
Natively Compatible Super-Efficient Lookup
Arguments and How to Apply Them

Matteo Campanelli, Dario Fiore, and Rosario Gennaro

1 Matter Labs
matteo@matterlabs.dev

2 IMDEA Software Institute, Madrid
dario.fiore@imdea.org

3 The City College of New York
rosario@ccny.cuny.edu

Abstract. Lookup arguments allow an untrusted prover to commit to
a vector f ∈ Fn and show that its entries reside in a predetermined ta-
ble t ∈ FN . One of their key applications is to augment general-purpose
SNARKs making them more efficient on subcomputations that are hard
to arithmetize. In order for this “augmentation” to work out, a SNARK
and a lookup argument should have some basic level of compatibility
with respect to the commitment on f . However, not all existing effi-
cient lookup arguments are fully compatible with other efficient general-
purpose SNARKs. This incompatibility can for example occur whenever
SNARKs use multilinear extensions under the hood (e.g. Spartan) but
the lookup argument is univariate in flavor (e.g. Caulk or cq).
In this paper we discuss how to widen the spectrum of “super-efficient”
lookup arguments (where the proving time is independent of the size
of the lookup table): we present a new construction inspired by cq and
based on multilinear polynomial encodings (MLE). Our construction is
the first lookup argument for any table that is also natively compatible
with MLE-based SNARKs at comparable costs with other state-of-the-
art lookup arguments, particularly when the large table is unstructured.
This case arises in various applications, such as using lookups to prove
that the program in a virtual machine is fetching the right instruction
and when proving the correct computation of floating point arithmetic
(e.g., in verifiable machine learning).
We also introduce a second more general construction: a compiler that,
given any super-efficient lookup argument compatible with univariate
SNARKs, converts it into a lookup argument compatible with MLE-
based SNARKs with a very small overhead. Finally, we discuss SNARKs
that we can compose with our constructions, as well as approaches for
this composition to work effectively.

1 Introduction

Lookup arguments are an important building block in modern SNARK construc-
tions. They can be used as a tool to strengthen the efficiency of general-purpose
proof systems [CBBZ23], but also as a tool of their own to construct one from
scratch [AST24, Whi].

Quick background on lookup arguments Given a table T ∈ FN and a
vector f ∈ Fn, we would like to check through a proof whether all the items
in f appear in T . The verifier, in addition to the proof, takes as input succinct
commitments cT and cf respectively to T and f . Verification should run in time
significantly lower than N or n. Typically, these commitments exploit a poly-
nomial encoding of T and f and are based on polynomial commitments such
as [KZG10, PST13]. Very recently there has been a flourishing of lookup con-
structions in literature [CFF+24, ZBK+22a, ZBK+22b, PK22, GK22, Hab22,
ZGK+22, EFG22, GW20, STW24].

Integrating SNARKs and lookup arguments Lookup arguments are use-
ful because they allow one to efficiently prove specific computations. For example
they allow more efficient operations that are non-native to field arithmetic such
as XOR of bit strings or range checks. Range checks are useful to enforce that
a variable w is (say) actually a byte and this can be enforced as a lookup by
enforcing that w is in the table T<256 := 0, 1, . . . , 255. This is in contrast to
having to show 256 bit constraints of the type (wi− 0)(wi− 1) = 0. For the case
of XOR, a lookup consists in checking that a triple (a, b, c) is in the table of all
possible XOR values (x, y, x⊕ y) (for bytes this table is of size 216 = (28)2).

Lookup arguments are thus used as aids to SNARKs for general-purpose
computations. The latter outsources part of the work to the lookup arguments as
in the examples above. In the context of a larger proof we then show knowledge of
a witness w such that some property P (w) holds (proved with a general-purpose
SNARKs) and in addition some subset at indices I of w satisfy a lookup relation
(proved with a lookup argument) which we compactly denote with wI ≺ T .

In order for lookup arguments to be able to work together with SNARKs, they
need to be able to refer to the same witness as the one for which the general
property P is being shown. This is typically done through commitments—a
succinct collision-resistant digest—and by three (idealized) facts: (i) The larger
SNARK will commit to the witness w through a commitment scheme producing
cw; (ii) The lookup argument is able to express statements of the type cf commits
to an f that is contained in the table T ; (iii) Another argument proves that the
content of cf actually refers to the parts of interest—the ones at indices I—in
the witness committed in cw.

For the lookup approach to be cost effective when integrated with SNARKs,
it is crucial that steps (ii) and (iii) are both as cheap as possible. We refer to
this as the challenge of native compatibility, to which we will get back later in
this introduction.

Super-efficient lookup arguments An efficiency measure that is often de-
sirable in lookup arguments is what we call super efficiency. We say a lookup
argument is super-efficient if its proving time is independent of the size of the
table. In particular, after a one-time preprocessing of the table, the prover can
run only in time dependent on the size of the vector being looked up. This prop-
erty makes a difference whenever the table size dominates the size of the witness

2

proven by the general SNARK, and thus of the looked up vector. Use cases where
this occurs are for example the lookup table sizes used for SHA2564 or tables
for wide range checks.

Due to the importance of this property, several lookup arguments in the state
of the art are super-efficient [STW24, CFF+24, ZBK+22a, ZBK+22b, PK22,
GK22, ZGK+22, EFG22]. With the only exception of [STW24], all these lookup
arguments rely on the KZG polynomial commitment. This means that the cf
of steps (ii)–(iii) is a KZG commitment to a univariate polynomial that inter-
polates the vector f . KZG-based lookup arguments have two main advantages:
(a) they exploit special properties of univariate polynomials and pairing-based
verification to achieve super efficiency, and (b) they can be efficiently integrated
with KZG-based SNARKs (e.g., [CHM+20, GWC19]) that are among the most
popular and efficient ones.

If one wishes to integrate a super efficient lookup argument with SNARKs
based on multivariate polynomial commitments (e.g., [Set20, CBBZ23, CGG+23])
the only choice left is the work in [STW24]. The latter though achieves super
efficiency only for tables that present a specific, regular structure.

Therefore, the state of the art presents the following open question:

Can we construct a super-efficient lookup argument for arbitrary tables that is
natively compatible with SNARKs based on multivariate polynomials?

Addressing this question is the main focus of this work.

The challenge of compatibility In the question above we emphasize the
requirement that the solution should be “natively compatible”. This is due to
the wish of implementing the step (iii) above in the cheapest possible way. Oth-
erwise, a straw-man solution could be to pick one of the existing super efficient
lookup arguments where cf is a KZG commitment, and then use the multilinear-
based SNARK to additionally prove the link of step (iii) w.r.t. f in the KZG
commitment cf (e.g., by encoding the commitment computation as a circuit).

One obvious example of the problem of native compatibility in literature
appears in the HyperPLONK paper [CBBZ23]. Here the authors, in order to
achieve compatibility of lookups with multivariate polynomial commitments,
need to redesign the Plookup lookup argument [GW20] (a lookup argument
based on univariate encodings) for the multivariate setting. Through the solu-
tions in this work, we can enable super-efficient lookups to be used in MLE-based
SNARKS such as HyperPlonk and without the efficiency penalty due to the very
general transformation above.

4 The table for SHA256 is of size approximately 216 and requires approximately the
order of the few thousands lookups per input block [hbc]. The number of lookups
stays low in applications where not many hashes are performed. This is not un-
common: see for example proofs of hashing-to-primes in the setting of proving set
membership[BBF19, BCF+21].

3

1.1 Our Contributions

We contribute two constructions: the first one is a “direct” construction, while
the second is a general compiler which effectively yields a family of constructions.

Our first construction, µ-seek: we propose a direct construction of super-
efficient lookup arguments natively compatible with multilinear encodings. This
construction is inspired by cq and we call it µ-seek5. The construction is modular
and can be instantiated with an appropriate multilinear polynomial commitment
scheme (see Section 1.3.1 for a discussion).

The starting point of µ-seek is the technique of cached quotients in cq [EFG22].
The latter is an approach to efficiently compute at proving time a set of “com-
mitted quotients”6 One lens through which to describe our approach is this: by
looking at cq as a “Polynomial IOP”7, it is possible to isolate the polynomial f
encoding the vector being looked up: this is the vector whose polynomial encod-
ing will be provided through a commitment for multilinear polynomials. This
change is not enough by itself. In fact, some of the checks on this polynomial in
cq work through a polynomial equation that leverages the representation of f as
a univariate polynomial commitment. We then need to change how some of these
checks are performed representing them as appropriate sumcheck equations and
porting other polynomial commitments to the multilinear world.

The resulting construction can be seen as a modular version of cq instan-
tiatable with a generic commitment scheme for multilinear polynomials with
minimal requirements. The proving time is mostly dominated by one execution
of the multivariate sumcheck protocol [GKR08] and computing two evaluation
proofs of the multilinear polynomial commitment scheme. In Fig. 1 we describe
a concrete breakdown of the performance of µ-seek when instantiated with the
polynomial commitment obtained by applying the Gemini compiler [BCHO22]
on top of KZG [KZG10].

Our generic compiler: our second contribution consists of a compiler which
on input:

– a super-efficient lookup argument over univariate polynomial commitments;
– a multivariate polynomial commitment;

produces a super-efficient lookup argument over multivariate polynomial com-
mitments. From a technical standpoint the compiler mostly consists of a sub-

5 The name of this construction (pronounced “mee-seek”) is a pun in a style similar
to cq [EFG22]. See also [RA].

6 These quotients are the ones required in a crucial lemma from [Hab22].
7 An abstract, information-theoretic blueprint underlying several efficient SNARKs
where the prover is limited to providing oracle access to polynomials at each round of
interaction with the verifier. Polynomial IOPs [BFS20] are also known—with minor
differences—as Algebraic Holographic Proofs [CHM+20] or—in their most general
version—as Polynomial Holographic IOPs [CFF+21]

4

argument “linking” the two representations (respectively univariate and multi-
variate) of the looked up vector through a multivariate sumcheck. We refer the
reader to Section 4 for a technical overview.

Like µ-seek, our compiler-based lookup argument is modular: it can be in-
stantiated with an arbitrary multilinear polynomial commitment scheme and
with an arbitrary lookup argument—the only compatibility requirement, for ef-
ficiency reasons, is that both work over the same finite field. From the efficiency
standpoint, our compiler has a profile similar to that of µ-seek: both require one
sumcheck and a few proofs of evaluations for committed polynomials. Nonethe-
less, our compiler is slightly less efficient. Its (relatively) worse performance pro-
file comes from its generality: it requires additional checks on top of a black-box
lookup argument, whereas µ-seek is designed to integrate cq’s framework within
a multilinear framework as seamlessly as possible.

Applications to general-purpose SNARKs: One of the applications of
lookup arguments is to support general-purpose SNARKs into efficiently proving
arbitrary computations that are hard to represent as a purely arithmetic set of
constraints. As an additional contribution, we show how to integrate our flavor
of lookup arguments with SNARKs for R1CS (Rank-One Constraint Systems),
a popular form of intermediate representations for circuits. For this purpose, we
introduce a simple intermediate abstraction—projective lookup arguments—and
we show how to instantiate it in two different ways, through existing work and
through simple adaptations of our techniques in specific settings.

1.2 Related Work

Lookup arguments were introduced by Bootle, Cerulli, Groth, Jakobsen and
Maller [BCG+18]. The work of Gabizon andWilliamson [GW20], called Plookup,
sparked an interest in the development of lookup arguments for SNARKs based
on the Kate et al. (commonly known as KZG) polynomial commitment scheme
[KZG10]. In this research line, Caulk [ZBK+22a] by Zapico et al. was the first
to achieve a protocol where the prover complexity depends only logarithmi-
cally on the size of the bigger table, after preprocessing. A rapid sequence of
works improved the prover’s efficiency of lookup arguments for KZG commit-
ments: Caulk+ by Posen and Kattis [PK22], flookup by Gabizon and Khovra-
tovich [GK22], Baloo [ZGK+22] by Zapico et al., and cq by Eagen, Fiore, Gabizon
[EFG22]. cq is among the most efficient and extremely succinct lookup arguments
for arbitrary tables. Relying on the technique of logarithmic derivates of Haböck
[Hab22], it achieves proofs of constant size and a prover complexity proportional
only to the size of the smaller vector. Recently Campanelli et al. [CFF+24]
proposed cq+, a version of cq with even smaller proofs and zero-knowledge ca-
pabilities (among other extensions). All these schemes require preprocessing and
support the lookup of vectors committed using the KZG polynomial commit-
ment, and thus are efficiently applicable to SNARKs based on KZG.

Another important class of SNARKs rely on techniques based on the sum-
check protocol [LFKN90] and multilinear polynomial commitments, e.g., [PST13].

5

To benefit of lookup capabilities, these schemes would need a lookup argument
where the small vector is committed using a multilinear polynomial commitment.
We mention a few works that address this problem. Hyperplonk [CBBZ23] gives
a protocol for lookups inspired to Plookup [GW20]. Haböck [Hab22] introduces
the logarithmic derivatives technique and uses it to construct a lookup argument
that, while asymptotically similar to that of Hyperplonk, is concretely more ef-
ficient, especially for multi-column lookups. In a subsequent work, Papini and
Haböck [PH23] shows a variant of Haböck’s protocol [Hab22] using the GKR
protocol and then extends it work with vectors committed using a univariate
polynomial commitment scheme. All these works, however, have prover com-
plexity linear in the size of the table, and thus fail to achieve the super-efficiency
property which is the goal of this work. Recently, Setty, Thaler and Wahby
[STW24] introduced a new lookup argument, called Lasso, that achieves prover
complexity sub-linear in the size of the table, albeit this holds only for a class
of tables that they call “structured”. In a nutshell, structured tables are tables
that can be succinctly described when encoded with a multilinear polynomial.
Lasso is extremely efficient, and in particular more efficient than cq, for this class
of tables. On the other hand, when it comes to handling arbitrary tables outside
the structured class, Lasso still fails to achieve super efficiency and is therefore
asymptotically slower than our solutions.

The concurrent work in [GNS24] has proposed dual polynomial commitment
schemes which allows to link the opening in a univariate polynomial commitment
with that in a multivariate one. Their techniques are radically different from the
ones we apply in our compiler. We leave as an interesting future work direction
to explore how to combine their approach with ours.

Scheme
Table-specific
Preprocessing

Proof
size

Prover work
group, field

Verifier
work

MLE-
compatible?

Plookup [GW20] – 5G1, 9F O(N), O(N logN) 2P ✗

Halo2 [BGH19] – 6G1, 5F O(N), O(N logN) 2P ✗

Caulk [ZBK+22a] O(N logN) exps 14G1, 1G2, 4F 15m,O
(
m2 +m log(N)

)
4P ✗

Caulk+ [PK22] O(N logN) exps 7G1, 1G2, 2F 8m,O
(
m2

)
3P ✗

flookup [GK22] O
(
N log2 N

)
exps 7G1, 1G2, 4F O(m), O

(
m log2 m

)
3P ✗

Baloo [ZGK+22] O(N logN) exps 12G1, 1G2, 4F 14m,O
(
m log2 m

)
5P ✗

cq+ [CFF+24] O(N logN) exps 7G1, 1F 8m,O(m logm) 5P ✗

Lasso w/ KZG + Gemini
(unstructured table) [STW24]

–
O(logm)G1

Õ (logm)F (c+ 1)m+ cN
1
c , O(m+N)

2P

Õ (logm)F ✓

this work
µ-seek w/ KZG + Gemini

O(N logN) exps
2(logm+ 3)G1

6(logm+ 1)F O(m), O(m)
2P

O(logm)G1
✓

Fig. 1. Comparison among different lookup arguments. Our proof sizes include opti-
mizations through batching techniques. A comparison with Lasso for structured tables
is in Section 1.3.3.

1.3 Discussion

1.3.1 On the generality of our constructions Our two constructions of-
fer some flexibility on the choice of the multivariate polynomial commitment

6

scheme through which to commit the vector to be looked up. For µ-seek the only
constraint this multivariate polynomial commitment mPC needs to satisfy has
to do with the field F of the underlying univariate polynomial commitment uPC
in the construction (KZG). In particular, mPC will have to support the same
field F. A similar constraint holds for our general compiler: mPC needs to be
over the same field as the underlying univariate polynomial commitment in the
lookup argument in input.

There are several instantiation candidates that satisfy these conditions. Pos-
sible candidates include: the multivariate version of KZG, i.e., the PST commit-
ment scheme [PST13]; the commitment scheme obtained by applying the Gemini
compiler to KZG [BCHO22]; the Testudo polynomial commitment [CGG+23];
any field-agnostic multivariate polynomial commitment scheme like Orion [XZS22]
or Brakedown [GLS+23].

1.3.2 SNARKs compatible with our constructions The promise of na-
tively compatible lookup arguments is to easily augment general purpose SNARKs
with lookups through easy “plug-and-play” composition8. Our work proposes
constructions that are compatible with SNARKs where the proof includes a mul-
tivariate polynomial commitment to the witness, i.e., the proof can be parsed
as a (cm, πrst) where cm is a commitment to the witness through a multivariate
polynomial commitment mPC.

We cite two such examples of constructions with this property. One is Hy-
perPLONK [CBBZ23], a multivariate version of PLONK. Here we can apply the
µ-seek construction instantiated with whichever mPC we use as underlying poly-
nomial commitment scheme for HyperPLONK (e.g., KZG+Gemini). Another
example is Testudo [CGG+23], a hybrid of Groth16 [Gro16], Spartan [Set20]
and Inner Product Arguments [BMM+21] with short CRSs and optimized for
data-parallel computations. Here we can apply µ-seek instantiated with the Tes-
tudo polynomial commitment scheme as mPC.

1.3.3 Detailed comparison with Lasso For the general case of “unstruc-
tured” tables, we have pointed out that Lasso has a cost profile that grows
linearly with the table size N in terms of field operations, and sublinearly in
terms of group operations (O(cN1/c) for an arbitrary constant c). These group
operations, it should be noted, are mostly exponentiations with small exponents.
In the case of “structured” tables9 Lasso will avoid this linear cost, but will still
pay O(cN1/c) group operations (again, with the caveat above about the size of
the exponents). On the other hand, our construction µ-seek, thanks to prepro-
cessing, has proving time which is independent of N . Because our protocol is

8 This approach has been explicitly studied and successfully applied in several
works [CHA22, CFF+21, ABC+22, CHAK23, FT22, CFQ19, AGM18, BCF+21,
CFH+22].

9 Loosely defined as tables that have a succinct representation allowing the verifier to
evaluate the multilinear extension of T on its own.

7

heavier in group operations than Lasso, it is hard to estimate where this asymp-
totic advantage translates in a real advantage in practical applications, especially
in the case of unstructured tables where Lasso is already sublinear.

We remark, however, that there are several interesting applications that could
benefits from efficient lookups over unstructured tables. One is floating point
arithmetic, which is particularly relevant in the case of verifiable machine learn-
ing (a table of size 232 for 16-bit floating point arithmetic)10. Another is using
lookups to implement fetching the next instruction in a zkVM program: in this
case the table is the sequence of instructions and could be arbitrary.

Outline of this paper

In Section 2 we present preliminaries on some of the abstractions we will adopt
(the language of commit-and-prove SNARKs and polynomial commitments for-
malized under that language) as well as background on some of our basic tech-
niques, including multivariate sumchecks. In Section 3 we present our main con-
struction, µ-seek. Our generic compiler is presented in Section 4. In Section 5
we describe methods to augment SNARKs for R1CS with some of the lookup
arguments presented in this paper.

2 Preliminaries

2.1 Notation

We denote the security parameter by λ and a negligible function by negl(λ). If
m ∈ N we denote by [m] the set {1, 2, . . . ,m}. If X = (X1, . . . , Xµ) is a vector

of µ formal variables and I ⊆ [µ] then we denote by XI the monomial
∏

i∈I Xi.

2.2 Commit-and-Prove SNARKs [CFQ19]

A commitment scheme is a tuple of algorithm CS = (KGen,Com) where the
first algorithm samples a commitment key ck and the second algorithm, upon
input of the commitment key, a message p and opening material o, outputs a
commitment c. The basic notions of security for the commitment scheme are
(perfect) hiding and (computational) binding. The former property states that
no (unbounded) adversary can distinguish commitments of two different mes-
sages when the opening materials are sampled at random from their domain,
the latter property states that no (polynomial time) adversary, upon input of
the commitment key, can find two different messages and two opening materials
that commit to the same commitment. We will not require hiding in this work.

Following Groth et al.[GKM+18], we define a relation R verifying triple
(pp;x;w). We say that w is a witness to the instance x being in the relation
defined by the parameters pp when (pp;x;w) ∈ R (equivalently, we sometimes

10 While it is conceivable that this table could be expressed in a more succinct way, we
are not aware of ways of doing it.

8

write R(pp;x;w) = 1). For example, the parameters pp could be the description
of a bilinear group, or additionally contain a commitment key for a commitment
scheme or a common reference string. Whenever it is clear of the context, we
will write R(x;w) as a shortcut for R(pp;x;w).

Briefly speaking, Commit-and-Prove SNARKs (CP-SNARKs) are zkSNARKs
whose relations verify predicates over commitments [CFQ19]. Given a commit-
ment scheme CS, we consider relations R whose instances are of the form x =
((cj)j∈[ℓ], x̂), where we can unambiguously parse the witness w = ((pj)j∈[ℓ], (oj)j∈[ℓ])
for some ℓ ∈ N with ∀j : pj is in the domain of a commitment scheme CS, and

such that there exists a polynomial time relation R̂ such that for ŵ = (pj)j∈[ℓ]

and pp a tuple that includes the commitment key ck of CS:

R(pp;x;w) = 1 ⇐⇒ R̂(pp; x̂; ŵ) = 1 ∧ ∀j ∈ [ℓ] : cj = Com(ck, pj , oj).

We refer to a relation R̂ as derived above as a Commit-and-Prove (CP) rela-
tion. Given a CP-relation R̂ and a commitment scheme CS, we can easily derive
the associated NP-relation R. Instances of NP-relations may contain only com-
mitments. Therefore, using the notation above, the instances of the associated
CP-relation are empty strings ε, namely, R̂ is a predicate over the commit-
ted witness. To avoid cluttering the notation, in these cases, we may omit the
(empty) instance and simply write R̂(pp, ŵ).

A CP-SNARK for R̂ over a commitment scheme CS is a zkSNARK for the
associated relation R as described above. More in detail, we consider a tuple of
algorithms CP = (Setup,Prove,Verify) where:

– Setup(ck) → srs is a probabilistic algorithm that takes as input a commit-
ment key ck for CS and it outputs srs := (ek, vk, pp), where ek is the evalua-
tion key, vk is the verification key, and pp are the parameters for the relation
R (which include the commitment key ck).

– Prove(ek, x, w)→ π takes an evaluation key ek, a statement x, and a witness
w such that R(pp, x, w) holds, and returns a proof π.

– Verify(vk, x, π)→ b takes a verification key, a statement x, and either accepts
(b = 1) or rejects (b = 0) the proof π. The length of vkind is poly(λ, log |ind|).

In some cases, the Setup algorithm would simply (and deterministically) re-parse
the commitment key ck information. In these cases, we might omit Setup and
refer to the CP-SNARK as a tuple of two algorithms.

We require a CP-SNARK to be correct and knowledge sound.

Definition 1 (Correctness). A CP-SNARK is correct if for any pp, x, w such
that R(pp, x, w) = 1 then

Pr

ck← CS.KGen(1λ, d); srs← CP.Setup(ck);

π ← CP.Prove(srs, pp, x, w);

CP.Verify(srs, pp, x, π) = 1

 = 1

9

Definition 2 (Knowledge Soundness). A CP-SNARK is knowledge extractableif
for any PPT adversary A, there exists a polynomial-time (not necessarily uni-
form) extractor E such that:

Pr

ck← CS.KGen(1λ, d); srs← CP.Setup(ck);

(x, π)← A(srs);w ← E(srs)
CP.Verify(srs, x, π) = 1 ∧ ¬R(pp, x, w)

 ≤ negl(λ)

Indexed Relations and Universal CP-SNARKs We extend the notion
of relations to indexed relations [CHM+20]. We define a polynomial-time in-
dexed relation R verifying tuple (pp, ind, x, w). We say that w is a witness to
the instance x being in the relation defined by the pp and index ind when
(pp, ind, x, w) ∈ R (equivalently, we sometimes write R(pp, ind, x, w) = 1).

Briefly, we say that a CP-SNARK is universal if there exists a determinis-
tic algorithm Derive that takes as input an srs and an index ind, and outputs a
specialized reference string srsind = (vkind, ekind) where vkind is a succinct verifi-
cation key and ekind is a proving key for such an index. Moreover, we require that
the verifier Verify (resp. the P) of a Universal CP-SNARK takes as additional
input the specialized verification key vkind (resp. the specialized ekind).

Consider the relation R′ such that R′(pp, (ind, x), w) ⇐⇒ R(pp, ind, x, w),
the tuple of algorithms (KGen,Prove,Verify′) is an argument system for the re-
lation R′ and Verify′ is the algorithm that upon input srs, instance (ind, x) and
a proof π, first runs Derive on srs and index ind, then runs Verify(vkind, x, π).

2.3 Lookup arguments

We formalize lookup arguments as CP-SNARKs for the indexed relation

Rlookup := {(t; ĉf ; (f , of)) : f ≺ t ∧ cf = Com(ck, f , of)}

where we write f ≺ t to compactly denote that there exists a (multi) set K =
{k1, . . . , kn} ⊆ [N] such that for every j ∈ [n] f j = tkj

.

2.4 Polynomial Commitment Schemes

We define polynomial commitments using the CP-SNARKs framework. We will
not require hiding properties from the commitments schemes. Below F denotes a
finite field which will be defined by the context in which we use them. We assume
that parameters of the polynomials being committed (such as maximum degree
or maximum number of variables) are determined by an appropriate function of
the security parameters λ.

Definition 3 (Univariate polynomial commitment). A univariate polyno-
mial commitment scheme is a pair (uPC,CPu) where:

10

– uPC = (KGen,Com) is a binding commitment scheme whose message space
is F<d[X] where d is a function of the security parameter λ.

– CPu is a CP-SNARK over uPC for the relation Reval(x, y; p) := “p(x) = y”.

Definition 4 (Multilinear polynomial commitment). A multilinear poly-
nomial commitment scheme is a pair (mPC,CPm) where:

– mPC = (KGen,Com) is a binding commitment scheme whose message space
is F[X1, . . . , Xµ] of multivariate polynomials of individual degree 1 where µ
is a function of the security parameter λ.

– CPm is a CP-SNARK over mPC for the evaluation relation Reval((xi)i∈[µ], y; p) :=
“p(x1, . . . , xµ) = y”.

For mPC we overload notation and use it to commit to vectors by writing
mPC.Com(ck, f) as a shortcut notation formPC.Com(ck, f̃) where f̃ ∈ F[X1, . . . , Xµ]
is the unique multilinear extension of vector f ∈ Fn, i.e., the unique polynomial
such that for all b ∈ {0, 1}µ we have f̃(b) = f∑

j bj2j , with µ = log n.

2.5 (Vanilla) Sumcheck Protocol

Let p(X1 . . . , Xµ) be a multilinear11 polynomial in µ variables defined over a
field F. Consider the value a =

∑
b∈{0,1}µ p(b), i.e., the sum of the value of p

on all the vertices of the Boolean hypercube. This computation takes n = 2µ

time and the sumcheck protocol [LFKN90] described in Figure 2, is a way for a
Prover to convince a Verifier that a is correct in O(µ) time, plus a single query
to the polynomial p on a random point in Fµ.

2.6 Generalized Sumcheck Protocol

In the previous section we described a sumcheck protocol for the case where
the verifier has oracle access to the polynomial in the sum. In some cases, this
polynomial will not be available “directly” to the verifier. This is the case, for
example, if the verifier is interesting in checking the sum∑

b

(p(b) + γ) · q(b) · f(b) + f ′(b) · t(b) (1)

where p, q, t are polynomials for which the verifier has a commitment, γ is a
public value and f, f ′ are public polynomials that the verifier can compute on
their own.

Here we define a sumcheck protocol for the generalized sumcheck relation
for expressions like the above and that allows for committed polynomials. The

11 We only care about multilinear polynomials for the context of this work but the sum-
check protocol can be run on any multivariate polynomial (with a different efficiency
profile).

11

1. P sends the univariate polynomial p1(X) =
∑

b∈{0,1}µ−1 p(X,b).

2. V checks that p1(0) + p1(1) = a and sends back r1 ∈R F.
3. P sends the polynomial p2(x) =

∑
b∈{0,1}µ−2 p(r1, X,b).

4. V checks that p2(0) + p2(1) = p1(r1) and sends back r2 ∈R F.
...
5. At round j P sends the polynomial pj(X) =∑

b∈{0,1}µ−j p(r1, . . . , rj−1, X,b).

6. V checks that pj(0) + pj(1) = pj−1(rj−1) and sends back rj ∈R F.
...
7. At the last round P sends the polynomial pµ−1(x) = p(r1, . . . , rµ−1, X).
8. V checks that pµ−1(0) + pµ−1(1) = pµ−2(rµ−2), selects rµ ∈R F and

checks that pµ−1(rµ) = p(r1, . . . , rµ) via a single query to p.

Fig. 2. The Sumcheck Protocol

relation is parametrized by a (multilinear) polynomial commitment PC and is
defined as follows:

RSC (pp, y, f1, . . . , fd,J1, . . . ,Jd, c1, . . . , cℓ; g1, . . . , gℓ) :=∑
b∈{0,1}µ

 d∑
k=1

fk (b) ·
∏
j∈Jk

gj (b)

∧
c1 = PC.Commit(pp, g1) ∧ · · · ∧ cℓ = PC.Commit(pp, gℓ)

Above, d is a natural number, the fk-s are public multilinear polynomials and
the Jk are subsets of [ℓ]. All these elements are used to describe the public ex-
pression12 (such as the one in Eq. (1)) on which we are performing the sumcheck.

A protocol for RSC is described in Fig. 3. This protocol is folklore. For its
security analysis we refer the reader to [CFQ19, Section 5.2].

Remark 1 (On Notation for proving/verifying RSC). The formal description of
the statements for RSC is quite involved when expressed through the subsets
Jk as above. Nonetheless the expressions proved are often simple enough and
their formal representation should be immediate to the reader. For this reason,
in our protocols, we adopt a more readable solution whenever proving/verifying
RSC: we simply provide a description of the expression we are proving in the
pseudocode and make explicit the public/witness inputs to be passed to the
SNARK algorithms.

12 In our pseudocode, whenever using the generalized sumcheck, we will use a simpler
notation that should make the expression obvious from the context. We present the
formal version here for sake of completeness.

12

1. P and V run the protocol in Fig. 2 with polynomial p(X) :=∑d
k=1 fk (X) ·

∏
j∈Jk

gj (X). On the last round, since the verifier has
no direct access to p it proceeds to compute p(r1, . . . , rµ) through the
following steps.

2. P sends V the tuples (yi, πi)i∈[ℓ] where yi = gi(r1, . . . , rµ) and πi is a
polynomial evaluation proof that yi = gi(r1, . . . , rµ).

3. V checks each pair (yi, πi) with respect to commitment ci
4. V computes y∗ =

∑d
k=1 fk (r1, . . . , rµ) ·

∏
j∈Jk

yj and checks that y∗ =
pµ−1(rµ) (where pµ−1 is defined as in Fig. 2)

Fig. 3. The Generalized Sumcheck Protocol for RSC.

Proof size The proof size of the protocol in Fig. 3 is

ℓ · |πmPC|+ µ(ℓ+ 2)|F|+ ℓ|F|

where |πmPC| is the size of one opening proof for the multilinear polynomial
commitment.

3 Our Construction µ-seek

In this section we describe our construction µ-seek of a lookup argument for
multilinear polynomial commitments. Namely, given a commitment scheme mPC
for multilinear polynomials, µ-seek is a CP-SNARK for the following indexed
relation

Rlookup := {(t; ĉf ; f) : f ≺ t, ĉf = mPC.Com(ck, f)} (2)

Remark 2. In the relation above we do not explicitly include N and n, the table
and lookup vector size in order to simplify notation. These are, however, assumed
to be parameters of the relation and can be embedded in the evaluation and
verification keys.

The main ingredients of our construction are:

– The commitment scheme mPC for multilinear polynomials with µ = log n
variables. This is the scheme we use for committing to the vectors of which we
want to test lookup relations (and thus also the vectors to be used in larger
SNARK protocols). To commit to a vector f we use its unique multilinear
extension f̃ (see below).

– A CP-SNARK CPSC for the generalized sumcheck relation over polynomials
committed with mPC. As mentioned in Section 2.6, CPSC can be in turn
realized from a CP-SNARK CPm for the basic polynomial evaluation func-
tionality.

13

– The KZG polynomial commitment for univariate polynomials of degree < N .
We use KZG to commit to the table t and store this commitment in the
verification key vkt for the indexed relation defined by t. We commit to t
using Lagrange interpolation over a multiplicative subgroup K ⊂ F of order
N . We emphasize that KZG is not the main commitment scheme of µ-seek;
it rather acts as an auxiliary building block for our protocol.

For these building blocks to work together we only require that mPC supports
polynomials over the same finite field F used in KZG.

Notation and preliminaries For a vector v ∈ Fn, its multilinear extension,
denoted ṽ, is the unique polynomial that evaluates to v on the boolean hy-
percube, i.e., for µ = log n, ṽ ∈ F[X1, . . . , Xµ] such that for all b ∈ {0, 1}µ
ṽ(b) = f∑

j bj2j .

To commit a vector with mPC we use multilinear extensions; nevertheless
we abuse notation and write mPC.Com(ck,v) as a shortcut for mPC.Com(ck, ṽ)
where ṽ is v’s multilinear extension.

Let K ⊂ F be a multiplicative subgroup of order N , and let ω be a fixed
generator of K. Then we denote by ν K(X) = (XN −1) the vanishing polynomial
of K, and by λK

j (X) = ν K(X)ωj−1
N /(N(X − ωj−1

N)) the Lagrange polynomials

of K. To commit to a vector t ∈ FN with KZG, we use the polynomial T(X) =∑
j tj · λK

j (X).

We use the univariate sumcheck lemma from Aurora [BCR+19] and the fol-
lowing lemma from [Hab22].

Lemma 1 (Univariate Sumcheck, [BCR+19]). Let H be multiplicative sub-
group of F of order n. For any P (X) of degree < n we have∑

i

P (ωi
n) = n · P (0)

Lemma 2 (Set inclusion, [Hab22]). Let F be a field of characteristic p > N ,
and suppose that (ai)

N
i=1, (bi)

N
i=1 are arbitrary sequences of field elements. Then

{ai} ⊆ {bi} as sets (with multiples of values removed), if and only if there exists
a sequence (mi)i=1 of field elements from Fp ⊆ F such that∑N

i=1
1

X−ai
=

∑N
i=1

mi

X−bi
(3)

in the function field F(X). Moreover, we have equality of the sets {ai} = {bi},
if and only if mi ̸= 0, for every i = 1, . . . , N .

Bilinear groups Finally, our construction relies on type-3 bilinear groups
that are defined by a tuple (q,G1,G2,GT , e, P1, P2) where G1,G2 and GT are
groups of prime order q, and we set F = Zq. P1, P2 are generators of G1,G2.
e : G1 × G2 → GT is an efficiently-computable non-degenerate bilinear map,
and there is no efficiently computable isomorphism between G1 and G2. We

14

use the implicit notation [a]i := aPi, for elements in Gi, i ∈ {1, 2, T} and set
PT := e(P1, P2).

For security we rely that in these groups the Power Discrete Logarithm as-
sumption, defined below, holds.

Definition 5 (Power Discrete Logarithm [Lip12]). Let d1(λ), d2(λ) ∈
poly. The (d1, d2)-PDL (Power Discrete Logarithm) assumption holds in the
group described by (q,G1,G2,GT , e, P1, P2) if for any non-uniform PPT A,

Advpdld1,d2,A(λ) := Pr
[
s←$ F∗ : A

(
pp,

[
(si)d1

i=0

]
1
,
[
(si)d2

i=0

]
2

)
= s

]
= negl(λ) .

Finally, we prove the security of our construction in the algebraic group
model [FKL18]. An algorithm A is called algebraic if for all group elements that
A outputs, it additionally provides the representation relative to all previously
received group elements. That is, if h ∈ GN

i is the list of group elements received
by A, then for any group element z ∈ Gi returned in output, the adversary must
also provide a vector c ∈ FN such that z = ⟨c,h⟩.

Our protocol The protocol is described in Figure 4. Below we provide a tex-
tual description of its main steps along with some intuitive explanations.

Setup We assume a universal SRS that consists of an SRS for KZG, srsKZG =
(
[
(sj)N−1

j=0

]
1
,
[
(sj)Nj=0

]
2
), and an SRS srsmPC for the mPC scheme.

Derivation We encode the table t in the univariate polynomial

T(X) :=

N∑
j=1

= tjλ
K
j (X)

we store its KZG commitment [T(s)]2 (in group G2), and then we compute the
cached quotients of T(X) (using the O(N logN) algorithm of [EFG22]):

[Qj(s)]1 where Qj(X) :=
(T(X)− tj)λ

K
j (X)

ν K(X)
.

Additionally we precompute the commitments
[
rKj (s)

]
1
to the polynomials rKj (X) =

(λK
j (X) − λK

j (0))/X, which help computing a KZG evaluation proof on 0 for
sparse polynomials in Lagrange basis.

Prover The first steps of the prover algorithm closely follow the cq protocol:

– the prover commits to the sparse vectorm of multiplicities, such that
∑N

j=1
mi

ti+X =∑n
j=1

1
f i+X ;

15

– the verifier sends a random challenge β. Then, the prover’s goal is showing∑N
j=1

mi

tj+β =
∑n

j=1
1

f i+β (4)

This is done by committing to vectors a, b such that

aj =
mj

tj+β and bi =
1

f i+β . (5)

The commitment to a is done using KZG, i.e., by committing to the in-
terpolation A(X) of a over K, that is [A(s)]1. This is like in [EFG22]. The
commitment to b is done using the multilinear commitment mPC, which
differs from cq.

To prove (4), we perform the following steps:

1. Prove that [A(s)]1 is wellformed, that is ∀j = 1...N , A(ωj−1)(T(ωj−1)+β) =
M(ωj−1), or equivalently A(X)(T(X)+β) = M(X) mod ν K(X). Following
cq, we commit to the quotientQA(X) inO(n) time, using the cached quotient
technique, i.e., compute [QA(s)]1 relying on the precomputed [Qj(s)]1.

2. Compute z ←
∑N

j=1 aj =
∑n

i=1 bi

3. Prove that z =
∑N

j=1 A(ωj−1). By relying on the univariate sumcheck lemma

and the fact that the SRS imposes deg(A) < N , we have
∑N

j=1 A(ωj−1) =
N ·A(0).

4. Prove that ĉb is wellformed w.r.t. ĉf . The idea is to reduce it to a sumcheck
statement on the multilinear polynomials f̃(X) and b̃(X) that encode f and
b respectively. Namely, we want to prove

∀h ∈ {0, 1}µ : b̃(h)(f̃(h) + β) = 1

which we can test, using a random challenge ρ ←$ Fµ, as the following
sumcheck

0 =
∑

h∈{0,1}µ

(b̃(h)(f̃(h) + β)− 1)χ(ρ,h)

where χ(X,h) :=
∏µ

j=1((1−Xj)(1−hj)+Xjhj) is the multilinear extension

of the identity function that returns 1 on X = h and 0 on a boolean h′ ̸= h.
5. Prove that z =

∑n
i=1 bi. This is a standard sumcheck to show that

z =
∑

h∈{0,1}µ

b̃(h)

As an optimization, we batch the last two steps above, with a random chal-
lenge τ ←$ F, into a single sumcheck:

z =
∑

h∈{0,1}µ

b̃(h) + τ · χ(ρ,h) · (b̃(h) · (f̃(h) + β)− 1)

16

Setup(1λ, N, n):

s←$ F; srsKZG = (
[
(sj)N−1

j=0

]
1
,
[
(sj)Nj=0

]
2
);

srsmPC ←$ mPC.Setup(1λ, log n)

Derive(srs, t):

Define T(X) :=
∑N

j=1 = tjλ
K
j (X);

Let

{
rKj (X) =

λK
j (X)−λK

j (0)

X , Qj(X) =
(T(X)−tj)λ

K
j (X)

ν K(X)

}
j∈[N]

;

Compute ekt :=
[
(λK

j (s), r
K
j (s), Qj(s))

N
j=1

]
1
; vkt := ([1, s, ν K(s),T(s)]2 , t)

Return (ekt, vkt).

Prove(ekt, ĉf , f):
m← (m1, . . . ,mN) s.t. ∀j : tj appears mj times in f ;

[M(s)]1 ←
∑N

j=1 mj ·
[
λK
j (s)

]
1
; // KZG-commit to m

Send [M(s)]1;
Get β ←$ F;
Let aj ← mj/(tj + β) ∀j = 1, . . . , N and bi ← 1/(f i + β) ∀i = 1, . . . , n;

[A(s)]1 ←
∑N

j=1 aj
[
λK
j (s)

]
1
; // KZG-commit to a = (a1, . . . , aN)

ĉb ← mPC.Com(srsmPC,b); // mPC-commit to b = (b1, . . . , bn)

Prove wellformedness of A(X)
[QA(s)]1 ←

∑
mj ̸=0 aj · [Qj(s)]1; // QA(X) = (A(X)(T(X) + β)−M(X))/ν K(X)

z ←
∑

mj ̸=0 aj // z =
∑N

j=1 A(ωj−1) = N ·A(0)

[A′(s)]1 ←
∑

mj ̸=0 aj ·
[
rKj (s)

]
1
// A′(X) = (A(X)−A(0))/X = (A(X)− z/N)/X

Send ([A(s), QA(s), A
′(s)]1 , z, ĉb);

Get ρ←$ Fµ, τ ←$ F;
Prove wellformedness of b and that z =

∑n
i=1 bi via the following sumcheck

z =
∑

h∈{0,1}µ b̃(h) + τ · χ(ρ,h) · (b̃(h) · (f̃(h) + β)− 1)

πSC ← CPSC .Prove(srsmPC,RSC, (z, χ(ρ,X), β, τ, ĉb, ĉf), (f ,b))
Return π = ([M(s), A(s), QA(s), A

′(s)]1 , z, ĉb, πSC).

Verify(vkt, cf , π): Return 1 if and only if the following holds:

(i) e([A(s)]1 , [T(s)]2 + [β]2) = e([M(s)]1 , [1]2) · e([QA(s)]1 , [ν K(s)]2),

(ii) e([A(s)− z/N]1 , [1]1) = e([A′(s)]1 , [s]2),

(iii) Verify(srsmPC, (z, χ(ρ,X), β, τ, ĉb, ĉf), πSC) = 1

Fig. 4. Our lookup argument µ-seek.

Proof size. The proof size of our protocol is

4|G1|+ 3|F|(log n+ 2) + 1|CmPC|+ 2|πmPC|

where |CmPC| and |πmPC| are respectively the size of the commitment and
opening proof in the multilinear polynomial commitment.

Theorem 1. If mPC is an extractable commitment scheme, CPSC is a CP-
SNARK for mPC and the generalized sumcheck relation RSC, and the power-

17

discrete logarithm (PDL) assumption holds, then the protocol µ-seek in Figure 4
is knowledge-sound in the AGM and ROM.

Proof. Consider an algebraic adversary A that, after interacting with the honest
verifier, returns: a commitment ĉf , a valid proof

π = ([M(s), A(s), QA(s), A
′(s)]1 , z, ĉb, πSC)

and algebraic explanations for each group element consisting of the polynomials

M(X), A(X), QA(X), A′(X) ∈ F[X] of degree < N.

For every A we can also define the adversary ASC that runs A and then out-
puts the commitments ĉf , ĉb, the description (z, χ(ρ,X), β, τ) of the generalized
sumcheck statement, and the proof πSC returned by A. By the extractability
of mPC and the knowledge-soundness of CPSC , for every ASC there exists a
corresponding extractor ExtSC that returns openings f ,b for the commitments
ĉf , ĉb.

We define the extractor ExtA as the algorithm that runs ExtSC and then
outputs the opening f for ĉf .

To prove knowledge soundness for (A,ExtA), notice that M(X), f do not
depend on β,ρ, τ , while A(X), QA(X), A′(X),b do not depend on ρ, τ . The
independence follows by the fact that they can be extracted prior to receiving
those random challenges.

Consider the polynomials

V1(X) := A(X)(T(X) + β)−M(X)−QA(X)ν K(X),

V2(X) := A(X)− z/N −XA′(X)

Since A returns a valid proof, by the verification equation ((i)) (resp. ((ii))) we
have V1(s) = 0 (resp. V2(s) = 0). If either V1(X) ̸= 0 or V2(X) ̸= 0, we can make
a reduction that computes s and breaks the PDL problem.

Therefore, let us continue assuming that both V1(X) and V2(X) are zero.
From V1(X) = 0 we get

A(X)(T(X)+β) = M(X) mod ν K(X) ⇐⇒ ∀j ∈ [N] : A(ωj−1) =
M(ωj−1)

(T(ωj−1) + β)

From V2(X) = 0 we get that A(X) − z/N is divisible by X which, in com-
bination with the fact that A(X) is of degree < N and the univariate sumcheck

lemma, yields that z = N ·A(0) =
∑

j A(ωj−1) =
∑

j
M(ωj−1)

T(ωj−1)+β .

On the other hand, from the knowledge soundness of the sumcheck proof we
have that z =

∑
h∈{0,1}µ b̃(h) + τ · χ(ρ,h) · (b̃(h) · (f̃(h) + β)− 1).

By the independence of f̃ , b̃, z on ρ, τ the above sumcheck implies (except
with negligible probability (µ+ 1)/|F|)

z =
∑

h∈{0,1}µ

b̃(h) ∧ ∀h ∈ {0, 1}µ : b̃(h) = (f̃(h) + β)−1

18

namely z =
∑

h∈{0,1}µ
1

(f̃(h)+β)
.

Putting things together, we have reached∑
j∈[N]

M(ωj−1)

tj + β
=

∑
i∈[n]

1

f i + β

and since M(X), f , t do not depend on the random challenge β, the following
equality holds ∑

j

M(ωj−1)

tj +X
=

∑
i

1

f i +X

which by the inclusion lemma implies f ≺ t. ⊓⊔

4 Our Generic Construction

In this section we present our generic construction of a lookup argument for
multilinear polynomial commitments, based on one for univariate polynomial
commitments.

The building blocks of our construction are:

– The commitment scheme mPC for multilinear polynomials with µ = log n
variables and coefficients in F. We assume that srsmPC is a universal SRS for
mPC and for all the CP-SNARKs for this commitment scheme.

– A CP-SNARK CPSC for the generalized sumcheck relation over polynomials
committed with mPC.

– A commitment scheme uPC for univariate polynomials of degree < n and
coefficients in F. We assume that srsuPC is a universal SRS for uPC and for
all the CP-SNARKs for this commitment scheme.

– A CP-SNARK CPu for the evaluation of univariate polynomials committed
with uPC.

– A super-efficient lookup argument for uPC, that is a CP-SNARK CPlookup

for the relation

Rlookup := {(t; cf ; (f , of)) : f ≺ t ∧ cf = uPC.Com(srsuPC, f)}

where uPC.Com(ck, f) denotes committing to the Lagrange interpolation of
f over a domain H of size n.

Our protocol The construction is described in full detail in Fig. 5. Here we
describe its main ideas.

In this protocol, the prover holds a commitment ĉf to the vector f in multi-
linear encoding (i.e., a commitment to the multilinear extension of f). Then the
main idea is that the prover: (a) generates a commitment cf to the univariate
polynomial that interpolates f over a domain H, (b) uses the (super-efficient)
lookup argument to prove the lookup relation w.r.t. cf , (c) proves that cf and
ĉf commit to the same vector.

19

To address (c), we use a random point σ to test that

f(σ) =
∑

h∈{0,1}µ

f̃(h) · λH∑
j hj2j

(σ)

The left-hand side of the equation can be proven via a standard polynomial
evaluation that y = f(σ).

For the right-hand side, we proceed as follows. First, the prover commits in
ĉr to the multilinear extension of the vector r = (λH

1 (σ), . . . , λ
H
n(σ)). Second, it

proves that y =
∑n

i=1 f i · ri with standard sumcheck for inner products

y =
∑

h∈{0,1}µ

f̃(h)r̃(h)

Third, it proves that ĉr is wellformed as follows. For every i ∈ [n] it holds

ri = λH
i (σ) =

ωi−1(σn−1)
n(σ−ωi−1) , which can be reduced to the following statement

∀h ∈ {0, 1}µ : r̃(h)n(σ − ω̃(h)) = ω̃(h)(σn − 1)

w.r.t. the multilinear polynomials r̃(X) and ω̃(X), which are the multilinear
extensions of r and ω = (ωi−1)ni=1 respectively13.

By using a random challenge ρ←$ Fµ we reduce the statement above to the
following sumcheck

0 =
∑

h∈{0,1}µ

(r̃(h)(σ − ω̃(h))− ω̃(h)n(σn − 1))χ(ρ,h)

Finally, we optimize and batch the two sumchecks, with a random challenge
τ ←$ F, into a single sumcheck:

y =
∑

h∈{0,1}µ

f̃(h)r̃(h) + τ · χ(ρ,h) · (r̃(h)n(σ − ω̃(h))− ω̃(h)(σn − 1))

Proof size. The proof size of our generic protocol is

1|CuPC|+ 3|F|(log n+ 2) + 1|CmPC|+ 4|πmPC|+ 1|πuPC-lu|

where |CuPC| is the size of the commitment in the univariate polynomial
commitment, |CmPC| and |πmPC| are respectively the size of the commitment
and opening proof in the multilinear polynomial commitment, |πuPC-lu| is the
size of the lookup argument for univariate polynomial commitments.

Remark 3 (Batching optimizations in our constructions). We stress that in con-
struction in Fig. 4 (resp. Fig. 5) one is able to avoid the full size and verification
cost of the two (resp. four) multilinear evaluation proofs if the underlying poly-
nomial commitment supports batching.

20

Let srs := (srsuPC, srsmPC)

Derive(srs, N, n, t):
(ekt, vkt)← CPlookup.Derive(srsuPC, N, n, t)
ĉω ← mPC.Com((1, ω, . . . , ωn−1))

Return (êkt, v̂kt) := (ekt, (vkt, ĉω)).

Prove(êkt, ĉf , f):

f(X) :=
∑n

i=1 = f iλ
H
i (X)

cf ← uPC.Com(srsuPC, f(X))
πuPC-lu ← CPlookup.Prove(ekt, cf , f) Prove lookup for the univariate polynomial encod-
ing
Prove that cf and ĉf commit to the same vector f
Send (cf , πuPC-lu);
Get σ ←$ F;
Compute y ←

∑n
i=1 = f i · λH

i (σ) = f(σ)
πf ← CPu.Prove(srsuPC, cf , σ, y, f(X)) Prove that y = f(σ)
ĉr ← mPC.Com(r) where r := (λH

1 (σ), . . . , λ
H
n(σ))

Send (y, πf , ĉr);
Get ρ←$ Fµ, τ ←$ F;
Prove linking of ĉf to cf via the following sumcheck

y =
∑

h∈{0,1}µ f̃(h)r̃(h) + τ · χ(ρ,h) · (r̃(h)n(σ − ω̃(h))− ω̃(h)(σn − 1))

πSC ← CPSC .Prove(srsmPC,RSC, (y, χ(ρ,X), σ, τ, ĉr, ĉf , ĉω), (f , r,ω))
Return π = (cf , πuPC-lu, y, ĉr, πf , πSC).

Verify(vkt, cf , π): Return 1 if and only if the following holds:

(i) CPlookup.Verify(v̂kt, cf , πuPC-lu) = 1

(ii) CPu.Verify(srsuPC, (y, σ), cf , πf) = 1

(iii) CPSC .Verify(srsmPC,RSC, (y, χ(ρ,X), σ, τ, ĉr, ĉf , ĉω), πSC) = 1

Fig. 5. Our generic lookup argument for multilinear polynomials.

Theorem 2. If mPC is an extractable commitment scheme, CPSC is a CP-
SNARK for mPC and the generalized sumcheck relation RSC, CPu is a CP-
SNARK for uPC and polynomial evaluations, and CPlookup is a CP-SNARK for
uPC for Rlookup, then the protocol in Figure 5 is knowledge-sound in the ROM.

Proof. Consider an adversary A that, after interacting with the honest verifier,
returns: a commitment ĉf and a valid proof

π = (cf , πuPC-lu, y, ĉr, πf , πSC)

For every A we can define the adversary AmPC that runs A until the first
round and then outputs ĉf . By the extractability of mPC, for AmPC there is
an extractor ExtmPC that outputs a valid opening f̃ of ĉf with overwhelming
probability.

13 A commitment to ω, which only depends on the size n of the vector, can be created
during the preprocessing phase.

21

We define the extractor ExtA as the algorithm that runs Extlookup and then

outputs the opening f̃ for ĉf .
To prove that the pair (A,ExtA) satisfies knowledge soundness, we also define

the following additional extractors.
First, for every A we define the adversary Alookup that runs A until the first

round and then outputs cf , πuPC-lu. By the knowledge-soundness of CPlookup, for
every Alookup there is a corresponding extractor Extlookup that returns a polyno-
mial f(X) that, with overwhelming probability, is a valid opening for cf and
whose encoded vector f (i.e., such that f(X) =

∑n
i=1 f i · λH

i (X)) satisfies f ≺ t.
Second, we define ACPu

that runs A until the second round and then outputs
cf and proof πf . By the knowledge-soundness of CPu there is an extractor ExtCPu

that returns a polynomial f ′(X) that, with overwhelming probability, is a valid
opening for cf and such that y = f ′(σ).

Third, we define the adversary ASC that runs A until the end and returns the
commitments ĉf , ĉr, the description (y, χ(ρ,X), σ, τ) of the generalized sumcheck
statement, and the proof πSC . By the knowledge-soundness of CPSC , for every
ASC there exists a corresponding extractor ExtSC that returns f̃ ′, r̃ that are
valid openings for the commitments ĉf , ĉr and are consistent with the generalized
sumcheck statement.

By the computational binding of the commitment schemes we can exclude
that f(X) ̸= f ′(X), f̃ ̸= f̃ ′.

Next, we notice that f̃ , f(X) do not depend on σ,ρ, τ , while r̃ does not
depend on ρ, τ (the same holds clearly for ω). The independence follows by the
fact that they can be extracted prior to receiving those random challenges.

From the knowledge soundness of the sumcheck proof we have that

y =
∑

h∈{0,1}µ

f̃(h)r̃(h) + τ · χ(ρ,h) · (r̃(h)n(σ − ω̃(h))− ω̃(h)(σn − 1)).

By the independence of f̃ , r̃, y (and the rest of the statement) on ρ, τ , the
above sumcheck implies

y =
∑

h∈{0,1}µ

f̃(h)r̃(h) ∧ ∀h ∈ {0, 1}µ : r̃(h) =
ω̃(h)(σn − 1)

n(σ − ω̃(h))

namely y =
∑

h∈{0,1}µ f̃(h) · λH∑
j hj2j

(σ).

Putting things together, we have reached

f(σ) =

n∑
i=1

f̂ i · λH
i (σ)

where f̂ is the vector represented by the multilinear polynomial f̃ . Since f(X), f̃
do not depend on the random challenge σ, the following identity

f(X) =

n∑
i=1

f̂ i · λH
i (X) ⇐⇒ f = f̂

holds with probability 1− n/|F|. ⊓⊔

22

5 Lookup arguments and general-purpose SNARKs

In this section we are interested in augmenting proof systems for rank-1 con-
straint systems (R1CS) with lookup capabilities.

We briefly recap the definition of R1CS:

Definition 6 (R1CS). An R1CS relation RR1CS is defined by three matrices
A,B,C ∈ Fm×(ℓ+n) and accepts (x,w) ∈ Fℓ × Fn such that, for z = (x,w),

(A · z) ◦ (B · z) = (C · z)

The augmented constraint system we want to support is the following:

Definition 7. Let A,B,C be matrices describing an R1CS with witness of size
n, let I ⊆ [n] and let t be a lookup table. We define the relation RR1CS+lookup

such that

(x,w) ∈ RR1CS+lookup ⇐⇒ (x,w) ∈ RR1CS ∧wI ≺ t

where wI denotes the subvector of w restricted to the indices in I.

We can build a (CP) SNARK for RR1CS+lookup by using the following building
blocks:

– A commitment scheme mPC for multilinear polynomials.
– A CP-SNARK ΠR1CS over commitment scheme mPC for RR1CS.
– A CP-SNARK Πprj-lkup over commitment scheme mPC for the projective

lookup relation Rprj-lkup defined as follows: (⊥,w) ∈ Rprj-lkup ⇐⇒ wI ≺ t
where14 t and I parametrize the relation and are respectively a lookup table
and a subset of [n] where n denotes the size of w (this argument is what we
call a projective lookup in this section).

The proof of the following theorem follows immediately from the CP-SNARK
properties of its building blocks (see [CFQ19, Section 3.2]).

Theorem 3. The construction in Fig. 6 is a CP-SNARK for RR1CS+lookup (Def-
inition 7).

Below we discuss two ways to add projective properties to existing lookup
arguments.

5.1 Projective lookups from indexed lookups.

The first method to build a CP-SNARK for Rprj-lkup is to create a commitment
cf to the subvector f = wI , run a CP-SNARK for lookup with cf (to prove that
f ≺ t) and then use a CP-SNARK for indexed lookups to prove that f = wI

w.r.t. commitments cw an cf . An indexed lookup can be realized via one for
proving that f = M ·w for an appropriately defined projection matrix M, see
e.g., [STW24, RZ21].

14 Notice that from the definition of the relation the public input of the CP-SNARK
verification algorithm is a commitment to w and not to wI . This specific feature
makes our first construction particularly simple.

23

Prove(ek = (ekR1CS, ekprj-lkup), x;w):

cw ← mPC.Com(srsmPC, w̃) // commit to the MLE of w
πR1CS ← ΠR1CS.Prove(ekR1CS,x;w)
πprj-lkup ← Πprj-lkup.Prove(ekprj-lkup;w)
return (πR1CS, πprj-lkup)

Verify(vk = (vkR1CS, vkprj-lkup),x, cw, (πR1CS, πprj-lkup)):

return 1 ⇐⇒
ΠR1CS.Verify(vkR1CS,x, cw, πR1CS) ∧Πprj-lkup.Verify(vkprj-lkup, cw, πprj-lkup)

Fig. 6. Our construction for augmented R1CS relations through projective lookups.
Key generation and derivation algorithm are not described in figure: they simply consist
in running the key generation of ΠR1CS and Πprj-lkup and returning the concatenation of
their outputs.

5.2 How to convert our constructions into projective lookups.

In alternative to the method described above, we show how to turn a lookup
argument into a projective one in the case of subsets I ⊆ [n] that have a sim-
ple representation through a wildcard pattern.15 In such a case, we support
projective lookups without introducing more commitments, at virtually no over-
head. For example the subset I := {i : 1 ≤ i ≤ 2

µ
2 } ⊆ [2µ] can be repre-

sented through the wildcard pattern 00 . . . 00︸ ︷︷ ︸
µ/2

⋆ ⋆ · · · ⋆ ⋆︸ ︷︷ ︸
µ/2

since each bit replace-

ment of the ⋆-s corresponds to the binary representation of an integer j such
that j+1 ∈ I. On the other hand there is no such wildcard pattern for a subset
like I ′ := {00 . . . 00︸ ︷︷ ︸

µ

, 11 . . . 11︸ ︷︷ ︸
µ

}.

We now capture these intuitions formally:

Definition 8 (Wildcard pattern). Let µ ∈ N. A wildcard pattern P of size
µ is a vector in {0, 1, ⋆}µ (e.g., the string 00010 ⋆ 1⋆). We denote by κ(P) the
number of star symbols (⋆) in the pattern P. Given a binary string b ∈ {0, 1}κ(P),
we denote by b ⊔ P the binary string obtained by replacing the ⋆-s in P with the
bits in b in order (e.g., 001⊔110⋆1⋆1⋆→ 11001011, where the replaced positions
are underlined). We will also extend this notation u ⊔ P in the natural way to
the case where the vector u is of arbitrary field elements (rather than bits only).

Definition 9 (Wildcard-expressible subset). Let n ∈ N where n = 2µ. Let
I ⊆ [n]. We say that I is wildcard-expressible if there exists a wildcard pattern PI

15 In the application of lookups to R1CS, such wildcard representation of the set I may
be achieved by appropriately rearranging the indices of the lookup gates.

24

of length µ such that we can represent each element of I as a string “matched”
by PI (most-significant bit on the left), i.e., if

∀i ∈ I ∃b ∈ {0, 1}κ(P) : i = 1 +

µ∑
j=1

2µ−j · zj , where z := b ⊔ PI

The key observation we will use to make our lookup arguments “projective”
is that for a wildcard-expressible subset I we can describe w̃I—the MLE of
the subvector wI of w (its restrictions to indices i ∈ I)—through a partial
evaluation of w̃ on the non-wildcard characters. More formally, let I ⊆ [n] be a
wildcard-expressible subset with associated pattern PI , let w ∈ Fn be a vector,

wI ∈ F2κ(PI)

the I-subvector of w, and let w̃ and w̃I be their respective MLE.
Then for any x ∈ Fκ(PI) it holds w̃I(x) = w̃(x ⊔ PI).

Given the observation above, we can turn both our constructions for Rlookup

of Sections 3 and 4 into constructions for RR1CS+lookup. For RR1CS+lookup, let us
assume that the prover holds a commitment cw to the vector w and wishes to
prove that wI ≺ t. Then we let the prover algorithm work in the same way by
setting f = wI and by “simulating” f̃(x) = w̃I(x) as w̃(x ⊔ PI) following the
observation above. From the point of view of the verifier, the only change is that,
whenever it needs to verify an evaluation of f̃ on point x w.r.t. the commitment
cw, the verifier runs CPm’s verification on the augmented point x ⊔ PI .

Acknowledgements

We thank Justin Thaler for fruitful discussions about the cost profile of Lasso and
applications of unstructured tables. We also thank Dario Catalano and Emanuele
Giunta who contributed to discussions during the early stages of this work.
Finally, we thank Helger Lipmaa for useful comments on the presentation of our
results.

References

ABC+22. Diego F. Aranha, Emil Madsen Bennedsen, Matteo Campanelli, Chaya
Ganesh, Claudio Orlandi, and Akira Takahashi. ECLIPSE: Enhanced
compiling method for pedersen-committed zkSNARK engines. In Goichiro
Hanaoka, Junji Shikata, and Yohei Watanabe, editors, PKC 2022, Part I,
volume 13177 of LNCS, pages 584–614. Springer, Heidelberg, March 2022.

AGM18. Shashank Agrawal, Chaya Ganesh, and Payman Mohassel. Non-interactive
zero-knowledge proofs for composite statements. In Hovav Shacham and
Alexandra Boldyreva, editors, CRYPTO 2018, Part III, volume 10993 of
LNCS, pages 643–673. Springer, Heidelberg, August 2018.

AST24. Arasu Arun, Srinath T. V. Setty, and Justin Thaler. Jolt: SNARKs for
virtual machines via lookups. In Marc Joye and Gregor Leander, editors,
EUROCRYPT 2024, Part VI, volume 14656 of LNCS, pages 3–33. Springer,
Heidelberg, May 2024.

25

BBF19. Dan Boneh, Benedikt Bünz, and Ben Fisch. Batching techniques for accu-
mulators with applications to IOPs and stateless blockchains. In Alexandra
Boldyreva and Daniele Micciancio, editors, CRYPTO 2019, Part I, volume
11692 of LNCS, pages 561–586. Springer, Heidelberg, August 2019.

BCF+21. Daniel Benarroch, Matteo Campanelli, Dario Fiore, Kobi Gurkan, and Dim-
itris Kolonelos. Zero-knowledge proofs for set membership: Efficient, suc-
cinct, modular. In Nikita Borisov and Claudia Dı́az, editors, FC 2021,
Part I, volume 12674 of LNCS, pages 393–414. Springer, Heidelberg, March
2021.

BCG+18. Jonathan Bootle, Andrea Cerulli, Jens Groth, Sune K. Jakobsen, and Mary
Maller. Arya: Nearly linear-time zero-knowledge proofs for correct pro-
gram execution. In Thomas Peyrin and Steven Galbraith, editors, ASI-
ACRYPT 2018, Part I, volume 11272 of LNCS, pages 595–626. Springer,
Heidelberg, December 2018.

BCHO22. Jonathan Bootle, Alessandro Chiesa, Yuncong Hu, and Michele Orrù. Gem-
ini: Elastic SNARKs for diverse environments. In Orr Dunkelman and Ste-
fan Dziembowski, editors, EUROCRYPT 2022, Part II, volume 13276 of
LNCS, pages 427–457. Springer, Heidelberg, May / June 2022.

BCR+19. Eli Ben-Sasson, Alessandro Chiesa, Michael Riabzev, Nicholas Spooner,
Madars Virza, and Nicholas P. Ward. Aurora: Transparent succinct ar-
guments for R1CS. In Yuval Ishai and Vincent Rijmen, editors, EURO-
CRYPT 2019, Part I, volume 11476 of LNCS, pages 103–128. Springer,
Heidelberg, May 2019.

BFS20. Benedikt Bünz, Ben Fisch, and Alan Szepieniec. Transparent SNARKs
from DARK compilers. In Anne Canteaut and Yuval Ishai, editors, EU-
ROCRYPT 2020, Part I, volume 12105 of LNCS, pages 677–706. Springer,
Heidelberg, May 2020.

BGH19. Sean Bowe, Jack Grigg, and Daira Hopwood. Halo: Recursive proof com-
position without a trusted setup. Cryptology ePrint Archive, Report
2019/1021, 2019. https://eprint.iacr.org/2019/1021.

BMM+21. Benedikt Bünz, Mary Maller, Pratyush Mishra, Nirvan Tyagi, and Psi
Vesely. Proofs for inner pairing products and applications. In Mehdi Ti-
bouchi and Huaxiong Wang, editors, ASIACRYPT 2021, Part III, volume
13092 of LNCS, pages 65–97. Springer, Heidelberg, December 2021.

CBBZ23. Binyi Chen, Benedikt Bünz, Dan Boneh, and Zhenfei Zhang. HyperPlonk:
Plonk with linear-time prover and high-degree custom gates. In Carmit
Hazay and Martijn Stam, editors, EUROCRYPT 2023, Part II, volume
14005 of LNCS, pages 499–530. Springer, Heidelberg, April 2023.

CFF+21. Matteo Campanelli, Antonio Faonio, Dario Fiore, Anäıs Querol, and
Hadrián Rodŕıguez. Lunar: A toolbox for more efficient universal and up-
datable zkSNARKs and commit-and-prove extensions. In Mehdi Tibouchi
and Huaxiong Wang, editors, ASIACRYPT 2021, Part III, volume 13092
of LNCS, pages 3–33. Springer, Heidelberg, December 2021.

CFF+24. Matteo Campanelli, Antonio Faonio, Dario Fiore, Tianyu Li, and Helger
Lipmaa. Lookup arguments: Improvements, extensions and applications to
zero-knowledge decision trees. In Qiang Tang and Vanessa Teague, edi-
tors, PKC 2024, Part II, volume 14602 of LNCS, pages 337–369. Springer,
Heidelberg, April 2024.

CFH+22. Matteo Campanelli, Dario Fiore, Semin Han, Jihye Kim, Dimitris Kolone-
los, and Hyunok Oh. Succinct zero-knowledge batch proofs for set accu-

26

https://eprint.iacr.org/2019/1021

mulators. In Heng Yin, Angelos Stavrou, Cas Cremers, and Elaine Shi,
editors, ACM CCS 2022, pages 455–469. ACM Press, November 2022.

CFQ19. Matteo Campanelli, Dario Fiore, and Anäıs Querol. LegoSNARK: Modu-
lar design and composition of succinct zero-knowledge proofs. In Lorenzo
Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan Katz, editors,
ACM CCS 2019, pages 2075–2092. ACM Press, November 2019.

CGG+23. Matteo Campanelli, Nicolas Gailly, Rosario Gennaro, Philipp Jovanovic,
Mara Mihali, and Justin Thaler. Testudo: Linear time prover snarks with
constant size proofs and square root size universal setup. In Interna-
tional Conference on Cryptology and Information Security in Latin Amer-
ica, pages 331–351. Springer, 2023.

CHA22. Matteo Campanelli and Mathias Hall-Andersen. Veksel: Simple, efficient,
anonymous payments with large anonymity sets from well-studied assump-
tions. In Yuji Suga, Kouichi Sakurai, Xuhua Ding, and Kazue Sako, editors,
ASIACCS 22, pages 652–666. ACM Press, May / June 2022.

CHAK23. Matteo Campanelli, Mathias Hall-Andersen, and Simon Holmgaard Kamp.
Curve trees: Practical and transparent {Zero-Knowledge} accumulators. In
32nd USENIX Security Symposium (USENIX Security 23), pages 4391–
4408, 2023.

CHM+20. Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Psi Vesely,
and Nicholas P. Ward. Marlin: Preprocessing zkSNARKs with universal
and updatable SRS. In Anne Canteaut and Yuval Ishai, editors, EURO-
CRYPT 2020, Part I, volume 12105 of LNCS, pages 738–768. Springer,
Heidelberg, May 2020.

EFG22. Liam Eagen, Dario Fiore, and Ariel Gabizon. cq: Cached quotients for
fast lookups. Cryptology ePrint Archive, Report 2022/1763, 2022. https:
//eprint.iacr.org/2022/1763.

FKL18. Georg Fuchsbauer, Eike Kiltz, and Julian Loss. The algebraic group model
and its applications. In Hovav Shacham and Alexandra Boldyreva, editors,
CRYPTO 2018, Part II, volume 10992 of LNCS, pages 33–62. Springer,
Heidelberg, August 2018.

FT22. Dario Fiore and Ida Tucker. Efficient zero-knowledge proofs on signed data
with applications to verifiable computation on data streams. In Heng Yin,
Angelos Stavrou, Cas Cremers, and Elaine Shi, editors, ACM CCS 2022,
pages 1067–1080. ACM Press, November 2022.

GK22. Ariel Gabizon and Dmitry Khovratovich. flookup: Fractional
decomposition-based lookups in quasi-linear time independent of table size.
Cryptology ePrint Archive, Report 2022/1447, 2022. https://eprint.

iacr.org/2022/1447.
GKM+18. Jens Groth, Markulf Kohlweiss, Mary Maller, Sarah Meiklejohn, and Ian

Miers. Updatable and universal common reference strings with applications
to zk-SNARKs. In Hovav Shacham and Alexandra Boldyreva, editors,
CRYPTO 2018, Part III, volume 10993 of LNCS, pages 698–728. Springer,
Heidelberg, August 2018.

GKR08. Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. Delegating
computation: interactive proofs for muggles. In Richard E. Ladner and
Cynthia Dwork, editors, 40th ACM STOC, pages 113–122. ACM Press,
May 2008.

GLS+23. Alexander Golovnev, Jonathan Lee, Srinath T. V. Setty, Justin Thaler,
and Riad S. Wahby. Brakedown: Linear-time and field-agnostic SNARKs

27

https://eprint.iacr.org/2022/1763
https://eprint.iacr.org/2022/1763
https://eprint.iacr.org/2022/1447
https://eprint.iacr.org/2022/1447

for R1CS. In Helena Handschuh and Anna Lysyanskaya, editors,
CRYPTO 2023, Part II, volume 14082 of LNCS, pages 193–226. Springer,
Heidelberg, August 2023.

GNS24. Chaya Ganesh, Vineet Nair, and Ashish Sharma. Dual polynomial commit-
ment schemes and applications to commit-and-prove SNARKs. Cryptology
ePrint Archive, Paper 2024/943, 2024. https://eprint.iacr.org/2024/

943.
Gro16. Jens Groth. On the size of pairing-based non-interactive arguments. In

Marc Fischlin and Jean-Sébastien Coron, editors, EUROCRYPT 2016,
Part II, volume 9666 of LNCS, pages 305–326. Springer, Heidelberg, May
2016.

GW20. Ariel Gabizon and Zachary J. Williamson. plookup: A simplified poly-
nomial protocol for lookup tables. Cryptology ePrint Archive, Report
2020/315, 2020. https://eprint.iacr.org/2020/315.

GWC19. Ariel Gabizon, Zachary J. Williamson, and Oana Ciobotaru. PLONK:
Permutations over lagrange-bases for oecumenical noninteractive argu-
ments of knowledge. Cryptology ePrint Archive, Report 2019/953, 2019.
https://eprint.iacr.org/2019/953.

Hab22. Ulrich Haböck. Multivariate lookups based on logarithmic derivatives.
Cryptology ePrint Archive, Report 2022/1530, 2022. https://eprint.

iacr.org/2022/1530.
hbc. halo2 book contributors. The halo2 book. 16-bit table chip for

sha-256. https://zcash.github.io/halo2/design/gadgets/sha256/

table16.html#16-bit-table-chip-for-sha-256.
KZG10. Aniket Kate, Gregory M. Zaverucha, and Ian Goldberg. Constant-size

commitments to polynomials and their applications. In Masayuki Abe,
editor, ASIACRYPT 2010, volume 6477 of LNCS, pages 177–194. Springer,
Heidelberg, December 2010.

LFKN90. Carsten Lund, Lance Fortnow, Howard J. Karloff, and Noam Nisan. Al-
gebraic methods for interactive proof systems. In 31st FOCS, pages 2–10.
IEEE Computer Society Press, October 1990.

Lip12. Helger Lipmaa. Progression-free sets and sublinear pairing-based non-
interactive zero-knowledge arguments. In Ronald Cramer, editor,
TCC 2012, volume 7194 of LNCS, pages 169–189. Springer, Heidelberg,
March 2012.

PH23. Shahar Papini and Ulrich Haböck. Improving logarithmic derivative
lookups using GKR. Cryptology ePrint Archive, Paper 2023/1284, 2023.
https://eprint.iacr.org/2023/1284.

PK22. Jim Posen and Assimakis A. Kattis. Caulk+: Table-independent lookup
arguments. Cryptology ePrint Archive, Report 2022/957, 2022. https:

//eprint.iacr.org/2022/957.
PST13. Charalampos Papamanthou, Elaine Shi, and Roberto Tamassia. Signatures

of correct computation. In Amit Sahai, editor, TCC 2013, volume 7785 of
LNCS, pages 222–242. Springer, Heidelberg, March 2013.

RA. Rick and Morty Wiki Authors. Mr. meeseeks. rick and morty wiki. https:
//rickandmorty.fandom.com/wiki/Mr._Meeseeks.

RZ21. Carla Ràfols and Arantxa Zapico. An algebraic framework for univer-
sal and updatable SNARKs. In Tal Malkin and Chris Peikert, editors,
CRYPTO 2021, Part I, volume 12825 of LNCS, pages 774–804, Virtual
Event, August 2021. Springer, Heidelberg.

28

https://eprint.iacr.org/2024/943
https://eprint.iacr.org/2024/943
https://eprint.iacr.org/2020/315
https://eprint.iacr.org/2019/953
https://eprint.iacr.org/2022/1530
https://eprint.iacr.org/2022/1530
https://zcash.github.io/halo2/design/gadgets/sha256/table16.html#16-bit-table-chip-for-sha-256
https://zcash.github.io/halo2/design/gadgets/sha256/table16.html#16-bit-table-chip-for-sha-256
https://eprint.iacr.org/2023/1284
https://eprint.iacr.org/2022/957
https://eprint.iacr.org/2022/957
https://rickandmorty.fandom.com/wiki/Mr._Meeseeks
https://rickandmorty.fandom.com/wiki/Mr._Meeseeks

Set20. Srinath Setty. Spartan: Efficient and general-purpose zkSNARKs with-
out trusted setup. In Daniele Micciancio and Thomas Ristenpart, editors,
CRYPTO 2020, Part III, volume 12172 of LNCS, pages 704–737. Springer,
Heidelberg, August 2020.

STW24. Srinath T. V. Setty, Justin Thaler, and Riad S. Wahby. Unlocking the
lookup singularity with Lasso. In Marc Joye and Gregor Leander, edi-
tors, EUROCRYPT 2024, Part VI, volume 14656 of LNCS, pages 180–209.
Springer, Heidelberg, May 2024.

Whi. Barry Whitehat. Lookup singularity. https://zkresear.ch/t/

lookup-singularity/65/7.
XZS22. Tiancheng Xie, Yupeng Zhang, and Dawn Song. Orion: Zero knowledge

proof with linear prover time. In Yevgeniy Dodis and Thomas Shrimpton,
editors, CRYPTO 2022, Part IV, volume 13510 of LNCS, pages 299–328.
Springer, Heidelberg, August 2022.

ZBK+22a. Arantxa Zapico, Vitalik Buterin, Dmitry Khovratovich, Mary Maller, Anca
Nitulescu, and Mark Simkin. Caulk: Lookup arguments in sublinear time.
In Heng Yin, Angelos Stavrou, Cas Cremers, and Elaine Shi, editors, ACM
CCS 2022, pages 3121–3134. ACM Press, November 2022.

ZBK+22b. Arantxa Zapico, Vitalik Buterin, Dmitry Khovratovich, Mary Maller,
Anca Nitulescu, and Mark Simkin. Caulk: Lookup arguments in sublin-
ear time. Cryptology ePrint Archive, Report 2022/621, 2022. https:

//eprint.iacr.org/2022/621.
ZGK+22. Arantxa Zapico, Ariel Gabizon, Dmitry Khovratovich, Mary Maller, and

Carla Ràfols. Baloo: Nearly optimal lookup arguments. Cryptology ePrint
Archive, Report 2022/1565, 2022. https://eprint.iacr.org/2022/1565.

29

https://zkresear.ch/t/lookup-singularity/65/7
https://zkresear.ch/t/lookup-singularity/65/7
https://eprint.iacr.org/2022/621
https://eprint.iacr.org/2022/621
https://eprint.iacr.org/2022/1565

	Natively Compatible Super-Efficient Lookup Arguments and How to Apply Them
	Introduction
	Our Contributions
	Related Work
	Discussion

	Preliminaries
	Notation
	Commit-and-Prove SNARKs CCS:CamFioQue19
	Lookup arguments
	Polynomial Commitment Schemes
	(Vanilla) Sumcheck Protocol
	Generalized Sumcheck Protocol

	Our Construction -seek
	Our Generic Construction
	Lookup arguments and general-purpose SNARKs
	Projective lookups from indexed lookups.
	How to convert our constructions into projective lookups.

