2k,d)

VOLE -hybrid model.

3.2 Public-Coin Zero-Knowledge Protocol over Z2k

Equipped with our re-embedding VOLE technique and inspired by QuickSil-
ver [63], we construct a highly efficient public-coin ZK protocol over Z2k in
Figure 5.

13

Suppose the prover P and the verifier V have agreed on a circuit C over Z2k

with n inputs and t multiplication gates, and P has m witnesses w(1), . . . ,w(m) ∈
Zn
2k . By calling FGR(2k,d)

embVOLE, they can obtain n+ t re-embedding pair MACs for

µ
$← GR(2k, d)n and ν

$← GR(2k, d)t, and a MAC [π] (will be used as a mask),
where π $← GR(2k, d). P then computes ω := ϕ(w(1), ...,w(m)) ∈ GR(2k, d)n, and
sends δ := ω − µ to V. They compute [τ(ω)] := [τ(µ)] + τ(δ). Next, the two
parties evaluate the circuit in a topological order. For Add gates, the MAC of the
output wire can be computed locally.

However, for Mul gates, we face a problem as mentioned in Section 3.1, that
RMFEs can only preserve one multiplication. Good news is that in the ZK setting,
the prover P can compute all wire values on his own as he holds witnesses of the
circuit. Therefore, the output MAC of a Mul gate can be obtained by consuming
one random MAC. However, bad news is that since all authenticated values are
supposed to be in Im(ϕ), the usual multiplication equality no longer holds. More
specifically, for the i-th multiplication gate in C with inputs ωα, ωβ ∈ Im(ϕ) and
output ωγ ∈ Im(ϕ), essentially we need to ensure ψ(ωα)∗ψ(ωβ) = ψ(ωγ), which is
not equivalent to ωα ·ωβ = ωγ . The former equation is not easy to verify since it is
over Z2k but the authenticated values are over GR(2k, d). We show that this issue
can be bypassed by our re-embedding VOLE. Given ([νi], [τ(νi)]) from FGR(2k,d)

embVOLE,
P sends di := ωα · ωβ − νi to V, then they can obtain [ωγ] := [τ(ωα · ωβ)] =
[τ(νi)] + τ(di). We remark that ωγ = τ(ωα ·ωβ) ⇐⇒ ψ(ωγ) = ψ(ωα) ∗ψ(ωβ), as
we always assume ϕ(1) = 1. To verify that each di is computed honestly, the two
parties additionally compute [ω̂γ] := [ωα · ωβ] = [νi] + di. One can observe that

Bi : = Kωα
·Kωβ

−Kω̂γ
·∆

= (Mωα
+∆ · ωα) · (Mωβ

+∆ · ωβ)− (Mω̂γ
+ (ωα · ωβ) ·∆) ·∆

= (Mωα
·Mωβ

)︸ ︷︷ ︸
A0,i

+(ωα ·Mωβ
+ ωβ ·Mωα

−Mω̂γ
)︸ ︷︷ ︸

A1,i

·∆

holds if di is correct. Therefore, it can be used to detect malicious behaviors by
letting P send A0,i, A1,i to V . At a high level, we check multiplications for ω̂γ , and
automatically re-embed ω̂γ to ωγ = τ(ω̂γ) via re-embedding VOLE. Moreover,
we can use a random linear combination technique to check all t multiplications
simultaneously. Briefly, V sends uniformly random coefficients {χi ∈ GR(2k, d)}i∈[t]

to P , who then returns to V the linear combination
∑

i∈[t] χi ·A0,i and
∑

i∈[t] χi ·
A1,i masked with Mπ and π, respectively. In fact, as GR(2k, d)/(2) ∼= F2d , χ can
be sampled from Ft

2d . Intuitively, the entropy of χ is still sufficient.
Finally, for the output wire ωh, if both parties follow the protocol honestly,

the equation Kωh
= Mωh

+ 1 · ∆ should hold. Thus, P opens [ωh], which is
supposed to be [1], by sending Mωh

to V. We have the following theorem, with
its proof deferred to Appendix C.2.

Theorem 2. Protocol Πm,n,t
ZK communicates (kd+ d)/m bits per multiplication

gate, and UC-realizes Fm
ZK in the FGR(2k,d)

embVOLE-hybrid model with soundness error
2−(d−2) and information-theoretic security.

14

Protocol Πm,n,t
ZK

The prover P and the verifier V have agreed on a circuit C over Z2k with n
inputs and t multiplication gates, and P holds m witnesses w(i) ∈ Zn

2k such that
C(w(i)) = 1, i ∈ [m].
Offline phase

1. P and V send (Init) to FGR(2k,d)
embVOLE, and V receives ∆ ∈ GR(2k, d).

2. P and V send (Extend-pair, n + t) to FGR(2k,d)
embVOLE, which returns authenti-

cated pairs ([µi], [τ(µi)])i∈[n], ([νj], [τ(νj)])j∈[t], where all µi, νj are sampled
uniformly at random in GR(2k, d).

3. P and V send (Extend, 1) to FGR(2k,d)
embVOLE, which returns authenticated value [π],

where π is sampled uniformly at random in GR(2k, d).

Online phase

1. For input W = (w(1),w(2), ...,w(m)) ∈ Zn×m

2k
, P computes ω := ϕ(W) ∈

GR(2k, d)n, and sends δi := ωi − µi, i ∈ [n] to V. Both parties locally compute
[τ(ωi)] := [τ(µi)] + τ(δi), for i ∈ [n].

2. For each gate (α, β, γ, T) ∈ C, in a topological order:
– If T=Add, then P and V locally compute [ωγ] := [ωα] + [ωβ].
– If T=Mul and this is the i-th multiplication gate, then P sends di :=
ωα · ωβ − νi to V, and both parties locally compute [ωγ] := [τ(νi)] + τ(di),
and [ω̂γ] := [νi] + di.

3. For the i-th multiplication gate, the parties hold ([ωα], [ωβ], [ω̂γ]) with Kωj =
Mωj + ωj ·∆ for j ∈ {α, β}, and Kω̂γ =Mω̂γ + ω̂γ ·∆.
– P computes A0,i := Mωα ·Mωβ ∈ GR(2k, d) and A1,i := ωα ·Mωβ + ωβ ·
Mωα −Mω̂γ ∈ GR(2k, d).

– V computes Bi := Kωα ·Kωβ −Kω̂γ ·∆ ∈ GR(2k, d).
4. P and V perform the following check.

(a) P sets A∗
0 :=Mπ, A

∗
1 := π, and V sets B∗ := Kπ so that B∗ = A∗

0 +A
∗
1 ·∆.

(b) V draws a uniformly random χ from Ft
2d and sends it to P.

(c) P computes X :=
∑

i∈[t] χi · A0,i + A∗
0 ∈ GR(2k, d) and Y :=

∑
i∈[t] χi ·

A1,i +A∗
1 ∈ GR(2k, d), and sends (X,Y) to V.

(d) V computes Z :=
∑

i∈[t] χi · Bi + B∗ ∈ GR(2k, d), and checks whether
Z = X + Y ·∆ holds. If the check fails, V outputs false and aborts.

5. For the single output wire ωh, both parties hold [ωh].
– P sends Mωh to V.
– V checks whether Kωh =Mωh + 1 ·∆. If the check fails, V outputs false.

Otherwise, V outputs true.

Fig. 5: Zero-knowledge protocol for circuit satisfiability over Z2k in the FGR(2k,d)
embVOLE-

hybrid model.

15

Our protocol Πm,n,t
ZK (Figure 5) transfers a single element from GR(2k, d) and a

random coefficient in F2d per multiplication gate, yielding amortized communica-
tion complexity of (kd+ d)/m-bit, which is independent of the statistical security
parameter κ as d/m is constant. Note that both in Πm,n,t

ZK and Π
GR(2k,d)
embVOLE, the

verifier (receiver) only sends random strings to the prover (sender). Thus, we
obtain a public-coin ZK protocol over Z2k in the FGR(2k,d)

VOLE -hybrid model. This is
critical for constructing a publicly verifiable NIZK over Z2k in Section 5.1.

3.3 Sublinear Zero-Knowledge Protocol over Z2k

In this section, we focus on proofs with communication complexity sublinear
in the circuit size. Our construction is initially inspired by AntMan [61], which
constructed interactive ZK for any field with sublinear communication complexity
via developing a new, powerful technique, the Polynomial Authentication Code
(PAC).

Similar to Section 3.2, we follow the methodology of first constructing a
sublinear ZK protocol over GR(2k, d), and then converting it to one over Z2k via
RMFEs. The first step involves adapting PAC to work over Galois rings, and for
the conversion step, we crucially rely on our re-embedding technique as well.

PAC is essentially an information-theoretic polynomial commitment, which
allows to authenticate a polynomial. In more detail, PAC is a generalization of
VOLE-based MAC, where the sender PS holds a MAC tag M ∈ GR(2k, d), and
a polynomial f(·) ∈ GR(2k, d)[X], while the receiver PR holds a polynomial key
Λ ∈ GR(2k, d), a global key ∆ ∈ GR(2k, d), and a local key K ∈ GR(2k, d) such
that K = M + f(Λ) ·∆. We remark that the PAC for f(·), denoted by [[f(·)]],
can be viewed as a MAC for f(Λ). Due to its intrinsic nature, PAC can be used
to authenticate a batch of values. This relies on the fact that a batch of (say, m2)
values over GR(2k, d) uniquely determine a polynomial f(·) ∈ GR(2k, d)[X] (of
degree less than m2) via Lagrange interpolation, as long as the evaluation points
are picked from a large enough exceptional set 6 of GR(2k, d). Intuitively, PAC
significantly reduces the communication complexity in the sense that it turns m2

MACs into one MAC [f(Λ)].
To construct PAC over Galois rings, we follow the footprint of AntMan [61]

by employing an additively homomorphic encryption (AHE) scheme over Galois
rings MHz2k [25]. The protocol ΠPAC is presented in Figure 18 (Appendix C.3).

Before we illustrate our solutions to the conversion step, let us sketch how the
protocol works. Suppose that P and V have agreed on a circuit C over Z2k with
n inputs and t multiplication gates, and P holds m = m1m2 witnesses. Let (ϕ, ψ)
be an (m1, d)-RMFE pair over Z2k and ζ ∈ GR(2k, d) with order 2d − 1, which
admits an exceptional set T := {0, 1, ζ, ..., ζ2d−2}. Now P uses ϕ to map m1m2

witnesses over Z2k to m2 vectors ω(1), . . . ,ω(m2) in GR(2k, d)n, and the two parties
first authenticate these values via VOLE-based MACs, obtaining {[ω(i)]}i∈[m2].

6 Exceptional set is a subset E of GR(2k, d) such that the difference of each pair of
elements in E is invertible.

16

Next, the two parties generate the corresponding PACs [[u1(·)]], . . . , [[un(·)]] such
that uj(αi) = ω

(i)
j for i ∈ [m2] and j ∈ [n]. Here {α1, . . . , αm2

} ⊂ T is an
evaluation point set. Given such PACs for inputs, they then evaluate the circuit
in a topological order.

Procedure BatchCheck

Let T be the set {0, 1, ζ, ..., ζ2
d−2}, where ζ ∈ GR(2k, d) is of order 2d − 1. Let

d1, d2,m, ℓ be parameters. Let {α1, ..., αm} and {β1, ..., βm} be two public subsets
of T and H : {0, 1}κ → Zℓ

2k be a random oracle.
Inputs: P and V have the following inputs: two sets of PACs {[[f1(·)]], ..., [[fℓ(·)]]}
and {[[g1(·)]], ..., [[gℓ(·)]]}, where fi(·) is a polynomial of degree ≤ d1 and gi(·) is a
polynomial of degree ≤ d2 over GR(2k, d) for i ∈ [ℓ].
Consistency Check: P and V check fj(αi) = τ(gj(βi)) for all i ∈ [m], j ∈ [ℓ] .

1. Linear combination phase: Before the polynomial key Λ is opened, P and
V proceed as follows:
(a) P picks two random polynomial r(·) and s(·) over GR(2k, d) with degree d1

and d2, respectively, such that r(αi) = τ(s(βi)), for i ∈ [m]. Then, P and
V run the Pre-Gen procedure of ΠPAC to pre-generate two PACs [[r(·)]]
and [[s(·)]].

(b) V samples a seed← {0, 1}κ and sends it to P. Then, two parties compute
(χ1, ..., χℓ) := H(seed) ∈ Zℓ

2k .
(c) P and V locally compute [[f(·)]] :=

∑
j∈[ℓ] χj · [[fj(·)]] + [[r(·)]] and [[g(·)]] :=∑

j∈[ℓ] χj · [[gj(·)]] + [[s(·)]]. Then, P sends the polynomial pair (f(·), g(·))
to V, who checks that f(·), g(·) have respective degree d1 and d2, and
f(αi) = τ(g(βi)) holds for all i ∈ [m]. If the check fails, V aborts.

2. Check phase: After Λ is opened, P and V locally compute [µ] := [f(Λ)]−f(Λ)
and [ν] := [g(Λ)] − g(Λ). Then, P sends Mµ,Mν to V (i.e., P opens [µ] and
[ν] to V), and V checks Mµ = Kµ and Mν = Kν . If the check fails, V aborts.

Fig. 6: Procedure for checking the τ -consistency of polynomial evaluations for
two sets of PACs.

To accomplish the conversion step, we need to consider the effects of in-
troducing RMFEs. The first issue is that, we need to guarantee the inputs
ω(1), . . . ,ω(m2) are in Im(ϕ)n. Similar to our protocol Πm,n,t

ZK , this can be solved
by the re-embedding technique. The second issue is how to guarantee honest
circuit evaluation, which is much more complicated, as the circuit is evaluated
via PACs rather than MACs. Observe that in the construction of AntMan [61],
to evaluate a multiplication gate with input PACs [[ua(·)]] and [[ub(·)]], the two
parties generate two PACs [[uc(·)]] and [[ũc(·)]] such that ũc(·) = ua(·) · ub(·) is a
polynomial of degree ≤ 2m2−2 and uc(·) is a polynomial of degree ≤ m2−1 with
uc(αi) = ũc(αi) for i ∈ [m2]. Next, P proves to V that among the four PACed

17

polynomials: (1) ũc(·) is indeed the correct multiplication of input polynomials
ua(·), ub(·), and (2) the polynomials uc(·) (degree ≤ m2 − 1) and ũc(·) (degree
≤ 2m2 − 2) share the same values in the m2 evaluation points.

For the multiplications in our situation, we need to guarantee that ψ(uc(αi)) =
ψ(ua(αi)) ∗ ψ(ub(αi)), for all i ∈ [m2]. For this purpose, we instead define uc(·)
(degree ≤ m2 − 1) such that

uc(αi) = τ(ũc(αi)) = τ(ua(αi) · ub(αi)) for all i ∈ [m2]. (2)

This can be seen as re-embedding a PAC [[ũc(·)]] into a PAC [[uc(·)]] such that (2)
holds. All that remain to be shown are to check (1) ũc(·) = ua(·) · ub(·) as in
AntMan [61], and (2) the polynomials uc(·) with degree ≤ m2 − 1 and ũc(·) with
degree ≤ 2m2 − 2 are “τ -consistent”, i.e., uc(αi) = τ(ũc(αi)) for all i ∈ [m2].

The former check crucially relies on an observation that the polynomial key
Λ can be revealed to P, after all polynomials needed to be authenticated are
authenticated. Then the PACs naturally collapse to MACs for the polynomial
evaluations on Λ. Therefore, we can employ the multiplication check procedure of
Πm,n,t

ZK , where P can only pass the check with probability at most 3/2d, if using
some incorrect polynomial ũc(·).

For the latter issue, we remark that if m2 = 1, we can solve it by compiling
our re-embedding technique, as shown in Section 3.2. However, it is unclear
how to guarantee the τ -consistency of [[uc(·)]] and [[ũc(·)]] for a general m2 ≥ 1.
Therefore, we need to find another strategy. Fortunately, we observe that the
BatchCheck procedure of AntMan [61] can be adapted to check τ -consistency
in batch. In more detail, given {[[vj(·)]]}j∈[m2], {[[ṽj(·)]]}j∈[m2], as τ = ϕ ◦ ψ is
a Z2k -linear map, V can check τ -consistency by P opening random Z2k -linear
combinations of the two sets of polynomials. To avoid potential information
leakage from linear combinations, we mask the opened polynomials with a pair of
random polynomials that satisfy the degree constraint and τ -consistency. Besides,
P should convince V that the opened polynomials f(·), g(·) are consistent to their
PACs. This can be done by opening [f(Λ)], [g(Λ)] to V after P receives Λ. The
details of our BatchCheck procedure are presented in Figure 6.

The protocol is given in Figure 7 and Figure 8. We have the following theorem
that guarantees security with its proof in Appendix C.3.

Theorem 3. Protocol Πm,n,t
slZK UC-realizes functionality Fm

ZK that proves circuit

satisfiability over Z2k in the FGR(2k,d)
embVOLE-hybrid model and the random oracle model

with soundness error at most 2m2+3
2d

+ negl(κ).

Our protocol Πm,n,t
slZK communicates 2 AHE ciphertexts per multiplication

gate. The main costs for checking multiplications consist of two parts: transfer-
ring random coefficient χ ∈ Ft

2d in Step 5-(e) in Figure 8, and transferring 2
polynomials over GR(2k, d) of respective degree m2− 1 and 2m2− 2 in the Linear
combination phase of the BatchCheck procedure. Assume the ciphertext size is c,
these contribute to 2ct+ td+ 3m2kd bits in total, which is sublinear in mt. By
dividing mt, the amortized complexity per multiplication gate is (2c+d

m + 3kd
m1t

)-bit.

18

Protocol Πm,n,t
slZK -Part I

The prover P and the verifier V have agreed on the following public inputs.

– A circuit C over Z2k with n inputs and t multiplication gates;
– An (m1, d)-RMFE pair (ϕ, ψ) over Z2k , and an element ζ ∈ GR(2k, d) with

order 2d − 1;
– A set T = {0, 1, ζ, ..., ζ2

d−2} and distinct elements α1, ..., αm2 ∈ T ;
– Polynomials ξi(X) =

∏
j∈[m2],j ̸=i(X−αj)/(αi−αj) ∈ GR(2k, d)[X] with degree

(m2 − 1) for i ∈ [m2], which are known as the Lagrange basis polynomials.

In addition, P holds m = m1 ·m2 witnesses w(i) ∈ Zn
2k such that C(w(i)) = 1, for

all i ∈ [m].
Offline phase

1. P and V send (Init) to FGR(2k,d)
embVOLE, and V receives ∆ ∈ GR(2k, d).

2. P and V run the Poly-Key procedure of ΠPAC with input 2m2 − 2, and V
receives a uniform polynomial key Λ ∈ GR(2k, d).

3. P and V send (Extend-pair, nm2) to FGR(2k,d)
embVOLE, which returns authenticated

pairs {([µ(i)
j], [τ(µ

(i)
j)])}i∈[m2],j∈[n], where all µ(i)

j are sampled uniformly at
random in GR(2k, d).

4. P and V send (Extend, n + 2t) to FGR(2k,d)
embVOLE, which returns authenticated

values {[νi]}i∈[n] and {[πj]}j∈[2t], where all νi, πj are sampled uniformly at
random in GR(2k, d).

Online phase

1. For input W (i) := (w((i−1)·m1+1),w((i−1)·m1+2), ...,w((i−1)·m1+m1)) ∈ Zn×m1

2k
,

P computes ω(i) := ϕ(W (i)) ∈ GR(2k, d)n, and sends δ(i) := ω(i) − µ(i),
i ∈ [m2] to V. Both parties locally compute [τ(ω

(i)
j)] := [τ(µ

(i)
j)] + τ(δ

(i)
j), for

i ∈ [m2], j ∈ [n].
2. For j ∈ [n], for the j-th group of m2 input gates with input vector

(ω
(1)
j , ..., ω

(m2)
j), P defines a polynomial uj(·) with degree ≤ (m2−1) such that

uj(αi) = ω
(i)
j for i ∈ [m2].

3. P and V run the Pre-Gen procedure of ΠPAC with input [ν], to pre-generate
PACs [[u1(·)]], ..., [[un(·)]].

4. For each gate (a, b, c, T) ∈ C, in a topological order:
– If T=Add, then P and V locally compute [[uc(·)]] := [[ua(·)]] + [[ub(·)]].
– If T=Mul and this is the j-th groups of multiplication gates, where j ∈ [t],

then P computes a polynomial ṽj(·) := ũc(·) := ua(·) · ub(·) ∈ GR(2k, d)[X]
with degree ≤ (2m2−2) and a polynomial vj := uc with degree ≤ (m2−1)
such that uc(αi) = τ(ũc(αi)) for all i ∈ [m2]. Then, P and V run the
Pre-Gen procedure of ΠPAC with input [π2j], [π2j+1], to pre-generate two
PACs [[uc(·)]] and [[ũc(·)]].

Fig. 7: Zero-knowledge protocol for SIMD circuit satisfiability over Z2k with
sublinear communication in the FGR(2k,d)

embVOLE-hybrid model-Part I.

19

Protocol Πm,n,t
slZK -Part II

5. P and V perform the following multiplication check.
(a) P and V execute the Linear combination phase of the BatchCheck

procedure with parameters (m2 − 1), (2m2 − 2),m2, t and a common
evaluation subset {α1, ..., αm2} ⊂ T on inputs {[[v1(·)]], ..., [[vt(·)]]} and
{[[ṽ1(·)]], ..., [[ṽt(·)]]} to check the degree constraint and τ -consistency,
namely, the degree of each vj(·) ≤ (m2 − 1), the degree of each ṽj(·) ≤
(2m2 − 2), and vj(αi) = τ(ṽj(αi)) holds for all i ∈ [m2], j ∈ [t].

(b) P and V run the Gen procedure of ΠPAC, where Λ is revealed to P. Then V
can compute the local keys on all PACs, and P can compute the polynomial
evaluations on Λ. For the j-th multiplication gate (a, b, c, Mul) ∈ C, P and
V now hold [ua(Λ)], [ub(Λ)], [ũc(Λ)]. P computes A0,j :=Mua(Λ) ·Mub(Λ) ∈
GR(2k, d) and A1,j := ua(Λ) ·Mub(Λ)+ub(Λ) ·Mua(Λ)−Mũc(Λ) ∈ GR(2k, d).
V computes Bj := Kua(Λ) ·Kub(Λ) −∆ ·Kũc(Λ) ∈ GR(2k, d).

(c) P and V execute the check phase of the BatchCheck procedure to complete
the above check. If the check fails, V aborts.

(d) P sets A∗
0 :=Mπ, A

∗
1 := π, and V sets B∗ := Kπ so that B∗ = A∗

0 +∆ ·A∗
1.

(e) V draws a uniformly random χ from Ft
2d and sends it to P.

(f) P computes X :=
∑

j∈[t] χj · A0,j + A∗
0 ∈ GR(2k, d) and Y :=

∑
j∈[t] χj ·

A1,j +A∗
1 ∈ GR(2k, d), and sends (X,Y) to V.

(g) V computes Z :=
∑

j∈[t] χj · Bj + B∗ ∈ GR(2k, d), and checks whether
Z = X +∆ · Y holds. If the check fails, V outputs false and aborts.

6. P and V do the following input and output checks. P convinces V that [[uj(·)]]
is consistent to ([ω

(1)
j], ..., [ω

(m2)
j]) for j ∈ [n], and the values on all output

gates are 1.
(i) For j ∈ [n], P and V compute MAC [zj] :=

∑
i∈[m2]

ξi(Λ) · [ω(i)
j]− [uj(Λ)].

Then, P opens [zj], V continues if and only if zj = 0 for all j ∈ [n].
This check makes sense since each uj(·) can be computed from Lagrange
interpolation and MACs are linearly homomorphic.

(ii) Let [u(·)] be the PAC associated with the output wire of C. P sends Mu(Λ)

to V, who checks whether Ku(Λ) = Mu(Λ) + 1 · ∆. If the check fails, V
outputs false. Otherwise, V outputs true.

Fig. 8: Zero-knowledge protocol for SIMD circuit satisfiability over Z2k with
sublinear communication in the FGR(2k,d)

embVOLE-hybrid model – Part II.

20

We remark that the overall communication complexity of Πm,n,t
slZK is linear in the

witness size, as the two parties need to obtain MACs for all witnesses at the
beginning of the online phase. Besides, Πm,n,t

slZK is not public-coin, due to the
interactive generation of PACs.
Reduction from Evaluating Arbitrary Circuit to SIMD Circuit. There
are two methods in the literature to transform a problem on a given circuit into
one on a related SIMD circuit. The first one is to arrange an arbitrary circuit
into an SIMD circuit (cf. [29,23]) by dividing gates into layers of addition and
multiplication gates, which introduces an overhead that depends on the topology
of the given circuit (for a large class of well formed circuits, this overhead is quite
small). The second method [61] is specific to proving circuit satisfiability. Since
the prover P holds the witness, he can calculate all wire values and authenticate
them in batch as evaluating some SIMD circuit. Note that for an arbitrary circuit,
the outputs of some gates may be the inputs of other gates. Thus, each wire
value now needs to be authenticated twice, once as the output of some gate, and
once as the input of another gate. As a result, V needs to additionally verify the
consistency of two authenticated values on the same wire, which may increase
the communication complexity considerably.

We remark that the second method is compatible with our PAC-based con-
struction, still yielding an online phase with sublinear communication. The
reason is that we can perform the additional verification by slightly modifying
the BatchCheck procedure to check some specific Z2k -components rather than
τ -consistency, i.e., all Z2k -components. It is also possible to combine the above
two methods, where one can first arrange a generic circuit into an SIMD circuit,
viewed as a generic circuit over GR(2k, d), and then apply the second method.
Readers are advised to perform implementation level optimizations according to
the circuit topology.

4 VOLE over Galois Rings

In this section, we present efficient constructions for VOLE over Galois rings
following the PCG-style VOLE paradigm. We construct two efficient VOLE
protocols assuming the hardness of LPN problems over Galois rings. Specifically,
we present an interactive construction based on primal-LPN, and discuss security
of LPN over Galois rings. Due to space constraint, we defer the two-round
construction based on dual-LPN to Appendix E.

We construct efficient VOLE over GR(2k, d), adapting the PCG-style VOLE
construction of Wolverine [60]. We also provide a two-round construction adapted
from [16] in Appendix E. The construction involves two main steps. The first step
is to construct single point VOLE (spVOLE), and the second step is to use LPN
to locally convert multiple spVOLE instances of the same length into a VOLE
correlation with much longer length. To begin with, we focus on constructing
spVOLE over GR(2k, d), where u (held by the sender) in the VOLE correlation
v = w + u ·∆ has only one non-zero entry. Similar to that in MozZ2karella [4],
we further require each non-zero entry to be a unit of GR(2k, d), in order to

21

mitigate a modulo attack for LPN over Galois rings (Theorem 6). The associated
functionality FGR(2k,d)

spVOLE is given in Figure 17 (Appendix A.2).

Single-point VOLE. We first review puncturable pseudorandom function [15]
(PPRF) based on GGM tree [41], which is a main subroutine for constructing
spVOLE. Informally, a PPRF allows to distribute n pseudorandom values among
the two parties, where the receiver PR obtains all of them from a key, while
the sender PS can compute them all except for one value on his choice from a
punctured key. We recall the GGM algorithm in Figure 19 (Appendix D.2) 7.

Now, suppose the two parties PS and PR have already obtained random
Galois ring elements {vj}j∈[0,n)\{α} and {vj}j∈[0,n) from PPRF, respectively,
where α ∈ [0, n) is randomly picked by PS . Then PS can define two vectors
w,u ∈ GR(2k, d)n such that wj = vj , uj = 0, for j ̸= α (we do not care about
wα, uα for now). It can be directly observed that v = w+u·∆ holds, if ignoring the
entry indexed by α. To obtain the desired relation at the entry α, we can “inject”
a VOLE correlation γ = δ + β ·∆ to the target entry. Specifically, let PR send
g := γ −

∑
j∈[0,n) vj to PS , who then in turn computes wα := δ − (g +

∑
i ̸=α wi).

One can easily verify that vα = wα+β ·∆. Thus, setting uα := β, the two parties
obtain the desired spVOLE correlation v = w + u ·∆.

The above spVOLE construction is only semi-honestly secure. In the malicious
setting, the adversary may either cheat in the PPRF procedure or send an
incorrect g. As shown in Wolverine [60], to achieve malicious security, it suffices
to guarantee that the spVOLE correlation holds in each entry. We remark that
this is a major challenge in constructing spVOLE over Z2k , and MozZ2karella
[4] overcame it by using two check mechanisms in a sophisticated way. In our
situation, we manage to apply a random-linear combination check, which is much
simpler. Let χi ∈ GR(2k, d), i ∈ [0, n) be uniformly random elements chosen by
PS . We first observe that∑

i∈[0,n)

χi · vi =
∑

i∈[0,n)

χi · wi + χα · β ·∆. (3)

However, we cannot directly use (3) for consistency check, since χα ·β ·∆ can not
be locally computed by any party and it may leak some information. Fortunately,
this can be solved by masking (3) with a VOLE correlation y = z + χα · β ·∆.
Now it is sufficient for the two parties to check (4) instead.∑

i∈[0,n)

χi · vi − y =
∑

i∈[0,n)

χi · wi − z. (4)

Details of our spVOLE protocol are in Figure 9. We then have the following
theorem with proof in Appendix D.2.

7 We remark that in GGM-based PPRF constructions, PS plays the role of OT receiver
while PR plays the role of OT sender, resulting in incompatibility of PCG-style
VOLE constructions and the VOLEitH technique.

22

Protocol ΠGR(2k,d)
spVOLE

Init: Both parties send (Init) to FGR(2k,d)
VOLE , which returns ∆ to PR.

SP-Extend: On input n = 2h, the two parties proceeds as follows:

1. Construct:
(a) Both parties send (Extend, 1) to FGR(2k,d)

VOLE . PS receives a, c ∈ GR(2k, d) and
PR receives b ∈ GR(2k, d) such that b = c+ a ·∆ holds.

(b) PS samples α $← [0, n), and draws a uniformly random β in the set of
units of GR(2k, d). PS sets a vector u ∈ GR(2k, d)n with uα = β and ui = 0
for all i ̸= α.

(c) PS sets δ := c and sends a′ := β − a ∈ GR(2k, d) to PR. PR computes
γ := b+ a′ ·∆ ∈ GR(2k, d). Note that γ = δ− β ·∆, so the two parties now
obtain [β].

(d) PR computes s ← GGM.KeyGen(1λ), and runs GGM.Gen(1n, s) to obtain
({vj}j∈[0,n), {(K0,i,K1,i)}i∈[h]). Let α =

∑
i∈[h] 2

h−iαi, where αi ∈ {0, 1},
and let ᾱi denote the complement of αi. For i ∈ [h], PS sends ᾱi to FOT

(as OT receiver) while PR sends (K0,i,K1,i) to FOT (as OT sender), then
PS receives Kᾱi,i. PS runs GGM.Eval(α, {Kᾱi,i}i∈[h]) and gets {vj}j ̸=α.

(e) PR sends g := γ −
∑

j∈[0,n) vj ∈ GR(2k, d) to PS . PS defines a vector
w ∈ GR(2k, d)n such that wi := vi for i ̸= α and wα := δ − (g +

∑
i̸=α wi).

Note that v = w + u ·∆.
2. Check:

(a) Both parties send (Extend, 1) to FGR(2k,d)
VOLE . PS receives x, z ∈ GR(2k, d) and

PR receives y∗ ∈ GR(2k, d) where y∗ = z + x ·∆.
(b) PS samples χi

$← GR(2k, d) for i ∈ [0, n), and computes x∗ := χα · β − x ∈
GR(2k, d). PS sends ({χi}i∈[0,n), x

∗) to PR. PR computes y := y∗+∆ ·x∗ ∈
GR(2k, d). Now, we have y = z + χα · β ·∆.

(c) PS computes VPS :=
∑

i∈[0,n) χi · wi − z, and sends VPS to FEQ as P.
PR computes VPR :=

∑
i∈[0,n) χi · vi − y, and send VPR to FEQ as V. PR

receives VPS . PS and PR abort if the equality test fails.
3. Output: PS outputs (w,u), and PR outputs v.

Fig. 9: Protocol for single-point VOLE over GR(2k, d) in the (FGR(2k,d)
VOLE ,FOT,FEQ)-

hybrid model.

23

Theorem 4. Assuming the existence of secure PRGs, ΠGR(2k,d)
spVOLE UC-realizes

FGR(2k,d)
spVOLE functionality in the (FGR(2k,d)

VOLE ,FOT,FEQ)-hybrid model. In particular,
no PPT environment Z can distinguish the real world execution from an ideal
world simulation except with advantage at most 1/2d + negl(λ).

From spVOLE to VOLE. The extension procedure of constructing VOLE from
spVOLE follows prior works, e.g., [64,60]. Let A ∈ GR(2k, d)m×n be a generating
matrix and D a noise distribution over GR(2k, d)n, for which the primal LPN
assumption holds. We refer the readers to Appendix B for LPN preliminaries.
Suppose PS and PR have obtained a VOLE correlation of length (m+n), written
as v = w + u ·∆ and b = c+ e ·∆, where u ∈ GR(2k, d)m and e← D. We have

(v ·A+ b)︸ ︷︷ ︸
K

= (w ·A+ c)︸ ︷︷ ︸
M

+(u ·A+ e)︸ ︷︷ ︸
x

·∆,

where (M,x) and K can be locally computed by PS and PR, respectively.
Moreover, by the primal LPN assumption, x = u · A + e is computationally
indistinguishable from a uniformly random vector in GR(2k, d)n.

In the literature, D is usually instantiated with the so-called regular noise
distribution, where the error vector with Hamming weight t can be divided into t
blocks with each block having only one non-zero entry. Therefore, we can obtain
the VOLE correlation b = c+ e ·∆ from t repetitions of spVOLE with length
n/t. Observe that the spVOLE in Figure 9 requires a VOLE correlation of length
two to produce one spVOLE. Thus, the above construction essentially extends a
VOLE correlation of length m+2t into one of length n. In addition, as showed in
prior works [64,60], we can reserve part of the output VOLE correlation for the
next iteration of the extension procedure, to further improve efficiency. Details
of the protocol are presented in Figure 10.

LPN with static leakage. Similar to [60,4], our ΠGR(2k,d)
spVOLE essentially allows a

corrupted PR to guess a subset of [0, n) that contains the index of the non-zero,
invertible entry of u, and allows a corrupted PS to guess ∆. Such leakages have
been incorporated in FGR(2k,d)

spVOLE. The former leakage would in turn affect the LPN
assumption. Namely, it allows an LPN adversary to learn if each non-zero position
of t noise fragments is contained in I1, . . . , It, respectively, where I1, . . . , It ⊆ [n/t]
are chosen by the adversary. This in general leaks 1-bit information. Below, we
formulate a primal LPN assumption over Galois rings with such leakage.

Definition 2 (Primal LPN with static leakage). We first define the corre-
sponding LPN security game GLPN.

1. Let A← G(m,n) ∈ GR(2k, d)m×n be a primal LPN generating matrix, x←
GR(2k, d)m be the secret, and e = (e(1), ..., e(t)) ∈ GR(2k, d)n be the error
vector, where e(i) has one invertible entry and zeros anywhere else for i ∈ [t].

2. A sends I1, ..., It ⊆ [n/t]. If for all i ∈ [t], Ii includes the noisy position of
e(i), send success to A. Otherwise, abort.

24

3. Pick b ← {0, 1}. If b = 0, send y := x · A + e to A, otherwise, send
y

$← GR(2k, d)n to A.
4. A outputs a bit b′. The game outputs 1 if b′ = b, and outputs 0 otherwise.

We say that the decisional (RG,G,R)− LPN(m,n, t) with static leakage is (T, ϵ)-
hard, if for every probabilistic distinguisher B running in time T , B wins the
game GLPN with advantage, defined as |Pr[GLPN = 1]− 1/2|, at most ϵ.

Under the primal LPN assumption with static leakage, we have the following
theorem with proof in Appendix D.2. In the following, FGR(2k,d)

qVOLE (Figure 16,

Appendix A.2) extends FGR(2k,d)
VOLE , which additionally captures the leakage of ∆.

Protocol ΠGR(2k,d)
VOLE

Let A ∈ GR(2k, d)m×n be a generating matrix used for LPN(m,n, t) over GR(2k, d).
We always assume that n is a multiple of t.
Init:

– Both parties send Init to FGR(2k,d)
spVOLE, which returns ∆ ∈ GR(2k, d) to PR.

– Both parties send (Extend,m) to FGR(2k,d)
spVOLE. PS receives w,u ∈ GR(2k, d)m, and

PR receives v ∈ GR(2k, d)m, such that v = w + u ·∆ holds.

Extend:

1. For i ∈ [t], both parties send (SP-Extend, n/t) to FGR(2k,d)
spVOLE. PS receives c(i), e(i)

and PR receives b(i), where b(i) = c(i) + e(i) ·∆ over GR(2k, d)n/t, and e(i) ∈
GR(2k, d)n/t has one entry invertible in GR(2k, d) and zeros everywhere else.

2. Let e := (e(1), ..., e(t)), c := (c(1), ..., c(t)), and b := (b(1), ...,b(t)) ∈ GR(2k, d)n.
PS locally computes x := u · A + e, and M := w · A + c ∈ GR(2k, d)n. PR
locally computes K := v ·A+ b ∈ GR(2k, d)n.

3. PS updates u,w by setting u := x[1 : m] ∈ GR(2k, d)m and w := M[1 : m] ∈
GR(2k, d)m, and outputs (x[m+ 1 : n],M[m+ 1 : n]). PS updates v by setting
v := K[1 : m] ∈ GR(2k, d)m and outputs K[m+ 1 : n].

Fig. 10: Protocol for VOLE over GR(2k, d) in the FGR(2k,d)
spVOLE-hybrid model.

Theorem 5. If the decisional (RG,G, GR(2k, d))-LPN(m,n, t) with static leakage
assumption holds, then Π

GR(2k,d)
VOLE presented in Figure 10 UC-realizes FGR(2k,d)

qVOLE in

the FGR(2k,d)
spVOLE-hybrid model.

Security of LPN. We adapt existing reduction results for LPN over Z2k [52] to
Galois rings, obtaining the following theorems with proofs in Appendix B.2.

25

Theorem 6. If decisional (D,G, GR(2k, d))− LPN(m,n,w1) is (T, ϵ)-hard, then
decisional (D,G,F2d) − LPN(m,n,w2) is (T − poly(m,n),O(hϵ))-hard, where
(D, w1, w2, h) ∈ {(HW, t, 2

d(k−1)(2d−1)
2dk−1

t,
√
t), (Ber, ρ, ρ, 1)}.

Theorem 6 implies a modulo attack for LPN over GR(2k, d), where the adversary
can reduce the noise weight by approximately 1/2d fraction via modulo 2, since
GR(2k, d)/(2) ∼= F2d . This can be mitigated by requiring that each non-zero entry
of the error vector e is invertible as shown in [4,52], or choosing a sufficiently
large d.

Theorem 7. If decisional (Ber,F2d) − LPN(m,n, ρ(2d−1)
(1−ρ)2dk+ρ2d

) is (T, ϵ)-hard,
then decisional (Ber, GR(2k, d))− LPN(m,n, ρ) is (T − poly(m,n), kϵ)-hard.

Theorem 7 indicates a security reduction from LPN problems over Galois fields
to LPN over Galois rings. We also analyze some main attacks that may work on
LPN over Galois rings in Appendix B.3, following prior works [35,15,16,4,52].

5 Publicly Verifiable NIZK for Z2k via VOLEitH

Baum et al. [5] proposed the VOLEitH framework for compiling a public-coin
VOLE-based ZK protocol into a publicly verifiable NIZK through bringing the
MPCitH techniques into the picture. The framework works generally for a large
class of ZK protocols based on OT, where the prover is the OT sender and
the verifier the OT receiver. In a bare-bone sketch, given a public-coin VOLE-
based ZK protocol, the key is to first apply Fiat-Shamir transform on it to
squash interactions, and then construct random VOLE correlations from PRGs
in one round communication. To this end, the authors showed an efficient VOLE
construction from (N − 1)-out-of-N OT, which then can be instantiated with
random vector commitments from GGM tree PRGs.

We follow this framework and begin with an efficient construction of an
interesting variant of VOLE over Galois rings from OT in Section 5.1, where we
restrict the receiver’s choice value to a specifically designed subset of the Galois
ring. Jumping ahead, this subset should have small size to make the construction
in Section 5.1 computationally efficient and we also require this subset to have
certain structure for making the VOLE support efficient compiling (the latter is
discussed in Section 5.2).

5.1 VOLE from (N − 1)-out-of-N OT

SoftSpokenOT [56] proposed an efficient construction for VOLE over Galois fields,
which is based on (N − 1)-out-of-N OT. Intuitively, an (N − 1)-out-of-N OT
functionality takes as inputs N strings of the same length from the sender and
one position ∆ ∈ [N] from the receiver, and then delivers these strings to the
receiver except for the ∆-th one. We formulate a random (N − 1)-out-of-N OT
functionality as FN

OT−1̄ in Figure 14 (Appendix A.2). We adapt the idea of [56]

26

to construct VOLE over Galois rings, in which ∆ can be viewed as the scalar in
a single VOLE correlation.

Without loss of generality, assume N = 2kd. Let s1, ..., sN ∈ GR(2k, d)ℓ be
random strings possessed by PS , and ∆ ∈ [N] be a random index possessed by
PR. The VOLE construction is induced by the following observation:∑
y∈GR(2k,d)\{∆}

sy ·(∆−y) =
∑

y∈GR(2k,d)

sy ·(∆−y) =
∑

y∈GR(2k,d)

sy ·∆−
∑

y∈GR(2k,d)

sy ·y.

Through an invocation to FN
OT−1̄, PR receives sy, for y ∈ GR(2k, d)\{∆}8. Then

PR can locally compute K :=
∑

y∈GR(2k,d)\{∆} sy · (∆− y) while PS can compute
M := −

∑
y∈GR(2k,d) sy · y and x :=

∑
y∈GR(2k,d) sy. It is easy to verify that

K = M+ x ·∆, i.e., PS and PR obtain a VOLE correlation over GR(2k, d).
The main drawback of the above construction is that the computation costs

for PS and PR are high, since the above construction involves N = 2kd heavy
multiplication operations over GR(2k, d) per party. To reduce the computation
complexity, we restrict ∆ to be sampled from a subset F2d of GR(2k, d) 9 (we
explain reasons later in the following section). Let N = 2d, we have the following:

K =
∑

y∈F
2d

\{∆}

sy ·(∆−y) =
∑

y∈F
2d

sy ·(∆−y) =
∑

y∈F
2d

sy ·∆−
∑

y∈F
2d

sy ·y = M+x·∆.

(5)
Therefore, to obtain a VOLE relation of length ℓ, now PS and PR only need
to perform 2d cheaper multiplications of GR(2k, d) elements and F2d elements.
To this end, we define FGR(2k,d)

sfVOLE in Figure 15 (Appendix A.2), where PR obtains
∆ ∈ F2d . We present the resulting VOLE protocol ΠGR(2k,d)

sfVOLE in Figure 11. The
security is guaranteed by the following theorem, whose proof is in Appendix D.1.

Theorem 8. Protocol ΠGR(2k,d)
sfVOLE UC realizes FGR(2k,d)

sfVOLE (Figure 15) in the FN
OT−1̄-

hybrid model.

As shown in [56], the (N − 1)-out-of-N OT can be efficiently realized by
O(logN) parallel invocations of OT and PRGs, yielding small communication
complexity that is independent of length ℓ.

5.2 Publicly Verifiable NIZK for Z2k via VOLEitH

In the VOLEitH framework [5], the (N − 1)-out-of-N OT-based VOLE protocols
play an important role of connecting to the VOLE-based ZK paradigm on one
hand, and to the MPCitH paradigm through OT on the other hand. We omit
the connection to MPCitH paradigm through OT part as it works the same way

8 We assume a natural one-to-one correspondence between GR(2k, d) and [N] without
explicitly defining it, since here N = 2kd.

9 We remark that F2d is not closed under the operations inherited from GR(2k, d).

27

Protocol ΠGR(2k,d)
sfVOLE

Parameterized by a Galois ring GR(2k, d) and a length parameter ℓ. Let N = 2d.
Init: Both parties send (Init, GR(2k, d)ℓ) to FN

OT−1̄. PR receives ∆ ∈ [N].
Extend: Both parties send (Get) to FN

OT−1̄, and act as follows:

1. Upon receiving {sy}y∈F
2d

\{∆} from FN
OT−1̄, the receiver PR locally computes

K =
∑

y∈F
2d

\{∆} sy · (∆− y).
2. Upon receiving {sy}y∈[n] from FN

OT−1̄, PS computes M := −
∑

y∈F
2d

sy · y and
x :=

∑
y∈F

2d
sy.

3. Output K = M+∆ · x, where K,M,x ∈ GR(2k, d)ℓ.

Fig. 11: Protocol for VOLE over GR(2k, d) in the FN
OT−1̄-hybrid model.

for both fields and rings (see Sec 3. and Sec 4. of [5]). In the following, we discuss
the former connection.

Recall that when one transforms a (N − 1)-out-of-N correlation into a VOLE
correlation, the computation is dominated by the ring size. Therefore, in [5], they
have to consider different VOLE variants that would admit practical computation,
according to the field size. For the case of proving a statement over a large prime
field Fp, they need a generalized subspace VOLE, which, in turn, demands a more
complicated modified online phase. For the case of proving a statement over a
small field, they show that one can use the simple idea of parallel repetitions to
boost the soundness of resulting ZK protocols. Note any Galois ring extension
of Z2k (even Z2k itself) is certainly not small enough. Instead of constructing
ZK from developing “large field” techniques of [5], we show that the “small field”
techniques actually work with a good efficiency in our setting.

Our main idea is to restrict the ∆ obtained by the verifier of our protocol
Πm,n,t

ZK from the VOLE to be in a subset F2d of GR(2k, d) (hence in the FGR(2k,d)
sfVOLE -

hybrid). However, this would incur an exponential blow-up of computation, as
we originally require d = Ω(κ) for the security of Πm,n,t

ZK . Similar to [18], we can
choose a suitable d′ and perform repetitions to amplify the soundness. Then we
argue that our ZK protocols from Section 3.2 remain secure, by instantiating
the underlying VOLE functionality with Π

GR(2k,d′)
sfVOLE and repetitions. Intuitively,

since GR(2k, d′)/(2) ∼= F2d′ , the entropy of ∆ ∈ F2d′ induces a soundness error
O
(

1
2d′

)
, and through t repetitions, the soundness error is enhanced to O

(
1

2d′t

)
.

We refer the readers to Appendix D.1 for more detailed discussions. Concretely,
let the VOLE length be ℓ and consider t repetitions, the computation would
be tℓ · 2d′

multiplications of GR(2k, d′) elements and F2d′ elements, while the
communication grows roughly t times due to repetition. Hence, there is a trade-
off between communication and computation under the premise of security. For

28

instance, for 80-bit security, we can use a (6, 15)-RMFE (i.e., d′ is 15) and do 6
repetitions. Recall that our protocol Πm,n,t

ZK from Section 3.2 admits a public-coin
ZK in the VOLE-hybrid model, thus we can apply the VOLEitH technique to
obtain a publicly verifiable NIZK protocol over Z2k , following the road map:

FN
OT−1̄ ⇒ Π

GR(2k,d)
sfVOLE ⇒ Π

GR(2k,d)
embVOLE ⇒ Πm,n,t

ZK

compiler [5]
=⇒ publicly verifiable NIZK.

Finally, developing the “large field” approach of [5] to work for Z2k is very
interesting and worth exploring, which has the potential of getting better concrete
efficiency. We leave it as an interesting problem.

6 Acknowledgements

The authors would like to thank Zhe Li and Yanhong Xu for many helpful dis-
cussions of this work. We are also very grateful for the insightful comments from
anonymous reviewers. The work was supported in part by the National Key Re-
search and Development (R&D) Program of China under Grant 2022YFA1004900
and in part by the National Natural Science Foundation of China under Grant
12031011, Grant 12361141818, and Grant 12101404.

References

1. Abspoel, M., Cramer, R., Escudero, D., Damgård, I., Xing, C.: Improved single-
round secure multiplication using regenerating codes. In: ASIACRYPT 2021. LNCS,
vol. 13091, pp. 222–244. Springer (2021)

2. Ames, S., Hazay, C., Ishai, Y., Venkitasubramaniam, M.: Ligero: Lightweight
sublinear arguments without a trusted setup. In: CCS 2017. pp. 2087–2104. ACM
(2017)

3. Baum, C., Braun, L., Munch-Hansen, A., Razet, B., Scholl, P.: Appenzeller to brie:
Efficient zero-knowledge proofs for mixed-mode arithmetic and z2k. In: CCS 2021.
pp. 192–211. ACM (2021)

4. Baum, C., Braun, L., Munch-Hansen, A., Scholl, P.: MozZ2karella: Efficient vector-
ole and zero-knowledge proofs over Z2k . In: CRYPTO 2022. LNCS, vol. 13510, pp.
329–358. Springer (2022)

5. Baum, C., Braun, L., de Saint Guilhem, C.D., Klooß, M., Orsini, E., Roy, L.,
Scholl, P.: Publicly verifiable zero-knowledge and post-quantum signatures from
vole-in-the-head. In: CRYPTO 2023. LNCS, vol. 14085, pp. 581–615. Springer
(2023)

6. Baum, C., Dittmer, S., Scholl, P., Wang, X.: Sok: vector ole-based zero-knowledge
protocols. Des. Codes Cryptogr. 91(11), 3527–3561 (2023)

7. Baum, C., Malozemoff, A.J., Rosen, M.B., Scholl, P.: Mac’n’cheese: Zero-knowledge
proofs for boolean and arithmetic circuits with nested disjunctions. In: CRYPTO
2021. LNCS, vol. 12828, pp. 92–122. Springer (2021)

8. Baum, C., Nof, A.: Concretely-efficient zero-knowledge arguments for arithmetic cir-
cuits and their application to lattice-based cryptography. In: Kiayias, A., Kohlweiss,
M., Wallden, P., Zikas, V. (eds.) PKC 2020. LNCS, vol. 12110, pp. 495–526. Springer
(2020)

29

9. Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Scalable, transparent, and
post-quantum secure computational integrity. IACR Cryptol. ePrint Arch. p. 46
(2018), http://eprint.iacr.org/2018/046

10. Ben-Sasson, E., Chiesa, A., Riabzev, M., Spooner, N., Virza, M., Ward, N.P.:
Aurora: Transparent succinct arguments for R1CS. In: EUROCRYPT 2019. LNCS,
vol. 11476, pp. 103–128. Springer (2019)

11. Blum, A., Furst, M.L., Kearns, M.J., Lipton, R.J.: Cryptographic primitives based
on hard learning problems. In: CRYPTO 1993. LNCS, vol. 773, pp. 278–291.
Springer (1993)

12. Bootle, J., Cerulli, A., Ghadafi, E., Groth, J., Hajiabadi, M., Jakobsen, S.K.: Linear-
time zero-knowledge proofs for arithmetic circuit satisfiability. In: ASIACRYPT
2017. LNCS, vol. 10626, pp. 336–365. Springer (2017)

13. Bootle, J., Chiesa, A., Guan, Z., Liu, S.: Linear-time probabilistic proofs with
sublinear verification for algebraic automata over every field. IACR Cryptol. ePrint
Arch. p. 1056 (2022), https://eprint.iacr.org/2022/1056

14. Bootle, J., Chiesa, A., Liu, S.: Zero-knowledge iops with linear-time prover and
polylogarithmic-time verifier. In: EUROCRYPT 2022. LNCS, vol. 13276, pp. 275–
304. Springer (2022)

15. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y.: Compressing vector OLE. In: CCS
2018. pp. 896–912. ACM (2018)

16. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Kohl, L., Rindal, P., Scholl, P.: Efficient
two-round OT extension and silent non-interactive secure computation. In: CCS
2019. pp. 291–308. ACM (2019)

17. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Kohl, L., Scholl, P.: Efficient pseudo-
random correlation generators: Silent OT extension and more. In: CRYPTO 2019.
LNCS, vol. 11694, pp. 489–518. Springer (2019)

18. Braun, L., de Saint Guilhem, C.D., Jadoul, R., Orsini, E., Smart, N.P., Tanguy,
T.: Zk-for-z2k: Mpc-in-the-head zero-knowledge proofs for Z2k . In: IMACC 2023.
LNCS, vol. 14421, pp. 137–157. Springer (2023)

19. Briaud, P., Øygarden, M.: A new algebraic approach to the regular syndrome
decoding problem and implications for PCG constructions. In: EUROCRYPT 2023.
LNCS, vol. 14008, pp. 391–422. Springer (2023)

20. Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs:
Short proofs for confidential transactions and more. In: SP 2018. pp. 315–334. IEEE
Computer Society (2018)

21. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: FOCS 2001. pp. 136–145. IEEE Computer Society (2001)

22. Cascudo, I., Cramer, R., Xing, C., Yuan, C.: Amortized complexity of information-
theoretically secure MPC revisited. In: CRYPTO 2018. LNCS, vol. 10993, pp.
395–426. Springer (2018)

23. Cascudo, I., Gundersen, J.S.: A secret-sharing based MPC protocol for boolean
circuits with good amortized complexity. In: TCC 2020. LNCS, vol. 12551, pp.
652–682. Springer (2020)

24. Chase, M., Derler, D., Goldfeder, S., Orlandi, C., Ramacher, S., Rechberger, C.,
Slamanig, D., Zaverucha, G.: Post-quantum zero-knowledge and signatures from
symmetric-key primitives. In: CCS 2017. pp. 1825–1842. ACM (2017)

25. Cheon, J.H., Kim, D., Lee, K.: Mhz2k: MPC from HE over Z2k with new packing,
simpler reshare, and better ZKP. In: CRYPTO 2021. LNCS, vol. 12826, pp. 426–456.
Springer (2021)

30

http://eprint.iacr.org/2018/046
https://eprint.iacr.org/2022/1056

26. Chiesa, A., Hu, Y., Maller, M., Mishra, P., Vesely, P., Ward, N.P.: Marlin: Pre-
processing zksnarks with universal and updatable SRS. In: EUROCRYPT 2020.
LNCS, vol. 12105, pp. 738–768. Springer (2020)

27. Cramer, R., Damgård, I., Escudero, D., Scholl, P., Xing, C.: SPDZ2k : Efficient
MPC mod 2k for dishonest majority. In: CRYPTO 2018. LNCS, vol. 10992, pp.
769–798. Springer (2018)

28. Cramer, R., Rambaud, M., Xing, C.: Asymptotically-good arithmetic secret sharing
over Z/pℓZ with strong multiplication and its applications to efficient MPC. In:
CRYPTO 2021. LNCS, vol. 12827, pp. 656–686. Springer (2021)

29. Damgård, I., Zakarias, S.: Constant-overhead secure computation of boolean circuits
using preprocessing. In: TCC 2013. LNCS, vol. 7785, pp. 621–641. Springer (2013)

30. Debris-Alazard, T., Tillich, J.: Statistical decoding. In: ISIT 2017. pp. 1798–1802.
IEEE (2017)

31. Dittmer, S., Ishai, Y., Lu, S., Ostrovsky, R.: Improving line-point zero knowledge:
Two multiplications for the price of one. In: CCS 2022. pp. 829–841. ACM (2022)

32. Dittmer, S., Ishai, Y., Ostrovsky, R.: Line-point zero knowledge and its applications.
In: ITC 2021. LIPIcs, vol. 199, pp. 5:1–5:24. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik (2021)

33. Escudero, D., Hong, C., Liu, H., Xing, C., Yuan, C.: Degree-d reverse multiplication-
friendly embeddings: Constructions and applications. In: Guo, J., Steinfeld, R. (eds.)
ASIACRYPT 2023. LNCS, vol. 14438, pp. 106–138. Springer (2023)

34. Escudero, D., Xing, C., Yuan, C.: More efficient dishonest majority secure compu-
tation over Z2k via galois rings. In: CRYPTO 2022. LNCS, vol. 13507, pp. 383–412.
Springer (2022)

35. Esser, A., Kübler, R., May, A.: LPN decoded. In: CRYPTO 2017. LNCS, vol. 10402,
pp. 486–514. Springer (2017)

36. Feneuil, T., Rivain, M.: Threshold linear secret sharing to the rescue of mpc-in-the-
head. In: Guo, J., Steinfeld, R. (eds.) ASIACRYPT 2023. LNCS, vol. 14438, pp.
441–473. Springer (2023)

37. Frederiksen, T.K., Nielsen, J.B., Orlandi, C.: Privacy-free garbled circuits with
applications to efficient zero-knowledge. In: EUROCRYPT 2015. LNCS, vol. 9057,
pp. 191–219. Springer (2015)

38. Gabizon, A., Williamson, Z.J., Ciobotaru, O.: PLONK: permutations over lagrange-
bases for oecumenical noninteractive arguments of knowledge. IACR Cryptol. ePrint
Arch. p. 953 (2019), https://eprint.iacr.org/2019/953

39. Ganesh, C., Nitulescu, A., Soria-Vazquez, E.: Rinocchio: Snarks for ring arithmetic.
J. Cryptol. 36(4), 41 (2023)

40. Giacomelli, I., Madsen, J., Orlandi, C.: Zkboo: Faster zero-knowledge for boolean
circuits. In: USENIX Security 2016. pp. 1069–1083. USENIX Association (2016)

41. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J.
ACM 33(4), 792–807 (1986)

42. Golovnev, A., Lee, J., Setty, S.T.V., Thaler, J., Wahby, R.S.: Brakedown: Linear-
time and field-agnostic snarks for R1CS. In: CRYPTO 2023. LNCS, vol. 14082, pp.
193–226. Springer (2023)

43. Groth, J.: On the size of pairing-based non-interactive arguments. In: EUROCRYPT
2016. LNCS, vol. 9666, pp. 305–326. Springer (2016)

44. Guo, X., Yang, K., Wang, X., Zhang, W., Xie, X., Zhang, J., Liu, Z.: Half-tree:
Halving the cost of tree expansion in COT and DPF. In: EUROCRYPT 2023.
LNCS, vol. 14004, pp. 330–362. Springer (2023)

31

https://eprint.iacr.org/2019/953

45. Gvili, Y., Ha, J., Scheffler, S., Varia, M., Yang, Z., Zhang, X.: Turboikos: Improved
non-interactive zero knowledge and post-quantum signatures. In: Sako, K., Tip-
penhauer, N.O. (eds.) Applied Cryptography and Network Security, ACNS 2021.
LNCS, vol. 12727, pp. 365–395. Springer (2021)

46. Heath, D., Kolesnikov, V.: Stacked garbling for disjunctive zero-knowledge proofs.
In: EUROCRYPT 2020. LNCS, vol. 12107, pp. 569–598. Springer (2020)

47. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge from secure
multiparty computation. In: STOC 2007. pp. 21–30. ACM (2007)

48. Jawurek, M., Kerschbaum, F., Orlandi, C.: Zero-knowledge using garbled circuits:
how to prove non-algebraic statements efficiently. In: CCS 2013. pp. 955–966. ACM
(2013)

49. Kales, D., Zaverucha, G.: Efficient lifting for shorter zero-knowledge proofs and
post-quantum signatures. IACR Cryptol. ePrint Arch. p. 588 (2022), https://
eprint.iacr.org/2022/588

50. Katz, J., Kolesnikov, V., Wang, X.: Improved non-interactive zero knowledge with
applications to post-quantum signatures. In: CCS 2018. pp. 525–537. ACM (2018)

51. Lin, F., Xing, C., Yao, Y., Yuan, C.: Amortized NISC over Z2k from RMFE. In: Guo,
J., Steinfeld, R. (eds.) ASIACRYPT 2023. LNCS, vol. 14438, pp. 38–70. Springer
(2023)

52. Liu, H., Wang, X., Yang, K., Yu, Y.: The hardness of LPN over any integer ring
and field for PCG applications. In: Joye, M., Leander, G. (eds.) EUROCRYPT
2024. LNCS, vol. 14656, pp. 149–179. Springer (2024)

53. Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: nearly practical verifiable
computation. Commun. ACM 59(2), 103–112 (2016)

54. Peters, C.: Information-set decoding for linear codes over Fq. In: PQCrypto 2010.
LNCS, vol. 6061, pp. 81–94. Springer (2010)

55. Ron-Zewi, N., Rothblum, R.D.: Proving as fast as computing: succinct arguments
with constant prover overhead. In: STOC 2022. pp. 1353–1363. ACM (2022)

56. Roy, L.: Softspokenot: Quieter OT extension from small-field silent VOLE in the
minicrypt model. In: CRYPTO 2022. LNCS, vol. 13507, pp. 657–687. Springer
(2022)

57. de Saint Guilhem, C.D., Orsini, E., Tanguy, T.: Limbo: Efficient zero-knowledge
mpcith-based arguments. In: Kim, Y., Kim, J., Vigna, G., Shi, E. (eds.) CCS 2021.
pp. 3022–3036. ACM (2021)

58. Setty, S.T.V.: Spartan: Efficient and general-purpose zksnarks without trusted
setup. In: CRYPTO 2020. LNCS, vol. 12172, pp. 704–737. Springer (2020)

59. Wan, Z.X.: Lectures on finite fields and Galois rings. World Scientific Publishing
Company (2003)

60. Weng, C., Yang, K., Katz, J., Wang, X.: Wolverine: Fast, scalable, and
communication-efficient zero-knowledge proofs for boolean and arithmetic circuits.
In: IEEE Symposium on Security and Privacy 2021. pp. 1074–1091. IEEE (2021)

61. Weng, C., Yang, K., Yang, Z., Xie, X., Wang, X.: Antman: Interactive zero-
knowledge proofs with sublinear communication. In: CCS 2022. pp. 2901–2914.
ACM (2022)

62. Xie, T., Zhang, Y., Song, D.: Orion: Zero knowledge proof with linear prover time.
In: CRYPTO 2022. LNCS, vol. 13510, pp. 299–328. Springer (2022)

63. Yang, K., Sarkar, P., Weng, C., Wang, X.: Quicksilver: Efficient and affordable
zero-knowledge proofs for circuits and polynomials over any field. In: CCS 2021.
pp. 2986–3001. ACM (2021)

32

https://eprint.iacr.org/2022/588
https://eprint.iacr.org/2022/588

64. Yang, K., Weng, C., Lan, X., Zhang, J., Wang, X.: Ferret: Fast extension for
correlated OT with small communication. In: CCS 2020. pp. 1607–1626. ACM
(2020)

65. Yao, A.C.: How to generate and exchange secrets (extended abstract). In: FOCS
1986. pp. 162–167. IEEE Computer Society (1986)

66. Zahur, S., Rosulek, M., Evans, D.: Two halves make a whole - reducing data transfer
in garbled circuits using half gates. In: EUROCRYPT 2015. LNCS, vol. 9057, pp.
220–250. Springer (2015)

Supplementary Material

A More Preliminaries & Functionalities

In this section, we give a brief introduction about the UC framework, commitment
scheme, and additively homomorphic encryption in Appendix A.1. Next, we
describe several functionalities in Appendix A.2

A.1 More Preliminaries

Security Model. In UC framework [21], security is defined via the comparison
of an ideal world and a real world. In the real world, the parties interact with
each other following the protocol. In the ideal world, the parties interact with an
ideal functionality F that is designed to ideally realize the protocol rather than
each other. There exists an environment Z, who lives both in the real world and
the ideal world, provides inputs to the parties and can read the outputs. The
corrupted party A, controlled by the environment Z, interacts with honest parties
in the real world. We consider active adversary and static corruption, namely the
adversary A’s behavior is arbitrary and not necessarily according to the protocol
specification and corruption occurs before the protocol execution. Further, the
environment Z is allowed to interact with A at any point throughout the protocol
execution. The UC-security is guaranteed, if there is a simulator S plugged to the
ideal world that interacts with A such that the environment Z, who can observe
A’s view along with all parties’ inputs and outputs, can not distinguish S and the
honest parties. More formally, We say a protocol Π UC-realizes a functionality
F with security parameter κ, if there is a probabilistic polynomial-time (PPT)
simulator S such that no PPT environment Z can distinguish the ideal world
and the real world with advantage 1/poly(κ).
Commitment Scheme. A commitment scheme is a two-party protocol consisting
of two algorithms, Commit and Open. In the commit phase of the protocol, the
sender PS invokes Commit to commit some value m, obtaining (com, unv) ←
Commit(m) as the result. Then he sends com to the receiver PR. Later on in the
unveil phase, PS is required to send m along with the unveil information unv to
PR such that PR can check whether Open(com, unv,m) = 1. Informally, there are
two security properties that a commitment scheme should satisfy; 1.Hiding: PR
can not learn anything about m from com in the commit phase, and 2.Binding:

33

Functionality FEQ

On input VP from P and VV from V:
1. Send VP and (VP

?
= VV) to V.

2. If V is honest and VP = VV , or V is corrupted and sends continue, then send
(VP

?
= VV) to P.

3. If V is honest and VP ̸= VV , or V is corrupted and sends abort, then send
abort to P.

Fig. 12: Ideal functionality for equality tests.

Functionality FOT

On input b ∈ {0, 1} from PR and m0,m1 from PS : Send mb to PR.

Fig. 13: Ideal functionality for oblivious transfer.

PS can not provide a m′ ̸= m and a unv′ such that Open(com, unv′,m′) = 1 in
the unveil phase.
Additively Homomorphic Encryption. We describe the Additively Homo-
morphic Encryption (AHE) scheme in the private-key setting, which consists of
three algorithms, KeyGen, Enc, Dec. The KeyGen algorithm outputs a secret key
sk, which is determined by its random tape. The Enc algorithm takes the secret
key sk and message m as inputs, and outputs a ciphertext ⟨m⟩, while the Dec

algorithm decrypts the ciphertext via sk, denoted by m := Dec(⟨m⟩, sk). The
additive property indicates that the decryption of a linear combination of cipher-
texts equals to the corresponding linear combination of plaintexts. We suppose
the AHE scheme works on a Galois ring, and satisfies the chosen plaintext attack
(CPA) security. For security of our protocol ΠPAC (Figure 18), we additionally
require the AHE scheme to satisfy circuit privacy and degree restriction, similar
to that in [61]. Such AHE schemes exist as shown in [25].

A.2 More Functionalities

We give the equality test functionality FEQ in Figure 12, the oblivious transfer
functionality FOT in Figure 13, the random (N − 1)-out-of-N OT functionality
FN

OT−1̄ in Figure 14. In addition, two variants of VOLE functionalitiess FGR(2k,d)
sfVOLE

and FGR(2k,d)
qVOLE are presented in Figure 15 and Figure 16, respectively. Finally, the

spVOLE functionality FGR(2k,d)
spVOLE is presented in Figure 17.

34

Functionality FN
OT−1̄

This functionality is parameterized by a ring R, and an integer N .
Init: Upon receiving (Init) from both parties:
1. If PS is honest, sample s1, ..., sN

$←R; otherwise receive s1, ..., sN ∈ R from A.
2. If PR is honest, sample ∆ $← [N], and send ∆ to PR. Otherwise receive ∆ ∈ [N]
and {ŝi ∈ R}i∈[N]\∆ from the adversary A, then reset si = ŝi, for i ∈ [N]\{∆}.
Get: Upon receiving (Get) from both parties:
Send {si}i∈[N] to PS and {si}i∈[N]\{∆} to PR.

Fig. 14: Ideal functionality for random (N − 1)-out-of-N oblivious transfer.

Functionality FGR(2k,d)
sfVOLE

Init: Upon receiving (Init) from both parties, sample ∆ $← F2d if PR is honest,
and receive ∆ ∈ F2d from the adversary A otherwise. Store ∆ and send it to PR.
All further (Init) commands will be ignored.
Extend: Upon receiving (Extend, ℓ) from both parties, proceed as follows:

1. If PR is honest, sample K
$← GR(2k, d)ℓ. Otherwise receive K from A.

2. If PS is honest, sample x
$← GR(2k, d)ℓ and compute M := K − ∆ · x ∈

GR(2k, d)ℓ. Otherwise, receive x ∈ GR(2k, d)ℓ and M ∈ GR(2k, d)ℓ from A and
then recompute K := M+∆ · x.

3. Send (x,M) to PS and K to PR.

Fig. 15: Ideal functionality of VOLE over GR(2k, d).

Functionality FGR(2k,d)
qVOLE

FGR(2k,d)
qVOLE extends the existing VOLE functionality FGR(2k,d)

VOLE (Figure 1). Init and

Extend are identical to those in FGR(2k,d)
VOLE , respectively.

Global-key Query: If PS is corrupted, receive (Guess,∆′) from A with ∆′ ∈
GR(2k, d). If ∆′ = ∆, send success to PS and ignore any subsequent global-key
queries. Otherwise, send abort to both parties and abort.

Fig. 16: Ideal functionality for VOLE over GR(2k, d) with global key query.

35

Functionality FGR(2k,d)
spVOLE

FGR(2k,d)
spVOLE extends the existing VOLE functionality FGR(2k,d)

VOLE (Figure 1). Init and

Extend are identical to those in FGR(2k,d)
VOLE , respectively.

SP-Extend: Upon receiving (SP-Extend, n) from both parties, proceed as follows:

1. If PR is honest, sample v
$← GR(2k, d)n. Otherwise receive v from A.

2. If PS is honest, sample uniform u from GR(2k, d)n with exactly one entry
invertible and zeros everywhere else, and compute w := v−∆ · u ∈ GR(2k, d)n.
Otherwise, receive u ∈ GR(2k, d)n (with at most one nonzero entry) and
w ∈ GR(2k, d)n from A, then recompute v := w +∆ · u.

3. If PR is corrupted, receive a set I ⊆ [0, n) from A. Let α ∈ [0, n) be the
index of the nonzero entry of u. If α ∈ I, send success to PR and continue.
Otherwise, send abort to both parties and abort.

4. Send (u,w) to PS and v to PR.

Global-key Query: If PS is corrupted, receive (Guess,∆′, s) from A with ∆′ ∈
GR(2k, d) and s ∈ [k]. If ∆′ = ∆ mod 2s, send success to PS and ignore any
subsequent global-key queries. Otherwise, send abort to both parties and abort.

Fig. 17: Ideal functionality for single-point VOLE over GR(2k, d).

B LPN over Galois Rings

B.1 Learning Parity with Noise

The Learning Parity with Noise (LPN) assumption [11] has been studied for
decades, and it was adapted to be defined over a finite field Fq [15] or an integer
ring Zn [4], recently. We give the definition for (primal) LPN over arbitrary rings
below.

Definition 3 (LPN). Let D(R) = {Dt,n(R)} be the family of distributions over
the ring R where for any integers t ≤ n, Im(Dt,n(R)) ⊂ Rn. Let G be a proba-
bilistic code generation algorithm such that G(m,n,R) outputs a generator matrix
A ∈ Rm×n. Let parameters m,n, t be implicit functions of security parameter
λ. We say that the decisional (D,G,R)-LPN(m,n, t) problem is (T, ϵ)-hard if for
every probabilistic distinguisher B running in time T , we have that

|Pr[B(A,x ·A+ e) = 1]− Pr[B(A,u) = 1]| ≤ ϵ,

where A← G(m,n,R),x $← Rm,u
$← Rn, and e← Dt,n(R).

Informally, the decisional LPN(m,n, t) assumption states that b := x ·A+ e
is pseudorandom, where A,x, e are defined as above and A is public. There exists
another family of LPN assumptions, i.e., the dual LPN.

36

Definition 4 (Dual LPN). Let D(R) = {Dt,n(R)} be the family of distribu-
tions over the ring R where for any integers t ≤ n, Im(Dt,n(R)) ⊂ Rn. Let G⊥
be a probabilistic dual code generation algorithm such that G⊥(m,n,R) outputs a
parity check matrix H ∈ Rn×(n−m). Let parameters m,n, t be implicit functions
of security parameter λ. We say that the decisional dual (D,G,R)-LPN(m,n, t)
problem is (T, ϵ)-hard if for every probabilistic distinguisher B running in time
T , we have that

|Pr[B(H, e ·H) = 1]− Pr[B(H,u) = 1]| ≤ ϵ,

where H ← G⊥(m,n,R),u $← Rm, and e← Dt,n(R).

We mainly consider three kinds of noise distributions in this paper:
Bernoulli. Let Ber(R) = {Berρ,n(R)}ρ,n be the family of Bernoulli distributions.
e← Berρ,n(R) indicates that each entry of e is a uniformly random element in R
with probability ρ and zero with probability 1− ρ. Thus the expected Hamming
weight of e is ρN(|R| − 1)/|R|. We remark that this definition is equivalent to
sampling a uniformly non-zero element in R with probability ρN(|R| − 1)/|R|
for each entry.
Fixed Hamming weight. Let HW(R) = {HWt,n(R)}t,n be the family of distribu-
tions of uniformly random vectors with fixed Hamming weight. Let H denote
the set {e ∈ Rn | wt(e) = t}. Thus we have e← HWt,n(R) ⇐⇒ e← UH .
Regular Hamming weight. Let RG(R) = {RGt,n(R)}t,n be the family of
distributions of uniformly random regular weight vectors. W.o.l.g. we assume
t|n and let e = (e(1), ..., e(t)), where e(i) ∈ Rn/t, i ∈ [t]. Let G denote the set
{e ∈ Rn | wt(e(i)) = 1, i ∈ [t]}. Thus we have e← RGt,n(R) ⇐⇒ e← UG, and
RG(R) can be viewed as a special case of HW(R).

B.2 Reductions for LPN over GR(2k, d)

Theorem 9 (Theorem 6, restated). If decisional (D,G, GR(2k, d))−LPN(m,n,w1)
is (T, ϵ)-hard, then decisional (D,G,F2d)−LPN(m,n,w2) is (T−poly(m,n),O(hϵ))-
hard, where (D, w1, w2, h) ∈ {(HW, t, 2

d(k−1)(2d−1)
2dk−1

t,
√
t), (Ber, ρ, ρ, 1)}.

Proof. Let (A,b := x·A+e) be an LPN instance over GR(2k, d). As GR(2k, d)/(2) ∼=
F2d , we observe that (A(0) := A mod 2,b(0) := b mod 2) constitute exactly the
LPN samples over F2d for noise e(0) := e mod 2. Since e ← HWt,n(GR(2

k, d)),
the noise vector e(0) follows a Bernoulli-like distribution over F2d . Further, it
can be observed that e(0) has expected weight t′ = 2d(k−1)(2d−1)

2dk−1
· t. One can nat-

urally generalize Lemma 2 in [52] and obtain that the noise vector e(0) follows
the uniform fixed-weight distribution HWt′,n(F2d) with probability Ω

(
1/
√
t
)
. On

the other hand, (A(0),u(0)) are uniformly random as well. Therefore, one can
use a (HW,G,F2d) − LPN(m,n, t′) distinguisher to distinguish (A(0),b(0)) from
uniform samples. The proof for the second statement is similar, except that for
e← Berρ,n(GR(2

k, d)), one can immediately gets that e(0) ∼ Berρ,n(F2d). ⊓⊔

37

Theorem 10 (Theorem 7, restated). If decisional (Ber,F2d)−LPN(m,n, ρ(2d−1)
(1−ρ)2dk+ρ2d

)

is (T, ϵ)-hard, then decisional (Ber, GR(2k, d))−LPN(m,n, ρ) is (T−poly(m,n), kϵ)-
hard.

Proof. Let (A,b := x·A+e) be an LPN instance over GR(2k, d). As GR(2k, d)/(2) ∼=
F2d , for any a ∈ GR(2k, d), it can be uniquely written as the form

a = a(0) + a(1) · 2 + ...+ a(k−1) · 2k−1,

where a(i) ∈ F2d , i ∈ [0, k). Thus, we can define a decomposition function
Decom such that (a(0), a(1), ..., a(k−1)) := Decom(a) ∈ Fk

2d . We use Decom to
decompose the matrix and vectors, and we obtain (A(0), A(1), ..., A(k−1)) :=
Decom(A), (x(0),x(1), ...,x(k−1)) := Decom(x), (e(0), e(1), ..., e(k−1)) := Decom(e),
(b(0),b(1), ...,b(k−1)) := Decom(b). Therefore, we have b(0) = x(0) · A(0) + e(0),
and for i ∈ [0, k), we have that

b(i) = (x(i) ·A(0) + e(i)) + fi(A,x
(0), ...,x(i−1), e(0), ..., e(i−1)) mod 2,

where fi is the sum of all other terms involving the individual x(j) and e(j) with
j ≤ i− 1. Define the hybrid distributions H0, ...,Hk as follows:

H0 = (A,u(0), ...,u(i−1),u(i), ...,u(k−1))
Hi = (A,b(0), ...,b(i−1),u(i), ...,u(k−1))
Hk = (A,b(0), ...,b(i−1),b(i), ...,b(k−1))

where u(i) $← Fn
2d for i = 0, 1, ..., k−1. Since x is sampled uniformly at random, its

decomposition x(i) are independent and uniformly random as well. To distinguish
the adjacent hybrids Hi and Hi+1, it suffices to distinguish u(i) and b(i) with the
knowledge of (b(0), ...,b(i−1)). The fi term can be neglected if the effective noise
rate of e(i) conditioned on e(0), ..., e(i−1) is sufficient to make b(i) pseudorandom.
Consider a single noise sample (e

(0)
j , e

(1)
j , ..., e

(k−1)
j)← Decom(Berρ,n(GR(2

k, d))),
where e

(i)
j is the j-th entry of e(i). If there exists a non-zero component in

(e
(0)
j , e

(1)
j , ..., e

(i−1)
j), e(i)j must be uniformly random, which makes b(i)j uniformly

random. Thus, we have that

Pr
[
e
(i)
j ̸= 0

∣∣∣ (e(0)j , e
(1)
j , ..., e

(i−1)
j) = 0

]
=
ρ(2d − 1)(2−d(i+1))

1− ρ+ ρ2−di

is the noise rate needed to keep the computational indistinguishability between Hi

and Hi+1, which reaches its minimum when i = k − 1. ⊓⊔

B.3 Attacks on LPN over Galois Rings

To the best of our knowledge, we are not aware of any advantages for attacks over
Galois rings compared to Galois fields. Therefore, we review the main attacks
that may work on LPN over Galois rings, following the analysis of previous works
[35,15,16,4,52,19].

38

Pooled Gaussian Elimination This attack takes time
(
n
t

)(
n−m

t

) ·m2.8, which

was estimated as (n
n−t)

m ·m2.8 in [15]. By the following inequality,(
n
t

)(
n−m

t

) =
n!(n−m− t)!
(n−m)!(n− t)!

=

t−1∏
i=0

(n− i)/
t−1∏
i=0

(n−m− i) > (
n

n−m
)t,

we obtain a more accurate estimation for LPN with low noise, i.e., (n
n−m)t ·m2.8.

We give the comparison in Table 2. Therefore, we use this formula to estimate
the complexity of Pooled Gaussian Elimination attack.

Table 2: Comparison of two estimations.
LPN parameters Complexity(bit)

m n t Gauss Estimation [15] Estimation(ours)
108112 358620 215 158.15 140.36 158.11
148912 649590 295 158.96 145.71 158.93

Statistical Decoding (SD) The authors of [15] simplified the complexity of
the SD attack [30] by log(m+ 1) + t · log n

n−m−1 . A recent work [52] pointed out
that to succeed with constant advantage, SD attack requires at most

log(m+ 1) + 2 ·
(
log

(
n
t

)
− log

(
n−m−1

t

)
+ log

2|Fq|
|Fq| − 1

)
bits arithmetic operations over Fq. According to the proof of Theorem 10 of [52],
we observe that only the term log

2|Fq|
|Fq|−1 relates to the algebraic structure of the

ring (essentially, the fraction of units of the ring). Therefore, we can naturally
adapt their results to Galois rings, and we obtain that the bit security of the
LPN instance with respect to SD attack is computed as

log(m+ 1) + 2 ·
(
log

(
n
t

)
− log

(
n−m−1

t

)
+ log

2pd

pd − 1

)
≈ log(m+ 1) + 2t · (log n

n−m− 1
) + 2.

Information Set Decoding (ISD) The authors of [52] analysed known ISD
variants for different field size and show that the generalized SD-ISD attack [54] is
equivalent to the pooled Gaussian attack for large fields. Since LPN over GR(2k, d)
can be reduced to LPN over F2d and d is set linear in the statistical security
parameter κ in our constructions, the generalized SD-ISD attack is equivalent to
the pooled Gaussian attack on LPN instantiations for our VOLE constructions.
Algebraic Geometry Attack [19] To our best knowledge, this is the only
attack on LPN that is able to exploit the regular noise distribution. The algebraic

39

geometry attack performs better than Pooled Gaussian Elimination, SD, ISD
attacks, on solving regular LPN problems with a small code rate (i.e., m/n). As
most PCG applications suggest the dimension parameter m to be relatively large,
the algebraic geometry attack has few advantages in these settings.

From above discussions, we can use the pooled Gaussian attack to estimate
the LPN security of our constructions.

C Deferred Proofs of Zero-Knowledge Protocols

C.1 Security of re-embedding VOLE

Theorem 11 (Theorem 1, restated). ΠGR(2k,d)
embVOLE UC-realizes FGR(2k,d)

embVOLE in

the FGR(2k,d)
VOLE -hybrid model. In particular, no PPT environment Z can distinguish

the real world execution from the ideal world simulation except with advantage at
most 2−s + 2−d.

Proof. We divide our proof into two parts. First, we consider PS is corrupted
and construct a PPT simulator SS , then we consider PR is corrupted and build
a PPT simulator SR as well. Both Simulators interact with the corrupted party
in the ideal world and can read the corrupted party’s inputs to the functionality
FGR(2k,d)

VOLE .
Corrupted PS: Whenever the Extend-pair procedure is going to run, SS acts
as follows:

1. SS reads M(1),M′,x,y ∈ GR(2k, d)n+s that A sends to FGR(2k,d)
VOLE .

2. Upon receiving η ∈ GR(2k, d)n+s from A, SS sets M(2) := M′.
3. SS samples χ(1), ...,χ(s) $← Zn

2k , and sends them to A.
4. Upon receiving a,b ∈ GR(2k, d)s from A. If b ̸= τ(a), SS aborts.
5. SS receives M̂

(1)
i , M̂

(2)
i , i ∈ [s] from A. SS computes M̃

(1)
i := M

(1)
n+i +∑

j∈[n] χ
(i)
j · M

(1)
j , and M̃

(2)
i := M

(2)
n+i +

∑
j∈[n] χ

(i)
j · M

(2)
j for i ∈ [s]. If

η = (τ(x) − y), M̂(2) = M̃(2), and M̂(2) = M̃(2) all hold, SS sends
(x[1 : n],M(1)[1 : n],M(2)[1 : n]) to FGR(2k,d)

embVOLE. Otherwise, SS aborts.

It can be observed that when SS aborts in step 2 or step 4 of the simulation,
the honest PR aborts in corresponding step of the protocol as well. Besides,
χ(1), ...,χ(s) are sampled in the same way of the ideal simulation and real execu-
tion. Therefore, it remains to consider the check of step 5. Basically, A can cheat
by sending η ∈ GR(2k, d)n+s with η ̸= τ(x) − y. Let η = τ(x) − y + ε, where
ε ∈ GR(2k, d)(ψ)n+s. Then, A can compute the following

ai := xn+i +
∑
j∈[n]

χ
(i)
j · xj , bi := τ(xn+i) +

∑
j∈[n]

χ
(i)
j · τ(xj),

for i ∈ [s]. These ai, bi would pass the check of honest PR. Also, A can compute

M̂
(1)
i :=M (1)

xn+i
+

∑
j∈[n]

χ
(i)
i ·M

(1)
xj
, M̂

(2)
i :=M (2)

xn+i
+

∑
j∈[n]

χ
(i)
i ·M

(2)
xj
,

40

for i ∈ [s]. This M̂(1) can also pass the check of honest PR. However, for M̃(2)

in the real protocol, we have that

M̃
(2)
i = K

(2)
n+i +

∑
j∈[n]

χ
(i)
j ·K

(2)
j −∆ · bi

= (M
(2)
n+i + (yn+i + ηn+i)∆) +

∑
j∈[n]

χ
(i)
j (M

(2)
j + (yj + ηj)∆)−∆(τ(xn+i) +

∑
j∈[n]

χ
(i)
j τ(xj))

=M
(2)
n+i + (

∑
j∈[n]

χ
(i)
j ·M

(2)
j) +∆ · (εn+i +

∑
j∈[n]

χ
(i)
j · εj)

= M̂
(2)
i +∆ · (εn+i +

∑
j∈[n]

χ
(i)
j · εj).

Thus, the check M̂(2) = M̃(2) passes if and only if

∆ · (εn+i +
∑
j∈[n]

χ
(i)
j · εj) = 0,

for all i ∈ [s]. If εn+i+
∑

i∈[n] χ
(i)
j ·εj ≠ 0, from lemma 1, the above equality holds

with probability at most 2−d. Since χ(i)
j ∈ Z2k , for j ∈ [n], εn+i+

∑
j∈[n] χ

(i)
j ·εj = 0

holds with probability at most 1/2. Combining together, M̂ = M̂′ holds with
probability at most 2−s+2−d in real execution if η ̸= τ(x)−y, while in simulation,
this will leads to abort. Note that if η is correct, the outputs of honest PR are
computed in the same way in two worlds. Therefore, environment Z can distinguish
the ideal simulation and real execution with advantage at most 2−s + 2−d.
Corrupted PR: SR reads ∆ ∈ GR(2k, d) that A sends to FGR(2k,d)

VOLE in the Init

procedure. SR then sends ∆ to FGR(2k,d)
embVOLE. Every time the Extend-pair procedure

is executed, SR does as follows:

1. SR records K(1),K′ ∈ GR(2k, d)n+s sent by A. SR samples η̂ := (η,η′)
$←

GR(2k, d)n+s and sends η̂ to A.
2. SR sets K(2) := K′ +∆ · η̂. Upon receiving χ(i) ∈ Zn

2k , i ∈ [s] from A, SR

samples a
$← GR(2k, d)s, and computes b := τ(a). Then, SR sends a,b to A.

3. SR computes M̂ (1)
i := K

(1)
n+i +

∑
j∈[n] χ

(i)
j ·K

(1)
j −∆ · ai, and M̂ (2)

i := K
(2)
n+i +∑

j∈[n] χ
(i)
j ·K

(2)
j −∆ · bi, for i ∈ [s]. SR sends M̂(1), M̂(2) to A.

4. SR sends K(1)[1 : n],K(2)[1 : n] to FGR(2k,d)
embVOLE.

The indistinguishability between ideal simulation and real execution for corrupted
PR is simple. We first consider the view of A. In real protocol, A receives a
uniformly random η ∈ GR(2k, d)n+s, since η := τ(x) − y and y is distributed
uniformly at random in GR(2k, d)n+s. While in simulation, η̂ are uniformly
sampled from GR(2k, d)n+s as well. As for (a,b) in real protocol, b := τ(a) and is
a is uniformly random in GR(2k, d)s due to the mask x[n+1 : n+ s]. Thus, (a,b)

41

generated by SR have the same distribution as that in the real protocol. The final
message that A receives from SR is M̂(1), M̂(2). It can be easily verified that

M̃
(1)
i = K

(1)
n+i +

∑
j∈[n]

χ
(i)
j ·K

(1)
j −∆ · ai =M

(1)
n+i +

∑
j∈[n]

χ
(i)
j ·M

(1)
j = M̂

(1)
i ,

and

M̃
(2)
i = K

(2)
n+i +

∑
j∈[n]

χ
(i)
j ·K

(2)
j −∆ · bi =M

(2)
n+i +

∑
j∈[n]

χ
(i)
j ·M

(2)
j = M̂

(2)
i ,

Thus M̂(1), M̂(2) has the same distribution in both worlds. Finally, the output
x[1 : n] of the honest PS are identically distributed uniformly at random in both
real protocol and ideal world. Therefore, no PPT environment Z can distinguish
the ideal simulation and the real execution. This completes the proof. ⊓⊔

C.2 Security of Πm,n,t
ZK

Theorem 12 (Theorem 2, restated). Protocol Πm,n,t
ZK UC-realizes Fm

ZK in the
FGR(2k,d)

embVOLE-hybrid model with soundness error 2−(d−2) and information-theoretic
security.

Proof. We divide our proof into two parts. First, we consider P is corrupted, then
we consider V is corrupted. In each case, we build a PPT simulator S to interact
with the corrupted party in the ideal world, which can read the corrupted party’s
inputs to functionalities FGR(2k,d)

embVOLE.
Corrupted P: S interacts with A as follows:

1. S samples ∆ $← GR(2k, d) and records (µ,Mµ,M
′
µ), (ν,Mν ,M

′
ν) and (π,Mπ)

that A sends to FGR(2k,d)
embVOLE. Thus, S can immediately obtain the MACs

([µi], [τ(µi)])i∈[n], ([νi], [τ(νi)])i∈[t], [π].
2. Upon receiving δ from A, S locally computes [τ(ωi)] := [τ(µi)] + τ(δi), for

i ∈ [n].
3. S runs the rest of the protocol as an honest verifier, using the MACs gen-

erated in previous steps. If the honest verifier outputs true, S computes
(w(1),w(2), ...,w(m)) := ψ(τ(ω)) and then sends them and the circuit C to
Fm

ZK. Otherwise, S sends w := ⊥ and C to Fm
ZK and aborts.

From the simulation, we can see that S behaves like an honest verifier towards A,
therefore, the environment Z can not distinguish the ideal simulation and real
execution from the adversary A’s view. Note that Z has access to the output of
the honest party, the situation remains to be considered is that honest verifier V
accepts the proof while A does not hold m witnesses. Below we show the probability
that V accepts a proof of wrong statements (i.e., the soundness error) is upper
bounded by 1/2d−2.

First we claim that A has to prepare a ω ∈ Im(ϕ)n, which can be one to
one corresponded to m instances of Zn

2k . The proof is direct since they compute

42

[τ(ω)] := [τ(µ)]+τ(δ), and any ω /∈ Im(ϕ)n will be corrected into τ(ω) ∈ Im(ϕ)n.
Next we prove that all the values on the wires in the circuit are correct. It can be
immediately obtained that the values associated with input wires and the output
wires of Add gates are computed correctly, since ϕ, ψ, τ are Z2k-linear. Thus,
we need to consider the correctness of values on the output wires of Mul gates,
which is guaranteed by the correctness of di, for all i ∈ [t] in our protocol Πm,n,k

ZK .
Consider that some of components of d are incorrect, e.g., there is an error in
the i-th Mul gate. Let di := ωα · ωβ − νi + ei, where ei ∈ GR(2k, d). Thus we have
that

Kω̂γ
: = Kνi

+∆ · di = Kνi
+∆ · (ωα · ωβ − νi + ei)

=Mνi
+∆ · νi +∆ · (ωα · ωβ − νi + ei)

=Mω̂γ
+∆ · (ωα · ωβ) +∆ · ei,

and

Bi : = Kωα ·Kωβ
−∆ ·Kω̂γ

= (Mωα +∆ · ωα) · (Mωβ
+∆ · ωα)−∆ · (Mω̂γ +∆ · (ωα · ωβ) +∆ · ei)

= (Mωα
·Mωβ

) +∆ · (ωα ·Mωβ
+ ωβ ·Mωα

−Mω̂γ
)−∆2 · ei

= A0,i +∆ ·A1,i −∆2 · ei,

which leads to
Z : =

∑
i∈[t]

χi ·Bi +B∗

= X +∆ · Y −∆2 · (
∑
i∈[t]

χi · ei).

Assume A sends X ′ = X + eX and Y ′ = Y + eY to honest verifier, where
eX , eY ∈ GR(2k, d). V accepts if and only if

Z = X ′ +∆ · Y ′ ⇐⇒ 0 = eX +∆ · eY +∆2 · (
∑
i∈[t]

χi · ei).

χi is sampled by honest verifier after ei is determined, and eX , eY can be picked
by A after knowing χ. If

∑
i∈[t] χi · ei ≠ 0, from lemma 1, we obtain that the

above equation holds with probability at most 2−(d−1). Otherwise, A can pass the
check with probability 1 (just sets eX = eY = 0). Since the coefficients χi ∈ F2d

are sampled uniformly at random, it suffices to consider there exists a j ∈ [t] such
that ej ̸= 0, and ei = 0 for i ̸= j. As Pr[χj = 0] = 1/2d, we obtain that it occurs
with probability at most 2−d.

Finally, we show that if C(w(i)) = 0, for some i ∈ [m], and all the values on
the wires in the circuit are correct, the probability that A successfully provides a
M ′

ωh
:= Mωh

+ eωh
such that Kωh

= M ′
ωh

+∆ · ϕ(1) is upper bounded by 2−d.
Let r := (C(w(1)), ..., C(w(m))) ∈ {0, 1}m. After executing the protocol, We have

Kωh
=Mωh

+∆ · ϕ(r).

43

Thus, honest verifier accepts if and only if

Kωh
=M ′

ωh
+∆ · ϕ(1) ⇐⇒ 0 = eωh

+∆ · ϕ(1 − r),

which holds for a random ∆ ∈ GR(2k, d) with probability at most 1/2−d from
lemma 1.

Thus, the overall soundness error is bounded by 2−d+2−(d−1)+2−d = 2−(d−2).
Namely, a PPT Z can distinguish between the real world and the ideal world with
advantage at most 2−(d−2).
Corrupted V: If S receives false from Fm

ZK, then it just aborts. Otherwise, S
interacts with A as follows:

1. In the offline phase: S records ∆ ∈ GR(2k, d) that A sends to FGR(2k,d)
embVOLE in

the Init procedure, also, S records (Kµ,K
′
µ), (Kν ,K

′
ν) and Kπ that A sends

to FGR(2k,d)
embVOLE.

2. S samples δ $← GR(2k, d)n and sends δ to A. S computes Kτ(ωi) := K ′
µi
+∆·δi,

for i ∈ [n]. Besides, S samples ω
$← Im(ϕ)n.

3. For each gate (α, β, γ, T) ∈ C, in a topological order:
– If T=Add, S computes Kωγ := Kωα +Kωβ

as the honest V would do, and
sets ωγ := ωα + ωβ.

– If T=Mul, and this is the i-th multiplication gate, then S sends di :=
ωα ·ωβ−νi to A. S computes Kωγ

:= K ′
νi
+∆ ·τ(di), Kω̂γ

:= Kνi
+∆ ·di

and Bi := Kωα
·Kωβ

−∆ ·Kω̂γ
as the honest verifier would do, and sets

ωγ := τ(ωα · ωβ).
4. S receives χ ∈ Zt

2k from A.
5. S computes Z :=

∑
i∈[t] χi · Bi + B∗ ∈ GR(2k, d), where B∗ := Kπ. Then S

samples Y $← GR(2k, d) and sets X := Z −∆ · Y . S sends (X,Y) to A.
6. For the single output wire ωh, S already holds Kωh

. S computes Mωh
:=

Kωh
−∆ · ϕ(1), and sends Mωh

to A.

Since µ is distributed uniformly at random by FGR(2k,d)
embVOLE, δ := ω−µ is uniformly

random as well in real protocol. Hence, δ perfectly hides the circuit inputs ω :=
ϕ(W) in Im(ϕ)n. Similarly, di perfectly hides the output value of i-th Mul gate in
Im(ϕ). Moreover, X,Y provided by honest prover are uniformly random thanks
to the masks A∗

0, A
∗
1, respectively, under the condition that Z = X +∆ · Y holds.

Therefore, Z’s view in real execution is indistinguishable to that in simulation.
This completes the proof. ⊓⊔

C.3 Deferred Details on Πm,n,t
slZK

We first present the protocol ΠPAC in Figure 18. Next, we give a sketched proof
for Theorem 3.

Theorem 13 (Theorem 3, restated). Protocol Πm,n,t
slZK UC-realizes functional-

ity Fm
ZK that proves circuit satisfiability over Z2k in the FGR(2k,d)

embVOLE-hybrid model
and the random oracle model with soundness error at most 2m2+3

2d
+ negl(κ).

44

Protocol ΠPAC

Let AHE = (KeyGen, Enc, Dec) be an additively homomorphic encryption scheme
over GR(2k, d) with CPA security, degree-restriction and circuit privacy. Let
(Commit, Open) be a commitment scheme. Let G be a PRG, and m be the maximum
degree of the polynomials to be authenticated.

Init: P and V send (Init) to FGR(2k,d)
embVOLE, and V receives ∆ ∈ GR(2k, d).

Poly-Key: On input m:

1. V samples seed
$← {0, 1}κ, and computes (com1, unv1)← Commit(seed). Then

V sends com1 to P.
2. V samples Λ $← GR(2k, d) and computes ciphertexts ⟨Λi⟩ := Enc(sk, Λi; ri) for

all i ∈ [m], where (r0, r1, ..., rm) ← G(seed) and sk ← KeyGen(r0). Then V
sends ⟨Λ1⟩, ..., ⟨Λm⟩ to P.

Pre-Gen: On input [u], where P holds u,w ∈ GR(2k, d)n and V holds w ∈
GR(2k, d)n such that w := v −∆ · u:

1. For each j ∈ [n], on input the j-th polynomial fj(X) =
∑

i∈[0,m] fj,i ·X
i ∈

GR(2k, d)[X], P computes a ciphertext ⟨bj⟩ :=
∑

i∈[m] fj,i · ⟨Λ
i⟩+ fj,0 − uj .

2. P computes (com2, unv2)← Commit(⟨b1⟩, ..., ⟨bn⟩), and sends com2 to V.

Gen:

1. V sends (unv1, seed) and Λ to P, who then checks if Open(com1, unv1, seed) = 1.
If the check fails, P aborts. Otherwise, P computes (r0, r1, ..., rm)← G(seed)
and sk ← KeyGen(r0). P checks that ⟨Λi⟩ = Enc(sk, Λi; ri) for all i ∈ [m], and
aborts if the check fails. For each j ∈ [n], P sets Mj := wj .

2. P sends (unv2, ⟨b1⟩, ..., ⟨bn⟩) to V. V checks Open(com2, unv2, ⟨b1⟩, ..., ⟨bn⟩) = 1.
If the check fails, V aborts. Then, for j ∈ [n], V computes bj := Dec(sk, ⟨bj⟩),
and sets Kj := vj +∆ · bj . Thus, P and V obtain a PAC [fj(·)], for each j ∈ [n].

Fig. 18: Protocol for generating PACs over GR(2k, d).

45

Proof. Since the proof has the similar structure to that in AntMan [61], hence we
only explain the difference here. The readers may refer to [61] for more details.
Note that for the BatchCheck procedure, we let V check that f(αi) = τ(g(βi)),
for i ∈ [t], which in fact is an equality constraint over Z2k . Apparently, this
modification would not raise any more considerations of the proof. Another main
difference is that we use an ideal functionality FGR(2k,d)

embVOLE which delivers MACs
of random re-embedding pairs (µ, τ(µ)) over Galois rings. Recall that we let
FGR(2k,d)

embVOLE additionally send µ − τ(µ) to V, as explained before in the proof
of Theorem 2, this leakage would not influence the privacy of witnesses over
Z2k and it guarantees S can extract SIMD witnesses correctly if the sender is
corrupted. Specifically, we instantiate the DVZK procedure in [61] by the LPZK-
based approach, namely the multiplication check procedure in protocol Πm,n,t

ZK .
According to Lemma 1 and the upper bound in the Galois field case, the soundness
error in the Galois ring case is upper bounded by 2m2+3

2d
+negl(κ). This concludes

the proof. ⊓⊔

D Deferred Proofs of VOLE Protocols

D.1 Security of VOLE based on (N − 1)-out-of-N OT

We claim that sampling ∆ from F2d makes sense for security of our ZK protocols.
Consider a simple game G0 where the challenger samples a random ∆0 ∈ F2d

and asks the adversary to output a, b ∈ GR(2k, d) such that α ·∆0 + β = 0, and a
similar game G1 except that the challenger randomly samples ∆ from GR(2k, d).
For an adversary A that wins G1 with advantage a1, we have A wins G0 with
advantage at least a1. On the other hand, for an adversary A that wins G0 with
advantage a0, there exists an adversary B (involved in G1) who invokes A and
outputs α′ := α+ 2k−1, β′ := β, where α, β are A’s outputs. It can be observed
that B wins G1 (i.e., α′ ·∆+ β = 0) as long as α ·∆0 + β = 0, since ∆ can be
uniquely written as ∆ = ∆0 + ∆1 · 2 + ... + ∆k−1 · 2k−1, where ∆i ∈ F2d , for
i ∈ [0, k). Therefore, B wins G1 with advantage a0. Combining together, G0 and
G1 are equivalent. Note that in our protocol, e.g., Πm,n,t

ZK , the malicious sender
is allowed to guess ∆ ∈ GR(2k, d), who is essentially participating in G1.

We remark that the above discussion also indicates why we can sample random
coefficients from F2d rather than GR(2k, d) for the random linear combination
check.

Theorem 14 (Theorem 8, restated). Protocol ΠGR(2k,d)
sfVOLE UC realizes FGR(2k,d)

sfVOLE

(Figure 15) in the FN
OT−1̄-hybrid model.

Proof. If the sender PS is corrupted. The simulator SS records {sy}y∈[N] sent
by A. Then SS computes M := −

∑
y∈F

2d
sy · y and x :=

∑
y∈F

2d
sy. Finally, SS

sends M,x ∈ GR(2k, d)ℓ to the ideal functionality FGR(2k,d)
sfVOLE . The indistinguishabil-

ity between two worlds is straightforward.

46

If the receiver PR is corrupted. The simulator SR records ∆ ∈ [N] and
{sy}y∈[N]\∆ sent by A in the Init phase, and forwards ∆ to the ideal func-

tionality FGR(2k,d)
sfVOLE . Then SR computes K =

∑
y∈F

2d
\{∆} sy · (∆− y) and sends

K ∈ GR(2k, d)ℓ to FGR(2k,d)
sfVOLE . The indistinguishability between two worlds is straight-

forward as well. This concludes the proof. ⊓⊔

D.2 Security of VOLE based on primal LPN

We first describe the GGM algorithm in Figure 19, then prove Theorem 4 and
Theorem 5.

Theorem 15 (Theorem 4, restated). If G and G′ are PRGs, then Π
GR(2k,d)
spVOLE

UC-realizes FGR(2k,d)
spVOLE functionality in the (FGR(2k,d)

VOLE ,FOT,FEQ)-hybrid model. In
particular, no PPT environment Z can distinguish the real world execution from
the ideal world simulation except with advantage at most 1/2d + negl(λ).

Proof. We divide our proof into two parts. First, we consider PS is corrupted
and construct a PPT simulator SS , then we consider PR is corrupted and build
a PPT simulator SR as well. Both Simulators interact with the corrupted party
in the ideal world and can read the corrupted party’s inputs to functionalities
FGR(2k,d)

VOLE ,FOT,FEQ.
Corrupted PS: Each time the SP-Extend procedure is going to run, SS acts as
follows:

1. SS reads the values (a, c) that A sends to FGR(2k,d)
VOLE . Upon receiving a′ ∈

GR(2k, d) from A, SS sets β := a′ + a ∈ GR(2k, d) and δ := c.
2. For i ∈ [1, h), SS samples Ki

$← {0, 1}λ, and SS samples Kh
$← GR(2k, d).

Then SS reads the choices ᾱi ∈ {0, 1}, i ∈ [h] that A sends to FOT, and
sends Kᾱi,i := Ki to A. SS computes α :=

∑
i∈[h] 2

h−i · αi and defines a
vector u ∈ GR(2k, d)n such that uα = β and ui = 0 for i ̸= α. Next, SS runs
GGM.Eval(α, {Kᾱi,i}i∈[h]) and obtains {vj}j ̸=α.

3. SS samples g $← GR(2k, d) and sends it to A. Then SS defines a vector
w ∈ GR(2k, d)n such that wα = δ − (g +

∑
i ̸=α vi) and wi = vi for i ̸= α.

4. SS reads the values (x, z) that A sends to FGR(2k,d)
VOLE .

5. Upon receiving {χi}i∈[0,n) and x∗ ∈ GR(2k, d) from A, SS sets x′ := x∗ + x ∈
GR(2k, d).

6. SS reads the values VPS that A sends to FEQ. Then SS computes V ′
PS

:=∑
i∈[0,n) χi · wi − z and does as follows:

(a) If x′ = χα · β, then SS checks whether VPS = V ′
PS

. If so, SS sends true

to A, and sends u,w to FGR(2k,d)
spVOLE. Otherwise, SS sends abort to A and

aborts.
(b) If x′ ≠ χα · β, since every q ∈ GR(2k, d) can be represented as q =∑

i∈[0,k) qi · 2i, qi ∈ F2d . Let idq denote the least index such that qidq ̸= 0

(define id0 := k). It can be observed that q is invertible in GR(2k, d) if and
only if idq = 0. Let ε := V ′

PS
− VPS and η := x′ − χα · β, we have that

47

Algorithm GGM

Let G : {0, 1}λ → {0, 1}2λ, and G′ : {0, 1}λ → GR(2k, d)2 × {0, 1}λ be two pseudo-
random generators (PRGs). For α ∈ [0, 2h), we write α =

∑
i∈[h] 2

h−iαi, where
αi ∈ {0, 1} and we denote the complement of αi by ᾱi. The GGM algorithms
GGM.KeyGen, GGM.Gen, GGM.Eval are defined as follows:

– GGM.KeyGen: on input 1λ, output s $← {0, 1}λ.
– GGM.Gen: on input n and s ∈ {0, 1}λ, where n = 2h,

(a) Set S0,0 := s.
(b) For i ∈ [h − 1] and j ∈ {0, 1, ..., 2i−1 − 1}, compute (S2j,i, S2j+1,i) :=

G(Sj,i−1), where S2j,i (S2j+1,i resp.) is the left (right resp.) child of Sj,i−1.
(c) For j ∈ [0, 2h−1), compute (v2j,h, v2j+1,h, Γj) := G′(Sj,h−1).
(d) For i ∈ [h−1], setK0,i :=

⊕
j∈[0,2i−1) S2j,i andK1,i :=

⊕
j∈[0,2i−1) S2j+1,i,

i.e., XOR of left (right) nodes in layer i, respectively.
(e) Set K0,h :=

∑
j∈[0,2h−1) S2j,h and K1,h :=

∑
j∈[0,2h−1) S2j+1,h, i.e., sum

of left (right) leaves, respectively.
(f) Output ({vj}j∈[0,n), {(K0,i,K1,i)}i∈[h]), {Γj}j∈[0,2h−1).

– GGM.Eval: On input α, {Ki}i∈[h], where α ∈ [0, n),
(a) Set S1

ᾱ1
:= K1, and x := 0.

(b) For i ∈ [h− 2],
i. Update x by 2x+ αi.
ii. For j ∈ [0, 2i)\{x}, compute (S2j,i+1, S2j+1,i+1) := G(Sj,i).
iii. Compute S2x+ᾱi+1,i+1 := Ki+1 ⊕

⊕
j∈[0,2i)\{x} S2j+ᾱi+1,i+1.

(c) Update x by 2x+ αh−1.
i. For j ∈ [0, 2h−1)\{x}, compute (v2j , v2j+1, Γj) := G′(Sj,h−1).
ii. Compute v2x+ᾱh := Kh −

∑
j∈[0,2h−1)\{x} v2j+ᾱh .

(d) Output ({vj}j∈[0,n)\{α}).
– GGM.Eval′: On input α, {Ki}i∈[h] and K1,h+1, where α ∈ [0, n),

(a) Set S1
ᾱ1

:= K1, and x := 0.
(b) For i ∈ [h− 1],

i. Update x by 2x+ αi.
ii. For j ∈ [0, 2i)\{x}, compute (S2j,i+1, S2j+1,i+1) := G(Sj,i).
iii. Compute S2x+ᾱi+1,i+1 := Ki+1 ⊕

⊕
j∈[0,2i)\{x} S2j+ᾱi+1,i+1.

(c) i. For j ∈ [0, 2h)\{α}, compute (v2j , v2j+1, Γj) := G′(Sj,h−1).
ii. Compute Γα := K1,h+1 ⊕

⊕
j∈[0,2h)\{α} Γj .

(d) Output ({(v2j , v2j+1)}j∈[0,n)\{α}, {Γj}j∈[0,n)).

Fig. 19: Algorithms for GGM tree based PPRF.

48

– If idε < idη, SS sends abort to A and aborts.
– If idε ≥ idη, SS computes ∆′ := ε

2idη
· (η

2idη
)−1 mod 2k−idη , and

sends a global-key query (Guess, ∆′, k− idη) to FGR(2k,d)
spVOLE. If FGR(2k,d)

spVOLE

returns success, SS sends true to A, and sends u,w to FGR(2k,d)
spVOLE.

Otherwise, SS sends abort to A and aborts.

The Init procedure can be called only once, and it can be perfectly sim-
ulated by forwarding Init from A to FGR(2k,d)

spVOLE. Thus, we focus on analysing
indistinguishability between the SP-Extend procedures.

SS can record a, c that A sends to FGR(2k,d)
VOLE . From the construction of GGM

tree, it can be observed that K0,1,K1,1 are pseudorandom. Further, we have that
K0,2,K1,2 are pseudorandom as well conditioned on K0,1 or K1,1. By induction,
we obtain that Kᾱi,i is pseudorandom conditioned on {Kᾱj ,j}j<i, for i ∈ [h].
Therefore, we claim that {Kᾱi,i}i∈[h] are pseudorandom, which indicates that
Ki, i ∈ [h] provided by SS are computationally indistinguishable to those in
real execution. In real protocol, γ is uniformly random in A’s view, since ∆ is
uniformly random and β is a unit. Therefore, g sampled uniformly at random by
SS is of the same distribution to that masked with γ in A’s view. Now it remains
to consider the check step.

The second call (Extend, 1) enables SS to record x, z. In real protocol, honest
verifier PR computes

VPR : =
∑

i∈[0,n)

χi · vi − y

=
∑

i∈[0,n)

χi · wi +
∑

i∈[0,n)

χi · (vi − wi)− y

=
∑

i∈[0,n)

χi · wi + χα · (vα − wα)− (y∗ +∆ · x∗)

=
∑

i∈[0,n)

χi · wi − (y∗ −∆ · x)−∆ · (x∗ + x− χα · β)

= V ′
PS
−∆ · (x′ − χα · β).

If A behaves honestly, then x′ = χα · β will hold and FEQ will return true. Note
that SS can extract α from A’s inputs to FOT, thus SS can check x′ = χα · β.
If the equation holds, FEQ can be emulated by sending true (abort) to A when
VPS = V ′

PS
(VPS ̸= V ′

PS
), which is the same as in the real protocol.

Otherwise, x∗ sent by A must be incorrect. Let η := x′ − χα · β and ε :=
V ′
PS
− VPS . Therefore, A passes the equality test if and only if

VPS +∆ · η = V ′
PS
⇐⇒ ∆ · η = ε,

where ∆, η, ϵ ∈ GR(2k, d). Although SS does not hold ∆, he can query the global
key to FGR(2k,d)

spVOLE. Since the above equation is over GR(2k, d), there may be no
solutions for ∆, or more than one solutions for ∆. Thus the Global-key Query

49

is extended to allow queries of “lower bit” of ∆. It is not hard to see that the
simulation matches the real execution in this case.

Thus, we conclude that Z can not computationally distinguish the ideal simu-
lation and the real execution from joint view of A and the output of PR.
Corrupted PR: In the Init procedure, SR reads the global key ∆ ∈ GR(2k, d)

that A sends to FGR(2k,d)
VOLE . Then whenever the SP-Extend procedure is going to

run, SR acts as follows:

1. SR reads b ∈ GR(2k, d) that A sends to FGR(2k,d)
VOLE . SR samples a′ $← GR(2k, d)

and sends a′ to A. Then, SR draws a uniformly random β in the set of units
of GR(2k, d). Next, SR computes γ := b+∆ · a′ and δ := γ −∆ · β.

2. SR reads the values (K0,i,K1,i)i∈[h] that A sends to FOT. Upon receiving
g ∈ GR(2k, d) from A, for each α ∈ [0, n), SR defines a vector w(α) such that
{w(α)

j }j ̸=α := GGM.Eval(α, {Kᾱi,i}i∈[h]) and w(α)
α := δ − (g +

∑
i ̸=α w

(α)
i).

3. SR reads the value y∗ that A sends to FGR(2k,d)
VOLE . SR samples χi

$← GR(2k, d)

for i ∈ [0, n) and x∗ $← GR(2k, d). SR sends ({χi}i∈[0,n), x
∗) to A. Then, SR

computes y := y∗ +∆ · x∗.
4. SR reads VPR that A sends to FEQ. Then SR constructs a set I ⊆ [0, n) as

follows:
(a) For α ∈ [0, n), compute V α

PS
:=

∑
i∈[0,n) χi · w(α)

i +∆ · χα · β − y.
(b) Append α satisfying V α

PS
= VPR to set I, i.e., I := {α ∈ [0, n) | V α

PS
=

VPR}.
SR sends I to FGR(2k,d)

spVOLE. If it returns abort, SR samples α̂ $← [0, n)\I, sends
(false, V α̂

PS
) to A (emulating FEQ), and then aborts. Otherwise, SR sends

(true, VPR) to A.
5. SR picks an arbitrary α ∈ I and defines v such that vi := w

(α)
i , for i ̸= α

and vα := γ − g −
∑

i̸=α vi. SR sends v to FGR(2k,d)
spVOLE.

The Init procedure can be called only once, and SR learns ∆ that A sends
to FGR(2k,d)

VOLE . Now we consider the simulation for the SP-Extend procedure.
In real execution, a is uniformly random in A’s view, which perfectly masks

a′ in GR(2k, d). Thus, a′ provided by SR has the same distribution as that in the
real execution. SR learns {(K0,i,K1,i)}i∈[h] that A sends to FOT, therefore, SR
can evaluate n punctured GGM trees with one value of the α-th leaf missed, for
each α ∈ [0, n). SR learns y∗ that A sends to FGR(2k,d)

VOLE . The indistinguishability
of χ ∈ GR(2k, d)n is obvious and the next message that A receives from PS or SR
is x∗. Similarly, x∗ is perfectly masked with x since x is uniformly random in
A’s view. Therefore, we obtain the indistinguishability of x∗ between two worlds.
What remains to consider is the simulation for equality test. The set I constructed
by SR corresponds to the selective failure attack on the α∗ of honest PS . This
attack can be formalized as follows: (1) A generates a GGM tree correctly and
obtains ({vj}j∈[0,n), {(K0,i,K1,i)}i∈[h]), (2) A guesses a set I ⊆ [0, n), (3) Let
U denote the union of the sets {Kᾱi,i}i∈[h], for α ∈ I. A keeps the values of U

50

unchanged and randomizes the remaining values in {K0,i,K1,i}i∈[h]. (4) A runs
the rest program as an honest PR. It can be observed that if α∗ ∈ I, then the
equality check will pass, i.e., V α∗

PS
= VPR . This observation guarantees that the

set I reconstructed by SR is identical to that generated by A. Therefore, FGR(2k,d)
spVOLE

aborts if and only if the equality check fails in the real execution. Note that if
|I| > 1, SR does not know the actual α∗. However, SR is required to send v(α∗)

to FGR(2k,d)
spVOLE, otherwise, Z may distinguish two worlds from joint view of A and

output of PS . We claim that

Pr
[
v(α) ̸= v(α′)

∣∣∣V α
PS

= V α′

PS

]
≤ 1

2d
.

We have that

V α
PS

= V α′

PS
⇐⇒∑

i∈[0,n)

χi · w(α)
i +∆ · χα · β − y =

∑
i∈[0,n)

χi · w(α′)
i +∆ · χα′ · β − y ⇐⇒

∑
i∈[0,n),i̸=α,α′

χi·(w(α)
i −w

(α′)
i)+χα(∆·β+w(α)

α −w(α′)
α)+χα′(w

(α)
α′ −∆·β−w(α′)

α′) = 0

Note that ∆,β,w(α),w(α′) are determined before χ sampled. Therefore, from
lemma 1, we have that

w
(α)
i = w

(α′)
i , for i ∈ [0, n)\{α, α′},

and
∆ · β = w(α′)

α − w(α)
α = w

(α)
α′ − w(α′)

α′

hold except with probability 2−d. Thus we immediately obtain that v(α) = v(α′)

holds except with probability 2−d under the condition that V α
PS

= V α′

PS
. Thus, from

above discussion, we conclude that Z can distinguish the ideal simulation and
real execution with advantage at most 2−d. This completes the whole proof. ⊓⊔

Theorem 16 (Theorem 5, restated). If the decisional (RG,G, GR(2k, d))-LPN(m,n, t)

with static leakage assumption holds, then Π
GR(2k,d)
VOLE presented in Figure 10 UC-

realizes FGR(2k,d)
qVOLE in the FGR(2k,d)

spVOLE-hybrid model.

Proof. We divide our proof into two parts. First, we consider PS is corrupted and
construct a PPT simulator SS , then we consider PR is corrupted and build a PPT
simulator SR as well. Both Simulators interact with the corrupted party in the
ideal world and can read the corrupted party’s inputs to functionalities FGR(2k,d)

spVOLE.

Corrupted PS: SS reads the vectors u,w ∈ GR(2k, d)m that A sends to FGR(2k,d)
spVOLE

in the Init procedure. Then whenever Extend procedure is going to run, SS acts
as follows:

51

1. For i ∈ [t], SS reads e(i) ∈ GR(2k, d)m (with at most one invertible entry and
zeros everywhere else) and c(i) ∈ GR(2k, d)m that A sends to FGR(2k,d)

spVOLE. Let
e := (e(1), ..., e(t)) ∈ GR(2k, d)n and c := (c(1), ..., c(t)) ∈ GR(2k, d)n.

2. SS computes x := u · A+ e ∈ GR(2k, d)n and M := w · A+ c ∈ GR(2k, d)n.
Then SS updates u := x[1 : m] and z := M[1 : m]. Next, SS sends x[m+1, n]

and M[m+ 1, n] to FGR(2k,d)
spVOLE.

3. Whenever A sends a global-key query (Guess,∆′, s′) to FGR(2k,d)
spVOLE, SS sends

(Guess,∆′) to FGR(2k,d)
VOLE and forwards the answer from FGR(2k,d)

VOLE to A. If the
answer is abort, SS aborts.

The indistinguishability between simulation and execution is obvious, since
the outputs of both parties in two worlds are computed in the same way.
Corrupted PR: SR first receives ∆ ∈ GR(2k, d) from A and reads v ∈ GR(2k, d)m

that A sends to FGR(2k,d)
spVOLE in the Init procedure. SR sends ∆ to FGR(2k,d)

VOLE . Then
whenever Extend procedure is going to run, SR acts as follows:

1. For i ∈ [t], SR reads the vector b(i) ∈ GR(2k, d)m that A sends to FGR(2k,d)
spVOLE.

Let b := (b(1), ...,b(t)) ∈ GR(2k, d)n.
2. SR samples a random e := (e(1), ..., e(t)) ∈ GR(2k, d)n, where each e(i) has

one invertible entry and zeros everywhere else. Let {α1, ..., αt} be the invertible
entry in {e(1), ..., e(t)}, respectively. For i ∈ [t], SR reads the set Ii ⊆ [0,m)

that A sends to FGR(2k,d)
spVOLE. If αi ∈ Ii, then SR continues and sends success

to A. Otherwise, SR sends abort to A and aborts.
3. SR computes K := v · A+ b ∈ GR(2k, d)n, and updates v := K[1 : m]. SR

sends K[m+ 1 : n] to FGR(2k,d)
VOLE .

It is not hard to see that e sampled by SR has the same distribution to that
provided by FGR(2k,d)

spVOLE, therefore, the probability that FGR(2k,d)
spVOLE returns success

or abort is identical in real execution and ideal simulation. For the executions
of the Extend procedure, the view of A is simulated perfectly. However, the
distribution of the output x[m + 1 : n] of the honest PS is different to that in
ideal simulation. Thus, environment Z can not distinguish between two worlds if
the the decisional (RG,G, GR(2k, d))-LPN(m,n, t) with static leakage assumption
holds. This completes the proof. ⊓⊔

E VOLE based on dual LPN

Here we focus on reducing the round complexity of the VOLE extension protocol.
Our (primal LPN-based) construction described in Section 4 can not be made
two-round, since the two parties need to obtain an additional VOLE correlation
for the check. Following the approach of [16], we construct a two-round VOLE
extension protocol that relies on the ideal functionality for generalized VOLE
over Galois rings (see FGR(2k,d)

gVOLE in Figure 20). Informally in the generalized VOLE,

52

the two parties obtain two VOLE correlations with the same length for different
global keys, e.g., K = M+ y ·∆ and a = c+ y · δ. The functionality FGR(2k,d)

gVOLE

can be naturally realized by OTs. To achieve malicious security, as shown in [51]
we can apply a Galois ring analogue of the eVOLE technique [32].

We provide a multi-point VOLE construction in Figure 22, which can be
viewed as a combination of multiple single-point VOLEs intuitively. The ideal
functionality for multi-point VOLE is presented in Figure 21.

Suppose the two parties want to obtain a t-point VOLE correlation, and
w.l.o.g. we assume the length n has the form t · 2h. We still use the GGM tree
algorithms (Figure 19) to let the two parties obtain PPRF outputs. But, this
time we let PR calculate one more layer for each GGM tree, and view {Γi}i∈[0,2h)

as the right leaves of the last layer. For the j-th GGM tree, j ∈ [t], we let PS

always learn {Γ (j)
i }i∈[0,2h). Thus, PS can check the consistency of each GGM

tree independently, by hashing the right leaves. We remark that there is a recent
work [44] showing how to reduce the cost of generating GGM trees by half.
However, their constructions are only semi-honestly secure and it remains unclear
how to construct multi-point VOLE protocols with malicious security basing on
their techniques.

We slightly modify the GGM.Eval algorithm and obtain GGM.Eval′ in Figure 19.
To ensure all the right leaves fix a unique tree, we require that G′ has the right
half injective property 10.

Functionality FGR(2k,d)
gVOLE

Init: Upon receiving (Init) from both parties, sample ∆, δ $← GR(2k, d) if receiver
PR is honest, and receive ∆, δ ∈ GR(2k, d) from the adversary A otherwise. Store
∆, δ and send them to PR. All further (Init) commands will be ignored.
Extend: Upon receiving (Extend, t) from both parties, proceed as follows:

1. If PR is honest, sample K,a
$← GR(2k, d)t. Otherwise, receive K,a from A.

2. If PS is honest, sample y
$← GR(2k, d)t with each component invertible, and

compute M := K−∆ · y and c := a− δ · y. Otherwise, receive M, c,y from
A, and then recompute K := M+∆ · y and a := c+ δ · y.

3. Send (M, c,y) to PS and send (K,a) to PR.

Fig. 20: Ideal functionality for generalized VOLE over GR(2k, d).

10 As noted in [16], the right-half injectivity requirement can be relaxed to right-half
collision resistance, if G′ is sampled uniformly at random from a family of hash
functions that are collision-resistant in their right-half output.

53

Definition 5. We say a function f = (f0, f1) : {0, 1}λ → GR(2k, d)2×{0, 1}λ has
the right half injective property, if and only if f1 : {0, 1}λ → {0, 1}λ is injective.

Then, from the j-th GGM tree, the two parties can obtain two single-point
VOLE correlations of length 2h, V(j)

0 = W
(j)
0 +e(j) ·∆ and V

(j)
1 = W

(j)
1 +e(j) · δ.

To guarantee the VOLE correlation on the position α(j), we use a random linear
combination check that sacrifices half of the PPRF outputs, i.e., W(j)

1 ,V
(j)
1 . We

remark that these two checks allow the corrupted receiver to query for the noisy
positions twice, while the corrupted sender learns nothing about ∆. We have the
following theorem.

Functionality FGR(2k,d)
mpVOLE

Init: Upon receiving (Init) from both parties, sample ∆ $← GR(2k, d) if receiver
PR is honest, and receive ∆ ∈ GR(2k, d) from the adversary A otherwise. Store ∆
and send it to PR. All further (Init) commands will be ignored.
MP-Extend: Upon receiving (MP-Extend, n = t · 2h) from both parties, proceed
as follows:

1. If PR is honest, sample v
$← GR(2k, d)n. Otherwise, receive v from A.

2. If PS is honest, sample α1, ..., αt
$← [0, 2h), and y1, ..., yt

$← GR(2k, d)∗, and
define e(j) ∈ GR(2k, d)2

h

such that e(j)αj = yj and e
(j)
i = 0, i ̸= αj , for j ∈ [t],

then computes w := v−∆ · (e(1), ..., e(t)). Otherwise, receive e(j) with at most
one invertible entry and zeros everywhere else, for j ∈ [t], and w from A, then
recompute v := w +∆ · (e(1), ..., e(t)).

3. If PR is corrupted, receive a series of sets I(j) ⊆ [0, 2h) from A. If αj ∈ I(j)
for all j ∈ [t], send success to A and continue. Otherwise, send abort to both
parties and abort. Construct a set J := {j ∈ [t] | |I(j)| = 1}.

4. If PR is corrupted, receive a series of elements α̂j , where α̂j ∈ I(j) and
j ∈ [t]\J . If α̂j = αj for all α̂j received from A, send success to A and
continue. Otherwise, send abort to both parties and abort.

5. Send w, (e(1), ..., e(t)) to PS and v to PR.

Fig. 21: Ideal functionality for multi-point VOLE over GR(2k, d).

Theorem 17. If G and G′ are PRGs with G′ having the right half injective
property, and Hash : {0, 1}2hλ → {0, 1}λ is a collision resistant hash function,
Π

GR(2k,d)
mpVOLE realizes the functionality FGR(2k,d)

mpVOLE in the (FGR(2k,d)
gVOLE ,FOT)-hybrid model

with malicious security.

Proof. Malicious Sender. The simulator SS acts as follows.

1. SS records the inputs M, c,y ∈ GR(2k, d)t sent to FGR(2k,d)
gVOLE by A.

54

Protocol ΠGR(2k,d)
mpVOLE

Init: Both parties send Init to FGR(2k,d)
gVOLE , which returns ∆, δ to PR.

MP-Extend: On input n = t · 2h, the parties do as follows:
Construct:

(a) Both parties send (Extend, t) to FGR(2k,d)
gVOLE , which returns (M, c,y) to PS and

(K, a) to PR such that K = M+ y ·∆ and a = c+ y · δ, where each entry of
y is invertible.

(b) For j ∈ [t], both parties do as follows. The receiver PR com-
putes s(j) ← GGM.KeyGen(1λ), and runs GGM.Gen(2h+1, s(j)) to obtain
({(v(j)2i , v

(j)
2i+1, Γ

(j)
i)}i∈[0,2h), {(K

(j)
0,i ,K

(j)
1,i)}i∈[h+1]). Recompute K

(j)
1,h+1 :=⊕

i∈[0,2h) Γ
(j)
i . Let α(j) =

∑
i∈[h] 2

h−iα
(j)
i , where α(j)

i

$← {0, 1}, and let ᾱ(j)
i

denote the complement of α(j)
i . For i ∈ [h], PS sends ᾱ(j)

i to FOT (as OT
receiver) while PR sends (K

(j)
0,i ,K

(j)
1,i) to FOT (as OT sender), then PS receives

K
(j)

ᾱ
(j)
i ,i

. PR sends K(j)
1,h+1 to PS . PS runs GGM.Eval′(α(j), {K(j)

ᾱ
(j)
i ,i
}i∈[h],K

(j)
1,h+1)

and gets ({(v(j)2i , v
(j)
2i+1)}i̸=α(j) , {Γ (j)

i }i∈[0,2h)). Additionally, PR sends g(j)0 :=

Kj −
∑

i∈[0,2h) v
(j)
2i and g(j)1 := aj −

∑
i∈[0,2h) v

(j)
2i+1 ∈ GR(2k, d) to PS .

(c) PS defines vectors W
(j)
0 ,W

(j)
1 ∈ GR(2k, d)2

h

such that W (j)
0,i = v

(j)
2i , W (j)

1,i =

v
(j)
2i+1 for i ̸= α(j) and W

(j)

0,α(j) := Mj − (g
(j)
0 +

∑
i̸=αj W

(j)
0,i), W

(j)

1,α(j) :=

cj − (g
(j)
1 +

∑
i̸=α(j) W

(j)
1,i). PR defines vectors V

(j)
0 := (v

(j)
0 , v

(j)
2 , ..., v

(j)

2h+1−2
)

and V
(j)
1 := (v

(j)
1 , v

(j)
3 , ..., v

(j)

2h+1−1
). Note that V

(j)
0 = W

(j)
0 + e(j) · ∆ and

V
(j)
1 = W

(j)
1 + e(j) · δ, where e(j) ∈ GR(2k, d)2

h

has only one entry invertible
in GR(2k, d) and zeros everywhere else, i.e., e(j)

αj = yj ∈ GR(2k, d)∗ and e(j)i = 0

for i ̸= αj .
(d) PR computes Γ (j) := Hash(Γ

(j)
0 , ..., Γ

(j)

2h−1
) and sends it to PS . PS computes

Γ̂ (j) := Hash(Γ
(j)
0 , ..., Γ

(j)

2h−1
) and checks Γ (j) = Γ̂ (j), for all j ∈ [t]. If the check

fails, PS aborts.
(e) PS samples random χ, χ0, ..., χ2h−1 ∈ F2d and sends them to PR. For j ∈ [t],

PR computes Vj :=
∑

i∈[0,2h) χi(v
(j)
2i +χ · v(j)2i+1). PR computes X := ∆+χ · δ.

PR sends {Vj}j∈[t] and X to PS .
(f) PS computes Wj :=

∑
i∈[0,2h) χi(W

(j)
0,i + χ ·W (j)

1,i). PS checks that Vj −Wj =

X · χα(j) · yj holds for all j ∈ [t]. If the check fails, PS aborts.

Output: PS outputs (W
(1)
0 , ...,W

(t)
0) ∈ GR(2k, d)n, (e(1), ..., e(t)) ∈ GR(2k, d)n. PR

outputs (V
(1)
0 , ...,V

(t)
0) ∈ GR(2k, d)n.

Fig. 22: Protocol for multi-point VOLE over GR(2k, d) in the (FGR(2k,d)
gVOLE ,FOT)-

hybrid model.

55

2. For j ∈ [t] and i ∈ [h], SS records the input ᾱ(j)
i sent to FOT by A, then

SS can recover the values α(j), j ∈ [t]. For j ∈ [t], SS computes s(j) ←
GGM.KeyGen(1λ), and gets ({(v(j)2i , v

(j)
2i+1, Γ

(j)
i)}i∈[0,2h), {(K

(j)
0,i ,K

(j)
1,i)}i∈[h+1])←

GGM.Gen(2h+1, s(j)). SS resets K(j)
1,h+1 :=

⊕
i∈[0,2h) Γ

(j)
i . SS emulates FOT by

sending K(j)

ᾱ
(j)
i ,i

to A. SS sends g(j)0 , g
(j)
1

$← GR(2k, d) and K(j)
1,h+1 to A.

3. For j ∈ [t], SS computes Γ (j) := Hash(Γ
(j)
0 , ..., Γ

(j)

2h−1
) and sends it to A.

4. Upon receiving χ, χ0, ..., χ2h−1 ∈ GR(2k, d) from A, for j ∈ [t], SS computes
W

(j)

0,α(j) :=Mj − g(j)0 −
∑

i ̸=α(j) v
(j)
2i and W (j)

1,α(j) := cj − g(j)1 −
∑

i ̸=α(j) v
(j)
2i+1.

Next, SS computes Wj :=
∑

i ̸=α(j) χi(v
(j)
2i + χ · v(j)2i+1) + χα(j)(W

(j)

0,α(j) + χ ·

W
(j)

1,α(j)). Finally, SS samples X $← GR(2k, d), and sends X, {Vj :=Wj +X ·
χα(j) · yj}j∈[t] to A.

5. SS sets W (j)
0,i := v

(j)
2i , for j ∈ [t], i ∈ [0, 2h), i ≠ α(j). SS sets e(j) ∈ GR(2k, d)2

h

such that e(j)
α(j) := yj, and e

(j)
i = 0 for i ̸= α(j). SS sends (W

(1)
0 , ...,W

(t)
0),

(e(1), ..., e(t)) to FGR(2k,d)
mpVOLE.

The messages produced by SS are generated in the same way to that in the real
execution except for {g(j)0 , g

(j)
1 }j∈[t] and V,X. It is not hard to see that these

messages (except V , since V is dependent on X) are uniformly random in A’s
view in the real execution. Besides, SS can correctly extract (e(1), ..., e(t)) and
compute (W

(1)
0 , ...,W

(t)
0), which guarantees the indistinguishability of the outputs.

Thus, the real execution and the ideal simulation are indistinguishable.
Malicious Receiver. The simulator SR acts as follows.

1. SR records the input ∆, δ that A sends to FGR(2k,d)
gVOLE in the Init phase. Later

in the Extend phase, SR records the input K, a ∈ GR(2k, d)t sent to FGR(2k,d)
gVOLE

by A.
2. For j ∈ [t], i ∈ [0, 2h), SR records the input (K(j)

0,i ,K
(j)
1,i) sent to FOT by A.

SR sets α(l) = l, for l ∈ [0, 2h). Upon receiving {K(j)
1,h+1, Γ

(j)}j∈[t], SR runs

GGM.Eval′(α(l), {K(j)

ᾱ
(l)
i ,i
}i∈[h],K

(j)
1,h+1) and gets ({(v(j,l)2i , v

(j,l)
2i+1)}i ̸=α(l) , {Γ (j,l)

i }i∈[0,2h)),

for l ∈ [0, 2h). SR computes Γ (j)
l := Hash(Γ

(j,l)
0 , ..., Γ

(j,l)

2h−1
).

3. For j ∈ [t], SR builds a series of sets I(j) := {l ∈ [0, 2h) | Γ (j)
l = Γ (j)} ⊆

[0, 2h). If there exists a j ∈ [t] such that I(j) = ∅, SR aborts. SR sends
{I(j)}j∈[t] to FGR(2k,d)

mpVOLE. If it aborts, then SR aborts.
4. SR builds a set J := {j ∈ [t] | |I(j)| = 1}. If there exists some l ̸= l′ ∈ I(j),

j ∈ [t]\J and i ̸= l, l′ such that v(j,l)2i ̸= v
(j,l′)
2i , SR aborts. Thus, for j ∈ [t]\J ,

SR can obtain consistent {(v(j)2i , v
(j)
2i+1)}i∈[0,2h). Besides, for j ∈ J , suppose

I(j) = {α(j)}, then SR can set v(j)
2α(j) = v

(j)

2α(j)+1
= 0 to obtain V

(j)
0 ,V

(j)
1 .

5. Upon receiving {g(j)0 , g
(j)
1 }j∈[t] from A, SR samples random χ, χ0, ..., χ2h−1

$←
F2d and sends them to A. For j ∈ [t], SR computes β(j)

0 := g
(j)
0 − (Kj −

56

∑
i∈[0,2h) v

(j)
2i) and β

(j)
1 := g

(j)
1 − (aj −

∑
i∈[0,2h) v

(j)
2i+1). If there exists a

j ∈ [t] such that β(j)
1 ̸= 0, but β(j)

0 + χ · β(j)
1 = 0, SR aborts. SR computes

V̂j :=
∑

i∈[0,2h) χi(v
(j)
2i + χ · v(j)2i+1).

6. Upon receiving {Vj}j∈[t] and X from A, for j ∈ [t] with β(j)
1 ≠ 0, SR tries

to find α̂(j) ∈ I(j) such that V̂j − Vj = χα̂(j)(β
(j)
0 + χ · β(j)

1). If such an α̂(j)

does not exist or is not unique, SR aborts.
7. For j ∈ [t]\J with β

(j)
1 ̸= 0, SR resets I(j) := {α̂(j)}, and sends I(j) to

FGR(2k,d)
mpVOLE. If it aborts, then SR aborts.

8. SR sends (V
(1)
0 , ...,V

(t)
0) to FGR(2k,d)

mpVOLE.

We show the probability that honest sender aborts in a real execution is
negligibly close to aborting in the ideal simulation. If PS aborts in the real
execution due to some j ∈ [t] such that Γ̂ (j) ̸= Γ (j), this will lead to that
α(j) /∈ I(j) in the ideal simulation, which means that SR will abort as well.

Next, we claim the probability that SR aborts in the step 4 of the simulation
is negligible. We prove it by contradiction. If such l ̸= l′ ∈ I(j), j ∈ [t]\J
exist, from the construction of GGM tree, there exists ρ, ρ′ ∈ {0, 1}λ such that
(v

(j,l)
2i , v

(j,l)
2i+1, Γ

(j,l)
i) = G′(ρ) and (v

(j,l′)
2i , v

(j,l′)
2i+1 , Γ

(j,l′)
i) = G′(ρ′). Thus, we have

that ρ ̸= ρ′. By the right-half injectivity of G′, we have Γ (j,l)
i ≠ Γ

(j,l′)
i , which leads

to Γ
(j)
l ̸= Γ

(j)
l′ overwhelmingly. However, Γ (j)

l = Γ
(j)
l′ = Γ (j) since l, l′ ∈ I(j).

This completes the proof of the above claim.
If A behaves honestly in the j-th iteration, we have β(j)

0 = β
(j)
1 = 0. Since χ is

picked uniformly at random in F2d by SR, the probability that β(j)
0 + χ · β(j)

1 = 0

with β(j)
1 ̸= 0 is equal to 1/2d form Lemma 1. By a union bound, SR aborts in

the step 5 of the simulation with probability at most t/2d.
If A sends (ĝ

(j)
0 := g

(j)
0 +β

(j)
0 , ĝ

(j)
1 := g

(j)
1 +β

(j)
1) instead of correct (g(j)0 , g

(j)
1),

there will be a bias χα(j)(β
(j)
0 +χ ·β(j)

1) for Wj computed by honest PS . Therefore,
it can be observed that if A successfully guesses the α(j) chosen by honest PS , A
can pass the check of PS by sending Vj := V̂j −χα(j)(β

(j)
0 +χ ·β(j)

1). On the other
hand, if SR can not find a solution α̂(j), the honest PS will abort, no matter what
α(j) he picks. As the coefficients χ0, ..., χ2h−1 are sampled uniformly at random
by SR, they are pair-wise distinct except with probability at most 1/2d−h.

Therefore, from above discussions, the probability that SR aborts while honest
PS does not abort is bounded by (t/2d + 1/2d−h + negl(λ)). This concludes the
whole proof. ⊓⊔

PS and PR can naturally obtain a pseudorandom VOLE correlation with
the help of a multi-point VOLE, just multiplying the functionality outputs by a
parity check matrix H for which a dual variant of the LPN assumption holds.
Here we can use the dual variant to further reduce the communication complexity,
which is formally defined as follows.

Definition 6 (Dual LPN with static leakage). We first describe the corre-
sponding dual LPN security game GDual as follows.

57

1. Let H ← G⊥(m,n) ∈ GR(2k, d)n×(n−m) be a dual LPN matrix, and e =
(e(1), ..., e(t)) ∈ GR(2k, d)n be the error vector, where each e(i) has only one
entry invertible in GR(2k, d) and zeros everywhere else.

2. A sends I1, ..., It ⊂ [n/t]. If for all i ∈ [t], Ii includes the noisy position of e(i),
send success to A. Otherwise, abort. Construct a set J := {j ∈ [t] | |Ij | = 1}.

3. A sends α̂i, where α̂i ∈ Ii and i ∈ [t]\J . If for all i ∈ [t]\J , α̂i is the exact
noisy position of e(i), send success to A. Otherwise, abort.

4. Pick b ← {0, 1}. If b = 0, send y := e · H to A, otherwise, send y
$←

GR(2k, d)(n−m) to A.
5. A outputs a bit b′. The game outputs 1 if b′ = b, and outputs 0 otherwise.

We say that the decisional dual (RG,G,R)− LPN(m,n, t) with static leakage is
(T, ϵ)-hard, if for every probabilistic distinguisher B running in time T , B wins
the game GDual with advantage at most ϵ, i.e.,

|Pr[GDual = 1]− 1/2| ≤ ϵ.

By Fiat-Shamir transform, we immediately obtain a two-round multi-point
VOLE protocol, which yields a round optimal VOLE extension protocol. We
remark that when the length of required VOLE correlation is small, or namely
the “bootstrapping” in the primal LPN-based construction is not activated, the
two-round variant has lower communication complexity, as dual-LPN allows for
polynomial stretch.

58

	More Efficient Zero-Knowledge Protocols over Z2k via Galois Rings

