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Abstract. We propose an anonymous broadcast authentication (ABA) scheme to simulta-
neously control massive numbers of devices in practical resources. As a theoretical founda-
tion, we find a barrier in constructing an ABA scheme that can control numerous devices: a
trilemma between (i) security, (ii) ciphertext length, and (iii) freedom of target device selec-
tion. Therefore, we propose ABAs with ciphertext sizes of O(logN), where N is the number
of target devices and impose a certain restriction on (iii). We provide an ABA template and
instantiate it into specific schemes from the decisional Diffie-Hellman problem or the learning
with errors problem. Further, we provide example parameters and resource consumption of
space and time.
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1 Introduction

The anonymous broadcast authentication (ABA) framework [32] is a one-way communication from
a central server to multiple resource-limited devices. The server broadcasts a command to control
a set of devices. The following conditions (1) and (2) are the minimum desired specifications for
correctness.

(1) A message from the server includes information on the IDs of the target devices and control
commands. Each device that receives the message either executes the command if included in
the target set or does nothing if otherwise.
(2) The received message has integrity and authenticity.

Two additional security notions (3) and (4) should also be satisfied.

(3) Unforgeability: In a situation in which secret information about some devices is leaked,
an adversarial entity cannot forge a legitimate command with the information.
(4) Anonymity: Each device can detect whether it is a target but cannot determine whether
another device is a target.

The application that we envision is sending emergency signals to reboot, shut down malware-
infected devices. Thus, we assume that the space required to send these signals and optional flags
is small (a few bits). We expect the number of devices to be approximately 106 – 109 to control
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them all within a base wireless area (several square kilometers) simultaneously in the Internet of
Things (IoT) of 5G or the network beyond it. The entire process of command generation in a
central server, communication, and authentication in the target devices must also be completed
within a few seconds in resource-limited devices for a fast response to an emergency.

For applications, the command should be encrypted to satisfy conditions (3) and (4). However,
there are several barriers regarding ciphertext length. Assuming the atomic model [19, 20], an ABA
that has anonymity must have Ω(n) ciphertext length, where n is the number of target or joined
devices.

it depends on the security requirement of anonymity. A similar bound is derived simply from
Shannon’s coding theorem because condition (1) requires that the information amount contained in
the ciphertext exceeds the number of participant devices N . This bound holds under the assumption
that a set of target devices is randomly selected from a family of subsets of N devices.

These observations deduce the following trilemma: In ABAs, (i) security (anonymity), (ii) short
ciphertext length, and (iii) freedom of target devices selection are not simultaneously satisfied.
Therefore, for practical use, we propose an ABA with a ciphertext size of O(logN) by imposing
a certain restriction on (iii). Precisely, our ABA protocol has device IDs represented by a vector
(id1, . . . , idK) where idj ∈ [Nj ] := {1, 2, . . . , Nj} and ciphertext length O(

∑
Nj). It can control∏

Nj devices, which is an exponential number of the ciphertext length.
First, we construct an ABA template and provide instantiations from the decisional Diffie–

Hellman (DDH) or the learning with errors (LWE) problems. In the LWE-based construction,
using a parameter set controlling 106 – 109 devices with 128-bit security, the ciphertext length
is approximately 360KB – 1MB and the expected processing timing of the verification in target
devices is a few seconds in ARM Cortex-M4 processors; details are provided in Section 7.2 and
Tables 2 and 3.

1.1 Related Work

Broadcast encryption (BE) The notion of BE is considerably similar to that of ABA. At the
formal definition level, the notion of ABA is equivalent to that of the private key BE (prBE) in
[27, Def. 3.1]. However, security notions are slightly different since the considered applications are
different. Of note, the ABA is an authentication-oriented analog of anonymous BE (ANOBE).

The anonymity notion in the BE framework, which corresponds to the weak anonymity in
the ABA framework, was introduced by Barth et al. [4]. Afterward, Benoît et al. [23] proposed
an efficient scheme from the DDH assumption over groups with the notion of ANOBE, and [16]
presented the lattice interpretation. They allowed the freedom of target device selection and thus
required a linear ciphertext size, precisely, O(N − r), where N and r denote the numbers of joined
and revoked devices, respectively. Their constructions have complete freedom of target device
selection, and the ciphertext sizes cannot be smaller than O(N), O(r) or O(N − r) that touch the
theoretical asymptotic limit. Fazio et al. [11] proposed a public key BE with outsider anonymity
and CPA/CCA security and achieved a log-order ciphertext size O(r log(N/r)) that is linear in r.

For practical use on IoT devices, decryption timing should be considered. Efficient implemen-
tations of BE have been realized in several existing works. [8] surveyed of several pairing-based BE
systems and implemented them in the same environment on a standard laptop. Notably, sublinear
ciphertext sized BEs with some functionalities [7, 14] can achieve a decryption timing of less than
one second, even for N = 106.
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Theoretically, there are two major issues if BE algorithms are imported directly into our ABA.
First, constructing a practical scheme with short ciphertext (o(N) [bit]) while maintaining rea-
sonable anonymity is challenging in BE and its variants. It is nontrivial to import an existing
scheme into the ABA framework and prove anonymity. Second, a transformation technique to add
unforgeability is useful, as explained below. Interpreting authentication results as the transmission
of a one bit message, the ABA framework can be considered a prBE with additional functionalities.
Therefore, the proposed ABA scheme can also be considered as a new variant of short ciphertext
prBE.

Atomic model in the BE framework This model assumes that the server broadcasts a sequence
of ciphertexts ct1, . . . , ctℓ that encrypts a control command. Each device j then attempts decrypting
each cti using its key dkj .

The sequence length ℓ in this model was studied in the prBE by Kiaias-Samari [19] and in ABA
by Kobayashi et al. [20]. They showed that ℓ ≥ N if an ABA controlling N devices has anonymity.
It deduces the total bit-lengths of ciphertexts is Ω(N · λ), where λ is the security parameter. The
bounds can be relaxed to ℓ ≥ |S| and Ω(|S| ·λ), respectively if weak anonymity is assumed instead
of the anonymity where S ⊂ [N ] is the set of target devices. Concrete constructions achieving the
bounds in both cases have been known in [32, 20].

Transformation to add unforgeability It can be performed using a technique that converts a
weak security prBE to a CCA1 secure prBE. The simplest transformation should be the addition
of a signature to the broadcasting ciphertext, as in [22]. Considering the similarity between the
unforgeability of ABA and the CCA1 security of prBE, the proof of anonymity in our ABA is
straightforward.

Infeasibility of naïve atomic ABA systems Consider atomic type ABAs constructed from
a standard encryption and a signature scheme. We provide a rough estimation of ciphertexts to
be transmitted. For example, a standard (resp. structured) lattice-based encryption needs tens of
kilobytes (resp. half a kilobyte) of ciphertext length. FrodoKEM [12] and FALCON [10] provided
good examples of sizes after optimization. A system for controlling N = 106 devices requires a
gigabytes for one command ciphertext, which is too large to process on a low-resource device.
Thus, an ABA with short ciphertexts that can control millions of devices is required.

1.2 Our Contributions

We propose a template ABA construction of short ciphertext and provide instantiations from DDH
or LWE. Our major contributions and improvements over the CANS proceeding’s version [2] are
as follows.

Design rationale of our scheme From the viewpoint of the considered limitations and the
linear lower bound of ciphertext length, our design rationale is organized as follows. Let At and An
represent that an ABA is in the atomic model and has anonymity, respectively. Let LB represent
that an ABA has Ω(N) or Ω(|S|) ciphertext length on average over the selection of target sets and
messages. Kobayashi et al.’s [20] result can then be described as follows:

[At AND An]⇒ LB .

In addition, we denote F as the complete freedom of target device selection, i.e., any S ⊂ [N ]
can be selected as a target device set, and assume that it is randomly chosen from 2[N ]. According
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to Shannon’s coding theorem, the ciphertext must be longer than N bits on average because the
broadcasting ciphertext entropy exceeds N bits. Thus, we obtain F ⇒ LB and deduce the following
relation

¬LB ⇒ ¬F AND [¬At OR ¬An].

This relation is interpreted as that an ABA with short ciphertexts must restrict either F , At ,
or An conditions. Our construction satisfies ¬F , ¬At , and “near” anonymity which we will detail
in Section 6.3. We emphasize that it is on the feasible area’s borderline.

We explain why we restrict the strength of anonymity by introducing a new notion of anonymity
which we named it single anonymity or shortly SA; see, Section 6.2.

The notion SA is about information leakage on id′
?
∈ S, i.e., whether id′ is in the target set,

from other patterns {id
?
∈ S}id. We prove that ¬F ⇒ ¬SA. Thus, combined with F ⇒ LB , we

conclude that any short ciphertext ABA inherently lacks SA. Therefore, we do not investigate the
anonymity perfectly in the sense of the abovementioned An.

Of note, SA is slightly tight for practical situations. One of our future works is to investigate
the relationship between the restriction of target device selection and the strength of anonymity.
In addition, the relationship between the original t-anonymity (4) and SA is unclear.

Base atomic type ABA template We construct it from a Vernam-styled multirecipient en-
cryption (MRE), which is a fundamental tool with information-theoretic security. Technically, the
Vernam-styled communication protocol cannot be secure if the server sends ciphertexts with the
same secret key several times. To address this issue, we transform MRE to a computationally secure
ABA using a template function fprm based on Kurosawa et al.’s [21] technique. We then instantiate
the ABA to a practical protocol by using a standard and elliptic curve discrete logarithm-styled
function, or an LWE-styled function. These template construction are within the atomic model
that sends M (≥ N) ciphertexts to N devices. Although the discrete logarithm constructions are
not secure against a large-scale quantum computer, the verification speed is much faster than
that of lattice construction. Of note, this is essentially similar to the concatenation of the naïve
multirecipient encryption in [6, Sect. 1.3].

ABA with logarithmic-order ciphertext length Through ABA concatenation, we develop
an ABA template with short ciphertext length. However, the concatenated ABA does not have
anonymity. Thus, we propose a modification based on Agrawal et al.’s inner-product encryption [1]
to add anonymity in a limited sense. Finally, we add the unforgeability by adding a post quantum
signature.

Each device is indexed by a vector (i1, . . . , iK) where ij ∈ [Nj ] := {1, 2, . . . , Nj} and each Nj

is the size of each coordinate set as public parameters. The target set is defined by a sequence of
sets Sj ⊂ [Nj ], and a device (i1, . . . , iK) is a target if ij ∈ Sj for all j. The length of ciphertext is
O(N1 + · · ·+NK). A trade-off between the ciphertext length and the flexibility of target sets can
be considered by varying Nj . For instance, K = 1 corresponds to an atomic ABA. Meanwhile, for
K ≥ 2 and setting all Nj equivalent, it derives an ABA controlling N devices by O(K ·N1/K) [bit]
ciphertext. In particular, setting Nj = 2 for all j, it yields an ABA controlling N = 2K devices
with O(K) = O(logN) [bit] ciphertext.

Improvement over the conference version [2] Based on the template construction, we add
the instantiation from the discrete logarithm problem that achieves smaller space requirements
and fast processing while it lacks quantum resiliency. Details are given in Section 7.1.
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We add discussion of message security, which is defined as the hardness to distinguish two
ciphertexts from different messages and the same target devices. In the lattice and the discrete
logarithm constructions, the message securities are reduced to the decision LWE and DDH, respec-
tively. Details are given in Section 5.3.

We provide a new template construction that achieves a shorter ciphertext length of O(|S|) by
replacing anonymity with the weak anonymity. The concatenating construction achieves a shorter
ciphertext length of O(|S1| + · · · + |SK |). However, its anonymity is considerable. Details and
discussion are given in Section 8.

In response to questions in the ACNS conference [2], we have added discussions on how to
continue manipulating devices when they move to an outside of the base wireless area, and how to
disable malware. Because these topics are at another layer, we raise several open problems. Details
are given in Section 1.4.

We also refine the parameters of LWE based construction by updating the analysis of error
distribution. The ciphertext lengths are approximately 20 to 30% shorter than the conference
version. Details are given in Section 7.2.

1.3 Data Size and Expected Timing

The parameters and expected performances are summarized in Table 1 in Section 7.1 (DLP-based
construction) and Table 2 and 3 in Section 7.2 (LWE-based construction). In both settings, we
assume controlling 220 to 230 devices by a few bit messages. We provide the sizes of a verification
key and a control command and expected consuming cycles in verification in each target device
assuming to include an ARM Cortex-M4 processor.

For the standard DLP setting (112-bit security), the verification keys and command ciphertexts
are less than 50KB and 100KB, respectively. Meanwhile, for the ECDLP setting (128-bit security),
they are reduced almost 10-fold. Notably, the processing of DLP-based construction is much slower
than that of ECDLP because the DLP have to handle integers of thousands of bits. For the LWE
setting (128, 192, or 256 bit classical security), the keys and ciphertexts are within 100K – 2MB,
and the verification can be performed in a few hundred million cycles, which is expected to be
within a few seconds using a processor works at 100MHz.

We remark that the verification is dominated by the computation of SHA-3 in signature verifi-
cation, which requires 213 cycles/byte in the ARM Cortex-M4 processor [29]. We can dramatically
speed up verification using a lightweight hash function. For instance, Chaskey [24] can work with
seven cycles/byte in the same processor and reduce the number of cycles and expected timing to
less than 15 million and 0.15 seconds, respectively.

Comparisons with existing works We briefly compare our proposing ABA schemes with
existing ABA from the viewpoint on performance and security. Kobayashi et al. [20] proposed the
MAC-based constructions satisfying the anonymity (resp. the weak-anonymity) whose command
sizes are exactly (N+2)λ (resp. (|S|+2)λ), which hits the non-asymptotic linear lower bound where
λ is the security parameter. Watanabe et al. [33] proposed shorter command ABAs by relaxing
the anonymity condition and employing improved Bloom filters; the command size is still linear
O(N · log2(1/µ)) with respect to the number of devices. Here, µ is the false-positive rate, which
they assumed is within 2−10 – 2−20. For reference, to control N = 106 devices within µ = 2−10, the
command size is approximately 1.8 MB. Our logarithmic-order constructions achieve much shorter
commands than the previous construction by sacrificing anonymity.
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1.4 Issues on Practical Application Beyond Cryptography

According to questions in our talk at the CANS conference [2], we discuss issues related to disabling
malware and handover raised in practical applications. Because these issues are outside of the
cryptographic designs, we merely provide a brief overview.

The first issue is malware disabling. Our protocol sends a shutdown or reboot command. How-
ever, some malware may not be disabled after rebooting. Therefore, the device should be discon-
nected from the network for security. Notably, shutdown operations need to be carefully performed
in flying vehicles such as drones. Thus, a mechanism for safe grounding in an emergency is also
required.

In a situation in which a device is moving outside the base wireless area, a handover operation
is needed. This mechanism is defined in the RRC protocol (Layer 3 of the control plane) in 5G
and is independent of individual devices. Meanwhile, reboot and shutdown commands should be
placed at a higher layer because the commands are sent to a group of devices controlled by the
same operating system.

1.5 Paper Organization

Section 2 introduces basic definitions and notations of computational problems and ABA. The first
half of this paper (Section 3–5) is devoted to the theoretical proposal. In Section 3, we present a
Vernam-styled MRE that broadcasts an encrypted message only for target devices with information-
theoretic security. In Section 4, we transform the MRE into a template of computationally secure
ABA. Section 5 discusses its security (anonymity, unforgeability, message security and key security)
and their instantiations from DLP and LWE settings.

The second half of this paper (Section 6–8) provides practical tweaks. In Section 6, we propose
a template of ABA with short command ciphertexts by ABA concatenation. We also discuss its
security in the sense of single anonymity. Section 7 presents concrete DLP- and LWE-based schemes.
We also present concrete parameters for security strengths, ciphertext sizes, and expected timings
over the ARM Cortex-M4 processor. In Section 8, we propose a shorter ABA construction by
sacrificing anonymity and present some open problems about security. Finally, Section 9 presents
concluding remarks, issues to be considered in practical use, and future work.

2 Preliminaries

Z and N are the set of integers and natural numbers, respectively. For N ∈ N, let [N ] := {1, . . . , N}.
Define Zq := {0, 1, . . . , q − 1} where q is assumed to be an odd prime. Z×

q := Zq \ {0}. The

notation a
$←− A is the uniform sampling from a finite set A. Bold letters such as c represent a

row vector, and its transpose cT is a column vector. We use ui to denote the i-th unit vector
(0, . . . , 1, . . . , 0); the dimension is omitted if it is clear from the context. For vectors and matrices,
|| denotes concatenation. For two sets S0,S1 of target devices, S0△S1 is the symmetric difference
(S0 \ S1) ∪ (S1 \ S0).

2.1 Computational Problems

The prime field DLP is the problem to find an integer z that satisfies gz ≡ a (mod q) from a given
tuple (g, a, q) Here, q is a prime that defines the finite field Zq. g is a generator, i.e., any integer
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h ∈ {1, . . . , q−1} can be written as gi mod q using some i ∈ Z. a is an integer between 2 and q−1.
The DDH assumption states it is hard to distinguish (ga, gb, gab) and (ga, gb, gr) where a, b, r are
randomly selected from Zq. The recommended parameter size is 2,048 bits which achieves 112-bit
security [3, Sect. 5.5.1.1]. We remark that the digital signature based on DLP over Zq has been
removed from the FIPS 186-4 standard [25] because it has been updated to 186-5 [26] in February
2024. Our protocol based on DLP over Zq is just for reference. On the other hand, other DLP
variants are considered. In particular, elliptic curve instantiations are the most successful results;
they can reduce communication costs while ensuring security. Curve25519 used in the Ed25519
signature has a 256-bit length public key and 512-bit length signatures that ensure 128-bit security
using a compressed representation of a point on the curve.

The LWE problem [28] is a fundamental toolkit for constructing lattice-based schemes. For
a dimension parameter n, a modulo q, and an error distribution χ, the decision LWE is defined
by the problem of distinguishing the polynomial number of samples {(ai,ais

T + ei)}i=1,...,m and
{(ai, ui)}i=1,...,m, where sT ∈ Zn

q is a random secret vector fixed at all samples. ai, ei, ui are
random vectors from Zn

q , random errors from χ, and random elements from Zq respectively. χ is
typically the discrete Gaussian distribution DZ,σ whose density function defined over Z is

Pr[X = x] ∝ exp(−x2/2σ2).

The goal of the search version of LWE is to recover s from legitimate samples {ai,ai · sT +
ei}i=1,...,m. The polynomial time equivalence between decision and search is known [28]. We set
the lattice parameter using Albrecht et al.’s [9] lattice estimator.

2.2 Anonymous Broadcast Authentication

We introduce the notion of ABA and its correctness, unforgeability, and anonymity by Watanabe
et al. [32].

Definition 1. An ABA is formally defined as a four-tuple functions Π = (Setup, Join,Auth,Vrfy).
• Setup(1λ, N,D) → ak: An algorithm that outputs the authorization key ak. 1λ is a security
parameter, N is the maximum number of joined devices, and D is a family of sets S ⊂ [N ] that
can be used as the set of target devices.
• Join(ak, id)→ vkid: An algorithm that outputs a verification key vkid embedded to the device id.
• Auth(ak,m,S) → cmdS : It outputs a command ciphertext that encrypts the information on the
message m and the set S of target devices.
• Vrfy(vki, cmdS) → m/reject: It verifies the command ciphertext cmdS using the verification key
vkid and returns the message or reject if it is accepted or rejected, respectively.

The abovementioned algorithms, except Vrfy, are assumed to be probabilistic polynomials. Of
note, the family D is typically set to 2[N ] and is not presented explicitly in several early works,
although we restrict the freedom in the choice of a subset in [N ] to construct a short ciphertext
ABA.

Definition 2. An ABA Π has correctness if for any fixed (1λ, N,D), ak allowed to be input,
S ∈ D, and any m, id ∈ [N ], it holds that

Pr[Vrfy(Join(ak, id),Auth(ak,m,S))→ m] = 1− negl(λ) if id ∈ S, and
Pr[Vrfy(Join(ak, id),Auth(ak,m,S))→ reject] = 1− negl(λ) if id ̸∈ S.

The probability is over random coins in Join and Auth (and possibly Vrfy).
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Below are the game-based formal definitions of unforgeability and anonymity in a situation in
which the receiver devices are colluded and can share their verification keys. Our notions which
are essentially the same as those in the original work [32], although we explicitly express t, the
number of corrupted devices in the security notion to consider a practical security in Section 6.3.

Definition 3. (t-unforgeability [32]) Consider the game between a challenger C and an adversary
A.
0: C and A share (1λ, N,D) and C runs Setup(1λ, N,D)→ ak. Let Ma = Mv = ϕ

be messages used in the authentication and verification queries. In addition, let
D ⊂ [N ] and W ⊂ D be the sets of considered devices during the game, and
colluded devices, respectively. flag ∈ {0, 1} is a variable that indicates whether
the adversary is successful in forging.

1: (Key generation) A selects a set of considered devices D ⊂ [N ] and sends it to
C. C runs Join(ak, id)→ vkid for all id ∈ D.

2: (Collusion query) A selects id ∈ D and sends it to C. C adds id to W and sends
back vkid to A. A can repeat this step until |W | < t.

3: (Authentication query) A sends (m,S) to C, where the selection is limited within
S ⊂ D and m ̸∈Mv. C then runs Auth(ak,m,S)→ cmdS and returns it to A.

4: (Verification query) A generates a set (m, id, cmdS) and send them to C. C runs
Vrfy(vkid, cmdS) and returns the output to A. If Vrfy(vkid, cmdS) = m, id ̸∈ W
and m ̸∈Ma, then it sets flag = 1 else set flag = 0. Add m to Mv.
After repeating Steps 3 and 4, if there is a verification trial such that flag = 1, we define the

output of the experiment ExpCMA
Π,A (λ,N, ℓ) to be 1; otherwise, it is 0. The advantage of A in the

protocol Π is
AdvCMA

Π,A (λ,N, ℓ) := Pr[ExpCMA
Π,A (λ,N, ℓ)→ 1].

An ABA protocol Π is said to be t-unforgeable if the advantage is a negligible function of λ.

The above formal definition can be interpreted as follows. Suppose t devices are taken over and
colluded. In a situation in which an attacker collects secret information in the devices, it cannot
forge a legitimate command ciphertext that an uncolluded device will accept.. We construct our
unforgeable ABA from a base ABA by adding a signature.

Next, we consider the following passive attack rather than the above active attack.

Definition 4. [32] (t-anonymity) Consider the game between a challenger C and an adversary A.
As in the definition of unforgeability, t indicates the number of colluded devices.
0: C and A share (1λ, N,D) and C runs Setup(1λ, N,D) → ak. Let Ma = ϕ be

the set of commands used in the authentication. In addition, let D ⊂ [N ] and
W ⊂ D be the set of considered devices during the game, and the set of colluded
devices, respectively

1,2: The same as the Steps 1,2 in the unforgeability game (Definition 3)
3: (Authentication query) A selects a pair (m,S),S ⊂ D,m ̸∈Ma and sends it to

C. C runs Auth(ak,m,S)→ cmdS and returns the output and adds m to Ma.
4: (Challenge query) A selects a command m ̸∈Ma and two sets of devices S0,S1

and sends them to C. C runs Auth(ak,m,Sb) → cmdSb
, where b ∈ {0, 1} is a

random bit. Returns the ciphertext to A. A guesses b′ for the random bit.
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We define the game output as 1 if b = b′, i.e., the adversary succeeds in guessing, and 0 if
otherwise. The advantage is

AdvANOΠ,A (λ,N, ℓ) :=
∣∣∣2Pr [ExpANOΠ,A (λ,N, ℓ)

]
− 1
∣∣∣ .

In Step 4, the considered sets S0 and S1 must satisfy

Sd := (S0△S1) ∩W = ϕ (1)

to prevent a trivial distinguishing; if Sd ̸= ϕ, A can check whether some id ∈ Sd is in S0 via the
decryption oracle.

Notably, that the condition (1) means that an adversary can choose sets of any sises. The notion
of weak t-anonymity is defined by adding the condition

|S0| = |S1| (2)

besides (1) in Step 4. In addition, the outsider t-anonymity is defined by replacing (1) with (S0 ∪
S1) ∩ W = ϕ in Step 4. It is slightly weaker than the weak t-anonymity, although there is no
restriction on the size of sets [32].

3 Vernam-Styled Multirecipient Encryption with Information-
Theoretic Security

As a base gadget to construct our ABA, we introduce simple multirecipient secret key encryption.
It is a one-way protocol from a central server to N participant devices. The server packs a set of
messages into one ciphertext and broadcasts it to the devices. Each device decrypts the ciphertext
with its key. It has information-theoretic security on messages, i.e., each device i can recover the
i-th message mi but can gain no information on the messages mj (j ̸= i) to the other devices.

Definition 5. A multirecipient encryption (MRE) is formally defined as a three-tuple of functions
MRE = (KeyGen,Enc,Dec).
• MRE.KeyGen(N, pp) → (ek, dk1, . . . , dkN ): It outputs an encryption key ek and decryption keys
{dki}i∈[N ].
• MRE.Enc(ek, {mi}i∈S) → ct: S is the set of target devices to which messages are sent. mi is a
message sent to the i-th device; the server can take different mi for each i. An encryption algorithm
outputs ct to be broadcast.
• MRE.Dec(dki, ct) → m′

i: A decryption algorithm that recovers a message in the i-th device from
ct using its secret key dki.

Construction The public parameter pp = (M, q) is the pair of a vector dimension and a prime
modulus. The decryption keys are randomly generated independent column vectors dkTi ∈ ZM

q .
The encryption key is the set ek = {dkT1 , . . . , dk

T
N}. Each participant device i has pp and dkTi . For

a set of target devices S ⊂ [N ] and a set of messages {mi}i∈S (where mi ∈ Z×
q ), the ciphertext ct

is a randomly chosen vector in ZM
q that satisfies ct · dkTi ≡ mi (mod q) for all i ∈ S. Decryption at

device i is inner product computation ct · dkTi (mod q). Thus, correctness is immediate.
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Since each coordinate is of ZM
q , the sizes of the encryption key, decryption key, and ciphertext

are NM log2 q, M log2 q, and M log2 q (in bits), respectively.

Information-theoretic security Suppose the situation in which the devices 1, 2, . . . , t are col-
luded and an attacker wants to recover message mt+1 of the device t + 1 from ct using leaked
keys dkT1 , . . . , dk

T
t . In this case, the attacker can only know the fact that dkt+1 is independent of

dkT1 , . . . , dk
T
t . Suppose that the attacker guesses a vector vT and m′

t+1 = ct · vT as candidates of
dkTt+1 and mt+1, respectively. All vectors vT , 2vT , . . . , (q − 1)vT mod q can also be candidates for
secret keys with equal possibility. Thus, {m′

t+1, 2m
′
t+1, . . . , (q − 1)m′

t+1} = Z×
q are also the set of

candidates of the message with equal possibility. This means that the attacker gains no information
about mt+1 from ct and colluded keys. A similar argument can prove the impossibility of forging
ct that embeds a message to the device t+ 1.

Therefore, MRE can be used as an ABA with information-theoretic security in one-time broad-
casting while any security under chosen-plaintext attacks and key reusing situations does not hold.
Specifically, assume a situation in which the attacker can obtain ct corresponding to any chosen
{mi}i∈S and any S with fixed decryption keys. The attacker can recover dkTi s by solving linear
equations from a sufficient number of pairs of messages and ciphertexts. IN addition, there is no
mechanism to determine whether a device is a target from the knowledge of a received ciphertext.

Remarks The following implementation technique can speed up encryption. Fixing the keys, the
server precomputes vectors basei and zk so that basei ·dkTj = δij mod q and zk ·dkTj = 0 mod q for
∀j, k. The ciphertext for the message set {mi}i∈S is then computed using random numbers ri as

ct =
∑
i∈S

mi · basei +
∑
k

rk · zk.

Thus, the encryption is computable in O(N ·M) operations in Zq.
This construction can be regarded as a generalization of the concatenation of Vernam ciphers

because in the situation where N = M and all dkTi ’s are a multiple of i-th unit vector uT
i , the

ciphertext ct = (c1, . . . , cN ) is the concatenation of ci by which the i-th device can decrypt. We
note the reason for setting dkTi independent vectors instead of ki · uT

i , where kis are multiples.
Consider a chosen plaintext attack in which an attacker can obtain a pair (mi, ct) for an index i.
The decryption key can then be easily found by a simple division where dkTi = ki · uT

i . However,
when dki’s are independent, information-theoretic security can be ensured using vectors until M
pairs of (mi, ct) are obtained by the attacker. Using the M pairs, one can recover all dkTi ’s via the
solution of simultaneous equations.

In the above construction, the length (dimension) of ciphertext is fixed. Modification to a
variable length version is provided, and it will be used to construct a shorter ciphertext version
of our protocol in Section 8. After the set of target devices is fixed, set the dimension of ct to
d = |S|+1 and set the coordinates to satisfy (ct||0) · dkTi ≡ mi (mod q) for all i ∈ S. The proof of
information theoretic security is by the same way.

4 Template Construction of Base ABA

We transform the above information-theoretic MRE to ABA by adding a repeatable property. The
main differences over the base MRE are as follows: (1) it broadcasts the same message to a selected
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subset of devices and (2) its security is based on a computational problem assumption. We provide
a template construction, instantiate it from DLP and LWE, and discuss its security.

Technically, the key idea of our transformation is Kurosawa et al.’s [21] of transforming a key
predistribution scheme into a computationally secure multiple-usable broadcast encryption scheme.

4.1 Template

We present our base ABA template using a function fprm(c
T ) defined over an r-dimensional col-

umn vector with a parameter prm. We assume that the function has the following “linear-like
homomorphic” properties with respect to operations (◦,⊗).

– For scalars a, b and vectors x,y, fprm(axT + byT ) = a ◦ fprm(xT )⊗ b ◦ fprm(yT ).
– An inverse fprm(x

T )−1 of fprm(xT ) that satisfies fprm(x
T )⊗ fprm(x

T )−1 = I (an unit) is easily
computable.

These properties are used to compute a linear combination of vectors fprm(
∑M

i=1 viy
T
i ) and its

inverse to cancel out a mask in ciphertext m⊗ fprm(x) in verification.
For instance, our DLP-based construction assumes r = 1, prm = g, a generator of a finite

field and define fprm(x) = gx for x ∈ Zq. The homomorphic property holds with a ◦ h = ha and
a⊗ b = a · b. Concretely,

fg(ax+ by) = gax+by = gax ⊗ gby = a ◦ fg(x)⊗ b ◦ fg(y)

holds. Meanwhile, the ECDLP-based construction assumes r = 1 and prm = B, where B is a
base point with known order N . For x ∈ [N − 1], define fprm(x) = xB. Similar to the finite field
situations, the operations are defined by a ◦ P = aP and a⊗ b = a · b mod N .

In addition, the LWE-based construction is instantiated by setting prm = p ∈ Zr
q and fp(x

T ) =

pxT . The homomorphic property holds with the definition a◦x = axmod q and x⊗y = x+y mod q
for an integer a and vectors x,y. Note that p in our construction has small coordinates from a
discrete Gaussian though the above property holds for any vector.

Definition 6. (MRE-based ABA template) Assume that the function fprm(·) has the above homo-
morphic property. A template of our ABA is defined as follows. Assume that pp = (M, q) in MRE
is fixed from the security parameter λ.
• Setup(1λ, N,D)→ ak: Execute MRE.Setup(N, pp = (M, q))→ (ek, {dkTi }) =: ak
• Join(ak, id)→ vkid: vkid := dkTid
• Auth(ak,m,S)→ cmdS : Randomly choose an r-dimensional column vector xT from the domain
of fprm. Generate random small vectors e1, . . . , eN from some distribution. Randomly choose a
matrix CT ∈ Zr×M

q that satisfies CT · dkTi = xT + eTi for i ∈ S and CT · dkTi is far from xT for
i ̸∈ S. Parse CT into the column vectors ctT1 , . . . , ct

T
M , encode them by Fi = fprm(ct

T
i ), and the

command is cmdS = (m⊗ fprm(x), F1, . . . , FM ).
• Vrfy(vkid, cmdS)→ m/reject: For the device’s key dki := (di,1, . . . , di,M ), compute f = di,1 ◦F1 ⊗
· · · ⊗ di,M ◦ FM , and m′ = m⊗ fprm(x)⊗ f−1.

For correctness, it is necessary to constrain fprm and error vectors. For a legitimate command
and decryption key

di,1 ◦ F1 ⊗ · · · ⊗ di,M ◦ FM

= fprm(di,1ct
T
1 + · · ·+ di,MctTM ) = fprm(CT · dki) = fprm(x

T + eTi )
(3)
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holds. By the homomorphic property, (m⊗ fprm(x
T ))⊗ fprm(x

T + eTi )
−1 = m⊗ fprm(e

T
i )

−1. Thus,
fprm and the error should be selected such that the optional decoding mechanism to recover m is
performed efficiently.

In the (EC)DLP-based instantiations, we use eTi = 0 for all i, and the verification function
directly returns m. Meanwhile, in the LWE-based instantiation, eTi is a vector whose components
are from DZ,σ and a rounding function is used to recover m.

For a nontarget device i ̸∈ S, the equation (3) becomes

m⊗ fprm(x− x′) (4)

for another random x′, which is far from xT . Although it does not help to recover the message,
the result (4) is possibly included in the domain of legitimate commands. To prevent accidents,
gimmicks should be used to separate the space of scalars into the legitimate commands and others.
Our practical construction of LWE-based ABA considers such separation is described in Section 7.2.

Remark 1. Efficient sampling of matrix CT is possible via precomputation. Let c1, . . . , cM−N be
independent vectors and each cj satisfies cj · dkTi = 0 for all i ∈ [N ]. Define the matrix C by
CT = (cT1 , . . . , c

T
M−N ). For any matrix R ∈ Z(M−N)×M

q , RC · dkTi = 0T holds. Fixing the target
vectors yT

i = (yi,1, . . . , yi,r)
T , which are set as xT +eTi or a vector far from xT , compute the initial

vectors bj so that bj · dkTi = yi,j by solving simultaneous equations. Let B = (bT1 , . . . , b
T
r )

T and
CT = B +RC is the desired random matrix.

5 Security of ABA

First, we discuss anonymity (Section 5.1) and unforgeability (Section 5.2), which are considered
in the original motivations of ABA [32]. We introduce a computational problem defined using
fprm, directly deduced from the anonymity game. In addition, we show that its DLP and LWE
instantiations are reduced to the DDH or the LWE problems, respectively.

Second, we consider the message security (Section 5.3) and verification key security (Sec-
tion 5.4). Message security is defined as the hardness to distinguish the command ciphertext
without using the keys of target devices. For theoretical interest, we have proved this security
in the DLP and LWE instantiations is reduced to the DDH and the decision LWE problems,
respectively.

Verification key security is defined by the hardness of recovering the device’s verification key
vki or its alternative key vk′Ti , i.e., a key that Vrfy(vk′i, cmdS) outputs the correct value with high
probability of device i from other colluded keys {dkTj }. We show that if one can recover such a key,
it can break the anonymity. Thus, the security proof of anonymity is also that of the key security.

5.1 Anonymity

In Step 4 of the anonymity game (Def. 4), the adversary can select m,S,S ′. Due to the homomorphic
property of fprm, the adversary can remove m from the first coordinate, which is m⊗ fprm(x

T ) or
m⊗ fprm((x

′)T ), of a returned command ciphertext.
Therefore, in the context of our template construction, breaking anonymity is the same as

distinguishing tuples

cmdS = (fprm(x
T ), fprm(ct

T
1 ), . . . , fprm(ct

T
M )) and

cmdS′ = (fprm((x
′)T ), fprm((ct

′
1)

T ), . . . , fprm((ct
′
M )T ))
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under in a situation in which the adversary knows that there is an index id ∈ S \ S ′ such that dkid
can recover fprm(x

T + eTi ) via the relation (3).
We transform the above problem into a distinguishing problem between legitimate and random

sequences.

Definition 7. ((fprm, χ,M)-linear distinguishing problem) For a function fprm(·) used in template
construction, consider the computational problem of distinguishing the sequence

(fprm(x
T ), fprm(c

T
1 ), . . . , fprm(c

T
M )) and (fprm(r

T ), fprm(c
T
1 ), . . . , fprm(c

T
M ))

where cT1 , . . . , c
T
M are randomly drawn from the domain of fprm.

In the former case, xT is computed (cT1 ||cT2 || · · · ||cTM )dT + eT = cT1 d1 + · · ·+ cTMdM + eT by a
fixed secret vector dT = (d1, . . . , dM )T and a small random error eT from χr. In the latter case,
rT is random.

Theorem 1. Using an adversary A that can win the anonymity game (Def. 4) with fprm, noise
distribution χ and dimension 2M , above distinguishing problem with parameters (fprm, χ,M) can
be solved with high probability.

Proof. Fix the parameters fprm, χ and M . Assume the existence of an adversary A. Setup the
anonymity game with 2M dimensions. The challenger then generates a (2M) × (2M) random
invertible matrix U .

In the collusion query phase, suppose that the adversary requires t verification keys; we can
name them dk1, . . . , dkt without loss of generality. Upon the queries, generate random M -dimensional
vectors r1, . . . , rt and set the fake verification keys to the adversary by dkTi = [(ri||ui)U ]T ∈
V 2M , i = 1, . . . , t.

Then, using the virtual secret vector d of the linear distinguishing problem, define tentative
decryption keys dkTi = [(d||ui)U ]T for i = t+1, . . . ,M , that are unknown to both the challenger and
adversary. Upon requests from the adversary, the challenger sends the corrupted keys dkT1 , . . . , dk

T
t .

In the authentication query phase, the challenger generates the command ciphertext of a query
(m,S) as follows. Call the problem oracle and obtain an instance (fprm(yT ), fprm(c

T
1 ), . . . , fprm(c

T
M ))

where yT is legitimate xT or random rT . Denote C = [cT1 || · · · ||cTM ]. Fi = fprm(c
T
i ) for i = 1, . . . ,M .

Hence, for i = M + 1, . . . ,M + t, compute

fprm(CrTi ) = F1 ◦ ri,1 ⊗ · · · ⊗ FM ◦ ri,M

and
FM+i :=

{
fprm(CrTi )

−1 ⊗ fprm(y
T )⊗ fprm(η

T
i ) (i ∈ S)

fprm(rand) (i ̸∈ S)

where rand means a result of random sampling from the domain of fprm and ηi is a random noises
sampled from χr.

For i = M + t+ 1, . . . , 2M , compute

FM+i :=

{
fprm(y

T )−1 (i ∈ S)
fprm(rand) (i ̸∈ S)

and let (V1, . . . , V2M ) := (F1, . . . , F2M )U−1. Vector-matrix multiplications are performed using the
operations (◦,⊗), i.e., Vj = F1 ◦ u1,j ⊗ · · · ⊗ F2M ◦ u2M,j where ui,j is the (i, j)-element of U−1.
The command to the adversary is cmdS = (m ◦ fprm(yT ), V1, . . . , V2M ).
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Thus,

Vrfy(vki, cmdS) = m⊗ fprm(y
T )⊗ f−1

prm(y
T ) = m⊗

{
fprm(η

T
i ) i = 1, . . . , t

fprm(e
T ) i = t+ 1, . . . ,M

holds for i ∈ S if the problem instance is legitimate. However, if the problem instance is random,
the relations on i = t+ 1, . . . ,M do not hold.

In the challenge query phase, for (m,S0,S1), the challenger returns cmdSb
for b = 0 or 1 in

the same manner and checks the adversary’s response. By checking the adversary’s advantage, the
challenger distinguishes the problem instance. □

Instantiations of Concrete Problems: We provide instantiations of our problem (Definition 7)
in DLP and LWE situations.

In the DLP situation, we set r = 1 and fprm(x) = gx and the noise variable is always zero.
Thus, the problem is to distinguish

{(gx, gc1 , . . . , gcM )} and {(gr, gc1 , . . . , gcM )}

where (d1, . . . , dM ), (c1, . . . , cM ), and r denote a fixed secret vector, uniformly random vector, and
a random number, respectively In the legitimate situation, x = c1d1 + · · ·+ cMdM holds.

To the best of our knowledge, research on this problem is scarce. However, this can be captured
as a discrete logarithm analogue of the standard LWE problem. We provide the reduction to thh
DDH problem.

Proposition 1. The above distinguishing problem can be reduced to DDH.

Proof. First, we prove that an algorithm AM to distinguish the above M +1 dimensional vectors
can solve the M = 1 problem. We can construct an algorithm A1 to solve the M = 1 problem.
Before calling the oracle, A1 samples a virtual secrets (d2, . . . , dM ) and fixes them. For a 1-instance
(gx, gc1), construct M -instance by (gy, gc1 , . . . , gcM ) with gy = gx · gc2d2+···+cMdM with randomly
generated c2, . . . , cM . If gx is a legitimate gc1d1 (resp. random gr), gy is a legitimate (resp. random)
number.

Next, we prove that A1 can distinguish DH instances. Fix a generator g and let (ga, gb, gc)
be a sample where c = ab or random. Note that for any randomly generated d1, d2, the relation
(gd1 · (gb)d2)a = ((ga)d1 · (gc)d2) holds if c = ab. Thus, a sequence of 1-instances with secret a can
be generated by (gx, gc1) = (gd1 · (gb)d2 , (ga)d1 · (gc)d2). If c = ab, it is a legitimate sample. On the
other hand, if c ̸= ab, the second component is gc1 = gad1+abd2 · g(c−ab)d2 . Thus, the randomness
of d2 makes its distribution random. □

In the lattice setting with prm = p ∈ Zr
q and fp(x

T ) = pxT , the problem is to distinguish

(pxT ,pcT1 , . . . ,pc
T
M ) and (prT ,pcT1 , . . . ,pc

T
M )

where xT is computed by
∑M

i=1 dic
T
i + eT by a secret vector d = (d1, . . . , dM ) and an error vector

eT , and rT is a random vector. This is a sample (a,asT + η) of the decision LWE problem where
a = (pcT1 , . . . ,pc

T
M ), s = (d1, . . . , dM ) and η = peT . The distribution of η is a scaled Gaussian if

each coordinate of e is drawn from a Gaussian.
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5.2 Unforgeability

We present a t-unforgeable ABA scheme using a transformation by adding signatures. Notably,
the template construction does not have 1-unforgeability because of its homomorphic property. In
fact, for

cmdS = (m⊗ fprm(x
T ), fprm(ct

T
1 ), . . . , fprm(ct

T
M ))

that targets S selected by an adversary having only vkid, cmdS = (m⊗fprm(xT )⊗c, fprm(ctT1 ), . . . , fprm(ctTM ))
is a legitimate ciphertext of the shifted message m⊗ c accepted by some id′ ∈ S \ {id}.

A simple transformation technique from a CPA-secure public-key BE to a CCA1-secure one is
known [22]. Following their notions and techniques, we propose a method of transformation from
our template ABA to an unforgeable ABA.

Definition 8. (Transformation) For an ABA scheme ABA = (Setup, Join,Auth,Vrfy) and a strongly
and existentially unforgeable signature Σ = (KeyGen, Sign,Vrfy), the transformation of ABA, which
we denote ABAΣ is defined as follows.
• ABAΣ .Setup(1

λ, N,D) → (ak, pk, sk): Run ABA.Setup(1λ, N,D) → ak and Σ.KeyGen(1λ) →
(pk, sk).
• ABAΣ .Join(ak, id)→ vkid: Run ABA.Join(ak, id) and let vkid = (ABA.vkid, pk).
• ABAΣ .Auth(ak,m,S) → (cmdS , σ): Execute ABA.Auth(ak,m,S) → cmdS . Generate the signa-
ture for the base command Σ.Sign(sk, cmdS)→ σ.
• ABAΣ .Vrfy(vki, (cmdS , σ)) → m/reject: Check the signature Σ.Vrfy(pk, σ, cmdS). If the check
fails, return reject. Passing the verifications, execute ABA.Vrfy(vkid, cmdS) and return the result.

The security proof of unforgeability is straightforward. In the security game (Definition 3),
an adversary can get verification keys and {(cmdS , σ)} upon one’s queries. Suppose one can
forge a command pair (cmd′S′ , σ′) with (m′, id′) such that Σ.Vrfy(pk, σ′, cmd′S′) returns accept and
ABA.Vrfy(vkid′ , cmd′S′) returns m′.

Forging is split into two cases. If cmd′S′ is not equal to any commands returned from the chal-
lenger in the authentication query phase (cmd′S′ , σ′) is a valid pair to break the strong unforgeability
of the signature game, which is assumed to be hard.

Next, consider a situation where cmd′S′ is equal to cmdSa
, one of the returned commands

in the authentication queries. We show that this situation is impossible. Recall that the corre-
sponding message m′ and ma in the commands cannot be equal by the requirement m ̸∈ Mv in
Step 3. Thus, the first element of cmd′S′ = cmdSa is m′ ⊗ fprm(x

′T ) = ma ⊗ fprm(x
T
a ), which are

different representations of different messages. Thus, the verification results by vkid′ must satisfy
ABA.Vrfy(vkid′ , cmd′S′) = m′ and ABA.Vrfy(vkid′ , cmdSa

) = ma. This contradicts the requirement
m′ ̸= ma and cmd′S′ = cmdSa

.
Therefore, forging a command ciphertext is hard because of the strong unforgeability of the

signature. Clearly this construction inherits the other security properties of the base ABA, i.e.,
anonymity and message security.

5.3 Message Security

This section discusses the hardness of distinguishing messages from command ciphertexts without
the keys of target devices.

We introduce a game-based definition of command indistinguishability.
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Definition 9. (IND-CPA security of ABA with t-collusion) Consider the following game between
an adversary A and a challenger C.

0: Share N the number of participant devices and pp the public parameter. C runs
Setup(1λ, N,D)→ ak = (ek, {dki}).

1: (Collusion query) A selects id ∈ [N ] and sends it to the challenger. C runs Join(ak, id)→ vkid,
adds id to W and sends vkid to A. A can repeat this step until the number of colluded devices
is less than t.

2: (Challenge ciphertext) A selects a set of target devices S ⊂ [N ],S∩W = ϕ and two messages
m0,m1 and send them to C. C generates a ciphertext cmdS from mb where b is randomly
chosen from {0, 1} and return the ciphertext to A.

3: (Encryption query) A can ask C to encrypt (m′,S ′) and receive the ciphertext cmdS′

4: A guesses b′ from cmdS.
The advantage of A is defined by 2 · |Pr[b = b′] − 1/2|. The scheme is said to be IND-CPA

secure if the advantage is negligible.

In our template construction, the challenge ciphertext is given by the following form

cmdS = (mb ⊗ fprm(x
T ), fprm(c

T
1 ), . . . , fprm(c

T
M ))

and a command ciphertext with known m′ in the encryption query phase is

cmdS′ = (m′ ⊗ fprm(x
T ), fprm((c

′
1)

T ), . . . , fprm((c
′
M )T )).

We present hardness results to distinguish the messages in DLP and LWE situations. The proofs
are separated into each instantiations via the use of error vectors though proof outlines are similar.

Theorem 2. The IND-CPA security of ABA in the DLP instantiation can be reduced to the DDH
assumption.

Proof. Suppose A can distinguish the command ciphertext of ABA with M dimensional vectors,
N devices, fg(a) = ga and t colluded devices. We show how the challenger distinguishes an instance
of the DDH assumption (g, gr, gx, gc) where c = rx or a random number.

Let dk
T

i , i ∈ [N ] be fake decryption keys of the base MRE that the challenger randomly gener-
ates. Upon the adversary’s collusion queries, the challenger returns a sequence of fake keys. Upon
the adversary’s set S, a random number x and a row vector CT are generated such that

CT · dkTi =

{
x (i ∈ S)

rand (i ̸∈ S)

where rand is a random number except for x. Then, parse CT = (ct1, . . . , ctM ).
Upon the messages m0,m1, randomly choose mb and let the returning command be

cmdS′ = (mb · gc, grct1 , . . . , grctM ).

Let dkTi s be the true keys assumed to be used in a virtual encryption system from the adversary’s
view. They satisfy CT · dkTi = x. The relation between the fake and true keys is dk

T

i = dkTi · (x/x).
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Upon the adversary’s encryption query (m′,S ′), the challenger again generate a random number
x′ and a matrix CT ′ such that

CT ′ · dkTi =

{
x′ (i ∈ S)

rand (i ̸∈ S)

and the command ciphertext

cmdS′ = (m′ · gx·(x′/x), gct
′
1 , . . . , gct

′
M ).

Since we have gx, x and x′, the first element is easily computable. For true key dkTi = (di,1, . . . , di,M )T ,
we have

M∏
i=1

(gct
′
i)di,j = gCT ′·dki = gdki

T ·(x/x) = gx
′·(x/x)

Thus, this is a legitimate command that encrypts m′.
Finally, the adversary guesses b′ and the advantage |Pr[b = b′]− 1/2| should be high if c = rx

and small if c is random. □
Besides the DLP situation, we provide the security of our lattice-based ABA to the hardness

of the decision LWE in the lattice case.

Theorem 3. Let (n, q,m) be the LWE parameter and the noise distribution be χ. The hardness of
the decision LWE guarantees the IND-CPA security of ABA with lattice instantiation with noise
distribution χ + χ and vector dimension M = 2n. In addition, assume the domain of fprm(·) has
dimension r = m.

Proof. Let a1, . . . ,am and bT = (b1, . . . , bm)T be sample instances of the decision LWE. bi =
ais

T+ei mod q or a random number in Zq. We also let eT = (e1, . . . , em) from the noise distribution
χm.

Let A be an adversary that can distinguish two messages of ABA working with 2n-dimensional
vectors, N devices, and t colluded devices. The template function fp(x

T ) = pxT is defined over
m-dimensional vectors, where p denotes a small vector to be kept secret but random for security.

For collusion queries, we can assume that the IDs are id = 1, . . . , t without loss of generality
and let fake verification keys be 2n-dimensional vectors vk

T

i = [(ri||ui)U ]T , where ris and U are
random vectors from Zn

q and a random matrix in Z2n×2n
q , respectively. In addition, for other IDs,

we tentatively set vk
T

i = [(s||ui)U ]T , which is unknown to both the challenger and adversary
because s is the secret vector of the LWE instance.

Upon the adversary’s request m0,m1 and S in Step 2, the challenge ciphertext is constructed
using LWE samples ai, b and randomly generated mb as follows. For the row vectors ai, construct
the r × n matrix and parse it into n column vectorsa1

...
ar

 =
[
AT

1 · · · AT
n

]
.

The command is

cmdS = (mb + bpT , [A1p
T , . . . , Anp

T , Fn+1, . . . , F2n]U
−1 mod q).
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The latter elements are defined by

Fn+i =

 rand (i ̸∈ S)
0 (i ∈ S ∩ {t+ 1, . . . , N}) //non-colluded keys

bpT −
∑n

i=1 riAip
T + ηip

T (i ∈ S ∩ [t]) //colluded keys

where ηi is a vector from Dr
Z,σ. For this setting, the results of the target and nontarget device

verifications are as follows. For i ∈ S ∩ [t], we have

(A1p
T , . . . , Anp

T , Fn+1, . . . , F2n)U
−1 · (vki

T
)

= (A1p
T , . . . , Anp

T , Fn+1, . . . , F2n) · (ri||ui)
T = bpT + ηip

T .

Thus,
Vrfy(vki, cmdS) = mb − ηip

T (5)

For i ∈ S ∩ ([N ] \ [t]), we have

(A1p
T , . . . , Anp

T , Fn+1, . . . , F2n)U
−1 · (vki

T
)

= (A1p
T , . . . , Anp

T , Fn+1, . . . , F2n) · (si||ui)
T =

n∑
i=1

siaip
T

Thus,

Vrfy(vki, cmdS) = mb + bpT −
n∑

i=1

siaip
T = mb + (e+ ηi)p

T . (6)

For encryption queries (m′,S ′), the command can be constructed similarly. Therefore, the LWE
samples can be converted to the command. If the LWE instance is legitimate (resp. random), the
advantage of A should be high (resp. low). Thus, A can solve the decision LWE problem.

Finally, it is necessary to pay attention to the noise distribution. In the above transformation,
the noises (5) and (6) differ slightly. By replacing both eT +ηT

i and ηT
i by another noise (η′)Ti with

larger derivations, the distinguishing hardness is amplified. If eT and ηT
i are discrete Gaussians

of variance σ2, then we can take (η′)Ti the discrete Gaussians of variance 2σ2. The proof of the
relation between noise parameters is completed. □

5.4 Key Security

We now discuss security of vefication keys. Suppose an attacker can collect verification keys
{vkid}id∈W from colluded devices. The goal is not only to find a verification key vki for some
i ̸∈W but also to generate an alternative key, i.e., i.e., a key vk′i that Vrfy(vk′i, cmdS) outputs the
correct value with high probability.

If one can recover such a key, anonymity can be broken as follows. In the anonymity game
(Def. 4), suppose that an adversary can generate an alternative key vk′i for some device i ̸∈ W
using the colluded keys in Step 2. The adversary then randomly selects S0,S1 but i ∈ S1 and i ̸∈ S0
hold. From the result of Vrfy(vk′i, cmdSb

), the adversary can distinguish b.
Therefore, the security proof of anonymity is also the proof of key security.
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6 Concatenation of ABAs

Our template construction in the previous sections is under the atomic framework; thus, the ci-
phertext length is Ω(N). As aforementioned, this is useless for controlling millions of devices. Using
the homomorphic properties of the base function fprm, we can concatenate ABAs to control many
devices in practice.

The sequential concatenation of small-sized ABAs is a simple technique for reducing the cipher-
text length by restricting the choice of target devices. The plain construction, which is immediately
found to be insecure, is described as follows.

Definition 10. (Sequential concatenation of ABAs) Consider K ABAs. Let them be ABAj =
(Setupj , Joinj ,Authj ,Vrfyj) and Nj be the maximum number of devices controlled by the j-th ABA.
The concatenated ABA is defined as follows. Each device is indicated by a vector id = (i1, . . . , iK).
• ABA.Setup: Execute ABAj .Setup(1

λ, N,D) → akj for all j ∈ [K]. The order of execution
does not matter and let ak := {ak1, . . . , akK}.
• ABA.Join(ak, id): For id = (i1, . . . , iK), execute ABAj .Join(akj , ij)→ vkj,ij . The verification

key is the concatenation vkid = (vk1,i1 , . . . , vkK,iK ).
• ABA.Auth(ak,m,S): The set of target devices is indicated by S = S1 × · · · × SK where
Sj ⊂ [Nj ]. The command ciphertext cmdS is the concatenation of cmdSj = Auth(akj ,m,Sj)
for j = 1, . . . ,K, and it is broadcast.
• ABA.Vrfy(vkid, cmdS) → m/reject. Check whether Vrfy(vkj,ij , cmdSj

) for all j. If all the
verification has been accepted, output m, if otherwise, output reject.

Assuming the anonymity of the base ABAj , the concatenated ABA also has anonymity on two
sets of certain limited forms. For instance, consider two sets S1 × · · · × SK and S ′1 × · · · × S ′K that
are only their j-th coordinates differ. We can show that the two command ciphertexts that encode
the sets are indistinguishable due to the anonymity of base ABAj .

The concatenated ABA has certain insecurities. The message contents are not secure because a
nontarget device can recover the message. In fact, Vrfy returns the message whenever idj ∈ Sj . In
addition, one can break anonymity properties in the senses of both standard notion (Definition 4)
and another notion that we will name the single anonymity.

6.1 Rearranging Attack

The sequential concatenation of ABAs is easily broken by the rearrangement of the verification
keys. Consider the concatenation of K = 2 ABAs with N1 = N2 = 2. The composed ABA can
control N1N2 = 4 devices and we name them by id = (1, 1), (1, 2), (2, 1) and (2, 2). Suppose that
(1, 1) and (2, 2) are colluded. If an attacker has vk1,1 = (vk1,1, vk2,1) and vk2,2 = (vk1,2, vk2,2),
then it can generate other verification keys vk1,2 = (vk1,1, vk2,2) and vk2,1 = (vk1,2, vk2,1) via
the recombination of components. Thus, the attacker can recover any legitimate ciphertext and
determine which devices are in the target set. For instance, in the anonymity game, an adversary
can select S0 = {(1, 2)} and S1 = {(2, 1)} that satisfies (1). Thus, cmdSb

can be easily verified to
distinguish.

This attack is quite strong because it uses neither the properties of encrypting nor homomorphic
functions. Below, we show that another type of anonymity can be broken even if one cannot recover
other verification keys.
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6.2 Single Anonymity in Restricted Device Selection

Besides the standard anonymity (Definition 4), there is a situation in which one can break another
type of anonymity from only the results of verification on the colluded devices. We first provide an
example.

Again consider the concatenation of K = 2 ABAs with N1 = N2 = 2. Denote the target
indication by (d1, d2) ∈ {1, 2, ∗}2 where ∗ is the wild-card; for example (1, ∗) represents the set
{1} × {1, 2} = {(1, 1), (1, 2)}. Nine patterns are possible as the rows in the table below.

(d1, d2) (1,1) (1,2) (2,1) (2,2)
(1,1) •
(1,2) •
(2,1) •
(2,2) •

(d1, d2) (1,1) (1,2) (2,1) (2,2)
(1,*) • •
(2,*) • •
(*,1) • •
(*,2) • •
(*,*) • • • •

Assume id = (1, 2) and (2, 1) are colluded and that the attacker can obtain vk1,2 and vk2,1.
If the attacker decrypts a command ciphertext and knows that it targets both id = (1, 2) and
(2, 1). Then, the selection (d1, d2) = (∗, ∗) is revealed from the table, and the attacker can know
id = (1, 1) and (2, 2) are also target devices. We emphasize that such an attack is possible even if
the other verification keys cannot be recovered. This is independent of the cryptographic security
of the primitives.

The above example illustrates how we consider anonymity in a situation in which the freedom
of target device selection is limited.

In the notion of standard anonymity (Definition 4), a situation in which no information is leaked
except for the corrupted devices is considered via the indistinguishability property. We believe that
the validity of this definition is justified by an implicit assumption that the target set is uniformly
chosen from 2[N ] and information leakage is always caused by cryptographic vulnerabilities.

In our limited-freedom situation, information can be leaked regardless of the cryptographic
vulnerability. We introduce the notion of single anonymity to formulate this type of anonymity.

Definition 11. An ABA is said to have single anonymity (SA) if for any W ⫋ [N ] a pattern of

{Vrfy(vkid, cmdS)}id∈W does not reveal the information whether id′
?
∈ S for some id′ ̸∈W .

By the notation id′
?
∈ S, we mean information to determine id′ ∈ S or id ∈ S with 100%

certainty. A relaxed version of this definition, e.g., based on probabilistic bias, can be considered
because this condition is quite tight; by the next proposition, any subset of [N ] must be selectable.
One of our future works is to investigate the relationship between the restriction of target device
selection (that bounds ciphertext length) and the strength of anonymity.

Proposition 2. If the freedom to select target devices is limited, it does not have SA.

Proof. Let D ⊂ 2[N ] be a family of sets that can be specified as targets. We say S ⊂ [N ] is
selectable (resp. unselectable) if S ∈ D (resp. S ̸∈ D.)

We separate the situation. First, assume that there are nselectable S and selectable S ′ such that
S ′ ⊃ S. Considering the minimum such S ′, i.e., any proper subset of S ′ is unselectable. Suppose
all devices in S ∪ ([N ] \ S ′) have been colluded and the server broadcasts a command cmdS′ that
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targets all devices in S ′. The adversary can verify the commands in the infected devices and know
if they are in target (resp. non-target.) for id ∈ S (resp. id ∈ [N ] \ S ′).

With the restriction of the choice of S, the adversary also determines that the devices in S ′ \S
are in the target without using any cryptographic attacks.

Consider another situation in which for any selectable set S, its subset is selectable. This
situation implies that [N ] is divided into T1 ∪ · · · ∪ Tk such that Ti ∩ Tj = ϕ and any subsets of Ti
are selectable. Thus, if one can know a device id ∈ Ti is a target, all the devices in Tj , (j ̸= i) that
are not selectable can be deduced. □

Of note, neither t-anonymity nor SA implies each other. In addition, even if we construct a
t-anonymity ABA for a certain reasonably high t, information leakage in the sense of SA from a
pattern is possible. This is a motivation for our construction strategy in the next section using a
simple known technique and algebraic analysis.

6.3 Modification Against Recombination Attack

The simple concatenated construction has certain insecurities. The anonymity and unforgeability
of the concatenated ABAs are broken by rearranging the colluded keys and a nontarget device can
recover the message. Based on the abovementioned discussion, retaining complete anonymity in
the sense of both standard anonymity and single anonymity is impossible because the freedom of
target device selection is limited.

We employ two modifications to strengthen the security. The first idea is based on the well-
known secret sharing scheme to distribute m into K shares and recover them in target devices via
the homomorphic property of fprm. The other idea is based on Agrawal et al.’s [1] inner product
encryption. We use this technique as a mechanism to increase the amount of information required
to break anonymity by adding variables. We remark that this does not provide complete anonymity
but increases the practical security.

Below, we provide a template construction modified from Definition 10.

Definition 12. (A modified concatenated template construction)
• Setup(1λ,K,D)→ ak: Fix a prime field Zq and a dimension M of base MREs. Execute MREj .KeyGen(pp)→
(ekj , {dkTj,i}i∈[Nj ]}) for j ∈ [K], where ekj := {dkTj,i}. Generate random matrices Aj,i

$←− Zr×M
q for

j ∈ [K], i ∈ [Nj ], a random invertible matrix W ∈ Z2M×2M
q and a random vector uT ∈ Zr

q. The
key is ak = ({dkTj,i}, {ekj}, {Aj,i},W,uT ).
• Join(ak, id) → vkid: For a device id = (i1, i2, . . . , iK), generate a random vector ukid such that∑K

j=1 Aj,ijuk
T
id = uT (mod q). The verification key is vkid = (W (dk1,i1 ||ukid)T , . . . ,W (dkK,iK ||ukid)T ).

• Auth(ak,m,S) → cmdS : Suppose the target devices are indicated by S1 × · · · × SK ⊂
∏
[Nj ].

Pick random vectors tTj ∈ Zr
q and let xT := tT1 + · · · + tTK . Generate random matrices CTj,i

(j ∈ [M ], i ∈ [Nj ]) such that

CTj,i · dkj,ℓ =
{
tTj + eTj,i (i = ℓ and i ∈ Sj)
rand (i ̸∈ Sj)

where rand represents a random element far from tTj . Define the matrix Cj,i := (CTj,i||Aj,i)W
−1

and split it into the 2M column vectors by Cj,i = (cTj,i,1|| · · · ||cTj,i,2M ). The command ciphertext
cmdS is m⊗ fprm(x

T + uT ) and the sequence {fprm(cTj,i,ℓ)}.
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• Vrfy(vkid, cmdS): For id = (i1, . . . , iK), denote vkid = (v1, . . . , vK) and let ℓ-th element of vj

be vj,ℓ. For the command (m ⊗ fprm(x
T + uT ), {Fj,i,ℓ}), compute Tj =

∑2M
ℓ=1 vj,ℓ ⊗ Fj,ij ,ℓ and

m⊗ fprm(x
T + uT )⊗ (T1 ⊗ · · · ⊗ TK)−1.

The correctness is straightforward. For a target id = (i1, . . . , iK), each Tj and the sum in the
sense of ⊗ are

Tj =

2M∑
ℓ=1

vj,ℓ ⊗ fprm(c
T
j,ij ,ℓ) = fprm

(
2M∑
ℓ=1

cTj,ij ,ℓvj,ℓ

)
= fprm((CTj,ij ||Aj,ij )W

−1 ·W (dkj,ij ||ukid)) = fprm(t
T
j + eTj,i +Aj,ijukid),

and T1 ⊗ · · · ⊗ TK = fprm

(∑K
j=1 t

T
j + uT +

∑K
j=1 ej,ij

)
.

Therefore, each device recovers m⊗ fprm

(∑K
j=1 e

T
j,ij

)
.

Following the transformation (Definition 8) unforgeability is realized by adding a signature. We
now discuss anonymity.

Anonymity from Dependency of Algebraic Systems:
We discuss the necessary number of colluded keys and authentication queries to distinguish the

two commands cmdS0
and cmdS1

in the anonymity game (Definition 4). Assume that an attacker’s
strategy is to recover vkid or its alternative for some id ∈ S0△S1 and try to verify cmdSb

. Without
loss of generality, we can let id = (1, 1, . . . , 1).

Split the matrix W into two M × 2M matrices: W =

[
W1

W2

]
. Denote wT

j,i = W1dk
T
j,i and

uT
id = W2uk

T
id. The verification key that one wants to recover is then written as vkTid = (wT

1,1 +

uT
id, . . . ,w

T
K,1+uT

id). uk
T
id also satisfies

∑K
j=1 Aj,1uk

T
id = uT for unknown matrices Aj,1 and unknown

vector uT . Consider simultaneous equations to recover vkid.
The number of variables to fix is KM for wj,1 (j = 1, . . . ,K), K · rM for Aj,i, 2M2 for W2

and r for u. In addition, the number of unknown variables in ukid is r because the other M − r
variables can be random, i.e., have freedom, by construction. With a new colluded key vkTid′ , less
than MK independent equations can be obtained and it introduces new variables on wT

j,i and
Aj,i. An authentication query does not introduce new equations due to the random variables tj in
construction.

To minimize the number of unknown variables, when an attacker gets a new vkTid′ , one can
minimize the range of indexes. For id = (i1, . . . , iN ) that satisfies ij ∈ [2] for j = 1, . . . , s and
ij = 1 for i = s + 1, . . . ,K, t = 2s − 1 colluded keys are possible. The number of variables is
2(K+s)M for wT

j,ij
, 2(K+s) ·rM for Aj,ij , 2M2 for W2, tr for ukTid, r for uT . The total number of

variables from the public key and t colluded key is V = 2M2 +2(K + s)rM +2(K + s)M + tr+ r,
and the attacker has to solve them by tKM simultaneous equations. To fix the unique solution
and vkTid, it is necessary to satisfy

2M2 + 2(K + s)rM + 2(K + s)M + tr + r < tKM

⇔ t >
2M2 + 2(K + s)rM + 2(K + s)M + r

KM − r
.

The last fraction is bounded by M/K + 2r + 2. Therefore, there is evidence of anonymity against
2 + 2r corruption. In the lattice-based instantiation described in the next section, r is the number
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of samples in LWE and it is greater than 750. We believe that the security against the collusion of
2r = 1500 devices is practically secure.

7 Concrete Scheme and Security Parameters

This section provides concrete schemes instantiated from the DLP and from the LWE problem,
security parameters, and rough estimations of communication costs.

Below, we assume Nj = 2 for all j; thus, it is necessary to take M ≥ 2 for the decryption keys.
We use M = 3 because M ≥ 3 is suitable for introducing some randomness in the keys.s The
number of concatenated ABAs is K = 20 – 30 to control 106 – 109 devices in practice.

In addition, we discuss a relationship between the space of an ABA command and a crypto-
graphic message for the practical use. Each target device can recover m whereas a nontarget device
receives a random number which can be interpreted as a legitimate command. Because the message
space in the DLP-based construction is exponential, the probability that such accidents occur is
negligible. Meanwhile, a gimmick in a message is needed in the LWE-based construction to prevent
such accidents.

7.1 DLP-Based Construction

We instantiate the DLP-based construction by setting fprm(a) = ga mod q to Definition 8 and 12.

Definition 13. • Setup(1λ,K,D)→ ak: Fix a prime field Zq and a dimension M of base MREs.
Execute MREj .KeyGen(pp) → (ekj , {dkTj,i}i∈[Nj ]}) for j ∈ [K] where ekj := {dkTj,i}. Generate ran-

dom vectors aj,i
$←− ZM

q for j ∈ [K], i = 1, 2, a random invertible matrix W ∈ Z2M×2M
q and a con-

stant u ∈ Zq. Execute Σ.KeyGen(1λ)→ (pk, sk) The key is ak = ({dkTj,i}, {ekj}, {aj,i},W, u, pk, sk).
• Join(ak, id) → vkid: For a device id = (i1, i2, . . . , iK), generate a random vector ukid such that∑K

j=1 aj,ijuk
T
id = u (mod q). Then, put the verification key by

vkid = {(W (dk1,i1 ||ukid)T , . . . ,W (dkK,iK ||ukid)T ), pk}.

• Auth(ak,m,S)→ cmdS : Suppose the target devices are indicated by S1 × · · · × SK ⊂ [2]K . Select
random numbers tj ∈ Zq and let x := t1+ · · ·+ tK . Generate random vectors ctj,i (j ∈ [K], i ∈ [2])
such that

ctj,i · dkTj,ℓ =
{
tj (i = ℓ and i ∈ Sj)
rand (i ̸∈ Sj)

where rand represents an output from random number generators except for tj.
Define the vector cj,i := (ctTj,i||aj,i)W

−1 and parse it into the coordinates by cj,i = (cj,i,1, . . . , cj,i,2M ).
Then, the command cmdS is m · gx+u and the sequence {gcj,i,ℓ}. Finally, generate a signature to
the command Σ.Sign(sk, cmdS)→ σ. Ciphertext is the pair (cmdS , σ).
• Vrfy(vkid, (cmdS , σ)): Check the signature by Σ.Vrfy(pk, σ, cmdS) at first and if it returns reject,
it stops with returning reject; otherwise, continue the process. For id = (i1, . . . , iK), denote the
vector part of vkid be (v1, . . . , vK) and let the ℓ-th element of vj be vj,ℓ. For the command (m ·
gx+u, {gcj,i,ℓ}), compute

Tj =

2M∏
ℓ=1

(gcj ,ij ,ℓ)vj,ℓ and m · gx+u · (T1 · · · · · TK)−1. (7)
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The proofs of correctness, anonymity and unforgeability are provided in the template construc-
tion. Below we estimate their communication and computation costs. The results are summarized
in Table 1.

Table 1. Size and cost estimations in (EC)DLP settings. The table shows sizes of a verification key
(6K(log2 q)/8 + pksize [Byte]) and command ciphertext ((1 + 12K)(log2 q)/8 + sigsize [Byte]). K, and q
are the number of concatenated ABAs and a modulus to define finite fields, respectively. Following NIST
standards, we assume pksize = N + 3L = 352 [Byte] and sigsize = 2L = 64 [Byte] in the DLP setting
that uses a DSA. In addition, we assume pksize = 32 [Byte] and sigsize = 64 [Byte] in the ECDLP
setting that uses EdDSA. The last two columns contain the expected timings in the million clocks of
signature verification and cancelation computation to recover m in each target device with ARM Cortex-
M4 processors.

K Size(vkid) Size(cmdS) 106 clocks 106 clocks
+ pksize [Byte] +sigsize [Byte] (Σ.Vrfy) (Cancel)

Finite field 20 30720 + 352 61696+64 20.2 270,000
(112 bit security) 30 46080 +352 92416+64 26.6 405,000
Elliptic curve 20 3840 + 32 7712 + 64 3.1 66
(128 bit security) 30 5760 + 32 11552+64 3.9 99

Communication and storage costs Recall that M and q are the dimension of the base vector
and a modulus to define finite fields, respectively. K is the number of concatenated base ABAs,
which makes it possible to control 2K devices. Let pksize and sigsize, respectively, be the sizes of
the public key and signature; the central server has to keep them.

Following the specification of the NIST standard digital signature algorithm (NIST FIPS 186-4
[25] and 186-5[26]), we choose parameters DSA (N=2048, L=256) and EdDSA (Ed25519), which
are expected to have at least 112 bit security. Concretely, in the DLP setting it takes ⌊log2 q⌋ = 2048
bits (size of the finite field) to store one element that derives pksize = N + 3L = 352 [Byte] and
sigsize = 2L = 64 [Byte]. Also, in the ECDLP setting, it takes 256 bits to store the compressed
representation of a point in Curve25519, which derives pksize = 32 [Byte] and sigsize = 64 [Byte].

The size of vkid stored in each device is 2MK log2 q+ pksize [bits] because it consists K vectors
of 2M dimension in Zq and the public key of the signature.

Each command comprises 1+K ·2·2M = 1+4KM numbers in Zq; thus, the communication cost
is (1+4KM) log2 q+ sigsize. Concrete values obtained by setting M = 3,K = 20, 30, log2 q = 2048
are provided in Table 1.

Computational costs In the Join function, to generate ukid, we first randomly generate a vector
uk′ and compute w =

∑K
j=1 aj,ijuk (mod q). We let ukid = (u/w) · uk′ (mod q) if w ̸= 0;

otherwise, repeat the sampling of uk′. It takes approximately MK(1 + 1/q) multiplications in
Zq and we neglect the 1/q element in the rest of the analysis. To compute vkid, it takes 4M2K
multiplications. Thus, Join requires approximately M samples and MK + 4M2K multiplications
in Zq to generate vkid of one device.

In the Auth function, to generate ctj,i for each j, randomly generate ct′j,i and compute wi,i =

ct′j,i · dk
T
j,i. Then, let ctj,i = (tj/wi,i) · ct′j,i if wi,i ̸= 0. It requires 4MK multiplications in Zq. To
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compute cj,i, it requires 8M2K multiplications and the computation of cmdS requires 1 + 4MK
modular exponentiations, which requires almost 4MK log2 q multiplications in Zq if we employ the
binary method. To generate the signature, we have to compute a hash of (1 + 4KM) log2 q length
cmdS .

In the Vrfy function, each device has to check the signature and compute 2MK modular expo-
nentiations, which is roughly 2MK log2 q multiplications in Zq.

Below we provide the concrete expected timing using the Cortex-M4 processor.

Expected timing of verification The verification in each device requires signature verifica-
tion and cancelation computation (7) to recover the message. We provide a rough estimation of
processing times in the Cortex-M4 processor.

We assume that the DSA and EdDSA signatures are used in the DLP and ECDLP settings.
These signature schemes are in the hash-and-sign paradigm that compute message hash. [29] reports
Cortex-M4 can generate SHA-3 hash function 213 cycles/byte. For example, in our ECDLP setting
with K = 20, the length of the message to be signed is 7,712 [Byte] (Table 1) and 1.6 million cycles
are required to compute the hash.

In addition to the hash computation, [13, Table 2] reports the verification of signature from
very short message in Ed25519 DSA can be performed in 1.4 million cycles. Assuming that 2048-bit
DSA is five times slower than DSA in low-resource environments [30].

The cancelation computation in (7) requires 2MK modular exponentiations (resp. scalar mul-
tiplications of points), Zq in the DLP (resp. ECDLP) construction. An FFT-based implementation
of 2048-bit modular exponentiation requires approximately 2,250 million cycles [5]. We estimated
cancelation computation cost to be 4500 ·MK million cycles in Table 1.

Meanwhile, point addition and squaring over the Curve25519 require only 548,873 cycles [36].
Thus, we use 1.1 ·MK cycles as the cancelation computation cost in Table 1.

7.2 LWE-Based Construction

Recall that the LWE-based ABA is instantiated by setting fp(x) = xpT mod q to Definition 8 and
12. M and K are the parameters same as above.

Also, we use Q to the multiple of plaintext to avoid the effect of noises. Concretely, plaintext m
is an integer such that 0 ≤ m < q/Q and is embedded it in the form of m = m ·Q in the command
ciphertext. In verification, the device rounds the decoded message m′ to m′ = ⌊m′/Q⌉. We use
an integer L to distinguish legitimate and nonlegitimate commands. If the verification function
returns m′ < L, it is interpreted as a legitimate command and executed; otherwise, it returns the
reject symbol. In our construction, we assume q > 2KLQ to separate m.

Definition 14. (LWE-based Construction)
• Setup(1λ,K,D)→ ak: Fix a prime field Zq and a dimension M of base MREs. Execute MREj .KeyGen(pp)→
(ekj , {dkTj,i}i∈[2]) for j ∈ [K], where ekj := {dkTj,i}. Generate random matrices Aj,i

$←− Zr×M
q for j ∈

[K], i ∈ [2], a random invertible matrix W ∈ Z2M×2M
q and a vector uT ∈ Zr

q. Execute the key gener-
ation of signature Σ.KeyGen(1λ)→ (pk, sk). The key is ak = ({dkTj,i}, {ekj}, {Aj,i},W,uT , pk, sk).
• Join(ak, id)→ vkid: For a device id = (i1, . . . , iK), generate a random vector ukTid ∈ ZM

q such that∑K
j=1 Aj,ijuk

T
id = uT (mod q). The verification key is vkTid = {(W (dkT1,i1 ||uk

T
id)

T , . . . ,W (dkTK,iK ||uk
T
id)

T ), pk}.
• Auth(ak,m ∈ M,S)→ cmdS : Suppose the target devices are indicated by S1 × · · · × SK ⊂

∏
[2].

Select random vectors tTj ∈ Zr
q so that ptTj ∈ {LQ, . . . , 2LQ− 1} and let xT := tT1 + · · ·+ tTK . pxT
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is greater than KLQ because there is no overflow in Zq by the condition q > 2KLQ. In addition,
generate random matrices CTj,i ∈ Zr×M

q (j ∈ [K], i ∈ [2]) such that

CTj,i · dkTj,ℓ =
{
tTj + eTj,i (i = ℓ and i ∈ Sj)
zT
j,i (i ̸∈ Sj)

(8)

where zT
j,i is a random vector such that pzT

j,i is less than LQ.
For each i, j, define the 2M column vectors cTj,i,1 by Cj,i := (CTj,i||Aj,i)W

−1 = Cj,i =

(cTj,i,1|| · · · ||cTj,i,2M ). The command cmdS is the pair of vector vec := (m ·Q+p(xT +uT ), {pcTj,i,ℓ})
and its signature σ.
• Vrfy(vkid, cmdS = (vec, σ)): Check the signature by Σ.Vrfy(pk, σ, vec); if it is invalid, return reject.
If otherwise, execute the decryption process as follows. For id = (i1, . . . , iK), denote the vector part
of vkid be (v1, . . . , vK) and let the ℓ-th element of vj be vj,ℓ. For a command (m+p(xT +uT ), {p ·
cTj,i,ℓ} := {Fj,i,ℓ}), compute

Tj =

2M∑
ℓ=1

vj,ℓFj,ij ,ℓ and m′ = m+ p(xT + uT )− (T1 + · · ·+ TK). (9)

Decode the message by m′ = ⌊m′/Q⌉. If it is greater than L, return reject; otherwise, return m′.

The correctness and securities have already been discussed. We give details on the separation
of legitimate commands. In the computation of m′, we have

p(xT + uT )− (T1 + · · ·TK) = pxT −
K∑
j=1

p(CTj,ij · dk
T
j,ij ). (10)

after canceling uT . Here, each factor is p(tTj +eTj,i) or pzT
j,i by (8). By the conditions pxT ≥ KLQ

and pzT
j,i < LQ, if there is a factor from pzT

j,i, the sum is greater than LQ and the resulting m′ is
greater than L.

Parameter Restrictions From Theorem 1 (with the lattice instantiation), the hardness of
the decision LWE problem with parameters (n,m, q, σ) is the security base of the anonymity of
lattice-based ABA with parameters M = 2n, modulus q, and error parameter σ. We consider
(M = 2n, q, σ) for our ABA.

In addition to security, it should be limit the decoding error probability by changing q and Q.
Following (10), the noise in the verification in a target device is

∑K
j=1 p ·eTj,ij . Approximating each

coordinate of p and eTj,ij by continuous Gaussian N(0, σ2), the random variable that we consider
is
∑KM

i=1 ηiη
′
i where all ηi and η′i are independently sampled from the Gaussian. Its tail bound is

estimated by

Pr

[∣∣∣∣∣
KM∑
i=1

ηiη
′
i

∣∣∣∣∣ > β

]
<

(β/σ2)(KM−1)/2KKM+1
2

(β/σ2)

2(KM−3)/2
√
πΓ (KM/2)

(11)

where Kν(z) is the modified Bessel function of the second kind. Appendix A provides derivation.
Of note,the numerical computation is easy due to the kv function in Python’s scipy.special

package. We set β such that the bound for the following situations.
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The parameter should depend on the number of decoding processes for all systems and safety
margins. For example, if a system controls 109 devices and works 100 years, and each device decodes
a ciphertext in each second. Then, the number of decodings is 109 · 3.2 · 109 ≈ 261.5. With a safety
margin 264, we can set β such that the right-hand side of (11) is less than 2−126.

The aforementioned parameters may be conservative. If we assume that each decoding in devices
occurs every 10 seconds, the working timespan is 10 years, and the safety margin is 232, the upper
bound is 2−87.

We provide the results of the two situations in Table 2 and 3. We can see the difference between
required storages is less than 10%.

Communication and storage costs A verification key comprises 2KM = 4Kn elements of
Zq and a public key for signature verification. Thus, Size(vkid) is the smallest integer greater than
(4Kn log2 q)/8 + pksize.

A command ciphertext comprises 1 + 4KM = 1 + 8Kn elements of Zq and a signature. Thus,
Size(cmdS) is the smallest integer greater than (1 + 8Kn)(log2 q)/8 + sigsize [Byte].

Assuming the FALCON signature [10], (pksize, sigsize) is (897, 666) and (1793, 1280) for 128
and 256 bit securities, respectively. Based on the abovementioned restrictions on the parameters,
we selected example parameters as follows.

Concrete parameters: As an example, we set K = 20 for controlling a million devices and set
σ = 3. Let the legitimate message space be L = 4 (two bits). For LWE dimension n and M = 2n,
set Q such that the right-hand side of (11) is less than 2−126. and take q as the smallest prime
number greater than 2KLQ. We compute a practical bit security using Albrecht et al.’s [9] lattice
estimator; the python code is provided in Appendix B. For example, n = 785, we obtain Q = 34297,
q = 5487539, and bit security is 128.17, as described in the first line of 2.

Expected timing: The timing of signature verification is dominated by SHA-3 hash function
comptation that requires 213 cycles/byte [29] whereas FALCON-512 and 1024 for a short message
take less than 0.5 and 1 million cycles in Cortex-M4, respectively [18]. Meanwhile, the Chaskey
hash function takes seven cycles/byte [24]. We provide the number of consumed cycles in 106 units
for the SHA-3 and Chaskey situations in the 8th and 9th columns, respectively in Tables 2 and 3.

The cancelation computation (9) requires 2MK = 4nK additions and multiplications in Zq.
For small q, this can be performed by a sequence of UMLAL instructions. For two 32-bit unsigned
numbers r0, r1 and one 64-bit unsigned number r2, it computes r0× r1+ r2 and stores to a 64-bit
register in one cycle [31]. Modular computations are unnecessary after the addition. Theoretically,
it is sufficient to compute the modulo in every 264/q2 term. Hence, approximately 4nK cycles are
required for the total computation. For a moderate q, divide the numbers in each 32-bit; we can
use the schoolbook methods for multiplication and addition. Assuming q is less than 64-bit, the
total computing time would be four times the cost of small q and it would require approximately
16nK cycles. In Table 2 (10th column), we assume that the computation takes 4nK and 16nK
cycles for L = 4 and 256, respectively. The 10-th column of the tables provides summary.

8 Shorter Constructions and Nearly Weak Anonymity

In our template construction in Section 4.1, the vector dimension M of ciphertexts is fixed and
must be larger than the number of devices N . This construction is inefficient when the number of
targets n = |S| is much smaller than N .
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Table 2. Example parameters of the LWE-based construction of ABA in a conservative situation. (Prob-
ability bound is 2−126) The security level is computed by using Albrecht et al.’s [9] lattice estimator.
K,L and Q are ABA parameter. n and q > 2KLQ are LWE parameter. Size(vkid) and Size(cmdS) are
(4Kn log2 q)/8+pksize and (1+8Kn)(log2 q)/8+ sigsize, respectively. The last three columns comprise the
expected timings in the million clocks of signature verification (w.r.t. SHA-3 and Chaskey hash functions)
and cancelation computation to recover m in each target device with ARM Cortex-M4 processors.

Security
(K,L) n (q,Q)

Size(vkid) Size(cmdS) 106 cyc. 106 cyc.
Level [Byte] [Byte] (Σ.Vrfy) (Cancel)

SHA-3 Chaskey
128.13 (20,4) 796 (6691207,41820) 183080+897 366160+666 78.47 3.04 0.07
128.12 (30,4) 831 (12553921,52308) 299160+897 598320+666 127.92 4.67 0.1
128.12 (20,256) 1036 (488407063,47696) 300440+897 600880+666 128.47 4.69 0.34
128.02 (30,256) 1070 (911539207,59345) 481500+897 963000+666 205.6 7.22 0.52
192.12 (20,4) 1186 (8164183,51026) 272780+1793 545560+1280 117.19 4.8 0.1
192.18 (30,4) 1237 (15312751,63803) 445320+1793 890640+1280 190.69 7.22 0.15
192.06 (20,256) 1530 (593346601,57944) 459000+1793 918000+1280 196.52 7.41 0.49
192.08 (30,256) 1580 (1107440647,72099) 734700+1793 1469400+1280 313.97 11.27 0.76
256.15 (20,4) 1560 (9361309,58508) 374400+1793 748800+1280 160.48 6.23 0.13
256.0 (30,4) 1624 (17542817,73095) 609000+1793 1218000+1280 260.42 9.51 0.2
256.0 (20,256) 2000 (678277123,66238) 600000+1793 1200000+1280 256.58 9.38 0.64

256.11 (30,256) 2065 (1265925121,82417) 960225+1793 1920450+1280 410.04 14.43 1.0

Table 3. Example parameters of the LWE-based construction of ABA in a relaxed margin situation.
(Probability bound is 2−87)

Security
(K,L) n (q,Q)

Size(vkid) Size(cmdS) 106 cyc. 106 cyc.
Level [Byte] [Byte] (Σ.Vrfy) (Cancel)

SHA-3 Chaskey
128.17 (20,4) 785 (5487539,34297) 180550+897 361100+666 77.39 3.01 0.07
128.12 (30,4) 820 (10299851,42916) 295200+897 590400+666 126.23 4.61 0.1
128.14 (20,256) 1025 (401223701,39182) 297250+897 594500+666 127.11 4.64 0.33
128.01 (30,256) 1059 (749030413,48765) 476550+897 953100+666 203.49 7.15 0.51
192.1 (20,4) 1170 (6697283,41858) 269100+1793 538200+1280 115.62 4.75 0.1

192.17 (30,4) 1221 (12566161,52359) 439560+1793 879120+1280 188.24 7.14 0.15
192.04 (20,256) 1514 (487516171,47609) 439060+1793 878120+1280 188.02 7.13 0.49
192.01 (30,256) 1564 (910141447,59254) 703800+1793 1407600+1280 300.8 10.84 0.76
256.02 (20,4) 1539 (7680017,48000) 353970+1793 707940+1280 151.77 5.94 0.13
256.07 (30,4) 1604 (14401459,60006) 577440+1793 1154880+1280 246.97 9.07 0.2
256.05 (20,256) 1980 (557455373,54439) 594000+1793 1188000+1280 254.03 9.3 0.64
256.02 (30,256) 2044 (1040394241,67734) 919800+1793 1839600+1280 392.82 13.86 0.99
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After fixing the targets S and messages {mi}, a minimal construction of the ciphertext in MRE
(Definition 5) restricts a vector to the form of ct = (c1, . . . , c|S|+c, 0, . . . , 0) which has compressed
representation of length O(|S|). Here, c is a constant that makes the ciphertext random for security.
Based on this short-ciphertext MRE, we can construct an ABA template as in Definition 1 with
small modifications. In particular, the last max(M − |S| − c, 0) columns of the matrix CT are
zero and the command is of the form cmdS = (m ⊗ fprm(x), F1, . . . , F|S|+c). The correctness is
straightforward. It does not have anonymity because the ciphertext length reveals the difference
between cmdS and cmdS′ when |S| ̸= |S ′|.

Instead, we can prove it has weak anonymity under the hardness assumption of the computa-
tional problem of distinguishing

(fprm(x
T ), fprm(c

T
1 ), . . . , fprm(c

T
d )) and (fprm(r

T ), fprm(c
T
1 ), . . . , fprm(c

T
d )).

where d = 1+ c corresponds to a situation in which the adversary chooses the target set such that
|S| = |S ′| = 1. This is the same problem except for the vector dimension of challenge instances in
Definition 7.

The concatenation of the above ABA can be considered. Simple concatenation as in Defini-
tion 10 has a shorter ciphertext length O(|S1| + · · · + |SK |) and similar vulnerabilities related to
the rearranging attacks.

8.1 Concatenated Template Construction

We propose a shorter ciphertext variant of the modified concatenated template construction (Def-
inition 12). This variant reduces the ciphertext length, but the number of decryption keys in the
controlled devices increases; thus it would be unsuitable for use in IoT devices. We believe that this
construction implicitly suggests a transformation from a fixed-length anonymous ABA to a shorter
ABA. The key ingredient is that each device has many decryption keys vkid,τ corresponding to the
size |Sj | and uses the key adaptively.

Definition 15. Fix global parameters: a prime field Zq, number of concatenations K, and the size
Ni of i-th ABA. In addition, M(τ) ≥ τ + 1 is a vector with the same dimension as the base MRE
used for a target set size |Sj | = τ .
• Setup(1λ,K,D)→ ak: For each j ∈ [K], τ ∈ [Nj ], execute MREj,τ .KeyGen(pp)→ (ekj,τ , {dkTj,τ,i}i∈[Nj ])

where ekj,τ := {dkTj,τ,i}i∈[Nj ]. Generate random matrices Aj,τ,i
$←− Zr×Mτ

q for j ∈ [K], τ ∈ [Nj ], i.
Generate random invertible matrices Wτ ∈ Z2M(τ)×2M(τ)

q for τ = 1, . . . ,max{N1, . . . , NK}. Gen-
erate a random vector uT ∈ Zr

q. The key is ak = ({dkTj,τ,i}, {ekj,τ}, {Aj,τ,i},Wτ ,u
T ).

• Join(ak, id) → vkid: For a device id = (i1, i2, . . . , iK), generate random vectors ukid,τ ∈ Z1×M(τ)
q

satisfying
∑K

j=1 Aj,ij ,τuk
T
id,τ = uT (mod q) for each τ . The set of verification keys is vkid,τ =

{Wτ (dkj,ij ,τ ||ukid,τ )T }j∈[K],τ∈[Nj ].
• Auth(ak,m,S)→ cmdS : Suppose the target devices are indicated by S1× · · · ×SK ⊂

∏
[Nj ]. Pick

random vectors tj ∈ Z1×r
q for j ∈ [K] and let x := t1 + · · · + tK . Denote τj := |Sj |. Generate

random matrices CTj,i ∈ Zr×M(τj)
q (j ∈ [M ], i ∈ [Nj ]) such that

CTj,i · dkj,ℓ,M(τj) =

{
tTj + eTj,i (i = ℓ and i ∈ Sj)
rand (i ̸∈ Sj)



30 Yoshinori Aono and Junji Shikata

where rand represents a random element far from tTj . Define the matrix Cj,i := (CTj,i||Aj,i,τj )W
−1
τj ∈

Zr×2M(τj)
q and split it into the 2M(τj) column vectors by Cj,i = (cTj,i,1|| · · · ||cTj,i,2M(τj)

). Then, the
command ciphertext cmdS is m⊗fprm(xT +uT ) and the sequence {fprm(cTj,i,ℓ)}j∈[K],i∈[Nj ],ℓ∈[2M(τj)].
• Vrfy(vkid, cmdS): Denote vkid = {vj,τ} according to its index. For id = (i1, . . . , iK), denote the
ℓ-th element of vj,τj be vj,ℓ. For the command (m ⊗ fprm(x

T + uT ), {Fj,i,ℓ}), compute the sum
Tj =

∑2M(τj)
ℓ=1 vj,ℓ ⊗ Fj,ij ,ℓ and m⊗ fprm(x

T + uT )⊗ (T1 ⊗ · · · ⊗ TK)−1.

The proof of correctness is straightforward by replacing M with M(τj) for each j.

8.2 Componentwise Weak Anonymity

We discuss anonymity in the abovementioned construction. Because this construction limits the
freedom of the target device selection, it does not have SA.

We provide an example to demonstrate that the concatenated short construction does not
have weak anonymity. Consider the t-weak anonymity game (Definition 4) that the adversary’s
selection must satisfy |S| = |S ′|. Assume an the ABA with K = 3 and |Nj | = 8 for all j. The
adversary can select S = S1 × S2 × S3 and S ′ = S ′1 × S ′2 × S ′3 such that |S1| = |S2| = |S3| = 2
and |S ′1| = 8, |S2| = |S3| = 1. Because the number of columns of Cj,i reveals |Sj |, distinguishing
is immediately performed without using any property of fprm. Clearly, this attack does not require
solving any algebraic equations discussed in Section 6.3.

To address this, we propose a tighter but somewhat artificial condition that we named compo-
nentwise weak anonymity.

Definition 16. (Componentwise weak anonymity) Consider a componentwise variant of ABA
such that all devices have K-dimensional id. In addition targets are selected via the products
S1 × · · · × SK with the rule that (i1, . . . , iK) is a target device if and only if ij ∈ Sj for all j, with
the same protocol and advantages as t-anonymity (Definition 4). We say that it has componentwise
weak t-anonymity if the advantage is negligible when the attacker’s challenges S1 = S1,1×· · ·×S1,K
and S2 = S2,1 × · · · × S2,K satisfy

|S1,j | = |S2,j | for all j. (12)

The difference over weak t-anonymity is the only requirement for the challenge target sets.
Because (12) implies (2), any componentwise ABA satisfying weak t-anonymity also satisfies com-
ponentwise weak t-anonymity. However, it is unclear the notion of componentwise weak anonymity
matches a realistic situation.

In addition, with a similar argument in Section 6.3, solving algebraic equations can break the
standard anonymity (Definition 4) and hence break the componentwise weak anonymity. Investi-
gating relations among strengths of anonymity, ciphertext sizes, and possible format in the target
device selection in practical applications is a problem to consider.

9 Concluding Remarks and Discussions

We proposed template constructions of ABA using several anonymity models. In particular, we
showed that the concatenation of short ABAs can produce a practical ABA that can control N
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devices with short ciphertext length O(logN). We provided instantiations from the DDH problem
(non quantum-resilient) or the LWE problem (quantum-resilient).

The concatenated short construction is on the feasible area’s borderline because of the trilemma
of ABA construction and the notion of SA.

Practical issues To use ABA in practice to control numerous resource-limited devices, the fol-
lowing points should be considered. Investigation of the relationships among anonymity strengths,
ciphertext sizes and freedom of target device selection is important. As we summarized in Sec-
tion 1.2, several relationships are known under strict conditions. Practical relations should be
considered under relaxed conditions.

In the LWE-based construciton in Section 7.2, relaxing safety margins (11) in decoding can
change ciphertext lengths, although by a small amount. Optimization of such parameters would
be relevant in practice.

Theoretical issues During the proof of anonymity security in template construction (Section 5.1)
the security bases are DDH and LWE problems, which are instantiated for the template. Finding
relations between them is an independent interest of the theory of ABA.

The concatenated construction in this study possibly implies a generic transformation from a
fixed length ABA to a shorter length ABA. For example, suppose we have an ABA that controls
n devices using an O(n) length ciphertext. Assume that the number of devices is squared N = n2

and index by id = (id1, id2) ∈ [n]2 for simplicity. Prepare ABAi for i = 1, 2 and assume each ABA
controls n devices. ABA1 generates verification keys vk1,i (i ∈ [n]) and transmits vk1,i to devices
(i, ℓ) for all ℓ ∈ [n]. Similarly, ABA2 generates vk2,j (j ∈ [n]) and transmits it to devices (ℓ, j).
Thus, device (i, j) has two verification keys vk

(1)
i,j and vk

(2)
i,j .

For a single target S = {(i, j)}, the command ciphertext is the concatenation of ABA1.Auth(ak,m1, {i})
and ABA2.Auth(ak,m2, {j}) whose length is O(n) + O(n) = O(n). The device (i′, j′) can recover
m1 if i′ = i and m2 if j′ = j. Thus, only the device (i, j) can recover both messages and provide
an ABA by adding some gimmicks to decode the true message from them. Considering the con-
catenation of command ciphertexts in the multi target situation S = {(i1, j1), (i2, j2), . . .}, we can
obtain an ABA to control N = n2 devices with O(|S|n) ciphertext length. A similar division into
K-dimensional IDs can enable an ABA to control N devices with O(|S| logN) cihpertext length.
For small |S|, this is practically efficient while also maintaining standard anonymity. Investigating
the improvablity of logN is an interesting open problem.
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A On the Sum of Independent Gaussian Products

In this section, we estimate the probability Pr [|
∑m

i=1 eie
′
i| > β], where ei and e′i are independently

sampled from the continuous Gaussian distribuntion N(1, 0). The key idea for computing the
probability density function is from [17].

Let e, e′ be drawn from N(0, 1) independently. The probability density function of the product

e · e′ is thus given by f1(z) =
K0(|z|)

π
. (See, e.g., [35].) Here

Kν(z) =
Γ (ν + 1/2)(2z)ν√

π

∫ ∞

0

cos t

(t2 + z2)ν+1/2
dt

is the modified Bessel function of the second kind [34].
The characteristic function is

φ1(t) =

∫ ∞

−∞
eitzf1(z)dz =

2

π

∫ ∞

0

K0(z) cos tzdz =
1√

1 + t2
.

Thus, the characteristic function of the sum distribution is φn(t) = (φ1(t))
n = (1 + t2)−n/2.

Throughout the inversion formula, the probability density function is

fn(z) =
1

2π

∫ ∞

−∞
e−itzφn(t)dt =

1

π

∫ ∞

0

cos tz

(1 + t2)n/2
dt =

|z|(n−1)/2Kn−1
2

(|z|)
2(n−1)/2

√
πΓ (n/2)

.
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With formula for an upper bound (see, for example [15, Th. 2.5])∫ ∞

x

tνKν(t)dt < xνKν+1(x),

the tail probability is bounded by

Pr

[∣∣∣∣∣
m∑
i=1

eie
′
i

∣∣∣∣∣ > β

]
<

β(n−1)/2Kn+1
2
(β)

2(n−3)/2
√
πΓ (n/2)

.

B Parameter Generating Codes

We provide our python code to generate parameters in Tables 2 and 3 in Section 7.2.
For example, execute it with options –probpower -126 –L 4 –K 20 –lwesigma 3.0 –output

ABAconservative.txt will generate the 1,5 and 9-th lines in Table 2.
1 from sage.all_cmdline import * # import sage library

2 import math

3 import sympy

4 from estimator import *

5 import mpmath

6 import argparse

7
8 def getbetabyproblimit(lwesigma ,KM ,prbound):

9 #Get probability bound Pr[b>\sum e_i*e’_i] = prbound

10 #where e_i and e’_i’s are independent Gaussian with derivation sigma ^2

11 #and the sum is over i=1,...,KM

12 b=KM

13 phase=0

14 logprbound = log(prbound)

15 mt = 10**5

16 while True:

17 logbound =((KM -1)/2) * log(b/lwesigma/lwesigma)

18 logbound += log( mpmath.besselk ((KM+1) /2 ,1.0*b/lwesigma/lwesigma , maxterms=mt))

19 logbound -= (KM -3)/2* log (2.0) + 0.5* log(math.pi)

20 logbound -= log(mpmath.gamma(KM/2))

21 #print(b,logbound ,logprbound)

22 if phase ==0:

23 if logbound < logprbound:

24 phase = 1

25 step = b/4

26 b = b/2

27 else:

28 b*=2

29 else: #phase ==1

30 if logbound < logprbound:

31 b-=step

32 else:

33 b+=step

34 step /= 2

35 if step < 0.1:

36 break

37 return b

38
39 def makeparamtable(K,L,prbound ,startn ,lwesigma ,output):

40 lwen = startn

41 f = open(output , ’a’)

42 while True:

43 M=2* lwen

44 lQ = ceil(getbetabyproblimit(lwesigma ,K*M,prbound)*2)

45 lweq = sympy.nextprime (2*K*L*lQ, 1)
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46 ABA128=LWE.Parameters(n=lwen , q=lweq , Xs=ND.DiscreteGaussian(lwesigma), Xe=ND.

DiscreteGaussian(lwesigma), m=10*lwen , tag=’ABA128 ’)

47 result = LWE.primal_bdd(ABA128)

48 cost = math.log2(result.rop) #bit security

49 pksize = "+897" #size of FALCON512 key (128 bit)

50 sigsize = "+666" #size of FALCON512 signature (128 bit)

51 falconcycles = 473964 #FALCON512

52 if cost > 190:

53 pksize = "+1793" #size of FALCON1024 key (256 bit)

54 sigsize = "+1280" #size of FALCON1024 signature (256 bit)

55 falconcycles = 978558 #FALCON1024

56 commandsize = ceil (8*K*lwen * ceil( log(lweq)/log (2))/8)

57 vrfycycles = 213 * commandsize + falconcycles #verification with SHA -1

58 vrfycycles2 = 7 * commandsize + falconcycles #verification with Chaskey

59 cancelcycles = 4*lwen*K

60 if L==256:

61 cancelcycles = 16* lwen*K

62
63 print("--------------------")

64 print("Q=",lQ, "lweq=",lweq)

65 print("log2cost=", floor(cost *100) /100.0)

66 print("n=", lwen , "␣(K,L)=(",K, "," , L ,")␣(q,Q)=(",lweq , "," ,lQ,")", end="␣")

67 print( "pksize=" ,ceil (4*K*lwen * ceil( log(lweq)/log(2))/8) + int(pksize) , end="␣")

68 print( "sigsize=" , ceil (8*K*lwen * ceil( log(lweq)/log(2))/8) + int(sigsize) , end="␣")

69 print( "vrfycycles(SHA -3) [/10^6]=", ceil(vrfycycles /10000) /100.0 , end="␣")

70 print( "vrfycycles(Chaskey)[/10^6]=", ceil(vrfycycles2 /10000) /100.0 , end="␣")

71 print( "cancelcycles [/10^6]=", ceil(cancelcycles /10000) /100.0 )

72
73 #tex style output for tables

74 print(floor(cost *100) /100.0 ,"&(", K, "," , L ,")&" , lwen , "&(",lweq , "," ,lQ,")&" , end=’

’, file=f)

75 print( ceil (4*K*lwen * ceil( log(lweq)/log (2))/8) , pksize , "&" , end=’’, file=f)

76 print( ceil (8*K*lwen * ceil( log(lweq)/log (2))/8) , sigsize , "&" , end=’’, file=f)

77 print( ceil(vrfycycles /10000) /100.0 , "&" , end=’’, file=f)

78 print( ceil(vrfycycles2 /10000) /100.0 , "&" , end=’’, file=f)

79 print( ceil(cancelcycles /10000) /100.0 , "\\\\", file=f)

80
81 #choose next n

82 if 127 < cost < 128 or 191 < cost < 192 or 255 < cost < 256:

83 lwen += 1

84 elif 110 < cost < 128 or 182 < cost < 192 or 246 < cost < 256:

85 lwen += 5

86 else:

87 lwen += 50

88 if cost > 260:

89 break

90 return

91
92 parser = argparse.ArgumentParser(description=’ABA␣parameter ’)

93 parser.add_argument(’--probpower ’,action=’store’,default =-126) #probability of

94 parser.add_argument(’--L’,action=’store’,default =4) #size of message space y of

95 parser.add_argument(’--K’,action=’store’,default =20) #Control 2^K devices

96 parser.add_argument(’--lwesigma ’,action=’store ’,default =3.0) #scaling parameter of LWE

97 parser.add_argument(’--output ’,action=’store’,default="ABAparam.txt") #output filename

98 args = parser.parse_args ()

99 prbound = 2**( int(args.probpower))

100
101 K=int(args.K)

102 L=int(args.L)

103 lwesigma = float(args.lwesigma)

104 makeparamtable(K,L,prbound ,400, lwesigma ,args.output)


