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Abstract. Bootstrapping is currently the only known method for constructing fully homomorphic
encryptions. In the BFV scheme specifically, bootstrapping aims to reduce the error of a ciphertext
while preserving the encrypted plaintext. The existing BFV bootstrapping methods follow the same
pipeline, relying on the evaluation of a digit extraction polynomial to annihilate the error located
in the least significant digits. However, due to its strong dependence on performance, bootstrapping
could only utilize a limited form of plaintext modulus, such as a power of a small prime number.
In this paper, we present a novel approach to instantiate BFV bootstrapping, distinct from the
previous digit extraction-based method. The core idea of our bootstrapping is to utilize CKKS
bootstrapping as a subroutine, so the performance of our method mainly depends on the underlying
CKKS bootstrapping rather than the plaintext modulus.
We implement our method at a proof-of-concept level to provide concrete benchmark results. When
performing the bootstrapping operation for a 51-bits plaintext modulus, our method improves the
previous digit extraction-based method by a factor of 37.9 in latency and 29.4 in throughput.
Additionally, we achieve viable bootstrapping performance for large plaintext moduli, such as 144-
bits and 234-bits, which has never been measured before.
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1 Introduction

Homomorphic encryption is a cryptosystem that enables computation on encrypted data without decryp-
tion. Since Gentry’s seminal work [Gen09], its performance and functionality have continuously improved,
and it now offers viable performance for real-world applications. The most widely used HE schemes to
date [BGV14, Bra12, FV12, CKKS17, CGGI20, DM15] are all based on lattice-based assumptions, Learn-
ing With Errors (LWE), or its ring-variant, Ring Learning With Errors (RLWE). Among them, RLWE-
based schemes such as BFV [Bra12, FV12] and CKKS [CKKS17] are popularly deployed due to their
high throughput in homomorphic operations, working in a SIMD-like manner. Let R = Z[X]/ΦM (X) and
Rq = R/qR, where ΦM (X) is the M -th cyclotomic polynomial. Then, both BFV and CKKS ciphertexts
are in the form of pairs of polynomials in Rq, but they support different types of homomorphic operations.
For BFV, it supports modular arithmetic over integers, while CKKS provides approximate arithmetic
over complex numbers. Both the BFV and CKKS schemes inherently share a common limitation: the
number of possible homomorphic operations is bounded. Hence, to support the evaluation of arbitrary
circuits, one needs a special operation called bootstrapping that refreshes the remaining number of pos-
sible operations. However, while the goal of bootstrapping is common, its precise functionality differs for
each scheme due to variations in encryption structure. Thus, bootstrapping for BFV and CKKS has been
studied individually so far.

For the BFV scheme, its plaintext space is Rt = R/tR for a plaintext modulus t, and a BFV encryption
of a plaintextm ∈ Rt under a secret s ∈ R is of the form (b = −as+∆m+e, a) ∈ R2

q for some a ∈ Rq and a
small noise e ∈ R where ∆ = ⌊q/t⌋ is the scaling factor. The decryption is obtained by first computing b+
as = ∆m+e (mod q) and then scaled by ∆. It basically supports homomorphic operations over Rt, which
can emulate arithmetic over Zt in a SIMD-like manner, and the size of the noise e gradually increases after
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each homomorphic operation. If the size of the noise e exceeds a certain threshold, it can spoil the plaintext
m in the upper bits, leading to decryption failure. Thus, to keep performing homomorphic operations,
one needs to decrease the size of the noise while preserving the plaintext in the upper bits. This is the
exact functionality of BFV bootstrapping. In the previous literature [HS15, CH18], BFV bootstrapping
is achieved through a digit extraction procedure, which corresponds to homomorphically evaluating the
rounding function on coefficients of plaintext. However, its performance is notably influenced by the
number-theoretic properties of t. Specifically, it provides efficient performance only when the plaintext
modulus t is in the form of a power of small primes. Thus, the choice of the plaintext modulus is limited
for the efficiency of BFV bootstrapping.

On the other hand, the plaintext space of the CKKS scheme is R, and a CKKS ciphertext is the form
of (b = −as +m + e, a) ∈ R2

q , where m ∈ R is a plaintext encoding a vector of complex numbers. The
decryption is obtained simply by b+as = m+e (mod q). It supports approximate arithmetic over complex
numbers C in a SIMD-like manner. The key distinction from BFV is that the size of the ciphertext modulus
q keeps decreasing after each homomorphic operation. If the size of q becomes smaller than the plaintext
m, it results in decryption failure. Thus, in CKKS, one needs to increase the ciphertext modulus while
approximately preserving the plaintext in lower bits for evaluating arbitrary-depth circuits, which is the
functionality of CKKS bootstrapping. CKKS bootstrapping is performed by homomorphically evaluating
the approximated modular reduction function on coefficients of the plaintext [CHK+18a]. In contrast
to BFV bootstrapping, the performance of CKKS bootstrapping is primarily influenced by precision,
indicating how many upper bits of the plaintext m are preserved during bootstrapping.

1.1 Our Contributions

In this paper, we propose a novel BFV bootstrapping method that utilizes CKKS bootstrapping as a
subroutine, departing from the previous digit extraction-based approach.

Incorporating CKKS Bootstrapping. Our key observation is that if the BFV plaintext modulus t
divides the ciphertext modulus q, then the noise part of a BFV ciphertext can be extracted in the form of
a CKKS ciphertext by switching the ciphertext modulus from q to ∆. To be precise, for a BFV ciphertext
(b, a) ∈ R2

q satisfying b + as = ∆m + e (mod q), it holds that [b]∆ + [a]∆ · s = e (mod ∆). We observe
that the ciphertext ([b]∆, [a]∆) ∈ R2

∆ is no longer a BFV ciphertext, but can be interpreted as a CKKS
ciphertext encrypting the noise e as a plaintext. We then process this ciphertext with CKKS operations
such as CKKS bootstrapping. We recall that the functionality of CKKS bootstrapping involves raising the
ciphertext modulus while approximately preserving the plaintext. Thus, by applying CKKS bootstrapping
to the ciphertext encrypting the extracted noise, we can obtain a CKKS ciphertext that encrypts e′ under
modulus q, where e′ ≈ e. Finally, subtracting the bootstrapped ciphertext from the original ciphertext
results in noise reduction from e to e − e′. We note that the performance of our bootstrapping method
relies on the efficiency of CKKS bootstrapping, which is used as a subroutine. Thus, improvements in
CKKS bootstrapping, such as algorithmic optimization [LLL+21, LLK+22, JM22, BCC+22], or hardware
acceleration [JKA+21, KKK+22], directly lead to the enhancement of BFV bootstrapping, bridged by
our method.

Flexible Plaintext Modulus. The performance dependency on CKKS bootstrapping in our method
also provides flexibility in the choice of the plaintext modulus. We note that the plaintext modulus
t corresponds to the modulus gap between the input and output ciphertext modulus in the CKKS
bootstrapping subroutine, and only its scale affects the performance rather than the number-theoretic
property. Thus, in our method, one can use the plaintext modulus as needed without considering its effect
on bootstrapping performance. For example, our bootstrapping provides viable performance with a large
prime plaintext modulus, which yields the worst bootstrapping performance with the previous approach.
This helps in constructing BFV applications, where using a large prime plaintext modulus is crucial, such
as in HE-based private set intersection protocols [CLR17, CHLR18, CMdG+21].
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Optimized Circuit Evaluation. Another unique property of our bootstrapping method is its tunable
performance, a capability not present in the previous method. In our approach, we can adjust the amount
of reduced noise, which directly translates into the precision of the underlying CKKS bootstrapping. This
leads to variations in bootstrapping performance, as CKKS bootstrapping is primarily affected by preci-
sion. Thus, with our method, we can optimize circuit evaluation by employing appropriate bootstrapping
depending on circumstances, varying the amount of noise reduction.

Concrete Efficiency. We implemented our algorithm at a proof-of-concept level, and it outperforms
the digit extraction-based bootstrapping method in terms of both latency and throughput. To achieve
practical performance, we utilized the recent optimization in CKKS bootstrapping [BCC+22], called
META-BTS, which supports efficient arbitrary-precision CKKS bootstrapping. When benchmarking the
performance of bootstrapping with 51-bits plaintext moduli, our method outperformed the previous state-
of-the-art BFV bootstrapping method [GIKV23] by a factor of 37.9 in latency and 29.4 in throughput
(see Table 1). We attribute this result to the high-throughput SIMD operations of the CKKS scheme,
whereas the existing solutions suffered from the inefficiency of digit extraction caused by the imbalance
between the ring dimension and the number of plaintext slots.

Table 1. Bootstrapping performance comparison. Amortized bootstrapping time denotes the bootstrapping time
divided by the number of coefficients.

Plaintext
modulus

Ring
dimension

Reduced
noise (bits)

Boot
time (sec)

Amortized
boot time
(ms/coeff)

[GIKV23] 251 42336 131 1344+ 31.7+

Ours ≈ 251 32768 128 35.5 1.08

1.2 Related Works

BFV Bootstrapping. Since the initial idea of digit extraction was proposed by Halevi and Shoup [HS15],
a line of studies has been conducted to optimize its efficiency. Chen and Han [CH18] presented improved
digit extraction when the plaintext modulus is a power of small primes, and its performance has been
enhanced in subsequent work [GIKV23, OPP23]. The most relevant study that shares the same goal as
ours in breaking performance dependency on the plaintext modulus is by Kim et al. [KDE+23]. They
presented another way of BFV bootstrapping that leverages the bootstrapping procedure of the TFHE
scheme [CGGI20]. However, since TFHE bootstrapping does not support SIMD-style operations, their
method suffers from low throughput.

CKKS Bootstrapping. As our BFV bootstrapping method employs CKKS bootstrapping as a subrou-
tine, development on the CKKS bootstrapping method greatly affects the performance of our method.
Since the first instantiation of CKKS bootstrapping was accomplished by approximate homomorphic
evaluation of the sine function by Cheon et al. [CHK+18a], a series of studies [LLL+21, LLK+22, JM22]
have been conducted targeting HE-friendly approximation of the modular reduction function to improve
precision metrics. Apart from these approaches, Bae et al. [BCC+22] recently presented a novel method
called META-BTS, which achieves arbitrary precision CKKS bootstrapping by iteratively using low-
precision CKKS bootstrapping. Since our bootstrapping internally utilizes CKKS bootstrapping, and the
required precision is larger than ordinary CKKS use cases, our bootstrapping method benefits from the
META-BTS bootstrapping technique.
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2 Preliminaries

2.1 Notations

For an integer M > 0, we denote by ΦM (X) the M -th cyclotomic polynomial, and write N = ϕ(M).
When M is a power of two, we have N =M/2 and ΦM (X) = XN + 1. We denote the ring of integers as

R = Z[X]/(ΦM (X)) and its residue ring modulo an integer q as Rq = R/qR. An element a =
∑N−1

i=0 aiX
i

of R (or Rq) is often identified with the vector of its coefficients (a0, . . . , an−1) in ZN (or ZN
q ). We use

Z∩(−q/2, q/2] as a representative of Zq for an integer q and denote [a]q as the reduction of each coefficient
of a ∈ R modulo q. For a ∈ R, we define ∥a∥p as the ℓp-norm of its coefficient vector.

For a real number r, ⌊r⌉ denotes the nearest integer to r, rounding upwards in case of a tie. For a
distribution D, we use x ← D to denote sampling x according to D. For a finite set S, we denote the
uniform distribution over S as U(S).

2.2 Ring Learning With Errors

Let χ and ψ be distributions over R. The ring learning with errors (RLWE) assumption with respect to
the parameter (R, q, χ, ψ) is that given polynomially many samples of either (b, a) or (−as+ e, a), where
a, b← U(Rq), s← χ, e← ψ, it is computationally hard to distinguish which is the case. The security of
lattice-based homomorphic encryption (HE) schemes such as BFV [Bra12, FV12], and CKKS [CKKS17]
relies on the hardness of the RLWE assumption.

2.3 Homomorphic Encryption

In this section, we introduce two RLWE-based homomorphic encryption schemes, called BFV [Bra12,
FV12] and CKKS [CKKS17]. The plaintext space of BFV is Rt for some plaintext modulus t, while
the CKKS scheme [CKKS17] can encrypt elements of R. Both BFV and CKKS schemes support arith-
metic operations as well as automorphism evaluation for the rotation of plaintext slots. Below, we will
briefly describe setup, encryption, and decryption procedures for BFV and CKKS. We refer the reader
to the original papers [Bra12, FV12, CKKS17] for further details on homomorphic operations, such as
multiplication or automorphism.

It is noteworthy that the BFV and CKKS schemes can share most parameters and use the same
secret, public, and evaluation keys. This property enables a seamless conversion between the two schemes,
a feature that will be utilized in our bootstrapping pipeline.

• Setup(1λ): Given a security parameter λ, Choose a ring dimension N and a ciphertext modulus q. In
the case of BFV, choose a plaintext modulus t. Set a secret key distribution ψ and an error distribution
χ over R. Output a parameter set pp = (N, q, t, χ, ψ).

In this paper, we make an assumption that t | q for simplicity. The scaling factor will be denoted by
∆ := q/t ∈ Z.

• KeyGen(pp): Given a public parameter pp, sample s← χ, a← U(Rq) and e← ψ. Return the secret key

sk = s and the public key pk = (b, a) ∈ R2
q where b = −as+ e (mod q).

• BFV.Encpk(m): Given a public key pk ∈ R2
q , and a plaintext m ∈ Rt, sample z ← χ, e0, e1 ← ψ. Return

the ciphertext ct = z · pk+ (e0 +∆m, e1) (mod q).

• BFV.Decsk(ct): Given a secret key sk = s ∈ R and a ciphertext ct = (c0, c1) ∈ R2
q , output m =⌊

1
∆ · (c0 + c1s)

⌉
(mod t).

A BFV encryption of a plaintextm ∈ Rt is the form of ct = (c0, c1) ∈ R2
q that satisfies c0+c1s = ∆m+e

(mod q) for some small error e ∈ R.

• CKKS.Encpk(m): Given a public key pk ∈ R2
q , and a plaintext m ∈ R, sample z ← χ, e0, e1 ← ψ. Return

a ciphertext ct = z · pk+ (e0 +m, e1) (mod q).
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• CKKS.Decsk(ct′): Given a secret key sk = s ∈ R2 and a ciphertext ct′ = (c′0, c
′
1) ∈ R2

q′ , output a plaintext

m′ = c′0 + c′1s (mod q′).

The CKKS scheme can encrypt an element m ∈ R that is sufficiently smaller than the ciphertext
modulus, i.e., ∥m∥∞ ≪ q. A CKKS encryption of m ∈ R takes the form ct = (c0, c1) which satisfies
c0 + c1s = m + e (mod q), where e is a small noise. Therefore, the decryption of a CKKS encryption
does not recover in the exact plaintext value m, but rather an approximate value m′ = m+ e ≈ m. This
approximate nature, which allows for small numerical errors, is considered acceptable within the context
of CKKS. In addition, the ciphertext modulus is not fixed in CKKS, but it employs a rescaling algorithm
to manage the growth of plaintexts during homomorphic computations.

Several studies have explored packing multiple messages into a single plaintext to enable SIMD-like
operations in HE schemes. In the BFV scheme, an encoding map converts a d-dimensional vector over
Zt into an element of Rt via a ring homomorphism from Zd

t to Rt. Here d denotes the number of slots,
and the ratio N/d determines the throughput efficiency of the packing technique. One typical example
is the HElib packing method in [HS15, GHS12] where the plaintext modulus is t = pr for some prime
number p. To be precise, let ordM (p) be the order of p modulo M and d = N/ordM (p). Then, ΦM (X)
is factored into a product of d irreducible polynomials modulo t and there exists a ring isomorphism
between Rt and E

d where E = GR(pr, ordM (p)) denotes the Galois ring of characteristic pr. Hence, we
can instantiate vectorized operations over Zd

t using arithmetic over Rt by embedding Zt into E. As a
special case, when p is a prime satisfying p = 1 (mod M), i.e., ordM (p) = 1, ΦM (X) splits in Zt[X], and
E ∼= Zt. Consequently, Rt is isomorphic to ZN

t , providing the maximum number of slots d = N .
On the other hand, the CKKS scheme can support SIMD-style arithmetic over C. In a nutshell, a

complex message vector can be encoded into a plaintext in R by leveraging the property that ΦM (X)
splits linearly over C. Since every root of ΦM (X) is paired with its conjugate, the number of slots is always
N/2 and arithmetic over R emulates arithmetic over CN/2. For more details on the packing method, we
refer to [CKKS17].

3 Review on BFV Bootstrapping

In this section, we present the basic functionality of BFV bootstrapping and review the previous instan-
tiation methods for comparison with our method.

3.1 Basic Functionality

In the decryption procedure for a BFV ciphertext ct = (c0, c1) ∈ R2
q , we first compute the following

formula for a secret key sk = s.
c0 + c1s = ∆m+ e (mod q)

Then, the result can be represented as two terms: the one that contains the plaintext m multiplied by
the scaling factor ∆, and the other term e, which we call the noise or error of the ciphertext. In BFV, the
size of the noise gradually increases after each homomorphic operation, However, for correct decryption,
it is required that the size of the noise should be smaller than a certain bound, i.e., ∥e∥∞ < ∆/2. Thus,
to support the evaluation of an arbitrary circuit, one needs an apparatus that reduces the size of noise,
which corresponds to the BFV bootstrapping procedure. Below, we describe its functionality together
with an illustration in Fig. 1.

• BFV.Boot(ct): Given a ciphertext ct ∈ R2
q with plaintext m and the noise e where ∥e∥∞ < Bin, it outputs

a ciphertext ct′ ∈ R2
q with plaintext m and the noise e′ where ∥e′∥∞ < Bout ≪ Bin.

The functionality of the BFV bootstrapping algorithm can be represented by the tuple (q, t, Bin, Bout),
where q denotes the ciphertext modulus, t denotes the plaintext modulus, and Bin and Bout denote the
upper bounds for the noise of the input and output ciphertexts, respectively. We define the quantity
log2(Bin/Bout) as the denoising factor of BFV bootstrapping since it indicates how many upper bits of
noise are removed through bootstrapping. In practice, Bin determines the maximum multiplicative depth
from initial encryption, and the denoising factor determines the maximum multiplicative depth after
bootstrapping.
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m e

q

m e′

q

BFV.Boot

t

t

ct′

ct

Fig. 1. Functionality of BFV Bootstrapping

3.2 Digit Extraction Framework

In this subsection, we review previous approaches to BFV bootstrapping [HS15, CH18, GIKV23, OPP23].
All these studies basically follow the so-called digit extraction framework by Halevi and Shoup [HS15],
which operates on a plaintext modulus t = pr for some prime p. We illustrate its overall pipeline in Fig. 1.

e

q

e′

q

ModSwitch

(c′0, c
′
1)

(c0, c1) m

pv−rm+ e∗

e′′

q

DigitExtraction

(c′′0, c
′′
1) m

pr

pv

pr

Fig. 2. Previous BFV Bootstrapping Pipeline

Let (c0, c1) ∈ R2
q be a BFV ciphertext with a plaintext m ∈ Rpr and noise e bounded by Bin so

that c0 + c1s =
⌊

q
pr

⌉
m + e (mod q). The bootstrapping procedure starts with a modulus-switching

procedure which reduces the ciphertext modulus from q to pv for some v, and then restores it back to
q. To be precise, it first computes (c∗0, c

∗
1) ← (⌊(pv/q) · c0⌉ , ⌊(pv/q) · c1⌉) ∈ R2

pv that satisfies c∗0 + c∗1s =
pv−rm + e∗ (mod pv) for some error e∗ ≈ (pr/q)e, then generates a new BFV ciphertext (c′0, c

′
1) ←

(⌊(q/pv) · c∗0⌉ , ⌊(q/pv) · c∗1⌉) ∈ R2
q such that c′0 + c′1s =

⌊
q
pv

⌉
(pv−rm + e∗) + e′ (mod q) for a small

rounding error e′. Here (c′0, c
′
1) is regarded as a BFV ciphertext encrypting m′ := pv−rm + e∗ with the

plaintext modulus pv.
Then, digit extraction is performed on this ciphertext, which homomorphically removes the v − r

least significant digits e∗ of the plaintext of m′ = pv−rm + e∗ in base-p representation. Hence, the
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resulting ciphertext (c′′0 , c
′′
1) ∈ R2

q is an encryption of pv−rm ∈ Rpv with some noise e′′ bounded by

Bout, i.e., c′′0 + c′′1s =
⌊

q
pv

⌉
pv−rm + e′′ (mod q). Since

⌊
q
pv

⌉
· pv−rm ≈

⌊
q
pr

⌉
m, this ciphertext can

be reinterpreted as a BFV encryption of m ∈ Rpr with noise ≈ e′′, as desired. This achieves a BFV
bootstrapping with functionality (q, t, Bin, Bout).

Digit Extraction. The previous studies primarily aimed to improve the efficiency of digit extraction
which is the major performance bottleneck in overall BFV bootstrapping. The digit extraction procedure
is accomplished by evaluating a function that maps x ∈ Zpv to ⌊x/pv−r⌉ ∈ Zpr , which can be represented
as a composition of various operations supported by the BFV scheme. Halevi and Shoup [HS15] proposed
a baseline solution where digit extraction can be achieved by the evaluation of a polynomial of degree pv−1.
A subsequent work by Chen and Han [CH18] presented a better polynomial representation of rpv−r, which
significantly improved the performance of digit extraction especially when p is a small prime. Currently,
the best-known complexity for the evaluation of the digit extraction polynomial is O(

√
p 4
√
r) in [GIKV23].

We refer to [GV23] for a more detailed analysis and discussion on digit extraction polynomial and its
evaluation.

On the one hand, there is another important factor that affects the total complexity of digit extraction.
The evaluation of a digit extraction polynomial utilizes the SIMD operations of BFV which can process
at most d elements of Zpv at once. As a result, it requires N/d = ordM (p) polynomial evaluations to
complete the digit extraction procedure for the N coefficient of a plaintext. In particular, this extra factor
ordM (p) is large when p≪M is a small prime.

Functionality Analysis. In the perspective of BFV bootstrapping functionality, the digit extraction-
based approach produces a constant size of output noise bound Bout once t is fixed, as it is determined
by the degree of the underlying digit extraction polynomial. Also, its performance is independent of the
input noise bound Bin since the noise e′ after modulus switching is not affected by the input noise bound.
Therefore, to achieve the maximum denoising factor, it is usually set to the maximum value that supports
the correctness of modulus switching. To sum up, in the previous method, once q and t are determined,
Bin and Bout are automatically decided. Since the choice of q only affects the security level, the choice of
t, especially its number-theoretic properties, determines the overall performance of bootstrapping after
all.

4 Review on CKKS Bootstrapping

In this section, we present the basic functionality of CKKS bootstrapping and revisit the current state-
of-the-art method for instantiating it, especially the META-BTS [BCC+22] method, which is the core
building block in our BFV bootstrapping method.

4.1 Basic Functionality.

In the decryption procedure for a CKKS ciphertext ct = (c0, c1) ∈ R2
q , we first compute the following

formula for a secret key sk = s.
c0 + c1s = m (mod q)

As observed in the above decryption procedure, there is no strict distinction between plaintext and noise
for CKKS ciphertexts, unlike BFV ciphertexts. Therefore, for correct decryption, the only requirement
is that the size of the plaintext is smaller than the ciphertext modulus, i.e., ∥m∥∞ < q. However,
in CKKS, the ciphertext modulus decreases after each homomorphic evaluation due to the rescaling
procedures. Thus, to support the evaluation of arbitrary circuits, an apparatus is required that increases
the ciphertext modulus while keeping the plaintext to a similar value, which is the exact functionality of
CKKS bootstrapping. Below, we describe this functionality more precisely together with an illustration
in Fig. 3.
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• CKKS.Boot(ct): Given a ciphertext ct ∈ R2
qin with a plaintext m whose size is bounded by ∥m∥∞ < Bpt,

it outputs a ciphertext ct′ ∈ R2
qout with a plaintext m′ such that ∥m′ −m∥∞ < Berr and the ciphertext

modulus qout > qin.

m

qin

m′ ≈ m

qout

CKKS.Boot

ct′

ct

Fig. 3. Functionality of CKKS Bootstrapping

The functionality of CKKS bootstrapping can be parameterized as the tuple (qin, qout, Bpt, Berr), where qin
and qout denote the modulus of the input and output ciphertexts respectively, Bpt denotes the upper bound
for the plaintext of the input ciphertext, and Berr denotes the upper bound for differences between input
and output plaintexts. We also refer to the quantity log2(Bpt/Berr) as the precision of CKKS bootstrapping
since it indicates how many upper bits of the input plaintext are preserved during bootstrapping.

4.2 The Base CKKS Bootstrapping

The first instantiation of CKKS bootstrapping is accomplished by Cheon et al. [CHK+18a]. The key idea
of their work is homomorphically evaluating the modular reduction function x 7→ [x]qin on coefficients of
the plaintext in an approximate manner, where qin is the modulus of input ciphertexts.

Given a CKKS ciphertext (c0, c1) ∈ R2
qin encrypting a plaintext m ∈ R satisfying ∥m∥∞ < Bpt, it

first performs a modulus raising operation, which yields a CKKS ciphertext (c′0, c
′
1) ∈ R2

q encrypting a
plaintext m + qinI for some polynomial I. Then, it homomorphically evaluates an approximation of the
modular reduction function resulting in a ciphertext (c′′0 , c

′′
1) ∈ R2

qout encrypting a plaintext m′ satisfying
∥m−m′∥∞ < Berr. Since the output ciphertext modulus qout is set to be greater than the input ciphertext
modulus qin, it provides CKKS bootstrapping functionality (qin, qout, Bpt, Berr).

Modular Reduction As the modular reduction function is not a polynomial function, finding a precise
polynomial approximation of it has been the main research topic. Since the initial instantiation by Cheon
et al. [CHK+18a] is done by evaluating a polynomial approximation of the sine function, a series of
studies[LLL+21, JM22, LLK+22] has aimed at enhancing its precision by finding HE-friendly polynomial
approximations of the modular reduction function. We refer to this type of bootstrapping instantiation as
a base bootstrapping, CKKS.BaseBoot. Given a base CKKS bootstrapping algorithm CKKS.BaseBoot with
functionality (qin, qout, Bpt, Berr), its time complexity is dominated by the precision factor log2(Bpt/Berr).
To be precise, for achieving x-bits precision, it evaluates a polynomial approximation of the modular
reduction function whose degree follows O(

√
x) and its time complexity roughly follows some super-

linear function T (x) according to the analysis in [BCC+22]. We also note that it suffices to evaluate the
approximated modular reduction function twice since the number of slots in the CKKS scheme is N/2,
compared to the digit extraction procedure of the BFV bootstrapping.

4.3 META-BTS: Bootstrapping for Arbitrary Precision

In this subsection, we review the META-BTS bootstrapping method, which we utilize as a core building
block for our BFV bootstrapping method. Apart from the previous approaches on CKKS bootstrapping,
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Bae et al. [BCC+22] presented a novel method called META-BTS. Its core idea is to iteratively employ
a low-precision base bootstrapping algorithm to attain a high-precision bootstrapping algorithm. Their
main result is as follows.3

Theorem 1 (Thm 3.2 [BCC+22]). Given a base CKKS bootstrapping algorithm CKKS.BaseBoot with
functionality (qin, qout, Bpt, Berr) and n = log2(Bpt/Berr)-bits precision, one can construct a new bootstrap-
ping algorithm CKKS.Boot(k) with functionality (qin · 2(k−1)n, qout, Bpt · 2(k−1)n, Berr) and kn-bits precision
by repeating CKKS.BaseBoot k times.

The advantage of the META-BTS algorithm is twofold: firstly, it provides asymptotically faster time com-
plexity when achieving the same bootstrapping functionality. To be precise, suppose that the target CKKS
bootstrapping functionality (qin, qout, Bpt, Berr) requires kn-bits precision. If we directly instantiate it with
the CKKS.BaseBoot so that it supports the designated functionality and precision, it takes asymptotically
T (kn) time complexity. In contrast, for the META-BTS bootstrapping, it can run k iterations of n-bits
precision CKKS.BaseBoot, which supports the functionality (qin/2

(k−1)n, qout, Bpt/2
(k−1)n, Berr). Then, it

yields k ·T (n) time complexity, which is reduced from T (kn) since T is a super-linear function. Thus, the
META-BTS method reduces asymptotic complexity for attaining the same bootstrapping functionality.
Secondly, it provides convenience in adjusting precision. With the base bootstrapping algorithm, one
needs to recalculate all the parameters for CKKS.BaseBoot if precision changes. In contrast, the META-
BTS algorithm CKKS.Boot(k) can adjust precision by simply modifying the iteration number k without
altering parameters for the base bootstrapping. For a more detailed analysis, we refer to [BCC+22].

5 New BFV Bootstrapping

In this section, we present a novel BFV bootstrapping method with enhanced simplicity and efficiency.
In particular, our method mitigates the inefficiency issues in the existing approach that stems from the
heavy dependence of digit extraction on the plaintext modulus. Hence, we offer better flexibility in the
selection of plaintext modulus with minimal difference in performance or implementation.

5.1 Our Bootstrapping Pipeline

We redesign the BFV bootstrapping procedure and introduce an entirely new pipeline below. Our method
no longer relies on the previous digit extraction framework; instead, it incorporates the CKKS bootstrap-
ping as a fundamental building block. Our bootstrapping pipeline consists of three steps: noise extraction,
approximate lifting, and subtraction. The whole pipeline is illustrated in Fig. 4.

Setup: For simplicity, we assume that the plaintext modulus t divides the ciphertext modulus q, and thus
∆ = q/t. Suppose we are given as input a noisy BFV encryption ct = (c0, c1) ∈ R2

q of m ∈ Rt under
secret s ∈ R. That is, it satisfies

c0 + c1s = ∆m+ e (mod q) (1)

for a large error e ∈ R with a bound ∥e∥∞ < Bin.

Noise Extraction: In the first step, we perform a modular reduction to extract the error term from the
input ciphertext. Specifically, we compute ĉt = (ĉ0, ĉ1) ∈ R2

∆ by ĉ0 = c0 (mod ∆) and ĉ1 = c1 (mod ∆),
then it holds that

ĉ0 + ĉ1s = e (mod ∆). (2)

from Eq. (1).
It is worth noting that the resulting ciphertext ĉt = (ĉ0, ĉ1) is no longer a valid BFV encryption.

Instead, it can be regarded as an RLWE instance whose error term is e ∈ R.
3 We modified the original statement, excluding the concept of the scaling factor.



10 Jaehyung Kim, Jinyeong Seo, and Yongsoo Song

e

q

e

∆

NoiseExtraction
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(c0 − c′0, c1 − c′1) m

t

Fig. 4. Our BFV Bootstrapping Pipeline

Approximate Lifting: The next step lies at the heart of our solution where the actual bootstrapping
takes place. We aim to raise the ciphertext modulus of ĉt from ∆ to q and generate a new ciphertext
ct′ = (c′0, c

′
1) ∈ Rq such that c′0 + c′1s ≈ e (mod q).

To achieve this goal, we first make an observation that the CKKS scheme can be used, instead of BFV,
to manipulate the ciphertext from the previous step. In other words, the ciphertext ĉt = (ĉ0, ĉ1) ∈ R2

∆

can be reinterpreted as a CKKS ciphertext, with e ∈ R representing the underlying plaintext bounded
by Bin.

Then, we employ the CKKS bootstrapping, which precisely provides the required functionality for
ciphertext modulus lifting. If a CKKS bootstrapping algorithm CKKS.Boot(·) has a functionality parameter
(qin, qout, Bpt, Berr) = (∆, q,Bin, Bout), then the resulting ciphertext ct′ = (c′0, c

′
1) ∈ R2

q obtained from ĉt
by executing the CKKS bootstrapping algorithm will satisfy c′0 + c′1s = e′ (mod q) for some e′ ∈ R such
that ∥e− e′∥∞ < Bout.

Subtraction: Finally, we revert to the BFV scheme to complete the bootstrapping process. We remark
that the resulting ciphertext ct′ = (c′0, c

′
1) ∈ R2

q from the previous CKKS bootstrapping step holds
c′0 + c′1 · s = e′ (mod q), allowing it to be interpreted as a BFV encryption of zero with the noise e′.

Subtracting it from the original ciphertext, we get ct′′ ← ct−ct′ ∈ R2
q , which is a valid BFV encryption

of m. Notably, its noise e− e′ has a reduced upper bound Bout compared to the initial noise e bounded
by Bin. This concludes our new BFV bootstrapping procedure.

We provide an algorithmic description of our bootstrapping method in Alg. 1 and prove its correctness
in Thm. 2.

Theorem 2. Let CKKS.Boot(·) denote a CKKS algorithm with functionality parameters (∆, q,Bin, Bout).
Then, the BFV.Boot(·) algorithm (Alg. 1) realizes the BFV bootstrapping with functionality parameters
(q, t, Bin, Bout).

Proof. Let ct = (c0, c1) ∈ R2
q be a BFV encryption of m ∈ Rt under a secret key s and let e ∈ R denote

the noise of ct bounded by Bin, i.e., c0 + c1s = ∆m+ e (mod q) with ∥e∥∞ < Bin.
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Algorithm 1 BFV.Boot

Input: A BFV ciphertext ct = (c0, c1) ∈ R2
q

Output: A BFV ciphertext ct′′ = (c′′0 , c
′′
1) ∈ R2

q

1: ĉt = (ĉ0, ĉ1)← ct (mod ∆) ▷ Noise Extraction
2: ct′ = (c′0, c

′
1)← CKKS.Boot(ĉt) ▷ Approximate Lifting

3: ct′′ = (c′′0 , c
′′
1)← ct− ct′ (mod q) ▷ Subtraction

4: return ct′′ = (c′′0 , c
′′
1) ∈ R2

q

From the definition, it is obvious that ĉ0 + ĉ1s = e (mod ∆). Subsequently, the ciphertext ct′ =
(c′0, c

′
1) ∈ R2

q derived from approximate lifting satisfies c′0+c
′
1s = e′ (mod q) for some e′ with ∥e− e′∥∞ <

Bout from the functionality of CKKS.Boot(·). Finally, the output ciphertext ct′′ = (c′′0 , c
′′
1) ← ct − ct′

(mod q) is a BFV encryption of m and its noise is bounded by Bout since c
′′
0 + c′′1s = ∆m + e′′ (mod q)

for e′′ = e− e′.
Therefore, our BFV.Boot(·) algorithm instantiates the functionality of BFV bootstrapping with pa-

rameters (q, t, Bin, Bout).

Lastly, we show that our method is applicable to a general case when t may not divide q. In short, we
can address the issue by incorporating simple pre- and post-processings steps into our pipeline. If t ∤ q, we
switch the ciphertext modulus between q and q′ before and after bootstrapping for some integer q′ such
that q′ ≈ q and t | q′. For a BFV ciphertext ct = (c0, c1) ∈ R2

q satisfying c0 + c1s = ∆m+ e (mod q) for
∆ = ⌊q/t⌉, the modulus switching from q to q′ results in a new ciphertext (⌊(q′/q) · c0⌉ , ⌊(q′/q) · c1⌉) ∈ R2

q′

such that ⌊(q′/q) · c0⌉+ ⌊(q′/q) · c1⌉ ·s ≈ ∆′m+ ⌊(q′/q) · e⌉ (mod q′) for ∆′ = q′/t. Hence, if our solution
provides the functionality of BFV bootstrapping with parameters (q′, t, B′

in, B
′
out), it can be naturally

extended to a BFV bootstrapping with new functionality parameters (q, t, Bin, Bout) with Bin ≈ (q/q′)·B′
in

and Bout ≈ (q/q′) ·B′
out by combining modulus switchings between q and q′.

5.2 Approximate Lifting from META-BTS

Although our proposed pipeline is simple, nonetheless, implementing the approximate lifting step remains
a challenging problem. Recall that we aim to transform a ciphertext ĉt = (ĉ0, ĉ1) ∈ R2

∆ such that
ĉ0 + ĉ1 · s = e (mod ∆) into a new ciphertext ct′ = (c′0, c

′
1) ∈ R2

q satisfying c′0 + c′1 · s ≈ e (mod ∆)
using a CKKS bootstrapping algorithm. Here e is natively the error term of a noisy BFV ciphertext
which is often several hundred bits long, whereas the precision of CKKS bootstrapping algorithms is
usually limited to dozens of bits. A straightforward solution might involve improving the precision of
CKKS bootstrapping using a more accurate approximation of modulo reduction function in the previous
studies [CHK+18a, LLL+21, LLK+22, JM22]. However, this approach is likely to yield impractical results
since the performance of CKKS bootstrapping deteriorates rapidly in terms of both complexity and
modulus consumption as the precision of CKKS operations increases.

Recently, META-BTS [BCC+22] proposed a new mechanism that achieves a high-precision CKKS
bootstrapping based only on low-precision operations. We realize that the same idea can be applied to
our approximate lifting procedure without having significant performance overhead by modifying some
internal parameters. In addition, the iterative nature of this method introduces a new feature to our
bootstrapping procedure, enabling flexible adjustment of the denoising factor. Due to these advantages,
we utilize the META-BTS method in the instantiation of approximate lifting. In the rest of this subsection,
we provide detailed information on the META-BTS method, parameter selection, and its implications for
our bootstrapping pipeline.

Performance Improvements. Assume that we want to achieve a BFV bootstrapping with functionality
parameters (q, t, Bin, Bout) with the denoising factor kn = log2(Bin/Bout) bits. For the approximate lifting,
we utilize a CKKS bootstrapping with the functionality (∆, q,Bin, Bout), where the denoising factor
directly translates into the precision of the CKKS bootstrapping. Thus, we need to instantiate a CKKS
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bootstrapping with kn-bits precision. We first recall that the time complexity T (x) in achieving x-bits
precision via a base CKKS bootstrapping grows super-linearly. If we directly achieves kn-bits precision
by single iteration of base CKKS bootstrapping, it takes T (kn) complexity. On the other hand, if we
apply the META-BTS method, which iterates the n-bits base CKKS bootstrapping CKKS.BaseBoot k
times, the functionality of CKKS.BaseBoot is determined as (∆/2(k−1)n, q, Bin/2

(k−1)n, Bout), and the
time complexity is k · T (n). Therefore, employing the META-BTS method reduces the time complexity
from T (kn) to k · T (n) as T is a super-linear function. Since our method mainly handles large precisions
kn, the performance improvement is more significant.

Adjustable Functionality. We recall that another important aspect of META-BTS is its ability to
adjust precision. We show how this affects our BFV bootstrapping, resulting in the ability to adjust
bootstrapping functionality. Before stating it more clearly, we provide some useful properties of CKKS
bootstrapping below.

Lemma 1. Given a CKKS bootstrapping algorithm CKKS.Boot with functionality (qin, qout, Bin, Bout).
Then for any positive integer q′, one can instantiate the CKKS bootstrapping algorithms with the fol-
lowing functionalities:

1. (q′ · qin, qout, Bin, Bout)
2. (qin, qout/q

′, Bin, Bout) if q
′|qout

3. (q′ · qin, q′ · qout, q′ ·Bin, q
′ · (Bout +

∥s∥1+1
2 )) if ∥s∥1 ≪ Bin

by running CKKS.Boot a single time.

Proof. The first and second functionalities can be easily instantiated by taking modulo q and q/q′

operations on input and output ciphertexts of CKKS.Boot respectively. For the last functionality, let
(c0, c1) ∈ R2

q′qin
be an input ciphertext. Then, we can instantiate the last functionality as follows:

Step 1. Run CKKS.Boot on (⌊c0/q′⌉ , ⌊c1/q′⌉) ∈ R2
qin and obtain the result (c′0, c

′
1) ∈ R2

qout .
Step 2. Output (q′ · [c′0]qout , q′ · [c′1]qout) ∈ R2

q′qout
.

If we set c0+c1s = m (mod q′qin), then ⌊c0/q′⌉+⌊c1/q′⌉ s = m/q′+e (mod qin) holds where e is a rounding

noise satisfying ∥e∥∞ < ∥s∥1+1
2 . Since we assume ∥s∥1 ≪ Bin, running CKKS.Boot with (⌊c0/q′⌉ , ⌊c1/q′⌉)

yields the ciphertext (c′0, c
′
1) ∈ R2

qout such that c′0 + c′1s = m/q′ + e+ e′ (mod qout) with a bootstrapping
noise e′ satisfying ∥e′∥∞ < Bout. Finally, multiplying q′ results in q′[c′0]qout + q′[c′1]qouts = m + q′(e + e′)

(mod q′qout). Since ∥q′(e+ e′)∥∞ < q′ · (Bout +
∥s∥1+1

2 ), we instantiate the last functionality.

Applying the above lemma to the base CKKS bootstrapping of the functionality (∆/2(k−1)n, q,Bin/2
(k−1)n,

Bout) results in the following theorem.

Theorem 3. Let (∆/2(k−1)n, q, Bin/2
(k−1)n, Bout) be the functionality of the base CKKS bootstrapping

CKKS.BaseBoot. If ∥s∥1 ≪ Bin, one can instantiate CKKS bootstrapping with functionality (∆, q, Bin/2
an,

(Bout+
∥s∥1+1

2 ) · 2bn) by iterating CKKS.BaseBoot with k−a− b times where a, b are non-negative integers
satisfying a+ b < k.

Proof. Firstly, one can instantiate a CKKS bootstrapping with functionality (∆/2(a+b)n, q, Bin/2
(a+b)n,

Bout) by iteratively running CKKS.BaseBoot k − a − b times by Theorem 1. Next, we apply the third
property in Lem.1 with q′ = 2bn, then it yields a CKKS bootstrapping with functionality (∆/2an, q · 2bn,
Bin/2

an, (Bout +
∥s∥1+1

2 ) · 2bn) assuming h≪ Bout. Finally, applying the first and the second property in

Lem. 1 results in a CKKS bootstrapping with functionality (∆, q, Bin/2
an, (Bout +

∥s∥1+1
2 ) · 2bn).

The above theorem directly implies that given the base CKKS boostrapping, we can also instantiate

another BFV bootstarpping with the functionality (q, t, Bin/2
an, (Bout +

∥s∥1+1
2 ) · 2bn), and the iteration

count is determined by the denoising factor ≈ 2(a+b)n, which reduces overall time complexity by a factor
k/(k − a− b). Hence, in our bootstrapping, the META-BTS method provides the ability to decrease the
input noise bound or increase the output noise bounds, and in that case, the performance of bootstrapping
gets improved according to the reduced denoising factor.
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5.3 Analysis

We discuss our bootstrapping method for achieving the target BFV bootstrapping functionality in com-
parison with the previous digit extraction based approaches. In the prior work, the performance of BFV
bootstrapping was heavily dependent on the number-theoretic property of the plaintext modulus t. As-
suming t = pr for some prime number p, it requires the evaluation of a digit extraction polynomial whose
degree is determined by p and r. Hence, it achieves both reasonable performance and acceptable noise
bound only when p is a small prime number. Additionally, the polynomial evaluation had to be repeated
by ordM (p) times due to the limited number of plaintext slots.

On the contrary, the denoising factor log2(Bin/Bout) is the parimary parameter that mainly affect the
performance of our bootstrapping method. Recall that to achieve the given BFV bootstrapping functional-
ity of parameter (q, t, Bin, Bout), we require a CKKS bootstrapping with the functionality (∆, q,Bin, Bout),
and the performance of CKKS bootstrapping is typically determined by its precision. Since the denoising
factor of BFV bootstrapping directly translates into the precision parameter for the CKKS bootstrap-
ping, the performance of our bootstrapping method highly depends on the denoising factor, which is
determined by the input and output noise upper bounds. On the other hand, the plaintext modulus is
only related to some parameters of CKKS bootstrapping, so has little impact on the overall performance.
Moreover, we can always exploit high-throughput SIMD operations of the CKKS scheme, regardless of
t. Therefore, our method offers the flexibility to choose an arbitrary plaintext modulus without much
consideration for its impact on bootstrapping performance. This flexibility may lead to the adoption
of our technique in a wide range of BFV applications such as HE-based private set intersection proto-
cols [CLR17, CHLR18, CMdG+21], where using a large prime plaintext modulus is crucial.

Another distinctive feature of our method is its ability to adjust bootstrapping functionality. Lever-
aging the property of META-BTS, one can decrease the input noise bound or increase the output noise
bound, leading to performance enhancement based on the reduced denoising factor. This offers further
optimization in circuit evaluation. For example, when evaluating circuits where the required depth after
bootstrapping is small, one can benefit by setting Bout large, resulting in enhanced bootstrapping perfor-
mance proportional to the reduced denoising factor. However, such an optimization strategy is impossible
with the previous method since the evaluation of the digit extraction polynomial provides a fixed out-
put noise bound, and there is no performance gain in adjusting the input noise bound. Therefore, our
bootstrapping method provides room for further optimization in BFV applications by offering tunable
bootstrapping functionality.

6 Experimental Results

We present a proof-of-concept level implementation to demonstrate the performance of our bootstrapping
method. Our code is developed using the C++ HEaaN library [Cry23]. The experiments were conducted
on an Intel Xeon Gold 6242 at 2.8GHz with 503GiB of RAM running Linux in a single-threaded envi-
ronment. In our implementation, we set the key distribution χ to be a sparse ternary distribution with
a hamming weight h, and the error distribution ψ as a discrete Gaussian distribution with a standard
deviation of 3.2. The security level of each bootstrapping parameter is measured by the lattice estima-
tor [APS15] and set to achieve a 128-bit security level.

In the rest of this section, we first describe the optimization techniques employed in our implemen-
tation. Subsequently, we present the concrete performance of our method along with benchmark results.
The benchmark results cover three aspects: firstly, we compare the bootstrapping performance between
our method and the digit extraction-based one to illustrate the performance improvement of our method
in achieving similar BFV bootstrapping functionality. Next, we provide timing results for various plain-
text modulus sizes to demonstrate the flexibility in choosing the plaintext modulus. Finally, we measure
timing results for various input and output noise bounds to highlight another unique property of our
bootstrapping method, where we can adjust bootstrapping functionality depending on the scenarios.
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6.1 Optimization Techniques

RNS Represetation. When implementing RLWE-based homomorphic encryption schemes such as
CKKS and BFV, one needs to instantiate arithmetic over Rq with a large modulus q. Introducing big
integer operations yields additional computational overheads; therefore, the Residue Number System
(RNS)-based instantiation [CHK+18b, HPS19] has been popularly deployed due to its efficiency. In a
nutshell, RNS representation exploits the algebraic isomorphism between Rq and Rq1 × · · · × Rqℓ when
q = q1 . . . qℓ and qi’s are pairwise coprime. Then, operations over Rq can be instantiated with operations
over Rqi ’s, and since qi’s are usually set to be word-size, it can be efficiently implemented without
introducing big integer arithmetic. The HEaaN library we used is also implemented in a full RNS manner,
i.e., no external big integer library is used.

Sparse-secret Encapsulation. When other parameters are fixed, the performance of CKKS boot-
strapping is affected by the Hamming weight h of the secret key distribution. Previously, there existed
a trade-off relation between the performance of bootstrapping and the security level. Specifically, a low
Hamming weight h provides efficient bootstrapping performance but a low security level, and vice versa.
Hence, it was usually set to a middle ground that yields both fair performance and an acceptable security
level. Recently, Bossuat et al. [BTPH22] introduced an optimization called the sparse-secret encapsula-
tion technique, which resolves this trade-off relation. At a high level, it leverages the nature of the CKKS
scheme where the ciphertext modulus keeps decreasing until bootstrapping is applied. Initially, cipher-
texts are encrypted with a dense secret key at a large ciphertext modulus, providing a high-security
level. However, for input ciphertexts for bootstrapping, their modulus is usually smaller than that of
fresh ciphertexts due to homomorphic evaluations, and a sparse secret key provides a good security level
at this reduced ciphertext modulus. Thus, the proposed optimization technique first changes the input
ciphertext’s secret key with a sparse secret key before the modulus raising step and switches the output
ciphertext’s secret key back to the original dense one, and then it performs the remaining bootstrapping
procedure. This results in accelerating bootstrapping performance without compromising security level.
Our implementation of CKKS bootstrapping also incorporates this optimization for better performance.

Parameter Selection for META-BTS In theory, one can choose arbitrary precision for the base
bootstrapping. However, the sweet spot is often a moderate precision, as both high and low precision
cases present different inefficiencies. If n is too small, then the iteration number k should be large and
the bootstrapping becomes very slow. If n is too large, then each base bootstrapping consumes too much
modulus and the base bootstrapping cost increases by greatly. In this regard, we find the sweet spot
based on experiments, i.e. try multiple choices of (n, k) and choose the one with the best performance.
Note that the choice may depend on specific parameters such as N . For instance, we choose n = 16 for
N = 215 (in Sec. 6.2), n = 21 for N = 216, and n = 30 for N = 217 (in Sec. 6.2).

6.2 Benchmark Results

Before presenting benchmark results, we share the basic parameter-setting strategy for our bootstrapping
method. We first fix the target BFV bootstrapping functionality (q, t, Bin, Bout). Then, the required CKKS
bootstrapping functionality is derived as (∆, q,Bin, Bout). As we instantiate this CKKS bootstrapping
with the META-BTS algorithm CKKS.Boot(k), parameter setting boils down to deciding the precision
parameter n of the base CKKS bootstrapping CKKS.BaseBoot. After fixing the precision parameter n,
the iteration count k is set to ⌈log2(Bin/Bout)/n⌉, and the functionality of the base CKKS bootstrapping
CKKS.BaseBoot is determined as (∆/2(k−1)n, q, Bin/2

(k−1)n, Bout). In the case of the redundant base
CKKS bootstrapping functionality, where Bout is large, we instantiate it by the CKKS bootstrapping
with functionality (∆/(q′ · 2(k−1)n), q/q′, Bin/(q

′ · 2(k−1)n), Bout/q
′) for some proper integer q′ leveraging

the property in Lemma 1. This results in better bootstrapping performance since the overall ciphertext
modulus is decreased by a factor of q′. Finally, the bootstrapping key, precomputed data required for
performing bootstrapping, is generated according to the base CKKS bootstrapping functionality.
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Performance Comparison with Digit Extraction. We first compare the performance of our boot-
strapping with the state-of-the-art digit extraction-based bootstrapping [GIKV23]. We set the function-
ality parameters of our method at a similar level to the benchmark results in [GIKV23] to provide a fair
comparison. The detailed BFV bootstrapping functionality parameters are presented in Table 2.

Table 2. BFV bootstrapping functionality used in the benchmark in Table 3

q t Bin Bout

[GIKV23] 1200 bits 51 bits 1137 bits 1006 bits

Ours 1200 bits 51 bits 1077 bits 949 bits

To achieve the given BFV bootstrapping functionality, we utilized the 16-bits base CKKS bootstrap-
ping CKKS.BaseBoot with the iteration count 8. Also, to provide a fair comparison in latency, we set
the ring dimension as 216 = 32768, which is similar to the ring dimension 42336 in the previous bench-
mark [GIKV23]. Under these parameter settings, we measured the elapsed time for bootstrapping, and
its results are presented in Table 3, along with the benchmark result in [GIKV23].4

Table 3. Bootstrapping performance comparison between ours and [GIKV23]

[GIKV23] Ours

Cyclotomic index M
42799 65536

= 127 · 337 = 216

Ring dimension N 42336 32768

Security level (bits) 80 128

Plaintext modulus t (bits) 51

Denoising factor (bits) 131 128

Boot time (sec) 1344+5 35.5

Amortized boot time (ms/coefficient) 31.7+ 1.08

While offering similar bootstrapping functionality, our method outperforms the previous approach by
a factor of 37.9 in latency. Additionally, our method improves the throughput by a factor of 29.4 when
comparing the elapsed time per each coefficient of the plaintext. We attribute this result to the large
number of slots in CKKS since our method utilizes CKKS bootstrapping as a key step. To be precise,
we recall that the time complexity of digit extraction is not only affected by the size of p, but also the
number of slots, which is determined by ordM (p). Actually, in the benchmark result in [GIKV23], it can
only utilize 2016 slots, so it needs to evaluate the digit extraction polynomial 42336/2016 = 21 times,
whereas the CKKS packing method supports 16384 slots, making it sufficient for the evaluation of the
modular reduction function twice. We also note that the plaintext modulus in [GIKV23] is set to 251

for the efficiency of digit extraction-based bootstrapping, while our method uses a similarly scaled prime
number to leverage the efficiency of RNS representation. If the plaintext modulus of [GIKV23] is changed
to ours, its performance will be greatly degraded since the digit extraction method performs its worst in
such a case. Conversely, our method would still yield similar latency even if we use the plaintext modulus
251, since, in the asymptotic scale, the performance of our algorithm mainly depends on the denoising

4 The timing in [GIKV23] is measured on an Intel Core i7-6700HQ CPU, which is comparable to our hardware
specifications.

5 We estimated it from Table 7 in [GIKV23] by multiplying 21 = 42336/2016 since it only measured elapsed time
for a single iteration of digit extraction polynomial evaluation.
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factor, not the number-theoretic properties of the plaintext modulus, as discussed in the previous section.
We also note that the benchmark in [GIKV23] only measured elapsed time for digit extraction due to
technical issues, excluding other operations such as homomorphic linear transformations. Furthermore,
our bootstrapping parameters provide a higher security level. Hence, the actual performance improvement
of our method yields even better results.

Arbitrary Plaintext Modulus. In this benchmark, we highlight the flexibility of our bootstrapping
method in choosing the plaintext modulus. The performance of our method is primarily influenced by
the denoising factor log2(Bin/Bout) rather than the number-theoretic properties of the plaintext modulus
t. Therefore, in our benchmark, we maintain fixed functionality parameters Bin and Bout while varying
the plaintext modulus t. The results are presented in Table 4.

Table 4. Bootstrapping performance for various plaintext moduli.

N q t Bin Bout Boot time

217 791 bits

54 bits

376 bits 16 bits 392 sec144 bits

234 bits

216 541 bits

42 bits

223 bits 13 bits 128 sec105 bits

168 bits

In our benchmark, we maintain a fixed denoising factor of 360 bits (resp. 210 bits). To achieve this, we
employ the META-BTS method with a 30-bit (resp. 21-bit) precision base for CKKS bootstrapping and
12 (resp. 10) iteration counts. Additionally, we set the ring dimension to 217 (resp. 216) to support large
precision CKKS bootstrapping. A notable observation is that the elapsed time for bootstrapping remains
constant, even with changes in the plaintext modulus. This constancy arises because the plaintext modulus
only impacts the input ciphertext modulus of CKKS bootstrapping for homomorphic lifting when other
parameters are fixed. The input ciphertext modulus, however, does not affect the CKKS bootstrapping
performance if it exceeds a certain bound. Consequently, all experiments internally utilize the same
CKKS bootstrapping for approximated lifting. This result directly illustrates the unique properties of
our bootstrapping method, where the denoising factor plays a crucial role in performance, whereas the
performance of the digit extraction-based method varies significantly depending on the plaintext modulus.
In addition, our method achieves viable bootstrapping performance for large plaintext moduli, such as
144 and 234 bits, which, to the best of our knowledge, has not been presented before. Therefore, our
method significantly overcomes the previous limitations on plaintext modulus in BFV bootstrapping.

Adjustable Functionality. We discuss another distinctive property of our bootstrapping method: the
ability to adjust the bootstrapping functionality depending on the situation. As mentioned earlier, our
bootstrapping method allows adjusting the input and output noise bounds by leveraging the properties
of CKKS bootstrapping and the META-BTS method. Additionally, the performance of the adjusted
bootstrapping is determined by the denoising factor (k − a − b)n bits. To demonstrate this effect more
concretely, we measure the bootstrapping performance for various input and output noise bounds in
Table 5. We also plot the bootstrapping time with respect to the denoising factor in Fig. 5. We note that
the benchmark is performed with the same parameters as the benchmark in Table 4.

As indicated in Table 5, the elapsed time is identical when the denoising factor is the same, as it
internally runs the same CKKS bootstrapping. Additionally, the bootstrapping time is proportional to
the denoising factor since the iteration number of META-BTS is determined by the denoising factor, as
presented in Fig. 5. Consequently, our method facilitates a more adaptive evaluation strategy depending
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Table 5. Bootstrapping performance for various input and output noise bounds.

N q t Bin Bout Boot time

217 791 bits 54 bits

556 bits

16 bits 615 sec

106 bits 510 sec

196 bits 392 sec

466 bits
16 bits 510 sec

106 bits 392 sec

376 bits 16 bits 392 sec

216 541 bits 42 bits

349 bits

13 bits 211 sec

76 bits 157 sec

139 bits 128 sec

286 bits
13 bits 157 sec

76 bits 128 sec

223 bits 13 bits 128 sec

Fig. 5. Bootstrapping time with respect to the denoising factor
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on the scenarios. For instance, when performing bootstrapping for ciphertexts with small noise, setting a
smaller input noise bound yields faster bootstrapping while maintaining the same output noise bounds.
Conversely, if the required multiplicative depth is small after bootstrapping, setting a larger output noise
bound results in better performance.

7 Conclusion

In this work, we presented a novel BFV bootstrapping method that incorporates CKKS bootstrapping as
a subroutine. Since our bootstrapping follows a completely different pipeline, it does not inherit the limi-
tation of previous digit extraction-based bootstrapping, where the plaintext modulus must be a power of
a small prime. This not only provides flexibility in choosing the plaintext modulus but also enhances boot-
strapping performance since our method utilizes high-throughput SIMD operations in CKKS, whereas
digit extraction can utilize a relatively small number of slots due to limitations on the plaintext modulus.
Additionally, our method allows for the adjustment of bootstrapping performance by varying bootstrap-
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ping functionality, which is intractable with the previous method. This property enables the evaluation
of complex circuits in a more optimized way.

We expect that our bootstrapping method will integrate various subdivided research areas in homo-
morphic encryption. For instance, as our method utilizes CKKS bootstrapping, improvements in CKKS
bootstrapping, such as algorithmic optimization [LLL+21, LLK+22, JM22, BCC+22], or hardware ac-
celeration [JKA+21, KKK+22], directly contribute to enhancing BFV bootstrapping. Simultaneously,
our method broadens the range of potential applications for BFV. In some BFV applications, such as
private machine learning [GBDL+16], the significance lies in the size of the plaintext modulus rather
than its number-theoretic properties for achieving sufficient precision. Additionally, these applications
often require bootstrapping, as they typically involve evaluating large-depth arithmetic circuits. Con-
versely, for other applications like private database queries [KLLW16, TLW+20] or private set intersec-
tion [CLR17, CHLR18, CMdG+21], having a prime plaintext modulus is crucial for efficient homomorphic
comparison or equality tests, leveraging number-theoretic properties. The previous method faced chal-
lenges in covering all these BFV use cases, especially when the plaintext modulus is a large prime number.
This limitation hindered the convergence of various applications of BFV. Our method resolves this issue
by providing viable performance regardless of the number-theoretic properties of the plaintext modulus.
This flexibility potentially expands the range of applications for BFV.
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