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ABSTRACT

We revisit the concurrent security guarantees of the well-known

Anonymous Credentials Light (ACL) scheme (Baldimtsi and Lysyan-

skaya, CCS’13). This scheme was originally proven secure when

executed sequentially, and its concurrent security was left as an

open problem. A later work of Benhamouda et al. (EUROCRYPT’21)

gave an efficient attack on ACL when executed concurrently, seem-

ingly resolving this question once and for all.

In this work, we point out a subtle flaw in the attack of Ben-

hamouda et al. on ACL and show, in spite of popular opinion, that

it can be proven concurrently secure. Our modular proof in the alge-

braic group model uses an ID scheme as an intermediate step and

leads to a major simplification of the complex security argument

for Abe’s Blind Signature scheme by Kastner et al. (PKC’22).

CCS CONCEPTS

• Security and privacy → Digital signatures; Digital signa-

tures; • Theory of computation→ Cryptographic protocols.
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1 INTRODUCTION

Blind signatures [21, 22, 51] are a fundamental cryptographic prim-

itive which lies at the heart of privacy-preserving applications such

as anonymous credentials [5, 7, 13, 15, 16, 18, 20] and eCash [21].

Informally, a blind signature constitutes an interactive protocol be-

tween a signer 𝑆 and a user𝑈 , with the goal of 𝑆 signingmessages of

𝑈 ’s choice. The crucial property of a blind signature is its blindness:
𝑆 should obtain no information about𝑈 ’s message𝑚 that it is sign-

ing. Conversely, security from 𝑆 ’s perspective states that it should

be infeasible for𝑈 to signmessages without the help of 𝑆 . Fuelled, in

part, by developments in the blockchain space [40], blind signatures

have recently seen renewed interest [19, 25, 33, 38, 39, 43, 55].

In this work, we revisit the security of the Anonymous Cre-

dentials Light (ACL) blind signature scheme due to Baldimtsi and

Lysyanskaya [5]. Their simple and elegant construction is derived

from Abe’s blind signature scheme and avoids computationally

heavy zero-knowledge proofs and pairing operations. As such, ACL
can be turned into a very efficient one-show credential that allows

users to embed and later show arbitrary attributes, e.g., age or gen-

der. Credentials consist of only 9 group elements and can be issued

and verified using roughly a dozen group operations. One issue

that has limited the practicality of their scheme is the fact that their

scheme is only proven secure when signing sessions are executed

sequentially. This is not a theoretical issue: as shown in a more re-

cent work of Benhamouda et al. [12], there exists an efficient attack

on the ACL scheme if even a logarithmic number of sessions are

run concurrently. It would seem that this leaves no room for further

questions regarding ACL’s security guarantees. To the contrary,

however, we show that the provable security properties of ACL are

all but resolved:
• We begin by pointing out a subtle flaw in the work of Ben-

hamouda et al. which renders their attack inefficient. (We

stress that this does not affect the correctness of their at-

tacks on various other schemes.)

• Motivated by these findings, we give the first concurrent

security proof for the ACL scheme in the algebraic group

model (AGM) [32]. In order to tame the complexity of our

analysis, we follow a modular approach that explains the

ACL scheme as being derived from an appropriate identifica-

tion scheme. Our techniques also lead to a greatly simplified

proof of Abe’s scheme, which was recently proven secure

by Kastner et al. [42].

1.1 Our Contribution

We now elaborate on our contributions in more detail. We begin

with a recap of ACL, followed by a detailed description of the is-

sue with the ROS-style attack on ACL. We conclude with a brief

overview of our techniques to prove ACL concurrently secure.

ACL: A Recap. We begin by giving a brief overview of the ACL
scheme, which is depicted in Figure 1. We follow the notation of

Baldimtsi and Lysyanskaya and describe their scheme as a blind

signature protocol that allows the User to embed attributes into

the resulting signature. To keep the attributes private from the

signer during signing, the scheme assumes a common uniform

random string (or, alternatively, a random oracle) that contains

the values ℎ0, . . . , ℎ𝑛 . This ensures that the attributes can later be

shown without linking to a particular session.

The scheme begins with a registration phase during which the

user forms a commitment 𝐶 to its attributes 𝐿1, . . . , 𝐿𝑛 via a gen-

eralized Pedersen commitment [47] over some group G of prime

order 𝑞. It also forms a proof 𝜋 of knowledge of these attributes

and sends 𝐶, 𝜋 to the Signer. The Signer then verifies these values

and stops the issuing process in case they are not well-formed.

Signing then consists of a three-move protocol similar to Abe’s

blind signature scheme [2]. The scheme proves knowledge of a

discrete logarithm to one of two public keys 𝑦 or 𝑧. This is achieved

via an OR-style protocol, where two proofs of discrete logarithm

are run in parallel. In the first step, the Signer commits to random
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Z𝑞 values 𝑑, 𝑠1, 𝑠2, 𝑢, and rnd via 𝑧1 = 𝑔rnd · 𝐶, 𝑎 = 𝑔𝑢 and 𝑏1 =

𝑔𝑠1 · 𝑧𝑑
1
, 𝑏2 = ℎ𝑠2 · 𝑧𝑑

2
, where 𝑧2 = 𝑧/𝑧1.

In the second step, the user verifies and blinds these commit-

ments into 𝜁 , 𝜁1, 𝜁2, 𝛼, 𝛽1, 𝛽2 and hashes them into a challenge 𝜀

together with its message𝑚. To ensure the unforgeability of the

signature, the user also needs to provide a proof of knowledge of

the blindings that it used via the value 𝜂. From the way that 𝑧1 is

formed, the user can convince itself that the signer does not know

the discrete logarithm of 𝑧1. This turns out to be crucial toward

the blinding guarantees of the scheme. Namely, the blinded values

𝜁 ≔ 𝑧𝛾 , 𝜁1 ≔ 𝑧
𝛾

1
are computed by raising 𝑧 and 𝑧1 to the same

random blinding 𝛾 ∈ Z𝑞 . Hence, if the signer knew the discrete

logarithm of 𝑧1 (to base 𝑧), it could later link the resulting signature

to the session during which it was issued by finding the signature

satisfying 𝜁 log𝑧 (𝑧1) = 𝜁1. The User derives a blinded challenge 𝑒

that it sends to the signer.

In the third step, the Signer splits the challenge 𝑒 into two sub-

challenges 𝑐 and 𝑑 (i.e., one per side of the OR protocol), where 𝑑

was sampled in the first step. It replies with a ‘real’ answer 𝑢 − 𝑐𝑥
and a simulated answer 𝑠1, 𝑠2 which, in the view of the user, proves

knowledge of either 𝑥 = log𝑔 (𝑦) or 𝑤 = logℎ (𝑧). The user can

suitably unblind these values to derive its final signature.

Observe that the user knows 𝛾 and rnd. Hence, it can efficiently

prove knowledge of its attributes with regards to the blinded com-

mitment 𝜁1 using its signature.

1.1.1 ROS Attack against ACL. We now revisit the ROS-Style At-

tack [52, 56] of Benhamouda et al. on ACL. In this attack, the at-

tackerA breaks one-more unforgeability by outputting ℓ + 1 signa-

tures, in spite of interacting with the signer in only ℓ many signing

sessions.

For simplicity, we assume 𝛾 = 1, hence 𝜁 = 𝑧 and 𝜁1 = 𝑧1. We

further assume that 𝑡𝑖 = 0 for 𝑖 = 1, . . . , 5. The attacker A outputs

ℓ + 1 forgeries on the commitment 𝐶 as follows:

(1) A starts ℓ concurrent sessions with the signer and finishes

the Registration Phase of these executions following the

protocol.

(2) During the Signing Phase of session 𝑖 , A receives the first

signer message (𝑎𝑖 , 𝑏1,𝑖 , 𝑏2,𝑖 , rnd𝑖 ) (denoted in [12] as 𝐴𝑖 ,

𝐴′
𝑖,1
, 𝐴′

𝑖,2
, 𝑑𝑖 ) for 𝑖 ∈ [ℓ]. Using these commitments, it then

computes 𝑒
(𝑏 )
𝑖

= 2
−𝑏𝐻 (𝑧,𝐶𝑔rnd𝑖 , 𝑎2

𝑏

𝑖
, 𝑏2

𝑏

1,𝑖
, 𝑏2

𝑏

2,𝑖
, 𝑧𝜏𝑖 ,𝑚𝑖 ) (de-

noted as 𝑐𝑏
𝑖
in [12]) for all 𝑖 ∈ [ℓ], 𝑏 ∈ {0, 1} with random

messages𝑚𝑖 , 𝜏𝑖 ←$
Z𝑞 . If 𝑒

(0)
𝑖∗ = 𝑒

(1)
𝑖∗ for some 𝑖∗, the algo-

rithm closes all sessions using the 𝑒
(0)
𝑖

challenges. It outputs

themessage-signature pairs (𝑚𝑖 , (𝑧,𝐶𝑔rnd𝑖 , 𝑐𝑖 , 𝑑𝑖 , 𝑟𝑖 , 𝑠1,𝑖 , 𝑠2,𝑖 ,

𝜇𝑖 = 𝜏𝑖 − 𝑑𝑖 ))ℓ𝑖=1
and (𝑚𝑖∗ , (𝑧,𝐶𝑔rnd𝑖∗ , 2𝑐𝑖∗ , 2𝑑𝑖∗ , 2𝑟𝑖∗ , 2𝑠1,𝑖∗ ,

2𝑠2,𝑖∗ , 𝜇𝑖∗ = 𝜏𝑖∗ − 𝑑𝑖∗ )). If 𝑒 (0)𝑖
≠ 𝑒

(1)
𝑖

for all 𝑖 , it then

defines the polynomial 𝜌 (𝑥1, . . . , 𝑥ℓ ) ≔
∑
𝑖∈[ℓ ] 2

𝑖−1 (𝑥𝑖 −
𝑒
(0)
𝑖
)/(𝑒 (1)

𝑖
−𝑒 (0)

𝑖
) . This is a linear function that can be eval-

uated in the exponent. By slight abuse of notation, we write

for a linear function 𝜌 (𝑥1, . . . , 𝑥ℓ ) = 𝜌0 +
∑ℓ
𝑖=1

𝜌𝑖𝑥𝑖 and

group elements 𝛼1, . . . 𝛼ℓ the evaluation in the exponent as

follows 𝜌 (𝛼1, . . . , 𝛼ℓ ) ≔ 𝑔𝜌0

∏ℓ
𝑖=1

𝛼
𝜌𝑖
𝑖
.

(3) Next, it computes the values 𝑎ℓ+1, 𝑏1,ℓ+1, and 𝑏ℓ+1 as

𝑎ℓ+1 ≔ 𝜌 (𝑎1, . . . , 𝑎ℓ )𝑦𝜌0 ,

𝑏1,ℓ+1 ≔ 𝜌 (𝑏1,1, . . . , 𝑏1,ℓ )𝐶𝜌0 , 𝑏2,ℓ+1 ≔ 𝜌 (𝑏2,1, . . . , 𝑏2,ℓ ) (𝑧/𝐶)𝜌0 .

(1)

(4) A then sends the challenges 𝑒
𝑏𝑖
𝑖

to the signer according

to the bit representation

∑ℓ
𝑖=1

𝑏𝑖2
𝑖−1 = 𝐻 (𝑧,𝐶, 𝑎ℓ+1, 𝑏1,ℓ+1,

𝑏2,ℓ+2, 𝑧𝜏ℓ+1 ,𝑚ℓ+1) −𝜌0 and receives the responses (𝑐𝑖 , 𝑟𝑖 , 𝑑𝑖 ,
𝑠1,𝑖 , 𝑠2,𝑖 ) for 𝑖 ∈ [ℓ].

(5) Finally, it computes:

𝑐ℓ+1 ≔ 𝜌 (c) =
ℓ∑︁

𝑖=1

𝜌𝑖𝑐𝑖 + 𝜌0, 𝑑ℓ+1 ≔ 𝜌 (d) =
ℓ∑︁

𝑖=1

𝜌𝑖𝑑𝑖 + 𝜌0,

𝑟ℓ+1 ≔ 𝜌 (r) =
ℓ∑︁

𝑖=1

𝜌𝑖𝑟𝑖 + 𝜌0,

𝑠1,ℓ+1 ≔ 𝜌 (s1 + d ◦ rnd) =
ℓ∑︁

𝑖=1

𝜌𝑖 (𝑠1,𝑖 + rnd𝑖𝑑𝑖 ) + 𝜌0,

𝑠2,ℓ+1 ≔ 𝜌 (s2 − d ◦ rnd) =
ℓ∑︁

𝑖=1

𝜌𝑖 (𝑠2,𝑖 − rnd𝑖𝑑𝑖 ) + 𝜌0,

where d ◦ rnd = (𝑑1rnd1, . . . , 𝑑ℓ rndℓ ).
For 𝑖 = 1, . . . , ℓ , the adversary generates the forgery as (𝑚𝑖 , 𝜎𝑖 ) ≔

(𝑚𝑖 , (𝑧,𝐶𝑔rnd𝑖 , 2𝑏𝑖𝑐𝑖 , 2𝑏𝑖𝑑𝑖 , 2𝑏𝑖 𝑟𝑖 , 2𝑏𝑖 𝑠1,𝑖 , 2
𝑏𝑖 𝑠2,𝑖 , 𝜇𝑖 = 𝜏𝑖 − 2

𝑏𝑖𝑑𝑖 )). In
this attack, the User does not blind any of these values, and hence,

these are valid signatures since

2
𝑏𝑖𝑐𝑖 + 2

𝑏𝑖𝑑𝑖 = 2
𝑏𝑖 𝑒
(𝑏𝑖 )
𝑖

= H (𝑧, 𝑔rnd𝑖𝐶, 𝑎2
𝑏𝑖

𝑖 , 𝑏2
𝑏𝑖

1,𝑖 , 𝑏
2
𝑏𝑖

2,𝑖 , 𝑧
𝜏𝑖 ,𝑚𝑖 ),

𝑔2
𝑏𝑖 𝑟𝑖𝑦2

𝑏𝑖 𝑐𝑖 = 𝑎2
𝑏𝑖

𝑖 ,

𝑔2
𝑏𝑖 𝑠1,𝑖 (𝑔rnd𝑖𝐶)2

𝑏𝑖𝑑𝑖 = 𝑏2
𝑏𝑖

1,𝑖 ,

ℎ2
𝑏𝑖 𝑠2,𝑖 (𝑧/(𝑔rnd𝑖𝐶))2

𝑏𝑖𝑑𝑖 = 𝑏2
𝑏𝑖

2,𝑖 ,

𝑧𝜏𝑖−2
𝑏𝑖𝑑𝑖𝑧2

𝑏𝑖𝑑𝑖 = 𝑧𝜏𝑖 .

In addition, the adversary computes (𝑚ℓ+1, 𝜎ℓ+1), where 𝜎ℓ+1 ≔

(𝑧,𝐶, 𝑐ℓ+1, 𝑑ℓ+1, 𝑟ℓ+1, 𝑠1,ℓ+1, 𝑠2,ℓ+1, 𝜇ℓ+1 = 𝜏ℓ+1 − 𝑑ℓ+1).
We give the verification equations from [12] in our notation:

𝑔𝑟ℓ+1𝑦𝑐ℓ+1 =

ℓ∏
𝑖=1

(𝑔𝑟𝑖𝑦𝑐𝑖 )𝜌𝑖 (𝑔𝑦)𝜌0 = 𝑎ℓ+1,

𝑔𝑠1,ℓ+1𝐶𝑑ℓ+1 =

ℓ∏
𝑖=1

(𝑔𝑠1,𝑖 (𝐶𝑔rnd𝑖 )𝑑𝑖 )𝜌𝑖 (𝑔𝐶)𝜌0 = 𝑏1,ℓ+1,

𝑔𝑠2,ℓ+1 (𝑧/𝐶)𝑑ℓ+1 =

ℓ∏
𝑖=1

(
𝑔𝑠2,𝑖

(
𝑧/

(
𝐶𝑔rnd𝑖

))𝑑𝑖 )𝜌𝑖
(𝑔𝑧/𝐶)𝜌0

(2)

≠

ℓ∏
𝑖=1

(
ℎ𝑠2,𝑖

(
𝑧/

(
𝐶𝑔rnd𝑖

))𝑑𝑖 )𝜌𝑖
(𝑔𝑧/𝐶)𝜌0

(3)

=

ℓ∏
𝑖=1

𝑏
𝜌𝑖
2,𝑖
(𝑔𝑧/𝐶)𝜌0 = 𝜌 (𝑏2,1, . . . , 𝑏ℓ ) = 𝑏2,ℓ+1,

𝑐ℓ+1 + 𝑑ℓ+1 = 𝜌 (𝑐0 + 𝑑0, . . . , 𝑐ℓ + 𝑑ℓ ) + 𝜌0

= 𝐻 (𝑧,𝐶, 𝑎ℓ+1, 𝑏1,ℓ+1, 𝑏2,ℓ+1,𝑚ℓ+1).
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S U
𝑠𝑘 = 𝑥, 𝑝𝑘 = (𝑔, ℎ,𝑦 = 𝑔𝑥 , 𝑧), (ℎ0, . . . , ℎ𝑛) 𝑚, 𝑝𝑘 = (𝑔, ℎ,𝑦, 𝑧), (𝐿1, . . . , 𝐿𝑛, 𝑅), (ℎ0, . . . , ℎ𝑛)
Registration

𝐶 ≔ ℎ𝑅
0
· ℎ𝐿1

1
· . . . · ℎ𝐿𝑛𝑛

Signing

𝐶,𝜋←−−−−−−−−−−− 𝜋

𝑑, 𝑠1, 𝑠2, 𝑢, rnd←$
Z𝑞

𝑧1 ≔ 𝑔rnd ·𝐶, 𝑧2 := 𝑧/𝑧1

𝑎 ≔ 𝑔𝑢

𝑏1 ≔ 𝑔𝑠1 · 𝑧𝑑
1
, 𝑏2 ≔ ℎ𝑠2 · 𝑧𝑑

2

𝑎,𝑏1,𝑏2,rnd−−−−−−−−−→ If rnd = 0 or 𝑎 ∉ G ∨ 𝑏1 ∉ G ∨ 𝑏2 ∉ G : output ⊥
𝑧1 = 𝑔rnd ·𝐶,𝛾 ←

$
Z∗𝑞

𝜁 = 𝑧𝛾 , 𝜁1 = 𝑧
𝛾

1
, 𝜁2 = 𝜁 /𝜁1

𝜏, 𝑡1, 𝑡2, 𝑡3, 𝑡4, 𝑡5 ←$
Z𝑞

𝛼 ≔ 𝑎 · 𝑔𝑡1𝑦𝑡2
; 𝜂 ≔ 𝑧𝜏

𝛽1 ≔ 𝑏
𝛾

1
· 𝑔𝑡3 · 𝜁 𝑡4

1
, 𝛽2 ≔ 𝑏

𝛾

2
· ℎ𝑡5 · 𝜁 𝑡4

2

𝜀 ≔ H3 (𝜁 , 𝜁1, 𝛼, 𝛽1, 𝛽2, 𝜂,𝑚)
𝑐 ≔ 𝑒 − 𝑑 mod 𝑞

𝑒←−−−−−−−− 𝑒 = 𝜀 − 𝑡2 − 𝑡4
𝑟 ≔ 𝑢 − 𝑐 · 𝑥 mod 𝑞

𝑐,𝑑,𝑟,𝑠1,𝑠2−−−−−−−−→ 𝜌 ≔ 𝑟 + 𝑡1, 𝜔 ≔ 𝑐 + 𝑡2
𝜎1 ≔ 𝑠1 · 𝛾 + 𝑡3, 𝜎2 ≔ 𝑠2 · 𝛾 + 𝑡5
𝛿 ≔ 𝑑 + 𝑡4, 𝜇 ≔ 𝜏 − 𝛿 · 𝛾
If 𝜔 + 𝛿 = H3 (𝜁 , 𝜁1, 𝑔

𝜌 · 𝑦𝜔 , 𝑔𝜎1 · 𝜁𝛿
1
, ℎ𝜎2 · 𝜁𝛿

2
, 𝑧𝜇 · 𝜁𝛿 ,𝑚):

Output the Signature (𝜁1, (𝜁 , 𝜌, 𝜔, 𝜎1, 𝜎2, 𝜇, 𝛿))
Else: output ⊥

Figure 1: The ACL scheme [5] depicted as an interactive protocol. The check 𝜔 + 𝛿 = H3 (𝜁 , 𝜁1, 𝑔
𝜌 · 𝑦𝜔 , 𝑔𝜎1 · 𝜁𝛿

1
, ℎ𝜎2 · 𝜁𝛿

2
, 𝑧𝜇 · 𝜁𝛿 ,𝑚)

also constitutes the verification equation for a resulting signature.

The two sides 𝑔𝑠2,ℓ+1 (𝑧/𝐶)𝑑ℓ+1 and 𝑏2,ℓ+1 of the third verification

equality are translated as written above directly from [12] As in-

dicated, the problem lies with (3), which shows that the attack, as

written, does not produce a verifying signature.

However, we point out that this is not even the correct verifica-

tion check in the first place. Namely, the actual verification proce-

dure of ACL for signature 𝜎ℓ+1 checks whether 𝑐ℓ+1+𝑑ℓ+1 = H (𝑧,𝐶,
𝑔𝑟ℓ+1𝑦𝑐ℓ+1 , 𝑔𝑠1,ℓ+1𝑧

𝑑ℓ+1
1,ℓ+1, ℎ

𝑠2,ℓ+1 (𝑧/𝐶)𝑑ℓ+1 , 𝑧𝜏ℓ+1−𝑑ℓ+1𝑧𝑑ℓ+1 ,𝑚ℓ+1). In par-

ticular, the third to last component ofH checks thatℎ𝑠2,ℓ+1 · (𝑧/𝐶)𝑑ℓ+1
= 𝑏2,ℓ+1, whereas the left-hand side of the verification equation, as

written, is of the form 𝑔𝑠2,ℓ+1 (𝑧/𝐶)𝑑ℓ+1 .

Why the Attack Cannot be Fixed. We stress that this is not sim-

ply a fixable typo. (Of course, this is clear from the fact that we

give a proof to the contrary, see below). It might be tempting to

instead define the evaluation of polynomial 𝜌 on group elements

𝛼1, . . . , 𝛼ℓ as 𝜌 (𝛼1, . . . , 𝛼ℓ ) := ℎ𝜌0

∏ℓ
𝑖=1

𝛼
𝜌𝑖
𝑖
. Then, in Equation 1

one would start from ℎ𝑠2,ℓ+1 · (𝑧/𝐶)𝑑ℓ+1 rather than from the in-

correct 𝑔𝑠2,ℓ+1 (𝑧/𝐶)𝑑ℓ+1 = 𝑏2,ℓ+1. However, this also fails. First, it

would falsify two of the remaining three verification equations.

However, this might be fixable by defining two distinct ways of

evaluating 𝜌 on group elements, i.e., one using 𝑔 and one using ℎ

as the base for 𝜌0. However, even this approach does not see any

success. Note that Equation 2 is true precisely because the left hand
side of the equation uses 𝑔𝑠2,ℓ+1 (𝑧/𝐶)𝑑ℓ+1 . Indeed, if it didn’t, then
one could not split 𝑔𝑠2,ℓ+1

into

∏ℓ
𝑖=1

𝑔𝑠2,𝑖 /𝑔rnd𝑖 ·𝜌𝑖 . However, this is
critically needed, because, in the next steps, we wish to substitute

the resulting expression with

∏ℓ
𝑖=1

𝑏
𝜌𝑖
2,𝑖
𝑔𝜌0

, where for all 𝑖 ∈ [ℓ]
𝑏2,𝑖 = ℎ𝑠2,𝑖 (𝑧/(𝑔rnd𝑖𝐶))𝑑𝑖 . Hence, it is unclear how to carry out the

attack efficiently from the description of Benhamhouda et al.

Intuition for ROS-Resistance of ACL. We give a brief intuition for

why ACL is immune to the ROS attack. Recall that in Abe’s blind

signature, the signer uses an individual session key 𝑧1 (where 𝑧1

comes out of a random oracle) for each session, and a signature

contains a proof that the blinding of this session key happened

honestly. Therefore, an attacker cannot “mix and match” sessions

in the way that is required by ROS. In the ACL scheme, this session

key is replaced by a commitment to the user’s attributes, offset by

𝑔rnd where the signer chooses a fresh rnd in each round. However,

as these offsets are w.r.t. 𝑔 and one of the proofs of DL-knowledge

in the signature is w.r.t. the public key part ℎ, it is still not possible

to combine sessions in a ROS-like way.

1.1.2 Concurrent Security for ACL. We now give an overview of

our techniques for proving the concurrent security of the ACL
scheme.

Challenges with Adapting Kastner et al.’s Proof. At a high level,

our proofs follow the techniques of Kastner et al., who provided

a proof for the concurrent security of Abe’s scheme in the AGM.

However, there are several key differences between Abe’s scheme

and ACL, that make things significantly more complicated when

proving the latter secure. The most notable difference lies with the

fact that in ACL, the signer picks rnd uniformly at random from Z𝑞
and computes 𝑧1 = 𝑔rnd ·𝐶 . This stands in stark contrast to Abe’s

scheme, which sets 𝑧1 = H (rnd), where H is a random oracle. As a

result, the user in ACL knows a discrete logarithm relation between

all values of 𝑧1 that are created throughout all its interactions with

the signer. Indeed, it is precisely this knowledge that Benhamouda

et al. (incorrectly) leveraged for their attack.

Therefore, to adapt the proof of Kastner et al., we need to ac-

count for several additional cases in terms of how the adversary

can form its outputs from its inputs. Unfortunately, this comes on

top of an already extremely involved analysis comprised of almost

thirty pages of complex case distinctions in Kastner et al.’s proof.

Roughly speaking, their analysis consists of a case distinction over
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Security of ACL One-More Unforgeability

Blindness

Secure Showing

DDH

Binding of Pedersen Commitment

One-More Man-in-the-Middle of IDACL DLP
Theorem 3.1Theorem 4.1

[5, Theorem 3]

Theorem G.1

Theorem 4.1

Figure 2: Overview over our theorems and proofs.

all possible ways that an algebraic adversary can combine elements

from previous signing sessions into a one-more forgery. At a high

level, the crux of their reduction strategy is to define a preliminary
algebraic representation consisting of the coefficients that the adver-

sary returns together with the hash query (modeled as a random

oracle query) corresponding to one of its forgeries. The term ‘pre-

liminary’ refers to the fact that the adversary could use a different

representation for some of the corresponding group elements when

it returns its forgery. In this case, however, one obtains an equality

from which one can solve a suitably embedded discrete logarithm

challenge. If, on the other hand, the adversary keeps the representa-

tion the same, then with high probability, it will lead to a non-trivial

inequality, because it could not have predicted the random oracle’s

output at the time it made the query. Unfortunately, making this

intuition work turns out to be extremely subtle, as some of the

dependencies in the scheme allow the adversary to influence these

preliminary representations even after first returning them.

It is unclear whether a similarly complicated argument would

be feasible for ACL or of any use to a reader attempting to verify

it. Therefore, to tame our proof’s complexity, we seek a more mod-

ular security argument that breaks the proof down into multiple

digestible steps while simultaneously minimizing some of the re-

dundancy that is present in Kastner et al.’s proof. Our main tool for

doing so is to reduce the security of ACL to that of an underlying

identification IDACL scheme with a suitable structure.

AModular Proof forACL. To this end, we first deconstructACL to
find the ID scheme IDACL at its core. In IDACL, the Signer is replaced

with a prover and analogously, the User is replaced with a verifier.

While the prover in IDACL carries out the same steps as the Signer in

theACL scheme, the verifier of IDACL follows a far simpler structure

than the User in the ACL scheme. Most notably, the verifier does

not apply any blinding and samples the challenge 𝜀 directly from Z𝑞
as opposed to deriving it from a random oracle H. This declutters

the scheme considerably and allows us to compactly prove IDACL
secure with respect to the notion of one-more-man-in-the-middle
(OMMIM) that was put forth by Hauck, Kiltz, and Loss [38] (also

in the context of blind signatures). Informally, this notion ensures

that a man-in-the-middle𝑀 should not be able to close more than

ℓ sessions with the verifier if it closes at most ℓ with the honest

prover. The crux of this notion is that 𝑀 is allowed to interleave

sessions with the honest prover and the verifier concurrently. This

makesOMMIM a much stronger notion than the standard notion of

active security [10, 27], where𝑀 is forced to close all (concurrent)

interactions with the prover before interacting with the verifier in

a designated challenge session. On the other hand, OMMIM is a

weaker notion than the standard man-in-the-middle (MIM) security

notion [8, 36]. Namely, the latter simply asks that 𝑀 can close a

session with the verifier using a fresh transcript (i.e., one that did

not come from the honest prover).

We proveOMMIM of IDACL by following a similar proof strategy

as Kastner et al. However, we introduce several new tools which

allow to group together many of the cases that can occur. This

allows us to keep the presentation clear and the complexity of the

proof in check.

In a second step, we then reduce the one-more unforgeability

of ACL directly to the OMMIM-security of IDACL. While this rein-

troduces the blinding steps on the user’s side, our reduction again

manages to keep the complexity of the resulting case distinction

low. It does so by reducing any attack in which𝑈 behaves honestly

in all interactions with the signer directly to OMMIM security of

IDACL. Now, our case distinction only has to ensure that dishonest

behaviour can not give an efficient one-more forgery. We achieve

the latter by relying, again, on the techniques we developed for

proving OMMIM security of IDACL. A high-level overview of our

proof strategy is depicted in fig. 2.

1.2 Related Work

We give a brief overview of some important related works in the

area.

1.2.1 Blind Signatures. Blind Signatures have been the subject of

intense study for nearly four decades. After first being proposed

by Chaum [21], blindness and one-more unforgeability were first

rigorously defined as security properties in works of Juels, Luby,

and Ostrovsy [41] and Pointcheval and Stern [49]. Many works

have since explored blind signatures from various angles. We have

already cited many relevant works in the random oracle model

that achieve efficient constructions from well-understood hardness

assumptions, some examples being discrete logarithm [4, 51] and

factoring and RSA [50] based schemes. Early examples of such

schemes are known to be vulnerable to the ROS attack [12, 52, 56]

and thus inherently achieve security only for logarithmically many

concurrently issued signatures per public key. This problem was

addressed in a series of works initiated by Pointecheval [48], and

continued by Katz, Loss, and Rosenberg [43], Chairattana-Aiprom

et al. [19], and Hanzlik, Loss, and Wagner [37] who give transforms

from schemes for logarithmically many signatures to fully secure

ones. Schemes from post-quantum secure assumptions have also

been proposed in the random oracle model by Hauck et al. [39] and

del Pino and Katsumata [25]. It is also possible to achieve efficient
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blind signatures from strong interactive assumptions in the random

oracle model or standard model directly [9, 14, 31, 45].

Blind signatures have also been studied in other idealized models

such as the generic group model [53] and the algebraic group model.

Examples of such analyses include the works of Schnorr [52] and

Abe and Ohkubo [3] in the GGM and the works of Fuchsbauer,

Plouviez, and Suerrin [33], Tessaro and Zhu [55] and Kastner, Loss,

and Xu [42]. In the standard model, round-optimal constructions

of blind signatures [34, 35] have also been constructed, but are of

mostly theoretical interest.

Finally works by Fischlin [29] and Juels et al. [41] give generic

constructions of blind signatures from basic primitives such as

commitments, zero knowledge, and general two-party computation.

Impossibility of blind signatures under various conditions has

also been studied in the literature. Fischlin and Schröder show im-

possibility of proving the security of two-round blind signatures

from a natural class of protocols in the standard model [30]. Impos-

sibility of two-round schemes with unique secret keys has also been

considered with respect to the random oracle model by Pass [46]

and Baldimtsi and Lysyanskaya [6].

1.2.2 Anonymous Credentials. Anonymous credentials are a key

ingredient for privacy-preserving systems in their own right, and

many constructions exist in the literature. Typically, one distin-

guishes two types of credentials: the first type can be shown mul-
tiple times without being able to link any of these showings to

one another. This usually requires some type of zero-knowledge,

as it prohibits the owner of the credential from actually reveal-

ing it during showing. Examples of multi-show credentials are the

constructions of Camenisch and Lysyanskaya [17, 18], the con-

structions of Belenkiy et al. [7], and the construction of Chase et

al. [20]. Recently, some works have also considered decentralized

anonymous (multi-show)credentials, i.e., where there is no single

authority that issues the credential. Examples are the works of

Sonnino et al. [54] and the very recent work of Doerner et al. [26].

The second type of credential can be shown only a single time.
While this comes at the expense of some functionality, single-show

credentials can often be constructed directly from blind signature

schemes and can bypass heavy tools such as zero-knowledge. There-

fore, single-show credentials are usually far more efficient than

multi-show credentials. On the other hand, they offer a light-weight

alternative to multi-show credentials which still offers a reasonable

degree of anonymity. Examples of one-show credentials are the

systems by Brands [15] as well as the ACL system of Baldimtsi and

Lysyanskaya, which is the subject of this work. Constructions of

anonymous tokens have also been considered in the literature by

Dadvison et al. [24] and Kreuter et al. [44], but these constructions

do not support the embedding of attributes.

2 PRELIMINARIES

We denote as “𝑟 ←
$
D” that a value 𝑟 is sampled uniformly at

random from a distributionD. Unless otherwise stated, we consider

probabilistic polynomial-time algorithms and write out←
$
A(𝑥)

to state that A outputs out on input 𝑥 . If A is deterministic, we

instead write this as out← A(𝑥). We write AB to denote that A has

oracle access to algorithm B at runtime. For 𝑛 ∈ Z+, we denote as
[𝑛] the numbers in {1, .., 𝑛}.

2.0.1 The Random Oracle Model (ROM).. In the ROM [11], we

assume the existence of an idealized hash function H with the

following behaviour. Initially, 𝐻 [𝑥] = ⊥ for all 𝑥 in the domain of

𝑥 . When H is queried on input 𝑥 , it checks whether 𝐻 [𝑥] := ⊥. If
so, it samples a uniformly random value 𝑦 from the codomain of H
and sets 𝐻 [𝑥] := 𝑦. Then it returns 𝐻 [𝑥].

2.1 Group-Based Cryptography

We briefly recall some background on groups and idealized models

that are relevant to this paper. In this paper, we work with a cyclic

groupG of prime order 𝑞 with known representation and generator

𝑔. Thus, we implicitly assume throughout this paper that group

parameters pp := (G, 𝑔, 𝑞) have been distributed and are known to

all parties.

2.1.1 The Algebraic Group Model (AGM). The AGM [32] is an

idealized model which lies in between the generic group model and

the standardmodel, in which all algorithms are considered algebraic.
An algebraic algorithm is defined as follows. LetG be a cyclic group,

and let A be an algorithm that takes as input the group elements

(𝑥1, . . . , 𝑥𝑛). We say that A is algebraic, if for each group element

𝑍 ∈ G it outputs, it submits a vector ®𝑧 = (𝑧1, . . . , 𝑧𝑛) ∈ Z𝑛𝑞 with

𝑛∏
𝑖=1

𝑥
𝑧𝑖
𝑖

= 𝑍 .

When 𝑛 is large, proofs in the AGM can quickly become very com-

plex. To mitigate this issue, we use reduced representations [42] as
follows: Assume there exists {𝑥 ′

1
, . . . , 𝑥 ′𝑚} ⊂ {𝑥1, . . . , 𝑥𝑛} such that,

for all 𝑥𝑖 there exists a representation ®𝑧𝑖 ′ = (𝑧′𝑖,1, . . . , 𝑧
′
𝑖,𝑚
) with

𝑥𝑖 =

𝑚∏
𝑗=1

𝑥 ′𝑗
𝑧′𝑖,𝑗 .

Given any representation (𝑧1, . . . , 𝑧𝑛) to the basis (𝑥1, . . . , 𝑥𝑛) of a
group element 𝑣 , we construct a reduced representation (𝑧∗

1
, . . . , 𝑧∗𝑚)

to the basis (𝑥 ′
1
, . . . , 𝑥 ′𝑚) by computing

𝑧∗𝑗 :=

𝑛∑︁
𝑖=1

𝑧𝑖 · 𝑧′𝑖, 𝑗

for all 𝑗 ∈ [𝑚]. It is worth noting that if the representation {𝑧′
𝑖,1
,

. . . , 𝑧′
𝑖,𝑚
} is not known to the reduction, it cannot compute the re-

duced representations efficiently because this would require solving

the discrete logarithm problem.

2.1.2 The Discrete Logarithm Assumption. The security of our

schemes is based on the standard discrete logarithm problem:

Definition 2.1 (The Discrete Logarithm ProblemDLP). For a group
G of prime order 𝑞, and for an adversary A, we define the DLP
game as follows:

• Setup. The game samples 𝑥 ←
$
Z𝑞 , computes𝑈 ≔ 𝑔𝑥 , and

runs A with input𝑈 .

• Output Determination. When A terminates and outputs

𝑥 ′, the game outputs 1 if 𝑔𝑥
′
= 𝑈 , otherwise it outputs 0.

We define A’s advantage in winning this game as

AdvDLP (A) ≔ Pr[DLPA = 1] .
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2.2 Identification Schemes

An identification scheme is an interactive protocol between a prover

and a verifier that enables the prover to prove possession of a private

key. In this section, we introduce the syntax and security definitions

for three-move canonical identification schemes [1, 38].

2.2.1 Definition (Canonical Three-Move Identification Schemes). A
three-move identification scheme ID is a triple of polynomial-time

algorithms ID =(G, P,V) with the following properties.

• The key generation algorithm G takes as input public pa-

rameter 𝑝𝑝 , and outputs a key pair (pk, sk).
• The prover algorithm P is split into two algorithms P1 and

P2:

– P1 takes as input a secret key sk. It returns a commit-

ment 𝑅 and a prover state 𝑠𝑡𝑝 .

– P2 is deterministic and takes as input a secret key sk,
a prover state 𝑠𝑡𝑝 , a commitment 𝑅, and a challenge 𝜀.

It returns a response 𝑆 .

• The verifier algorithmV is split into two algorithms (V1,

V2):
– V1 takes as input a public key pk, and a commitment

𝑅. It outputs a challenge 𝜀 and a state 𝑠𝑡𝑣 .

– V2 is deterministic and takes in a public key pk, a
verifier state 𝑠𝑡𝑣 , a commitment 𝑅, a challenge 𝜀, and a

response 𝑆 . It outputs 1 (Accept) or 0 (Reject).

Definition 2.2 (Perfect Correctness for Identification Schemes). A
canonical identification scheme ID = (G,P,V) is perfectly correct

if the following holds:

Pr


𝑏 = 1 :

(pk, sk) ←
$
G(𝑝𝑝)

(𝑅, 𝑠𝑡𝑝 ) ←$
P1 (sk)

(𝜀, 𝑠𝑡𝑣) ←$
V1 (pk, 𝑅)

𝑆 ← P2 (sk, 𝑠𝑡𝑝 , 𝑅, 𝜀)
𝑏 ←V2 (pk, 𝑠𝑡𝑣, 𝑅, 𝜀, 𝑆)


= 1.

Definition 2.3 (One-More-Man In-The-Middle (OMMIM) [38]).
For a positive integer ℓ ∈ Z+, an identification scheme ID ≔

(G,P,V), and an adversary A, we define the game ℓ-OMMIM
as follows:

• Setup. Generate a pair of keys (pk, sk) ←
$
G(𝑝𝑝), and

invoke AP(sk,· ),V(·,pk) (pk).
• Online Phase. A may query its oracles arbitrarily in an

interleaved fashion as long as it completes at most ℓ of those

executions with P.
• Output Determination. The game outputs 1, ifA success-

fully completes at least ℓ + 1 executions withV . Otherwise,

the game outputs 0.

Intuitively, the prover answers at most ℓ challenges to close verifier

sessions successfully, while ℓ + 1 verifier sessions must be closed

successfully; therefore, A must close at least one verifier session

without the prover’s involvement. We define A’s advantage in

winning the game ℓ-OMMIM against an identification scheme ID
as

Advℓ-OMMIM
ID (A) ≔ Pr[ℓ-OMMIMAID = 1] .

We say that ID is (𝑡, 𝜀)-OMMIM-secure if for all adversariesA that

run in time at most 𝑡 Advℓ-OMMIM
ID (A) ≤ 𝜀.

2.3 Blind Signatures with Attributes

Baldimtsi and Lysyanskaya [5] proposed the notion of blind sig-
natures with attributes, an extension for standard blind signatures

that allows attaching the user’s attributes to the resulting signature

via a commitment. We remark that our syntax differs slightly from

that of Baldimtsi and Lysyanskaya. In particular, the verifier in our

notion only checks for the validity of a signature 𝜎 resulting from

an interaction between the signer and the user, but not whether it is

tied to a valid commitment 𝐶 to the user’s attributes ®𝐿. Instead, we
define a designated pair of algorithms SH = (SH𝑈 ,SH𝑉 ) for the
user to present (a subset of) its attributes and a proof of knowledge

of an opening of the commitment 𝐶 tying it to 𝜎 . This allows us

to split and simplify our security definitions when compared to

Baldimtsi and Lysyanskaya.

More precisely, our first notion, captured in definition 2.7, closely

mirrors the standard (strong) one-more unforgeability notion for

blind signatures and deals with adversaries that output more sig-

natures than they requested from the signer. Our second notion,

captured in definition 2.8, deals with adversaries that try to show

a signature (i.e., their anonymous credential) alongside attributes

that they didn’t previously commit to during registration. We also

capture adversaries that attempt to ‘reuse’ committed attributes

with signatures that didn’t originally contain those attributes.

For the latter security property, other definitions may be possi-

ble. For example, we require the adversary to reveal its complete

attribute vectors. A definition in which the adversary reveals only

parts of them would also be possible, although more complex. How-

ever, we believe that this definition captures the corresponding

property in [5] most closely.

In the following, we describe our syntax of blind signatures

with attributes. A blind signature with attributes has three types of

interaction: The first is registration of users with signers, where a

user registers a commitment of his attributes and proves knowledge

of an opening. The second type of interaction is the issuing of

signatures, where the user and signer interact so that the user will

obtain a signature from the signer on a message of its choice that

is linked to the user’s attributes. The last type of interaction is

verification and showing of attributes and signatures. This is split

into a signature verification algorithm that checks if the signature

is valid, and a pair of show algorithms. The latter allows the user
to reveal a subset of its attributes to a verifier who can check that

they link to the signature.

In the following we call a vector ®𝐿 of length 𝑛 a partial vector if
some of its entries are a special empty symbol ⊥.

Definition 2.4. A blind signature with attributes is a tuple of algo-
rithms BSA ≔ (G,R,S,U,V,SH), with the following properties.

• The key generation algorithm G takes as input public pa-

rameter 𝑝𝑝 and outputs a pair of keys (pk, sk).
• The registration protocol R between the signer and the user

consists of two algorithms RU ,RS :

– RU takes as input a public key 𝑝𝑘 , and a vector of

attributes

−→
𝐿 . It outputs a commitment 𝐶 to

−→
𝐿 , a regis-

tration state 𝑠𝑡𝑟 , and a proof 𝜋 .

– RS is deterministic and takes as input a secret key sk,
a commitment 𝐶 , and a proof 𝜋 . It outputs 1 (Accept)

or 0 (Reject).
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• The signer algorithm S is split into two algorithms S1 and

S2:

– S1 takes as input a secret key sk and a commitment 𝐶 .

It returns a commitment 𝑅 and a signer state 𝑠𝑡𝑠 .

– S2 is deterministic and takes as input a secret key sk,
a singer state 𝑠𝑡𝑠 , a commitment 𝑅, and a challenge 𝑒 .

It returns a response 𝑆 .

• The user algorithmU is split into two algorithmsU1 and

U2:

– U1 takes as input a public key pk, commitments 𝑅 and

𝐶 , a message𝑚, and a registration state 𝑠𝑡𝑟 . It returns

a challenge 𝑒 and a user state 𝑠𝑡𝑢 .

– U2 is deterministic and takes as input a public key

pk, a user state 𝑠𝑡𝑢 , a commitment 𝑅, a challenge 𝑒 , a

response 𝑆 , and a message𝑚. It returns a signature �̂�

and an opening 𝑟 .

• The show algorithm SH is split into two algorithms SH𝑈

and SH𝑉 :

– The show generation algorithm SH𝑈 takes as input a

public key pk, a signature 𝜎 , an attribute vector ®𝐿, an
opening 𝑟 , a registration state 𝑠𝑡𝑟 , a partial attribute

vector ®𝐿′ ⊂ ®𝐿 and outputs a proof 𝜋 .

– The show verification algorithm SH𝑉 is deterministic

and takes as input a public key pk, a signature 𝜎 , a

(partial) attribute vector

−→
𝐿′, and a proof 𝜋 . It outputs 1

(Accept) or 0 (Reject).

• The verification algorithmV is deterministic and takes as

input a public key pk, a signature �̂� , and a message𝑚. It

outputs 1 (Accept) or 0 (Reject).

Definition 2.5 (Correctness of Blind Signatures with Attributes).
We say that a blind signature scheme with attributes BSA =(G, R,
S,U,V, SH ) is perfectly correct if for all public parameters 𝑝𝑝 ,

all vectors of attributes

−→
𝐿 , all partial vectors

−→
𝐿′, and all messages

𝑚, it holds that

Pr


V(𝑝𝑘, 𝜎,𝑚) = 1∧
SH𝑉 (pk, 𝜎,

−→
𝐿′, 𝜋) = 1

:

(pk, sk) ←
$
G(pp)

(𝐶, 𝜋, st𝑅) ←$
RU (𝑝𝑘,

−→
𝐿 )

1←
$
RS (sk,𝐶, 𝜋)

(𝑅, 𝑠𝑡𝑠 ) ←$
S1 (sk,𝐶)

(𝑒, 𝑠𝑡𝑢 ) ←$
U1 (pk, 𝑅,𝐶,𝑚, st𝑅)

𝑆 ← S2 (sk, 𝑠𝑡𝑠 , 𝑅, 𝑒)
(𝜎, 𝑟 ) ← U2 (pk, 𝑠𝑡𝑢 , 𝑅, 𝑒, 𝑆,𝑚)
𝜋 ← SH𝑈 (pk, 𝜎, ®𝐿, 𝑟, 𝑠𝑡𝑟 , ®𝐿′)


= 1.

Definition 2.6 (Blindness). For the blindness definition and the

blindness proof of ACL, we refer the reader to the original work of

Baldimtsi and Lysyanskaya [5].

We recall the definition of strong One-More Unforgeability,

where an adversary wins if it is able to output ℓ + 1 valid message-

signature pairs after completing only ℓ signing sessions. In the

setting of blind signatures with attributes, this game is augmented

with a registration oracle.

Definition 2.7 (Strong One-More Unforgeability (OMUF)). For a
blind signature with attributes BSA = (G,R,S,V,SH), a positive
integer ℓ ∈ Z+, and an adversary A, we define the game ℓ-OMUF
as follow:

• Setup. Generate a pair of keys (pk, sk), and invoke

AR(sk,.),S(sk,.) .
• Online Phase. A may query its oracles arbitrarily and in

an interleaved fashion as long as it completes at most ℓ

sessions with S.
• Output Determination. The game outputs 1 iffA outputs

𝑘 ≥ ℓ +1 pairwise-distinct tuples (𝜎1,𝑚1), . . . (𝜎𝑘 ,𝑚𝑘 ) such
that for all 𝑖 ∈ [𝑘],V(𝑝𝑘, 𝜎𝑖 ,𝑚𝑖 ) = 1.

We define A’s advantage in winning the game ℓ-OMUF against a

blind signature scheme with attributes BSA as

Advℓ-OMUF
BSA (A) ≔ Pr[ℓ-OMUFABSA = 1] .

We say that BSA is (𝑡, 𝜀)-OMUF-secure if for all adversaries A
that run in time at most 𝑡 , Advℓ-OMUF

BSA (A) ≤ 𝜀.

We present the definition of secure showing. Intuitively, this se-

curity definition captures that the adversary cannot re-link received

signatures to other attribute vectors.

Definition 2.8 (Secure Showing). For a blind signature with at-

tributes BSA = (G,R,S,V,SH), a positive integer ℓ ∈ Z+, and an
adversary A, we define the game ℓ-SH as follows.

• Setup. Generate key pair (pk, sk) and invoke

AR(sk,· ),S(sk,· ) . Oracles R(sk, ·) and S(sk, ·) share state

and we require that session 𝑖 with S(sk, ·) uniquely identi-

fies some prior session 𝑗 with R(sk, ·).
• Online Phase. The adversary may query its oracles arbi-

trarily and in an interleaved fashion as long as it completes

at most ℓ sessions with S. For 𝑖 ∈ [ℓ], let 𝐶′
𝑖
denote the

commitment corresponding to the 𝑖𝑡ℎ session with S(sk, ·).
We define 𝐶′

𝑖
= ⊥ if there is no session 𝑖 .

• Output Determination. The adversary outputs up to ℓ

pairwise distinct tuples of the form (𝑚𝑖 , 𝜎𝑖 ,𝐶𝑖 , ®𝐿𝑖 , 𝑟𝑖 , 𝜋𝑖 ) as
well as ℓ pairs ( ®𝐿′

𝑖
, 𝑟 ′
𝑖
). The game outputs 1 if all of the

following hold and 0 otherwise:

– For all 𝑖 ∈ [ℓ], either 𝑟 ′
𝑖
is a valid opening of 𝐶′

𝑖
to ®𝐿′

𝑖
or 𝐶′

𝑖
= ⊥.

– For all tuples (𝑚𝑖 , 𝜎𝑖 , ®𝐿𝑖 , 𝜋𝑖 ) in the adversary’s output,

it holds that SH𝑉 (pk, 𝜎𝑖 , ®𝐿𝑖 , 𝜋𝑖 ) = 1.

– For all tuples (𝑚𝑖 , 𝜎𝑖 , ®𝐿𝑖 , 𝜋𝑖 ) in the adversary’s output,

it holds thatV(pk,𝑚𝑖 , 𝜎𝑖 ) = 1.

– All ®𝐿𝑖 , ®𝐿′𝑖 contain an entry for each attribute, i.e., they

do not contain the ⊥ symbol anywhere.

– The multiset of all attribute vectors ®𝐿𝑖 is not a subset of
the multiset of all attribute vectors ®𝐿′

𝑖
that correspond

to 𝐶′
𝑖
≠ ⊥.

We defineA’s advantage in winning the game ℓ-SH against a blind

signature scheme with attributes BSA as

Advℓ-SHBSA (A) ≔ Pr[ℓ-SHABSA = 1] .
We say that BSA is (𝑡, 𝜀)-ℓ-SH secure if for all adversaries that run

in time at most 𝑡 , Advℓ-SHBSA (A) ≤ 𝜀.

Remark 2.1 (On Modularizing the Security Properties of Blind Sig-

natures with Attributes). We note that compared to [5], we have

split up the definition of security of blind signatures with attributes

into definition 2.7 and definition 2.8. This is on the one hand to

modularize the two different security properties, which may require
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very different proof strategies, and on the other hand to clarify the

Secure Showing Property which was ambiguous in [5].

Remark 2.2 (Limitations of the Secure Showing Definition). Wenote

that definition 2.8 does not cover all possible attacks on the Secure

Showing algorithm that one might exclude. For example, one might

want to exclude an attack where the adversary only has to provide

partial vectors such that there is no mapping to the full vectors he

requested signatures for. However, this winning condition is likely

inefficient to check as the challenger would have to verify that no

such mapping can exists, for example by iterating over all possible

mappings. We note that letting the adversary provide a mapping

that violates security is not a good fix for this, as the adversary

could provide a bad mapping even if a good mapping exists, e.g. if

𝐿′
1
, 𝐿′

2
are subvectors of 𝐿𝑎 and 𝐿′

3
is a subvector of 𝐿𝑏 , but 𝐿2 is also

a shared subvector of 𝐿𝑎 and 𝐿𝑏 , the adversary could claim in the

mapping that he got two signatures for 𝐿𝑏 and one for 𝐿𝑎 , when

the signatures are in fact two signatures for 𝐿𝑎 and one for 𝐿𝑏 .

Therefore, we require the adversary to open the full vectors as

well.

3 AN IDENTIFICATION SCHEME FOR

ANONYMOUS CREDENTIALS LIGHT

Towards a modular OMUF proof of Anonymous Credentials Light

ACL, we propose an identification scheme, called IDACL, fromwhich

the scheme ACL can be derived, and from its OMMIM-security the

OMUF-security of ACL can be proven. Particularly, following a

similar methodology of Hauck et al. [38], we show in this section

that IDACL is OMMIM-secure and use this fact in section 4 to show

via reduction that ACL is OMUF-secure.

3.1 Construction

For the reader’s convenience, we depict this scheme as an interac-

tive protocol in fig. 4. We define the scheme IDACL =(G, P,V) as

follows:

• G(𝑝𝑝): Parse 𝑝𝑝 to obtain G, 𝑞, and 𝑔, sample ℎ ←
$
G and

𝑥, 𝑣0,1, 𝑣0,2 ←$
Z𝑞 , compute 𝑦 = 𝑔𝑥 , 𝑧 := 𝑔𝑣0,1 · ℎ𝑣0,2

, set

sk = (𝑔, ℎ, 𝑧, 𝑥) and pk = (𝑔, ℎ, 𝑧,𝑦), and output (pk, sk).
• The prover algorithms P =(P1, P2) are defined as follows:

– P1 (sk): Sample 𝑑, 𝑠1,𝑠2, 𝑢, rnd ←$
𝑍𝑞, compute

𝑧1 := 𝑔rnd, 𝑧2 := 𝑧/𝑧1, 𝑎 := 𝑔𝑢 , 𝑏1 := 𝑔𝑠1 · 𝑧𝑑
1
, 𝑏2 :=

ℎ𝑠2 · 𝑧𝑑
2
, set 𝑅 := (𝑎, 𝑏1, 𝑏2, rnd), 𝑠𝑡𝑝 := (𝑑, 𝑠1, 𝑠2,𝑢) and

output (𝑅, 𝑠𝑡𝑝 ).
– P2 (sk, 𝑠𝑡𝑝 , 𝑅, 𝜀): Parse 𝑠𝑡𝑝 as (𝑑, 𝑠1, 𝑠2, 𝑢), compute 𝑐 :=

𝜀 − 𝑑, 𝑟 := 𝑢 − 𝑐 · 𝑥 , set and output 𝑆 := (𝑐, 𝑑, 𝑟, 𝑠1, 𝑠2).
• The verifier algorithmsV =(V1,V2) are defined as follows:

– V1 (pk, 𝑅): Parse pk, and 𝑅, sample 𝜀 ←
$
𝑍𝑞 , set 𝑠𝑡𝑣 :=

(𝑎, 𝑏1, 𝑏2, 𝑧1, 𝑧2), and output (𝜀,𝑠𝑡𝑣).
– V2 (pk, 𝑠𝑡𝑣, 𝑅, 𝜀, 𝑆): Parse 𝑆 and 𝑠𝑡𝑣 , and output 1 if the

following condition holds: 𝜀 = 𝑐 +𝑑 ∧𝑎 = 𝑔𝑟 ·𝑦𝑐 ∧𝑏1 =

𝑔𝑠1 · 𝑧𝑑
1
∧𝑏2 = ℎ𝑠2 · 𝑧𝑑

2
. Otherwise, it outputs 0.

3.2 Perfect Correctness.

IDACL is perfectly correct. The verifier verification equation checks

that 𝑔𝑟 ·𝑦𝑐 = 𝑎 ∧𝑔𝑠1 · 𝑧𝑑
1
= 𝑏2 ∧ 𝑐 +𝑑 = 𝜀 holds. In an honest run of

the protocol, this always holds, because

DLP

ℓ-RT

ℓ-OMMIM
but not ℓ-RT

ℓ-OMMIM

Lem
m
a 3.3

Le
m
m
a
3.
5

Theorem 3.1

Figure 3: Proof overview for theorem 3.1.

• 𝑔𝑟 · 𝑦𝑐 = 𝑔𝑢−𝑐𝑥 · 𝑔𝑐𝑥 = 𝑔𝑢 = 𝑎,

• 𝑔𝑠1 · 𝑧𝑑
1
= 𝑏1, and ℎ

𝑠2 · 𝑧𝑑
2
= 𝑏2,

• 𝑐 + 𝑑 = 𝜀 − 𝑑 + 𝑑 = 𝜀.

3.3 One-More Man-In-The-Middle (OMMIM)

Theorem 3.1. Let G be a group of prime order 𝑞 where the DLP
is (𝑡, 𝜀)-hard. Then IDACL is (𝑡 ′, 𝜀′)-ℓ-OMMIM-secure in the AGM +

ROM with 𝑡 ′ ≈ 𝑡 and 𝜀′ ≤ 4 · 𝜀 + 2·(𝑞ℎ
2
)+11

𝑞

Notation and Proof Strategy. When A runs the ℓ-OMMIM game,

it acts as a Man-In-The-Middle between the prover and the veri-

fier and may open sessions with both. We examine the elements

exchanged among the prover, the verifier, and A. To differentiate

between the elements sent to the verifier by A and those sent by

the prover, we keep the names of the elements sent by the prover

as (𝑧1, 𝑎, 𝑏1, 𝑏2, 𝑐, 𝑑, 𝑟, 𝑠1, 𝑠2), and correspondingly, 𝑧2 ≔ 𝑧/𝑧1, and

rename the elements sent by A as 𝜁1 ≔ 𝑧1, 𝛼 ≔ 𝑎, 𝛽1 ≔ 𝑏1, 𝛽2 ≔

𝑏2, 𝜔 ≔ 𝑐, 𝛿 ≔ 𝑑, 𝜌 ≔ 𝑟, 𝜎1 ≔ 𝑠1 and 𝜎2 ≔ 𝑠2, and correspondingly,

𝜁2 ≔ 𝜁1/𝑧.
Our proof strategy consists of two steps. In the first step, we

show via reduction under the DL hardness assumption that an

adversary A cannot win the game ℓ-OMMIM while using a fresh
tag 𝜁1 in one of the accepting sessions. A fresh tag 𝜁1 is a tag that

is not generated by the prover in one of the closed prover sessions,

i.e., for all closed prover sessions 1 ≤ 𝑖 ≤ ℓ , we have 𝜁1 ≠ 𝑧1,𝑖 . We

formalize this requirement in a game called the Restrictive Tagging
(ℓ-RT) and provide a reduction of the hardness of this game to the

hardness of the discrete logarithm problem. We turn to the second

step: IfA wins the game ℓ-OMMIMwithout using a fresh tag, then

by the pigeonhole principle, there are at least two verifier sessions

𝑘 and 𝑙 , such that, 𝜁
1,𝑘 = 𝜁

1,𝑙 , becauseA closes ℓ + 1 sessions, while

the prover closes only ℓ sessions. In the second step, we show via

reduction that A cannot win the game ℓ-OMMIM if two verifier

sessions have the same tag 𝜁1 because otherwise A wins the DLP
game.

While interacting with the reduction, the algebraic adversary

A provides a representation for each group element it outputs

or uses in its queries to V1. These representations must be ex-

pressible using a basis consisting of the group elements A ac-

quires during the ℓ-RT game. More specifically, this includes the

group elements of the public key (𝑔,𝑦, ℎ, 𝑧), and the group ele-

ments that it receives by interacting with P1. Assume A has in-

voked P1 𝑘 times for 1 ≤ 𝑘 , the basis in the 𝑘𝑡ℎ verifier session is

𝑍𝑘 ≔ (𝑔,𝑦, ℎ, 𝑧, 𝑎1, ..., 𝑎𝑘 , 𝑏1,1, ..., 𝑏1,𝑘 , 𝑏2,1, ..., 𝑏2,𝑘 , 𝑧1,1, ..., 𝑧1,𝑘 ).
Recall that the group elements 𝑎, 𝑏1 and 𝑏2 can be expressed

as 𝑎 = 𝑔𝑟 · 𝑦𝑐 , 𝑏1 = 𝑔𝑠1 · 𝑧𝑑
1
, and 𝑏2 = ℎ𝑠2 · 𝑧𝑑

2
= ℎ𝑠2 · (𝑧/𝑧1)𝑑 .

Additionally, the discrete logarithms of ℎ, 𝑧, and 𝑧1 are known for



Concurrent Security of Anonymous Credentials Light, Revisited

the reduction. Thus, the reduction can represent each element in

𝑍𝑘 using the reduced basis 𝐼 ≔ (𝑔,𝑦, ℎ). While 𝑔,𝑦, and ℎ remain

unchanged, we rewrite the other elements in 𝑍𝑘 as follows:

𝑧 = 𝑔𝑣0,1 · ℎ𝑣0,2
,𝑧1,𝑖 = 𝑔rnd𝑖 , 𝑎𝑖 = 𝑔𝑟𝑖 · 𝑦𝑐𝑖 ,𝑏1,𝑖 = 𝑔𝑠1,𝑖+rnd𝑖 ·𝑑𝑖

, and

𝑏2,𝑖 = ℎ𝑠2,𝑖+𝑣0,2 ·𝑑 · 𝑔𝑑 · (𝑣0,1−rnd𝑖 )
, where 1 ≤ 𝑖 ≤ 𝑘 . For simplicity, we

often reduce given representations into the basis 𝐼 . We can rewrite

any representation of a group element 𝑜 in its reduced form (w.r.t.

basis 𝐼 ) as𝑔[𝑜 ]+𝑥 ·𝑦[𝑜 ]+𝑤 ·ℎ [𝑜 ] , where 𝑥 ≔ dlog𝑔 𝑦 and𝑞 ≔ dlog𝑔 ℎ.

The notation 𝑔[𝑜 ] , 𝑦[𝑜 ] , or ℎ [𝑜 ] refers to the respective component

of the group element 𝑜 .

In addition to the reduced representations, we need to argue

about the representations that A submits before we transform

these representations into their reduced form. Using the notation

𝑎𝑖 (𝑜), we refer to the exponent of 𝑎𝑖 in the representation of the

group element 𝑜 , where 𝑎𝑖 is the group element 𝑎 that is sent to

A by the prover in response to a P1 query in session 𝑖 . If no 𝑎𝑖
component occurs in the representation of 𝑜 for all opened prover

sessions 𝑖 , then 𝑎𝑖 (𝑜) = 0. Similarly, we use the notation 𝑏𝑘,𝑖 (𝑜)
for 𝑘 ∈ {1, 2} to refer to the exponent of 𝑏𝑘,𝑖 in the group element

𝑜 , where 𝑏𝑘 is sent in the response to P1 query in the session 𝑖 . If

no 𝑏𝑘,𝑖 component occurs in the representation of 𝑜 for all opened

prover sessions 𝑖 , then 𝑏𝑘,𝑖 (𝑜) = 0.

We say that a prover session 𝑖 is linked to verifier session 𝑗

if 𝑎𝑖 (𝛼 𝑗 ) ≠ 0, 𝑏2,𝑖 (𝛽1, 𝑗 ) ≠ 0, 𝑏2,𝑖 (𝛽2, 𝑗 ) ≠ 0, 𝑏2,𝑖 (𝜁1, 𝑗 ) ≠ 0, or

𝑏2,𝑖 (𝜁2, 𝑗 ) ≠ 0.

Proof. Firstly, we define the game ℓ-Restrictive Tagging (ℓ-RT)
game that captures the event in whichA wins the ℓ-OMMIM game

while using a fresh tag 𝜁1 to close one of the verifier accepting

sessions.

Definition 3.2 (Game ℓ-Restrictive Tagging (ℓ-RT)). For a posi-
tive integer ℓ ∈ Z+, we define the game ℓ-RT for an identification

scheme ID ≔ (G,P,V), a public parameter 𝑝𝑝 , and an adversary

A as follows.

Initialization. The same as ℓ-OMMIM.

Online Phase. The same as ℓ-OMMIM.

Output Determination. The game outputs 1 if ℓ-OMMIM game

outputs 1 and there is an accepting session 𝑖 with the verifier,

such that, for all prover sessions 𝑗 that are closed with P2

invocation, it holds that 𝜁1,𝑖 ≠ 𝑧1, 𝑗 . We assume w.l.o.g. that

there is a single verifier session with this property and call

it the special session.
We define the advantage of an adversaryA in winning the game

for an identification scheme ID as

Advℓ-RTID (A) ≔ Pr[ℓ-RTAID = 1] .

Lemma 3.3 (Restrictive Tagging Lemma). For all adver-
saries A that run the game ℓ-RT against IDACL, there is a reduction
B running against the DLP game, such that

AdvDLP (B) ≥ 1

2

· Advℓ-RTIDACL
(A) − 9

2 · 𝑞 .

Proof. AssumingA wins the game ℓ-RT, it follows that it wins
the game ℓ-OMMIM while using a fresh tag 𝜁1 in one of the ac-

cepting verifier sessions (i.e., the special session). We show in the

following that this enables the reductionB to win the gameDLP, by
embedding the DLP challenge𝑈 in either ℎ or 𝑦, and extracting its

discrete logarithm from the representations of the group elements

of the special session. We illustrate this strategy in the following

via a sequence of games.

Game G1. The game samples a bit 𝑏 ←
$
{0, 1}. If 𝑏 = 0, it

behaves the same as ℓ-RT (i.e., it uses the 𝑦-side simulator C.2.1).

If 𝑏 = 1, it uses the 𝑧-side simulator C.2.2. Note that the game G1
and the game ℓ-RT are identically distributed due to the witness

indistinguishability of the OR-proof [23].

Game G2. The same as the game G1, except that it aborts if an
event E1 occurs, which we define in the following.

Definition 3.4 (The Preliminary Values). Assume that during the

game G1, A opens 𝑛 prover sessions and links 𝑘 sessions of them

with the special session for 0 ≤ 𝑘 ≤ 𝑛. If a variable 𝑣 describes

a value that is generated in a prover session that is linked to the

special session, we mark 𝑣 with an asterisk, e.g., 𝑎∗, 𝑏∗
2
. Let

−→
𝑎∗ =

(𝑎∗
1
, ..., 𝑎∗

𝑘
),
−→
𝑏∗

2
= (𝑏∗

2,1
, ..., 𝑏∗

2,𝑘
),
−→
𝑐∗ = (𝑐∗

1
, ..., 𝑐∗

𝑘
), and

−→
𝑑∗ = (𝑑∗

1
, ..., 𝑑∗

𝑘
)

be the values generated by the 𝑘 prover sessions linked to the spe-

cial session (ordered by the time each session is opened). The re-

duction B transforms the representations of the group elements

𝛼, 𝛽1, 𝛽2, 𝜁1, 𝜁2 of the special session to their reduced form w.r.t. the

basis 𝐼 . It then uses these reduced representations to compute new

group elements 𝛼 ′, 𝛽′
1
, 𝛽′

2
, 𝜁 ′

1
, and 𝜁 ′

2
as follows: it computes 𝛼 ′ from

the representation of 𝛼 after eliminating any 𝑎∗
𝑖
components in

this representation. That is, if 𝑎∗
𝑖
occurs in the representation of 𝛼 ,

i.e., 𝑎∗
𝑖
(𝛼) ≠ 0, for some session 𝑖 , then we have 𝛼 ′ ≔ 𝛼/𝑎∗

𝑖
𝑎∗
𝑖
(𝛼 )

.

For example, assume that 𝑎∗
𝑖
(𝛼) ≠ 0 and the 𝑦-side simulator

is used, it follows that 𝑎∗
𝑖
𝑎∗
𝑖
(𝛼 ) = 𝑔𝑢

∗
𝑖 ·𝑎∗𝑖 (𝛼 ) , and thus, we have

𝑔[𝛼 ′ ] ≔ 𝑔[𝛼 ] − 𝑢∗𝑖 · 𝑎
∗
𝑖
(𝛼), 𝑦[𝛼 ′ ] ≔ 𝑦[𝛼 ] , and ℎ [𝛼 ′ ] ≔ ℎ [𝛼 ] . Analo-

gously, we construct 𝛽′
1
, 𝛽′

2
, 𝜁 ′

1
, and 𝜁 ′

2
from the representations of

𝛽1, 𝛽2, 𝜁1, and 𝜁2, respectively, after eliminating all 𝑏∗
2,𝑖

components

from these representations.

We define the following functions for the special session:

𝜔 ′ (
−→
𝑐∗) ≔ 𝑦[𝛼 ′ ] +

𝑘∑︁
𝑗=1

𝑎∗
𝑖
(𝛼) · 𝑐∗𝑖 ,

𝛿 ′′ (
−→
𝑑∗) ≔

𝑔[𝛽 ′
2
] + 𝑥 · 𝑦[𝛽 ′

2
] +

∑𝑘
𝑖=1

𝑏∗
2,𝑖
(𝛽2) · 𝑑∗𝑖 · (𝑣0,1 − 𝑣∗

1,𝑖
)

𝑔[𝜁 ′
2
] + 𝑥 · 𝑦[𝜁 ′

2
] +

∑𝑘
𝑖=1

𝑏∗
2,𝑖
(𝜁2) · 𝑑∗𝑖 · (𝑣0,1 − 𝑣∗

1,𝑖
)
,

where 𝑢∗
2,𝑖

≔ dlogℎ 𝑏
∗
2,𝑖
.

We prove the following properties of the preliminary values:

Claim 3.1. Let 𝛼, 𝛽1, 𝜁1, 𝛽2, 𝜁2 be the group elements from the spe-
cial sessions in lemma 3.3, and let 𝛼 ′, 𝛽′

1
, 𝛽′

2
, 𝜁 ′

1
, and 𝜁 ′

2
be the values

described in definition 3.4. It holds that

(1) 𝑦[𝛼 ] = 𝑦[𝛼 ′ ] +
∑𝑘
𝑖=1

𝑐∗
𝑖
· 𝑎∗

𝑖
(𝛼)

(2) ℎ [𝛽2 ] = ℎ [𝛽 ′
2
] +

∑𝑘
𝑖=1

𝑏∗
2,𝑖
(𝛽2) · 𝑑∗𝑖 · (𝑣0,1 − 𝑣∗

1,𝑖
)

(3) ℎ [𝜁2 ] = ℎ [𝜁 ′
2
] +

∑𝑘
𝑖=1

𝑏∗
2,𝑖
(𝜁2) · 𝑑∗𝑖 · (𝑣0,1 − 𝑣∗

1,𝑖
)

where 𝑘 is the number of prover sessions linked to the special session.

The proof is given in appendix B.1.
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Remark 3.1. We note that if the special session is not linked to any

prover session, the arguments

−→
𝑐∗ and

−→
𝑑∗ are empty, and thus, the

sums in the function definitions are also empty. Furthermore, in

case the special session is linked to unclosed prover sessions, the

simulator closes these sessions by itself which sets the values for

all previously undefined 𝑐𝑖 , 𝑟𝑖 , 𝑑𝑖 , 𝑠1,𝑖 , 𝑠2,𝑖 .

Observation 3.1. We note that the prover’s view of the reduced

representations w.r.t. 𝐼 of the group elements 𝑎∗
𝑖
and 𝑏∗

2,𝑖
are not

fixed. In contrast to the other group elements in𝑍𝑘 = (𝑔,𝑦, ℎ, 𝑎1, . . . ,

𝑎𝑘 , 𝑏1,1, . . . , 𝑏1,𝑘 , 𝑏2,1, . . . , 𝑏2,𝑘 , 𝑧1, . . . , 𝑧𝑘 , 𝑧1,1, . . . , 𝑧1,𝑘 ), the reduced
representations of 𝑎∗

𝑖
and 𝑏∗

2,𝑖
may change after P2 query. For ex-

ample, if the y-side simulator is used (see appendix C.2.1), the

prover’s view of 𝑎∗
𝑖
changes from 𝑔𝑢

∗
𝑖 to 𝑔𝑟

∗
𝑖 · 𝑦𝑐∗𝑖 , hence its 𝑔 and

𝑦 components get modified. Similarly, the representation of 𝑏∗
2,𝑖

changes when the z-side simulator (see appendix C.2.2) is used.

Therefore, using 𝑎∗
𝑖
or 𝑏∗

2,𝑖
in the representation of another group

element makes the reduced representation of the latter prone to

modifications after P2 query. However, note that the group ele-

ments 𝛼 ′, 𝜁 ′
1
, 𝜁 ′

2
, 𝛽′

1
and 𝛽′

2
are (partially) resilient to these changes

when P2 is queried. In particular, as 𝛼 ′ does not contain 𝑎∗
𝑖
compo-

nent, 𝑦[𝛼 ′ ] is fixed. Similarly, as 𝜁 ′
1
, 𝜁 ′

2
, 𝛽′

1
and 𝛽′

2
do not have 𝑏∗

2,𝑖

components, ℎ [𝛽 ′
1
] , ℎ [𝜁 ′

1
] , 𝑔[𝛽 ′

2
] + 𝑥 · 𝑦[𝛽 ′

2
] , and 𝑔[𝜁 ′

2
] + 𝑥 · 𝑦[𝜁 ′

2
] are

fixed.

Observation 3.2. Per observation 3.1, we know that A fixes the

values 𝑦[𝛼 ′ ] , ℎ [𝛽 ′
1
] , ℎ [𝜁 ′

1
] , 𝑔[𝛽 ′

2
] +𝑥 ·𝑦[𝛽 ′

2
] , and 𝑔[𝜁 ′

2
] +𝑥 ·𝑦[𝜁 ′

2
] at the

time of V1 query and it cannot influence these values afterward.

After these values are fixed, the value 𝜀 is sampled uniformly at

random. Finally, only after the value 𝜀 is fixed, the values 𝑐∗
𝑖
and

𝑑∗
𝑖
get fixed (before V2 query, 𝑐∗

𝑖
(𝑑∗
𝑖
) is uniformly random and

information-theoretically hidden fromA when the z-side simulator

from appendix C.2.2 (y-side simulator from appendix C.2.1) is used).

The functions𝜔 ′ and 𝛿 ′′ are crucial for the reduction B, because
it uses them to extract the solution of the DLP instance from the

special session. However, this is only possible if the function 𝛿 ′′ (
−→
𝑑∗)

is defined. We define the event E1 to be the event in which 𝛿 ′′ (
−→
𝑑∗)

is undefined. For simplicity, we know per claim 3.1 that 𝛿 ′′ (
−→
𝑑∗) =

𝑔 [𝛽
2
]+𝑥 ·𝑦 [𝛽

2
]

𝑔 [𝜁
2
]+𝑥 ·𝑦 [𝜁

2
]
, thus we define E1 as

E1 ≔ (𝑔[𝜁2 ] + 𝑥 · 𝑦[𝜁2 ] = 0) .

Claim 3.2. Pr[E1] ≤ 1

𝑞 .

Proof. Recall that 𝑧 is sampled as 𝑧 ≔ 𝑔𝑣0,1 · ℎ𝑣0,2
for 𝑣0,1, 𝑣0,2 ∈

Z∗, and 𝜁2 ≔ 𝑧/𝜁1, hence 𝑔[𝜁2 ] +𝑥 ·𝑦[𝜁2 ] = 𝑔[𝑧 ] +𝑥 ·𝑦[𝑧 ] − (𝑔[𝜁1 ] +
𝑥 · 𝑦[𝜁1 ] ) = 𝑣0,1 − rnd and ℎ [𝜁2 ] = ℎ [𝑧 ] − ℎ [𝜁1 ] = ℎ [𝑧 ] . Thus, in
order for E1 to occur, the adversary must choose rnd, such that

rnd = 𝑣0,1. However, as 𝑣0,1 is information-theoretically hidden

from the adversary at all times, the probability that rnd = 𝑣0,1 is
1

𝑞 .

□

By this claim, it follows thatAdvG2 (A) ≥ AdvG1 (A)− 1

𝑞 ; there-

fore, we assume that A wins the game G2.

Game G3. The same as the game G2, except that it aborts if an
event E2 occurs for the special session.

Define E2 ≔ (𝜔 ′ (
−→
𝑐∗) = 𝜔) ∧ (𝛿 ′′ (

−→
𝑑∗) = 𝛿) ∧ ¬E1 .

Claim 3.3. Pr[E2] ≤ 8

𝑞 .

The proof is given in appendix B.2. By this claim, we have that

AdvG3 (A) ≥ AdvG2 (A)− 8

𝑞 ; therefore, we assume thatA winsG3.

Next, we show that if A wins G3, then B can use A to extract

the discrete logarithm of 𝑦 or ℎ using the representations of the

group elements of the special session.

Simulating G3: B simulates G3 by simulating the oracles P1,P2,

V1,andV2. While the simulation ofV1 andV2 is done as in IDACL
(see fig. 4), the simulation of P1 and P2 can be done in two ways.

Given a DLP challenge𝑈 , B flips a coin and does the following:

(1) On heads, it simulates the prover algorithms using the sim-

ulator (C.2.1), but instead of sampling ℎ at random, it sets

ℎ ≔ 𝑈 .

(2) On tails, it simulates the prover using the simulator (C.2.2),

but instead of sampling 𝑦 randomly, it sets 𝑦 ≔ 𝑈 .

B maintains a per-session storage to store all the group elements

used during the simulation alongside the representations submitted

by the algebraic adversary A. We show in the following claim the

technique used by B to extract dlog𝑔𝑈 .

Claim 3.4. AdvDLP (B) ≥ 1

2
· AdvG3 (A) .

Proof. Recall that A has to query the verifier oracleV1 ℓ + 1

times, and, as A is algebraic, it submits representations for the

group elements in the queries; therefore, the reduction B has access

to the representations of the group elements 𝛼, 𝛽2, and 𝜁2, which it

can transform into their reduced form to the basis 𝐼 and compute

the values 𝜔 ′, and 𝛿 ′′ for the special session.
Furthermore, since A wins the game G3, the events E1 and E2

do not occur. Per observation 3.3, we have that

¬E1 ∧ ¬E2 ≡

𝑦[𝛼 ] ≠ 𝜔 ∨ 𝑔[𝜁2 ] + 𝑥 · 𝑦[𝜁2 ] ≠ 0 ∧
𝑔[𝛽2 ] + 𝑥 · 𝑦[𝛽2 ]
𝑔[𝜁2 ] + 𝑥 · 𝑦[𝜁2 ]

≠ 𝛿.

B’s strategies to extract the discrete logarithm of𝑈 depends on

which of the following cases occurs (the following cases are not

mutually exclusive; therefore, B follows the strategy of the first

matching case):

Case 1: 𝜔 ≠ 𝑦[𝛼 ] . B extracts the solution of the DLP instance

from 𝑦, i.e., 𝑥 = dlog𝑔𝑈 = dlog𝑔 𝑦. This is possible if the

simulator C.2.2 is used since B embeds𝑈 in 𝑦.

We know from the verification equation that 𝛼 = 𝑔𝜌 · 𝑦𝜔 ,
hence we can write its representation as 𝜌 + 𝑥 · 𝜔, where
𝑥 = dlog𝑔 𝑦. From the representation of 𝛼 that A submits

to the verifier, B computes the reduced representation of 𝛼

as 𝑔[𝛼 ] + 𝑥 · 𝑦[𝛼 ] +𝑤 · ℎ [𝛼 ] .
It follows that 𝜌 + 𝑥 · 𝜔 = 𝑔[𝛼 ] + 𝑥 · 𝑦[𝛼 ] +𝑤 · ℎ [𝛼 ] , which
yields the equation 𝑥 =

𝑔 [𝛼 ]+𝑤 ·ℎ [𝛼 ]−𝜌
𝜔−𝑦 [𝛼 ] .

This equation is solvable because 𝜔 ≠ 𝑦[𝛼 ] .

Case 2: 𝑔[𝜁2 ] + 𝑥 · 𝑦[𝜁2 ] ≠ 0 ∧ 𝑔 [𝛽
2
]+𝑥 ·𝑦 [𝛽

2
]

𝑔 [𝜁
2
]+𝑥 ·𝑦 [𝜁

2
]
≠ 𝛿 : In this case,

B extracts 𝑤 = dlog𝑔𝑈 = dlog𝑔 ℎ. This is possible if the

simulator C.2.1 is used since B embeds𝑈 in ℎ.
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From the verification equation, we have that 𝛽2 ≔ ℎ𝜎2 · 𝜁𝛿
2
,

hence the representation of 𝛽2 can be expressed as

𝑤 · 𝜎2 + 𝛿 · (𝑔[𝜁2 ] + 𝑥 · 𝑦[𝜁2 ] +𝑤 · ℎ [𝜁2 ] ), (4)

where 𝑤 = dlog𝑔 ℎ. Recall that A submits the represen-

tation of 𝛽2 to the verifier. This allows B to compute its

reduced form as

𝑔[𝛽2 ] + 𝑥 · 𝑦[𝛽2 ] +𝑤 · ℎ [𝛽2 ] . (5)

We set 𝜓 ≔ 𝑤,𝐴 ≔ 𝜎2, 𝐵 ≔ 𝛿,𝐶 ≔ 𝑔[𝜁2 ] + 𝑥 · 𝑦[𝜁2 ] , 𝐷 ≔

ℎ [𝜁2 ] , 𝐸 ≔ 𝑔[𝛽2 ] +𝑥 ·𝑦[𝛽2 ] , 𝐹 ≔ ℎ [𝛽2 ] ,V1 ≔ 𝜓 ·𝐴 +𝐵 · (𝐶 +
𝜓 ·𝐷), andV2 ≔ 𝐸+𝜓 ·𝐹 . By claim D.3,𝑤 can be recovered

since the conditionV1 = V2 ∧𝐶 ≠ 0 ∧ 𝐵 ≠ 𝐸
𝐶
holds.

For each of the cases, the solution to the DLP instance can be ex-

tracted if the appropriate simulator is used, which happens with

probability
1

2
. Thus, B can compute dlog𝑔𝑈 successfully with prob-

ability ≥ 1

2
· AdvG3 (A). □

Consequently, AdvDLP (B) ≥ 1

2
·AdvG3 (A) ≥ 1

2
·AdvG2 (A) −

8

2·𝑞 ≥
1

2
· AdvG1 (A) − 1

2·𝑞 −
8

2·𝑞 = 1

2
· Advℓ-RTIDACL

(A) − 1

2·𝑞 −
8

2·𝑞 ,

hence AdvDLP (B) ≥ 1

2
· Advℓ-RTIDACL

(A) − 9

2·𝑞 . □

By this lemma, A cannot win the game ℓ-RT, hence if A wins

the game ℓ-OMMIM, it may not use a fresh tag 𝜁1 that was not

generated by the prover.

Lemma 3.5. For all adversaries A, define E3 to be the event in
which A wins the ℓ-OMMIM game but loses the ℓ-RT game. There
exists a reduction B, such that

AdvDLP (B) ≥ 1

2

· Pr[E3] −
1

𝑞
.

Proof. As A loses the game ℓ-RT while winning the game ℓ-

OMMIM, it only uses tags 𝜁1 that were generated by the prover.

We show in the following via a sequence of games that this leads

to solving the DLP.

GameG1. The same as the ℓ-OMMIM game, except that it aborts

if a fresh tag 𝜁1 is used in any of the accepting sessions (recall that

freshmeans that it was not generated by the prover as 𝑧1 in a closed

session). Since the prover only closes ℓ sessions, whileA closes ℓ+1

sessions, A must use the same tag 𝜁1 in at least two different ses-

sions. We assume w.l.o.g. that only two sessions share the same tag

𝜁1. Formally, there are two protocol runs between A and the ver-

ifier with transcripts (𝑅 (1) , 𝜀 (1) , 𝑆 (1) ), and (𝑅 (2) , 𝜀 (2) , 𝑆 (2) ) with
𝑅 (1) ≔ (𝛼 (1) , 𝛽 (1)

1
, 𝛽
(1)
2

, rnd), 𝑅 (2) ≔ (𝛼 (2) , 𝛽 (2)
1

, 𝛽
(2)
2

, rnd), 𝜀 (1) ≠
𝜀 (2) , and 𝑆 (1) ≠ 𝑆 (2) . We call these sessions the special sessions. We

note that, if 𝑅 (1) = 𝑅 (2) , the combination of the two transcripts

directly yields one of the witnesses regardless of the algebraic rep-

resentations submitted by the adversary. We therefore assume in

the following that 𝑅 (1) ≠ 𝑅 (2) .

Game G2. The same as game G1, except that it aborts if 𝑔[𝜁2 ] +
𝑥 · 𝑦[𝜁2 ] = 0.

Claim 3.5. Pr[𝑔[𝜁2 ] + 𝑥 · 𝑦[𝜁2 ] = 0] ≤ 1

𝑞 .

Proof. Recall that 𝜁2 = 𝑧/𝜁1, hence 𝑔[𝜁2 ] + 𝑥 · 𝑦[𝜁2 ] = 𝑔[𝑧 ] + 𝑥 ·
𝑦[𝑧 ]−𝑔[𝜁1 ] +𝑥 ·𝑦[𝜁1 ] ; therefore, if𝑔[𝜁2 ] +𝑥 ·𝑦[𝜁2 ] = 0,𝑔[𝑧 ] +𝑥 ·𝑦[𝑧 ] =

𝑔[𝜁1 ] + 𝑥 · 𝑦[𝜁1 ] . Furthermore, 𝑧 is chosen by the reduction as 𝑧 =

𝑔𝑣0,1 ·ℎ𝑣0,2
, and 𝜁1 is chosen by the prover as 𝑧1 := 𝑔rnd (recall thatA

loses the game ℓ-RT, hence it only chooses tags that are generated

by the prover). Consequently 𝑔[𝑧 ] + 𝑥 · 𝑦[𝑧 ] = 𝑔[𝑧1 ] + 𝑥 · 𝑦[𝑧1 ] only
occurs if 𝑣0,1 = rnd, which occurs with a probability at most

1

𝑞 . □

By this claim, we have that AdvG2 ≥ AdvG1 − 1

𝑞 , and thus, we

assume that A wins the game G2.

Game G3. The same as game G2, except that it aborts if an event

E4 happens. We define E4 in the following.

Definition 3.6 (The Preliminary Values). Given the commitments

𝑅 ( 𝑗 ) = (𝛼 ( 𝑗 ) , 𝛽 ( 𝑗 )
1

, 𝛽
( 𝑗 )
2

, rnd) for 𝑗 = 1, 2 from the transcripts of

the special sessions, the reduction transforms the representations

of 𝛼 ( 𝑗 ) , 𝛽 ( 𝑗 )
2

, and 𝜁2 = 𝑧/𝜁1 to their reduced form w.r.t. the basis

𝐼 . Using these representations, the reduction computes the values

𝛼 ′( 𝑗 ) , 𝛽′( 𝑗 )
2

, and 𝜁 ′
2
in a similar fashion to definition 3.4, and defines

the following preliminary values:

𝜔 ′𝑗 (
−→
𝑐∗𝑗 ) ≔ 𝑦[𝛼 ′( 𝑗 ) ] +

∑︁
𝑖∈𝑆 𝑗

𝑎∗
𝑖
(𝛼 ( 𝑗 ) ) · 𝑐∗𝑖 ,

𝛿 ′𝑗 (
−→
𝑑∗𝑗 ) ≔

𝑔[𝛽 ′( 𝑗 )
2
] + 𝑥 · 𝑦[𝛽 ′( 𝑗 )

2
] +

∑
𝑖∈𝑆 𝑗

𝑏∗
2,𝑖
(𝛽 ( 𝑗 )

2
) · 𝑑∗

𝑖
· (𝑣0,1 − rnd∗𝑖 )

𝑔[𝜁 ′
2
] + 𝑥 · 𝑦[𝜁 ′

2
]

,

where 𝑆 𝑗 is a list containing the session identifiers of the prover

sessions linked to the special session 𝑗 sorted by the time the ses-

sions are closed in an ascending order,

−→
𝑐∗
𝑗
≔ (𝑐∗

𝑗1
, . . . , 𝑐∗

𝑗𝑘
),
−→
𝑑∗
𝑗
≔

(𝑑∗
𝑗1
, . . . , 𝑑∗

𝑗𝑘
), and 𝑗𝑘 is the number of prover sessions linked to the

special session 𝑗 .

Observation 3.3. Note that observation 3.1 applies on the current

definitions of 𝛼 ′, 𝛽′
2
, and 𝜁2. Particularly, these values get fixed by

V1 query and cannot be influenced by A afterward. Furthermore,

observation 3.2 applies on this lemma: first, A fixes the values

𝛼 ′, 𝛽′
2
, and 𝜁2 inV1 query, then 𝜀 is fixed and revealed to A in the

response to V1 query, and finally, 𝑐∗
𝑖
and 𝑑∗

𝑖
are revealed in the

response to P2 query. Additionally, one of the values 𝑐
∗
𝑖
and 𝑑∗

𝑖
is

uniformly random, and it holds that 𝑐∗
𝑖
+ 𝑑∗

𝑖
= 𝜀𝑖 .

Let 𝜔 𝑗 and 𝛿 𝑗 be the field elements sent by A in theV2 query

of the special session 𝑗 . We define E4 as

E4 ≔ (𝜔 ′𝑗 (
−→
𝑐∗𝑗 ) = 𝜔 𝑗 ) ∧ (𝛿 ′𝑗 (

−→
𝑑∗𝑗 ) = 𝛿 𝑗 )

for both 𝑗 = 1, 2.

Claim 3.6. For a polynomially-large integer 𝑞ℎ ∈ Z+,

Pr[E4] ≤
(𝑞ℎ

2

)
+ 1

𝑞
.

Proof. Deifne the varibles 𝐶′
𝑗,0

=
∑𝑗𝑘−1

𝑖=1
𝑐∗
𝑖
· 𝑎∗

𝑖
(𝛼 ( 𝑗 ) ),𝐶′

𝑗,2
=∑𝑗𝑘−1

𝑖=1
𝑏∗

2,𝑖
(𝛽 ( 𝑗 )

2
) · 𝑑∗

𝑖
· (𝑣0,1 − rnd

∗
𝑖 ), 𝜉

( 𝑗 ) ≔ 𝜀 𝑗𝑘 , 𝜉
′ ≔ 𝜀 𝑗𝑘 ,Δ

( 𝑗 ) ≔

𝑑∗
𝑗𝑘
,Ω ( 𝑗 ) ≔ 𝑐∗

𝑗𝑘
, C0

( 𝑗 ) ≔ 𝑦[𝛼 ′( 𝑗 ) ]+𝐶
′( 𝑗 )
0

, C1

( 𝑗 ) ≔ 𝑎∗
𝑘
(𝛼 ( 𝑗 ) ), C2

( 𝑗 ) ≔

𝑔[𝛽 ′( 𝑗 )
2
] + 𝑥 · 𝑦[𝛽 ′( 𝑗 )

2
] + 𝐶

′( 𝑗 )
2

, C3

( 𝑗 ) ≔ 𝑔[𝜁 ′
2
] + 𝑥 · 𝑦[𝜁 ′

2
] = 𝑔[𝜁 ′ ] +
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𝑥 · 𝑦[𝜁 ′ ] − 𝑔[𝜁 ′
1
] + 𝑥 · 𝑦[𝜁 ′

1
] = 𝑣0,1 − rnd where rnd = dlog𝑔 𝜁

′
1
,

C4

( 𝑗 ) ≔ (𝑣0,1 − rnd∗𝑘 ) · 𝑏
∗
2,𝑘
(𝛽 ( 𝑗 )

2
), and C5

( 𝑗 ) ≔ 0.

If the event E4 occurs, we have the following overdetermined

system of linear equations

C0

( 𝑗 ) + C1

( 𝑗 ) · Ω ( 𝑗 ) + C2

( 𝑗 ) + C4

( 𝑗 ) · (𝜉 − Ω ( 𝑗 ) )
C3

( 𝑗 ) = 𝜉 ′( 𝑗 ) .

for 𝑗 = 1, 2.

Rearranging the equations yields

𝜉 =
1

C4

( 𝑗 ) · (−C3

( 𝑗 ) · (C0

( 𝑗 ) + C1

( 𝑗 ) · Ω ( 𝑗 ) − 𝜉 ′( 𝑗 ) )

−C2

( 𝑗 ) + C4

( 𝑗 ) · Ω ( 𝑗 ) ),
and thus

𝜉 ′( 𝑗 ) = (𝜉 · C4

( 𝑗 ) + (C3

( 𝑗 ) · (C0

( 𝑗 ) + C1

( 𝑗 ) · Ω ( 𝑗 ) )

+C2

( 𝑗 ) − C4

( 𝑗 ) · Ω ( 𝑗 ) ))/C3

( 𝑗 ) .

We construct two function𝐻𝑉 and𝐻𝑟𝑜𝑠 which behave as random

oracles as follows:

- 𝐻𝑉 (𝑄): If 𝑇𝑉 [𝑄] ≠ ⊥, return 𝑇𝑉 [𝑄]. Otherwise, parse
𝛼, 𝛽1, 𝛽2, rnd← 𝑄 , makeV1(𝛼, 𝛽1, 𝛽2, rnd) query to gener-
ate 𝜉 ′, store 𝑇𝑉 [𝑄] ≔ 𝜉 ′ and return 𝜉 ′.

- 𝐻𝑟𝑜𝑠 (C4

𝑗 , ®𝑎𝑢𝑥 𝑗 ): Return C3

( 𝑗 ) ·𝐻𝑉 ( ®𝑎𝑢𝑥) − (C3

( 𝑗 ) · (C0

( 𝑗 ) +
C1

( 𝑗 ) · Ω ( 𝑗 ) ) + C2

( 𝑗 ) − C4

( 𝑗 ) · Ω ( 𝑗 ) ),
where ®𝑎𝑢𝑥 𝑗 = (𝑔, ℎ,𝑦, 𝑧, {𝑎𝑘 , 𝑏1,𝑘 , 𝑏2,𝑘 , rnd𝑘 }𝑘∈[ℓ ] ).
It holds that

𝐻𝑟𝑜𝑠 (C4

(1) , ®𝑎𝑢𝑥1) = C4

(1) · 𝜉

𝐻𝑟𝑜𝑠 (C4

(2) , ®𝑎𝑢𝑥2) = C4

(2) · 𝜉 .
This is the one-dimensional ROS (i.e., ROS with ℓ = 1) problem

[33], which is information-theoretically hard and holds with a prob-

ability at most

(𝑞ℎ
2
)+1
𝑞 , where 𝑞ℎ is the number of queriesA makes

to 𝐻𝑟𝑜𝑠 . Therefore, we assume that E4 occurs with probability at

most

(𝑞ℎ
2
)+1
𝑞 . □

By the claim, we have that AdvG3 (A) ≥ AdvG2 (A) − (
𝑞ℎ
2
)+1
𝑞 .

Thus, we assume that A wins.

SimulatingG3: We simulateG3 by simulating the oracles P1,P2,V1,

and V2. While the simulation of V1 and V2 is done as in IDACL
(see fig. 4), the simulation of P1 and P2 can be done in two ways

as follows. Given a DLP challenge 𝑈 , the reduction B flips a coin

and does the following:

(1) On heads, it simulates the prover using the simulator C.2.2.

Instead of sampling 𝑦 randomly, it sets 𝑦 ≔ 𝑈 .

(2) On tails, it uses the simulator C.2.1 to simulate the prover.

Instead of sampling ℎ randomly, it sets ℎ ≔ 𝑈 .

Claim 3.7. AdvDLP (B) ≥ 1

2
· AdvG3 (A) .

Proof. Analogous to claim 3.4. Due to claim 3.1, we can write

the preliminary values as

𝜔 ′𝑗 (
−→
𝑐∗𝑗 ) ≔ 𝑦[𝛼 ( 𝑗 ) ] , 𝛿

′
𝑗 (
−→
𝑑∗𝑗 ) ≔

𝑔[𝛽 ( 𝑗 )
2
] + 𝑥 · 𝑦[𝛽 ( 𝑗 )

2
]

𝑔[𝜁2 ] + 𝑥 · 𝑦[𝜁2 ]

for the special sessions 𝑗 = 1, 2. Combinging these equations with

the fact that A wins G3 implies that the equation

𝑦[𝛼 ( 𝑗 ) ] ≠ 𝜔 𝑗 ∨ 𝑔[𝜁2 ] + 𝑥 · 𝑦[𝜁2 ] ≠ 0 ∧
𝑔[𝛽 ( 𝑗 )

2
] + 𝑥 · 𝑦[𝛽 ( 𝑗 )

2
]

𝑔[𝜁2 ] + 𝑥 · 𝑦[𝜁2 ]
≠ 𝛿 𝑗 .

holds for at least one of the special sessions 𝑗 ∈ {1, 2}}, from which

B can extract the solution to the discrete logarithm challenge.

Since B does not know for which session the argument above

holds, it attempts to extract the solution from both sessions using

the following technique. For simplicity, we omit the index 𝑗 in the

following.

B extracts the discrete logarithm of 𝑈 depending on which of

the following cases occurs (as the cases are not mutually exclusive,

the reduction follows the technique from the first matching case).

Case 1: 𝑦[𝛼 ] ≠ 𝜔 ′: Analogous to case 1 in claim 3.4.

Case 2: 𝑔[𝜁2 ] + 𝑥 · 𝑦[𝜁2 ] ≠ 0 ∧ 𝑔 [𝛽
2
]+𝑥 ·𝑦 [𝛽

2
]

𝑔 [𝜁
2
]+𝑥 ·𝑦 [𝜁

2
]
= 𝛿 : Analogous

to case 2 in claim 3.4.

The discrete logarithm can be extracted successfully if the correct

simulator is used, which happens with probability
1

2
. Thus, we can

extract the DLP solution with probability ≥ 1

2
· AdvG3 (A) . □

Thus, if the event E3 occurs, the reduction B solves the DLP
problem. More specifically, AdvDLP (B) ≥ 1

2
· AdvG3 (A) ≥ 1

2
·

AdvG2 (A) − 2·(𝑞ℎ
2
)+1

2·𝑞 = 1

2
· AdvG1 (A) − 2·(𝑞ℎ

2
)+1

2·𝑞 − 1

2·𝑞 = 1

2
·

Pr[E3] −
(𝑞ℎ

2
)+1
𝑞 . □

Overall, the reduction B works as follows: it flips two coins, the

first coin to decide which lemma between lemmas 3.3 and 3.5 to

simulate, and the second coin to decide which simulator to use.

It follows that AdvDLP (B) ≥ 1

2
· ( 1

2
· Advℓ-RTIDACL

(A) − 9

2·𝑞 +
1

2
·

Pr[E3] −
(𝑞ℎ

2
)+1
𝑞 ) = 1

2
· ( 1

2
· (Advℓ-RTIDACL

(A) + Pr[E3]) −
2·(𝑞ℎ

2
)+11

2·𝑞 ) =
1

4
· Advℓ-OMMIM

IDACL
(A) − 2·(𝑞ℎ

2
)+11

4·𝑞 . □

4 ANONYMOUS CREDENTIALS LIGHT

In this section, we study the security of the blind signature scheme

Anonymous Credentials Light (ACL) proposed by Baldimtsi and

Lysyanskaya [5]. ACL is an adaption of the blind signature of

Abe BSAbe [2], which they slightly modified to allow the user to

embed (a commitment of) its attributes in the signature. Concretely,

they extend the protocol with a registration phase, in which the

user commits to its attributes, and they change the way 𝑧1 is com-

puted. Instead of generating 𝑧1 by calling a random oracle on a

randomly-generated string rnd, it is generated as 𝑧1 ≔ 𝑔rnd · 𝐶 ,
where 𝐶 is a commitment of the user’s attributes. The user then

blinds 𝑧1 using a blinding factor 𝛾 , i.e., 𝜁1 ≔ 𝑧
𝛾

1
, and outputs 𝜁1 as

part of the signature.

For the reader’s convenience, we illustrate the scheme as an

interactive protocol in fig. 1 and give a full description of the scheme

(including the show algorithms) in appendix E.1. We provide a proof

sketch of the secure show property of ACL in appendix G.

We refer the reader to [5] for proofs of correctness and blindness

of the scheme.
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4.1 One-More Unforgeability (OMUF)
Theorem 4.1. Let G be a group of prime order 𝑞 with generator

𝑔 where DLP is (𝑡, 𝜀)-hard and such that IDACL is (𝑡, 𝜀′)-ℓ-OMMIM
secure. Then ACL is (𝑡, 𝜀′′)-one-more unforgeable in the AGM+ROM
with

𝜀′′ = 𝜀′ + 13 · 𝜀 + 22 + 3 · 𝜉 + ℓ + 1

𝑞
,

where 𝜉 is the number of registration queries the adversary makes.

Proof Overview. We split the proof into two main cases: In the

first case, the adversary participates in the registration of commit-

ments, as well as the signing sessions somewhat honestly, i.e., the

representations it outputs match which group elements an honest

user would use to generate the corresponding values. In this case,

we provide a reduction to the OMMIM security of the underlying

ID scheme. This reduction simulates the signer using the prover

oracles provided by the challenger. It simulates the hash oracle

by sending the requests to the verifier of the ID scheme. Finally,

it closes verifier sessions using the signatures it obtains from the

adversary.

The other case is that the adversary behaves dishonestly in one

of the following ways:

• It generates commitments during the registration phase us-

ing group elements that should not be used for this purpose

in honest runs of the protocol, such as using parts of the

public key in the representations of the commitments.

• It generates the value 𝜁 not as a multiplicative blinding of

the public key element 𝑧.

• It submits a representation of 𝜁1 that contains group el-

ements from the public key instead of the commitment

parameters ℎ0, . . . , ℎ𝑛 .

In each of these cases of “dishonest” behaviour, we provide a reduc-

tion that solves the discrete logarithm problem DLP.
We provide full proof in appendix E.2.

Corollary 4.2. Let G be a group of prime order 𝑞 with generator
𝑔 whereDLP is (𝑡, 𝜀)-hard. Then ACL is (𝑡, 𝜀′′)-one-more unforgeable
in the AGM+ROM with

𝜀′′ = 17 · 𝜀 + 28 + 3 · 𝜉 + ℓ + 1

𝑞

where 𝜉 is the number of registration queries the adversary makes.

Proof. Follows from theorems 3.1 and 4.1. □

4.2 Application to Abe’s Blind Signature Scheme

In this section, we provide a new modular OMUF security proof

for BSAbe. We omit the blindness proof since it is already proved

in other works [2, 42].

Theorem 4.3. If ACL is (𝑡, 𝜀)-OMUF-secure in the AGM + ROM,

then BSAbe is (𝑡, 𝜀 +
𝑞𝑆 (𝑞𝑆+𝑞H

2
)

𝑞 )-OMUF-secure in the AGM+ROM
where 𝑞𝑆 is the number of opened signing sessions and 𝑞H2

is the
number of queries made to hash oracle H2 by an adversary against
OMUF-security of BSAbe.

The proof is given in appendix F.
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Definition A.1 (Perfectly Hiding). A scheme Comm is perfectly

hiding if for all pairs of messages𝑚0,𝑚1 and all commitments 𝐶 in

the span of Commit it holds that

Pr

𝑟
[Commit(𝑚0; 𝑟 ) = 𝐶] = Pr

𝑟
[Commit(𝑚1; 𝑟 ) = 𝐶] .

Definition A.2 (Binding). Let Comm be a commitment scheme

with a committing algorithm Commit, and let A an adversary. We

define the game Bind as follows:

• Online Phase. Generate a public parameter pp, and invoke
A(𝑝𝑝).

• Output Determination. Output 1 iff A outputs two (𝑚1

, 𝑟1) and (𝑚2, 𝑟2) with𝑚1 ≠𝑚2 and𝐶 = Commit(𝑚1, 𝑟1) =
Commit(𝑚2, 𝑟2), 0 otherwise.

We define the advantage of A in winning the game Bind against

the scheme Comm as

AdvBindComm (A) ≔ Pr[BindAComm = 1] .

We say that Comm is binding if for all adversaryA, AdvBindComm (A)
is negligible.

A.1.1 The Generalized Pedersen Commitment. We recall the Gener-

alized Pedersen Commitment[47], with which a sender can commit

to multiple messages (𝑚1, . . . ,𝑚𝑛) for𝑛 ∈ Z+. The Generalized Ped-
ersen Commitment over a group G of prime order 𝑞 with generator

𝑔 is defined as follows:

• Setup. Sample random values 𝑎0, 𝑎1, . . . , 𝑎𝑛 ←$
Z𝑞 , de-

fine ℎ𝑖 ≔ 𝑔𝑎𝑖 for 𝑖 ∈ [𝑛] ∪ {0}, set and output pp ≔

(ℎ0, ℎ1, . . . , ℎ𝑛).
• Committing. To commit to messages (𝑚1, . . . ,𝑚𝑛), where
𝑚𝑖 ∈ Z𝑞 for 𝑖 ∈ [𝑛], the sender samples a random value

𝑟 ←
$
Z𝑞 , computes 𝐶 ≔ ℎ𝑟

0

∏𝑛
𝑖=1

ℎ
𝑚𝑖

𝑖
and sends 𝐶 to the

receiver.

• Opening. To open a commitment 𝐶 , the sender sends

(𝑟,𝑚1, . . . ,𝑚𝑛) to the receiver. The receiver verifies the

opening by checking 𝐶
?

= ℎ𝑟
0

∏𝑛
𝑖=1

ℎ
𝑚𝑖

𝑖

A.1.2 Proof of Knowledge of an Opening for Generalized Pedersen
Commitments. We recall the following (folklore) sigma protocol for

proving knowledge of an opening of a Generalized Pedersen com-

mitment. As above, let pp = (ℎ0, . . . , ℎ𝑛) be the public parameters.

Let (𝑚1, . . . ,𝑚𝑛) be a message vector, and let 𝑟 be the randomness

used during committing. To prove knowledge of 𝑟, (𝑚1, . . . ,𝑚𝑛),
do the following: Pick random values 𝑟0, . . . , 𝑟𝑛 ←$

Z𝑞 . The prover
sends the first message 𝑀 =

∏𝑛
𝑖=0

ℎ
𝑟𝑖
𝑖
. The verifier sends a chal-

lenge 𝑐 . The prover computes 𝑠0 = 𝑟0 − 𝑐 · 𝑟 , 𝑠𝑖 = 𝑟𝑖 − 𝑐 ·𝑚𝑖 for

𝑖 ∈ [𝑛] and outputs the last message (𝑠0, . . . , 𝑠𝑛). To verify, check

that 𝐶𝑐 ∏
𝑖 ℎ

𝑠𝑖
𝑖
= 𝑀 . It is straightforward to turn this proof into a

non-interactive one using the Fiat-Shamir heuristic [28].

B DEFERRED PROOFS FROM SECTION 3

B.1 Proof of Claim 3.1

We recall the claim

Claim 3.1. Let 𝛼, 𝛽1, 𝜁1, 𝛽2, 𝜁2 be the group elements from the spe-
cial sessions in lemma 3.3, and let 𝛼 ′, 𝛽′

1
, 𝛽′

2
, 𝜁 ′

1
, and 𝜁 ′

2
be the values

described in definition 3.4. It holds that

(1) 𝑦[𝛼 ] = 𝑦[𝛼 ′ ] +
∑𝑘
𝑖=1

𝑐∗
𝑖
· 𝑎∗

𝑖
(𝛼)

(2) ℎ [𝛽2 ] = ℎ [𝛽 ′
2
] +

∑𝑘
𝑖=1

𝑏∗
2,𝑖
(𝛽2) · 𝑑∗𝑖 · (𝑣0,1 − 𝑣∗

1,𝑖
)

(3) ℎ [𝜁2 ] = ℎ [𝜁 ′
2
] +

∑𝑘
𝑖=1

𝑏∗
2,𝑖
(𝜁2) · 𝑑∗𝑖 · (𝑣0,1 − 𝑣∗

1,𝑖
)

where 𝑘 is the number of prover sessions linked to the special session.

Proof. Since these equalities are similar, we only prove the

claim for equalities (1) and (2). For simplicity, we assume w.l.o.g.

𝑘 = 1.

(1) Per definition 3.4, we have that

𝑦[𝛼 ′ ] = 𝑦[𝛼 ] − 𝑦[𝑎∗
1
] · 𝑎∗1 (𝛼),

and since 𝑎∗
1
= 𝑔𝑟

∗
1 · 𝑦𝑐∗1 , we have

𝑦[𝛼 ′ ] = 𝑦[𝛼 ] − 𝑐∗1 · 𝑎∗1 (𝛼) = 𝑦[𝛼 ] −
𝑘∑︁
𝑖=1

𝑐∗𝑖 · 𝑎∗𝑖 (𝛼) .

Thus, we have that

𝑦[𝛼 ′ ] +
𝑘∑︁
𝑖=1

𝑐∗𝑖 · 𝑎∗𝑖 (𝛼) = 𝑦[𝛼 ] −
𝑘∑︁
𝑖=1

𝑐∗𝑖 · 𝑎∗𝑖 (𝛼) +
𝑘∑︁
𝑖=1

𝑐∗𝑖 · 𝑎∗𝑖 (𝛼) = 𝑦[𝛼 ] .

(2) Per definition 3.4, we have that

ℎ [𝛽 ′
1
] = ℎ [𝛽1 ] − ℎ [𝑏∗

2,1
] · 𝑏∗2,1 (𝛽1),

and since 𝑏∗
2,1

= ℎ
𝑢∗

2,1 = ℎ𝑟
∗
1 ·𝑧𝑐

∗
1

2
= ℎ

𝑠∗
1,2+𝑣0,2 ·𝑑∗

1 ·𝑔𝑑
∗
1
· (𝑣0,1−𝑣∗

1,1 ) ,
we have

ℎ [𝑏∗
2,1
] = 𝑠∗

1,2 + 𝑣0,2 · 𝑑∗1 = 𝑢∗
2,1 − 𝑑

∗
1
· (𝑣0,1 − 𝑣∗1,1),

and

ℎ [𝛽 ′ ] +
𝑘∑︁
𝑖=1

𝑏∗
2,𝑖
(𝛽1) · (𝑢∗2,𝑖 − 𝑑

∗
𝑖 · (𝑣0,1 − 𝑣∗1,𝑖 ))

ℎ [𝛽 ′ ] + 𝑏∗2,1 (𝛽1) · (𝑢∗2,1 − 𝑑
∗
1
· (𝑣0,1 − 𝑣∗1,1)) = ℎ [𝛽1 ] .

(3) the correctness of the equalities (3), (4), and (5) can be

proven analogously.

□

B.2 Proof of Claim 3.3

Claim 3.3. Pr[E2] ≤ 8

𝑞 .

Proof. AssumeA links the special session to 𝑘 prover sessions,

thus we have that

−→
𝑐∗ = (𝑐∗

1
, . . . , 𝑐∗

𝑘
) and

−→
𝑑∗ = (𝑑∗

1
, . . . , 𝑑∗

𝑘
). We

order these prover sessions by the time they are opened. To further

simplify the proof, we computeA’s advantage before it terminates

and while the 𝑘𝑡ℎ linked prover session is still open. If A wants

to close any of the first 𝑘 − 1 prover sessions, we assume that it

has already closed these sessions. Consequently, the field elements

𝑐∗ and 𝑑∗ of the first 𝑘 − 1 prover sessions linked to the special

session (𝑐∗
1
, . . . , 𝑐∗

𝑘−1
) and (𝑑∗

1
, . . . , 𝑑∗

𝑘−1
) are constants. Therefore,

we can rewrite the preliminary values as follows: we first define the

constants 𝐶′
0
=

∑𝑘−1

𝑖=1
𝑐∗
𝑖
·𝑎∗
𝑖
(𝛼),𝐶′

3
=

∑𝑘−1

𝑖=1
𝑏∗

2,𝑖
(𝛽2)·𝑑∗𝑖 ·(𝑣0,1−rnd∗𝑖 ),

and write

𝜔 ′ (
−→
𝑐∗) = 𝑦[𝛼 ′ ] +𝐶′0 + 𝑐

∗
𝑘
· 𝑎∗

𝑘
,

𝛿 ′′ (
−→
𝑑∗) =

𝑔[𝛽 ′
2
] + 𝑥 · 𝑦[𝛽 ′

2
] +𝐶′3 + 𝑏

∗
2,𝑘
(𝛽2) · 𝑑∗𝑘 · (𝑣0,1 − rnd∗𝑘 )

𝑔[𝜁 ′
2
] + 𝑥 · 𝑦[𝜁 ′

2
]

.
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Recall that in order to provoke E2, A has to ensure that 𝜔 ′ (
−→
𝑐∗) +

𝛿 ′′ (
−→
𝑑∗) = 𝜀.

We want to apply claim D.1 where E2 is equivalent to Ex with
the following assignments of variables X ≔ 𝜔 ′,Y ≔ 𝛿 ′′, 𝜉 ≔

𝜀𝑘 , 𝜉
′ ≔ 𝜀𝑘 ,Δ ≔ 𝑑∗

𝑘
,Ω ≔ 𝑐∗

𝑘
, C0 ≔ 𝑦[𝛼 ′ ] + 𝐶′0, C1 ≔ 𝑎∗

𝑘
(𝛼), C2 ≔

𝑔[𝛽 ′
2
] + 𝑥 · 𝑦[𝛽 ′

2
] + 𝐶′3, C3 ≔ 𝑔[𝜁 ′

2
] + 𝑥 · 𝑦[𝜁 ′

2
] = 𝑔[𝜁 ′ ] + 𝑥 · 𝑦[𝜁 ′ ] −

𝑔[𝜁 ′
1
] + 𝑥 · 𝑦[𝜁 ′

1
] = 𝑣0,1 − rnd where rnd = dlog𝑔 𝜁

′
1
, C4 ≔ (𝑣0,1 −

rnd
∗
𝑘
) · 𝑏∗

2,𝑘
(𝛽2), and C5 ≔ 0.

As C5 = 0, we need to show that C4/C3 ≠ C1. To this end,

consider the following cases:

(1) 𝑏∗
2,𝑘
(𝛽2) = 𝑎∗

𝑘
(𝛼) : In this case, we would get 𝑣0,1 − rnd∗𝑘 =

𝑣0,1 − rnd, . This, however, violates “freshness” of the tag
𝜁1, because 𝜁1 = 𝑧

1,𝑘∗ (except with probability
1

𝑞 per the

randomness of 𝑣0,1).

(2) otherwise, we obtain 𝑣0,1 =
𝑏∗

2,𝑘
(𝛽2 ) ·rnd𝑘∗−𝑎∗𝑘 (𝛼 ) ·rnd
𝑏∗

2,𝑘
(𝛽2 )−𝑎∗𝑘 (𝛼 )

which

occurs with probability
1

𝑞 as 𝑣0,1 is chosen uniformly at

random and is information-theoretically hidden from the

adversary.

Thus, by claim D.1, this occurs with a probability of at most
8

𝑞 . □

C SIMULATORS

The underlying idea of both schemes BSACL and IDACL uses the

OR-Proof technique [23]. In BSACL, the signer can be simulated in

two ways. The signer can either use its knowledge of the discrete

logarithm of 𝑦 (the y-side witness) to run the protocol or its knowl-

edge of the discrete logarithm of ℎ, 𝑧, and 𝑧1 (the z-side witness).

Similarly, the prover in IDACL can either be simulated using the

knowledge of the discrete logarithm of 𝑦 or the knowledge of the

discrete logarithm of ℎ, 𝑧, and 𝑧1. We exploit this fact in our proof

to embed the discrete logarithm instance 𝑈 in one witness and

sample the other witness with a known discrete logarithm. Using

the witness with the known discrete logarithm, we simulate the

protocol. This enables us to extract the discrete logarithm of the

witness, in which 𝑈 is embedded, hence computing the discrete

logarithm of𝑈 and winning theDLP game. For a groupG of order 𝑞

and a generator 𝑔, we describe in the following the y-side simulator

and z-side simulator for both schemes BSACL and IDACL.

C.1 Simulators for BSACL
C.1.1 The y-side Simulator for BSACL.

• Initialization. Sample 𝑥 ←
$
Z𝑞 and 𝑧, ℎ ←

$
G, com-

pute 𝑦 ≔ 𝑔𝑥 and set 𝑝𝑘 ≔ (𝑔, ℎ,𝑦, 𝑧), 𝑠𝑘 ≔ 𝑥 . Sample

𝑤0, . . . ,𝑤𝑛 ←$
Z𝑞 . Set 𝐻pp (𝑖) = ℎ𝑖 = 𝑔𝑤𝑖

.

• Online Phase. The simulator simulates Registration, S1

and S2 as follows:

– Registration: On input of𝐶 , 𝜋 , check that 𝜋 is a valid

proof of knowledge and then save 𝐶 in a list of regis-

tered commitments.

– S1 (𝐶): Check that 𝐶 was previously registered. Sam-

ple a fresh session identifier sid, a random rndsid ←$

Z𝑞 , and field elements 𝑢sid, 𝑑sid, 𝑠1,sid, 𝑠2,sid ←$
Z𝑞 ,

generate 𝑧
1,sid ≔ 𝐶𝑔rndsid , compute 𝑧

2,sid ≔ 𝑧/𝑧
1,sid,

𝑎sid ≔ 𝑔𝑢sid , 𝑏
1,sid ≔ 𝑔𝑠1,sid · 𝑧𝑑sid

1
, 𝑏

2,sid ≔ ℎ𝑠2,sid · 𝑧𝑑sid
2

,

and return 𝑎sid, 𝑏1,sid, 𝑏2,sid, rndsid.

– S2 (sid, 𝑒sid): compute 𝑐sid ≔ 𝑒sid − 𝑑sid, 𝑟sid ≔ 𝑢sid −
𝑐sid · 𝑥 , and return 𝑐sid, 𝑑sid, 𝑟sid, 𝑠1,sid, 𝑠2,sid.

• Finalization. To fix the values 𝑐sid, 𝑟sid for sessions that

have not been closed by the adversary, the simulator choo-

ses values 𝑒sid ←$
Z𝑞 for these sessions and runs S2 (sid,

𝑒sid) for these unclosed sessions.

C.1.2 The z-side Simulator for BSACL.
• Initialization. Sample 𝑤 ←

$
Z𝑞 and 𝑦 ←

$
G, compute

ℎ ≔ 𝑔𝑤 , 𝑧 ≔ H1 (G, 𝑔, 𝑞, 𝑦,ℎ), and set 𝑝𝑘 ≔ (𝑔, ℎ,𝑦, 𝑧),
𝑠𝑘 ≔ 𝑤 .

Sample𝑤0, . . . ,𝑤𝑛 ←$
Z𝑞 . Set 𝐻pp (𝑖) = ℎ𝑖 = 𝑔𝑤𝑖

.

• Online Phase. The simulator simulates Registration, S1

and S2 as follows:

– Registration: On input of𝐶 , 𝜋 , check that 𝜋 is a valid

proof of knowledge. Compute dlog𝑔𝐶 from the repre-

sentation submitted in the proof hash query.
1

– S1 (𝐶): Check that𝐶 was previously registered. Gener-

ate a fresh session identifier sid, sample rndsid ←$
Z𝑞

and 𝑐sid, 𝑟sid, 𝑢1,sid, 𝑢2,sid ←$
Z𝑞 , compute 𝑧

1,sid ≔

𝐶rndsid , 𝑧
2,sid ≔ 𝑧/𝑧

1,sid, 𝑎sid ≔ 𝑔𝑟sid · 𝑦𝑐sid , 𝑏
1,sid ≔

𝑔𝑢1,sid , 𝑏
2,sid ≔ ℎ𝑢2,sid , define 𝑑sid ≔ 0, 𝑠

1,sid ≔ 𝑢
1,sid,

𝑠
2,sid ≔ 𝑢

2,sid and return 𝑎sid, 𝑏1,sid, 𝑏2,sid, rndsid.

– S2 (sid, 𝑒sid): compute 𝑠
1,sid ≔ 𝑢

1,sid−𝑑sid · 𝑣1,sid, 𝑠2,sid
≔ 𝑢

2,sid − 𝑑sid · 𝑤2,sid, and 𝑑sid ≔ 𝑒sid − 𝑐sid, where
𝑣

1,sid ≔ dlog𝑔 𝑧1,sid = dlog𝑔𝐶 + rndsid , and 𝑤
2,sid ≔

dlog𝑔 𝑧−dlog𝑔 𝑧1,sid

𝑤 , and return 𝑐sid, 𝑑sid, 𝑟sid, 𝑠1,sid, 𝑠2,sid.

• Finalization.To fix the𝑑sid, 𝑠1,sid, 𝑠2,sid for sessions that are

not closed by the adversary, the simulator chooses values

𝑒sid ←$
Z𝑞 for these sessions and runs S2 (sid, 𝑒sid) for

these unclosed sessions.

C.2 Simulators for IDACL

C.2.1 The y-side Simulator for IDACL.
• Initialization. Sample 𝑥, 𝑣0,1, 𝑣0,2 ←$

Z𝑞 and ℎ ←
$
G,

compute 𝑦 ≔ 𝑔𝑥 , 𝑧 ≔ 𝑔𝑣0,1 · ℎ𝑣0,2
, and set 𝑝𝑘 ≔ (𝑔, ℎ,

𝑦, 𝑧), 𝑠𝑘 ≔ 𝑥 .

• Online Phase. The simulator simulates both P1 and P2 as

follows:

– P1 (): sample a fresh session identifier sid and field

elements 𝑢sid, 𝑑sid, 𝑠1,sid, 𝑠2,sid, rndsid ←$
Z𝑞 , compute

𝑧
1,sid ≔ 𝑔rndsid , 𝑧

2,sid ≔ 𝑧/𝑧
1,sid, 𝑎sid ≔ 𝑔𝑢sid ,𝑏

1,sid ≔

𝑔𝑠1,sid · 𝑧𝑑sid
1

,𝑏
2,sid ≔ ℎ𝑠2,sid · 𝑧𝑑sid

2
, and return 𝑎sid, 𝑏1,sid

, 𝑏
2,sid, rndsid.

– P2 (sid, 𝜀sid): compute 𝑐sid ≔ 𝜀sid − 𝑑sid and 𝑟sid ≔

𝑢sid − 𝑐sid · 𝑥 , and return 𝑐sid, 𝑑sid, 𝑟sid, 𝑠1,sid, 𝑠2,sid.

• Finalization. To fix the values 𝑐sid, 𝑟sid for sessions that

have not been closed by the adversary, the simulator choo-

ses values 𝑒sid ←$
Z𝑞 for these sessions and runs P2 (sid,

𝜀sid) for these unclosed sessions.

1
This only works once we rule out the usage of group elements with unknown discrete

logarithms or if all discrete logarithms are known to the simulator.
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C.2.2 The z-side Simulator for IDACL.
• Initialization. Samples 𝑤, 𝑣0,1, 𝑣0,2 ←$

Z𝑞 and 𝑦 ←
$
G,

compute ℎ ≔ 𝑔𝑤 , 𝑧 ≔ 𝑔𝑣0,1 · ℎ𝑣0,2
. Additionally, it sets 𝑝𝑘 ≔

(𝑔, ℎ,𝑦, 𝑧), and 𝑠𝑘 ≔ 𝑤 .

• Online Phase. It simulates P1 and P2 as follows:

P1 (): generate a fresh session identifier sid, sample

𝑐sid, 𝑟sid, 𝑢1,sid, 𝑢2,sid, rndsid ←$
Z𝑞 , compute 𝑧

1,sid ≔

𝑔rndsid , 𝑧
2,sid ≔ 𝑧/𝑧

1,sid, 𝑎sid ≔ 𝑔𝑟sid · 𝑦𝑐sid , 𝑏
1,sid ≔

𝑔𝑢1,sid , 𝑏
2,sid ≔ ℎ𝑢2,sid , and return𝑎sid, 𝑏1,sid, 𝑏2,sid, rndsid.

P2 (sid, 𝜀sid): compute 𝑠
1,sid ≔ 𝑢

1,sid − 𝑑sid · rndsid,
𝑠
2,sid ≔ 𝑢

2,sid− 𝑑sid · 𝑤2,sid, and 𝑑sid ≔ 𝜀sid− 𝑐sid,

where 𝑤
2,sid ≔

𝑣0−rndsid
𝑤 , and 𝑣0 ≔ dlog𝑔 𝑧, and re-

turn 𝑐sid, 𝑑sid,𝑟sid, 𝑠1,sid, 𝑠2,sid.

• Finalization.To fix the𝑑sid, 𝑠1,sid, 𝑠2,sid for sessions that are

not closed by the adversary, the simulator chooses values

𝑒sid ←$
Z𝑞 for these sessions and runs S2 (sid, 𝑒sid) for

these unclosed sessions.

D HELPFUL TECHNICAL CLAIMS

We prove some helpful technical claims. First, we define a generic

type of event that can occur in multiple places throughout our

proofs.

Definition D.1 (Template Proof). Let X: Z𝑞 → Z𝑞 and Y: Z𝑞 →
Z𝑞 be two functions defined as

X(Ω) ≔ C0 + C1 · Ω, Y(Δ) ≔
C2 + C4 · Δ
C3 + C5 · Δ

,

where the values C𝑖 for 𝑖 ∈ {0, . . . , 5} are constants. Furthermore,

define 𝜉, 𝜉 ′ ∈ Z𝑞 such that the following conditions hold:

(1) The values C𝑖 for 𝑖 ∈ {0, . . . , 5} get fixed first, then, the

value 𝜉 ′ gets sampled uniformly at random from Z𝑞 . Then
𝜉 gets fixed, and then one of the values Ω and Δ is sampled

uniformly at random, while the other value is chosen such

that Ω + Δ = 𝜉 .

(2) (C3 ≠ 0 ∧ C4/C3 ≠ C1) ∨ C5 ≠ 0.

We define the event Ex as X(Ω) + Y(Δ) = 𝜉 ′.

We bound the generalized event with the following claim.

Claim D.1. Pr[Ex] ≤ 6

𝑞 .

Proof. If Ex occurs, it must hold that

X(Ω) + Y(Δ) = 𝜉 ′ . (6)

We distinguish two cases of the condition (1) depending on which of

the values Ω and Δ is chosen uniformly at random. However, these

cases are analogous; therefore, we only prove the claim assuming

that Ω is random. By substituting X and Y in equation 6, we get

C0 + C1 · Ω +
C2 + C4 · Δ
C3 + C5 · Δ

= 𝜉 ′ .

Per condition (2), the denominator C3 + C5 ·Δ is non-zero except

with a probility at most
1

𝑞 due to the randomness of Δ. Thus, we

assume in the following that C3 + C5 · Δ ≠ 0.

Next, we make the following case distinction.

(1) C1 = 0. In this case, the event Ex occurs iff (C0 · C5 + C4 −
𝜉 ′ · C5) · Δ − 𝜉 ′ · C3 + C2 + C0 · C3 = 0. As C0,...,5 and 𝜉 ′ are
fixed before Δ, we construct the polynomial

𝑃 (𝑋 ) ≔ (C0 · C5 + C4 − 𝜉 ′ · C5) · 𝑋 − 𝜉 ′ · C3 + C2 + C0 · C3 . (7)

We distinguish two sub-cases: the first case is that the poly-

nomial 𝑃 is the zero polynomial. This requires both terms

C0 ·C5+C4−𝜉 ′ ·C5 and 𝜉
′ ·C3+C2+C0 ·C3 to be zero. However,

due to condition (2), either C3 ≠ 0 or C5 ≠ 0. Consequently,

𝜉 ′ occurs in at least one of these terms, and since 𝜉 ′ is uni-
formly random, the probability that both terms are 0 is at

most
1

𝑞 . The other case is that 𝑃 is a non-zero polynomial.

Since Δ gets sampled uniformly at random (Δ = 𝜉 − Ω, and
Ω is uniformly random), the probability of 𝑃 (Δ) = 0 holds

is at most
1

𝑞 per the Schwartz-Zippel lemma. Consequently,

the probability that Ex occurs while C1 = 0 is at most
2

𝑞 .

We therefore assume in the following that C1 ≠ 0.

(2) C1 ≠ 0 ∧ C5 = 0. As Δ = 𝜉 − Ω, we have

C0 + C1 · Ω +
C2 + C4 · (𝜉 − Ω)

C3

= 𝜉 ′ .

In this case, we can simplify the event to the linear equation

(C1 − C4/C3) · Ω + C0 + C2/C3 + C4/C3 · 𝜉 = 𝜉 ′. Since Ω is

the value that is fixed last in this equation, we construct

the polynomial

𝑃 (𝑋 ) ≔ (C1 − C4/C3) · 𝑋 + C0 + C2/C3 + C4/C3 · 𝜉 − 𝜉 ′ .
Recall that condition (2) requires that in case C5 = 0, C1 −
C4/C3 ≠ 0 holds; therefore, the polynomial 𝑃 cannot be

the zero polynomial. Since 𝑃 is non-zero, and Ω is sampled

uniformly at random, the probability that 𝑃 (Ω) = 0 is at

most
1

𝑞 per the Schwartz-Zippel lemma. Thus, the event Ex
occurs with a probability at most

1

𝑞 if C5 = 0.

(3) C1, C5 ≠ 0. We construct the polynomial

𝑃 (𝑋 ) ≔ V1 · 𝑋 2 + V2 · 𝑋 + V3,

whereV1 = −C1 · C5,V2 = C1 · (C3+C5 ·𝜉) −C4−C5 · (C0−
𝜉 ′), V3 = (C0−𝜉 ′) · (C3+C5 ·𝜉)+C2+C4 ·𝜉 . Since C1 ≠ 0 and

C5 ≠ 0, it follows V1 ≠ 0, and thus, 𝑃 cannot be the zero

polynomial. Consequently, since 𝑃 is not a zero-polynomial,

and Ω is sampled uniformly at random, 𝑃 (Ω) = 0 holds

with probability
2

𝑞 per the Schwartz-Zippel lemma.

In summary, this yields that Ex occurs with probability at most

6

𝑞 . □

The following claims are helpful for extracting the discrete loga-

rithms using the representations along withV2 queries/signatures.

Claim D.2. Define V1 ≔ 𝐴 +𝜓 · 𝐵 and V2 ≔ 𝐶 +𝜓 · 𝐷 , where
V1,V2, and𝜓 are unknown while 𝐴, 𝐵,𝐶, and 𝐷 are known con-
stants. IfV1 = V2 and 𝐵 ≠ 𝐷 , the value𝜓 can be recovered.

Proof. As V1=V2, we have that 𝜓 = 𝐴−𝐶
𝐷−𝐵 . As 𝐷 ≠ 𝐵, the

equation is solvable, and𝜓 can be recovered. □

Claim D.3. Define V1 ≔ 𝜓 · 𝐴 + 𝐵 · (𝐶 + 𝜓 · 𝐷) and V2 ≔

𝐸 +𝜓 · 𝐹 , where 𝐴, . . . , 𝐹 are known constants, whileV1,V2, and𝜓
are unknown. If the conditionV1 = V2 ∧𝐶 ≠ 0 ∧ 𝐵 ≠ 𝐸

𝐶
holds, the

value𝜓 can be recovered.
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Proof. AsV1=V2, we have that

𝜓 · (𝐴 + 𝐵 · 𝐷 − 𝐹 ) = 𝐸 − 𝐵 ·𝐶, (8)

and thus

𝜓 =
𝐸 − 𝐵 ·𝐶

𝐴 + 𝐵 · 𝐷 − 𝐹 . (9)

This equation is defined iff 𝐴 + 𝐵 · 𝐷 − 𝐹 ≠ 0.

We rearrange equation (8) as

𝜓 · (𝐴 + 𝐵 · 𝐷 − 𝐹 ) = 𝐶 · ( 𝐸
𝐶
− 𝐵) .

Since 𝐶 ≠ 0 and
𝐸
𝐶

≠ 𝐵, it follows that 𝐶 · ( 𝐸
𝐶
− 𝐵) ≠ 0, and thus,

(𝐴 + 𝐵 · 𝐷 − 𝐹 ) ≠ 0. We conclude that equation (9) is defined and

the value𝜓 can be recovered. □

ClaimD.4. DefineV1 := 𝐴+𝐵 ·(𝐶+𝜓 ·𝐷) andV2 := 𝐸+𝜓 ·𝐹 , where
𝐴, . . . , 𝐹 are known constants, whileV1,V2, and𝜓 are unknown. If
the conditionV1 = V2 ∧ 𝐷 ≠ 0 ∧ 𝐵 ≠ 𝐹

𝐷
holds, the value 𝜓 can be

recovered.

Proof. AsV1=V2, we have that

𝜓 · (𝐵 · 𝐷 − 𝐹 ) = 𝐸 −𝐴 − 𝐵 ·𝐶, (10)

and thus

𝜓 =
𝐸 −𝐴 − 𝐵 ·𝐶
𝐵 · 𝐷 − 𝐹 . (11)

It remains to show that 𝐵 · 𝐷 − 𝐹 ≠ 0 to ensure that equation

(11) is defined. We rewrite 𝐵 · 𝐷 − 𝐹 as 𝐷 · (𝐵 − 𝐹
𝐷
). Since 𝐷 ≠ 0

and 𝐵 ≠ 𝐹
𝐷
, it follows that 𝐷 · (𝐵 − 𝐹

𝐷
) ≠ 0, and thus, 𝐵 · 𝐷 − 𝐹 ≠ 0

and equation (11) is defined and solvable for𝜓 . □

E ANONYMOUS CREDENTIALS LIGHT

E.1 Construction

For hash functions 𝐻pp, H1, and H3 modeled as random oracles,

and a public parameter pp := (G, 𝑔, 𝑞), the scheme ACL = (G, R, S,
U,V) is defined as follows:

• G(𝑝𝑝): Parse pp to extract (G, 𝑔, 𝑞), sample 𝑥 ←
$
Z𝑞, ℎ ←$

G, compute 𝑦 ≔ 𝑔𝑥 , 𝑧 ≔ H1 (𝑔, ℎ,𝑦), set sk ≔ 𝑥 and pk ≔

(𝑔, ℎ,𝑦, 𝑧), and output a pair (pk, sk).
• RU (pk, pp,

−→
𝐿 , 𝑅): Parse −→𝐿 as 𝐿1, . . . , 𝐿𝑛 and 𝑝𝑝 as (G, 𝑔, 𝑞)

obtain ℎ0, . . . , ℎ𝑛 by querying 0, . . . , 𝑛 to𝐻pp, compute𝐶 ≔

ℎ𝑅
0
· ℎ𝐿1

1
· . . . · ℎ𝐿𝑛𝑛 , send 𝐶 . Compute proof of knowledge 𝜋

of an opening of 𝐶 . Output 𝐶, 𝜋, 𝑠𝑡𝑟 = 𝑅.

• RS (sk,𝐶, 𝜋): Verify that 𝜋 is a proof of knowledge of an

opening of 𝐶 . Output Accept if yes, Reject otherwise.

• S: The signer algorithm. It consists of S1 and S2:

– S1 (sk,𝐶): Sample 𝑑, 𝑠1, 𝑠2, 𝑢, rnd ←$
Z𝑞 , generate 𝑧1

≔ 𝑔rnd𝐶, 𝑧2 ≔ 𝑧/𝑧1, compute 𝑎 ≔ 𝑔𝑢 , 𝑏1 ≔ 𝑔𝑠1 · 𝑧𝑑
1
,

𝑏2 ≔ ℎ𝑠2 · 𝑧𝑑
2
, set 𝑠𝑡𝑠 ≔ (𝑑, 𝑠1, 𝑠2, 𝑢), 𝑅 ≔ (rnd, 𝑎, 𝑏1

, 𝑏2), and output (𝑅, 𝑠𝑡𝑠 ).
– S2 (sk, 𝑠𝑡𝑠 , 𝑅, 𝑒): Set 𝑑, 𝑠1, 𝑠2, 𝑢 ≔ 𝑠𝑡𝑠 , 𝑥 ≔ 𝑠𝑘 , compute

𝑐 ≔ 𝑒 −𝑑 mod 𝑞 and 𝑟 ≔ 𝑢 −𝑐 ·𝑥 mod 𝑞, and return

𝑆 ≔ (𝑐, 𝑑, 𝑟, 𝑠1, 𝑠2).
• U: The user algorithm consists of two algorithmsU1 and

U2:

– U1 (pk, 𝑅,𝑚,𝐶): Parse (rnd, 𝑎, 𝑏1, 𝑏2) ≔ 𝑅, sample 𝛾

←
$
Z∗𝑞, 𝜏, 𝑡1, 𝑡2, 𝑡3, 𝑡4, 𝑡5 ←$

Z𝑞 , generate 𝑧1 ≔ 𝑔rnd ·𝐶,
𝜁 ≔ 𝑧𝛾 , 𝜁1 ≔ 𝑧

𝛾

1
, 𝜁2 ≔ 𝜁 /𝜁1, compute 𝛼 ≔ 𝑎 · 𝑔𝑡1 ·

𝑦𝑡2 , 𝛽1 ≔ 𝑏
𝛾

1
·𝑔𝑡3 ·𝜁 𝑡4

1
, 𝛽2 ≔ 𝑏

𝛾

2
·ℎ𝑡5 ·𝜁 𝑡4

2
, 𝜂 ≔ 𝑧𝜏 , generate

𝜀 ≔ H3 (𝜁 , 𝜁1, 𝛼 ,𝛽1, 𝛽2, 𝜂,𝑚), compute 𝑒 ≔ 𝜀 − 𝑡2 − 𝑡4
mod 𝑞, set 𝑠𝑡𝑢 ≔ (𝛾, 𝜏, 𝑡1, 𝑡2, 𝑡3, 𝑡4, 𝑡5, rnd), and return

(𝑒, 𝑠𝑡𝑢 ).
– U2 (pk, 𝑠𝑡𝑢 , 𝑅, 𝑒, 𝑆,𝑚): Parse 𝑠𝑡𝑢 , and 𝑆 to extract (𝛾,

𝜏, 𝑡1, 𝑡2, 𝑡3, 𝑡4, 𝑡5), and (𝑐, 𝑑, 𝑟, 𝑠1, 𝑠2, rnd1, rnd2). Compu-

te 𝜌 ≔ 𝑟 + 𝑡1, 𝜔 ≔ 𝑐 + 𝑡2, 𝜎1 ≔ 𝛾 · 𝑠1 + 𝑡3,𝜎2 ≔ 𝛾 · 𝑠2 +
𝑡5, 𝛿 ≔ 𝑑 + 𝑡4, 𝜇 ≔ 𝜏 − 𝛿 · 𝛾 , and return the signature

�̂� ≔ (𝜁 , 𝜁1, 𝜌, 𝜔 , 𝜎1, 𝜎2, 𝛿, 𝜇) if 𝜔 + 𝛿 ≡ H3 (𝜁 , 𝜁1, 𝑔
𝜌 ·

𝑦𝜔 ,𝑔𝜎1 · 𝜁𝛿
1
, ℎ · 𝜁𝛿

2
, 𝑧𝜇 · 𝜁𝛿 ,𝑚), ⊥ otherwise. Output

𝑟 = (𝛾, rnd).
• V(pk,𝑚, �̂�): Parse �̂� as (𝜁 , 𝜁1, 𝜌, 𝜔, 𝜎1, 𝜎2, 𝛿, 𝜇), and output 1

if 𝜁 . 1 and𝜔 +𝛿 ≡ H3 (𝜁 , 𝜁1, 𝑔
𝜌 ·𝑦𝜔 ,𝑔𝜎1 ·𝜁𝛿

1
, ℎ · (𝜁 /𝜁1)𝛿 , 𝑧𝜇 ·

𝜁𝛿 ), 0 otherwise.
• SH𝑈 (pk, 𝜎, ®𝐿, 𝑟, 𝑠𝑡𝑟 , ®𝐿′): Parse 𝑟 = (𝛾, rnd) and 𝜎 = (𝜁 , 𝜁1,

𝜌, 𝜔 , 𝜎1, 𝜎2, 𝛿, 𝜇). Compute Γ = 𝑔𝛾 , ℎ′
𝑖
= ℎ

𝛾

𝑖
for 𝑖 ∈ [𝑛], and

set
®ℎ′ ≔ (ℎ′

0
, . . . , ℎ′𝑛). Compute 𝜋𝑠𝑑𝑙 as a proof of same

discrete logarithm that shows that dlog𝑧 𝜁 = dlog𝑔 Γ =

dlogℎ0

ℎ′
0
= . . . = dlogℎ𝑛

ℎ′𝑛 . Compute the partial commit-

ment 𝜁 ′
1
= 𝜁1/®ℎ′®𝐿

′
. Using 𝑠𝑡𝑟 = 𝑅, and 𝛾 , compute 𝜋𝑜𝑝 as a

proof of knowledge of an opening of 𝜁 ′
1
w.r.t. rnd and the

parameters in
®ℎ′ that correspond to attributes not in ®𝐿′.

Output 𝜋 ≔ (Γ, ®ℎ′, 𝜋𝑠𝑑𝑙 , 𝜋𝑜𝑝 )
• SH𝑉 (pk, 𝜎, ®𝐿′, 𝜋): Parse 𝜎 = (𝜁 , 𝜁1, 𝜌, 𝜔, 𝜎1, 𝜎2, 𝛿, 𝜇) , 𝜋 =

(Γ, ®ℎ′, 𝜋𝑠𝑑𝑙 , 𝜋𝑜𝑝 ), and ®ℎ′ = (ℎ′0, . . . , ℎ
′
𝑛). Check that 𝜋𝑠𝑑𝑙 is a

valid proof of the same discrete logarithm that proves that

dlog𝑧 𝜁 = dlogℎ0

ℎ′
0
= . . . = dlogℎ𝑛

ℎ′𝑛 . Compute the partial

commitment 𝜁 ′
1
= 𝜁1/®ℎ′®𝐿 . Verify that 𝜋𝑜𝑝 is a valid proof of

knowledge of an opening of 𝜁 ′
1
w.r.t. the parameters in

®ℎ′

that correspond to attributes, not in ®𝐿′.

E.2 Proof of Theorem 4.1

We recall the theorem:

Theorem 4.1. Let G be a group of prime order 𝑞 with generator
𝑔 where DLP is (𝑡, 𝜀)-hard and such that IDACL is (𝑡, 𝜀′)-ℓ-OMMIM
secure. Then ACL is (𝑡, 𝜀′′)-one-more unforgeable in the AGM+ROM
with

𝜀′′ = 𝜀′ + 13 · 𝜀 + 22 + 3 · 𝜉 + ℓ + 1

𝑞
,

where 𝜉 is the number of registration queries the adversary makes.

Proof. Before we start with the proof, we give a high-level

overview of the proof and introduce simplifying notation.

Proof Sketch. The ultimate goal of this proof is to provide a re-

duction that transforms an adversary A against ℓ-OMUFACL into
an adversary B10 against ℓ-OMMIMIDACL . However, the reduction

we provide requires multiple restrictions on the representations

of the group elements output by A during its interaction with the

game ℓ-OMUF. Therefore, before introducing our reduction, we

start by showing thatA must adhere to these restrictions via game

hop. First, in gamesG[1−7] we abort ifA uses group elements from

the public key of the ℓ-OMUF challenger to compute its commit-

ments 𝐶 during the registration phase explicitly (e.g., by using 𝑦

to compute 𝐶) or implicitly (e.g., by using a nonce 𝑎 = 𝑔𝑟 · 𝑦𝑐 to



Concurrent Security of Anonymous Credentials Light, Revisited

compute 𝐶). We proceed in games G[8−9] to ensure that the group

element 𝜁 in the RO queries (that are used later in the signatures)

is computed honestly, i.e., its representation only consists of a 𝑧

component, and abort otherwise. Finally, in game G10 we abort if
𝜁1 in the RO queries (that are used later in the signatures) was not

computed honestly, i.e. as 𝑔rnd ·𝐶 , where rnd is a nonce received
from S1 query.

Assumptions and Simplifying Notations. We denote the number

of opened signing sessions by 𝜅 . For the games G1 to G10 we make

the following simplifying assumption: Once the adversary has sub-

mitted its message-signature pairs, the game generates values 𝑒𝑖 (by

hashing the commitments without blinding along with randomly

chosenmessages) for all sessions that have not been closed andman-

ually closes them using 𝑒𝑖 (this also implicitly generates signatures

for these sessions). Consequently, the values 𝑒𝑖 , 𝑐𝑖 , 𝑑𝑖 , 𝑟𝑖 , 𝑠1,𝑖 , 𝑠2,𝑖 are

well-defined for each signer session, even if the adversary never

closed the session. We now turn to the proof.

Game G1. This is the OMUF game for ACL.

Game G2. This game aborts depending on the representations

the adversary A submits for the commitments 𝐶 . Let 𝜅 be the

number of signing sessions the adversary opens. Let 𝜉 be the number

of commitments 𝐶 the adversary registers.

Namely, we consider the occurrence of the group elements 𝑦, 𝑎𝑖
for 𝑖 ∈ 1, . . . , 𝜅 in the representation of 𝐶 𝑗 where 𝐶 𝑗 is the commit-

ment 𝐶 registered in the 𝑗th call to the registration oracle. For any

session 𝑘 that is never closed by the adversary, after the end of the

game, sample a random value 𝑐𝑘 . Define 𝑟𝑘 ≔ 𝑢𝑘 − 𝑐𝑘 · 𝑥 .
For any group element 𝑜1 in the input of the adversary, and any

group element 𝑜2 in its output, we denote by 𝑜1 (𝑜2) the exponent
of 𝑜1 in the representation of 𝑜2. Correspondingly, for a value 𝐶 𝑗

submitted by the adversary at registration, 𝑦 (𝐶 𝑗 ) denotes the ex-
ponent of the public key element 𝑦 in the representation of 𝐶 𝑗 and

𝑎𝑖 (𝐶 𝑗 ) denotes the exponent of the session nonce 𝑎𝑖 (for 𝑖 ∈ [𝜅])
in the representation of 𝐶 𝑗 .

We are now ready to define the abort condition of G2.

E1 ≔
𝜉∨
𝑗=1

(
𝑦 (𝐶 𝑗 ) +

𝜅∑︁
𝑖=1

𝑐𝑖 · 𝑎𝑖 (𝐶 𝑗 ) ≠ 0

)
.

We prove the following claim:

Claim E.1.

Pr [E1] ≤ AdvDLPB1

+ 1

𝑞
.

Proof. We provide the reduction B1. The reduction simulates

the OMUF game to the adversary using essentially the 𝑧-side wit-

ness as follows:

• Setup. Sample 𝑤,𝑤 ′,𝑤0, . . . ,𝑤𝑛 ←$
Z𝑞 . Set ℎ = 𝑔𝑤 , 𝑧 =

𝑔𝑤
′
, and ℎ𝑖 = 𝑔𝑤𝑖

for 𝑖 = 0 . . . 𝑛. Program 𝐻pp to output

ℎ𝑖 on input 𝑖 , for 𝑖 = 0, . . . , 𝑛. For a DLP challenge 𝑌 , set

𝑦 = 𝑌 , and program𝐻1 to output 𝑧 on input (𝑔, ℎ,𝑦). Finally,
output pk = (𝑔, ℎ,𝑦, 𝑧) to the adversary.

• Online Phase. The reduction simulates the oracles as fol-

lows:

– Queries to H1,H3, H𝑃 ,Hpp. Answer by lazy sampling

for anything that is not yet programmed.

– Registration queries. Upon a query of the form

(𝐶 𝑗 , 𝜋 𝑗 ), abort if the proof 𝜋 𝑗 is invalid. Otherwise, E1
occurs, extract dlog𝑦 as described below. Note that

the reduction can compute dlog𝑔𝐶 𝑗 using the repre-

sentations of 𝐶 𝑗 the adversary submits alongside the

registration query because the discrete logarithm of all

the group elements in the adversary’s input are known

to the reduction.

– S1 Queries. On input 𝐶 𝑗 (for some previously regis-

tered 𝐶 𝑗 ), increase local session key counter 𝑖 . Sam-

ple 𝑐𝑖 , 𝑟𝑖 , 𝑢1,𝑖 , 𝑢2,𝑖 , rnd𝑖 ←$
Z𝑞 . Set 𝑧1,𝑖 ≔ 𝐶 𝑗 · 𝑔rnd𝑖 .

Set 𝑎𝑖 ≔ 𝑦𝑐𝑖𝑔𝑟𝑖 , 𝑏1,𝑖 ≔ 𝑔𝑢1,𝑖
, 𝑏2,𝑖 ≔ ℎ𝑢2,𝑖

. Output

𝑎𝑖 , 𝑏1,𝑖 , 𝑏2,𝑖 , rnd𝑖 .

– S2 Queries. On input of a session id 𝑖 , along with a

challenge 𝑒𝑖 , compute

𝑑𝑖 = 𝑒𝑖 − 𝑐𝑖 ,
𝑠1,𝑖 = 𝑢1,𝑖 − 𝑑𝑖 · (dlog𝑔 (𝐶 𝑗 ) + rnd𝑖 ),

𝑠2,𝑖 = 𝑢2,𝑖 − 𝑑𝑖 ·
(
𝑤 ′ − (dlog𝑔 (𝐶 𝑗 ) + rnd𝑖 )

𝑤

)
.

We explain how the reduction can solve for dlog𝑔 𝑦 if the event E1
occurs.

In the following, we assume the event E1 occurs for a fixed

commitment 𝐶 𝑗 , call it 𝐶 . As a proof of knowledge of an opening

of the commitment 𝐶 , the user sends the Fiat-Shamir transform of

the protocol described in appendix A.1.2, i.e. it sends 𝑐, (𝑠0, . . . , 𝑠𝑛)
such that H𝑃 (𝐶,𝐶𝑐 · ℎ𝑠0

0
· · ·ℎ𝑠𝑛𝑛 ) = 𝑐 . If the proof is valid and the

event E1 occurred, the reduction obtains the following equation,

where 𝑀 is the group element submitted to the RO H𝑃 to obtain

the proof 𝜋 :

𝐶𝑐 · ℎ𝑠0

0
· · ·ℎ𝑠𝑛𝑛︸            ︷︷            ︸

:=𝑉

= 𝑀. (12)

The reduction can compute the representations of both sides of

the equation to get

dlog𝑔 𝑦 ·
(
𝑦 (𝑉 ) +

𝜅∑︁
𝑖=1

𝑐𝑖 · 𝑎𝑖 (𝑉 )
)
+ ̸ 𝑦 [𝑉 ]

= dlog𝑔 𝑦 ·
(
𝑦 (𝑀) +

𝜅∑︁
𝑖=1

𝑐𝑖 · 𝑎𝑖 (𝑀)
)
+ ̸ 𝑦 [𝑀 ] , (13)

where for a group element 𝑜 , ̸ 𝑦 [𝑜 ] is the exponent of 𝑔 that can

be used to compute to the non 𝑦 part of the group element 𝑜 .

That is, ̸ 𝑦 [𝑜 ] ≔ 𝑔(𝑜) + 𝑤 · ℎ(𝑜) + 𝑤 ′ · 𝑧 (𝑜) + ∑𝜅
𝑖=1
(𝑤 ′ · 𝑢2,𝑖 ·

𝑏2,𝑖 (𝑜) + 𝑢1,𝑖 · 𝑏1,𝑖 (𝑜) + 𝑟𝑖 · 𝑎𝑖 (𝑜)) +
∑𝑛
𝑖=1

𝑤𝑖 · ℎ𝑖 (𝑜), hence 𝑜 =

𝑔
dlog𝑔 𝑦 ·

(
𝑦 (𝑜 )+∑𝜅

𝑖=1
𝑐𝑖 ·𝑎𝑖 (𝑜 )

)
+̸𝑦 [𝑜 ]

.

If the event E1 occurs, this yields the following equation:

dlog𝑔 𝑦 =
̸ 𝑦 [𝑀 ] − 𝑐 · ̸ 𝑦 [𝐶 ]

𝑐 ·
(
𝑦 (𝐶) +∑𝜅

𝑖=1
𝑐𝑖 · 𝑎𝑖 (𝐶)

)
−

(
𝑦 (𝑀) +∑𝜅

𝑖=1
𝑐𝑖 · 𝑎𝑖 (𝑀)

)
which can be solved for dlog𝑔 𝑦 if 𝑐 ·

(
𝑦 (𝐶) +∑𝜅

𝑖=1
𝑐𝑖 · 𝑎𝑖 (𝐶)

)
≠(

𝑦 (𝑀) +∑𝜅
𝑖=1

𝑐𝑖 · 𝑎𝑖 (𝑀)
)
. As the representation is submitted to the

random oracle before the challenge 𝑐 is received, this happens with
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probability 1− 1

𝑞 and thus we can solve for dlog𝑔 𝑦 with probability

1 − 1

𝑞 .

Therefore, if the event E1 occurs, the reduction can solve the

DLP with probability 1 − 𝜉
𝑞 .

It therefore holds that Pr[G2 = 1] ≥ Pr[G1 = 1] − AdvDLPB1

+ 1

𝑞 .

□

Game G3. In this game, we want to abort if the adversary man-

ages to use nonces 𝑎𝑖 from not yet closed signing sessions in the

representation of a commitment 𝐶 without triggering the event

E1. We define this more formally. For a registration query 𝐶, 𝜋 , let

𝐼𝑐 ⊂ [𝜅] be the set of session ids that have already been closed by

the time H𝑃 is queried for the proof 𝜋 . Let 𝐼𝑜 ⊂ [𝜅] be the set of
sessions that are open at this point in time.

We denote by E2 the event that for some registration query with

𝐶, 𝜋 it holds that:

0 ≠ 𝑦 (𝐶) +
∑︁
𝑖∈𝐼𝑐

𝑐𝑖 · 𝑎𝑖 (𝐶) = −
∑︁
𝑖∈𝐼𝑜

𝑐𝑖 · 𝑎𝑖 (𝐶).

As for any 𝑖 ∈ 𝐼𝑜 , the value 𝑐𝑖 is information-theoretically hidden

from the adversary at the time the hash query is made, the probabil-

ity that E2 occurs for a single𝐶 is
1

𝑞 . Overall we get that Pr[E2] ≤ 𝜉
𝑞

and

Pr[G3 = 1] ≥ Pr[G2 = 1] − 𝜉
𝑞 .

Game G4. In this game, we want to abort if the adversary man-

ages to use ℎ in the representation of a commitment 𝐶 and still

provide valid proof. We formally define the event E3 as follows:

E3 ≔
𝜉∨
𝑗=1

(
ℎ(𝐶 𝑗 ) +

𝜅∑︁
𝑖=1

𝑠2,𝑖 · 𝑏2,𝑖 (𝐶 𝑗 ) ≠ 0

)
The game G4 aborts if the event E3 occurs. We sketch a reduction

B2. The reduction embeds its discrete logarithm challenge in the ℎ

part of the public key. It responds to signing queries using the real

secret key. When the adversary submits a commitment𝐶 and proof

𝜋 during registration where the above expression is non-zero, the

reduction uses a similar technique as in the hop to G2 to solve for

dlogℎ.

It thus holds that Pr[G4 = 1] ≥ Pr[G3 = 1] − AdvDLPB2

+ 1

𝑞 .

Game G5. In this game, we want to abort if the adversary man-

ages to use nonces 𝑏2,𝑖 from not yet closed signing sessions in the

representation of a commitment 𝐶 without triggering the event E3
and still provide valid proof. This game hop works analogously to

that to G3. We say that the event E4 occurs if for some registration

query with 𝐶 and 𝜋 it holds that

0 ≠ ℎ(𝐶) +
∑︁
𝑖∈𝐼𝑐

𝑠2,𝑖 · 𝑏2,𝑖 (𝐶) = −
∑︁
𝑖∈𝐼𝑜

𝑠2,𝑖 · 𝑏2,𝑖 (𝐶)

where 𝐼𝑜 and 𝐼𝑐 are defined as in the game hop to G3. As the values
for 𝑠2,𝑖 for 𝑖 ∈ 𝐼𝑜 are information-theoretically hidden from the

adversary at time of querying H𝑃 , the probability Pr[E4] ≤ 𝜉
𝑞 and

Pr[G5 = 1] ≥ Pr[G4 = 1] − 𝜉
𝑞 .

Game G6. In this game, we want to abort if the adversary man-

ages to use 𝑧 in the representation of a commitment 𝐶 and still

provide valid proof. We define the event E5 in which the game

aborts as

E5 ≔
𝜉∨
𝑗=1

(
𝑧 (𝐶 𝑗 ) +

𝜅∑︁
𝑖=1

𝑑𝑖 · 𝑏2,𝑖 (𝐶 𝑗 ) ≠ 0

)
.

Using a similar strategy as for G2 and G4, we obtain that Pr[G6 =

1] ≥ Pr[G5 = 1] − AdvDLPB3

+ 1

𝑞 .

Game G7. In this game, we want to abort if the adversary man-

ages to use nonces 𝑏2,𝑖 from not yet closed signing sessions in the

representation of a commitment 𝐶 without triggering the event E5
and still provide valid proof. This game hop is analogous to G5. We

get Pr[G7 = 1] ≥ Pr[G6 = 1] − 𝜉
𝑞 .

Game G8. This game is the same as the game G7, except that it
aborts if an event E6 occurs.

E6 is the event in which A outputs a valid signature (𝜁 , 𝜁1, 𝜌, 𝜔,

𝜎1, 𝜎2, 𝜇, 𝛿) for a message𝑚 without making a hash query with a

response 𝜀, such that, 𝜀 = 𝜔 + 𝛿 .

Claim E.2. Pr[E6] ≤ ℓ+1
𝑞 .

Proof. Note that a signature (𝜁 , 𝜁1, 𝜌, 𝜔, 𝜎1, 𝜎2, 𝜇, 𝛿) on a mes-

sage 𝑚 is valid iff 𝜔 + 𝛿 = 𝜀 = H3 (𝜁 , 𝜁1, 𝑔
𝜌 · 𝑦𝜔 , 𝑔𝜎1 · 𝜁𝛿

1
, ℎ𝜎2 ·

𝜁𝛿
2
, 𝑧𝜇 · 𝜁𝛿 ,𝑚). Thus, outputting a valid signature without mak-

ing a hash query to H3 is equivalent to guessing the output of

H3 (𝜁 , 𝜁1, 𝑔
𝜌 ·𝑦𝜔 , 𝑔𝜎1 ·𝜁𝛿

1
, ℎ𝜎2 ·𝜁𝛿

2
, 𝑧𝜇 ·𝜁𝛿 ,𝑚). However, as the output

of H3 is uniformly random in 𝑞, A can output a valid signature

(hence guessing 𝜔 and 𝛿 correctly) without making a hash query

for this signature with a probability of at most
1

𝑞 . Since A outputs

ℓ + 1 signatures, the probability that A did not make a hash query

for one of them is
ℓ+1
𝑞 . □

Therefore, we have that Pr[G8 = 1] ≥ Pr[G7 = 1] − ℓ+1
𝑞 ; there-

fore, if A wins the game G7, it wins G8.
For the next game, we introduce the following simplifying nota-

tion:

Simplifying Notation.While interacting with the reduction, the

algebraic adversaryA provides a representation for each group ele-

ment it outputs or uses in its queries to the random oracleH3. These

representations must be expressible using a basis consisting of the

group elements A acquires during the OMUF game. More specifi-

cally, this includes the group elements of the public key (𝑔,𝑦, ℎ, 𝑧),
and the group elements that it receives by interacting with S1. As-

sume A has invoked S1 𝑡 times for 1 ≤ 𝑡 , the basis in the 𝑡𝑡ℎ U
session is 𝑍𝑘 ≔ (𝑔,𝑦, ℎ, 𝑧, 𝑎1, . . . , 𝑎𝑡 , 𝑏1,1, . . . , 𝑏1,𝑡 , 𝑏2,1, . . . , 𝑏2,𝑡 , 𝑧1,1,

. . . , 𝑧1,𝑡 ).
Recall that the group elements 𝑎, 𝑏1 and 𝑏2 can be expressed

as 𝑎 = 𝑔𝑟 · 𝑦𝑐 , 𝑏1 = 𝑔𝑠1 · 𝑧𝑑
1
= 𝑔𝑠1+𝑣1 ·𝑑 , and 𝑏2 = ℎ𝑠2 · 𝑧𝑑

2
= ℎ𝑠2 ·

(𝑧/𝑧1)𝑑 = 𝑔𝑤 ·𝑠2−𝑣1 ·𝑑 · 𝑧𝑑 , where 𝑣1 := dlog𝑔 𝑧1 and 𝑤 := dlog𝑔 ℎ.

Additionally, the discrete logarithms of ℎ, and 𝑧1 are known to

the reduction, hence it can represent each element in 𝑍𝑡 using the

reduced basis 𝐽 ≔ (𝑔,𝑦, 𝑧). While 𝑔,𝑦, and 𝑧 remain unchanged,

we rewrite the other elements in 𝑍𝑘 as follows: ℎ = 𝑔𝑤 ,𝑧1,𝑖 =

𝑔𝑣1,𝑖
,𝑎𝑖 = 𝑔𝑟𝑖 · 𝑦𝑐𝑖 ,𝑏1,𝑖 = 𝑔𝑠1,𝑖+𝑣1,𝑖 ·𝑑𝑖

, and 𝑏2,𝑖 = ℎ𝑠2,𝑖 · 𝑧𝑑𝑖
2,𝑖

= ℎ𝑠2,𝑖 ·
(𝑧/𝑧1,𝑖 )𝑑 = 𝑔𝑤 ·𝑠2,𝑖−𝑣1,𝑖 ·𝑑𝑖 · 𝑧𝑑𝑖 , where 1 ≤ 𝑖 ≤ 𝑡 . We can rewrite any

representation of a group element 𝑜 in its reduced form (w.r.t. basis
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𝐽 ) as 𝑔[𝑜 ] + 𝑥 ·𝑦[𝑜 ] + 𝑣0 · 𝑧 [𝑜 ] , where 𝑥 ≔ dlog𝑔 𝑦 and 𝑣0 ≔ dlog𝑔 𝑧.

The notation 𝑔[𝑜 ] , 𝑦[𝑜 ] , or 𝑧 [𝑜 ] refers to the respective component

of the group element 𝑜 .

In the following, we use the reduced representation to the basis

𝐽 = (𝑔,𝑦, 𝑧). Any representations submitted to the adversary can be

reduced to this basis because the reduction knows all the discrete

logarithms required for this transformation. (Note that all group

elements are lumped in the 𝑔 component, except 𝑦 and 𝑧 which are

already reduced to the basis 𝐽 ).

As A has to make a hash query for each signature it outputs,

each signature (𝜁 , 𝜁1, 𝜌, 𝜔, 𝜎1, 𝜎2, 𝜇, 𝛿) can be linked to its corre-

sponding query since 𝜔 + 𝛿 = 𝜀, where 𝜀 is the hash response of

that query. Furthermore, the queries A sends to H3 contain group

elements 𝜁 , 𝜁1, 𝛼, 𝛽1, 𝛽2, and 𝜂. Each of those group elements can be

generated by A arbitrarily, which includes using group elements

from arbitrary signer sessions that it has received in S1 queries (i.e.

𝑎, 𝑏1, 𝑏2). We say that a signer session 𝑖 is linked to a hash query

(𝜁 , 𝜁1, 𝛼, 𝛽1, 𝛽2, 𝜂,𝑚), iff 𝛼 has 𝑎𝑖 component, or one of 𝜁 or 𝜂 has

𝑏2,𝑖 component in their representations. We say that a signature

𝜎 is linked to signer session 𝑖 , iff its corresponding hash query

(𝜁 , 𝜁1, 𝛼, 𝛽1, 𝛽2, 𝜂,𝑚) is linked to 𝑖 .

Game G9. This game is the same as the game G8, except that it
aborts if an event E7 occurs.

We define E7 as

E7 ≔
ℓ+1∨
𝑖=1

(𝑧𝑧 [𝜁𝑖 ] ≠ 𝜁𝑖 )

Intuitively, the adversary A outputs a signature with a 𝜁 com-

ponent that was not computed honestly as 𝑧𝑧 [𝜁 ] , and equivalently,

𝑔[𝜁 ] + 𝑥 · 𝑦[𝜁 ] ≠ 0.

We assume, for the sake of contradiction, that A provokes the

event E7 by outputting a signature with a 𝜁 component, such that,

𝑧𝑧 [𝜁 ] ≠ 𝜁 , and provide a reduction that solves the discrete logarithm

problem DLP.
We call the first signature A outputs satisfying this property

as the special signature. As A wins the game G8, it makes a hash

query for each signature it outputs, and the reduction has access to

these queries, including the query of the special signature and the

representations of the group elements alongside this query.

Assume the query of the special signature is linked to 𝑘 signer

sessions. We mark the values A receives from those sessions with

an asterisk, such as 𝑎∗ and 𝑑∗.

Definition E.1. Akin to definition 3.4, we define the group el-

ements 𝛼 ′, 𝜂′, and 𝜁 ′ by eliminating all 𝑎∗
𝑖
components from the

representation of 𝛼 , and all 𝑏∗
2,𝑖

components from the representa-

tions of 𝜁 and 𝜂. We define the following preliminary values for the

special signature
2
:

𝜔 ′ (
−→
𝑐∗) ≔ 𝑦[𝛼 ′ ] +

𝑘∑︁
𝑖=1

𝑐∗𝑖 · 𝑎∗𝑖 (𝛼),

𝛿 ′ (
−→
𝑑∗) :=

𝑔[𝜂′ ] + 𝑥 · 𝑦[𝜂′ ] +
∑𝑘
𝑖=1

𝑏∗
2,𝑖
(𝜂) · (𝑢∗

3,𝑖
− 𝑑∗

𝑖
· 𝑣0)

𝑔[𝜁 ′ ] + 𝑥 · 𝑦[𝜁 ′ ] +
∑𝑘
𝑖=1

𝑏∗
2,𝑖
(𝜁 ) · (𝑢∗

3,𝑖
− 𝑑∗

𝑖
· 𝑣0)

,

2
and its respective hash query.

where 𝑢∗
3,𝑖

≔ dlog𝑔 𝑏
∗
2,𝑖

and 𝑣0 ≔ dlog𝑔 𝑧,
−→
𝑐∗ = (𝑐∗

1
, . . . , 𝑐∗

𝑘
),
−→
𝑑∗ =

(𝑑∗
1
, . . . , 𝑑∗

𝑘
).

Next, we define an event E8 as

E8 ≔ 𝜔 ≠ 𝜔 ′ (
−→
𝑐∗)∧

𝑔[𝜁 ′ ] + 𝑥 · 𝑦[𝜁 ′ ] + 𝑏∗2,𝑖 (𝜁 ) · (𝑢
∗
3,𝑖 − 𝑑

∗
𝑖 · 𝑣0) = 0 ∨ 𝛿 ≠ 𝛿 ′ (

−→
𝑑∗) .

We show that A cannot provoke this event, except with a prob-

ability
2

𝑞 .

Claim E.3. Pr[E8] ≤ 6

𝑞 + Adv
DLP
B5

.

Proof. We define an event E8′ ≔ 𝜔 ′ (
−→
𝑐∗) + 𝛿 ′ (

−→
𝑑∗) = 𝜀 = 𝜔 + 𝛿 .

Obviously, E8 implies E8’, hence it suffices to show that E8’ oc-
curs with a probability at most

6

𝑞 + Adv
DLP
B5

. We note that E8′ is
equivalent to the event Ex (see definition D.1) by setting 𝐶0 =∑𝑘−1

𝑖=1
𝑐∗
𝑖
· 𝑎∗

𝑖
(𝛼),𝐶3 =

∑𝑘−1

𝑖=1
𝑏∗

2,𝑖
(𝜂) · (𝑢∗

3,𝑖
− 𝑑∗

𝑖
· 𝑣0), and 𝐶4 =∑𝑘−1

𝑖=1
𝑏∗

2,𝑖
(𝜁 ) · (𝑢∗

3,𝑖
−𝑑∗

𝑖
·𝑣0),X ≔ 𝜔 ′,Y ≔ 𝛿 ′, 𝜉 ≔ 𝑒𝑘 , 𝜉

′ ≔ 𝜀𝑘 ,Δ ≔

𝑑∗
𝑘
,Ω ≔ 𝑐∗

𝑘
, C0 ≔ 𝑦[𝛼 ′ ] +𝐶0, C1 ≔ 𝑎∗

𝑘
(𝛼), C2 ≔ 𝑔[𝜂′ ] + 𝑥 · 𝑦[𝜂′ ] +

𝐶3, C3 ≔ 𝑔[𝜁 ′ ]+𝑥 ·𝑦[𝜁 ′ ]+𝐶4, C4 ≔ 𝑣0 ·𝑏∗
2,𝑘
(𝜂), and C5 ≔ 𝑣0 ·𝑏∗

2,𝑘
(𝜁 ).

To apply claim D.1, we need that C4/C3 ≠ C1 if C5 = 0. Assume

the contrary. Then there exists a reduction B5 that solves for 𝑣0

by embedding its discrete logarithm challenge in 𝑧 and simulating

using the 𝑦-side signer. If the adversray outputs representations

with C4/C3 = C1, the reduction solves for 𝑣0 and breaks its discrete

logarithm challenge. Otherwise, we apply claim D.1 to obtain a

bound of
6

𝑞 + Adv
DLP
B5

. □

To simplify the remainder of the proof, we prove the following

claim:

Claim E.4. Let 𝛼, 𝜂, 𝜁 be the group elements from the special ses-
sions in game G9, and let 𝛼 ′, 𝜂′ and 𝜁 ′ be the values described in
definition E.1. It holds that

(1) 𝑦[𝛼 ] = 𝑦[𝛼 ′ ] +
∑𝑘
𝑖=1

𝑐∗
𝑖
· 𝑎∗

𝑖
(𝛼)

(2) 𝑔[𝜂 ] +𝑥 ·𝑦[𝜂 ] = 𝑔[𝜂′ ] +𝑥 ·𝑦[𝜂′ ] +
∑𝑘
𝑖=1

𝑏∗
2,𝑖
(𝜂) · (𝑢∗

3,𝑖
−𝑑∗

𝑖
·𝑣0)

(3) 𝑔[𝜁 ] +𝑥 ·𝑦[𝜁 ] = 𝑔[𝜁 ′ ] +𝑥 ·𝑦[𝜁 ′ ] +
∑𝑘
𝑖=1

𝑏∗
2,𝑖
(𝜁 ) · (𝑢∗

3,𝑖
−𝑑∗

𝑖
·𝑣0)

where 𝑘 is the number of prover sessions linked to the special session.

Proof. Analogous to claim 3.1. □

Per claim E.4, we have that 𝑔[𝜁 ] + 𝑥 · 𝑦[𝜁 ] = 𝑔[𝜁 ′ ] + 𝑥 · 𝑦[𝜁 ′ ] +∑𝑘
𝑖=1

𝑏∗
2,𝑖
(𝜁 ) · (𝑢∗

3,𝑖
−𝑑∗

𝑖
·𝑣0). SinceA provokes E7, 𝑔[𝜁 ] +𝑥 ·𝑦[𝜁 ] ≠ 0

holds and we have that 𝑔[𝜁 ′ ] +𝑥 ·𝑦[𝜁 ′ ] +𝑏∗2,𝑖 (𝜁 ) · (𝑢
∗
3,𝑖
−𝑑∗

𝑖
· 𝑣0) ≠ 0,

hence E8 = 𝑦[𝛼 ] = 𝜔 ∧ 𝑔 [𝜂 ]+𝑥 ·𝑦 [𝜂 ]
𝑔 [𝜁 ]+𝑥 ·𝑦 [𝜁 ] = 𝛿 . Since A does not provoke

the event E8, it holds that𝑦[𝛼 ] ≠ 𝜔∨ 𝑔 [𝜂 ]+𝑥 ·𝑦 [𝜂 ]
𝑔 [𝜁 ]+𝑥 ·𝑦 [𝜁 ] ≠ 𝛿 . The reduction

B6 exploits this fact to win the DLP game using the following

strategy.

Given a discrete logarithm challenge 𝑈 , B6 flips a coin and be-

haves as follows:

• On head, the reduction sets 𝑦 ≔ 𝑈 , and uses the 𝑧-side

simulator from appendix C.1.2 to simulate the ℓ-OMUF-
game for A.
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• On tail, the reduction sets 𝑧 ≔ 𝑈 , and uses the 𝑦-side

simulator from appendix C.1.1 to simulate the ℓ-OMUF-
game for A.

Using the special signature and the representations of its hash

query, the reduction extracts dlog𝑔𝑈 following the strategy in the

first matching case:

• 𝑦[𝛼 ] ≠ 𝜔 : This case is analogous to case 1 in claim 3.4.

• 𝑔 [𝜂 ]+𝑥 ·𝑦 [𝜂 ]
𝑔 [𝜁 ]+𝑥 ·𝑦 [𝜁 ] ≠ 𝛿 : By outputting the special signature, A
submits two different representations of the group element

𝜂. The first representation is derived from the signature

(𝜁 , 𝜁1, 𝜌, 𝜔, 𝜎1, 𝜎2, 𝜇, 𝛿). In particular, we have

𝜂 = 𝑧𝜇 · 𝜁𝛿 .
By reducing this representation to the basis 𝐽 , we get

𝑣0 · 𝜇 + 𝛿 · (𝑔[𝜁 ] + 𝑥 · 𝑦[𝜁 ] + 𝑣0 · 𝑧 [𝜁 ] ).
The second representation A submits is the one it submits

alongside the hash query of the special signature, which

can be reduced to the basis 𝐽 as

𝑔[𝜂 ] + 𝑥 · 𝑦[𝜂 ] + 𝑣0 · 𝑧 [𝜂 ] .
We note that we can use the technique from claim D.3 to

extract 𝑣0 = dlog𝑔 𝑧 = 𝑑𝑙𝑜𝑔𝑔𝑈 . By setting 𝜓 ≔ 𝑣0, 𝐴 ≔

𝜇, 𝐵 ≔ 𝛿,𝐶 ≔ 𝑔[𝜁 ] + 𝑥 · 𝑦[𝜁 ] , 𝐷 ≔ 𝑧 [𝜁 ] , 𝐸 ≔ 𝑔[𝜂 ] + 𝑥 ·
𝑦[𝜂 ] , 𝐹 ≔ 𝑧 [𝜂 ] ,V1 ≔ 𝜓 ·𝐴+𝐵 · (𝐶+𝜓 ·𝐷), andV2 ≔ 𝐸+𝜓 ·𝐹 ,
we can recover 𝑣0 because the condition V1 = V2 ∧ 𝐶 ≠

0 ∧ 𝐵 ≠ 𝐸
𝐶
holds.

Consequently, B6 extracts the discrete logarithm successfully if

the correct simulator is used, which happens with probability
1

2
;

therefore, we have

AdvDLPB6

≥ 1

2

· Pr[¬E8] .
Since

Pr[E7] = Pr[E8] + Pr[¬E8],
we have

Pr[E7] =
5

𝑞
+ AdvDLPB5

+ 2 · AdvDLPB6

,

hence

Pr[G9 = 1] ≥ Pr[G8 = 1] − 5

𝑞
+ AdvDLPB5

− 2 · AdvDLPB6

.

We thus assume thatA cannot provoke the event E7, hence it wins
the game G9, and 𝜁 is computed honestly in all forgeries output by

A if it wins the game ℓ-OMUF.

Game G10. In this game, we want to abort if the adversary pro-

vides a representation of 𝜁1 in a hash query to H3 that is later used

in a signature but does not yield dlog𝑔 𝜁1 to the reduction.

We describe the event E9 that causes G10 to abort as follows.

For the 𝑖th signing session, denote by 𝐶𝑖 the commitment used in

that session. Let 𝐽𝑠 be the set of hash queries that the adversary

eventually uses in signatures. Denote by 𝜁 𝑗 , 𝜁1, 𝑗 , 𝛼 𝑗 , 𝛽1, 𝑗 , 𝛽2, 𝑗 , 𝜂 𝑗 the

group elements submitted in the 𝑗th hash query.

E9 ≔∃ 𝑗∗ ∈ 𝐽𝑠 :

𝜅∧
𝑖=1

(
dlog𝑧 𝐶𝑖𝑔

rnd𝑖 ≠ dlog𝜁 𝑗∗
𝜁1, 𝑗∗

)

∧
((
𝑦 (𝜁1, 𝑗∗ ) +

𝜅∑︁
𝑖=1

𝑐𝑖 · 𝑎𝑖 (𝜁1, 𝑗∗ ) ≠ 0

)
∨

(
ℎ(𝜁1, 𝑗∗ ) +

𝜅∑︁
𝑖=1

𝑠2,𝑖 · 𝑏2,𝑖 (𝜁1, 𝑗∗ ) ≠ 0

)
∨

(
𝑧 (𝜁1, 𝑗∗ ) +

𝜅∑︁
𝑖=1

𝑑𝑖 · 𝑏2,𝑖 (𝜁1, 𝑗∗ ) ≠ 0

))
Similar to the proof of theorem 3.1, we define so-called prelimi-

nary values for 𝜔 and 𝛿 . In particular, let 𝑗∗ be the smallest hash

index that corresponds to a signature that triggers the event E9.
We denote by 𝛼 𝑗∗ , 𝛽1, 𝑗∗ , 𝛽2, 𝑗∗ the group elements submitted in that

hash query. We further denote by ®𝑐 and ®𝑑 the vectors of 𝑐𝑖 and 𝑑𝑖
for all opened sessions (recall that the reduction closes all unclosed

sessions itself).

𝜔 ′ (®𝑐) ≔𝑦 (𝛼 𝑗∗ ) +
𝜅∑︁
𝑖=1

𝑐𝑖 · 𝑎𝑖 (𝛼 𝑗∗ )

𝛿 ′ (®𝑐) ≔
𝑦 (𝛽1, 𝑗∗ ) +

∑𝜅
𝑖=1

𝑐𝑖 · 𝑎𝑖 (𝛽1, 𝑗∗ )
𝑦 (𝜁1, 𝑗∗ ) +

∑𝜅
𝑖=1

𝑐𝑖 · 𝑎𝑖 (𝜁1, 𝑗∗ )

𝛿 ′′ ( ®𝑑) ≔
ℎ(𝛽1, 𝑗∗ ) +

∑𝜅
𝑖=1

𝑠2,𝑖 · 𝑏2,𝑖 (𝛽1, 𝑗∗ )
ℎ(𝜁1, 𝑗∗ ) +

∑𝜅
𝑖=1

𝑠2,𝑖 · 𝑏2,𝑖 (𝜁1, 𝑗∗ )

𝛿 ′′′ ( ®𝑑) ≔
𝑧 (𝛽1, 𝑗∗ ) +

∑𝜅
𝑖=1

𝑑𝑖 · 𝑏2,𝑖 (𝛽1, 𝑗∗ )
𝑧 (𝜁1, 𝑗∗ ) +

∑𝜅
𝑖=1

𝑑𝑖 · 𝑏2,𝑖 (𝜁1, 𝑗∗ )
We note that by definition of E9, at least one of the preliminary

values 𝛿 ′, 𝛿 ′′, and 𝛿 ′′′ is well-defined. Furthermore, the value 𝜔 ′ is
always well-defined.

We define a new event E10 as

E10 ≔ E9∧
((
𝛿 ′ (®𝑐) ≠ ⊥ ∧ 𝛿 ′ (®𝑐) + 𝜔 ′ (®𝑐) = 𝜀

)
∨

(
𝛿 ′′ ( ®𝑑) ≠ ⊥ ∧ 𝛿 ′′ ( ®𝑑) + 𝜔 ′ (®𝑐) = 𝜀

)
∨

(
𝛿 ′′′ ( ®𝑑) ≠ ⊥ ∧ 𝛿 ′′′ ( ®𝑑) + 𝜔 ′ (®𝑐) = 𝜀

))
We bound the event E10 as follows:

Claim E.5. Pr[E10] ≤ 12

𝑞 + Adv
DLP
G B8 + AdvDLPG B7.

Proof. We will exclude the event E10 case by case. First, con-

sider E10∧(𝛿 ′ (®𝑐) ≠ ⊥). We note that the gameG10 can be simulated

using either the 𝑧-side simulator or the𝑦-side simulator from appen-

dix C.1.2 and appendix C.1.1 which yield identical distributions. If

the 𝑧-side simulator is used, the values for ®𝑐 are all already fixed by

the time the adversary makes its hash query. Thus, the probability

of E10 ∧ (𝛿 ′ (®𝑐) ≠ ⊥) is at most
1

𝑞 .

We now turn to the cases of E10 ∧ (𝛿 ′′ ( ®𝑑) ≠ ⊥) and E10 ∧
(𝛿 ′′′ ( ®𝑑) ≠ ⊥). We want to apply claim D.1. We consider the follow-

ing cases:

(1) There are no sessions whose 𝑎𝑖 and 𝑏2,𝑖 appear in the com-

putation of the preliminary values that are open at the time

of the hash query. Then the preliminary values are fixed

and 𝜔 ′ (®𝑐) + 𝛿 ′′ ( ®𝑑) = 𝜀, resp. 𝜔 ′ (®𝑐) + 𝛿 ′′′ ( ®𝑑) = 𝜀 happens

with probability
1

𝑞 .
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(2) There are sessions whose 𝑎𝑖 and 𝑏2,𝑖 appear in the computa-

tion of the preliminary values that are never closed by the

adversary. Then, 𝑒𝑖 is sampled uniformly at random and the

probability that 𝜔 ′ (®𝑐) + 𝛿 ′′ ( ®𝑑) = 𝜀 resp. 𝜔 ′ (®𝑐) + 𝛿 ′′′ ( ®𝑑) = 𝜀

is
1

𝑞 .

(3) There are sessions whose nonces 𝑎𝑖 and 𝑏2,𝑖 are used in the

computation of the preliminary values and that are open

at the time of the hash query, but all of them are closed by

the adversary eventually. Let 𝑖∗ be the session id of the last

of those sessions to be closed. Let 𝜔 ′ (𝑐𝑖∗ ) and 𝛿 ′′ (𝑑𝑖∗ ) be
the values of 𝜔 ′ and 𝛿 ′′ when all sessions except for the

𝑖∗th session have been closed. We distinguish the following

cases

(a) If the value 𝛿 ′′′ is defined, we want to apply claim D.1

using Ω = 𝑐𝑖∗ , Δ = 𝑑𝑖∗ , 𝐶0 = 𝑦 (𝛼 𝑗∗ ) +
∑
𝑖≠𝑖∗ 𝑐𝑖 ·

𝑎𝑖 (𝛼 𝑗∗ ), 𝐶1 = 𝑎𝑖∗ (𝛼 𝑗∗ ), 𝐶2 = 𝑧 (𝛽1, 𝑗∗ ) +
∑𝜅
𝑖=1,𝑖≠𝑖∗ 𝑑𝑖 ·

𝑏2,𝑖 (𝛽1, 𝑗∗ ), 𝐶3 = 𝑧 (𝜁1, 𝑗∗ ) +
∑𝜅
𝑖=1,𝑖𝑛≠𝑖∗ 𝑑𝑖 · 𝑏2,𝑖 (𝜁1, 𝑗∗ ),

𝐶4 = 𝑏2,𝑖 (𝛽1, 𝑗∗ ),𝐶5 = 𝑏2,𝑖 (𝜁1, 𝑗∗ ) to upper bound the

probability of the event E10∧ (𝛿 ′′′ ( ®𝑑) ≠ ⊥) with 6

𝑞 . To

this end, we need to show that if C5 = 0, C4/C3 ≠ C1.

Assume this case occurs, and 𝛿 ′′ = ⊥. In this case, it

must hold that

∑𝜅
𝑖=1

𝑠2,𝑖 · 𝑏2,𝑖 (𝛽1, 𝑗∗ ) = 0, as otherwise

there exists a reduction B7 that can solve for the dis-

crete logarithm of ℎ by embedding its challenge in ℎ

and simulating using the 𝑦-side simulator. When the

adversary submits its signatures, it learns the entire

discrete logarithm of 𝛽1, 𝑗∗ to the base of 𝑔 which it

can use to solve for the discrete log of ℎ. As 𝑑𝑖∗ is re-

vealed after C4 has been fixed, it only happens with

probability
1

𝑞 that for non-zero C4 the ℎ-component

of 𝛽2, 𝑗∗ is zero. However, if C4/C3 = C1 = 0, the value

𝜔 ′ is already independent of 𝑐𝑖∗ and E10 occurs with
probability

1

𝑞 . Otherwise we can apply either claim D.1

or the next case.

(b) If the value 𝛿 ′′ is defined we again want to apply

claim D.1. However, as 𝛿 ′′ depends on 𝑠2,𝑖 , we first

note that 𝑠2,𝑖 = dlogℎ 𝑏2,𝑖 − 𝑑𝑖 · dlogℎ 𝑧2,𝑖 where 𝑧2,𝑖 =

𝑧/(𝐶𝑔rnd𝑖 ). These discrete logarithms are well-defined

and fixed before the adversary makes its hash query.

We can therefore apply claim D.1 to exclude the event

𝜔 ′+𝛿 ′′ = 𝜀 where𝐶0 = 𝑦 (𝛼 𝑗∗ )+
∑
𝑖≠𝑖∗ 𝑐𝑖 ·𝑎𝑖 (𝛼 𝑗∗ ),𝐶1 =

𝑎𝑖∗ (𝛼 𝑗∗ ), 𝐶2 = ℎ(𝛽1, 𝑗∗ ) +
∑𝜅
𝑖=1

𝑏2,𝑖 (𝛽1, 𝑗∗ ) dlogℎ 𝑏2,𝑖 −∑𝜅
𝑖=1,𝑖≠𝑖∗ 𝑑𝑖 · 𝑏2,𝑖 (𝛽1, 𝑗∗ ) · dlogℎ (𝑧/(𝐶𝑔rnd𝑖 )), 𝐶3 =

ℎ(𝜁1, 𝑗∗ ) +
∑𝜅
𝑖=1

𝑏2,𝑖 (𝜁1, 𝑗∗ ) dlogℎ 𝑏2,𝑖 −
∑𝜅
𝑖=1,𝑖≠𝑖∗

𝑑𝑖 · 𝑏2,𝑖 (𝜁1, 𝑗∗ ) · dlogℎ (𝑧/(𝐶𝑔rnd𝑖 )), 𝐶4 = −𝑏2,𝑖 (𝛽1, 𝑗∗ ) ·
dlogℎ (𝑧/(𝐶𝑔rnd𝑖∗ )), and 𝐶5 = −𝑏2,𝑖 (𝜁1, 𝑗∗ ) dlogℎ (𝑧/
(𝐶𝑔rnd𝑖∗ )). It must hold that C4/C3 ≠ C1 as otherwise

a reduction B8 embedding in ℎ could solve for dlogℎ 𝑧

and then for dlog𝑔 ℎ. Consequently, the probability of

E10 ∧ (𝛿 ′′ ( ®𝑑) ≠ ⊥) is at most
7

𝑞 + Adv
DLP
B8

.

In total, we obtain that Pr[E10] ≤ 13

𝑞 + Adv
DLP
B8

+ AdvDLPB7

. □

We now want to bound the probability of E9 in G9.

Claim E.6. Pr[E9 ∧ ¬E10] ≤ 4 · AdvDLPB9

.

Proof. We provide a reduction B9 that will solve the discrete

logarithm problem if E9 ∧ ¬E10.
• Setup. The reduction receives a discrete logarithm chal-

lenge 𝑌 . Its samples 𝑤0, . . . ,𝑤𝑛 ←$
Z𝑞 . It sets 𝐻pp (𝑖) =

𝑔𝑤𝑖 ≕ ℎ𝑖 for 𝑖 ∈ {0, . . . , 𝑛} It flips a bit 𝑏. If 𝑏 = 0 it sets

𝑦 = 𝑌 , and samples𝑤,𝑤 ′ ←
$
Z𝑞 . It setsℎ = 𝑔𝑤 and 𝑧 = 𝑔𝑤

′
.

If 𝑏 = 1, it samples another bit 𝑏′. It samples 𝑥 ←
$
Z𝑞 and

sets 𝑦 = 𝑔𝑥 . If 𝑏 = 0, it sets 𝑧 = 𝑌 and samples𝑤 ←
$
Z𝑞 , it

then sets ℎ = 𝑔𝑤 . If 𝑏 = 1, it sets ℎ = 𝑌 and samples𝑤 ′ and
sets 𝑧 = 𝑔𝑤

′
.

It programs the random oracle𝐻1 (𝑔, ℎ,𝑦) = 𝑧. It outputs the

public key (𝑔, ℎ,𝑦, 𝑧) along with the parameters ℎ0, . . . ℎ𝑛 .

• Online Phase. The reduction responds to oracle queries

as follows:

– Hash queries to 𝐻1, 𝐻3, 𝐻pp, 𝐻𝑃 : Lazy sampling.

– Registration Queries. On input of a commitment 𝐶

and proof 𝜋 , verify the proof. Abort if invalid or if one

of the abort conditions of the previous games occurs.

Otherwise, extract dlog𝐶 and save it in a list along

with 𝐶 .

– Queries to S1: On input of commitment 𝐶𝑖 , check if

𝐶𝑖 is registered and abort if not. Increase session id

counter 𝑖 by 1. If 𝑏 = 0, sample values 𝑐𝑖 , 𝑟𝑖 , 𝑢1,𝑖 , 𝑢2,𝑖 ,

rnd𝑖 ←$
Z𝑞 . Set 𝑎𝑖 = 𝑦𝑐𝑖𝑔𝑟𝑖 , set 𝑏1,𝑖 = 𝑔𝑢1,𝑖

and

𝑏2,𝑖 = ℎ𝑢2,𝑖
. If 𝑏 = 1, sample values 𝑢𝑖 , 𝑑𝑖 , 𝑠1,𝑖 , 𝑠2,𝑖 , rnd𝑖 .

Set 𝑎𝑖 = 𝑔𝑢𝑖 . Set 𝑏1,𝑖 = (𝐶𝑔rnd𝑖 )𝑑𝑖𝑔𝑠1,𝑖
and 𝑏2,𝑖 =

(𝑧/(𝐶𝑔rnd𝑖 ))𝑑𝑖𝑔𝑠2,𝑖
. In both cases return (rnd𝑖 , 𝑎𝑖 , 𝑏1,𝑖 ,

𝑏2,𝑖 ).
– Queries toS2:On input of a session id 𝑖 and challenge

𝑒𝑖 , if𝑏 = 0 compute𝑑𝑖 = 𝑒𝑖−𝑐𝑖 and 𝑠1,𝑖 = 𝑢1,𝑖−𝑑𝑖 (rnd𝑖+

dlog𝐶𝑖 ), 𝑠2,𝑖 = 𝑢2,𝑖−𝑑𝑖 ·
(
𝑤′−(dlog𝑔 (𝐶 𝑗 )+rnd𝑖 )

𝑤

)
. If𝑏 = 1,

compute 𝑐𝑖 = 𝑒𝑖 − 𝑑𝑖 and 𝑟𝑖 = 𝑢𝑖 − 𝑐𝑖𝑥 . In either case,

return (𝑐𝑖 , 𝑑𝑖 , 𝑟𝑖 , 𝑠1,𝑖 , 𝑠2,𝑖 ) to the adversary.

• Output determination. Close all signing sessions as de-

scribed above. Identify the special session 𝑗∗ as by the abort
condition of the previous game, a 𝛾 𝑗 can be computed for

all 𝜁 𝑗 occurring in signatures. If the adversary wins and the

event E9 ∧ ¬E10 occurs, compute the discrete logarithm of

𝑌 as described below.

Solving for the Discrete Logarithm. The reduction can solve for

the discrete logarithm as follows:

• If 𝑏 = 0 and 𝜔 ′ (®𝑐) ≠ 𝜔 𝑗∗ : Compute 𝜌′ = 𝑔(𝛼 𝑗∗ ) + 𝑤 ·
ℎ(𝛼 𝑗∗ ) +𝑤 ′ · 𝑧 (𝛼 𝑗∗ ) +

∑𝑛
𝑖=1

𝑤𝑖 ·ℎ𝑖 (𝛼 𝑗∗ ) +
∑𝜅
𝑖=1
(𝑟𝑖 ·𝑎𝑖 (𝛼 𝑗∗ ) +

𝑢1,𝑖 ·𝑏1,𝑖 (𝛼 𝑗∗ ) +𝑢2,𝑖 ·𝑤 ·𝑏2,𝑖 (𝛼 𝑗∗ )). Then, compute dlog𝑌 =
𝜌 ′−𝜌 𝑗∗
𝜔 𝑗∗−𝜔 ′ .

• If 𝑏 = 0 and 𝛿 ′ (®𝑐) ≠ 𝛿 𝑗∗ . For a group element 𝑜 , define

̸ 𝑦 [𝑜 ] = 𝑔(𝑜) +𝑤 ·ℎ(𝑜) +𝑤 ′ ·𝑧 (𝑜) +∑𝑛
𝑖=1

𝑤𝑖 ·ℎ𝑖 (𝑜) +
∑𝜅
𝑖=1
(𝑟𝑖 ·

𝑎𝑖 (𝑜) + 𝑢1,𝑖 · 𝑏1,𝑖 (𝑜) + 𝑠 + 𝑢2,𝑖 · 𝑤 · 𝑏2,𝑖 (𝑜)) First, compute

𝜎′
1
= ̸ 𝑦 [𝛽

1, 𝑗∗ ]−𝛿
′ (®𝑐) · ̸ 𝑦 [𝜁

1, 𝑗∗ ] . Finally, compute dlog𝑔 𝜁1, 𝑗∗ =

𝜎 ′
1
−𝜎 𝑗∗

𝛿 𝑗∗−𝛿 ′ and dlog𝑌 =
dlog𝑔 𝜁1, 𝑗∗−̸𝑦 [𝜁

1, 𝑗∗ ]

𝑦 (𝜁
1, 𝑗∗ )+

∑𝜅
𝑖=1

𝑐𝑖 ·𝑎𝑖 (𝜁1, 𝑗∗ )
.
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• If 𝑏 = 1, 𝑏′ = 1, and 𝛿 ′′ ( ®𝑑) ≠ ⊥. For a group element 𝑜 ,

denote by ̸ ℎ [𝑜 ] = 𝑔(𝑜) +𝑤 ′ ·𝑧 (𝑜) +𝑥 ·𝑦 (𝑜) +∑𝑛
𝑖=1

𝑤𝑖 ·ℎ𝑖 (𝑜) +∑𝜅
𝑖=1
(𝑢𝑖 ·𝑎𝑖 (𝑜) + (𝑑𝑖 · (rnd𝑖 + dlog𝑔𝐶𝑖 ) + 𝑠1,𝑖 ) ·𝑏1,𝑖 [𝑜 ] + (𝑑𝑖 ·

(𝑤 ′−(rnd𝑖 +dlog𝑔𝐶𝑖 ))) ·𝑏2,𝑖 (𝑜)). Compute 𝜎′′
1
= ̸ ℎ [𝛽

1, 𝑗∗ ]−

𝛿 ′′ ( ®𝑑) · ̸ ℎ [𝜁
1, 𝑗∗ ] . Then compute dlog𝑔 𝜁1, 𝑗∗ =

𝜎 ′′
1
−𝜎 𝑗∗

𝛿 𝑗∗−𝛿 ′′ and

finally dlog𝑔 𝑌 =
dlog 𝜁

1, 𝑗∗−ℎ̸ [𝜁
1, 𝑗∗ ]

ℎ (𝜁
1, 𝑗∗ )+

∑𝜅
𝑖=1

𝑠2,𝑖 ·𝑏2,𝑖 (𝜁1, 𝑗∗ )
.

• If 𝑏 = 1, 𝑏′ = 0, and 𝛿 ′′′ ( ®𝑑) ≠ ⊥. Similar to before, we

will compute the discrete logarithm step by step. For a

group element 𝑜 , denote ̸ 𝑧 [𝑜 ] = 𝑔(𝑜) +𝑤 · ℎ(𝑜) + 𝑥 ·𝑦 (𝑜) +∑𝑛
𝑖=1

𝑤𝑖 ·ℎ𝑖 (𝑜) +
∑𝜅
𝑖=1
(𝑢𝑖 ·𝑎𝑖 (𝑜) + (𝑑𝑖 · (rnd𝑖 +dlog𝐶𝑖 ) +𝑠1,𝑖 ) ·

𝑏1,𝑖 (𝑜) + (𝑤 · 𝑠2,𝑖 − 𝑑𝑖 · (rnd𝑖 + dlog𝐶𝑖 )) · 𝑏2,𝑖 (𝑜)) First, we
define 𝜎′′′

1
= ̸ 𝑧 [𝛽

1, 𝑗∗ ] − 𝛿
′′′ ( ®𝑑) · ̸ 𝑧 [𝜁

1, 𝑗∗ ] . Finally, compute

dlog𝑔 𝑌 =
dlog𝑔 𝜁1, 𝑗∗−�̸� [𝜁

1, 𝑗∗ ]

𝑧 (𝜁
1, 𝑗∗ )+

∑𝜅
𝑖=1

𝑑𝑖 ·𝑏2,𝑖 (𝜁1, 𝑗∗ )
In total, this upper bounds the probability of E9 ∧ ¬E10 by 4 ·
AdvDLPB9

. □

Putting this together with claim E.5 yields that.

Pr[G10 = 1] ≥ Pr[G9 = 1] − 4 · AdvDLPB9

− 7

𝑞
.

Simulating G10. We provide a reduction B10 that uses an adver-

saryA that wins G10 to break theOMMIM-security of IDACL. The

reduction proceeds as follows:

• Setup. On input of a public key pk = (𝑔, ℎ,𝑦, 𝑧), the reduc-
tion samples𝑤0, . . . ,𝑤𝑛 ←$

Z𝑞- It sets 𝐻pp (𝑖) = 𝑔𝑤𝑖 ≕ ℎ𝑖
for 𝑖 ∈ {0, . . . , 𝑛}. It further sets 𝐻1 (𝑔, ℎ,𝑦) = 𝑧. It provides

pk along with pp = (ℎ0, . . . , ℎ𝑛) to the adversary.

• Registration queries. On input 𝐶, 𝜋 , verify that 𝜋 is a

valid proof for 𝐶 . Abort according to the conditions of G10.
Compute dlog𝑔𝐶 from the representation (recall that by

the above abort conditions, the representation of 𝐶 con-

sists only of 𝑔, ℎ0, . . . ℎ𝑛 for which the reduction knows the

discrete logarithms.) Add (𝐶, dlog𝐶) to an internal list of

registered commitments.

• Signing Queries.

– Queries to S1. On input 𝐶 of a previously registered

𝐶 , open a prover session using a call to P1. Receive

commitments 𝑎𝑖 , 𝑏1,𝑖 , 𝑏2,𝑖 as well as rnd𝑖 . Compute

rnd
′
𝑖 = rnd𝑖 − dlog𝑔𝐶 using dlog𝑔𝐶 from the list of

registered commitments. Output 𝑎𝑖 , 𝑏1,𝑖 , 𝑏2,𝑖 , rnd
′
𝑖 to

the adversary.

– Queries to S2. On input 𝑒𝑖 for a not yet closed session

𝑖 , send 𝑒𝑖 to the P2 oracle to close the corresponding

prover session. Receive 𝑐𝑖 , 𝑑𝑖 , 𝑟𝑖 , 𝑠1,𝑖 , 𝑠2,𝑖 from the prover

and forward this response to the adversary.

• Hash Queries.We explain how the reduction handles hash

queries.

– To 𝐻𝑃 , 𝐻pp, 𝐻1. Answered by lazy sampling.

– To 𝐻3. On input of (𝜁 , 𝜁1, 𝛼, 𝛽1, 𝛽2, 𝜂,𝑚), it computes

𝛾 = dlog𝑧 𝜁 from the representation of 𝜁 provided

by the adversary. Furthermore, compute 𝑧′
1
= 𝜁

1/𝛾
1

.

If 𝑧′
1
= 𝑧1,𝑖 for some 𝑖 ∈ [𝜅], it sets rnd

′′ = rnd𝑖 .

Otherwise, it computes rnd
′′ = dlog𝑔 𝜁1/𝛾 if possible,

otherwise abort (note that this reflects the abort condi-

tion introduced inG10). It then opens a verifier session

by sending rnd
′′, 𝛼, 𝛽

1

𝛾

1
, 𝛽

1

𝛾

2
. It forwards the verifier re-

sponse 𝜀 to the adversary.

• Output determination. Once the adversary outputs its

signatures (𝑚1, 𝜎1), . . . , (𝑚ℓ+1, 𝜎ℓ+1), parse each signature

as (𝜁𝑖 , 𝜁1,𝑖 , 𝜔𝑖 , 𝛿𝑖 , 𝜌𝑖 , 𝜎1,𝑖 , 𝜎2,𝑖𝜇𝑖 ). Identify the verifier session
and the previously computed 𝛾𝑖 from the hash query 𝐻3 (𝜁𝑖 ,
𝜁1,𝑖 , 𝑔

𝜌𝑖𝑦𝜔𝑖 , 𝜁
𝛿𝑖
1,𝑖
𝑔𝜎1,𝑖 , 𝜁

𝛿𝑖
2,𝑖
ℎ𝜎2,𝑖 , 𝜁

𝛿𝑖
𝑖
𝑧𝜇𝑖 ,𝑚𝑖 ). Close the corresp-

onding verifier session by sending over (𝜔𝑖 , 𝛿𝑖 , 𝜌𝑖/𝛾𝑖 , 𝜎1,𝑖/𝛾𝑖 ,
𝜎2,𝑖/𝛾𝑖 ).

It thus holds that Pr[G10 = 1] ≤ Advℓ-OMMIM
IDACL

(B10).
And we obtain

Advℓ-OMUF
BSACL

(A) ≤Advℓ-OMMIM
IDACL

(B10) + 4 · AdvDLPG (B9)

+ 12

𝑞
+ AdvDLPG B8 + AdvDLPG B7

+ 5

𝑞
+ AdvDLPG B6 + AdvDLPG B5

+ 2 · AdvDLPG (B4) +
2

𝑞

+ ℓ + 1

𝑞
+ 3 · 𝜉

𝑞
+ 3

𝑞

+ AdvDLPG (B3) + AdvDLPG (B2) + AdvDLPG (B1)

≤𝜀′ + 13 · 𝜀 + 26 + ℓ + 3 · 𝜉
𝑞

.

□

F PROOF OF THEOREM 4.3

Theorem 4.3. If ACL is (𝑡, 𝜀)-OMUF-secure in the AGM + ROM,

then BSAbe is (𝑡, 𝜀 +
𝑞𝑆 (𝑞𝑆+𝑞H

2
)

𝑞 )-OMUF-secure in the AGM+ROM
where 𝑞𝑆 is the number of opened signing sessions and 𝑞H2

is the
number of queries made to hash oracle H2 by an adversary against
OMUF-security of BSAbe.

Proof. Assume, for the sake of contradiction, that BSAbe is not
OMUF-secure, and thus, there is an adversary A that wins the

game ℓ-OMUF against BSAbe. We construct a reduction B’ that
wins the game ℓ-OMUF against ACL.

The reduction behaves as follows:

• Setup. On input of a public key pk = (𝑔, ℎ,𝑦, 𝑧), it registers
a commitment 𝐶 to the all 0 vector with the challenger. It

forwards the public key to the adversary.

• Online Phase. The reduction handles oracle queries by

the adversary as follows:

– Hash queries to 𝐻1, 𝐻3: Forward to the correspond-

ing oracles provided by the challenger.

– Hash queries to 𝐻2: Lazy sampling for values not

programmed otherwise.

– Queries to S1: Sample a value rnd
′
𝑖 ←$

Z𝑞 . Open S1

session using 𝐶 with the challenger. Receive rnd𝑖 , 𝑎𝑖 ,

𝑏1,𝑖 , 𝑏2,𝑖 . Compute 𝑧1,𝑖 ≔ 𝐶𝑔rnd𝑖 and set 𝐻2 (rnd′𝑖 ) =
𝑧1,𝑖 . Abort if 𝐻2 is already programmed at this point.

Output rnd
′
𝑖 , 𝑎𝑖 , 𝑏1,𝑖 , 𝑏2,𝑖 to the adversary.
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– Queries to S2: Query the corresponding oracle pro-

vided by the challenger for the corresponding session

id 𝑖 .

• Output Determination. When the adversary outputs

message signature pairs (𝑚1, 𝜎1), . . . , (𝑚ℓ+1, 𝜎ℓ+1), the re-
duction forwards those pairs to its own challenger.

We first compute the probability that the reduction aborts due to a

pre-programmed hash value of 𝐻2. Let 𝑞𝐻2
be the number of hash

queries made to 𝐻2 by the adversary, and let 𝑞𝑆 be the number of

S1 queries made by the adversary. Then the probability that the

reduction aborts is at most

𝑞𝑆 · (𝑞𝑆+𝑞𝐻
2
)

𝑞 .

We obtain that AdvOMUF
B′,ACL ≥ AdvOMUF

A,BSAbe
− 𝑞𝑆 · (𝑞𝑆+𝑞𝐻

2
)

𝑞 .

□

G SECURE SHOWING OF ACL

Theorem G.1. The ACL scheme over a group G where the DLP is
(𝑡, 𝜀)-hard is ℓ-SH secure with

Advℓ-SHBSACL
(A) = 9𝜀 + 12 + 3𝜉 + ℓ + 1

𝑞
+ Advℓ-RTIDACL

(Bℓ-RT)

+AdvBind
PedCom

(BBind)

Proof Overview. Like in the proof of theorem 4.1, we first rule out

some dishonest behaviour of the adversary regarding the algebraic

representations it submits throughout its run.

We then consider two ways in which the adversary could gener-

ate signatures that do not match the commitments it used during

the signing.

The first way is to generate a signature with values 𝜁 , 𝜁1 such

that dlog𝜁 𝜁1 ≠ dlog𝑧 𝑔
rnd𝑖𝐶𝑖 for all 𝑖 . We will show that we can

reduce this case to contradict the Restrictive Tagging Lemma.

The other case is that all signatures can be mapped to signing

sessions, but the adversary provides a vector ®𝐿′ tied to a signa-

ture that does not match the vector ®𝐿 that is used when opening

the commitment 𝐶 used during the signing. In this case, we will

contradict the binding property of the Pedersen commitment.

Proof Sketch. The notation and simplifying assumptions are

as in the proof of theorem 4.1.

We start out from the secure show game and then modify the

game using the same hops (G1 toG10) as in the proof of theorem 4.1.

This yields a modified variant of the game as follows:

• The representations of the commitments𝐶 registered by the

adversary only contain non-zero exponents for𝑔, ℎ0, . . . , ℎ𝑛 .

• The representations of all 𝜁 𝑗 (submitted during hash queries)

that occur in signatures are such that 𝑧
𝑧 [𝜁𝑗 ] = 𝜁 𝑗 .

• For signatures with dlog𝜁 𝜁1 ≠ dlog𝑧 𝑔
rnd𝑖𝐶𝑖 for all 𝑖 , the

representation submitted for 𝜁1 during the hash query 𝑔,

ℎ0, . . . , ℎ𝑛 .

We distinguish two cases.

The first case is that there exists a signature𝜎 = (𝜁 , 𝜁1, 𝜌, 𝜔, 𝜎1, 𝜎2,

𝛿, 𝜇) with dlog𝜁 𝜁1 ≠ dlog𝑧 𝑔
rnd𝑖𝐶𝑖 for all 𝑖 . We denote this by E1. In

this case, we provide a reduction Bℓ-RT that breaks the game ℓ-RT.
Bℓ-RT is identical to the reduction B6 from the proof of theorem 4.1.

We have

Pr[G10 = 1 ∧ E1] ≤ Advℓ-RTIDACL
(Bℓ-RT)

In case all signatures “match”, we consider the outputs of the

adversary. The adversary needs to provide commitments𝐶 = (𝜁 , 𝜁1)
and an opening 𝑟 = (𝛾, rnd′, 𝑅′, ®𝐿′) for each signature.

We note that the value 𝛾 is uniquely defined by 𝜁 . The game

verifies that 𝑧𝛾 = 𝜁 .

By the previous case, we know that 𝑔rnd
′
ℎ𝑅

0

∏𝑛
𝑖=1

ℎ
𝐿′𝑖
𝑖

= 𝑔rnd𝑖𝐶𝑖

for some 𝑖 . Let 𝑅, ®𝐿𝑖 be the opening of 𝐶𝑖 . I.e. it holds that 𝑔
rnd
′
ℎ𝑅
′

0∏𝑛
𝑖=1

ℎ
𝐿′𝑖
𝑖

= 𝑔rnd𝑖ℎ𝑅
0

∏𝑛
𝑖=1

ℎ
𝐿𝑖
𝑖

We note that these are essentially two openings of Generalized

Pedersen commitments with public parameters 𝑔, ℎ0, . . . , ℎ𝑛 .

Thus, we use this adversary to break the binding property of the

generalized Pedersen Commitment by a straightforward reduction

BBind.
We obtain

Pr[G10 = 1 ∧ ¬E1] ≤ AdvBind
PedCom

(BBind)
Plugging in the game hops from theorem 4.1 yields the theorem

statement. □

H DEFERRED FIGURES FROM THE MAIN

BODY
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P V
𝑔, ℎ, 𝑧, 𝑥 𝑔, ℎ, 𝑧,𝑦

rnd←
$
Z𝑞, 𝑧1 ≔ 𝑔rnd

𝑧2 ≔ 𝑧/𝑧1

𝑢,𝑑, 𝑠1, 𝑠2 ←$
Z𝑞

𝑎 ≔ 𝑔𝑢

𝑏1 ≔ 𝑔𝑠1 · 𝑧1

𝑑

𝑏2 ≔ ℎ𝑠2 · 𝑧𝑑
2

rnd,𝑎,𝑏1,𝑏2−−−−−−−−−→
rnd = 0 : output ⊥
𝑧1 ≔ 𝑔rnd

𝑧2 ≔ 𝑧/𝑧1

𝜀←−−−−−−−− 𝜀 ←
$
Z𝑞

𝑐 ≔ 𝜀 − 𝑑 mod 𝑞

𝑟 ≔ 𝑢 − 𝑐𝑥 mod 𝑞
𝑐,𝑑,𝑟,𝑠1,𝑠2−−−−−−−−→

If 𝜀≡𝑐 + 𝑑 ∧ 𝑎≡𝑔𝑟 · 𝑦𝑐 ∧ 𝑏1≡𝑔𝑠1 · 𝑧𝑑
1
∧ 𝑏2≡ℎ𝑠2 · 𝑧𝑑

2
:

output 1
Else: output 0

Figure 4: This figure depicts the interaction between the prover and the verifier in the identification scheme IDACL.�

�

�

�

SACL B′ A H2(B’)
𝐶,𝜋←−−−−−−−−−−−

𝐶,𝜋←−−−−−−−−−−−
𝑑, 𝑠1, 𝑠2, 𝑢, rnd←$

Z𝑞
𝑧1 ≔ 𝐶 · 𝑔rnd, 𝑧2 ≔ 𝑧/𝑧1

𝑎 ≔ 𝑔𝑢

𝑏1 ≔ 𝑔𝑠1 · 𝑧𝑑
1
, 𝑏2 ≔ ℎ𝑠2 · 𝑧𝑑

2

𝑎,𝑏1,𝑏2,rnd−−−−−−−−−→
rnd
′ ←

$
Z𝑞

𝑎,𝑏1,𝑏2,rnd
′

−−−−−−−−−→
rnd
′

−−−−−−−−−−−→
𝑧1 ≔ 𝑔rnd

′ ·𝐶
𝑧1←−−−−−−−−−

𝑒←−−−−−−−−
𝑒←−−−−−−−−

𝑐 ≔ 𝑒 − 𝑑
𝑟 ≔ 𝑢 − 𝑐 · 𝑥

𝑐,𝑑,𝑟,𝑠1,𝑠2−−−−−−−−→
𝑐,𝑑,𝑟,𝑠1,𝑠2−−−−−−−−→

(𝑚,(𝜁 ,𝜁1,𝜌,𝜔,𝜎1,𝜎2,𝜇,𝛿 ) )←−−−−−−−−−−−−−−−−−−−−−−
↓

(𝑚, 𝜁1, (𝜁 , 𝜌, 𝜔, 𝜎1, 𝜎2, 𝜇, 𝛿))

Figure 5: A high-level overview of the reduction B′. It reduces the OMUF security of ACL to the OMUF security of BSAbe. In this

figure, SACL is the challenger’s signer oracle, B’ is the reduction, A is a forger that wins ℓ-OMUF against BSACL, and H2 is the

RO of BSACL, which is simulated by the reduction B’.
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