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Abstract

The Internet has plenty of images that are transformations (e.g., resize, blur) of confidential original
images. Several scenarios (e.g., selling images over the Internet, fighting disinformation, detecting deep
fakes) would highly benefit from systems allowing to verify that an image is the result of a transformation
applied to a confidential authentic image.

In this paper, we focus on systems for proving and verifying the correctness of transformations of
authentic images guaranteeing: 1) confidentiality (i.e., the original image remains private), 2) efficient
proof generation (i.e., the proof certifying the correctness of the transformation can be computed with a
common laptop) even for high-resolution images, 3) authenticity (i.e., only the advertised transformations
have been applied) and 4) fast detection of fraud proofs.

Our contribution consists of the following results:

• We present new definitions following in part the ones proposed by Naveh and Tromer [IEEE S&P
2016] and strengthening them to face more realistic adversaries.

• We propose techniques leveraging the way typical transformations work to then efficiently instanti-
ate ZK-snarks circumventing the major bottlenecks due to claims about large pre-images of cryp-
tographic hashes.

• We present a 1st construction based on an ad-hoc signature scheme and an and-hoc cryptographic
hash function, obtaining for the first time all the above 4 properties.

• We present a 2nd construction that, unlike in previous results, works with the signature scheme
and cryptographic hash function included in the C2PA specifications.

Experimental results confirm the viability of our approach: in our 1st construction, an authentic trans-
formation (e.g., a resize or a crop) of a high-resolution image of 30 MP can be generated on a common
8 cores PC in about 41 minutes employing less than 4 GB of RAM. Our 2nd construction is roughly
one order of magnitude slower than our 1st construction. Prior results instead either require expensive
computing resources or provide unsatisfying confidentiality.

1 Introduction

There is a flourish market of web services selling high-resolution images over the Internet (e.g., Getty Images,
Shutter Stock and Deposit Photos). Such markets typically work as follows. The possessor of an image I

∗Some of the results presented in this work were initially presented in a preliminary form in September 2023 during Cross-
ing Conference [DVVZ23] and in March 2024 at Real World Crypto Symposium [DVVZ24]. The contributions presented
in [DVVZ23] also include preliminary results (that are not part of this paper) on a decentralized media marketplace through
smart contracts, a use case only briefly mentioned in [DVVZ24].
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first computes a downgraded version Î of I and then makes Î publicly available, keeping I private to preserve
its economic value and/or to protect some sensitive content. The process to obtain a downgraded version
of I consists of applying some transformations to (at least some parts of) I. For example, in some cases
(e.g., adult sites and/or images of murders) images are cropped and resized in order to respect the sensitivity
of possible viewers, as remarked in [KHSS22, DB23]. A user receiving and visualizing Î might believe or
not that Î is the output of some claimed transformations on some original image, mainly depending on the
reputation of the publisher of the transformed image.

The above scenario motivates the need of proving the correctness of a transformation (according to some
advertised operations) of a private authentic image I into an image Î that is made publicly available. The
proof should be such that: a) only the advertised operations have been applied to a private authentic image
I of an author identified by a public key pk and b) there is no leak of information about I.

Attested cameras and the C2PA standard. Being the author of an image associated to a public key,
also a camera can be considered an author willing to guarantee the authenticity of a picture (i.e., it is not a
deepfake).

Attested cameras are digital cameras with the additional capability to digitally sign a photo to ensure
its authenticity. These cameras contain specific tamper-resistant cryptographic hardware to protect the
entire signing process, (i.e., it is unfeasible to produce signed images that were not taken by the camera).
Today, such cameras exist and can be purchased on the market (e.g., the Leica M11-P or the Sony Alpha
1). Moreover, with the recent interest of leading tech companies (e.g., Microsoft, Google) it is expected that
this technology will be at some point available also on smartphones.

In 2021, an alliance including Adobe, Arm, Intel, Microsoft and Truepic established the project C2PA
(Coalition for Content Provenance and Authenticity: https://c2pa.org) to create a common standard for
certifying the provenance of media content. C2PA proposes a design to verify image provenance that relies
on signatures produced by attested cameras. Cameras would digitally sign each photo along with a series
of assertions about the photo (e.g., location, timestamp). The work of C2PA has focused primarily on how
information is stored within digital media, describing its format and the algorithms to be used. Specifically,
for the digital signature, the standard explicitly suggests to use SHA256 every time a cryptographic hash is
involved. According to C2PA, the digital content corresponding to a picture is enriched by a data structure,
called “manifest”, in which the digital signature and the cryptographic hash of the image is included, plus
other information (e.g., metadata).

C2PA-enabled editing applications. The C2PA specifications also includes post-processing operations
through compatible editing applications. These applications append to the metadata of an edited image the
original image and the editing operations. A verifier of the edited image first verifies the signature on the
original image and then verifies that the operations carried out on the edited image are the ones stated and
signed by the editing application. Unfortunately, as correctly observed in [DB23], using these applications
raises a significant concern. It is necessary to trust the signature process within the editing software. In
case an adversary extracts the signing key from the editing software (or in case there is a bug inside the
software), the adversary can compute a valid signature certifying false edits, therefore circumventing the
desired authenticity guarantees. Hence, C2PA-enabled editing applications are full-fledged trusted third
parties, and such single points of failures can be severely exploited by adversaries.

Risks of relying on trusted third parties (TTPs). Verifying that an image Î is an authentic transfor-
mation of some hidden image I created by an author is trivial in a centralized setting, relying on TTPs. In
general, it is preferable to avoid or minimize the involvement of TTPs and reputation systems in order to
allow a large-scale infrastructure that makes convenient and safe the access to such features (both as seller
and buyer) to everyone. Indeed, beyond being potentially expensive, a TTP is a point of failure, if corrupted
(e.g., under attack) it can behave maliciously, raising two obvious risks: a) the verification via a TTP could
not detect a fake image; b) the confidentiality of the image I uploaded to the servers of the TTP could be
compromised.

Leveraging zero-knowledge (ZK) proofs. An alternative approach through ZK proofs: the possessor of
I and its signature will publish only Î, adding a ZK proof to certify the operations that generated Î starting
from an image signed by an advertised author pk. This approach is exploited in recent works of Datta and
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Boneh [DB23] and of Kang et al. [KHSS22] on fighting disinformation, starting from encouraging initial
results of Naveh and Tromer [NT16]. They leverage the use of succinct ZK proofs (ZK-snarks) allowing
very fast verification. However, when taking into account the cryptographic hash function H used in the
traditional hash-and-sign paradigm, it turns out that there are very demanding hardware requirements for
generating a ZK-snark proving properties of a large pre-image of an output of H.

In order to limit those excessive requirements, the authors of [DB23, KHSS22] propose the use of ad-
hoc ZK-friendly cryptographic hash functions (e.g., Lattice Hash and Poseidon Hash in [DB23], Poseidon
Hash in [KHSS22]), therefore deviating from what is currently specified in the C2PA standard (i.e., SHA256).
Interestingly, achieving a practical proof generation that can be computed by a cheap computer is particularly
challenging, and not satisfied by [DB23, KHSS22], even using their ad-hoc cryptographic hashing that
deviates from what is specified in the C2PA standard. Indeed, for the computation of such a proof, when the
size of the original image I increases, their approaches require very uncommon hardware, currently available
either on the cloud or through very expensive devices This implies that the image possessor has either to
make significant investments to get expensive hardware or to rely again on TTPs that have on-cloud the
necessary computational resources (e.g., Amazon Web Service (AWS), Google Cloud, Azure). Both cases
severely limit the large-scale secure applicability of such results. Moreover, uploading the picture to the
cloud service compromises the confidentiality of the original image I.

Relaxing trust in such external services is currently an important and active research direction. For
instance, Garg et al. [GGJ+23], propose a solution to outsource proof computation across multiple servers
guaranteeing the privacy of the prover’s witness. In [CLMZ23], the authors proposed a protocol to enable a
prover to outsource proof generation to a set of workers so that if some of them are honest then no private
information is leaked. Both approaches leave confidentiality at risk (e.g., in case many/all servers/workers
collude), and moreover, relying on the work of several respectful workers/servers leads to high costs and/or
risks of unavailability. Another direction proposes to outsource the computation in a blind fashion, therefore
preserving confidentiality [GGW24] but at the cost of expensive cryptographic tools.

Open Problem. The main question addressed by our work concerns the possibility of designing a system
that allows the possessor of a signed image I to compute an authentic transformation Î so that everyone
can check the authenticity of Î through a proof that informally gives the following guarantees: a) the proof
preserves the confidentiality of the original image; b) the proof should be computable on a common laptop
(specifically, at the time of writing, 16 GB of RAM and a CPU with 6 cores can be considered a widely
spread configuration1); 3) the proof should guarantee authenticity of Î in a strong sense, admitting a forgery
only with negligible probability; 4) the proof should be very fast to verify or should at least allow an efficient-
to-compute and very fast to verify fraud proof2 (the interested reader can look at [SGB23] for a detailed
discussion on fraud proofs); in other words, the (fraud) proof should be so compact and fast to verify that
it could be even verified by a smart contract of a mainstream blockchain like Ethereum; 5) last, but not
least, for practical relevance, we also consider C2PA requirements, and it would be beneficial if the proof
can be applied to a signature computed using the cryptographic hash SHA256 that is specified in the C2PA
standard.

1.1 Our Results

In this work, we provide positive answers to the above open problem by presenting a novel system for
transforming images and for proving the correctness of transformations of authentic images, while preserving
the confidentiality of the original image. Proofs can be computed and verified on cheap laptops, avoiding
TTPs, providing also very efficient fraud proofs. Finally, differently from prior works [KHSS22, DB23], we
show how to convert our system in order to work with SHA256, as specified in the C2PA standard.

1The “Steam Hardware & Software Survey: October 2023” reports that the most popular configuration is 16 GB of RAM
and 6 cores. At the time of writing, a similar device costs less than 500 EUR.

2In case the proof π is wrong anyone should be able to easily detect it, either because one can run an efficient verifier of π
or because one can efficiently generate a fraud proof π′, proving the incorrectness of π in a way that π′ can be very efficiently
verified.
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We provide formal definitions modelling confidentiality and authenticity in natural real-world scenarios
and prove the security of our system according to such definitions. The only prior work with similar contri-
butions in terms of definitions and proofs is the one of [NT16] that, however, focuses on scenarios that differ
from ours.

The core of our method evolves around the concept that given an authenticated image, one can transform
it and generate a proof of the authenticity of the transformation by splitting the image into several sub-
images (i.e., tiles), computing a sub-transformation and a sub-proof for every tile and, finally, using those
proofs and the transformed sub-tiles to create the proof for the entire transformed image, namely the proof
that Î is a correct transformation of a hidden image I of an author identified through a public key pk. In this
way, in contrast to previous works, we achieve a design that circumvents the need of demanding hardware
due to proving computations over large pre-images of cryptographic hashes.

In summary, we show how one can efficiently compute a proof certifying the authenticity of the trans-
formed image, preserving the confidentiality of the original image and admitting fast fraud verification. Since
computing ZK-snarks over large pre-images of cryptographic hashes is required in several other scenarios (be-
yond image transformations), our techniques can have a strong impact in the domain of building real-world
trustworthy services through cryptography, avoiding/minimizing trusted parties.

Leveraging the “tiling” technique, we propose two different constructions. The first construction, which
we will call TilesProof-MT, is more efficient and allows us to demonstrate the benefits of adopting the “tiling”
technique in the context of image authentication with neat improvements over prior works [KHSS22, DB23]
that also focused on ad-hoc cryptographic hash functions.

The second construction, which we will denote TilesProof-C2PA, works with SHA256 to be consistent
with the C2PA specifications and, roughly, is one order of magnitude slower.

Proofs relying on ad-hoc cryptographic hash functions. We introduce a special signature scheme
that relies on a snark-friendly cryptographic hash function, on top of which we construct the proof sys-
tem TilesProof-MT. By exploiting the tiling technique, TilesProof-MT allows computing proofs much more
efficiently (in terms of time and memory) with respect to the state-of-the-art.

Proofs over SHA256. The TilesProof-C2PA construction focuses on SHA256 (as in C2PA) when computing
the cryptographic hash of the image, and works on high-resolution images (e.g., 30 MP) even on cheap
hardware (e.g., 8 cores and 4 GB of RAM). Instead, prior works [KHSS22, DB23] discarded SHA256 for
being snark-unfriendly and thus strongly deviated from the C2PA specifications. The idea behind TilesProof-
C2PA is to exploit the iterative nature of SHA256. Indeed, SHA256 works in rounds and, in each round,
the algorithm hashes a portion of the input message, which in our scenario is the authenticated image. We
devise to compute a proof for each round (or set of rounds) using as input only the necessary portion of the
image.

Performance evaluation. We have benchmarked our systems focusing on three very common image
transformations: a resize, which maintains the proportions of the image and reduces the original resolution,
a grayscale and a rectangular crop. These transformations are also considered by [DB23]. We used a very
popular ZK-snark framework equal to the one used by [DB23], using Groth16 [Gro16] as the underlying
ZK-snark. We have evaluated the performance of our implementation on a large image of 30 megapixels
(6000× 4000 pixels) as proposed by [DB23]. It turns out that our approach drastically reduces the memory
and time consumption to generate the proof, making this task also achievable on a “common” device1,
only employing about 4 GB of RAM. This is in contrast with prior work [DB23, KHSS22] relying on cloud
infrastructures to perform the same operation. The verification of our proof is fast, and the proof is compact
when considering concrete scenarios. Theoretically speaking, while asymptotically the size of our proof
cannot be claimed to be succinct, our proof admits a succinct and very efficient to generate/verify fraud
proof. The resulting performance nicely fits natural real-world scenarios. Moreover, thanks to the work
of [GMN22] it is also possible to reduce the verification time and the size of our proof. TilesProof-MT is
about one order of magnitude faster than TilesProof-C2PA.
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Figure 1: Graphic representation summarizing the components of TilesProof-MT. Given an image I split in
4 tiles and a transformation fL, it shows which are the main functions, the public and private inputs for
building a proof. Note that Prove embeds the ZK-snark provers to compute (π0, · · · , π3).

1.2 Technical Overview

We give now a high-level description of our work. The interested reader can refer to Fig. 1 for a pic-
ture summarizing the components of the TilesProof-MT construction, and Fig. 2 for the TilesProof-C2PA
construction.

The tiling approach. Given an image I, we divide it into non-overlapping tiles T I
1 , · · · , T I

n that, when
displayed next to each other, correspond exactly to I. It is known that computing a ZK-snarks proving
knowledge of pre-images of cryptographic hash functions becomes very unpractical when the size of the pre-
image is too large. Therefore, the size of the tile will be small enough to allow a sufficiently fast computation
of a ZK-snark on a cheap and widely spread computer (in our experiments we used a 16 GB of RAM and
8 cores computer, but only 4 GB of the available memory have been actually used for our tasks), but large
enough to reduce the number of tiles (and in turn the number of ZK-snarks to compute and verify). Since a
tile could be relatively small, its content could be predictable and thus a cryptographic hash of it might not
be hiding. As such, to guarantee confidentiality, we will use a hash-based3 commitment for each tile.

An ad-hoc signature scheme. Following prior works [DB23, KHSS22] that proposed ad-hoc hash func-

3For efficiency we use this commitment scheme that is secure in the random oracle model. The ZK-snark will prove a
claim over an hash function used to instantiate the random oracle. In the end, we require that the instantiated hash-based
commitment scheme is secure as it is (i.e., without random oracles). There are already various results relying on similar
assumptions (e.g., [FW24] about Schnorr signatures). We stress that we are not assuming that there is a random oracle using
at the same time the circuit of the hash function that instantiates the random oracle in a claim of a ZK-snark. We discuss
extensively about it in Sec. 4.1.2.
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Figure 2: Graphic representation summarizing the components of TilesProof-C2PA. Given an image I split
in 4 tiles and a transformation fL, it shows which are the main functions, the public and private inputs for
building a proof. Note that Prove embeds the ZK-snark provers to compute (π1, · · · , π3).

tions, we also present an ad-hoc hash function inside an ad-hoc signature scheme that is a variation of
ECDSA. In our ad-hoc signature scheme we will include the commitments of the tiles as leaves of a Merkle
Tree (MT) and its root will be signed, producing σ′, using a regular signature scheme, such as ECDSA,
which for concreteness we will adopt from now on. The signature σ, according to our scheme, therefore
consists of σ′ and the randomnesses (r1, . . . , rn) used to compute commitments. In order to keep σ compact,
one can generate the randomness needed by the i-th commitment as ri = PRF (seed, i), and thus a compact
representation of the signature σ = (σ′, r1, . . . , rn) will simply be a pair (σ′, seed). Whenever confidentiality
of the signed message is required (as in our system for authentic image transformations), the randomnesses
(r1, . . . , rn) (and, of course, the seed) must remain private. The corresponding verification procedure of a
signature in our scheme is kind of obvious. The message is parsed as an image and divided into tiles. The
randomnesses (possibly derived from seed) are used to recompute all commitments, and thus the same root
of the MT. Finally, the ECDSA signature of the root is verified. Jumping ahead, verifying the authenticity of
a transformed image will not include the verification of the signature as specified above, indeed such a proce-
dure would access the randomnesses used in the commitments, compromising confidentiality. However, the
possession of a correctly verifiable signature will be crucial for proving through ZK-snarks the authenticity
of a transformed image preserving privacy.

Proofs through ad-hoc cryptographic hashes. We consider a prover that on input some common
parameters (i.e., the setup to compute a ZK-snark) and the witness (i.e., the image I and the signature
σ consisting of the ECDSA signature σ′ and randomnesses of commitments) will construct a proof that
consists of the signature σ′ of the root of the MT, and all Merkle proofs allowing to open all leaves. In
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other words, commitments cj of tiles are revealed but not opened. Moreover there will be a ZK-snark πj

for every commitment cj . The statement proved by πj is that the transformation on the (hidden) tile T I
j

committed in cj produces a tile T̂ I
j of Î. The crucial observation here is that the prover of the ZK-snark is

invoked on input a small witness (the size is limited by the size of a tile of I), therefore, the proof involving
a pre-image of the cryptographic hash used to compute cj is not very demanding and can be computed
without expensive hardware. As such, dividing the image into tiles allows us to deflate the complexity of
the prover of a ZK-snark, using the tile size as the parameter to tune the computational effort according to
the locally available resources. The proof π will therefore include also all πj computed above.

The verification of the proof consists first of verifying the signature of the root of the MT and the Merkle
proofs that reveal the leaves. Next, it is required that the ZK-snarks associated with each πj in π are
accepting. If any of the above checks fails, the verification process outputs 0, and it outputs 1 otherwise.
The benefit of the MT is that in some cases (e.g., crop) one can construct a more efficient proof omitting
some branches. This would allow skipping ZK-snarks πj for every tile T I

j that has no impact on Î.

The privacy-preserving proof over SHA256. The C2PA standard specifies ECDSA with SHA256 as
signature scheme. Recall that SHA256 (following the Merkle-D̊amgard construction) works in rounds and
splits the message (in our case, the image) in chunks of 512 bits, outputting for each round a string of 256
bits. Assuming that the message is split into m chunks, in the first round the algorithm combines an initial
hash value of 256 bits s0 with the first chunk of the message, outputting s1, using a one-way compression
function. We denote such a compression function by SHA-256Compression. Then, in every intermediate
round i > 1, it combines the output si−1 of the (i− 1)-th round with the i-th chunk, outputting si, always
using SHA-256Compression. The output of the last round sm is the final hash computed by the SHA256
algorithm. Note that, in the last round, the chunk might contain some padding that has been added to the
original message.

The output of SHA256 is used inside the ECDSA signature generation, thus obtaining the signature σ.
We propose the construction TilesProof-C2PA leveraging the “tiling” technique to realize a proof system

sticking (differently from [KHSS22, DB23]) with SHA256. This is done by: 1) dividing I into tiles T I
1 , ..., T

I
n

according to the computational capabilities of the prover. Each tile is constructed by grouping one or more
chunks used in the rounds of SHA256; 2) constructing a proof that consists of one ZK-snark πj for every tile
T I
j , one commitment zj for every T I

j , representing the intermediate output of SHA256, and an additional
ZK-snark π′ along with a commitment z′. π′ proves that the signature σ (committed in z′ and kept hidden)
on I is correct according to pk. Indeed, the signature might reveal I since σ is computed on the hash of the
image. More precisely, TilesProof-C2PA works as follows:

– There are π1, . . . , πn proofs for one relation and an additional proof π′ for a second relation (both
relations differ from the ones of TilesProof-MT).

– Each πj proves that a) the transformation on a (hidden) tile T I
j outputs a tile T̂ I

j of Î and

b) given the (hidden) intermediate state sj−1 of SHA256, committed in zj−1, and given T I
j ,

computing several times4 the SHA256 one-way compression function produces the (hidden) state
sj , committed in zj .

– π′ proves that given the (hidden) signature σ, committed in z′, and given the (hidden) final state
sn, committed in zn, of SHA256 over I, the signature σ is correctly verified using the public key
pk.

Again, also in this construction, the prover of each ZK-snark is invoked on input a small witness, and
thus the ZK-snarks can be computed efficiently.

– The verification of the proof consists first of running the verifier of the ZK-snark associated with each
π1, . . . , πn and π′. If any of the above checks fails, the whole verification outputs 0, and it outputs 1
otherwise.

4With several times here we mean that, given that each tile is of dimension 512× k, the prover claims that starting with the
state sj−1 and performing k times the one-way compression function of SHA256 to process T I

j , then the new state is sj .
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The transformations. Our approach relies on projecting the transformation of an entire picture I into
transformations applied to tiles of I. This is the key ingredient to achieve an efficient proof generation. In
our case, there will be multiple sub-proofs (i.e., ZK-snarks) computed on the local transformations of the
tiles rather than a unique proof (as done in previous work) on the whole signed image and the corresponding
transformed one. While this is extremely positive for efficiency, the use of local transformations can introduce
some usability issues. In general, there are no guarantees that a transformation applied to the whole image
can be obtained as a combination of the same transformation applied to the tiles. This is evident considering
the crop. Applying the same crop function to the whole image (e.g., a crop in the central region) and
to the tiles will produce a completely different result (e.g., tiny crops of the central region of each tile).
However, in practice, the above issues are easy to tackle and further details can be found in Sec. 5.3, where
we analyze the implications of our approach showing that in most scenarios the above technicalities can be
successfully addressed and that our approach is largely beneficial for several transformations that are used
in the considered application scenarios.

The fraud proof. While proofs generated by our system are already pretty compact and fast to verify (see
Sec. 5 for details), from a theoretical perspective, a very large number of tiles might impact negatively on
proof size and verification time. To circumvent this problem, we can use results of [GMN22] to aggregate the
proofs reducing the proof size and the verification time. Moreover, a non-accepting proof π is possible only
in the following specific cases: a) wrong signature of the root of the MT, b) the verification of a ZK-snark
fails, or c) a Merkle proof is wrong. As such, one can directly get a succinct and fast to compute/verify
fraud proof that just points to the the specific part of π that fails.

Note that in both constructions the size of the fraud proof is constant, but in TilesProof-MT the verifi-
cation time is logarithmic in the number of tiles while it is constant in TilesProof-C2PA.

Summary of the enjoyed properties. Our constructions satisfies confidentiality for the following reasons:

1. In TilesProof-MT, the revealed signature σ′ of the root of the MT and the Merkle proofs do not reveal
anything about I since the leaves of the MT consist of commitments c1, · · · , cn of the tiles T I

1 , · · · , T I
n of

the image I. Therefore, by the hiding property of the commitment scheme (and the pseudorandomness
of the PRF), and the ZK of the ZK-snarks π1, · · · , πn we have that I remains indistinguishable from
any other image that is compatible with Î.

2. In TilesProof-C2PA, the hiding of commitments z1, . . . , zn, z
′ and the ZK of the ZK-snarks π1, · · · , πn, π

′

guarantee that I remains indistinguishable from any other image that is compatible with Î.

In both schemes, the knowledge soundness of the underlying ZK-snarks, the binding of the commitments, the
unforgeability of the signature scheme and the collision-resistance of the hash functions guarantee that Î is
correctly computed, according to a known transformation, from a hidden image I signed with respect to pk
(e.g., the camera or the author). This guarantees that our approach achieves authenticity. Since in TilesProof-
MT we can propose our own signature scheme, we can prove the authenticity of a transformation also against
adaptive adversaries, while similarly to [NT16] in TilesProof-C2PA we stick with non-adaptive adversaries.

Our approach, in contrast to prior work, is appealing allowing one to compute proofs with a common
laptop, and we now summarize the key points. First of all, computing a regular signature σ is fast. Second,
in our case, the computation of a ZK-snark is sufficiently efficient by design, since we split the full image into
small enough tiles precisely because the ZK-snark to compute on each of them must remain efficient according
to the available resources. Our design provides efficient verification of proofs and very fast verification of
fraud proofs, since, as mentioned before, verifying a fraud proof consists of verifying no more than a single
ZK-snark or an ECDSA signature or a Merkle proof.

Finally, we observe that the work performed to compute a proof can be in part recycled when computing
other proofs on the same original image. Indeed, some of the involved ZK-snarks could be re-used when,
some tiles are transformed according to the same operation. We see this speed up as a feature of our systems
since it is controlled by the possessor of the signed original image that can decide to share multiple and
linkable transformations of the same signed image.

We define the authenticity of the output of a transformation through a proof-of-knowledge property and
the confidentiality of the image used as input to the transformation through an image-indistinguishability
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property. Such guarantees already suffice in several natural applications. Additional properties (e.g., non-
malleability) that have been investigated generically for proof systems are not in the scope of this paper
(since they are not problematic for our use cases) but can be worthy to explore in future research aiming at
applying our techniques to other scenarios.

1.3 Related Work

Photoproof [NT16]. Naveh and Tromer in [NT16] introduced the concept of image authentication based
on cryptographic proofs. Similarly to our results, they focus was on defining a methodology that, given
an image authenticated through a digital signature, allows one to apply a set of efficiently computable
transformations that along with proofs can assess the authenticity of the transformed image. They in
particular address issues such as hiding the specific transformation and provide mechanisms to generate
updated proofs. Their definition and construction suffer from significant limitations compared to ours. We
will discuss such differences more in depth in Section 3.

Image authentication leveraging multimedia security. As also specified in [NT16], the problem of
image authentication supporting permissible transformations is widely studied in the scientific literature.
Previous solutions to [NT16] are not based on cryptography and can be categorized in two families of
approaches: watermarking and robust hashing (e.g., [ZWZY13]). However, as already discussed in [NT16],
such approaches either work for a limited set of permissible transformations or are vulnerable to an adversary
who is familiar with the authentication method. In general, these techniques have non-negligible error
probabilities (i.e., they too easily allow false alarms or false acceptances) due to the statistical nature of the
verification algorithm.

In our work, we consider only techniques that guarantee a negligible error probability The interested
reader can refer to Sec. I.B of [NT16], specifically to Table I.

The works of [DB23] and [KHSS22]. After [NT16], Datta and Boneh in [DB23] and Kang et al. in
[KHSS22], proposed methodologies to address the same problem outlined in [NT16] leveraging snark-friendly
hash functions and instantiating the cryptographic hash function so that their ZK-snarks, can be computed
having as witness a larger original image compared to [NT16]. Unfortunately, in case of high-resolution
images, the computations of the prover are too expensive, and thus they must be outsourced to a third-
party cloud infrastructure severely negatively affecting confidentiality and decentralization, thus limiting
their applicability at-scale.

The work of [LHC+23]. Li et al. in [LHC+23] noticed that there are notable cases where transformations
only impact a small region of an image. Therefore, their work, that is concurrent to our work, shows that run-
ning just one single ZK-snark on that single subimage affected by the transformation achieves a performance
improvement compared to the involvement of the full image. However, as considered by [DB23, KHSS22],
there are several natural transformations that must receive as input the entire images (e.g., grayscale). This
would require in [LHC+23] to use the entire original image as witness of the ZK-snark computation, therefore
cancelling their performance improvement. As already discussed for [DB23, KHSS22], such a proof genera-
tion requires heavy hardware assumptions. Moreover, beyond the limited scenario where their proposal gives
some efficiency improvement, they only perform a performance comparison with the old results of [NT16],
without discussing recent results of [KHSS22, DB23].

The work of [BFGV+23]. Balbas et al. in [BFGV+23] notice that the performance of general-purpose
proof systems deteriorates on large inputs and ad-hoc solutions lack modularity. For these reasons, they
propose a framework combining good performance with the versatility of general-purpose proof systems. In
their paper, they focus on image transformations, specifically on convolution, which is an operation widely
adopted in machine learning. Given that convolution is a complex transformation, they state that their
approach performs even better on simpler transformations (e.g., resize, crop). However, for their experiment,
they use a very powerful machine (8 cores Xeon-Gold-6154 at 3GHz and with 98 GB of RAM) and do not
report any results on the memory consumption which is one of the most relevant metrics of our paper.
Moreover, they do not consider in their experiments, which were realized to also compare with [KHSS22],
the computation of a cryptographic hash function over the tested images. In general, [BFGV+23] focuses
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on a problem that is orthogonal to our work and, for this reason, we do not include it in the performance
evaluation.

The work of [DEH24]. After the work of [LHC+23] and the presentations of our preliminary results
in [DVVZ23, DVVZ24], the very recent eprint paper of Dziembowski et al. in [DEH24] follows the blueprint
of the “tiling” technique of our work and of [LHC+23] with the goal of reducing memory usage during proof
generation. They also compute multiple proofs on portions of the original image, but they differ from us in
combining them into a single proof using a ZK-snark folding scheme.

The performance of their construction is similar to our construction in terms of memory usage and time.
Specifically, for a 4K image, their performance is slightly worse than ours. While they achieve proof suc-
cinctness rather than only fraud-proof succinctness of our construction, we remark that when considering
specific instantiations of the underlying ZK-snark, our construction can be significantly optimized, for in-
stance through the use of SnarkPack (see paragraph “Packing together proofs with [GMN22]” in Sec. 5.2 of
our work) that makes our proof succinct and thus our verifier very efficient.

Moreover, as claimed in Sec. IV.D of [DEH24], the price to pay for succinctness in their case is high,
indeed they impose much stricter constraints regarding the types of circuits they can define since they are
forced to maintain identical computations at each step within the folding scheme. According to their claim,
this task is not trivial, even for a simple crop, which instead in our construction for certain specific portions of
the original image is extremely efficient (it does not need to define a circuit at all, see the paragraph “Remark
on transformations ignoring some tiles” in Sec. 4.1.4 of our work for more details). Our construction is more
versatile (with some reduced flexibility in the optimized case leveraging SnarkPack) since it admits even
completely different ZK-snarks in different tiles. In addition, the work of [DEH24] seems to overlook the
issue of an adaptive adversary that is instead disccused in [NT16] and in our work, and formally addressed
by our definitions and the security analysis of our first construction.

The work of [DCB24]. A very recent eprint paper by Datta, Chen and Boneh [DCB24] representing the
full version of the preliminary results announced by Datta and Boneh in [DB23]. While [DB23] proposed
only one ad-hoc signature scheme based on Lattice hash and Poseidon hash, in [DCB24], that is concurrent
to our work, there is also a second ad-hoc signature scheme. This signature scheme is based on a polynomial
commitment, and drastically reduces the time and memory consumption needed to generate the proof.
They achieve this goal at the cost of burdening the signer of the original image (e.g., for a 30 MP image,
the signer requires 16 GB of RAM). As stressed in [DCB24], this second signature scheme is for signers
that do not have hardware constraints, thus seemingly cutting off the use case related to C2PA compatible
signing cameras (according to [DCB24]). This second signature scheme should be adopted by more powerful
signers, such as AI companies (e.g., OpenAI) that aiming at certifying the contents that they generate.
The above last scenario relies on the reputation of the company that signs the image rather than on a
security guarantee provided by tamper-proof hardware (e.g., C2PA compatible cameras). Thus, although
this scenario is worthwhile to explore, it is not aligned with the trustless setting of our work.

Security definitions and analysis. We stress that, considering the entire related work, only [NT16]
provides explicit definitions and an extended security analysis, therefore assessing the threat model corre-
sponding to the desired and achieved security of their system for transformations of authentic images. Our
work provides new refined definitions and, accordingly, a proper extended security analysis.

2 Known Tools and Definitions

Preliminaries. We denote the conditional probability of A given B as Pr[A|B]. We denote by λ ∈ N the
security parameter, and by ≈ the computational indistinguishability. If S is a finite set, we denote by x← S

the process of sampling x from S, and by x
$←− S a random and uniform one. A function negl is negligible if

it vanishes faster than the inverse of any polynomial (i.e., for any constant c for sufficiently large λ it holds
that negl(λ) ≤ 1

λc ).

Collision-Resistant Hash Function. Given the practical flavor of our work, we will consider unkeyed
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cryptographic hash functions with a fixed output length ℓ. Therefore, the hash function will be H : {0, 1}∗ →
{0, 1}ℓ. In the wild, there are several unkeyed cryptographic hash functions (e.g., SHA-256, Poseidon) that
are believed to be collision-resistant since colliding pairs are unknown and seemingly hard to find. Such
functions are typically used as heuristic instantiations of random oracles.

Commitment schemes. In our paper, we use a random-oracle-based commitment scheme where the
message m is concatenated to a randomness r and given in input to a random oracle that outputs the
commitment.

Definition 1 A commitment scheme for the message m ∈M is a tuple of 2 PPT algorithms Υ = (Commit,Open)
that works as follows and satisfies the notions of Correctness, Hiding and Binding.

1) c ← Commit(m) is a randomized algorithm that takes as input the message m ∈ M and, using a
randomness r yields the output commitment c for the message.

2) {0, 1} ← Open(c,m, r) is a deterministic algorithm that takes as input the message m, a string r and
a commitment c, and outputs 1 when accepting the commitment, otherwise outputs 0, rejecting it.

Correctness: For any message m ∈M:

Pr
[
Open(c,m, r) = 1

∣∣ c← Commit(m)
]
= 1

where the above r is the randomness used by Commit.

Binding: For every PPT A there exists a negligible function negl such that

Pr

 m ̸= m′

∧Open(c,m, r) = 1
∧Open(c,m′, r′) = 1

∣∣∣∣∣∣ (c,m,m′, r, r′)← A(1λ)

 ≤ negl(λ)

Hiding: For any m,m′ ∈M
Commit(m) ≈ Commit(m′).

For concreteness, we will use as commitment scheme the popular hash-based construction that is secure
in the random oracle model, and we use Poseidon hash [GKR+21] to instantiate the random oracle. We
denote the corresponding commit algorithm with Commitp and the open algorithm with Openp, namely
Υ = (Commitp,Openp).

We will make the heuristic assumption that such instantiation of the commitment scheme is secure and
will refer to the corresponding circuit in the statements proven of the ZK-snarks.

Signature Scheme.

Definition 2 A signature scheme is a triple of PPT algorithms Ψ = (Gen,Sign,VerifySign) that works as
follows and satisfies the notions of Correctness and Unforgeability.

1) (pk, sk) ← Gen(1λ) is a key generation algorithm, which, taken as input the security parameter λ,
outputs a key pair (pk, sk).

2) σ ← Sign(sk,m) is a randomized algorithm, which, taken as input the private key sk and the message
m ∈M, outputs the signature σ of the message m.

3) {0, 1} ← VerifySign(pk,m, σ) is a deterministic algorithm, which, taken as input the public key pk, a
message m ∈ M and a signature σ, outputs the bit b. In the case where b = 1 the verification is
successful, otherwise the verification is unsuccessful.
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Correctness. Given a key pair (pk, sk) generated using the algorithm Gen(1λ), for any m ∈M:

Pr [VerifySign(pk,m, σ) = 1|σ ← Sign(sk,m)] = 1

Unforgeability. To formally define this property, we need first to introduce the experiment ExpSigForge. In
this experiment, an adversary A interacts with an oracle OSign(sk, ·) such that:

A
m
⇌
σ

OSign(sk, ·)

The experiment proceeds as follows:

ExpSigForge
OSign

A (λ)

(pk, sk)← Gen(1λ)

(m,σ)← AOSign(sk,·)(pk)

If VerifySign(pk,m, σ) = 1 and m is not among

the requested message to the oracle OSign(sk, ·) then:

return 1

return 0

Therefore, Ψ is unforgeable if, for all PPT A, there exists a negligible function negl such that:

Pr[ExpSigForge
OSign

A (λ) = 1] ≤ negl(λ).

For concreteness, we will use ECDSA with algorithms denoted with ΨECDSA = (GenECDSA,SignECDSA,VerifySignECDSA).
It will be a building block of our signature scheme, however it can be replaced with any other signature
scheme.

Merkle Tree. A Merkle Tree computed over input values x1, · · · , xn is a binary tree in which the input
values are placed at the leaves all with the same largest depth, and the value at each internal node is the
collision-resistant hash of the values of its two children (or just the hash of the left child if the right child is
missing). If n is not a power of 2, the right part of the tree will have missing nodes. The height of the tree is
logarithmic in the number of leaves. The root of the MT is a succinct representation of the entire sequence
x1, . . . , xn.

Definition 3 Given an unkeyed collision-resistant hash function defined as H : {0, 1}∗ → {0, 1}ℓ, a MT
construction consists of 3 PPT algorithms M = (BuildMerkleTree,ExctractLeaf,VerifyLeaf), such that:

1) (MT, root) ← BuildMerkleTree(x1, · · · , xn) is a deterministic algorithm, which takes a set of leaves
x1, · · · , xn, outputs the root and MT using H as collision-resistant hash function.

2) Bi ← ExctractLeaf(MT, xi) is a deterministic algorithm, which takes as input a MT MT and a leaf
xi, and outputs a list Bi called Merkle path that contains, the leaf itself and all the sibling traversing
the tree from the leaf to the root.

3) {0, 1} ← VerifyLeaf(xi, rt, Bi) is a deterministic algorithm, which takes a leaf xi in the MT, the root
rt and a Merkle path Bi and outputs a bit b. In the case where b = 1, verification is successful, namely
xi is a leaf of a MT with root rt. Otherwise, (b = 0) the verification is unsuccessful.

We adopt a MT as a collision-resistant hash function of a message m divided into n chunks x1, · · · , xn.
Therefore, writing BuildMerkleTree(m) is equivalent to writing BuildMerkleTree(x1, · · · , xn) if m is divided into
n chunks.
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Zero-Knowledge Succinct Non-Interactive Argument of Knowledge (ZK-snark). We first intro-
duce the definition of polynomial relationship and then the definition of a ZK-snark.

Definition 4 A polynomial relation is a function R : {0, 1}∗ × {0, 1}∗ → {0, 1} such that (i) R(x,w) = 1
implies that |w| ≤ poly(|x|) and (ii) (x,w) allows one to efficiently verify whether R(x,w) = 1.

Definition 5 A ZK-snark for an auxiliary input distribution Z and for a polynomial relation R is a triple
of PPT algorithms Σ = (KeyGen,Prove,VerifyProof) that satisfies the notions of Completeness, Knowledge
Soundness, Zero Knowledge and Succinctness and works as follows:

1) crs← KeyGen(1λ) outputs a common reference string (CRS) crs composed by an evaluation key and a
verification key.

2) π ← Prove(crs, x, w) on input a CRS crs, an instance x and a witness w such that R(x,w) = 1, outputs
a proof π.

3) {0, 1} ← VerifyProof(crs, x, π) on input a CRS crs, an instance x and a proof π, outputs a bit b. The
verification is considered successful when b = 1.

Completeness: For any pair (x,w) such that R(x,w) = 1

Pr

[
VerifyProof(crs, x, π) = 1

∣∣∣∣ crs← KeyGen(1λ)
π ← Prove(crs, x, w)

]
= 1

Knowledge Soundness: Σ has knowledge soundness for the auxiliary input distribution Z, if for every PPT
A there exists a PPT extractor algorithm Ext such that the following probability is at most negl(λ)

Pr

 VerifyProof(crs, x, π) = 1 ∧R(x,w) = 0

∣∣∣∣∣∣
crs← KeyGen(1λ)
auxZ ← Z(crs)

(x, π)← A(crs, auxZ) ;w ← Ext(crs, auxZ)


Zero Knowledge (ZK): Σ satisfies (composable) zero-knowledge if there exists a simulator S = (Skg,Sprv)
such that the following conditions hold for all PPT adversaries A:

Keys Indistinguishability:

Pr
[
A(crs) = 1

∣∣ crs← KeyGen(1λ)
]
≈ Pr

[
A(crs) = 1

∣∣ (crs, tdk)← Skg(1λ)
]

Proof Indistinguishability: for all (x,w) s.t. R(x,w) = 1

Pr

[
π ← Prove(crs, x, w),
A(crs, π) = 1

∣∣∣∣ (crs, tdk)← Skg(1λ)
]
≈ Pr

[
π ← Sprv(crs, tdk, x),
A(crs, π) = 1

∣∣∣∣ (crs, tdk)← Skg(1λ)
]

Succinctness: The verifier runs in time poly(λ+ |x|+ log(|w|)) and the proof size is poly(λ+ log(|w|)).

Extractability in knowledge soundness. In the notion of knowledge soundness defined in Def. 5, follow-
ing [CFQ19] we considered an auxiliary input auxZ that is generated from a distribution Z that may depend
on crs. Note that, knowledge soundness is impossible for some distributions of Z, as shown in [BP15]. Still,
there are benign auxiliary input distributions for which the impossibility does not hold. As shown recently
in [GKO+23] in the random oracle model knowledge soundness, along with succinctness, is possible for every
auxiliary-input distribution.

Hence, we need to precisely formalize which auxiliary inputs cannot ensure knowledge extractability: if
A receives from auxZ an accepting proof π for an instance x on the relation R, then the Ext cannot extract
the witness w from the adversary.
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2.1 Definitions from Naveh et al. [S&P 2016]

We now recall notions from [NT16], that introduced image authentication based on cryptographic proofs.

Image. Let IN,M be the set of all possible images of dimension N ×M . An image I ∈ IN,M is a pixel
matrix I ∈ {0, 1, ..., 255}3×N×M of size N ×M where the RGB values of each pixel are specified.

Original image. Let Ψ = (Gen,Sign,VerifySign) be a signature scheme. Given an image I, a public key pk
and a signature σ, we say that I is original with respect to pk if VerifySign(pk, I, σ) = 1.

Transformation. Given two sets of images IN,M and IN̂,M̂ , an image transformation is a determinis-

tic function f : IN,M → IN̂,M̂ (e.g., resize, crop, grayscale). We denote by Π a polynomial-size set of
transformations.

3 Our New Definition

Authentic image. Given an image transformation f and a transformed image Î, we say that Î is authentic
with respect to a public key pk and f , if there exist I and σ such that Î = f(I) and VerifySign(pk, I, σ) = 1.

Tile. The pixel matrix of an N × M image I can be split into n sub-matrixes, T I
1 , · · · , T I

n each one
representing a tile of I. We denote with getTiles(I, n) the function dividing the pixel matrix of I into n
sub-matrixes (i.e., tiles) where each sub-matrix is of Tsize = ⌈N×M

n ⌉ pixels. For the sake of simplicity, we
assume wlog that the number of rows and columns of a sub-matrix T I

j is ⌈
√
Tsize⌉.

Global and local transformations. A global transformation fG(I) is a transformation applied to the
whole image I. A local transformation fL(I) combines a set of local sub-transformations fL

1 (T
I
1 ), · · · , fL

n (T
I
n)

applied on the tiles of an image I. In other words, fL(I) ←
∥∥n
j=1

fL
j (T

I
j ) where

∥∥ denotes the operation5

that combines the transformed tiles to obtain a transformed image.

Image-hiding proof system. Here we present our definition of a proof system that can guarantee the
authenticity of a transformed image protecting the confidentiality of the original image. Our new definition
only in part follows the one of [NT16]. There are some critical differences that we will discuss later in this
section.

In an Image-Hiding proof systems, an instance for the prover IHProve and verifier IHVerify is a triple
x = (Î , pk, fL) where pk is a public key of a signature scheme Ψ, fL is a local transformation and Î is the
output of fL on input an image I. The corresponding witness of x for IHProve is w = (I, σ) where I is the
original image that is then transformed into Î and σ is a signature of I generated with Ψ using the secret
associated to pk.

The relation R on top of which the CRS generator IHSetup, the prover IHProve and the verifier IHVerify
are built is defined as R((Î , pk, fL), (I, σ)) = 1 if and only if (VerifySign(pk, I, σ) = 1 ∧ fL(I) = Î). The
relation RFP for fraud proofs is RFP ((crs, Î, pk, f

L, π), πFP) = 1 if and only if IHVerify(crs, (Î , pk, fL), π) = 0
where crs is the CRS. The CRS, generated by IHSetup, is composed of a set of polynomial-size sub-CRSs one
for each possible fL ∈ Π. Wlog, we implicitly assume that an algorithm of an Image-Hiding proof system
receiving the composed CRS as input selects the sub-CRS related to the transformation fL that must be
processed.

Definition 6 Given a signature scheme Ψ = (Gen,Sign, VerifySign), the tuple of PPT algorithms Φ =
(IHSetup, IHProve, IHVerify, IHFPSetup, IHFPProve, IHFPVerify) is an Image-Hiding proof system over Ψ for
an auxiliary input distribution Z and for a set of transformations Π if for all corresponding relations R it
satisfies Completeness, Proof of Knowledge, Image Indistinguishability and Fraud Proof Succinctness and
works as follows:

1) crs← IHSetup(1λ) outputs a CRS crs.

5In some cases this operation consists of a simple concatenation, in other cases more adjustments might be needed.
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2) π ← IHProve(crs, x, w) on input a CRS crs, an instance x and a witness w such that R(x,w) = 1,
outputs a proof π.

3) {0, 1} ← IHVerify(crs, x, π) on input a CRS crs, an instance x and a proof π, outputs a bit b. The
verification is considered successful if and only if b = 1.

4) crsFP ← IHFPSetup(1λ) outputs a CRS crsFP for RFP .

5) πFP ← IHFPProve(crsFP, xFP, wFP) on input a CRS crsFP, the instance xFP and the witness wFP such
that RFP (xFP, wFP) = 1, outputs a proof πFP.

6) {0, 1} ← IHFPVerify(crsFP, xFP, πFP) on input a CRS crsFP, the instance xFP and the proof πFP, outputs
a bit b. The verification is successful if and only if b is 1.

Completeness: For any pair (x,w) such that R(x,w) = 1 the following probability is equal to 1

Pr

[
IHVerify(crs, x, π) = 1

∣∣∣∣ crs← IHSetup(1λ)
π ← IHProve(crs, x, w)

]
Proof of Knowledge (PoK): Φ has the Proof of Knowledge property for an auxiliary input distribution Z,
if for every PPT A there exists a PPT extractor Ext and a negligible function negl such that the following
probability is at most negl(λ)

Pr


IHVerify(crs, x, π) = 1

∧
Î ̸= fL(Ij), 1 ≤ j ≤ m

∧
(VerifySign(pk∗, I, σ) = 0 ∨ fL(I) ̸= Î)

∣∣∣∣∣∣∣∣∣∣
crs← IHSetup(1λ) ; (pk, sk)← Gen(1λ)

auxZ ← Z(crs)
(x = (Î , pk∗, fL), π)

↱ AOSign(sk,·)(crs, auxZ , pk)
(I, σ)← Ext(crs, auxZ , pk, qt)


where qt = {Ij , σj}, with |qt| = m, is the transcript of all queries to the signature oracle OSign and its

answers, specifically Ij is the j-th query and σj (i.e., the signature of Ij using sk) is the j-th answer.

Fraud Proof Succinctness: (IHFPSetup, IHFPProve, IHFPVerify) is a snark for RFP .

Image Indistinguishability (ImInd): We first introduce the experiment ExpImageIndistinguishability. In
this experiment, an adversary A interacts with a signature oracle OSign(sk, ·) and a transformation oracle
OT (crs, sk, I, ·) that for a specific CRS, a specific secret key sk of the signature scheme and a specific image

I, receives as input a transformation f and outputs Î and a correctly computed image-hiding proof π: A
f
⇌
Î,π

OT (crs, sk, I, ·). If the adversary passes as input a function f ̸∈ Π, OT ignores the query.

ExpImageIndistinguishability
OSign,OT

A,R (λ)

crs← IHSetup(1λ) ; (pk, sk)← Gen(1λ)

(I0, I1)← AOSign(sk,·)(pk, crs) ; b←$ {0, 1}

b′ ← A[OSign(sk,·); OT (crs,sk,Ib,·)](pk, crs)

If f passed as input to OT is such that f(I0) ̸= f(I1)

∨ I0, I1 ̸∈ IN,M then: return 0

return (b == b′)

Φ is image indistinguishable, if for every PPT A, there exists a negligible function negl such that the
following probability is less or equal than 1

2 + negl(λ):

Pr
[
ExpImageIndistinguishability

OSign,OT

A,R (λ) = 1
]
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In the ImdInd experiment, we implicitly assume that the adversary can get additional polynomial-length
auxiliary input, which is chosen before the beginning of the experiment.

As for ZK-snarks, in the above definition of an Image-Hiding proof system it is still possible that a PPT
prover be unpractical. In addition, it is possible that the computed proof be very long, slowing down the
verifier and that computing a witness for a fraud proof and running the prover of the fraud proof could
be very expensive. Later in this work we will show and analyze our constructions that (unlike prior work)
addresses all the above practical issues. In our constructions the prover can be run on a common laptop, the
proof is relatively short, the verifier is efficient and computing a fraud proof (including its witness) is fast.

Remarks. The PoK property considers an adversary producing an x and an accepting proof π such that
x refers to a transformed image Î that through π is considered authentic with respect to the public key pk∗

and a transformation fL. The experiment outputs 1 when the extractor fails, since the extractor outputs
a pair (I, σ) such that either I is not consistent with the transformation fL and with the transformed
imaged Î specified in x (i.e., Î ̸= fL(I)) or σ is not a valid signature of I according to pk∗. The extractor
should fail only with negligible probability. Note that, the adversary can pick pk∗ = pk when trying to
succeed with respect to a pk of a honest user, and can pick pk∗ ̸= pk, for a possibly maliciously generated
new public key pk∗. The former case allows to model an attack in the disinformation scenario, where the
adversary would like to compute an image along with an accepting proof for a fake transformation that
refers to a trustworthy author (e.g., a C2PA-friendly camera1). The latter case allows to model an adversary
in the decentralized market of digital assets, where authors of images do not necessarily have an a-priori
well-established reputation and thus the adversary can choose maliciously the public key pk∗; moreover, the
adversary can take advantage of existing transformed images and proofs, in order to produce an accepting
proof attesting a fake transformation w.r.t. pk∗.

Both in the PoK and in the ImInd properties we could have also considered a scenario where there is a
well-established CRS, and thus public keys of honest users could be adaptively computed therefore running
Gen on input the CRS. However, since currently in the real world there is no standard CRS, we opted for a
model where public keys of honest players are generated independently of any CRS.

We allow A to obtain valid signatures of images of her choice through an oracle. On top of signed images,
A can also generate accepting proofs for transformations of such images. As such, our definition also models
an adversary managing to get transformed images along with proofs.

Finally, similarly to the Knowledge Soundness property of ZK-snarks (see Sec. 2 for details), also for the
PoK of a Image-Hiding proof system, in the presence of specific restrictions (e.g., when the proof is significantly
shorter than the witness) there can be auxiliary input distributions such that for some adversary no extractor
can succeed. This typically corresponds to an adversaries that receives Î and π from the environment
instead of computing them. In such cases, the extractor would need the code of whoever in the environment
computed the proof in order to extract the signature and the original image (unless, as discussed for the
case of knowledge soundness of ZK-snarks, there is some additional help provided by random oracles as
in [GKO+23]).
Differences with definitions in [NT16]. Here we comment some important differences between the
definitions proposed in [NT16] and the definition of an Image-Hiding proof system. First of all, our definition
reflects real-world situations because the access to the oracles by the adversary allows to model the possibility
of elaborated strategies of different types to win the game. For instance, in a real use case, the adversary
can acquire at any time a C2PA-friendly camera that has previously taken the photo at sale (in the context
of a decentralized marketplace) or that has been censored (in the context of disinformation) to try to obtain
information on the signature of such an image (e.g., by taking other photos and studying how the signature
is computed). This is mapped in our game-based definition of indistinguishability by the fact that A can
access the signing oracle at any given moment. Furthermore, following our use-case scenarios, we see a
possessor of the image (i.e., the subject that has the image I and a signature) as the party interested in
producing transformations and proofs. Therefore, unlike [NT16], we do not overload our definitions with
requirements about producing transformed images over already transformed images. We also strengthen the
Proof-of-Knowledge property by considering a more realistic adaptive adversary accessing a signing oracle.
Indeed, in [NT16], the authors devise a non-adaptive adversary producing a valid proof of a fake image only
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receiving auxiliary messages (i.e., a polynomial set of images and relative signatures) established before the
crs generation. While we will prove that our first construction TilesProof-MT satisfies our adaptive Proof-of-
Knowledge property, our second construction TilesProof-C2PA is secure only w.r.t. a non-adaptive version
where pictures and their signatures are obtained upfront. Additionally, we have also considered adversarial
public keys pk∗ that are instead not conceived in the definition of [NT16]. In [NT16] they admit that their
definition can be weak in modelling concrete scenarios and still they opted for such a weak definition since
they could not prove the security of their scheme otherwise.

Our definition refines the concept of efficient verification considering applications where the succinctness
of the proofs is not crucial and can be concretely compensated by efficient fraud proofs or leveraging [GMN22]
to reduce verification time and proof size. As we will see later, this relaxation is beneficial to construct a
practical Image-Hiding proof system where the prover is efficient and the fraud verification is very fast,
nicely fitting the use-case scenarios that we have in mind. Finally, the definition of [NT16] is heavier in
terms of information to maintain hidden since it considers a simulation-based definition. We relax this
requirement and we protect the confidentiality of the original image with a classical game-based definition
based on indistinguishability. Both adjustments turn out to be useful to improve the performance of our
constructions and introduce no specific issue for the discussed use cases.

As such, we believe that our new definition is both more effective in modeling real-world scenarios while
at the same time allowing to construction of very efficient schemes.

4 Constructions

Here we show Image-Hiding proof systems.

4.1 TilesProof-MT

Here we show our first and more efficient construction TilesProof-MT of a Image-Hiding proof system. In
particular, we will show: a) an ad-hoc signature scheme ImageSign to sign an image; b) how to apply a
local transformation to an image divided into tiles; c) the Image-Hiding proof system TilesProof-MT using
ImageSign as signature scheme.

4.1.1 The ImageSign Signature Scheme

Here, we show our signature scheme ImageSign ΨIS = (GenIS, SignIS,VerifySignIS). In Alg. 1, we show the
SignIS algorithm for an image I (still, the signature scheme can be used with any bit string as message space).
The generation of the public and secret keys consists simply of the generation of ECDSA public and private
keys. The verification of the signature can be trivially inferred by the signature algorithm, and thus, we do
not report it here explicitly.

We stress that [DB23, KHSS22] proposed ad-hoc variations of the signing process relying on specific
constructions of the involved cryptographic hash function (e.g., Lattice Hash + Poseidon Hash in [DB23],
Poseidon Hash in [KHSS22]) deviating from what is implemented in standard cameras1.

Note that PRF (seed, j) is the output of a pseudorandom function, PRF , taking in input a seed and the
tile index j. The PRF is used only to have a shorter representation of a full signature that otherwise would
include a random string rj for every index j. We crucially compute a commitment of (a tile of) an image to
later on guarantee privacy even when the MT path is revealed. Indeed, the leaf will be a commitment and
thus the underlying tile remains hidden. The use of commitments (that guarantee hiding) instead of just a
cryptographic hash is another significant feature of our work in contrast to prior results [KHSS22].

Computing a signature is pretty fast since it consists of an ECDSA signature, plus one evaluation of a
PRF (or one sampling of a random string) and one computation of a hash-based (through Poseidon hash)
commitment per tile (or more in general for each chunk of the message), plus the construction of an MT
that adds no more than an evaluation of a fast cryptographic hash per tile.
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Alg. 1: ImageSign SignIS algorithm for n tiles.

Input: A secret key sk for ECDSA and an image I

1 T I
1 , · · · , T I

n ← getTiles(I, n); seed
$←− {0, 1}λ

2 foreach tile T I
j do

3 rj ← PRF (seed, j); cj ← Commitp(T
I
j , rj)

4 (MT, root)← BuildMerkleTree(c1, ..., cn)
5 σECDSA ← SignECDSA(sk, root)
6 σ ← (σECDSA, seed)
/∗ or (σECDSA, (r1, . . . , rn))

∗/
Output: σ

Theorem 1. Let Υ = (Commitp, Openp) be a commitment scheme, let M = (BuildMerkleTree,ExctractLeaf,VerifyLeaf)
be a MT construction and let ΨECDSA = (GenECDSA, SignECDSA,VerifySignECDSA) be a signature scheme, then
ImageSign is a signature scheme.
Proof. The proof is pretty straightforward. Correctness follows by inspection. Indeed, the verification
consists of building exactly the same MT starting from the image I and the randomnesses required to build
the same commitments during the signature generation. As such, the roots will match and the ECDSA
signature will be verified.

Unforgeability follows from the following facts. If by contradiction an adversary computes the signature of
a new image (i.e., a message that was never queried to the signature oracle) with non-negligible probability
p, then by the binding of the hash-based commitment, at least one leaf of the MT will be new. By the
collision resistance of the MT, the signature computed by the adversary leads to computing a new root of
the MT. Consequently, the signature computed by the adversary must include also a valid ECDSA signature
of a new message (i.e., the new root), and this can be obviously used to build a reduction contradicting the
security of ECDSA.

Notice that we have not mentioned the hiding property of the commitment scheme since it will be crucially
needed (along with the pseudorandomness of the PRF) when arguing the ImInd property of our construction.
□

4.1.2 ImageSign and ZK-Snarks with Oracles

In [FN16], the authors studied the feasibility of knowledge soundness in snarks when the adversary has
access to oracles (this motivates the notion of O-snark). In particular, in Sec 4.3 they show that knowledge
soundness still works for adversaries that have access to a signature oracle and to a random oracle when
the signature scheme is in some sense O-snark friendly. Fortunately, such schemes can be obtained from
traditional signature schemes following the hash-and-sign paradigm. Indeed, in [FN16] the authors propose
the following tweak: 1) the hash function is modeled as a random oracle; 2) the query to the random
oracle consists of the concatenation of the message to be signed and a random string r that will appear
in the signature. The trick used by the extractor of [FN16] is to answer to oracle queries internally, by
programming the random oracle and thus adapting some signatures hardwired in its code already at the
start of the reduction. Therefore, the above tweak produces a signature scheme admitting an O-snark starting
from traditional signature schemes.

One might think that ImageSign follows precisely this tweaked hash-and-sign approach because there is
already a random string that is concatenated to the messages tile by tile and the hash-based commitment is
anyway secure in the random oracle model. However, having an extractor programming a random oracle while
the adversary aims at computing a proof over the corresponding cryptographic hash function is extremely
dangerous since it corresponds to assuming at the same time that a function described by a small circuit is
also uniformly random. We want to avoid this. Therefore, we do not keep ImageSign as it is, and we make
sure to separate the random oracle that will be programmed by the extractor from the circuit that will be
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used in the claims of the ZK-snarks. Since we will be interested in ZK-snarks only about the leaves of the
Merkle tree, we will apply the trick of [FN16] only to the computation of the root of the Merkle tree (i.e.,
the hash of the two children of the root is computed with an hash function modelled as a random oracle and
a third value is added in input to this computation).

Summing up, when referring to ImageSign in the remaining part of the paper, we will implicitly assume
that the root of the Merkle tree is computed by hashing through a function H0 the concatenation of the
two children and a random string that will be added to the signature. Moreover, the leaves consist of hash-
based commitments, and we will assume that the commitment scheme is secure when instantiated with a
cryptographic hash function H1. As such, having a commitment (and thus the circuit of H1) in a claim
of a ZK-snark will not interfere with the fact that the extractor will program the random oracle that is
instantiated with H0.

Concluding, a signature oracle of ImageSign can be accessed by a knowledge soundness adversary and
there will still be a successful extractor (related to knowledge soundness) in the random oracle model. We
will use this fact when proving the PoK property of our Image-Hiding proof system TilesProof-MT, since the
adversary of the PoK property of TilesProof-MT has access to an oracle answering with signatures generated
according to ImageSign6.

4.1.3 Publication of the Image Transformation

Alg. 2: Local transformation fL(I) for n tiles.

Input: Image I, a local transformation fL (notable examples are bilinear resize, grayscale with
luminosity method and crop).

1 T I
1 , · · · , T I

n ← getTiles(I, n)

2 foreach tile T I
j do

3 T̂ I
j ← fL

j (T
I
j )

4 Î ←
∥∥n
j=0

T̂ I
j .

Output: Î

Alg. 2 describes how to transform an image by applying local transformations to each tile. As already
discussed in Sec. 1.2, instead of applying the transformation on the entire image (as in [KHSS22, DB23]),
we first apply the right transformation locally to each tile and then, we reconstruct the transformed image
combining the transformed tiles. In App. 5.3 we analyze in depth the implications of this approach. Alg. 2
works identically both for TilesProof-MT and for TilesProof-C2PA.

4.1.4 Proof System

We recall that the CRS generated by IHSetup is composed by a set of polynomial-size sub-CRSs one for each
possible fL ∈ Π. Consider the relation Rj and the generator KeyGenj of the sub-CRS of the corresponding
ZK-snark Σj = (KeyGenj, Provej,VerifyProofj). IHSetup on input (1λ) runs for each tile T I

j with j = 1, . . . , n

the algorithm KeyGenj, obtaining crsj ← KeyGenj(1
λ) where KeyGenj generates the CRS w.r.t. the j-th tile.

Indeed, recall that depending on the transformation, it is possible that different tiles will end up requiring
ZK-snarks related to different relations (i.e., different circuits). It goes without saying that one run of KeyGenj
can be recycled for all tiles that will require a ZK-snark related to the same relation. The ZK-snarks will
consider the following relations Rj((f

L
j , T̂

I
j , cj), (rj , T

I
j )) if and only if (cj = Commitp(T

I
j , rj ∧ T̂ I

j = fL
j (T

I
j )).

Generation of π. In our proof system, the prover wants to prove to the verifier that Î is an authentic image
obtained from an original signed image I where the signature can be verified using the public key pk and

6We implicitly assume that ImageSign is tweaked as just described.
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Alg. 3: The alg. Prove of TilesProof-MT for computing a proof π of I consisting of n tiles involved
in the transformation.
Parameters: crs = {crs1, . . . , crs|Π|}, where crsj is generated with KeyGenj of the ZK-snark Σj .
Witness: Image I, signature σ := (σECDSA, seed) generated according to Alg. 1.
Instance: Local transformation fL, transformed image Î = fL(I) computed according to Alg. 2
and public key pk.

1 T I
1 , · · · , T I

n ← getTiles(I, n)

2 T̂ I
1 , · · · , T̂ I

n ← getTiles(Î , n)

3 foreach tile T I
j do

4 rj ← PRF (seed, j); cj ← Commitp(T
I
j , rj)

5 πj ← Provej(crsj , (f
L
j , T̂

I
j , cj), (rj , T

I
j ))

6 (MT, root)← BuildMerkleTree(c1, ..., cn)
7 if VerifySignECDSA(pk, root, σECDSA) = 0 then
8 Abort

9 foreach tile T I
j do

10 Bj ← ExctractLeaf(MT, cj)

11 π ← {σECDSA, root, (B1, · · · , Bn), (π1, · · · , πn)}
Output: π

that the image I is divided in n tiles that have been transformed according to an advertised transformation
fL in order to obtain Î.

Hence, π guarantees that the prover knows every T I
j that is used to compute the commitment cj (that

is a leaf belonging to the j-th Merkle path Bj) and to which a local transformation fL
j is applied obtaining

T̂ I
j that is the j-th tile of Î. π is composed by:

1. the ECDSA signature σECDSA of the root of the MT generated according to Alg. 1;

2. the Merkle paths B1, · · · , Bn of all nodes between the leaves (including the leaves c1, · · · , cn) and the
root;

3. the ZK-snarks π1, · · · , πn where each πj proves the corresponding relation Rj .

Alg. 3 describes how π is generated. Note that through ImageSign it is possible to compute a transformation
using only a portion of the original image (i.e., a subset of tiles). In this way, we can efficiently compute
a crop or concatenate a crop to another transformation. Indeed, it is necessary to compute a ZK-snark πj

only for tiles involved in the transformation, as remarked in the description of Alg. 3.

Fraud Proofs. Anyone can simply build a fraud-proof for an instance x := (crs, Î, pk, fL, π), indicating in
which step a proof π fails. In our construction, no additional CRS is required to compute a fraud proof (i.e.,
IHFPSetup outputs ⊥). To construct a fraud-proof on input an instance that includes both the CRS used to
compute the (possibly invalid) proof, the instance x (i.e., the transformed image Î = fL(I), the function fL

and the public key of the signer pk), and the (potentially invalid) proof π, the algorithm run as follows:

1) check that the signature on root is correct, executing VerifySignECDSA(pk, root, σECDSA); if the output
is 0, set πFP = 1 and return it; otherwise keep going;

2) check that Bj is a valid Merkle path and that cj is a valid leaf with respect to root executing
VerifyLeaf(cj , root, Bj); if VerifyLeaf(cj , root, Bj) = 0, set πFP = (2, j) and return it; otherwise keep
going;

3) check that each πj has been correctly computed, executing VerifyProofj(vkj , (f
L
j , T̂

I
j , cj), πj); if VerifyProofj

(vkj , (f
L
j , T̂

I
j , cj), πj) = 0, set πFP = (3, j) and return it; otherwise, keep going;
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4) set πFP = ⊥ and return it.

IHFPProve receives and directly outputs the witness πFP, after having verified that indeed when associated
to the instance x := (crs, Î, pk, fL, π), it satisfies the relation RFP . Fraud proofs verification is now straight-
forward. If πFP = ⊥, it means that the proof π is accepting. Otherwise, the fraud proof just refers to a single
component of the original proof and there can be three cases: 1) when πFP = (3, j), the component is one
of the ZK-snarks (π1, · · · , πn), particularly the j-th ZK-snark πj , that is not accepted by the corresponding
VerifyProof; 2) when πFP = (2, j), the component is a single MT path among (B1, · · · , Bn), particularly
the j-th MT path Bj , and the verification through VerifyLeaf fails; 3) when πFP = 1, the component is the
signature σECDSA of root that is not verified with VerifySignECDSA.

Completeness of the fraud proof πFP follows by inspection. Knowledge soundness is obvious since the
prover is just sending a pointer to public information (i.e., an element of the proof π that now is a witness)
to the verifier. The running time to verify a fraud proof is bounded by the running times of a snark verifier
and of a verification of a Merkle branch. Computing a witness for the fraud proof is very efficient since it
just consists of running the verifier of Image-Hiding. The length of the fraud proof is constant. Summing up,
(IHFPSetup, IHFPProve, IHFPVerify) is a snark, satisfying Def. 6.
Theorem 2. Let fL be a transformation in a set of transformations Π and let R1, . . . , Rn be the polynomial
relations associated to the n tiles of I and their local transformations fL

j . Let ΨIS = (GenIS,SignIS,VerifySignIS)
be the ImageSign signature scheme. Assuming PRF is a pseudorandom function, Υ = (Commitp,Openp) is a
commitment scheme in the standard model, M = (BuildMerkleTree,ExctractLeaf,VerifyLeaf) is a MT construc-
tion and Σ1, . . . ,Σn are ZK-snarks7 such that each Σj = (KeyGenj,Provej,VerifyProofj) is a ZK-snark for
the relation Rj, then TilesProof-MT is an Image-Hiding proof system over ΨIS for Π in the random oracle
model.
Proof. Completeness follows by inspection.

Image Indistinguishability. In this proof, we refer to a real game experiment RG as the experiment

ExpImageIndistinguishability
OSign,OT

A,R (λ) played by the PPT adversary A accessing to the signing oracle
OSign and to the oracle OT . We remind the reader that OT (crs, sk, I, ·) is a transformation oracle that, for
a specific crs, a specific secret key sk of the signature scheme and a specific image I, receiving as input a
transformation fL outputs Î and a correctly computed proof π. As required by the definition, we want to
show that the probability that RG ends giving in output 1 (i.e., the probability that the adversary wins) is
at most 1/2 + negl(λ) for infinitely many values of λ. The proof proceeds by contradiction (i.e., there exists
an PPT adversary A winning in RG with probability at least 1

2 + 1
λc , for some constant c) and uses the

following hybrid experiments.
The first hybrid is H1RG and it corresponds to RG except for the generation of the crs that in H1RG is

generated by a simulator Skg and not by IHSetup. The success probability of A in H1RG, is only negligibly
far from the one in RG otherwise there is an obvious reduction that breaks the keys indistinguishability of
the ZK of the ZK-snarks, therefore reaching a contradiction.

The second hybrid is H1 where the experiment proceeds as in H1RG except for the generation of the proof
π provided by the oracle OT along with Î. In particular, the ZK-snarks included in the answers of OT in H1

are computed using the ZK simulator Sprv. We have that the success probability of A inH1, is only negligibly
far from the one in H1RG otherwise there is a direct reduction breaking the proof indistinguishability of the
ZK property of a ZK-snark, therefore reaching a contradiction. More precisely, we consider ℓ+1 sub-hybrids
where ℓ = poly(λ) is the running time of A, and we denote them as Hj

1 for 0 ≤ j ≤ ℓ where H0
1 = H1RG,

Hℓ
1 = H1 and the sub-hybrids Hj

1 and Hj+1
1 (for 0 ≤ j ≤ ℓ− 1) differ only on the j+1-th proof answered by

OT that is generated through Sprv and not through Prove. The reduction from a distinguisher between these
two sub-hybrids to an adversary breaking the proof indistinguishability of the ZK definition of the j + 1-th
ZK-snark is direct. In turn, this proves the computational indistinguishability of H1RG and H1.

The third hybrid is H1−2. This hybrid proceeds as in H1 except that the output of the PRF, that it is

7The auxiliary input required for the security of the ZK-snarks is the same used for Image-Hiding except that it also includes
a vector of message-signature pairs for distinct random messages. For simplicity we will consider the auxiliary input implicitly
as essentially it “carries over”.
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used to compute the commitments for each tile of Ib, is replaced by pure randomness. Clearly a distinguisher
among H1 and H1−2 violates the security of the PRF.

The forth hybrid is H2. In this hybrid, the experiment proceeds as in H1−2 except for the image used
by OT . In particular, given the randomly selected bit b, the image used by OT in H2 is not Ib but it is
I1−b. The only place where there is a change in the run of the two experiments is, therefore, in the input
used to compute the commitments of the leaves of the MT. Indeed, in H1−2 the commitment is computed
using as input the tiles of Ib while in H2 it is computed using as input the tiles of I1−b. Again, the success
probability of A inH2, is only negligibly far from the one inH1−2. Indeed, if this is not the case, then a direct
reduction breaks the computational hiding of the commitment scheme, therefore reaching a contradiction.
More precisely, there are n+1 sub-hybridsHj

2 for 0 ≤ j ≤ n whereH0
2 = H1−2, Hn

2 = H2 and the sub-hybrids

Hj
2 and Hj+1

2 (for 0 ≤ j ≤ n− 1) differ only on the commitment of the j+1-th tile since it will be computed
using as input I1−b instead of Ib. The reduction from a distinguisher between these two sub-hybrids to an
adversary breaking the computational hiding of the commitment in the definition is direct. In turn, this
proves the computational indistinguishability of H1−2 and H2. Note that the experiment H2 still samples a
bit b but then the execution continues as in H1−2 when the bit b′ = 1− b is sampled instead, except for the
winning condition where the adversary is still required to guess b. Therefore, we can then consider similar
hybrids H2−2RG, H2RG and H3 where in H2−2RG the pure randomness used for the commitments is replaced
by the output of the PRF, in H2RG the simulated ZK-snarks are replaced back by ZK-snarks computed by
the ZK-snark prover, and in H3 the crs is again generated by the IHSetup algorithm. The computational
indistinguishability of the outputs of these hybrids follows from the same arguments used previously, and as
such we do not repeat them.

Concluding, observe that experiments H3 and RG are identical except that, in RG, A wins (i.e., the
experiment ends with output 1) when A gives in output the bit b corresponding to the image Ib that was
used for the computations of OT during the experiment, while, in H3, A wins when giving in output the
complement of the bit b corresponding to the image Ib that was used for the computations of OT during
the experiment. Since in these two experiments, the views of A are computationally indistinguishable, we
have that a success with probability p ≥ 1

2 + 1
λc (for some constant c) in RG corresponds to a success with

probability p′ < 1
2 in H3. This clearly contradicts the above fact that through hybrid arguments A succeeds

in H3 with non-negligible probability (i.e., it contradicts that A, with probability ≥ 1/2 + 1
λc′ for some

constant c′, outputs the same bit b selected in the experiment).

Proof of Knowledge. Suppose by contradiction that for some auxiliary distribution Z there exists s PPT
A of TilesProof-MT such that for every PPT Ext it holds that the following probability is at least 1

λc for
infinitely many values of λ (i.e., A is successful)

Pr


IHVerify(crs, x, π) = 1

∧
Î ̸= fL(Ij), 1 ≤ j ≤ m

∧
(VerifySign(pk∗, I, σ) = 0 ∨ fL(I) ̸= Î)

∣∣∣∣∣∣∣∣∣∣
crs← IHSetup(1λ) ; (pk, sk)← Gen(1λ)

auxZ ← Z(crs)
(x = (Î , pk∗, fL), π)

↱ AOSign(sk,·)(crs, auxZ , pk)
(I, σ)← Ext(crs, auxZ , pk, qt)


where c is a non-negative constant and qt = {Ij , σj}, with |qt| = m, is the transcript of all queries to the
signature oracle OSign and its answers, specifically Ij is the j-th query and σj (i.e., the signature of Ij using
sk) is the j-th answer.

In the following, we will show that for a specific extractor Ext, the above non-negligible probability
allows us to reach a contradiction. Let n be the number of tiles associated to fL. We have that π includes
n ZK-snarks π1, . . . , πn. Ext will embed the extractor8 Ext′ that exists from the knowledge soundness of the
ZK-snark. As discussed in subsection 4.1.2, A has access to an oracle and this can jeopardize extractability.
However, we designed ΨIS to be O-snark friendly for the specific oracle available to A. In particular, this
allows Ext to internally simulate the signature oracle OSign by programming the random oracle used to

8For simplicity we are wlog considering the case where all n ZK-snarks are computed for the same relation and thus the same
extractor works for all of them. In general, Ext includes extractors for all relations associated to the transformation specified
in π.
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compute the root of the MT that belongs to a signature of ΨIS . Therefore, as proved in [FN16], extraction
from the ZK-snarks in π by running internally Ext′, fails only with negligible probability and Ext obtains
a valid witness wj for each of the claims proved by the ZK-snarks π1, . . . , πn. Indeed, if this is not the
case, then there is a reduction breaking the assumption that the ZK-snark enjoys knowledge soundness for
auxiliary distribution Z also in the presence of OSign (which in turn, as discussed in subsection 4.1.2 would
contradict the knowledge soundness of the ZK-snark for the specific auxiliary input distribution Z, without
oracles).

Recall that a witness wj is a pair (T I
j , rj) that produces the commitment cj and moreover is such that

fL
j (T

I
j ) = T̂ I

j , where cj , T̂
I
j and fL are all specified in the claim proven by the j-th ZK-snark. Ext combines

all T I
j obtaining I such that fL(I) = Î. Moreover, obtaining all rj , Ext reconstructs

9 the entire randomness
r for all commitments. By associating r to σ′ (that is the ECDSA signature of the root of the MT and it is
in π), Ext obtains σ = (σ′, r) and outputs (I, σ).

Given the n leaves c1, . . . , cn of the MT in π, we distinguish two cases depending on the following event
E: a prior query I⋆ of A to the signature oracle received as answer a signature σ⋆ = (σ⋆′

, r⋆) such that
the leaves of the associated Merkle tree correspond exactly to c1, . . . , cn. Since the success of the adversary
is restricted to the condition that Î ̸= fL(I⋆) while instead fL(I) = Î we have that there exists a cj for
1 ≤ j ≤ n such that cj can be opened in two different ways, one according to (I, r) and the other one
according to (I⋆, r⋆), violating the binding of the commitment scheme. Therefore, conditioned on A being
successful, E can happen only with negligible probability.

We are left with the case in which conditioned on A being successful, the leaves of the MT do not match
the ones associated to the answers of the signature oracle. By the collision resistance of the MT, except with
negligible probability, the root of the MT in π will be new (i.e., different from all other roots belonging to
the answers of OSign). Since A is successful, we have that IHVerify outputs 1, and thus in π there is a correct
ECDSA signature of the new root. The fact that this is obtained with non-negligible probability contradicts
the unforgeability of ECDSA and this concludes the proof of this theorem. □

Remark on transformations ignoring some tiles. Note that through ImageSign it is possible to compute
a proof of an authentic transformation using only a portion of the original image. This is possible when the
transformation is applied only on a subset of the tiles (i.e. when a crop is realized). From a broader point of
view, the prover can compute a proof of an authentic transformation more efficiently (i.e., by using only a
subset of tiles) every time the transformation includes a crop (e.g., crop-and-resize). Note that the definition
of PoK of Image-Hiding requires that the extractor obtains the whole image I and the randomnesses r1, . . . , rn
(or the seed that generates them) so that a successful verification is possible through VerifySign. When a
proof is computed on a subset of tiles, it is clear that the extractor cannot obtain I and r1, . . . , rn because
not even the honest prover would used them to compute π, but Merkle paths bringing to the commitments of
the involved tiles suffice. However, the extractor can still obtain the involved tiles and verify the authenticity
of such tiles without knowing I and without using VerifySign of ImageSign but exploiting how a signature is
constructed internally. To show this, for simplicity, let us suppose that a transformation is applied only on
one tile (i.e., the image is first cropped, by choosing just one tile, and subsequently on the cropped image
another transformation is carried out). The proof π in this case is composed of {σECDSA, root, Bi, πi},
namely, it is computed by considering only T I

i . By internally running the ZK-snark extractor Ext′, Ext
obtains the pair (T I

i , ri). Such a pair produces the commitment ci that can not be opened to another value
otherwise we contradict the binding of the commitment. Proving that ci belongs to the Merkle Tree can
be guaranteed with Bi and root (that are in π) otherwise we contradict the collision resistance of the MT.
Finally, a valid signature σECDSA on a new root would contradict the unforgeability property of ECDSA.

Therefore, Ext extracts a valid witness (consisting of a single tile T I
i along with its randomness ri) but

with respect to a slightly revisited relation. It is straightforward that the same considerations apply when
more than one tile is involved.

9Recall that according to ΨIS , the randomness for the commitments of the leaves is sufficient to produce an accepting
signature, the seed of the PRF is used only for compactness, not for security.
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4.2 TilesProof-C2PA

Here, we show our second construction named TilesProof-C2PA, an Image-Hiding proof system that works
using the signature scheme (i.e., ECDSA) and the cryptographic hash (i.e., SHA256) of C2PA.

Signature. The C2PA specifications10 indicate ES256 (ECDSA using P-256 as curve and SHA256 as a
cryptographic hash function) as signature scheme. During the signing process, the message to be signed is
hashed with SHA256, and then the ECDSA signing procedure is run on input the hashed message using the
P-256 curve.

A discussion on how SHA256 works can be found in Sec. 1.2. We will refer with SHA-256Compression to
the internal one-way compression function of SHA256.

Limits from ZK-Snarks with oracles. Recall that in Section 4.1.2, we already discussed the consequences
of constructing an extractor for the knowledge soundness of an adversary having access to a signature
oracle and a random oracle. In TilesProof-MT, we have used the tweaked hash-and-sign approach proposed
by [FN16] to allow extraction along with access to a signing oracle.

When sticking with ES256 no tweak is possible and thus for the PoK of TilesProof-C2PA similarly
to [NT16], we are limited to non-adaptive adversaries. More precisely, A receives as input polynomially
many message-signature pairs (i.e., (I0, σ0), . . . , (Ik, σk) with k = poly(λ)), but has no access to a signing
oracle.

Construction. We recall that the CRS generated by IHSetup is composed of a set of polynomial-size sub-
CRSs one for each possible fL ∈ Π plus a special sub-CRS. Let Σj = (KeyGenj, Provej,VerifyProofj) be
the ZK-snark for the j-th local transformation. IHSetup on input 1λ runs KeyGenj for each tile T I

j with

j = 1, . . . , n, obtaining crsj ← KeyGenj(1
λ). Obviously, one run of KeyGenj can be recycled for all tiles

requiring a ZK-snark for the same relation. For j = 1, . . . , n, the j-th ZK-snarks works for the following
relation Rj :

Rj((f
L
j , T̂

I
j , zj , zj−1)(T

I
j , sj , sj−1, rj , rj−1)) if and only if

(sj = SHA-256Subroutine(T I
j , sj−1)∧

zj−1 = Commitp(sj−1, rj−1)∧

zj = Commitp(sj , rj) ∧ T̂ I
j = fL

j (T
I
j ))

The special sub-CRS generated by IHSetup is structured for a ZK-snark Σ′ = (KeyGen′, Prove′,VerifyProof ′),
for the following relation R′:

R′((pk, zn, z
′), (r′, σ, rn, sn)) if and only if

(zn = Commitp(sn, rn) ∧ z′ = Commitp(σ, r
′)∧

VerifySignES256(pk, sn, σ) = 1)

Generation of π. According to the above relations, a proof π guarantees that the prover knows that: a)
T I
j is the j-th input, along with sj−1, to the j-th SHA-256Compression that outputs sj ; b) the commitments

of sj−1 and sj are, respectively, zj−1 and zj ; c) a local transformation fL
j is applied to T j

j obtaining the j-th

tile of Î (i.e., T̂ j
j ); d) pk correctly verifies the signature σ that is computed over sn (i.e., the SHA256 of I)

and committed in z′.
Detailed description of the prover is given in Alg. 4. More in details, in Alg. 4 at line 6 we used

SHA-256Subroutine to represent the execution of multiple rounds of SHA-256Compression. We recall that
SHA-256Compression is a one-way compression function, namely it represents a single round execution of
SHA256 (i.e., given 512 bits of message and 256 bits of state, it outputs 256 bits corresponding to the new
state). Given as input a tile T I

j and a state sj−1, SHA-256Subroutine executes the SHA-256Compression

function
⌈
|T I

j |/512
⌉
times and output a new state sj (where the size of the input tile is defined according to

the prover’s computational capabilities in terms of hardware).
A proof π consists of:

10https://c2pa.org/specifications/specifications/1.0/specs/C2PA_Specification.html#_digital_signatures
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1. the ZK-snarks π1, · · · , πn where each πj proves the corresponding relation Rj .

2. the ZK-snark π′ proving the relation R′;

3. the commitments (z1, · · · , zn) (i.e., the commitments of (s1 · · · , sn)) and z′ (i.e., the commitment of
the signature σ).

The construction of the fraud proof for TilesProof-C2PA is even simpler than the one of TilesProof-MT
(see Sec. 4.1.4) since it consists of identifying and giving in output a single invalid ZK-snark proof.

The security of TilesProof-C2PA follows that of the TilesProof-MT, here we give only a brief discussion of the
main deviations compared to the proof of Th. 2.

ImgInd is proved following mutatis mutandis the proof of TilesProof-MT, without non-trivial deviations.
As previously remarked, differently from TilesProof-MT, the PoK property of TilesProof-C2PA that we

prove considers a non-adaptive adversary (i.e., signatures of images can not be asked during the experiment
but are obtained by the adversary upfront). The proof of non-adaptive PoK starts as the proof of PoK for
TilesProof-MT, assuming by contradiction that an adversary succeeds and showing an extractor that runs
the underlying extractors of the ZK-snarks obtaining all committed values along with their randomnesses.
Since by contradiction the adversary succeeds, by the knowledge soundness of the ZK-snarks one of the
following cases must happen with non-negligible probability: 1) for some j ∈ {1, . . . , n} the message sj
committed in zj and extracted from the (j+1)-th ZK-snark is different from the one extracted from the j-th
ZK-snark; this breaks the binding of the commitment scheme; 2) case 1 did not happen and the extracted
message-signature pair is accepting and the message is not among the signed images received upfront; this
breaks the unforgeability of ECDSA with SHA256.

Alg. 4: The alg. Prove of TilesProof-C2PA for computing a proof π for I consisting of n tiles.

Parameters: crs = {crs1, . . . , crs|Π|, crs
′}, where crsj is generated with KeyGenj of the ZK-snark Σj ,

for the j-th tile, and crs′ is generated with KeyGen′ of the ZK-snark Σ′.
Witness: Image I, signature σ generated according to the ES256 signing algorithm.
Instance: Local transformation fL, transformed image Î = fL(I) computed according to Alg. 2
and public key pk.

1 T I
1 , · · · , T I

n ← getTiles(I, n)

2 T̂ I
1 , · · · , T̂ I

n ← getTiles(Î , n)

3 seed
$←− {0, 1}λ

4 r′ ← PRF (seed, 0) ; z′ ← Commitp(σ, r
′)

5 foreach tile T I
j do

/∗ s0 is the initial hash value ∗/

6 sj ← SHA-256Subroutine(sj−1, T
I
j )

7 rj ← PRF (seed, j) ; zj ← Commitp(sj , rj)

8 πj ← Provej(crsj , (f
L
j , T̂

I
j , zj , zj−1),

9 (T I
j , sj , sj−1, rj , rj−1))

10 π′ ← Prove′(crs′, (pk, zn, z
′), (r′, σ, rn, sn))

11 π ← {(π1, · · · , πn), (z1, · · · , zn), z′, π′}
Output: π

5 Experimental Results

Here we describe our experiment showing that the most demanding component of our system, namely the
computation of a ZK-snark for a sufficiently large tile size, can be carried out in reasonable time on our
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“common” hardware1: an Intel(R) Core(TM) i7-8565U CPU @ 1.80GHz processor with 8 cores and 16 GB
of RAM, employing only about 4 GB of the available memory for our tasks.

We have developed six Circom circuits, available on GitHub11, to compute the proofs at line 5 of Alg. 3
and lines 8 and 9 of Alg. 4, with the purpose of evaluating their performance. Our experiments consider
as input to the proof three very common transformations: bilinear resize12, rectangular crop and grayscale
based on the luminosity method13. Our experiments confirm, according to [KHSS22], that irrespectively
from the transformation, the computation of the cryptographic hash is by far the most expensive circuit
component. In view of the results on the resize/crop/grayscale function, we expect a similar performance
with other simple transformations, in terms of time and memory consumption.

5.1 Main Technical Choices

We used Circom to write the circuit, Snarkjs to set up the proof and Rapidsnark to generate the proof.
We instantiated TilesProof-MT with Poseidon 128 to implement the commitments of the tiles. For the

evaluation of the circuit of the ZK-snark we encoded the input according to the approach proposed by
Khovratovich14. In our experiments, we used the Circom implementation of Poseidon 128, and we set the
number of field elements of a single Poseidon Sponge iteration to 16, which is the maximum value available.
For all the other parameters, we refer the reader to the Circom official repository15.

We instantiated the circuit of the ZK-snark in TilesProof-C2PA adopting the Circom implementation of
SHA25616. In particular, to compute a round of SHA256 from a specific input state to a specific output state,
we used the SHA256 compression function implemented in the library. To compute the commitment of the
input state and of the output state, we used Poseidon 128, and thus we used its circuit for the corresponding
ZK-snarks.

A natural question is whether an optimal tile size exists to speed up the computation of a proof. We
observe that the time and memory consumptions during the generation of a proof that computes a Poseidon
hash and a SHA256 compression are linear in the size of the input, as long as the swap memory is not acti-
vated. Indeed, when the swap is used the system performance is severely downgraded due to the inherently
time-consuming nature of disk memory accesses. A tile therefore should not be so large to saturate the avail-
able RAM. In order to prove the viability of our approach on a common device, we performed experiments
on a tile size such that the generation of a ZK-snark for the corresponding relation uses approximately 4 GB
of memory. This low memory requirement is suitable also for a smartphone, therefore broadening the use
cases and the audience of potential users.

5.2 Performance Evaluation

Here we show the results of the experiments to concretely assess the feasibility of our constructions. First we
show the performance for the proof generation on crop, grayscale and resize employing only 4 GB of RAM.
Then, we compare our work with the state-of-the-art solutions.

Thanks to our techniques allowing to choose a tile dimension according to the available hardware, we can
compute the proof on images of the same size of [DB23, KHSS22] using a common laptop instead of using
expensive resources or cloud infrastructures. Still, our experiments show that the performance of our 1st
construction is affordable in computation time. The one of our 2nd construction is one order of magnitude
slower, but it works on original images signed with ECDSA using SHA256 as in C2PA specifications.

Note that, the setup phase requires more than 4 GB of RAM, but still less than the 16 GB available on
our “common” hardware. This operation is performed only once for a given transformation of a specific tile
size, its output does not contain any private information and can be thus publicly shared. Therefore, the

11https://github.com/PIERdemo/Privacy-PreservingProofs4EditedPhotos
12https://chao-ji.github.io/jekyll/BilinearResize.html
13https://mmuratarat.github.io/rgb to grayscale
14https://hackmd.io/@7dpNYqjKQGeYC7wMlPxHtQ/BkfS78Y9L
15https://github.com/iden3/circomlib/master/circuits/poseidon.circom
16https://github.com/iden3/circomlib/master/circuits/sha256/
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Tile Dimension Setup Prove Verify
Pixels Memory (GB) Time (sec) Memory (GB) Time (sec) Memory (GB) Time (sec)

Crop 184756 14.1 5319 3.4 20.8 0.15 0.6
Resize 184756 14.1 5232 3.4 18.9 0.15 0.6
Grayscale 80000 14.7 5544 4.5 25.7 0.15 0.6

Table 1: Performance of a ZK-snark using TilesProof-MT (see Section 4.1.4).

Tile Dimension Setup Prove Verify
Pixels Memory (GB) Time (sec) Memory (GB) Time (sec) Memory (GB) Time (sec)

Crop 2666 14.7 3129 4.2 18.5 0.15 0.6
Resize 2666 14.7 3107 4.2 18.1 0.15 0.6
Grayscale 2666 14.7 3244 4.3 18.7 0.15 0.6

Table 2: Performance of a ZK-snark using TilesProof-C2PA (see Section 4.2).

setup phase can also be computed on a more powerful platform or even on the cloud without violating our
enforced properties.

Experiments on the TilesProof-MT. Table 1 summarizes the results of our experiments with the 1st
construction.

The proving time for a single tile requires between 18.9 and 25.7 seconds for all the three transformations,
and the necessary memory is below 4 GB except for the grayscale. In a grayscale transformation, input and
output sizes are the same, while in our experiments both crop and resize have an output size which is half
of the input one. This justifies the higher memory requirements of grayscale.

The size of a ZK-snark for a single tile is about 800 bytes and its verification requires 150 MB of RAM
and about 0.6 secs which roughly is also the time to verify a fraud-proof.

Experiments on the TilesProof-C2PA. Table 2 summarizes the results of our experiments with the 2nd
construction. The proving time for a single tile requires approximately the same amount of time (18 secs)
for all the transformations. The size of the ZK-snark for a single tile is about 800 bytes and its verification
requires 150 MB of RAM and about 0.5 secs and this does not deviate much from the cost of verifying a
fraud-proof. As expected, since SHA256 is not a snark-friendly hash function, the size of the tiles is lower in
this case compared to TilesProof-MT and strongly dominates the memory consumption, thus implying that
in this case, to fit into the 4 GB memory constraint, all the transformations are applied to the same tile size.

Comparison with Kang et al. [KHSS22]. In Table 3, we compare the performance of our system
to those presented in [KHSS22]. According to Table 4 in [KHSS22], the resize applied to an HD image
of size 1280 × 720 = 921600 pixels requires 70.7 GB. Furthermore, the proof computation needs an AWS
instance with 64 vCPU cores and 512 GB of RAM. Table 3 shows that we outperform [KHSS22] both
in the time needed to generate a proof and, more importantly, on the necessary RAM, while the time to
verify the proof is significantly higher but still absolutely acceptable in several practical scenarios. We
stress that with the limited hardware requirements considered in our experiments, the system proposed
in [KHSS22] would fail either for insufficient memory or for the gigantic amount of time required to compute
a proof when a significant part of the required data are in the swap. Finally, notice that when the original
image must be transferred to the external party providing the high-performance computing platform, image
indistinguishability is clearly not satisfied.

Performances over very large images. We conducted our tests also on a high-resolution image of size
6000×4000 pixels (i.e., ∼30 MP) as in [DB23], even if that work does not explicitly report on the performance
and some details on the experimental settings are missing.

Here, we focus on the performance of the resize transformation; similar results hold for the other trans-
formations.

The image is divided into 130 tiles of size 184756. Considering the results in Table 1 the proof requires
about 41 mins and at most 3.4 GB of memory. The verification time is instead 78 secs. The size of the proof
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Prov
Ver
(FPVer)

Proof Size
(FP Size)

Resources

ZK-IMG (Resize)
[KHSS22]

328.2s 6.9 ms (N.A.) 3.04 KB (N.A)
70.7 GB Intel Xeon 8375C,
64 vCPU

/
This paper (Resize)
[ TilesProof-MT ]

94.5 s 3 s (0.6 s) 4 KB (800 bytes)
3.4 GB, Intel Corei7-8565U,
16 vCPU

,
This paper (Resize)
[ TilesProof-C2PA ]

6262 s 207.6 s (0.6 s) 276.8 KB (800 bytes)
4.2 GB, Intel Core i7-8565U,
16 vCPU

,
ZK-IMG (Crop)

[KHSS22]
328.2s 5.3 ms (N.A.) 3.04 KB (N.A)

70.7 GB, Intel Xeon 8375C,
64 vCPU

/
This paper (Crop)
[ TilesProof-MT ]

104 s 3 s (0.6 s) 4 KB (800 bytes)
3.4 GB, Intel Core i7-8565U,
16 vCPU

,
This paper (Crop)
[ TilesProof-C2PA ]

6401 s 207.6 s (0.6 s) 276.8 KB (800 bytes)
4.2 GB, Intel Core i7-8565U,
16 vCPU

,

Table 3: Performance comparison between our work and [KHSS22] from HD to SD. We use 5 tiles of size
184756 pixels for TilesProof-MT tests. We use 346 tiles of size 2666 pixels for TilesProof-C2PA tests. Prov =
time for the prover, Ver = time for the verifier, FPVer = time for the fraud proof verifier.

including 130 ZK-snarks, 130 commitments, the root hash and the size of an ECDSA signature is around
108 KB.

The performance of TilesProof-C2PA is affected by the fact that SHA256 is not snark friendly. In our
experiments, we have considered 9003 tiles of size 2666 and the proof for the whole image needs about
45.2 hours and the verification time is 90 mins. The size of the proof, including 9003 ZK-snarks, 9003
commitments, the commitment of the ECDSA signature, and π′, is around 7.4 MB. Despite the proof
requires a significant time, it can be computed on 4.2 GB, thus proving the efficacy of the tiling approach
also over huge images and not-friendly snark operations. Performance might be easily improved employing
more RAM.

Packing together proofs with [GMN22]. In our work, it is also possible to aggregate snark proofs
according to [GMN22] reducing the proof size (by a logarithmic factor in the size of the proofs to be
aggregated) and the verification time (by a logarithmic factor in the number of proofs to be aggregated).

According to the benchmarking conducted in [GMN22], it is possible to verify 8192 Groth16 proofs in
∼ 33 ms with a proof size of ∼ 40 KB, while 16384 Groth16 proofs can be verified in ∼ 58 ms with a proof
size of ∼ 43 KB. Since in the worst case considered in our experiments, TilesProof-C2PA needs 9003 tiles
for 30 MP image, namely 9003 Groth16 proofs, applying this technique in our context will provide results
within the above bounds.

Updated comparison with the concurrent work of [DCB24]. In [DB23], the authors did not report
any result on the memory performance of their proof system and for this reason initially we could not
fairly compare our results with theirs. The concurrent version of [DCB24] recently appeared online instead
reports such detailed results. In particular, the authors run a similar batch of tests on images of exactly
30 MP. According to Sec. 7.1 and Table 1, they generate the proof in 24 mins using 57 GB of RAM and
a verification time of 196.7 secs. To reduce the proof verification time to 0.219 secs, they also propose
an additional technique that comes at the cost of increasing time and memory consumption during proof
generation (i.e., 60 mins and 72 GB ). Since they use an ad-hoc cryptographic hash function (i.e., Lattice
Hash + Poseidon Hash), it is natural to compare their performances with those of TilesProof-MT, reported
above in this paragraph.

We now show the results of an image of exactly 30 MP (e.g., 6000 × 5000 pixels) using TilesProof-MT.
The image is divided into 163 tiles of size 184756. Considering the results in Table 1 the proof requires about
51 mins and at most 3.4 GB of memory. The verification time is instead 97.8 secs. The size of the proof
including 163 ZK-snarks, 163 commitments, the root hash and the size of an ECDSA signature is around
132 KB.
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According to the comparison proposed by [DCB24], there are different trade-offs that can be considered
and also depending on the use case one approach could be preferred w.r.t. another. In details, our solution
takes approximately twice the time of [DCB24] but they obtain this 2× speedup at the price of consuming
50 GB instead of 3.4 GB. This outcome naturally reflects the two distinct objectives of the works; indeed
we aim to enable the computation on constrained devices (using approximately 4 GB) while, on the other
hand, [DCB24] focus their attention on reducing proof generation time (consuming an amount of memory
available only on cloud services or HPC). Similar considerations can be applied also on the verification time
and the proof size (i.e., by increasing the time and memory for the proof generation you can reduce the
size and the verification of this proof). This is also confirmed by the performances of the two different
constructions (verITAS and Opt-verITAS) of the proof system used by [DCB24]. Notice also that the proof
size and the verification time in our case can be optimized through the use of SnarkPack (see paragraph
“Packing together proofs with [GMN22]” in Sec. 5.2 of our work).

Finally, we want just to highlight the modularity of our construction that comes by using the “tiling”
technique. By increasing the tile dimension and, consequently, the memory used during proof generation
(e.g., by using 8 GB that is a standard even on a common smartphone), we can easily compute a proof of
lower size and faster verification time.

5.3 The Impact of Local Transformations

Our approach relies on transformations applied to tiles (see Alg. 2) rather than to the whole image. While
this is extremely positive efficiency-wise, it can introduce some usability issues. In particular, a) there are no
guarantees that the quality of fG(I) is as good as the one of fL(I) and b) small changes to the parameters of
fL (e.g., in the case of rectangular crop we need to specify a different sub-area to be cut for every tile) might
imply the re-computation of the involved fL

j and the corresponding circuits and this might be a cumbersome
process.

In this subsection, we argue that in many natural scenarios, locally transformed images are (essentially)
equal to the images obtained by applying the global transformation. Furthermore, we discuss how local
transformations impact the usability of the technique proposed in this paper.

We consider the following relevant transformations: the rectangular crop, bilinear resize and grayscale
based on the luminosity method (also considered in [KHSS22, DB23], refer to those papers for more details
about the transformations). A detailed description of these transformations is available in App. A. Note
that, similar arguments can be extended to other transformations. Some transformations, such as rotation
and/or flipping, are consistent with our definition of image indistinguishability, but since they easily allow
the adversary to obtain I form Î, they do not have any practical sense in our scenarios17.

In transformations working on individual pixels (e.g., grayscale) the function applied to the tiles produces
a result identical to the one applied to the whole image. Moreover, the same circuit can be exploited for all
the tiles.

Other transformations, instead, might require more circuits depending on the position of the tile impact-
ing on usability. Moreover, applying local transformations and joining their outputs could produce a result
that differs from the one of a global transformation.

The usability of local transformations. We remark that the usability issue of considering several circuits,
dealing with the various/many parameters of each transformation, also affects previous work relying on proofs
that consider the entire image. The additional and potential usability drawback of our approach is that for
some transformations and parameters, one might end up needing a different circuit for each tile instead of a
single circuit for the entire image.

The rectangular crop is a remarkable example of this issue (see Figure 3). Users are indeed free to
crop any rectangular region; consequently, in the worst case, 10 distinct kinds of local transformations and
the corresponding circuits are needed, namely: top, bottom, right, left, the 4 corners, the middle and the
excluding one18.

17When confidentiality of the original image is not required one can just send the original image, the signature, and the
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Figure 3: Number of distinct local transformations and corresponding circuits for the rectangular crop.

However, in some cases, the number of necessary circuits can be reduced (e.g., it can become 2 instead
of 10), by selecting a crop region that matches the tiling structure.

Moreover, while tiling is beneficial in terms of proof generation and verification time, we notice that by
carefully selecting the tile size, our approaches can significantly reduce the time-intensive set-up phase for
the circuit. This suggests, that at least time-wise, the usability of our system remains acceptable also for
the task of generating circuits, even when multiple circuits could be required.

The quality of local transformations. We performed some experiments to prove that the local bilinear
resize function provides results that are hardly distinguishable by human eyes from the global ones (see
Fig. 4). We have not tested the crop and the grayscale because they work pixel-by-pixel and thus there is
no quality loss from local transformations. The implications from our tests on the resize operation can be
applied to other transformations that work similarly to the resize (e.g., blur). We applied our local resize to
a test image, and we compared the results with the ones obtained by applying a global resize. To note the
difference between the two outputs, we developed11 a filter that shows the pixels with a difference in any of
the RGB channels of at least a given threshold (i.e., 5 in our test)18. While the filter clearly shows some
differences (7% in total), we stress that they cannot be easily grasped by human eyes18, making the final
results indistinguishable in many concrete real-world scenarios.

6 Application Contexts

The properties achieved by our system allow us to extend to the mass the ability to autonomously compute
authentic transformations and their proofs reducing the need of TTPs.

The fast fraud detection property is particularly useful for developing a smart contract running on
renowned blockchains like Ethereum and invoked to efficiently handle the frauds and penalize malicious
users, thus incentivizing correct behaviors.

However, such property can also be used to develop a system to detect fakes on the Web. Similarly to
what has been proposed by Datta and Boneh in [DB23], we envision a new feature allowing browsers to
give an explicit sign on the authenticity of a picture, similarly to the lock for HTTPS. While the recent
work of Datta, Chen and Boneh [DCB24] when discussing our preliminary results presented in [DVVZ24]
claims (Sec. 8 of their paper) that when high-resolution images are involved our techniques do not allow
fast proof verification, we instead remark here that our construction can be significantly optimized in this
respect through the use of SnarkPack (see paragraph “Packing together proofs with [GMN22]” in Sec. 5.2
of our work) that makes our proof succinct and thus our verifier very efficient.

transformation to apply.
18The full resolution images, the transformed images and the output of the experiments are at https://github.com/PIERdemo/

Privacy-PreservingProofs4EditedPhotos
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(a) Tested Image. (b) Image highlighting the different pixels.

(c) Resized images with global and local transforma-
tions.

Figure 4: Result of the test for proving the indistinguishability of the resize applied to the whole image and
the resize applied to the tiles.

We envision a system that, by admitting fraud proof succinctness, allows a user who has verified the
entire proof (which still gets verified in a few minutes even for high-resolution images) to publish a succinct
fraud proof for all other users. While an image is initially unverified when downloaded by a browser, the
user can ask the browser to verify the proof. If it is correct, the image is classified as verified otherwise, it is
classified as fake. We stress that, there can be repositories of fraud proofs that are accessed by browsers in
order to check quickly, even automatically (i.e., without an explicit request of the user) if a picture is fake.
This approach is to some extent similar to the verifications that are performed by the browser on Certificate
Revocation Lists or for malware detection.
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A Local Transformations

The purpose of this appendix is to show how to map global transformations (resize, crop, grayscale and
blur) to tiles in order to obtain a resulting locally transformed image that is (essentially) equal to the one
obtained by applying the global transformation to the image (as shown in Section 5). Furthermore, we show
how local transformations impact on the usability of the technique proposed in this paper.

Notations. As already discussed in Section 4, we represent an image as an RGB bi-dimensional matrix of
pixels. We denote with I[i][j] the pixel p at the i-th row and the j-th column of the image I. Each pixel
p consists of 3 bytes. Each byte represents a color component of the pixel and we refer to it as “channel”.
We denote with p.G the green component of the pixel, with p.R the red component and with p.B the
blue component. To simplify the reading, when arithmetic operations or functions are applied on a pixel, we
intend that these operations are separately applied to each of the 3 bytes of the pixel (e.g., with p×2 we mean
(p.R×2, p.G×2, p.B×2) or writing max(p, p′) is equal to (max(p.R, p′.R),max(p.G, p′.G),max(p.B, p′.B))).

A.1 The Algorithms of the Local Transformations

A.1.1 Bilinear Resize

In our work, we adopted the bilinear resize proposed by [DB23]. Alg. 5 shows the steps to perform such a
resize on a tile T I

j .
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Alg. 5: Bilinear Resize transformation on a Tile T I
j with xrows rows and ycolumns columns.

Input: Tile T I
j , the number of rows in output xres, the number of columns in output yres

1 xratio ← (xrows − 1)/(xres − 1)
2 yratio ← (ycolumns − 1)/(yres − 1)
3 foreach y in 1, · · · , yres do
4 foreach x in 1, · · · , xres do
5 xl, yl ← ⌊xratio · x⌋, ⌊yratio · y⌋
6 xh, yh ← ⌈xratio · x⌉, ⌈yratio · y⌉
7 xw ← ((xratio · x)− xl)
8 yw ← ((yratio · y)− yl)

/∗ This next line is done for each RGB channel; we avoid explicitly writing it for

readability ∗/

9

T̂ I
j [x][y]←T I

j [yl][xl] · (1− xw) · (1− yw)

+ T I
j [yl][xh] · xw · (1− yw)

+ T I
j [yh][xl] · yw · (1− xw)

+ T I
j [yh][xh] · yw · xw

Output: T̂ I
j , RGB matrix with xres rows and yres columns

A.1.2 Rectangular Crop

Alg. 6 shows the steps to perform a rectangle crop on a tile T I
j . Among the transformations that we discuss,

Crop has in general the disadvantage of requiring the computation of 10 circuits (i.e., top, bottom, left,
right, 4 corners, center and excluded tile). However, by playing with the tile size it is possible to reduce the
number of necessary circuits. As an example, we might set the tile size to exactly match the corner of the
cropped image. In this case, we can envision a software producing transformations of an authentic picture
capable of providing recommendations on the optimal tile size in view of the image in input and the crop.

Alg. 6: Rectangular Crop transformation on a Tile T I
j with xrows rows and ycolumns columns.

Input: Tile T I
j , the starting row of the crop xbegin, the ending row of the crop xend, the starting

column of the crop area ybegin, the ending column of the crop area yend foreach x in
xbegin, · · · , xend do

1 foreach y in ybegin, · · · , yend do

2 T̂ I
j [x− xbegin][y − ybegin]← T I

j [x][y]

Output: T̂ I
j with xend − xbegin rows and yend − ybegin columns

A.1.3 Grayscale

Alg. 7 shows the steps to perform a grayscale on a tile T I
j . The output of this algorithm is a bi-dimensional

matrix GI
j where each element is represented by a single byte.

A.1.4 Blur Median Transformation

Alg. 8 shows the steps to perform a blur median transformation on a tile T I
j . In the algorithm, for each pixel

p of the RGB Matrix of the tile, we build a kernel matrix taking all the pixels of a squared neighborhood
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Alg. 7: Grayscale transformation on a Tile T I
j with xrows rows and ycolumns columns

Input: Tile T I
j

1 foreach x in 1, · · · , xrows do
2 foreach y in 1, · · · , ycolumns do
3 p← T I

j [x][y]

4 GI
j [x][y]← 0.21 · p.R+ 0.72 · p.G+ 0.07 · p.B

Output: GI
j is a matrix with xrows rows and ycolumns columns, where each cell is a byte

Alg. 8: Blur transformation on a Tile T I
j with xrows rows and ycolumns columns.

Input: Tile T I
j , kernel dimension k, the median function median

1 foreach x in 1, · · · , xrows do
2 foreach y in 1, · · · , ycolumns do
3

T̂ I
j [x][y]← median(T I

j [x− k][y − k],

T I
j [x− k][y − k − 1],

· · · ,
T I
j [x][y],

· · · ,
T I
j [x+ k][y + k − 1],

T I
j [x+ k][y + k])

Output: T̂ I
j RGB matrix with xrows rows and ycolumns columns

of dimension 2 · k × 2 · k with p as the center of the square. Note that if p is on the margin, there exists
at least one pixel of its kernel that is not in T I

j . For instance, T I
j [0][0] does not have all the pixels on its

left and its top. In this case, we will exclude the corresponding kernel pixels from the computation of the
transformation.
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